-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLP.py
2069 lines (1685 loc) · 68.6 KB
/
MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""HW1_Q4.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1U1CfuviLLJsDEuQIl7zFaJ6cLIP-OopJ
## Section I
### Download Data
"""
!pip install --upgrade --no-cache-dir gdown
!gdown 17KnUeG8_I9vgGU5mqym2hfFjnJPSEH-X
# from google.colab import files
# uploaded = files.upload()
"""### Read .csv & Call .info"""
import pandas as pd
df = pd.read_csv("/content/CarPrice_Assignment.csv")
df.info()
"""## Section II"""
df.isnull().sum()
for i in df.columns:
print('Number of NaN in',i,'=',df.isna().sum().sum())
"""## Section II"""
import pandas as pd
import difflib
# list of valid car company names
valid_names = ['alfa-romero', 'audi', 'bmw', 'chevrolet', 'dodge', 'honda', 'isuzu', 'jaguar', 'mazda', 'buick', 'mercury', 'mitsubishi', 'nissan', 'peugeot', 'plymouth', 'porsche', 'renault', 'saab', 'subaru', 'toyota', 'volkswagen', 'vw', 'volvo']
# read the original csv file into a pandas dataframe
df = pd.read_csv('/content/CarPrice_Assignment.csv')
# extract the first word of each CarName into a new CompanyName column
df['CompanyName'] = df['CarName'].str.split().str[0]
# replace any invalid names with the nearest match from the list
df['CompanyName'] = df['CompanyName'].apply(lambda x: difflib.get_close_matches(x, valid_names, n=1)[0])
# Place CompanyName column at first position
# # reorder the columns so that CompanyName is the first column
# df = df[['CompanyName', *df.columns[:-4]]]
cols = df.columns.tolist()
cols = cols[-1:] + cols[:-1]
df = df[cols]
# drop the CarName, car_ID, and symbolling columns
df = df.drop(['CarName', 'car_ID', 'symboling'], axis=1)
# save the modified dataframe to a new csv file
df.to_csv('CarPrice_Assignment1.csv', index=False)
"""## Section III
### Type1: Numeric (1,2,...)
"""
import pandas as pd
# read the csv file
df = pd.read_csv('/content/CarPrice_Assignment1.csv')
# iterate over each column in the dataframe
for col in df.columns:
# check if the column has a non-numeric data type
if df[col].dtype == 'object':
# use the pandas factorize() method to encode the values as integers
df[col] = pd.factorize(df[col])[0]
# save the updated dataframe to a new csv file
df.to_csv('CarPrice_Assignment2.csv', index=False)
import pandas as pd
# load the csv file
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# normalize each column by its own maximum value
normalized_df = df.apply(lambda x: x / x.max(), axis=0)
# save the normalized dataframe to a new csv file
normalized_df.to_csv('CarPrice_Assignment3.csv', index=False)
"""### Type1: One-hot (Multi-Column)"""
import pandas as pd
# Load CSV file
df = pd.read_csv('/content/CarPrice_Assignment1.csv')
# Loop through each column in the dataframe
for col in df.columns:
# Check if the column contains non-numeric values (i.e. objects)
if df[col].dtype == 'object':
# Convert non-numeric values to one-hot encoded columns
df = pd.concat([df, pd.get_dummies(df[col], prefix=col)], axis=1)
# Drop the original column
df.drop(columns=[col], inplace=True)
# Save result to a new CSV file
df.to_csv('CarPrice_Assignment4.csv', index=False)
"""### Type1: One-hot (Single-Column)"""
import pandas as pd
# Load CSV file
df = pd.read_csv('/content/CarPrice_Assignment3.csv')
# Group columns by the characters before the first underscore in their headers
groups = {}
for col in df.columns:
prefix = col.split('_')[0]
if prefix not in groups:
groups[prefix] = []
groups[prefix].append(col)
# Merge columns within each group and remove original columns
for prefix, cols in groups.items():
if len(cols) > 1:
new_col = '_'.join([prefix] + [''.join(c.split(prefix+'_')[1:]) for c in cols])
df[new_col] = df[cols].apply(lambda x: ' '.join(x.astype(str)), axis=1)
df.drop(columns=cols, inplace=True)
# Save result to a new CSV file
df.to_csv('CarPrice_Assignment5.csv', index=False)
"""## Section IV"""
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Read CSV file into DataFrame
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# Calculate correlation matrix
corr_matrix = df.corr()
# Create heatmap using seaborn
plt.figure(figsize=(25,25))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5, annot_kws={"size": 8}, fmt='.3f', yticklabels=corr_matrix.columns)
# Adjust font size of annotations
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
# Adjust margins of PDF file
plt.savefig('PIcS1.pdf', bbox_inches='tight')
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Read CSV file into DataFrame
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# Select columns to include in correlation matrix
cols = df.columns.tolist()
cols.remove('price')
# Calculate correlation matrix
corr_matrix = df[cols].corrwith(df['price']).sort_values(ascending=False)
# Create heatmap using seaborn
plt.figure(figsize=(2,10))
sns.heatmap(corr_matrix.to_frame(), annot=True, cmap='coolwarm', linewidths=0.5, annot_kws={"size": 12}, fmt='.3f', cbar=False)
# Rotate x-axis tick labels to be horizontal
plt.xticks(rotation=0)
# Adjust font size of annotations
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
# Adjust margins of PDF file
plt.tight_layout()
plt.savefig('priceCM1.pdf', bbox_inches='tight')
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Read CSV file into DataFrame
df = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Calculate correlation matrix
corr_matrix = df.corr()
# Create heatmap using seaborn
plt.figure(figsize=(25,25))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5, annot_kws={"size": 4}, fmt='.2f', yticklabels=corr_matrix.columns)
# Adjust font size of annotations
plt.xticks(fontsize=8)
plt.yticks(fontsize=8, rotation=0)
# Adjust margins of PDF file
plt.savefig('PIcS2.pdf', bbox_inches='tight')
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Read CSV file into DataFrame
df = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Select columns to include in correlation matrix
cols = df.columns.tolist()
cols.remove('price')
# Calculate correlation matrix
corr_matrix = df[cols].corrwith(df['price']).sort_values(ascending=False)
# Create heatmap using seaborn
plt.figure(figsize=(2,30))
sns.heatmap(corr_matrix.to_frame(), annot=True, cmap='coolwarm', linewidths=0.5, annot_kws={"size": 12}, fmt='.3f', cbar=False)
# Rotate x-axis tick labels to be horizontal
plt.xticks(rotation=0)
# Adjust font size of annotations
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
# Adjust margins of PDF file
plt.tight_layout()
plt.savefig('priceCM2.pdf', bbox_inches='tight')
"""### Other Codes"""
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# Generate the correlation matrix
CM = df.corr()
# Create a styled correlation matrix with a coolwarm color map
styled_CM = CM.style.background_gradient(cmap='coolwarm')
CM.style.background_gradient(cmap='coolwarm')
CM_Sort= CM.sort_values(by='price', ascending=False)
CM_Sort.style.background_gradient(cmap='coolwarm').format(precision=3)
CM_Sort.iloc[:,23:24].style.background_gradient(cmap='coolwarm').format(precision=3)
df = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Generate the correlation matrix
CM = df.corr()
# Create a styled correlation matrix with a coolwarm color map
styled_CM = CM.style.background_gradient(cmap='coolwarm')
CM.style.background_gradient(cmap='coolwarm')
CM_Sort= CM.sort_values(by='price', ascending=False)
CM_Sort.style.background_gradient(cmap='coolwarm').format(precision=3)
CM_Sort.iloc[:,13:14].style.background_gradient(cmap='coolwarm').format(precision=3)
corr_matrix = df.corr()
print(corr_matrix.iloc[1])
j=-1
for i in range(len(corr_matrix.iloc[13])):
if (corr_matrix.iloc[13][i] == 1):
continue
else:
if (j < corr_matrix.iloc[13][i] ):
j = corr_matrix.iloc[13][i]
ii=i
print ('Maximum Correlation Matrix','is', df.columns[ii],'and the value','=',j)
"""## Section VI"""
import pandas as pd
import matplotlib.pyplot as plt
# Load the CSV file into a pandas dataframe
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# Plot the distribution of the 'price' column as a histogram
plt.figure(figsize=(8, 6)) # Set the size of the figure
plt.subplot(2, 1, 1) # Create the first subplot
plt.hist(df['price'], bins=50, color='blue')
plt.xlabel('Price')
plt.ylabel('Count')
plt.title('Distribution of Prices')
# Plot a boxplot of the 'price' column
plt.subplot(2, 1, 2) # Create the second subplot
plt.boxplot(df['price'], vert=False, widths=0.7)
plt.xlabel('Price')
plt.title('Boxplot of Prices')
plt.tight_layout() # Automatically adjust subplot parameters
# Save the plot as a PDF file with a fit margin
plt.savefig('dist1.pdf', bbox_inches='tight')
plt.show()
# Define the bins for the price ranges
price_ranges = pd.cut(df['price'], bins=range(0, 160000, 8000))
# Calculate the count of prices in each range
price_counts = price_ranges.value_counts().sort_index()
# Display the price range counts
print(price_counts)
import pandas as pd
import matplotlib.pyplot as plt
# Load the CSV file into a pandas dataframe
df = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Plot the distribution of the 'price' column as a histogram
plt.figure(figsize=(8, 6)) # Set the size of the figure
plt.subplot(2, 1, 1) # Create the first subplot
plt.hist(df['price'], bins=50, color='blue')
plt.xlabel('Price')
plt.ylabel('Count')
plt.title('Distribution of Prices')
# Plot a boxplot of the 'price' column
plt.subplot(2, 1, 2) # Create the second subplot
plt.boxplot(df['price'], vert=False, widths=0.7)
plt.xlabel('Price')
plt.title('Boxplot of Prices')
plt.tight_layout() # Automatically adjust subplot parameters
# Save the plot as a PDF file with a fit margin
plt.savefig('dist2.pdf', bbox_inches='tight')
plt.show()
# Define the bins for the price ranges
price_ranges = pd.cut(df['price'], bins=range(0, 160000, 8000))
# Calculate the count of prices in each range
price_counts = price_ranges.value_counts().sort_index()
# Display the price range counts
print(price_counts)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the CSV file into a pandas dataframe
df = pd.read_csv('/content/CarPrice_Assignment2.csv')
# Create a scatter plot of 'price' versus 'enginesize'
sns.regplot(x=df['enginesize'], y=df['price'])
plt.xlabel('Engine Size')
plt.ylabel('Price')
plt.title('Price vs. Engine Size Scatter Plot')
# Save the plot as a PDF file with a fit margin
plt.savefig('pricevsenginesize1.pdf', bbox_inches='tight')
plt.show()
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the CSV file into a pandas dataframe
df = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Create a scatter plot of 'price' versus 'enginesize'
sns.regplot(x=df['enginesize'], y=df['price'])
plt.xlabel('Engine Size')
plt.ylabel('Price')
plt.title('Price vs. Engine Size Scatter Plot')
# Save the plot as a PDF file with a fit margin
plt.savefig('pricevsenginesize2.pdf', bbox_inches='tight')
plt.show()
import numpy as np
import re
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#visualizing house prices
fig = plt.figure(figsize=(10,7))
fig.add_subplot(2,1,1)
sns.histplot(df['price'])
fig.add_subplot(2,1,2)
sns.boxplot(df['price'])
plt.tight_layout()
df_price_sqft= (df.loc[:,['price','enginesize']] - df.loc[:,['price','enginesize']].mean()) / df.loc[:,['price','enginesize']].std()
df_price_sqft
sns.regplot(x= df_price_sqft['enginesize'],y= df_price_sqft['price'])
"""### Other Codes"""
import matplotlib.pyplot as plt
import seaborn as sns
fig = plt.figure(figsize=(10,7))
fig.add_subplot(2,2,1)
sns.distplot(df['price'])
fig.add_subplot(2,2,2)
sns.boxplot(df['price'])
plt.tight_layout()
fig.add_subplot(2,2,3)
sns.scatterplot(df[df.columns[ii]],df['price'])
plt.tight_layout()
plt.show()
"""### E"""
df['year']= df.date.apply(lambda x: x[:4])
df['month']= df.date.apply(lambda x: x[4:6])
df.drop('date', axis= 1, inplace= True)
df.year= df.year.astype(int)
df.month= df.month.astype(int)
df.head()
fig = plt.figure(figsize=(16,5))
fig.add_subplot(1,2,1)
df.groupby('year').mean()['price'].plot()
fig.add_subplot(1,2,2)
df.groupby('month').mean()['price'].plot(color= 'green')
"""## Section VII"""
import pandas as pd
from sklearn.model_selection import train_test_split
# Read data from CSV file into a Pandas dataframe
data = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Split the data into train and test sets
train_data, test_data, train_label, test_label = train_test_split(data.drop(['price'], axis=1), data['price'], test_size=0.15, random_state=42)
# Save train and test data to new CSV files
train_data.to_csv('train_data.csv', index=False)
test_data.to_csv('test_data.csv', index=False)
# Save train and test labels to new CSV files
train_label.to_csv('train_label.csv', index=False)
test_label.to_csv('test_label.csv', index=False)
# Print shape of each set
print(f"train_data shape: {train_data.shape}")
print(f"test_data shape: {test_data.shape}")
print(f"train_label shape: {train_label.shape}")
print(f"test_label shape: {test_label.shape}")
"""### Other Codes"""
#split train & test
data= np.array(df.iloc[:,1:])
np.random.shuffle(data)
X= data[:,1:]
Y= data[:, 0]
split= int(len(data)*0.8)
x_train, x_test= X[:split] , X[split:]
y_train, y_test= Y[:split] , Y[split:]
y_test.shape
y_train= y_train.reshape((164,1))
y_test= y_test.reshape((41,1))
print("shape of X_train : ", x_train.shape)
print("shape of y_train : ", y_train.shape)
print("shape of X_test : ", x_test.shape)
print("shape of y_test : ", y_test.shape)
"""## Section VIII"""
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
# read csv file into a pandas dataframe
data = pd.read_csv('/content/CarPrice_Assignment4.csv')
# extract label column as y
y = data['price']
# extract all other columns as X
X = data.drop(columns=['price'])
# split data into train and test sets with a 85/15 split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42)
# scale the training data
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
# scale the test data using the same scaler used for training data
X_test_scaled = scaler.transform(X_test)
# save train and test data/label in new files
pd.DataFrame(X_train_scaled).to_csv('Xtrain.csv', index=False)
y_train.to_csv('ytrain.csv', index=False)
pd.DataFrame(X_test_scaled).to_csv('Xtest.csv', index=False)
y_test.to_csv('ytest.csv', index=False)
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
# Read the CSV file
data = pd.read_csv('/content/CarPrice_Assignment4.csv')
# Separate the label and data
label = df['price']
data = df.drop('price', axis=1)
# Remove the header from the variables
data = data.values
label = label.values
# Split the data into train/validation/test sets
train_data, test_data, train_label, test_label = train_test_split(data, label, test_size=0.15, random_state=42)
train_data, val_data, train_label, val_label = train_test_split(train_data, train_label, test_size=0.15, random_state=42)
# Scale the data using MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
val_data = scaler.transform(val_data)
test_data = scaler.transform(test_data)
# Print shape of each set
print(f"train_data shape: {train_data.shape}")
print(f"val_data shape: {val_data.shape}")
print(f"test_data shape: {test_data.shape}")
print(f"train_label shape: {train_label.shape}")
print(f"val_label shape: {val_label.shape}")
print(f"test_label shape: {test_label.shape}")
# Save the train/validation/test data/label to new files
pd.DataFrame(train_data).to_csv('/content/finaltrain_data.csv', index=False, header=False)
pd.DataFrame(val_data).to_csv('/content/finalval_data.csv', index=False, header=False)
pd.DataFrame(test_data).to_csv('/content/finaltest_data.csv', index=False, header=False)
pd.DataFrame(train_label).to_csv('/content/finaltrain_label.csv', index=False, header=False)
pd.DataFrame(val_label).to_csv('/content/finalval_label.csv', index=False, header=False)
pd.DataFrame(test_label).to_csv('/content/finaltest_label.csv', index=False, header=False)
"""# Part 2
## Section I
"""
# Define the MLP models
class MLP1(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP1, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class MLP2(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_dim):
super(MLP2, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
"""## Section II & III"""
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
# Define the MLP models
class MLP1(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP1, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class MLP2(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_dim):
super(MLP2, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class MLP3(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, hidden_dim3, output_dim):
super(MLP3, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, hidden_dim3)
self.fc4 = nn.Linear(hidden_dim3, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
# Define the training function
def train(model, optimizer, criterion, train_data, train_label, val_data, val_label, num_epochs=1000):
train_loss_list = []
val_loss_list = []
r2score_list = []
train_r2score_list = []
best_model = None
best_r2score = -1
for epoch in range(num_epochs):
# Training
model.train()
optimizer.zero_grad()
train_output = model(train_data)
train_loss = criterion(train_output.squeeze(), train_label)
train_loss.backward()
optimizer.step()
train_loss_list.append(train_loss.item())
train_r2score = r2_score(train_label, train_output.squeeze().detach().numpy())
train_r2score_list.append(train_r2score)
# Validation
model.eval()
with torch.no_grad():
val_output = model(val_data)
val_loss = criterion(val_output.squeeze(), val_label)
val_loss_list.append(val_loss.item())
r2score = r2_score(val_label, val_output.squeeze().detach().numpy())
r2score_list.append(r2score)
if r2score > best_r2score:
best_r2score = r2score
best_model = model.state_dict()
# Print loss and R2 score every 100 epochs
if (epoch+1) % 5 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss.item():.4f}, Val Loss: {val_loss.item():.4f}, Train R2 score: {train_r2score:.4f}, Val R2 score: {r2score:.4f}")
# Plot loss curve and save as pdf
plt.plot(train_loss_list, label='Train Loss')
plt.plot(val_loss_list, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title(type(model).__name__)
plt.savefig(f"{type(model).__name__}_loss.pdf")
plt.show()
# Plot R2 score curve and save as pdf
plt.plot(train_r2score_list, label='Train R2 score')
plt.plot(r2score_list, label='Val R2 score')
plt.xlabel('Epoch')
plt.ylabel('R2 score')
plt.legend()
plt.title(type(model).__name__)
plt.savefig(f"{type(model).__name__}_r2score.pdf")
plt.show()
# Return the best model based on the validation R2 score
return best_model
# Define the data and labels
train_data = torch.Tensor(train_data)
train_label = torch.Tensor(train_label)
val_data = torch.Tensor(val_data)
val_label = torch.Tensor(val_label)
test_data = torch.Tensor(test_data)
test_label = torch.Tensor(test_label)
# Define the hyperparameters
input_dim = 23
output_dim = 1
hidden_dim1 = 16
hidden_dim2 = 64
hidden_dim3 = 128
learning_rate = 0.001
num_epochs = 120
# Train the models
model1 = MLP1(input_dim, hidden_dim1, output_dim)
optimizer1 = optim.Adam(model1.parameters(), lr=learning_rate)
criterion1 = nn.MSELoss()
best_model1 = train(model1, optimizer1, criterion1, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
model2 = MLP2(input_dim, hidden_dim1, hidden_dim2, output_dim)
optimizer2 = optim.Adam(model2.parameters(), lr=learning_rate)
criterion2 = nn.MSELoss()
best_model2 = train(model2, optimizer2, criterion2, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
model3 = MLP3(input_dim, hidden_dim1, hidden_dim2, hidden_dim3, output_dim)
optimizer3 = optim.Adam(model3.parameters(), lr=learning_rate)
criterion3 = nn.MSELoss()
best_model3 = train(model3, optimizer3, criterion3, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
# Evaluate the models on the test set
model1.load_state_dict(best_model1)
model1.eval()
with torch.no_grad():
test_output1 = model1(test_data)
test_loss1 = criterion1(test_output1.squeeze(), test_label)
test_r2score1 = r2_score(test_label, test_output1.squeeze().detach().numpy())
model2.load_state_dict(best_model2)
model2.eval()
with torch.no_grad():
test_output2 = model2(test_data)
test_loss2 = criterion2(test_output2.squeeze(), test_label)
test_r2score2 = r2_score(test_label, test_output2.squeeze().detach().numpy())
model3.load_state_dict(best_model3)
model3.eval()
with torch.no_grad():
test_output3 = model3(test_data)
test_loss3 = criterion3(test_output3.squeeze(), test_label)
test_r2score3 = r2_score(test_label, test_output3.squeeze().detach().numpy())
# Print the test set results
print("MLP1 Test Set Results:")
print(f"Loss: {test_loss1:.4f}, R2 Score: {test_r2score1:.4f}")
print("MLP2 Test Set Results:")
print(f"Loss: {test_loss2:.4f}, R2 Score: {test_r2score2:.4f}")
print("MLP3 Test Set Results:")
print(f"Loss: {test_loss3:.4f}, R2 Score: {test_r2score3:.4f}")
"""## Section IV
### Diff Loss
"""
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
# Define the MLP models
class MLP1(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP1, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class MLP2(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_dim):
super(MLP2, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class MLP3(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, hidden_dim3, output_dim):
super(MLP3, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, hidden_dim3)
self.fc4 = nn.Linear(hidden_dim3, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
# Define the training function
def train(model, optimizer, criterion, train_data, train_label, val_data, val_label, num_epochs=1000):
train_loss_list = []
val_loss_list = []
r2score_list = []
train_r2score_list = []
best_model = None
best_r2score = -1
for epoch in range(num_epochs):
# Training
model.train()
optimizer.zero_grad()
train_output = model(train_data)
train_loss = criterion(train_output.squeeze(), train_label)
train_loss.backward()
optimizer.step()
train_loss_list.append(train_loss.item())
train_r2score = r2_score(train_label, train_output.squeeze().detach().numpy())
train_r2score_list.append(train_r2score)
# Validation
model.eval()
with torch.no_grad():
val_output = model(val_data)
val_loss = criterion(val_output.squeeze(), val_label)
val_loss_list.append(val_loss.item())
r2score = r2_score(val_label, val_output.squeeze().detach().numpy())
r2score_list.append(r2score)
if r2score > best_r2score:
best_r2score = r2score
best_model = model.state_dict()
# Print loss and R2 score every 100 epochs
if (epoch+1) % 5 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss.item():.4f}, Val Loss: {val_loss.item():.4f}, Train R2 score: {train_r2score:.4f}, Val R2 score: {r2score:.4f}")
# Plot loss curve and save as pdf
plt.plot(train_loss_list, label='Train Loss')
plt.plot(val_loss_list, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title(type(model).__name__ + ' (MSE loss)')
plt.savefig(f"{type(model).__name__}_loss.pdf")
plt.show()
# Plot R2 score curve and save as pdf
plt.plot(train_r2score_list, label='Train R2 score')
plt.plot(r2score_list, label='Val R2 score')
plt.xlabel('Epoch')
plt.ylabel('R2 score')
plt.legend()
plt.title(type(model).__name__ + ' (MSE loss)')
plt.savefig(f"{type(model).__name__}_r2score.pdf")
plt.show()
# Return the best model based on the validation R2 score
return best_model
# Define the data and labels
train_data = torch.Tensor(train_data)
train_label = torch.Tensor(train_label)
val_data = torch.Tensor(val_data)
val_label = torch.Tensor(val_label)
test_data = torch.Tensor(test_data)
test_label = torch.Tensor(test_label)
# Define the hyperparameters
input_dim = 23
output_dim = 1
hidden_dim1 = 16
hidden_dim2 = 64
hidden_dim3 = 128
learning_rate = 0.001
num_epochs = 120
# Train the models
model1 = MLP1(input_dim, hidden_dim1, output_dim)
optimizer1 = optim.Adam(model1.parameters(), lr=learning_rate)
criterion1 = nn.MSELoss()
best_model1 = train(model1, optimizer1, criterion1, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
model2 = MLP2(input_dim, hidden_dim1, hidden_dim2, output_dim)
optimizer2 = optim.Adam(model2.parameters(), lr=learning_rate)
criterion2 = nn.MSELoss()
best_model2 = train(model2, optimizer2, criterion2, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
model3 = MLP3(input_dim, hidden_dim1, hidden_dim2, hidden_dim3, output_dim)
optimizer3 = optim.Adam(model3.parameters(), lr=learning_rate)
criterion3 = nn.MSELoss()
best_model3 = train(model3, optimizer3, criterion3, train_data, train_label, val_data, val_label, num_epochs=num_epochs)
# Evaluate the models on the test set
model1.load_state_dict(best_model1)
model1.eval()
with torch.no_grad():
test_output1 = model1(test_data)
test_loss1 = criterion1(test_output1.squeeze(), test_label)
test_r2score1 = r2_score(test_label, test_output1.squeeze().detach().numpy())
model2.load_state_dict(best_model2)
model2.eval()
with torch.no_grad():
test_output2 = model2(test_data)
test_loss2 = criterion2(test_output2.squeeze(), test_label)
test_r2score2 = r2_score(test_label, test_output2.squeeze().detach().numpy())
model3.load_state_dict(best_model3)
model3.eval()
with torch.no_grad():
test_output3 = model3(test_data)
test_loss3 = criterion3(test_output3.squeeze(), test_label)
test_r2score3 = r2_score(test_label, test_output3.squeeze().detach().numpy())
# Print the test set results
print("MLP1 Test Set Results:")
print(f"Loss: {test_loss1:.4f}, R2 Score: {test_r2score1:.4f}")
print("MLP2 Test Set Results:")
print(f"Loss: {test_loss2:.4f}, R2 Score: {test_r2score2:.4f}")
print("MLP3 Test Set Results:")
print(f"Loss: {test_loss3:.4f}, R2 Score: {test_r2score3:.4f}")
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
# Define the MLP models
class MLP1(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP1, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class MLP2(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, output_dim):
super(MLP2, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class MLP3(nn.Module):
def __init__(self, input_dim, hidden_dim1, hidden_dim2, hidden_dim3, output_dim):
super(MLP3, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim1)
self.fc2 = nn.Linear(hidden_dim1, hidden_dim2)
self.fc3 = nn.Linear(hidden_dim2, hidden_dim3)
self.fc4 = nn.Linear(hidden_dim3, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
# Define the training function
def train(model, optimizer, criterion, train_data, train_label, val_data, val_label, num_epochs=1000):
train_loss_list = []
val_loss_list = []
r2score_list = []
train_r2score_list = []
best_model = None
best_r2score = -1
for epoch in range(num_epochs):
# Training
model.train()
optimizer.zero_grad()
train_output = model(train_data)
train_loss = criterion(train_output.squeeze(), train_label)