diff --git a/KomaMRICore/src/simulation/Bloch/BlochVoxelDictSimulation.jl b/KomaMRICore/src/simulation/Bloch/BlochVoxelDictSimulation.jl new file mode 100644 index 000000000..e3777f516 --- /dev/null +++ b/KomaMRICore/src/simulation/Bloch/BlochVoxelDictSimulation.jl @@ -0,0 +1,50 @@ +import KomaMRICore: SimulationMethod, initialize_spins_state, mul!, output_Ndim, + run_spin_excitation!, run_spin_precession!, sim_output_dim + + +Base.@kwdef struct BlochVoxelDict <: SimulationMethod + N_spins_per_voxel::Int=1 +end + + +function sim_output_dim(obj::Phantom{T}, seq::Sequence, sys::Scanner, sim_method::BlochVoxelDict) where {T<:Real} + N_voxels = length(obj) ÷ sim_method.N_spins_per_voxel + return (sum(seq.ADC.N), N_voxels) +end + + +function run_spin_precession!(p::Phantom{T}, seq::DiscreteSequence{T}, sig::AbstractArray{Complex{T}}, + M::Mag{T}, sim_method::BlochVoxelDict) where {T<:Real} + #Simulation + #Motion + xt = p.x .+ p.ux(p.x, p.y, p.z, seq.t') + yt = p.y .+ p.uy(p.x, p.y, p.z, seq.t') + zt = p.z .+ p.uz(p.x, p.y, p.z, seq.t') + #Effective field + Bz = xt .* seq.Gx' .+ yt .* seq.Gy' .+ zt .* seq.Gz' .+ p.Δw / T(2π * γ) + #Rotation + if is_ADC_on(seq) + ϕ = T(-2π * γ) .* cumtrapz(seq.Δt', Bz) + else + ϕ = T(-2π * γ) .* trapz(seq.Δt', Bz) + end + #Mxy precession and relaxation, and Mz relaxation + tp = cumsum(seq.Δt) # t' = t - t0 + dur = sum(seq.Δt) # Total length, used for signal relaxation + Mxy = [M.xy M.xy .* exp.(1im .* ϕ .- tp' ./ p.T2)] #This assumes Δw and T2 are constant in time + M.xy .= Mxy[:, end] + M.z .= M.z .* exp.(-dur ./ p.T1) .+ p.ρ .* (1 .- exp.(-dur ./ p.T1)) + + #Acquired signal + # get indexes of the voxels being processed by the present thread + idx = floor.(Int, p.Dλ1) + # for each voxel in the voxel-array (list of phantoms) assign the corresponding magnetization value (sum over the spins within a voxel) and normalize + N_voxels = size(sig, 2) + #= println(sum(Mxy[findall(idx .== 1), findall(seq.ADC)];dims=1)/ sim_method.N_spins_per_voxel ) + sleep(3) =# + for voxel in 1:N_voxels + sig[:, voxel] += transpose(sum(Mxy[findall(idx .== voxel), findall(seq.ADC)];dims=1)) / sim_method.N_spins_per_voxel + end + + return nothing +end diff --git a/KomaMRIFiles/src/Phantom/T1T2_voxel_phantom.jl b/KomaMRIFiles/src/Phantom/T1T2_voxel_phantom.jl new file mode 100644 index 000000000..62d15615b --- /dev/null +++ b/KomaMRIFiles/src/Phantom/T1T2_voxel_phantom.jl @@ -0,0 +1,33 @@ +using KomaMRI + + +B0 = 0.55 # 0.55 T +Niso = 1 # number of spins in x and y directions +Niso_z = 101 # number of spins in z direction +Δx_voxel = 2e-3 # x voxel dim +Δy_voxel = 2e-3 # y voxel dim +Δz_voxel = 10e-3 # z voxel dim + +NisoTotal = Niso*Niso*Niso_z + +if Niso == 1 + dx = 0 + dy = 0 +else + dx = Array(range(-Δx_voxel/2, Δx_voxel/2, Niso)) + dy = Array(range(-Δy_voxel/2, Δy_voxel/2, Niso)) +end + +dz = Array(range(-Δz_voxel/2, Δz_voxel/2, Niso_z)) +coords = vec(collect(Iterators.product(dx, dy, dz))) + +function voxel_phantom(T1v, T2v, idx) + obj = Phantom{Float64}(x=[x[1] for x in coords], + y=[x[2] for x in coords], + z=[x[3] for x in coords], + T1=T1v*ones(Niso*Niso*Niso_z), + T2=T2v*ones(Niso*Niso*Niso_z), + Dλ1=idx*ones(Niso*Niso*Niso_z)) + return obj +end + diff --git a/KomaMRIFiles/src/Phantom/t1mes_lowfield_phantom.jl b/KomaMRIFiles/src/Phantom/t1mes_lowfield_phantom.jl new file mode 100644 index 000000000..bcf55e620 --- /dev/null +++ b/KomaMRIFiles/src/Phantom/t1mes_lowfield_phantom.jl @@ -0,0 +1,86 @@ +using KomaMRIPlots, KomaMRICore, Distributions + +X = collect(1:128) +Y = collect(1:128) + +positions = [(32, 32), (64, 32), (96, 32), (32, 64), (64, 64), (96, 64), (32, 96), (64, 96), (96, 96)] + +r = 11 # 22mm diameter per vial +M = zeros(UInt32, 128, 128, 9) +for i in 1:9 + pos_x, pos_y = positions[i] + M[:,:,i] .= i.*((X .- pos_x).^2 .+ (Y' .- pos_y).^2 .<= r.^2) +end + +M = sum(M, dims=3) +M = convert(Array{UInt32, 3}, M) +class = Matrix{UInt32}(reshape(M, 128, 128))' + +B0 = 0.55 # 0.55 T +Niso = 200 # 200 isochromats + +# Define spin position arrays +Δx = (122/117)*.1e-2 # 10mm +Δz_voxel = 10e-3 # 10 mm +M, N = size(class) # Number of spins in x and y +FOVx = (M-1)*Δx # Field of view in x +FOVy = (N-1)*Δx # Field of view in y +x = -FOVx/2:Δx:FOVx/2 # x spin coordinates vector +y = -FOVy/2:Δx:FOVy/2 # y spin coordinates vector +x, y = x .+ y'*0, x*0 .+ y' # x and y grid points + + +# Define the proton density array +ρ = (class.== 0)*1 .+ # Matrix + (class.== 1)*1 .+ # vial 1 + (class.== 2)*1 .+ # vial 2 + (class.== 3)*1 .+ # vial 3 + (class.== 4)*1 .+ # vial 4 + (class.== 5)*1 .+ # vial 5 + (class.== 6)*1 .+ # vial 6 + (class.== 7)*1 .+ # vial 7 + (class.== 8)*1 .+ # vial 8 + (class.== 9)*1 # vial 9 + +# Define the T1 decay array +import Random +Random.seed!(1234) +T1 = (class.==0)*810 .+ (class.==0).*Random.rand(Uniform(-16,16),M,N) .+ # Matrix + (class.==1)*424 .+ (class.==1).*Random.rand(Uniform(-4,4),M,N) .+ # vial 1 + (class.==2)*993 .+ (class.==2).*Random.rand(Uniform(-4,4),M,N) .+ # vial 2 + (class.==3)*450 .+ (class.==3).*Random.rand(Uniform(-5,5),M,N) .+ # vial 3 + (class.==4)*543 .+ (class.==4).*Random.rand(Uniform(-3,3),M,N) .+ # vial 4 + (class.==5)*1185 .+ (class.==5).*Random.rand(Uniform(-7,7),M,N) .+ # vial 5 + (class.==6)*1460 .+ (class.==6).*Random.rand(Uniform(-15,15),M,N) .+ # vial 6 + (class.==7)*299 .+ (class.==7).*Random.rand(Uniform(-3,3),M,N) .+ # vial 7 + (class.==8)*751 .+ (class.==8).*Random.rand(Uniform(-4,4),M,N) .+ # vial 8 + (class.==9)*264 .+ (class.==9).*Random.rand(Uniform(-3,3),M,N) # vial 9 + +# Define the T2 decay array +T2 = (class.==0)*125 .+ (class.==0).*Random.rand(Uniform(-20,20),M,N) .+ # Matrix + (class.==1)*47 .+ (class.==1).*Random.rand(Uniform(-1,1),M,N) .+ # vial 1 + (class.==2)*53 .+ (class.==2).*Random.rand(Uniform(-1.5,1.5),M,N) .+ # vial 2 + (class.==3)*196 .+ (class.==3).*Random.rand(Uniform(-5,5),M,N) .+ # vial 3 + (class.==4)*49 .+ (class.==4).*Random.rand(Uniform(-1,1),M,N) .+ # vial 4 + (class.==5)*53 .+ (class.==5).*Random.rand(Uniform(-1,1),M,N) .+ # vial 5 + (class.==6)*238 .+ (class.==6).*Random.rand(Uniform(-5,5),M,N) .+ # vial 6 + (class.==7)*47 .+ (class.==7).*Random.rand(Uniform(-1,1),M,N) .+ # vial 7 + (class.==8)*53 .+ (class.==8).*Random.rand(Uniform(-1,1),M,N) .+ # vial 8 + (class.==9)*174 .+ (class.==9).*Random.rand(Uniform(-3,3),M,N) # vial 9 + +# Time scaling factor +T1 = T1*1e-3 +T2 = T2*1e-3 + +# Define the phantom object +obj = Phantom{Float64}( + name = "custom_T1MES_lowfield", + x = x[ρ.!=0], + y = y[ρ.!=0], + z = 0*x[ρ.!=0], + ρ = ρ[ρ.!=0], + T1 = T1[ρ.!=0], + T2 = T2[ρ.!=0], +) + + diff --git a/examples/dict_sim_example.jl b/examples/dict_sim_example.jl new file mode 100644 index 000000000..787d562a4 --- /dev/null +++ b/examples/dict_sim_example.jl @@ -0,0 +1,93 @@ +using KomaMRI, PlotlyJS, MAT + +# 1. DEFINE MAIN PARAMETERS +# 1.1 Define lists for tissue parameters - this is just an example of possible values +T1list = Array(vcat(50:50:500, 505:5:1000, 1050:50:1500, 1600:100:2000))*1e-3 +T2list = Array(vcat(4:1:80, 85:5:200, 220:20:400))*1e-3 + +# 1.2 Compute combinations (T1-T2 pairs) +params_combs = vec(collect(Iterators.product(T1list, T2list, B1list, T1rholist, Dlist))) +# get ordered lists for T1-T2 values (for consistency) +T1values = [x[1] for x in params_combs] +T2values = [x[2] for x in params_combs] +Ncombinations = length(params_combs) + + +# 2. READ/LOAD SEQUENCE +seq_path = "path/to/your_seq.seq" +seq = read_seq(seq_path) + +# 2.1 Add heart rate variability - if needed +# read .mat file with RRs vector +# RRs_struct is a MATLAB struct with a field subject_RRs which contains an array with the measured RRs +# this is just a way to do it, it may be different depending on your application +RRs_struct = matread("MRF_simulations/RRs/HV8_RRs.mat") +desired_RRs = RRs_struct["subject_RRs"][:]*1e-3 + +# 2.2 Get triggered blocks from sequence +trigg_idx = findall(seq.DEF["extension"] .!= 0) +t0 = get_block_start_times(seq)[1:end-1][trigg_idx] # The 1:end-1 is because start time are [0, t0, t1, .., tn] +current_RRs = diff(t0) + +# 2.3 Modify RRs to the actual value +seq.DUR[trigg_idx[1:end-1]] .+= (desired_RRs .- current_RRs) +t0 = get_block_start_times(seq)[1:end-1][trigg_idx] +new_RRs = diff(t0) + +## plot the sequence - if you want +using KomaMRIPlots.PlotlyJS +p = plot_seq(seq) +for i in eachindex(t0) + add_trace!(p, KomaMRIPlots.scatter(x=[t0[i], t0[i]]*1e3, y=[-30, 30], + marker=attr(color="red"), legendgroup="RRs", showlegend=i==1, name="RRs")) # we mark the RR timestamps +end +p + +# 2.4 Only sample the center of the readout - you may need to modify this for sequences with echoes +# you could also add more samples but computation time increases significantly +for (i, adc) in enumerate(seq.ADC[is_ADC_on.(seq)]) + adc.N = 1 +end + + +# 3. SIMULATION +# 3.1 Define main simulation parameters +include("path/to/T1T2_voxel_phantom.jl") +include("path/to/BlochVoxelDictSimulation.jl") +sim_params = KomaMRICore.default_sim_params() +sim_params["sim_method"] = BlochVoxelDict(N_spins_per_voxel=NisoTotal) # N_spins_per_voxel depends on the spins defined in the voxelphantom +sim_params["Nthreads"] = 8 # define number of threads - depends on your machine +sim_params["return_type"] = "mat" # format for the output signal +sim_params["gpu"] = false # GPU not supported yet + +# system struct instance +sys = Scanner() + +# 3.2 Generate list of phantoms - each voxel (phantom) has a unique T1-T2 combination and a unique ID (n) +phantom_list = [] +for n in range(1,Ncombinations) + push!(phantom_list, voxel_phantom(T1values[n],T2values[n], n)) +end + +# 3.3 sum list of phantoms and run the simulation! +phantom = sum(phantom_list) +raw = simulate(phantom, seq, sys; sim_params) + + +# 4. PLOT STUFF +# maybe you want to plot the results, e.g. plot the magnitude of the first 5 entries of the dictionary +sig = abs.(raw[:,1:5,1]) +plot(sig) + + +# 5. SAVE RESULTS +# reshape combinations lists as an array +lists_temp = [[1e3*k for k in x] for x in params_combs] # in ms +lists_combinations = mapreduce(permutedims, vcat, lists_temp) + +# save MATLAB struct named KomaDict with fields +# KomaDict.raw +# KomaDict.combinations +# you can also add formatting for a more descriptive name +save_folder = "path/to/save/" +matwrite(join([save_folder, "KomaDict.mat"]), Dict("GenDict" => (Combinations = lists_combinations, dictOn = raw)))