-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_runner.py
377 lines (329 loc) · 20.1 KB
/
model_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed
from functools import partial
from tqdm import tqdm
import random
import torch
from torch.utils.data import DataLoader
import numpy as np
import argparse
import logging
from datasets import load_from_disk, DatasetDict, concatenate_datasets, Dataset
from transformers import PreTrainedModel, AutoModelForQuestionAnswering, AutoTokenizer, AutoFeatureExtractor, LayoutLMv3Model, LayoutLMv3Config, BartModel, RobertaModel
from modelling.utils import get_optimizers, create_and_fill_np_array, write_data, anls_metric_str, postprocess_qa_predictions, bbox_string
from modelling.tokenization import tokenize_dataset
from modelling.data_collator import DocVQACollator
from modelling.generative_model import LayoutLMv3ForConditionalGeneration
from modelling.adaptive_embedder import LayoutLMv3ModelNewEmbeddings, LayoutLMv3ForQuestionAnsweringNewEmbeddings
accelerator = Accelerator(kwargs_handlers=[])
tqdm = partial(tqdm, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', disable=not accelerator.is_local_main_process)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_file', default="data/cached_datasets/docvqa_cached_extractive_all_lowercase_True_extraction_v1_enumeration", type=str)
parser.add_argument("--model_folder", default="layoutlmv3-extractive-uncased", type=str)
parser.add_argument("--load_state", default=None, type=str)
parser.add_argument("--mode", default="train", type=str, choices=["train", "val", "test"])
parser.add_argument("--train_batch_size", default=4, type=int, help="Total batch size for training.")
parser.add_argument("--val_batch_size", default=8, type=int, help="Total batch size for validation.")
parser.add_argument("--test_batch_size", default=8, type=int, help="Total batch size for test.")
parser.add_argument("--num_workers", default=4, type=int, help="Number of workers.")
parser.add_argument("--warmup_step", default=0, type=float, help="Number of warmup steps. When 0, the lr decreses linearly to 0")
parser.add_argument("--learning_rate", default=5e-6, type=float, help="The peak learning rate.")
parser.add_argument("--num_epochs", default=1, type=int, help="Number of epochs during training.")
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument('--max_grad_norm', default=1.0, type=float, help='gradient clipping max norm')
parser.add_argument('--fp16', default=True, action='store_true', help="Whether to use 16-bit 32-bit training")
parser.add_argument('--debug_run', default=False, action='store_true', help="Run model with 100 samples. For debugging purposes.")
parser.add_argument('--save_model', default=False, action='store_true', help="Save the model after training")
parser.add_argument("--resize", default=1, type=int, choices=[0, 1], help="Resize images to (224, 224). When 0, just add black stripes.")
parser.add_argument('--use_generation', default=0, type=int, choices=[0, 1], help="Whether to use generation to perform experiments")
parser.add_argument('--use_embeddings', default=False, action='store_true', help="Use different embeddings depending on the image aspect ratio")
parser.add_argument('--pretrained_model_name', default='microsoft/layoutlmv3-base', type=str, help="pretrained model name")
parser.add_argument('--stride', default=0, type=int, help="document stride for sliding window, >0 means sliding window, overlapping window")
parser.add_argument('--ignore_unmatched_span', default=1, type=int, help="ignore unmatched span during training, if not ignored, we treat CLS as the start/end.")
parser.add_argument('--extraction_nbest', default=20, type=int, help="The nbest span to compare with the ground truth during extraction")
parser.add_argument('--max_answer_length', default=100, type=int, help="The maximum answer length")
args = parser.parse_args()
for k in args.__dict__:
logger.info(k + ": " + str(args.__dict__[k]))
return args
def train(args,
tokenizer: AutoTokenizer,
model: PreTrainedModel,
train_dataloader: DataLoader,
num_epochs: int, val_metadata,
valid_dataloader: DataLoader = None,
valid_dataset_before_tokenized: Dataset = None
):
t_total = int(len(train_dataloader) * num_epochs)
# warmup_step = 0, linearly decreses from lr to 0
optimizer, scheduler = get_optimizers(model=model, learning_rate=args.learning_rate, num_training_steps=t_total,
warmup_step=args.warmup_step, eps=1e-8)
# Prepare for distributed training
model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare(model, optimizer, train_dataloader,
valid_dataloader, scheduler)
best_anls = -1
os.makedirs(f"model_files/{args.model_folder}", exist_ok=True) ## create model files. not raise error if exist
os.makedirs(f"results", exist_ok=True) ## create model files. not raise error if exist
for epoch in range(num_epochs):
total_loss = 0
model.train()
for iter, batch in tqdm(enumerate(train_dataloader, 1), desc="--training batch", total=len(train_dataloader)):
with torch.cuda.amp.autocast(enabled=bool(args.fp16)):
output = model(**batch)
# Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
loss = output.loss
total_loss += loss.item()
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if (iter+1) % (args.train_batch_size/2) == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
model.zero_grad()
accelerator.print(
f"Finish epoch: {epoch}, loss: {total_loss:.2f}, mean loss: {total_loss / len(train_dataloader):.2f}",
flush=True)
if valid_dataloader is not None:
model.eval()
anls = evaluate(args=args, tokenizer=tokenizer, valid_dataloader=valid_dataloader, model=model,
metadata=val_metadata,
res_file=f"results/{args.model_folder}.res.json",
err_file=f"results/{args.model_folder}.err.json", valid_dataset_before_tokenized=valid_dataset_before_tokenized)
if anls > best_anls:
if args.save_model:
accelerator.print(f"[Model Info] Saving the best model... with best ANLS: {anls}")
module = model.module if hasattr(model, 'module') else model
os.makedirs(f"model_files/{args.model_folder}/", exist_ok=True)
torch.save(module.state_dict(), f"model_files/{args.model_folder}/state_dict.pth")
else:
accelerator.print(f"[Model Info] Best model... with best ANLS: {anls}")
best_anls = anls
elif args.save_model:
accelerator.print(f"[Model Info] Saving model at epoch {epoch}...")
module = model.module if hasattr(model, 'module') else model
os.makedirs(f"model_files/{args.model_folder}/", exist_ok=True)
torch.save(module.state_dict(), f"model_files/{args.model_folder}/state_dict.pth")
accelerator.print("****Epoch Separation****")
accelerator.print(f"[Model Info] Final model with best ANLS: {best_anls}")
return model
def evaluate(args, tokenizer: AutoTokenizer, valid_dataloader: DataLoader, model: PreTrainedModel,
valid_dataset_before_tokenized: Dataset, metadata,
res_file=None, err_file=None):
model.eval()
if args.use_generation:
all_pred_texts = []
with torch.no_grad(), torch.cuda.amp.autocast(enabled=bool(args.fp16)):
for index, batch in tqdm(enumerate(valid_dataloader), desc="--validation", total=len(valid_dataloader)):
assert "decoder_input_ids" not in batch
assert "labels" not in batch
generated_ids = model(**batch, is_train=False, return_dict=True, max_length=100, num_beams=1)
generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id, pad_first=False) ## 1 is pad token id
generated_ids = accelerator.gather_for_metrics(generated_ids)
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip() for g in generated_ids]
all_pred_texts.extend(preds)
prediction_list = all_pred_texts
else:
all_start_logits = []
all_end_logits = []
with torch.no_grad(), torch.cuda.amp.autocast(enabled=bool(args.fp16)):
for index, batch in tqdm(enumerate(valid_dataloader), desc="--validation", total=len(valid_dataloader)):
batch.start_positions = None
batch.end_positions = None
outputs = model(**batch)
start_logits = outputs.start_logits
end_logits = outputs.end_logits
start_logits = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
end_logits = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
all_start_logits.append(accelerator.gather_for_metrics(start_logits).cpu().numpy())
all_end_logits.append(accelerator.gather_for_metrics(end_logits).cpu().numpy())
max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor
eval_dataset = valid_dataloader.dataset
# concatenate the numpy array
start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len)
end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len)
# delete the list of numpy arrays
del all_start_logits
del all_end_logits
outputs_numpy = (start_logits_concat, end_logits_concat)
prediction_dict, prediction_list = postprocess_qa_predictions(dataset_before_tokenized = valid_dataset_before_tokenized,
metadata=metadata, predictions=outputs_numpy,
n_best_size=args.extraction_nbest, max_answer_length=args.max_answer_length)
all_pred_texts = [prediction['answer'] for prediction in prediction_list]
truth = [data["original_answer"] for data in valid_dataset_before_tokenized]
accelerator.print(f"prediction: {all_pred_texts[:10]}")
accelerator.print(f"gold_answers: {truth[:10]}")
all_anls, anls = anls_metric_str(predictions=all_pred_texts, gold_labels=truth)
accelerator.print(f"[Info] Average Normalized Lev.S : {anls} ", flush=True)
if res_file is not None and accelerator.is_main_process and not args.save_model:
accelerator.print(f"Writing results to {res_file} and {err_file}")
write_data(data=prediction_list, file=res_file)
return anls
def main():
args = parse_arguments()
set_seed(args.seed, device_specific=True)
pretrained_model_name = args.pretrained_model_name
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name, use_fast=True)
if args.use_generation:
model = LayoutLMv3ForConditionalGeneration(
LayoutLMv3Config.from_pretrained(pretrained_model_name, return_dict=True))
old = BartModel.from_pretrained("facebook/bart-base")
# State loading and config
model.layoutlmv3.decoder.load_state_dict(old.decoder.state_dict())
model.layoutlmv3.encoder.load_state_dict(LayoutLMv3Model.from_pretrained(pretrained_model_name).state_dict())
model.config.decoder_start_token_id = model.config.eos_token_id
model.config.is_encoder_decoder = True
model.config.use_cache = True
elif args.use_embeddings:
args.resize = 0
args.val_batch_size = 1
true_train_batch_size = 1
model_config = LayoutLMv3Config.from_pretrained(pretrained_model_name, return_dict=True)
model_config.max_horizontal_patches = 30
model_config.max_vertical_patches = 90
model = LayoutLMv3ForQuestionAnsweringNewEmbeddings(model_config)
"""
old = LayoutLMv3Model.from_pretrained(pretrained_model_name)
model.layoutlmv3.embeddings.load_state_dict(old.embeddings.state_dict())
model.layoutlmv3.pos_drop.load_state_dict(old.pos_drop.state_dict())
model.layoutlmv3.LayerNorm.load_state_dict(old.LayerNorm.state_dict())
model.layoutlmv3.dropout.load_state_dict(old.dropout.state_dict())
model.layoutlmv3.norm.load_state_dict(old.norm.state_dict())
model.layoutlmv3.encoder.load_state_dict(old.encoder.state_dict())
"""
# TODO: Move to utils
def randomize_model(model):
# Use the kaiming uniform initialization
for module_ in model.named_modules():
if isinstance(module_[1],(torch.nn.Linear, torch.nn.Embedding)):
#module_[1].weight.data.normal_(mean=0.0, std=model.config.initializer_range)
torch.nn.init.xavier_uniform_(module_[1].weight)
elif isinstance(module_[1], torch.nn.LayerNorm):
module_[1].bias.data.zero_()
module_[1].weight.data.fill_(1.0)
if isinstance(module_[1], torch.nn.Linear) and module_[1].bias is not None:
module_[1].bias.data.zero_()
return model
randomize_model(model)
model.layoutlmv3.embeddings.word_embeddings.load_state_dict(
RobertaModel.from_pretrained("roberta-base").embeddings.word_embeddings.state_dict())
else:
model = AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name)
if args.load_state != None:
checkpoint = torch.load(f"model_files/{args.load_state}/state_dict.pth", map_location="cpu")
model.load_state_dict(checkpoint, strict=False)
# Load feature extractor and data collator
feature_extractor = AutoFeatureExtractor.from_pretrained(pretrained_model_name, apply_ocr=False, do_resize=args.resize)
collator = DocVQACollator(
tokenizer,
feature_extractor,
pretrained_model_name=pretrained_model_name,
model=model,
resize=args.resize
)
dataset = load_from_disk(args.dataset_file)
if args.debug_run:
# For debugging. Use only 100 samples.
args.save_model = False
n_limit = 100
dataset = DatasetDict({
"train": dataset["train"].select(range(n_limit)),
"val": dataset['val'].select(range(n_limit)),
"test": dataset['test'].select(range(n_limit))})
use_msr = "msr_ocr_True" in args.dataset_file
dataset_name = "docvqa" if "docvqa" in args.dataset_file else "infographicvqa"
# Image directory
image_dir = {
"train": f"data/{dataset_name}/train",
"val": f"data/{dataset_name}/val",
"test": f"data/{dataset_name}/test"}
tokenized = dataset.map(tokenize_dataset,
fn_kwargs={"tokenizer": tokenizer,
"img_dir": image_dir,
"use_msr_ocr": use_msr, # Maybe pass as parameter in the future
"doc_stride": args.stride,
"dataset": dataset_name,
"use_generation": args.use_generation,
"ignore_unmatched_answer_span_during_train": bool(args.ignore_unmatched_span)},
batched=True, num_proc=args.num_workers,
load_from_cache_file=False,
remove_columns=dataset["val"].column_names
)
# Experiment: Create new dataset with new docvqa documents of varying proportions.
# For each original answer, now there are three samples, each one with a different
# version of its original image (original, horizontally streched and vertically
# streched)
"""if dataset_name == "docvqa" and args.mode == "train" and args.use_embeddings:
for i in [1,2,3]:
new_column = [i] * len(tokenized["train"])
if i == 1:
new_train = tokenized["train"].add_column("image_mod", new_column)
else:
new_train = concatenate_datasets([new_train, tokenized["train"].add_column("image_mod", new_column)])
for i in [1,2,3]:
new_column = [i] * len(tokenized["val"])
if i == 1:
new_val = tokenized["val"].add_column("image_mod", new_column)
else:
new_val = concatenate_datasets([new_val, tokenized["val"].add_column("image_mod", new_column)])
new_test = concatenate_datasets([tokenized["test"], concatenate_datasets([tokenized["test"], tokenized["test"]])])
tokenized = DatasetDict({
"train": new_train,
"val": new_val,
"test": new_test})"""
accelerator.print(tokenized)
if args.mode == "train":
valid_dataloader = DataLoader(tokenized["val"].remove_columns("metadata"), batch_size=args.val_batch_size,
collate_fn=collator, num_workers=args.num_workers, shuffle=False)
train_dataloader = DataLoader(tokenized["train"].remove_columns("metadata"), batch_size=true_train_batch_size,
shuffle=True, num_workers=args.num_workers, pin_memory=True, collate_fn=collator)
if False:
for param in model.parameters():
param.requires_grad = False
model.layoutlmv3.patch_embed.proj.weight.requires_grad = True
model.layoutlmv3.patch_embed.proj.bias.requires_grad = True
train(args=args,
tokenizer=tokenizer,
model=model,
train_dataloader=train_dataloader,
num_epochs=args.num_epochs,
valid_dataloader=valid_dataloader,
valid_dataset_before_tokenized=dataset["val"],
val_metadata=tokenized["val"]["metadata"])
elif args.mode == "val":
valid_dataloader = DataLoader(tokenized["val"].remove_columns("metadata"), batch_size=args.val_batch_size,
collate_fn=collator, num_workers=args.num_workers, shuffle=False)
model, valid_dataloader = accelerator.prepare(model, valid_dataloader)
model.eval()
evaluate(args=args,
tokenizer=tokenizer,
valid_dataloader=valid_dataloader,
model=model,
valid_dataset_before_tokenized=dataset["val"],
metadata=tokenized["val"]["metadata"],
res_file=f"results/{args.model_folder}.res.json",
err_file=f"results/{args.model_folder}.err.json")
else:
test_loader = DataLoader(tokenized["test"].remove_columns("metadata"), batch_size=args.test_batch_size,
collate_fn=collator, num_workers=args.num_workers, shuffle=False)
checkpoint = torch.load(f"model_files/{args.model_folder}/state_dict.pth", map_location="cpu")
model.load_state_dict(checkpoint, strict=True)
model, test_loader = accelerator.prepare(model, test_loader)
evaluate(args=args,
tokenizer=tokenizer,
valid_dataloader=test_loader,
model=model,
valid_dataset_before_tokenized=dataset["test"],
metadata=tokenized["test"]["metadata"],
res_file=f"results/{args.model_folder}.res.json",
err_file=f"results/{args.model_folder}.err.json")
if __name__ == "__main__":
main()