-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy path502_batch_normalization.py
138 lines (117 loc) · 5.47 KB
/
502_batch_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
tensorflow: 1.1.0
matplotlib
numpy
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.set_random_seed(1)
np.random.seed(1)
# Hyper parameters
N_SAMPLES = 2000
BATCH_SIZE = 64
EPOCH = 12
LR = 0.03
N_HIDDEN = 8
ACTIVATION = tf.nn.tanh
B_INIT = tf.constant_initializer(-0.2) # use a bad bias initialization
# training data
x = np.linspace(-7, 10, N_SAMPLES)[:, np.newaxis]
np.random.shuffle(x)
noise = np.random.normal(0, 2, x.shape)
y = np.square(x) - 5 + noise
train_data = np.hstack((x, y))
# test data
test_x = np.linspace(-7, 10, 200)[:, np.newaxis]
noise = np.random.normal(0, 2, test_x.shape)
test_y = np.square(test_x) - 5 + noise
# plot input data
plt.scatter(x, y, c='#FF9359', s=50, alpha=0.5, label='train')
plt.legend(loc='upper left')
# tensorflow placeholder
tf_x = tf.placeholder(tf.float32, [None, 1])
tf_y = tf.placeholder(tf.float32, [None, 1])
tf_is_train = tf.placeholder(tf.bool, None) # flag for using BN on training or testing
class NN(object):
def __init__(self, batch_normalization=False):
self.is_bn = batch_normalization
self.w_init = tf.random_normal_initializer(0., .1) # weights initialization
self.pre_activation = [tf_x]
if self.is_bn:
self.layer_input = [tf.layers.batch_normalization(tf_x, training=tf_is_train)] # for input data
else:
self.layer_input = [tf_x]
for i in range(N_HIDDEN): # adding hidden layers
self.layer_input.append(self.add_layer(self.layer_input[-1], 10, ac=ACTIVATION))
self.out = tf.layers.dense(self.layer_input[-1], 1, kernel_initializer=self.w_init, bias_initializer=B_INIT)
self.loss = tf.losses.mean_squared_error(tf_y, self.out)
# !! IMPORTANT !! the moving_mean and moving_variance need to be updated,
# pass the update_ops with control_dependencies to the train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.train = tf.train.AdamOptimizer(LR).minimize(self.loss)
def add_layer(self, x, out_size, ac=None):
x = tf.layers.dense(x, out_size, kernel_initializer=self.w_init, bias_initializer=B_INIT)
self.pre_activation.append(x)
# the momentum plays important rule. the default 0.99 is too high in this case!
if self.is_bn: x = tf.layers.batch_normalization(x, momentum=0.4, training=tf_is_train) # when have BN
out = x if ac is None else ac(x)
return out
nets = [NN(batch_normalization=False), NN(batch_normalization=True)] # two nets, with and without BN
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# plot layer input distribution
f, axs = plt.subplots(4, N_HIDDEN+1, figsize=(10, 5))
plt.ion() # something about plotting
def plot_histogram(l_in, l_in_bn, pre_ac, pre_ac_bn):
for i, (ax_pa, ax_pa_bn, ax, ax_bn) in enumerate(zip(axs[0, :], axs[1, :], axs[2, :], axs[3, :])):
[a.clear() for a in [ax_pa, ax_pa_bn, ax, ax_bn]]
if i == 0: p_range = (-7, 10); the_range = (-7, 10)
else: p_range = (-4, 4); the_range = (-1, 1)
ax_pa.set_title('L' + str(i))
ax_pa.hist(pre_ac[i].ravel(), bins=10, range=p_range, color='#FF9359', alpha=0.5)
ax_pa_bn.hist(pre_ac_bn[i].ravel(), bins=10, range=p_range, color='#74BCFF', alpha=0.5)
ax.hist(l_in[i].ravel(), bins=10, range=the_range, color='#FF9359')
ax_bn.hist(l_in_bn[i].ravel(), bins=10, range=the_range, color='#74BCFF')
for a in [ax_pa, ax, ax_pa_bn, ax_bn]:
a.set_yticks(()); a.set_xticks(())
ax_pa_bn.set_xticks(p_range); ax_bn.set_xticks(the_range); axs[2, 0].set_ylabel('Act'); axs[3, 0].set_ylabel('BN Act')
plt.pause(0.01)
losses = [[], []] # record test loss
for epoch in range(EPOCH):
print('Epoch: ', epoch)
np.random.shuffle(train_data)
step = 0
in_epoch = True
while in_epoch:
b_s, b_f = (step*BATCH_SIZE) % len(train_data), ((step+1)*BATCH_SIZE) % len(train_data) # batch index
step += 1
if b_f < b_s:
b_f = len(train_data)
in_epoch = False
b_x, b_y = train_data[b_s: b_f, 0:1], train_data[b_s: b_f, 1:2] # batch training data
sess.run([nets[0].train, nets[1].train], {tf_x: b_x, tf_y: b_y, tf_is_train: True}) # train
if step == 1:
l0, l1, l_in, l_in_bn, pa, pa_bn = sess.run(
[nets[0].loss, nets[1].loss, nets[0].layer_input, nets[1].layer_input,
nets[0].pre_activation, nets[1].pre_activation],
{tf_x: test_x, tf_y: test_y, tf_is_train: False})
[loss.append(l) for loss, l in zip(losses, [l0, l1])] # recode test loss
plot_histogram(l_in, l_in_bn, pa, pa_bn) # plot histogram
plt.ioff()
# plot test loss
plt.figure(2)
plt.plot(losses[0], c='#FF9359', lw=3, label='Original')
plt.plot(losses[1], c='#74BCFF', lw=3, label='Batch Normalization')
plt.ylabel('test loss'); plt.ylim((0, 2000)); plt.legend(loc='best')
# plot prediction line
pred, pred_bn = sess.run([nets[0].out, nets[1].out], {tf_x: test_x, tf_is_train: False})
plt.figure(3)
plt.plot(test_x, pred, c='#FF9359', lw=4, label='Original')
plt.plot(test_x, pred_bn, c='#74BCFF', lw=4, label='Batch Normalization')
plt.scatter(x[:200], y[:200], c='r', s=50, alpha=0.2, label='train')
plt.legend(loc='best'); plt.show()