diff --git a/paperqa/prompts.py b/paperqa/prompts.py index 661a7327..fdd85dd5 100644 --- a/paperqa/prompts.py +++ b/paperqa/prompts.py @@ -78,7 +78,7 @@ "relevance_score": "..." }} -where `summary` is relevant information from text - {summary_length} words and `relevance_score` is the relevance of `summary` to answer question (out of 10). +where `summary` is relevant information from the text - {summary_length} words. `relevance_score` is an integer 1-10 for the relevance of `summary` to the question. """ # noqa: E501 env_system_prompt = ( diff --git a/paperqa/utils.py b/paperqa/utils.py index f2d7c8c6..f92a4c85 100644 --- a/paperqa/utils.py +++ b/paperqa/utils.py @@ -130,12 +130,19 @@ def strip_citations(text: str) -> str: def extract_score(text: str) -> int: - # check for N/A + """ + Extract an integer score from the text in 0 to 10. + + Note: score is 1-10, and we use 0 as a sentinel for not applicable. + """ + # Check for N/A, not applicable, not relevant. + # Don't check for NA, as there can be genes containing "NA" last_line = text.split("\n")[-1] - if "N/A" in last_line or "n/a" in last_line or "NA" in last_line: - return 0 - # check for not applicable, not relevant in summary - if "not applicable" in text.lower() or "not relevant" in text.lower(): + if ( + "n/a" in last_line.lower() + or "not applicable" in text.lower() + or "not relevant" in text.lower() + ): return 0 score = re.search(r"[sS]core[:is\s]+([0-9]+)", text) diff --git a/tests/cassettes/test_pdf_reader_match_doc_details.yaml b/tests/cassettes/test_pdf_reader_match_doc_details.yaml index efa35713..15561e39 100644 --- a/tests/cassettes/test_pdf_reader_match_doc_details.yaml +++ b/tests/cassettes/test_pdf_reader_match_doc_details.yaml @@ -44,20 +44,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xSS2vjMBC++1cMOidLHsVJfGtLj4XSUpalLrYijxM1skZI422WkP++yHHjLJuF - vejwvZhvRocEQOhKZCDUVrJqnBnfyvRzr1f1bpa2Ly/Pq9f7H3x3n97tHpbNXoyig9YfqPjL9U1R - 4wyyJnuilUfJGFOni/l8mq6Wy0VHNFShibaN4/ENjWeT2c14shxP0t64Ja0wiAzeEgCAQ/fGEW2F - e5HBZPSFNBiC3KDIziIA4clERMgQdGBpWYwGUpFltN3UZVl+BLK5PeQWIBes2WAuMsjFLTyhDw4V - 658IZOFh74y0MrYLQDU8kkHVGunhyWOlVSTgMRYLuRid8mTLW/IhJr7l4jsaIz8lMwIySJOL915X - kY4a2xqT22Nuy7K8nNhj3QZpekWPH88rMLRxntah5894ra0O28KjDGRj3cDkRMceE4D3btXtH9sT - zlPjuGDaoY2By/kpTgy3Hcj5qieZWJoBn85moytxRYUstQkXtxJKqi1Wg3U4rGwrTRdEclH672mu - ZZ+Ka7v5n/iBUAodY1W481mvyTzGr/8v2XnJ3cAi/AqMTVFru0HvvD79vtoVizpd4xzr9UQkx+Q3 - AAAA//8DAM1HCSGGAwAA + H4sIAAAAAAAAA4xS32vbMBB+919x6DkZqR3SJm8tGYOVssJgg9XFVuRzrFTWCem8dYT870OOG6cs + g73o4fvFfXfaJwBCV2IFQjWSVevM9Fa67NsP9ylt7u7X2O0+05f1fPHy9W55vyYxiQ7a7FDxm+uD + otYZZE32SCuPkjGmXl1nWZYt5+myJ1qq0ETb1vF0TtN0ls6ns5vpbDEYG9IKg1jBUwIAsO/fOKKt + 8FWsYDZ5Q1oMQW5RrE4iAOHJRETIEHRgaVlMRlKRZbT91GVZ7gLZ3O5zC5AL1mwwFyvIxS08og8O + FeufCGTh46sz0srYLgDV8EAGVWekh0ePlVaRgIdYLORicsyTHTfkQ0x8ysV3NEb+kswIyCBNLp4H + XUU6amxnTG4PuS3L8nxij3UXpBkUA344rcDQ1nnahIE/4bW2OjSFRxnIxrqByYmePSQAz/2qu3fb + E85T67hgekEbA2+yY5wYbzuS2XIgmViaEb9K08mFuKJCltqEs1sJJVWD1WgdDyu7StMZkZyV/nua + S9nH4tpu/yd+JJRCx1gV7nTWSzKP8ev/S3Zacj+wCL8DY1vU2m7RO6+Pv692xXW92GCG9WYmkkPy + BwAA//8DAEpxLpGGAwAA headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebded939912eb21-SJC + - 8ece18c3da99227e-SJC Connection: - keep-alive Content-Encoding: @@ -65,14 +65,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:04:48 GMT + - Wed, 04 Dec 2024 19:10:31 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=18W6iQ8vqb415F5xVrk3Ge4dUhGPkgrhNozopGG2HXw-1733169888-1.0.1.1-pnvay9pz3s5sG0RmkI7UdARtXP7nf3paIE38K29QjHBqYQ.nNVEYmzAn3ixUbbc45NzeYsu0qXXUtBZjJN_kPw; - path=/; expires=Mon, 02-Dec-24 20:34:48 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=.A5CQsYxmx_Qn_CfyGOSt1GrgdzxA7dkNZPKfhh1yug-1733339431-1.0.1.1-5OKWYEhPOkdNqhQp5tCxM4Q4mjVXeQ8etggj7TfPLbu5cKa4d.coTHsImXI7dnbL3ivhBASUq74oHkguXlLG8w; + path=/; expires=Wed, 04-Dec-24 19:40:31 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=mag22BiQ6y4WuIP4sC0PP_aDhc1fsuhVAGnDMd1pkvg-1733169888860-0.0.1.1-604800000; + - _cfuvid=_rFrjucsf4a18a72iXCDCYzsDBMC_yZjJCTW.E.rxyI-1733339431239-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -85,7 +85,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "1451" + - "2246" openai-version: - "2020-10-01" strict-transport-security: @@ -97,13 +97,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29999904" + - "29999903" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 0s x-request-id: - - req_ad8dc5dcd249e38cabbcc829f73418c1 + - req_f4188dd28f6a2657a0c92392bd1a1631 status: code: 200 message: OK @@ -115,7 +115,7 @@ interactions: response: body: string: - '{"status":"ok","message-type":"work-list","message-version":"1.0.0","message":{"facets":{},"total-results":17889,"items":[{"DOI":"10.26434\/chemrxiv-2022-qfv02","author":[{"given":"Geemi + '{"status":"ok","message-type":"work-list","message-version":"1.0.0","message":{"facets":{},"total-results":17902,"items":[{"DOI":"10.26434\/chemrxiv-2022-qfv02","author":[{"given":"Geemi P.","family":"Wellawatte","sequence":"first","affiliation":[{"name":"University of Rochester"}]},{"given":"Heta A.","family":"Gandhi","sequence":"additional","affiliation":[{"name":"University of Rochester"}]},{"given":"Aditi","family":"Seshadri","sequence":"additional","affiliation":[{"name":"University @@ -140,7 +140,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:04:50 GMT + - Wed, 04 Dec 2024 19:10:31 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1245,1695 +1245,1694 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA5x6Sc+DPLjd/v6KT9+WSmEKtu+OGcJkwhTSFSSEQAbCZMBX/e9V8latKnXVTaQE - Egf7POec59j/9R///PNvV7bVZfr3P//599mM07//7fvZtZiKf//zn//+H//8888///V7/b/urF5l - db027/p3++9i875W67//+Q/7vz/5Pzf95z//JhWwA/RZ38OCrhqUYkZasVcKhsb7b5+BrfPwSKmE - Ubs9cyDB027qsJnZMV3i/NCg2BOvJNXnBSzOY1PhuzxrJFiqU0tJL7Fw3noTmyPnUY7UdQ0lbp9j - S0/32gACz4beNKBZuodKye93lxCe8xbP6H18xtPZBI2k0uCD3SDMAJ3e8wueSeKQZLinw2qG5QUq - KNCCJX/FA2nGKw/lvhiwvbtc3GU2ZxMaUEZE91kQb+foZsI39CxcPFoeLEUbVmiXJdoccRKvrX7Z - FIjhmh22alKDFcpEBhULT6RwtI87aufWhIdCqAPEH8dhfT+PAcq3VpkHD+klzz0sB0jDHuNkf2dK - Wl+SDfHjsSOBXMmtsDRAhQg0NxKkldOymIUN/OQBwLK7R/HyfN1V1AirS/Lt02oE3XMZHQOzI9YO - B+V8POEN6LyaY9shLKXxWd2QaniYFH77AR9hGStJEkCKrZGYg1BbnYM6oRSIPcEIbEz06UFOyA6r - qaRT/hzddLi+PhdsTOUWb3UtsnCXZRrWM/Y2sB+zDdD3+XGVM265ndRKhmbP6hhzYgKW7U49mA1E - DnqXL+jG6kEF+6sckkwF5cA3tRRC9e21pLKqO2BdT3ohq2Z7LDt7BmzGW+lQMSRvcjYuN61ncMbC - uJbIvN9lHN12UuOgbJhkXO2qauAf/puHB9JVWJ/uYru1uXQBzYfaxI7g8/v72wudmjomt52hxzRO - dxB8GP9Asr5jhqUu4xqBen6S3/iTjnAN/eWakaiUrGGeRqf7w6dhzZG7vJi7iL7jkRt4asME5bcM - LkZaETWespYYqbghAMce5+PhrnG6WNSQPVwbooZTGq9zmlyQZ15uBOvDXK6Qbg4KK/2Io1TSAccu - rYoe/FsmBtNZAzsfFgk9i+dxFrzGcRf7PDESG4UlsXcfKx5nc9ZBbcMdudWiAxZ1bRpk6zwg6he/ - dOvZCNA5PJDSQ4+YPm9NhX7rcVJSoX1x7zMEzK1esPKZ1GGJOsVGNu1UHN5Mrl38C+jhy34O33op - Y/5lsyGwFg1hWd9Dd9Z3io6ii2Ri3z/d6B/+xaOVEjl/xS37BjcdHhpuJAc+Ow688T706B6gR8BM - ruoKU7EuKBivGw6cqi2Fu37N4Mx2GrEklaFLl/Us3JcGi49+bbp0z7gyHA+KjhOH3YM10HoGMckE - 5n2VmZrgT7CBTbxJ2NmHHqBDtNSIv5nRzIyDCtjrYs7oqqQAa8y9dtlX8HmB2wPO2NOdiW7GwPdw - JyUJ1vtZjflKXCLUR36Jj7x8iZdt3VgYVaJGnKW9DCzh51waOT7A1lNNKHfUxgK2+Qtj24SyuzHR - vYfK3juQU48f5cIYXgOfbeEQRfT7dpOKTkWnlrQEf/E5VqF1gc6t5+bpqQvxEifMCPK+5nCgr+yw - Om23odA0TXwcZM6l4ZN3oHAyuVns4VpycbBU6HDqYmzx2NHYRFZNxO11HZ943GvTtZB56AiDghN6 - B+XC+7YKsR/yuIoZE7DX9ighjGJ/3lkDHvg6XD1oPdgHSZZ7oc0Mrnj4w6u5U+thffbeAl9GXuFi - F+Jh+/IdZLnbDruiY2vb9TnmgJ5uATFuQVV2WejaEruFG/FUxwGLeFV09Hw8CyKfzYiut02ZkaDo - bxwp/gzWEcUNSlhwIk69qBo3TaUEzvJdJ4eSb8EShnKEzvssJvo+cOJFPt55ZEGWkJgmfkvPiumB - Lz9jvb8L2kTTUwZvBfOcW5pM7VpXQgjXfXUNxBupwHbhHir6Xicmz5F26bKGh+97GWH7e53L2zcD - qX81yO2Ruy19wEyEr/ENsT1+5HLjTkUC7YrT8EUUUo1rNs0B0gdEs6CrT3d5g5sJByw/8OFxQHQ1 - 8jhC2h1rxGMeGpgwGPR9ccvuxIuEmo7X2tIhz+l3XHmMMVDT2NugDR5mwOfcvVzZZZChsDNkbMbd - OhBWQpko8/lKyhIN5ZJ26guRvE9mXrW7cv3qLbozCBAvFdRY0KfFQ/qEb8HC08mlxCIZtBh2JOat - E+LFUiYddFVQEnPihnKVBlGEe1+qiDs6TclrJ/sF7/fthf37qgD+qJY2dEwOBYKfXuMNkUxHve1H - 2I2Q5bLSVW3QPhV7HAwVdae9tuSQ7cMXPn35bcOCJUMi9R3xxSNpt+vzkaPLaJ9J7FtzvAiTPCOj - lsWApcG7XC8M0uGtOwCc3dNXzJ/UTEat9GqxP+lXl+JV3qAXXZ7kOuiFNoNT6iFp2nv4NKingTdu - Bx4+H++CVFPFu8uuzj00PTUR27eLA7i35PPSHhszSbj50AoP0pjomeYWudKj63Kt4+lg8vkz0QYL - DsuavR0Eq5Ehhd4a7TYnWoCqDh7Jce9/tD++r6Odjb1bfwZPrhs8eM3sPU5HQN0NSt0Mr7nN41IN - V3eJbUVE3RhU2GII1rYv34Ibw/BBMFSxth2w1qOYEVfsZtc3oOO2BvBYxsws3du0pHi1FxgHUkFS - HnCUFpezhEgrTEThpi7e6nyVEWQnn8hivNDNj44JKo7ZjVh684g3F/smjAuLzuwjqOMVaHsWnkpy - mrdw4uIPK/czrCpoY5dHYtzvd0mEkveo4NvZPbvbbRErqFeqh4OcGWIy3KZMelQPlnjLKdSE23jJ - 4RfP2DgHYFhZuRkRMzQ8OYha3W653+hIQ9gOKlrldPjqBdQr2SPy/XUCSxXiC5Reo4GtWd27Kxqk - BK7554yV3TRo04HWOTw5tTXD0KHtBqI6gGfmfp134lONv+vPwgtvN1j+4n/rRUYFh7TLSPj1A3SJ - QA71Ta1w4KxCPL75RkfpYz8TK1Y9ly21o4dSMH+Iz68D+Na3Djy+4rFPV6eclrAToWP0E3beoe4u - 5LM+QEaJR3CeP8F2vY4P+OgeCFePaqXLtcYm7Hv/NcNc0AAHwrmHX7+I9TEwXf6s3irgpcM2I2Zd - hw1EXQAdq+8JHvKRbo8FZEC8ihbROBbTobybkjQetZCYQ4fcCYRzB9IcdASLYlYu8vHDw6737kR/ - zzJlX+Zng/1HzogfnKqSlklk/vxzwIyuNtBKj0UpzsWWnDjS09WUSx6+jKLCcv+6aPQ2JoWU7ueR - HG6Hc0znaIUwJMc7OU5y7nI0vWWS6w943r8zJ161a8BCUTBa4nCL55JxWz10OpHr/FSDeRhfZZZD - LOoaKT6LWU67ASzQOw7iXJ9fm7Z+fw/wYjzP7FfPpoyRAgijeT/7k47cca/wPBwNzcEu0/furBBZ - hell3+DL+zQMG28VI+CvZkqsPR7aVa2Pf/4En7NPEs9dxzJA872VXL98sr4iI4G8fTzN/E6Vh5Hd - szp0Ph2DrUEVWvombQ2HwkfEoe0VdG2cOj+8EeuOa21xxpWHuzrxcHoAcskx9XuEGUcOwbYrzu3k - DPUDwo2ExGy6HGzLxavAgGSGyKppUNaEi4y+/jVgHeXVbhYQZjApyhvLb2pQavoLhPdi1xNtthh3 - vVaIB2AFHMH+EA2L/Xk+IO8cE/zVU/ePH9J2rHCYvZZh7XrTg86nZwLGWjm62l2SQDe/GKSMr6+Y - Mof8BWE1MwR/9Y/vO76Anyxg5tWNBbD9/JJkACUAvGO43N1xOjiUao8VX36Brdhui3QnWxdszYTA - oHOLDAxGlQhmxL27KRqcYTFk72CvXq7D4DxBBK+yM5DwFsuA88s+B5dj+pjR1x+R2qodhHFIA2kf - jmDlw2GTxMG44pvi+oMwqKIE1WOQBvdtMsHIKhSiA+4tEoxuO6yZKekQnRsXY8dd6fJ8fVR43y8r - qSpm1taEETekYW/+48tVWiYJ7ltpIrqiNPGyNw493KJhH+xBq7gLNDQT4PvRxvL5FbmC8HLsH78Q - nd7LcqOJqYudVdbEejTpsPaSFYHHgfJ//LuAVB3htGoMVrLaiclXn+EuSUwcKntp2N4Lu8HgEz2J - cS+9druhZwR9ELok00HVznyCa/Dl828/TsFiX8QNIJnEOLAYxd3yJhthszx0csj5pl1/+EM5qYiW - s7VG7eIdQNgRa5aWFg5bGBUb3OaBCaQxtFsCMo358Vew73lX+/kD6CaVi3GWN2A7SmW0FwfRmXeN - e43HTHYbcEaZT7SHBcqxGMIIPeH7SeR73ALyJm2DTFaryaHPBvD3/776RSxdNVyyN1URfhqsf/Ha - uMsQjBUqnyeL2NXFi/kTd7dhf1N9rL+D+zDH0cXbP8LHhhMxcOnKuNREhZBNAfWtuaS11dlQO3sC - vsSnWlvf01mFNd08cph4b1ij9qnvH9vTxF7Wc8NmursCXnQ7IIZf3t3tN9692fHf+hRBM3UCC4en - SrGj8Lm27BWGh9u1mgOJb2/lt/5Y8O1vSbVUQju9HL8GwTvqsH0m0J269PyQik/S49OHPF2KKsP7 - +fcZiieOroRLHcR/zJIcbtmjXW5D7EAv/WzE+eYPC+N7CVzBpcBn5xMMP3/5lwfovtK5myeFOfri - BVs8+cTbaO8c+PPjHvNowTK9pgSqfbkQuX9BbZWGRUK7cxtie4RJyaXt3IATU+fEtkgc0/PR5+HP - j8gllTXBuIoveAD9A7vWVW7ZKsQVPPidg4PerVuKKt+D+BmrX/yDePOLowO/fh3Ljjm047Us9D/9 - kZW91G5RE7OoRGmE1VFaKUXnMIC9parEWEpK149xhiBixQjHtzevrfoSjcAbLxO+8UatLfRIX1A0 - DEy0D+u4bGa7CRwpfyQ/PViutWWCTvdiXFmMorFFG15QEgGNWH7TtcuZ5jqE5kixo7fGsO4AyCHI - 5/PPrwO6YwwRfvMFrMwyP/z8LWiWlz63k7VrN/Ute7Cudv5M7rnjstclmOHhxb2IristGOmBLqB3 - MA5o9l7BZ7omEfx+HytpPdC1jpwKJNXentuv3534cFjgqa4zrDzlrdyaiejAb64xNofuqm19xxTw - TpYOH5SDq9Hd5xyC3ZwE2L2jIF6LmZVRF59fc++1Q7wOaSnD/Ul8k8pfc7pqYSSjjpwHbPuXJp5W - +24i44p5bO7TI+VdJ9ThNXP2we7pMmB6bPoL3gr4xO6nr13Km0oFdA4PgehgbhgvsllAlDbH73rI - 7l8/FLzDbt77h4Wufnfz4C1jBqypBXC7b/4C2zO9YbmPuz9+Qo90hTP77Td/egEQqi/49hufTGkC - 3fpyJGpf4HZdjSwEUWgkAbiEu3b1h0aVNIBdEliVAvjDToMgReMraFz/OCxo0l7wl2f6um61LIYw - g1bN98FsVXe6kVE30bv21HkUBU5bXsHngb58jZ1+eYD+x7dseuuwFaYVWBLRCaBz7OkserB1eXZ3 - /D5/fcSZC3ZgDcuWh4xRd8Fyj1u6eX24oEvvXIjKvM14YVLPBoEWngJasQ3doi2+wJeVlwTHotwu - F3puAKM1w7e/rMvhNIY6mlq+wzIf+2DRjkMEI8cyiKeg2zePpSLix7jDRgWcknPju4M4oCvEX44f - MJ0oeUBxlc5/fn3V5aKAne35OKGz2QpcZYsw6fbH4KwfxnY9grH++c+ZzzmlXIo2v0DVPN/I1ThJ - 7nTp5QtEy9STw5v/tOuQxiqaDRbiSy0c2rnrIIThEL9nri9Dyu6PTAUTbtTJyWqe7aLOpxm8bvkL - e0N/Gz57usy/fBIrpxi1f35u6QaVmI/0DZa7G4u/9SC+uAb020/ZqL+q4bz69UubzgztUZs/MJY5 - GgyTG38c0HA0+PqLs7s07WWB93ZpscLLsKRbw17+/KH69SNffXCg+xxKohnFZaBis0vAEGCBWG5a - lJR72SM84lgMkPJ4xsuP70rRsQlu3GtJdU6UJVPUCqLdLJ6SwEchTMncYrdCHqUSrwWwsTY22L+z - PqZyNOj7X34sPUKVTh798MBnbjl2vvntN3/OYTRbGTF12425n//4zb8ppnE5AXft4C8Pcp4a766z - cWGh4Jsj8ZWHES8XOSjgKWv83/tSOBqMCH79ku/qHeWWsJPArx/85huU7D7nSPrmbzilnVwK1LRV - aAVsSn79ybgcJeevXz3OMt9Ov3oWsPkh+Nvv8X50zABXhIioVXEAS7EYIfz6NaKN7NBuu775+oHE - J8cwvsRTpR4K8M2/sNWTdvj6Lxl+/RD+5UPfPL/af/1wMHK6HLNprkL4y9+9USDxIjxlER4bUyLf - +QXrjx/8e6TNTLyC9tP1QSCFvHnFrnc1NPY7H+CLr2BVarkUzuwxgerRS4kVpACQ7jaI0A4FZQa8 - 83TXgqc8iEzLnYnjHilb1n4HT0kdYiwamst2w+ny01+SfP342jA7+Mevnqgr4KfncHOGiThWa9LN - LAX1f42np2dtOdveAm857AI+sylduDvs4TlNVHwphae2zMrelPAuduY79U2X+/YnUN/jJ7GU9DSM - ZWiqcLwpUcAcmIdLizVoYM7WDPYd3Snp3nREuGmXFz5R8qZLVB8y6RE9CPn1Q6N6byTo+h+M44pV - KWX2oQSrngmCvf5xwbLc9xuU2NHGRl8ulKwq3ZB28iRyctQ3+PjdyYO3hlmxpheVO77M+wJ0U1Uw - 1l2sjYXo61COn8tXnwZ3e4XQ/OWzxPz2TzPuiwDI5M0R85Zq8Qe4a4+oFGHsLafFnbrrMYeymRdE - EWSJkvi5e8EnyFPsvJc2ptdLmUmk5SasjNPDJb/6pDD0SDqVUbkM1UOH3345WK261ZY5e84wRfOL - HO68SVdPrHjgdRdKAodR28X5vFU43wQdO0r7cDfxFC+I4qtKgrzytInafQ2MM4Zz3Cefcv35o2/+ - TLzdSXDp6tAHVG/BKZgaPQXbkCgLcJOLi2PmLmvbCg0HjRwbYG8SJjBHfdxDr7r05MC06sCeFo1F - LHfd4R/f0fySV/DUTi0OUuYDlo85eABk4wUf0kyhnOL7G7x5sMG3XHy6S/xgMkjPNxcrflzQ1emu - m0SbSCdfv+ay2nkwwZcfyS+v23K/14FwiXdYF+dBW8O27aQqdM+zOMIk3m7d0iF97z+JfItrQJlD - +IB6KDsk23ExXVxPekCUT9XPnw7b3f/m4QdFD/gp9X79JytddCfAZt8x7WA0zxeoP5s2gzDcg+fe - fuaQH8x8nv1KB3x5HRyA7vWJ/Pz33NXIBpwccYH4uJB4deOPDR7b2/zpL12+eTLgw2OL3fR6iFfG - BTrYne4xthqVxnN5HWxgdqxFvFu/BytNT8lfPgZPDgvWfoouyGhUbuaXdGqXNziZsHDuLS709tlu - 37wFTldlxPpw54YxDpX5z6/htzi6g+mLDHwrBZgBh/bghwf427/ymwenbSZWPeh1Ff3j3+EGLzL8 - 6n/AfvMc+jz1HfTCqiM2dzDiuZneJrxdDhxxvvuf7BCMF8jur3v82w8a4/xQw/ZOB2zcykPLHti1 - h/ON03/1r83pszPhdz6CdajZeHXaekOGrN6JKr61oZMmx4GaEowYV+Kb0lndEvSd/z8/z6d9qiPW - jqJ5cJZM26I+7pDcFTNWK+mjDdFHzaECAvPLzz1YVOaWAfPCKkGukKUl8dGBsH2uT1zqC403s9zJ - 8CibL+LunEO8dYmcIDG2ou/+CRyeoxHn0LQVLdh/+1FiNM8HLKGjYkWnHF2eQyVLUjeq+FBlL3c7 - qZkKeTZmiVGVg8bVMyPBlnld553uEm0LmyKHxXxniSJOB0q3Hobg58dOI3kN8yuEOthohYg6SWG5 - ce8jROObdXEy3fO2twR1huGoJ9jVQ9ZthuSwwSs8WOSLp5IEKacj1Qo8rH73B1cQ7y/QOPsQW9/9 - tLmuFx7qk38jbo56bWoarYHCSed++QwQynsgAm/6IOx98z0hMLjqlw8Fny8fkesjthE61y6urJUD - i/+g1V9+HDNKDdat/kCo66qOne/+6spoNIReeOkCkIVwWNT5NsPKPvg42A0HQL75yd7KlfVb367L - z56WIyqFmGAvl7Vf3gjGvVIS9Tydh/ViQgj//Z0K+B//7f/jRAH3/z5R0DpmGSzdKGrb5roR/MCC - x77f2y3/8dkAjBbYiHk603Jb5JMMN96X50UounjJSWEi2xVtctMFxWXRE/Mw6NcP0cchaNlmUC4w - Pqzm/MrOssbtjmsowTIyiWfP8kCLnstRyIQOSRg9GzivG3WYya4+P2v1qG0KY7IwLJ8mvj3F2V0O - 07XZD9dXQMyHWJT08mZkGEk1JOawde66u/MmyKTeIc5DCMFK96sOndtTIWllhOXi9pUDtYMwYmfq - 5GF55PwG7Xh0yQUamrbWu4KBhWfdsQeCJO4zfWFgXAvxDLPzg3asOGxwYwpE1FMBwWS8EAMPqncj - 5dVQAItepAaD+Onw2WJDl514rof7NNKJOr9lKlRtxkCtBnsSOCOOWd+wQkiOGcE67pVY6Ha8A+sG - duQS3dqB2vh9QRfPtYnDZ0JLNMeuYCZ1Dg6f4N5S9sRnKD32CzHm7w7V5qEMlqY3EYy7U8lxXKSi - 2HEV4u1srl2hZcjQ2XoFK/FdpsLlzcvQ7ZhT8LGkmQ7djrFh0bozxozxLLd2r/Do6dgqzqZPr43P - pzqi+nRaAvHirsN6ed9DqPgMFzQ2ecaz1egNco9NSDRL6l0OcfUF9a1hk6qGL5d/CL2DNh7LAeEK - tqRbgUZYSUQLFjZB2qa6Ug25tF6xHlctpfZyipDYQICvSyMMNKO0gftrpczgQZ/tZu9YCJMyOxOt - cmog2MstgtYBSgTf9ArQuGhsmGhSRLK1Hco1PjQ5HHzmQMydvdAxeU8eLGw9IVFcl+36vosQgqU0 - sDs/umHx8rVDh/TKE/Oi68Nm3wxbMDraEO/JjeUmV/yMRkxYrM2vsuXG9w3CnZik5JikPJ3uV+2C - 9ncrmfmHKJVz6dwYONTcC+cHci3ZwzWcURLXJ5L2y71k+QS+IOggItGTX93FrnMTNm/tgoNzoMa8 - XDEjeDGP9Xu/Ui5zMjvw5i8qCdfWbDnHKzOYHruFOC/2GE+exUZI9YyAZJYwaZTU8AJzYu6/9bGA - Cd+NDjV4h7FGr7222Ls6gEZau+QkhlnLN0PlATvOQqy02ttdA3aRUd8QH3uqHGr8Dx91PFcEx03e - 8urgdDAq+4moZXAr+XuVb+gQKDMxW8YYeNe5h/Bg4hFr5zgq+Ws2iGBYrgPWPptBBeYRjjC4zRhf - Sr8YFqGpPWg8lhSn8HAYeKvxGnRewghfLWq2XNJJDTyzxxs2kRuWAkqNAp5N18RBt9iDMBzUDXmn - yzBL+PEuBdofZJgxx8u3Hmu68kkfQF/sNByozNCu9qI26JY+DGyLUa+tpfS8wGWrLayE96RkF1kN - wfICONjY/KEJ65UzkS0Vlzl/7zl3VT1Pgi+NLORgCGTYPpOegQd/8r/4ebTLjx9r23oFY+lL7SSH - AwS3JX7Mwt5v6XIOmhDcDEYmZhHfy+n5ylXUMeEV36bXkW6+6QRQeLANdq6HyRUq9sDAXS0FWPff - qiZsziIhMw4/RFa08x8+4W6yclxMndwK1hE78NBJC8Ymqwx088IXgmWvzA8ZHt1v/YRwPRYZcYN2 - pmNI3B5+YM5/60um5NVOOXynsTZ37gaHT2KrsyRahMHeej2WY/Z4fk+QVfXMT5/e7XgtN+GmAWGm - yxUNyznoQ1iyRAne243GC+ysAA1sX85QPNbDup/oCzG6xRBraSIqHBhHhLPsngi2B22gbhHPyOGH - gGBw5LUtuiQBounVIZdhnLV5A4IIro+twzKtLXfdrYccxgrSg/tL+LQLw5Y27Jgun9+MlZcrMp4Z - pCM4EmW54JKqEmdKk3hKsEH6FPBynRVwjh9HcnEGReNeul1D45r52L6rtbbpNrVRfPcDfLqabiwc - g8qD6THi5t0pK93lkTMbtHXTxD69GDE9BNaG9o5ikShLHMBruQBhq4gVUW1ixOSMZB01Fo2wXUOl - ZHUBJNA5nXVizcMCRk2SZhDylY0Vyd/K1T3EEBXl9CLn8HYvF3l33GCzRWdstkpeLt7pCNGphndy - aRXkTsKxYdFq0AqbQjG5a+TdN6lpZYyT7/qv6siOUGGPHvEN3nS5orwm8HQQE2yEdQ8EILIvJKhu - RTRZPmgbPbQvYHXCd6d7lOJlz4gQJfyZYsde8pKfE6VA7Xmugy2uwTDL4fEFj76I8ambw5LfTx8P - To9Rne/LBcfc9XV4oKCnH4KBK8Qrbp4ZxCpesZ7k4rC0zrFDCfNccN7s6pYnCjPCYitFbAnZHdBZ - 01VQSG+OGKfTDazs6f5Au2N4wOX8sAeO7vcmZE9FTs4v8dKOPUhGFE+BjKOwtQBbtZeH9NVXUhh7 - TROuyZ6H4YvVSCrirlwC7f344Yec+/HmUjdnVdT3e4fkD15t55keG8Qw+EC+ZwzdxRMPGwxicp2X - 9foGnVwfOnibZA/HhtCD7abaKjTE8xtnpzON3x//ziLbNmIiv0BCN6LwI+TYUsZeo3zoJtyvEfBu - fTezfLaBTd69GiCccT8jqF8BZTbEQknbclLsLCvmLu9PhPZpqJOC3pqYMmxaI3UrnwQfhowuaWaP - 0DiSjChJmQ5reJsYyMcfZz4fhkjbHJCKKDg1EfavZqhto4Uq8JyUCh8eHIrJBp4N8sXQxjdduLvL - 4HQmqK1pIJY7te5a7v0NKNeXNPPdVrasW5wTKChrG2yi9xoWIB1F5CqiS0qZ+cSUf6ghym15wkG7 - Ewfqp2wPMdtIRPMHv/zzg0IaXOc3fj/Kdb12CRQbBgSbGD3jdeh2HRhPd2F+jMPcUuEovKAPhxBr - 6fmoLehpsVDq2QdxzD1f0h9/A/GpknO/IbDRPi6A1MoNtnuquVugNzUKiSqTYHy4Ll+xlwSy2q6a - 2W+9bOmz3qSwfJvBmuYqoDf1bcOmZ4/zgtyhnZblUUPmlkhEZXNdmyUYJHA11grLT64BdDK1Amnn - 60oUNgsH9voqGbidkhUb47stB5QaOYxH1iC2orzKNbrMr7/5Y7vVj7ek6xxYYDHDXnjRyyVykwu0 - pfwySw8hpEt30yDsZNsgMTh6w8fglQh++TVgkaNqnPHiGMiNUPSFfdwMNNBzB0JZc2apjFyXPjq9 - kpC/vkkpRWO8FZemR674usyS6J/bL35l6XRtXzPqB65d1SGVpZe7n0h+IOirP8wIl62x5vspbeNe - 3PkjSAOfC5hm9yw/C2ZHyMdHjJ0akWGW3PMIj+kYzfDF7YbZeLoi+PrzeU3zhlK1X0LQETUmyu3w - pHNiLRmi9WxhR9kpgF5O++Cnv9ggD8F93xSrgk+xy3DSyo7L9hAWcMZrSbybBeiavAse9s3k40iM - jHhL3nIFH3zqk58/+9ZbCO9qsBGv9Iv2fZ7YBQ5sWH/119f4Bioe+uo50ZA9t9uY1xU4qWYUsDez - ozPTajnU+UjBh4EM7tbAgwcT6dESTyhW8KkeHxFUUmoTQ2Yew+oMbQV1DYpEzYpDy7fn/Qifk1YF - 3H23DiQ+q5WEruWIcRF+tImnUgbLa88SHDXP8j1rugyUUdCJsd4FQIAIH/B4bRJsMKbj0tMC7b9+ - wxYjx+X1TgtBfruw5MAVuKX/EwAA//+kXbnasjAWviAK2SRJyS6bBAERO0BEQUS2ALn6efj+Kaeb - 0kaF5LzbOYEOKxUabHonfnts6wVaBxPqnsOR86632PPnYALhcu9m9pYaLn8sHxLY/SKxkmzOt+ca - Q9hFeYHP7nQC64LhDG62FJPdb4B/epYfThei25MM2LKBIWyf89tHfCQNa+amb/jHZ7exWwd6mdoY - xre6IdqLqfNVOY8t/FR8TNQdP2jvORYEirjiUMIG4Hx2UdHLkVl/fSMrH5ycpqh0WZbkfDpoG6OB - QBI6gWDL+w3R7j/mf/o5asAtX3d+QB3Tp7O4vVpKpWLgIRL7H8Ev5VBPv6mcYbD9Iqy+1XlYozvx - pT/+cQ0RgVWTqhjufomoheuBtapUFmb9YZmn9dnQKVhSCA3VuOwT/C9t4ZI4+Fe/oarEYDPr0QP7 - +mPMxmo+ZfDsgOvPFGYmieOIPlenhd8GWMS5pTalZRRasPv6F+wr4DmsHz7mYdsuBP/5QX66vnQ4 - R+3FZzKfG7r3+LKgpmo9sX6LoC1RP7bwr3606I3dNRZuPfyIYY5lPDh0y9xDDwS2/GIs3Fg6Rja7 - IP99+Pp/+PdvvZbn80TsnQ8XQVmyv3om3j2QXJJlYgvv90Ymuf8711sqXySE7umTPH6Dmm97fUNh - GTbiHS8RWFN5DMG0vEKseF/qrqe19xG6eG//4H10ymdF38Ph4UU415RuWLTMEcGz4wp8Y05iPtvM - Nfzje//Yjwd3EeVgRA4fRdiH5iWafr7fwvOkuUS/Xj9gy0ZSgC7/3v0/f7AKW9ZLuS0ciIkHMmxa - 9uyB4FuBf4iKO6DvsX4D3EgctivlW29DJjtQlr3Ub9NAdVeOC2Ww/z+Skq/49/0luH+0K8a6oGjr - 5j56cP/5Bnau135YQo+1kHWbUqyl5yril+fXQY5Uav5n+ib18potHlKxsrF6vzBg9rrLCHL2ZmLl - oFegt+e0hG/mUWP9ln7chdcCHQW15vviS63cbeg9Bs6Rvxf8qkZ977DsH36R6zV7RrSqbi2MLl8b - q87WDPRzlQOY8U2H7aeead1W5Cqk4tv2xfiGNbrrcaB9zB82Tty9XrRjpKI9r8GOcay1Tfv1DEgG - 2SDeC7gad5mPIdyiGvqiwUFt0qRu509UEsMlGd3O7SYj8LKAPyKDj+h9ghtodWMg2vJ41NSnHx3u - 14PVsa+i7aYcG/gefA8r8mHWtt0PQjW/pcTXufPAGcnRAq6jW8QkrTNsoP/xwNTVJ/7z99RgmRjs - eY7PtPRLqVKOMfjLN/59f4XPBdSWmsH2vn822oER9hrLYA8atUuByDZwZaPNp7vepaIc6fC6VId/ - /paVD/cN3iccYjtJaneqKoeHsCX5fARuONDi5PtgY1KEH+70BdMbRi3a/eG8drNbLy39stC+Pnms - Tk0Mlh9TmGAdhR7b4+8JVtXTJQQUafWXPMJ0WJ7FBmqxJfh8OhrRdkStjIzrPjFlre+I/uU7ERuc - yVUXP3RlrST40xuzxOh5tLTxbYYfGHXY3Uqb8rs+kXY/7LNeH4NlZd5vqV6yDTuy+srp2IUS3Pe/ - HzeC526106Zgz9dwSF9ctDS3pw7vSxjOa8P20Wafuw5QgzN8uus3enhdEqki7obl7QHctbDuFvq7 - f9pJcrTZzVodIse5YpwHMBrlw30B1o2kRNm/b87GbwHgc/Cxda6fdCYvnwfVm+lmyThqrrDnYfCt - WzL+xw9/ednuZ/EZnWzKNqIpAf9WhT6SD8IwXRPCw1qRSiIbrK1R5aF36HKdQ3w69xrgxlvuQAH2 - jQ9q9Z3v+pqHVYs4ormzN3C7nkIvR2XxiY84sOXODcK7WGJfsqkeDWovBjCO3reZ+xxDsKIkiKE2 - igPxNLTU2yI/ZagS67zzc+9SqwoLMBibh236mCkdW+qh9hl/523q6UCfLyGEex5AQmf80On2inWk - Rq8E387Nx90iyeshc5LozB8vRJvHtCpQ+0y+xI6K616/qgR3/YXt3+bUwnusK3hV5QHv+qOe4hRX - YPeb/uyMOCe1BWPY9VxNrjKjD//yuSy/Dj7C35+2uXczQ3/5bPHQYb04wLb+6dU//8Ki5D2j70gc - svNT3cvBvQFqPkX+dHBsbXsPpQ/v91bGjgbfeWc/0hlW7YEjVnt8gaWNnyO0Hz86R3xWuvTKRR7q - nplP5IqJc9oPWQgF3wnwCZ0MlwbLZ5SE83L1ud2/b3seBZ73T/jf/IraHAO7r3fBj11vjJnbS//4 - C3+5eVjG26eCan94EBlaz2G9o4YH8Za1+AwdWNOqFCQoucyVeOJFHjgmXnppw+KPeC13qHe+8oDB - Zhk+ufRFqVzpKvzLJ5RzU0VUF9AMl9vP8N/n3x2MicarUL6FDXYYJ3O3hTkEwNk6hdxP7LLzxbWH - 9DGciEZ+p7q3IWpBJmHJZ8RwBkvZwAC2Lpj+rS8xjFcG//Kf00v2Bh5++wL8TL3Cei33Gr/nFeA9 - cyXB6dmmawiYGRi+ruGbkChAaPVH+C9f3P1C/eff4OveHXGWe2NE2O4Xw/oef0j2sM+ucFoZCP76 - AePzBMCuTwv4p59exT5hzEfPACI48ATv/nC2DpABalQnWK6ZCux+w4IHm1fwOXr10Xw/3xLg+sZ1 - PkJL1gSOazfw15/IGEfS1uNZW6BhHyOirdVvmFnLFWHQ8toMrHHSpqeaZaDgO4y9N2CiJRZTH96X - /owd8lHcNe+7DoxbdiSnY6TWxMlBKhXSUMxDy+tgvUz3Fux5oX+4n5G23qdKhnt+iU9+L7jbBg6i - pOfpgaSm2GnbQc0b6H3NZRZ1cBoW2GFP2vnQP0RvsV582s8we68UW8HjTMe5PhaQ/aqP3Z/cNII+ - S4bWj9Jh/RjIVHgY7RuZUd/43zc6u1xz02d4GbeSaPczHWZTj3W47zec8nnnzpVcJWivT6zEOTeM - WMUiuN2rO77Roqo31DoLUJ+VRbyje3UXC39M+Lyfb/giBhe6/vm/+yXVfG7PV2cr6FT4lwft+DR0 - H/7rw5SvFWKNTRvR5lT0x30/YuehzflI3pdFeokvC8ukNcCqQllGVb/12D5/aL7qacCjCBYOCd5K - la/D8d0D7dG9yNUe82F+rjGDWMvycYx0Lac8i3VQuVJOsHRRKWuygIF7PoDNwqmj7c5IDjAe8Rn7 - ijK45BtaInyyRUwycG7dtawdDxZS9JoFFdJoRe3VgWcDHki2+9W5ei4FnE+H+yzs678O/TM5/ssL - eyLk45ULWLT3R3wWnF/R+LkeUvDqjtrMZ5GS8+PXaOAHXjoiq7I5LDYjv//6OzPXTaq2PFfZg8dJ - N/GDTSSNwFTf0PXxPGCjhptG/vDAf6PvP33GIk5i4VdM1F1PHQfKaJUE//LnhxiAfHm7xwSK21f2 - 0fFs1dTCpITi9pHx4+7NYDmbLQMDJnSwjIyRjq2eSf/1Z3f8dbc9HwPbaZ/45zIyUFO3R1jwPcZ2 - WCiU7Z4uAze+BdgZP2y9ZcNpgfXL6oiuHoKcCoq0SL0nA5LkUTxst5cywlg2HuR0cPR8CyoaAoNN - M+w7I8mn0cI8+OMz+QNewzqmEg8Ol07HujOx7vwNaAP++kG+xjB73pJnf/w3t8i41OQRrzya4Fv3 - K3f91dvCCAEcztDG+kuz63kryAb2fNb/01Nbt7gz8Ae38SXct9rWD00Hzbc0Ezf1aU79kAsgfI8+ - 3vN+sOexC1z6Uf/D45yij5iB/Xpxtr4VytHjasL7zzOw/7C0QWCizwiRAtN/em69vWITdrJj+El2 - fg9rJN1keKuYFznx0RX84G2R4fh1IdGDUojm+GsVIBp5Y+YuVal1bzhBmBAtnLe3OtdTdP/68GEf - W2KEteOyz4uow8VS5Fnc9Q0B96ZAfDvb2M3ciLLw9MwAO/NPH4SPwN37Vz58XUqI/V3Prnu/BwZR - bvujO7A54bWshHt/FT+RJWrLn//b+zc+nVtQL1DcO4bMpfCnc9/Vq4XDEe31Ph8uz2NO//Cc/5q6 - L7TCnG+zVmbgdQ8Z//3hV434dRWgne9xdv6a4F9/6GKaZ+LfblU073wG80fHkjJ3VTDajFWBXZ/u - /FkNnZeuPbCXmWJTiOdoeQ92CRfmlviSEOlgUcofA3Ej/uUPbc2tTOrAg6l5/mvvX65ftWPhlt8Y - ojeCpy1QyCqIHOuKQz6vc+KmUIXmW5zJfdfPtPKpjo6XJ8a6GEX1nz6XfmfpPaP1qQNiGL8Mtky7 - EvPh8ANBZhegpPa0vZ4zbW6EtwM2z2CxHb7lWrDKbfvTz0Tf857Rj7MWZtKHw9re79iu3KcFu17a - +4nWIFy5yIdfMVbx6ZabdPGbZ/rPr6fQ9AZu7z8enx/fIViWw4Hiy6OBu9/Gfury0SKSqQcy5os5 - OFij+yu1zfzL7/71V//4XLqJabfjb5Rz9vxm0YktlZndinUYl2eYwe/jIc+CAittW55f6/+ZKOD/ - 90TBbKYmsR6PWVsfl7YAj6LS8Ck8rZRuybmEJi5/5OT1eT7yvpJBt3WE+Wh96nqxpcBBAx6d+WC3 - x2FB3TKj7TlLxFyKuGaPRPKBN/It8YTJizh9zDJIJzMi+vsw02351ilKHpOA5a+g53wXXFUoGG/q - S/HHdbfOzh3wu8tXfC1k3RUE/eeAwP8WxONaZ1jqwg1AcHisRH+ZCyB3NkvgKFF3bqaYdwfhvfSw - fdojub2GAZD7cszgSHGE8VeL3OWGbwnawltHfOauRaznohCORxFi31dzl+SNyUA2dX3i5c9PvSrd - 0ZSyW9PODJ64nErthUFMFdjEO6YmEL5hnUL13gk4GfYzAaL0UGGJHZ6cdZurt/B4NmF9FGVSbneF - ct5LjAF5XxNcVtU72ory1kF8WXQS2eYXrF4nech7dwopzq3pLugkB+h+TxiM3QulmxZJPhzw7BDZ - 8U7uetNeDCoc/CROZMU5J5aRhE6/X05Op6al66k4yRAtgea/imjT6DX8VRCJs0NMc+WG1S/wAstT - wxDN6uWczwbVRNunuuJS/b60ztC3DlVMcCSGc6A5bcJBlrBxkbFGhWO08E5VIuUmRT7a1NTlrDFb - 4OWyBOQyd3dXIAvoUZ6MD1zmIBvW22stkA3ZGMvILbWJhYMMHwotfUaGJuV+8CUhVnl8sAyRlC9i - fUrhYFkhSY/4HC3vHstA1Lue5KrausKFvbRIPCrAX4sodCdMYAH1k5yQ282S6cTCWgXZlMnECUcP - 0Ga6N/Df/dJvBuWWDkEwONsBq1iYwVaUzw7KkXAhvpLOeYdD4Q2TSvr47OOd5my0njKEVivEzy40 - NWGYwhgOKN+IqphVtPC+sk/MfN7EjMWjuyonuUdyFV9xUL0I4IHBmuh+WU1y7YrJ5bG3luhx5TMS - L36db/fjmYfX1j7ilD8VkSD9Ngk28+VCYizAfNzG4I2UUD+SRxiklK6PUwKLZJ+R9gM3omTKZvh4 - ZCGRl2iq/9YfWa9zRhTEkGhNxjhAUueK2EvtVdsWZlXRAOua4Pxyjfjhdgvg6/tJiPzmr9Esz10K - X5pnYEM9qZQn8xTCCqU9uT63/QzL4DdQyJMz8ZIyGYS6mjcYj1zhrz5/BMt2dUSYLGqC5ah6upwm - lRaY5KaducOmaey7nXUobWKJU5w4dSdKV1WSY1Jhj7VZl1DLnpHylXVcnlNMeX6eVTgJwRVbxLIB - G/XnCpbnNMUlAGiggiL7yCYPhahD7uTc2KEGOPStY6M/8BFlnkGJBltc8Hkun/WSF84b7t05os+H - IKIOuyvMJov8I1+2LvUTe5bSqC79npGumjDqlQrt94kQ43KsBnqdAhM51e1G3Ff7GhZWSVpQ6fCB - zbxRc5o3JgT5rRmJvLwuOd0EToQ2FxT+DOefu1E7DsGRkH4+Xo9g2H5Vt8F7OFyxlW+0Hjmy8sj6 - HrUZsrcb4IWHnQBGYBUsG66oUWIpCdzxbD7qcuHOhCMO7G2px3e/VGrhFFYqYpJ88yuz8+sxWnEK - sHzjfE6WFVcIGoOF8bp0JCwPr2hLvM1HW4SFWcSWSQUeuxCQogbz7Q9PEl/foA2gge/2Yxu2IeIT - mNR1SMzf8AE99ZAPNe/SE1u0q2HT52qBc3NAxO4+5rCpWluiXVbM5+oG83ZU7z2UkKH509VpNe7O - CwX8XcoHOakrqMebErWIjzZMyvlr1EJgP0NYnbOGqA5/AAvk2RKG4KDgv/peZl/uUPO0K2K4v3L4 - yUSCQA6Ris37sXNpE9YqClyGEPv6YLXuLAVvaOmZ4gsGfuWs0esqqirwJSZ/mgG9goiFoR37+Cqd - LMoZWqcjFblHLH+YNlrOaaVDIY/PRHt7j2Huvu/u2IxvivUoZ8EkjM8eTmYmk0QXhWFbql8FpM4W - idEVk7Z8LxWLFj5L9+t5Atrfpw4yb/mLlYIc6/aaISgeQhFiW5ehu00P2UMRdylJfIkjl+77EYWu - OeLz7enWG3goI1pm9kn+6mWZ07pAFaxyrGtnMqzPTEzg7eB4OEp7BfB/fBwqSzKDTBLdNTu5ARxt - id/57pqzXGE4yLkPkx/RH1cvPb13MP3FIvYD2EXr7ROmaP1Ue8OLzkCofkuIjPNoEBm5jEsLEDfw - 9buy+MZcJZfyv61CsN6OvggSrAmSYjV//ECyCR8jcrwTB5LOWYic8BGgWiI36KWbMS5YO9a4zGk8 - 9Ll9Z6xdF3ZYM1pW8HcpHqS8OJ67uUEmw1/Q+DjT6Tnnk2+37fOlJYmaXouo8BY7VO8DNgHVpWHJ - lQii82MGxJ+/n1pIDUGH5qEkxJhPp5xbZK2D9Ry5f3iYczBI3wibNiY3NMxglS9D+YePJGwzkC8z - DWX4PLiqL034Hm3Ct7GgNeQHjDtdzblntiRoUIofzgno6u3BfQL0Nbhid3Qu5UL6WOCR7XmfGefv - MGHfUyEueJHY6yABeglfDkKrE061bZ7AWPNHFpaxqZKrXw90kyKBR9tduxBXkoA2Wb4WoHsld+R+ - PYJ6VZxXA35MxPmg+8TuBtTIQW2/vWbBE5/aZHVHFj05dsSpZhnREtRuAN+sWfnd0Fzy+ZBYPjLP - o4uv3/wB1tPzy0BruB+I6nTQncryHkI/ce35azw+2rY0aoEex1tBLJw4gwCegY7sudnIqZLXevU+ - lwCFiDyxTnIBbLonxrDtlxd5enM/bMw8b0C5eP3M7/W4tkerBX/65XRL9FowQRZDmRQGcbQmy9c7 - fyhAzwmsf/ikKV31q75ID/uWEO/X/txtaZwSqcYHkHslP102TX8+jBfpPgvl9ebOIgjYP31Cwr0e - 1+ykBTBU+w9RQe6CFZRxAN3QAP5xPZbDcnh+fWlgTwVWjPcLdJPOb+DT6NsMh0udb+DeLZD09IFP - 0ea5i/H8+YjP4xN2yVNx//Hlu9Ian/TfYRiDwk7hxdXbGRnt6NLj/evAPz5xD5OZ7+vXQuOkFkSp - f229ePszZJIHEWae9Re6PK+2CuR7NxAvkRhtipyhBC+W+RG3owKlx/ATgJDNbXyegxzseqyExnk2 - iFJEm7tykThC3rIzkm1SVFPbE0r4Sx2TnK+O6W7Egyygo6/P4KeAen1cTync64lcRgODTQ4CEcXz - R/KzL3hpMwB3XwJSURCb/XQuvbIXiKZTgOc3t1yG+e5JjfRiggOx+7IZ5nBQYmRsh3YWPZnXZoE5 - bvDwMF7kPJeHenwimiAtiL/49FHkgf3VZ+lvvTG+p0I+XzPEQJqkPb5FjZXz4r3KgH86frH/Y6WI - VmHfw6cObzh0sjRaIfcSQSk+I4Lt9j5MK3x34CSIiJw+SlX3AnNcoFwlV+wloxRtITda8NaVNdHq - X6yNux6F1m94zYdcu9Qr0x0K6U8vnV8tcZezEhaQVx4rcedgzv/uF9jxgfgwfA20crsN5tprIe4B - OBrbS1EFnU/wJrjnSD6ibj9LMn8kbHLHQSNV4rbwUAWYXN2z4G4/9R7CO7FSEr+vWt31hSfDQVoN - rDNXs6ZXLDcoGQwH49vz7vL83Mqg+QgOkV8u0La7tzWwLCqb3PZ6Wg+3cEMEQYfk5RhHbEWDCu5T - hfO6vs2c7759D/b7QRTVm9xF6sREtKvrZUZU+2rLNgYVVNWDT9zcyun25doM7vxC8n3/cn12LAH2 - PwlWQs8f1lPamnBlO5lkjf1xtyYoOuiGJ0BOryMeNnCvNvSIGXdm40J3hWv4qtB2edxxodMMCPwC - 9472gon7w4eIEr1KUeCxDHn2bqMt6FKb8CEfMfaPzlJvWgZN2Ebej5TaM3BHjhx5dI9eDbaw1VLi - hFUGBzUWSRyI7kDz71eCUWtP2IdwBOv7KPswlMUTjo9vkM+Lmqng/mHVeZ27ozs7shnCkItSbJ+2 - 1F0V59dAOGJ55ln5rK3KJ7BgqOcaVgWBRtvj+6uk5P3TsMNInDvu+AArFtbEP2h+TQf3J8KXrsf+ - pechnbjN8sB0PKrYzZPDQIuqVeEgNxk+x1DN2Vutq0B36hA7l4ek1Xx7aaU/P3DW7WvNSt2SII0l - oo+gndf0yD5mEEEu+ecPtu7bd+DPH5wrO63n++2aIjbJFp/nHtog7HpTUoI496e5fA60ZZgektfj - RKyAKjlV7ccGtLK1iK6YE5jw597DcNeQsbIctfF4ec/QPEkrOdXNb5/ISkQ42PILR2pW5ms5PlTk - h/3573oioX6ceXjjRwNHa7y482n+Wcddr+JzWMJh8k7KhkQ+9+dVfKVgvcmKjG6VXOCcTDrYXnaY - ISYeYmJZ/hH84SH8mUTwRxcMw653QpgHKktcAqxBuCcqj0LyQNjMN9Plm1v5htfB0LHZyG69+mnL - wz9+WcuM0u79bDwgSWVC3MNTrdckJS3g5c8bB5/lXS9ToWfADg/MfJXqIBcuICoQ+jV3/BS0uOZe - hE9QvSUWNj9Hux6hckugelMd7J6VdE98VRNO053B58AWtM3PkCdVuumTk3oKchouSwf+/JAPQ2VY - V67bYLlo3jwh9kpp3eBRurbukchm1lPS/VYVep9w/of/1JhJBSJlK7A7tZpGkTtsIO3Kn/9VD8+c - mAwNYftTNew1dlj3B0Hs0cie3n96VFuVbjXR+aaE+KTWN8r7ZenAE289sXYTkmiJVpxJchGlRE1f - ORW2sKnQvDQbUdko17Y/fM/CIfff2vntUlstOsmQY4rV4WzWLFecLYian49dKSB/+VGG9M24ELlC - t5wfB42Bu7+dXy9mzOeL9mXgI4YuTvJGjfiREXvw9CpM9PAwReNb53b8N605TCNRIzNzSGF0TDJs - O+MnX+X0E8O5Pj+xIfoOnbvgIQNUctQXXoNLOZiBGLbF+zBL73HOKfNMS0j4NMSnU1K7Gx4sBuCw - i2b19x7zFW4WhM/jrcNm0ydgubUN809Pv1DcaFOfHQu450n4UgtOvkDpkUHwqS9YvjINoH/7UeJe - LvZ4ddMmP515sOMJNvU+AtuVayo02uoX69tJiXgfTh00t9ODmIsItUUJeRmp914gxnTUan5ULz3o - 1WTz10iwqIDYRAeiU+pYf9fffDsklgcOj9PLL9/cCbCrFIeo8qqrzz7PW70RO5Lge28NSq2qacv0 - /MQQzNyX4F1vzb/GHuGLY8U/fvuHH+DwQAv+82vrn77d9xdRz+YLrHp3LCRSvABWVO+sLRVNK9g0 - EGCfXBawKmMmw86PfjN/H/R8SwZ7ht/4cMb67n8Eu2qcv/wMZwdLBGv+OvLwRT0XZ7r9duklUXU4 - CeEVa9d4cid3zB0Yb53go5ZT6LTrezRaVoqdUFqGZUXIh3a3pn98km/OUU/A95HHez5W5cKOpwge - 28h/iS8RkEs1SrCgL+ijhKtyCsENwnl9KBhnX8cVVPu6gCz85QSLek3XRRtb8CjeGpbjqB+WVLr3 - gBzmDqvcstbT5+SlMD4mFVHbDESDNOU8xDn8kdi8ysO2qJkMx6M84YyRru5S6lwIq9fKEz2sP5RK - itygZugakvweqtvpIt6AanwBtv/ygO53lOFfflD2aulOOawycChwiF2FfedTQpAHf85C//yURgqB - dtIlkBTiFreZrllHZxTcYxU/Py3c9UK2QCVEFvbBdKcs5GH59/9I6Qcl2PXTBryb4mGtr185NQa/ - hVt47fD5e7HzGdvpGzZH0SRRttbDuudxcNgSBruSOrp0WEAAdfXk+pTmK9iAsITw+on6Wfhaar6R - 4LEBiW7TLKjXeH9GwdmRDL+Jic5c22F259cbucHtgS3Lv9M5GxwTltbzTMyt5nOiPtQS7Pke8fiA - o/Mpklp4TlwNY7Eaoi20Awk2T7ea0Wk6A9ZQ7jP83D6zP+z4vIbSrfvzA1jLVq3m998D//T4kMga - vTw0BmEB0Bkg1sr7Pz75Ww83Ap96fg0qD98fliGX/WDB1s3jG7LPySQ+8/1q27AZPNz5Cytzds0X - Lh092P5kjcRL34P5x4gBWPg0JVn8GdxNvHcpTA6Wics/Pzuwsf+3/vNBuKT5ZpbXDBz5PMY2h2lO - Y4bdoOZFPbHgR9WE/mG2kFeeK/Yc9VxvjH3NoHP/TcRIxchdkK9a8Jst331/99rszr8Kaoml7PmP - QZegUNK/fIG4gf0bdv9igZPHq9iVbUujnMDsJ1iekQ/6kaO96x3Nv7zHp3uevL6zZUafsTpiu5IP - 2hJNbQF3/0+sx3ABtBZgBkJZOuG9PxF1OZIgON+0cObbOqbTq2NLkLw2Fnv59IuW+qqkkI27kIS5 - sESEZ68JNE7SQGxOIfUoPucSED4LyV8+uF1krAJh+cyzcEuaYQlcroePRxqSEjx57V9+vecfBEv3 - Xz6mSGrB0+Bb/NdP4HQCErj3P3z2ZQZgDWQ5QONacBj3rq5R8AxMtP+ezw+NRnnn6CVw/h0tfK5B - PAjD75hJf3mXoZ7eYAl0sIEjOnj7fjHqZa9nCId49Znw+x6oN5xiaOLih8sAWtFcqqkFU+KExNrz - u+3v8+SzJ5yT50tblxerwxGPwczAysjJji9Azu/2DBuK6GQ5fQJDlwHEO7etRpFwUKXeFntcvu9y - ThhFhvAW37/+Er/mfHlKYYoix6uxCs6dRurEZeCeD5AQ5C7dqqPZgkRofWInp2dOG/fnQM2pPSwr - d0Bn9l7JqEsdmZisPGnLDT+Tv7wQ//HJJhhgBJri8fPRbeJolQs/ANqzvM0L1bNhOx01iG7fNp7R - rldXTSoduOsvUv7YLBrOD7cFM8NHWNn12ojI1sJW1qCfQmrQ74bdBlYcv/mSliT19jGO/D981MkP - DIs1fWJoCTJLvKNTa9Mfn+9461O2eGnLU4njPz2J/SkNQWfUqoP2fgs5rcM52pjhzP/lZXs/wc/5 - hVlluPtnn9/xmfV6b4OoLzp826TK3Zpb8obnxNaw4RWORv7yzj9+MFfzuevZLIPXU6NiW/cP9N/6 - jLb8JeqPoWCaXnSEh75gSRnMzUBahulAexUSnw0P54j3gywDr0opMU4hobSvSAXr8T35B8n9DJt/ - K0JJTZeO3C36zZcnfyzAD91b4uXg7C7G1DBwUMofNtwfM8zJYI/SUjXM7r9v0RZuricp3qXEanlQ - otnJIC+NclNhjf64YalpIEFG4BX8l4evP1mVYPuOs1l6l3299LzUwPkwvmd0urQRuU9pCeMmv87g - 1SoDP0R8DIsrG2PnkMCa5o0PocZOIjkdGg8s3KWPQeGcn9gVP9yw5/sVzOZwP7M99/WIaP6G3aW4 - 4dyjLN32fBUoXlRi21YGd+GdroB5WoK9P3AYFsXKfUgvj+eerwRgMdAyIrt1Br+7H681DbHsIS9x - ELE/iu+Syu0WGJInmv/6UX0YZAuMJZ8Q9Xn+aNtY/Zy/vIdgrzLBPh3ZARxVb7LznbZa3cqimnq3 - GZ7Td7RGstzBE+88ia9p1rC91OANmV/73PsfP0q3sHnDpt+u2F4fgjY+0x8Dsna84fBn6nTtuUpG - pcFW2E6pRfm/fPhxZTNiO5LtbvJmx5AZEvQvP9vIZnrw1hU1/utvrOCFfAibn4UVTThFqyw9Frg1 - nYl3P+eS3T/Av/wQWrco6ptbUiHW1h7EV9rQ3eToyMIjXf70oQhWbpM9SIbfODey2GtjQQPnDw+x - ajPLv/WT/vIMrRFPGpvyy4zeW6ySXa9o+8k7D27B1yHOJkXDUvBHHQpnKOHgJrzp3r/r//p1RDev - 1TBL9lVG//zA3p/4y5fA3k/DZ6p93c5yoQR5n9NmYZNkd1FcaEHRzK0ZNh9JqxT80EF/V/MdzxdK - NwFJAIqzTvT9/8/hYMd//Rtf2p+js8T8EsPz83GfDzy3gL88Do5KQfBp9w9b6B1ZaFCOw2bsnwH7 - h0fn5/NONIPhwYY2PELzpL6xXvV2xIEX8uAJjTei4rNWL7OUSxBuYk8umvCNZvodNviQ8OB3VvEY - 6K7nJbSEGvELaNMJOKSFYJOvpCzgj9JYvS7g/5goEP73RAE8EdY/WsZMN728NvCpBSo2t62PFsvH - LcSVUBOrOVfueIWXEoXNbBLPtHJKAX5tSF2kCzk90wUsv4ftQLFbKpK+sq+2dZcmhFcdjP6KgaWx - /ZPy8HD+8LNYvCdttC02RudL0s37Q8FcAShDCIbvzcDKMlzcpUi3BeazbOHwdyA5hWFcQpszSoIB - 7Ic13LwYZu9FIyU9XGu6ffs3FGZs4BN7GPJZKhcZbuYvJpdlWLWFM8I3as2t8UUTbMOWpa/5v9fD - +07NCbznw4nlX1hWwZxvV+XDAwe6ATHuukiXwmFDKU7jjdhX3s2XFNYtvDgbS7SgF1x6AqiC1hnZ - 2FRiG3DNem9hyTY8Kb3TSWN/D8WB7LdPyclrSL2AL5bB3X4VOFMvX3etaouBQqS9iZe8zIH2ZS6j - 0RwhicPx7G6uxaXoffTbecCFWwvbvVHRBXURefJHA3CyZ5fw3/U0YZ3zLSMnqKJ30wfXm1N/W/ac - wOUk6Ngqbu9o/RHNQr2e61gefX0/w331YKUrGJtNXA5bfrglKH5wR6wORMsFl1VGhL+ONUuGLrvs - p4EMePAvOktHbo22eGFbGHmpQq6em+T8lkYe+hzWiDjg88nZJLd99LYdHXvxug0re+d0dCgilfjx - A9bbaIsFrE6V4K/Hu0VZJX/xKL0XEs4GTxo2NwEiuMfqlajb9HWH14AZSdbJb96ex8/A11ufQQXF - JlFjoLrC5/S0IPTVO7mtsRjN9HxKYXvgOHK+avEw8beigmBRjsQ+lLO2RB8yS2wwWNiqJgFQ+3GD - 0BeWC7kprUvX21OfwYOvKcFFdhm4n3HqUX4aFKxnt/0ZHOvDg4zH/4h6Nz26ddMrQHHOZtjMgK41 - EIkbnKre32cQZQDCsVLRlxVtkhl65bJbrvNI1/iQhIjnhuV+Lni4XVgRJ90oUyEhDQ/rq86R+Ltk - 0cp/IhUZykkg9l6/NIm+LGgOqolPly+bT7wSmFB4vDOiEmnWtrLdYpRQ7eIfnLLX6FR+LBTgasZh - JNca3e8nvIKAkkfOTxHX1LkO1zmcMOY9fli7MS1gFDRXnJywVbM55GYkZPJGci3XNC5+TQG8htKZ - +OEbDRs9nzJ4DYwAY5fPwVYnU7rvZcmnPq5y4fQ56uByQwKxTYfQbcIPFjyHrsNX0xiHzcyRCp1b - EOJbZ1p0s7VURTJYc6wwxbkWYBUy6JPMKsbDvt6Zy8pomqwPTsWGcVdiHTd4cRZ27u4kdvn7aamg - pRSbLzZnWWNnBvVQeMm7YnOTiH5DZALY5vLM7Z+XKj80ELwdl2hlHg2r+RFVGIriHXsWYOnmxIoP - +29Yz0xnpy6VwSVEbu9FxCU2GSi4kRHs14vPTfPJf/BsWXB+5bmPTqEARhluOmq+sUssl471OA73 - DYJFO/6tj0s/12sPOlsvcFlEWTQOWdUiNvhZ5PwdXVco7KgEJxSWfqXz54iVoWQCQygZv5n9NtrK - fH5DvtxGHL3bMtrIfH7DeyxfsW7Qvh6HrGshk6pnoi233OWhHJbwe32HxEPeHE37fkdUDF7Y+GzL - QE421EGmmwLGAOfRUov+DMIV2NjAUeEKNE63f/imeU8v39ZhhCCIiOpPt0GttwjKKTTGS0bkpbkD - ItKwRek0nPHJa/Cw2d+QQcEXXH2enX4RF7GCDIpXGxHZWT2ts5s1QTjqKvJUOy9i1aBU4aEOInKD - 3M+lqsyPUJ7bFPtC3w3E4AML3YP3hM1RcOsVr5IP9vrBltiU7vKSSAiluZWJ6jx4tzfuTgIbUeWx - FoUfl3e3RUKuJDHEfaVUI3fgLHDrWAvH30CtOTvVOuS16xln4GNENL2cQrh8/f0tJJXs0tLcROC2 - 44DzNhfounx/Jfz294A86leVT7fJ9SUZey9yvdm7pUIFC1EFc7+9yp98CsqqAKx41Xyg1ra22qzc - wbSAb6wYFskpf1k8dBGuM0nDdcnpZw17VNNFwblMOW063uYOsl7JErwpw/77rwK5T5XMbWwN+xli - t4STEtxwKN+8gf3GDxF2wZLO8PuhgOqgTpGv+yfiNGvj8i9NeaNjVTHE9B5pNNmO4YC0tz84//kB - 2A4NqeBf/eXOvQXsp2EZRN6M6a9TKuec7RgWdA69iJXh8cpXIVQCdMvvws43TE3viCvQYUQT0afE - i7rbcZHQbMss8dWkzzfR8gOoKu8MBzC71WzkiQ2Ss8zA92z+5H/4B/uTOJJ4yKd8bdZL84+/ks0A - 7mJbMD4KkfImafb13e2oUhnN9+mJT36sDezD+Mnw678Uki/HmnLfc7fAOm0epPD5aBDOx68OVcaI - 9usXczq4SogaUJXkws0cWB7Gb5+IZJ/kwS7isG7mfX+KrzT6Q5vfKL2Om4UUM4j3epbyFadEgvZX - zHGGqiZarNiykHr3r8R7El7b9dWC2IbLiUrODP1JfJLA5n7t5yNBj5wK71eGdn2CLeZZ0H/7nyGz - RQJWf2vj6R5l6D6M+1uIRlDP9jeEqOKlmWhWrNT8RzwtAFVMTk4CFrTuD18G/LPno4U6uqxpZiHr - Z0043co42qausiTty2izGLyagcSyxiAvMd/4VNf5sPFsn0CAUUJM533M52NwfMP2Ai2idcqn3hYP - BTBP4vMsYcceuGx6xNCBAvD5uxu4mxIeOljFRMJY7cZ8cbWfDv3jusxTOp8GvsfaCF9+8/PFarqB - 0U4kFg6RsxFVpAvd0GR1ULbOF+xbRaxtlVUsUEpEY2Z+Sqitd/HlwMPyTMjZ2ao/vfZGqWiZ5P79 - fgEbD10AZQtfiPOgVb69o21EzbPDpGz4U87v/AWUT+eS+Og57oYmuYNL+iL4fBvew8K27wVwgr7u - +y13R2jwGzw9pC+2fXka6B9+vJLgg6+v7wcMM4p5xLqLjcO76QGud2UfnY4bj88qVHMhDAYZitl6 - IG5vOkAIx079w2+fMtZtmLz0scHuTk8zP5FPvZqfRUaGYgjEIm5dT6fH/hKs5OVgY5hIPuJ3L0qv - +3YmSv/5Rqvm5S2giHbEENcCbPgreBIW65JocwHd9S7uE7zv1Cc5B616GyaQwdmrCnIK8HtY+Vtc - gRMf+QSfL5q2z7MU8IFeGil43/nTYylMZh75r8QrhvWCAgu6muDteKK77A2jFPL6hSXuovzAfD+J - b7gHYsQx9EqbKZt60EoLlch8fKbbUxjef3hF5PXyc3+qXUnojy/BfOEG+vB8Bz6LQ4GNkCEuGYjn - wwv5bfv9NgBrxbID1SnrZtHj15q62SGDwnw28JM/fuh2ksYZXAXqEuPEyQP/lEofomI5YRsmXU6Y - g9NBhU94rDguq21W8lugXR1dEnWKUW9FiXU42ypLlKq36k237hawh1QjZmy5+f6mMAjznIvn7eZO - gH4OF0dK2b6cmfhRDKvElwmwyoH1m/qDa0F6gwryOSIEq52XrzKjiiBMZGk+TGVJt+753uBn+Mgk - TQXJpZ6+MTA+uz4xGikZKEflArGNtWDj4ufaVNpNBYIhQ1hJlAtYgs+jgaDs3lg9G3rE/Qzcg/l4 - Soi7HGtAFUZj0NfV7mR/Pr7GNrG7wLDHZ186xS5gO3pugHQIh7k3iwtYplSWkfgJRf8Qxl+6HI2m - B/ANUiJXqVlvWGMDyT0lLNFJK7rL+cs4MPIyBZ9VTDVa0Z8JVV9eyU3jhYGe15eFEhUSkmHnNyyW - afcw359yrR7a37Cy3KajNzcy+Dbc77mQkJGHJWhMgrWqjbaXplToD7+fQUP3/zN28O/+fQP8rtfy - 83tDe7q/SfwbjtF4JJ2D/urjtOuJiYxwhmumZySUan1P7MMSdg0z+EcubYb1SIcOMHIc4rivo5zs - +hlw5ez49XID7tQFeQmvIKREe7fMHz93QD/M1Z8/AKTULQ9O0rXDfmenf/obgvChOtjSguf+1hHZ - h5AzPWJMnR/RGi8BbNLugJUL/9VmR9Qt+DSil89sXw0I8XZOwTQ5n3/+aimtaIRD0mXYujZ23rh9 - OUt/evOS60m9HN5nCe58gC3DZerfKP10qX33lGgvTaH8yRpCMAMxwpcDe8inSOUaRPLA8fMsI/kf - f0I/PHH+Xk/D0lGjhfahScipMzvw568kuLbNrif9aD6Nsw+xCxtSWIAFJLtLFUjeSUus3Y8vZ6pA - +GCrGF+3IXLH/f+i+YFP/nH+uDXLsq8QCo8qw8b7INSzvwSx9JqYCntNqEUsjpsMxWfbJz6czoNA - zSz451fCy/68rfP7wqPnrbgS/Itid7O/GQOvTVT70LQAWPNbKoHT/An9Wb/YuTD+RAayjZDP0o/t - AC3svITnmA1wHvf7U/3jPJF+gqcQN4gNQJfCa2BLXIfYUstq9A7UDbBRYeB7dXrS5dNAKF2L79dn - f64yCJP0ttDDZo743JFAEyz+HSLFDGOf2iPNpzxzG1BOn4/fSl2nTbPsvyXNMBsstxRp1OrqBa6G - ePKnhFr1amajB/YZUnze/Rs1mNKEh+tl8z8lO4KZOGoLqeIR8qeHSCqm+rGpEoDNgtdcbucPcDK9 - caZHY6OTInM9FNxb64vWYNLNSl4LrHL16S+srmprPK7mHz5gz+ejevMuXQ/Ha2rNa8o6lD/uZyCZ - JWOxo16+2lbLHSMF78wnp3Nh14IMLgFyCcl8cfG7eoVX3wQDqNM5V2vb5V43zoJQOA0YM0SrBdb2 - IByHr4TP9jmh458+7J/Nl3i3uzywrPPZoKq9juR0Db/5n98B0SWSsaFIL7rGr094NJ9CQ+S68vLp - zx/Kxb0hlhRvGjnqLgspux2x0fb9sGjkPEIjNU6zmECgTT9kd3D3W9hR7pNGzYfBwsvp4vnAuZtg - 7Q8wgcqwn0Q+FJm7Tm6YQJBb0u43K5cm+0TQn/9eSedp733/wKbma6w1L5R3h+k+woh3GWz/3i2Y - 5TzY4BlWLrZ98TvQ2FdL9GoPwdx5/GVYIBIXqEqfAXsf7kl/nFnHSPwE/6HoXnIQhKEAAB6IBVVI - P0sFIWprH1oDcVeIH6goagqU0xvuMcmE9qzn5UMhf0VNwouebzx/cm0e3BmQvLS4IqlyE8okW+vq - ZU+foFMjA4yoLgdnWd2l5VTvgh+2hsTApTl+F6ZRKXOHt4GoxzJe3nAuCWTbEC5t5DXjVRSCGvSQ - /V5EM3DXz4wm7aDgDwAA//+kXUuXsjAS/UEs5CUJS97yMkFAxB0oIiAirwD59XPob5azm2Wfbk9L - qLp1701SZcm56q0n/u3L71cU41NqKrv+Xw15f9/Ev7NC9N7jXZK1CyaeNVNK1+QYQ7MOBwQUevXK - 6PMdobjsJxJP2o+OpQlcyCNLxX5xM3IeY8WAd7zfeebLcaBVrWnybTVi/Hwct3xsYm+TrsyW/+MH - M1adFnpM2mLzvnb6JIq8KKfXQ4hd92SAFdZ++0+/oS8zeavTai5Mqrgl7j0vPF6V7AKG7fTB2l4f - iPN8MVBpTuXM6SEdFv9mQLggPsbqH//x0+cCWPGmE7d1OLowl3gGf/rBBPu1TO9aW7Csxhz7XLLU - W6Pn3Z+fSQzW+eTfo6HzMB5rc06MbzYs0paxcPn6AN92/3UeHbGAGevcyR4/lOZi5cvzd1TIpSDO - 8KuvjxboduPjh2WDP74zwhz1F+xI+S8i40+EYParB3Zz5ZRz7bxPSUPKnbyUtKwJLDNGWsAd7V3U - lYgP4qmAlF2O+PKZztE//o5BnGOFvGPKiZVUQP/euORVuJ+6B80zBXs8osF5j4BQKwzlqAuDP3wf - FuPuhDAW5h9Bw0/Rx+r7LGH1TG7YeY/OjleBIZM4kBDZ/U6eu0o9PCXghpYh6b1pOG+SVJ+zI1oe - Ex1WSe19OLXeFf2qRvemwhkrGJ2tEf/5d+uDt1t4+cCU3GNmzTdEPQ3cO9QR93PJ6ZTKbAaPRk/w - WQxKSpUpW/7ihcSHgwa4P/zIeCb550+sz1iM4fFXT0hMHnrEPWMxAd3RZogaMGd9dXmQwIzI5izl - yjcam1hfpD+9kDZnxeMFM9+zXjFJun+eHY9BKLvD40Nsz3pG4x//6R/WAVteFkVkzx9IgjUkqnSp - wLbw4naMY8EltlMrgFVcsYNajlkkqlOtc+VgibA+ynQeH98ln8XGC+FTUnOc8ZUyCGF0nfc2Jdv+ - fSd9+/u9vP4sHOJSopPTui4Mm9FCnOJOgC77FMm41GZElUKnvzv6dH98ZBb+/O1v9UghZnidnAPR - Acul1BJR+X5s7F9/fr1Ocr7Aa9/Y2PkIFGxbmiP4W/wVsU0X18Lt3mWAtWX/T1/WKw9uD1hcQU8s - za/BmhJZBJ6QJzt/hjXpg7iEtyrfpwwS3uu1VPSl3d/CXurqNZViTpHS8NUTHX83fXvrTnnc+QtB - eXCNaLDSQKqzLyR45VWdnVJbAXmpdgR5hubxdVNL0PXpnfjDwtRb8ZsUWFZzPgvPDoKxUw0bfjWt - n3c9Q7c/P1p8rwFG/dp62696PuDkHlbE0bSKyJE/h1DNii8+2XeDCrW6bjL77faeOxcn50XbCkHP - wIKcT+ENrGfhXMDnqo1IMnzL2/2cQmacmzofmgDni5EDCH3pUGJLBildjLP8AJ1m+sQU6kmfbo4d - wAG8U6wXOa0nh1V6uOPhfMgrIRrf0bGHNhtfkEynqF7pR5HkzmxYYhWIBeP5y9iw0oQX3r8PXc7U - gVA8vry/euYt6joHcGmrAHFS0uqrd5y1f3wj4F9pPcqoV2AQnLOdb+Vg7i5jCOcYpVjJ5FdOWMdn - ACyIQU5qO9A10rgWTq684tPR5XUyninzh4dImg7RMJzXnw2Lex4Sf7RVj03LeT8R7WPilkjQl+dv - YP78AhIe2l+9CrzvAy8sU2wnjzqaD31nwUnmAmzUHzKsT5EGcnBDPT5l11Gnv7xL4KSGN8QVrA82 - Rl5ZuWdfLTF3/T7Oi2DDPz9J/YmivjncpYDixfjg66N569vk1658vN6yub+VL32aRaX6x1eMe7+A - 9YEOC7jpBM58JCv/1S97PuFTmXOA5P0wgl2PzE0uPeoVXWX0z6+O3roK+H5QZlk2N2FmQu1DN56t - Eum7Zm+CKnT3NipoImQPcURuX10HmyrZD+AOxQcdDwXS+QGsEnwRO8Dn7zjoFPKvFC6R0hH9ns5g - y4V7CpAcpUTFoPOmbL9RRaReJbq+svlmN10IbtXdxqqnI299q8sIt463549l+vVydVMNDnNyRcPu - B67wahmwg32L3avZDeu3/iCw73cgZhw/3ig3bQH9aXkS1adVtKi/LobPq/2cywvBYOXEZvnbv0JN - OE7egpd3BmHoT/PnNbZ0x9cYflvQ/fEH8KfvwKJwLHY7IwZ086byT2/OrDc70XK659k/vnxXDx+d - SoukQQdaMz47kuWN6tqG4I/vHpUsBzQVA0uexMSZ5bfx1Md5OdjQXF4zEi7bS9/Mr8LKijceSXBp - Pt4vKrYGbseS7nyoBpshhY284wG5fKpqNxhhD6MuCEjQRp98ta8BhIsXj0TnwyOdvxzx4Z9//ceH - euScKmn3g2aGeb6H9XCIRumtWSG2o58brcVt+OeHY/SIpGi2zkwFlrQmGF+/4kAG2R0hfWQhVi6N - qbPH97uT+fxAiHqIvwOVr9iGLz3U9v2qfaqKxypwLDIBo11f9p7NZRKV1w4jwNFoU/J0+eeP3G0T - 0R2fHvDyKxSiSXVDf4FWP+TpctDI6egm3vJ7qrbsM08bnxJXzbfLUj2ghxIDu1+V0DV5ZNqfP45R - EK5guR0XESbeoUDwUrwpK/5I++d3EYzfM1204lFCS+urfT92iEanWWO4fZIS684YRdvnFfSyo75j - 4mb2OR+r7R3L2pR2+PbnX/358UjYLtj5fk97fI0bfDVDin4vyALS71PenUOb4L/9VPqYkgxGzdLh - v+chf35r83C/f/sleY+WNIaCd21nAIRTvoYJTsBf/bOq+2tY+MZF0F74H979BX28lG78xxfPgRyu - w+KMhxA2ZQxIzvRKLhyeUgpVCx6w8/gZkSAxYgm5SiyIW/GmNx9Qbf3Ts2k5CXQ5gACBWpEqxK7v - m7f70Qr48y/856vPf9/zPhUjbJQ//0xfsPUR/58eBeL/PlFwTKyNWIfHLVpe/lkCLuontD6jKSI/ - 5DIQ2m5JvLD71pP4qXg5Y7MAa3cpomN9tC3ZNLUX8awADhvlvAcsxVEjt0He6CbidoEfjlXQ9pHv - ETcZUSEdBNObCWG4YYZ1+ZAnxq/JyTJcIPhOoEBaRMGcFmaiz46SspC/xU/8XMkDbNpz3mCwpE8S - DavqrR6wYzgDs8SnT296sx6vCBZ1ArBpVobHv5S6h7WrZUQ9XD/RVmxNL1/WxMEmw5RgdO+bAp7j - aBGbv/H1BoqXBZfqNczVrBRgy0qegY/3qyZ2hiyd5oWO5DZdCMYvktU9WR8zVK6ujcC8ih61v68Y - pOKq4CxU3x4vTksP06G+E2PJp2gDsGRk2Ys+SLgJJ0pf0vaA1mZu2JsSa59r07dw8olA3IqG0crF - bSlb9tiQFBNtEEr7+IDIaATUOnEc8dPpJkFfKS2SSJM3EIsdJdCcvRcSObbMWcT/QpnTgDavXT8O - i2ZcG6Apioav9w7rfOkXDbyssTMfwovuUZrcWWgo332u0NZ6/LvvCvk82ymOOJwC2m98KusPicEa - k/7A1preBvvK7+Y3YVqdMkU3A9jFPLnFWZHzZ+zY0H2lOnmBawx4kj6QDHwAUX3WNcB13hxA9L4U - RE2GI/iVcT5C9EnO83o/RDU/188NsvSh4SivLI+X7RzC5I3KWQqbW7SYkhnDs3ANSPS76jk7OBGS - P28VYB2/lIE3YaVBqTwnpJBdP1+BlrmC7+87CpM4Ulra60M+f8WABPFPjWh9KljYYkXAsfjVAPci - nQ+ta+4R9LJjj7VsPwHlUOTE+RrfYSWnlJeHV9fgEDdKJKDZe0DJ2QSinPYEcaLSl88OiIgioL0L - vgQqyD1OR3wil3Fgn15cwX72RKI4Tuix0jXg5VuXxiR9vFnv3/uy7LnB+P4Y6cb3IATVjzfIs7O5 - aD7c0xAYDe8Q7ZFc6HI/fRYowx0hxZmlkz9tm2wwukKUJ5b1fq6vG+h08zcvZqh5q3i9ifJ7/pbY - vm22zsf9dZPjl3gijhLVVLDO0z4lobXR9jaf9Qo3bENbuZjE88VFX+aDxsiZ/8v/1jcSzidDkXuz - VImu1tHAfrSvcdzzCdHm+R3G6OI3UOm5YI8fB3D+JG1QplpGNIe1KX87nQ0Ir9kJ32CqD+ydWWz5 - c+N0fCGM5S3Ji5Xk7Ov+sNZznL5JZW3JMDcxMU7SZVgIq6Zy6L4VbDSA8ShjdkiGtl3icxiGA88q - TAGSaVwwusl9tH5YJZFD9omIETC6vr2UoYfHxNhQOEz7HEiwjvL6LSxiOXGc89b4smDjMtY8RJ5M - KX3hVLJ8P8L2NXFztrvcMrgkVUYMfs699QyOMxiD5oIVlemi5ZeUG/xaaCQnbln0oWXvCny/7BIx - 8yvKx7/P7/mI//CQ5xCXyT6LPJypm+Wtx65E8kvZGewn2QC7uDIDpfZZYNs5eLpgf28JZLkhx+g5 - ad7W/EweNqwU41jSYrA6F6+Cm1xL2EtewrB+zooEzoG0YdeWMRB6XU1lbkoxye5+D6aMBxrU6fWJ - WvD55pSfhBFmi/jGvm009QryrIfN6XHD6iXYhzwbjQsBk3WzwB0Vb5n8tIVjYynErWCVr+/b3YD3 - 4zzOhPnNwzr0v0q+XTIem8FRz7fEOM3w1tz2uXE+1gVHv4bwFnA8ce52Vk/nWAqhwagKiYGu1Kws - yZ1U2MJETOwMNWGEtw9R3l6x42i4Xnzm84DeAZP5KLdLPT9WGsg/pqqwo0Q6GONJK2T7/oTEcSQv - Eurrc5Pk8GJgu7oMg7Ca1wquibcQJOZKTe/POwu3s9jgcH12e724GTJshBP2ZS+n6+DfepAeVJvo - wsAPK4aDBV/Oescv/z3Um/j8zHLJDhFB/hPkNFwl/y8fiWc4RrSN1ZgCZwK3GSbZjdKx33zgbgkl - GoAe2DpTtmGucwE2V42CrfAmH+Y9O5M77iuwXCtFktVKN//y2eP4bUllqQnM+VoGWs0nodXJb1WU - 5vDLK4DjPJEBl+jmo8V/DmCOxccoXaKrT5Be3QFf4RxC0WMQUYI4B8L4ACF0jStP/NXm8+2wpQt8 - 0emL06Y51mui6oHc6acfNiNRyBfzbfAyaz5N4i9BNizheDGgyIkPnAzJmPfuYrKyKzYAaZA9UVb2 - 7E6W+vJMTuFh9KbC7jZItyqZhT0fuIOliDKF4Rk/nbqlAitfAll37hhHDvl5ZDWvpXzRJZ8YHP/K - 10J6L/L+PDi0bgdvcRrQgMN0i8gtiUywHOd7LJucz+FkXJlhk451AzPt2BC7f751bpPtFggxzoh6 - fDwBF6OUh+X5WRA9SpZhM071zlj9lVz13yMaYeIiyPQ+IunyPejjodkqOc6FFP+979WftmW/t+Ti - q8ddABtGQQMDkWPwK2SP+dqxx1FuD/hMVGdJa/rIDz501vw0UybqvSatthAezraMlb1ejdVTQxDe - vuVcRfmSj3LE+/L3xdQkgKHqTZf0p8k5sk/ksvOf9anfUllTNI1oHpbotp/YlJVLf5/F9SWBfRwn - BN/7nGNtfXbDGD+EUjaiN51l8Rbka5evPnyju4tkpme8T3yz/uHTvDzx01sN/HcnsqkQPBh6vmq0 - 56EatibR88rS+fNH7iCv8zN2HGnINznJRKhuS07Oq9/Wy/F0F+GrLwm+odMSjeds7/n0eqnYc1TF - +4tfSFlC0Hb7moDiVWHhbe4fBPPtT98SkBlw6TVn5oJjHS18l7TgBiSd6K3q1PzRmBCgn4AQVARp - 9NuI08st90xIEoIc8J/CCOD2vDXz6O49oxzHSmWmGvYeGXuXkffnsAAvshyi/NXPztsV51Dk2BSr - 2puzVE0h5rwjRq57jsZQChR5x3eMX74RdXyXNHCPb5zmP1GfD8BKZDJceOxGH93jD845gXv8Iokr - hnxtZp6RbJ9eiUaPbb4FLdHg4oSU/OEv9eJ7A/KLIWBtbxm11KHdwfhnHIi1P8+mXigP77RoZu6V - WgMNrmwMYnI7EX02iL6ky4ogCO7jH78A2+z/QpgET3eW9GOR0+dbaf7wk1hSk9dUvu/15Ti72DOn - NidbFBfgqH31GaqPVadCprRSvF0EUjyc0tu/PwRsOI9EXe9itJzpIMIPtOwZ8kro8cdh7GCHv8dZ - nkQfjN4yl1L7CAokfXCQL5MfNLI0Tu1+Z8TWl4mmGlQ/JYuEQd7AuB7YBO71F03Xdsy3qnsU8HY+ - WliLXZiTNjm58PDtPHw5Q+Rx8fcew2ukntFN9Gd9vM8TguebLeErwyiUGhSUsHCyiWhv8zlMol/F - 4GR+3zOohGpYlpQVIRHrJz4bw6BP69sdof7NfOLMeI3WRzGI8KFGe9c/2Y22+owZoMj0MG9PdB7Y - 9rQ8IGHWD3Hul35Y6o6z9zuyF2KWQTVs0fhe4Cnk7L+fa6E93xuYilSZhSQyKWW+SQCvdKvndaq6 - nPZ3ToLvqg+INa7FQEv7WByvz9gg6XeUh+WQgGafM3rG9+dT0emRSgX4/rwcG0t+zv/4LXDisZzZ - u2rXXKctI3z59UbOeVLTbWiWTBZHuyEWo5qR8BRkAziNV85LdWCHJa2kAFzLkMWna5h569vJbHi3 - tC9GpxnnayE+F/AQnyo5xVkRLTtfAexxdMkrmFRPWIKdTyXghtHOHxfDRAy8JCwgl7zmhlGdfho4 - 1U1BHnQy9B0fZ8gcjglxr+Kqz+enYkD9cWXwtTmgnC1ueHek/HGumajXV0u4NzC6+g0JOjJGk/YZ - REBg4++tmbZooYLowteCRWIG6rdehiqfZV5nZ3S4BLeIigyrQe/BKuTep++Ifhtkgf796+br8/Xy - SieBvdT+ShPb3/E5LG0wK+CTxxvimaPqce/wNMOLHN3nLmrDYUuhXkBTOspzv+f7no8JPOJThP/h - Hzok7NG9cZ9Z6jLJ+1t/sOuFP/yN1taFEgx+GTNzYqXr69McMih6EGEFP16ACoDvIUuYEInmieRr - ZmwKtKVziA7iUdB3fpzB04cKaN3ry/L+HDYIhZWfC3IjHpXvr0TCnHOchVM3gkmvXxJYpYzD3kGh - +qz2bCz/LDojCBZn+Kc3nnf/hm3ij4C27F0DXOD+CAq2knZQVnvICxUl/gcp4BvJH1e2n+VAbigo - o/lqRTOon6VD7qpg0k17tgt8kNDBeDyoA3X7xywL1oFiHEyqzjoJ28GHpxtYXe9pNFvuT4MBvE5Y - mxWG0uu30mT1EA7E3/FFUD6eD7H6ZPHTF8p6mz6/DW4geaN3kPreuslKA9PhfcfGXbWH1X0wD8m9 - CZ9/fgTnWs6//EXMgj1v+b2SGN4MByPaxUJNzfbDwEcaDnPbfpVhlK4BC9+dmJJLyP4oPWm1CEV1 - uGE/yW5gPP5OjGRKQManQ/kd1rCJoBxIdoyVfcbg4vtjAbuaP8zgebAoN4plAa8OfyVWzOoDt4xG - ABvVxzh58U99C4U6Ab5SWdgWT3PUvR4BK6MLX6CJOX3B8Hs4EkwmbyHqGc46FQDTwUpjW5ID7pf3 - WxBocmyLP3zaHny+zVnpQ3RhC3xyYVt3ichlUHdyjJV3ow1b1iox/FuPWj9d6z/9IFdJsvNtycuX - JbcleMX1c2YVYuv8T6IV2Pk6ttyrorOP5qlAHG4usdjLmXJ//OzI8zYiz66KttvpbIGf0VyJ2x++ - dI1RwMp80xg43fUN2wq7Ht39lcvp2ddrzJx5eDpGLTk/TLL7NQyEwyh6JDzbVb1F428BwZI9//RO - vc1Zt3cltgLiGmjHE22ZYUEEDy29W0S9Vb9LOQ7NN97ro0eZbxFAOa197PoXZ1gyt7ZBpszePKb8 - ldLq+GJh/PkG2DI+9rDzZQYilz+Qv3ycS1Ttfs4kYO8K3zkRVduAml+FGHEHrRYaN0ZwuIoT9q/V - Q1/CKG2gBr0O+9/r3aM3NYf/8AFP1Y2u+XHJ5FtuT4hjz8+B/h6OCDM2DXZ+LQ2/73kL5D99+t3x - dgOwg/DwTnVyrUYlEgTAd//4pVLbTU3aNrTkTBm9+SPLnL7F79KX9/wn2iH4DFtPVgZArnni0ICT - t0zw3MJXuYkISKw8zCXqWzAtdxnfck+t13MsBeDTvHsEJfFMN+nUt6CWx9fML3Ls0UMfddAJhhW7 - emJ7nPvgH7JfHTmiwvM7by4I+6A/+hZ+1IWjb5ZUKBC9owJR6cTWs/acF/i5NIA4vQ7A5KBDBRXQ - tMTO1kfOx5drcOzOaYmt0z4l6k/fXzkZYqwUlt52iW2AQIPlzqesaAmlQJOT76PDiXDf/RNGtOWy - BjJW2Wnzdnzb/t7H/IvvM6BL2SvAiGo6LyN4A+GP/0hWZOOTEtN8S0Krh0Xm6gg4TRJtg7yI8rUM - WCQdryCn7GTFkuYdQoy9H663A0DJUet+R+xAba5pvA0N+KHEx+5V4aLFgPcYRrdcJnb+S/Va6+wW - vsVbSryTnebLcb7EcjCKEw60NzOsj2BkQMlAl4SV5UQUQS2Vdz0zU4f89HXIkvbPP8Vhz111AYcM - hNYFPPAfP95sL8zgk5MYxO16nArUMSCxxRO5PQsyjHqZF5AXSorY9xJHixQZvLzXY3z1myddKyYo - /623PqyqzpVV1v/VG2J/nW/e5GvVgp2vYKcSQ29+q08NDm2vY6yqMBoh0eZ/fphzJMrApYNiyML7 - qRIsPY/6vG7IgOU3H+fPEEJvLauwl3e9hSSfPVCiUtcFPzd6Egt8TjnniC6EibuoSPYOzUDBYcpg - +b2PWLfnZ05F1bbg5ybo5M8PWFg0zlBqQpOc3tdXPZ2QZYPPx+qxJixJRLPf3pPxzZyI9SYGWDnr - 28ITVQtiZJ++niomqGA2ZStG1/dYL2IYFX9+HDpeTE7femuuYKnIaGblZK6nhzCmAG7GjJ+vcwR2 - fmFIB6mRyMX7KToHFcsG++dnqIuILvnat2CT3xL2Sib3plB+PEBtHoadXzFRf/k1GdS64UgMbOb5 - QoNllGOtf8/tZDU6JxepAlEWHYiOvgb95/ezrZ/jGwRHsKTHdgPfqIiIMuqW11WD40IvMhx8O+N4 - WEl5SWCUjhGxjuML/OktcfdHsdYyH2/NhvUhvbn2gL4vba13feqD11qiWTgaDliN9hnCvI9mbDdq - HXWuByxpLNULdgao51NK5Q706ivc8UCNdr/uARJ2xthW6bXevm+nA39+99WsGm9lbdCAk9MFxPu4 - yzBKo5nA+ZTn2N7K9s+f6uCub//0Vz7Km2JAp/MxuY2OPWxfgbHhpdTpfOC0rzepilhIu/9ClC2J - KNex6whv8+mBXqoK8wVIRghz0Bik+BnviPrgrsDn1euI++rsgRYjKOFf/v3F/76focnfo7QSv0xM - b1k0JZV5TJndLwJ0/BzXQs6f3xPWhLOi8/faZSBHvh1qyKjmnHeBEuw97MwMawFvXHJblP7qH27o - qA9N/Zjhnm/EOaOPN+SF50MQP3Kc7/WOkLA24CHLGmLs9Xjbvn4FUrvpsXb7fujy3CLmaJ6wiLbd - 7+ycBrRw9xdnuHwUfVN7NpHPs5v+qy/TkBWN1HZngu2gmGvy/PE2ZFuUY8XiG496U2ZA/3Uw0TYr - BZ30teDhnz+3+yeUtudLC15n1iZFEaT58h1rCZrZ9MVn72SDpRpUGxQ83xP9dFj3G1GLK/PJ+sSa - VWJ98oAS//EHrN8tOyfV0geQoC8mPvtYvFntYQy/L1jjU5UM0WLflV72NfIiDj1N+jZfE/ZvPZHg - sVpEg5ll4eVp6mhDdTzQXNBHWWVlFgnUftRratg9/FYgmn/CoQN0e+fpP3/3/HNUj06XdQQbZ9wx - Lo0yorJWsVA6Hs5YCc91tNB7G8rVqD/nox4KdD69nxWcbotJFJE55ezFvHcw+KUM3vHN2xBlW8jg - ScFJCADofq8kAVK5JEjY+TJdi0KDzxBifFFVHyzed2FkNabFzBaroq8jvmowmvN8bn6BPnAvK15g - sgwlOUGd8RZZ4jpo91u4+6Ok3m5LWkEcy/uE23LS/+HFnB3dmX/xsrfEsQPhHi8kXV8ZoL9GKED4 - rl7Ebpr7fgK4FsFSBiFxtAx6I/2tCO5+EJLMH69/8t/0ALu/j3h98oc/vxPm/WXG/okUYBGMuIK1 - VQ3k9NLW4ad9ahFGXjGiu538oiW2dAXe6aMh1m9z83/8SIoqgta85urt4JgJiDonQsd86iLye6gi - dF+ZTtw34AcapHYs7fGN/eop59SvglLe84e4xfdBt7/9pb/9ngygiv75RRARw9jz5zZstRFmkBKl - 3fFKz4XD4zGD8a5u2EYzDygbmyx8CUuy17dTtJp5PkKneNxI/lf/+Z4GkKa6jUDYneop/l5iueRQ - RPTm+a0X1Xq3skU8jXinS5evt9thAdR434l7e1B90Y4RlNf774Ux63rRzp818N5Owc6vJtqrIgig - 2PXcLL3TMtpO5FHA+3EciZ69s3z+y/erEIb47B2aei65XoF1tPcgauetXv78vYz//ogCZJBP3wMI - oMDChTiq8AHUUKUSSM+wRXyjhUAQMrsBy/Hp4FN48L1FF04Qromz/NtPJf1FieVOSOYZOq+knv7q - d1jKL1KIeTksJTVj4HwHjDh4jzzy56cvB3LBu99MVzdWRLD700R/OxP480eAyh7Y+bjHA69hwsPy - hJM/P5ru+6kQPl+P1z98IlK2QjhcpQkjNVfrbWlzF6YP406yUFX1P34MFSPdcKqxav7PPw2uRzxz - u59Odv0IIdc+iWqIDzAxvQbl7IxyxIcgpxv3smP42eLLnz4aKLVDCX7QySPW9k703/73EKpSOtP2 - aOb89ycgsK8vkqg25dsWpBpc6/yG2sjw6IKe5QK/0SPCOdl0Sr+e2cpFHQNySYY72PevfJjGb4Dt - RBqj5fg7QXj3AzJzt6vqTY9ikODledKJs9ae99v9aqh/U/+Pn+W8n7njnx9KbJt55atYJzzY9QfR - 8ascyDrG8P85UXD83ycKcjZ2ybU6f+nPrBkb/tZkQuDw/uXL5f5koLbfwXBtZdWXbk4RvPGWi633 - s4m24HHVZH6g6XxwF5AvVvKTwNdHDHFVdanp6UMY+DqjahYH0dYFUmcJfFhsi09Tw0fTuWIaeNnu - NkHy8QMW68DbYBTGH76zW6W3kBdSuClXB19wNw20zQJXHvVvQNzXvayXuxGKclHsXc7OpM4XrXxC - 8MRQwI8bXw+0QNMGg+KrETNplWgaXZaX2Zt2x6qMRjpeqRxK7KheiOocQbRKpmbBk1Vc599hrfJN - PagNGBDuiOqOuk79nq/kjRuXeVlgpo/WgXGhx/0wMfVzMPAa8gOofbkWR74CwMKrbwl+/Icwj5bf - RlQ/L7wcey2LgiLZdKp2biF9z08fW4/kqC/PTZ6hSuSK6E8G1gtYjFEOZL2cV17YLWNHGeVDNYjo - YPoOZcPB3oBwjG9IimcdrK806GX55VkEPeXG4xd01eS66zfiTcKo0861A5iGio/Dj3msKekiXza+ - 32leZTQCcoJRJ1cc/WKX1pnHvW17kyE+Ddi5Ft9ofJxPqTwLxYJK/oDBv/cJ0/eF+MxqUiGPgQjf - 8ZMhWflDQEiluITRnDYkv/PXXPhhx5UP1U/EZmM+ve12ukDAbAef+MW7HKaRPwYw/Gky0UR3n0JQ - 5iEsHgLF9rXVAWcd+hHaS/0mbilv0cLloIQ33T+QwjvUeiO/WF7OntcPxqvOD0swtyNg5/dEHiM1 - vbV73BmodOaLXMzPjdLffuJBSz4pyb3gHH10FinQ7sMMI/1DweLny0MurZglj8PdB3xUiSzkAnsg - rlRJA5XeZiVXRRhiM0enSMBrFsPscboRExR+vW3M2QADOndEc4NapyeY93BLFANfROmX8254bkGU - kh9xj23gsa9oQLA1YkBe93M5CMrpqcBF5QJ8PututFY3PZOvo/Qkqfo5e1RNXj1IjusdHT3WoZt4 - u/lQvOs6Rp/GGyY3sBO5tYQbOVvGD9CnVCEot0ZA3Cy85uP5s/myjdsWa/X7RHmDbq38jA8LsVCa - 6hwx2hFaF2vG9v7/FvxqDFmcdUBsSiN9c1glBK2RAOKFeKLrXX0F0PCGASsVc/f4j36QJMP7Dfg8 - 3kyPXsF7kafzgSBZ+eUerxluBdXa1sgpiC4197aVBeqV5OC7xzqAnd4UyvNdCfE5/AIwZzviVpYB - sJIQt57+1iMMhBZxndiAzU6jEUrREhJ1/X5ymjo3JGN1PmFV5iPAde+QP3InOSLO99HpywGPDMyc - BuzxKOujj1EFvpezQLwJm56gnxdWfi3DkfhnzwL784hAPSEFSS/0onwFvBiOqsESo77MYAmLhIeq - 9EsQKdZN37p7ksBCGi30U51J3/0CBd7XvJnZTHgN28Z6MaRB2pATQLQe5RfkYWectHnFce9tvYMK - aJ7gA6fwbenj3Yk2yN5LjjjQbD3OWkpL/sPrdf2aETvLXQX94KZja46PYF6ipwS7uynhS9ob3o6v - LlxbUOPzFJFhy9vNhRHpNmxA/pZz/mFJ5eX6kUicCa+aSJuYwKD+AOx64zkn5TGG0Pa8IxJ/dhJN - 7fjjIW8Exrz2XQOWW9xvMHTbF/osXkfpvdQk+USwMAtZcsq33jg3UBlLH/ulGeYctkdGvg49RtVK - /XzNIteAD4jOxNmIr7PPmlry4MvZ/CbBQNf9/UG1SQPyZK4mZV/PkQExfM8kfZ+9fI9vX5bFdsQn - rNfR5nyTGF6HDpOQPxEwteM+p/57Aoi5/8phvV2IC199us2L3I90afW3AsErPRDtUn89VropMSTe - OSOaoGf5pkWmC1BwcrHTpSHlL22yyL0uOBhvrvqHfxJ0KrvAZ+ZqgmXW3gW832QG53YJhmmvL3J+ - Pf/IufxAQOOX7EvoQDlyZuSRLueP5MPj0SoQl/NztH3NkIezyVHiWosG+HjcGnl+U24W2+c9Z5XT - pZGdOh3JwxfqfBuyNZTV59PCYXVUAIuvfQzBGzywN7CJvqhJ/C/fCfZq3WP7Qkn+8BSrgpdQ2onX - FJ65PCE+86xydoDnBj7aOpyle49yPlN1Xj7xjkp8iz3nLKP0MdQWhcFBfhDrxX0VKZxekoKft/nk - sbaVaTAJA5Nk7wsHaHInBtz5AVb0voiok9qBvB4sCTtzbtfcsxQeMs6JgEAc1mAWbzcE+uryxWbO - 7z2DzIMCuS7RcMqhSt/jB8KRf+Q48Gxdp+5qdDKxZ2ZmvLIAm3kRJADgB2NLc35DW3+2BkhJOJME - JIs3/zhXlFeZHxEjIBsIMDtkQNyKH1FW8qb8jSMG3O+9YAPBeOAl6m1wr7fYRqAFi7heGFnzjg3J - h3KrNy06u/Ci+Ap5DS+D0s+x6mV2rqeZc4J2mPP3MYDzbTNQBfjKWx73NYY34ig42fnUON4kX5bm - h0nwbbvUS5MeF2AwFU9MWSvyEV/7BGB1POH0cTyB1eJKBjZcPSP5dUUDlcfKlymwbiRybate56EK - 5Vt6Fsi+H1UvidnZsnJQOpLSF67HU1l3f98fo1vb16S1pxg6j2eFUQObgd7auyLPeTnPIjxXw++v - Psb15hOlNJth+ONj31baEH0yj4GanMACO+C5Ge58Z+oTnYef82SSOMFiTXmPWKC5f0es7/xoNRRR - kfPprhBFebbR+pDX4F/9vgYC0hc2kTp4W4cnYrZWBTQjZim1YhHPh3qCwxJni/i3vsRsmne0pX7G - wqRVCP7jn1v9kRqYHuuSqIYcUMFWHy34dp5CvDtCOXUByuSI/Q0kPZepxx1/zwdMYMRho1JLuvkb - VeQtLUsSNJM3sGyydXDjGQajkNEHLheXDF6vcox9X9Cj7eTcDWjIYYc1siT5VnxGEToGg5A83kx9 - e69qA+vETTAevHdO3y89kV/DoGBVkyRAxfWZQXadz9iZT6Y3B2EeQuOSfBHVOG0Q9JvUwqf2igm6 - Fy+6xmdQHvf3g/XvNNNtnOECJHxr0MZoGR05ImjQjcyUIBOeo7XbT3Q9zHa/M363dVZuuBF+vvaA - lfyQDus5hTx8not8Znb+sHJlCUEI6jvBlh1Hy1/9UTPYE2OvXxM5fDZAvs5j5slJrdn3+WlIe30j - Wlp9h3/17sZ6R3LOTKXm/IOYQva6edhMTg+PHm/eArDh1xiNAql/Yez0kscNeGZ/sUG3BwcXqEv5 - c94W4U2p3zMVAMEPYd8UK0pO212Casb0xN4Ee6CXt/YAw/eHEPCCc742FqhAU1Y8NoA0DpskmyV0 - ffZClKLnhtllXA0GvtHibBo+Or081BZG5VHdz5Qjuu7vFwi+eyKGdq8G6p2WDFphAvG5lrl6KAN7 - BPmUKwRjwaq5+m3akFXMgLz6UdYnydUgJJ8jIhp/wmD7eB0DzVoq5pWIGyDPw2D84TPRa/MEtike - XPA744icrvihs+ODWrCp9XAWr20NqKI9bLBKhkaw6TtgY2tQgJNwx7N01U45fXK/BCwc/JHijNd8 - 9eZzA9NQ87E/ETKMWnll4Pvqqthprw/wr77NLBMTLFh+xLlXB4HMZC/k+vO7iK7V2YLn+zNG0LwX - 9WI5AoTX2R3mtnsYgBtNAKEdf15YY7QM/MOzwSM+PgvJJ6d+yS6QzVadnF/XuV7RsQqhH3IvogFe - 8wQ25xlYe0WFfucU1HNlmq7c8cyZoLTi8mX7uiWsSFmSgnVpvWbIQZDfeyjpYuLTpjxeSvmcni2c - 73p1OwkzgvTlXond+R5dfQQMOHL+mSQnk/XGBP9EqCyBgO/QbPXtMAetLD+6nrzGnNRLOn1dWbZk - gtFFEHMSSogHD+emEXO2N7rkR4+HZ2JjYvwUNVot6cfDhegvJF5bna55ZYzQM5karbkAvb/6A8Wh - fqFjuQ7R/MdHkmZ7z4cQKR6daI/gn35QPj9eX4wMsyD5hjLa+BOmk38QM7jaL3OmhhlQGmdsAplx - NEkR9squxwMEj0XWY7MTDcBmHzuBdnjS0S/my3yZ3pQBF/yGGH0CW2f35wN/esxG9kv/4zNQJNAn - 4ertc9h/miKe9AtP3Dgr8/VZHgpQACbGqObu+trnxigX2fVGvA9867P+W3jwV69F9NXz0Xgvkpw2 - VUf0xzwPxNR+PCS/n0jc19To5evZMDJMFI4UbsNGdE31GPLJVs5SOzb1kOBPvM/BRLgY69HrLvHT - kj1qU3yah3fNf6zO+MNDrP8e73z6y+/CaickdJBEu14r5JEvcuLaXeqtiVy3f+uJz7esrv/x8x0/ - yKlRDCAIz7sI51l10XLUPoAU6beC1CUdwWGlD2zivjXZXS4dNvOqB0vfaQZ05gMzD+V5phv//Vpw - kBOHnCOr1DfmMS1/+ECU5+zppJ9QBvb4wAbqVm94kRxB5BkXfJsaPt/U7db98yOsfF7BrwVNAYcO - PPZ6Cmv6bS4iiNuwI95xu3nbsVHtI4K6h/1jL9V98H5Kxz99ZD4tONAvjUv5CBoJqz3sItr0nQa/ - 174hyqU7ROOgWhUwrRGRx663V6bpA+BY6LHryz5fT3sPk84wNawvxIy2L5+6cMyXL7qIoRat6uGq - HdPABNh4SNdhm+LalU91/8Fe95Cjtfc1S/7DI44YcvSPXx8dWcYmtkG9gl7MgP9bOvQLaR+tvrP5 - cmNyGrGuN7EeAxD08lfep4DBTIi6nd9CBFUP3w6VoK8KFwUyuzE5NqprEy3l8VL902dKeKqHjTNK - KPf8GJP8/G3p8rYfvtSWofznj9B/fFbsowuxM34Fwx/eb+r3Njf1Zaa7vlrk+bYYRDV+U9R/lQuU - le70wk42X/NN7Z6itGTaF7HGRQDjVjkdRPLljr3tRT16z10NnliREu2C9Xrg04sCbmPXYOx7fT6P - +44ZdacOsQsY82b1nowUO0aKn1RT6bI9lQ0YkaBj+wTbnH6buwiOwfGEFX4Yo2UNCh6y18XDl92v - WT4VLeGhaR2CxE0aplM0B/DCHptZmg52zZKyHeHOpwgiwKA8qmpbVsmh+tOrdEJM7crN/TNitb6W - dHuP9giNw2oQ93Ed8qWTQxbKFVjnL0B0WB7FhmQzJxaS2P4zUHSdFvgef1dc7PiycB8u+IeHI/PU - IvYRiwVwvUYn5s/v8n9683MVn1itf0bOF3lty8A8ZMQrOY6Ou3943PksduNMyTevWwP5MjwZbF+l - Uz6pUmzLf/pES5Hh0fXpI+id0EpOp0vusQU8FHDXm3ivNwO9J44L31dbxWGKGm+QtiX55wf6g7HV - 24FeCjnotA5bD+06bDJTPmR2gzm+7/xr7CeNgdnx8p2FRNOB8KWPEjygfyZR8Co9rj+pCGLzsZIT - 11fe0p6rDSqR8UWiVAR6cz7KI5wa6Th330D1+PyKYyn+KBnRDC6Odv2HQPn4SNjd45NW4mkEL8qn - BPuvM6XGG8Yw0seV4KNTRUtf2AkYeq8nGmbZYVm2ewmbWg1xeg3LfGtYGUF0bieipFs5THQR2T9+ - O4vV3hNh1yvw2fcDPvddWP/zq1AXvHE6Y3V/n58F3lIsYEdKon1qHlD++DQJe98Ay60YK+g9zj/s - Zm1KZ+Y2SrDR4xbHIDSHWbarQB7au0LOxfSttyW6SpD8BpGoJPDA0okXBux6AEFmNQE9C2Uhw3j7 - omOXbnRqwfiA/TOYiU7iJF/ZA33Iv1DC85djzJp/WVkKTbNQiDLG1Os/uiBBaYhaRC+nk/6vXt61 - g7X7g2HOouD3gHD2fWz+yoESZ/Q2+Oy7AZ/Ue6sv29PeYFwvPsna0ajHv/pxX5yEBLt/te36XqJH - 3pm5xnzqq28cE/g46jNRPirxdj7fwq7UDaKE+ckjunXaIDo3E36dTyxdbPXugmVaL8TghISut3uA - 5N8XnIgj9YI+y+fahR5//JcP0bj/vRR6/ESsbrEjDpA1hGejeGBbPQbD79mVJWzNj/OH7/lYMlkK - r3g+7/j+iijjkkp6nf2KPPsuHJbtq5Xwhh8xNvYTorz9fDQAXW7pzr8qfZ2HPgBHgQ1wlGaDt21H - H0E4qNN8PKf5sGqlVkFWvRXYDPDXmz6vg/SnnxDjHWpv2gIvgzxlFrS5TTtsAnvRQJ8tIf7zO0fk - lS009xOvphO09TjeNgQ6Hp7xZffndv6tgBKMOTEeElcvVaMsMErOZxL8PQ+9cAjsegK9RcnJ11oQ - WXifjycSrboN1nb8saC6cx9iIv/izZNZVjJ4SDWi9X2I6BX8NnBKmRUJThcPZLzJHdz9bnKqLls0 - 6NZpATtfnEFWwGiapVGCnglr8hK1my6gYBRh+N0IPr+Nt7e+gm8Ldr+RuBIS9JlI9weMMLTIY9cj - 8/XcGfB4NAq885+aPpaugC/GexB7OfGUtllqg8uUYWx8P2FETe7AQ5ZFP1QqjkbZ02esQCbqdyR7 - XZ5zcigU//S2FZz6+pfI+42Hlnp49/f1mTuUmhx/tAz/xePESlIDH+8yw8GFKjpFWdtLcJl/5DQf - Pjs+yyFodWNCrKu4+oaqwYb54fhAovW+DdtwXTIpDj4TsdX9BN2nopW8xwc5K79cp4dHFkPBt0/Y - 327JsCpt0MEXKha0Nh/iba6tsxDUTo8V4ZvQTU//Q9qVbCvLM+sLYiCdJBnSiXQSBFSc0SgCKtIk - QK7+LPb7Df/ZGbv22ppU6mkqqQp0iKztDXSDjoB2rhrCR11RGs3SC7DG3BNI7ZHDf37TP3yblwYS - QT9/jPF1Ki34DnYxPgq9bjA09gHohcLC6VZPortXHPzVByjmDiMje6LL6Dy6Gj7aqdVI91zX4d7Z - IWqIoGQz9QcfbPGNfT99ekNjLuOfn4hPsiJ5Q/vd8X/6iOzE1WaC6e5X+E46HDBZ/+XLnj0D8Ps5 - l0CcDT+ffWxVUPjcF+p0Js7J493KsDbFCdunKjWYvpoB+ltvxF3e4Gf0fgRn4/DY6l0HIGz6BBzo - cw6426cf1rPsfODGD3B5/xTxkjZ3Dh7ufo+t+uDFM36OFnx32R4HSXAGs/T8uihA8Z3ih+MZ7OG0 - CkyhAQPwhpon/OZLAcS+cakx5xr75yc9nKODjeuuMNbf7OrgdqE5/fPjFptmPEzDIyAULU7cb/kP - /Dg+pKX6A956lrUWbvo02Ft34M3oyfPQh7FJBBs2Bl1KM4DiNulyv4seBnnkg711es6o/W3bZv2K - oQ02P55wVffypr/6DrJlFauD2bIxGuxZ+RR1RNafrMUsx0yVFxdtTSCPCZumhGvBn/62usLc9rMJ - /ukrzgpnMH+Mnwp3csKo1p69QfBjBuEzwjkOoucuX2czDlHkXM/UokdtmOa+1GGknD1cjM9Xs+Gn - D/eeHGDzHBNvjXQvBcInX7D3Cc1BCEkcQi4Q1gCsHh74jt0t4NBe+8ePlni1ZLjpoU1/DqBdrIsJ - KBRv5H39VPkyujyPsqP1pKfx9v7TCyv0uzqjwcIyjyrS3odQjzyyLMBmq4n4BG14iN1vMjTs2KW2 - MtYG+ecnToq73Zjb9CIYqqiZ22DWkbBvQ6zVIhzmXTKJyuav47/6zBRhe4a7stth+3XyYuHv+xwa - +UHNXK/yJSs9Hm7fl/7VjxbeQSHQ11f2D38k7yhnyuJMMSluojGsEdILFHTRK+AkEYPF4C0V+bNG - g7XeV2CMHg8e3jS40NvrN8Q/013mv/0mq5jH8eoaOoSb/4dd7XcbiFEf/+XrjQ9eANEUlcC+UCvs - 3bjKkDY8gNqDJtQQY5HNmz5TiHG7UX2Ll6W1WK04knPFljMvxoRsgUBj72Gqpt8n+921W7T/xraN - C9WZB2q+4BX+fd8hwicwJEulw+j5vQUzuv7iFdZMRupY+//Wf6uHJNA6JQYZP7btzXVrr+A5goB6 - FvyxmTs0PtBnncN+Nd3zv/ot3PRWMOc7eVgCWtXI7dYY6+/DvemFXacqOJ8kfDYvDiN5MWdo9+Zv - 9G9952kQxr/6Cr4Jff2Xzzvw2m40uM+72qxDy3R0beqYbvVagzmjsaLNX6OncegG6deYPTAD0aWb - /h2WKHE65a++7HSjmE97dvP/PzcKlP99oyA6ZSfqxgcnXh72a0R20BDsvaPEY4XKP+A393fUfYmg - YT8SiojusjlAwsIMkr/eD3RRS51GhrcMv5/zKQDXhhGN+kvYiPaY2JDLnBu2xWtoCAQvHRqUC8TW - vpgH4hxhBeOyZmQartJA+CNO4IknTsCRNTRW63Xqwf5pSjhTxjVnYrBwUG0Cg8jOgzLiFG4C2Ts+ - Yd2TvWGJJxLBTnhUGKfgC9aXcdeha70yGjRl1czm8x4gWz4VOASin/N2MlkQlLDD7nQw4xU3uwCK - keIE3Fwtw/wMnQ8kzmkirN43w8wMYsFfBUWs/nZBzryty/lTuPlUr27PnA/tfQcvr0LHlt+GuTSM - ow4FKA3UpM/KoEGtukg78jG9Du81XiIaW0jxcwG7h6NssElaa6TBoqEhzq/eOjWKieZ+b9GSAzdv - ZsbHBIKVMRoUIDKE07n5IFWxbOpYTx8soheOe4WeymD3M9tBgN88QwhbAXW6NBnW11nUIX8RVGyI - j8ZYn7JbQMtXJ7K7PN/e/BPeEK6Zb+ILKjIgDAnPocsu8LFlcL98Ln/RiObSBdgTx84Y+fCXwWKN - Uqr5YxOT2/MawvRzedBE4fGw+D8sQ+tNcuo8lk/OZ+B+Rb98n+Jjvhf+9hOi/KFAenp7frxSardw - ueYFEc/Ct2FvmD9gqQkeDnf07on7ZNLBO8YJ4R8H31gn3EbAfOs6EQJx761ZFnGIPe7HAH78EqxJ - 72ZwKumN2rfi5bE93UFg7W8DPdwsxxBv4RKidH7c6eX1MptxkZ8VTGoiYasIG4+13amDw3H3ohof - j/m8yLcKnrr5E4hv6ezN3dfmUIpODQ4LoY/FmGkj8neWTPEFYo+l+ZoiL1Znwu5pEdPD52WhKZoF - fD56ORAmMKxgNxCXatW5Brxq8wH0izik+mFSc6l3lgAp/l2gbr42OXVmfYX61T7T5Gj+GMGzUsOx - 1Xrql+LR+43Sd4bOZfcle13X2XIIVh2Z63yikX0R2PL14ghOB70nYKdzoDeU64x06TXiREpHtr7p - u0ZaffvRE85fMQ+ltUU/wx9ocFAom1xbk5G0l3n6t/9Tfnrr6FsaX4r9i2YItSvL+y7kw0Ddtycg - jKnMwTnRNHwtXcmYn/zLR8v+ZNLTcL0NfC3OGcpx4tBbRM8xbz7vPuQTPcWppZ+89X59QDj9OgVn - 9FazybMuFpp/5gNb8s5qlvn3dtE+BFUwq9YHrKWm8WgWdC0AA68PbJeKOoLkEGBz6b1BCFLRBNej - otBj94TxuoZB/3c+A4XnFmMeLm6iBDLwt/i2jbXd7RKo3qKKeoN6yQVqrVeAy1dBzpM8M+ZGQg+m - 9l1SfOwsIJz9KkLaUmvY9ZsMzCr/ucK9uUPB5yhdjXX5aBHy5YBRW2SZx1a5kCGXeTdSI2X2Zgbj - GtrjeY/t4vPOCdQ/GVqu9wLf4xoN1N67Fjz+9g96kucBiMU57+FOxFUAkvEUL6Mn9Gh9WS4+NWrF - Jm89BgD8FA/fU3wD6zLlK7y+hwMO3p7uUUvXHlAOuDM9iPwh5x3pJsOY7UbqGvfrMMbiyqHS3R3w - 4TtSwFxvsBV60i/Y1e1dTu59u0LPTXR8VrSpYfowZmDL71QrHgVj7/CVgLuLCBGhzHJa2tsYpjvH - gr/4YzxMFXQgUY2NzHeGz/Z7YRvye3qTSMuEm2lckVetIOAkXTVW/ni8ggHMDj1Df2+w17pf4d5K - XZqsx8uw0OEOoRQZFPvJ5Qmo5eQcvJ1ql+pT4sRMupoFehk/l1pqzoY1ur0ypCSjTZ31emDSNHe6 - Ul7lDpd8lQN+y/eAF+6MGnvlwBg60Uq5TSbCt2OmMWGU6AwlXrjhcMoXg1zu8geyXXoke1/p8uXZ - 6iqcNCZgXQG3fOpP9QONrdFTlRMOngSvHx7ok3qloRHd85EPXxlCHOZxEBl+Ix4O7wTqpcCR70mb - PVYZRgd1phRbVzKYz470lGF909/Uf0U/QMx6faDG6wVs9oEN+FtSV4j4RU198OSatT10PiqoUWOL - m47bhEAmK7K6Khg/m9KjIWAdlF7+kQZRdR0kjR9GCB9VTi3LSYCQpmcbOvKC8fGYaUCQQy6FS1Xd - cLycBracrV0B5YN4w8ZTcYGkPD8ueml8jYPLk8ZTMT95MLM3j/OPpcX8ONcdYiGeCf+oRWP1vLlC - S33dUYO74W0KyhhBFj/ewfyK+Jz6jniFXI52OAxx0wjeevTRa00v+GHv7WZOuS8PNfhoqFOiuzdd - yqKA98/+jIvL5+bx/DPIYKPXgEate8iXS/uBSNPnrcu8dsqF/dsP4AOaAw2tc2SIG/5CoU6u9BkY - ei52WFPgtR9rehXLG+Dz94PALd/Rcr3M8dTvi1Z5A+tO9ZfnN/OsmFfkHQ8n7Ecuny/xJ14hMCSC - tc6lw5oshQI1lQtw9NlPgF2de4pqJ8xo2J5PxmqPhQ2fjigSMjApnkaUfuAkfEpsdMYXzKwCAewc - 6GJVGDRvTdlowjfvJzSd/NH4vWhao1B3Jpr9ftpA+k5IkZntj/8+X/ssTdGrXE0ChDxk897Zh4r4 - WwOsRRJpphuUZ1ReLJU6+Xoalvp+keE7PiXB3reAsXg9T+CjjwyMP7snWLkTVGBqcgY1qQ3ZsHW8 - h/eV56nfnfVGfPppAk9itVDjqfTgd0KXEYaxO5FH8ei877q4KZRuRx/rWz7s/ME14TtwRKyzJz+s - 2enWwcC+3MnYtHa+lOeXCh+L6wQj3tlsOomeD17FTcKn+oea5ZqUNqzFd0r90+TG4oVLg3/7l2jX - buvRYlvob38tqgneUu36BO6mesXuAbxjepn2KvqgbQ5hU6qDADxgwrNwBOSDYxmswHsTEIzoh08H - JfPWa3dp/+IHa9C/e780vdswiB4JdoED88laWh4+WdXii4v8fHkn0QfAL3aw4QdyvgqelyhPyeED - 9JhnsJ5GsYbf6HCg9v5iA4Ef4BVCcgz+w9vpW3Jw4+tk3wmPZsR8M4MfdU//zu+48VuwllJCD0/W - GMtLbFQgTvmD4jI9MzHMJAVmlbNSLyzKnA3pNQDeTxGCDW/B8od37XwfKTYPi7F+Ui1ASWyb+Khd - ypjsTOEDt3xD1Ua9NOwy7XVlw0caPfwYrIlMU6DNR56eDurHYBfBqFDsnjnSHF+cx5IoHKGv3kjw - wGYMFjBHI/jjv0f9wzfsF80Vqvl5JgrlfbZ8o/cKDa3/Bi+LnAEj1vMDfFodqEOUxhur4adAp6Er - dtTFG3j3yT7wl4Y2Pl/0zFtv4RKh0/u1/MXjwEo74ODTGx5YFRLE1vHJWfDcf940kPTKW6bKKOCT - 1S0hMwLD9BIHFfAB3KZy8PtmObl3E8RS8KIHcKbxDIosgnzAKVSHv5TN56EtwCcVW6w9Gi3nvYe1 - wjKdwoBZbuWxaPjxgB0b/R8eCP2pL0CjV4B6xt2PxeV+ghCGF5OqZ0ca2mx787zhM5luSeBNz9ZV - 4XpF+I+fxn/rC9ST9/6PPzacHe7Pr2LATmkcjCl9Nj10TbJiz27mZl3uBw6iUbzj4Ix38aReehtu - fIoa8/xiq0VsDkan9ERTS5+MpY68DMLwZmJXzhhY4ukTQXdweqpf58VbPl2XQkm2/ECY+lc+G7RR - 4SG6qf/4ORG4IwcayfOC/nTrPKa3dwW+np8xkLd8RL4fEsD018Y0U8YoZ+ms+srJdK/U17VbM0un - 4wpzRXySTd801H3OENKmDPDNi4NBQlktwsPvdAiE7PBiZJniGQl5EdKMg3q+5gKLhPVlujhiz6SZ - fyQutjeXd3rmYz/e8IBDrhC+sUGC2FshyEU4BNKH2oNWNYvm1yK4Lm1HhDkSGRU1sQMbH6V/+Wq5 - vsICMr18U5dN92GuFEuBgxdcqXl8MTbAHnZgFvlfMH58BEhxzjvoP44ykbyYNHNyn0TFMd1dINzJ - Y1g64GQAjfz9Hx6t9lvrwNWhNd3wlxEy+C0o3HsUwGvW5st8eSaKimhKhjZVPT71Bh/u1k8YCK2T - Gf/2u5r8M9bOHylehB7X0NkNSbBEWTv8Ihc8oDS6P2qSIQLLOT+EsOevZ2zslTfoVP6TQOg8OGzv - DNfbzl8LdWEysa8djWEu53cAwkNWU5XTbux9Pbk9FIBhUG8/VIzZe91Ce9fI/jt/rpl20HVmTB8c - 8MGqQ6+FABCGzQ6dG1oXOxfdB46Q5dFosSARr1JSkAGM4a81VrcpxD1FrY1j9uzj9f1Sa7Q7DFPw - izpnkK7tfoRIeB1xOboHQ5SU5YEU7RkHyIjMQWwuqwrdb51hTXnchrX6zj3EdasQFMtDvuzfZvDn - hwTyIXgC9qzSGYz3OvnT//GfHoBGdkmw3eqd8XPGX60I2uVKb8A9NstcZx0M7skdG+oBDK0ohYFS - xYcbtioHg8XPahntpmqlR2+WmxlXJfePfz11/t5MwXufguTKErrtVz4Lx9r8t95n6N+NZZ1+LjT7 - Uvk7X0Z/ez5CCNZ2jx0Limy8HWnw56dQRxmL4Y+PI6QqEj1yThWPwVnmoCMzjDc88fhPsLOhsACH - iEdJNGYknlb49H4PfIx9kBMaVxHc9DIZI5ePmVm/LfT6FCu2vZnEzFaLHjhIHMkM7nW84l+nKqW/ - TMHeeo5s0ycdfKFEotujpHi9N1mImvzUYSuKlmb6OZ8HZIcxo7fr7pXP1L36IG9ghs/0Exl8RLsC - Wvm3wkZeVmzmn1YGP3T80YTC3tv8nxBu+YXMnPA2ulbwPqC+qW/sH9QwlppDxkNtm1WvkYvCaMLp - PHg+5JgG+9Ow6f9bBU3dz6hxNHlvESWXB/Nb+GH/ES8GlfooAifTvlIvZGojeDu3gso+SXH4ipJc - iD/5ChE2A5pbAjVGgSUBOB9nhM0zxDnD/qGCpA8m7Px8jUmlbXEwft7yjb+9DJZwLg9rJ8qw9tmn - 3rpqvw7+9kODjxIxAdubBxFC7/zBR+Wa5cswlyHwhqkkWy98o/vka4G2fEJVORab2bf6BxCAZtDk - 9HxvNzbjbYqMUAZi+9mz+bkNWvtc3pSsdWEwqbrdCzgvzKfex3rFRDceNjjy+h3rnvnI//Qs+tuP - TT/nG79yFVdXXHwrv1dG9smkgj359Vj9ls9m7V+1jC6LKtBDyvfD+twVHOxWPGCr/ewBs5O6QMWQ - RdT59Mz4eTu9guERu9jj3glg3UITSOKkw0V3rpu5XnALfBSFVN/8jPkeIQKFZe/QSDiJ3tJ9wEfZ - /CycTzvizQ//9IF/8WVehMKYi+KWwWv47Sj+7La501ktoo1PYos9nsY8a1cZ3R9+g9MxfYAllKMM - Cc9DhfXqtsvnorYD6NP6EOwv3zoXVPsjAnyXfZyz8BAvPpkJimr98S9/rVWNeej+bjpZr/HXo4AB - qJgfvscBNhljzW8t4LdfVuqWiDDCd+kDfjn9iy1t7NlsRtsUOim2icBSfVgvXBig8+VlB11yFeLx - z0/5+/7R5n8KbXlW0JVcVnoIj3MzFO/E/OdPHTa8WsN4ykAW5V+sers4luIL9aF9kDTstUJvbOvX - wlHv8eaXqs3K+7INk/Mk0XDOfmzzBzn4MdiRrE9VM/jgPHPoHAw6Dubq3IzotYMQyoFDFv38ZX/r - B0X3K1L/8pEMIu/NHtSW8Q7mOXPAW+QuV5RqNMB6ILXxdGf7AhjTx6FeJskDazg1/KfP7UFTG7H6 - zh0SDI8LYCwLw/R9viz0x8e86KUxOm83uKhyianqhC4QrGXk/+Jt68JvedOfXiEviwVS9cHN+OWm - CJYpDal6F5dhHcxyhfGcFNR6S4u3KmbuQ3lXmcH3YDc5cefQhY97bFB185sIWW8WyC5dQa+qjJrB - 6eYQJvsPxG68Q9sNrO8DvvgAYUssb2ze1gs2Xidgw/q63tgKXgs9ey/gYNM/7FKhUZGci0bVltwM - CVmlruD2XlPtomfGQtfxAS+KTbFtLgJY38nJ/9NbZN5F2FiE/ljBHb1k/37/OrsVRIFktoS+uhcT - VmjZsCNtRtPb3jN+ydWB4LFyCza3/LkelucDPuVWoxkL6UD/fs9Hvt/wfe7MZjKMoQKGfHyS/aeP - PcYquQVXsTvge1lRbxHyvoLVNfGxGfdz0w0X/Qr2i1zRcFuvcb1XBFZu9sMW1S4eOfQ+hEGtHfHx - F/+GbtPn4MASlaoHvjNm72HN0DmFe7LPzDH/AU4aIW9bAv3jn6tWNRHoj3dCVkDNgd1GM4A/LTOw - cTvNjEmyFIJoe4HkO2WWT5eWQPD2LwF2nMe7WUI5SyFI9x7hyMUyJgcENdj8kmAvMszEtXQgeNnk - S5TND+MTwXIhFBmkp7Oj//mpIaz3/IlmX1AZi94ZNrgUaUsNKb0Z0sGz139617l89Xi5lMUDbP4k - 1kqaGMtaTTzo394+kFzRbMQ4qM09HMMPdejt5P3Te3/1mUAr34xVhtcre1fLsFo3w7Cd/wBt+oZc - HvUA2KIVISyzl4z1ZzkYC8H7DraGSWhw/ujNyuelDd6BJ+JjXnj5WivnHm5+aFBt/srmv9TQ/Ig9 - 1ZL3bMwl6mo0sy9PTXg4euN5FSEs24791VuaseZcGT5euwXry8LyQb89WnBz48vGH64Ge4e/K7x0 - yZHG97TIWfkLTbTpDXoMVRuQq5AqsFT1Jphm4wzW23huQeIYDtXXAMVbfHLwLBzAX3w0jBIWgGNn - iji46O94/av/pG0t/tOv8x9/eRyLHJfrJYzZn1+61YOomd56tghJqsK9iRBBb8/Ph4evc1DNwIwP - 1XTLV9xI/l996p9eXl+PfQIfXy3AQXXjAeFqdwREtMO/9RwEUdJ5wCvPkKyb3pof37cCv6X2xaez - U7MZ+uoDXcltDeQ6sTb90IswU9sdPd0W2VtMdu/g9jnZ55dmWG/PRwT/4vWa1Vqz+C+Uwc1foObL - NNlChzMHHT254ae/Dt7aJ/QD65jNVGuUXbzy+cWFHflk2GvTytv8cBEcZ9ZSNx1vw8ByPEP87W44 - dbQ3W6w+SuBjNwFqKrd3w5pDxCOOCYdN396H5eSeTbjl1w1fr97qfUNR6c/Vj+qX5x4wwBgH/Xn/ - okH3NcG8XNpxv9y7M3U3P70DTTuDMucOhHmylrP8bG1TEuz8n/8w8aobgFyzV2weuZLN969R7zc/ - kur9qjTroTc54GePjqrBS/dWueX4P78ea/r5CNbCdVxQJftdIO8vHWOn9Q6Bkn9O5NyoQz4nn5cN - fxgJWB25r7c+45pHYa+upFKtD1tGia7gj2+4V7M21uAS+bCPb2fy5kLbWzPr5EKu3V6MHrBnkL/9 - Sct+DuTIcwDfVGiFQVQkwWtZUMOeRJihd0IRPU9yyP78MVCvnB10ajKATgj4FulE5KjpGnVD+izN - 4EDFDz0cxoux6W0I7/xQbBMEBtYln5/9Dx/UOXOYtDsPNbzKxYTV9J3ly+YXQClIHwHEu44tX1Nd - ke+TMvhdvno+b/n3T89grVGHeLbKMd168ABsk9KIpQos5l/9h6pe7cQsrusKdVEvB12orMNSBThV - JDAV2O5PLF/2+0yFTIxO1H1kKZv8F0qhAIUBx4frypZsNTtkvlWdxparGuu7y1WI8XIm8nv+xaNM - Qhlt9QB8OKdfNl+cRId+2qvY/6qesZTnn77f8IZi4fTK1+F8tqBB04Ws/DwaonmMXJSf9pDiik8a - fqc4859/REB5P8asLiQbCmbr4XjzL2g0/ERwpr1Ora2e2L7bZUb1pPR4+/thVpj4gdp84APBqvR8 - xoCLYHcjF+ps9TPWO3sfhp3vYrzVU6d24GSQ5qKNcYTEnDo5hPDbs5U6n5NjCJE4taDVIgu7IrZz - odrVCThNohH84defX/jHH8lfvXFVkNrByLJAwB9Nhy1yuRDkmuNKo2v8NehYRD7kHVDijf8M64ZH - EJ+4XyDeGhuw+c0UJC/XieoKkGL6jMsHNB3zic2uOg78LUcq/KtfnFpSx2MLHybYiaeKapt/Nj6q - PP3/3CgA//tGwZt+ruTeH5Z8DFLBR+DeJFgTWO3Npdgm4KNpP2wMt1s838JjDY/v/SWAy/djjAMX - iUhiMk+LsJyacXDyAL6Co059KRDitXT6Ah7uWhPwN72LV99dE+SfpE+QBPYzZy4cRiX/vmSstpEU - T5NtySCsjyq2gl0QS9K9TSEZZg3HI1W8tTouPoxycqKBgTiwhomTwtxvmmBhP85j7z2L0IW3WLBs - 33+5PYMR3HZeRNXP8GW/523RUWtPQYBevuSx+89K4am7f7Gp3rt4MfbVAzlsUojI7BSsdv60YM8n - GGvqDuRLNS09snbygB/B47ZVJO4KSMxdHoiZ/Mv5uuJTuBt2ObZp/BnYKKYr7DQYB1yyOUYawhx8 - GA+Jet5dMhgSVAW9focb1vaPS0yF6BnBl5u6NBW5PVst99chRTZ1+uwzZZiVwlVh/AkD6tVEbpjU - tgRxYdFh9Qn05jeDSwQ1djewcabvXJJcWUHL7aZSbF9471e3IIK2+xiJB4+cwQCkEeRf+p26Hv4B - tnCYB80rX4P5iV+52F9MF2FoXbFLRuZtXWe2Cpr0xbY1HQfyjfUA6g2oqVktu4H696VCT6esaH79 - hGz+RdsbWnKi1H/2X48//WyC4OsSYouvwLAmZVigMvRj+mj9X7O+XpMKfjfVwerVGprl+G0I9Ml4 - wOktaoBUFIkIRc1qibytz3T8DgRqucvIjq7IW8NJCJBk3myqCUz3JJaXPXjutqkAV+8erwjqCfxE - PKB5stMaETM1RTX7pfSqPq4ee5usg0qgVvjOFDuXAuejoucXK9QR90o+EzXh4WG+qURuG60Rbk+L - oLDR2Na1/WCIkeAmsAA9oOp7Zw1sDvIUrlpWY72z5XzY1hvozb7Gl5+TDPxvPKTwQtqOht/PBYir - WK7gEVUmfRaDMSyzdemR0aGUWu+7BvhSa0eIY/5Is9K3GfkgrVJKxI1kX6Ktq7NG+G2yYEe1c3tr - WHBYRbSdX2o/SB8zGFEIaFvPf/GWs8qTTaQd+h9+HuVdvAqmbKErsRMaZk1l8GUhV6gIhITIX0n1 - xnfNJXBXz3dq8r5msDmIs3/xpf+EYyMcz4MFDlb8oCYXmoBPUbfCIrk8cfZLwmbWSVFAr7wcceA9 - 37nwTjUCb43v0auJnXh2hTWCduC0ODvVSkNoVqkIMrfGj2JuDBYknyvyeT+kpyl5sFlLYxFNHMyo - Jxcu4LksnNHx5ts4ejtWLsgn8IBlV9Q0tmpvkLbzDjx7mameNzmgB6MK4Pd14PGBv5J4neyshUI2 - KTh2d6qxnHmugwotV2pV8JSLdzXPwILNmfrX+eHNPvim8HqQD9QCV3UQ9ilb0c4cdgReHALYR1ML - SKRp68J9atjciEiHW/xT83Racnaiq42cdHoT7teO3jqhKICZZNwJZx23uqepfbahd99g4a0ILIXz - WCHacTbZZa/nwD/rdwdsZecFcMu3y26XfhB3KGKcCrd+YN8ZKvDaviNcrDXvretwecBjePewahVl - PILV7aFI2RyAz3MAy6LXBQoX+0ST571gC3xvNzJy4UAPK+cNYi4lHGh6jsdYexOw2P5TAdv+4VB1 - fLY0Di1gDo+Yumv5iedXQCCgiq4QOe0/DbvjrIWDer5hCxIj5/l8uSIjACJ2ukftzR0MFbQX1jNN - ut03Fl/jdIV+nXHkEBg7tna6SGB5Kk7US2I1FvrxbCH8S840Ad4KiEK3LoaeusNXN568hTfHDGY+ - kqiaNRvDKewWreGRkuYds+ZHhMpF9HSKg8/ychrhnTqjAjv7hJOdlHjiw3xGsNuNIzaPqeJ18CW5 - cEwPEc5/D8TGyA4LRGp/h+/ot2t+pSjrqILnmYij0OVroV+u8Bx9n9hTaB4vvDCLKI1JT4Pb9+SJ - i/W7wnGXkS2/ZDmbOxzsE85ysK1dDobkqFcIyBtI9Ph1H/Fi8mUIUznU6J3Ub8CiveYjx8A5dfmX - m8+BqxHkP3sZm+8g8UTebkJU3A5twDM6xswP9j4yn4mGb68VgHXXGT38tN0JOyaWhjGWfQWu7rcN - PqWU53yrCSl014RR9br6QHB/Uw/eHbtjR5cSwGe/2gQXVcQ4btSazcATK9iIAAbC66HlosiPNZQv - o0WxqzfxPEuPDNyabYoHc47D99bcQ/gKJZuEPhLYzPqRh+7h5dNjTm5s+Ry5AH4v7oj1/mUDOg7h - A2ntRcQ5PD4MwZ/XGe0fBY+N79h6JO9+BZQneKElWbV8MR5Frxh0vuBSq16elL86HUUiqTd8vYO5 - KR0fxevpSoMkDgYhv/cRNGvrSHN+uDXk0oUz/MMP3/Ax4K1OVuHb/OjUynzbExhpCHqXi0mfvvWN - l1NFI9g/V4nsSf1ms53srxCtY0Dv6fvrkbf55eDlGPtYfcWHfHQxccHzPM34WX7OAxF3I49OYqXR - 9Kxo8XY/TP7jD/hELNWYzqFe/9u/qFmMQbCq6wfyCs6xEeri5qBO6h6cPj69RFUSL6UyBOgrvjl6 - TIwWrOtQFlD4ajp9nBonFh0kq6jmvBNprXI0Vpg7mdIPdBcwTexjtj3CRvS5SzGO3MGbpz3ugBJX - Aza84RUzTTlb6FejM1azpvIWWQc2mLybSF3blQ1q3TsRWjtloEb1XeMVKGqKWoBWrK06YUuaxxWU - 4vRCNd+/GKP5vppgy6c4x+IwLNvjavCsVoQxD2KPfm+OBYQDnumhuAzN6KpKJ6uppAfjRQi9JWdX - c6+a5wHrBeAaptyADV/x9xQs4tOIpZhxOpSudvYPX0kq5DqyT/5C9Y+Z5NJ7z0K0c2sHe8JNZiTo - bBNtncboo+Y/gE2fQwhvAhdSFSWdN8GZS6CXvXXsGqzJFzonEHAeCAOp8samH8WTCeVqzLcbLr+G - UAOnwNNSFWdlfhlWuXqLMG4qB2dfOLGx4pkF3dy4Eu5xi/IlltMP3JVREIBTCbY2aXkGjmtQUtMq - fUNs0k+/zSnNgx1dS299RfsKVh47Y//iBGym17JQbvptpG6kIG+LzxB+TteZFq+z2Cw6ynuY+6+G - ukRdwPxywQx9ZTiRfpheXnf7dq7y8hIUfMed0LBaXwhSlS7BxjHw2Wr+ql7BZ0unh2OsDDRIPoki - S84fnxK9cZtCBZXfrqNHfT16zL0+WwjeYkFWQddy4fgdRhgZB46Ag/UZFnp9uai8/kIalEWbr9rh - MKOGncyA/ebO6H+858L6S8INv1DOSJ2Z4MhzNYHae+uSuxQujFd8xcbJMD1B948ByNo4wQ7/ccAs - SV8L/vGbZ21Y3qSYggXpXMrYVio1lsbQ7OHu+jzTYFHXhpow18Hehj0OBqloljbnFRCcqys+RkNt - dK/gA0Gx9YjZ+F6zFG3dypXcytvUjbcxmuoPgo2v4CigERBn0HGwHL1se9noAtZNGgHD98OoE80U - rIVeJqCXjWMgfJczE2LozQA1Pw2733AcSGoGLRSBe8DHabiy0fUUCIXfcqSBmAreZGavAhrcs/7H - t9dIdUfF3X0mbApszqfD1vU9nzIdH2SmM/F9VkOoRtkBe5LZGWtevmyE7XIlM4DveNHtQoeHSzLQ - i4BQM47PXISvusuwO883b83HoleiBIQBk547j9XSPoGFnd228yx47HWVU/hb9Qf1x8ecL6lfqVCv - /B7rSet6PeVzEUpqHwa7i4MMVn4v7l+8BD0ZY29BlqQrKz9Yf/FrTE84uVC+EIuIKDOHBU2GDfhv - ecXl++cNUrhAC8LXLSSAH6SBnA1BRtA1GEHjPWREHj42vA/1G6v7hmfr6bL28HpQDvRMzqAZ7OeF - QyfF32M/VWpvmUEZwdvOiag1lO9heYSDAjZ8D3YWOseTixceWjjbesyFo7f9Ph0+5uiBzUzL8rnf - 3sADVzxSQ3N/3m9Ms1QxDTQFSmowj3Ke9oFvwXpRY8u3M6++K/iX74y5OuXi/O6usDT2HtVWEhor - /eUVEJqrSw8f0QDj5ZKNsCT7J9a38zTLsz1CPSNPHPhSZ3zF7ibDlyL/SGu/QoOQx/amK91pOPi1 - viFt/B1GDSyDeeOD6/MzB2jJDZmeNrwc5dN3hk8fv7GbRDuwqtW5hfSpv//xRWYe4xQRXj3jw4b3 - axZ14v5RDHsi3fNjvq7a1YXw2SDq7Dk/nrOt9d7eGym9tZ3mrW+TQni3ULD5B6eGHYzKR3//z35N - Rd5v/AsVH3uhKgekmIlGs0K+pWeMiUSN6fYMCLQRDbcXAQbjpz5xlbEXblTtOHlY4JtTAVNhgMv+ - MjK2KkkPX94VYfXI78Byac8KnIQ8Jf/FrzXKii4X2xxuMQR//AH68W0JuOAh5bQ8vZJ/+fvJmTZb - xfeio6w9J9i3UGMwmb5VWAk8o5lQpDErpK6Dzr41sXnarwNdD6UK/vhk4kdGLl2/ZrE1H7pR4/ko - 4n/8HpxanxaDdWpGeVYJutTxi+oCqQeWJJIK3N5scAwgG8ioHR4QDMkn2DtfxaCePFdg+/8Yf/Ou - Wa40ChD/Uu9/+cH4lz/ucXQNhGOcNfP55nEQ36od1ox0AGx/mEYgF45BS8idjPWw+0XwbMgR9hGd - wIwHt4MiJyJ6ug6PZk0OkoiiyPECrn8qxl+8K+0UvfExjM7N8jUNHV6Jm+C//Z+kUSngtf1GQb7l - GxI6jolQni140ws5OR4eD7BSG9D8603e7JhvHvrLwwu4puqMuW6/LYx/Owtv58nY/B0CLsVypbmh - 18O/+JGGrqU4ez2bJQjsD1RRdsdBLO7ZgqlWKYeeF+g57/KcdbWTwm4t1mAxUo+x8lvaMIBVj41G - 1YHgu/8HAAD//6RdydaqPLO+IAbSSYohnYh0QUDEGSgiKCJdgFz9Wbz7G/6zM3yXW3AnlXqaSipN - h1yje2Mr3kfR+oirFfoTf5v4No0oL1mUQSrNdXy4igkSVJKucDa7K3HVT1kP/k5NZCl+FNi9NXW0 - cJ8xhgELGlYQHKK5ddwCUJCE2MQ9rhcDvywgISmw7ndRPuOLraDf42liO2dNh3s8rynCo3rCNvvq - 8qV60xDeWniehLHn6aRIXgpDnGakIC2hI8nuCUz2viJqdaJ0TVIvgINn5hObJF99iR/GCmMEJlHE - 1qRs0kcxvFSKiFVnfb0oZmbAvgyOWOvvPFqkic1kcg9KfFBxgmaPPWl/+hin8vR0epzTO5TN0mD7 - WCT9+Pf9yuQWYvqz2rOysFtR8fLO+I+f8zLYMWz4RIxXXdK5LNa7bJbC09+9rgadl7YToZGsKw62 - 9T99OjBACdMDiUp+pw+2snaoztGXHB4g0fXSpjMSezfA6ZY/lqJ5l+j0LCustMShS1Aw2h9+EHvz - I8aXLiWwrWfi/AoZEebNpfJJDgCbX2Vxxj/8ozwj+JU4sv2klLcGGlX/+VS6GDl3+LzWP/2CXVfZ - 6y05/hgI9SODdf2xr//8LwhxfpgEVHpbTwk+RoMv4Wm5HwLns66FhMZfERDrNOx7YnVFgPjs3GCD - 12R98W+WCLdFm4n9Ejt9ejaiD7Ybn/Dfeq45KN7QoIONQ481kHAGyOBPr2/6CZHZj1J580eJdWUO - uqDlmYH8Yg6w8Vi9mivDkYX5ZBxxoZAymu9n0YUxy3ViC1yLxvspmf/4AUmSnKVzGAXrP/3gWXCs - hy3fyl/cvbDF6z1tde71lsOXm07IOoj1jFathcSLOIJZ5aMvKu+XKNsvBfb4B9tPZfKeZLGccqyf - woDOtiJ1SArWhniyt0fDVY0V+aK/Y6ItZ1/nojENAEXGFatltfVQS1PmL/79ub+e9LW7uBa62PoZ - u7kX9sJ0Pc/QYt+bhJiY+qjyZoVey/U7CUG41NPmt4F4d3SCaR3km9+c/fmZPkt1xxE2fwzE9y3y - 5/CSRnP+LkT01a8Z0Y67sV+Uc5j98SFSbPmps8ehBK24XbHBgKkv+5U0oCr25vBHjb6weCtpq9HB - 5/vHp974jQLGm3Xxxb3P/RwVZ0MOmPSInRGfdY5z9iXcmLAjlnr56NNivhIQ08L55y/y3kXqIP35 - LHaGuHaGNjFmdFPK8+Y/+WhEWE7Bie0DMXjtobNdm7loUVmeBM4ncujcHn20+c0+Lb9rPlQlpNKm - 74i1EzU0bnrhH7+6SNmqD1FxNmFwbdvn2TKv26HGGlhCEOHI9hg0n/afO/hfpSSu3fLRRK/Fumf8 - /kIOQueixTSrFWpt+vhLNo45df3FRQfPyPHp9M2cDa81STs7D6IO3RAtF8Yb4D58p+n9MId8Ovh3 - FjKN14jzOv5yCk8lRP/4WsF8EKnvnxIRD0f4pLzfEVWoA2jzz7G2+YG0J84/vod9bqB043cByKOv - //GffDCcLgQfE92/8fss+vNH/34v0crhjLhIDBrYHVeDnPwd1FS87N0//4tcNjyl8o0zUYoU04fY - V6iw8Ulwfh2e+AOf9oPNSSHc62zwadfz+iKVlgis+1SnBTnveg1vfCXdBUafGHrTHc61p+7PPyZ+ - vnU1l3dyiaK6OvlhOSx0/VonCYIbP0/iWVJzFn3tWEyZgSHWu37V8948ZWhu+Ne/+V+PZRUg8ZQx - 2Nr+Pc9afbDfxtdvUFL2f/iHlGe0I+6M3pTyrOjL0xK65KhsJ4zW+jpApq8c9ud4iYZ8Vw3Qv9nt - 3nnh0i+vR2MhxnJT7OT6Jxr/8GnDi7/3O7P2LEG20+j87+9Nr1YQPF4twR9NdNbBPcxoHNwLuQ/F - HNH8VSqw+bU+rwlmPWtx28LQCdeJPaaZPl6DyJXe6zqTU/LSHcE/SCx4Jlxwer/c6BLrKQO/oYyI - v9UX5jUeXEROZb75F2q0Km93BUVObzhKn11Pokxz5S9uX+Tovoqo/+Nbf379QchLZ/3t9DskaWf7 - 701PrZbaB2jzP4jSkh4tf/qquIQn4nmtRXnjiCcYTpu+ukikJzHDJNCmeeDLfs2jtTODVqbmPZ1+ - 1P86KyqggVNXCvhss2u0SHuY/vQAUQnT0eEXnhuYIe7xxTE8tIT2LoEi8YEY72qly++VrujPr8b3 - vq57tnkAkuMvS/BWH9nqdyUM4/eOMascdO6zcCUoz/OO2DRlo+U3G4HcHnqHeCeHjcb6wIbQy4ZM - 0h966wuf7HlQ03QitldJ/XIOtBJ2j8DH+lGadOqfJuXP3yPG2Lf1glRVgu6hrMSSyjJf9uu3QdxX - 1/wFOUZNcY4K2OqNPqe3x4i3x6FC/n79EPe5p3Sewy6AUbNZckwSLh//1uv1MSj4/FAKhwo7sYLj - MIREW2Qc8XStGiTvwCK2xGZoseq5gqrt9Y3PVWh1bx8WWMWRsJ3c9VqQOUsCdHvFOP0eCvqPX278 - Y9ofoEFbH89Qts9sjLf6C102/xOkJpix9V79nEtOpgmbnsP2OfIo/0uFBJ3CoCXRo1WijW9WqAgr - A9vMx3emrf4k29+kIJrRE4eyVbVC8cJn4knST58VLy/h3B5/0x/f/eMDkIDwwsZVTiL2w2j2X/7B - 2BuTfpIXW4FAbV5EUU4DpW2lZvJ7DD7EV0iZj7axryDJM4yxKS/RHz8CRY9FbMrZu163ehEgxujJ - 85BUOvnpWipfer7GWIjrnlbmW4RPldz9mUFCvpbHvQvpsB/IkbecqF7s0pUvCotxGtwZShnn9P6H - p8a283D9dKwhf+782V8XGefz5pf84fV2y7RRsyw32uB5eYhxHpX0n77Y+A3xHq8aDe0SvKEdmO/U - 2+OF8idru/VLuw7TIPiXSAhSK/jzz6Z18/vGSEzfqGxog72Uq/rPvmYNlCJmv9X/9tHreK4NeYsv - bBr4l693ut2CtyB1qoQ305MND7dbty2ijLnnTDWzzmiyUeUzF//er95FamFaAhd7vH9E6/l5GoD7 - 0SPZ/Gd98/dZ2PDMF7Mzh2YdXwqUc13o77LXrp8zPwn/9BfGu7sT0aP0m//8Yj/Z+PHwOWkV4kQ2 - JjElbt4/o+QOmGFznOdMFK3QnIZ/9ZujxTs6YRJVksWRuRDjr55u+m31x2fxgXhiTr+uMsOznGVi - bfND9CbM4Em3EyxCYDj/6jH/jx0F8L93FLTFoGITn5qaus9jB08pcMkxef6i9ZR7Jqj7QCXhrfno - K7pdNID2TbczuHNNA+XGyHdheJNcuhmIS+jNhuPWYvM2X3b6WjaVArYnU6ydk7heXr9zA5/A3WP7 - +VNz/qNWgcw4wdUXVcFxWC0+rvsuFht82C+Xeu7Z1x2ST8Zit/AnZ37VqilD21By3Ec2mte910Ja - F9n00u1zzo1YMcGfb+VUntldPl6vex+BFkbE+oFByQgGI6ffco+xfRrQyBjlDKZXOsQJmj5aX45t - wjyZF58d7aweY5vT4DC8TsTWc4Lqy9E1wdKn2c92vuSQ01A3ULLHcRLt3MlZV1Fi2fQXG8emdsrZ - kvlpkGAjwhjRqV55LWUgZPuOGBd3X1PLchokMmNLTHwya44Wayh/dO1GkmPjOzQ8ZYrMf4MDSR8W - 61CDdzKon5fNkV/rmu7Pr0pmxjIluTTG/VQ9A0vK7VbBVla9HY7IX0Y2BxjILdb9aP1exATUz+Pp - vx/zns6SyyoyQ9k9scJdX5PF9yw4x7TBTh9FiC0OKyOfX8MJR/RS9tO5eN3l3BF32OyP335+X0YL - fdBbItqJbudLDp0Nta3EJNv/Qkd4tkwKOF9eJK/nPOe+xo2XwX/O2KBWh5bCde6gK9qBOB+V0vmw - XETw0P4xCVK81uu3N33ZENXj9r5jz9/jnyjx3/CAzWLrekK9aAYdZSaxRuwifhGqTq41JyIGO247 - IOYkBZ/YJYmP+uKMj3VJ5Ti/jSTe3j+eQQSo37eYpM6dOjMrn2Z0+zJ3X8g3BYyWWJGjaR7I5cDR - flk7JYSm13OikHuJOvbU8XJ0Gh1sMpyoz8t79wZmt97I8fs9UeocuFZ+pppD3ODG9avCFB2I0u+E - ozj99izXjCvcCjYnWfs697y6KrxcOrVDjPVYO8sphgaqjJundq5Y+ln4xJC6SWlIsRQRpa9z2EDe - ma9pfO6smjs/Ygk6wf4SxyK1M1fux5Qt3AYkPqmvLZ5lBcnajk68EjXRvE81RUaDR3CW3wLK3aNL - InMXriTmRStqnq+ABYcb9n/x2w/TGpUycyP8RN/1rl6kuijg1GQxOdH4qnOv3/ktF0/STJzJ5zlX - a3UnT/ERT58DF/UcgdKS8bbDwn5cXznr/4YQtvjD3rdSdc64BXeIXcbHaXHK0frT0ztYmRrg4rmu - aG5uv1BGp93k3xco6lU4xpJs3LiPPyspdnhNcOe/+Mba0XMd4ceFvPzD+WvblPLJhffUTnDfCRWx - tczSqRotibxP+R5rW35bUrj5yPFvCcY1N9Zk3u8UYJAsEK2wDzn7rV4x4kP/7UvC9Ux5W/rZqNiz - P+yF9uwsbbvngRFQSnwmNHqWlygLgcoeiAU3Waf3RslkPnrW/+JzeaLlLh/K78/fnYdPtArN1tMh - i+gk2Uybr/3AZrIxHJt/z5/dmbfhQRQTn8BqHWEUVE3ujoPpzxOxKJsZxipfwRZ8WVGPaC38Kw9v - XeBwyAqTswb4moB0eA4+Zx/ezvL+6p0cTesw9WIe98KlKS3ZmyaZ+MXSO6NVao18PXbcJGaV4SwD - 6QGk883DWniFfDxUQYX40H3j1LlHzvytfjGwqCiJMixiTyR0KBBreY+Jca529P71vxTyi65guy9/ - 9TBVp0Z+iR+C/+KVHuu+Av6gGOSmdpeIL7xAg9WDG8mcMNXp7VfYYLaiR+yQm+uZKVhbvt6HhESf - 0nImOdQtlJ6uV58676Rfh1ksoTtOJnHn71FnUSBacK9+OrZXc9/TrmB4CHeJQ/xJ1BERUpRK5nN2 - 8Tn63BAXiMBDNXXhf+v5d3jzUsQdPBxx35Ku68ts5cgtexzOX7memaixwRneIj4aierM83xoYGL8 - M8Z9ajrdqb9qcuMKe+Ir3B4tfbJ1NfOMlvzl1+UMM8hmxA748uvutGn42IfFK3lin+Syn5NRaWXh - uvtgrZk+/Wo1uQE2d07IQwIVCUfKFRCFgotVzGgOpxyDWBZ/qU0OuWfUMx7bVJay2sNaef/09P1M - Gii01xHb6FtF7wivFTze1w9Ro7PtCOFe2U48fs9/69thzWDV5MHUfz66CHovVKbxRvfLvcY5Zw31 - Kl+Phux1XYE1BQ0OzcYwlPNBUokyK69oZKMhRNVeDXE8Cmu/is75H/5MnFY5NY8/NJaPTO8TM1UT - uiYXtYMNL/z5zD7zWaQvkLf8jK+aUVJWjD0RZN7l8d15ffLVk6+WfHoEEUlHPKCJfuwZij3/w9Yn - fffcvf6GQO9CTtKeifOl/Fzu8vXDXnEwEQv95S8Y9wMm10J70S3/a8jb7WDavxwf8QG+xpBXuCTa - tWX7+SMdbNk+7WNy3UcdnWcUNTK/9IcJhmtSL6Y5N3K9fNhJLE4I0U9kzfByYMKXGBk9r0zGgEze - GHGsLGedlF5yl8ci8SYpS086C/ZkAAx9OO1GhtdnOyx9WQFRxnpoHvO/+QX2fCl8+gqEfr0o9C0f - 9cgj8Z2E+spNNi9LzX0iT2lt0JyL/CBbtXMmnhl9/8Uv8H38JsVjrqPR8aoJ7OF02eJBy1ctKUU5 - JT/B77rnC/Ub3qC/fHaYvp9oRGvbyK8+x760fU73zS5FW74l2nXrWl/tWA3WKBKJbTNWxP0ePQv7 - YNdhO81ESjhMY9m68zPxdXahM8MErmxcqIl9ngwOdbpLC2NLPILDcXTIdbdaEPueNzF5oTuLIYt3 - MHlzxMadrPp8scpWegYn298/RJMKSf82EAy/kGima0T8Tdjuah27lRhtI+Xj9/adZKymFbk9G7MX - Dll/hzttD/77av8oEUf1Lpte5RBztyo9Z2GxBXx6ldOuyR/9EiW6AkuxcNgctjMBToRc9LnF++lJ - oMmHY2cokKU9ED2wBL3z7igAnJUVDk/0rv9YPUxk/EYVdt8s4yx9cmbkXR1l2P5V+3zULnHyj18K - u0+HFs8MeAgt7UdM89NEq6wuPtiyfcWaVRj9Ol6CBtF23TpJ+gdnGXXJkKTde5r238eE6GMXZuiN - TldyXle95hijXEFSbN9H8jCgsRi+CZJtnsUn5ef1Sx3KzXZrlEyUrxtE3HmcePhyHDPVTmDS5eLv - LSlBJPb7tzLoC1rLBpaau5JrkSw9bVx+QNZxwZPQilW0ro44w4U5nn1hH3Voir6/EuI2DjC+RA9n - eR9JgzpqWj4ZmcQZasgNcM8mmqB+mvn0blNXej+XC1YY/tUTRIQCRnO7NWztFIfz8maC7zd7Yqvv - jH5RVTMECykhTn9gILa6IgONwzIQV3Kxvl73r06u5OOCnd/ZiJZr61hIugU+uVwZhL6qVcfAHzRj - quekrYkm3hJkUKbF9mx0OiUsNSC/qApRH1lYj4avFcBa+DHtK5evh+PHMkFvkg82KqXL56c0iHsh - QiZR2WOer4eTAVAP4YVgvkryJVw6BllfPE/M9+JE7G2nzPLN427YCduMLvNLccFCWoiNNV/pIJ0F - Zp+8ksv2/rXuOUwT+HrRnSiXWXHWxykX4SS2F2xZj1yn6Tt0Ed0d7/jwomy/nB93EUj6OU+96nY1 - nW+5BX/82T72ZUSzMQvh96vexCbsPlrv3GEF1563Lo224bCdskvgoJ4s7Luthv74EYifb+uXZA76 - RZ3ZEPQqMInW6o9o1p6XFYyO/5JDUbr9DBcwQQi7o99ydHTmzHBXyCQkk9N82TlbfrVgYdkbCbfv - U7/FE3g4uPvL/dah+Y9P/PHpUCaMs5QcyeCh8B9/US0VNeMleMt987FI6M9GPzNM6kK2rjufK1eX - rhu/kKefNZOz3Br68pcPGL67bfFU6tQ/1jxElPfJ4V5BRDiMElSXCYedQbw7840wrbSWfj7daCw4 - lBl+k/S3Xuus+/ZLyX1TydhJFvH6U0qH5b1r0NmMj8Q5zR0aevZVgNDC1xeTMKrJ6X5r4U9v6Z+y - ddbYPTUgWWd32jl2XNPt/ZAH8CJ4Z/L1ovZzjDpn/fho5d18tm6SCU0lPbDpOXy+cN81hiVpBZ9f - 5FZfjqgqwT8z6rS3fa6m3yGc0R/endaI5LSnhgQUKfL0Ps4/ZzqGBw3eeynF9uU4U7LhvZyy5DZl - 3+DmUNk6TWj9vPbYQsYnX2Z1sEEJKSK6riT5xwmbDrrqaBLluuK6zx5KIkvZyyNPkeX74cy3d2Dd - CMiGz/W4+QfS8zDbONjWN53KUZMd7cETrSouOlcM3xg0CWrs2qyXk7/fb7i/A97mt/4XH9GiTMRR - HA0JDzyk8MfPo/ezjDp8+WVgwflMVMxUzuIje5Wmj3H2azNi8r/xRtcPfyWq3BqO4HxuA+xH0SVZ - ydycpZn1AcaD6+Err2iUre47DbxpkH3EKNAT8v5ZCBldQMw3962XRnlM0nEdp7940RertBuQqgxj - W95XPR2OkSLfL0Xty8ZFqJfz2PDylq99duBtOmNZSuB2mPJJ7OShnyO8lqB+nk/seqbXrzz1V8R0 - g4g9QT719BoY1h9/wHaDzxH5DtkKm14jJqoCh5aye4clIwlxsfXQF/6cxGjKmWDbsbR3ZicvQ1DI - 9PBXs4ydPljwil43x8fGKKz1so0/0tKpwqf58tRX9sau8gP8Zmo1MaTL33zn0axi21R3dP24Ygjt - qSuxGgZatLyP3zd8dr8bUXvc63SaeZC35/lM4nV0vsPKw9MXbZIgv4zW/t7dwV5cAefjJ9ZprB8B - jEd7xNn2/PE59wXMk3EhQRErOTergwUP0TqSpLF3zpDRdYWi5b44/kRrNE+V+pav/YkjjjSy9fKN - 6xn++OzIMks/yVdswGF599ipCO1nYSfMcL1JPLY3v2fiw05EKekFvwxfQrStF/Evf2/7nM2cDXOr - gmY2ZWI/+rMzqM5xAlYxn8RtVj+ndRZ2AM9ixYdfB3SqY9sGws8Ue80n/fOHAG57nGOj/4T5AkNS - IaFfj9jeodChiaP48nO8/LB2eg75ejBUDW6L+cD+UlBKhYcQy1CSlXiDqfZLdNgbaNPbxON2//L3 - LG946Ytnpqb0SOUCNr8BWxz1dD6DZ4eMZrUmOR1KNMjEN9CWL/GfPuL/+NzQnjvs5C5yptv3tO7F - o33CITpN+uqwVwMsiM5+ZJx9SllH8KVP9xWn0Wl3+TrZWgMbn8Jq1duIRWqj/Msn4vZ+midMAJkf - AjZM8oq+arTtULvVms+kz16f1ezGSrP4uGDvXf/0Bcd3HlXhsBJ780+4kSUSstU1we4vLfINL30U - nRvPFz01zzvp3Wto49N/fCZfvKRboVBDCyvHPkGToRiiLDp+i53zlzpLO8oroNYJ/E97+eSjpTSl - 9FJUnziZE+VCnvAhOGaQ4udRGPolO9xi6XXWAn8SFaOer2Y2/PElohtMg+gfPr8cZvKXfRrV66Z3 - 4Po9Jv4uP3s5odeDC2eJP+GDe31HFOpXK/Ps/UMOjGo6Mx13HbqU0kr8+eHqa0u0WO7rpcV5ORoO - e1ge0l88EP+d0Gh6LqIiH/WzNyHoD3/5M4GEKdkNLwtdeKbDHcwr+s+/+nzf8oAmjQ984XX5oeXo - QAn02SJy3nrS/fkFaPOHpm3fczTDobJl4zx88S37FfqiuPcAUi/nJ572R8qFKstA+2U1crVbVZ/F - 2JPQFGgztuLN0f7Ce5L/9KD2Uw6I9tXK/MtX9r075awsxYZ8ErsLOYphrdPUYCzIrqk87WrO6+f3 - IfehVZcnVrb1OHpJtSKumnXi20nVz0GVpcA22Q7bLi7RnKxugzY/B2vzV+7fIv0x4KKHRKzafOer - 7oQSEn3FIo/Pe0bLnx/FsaqG9cEU9aV3HAYS6X4h+c3ue9pPCgN+Zu6IG6Vjvez3UoFo/r7jU3KZ - 8j5eOebP/5xQPaOI1t27gebBInJqp280o2C2pPO6szC+Mp98ddingeLEwCSWej3i9F+VgVKQnGx6 - LKJqKgcIlUqI3SfmEI1GSUF7QfPIEctiPWz/P1AOn3z6vEzo1/jslXCqG9ZHr63LnZpyIXqdlYA8 - sinICSK7Aj3c+YDv8/foCG6mD2i9mhmxNj+ebv6NdGjvHY7XY60PyUvqxIiyPrG7p4r4U//U0DY/ - 2LyQzW9RtRK0F19PC2fUlAalzCIMa01s9aZEv3/+JDUsnFck6ukB4Ri1vfjCSvdMo/HnnUUIPpcD - UTtfjwT93KfglH06zSdZ0Ofhl9/hbjxf2+d1Pu/0uwtJ86PYudl9PW34jphuEvFRMxTKXa2vKU1b - y1ifJ66zvuXGgN38lMjG35354g1vEBnSTt3mr9CjcSzAveH9BM7rEPGPrQKpW47+T3/wdaxZgJ46 - Jm4OI51DNKQgPPnGL6ku9gP18hmctrxh+8JalPvkXAd3a2uaeRTcekz03kKGMn7wicaCvtRa34Ga - m0+svL5WxC74N8GXExifM3mUL1apvaX5pLDEqm5uvn4zCBDYtzN2OMut52ba2VA/r6u/6pLh0NfC - 3+FU1CG2dimnL6WxvP/8HeLvoiFfgrYSUfeDI34i6tcr95gl2N/39r96DNc1vYTk0eT++bebP9DJ - 11oTyFE9itHwornyj3+F9fOOlor53qEH1Pqb3kdL2y4sPKXQ9cfAKus1TJ8ZqE+b2fwrpaf8W03R - n7/0548td327tVZnbKx/q2u/xb+JmDhLifKzSzpfHkwFd+WmYX3DE+I+j+0fvm71p6Ae/upFf/xR - zTk7n+9DK8JffcD4nrVaSNnBRkfH8km2Q6u+8fMBNj2Avc87oGuqvVY4LE2PjV9d0c0PGGTt3eob - P5IdIotChYpy+k1LGFQ5JSwy0ftJL0QLr/d8lqBTED9n5vQhrecM9aDa+41/br93ovPZXAt5q4f5 - ++b+1cn5cJHgruSaL0wPO+ff8mTANt5Ypxel57VG2vS98sNnzFR6N2GzAtawGB+uwyNa8Hta4XKd - F/xY01c/Tm1oypu/NdHNX/hcyEUD7tZpU7lqM1o70U6RMSFzuxViQkvcnQ04kTLG0e+4o2vBHHj0 - DWMGGxf3VtM4DA25N65HYn5OQjQ5+iuE/pa2JBU4qIfDcpEkuwBuQptfuxzv5h3MVfF96dGfdZI4 - lg/WBxb/lbFaTeNVBkl/+G9/zRD0dLd82j+9iXVtaPo1kE4ZSLfQx9rrMeZjb1oafD5hNsm+YOl8 - 2X8A+t1oYVVu3/pCUsWCZ+DYf/omGjFORRSyvw4bavHTV26f8tJfPcJLBwVxbbtngfArxVqoD/1w - uCuKvOkprF3jN+rts9NBCu8Mh6fnEG16roPNr9v8CNmh5rRUUn11WXwiyjdfjn3QIOa8+bs/d3U2 - fZXA5hdPk2FUNfWYeviHH8Hz0urr5m9I+xcM5Dg8Jb1VuGWWucf0mmTr0+qTr0aJzFZJOa3belor - tlFg828mgqjf/+PHJXsY8fHsn3XhkUkZejqHFhtue9v4pyshVshUfJBWOZr3x3mrTw4z8coo7Tt4 - 3GxQ336JPeet6ML7Wbyh2ushPpTrQKkmXwL5jqhOfLLv+5HIBKATrC/e/LJ8xmOZwo2zwWckLXbo - cMw1BHIX+5IxWPm2PkvA4mDgG2Nf61UQNFH2M2NHsHdn0XTqnwr4CuzIk2I/+lsvsPk3PqWXreef - 6odovBY+tmP6cvpYsywkjwZHXH5/dOiknGzAdVdP7O3e6f/qZdvzJ5SITrSyp4r9q/9N3zLW9HnB - rwlc3rrj9M//Iqllg1T/fHI7SAe0fT7Il1JccWLveX06eqqJXheDTOzpskS/71uepKNj+3/+gz6a - 3/sdhJb5/vn3+vKHT/PXTfBFr6NoyQ7nGPZ46ohTkaim0aM10cymPLYynqJZ1zkeVd4v+IePwsnD - FWz5AnuTtejDs8tg6132wlj/3p1Vz988eLf+TrxTWG56rA3Aqk9n7G71rtl86QDrO5CwoSyLPvAS - 4oFPzjoxfrWGfvKcdYC13wv/4Tc3L5kF9x1XEYO96dH6cecQsqVSiBq+Q2d+f3bG/2dHgfy/dxQM - FWQTreVPvfCocCGIkeZHX7jXs91qFST2dg+OL1j54D3cDl4Hvp6+D6+NZt3aM7KtSQw5yN8ILfLv - 7ooXbY6Ic7X20RK9rwDOjWJf9FZULwMnSpAEMGLbDSxn/k55DG6qedOU/C6OML5eAxxP2JjEEXs5 - lc2fCOJvUPDFg9GhCh9Msp155lYxNXue/4aDXP8anZzU8ZTTS2s0EJyY4zS+fZ7+JDYzwVWmA/by - g6vzEpt28vY+rDoVjygqbQmu/VaxyIVZn8+d1gB1g4b438eA1tHIWmTMD50UUFaUppxWovs7gqng - 81s/F5nSyWYgG+SQIg0Jl9guwe3bHT5/nrecLZ6XRMbirideqqh0eASrC0ylLuQU8pQOR/FhwIPl - X74wzxNdLLWyQaUHSjL23PWDScxW7gf1TaLRnPNljNQ7tGGGfWkU/FpIFKuQ+V7aE62cSN0crhik - ffaJsZVoVc/vr5Ytw7p/Eq2pz/WQhc8MDucM4aMeHChn21MMc1ubWAfj4cwKQgBYV0McHblDzp0K - qQN0NiOsuQHtyXAaRUBnI8Kn++eV089xNuXcu/tEE3lMZypjE7LMJaR4yY+ez7o0hld8Z8ljd+9y - /vHMCnl/BhVnAacivm2XEqzGiEjaE5lSS/RL2P+CE3EkjCNBNagk06LxcKQ4r1ww2FcoS87Lneau - 7HRq31IWqkM6TLALi54vl48Jh3rrajw9UVS/md8bLHZ6kxupRzQfc/cN+xd6EHXfav18lURFFq/p - jTynC5P/hG9swYEZFFx812e/dkpvQZC+U3Jd0dBT//pL4Xp4XYmmnmXUsmteyDG62ziqjlktXPgF - 5M9utydOf9bqWdydU7k5tR7RPtEpn8MLH8L59hywz57fiLvwwP/FNzkfRhZRr+8LEK58QBxalv1y - CrwQ2a1wneTfZOrzVTFmSHJwyPnz3OerbQ8SdKEw+Pw79fXZJP525rzBWJ1+AxqGB1/JfNwsxA2v - uO4YvJ+RZucIu1hjdDq9nnco2LTDaaJpNRuprC+rAT8Tz4NXzTYfQ4ShCyocPIYw35DuDtz4Q5Mg - HsqIxDaYsPpqS5T73daXyetKOFmXhLjz3kHC33rFDjlhZ5VkNK/ZS5Tnwb1jPy2uueD1dSFT2ZEI - jixaT2rUDQjfNIwf5+aAePX7XpHa0w4fj/iOZsjWSo6z5zQJk6roa96ZJpSSYGB/+Co9fwp0Vjal - hk7MAFG+8sM3k9etC9CsE4KETvkN6HZmiM8J3pUuyznT4CPEDXZta6lX61Ktsst/JHzXCi+aF/m2 - 3WPYqcR9JIeciyGawdoNGj7v5UvEmu6vgILNOqw2O6vntRn5MF1Wjdy6n5oLys1yAWRRJla6LNHa - JHEnH7S1m1ANiz5xOBGheio5URW6VdxaiYHjV7hg7UL29Ktf01UOlbTCj23+u1/7DYEpMoZ4yuo7 - wk/IfdD4a0jc2jlGvPSpQ/lvfrd8RP/yz2Zc/fDz5UZoidvzJFvFbOPnwaD9nPirLYuN1hHvjNKe - +2p3BejvZZH763LPV4evVhmbU4v1/uw79GcqLWz5D3uH65HOjNn48EptGxvPl98PfCrdATEJS0zO - PaDZlx4WOk1nQo77+Nkv9azG8nAFRNx7TuhYjIIG1m7SML5VuOdxqEuyMTk5cUzJiNjs5a5An/uU - 2Oai9u2N83nwXq6JD5nj6Fy5zKus5dmVpMrv7Eyrs2/he/ITbBsoqelpJW90PpUBVh9ltd29J5bw - YNnXxOjm1K/JoWjgpicFMTpO0NerVIkoveZHrHZG5AjP2qrAuJQWwUEK+syot0pw+a+EVV0M++Xs - Nql8LimHcdzquoCvT1t6yA+WKF3ZOQs3IANIFg/Y/IVZ/cN65csc1jtiUYPkVLKOJrpeWYYUW7wO - gSsZ8A1ZEz80uafUsOoU5sR7EjVFVr+eisWVHbK62xnIZ0Tb5zMFKzdYko/mG9HwaDRyQ/HNr7b8 - NL9fjxTtzm2Blaop6LJuHVgPzk3GimBIaHEO5w6yz6nDbro49RSQOAPOzK7EqWFxFno5lZBlPpko - 7MKevcRnU1ac6IfVQ6o5PGLNFFSjNPH9O6s6fRPWlWeOdfFBk6/5v3hjKn3BB2Pd12+yf7Ewrs8d - tkdh6sfHMxLlwzlFPsPn+5pmLmvJeoeA+GToUOuf7AY42u19kK0foqVyMyAJmBGHnXehbPQ0Noao - cRgXx1O+JhUxAN1IQ/T9xc/57rBjoX/cInyD6wdxNVcoSGWOZxKnrpwvT+f4lhOpuWMtUnpnNs+8 - DaX2NQg+/cZobYE24IvGlehe7CB23x8MaEjTEIMnWs4V8M5kWNGT6KaiR1PWBYnc1bw1yZ7q6jTa - em5gBlp8ZFgfTaxCZ/moioBvQ6H3XCWxDAiqEGHzVPLOovsHV2bmoSHmp02iBeQiAP97RNPy4C56 - l15RAfbslP6sPb81UaNXCHyLa6zzn6Sn5VK3MFoS/cMT2nq9pMlnxpSIK/z0iPvjd1Vw+U5zdXb1 - 2a36N0zXo0cM3LrRsj5lG36fj41PcP3QuVPEAD5C0hAjXRV9fZ1KkL6q0GG17q467U+zLf+bf326 - 9HMY/N7ShrfTGnBezqnRYIPAGevEd16gC5KFDUjIW8YGyWY0U0FKwf6WLskHB0cLlN789zc+F7Nd - r9bbE2Hbk4l9JREcqkVPBVyROZDj8/rQp2rwLTiObIidhDb17CwBoPeZNfDxdzcjYepmG3JBz6aV - P770Vdy5IZInliO2Paf9HJSsLUvnyiaYBBHiL62vgNzYDMa1ylHa0HqQ09x4kEucnBzhJa2GfKkH - h2hJR3LKroYIwpUNpkuz0+gcUX9G5JI42G61of5t8Q1PXUE+4j+98xOMYdiPVVnjrKlkfUmlIUGU - E1asHG/s1rV57uQjZ+fY1Seup4xqM6hqkvckAYfyeSktdh9lcCLRFm9rEusMDPI+Jofpd9SpYPxY - 9LD2Nok/CucMn65nIT/NInHXE+uslilne+twFHwB2XbN1fMpgfHH98S6DQ1ajGvUwc/4hdhtOKef - 6e+gAc/4JVE/tllzArcLIVySDLu7sKhnzU9F2Nb3tCrg6HxySN5gt9yVPN+vQ866O9YEHe9UbCbd - rx56nKdQVb1P1GLu+lG+hJaMnfGE3bbzKL36dQOjJVKi3I5pPxfCzYKcyUys/kgZjTj0EkDO8eIL - xWPuZ9V+WsiAZZj4DW8Iq2z7G3Ttjc0c6/mau1wDjnf/4Oi1HhG/PNGABi5UCf42uKY9sgckfi8c - vnFaHC3rGc/oL98/Wjr3yy/zGvTyHzxWBVpG05vpFfTJ1NJHg0OihTHfKzo/HI2cSnzo1+M7sCAK - g5Dov/ugD3r/y2CGk4jNA7+gRe8fA1xdSce+kBB9OLpPF61jeyG3xDnkbMX9JjRdD94kU8+N2I2v - oq60V+yE/oAm/T5J+5N1Tf7wtF7R+eeC0D814v4+db7se71D23iS48Nr84V0SAHp6TD4AFen/m78 - HdVsyeCEXuuN39YWpGNqYPNhfOo1P7YiOrnKQGKHsXSW7F88PMtEJR4nGzoflF8FHS7GeRL28a6f - 3R2YcNacNzYVOORsr0wK7M5dgfXfUiC639cS0I+U+KC+FbQ0H+eOZn+f+DWDJUTP4iuTcaHMBFNu - 7EfTLTV5zZOJxLJ1ydd9r7nw+4XlBOnSb7cCzJp84JXTRE87KV8XrXchtssQx+bJdIRb87Cl++mq - TjtgxLwroAJZYuaeXPFTp/PfeuicV701dCL6IkaYhycD5z9+Xy9m+eRBOTEF1sUspeQZR/YfXyIP - xq30pUoPFdr4NFb3MpcvfLrXIJC4fMu/fL8W0AG0YtL6q7l4Dlc4Zx7VpeiS0ElMRHPGn9CWX4jj - /ai+9sNLkQNJyLfx+0S0cIwJil1m4ZN1/OR/+hImWW8IZrNj/Q+f/IyeiYkvqb5e/VER0ipr/J2E - fz015bFAw+aQHk5Xmi+BO7fwxwf6jW/OszbHoNSNTw5bvhJ8dpHgc848oi9956xV6pqIzZ6KvyNB - RBfTbRUkSMcIu1oxRn/fl5dl2GHnHo7OalhvFr13xgcfl/6dr1vLTfSHn4f75+vMOxWHoLNNQA7n - ZommmosbuTCoTIzsWzlU+vxYxOqWSOxIGvRfqEozsu63HfbXu9av4QVlcq7d56m+TseaR+efL37F - 9YmN32dCVPnWCQISDDhjz3YtPAWtkTX7hrDNm0NPuUJjgc0eCr4+qlwfGUFIwBjYACvi287520sV - of69dZyPpoFmbzEnaUJT7vP4IjoLo6YmPMcdRzTNpVHPmkcF5MV+YF8MEJ1pPSfyX7yfgp53+j// - 4m++/PipROy+90z0Q80Rm/Kc1HR8/SawxjTH6eW+Q6Na3Uq5keqXz/3x9e+UJ2AkXEQ8SZh7IllH - AxbPionuv1ln280TADvfMmyy5yB6v5Yv8x9+vNQajetTtkAlTwX7cyPUI9K4EBRnG7WPgvM5J0SE - SiUJUS/n97bDa+lkdZlbfP6dHj33x/c2/j1JSNnrK88rppwl9c1n330V0W/ABtsZKnlzdOuIBnkq - wce5YZ+Ttq6pVTMrwOwve2IwjBJt/KKByzl7Y29376KheD5iGDxNmbhbcKkJW79mmQ/2Odbyd06X - gFx4+LwuP3LID0JPlrMhoeo6RLjgzYb+8Y9/61PFLtKJL/lvtMfdbep/udBP8zl4y4rWJuT23DH5 - YpZXHqACHedbvp7Xqd7ywdqT0/2jRmtIHQn98Y2DVP1yqka/AN6fO4+dgHn3yz2YZ7DcosYH/7xD - S+t0xV/+2yrtAV2N/S5FB+PI+esiZA73OUoMpG7h4uOjQvo6ch8fNv3mM/FTySlnW+t2y4aLXbGe - nck+pD5sfMFnJ9uqF5CTACnhd/XfDFPms3/S3n/805eYvsnL2TposKvh8IcHlJC7NksLY7q+6Ogu - Xe60dWUmm11yuZplP96IOECniQG5e49an8dIE2UnXid/mX4uGnxOKeRND/nD+xDrNMtfFcKfeO9L - BuJ7ut/3olSaYYZPu3vg0FuYG/DyrB4b54dfL/pdeiMydBHOs/VRb36JjTa9jPXf3dV5bVe+wb1d - 082PcNGau3KD7KEaseXoA6ITs7ry6ag5k1TsX3RWD/YdSWuhYdXx3noH0/cOKSgXfEpKUZ8HhBVp - 058+ndQDXS/VPoHoszeIkmi+vhhWE/z5jVi9nI18El9ohdfe0PB9X3xqeom1Cu4yg6e9B8eIFtsO - rA0vfJrQ1Rnim6jIP0UGoht2ut3q4GV/ehs7earkwpuwPviqU02cdXQclv48DcI8VXBSF2oubM+T - 7v6lwvgcLfV70SYDNLnPJm7Lh52Znya0g0+KLdHf5iO9vtE1PrW+mAHWx8uhC1AxjzG2RjxG07sr - QRZz3cHY3Xq2Xf2mgEpsHXIwv6ie1yfzhpmpdHxao0PP0ovGyLC8Y5Jnj442SfU1ZPVxum3zNdUr - vSj//DGcf5YoYt93a4BP2y/YrYKF0uPlF8OGr/7F/Ob9+jNt4y/fkMcl6Jwxld4J2vyGqYufpi7Q - li9kx6fz5id+6HLO8xmaRfSJcg35aKkNvYBNLxMdsxA9gu5kw7lcOB8c/euM71fEyNeKfWB9nuOe - oEkMwf8eEDn4QtWvrIJmqF6xvp3uVSKhGMGCw6y7065WObQ+D0shF6KpYO0PX6dOtJDs1v4ktXLl - LIywi//myy+l6amPn1xW0Pv5FH1OF120+pZcoNNLNsm1fQV0KcadIq1N4hGldtV+ZNdQgdezCIlu - S4TOrGpJsOlNosphg+b33ZpQ6t5d8sQFjuYPM0rodgbyp/f7fsMjmH4p+5/++uPPGz5v8RbqdN4q - mn94hQ+7kzPb9qpA9xBs4olDSIXv89XJf3xMy2Laz6yqSJCfjyo2Jtvq+ZNa3CXHtB7TsvHp4Xlj - Mtj47cRUInXoazAGSK+3IzECr4l4+xYGsPF/cspsiNpn/JtAaIoXNrrSyIW2FQ0EpzgiSdKd+uXX - rgz08azg9HL0dBqQDJDiw444eqA4/MZ3UPsbrsQ355WOo3E3YGRZG9vyHFD+fkxaSXD5hWiPG6NT - OesZ6U//xsk1d1Zfb2fEiNqEzZhlahKD2aFNz04EFySiqyP6SMJ+5a85PunrQ90N6PmJGKJG92qr - B6QDVIds8Hn9WOt0hxvjb/w2P4nUdJoNHk5FHPnrt/g6MzoPBmz5kljemveLezimwA7rlzj8x3FW - 8UVnGIKOTsLLfUbCvrdmkISi9tnN3/rTfxCYwf+Rdi1bCuJA9INcyDthyUsEAwQBEXeAiIAPngHy - 9XOwZzm7WXefbk1St+69lVQtxL2xNaVDkvng51e4eNH7NbpVAnxHH4s4l+MnpFn2COAWH9MC7k29 - gDJRYPpCHT6ChxzOl292gvgVi9gzwEwXkh++gL0oX7LpT7DksVtAa0wzj4/pEJLTLeGg3jYL1q4v - A3CjEXSyWwgFwZOC+vV5r5Ufn9jw51yzf3wqM5hpPt+j7Me3IUE9j63P/KZ/+Xk8uHev79+XjN4f - Nw3ejLYlh1y60XlFTCWvWTSRx7y9OKBmbv34JDa39d74vwFL3p7wMRsF0ForM8Ajse9ki0e6dKud - QjODFUm9w0kfHgcmgrVYPza99gItEctU3vSgJ76NYz+dbmkAVbv6EKuVso1/lppsbz0bGLrv+iEj - HwEKT8XGkcYw/ahyWQPqUnKIIVtsRlc0e0ClR+pVGCg198uvYtkE3hwkNmVnMbZ++nVitvw6fNNz - AN9252L9yG5TZs8xlAvHav/8kLVx/Rzudc0lBtM0fVnWBgNhvj9MkvGuAVnTLJakO0O9WbYbNIn9 - yQNx7Uf4vntGdLCaUJNl+WF64vmN6gVV1Uk+Lo8Dcdx7jeZD2Zdw8xMw3vzYRa1uFRTD0MFGfAVo - lK7qG2z+6jRIyarTP3xscxOH3VXt+Wm3bvMRSfTjByEd37sEIG+ZseFvNxwTaVyl7XwR9azew3ZI - vgncU/DEpuaMNS1GxgLX7vSamDm616tWuQysnrFOTpWQgHnjl1BumYhcNr91zWNHgQ80rFhtbbn/ - 0nqOoOUu08Z/YzSH1FzhDbdHj+nKJhyW0uJgcMj0v/rfOFuokfL39+ix47T0a0pGbXtq23o7Jb7q - y2G7AXIZLgVR7yyrb37IF/7qX0e2y8IpUJdIvvtuiJ2D99LXw/UIYdv6JUa4uOhb/SQHF9p+iLJg - gQ7PhUB4JOjuTYlt9LOkWxBWkfbjr3rIu5LPycCeTzi9NnNIb0+rgDcr3nvDvRcQ0WdSgjoFHtYp - dwQ0EyQNwuuu8eD0IGAx9WMMojOXTRXr9DX9PNpO2vI9+fljw5SfI8gfypZY4efej2HzgD+9SvIa - fcIlbyQOFq/5tvk1F7To1lxCcBvfW32jRJseGWB5Aw7W9KNFecr3HJxticUGyzhgPmcXD55Kz5hq - ey+F9PG9e/ArRN+JkS02pNBROPkjLwo+fe5rvaqVb8i/eoBZF2rIvLqakW/DziXO1gOX0O8uh6/d - dpNlWlswV3bP/PQ6NiVzzZaK/Qbwfff32H0bT0AS2/nC7HxQ8XVArD6rp6sl96tWEY11UD2Xd8GC - H6V8kGO0O2XzK25neLiYZ4+NYlufhztXQq/IP7hIims4jXNSgbY4q/g4qQrib/o4QO72CQg+iZea - n183D+ZSIBLFpb7OHWTRggtHygnsmFaft/oV3PQKdsLghTp29WJ4C0OJHFfliuZmPs0wONx07N+O - Qj8m9rH84SOx72xbr6WSVn/74fTpIZyzLnRkTgtPHg68D1qCrQrF3ocHvj0fLl2LGyhhOlQxUYw2 - rxdnL31/52tafvU86dVyYKsn/8vPdutgALeQCqxhoPRUcGdfZod4xkZ1NrPxFZexfIycmvjracp+ - +gL+1atbooT8+2U1cOPj2wtHAzGXQz3JKf84T4JpK9n0OooV/Pnv5ueeZJztIwbO9+fHW9nnLuwE - V5xgJB72xM2lKaPWKjL/50YBy/z3lYISIWuaHdOs129uN2K2DxxPYDifcp7qneBxKxWcMCI6VTvt - DY660GFjkA8hE8xJJWdQfRHdODzDybRzH7gLErzBj6hOPztZAFLO2VgNAllfMytiQPnSHazuOoqW - 5KRCOe3PIrH1uEY0VG4z1JbihpXvhaE9uqwz/GhOiEPHYvrVXhIOplcZkaTsLmDOv3sHKuLuRDy8 - TGgGZZVKZ+cZYn0/1/30qGksl8Wd8/gXkfSRV/1VjtRLipFMAFhEbGmy61bcJFAXhLN71FbZ2z3I - tJxcIVvV0ZLAq3lbxLe4MaSSjVIo5ucOO2yOATk9YQGFrDUmSXbzbJ723QA7xkU4GRYHcTgLC5lI - TkwcMn906idiBfbkPZJDb37r9ZVGikyHOMKG1TH66qmmBRWHfZAA0rinz2nwZa+3VZKDwwHxoPan - f9cnu610/AhRITuKsyeXXlAANUM/geVu0jw3sR+I1Rc/lWv5bJLwLiho2YunN3ikhOATTLWQb6nf - QJ/d77AxIFdf9eM0ALrODc4Eac7WSxF48tQWHdaSR10vdhYqsn6eB2/PFncw892uguvFumG7PUt6 - v62PPBFBJDimJWIsw1Egd/SvxNaqW8a/T3wn971BseE+Hv3i+lUFTHsKiVHdVzAX97MgMzQ7Tcv5 - oes8f7xwcn+aS5ygFiPuTmQNNlKzIzcFXGpuEhZfrm7e4DHKC2fMmTAW/Ly+R3LpTatmfPKYIYNX - i6RC4oPxbUgN1PtnS5SdhACze9JGXtG9IpdnWqLZ4kcJZIdQn+hhOCBW7jgI31nUEY2ZznRwx9sK - mkZvvXlV5Wzt7ukqXzETY08f2pCla+LD8jwUJI14nk4Hay9AhWNajIHYh0OOvQCWoHniM+bcfhYP - ZSBL7fAlvqGqgBEfNw8KlZOSOym9cBDFkwWZ9ut4zG9/2pxLoZhASNJEbENi9MJJNhALiWIwgLZ+ - kJhwTquWHNBH1Wc4soF8aFOFqLJOsjHfn1NQpB7GbulW+lolUw4rzjnjeM/oOt/SpJFOD2tPHikX - hnzKEw/CtH/iU5BZ2fphYwsiJ+cx4ooSUAWzPtTSRSZ2/dHADMQdhBcg28QO+ifiVHGfwquJSow0 - bunphGsov1lnwspd+2a8WD12ULDimGA9n+v1TlgFvq7vGvvkNYK5GbEFL68bg7EtnXtGofcdlBu4 - 86h8PdacAYYd1Fdjjw+CIqI5/26DsCYnwurH9zOu95lJHllxxrohZBn7YJwSCuvtQw5bvEzxITaA - jcKtpIPbrSAEJSjZyQUnx8+9Xzg3yOHEFXhiFiXpuYc8BOAQMD3WAiav2aadU5l7Whm+77srHXLc - ddCaPJNEpmf0fOSpmkxukj6J3J7R6UtuJpkd09CjtB0zGnsyIzwzgcGG8VEo86niDhT+84ZNSX7r - 09EWOtnRoxJfqHyo6eAFM7ya/tsTVDRlXBz4lbzht8dCPtYZM69X+WLFFna0t0AHuz9yUAiOEc7V - xQ1XVeRT2B9rETsTlLMF4XMsT1AoyG2FCuDtKShl03wM5GiXPZiV20uTzzTkMAZHiroqeec/PMMJ - dbOMitUDCufQaPHjQ56ARqrZwPnenchhadp+2mtdApOy0cnjhkk/J67ly0ZVJiQfr0inu13Kwfsc - OcSRzlvJLFMDWe3u3SZpI8rtGGBCThKTaRE8HfAafynkXWDP3iq+PMq4JZ2gwbImefD8DaznvPkK - e1tNMLoyDV1++Ld/PD5bk4ImXEA7ztA6dosnyncWLcOzCuD6fRyn5yFxKKO+eQmq4wdh7R6XPb8Y - VxOG7isgqW4kdHIp9QT/0vZYAYOBBk11/a0ERXHWXU81e1R8Cfzi/4GfbEY1nTbweSlexN72/zU3 - Tgdz7Q2Irdj3bPkKAiMV94wnrg4rfXWVcyQPwkfAJrp+w5nnZyg7dUeJo70TQKuqauTzwL49saI3 - tP18B0fEPMi1egYZ51LgQZk1DA/6UYh4o58tuQ0fD4+dojmcQUgg7I/dfqIrzyLy3qmmnB+GfNor - Xquv05A50iKoE0H9bsqGOiy8Xz4nLrvDGTO+Lqkc1CPG+uk59wt1VB9uf3+qaetmHSurjqx+LOjt - YowRc9edN3RH1sbm5x3Xs0qlGO4y5o3PxY1mo2cYufwl3H0SBCOp+ZrI+R/+bfFXzzByYjjsdgpR - 4uaT0aMpRTAY0wMO7rFSc2PgCtDV9yZG7PDtl6OLUzBqPiG3ScLh5HtbG9NvcsdxOrwzbn12A7yX - 2CThDopgtZt1lvdvRcbh8XzNWAkzHOQXqpJDRm46377jE+h7k3pyX0CwyN1uB2RkSh7r5A5gntsj - zudDuZDzA/X1YN3h9iilScnxuw9DitEp+DtPh/M5ySgbXks5XXiMHXUZszUFtgTj/ejjZKybbBXX - ZICqGwjYUm6cTkc2foNtf4gtpipljfXgQby6PD5MkZ9xQFE08NG8EFsmU9fD3uJzmHy0gFyc3KH8 - XYxWOc+vAlFrr6DLu8AWHLzqQwzxcA/n8Bol4PZ5rkSDahF2r1RIgQ8jE294QJkmlBpoRU/f48qE - 6OOKGgHKifnAxjjvw2l8WPGPb+Dz+VGjP7z8xdcuJ2rPu3WnwaUhyl9+Wh9yE4BW0ftpuVVcts7S - KYeOHx3I+QrWbIvXRHaZ8DYJRvbp5/KcOJD/KtsAhYPWc0wFBPg2hAzjfmX1tivPhnzn1gw7wUj0 - qdOfDPQv84L13Q6F3+S9ePKPjwplt43VYD8aIAp2iXJjyp6O368pF/JXJ8WXMTPOmmEOmpDLsSHy - bL3hZQIjENUkfMkNWOjq+7LF7w2v+LhVRqdcU2SE38nEz9ipiT2lJfTXOcYmB6L+dT6sCmRmIycX - Qev6VWaKAWguKLD3cbWQH7xghe/14GIPOnw/MHlawGp4pp58X6OQvq+SCfmpCIgp39h+bmdXAnV4 - 00mgDU29vIzYgfnjfiPoqgD924TrGxy08UX0740JF1utDJjoTUF0QwDZMDoKBwGjHbAxNbbORefH - CsFYEOzuOx4s2cswIfAfyONHtQELs+9P24voihyY9RzyCNorxIB+sCfsMKWI1AO82umR2PKd1ef4 - pkJ5P9wdcvt0MeIOUI1hfgEtPpFCCTf+W8I3chuiavIerfizlPLG5yZWuXA9PYFXCuXz9shXK0Sw - 3o56B2nVFhPvzC+d8E9zBnUOKT6q2QcN/LndQeNh1JN0nyKwfE19Btt5nV7DOPSrt7XRD5+Wi2ML - pmD2oksHx8vnThTvofWU5DsOmOH9jC9LJejTKxWSH18hZnROAL3i1IH2mbUwGj81HZ5CpMBfPKpd - 2dYLpzAJHNjE3/jbky4oPzLwTFNIvNvDCvn30msSjHCA1ecnQ9StKwVme98hh964ohkdljfc+DTJ - mEMDqLecgz89ZdLRoTSgD1/iugHhwxqrgFaAP4mBXmpEs0+vfvqyawU3fkziDV+n3ii+P35PnKcf - AXoCYwLdtMxwUNhSTR5jZkC2/EDsOlzQc/uMg9CwvtEkKoCtSefajXSVVYvkPNvT5eXDAFBHUbd8 - qNTMYxs0XIswwQcCGDQX95sEN72ErWY4ZkwLayiD+7XFeuSKIfH3VgWL1MF/v09KoMXgdoxeRPV7 - MZv3pOPEkrUCcjLGKSOI1JOsvElNAqjuMtq+CwtW8FsSSx5dumQoPMnHUsD49/03PpvIWifqOBK3 - D5wJ6A3Z984gpzkcEIVz3che4Vck+eHJnng5rMtz5ZUce0TtI83eP/1GMnhq6xk9qkqOnu2I8UGP - 6tW5jRLk7tObnHShqn/8DfZN10xyX+RgVvaMJsaPVPbo3diaTJhvBnKfezNRhbUQW7jWBE+a/yQO - 51n63DflG/70YDazqJ6p5lowDwaVOJ2thysr2x786QkTrEu/7r53DSzNqJDj9L5ug8CVCerT7BPf - 7hM6R9d5BUTyYo90aMlmJyw52WWSB060dUX08zIgPMfeyeu377cwt9yCzMAzxIPOtV5HIZfAxevP - k3gRLTAZl8tO4pFWeJ8Nz2bv6ZvQOs0BfhhnGNLg/Z2h8P22WLmtBNGJlXbwlrahV7Ywqady6d5g - zd5fotXzLlsP1l6CUJEacmpZhFbwJgWItfJB7judQbR1RgdcKschxxkP/cJS1wR032reVxC0bA6v - eSq/hTon7jcwKV+UlgN2GffG2mlps/V4ReUPf7BvZvt6HC6GJ9/z5YxNPdB79qlSBiKxb7F2sBg0 - Ls1Tk9OI7zxp1Few5MmkwFsTnXAECjEkGGkBPBAGb/lU77f128G99rGJAp+Y0tOlSGCcwAl7u89L - X4xtpPdEJHGaZhGh2SmvEVy9wSb+p7TRwHdcBV+7ywEjNHr9PKKmgLdPveJTCfN+0XemIIf3IZnY - Ta9S0kaSLC/sHTvK/oLmpky+4Le+IHafOrnmLwPaZ96axk3f07VoUph5DMWaElo9aeKvALd4wtfg - atE5Zb4F1F/HHx+h2adPBQYQPw4JdmGtL/ZHNKHGC18c17Weca5yjkGhdxLRb5xXzxl7CcBLPUVY - vwulPp8JcwKXw/GJjT5+hsQo2Ak69ZcSbe8ZOgPE3Q5E3yMk5sYX1vxCJug1w4qVbq6ywQcyByTu - dZx2t8c3nONXqcgbX8UIwiedA3s8Qf5cTB5/H950MfewAGxnD/jyWLqa2lHbQCHrDeysTlyv5VXs - oBYVzET03O9Z+rowcm1/D8Ta+NSMpw6KxzQScRQnW1vebYzU4xkefvpUJxu+gueXhlgttS8leZBA - 2JoPafOLUvQdUZNDd7EF7G18hmH1IpKiI22nXaPk9SrsggT+/BLrHSLEB+9ylUVSnb2lD550EdlP - 8dsfoujuFVDv9JKg6Jh3bHJ2nr1hOq5wQJk5ifnVBkO896HYcmJINFVywr45nTiw+TNeLz0jNPtV - G0Dgv8/Thwn2lPTpzMBkpv7Elu8468fv15Dvc+wQJxjx9qjfTmCZ6B+CplSmw9fWDPmnLw0sgL5G - BMeQjbkdNm5vls7aJwpg6jku8bTDoeed2v2CHftp8JEVVMAsnsdA9apz2OaXIaRFqTjwrMk1frzi - F12L+FtIG97+Hp3q67F+NvLFiixvzcYedQdS+9L+AnhvfxpaMCdK5cjFx5ymdvOHtlk3Dry+H/SH - f3Xz43/3Ovrg0ymu6ymN4gpu/GvyH1kTLkptrHDmK4+oSv0Ml/KrMfD29NpJyD9av6jxNP35CUqE - UMg8fMDB1/FxnyT+SfvPxr9kuu81TwYfo/7xYTk6Li32wBXR2Ra04M/v8GhwREzJ8x2E58NCvCu3 - ghlKWQy/72DE5hL5dHqlcwptY9dONA92iOSDKsi/fB13HKaTai6SdA/dp7duHe0GKIURdPS4nAQ3 - aOqVPwklkBf+jpUw8tCIcrzxiZDD3iz2+hKW8AS2SVbTimq1nqzTK5fRfBQxehz2YKly9SRnPZeQ - ozWF/c9PkUvwfk4UhRbl6OWpyeoJXfExP+g6A0Yr/+PzVnCc9SWZEwhHLSDTbmzPYPEP9y987qMv - ifWg7jvXxYwYfh4x8RDJ6z9/8J1gGyPTuIWDW4IBbv4GUUtG1Vmtue+gm2YXojnJmPVidd3BqBEi - D7ixgfiQgg7eIry1cbbEbKhNPYZ1XdlEjcYTYD+Bm8PtvBIj54hODofWgmT+vgmGs9UvK2okuXo8 - WYycSsqGy455Q906stNc+j5abLUzoJ9IAbYY5pEtrt9VEoL0hI/7KqFz/WCCP39v41903X/FFLxc - cSDa3gnq9c20EazDUJ7WsvmG9Fh6Etz0AUH8WQKzW9JBQm2RE+Nrg3rol4cpbPoGH4bRqZfomVTg - XfSJV5+Xls4/PX2pPGfaycozXHBxXqGqE+vHx9H8BukqpZ7nEpw/LMp9stGDTtx6+CB+IHj/+PTP - 37HZZM5oBfYW3P4fOZ0/u3oQg2KFP/2O8zufLf1kReB4wtSThGSmzJETTdAdtRs5vO5huOnRCmx8 - GCN4are2zLcCjMNpJT9/fEwXd4V+UOjYDnoV0TgTfLDlR5JUZ7GnA/Ocwcb/vCBQq3497S0D9sen - SJQyUGv+GYFI+vHj2xiiehkujgO+GqF480NQ/3k5EP70sMdVSvjTv2ASe967Xh1maxqcveFgmcnE - UvnQdz899vNTMK7fYAxCRwBP4lbE+zLvcHbCLwO29cPah1HDWdlDDYpDMhOtQgNaqi//hVq6XWlc - GC370y/Kjew2PIf9Mjy7AGz4Ni3wfNV5IKtf+dU0Fta4C9tT4lsRNBAPp58eXk7sN/rT+2l+XNCs - uuYOXPOJ9dbkofckZlvvD5/9T9nqg/JGBtj8aRzcI6LPbGdPPzzZ/MubPpvtrgM6wvHE03uE5jbO - oRiLoTrtj0WFfnwFNMqHxeZNgP2S37T0r14hrYOF5h1oSliMlYxxh84hfzSlGHSfaCDujh2ypRv7 - HThhXcQnaRnovKhJBB5R8nbBzPb9Wi6eAxTfOG56PMjG/ePcyW+1Z4grUYkOwcku4ZHx5Ek05I8+ - L+kgQNWfxokUBtCH2kQRDN1PMN2fzAHMfGFp8PZ0WpI3paevcqZZsNqanhiZK/aTEoA3XHYPGdvp - fKCUC4EEt/jwqEuScBYKyMGDE148gf3aqBcvz+LnF+L7NHH6bLCohEGHCmKtqZpx8WAXAE/A8v4+ - 38+fgVGUTJzvHerlE7jFT9/+1SfGbjy+gWSnF0/c/KJRxIoiqyHnTcLlaofc8YoqaDXfeKsHvHRa - Pm/pL78Q6yNN4MevQJn5Hv75ZVt9rAFBzMy4eIBr/Vn4spJ7Iz570Px24XMAmSflFfC2/dTQInzz - Btb5jmKnUEDfAq70/vKzjbMPmBfP48SDk2YYx+qHzpkKUuidUwObZYIRG19IADe+/lePGx9p2Pz0 - 6yTzL4pWEl4NsJ0Hcjy//A2vUw/ImaPgLNOcep5eywpTISy8uS74epvu28jLkWTe93y5Aprc1ULO - bfVEAsIz/eL3wxcK/Xz6BwAA//+kXcnagjgQfCAPskmSI7tsEgREvAEqggKyBcjTz4f/HOc2d0VJ - OtVV1UmHeMS/VHRWuwD88OinT9my3XfAuV1j7MQnWaUHkiaAE0EyzT/+MzDfFdyR/iZHVbHBTFzU - 8QMgNw9dozBb02OhIO/KhER99KK6rLszhO+Ck8mG3+FKJ7YG8cqsGM/fNRyO3KLBy8VrNn72qpZX - 9l4hl350Yljzu19J+NSAxSbKtPSBDNh0Oc3wG38kjFEpUVa+qgYSALri5D0cQ2ZulB2yg/uET9v/ - mQI1MX54iK2a7fplNCcbIlCEWG84ks39u61hyNe5N5WxHm54bIMK7z3yq6/MPrnOf/pgj8qtSc7N - gvCH79KGB7989Oc36L3GO7Ms+Tna/BvsufUNUJJzDIyEk4LPIHdCpugtG172Wocx+0Bg/BqtDRtn - Vb19Q150xpGo/Pg/UXe7PhvzT/FAwpo1Hver7/DHO/OXP7xdo6us81V8lPbhYeovt2s2pEyRoz56 - PfDPb1uyHStBQ/U1rHwzPdv03/rz97DbT2y/8RkBhTupx+G2PgZF1v1fPZMoJXqHa/ryISwcy8SO - dr9UdLcwKwD+e2tSkTt0gSowxfl9brBEPiewbvUi8MvP9q+e+hn74q++dDzqO5X6e6lEW72GyGuV - 0zU6X2cYk0IlsV3tqsVWYhE+wlnC91Nrg189ARqSeifetqFs6cYK/vQWPlfeDnzT6+LBc51dvXcu - V9X6+rgl3NcKmkSrPFDKPtk3+jD04s1yHW31bFaAImbe2AfDW6UAWS3c9PZE70ZD17fUa4fl1Twx - vpx2DjGGN4RbPR0fI5pknPaCCvjji2EKeiJxrg/jDwx/+qZfEH9IoX7zRXI3kqVfqm8uwYPeesS6 - FkO1bvwLbv7O1Ez11VnV6GWjn37+8XVaX1cDHNXl7VE2UAAj6KqAroXZkeO+FOg6F+cSjua0I/hd - QnV6Xu8B+D9bCtj/3lLwFNaKGLd0ppRYhwCsH+ZI5HFQKjb/2iWUovpFrADp4YyoZUPf2roMnD8W - ZVRQl8ioBJ5oQyqHY65mEMQI9Z7PsVLInIV+ECfk2BgHUxZyjCfM8DhFOpaXuwZWZ+0luBiT7wnf - WcuW015OYF7PmkdVK1Bn6g8+VEcnxrK6DP38mRIRHry3QZ7ci+nXKGoKKO0OLdHf4tdZrgYsQaOU - JnZ3wsdZ4JSUkIIiIpKiHdSFY4sS8rVUY19ODJWie5KimsPOVF1erUqvh2pFbbPdhGnvlIwhNR9D - YbmEJHzco3A58u4KxWE2sKSSIlssMoqQiNePV069nHHP1vegM+UcjnbzJWOc+DKhc5jr5Pd7c62J - Irx9viq2sLvtUq5uOZjFLPQoh1d1BpxQg6cwV8TX2Syjo+IUaFWFngTyQ8rYKhgFUTavAbZYnQ8X - Nt1NsI5CQgzrdslaz9ttsr4avd0DmhlHb2yJjGaQSeLlpbMopKhhd3k8sBbxcsij9m4DvsT51Kr1 - 3I8aNXIYBq8Kex3GDvcC9gTzY8PgY5c6v/Er0D0t2WmP+xNYHvMcoO5dNkThuT5cd6WloG/xJcR8 - uA+HtcgoQCt7e0Q/gme2xcOEDrWpYCca9Gw29gMD63NZTfye9TLWVQQBpu0dTTe+xyFn+ZWIVun4 - wrrMaj3f9kEHRyvqSaolD5V2u5MJn/fb3UM2/wDMLz4ZyUPkF2+rnVsalH1WJ8+kEbMBNj0ElXL2 - iZFe1YzxR6+AdHg4JO6Oz3B9XXIT+iIMsJc5hsPwzV2D7WPtpz2BSj/npluL1f7ekWOw9RWZ0kOK - PHd4Y5951Co3xtKM+pN0I2fFPKp8WvkD0sdg9Q59FjvrqddsKN4EimOFUTP24xwVOIqRT865Ivds - U8opzFnuRLyz+q0mFsAOPvfRAZ9Gfw7n5/XYweaLILmuB8WZFebsoVrJU3Lat4YzW8JpB6Ff19O3 - 9N3tFNYcIEA+Ejk74dkZRkvS4Jm5VPjEZWI2XNNlRp7IcPj6vScVf3IVG34v6Ux08eKGLHBvKbzY - lot1eLec5ba/vCEruyVOlUBVx6QFHcw9/0ye1fAN51C6FfA9Dio5nj29Z+83JMLZaEt80hZNXcLA - ZuB7/0omcWkKwH9l2ILoGAdEOt9e1WJc9BbMCpvg+/c5Ocv5Xed/8aeoVABUga8ADaJfYnN8GRUr - JbUHH06ZYk+jc0b3dhSh2lJmjx1vksPHIfJgN0IfG9GQOxxR3QnYDbN6n8Jlwr603A5agfnBcSu/ - q3lHzhPqegNhrLGwaoWTM8D0LFnEEKbQYcbq9vjFK7YSE1fcRacx2IV3j6jpsDqrT+wHlByTJ+d7 - f3RYeLgH0Al82SvtbxfOPzzYxmMSvXMO5u4ZmlA7ZOJEa9iHc7hoHJwUAj0kSy+wTEsWI+WQfHCU - 3z5gZlzIALQfcqxdxalnJIMREe65DKv7NFc5IXVTWNQiSxzneQtn6WUEcO6vNs5HT1NHse5WeJl4 - BitfNPTUOMIdpIvNkBP+0H697vIE2sn8Jdmp4RwqfWoRLU8deA1cZYfyl2yGbLvesX71G0p1Z0hF - LSIBljne7dfeyyTwduZmo0w8mBAMEmjqojwx7MfJmH1f+mh6iS4J5cKt+h/ebs8nBp5xP6uX/Q6G - 6j0liYzjkAuavj6Y+FRNn6vfgJXx5hVdn+C4WfAMpW66iw/e63Yi/vkmV7QRPQ7eGR7h41weKRPj - 6A0u/LWZ4EmUweLStwu28fTWXDuBWRqqB7I5AZBrKRgV/2miGD7OtoiVk/QG7OdbBOiqdRa5n6Cn - UlU4cABEsYJtZRc7pIpeDGI06Yhv5pFRacLCCMr62yBn06/Acsj0Go6z2EzNC7/U1ZALDr3WU0lw - ZH8cyu+W9TC5zoco109cUXT3E/RkgT+V8FJWs/G1BciJ34J4zzbL5uSIBviHr61+d+ZtPEEKLj6J - ypeSsVKzcmgfPaj3ktMgY3Y6GAAyzRex76yqMn5pzdDQ5w+xSt91tnji4OHe4Uk4qI469scp3yyE - YhJkzGVLMKstrIqsnKYtH/BJVu5Q31xf3i4yeGdc65MEXzJGWxeUq0pOV0/44Ze3Ls+zw7GxZ8D+ - pNwmATJjuNiXqISXiWXw0xH7qhd6dkDPwl/w0U4YdfEIMyML3gcS+9gAw1IVMbJweCa/fMGaSimh - faoHOHHMi8pflp0EYXhd//B6rfnOhNxtVkhWKbds3eIPIfsw4jA4ZQ7rKrMAi+rYk5yZ256mZi2g - XTEp+GJdv87ivQUJ5KusklhQCpVPUWfA5H4sp0MtexnzKekAb4WylYwMDbDda89BBToLMbrjPhyM - /cDBnb3PvPeLjtVwD78rfDq1iW8H6jpkt9trMOj2jcdKQuBQz0wnuBpfHt/E7SbnNWEitDBMSbzX - LKhUSw8SfMPV9WZlHSnd23kMud2jmxax9QCPzsCDPGsQLAkgy1aiugPkj2JEzl1Dw3mcYg9JVdtN - S67I1QBP6RuqWv8mWM2YahlCtQV3mJ+JelLOzgy4uUaulIQ4OMiXavH5skAPbad50GaDfmm/j0Fk - 7dbB4cx2Wft73xK2M77/8OrFPGx4fOkBdkbBBswYuRyEnYSJurxQuLxSbYaPAqvEOSpvZynUjoFl - cWWImRhqxnHCyf29jwd9RDJ6PEgDSu/ebuLC1wKW155G8M6wCLvmQwiH7pmZcIsXLIGA7cmHKyCU - oxbjozW81LmXgxg9i2DBZpfz4aKdngK4SGNF3Ni8ZdRlWxtdF+ZN4t/zZeoroGyUszdnOxrS/WwL - kLnwOXFsWmcbP5yRuGuyaX+hXb9eTy/tF6/Y6LUzXbdGu7DBHYMt9Pay9cw9Z+C32n6zsL7OEts9 - BEDDAKt9J6mcrMspGvQ7xVbVUUBZ5RtAD00WMc1FBOOWP8Ht06sTg7dTmGNsrrBvLi9y+eFv82Rz - yJ9KSiQpC/vxdmskMQTqhUjHoqzGvdv6MA3pZQqYt5Rt/9eAUZxkOKQCX1HG8CfU5QqDsSP2Pz5d - QnH3yYiiHj9g/YL2Ab0GVSQjQVD94VeAGBFb9a4AP74ppva1J1ILX9X8CYkG1SyWyfmVWxn7PKY+ - OD5OO2wX35V2+vPVolfl3Aj2bwpgN76PJjq+8AnwKmBu49sHbCjzBPPbqaL48XV/eD7tNz734/Mg - Bt7TE7ToU5Hn8zrBs61k3j71n2CdGf+BMPrORPcPY0/pxRXhzps/+GZpRs/qJyGGG98lppdvW7h6 - 14bb53GYXK50kZqVgbdjsZBkfkcObfu0hVgU3153/nzBUr3WAm1824M0liq2jO8RYE/ZlZh++Azn - 1i1aOPPdceKZ0FbZfrwrQO6CyVu/kuisrR0NkOFXgXgTUgEFl64TNOfckutHqrKFNzMD5sQhxNjw - Z5EUNwDHKda9PfeKqiUEBQcby3gQxV8ap0VUtuHlBGNyu+mlOr8eKP19nkgvC/VjexQkWI51g/Gk - oK1hv2rC7txH+I+fJYLpwx9/VN+fRV2MnrzBTMyIPNRbu423X0K96UKikbtXscuXeUCP8QtyZMLO - oa407OCIgex9nUwCLIFzgV5FesJeLzDVGL9OIszvUfrTK9nGB1L4cbgLMbxj58zHT5jDm1DG3m6o - rZ6mlT8hsd1Bks9KCOilPviw1nG95UvdWX75bbe+rtjlbp6z+klRoIV4Cs6H87nnf/GgY7v44wsL - ixeIgJwTkrknLxwXKc6h+YY2tj4aoLN+HyfYzpNJQhHVlG7fR2GPXOz4QFVZa7eWcNNTRO27wiFC - z05g3nl3T3M6NlujiBRg5zcAG+VHBNQYqwK6r3CZDk8HgpmRBQOsE149VF2XkBhwttG+KiHR7+wB - DIPZtHDIbR/j1in6rlMQB7987GIjU7lshIe7D7qHeCRKUwcqPbm2DWPbE8kJnR26mDlIodnVX/yb - 7z8+p8hMhxVDaJ2pej9dSPnR/o23ujxmIRDzetWI9AyKcC67oP7xYXKKM915X0JNOnSiYxAlCZ2K - 2uXdA4GtWThKlT5c65fkopdAhW38pw2/Swb8+MES4Xs/ZNKDgf7UX/74ydrc/RVNt+RGIlvGdPzp - 1WOWr+SqyQewvveWBMnOJtNM57NDibUE8KevpN31Daij5Sn6xZ9U3LuKFn5VwL3HhPhpFypYUntl - wFpKCF+TuVOHVVQCND0lgaiXl+lwkjkzKDneVXxXvsdsLLymhtwHCt6oLW9nPfehApRD+sHu9/6i - VIfXCW7xNM3fNqrI4O+nnx4lW34N26GRtuP7ZwtLUOqqVavOBqKnRMFGXL+c5Xx7DfDb+ipJ/PCZ - rQE3uwfnmY7T+sFXsKa9sIJsiFksn7q+3/LtG8V34zR1qSZR3hirEu2KQcE5OJaAtrmhAAs+h0k4 - +wsduxfPgFo/1Vhx1TVsg0cQQfwJ9Al6NUPHCyPvgLAdsPBe2sch6XR/QOdAWCLNY0VXnrnPIGeZ - E8ktd1SpPa4p+ukrK52OPbO7mBHcaTedHN/BVM37vgsgvyuT7Xm6Qx9I2MFQGjycieZbHRXS1nDT - P1NnMU218RUFlOkYkdNOXMI1qhgTNLhl8PFhL7TZ+DKUDzE/veOzpbIb/0DgIHX4seEFvbmPGBoR - M3nspSnD9XY2dtCafR5HO00JGWcPhh8fw8biehVr99xD/OmzX/yyZuu/EegXzqsM75URjuY1yNj5 - ieNoyNXlm3YF/PE77N9K2r4ebAKD4Ml6o6TikPK7wwxT+9J71NpX/epGnQt9ND6w2rSPbNPTPvyO - QkkMDUoq/5HHGYavZvAWrIUZq/YHG+LXAxCM+5GO0b1VoKM44gRuVtqPjlHEgIIywlizvtWs7O87 - ED7X2KtC+1QRkVY5HDAfTrAxjuEvfwNYYx3jJzg6cwF3HkzSKMa4uTvVekSHCLrZ90xs/eL3syXo - ECG5dqYDq19DmvtRC9UuscndYc7hHNWShqq3O0zz6bqnMy9PJaTP05UYn65TlzK+xD+9Pe2K2M+Y - 9MtwwDS/J+zXjAbY+WBpP/zGhuT12aZ3c1GM9S++Bnyvjo9Z8GG3px/slWNX0ct1aKGo+RHWxH3o - kEq/u+AyGC2W/Jw4VDi/I5Tu7XTa8L+ar85owqLSe2wTeAvXkEozJJLy8IQtX2/8cwJ24Ib4uGen - cN5zjSIq3j6e9oKAnXm0TE0UAYf/8Jr+8NY1lBUf0SNS+RhlHvzxP4OPHGfOMqlDryI5eYucruF6 - rI4F4lmNYHkfq/0yh0EJb/FbxB6rSz130UEMLoPWbvxVc/hg5CcRo37GJ7M0skVcSAnWtgm99YuG - iqoq16JJDHli3RbWmc7cdYbc6a5PcN7X4XKyPVdQi91r+mKBU5emtBK4ExwOnxjjBcYVThBqLwlv - 42lXk7KeAgjzJZt2KEycdXzpBVpOfo0T5hJnbPs471DGrk9iZskUVjOHTHicrcxbWFFUF3rdTjlf - Cx5H2/rjG9FjoFJXAZYel5Fu/N0EhhsBrHvLDKjfnZlf/ibXaN/Q78Z3xImSF7HnbgrX6y5KES21 - ftO/kUrFW6r99LPn5J5FOVt+Bj+/lGTtQ1U3fB3EeLDjSXTuo0OZvubgzz9QgxNQlzUzA2hH+ycx - aGUCfuAmH74i3Sdu8gzpXIZzC02zP02oLUG/hqfAQ6lQa/j3vlNGDQMIz4yb9k/QOIv8dhK45c+p - cM5vQI9hYEOyKOp0CL9JthzPsQvhWijEvzU3ZzYBm4ANj4mdagWl3M1xYZ2JKnH2pUM3vlHCc2uP - REtatWf3kwfBgfUc8sPbYX9OBBggTsSacMtUeu2uNmzmLp2mxt7TJQ/aGm5637s4SFYXVxFEQCjF - +JSxA6jR8emBVHhrJHrMksqxjrXhITcR730MquXhyBPwDafCVoA+2bL57X/zk2SJl82rjg0YCoFF - fv71KoXovfXijbC5BC1lwyFywagOLrls+Dq+mNgG3/djuwe4UMHGV7d7FNCVqIfo9Vt/K9IjKmHM - snK/OHzWgdnKJqIzQOt5Fx/qw+Yn/vHRhYy9ABUzkybGI+9qva68B9SzkJC4eBbq2Je+/6ePjPB1 - Bgtwbwncrx8dp+CB6KRvp3wNNwZTFb3Zai61Qfnzg8ywcVXybSoXEqNmyCma72DJ4kSC8GpCon3e - mK5Ocm4hOtgGxgSW1TyvUQnP3eGwHQHMqqGtVwliS9yTY9yO2RzFIAcX23GJcTwL/RorjiD+6gvS - Xr1SLuXYAm5+tbcDh9mZWeuUgD2XYJJH01KtL+NY/PITuUsqyejhLhcwcNmLh5RvE87+8bqDyROy - WCJKns3tdUzgx9wr2HWxWK2v4hDDnFgEn7qTQtkwsDnYcMFhmvWtK92O3CZwXbi3x4xGlK0HJ3HB - z//X1gI6VCiEHfwaUUNC/1hk06+eglv1jPXw+amotXw5eM2PyNN2mrIdYeljKLDmHYfL6x7++X1l - cWHIqTFpv2gJa4AMpDviNPOk/vwp5F/wQFxcHbMhfrxceLnhC5adcHGGpWoj+HGYC9az8e70vi/l - 6B7untOh9Adnbt22g+P705GczUG1dvxBARv/nJbNn5rt722Fvppc8W3Dvw+5WrtfPBJ8zX1182dE - +BqLA5Yyf1cNWWZ2cOi9G1b17V6B5KpEyMS4Ii4zmz0/nn0TjvggY8XCSsWkB+sBwq2fkSHzM12n - oZxgfybKH78hYC91P79gElOtAKusywmCcnn3+OdRC3kzbR7ipl89YeNzY6LqhjghyyY2FJt+jh8v - 7zCLt/CvXjTZuazBN5xdHG58YczvnxhxLed4B06x6GIqnSQealsheMOnsXvt/+ofWPKiIKMX2Z5+ - eIOVXXbPaFolE2B3CZw2P1vlDSjYcNNnf/UDXlV3HVx2voMvSUfofCAKB9Lj+znNclI7W30rgZtf - TtLEBrRJsm4HOFaVsQ3dla4zkzz+4vHI7O/qcrqlDKxF5TJVz7QG640UHvBzTiJPqzqHU0jNGUoy - 8YhWnS7h6iS3Ttz4BT55B6lnLiqfwuPsZPiovrVwjO6FdEDl/Yt19dE5Sx0PHigrfCTW8fZ0lsjL - 0h+eeAD6BZgNBndQqLWISFu9jF1hvQOO+0qJE1w6uirybSf++Cdu7n01DqHTie9GrrGz+9xCqj7a - B7yoNTcxV9HrJ8p4AtyZ25Z29WE77G+8TyY/eMz2CqwwyR1yX+cFJ1s9gXsYN+Pnh271hbqa3AnU - QKq67le/zH56GM3EjrDX2Hvwpxe2/ON9qy6ktJqoB5ENRqK8HmxFiHXw4fI8Am8YRd6ZUNwz8GxL - 2balXQq5bXzhjx84KSMDloeIgR+anj3UHS50cD5dBOl0LnBafAPKjqy9wiV5fbBzcM79kgdFDX/8 - IfYocvpffGhN/fH43tipw8/Pg/VJx6e3Xofzr94Vvj4Dli62SlktYTW0Xxud4KRJww2PIijpReL9 - 8is9nKAAhmBq8FE+2c4cLi4H0cBb2N7qP7RcyxZ5H/eKN/wJR2GSW6TJ/J5IWDmq1L4mOZwmXf7z - b9cjWmIIU2h4l8t2r+r4OpUgWFod55fcCOc+6wcwXl4vLN/7xlk9f52hN7XS1tGRrea6+z4gXys1 - wXTUKFt+XhC282CSX32DfcReDg6s6+DAEEz15wceNj+cSDH9ZnPoxD4K3YOK8+vyACNA2vSrz0zH - nWvS5b3VTV3G0Yjn2F315/c0kMUeCmOWDsVyyME0wwvORXsOV5iGAVBczyYn9SKGf+ttwjuCt/HM - Nj/MAMtlvmHrnZiAGatzDuVRFb3dFj+Es3ZvaDVUw5t/1m/+tQ3fKTOTJ8DfbLl7iwlYElOvbOpV - XStlLtDGl4jjnqZsUfOhhHqXPclx84/W6R4b0EBRgd0yWfs1J48WDift6C0of1SzFvspPIcPnWgS - 9wGTkGrJ/9pSwP33loLLpy6JHe+9kPl8cgYszuGJJWSrIeO9tRQyvVYThb4XlZTSUEIaBDI5niSL - ssFz3UFY473H+DtLXQAyZzhE8dFbAoWrKFv0PpTs9YElhgp0/hKJgaMRUaKIjxKs9cL46K4VK7G9 - pnZGI6xa+GZQRcyneezXiZFMKDxbiIPbUcm47qwHhxc+yER5fAQwG17kw1dWmCRXYltdme2qdCY1 - fKy+70v4LQUjhccQOETmv3lF9/VcIn7X1R5A+30/TYxko6KiM5bLxcrW+TSVcIoeC3bZdcnorjJq - SMvVJTlzz7KurI+16HRJPDHvwuznu3i1oT7twwmoRe3Mb/cEYS8lNb453d3hcompIXVeO/KYs6O6 - RtIZwvRwdomK8m+1+twowEg2OWyE81Odvoe9Ak2eGUh8OQnO/NxZGrKHuSKJcNV7dq3qAT52s0yc - 88ela9CoChI0lSPSnj05q/RIH5A4M0sebnDteenTldA5rQdP2MZz1qvvCiNjd8PSp5BVzrfWGZrD - 6eMJCL7UybvdW9HA++8UepKSsYtrGdAz7ON06vpz1l+sckDVK49x3JwlwLqfNIUiPm+Net+ZumTe - qqAmLngScXc3Y+xUguh2ufTYuL/Lni3L7wPNnKJP4ykP+9mrTxqcvfMwUdq02Vrn9QybRlWw3TS5 - ypjRI4a1qr9wrsuMszaWUsJgd+pIVIKBLsO5KGDvNIknnNSXwzgm5AAzC7bHx2OrtjgoGLRa8pFc - X8Jdnfa8Z4D6NJ0n5ote4aqiKkGMVevkHtUdXavoLUE0wiuOGifIuG08oCK5L4/NXTYkT+E1ifTM - jgSXpeBQ5LQ7RM7vG4736ofyxGddWH8zTE6y5oSseRsHKBTfEG/zo1LiI/dw2J11HN+HT8ahxVUg - aIsLSR+yApi49gPIYeVILm2/XQW3z3bQXuujx5J6oaseizE0+EEhEb+W2QiAacDjd5ow9u9L/12r - egLi4p09IZPelLDOfYXf2IqJQQ9TtTYUQpgHDfJWfqCgnZO7D7fxwck5NCqmNFQRSX6tkPDmXMO/ - +MHqtZ5oIyXZ/Lr5E2icWMPHJbgBkt38FX2Gc0PSJG9CGnMXBlyit0tuGu/3K8/1D3j+3HScRqdn - T9y0b+FYPnQPJn2c8T5WbPD+zjOJQ15TueCjxFA+bFfdLJ4GOGm7aviR5CG+fU0FrMOQcyCz6NVb - 7L0WMl3GKEgAV9HjdLHI5lR/+aiB3Ad7AiXZPCG9Q4n70idgGc+eVU/fN8TsWk8lifpqnNfVRsdH - s2IscHVFT/kQwz88CK9uRdV+eENN7yqi9rhwWPt1VsD0hhB7ps1QaphQgICOJjbMcXTWLJJTJNnz - g4SSu3eWRgccDKPXDbsO0CteNxhXfOleuuHNNxvzWvKgh2Ds8cdsUtfvOzAga9A3dvdP0s/taNro - hnP/hycqFYcmFTW9rcjF7C6AG+QuhVS+lBP82FXFXW4Fh0Ci2MR7vpeQskUVwKTtrthvw5Eu4Qt0 - 8BLVLrbP6QrW4yoLMGgOkBw5sv7wYYY+erNEUt4aWIvS8FAaPEOs7KY2mxkP5nDXWxyW7+5Il2kS - Vnj9jC6W28cRMPIVGaA8jIh4HeeEy0NuArG9PZSJZqyatbSUfah+qzORsEZor0rbxQsWe8Oac7Z7 - jpmKCfWN+yT5un9X7G5EEYBQLSehb4N+KY43EZ5IdCI+squQe8fbqcFcr0hWX1C2nHbfALCuAbHj - m5HKyKPyFomQBlg1diewlkEVwVKJFJzVuZKxwgMH0M1EfmKdSKbc0+Rj6J+fb2w4SQz49DJxMKFb - I8LdyQfrh4AaPv2gwna8n8KVXs4MalbMYpnhZvUjeu8U2I6vEF9Tsp5Hr5MAt/WAY6e4Vcvn8pjg - 6zJ8yDM0QTaHliT95pvYS6VkTEjFHFoMjKa9Horh+o6HAR6C2iQnP/6E89QUA+LH1veWvaBlI22S - FsJMdYlGKrFfjLDq0Pe13rG1P32z9cmGElxkVyB6oq0V3TdHCFk5vXjcB3Zg/ohdDAc2vk9Dj3yH - MaV1uzDCveArGR8OczqcBTQ/XWebLwy4T/JJUfntDOJs491/v68csNdBxXYUvXvqqPccWmbEe4wF - o55Njt4EP69GwvZsfKuW9KUB75eXibf5y77TJMwI7XbjRCfFpXz8PLYIXvCXYKssnemjyzai1L96 - c2xoGYNbfYbXJQ7x7X0A6lo/fAkBecqxc/4MYNUns4CS/1bIRZwth/ffRIMbPuEo7ZuMbe+2AsE9 - u5HI5epsLdFlRhwYM3xJm0M/B/rDEDe8INfpaofMpZwikC2fxistts0W0IAAjmWuk2fWmD2fZ+cc - 4FsfEaupGmcNxMYHN+16Idt4VNOVEVKgvk0FXyn8ULo/VxJy1Pru7em5AzMXsMwfv7n0D+zQJeLe - iOb53btdajXkEhYzsDglNnGPtKSLKkTKH19wV+HZ8+6ERZiMrwybVXJyNvzQ0BgzO3J/vkR1zu6G - iEi8b4n66d7Vmse2BvlrXE78uDV6h18AYSArrgcPIuPQPn0o4u0JM3zt8LFi9fZgQvFi7LGT2WY2 - fUHrgxF1PHYn/kWXNzyucHs+NotP8eNr9m/9YmU+NNli7GIDzuxnwdv4qGO71hAe5O+X/PBvhqdH - Ahaj9L3dA2db48WAQe46Ldir6w9YzvTpwtlK20mIBcVhm+mz4bGZEPelSGDmOleCY3OxPLbIRTCg - sxmBXvBYjE/dGzSx06dQqUuMj2dzqNZvna7wN1/OHbHqUD3TFTGWs0xMdkgyRmP1CLTvliVSbLzD - 2TEZBsUHnZA86bmMpAOSYNcZPDmKPJuRw9XOIfcsg2n9El+dPup1OwUZHLDW6Zo6O0tdQxOZmoe+ - cRb2W7xAYjzvWN8JPV3H9BDA/TE0sX0pL/3643/F8d0QfL2q6nTAYgrIub5hQ/t0GX24hgL5NhLI - pfGsipUmvwZfQXNIFH4D+j241fDLf0SJBLGnsn+RoMXsImzduRbMu9CSYJmMDY4e1FZ5Z5wfaEFM - RGKRStnCxm4pkkY4kvspp/3yYk4KLHZCT55WWarz4RjF6IYf/nRGXhIOp1Id4DlKtw7UG3+HezmH - nHa7kvR2kJyN7+WQ3R1bj1/sq0McOZ/hvhI+5McvGe2+N+HLz06epCmgX56TvYOJzD2IugZBRuHd - LaAZx84EWCKqJLhoHlyEEmLTkN1+CC1J+fHbCeTk7VBHvTygWXMxxqIrZsu8ijZ0bomEHV7zHU55 - RwX46Qs7O55V+tr1M9jyJb440YuutNutIqxNk1xa+slmdL6ucON35KjN72z+4UH7NjvsRd2e0jtT - ROht+pjc54TQ8fBaXKTA25dgZlIpc3I5D0ZCLhKlZKSemn7rwiNRjGktbKZfB7UyfvND3B7Nzkqc - kYMpRQzx6smsGA75DETuaySqwvXq8JQsDsTGWyDXVjz3dG7VFDKp5pNH68jVLIV0AO99HU6r5rtg - iWW3hRPwO5zd2CCbvzcaw2u/XQxx1i/Zctk7AnS2EpBudhe6kPmQi2AHRIKNmapz28cizA+cTZSD - 5VJu3alveOPmi8eQjAdz5EgDmp+e4/34FZ0DJEDryyb4KERTODwlmYHvkxVOrFaG6gKDcQYKHi4k - 5Env0JMlGXDjXx5zXS4VNUHQId/VIvLhuWs43bzHDP3R6Iix6Q2+U+YUoXvuenx1os6kywMDp9uF - xQlic4cJ87cPtB6eib0eOGdRrMJF+71+JXnmoWwESJohf41KbEmNo/Lp1TfQb/xusCuzdtNzSP++ - tenyWny6bPkCsA0VifeIpWzjY6a4fuwbVsJUBZyRgkGcZ7fE/q64Oj+9CNQ7E+IwrLN+NRKqwPfU - MxMZrodsvNEy/eEFsbf1MRph38L8Ci4eL+4FZ9wvu0EULcEl5pQ9s1X1Zx+WSqwQvX9gdXVqnhGx - 2HfEU9chpOVoukBNCoAdby2c+dnSGu4DAWP1Vcpg00+RuOkdovY+oq0Bjgnc+MEEJC5V13jxHj++ - 4bFtX1Y1UHwXPqqvQaQwYkM6lXIEQVtesJoWp3D84TEptTc58cErW/B4N+Fsinei8eLHWUt0n6HF - Pp5T+2ZrZ0XGrQaP44shhsliMJfZOUXrx7yR848vGn6+Ezd9M6FND1K+/sQifDI3LK+qGs7pmqdI - TJMrdsfSoWzkNyXkuNjFR++u9KNA81n48Xdd5y2Vic/Kio7hTZqq9/2csdRXcrjFA/ZHwcomoPge - 8gzz+KcnFuFx9OE1LW/YVu8e2OJdAHc7vmz8f+iH4koeP/zxdhvfn5Zz8gCb3t7+T08pQ2cDVf7O - wWqPJWfTrys4dRJLrk/dz5r0mmhw9bgOe9fIASOnFD4cTCJhOYJmxpNaGVAnfhRs6GCn0hadJjjc - Ts7UXxW9XyJgl6A8lYy3tPFHXddzI0KSh5JHw4dACdB3ESiOdUNO0cNUKXzqLrxZ3ThRclXomn6G - HWC8fTSxA2hVeg7VAgof2JNHPbV9wzqXFYFD2WPP+NycZYABRJHD34matrO6APAswdIU9QSjzAd/ - 81uHzYCt0f/0tEvuMcTRFeJjisbqz2/J21sx7bPGrPh0YBXYspaEf3p4DOwxh6cHp0yUJ47KlPdU - g69BCbEi1p9qTjPDg51Zxx7kj022+szogml+q/iW3HyVKRS7gK1qRtjf8vNqWuQtiPXxQhTJtB1G - lmoBjevOn3YVwwHysckOXjRNxpezsnPqEtwNsHI2mRj0lOgXAMmAzPzkpuDH79q7Iv38k4ma1ben - r+/DhzR/3L1CAFm/mlZiQqLvA4/Z8ju7VtMAfnzlp4fZ3/OmLoiI9i7Marx3Vg3Xmb9OwnI5Owun - tTuwb+kXO4FYUrLhGexIirH8+NbV4LJ+ATW+xx6qq6knXNnvgDEYALvZRcl4J+4COJijhI/a95kt - ovdOwOO4M6f3g9rOMo3HAq2aqRI3lYaQLvvbG3hOFROs6d+Q+gD5cOPrU4u5sVqK41lEHBe5JMqt - nTrNglWIrVlV5NQIWs/H3J0B23zgkzAnDicIbxuS/CzhwExIteyX3QT6cwLx5XLWKS+JgvSHH9oX - ySEFW+P4DHpXonqm7sy+vG2ps5wFK/Oi9XypfFyUh9KZ3HNuzkYNlz6YOUmfyMZ/+M2vAxV/mT32 - cwj7cRpxAZ+1YRBD+9gZDa+aCOftiIZVfNlqkTN1hT/8yJICZtRzzBXCJQL4qbJVRQ2breGB0b4/ - P8ahoVp0KNOEEOsyMcL+RMUCBa67I/r91WfDL///9Pa2HpyFU9oAjjrTEowloZ8/YhlDsZgMrFt7 - hy6PmFmhc7vzP7+xn0PrmcOzKr6JfsioQ+XgPgC+UgviZEGvztUzmH/rnVjBsFTLlbyknx/mXa6M - Sxf5uIPAqGk17YfrIaSh2rbi7A0SuXCtkS3NTWrRL540d1J7dvWsFXY37bXpk7YfI58Uv/xKFBzu - 6Nxe1xYedqGOTU50Kz6asxmegdtuemJfrdx20YpDzunGB1iw3jUEIRjBm0jjXFdTJN0gLBXuRIwp - oupyplcPyXdaYGnuY3Vty1sCD+76JgYbHyu25H54hh2iXyGpvptfBTb+6q2RkPYL8EcDfp3HhFWx - 5Om0M4Pg57eR++CfHK4oTgU8ES7xWCn1wxF81lp8M/dkoqwmZyySFQ+xB/ft7erJ7P/4jFjrFyLp - zyhb7CeZ4aanptf1icP5GNw7sNPmM/bA46bS+z0wod3cHeLTi6IuXKJ7EFBieuM3BhmJC0E4yKFx - mKC9XZSFuCyBy3BgyfFQ7rNl2IXdn56ejM9NHV+PVoODemuxdZtqld7tUwyXpqynfWoTSndivkJq - tCJWGs1Qu/CMSqDUBcaX19dzKLT4CcxssxD1nuWUdYRdB+rvDXug4GswLhwooVA4pselK+3X9yiK - oh768eaHqNn6fGgc/PPTjn7kUJA5HOA+t3FrjExC/pcf8gNjY6vKtHBOj68dDMpixCkCXb/E310C - iWx45BiPpkp//l+2NA0+qYR1ljfEK7yCghC8MIEzy4pvwzVV797+LHYZ/TxRDr/2riKSeVZD5jB7 - GrhjfCM28KVqSfl+Bee5kHEQphX4bvMnnL3G8bJ9nmTrMN1L8Kh6wxtTtaqWoyIZiJWTC1F9StTu - i903mNVGJ7al2P1SCl4C9pX4Idi/n6sEsMIAe8FlN3+nDIsmXHywzSd2buyaNftzr4D3/h2SgOZe - +Of3bu9HtI3P0s1/AOl17olX1zrlyqCPYHhjlmn/JE7GuZKxgo3PEumaJyq195EEW3LNyenHX07b - liZYn/bTK73JzoQyroRcf/Kxe7rl2XJUngWc5lr1xNn49uQpdikUU6HEOjwpKh9tZaoBmBKRRyD1 - TKq/AjiFsCbqrkv7Zbp2NZAnymGv1fJ+0J5Fis5vUSSnVmr68SE3Pqz3A8IeUhm6rALjQUI1cToE - w7miQlsr4JPRHOuN962+07V7wyderx4jv4ewdXK5gz06HiZu8d7ga79uyp//y8SV1i9NZkXQkxiC - H7ukozMOWgbmjNJMuQM+/UBtqiGDnxTyw/fxqJgGNF/FjjzkY7kdH3KlPz3uHHZbV1P9G/38MnwP - ZayuhzM14FO3GnJ6GSyde9t/wIt197H8ivxqecjEB/LetfFTdMVwOPFnF214SQxUnxwWNMCH/k6X - vN20m1S68S/A52SZ2G18meKaSIAdP3fiUcOnPbSKAEaB5WL15vDZ8iqKGaGAzzc/WQqZX30H3G83 - IoP5VQ3mt2cgtyjMX7ws77rkQDLJNVHmwzGkdDZsWF14jHUpGHvqAzZAa3QSiUSMNKTQ2k+gPhxS - j1uMzd9KPgkM0whOwto1zjokcw2lpU6wAW8HsJCs38Fnimziha6lLgxENbDES4U962kDXvqUJYzG - NcAW0OtqdtmkBBfOGLGUxl86MpHKwP39zZEro7X0uflFQImPAMvO8ajyTP4V4QUkOn7OtazyjXfe - jtig7aDLfvPzRuHx56+mSX7Mpo9umWDDQ2LEnQ++jxiughIrmseJtMhmYdITwHTvDMfD/q6O17GN - f/nOg2PpACYqxhYyz/tzEptJVqmb9h28w4uMVVZ7hUtgfx5oW2/b+37VpbmZLeje54gck6ACK35K - Acj6s/Cnj6d7osxA0+1kqqxFrGbc6qtYKsyJOJsenUmUCaLBnycP7UsD/MXHOl/c6WXv3+GsUq1D - TzvfY3+rh/Hh1RVBLJ+LiX/tS2fTq+sfX9vql2AM3dpGSLmesV7kKaD1a2dC3uCu3pPIerjxXQkc - T5+chJufuahOIQK7tKjHhoPt0Af3khC6P1xilYYXsj65c1BW6olYHKrA5j/MsG+8J7EdllcpX48R - HHMzxrm7dVlatky08TlsFYuQUXyS89969YCuv/71k1oxT4gmKKa6HNj7A/rnPcFGcrToIt1UDWa9 - K2MlW12VO27XSmmv64s4Xp8581b/hY+ti6KMPCH71R+hInkvbHKrBWiqKPXPD8EbHlXrRcsiuOHz - Vp+L1DVrxhZat+tpAs90pGNy9AaorYE0sWzoZ3/13zk6+lgpx6yfTIvU4Jy6AY5czghp8YlEIBaD - gU01VnpeEmcJ2dl6+unhkN3pTg39/P0kj/20234/jGB8/XjkbPCv6ue/QrDjVOxu9YOllsUHgLbC - /ZsvPpd4+PkHOPNNxqE173RweDMBVll9r06Ekzi01ce2jaIH0F4RK6AiWFK86d1wzqyyhXKSnHHK - ywklxScSIAO2i8WrT0P//O8t/3riV7uokysZM6Tl7OKtXg7Ydp0gWCMs4uPmr8+2RnPIbS2yPfZw - 71vNDkR0VASWXIVoyiip7QGubPeeGLOWKB87fQLFNL0SqQ1PYHnqZw9t80usy0Pq5/t79eDlue68 - bLAKsDaO48L9yeg9LpyfDpVEQfnla2LB6h4um37+X1sK+P/eUnBeji6xz0AL+a54xaLOKZ7HMXpW - LaMci/DiLBeCr2UZ0pJlS2TdwqNX+o6hctx1EZFzEc4T/0DfbNWVuYCJTO2JiRs75OpSmuEjHUJ8 - 299DyiZOAeEzsBeiO+PdWVtm1RDopwTjez9ly36tGbgq/mMSxvOrJ9n70sLP445w3rhcv4ydm0Iv - DXNiouqQLUYpz+id7EfiRLcsHOBwecD4Vi5YvstFRgVklDCTJBvr0eujLv5Ni9HM3TF2YrhkPTwf - YhDeTzuPRZdCXb5uUKPJbqknniKQzWw5pSDbJMFzfyeAPPxAhMr4YbHhjW/nuxx3PuhzwfbEktEd - pusrBhrVOcRpfXkBbpVnEfXm60aiU/5Rp1S6BtC89mePe9ZvSu68B2GVTS3WA8iGtdN3HNw/0JkE - t7jPlvddb9F5b+7IXVoO/Tw+z9vvN6zHfg+WyiKzMpD2ThISM+8dHQPwDMAiqsH0Lblrz377C4ei - iWemmbwqh1oi94Ba6u6xXZyxyqN32cKhyD1v1r7bCeRT6gGhaRdsVs/QYdNHGsBE5Hx8vKxvdYGT - JCBwvTbYnLDp8HIrxUgN1nLaq42pLvMYGagUhZH42/O4eb9PYMkr4UTTpez5XE9T5BV1hk+nj5xx - 1tYIF6/emeg24fqVXEALz8hbsAvqSGWNoLCR8v2HtCvpVpZntj/IgTRKkiHS90FQhBkgIiAiXYD8 - +m9xnnd4Z3d8zkJIqtl7p1JFMmweXm7G9UehgWd+r8qFn4CusI0V6GwXhTgkuWf8YoYz3N6GM7fD - Tcy2ZzN0sLWTgkSRIIGl4k8QiPy1J1a9DTVFdrQgzjwZ5GVsU73ZuenAo5Lf8dW1j/YGjbsC1FN4 - JOKlqgB9Ho4LHIJxI+6p6rLFxkOAHkb8wv6QPEPuO2AGdg00yW04zuEyx8cbvAs/GcsmSilNTFCB - Vn8rOJGsKmP46FZA7dxcSTxdLwNz9H8CbOWuJ8HRGMFyIt0NeG0izcj9vMMNJYsFr8hZSaZVlE5w - NgQ4FMwD6+yF1KMk0B5q5/aK7eV9y2h4ClvkHf4ucjkL3cjhZ8D2yUjzqogJoF+mUVDsngguEg/V - 6/p4CKi9zk/itnUms3/PN68y9LaP+QKL2mED3APt5nl3UxnW5p5zUNJQSHy2x/J2M2wf5vb9QkxK - TtlSr0UM+MO3x5KnU3mp9kbuVnDzsFricmDaZ9bDc3X8ES0tT3UvMp0PffK84+cU+jbHahEDBlpO - +LHHlyVV8xTuDouxqNn1qv6EFjZDfCUWP6l0+XyUHDmyGc38JW6Hbf7cA8SNnU+MZ6RnTMQrFhgd - PSeSdErpajzLHi1dkmMvar1wWT9rgJbDnGJFNAV58eBhhNGnf5BLcLUzLtHOHKxOhxJfPpMU8mBh - GjAl3AnrlmIMbBq9C3g73mySDZEHWKBmKRzYQsDyfeDCRbCkCsQC4xPVXX177K6XEVrBsHnLKGo1 - fZ3FFIUpdPHNBV1GScxGyH8nNY751A370lg0uK//vIppY3NCcQ0QcfzfjKYtDJmSPe4U0PxhTUZE - pvf9iPqkCD/sq9/sb/8saAhJgouYpNl2sJtFeJRHTNzjLx3Y4ikyKLjTN3GikAUr9+QDlF+Pjcel - l3u2Ng2XwygpV5xM7VivkUmqszWyFjZdFAFmZYMTxLb+8KrHmtXkXNg+HD35t+eXJqPQEkuUHNKQ - 7Nd+7O2pdilCwX7EoZWfbG3cUYJsDr8kkB+FzFDMarDM3hn5yw+Usr4AlY2SPV5ENRO91vHcH8Sc - vFLrOiz1m1mAaosCvohnPWQraaggV1bDPLDfsl7q39RADsjfedy/jxrmRUDgt9jeoaDu3+zPBe7+ - jtUwiwdGP1cO7IqfRQIut+j8HmQJHk43gm8fkNVdNl9OaI83uHCeUj3bNz8Fp+uDEs2wPJtlR6sH - PmgB9r4vIq9/8fpwb77k+dHWbDVbMoMg5G9Eya/U/hTNuYNCLhKsXN8HmZZZFkPREj/E74XUnj97 - CYsgF+JMi0ccDiNNO7g/n9jH689e2oMfoX/5IW4Lmwumt4Kq6lfNJ6jhml+2i4N++nglEnN828uH - mRXgbLIyCyYtBspVTQwz+dRgS6zFjCNaKkLlAG4zc30f7PVd+hW64IrFzvrssvUqmCJcH6GFtcfJ - DJdf8IIwEyULq99oA9uw+AeUxsDH1pm7Utqstxg+3z8XJ4fXFFKvShtk2PXgpds3qZm/9Xx/bz25 - C9sPNGyKWrjnF6JOIhi2FxkN+OsqBycazkIGf0Yf5nr+xb500eSFG+MOXnDJkue1F7JlwouPPLy9 - cKhxXcY9GCOHdotZ4g8JyjbOiH2kK6qH40DH9vcaGT34ZqpOHlyRhNx906WzKvuadxjta8ZG5reC - x4Af57W2Rnt7xdcZKniWiNlkekbf9nmDp7+Gsh5XhtuxWXpEolzCf/mcHvIzA0/O8PRO7Xsc6L4f - cEOfO44+xAfMR9EXVHSbRuyB3eT12HMiGmMsEfPlv8HkMkcB/k78gvV2aMCizL8ZTrITYYmemYGW - WRijrdYSkj+rWSYKNTi04xsinTQ69GI4NH/7S9S72IV0rFcRvW7KAVvFeAwnNv9J4MYaFD/3fEOc - R6rAFPxicjkGH3upFtECW05TbDnRjc7BZwnQg1wuWAdqla1CLaZI3w5wjqdFAbx3/kgQu5dmBu+x - Dcna+zFSLntJDJruw1gthgGZR/4gtqHLw9qzooJU3SqxlRqyTB/erUNU5d5YD/eL7Oo9Y/7woLdY - UydTjYtLCEF88dbgOmTdWw96uF+5947pjwGDSd0e/PnDul5ovX4vgQabFAjEfru1PO7rh+DeKPcQ - tV7G06lT4Pwr39gbe6ZesxMTo0uGjsQHNAXLu5gUyH4tcaYZ2SsRghWijyQxHpheKe329YEC83lh - t0JquJoPTTnt+c37Kmlpr5n48fdZtR6+4XiTt9vp3SJT6j44ioQKbALKq7/380IrP9jzK05GYH7i - iYhh0tv0x4MNLkvXkachrnSR6p8D0QEqxEG2TLeas0u49I8fMUuhr8cPLE5AWg/fWSiXLVu3062B - ZzZ28W2PL+smqgWMxIM0o87owUzpVPzhFaIe4uMw93pdwMF6tUQ5P7aafu8lh8YgzbDGdddhje0O - AkiCzGPvh5lOQM1i2H1dgYTUP9vb7j+wSpUN64TrbfK9lwyKrmFLvG3WM+5UbTHa2gOdmeHyBfT5 - /UTgd2IXgknFDpt5NUZ4ZlPXo89kpWMsOTO8WfYLOzqy7c3V1P3WkWl5H4f+BvodaQAN93nCMnr3 - gN6qRwpd9ADYVLZ1oGNuOMImBQXRm28gr1b3s/7hi+i0D5LIA/GGFIZAYnq5YBP7oFnQuWLT88F8 - AZvjsgxs0rOAnez0CZdYckbIKiQnMlQuMh/lpYj4VgIzraFOOTs3PRCY0WPe517v8Wgfwd5X3Bw9 - ktZeq8A14CberuQK/QH8w3d7viL692eHvGxlNzhfw2he8XyX118GHXC6ipik6OENW/MwAtgnv4Go - wvajc+xVHfy+p34m55tiswr2c/SR0QXnz8qTV8CuM8ScMuCQ9HX4y1e7AUL3PGM9nFeZdlgLhL/8 - W2yzHrLNSAKw7x9xAxPVdAByAe836Y0d6yNk20EGELxKr8EO0whgwU+QwwssIiw7RyabdfcswrJe - vt5ZXWL5+7HKCIrB906kt9ICWrWZAMEwxlg94ZBOfoks6DUFSyK+jWVi+MIITitjkRsfvurlEngW - PLiPzOuL8RX+w09vKzHx/e3qNs8aVgBXgF5EOhoO2OIPUuB2fFck1k4cGOX7k4FvrSLYCZ063Fji - RLB5XMrdvwW6aPGnQkIuEWy19zddnsaowXv5GogbLW29HP33Cd7h9y9+scNG6SeHitw8ceb5JJsy - XzuB00u5YG9dRLDzlf1W4kf01utm2PM8eRoMwWYQ65i9M9qG3xgORp3M7XIw5YWcGQniaxoR2UQC - 2HRNdGBrPq9EFg63eh24IoIPdmiIOe5DPthQ2eDnAG/YgolhL/znoMFl6Tvv/D6t9io/TB84z2gm - Rs438ipukAOu4+RE0dyRbm1lbPDx89KZPwyxvNFb5YHDdXaJfuF/YBJGXAD5bZ6xyrppOLFNwvzD - j2J6OWd//Ajal3fpQWTLgNle0QilLFLmrfnUAyVla8Gs7UdyUcQzndrOs+CJLg/y8rgyW66nZwtI - VEjEvY0hWLZXNANNST4Ytw8/pOCdHpAafvt5Vogu8+ypbKD8ts/e4RX42RqHyXJ+K02Fb0Awar7M - whSF0iR5hPevNseoRgO5ID/he/Tc5FFfzylcT7q6lwRdMv78YRQ4La8MX3zmMqyeFooQ6aw9Mzfl - lm01J1eQT8Cd6ON9GmbiSQwcy8LDuqtJMreWcP+e7TGvx9XI6JHPINjtnQRokOVlK8QcRq9H7K28 - 2mbUZ2UBPD/1F2sTJMM6zJ8S4R9S568UTfJmA6eAfig53lsGZT3ebqsH9u8jnpXggU7PKAd7vMTa - 2dbBlhxFCLdi+mLt1SpgetrTArnoEWD9HpZgfCQvC+ZdUBHn9ujoUo5LDmx7PhFPX8tsrRL2gJh7 - aeHERRxY2mfWwbzzKyKmlySknXuSoFwyd5z/yEiHe+MzMFfLFMuZr4KtKVYNfcMoxO7Fh2A8L1wD - RPbxJDb2WLpl1qWC17bB2HF+bjg19xuD1qkxCD6xIuUKj+T7qCgTizt/XrLZFCBahGDe2Zk8IIAU - 4JVNhsOf7oYc+81KCKUbwKlJD/X2zAUOtFsVE5n0dba6k66g6eKbRPqYRzrXCEbA+fID1vvlSSdj - soJTkfclufzCfUjKKrWQmiOY1/WY2ovVohGmDu3nJW7wsC5TrsA/Pqj7LjMsFve4wffgKkQ5JY68 - MG/fQLErECwi3gVc0/6EP3xITL+c5AUIJQecb6VjuRS8euumSwDYtUNYvjtUptKqp6BgsY8vteXI - 0/0hnOBTZAMs7vmGGufSQa3a8NhZDqq9VfmxB9+T2GHrItXDmqBnde7Y60RMyZKy7Tp8OzSsbUn2 - 59vkGhkdLDf7QETLa+hy7ShEu740z+tS0vXDXSu0+z+x36MWbu3v3MKDnXlEt2obMENuOXDJYIAz - 7LFgCcxlhju/wfZ5TOrZ0KMCOr/1hFOxFkPWbMkIvokleDAKWbogtJR//j9D5+dmS2P1N6CJbxuL - r9YA3LD4EDGy3v7zn+56ejaQdwsbiyi26uXhxwrc4z9+xOeoXoGrOHBTvIEo0+8hj5IAejh9T8N8 - bLI63Ko6cABShQO2sXcH27U+cHDWlgSn8DSES6uZ3t/7eIdbfwmpHu/8MMUjdl5FJm/3M8+gA752 - WPzemmy+YUaDyCYf75hPOuA/VncDXT4jonZAGjgccxG0YUWxnsQJ2FXbDdr4E+DLNVQo4fqnA0sJ - jkT9spy9TbTsIFucGK95aO5AAlHJoXc4rt4aLHO9+X0SA+dHT96ZvRnywvxECM1vJMwousohZ0ns - 7Y//EGNln4B+P1KOLnLm/+FxwPzlR86xz0SUSjObn03dISLaysx5nkhZs+CEf/z9eksfIQ9D3EAX - ZDPGs7o3IaRbvt8CBN52rp/ZqjtuA7F8q8ntzUnDcj3dG/i8OzJ5fZIf/dOH0aW8rbhYF5Fury+4 - weZXKMQdrEbeHmAN0M3PC/JwP2q2Wt3bAsdM4YmTJZW9RLxjQQBliN1z6dE5uwoRxK/cIIHytAZm - uRUO3PUpYuc6R8njsMFz8io/xE5e+sDxgsKhPf/MR8bj6YsHSwBQYZi73vPNllgIGUSQ0mD8dAa5 - H39c+ocfZvKopHBB6juGveu8SRLKtTz3+lDA3X48JjW+8gjAUQEHLq08PuGf8s7XR0HPo4QYocoO - o43rANac+/nHT0m6vUVgepuFLVLq8gLk7wEu6nDzgH+TQraHp30QUDrPsJ1oSC7HdAPnBnDYTfaS - wIiEEQT6fuNdbdyQ56oxBa/Zj+amun/odh1ID7vmYGJ9O9XDGPGOAbKSU3c+I8v9/BwLuOtHJExX - aaCWc23g++fzRN0+g8zctQ8DhVSr/vgk3X4fv4AsWiqcPAxob9lVuME/fCynq1QvdWof/ulHpmRV - Ifl+rALq+rGb1z1+rnlytuCvDC9YW0Rp4CfNEaFKpn1QqEXp8taDDojjNhEtV7twcau8AX94r7BO - G+jcYDv86UMejb2xHl/MLwDJq/oQye9/4ar+thaKcQa9xR68YSzZYwl2/kRCYpf2srLpCfzFP2/q - gDzngFNgfu1EnP3pPU+R+uBwHV38Fx8Xnn3NYG8VS3zDCuzle5wbqDLahVyen3zYpGO3wB2vE30K - bzJ3vT0dqKFi+NOH7F0v7yEa3yWxd/21J4e3BUl6y8mj37smXLIqBgXKM2LGXlfTJ4kM8OShTYyP - IoHVLA4n6LlMgIPTJ6Kbar0jlPRyhaWzIshUO5g3OLJGTQz9IdhE4+IK6hwfeUfGe9A1lk8WaKZb - gQO2UDKO3noPPiaNIW6yifaS9IIDu46rsRWcLcpzmyeB1007EPmnT+FUMFkAoVeUWOmrpt6i6hPD - a9NJnpBpv5rOh9ASeDmgRDvewqEJ3rKFwne77CXe27AV3jeH6kQlrB9/h3qr7x4Dh+H6xo52VOoV - +dnpL98Td75Gw6L3Rgv9G0xIXL+oTMXo48Pn98l4wq4Hbvv6ARmFxd63sJSXDywEoGwr+U+ffwlF - D+XbSOazX7r28hnZ4G//caH4NV0TdhyhIOcisSzXAJyEpQJIB8XBCkfkkHFty4IcuHyJpZicvGDW - PZ1TfjkQ5y33oN3zFyjWiMNywWXDdoSygliflzxaZkO40MckgB2fe82u9/VSRH2oeQ3a82Wbjc9f - t50sXqyxVbi5/GuebicIzN74HJ+PdLxY9whN2aoSN09xuJlXcUbc3qXNE0BrU6+3YwA4fPeW440f - aLlNHHxFso0vhfICs66JHiTt2hKFY2DYW9ZsgYb4A36KAZfR+SvOyJM7YWZj6U0pPbygAFPQe396 - 3tbj3P/jd0S6+Ueb/NmjHCwVLpz9istbMQ7Q/KQT1paXSllRKkqY8tthPq2RMKypt/T7HdiexLte - tZy0jYEna/KJGGV1PUVil8NP8UIzd3IvGZN/vxE07PeADf2R2hu+DAIIbL/xjqI2DKsTjBAWwdPw - XtzqgtXEzwAW9CrPJz6dwuF5OG4gve9HwH/5Oo/dGRijJJFLiK9gVAkPwa4veiwz8zK1blIssGuP - vKYp1j3epP2/85TLWzuH9a6PglwvvlhpEGsv+rrGSGg9Y3ZWaNeMSKiFmvPa4fuZkUOOcEsE08m/ - YCdDRTbVw1VC6sCxGEMhARs+AwkGV6DjPd7a/O84NuBySGus7fztT0+DqZNrpMjWsF5EAgxgKs1G - Ls9SHpYu3krkxxydkcQ6IfNunwLkXwTOx6dj21uV/WJosVo09/z0oVO3LjGart8JY3O5yewxu6Vo - tnqKzWT403PyBs5TCv7sMfzT42H5fHbepwNSvbL5W0L308xhmYnU/bxka+Bu3/gPv/JeL8doGUOO - SPR8q2e/KhvUKYZH5KCRAdMe4hsUuYOG7UMoDYxYJhVA9vTB7vDTw0XOTjFUfPmLd7wN2uF0Wf6t - 78HNfvauJ4p/eOePT2QLOUMRDGhUsdRjR54vszqC2+on2G/WOZybYlXgPBQz1hMe2dRpwQgrVtP2 - fHuvuckCFkyeTUziq2nUzOCUzT/9Sz0zdfinvwKlKmxsOWwsb6wWcX/4neD9/Hb05OsNTYe3i5O+ - oTIZ67MENRKfZq5Z+5DmapCifX/JZT7pNd3zOdr5vbcdfr96qd9wgf37xOPHft62lLM2wqkRr+SV - GSd51598yFzMBJulYA1buqBW+ON7VqaZAxeF8vLHv/Bl1wOW8fA04J++aek2DrcolDdUfM0nyfrY - CMliZiPcaiUhtmDndPXuTAdfyflDbJ9+hmlOqw2xX0MkER76Yc3EKQBpyj6J3HV7iXXCQegt5yO5 - WIozrJdwH7QZf02yxxdK12Hu/18lBaf/u6QAPeWNGIZD6PbrxA6tPvl6h9ry5c0d+QryYWdg6T63 - Na1WtULRTE5Yz+Kqpm50S1FSPWyizfoEulS/5WiVDzq2Tj1HVzY4i9DTewa7nuvILNSfJdTHgJtP - Z0YBzP7/cDG0yEvUVcioEBQiEMSjMlfx70PJSYxa+M0NiMNXNNuLmVsRdGsDEWx92oHq6QThb5zj - vRfMSBfRywuImGTE+hky9uIxbw3NNB2w45/TkLtWWo+ORMbEVLa3PV9jMUV1e2ax9jLXmrhvpkLK - M1KxupzrgeVfYgoW6yOQ59WwM/JaFwtaEVmwWXwYuozXToKlxWoz956WYUFQUGC1bTl2j3o58Fx1 - OECmFDlS/B4eWGVFnCHshISo97dl03zwGTjeyRVfVg+HE6vHArSDz5tcV49kS5vqC+qAVpPn/rzN - PxwgOKT3hii6oVBeXPQZsZduIEFyPGYrt/gtmAYGYXWhuc2WOuehxZEBsVpeAmPQiBZKzNrHCq4q - u1fNwQedWczYVrNbxkjrqEGuEe7zANUj2Oox9WB3t4b5XHjMMObhwMBPqceekFVttqqRaKGn0BsE - P3xYb3GsStA6zTJ5ddle0qCEJ/RoOwU/7rZiM0FcSsj1firW5JQHK44YEX4fzJlkNDWH7UfLBWVd - P2DXT3vKUvHcQiMTfzjQCwtwWcz4AMvlh0TxZ6PrKSx96J2DH3a9xsn45RF4cOEYk5iqeQnX2vjk - cGvZkMTmdRlWdaeoza1RiVoFek0LvnPQEkQBSSRYDYMhf2ZguYDFppqmNuOKpg8did49ARumPOGr - DGHzyHViSY9hWCxLsBAzNwy2nnFDmfcqdJBDIybBcKjkpWsfBpTsqMP4Kh9kasifEX6Ee4jDt+Da - bHClDnzRl0sUfJbCEbyCEiXm2ye56j7r5VQMAYR8ERMViMIwWsfkAFmlnMiz7bWMu3yaCArJdsDK - God2f5DOHPCsisMiwd+Mfs0xgv7BMuaFmT/1Nvv3Bea1kpHLFvryqB+qETXo8savuj/TxZ7NDXXW - iZBXUleU4TS6AXX9hR4dFjtbL9vFA+wz+hJlJTRbXqlsoeFIY+I8ex5MD3bTYHJ3XYLt8Guvrdz0 - INLHJ77P+CkvxmnrELXvlndqAhOwrZnPcO2PFTHlJqtnyWs0EJBPiOOlPQ6rY40dWKVSw8k3CsLN - VKoCWIKlEJepL3RfPw89rpR4mzn8hg37uoMaTMhcfdI6+6pIi9ByfkzEvMVRxinlUAHL/GzELrAH - 1n1XEE9uCs4VTwkZy+89qH5QhK8gm0AfzoUI60IXiE1XE3A+MToBPVMfe3bGhetZihVgvKIRm/Dt - ZkwxhBFs7kNHRAEoNr8KPwZs8vok0qtRKK/cvB5G10OCVSEQ7NXI1Pb8+Nkdkbo2CzfngGeoinKB - dQkYGb1ewxZJhHnhK2N69cr8zgGwVe5CLta3BMzkaxZ65XpIHMPIKcPF9gFapO5np/Q4ulqKeoOX - Yz/guFBtm78kuIDLYDh4t097S9ixhXDkD0QeEtvmDN9qwGM5ieT5rIyBi4PbARls8MHiS7DANlzF - FPapaOGX3RzBdn3uVayuJuILY87DZp6tAOZpUBKPlYeBxNxlRFhSGmLQr2bzhvlc4GKaZ+IdKnNY - izKO4PwsNmyciGKzopwU0HgKAzH77kr513qyoKx7CfY2zgFrXKwcPMu/wNuqJK+5vXeQ4K+iTfIj - JnSU05r7i58ex2O7Zpx8bVFZuSKWav0pT8q25Oh6ryQPqu5zoE9jKVAkZKwnnMmjZmAopHB/X5zI - IAMchEF+BjdnJuGELHuLneb0937Yld44Gxgb5/BoHxOsCyGTjflLPkC9Z9j5zx7XrD768Cl0Bn4l - Qi2vezyGnjD3xF2PEl1B43IgRmxIgpme6dznXQXNhZ484bdJMoN4S4TkGGTzsRrKYVHHIQB7Jwwi - HhoZ/Lp7o0D7apfEfdx/YGu3tULbJwu892tk7M0/cBBGpyMzD+pfF1oqNQh9Owc7/vWdLd2IPXC0 - 3rEHNzYYtls3QcBcc35m93iz788Nvg3jRGT/soL1yR5mGJx57B3zOB3W6jWN0DqNMn5F5zxcswI7 - 8Mizlkcefr7H/0yAd5S/8bPjP/L6WCwJNN51xkG1wP37VQZpUJWwZTRWyI7HTISP/vsjf/mTum9Y - naN+Cb3mc49syti4EP7s7anMnswuTG/A79HbsClxwP6zN8gtTUAi+DAHdnOuI9rtDSeSV9n8q40l - 0NKHRB74/hl4WukjInexxLGcBfZ6q4UeiqpskN0/90FF7xg9r4yHL58qGOjVHqrzch5tvNsnYBFg - b7CQRIkYTfCjfZEMFeizwp5beY3l5c/+gFGtWBON00AfriSiy7pXkaNXbdMpz0SAenPBQV08M0a7 - DyKyNdAQE39P9XqUbiMSWQcSMwvZ7L3jEZSE1MH4cXjaVD2UDqh+8I2jpsNg3CqGQf4q2eRlh7q9 - EYXtkfi6ysT6ZRe6Srhj4JbZ0SwYTZ9NifYaYb2WeOazSxVuae/kQsqLHM5U5WbPR/a4wKdmXedD - jtZhoLGZwy3/PrByJyJlhjm+AV1fjjjocGavRTNX8KdtJRZTZRyIpzoe3La3T4wFHWlPFNSBJUxY - ouBKspfWuhYQedx1PqvmO9vXt4TZWrTYUcHB7ixVUtB0OgDv/BOuGc/OLwUm5GkQt9S+9cax9gmW - SaZis9zosPBsXcHXJjvYPs6vcP1hRgRvThiIDvkw/IufcAkzlriPsbfHv/gZsRL2wuVkZpwkyxC2 - /VvHTrux9cKDsEFN/O5JInmSTdn5ocDBVUTijFcKtooXbtDpJpdIwH3Im3t6dKDfOBVrocYM4/7+ - 4NXeMZb0ogeUAVcFcokXY9O4n8OlfR0Z4T6fKvxQue9A2fPRg6L80bEhqM+BWtnTgy29SzMb3uyM - Yx3Fg5ATHyS+36Z62df//CjASBTBXOp5vboi7Mx8JgEP+GF9XiIBvGdtIZLO2jb7PSk5XIebiK0y - bOTl6J1bKE/W9Q9/ZIx8A9u//CVX1ymbRn8IoK5vRy8ZCz+kB+4mIHsOn1hxvrI8UWDmcJW/P4Kj - Y00JF4odit3fi9wcXwJs9vv+hz+2TyqHZCOXEenEOJH7SzRsFvWTAZIzUeZdgBmWpyGPYB2TmmDX - /AyjGaU+1OrQwLj9nOXZUa8z0gMJYGlTk2zPnw28Vr04c/FnA/TEcDFQlNLGmbrdhuVe3yuIxCDE - BkcP9uZWawAZ3QMznZAlr+q786FlXyh+PQ5PeenlwwKDEDyI8Zx7sLXfawqb9yh7ozeCYSxl6wQJ - TBPi/rzP3uUq4wBaBYMovHcN//wVmp888SgKtJpzN9KAPGZe3sHeuGGs79YNytf8TrDLt/bSmzMD - zMx5khSG3EClsdwQ51YZsWoo13uzoAishSdhMeRd+vVzOsOZxgMJ9/2Zra+gwUPiX0jh10y4Bs8s - AmxffIhoEd/mNsEZ4QFl6R//sqe4+QkQ9lGKPS9iawLY/VbB24iwNJ/f4br/XUBp6ZFYUFFNhVjT - wEMyXJK2vESZYrX3rm85xH/xhRdiTxNWFhce8zL4bPtNy4j++JfxFq2MKveuhPPPIPj1K08Z7Q6K - AR6dphLH2mp7Ta48B7fMjIiclIRuO/5DXNonxJ/fLSXhfsTWvB8fYpwfT3lmrjCAvA5t4m5RbU/r - 83eC6bgI+D6dIFjnh9WAiMv9mc43K+MxBRAKx5Ej96Dt6UTJ+4Z2/Iid8ciEe/yVoBfeVvLKY6Fe - E31tUZ9KFnZ3vjejT+rBP3u17NcvpPOx72DBf3KPE414oN3WiABJK4+97TUOW6CdHLDzRw+epTVb - hlPRwvMTuPNhM8Zs/OM/pJyfRMrrIlsfiyQidJlvHjOcGUol/RgAyEmPGX3gB2ysOCqgmRmRxEbt - y0ueZALkKikkzni8hStRhRiMp1XHirY2w9bck8Mf//LeO36l8nKA4DRNCdF6dg7Xe5yW4NJy68yE - 9oVu6FVZ8G+/C7++Zf3O98Gqyv3uzzLdPPsswrpJr1jq7lVNGfURQ1Q8qXeWGzBQthdPaD2ppXd8 - HJBN2cZnkK3EIpFAw2frt4UB/IovkVy0w8We32mwofPr4RG96CWbdWlzg9ZB/80Qyxmg57r1YHxB - NTZ3vE/kwRMQWut+5jVXpzT6bRHc+cGOT9JhfjyRdvr7/4KAqaaFLKZoboNpBqdKH3i9jETolTnB - 8YJf4dR/hwreUofH93MoAj41TAfWq7lizfSjbHPUZIQSPDznc3zh7PGNgg3pfisQW917SFnZc+dr - Txfb9exQ/oIvHqqRZ2M5gAslSf9r4Gh8Q+Iaoltvw/FkAMv8bt72Ah97Evk1EGpGph4/2dFAFcW/ - oVFwDW+bq7dMH4Ggwe7cV0Q1i8mm4bOHcMdj3jafLyER+0cP4818eGsu34a+Pb0bYWK603w43QeZ - /v3+EZou1vDzRunvKwt/9usdiOva3ZV0Abh4EkecayTZdIqqAwJz/sO58UL2svgohlmvjX96DqWn - pfRQnbUR1o20rZfJ1wyIihfF0qtp6HSP0wq6APJYjI82IOyZ9+CjU1RylztvoJdEL2CYn1VseWlX - TyU3QficSgtLzVjRhSGK88dfsHYPafgLHNsS/vzDsfkarL5g9+D3YyIciLVNGZhUOdyOg4tVYxnr - 7eBdIejCuSfW9yNntJFVEf3lQ5umZj1NVBBgk6DBqyFow224GjHcv4co8zMEv0d/hcBox5ZYj3M7 - kO7gGMB9j5A4/vEN1j+96izhKxZJ+x0WRR4aEBZ3jRjHXpa5NUIKXMItxJb0sAfmoU0e7PHm/eEb - mT705AD92PO9Lf6puz9yEEqEe2EVNUlNuad2AsyJW/DF8sVhvLLxDQoiUjwE2LdNxf7VQXQUVaLM - Gh2WP34hT8YVS2jl5N+1luM/fjqz/LPKZuMudIgS9kKeh2UvGbmprbDzPRI1V1wv7f3c/OMXbJMU - dFuqpwcjfX7u+MEfpkd/PUD1c4zIhZCrzbjq+QbnXFrx5RFEYNEtSQD/8DISIZg5VhagBX+7JB+W - lGbwJ8GIr6kH7TSXN+1gK3D7JIHHvF6PYfPP2gky14LHSmhfANOmePnL70QRXZX2gRrdhOUx7YNV - ii1cs9dPgYXfXPDr8YV0PRrKBuRh9onyMh7hknGKB3+zlczCni/5qEgd6J39H05rWA8r6icLZl03 - 4PwZPmq62JuGHpq+eXwWSzX7SrwUtuv5grWhnunCBeEJle5kEOnw4uoFfKwW/vkXJ1g9oEpyGMGf - HuCwywo2VqAQxpdjjd3UN+1ZSUEBk2jwsBiW7rDUd+mGLOfFzCz/EMD6ctsAxun6JJ69cTWlX375 - izdESh5ayDe3uwP4ctGwTWUzXPCzZNAyNi62rmMn0/jyPsFVP4/4D8/TY88syJvaEZt/fNU5vlt0 - Sz2eOA+hBH/2he5l1HhHl9dkNg++GtjtCRepFITcx1wZRJOziXXvoIbcvv5wE0E2r+g4gu19q0bk - Z0pAcuWj1Et/LEugXDpz7vpXF1IhiCTUKl+MzUah9vI9Xxw4/yxC1HfzlZcg7iRIHxedOFdfqOfO - +mnwGsfKn/2B5bAmB9hN8IMdNrnW0x9/IAeAPP56Vgbuj3/UGT4RqVpySj98w4Fdz/BYk52y7ep0 - AQKg+XpM3Jcydb9NA//8WXWk0d7QTRLRpJ7V+Teyfr18sncPQrV25u1gROE4+Z4lxPUnJvkvutUj - 9KQI1q74wAoTBuH6vBQneMkblujXc1MvpFJbgDY0EOX14uuOv9gz4LxDTqwyVOx1/Vki2Lba9078 - u6jJMxV7hLbj4PGm8ZX//b5y6U3s/Ol7chmeYNh9JYwtqNHlIsEIJuHqEKnDQKZieykAYvlpnk7O - uyaGPM0wd40Ki26PM2qOnxgIq3X6p2ePp15OIRy2jPzpkeul/SnwMw/Rrr+0MufdeR/2a6qQS/jj - ZcL4fAUZo4fYsUt54DI3N+BtMRZifN3uP71nlSoNq/xTCimjvlKw40+vW/Ar2z7KZYF+LbjYKT8P - eyvXTIS843vYsXmZMt/zxYMXUTgTlyp1PQuJxZ1Dxj/i/DfdAJUH7QRGpFoY+/fn0LS+WcGF6OvM - CKZfb+hmSTAAV5/IiYmHZdpnWe/7R/A1PWSEuVwc+NHDf/laJlEj+X/nF1jL+M3ujG+Vw/ana1jM - r0PW7/o/IOgFicqoYO9V9nSgo+CISFWS7+cJnwPc9c5ZkFVH5rD1Mv7wlvfDhxiw6bIGcPcn4qVL - QJdzTB2wBLeAPBaGy8b7T23BbW1WD+x6C21kV4J7vp+F2/e7D87p/H94JHenKtzabxJDUlmFt5pV - KdNAyHyQXfxtPj/5W0bbFFaw7WvdO+PDic7Pj92DPz0MO5uasVmhezAqbWFezUqU//RSeKulbe57 - Uwp5N1cKoPwkyRPOF94euOoAgRVNCxYZ8WNPNVJ9wDLjm1h/gyOxGAsw65Vx57uVvD2XekOFdlOJ - egZnOtDvcYGuqOtYFh7fcD8fKpEdfN/e1kowpKrE5XBojwUxy4yG9OakGwhOiUd2/V9m8gaKkAiH - GDuyWIBtFEQFNA/9553331u66afBe6R0JHmXjLzNGRKg+UWIGEU+hGN/PuWQUTcBe2my1Yt8o8vf - ehL3Qj3A7P4FeybQdr1gDZf3unVANvrU+6nl/wAAAP//pH1Lz4PM0tz+/IpP79Y6MjczM9lxM2DA - DOZmLEURYBsDxpjbACPlv0f4Ockiyi5rSwaGobqquqdbrugDeT5cDDAQrMkfsFyYoBHRJ5iwk90P - Nj18Yw8d2MCYDrVG1WXzl6GkfgxiHLlPRaUZT+Kjez6mYfMn1iljBYC/+Z2c8E4Ak3s/uTC/Jg+c - hTevX7Z4ijY+TzQeXugKYZqDfHZvRHLgBKbmc0kOkQm7SfguH7Aqqr2Dm/7Dricy/fgMHjFoPt8j - MbPXoC6cXDAwUyaKNZR5NkN1p4RXrV/IL1+yHGPTgt6aO/h6KbWM5ospwCltZoIbV6BDP+xyICuh - iP2NP4xQHnMwGld9Km/7fUC15zTD+GQ9Jhq78zaIXHvAwgmMPz9qqFTRhLNIJ2JkRKFUfuwLsOHb - BLP7zV6tsbPgSwgHbGJjomTTh6AOm6OLvu4xY5+nRIPz2M8uoz6P6spXdAKKqGcTOh7dYHi+Kx+i - T+cQ86c/1UYYwJZvJJrIX+zpeKo8uMvo2z3YY6GSn56Eo5tPRVCcq9WjMQdiATG/9aSr7S0MujiD - Me0Gf7LnrzfPyODK1d2xi6NyT97W//z+fN94KtPt2xJsfgtWSlOlNLiK4laCXGB8Y0D/3fJ3qCVJ - g++7W2FTZU2Ygyr6eOPHekV30NlBlH0WctKfIl0vpd6CLhediXtkizp2Y1CjTZ+SxL9NwVqtlg+D - ldlNME2EYP4WRAOoJcQ9HFPRHhiG8WGCjQIrP780uckrck8ai28DO/fLlV01NJPjQvTk7dOv4+UT - tERTw1qsy9sZk1cDrzSrsXKTGnX+mPsa4k58YOvoW5SRQq1Al1CTSRAEF3v58fP3iKMJZroAfvpF - lAR994c3w4feTMgcZxH/+PZ0/d4dWLZlgc/DSavY/kVztF2fPFbOoctgAQce61f0H7+9i8AArag7 - 4+Mo5HS6xE0houXV4ef9nmUkXyQBma31mcTQM2zGsBQB3eBbJw5WM8qTyX8gIJrNn1++SnCowYbv - xNryc9z3kHBAscMW6yEM1Bneuhxgb+syFb+9agyJP6N+vyQ4nDu/X+rlbcG29L7YLuhIxzd2Vlgp - 2W7jD45NjsgNYawxGVGlKLKXdF48uPFrfDx0L3vDBwfErITJk8RctXZ5USD9+rZdlmfKnkrFJYVe - XgREzbXpD+8QsFOKzY4ze6K5cf17/+Q4l2pAb/VSoh+eZHdhqgYeZDW4Bz6eGP69VOt5uiSwDiyN - mHOkg/7BFy5Knx2cavX5tpeQpCsI+JM8MfWOBfSI9BB2H9OcDmO12NNcbvzS8VwSmjs1a518qeH/ - T0nB4f9dUlChB08cIe+C+fukA/q4yRtfMJ3U+ajdGwBH6Y4d7TzRfoolBzLW6+zWfMBXq9GqMSKs - bxLb2L/o8BB9C2BuwESTL6HKsPpco8e9CHHuNJjyjZloqEWPyAX5/dXz6uu1VfV4A8b81mhU0AcR - qgq6YvWUm8HyfugxPH3PR+xJjdFzh3PbAuj6HxfMZWGv5Z3xAU1rkzyA3QIq948G+KN/c/nusoB1 - j+xEvIOd56JibwaMtjIpao7b4IFS3Nu0KJ8mjPQLwnqLin5hD1MDmeF4IaoNKVj4K9jByzGziLru - 7/2yGyQFDXWY4nuQssH6Ii8NNc+OuIePaAP+82hMeM0PCjZXO7eZE+MocP90I3cs9m22flczBFVl - hOP3yo7BcnaABDlnlbB+1K9Z32cmI9KTopGb0lnZIpJ3iPLwKJNQXfY9Le6dC8ro006wunzU5SBy - LkruDiR2WaGsLTbKl6e6j81cegEecC8d7U9njUi3pevJO7mL0DQiA58eMleNCRpTOJ/alGCeHjP2 - NC0xou3+hJ3q8rHX9vzUIdMJCtG9p6xyh2QpIB9tw2bW4GKvRmvHkHDPq/u+8lqw9KjygbSYIfHQ - iwf0qh4FiIewx2qYKRlTVvWEYqGcJ8ZVOXvlxNqEAyhEcjHSs0q/t7GA02fNsZ48/ICVozn+rS/W - qtYE3BfdHJg5dUPy1ZNV/rkNZqAoyrAisxfAlOC7guolHokrqRKl31CoQZImEz5LbB9s+9NE78N0 - I07D88Gq7oQZJQCuxLylJuB4kvmwvRsFls1iASs0Cwnl0mGHcfA1szmAoIDbfiLn82cM1rGpVnRu - tAxfNPFVMTj4KsAXc5tcH3tNJbeh1qE9fA1sF3OUzYALQlhlAsWPc6lnvOcbK7Te5kjyL1/Y9Dg0 - DuAuVkAufd2ps5byMeSOp9kF1wvuqT/fNbHKRErOwyW2lzETWji87Cu2PqxGGZ61B2B8UgXbBzek - y3qXfDSa0zDxOiME03ueJzDctl4rDx6rlLGeEM5O3uJLtOcDCh3eRWEx5cRjzZgyJ+dkwmNKe3dZ - 5iBbixIK4ueGEuyIeM0IW80xYve1S8KPe1NnoXqIYCdPHXHiNQFD39g7GPBvBT9nCulsjGCGt4+Y - bnjiAlZ4OC6w/aCeVuZyDObieE1hwMwMvqSraTPg9orha1YMHKLDXC3xWjjiwTwM2/8LgNjkYiGY - dDbB+tai9uDTEO3RzsankcoZp8edIybs/kUUKbr3vHlwt1OFLLc9ZaqurlHE8CT3M1bfRWKPebPf - gcI/NTgTwEtdamP2thSdQGTlk2dsLpo6vHGXbEKVI9mUfF4hqmh+wm704nv6MswH9JzLTK6u+O5X - 7oh0uIs1iLHgNBVzSHQFgnehYtd3M3Vm7bGAeIh7orRvgy7omXFgf8Kai3KH79f1EJaI1IfAXTMp - BOR0XCFa3UtPzDkJbe5MKhdteEdOnKMEfBhcU2iV4RNL5r6t6EdmLLiThw7HHLkBhnyyBtJ7EuMA - HC3Kt6aWonuaOMS18AnM5JPV8Pf/csc3PUljK0adGi3u7v6pwfxibyX43X9cXXdg2heXFIVP84rv - zFXNeH5iCxR53xe58veqGiiFOoh6eZs1xewq4iknCF/vtnIPxuzS7aS7D4vzEuCbT0zABIVcwvR8 - B+T66RPK11Uzg9v19SYOB1m6bCcVIfRbEZvvW6ryUWE38HvP0q1K8dvPtiGVaHzdL9spQ6/iHDnR - kUk9Mu1eZ9aeX+ylQPzlccbHZyUDTpCYfJtqOZNjfPXUhVZJAXf8V8JZoV4AX+vMijxeOWHj0wt0 - FHRswYtoXvDFlRp1YGNusyhFOvFyJtmLNKQ6ZIfMnt6BRntq3WcJPdDzhk+3lu0nxAELRs/8Qi6S - 4QHWvCcuNKamJMrFePYzNGABjvHqumzFRRXXnLsZCjS2yakygL3k2UcDvZCuRFeKXdb+nidEwpk8 - et3KeBBkFgxl2GwlSwZgJ6FrIf6Wd5f73B2V8c5HDRlZ9sTal1nthcmZGrohcyFSUzk9yzu9BrV7 - x0zBM3QBd22WGmiCkhBpKfWe2bABJkUiYW9W/ICsjMxAWegm7L7OrLok1q0V5WPRkGvcqDZ/utgc - LMPkhgO0u1ZcFHkPcM4GHkfb+q/6YTYRWyZ3fImGqpofYmpC3tC+5Fy/k77fw7GDyK1fWEmDJaNI - nmLgmy8fP1UeVRTJTQzPknnEAesrdDn4IISLTi9E4etXz+/hu0W77u7ia3zgAHv3Hi7c8JCEbIF7 - 9pu+JJTuU8atxuYdEPVU7dDx/D4Qb4LnfjltjaZu8m6b1SmGGa9Ry4LXj9cQXMspoFrsmairhoZk - +V2ueEb0NSSv3zve3pe6KlHawA2vsKG/tH5++WoNRY0Pp/XlPOzleVkK5Buhio+vuLMXCV4FFBRp - SU6ZeaLMEF5NBJL44nJj/OpXyF45ZO0LD1u1mQBGqGIR8ob+xcrzFgH6u/49TR3yGPe8PQ2nw4ra - r64Sua87ez61wNxmFbBYo+Mn+F64Y4F23rHH8vFzVFlBx6bYdhcfZzMbUB7BQwh33dPFJvFJNuca - XoFgvleMbWTRORd2jAiS8IKvkvvsV1V9r3DDS6xG2a1f/fdrBxpwLv/wdzqcixbZiccSh4/f1Qrm - UoSu/YVYVdRdP0/RNvhj78ZYJ9xoj7PwgPCevTNiYlDZ9DbUGtyh9kKuTf+qlg3v4XS9fbBZ3xTA - JYI/wWEdM2K0jxOlXXMZYEktPLEVx1a97agu6uKCIVehaoP52ug66hSzxGfmWmXsmM0t+sUX09ga - /VdnC8JzRBriFqIc0HWfDvB55RAxFmvX0zC4JjBPNR9bam+A+Xx/NNBrvuFEvYhV10wDPiBeJU9Q - SfVqvTaH5i8+b+tRrX0RlMDzLwr2782ZcsmyW+E1NCp3iz/2GqEshtbzlLnr88aCJYDR+uMz5HI6 - RwHfzoYPtviAlc+zslfmQwYoecuTYCce7GVUaQ0RGBM3VXdZz2GWPgCoDtvsNvWlzqJpuvDqljIx - fXlvr+zXloByYhGx1UYC1GRuK7zFYTyxD/Vc8S//EiO3yDQs3/yAbny5BpSzADlVrw4Mn1uVw3zK - a+I/6bGiv+9lP75jt9+eZ76PI4TZmbLEKomUMcJEZiiEdTRx0fvdz69O6tAvvu4OW4tK6JMW+sdR - w5Zi035s2f0ERYt74/PQv8EiLViCc6JmLjOntk2dWvLhV1V5rJYfO6PZp3ogw1DP7khrP1vdOo3B - eAKAqBjPwXhObAHsVUyxER9iSuF8NKH0rDG5mVzQ0yp5NbBTrwuWAnvphygzRdEtJRWbt7SlC2lY - DjbHwJn2V5z0ND9o9d/7NbOPVLGCnDpAfDq8u8ze3p7Nz5MTTTniCA4gtOfxZcegoo8TOT9uOGO6 - 0213oPc0xqYETwFjHd8OXNpr5LJf0quzmesQLs5ckphTuGxII6aGQZd5k2C2Op3Xq6IhP5uiqVNs - Wo1qwRbwh6/PGGqA1I8DI/74tW36EWXM3IU//olDaScFPFPeFVDf1A5bUTVVlLGuEIjcfCZ3KQPb - /l0aJKDwgF2HLcEccs8avDnRxloDNstow7NC2zMu1eIKDLfPd2uKbdrTjq5Pm9bTvgX22t0mYU4Y - u//pNf3AZsR6t2f7ix+5BfWrbhJ/44O0OZ8l8bdfTszgqkv9vbroXBgWVrBcVfPdAxD89GqQM1U2 - h0vXws9oZti+PIyeNcujidoISOT8PFQVSbCowcvxZv3x/1nObAWetPuOmOORrxYNkRLYB+aAtQwb - YAaul0P9WGhEOb9IRnnfLmDv8Xds33iz52CnQ7jpUXzSPbHq1306wQGUIpYO4NPPNy3I4d3Ap4nU - ckqXnSnqcE19d0tZzmD2WGMHD/NTIcfX904bWWhLuPHhn96y2ejNKNAaojM57z38F9/AudEzor1Y - iTJ3j+4gQuEVm83BDebr62aKJtRc/CjHU7Zei6j98VPi//Bmu1+g3VsGR0tmVrxQ1d0fPnTUWKvZ - vKaKuH86Ebnk7zkjAy8yIBWcEOOQjGp7y70CqvdQdOn+0YM5WVcP6TcxxkaRwJ4an7GG0w5C97Xp - pyWzzjuI7T03rU/6rjb9IEKT0xC5k11pz4+r5sBlChvyHMVZXUzRcqESSD4+W1NRrfsbeiAV6jM5 - nndEHf/4kqxCdxe9+GqUT44Ff99bWpsJZRS8mkA/8BnW22oGa7GfBHgwwYBtFJb2uuZdAT5MCPFV - dVt7ZZlMBG8N+djd+NPsvRULDlNk4mN1WlXyZOwdfAtGSk66l1ZEcocaMPfBw2nC2epoX2iHckcs - 8NEUrH5m410CNj1GpBV36jq60wCunq5jB5UTXd3aj0UlxC+si+zHps6ReJAJxWUCKCzVpZbDGMm4 - CqcPPAn9uK0feN+utbtiWa04lJ6s3/O4b0aW+wUqXw6YLbCn/f6pUE7CVgy2xtgTM487OkqLoYC4 - gQMxdrEXzGc2aCGJCx87Qm5lC+ITESlg5vBt91az1XkoGgJnOJLr2q10ruVVR1qpGvgI07L/e98J - i14Y63euHxuffcBzNDbEdNyr3R5x8wDHCkrEPfRhtaTCsAIzI7epNdsGzNJSz5Bvu9H9ZMOnmjQh - ZJB5DxMcg9Kqlm09oRflR+KXw5rNUe9O0M+GCGeqs6i0W7oabv8/CaytUSbhiQMONhHJkZne6gLg - pUCS+hknJLF9NnBS3sGn9bXxkZUTun4CIIHrieynHY7cYE2pr4PbXhenMUijYHm7UoFaZUREfiWy - zTg2yuH9kX1d2HemvZa156A7sp/TXq2/lFZs0ID2fiw2fZAA3uscDsRL6JHrzFt0ltXzDloX1LmH - w7pW1Nx3LfASL8CR1a/Vph/SPz4dvM91sMjRHKJv93bIiXty6ndnrjqgRnbEP73PVsCR4OZfbfFe - tdljmXBQq9nIfX+gQjnXaEP0Ob51cn8e1L65JGiFxrpjiT2XhfqdonwSpXidsda4Ml0xCx7gkn86 - cpxY0tc/fp/2UkniUFDshZ3uA9z4Er5VL4sumiA2wDswV7z5L/Yi1IWFAkke8W3Tc8zFLRJxbXvs - vlxJt1fNu+2gfgZ02i1+0M8f7v44NIvLYC2DfbbCdypBPxENgrf4uYRnDsIs3X9csSjbat31nQe/ - qszj0xCM6kIslQGR+iQTK60oI2YeTlC/CfF0iJV3wC22nKDhWNf4kTChOlxuiw8e0LdcJoN9QONw - nZAn4GTaB982oJ6PV2AY8hkf1+xJxxvWa7T5E24zwwV0RcmIaAj2b3eflpG96QUFbHVH5A/fN78H - 9kevw4rlrnQc0nsMD7lGsJE6QfC9S0kCi+f16u7lq2+vhmQ+4KnjNKxsfI+2bhHCl6Y9ydU9Kyp7 - opMHZX9IcFI1l58fwICzf0jcw6YnqFHOHXRNdprW994FY9OtBfrxf2x7RsZvfAU9rwwiDx2O2ero - Rwn9/Cp56LYeVK+LBr4MnDFm9FvAjC87hIdQxPhkq32wPvZrAyZoTe7SLIeMbv4s2L5XgvdPBSzD - mqbCLY7jaXBv/BaPaIxER2awfqQi6L+FnMO0V0qCY1jT9XYCInhHsUHkbT8Mqvby4exxAMuH3KNL - Yl06FFVcja2CzbPpeQlWVDi1RrRHqWXML547x2yY5gmO1ebXrcDJUuQKBhsBZrHuItwXc0qOxlHJ - Jti5ELZMx+HT+Vtn6/PrMWjDJ6wsl7yaD8FFQ8r00SbumpyreQif1iFudgPBLdP36/KhCeSSmGLj - 2ojB8IGHP35P8LZfVpSeTLitH7lvfG3mqrKBFedfiW7qhb3cvYcDYqVOsb22GaAXblFQtEgx1t/d - Ni+HBTnY/KyJH2s3W5cPSIBpnSJ8vlIum23DLGFiyQc3FLcurY8Dk8Cvh79uf72QnhAtS+G3qB// - 8S8O57b72y/yq2coYenOgtlkdUQ3AqLOZ/88CEqg+ETXaFXx7zmFUEDxgTj7iKMTy2TCgVHj8e99 - z953r0Hv9iyJ7du2/YtfYh/0vSt6852uC97F0JSsz/Q2ha6fin0jwlI+x9ghnpDNm16Fz33iT2Jy - +lRzrW+1hdXNJfbdOqpdXWsF+Pll2Y03qzWJnBWU762Er2Ie1YanNSSCFk+Dmt7pIr9Ozg9/iLrp - 841/1jD4uluT/D3q57ngO3AUYh8bJ0ZWh1NLTRTkEsYX5ZMH691WC5jtpwkbYz1lP34hGpgbiPsO - lGDzE0LoooYlP71JI/XS/PwnLG9+6HzcFzW6glaYvh4sAL/hPZxiJ3HrLb6uhbXnRMf/PIj8OG6D - AcJkBoHCg2nHC05G9Nh5iIObqthIbnbG4DlQYOyhzJ03f5XzjLyFT6u3J159ATo77SeHP7/p5JMW - 0AGSGfz40WkqNDpcuMoHkDA9tg5Sa89OSx5gXBidXFxJV5cOe9aPDxAnfr7VGcG+gZwKX+THl7te - SDY9Ey3YqXZWT0VZlCC5jq/pECiw+grfSIMP+bWSIHWtbPPLShTF7frTe2DwZOgcsLbE+NHddEoH - fmUQqSbNLfKOD2h+OQ0A4idHdI7cKJEWsQTJ3YXkvPG9aY59D51ChuKffztxsmlC1+Qnly/9olp7 - dC7//PDI4wGdr6dcE7+7/eOnH9Qt3pjwcbIUbAc7qlJTe7bwptrB5OUdn1HYey7qZjHZSmR6dQlv - mIFCNrN/+ao//2jzM4h+2+n9on4uD7jdLzZm3gLzhas89PNnENPx6oYXOmLuk+cy11Na/emXb+7a - RKbeZzvCYA8/f8CFm3+/damJxYM9itNhpHKwapErQuh3Ijmv2kMl150nAhRRxRV9FFXrvZJqFPWq - RiTN4cHSdGIJf3hqPP0r/fNvU/V53q5n9CsnSyYMJHXEdrhoNjuqoIEvUWKJo49psLRdw4B8etRY - C7iHSgtJcKClUYFIN81Q18rv04NQohjH0ftY8Zt/DsZA87Cshk9Kx1MoobJde3JkZYG201o/0Ba/ - yJF7jeovnwBD7/oh59zhq941rBo81byfSr6Wqzl6sgxUwMpt+qityI6LUuhozh1v+xewguw7kGbL - leiHaKULp6cc/PFxk30k1fy0QfzL/5ATzodg4SqNAdv3PvHyFIAZcFkMP0wM8SnZjuqRBjFgi/8k - iLJDtfDMewfz4yBhs9RRNUXvhweMT6JgVec2/2rvz/AkPV6bP3Wolpczi2jzG3GEH+qffw5GwDD4 - vL1/4vcbvxHnI74FSl4tgm5YqBeSFYfTRwFLy/IDBLxuYLmvLZWylRBDhOlM1PKcVd3oThP47tAD - 4xjLwYLgkUE0bHiC17EAi2eIKSyRhSZOKXbBMglli7yK1Yn1Kp9g/SquA0FDfGyVpAg4U0MpNOUr - 9xe/2yQ2vb/4o9nWN1gu8uOxVZS9pkUJ22rgktsEwzgU8NkKPTpbx9EBJtRdbIYfQZ2hwRS//A95 - VNLdno2RzsgXHzZ2OBiBP/yl8o3BtjzkYPjlZ8pLbWO8X+N+dfSzBO2LFuFMHiDd8qMSWq6WTtxK - QuqULLsZpur9jN1GeoPeEksJAieaJvCJJ3Vxv6MCvdu9xHlTV32LYF/D5PXB0y5yK0DXvT+gMA9P - xNdBHKz4PDdovOs74hSXXbUKzjkGz0giP/874HZ950NuL5rYOMrzxvfEv3wP0dO+sydX1hKkdUyD - Y/8NwbKMug65d/EmRulLFX8B4+7PX9z0UNBa99JD0rj3XGaWsmyE3TDArgM61lrZsgfWl3O4+SPT - ytevih6SYIbPSCGTuHwe2V++bdOn02AXts2+H24IyktjYyNfh2BmdaGG97ObEok1Y7BqWcfBVi4n - Il13SrDWjpHDml+KP7ybXR0yv/zhb39Qmh+cBuJvcZ9E727ZbLLmJfi9n9N9KsEi1uEDWved435c - 8Vitw+kww+OpzslVdU17QLeo/d8lBf/6r//671uBwD9Ne3+8t8KA8bGM//4/pQL/5v89NOn7/Sss - +Gca0uLxz3/7TwnCP9++bb7j/xjb+vEZtloDJLLsX7nBP2M7pu//66d/bRf8n//6XwAAAP//AwAf - 5B46ugUCAA== + H4sIAAAAAAAAA5yaSc+CTLim9+dXfPm2dCKDUlVnh8wCUgiI2CtARFBApgLqpP97B99OdzrpVW9M + VByq6hmu+374r//4559/27TKs/Hf//zn3085jP/+t+21RzIm//7nP//9P/75559//uv3+H9dmddp + /niUTfG7/Pdm2Tzy5d///If936/8n4v+859/6SicXLqXmn5J769M/NrWgo2l0ALeuyEGYpI5JLqm + PqUvrxdhHT9a7B7tgNL+8S0RarIH8Z/r3C/vqpRhInEKMX3tVi29kLDwpvE6tquDUwn+5IXwho43 + bJg3PmgbOJgQv0KJOLfn0RZ25eDBa1e5k5DSj0K4whLFet+1WFMfEZi/tVvDqPUskn38a7/CKs3g + LUhkl/pTaI8zHnk4v8oem6jN7HUuXB2anz1DNKkGyvzMnzok97eJr+qDB6tgSyV6rztrUgzIK7MY + lAnKNHeHdb8q+vXEMBA0pnojEYO/6ZAqVIcfSJ8u796GlBaPi4viTpGnZn9QU04/Cj6wzheM7zvE + pDNC6oqs++tLzv1OCtiw7WX4rq0nwfe7VfGclZVQjEsR62GLqmW9LTKyEs4m93Atq0G+7yV08sUv + Od+PbjoAEU+gh2WM9SziFHq9rSsy+RaT+zKMaV/qoBOLrL9iYzL0lM30vYXyaCcQ83710zUr7jlI + P8oOa+xOpWx9ICq87r8pPk/CWlGzbll4t1wZ6yf+2XPQpy7iZXjDiZTb6XqjZwipOmv4yLghWI5N + 4MBH/lTcsTmlyhroUwkd1fPILWHTni3qzoPK1alIEPAvwJdILJGQhC22y4UBs10fW6ROWUNun/pe + 9YOq7+H0sKaJMXVeWS1DdhFhXxJO6C3vOWwLPDSkuMBqyuyrua/FN3B1xSRnMfsA9mOXNdJXLyDX + 40etFo48IQgvF4v4Jsv0i+4EBTJP3ZscrwmTTr65e8Mi+15JDi0jJWjpWrgInwTb4de3Vwdd9khO + YU6CZFFtUrc8CyQV5eR0fN7oSF1zRfOr6HFwwwVlP3b3hifEFUT6TteKdsk7QzdfLYj5cCb7bz3y + mb3g+yFRAX9JqIxep14iZmIaPefjQkQtvATTYbIsmxb2YxWJZd6JlcuGMhjkvAfnJNwRz2EtsBSC + XKLnnEAid5hXVkF6+4BjWYvk+/atLOePn6Nzr3rkfr5XVf3ElgT2urRgOxtke3b9l4n20SzjjNlx + 1fqS7A6y3DIQ/TymAV9NrAn4s43wKb1Ce1TKRUWDzRhYP3hP+hf/bmhfiTOrQcV/DWxCfEYd0b7J + pWft+tShKuEad/cyZJufwDIj1+codsqkStmDN0YQhLFClCtgKL3exBlS8cvi2xa/a8zbEizlg4Yv + yvsAZiQnDMKvSJp4cdQVQZZgDb88L2L5EDn9wqlegbQ096f1qshAcAA/IZd5Aezk+8LmAvM0ARRL + E1ZwN1aLEugTvI6mj89KIQeswcw++p3/BR2ygKZUniFWZpXIS5D1HLkwe1Huk/Mv/ikXgCyCyc7C + 2IoYqV+P6FjDCoYncquct73UZyeH3lk2t3zvqlm+72UURKQieqQpdNwJRgbppZ6n1teEijqAGYDD + tDxWdZNNVzCbK/rMk44jUeHsmY68Dk8vmZ+QzC8p2xhSjmJxDvA521uK0CyyjJYHVHHIX7901O4S + DzWLHPED8iBdOHJjIMz2PM7N2bB5B11E5PHGeRKjEPdsu3s58LOLK3Lf4ps8zxMP73H4W1/Rz7M+ + zHDLB+w9L569kvJmQXFpdljTDIPOPjuEYKvf5NxLEfiutj2I5m1eiFNqFpiR8VLRVm+IfJZ8utyr + y4TmnVrjQL1MYPFlWqN7IMQEvwxZEUTUM2CcTyqRz10F1sPR89EtYAKiP05WsKzehUd+7hCSB+w5 + oOORY4FpKAV2WUMIyAnffOhec2EabHGk865uHFjhKHfZSn7aiwlUGXUV/yHHSCXB/BDlFZYXxccK + aXMgrK+GgSHDacSrTJuuSlVDGDcpg83kIdnr3HUh3P4fTt7LVWHDtpJBN/fexBy5N5jrA9Fh3Idv + rK9XVK34Xfno8EhlsvXXlPhfyzlgOS/Jtr/VUB8aFdos+8KRO6hgNoW7CuoDtFzw1l72Xz404UHG + +K6u9sTLKNprljmTiDz6dJ1Yv/7tzyQ8r206i/FcIMvSRGLuNDlgSVw4aC8LmTsv2WgvzgP70OTC + keD+JQSzc0EmOKlrRo530Ntr4ewhNKSkIFJYlikvi/sSjkteY5k/HQE3Z6kJHym3c5lP/qjWTuVV + xM3XAOv3xrCFmyuXaL+YX4xdn7VJfCpi6NlDjf1wstL5rhgqjGqmJXpfk4o+3mqMdj17J3evnoJ5 + NbwVFaCgrlBPTbq48WjC4X0B+Pnw6oAtMl1CTeS+sRobD3vel8UKE9n8kCe6pXS4m1cHMejl4Lhf + bz1n8V8RLkKTkEc8cGBZnrGDtGt/wEfJtW1hPCJeTNnHRJ7M81RxAufrKFEyg1zLyLbZsIMqKJ7+ + nVjMCfa/+Ec/vrjHoUbpQVNcJN2kC0la9A1WtV8ttPUnrNxwAerTKfVgWAwHfCtLas9Pru1gF8Y8 + DuV6sRc1vewRvchPfO6vOFiz4pKBjQ/O6LwEFS112qFrz874OOutvX6WxYXDOwAT83Wu9jKu+wFS + pk7IdedxlMLDiUfgqEzERo+2WkflIqHb8YqJe4vmamXyJURhmD+JUTlvZYHnUYdRCLjpcBKKYH4H + pxlicXeduE/F0U5PugmqZD7hk5OISq8Iqo8UVj3i61e72wunxiXEJHew5a9DMAod4sVtfcSuUkzZ + rT7AM44NrDcJSBctWAd0wD5HTs27CCjblCrKG2K6qQOSqn0Hxxmup/ZMjq0S28sh3WUw2Dsa1nnn + kNK908VwZ3/vWJ1gR4fGkDIopK01wVmlFWWH2YXi5/qZ2AzJATdwpxkSji3xWR9He5HeuQUUQ41I + uvEIzV8ghM9lyrG51WMiyquJfvFwbqhjcw+8OCg+ry2RKrMH9HsjMdjqCzYVZPVTEMV7aOTlgHF0 + Ve15x1/egEGVQ6Rl+fTreR7ekNMLhP1JX+hffdh4elrPnQL4gU71H19beNIA5++fPuj3zToh3lv6 + +YtiC+6ypCOmux/oSgaQAKCzBvnx9fdiXCfxexIwMVEL7Wmg0xuobtAQ6xFH9rLTD+KvfhPj2UmU + q++HFX5e3m3joTyd4Wm14BiInYuurNIvcRG2ouZIFfG6V0eXWwN4+GrLfOOBTKGAV1eRuzID0Xnn + HswnsuyhAx4v4h/n2Bbua76KQL55E+P4VkCf54mFF3IoieFpZ0Dq/ctBG09PZfeeejLPdQiHb6GQ + tD8Z6SDjdIZrILBT47irQk/46QOWo8O0oANMh8ROfOgce2cyTBkBEtz0FW48j93vrksHRvNkOMNH + iW+l0PdL/OlmIJ3yKzE0q6/o6XnsUBovH5xt/EIOO04G3QJXcrVfD3s+eJ8Qcto5nXZCqthD2LEq + NLCKsNmvwsZLSguDFSFyjt273ToXzoJHsOTE2X+KgMLDkYfOi3Wwh45Syq8XY4CFW5musPEu8fbS + Gx76CpOz/IrBjxdAMsXMxrMa5SwwS4i175o7T3FdrZ+k6YB8ezTYHXld+fVTOFDSEWk3MjY9KucO + cJcnR6Ta8VP6zbgCiu8l/KvXi/iNZ7iITo4jq5j7RXpHJnxAeeeKRs/RJQBhCNn+rZF0Letg1sy2 + hjYtd8QS9nbAegc9hwLfyNPSKnubasLso5uCZVeQdc3mxrF7w0mcOmyp18Ze+NHdi3e2/rpQuoqg + 3fITnAURkDMHDjZt39kEO93/uuLGF73KAhcWmO9IcMMSYOk+CQF0Tp8J9RJPSbKbdWSIDufu3uEA + 1t4AlshM2gMnDD1v/NyKkJmti9upV8Meu0O1R+Rem0S9vqt0/XSJBPdrbmPLLpdNbx1kuPEwicXD + pFDE71c08OFEjOe1DebgMzIwOiUDUfmuDJaNH+E36kUXoPVoL+Jb7sAl+J6w8ip8mz2HogOnp/Qi + UqqlYA1PVS3YYf8iyke+pvR7axJw9yueyNxzphQtZQujuWF+/UeZDkfPg9o51HAgaWJP23c4QaCV + H7LxbbXCXIugBSSb5NHwrMbh84zBwB0drDeEgk2/8aDRngFWGeWY0uCmz5An8Eh0ZSmrmcuFAT5E + 8iDSqSmUuT40OjxdGmMS3xns5ygXV2jPALhi4J2UQWNUH+Bn4Lg8edjByoQPFYpf38byVSnBEmhz + J94CGEwrdHM6TXzfAZ7RXaIjA/Qjus4+2jPVm0jV451ORqCUv3wnZnTpAb2v0QwTFzPECVotHaqr + z8KcC9RNn5T2/NGzHIl1bxBZg07AefeLCbmb7+KzdXilY6tkzsFy3wu+7d82XTKr0lH1yHv34NVT + uj7D2IS5YAr44ftFsNL8K0PnxTtESokDVv+xVw/qeNKwKb65fvlYOIFyH5+Jwd1e9jK/Xh4EkPBE + Gy/n9NPuhT18jOK66c+4onXL8DAs68FlhvsTzIgb3wC683fjZ4EOb3MsgAH1FlsWgSkRwtNb3GVx + h2+y/rGXFGsOkg9FMh28C0fnYNQsdNt1KTnp0ruagaO40BmOK5G4oAVUERwPBraT4Ex9YXv59QfE + yXd8anAD5i2/EIn9GusM/gbr18AWZAXD3fRGBah8eIRQPexmsuk5haZ7T0SZRj2Mm11osw8ylQBx + 0p3oxPTp0rGP9a8fOpotKeyvHnzP8hu7z7tUcatEcngKHfvnl1T0dnw4v/pA3NkDFQ3qxYL66gdY + buQ+mNZCVOE3eRdEPTsipWGisEgFFx+7326h6y4rfNhwukxkraE/fmHBT58lgsYr64Et90C04hFH + J/5ZLU5TlZB/HFxyfIWWzWepHUJ8ES/EYTpkL/egicDmB+DwHR0DYeWLDDmQKkQtji1dLjdThczF + o9j1Trq98qadQTda79jd2ahfLfjZw7nAJ2zsFj5dBRCp4Kc/P8NpV80QSx7kSnqbPo5s2YIDmAlK + 87f50yuk1GkLhtvTc4UxXOwOpawPsxuvYGnPDcq6uyUWyLmLOn12nykgkIIBrlwYYfN+XdO17Hcq + MPaHANspn1Xz6cHk8I+nN/9o9b6HGFT5fMbndXKDWbqrEhoZ7jVNZd0HNHj1EixVpyGxEtyrucxW + CYXyfcBHG5YBAdJLRyiohG3/L5T9Is/86SVXvHZMP1LlXcKcf9f47PtFusriXIIWB60rBDNnj5SJ + Iujtpwt+wN2uJ+uShLCr2M9E28OiUJnFzi8/sHV/iWmPOaX4+WfYfaqtTfWiHpDhPA6TqLCJssjX + 5wz6CWb4Ufm7lMiHawjNuxoQKwpxtURvfgYPfAxdBHe733pkce8HNsF2cgQcyd8O6Iy37U4YXfq5 + +yod/PmZdn8yAjbGMIHFmNRuKZNXtVyXt46yt/qYKvvKKXTLT9QETYFPcvPpO17mIritF9snNQfL + lRddOOF6ncA1qGwuZC4JxJf9BQf7q2RzaqSskKNF64Kz+N76yTwjMHcPouCdrlBtzCTQXsLMpeaj + UijTKRn8KENKzr4vBcuLPeQg/8odxj4tQBv1hYrC2WqxO77O/RIebB8GsaIRbTg9q+WdB3tkruSL + LXCxUtb1Xxaqc+9I5HDq0iFbdm+YdnyMrTbYB3TXiAl8NfCMs91Xr7i42++hbbC8m6fnIVjBZyjg + e/m204HbH/v1fYhjqB7uT3LhGdEmH0nK4EDHjjjf/EsXL1Rk9JxjiKMemMrwukMIq0Ropp01e5Q/ + 93kOn9dMJd6yfCqqlcIKZKFtMG6Ll92RQzH9/Mk/fbzpYReKLFaIphkN+FufXuCCuDvOrai2libK + ndWbDl1bU/ItlQ6BsvCwhe/ndCqcPQNChbjEadkYzOYAWXhk4hKfFhmmP56FXNhb2PgQBNb7wdQh + p+GUyGmdpTR74RA8ERXIkWcSe+XC/Qw3fej+/GjKufh/+TnOGz1sCr+3TPzpyZ/fMAzJ2YN6yb+x + ehDOymLKlQ8jTudcofO6ipqvZDhs8eXygi3T6YktGZz55o5V/voFS2uWIYwifCOnbrEV1iBnEb7M + a05Odeb3w6Yn4M8P0teOtxdGgSzsn+VIjJRqCkWNm8BL5J+Jqq9aKtBnvgc/vXQMpJbyZ2Dy4PrF + A9n83Yo4gRmJG2/je/OWUqHXbwz0jzAicTEtwYi8zoLRrTjg5BHzygTjnQOz1d38Pe1u83vlFf3x + qoOXUz8/q48DWUuriJJkfUUV6Ce/+kRye3kEY8jcE+CdjPLP/5s7bg9herrx2A4Zq1+vRlIe8o9w + ddvZkgJu8cs9vOJ3RBwBEIVeH9IenpRcJKr+cABdpqsHD6iWJ7Y+iLT32twVHT95YGtgNeWvn4lX + wLtzE0o2e/eXDBaQvRJr453hu4I97MpKmWgQf+z5u1IR1MJNnzoRXih3eJ3fEN1DD1uvgwxYWRUK + qHphSryNx2dG8yTkvvc1cUPpCOYh0Two0HQkJw/odM28RodsZkZE5fqYLss5m39+kLv4Z1qthZxN + 0DgOMg6C+KPQg3WPxPpOranbmbrN0t1Swvtr9yFK+477YfRrHQ63h+fuBvmdzpXF1H96ROd5K51n + W9xDRjFrfGVfrbJq368uyk5ByFFye3vgG1mEh/6FsXc+KcG2nyJE98j78V06d9N9heM6m1h+rnM1 + IJFOKLWhSPxD/7Hbn3/WvKMF//Qi4R8LC2gZHfEJNrga4XlUYfkcCf793nJdBv033yBqJe/sdtNr + YDtvckwmKWjt+tgha8wxNltjTgf9eIzhUR4SYiQsqKb4jWvosuEVnzb/eh6eaSIy+XfCzt6o+vHn + d+weg0Oed9W3Z0pV56cX3b3kVwENQ26C6pQ3f+exRG9mBVfXY4n+yGU6O04jQ7dqVKwky9te1EiZ + UQtGmbibn0gUmMTgYprSVG/zn3XT52Dzkwm+sEI6327BG57KKHbfcXbt58vxMoD9mtk4y/eSsmZX + zkV//ilDx34SR2WC6PPuyPH1lXvhxz+HZNn8RLPpF/I181/+YJOZv2CWit4BozY/sPX1j1RgH2ce + vixY4t950HmeIiieDBtrUp0qsxQgUcTKqhJp05vCHQIZ1EPsktNWz+lHFD3AYLz7nY+ylmgtxBd9 + RtOu2YXKUkCvRfcX+pBf/9n4vv2btyWDFSq0e4rvP317fptvMAfNThKn87Db5mFOSscjYsWwEl3s + RPZO6W5UY4DX1erEdjPfv2++lsFNf09TWqqAP51SH/zy0d0VvD318igBYvKCu6cFUebreDABa6fa + Ni/KKb1DIIGfnldlcKpoTVMVbPMSfG5yWo2m3Hvg59cd7xfRpjJrOJAsAE5M8GQB9dY1Q+pT3k/M + +Bqr9WsYFlyrS4W9WP1Uy49n+ewzYHw98+noDEsHH0ynYPl87dP2sYtFOKo5mPb8eAB/8y4Dqi3R + RYVTqHNenR8fbH6aaveOOagw3+d3lxtrDdAZWO+/eLSbRlWmX31AwUsgEtceU3aFMIPv8nzA7jaP + msh6KiA+7zps2tGp4lj9VcMgPmouaJq3MmAv1n/9wd27FRv8/E80tO6LOHtD6VspTyyoNdOATxC2 + ytwc1xAdpDrGUhNKirBLNRVtvDxNuyJS6LdUWuTIzITVPmmqXoF+DOOh07Ep3Drw63/gm2WB67HM + HIzMyYI/fw0HAkuV37wUzju9JnjzT1fL8UKkgsAnW3/v64oPQijzV81FSlEGJJm1AYIwUfDpy3CU + KgtjiucMKtjambW9PtxIhlTsWXIU2l4RDuIkwlFbH9NsIqKs6GXFUDAvHDGZ+UTpzMEMvJL4svFN + 3U9qPUjgemAQcSLOs+drfYFo40Mcu25KW6v1JwhUGGItQYNdNsV3hafLxyCSptN0ADqnIsSLDpbg + YIA10k4Z9J0TxHp/EZRJUgsetuK92H7/SydYBTls9JnDm38DuExyWZC4ZwZv8x7AXngugUt76t3a + CDQ6LZViIvHr2djvMG+v2+fRMqgXctNQAZbL5QD/4s+dvbSiKksdeAlh74o//3lnkBVeu5f75z+S + rf8dTtN92fxQCwh9HMRI+0ru1u9323yB6IDm94SYSnDv19xxIPz3d1fA//hv/x93FHD/7zsK9Bsf + u8z7sA9WQ+1daEORx8oATSqcjqEL+rZayfFyoSn1bxGEQiihCdpKG9Dzt9PRDB2TxMJJAuz9+Vxh + 6h9bckwzNxBY4xhD+NXY6UtjSWG7djQPQ1nrRK2kXU/M/BMjWMQ2ia5B1Avo4ZjQ0Wo49T1/CdZK + r1kYvl4GvnrTlM7H9qYfpE4/k/PEJSllDVf9/R9yzk9tSrtFT8AR8hax/I9nzxV3MaFajTJJtufL + 8MktSK10wJqoS+kq7PV1+7xNLvosV8v4SWU4W8ILn4PWq/qDf3ThPOBgQppRKF2l9xOERYKIHpgg + nT7OmYHvvfQkN1E89tzweQ5gWz++SbyX8nTUEhgIuUpO5SBRwb9FDOQMLBLbZXHAW4MQwvUrE4zH + /Biw92fkwkyJW3KT+ArMJXeLkWVSg1jhLNCRmdoEXl7QwjdRfFXL41VH6FPqM9HlTLFHzUARdHg4 + ESe433r2qJU6igTlSFQScXTmXlcTPn3miE1cS5R9dJEEbZk/u11z+SrfcphMGMz2hA3j+LGXe/Ti + kQg9eVtPpwxCvQ4oj8Ho7j7mktLn9RVD65Kz7qta39X0Oqo1krXSI9i9dCl71IoCOTUySAiGD+DV + LLHQQ6hO7vAkrL0y5jjDEmDFZZMOUooe1ht++2HFFmNWFc1XwUd1kAHs83shXe9nOkEF18Y0N9Un + oBf2I8Ez7hJiP64F4PSOuDCaQkBMLc0BfXiyB2M/98mje/b2nL1XB56axCKaGS90GncPB97RPiSP + 0yOldORbFireTsOWk7T9zAiXFgnDyBKn1dR0uehGvReD5kXMzB/AkqvRhODXYLHSwrTiDZXs4W4H + rySIPV4h4FZl6Gvd7tOuCfZg+OWHs/t+8H0bLApmXkyoY7KI5Hn8Sjkhd2pIvhkiQZ4u9vw8mxYM + dOOB9Zu5TQTpVAD9xi7ksXLHdLlRxoL7XJVJ2Eh6xX5EkEA5dyaiLq+LMvby20e5dMbEk+1RodeN + p8sTvyfWN5vBABeuRaecYCy94i5YhavnwobZ2+TeyFHAUY5pwTbw2uKlsenlMksoFLGDLdH0FK7C + Fx6pcpRv+x1Xwrfv3vCOxJHYcv5MuaIxV9SdNUKkptJSYbdbQogqe8C6tfpbftgsWCb0xafspVGO + dPMbGhfRw3H5SHoKbkW4xfMV+5p16gWpz0r0uccXfIGsTlm4iCV8tY8nVoy3l7JzdI2g0TXGdn5m + z7rKuqLo2vLTMphNL4TiSYKkPGXENV5FRRtT9CFG7BGfUdTTJc3kErGjqWFtnDtlKRotg03t6Ng2 + v2HKk1LOgPagvkvtd0U5y+cs1JzLdUqrggXLPRoY6GE8b/lG+plXFQZomnEmpyh6b/WViNAy6cF9 + +6GoECUYJHB7Gf3EYKEKZl6Vt7mCLxGjc8t0gkUsIxvuH/hKwaWaDZq4W716Y7WRBsA91USGWz3E + OFtlRbhrkohiP+uJJCYxWA5VzUP+GNyxN05Sxe0uTxlWijhjRXGP9lrpRY2CfDlN3yjygHA6PkM4 + W3xElEibguGo9R0smJgjxrVUlHF3eWRwVHbZ1Ikm7Nv0TVfRqIId1p/5pSfv4rOHTeQ+p8N47tPv + aTb1335M+46idNEM0YG9YbvuMKS0mjOj8dFrsZJpuV6Kfo4EpUbb9xF7OvqU83VrD7uHEZHjo1HS + JTkEExo/N5fImsUra3dTXaQcvha54dukkDATWlAPVoOtl26AVY4OGTyY5uCORfil9KOkJmRHM58+ + Txz3S65eLViehAuRnmds01355sXjIFyxqtArEHTA13CLNxIi4aiwfdtmkLH5M7ZyUChUZKmKOHI4 + 4+x2txUhsSYPEmndT3CtU5s632mFxFt1rJmxFsz3521FO4IM4vN7C/D9QWjh4VvkxPZZmY40kFS0 + xRc+b/nNqR87hjo+qcRIxxkM42RNwNzu6NEqvKaLzVV7JNeHmqSs8+pn3XuJcKn9Oz4duxtYvugI + 0b6eX8RjMQJTGvgsstPqgY1CGfuFBsdOjAQJ/+Krp96FHWAonh1iPPYaYNM3CuGrzUKsPdQOCB8l + nNBybnKi9R+zmneJUgM5xwY+tqYYzA/jK6GyP3PYIk2c8vz6Sn71weW/O2gPnbZM0LjsPXwdZy9l + Y/g1t/MJpv7XD2Fxf6PUV1py/p8AAAD//6RdyZayPLe+IAYiIEmG9CJdUBBxBogIKkiTALn6s6j3 + G/6zM6xV5QLJ3k+3E+r7FLf+3Gdw5sGK/TOT8vWCzm9kfh8LDjW3aoRHynXQnm4CDhZcu/Pj+HZA + K7Z7qnzIE7CPfn6jZh+e8OUu2EBQ+ZMFg0uW0quRltH0eL1n9MeH6fdxBHvw81JZ1jyXJlqh67yT + /wjcU0mjz2Lt8lVGbQHVvEjp+YOe7nrIeA1xk+/QxGiNZtK1c42QymyqXEQvX7rs3kNC85JIN/gD + fUsOb3gd3h6+bs9zWaOjDOfo1eLbNwDRO9dUCe2lT0SdhxVH6+ok3fb9lY0Pf2wJHpAD0q78El4c + 13z2dbEEGx8TIS9Ld3mdEA9PlpbSYtskIFivwwUFg2HQDKBaZ6lpvpFzfn6pG+5uOotu6QgvKL9R + zH7XfKUG4iD9lW9iZ8dzwwzhKiHhx0XYyPowmr+PKQHx61VhJ545naam+d3qy8Yp/lbgr76B7aKB + mtmhcZeLFWjAnNYDYRs/irvdIYZIXexgp89fd+H3C0T9w3BpfGS/iEW3S/iHX9h8YmlYC8EgcPs8 + 9QzJz1lrCxAOR6cgX6N9D4vxsUPov7RdIB7Vj87iYteBbT1Ire1INKO4/cKxbs/4jw9nYxJnmJ7m + D7VvUMjnvvs4SHYOGi1kiMCsmk0Psmf4xMaR6e6KxbVAmfVVqXHiHLAvOJjCY9ZW5LDh5Xqzz6Uc + aLkTHHZEA/Pg3gy4VvGZLPJvaKZWfKcwYDOkbr7lbMmOpJDnXjm2tKJxZzNsShQ0C6HKKw0H3nu5 + HAQ7ZcGOenjn/ckxCxha1ZF69/c3n82QfKG2+wzBAnlfX+tGCuBnNW7Y/Qz6MHeNUcAH4c9E/hUh + 2/gHwrvOG5u+wXlvvZYL/NRHEMzsoDJed00ZPvziSVRrrgdm3W0N3hGwyMHs3XzN5rcm/+n58CKO + EYtl7YtiOcgIHPM7m095C+Xh6LYEBPy+WQqOT+UyPUz0AVzkslcezLDlZJdUXPbVeyyiNyjlsxTs + Fa0D/RnFI1w4FGIzOdCBqsG248M27pveVtw5WsYCPPzCIsh/1GzTJx4gNIuo7tNPRC98lSA/Tf74 + Xtv68xdAZxUXfOzuc/7x0lsG14OS4IgdHZdfc1jCB9kX1BVugLHdTpahj38eztLZ1OfiPfd/P9M/ + fbamPgrhbyArxWC3sM+GF9BP4wormuvroimcvY2P2s1/kIYhOewBUtckmDc9RceIdZDaloLxxx7c + 7f68rf8/NFgwGTor/Engbf0sqkj4DeaPzDLoQkmg7mc4MV6pDyP8RfozEJ7lMpBz9rrIf/rcbaou + Gm93OYOXQmNUK1Qnf49uBAEDzNz4QnTHJvU6uN3Phh8nsAig8KABM4Lt3fMERIleUmBosUi1u4D1 + +f48V6hBuzs1g+bbsEmg1p8fpOqmt4T7TB0wFb8XkbKj6fIk5AKQMkGg5p8/o+wNobpvcmyGxHbX + xC6+4I7kmBpIVN0l6iQLarv2Qp39qoC99hwv8PImVQBzKudsjKQa4mn/oVk8L8MqXJMCHkLxTXGN + mnz508d/67/d37AGV8eGUTnPOBGuJhBaMmtICgw+kM6Llvf6oYmRYo88LW73QV82PSEfVkw3/Bqi + xeqn/p9+fgbnBKzueLBQfk9uZP6RL1tPjitvevRHDfu006fThSOQKst5qzcC2OVWcnIpRxJ2BwEB + tpRzDG9dqtKTu/eG5XbWRrgLWkJ+k//RabkeFMjtD2HAX+KXzmLZsOGm/3G54BisYTamAN5GEavK + R82p95sCkFx7gTDUxQ07qVkPd3R3pAEWT80MsOZBOZNDHOzmpzvHcSzARpdmrBWq4fJ2oiqw0DMc + sO/CNnY727BNcL/hv6ivwwHWUHQTE6vWjLf6bEuofeUcn8zejZgeUQc0iGvx8Rvs9X98SaTjO5i9 + 8ZzP+1dabn7Zptpef7rL1a1K2BSfgHpjfgDU/3U1fF6gSs/Kx2fLn194Dt2TXuF5S+DdHP7xO1U7 + O3YXLy0uQDnfI2wKFnNngJ0APRL7EyzNajR8oMsrZGCOcDTCDqzWS+ZBK34KnGXg4E6031+Qn8bH + QCouu4E9QmVEwNhFWHOvZ51agPtC3ni61KHtZ1hlRAuw6dltPdp8rcqsl73dwFHvJdN8GT9PAoLT + eNl+n7kL27Ma7KnMb369bZaDMl/gqc2vwe2tq+6f3wS/RolpbJ8ksIAfrkHW7m5YHW01YjVCNfA8 + 2cDHfOqH+RLwNjKFR4rt6lJFgrE7OojKezn4AXJtZq1Lhc3PnrCrlbt8vMbnERTF0cKq8Evd318e + INS/N/b75xussAoVJO5zO9jyCnembOTgsf9eqT/2VtSRkO/gxm+03M1P/Y+vYXWlJ+z8ine++mvo + wXPfdfi0Xb9P7FyD2fNiBQI3BGzuGkcCHrl02FnWO1t0LbKQhV0D62nYREs9Dhr4x1ebHhbO2e8C + UfbcBZyYwYhElZ1CQu8l1bRdxmbVrA3EP2xx0+dCtPnTGlziaaDqXD705dB8Qth1u+Df82G583vD + j0I8fJRlom/8UMJr3t7oNsEbhD0+GGBbf2rroTMsP3TiwFh/nzhrzjlbxDLYNhHfwgA+adssV5JL + QBMkDavXc9XMf3pXqAeElYu4c5dQGWZo5ArEvv+oN30T/9ObAf9xZTajuJZgSyT0Ty8LdXNYIQn0 + CLvyrQZjtPQy9A/0QQ7H/WXTo+UFPBKbw5dC7fPR5aIvSq4DJqh/uvp6NFoJckYjYj0x42FJzt4F + LGT3w979XbmrcI1l5L6DJQBW6TW93T4s0IWXGW/XZ4zbCQralV8Hm8Onjhh/tAzovxSfpjP3YYxC + y0PRfCJksea8YRQeV5iYQ4edy+fEhDx6QHnzu8EhUOLNb4Vf+RAKKz6+9Ze7FoLuwEuhZEGzv7ib + /rIq4JVnFSe/3Z7Navc0IBfXEYFvs2+W2e8ggFWKAjkD3rAubePIhZ4zHJgjcJdR+9noglKOmvBs + 69PRTxTo2OsVn1oNNuNHPvCgJSDZ+vGnk493rMDm/7A/9pVOIm2ngdNs/YjUdbq7t2cr+dPr+OTu + v/nanbsM7m9Bgv/xaUUFArSvlAfsRCWXmncsbPz2oKe3aDd/64u2vAiblq8D0bq7zj9+2itaPTBy + f8hw0tF+6ydv2Lfi64LMq8VjN+D3w2LPRwk+iHAOJPd7YJ8/fRrO35RIxSVyZ3kMQ8jF1UhNy58j + 1tochOXyxhsf/8Di7usYPBLHw/Z5IWzmucZD/J5/E8n9smEl9dHZ9MGD5rnzaaZzExuI/+wTXF60 + N2AyD3v4l0fs9vzcjENXFUjO5B+1D/FVX/PoIsBUewjYhbXT8GbYFHAN4x7bx/Ad0YDiAvRcQYPf + Www2v+mFUHUfDb0+DGNYvrFcwR1F1aZ3fzrb/4QMbfpl83OQrXl0D2FvpBZ1mypmvPhdCUoH90SD + 2K+2fPFXgKxFczC+5JO+aFoZQCkwd1jrbtXQ//iUbPqBpwo7vMCfnv/Lb0myXksw/0wWIpKQgP71 + xx8//OO/zV9vfmgvya1f3QN+8+9rHmU82PgWe3Peuls/WLAG3hlfdoHsjiyX//KY4+ZnCZgFw6zg + 5o//+cf5dfnUgHOF7+Z/IJunUFyhVgZXarSKkvOBvgRynPIdNQVr16w8ljvw5781bfdirEGMg3Lz + sekffq08RivkPzwKmsTMwLTM139+a/PPWf6Pj1q/Umh6g7O+qM+P8IfP//Livr/5K1DdJwx26UqG + 5XWCIbx7zfTPL1JTOAebv/5RPERevuVjFTCnudruv9eFzf+DP/z90w8MyqUM8loxcMgOKuBd7uGA + 8S6t9PznL7brQSxUB/xQj2Mz2f49hhsf0wg8PCB0fAmBeTVy8oYaGMj7dyngwnEmaU/ePWLlugv/ + 8JJaUvVyiXYYZQCrPMGeLVVgYZFtbPmtioPDZ9DpL7j1INhwef6QHZvPoyWDyLIuQZFTOZqPLJr/ + 9NOmlwd36p9Agsm1N4hY6VMzJSRLwD6oQnwkb05nWmAH0BRKH3tPqubLZ7XfoE0CiRrpU2tGJx9C + WfuCL6nx1RjYDE818A/jELDjG7K1EBQFSsky4qAmwubXsSQrvbGj15B0+gp1t4LVlcxkvQ3HfH2W + z1g2YH4MpHE78fanV879j2HP1YOGCOsvhdZcl9jWw5s+8fs5Q1JgfrGfc0qzn2yrRurbKQNCDd/l + //Tc4VeX1Hr9mDt9Y96Akw57fA+UFoy5piSINx5v7EmLkI+MoxJ40/iOs/1a/cfXiNn2Vt9Xd3by + twAv6H7DmWFconkipvCXfwazkdg5zZ1O+5dPeG9zBkNqHh1IEqps1/82s6/vysOmP3FwGskwWuFL + kvPT9YQNMJpgibrZ+MMbfGLpuvWTIiAjVxx6DZoqZ9+vKoN59F70ftzf3fEj8xz6OXGAozTU881v + GECxSf4vDxNT09O2PNzFBk0a/a/fwWJIAT6u7yEf60vHw+XxjuhziL7u/H30Hnxbw5MIrx/Tl+xw + vUDdDnf03Ky3aLq6VQFZc7wT+JI1tmjacz1gr+zwpofdyd1XM2qKrx6I23yF/oJnB+4fXyVwqx/+ + mJgjhMfpR/X313IXJVNKODe1TlZSq+xfXn29SEecLeuBkTOKyV+eiTW/WhuKHoYDm8952vi7cvfL + nPFQKi0Ne4Z0AEyioQDVt23iZJsvzV1zSrZ5Bfxbn+jv+cOheyk44QYC/voDnl+cg7d5BJu8NCPg + 9jIHwiL5Oyx/+f2oBhM9AULz+emfRvj2uQArf/7/L2+IFQdiHXV8wzKn5eFpNn4bP4X5zHO/Tv6b + p/z5k6V8vToY3g6PLQ8xhsX2LzLY9MCfHnMphXgFJBkDfDo0r2EdDjIH/vjYc3UeTKdZ9zb/b1GX + m7hhNsOhhN+oOBGymy/NhB+LgMDjtwQtMn8Ra6q2gOY0H7GGrw4buwZ/Ad2mZDvOifIZYHcFT233 + CcCqfqMVVPEIxX1GN7/Kcnarrx4cpCrAxiV+ufP+VY5QdGPzD4/zv/wENAi2OFY7lQl7vFjQmisT + ++9YH/b9c1/A4JKmWx7UuLOv8wkcqPAKrJtd53NyFw1ou1xF1Xtb5MNHD5U//UgtoxUjcmrTFGz5 + L0HAfeu/gkNww+uYMPVO9ekvn5DH85cex7vj8jsxNSD4Xk2yQL5qpqMfFyhgq7PltRHj6/0zA9xe + LoOD2p8HohePC7x7NcDH6NYyts1r4ebfg1rb8cMfHsJTmzr4LPwknR0uqge1L/CDHfuBbZ5w8dCm + Z4IvN3TN8jqtIxpVbBG+UQ750j/XGG75V8BQR3K2q0kG/PR2Cbrdc9Yn46OEiNtLJr4GjTWsFxQq + aJsn0g3f2bQHzxgeWcjT82ir+Qiw3QEj1xyq7x5V3q/Omdv4csXGzyXRomv3GuYyjYP9n97Y9Pvm + p9nGt9+GV2rJgXbc7wJyfCnNLBg2D29pztFgN3sRY+/s/d+86Da8XEJqT4MXPSY0X9XKnY2JGShq + nxib2zyFPNIDJ5/PXEOkY2jkG78l0LoJyzYfE93poEghmptKx1fBukdjImoaeJT7/X94bfV1Df/y + als8tfr0jeUa+odJwJbSomHLW7+gTfweb/py4HmuCbZ5io4dBx/1WfzuUijuU4qL+9sbeGMCxmHr + Z/o3H1vv8/SGH5m1mz4XotUZ0Qr+6ifF3ykftHm1Nj8n0WuDP2CWcSDL2Cs6rJ7PUS58PI1HZRgY + hC/2C5hmv67hpsfJgaWVziahNf4/OwqE/72jILyHFjWqYmJMWKwUFI6tY/OkLGwObfSF/S3pqcfg + fRjjZKnh+RUwwo5a08yKODvICHYNae3HYZhNGPZoEQWZHmkcRwLX3DmAd/WXKkrqNeLHcjJYFllE + Ff1NdUawnqLBfIk4ELGRi7B4yzAshH0w+1cHLMOa9eDzfMc4Fvc64OPkUIMePB9U1XsnXyURFIAP + D5Sau+uSU72VS5g3/Z20gcm7gxBXNZxbdaSZR4eciqdDCVcVxFjT97G7OE6bIDXBP+rwmd6IYf5I + YDvEMjZb+wFGbTM2xvUZUFvu32yJpESTjaD7EVG192A+H18cOgndidrTZA37lDRvSHwo4gSRZmD+ + 3bfgRV1Fqv38fTPnAwpgOygKjZtGZbx1ShVgJp8E3wa51hnsRR6KQmzQVH+1YL2x3kPjIVRoCK8W + WI1X5aE1zTis1l/GZk9wLNgvlkOVv99flzOHuPBYUferxDl/9JiMytMjpWYYtvpCJWuGJ7S0Qeff + Vp2p66+CUFld6kNXcFnmUQghL3H0eOsUd/+dVgepLn/FN+H9a4YLvnRoez7UFijLF6G+d/Lrd1ax + YViHaL4xJUNvN7gFwLNugG/3Mg+jZ4xpvi/vrnDi8x55h+KBw2uT5Sy4LQWS9C7CbvfK2OQmuQJP + iLXBDK8WEwT8klGQPxp8Uu8yWD/aLYW3u3eh16DzokVwOQlEv/RHi6Pzdfm5eX1R7vgs4MT4AkgI + vBTaTyWhYSFx+s9NIg08o1KjR/ftDzM27yPcS82L6nlsNnxvlQYIT62CNfNBAJv05wgvgxhSfL3N + Qxe8xC90r1YVzOo5zfcgvGX/7v+REUsXNLn24MRFC/WXotLX1VVTpJjmi7r78uAu0z3skWxv9cwT + CgR6Myzkh3uL3op+csXgtpRIfAp3ej+2jbukJyTDwEAHXGpjEfGQrAKUf48LLTINufRHwy/KT9KB + Zvcl1dcHaS9wPmUN1obKi5bSd1bYdXJE/U86Nct1+kJke2ZOdTmk+nyueQ+JyU7CRtPN0dI7qoXS + dtdQ9fq7NrwUiW+41Sd1AH9tprWXCggq74gtPdTY/gt9C35ORk/zIFZ0QbbLESZdH1Dje0oAz60l + gdL5XATo7MruHEGZh26XXLHjek9XxEGpANV+V4TzRV3f515gw3W1S1y871bTq9H7Ijuv9oWP10wE + Y8PdewT5t4ET+4LZPpJKDdZWmGDjcXRcEeDpDeeiS/GlXtCw3rMqQArZK9SQEyffq8HUgVjgNHys + b4LONnxA1ZASrIn6s1lNKJdwwz/quMewWaJg5tFlqJMAvu/fYeka15JJfRyCSsqukVjcFA0+W0Dp + UasrwA7NbCEitVeqVOTlLu07IWDS4wzj+0Vz513bdsDS3wM1nPrsLnJnzrDKpy6ossvPnXsrsYDf + Dj2RdRHkqzxIK/Q5N8Z6lazNyD6LgH7o45DVdW6Ad5RDACoTc4G4/iR9/vqvC9zwjMzysczpfKEX + +JSFHsdWrDZ8nSgW+iSUBbS1PZ0+8l0FcgezgM8zBQjfIlHgXvJaenOGF1vO/OogO3H3BKmdxfjX + LR8BxfmB5KvxZSu3vGVIy9nETztbc/Y9fS9w19IL1ZvHd/j91cfu7HfUekXVMB+5SoJugTlqx+0x + Xw65VSL3zA9B8ivUoe3fvxrqkr0LWoo/jP88jjz8VuRBXcggm1LSfNEaC5g+KG9GwjXbBTC5OG9q + Zu5uWOJLTCCzdxrG9Oy7LBbCN3o6n4pi4VXnv08l88CbzxoOFKsd5vodaagOk5nab0duhvtxLiGM + NSVgH/OV88MUa6jKaUedfUTzdd81EuS+YYjLX2kzvk5sA71rIGPsvr7RumQUAqjMLlWlz9OdSt+Z + Dx12GPZ5be9S/fwkUK0TheaeJQLWv38VCKeJ0ZP/mKKlPc48sp9aQk8/VII1Xqc3rJv3B7vYd1n3 + eWBeitsQYjMRANjq20Nnwy9puXtEYCkFyv3xNfZ7z2FM9tQRVYHxpOnFxdHacKxAoTYXWH2eZ3fN + C6mEklh6+B6+1UE0H3qKKDRisnZ3KV/vHbDh9MgY4c7nay5o9j5AYzLsgvyuC/rq5vcOnmRPwnpS + ddF6qbUUiY2B8bOOCRBeJLwgs/A06l5azmX9yhdw+744fTvywBxQV2jjxwDuvIAJgdhVqIi9B33y + kaxPY7cLYEu+lHrpNXbny6t6o2DpYxyfSMSEeuFtxIeAYocN/DALJdkmeGFOk/7q58wSHQUO5y7A + ZT75Ls9dJQE+rr8nLTPF0Je0SjuUdF3w3/2UWSMhBldAcdF+2L5QbwashoxQ4wGO+Z7+GA+xcHPp + yVWvuejVXY0q9Ye350vzNR/cDAZxbNLL5QmG+au8IMRXdgxAjFPGJs0wYH+mHHawprniVm9Iu48d + jtTsp7Mwv8ZonO9PajuC24jKF/HwedSWAHyO3TBKl4GD95iTaIB/8sAMdXHQm16d6dC5x3yS3j8J + /iin0kRBo75gfBTQ7O0u9PgZD4w6pPEQsIqWPocENOt4eFUgYgwFh8WP3ZW8mINKyN3IHmRPRjLt + wCPbrkb812/zTc1TaJokDT676zkn96wLkPo0HJwG4QOs5WhrUPE5jRrPiQMU5ffLn/4h33n5REvu + rBVqpKigAZodIOJlNtDzqCz0ONrbmX3/FaI6Ak+MrVUcZtvtQjg+q4om9NQPs3aiGni73o0A506G + +fLqviD1NXfTZwbbe00Ww/PU6fRUd7k7B6/dG/zhnXDapWwWpU8oX9VbQn3x9HNnNXJKdOb2gBa+ + WYL98jg4UF+SnEiccXOptqt4tOlPet76ebbvzIM6sT7Uqj0vZ8HXSLc9x3zAJVyZz2YqfGVjZQ9s + 7T/1MJD+2oP9rWvI/JSbgTUPaYafCT+w18seYN71F6CTZZhYVZGai0MQrBAd2n3wA78BTBf1UEGh + mweyMw8DmEFzdKCSKsWGN1a+6sfXFwa+kFF3w+O5BN4Mk6IRidju5mYVi18AdkrcU50ruYZs9QlS + sf9R/FYlfZkvZgHkkR6x/3kULvtEKoEf7WJRz9BXd52sToIf73ent8CMdTZf2gs04WpRZfZMsLwP + kAdyLpwIH6cgWl6m+IZT8sb0Zs3hNpGvJHS8wS64p1Pd0O9kJ/KGP9RGu25YpPdLQo4yNqTd/p6A + 2ElllXkc1Sb4zolqnmN0MW9fgkq4b4iAfzJsjEdDtVOqRIvKogQBURkw/mIl51vDF/74DCv0IQBS + 2hMH6fXd47Sa7Xx/BE8ib5/HW/80S1P2X6gr8w1HZpc2S5lpBjgfnxE1kZYNNPS1FORygagXPE+s + r5OfBDc9gP/4glUFtP/0FlUJjdnEPQmEZcJawvbFmS3XiUDZhLOF1cim7hKLWgpPJ0Sov7zIwEau + s8FdpTo9IuU1MCmRVnjN75S6qeNEex5EHTTWoqH+8UoBxW9phsf6CrGbOn1EXz9QQrjEmF6Pqegu + f/X7Vew7zZrY0Hvr4xmwfCINb/6AzU9rrhDSfB9bQ3B3hQoJPBjUnU2t8iyzPzyGcs6faBEejWZt + 3FVA1hQ7NLsUcbQPveoN7/sKEiQiKxe8sP+CsV4T6rzUKV+iXHIOKfBTsv/zGxWvjFDSdz61dlWu + M29nZVDYhVd6XnsrF9PpsIIZvRJsW1qQL/VTCGA9zgqN/d9n20FWdLBUIkRtmuFhcYFCEOS/BkFW + Ybiiur4qRO+nO47ucjaIzdPLIH+fQ2qr0a5ZO01J0YOmHL1J3juarzvdgrfeDDEWvjNbO73QoIjs + jkbkGLikTn4yysbDGwdX78vIfJ1LeI+hREPydt31Z4kyXHM0Yd2gI2BEmUsonOERlxse/+lToHCV + RZaCO+SUPJIEnsLnHetfMQVznBwqmCVHhfBH34/WclQUeJVyAwdlwJr57d4VOexPBlaaeA9I3fwC + iEtYU9e5B83MPgce8o94FyRrAxn57iQDsN/Lwmp3UtxNv2mQfeANu7u9lotaxhyQXGmEzQ3Pvzu3 + +crKcDlTl5yu0T9+ZtNxHwjb+syR6wvAklFELftC2bymcgX+/IFf2mk09tE1RUNXroGAiD7wBj0n + 8mWNQTB16xMs7bskMH0cTlQ/CgqY+d+DgPs5O1FLQaNLP9GJQAZnQOOzLjajfr0QqGfCTB0Z/AA7 + UYGHly584btNymEtooeGjr4cYCy8tGjjQwGmFW/icnAXQAT8kqRCgd2GX9CdYkNdEdKwT1BppzmT + 76qCrqpS4Hynmu4KYi1DVY0j6l2mQz49FLeE6GPbAcD+AOb3d7jA4Cbz9PQMbPDnt9C1mzjssK/l + it4uyOCFmiYO3r3brGlvrXBf62Igaxxtfpv/B+zD3ejpADU2S9HuCxKm1jg1T3WzvC0+AF+d2uQs + VeGwt496gVSY3vEjYXGzV9XthIB2sbC/Xl1GPtot+/P32MSvVF/r5PWfH9QZL+qr+xvfsgwzn/rv + d5iveTEXgJfjGKv8RXXXfZZyUH8Dh9Q//9owrQhmOTB2B6qfx0Ef2bo40P5ZMz4euBysD0JDsPEf + PlWC3izrwc3ATv8+g+a1Saj1oGdwbhwdeysOm46QtEeao9f4mFLQLJyuWsh/fEJ8XH+p/s+fSRWs + MR65JJr73+yAJ5ffqbFv82afNXyFhq5Y/+HDIr1/MvzxOQ0+4vEF2HmfQzl9pzzWm4fViNcR2dC4 + PgJs04w2W36Uodr6hDT4NLecL0wmQ+77ccgvy4aB/PUr3cUnXH6RFgmDkfYgnd6YGjgh0aQGnx4K + zWlHMo8/MLqTcfrHp9jY8GdB4nZGfvw9sQa/LqMKQzbY9HsgbfpsvyvzGGoN04iwliRfdqGdwWH1 + Ltjt6ebfq7QHxFiKIJOP47B2+5MCYydqsStckpxlXMyh5szWoBmzj04+n0MBO2jbuFzaE5h33iOD + jhFdsN8O7/wfHk/tw8fanc6MpH2wAu4n7LD+rK/u6v7eb5SspMOW7avR/kP9GfrOLaeK/YX6AvtE + Qagj4n95l2u/ZHDZf+dg/65PunirLQNwh9rE5vJs84V7fiGY2qcfZN/fEYi5GyfoyvPXYCXqymbp + 0nAwSp4kQHmtR7P6uqZ/fnbTF6m+9fsIy8iTqGX7r2ic6jcESn2fsRKB3bDilz/DUyH/qLmt9xr0 + P0/+4zfFe/nNpu/ecBF5+Q+vwWzUmQKPpj4Rhl1jYLJ3IlALGx8bJR+5f3kKXDvDwLFhHfL11985 + OH4VF1+Vtc5Zez1DuEuEGFsna3InKgAHnk4dHwB7NBtapFGHboc5wT4uZ7Dsm+kCOXa4U+3K7/K1 + fvMCgGUeUb2AVS6Mh1eN5qJPg/6+SC45VL71V0+BeOsqlx0ayYCTPGlY+eaOK7DgE4K1fqTUcu8N + m+cF1iCtBBPr/drnazgeStAYzg+bPV710TsXKew+fUldJnDRT0CDDLtL+qNRAZV8vueZAneVRHBq + NzFg7/iawB33Ev75l2XjawR7/k1LSX+BdgkVDSKTQayts9rsr+eTAfVbqOIcsgL88R3Im12E3VNV + g9FakQc1q2D0SkWvmSYNSYf1WCsUqyZpFoj1Fe2XVN8+D9msX7MRwtfvhHFu3BsxOcAS3lNvog8j + yMEvNk4rOIOzh4Ptfua/fEhN/B92PfWUj/xOKuFoFkd6ZmUzrKU9QahLzg4H0Xt0l/6Tx5B3jk4g + HNjqLms/l/DL3T5EHGTNZdwZCaBRZJ7sDS8e2GwUiSzx3o2av+SbU3V91aj4HHPscNdCH//y02jG + AdUvHwFM0q3+gnbZ3ll4/e0bsukb2BCs4cDNB33mrrMAwzD/kF3m+kD847MtXwuqukqb5XdvO3jI + DwesPGW9+csvQT3tJMJdBiVaBNTIyCiilRxeFOddKwYlBKEIsPbeffWRz7UVit+Oo2GLj9FCClhD + 83Q+Um2yW30trCuBQ0Av2JzeV7DcXmMIX3aq03i6j+6EfMkG8s9OafwJB5eZgVTAJRqP+MoVn4b/ + 5nwA1kMECTO7dJjzYR+Av3wpUHYsX83UWKHEtT3Vo53KhL4SaugxccEOBj6b++iawfvBHKi7osvA + fGe1ofMKW6x18Y/Rk3XvYAIknRq9ZDbzvTvH8KkEPrUa5TesdtdC8McfqlEe2VI/OQ9u/jQQjuUa + /f7065Z//OWF+nr6KgQlbnfY8sKdzpAhVH/9S9VLfAZ/zwc8ec3CW/7GeoMCG5BUPxMe4EQnV+99 + AVByGPaaz0+fgfUK4aIUF3rb/NEUsH0NX7t1oC4kJJpSyNXAEdczdbd8Y46VcgVae12IdM/fwyqE + +xoWt+JCsy8RoqWVlwJZlSRTM//0w6QqGQHzgWux53J6xB+ewwVGtvAJhKU/u/PDqEJ03IciNq+G + Ec1/edywBpdgRidDFx5VkcBq/7Cx9jLiQTAocOSYEZ96D6MGa3IfvuCHWge7G14tGGMBAjmsAhTd + 65xZVRvC/hb3OJFkK5qiXLL/5b9bfhExvEgGlBLJxtFRqNial4YBTXNMydzpBphqY+AAxcaOiHhF + OrUP2QVKQAPUSW4ftvz5p8Nq9PjmDCogmz2HpDaHYAUryddvrqWoPIz1v3qYTBEIkDNHj2b66rGl + UG8W8AonoEoEnsPC6ScLniIaYEcXQTSVAoUwVS4qPRb9pC+asAv+5SXBYX+P1o/qzmAdOkaYFsVs + trvABod4zYlQnjPA5DaCaFs/IkVSGs1LFjjwL3+/nF+vqDOdoQf89j5WfzgwRh1Q1/ABBBw8Sv3E + 3hcKKjieNCEQEnjT10w7CPAP34x9C4Y5Sk0bAt1bqSYf6maqhRRCxzWFQD4EFVvtNo6h4x4FrIeS + DwbfWR10cEaV/uMziPz1n5843b9BLnR7VYGbvgz4plGBGHZFD1cidTgeq+pfngB5dNCxfWMn9i/P + PfNlh33cPHP2tz6HITSx3607tkgqFuStH6lrLLxL53PUQQ4ZPL2VqAHEO3MemFGTBCv7+ZF4LfsA + bPko3vwlY4mNC3gILnMwX9AnX+22SGTv63W0FPLWXVr5UADQXj9ULUx/YFH/liFysw7/5Xu0q++h + fLLSHTbI5cZW6niz/KefTPGoMiqmXibPyCvwNg8btnxAhvW4KtjdySFg13MtQ0iMO5n9a88YVLMO + bvqeLGv/jej9KJVwy9eJsOXF/LNJUqgM4Rn/5cN/fhuKCZKoe0s8sHSzkwLn9Xlhv4T7gemtXEDq + 1iH1e69nI4HD959fOhPKM/Y3j7gc3Cc2JX57x0Zpp/AXXuDf8wXs2Q7B9lKVkohbXrHwkzIiq5Ll + oLLM69881EZKcIFU3fQ9kQdphrXj7gi35V2DQOUZwtuXUj/4bO+8Of4CSK/gveU3FuAXl3mAXcaa + qjc4RvOJLTySYeoTCZS1vg5G2MFsJzyp0Rt2zv7y6rBJKqyY3o+tacDXcPPjWAkCoZmG3Z0Df/lG + Bhujma1TqKCBgwX2r7LNhAtVR5Q9w5w658Ye1sfllMK/+w/wLxtYuRds+IFSg3XZrQa2HKYAJh2y + sb/NA9ZhQjz8aKGFkyE4uNPL3L0h2gUvArb8YtjwGrn7XUmtA7u4y7E88PCvnoL0e3DZd1Ji2OY/ + nrwNtWfj5g/QopSXP30Llvo8hPKdG2/073q8Hyrrv35Kh2epz4oo2VCM8hM15VfssnN7UqD/NgCO + 6Vj/81+Qe66ff3ptYq+rgrZ8fpvXfd1peSw22LXTBfs26oeBt6EAt3kmWTb/xLp59GArDScCXt5N + f7vGwwAb/wT73XWJZiUuLcBPmkn/+GXz/x2wzpgPuGAmYH2RMIRieIoJ12gzmI9cJ8PHxZixci9d + NqvVaYbQ+PH/8IL/439FAhnFh6OYL/P0HKHu16+Nv046P7+R92+e+efPWJkNMrySuKdp3LbRyL3d + FT6dtgo+p8NjWKZ72snDW9bppj91cnFpD/uJj+m9vf3Y2mTmDP4fOwrE/72joO2GNeBuHWlmXfu8 + 4cJGFTvvto9Wy6dfKM60oQ40qnzsoVoiCjWTGvIxZ3P9OK/ImLKQKufX4i5WcXAg/wkr+rStVmej + E1/g4/CcgmWQbZ03no0AxeEsEv5WT/rkqe8YsbD+Eta8Ilc4Je4FfBxqbnuPQrDc1ZWHp91o4/DM + 0XyZ13cNzd21pF7i98MCH14MX7tQo5cxu7LlQLIaxvrNwp44DC7VdUWBlfWJ6SNaZ7Yid63R9Zm8 + A/ncrsNcnl8EXdBqUv2zOo0ACQxgM8kVDqwDyZfhbK5A9vRwm7hLjFVPvpS/kbFSxxrdfLm2zRea + twtPrckQ3TkPH29ILHTCwYecgNj3py/cX2aBxjJvMZFjZwuapE6pMTe0mYMQG0A/PAoc9WPrrlot + cfC57mpqyr6VL/4tV1BjdZDmreW7yy25pqi99x/S33K34eHlraHypcT02asmEOvLr4T7XWnSYzc1 + +R5cqgwV3s8OIHdX2LuVUQJL42Zg8/GrI3ZqmY2A1hrYOBlGztvXjwcd5YUxPpzKYS53xwQdXicZ + +91JH/ZfeRnRssg2ER5PxRU8A1kA94eFiAu/RHN8jL8QyW+V3p4kcfnfU/eQbl9j6kv5ZxC41y9A + 5GAZOGgea76djzCQezxq1JIK2DAdSCm83woxYF9sMz7IzwJiuSHja6HJYB13QAL3qr7SQJa7vHPH + SgNHlncEuMVnEA6KU8Kn+D5Sryg1V7DinQ0Vot3pGUVSNFrLLYb33hSoFz1jMCk3r4I5RRL1BYfo + MyG4l1ultbEGRxHM3OMIYdKOZxodRbdho24QsPvmjHrh/TyI3OXWo8kUVYx9WdH3Ibd1fER66omB + x2bh+wpROswZPoHYZF+uk1Z4r5MAn71QAYfdp9IQZvaJxrCrXLHweAG5zXrZJo77gRUeFOBwniV8 + h4PC9uPzLcPHVdnTx45kEbuXuoaWVhTp0TAIW8pTO4JoJkccMMrnYyOHGixpkFH7+CD6+vjWMdrq + OVh4r4/m4vaxkVUoBIf3UxMtSb/joBHHjObifoqEKcgNSMpgwg5xhWHZlWkB71V1xY9+tZt9pF9X + dM3HlT7yTNd57/UI4WXgPGocejSs3FFM4M57YaxK9xwwFz9S+ApXOdiVvyoX++VuA0QmkVr1ibKF + FogHZf7ucPF9jgML64cGz613+Xe9hUgthz6Sn2Mlyf1m/7pfOHSVMg27XqLlwuy+FeTk6QeHUsO5 + c/24r9DNRp68zyR2921Ybf8lJSUBDztF58Uf6qHDFzr2gzzR1658OED31x3h6CXR2degHayrzKWu + zkf53MipBh9juO1B93k2Z74awCXrGyI+zzewrfcF0S6NqKa/6bByCp2Bc+VkfOrtNu92kWTDGbpZ + MBeFlI+lc7HRjnQOtVp9jKbe+gmQTfQQiN9D766UfAgI+rnA4XN3Z7R5KV80GapNjWPouvuHFSVA + /wqPoL2GfrT/sN4BP8eCQQfAN5qfPqlhEpYTjuRzqc+s9L/w2cArDoRHr9PmZX/hsdN86sFr7oq/ + vC7hre8v1L3KpBmLkieIvucXVpR1BlNcFQoQrkTEx/KWR+vzxxFgquIJe1lWuPxa2ytMPnJKlbb1 + 3DUMJxvEprMLJmfQ2Ox+wgJqwiunp8cpyye0nXk9+a2Pj68a52yqNA7h1U0CgR9/0V78CDyQx+RC + ve/TazonWRL0xy8PofUiocWcBhXKX2i4D3/uvFuFDp4/2R3bBv9zKRAUGx0uzoSDz9lt1v7sOECO + wj0+pfgB1q+ML3BhRKXH8SEMvZnKCXznmYANcP64vHyoZPQ8WRzVmxfT6cfueVjJlY2foNcaYV82 + HULWz8eZPJnRTPa3AJrXElBFsnaALK/LCE5JN+Arl4lsIfdfCYl5CmlCgiqny3so5fQHXzRH9zuY + 30KxJepxFoz5+5NP+rPygGqZxvY8TtEqnMMOfqK5wcFi0XwezrOHQP8j9Ka3c76c+0uP/vg7agye + UfFUdpB/Cjy1zM+wXf9VoK0eyPsYDu56PeQlvNbwhkM+8QYRR0iCJfUyIjVvBuYH36RIWLMj9br5 + 7e6101Ij9Sghqj2Dmz7B4BMAE70+uGzkcFiSFVfwr/+iO/oCEa4GhxRWmsHevyn5HgYfD6LCkrD/ + FF/5XKZLiLb+3/iGaxZG98W/74N56OtdPcwyatJiT/Wr3ufL7ciF8Nc4GS4QvjX8zuveyJMTE9/v + widfOCLysL3xI33E4zTMmqS+EZumAz6XALhMvKH58BHuNb2aNHDnB1ghctfliY+HQh/2SXRSYK0e + NPqQpIaJl14aYfUxHvSsn6NBDLijDW17H9Fg95bc2XLVC2qHoqR5sd+DmTPvGiza6kmTpyTl68Z3 + UEm/JPhw2Y2xbKxtdPx6Mb4/TnLOys9OhvOvyvGl89/RvOEDsn/OlR6fRNBnB79mZB9QTo2cck1H + dSGDEzoMZAHwka/Z75yhnzGcsQekollF8TvC047Y9NmDOqJTyjL0GrqQbt9fnw6tBpF8tQj1n6Ia + 7YXbbQRgKjNqFs+DPvzhSxR8XDK/Xx2bhdSxUZfNEw51KdZnp1QkmR2+OpGG3zunht9wKPqVNVby + Oh8WFWQJNDg/odYzl91JOx1quCySTU1b+TSMjx4hVF6dR5aEnAZB//oxPJOdHOyaKHQZd3l20B0a + GftCO+ar4JwMCOCjJeMgHHPhFLARGok9BgAJqfuvH8ekXqm9+DNj31HqoGfdz9jXTrHOUtWbobyD + Btmxz0VfBOnswJWJCcW+XLmzrk1f1IPKopn7bcH+OKQhpPbxTL0CVPl6j+oRjfSN6TPdH3O+lVEM + zNp2afZunXytcTjCJ71SfHRxPczntJ7BclMWnEswH8jzJxAoJ3KLVfEyDfPvm83QuMEPvkjPbz7Y + Di+j11Sc8Nk0PcBHhhIg9U4EjHug5cJPGxQ4z6tCXct0gMjKToNxpSTBnstuYMQftMLJ0G0incin + md2xUtCnQiI9HoqmoV93F8gpNh2M1T0dpgX3vOwPpU+17N1Gy7TPtzPktKNqVhbbaUixkhm/K6kP + ztCdCT45QKjeAb3xps2W18XNoEilgp6koB7WVHinID+CgCp2puv7Pz2VKgeDXq2fM/DXoU+hepRR + 8JOdYph30WxDqFOPmnfPcAWmTik8VwtPgw/5gSkKuhqaihpShayVPuVT6sGrlGpUf0uBvt5N9wu/ + fZzQY+L8QOeUiozar3gI4Ij2w3q7Ewfqh2eB1dqi7jh3XgAZfa24PDkm2FMaOtDM5C/ZK/ulWb7d + M4NDcDLx2Tl8GOvE4gve5s6lmKbKwO/kIIDaIT7iY9Z2LrlH/Qj3l1XY6ovX2ar+ZgiUxaUPKTeb + +fvYGZAUGU+dn2E3q0V+CmCHt07N99HNeckCEK5sn5CddZnAH37IHcmeZJ9/inwRpyADn5rN24ke + zARVzCsYdQ+66QMvn1/HxgBrah+InLslW/eTtkLptCj0DAXZZb/4IkPDPwZUL9tkWG+jUqBjCSl2 + n2XGaPXkC3B0E4QDdXcGa3vz3xCW7xoHWWJEfFI9e2BwOKFeqjZgfhu8hi7y7r7px0AXOxPMMDN2 + fjAnkgt4XZveYMMT0kWXM2B5OCvoUyZisJOjli3KzaiBubgp/T+azmRdWV4LwhfkQGkThkLoYScK + iDgTxQZF+gC5+vOE7z9zlSArtd4qCNkHTzued5vkoyqHdEf3nH+YI2Afoo2tEy/CDC2+erHh81HP + tChsqWPtfHS1KJIpzaqo6aYlblrYenlAfcdruvn9W0ztYtUbcnxkl1xyfajCYlfbNFCaqlxEY35q + Xnu40+jpMraEYVhDenTp2F2sdzkv38sbztrxTeNtLTMKRNfXwMv+o3vOE715DEfI+Z2eGmDm9Pi3 + FPB5LDq86t98YXkNtv3uSB7vS9z1FXlswLITPfzeLiAY/g5BAdOiZdRThk0+/xXvD2he6YsG3M/x + 47nQYZeaBJqYISYyKoO0efvEyLQHWB7+hGFZpiFFwg/H7LfbhzCx3C2x6+svHuXSdKEjkBdWOgMB + 0Zm1DHB/SJxYWfj44nodP7FSEHbVhq9hCL6fgEb4kbJFsv9UyK8fsRSkoeYtXkLVPy+Mkr+7zkRl + 7iIgdLuYpFdzmw8S+D61xaAY2/uO5kw/xHv4fW4lzOdTN+WHUwUJfab0r13qrk+c20dFJ+NDvU+C + 4/7XFxiSXP7Q86TuwPB6tk+QRlFFkYGWbnkrLwi5nyWXtxbnI+dLTfGBi2XxE5Ri++BPzD5hTlzo + ymjYFoeb+s+vy0cUS7fEvGqKZxFqfo5/nXSXryGE7/BE4o88Bu31rYvaPB5O1N/nSTC/LtcN9IBT + 4p3qALCkH1kFRNcxrna9l4urH+9Al48wbWswCUZe8F0aD+SkPUG8NCC/qpy3uL+1uqk/hR8o/J19 + qj/pLp4HtCxgz24WOcj2gy376/2gNkvww9Lg652Av4uryXmlEDT7ByTO9TvSrmWR4h1rFjBaKKjB + AzUxps3nx9dtjIVKcvVDXHXW0PKp4wlCYefg6ozdcpHL0AXc3/BdyoZ43gYbH/7Ue4d7CfdgPELj + vdb/ygNB/+5kWXnHIyD+pUeBWC3bXp1OcjNq8Wkp6Xn5VnDY0g9mF81m7MrmHnK9wgsJdcZ4nrHq + A3EjIS6nCMoV5P1snHbMZ8Kj+m7glq/NDXPnh5brVG9U4/fG1LFyr5SuQD9oWMtzrLh/dbmOFwD4 + +I1R6njBzvQEF74k1BHUVagUdy6EKy+QYBOnMbX3h40GLrv6n16L56cwQp5XUATyXz6dzeENnqGx + JY6mvNhiJEdR4efzz58MG7dZYC5cPtR6xwuiCQI7SNJCIZbdtN1yfmo9rNHLG7cbBNAY+U0PD8/2 + QRzzNaBpq5928IdnjKGf2WCSt30KpeaxGXebzzWYT1oUQet0AxiG4TNg7+Aiwz0pD1gqdpfyZcn8 + CZZsUxL7+tK6zqi8fv0+MdVdBfprcljgncoB0f3br2NcfzTen0YaOcdu9qk8wdPkdcRRwSNu7nac + aLP+tcfzJn0iJhrEhKlcnlc/wqYq/T21uS9u45zXNuJ6gjXrYg7jbec2JdPS6w5qd3ke5/psd+y3 + c0OVBhQR1yiPnXRvmK3l0fQle0nBSHTKNALGrZZIpMqbklWBFEI+f+h6vfrwdTpA7odJMB71gI2a + HmpewBLiQ3OfS9X3ZWpn8Mh4/taW7/DaTSrPnyiOjowt6b1J4CZqeyxd7gWL8NfpV16mf6bUsP7P + 6v7rH3pmmZ0QnyYTPmGqE+ykfTeLzcI3QzrEhG+EGAwXlrdqW9k5WfVrfO+VCpY380dwG9Sot+VK + 1hwLRESvdyaYau/2Bn2WdMQ8v4dgEjPDh9tzVlHjci2CXcncAg7b4bP2z7zf3MkG6jN7jTM6sm5x + FRPCqUuTlc87hqahBqUpIWqNrsBmd/y0wB/CYuWdgAlSacO2MnNizPNUcj77QEyA9a+ef/2xFKHm + R9vxwv3zosjqDtZnFxC+QyLoH7/sCqnyd6F+86oYE2zjoF0EuKePr+PlXSLcWkDbMCRnIAA2f9xw + gu+xOhLHypuyV5VaBrhdbgSB3Mkl9ffaa/txf6F3bXnGA69XdTD+CCVFs48FRrUC9kmvkGNV/sX/ + 8pLH270Rnq8xQXi3BUybp09z3o8blNxv4CPEV9x85r4bmm2EtbzGBzzZXtBNduBFULykDXXVZMO6 + uNKe8NWIZ+J9Oy/oiXwwNe1myrgBiQXEk6O2a33j6XxqA6o5bFS5nmLh6LBuORE/hJxncON9UN7z + 6wmHPOrJ33w4dkuB6hYqv09Gk8meeT/LDRAlY025nynHyUwKmKUpJRi/nuVyf1wnGBRJRQ/uFQU7 + nzQLRHWbUn+nhPGU53UChR8Z8azuUSyCTxaBGWXbf352msUuhbKjOaOoeL+S1hab1NUvnK7dFqx8 + C+5zb9Frm6NYeCj7SEujQ0X9vL6jQZy9Cno62RPrJcZsMI66CalrHal5PbwBS2uvVUKX+NQYnD0Q + C1TXUPjmAlYvfYl2vL7hY3iJ42sfTPnI83bI/SU5Ffb/9dNLxIW632xA09CCCHI9IQ+uf9QoVB/a + omxhlngDWHB/PsB7Ko54y3mhdvCphlTKn6N4vNJyCinM4G2zoFXvu8mOMlHyjZO78kg5TTSfYKVB + l58PA/MAOx9macI3zfklpdiN7hVcTe2PYLXNy1W/IBKklrp+UILZyTQIZClOR/kSw3LoK75iwWIu + cYtWyjsHy6bKeY6gq4TiJTQFU5U2oKEO8hc0CQf1o9DXVqDGozvFTNgsteoMW0gNTdQR91t7wP0n + 3W9NIxCTBamQKuRC9au+Kedbc9/zdxbfRpDrsKOfZWdCnseNejo25XTq2ivk84UQlb+Tj9c/RB80 + 482VvcuRCloE7bv4W/WG8Xx91IZnn1F75Y/HbEdgzRcM2J/BEmhDsfIaBllgB0x9Hgvt5Dr7UeL5 + 2RRKAVz/f2IUc8b4529A3B9DaojdgMbAlQ9wqzVnoqMjK0dff47w7yfmI4OWFPcrX+9qOcIK6+Ny + WvOX3WO3oyYLd92wDTYutLbnglg8z5iXwoMrj+OtTcNgkTabA1Sa6xFv1alCk+NgG4aP20gjPp7B + xvyJMEm/4tXv0AT2GN6aNCM2eD8AfWa9Ci5Isv7lVQu4WG/4+v4tJLgJAqO7Bm2gZCEbL083Bo0o + X1wo4kdE9dtWDyRn2HygN8iEkvtDQkumgQ00DoeW5p99w6Z92IeAz3fiA78sRzRnNjzayoHs3wPt + ZksuD1p3urbETpMeTazJUqj8qgwrwjMEc2q+ZO0sSRX1QPIFdHP5hTCGfMWgJspoisZjAeXj/kuy + vnyh6c8qfY2J7Dx2svFAYy5Nby1K+pr6kTmBqZC2EwA/BMflxvklozdxnU+EjJ3Q9dmrm4AwtOHY + 83yHTc6AYQ52Bknvhg6EYp5GTcpaeZSv9y9bRPBSVx6m+N5ccu4H5ZWnadokCMzdLXuC22ms8MT7 + t4S94wZuGvlArI/TxZMYbjPYPJ4/aoh4BMw3lRu4b0BG9U6tgyF0mQw1tdJpsOi7fCnTOgL8/tLK + AwHDj30NXbg4Y/VDYcwQcg3IPn6GS54HTo9ENFf/TdDlWXdz7H9T8KP2AavN5huMP7cqYP75FDQI + 0/d/evrup2z86hEBzNyaEzz/bQ384f2Yicnruo53bNy2YrNn5hmM1bhe+QGseSvg+QIxWZh0Sxnc + n7Bn2BjBZ++xld9Bc+9HkoDjFy1Yag1YXqOR6L5igf7XpxjIb7HA7HLIwUTkg62dxMobRfl2K0dx + erjQef0o3ijTAy3RZb/T8nuiUP57QaOM0RP+0j3jPFR2s6YaH+2Nj4TeFPguGe/HMK/DA4386JvP + 7WkP4ZAfempuPioaisP2AFkx9mS/WAKqC0laVCi1+1HB+qtjl5Td1LV/2+nsx/P3GxjQLg8x8e6e + Gg+kwW8Q1w9KyN2QAfWo36/5PvE8x0LCm+q1dukApZ4q/bplvV9WbRedkLb4BEumMQjdgy0TXSmt + oOb+Tv0ThZqQY8viaXm7E19T4ZCzaWI20ej+hAbw99Rrv9+yXvPj2job1NC8lOdJuqtt8cklrhbp + +TRbxhOq241JXLSnbLbx1YC2oR0JmoaZ+7FJhkeRPLDWVy8mig2p4OsvcKjF4MjmaeG7ND3FNw1+ + ZRf3fjoncPeNngSVrxjxemy1ytcTGpqfPzCm91ei6fekJpc1vyoEr4DsuzkSPQ8cMMnybYGdX8aY + 7osdGHh/gV5vpwT5bhnM0mBfYZa5NbFvpxQMFKc9LG/2j7pJOHbdWZMTqIj/AwAA//+kXcuWsrwS + fSAHcpMkQ25yJ0FAxJmgIqAitwB5+rPob/rPzrDX6l6tSWrX3ruSqvd7Yht/WvCN3kC1YoMG8uXZ + z4daxtAK1x9xEtiy4Td2CbRtMR5heF22etk+hUUYApqRo5KLbyJncOMPxD88jfjP74Z/fNF3+aM3 + vKzaRNp7ONMIDiKb2S9MwWO8vTBfwEs+uw9bAls9gSoc60CHg3BF+eTtJyS+WsZIzEv/T48C6b9v + FBxSc7sjXlzi+ekHMnBxN+Jt6lFMf9jdQWi7JfWi9luP0rsS0I27hUS7yjEb6oNtouNRe1LPDGG/ + Mt4rYCkNGr30aGWrRD4zfPOcgtc3usb8aMQPeS8evYnSHd9PsC4LNO78mlqm4QLRd0IFskccTtnj + mOqTo2QcFC7JndwXWoBVu08rDOfsTuN+Ub3FA3YCJ3AsifXujt6kJwuGjzoF5HisDE94KnUHa1e7 + UXV/fsfrY206dFpShxx3uxIM7nVVwH0YTGoLF6FeweNpwrl69lM1KQ+w3kphB4vXs6b2DZs6yx86 + Rp9spoQ86a3u6FJMUDm7NgbTInnM/j4TkEmLQm6R+vIEaZw7mPX1lRpzPsYrgOUOIS9+Y/EiWow9 + 5bWA5npciTempr6EdfeBo09F6lYsihc++ZTItIeGZoRqvVjahwJioxHxx9l6QIzWRYa+Upo0lUev + 33iIDJrAe2KJ58qcw8IvQrwGtrmn3dDPmnFugKYoGjlfW6ILpf9o4GlJnGkfnXSPsfTKQUP5GsRV + 148nvLr2gYLJzkjMkwywbhUypBfyjmi77AfWz9FbYVf57fSiu4/Odo92ArBNBHpJbo9cCIhjQ/eZ + 6fQJzgkQaFZgBHwAcR3oGuBbbwohfp0eVE37A/iVST5A/E6Dabnu41qY6vsKOVZoJM4r0xOQnUOY + vnA5yVFzieejfExgIJ5DGv/Oes71TozR+6UCopOn0gtHWGlQLoOUPpDr5wvQbq7o+8+UBqM0MFba + S4GCrxTSMPmpMautBwc/RBFJIn01wD9p60PznHsUP+3E40zbT0HZP3LqfI1t7pGVCah/tg2JSKPE + Ip68AsrOKlLF2gLEiUsfBQ6IqSJi2q8/GVSQL6wDsehp6Lm7l1SwmzyJKo4TeZx8DgV0abOEZsWL + 8/7tl2lPDSHXYmCr0IEIVD/BoPfW5uNpf80iYDSCQ7UiPbH5ar1niOB6Io40cWz0x3VFxk5XqHIn + SO+m+ryCVj/+pvkYad4inS8Sek3fktiX1daFpDuvKHlKFnWUuGaiGYwFzOjHxuvreK8XuG5WnnI6 + Us+XZn2e9toO3fxf/re+sRhYhoK6Y6lSXa3jnntrX+OwxRNmzf3bD/HJb6DS8eF2fhzA+6O8QsS0 + G9UczmbCxQoMCM83i1xgpvfcdTfb6H3hdXKiO9Ob0ycno9vX/RGt43l9lcvaRDDfHERLPvUz5dQM + Re5LIUYDdh7bHVuMoG2X2xzIqBc4ZfcA6TjMBF9QFy9vTklRxN0xNcKdrq9Ppe/gITVWHPXjzJYA + bDdovg+Tmk6S5II5PE3YuDtz6mMPMcaeJJNN34+JfU7dnGtPlxuc0+pGDWHKvSUAhwkMYXMiirpr + 4/mXliv8mnigFj/Pev/hrgp8Pe0S76ZnnA9/f7/FI/nDQ4HH/A35HPbITV1Nbzm0JUZPRa2o+k5X + wM0u2kH5c38Q29l7umh/Lynk+D4n+D5q3tr8jgJsODkhiawlYHFOXgVXVMvES59iv7wDRQZBKK/E + tREBYqerGeLHjNDb1e/AeBOABrfxdfgD3t+cCaM4wNssvYhvG029gPzWwcYqLkQ9hRYQJ6NxIdjd + 2knkD4o3j372gUNjKtStYJUvr8vVgNfDNEx095v6pe9+FbqcbgI5hgc9X1PDmuClubyppfpEFx39 + HMFLyAvUudq3egwSOYLGTlVoAnSl5pCMWvlhiyM9Eqev6U58+RDnnzNxHI3Us797F9DbEzod0Geu + p2JhIfrtqoo4SqyDIRm1B7Kvd0gdR/ZisT7fVxlFJ4PY1anvxeV4ruCSejPFUq7U7Hq/cnANpIZE + yzaXHjwuBoKNaBEfeTlbev/SgWyv2lQXe6FfCOxN+HSWK3n6r75epft7QiXXxxT7d5CzaJH9v3ik + nuEY8TpUQwacEVwmmG4V6KFbfeCuKaMagB5Y2yOyYa7zITkuGgPrwxt9mHfcRK+kq8B8rhQZqZV+ + /ItnjxfWOUNyEx6ncxlqtZBGZoteqiRP0VdQAM970g6c4ouPZ//egymRikE+xWefYr26AqEiOYSS + t8NUCZMciEMBIugaZ4H6iy3k637NZvhk45dkTXOol1TVQ9Tq1o8cY0nM5+PLEBB3vB+pP4e3fo6G + kwElXipI2qdD3rnzkUOu1ACsQc5iHPLsFsldGVAr2g/e+LDbFbK1Sidxiwd+bypbD4EoIHen/jCR + Q6cQ6c6VkNihP48ux3OJTrrsU4MXnvnykF8z2r4PiczL3pudBjRgP15ieknjI5gP0zVBR97nSTos + u36VD3UDb9qhoXZ3f+n8iuwPEBNyo+qhuAM+wZkAy+D+oHqczv1qWHWHHNVf6Fn/FfEAUxfDXedj + ms3fvT7sm7VCSS5m5G+/F39cZwgu0CVnjz8BLorDBoYSvyPPiDvkS8sdBvTZk4CqzpzVrMj3PnSW + 3JrYLu68JqvWCO4DGxFly1dDddcwhJdvOVVxPucDigUffZ+7moYwUr3xlP00lGPboqeN/yx3/ZIh + TdE0qnlEZmuRrTNSTt11kpanDAYaqBB8r9PmaN63ilAhlsiIX2xC0iXMlzZffPjCVxejXbfz3snF + /IdP03wnd28xSLvCx9xUGO4NPV801glQjT5HqueVqQvBG7VQ0IWJOI7c5ytKbxJU1zmnweJ/6vlg + XSX47EpKLtia4yG41RnUnk+VeI6qeH/nFzKOUrxevkfAyKJw8DJ1BSXC56evKbgZcO40Z+LDwzZF + pk0/4AK2+TIf1amFgzFiwN4hpfgRZvFvpU6HPvw9pWkEciC8H0YI1/ulmQa3rOLVccwM7ap+pkpq + xDn3eu9n4MWmQ5W//Nl6n+iPD5CjVNXedMvUDBLeOxDsukE8RHKooA3fCXn6RtwKbdrA7XyTLP9J + +rQHZopofxKIG791T9g7QQq384tl/tHnSzMJO9n22Zlq7PDJ1/BDNTg7EaN/+Mu85NqA/GSIRNuz + nM11ZLcw+Rl7am7fZ1VPTIBX9mgm/pmZPQvPXAISerGoPhlUn7N5wRCE1+GPX4B18n8RTMO7O8n6 + 4ZGz+0tp/vCTmnKT1wxdt/xymFziHcdPTtc4eYCD9tUnqBaLzsSb8pGT9STSR+GU3vb5IeCiaaDq + cpXiOWC9BN/QtCcoKJEnHPqhhS35HiY0Sj4YvHkq5U8RPrD8JmE+j37YIHkYP1jWU1ufR5ZpUH2X + HBZ7tIJh2XMp3PIvHs+fIV+rtnjAS3AwiZa4MKef1HLh/tt65BRA7PHJ95rAc6wG+CL5kz5cpxHD + 4GLL5LzbKYwZDJTw4dxGqr2O936U/CoB1vH7mkAlVv08Z5wEqVTfSWD0vT4uL3eA+vfmU2ciS7wU + j16ChRoHFF+QG691QHZAQWw/rXcc9NzHmgtId8ubOtdT1891y9vwaZgneizDql/j4TVDK+Ltv59r + 8RNcG5hJTJnENN66Wn/TEJ7ZWk/LWG1T3q68DF9VF1JzWB49K+3D43C+bz3OvgPq530KGshgGJDr + /a7o7MDkB/j+vJwYcx7kf/wWOMlQTtxVtWu+1eYBPv16pUGe1mztm60r62A31Nypx1i8i8gATuOV + 01ztuX7OKjkE5zLiiHWObtvUlZsNr6b2JdiaSL48pPsMCumuUiu5PeJ54yuAOwwufYaj6olzuPGp + FFwI3vjjbBzxDp5SDtBTXvP9oI4/DVh186AFGw19w8cJ7vaHlLpnadGn4K4YUC/OO3Ju9jjnHhfy + gP7oD1O9izt9McVrA+Oz39CwpUM8au9eAhQ2PskAWeOZiZILnzOR6DFUv/XcV/mEBJ2b8P4UXmIm + 7TgNegWn0GuXvWL2bbAJutevnc7359MrnRR28udXHon9He79/AknBbzzZMXC7qB6/CuyJnhC8XVq + 40/UrxnUH/AoH9DUbfG+xWMKD8SKyT/8w/uUO7gX/j3J7U32/tYfbHrhD3/j5bPdmAh/t93ES5Wu + L/djf4OSBzFRSPEETARCBzm6i7B0tGi+3IxVgbYcRHgvHUR948c3aL2ZiJctv8yv936FUFyE6UEv + 1GPo+kxlwjuHSbTaAYx6/ZTBIt944u0Vpk9qxyXoZ7IJQzA7/T+9cb/6F2JTfwDsw101wIfuj+Jw + Ldk2caODglgx6r+xAr4xervIvpc9veCwjKezGU+gvpcOvarika3a/TPDgkYOIcNe7ZnbFRMSzT0j + JBxVnXNSroWFpxtEXa5ZPJnuT4MhPI9Em5QdY+dvpSF1H/XU3/BFVN7eVuG8c+Tui2W9ju/fCleQ + vvArzHxvWZHSwKx/XYlxVe1+cYtdIbsX8f3Pj+Bd0/kXv3g3E8+bf880gRfDIZi1iViz41YxL7Ko + nz6fr9IP8jnk4KuVMnqKuB/bGjlKUFL7C/HT7QbY4Wft5KMMELH25bdfoiaGKJTthCjvfK1n3x8e + sK2F/QTue5Pxg1Q+4NkRztRMOL3n58EIYaP6hKRP4a6vkVinwFcqk9iSNcXtswg5hE/CA4876wv6 + X+HIMB29maoBnHQmgl0LK4370Bzwv7xbw1BDiS39iLUWQr5Ot9KH+MQ9iOXCT92mEn+DupNvU/Ea + rV9vHyWBf+tR69a5/tMPqErTjW/LXj7PuS3DM6nvE6dQWxd+MqvAxteJ6Z4VnSuauwJJtLrU5E4B + 4//42UEQbEzvbRWvFyswwc9oztTt9l+2JDjkkNA0Bsk2fcN9xE2Pbv7Kybp39ZLsAgFah/hDg+JI + N79mB2E/SB6NAruq13j4zSCcb/c/vVOv06314WE0Q+oaeMMTbZ7gg4oenjv3EXdm/SpREh1fZMuP + Htt9HyFEWe0T1z85/XxzaxvclMmbhkw4M1YdnhxM3t+QmMbb7je+vIPYFfb0Lx6nElebnzOKxDvD + V04l1Tag5lcRwfxeq8XGTTDsz9JI/HNV6HMUZw3UoNcS/3u+euyi5vAfPpCxurAlP8w3dMntEfNc + cO/Zr3AkeOOycOPXcv/7BmuI/vTpd8PbFcAWwv0r0+m5GpRYFIHQ/uOXSm03Nf18IhPdlMGb3gjx + +ppsPTC3+KfaPnz3a0eXHYB8cyeRAUdvHuF2I71cJQxkDvVTibsPGOcrIpfcU+slSOQQvJtXh6Es + BdtEvO4DajQ8J2FGicf2XdxCJ+wX4uqp7fFuIRTIrw48VWHwypsTJj7oDr5Jivrh6KspPxSIX/ED + M9ni6km7TzN8nxpAnU4HYHTwvoIKaD7Uvi1FLiSnc3hog6wkpqV+8n/6/swjSIjyMPVPm9oGCDVY + bnzKjOdIDjWUfouWpOJ18092ko3KGiCicuPqbfi2/u3H9EuuE2Bz2SnAiGs2zQN4AfGP/8hmbBNL + SVi+ppHZwcfN1TFwmjReezRL6FyGHJYPZ5AzbjQTWfP2ESHej9TrHuD0oLW/A3GgNtUsWfsG/HDq + E/es8PFsbA9a40uOqJ3/Mr3WWvsDX9Ilo55lZ/l8mE4JCgdpJKH22vVLEQ47UO6gS6PKdGKGoZah + Tc9MzKE/felv6efPPyVRx591kUQ7CM0TKMgfP15tL7rBOy/vML/pcSYyZ6tYSxa93B+0H/Qyf0BB + LBnmXnMSz3JsCGjLx+TsN3e2VLuw/Lfeer+oOl9Wt+4v31D763zzJl+qD9j4CnEqKfKml3rXYP/p + dEJUFcYDpNr0zw9zDlTp+axXDCS+7iol8v2gT8uKDVh+82F69xH0lrKKOrTpLSz73J5Rlbnbi4r4 + Tk3wtnLekVwIU3dWMfL2Tc/AfrzB8nsdiG5P95xJqm3C90XU6Z8fMHN4mKDcREdqvc7PerSwaYP3 + 2+yIJs5pzG4/Y4XOa2dR80UNsPDm9wMtpj6ocXt39VjtwgrexttC8Pk11LMUxY8/Pw4fTkdeX7tt + 7napIDxxKJ3qsRC3KUerMZH7M4jBxi8MeS83Mj15P0XnoWLaYPv7CeoSZnO+dB+wopdMvHKXe2OE + igLUx32/8atd3J1+zQ1qbX+gBjnm+czCeUCJ1r2mz2g2Oo8emQLxLd5THX8N9s/v5z5+Ti4QHMCc + HT4r+MaPmCqDbnpt1Tsu9GLDIZeAJP1Cy1MK42yIqXkYnuBPb0mbP0q0z+7tLbd+KeQX/9nj71Nb + 6k2f+uC5lHgSD4YDFuNzj2DexROxG7WOW9cDpjyU6ok4PdTzMWOoBZ26VYhhoMabX1eAlJsIsVV2 + rtfvy2nBn999PlaNt3A2aIDltCH13u7cD/JwTOFk5Tmx1/Lz50+1cNO3f/orH9CqGNBpfUIvg2P3 + 61fc2fBU6mza89rXG1VFesib/0KVNY0Z33LLAC+TVeCnqsJ8BrIRwRw0Bn38jFfMfHBV4P3stdR9 + tnbPHgMo4V/8/Z3/rZ6hoe9BXqhfpkdvnreeWQJhu80vAmx4H5YHyu9fi2hioOjCtXZ3kKffFjd0 + UHPeO0EZdh5xph1nAm+Yc1uS//Ifadig901dTHCLN+oE+O31+cPzIUiKnORbvqM0qg24v90aamz5 + eF2/fgUyu+mIdvm+2Xxf493haBEJr5vf2ToN+MDNX5zg/Fb0Ve24FAWTm/3LL2N/ezTypw0oscPH + VNP7T7Ah98E5UUyh8Zg33gzoP/dHvE7Kg4368hDgnz+3+SeMfYLTBzwDzqaPR5jl83eoZXi8jV8S + eJYN5qpXbfAQhI7q1n6J10c+u0hIlzvRzJLooweU5I8/EP1q2jmt5i6EFH8J9bli9ia1gwn8PmFN + rCrt49m+Kh3yNfqkDrNGfZ3OKfe3nlj0OC1m4cRx8HQ/6njFddKzXNQHpHKIwyKzi3rJDLuD3wrE + 00/ct4Ctrzz75+8GP0f12HhaBrDyxpWQ0ihjhrSKg/JhHxAlCup4ZtdPhKpBv08HPRLZZL3uFRwv + 85Eq0s7KudPx2sLwl+3Ihm/eihn3gTsyKiSNAADt75mmQC7nFIsbX2bL46HBewQJOamqD2bvO++Q + mrDHxD0WRV8GctZgPOX51PxCveefZjLDdO5LakF9581I5ltod+tWUdZovV7mrIIkQfXEhnLU/+HF + dDu4k/AU0DZFzYFwOy80W543wH6N+ADRq3pSu2mu/RywWgJzGUbU0W7QG9hvwXDzg7B8/An6O/+N + Bdj8fSzoo9//+Z0w704T8S36ALNoJBWszaqn1lNb+p/2riUYe48BX+30F8+JqSvwyoqGmr/Vzf/x + IzmuKF7ymq/XvXNMQdw6MT7kYxvTX6FK0H3edOq+gNCzMLMTeTvfxK/uKGd+FZZoix/qPr4FW//q + S3/1nhvAFfvziyCmhrHFz6VfayO6QUaVz4ZXei7ui2ICw1VdiY0nATAuOXLwKc7plt+seDnm+QCd + R3Gh+V/+FzoWQpbpNgZRa9Vj8j0lqORxTPXm/q1n1Xx9kEk9jXrWqc2Xy2U/A2a8rtS9FEyftUMM + 0XL9PQnhXC/e+LMGXqsVbvxqZJ0qgRBKbcdP8isr49WixQNeD8NA9dvrlk9/8X4Wo4gE3r6pp5Lv + FFjHJCLeZ1rr+c/fuwnfH1UAAvn43YMQihycqaOKb8AMVS6BfI8+WGi0CIjizW7AfLg7xIr2vjfr + ogXhkjrzv3oq7U5KgloxnSboPNN6/MvfUYme9CHlZT+X7JgA59sTzMNr7NE/P33e0xPZ/Ga2uIki + gc2fpvrLGcGfPwJUbs9Nh+08CBqhAiwtkv750Wyrp0J4fxbPf/hE5dsCYX+WR4LVXK3X+ZO7MCuM + K71Fqqr/8WOoGNlKMo1T83/+aXg+kInf/HS66UcI+c+dqoZUgHHXaRDdApxjIQI5W/mnncD3mpz+ + 9FHPmB3J8I0tj5rrK9V/2+9DqMrZxD6HYy58fyIG2/pimWljvq5hpsGlzi/4Exsem/G9nOE3LmKS + 01Vn7OsdP+hRJ4Ce0v4KtvqVD7PkBYidykM8H37WNjUjpBN/OaveWDx6GZ7ulk6dpfa83+ZXQ/2b + +X/8LBf8mzv8+aHUtnfPfJHqVACb/qA6eZY9XYYE/j83Cg7/faMg5xKXnqvgy37HemfD35KOGOxf + v3w+Xe87qClJRFxbWfS5nTIML4LpEvN1b+I1LM4aEnqWTXt3Bvlspj8ZfH28o66qzjWz3nQHnwGu + JqmXbF2k9S2Fhcl9iDU2QjwG1a6Bp/VqU4wObzCbe8EGgzj8yJVbK/0DBTGDq3J2yIm0Y88+t9BF + g/4Nqfu8lvV8NSIJPR6zQW4BrfNZK+8Q3AkUSXER6p498LjC8PHV6DH9KPE4uJyAuIt2JSrCAxvO + DEUyN6gnqjoHEC/yUTOhZT7O02+/VPmq7tUG9Ji0VHUHXWd+J1Ro5Yd5mmd40wdzv3Ohx/8IPepB + 2Asa9kOoffkPiX0FgFlQXzJ8+4U4Dab/iZkezAJKvA+Hw0e6TR1o3Yf8De4+MYv0oM/3FU1Qpaii + +n0H663P24BCpJfTIoibZewoA9pXvYT3R99hXNTbKxAPyQXLyaSD5ZmFHUJPz6T4jhpPmPFZQ3Xb + rdQbxUFnrWuHMIsUn0Tv46FmtI19ZHy/47QgPABqwbhFFb/N7WD1zeNftr0iSKyeOOfHNx6KwMrQ + JD5mXAp7Av7tJ8xeJ+rvliMT8wRI8JXcd/RW/jAQMzkpYTxlDc2vwjkXf8Rx0b76SeTYHO/eerFO + EOzWvU/9x6vsx0E4hDD6aYhqkntk/FzmEXwUIiP2+aMD3tx3A7Tn+kXdEq3xzOeghBfd39OHt6/1 + Bj05Ad3u5zchiy70czh9BsBNr5EWAzt6S1tcd1Bpj096Or4vjP22Gw9a+s5o7oVB/NY5rEC7i24E + 628GZj+fC1SaCUeL/dUHQlxJHORDu6euXMk9k1/HClWPKCLHHFuxSJZbAm+FdaFH8PDrdd0FBuhx + 0FLNDWudWTDv4JoqBjlJ8i8X3Cj4gDijP+oePqHHPeMew4+RAPq8BmUvKtZdgbPKhyQIdDdeqot+ + Q+dBvtNMfQceU9NnB9LDcsUHj3PYKl0uPpSuuk7wu/H60Q3tFH1M8UID0/gBdpcrDNHHCKl7i875 + ELxXH9nk8yFa/bKYYLD1g+7JfqYmzjKdp8ZngObJnIi9/b+ZPBsDSZMOqM1YrK8Op0TgY6SAehEZ + 2XJVnyE0vL4nSrW7esJb38uy4f16EgyXo8fO4DWjMdhTjJRf7gma4VZQrW2NWmF8qvmXrcxQr2SH + XD3OAdz4YhBNVyUiQfQFYLptiLt1ZiRKSt16/FuPKBQ/mG+lBqxbZ1Yox3NE1eX7zlnmXDAi6mQR + FQkx4NtXJBx4C8XU+RatPu/JsIM3pwHbeUT64BNcge8pEKk3kqMn6sHMoefcH6gfeCbYvo8EVAsr + WH7iJxMq4CVwUA2OGvVpAnP0SAWoyr8U08ey6mt7TVP4kAcT/1Rn1De/QIHXJW8m7iY++3XlvASy + MGuoBTCrB/SEAmwNS5sWknTe2jn4AY8WLEgGX6Y+XJ14hdy15KkDjx+PN+fSRH94vSzfY8xNqK2g + H150Yk7JAUxzfJdhez3K5JR1hrfhqwuXD6hJMMa0X/PP6sKYtisxoHDJeX8/Z2g+v2Wa3MRnTeVV + SmFYvwFxvSHIaXlIILQ974Cln53G42f4CVAwQmNaurYB8yXpVhi5nyd+z17L2LXUZGRRIk7iLbXy + tTOCBipD6RO/PEY5T+xhh859R3C1MD9fbrFrwALigDor9XXuXjMT9T66TS8a9mzZ9g+qTRbS++58 + ZNzzPuxAAl8TzV6Bl2/n20dI+gzEInodr843TeC5bwmNBIuC8TO8OGR/LYB311+5zTmmLnx22TrN + qBvY/NFfCgTPbE+1U/31OPmiJJB6wY1qon7LVy0+ugCHlkucNouYcPqkM+p00SFkddU//JOhU9kP + EuzORzBP2usBrxe0I7ldgn7c8gvKz8GPBuUbApY8kS/jPeNpsEMDm4O37MPDwXxgPhemeP0eIwFO + R55R15w1ICTD2qDpxfhJ+tyvOadYpwY5dTbQwhfrfO1vS4TU+90kUXVQAEfOXQLBCxTE67lUn9U0 + +RfvlHi17nHdQ0n/8JSoopcy1krnDAZ8nlJ/d69yrodBA4tPHU3ytcO5cFN1AVmCo1Lf5IKc2yld + ArVZ2ZEw30v17D4fGRyfskLul8nyONu8aTCNwiO9vU48YOmVGnDjB0TRu0fMnMwO0bI3ZeJMuV3z + 91IsEMmpiEES1WCSLhcMuur0JcdcmPL1fNwrkG9TjWQ8rvTt/EA4CEVOQs/WdeYuRouoPe2mnVc+ + wHo8iTIA8E2IqTm//lO/1wbIaTTRFKSzN/14V0ILEga8E7ENRHjb34C0Pn5UWeiLCReeGjBYZZkY + GCa9IDNvhVu+JTYGHzBL25QhzTs0NO/LtV61OHDhSfEV+uyfBmPvQ9UhbqrHiXfCTz/lr0MIp8tq + 4AoIlTcX1yWBF+ooJN341DBcZB/JU3Gk5LKe6rnJDjMwdpWwdWF/5AM5dykg6mCRrDhYYDH5cgcb + vp4wep5xz9BQ+YgB80Jj1zbrZeqrCF2yQKRbPaqe02NrI2WvtDRjT1IPVlm3f5+f4Munq+nHHhPo + FPeK4AY2Pbt8rgqa8nKaJBhU/e8vPyb16lOlPDZ9/8fHvh95xey+K3p25EUO2KHAT3DjO2OX6gJ8 + B+ORJimRaiZ41ATN9TsQfeNHi6FICsrHq0IV5f6JlwIt4b/8fQ5FrM9cKrfwsvR3vFs/KmA3eizl + j/RIpn09wn5ObrP0t7702DSveM38GwfTj0LJH/9c67fcwOxQl1Q1UMhEWy0+4Nt6CvWuGOfMBfiG + Yu7X0ywoM48//O4FTGHME6NSS7b6K1PQmpUlDZvR6zkuXVu4CrsdwdFO7/lcmm/wfEYJ8f3tDYzl + XA1ooKglGp3TfH28Bwk6xg5jNFyO+vpa1AbWqZsS0nuvnL2eeoqefa8QVZNlwKTlfoPcMgXEmayj + N4VRHkHjlH4x03itF/WL/IF37ZlQfH082ZIEoDxs+0P07zixdZjgDGRyafC6025s4KmoQTc+ZhQf + YRAv7Xajqzh+MqqUV1vnUMMP8P21e6Lk+6xfggwK8B488mm38YeFL0sIIlBfKTHtJJ7/8o96gx01 + tvw10v17BfTrFJNALbXmXsHdkLf8RrWs+vb/8t2F8w40uB2Vmvf3Uga58+qRY2oVHjtctlnphl8T + PIi0/kWJ08ke35OJ+yUGWwsezlCX8/u0zuKLMb/bVQCEP0z8o1Qxaq1XGaq3XUftVbR7dnppBei/ + P4yBFwb50pigAk1ZbT1n5GGbm34soetzJ6o8Or6f3J2rwdA3PuQ29m+dnQr1A+PyoFKzumK2bPsL + RN+1qKFdq5551nyDZpRCEtSIr/sytAeQj7lCCRHNmq9fRxtyyjGkz25A+ii7GoT0fcBUEywC1rfX + 7uCxlh/TQqUV0Pu+N/7wmer10QLrmPQu+AUkptaZFDo3FMyETa1Hk3T+1IApWmGDRTY0So6+A1au + Bg9giVcyyWfNytmd/6Vg5uGPPgKy5Is3BQ3MIs0n/khpP2jleQdfZ1clzue89Uff8tvE7RJKRNOP + effsYHA7cid6/vltzJYqMGFwvScYHq+PrWuiCOF5cvvp0xYG4IcjgNBO3k+i7bQb+IdnvUd9Eojp + O2d+yc2Quy06DZ7nqV7woYqgH/FPqgFB80QuF3aw9h4V/gUZqKfqeHRRK+wCirOKz+f165awomVJ + H5zL6uWGHQyF86aIpdRnTXk4lSjIApPkm15dLXHCkD3dM7Vb32OLj4EBB94PaGodOW9IyU+CyhyK + 5AqPH33dT+EHoaLt6HPIaT1n49dFyESU4JMo5TSSsQAK56Jtb0pXNucHT4ABtQk1fooaL6b8E+BM + 9SeWzh+dLXllDNA77mq85CL0/vIPlPr6iQ/l0m9zNdMEps36mvYRVjw2sg7DP/2gvH+CPhs3woH0 + GyG8ChZho7+XbnCxn8eJGceQseTGpXA3DEf6iDpl0+MhhofHrSPHVjIAd3vbKbQjS8e/RCjzeXyx + HTiRFyT4Hdo6t30/8KfHbGw/9T8+AyUKfRot3jFeDz9NkSz9JFA3uZX5ci/3D/AAu4Tgmr/qS5cb + A3rczhfqveFLn/TfLIC/fC3hr54PxmuWUdZULdWLaerpUfsJkP5+EnWfY6OXz3uzQzBVePpwGy5m + S6YnUEjXcpI/Q1P3KXknELk2Jo+hHrz2lNxN5DGbEWvqX7XwNlvjDw+J/ite+fgX3w/zM2KxhTTe + 9NoDDcIjp67dZt6Sovrzt54kuNzq+h8/3/CDWo1iAFG8XyU4TaqL54P2BvSRfSvIXNpSElV6z6Xu + S0PufGrJMa86MHetZsDtwfrUl8HEVuH7NWGPUocGsVnq664Y5z98oMp98nTabT1HtvNBDNwuXv+k + OYbYM07kMjZCvqrrpf3nR5j5tIDfBzTbnFxQbPkU1uzbnCSQfKKWeof14q2HRrUPGOoe8Q+dXHfh + 6y4f/vTR8W7Cnn1ZUqIDaGSidrCNWdO1Gvyeu4Yqp3YfD71qVuBoDpgWm95edk0XAsfExaYvu3yx + nKYErXHUiD7TY7x+hcyFQz5/8UmKtHhR92ftkIVHQIxCPvfrmNQusuruTby2QPHS+ZqJ/vCIpwaK + //Hrg4MQORIb1AvopBvwf3OLfxHr4sV3Vh81R16j5vki1UMIwg59kSPRI7yJcbvxW4ih6pHLvhL1 + ReHjEHHrLidGdW7iuTycqn/6TImsul95o4SoE4aE5sH3w+aXXfjyp4zQnz/C/vFZqYtP1L4JC+j/ + 8H5Vv5epqU8T2/TVjKbLbFDV+I1x91VOECmt9STObTrnq9reJXm+aV/MGScRDGvltBCj05V465N5 + 7Jq7GrQ4iVHtRPS6F7KTAi5D2xDie10+DVvFjLlji7kZDHmzePednDhGRu5MU9m83pUVGLGoE9uC + n5x9m6sEDuHBIorQD/G8hA8BcufZI6fNr5nfFSvhvvk4FEur3I9WPIXwxB2aSR73ds3R8jPAjU9R + TIHBBFzVNlLpvvrTq2zEu9pFzfU9ELU+l2x9DfYAjf1iULc49/ncooiDqALL9AWY9XPxWDE65tTE + Mte9e4bP4wxfw+9MHhu+zPybD//h4bC7azFXJNIDuN7Wo+fnt/k/vfk+S3ei1j8jFx55bSNw3N+o + V/I8Gzb/8LDxWeImNyVfvXYJ0am/74h9lq18VOXERn/6RMuw4bHl7mPoWXihlnXKPe4B9w+46U2y + 5ZvtDZ/jwtfZVkmU4cbr5XVO//mBfm+s9bpnpwcKW217c6ad+xXtygJxK8zJdeNfQzdqO3g7nL6T + mGo6EL+sKEEB/YDG4bP0+M5SMSTHYqEW31Xe/AmqFSqx8cWS/Aj1JjigAY6NfJjab6h6Qn4miZy8 + lRvVDD6JN/2HQVm8ZeJu55NVkjWAJxMySvxnwJjxggmM9WGh5OBU8dw97BT0nddRjXBcP8/rtYRN + rUYkO29zoRsOYYiDz0iVbC37kc0S98dvJ6lyePanV+C963oSdG1U//Or8DZlJpuIuu3ne4aXjIjE + kdO4XsEdKH98mkadb4D58hgq6BXBj7i3T8am3WWQYaMnH5KA6NhPyK5C1H+uCg0e47de5/gsQ/rr + JarS0ANzK512YNMDGO6WI2CBWD4QTNYvPrTZysYPGArY3cOJ6jRJ84XbswL9IplMX353rIWnedum + rj0UqgwJ87q3LspQ7uMPZifL0v/ly6u2Nzd/MMo5HP4KCCffJ8df2TPqDN4K713bE0u9fvR5vdsr + TLa39LfPYNTDX/64zk5Kw82/Wjd9L7OD4Ex8c7zri28cUlgc9Ikq7+2d7mtRP7AtdYMqUW55VDet + FeKgGckzsDg22+rVBfO4nKjBiylbLtcQo98XWNSRO1GfUFC70BMO/+IhHrbflyNPGKnZznbMA7pE + MDAeBbHVQ9j/7m1Zws/x7fzhez6Uu1sGz2QKNnx/xmzn0kp+Bn5F710b9fP61Up4IUVCjO2GqGDf + iwbg0yXb+FelL1PfheAgciGJs1vvrevBxxD26jgdgizvF63UKsip25v0kHy98f3cy3/6Ce+8fe2N + a+jdoMB2M17d5tOvInfSQHebI/Lndw7YKz/wuN14PTrhpx6Gy4pBK8CAnDZ/buPfCijBkFOjkPl6 + rhplhnEaBDT8+z7sxGOw6Qn8kmQnX2pR4uB1Olg0XnQbLJ/hx4Hqyr/pEfsnbxqPZYVAIdeY1dc+ + ZmfwW4GV7RYsOm3S0+GCWrj53dSqTmvc66Y1g40vTuD2gPE4yYMMvSOs6VPSLrqIw0GC0XelJHgZ + L295ht8P2PxG6spY1CcqXwsYE2jSYtMj0zloDXg4GA+y8Z+aFXP7gM+dV1B7tgTGPrfMBqfxRojx + fUcxO/J7AXIc/uFScTTGWe+hAjdJv2LktXnOo0h8/NPbZmh19S9F24uHD/PI5u/rE78vNZS8tRv5 + O48jJ8sNLF7ljYQnpugM3z6dDOfpR61p/97wGUXgoxsj5lzF1Vdc9TbM94cCS+br0q/9eb7JSfge + qa1uN+jeFavQdj5ooPxyne2LWwJF37aIv17SflE+YQuf+DHjpXlTb3VtnYOgdjqiiN+UrXqGNYjM + PaVqjSxAW1cJ4aMqKY1m8QVYbRwmSO1hR/78pn/5bV5qOPHa6aMPr+Buwjfex8TiO01naOgw6PjC + JNlWT6L7V4z/6gOU7I4Dmw6TJqHT4KrEsjOzFq+5psGDs0dUF8CdzdTvfbCdb+L72dPra2MZ/vxE + Ekiy6PXNd8/96aNpL6w24w33sMJ30hLMJO2XLwf2xOD3c85YmLeecT4xS8h/rgt1WoPk0+PdSLAy + hJHYQZnpTFsNjP7WG+3Ob/DTOz+Cs358bPWuI+A3fQKO9Dnj3eXT9etJcj5w4wfkfv0U8ZLV1x08 + Xv2OmNXRi2fyHEz4bm8HghN8ArP4/Lpom3hBycPxdPZwGhlmUIcYvKHq8b/5XAChq12qz7nK/vlJ + D8dyiJ7uC339za4GLmea0z8/brHpjYNZaIGJosWJuw3/wG/HhfSu/IC3niS1gZs+xQfzCrwZPTkO + +jA2Jt6GtU6Xu4GhcI0gPuyjhz498t4GzLnfqP1tmnr9CqENNj9+2pXtyxv/6jvIlhSi9EbDhqi3 + Z/lTVNG0/iQ1ZjlhirS46EVJYCVsHJNdA/70t9kWxrafNf6nr3ZmOIP5o/8UuJcSRtXm5PW8HzMI + nxHJCY6e+3ydjThEkZOeqEkttR/n7q7BSD55pBier3rLnz48eBImximevDXSvAzwn3wh3ic0ej6c + 4hDuML9isHqk51p2NYFDO/UfP1ri1ZTgpoc2/dmDZjHPBqBQuEzv9FPmy+ByHLpZ5pMGw+X9pxdW + 6LfVjeKF3TwqiwcfQi3ypmUBNlsNxCVoy4fE/SZ9zaw2s+Wh0qd/fuIou9uNuU0vgr6M6rnBs4b4 + QxMStRJgP++TUZA3f5381WfGiNgz3N/bPbFfgRfzf5/nWEsPauRamS+3u8fB7fPSv/rRwjkoBNr6 + uv3LP6JnSTd5ccZ4Ki6C3q8R0gqE2+iFd6JAwKJzpoL8WaV4rQ4lGKLHg4MXFS708vr18c9wl/lv + v6dVyON4dXUNws3/I676u/STXln/8Hrjg2cwqbIywa5QSuJddqUubvkAqg+aUF2IBTZv+kye9MuF + att5WRqTVbIjOikxnXnRR2TzE9QPHqFK9n2y31W9RIdvbNukUJy5p8YLpvDv8/YRCUCfLKUGo+f3 + gmeU/uIVVkxCylD5/9Z/q4ck0AwSfRo+tu3NVWOv4DkATD0T/ti8O9Y+0GZtR/xyvOZ/9Vu46S08 + 53upXzAtK+S2a0y09/Fad/y+VWSSjyI5GWeHTXkx39D+zV3o3/rOY88Pf/UVcuG76g/PW/DabjS4 + z6tSr33DNJTWVUy3eq3OnEFf0eav0WDo21781UYHDCy4dNO//RIlTiv/1ZeddhDy8cAu/v9zo0D+ + 7xsFUXALqBsfnXh52K8B2bieiPeOEo8VCveA39zfU/clgJr9plBAdH+bMeIXpk/56/1AZ+Wu0Uj3 + lv73cz4F2DVhRKPuHNaCPSQ23N2cC7GFNNT5iSwt6uUzJOahmPvJsWAJ43vFprFPxX7iLJLAgJsc + vJvWUF/NV9CBw9MQyU0e1pwJeNlBpcb6JDkPyiancBPI3nFANE/y+iUepwi2/KMkJANfsL70qwZd + 83WjuL6X9Ww8rxjZUlCQEAh+ztnJaEJwhy1xx6MRr6TeYyhEsoN3c7n08zN0PnBygnFi1aHuZ6ZP + JvyVUCDKb49z5oFThJ78xadaeXnmXGgfWnh+FRox/SbMxX4YNMhDsacGfZY6xZXiItXiYpr27zVe + IhqbSPZznrhHS9LZKK4VUmFR05DkqbeOtWyguTuY9L4DF29m+scAvHljFBcg0vngVH+QIps2dcyn + DxbBC4eDTIM73v+MpufhN78hRExMnTZL+vV1EjTInXmF6MKj1ten5BbQ9JVx2p+fb2/+8W8I15tv + kDMqboDvE26HznvsE1Pf/fL5/osGNN9dQDxhaPWBC383WKxRRlV/qOPp8kxDmH3Oj23KA+kX/0ck + aL6nnDqP5ZNzN3BN0S8/ZMTKD/zffkKUP2RIg7fnxyuldgOXNC8m4cR/a/aG+QPeVd4j4Z5ePeGQ + jBp4xySZuMfR19eRNBEw3po28Vg4eOvtFu0Qe1wtDD/+HaxJ597geKcXal+Kl8cOdA+Bebj09Hgx + HV24hEuIsvlxpefXy6iHRXqWMKkmkZhFWHusaYMW9tb+RVUuHvJ5kS4lDNr5g4W3ePLm9mvvUIaC + moQF38VCzNQB+XtTomSbdcuyfM2QFyvzxK5ZEdPj52WiMZp5crK8HPAj6Few76etS+apApxicxj6 + RRxS7Tgqudg5C0ayf+Wpm691Tp1ZW6GW2ieaWMaPTWSWKzg0akf9u2B5v0H8ztA577/TQdM0thzx + qiFjnQMa2WeeLV8vjuB41LoJ7LUd6HQ5nZEmvgaSiNnA1jd9V0itLj8akPwVc1BcG/TT/Z7io0zZ + 6NqqhMSDxNG//R/z4K2h713/UuKfVZ2vXEk6tCEXYuXQBIAfMmkH50RVSXp3RX1+ci8fLYfAoEGf + XnquEuYbykni0EtETzFnPK8+5BItI5mpBd56TR8Qjr9WJjd6qdjomWcTzT/jQUxpb9bL/Hu76BCC + Es+K+QHrXVU5NPOaikHPaT3bZ4KG4HTExFg6r+dxJhggtWSZWu0Txusa4u5/pF1Jl7K8Ev5BLGRO + WDKJTBIERNwBIgIiMgXIr/8O9ru8u7vs022rSVU9Q5HULz89kaZWbRmudiR6PHD3+Da1rTkcIijf + ghI7g3zNGGxsMUCPVz5fJn4hxA6YHkzN+4HRqTMAc3HLQFLWSkG2W6dgkek2hoJ+kLz2xMXatrZK + ILm8R7DJktQhG5/zkEqd21xJ4uIsBIYVNMeLgMy8fWczVNtUWuN7ju5hJQ3YFGwDnr5Cgc/8MgA2 + v2Q9PLCo9EA0nsN1dJhe2l6Gjc61XJLJ2U4eAF/RQfcE3cC2Ttk+lWA4Iu/tqA42VKWAvEdd8JGl + jxltcTcehuQwYlu7x8MYshslPezDER0/IwbEdgZTxGf1imzVPGTzvW826NiRii6iMtVEHcYU7PUd + K3mRE/L2XxG429I8s5AnGX6YHoTNnSLeL/4IDRNROs5BhbTUtYZ2/76w8WkB37i5IcxN12LJKTfg + UZwqaxt9OsVgAIuFL9AVNPLahA0KRmLjaDtdhxUPdwi5QMPIja5PgA0ro+DtXO23AEZWSLhYz6WX + 9rWxIWdk2ILbK5XEaDSxtcVHwk1Lp4qPmO/Qgy4zQO/1HtDMnWBNEI+ESGdcirdJl9DtlCqEGTm8 + QI5mbsifslWbr3e+heSQnGbBFbtsfTaqDCeFMEgVwS2b+nNVSGOj9VimmKPDwbilgTrJMfa14J6N + tP9KJYlCNPICza3Z4/EdQfXBUPPnrCwOKTWtgyoRc6zdE5gtFvfkYXVT39h9BV8w69VWSLXTM0jv + 9znAt6gqpdnNK+yCJ1VvzbFzpRxrFTKo6QS45U14kZc3EaFn/XCwD0gHuZd7wl5QxgOn0MMIYVFm + 2DCsCDBJcjGhxa8InU6pAhjepxK4luUNhet5IOvFOOSQP7I3pD1FG3Dis7Wll0JXyLs+cTjly5MG + C3nTKGsNJaTHpeok4qNlpouK1TbHWUppreID1qgbItuExgCSsHh7yyugM+xabAypTDog30d1zTjb + yZVeW3JFhSmY9ZJQHxoqsKix9ZDuznR95Dm8t8IF5df25tD000thrVYAB419zNZr00JJUZf9FnPl + nDHC2/VgAfUB+8Yl0NgdfyFTRTF+epqasR1SRBj3Y4Vj9nEDdPYuZrjXO/zYrks49ULeiG9g3LH6 + cvZbHUU9lpzT8YzcwKazNWzDDQKNm5HS2XjYojUXoSJTHgpaYQIktu6JVFl+iv3mctY2c8xN+LRY + dp4HwoXTKCUtnJj2gbRO+4CFlMCDnQVtJDOD4mwJGXX4pt0IJ5M7at8XTirJV60Jp9+vMsx9xySS + ngqnv99vfZok0uux6TNgMp8sgiX4IvvdPKQE3FxPN8gv0uNqyNjKtvOwVvcrD9/hOfIE1wDa6vT0 + DIs+0BBqD0+wUWcowkSnNKxjE5IBxjML7xtNY7e7qDX7dJMIntlyxdpT7MH3LF1H6If2NBd50Tmf + bbUTyN1OLlL3eti5g63Dt2exSCVPetjS862Dnnm9z2PdmNn6uLxkWKy25Y3oYJLpzDoueOU3Dp2r + r1SvcfQwYcW+E+yeJztkr1Ti/e1fpMTdfkeLaUi//TWwwjhreegjeJiqDdlH8A7xdRJkqZVyGhf1 + Qx4Y4AAdXpgTmFsU8mADzj6VZpS+6HwUU2eLu2vzix+kQPfufJPkbkIvKCJkAwtmk7E2NHySskFX + W3Kz9R0FLYAfZCHN9fhsYxwnEp+cRXtSsSxgO49sBT/B8YhN4WoChh5gDOF88v7h7fR5UHDn67PQ + MUU9IrpewBfb57/8HXd+C7YHF+Hjk9Ta+mJrGbBTVmD0SC6E9VNOhGlpbdjx80dGhiT2gPMVGW/H + W7D+8K5Z7iNG+nHVtjZRPCkKTR2dlOsjnA8608K93mC5lq81uU6CKu74iIPCDcEW8TgBynKi8fko + txq5MlophfaFmuvTi3JIFPgjdOXb7BVID8EKlmAEP/57Ulu6Jt9gKaWKXpZZxLRL1k/w3qCm9B/v + ZcwXQGbj2QIXl0dszWLtjOXwFaFV4w1Z8uoMtP0kLfwmvokuVzV1tpu/BtL5/Vp/8TiQh+lR8OkM + BZKZSCLb+KQMeOnbN/Y4tXTWqdRy+CRVM8+LBIbpxQ4yoD0oIqTSQr2e7bsOQs574SO44HABeRpA + 2qNErMJvQpbL0OSgTdgGKUWtZLRTGBt8JJPvEcMuHRIMXxqQU63+4QHTn/sc1GoJsKPd3ZBd72cI + oX/VsXyxuKFJ9zPPOz7P0y3ynOnZ2DLcYgn9+Gn4W18gn533P/5YU6YvXF75gKyHdtSm5Fn30Nbn + DTlmvdTbej9SUBrZO/Iu6BBO8rU34c6nsLYsL7IZs0nB4JyccWKok7ZW+9QL6N90ZPMpAWs4tQG0 + B6vHarysztp2XQI53nA9Zupf2aLhWobH4Cb/8fOZoU4UqDnH8frzrXOI2txF+Hq2o8fv9Wj+tLMH + k28T4lQcg4wki+yKZ92Osasqt3rhzqcNZiL7nHd9U2P7uUCI64eHbk7oDZyUViw8fs9Hj0mPLzKv + U7hITJb7OKWgmm0ZQwJme+k2CsgzqpfvHOb7mcs7vtChG+54QEk247+RNnuhs0GQsXDwuBabg1LW + q+JWLIjXppuZJWAJZhW2Azsfxb96tcYvP4dEfbyxTab7sJSiIcLB8WKsn16EDLCHHVhY+uuNrSuB + Ob9kHXSLEz9zTjjXS3SfWNHS7YPH3OdiWDtgpUAa6fsfHm3mW+lAbOEK7/hL5nlwG5Db98CDcdpk + 63J9RqIs4WQemkR26MQZXHjYWt9jGivV/va7nNwLUi4tF65MjypoHYbIW4O0Gb6BDQrIjfYX6/MQ + gPWSHX3Y0/EFaYL4Bp1MtxGEVkEh86DZzp5/DVSZSUeuctKG5bG8PeAf0wrLlHIj7/hs95ABmoYd + YSgJMQXVkARbS//ln60nHbStBeGCAi7YVOg0EICZIL2TLjWu8oMt3QdqnteiVkKGm51STEAKEILf + RtvsOmcFLDUmCsmzD7f3S66kw3GYvG/QWQMXN8IIJeZ1Qo/RPmosJ66FJCrP0JO0QB/Y+rrJ0P5U + KVLE4jZs5WfpIaoacZZCfshW4a17Pz/E44/eE5BnmSxgvFfRT/+HPz0AtfQaIbNRO+1rjd9KZJRr + jG/APtXrUqUd9O7RHWnyEQwNy/meWIbHGzJKC4HVTSteOkzlhk/OwtcLKh/UH/96qvS9nry3kIAo + JhHe9ytbmFOl/633Bbp3bd2mrw31/iH+8kvrb8/Ch2BrBGQZkCXj7YS9n5+CLXHMhx8flyRZ5PCJ + sspw9C48BS2eILTjiUO33sGEzAqsmT1xrLZI7HmDT+dboFPogmzGYRnAXS/PY2DTIdGrtyG92nxD + prPMITHlvAeWxI7zAu5VuKFvJ4sPd508wXiOZNcnHXxJEYf3Q0nhdq9TX6qzc4eMIFjr6Wu1BSTH + McW3+PDKFmzHLshqmKILbgONDnCXQyP7lEjLHiVZ6KeRwhaPXxxh2Du7/+PDvb7MC8W8ta5hnBZU + N/mN3KPsh1x9TGmo3HuAlfkqEhxRKg2eBR9iTzgPu/6/lVBX3RRrJ512VpazabC8mS9yi3DVMNcH + ATjrZowdn8g14xzsEopClCD/FUQZE7bZBiWkezgzGKyNDIk8cDktEtIvEGUEuccSzr03IevrKoR7 + mAYFw+ct2/nbSyMRZdOwsoIUKa2QONumfDv4FYYanbhZB0TQjyyEzqVFJzFOs3VYHj5whukxw2is + ta7Ntlza6wmW+ZCtF9foC8AARcPR+fnen9gMTSlWmYfHNq1Alicgs9Re33jeqlwjXHm753BZiYud + 1niFs6oVJjjR6h2pjl5kPz0r/fZj18/Zzq9s0VZFG90en5jMQjTJQJi/PZI/j2e99a+Kl66rzOBj + QvfD9jzkFOw2NCCjaQVAzKjKpXxIA2y1PdG+zkEtoX9CNnKodwRIt+IIzmHUoby7VPVSragBrhT4 + WN39jOUeSDNkVsHCAXNmnbVrQSvufhbKpsPsLIV7buEvvvQrk2tLnt9SGPufDqP2cCBkxwtp55PI + IMVTWxYl5qV74dYoGZMCrD4fpBLzPJZILW+HbMkr04Muro6ecP1UGSObLQvQnXdRRvxjuLrzMktB + pRZ/9WsrK0RD+3tT5y0OPw4GBEBRb+keeUgnhNTfLYefft2w/ZBmMtNdUsAPpX6QoYw9WfTgwcOO + C82ZIYk6bFfK96TL9WV6XRQz4fjzU36fP9j9T6Z5XEQpnq8bPvqnpR7yd6T/+VPHHa82P5xSkAbZ + B8nOIQy58IpdaO5TO52G6bV9/Ro4qj3a/VK53miXN2F0mTjsL+mX7P4gBVuNnObtKSsa7V0WSrp4 + g4q8pbzUo/Q6QAh5z5pX9fIhv/WDrP1hsXttOW3mBb0HlaG9vWVJLfBmqWssJQr2kOpxTTjdiZAD + bWot7KQcP5Cakv0/fW4Oilyz5WfpJEZzKA+GPDNMn+fLkH58zAleCsHL/gQXFq8hli3fBoyxjvQv + 3mbObQxn+umV+WUQjytbVI8fagrgI8E+lu/sOmyD/thguEQ5Nt7c6myinrmQP5S69zmadTbbi2/D + 4h5qWN79pnnebgZIr12OY5mX6sHqFh9GQguRHR6k/QmsTwFftCchg33cyLKvF6ydjkGa8bGdsWGc + BjqmwCBv1z/kWkqjyFlXBcvNfNM4yXioImruFVauaqqteBsLeBVNjEx9ZcD2js7uT2/NyyFA2sr0 + pxIe8DX9+/7bYpdQ8ji9mfGrexFmg4YJu7lJcXITHO0bxRYExUatSN/r53ZcnwV88o2CU+LjAf++ + T8vfb+i+dHo9adpQAo0/PWeh7UOHkJJvQMx2R3R/lNhZmawvYRlHLtLDfqm74arGQFj5Evv7eo3b + vZxhaadfZGDl6szH3oXQq5QTOn3D79Dt+hwcSSRj+Uh32uIUxgKtsy/MQqqP2RdQ3Ahp02Dwj39u + SlkHoD/d53kDWB/IbdQ9+FVSDWm3fQoex3M+CPYTSK71SLPp2swQvN2rhyyreNerz6cJBIngzNR8 + NbTJAl4Fdr/EE1iCCLs9LAhe5vyZxd0PoyPGsCFkCcTni6X+/FQfVgJ9xukHlNqqdpoJrnnSYI1L + bhp3dMztT+9a148artdHXuyzkxSkPHCkrVs50aB/O4LH2axes6FX6QIc/RZb+HZ2/vTerz/jKY83 + IaXm9KJgKymSq3oY9vz3pF3fzNeiGgBZldyHj/TFI/X5GLR1RkIHG02fsXdp1Xqjs4cJ3p7DolOW + O9lWiZce7n6oV+7+yu6/VFBv2R4r0XvRlofUVdJCPjTW4fHkjJeNhfDRdOTXb6nHirL3W/UP6z6l + hWSDeisacLPD684fYo28/W8Mr110wuE9yTPy+O5TS0b2jk++bII5ZhIRPmS19qZFu4DtNl4aEFma + hdXNk8I9Pil4YY7gFx81wTPxwKnTWeRd1Xe4/fo/SVOxf/p1+fGX4pRn6LFd/ZD8/NK9H4T15NaT + lYkSGQq6JM3S23GzoXBVCsopWNCxnG7ZhmrO/fWn/vTy9iqECBYfxUNeeaPBTFX2CGbW9H/rOTAs + p9KAFp/+vO16ayk+bxF+HsoHnS9WRRboyoUUz7fN46vI2PVDz8JUbg74fFt5Z9XJvYP772chu9bD + dnsWAfzFa5xWSr26LymFu7+A9ZeukxUPFwpaanRDT3cbnK2PcAurkCxYqcV9ulR2tWE3tylymqR0 + dj+cBaeFNNhOxtswkAwtEH26G0os5U1Wow8iWBwmgHXx9q5JfQxoiSLMcde392E92xcd7vV1x9fY + 2ZyPz4r9pfxi9foUAAGEUNBdhBf2uo8OlvXajMJ67y7Y3v30DtTNAh4ZdZyJwysZyS5GAG6Vmf35 + DxMt2x7IFHND+ol6kOX+0Sph9yOx2m9ivR17nQJuWnRY9l6qs/ENRf/8eqSolxPYctuyQRkJB48X + rh0h5+0OgZi15/lSy0O2RO3LhF8kMUgeqY+zPcOKlvxe3uZSNlqyjhzewI9v2LFeaZt3DVzYh7fL + /KZ809lS42xDqtlPjB6Ro82//Uke/eLxgWMBui6lDXpBHnmvdZVq8pyZBTpnKcCXiffJzx8D1UaZ + XidHA+gYj24kdWYprNtaVc99mqRwwGyLj8fxqu16G8I7PeQe2f3ULmq/5h8+yEtqEe5wGSoY8/mE + 5OSdZuvuF0DOS/ZZcoeOrB9d3iTXnR/e9/pRs2Wvvz89g5RaHsLFeIzJfgcPQOb80EKuBKv+6/9g + 2amskIRVVUpd0PNe54vbsJYeSkQOTDky+zPJVkFIZUjY4IztIk3I5L6kBDKQGVB4jDeyppveSfpb + VnFo2LK2vbtMhgitl5l/L99w5Gefl/Z+ADpekg9ZrlakQjfpZeR+ZEdbH5evKux4gxFzfmXbcLkY + UMPJOm/0MmqsfgpsKTsLEKOSjmr6IFrLzz+aweN+CkmVcyZk9MZB4e5f4GD4suCCexUbez+xeTfr + IlWT2KP99cMiEraFynKkPcYo1WxBgApgd5uv2Nr7Z6S3BBf6nWsjtPdTp2ageJBkrIlQILEZtjII + 4acnG7bas6UxATs1oFECA9ksMjOmPFQROE+s5v3w6+cX/vjj/Os3bqIkdzAwDODRJ90iK/9YZ8nW + xw0HcfjR8JgHLqQt8EA7/xm2HY8gOlNfj73VJiDLm4gSv8YTVkXAhfgZPgqoW/oT6V15GuhbJsnw + 1784N3MVjg0sdHBgzyVWdv9sLMos+X+eKAD/+4kCVW2zOWjiNRvZ4OhKGcgihF6kchZJj3KQ2McO + WYfkFhKOPhUQPY+hd/CnNpzwsRKlvsxpnPHqVE+uNXgQz46K1ZvPhFtviTmswm/j0R+tC9deVyNp + kj6dV+jbc1iPtwyKkqRwCCkfLhylMaZBoToy0lLTC2k71BN4E3UF+a+v6JB3rLjQybYzPmUHCmxq + dE8guT0rj4k3yiE50QKp0G3icdGzckhizQt4Sc8AW8G3076nRFElzlw9j3KvnLM9znEC5VH5IOVJ + ddpSCEshZcwdzNJgJWA5ZwcDZmcXIVOQQbZMH6WXnAMcUH5xbtkmD18ROE+SepwhfDOaTfUE8ust + Ryqbt8PKdd0GU5sOvVW/zjWZX4iCGxNwWLllnEYqxhclrEgJcpXjVZsOwSGAdzu38fXDC2SlbKGT + cGKqOMeROCwwT2U4KrKHT6Tj6+Xw1meJ85YPsr7bURtO4B1A8SmoSL0s74xddFOULAHJWNdvtNMv + oxNAG7Rw1qFFacuMUQBDI71jR/O/YNOiJw3u9nP1JIBeGVdfI1u6PcQYoWAizpYfkwX23fODTuf8 + lI1rV3nwUR8q7OnbYcBqqpSScH+VONI5n6xc+Wok6nbG2KrRx+GmrzlLWXj2kX5JwbDOjzKX6kAO + 8Z27fsNVfD10UH50CyniaahX5kNmyI3wiGIS1oBDXsPCWybW82GMBTIWdzBDC3hk3kQoOeQ9Hz3p + 1DxNrAa+6tAqf+7B7Sla2Crce7iUdpVA2HQAx3qj1ExH/EQSyJTgbHnGDnlTWgMXNypRegJmRrO2 + IUv67SZiR1TFjCCvoWF+aw8zu7+eC57xLJnxlyDdFY8ac/ykEQw6D2A1I0a2XD2QQHIpKuR8Ie8M + DwfF4FFLFbrOIBq4yD8m8D53HY7DzxUwZndmQRFFOr5SijYQcH73f59PP6cKYH2THqG46SdcCI0V + Ytq5NCLXUuMsnimrZj3fo4E3ih0+249bvQkHdZMm6d1h/cj1IenY/Yx9my7IwsHVIXlo6tLxOn9R + MuyMZHFNQwoKN8KPuC41js/5UtrzfWY+vOzMt9qLYGgkd4yyRSarciWpFPUHGatv9lQzMLUp8O1O + BTaqSQcMFfAsVIzzE8Wy4tcrZsYcrqVgIvupvzPWeV5mKBxGG8edb4VLyKoBbLxzg/Z4r6cgXGSJ + Cr0KPS/nWlsOVyOWDNr3sau9i3rZkpqVmNhN8Vl/2IBxX+UiUSfXRIFiGxnH5U4Bn2ZZ4aivnYFd + XaMEA88sGL1JBvByWTxorWcaqYfnrK2t2JcwTRkRBVwua8RhvA7q62vD5iidM5aShxTc7vyCj2tW + ZKuZnHIYc+MRKzGQBy4qtU26DNxhZg/sPGyR6CfwCq7WLFhGTVbCnVXoXx4+Vvd6S8JFNaVPeG1n + vhVHZ2OkyoNgDpOZvj0qgE390kpM43481j8FYK9nG3y6lTkLav0caPp7HcEy147HaCMTbpbR9ZJw + LUMUAasfNueQi3DQvwG6bA3tbMzjXUCBmRykXd6PcKyGtIe/fD/s82LXAGyJFFXwjIM8fGib+DRU + KZamI7ZPmTOwziESgXPdaKT32gw2vzuIANW+g55z7JLtDg4JxKODsO0VbUjINvPgcafAzPFDW6/K + Q2zgVbjG6GhiLeP4aI2ltjiwyNZB5SyiVlISfWUvOHrIn5B+0+cYpiknznoqHQjZ8w2qeuNhR17k + kP6+X4Zk35MLTt7iNuBKSgy4ZfoB+fV3csjTgSn8CC8OqwmRtU3Nk0Zyj4dx7ocTCbvrvNhSI58T + 7/OorJrTRWER+zY/o8A6Rxnns9iD83MZkQwDMRss9+b9refz6UsED6afS6DyD6gQ9QPpJs5UpaV7 + bfP6pDqHjMk1gKUPnsi78lm43lmZlT5M1WO5/p4d9mUIMbQ0FWMlBWlGZOHZC25hW8iQ4qPG2DIL + QWBoHHa8sAiX5Dn50OUjBV8Q/wZEFi6utOMPlsXNdhbTvszSSDwBuZchcrjYJP4vvjwhccd6E5Dl + SpPUKCg1AQDbayYzfDbjGbmY5rLR7HMRgjF8e50gZxlze18TGKoJwWpBXEBPh3MPpIS7Iy/mI0C7 + zuaDe9UjdPkoFVnvlJFDR/lIHjMBJeMEGlYwCXwDn2OtDtcwpAqgr5WDnlbvDB+j/vqwuvfSnLxT + hqxUD2m4zC8Hy5f6RpYhLjw4Mt6IrGS0sjltykJqmjuLImgVGs326iLxXMQgi0oaZ0adkEOakq84 + KW5KtkEEZ3H/GaXX18thvy9elSJjq3Dan+5g8R93V+rVS4wV/eoNrF+KATwS8YQL93rT5hqXC2T7 + 1sKq1iPAUCkvw3uzM9TqbDrsvn4S/WD0v3glcXkIIP1kuZm8hjch57MQQ05dPJwV9xbMt/BEQVCG + LjrmzHEYk9tsAFlhFpQ8uUs2TieXl1SjUXAgPZWQptechzs+ItOP5HB6+kElaS9TRYVz1QYa6W0L + uZhkyAg/DFir+9kViNS7eI/fcKVE4EmNfaawlnXNsDGPKYcaZ6k4ih9WSE+cKUv59ePOb7YYtbUb + 7p5o1a6MDDbsw00qS1NaxjpBzgcOzpKc8AjsazIgQ29e9SaTlyEFruKjc1yXznJgHB3s+Yzl0eW1 + ub/zLIzXecTqbdm09Ye3OX5v6BQ/Z7JmFCkhdXSv2H3OV23KWgYCmXaPKD1lw7C8UuwCt7Ul5EIx + zPDldt/Xi1uwNW5DPUHRM3nCDLLXLIbvbDs+Cg9r7ZFh6lRN5otjQorJzp4Ua1pIS3Shwh9ehJ2n + gZlhBlUShHHFdvqKMtoUQ1/65Z/pXXgykleiS73hw7/92/PZhzm3+Vhb187B8+pF8N5/VXT8JHW2 + tlUDQeBqvieei5EMAX7okJOXDCP//K1xzTwj8HneDuh8ka/Dkr+OLLRJY6E0e01kjjXNhiU4xfM2 + 34P9CcauhX5WII8oT+CQ72lIAZSLB5bvravR+d3o4c7fPf5GP5wtDq0S0gN3QW4ye2QpLCkSywIM + WN350XoIDj6cHumCr2fM1sRwhhnazLvGrvJewdbdnQWKE0DzC3xeoHdwYoiE+creZzGZmuSaMkuP + J4zQXg/IEhryLPI4VrC789OpXK6jiLhLguPZZ525vtUeTOxThy2zPTmLbh4aqE12Ni9nba8PEIxw + j8+ZMVE7LBittrQak4/Px0eTkfp4XST7cj96kL519UCDzP6tP/LQVcqI4IomsI5qNQvHVh5Yih9t + yOhajPRHqTucz348sOi3CB0dbA0b5DgDnsY8wve7azhjFV4NGC5vHh2plxwytylqYdHdLth8i1s9 + NRdgAOkr98i191swSz4SweGwXH94pQ3vwqDBuS9HfL7WRk1yx+T5c1cKM9kuDRntwYJg5ysonpcA + MCPNU5AZUepth4MNVnJTWEC4nmAUnjFYfXCOADBPJ0/A24UwNybbp2ysCrLPxQimNpgbqM7bEZ2Z + MSaTH9oQZtL9hHUvZZzRDdccPr26wm44fJyleIm8mK3pjM6JtmSz5H832MqUhoyvrxKOhbILS0/U + kasdO23N4tX85ee8jfd3vdVoVOGe7zjZHlI4W+3AwqiEu6NpxWDT6LwVJaJdPCksDw45HKx9Ch11 + w0ZzZpxNuJkJLMq4wMd3smRL6y4ybG34RadHZQ3fx3NgYXb2kMdJjqRtJ4axf/Hi9X4RZgt9v8Wi + 2hDjF7/aVN3PHkSOYcz8g9OH5Z6EJrC5d4zyu+cMtLnlBmyjgz/Di8NlkxdceanYW98sE/pkgqJh + QiMx3kjuRpqsBKk9dBjqiNO6AaRbngwlzY9F+OMj5ASmAJ6bV4iPXPEeyKcAIrgy18UTM+WiTeSm + 0JA6pC46PpmdP4XLfuto+0DG3U6zNWq+PGy/9gm797nLvlHej2JQnrF32PXUWAavFmYkff3x8+Xw + OJZwKFkJaf7xnNH4xsdQyyUbH23sa0tVZzngj7aNz8uoDdP+/+ALPJ5IlZ5Kth65ZIRqvz2RvOCv + 1vodx8OKobt5MHw/xKioPTjeNQX96gdLyXUKN8F/eBS6PsKVfGRPGoqBx6a2o/D5zC3wgrk30mB0 + AD89B9/V9va4tRsA+Z7qRArL5vLv/S2Zr4RRQMK8js0pWwqFtWGFBwk708ENN0WbKEiLMsb5EMng + p0fgrsfxhTTnmuj24ko7/0DWBz+G7qMfAol/mgs+BZAL//jKtoYXdFpNrOHgWcww359JNJJeI9xr + bHpRS6UbPiUHflhY25PBrpdRUJCRLJvf9JB/2BLa+aBD49NKwbv3vM2/+F0bBY5incuCd1A/PtiY + 9/iPHwsN5rKxyZUIUK9ERtmNNQmxJ0X96SNke1StLfn3KP/xpcurSMK1+fId3PUcMn/8tD7nEPz4 + ZJCEWkbfPk0u7e+PHfLMw2W5URskUudiv/6etfG++LP0lj8v7ERsNSzG+pGBm5o1utstATMm1xRG + M2w98LyL2sSclhJ0DE+QioWu3iy28iRT7+5477lqf/WD7drYgzhK691/oeBSlgeEfvyfqqQOQPuh + Yf8on7WVOQgBZOUkQOixTPutxGkHNY+SsCHFBSERf9qkp/qy/t5/HUdhETdkvNG5Mi4hSYNQhUHh + RUh5v9x6nJ52Dh+fg+mFmfkhk2DddQlJwYpO/NAO8+p6FSCPHOA//r7cGRqCNHA8uNenxSGnBs4Z + MZAnB1+N7PsPBsjEODlo1bCOcDGlWYAN1t7DsyahbLaQgP6OjrufsnGzz4tezzM4uqTZsM3ZPYFL + VW6e9LXcvf5IJgzHpkf7Na+AO9psDzx9bn78I9xItG3wwdv3mcdSWHM0CSngh08Nee715jA/v8cz + 5hu2SlSScTAuqRQ27wLZ308druxNiuDv74+qewzXzskLyMppgFzTRGTnUzo0N65A9nAKs7WrUxkI + j9pAFscYDrdYXA6GmbGQw1d9th3fWgDte3qZl8piyWgoU/7Hb1KXWrR5TMcYWplSYctuCVnxNPl/ + +Esbt89+aUO0QXXeb2EuvwahUVNHcPFu4q73hnpLo16HeIlOSAveLNgErKeSSOnlD3/AUoG7Crfw + SFBwXZ7OwOVaDqWYaZGXg9iZNKPXoRZLKzbqszLQ7xxt4HN4+SiziZIx65xGcMcnrExNSZbpqebS + CzyfHltNOlntTuTh3cxv6LLpXIjzwdUhsyVHHFyXg/bjw0AetQ9WW3af4nVMFrANvo98BufZMrRR + A8par5Fd7bfMXqZChcKtMrA5Pvx66nU7hqALD7NAJRIY5ds1kQ7CApG99ms2ucqoQolTOa/6sHQ2 + ufdvC3/+5YER9IxR3usG24NzQmq88HWHTwL1q3fIDguhXsrg1cCiv+kzcw08h8yrEYEd72bhwEfO + h2yzCD5C5WN0nYQBv/LZB7teQz+8W59lwkNbajHWBq/Xxuxuen988XTOP2EZz1QDp/vdRsU10QF9 + kfIUjuvZwF6cJM6kXEkiuaXT4NPtcNTo4ivqf+tjMORcc3og0XDt+RO6fvhSI8uFd+GvsmpG1YFx + ubELHOT+iLM2p/f19Td4vEwaPtftqZ7avrGl7jm/fvWDDIB5NdIkNNm88ie+3t5yMEJeujHYG5W3 + tu71B5S+8ERniGiAPzE9S5y8ZcgNHJ+QyymdgSSzLd7XbxhLsYZSxiQRNpXZ0zipTXxYPbsYqfDQ + DFtw6SgoTarvkQNtaRvn5Sb49qffBSHBwAbWa/n5xTP/EY/1GM9sC3Z8mVlbX2vc42n7+75ybfkZ + 92b19OdneiTtHIe5U6YMy0AIPMhwSf3nZ1AkS7GeyxNY3UuVwr7JU1zgV6d1b+iWcPcT0Ol0N7SN + NIcWDm5fII2PWm2DiJ7h4fnRPf4jvutFPt1kaBqdu/tjy0Aut4su/fYDPfyLxvSuVcJijnuM7P6t + zS9jjeG73RwsG7IxMCfT7mF8q2h0OgnVfkszTf/45iy+GuSMQ/FIILOlR3xOtYfGqm7qAvHCs/gZ + TKGzpMvNBpoBbU986Vs2y+EYideTOWC3XDUHx+XBByU4xuhaMFuIpeJiwF0feVvLpqTH9VOF+ikK + UV54FFjC+FjCt92U+KQLbDgzZ2wIVIau+AQGF6yZsW0//uWxmT1lazdcXODNfIYcfUmdrS0fophd + 0APLCxrDjaMeI4RwmOf6EI3Z3JxG+k9/u5b5zTYZlAHgGigg1+paZ46HY/nH91VnavYzmxkEu3/+ + 2w+HjF3Ww5dQHJEsBYRsGT35v/X5008zI/UefOufk3dZm7Te/VD9x3ewUU4XQB/XsoWHe6tjZVBg + vdjEMkH6lp3dn0/rjVoaCuz+rAf9QSbsaL8pKN5ENLNUnGQz+IgBPPfV6LGzz/7L752PzcvgNvVS + a/Es7vx8PmBWc7ijTfVwzy9szlIZEnCeOkCuhenlynslqyfeWbj7uTO/+x2cZGQlv+M5/unzZTDu + KYBd/9r580Pb/HLzgS5U1B9fYzO354VdT3uvfZrvsnwk88dvcEKXDSE2Y3rSR4ndfT/jbMLXz7if + aGDQ7l+Gs1xXIzx1+YzUSbgOO98zQf5oEoQO8B3Oy6gFEJ30Eqt5+HDI91lC6aev9s/z06sV3PtL + 2LB03lmQ+17AF/pX7JvlEq5UushQGe+Lx7S8US9uxncQK4dkXlOQhuP3XJfiULEL1jdDc7i3YdM/ + PwGlYXGvFw92Ily8KMT6anxrolfQBRVHZ0geRiVcXWHcICUld3SvcJ/hNA1ciVz2EziFV5DvZTAg + WKHw2v2XMiOSEZZw6FjL6670ki2mmPkgbN8XjJpw58O37wbLzz4VMTVMQicnPP/Fm1Y6eJiMQxH/ + 9KW34zVYH4eykdzcjOdx12vk8HRbGPYN95dvW0zcGSpNKmFT9XoyceWrhaXJD+g2HM9goe/PGPZG + ALEl1xvZatxtYMdj7DBVTb5ZK0FgrYj+p/+Reivh8YFz5I3KUePU7VjCy8AcsPph6XBrl8iXBAY7 + v36Rhp2zHkDNgxK+nWGjbc/CYuHa8DNW1kYcFm+sSuiVPEKOS+Zwx1cZCIfZxqfN7OrtbV5EuD30 + DR+pV5ltk/ipgPgEqrcMrl6Tnz+/56tHg+8p5KLEbcHlzr6xcgOELK4j+rAvCxrLyoMZph9/kXNZ + Rtd4K5w/fjeHS4iPDIVCznmoPbAs2cSn7zEFS9PIFWzjg7bzuQr88cmkDMVfR73mqv2JFl/4RugC + TgXZSMM1cFCH58xIrxYsiq8FkrjoEbL6QCE7P+7h7v8j+Tt6GfMFsQrP5WtC7hSdCb3rVXBWow5n + uz+90JfLDMKq1ZF3470MmzCIJPuWFlj1fez81UOz4S5YQclXI3v+wnszfH/+sTYKPeXDU/mskE6M + OOTCRbVhEcX6n/4eb4dehv6657dsj4Sk1SWV8qx5Y/n1LbP5l1+7f4SOOFvD1X11CywNnkeyWzc1 + eRJqgYrnDvh6v1bhfwAAAP//pF3JtqpAEvwgFjJX1ZJ5lkJAxB2gIigqUwH19X24r5e967XvccXK + jIyIhMx/32/vr+HQP7fDeg0NEUbXexVuwSQM29FxAyhANBJlP7/2T6/pxAnxqb4zdA2uv9ff702M + DHU6rQbDQD5l4pDjGFyuu58N73F2Iho8GC1vc8iDgXuIsR1WNf2nL4K74xI1K1sw7fkB9cH7zjVP + zpR7ukqBeK0c5+YSnRP+nefRHx+aFxIwyexa3y9IvLLD2s5H36LzUkBbaRLBRdS3z9eJGmiPr91P + /pXUkKUN7vE4P02OGSbx+wkhY4cO8bXl6E/fMmbBX38Z0EdVrhR7X5g4eYCd28UGm/+4jnCxLjb5 + qzdbf11YqGmvMlx4wgF6fHMZ2Pl5KGntYdjcsIvhmWYZVh93P9lyKi1//mh4P4vqQMDUFGD9iik5 + ybY/DFyZ5fCvPkaOkrSb0F1HeFVuPnZj108Iyk4yYhntTHRfe5TbMxQb+OhGBVtMJpbryuxv7HQO + Iup+PnP7aAo40c++9XYy/H/9mP/jiQL4v58oIHKtYvtSdS0Nf58eJtcxIJ6W/hJ6uUwW3D8nF7N6 + 6yt6vTW43VKKsZEtLT0GVwaJIvsip3tkAN7//Txob85MTtA86OtpiBV4rBDFAVjSZLNmtYNCa0g4 + LGu1ZG9WHKEbF1zC5YZ9nzu9LFna0qDD2s06t7RoTxVcrDuLndN79peVf1ro+psp8S+LNywJRF94 + 8pli/mLhVLJ9Glnwg9Zy/pjtoZzhInkgPc0JMXaFMgv2WUPV9yVhT+lGQPpcWaAbLj4JTuchWTKn + t6BLsnPIzteCkm/41uAocS7xripbPt9+ZcFlkpfwbn5kf9qapIMf/Bjn7R75Je+bSopUvHo4Q4Jb + Cpl+tWCkwxS72Jvb7WjnDHzXek/0FEntqpZ+B24D+hL7Ulmt0LZxjJY0vJJ0KEJ/vVqygmo5N8np + l7P+dh9AAXVNpdgt/LZduOzZID9ccnJqnykgc1Kncpl+FWzj5OXzq3Rh0IFRRnJqUKgvdelksDm5 + r3A0OoluX/eloPuhEvcpePsz+h5y4JUbOqz5VgI4CTQySlbHxSfDrsH8q9QKiYNxwMfi8RkWRZ8c + gOoIEO2QQ79rNNmDnJun5OpWsS+A8Z7De889Sdw+y5JLXJdHr6e/YsMuerAo8pDDZo1Ngl8ZpavW + nUXowWs1U9neWsrNXYiih2Rh5Y7sgX/VP1FO887E3s3bp56c2gVGHm8RT+kCwBvs1qMWP+J9ahz1 + KRizHNZjX5MK3Vd/VpZTjrzQnMipHnow89SBUDifU3KimPpUPEsLWGlfhTL+qAP/mA0FBVgcyc38 + 0P0dzSiGH0RL4ozps/w9LZlHfjH52Oc7UV818nhBa9UKEnaGSzfJfX/RUlo+cf2ZK7fDwPR/8YRP + yvAZ+KycNqhUeUnKND0NLCDLfr29ovNl629qHXTQXM5kbo2BbT9Sby4yJE5H4pFNKMX7nsbA2h5z + Azin5R/xS4azdf8Q/6m3/sq6poU0bTyRe1k/k8m/3RRwrA50PpBwVzjnWEFfRiL49ggiyv0wlyFS + XGui1Nu9Fa5cxcIoWyRsvg4zmACiNQphyc8HLji06/kx3yHnFinB3feic+dufSHXsj/ztp83Kx7a + DvV+e5x/yEsG4SFHDuK0psGaOj5L/hZVMfzLR3MQVJ37XZQKMlUW4hsnlYCmqlPBoUcRfuznua4X + N0YuxmyY2M97u0DDkNFdv75DJvpin5fewQIVT31g11YDn4fSxiOqkHZupPZd8vjtzLCbQUP89ezo + y5yvGRpyb8DeUXrrq4KlGCSHc7bPGJnoHBv7lPZaFUgQymYpjMUpB33kvUNIPyf6h3fg6jo/rEzP + xV+96cdDVtBzYnauMXCPYytCx1pMYkoM0umtqguUW7glrv7ewFYrzxqVZ/sX8pryTpbmljPw73wW + mf2W9L6wBfKrQ4f1lVn89cdmHvwylYXNV/n1OcquGtJ/ihVy95dDBU15bci7dkLID4I9LKF34eFz + Ezh8h8fZp/1VyODNaMd9T/fLX5aX3qMXbaY9vtKBvd4iB3WVhcgxXwd/er2aDt0ijZ8RAoa/msCH + 8LG8j1gVICzHLl8aIB/GFqfCmPjbad9TbUtaTWznIA7klZh38JfPUP0c9U5ZrjnstVLB2N9+7dg+ + fh2K/BPBZuq2/urxQwMP29cg16k6J9wU1xqcj+mV3IGe6+uPvXvwx1dHEnbfpd2s8uWhOjAycrYm + xx9NXoNAf9BLKORTBjb3k9dQ/2kWwc+LrfN8+HWgNV41HPSpNFDzN/PwLz9V7Wr4Y7wOqSw+nACf + CL0C1oeQhyQIYxIamaevj82YZYM3j/hyUmu6Vrfsi4QfHPDJuaB2ay+WB+PpK2KLJApYXpTr4AFs + J6zytjl8CW9r6Pd4SMQ8MxJYJP4nQ96rv+R22McyfuQIop8ajbjKHk/95cqvEJauwxNjjuthMfrl + i3BP3tj39w7H0JYGdNlrRh48VYFQCu87hOshwAaMtZIr0BKhTnF8EoLaaFdlyHN0uoAjNqv4PSx0 + 7TqoM6aF8Qgb+ubKpoG6A95E+Viez70FRUHahZ6ISduLz/uhpiH+8fmG/GnWBy7K2RdYXkuL785j + bCmb2Ab6Od4d6yU3gG2ttBjBIFOJ1hZPnYh6lYH168b4NgXbsHquqqAdX+a1YP1WqHs9RW9EQ6Ku + z6xdA//Uw71ehILZPsot+T0h8j5ZhYvzvab8HN1EqJ1rHscl9y63n3RxUM9UCcmKcgTkuMgLvLre + D+Nr+BoEdbZjyOJPSbKZT8vVfnIV6i/KBceZ7QC2NNQvTCUHk2rLnpT181QDevNBs/irQsDb/iWF + iNo1MYeCHTZkmiGqei4l6c/p6WKLSYcYRTBnrhyzZFP8pUPPjeNmGc8AbGIkLtAcohk/rqExsMyT + /QL0cSZc8topmSMtq5DWe8eZCY+uzusWY8BsGuKZFgOvb+9LHaKuMhAOb8Au2bpU0r96GSJ0FwZ6 + D5IXEl/4SDLjEOvrdSh4VL+Xmdy0bweWk94t6PeyT8QNu8+/+IWmN75Icfu0yZh72wxXZcqw3apa + uWXNIqId/8KJ257D8DSbBnjHr7Hj4TuZrJ/ToWkVonA7nJ5gic1DDvTl0vzjWwtrGBZMpY9I9MPJ + SVizGNg//oP1Oyu2Y3HUU/SqrIUE9LPSrYJKgOKMWjjw76O/VPn5Cw3ePu7TWSafIG5zIH87H2eW + L3V/rcG3gujjTViDzaZvxT2q5HmZ3FCSfevv/BTQ4ltM3E0zEp5qdIFl3VGifC9ySfjzZUbfemxI + 8ZCsgf11ZQXvgeGG/UH6UbLzT/TcioCohq0AjqTiFyJq1rNwPt0GCotEgUnhclhfptpfZ60MwOPq + RvNpjLqBFBGrwNhPINHcXEgG5QoiWDhKg6OlruhQ2FuGvhxtMFbvjL8spcog+YULrGyhVM6ofmXw + QO1pZne+tBp+xMPgk/2IU4hdsjwOTw+WTHbZHV2j3OS5boD5KiCxB88AW2W6UPa/1TKvMjsD6kZb + AfrRvJDq/tVbXoyWDXpzGIb8ni/zItgZcGSPxQZuj+V6fEw94FwOEZM/RInwh5c9I8G5ti2LblX9 + M+TI1dOwLbmBrtZP6aBkrBeSvsd12GaWH8GG3+EM3KDZt0J8F1iA8hT+3c84AreGgjBG2K3dm7/z + pw6cRc0Ju4eT+VO4+QYkdgdmdpmsYZSmbyD/xaciR89h7OXPHTb2LcB6eFB8zu+y+Y8PYZ/qxrDm + aO+dBUGM//SJwDJAAWHJjSSMvljfPsypR/Nor9ia3kayIOA74P0dQ3J1Ylh+fmabwg/W9Lk+W992 + Pn2uGRBPxRd7e3ysBykxoMabCvG+JG6ngGx3SFbhNjM/nW/nQ+9YUNf5N9Zdri+XmlSpZBkHi7hU + KH0qmS8IF9CfSWDtU36/xqCBIsPLLA6enwhPWC8IAvOKw+e9oPRyXwIIZi3Gen7d6JQojidtW3Mm + YSxvSW8JegwvIa6IvkyKTyEDWIiO1RkfC63UN1loArB/jh0qsMOiPSsR7nplJiro29XMBgcCaifE + DJS6pW1bxHC8aC9ydDSpXSuR26CYRwWxV9Xwhf56yOChPjnYrTUNcHWtpn/5HT4HKxrWMjYyeG9r + i2gJvenrOz1vMPGZD9GFMRi2SzxasLnyTvjd83uLpGr+ly/hWTr4VPhwDoSdciV5Nd2S9frCMxwe + yi1kqmMPVvxzcyj5Pxc/9vzZ7gq+w9PYvEKYdaBstkR5IXS9OiSfO2OgoZ5HcI68Q4hMPaAL9CMN + XeRoISftauj0Dw8cQb5ixWtqfV2MlodKEofEerdQH4ujn4Hp0LFYyX+Vv2VK+JXZJ5PPMbEEf7l2 + V15Or/o8T7s+2u6KXcm1xrhEvcCrTh416UD3ednkT/9MRDrd4TFc3iG3nhJKnk/3C8fX4mJ/PX/9 + 9a5dO9idj/7MH520Xfa/D0emqomviXy7npooBQpk3iEwtGBYwsmz4NOwbjiwUr5cWKCl8BYpfAjW + 81dfubKpYQAYZeaeLdeufRMvwIqqiFjNi5Trm7Ay9GRXnefw+PPHIjM1eP3cc/zHt2agsS8E/CGb + c+t19bcPc+2BILoSxsnlXVKFqSz4WgkgwSqdy48Udj2cTsk+hbqL9G9dKhm6/aYjiRPMlyNh8+rf + eZud+2qna3P15JILPJxq03NY0WvSEO9MPDG06KwL/VVI4TyJLTbW07Gcp7oZQTr9TBw/R6P9Fx+p + DmdilW9tELqgyuG7gD+cPPJH8sM/t4Cf2/FEQnpp/CX35FmOmygKJ0ZjSrrlbgd0b76Q4853hah3 + R7jzQZK/4qu/Rmwy7u/oHXG8FhrlfvlBgxeaM6Go8HAgZnB1gCDMEVGV4dNu/IB4uVmnGVvvttq3 + TnkdbE88xkfv2Azr12gV9IqZNmTaQEio+et4pL9yErI/x6MLC7wM/g5dMaN+HQf6NHcHtyEPfKzl + 40Czet7AlDsiDvSzO6xpmjroQ7ojVp/41O78Z4O8Q3hytM+Rv/ZDVcH9/HY9ctN3fR2A30OLsMHY + kr/X33DfUnkLpV2vfUPvwQM2e4RY4fqtpXkj5ODIhw02u+hO1yx7bWhLw24ef0tM6d95XyxRxQYz + HOjaXPMYpgVf4/D405IVxvYL7nhG8KEedHq7ZxD5JGv+6gFdHk4jw+uceqRkvnVCf0+vgvkW7TMq + Saov3cEWoY8MG6f79eeABfc/fCPndVZKPhQCA1I3t//8J58cRG2D54v0wSfJ2pL1T5/u9fqPv7Wr + VOsL/PDgF74nZy1neXkYUFrYAetxQ//0Ews/PcNjg41kf6b3QgRtnIjhUJDd332mItzxdz64tVWy + XS42sFI9RBQVnvw/fgELcr8TvWXCco2npodfraDY+7xhOwq57MHrb6RYKS55u/SiKELs+fuUXjku + F8/kO5CHso390Y/LlY2iEH146Yf93zKWO3/W4PSWb9iRZkp3fZci+0FX4k1nddje0FUARtaT2DUv + Jcuwvhd0gU8/5MK4pbQUpjvc/QYc7PpMCH+kB4cytOf1zdXDpDizA2ydP2AnIzoQTlyqQSKjHusd + Av40lb9ZMvO7i9OhmPVNXi4GjIVLFD5yI6Q0+Fw0eZUPwtw+8kO5qJnWQTjKPvZ4zQN8ijiI/ES4 + zhw7HXU6JmEE9VsDMZ70m/5Bp2sK4anUQjlKB32Jv7+v7IPTGavs9afTfqw20LvRRvZ4H/YpiDI4 + r16GDQ/dy40Paw+cNP4YcitXDL/LcbCAVwoxwUYWDYudyBtctsbB+tZkgFy5lEWlov2wliLqL8M6 + bfCmJadwirO3/8fPZe1wPBLjzCQley+6GF4/VY4TYRyHRWCvkZzlXRx2vmAkO76M8JCuDFG+bAc2 + 0tAM3u/y/Jdf7YrKNoXJ4ZKF7M63prg0A9jfZBfrb+eV0OdT/aJSqN7EugqWv6ziowfik9mIXnI+ + pacxTpF1OH5w+n0ZPqd1Nxk60f1GDGGk+kiJqKA//rWIjalzx+8ng89pYfd6eddZu4IV3D66jzVk + ifSlmWgBw1mOQvD8/ABl1KCG4zLCf/py99s2EDbTY+bWuU5o6mkeOsfs59/1tltURVBJiDBvLWNT + 7q+eWJdUI3FbqPoK3aMMCtVb8B9/oP/8ipKLsX1LTLCYvMbA3V8iyoLcUlCYfcaCo52JlowNXfd4 + hIUXoZkPXkew8+0Qaor0wOaJE5JRKrUN3AxDJ565NMN66+QcJu/+gI+7vl6jHHbAm38Cdl78AXTJ + 78dA2l9lghn4KrdB2xgAjpVD0iO3gD89ARf8VrGbCAJdKlwy8HVlzyR3q2FYk1fN/F2f6I490ZUR + vDvIJKfC1rech6/yNRkovc/P3Q8DyXI/vbp/v6cZvD4JHSsMpdX+OP/0+Lb7TQCaFSZR3+gJO+4d + gD+9eiRAS7YxPEbgrUYxtpsXBzYqyQrgnfhIMPsV6Uw/VQcL9vmYX8UAh+2Zohr6qsaGgqYMVLDq + twf2ekfO/CEqx14mdzAFgYmzSLF97orpCMQ8Loj+Hn1/jUszlKE99vj+q1t9/il9JrJqHpJgy1TA + Eh5rYPfLsc2U2bAyglbBsxy38+ZyLaVrOLGgCayW6PaTabs/fxKlqYMfrywB2yLgFOz6C9vOIW8n + LVZFmLFPkxwbQ09YN/NziJ+ffObPJ0Ffy2mo4KS3T6L0TVtus10FsOR+FDtuNbTTXt+BJDEiPt6A + QvkWdIxcOftSsgQE/oLVzIF//ktoZL2/x8Prz++YPxuph0UNhTt8GK00H5KLmXDp7czCm+vrs1iI + Vsk32uZAWR8i4tBkogsWqxzeMvkbNsgSwWTnYIHn63jFWmY7VOgjroecMOvEa9KgnQ5SaYDT8/3G + GrEEfe0t0MOXXDyw/a6chNvxFObOg/nHX7ef0qRy+/qyJJyPQUktGESA46QT/rveavUHD+qaTkMB + J4a/lJCv/vyC/a1rTt+w+3zB3T8n9uE9ljSZGwiK82LjKvmE7a7vZfitTO9fP4aXlIEBvyfPz7w7 + luXuD/QoqO8CcYJSTObTUirwLEctTi64AtQehAp+GwaFitiY/pq4KgtLLvTC964fVi59FH98m3gg + UIYltU4V6M/4TVy6KGDlFL1AuC08rNThBSy3A7b2c8uJ/eevGd+5gfB01TCWtrAl4e/z/Vcf/vTo + CP1ck3oGQGKOL2+g0prvfutm4p3/tRxSghAwVRqScvS3ZLs30gjzBDk4VOSILlRcZ2hp84CD16Oh + e70eESeMOgksEfnEHoQ72PX2zBavptz1oQdWhWTEH9Sq/Jd/sTpbcxM2R5+En9WSQBTNWKuamdIN + NgVyJWUKuTn+6ONVfvNQLlot5OPYK4WbxBgwYkJuxydlYD8vb9f36Q/n3a3R+yXuGrj7PSHz+9yS + P74H54+y/uPHYzhpFqK0/83b7i98ampq0JlDdX7t+EUVrshB9AAWCflsBvRAVAN29XjG+Ys/UPql + Jg8OeERYT9G1XaWLZqDqSWziZLGQkJuqxvD3Hb8kLQbYEsu0NDkxDW4Ge39hszu+gh/yOoarmUd0 + PKliCJdJXML24mjtKg93Q/7zy9kdj/75OdplPWEjPnTDtgm/Aq5yE2KP8ady3vtVcMefeWX2LW3K + 14SwmSUHq9r1pa/+q3Zg3xw8bEoFn8xZI4rgYp97bIj8T1/PWr7JX6FL9/hRAOdNPxYebZliNULj + MD+ui4LchAtwkK6voS9Dv4cnHxY4fyZj8q8/0ylvducfyKdqtHby2Ycs9oTlUy43FDUALKyILeOw + +Vv91jLIO9Fx7j/3JqHTux3/1Y9T3nyT1SDSV64O1UDU0JT1nqHqgr713MziKH71edfr6MDKjxl5 + aQWWWswUKK/MYR6TTzhsLeggWovrhF1OPens+OiLv34htmv+uvPPSgYXS1axwTco2TIm0mAXw4Xs + fHL47XoKEjOrsVtKii5E+5b5nf/go6mPdLHUc4p2fCP+URqGeZUeEMp59Nn5h1Hu/Yoc1ncZhKC6 + pT6FRamBne+GTGo4JX1emRq+HcfAN3S/tKvDxuJff5CY7sgCEnwe+/3AAyniLkzoW/UMyN1vaSiD + oG6X8yGMwa6vsQeCehiWNTfArleJDwLb31LT9WCueu0sF36vC06DNmgG8PDXb02W5dAssKp6a/45 + vqYv3lGdIWNWFY52PKLfs+jBD/sLSfFeTLB/PiLxCTeciFdeHx1vtQDmAzIzzGNNvk125OX3dw6J + 0bAHfRRfQQUt2ftgjY6Wvv7VJzuvMhwRmiTrFzyjP/wg7qNK2m33e8DvyfLYZ3wK/vwOYNx/ETY4 + Jhv4o4sbOAWhiRUVrvq01B6EQzA8sevEVbmajxcPr2e7Ihbn1f6unyIoBmuE//px6+FGIQyxKGE7 + jhdKIAN4+OuRTv78l1889f0f38DK3k8XECc7UP3dGqIGkZ5Q87PEsEx7heAsi/318jwY/88TBeh/ + P1HQ9NFz3j79u11u2RzA2CtxeO6yKqHGM75DBRBCFFmyyzkp4Aw5Mjdz43nfhG7oKqOu9hiiuY/U + X9oj3l8BgDFR44eULNi3RWhoehxKRgXoaliSBv3WmbB3/Tj+srRlCo1DZs8vjT37wvmrfuHp6xsz + SOkR0Ae4stBvchXn2WPyN+uizAhmyCRWoFmD0PDNiCzmrhGNXlx/tU2jh9qRUWci1Cz9lXxhwViY + Tax0bKBzepP3SCrnI8aZwAOKO5mHyeszh9RbF30LDlsHL9b4IfZYTv5S5MULeI+rRk6c1tAtq7cv + +OQCmvMcXQdalnWPZk01iXOtNMA/cF/DDNcHfHG4a8klxMzQEx4GYviCqk+vS+xA6XBbiJVubELq + 89GBTmXdw93ladfTObbg8DEpuUK7B6PmZV8UWO6L3IJiKRcInxVkgjAMRYYLW1YBeYGerSUTXXoz + +ocvlBw4B/O8P7/QDGycix5qs+udYEeN6VR4+A6VcwywErYm5fRiTiHnUQtrSnTzKRFKCMf8HeN7 + lZkDHxzkDg4POcZOv9ByrLYjCz2zPmHve3qWi9jXFtoedUiUtY8S+kEHDb7XdCH5h94Goc2dFIo0 + ZUlOD33J+8f+jv7OM9IndeBd47nALFwSkrELo29RM7+g4ucusSyKE75QWvnfeV0m61nyBVljNJeu + N/OI9jotjyILnwpLZumo3AcBJi8ZHgynIdU59Nr39fF7wbltXiQ/fydAAQlqSBL7Tux9itx6g7mC + JARzchZWxZ8wTh2Ibvs7KNb5MVC7Lx34gGlObso0gk2IpRz27u1CsJ8x5ffDDnfE86KHb+6taPmb + uEJ0LAaZHKdZa6lK1xwxQRCSUHXcgU5tF0ImE0YcXo8vIOgHyMO2XBRSiWfO37gA3OGi8yeinYca + rNUNhSCu7XxGUmnp6+trjHDTYEAuDieVFCajDHW7nELmYofJxnfzDM2zFmFv6EYwj0nWINaKF2Lv + 7wD1yfu3gAwMEFv7770w1/2hUfXV4wvNtVaQvVeILmNBiMnoz1bIVBZCnR1bXDl8DGiwkgqGdmjM + m9jVyahLowbtef0Sja9duiq9V8N3jjISLh8f8Jy7zMhkPx52PhQNm/R7igjGS4WVVrn4ghPSBsW+ + D4h1+tGWhFpRg6LzML7Ojgk4MXx74IRpj029rMCq9FqDWOZAZimJD3Q2el6DEkMMbBizMnAXn7Io + MTV2Bm+QlMvlfCnQSyqqcKunxeeK076XvGPmUP7+LgkNhh8D4yzosDvd1nYpvWZDyzLJOPpZx/bf + eVORUYl30s2Sjx4tC2PgaDj37HMieKl0h2sq99g63ZyBAxaIYf9qNHI/1mrJpcdvAO1Z2R1Tb03o + nUk7dEnifpYvz7WdGNMS4cC9SuIYtZOwMyMzUDwJ530vJ6+/azPf0I7P+KKYfvtrRSGG0rs7EF8W + joDTqB9C0UxiYpeJnbCdlmTICh8Ah8mmtVy3mgXM/cMPXxOU+vTbqzNKItbHD9+j5fq6xB5CatcT + 5RfngyDllQJzdHNI/nxW5Xo7xBv6UPmLVfESDuuPVV7wL34URnP05ZZ1IeR52cOGxGLwd37QrTuO + 6MvPLJdIvkXglEsL0Q/Co1yZg5oiqaok4r6kmU5cdtEgUGcdK84NDxw7Uxmh8lESV92MhG3eIw+N + y1QQfMkU/wv2PWtuG1nYERxfZ9XHsiHueL+Qe8OeAFlz6QXN2Ttj91BlyV+8Ag0uGONqbZKNvXxr + +C6/n3kx033GQjN3f/hL9MYXdHpCbQo6TrCwd6WJz+ed2MH7Ah3iRS+or/FBkPk9v/GOp2DjNCtH + +b6lAD9kjQo7/sm/8soR37X6cuvt0oDo7ozYestX2n8CLURfye+Jbn9Juc3VJQTKk2VI+rgl/nQ6 + Fwa8iIG1bwkZ9RVKeg6NhauJ5nlOuYaFGqDB2o7YAtojWW0H5//w9cTcXmCr3FeHDkvyCJvfDYGl + OE41qM3qjvd9CJT+LGFB+HBD2C8KGSxHd22gmZgDNpbrkc5vMS1gJzYXoilgLZejK9XQJzOZZTjH + A/f8rRZSmk+PVU7SfB4zVgDbl2jhi62p+la+jQBpS3DEDtddhs01nhuSDo8F+1yk0AHeTxCurnDA + x588DZMBdRHp1k8NmSSRkuVRvZy/+CVusv78b5EXHdzrWwhG9Qe2qPoZ8PLgR3z5BGfKJwU7olXw + OOxKnFsuv+1gQOZIOnKc9LBkR3BYoO+tCb4axhsIUXiDgEP6iUSnIyo3JbRfiAFahT09Gsr1LFoa + 1BNsEBPlU0LfK+3gxzQKYgLLB/yyGBCm870j1ifSSta4GwX6ZuBBVNHX28m/LxkqlLs9y9o10JfV + WBhkHNkv9lYV+9Oxpws6aRXEJ9HXBy723hpsWD/BJuvy5eZH7wDV91dLHJpm+rod7yn8vVowC3l2 + oj0zgTvc/14I9OGrTwNSY0hG3OLQI9mwUi95QX6wKLlKHqf33VXW0LkrZBJmQE+E08ZE8OX8fjPA + ud9SkYIvPBggJPrbCSitz/uUN7A62DWM9743XHRgj7s38a3zoR3PqarI7FvosUqdS7L1seKhv/OP + qvkMqKL+Iple7s0siu2xZDMwWtC9VGRGQRElnNkSBZ7/BgMX2uovre1VsMuigKTJgtvVfyEWskMQ + 4Cq9+MlC2KMIBz2L/svXEsBAaPuaSZwPvbWjl+4OYzPG2M69jq7hZ1WAm406xmZrJZw/1h6s1085 + c7Jc0010ggxUncITfHXzcnNaw0NTfPeJ6fSpz53FUIG6ZzHYay4c3cYoWZA+vG7kEdquzw564yB0 + +Pr/8ne58iyEp0+eT7xy1vXlG94X4MLCx57ZjLSftBZCMotsCLZk8PuXFUQSR8YGZ7hFe74EIShd + sGHH5ijYhu/So49pFdjNMDdQS/QYkMnea5aFByhXHFxzqXNHl+zx01IiJAysv7czUVLOTtZD+xuB + bHMeeQg1C6aLD1houoFE8HJhS6r+gky6nT9LeJBvXsvq/C+GMiePRLPFDqy13PYQM9MJa2fBBxSa + nAVv0laTYKyslq0NHEOu0Ap8zJM7XY/cl4XZtVxnccdjDtVd/Y8fZYQ1fcG7sCF81K2GvVb6JaOy + DCn01iEkWvLuy2kWY2enBR4OZe1It7zSG1ioASXBjcnLtfckB4bJZmNt5xvkad8yWAqHNJSFZCm3 + sng4gH1z/XzQCnOYym8fA6tiWuy+Jh1Qpnp30FCjDseTaQN2tcEIQq9XiR0D3K7pvVgAl5sczicp + 1bdb+2BBNCo2uYjOMmyZc9sAI5kC9gO91seZkSE439U6ZPmB6Ktbch4IPoNOrP1+qcUpAZRebLLj + xUAn5uBmsNafEnZe981f3jUa/9U7vW9nOs/VIwDC1TmTGx+bJXdofzM4GFI4c6kftNz4GnMQi/cV + O0k2loQWmJGuY5IRBY6PdjuFUgQn7qERbx3bctWoHgJ8VV1ikuu3XP0nMCDk2wPGS/tIXol+V8BX + zBmczJcWrCttFagVtYH9m/9ut7wTX2A9VRO5v2QnYZ/LSYbWKiv7nmhD58z2o4Cd/8+cfzgMS1CM + Fgws/4Xts2iW7H59KNvWHWuUPHyapIkMF6VIQ6Tmqk9PaEjBeHbP4bsygL/z4wKFNlyII7ZTOZZ2 + raEYyPPOh8/++nabFL61pplZQx7a5fWtNUSEKJxZXpD9DbmlA3e9ie+Ph+VzO1+WhxtWZ/RsODBY + 4r7GdfuOpAhXnVJi+izs0vMn3J4vklDoHHjYkfxEzjIe2/38eQhJdsdW+82TOcxaD/Vy4JHHzh/W + 6saFIKrDFRsay/nLOXU1uM5riX384v/yFUJkap9wy91jueubDfzx9dgWLUCrfubBVywY4usC1VdU + PBV0NkCJwyp7t/T7SHvoEt7Buvd++yvklR668qMjao3sdpHszIN/9UsNjrlOvQsMxLsmdyGjOr+B + DsXUgMi2BqzWMS03RqxrWH8f55CYZE1WDS0RfHldSLSHpVFhQycZdlkcEOV27f2NbwcGvNKHEjIv + nOqUFjYEztYm2Gqr6d//R0VbMdhYo8lfrI9pAA5Gb2xW7atch60KgCIf9r3p9sdfI/4QwkfWRwTP + cNPnrn91qPleIPFP98ZfcN0rYEoCgajYm9qh4fsRyJyn4D99tkhGWaAHWc7zGPQ2ZWPfSYXy1NTY + +s0zWLNr24M/fvX4w7OXFHfoxaoy9tn33uGbGhbml1XBJ8SU7bjrAfiynRO2P4Lns+bhCeFfvbiI + 1ACU/4ihfKv7MlyDo+hv9epY8DYTjgR2ubS9k18MmMO5wpZ7AnT9q/eWzt+xf+JFf9Dy0wK79PL5 + 46s69w4mCzyvoYMN08raHZ9n2JycCj+O3wOY55dbo12PhiunaVQ4oWHHN5QS+3xc/Z0fK1BB35Ro + tGX9pUnlCFaqWWBLOxTJ55B9LeBVZMXKV26GSQwnB+7xj22rFei8NmcPhj36hGgJsL/Gh4MIx7N/ + JrgLXslilGqPVO71xafb+TZwXHSt4ZUrq1l2FClZVb/2kJvjMkR23yTLMWAjSM8twjveJNvh5sgw + zlC8x5/bUuPzgGBYjhLBqFCSbbz7HVz97YV3PpyMLbyl8CZwYF67V9rOu/5HYo+K/fcsKR0PJg8H + g/uSoyIJgNwD4w5siU3w+Wd/dFopqvIvP5WVB8l0nJga7Nefp/3fj90hqpE5O2dyPSrMsMmpvcGz + nuv4DlOSLI8+gSgm2UD0J1X1BZS+DP74qlJEv/Ifnp5vEYtddXuVa/aKRpg+5RdWx7vis9fOK4Dy + NGKioi1qtz/8bh6YD1leKHzuvvYMZIcwwO5wAfpy/Zke/BRLE4LNVvxFpt8NKhcmwCrzI2BGqRPC + R2Edw20MnXb5/PgcCBCIYXfj6nJ5SfELLhXMQvA9pqD9q8c+A3VsOPqYTOFNh3KuZkG4BupRX+/z + N0D/+JQx1wMRmO8Ib2GOSaJ6rU6b7yaie6UNobBNYTkFJ6X582/CETupvtTXZwG+JBLDg7TxJW2P + ZSQv1+aKj/w9Khd38hX4/gY9Pi4B1reHKo/gCe4JvjfurV3EB9DAWs8qtm5eoHPbWflCqy1zrG7m + 0f9XT9+vbfrjR2BT5ThAj2PjzbKZPem2PoocxMDTsOErT9rv/Byyi3jGhp8LdCs4ZpFnH/DhsvtX + 64DcGErMZBBdzUJ9Ud98BMdAx1h75kY5yl8w/9Pr1z8+a2dxA7uYx7MMG3v32woLCleghosA12F8 + fb8K2ucZk/Co5v6mPVH2Xz6oG0oppCIbwlUAz1n4KB7g5dNRg++jf8Dqtqgl57CFJvdgarC5Dj/6 + 6sy7AUcmKWZGPXxBX1k/Hsj8L8eKeWj1Jew+Ndj1V7iCGuuzKhcBuNi3BCu6NLajTxWInErw9vu/ + UOoY1h2ef4ZPDMkF7XIHYQ2fiqVjs+HMgYcXjUHMOU1JpaBX8r6+Pwai8u2KDaGZk61eFQt6i9jg + 8g2ShLcuzgj/9Jlx9Ve6cnd3n1HxmENDcsthaZregFF6LcjZ//yGuXwbIZCjQzRPycWkrC9Zd9RY + 9or9Ou0S+n75C3RFGBL3UPHJGljJHb5YXSY7n6T1JrgWFNqVhsxz/Qzjo08YlL2qCmu0Tf25N/IM + cs8jIEboNsNK4TD+4fMez0rLn4wggFdP9+elmveZbOHpjnZ+ggP3afvb8ZkH4ISEYGZXo/G390TS + f/7usPO3WfEDFjiFL4XsGh391VNuDfBKZJL4w0ften0TQ971NbFtTfXHXG2MP/+TOA+d0N1v5CGZ + ZZb47a0DS3fImz/8IPHzhZPtWU4MGFE9Y+3jV2X/XZoGPq+Q/acPBfX+iOERFFMoeU2s00A6bdAP + EcSam7j+Knw0BQ4b8Ij5rWLK0uPaoz8+5kYsHbbDTZGhwpQK1rPYGQQLHEdZJ0oxc+HSl1NWzQV0 + PU+ZgS5Qf1sQu0DucnaJcZA7nW3SLYI0KAVy3HqQfEPo9rDp4ye2rI9R8vApKgAejYSclNQd1vva + MLCmtYJTPwjodjFLBez1lJi7X8qpYS+CxlEyomd32k7PR6DAPz80+D0iyp9bLpdH2VqJSwGi2yEu + eVlQFojLoijAqjf5F1RKNmPl8mDaueD4Dez1dv6pDEnoaIkh2PVnCCzWoQvXky/Y+SzZ/Zxy+4vf + St+GcNnzaRtm3oFz6XvYYz1Ct/RoyH/8MJSW4lMuujQqcNOYgPzF9+ZCIYeHW/whXrf3ivsjFWH7 + 7rdZ4o+PhPUVkYWizbQhr/fhwMuhFkGjrVeCW71tF7L6DpjfOiRqbOvlliUaC9PgYJPj+fdJ6N95 + TxtdZ/EuvCgd0q8Cd/8HG1WN2kXap+9oNSNh3ZUXSg+qCcEMvz+ifnneXwTmVkB96G7h4cqO7fhX + P7QyWjDWT/sT0lbc/9Onxsz4Az34VEHu8/LEykk8tfwfPmsXls6HMEn95Sc/C/jBRMB4Xj76cjdB + D4vw+QwHMz6XGz9fNag0756oYCx0qpVpg4wOzrvebNtZOEMHUvlxxXZwa5MV48qBwfdKsHMQRdBL + d5aFfbNvgTVGW9/Kxr1DeqkakjG9m8zzx4ggq38eMxyrbhjsT1Sgm9wG4T65ohybVI5hPXgdOWJS + 0k0PFQ1VlWfMML0M5dgebQjbtXLxOYRcOaoNqMFeb4mq/zj/z48AaSZI4TviFcq+i73DrbOnEMam + SwX70RnQFOJyPqCiLqfeWz145voQK+v9XU5NmkGkbs5AnCQLkvWrLhVsGc0npoAGv30sr2WfeqrP + vH5vBzLXw11+I3ELoYJe5Y7f4V/+4FRjzzq5yrqGbs/SDrmT5tN/fqujE3Pn3w1Y9u8PTV/0sEne + tFwuvdRALgEBDmEtl9OOb0DSOmd+63il9OCIMeyOjoXPjK7+xWOM4uwQh4fh0yUrquca7P0lbB9M + y2fFBm2yVN0loqx8mfTIyvO/+vXnv7WbvVAIdj9r3pTopm/H6yTCvcNAbLLkw87/GRj0aUrSgfMo + VYxRgYmpsHj3g4bfutQRhL47492v8qlUZht0lJMT0uX3TsgfXrLroIYIE0Dn9jmIssgrZricxHVY + Y2/SwHlJxnBplYu+nYwgBJffdCcWOnD6P/71rdU3cR64oCP0TilqWDfB+H1+69T4XCDURafG5iqk + dIWSn4Pzx+2Idv9I7bj3I+GfH9oLjDFsVz+HMLg3CCujricc+kY8krDj4UJIlmTVFucOG4dq4cCu + wjBSC6dgORyOWNv9g3Wv7/AYdI+Qa0UCFmrZGdBN+Tz373Ro6cJeQ1nsDwXxzPlCR53fO86d8SNh + 496GmSqLgoTgFZO0cj7tVrMeD2c1uv7Tu/TlRTVsD8925k77GyoX1VqgpfpH7Ng/h3LPEfDwfItZ + HB7HoNzu9dmCiFru/NM8Odn8aAph7H7bedV/nL41srKh7XdVcPhEW0txuxgo2B+tNi8HNRFcmrDI + rueQKHJx14nIMznkT8yMtaD6gW0/L8Bb7gV7cN6G7a8+v9Kbgh3erAG5M9ULBoOp4HgbWUrlg2Ag + Syme5Pj5Bjpt3qIDl+372P0er9xE4TpCJt9O4YH13T1eu39+PC63R6aPXvjtQUI5DZunSfF53bqN + 8K4PMXEzfG7Zs3UNIc+GErFMGOkcO0gOBJjeZilZf/qy3V8hPHz8K9ZVr/V7C98LuOMB+es3UdOU + Wbi9kY7T5S2Csb9cKrDzfeJ4269d7Kxo4PBTcrL7Gcm6vWmA9nwK3TD7+EvYkRocg9cDR7p2TLa8 + 8ms4sXNGrO1etctUFF940u5w3raRBRvJrjOg9ev7j59xOeND4LHZAzuRqoDt2UYRCm1mwYGNzYG0 + uZKhu5W2JOves0/B61FBIsQh1pteSfjhK37hzsdJCB2jZNWzPiPfo8n8569M1u3XwJZR/D//ouQt + Zlj+8ieU9vr7G5+/HurbyhD3ucz+v/76//FEAcf+70cKOKX0ZrarbX1p8yKVTmZxDJmnGlGWb+4e + JMyhJTZgib7MXZuBLl8mbF9CU2etLW/QHKktsbnmScfDMuaA9T5M2Ds11bfwhhYAbpmLg+8X6Vum + sRAowcPHzmui5SYZK0QAuhKxc9gA+tZ+C/RIdsEulSn9Aqlh4dAHCU6/GztQm+Y8fKTIJ9fslvnU + 83AErWvhk9BXZn9Jw1STLWNNsUuylz/HPi2QfDuKIZJakMyVHm2o7aULxvkDlht5iBp6ni12lpgH + SLb4E29ovejzDPOz6K/N9ivA1WIckl3JpC/nHyjg7LojdiblWE6vfW3u9HOVmbW1ali+VjHCeT36 + OHopgc9ds/aO6n7JiK5Nn2QlvduAg2bNxI5+X7pI2stAq1TE2CcVpavbZgp8cmb97/7WtQ8ihA9v + lVwuoenzzUHZoHmwrtjNfUqJ4xkNGr3gQJLDWRmoLNc5BLqSH4fHdB8EWa4LpGDJIsmnU8pte8gb + kF82wUrparowcXunrAMMVskxaNfzMazA/bkv+j2US0mFrxaiX2H12PiZbbvMbKKgs6p8Q+7H3AaK + HmED72JeYPfzkegvKUCBuH4ExLZA7bNhPEDYSfBMwplcS5a9fXoUXffNjdFWlyudtw0MfZgQz6mp + v1zmp4g2bAczGk4aFRLvzSNHqmt8ASz2WfFaMbA4KAwpmue55c+jGqFk7oeQgzEuuQfPGnDecps8 + rNVpuYOFF7gpsUuKA5OU82PsX/CcnD7EsM/+wPcyfSFTvjXksn9f+kaIAddq0Gb+8DAA9+R5Fpqv + 5UtMC8fJNFdXHggdnsLlUCF/pbO8oZ/AXrD2jn4tewRiBE3wvZPL+Si2Y1gSEUbR0mP9Igz6VGZz + CJ8b+8TF2BzL1VyVEM1e+iWPoVcH3mF/Huy6/7B0XWvL8kDwgjhQapJDqiAtCFI8A0SKBaUEyNX/ + D+/3XwDRJLszs0PI1jmJItmNpvgiubD1rNBnPm9PW5LyVMHTC0JSZv1Hm6pJsJH8VSBRZgl1PUWC + Ct+l3xNvtBRKxTwOkfYWGeIyBgFTH24n8KoqjC3v0mqbp1YZNJ/CBZdmpWlHd7ae0pUcD6QEdRTx + to1DCO9pg11aW8W/+FyQIGBvPNTD5g+vEj7WBhJfkzVnGx4VhP55tcnpFzcO97RwC1X4qbHlsSug + 841CFNyvMz41Tl/wyRvvje7nmLjnZenWwIpdaPR+h6OvMAHKmQcdRrlyxNpBvQzHO71LMF0t5K+m + Y0bs3ZtU+CABxOrrKBbUts0APZxjjG3fDwZeYo8/FPrNjM3BLxx+YsoaVnXcE2d8K2CWPFYABxls + WK93SrnVkIFc4sY4/otvPg9rCG6SPyOHZgX3vYwtsNr+h03mVHZcEgc56uOywMn5fNPmV5//4Knk + TqS6Cfpw5IOLipRF1Wf2yB215fG7zihbTqEP9Ms0bJ/HrRRvb3jEhsTLHSspSQtSt7lhn4gfbcaO + 8ENksWp80dVTtNbTJsABC40vXPO5YI0uaNHjenB8Mbkn2jFP6YaWJrGwLvgSHf3iI0Em+VxxdYi9 + aK2LtILjA4jYCDEqVpY2IWK8siLl2ZUBv88XIbYY9/wYhk1T2BNil4LDJos38LuJXIkONEjwjXkU + xWqOqSsc4vqLi/HdgPVovEv4aiSH4KruAXF+eQaFUNDINXuQYfsmWYB2fCKZenO6pVRsCeJ36RL/ + EoKBbnETouKh/EhcBrF2jPnhBE9KfJslkGsDH2Vxi7rT5bi/iPMpX767Dd7Fu0GyMr8V64fPfwJN + zylWLPGl0UKVKzSXnw/Z+UBbHNlboHGXVh+F2RHQaghD+JMP3vxBrUv3W1FVmL55BzvrvR5Yc0x9 + qL/YiMTaL6bj5GhQQOxt/MNPZy4WFIAHZ1FcXV72v3gAejneyQNlbLFcS22E36l9kfOqN/QZbfAN + b10rknOj3oftuGVQ4h8pR04X0morJJcrsvIPj/Wz1GtLWMoQPTibEm0VMrDJR/UfXvnocMkAnT61 + BPf4IDclCgs+gCCBX1UT/DrnIoetpsVCFY8rH+75tV3EhwBfQJNn6bSxBTnk6wm9zOdtBnjquy0V + wX5GSVmI4R5nMMKgaoHARDwxdnzlmvGVoJ/XXLAqp8uwDI7iwiPBzTxFOBr69bQG6AID4h8miB3O + vrktZOWbjV3lnnTrx7BzuEnPN75gZytIczqWyBLb/aNvL+u4vr9n//AvPH3vdEuqMoF/+IXN/lPQ + jPxcyCrvE975rmO1zwTh6WEaWLu9erAxIbHB7ZcREn0VrI1GaGRo3w8cPaJ3wY1Pe4REH07kLuWS + sxBVXdAffsR5mxYsZ18ZKEepSvxUvmmc5LES+IsX2PfIWVgRq2DXC/6B/tyBvXsvFe75QG4f7aeN + 232UIL+OBTGMLOqW4GXb8E/v6H6VgqX5pSVyP4WP3SCeHLpKZw4u5RTg4ic8nWVrsx76n5bHVntg + uzUY2Q3Mzz4nWkuU7siYcQKd/i5i41AEBTuGh7fkLb8YYzQ8o6ku0hLueoLcRN2l7C88cghARySy + HTy0f3j6ROGHyIfyrtE+uLqg+cSU6P76pl+jy1oQi/oJJ+FbpuxVt2vIHWLbB1o+d1N6OULI4aTC + Z/Uua8t4zEKYDpWKL4zROZsnhhnMLJX61JGVgntr0glOX0cmJ04ElFrwuoGi+JBZTO6csxAslZC2 + vUFyyG7F8iByia4OLmfpyH4KKlmZBR+3p0oU+6MO7EsuBJhbVon16UujoW4vOlq0d4GVyzLTMYWX + J3wb1w3rq+F3X8KvPko+gPMhu7F0e3VvCdyMvVHwba6Llf/1J3QpA43EOXsq9nitQffy71iOLbbb + Kjct4XxfOpJ14XNYf68gQBJT1H7yrdqCPkQFoj6u9muEK5fOwjev4XS2rthpw8J5K7iVoRj0Jaku + r9+wSnRegFnyFdYnqEa8U7YzvLev/drAizDM2/SrYPw73/3ldrhGi/3NT/BPH/nrlQXrefVm8EtZ + jQST/aRL+uUsCIxLSuygZrRvcdhakGvNi5zc1zGizNpASJXyTrC8QGdcrzUDp6g6YYXdzhorx3iD + UsMt2JXfPFgOzPUEnwY++9zh8QRrXTv+H/8T51ZcouMy3Di44ynWswfuVkGJFih7P5N4P5PV/q1H + TUWXXOo4KXi5VHIYKoffP37bpuJcw15mn3s8HpzF0dcalU0G5gNsuGErOuMNd31CjLGTHHqm0Ru6 + QZPNHNO/tVE7fCxA2oxi6/78OFNR3Bjo8Fk7Q+57HShuIggyS6bzJP/GYgnT2Ic9WVxcfYX8//Hf + r7QiCgMVsDYcwwHlgy44TXQ+mpM4y/7N1+vabKDrmFswcWIDK4zRaWNtHC0oHZ4lcefvt9u0+7WE + 9/oakKglzY6vqQBfTAXIrpcidq8fJJp/QmxGjxxsphPq8N4tDtE4kg5ruzU5hLo7knAcn2BNgBKi + 9S4+yUmVXboUM8mkeu09vOf/H3+G4l+8Wgb7BpMkhC0MPn1NYv4Qa8R5zT0opW4hatxci9VmUAaz + r1vgnA5iNE2vQoaBEUG869mCX1xThvgrmDP3ubPdPHO9INHmfiYJF487PpQ+YGNZwSZ3kztuSu4b + 3PEIm0t2dBZ9+qlw/z2sM9gs2JWnEHV354cdnIvdfA72aymHOsB6LFFnzt0LA6R+fBNb9kRnc4ff + LP6cICRe0U7DzG3RjBJ26EgomUyxFvsRd54JHsTTqBct0kBt1B1qH+vB4zmQd3ApUfudNBzEFjss + 1nN476+udWKE7Vhsf/o+YuuWPLr0MyxJ6Zfwm4mz/92/tR++A3jvR6x0UoXlN1qPsK2Qd5lGbMra + lS7c4nFQfUtv4vNxG22le52h1M/vecFMOawM0jbxTDnG5xOQ7I0+3wvkKcpnQWcsh+WwNcP1odfE + KicrWrY2+MH2PKbkTy+si4xciDRLIS4HtW5NwDn84xN8Zvt1WDm7ZMBf/WeoNNXoxAZv+EZZQK6v + 5BZt92qxwYGbL/5Leq7Dpp1qDs0X94FLId0KKvY6/Mt3f/6b34ODu57WjsSDVkr/jX9OzMvMXG3T + GW/wmkheKPX+t4ndbvHOtfpXf+AofUKNKny/wKjVP3j3A5y1niQJEoNT/Xnny0kS8hbMdtIT/6Ay + xeYgwsFarl7EaWanWObm8Ab/9KbpHB2akxGCUj/aREmrce//gEIQ4vHn15ugFsthGXNUiGm5x/uJ + 8pNmXYFucB/sSdPXWQ82qCH+SiYOF0vWFvOs+6ifXwFWp04b+POrE+CaP77YOryOw5Raq4r2ePVZ + cdrAonMThMOq2zi+HkVKMtL6kEmXAO/7Mezrx0DaPM5ECcRAo+tnzmBxuy5YqftXtALs+/DrJmge + 9vnRVPlk0Dn3Z3L7SBaYTYF7Q6QgA3v54IPlsDxz6CO8Yr1aS7C0Bicg8Qe9eVWvVrdhU5eQgcQ7 + 9n5m7CyPJlsAbtjYR8Gt6SY9YHVos1o4k62u/h/PyEsOO1/7NIzufo1ytughvuzj0QYJFQxQmhO5 + ORyK957f4I3ygGjip9Oo8hVP8F26PS4fnlawnHJRgXq2RXLKBD+iD9VggHuZ97Yxt1pb158egp3/ + sP26NdrE7m17VuV6JEbZ6Rp3G/0N7PhCcOLNdBXsxwwRGVd8XrzOISejUsHODzPXOH20hlwgI26p + TfxP/9ruZMOi3Ab/ANC729iz+wOm2kw4rG8/ulzk7xM+rUHHJ5tPui3Pzz/or9x3rstnANikfx2R + O8oGcU+fZ7FERqaL6tkS8VX5zNp6SVwB5uCjEVnLGzp5PQ7A5BQR1lHWd//Wb6+PfOF+yZxfUl2v + UGAuPFZwpRRc5T5KyVS7aeb3+m9hnbaGZmo9sWc0jsNCe9mQ+Dyl/srAhq7v1GzhRTgeiWW0KViT + /sVB77tV+ByQbHjtfA6RcjBmtD8/7n6QWMpeRPSH7uwS8zcDzywkf87La7HF4zmEPBM+5oEvGTrK + /bL8i4e174Piy/96HU2B6hDZGHG0lpx4hd7L+RCvPKFu7N6qjN7Cevvze4Z3eD0kMNBUhBXrzWn0 + aB4TuNwFl2B4NIYjt3hHcBhwh3c/AXDCc17gW3e4/fmx2/syWzBhvx2+4v7VUdpljER9ucEnJk61 + 7VpdnihvS99n93piwNEzkHY96kvU/O78GlqobHIwd6uSO721RQFctQ/FNryo3e9eCRZ8ouCDDWNo + u6nZ23ydwJebI2F5Rn/1NKTF5hNX+DXR6kvtCJGkdvO25WqxBOE8w6pp/+2PtutHCR62/XL9kDuC + J1HVDRHLVPy17o1orb56hoyP8sFq1zp09a2wgl+8CFjeEYvjQfqDziEmRNbMDSz+7CTQZ/IJ68l6 + oeR6CnK48fYwo/KEBiKwq4A4ClUSfaJLNDKucpKy4Z77W5sx2mR2UQDni/+YmZvw7Kgk9RnQq0OJ + fcy74J9/tNeHGCvaoG2kcEPQnud0ZquL0o3DKS6R0z9EfH5cD2DrJ8VGQFMz4oI6Kuj7Y+hoZLh2 + Bp/Solws7kec2yLD5jJo2vFGswzGqVThc7Us2vIX/1X+m2YujC6Ayum9/8MHkvSfbuhPW1BLyrVL + iBuIJf3nDzoOsLAtezdt3utHqB5/EdFTXaa8fJ4YmD4OV4JTfRoGnGUqVFc38w8vqDv8H/9qF6zj + 0/ksOvOqRzkc1pNN5CdvA/bL3zOIq9vtTx90UyffLBg83RfxHGwNu5/M/PkBWGEfkjM5vd5CDdHj + v3ygzPqFcPdbsIudh0P53valKYxs7BxIRhcq6iG0ledAotJ+RTS6n0Ow+7tETbJIo7dMvMJnlTKz + cCz7blWYioP2IJXEjB4SoEa99VLDhSWxJwTorAuUEwcn+mElrdyITpqVgPVJC7/nX99u5xsGXJPZ + noUv32jruVc2eDtjExuxaYH9/zKS+GM84rWMRdnAuvuwW1d/95vg8JbqSwKFR2ViPBlLsZ3uDxfa + Ef8junI9aPOOv3BNlXnXC7yziGKvg51v/KV8LpQNPIsBVzfPiNutkbbXNxWANb3/41N68M454IOW + /s0HENdHG7Swr2K3BopD46ulg1LJMLkiQxyooDU9SBg6+rExtMO/em3HS6I5shIdS8UWpF3/kasZ + O932fZQuUCueYkNujqAPX64AITB9fM5dOaL1Yi1Atl3Xr2+HY7Q+wqKFBxomM/gJuvP7q8dknnkR + M0nfxYxNVwB//q05n97dFosCBBltPewFN6WjbDyq8Jv0hLg9GB3Kjmn/53cT3+QVsEhBtEBHrmXy + t76byNs+iK0DOy+jnGq87F9GtDRXC/8HAAD//6RdydayMBJ9IBcyJyyZRRmCgII7QEQBZUyAPH0f + vr+XvesH4JCpbt1blVRp04MFy19893PMZSxvGdG34NHF8EiYjFxdbc3p4p40ECUb64MwNB2y3foQ + csfkgl8c6nXMe8AGe3wa5fkZU/qyRAyPirihXW/U2xEcfGAZNMYHbY6dnZ9Bcbr4Rwwr45NT5TxD + sH1qBp2+CcxX2/1ksrPREdPNOYF/esRqDxB5sXyNOKHPPiDC3Uj0SJly2pWOBOT8JO34MtE1adIU + MM4iebb2GMdNVHz3b3zkZqbRiLNMHeR9v4jiTVJEpr0NB8k/EHOX6EuX7TkJcNrCEo+fEOgT/o4x + lJ5IwBEvmvnyF4++H2FH0uns13RcPgb8yw/82SspmLz8sy+kjaxJFzV3OOh234vPvUmq03mZOAjM + KPGFYrbzwf6uJcQH6KDkDjh9eb/zCnLXX0n++efftd8AeP1sXxCjX7QufiP9xbfxH75Tr5hLeJhf + F/KXf5itgOcAd/dvPj2KQTR550qRPcYKsKCczhHXHJ0PRK/mthedbPXFPJ9L+Mdv//Hf5N5hcE4C + D51PAh6pU3wmEOXuguLqldW/n1h95EPuO/v4u+i95w8kd+DPWGgVLV+iDTbQzjeKDK6Snf4vH/C6 + 9A/kJ1HnbHntfUVUXDJ0mtGPbqEDMnjGFx2ZTY0cznq+fPgXr/Bq9lSTfqQNZLbxiZldb1HuxBvA + jiWZaKkV0O24SSFozozyl3+ItvdtxZAq0dtfeY+vl+lbNTJsUOrXuZLkmzaqmXzjxQtJFJ0BW+EW + EzSG4kJsCd/oQp7DBYiHzEampKiAW4/kC7rcue38UNX/4jsAD0mMObFM800K+wF47flH/D6+AHqL + FUOoB5D4VIxjZwt+gSbv+0VsnZH0VSs/CmzOnEIcvijp0qY3C/BBRZE95Auda+Vqw12voL/84/Ko + mAPc9SCxnf2K85s7MMBYYxVLNtUcJuFn5i9fh6w9vsUvum7JOVwTVCzJKeLa7HOQSWfOyImbcJxO + ih0C8skosvVgyHf78KHGdBG6RCbJFxfbX3hVD6H/2/OhNDCPdzCXvE+Mu/fRN1PlGfhZvhI+FM+3 + s3C/swDHefCJ4h33IvBv6QPd8/gmyHb5/C9/J1OXbZEyhI+cytc7A9+XVUMR+ToR+zR6C+76CGmf + 9ODMIZdqEDS+4nM7f6YtI2l/+VLiMcdxxOBclbLC0d6Hf/mdK5D/5cOQXlzMiHscPq5MnhTgj+dn + Of64SyV/21uJXEC1fK3PNwOesa0jt7wb465HNni7XFakCoDN59trfyJquBPKPkxTE1q2rnzDW0wu + J7OJ6DFbDWjl/QUpE3+jGzAYDI7cdEWX2+DQbZuHQuIu8w+Z8tl3lk7FB/Dnn/1rmI/0szgVJM8V + EOtRHHT6Z09B4WzE7bqnTvWNX/7GR6Ird6jXHFgbZPv9CQWbXvIVyqoGn2n0JJdWXsBffOgv3o2C + 3wxBXyvXC2wffOoP9VhHy5fCEvLnAeKVfUn6Hi9q5Nv8S30+7SO6fioTQpszWhQ91UZf9ekx/eX3 + sHjVfjW1Im8Sq7vzQj5qZDA/vVaBHdlc5C5GmnPXJT8APtqvbFQWAPOe34WXbYn+9A34hy96Z0gk + 4az9ys0xh5Dmi09OLZ3qxX4dGUi604xbjSbOapzWi3wSYpdYX9HciyKvGKSd+vLFtNQA16wRI+/5 + KmKcf+IfH//CR2AdiHOeoI5x45Xg/7lSwP7vKwXaUtbEPjBLTa1ZtIBRuCdiz6kWsef75QPv6uFD + FH4ya1rlfQgXNE3IsR9nyhhf7iNzAApE1UuDTi9lMgATtZMfMVSJmEqHnZTViYtOZp5HbKh2HUSR + qyLn9zGdJTCADdvmE/rC2hrj+uWuNow14+6L3D3U6fExBVDpTnfk8s9p3FhBkGC4xicSGgUDVvGe + NHA1n999yfbOGI5sgSC6nJCFfm2+sEk6wDFgUmJytqhvq6h8oKbGX5RHB6teO9Jlcj0dfTzEfBet + WNc52ZqkAum3pzbyL4u/wNZVr/v/Yrr8FJf7+z86M9fKodEJa3A1X19/lEQ1Z/l3oME3SDkUOcst + 51ypHWTTiQ0SeYJZb5x14aAjP3TkJHVd06AXOyA988LnmN8Wbdoz/QLQMjWJjDQDSynnhXwPl5EU + g6+MPKhlV7pzIETqI+bp4tQ+htJRx8Q81yjvaYZSoGb16oNath0O8WYp55mtkHvifvKtU4IvnIKt + RE50VyM2/HoYuES/4Y+rrgBLTyuFvbP2yJwtlPPRkm3wnp8o0jf9QrebvzQy3kKI1yD0nSWeg1A+ + ebgldtaP0VJMoibv3xOfyk/AkbfHwGIQEPGLx2vkumTcZJEWGtKGmzlu77YQIDOGNZbM2c95wbIF + KB1V7L2rK6r57a1LcuP/KnT6voyR+VDtA1+gGsjVvzwpvSlyAL3j2viQ/ZSALeT+Avv7diReNeR0 + 7TcBQqKbJkmERRrnxSpScOzMgKiHVs95J/QbyCaSQ57X6FWv93Ry4ToWV2TprOUwPOtC2NjbjKUY + 6c6apcVXYlf2S1wdOA5roT6TizltUMZ4X50T2GCSwU3JyHX0TzrjM0EnZyqWfCERb2CdrEaDl6lj + 0HMl+shtv+8B+rclIIn1Vkf+Mr9LaBYXj5znuIsmLywG2D4qiDzqLhGdjkkJK6OHpCgLNafQXMN/ + /3MHzgRbIJXa3/7iuny50SIFQSjPjaqR8k6CfH6PRwgYba2RohXCOK/bdZJ9UeDR1fukNa8KmrZ3 + nluJqkRuzSnN+Q7jk3hG9r04O5Ti2wLFpKtRurZGPdkox3/rRa6O0Ee0yR8dTAtG37W6ObKPz1OC + OmleyDx2Ol2e0kWAVfXMMR9GFeAL6hpgQoeYnKz3u97OB5MBmammKJgIdlYe7XW89vPndUgAtI+v + oRyHwgs5/NuqGf5ohXCFYYaMu784W58xsSxc/M0XmavicFc6h3/nD53ebuEw+mMaAHMpsv2Z1lZ3 + iwA3+Ld/z1Zuos0r3ljWN+mAzEvK0S5XwATjKr2Q89CEgJHvYgabxHojL8lRzbx2sW7qvUcQy6xg + 26yshNE34EkoxSeHd2wvhPO9TvzCmYdoPc83LDeJ8cbgg4px8761AmPIixj+ylHffMpI8E3J0V/x + 9w3o+gR3+WvZDSr0qAWbjCYB1ImdI3XSMWDUp8HJb/uQI21hiogtYpjB6BvyxMySNFqi9HuBCpdf + 0KugVk3EKNtgUyGKVCWaxgXD4gBhUrLkXG50XHf7gNRTehLVb85ZBO0uyaWxLv5P5BSw2pXDwPtq + vZBL9E5flnGQJDQlIdJOP8+hOQEVELrqS86vTACT8NZi2Pk3AUsL6+RMSz6xPB4vDkl2f9C3l4iT + n6fbkRgfBeVUqV8SlLP5QV738R5x5k8LxZ8jPnHzdH6A3l4VlsOUt4haiQxdL4/cEl3fc0mCDbWm + I/QlmKcRRLb1PNVMa7EN+FTJDzPGpoK/8wG2pzD5fLR44+I49CN/QAxJ1uUWZYuYyeDXHkSkP4YG + sIlU+XL1u59JYLq+Toek58Cb/erIUqU0J8lXZWTnu5xQ9Iop/bd+7cZYJD9a9bgezZsEJWur8B4l + rxcYVZy8mO+KuFzXOlTV9ExkV/5L7ES80SXvq0KWLtYB17fnp16pIDHQ1p8v4hli7mzw/uzgvh/E + O1vPfL06bwiM+B2QdE61nO0VTZLZJz74NbqFOdtZoAPJqrTE2mRd54xanGA1dD9yUSvXoZkIOShY + UoxZA5/odABlAZ3LocNbnHP5tu2SexacHre7f+Hur0iTqzVqfLnRuL32jmxAlzoyOan+Q5/a4CDA + rMDIX5fg6vDLKh/g1dgeeDv9Zn2plbiEh+eZQWUrDlFPgtsk149uQSgsGX0dvHiRRSSPJH46J0Dy + tLrLB+EYEb+9mg5ffkJFPghyhJK4vUUsDXwDYvu4IUc/ms6GXlIA+VugkTtbPAA9umEq7/4ExQTl + OdtvC4TutR5JdjZ7Z3Uox8jwOmjoVr26cVMyWwFZ+NZJzPcvygnHbL+iRSss46PvMB9ZZ/7sH/O7 + P2IzQv7ZEzkbUKGUb1wO7uP1O+mHo/kn9hhiWNroHhSeMx/Ry4W3/vX2wbJec6qB7AsNoedRlt8P + YD3XcSpzl/hLlHXl6ULKhwKjqjT8QxnP0e6ffNhZ2oKPN84HzEwcC/oPCyM/OmaAXgw4QelmxeRp + GLSmp/Duy6Mez5gp7ko0c2zWwc7ha6LcKENpNn0gADT2iRq/gnzF4/KV26YKUXb53OgyjVslb9nX + 94+DFo5rRsgiHZbOQZk543xIpkmCghgTdIuE97g8r+UF2tc1Quf1fRk55g6lf/5fb+4ypVLVdPCk + 6gYxKdeMVDlIC9TPP4bY76/usOz5GUN+tFj/OP/ISJ3vMsk8kA6Y5qd13K7fKIW2tcroxNRCROTI + seEgsRPSnYXNyRSsBnydDYSsYanotuOHvK8XslbE19vTCBT4Cr03cRnpMa6HZ+fLBAs1Scdgczbz + qRzAUS1j/8DNNNoeucTA5ERy4mm/77jm15qR24LPMH8QhnE5g6si36TrgHROCCN61K4GnLc7h1Sj + 8gGV+CMD0GVWiH0veoe+yCgAeAASMvj+SDelUe/y93VlkXmVKaDUO4dwKkObOCIFDvbkgw/+5s93 + q+jg3LG3f+NPSulXb33DdrBnLUo0hU/AlOY/Qzqc+Tux5aSmeBZT+w+P8Jf7KA6tU9WCj0OaowjJ + fE23vYrQjv/IapRxXETzV0JithnRhls7/vFjuDJtTQL2HNZb7iibHKRQ2vnR1xnEh8xIp9YZiRPd + 39FyPBAFmlKpklQ+nh0eLUMKdnxHaCt4vYv5ayMbbbI/a/lpgPGAmsoivr6QsXwMh9V/hgv0c8sQ + O0RfsBZyb0PPVFRywXOurxNJN/AEQ+kvo/SNJq//cXDx/MTnuE/l0NGrPjK/zhuxJm8GmwFcCZ68 + qUUlG1gjf/rZd6h2ekH8ifvo66ZBHzr6dUXFMifRIjahAJ18WUnWC9G41ro0wUf4lf3pqPXj8pDC + St7n6/NhpFD2oHkxeKl5ShTu+4pWZCoMPPUfA3OxetGZa+hpQKXa5otRJ47bt4wr6OaYJ4Z9NJyt + jj+cePk8OxLDuM4X/gcsuN4jQsyxqPT1KDgH0CsX3T9aU0y341pJcJ//H9/OB1F4h5ARm4SUZvTR + t/H9LEHdDBZR3xjm05CnBhz07IcU7Gb0+8xrF6oJivaQrjkyDtMFUC+XO1GXYNXpz3oJAJd2TKJL + 1NX09FPuEBj+lZi3m19zImI+MJ+LkmiOOzhbvHgWDESq+41wUvc+a0olR2voIWvW2Gj+438730Ln + xONGfCu0ElbnvY7xRgZnaxKawjDSIn+B1iWnrzTAcukfIElPUpyv89bHcPffxFA9A2zWEHLyErEx + Unf9Qf06qOTv+6CjFL2uORc7nQY/Dzzgdrr+wJ9/lP2HgUl4+nn6NJy5CrKJ4CAkcaBeHtd5g5qv + nUgeHb41rS4nLJ+urIcsJ9N1Lnp9Bmj8eExMXayc6ci0GDxBV/rlQWLHrRJfFbASIu34K+16LSrg + T64JpnYrO/R5sy/gkeaLf2zZJSLPm3KRJdEHxPF1AZDpmBQw0i7Bbh+J0+96DMJP6aCLTwRnOj2e + CmgjfCYW8wujdRQzC866LxJv2By68ec8gz/LGpBPZRms63k6QArtLzq/P70zP6aXC7e35xD9Hg46 + bY4cltybZOz+qqJbmn5C8FAXhljHpge/vJVcwZteFlH5zqmX21XOwIXvLuiJ1FFfE6ly5fV3EpAT + UJxv6LUFALqvF2b4/gVwKh4WKD5fd+Kut2LcwjDYZK7rMhLPm1/PSe8P8HmwKblZVASra/cKDOzL + ipf2cnW2c7HeYcb1AzGapQGbzsO7XD4OIUGtN+r/8D8HS4gy+6mDdYKfDnh5J6MM/oYao9cWyktQ + cQRNm+2wEwkWORBXHYW544yzy58yeMmZ0Sfw3OQUv6MP6Jp7g0yQv+tN+p0w3O1n9zfXGkcG2uBh + lmViG58HHfb5gGfVn9F+/vVV/K0X2ZQKFelm+XbokLwZmI2KTm7IK/NVW71K0NVwwsfvkAAa1rYE + mseXQ6prjmDTnkEjc92Q4XfIqjoTG/VHnmGloej2/IzbVf5+Qe/QHvNBSnUi8TwDpof5RXp+Wuu+ + g1sA242zsECeTDSdNJUDYT8ipHtCO87QnD8wkRzunz9YACPHQCGLR+InnfWl4La7zDQ5i1yJPeVc + dhJc6JRXi9g7f6E4yXx4lvwHOmWzma/b2B2geLP9ff1rSrqrjeF+fvBcpr+I1unZAkpn3slJeaz1 + 9mybCmQLwyPNbwzaLe93A20SyriFwTligRA18rgVAwrEO0Mps+I7XDDT+6xtfeo1XE4afCKFQzfS + axGf0nyCK/Or0el08CMWNulBqn7xmbjINB2uU4JGnnVX9H+f8JNjd5nuoLXcEiVvt9AXthkqeEyu + J3JmxDbqx6CNIRF01m93fFtwe17+/IEPv3090nC+uNCKHwXyGr501sOzcuH11nyI3TuKzvfsvMBB + 4qedL0Q5R+HDgprOAaJbYKYz80wOcMcHzA73B5iaT1ACSMMYucmrr//h9a/JSn+WVi+afpxewDBP + cizOsR1NKhACQPT9yuyTPzkLf/RDeK2FO/J05NAtuvUxxMx6JSeKg3GpPBbKvnE44WVdE7rOZ6aB + u/2Swv2E+pL0iyEfYmbCC/c9RttFLUt4S/uUKGk9ROsYtHdYcDWHjy0b5AyG8QGIbu+h6DEYgOfO + vQE/iX9Dul8NYLnYA5T4SuxRei96fR4m2/3Da+RldIiWxHE7WD5giBT2HI74954NANutR/pnwiOd + OiOQ9/OFpbN51hdGmO0/+0cWWzzocgiUDmrq/etzn8O73tamzEAYKRGyIwNHKx6Fr/R1jgmWbhMC + ayU/KsnhvwFRor1z8+ke+DILtW3nVxFlhm0MYWGIDVFd0wHLp10G+cNWZx88vY1udOCrf3rEv4X6 + uLbKXtXA7kSkRG8l5zRm3ECO7IGoTmA4TPm1Qwni07rXrbfy7VihO4AZjXxavqZot9/mDy+JDkxm + nE+H0wKf6tvFh+v8rZcDuBdia2OKB2yylC5BX0D/mvNIPelvME0eMuBxaa5Ipfk5mtOXd4fAfT/w + 0h/TcSHHtpIHPf2hePvdHc6pVEn+4wda8sX1WzBlG75es+MfT7GkLy4vcH/xiX2/zjp/mLEAH+Yp + ROjZYX3J4kMMQt6WkOEXC9jU31WA//DbzH76eJfcQioY/U0MsZnpn56TG14Y0OPk3/QNW4MBOz8R + ZlGOzpRxv68QZo5gkYC+9GjxmbSTFniP8cK853wp4y/ea4CGCNWmRBcVCCE02+hF7J0/ss+PH8Dk + qyLiIS6sN7AuFRzvo4PBpQSACoHmy1ctNJAxb7ieSXDDYP8/Bob7G9dRzwtYZJaF211vbK23WXDr + JA3TEaf5qjN3A8Jrp5Fi1wPblbYBuKPS/ecf18zPA/g8+zox+taN1pJbMhjwISZOsl9ZSy8YAtRo + F+JlTuvMppsy8O2GItJuel6v05P34QOFJe52vGD+4tHtkJj+dcf7v3g2ePvURw5znpx2eh59AD6V + SeJdr7Hz1t/h/P7MxC9hWK+RsfrgwZEGuchsnU1wRwhXGGQkFvc+EO2baP/0w1kotZzu+ATMCd4R + eisd5dpch2AZK4fseq0mmc75wL9sEjpdsA64YygXgDBzQvRefes7n+X+4gnImz9qvpUl2MBxzDG5 + NHvfPp9JBxG6zxfRn/zvv+O5yKWMlxw0dLuEggYWz01I/rKrelLBEsB7/WWQ8/RCsGbqOYVy5xno + nkV7J+xCvEuNe3JwdVHZekVFoUGjvT2I435dfW5OegAP7cAS3W6fDl2tzoZ3JpWJXetot5/3vt// + AQAA//+kXUmXsrwS/kEuZJKEJbOMCQIC7gQnQETBBMivvwf7XX67u+zT3YgZ6hkqqbJtrIJD3bAX + NT9wlL8SdptXaVAQ1CqsA7SlVr/7+rPWgB7oz1tIfb6TwDKGZ05e4wENWlAYovQ6FnDFY7TZxFM5 + VShswaovaRxoM5u7tfN6EfcizRtK/Tn05xamxTdG/Hh4sUkJJBu+svUKnb9W/Vz1AhQDpmF3L8jJ + 0u3dDNr2bsbuOBqGaANvAzVD5olMvsCfzuy9AErkBom9m4AZaVIEXh98WJ8HyznTTjr8+QXXg/Uo + iaKXKvzh/5r/SBgXnQS494MIlXSv+5OJhwzKT+mCL7Bcb9XuggJq58dMPfu49vXN+QzYmr2hIdkS + g21cTVBWfKPOVbP9UTg/AngoyyPWgu/skw0pUrjqBayyW1O+wUMtlAqQgvChsx5hWPnBj8/FRwM0 + f/zgj68Y39hn6HsSoJhP+c9/aTr/7sq/9Ug9V44aZp3sDZR3AcCqYSpsXNcb/GL5jPFRIGxa/UXl + 6OUtNY8nZ+A/oxr8rSc1J3rDm4nbrSUddWq3/cR++gFy5KVR1QqIQVf9C+s8OJKdCe9g/q6dQk6b + c4ng5mwmPNdKSC7PnoomGj98kgsdkpNiDmiQxK9yDuV8s9vX7wybUav59HQ7mLD49gHOZrEC33U8 + FeNre4ifrp4xS23fyj99bPbKy/9+H3iCnq/XP/+gnHF8JrCoBAPb6/8vq94Hq79CpDV+CPusQJDv + xxQfct0oeVMkHyibkY9Pi0sZs4G+AQRzdyKs+py1hyKFmQZrejo5ZvO+788yaECi46BPFjZrQX+F + x843sL9RL8kUWN4ED42ckceAXv4knB8IHOazRgvjGxujvnU4ePBewZ9fyTTdP//2Cw4PszpwXbq/ + wq0ETtguT2ZDL0L1Edvb6Y1/+mImhi8AuNvvqW3TG5hWPP7TR3Kk38Hy49vy0Uypx4W2wa/8D+yN + x4naAf6w6Tj1gvyOYIC9tzEaY+iUmXyfDy3GwvuUTFIiXaFzvXJEuJdoIMuLQGiEMMTms/B87l5i + Dl5NNiGunUzGv3YPovz23/XwtRv+t5/0qxDh4GZ2zbc8DALAYtZjO7Mrn1mfe62s+Qoc6OF2YAy8 + PjAyhQQN1jtNFtliCHboNtIgolwyNm83gBcpVZHYtgIYeTJw8BsWFqKDoiaivI3sH95TnJ50f82X + SPCRxxjJVztN6DY4F3BJvnd8EU9xI/zyh0fv2GKH6YdyofBO4O65yUliFjLo73VvQySea8RWv40c + 0dQpK5/HewQ6Y/r5u/n7+MX75WAw4drzprLiEfXtw6mZheGUwqRZq2qt/tPqD3Og3MQvrC/U89ne + qWRYfw0H23mgJz/9pWzqNMfJIbonxGzmUenu+y01YmvP2P7lpLA7XXRq8KU1/Om7w7aByAKlNkyj + ES5g9afW/IbFpsIsJTCc3Ds2rfNr7VNTt7BuR5X+/AR2ublXKHhZ95dvFmZDk6AtF3sanzPTEENE + CgDrysfn6r1vxtN0CnY/f2zl28OSC12gJHvFwNUH3QfqmRyBD/tqI/dRu8aiOeT68zOo05WfZq72 + 9V15OxcfyV7Ns6+ZuC14P6YjznOFsuVeGDpYdsSnoYTkZN1PFQR5TTEamlPJrBPagBWfsTruHcCv + 8QWu+ViMMdkMRLyTFgLPMPGa/xpmQM4xfL64iVbr+zKdqCPYpsuCutBcktXfuity8EooimviT3YW + XKF3GG7UTOemnGTQ2XDd/xjrt2VYWopa+DqYKuI/m5uxbEiUQcvPzL/8w3g3uP7/OlIg/PeRguAg + 1NTdFigROgQ5cBveN2zNeyPhBrs9Q7KoL6ojb2JjtIVXGJNOpcHl5DLxrscbaE+pin0UuQbLvJ6D + EZL3SJlNoVkQ8SNYScsVG7Mvsck2Jgl+vsFCMb+pAWsnLlKU0JmpNmadT5IXa+GHHmtqJPYeTHmu + OvBwqyAuLqZeivpJQDvRCHVqxYoElve7DaBcpg69VYpnMOXWE1g7XoRtwZ2agfTdGQbq3qe2u1QN + e3+jWpGnuEdgi7flSNl9PdV7mzCSv2458ZvrFXLxdcYa6ueSGe/sA534E9Bczc5lT1nvyUM2FmTJ + W6ec5d3eg1adpIRttc5nR/iV4F0NOnzpxovP+3uzg2AINzQv+L0xWdJDgts8DKgmx+9mNl4XCabY + 4bF3udyS0fhQHQr7dqSnYpR8VponR9GrtqHxsBYWrctugttNq1G/CAI2sS7RFd9gAtWSY+jP4eVz + hchReXouUD4ITivX0CjQDoko2A8Leu8WWH6yE3bci2bw12c9QQp2TySnziMZBfdbyd2Mn+QUKnrJ + zfHbhtncX8lefh/A55LrozJqUYazYVCB0A6fM0xFpcLGcC+NOVhbbT+5u0iv9Sko+fAUQWXHa8Na + mKweeOWxuypz9HHIUzWSYULP0ISXG/8lczf05ZSF2QRlm+lY3TaVIbwSlMH5oT1wOZrc+v3qKxTm + y0CP23Rk7BD9JIZxQttZffiitxsFMHWmh7hJ6o13dZg4BVjhnp5kXLFv89rYQO3OEQG8/EgmC7JC + iXZXix4u6ofNc9Cq0J6LAmfbfVzymRf2sJWkB9qODt/QMThc5cPj+aV6rUv+rPnORuG04oSLl/pk + 4gvzwVrYClPH0vxEuNy+IyziMMFe8QmT5Sb47a6rDhY+dfWz5PBU6bDJ2iPNL7UOxJbd0W//0LLo + 64HdRH8DE0W30GxsZ8bqi5dBi590WspS49OtXNhwca8Er2Wc/Y9Y2h+AC3RAu9lv2QiMywL3wyGj + 4cCTZuLlAMKH70Mkb30G+jq/RPD2ee5xUeR2w8XnRlYe0VmnhdvkCYdGr4ajlD/JNueKcr5D9QMc + tJhra/gTGL/FtChepb1oPAmvZMb8UwJO3Af0+hijYSFkuML707Vw4op3f1ROoIfekllol5PM506f + xQbBrp1oXBzMRCRDnMHXu1/wafZNIPiOCaHT3RN8jEV9YL/5DesyR0wwzITDU6orarKVkSCn93K2 + zTlScqt+YsucaMm47/OjhHxoE+Wi3QY+C3Yt1Gq9I2OdD803XXRPuZJkwdrj2zWLno4Z/MUDw5iC + Zs6PVQuve9RQQ57uvkD5uwysRwBxONocY9keStDEyh7vL/bXn4TgcFY25/uVHpMVTCwFLLBKwwLb + xdFi4gGZrWzbwhmHFXiXVHMmBDdzcETbIiLJkjS1DS9C02K3ttdb/WPhKT2OIlzx7GIssryvZfgs + GlrO+hEIqiqf4WuYazJbTtPw1WESlHgve1TbPuZkFg9NDG/FNcfFiL+MYep/oJ+hAPvFZQHzdj5I + sDQ1SPXEWYbJqXcTPPgtTwNDMAFb462yY9sEa+v+ZFITVDDZXATsrM9bNsRZIEzeAXYLcQ849Axt + QKGiUH10/WaZ7G4js+NiEMmcrPJ9eRwi6EZlTM3hOiWfQdU9ZQ7dE8bb0Bs4l6hE6V/qjRbJqW1E + oIcFeHBDTeShjYe5tN8yXEte0OO8bxI+HUwC2UdraFQflHJKHu8MjLINsT+aqSEkTW3KW7DE2FSj + 9QgUn0Twld91fJIFvRTDahvDuV4kwhlEY6KGXjHcPfwW66jMAB+nRICP5uVR1+QiMD2VsoMCiWvs + ohtJliV9rClpwONgPsxGd5rNDHxKU6eFKZQDJ55CCfpZEOCoOJ4Ye6WIwNy6P2meK6BcHk6kwru8 + b6mz4ht/GuQKfpwoIeKM5YShBo5/8QCPyTNZjDXFejPbCIFLZ5Zf59b3UD+LAQ3QUx4WMW4+im+c + L3ifeO9y+d4MFUaaKlHXXZZmeTiFCjczOiK5Pn7A8ls/49O7kMcgRz5/V+P1eot6xFXxuJaCv31I + il7efRpuKwyEMH+eFS20beoUFwg+u7d2BwdONTC6eO0wfcClgJuyFRC4lOkgltaGQHnOVYxR+mn6 + sKpt6O0tB99yUvtvky8mJeQ8QiC/CRgXXve9cjO3b2pv49qnpXnwlPdlPP72eymGxXOCreYl+FDw + wJg2o6oqOUQlDvjNCCbNc1qoL4FOk+7r+hxrqAn3xeWFU9S/Sr6ozjqcQ/9EjwXryvkDj5PyKS8l + vrrv3cAud2LL+41l0UROvUTAAonW1odf1F+OfTmlfBnDkJcsmqmaAzjjrVXgZRop1RLz5bOwEiOQ + pvsjddW4ZYR0zhW0CdTxKd892fQqDFXpiF6hRV4+4Pf5cJkDBR/NCZczTIRWKT/pCWW1aiTClm05 + GO8ljzrbtGbMnFIb8ndJwHgYb4NYX6kMfeVQYifchv50+iym0jnFhmb5RTaW08eWlSjxe2rzr7ZZ + kuZjwoe3NGSS0zRZ8QVCqUMh4uuE82dVQbp83k4lzlGwb3h3tdaS4rrFhnlxhvEOnAgQikRsxPyD + Leb4WmB2Tnqsjs19mH586tlUN+y7q+QGZuZBYxNOv58Tet92EPb4/aZ46N4lywJUgOwkYyTmSllO + yXPhlB//2gv7J1h49RZBY9B7ss2J7nOvg9X+8JmiBKlgcd+BCvvnwUFb5MqATqvlghydx4G6H/xn + 6YEzTLIMY9d9jM18fX4WSDc0pf524I3v+rOC4W3+wzcxz48psMKUo2YH22R67DlO4YMjpaecCD6N + L18V9pItUsvS+JLus3MFoYRiwoojZmTLRA4qD32HnVo3jeW+6TpYE85GQD2XrF/XC9Qd44LVmB/Y + bJu7GPbPxMFunR+HCUtbHc58+6L7eGck38NezsB8EQqsDe+Pv8i8oMPMcSR6kGO34QcvImCbSz5N + xypOhs5vRuUSfJ7Um5g8sPjyVCEv1CnGbtaDST+91b/9cEoCz+C4b3RVzqWU0ls8qeUi7Csie/tp + T7MHz4a5aBUdIjIO9Hi51waDYZop63oh6fQtEhIpzQg1P6Pox3/JcXOoYFifclrWieqvfK+Cp4vY + o20sZMN32I8T5Nn4pL/4y5PP1oHed9mg/RoP503nbSB/Ey4U501cTuwz3iE2M4+wfLdjo2+bCL6F + GuLQfAXl+OFuG9DuNjuyLcbWXyb9eIWLc86wUztyydBH9iBxAxWrWy3yhd3c3sFPX2ADHoz5ci45 + sOIlLofDg01ZeF1kMZ8cmufi0/9b3/OFK6hheW3JPGWTgmtpfrBadFvG3HFKFU4yMS3UlDakf2iB + 8gysN/VHbLCfXoGTFMjU5SV1WHi5d2BNBJswc8sN7OAyG0qynVK9YFM5C95XgN/I4mjgLk7DHWJ1 + PaJ1+NLwsRsMsvJ38Jv/FAWHYX6djDOsHSeitzrXGiYrjAPrfBNoWQGYgbqmdNb3vfBzXM4mSTJI + YddiXc6O/lI8Bgku9PbEpns7smX3du+yex1kquUdM5jT2Bt49K8eNS91wISfPvPo/YimJBfBPHjR + qFg320dwdG7DMh8UCbrc4YSdS0eSMZ21CQrTKSFbU06MObkpE1j1A73Gy+DPmXO34cq/ECu6I1ss + uf78rcdvXebGmIXXCT6un8/ffhcfbnRWtDtEaM475o/H3ThB3bV4fHtMlS/oaZuCQecO1DNfQsk0 + ZwoU3j/kNJ6gMtDMu3Pw27Q1NovWN/g6m2zFeMOIni/2WihxnyOlUSKfnEwuYuzanHVg5I1MQ9VS + S2YyR5VFc3PCoSwbQIiUYZSxVdS44uvcX5za7gD69gk+549y+OkzuPJTMiBrV47vZTnDR9jF1Ltc + tmU/+0MPzRfNkOw+JZ9ikfTyKMKA+lt8KxmM1Ai2yUan/vaMjXm7iJU8yfmHqmowNqxlfQCuTgTw + j58uyYt1kExwLfwNNSCehWsgx+VyoMZcbdjbHF4FXPFnPWJ5Nqb3hK5Q47gjEkzSNq91vOCYnGyK + V70z3eicQlM6H//0C3kvOICHa9FSE+WPkhnP0IG0JxeKtufneqvuy8G9Fd/Ihx86n1niqQZ/6/ny + wWDWz4+zUnTTiR7Ucg+4MQsE+acHN/IhGSaOCLrcPtUzRnJlJDOeq7OiylGO0az7TKgvrxp2kxBg + b6B6+V1yGUqPh8j+/Ac+zuNFMbt+Q17F6VByvKZXkCn3Az6NV9cfgTYhpX/CPb4MiT4svJpH8PqV + Txi7LwRmfptx4O/7Dsk4fF/Z7Qp398VHgtlw//B81dvYLrqBsa0c2cp56XxsDm/Vn+O0E8CPP+cx + SYZnnUkmvJb2B+/dmw+InkcRrM+JilVz55RcfY1H5Vq5OvZcYWNMP7125I8uGWvbGib9ItfACjMO + bdDjaSzs+RKgqCxbBAoiMfLjJzPfvag/1Hu2mOwZ/PQgkbapzhhpKxm06i0l/GPuDXZ9NXf4Ok4D + Pbin9/DSvOOifNxswA56nPwpAjVULP91oXt+mAwWZ7QD3T7tyHZ7jYb5SsIJ6pQNOIy3z4Hl+SWD + 1/0LYvvSro0rztkZfutdQ5ShdRq+aHkdyvNRxW7H/D9/AU4xMsjWGPyVn39MiL6fBJty82wY6m0E + eX+TIX48vwZWat8AoKkycJbvMBMHzbvDtJ1SnAhGm6x6tN/9+NbefHg+v86fYrw3EZHSQACj7dIN + LJ6jhm8rP2iVa+iBjAiEbGdVM4Z1/qBWl1tSrPyOved6xXdTJFNxfw/LOr5wc66vqOdpObCtXJjw + eB1iJM6uaXB1SSbw5xetepjLc9WDl9s1peYkOQblplMHNc7PCJwPB3+63AsZ1E7zxqgIavY1nlMG + ZYow1lHXNZQH9zsE7z1C8nggwyhY5QbA7gqwniR6KbyOcgxt+laxsx1uPjtKaQHAewnJXZ48fyGD + eFd8KOkU1acxmcn71II1vtBg1N8J890whYmiWuSes28zl/ZDVn7xJo2J0nxXvJZjJ2lW/moCbq3q + Cn54qqlR4YvsnXrQgJaK86SkCdtOhPzp4dvlYzFBaiX1L354qaMlc/NZU3iVnlO721j+IuzTEQYS + mLFtEnPgHw4f/PQtvaCGgvF70SNwqSOTtMnxd6Qr6sDKH9Fu1JOSkGF7hxv3alO9qL2S1Zkpw/PE + cdjhr3yzbIVmgSoeTzi+HGE5Pbx+gbtaArgcccOmUuc76NbOG7vDHPrTZKgfpdWcBLvDfW98Uubd + lbcPN6t+HQbyw/+f3na6dvLnjywheLP6nurJSRqYvKszeOI8GzvDwWdMqbgFVjtXXPVRBeZXdqug + k5CW2uOV+YtlhCPou/xO96kzJEt4rTnIesWn4doIcXHuD/Xnb6EbX4fG/J4RB741aMhuTHYJs/T+ + Ls/BpNLIAHbJ9CL600tYsxxjEGF6WuALVg96W/keyfHt/sNXaiVow9iWxf3aeMrGeiwGDbejwwRt + 0vZ/fGbCkqhCFWtn7KsuD+bSUOCfPsWJ1iXf7XySIF9/QuqgiBnLe9kjJfTpHSPje2TMebyLH7+g + 9iXZNxzlQwKnZ+lTZ+VHw+pXAa5LJSQb8rmcIf7akA91gtUkFxkp93UMlRu802wMQ59XbuEdYmgX + aFfbuPne1RjJo/rMCbA0rVz1KlK6WWoRKHbOaqEDCeb5+0i1IUzLWbreJvgq2jN5JSVOlm8RdsB9 + mAfsjskpYeizODDehz7NtrFuzGNuIRjvsY+6lwlKYtxAtPvxy6mYcTOzV1lAtD8K1EfZtmSYGh/4 + vpAjama/YN/M6U14uvA91i+4M5atrMSQLPqLKKihbHrsofDjg+vvbWMQc6UG85oBSJI8BCzOXh1Y + 9wd13axigliiD+Bepwgt21s30OtrqH96AQkrP1/iovTksDEzeik+RrksF1OAPz8tV620nDkBCD/9 + SjbIoom4GY/BT09is4NmMkX2vIGX6P7FN5R+BlafrwXcfLOQhnLoGMvPPzZb8MKrXvIXLG8XCEyH + UgN9Yn/6xbvmzS5InjafkjlXpYLbftNQS0VGwmk+cUBMtifq5x913Z/DAjg11XA+u63fd+bJlla/ + F2XoVpTsNx418ffofWnXK3daZCsrP6HuRKnx2c3jHWyN3KJWanvDZFvXCkiv+Emd1L43V8w7I/TN + isfr+meNqjwC8NNXdlfTstt9S/3Hz+gJ3VAyK2dOhdojf9G9LIuAvdm+Bf7gDFRFrcW48QBSyMXV + TJbR9QdOluwFXN1jQj35WhiL+zZVeKmHC0Urf5nX+Zd5ztqQp7yo4KsFXQ1l8oiwNlZVufgavkNn + l+loefnvgdCdfIY//mj+/Kc8MQQYk1b90wv85XGIf/kE6l/G8zCtfizIFkPEaBIr/8uu01kJYlmm + al6/1obtr+jPT0DVlmMTnTgEGZhkIhTigTHbtG2QitsKa6n+Nvolk1toKEKOptka11rZhw8U33hH + ILq15SclOx3yjdERYY3Xixa4KZTUluJYXj6M1YXEwa5EX5LKzXNlFcxU1u9H3RiY/teTCx3etWhD + K/dRN396/afHPff2ANM+OaXA2aU6rsYEJ3N+MGxotrsXNYqOZwvp1Cs8ra3EzeEaJUxDNAIFVj18 + NmQ5GWXhESj+5zLSn/8hrPsVDqaiISEGxPjNB/jpe5h6uiGMWa+C7nu8UPVBD8kAIzWG53kXYJSk + a1WPlzop+dBUaPMQ1USIjy8EV3+SarPxYJTSgYMw7jiqqZHks5TTZbD5fjtqPOg+Wa7U9uA+LzG2 + xuE7zJZuZYqRP2Tq1M45mWCOCSg664z4y732SfHkCxi10pZI8uvlT0V376A9nwusFscdYEkPNvD1 + +XorfrvJxG6XDqz8CuvuzgOcflnqn57Afg66Zga61IFLVH+xaSpvRptHwv38OHocDjy7kXErA2wx + gLXE3Bvit9zJPz6Ab+peM/jSfkjK6ieRaRDaYeK+xRUK32dDT8N97393veuAmy7sVr0alX14xR+p + eZ9NtI2ne8ko41OQSn2Jr/nzYlDpKZ1BhJM7Elf+K/a3Sw/J93In7HLVkkk5gQ8MulnD+vh8JJPg + Pq+K7LYzNbrv21iu374FaFRSappjA9ikTTEg5CFRd7t3km+cx9Oahi3IZ2Jys8wHXpYXagY0XP3+ + +bkpobzqZyRQaAPhl4/kr5ZNxm3RJlO7mB+Fk4MtLtZ8mJBn1QYkOv8gAjrV/o+Pg2ewf2NDjSUw + hifBU5R6f8DhmJ/BcqXIgSv/QofN1ko4PeNNsAsPFa1WP5PVxSSAV68wNA9vz5/OgqYqqSqHVBUM + lHDOPRRg9CKEWt21AZMsoemnn6g9zKLBKFNSuDhFhvPU8RN+n54I9IiYYXP6SiUbg0MF6ymR0K7o + HozlZzeG5BwVv/wpm5/6t4ajNtC1EY/brH6DCeX9egR6GweGoJSwgFz6etA1f+dPUltxkK/7kFqX + TioZFtarUkn3wHbeu2BJ1yu9snM/YTfRzsmyFCD95S/wxRVSY5Y55c+PJor7JAYtrc0I8aCrBNRO + VM4ciTg4MzHCzuqPf7fL9gq26xHxzB3tZBaP3AL462ThcNVnvCdHqnLxu3DF21vCT4pfQ0KcG414 + adNMd6NJ4Xl/RLQYvo+GzftXCqF6NTFGRttM1/ZzBpuyEyi6lN7AWJ2NyiFMg3/5RLf3P1CYzRjb + s7o1qMxHgjLuSoUI+UX2hyN8SgoeTie86t1kPmp1D6cdPOD80p8MStpUgkrozTQoyt74879X/EVs + wEeDbqduhKufgP3x7gLRaRAEqx+A/aG/+kseGxXk0sBZ9d/V/zyBLijvuufpermiXC65N8K1dhmB + ZqMy/rV27lDlOKeeLIdg8pSHp7yve0K1S6UO84hqBDPHk1BlNncwAa8M4KGORyT99EKkFfYPryk2 + r5dkwUs1/V9HCsT/PlLwOpch1eHVTLiAexA5qzuMNvG3bJhUdTI87y5Hau76tRe1Z3WKAf0IvbKv + xbjqeZAVCKUDYd35XS78dC/g6fnyiaB0XsIha+Ig3pgJzlGZMO6eTRIEI5qoGnEXn1XR4igTpxfY + 8GPiL33eQXizpzvZmofHQMfLcYRE2Sm49F7CMHmP4AzN17aiWrvZlTPxHpPyCMuRovV9yc57nqHn + ejO2hbWw/qEWrnAbOj62zOczYdE3zRS5fGBsVpgDgzWdzqCEM0BAtO8Ge96XTtEl7oNE9bCmfF6b + M8AaaWmVcxTQm6rLENo77ve88pPkVwcsRWUjiecsn99JDQdpPCc4i8kD8M4uEhSrt070Mu6fCa0+ + eQwd6RYh6bk82beIqQp3BXpjFPC88WLzWYCfzeNAy4swDBOsn70yi+mGZrfDbu0tq21g5GCGgCO5 + BqfXia5MnFrQc3XaNt/euCEQOSwno/HOBy7aPoW1MBkj7Pxo/LlhQg1fm3GDdTFCjN+LegsTVHlo + 60vHYfbFzxksfk+xCZOkFBbkxVBpNxEOods2rNUnqPSnbbdyAsfnvkWUKa1h38mUICeZHzZnKxCm + X5qR/FiK+XtbwXqLjkQ8zPUglPCz3joVzti/GFopDsu7glL/iagLamFYDp+yh1YgzNjJb6nBzcXk + KYJvlNgo07DkmCX30JnvZxpFWswW7SKZMHQUk1q3+FgKz7L5QHfuczKItuovz3LoIe/trjS51zqY + 38A1QZHuPlSN1giTyt2ojK3p0Fyvvw271G4A0zg94uO43/rsAI8O8F90S/f+VIMFiJSDqnpf6H4e + e3+SjmWsHLvghrPAvzScD7cTnJ3UpVdbIcnC9tsUPrzQwHjLn5MlfAMB0Jdl4iq26lKQS+4KSaQe + 6M08aAM3ZW8Z7nnnQ4vHewTzUZYiEM2FTOaueiTLEas2FPbcQg8nixlko/YynCszw8GFpw190KSD + EMqH3/j5yy5gHyVyQkZDR5iNGQRuAK3HuCfzVTkNzKg4U4FmRHF+i5RkSY57WTl89Iq6dVkaArwX + G7g5pCo2XfUGphfFBYidyzeM0sQEE0hGAX6yS0IL2GNjihawWmZHlXpVLQ3zi7umYJLLD3bmmhnT + VbjD9cYPxgH07gNXNv4HJtPwpoHxFpv+WxQpPCruEZ/4T+QLY2FP4J04X3wwo/ewpKfxDL37O8Am + PvvGMnzPNYQpl1CD3qyGodCsFOmm1WTX8t0wn1I+Vtq8OFA3YvtSjMM2BtvhVVE8c2c2c1X0UbbD + s8LW8YzYZLSPWKGNXOLg2u8Y64fNCC9nIad7ofdLod+4C5TM7IbNXa8nPHxxLdgZsoQNuXIGXvQf + Z5jXY0DP+IuAMMIygyRBMrY0LDQL/S4ZyOoWU+tdIX/E6dxDhsoZ8WJnN9MgqWflYUQhTuSqH+Zt + bmXKcdo1+ISJx956hDfAvtQxmfpj6/NP+RErNq9+CbCGJOEZozVUt48OY1ulBnutFtwvvpziUwmW + 6Ln14BqP8Alez/5iibwqy2WDqdtXZ8BXnzunKKx8UEe6CT5b45VyUvZPxB8ORzAZG7uAVsDNOC4O + I5uGOznv7Pbi4v2pWFPwrxjCZAQl6o20ZGOc+AE0AX3TAFitP/X5dFe0A0qoesK9z2azOCtqsLR/ + 8ZSdSLmBhgRfNMfoaohga+lw/FzO1DznxF+yqypDDjWE+t4ra7hxViop+I4VTQ/xASytl7bgKgQQ + r/OdiJIKarhNPx15jJeHMbdW2ENfStYHSPzAkHqQlXW+kLxbQkNU79PaK23YYKtCBRAHrU4hNL4+ + PSix13yjvWHDZjMRXCVDxt4fT4PKY0h9fFw+RkL46X4Gt9BfqHseQsCdmCyDRbwCHK43lyZ4ZLbi + 8NGLpmUyl0tyxDLYR8mRBu17Nzznz66Hp86h2LkmG2OuxLKAkzg96eX7PQE6oEqCm0WRicjlJ2Nt + vdxDLT3DlUK/y6W53TOlmKiAdt/i6gtPNJsK2VweZMIWTritdAiUK1MTanfTw2csRBGgr71JFPS8 + DotcchXkOfOJNXhTS0EiOwiZaKREuiYbf7ne1Fox2o+ALffRD8vh8jahf2cuRqPtrvEDS3AMdBer + kbaAdb9vlHjeR9j0D7GxxLu0gnOihTiOo6/BDvTTKrFJ72tPzFPDb8BBUn7xL/Lc0X854FLDr9/V + VJ0kMCxmDwMYfuwAp/W+THjnGERwSIoXLm6zbcwLdEbo3KFA8zSRB8bae6T43+6GD3XSl6Kt9XdY + 73KelsFNKadyX0RKcbwgnBVdPzy4qviAffDY06p9nxpBDd76zvlOAZKc+lAKZbav4WsGPWFzPpaT + KB46eNuedYpJaA/z+XRaIDSoT9f41sz3YbUswajjSoCDv/Qbd4KF5l8QG7JxmPLjHEGpPBxx7PoR + 4Cnbj8pSXG1qRcelWTQ7M5XHkugUTbguR3LdbuDBySccjvtnuehgRyBIx+yPz8xT3xSKnHanNf4Q + RuNZEpSSIZXa73Lxezf2W7jspZp6Lt8nDM0HVQG5tMXoGKk/fEDg4kUMX/jg0dBJ9xyogV1Gg4v+ + LCe2U3XQuOCELf6YJl/NvWcKml0V6+XaCOCSqGflQrqWHFFnAoHKrQyHjfUh8z7tjLWDV6EIU3VE + 7BKk/nh59c4Pv6jXK8YwW57qKFdCHlj3K8OY1dTsFXGM7xhFG+TziVBO8CYpGwSHbW/MtV+08ChM + BpLTZSg/yibuoMxeCC0bUwJDNX5rIAtMRIKVs2apL7EN77s9oKG/b5Lx/twRpRLqjmxsBZWCMvcq + PCLnjt2q4Zq5sLhK2RwylV6SzxnMl+PFhPql0wnH39ySBfe18YGhT0iKm4j1l9fdg7mm3XGQa1az + pF0GJbDPS/QO09swf20rgvTuIBxLwZKw40PrFHkqnvhSuvUwESPo4IISDmXbYAPW9xsBK6eRGlnx + 8ZfHWhgyPN17mrFqbqb8uItgFBcWNZPGNJbEG1p4OeAPNY/lh5Gi20xgANcn2WntUs7Zs71D41GF + uMK1wpZDb53hJ7I1srtNH58In8sVDjpvUFx9tyWNN80ZfrOko57XLw2T00hQYt0usXf+HMC0vCQI + lJ5c0HbFG6p+h/QXn2j2jHc/Pr+B7sNk2Bafn4F2jcopgPkvqr4P+1I8TnqhqGq9EFCDF1jAh48B + 1UNK92LJD6w3iglW9iZEu/I1G195PxK4GW63tTC5vx7h5SCcxFBDj5UfzIvDMphPzx32v9JnrVKy + VnXa7QE2HDQPyzq/MmmWK9WYc2CzKe104M/pF98wapMFkyhVsukGaSiSXflVLCGGN54d0WXwNTDf + zScHHfDeYXPTPpsFSbCH6/xSfVurjKfBpCrt8tmRuU8dQ5yTEwJ8EZ8IZF1VskMtqeBWGw7Jg7Er + p4f2daA/Swca98nos4ZNNjwoy5uqV99PRD0EEYS0ycjG5o7Jku1gBEoiIZq1NwRm5VLEcLs/DFRT + 4k9DxXnpYRAda3Lvj6bP6cd7pfDsoeHzewrZYlXaBx6O44Ar1lXJ27H9CmyZtR4RwrPBiPLs5Md5 + etFj0+4Toc2xB4DpLFS/QqVZ4Neo4UI3d6whIJfzc19K4IffxsuUh0XfDRUshC7DZhdxJUkVCUIi + 3gckWeJ9PZBw/xtP6r13HVjY6MuwS9Iz1qUgTr4lH3owf8o8Pdu3UzO6hjcBuZc8Gu/Ajc3fI7L/ + 5uNO2c34zp+5h1rvuvj4fu59PpI8BB/u+0b3cRuAiV8UE56VsKY3eSf65CyFHPQeaMK//c/a65jB + 2PzeaZFkwJjl7Fn/9jPWivLB5vA42tA0hoH60qZjc1bMEE7yFqFFWRstFOrzDvWnecFZeyPgaz5y + FRziu46RhVSw6pUP5JqTifikdvxx1q4erIerQ7WuepTM2e0jeNKSM6mH3Fkt11SHQnHOqLd9yAPj + zSmAuXLCVOW1tGGudz1DyJKW2vveYpN+NxdYCG2GdXDag9laiA273H4h+TPO/mS07whAM6bUTdai + JJao6ODwUSsaPpSxYWnsLHC4fU5kcfWcMbDEV7B52iF1n/MbfEUOZ4CTjzI2lP2p+RY7l4P4/j3h + Pcl25SQmlgqr5+mK+P5tAHHVUz88JItWNsNsLZ0NlfQ80nV9NKN73Xiwzp2cnlvtXk6fw7cDygEZ + VLOMBMyTmQngx3cxr0XN3BWfjeK2SUU66bM3OLmfWrhZtjKSNyQqZxBowe5UFzWO3NBhgnliZ6U3 + 1AnVhnfwxdGQWsjtWwmnh3hmZN66Z8j5ufWnP7knM01oqUaJ7W7SfGajxIT95+GRaaun/nQxkg7q + yfZIjTL9lmSnLBO8Dwhh39V0Qzx+ofdv/IbcGaY3GySw8hFaRJyRzLUftdBryxOalKQb2LBNdZAW + 9IU9a6Tr93+2CmPcQEZH/Bpz9hxr+NiFErq/TvdmzI9zDKyH01DEbzCYItSNoAg3DCPN2gMmJLMK + tfz5xF4KzJJM7nprftMc/vQVDXbUhqf6XNOgVHr2w3tA/ViimnC9D1MdPTfK9hl4OD6Z4j+93Oiw + oTjgTgZ7po7+Tw+r1ZgM8TxxMNbN8odvw/JEs62k8jnB4fJWfMKf7AIkpnih/vnNM7Zt5ivchCrC + ehyFBrUCk1PUMHWodRlVxiXKtvjjj6ZiX5rJ4VwZtvn5QFgRTWzYbkcO0EYqcVH2ocFvT2ULb9dI + xreRbhrGHz4LeGztgqJz0JQs2L1MxbOgQ01X3TJ6vwY1WPcvxiO9NgTeo83u23wea3wdypc4Lx+4 + 6gUCcHMCzJSVEbp4+yG8VeBherLAhNwdldjIfa5c9VAEKdYsap9qny3gEDmK2ncTNg5JCAQZuzKU + ve1AbeM2svnqTQs4efIeh9oOGQu/fSCw+jnYTgpmMNyLAsiVEmMtCYNk/D496ef/YMt4a2DZzWqg + GEErYmP7MMGSHykBXCm9sdW/G7DQ/a3eGcaDrPxQL9nr/OoV+xHfKeokBsZO7FtIFKBQP9+0bBaL + BCo7jyfkt76W8vuolXX9UuN2sZPpwLs1vBwYogYofCCep08A/RMX49tPLxXxvYOrvsGhSE4JCYXu + DDv+IeFTCtWEawhtwQdtJATW+V+qzdTCd+J9ifR4B2Ay2VrrgF5cHJSKAzjPWvkn819E6Ps9+Cxv + pYeyKgTYCQYvWd5qYcLf+sxPRcYm9GgDyJgw0H1zypLvew/Ij/8TZY3nc/9eVAC2GwUHb3IEc5Ug + Acppe8LndBmS6fs6eTCL9QHNXaUlLLqWNcxN9sXWHJTJAsQXpyTF84N/epX84rF4BU/0e79fPAHp + sd5QvEv0gTvhLoPb/sywZ99OA6NbJsD7hU+wawlm8j2lSvTDP2pIvlAuBE8j3IyagZ4//V8tZgU1 + I+GQKLakmZvzqfjjq5x33bP57EUQslu9I/yqL/ltbqVw1y8h1bB4GSbcLNWfvjJCLwUC2G1saGzz + HXUm6oBxP7Neude+RaDgqowfDVGHqTbNOJ3DPBH27fYOw8D/4t965tlZL+DpIGzQtPqza3xu/+LB + pXT1YQlezxb6G8eg1R68m+m+zQRlbtoZn/OtypbC9wsoQsGkfqu2yaQUWqawu3mlp41klfNYHnRQ + eY5AnY9Y+8voVwhKQqPg0JfDZjyY3hkKZu/SUtx5pfiAyIFrPKfmEIgNTYentJYsbCmOvD3gktkU + lAXxBZHXz+9WfQrGQHWp10gvf8rrhlPWv8fW9TYY752VXSF2hjN5OCe9WW5ES6Fv3R/0GvkNG4Ol + vEIr6rZIkD4vYzRDHIG0s2sEm/ZiTOcvhXKXZGeKbI4vqfptMrjEz47uV7/46+wiDriW4OOV3yYT + uYobGJ+MAxKcr56IrS5t4O1cf4kyCwsjCfgQ4AImrPrr7s+VmJxhJFcGzZ0mTHgzHa+g4xuJxNmp + Myas3Loff8DhwWn8r89XDojis0XxCZtG76iwhpunGdLKMXUwNbbW//CPIlsbDDHzeQ42+qahdkwe + 7KfX4IovODFU6M+CfI4gu9tX6r5lfY0X5QbeF/LGgWPWjJyq83WtKvEiivOV/OkkuB6sz/lP/+ml + MPtQhVO8i8iWVxibQqNuQXTsCA2B2RuMw9UdmJeowHl/XcAwHfQNVLdNh3YyHRPqH1wPoNPnSU3+ + 9k4Ww1s6+J5fGwRfAvapIdEKGG6B6PFL7v50YrIEBlsbaZh8ZEbxYJt/fmX5te7NLLiJA7ixCvH+ + MOvDxG63BazxhJYNif3FFVAL7/lVo66eV8Mk9MUEZfjJqY72qSEe4MWB5HYd0RJHoc/5TfyBnaXc + qJ+MC+u/r4MHOcep6A3OFzCnUq0Cx61Kahdd37CPYk1AVrmArnrWZ+1wlaB9ucdrPiNrFnY7ZArZ + 3B4YCbNsLDfirimxe01N6MnlmHZ9/fNfkGgc16ozY2+D96u64lyYzVK4K54H43fH01W/+8zengO4 + 5iuwJh48xq98GQjss6H71d8mtuzHcPXrsYfktlmEz7GCgShC9Nw072a5K7onjxgtdK9Ro3yZxPCU + U+dRajfnpZxea4PqfDfoGF0+m2aNrxxU2OmB1TQx2aS0QII7dcRUVUEGZnR2ul/8pdkf3lVWBA/O + cUI7S2jLac03gQm9rtjA7d2YuIkI4B4eKMWaObCp3W4+cGEjIVvZDsA0L8cYPF93hDNAmmaOn8H4 + Wx9kI+8dICpxfQbdq/dXfm8kAho9G1rJ3P/xkbnkQ2fXZ5NCDSGhQ/tVhQzEWi1iI9HLckpZYiqx + kuuIw+fBmJ14owN8pydEV/4w6CGLoBW1W6oHRTeQVnlspKvdN6tfdzUG+atAOR7Z9c9PWRLnmCnB + fWfT/avGyRr/ieKdyJGip9uVy6fyK9Au+yOSp1YE87W9yBCPWx/bkK0XeeoI/fxc6sHLxniv/B7c + lnbEVfMV/KnNI6IohbMjk5s92KxHGMoyMz5oO9LrMK/+GNgJb5n62/tmIKNrQZB2Zo0P4fHJWHTo + /+IR1quzxcT9B1VwHU2yJFt5+D0frnhIk9WvWhJQjzCsvgfqqEtrjIPkFPDJl4DA0dFK0dntY8ij + 97Dqw3M5Yx5swIofCI5gGJbSrSDULpWFcr0Oh9lqvjEsdtOWyNN3Yu9hoTJ42FeBat9oSFY+RsCZ + 2Qb13/QAqOjnHBh8OUBikovGYoYqJ//mi543c7O8Q+/zl0/xwo2WtBfuPIJcRh32yXokat5qhSIU + RUaqEfgNjzrmKWudFBxJuZHw7XC/woPcqj++OBA1eOhKVSMeayk8+7P0HnTImmSPzXdn+EJ0ClqQ + Ir3B/pqPYzf94MBv5dg0s/KkmeARmOCXL3JPkjHMbh7flaLTF7KTaZCIqnyR4R40kMhX5gF2Wo/k + wVRIyGOdn3GQ1qof2v6L3a5NDUHt07PC04Wtenkp514YW+hfdEDDzOwSZkj0CgFzX4iyWGesrh+6 + ElpIXP1CK1m0T93D1U/EK79jfCUmhcLLN5FqnHlMyDSprbLrp5CGmm0A7rRWGYAH28a2PuoDt/JD + IF53T2xo532z8FNfQGttBa5dld3QXq0Hp6z4RGAI3yUVkp0Kqzrgf3rCX/19CPzMtHA4b31GxbAz + wY+fHd8VMShjDxN+xTPBWrODgPkXMEIsZzYNJXZkXN8ONuxAUdCb6jiNeF6mCt7y1Pzz81is7gjg + x87DTrw2gR4Le4EGj840HGU6jEqhpYoJDyG+jjvW0Lp+67DfcICsdcSM6WDqZ0WiL/vHL37jpyrn + +n5DSq6+m1l6VROMtfv/SLuSbWVhbP1ADqSTJEP6HoKAqDNARUBEugB5+lqcv4b3jmp41nHZhOyv + S7LD4/PTIfFyWo0OyqfwTIrDKMTbXNQh7Az/ju3XvsX3e5oiERf5F2PWsQd24RsP7PkQ1u+1CZbX + ++FBKFUVtvb1M7qW6oaW9vcg12Gw4tFcQQcHfrwRLM8PdRkrpoP7+BM9aBswHZ1oQ6eLJJF0z9fo + Z5ocYHv+g2ifh+PyoWgIMIO/AzFvH2/4l1eHuuoQZc9Ttlt72P6nLQXC/72lgMHuRpTbldDFHqUO + jQr4BsxrDdU1vF8rOMiWhf0DbesVj5cK9RI9YaldqnobX0yGYARcYldocruXwhRImA4G9sqNo8u9 + 2RsbrgaLAxt5Ki8ojxKey42bl/SlAf4bNgV0uMM1uLKFmG9y/pTABWFj/tHjpx49arRwb8aBH9M6 + u7RsnRRSM0Rk/z7DWtUThKg3bkQV8pEuqg2fsIv1EQfeyrjUFGQDqfphwCZbZDFbF1yP+vYbEjnd + 3u5ELlKGXFtmsf6K13q+NEmFDrDSsSOF9cC/TlIKzLsvkmg8uO5kvSUHBgK/YM11GLqCS6fAk/Yw + ZiEly7DJkmPB/pnlWDrAcmCKYT7A1xSy5OlXAaDhaemhfjPuJKhsx12md8jA5qaesYcIrglDLA52 + 2vomYYhIvubJdUEEiDUJ9/dbk8cMgbDIH+LRVKOM1n9ndI6KgTzM6zFfb/eyAukhRNhZHoXLP5Q2 + QLIzAKI4dyXfqd5BRb9bkE2p3P5G8hBU/jxj72MlOadMngGtWxDPzeN5BNuR9AHcx2/mn1dmGDWc + M/B9BdcAqkmbb4IuOcg8iRbx1Q3W9KhfFHhvA5U8pPo6MEdJFdA7sTR8biPN5a5BqaDBRAbGJuLB + VnwTCfLpciIZce1hCX7lgqDZD1j5qD3lEHev4AiWH05Dw3XZiE9CkIfMhzwuzkbX37UM4QdVP+xs + i5dz2mFzoPVrbIK/vqzSu/Mp4Pj5xSRn+WXYOOOmwZ+i6cS8JWa9zK3goaKOIpLK1wr8okFvAcFH + FusnlLlcov5COF2uSSDizKIz+64hvKSjSfzNHIbVDhwHTY7GYMVQG8oiIHaQHwVM7t6vihdr5i34 + 8bkOy9XjoFLL+4wwHH8xfii67/J+VXvQPfAesZmLGpOuikpU9HpIkok8ajpmeQTdtr8RLUrEfCrt + XoHRm5nIOZWNnPu9tRSOwnzAMmATt48PNge+ecBhj0jfnB48L4UPrbdm5nL71NR1LwtMapgTpYxC + dRxwtSAXrG8cvtITpdZ63xAvWORvPCiTO3QGlJ7iQKhzd1ja5zkFj5f4JY4t0HxRU9VBhyW+E/uX + 8oBsjWLAO7h4RFL2xkmG1VRAEpoHvp7kh7q+lW1E0ePuBuztZQP+Eo0zjH+kItbDymMiFU0AlNJO + 8L3Bx2FxDa8Dv3UxcH5eonjJr0oG9NzRiJcDuWYqnwZokPklOCL+N6yv29dD/u817/P3BRpZMFIU + C+pE8KilOc9f8gqMZ38jphsFgM5xfUCLlOj4Kp20mCGxGMCy81OccRfi/qzfU4KnYhCJbVY2YIJf + t4jHjAuxPDRcTKPjTQL30piw5p39nCd3NYX2cO0I5ibNZQ6xLYBPKj+IWfa6yhXBoYdZxN2xfddF + dwH1VTn9vV47SHlMPeE1QyWgD6z87lZOxURt0U25lThOkqBeRfueglvKyUR2+BKwQcs5KByHeK+/ + omYcb9/VenPd2ZZ7jtLF0BN43pwR5/PkumwfkydU+5uHrw+9ytfX6rVwDsCB2EfbddlCzxrAjvyR + yPpiDbyWNAeURO0HSyhz3XXHS2jfQwfn3lNymUcnPKEyZhIO5O88ULHMIsgAoySqxgwDMbb3iPT2 + 1hCXvxsuo6JphD6/nohpqTZYmOaWwsccbNhJDM3liuMpg6ydDcQ5iWfKYGI5sHulN+xxjgcWkJw5 + iP3zOWAUtag5231VIhMUDgk7Suh4lFQRcvL5HXCUd2vmUp5bxBoXCStb+IhJw5UFgo9NDgSPfwzb + T1+eaK/3gJ/4a80fH2IGs7fV4GzHT8aK6/DkxeFMLk3muPRkMgK8S9mIfTmJ8m57kwL6Y33HZlow + OTln9QGWBeTmdSp+w3oIXyHElmXh1I5qdWHGNoBT/uyJdqYKXRrG54A932NyOSFRHV/froKCHwsB + +24Vla2sTIOXuC/mbSvLYS1RHgFZ5RCRnEYbfjWbSLBM+ZKY18MPbG90rpBexkHwdd6Mu43mVYKv + xmTmcVWTmsed0qAXvXnYk/R3vl0dEgB2Q2mAfBwN28l/SuDtdfzM+VQc1vBxS+B7TASy8+NA74fn + DA/nYxBwPs2G9dpNI7y3noqvH7eol29LPKiX5yAoK1Ds+O+KcC7KN478w0ddD3JmgGNxmvHzeIZ0 + lSadQe8MKVjxfSfmfCaXoOrRv1O+JaBxDPvTepDOwbR8UnfZ3uQpgtmQ8NkTA5W//UQLpuSwYePz + A+60mu8F7q8nl7CxB86V1xEdgX/C8c53PJY6BWhVrJBHbH4GBhbfEYWMVeLE/EQunV9iD8fr1SJK + xu6n/GX5hpC7+Nh9DNFA27p/ns6m52LbSc+AwQc9gfCxyCTIgh/99UJegekouvNUJrd4We/nFm12 + tGLrXgvDWtqVhMo5HbF2n2t34ZxBAhK8LDinx0fOZOdBQhX7bYicx0K99Ijp0OnCQBK4rx1yailD + xDA9bJ7kh7usnzIEzqd548QFeJiNj8agVj64ZD/hnlPdZ3sUH2yVqK0p09XObgxkt2M6H2atzyc2 + ICN8b8XehSus4u339hIRfiCHi4efuFOevBYoeG04w3e9Dj8rORVQD8AVa7+jRDk97ELQZtYRZ9qa + u+vz9axgyDglNs1pdMdVggGsu0tIAvCW1FFYUAd2vUU8sirugqv1CYN2i2Zuvb9zmhd5CS9K1GJt + Imj4HeRIQ/5yAAG8dOecqX5Yg5Mp20Q9ed96aXUA4eVR69hnAB2W1I9bqEnAw4ZsvuoVkRqCXU/s + fBXHdJjuEbxfapaY9al3Z+PGOYhDQRBctJ+dc7SiAkzHk4mN7MXWm72oDXLEqSd3aVbcNctNDdp9 + JxE1rumwecBJIGFXn6ji6apugcV3IDFTHZt9xIDRfVYSyPdDsJba94DWq6xBrctuOPCkU7y0fSmB + zocVfvav77DXTwCH78/E/vB8DBTjKYAsJ8uzaGpuzgtBE8BI964kPGlTve8sbU6LrE7EMeKlJmb8 + kODieDN5eE8eLNfZ4MB6bxdiuR/XZbmxKeBry4+B0FSNuvrRvYV/+sdOGmXgP9d8g7TkOxKgZsrJ + n/7Yri0Mkj8/cF4ZEdm++sDB0VDoDPhfAV8X+iPa6VXT6XGVOuSM9xfJQ1UBPLPyKdyOhjWj/KGq + pBreI4oJI5D85Vsut6WTB9a01ufN4kew3sV4AcfgUxO70T7DuEV9CMWYt7DTCad4mq11RskxEPfx + u+f0ZekNfLKZNB+1eQPr/c3dQCtDF9/PIBm25nqp9ja78Z/+clfp9o7gkcnAzDaZoy6XsQshQDrF + yf30UHd8G2GXulfiR2kP6NKvGdzfL+hvXzDMuuAwcPGjO9Hsxyde85PLgQ1nJpGk8VzTS9SMMIuY + e0D9cr+Y6YUbIHfhM+DEkMuns5MlUARJQnD2bt3NjAIGnMTwQZ5azv3p3w3t/oE4nqtSJr3vV5SC + TcHyz/DU7/Fcz/Cf3g+kKR+DR2ZAJ0tk8kxGJt74r5sCwa4+xN4eocuMcByhhEmGrV2/kf57EuEC + DxnWOI6l01rtpwp+yQXLz+kdb7/TbxZdQQp2/Ynq1fqlCvieE588cKVQ7jGCDO54hJ/Rz3TZ6TkH + YvvJX8EWh3xOY6Eckefo4x+e5ysTdSXc9STOZE/I15bRtL/6INiVa3cVPZOD0TClxE0NQpddBqCD + vd3JjVG+KineogAN+G2IS4+PeG6rIoI7/pLgaFRg/z0C7G0o/vEJWI5e1gCf187z8vg5OaujAf7x + MXk8z4M6/+G5d8+03e8w8ZKdBwUGUbKS1Kdivf7cc/uHn9itNgeQvOsD6L2bE/Ei5hevf/remi5F + INzr27AJZSKB7n3nsZnX+0VSreCBSuX0Ha/WnCbSrvcG1Z9hlYz5pNSlghrMFcQpvWdO4zGS0D4/ + g6VTWHXXCxGAzpzOzDv+AErPngYYwkgkTw1MKc6BCIfXMyJBMiYx1SYnAX94JYtWMyyf2+kAZzlS + gmZUZvefX0z69U58dpzjBfl9CYJN2WZxiRR1g8vmwG4ZMTnftHgYTuT63G+a74kPApVu9n4xQaG2 + Z+yBsYo3eOQTOJUfJqDZFQw0ZxYBRc6lDE5MifI/P4vGVZCIVI98TtV8f16v7EiM9S7nhD6iDSXF + KyDy4am4TKFpNwgPbj+v25wDCsU0gPn1V2NpvEX1yH0OItr18by8jyZd2HOUQnGz4/mIq2yYH+U4 + C3z4q3HE1BPdvubOj/uSDX9LzIG1fqkE49UjON35YD7WeQU588bjO9y77E3oZMGmPq/Yh2WaU5We + Omhy3GOmasSC+bVFG6oK5UQctmHiHY+9P3+DdV70KHfW1gDZwsHFThQslBSz3UBKQUzcZ+HHW+FZ + FrBPAw0Y+/HJpzSRHfGZkC04aHk60BMNQyTGrBVwn+dbXf7qGVlzRXxFn9zlGokQIr3j9//LKvls + 3x46aL0E8BzFoPMb+SYiNhFmpqgGlQpfu4HZIPtYF+eELmagivuWJSHgQeLnv/BxS4EbBTwxz47i + UnCvDuhJwt+Of8ilVxfd4Be2I3G3aKI0A2WA9vmIjaVr6+3gcNafnsQeTRs6Ir+v/t4fOzs/TYfw + GkHf1nTyQkYA1j7+PqEpywZW2KSr511fwpc6uthcQEU3q288dO1BjA3nuNXdI8wN8V99JEbjbkM7 + zEC9SylOYOxSNjW3Anpz7WMZwrFe5fMKAfgeeuJSRs2X/NBA9MeH5vVg07khogjhwe6DLjm38fY1 + rRtkvWdKbE6JQM/TSAIGu7Rk/33DGNmeBYKyg7teegNa2I8Sbkl9xvaVfoet6vMSmMtkEnc4qSpv + R74Gm3MQY0+p3YExZRRABJ4BUTdFUbeVPYnQv2ZhsE1EB5uPWwhvSlZite/uMW1OKfzjZ4zNQsrJ + 62QlsLv7SnD8+m93myQywmWRDOJcKB3on7/Y8Q37y4dT+9OH3uAQumBG6rcaRufudEirzgqJ2k+Z + b+j8eYpO13nkWls4Xi7lvYGJcRUCkVGedEsfUwAloX0Q2WrCYWaY9wHODUmJ7j7OLndV9q0COrfi + oDhfXZrVCgf+/OhD3eAw04qKEDzXDt98s6RbJ90N+Dff6ewX6hZSV4Mp8KNgId/rQBFtBaipBx5L + xlEG7J++tMrcInZh63GXb2koGjYrYPe8bDE99rYGd/z75xfo6jYzWIM0JDp3u8YrFpoA5kqVzWtQ + qDXPv3sPylzzw/mR1MOWPJEDWfs24Ps7v9ZrZUUGSlu6BgfqKjV3jg/Zn77CphvNlA4JFRBQ3zYx + DZerKe6cFmazJszbR+3B+sueC3jEA9j96QrWN1dDqE+4wkEQ28MYYvCEfLy3nbBf/rDcb1GCADLp + LGorcP/h2/X+fhBJBVy9xcZ1gScxehCNtY2YffeXEFS0NLCu/ex4tbOQQZlWBljzlU5dDrEswCz9 + jFi/DDJdv1OyoFnkRhzEnxxwlir36O31PPGHuQQL9+EEFFdiEzC/wFB552gqgD+E+r88hWWMM4MU + mbWx73p6zNeSkcDGGPJ5uccjWLzrNqLhVUTkLFpavTJRWQLo5of55YRdTNfj5YAENcfYf+vU3Rb4 + 9mBSigvRE/GrrkrdKVCubIvYCxDr2TPvBoyvnRbwifgEG8P8DvBoLh9sceU5HtvpWf3lEQH9jdrA + 1NVr+ZuvREdVQZdYSTjw9cQhQLv+2d52FyHrYnUByv0XXb5HrYH/6hlsA1i+10pCtwE5c5uHYfzH + 7+Btf71ZYElaEyg+A3HR9BuJ1CWJp0mNUuhw8IrtyovirbUPAlSbkCM7v9br8LlUYMcT4ntPng7H + 8zCDzUsL4rm9un9eL4HaGnAA6fv5p4d7xEq4DxYl+O74LLdgWDh79zePeqlNVYDdHSvYyx2DrhFf + RFCTTh5xtBWolP7eTzC/h2EmxHrHpNGnGWZyUWNvZXC+CYmeAI32ArF8swRj76gZXMc+J3955L/6 + cadXShyTbVXWeF5D+E4cjZiZzKtERtfnn77H7pGoA89haMGkFBbi4KwD//KeilYG3vPjeIl/xwwM + xe0bfLvlla9/fruMDR/r/ePqbr8plyACRfCX56hcor4jqNfp6b/+4Hd0uJNSe0dcwEMCqC63EOzP + B/v093Y/TvyroPgg64w+eVivatgrcGXYkARTjIfFPbECvIOrRwykHfLpHq0ebNprMVPscyp5fqMQ + iThvsZbn29ApxVbAxiYGVoTTkPdK0s7AEr6QOLcvqOf0sfP575gS8+MWA43NzwG2Vz2ZxZb1VPYU + HS34iA5xQOjvBnjMnCOYvZ2GGKkYUdo8VQ1cPlJEHrDk8unyY3vQ58kSAPmV1LT2HsofHs58eP/+ + zdfwnx6JT6iK6dKfbtBqq2fAT2mpLlY8hGAQx22Gex6/rY+igs0vNwMYvk/qtLCgB16a3rF+kvWc + fd2+ATTvWJy3rJdUSjzYwUGct7k+ISVmXgqz6zlFCUB45IfexzMEgcAuWEpfDRg74RKCc8289/lh + uFupWSKcRWYkl3dbqStL4w1VKqMT89Ge6NAveIHmQkwsBfY3Xm7fa4k4OX4H7G+EMe1Qe4OMgp/E + nyQar62UceB39QNy0TNN5aS5kCB5tDcsRf0T0OQgaeCvPuimVCqtV9uAotV0JPv9GHW7pUiEYftG + xJ2nQSUN1xVwtQLxn17YzmO8wMofZxLs6ys8+Kz933z909/x4tyVDiRalAXdKMg1BZuUQs8xR+Ka + 1+9A+UtciXte/Ocv82XnH5SOwJxXKaDqtv7qAJ4Y1ySK3X3rnY9n8XrCz/m9+8ktu3wgGNDyIM5F + EcD4Lk8B3P0efnzycFis13pA+/oW8dh7pG7T2hfgfTbuxNrAPIzO55ycdv2169sv2POMw1/9Yg/u + C507P4E1fevEadlRXT9xyPzLu/zzJ3SZSh4ruPMZMTS3p5sUWw78y/fix6rlS/y1BFg8uYVY0/2k + zun5WQJDlUSc7P5v1l9TAfb8ZP52yzGmAhcssDlWjxlMcMmpnyYV3MeDGKwo0OljOhbMP8eZmJBT + 1c12X+U/fBI74Z5vJS868OsJA5ZshajzwTk4f3l9wO7zlftbf9nXz4LTzvfUfsYb2H/vfPyFQTyV + KI6g0/Ue0f78Z3kRRrDnof/0yLjnsbD4qp9gGYxS3dcLPJCq6b5rzPQpfQGOA2quM/N2qb90vfln + Bp1QYs3Mnx86+uWCHkG1BsfT21O5cXSNf3l/NPphzLvwVgG3fCtYtXf4FTJRhJFzLfGOF0PPSMuM + itL74uuUlu5GzU46ed8ZYydejPhfve/4RWRTEeky9FwHXjTzZqH/rOr8+akN8q+3kBSGNcebDfdG + 931xmLcDFOI1y7EG/tYz2BMSXfKOtRTu9YWVZwbp8ijeG5pOC4uTYVzy7XFStP3I6EaUUI7ifvdD + f/yKHa2V1W3XA3BVzAYbt61VacniEo6P5xNjWXQotz6SErVxIpPLPr5Lv04QvoT6MtNoE8CCiWWJ + lDscsB+b+jD/+aWjNopYOUjqMInN5EGbFUvsEKjFHGzqAnn3m0buV8Wjy8EAHtzXc4I1+D4GejwP + 4z++8K/dQ522wth1wtT/yw/H+CsJyPw8vzOvPU2XWX1FQNL2MIm8zTnlprV6olWELbnueLR8j14D + NgMbxDNOtsrt+AU+PtPteiRW100SC/DGY0WMrxvWMxiiBR2W8x0/Id27Ho+sAzHVflhrzIkSxik2 + 2IbHw15vnjvKQpBAoRdyInXKxV1F+5zA+yTL2PjsF9394X/8gZjEtcrV+/pr+W9960+P02RdM4jT + IiY6pvNAV17S0KdwKDaSwhom7WM0f8//3/of5bpzhfb1MlJE6lxPMQQdyGMxnPmIX+v9/W4w2y8u + dOPIBF00LQGqhwzMA54+7j+8/f7e8oyangWLLBgJHBbGnml+Wt3pWO164bQE5LWvT3WX8tzA/2VL + wen/2VKAWp54hfGjtCvVEekF/Ox3pc/1wkP0BHAKX9i0jj/av9XQg5zk9cGnuvExdd9xhmapNYmT + 8iWdyCfKgP+GAdF5Jabs+ClLlJ6bBL+YL6asHFka4lCVB8By3gNfSqUA62cyYHezPsM2VKMI2cf7 + gu0yMOl2F9oKmiOr4ZjfTxmvTmeBeak+AR93L7BwZtOCZbAsEibfDqw8eRmgbYNXQLXX5tKf5DBi + zCt7crdYKouaJkM/9e4Tfb84en+9BuXrBHAwDmW++vkeAXnymRhYZlyKbHCAdXe0iW3Xj2E5fEsF + vWQvww9rZuPtU8sWitaZBAzQXcD0jzSEi76qWEZekXPMdTTg8cVFAVlRl6+zKJRAvlhJUKTGFG9d + BSS4OeiILbe9uwNyrFA88pxGUlayB5qUbILG8iOTuxRK+z75PgOJ/B1mAX2+8So2bYCwVgLiZwoE + v6P2CsABi2dsKLf3wDrF2UDXgJWILyg9mB4fJMJWfbtYLmohHqvYjyDtkjuRnY8+cCf+naKPBRys + HMoWLHlHFNiDm7Y/X4my3XK+wai4/LBXLWd3bXI3gOyjvgTknGjxmhqxAS4wjEn+ePBgTUOWgaVt + /bApS0rO3QJtRiDrp1n4fFiwFiCR4Mm/iSTNZY+uKnw08J1vOVbfNIrZ+1lK0eXdrlhige0y9tEO + 4ZprLQm9To65sr4b8NfKBVZY9gz4Yb+L6XI4aEQ3F4muFbjdQHWSBqy+7J5OtzaykJMZGXEDyteb + fhIWlKUjQ6QHtAB3fIMIrrn6xr5+X4eVETGEuX0+YN3JrHzZvqCB3eyciax8RkqnF91QyRU5vuz3 + cjJ68ouAHVkuiVTBUMeX1aTwdbcNrJrMZdiQV4dw/zz8ULN9S8CV7+EnbiaSnqVXvlRW6oGDWEXk + 2se9Slvnm8H6eW6D0y3ALh2dYRHva8YQdX6kLrXlroPO8XrBGEUaZV3oMiA6Ggr2HCOp1ytYIhQV + 2TyDduPpuFoSB0yG4TAuOlxTTX5ByOrND4fxmY+XGZkB8pi+IHfBSymLC9uCow/G4ECP0bAZ96ER + m/xzwzqdFnc0mDJF9U8KSGS9b5RO/bMC75/RExx2KZh/N/cANfOn4OsTwXi73sACy7OT4yBOg4H7 + KuAAPnHdzSyv6irtWTODGZQY/Oo6K+f46pzC+SOaOHXHJV7rzwRPo38aif+7nvIpNt4B4i+VT8xj + pwD2l9EQ2fzTxVIeyTnz7fJCzE/x3thne+Q8TJ4jvGsyCpivnsXL/v2hfqwJNpjjLZ+vd8mA3vj5 + 4OzzfqsUOVKInGYWiDdrRc73bKdA7vP4zAdOkvLFPsohkidLx9ID8MPiMbcMLlReSL7j2frSkQI/ + +6l53yJtzTsD58DfsmgYr+eMbvjulzC8OhPR6tWktGfzGTwpbwTL+OHBpp+aJ/KYzzXY+vKSz40Q + QXTx/IG4hh0DtsnVAD2N9k6856rEDBeZKcQv74Fx13XxotqMAsu5+OHn93gH/JMFLdR0KcXxy3Yo + C3CSoWBsAmJcR9tdxs4t4WS9J2IucTuMFyqmCL3YXyDyZQOo5P2eAG2NijPNPeRj9DtnqJCTG75d + v6rLnCK9RAToJYlsv42nS5sfwOvwMIKxIkdKfs5JgLZZdMHxGuN4CX95AKmCEnyZVAuw8yI/4Zj7 + gFwFeFe5j2B0wKr0mqjI5OJFhLSDrCIIWNPXTGVmlFcwwmpGFNX/AaqMZYXI7XHG7raFNZeqgoHi + q0Rmvkesu1TxuUG8yPlYEloZ8NdUK+BktRsxlGsYU+l6K6HynWQcfd3zwAvHZEMbOzvYvtRcPL5i + bECkh2d8m8FXHbmCu0Gg9HA+ReLe+LbtDWhBqs+EhzRfYBRKSIyGO3bkNwemwnAdGJ/HiOTbFg48 + YW8GjIlSEjmsX8P29OECjCqyAyEFl5ofLhkDX/fAJZIKRbA2GSeAa8ttf3gMJk6XG1TNN59EQukM + 3Oa7Dvzj7yQrTMCAQlxgds8+AXu7ezGDDx8JTSz/wta1XcEyPZICtp0QEokCb+B6wZXgH148jwl2 + +dqVGWA13J34kWYMnHMqObjo5PBvfMdjJAtQDJUJm0vExlQ4/jRR38KWRCynulyu5tzeuOuGL9z1 + WjMeE2bgtVoCviZHZdjqW+mh00174Lsl1nR9h30IX0HZEVUsHsMvAGiGt1PRYPPbrfnSP54RWGs5 + xoltILoppzb64ydcyA9Fpee3W8DVJxEx3Ok9sBbUO3RJTwFOAOEAe8BBBAM+GElyyPDAZfVbQp1F + vWAU9TYmgKlFdLiuJ1Kkhp8veQcSKG2Vjl1QJDnXTfvzrayO4CvK8u1xWyy07BHW5aTKNQ9fkYYG + HT2wG1lg52exgt/b+sO4Pmj58u3iAhbtN55P7PvpLmm8Fig6agpWrKp3qSZfIUqZoCbKmXdUFtx5 + C+188E8vrZ345dBMvRR7p/sNcAvfbpDV2x8O+CTNt26qNOReM48kWc4NJOfsGUX3TSG+Qnp3fea5 + BYs15HY+6+L+PF9KRPx1xvo06yoHxxcjrv4U4fByjinb678CKqwaYvvAk3zniwN4co8Na0nh1sv1 + EEDxrx7O+/xdvfYzQ86vBKxY7xvY3HndwGN+V8Q2gjsgtlx2iEENT4x1+FBaS9EGJ52F2NnxZGke + YgkNJ7pip3JHd4zjGcLk9ymIFUS1u4TPxoIdLSIS5tE7Xpxfbf3xIza/P2XgzvW2wdjer5T5nOya + Ru7aQej04SyghlM770AdRISCIa867lSqppyBviVTYuv6rV2WxUuHJLwOROaDKl73Vm6QL82WaG0h + 1du5FhfYSAdApAs4gM1R+QRKRyb+pw+2tz/3kEOPdObtH0O3XU+AsfzKM/UdU93U+2kG4jbLWAFM + QVcJ1jNQq4uCI8z7NaP95g3iH+WCF0Jvd3kc3BT25e8RnLyAy5dTpFegfXoTiXLuorIFMGfwcE8x + VrWyztcC4BFK33WPrNHobtZMG3iz7zAwzkM+MNuXtmAafBlrbVHWq/21HChOmUTc8+PobmLlemDR + p8OffgKbTuwZvletmPnnwa/Zd35O0c1+ydhx37G6zOYhAfz0PBGVtwZ3nFFcwjujfUjhmDpdH60T + wAv0g6A55CVYXPsBodCpLLHZWho45vpa4AEL53mNxc+w8h+pRzI/PecjiSXAI5t00DTfGnZCjuZT + E2IOEuB8sCyHn2GpEdH2xtXP4MT57h+eBH/jh23cuO4KMvWJXnfXCOb3JRpokmYtUJQrJNIFLipB + NoCAn3IG4+57Van1vnhQ7EdMMvcdu0uL1hbm3HfZ9eUKRtWxUlF6eBp29VdH1/rzOcALxMHM591t + WPQkgQA9IgVrrCFR/sD0GghPCwzWsD7u/gFnotDJLJGRB/PlfBgCYJqtTbB/wDmz+63TJLQX7I6W + HbO9frGgjr/n4ISbQV07PYVwMKRq12ccmIOaaaBB6mjmulSn9MBUGrKulTOX3IdRRxpdClhzyQNf + 7d5wZ+vUd+KfvrZ2fmHCXyDAgPdGfL9hKeY9F0XgqJsDtrpwrjc4XhngF51P8nID9c6fLfrjX3Pc + L67bnw+wIOdgAyt6zjy7tUR+U7MBc94ad2pz+wZJWVrzcgFPsFj2awEWrm4z95AEtzuZzyf4SVNB + 8DmO3S58jg5cdM4il5emUWqnsyXuz4eodzuoaeaaEQrf1MW2+qnrFbeDAP747tHOtbsZTdbB8mzl + WEWWObBj9rHQkd+OJFikRp0b1dGg/z7ZRB8mPt7q2jnAVboc//1NVwdXACgdxI7DW+6S2GEJ4+Sm + Eq3N91PlESj/5huWpM4aeJP7SnAblC+2N56rexz0G8RaBbCFPt98k+60hAAfnblUYUa3ahIVGIxt + QOT7aQHUGvgD1MajQna8U7+aLLTQ+V4b4jCunDN/+u2AWY/g3T8v93hIgCsqOXH8SqLcpDQK/NNf + f+Oz17MlnkoN41RXbJdOrN6gVSps8rz1j3qlGq8B/dgwOFtLq+bCk9bCR3zSg5/AU5Wacv8Ub9C6 + kCQoiDsdcNYA9ThesHQKR/qjYtlA7dXR3e8OYAOKkiDltSXYfCKYr9p56uDuD4IuOK9g/fObp2rg + ZuiYH7qeV4+DkBcQKUKzypfMYv7r5zL0WtSNVbIIQgJD7Gh+SemrfDxRaogrkYTPUhPeuQVQV/Ah + 4JijEI8e4xkQRr2Cr3l3q9kDjhoAHvEdm/i3umunP+Gff8Ge/KjcdQqdGxCnBOCXfPzu/rNQgHzR + MVZdxxk2olQBbOqPgy0NrpT8+X/MvO5k5zM6cubYAOh0IY5l1qln4163qDOcEivl28kXtB4K4B/x + lfi/W1/vfNCBIZx1rK7WTOk11Z6ivuE3Vj/2fjHQ/WjBQU3XmXcuVUyNlIkQfrm3uby1/DDVn+kA + 7JHUweEmq5T1jZMDcfH6BmX5lYdV/t5F0Ha8OwtBpKocUfoAxNzRnxeKj+qknL9PUNXjQLzQOKvb + fVYXuOcP2FeI4y7Q7A7oefZ4XHCLMmyNqmjoj1+S3Njo1t4iA7EhNrHXGNWw1p8tRBr/Kf/m+0CW + 16eHz59dkx0/3Z9cpBXI7fgwc7WUxNvEQxFcUhDMnf9twaoVyQivcrUFv0340um8agzapvGGb9nZ + qRfhW/dwCEedPKNhy7eummc4xeEFF42+xpuGnQ7+8kKd2R0fGC7CCUgTFxAXvz4qdbi1RN8b/c3i + UI7uKG5eC8Hn7GIzim815RMRgg8XykSVnSCmP0nhwDd10Fz15SVeOyAV6I//MEKyy9n3RwF3PAyO + 8tEEK24XD5n8q5rhovfqov2oAUbgP7FvqXeXH4+wB6FXYnLHjauuL+CLUMW/KaBvusWb1PTNXz6C + C6jtR1gCo4KnapHwXRCaPz+aIKTvF2N+BCHu/VM0g40ddKymzwvglsmT/vAAK7u+ZlbL4mCQvG9B + xXKqyl6BECKnmIw9H3nnjfLyOfiXF7gGfdLB4aZAjMeUYCO7yvRPX4BBjUdilofebb6PZYayb1Uk + O5XyricfC8zPCYvjO+NQWl7EGay1dsOvayINu/510O7H8f0WYJXdO6mKTkGM4LvzzT8/tPPnfPxE + cU5zTp5FjTkw2B6FYdhu6g/C9bPZxPPzW77Ee5NFoSdtwMaki9dvmCVw50v8l7f86WeQyVcyM6x2 + yOdCaGYoZWU8L1z7idk2l29I2W4NvjS3mI7q8RyA4tDbwTH4DfWyPKIe+XdwnVlZ7+JV/YYG/NYP + D+PPoaSTvaYNWrrnNRgiexx+14URUf2M22CL3hd3z78ycJUfE/mH73/5015fWH+ptB77zk9hb43L + Xu8B7eeblcDgxN8CNCqRu5atlcEDClTsmYWvrvezlEBowhc530VF5bPLIfnnl+LbM4oXLso7sOvJ + YFGhSNc+DCuYyJ9hPrUCdseWKiVyvXnvcjqaOfPHz9/UQuT6PEzD+lgaiA6XICKq+JgpFfZeF5d3 + s/7ljSpz+bkhPJUGxkEjDfGuHwzwq7MloK59ytftEzbgzBszUR68Avb8KjqxVpTN5QPw9boSmqJ3 + e2Gw9A35oUsO7xu8Hria6C+toTQtQQVuM2cQ5/XWBnJKVudPP2OjHsJ6PZJzjyZWbLD9rTJ3TtV6 + Qze7NAjOflrOnMx+ganBjzOc9aleblSowIcLYHAw0wvg5snnoO1Yd6J/NDmfIR8IkG4HHmvUaPLN + xBKDgjP7xR6ci3r783uGB9R5e759uobnzDj9+cG/+bj0ES3h7f2k2LmWYk0M717C30GLiFNxXbzV + /smCSQuXf/6RenJUwX2+EE23yj2/e3rgOQh3/Ke317/89Y8/g9NFU/mqzDuwAsOekaH5YNv9NmA3 + NsX2fwAAAP//XJ1J76pMGsX391O8uVvzRgahHnqHgoBMhaKISaeDigODIFDFkPR37xT/273otYmK + 4RnO7xyLdCVc+yBdpUC7Ye8HS/moiU6UH8FtP4X/XBV900k6SmHxfr7YPNs4Il7HBOZ6tB/PKey4 + fGGD236/FOs1DceqO/WrmVf6u3OWCS9PBvDwQaIqL4tTt/uolvzOSOOvnFJyfuZRz9MX9Y3WRqNx + eQQy43M+Vyap1gu3RQJVkz5J9th9ETWFzwZ4yzvhNfVWV8YPXdibVkCWzvEz9UHtyyh81R7FzlLX + mtKeWnTT1R1ObNHSBne4jSjbb+6zHtZY/6+g33IWyZrxHg6nq+QC21eo80mLcJDpK4cPem+wLy0U + NGzBTBG7Prx2gvXUMj2o4I+L8V5xb2HfH7Ic0HLRYS/RCOM/l1JmvIKuIdtkU9SkAQwK4akbGd21 + H5Q9gei4Q3g7+xtmG+RKDNuA0Fv9RPxmP41wuLSKX0TxIutloJHcNOGdYlLpzdAHVo6qgEpEWr6d + pqtksOW53nVsOlfOrjMbvKV39pdOGGWC67c51DH1yIgFCMdDLMbAySzSetzVzhjoqgpp7VbUTI+b + jPLLt4zefvzFem1UzthtHgS1z8qg5/jIDg4v1C8CihyqGlU+9ZzilD96QTfun6x6pdYXrkLR491R + cq4TZycqoHeRkP5QIq1m/QKs5WWgd7YfDGPyeitR6w7YVYdjQ5uHkkuOpEQ4dVuT6eORUwZvPP/x + g9j7Iaa/KC4/SdYx/oHKXlCosd+8EBHP70DZfOOR8YEVIi8tdqF4iqLP3c1nNnW8VwJKKnbK8RJN + 44U4vWycsxcR9uojnHnsz76Hi8MUzvpj7pfkK3PidSyYxXZ3FjHW4N6E42q95EBT1Nx/toU49dcp + NdB31fjUuxED9VW4/kKQX8U/enHmx+bXCQkfElEbLHNtKIwf+PLbTqahxxSQPRou3aXSp+nh4LQ/ + 9QnB9oEmfZ0f5KwpeMJPZB2OIPoyuPpXotsoTjPC+Bm6LT66vyqK09Tf0iBXOBkZVF1iEc36FLz8 + xeO1J8VaH0+5D6F7dqm9flvOwOoVzutHN/cTR7w9m3LmOdQX6kQbjr3QIu1Mcoz1KtWm6bGyAA7Z + iu5Oucn007WUnsIlwnu72Ga8fnttEKtXrA27pzacUQaKdEpa6iyGlVYNJvdWJOUcU9cdunD2E+Cd + NSXVeSpnFeM1KC8DRMox2mjj1PIrMDlBwHblVBnRLkUCyDum2CaOjvhX8A5AUk4xxZt6nMZQskdA + SgDsLxjxNGEHpSDE/pXasdBq/brmVojxC7IUIZx5XMQefKZgixajNryCO6AtriIaXiYpG5dttIHE + bxRf2mVKRotTekMBdlWs81va9MJ900K4I09sJYEUTnmjysoj42p8X3RayMXTWUY6Bxze2hdRIy8t + 8JWmVLf4wHhN/6lMW9ls9RGf28UGjau1yMFFt03sWbodjtx5lcz7DtN3wVQHRkoQPQ1PrNawztiD + GVfK7jiKTL89UX9JkwRAlBXW/xbaaOSHSskqZUfd9fXRzPMEktf5gNl8CTn+06U/fEMrrEirNNs6 + whZ/I+rqZp1N7+8iAcZ3icj82pn/gWhZEjbV5V4bzj2skPda+Hju/+PMDzgbKsquDzE/q1de0+hh + 6xacUL/+7lwQ3gOHDaW+Oe3iYyZguGDh3dOLmnF4s1MnmJ44pE/Ifng3fb4t5rcoYXfbLjgIBcXD + 7Ps1DbFfAGv70pLVpSTh8EkUAxgfxI/NN3e+FkE5PMrHiSx6NXcYH+yV26La0dSMTlOf7NRSOXKH + Jd2x32uwwPsihXfpzL8zQWrlw8wPsDoFfdi3o5wDq0dqTtXXYWefxMotrUoc2wjQMMiRAcklLn74 + Hl8X6WbmUfRqcW5Ws/tViaMp8NFzvDadO9x6mPUQ47NOy/gtsHlGhP3mNY2PbuKA7ddELh5pQ89R + MCLGj0nN+gs3jukR/fR37dH+8Rvm+13dwfnaK6M9wrxvrdk+2C8+Zgz6Yf/E9sadtME3Wg5mfmmq + i8fUr25QQtNXGRmvru0Ipg9v9Li4DjaF8M2ccT0FzTMMv4B4G/b8R+rhHcU3ersZO0QY//1vpODX + X3/9kwUEfpfVPS1YMKBLh+7v/0UF/hb/bsukKOZgwW/SJs/09z/+RBB+101V1t2/uipPPy3LGigy + z//EDX53VZcU//fSL/aB//71HwAAAP//AwBkQ5h5ugUCAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdeda9095eeb2e-SJC + - 8ece18dadaa45c18-SJC Connection: - keep-alive Content-Encoding: @@ -2941,14 +2940,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:04:51 GMT + - Wed, 04 Dec 2024 19:10:32 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=vQbWSmy1LHdcet8MSIe0Pu_LJbTk2vKF4kot8gct6A0-1733169891-1.0.1.1-5jjUvUtGVXwkhGuKgm1uVVFQUwKieMZ.YhVDM3ixDl9dCIsgQjpLbQ3uFO7aZXhGIEQahV7mRTDNcIy8WbP6eQ; - path=/; expires=Mon, 02-Dec-24 20:34:51 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=iX3VbP7249uF4SLpz_0fb86U6ilxcqRrL6ftNZ4KOrA-1733339432-1.0.1.1-D5YdxQj2ZyUbu_ggbMp5ugrs1bNKTm2blje6RTqye_lELRFL6G7Dr3bPt.yBEuA7SSCXYs015LNNie7MQkbvCQ; + path=/; expires=Wed, 04-Dec-24 19:40:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=MAQzaHxWF64xor8G21zhSIb63aks6_Qa0g5cwMlC_l8-1733169891495-0.0.1.1-604800000; + - _cfuvid=H3VYPTXNiLHNmbOO8tIEQyw0JnWEVycj4l1_EaYHkpw-1733339432654-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -2965,7 +2964,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "642" + - "400" openai-version: - "2020-10-01" strict-transport-security: @@ -2977,13 +2976,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "9979815" + - "9930140" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 121ms + - 419ms x-request-id: - - req_a54cb5bf5fcd436c17a2976d3f26a8a9 + - req_ce6e2c35ddefa6a31cc041ef875bf380 status: code: 200 message: OK @@ -3145,7 +3144,7 @@ interactions: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdedaf9fa6eb2e-SJC + - 8ece18dfaf5b5c18-SJC Connection: - keep-alive Content-Encoding: @@ -3153,7 +3152,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:04:51 GMT + - Wed, 04 Dec 2024 19:10:33 GMT Server: - cloudflare Transfer-Encoding: @@ -3171,7 +3170,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "85" + - "90" openai-version: - "2020-10-01" strict-transport-security: @@ -3183,13 +3182,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "9999911" + - "9940159" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 0s + - 359ms x-request-id: - - req_b30e91c9c76d8f104027a8dc07d053b0 + - req_2213a50b9de58b12a676e391cb5404c9 status: code: 200 message: OK @@ -3223,7 +3222,7 @@ interactions: x-stainless-raw-response: - "true" x-stainless-retry-count: - - "0" + - "1" x-stainless-runtime: - CPython x-stainless-runtime-version: @@ -3346,7 +3345,7 @@ interactions: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdedf0b972cfc4-SJC + - 8ece18e45974cf1b-SJC Connection: - keep-alive Content-Encoding: @@ -3354,7 +3353,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:02 GMT + - Wed, 04 Dec 2024 19:10:35 GMT Server: - cloudflare Transfer-Encoding: @@ -3372,7 +3371,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "109" + - "197" openai-version: - "2020-10-01" strict-transport-security: @@ -3384,13 +3383,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "9999989" + - "9890664" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 0s + - 656ms x-request-id: - - req_519bc847bebc9bbc2cce49853cdbc49c + - req_ee54ea7bbf0af2f5e0778f05a08a5785 status: code: 200 message: OK @@ -3400,76 +3399,77 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nnterfac-\\n\\n\\n + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\n + features. Weber et al. 82 used saliency maps to build an explainable GCN\\n\\narchitecture + that gives subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicted probabil-\\n\\n\\n 9ity + difference between the molecules by removing one atom at a time. These weights + can\\n\\nthen be used to color the molecular graph and give a visual presentation. + ChemInformatics\\n\\nModel Explorer (CIME) is an interactive web based toolkit + which allows visualization and\\n\\ncomparison of different explanation methods + for molecular property prediction models.84\\n\\n\\nSurrogate models\\n\\n\\nOne + approach to explain black box predictions is to fit a self-explaining or interpretable\\n\\nmodel + to the black box model, in the vicinity of one or a few specific examples. These + are\\n\\nknown as surrogate models. Generally, one model per explanation is + trained. However, if we\\n\\ncould find one surrogate model that explained the + whole DL model, then we would simply\\n\\nhave a globally accurate interpretable + model. This means that the black-box model is no\\n\\nlonger needed.79 In the + work by White 79, a weighted least squares linear model is used as\\n\\nthe + surrogate model. This model provides natural language based descriptor explanations + by\\n\\nreplacing input features with chemically interpretable descriptors. + This approach is similar\\n\\nto the concept-based explanations approach used + by McGrath et al. 85, where human under-\\n\\nstandable concepts were used in + place of input features in acquisition of chess knowledge in\\n\\nAlphaZero. + Any of the self-explaining models detailed in the Self-explaining models section\\n\\ncan + be used as a surrogate model.\\n\\n The most commonly used surrogate model + based method is Locally Interpretable Model\\n\\nExplanations (LIME).35 LIME + creates perturbations around the example of interest and fits\\n\\nan interpretable + model to these local perturbations. Ribeiro et al. 35 mathematically define\\n\\nan + explanation \u03BE for an example \u20D7x using Equation 4.\\n\\n\\n \u03BE(\u20D7x) + = arg min L(f, g, \u03C0x) + \u2126(g) (4) g\u2208G\\n + \ Here f is the black box model and g \u2208G is the interpretable explanation + model. G is\\na class of potential interpretable models (e.g.: linear models). + \u03C0x is a similarity measure\\n\\n\\n\\n 10between + original input \u20D7x and it\u2019s perturbed input \u20D7x\u2032. In context + of molecular data, this can\\n\\nbe a chemical similarity metric like Tanimoto86 + similarity between fingerprints. The goal for\\n\\nLIME is to minimize the loss, + L, such that f is closely approximated by g. \u2126is a parameter\\nthat controls + the complexity (sparsity) of g. Ribeiro et al. 35 termed the agreement (how + low\\n\\nthe loss is) between f and g as the \u201Cfidelity\u201D.\\n\\n GraphLIME87 + and LIMEtree88 are modifications to LIME as applicable to graph neural\\n\\nnetworks + and regression trees, respectively. LIME has been used in chemistry previously,\\n\\nsuch + as Whitmore et al. 89 who used LIME to explain octane number predictions of + molecules\\n\\nfrom a random forest classifier. Mehdi and Tiwary 90 used LIME + to explain thermodynamic\\n\\ncontributions of features. Gandhi and White 10 + use an approach similar to GraphLIME,\\n\\nbut use chemistry specific fragmentation + and descriptors to explain molecular property pre-\\n\\ndiction. Some examples + are highlighted in the Applications section. In recent work by\\n\\nMehdi and + Tiwary 90, a thermodynamic-based surrogate model approach was used to inter-\\n\\npret + black-box models. The authors define an \u201Cinterpretation free energy\u201D + which can be\\n\\nachieved by minimizing the surrogate model\u2019s uncertainty + and maximizing simplicity.\\n\\n\\nCounterfactual explanations\\n\\n\\nCounterfactual + explanations can be found in many fields such as statistics, mathematics and\\n\\nphilosophy.91\u201394 + According to Woodward and Hitchcock 92, a counterfactual is an example\\n\\nwith + minimum deviation from the initial instance but with a contrasting outcome. + They\\n\\ncan be used to answer the question, \u201Cwhich smallest change could + alter the outcome of an\\n\\ninstance of interest?\u201D While the difference + between the two instances is based on the exis-\\n\\ntence of similar worlds + in philosophy,95 a distance metric based on molecular similarity is\\n\\nemployed + in XAI for chemistry. For example, in the work by Wellawatte et al. 9 distance\\n\\nbetween + two molecules is defined as the Tanimoto distance96 between ECFP4 fingerprints.97\\n\\nAdditionally, + Mohapatra et al. 98 introduced a chemistry-informed graph representation for\\n\\ncomputing + macromolecular similarity. Contrastive explanations are peripheral to counterfac-\\n\\n\\n \ 11tual explanations. Unlike the counterfactual approach, contrastive approach employ a dual\\n\\noptimization method, which works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - \ Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via ex\\n\\n----\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + \ Cont\\n\\n----\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" headers: accept: - application/json @@ -3478,7 +3478,7 @@ interactions: connection: - keep-alive content-length: - - "6072" + - "6083" content-type: - application/json host: @@ -3508,24 +3508,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTY8TMQy991dYOberfsButze0iAMICSEQAga1aeKZMWTiKHFKh9X+d5ROaYvY - lbjMwc/vjf1s534EoMiqFSjTajFdcJMX+np/94bizcu3/Hzfvfv18dOX+TLE1+/7z2/VuDB4+x2N - /GFdGe6CQyH2A2wiasGiOrtZLGbXt7fT+QHo2KIrtCbI5BlP5tP5s8l0OZleH4ktk8GkVvB1BABw - f/iWEr3FvVrBdPwn0mFKukG1OiUBqMiuRJROiZJoL2p8Bg17QX+oerPZfE/sK39feYBKpdx1OvaV - WkGl7jh7wVhrI1k7wH1w2uvSXQIdEUotaEGbEtJbh1fwocUeQuQd2YJLJqEdQvYWY6nDkm+AawgR - LZmjlLeQctNgEvjZkmmhRi05YgKjPWwRtBOMaEEYTKt9gyAtAmcx3OEVvOIIuNfF+jGQB9NiR0li - Px7Syz81tL2NHFrekoE6+6FoB03kHApLQ8cOTXZY/nPKJ0fmmCQM5MtIE0Jil7fkSHqg0sKFC0A+ - UdMKWIy0Qwt15A7MX2amYlUhHllnJfiBPegU0Egxyjw9gzHoBCSgneOfCWqO4NhoVzwoXhucONyh - O3qWQFotB0stRTTieiBfu4zeDIaeh3LytlLjYTEiOtwVzXUyHHFYkNm0UpV/qPxms7lcsIh1Trrs - t8/OHeMPp4113ITI23TET/GaPKV2XQxmX7YzCQd1QB9GAN8Ol5H/WnYVIndB1sI/0BfB2Xy6HATV - +Rgv4NniiAqLdhfAYj4bPyK5tiiaXLo4L2W0adGeuedb1NkSXwCji8b/recx7aF58s3/yJ8BYzAI - 2vV5hI+lRSyv1VNpJ6MPBavUJ8FuXZNvMIZIw4NRh/VyMcPp9Y1dztXoYfQbAAD//wMApyqFqjkF - AAA= + H4sIAAAAAAAAA4xUTY/bOAy951cQOidBOp7OR267xfa6XaDbAq2LhJboWB1JFCS6GXcw/72Qna+2 + s8BeDEiPfHziI/00A1DWqDUo3aFoH93iD4xV82Flqr+/983A7urfm0+37Z/Nuwfu/1HzksHNV9Jy + zFpq9tGRWA4TrBOhUGF9dVtVVXV/Xb0eAc+GXEnbRVlc8+JqdXW9WN0tVjeHxI6tpqzW8HkGAPA0 + fovEYOhRrWE1P954yhl3pNanIACV2JUbhTnbLBhEzc+g5iAURtXb7fZr5lCHpzoA1Cr33mMaarWG + Wr3hPgilFrX06IAeo8OA5XUZMBH0mQwIgyGh5G0gkI4ge3SOsoDuMOwIApGZ4tAJpTGGe9HsCbgF + DGBDkajHoy0VKcsS3nc0jGUaLHU4jJmag6YoJTRbbx0m2HNyJoMNEDvrOHPsBsBggHx0PACCsYcC + niRZfWb07Ej3heRAZmUoRIdKQo9jJd2Rt1nSsIS3nIAesdg8h4/kHO5RhIAE0C3BUHvsw6loQ7In + CiB7PhakDH22YTcGvsdgPZc+/prx15u3766htWFHKSYbJC/hZ1MmI1AXU7BxdBSfKeQiA6UcB4iJ + v1lT4Gx3nZRuCcO+4JNNGTT3zoAjnLwCY9uWEgU5ujUHjw8H0b6Y3/YOWk7QB0OpSDcFLZ2PXAbM + onPD5HoBYiJjR6V5Wav5NHCJHH0rj95kzYmmwbuvVR2e67Ddbi/nNlHbZyxrE3rnDvfPp0VwvIuJ + m3zAT/etDTZ3m0SYOZShz8JRjejzDODLuHD9TzukYmIfZSP8QKEQvrp6fT8RqvOOX8JHVFjQXQDV + 3d38BcqNIUHr8sXWKo26I3POPa849sbyBTC7ePjvel7inh5vw+7/0J8BXXaNzOZs3UthicpP8L/C + To0eBas8ZCG/uRjqYkkbN7ftTUMVtc1KzZ5nPwAAAP//AwAsU16UkAUAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdedf2ae6117ea-SJC + - 8ece18ef1f88232b-SJC Connection: - keep-alive Content-Encoding: @@ -3533,14 +3533,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:04 GMT + - Wed, 04 Dec 2024 19:10:37 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=8qKtEchwziWcNPSdnLM3fvodnhW5YwFMLrEZCWQdupA-1733169904-1.0.1.1-9Hl5J_1w8n3CouCkfo74oKuMSF5OMshJdj_dqilV1izM.TNMTwrZl9lEvUBvybIIDr18jConn7Zk_msjChdALA; - path=/; expires=Mon, 02-Dec-24 20:35:04 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=8FG0NsGiAE1pL7Gld8dk9F0i6EY2x1F1jZaqnCTjEYs-1733339437-1.0.1.1-fzAmFVWfgNge5_uvQPlEWjdMlRSYcr1ItiD2o9PSZddADlpd59wCrUyHGjC1Mf.FbthUAx.HsAKwd5ELv.6CCQ; + path=/; expires=Wed, 04-Dec-24 19:40:37 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=tP7L.DWffWgK6_ERdYhk4lK6Ozd9Lrzd8zI8oL0nsBI-1733169904655-0.0.1.1-604800000; + - _cfuvid=SzQENsPg_fcksfKbK0.OHOtTYLuzb4FskC2D05OK4b0-1733339437571-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -3553,7 +3553,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2027" + - "2082" openai-version: - "2020-10-01" strict-transport-security: @@ -3565,13 +3565,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998535" + - "29998531" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_96e4b24c10499a191b9549f448597223 + - req_67041469e4c2635f2721c65a29ecae6b status: code: 200 message: OK @@ -3581,260 +3581,77 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nody,\u2019 - \u2018floral\u2019 and \u2018herbal\u2019 scents.\\n\\n\\n\\n\\n\\nFigure 5: - \ Counterfactual for the 2,4 decadienal molecule. The counterfactual indicates\\nstructural - changes to ethyl benzoate that would result in the model predicting the molecule\\nto - not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between - the counterfactual and\\n2,4 decadienal is also provided. Republished with permission - from authors.31\\n\\n\\n The molecule 2,4-decadienal, which is known to have - a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure 5.142,143 The resulting - counterfactual, which has a shorter carbon chain and no carbonyl\\n\\ngroups, - highlights the influence of these structural features on the \u2018fatty\u2019 - scent of 2,4 deca-\\n\\ndienal. To generalize to other molecules, Seshadri et - al. 31 applied the descriptor attribution\\n\\nmethod to obtain global explanations - for the scents. The global explanation for the \u2018fatty\u2019\\n\\nscent - was generated by gathering chemical spaces around many \u2018fatty\u2019 scented - molecules.\\n\\nThe resulting natural language explanation is: \u201CThe molecular - property \u201Cfatty scent\u201D can\\n\\nbe explained by the presence of a - heptanyl fragment, two CH2 groups separated by four\\n\\n 20bonds, - and a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe - importance of a heptanyl fragment aligns with that reported in the literature, - as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, - the importance of a C=O dou-\\n\\nble bond is supported by the findings reported - by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, - they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 - For the \u2018pineapple\u2019 scent, the following natural language explanation - was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D - can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether - O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 - Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple - volatile compounds.146,147 The combination of a C=O double bond with an ether - could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, - which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe - have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 - and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels - whose input is a molecule. These two methods can be applied for both classification\\n\\nand - regression tasks. Note that the \u201Ccorrectness\u201D of the explanations - strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular - counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith - contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 - of ECFP4 fingreprints97 as distance, although this should be explored in the - future.\\n\\nCounterfactual explanations are useful because they are represented - as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. - A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, - MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method - developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate - model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough - we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, - we show that natural language combined with chemical descriptor attributions - can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility - of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. - Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to - analyze the structure-property relationships\\n\\nof scent. They recovered known - structure-property relationships for molecular scent purely\\n\\nfrom explanations, - demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand - then explain it.\\n\\n Choosing among the plethora of XAI methods described - here is still an open question.\\n\\nIt remains to be seen if there will ever - be a consensus benchmark, since this field sits on\\n\\nthe intersection of - human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes - an explanation?). Our current advice is to consider first the audience \u2013 - domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations - should accomplish. Are\\n\\nthey meant to inform data selection or model building, - how a prediction is used, or how the\\n\\nfeatures can be changed to affect - the outcome. The second consideration is what access you\\n\\nhave to the underlying - model. The ability to have model derivatives or propagate gradients\\n\\nto - the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trus\\n\\n----\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6118" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.56.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.56.0 - x-stainless-raw-response: - - "true" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.12.7 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA4xUTWsbQQy9+1eIOdvBH8FpfCs5FHpoKQ2U0C22dla7M8l8MZpNbIL/e5mxY69p - Ar3sQU/SvvckzesIQOhGrEBIhUnaYCafcbm9e5hJc/vlx8P9i5Jf2+/zX9v5/beH3U8xzhW+fiSZ - 3qqupLfBUNLeHWAZCRPlrrObxWK2vL2dzgtgfUMml3UhTa79ZD6dX0+mnybT5bFQeS2JxQp+jwAA - Xss3U3QNbcUKpuO3iCVm7EisTkkAInqTIwKZNSd0SYzPoPQukSusN5vNI3tXudfKAVSCe2sx7iqx - gkrc+d4lii3K1KMB2gaDDrM6BowEDbGMuqYGkAFlBrA2BNpBUgTlN9sEvgXrDcneYIQQqdElFYoH - fAX3inalX6QQicmlQ0epyGqJBjjFXqY+Eo/hRWmpSnaLVhuNEZKHxlvULjOkmHgM6JqSwwEj0xgs - PmnXZVYWeqa2N9D6CL1rKGZ7mozmouCzMxqN2QGaRDEDJyIh+vwDTQfWUOQp3SmjO5UYksIE8sI1 - BoXPBAhWO23RQFPmIQna6C0g1Mj05g9B3ScInpmYi38ROX1A4VLVwP6s7NIQeFEeJLqsPadznhEf - Ofs8CN3uBkM6G55hlErTcxm3jtSA75P0lviqEuPD1kQy9JxFrVn6SIftua1E5faV22w2w+WL1PaM - efddb8wxvj9ts/FdiL7mI36Kt9ppVutIyN7lzeXkgyjofgTwp1xNf3EIIkRvQ1on/0QuN5wtpsez - EedDHcDTmyOafEIzAK5PyEXLdUMJteHB6QmJUlFzrj3fKfaN9gNgNBD+L5/3eh/Ea9f9T/szICWF - RM36fHrvpUXKL9lHaSejC2HBO05k1612HcUQ9eExacP6pl3WtKC2norRfvQXAAD//wMAuRprvFUF - AAA= - headers: - CF-Cache-Status: - - DYNAMIC - CF-RAY: - - 8ebdedf2baa99440-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 02 Dec 2024 20:05:04 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=6X7KW2r0wPUkgxCL_K_HhvKujiKUtis8QG6qcwjcenE-1733169904-1.0.1.1-TDMbnjUA85UvuTKAH_cXf0KTsmxScK6CJ9NLzr.7TlhHvV4JzejfD.pz6FhtE_b0bodPMjf46TRRCXYehoDzMw; - path=/; expires=Mon, 02-Dec-24 20:35:04 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=t1.JDDPO2EQo9bT2n9yQp3e8IJWR1Y9aXyH9_YZngmk-1733169904728-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2093" - openai-version: - - "2020-10-01" - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998523" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_719aed190552e243935fa8bd10b5cb8a - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n - \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\n - features. Weber et al. 82 used saliency maps to build an explainable GCN\\n\\narchitecture - that gives subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicted probabil-\\n\\n\\n 9ity - difference between the molecules by removing one atom at a time. These weights - can\\n\\nthen be used to color the molecular graph and give a visual presentation. - ChemInformatics\\n\\nModel Explorer (CIME) is an interactive web based toolkit - which allows visualization and\\n\\ncomparison of different explanation methods - for molecular property prediction models.84\\n\\n\\nSurrogate models\\n\\n\\nOne - approach to explain black box predictions is to fit a self-explaining or interpretable\\n\\nmodel - to the black box model, in the vicinity of one or a few specific examples. These - are\\n\\nknown as surrogate models. Generally, one model per explanation is - trained. However, if we\\n\\ncould find one surrogate model that explained the - whole DL model, then we would simply\\n\\nhave a globally accurate interpretable - model. This means that the black-box model is no\\n\\nlonger needed.79 In the - work by White 79, a weighted least squares linear model is used as\\n\\nthe - surrogate model. This model provides natural language based descriptor explanations - by\\n\\nreplacing input features with chemically interpretable descriptors. - This approach is similar\\n\\nto the concept-based explanations approach used - by McGrath et al. 85, where human under-\\n\\nstandable concepts were used in - place of input features in acquisition of chess knowledge in\\n\\nAlphaZero. - Any of the self-explaining models detailed in the Self-explaining models section\\n\\ncan - be used as a surrogate model.\\n\\n The most commonly used surrogate model - based method is Locally Interpretable Model\\n\\nExplanations (LIME).35 LIME - creates perturbations around the example of interest and fits\\n\\nan interpretable - model to these local perturbations. Ribeiro et al. 35 mathematically define\\n\\nan - explanation \u03BE for an example \u20D7x using Equation 4.\\n\\n\\n \u03BE(\u20D7x) - = arg min L(f, g, \u03C0x) + \u2126(g) (4) g\u2208G\\n - \ Here f is the black box model and g \u2208G is the interpretable explanation - model. G is\\na class of potential interpretable models (e.g.: linear models). - \u03C0x is a similarity measure\\n\\n\\n\\n 10between - original input \u20D7x and it\u2019s perturbed input \u20D7x\u2032. In context - of molecular data, this can\\n\\nbe a chemical similarity metric like Tanimoto86 - similarity between fingerprints. The goal for\\n\\nLIME is to minimize the loss, - L, such that f is closely approximated by g. \u2126is a parameter\\nthat controls - the complexity (sparsity) of g. Ribeiro et al. 35 termed the agreement (how - low\\n\\nthe loss is) between f and g as the \u201Cfidelity\u201D.\\n\\n GraphLIME87 - and LIMEtree88 are modifications to LIME as applicable to graph neural\\n\\nnetworks - and regression trees, respectively. LIME has been used in chemistry previously,\\n\\nsuch - as Whitmore et al. 89 who used LIME to explain octane number predictions of - molecules\\n\\nfrom a random forest classifier. Mehdi and Tiwary 90 used LIME - to explain thermodynamic\\n\\ncontributions of features. Gandhi and White 10 - use an approach similar to GraphLIME,\\n\\nbut use chemistry specific fragmentation - and descriptors to explain molecular property pre-\\n\\ndiction. Some examples - are highlighted in the Applications section. In recent work by\\n\\nMehdi and - Tiwary 90, a thermodynamic-based surrogate model approach was used to inter-\\n\\npret - black-box models. The authors define an \u201Cinterpretation free energy\u201D - which can be\\n\\nachieved by minimizing the surrogate model\u2019s uncertainty - and maximizing simplicity.\\n\\n\\nCounterfactual explanations\\n\\n\\nCounterfactual - explanations can be found in many fields such as statistics, mathematics and\\n\\nphilosophy.91\u201394 - According to Woodward and Hitchcock 92, a counterfactual is an example\\n\\nwith - minimum deviation from the initial instance but with a contrasting outcome. - They\\n\\ncan be used to answer the question, \u201Cwhich smallest change could - alter the outcome of an\\n\\ninstance of interest?\u201D While the difference - between the two instances is based on the exis-\\n\\ntence of similar worlds - in philosophy,95 a distance metric based on molecular similarity is\\n\\nemployed - in XAI for chemistry. For example, in the work by Wellawatte et al. 9 distance\\n\\nbetween - two molecules is defined as the Tanimoto distance96 between ECFP4 fingerprints.97\\n\\nAdditionally, - Mohapatra et al. 98 introduced a chemistry-informed graph representation for\\n\\ncomputing - macromolecular similarity. Contrastive explanations are peripheral to counterfac-\\n\\n\\n - \ 11tual explanations. Unlike the counterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - \ Cont\\n\\n----\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nd + counterfactual examples are in the\\n\\napplication, although both are derived + from the same optimization problem.100 Grabocka\\n\\net al. 111 have developed + a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves + model robustness via exposure to adversarial examples. While there are\\n\\nconceptual + disparities, we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN\\n\\n----\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" headers: accept: - application/json @@ -3843,7 +3660,7 @@ interactions: connection: - keep-alive content-length: - - "6077" + - "6073" content-type: - application/json host: @@ -3873,24 +3690,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW8rNwy8+1cQOtuGE7tO4lsaNOi79RCgBbqFTUtcrxJJXIjc5xhB/nuh9frj - tSnQi4HlkMMRh/THCMB4Z1ZgbINqYxsmj7h8f/p5vn+b4+Pr/YvGXxfPi7tvL088E2vGpYK3r2T1 - VDW1HNtA6jkdYZsJlQrrzd18frN8eJjd9kBkR6GU7VqdLHhyO7tdTGb3k9lyKGzYWxKzgj9HAAAf - /W+RmBy9mxXMxqdIJBHckVmdkwBM5lAiBkW8KCY14wtoOSmlXvVms3kVTlX6qBJAZaSLEfOhMiuo - zBN3SSnXaLXDAPTeBkxYXieAmaATcqAMjpRy9IlAGwKJGAKJgm0w7UoMFSx3wQEGpdwncaeWIwHX - gAl8Khpt/+lLSxKdwktDh77PFksjTn2l5WSp1ZIqPvqAGfacgxPwCdrGBxZumwNgckCxDXwABOeH - BpE0e3thjBzIdoVkIPN6KER/PH6DmjPYhqIXzYcpPHMGesdi8Bh+pxBwj6oEpIBhCo7q0wTO3bak - e6IEuudTJxLoxKddn/iCyUcuE/xnxS9Pz78toPZpR7nNPqlM4Uc7jhagLXbgNhCgFM4DtJm/e0dl - qH7XaJmLMux7F3pHZHAjEPb2lfHUNWVKevJlDBHfBpWx+Fx3oZ+HI+vFc5oMeJlylxzlot+VSL/Z - 0GZyvtcm08qMj8uVKdD38sy1WM50XLKHylTps0qbzeZ6RzPVnWA5kdSFMMQ/z0sfeNdm3sqAn+O1 - T16adSYUTmXBRbk1Pfo5AvirP67uh3sxbebY6lr5jVIhvLn9aXkkNJd7vobvBlRZMVwB8/v5+AvK - tSNFH+TqQo1F25C71F7OGTvn+QoYXT3833q+4j4+3qfd/6G/ALacFbn1xbqv0jKVP7z/SjsPuhds - 5CBKcX21xsWSul3f1cstzanezszoc/Q3AAAA//8DADe/QaR8BQAA + H4sIAAAAAAAAA4xUTa8TOwzd91dYWb0nTat+Ab3dvfKEEBs2sGJQ60ncGUMmjpIM3Orq/neUTGl7 + uSCxqSof+/gcx56HCYBio7agdIdJ995O/0O/apr/5/arLLn7+Pbu9UeUxV3/btG9f6+qXCHNF9Lp + Z9VMS+8tJRY3wjoQJsqsi1er1Wp1t169KEAvhmwua32armW6nC/X0/lmOn95LuyENUW1hU8TAICH + 8pslOkP3agvz6mekpxixJbW9JAGoIDZHFMbIMaFLqrqCWlwiV1QfDocvUVztHmoHUKs49D2GU622 + UKvXMrhE4Yg6DWiB7r1Fh9ldBAwEqPN/bCwBRkgdnSAObUsxQS+Gj6zPyUmgF0t6sJTzMIFGB5bQ + ZMhQ5EAGZEhaeoozeCMB2GXdmipgl7mhqL5PIEdorIiZNgHZQYMhMAX4Z7fb/QueQk+lawX6ifwI + 7ExWRKOCZwpLDwyN3J8sa0DNBtoggy9i6ezzYiSXnLtRqd3tdjP40HEEjtCQxiHSr6QjH0foTiaI + 77h0cga6/K7hEpeGNXBWP844VvC9Y92VseswaEYLRwm56Y3nGewuT8CuvX0g3aFrKVYQh0wTAY0p + KUn6Yp9cl8cNccgTo9wJn8/QB/nGhsAXYRottAObUpjlnIeD4el4Z7Wqxv0KZOlbTt9HLYHGPVvM + a1W7x9odDofbPQ10HCLmM3GDtef442XxrbQ+SBPP+CV+ZMex2wfCKC4veUziVUEfJwCfy4ENT25G + +SC9T/skX8llwsVyvRkJ1fWmb+DV+owmSWhvgc2y+g3l3lBCtvHmSpVG3ZG51l5PGgfDcgNMbow/ + 1/M77tE8u/Zv6K+A1uQTmb0PZFg/9XxNC5Q/en9Kuwy6CFbxFBP1+yO7loIPPH53jn6/WS1o/vKV + 2SzV5HHyAwAA//8DAGIYpx+ABQAA headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdedf2b9f1cfd5-SJC + - 8ece18ef1b33cf0a-SJC Connection: - keep-alive Content-Encoding: @@ -3898,14 +3715,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:06 GMT + - Wed, 04 Dec 2024 19:10:37 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=KWoBt4SGNscVLRkwet6JK5XZQ0D7wW7lPLBPmLGEqiw-1733169906-1.0.1.1-SEaGNDdM57N8bV5iljV1.T8JYEgWFw.oYDaqQA6XjzAIvwWS3hjP9nzvx4Xbr0hhcrulwy7gy0oxfpOm.1lAcw; - path=/; expires=Mon, 02-Dec-24 20:35:06 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=1iyXJzI0EvVdvPQTFKFLgwwL0Mk.4bi8d72VD8Y3SVo-1733339437-1.0.1.1-9ZTy3pU0FO5BVP6ybbKvopS5Kx8HQ5eWteveSWnPcF0L0C7K6nmRBKy_xgbHMfi5WL1zpT2TCC5w6tEHxf5eqA; + path=/; expires=Wed, 04-Dec-24 19:40:37 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=GeN6FuCUeR8W4bBN0S2EHuN30v_p7fB2WKtDKWeXhMU-1733169906405-0.0.1.1-604800000; + - _cfuvid=EE9M8OF5ikbT4rWW9eoKQ3e9TPeREaPrgESMitmZVNA-1733339437871-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -3918,7 +3735,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3749" + - "2400" openai-version: - "2020-10-01" strict-transport-security: @@ -3928,15 +3745,15 @@ interactions: x-ratelimit-limit-tokens: - "30000000" x-ratelimit-remaining-requests: - - "9998" + - "9999" x-ratelimit-remaining-tokens: - - "29998531" + - "29998536" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_02de18bd2939c57d7d1836a5bb77b730 + - req_cab7253874e69131a8dc28f8fa23ed74 status: code: 200 message: OK @@ -3946,77 +3763,76 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nd - counterfactual examples are in the\\n\\napplication, although both are derived - from the same optimization problem.100 Grabocka\\n\\net al. 111 have developed - a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves - model robustness via exposure to adversarial examples. While there are\\n\\nconceptual - disparities, we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN\\n\\n----\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nnterfac-\\n\\n\\n + \ 11tual explanations. Unlike the counterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + \ Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via ex\\n\\n----\\n\\nQuestion: Are counterfactuals + actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" headers: accept: - application/json @@ -4025,7 +3841,7 @@ interactions: connection: - keep-alive content-length: - - "6067" + - "6078" content-type: - application/json host: @@ -4055,24 +3871,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUUY8jNQx+76+w8gTStOp2yy7tGz1xEiCBBPfGoNaTeGZyZOIQZ452V/vfUTK9 - tsseEi9V5c/+/H2OPc8zAGWN2oLSPSY9BDf/Dh+O7zY/PH7fPa3vPvz19PTz+/DLb6tf/U8/Uq+q - XMHNR9Lpc9VC8xAcJct+gnUkTJRZ7x7v7+8eNpvlqgADG3K5rAtpvub5arlaz5ffzpcP58KerSZR - W/h9BgDwXH6zRG/oqLawrD5HBhLBjtT2kgSgIrscUShiJaFPqrqCmn0iX1QfDoePwr72z7UHqJWM - w4DxVKst1Oodjz5RbFGnER3QMTj0mN0JYCRAnf9j4whQIPV0Ahm7jiTBwMa2Vp+TE8PAjvToKOdh - Ao0eHKHJkCGxkQzwmDQPJAt4zxGsz7o1VWB95oai+piAW2gcs5k3Ea2HBmO0FOGr3W73NQSKA5Wu - FehX8gWsN1kRTQreKCw9MDZ8PDmrAbU10EUeQxFLZ58XI7nk3I1K7W63W8CH3gpYgYY0jkL/Jp34 - rEB/MpFDb0snb6DP7xovcW6sBpvVTzOWCv7ure7L2HUctUUHLcfc9MbzAnaXJ7C+u30g3aPvSCqQ - MdMIoDElJfFQ7JPv87hBxjwxyp3w7QxD5E/WEIQiTKODbrSmFGY55+FgfD3eRa2qab8iOfqU0/ei - OdK0Z5ta1f6l9ofD4XZNI7WjYL4SPzp3jr9c9t5xFyI3csYv8dZ6K/0+Egr7vOOSOKiCvswA/ij3 - Nb46GRUiDyHtE/9JPhPerdbfTITqetI38P36jCZO6G6Bx031Bcq9oYTWyc2RKo26J3OtvV40jsby - DTC7Mf5Wz5e4J/PWd/+H/gpoTSGR2YdIxurXnq9pkfI377/SLoMugpWcJNGwb63vKIZop89OG/aP - 7UND99Q2SzV7mf0DAAD//wMAY95csn8FAAA= + H4sIAAAAAAAAA4xUTY8TMQy991dYOYHUrtrOLh+9LUhIHECIDwmJQa0n8cwYMnHIR9lqtf8dZdpt + CywSlxz87JfnFzu3EwDFRq1A6R6THrydXaOvmoV99y6+vX6b9Kf3P+wyvDFXL8yHq1ZNS4U030in + +6oLLYO3lFjcHtaBMFFhXTytqqp6flldjcAghmwp63yaXcpsOV9ezubPZvMnh8JeWFNUK/gyAQC4 + Hc8i0Rm6USuYT+8jA8WIHanVMQlABbElojBGjgldUtMTqMUlcqPqzWbzLYqr3W3tAGoV8zBg2NVq + BbV6KdklCi3qlNEC3XiLDkt3ETAQFC1kAHUJYWPpAj72tAMfZMum4Clz4i1BdoZC0WHYdSAt+ECG + 9YHKGYi56ygm+Nmz7qElTDlQBI0OGgK0iQIZSAK6R9cRpJ5ActIy0AW8kgB0g8X6KbAD3dPAMYXd + dJ9e7kTodyaI76VhDW12e9EWuiDZlyqEQSzpbKncc8xny/qQVNSwK28aCaLY3LDltCtdczzaMMZg + wO9F/28ORkDIkdpsIYlYaEfd3iKP7gGGxC1rRlusI2u5I6cJHn2+fv34j8YwFg92IG1LAaxotKX3 + 4rGmmaUt/fFgqcc0dtDl8jaDmHLXPSiAumfaEhiKXLw+uBsvajXdz0YgS9tCv45aAu1nZDGvVe3u + arfZbM5nLFCbI5YRd9naQ/zuOLRWOh+kiQf8GG/ZcezXxWJxZUBjEq9G9G4C8HVcjvzbvCsfZPBp + neQ7uUK4WC4We0J12sczeFEd0CQJ7RlQLS+nD1CuDSVkG882TGnUPZlT7WkdMRuWM2By1vjfeh7i + 3jfPrvsf+hOgNflEZn1arYfSApUP619pR6NHwSruYqJh3bLrKPjA+z+j9eun7ZOGKmqbuZrcTX4B + AAD//wMAEYiLkzwFAAA= headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdedf2bb66aab7-SJC + - 8ece18ef199367dc-SJC Connection: - keep-alive Content-Encoding: @@ -4080,14 +3896,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:07 GMT + - Wed, 04 Dec 2024 19:10:38 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=SVb_CENST7R9CRYDGkPHQOTHRfhXPwgemDF.7SL_vEY-1733169907-1.0.1.1-8poylkWM_ZO3.AK1lWzzlQKEy_3JLT01YoZQOWaTzIFVudhS_e1JeKb8J8jTTFIRe9LJ9I9mOs82uyFjBvYdaw; - path=/; expires=Mon, 02-Dec-24 20:35:07 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=_iCslyrG2JbMAR76yDAY.UK3T8MHfJHMJLrC14D_hfE-1733339438-1.0.1.1-7GXqfVn3OvQj0K7Jbs922f_nW._IzDtJxIfY6SMoLSbw_iti_vBHeAtpzl292KvErs11fUQxjxVUrJaTwMB7Mw; + path=/; expires=Wed, 04-Dec-24 19:40:38 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=PM6oGLL58XG2FXzWXsHz.BAwQ5yn1LDAVhVHWZp3pAo-1733169907194-0.0.1.1-604800000; + - _cfuvid=uU_vtx54NLDpmbLeO4atuqFmM8TW.yzO0MjU_EC2SGE-1733339438318-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -4100,7 +3916,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "4551" + - "2821" openai-version: - "2020-10-01" strict-transport-security: @@ -4112,13 +3928,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998537" + - "29998534" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_6e25d3313608f96d31ca17f5062aa8fa + - req_ae5914da200e09913a54883d853056cf status: code: 200 message: OK @@ -4128,78 +3944,80 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 25-27: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\ny - prediction\\n\\n\\nSmall molecule solubility prediction is a classic cheminformatics - regression challenge and is\\n\\nimportant for chemical process design, drug - design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented - and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) - of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN - model.\\n\\n In this task, counterfactuals are based on equation 6. Figure - 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. - Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the - ester group and other heteroatoms play an important role\\n\\nin solubility. - These findings align with known experimental and basic chemical intuition.134\\n\\nFigure - 4 shows a quantitative measurement of how substructures are contributing to - the pre-\\n\\n\\n\\n 16Figure 2: Descriptor - explanations along with natural language explanation obtained for BBB\\npermeability - of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence - predictions positively and negatively, respectively. Dotted yellow lines show - significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors - show molecule-level proper-\\nties that are important for the prediction. ECFP - and MACCS descriptors indicate which\\nsubstructures influence model predictions. - MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 - with permission from authors. SMARTS annotations for\\nMACCS descriptors were - created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, - Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n - \ 17diction. For example, we see that adding - acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. - Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate - that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes - the molecule less soluble. Although these are established hypotheses, it is - interesting\\n\\nto see they can be derived purely from the data via DL and - XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction - using the RNN model. The\\nchemical space is a 2D projection of the pairwise - Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored - by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 - with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing - XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, - we show how non-local structure-property relationships can be learned with\\n\\nXAI - across multiple molecules. Molecular scent prediction is a multi-label classification - task\\n\\nbecause a molecule can be described by more than one scent. For example, - the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 - \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure - relationship is not very well understood,140 although some relationships are\\n\\nknown. - \ For example, molecules with an ester functional group are often associated - with\\n\\n\\n 18Figure 4: Descriptor explanations - for solubility prediction model. The green and red bars\\nshow descriptors that - influence predictions positively and negatively, respectively. Dotted\\nyellow - lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS - and\\nECFP descriptors indicate which substructures influence model predictions. - MACCS sub-\\nstructures may either be present in the molecule as is or may represent - a modification. ECFP\\nfingerprints are substructures in the molecule that affect - the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. - Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for - MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, - Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg - et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 - scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 - rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, - we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 - and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE - method was modified to account for the multi-label aspect of scent prediction. - This\\n\\nmodification defines molecules that differed from the instance molecule - by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals - of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent - but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 - scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. - \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would - result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 - \\n\\n----\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nng: + machine intelligence approach for drug discovery.\\n\\n Molecular diversity + 2021, 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, + A. D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n \\n\\n----\\n\\nQuestion: Are counterfactuals + actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" headers: accept: - application/json @@ -4208,7 +4026,7 @@ interactions: connection: - keep-alive content-length: - - "6087" + - "6133" content-type: - application/json host: @@ -4238,24 +4056,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUy27bMBC8+ysWPNuG82gevrVFA/RS9NBD0aqwKXIlbUORBHeZxgjy7wUlx1Ye - BXrRgbM7mlnu8GEGoMiqNSjTaTF9dIv3+uL+hr+/u2o/11/69usHl25/4M3lp+g1qnnpCPVvNPLU - tTShjw6Fgh9hk1ALFtaTy7Ozk4vr69W7AeiDRVfa2iiL87A4XZ2eL1ZXi9XFvrELZJDVGn7OAAAe - hm+R6C3eqzWs5k8nPTLrFtX6UASgUnDlRGlmYtFe1PwImuAF/aB6u93+5uAr/1B5gEpx7nuddpVa - Q6W+dQh4bzBFAUtsMjMySIeQGSE0YEL2gqnRRrJ2DOShDw5NdjpBTGjJlFnA4JbnwBENNWS0czto - QgIOLtfkSHagvQU26GXSuISPL/6g0/BzCxKALHqhZlfoB9bS8kIES8pGchp0awHyjcvoDUJMIWIS - QgZHt/imlCXcPBM5B9Np3xayAMiCCdoUcuShpUPBFLSEftTJ1PpBl5c5/OnI4ej5hcn5qzF26CJk - bzGVq9trWRysQEI3eu0o8hK+dcj4iiSmcEcWgTxT20mZiwTowp/DTLQ72DHag24aNFNh5cJy2yIL - +XYcn3S4G4prBD0U6doh1DtoM9lS9vwuJIA2HeEdgkWmhHYy92Wl5uPWJXR4p73BDZuQcNy+60pV - /rHy2+12urwJm8y6ZMdn5/bnj4c0uNDGFGre44fzhjxxt0moOfiy+SwhqgF9nAH8GlKXnwVJxRT6 - KBsJt+gL4cnp1T526hj0KXy5RyWIdhPgfPWEPKPcWBRNjifRVUabDu2x95hznS2FCTCbGH+t5y3u - 0Tz59n/oj4AxGAXt5rgZb5UlLC/hv8oOgx4EK96xYL9pyLeYYqLxMWri5rK5qPEMm3qlZo+zvwAA - AP//AwBmT5tUlQUAAA== + H4sIAAAAAAAAA4xUwW4jNwy9+ysIXfZiB15P4HV8K4Keii3Q7gKLRb2waYkzUqKRBJFjxwjy74U0 + TuxF06KXOfCRj+9R5DxPAJQzag1KWxTdJz/7BVNDv97/9r39/fvx7g+9bA7UP+Tbw2f8U6tpqYj7 + B9LyWnWjY588iYthhHUmFCqsHz81TdPc3TarCvTRkC9lXZLZbZwt5ovb2Xw1my/PhTY6TazW8NcE + AOC5fovEYOhJrWE+fY30xIwdqfVbEoDK0ZeIQmbHgkHU9ALqGIRCVb3b7R44hk143gSAjeKh7zGf + NmoNG/XVEtCTppwEMrWUKWhiQDjG/Aj7E3wj7/GIIjSFL8QWTXZTwGDgm3VCEAOIJfjwubgF7EJk + cRo6CpSxTAliCzoOQSi3qGVAD/SUPIaKMrQxQx896cETf4A07L1jSwZcgHtLvdPo4Yt2RViJLeaL + xQ18tY6Bh64jFgaxKP/ZBDPBnlzoajjmkb4Ir4N6kqLyrAIzpEzG6aq+viJP4WidtuD65B2VhnSq + pDoGdoYKIdYC3PsqM+V4cKZ0dIFdZ4UhZkAvlIuoA3HJquxX7fgG7n+yMUqXUypj8CcYmAxIhCEY + yuXVDdh4BG0xdCOlC2kQ0BjAE9Zc49r6sAJxEB17utgJtgL+dJnlqw3nnZwKoSHt2MUw6/Gx+Ek5 + amImvtmo6bhSmTwdMGjaso6ZxtVabdQmvGzCbre73sxM7cBYDiMM3p/jL2+r7mOXctzzGX+Lty44 + tttMyDGUtWaJSVX0ZQLwo57U8NOVqJRjn2Qr8ZFCIfy4XC1HQnW54it40ZxRiYL+CljN76bvUG4N + CTrPV3epNGpL5lJ7OWIcjItXwOTK+D/1vMc9mneh+z/0F0BrSkJme1mz99Iyld/cv6W9DboKVnxi + oX7butBRTtmNf5o2bT+1yz011O7navIy+RsAAP//AwAkQfaOcgUAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee0199a217ea-SJC + - 8ece1901bd6e67dc-SJC Connection: - keep-alive Content-Encoding: @@ -4263,7 +4081,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:07 GMT + - Wed, 04 Dec 2024 19:10:40 GMT Server: - cloudflare Transfer-Encoding: @@ -4277,7 +4095,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2681" + - "1545" openai-version: - "2020-10-01" strict-transport-security: @@ -4289,13 +4107,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998527" + - "29998528" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_5e7ffa0b862feed0682bbcc04a530cc6 + - req_89a71a84942c6871f727fbffc6ffb726 status: code: 200 message: OK @@ -4305,8 +4123,8 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4384,7 +4202,184 @@ interactions: connection: - keep-alive content-length: - - "6079" + - "6085" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.56.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.56.0 + x-stainless-raw-response: + - "true" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.12.7 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA4yU328bNwzH3/1XEHppB9iB7QvS1G/eUAwFBgxZNqDoPBg8iedjqxMFiefECPK/ + Dzr/TJsCfbkHfsmvPtSRehoBGHZmAca2qLaLfrLEWNHn+ezDP1j9dfd7sL/q8p7//IPau/m9GZcK + qb+Q1WPVlZUuelKWsJdtIlQqrrN3VVVV76+r20HoxJEvZZuok2uZzKfz68n0djK9ORS2wpayWcC/ + IwCAp+FbEIOjR7OA6fgY6Shn3JBZnJIATBJfIgZz5qwY1IzPopWgFAbqp1UAWJncdx2m3cosYGV+ + kz4opQat9ugzYCJwlG3imhxgBi8WPXBJiokUS78ZOIC2BIP5o4I0QI/RIwesPcHyI7z9tPz4y7gY + aEu7owoS/A4QNrylABwKraUr+LslGIycUIYgOhSwZfU7yIpK8NCStpTAvgKMtlCVo8dQ9wp8MOoo + FAG0RQUJVDgLNqomrnulDCpAW/R9OWKADMcOM7xZnn3fwEPLtgXMXzNwU47gDNYTJmjlATjEXqEh + 1D5RLpTeQU1gWwwbcuWcThw3uwFAeo29lr45A3fRc0EplN+2dzaSkNlRKn/lhFVIhvuNSbbs6AC0 + 6dmViwUJA5wKoFdKe8qhabQt05bAcdNQoqCFyUpH+WplxvtBSeRpW3zW2Uqi/cDcrswqPF9OWKKm + z1gGPPTeH+LPp5H1solJ6nzQT/GGA+d2nQizhDKeWSWaQX0eAfw3rEb/YtpNTNJFXat8pVAMZ/PZ + YTfMeRsv5NntQVVR9BdCNT8qLyzXjhTZ54v9MhZtS+5ce15G7B3LhTC6aPx7nte8981z2PyM/Vmw + lqKSW8dEju3Lns9picpz9aO000UPwCbvslK3bjhsyqLz/sVo4vpdc1NTRU09NaPn0f8AAAD//wMA + SmcEqjoFAAA= + headers: + CF-Cache-Status: + - DYNAMIC + CF-RAY: + - 8ece18feecefcf0a-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Wed, 04 Dec 2024 19:10:40 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + access-control-expose-headers: + - X-Request-ID + alt-svc: + - h3=":443"; ma=86400 + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "2118" + openai-version: + - "2020-10-01" + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998531" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b12b2b6d8ddd7ff4d09781c94ccdcdb4 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n + \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\ny + prediction\\n\\n\\nSmall molecule solubility prediction is a classic cheminformatics + regression challenge and is\\n\\nimportant for chemical process design, drug + design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented + and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) + of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN + model.\\n\\n In this task, counterfactuals are based on equation 6. Figure + 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. + Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the + ester group and other heteroatoms play an important role\\n\\nin solubility. + These findings align with known experimental and basic chemical intuition.134\\n\\nFigure + 4 shows a quantitative measurement of how substructures are contributing to + the pre-\\n\\n\\n\\n 16Figure 2: Descriptor + explanations along with natural language explanation obtained for BBB\\npermeability + of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence + predictions positively and negatively, respectively. Dotted yellow lines show + significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors + show molecule-level proper-\\nties that are important for the prediction. ECFP + and MACCS descriptors indicate which\\nsubstructures influence model predictions. + MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 + with permission from authors. SMARTS annotations for\\nMACCS descriptors were + created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, + Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n + \ 17diction. For example, we see that adding + acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. + Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate + that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes + the molecule less soluble. Although these are established hypotheses, it is + interesting\\n\\nto see they can be derived purely from the data via DL and + XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction + using the RNN model. The\\nchemical space is a 2D projection of the pairwise + Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored + by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 + with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing + XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, + we show how non-local structure-property relationships can be learned with\\n\\nXAI + across multiple molecules. Molecular scent prediction is a multi-label classification + task\\n\\nbecause a molecule can be described by more than one scent. For example, + the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 + \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure + relationship is not very well understood,140 although some relationships are\\n\\nknown. + \ For example, molecules with an ester functional group are often associated + with\\n\\n\\n 18Figure 4: Descriptor explanations + for solubility prediction model. The green and red bars\\nshow descriptors that + influence predictions positively and negatively, respectively. Dotted\\nyellow + lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS + and\\nECFP descriptors indicate which substructures influence model predictions. + MACCS sub-\\nstructures may either be present in the molecule as is or may represent + a modification. ECFP\\nfingerprints are substructures in the molecule that affect + the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. + Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for + MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, + Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg + et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 + scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 + rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, + we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 + and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE + method was modified to account for the multi-label aspect of scent prediction. + This\\n\\nmodification defines molecules that differed from the instance molecule + by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals + of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent + but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 + scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. + \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would + result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 + \\n\\n----\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6093" content-type: - application/json host: @@ -4414,24 +4409,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4yUTW8cNwyG7/srCF3SALvG2k7sZG+LAi1yKIoAQWAjU+xyJM4MHY2kipy1F4b/ - e6DZT7cp0Msc9JIvH2pIPU8ADDuzAGM7VNsnP1vizdNvX5fzx7vNH8Pv7VL+pId7ufuM6fPf92Za - MmL9QFYPWRc29smTcgw72WZCpeJ6eXt9fXnz8eP8/Sj00ZEvaW3S2bs4u5pfvZvNP8zmN/vELrIl - MQv4NgEAeB6/BTE4ejILmE8PJz2JYEtmcQwCMDn6cmJQhEUxqJmeRBuDUhip1+v1g8RQhecqAFRG - hr7HvK3MAirzaxyCUm7Q6oBeADOBI7GZa3KAAj5a9MAlKGVSLI0LcADtCMYqTwqxAXpKHjlg7QmW - n+CXu+Wnt1PoCQOHtgRvDyEgiSw3bIFD4bYkF/ClIxitXCSBEHWMZsvqtyCKSvDYkXaUwf4EGW3h - KsWnUA8KvDfqKRQBtEOFGKiQFnBUzVwPSgIagTboh1JiJAyHHgXenPm+gceObQco3wW4KSVYwHrC - DF18BA5pUGgIdcgkhdI7qAlsh6ElV+r00XGzHQHioGnQ0jcLcJ88F5RC+c/2TkYxCDvK5b8csQrJ - eLkpxw072gO1A7tysxDDCKcR0CvlHeXYNNqOaUPguGkoU9DCZGNPclGZ6W5UMnnaFJ+V2JhpNzIf - KlOFlyqs1+vzicvUDIJl4MPg/f785TjCPrYpx1r2+vG84cDSrTKhxFDGVTQmM6ovE4C/xlUZXk2/ - STn2SVcav1MohpdX89udoTlt5yt5r2pU9GfC9dUh75XlypEieznbN2PRduROuaflxMFxPBMmZ43/ - m+dn3rvmObT/x/4kWEtJya1SJsf2dc+nsEzl+fqvsONFj8BGtqLUrxoObdl33r0gTVrdNjc1XVNT - z83kZfIDAAD//wMAyyHv60oFAAA= + H4sIAAAAAAAAA4xUy27rNhDd+ysGXMuBE7nJjXdFgAJFCrQFsihaFzZNjaS5lxqynGESI8i/F5Qd + W7lJgW644JnXOfN4mQEYaswKjOutuiH6+Y821s3zrz/d/X5H9e2fj3/Q9Q8Pl/f/3P92/8utqYpH + 2H1Fp29eFy4M0aNS4APsElrFEvXypq7r+nZZ34zAEBr0xa2LOl+G+dXiajlffJkvro+OfSCHYlbw + 1wwA4GV8S4nc4LNZwaJ6+xlQxHZoVicjAJOCLz/GipCoZTXVGXSBFXmservdfpXAa35ZM8DaSB4G + m/Zrs4K1eegR8NlhigoNicsiKKA9QhaE0IILmRVTa51m6wWIYQgeXfY2QUzYkCtawMhWKpCIjlpy + 1vs9tCGBBJ935En3YLkBccg6cbyAu+8y2DQmb0ADUIOs1O5BNGWnOVlfMo0Jincp1SoQtz4jO5xk + q0Cy68EKuN5yV1gFQFFM0KWQo4zl9KiYgtUwSAVPPRUPTx3DE2kP3zg8Mbgeh0IIiDXToeif+QOT + 6oNWPfoImRtMpT9H7vM3KggJ/YFFT1Fgtz/RJe6mjE8EClfbtuj0mN350v03NS7goUcpDbVlRgUk + dx2KHhy/ry6m8EgNArFQ12tprQbow9Okwe+1dpYnUp+ZSwXEzWjGXRkeShBDmT+yHuxoY48zQAxd + pqYYnnRtUIrkRaKzWlMNcB5TiJh0/16zi7WpDkOd0OOjZYcbcSHhYbhv12bNr2vebrfT3UjYZrFl + NTl7f/x/PS2bD11MYSdH/PTfEpP0m4RWApfFEg3RjOjrDODvcanzuz01MYUh6kbDN+QS8PLqS30I + aM53ZALXyyOqQa2fAMvLm+qTkJsG1ZKXyWUwzroem7Pv+YzY3FCYALMJ8Y/1fBb7QJ64+z/hz4Bz + GBWbzXlkPjNLWA7tf5mdhB4LNrIXxWHTEneYYqLDrWvj5qa93mGN7W5hZq+zfwEAAP//AwDM+t64 + 9AUAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee01af919440-SJC + - 8ece18fd0ecc232b-SJC Connection: - keep-alive Content-Encoding: @@ -4439,7 +4435,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:08 GMT + - Wed, 04 Dec 2024 19:10:41 GMT Server: - cloudflare Transfer-Encoding: @@ -4453,7 +4449,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3419" + - "3566" openai-version: - "2020-10-01" strict-transport-security: @@ -4465,13 +4461,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998532" + - "29998526" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_13af58d6dcdcbdce5597d16a6a644e9c + - req_de5e47bba69ef7127108e96a533118c6 status: code: 200 message: OK @@ -4481,80 +4477,78 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 25-27: Geemi P. Wellawatte, Heta + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nng: - machine intelligence approach for drug discovery.\\n\\n Molecular diversity - 2021, 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, - A. D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n \\n\\n----\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n----\\n\\nody,\u2019 + \u2018floral\u2019 and \u2018herbal\u2019 scents.\\n\\n\\n\\n\\n\\nFigure 5: + \ Counterfactual for the 2,4 decadienal molecule. The counterfactual indicates\\nstructural + changes to ethyl benzoate that would result in the model predicting the molecule\\nto + not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between + the counterfactual and\\n2,4 decadienal is also provided. Republished with permission + from authors.31\\n\\n\\n The molecule 2,4-decadienal, which is known to have + a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure 5.142,143 The resulting + counterfactual, which has a shorter carbon chain and no carbonyl\\n\\ngroups, + highlights the influence of these structural features on the \u2018fatty\u2019 + scent of 2,4 deca-\\n\\ndienal. To generalize to other molecules, Seshadri et + al. 31 applied the descriptor attribution\\n\\nmethod to obtain global explanations + for the scents. The global explanation for the \u2018fatty\u2019\\n\\nscent + was generated by gathering chemical spaces around many \u2018fatty\u2019 scented + molecules.\\n\\nThe resulting natural language explanation is: \u201CThe molecular + property \u201Cfatty scent\u201D can\\n\\nbe explained by the presence of a + heptanyl fragment, two CH2 groups separated by four\\n\\n 20bonds, + and a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + importance of a heptanyl fragment aligns with that reported in the literature, + as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, + the importance of a C=O dou-\\n\\nble bond is supported by the findings reported + by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, + they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 + For the \u2018pineapple\u2019 scent, the following natural language explanation + was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D + can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether + O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 + Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple + volatile compounds.146,147 The combination of a C=O double bond with an ether + could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, + which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe + have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 + and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels + whose input is a molecule. These two methods can be applied for both classification\\n\\nand + regression tasks. Note that the \u201Ccorrectness\u201D of the explanations + strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular + counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith + contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 + of ECFP4 fingreprints97 as distance, although this should be explored in the + future.\\n\\nCounterfactual explanations are useful because they are represented + as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. + A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, + MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method + developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate + model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough + we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, + we show that natural language combined with chemical descriptor attributions + can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility + of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. + Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to + analyze the structure-property relationships\\n\\nof scent. They recovered known + structure-property relationships for molecular scent purely\\n\\nfrom explanations, + demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand + then explain it.\\n\\n Choosing among the plethora of XAI methods described + here is still an open question.\\n\\nIt remains to be seen if there will ever + be a consensus benchmark, since this field sits on\\n\\nthe intersection of + human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes + an explanation?). Our current advice is to consider first the audience \u2013 + domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations + should accomplish. Are\\n\\nthey meant to inform data selection or model building, + how a prediction is used, or how the\\n\\nfeatures can be changed to affect + the outcome. The second consideration is what access you\\n\\nhave to the underlying + model. The ability to have model derivatives or propagate gradients\\n\\nto + the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trus\\n\\n----\\n\\nQuestion: Are counterfactuals actionable? + [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-08-06\",\"stream\":false,\"temperature\":0.0}" headers: accept: - application/json @@ -4563,7 +4557,7 @@ interactions: connection: - keep-alive content-length: - - "6127" + - "6124" content-type: - application/json host: @@ -4593,24 +4587,23 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW/bOBC9+1cMeOlFDhwn6zi+dbtAT3tpAnTRVWGPqJHIhCIJzsgfDfLfF5Sc - 2G3TYi8CNG/mzZsvPk0AlK3VCpQ2KLqLbvoeF/uPzX5x//6j/MV/3pl/btpPX7bXn/TtrlJFjgjV - A2l5ibrQoYuOxAY/wjoRCmXWy5urq8vF7e1sMQBdqMnlsDbK9DpM57P59XS2nM4Wx0ATrCZWK/h3 - AgDwNHyzRF/TXq1gVrxYOmLGltTq1QlApeCyRSGzZUEvqjiBOnghP6jebDYPHHzpn0oPUCruuw7T - oVQrKNW9IaC9phQFEjWUyGtiQNiF9AjVAT6Tc7hDESrgjthgnWwB6Gv4bKwQBA/v/s6VArY+sFgN - LXlKmDsEoQEdei+UGtTSowPaR4d+QBmakKALjnTviN9B7Ctn2VAN1sMHQ53V6OBO2ywq2+az+fwC - 7o1l4L5tiYVBDMpvk2Ai6HkkFUMwtGYvWdsxNyaIiWqrB83D3LiAnbHagO2is5TT0GGgwsELKzco - iilsbW19C9azbY0whATohFLOvyXOXjVpyzb4aYeP2TemoImZ+AI+fKd8VCuHmCt3h1G3BOh9TSkP - uQYTdqAN+naktj72AltMNkti0OjBEQ5RtW2GiQqEXnToiAs4KhBD3Q+lYP3Qs2QwJAhRbGe/5b8X - 8QwVZjkvLTrrGV+Uqhi3K5GjLXpNa9Yh0bhly1KV/rn0m83mfEkTNT1jvhHfO3e0P79uvQttTKHi - I/5qb6y3bNaJkIPPG84SohrQ5wnA1+G6+u8ORsUUuihrCY/kM+HlYnk1EqrTQZ/B8z+OqARBdwYs - Z8viDcp1TYLW8dmJKo3aUH2KPd0z9rUNZ8DkrPCf9bzFPRZvfft/6E+A1hSF6vVpdG+5Jcov3q/c - Xhs9CFZ8YKFu3VjfUorJjo9OE9c3zaKiK2qqmZo8T/4DAAD//wMA3UldLH0FAAA= + H4sIAAAAAAAAA4xUu27bQBDs9RWLqyVDNh0/1BlGilRpnCIIA2l5tyTPvhdul4oVw/8eHCWLMuIA + aVjszO7N7IMvMwBljVqB0j2K9skt7jBVzf3Nne4/V9vd9uH39ddv1uT2y833DtW8ZMTmkbS8ZZ3p + 6JMjsTHsYZ0JhUrV8+uqqqrby+rTCPhoyJW0LsniMi4ulheXi+XNYnl1SOyj1cRqBT9mAAAv47dI + DIae1QqW87eIJ2bsSK2OJACVoysRhcyWBYOo+QTqGITCqHqz2TxyDHV4qQNArXjwHvOuViuo1X0c + glBuUcuADug5OQxY3DFgJjDEOtuGDCAD6gJg4whsAOkJhJ7lDB562o3sTCkTU5A9X/fkrUYHLHnQ + MmTiOfzqre5HdoveOosZJIKJHm0o71MWngMGM3I4YWaag8cnG7rypoeBqR0ctDHDEAzlYt4UtCSl + WHxbdG4H6IRyAXx0pAeHGVKO5QVLPMoeDQD51CPb38QgPQrod01h6HFLgOBtsB4dmLHdmqDN0QNC + g0xvTxA0g0CKzMQMZQoZWYqGYzMmCW/N0BigIXC0pYwdmdIQG9qYPegeQ0dc+j2ZMMS2CxCLHTJ2 + nArEQXT0xGe1mu8HncnRtghds46Z9gO/rVUdXuuw2WxO9yVTOzCWdQ2Dc4f463EBXexSjg0f8GO8 + tcFyv86EHENZNpaY1Ii+zgB+jos+vNtdlXL0SdYSnyiUgufVstoXVNNtTfDt9QGUKOhO0i6XhwN5 + X3FtSNA6PjkWpVH3ZKbc6bJwMDaeALMT33/L+aj23rsN3f+UnwCtKQmZ9TTBj2iZyr/nX7Rjn0fB + incs5NetDR3llO3+/Nu0vm6vGqqobZZq9jr7AwAA//8DAGl9tw0HBQAA headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee0c1e7ccfd5-SJC + - 8ece18ef1c05f96f-SJC Connection: - keep-alive Content-Encoding: @@ -4618,9 +4611,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:08 GMT + - Wed, 04 Dec 2024 19:10:42 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=lgwkxQg7eUMnNuSG.Gpe3.DfWqAWRmSbrUMljhGGnAI-1733339442-1.0.1.1-nPd.JpxvhRR28MaDPvrSwJzMaNIeFQbDe_cZcdTzkYTaA1GbUTOmG4xrVyxdbMGrxYjR5R9jGiu7lOhN46zNQA; + path=/; expires=Wed, 04-Dec-24 19:40:42 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=GsuFI_leHoDKEpuQFJKBN3sPQ5B7LB2nCNTq52IAxSU-1733339442026-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked X-Content-Type-Options: @@ -4632,7 +4631,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "1982" + - "6538" openai-version: - "2020-10-01" strict-transport-security: @@ -4644,13 +4643,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998529" + - "29998521" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_a021d69f7bbc375514506607495ade9c + - req_302448951e89c4e54f6921ba9a77e6c8 status: code: 200 message: OK @@ -4660,8 +4659,8 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 5-7: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4741,7 +4740,7 @@ interactions: connection: - keep-alive content-length: - - "6088" + - "6094" content-type: - application/json host: @@ -4771,24 +4770,23 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUwW7bOBC9+ysGvPQiB44T2I1veyjQAkUvaU+rhT2iRiIbashyyNTeIP++oOTE - KpoCe9GBb97Te9QbPS0AlG3VDpQ2mPQQ3PIv3Bw/fjL5fs0P95++fvm8Xa/XH1Jz++PH1qqqMHzz - nXR6YV1pPwRHyXqeYB0JExXV6+3NzfXm7m61HYHBt+QKrQ9peeuX69X6drl6v1xtzkTjrSZRO/h7 - AQDwND6LRW7pqHawql5OBhLBntTudQhARe/KiUIRKwk5qeoCas+JeHR9OBy+i+ean2oGqJXkYcB4 - qtUOavXVENBRUwwJWis6i5BAa7uOInECOgaHjCUuDJSMbwU6H2HwjnR2GCFEaq2eBkpiqcDY3jjb - m2S5h2QwgfaZE8UOdcroBDASaM9iW4rUwruGUqL4bv46gYY0ZiFIhk4jA8fXYOMIkFuQgFHoCr6x - sw8E9waDoxM8osskFfw0VpuRx56X0/DIY59mUtVv5kL0j7YlQBBK4DvoCFOOJOcsyKANcj86A5+T - 9gNVMODDlJeGmfwVlCtOdExAQzAo9t8XISpOcbykX3JbKfrOEfcFazNB8kXXRpA8ttE+EvBoqgLL - ncvEmlpoTmDygAwli48yxsUQnNXTJxRNjNF6uapVNdUhkqNHZE170T7SVIu7WtX8XPPhcJi3KlKX - BUupOTt3Pn9+ranzfYi+kTP+et5ZtmL2kVA8l0pK8kGN6PMC4J9xHfIvDVch+iGkffIPxEXwer16 - PwmqywbO4NXmjCaf0M2Am+vb6g3JfUsJrZPZTimN2lB74V4WEHNr/QxYzIL/7uct7Sm85f7/yF8A - rSkkaveXLXtrLFIpxZ/GXi96NKzkJImGfWe5pxiinf4SXdhvu01DN9Q1K7V4XvwHAAD//wMAr6rn - bi4FAAA= + H4sIAAAAAAAAA4xUwW7bMAy95ysIXXpJiiQO2i23njZgGLC1BQZsHhJGpi21sqSJdJes6L8PstMk + 3TpggOEDH/nI90z6cQSgbKWWoLRB0W10kyuMRfPu+jq8Ka5vivfu6uvHH9eL3ecPXz5tL9U4V4TN + HWl5rjrXoY2OxAY/wDoRCmXW2WVRFMXbxWLaA22oyOWyJspkESbz6Xwxmb6ZTC/2hSZYTayW8G0E + APDYv/OIvqKtWkJP00daYsaG1PKQBKBScDmikNmyoBc1PoI6eCHfT71er+84+NI/lh6gVNy1LaZd + qZZQqltDQFtNKQpUlnXHTAyVrWtK5AVoGx16zHKhJTGhYqhDgjY40p3DBDFRZfWQkBXzGIxtjLON + EesbEIMCOnReKNWopUPHgIlAB8+2okQVnG1IhNLZaTuGDWnsmEAM7foK7NvgxhGgr4AjJqZzuDWW + IT8+c0pCFpAANwajox08oOuIx/DTWG16Hh/kBRcPLarQIzGFB1sRIDAJhBpqQukS8V6KQd/0Q0Ho + RIe2n4BAaCtAbTTI9tch+Q/dIft62tt6zkbxGFq8H+yiFjC7WlPK3gxr0pv+wp2slpLgXjVthc9L + NR6+cSJHD+g1rViHRMO3nk1LVfqn0q/X69NdSVR3jHlVfefcPv50WD4XmpjChvf4IV5bb9msEiEH + nxeNJUTVo08jgO/9kncv9lbFFNooKwn35DPhbD6bDYTqeFcn8PQZlSDoToBiNh+/QrmqSNA6PrkU + pVEbqo61x7PCrrLhBBidCP97nte4B/HWN/9DfwS0pihUrY6381paovzj+Vfaweh+YMU7FmpXtfUN + pZjscPt1XF3WFxsqqN5M1ehp9BsAAP//AwBWxmfKBAUAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee112c91aab7-SJC + - 8ece190cc9d267dc-SJC Connection: - keep-alive Content-Encoding: @@ -4796,7 +4794,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:09 GMT + - Wed, 04 Dec 2024 19:10:42 GMT Server: - cloudflare Transfer-Encoding: @@ -4810,7 +4808,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2392" + - "2653" openai-version: - "2020-10-01" strict-transport-security: @@ -4822,13 +4820,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998531" + - "29998530" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_77c12b54e952683019fb8e84c5eb144e + - req_4a9ee843fecd7545f24265573ca577f5 status: code: 200 message: OK @@ -4838,8 +4836,8 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4920,7 +4918,7 @@ interactions: connection: - keep-alive content-length: - - "6119" + - "6125" content-type: - application/json host: @@ -4950,25 +4948,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3xUTW/bOBC9+1cMeOkGsA0lTpTEtwLFbtqi2EW3RYtWhUGTI5ENRQqcUWJvkP9e - kHJsuWn3IkDz5uO94cw8TACE1WIJQhnJqu3c7KUsN68///0xvDGvjLko/3z3Jfjrt4vzmzdeimmK - COvvqPgpaq5C2zlkG/wAq4iSMWU9vVwsTsvr6+IqA23Q6FJY0/HsPMzOirPzWXE1K8pdoAlWIYkl - fJ0AADzkb6LoNW7EEorpk6VFItmgWO6dAEQMLlmEJLLE0rOYHkAVPKPPrB8qD1AJ6ttWxm0lllCJ - DwYBNwpjxxCxxoheIQHhHUbp4D7EW4KILikDDqBC7xljLRX30gFuOie9TE0gkF4DG7QREiOwHkhZ - 9GxrqzLosJEOMqMN0xz+7VAlUDq3nYJlaJN3SnVTVZUItcP4gjIJCB6U7Ek6sH5HE9aSUGfkiBXB - H2dFcXGSa34KQd/LqPPPjWVlVFC3LwikylEQ6r2KELfQoE/K7X87UT1Z3/yywOJkDi+1tslvUPAe - e3bWN5m1tqR6Iht8YsgGf+4dG0wFQz1u06ihqchpuVMhlWGMgAzSzcc9+Z/3sE9lc79TIdlzaPNT - alSW9q/216t/3udylycgI4IPjHoOHwwSHo1F3zRIDGwkP+tJCuxpGJMuhjur8fl8WE+2MUxTuDdW - GbBt5yxSIroFJT2sEaTKLV0PM9R7jTGNtU4PkXI8cZ+18jbZuhgUEiHNKzEdZjyiwzvpFa5IhYjD - rF9VovKP4+WIWKeREkvwvXM7++N+21xouhjWtMP39tp6S2YVUVLwabOIQycy+jgB+Ja3uj9aVNHF - 0Ha84nCLPiU8La/Ph4TicEhG8EW5QzmwdCPg6mJ3Do5TrjSytI5Gp0EoqQzqcdJFuRche23DASsm - I+3PKf0q/aDf+maU5bfpD4BS2DHqVRdRW3Us++AWMR3b37nte50JC9oSY7uq8+510Q73ru5Wl3W5 - xgXW60JMHic/AAAA//8DAGDHo0T4BQAA + H4sIAAAAAAAAA4xUTW8bOQy9+1cQOhRbwDac2M6Hb10E2O5hg8WiRbfYKWxZ4syw0VADiePEDfLf + C2kce9Iv7EUHPvHx8YnU4whAkVUrUKbWYprWTd7odl79xf/eLu1+Yc9uzm9uf7fL6/nHP2/ff1Tj + lOG3n9HIc9bU+KZ1KOS5h01ALZhYzy7n8/n8erGYZaDxFl1Kq1qZLPzkfHa+mMyuJrOLQ2LtyWBU + K/hvBADwmM8kkS0+qBVkmhxpMEZdoVodLwGo4F2KKB0jRdEsanwCjWdBzqo3m83n6Lngx4IBChW7 + ptFhX6gVFOpdjYAPBkMrELDEgGwwQsQdBu3g3oe7CAFdahHEg/EdC4ZSG+m0A3xonWad3Iig2YLU + SAGSNCCGaAhZqCSTQYeVdpClPUicwq0XvXX7MZBAky4mlg/a1IIBUEC7Kfx2Pju7fA2WouliJK5+ + KYE4KXguAb4E3YlvsnqLhuJQKPxx8/c/Y4hdVWGURC21lm/4IxjN0Aa/I4svi92T1L5Lvu1Quz4/ + tS0Y+OAdcRWzCsjTMIU31lLK1i71/bYoCuVLhyH1OVu+ztI+eG/vdbDwCt6SmNp4c5fx+dEHMLqL + 2gHx4cly4rM6H/ZQIacXpC8HsVsd0YLnb9sbA7Elow/9p9frYn68ji2GNFg2u54KJqpcqfcjxYeO + TOFdjRGHg0RN6/Y/93WLqVqeLIuBdgjaZHu2eYAiVbVE2O77MsSpYu3vwdSaK8zvTdx2mdylAdM9 + F5VZgYDvxPgG47RQ4378AzrcaTa4jsYH7NfgqlAFPxW82WyGWxSwTDarFXDn3CH+dFxL56s2+G08 + 4Md4SUyxXgfU0XNawSi+VRl9GgF8yuvfvdho1QbftLIWf4ecCM8uri97QnX6cQbw8uqAihftBsDV + cjn+AeXaomhycfCHKKNNjfaUe/pwdGfJD4DRoPHv9fyIu2+euPo/9CfAGGwF7boNaMm87Pl0LWD6 + kn927Wh0FqziPgo265K4wtAG6n/Fsl1flhdbnGO5nanR0+grAAAA//8DAGWgBZceBgAA headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee13daea17ea-SJC + - 8ece190d2ac4cf0a-SJC Connection: - keep-alive Content-Encoding: @@ -4976,7 +4974,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:10 GMT + - Wed, 04 Dec 2024 19:10:43 GMT Server: - cloudflare Transfer-Encoding: @@ -4990,7 +4988,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2332" + - "3008" openai-version: - "2020-10-01" strict-transport-security: @@ -5008,7 +5006,7 @@ interactions: x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_d0035d9506c4c0203a96a235369cdf3a + - req_f2eb989ee8bbbecddab7ca87fda087a0 status: code: 200 message: OK @@ -5018,8 +5016,8 @@ interactions: the relevant information that could help answer the question based on the excerpt. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": \\\"...\\\",\\n \ \\\"relevance_score\\\": \\\"...\\\"\\n}\\n\\nwhere `summary` is relevant - information from text - about 100 words words and `relevance_score` is the relevance - of `summary` to answer question (out of 10).\\n\"},{\"role\":\"user\",\"content\":\"Excerpt + information from the text - about 100 words words. `relevance_score` is an integer + 1-10 for the relevance of `summary` to the question.\\n\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -5099,7 +5097,7 @@ interactions: connection: - keep-alive content-length: - - "6107" + - "6113" content-type: - application/json host: @@ -5129,25 +5127,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW8bNxC961cMeEkCSIYku4qimxEHiIEARVAf0kSFQJGjJWMuyc4MbS0M//eC - u7KkIi7Qyx7mzXt887VPIwDlrVqBMk6LaXOYXOvF/taU3//uuj/k67cbXP756frj3aevt9+3H9W4 - MtL2Jxp5YV2Y1OaA4lMcYEOoBavq7P3l5Wzx4cN02QNtshgqrckyuUqT+XR+NZkuJ9PFgeiSN8hq - BT9GAABP/bdajBb3agXT8UukRWbdoFodkwAUpVAjSjN7Fh1FjU+gSVEw9q6f1hFgrbi0raZurVaw - VncOQZN4ExCsZ1OYkUEcQmGEtAPc56B91NswJO688TqAj4Ih+AajQXj77fr2HfgIxmHrWagbQ+5V - S9AUOtglU9jHBlKEFsUlyxD8PQ4EowOYVKIg7bSRogODjhYssiGfJdHgIurabAZJ/fOUCQUsYoaA - mmLVf3vz5R30/eYLuHPIeHxP+7YyM6UHbxF8ZN844SqVgIWKkUI4yZQyknRAGIb3nM+Dn0Mr4OYL - ZELrTQ+P4dF540BT7ZdgBEaMoBnebIM295Nt2r85eAJbsJoQh55gWKA9aDLOC/bv966PE+HSNMhS - B6IFSrRIdcC2lip9dWdGwOgITanFuS6nHj8Yj1wIXzxUozHJqWmcC/lUGEyiY9UX8Dk94gPSGLyA - Tcg9qfbAGy+hAxYtCI8OxSH9OkBC0L2xujoXazUeto8w4IOOBjdsEuGwhYu1Wsfn87Ul3BXW9Wpi - CeEQfz7eQUhNprTlA36M73z07DaEmlOsO8+SsurR5xHAX/29lX+dkMqU2iwbSfcYq+BsPr8aBNXp - xM/h2QGVJDqcAZdXv41fkdxYFO0Dnx2tMto4tCfu6cJ1sT6dAaOzwn/185r2ULyPzf+RPwHGYBa0 - m9NGvZZGWP+B/5V2bHRvWHHHgu1m52NTr9UPv6Fd3iwvZzhdvLfLuRo9j/4BAAD//wMAMkcUxY8F - AAA= + H4sIAAAAAAAAA4xUTW8bNxC961cMeEkCSIa+YKe6ufAlTZBTUBioCoHizi6n5pLszNCxYPi/F9yV + JblJgV544Jt58+bzeQJgqDEbMM5bdX0Os1ubV/63O8l3n3/9Ksvfl4vP/WqR2ni4//q3mVaPtP8L + nb56XbnU54BKKY6wY7SKlXVxs1qtVr+s14sB6FODobp1WWfrNFvOl+vZ/ONsfn109IkcitnAHxMA + gOfhrRJjg09mA/Pp60+PIrZDszkZARhOof4YK0KiNqqZnkGXomIcVD9vI8DWSOl7y4et2cDWfPMI + lpVcQGhIXBFBAfUIRRBSC/iUg6Vo92E0bMmRDUBRMQTqMDqE9/e3nz4ARXAeexLlwxTa5IpQ7CBF + 6FF9agQCPeBo42wAl0pU5NY6LTYI2NhAg+KYsiYeA0db6yugaYjImVGhQcwQ0HKs/O/vvnyAocRy + Bd88Cp7iWeqrZ+b0SA0CRaHOq1SqBKJcnBbGWeaUkfUAjGGM5ymPeo7Zw90XyIwNuQGewndPzoPl + WiLFCIIYwQq82wfrHmb79PQOmoI1unokhnFYnsCy86Q4BB7kguKTgpSuQ9Faeatwf/vpNYcpUHSh + NDXTfxVsCs5G8BgylOjSI/LQNx5SsAFhj55i81Z4bx8qlXrsoU+MUGKDXKemGVscG1Auot8Tqz9U + iSRAfQ6ER3U/9I0R7MA/MgzjczhV/W0fBwIboSsV84ectLbsWO0ohfHYzIE3Jj13WnJhSkXAJT61 + 6mprpuNcMwZ8tNHhTlxiHOf749Zs48vlQjC2RWzdx1hCOP6/nDYspC5z2ssRP/23FEn8jtFKinWb + RFM2A/oyAfhz2OTyZjlN5tRn3Wl6wFgJF8vlzUhozsfjAl4fF91oUhsugNX1q98byl2DainIxTkw + zjqPzdn3fDtsaShdAJOLxH/U8zPuMXmK3f+hPwPOYVZsdudB/JkZY72u/2V2KvQg2MhBFPtdS7Gr + R4HGA9fm3U17vccVtvu5mbxM/gEAAP//AwAWRAQb6QUAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee189ba19440-SJC + - 8ece19142abe232b-SJC Connection: - keep-alive Content-Encoding: @@ -5155,7 +5153,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:11 GMT + - Wed, 04 Dec 2024 19:10:44 GMT Server: - cloudflare Transfer-Encoding: @@ -5169,7 +5167,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2309" + - "3021" openai-version: - "2020-10-01" strict-transport-security: @@ -5181,13 +5179,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998526" + - "29998525" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_2ce78e12766d2800bd0978a834c15ff7 + - req_2f67246a4b25befca0b5e74154ac5ed8 status: code: 200 message: OK @@ -5200,10 +5198,10 @@ interactions: pages 12-14: Counterfactual explanations are indeed actionable. They provide intuitive understanding of predictions and suggest which features can be altered to change the outcome. For example, in chemistry, changing a hydrophobic functional - group in a molecule to a hydrophilic group to increase solubility is an actionable - insight derived from counterfactuals. This actionability is a key aspect of - counterfactual explanations, as it allows for local, instance-level changes - that can directly influence the prediction outcome.\nFrom Geemi P. Wellawatte, + group in a molecule to a hydrophilic group can increase solubility. This actionability + makes counterfactuals a useful tool for explainable artificial intelligence + (XAI) in chemistry, as they offer local, instance-level explanations that can + guide modifications to achieve desired outcomes.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon @@ -5218,41 +5216,42 @@ interactions: Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon - pages 16-20: The excerpt discusses the use of counterfactuals in molecular prediction - models, specifically for solubility and scent prediction. Counterfactuals are - used to identify modifications in molecular structures that influence properties - like solubility and scent. For solubility, changes to ester groups and heteroatoms - are significant, while for scent prediction, counterfactuals help understand - scent-structure relationships. These counterfactuals provide insights into how - structural changes can affect predictions, suggesting that they can be actionable - by guiding modifications to achieve desired properties.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon - pages 20-22: Counterfactual explanations are described as actionable in the - context of molecular prediction models. They are represented as chemical structures, - which are familiar to domain experts, and are sparse, making them useful for - understanding and potentially altering chemical properties. The text highlights - that counterfactuals have a minimal distance from a base molecule but possess - contrasting chemical properties, making them actionable for domain experts who - can use these insights to modify molecular structures to achieve desired outcomes.\nFrom + pages 5-7: The excerpt discusses different explanation methods for molecular + prediction models, highlighting that counterfactuals are considered ''better'' + explanations because they are actionable and sparse. This is in contrast to + Shapley values, which are not actionable as they do not provide a set of features + that change the outcome. The text emphasizes that counterfactuals offer actionable + insights, making them a preferred choice for explanations in certain contexts.\nFrom + Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A + perspective on explanations of molecular prediction models. ChemRxiv, Unknown + year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon pages 16-20: + The excerpt discusses the use of counterfactuals in molecular prediction models, + specifically for solubility and scent prediction. Counterfactuals are used to + identify structural modifications that influence solubility, such as changes + to ester groups and heteroatoms, which align with known chemical intuition. + In scent prediction, counterfactuals help understand scent-structure relationships + by identifying structural changes that affect scent classification. These examples + suggest that counterfactuals provide insights into how molecular modifications + can influence predictions, indicating their potential actionability in guiding + chemical design and understanding structure-property relationships.\nFrom Geemi + P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: + https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon pages 20-22: + Counterfactual explanations are described as actionable in the text. They are + represented as chemical structures, which are familiar to domain experts, and + are sparse, making them useful for understanding and potentially altering molecular + properties. The text emphasizes that counterfactuals have a minimal distance + from a base molecule but possess contrasting chemical properties, which can + be leveraged to inform changes in molecular design or prediction outcomes.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\nwellawatteUnknownyearaperspectiveon pages 5-7: - The excerpt discusses different explanation methods for molecular prediction - models, highlighting that counterfactuals are considered ''better'' explanations - because they are actionable and sparse. Unlike Shapley values, which are non-sparse - and not actionable, counterfactuals provide a set of features that can change - the outcome, making them actionable. The text emphasizes that evaluating explanations - is challenging due to their subjective nature, influenced by human factors and - application scenarios.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, - and Andrew D. White. A perspective on explanations of molecular prediction models. - ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nValid Keys: wellawatteUnknownyearaperspectiveon pages 12-14, wellawatteUnknownyearaperspectiveon pages 14-16, wellawatteUnknownyearaperspectiveon - pages 16-20, wellawatteUnknownyearaperspectiveon pages 20-22, wellawatteUnknownyearaperspectiveon - pages 5-7\n\n----\n\nQuestion: Are counterfactuals actionable? [yes/no]\n\nWrite + pages 5-7, wellawatteUnknownyearaperspectiveon pages 16-20, wellawatteUnknownyearaperspectiveon + pages 20-22\n\n----\n\nQuestion: Are counterfactuals actionable? [yes/no]\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the end of sentences, like (Example2012Example @@ -5270,7 +5269,7 @@ interactions: connection: - keep-alive content-length: - - "5830" + - "5808" content-type: - application/json host: @@ -5300,29 +5299,30 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA5RW34sbNxB+918x7FMP1sb2XX25e2tLA4FCC0kITVPMrDS7OzmtJCTtnZdw/3sZ - eW3vYYf0HmyD5ofm++Ybjb/NAArWxT0UqsWkOm/mv+Bm98e7z/jh49ff6dPbz+uWVRP8X5/W9c1Q - lBLhqq+k0iFqoVznDSV2dm9WgTCRZF3dXl+vNnd3q1U2dE6TkbDGp/mNm6+X65v58s18uRkDW8eK - YnEP/8wAAL7lbynRatoV97AsDycdxYgNFfdHJ4AiOCMnBcbIMaFNRXkyKmcT2Vz13xRLUK63iUKN - KvVoImAgQCUosDK0gHcWUkuQw3YJXA2dM6R6gwF8IM3ZFzKms3RAO2/QorhE8ME9sp6mB7aRmzZF - qAaIfdNQTGwbiJ4U16wkrfyOCZKbXB5T6FXqA0VILSZQaMEQavHSFDmQBtcn5TqKC3jrAtAOpUOl - ABqyP1styQlUi7ahfEPd2319Bprgeh+BLeDhYhIXNIkEvfMUElOE2KsWMEJ0pq/YcBrABaiMc3pe - BWQLFYbAEkShowxnAb8O+3sFMUI76OB86ypWZzXkSw8ebFiBs1ROrxM0lfApqoukS9DUORtTwMyo - 9PDA+1hgfdZ7tqBa6jimMMBPT2QMPmFK9NE+WPdkB8KAnoJ0J/EjOQsehbXVer66uVrAe+7YYDBD - CfUP8Z9LbxTAedOzADFUbjcIdlSsT7yQbdEqGjPvwZXSjNRyHN1amZwQwZKSgQnDC7ZZqtiTE18F - +2a+2lwtvtgv9rdLU2Sigz5SVmSfC0hoNcgnQxymEjL8QBAV2ZQdJq2tBmBNNnE95NngxmZ6bDrO - AJqDgsujFrNITxxSFM2OipYbWkoUHCbXvQ70Zr5eXi3gQ0uRXs73y6cDKlLYR9pPm9gC+UCRbCIt - BWapKTTTSa6xY8MY8hC7TpRDO6EoloDGuCdhQLTlc8MkGr03o1hEwHtmxe3yU+EAVcv0SKdH5ljI - pB2vYGS9nK/XVwv485ECGnP5SVXORtYkj1LsPQV2GaNLLYUpi9BRap2e9PF9i97QAI9oeumv7mmc - CQ5Tui0Kwr14PIYo0nkFip/nt1eL6aIIVPcRZU/Z3pjx/Pm4eYxrfHBVHO3H85otx3Yrr5CzsmVi - cr7I1ucZwL95w/Uvllbhg+t82ib3QFYSrtZ3b/YJi9NSPZmvl9ejNbmEZhK3Wa7KCym3mhKyiZM1 - WShULelT7GmnYq/ZTQyzCfDzei7l3oNn2/yf9CeDUuQT6e1prV5yCyT/Or7ndiQ6F1zEISbqtjXb - hoIPvF/8td/e1puKrqmulsXsefYfAAAA//8DAPXxUvYBCQAA + H4sIAAAAAAAAA5xWS28jNwy+51cQc9kEsA3HdpNubvFit9hrH2iKbmFwJM4MG42o6pHEXeS/F9KM + X0kKdHuZgyhS5Pd9JOfrGUDFurqBSnUYVe/M9Bbd8l7u7mr98faHxV/y6df+8eOHv+/mPy5lWU2y + h9R/koo7r5mS3hmKLHYwK08YKUe9vF4ul8v3q9WqGHrRZLJb6+J0JdPFfLGazr+fzq9Gx05YUahu + 4PczAICv5ZtTtJqeqhuYT3YnPYWALVU3+0sAlReTTyoMgUNEG6vJwajERrIl698oTEBJspF8gyom + NAHQE6DKVWBtaAYfTuxAT86gxWwP4Lw8sCZgGxNHfiBIVpPPb2q2LUgDzpNmNVxHqyGktqUQ4bFj + 1UFDGJOnAAot1ARoInnSEAVUh7YliB2BpKikpwn0eJ/Dxo56QEiBmmQgihhoxA+pcUkb0EduWDGa + nBwZwy1ZRXB+d/v5AtiC6qjnEP12Bp+KL2byJiemyZBEfhKh22ovrpOaFTTJDggZaL0kl70QejGk + kqGc/f4+G1bjpVwj26yKQBDEpJoNx+0ENPViQ/QYx+r2BJQLGcaXLLGFNnEBuRedSx0pyW+rjumB + QFPgDOYIX4DzRzIGHzFG+sXeW3m0W0KPjnxwpDJ/YsFhSwEuF9PL1cXsi/1iP9uSUtHNU8zJ1EZE + T2uPbKFG75k8nK/X6wtw5HsqmbwW1o75V/mW6OhredpmsFCxHhGLAjTyeYLu+MygjvV6PYOfOw7A + AWpSmAK9jDmyFE5YyXLsuAj2hN0sGD8wECajUHNXKJ+KoLLW1uv1UbEzWG939RW17PtnlHGYQEg5 + TADUhTWM0oehwA6zMkPKUGXlEr4Gb9dpriSmsvAS6+KY0xnBQf8C3W9hfDW9vBoY//DGSFBiA+vS + nO9qipH8u9NZcIT89sUQGRrfoQ80gWQN3xP81KEztIUHNIn2MGsBK3FfLUKgorj9nIgdxjdGw7cU + +t30+iILZkzTk/MUyEbSmZ7S/BnfEH1Sw6MN9mwYfaZLS59lT0+OfBxGWocPRaBsuUcDuszcTIyX + PKbq3O579dYpgpMQKITSUh4HyezfdV5yaD6AMs5GQw/ksR2mI9tGfL9TVx4HBwnkvm8tiD8avv9r + CCzm08XiYna8PTw1KWBeXjYZM54/79eRkdZ5qcNo3583bDl0mzz6xObVE6K4qlifzwD+KGsvnWyy + ynnpXdxEuSebA14u3o97rzps2oN5ebkcrVEimiO/q/nOchJyoykim3C0OyuFqiN98D0sWkya5chw + dlT463zeij0Uz7b9L+EPBqXIRdKbA5dvXfOUf0X+7doe6JJwFbYhUr9p2Lbknefhb6Bxm+vmqqYl + NfW8Ons++wcAAP//AwD2BPTBFgkAAA== headers: CF-Cache-Status: - DYNAMIC CF-RAY: - - 8ebdee28eb156428-SJC + - 8ece1928aed6eb36-SJC Connection: - keep-alive Content-Encoding: @@ -5330,14 +5330,14 @@ interactions: Content-Type: - application/json Date: - - Mon, 02 Dec 2024 20:05:16 GMT + - Wed, 04 Dec 2024 19:10:50 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=2TXt.GQ90cL38Z4iukWM5DJcG3r0zo95LcmCGZwTYN4-1733169916-1.0.1.1-GNB_JoqfxWRN3FIQQvqP3QLO0M_o4kuyunlGL6Z4_pz04anWrxUTn6z.8Kd2tudpI7P6Gfn0DznmkoRc67v_Iw; - path=/; expires=Mon, 02-Dec-24 20:35:16 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=I0Pg1HDHoD.Dly1aEXU0uCeUWW_TVKADzTizTyIRXLo-1733339450-1.0.1.1-_C4Q3xvyNM.8OjKc9kpTR6C_iR0k4Y3u_LUqAqoi5dsDekDaufboRPdPWeLBUIW7TriYNZpdZFqCmD4aDUDs8g; + path=/; expires=Wed, 04-Dec-24 19:40:50 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=cpIpfP1Lg.BWfwFLSqFUwAjpLqLsaHDXx59h9dThkCg-1733169916484-0.0.1.1-604800000; + - _cfuvid=NBK513_ctF_KlkCH5k7mG0388RVDvVeIMgll8FI8Y00-1733339450103-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked @@ -5350,7 +5350,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "4983" + - "5406" openai-version: - "2020-10-01" strict-transport-security: @@ -5362,13 +5362,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998565" + - "29998571" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_0246fade9b910ac7aef7d3ca106c584f + - req_b0a397ae1b442e63ec102c720facf0f2 status: code: 200 message: OK diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index 91473a3b..fd1818d2 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -2,6 +2,7 @@ import os import pathlib import pickle +import re import textwrap from collections.abc import AsyncIterable from copy import deepcopy @@ -929,7 +930,11 @@ def test_pdf_reader_match_doc_details(stub_data_dir: Path) -> None: "10.1021/acs.jctc.2c01235", "10.26434/chemrxiv-2022-qfv02", } - assert "This article has 1 citations." in doc_details.formatted_citation + match = re.search( + r"This article has (\d+) citations", doc_details.formatted_citation + ) + assert match + assert int(match.group(1)) >= 1, "Expected at least one citation" assert "ChemRxiv" in doc_details.formatted_citation num_retries = 3