-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCN_analysis.R
350 lines (316 loc) · 15.2 KB
/
CN_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#R script for producing GHG analysis for experimental stats publication (Sefari project)
library(haven)
library(tidyverse)
library(spatstat)
library(writexl)
library(data.table)
library(gridExtra)
library(grid)
##Specify the locations of the data to be read in (SAS drive) and where outputs should go (currently the Z drive.)
FBS_directory_path <- '//s0177a/sasdata1/ags/fas/'
Output_directory <- '//s0177a/datashare/seerad/fas/raw_data/prod2022/Sefari_outputs'
#Variables for farmtype names and numbering
fbs_type_numbers <- c(1:10)
## The "[1]" after "All farm types" is a deliberate footnote.
# fbs_type_words <- c("Cereal","General Cropping","Dairy","LFA Sheep","LFA Cattle","LFA Cattle and Sheep","Lowland Livestock","Mixed","All farm types [1]", "Less favoured area (LFA) livestock")
fbs_type_words <- c("Cereal","General Cropping","Dairy","LFA Sheep","LFA Cattle","LFA Cattle and Sheep","Lowland Livestock","Mixed","All Farm Types", "Less favoured area (LFA) Livestock")
fbs_type_tab <- data.frame(fbs_type_numbers, fbs_type_words)
apply_type_formats <- function(table_name) {
setkey(setDT(table_name),type)
table_name[setDT(fbs_type_tab),farmtype:=i.fbs_type_words]
return(table_name)
}
#Loop to read in data
for (sampyear in sampyear_range){
# Calculate datayear, given sampyear. For the most recently-available data, datayear=sampyear (provisional data).
# For older data, it will be datayear=sampyear+1 (final)
if(sampyear==max(sampyear_range)){
datayear=sampyear
} else {
datayear=sampyear + 1
}
#Initialise dataframes (first year in sampyear range only)
if(sampyear==min(sampyear_range)){
AllYears_fa <- NULL
AllYears_carbon <- NULL
AllYears_nue <- NULL
}
## Filenames for Farm account, carbon audit and NUE datasets
# NB: sampyear rather than datayear in NUE filename
FBS_fa_data_file <- paste0("so_y", datayear, "_fa",".sas7bdat")
FBS_carbon_file <- paste0("so_y", datayear, "_carbon",".sas7bdat")
FBS_nue_file <- paste0("so_y", sampyear, "_nue",".sas7bdat")
#Single year's FA data
FBS_fa_data <- tryCatch(
{
FBS_fa_data <- read_sas(FBS_fa_data_file)
},
error = function(e)
{
file.copy(paste0(FBS_directory_path, FBS_fa_data_file), getwd())
return(read_sas(FBS_fa_data_file))
}
)
##Basic data cleaning - convert all column names to lower case and strip sas formatting
names(FBS_fa_data) <- tolower(names(FBS_fa_data))
for (x in colnames(FBS_fa_data)){
attr(FBS_fa_data[[deparse(as.name(x))]],"format.sas")=NULL
}
#Process FA data.
FBS_fa_data_tidy <- FBS_fa_data %>%
filter(fa_id%%10000==sampyear) %>%
select(fa_id, type, fa_fbi) %>%
mutate(sampyear=fa_id%%10000)
#Single year's carbon data
FBS_carbon_data <- tryCatch(
{
FBS_carbon_data <- read_sas(FBS_carbon_file)
},
error = function(e)
{
file.copy(paste0(FBS_directory_path, FBS_carbon_file), getwd())
return(read_sas(FBS_carbon_file))
}
)
##Basic data cleaning - convert all column names to lower case and strip sas formatting
names(FBS_carbon_data) <- tolower(names(FBS_carbon_data))
for (x in colnames(FBS_carbon_data)){
attr(FBS_carbon_data[[deparse(as.name(x))]],"format.sas")=NULL
}
#Process carbon data
FBS_carbon_data_tidy <- FBS_carbon_data %>%
filter(fa_id%%10000==sampyear)
#Single year's NUE data
FBS_nue_data <- tryCatch(
{
FBS_nue_data <- read_sas(FBS_nue_file)
},
error = function(e)
{
file.copy(paste0(FBS_directory_path, FBS_nue_file), getwd())
return(read_sas(FBS_nue_file))
}
)
##Basic data cleaning - convert all column names to lower case and strip sas formatting
names(FBS_nue_data) <- tolower(names(FBS_nue_data))
for (x in colnames(FBS_nue_data)){
attr(FBS_nue_data[[deparse(as.name(x))]],"format.sas")=NULL
}
#Process NUE data
#The dataset contains two entries for each farm - we want the "NNKG" entry, which has the raw totals.
#The other entry (an_code=NNGH) has values per hectare.
FBS_nue_data_tidy <- FBS_nue_data %>%
filter(fa_id%%10000==sampyear,
an_code =="NNKG")
#Append each year's data to All Years dataset
AllYears_fa <- AllYears_fa %>%
bind_rows(FBS_fa_data_tidy)
AllYears_carbon <- AllYears_carbon %>%
bind_rows(FBS_carbon_data_tidy)
AllYears_nue <- AllYears_nue %>%
bind_rows(FBS_nue_data_tidy)
}
#Convert NUE ratio to percentage
AllYears_nue$nue <- AllYears_nue$nue*100
#Read in the FBS weights file
FBS_weights_file <- paste0("new_weights.sas7bdat")
FBS_weights <- tryCatch(
{
FBS_weights <- read_sas(FBS_weights_file)
},
error = function(e)
{
file.copy(paste0(FBS_directory_path, FBS_weights_file), getwd())
return(read_sas(FBS_weights_file))
}
)
##Basic data cleaning - convert all column names to lower case and strip sas formatting
names(FBS_weights) <- tolower(names(FBS_weights))
for (x in colnames(FBS_weights)){
attr(FBS_weights[[deparse(as.name(x))]],"format.sas")=NULL
}
#Join weights/farm account to carbon and nue datasets
AllYears_carbon <- AllYears_carbon %>%
inner_join(FBS_weights, by="fa_id") %>%
inner_join(AllYears_fa, by="fa_id")
AllYears_nue <- AllYears_nue %>%
inner_join(FBS_weights, by="fa_id") %>%
inner_join(AllYears_fa, by="fa_id") %>%
left_join(select(AllYears_carbon, fa_id, farm_output_kg), by="fa_id")
#Create carbon output table
#Function to perform the summarising needed
C_summarise <- function(df){
df <- summarise(df, CO2e_per_ha_mean = weighted.mean(total_ha_co2,fbswt),
CO2e_per_ha_Q1 = weighted.quantile(total_ha_co2, fbswt, 0.25),
CO2e_per_ha_Q3 = weighted.quantile(total_ha_co2, fbswt, 0.75),
CO2e_per_ha_min = min(total_ha_co2),
CO2e_per_ha_med = weighted.median(total_ha_co2, fbswt),
CO2e_per_ha_max = max(total_ha_co2),
CO2e_per_kg_mean = weighted.mean(total_wf_co2, fbswt),
CO2e_per_kg_Q1 = weighted.quantile(total_wf_co2, fbswt, 0.25),
CO2e_per_kg_Q3 = weighted.quantile(total_wf_co2, fbswt, 0.75),
CO2e_per_kg_min = min(total_wf_co2),
CO2e_per_kg_med = weighted.median(total_wf_co2, fbswt),
CO2e_per_kg_max = max(total_wf_co2),
FBI_mean = weighted.mean(fa_fbi, fbswt),
farm_output_kg_mean = weighted.mean(farm_output_kg, fbswt),
farm_output_kg_med = weighted.median(farm_output_kg, fbswt),
farm_output_kg_Q1 = weighted.quantile(farm_output_kg, fbswt, 0.25),
farm_output_kg_Q3 = weighted.quantile(farm_output_kg, fbswt, 0.75),
fbswt_sum = sum(fbswt),
simple_count = n())
return(df)
}
##Apply the summarising function to individual types
Carbon_summary <- AllYears_carbon %>%
group_by(sampyear, type) %>%
C_summarise()
##Apply separately to "All farm types" (type=9)
Carbon_summary_all <- AllYears_carbon %>%
group_by(sampyear) %>%
C_summarise() %>%
mutate(type=9)
##And once more for "All LFA farms" (type=10)
Carbon_summary_LFA <- AllYears_carbon %>%
filter(type %in% 4:6) %>%
group_by(sampyear) %>%
C_summarise() %>%
mutate(type=10)
#Append the "All farm types" and "All LFA farms" mini-tables to the main table.
#Also convert kg to tonnes for per hectare calculations
Carbon_summary <- Carbon_summary %>%
bind_rows(Carbon_summary_all, Carbon_summary_LFA) %>%
mutate_at(vars(starts_with("CO2e_per_ha")), function(x) x*0.001)
##Order by sampyear
Carbon_summary <- Carbon_summary[order(Carbon_summary$sampyear),]
##Repeat summarisation steps for Nitrogen
N_summary <- function(df){
df <- summarise(df, N_surplus_mean = weighted.mean(farm_n_surplus, fbswt),
N_surplus_Q1 = weighted.quantile(farm_n_surplus, fbswt, 0.25),
N_surplus_Q3 = weighted.quantile(farm_n_surplus, fbswt, 0.75),
N_surplus_min = min(farm_n_surplus),
N_surplus_med = weighted.median(farm_n_surplus, fbswt),
N_surplus_max = max(farm_n_surplus, fbswt),
N_input_mean = weighted.mean(ninput_total, fbswt),
N_input_Q1 = weighted.quantile(ninput_total, fbswt, 0.25),
N_input_Q3 = weighted.quantile(ninput_total, fbswt, 0.75),
N_input_min = min(ninput_total),
N_input_med = weighted.median(ninput_total, fbswt),
N_input_max = max(ninput_total, fbswt),
N_output_mean = weighted.mean(noutput_total, fbswt),
N_output_Q1 = weighted.quantile(noutput_total, fbswt, 0.25),
N_output_Q3 = weighted.quantile(noutput_total, fbswt, 0.75),
N_output_min = min(noutput_total),
N_output_med = weighted.median(noutput_total, fbswt),
N_output_max = max(noutput_total, fbswt),
nue_mean = weighted.mean(nue, fbswt),
nue_Q1 = weighted.quantile(nue, fbswt, 0.25),
nue_Q3 = weighted.quantile(nue, fbswt, 0.75),
nue_min = min(nue),
nue_med = weighted.median(nue, fbswt),
nue_max = max(nue),
farm_output_kg_mean = weighted.mean(farm_output_kg, fbswt),
farm_output_kg_med = weighted.median(farm_output_kg, fbswt),
farm_output_kg_Q1 = weighted.quantile(farm_output_kg, fbswt, 0.25),
farm_output_kg_Q3 = weighted.quantile(farm_output_kg, fbswt, 0.75),
fbswt_sum = sum(fbswt),
simple_count = n())
}
Nitrogen_summary <- AllYears_nue %>%
group_by(sampyear, type) %>%
N_summary()
Nitrogen_summary_all <- AllYears_nue %>%
group_by(sampyear) %>%
N_summary() %>%
mutate(type=9)
Nitrogen_summary_LFA <- AllYears_nue %>%
filter(type %in% 4:6) %>%
group_by(sampyear) %>%
N_summary() %>%
mutate(type=10)
Nitrogen_summary <- Nitrogen_summary %>%
bind_rows(Nitrogen_summary_all, Nitrogen_summary_LFA)
Nitrogen_summary <- Nitrogen_summary[order(Nitrogen_summary$sampyear), ]
#Apply wordy formats
Carbon_summary <- apply_type_formats(Carbon_summary) %>%
select(sampyear, farmtype, everything())
Nitrogen_summary <- apply_type_formats(Nitrogen_summary) %>%
select(sampyear, farmtype, everything())
#Write Carbon and Nitrogen summaries to a CSV in the Z drive
write.csv(Carbon_summary,
file=paste0(Output_directory,"/Farm Business Survey ",max(sampyear_range)-1,"-",max(sampyear_range)-2000," - Tables - Carbon_summary.csv"),
row.names = FALSE)
write.csv(Nitrogen_summary,
file=paste0(Output_directory,"/Farm Business Survey ",max(sampyear_range)-1,"-",max(sampyear_range)-2000," - Tables - Nitrogen_summary.csv"),
row.names = FALSE)
#Create a combined summary table and csv for the open data platform
Combined_summary <- Carbon_summary %>%
left_join(Nitrogen_summary, by=c("sampyear", "farmtype", "type")) %>%
filter(type %in% Output_types) %>%
mutate(DateCode=paste0(sampyear-1,"/",sampyear)) %>%
select(Farmtype=farmtype,
DateCode,
"Farm emissions per hectare - median" = CO2e_per_ha_med,
"Farm emissions per hectare - lower quartile" = CO2e_per_ha_Q1,
"Farm emissions per hectare - upper quartile" = CO2e_per_ha_Q3,
"Farm emissions intensity - median" = CO2e_per_kg_med,
"Farm emissions intensity - lower quartile" = CO2e_per_kg_Q1,
"Farm emissions intensity - upper quartile" = CO2e_per_kg_Q3,
"Nitrogen surplus per hectare - median" = N_surplus_med,
"Nitrogen surplus per hectare - lower quartile" = N_surplus_Q1,
"Nitrogen surplus per hectare - upper quartile" = N_surplus_Q3,
"Nitrogen use efficiency - median" = nue_med,
"Nitrogen use efficiency - lower quartile" = nue_Q1,
"Nitrogen use efficiency - upper quartile" = nue_Q3
)
## Create narrow dataset, for publication on opendata platform
Combined_summary_narrow <- Combined_summary %>%
gather(`Farm emissions per hectare - median`:`Nitrogen use efficiency - upper quartile`, key = "Measure", value = "Value") %>%
mutate(FeatureCode = "S92000003",
Measurement = "Count",
Units = "Tonnes CO2 equivalent per hectare") %>%
select(FeatureCode, DateCode, Farmtype, Measure, Measurement, Units, Value)
## Add units, depending on value of Measure column.
## Pretty messy way of doing this. A lookup table may have been better...
Combined_summary_narrow <- Combined_summary_narrow %>%
mutate(Units = ifelse(substr(Measure, 1, 26) =="Farm emissions per hectare", "Tonnes CO2 equivalent per hectare",
ifelse(substr(Measure, 1, 24) =="Farm emissions intensity", "Tonnes CO2 equivalent per kilogram farm output",
ifelse(substr(Measure, 1, 16) =="Nitrogen surplus", "Kilogrammes per hectare",
ifelse(substr(Measure, 1, 12) =="Nitrogen use", "Percent",
NA)))))
##Change Measurement value to "Ratio" if Measure is NUE.
Combined_summary_narrow$Measurement[substr(Combined_summary_narrow$Measure, 1, 12)=="Nitrogen use"] = "Ratio"
#Output csv file
write.csv(Combined_summary_narrow,
file=paste0(Output_directory,"/farm-business-survey-environmental-data.csv"),
row.names = FALSE)
#Column names for the output tables - Type, measure and then one for each financial year.
Output_colnames = c("Farm type", "Measure", c(financial_years))
#This is a function to create the output tables.
#The input table is either Carbon_summary or Nitrogen_summary.
#The "variable" argument needs to be one of the measures in the Carbon/Nitrogen summary.
#Output_table is the name of the resulting table, created by the function
Create_output_table <- function(Input_table, variable, Output_table){
Table_name <- Input_table %>%
filter(type %in% Output_types) %>%
select("Average (median)"= paste0(variable,"_med"),
"Lower quartile" = paste0(variable,"_Q1"),
"Upper quartile" = paste0(variable,"_Q3"),
everything()) %>%
gather("Average (median)", "Lower quartile", "Upper quartile", key="Measure",value="Value") %>%
select("Farm type"=farmtype,type,sampyear,Measure,Value) %>%
spread(key=sampyear, Value)
Table_name$type <- factor(Table_name$type, levels = Output_types)
Table_name <- Table_name[order(Table_name$type),] %>%
select(-type)
colnames(Table_name) <- Output_colnames
return(Table_name)
}
#Use the above function to create four output tables, one for each of the four variables.
Table_1 <- Create_output_table(Carbon_summary, "CO2e_per_ha", "Table_1")
Table_2 <- Create_output_table(Carbon_summary, "CO2e_per_kg", "Table_2")
Table_3 <- Create_output_table(Nitrogen_summary, "N_surplus", "Table_3")
Table_4 <- Create_output_table(Nitrogen_summary, "nue", "Table_4")
#Write the four tables into an Excel file in a vaguely publishable format
write_xlsx(list(CO2e_per_ha = Table_1, CO2e_per_kg = Table_2, N_surplus = Table_3, NUE = Table_4),
path=paste0(Output_directory,"/Farm Business Survey ",max(sampyear_range)-1,"-",max(sampyear_range)-2000," - Tables - Carbon and Nitrogen tables data.xlsx"))