-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshader.frag.js
291 lines (217 loc) · 8.51 KB
/
shader.frag.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
var FRAGMENT_SHADER = `
precision highp float;
#define M_PI 3.1415926535897932384626433832795
uniform sampler2D cloudTexture;
uniform sampler2D planetTexture;
uniform sampler2D difTexture;
uniform sampler2D ligthTexture;
uniform sampler2D normalTexture;
uniform sampler2D uSampler;
uniform float desplazamiento;
uniform float lightPositionX;
uniform float lightPositionY;
uniform float lightPositionZ;
uniform float width;
varying vec2 vTextureCoord;
// Inspiration (and a lot of copy paste) from https://www.shadertoy.com/view/MldyDH
#define ATMOSPHERE_THICKNESS 0.2 //default 0.2
#define SCATTER_INTENSITY 10.0 //default 10
#define ATMOSPHERE_DENSITY 3.0 //default 3.0
#define ATMOSPHERE_COLOR vec3( 3.8, 13.5, 33.1 ) // default vec3( 3.8, 13.5, 33.1 )
#define PI 3.14159265359// scatter const
#define SCALE 0.9
const float R_INNER = 1.0;
//const float R = R_INNER + 0.5;
const int NUM_OUT_SCATTER = 3;
const int NUM_IN_SCATTER = 18;
vec3 fromlatlon(float lat, float lon) {
return vec3(sin(lon*PI/180.) * cos(lat*PI/180.), sin(lat*PI/180.), cos(lon*PI/180.) * cos(lat*PI/180.));
}
// Written by GLtracy
// https://www.shadertoy.com/view/lslXDr
// ray intersects sphere
// e = -b +/- sqrt( b^2 - c )
vec2 ray_vs_sphere( vec3 p, vec3 dir, float r ) {
float b = dot( p, dir );
float c = dot( p, p ) - r * r;
float d = b * b - c;
if ( d < 0.0 ) {
return vec2( 1e4, -1e4 );
}
d = sqrt( d);
return vec2( -b - d, -b + d );
}
// Mie
// g : ( -0.75, -0.999 )
// 3 * ( 1 - g^2 ) 1 + c^2
// F = ----------------- * -------------------------------
// 8pi * ( 2 + g^2 ) ( 1 + g^2 - 2 * g * c )^(3/2)
float phase_mie( float g, float c, float cc ) {
float gg = g * g;
float a = ( 1.0 - gg ) * ( 1.0 + cc );
float b = 1.0 + gg - 2.0 * g * c;
b *= sqrt( b );
b *= 2.0 + gg;
return ( ATMOSPHERE_DENSITY / 8.0 / PI ) * a / b;
}
// Rayleigh
// g : 0
// F = 3/16PI * ( 1 + c^2 )
float phase_ray( float cc ) {
return ( ATMOSPHERE_DENSITY / 16.0 / PI ) * ( 1.0 + cc );
}
float density( vec3 p, float ph ) {
return exp( -max( length( p ) - R_INNER, 0.0 ) / ATMOSPHERE_THICKNESS / ph );
}
float optic( vec3 p, vec3 q, float ph ) {
vec3 s = ( q - p ) / float( NUM_OUT_SCATTER );
vec3 v = p + s * 0.5;
float sum = 0.0;
for ( int i = 0; i < NUM_OUT_SCATTER; i++ ) {
sum += density( v, ph );
v += s;
}
sum *= length( s );
return sum;
}
vec3 in_scatter( vec3 o, vec3 dir, vec2 e, vec3 l ) {
const float ph_ray = 0.05;
const float ph_mie = 0.02;
const vec3 k_ray = ATMOSPHERE_COLOR;
const vec3 k_mie = vec3( 21.0 );
const float k_mie_ex = 1.1;
vec3 sum_ray = vec3( 0.0 );
vec3 sum_mie = vec3( 0.0 );
float n_ray0 = 0.0;
float n_mie0 = 0.0;
float len = ( e.y - e.x ) / float( NUM_IN_SCATTER );
vec3 s = dir * len;
vec3 v = o + dir * ( e.x + len * 0.5 );
for ( int i = 0; i < NUM_IN_SCATTER; i++ ) {
float d_ray = density( v, ph_ray ) * len;
float d_mie = density( v, ph_mie ) * len;
n_ray0 += d_ray;
n_mie0 += d_mie;
#if 0
vec2 e = ray_vs_sphere( v, l, R_INNER );
e.x = max( e.x, 0.0 );
if ( e.x < e.y ) {
v += s;
continue;
}
#endif
vec2 f = ray_vs_sphere( v, l, R_INNER + ATMOSPHERE_THICKNESS );
vec3 u = v + l * f.y;
float n_ray1 = optic( v, u, ph_ray );
float n_mie1 = optic( v, u, ph_mie );
vec3 att = exp( - ( n_ray0 + n_ray1 ) * k_ray - ( n_mie0 + n_mie1 ) * k_mie * k_mie_ex );
sum_ray += d_ray * att;
sum_mie += d_mie * att;
v += s;
}
float c = dot( dir, -l );
float cc = c * c;
vec3 scatter =
sum_ray * k_ray * phase_ray( cc ) +
sum_mie * k_mie * phase_mie( -0.78, c, cc );
return SCATTER_INTENSITY * scatter;
}
float getPixelWidth() {
return 1.0 / width;
}
float getAlphaBorderBlending(float radius, float blendingEnd, float gradiendWidth) {
float blendingStart = blendingEnd - gradiendWidth;
if(radius <= blendingStart) return 1.0;
if(radius >= blendingEnd) return 0.0;
return (blendingEnd - radius) / gradiendWidth;
}
vec4 atmosphere(vec2 fragCoord, float lat, float lon, float radius, vec4 color, float diffussionIntensity, vec4 normalMap, vec4 nightLight, vec4 clouds) {
vec4 fragColor = vec4(0.0, 0.0, 0.0, 0.0);
vec3 normalMapDir = vec3(normalMap);
vec2 p = (2. * fragCoord.xy - vec2(1.0, 1.0)) / 1.0;
vec3 camPos = vec3(0.0, 0.0, 10.0);
vec3 w = normalize(-camPos);
vec3 u = normalize(cross(w, vec3(0,1,0)));
vec3 v = normalize(cross(u, w));
mat3 camera = mat3(u, v, w);
vec3 sun = fromlatlon(lat, lon);
vec3 dir = normalize(camera * vec3(p / SCALE, length(camPos)));
vec2 e = ray_vs_sphere(camPos, dir, R_INNER + ATMOSPHERE_THICKNESS);
if (e.x > e.y) return vec4(0,0,0,0);
vec2 f = ray_vs_sphere(camPos, dir, R_INNER);
e.y = min(e.y, f.x);
float dist = f.x;
float light = 0.0;
if (f.x < f.y) {
vec3 q = camPos + dir * dist;
light = dot(normalize(q - normalMapDir * 0.05), sun);
float specular = pow(clamp(dot(normalize(sun - dir - normalMapDir * 0.05), q), 0., 1.), 64.);
vec3 day = vec3(color) + 0.25 * specular * vec3(0.87, 0.75, 0.) * diffussionIntensity;
fragColor.rgb = mix(vec3(nightLight), day * light, smoothstep(-0.1, 0.1, light));
}
float alpha = getAlphaBorderBlending(radius, 0.5, getPixelWidth());
fragColor.rgb *= alpha;
fragColor.a = alpha;
fragColor.rgb = mix(vec3(nightLight), pow(fragColor.rgb, vec3(1./2.2)), smoothstep(-0.1, 0.1, light));
fragColor.rgb *= alpha;
fragColor.a = alpha;
fragColor.rgb += in_scatter(camPos, dir, e, sun);
return fragColor;
}
// Expects a normnalized vector
// http://www.learningaboutelectronics.com/Articles/Cartesian-rectangular-to-spherical-coordinate-converter-calculator.php
vec2 vector3toLonLatNormalized( vec3 coords ) {
coords = vec3(coords.z, coords.x, coords.y);
float radius = sqrt(coords.x * coords.x + coords.y * coords.y + coords.z * coords.z);
float lat = atan(coords.y / coords.x);
float lon = acos(coords.z / radius);
if(coords.x < 0.0) {
lat += M_PI;
}
return vec2((lat+M_PI/2.0)/M_PI/2.0, lon / M_PI);
}
vec4 quat_from_axis_angle(vec3 axis, float angle) {
vec4 qr;
float half_angle = (angle * 0.5) * M_PI / 180.0;
qr.x = axis.x * sin(half_angle);
qr.y = axis.y * sin(half_angle);
qr.z = axis.z * sin(half_angle);
qr.w = cos(half_angle);
return qr;
}
vec3 rotate_vertex_position(vec3 position, vec3 axis, float angle) {
vec4 q = quat_from_axis_angle(axis, angle);
vec3 v = position.xyz;
return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);
}
void main(void) {
// This marks makes the coordinates from the texture to be in a space inside of the full texture space.
// Meaning, this gives some borders for the texture
float texResize = 1.1053;
float textCoordS = vTextureCoord.s * texResize - (texResize - 1.0) / 2.0;
float textCoordT = vTextureCoord.t * texResize - (texResize - 1.0) / 2.0;
vec2 screenPlanetXY = vec2(textCoordS - 0.5, -textCoordT + 0.5);
float radius = length( screenPlanetXY);
float halfRadius = length( screenPlanetXY * 2.0 );
float angle = atan( screenPlanetXY.x, screenPlanetXY.y );
float verticalCoordZ = sin(acos(halfRadius)) / 2.0;
vec3 sphereVector = vec3(screenPlanetXY.x, screenPlanetXY.y, verticalCoordZ);
vec3 rotated = rotate_vertex_position(sphereVector, vec3(1.0, 0.0, 0.0), -lightPositionY / 5.0);
rotated = rotate_vertex_position(rotated, vec3(0.0, 1.0, 0.0), -lightPositionX / 5.0);
vec2 latlong = vector3toLonLatNormalized(rotated);
vec2 finalPointWithDisplacement = vec2(latlong.x , latlong.y);
gl_FragColor.rgba = atmosphere(
vec2(vTextureCoord.s, vTextureCoord.t),
desplazamiento * 4000.0,
desplazamiento * 2000.0,
radius,
texture2D( planetTexture, finalPointWithDisplacement),
texture2D( difTexture, finalPointWithDisplacement).r,
texture2D( normalTexture, finalPointWithDisplacement),
texture2D( ligthTexture, finalPointWithDisplacement),
texture2D( cloudTexture, finalPointWithDisplacement)
);
//gl_FragColor.rgba = vec4(vTextureCoord.x, vTextureCoord.y, 0.0, 1.0);
//gl_FragColor.rgba = texture2D( ligthTexture, finalPointWithDisplacement);
}
`;