-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal_s4_5_6.jl
468 lines (431 loc) · 17.3 KB
/
Final_s4_5_6.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
using FileIO
using Statistics
#using DataFrames
using CairoMakie #use CairoMakie for final figures because it can save as EPS
#using GLMakie #use GLMakie for 'prototyping' ie not the final graphs because of the pop out window and iteration
using KernelDensity
using HypothesisTests
Gens = 500
Runs = 100
Infs = 3
Hosts = 500
ImmuneTypes = 4 #0- no response, 1- constitutive, 2- Inducible, 3- mixed indu/const
#topDir = "E:/OneDrive - Vanderbilt/Vanderbilt/Tate Lab/IMMUNE_PLEIO_MODEL/Julia Code"
topDir = "/Users/martinra4/Lab Work/OneDrive - Vanderbilt/Vanderbilt/Tate Lab/IMMUNE_PLEIO_MODEL/Julia Code"
function jitter(a::Array, factor=1.0)
tmpA = copy(a)
for itr = 1:length(a)
tmp = rand()
if tmp < .5
tmpA[itr] -= rand() .* factor
else
tmpA[itr] += rand() .* factor
end
end
return tmpA
end
function issubsequence(A,B)
for i in 1:length(B)-length(A)
if B[i:i+length(A)-1] == A
return true
end
end
return false
end
function DEPaths(Mat)
#take in a directed matrix and find all paths between v1 and vE
# tmp = copy(Mat) # make a copy then get rid of self regulatory edges
# for j in 1:length(Mat[1,end])
# tmp[j,j] = 0
# end
edges = findall(x -> x!=0,Mat)
d = Dict()
for k in edges
if in(k[1],keys(d))
push!(d[k[1]],k[2])
else
d[k[1]] = [k[2]]
end
end
chains = []
if in(1,keys(d))
for x in d[1]
push!(chains,[1,x])
end
end
storage = []
while ~isempty(chains)
tmp = copy(chains)
DeadEndCheck = []
for ii in 1:length(tmp)
if ~in(chains[ii][end],keys(d))
push!(DeadEndCheck,ii)
end
end
reverse!(DeadEndCheck)
for X in DeadEndCheck
deleteat!(tmp,X)
end
for i in 1:length(chains)
if in(chains[i][end],keys(d))
for k in d[chains[i][end]]
push!(tmp, vcat(chains[i],k))
end
end
end
if ~isempty(tmp)
subCheck = []
LongestPath = maximum(length.(tmp))
for j in 1:length(tmp)
if length(tmp[j]) < LongestPath
for k in j+1:length(tmp)
if issubsequence(tmp[j],tmp[k])
push!(subCheck,j)
break
end
end
end
end
reverse!(subCheck)
for X in subCheck
deleteat!(tmp,X)
end
end
cycleCheck = []
for j in 1:length(tmp)
if in(tmp[j][end],tmp[j][1:end-1])
push!(cycleCheck,j)
end
end
reverse!(cycleCheck)
for X in cycleCheck
deleteat!(tmp,X)
end
chains = copy(tmp)
endCheck = []
for k in 1:length(chains)
if chains[k][end] == length(Mat[1,:])
push!(storage,chains[k])
push!(endCheck,k)
end
end
reverse!(endCheck)
for X in endCheck
deleteat!(chains,X)
end
end
return(storage)
end
function DistinctPaths(a)
tmp = trim.(a)
tmp2 = []
toRem = []
for i in 1:length(tmp)
tmp3 = []
for j in 1:length(tmp[i])
if j == 1
push!(tmp3,tmp[i][j])# start here when fixing, need to cycle through each entry in tmp[i]
else
tmp4 = 0
for k in tmp3
if !isempty(intersect(k,tmp[i][j]))
tmp4 += 1
end
end
if tmp4 == 0
push!(tmp3,tmp[i][j])
end
end
end
push!(tmp2,tmp3)
end
return tmp2
end
function trim(x)
tmp = []
for i in x
push!(tmp,i[2:end-1])
end
return tmp
end
function MakeFig(size,lims = (nothing, nothing, nothing, nothing))
fig = Figure(resolution = size)
ax1 = Axis(fig[1,1],xticklabelsvisible = false,xticksvisible = false, title = "Unconstrained", ylabel = "10%",limits = lims)
ax2 = Axis(fig[2,1],xticklabelsvisible = false,xticksvisible = false, ylabel = "50%",limits = lims)
ax3 = Axis(fig[3,1],xticklabelsvisible = false,xticksvisible = false, ylabel = "90%",limits = lims)
ax4 = Axis(fig[1,2],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,title = "Fixed Random",limits = lims)
ax5 = Axis(fig[2,2],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax6 = Axis(fig[3,2],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax7 = Axis(fig[1,3],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,title = "Fixed Up",limits = lims)
ax8 = Axis(fig[2,3],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax9 = Axis(fig[3,3],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax10 = Axis(fig[1,4],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,title = "Fixed Down",limits = lims)
ax11 = Axis(fig[2,4],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax12 = Axis(fig[3,4],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax13 = Axis(fig[1,5],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,title = "Slow",limits = lims)
ax14 = Axis(fig[2,5],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
ax15 = Axis(fig[3,5],xticklabelsvisible = false,xticksvisible = false,yticklabelsvisible = false, yticksvisible = false,limits = lims)
return fig
end
function AddMedianLines(x,Data,Runs, row,col)
Rows = Runs
Cols = Int64(length(Data)/Rows)
tmp = median(reshape(Data,(Rows,Cols)),dims = 1)
lines!(ga[row,col],x[1],[tmp[1],tmp[1]], linewidth = 5, color = :Black)
end
function DetConnect(net)
TotalPossibleCons = size(net,1)^2 - 2
TotalCons = size(findall(x -> x!= 0, net),1)
return TotalCons/TotalPossibleCons
end
#region Processing
FixRplotDir = string(topDir,"/Data/FixedRand/Draft_2_Data/")
FixUDplotDir = string(topDir,"/Data/FixedUpDown/Draft_2_Data/")
slplotDir = string(topDir,"/Data/SlowEvo/Draft_2_Data/")
cd(FixRplotDir)
FixRFiles = filter(x->endswith(x, ".jld2"), readdir())
FixRFiles = filter(x -> contains(x, "Network"), FixRFiles)
#FixRFiles = filter(x -> contains(x, "test_"), FixRFiles)
cd(FixUDplotDir)
FixUDFiles = filter(x->endswith(x, ".jld2"), readdir())
FixUDFiles = filter(x -> contains(x, "Network"), FixUDFiles)
#FixUDFiles = filter(x -> contains(x, "test_"), FixUDFiles)
cd(slplotDir)
slFiles = filter(x->endswith(x, ".jld2"), readdir())
slFiles = filter(x -> contains(x, "Network"), slFiles)
#slFiles = filter(x -> contains(x, "test_"), slFiles)
#group data from saved files
uncDataSet = filter(x -> contains(x, "Uncon"), FixRFiles);
FixRDataSet = filter(x -> contains(x, "Con"), FixRFiles);
FixUDataSet = filter(x -> contains(x, "upreg"), FixUDFiles);
FixDDataSet = filter(x -> contains(x, "downreg"), FixUDFiles);
sl100DataSet = filter(x -> contains(x, "100X"), slFiles);
#Direct Connections to Effector
uncNets = []
FixRNets = []
FixUNets = []
FixDNets = []
sl100Nets = []
for i = 1:Infs
unctmp = getindex.(FileIO.load(string(FixRplotDir,uncDataSet[i]))["Networks"],1)
FixRtmp = getindex.(FileIO.load(string(FixRplotDir,FixRDataSet[i]))["Networks"],1)
FixUtmp = getindex.(FileIO.load(string(FixUDplotDir,FixUDataSet[i]))["Networks"],1)
FixDtmp = getindex.(FileIO.load(string(FixUDplotDir,FixDDataSet[i]))["Networks"],1)
sl100tmp = getindex.(FileIO.load(string(slplotDir,sl100DataSet[i]))["Networks"],1)
push!(uncNets, unctmp)
push!(FixRNets, FixRtmp)
push!(FixUNets, FixUtmp)
push!(FixDNets, FixDtmp)
push!(sl100Nets, sl100tmp)
unctmpDict = nothing
FixRtmpDict = nothing
FixUtmpDict = nothing
FixDtmpDict = nothing
sl10tmpDict = nothing
sl100tmpDict = nothing
end
#Final generation Connections to Effector
uncDEPaths = []
FixRDEPaths = []
FixUDEPaths = []
FixDDEPaths = []
sl10DEPaths = []
sl100DEPaths = []
#Final generation Connections to Effector
uncNetSize = []
FixRNetSize = []
FixUNetSize = []
FixDNetSize = []
sl100NetSize = []
#Mean data for plotting
for i in 1:Infs
push!(uncDEPaths, DEPaths.(uncNets[i]))
push!(FixRDEPaths, DEPaths.(FixRNets[i]))
push!(FixUDEPaths, DEPaths.(FixUNets[i]))
push!(FixDDEPaths, DEPaths.(FixDNets[i]))
push!(sl100DEPaths, DEPaths.(sl100Nets[i]))
push!(uncNetSize, size.(uncNets[i],1))
push!(FixRNetSize, size.(FixRNets[i],1))
push!(FixUNetSize, size.(FixUNets[i],1))
push!(FixDNetSize, size.(FixDNets[i],1))
push!(sl100NetSize, size.(sl100Nets[i],1))
end
uncDistDE = []
FixRDistDE = []
FixUDistDE = []
FixDDistDE = []
sl100DistDE = []
for i in 1:Infs
push!(uncDistDE, DistinctPaths(uncDEPaths[i]))
push!(FixRDistDE, DistinctPaths(FixRDEPaths[i]))
push!(FixUDistDE, DistinctPaths(FixUDEPaths[i]))
push!(FixDDistDE, DistinctPaths(FixDDEPaths[i]))
push!(sl100DistDE, DistinctPaths(sl100DEPaths[i]))
end
uncCon = []
FixRCon = []
FixUCon = []
FixDCon = []
sl100Con = []
for i in 1:Infs
push!(uncCon,DetConnect.(uncNets[i]))
push!(FixRCon,DetConnect.(FixRNets[i]))
push!(FixUCon,DetConnect.(FixUNets[i]))
push!(FixDCon,DetConnect.(FixDNets[i]))
push!(sl100Con,DetConnect.(sl100Nets[i]))
end
#endregion
colSchem = cgrad(:haline, 100, categorical = true);
#region supplemental 6
a = fill(1.0,Runs)
Jit = jitter(a,.3)
colSchem = cgrad(:haline, 100, categorical = true);
f = Figure(backgroundcolor = RGBf(0.98, 0.98, 0.98),
resolution = (1250, 1100))
lims = (nothing,nothing,-1,10)
#ylabels = ["50%","90%"]
xlabels = ["Non-pleiotropic","Fixed Random", "Fixed Up", "Fixed Down", "Slow"]
ga = f[1, 1] = GridLayout()
ga[1,1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "10% Chance of Infection \n Distinct Connections to Effector",title = xlabels[1])
ga[1, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false,title = xlabels[i]) for i in 2:5]
ga[2, 1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "50% Chance of Infection \n Distinct Connections to Effector")
ga[3, 1] = Axis(f, limits = lims, ygridvisible = false, xticklabelsvisible = false, xticksvisible = false, ylabel = "90% Chance of Infection \n Distinct Connections to Effector")
ga[2, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
ga[3, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
Ttests = zeros(3,4)
ImTypes = fill(1.0,100)
xJitter = jitter(ImTypes,.3)
xLocs = []
for i in 1:5
push!(xLocs,[.5,1.5])
end
for i in 1:Infs
tmp1 = size.(uncDistDE[i],1)
tmp2 = size.(FixRDistDE[i],1)
tmp3 = size.(FixUDistDE[i],1)
tmp4 = size.(FixDDistDE[i],1)
tmp5 = size.(sl100DistDE[i],1)
Ttests[i,1] = pvalue(EqualVarianceTTest(tmp1,tmp2))
Ttests[i,2] = pvalue(EqualVarianceTTest(tmp1,tmp3))
Ttests[i,3] = pvalue(EqualVarianceTTest(tmp1,tmp4))
Ttests[i,4] = pvalue(EqualVarianceTTest(tmp1,tmp5))
scatter!(ga[i,1], xJitter, tmp1, color = colSchem[70])
AddMedianLines(xLocs,tmp1,Runs, i,1)
scatter!(ga[i,2], xJitter, tmp2, color = colSchem[1])
AddMedianLines(xLocs,tmp2,Runs, i,2)
scatter!(ga[i,3], xJitter, tmp3, color = colSchem[1])
AddMedianLines(xLocs,tmp3,Runs, i,3)
scatter!(ga[i,4], xJitter, tmp4, color = colSchem[1])
AddMedianLines(xLocs,tmp4,Runs, i,4)
scatter!(ga[i,5], xJitter, tmp5, color = colSchem[1])
AddMedianLines(xLocs,tmp5,Runs, i,5)
end
Sigs = findall(x -> x<.05/12,Ttests)
for i in Sigs
text!(ga[i[1],i[2]+1],"*",position = (.25,7.5),textsize = 65)
end
Font_Theme = Theme(font = :Arial)
set_theme!(Font_Theme)
cd(string(topDir,"/Images"))
CairoMakie.save("s6_DistConDE.svg", f, pt_per_unit = 1)
#endregion
#region supplemental 4
Ttests = zeros(3,4)
ImTypes = fill(1.0,100)
xJitter = jitter(ImTypes,.1)
xLocs = []
for i in 1:5
push!(xLocs,[.5,1.5])
end
f = Figure(backgroundcolor = RGBf(0.98, 0.98, 0.98),
resolution = (1250, 1100))
lims = (.5,1.5,3, 11)
#ylabels = ["50%","90%"]
xlabels = ["Non-pleiotropic","Fixed Random", "Fixed Up", "Fixed Down", "Slow"]
ga = f[1, 1] = GridLayout()
ga[1,1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "10% Chance of Infection \n Network Size",title = xlabels[1])
ga[1, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false,title = xlabels[i]) for i in 2:5]
ga[2, 1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "50% Chance of Infection \n Network Size")
ga[3, 1] = Axis(f, limits = lims, ygridvisible = false, xticklabelsvisible = false, xticksvisible = false, ylabel = "90% Chance of Infection \n Network Size")
ga[2, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
ga[3, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
for i in 1:Infs
tmp1 = uncNetSize[i]
tmp2 = FixRNetSize[i]
tmp3 = FixUNetSize[i]
tmp4 = FixDNetSize[i]
tmp5 = sl100NetSize[i]
Ttests[i,1] = pvalue(EqualVarianceTTest(tmp1,tmp2))
Ttests[i,2] = pvalue(EqualVarianceTTest(tmp1,tmp3))
Ttests[i,3] = pvalue(EqualVarianceTTest(tmp1,tmp4))
Ttests[i,4] = pvalue(EqualVarianceTTest(tmp1,tmp5))
scatter!(ga[i,1], xJitter, tmp1, color = colSchem[70])
AddMedianLines(xLocs,tmp1,Runs, i,1)
scatter!(ga[i,2], xJitter, tmp2, color = colSchem[1])
AddMedianLines(xLocs,tmp2,Runs, i,2)
scatter!(ga[i,3], xJitter, tmp3, color = colSchem[1])
AddMedianLines(xLocs,tmp3,Runs, i,3)
scatter!(ga[i,4], xJitter, tmp4, color = colSchem[1])
AddMedianLines(xLocs,tmp4,Runs, i,4)
scatter!(ga[i,5], xJitter, tmp5, color = colSchem[1])
AddMedianLines(xLocs,tmp5,Runs, i,5)
end
Sigs = findall(x -> x<.05/12,Ttests)
for i in Sigs
text!(ga[i[1],i[2]+1],"*",position = (.6,9),textsize = 65)
end
Font_Theme = Theme(font = :Arial)
set_theme!(Font_Theme)
cd(string(topDir,"/Images"))
CairoMakie.save("s4_NetSize.svg", f, pt_per_unit = 1)
#endregion
#region supplemental 5
Ttests = zeros(3,4)
ImTypes = fill(1.0,100)
xJitter = jitter(ImTypes,.1)
xLocs = []
for i in 1:5
push!(xLocs,[.5,1.5])
end
f = Figure(backgroundcolor = RGBf(0.98, 0.98, 0.98),
resolution = (1250, 1100))
lims = (.5,1.5,0,1)
#ylabels = ["50%","90%"]
xlabels = ["Non-pleiotropic","Fixed Random", "Fixed Up", "Fixed Down", "Slow"]
ga = f[1, 1] = GridLayout()
ga[1,1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "10% Chance of Infection \n Connectivity",title = xlabels[1])
ga[1, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false,title = xlabels[i]) for i in 2:5]
ga[2, 1] = Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, ylabel = "50% Chance of Infection \n Connectivity")
ga[3, 1] = Axis(f, limits = lims, ygridvisible = false, xticklabelsvisible = false, xticksvisible = false, ylabel = "90% Chance of Infection \n Connectivity")
ga[2, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
ga[3, 2:5] = [Axis(f, limits = lims, xticklabelsvisible = false, xticksvisible = false, yticklabelsvisible = false, yticksvisible = false) for j in 2:5]
for i in 1:Infs
tmp1 = uncCon[i]
tmp2 = FixRCon[i]
tmp3 = FixUCon[i]
tmp4 = FixDCon[i]
tmp5 = sl100Con[i]
Ttests[i,1] = pvalue(EqualVarianceTTest(tmp1,tmp2))
Ttests[i,2] = pvalue(EqualVarianceTTest(tmp1,tmp3))
Ttests[i,3] = pvalue(EqualVarianceTTest(tmp1,tmp4))
Ttests[i,4] = pvalue(EqualVarianceTTest(tmp1,tmp5))
scatter!(ga[i,1], xJitter, tmp1, color = colSchem[70])
AddMedianLines(xLocs,tmp1,Runs, i,1)
scatter!(ga[i,2], xJitter, tmp2, color = colSchem[1])
AddMedianLines(xLocs,tmp2,Runs, i,2)
scatter!(ga[i,3], xJitter, tmp3, color = colSchem[1])
AddMedianLines(xLocs,tmp3,Runs, i,3)
scatter!(ga[i,4], xJitter, tmp4, color = colSchem[1])
AddMedianLines(xLocs,tmp4,Runs, i,4)
scatter!(ga[i,5], xJitter, tmp5, color = colSchem[1])
AddMedianLines(xLocs,tmp5,Runs, i,5)
end
Sigs = findall(x -> x<.05/12,Ttests)
for i in Sigs
text!(ga[i[1],i[2]+1],"*",position = (.6,.75),textsize = 65)
end
Font_Theme = Theme(font = :Arial)
set_theme!(Font_Theme)
cd(string(topDir,"/Images"))
CairoMakie.save("s5_MeanNetCon.svg", f, pt_per_unit = 1)
#endregion