-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_GAN.py
283 lines (223 loc) · 10.7 KB
/
main_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from __future__ import print_function
import argparse
from math import log10
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from laploss import LapLoss
from torch.utils.data import DataLoader
import torch.nn.functional as F
from model import *
from network import encoder4, decoder4
from image_utils import TVLoss
from data import get_training_set
import numpy as np
from pytorch_msssim import SSIM as pytorch_ssim
import time
from lpips import lpips
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--up_factor', type=int, default=4, help='upsampling factor')
parser.add_argument('--batchSize', type=int, default=8, help='training batch size')
parser.add_argument('--nEpochs', type=int, default=500, help='number of epochs to train for')
parser.add_argument('--snapshots', type=int, default=5, help='Snapshots')
parser.add_argument('--start_iter', type=int, default=1, help='Starting Epoch')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=0.0001')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--threads', type=int, default=6, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--gpus', default=2, type=int, help='number of gpu')
parser.add_argument('--data_dir', type=str, default='/home/server2/ZSLiu/NTIRE2021/data/SR/')
parser.add_argument("--ref_dir", type=str, default="/home/server2/ZSLiu/style_transfer/Data/wikiart",
help='path to wikiArt dataset')
parser.add_argument('--data_augmentation', type=bool, default=True)
parser.add_argument('--model_type', type=str, default='GAN')
parser.add_argument('--patch_size', type=int, default=64, help='Size of cropped LR image')
parser.add_argument('--pretrained_G_model', default='GAN_generator_v18.pth', help='pretrained G model')
parser.add_argument('--pretrained_D_model', default='GAN_discriminator_0.pth', help='pretrained D model')
parser.add_argument('--pretrained', type=bool, default=True)
parser.add_argument('--save_folder', default='models/', help='Location to save checkpoint models')
parser.add_argument("--encoder_dir", default='models/vgg_r41.pth', help='pre-trained encoder path')
parser.add_argument("--decoder_dir", default='models/dec_r41.pth', help='pre-trained encoder path')
opt = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train(epoch):
G_epoch_loss = 0
D_epoch_loss = 0
G.train()
D.train()
enc.eval()
dec.eval()
for iteration, batch in enumerate(training_data_loader, 1):
input, target, ref = batch[0], batch[1], batch[2]
minibatch = input.size()[0]
real_label = torch.ones((minibatch, 1344))
fake_label = torch.zeros((minibatch, 1344))
input = input.to(device)
target = target.to(device)
ref = ref.to(device)
real_label = real_label.to(device)
fake_label = fake_label.to(device)
# Reset gradient
for p in D.parameters():
p.requires_grad = False
G_optimizer.zero_grad()
# encoder
bic = F.interpolate(input, scale_factor=opt.up_factor, mode='bicubic')
# ref_feat = enc(ref)
tar_feat = enc(target)
LR_feat = enc(bic)
predict, KL = G(input, LR_feat['r41'], tar_feat['r41'])
# predict = dec(LR_feat)
pre_LR = F.interpolate(predict, scale_factor=1.0 / opt.up_factor, mode='bicubic')
# Reconstruction loss
LR_loss = L1_criterion(pre_LR, input)
# pre_feat = enc(predict)
# tar_feat = enc(target)
# SR_loss = L1_criterion(pre_feat['r41'], tar_feat['r41'])
SR_L1 = L1_criterion(predict, target) + \
L1_criterion(F.interpolate(predict, scale_factor=0.5, mode='bicubic'), F.interpolate(target, scale_factor=0.5, mode='bicubic')) + \
L1_criterion(F.interpolate(predict, scale_factor=0.25, mode='bicubic'), F.interpolate(target, scale_factor=0.25, mode='bicubic'))
# SR_lap = lap_loss(2*predict-1, 2*target-1)
KL_loss = KL.mean()
# RE = log_Logistic_256(target, pre_mean, pre_logvar, average=False, dim=1)
# RE = RE.mean()
# ssim_loss = 1 - ssim(predict, target)
# lap_recon = lap_loss(predict, target)
# TV_loss = TV(predict)
# PD_feat, mean_var_loss = PD_loss(predict, target)
ContentLoss, StyleLoss = VGG_feat(predict, target)
# VGG_loss = L1_criterion(pre_feat4, tar_feat4)
lpips_sp = loss_fn_alex_sp(2 * predict - 1, 2 * target - 1)
lpips_sp = lpips_sp.mean()
D_fake_feat, D_fake_decision = D(predict)
D_real_feat, D_real_decision = D(target)
GAN_feat_loss = L1_criterion(D_fake_feat, D_real_feat)
GAN_loss = L1_criterion(D_fake_decision, real_label)
G_loss = 100 * LR_loss + 1 * SR_L1 + 0.01 * GAN_feat_loss + 1 * GAN_loss + 0.01 * ContentLoss + 10*StyleLoss + 1*KL_loss + 1e4*lpips_sp
G_loss.backward()
G_optimizer.step()
# Reset gradient
for p in D.parameters():
p.requires_grad = True
D_optimizer.zero_grad()
_, D_fake_decision = D(predict.detach())
_, D_real_decision = D(target)
real = real_label * np.random.uniform(0.7, 1.2)
fake = fake_label + np.random.uniform(0.0, 0.3)
Dis_loss = (L1_criterion(D_real_decision, real)
+ L1_criterion(D_fake_decision, fake)) / 2.0
# Back propagation
D_loss = Dis_loss
D_loss.backward()
D_optimizer.step()
G_epoch_loss += G_loss.data
D_epoch_loss += D_loss.data
print("===> Epoch[{}]({}/{}): G_loss: {:.4f} || "
"D_loss: {:.4f} || "
"LR_loss: {:.4f} || "
"SR_L1: {:.4f} || "
"GAN_loss: {:.4f} || "
"KL_loss: {:.4f} || "
"ContentLoss: {:.4f} || "
"StyleLoss: {:.4f} ||"
"lpips_sp: {:.4f} ||"
"GAN_feat_loss: {:.4f} ||".format(epoch, iteration,
len(training_data_loader),
G_loss.data,
D_loss.data,
LR_loss.data,
SR_L1.data,
GAN_loss.data,
KL_loss.data,
ContentLoss.data,
StyleLoss.data,
lpips_sp.data,
GAN_feat_loss.data))
print("===> Epoch {} Complete: Avg. G Loss: {:.4f} || D Loss: {:.4f}".format(epoch, G_epoch_loss / len(training_data_loader),
D_epoch_loss / len(training_data_loader)))
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
def checkpoint(epoch):
G_model_out_path = opt.save_folder + opt.model_type + "_generator_{}.pth".format(epoch)
D_model_out_path = opt.save_folder + opt.model_type + "_discriminator_{}.pth".format(epoch)
torch.save(G.state_dict(), G_model_out_path)
torch.save(D.state_dict(), D_model_out_path)
print("Checkpoint saved to {} and {}".format(G_model_out_path, D_model_out_path))
print('===> Loading datasets')
train_set = get_training_set(opt.data_dir, opt.patch_size, opt.up_factor,
opt.data_augmentation)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print('===> Building model ', opt.model_type)
# model = RCAN(num_in_ch=3, num_out_ch=3, up_factor=opt.up_factor)
enc = encoder4()
dec = decoder4()
G = VAE_v3_4x(up_factor=opt.up_factor)
D = discriminator_v2(num_channels=3, base_filter=32)
L1_criterion = nn.L1Loss(size_average=False)
L2_criterion = nn.MSELoss(size_average=False)
TV = TVLoss()
ssim = pytorch_ssim()
lap_loss = LapLoss(max_levels=5, k_size=5, sigma=2.0)
# PD_loss = PDLoss(device, l1_lambda=1.5, w_lambda=0.01)
VGG_feat = Vgg19_feat(device)
loss_fn_alex_sp = lpips.LPIPS(spatial=True)
print('---------- Generator architecture -------------')
print_network(G)
print('----------------------------------------------')
print('---------- Discriminator architecture -------------')
print_network(D)
print('----------------------------------------------')
if os.path.exists(opt.encoder_dir):
enc.load_state_dict(torch.load(opt.encoder_dir))
print('encoder model is loaded!')
if os.path.exists(opt.decoder_dir):
dec.load_state_dict(torch.load(opt.decoder_dir))
print('decoder model is loaded!')
for param in enc.parameters():
param.requires_grad = False
for param in dec.parameters():
param.requires_grad = False
if opt.pretrained:
G_model_name = os.path.join(opt.save_folder + opt.pretrained_G_model)
D_model_name = os.path.join(opt.save_folder + opt.pretrained_D_model)
if os.path.exists(G_model_name):
pretrained_dict = torch.load(G_model_name, map_location=lambda storage, loc: storage)
model_dict = G.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
G.load_state_dict(model_dict)
# G.load_state_dict(torch.load(G_model_name, map_location=lambda storage, loc: storage))
print('Pre-trained Generator is loaded.')
if os.path.exists(D_model_name):
D.load_state_dict(torch.load(D_model_name, map_location=lambda storage, loc: storage))
print('Pre-trained Discriminator is loaded.')
# if torch.cuda.device_count() > 1:
# G = torch.nn.DataParallel(G)
# D = torch.nn.DataParallel(D)
enc = enc.to(device)
dec = dec.to(device)
G = G.to(device)
D = D.to(device)
VGG_feat = VGG_feat.to(device)
L1_criterion = L1_criterion.to(device)
ssim = ssim.to(device)
lap_loss = lap_loss.to(device)
TV = TV.to(device)
loss_fn_alex_sp = loss_fn_alex_sp.to(device)
G_optimizer = optim.Adam(G.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
D_optimizer = optim.Adam(D.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
for epoch in range(opt.start_iter, opt.nEpochs + 1):
train(epoch)
if epoch % (opt.nEpochs / 2) == 0:
for param_group in G_optimizer.param_groups:
param_group['lr'] /= 10.0
print('Learning rate decay: lr={}'.format(G_optimizer.param_groups[0]['lr']))
if epoch % (opt.snapshots) == 0:
checkpoint(epoch)