-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_expectation.py
315 lines (259 loc) · 19.6 KB
/
main_expectation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from OASIS import utilities
from OASIS import visualize
from OASIS import methods
from gtsam import Point3, Cal3_S2
import numpy as np
import os
import time
import random
from OASIS import core_utils as core
from OASIS import sim_data_utils as sdu
import argparse
'''
Generate multiple simulations of a trajectory and landmarks within
a room environment, run all benchmark algorithms for different select_k.
log the results
'''
if __name__ == '__main__':
''' construct the 3D world and the trajectory'''
''' Sample all the camera configurations. In sim I have ~300 configs '''
''' The goal is to pick the best N among these placeents.'''
''' Run greedy first, get a initial baseline.'''
''' Use greedy solution as initial value'''
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description='runs experiments for different benchmark \
algorithms for optimal camera placement\n\n')
parser.add_argument('-n', '--num_runs', help='number of runs in the experiment', default=10)
parser.add_argument('-s', '--select_k', help='number of cameras to select', default=2)
parser.add_argument('-t', '--traj_type', help='Type of trajectory 1:circle, 2:side, 3:forward, 4:random', default=4)
parser.add_argument('-o', '--output_dir', help='Output dir for output bag file', default='.')
parser.add_argument('-c', '--config_file',
help='Yaml file which specifies the topic names, frequency of selection and time range',
default='config/config.yaml')
args = parser.parse_args()
num_points = 25*4
num_poses =50
max_select_k = 7
K = Cal3_S2(100.0, 100.0, 0.0, 50.0, 50.0)
''' Number of cameras to be selected'''
#select_k = args.select_k
traj = ""
''' For a particular type of trajectory'''
for traj_ind in range(4, 5):
if traj_ind == 1:
traj = "circle"
elif traj_ind == 2:
traj = "side"
elif traj_ind == 3:
traj = "forward"
elif traj_ind >= 4:
traj = "random"
output_file_Path = os.path.join(args.output_dir, traj+"_{}runs".format(args.num_runs))
if os.path.exists(output_file_Path):
os.rmdir(output_file_Path)
os.mkdir(output_file_Path)
# Setup the parameters
# best_configs = {i: [] for i in range(2, max_select_k)}
# best_configs_fw = {i: [] for i in range(2, max_select_k)}
rmse_greedy_slam = {i: [] for i in range(2, max_select_k)}
rmse_greedy_loc = {i: [] for i in range(2, max_select_k)}
rmse_greedy_gt_slam = {i: [] for i in range(2, max_select_k)}
rmse_greedy_gt_loc = {i: [] for i in range(2, max_select_k)}
rmse_fw_slam = {i: [] for i in range(2, max_select_k)}
rmse_fw_loc = {i: [] for i in range(2, max_select_k)}
rmse_fw_gt_slam = {i: [] for i in range(2, max_select_k)}
rmse_fw_gt_loc = {i: [] for i in range(2, max_select_k)}
rmse_scipy_slam = {i: [] for i in range(2, max_select_k)}
rmse_scipy_loc = {i: [] for i in range(2, max_select_k)}
rmse_scipy_gt_slam = {i: [] for i in range(2, max_select_k)}
rmse_scipy_gt_loc = {i: [] for i in range(2, max_select_k)}
times_g = {i: [] for i in range(2, max_select_k)}
times_fw = {i: [] for i in range(2, max_select_k)}
times_scipy = {i: [] for i in range(2, max_select_k)}
iters_fw = {i: [] for i in range(2, max_select_k)}
greedy_scores = {i: [] for i in range(2, max_select_k)}
fw_scores = {i: [] for i in range(2, max_select_k)}
fw_scores_unrounded = {i: [] for i in range(2, max_select_k)}
scipy_scores = {i: [] for i in range(2, max_select_k)}
scipy_scores_unrounded = {i: [] for i in range(2, max_select_k)}
greedy_selected_cands = {i: [] for i in range(2, max_select_k)}
fw_selected_cands = {i: [] for i in range(2, max_select_k)}
scipy_selected_cands = {i: [] for i in range(2, max_select_k)}
fw_solution_unr_list = {i: [] for i in range(2, max_select_k)}
scipy_solution_unr_list = {i: [] for i in range(2, max_select_k)}
'''
EQUAL, RAND and STANDARD
'''
equal_scores = {i: [] for i in range(2, max_select_k)}
stnd_scores = {i: [] for i in range(2, max_select_k)}
rand_scores = {i: [] for i in range(2, max_select_k)}
equal_selected_cands = {i: [] for i in range(2, max_select_k)}
stnd_selected_cands = {i: [] for i in range(2, max_select_k)}
rand_selected_cands = {i: [] for i in range(2, max_select_k)}
rmse_equal_slam ={i: [] for i in range(2, max_select_k)}
rmse_equal_loc ={i: [] for i in range(2, max_select_k)}
rmse_stnd_slam = {i: [] for i in range(2, max_select_k)}
rmse_stnd_loc = {i: [] for i in range(2, max_select_k)}
rmse_rand_slam = {i: [] for i in range(2, max_select_k)}
rmse_rand_loc = {i: [] for i in range(2, max_select_k)}
prior_scale = 1e-3
h_prior = np.zeros((num_poses * 6 + num_points * 3, num_poses * 6 + num_points * 3))
h_prior[-6:, -6:] = np.eye(6) * (1/prior_scale)
# h_prior[-num_poses * 6:, -num_poses * 6:] = np.eye(num_poses * 6)
# h_prior[0: -num_poses * 6, 0: -num_poses * 6:] = np.eye(num_points * 3)
# h_prior = h_prior #* 1e-3
all_poses, all_points, all_measurements, all_extr_cand, all_intrinsics, all_poses_with_noise, all_points_with_noise =[],[],[],[],[],[],[]
all_measurements_equal =[]
all_measurements_stnd = []
all_extr_cand_equal =[]
all_extr_cand_stnd =[]
all_intrinsics_e =[]
all_intrinsics_s =[]
''' Run a set of experiments and grab data'''
for exp_ind in range(args.num_runs):
''' Generate the simulation data for greedy, franke-wolfe and RAND'''
poses, points, measurements, extr_cand, intrinsics, poses_with_noise, points_with_noise = sdu.generate_simulation_data(K, traj_ind, num_points, num_poses, False ) #args.traj_type
''' write the data to log'''
utilities.write_data_logs(os.path.join(output_file_Path, "data_log_" + traj + "_{}.txt".format(exp_ind)),
poses, points, extr_cand, measurements, poses_with_noise,
points_with_noise)
''' For this same data i.e poses and points, generate extr_cands and measurements for EQUAL and STANDARD'''
''' the extr_cands for equal and stnd are a list corresponding to the selectKs as shown = [2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6]'''
measurements_equal, extr_cand_equal, intrinsics_e = sdu.generate_meas_extr_EQUAL(poses, points, K, list(range(2,max_select_k)))
measurements_stnd, extr_cand_stnd, intrinsics_s = sdu.generate_meas_extr_STANDARD(poses, points, K, list(range(2,max_select_k)))
''' write the data to log for EQUAL'''
utilities.write_data_logs(os.path.join(output_file_Path, "data_log_equal_" + traj + "_{}.txt".format(exp_ind)),
poses, points, extr_cand_equal, measurements_equal, poses_with_noise,
points_with_noise)
''' write the data to log for STANDARD'''
utilities.write_data_logs(os.path.join(output_file_Path, "data_log_standard_" + traj + "_{}.txt".format(exp_ind)),
poses, points, extr_cand_stnd, measurements_stnd, poses_with_noise,
points_with_noise)
all_poses.append(poses)
all_points.append(points)
all_measurements.append(measurements)
all_extr_cand.append(extr_cand)
all_intrinsics.append(intrinsics)
all_points_with_noise.append(points_with_noise)
all_poses_with_noise.append(poses_with_noise)
all_measurements_equal.append(measurements_equal)
all_measurements_stnd.append(measurements_stnd)
all_extr_cand_equal.append(extr_cand_equal)
all_extr_cand_stnd.append(extr_cand_stnd)
all_intrinsics_e.append(intrinsics_e)
all_intrinsics_s.append(intrinsics_s)
''' Run optimization on different number of selected candidates'''
for select_k in range(2, max_select_k):
'''
Cases of Equal and Random and standard configurations
'''
###EQUAL case candidates to evaluate
b_i =0
for f in range((select_k-1), 1, -1):
b_i = b_i + f
#selection_equal = extr_cand_equal[b_i: b_i + select_k]
#selection_stnd = extr_cand_stnd[b_i: b_i + select_k]
selection_equal = list(range(b_i , b_i + select_k))
selection_stnd = list(range(b_i , b_i + select_k))
selection_rand = random.sample(range(len(extr_cand)), select_k)
score_equal = 0.0
score_stnd = 0.0
score_rand = 0.0
for traj_ind in range(args.num_runs):
score_equal = score_equal + core.compute_info_metric(all_poses[traj_ind], all_points[traj_ind], all_measurements_equal[traj_ind], all_intrinsics_e[traj_ind], all_extr_cand_equal[traj_ind], selection_equal, h_prior)
score_stnd = score_stnd + core.compute_info_metric(all_poses[traj_ind], all_points[traj_ind], all_measurements_stnd[traj_ind],all_intrinsics_s[traj_ind], all_extr_cand_stnd[traj_ind], selection_stnd, h_prior)
score_rand = score_rand + core.compute_info_metric(all_poses[traj_ind], all_points[traj_ind], all_measurements[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selection_rand, h_prior)
''' Just duplicate entries for times, scores and candidates for each run. Note that we have only one set of scores, time and selected candidate. but RMSEs exist for each individual trajectrory'''
for traj_ind in range(args.num_runs):
equal_scores[select_k].append(score_equal)
stnd_scores[select_k].append(score_stnd)
rand_scores[select_k].append(score_rand)
equal_selected_cands[select_k].append(selection_equal)
stnd_selected_cands[select_k].append(selection_stnd)
rand_selected_cands[select_k].append(selection_rand)
print("RMSE for EQUAL, STANDARD and RAND")
for traj_ind in range(args.num_runs):
rmse_equal = core.compute_rmse(all_measurements_equal[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics_e[traj_ind], all_extr_cand_equal[traj_ind], selection_equal, all_poses_with_noise[traj_ind],
all_points_with_noise[traj_ind], prior_scale)
rmse_equal_l = core.compute_rmse(all_measurements_equal[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics_e[traj_ind], all_extr_cand_equal[traj_ind], selection_equal,
all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale, loc=True)
rmse_equal_slam[select_k].append(rmse_equal)
rmse_equal_loc[select_k].append(rmse_equal_l)
rmse_stnd = core.compute_rmse(all_measurements_stnd[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics_s[traj_ind], all_extr_cand_stnd[traj_ind], selection_stnd,
all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale)
rmse_stnd_l = core.compute_rmse(all_measurements_stnd[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics_s[traj_ind], all_extr_cand_stnd[traj_ind], selection_stnd,
all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind],prior_scale, loc=True)
rmse_stnd_slam[select_k].append(rmse_stnd)
rmse_stnd_loc[select_k].append(rmse_stnd_l)
rmse_rand = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selection_rand,
all_poses_with_noise[traj_ind],all_points_with_noise[traj_ind], prior_scale)
rmse_rand_l = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selection_rand,
all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale, loc=True)
rmse_rand_slam[select_k].append(rmse_rand)
rmse_rand_loc[select_k].append(rmse_rand_l)
#score, rmse, selected candidates
''' ###########################################################################################################'''
best_score_g, best_config_g, selected_inds_g, time_greedy, best_score_fw,best_score_fw_unrounded,\
best_config_fw, selected_inds_fw, solution_fw_unr, time_fw, num_iters_fw = methods.run_single_experiment_exp(all_poses, all_points, all_measurements, all_intrinsics, extr_cand, select_k, h_prior, args.num_runs) #extr_cand, intrinsics, select_k and h_prior are same for all simulations
''' Just duplicate entries for times, scores and candidates for each run. Note that we have only one set of scores, time and selected candidate. but RMSEs exist for each individual trajectrory'''
for traj_ind in range(args.num_runs):
greedy_scores[select_k].append(best_score_g)
fw_scores[select_k].append(best_score_fw)
fw_scores_unrounded[select_k].append(best_score_fw_unrounded)
# scipy_scores[select_k].append(best_score_scipy)
# scipy_scores_unrounded[select_k].append(best_score_scipy_unrounded)
greedy_selected_cands[select_k].append(selected_inds_g)
fw_selected_cands[select_k].append(selected_inds_fw)
# scipy_selected_cands[select_k].append(selected_inds_scipy)
fw_solution_unr_list[select_k].append(solution_fw_unr.tolist())
# scipy_solution_unr_list[select_k].append(solution_scipy_unr.tolist())
times_g[select_k].append(time_greedy)
times_fw[select_k].append(time_fw)
iters_fw[select_k].append(num_iters_fw)
'''
Compute the RMSEs for the best camera placement
'''
'''---------------------- '''
print("RMSE for Greedy-------------------------------------")
for traj_ind in range(args.num_runs):
rmse_g = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind],selected_inds_g,all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind],prior_scale )
rmse_g_loc = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_g, all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale,loc=True)
rmse_g_gt = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_g, all_poses[traj_ind],all_points[traj_ind],prior_scale)
rmse_g_gt_loc = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_g, all_poses[traj_ind],all_points[traj_ind],prior_scale, loc=True)
rmse_greedy_slam[select_k].append(rmse_g)
rmse_greedy_loc[select_k].append(rmse_g_loc)
rmse_greedy_gt_slam[select_k].append(rmse_g_gt)
rmse_greedy_gt_loc[select_k].append(rmse_g_gt_loc)
print("RMSE for Franke-wolfe------------------------------------------------")
for traj_ind in range(args.num_runs):
rmse_fw = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_fw, all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale)
rmse_fw_l = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_fw, all_poses_with_noise[traj_ind], all_points_with_noise[traj_ind], prior_scale, loc=True)
rmse_fw_gt = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_fw, all_poses[traj_ind], all_points[traj_ind], prior_scale)
rmse_fw_gt_l = core.compute_rmse(all_measurements[traj_ind], all_poses[traj_ind], all_points[traj_ind], all_intrinsics[traj_ind], all_extr_cand[traj_ind], selected_inds_fw, all_poses[traj_ind], all_points[traj_ind], prior_scale, loc=True)
rmse_fw_slam[select_k].append(rmse_fw)
rmse_fw_loc[select_k].append(rmse_fw_l)
rmse_fw_gt_slam[select_k].append(rmse_fw_gt)
rmse_fw_gt_loc[select_k].append(rmse_fw_gt_l)
visualize.reset()
for select_k in range(2, max_select_k):
rmse_errors_g = np.vstack((times_g[select_k], greedy_scores[select_k], rmse_greedy_slam[select_k], rmse_greedy_loc[select_k],rmse_greedy_gt_slam[select_k], rmse_greedy_gt_loc[select_k])).T
result_log_arr = np.hstack((np.array(greedy_selected_cands[select_k]), rmse_errors_g))
rmse_errors_fw = np.vstack((iters_fw[select_k], times_fw[select_k], fw_scores[select_k], fw_scores_unrounded[select_k], rmse_fw_slam[select_k], rmse_fw_loc[select_k], rmse_fw_gt_slam[select_k], rmse_fw_gt_loc[select_k])).T
result_log_arr = np.hstack((result_log_arr,np.array(fw_selected_cands[select_k]), np.array(fw_solution_unr_list[select_k]), rmse_errors_fw))
'''
EQUAL, RAND and STANDARD
'''
rmse_errors_equal = np.vstack((equal_scores[select_k],rmse_equal_slam[select_k], rmse_equal_loc[select_k])).T
result_log_arr = np.hstack((result_log_arr, np.array(equal_selected_cands[select_k]), rmse_errors_equal))
rmse_errors_stnd = np.vstack((stnd_scores[select_k], rmse_stnd_slam[select_k], rmse_stnd_loc[select_k])).T
result_log_arr = np.hstack((result_log_arr, np.array(stnd_selected_cands[select_k]), rmse_errors_stnd))
rmse_errors_rand = np.vstack((rand_scores[select_k], rmse_rand_slam[select_k], rmse_rand_loc[select_k])).T
result_log_arr = np.hstack((result_log_arr, np.array(rand_selected_cands[select_k]), rmse_errors_rand))
''' Header : greedy_selection, time_greedy, greedy_score, rmse_slam_g, rmse_loc_g rmse_slam_gt_g, rmse_loc_gt_g,
fw_selection, fw_unrounded, num_iters, time_fw, fw_score, fw_score_unrounded, rmse_slam, rmse_loc, rmse_slam_gt, rmse_loc_gt,
eq_selection, eq_score, rmse_eq_slam, rmse_eq_loc,
stnd_selection, stnd_score, rmse_stnd_slam, rmse_stnd_loc
rand_selection, rand_score, rmse_rand_slam, rmse_rand_loc'''
np.savetxt(os.path.join(output_file_Path, "results_"+traj+"{}_.txt".format(select_k)), result_log_arr)
''' visualize the final selection with franke wolfe'''
# visualize.show_camconfig_with_world([best_config_g, best_configs_fw], 3,["greedy", "franke_wolfe"], K, poses, points)