-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample_3.py
57 lines (43 loc) · 1.83 KB
/
example_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import streamlit as st
import pandas as pd
import common
__author__ = 'Aleksandar Anžel'
__copyright__ = ''
__credits__ = ['Aleksandar Anžel', 'Georges Hattab']
__license__ = 'GNU General Public License v3.0'
__version__ = '1.0'
__maintainer__ = 'Aleksandar Anžel'
__email__ = 'aleksandar.anzel@uni-marburg.de'
__status__ = 'Dev'
def create_main_example_3():
col_1, col_2 = st.columns([1, 2])
col_1.info('''
This data set comes from the following paper:
**Zak Costello and Hector Garcia Martin
A machine learning approach to predict metabolic pathway dynamics
from time-series multiomics data. npj Syst Biol Appl 4, 19 (2018).
https://doi.org/10.1038/s41540-018-0054-3**. Analyzed samples
were processed in Powell-Focht Bioengineering Hall
(32.881803, -117.233881).
A precise location is shown on the map located on the right.
It contains **metabolomics** and **proteomics** data. The code used
to parse the data can be found here: [GitHub]
(https://github.com/JBEI/KineticLearning)
''')
col_2.map(pd.DataFrame({'lat': [32.88180365509607],
'lon': [-117.23388140034122]}),
zoom=8, use_container_width=True)
example_3_omics_list = ['Metabolomics', 'Proteomics']
choose_omics = st.multiselect(
'What kind of data set do you want to see?', example_3_omics_list)
num_of_columns = len(choose_omics)
charts = [] # An empty list to hold all pairs (visualizations, key)
for i in charts:
type_of_chart = type(i[0])
with st.spinner('Visualizing...'):
if 'altair' in str(type_of_chart):
st.altair_chart(i[0], use_container_width=True)
else:
pass
return None