-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
108 lines (87 loc) · 4.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
# Tensorflow提供了一个类来处理MNIST数据
old_v = tf.logging.get_verbosity()
tf.logging.set_verbosity(tf.logging.ERROR)
from tensorflow.examples.tutorials.mnist import input_data
import time
# 载入数据集
tf.logging.set_verbosity(old_v)
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 设置批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
# 定义初始化权值函数
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 定义初始化偏置函数
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 卷积层
def conv2d(input, filter):
return tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
# 池化层
def max_pool_2x2(value):
return tf.nn.max_pool(value, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 输入层
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784]) # 28*28
y = tf.placeholder(tf.float32, [None, 10])
# 改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 卷积、激励、池化操作
# 初始化第一个卷积层的权值和偏置
W_conv1 = weight_variable([5, 5, 1, 32]) # 5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1 = bias_variable([32]) # 每一个卷积核一个偏置值
# 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 进行max_pooling 池化层
# 初始化第二个卷积层的权值和偏置
W_conv2 = weight_variable([5, 5, 32, 64]) # 5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2 = bias_variable([64])
# 把第一个池化层结果和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # 池化层
# 28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
# 第二次卷积后为14*14,第二次池化后变为了7*7
# 经过上面操作后得到64张7*7的平面
# 全连接层
# 初始化第一个全连接层的权值
W_fc1 = weight_variable([7 * 7 * 64, 1024]) # 经过池化层后有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) # 1024个节点
# 把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# keep_prob用来表示神经元的输出概率
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 初始化第二个全连接层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# 输出层
# 计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
# 求准确率(tf.cast将布尔值转换为float型)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 创建会话
with tf.Session() as sess:
start_time = time.clock()
sess.run(tf.global_variables_initializer()) # 初始化变量
for epoch in range(21): # 迭代21次(训练21次)
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7}) # 进行迭代训练
# 测试数据计算出准确率
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0})
print('Iter' + str(epoch) + ',Testing Accuracy=' + str(acc))
end_time = time.clock()
print('Running time:%s Second' % (end_time - start_time)) # 输出运行时间