-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyai.py
171 lines (135 loc) · 5.43 KB
/
pyai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import spacy
import whisper
import numpy as np
from torch import nn
from torch import Tensor
from transformers import pipeline
from sklearn.tree import DecisionTreeRegressor
class PyAI:
def __init__(self, useGPU: bool):
if useGPU:
self.GPU = "cuda"
else:
self.GPU = "cpu"
def KNN(self, x, y, returnValues = 0):
distances = []
for axisX, axisY in zip(x, y):
distance = axisX - axisY
absDistance = np.absolute(distance)
distances.append(absDistance)
sortedDistances = []
checkDistance = min(distances, key = lambda x:np.absolute(x-i))
sortedDistances.append(checkDistance)
distances.remove(checkDistance)
if returnValues == 0:
return sortedDistances[0]
else:
return sortedDistances[0:returnValues-1]
def RNN(self, w: int, hx: int, useReLU: bool = False):
if useReLU:
RNN = nn.RNN(w, hx, 4, "relu").to(self.GPU)
else:
RNN = nn.RNN(w, hx, 4).to(self.GPU)
return self.Softmax(RNN)
def ReLU(self, x: list, *y: list, **u: list):
X, Y, U = [Tensor(x2) for x2 in x], [Tensor(y2) for y2 in y], [Tensor(u2) for u2 in u]
relu = nn.ReLU().to(self.GPU)
newX, newY, newU = [relu(x) for x in X], [relu(y) for y in Y], [relu(u) for u in U]
if newU is not None:
return newX, newY, newU
elif newY is not None:
return newX, newY
else:
return newX
def Softmax(self, x: list | Tensor):
if isinstance(x, list):
tensor = Tensor(x, 1).to(self.GPU)
soft = nn.Softmax(dim=1).to(self.GPU)(tensor)
return soft
else:
soft = nn.Softmax(dim=1).to(self.GPU)(x)
return soft
def Sigmoid(self, x: list | Tensor):
if isinstance(x, list):
tensor = Tensor(x, 1).to(self.GPU)
sigmod = nn.Sigmoid().to(self.GPU)(tensor)
return sigmod
else:
sigmod = nn.Sigmoid().to(self.GPU)(x)
return sigmod
def decisionTree(self, trainX: list, trainY: list, words: list):
w = np.array([len(a) for a in words]).reshape(-1, 1)
tree = DecisionTreeRegressor()
tree.fit(trainX, trainY)
return tree.predict(w).tolist()
class Audio:
def __init__(self, audio: str):
self.model = whisper.load_model("base")
self.audio = audio
def generateTextFromAudio(self) -> str:
aud = whisper.load_audio(self.audio)
aud = whisper.pad_or_trim(aud)
self.mel = whisper.log_mel_spectrogram(aud).to(self.model.device)
self.model.detect_language(self.mel)
options = whisper.DecodingOptions()
result = whisper.decode(self.model, self.mel, options)
return result.text
def translateText(self, text: str, dataSet: str) -> str:
with open(dataSet, "r") as d:
data = d.read()
translation = text.translate(data)
return translation
def getLang(self):
i, lang = self.model.detect_language(self.mel)
return max(lang, key=lang.get)
class NLP:
def __init__(self, text: str):
self.text = text
self.sentences = text.split(".")
self.words = text.split(" ")
self._past = ["was", "had", "did"]
self._present = ["is", "has"]
self._future = ["will", "shall"]
def setTokensTo(self, letters: bool, *words: bool, **sentences: bool):
self.tokens = []
if letters:
tokens = iter(self.text)
for t in tokens:
self.tokens.append(t)
elif words:
for t in self.words:
self.tokens.append(t)
elif sentences:
for t in self.sentences:
self.tokens.append(t)
else:
self.tokens.append("ERROR")
def getTense(self):
self.past = False
self.present = False
self.future = False
if self.sentences in self._past:
self.past = True
elif self.sentences in self._present:
self.present = True
elif self.sentences in self._future:
self.future = True
else:
return "ERROR - Tense :: Not Enough Data"
return self.past, self.present, self.future
def getWords(self):
return self.words
def getSentences(self):
return self.sentences
def getTokens(self):
return self.tokens
def getPartOfSpeech(self, text: str):
POS = spacy.load("en_core_web_sm")
return POS(text)[0].tag_
def BERT(self, text: str, model: str = "bert-base-uncased"):
BERT = pipeline("fill-mask", model=model)
return BERT(text)
class Transformers:
def __init__(self, text: str, typeOfOperation: str = "text-generation", model: str = "gpt2"):
transformer = pipeline(typeOfOperation, model=model)
return transformer(text)