-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChapter_1.lyx
4843 lines (3409 loc) · 89.9 KB
/
Chapter_1.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman palatino
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing onehalf
\use_hyperref false
\papersize default
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 20page%
\topmargin 15page%
\rightmargin 15page%
\bottommargin 15page%
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Background
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Subsection
\lang british
Introduction
\end_layout
\begin_layout Standard
\emph on
\lang british
Diffusion MRI
\emph default
(dMRI) is the principal non-invasive method that provides information about
the directional structure of neural tracts found in white matter and the
cortex
\lang english
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
are you sure about the cortex? what exactly do you mean?
\end_layout
\end_inset
\lang british
.
dMRI acquires one or more
\begin_inset Formula $T_{2}$
\end_inset
-weighted reference images, and a collection of diffusion-weighted images
(see Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "Flo:three_slices"
\end_inset
) that attenuate the
\begin_inset Formula $T_{2}$
\end_inset
signal according to the amount of diffusion along prescribed gradient direction
s
\begin_inset CommandInset citation
LatexCommand cite
key "DiffMRIBook"
\end_inset
.
The information is not complete and the tracts cannot be reconstructed
in full detail
\begin_inset CommandInset citation
LatexCommand cite
key "denislebihan2006aap"
\end_inset
.
However, some spatial structures and patterns can be visualised.
These are usually represented as trajectories
\begin_inset CommandInset citation
LatexCommand cite
key "WWS+08,MCC+99"
\end_inset
or connectivity maps
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2003NatureNeuroscience"
\end_inset
.
The unique new area of study that aims to reconstruct the neural tracts
from diffusion data is called diffusion tractography.
Other types of tractography are based in staining using for example luxol-fast
blue
\begin_inset CommandInset citation
LatexCommand cite
key "margolis5nal"
\end_inset
but these can only be used with
\emph on
in vitro
\emph default
brains and they lack ease of reproducibility.
For non-human brains as for example in macaque there are even
\emph on
in vivo
\emph default
methods for tracing down to single axons
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2005"
\end_inset
however, these are not available or recommended for human studies as they
are highly invasive.
\end_layout
\begin_layout Standard
\lang british
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
Diffusion was introduced in the mid-1980s (Le Bihan and Breton 1985
\begin_inset CommandInset citation
LatexCommand cite
key "le1985imagerie"
\end_inset
; Merboldt et al.
1985
\begin_inset CommandInset citation
LatexCommand cite
key "merboldt1985self"
\end_inset
; Taylor and Bushell, 1985
\begin_inset CommandInset citation
LatexCommand cite
key "taylor1985spatial"
\end_inset
)
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
\lang british
Molecular diffusion
\end_layout
\begin_layout Standard
\lang british
Molecular diffusion is a process that occurs incessantly in biological materials
, fluids in particular,
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\lang british
Should we say everywhere rather than fluids?
\end_layout
\end_inset
and accounts for a number of interesting phenomena; the dMRI signal measures
the history of random (Brownian) displacements of spin-labelled hydrogen
protons (spins) resolved in the direction of a magnetic field gradient.
Though the actual probability displacement function of the protons is unaffecte
d by the presence or variation in the magnetic field, the cumulative phase
change in the spins reflects the changes in the position-dependent spin
frequency induced by the field gradient.
Components of the diffusion motion along the direction of the gradient
induce such changes.
The signal change due to cumulative dephasing is greatest when this coincides
with a direction that allows greater random displacements, e.g.
because of the orientation of a microstructure within which the proton
is moving.
It is this link between the directional dependence of the dMRI signal and
the orientations of the supposed underlying brain fibres that provides
the unique insights of diffusion tractography.
In dMRI we observe that the protons will move more along the directions
of the axons, and move less perpendicular to that direction.
\end_layout
\begin_layout Standard
\lang british
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename last_figures/three_slices_0_20_100.png
scale 40
\end_inset
\end_layout
\begin_layout Plain Layout
\lang british
\begin_inset Caption
\begin_layout Plain Layout
Three slices from diffusion data sets gathered with zero gradient strength
on the left, medium gradient strength on the middle and high gradient strength
on the right.
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "Flo:three_slices"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\lang british
Anisotropy is one of the terms that are very common in diffusion terminology.
Anisotropy means that the mean square displacement of the particles is
greater along some directions than along others.
On the other hand, isotropy means that the mean square displacement is
equal in all directions i.e.
complete lack of anisotropy.
It is this level of anisotropy that is the basis of dMRI as a method of
investigation of the structure of biological materials.
For a biological interpretation of the signal measured with dMRI see
\begin_inset CommandInset citation
LatexCommand citep
key "Bea02"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "ZLW+03"
\end_inset
and
\begin_inset CommandInset citation
LatexCommand cite
key "DiffMRIBook"
\end_inset
p.
105.
\end_layout
\begin_layout Subsection
\lang british
Acquisition sequences
\begin_inset CommandInset label
LatexCommand label
name "sub:Acquisition-sequences-in-use"
\end_inset
\end_layout
\begin_layout Standard
\lang british
MRI data are collected by changing certain magnetic fields on and off in
a prescribed sequence, known as pulse sequence
\begin_inset CommandInset citation
LatexCommand cite
key "DiffMRIBook,MoriNeuron2006"
\end_inset
.
The pulse sequence determines the content, quality, contrast and resolution
of the image.
MR images primarily reflect the signal from hydrogen nuclei from water
and fat concentrations.
The hydrogen nuclei possess a magnetic dipole which is often referred to
as spin.
These dipoles can align themselves with an externally applied magnetic
field.
The MRI scanner generates a strong, static magnetic field
\begin_inset Formula $B_{0}$
\end_inset
which is typically measured in Tesla (
\begin_inset Formula $T$
\end_inset
).
A second magnetic field is applied for only a brief duration and oscillates
at radio frequences; known as the RF pulse
\begin_inset CommandInset citation
LatexCommand cite
key "moriBook"
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
RF pulses are used primarily for excitation and refocusing.
In the excitation phase spins will rotate away from their preferred orientation
along
\begin_inset Formula $B_{0}$
\end_inset
.
Excited spins precess about
\begin_inset Formula $B_{0}$
\end_inset
at a frequency
\begin_inset Formula $\nu$
\end_inset
given by the Larmor equation
\begin_inset Formula $\nu=\gamma B$
\end_inset
where
\begin_inset Formula $\gamma$
\end_inset
is a constant known as the gyromagnetic ratio.
The precessing part that is perpendicular to the direction of
\begin_inset Formula $B_{0}$
\end_inset
decays exponentially with a time constant
\begin_inset Formula $T_{2}$
\end_inset
and the spins realign themselves exponentially in the direction of
\begin_inset Formula $B_{0}$
\end_inset
with a time constant
\begin_inset Formula $T_{1}$
\end_inset
.
\begin_inset Formula $T_{1}$
\end_inset
and
\begin_inset Formula $T_{2}$
\end_inset
vary with tissue but
\begin_inset Formula $T_{2}<T_{1}$
\end_inset
for the same tissue type
\begin_inset CommandInset citation
LatexCommand cite
key "mcrobbie2006mpp"
\end_inset
.
The generated magnetic field from the coherently precessing spins induces
a current in the receiver coils; this current is the signal used to generate
MR images and corresponds to image brightness.
The more coherent the phase of the precessing spins the higher the brightness
in the image pixels.
However, with time, spins lose their phase coherence.
Signal loss from both T2 decay and dephasing is called
\begin_inset Formula $T_{2}^{*}$
\end_inset
signal loss (
\begin_inset Formula $T_{2}^{*}<T_{2}$
\end_inset
).
Often, a second RF pulse is applied at some time
\begin_inset Formula $TE/2$
\end_inset
after excitation and flips the spins in the plane perpendicular to
\begin_inset Formula $B_{0}$
\end_inset
.
If the conditions stay the same all spins will be back in phase at a time
\begin_inset Formula $TE$
\end_inset
after the excitation pulse.
The moment of spin refocus is called a spin echo and creates the measured
signal.
Acquisition sequences which use a refocusing pulse are called spin echo
pulse sequences; and gradient echo sequences otherwise.
\end_layout
\begin_layout Standard
\lang british
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\lang british
\begin_inset Graphics
filename figures/stejskal-tanner2.eps
lyxscale 50
scale 50
\end_inset
\end_layout
\begin_layout Plain Layout
\lang british
\begin_inset Caption
\begin_layout Plain Layout
\lang british
Pulsed Gradient Spin Echo (PGSE)
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\lang british
\begin_inset CommandInset label
LatexCommand label
name "Flo:pgse"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\lang british
The additional magnetic fields generated by an MRI scanner are called magnetic
field gradients or simply gradients (
\begin_inset Formula $G$
\end_inset
).
Including the applied gradients the magnetic field in the scanner is given
by
\begin_inset Formula $B=B_{0}+G_{x}(t)x+G_{y}(t)y+G_{z}(t)z$
\end_inset
where
\begin_inset Formula $x,y$
\end_inset
and
\begin_inset Formula $z$
\end_inset
the three orthogonal directions.
Gradients have a special role in diffusion weighting as we will discuss
next.
\end_layout
\begin_layout Standard
\lang british
The best known pulse sequence for generating diffusion-weighted images is
called Pulsed Gradient Spin Echo method (PGSE), also known as the Stejskal
and Tanner method
\begin_inset CommandInset citation
LatexCommand citep
key "Stejskal1965JChemPhys"
\end_inset
.
This has
\begin_inset Formula $90^{\circ}$
\end_inset
-
\begin_inset Formula $180^{\circ}$
\end_inset
spin echo pair of RF pulses with one gradient before the second pulse and
one equal gradient after the second pulse
\begin_inset CommandInset citation
LatexCommand cite
key "mcrobbie2006mpp"
\end_inset
(see Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "Flo:pgse"
\end_inset
).
The refocusing is perfect only when the spins do not move between the two
pulses.
The diffusion weighted contrast acts as an inverse
\begin_inset Formula $T_{2}$
\end_inset
weighting i.e.
tissues with mobile water molecules give lower signal than more solid tissues
with smaller mobility.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figures/Reese-TRSE2.eps
scale 50
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
\lang british
Twice-Refocused Spin Echo (TRSE)
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "Flo:trse"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\lang british
Eddy currents caused by the onset and offset of the gradients are a problem
with PGSE and most recent systems (including Siemens scanners) use Twice-Refocu
sed Spin Echo (TRSE) sequences
\begin_inset CommandInset citation
LatexCommand cite
key "Reese2003MRM"
\end_inset
to reduce these artefacts.
Every time the magnetic field gradients switch they generate currents that
produce other smaller magnetic fields which disturb the spins.
The TRSE sequence is an improvement on the PGSE.
This improvement is achieved by the use of another refocusing pulse surrounded
by the inverse mirror of the previous diffusion gradients (see Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "Flo:trse"
\end_inset
).
By adjusting the timing of the diffusion gradients, eddy currents can be
nulled or greatly reduced.
This sequence improves the image quality without loss of scanning efficiency
i.e.
TR duration and it is the standard in most modern MRI scanners.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figures/STEAM2.eps
scale 68
\end_inset
\begin_inset Caption
\begin_layout Plain Layout
STimulated Echo Acquisition Mode (STEAM)
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "Flo:steam"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In the experiments described in this thesis we used a recent (
\begin_inset Formula $2010$
\end_inset
) Work In Progress (WIP) protocol from Siemens which uses the STEAM (STimulated
Echo Acquisition Mode) sequence
\begin_inset CommandInset citation
LatexCommand cite
key "MAB04"
\end_inset
.
STEAM, is presented in Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "Flo:steam"
\end_inset
and works in the following way: Three
\begin_inset Formula $90^{\circ}$
\end_inset
pulses are used to produce a stimulated echo.
The first two pulses are separated by a time delay
\begin_inset Formula $\tau$
\end_inset
.
After the same delay
\begin_inset Formula $\tau$
\end_inset
following the same pulse, a stimulated echo is produced.
In order to introduce diffusion weighting into the stimulated echo, two
identical diffusion gradient lobes are applied, one during the first and
one during the second
\begin_inset Formula $\tau$
\end_inset
interval.
Because the magnetization of the stimulated echo is stored along the longitudin
al axis between the second and the third RF pulses, it does not experience
any
\begin_inset Formula $T_{2}$
\end_inset
or
\begin_inset Formula $T_{2}^{*}$
\end_inset
dephasing during the time interval
\begin_inset Formula $TM$
\end_inset
.
\begin_inset Formula $TM$
\end_inset
, however, does contribute to the diffusion gradient separation time,
\begin_inset Formula $\Delta$
\end_inset
.
Thus, a high b-value can be obtained without incurring the
\begin_inset Formula $TE$
\end_inset
-induced signal loss, as compared to the standard spin echo sequence.
The signal amplitude of the stimulated echo is, however, less than that
of the corresponding spin-echo sequence with the same
\begin_inset Formula $TE$
\end_inset
, because the maximum amplitude of the stimulated echo is one-half of a
spin echo.
\end_layout
\begin_layout Standard
STEAM was the prefered sequence for most of the experiments used in this
thesis as it gave higher SNR overall which was an advantage crucial at
high b-values as the signal in those b-values can be quite low.
\end_layout
\begin_layout Subsection
\lang british
Single gradient signal models
\begin_inset CommandInset label
LatexCommand label
name "sub:Diffusion-Maths"
\end_inset
\end_layout
\begin_layout Standard
\lang british
Under the Brownian motion assumption, the diffusion signal strength is described
by the following model known as the Stejskal-Tanner
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Stejskal1965JChemPhys"
\end_inset
formula
\end_layout
\begin_layout Standard
\lang british
\begin_inset Formula
\begin{equation}
S_{b}=S_{0}e^{-bD}\label{eq:mono-exponential}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\lang british
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
noindent
\end_layout
\end_inset
where
\begin_inset Formula $S_{0}$
\end_inset
is the measured signal when no gradient direction is applied,
\begin_inset Formula $D$
\end_inset
is the diffusion coefficient that we wish to measure and
\begin_inset Formula $b$
\end_inset
is the b-value -- the crucial experimental diffusion weighting parameter
which summarises the amount of diffusion sensitising gradient history.
\begin_inset Formula $D$
\end_inset
is often referred to as the diffusivity value or apparent diffusivity coefficie
nt (ADC).
The units of
\begin_inset Formula $D$
\end_inset
are
\begin_inset Formula $\mathrm{mm^{2}}$
\end_inset
/sec (for water at
\begin_inset Formula $37^{o}$
\end_inset
\begin_inset Formula $D\approx3\times10^{-3}$
\end_inset
\begin_inset Formula $m^{2}$
\end_inset
/sec), and of
\begin_inset Formula $b$
\end_inset
are sec/
\begin_inset Formula $\mathrm{mm^{2}}$
\end_inset
, typically in the range of
\begin_inset Formula $0$
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
--
\end_layout
\end_inset
\begin_inset Formula $5,000$
\end_inset
sec/
\begin_inset Formula $\mathrm{mm^{2}}$
\end_inset
though some acquisition paradigms can call for very much larger values
e.g.
grea- ter than
\begin_inset Formula $10,000$
\end_inset
sec/
\begin_inset Formula $\mathrm{mm^{2}}$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Canales-Rodriguez2009"