-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaspls.m
87 lines (76 loc) · 2.91 KB
/
aspls.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function [detrended_signal, baseline] = aspls(X, lambda, order, k, itermax, epsilon)
% Performs Adaptive smoothness penalized least squares smoothing
% (asPLS) which is a type of detrending which tries to preserve the
% features of interest in the data (i.e. peaks).
%
% Inputs:
% - X : array, The y-values of the measured data, with t data points.
% Must not contain missing data (NaN) or Inf.
% - lambda : float, The smoothing parameter. Larger values will create smoother baselines.
% Default is 1e5.
% - order : int, The order of the differential matrix. Must be greater than 0. Default is 2
% (second order differential matrix). Typical values are 2 or 1.
% - k : int, coefficient of hardness for the decay of the weights as
% a function of distance to baseline. A higher k means a harder
% decay which will push the baseline towards lower value of the
% input data. 0.5 is empirically recommended (Default).
% - itermax : int, The max number of fit iterations. Default is 20.
% - epsilon : float, The exit criteria. Default is 1e-4.
%
% Returns:
% - detrended_signal : (array) The input signal - the calculated baseline.
% - baseline : (array) The calculated baseline.
%
% References:
% Zhang, F., et al. Baseline correction for infrared spectra using
% adaptive smoothness parameter penalized least squares method.
% Spectroscopy Letters, 2020, 53(3), 222-233.
%
% Written by: Corentin Nelias, Agarwal Lab 2023
if nargin < 6
epsilon = 10e-4;
if nargin < 5
itermax=20;
if nargin < 4
k = 0.5;
if nargin < 3
order=2;
if nargin < 2
lambda=10e5;
if nargin < 1
error('Missing input data.');
end
end
end
end
end
end
[features, t] = size(X);
D = diff(speye(t), order);
DD = lambda*D'*D;
for i=1:features %iterating over features
w = ones(t, 1);
a = ones(t, 1);
x=X(i,:);
for j=1:itermax
W=spdiags(w, 0, t, t);
A=spdiags(a, 0, t, t);
[L,U,P] = lu(W + A*DD);
z = ( U\(L\(P*W*X')) )';
% z = (W + lambda*A*D'*D)\(W*X');
d = x-z;
a = abs(d')/max(abs(d));
sigma_ = std(d(d < 0)); %standard deviation of events below fit.
w_next = ones(1, t)./( 1 + exp(k*(d - sigma_)/sigma_) ) ;
if sum(abs(w - w_next))/sum(abs(w)) < epsilon %testing if weights have converged
break;
end
w = w_next'; %if weights did not converge, update.
end
Z(i,:)=z;
if j == itermax
warning("Stopping: aspls algorithm reached max. number of iteration.")
end
end
detrended_signal=X-Z;
baseline = Z;