forked from blackfeather-wang/GFNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
57 lines (41 loc) · 1.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
import torch.nn.functional as F
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.value = 0
self.ave = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.value = val
self.sum += val * n
self.count += n
self.ave = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
correct_k = correct[:1].view(-1).float()
return correct_k
def get_prime(images, patch_size, interpolation='bicubic'):
"""Get down-sampled original image"""
prime = F.interpolate(images, size=[patch_size, patch_size], mode=interpolation, align_corners=True)
return prime
def get_patch(images, action_sequence, patch_size):
"""Get small patch of the original image"""
batch_size = images.size(0)
image_size = images.size(2)
patch_coordinate = torch.floor(action_sequence * (image_size - patch_size)).int()
patches = []
for i in range(batch_size):
per_patch = images[i, :,
(patch_coordinate[i, 0].item()): ((patch_coordinate[i, 0] + patch_size).item()),
(patch_coordinate[i, 1].item()): ((patch_coordinate[i, 1] + patch_size).item())]
patches.append(per_patch.view(1, per_patch.size(0), per_patch.size(1), per_patch.size(2)))
return torch.cat(patches, 0)