-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
91 lines (78 loc) · 3.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings # and HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import OpenAIEmbeddings
from htmlTemplates import css, bot_template, user_template
#from langchain.llms import HuggingFaceHub
#To use instructor embedding (free but slower) instead of OpenAI, 'pip install InstructorEmbedding sentence_transformers'
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader=PdfReader(pdf)
for page in pdf_reader.pages:
text+=page.extract_text()
return text
def get_text_chunks(text):
text_splitter=CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks=text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
#embeddings=HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
embeddings=OpenAIEmbeddings(openai_api_key=os.getenv('OPENAI_API_KEY'))
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm=ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory=ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain=ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_user_input(user_question):
response=st.session_state.conversation({'question':user_question})
st.session_state.chat_history=response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i%2==0:
st.write(user_template.replace("{{MSG}}", message.content),unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv('.env')
st.set_page_config(page_title="Chat With Multiple PDFs", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation=None
if "chat_history" not in st.session_state:
st.session_state.chat_history=None
st.header("Chat with Multiple PDFs :books:")
user_question=st.text_input("Ask a question about your documents:")
if user_question:
handle_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs=st.file_uploader("Upload your PDFs here and select 'Process'!", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Loading"):
#get pdf text, then text chunks, create vectorstore
raw_text=get_pdf_text(pdf_docs)
text_chunks=get_text_chunks(raw_text)
vectorstore=get_vectorstore(text_chunks)
#create conversation chain
st.session_state.conversation=get_conversation_chain(vectorstore) #doesnt reinitialize (reload everytime we click)
if __name__ =='__main__':
main()