-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCox_Galois_Chapter13.tex
3903 lines (3299 loc) · 195 KB
/
Cox_Galois_Chapter13.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 13 : LAGRANGE, COMPUTING GALOIS GROUPS}
\subsection{QUARTIC POLYNOMIALS}
\paragraph{Ex. 13.1.1}
{\it Let $f \in F[x]$ be separable of degree $n$, and let $\alpha_1,\ldots,\alpha_n$ be the roots of $f$ in a splitting field $F\subset L$ of $f$. In Section 6.3 we used the action of the Galois group on the roots to construct a one-to-one group homomorphism $\phi_1:\Gal(L/F) \to S_n$. Now let $\beta_1,\ldots,\beta_n$ be the same roots, possibly written in a different order. This gives $\phi_2 : Gal(L/F) \to S_n$. To relate $\phi_1$ and $\phi_2$, note that there is $\gamma \in S_n$ such that $\beta_i = \alpha_{\gamma(i)}$ for $1\leq i \leq n$. Now define the conjugation map $\hat{\gamma}:S_n \to S_n$ by $\hat{\gamma}(\tau) = \gamma^{-1} \tau \gamma$.
\be
\item[(a)] Prove that $\phi_2 = \hat{\gamma} \circ \phi_1$.
\item[(b)] Let $G \subset S_n$ be the image of $\phi_1$. Explain why part (a) justifies the assertion made in the text that "if we change the labels, then $G$ gets replaced with a conjugate subgroup".
\ee
}
\begin{proof}
\be
\item[(a)]
By definition of the isomorphism $\phi_1 : \Gal(L/F) \to S_n$ in Section 6.3, if $\tau_1 = \phi_1(\sigma)$, then
\begin{align}
\sigma(\alpha_i) = \alpha_{\tau_1(i)},\qquad i=1,\ldots,n.\label{eq:1}
\end{align}
As $\beta_1,\ldots,\beta_n$ are the same roots in a different order, there exists a permutation $\gamma \in S_n$ such that
\begin{align}
\beta_i = \alpha_{\gamma(i)},\qquad i=1,\ldots,n.\label{eq:2}
\end{align}
This numbering of the roots is associate to the isomorphism $\phi_2$. If $\tau_2 = \phi_2(\sigma)$, then
\begin{align}
\sigma(\beta_i) = \beta_{\tau_2(i)}, \qquad i=1,\ldots,n.\label{eq:3}
\end{align}
Therefore, for all $i=1,\ldots,n$, using \eqref{eq:2}, \eqref{eq:3}, and \eqref{eq:2} again,
\begin{align}
\sigma(\alpha_{\gamma(i)} )&= \sigma(\beta_i) = \beta_{\tau_2(i)} = \alpha_{\gamma(\tau_2(i))}.\label{eq:4}
\end{align}
Now, with the substitution $i \to \gamma(i)$ in \eqref{eq:1}, we get
\begin{align}
\sigma(\alpha_{\gamma(i)}) &= \alpha_{\tau_1(\gamma(i))}.\label{eq:5}
\end{align}
Thus , by \eqref{eq:4},\eqref{eq:5}, $\alpha_{\gamma(\tau_2(i))} = \alpha_{\tau_1(\gamma(i))}$ for all $i$. Since $i \mapsto \alpha_i$ is one-to-one,
$$\gamma(\tau_2(i)) = \tau_1(\gamma(i)),\qquad i=1,\ldots,n,$$
so
$$\gamma \tau_2 = \tau_1 \gamma.$$
Therefore $\tau_2 = \gamma^{-1} \tau_1 \gamma$, so $\phi_2(\sigma) = \hat{\gamma}(\phi_1(\sigma))$, for all $\sigma \in \Gal(L/F)$:
$$\phi_2 = \hat{\gamma} \circ \phi_1.$$
\item[(b)] Let $G$ the image of $\phi_1$ in $S_n$: $G = \{\phi_1(\sigma)\ | \ \sigma \in \Gal(L/F)\} \subset S_n$.
Similarly the image of $\phi_2$ is $G' = \{\phi_2(\sigma)\ | \ \sigma \in \Gal(L/F)\} \subset S_n$.
Since $\phi_2(\sigma) = \gamma^{-1} \phi_1(\sigma) \gamma$ for all $\sigma \in \Gal(L/F)$ by part (a),
$$G' = \gamma^{-1} G \gamma.$$
So, if we change the labels, then $G$ gets replaced with a conjugate subgroup.
\ee
\end{proof}
\paragraph{Ex. 13.1.2}
{\it Prove that $A_4$ is the only subgroup of $S_4$ with 12 elements.
}
\begin{proof}
Let $H$ a subgroup of $S_n$ such that $[S_n:H]=2$. Then $H$ is normal in $S_n$ (by Exercise 12.1.20). Thus $S_n/H \simeq \{1,-1\}$. So there exists a group homomorphism
$$\varphi:S_n \to \{1,-1\}, \qquad \text{with }\ker(\varphi) = H.$$
Any two transpositions $\tau_1 = (a\, b), \tau_2 = (c\, d)$ of $S_n$ are conjugate: if $\gamma = (a \, c)(b\, d)$, then $\tau_2 = \gamma \tau_1 \gamma^{-1}$ (even if $b=c$).
Since $ \{1,-1\} \simeq \Z/2\Z$ is abelian,
\begin{align*}
\varphi(\tau_2) &= \varphi(\gamma) \varphi(\tau_1) \varphi(\gamma)^{-1}\\
&= \varphi(\gamma) \varphi(\gamma)^{-1} \varphi(\tau_1) \\
&= \varphi(\tau_1)
\end{align*}
So $\tau_1, \tau_2 \in H$, or $\tau_1, \tau_2 \in S_n \setminus H$.
If $\tau_1, \tau_2$ are in $S_n\setminus H$, then $\varphi(\tau_1\tau_2) = \varphi(\tau_1)\varphi(\tau_2) = (-1)\times (-1) = 1$, so $\tau_1 \tau_2 \in H$. In both cases
$\tau_1 \tau_2 \in H$.
Since every permutation $\sigma$ of $A_n$ is the product of an even number of transpositions, $\sigma \in H$, so $A_n \subset H$. As $|A_n| = |H | = n!/2$, $H = A_n$.
$A_n$ is the only subgroup of $S_n$ with $n!/2$ elements.
\end{proof}
\paragraph{Ex. 13.1.3}
{\it Explain carefully why (13.6) follows from Exercise 9 of section 2.4.
}
\begin{proof}
By definition,
$$y_1 = x_1x_2+x_3x_4, \qquad y_2 = x_1x_3+x_2x_4,\qquad y_3 = x_1x_4+x_2x_3.$$
By Exercise 2.4.9, we know that
$$\Delta(\theta) = (y_1-y_2)^2(y_1-y_3)^2(y_2-y_3)^2
=[(x_1-x_4)(x_2-x_3)(x_1-x_3)(x_2-x_4)(x_1-x_2)(x_3-x_4)]^2
=\Delta
$$
As the evaluation is a ring homomorphism, if we applied the evaluation defined by $x_1 \mapsto \alpha_1,\ldots,x_4\mapsto \alpha_4$ to this equality in $F[x_1,x_2,x_3,x_4]$, we obtain
that the roots
$$\beta_1 = \alpha_1\alpha_2+\alpha_3\alpha_4, \qquad \beta_2 = \alpha_1\alpha_3+\alpha_2\alpha_4,\qquad \beta_3 = \alpha_1\alpha_4+\alpha_2\alpha_3,$$
are the images of $y_1,y_2,y_3$ and satisfy
\begin{align*}
\Delta(\theta_f) &= (\beta_1-\beta_2)^2(\beta_1-\beta_3)^2(\beta_2-\beta_3)^2\\
&=[(\alpha_1-\alpha_4)(\alpha_2-\alpha_3)(\alpha_1-\alpha_3)(\alpha_2-\alpha_4)(\alpha_1-\alpha_2)(\alpha_3-\alpha_4)]^2\\
&=\Delta(f)
\end{align*}
\end{proof}
\paragraph{Ex. 13.1.4}
{\it Use Example 7.3.4 from Chapter 7 to show that (13.8) gives all subgroups of $\langle (1\,3\,2\,4), (1\,2)\rangle$ of order 4 or 8.
}
\begin{proof}
We obtain all subgroups of $D_8 \simeq \langle \sigma,\tau \rangle$, where $\sigma = (1\,3\,2\,4), \tau = (1\,2)$, in Exercise 7.3.3
\begin{center}
\begin{tikzpicture}
\node (n0) at (7,6) {$\{e\}$};
\node (n1) at (1,4) {$\langle \tau \rangle$};
\node (n2) at (4,4) {$\langle \sigma^2 \tau \rangle$};
\node (n3) at (7,4) {$\langle\sigma^2\rangle$};
\node (n4) at (10,4) {$\langle \sigma \tau\rangle$};
\node (n5) at (13,4) {$\langle \sigma^3 \tau\rangle$};
\node (n6) at (4,2) {$\langle \sigma^2, \tau \rangle$};
\node (n7) at (7,2) {$\langle \sigma \rangle$};
\node (n8) at (10,2) {$\langle \sigma^2, \sigma \tau \rangle$};
\node (n9) at (7,0) {$G = \langle \sigma,\tau\rangle$};
\draw[->] (n0) edge (n3) edge (n2) edge (n1) edge (n4) edge (n5);
\draw[<-] (n6) edge (n1) edge (n2) edge (n3);
\draw[<-] (n8) edge (n3) edge (n4) edge (n5);
\draw[->] (n3) edge (n7);
\draw[<-] (n9) edge (n6) edge (n7) edge (n8);
\end{tikzpicture}
\end{center}
If $G$ is a subgroup of order 4 or 8, then $G$ is one of the four groups
$$\langle \sigma^2, \tau \rangle, \quad \langle \sigma \rangle,\quad \langle \sigma^2, \sigma \tau \rangle, \quad \langle \sigma,\tau\rangle,$$
Moreover $\sigma^2 = (1\,2)(3\,4)$ and $\sigma \tau = (1\,4)(2\,3)$, so
$$\langle \sigma^2, \tau \rangle = \langle (1\,2)(3\,4), (1\,2) \rangle = \langle (3\,4), (1\,2) \rangle,$$
and
$$\langle \sigma^2, \sigma \tau \rangle = \langle (1\,2)(3\,4), (1\,4)(2\,3) \rangle = \langle (1\,2)(3\,4), (1\,3)(2\,4) \rangle$$
is the group of double transpositions $\{(), (1\,2)(3\,4), (1\,4)(2\,3), (1\,3)(2\,4)\}$.
Therefore $G$ is one of the four groups given in the text
$$\langle (1\,2),(3\,4) \rangle,\qquad \langle (1\,2)(3\,4), (1\,3)(2\,4) \rangle,\qquad \langle (1\,3\,2\,4) \rangle, \qquad \langle (1\,3\,2\,4), (1\,2) \rangle.$$
\end{proof}
\paragraph{Ex. 13.1.5}
{\it Let $F$ be a field of characteristic $\ne 2$, and let $g \in F[x]$ be a monic cubic polynomial that has a root in $F$. Prove that $g$ splits completely over $F$ if and only if $\Delta(g) \in F^2$.
}
\begin{proof}
Let $g = (x-\alpha_1)(x-\alpha_2)(x-\alpha_3)$, where $\alpha_1,\alpha_2,\alpha_3$ lie in some splitting field of $F$, and $\alpha_1 \in F$.
\be
\item[$\bullet$] If $g$ splits completely over $F$, then $\alpha_1,\alpha_2,\alpha_3$ lie in $F$, therefore
${\delta = (\alpha_1 - \alpha_2)(\alpha_1-\alpha_3)(\alpha_2-\alpha_3) \in F}$, so
$\Delta(g)= \delta^2 \in F^2$.
\item[$\bullet$] Conversely, suppose that $\Delta(g) \in F^2$. Then $\Delta (g)= a^2, \ a \in F $, so $\delta =\pm a\in F$.
Since $\alpha_1 \in F$, the Euclidean division of $g(x)$ by $x-\alpha_1 \in F[x]$ gives
$$g(x) = (x-\alpha_1)(x^2+px+q), \qquad p,q \in F.$$
Then $x^2+px+q = (x-\alpha_2)(x-\alpha_3)$, hence
$\alpha_2+\alpha_3 = -p \in F, \alpha_2\alpha_3 = q \in F$, and
$$(\alpha_1-\alpha_2)(\alpha_1 - \alpha_3) = \alpha_1^2 + p \alpha_1 +q \in F.$$
If $\alpha_1 = \alpha_2$, then $\alpha_3 = -p - \alpha_2 = -p - \alpha_1 \in F$, so $g$ splits completely over $F$, and similarly the same conclusion is true if $\alpha_1 = \alpha_3$.
In the remaining case, $(\alpha_1-\alpha_2)(\alpha_1 - \alpha_3) \ne 0$, so
$$\alpha_2 - \alpha_3 = \delta [(\alpha_1-\alpha_2)(\alpha_1 - \alpha_3)]^{-1} \in F.$$
Since $\alpha_2 + \alpha_3 \in F$, and $\alpha_2 - \alpha_3 \in F$, and since the characteristic of $F$ is not 2,
$$\alpha_2 = \frac{1}{2}[(\alpha_2 + \alpha_3) +(\alpha_2-\alpha_3)] \in F, \alpha_3 = \frac{1}{2}[(\alpha_2 + \alpha_3) -(\alpha_2-\alpha_3)] \in F.$$
Therefore $g = (x-\alpha_1)(x-\alpha_2)(x-\alpha_3)$ splits completely over $F$.
\ee
\end{proof}
\paragraph{Ex. 13.1.6}
{\it This exercise is concerned with the proof of part (c) of Theorem 13.1.1. Let $f(x) = x^4-c_1x^3+c_2x^2-c_3x+c_4$ as in the theorem.
\be
\item[(a)] Suppose that $f$ has roots $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ such that $\alpha_1+\alpha_2 - \alpha_3-\alpha_4 = \alpha_1\alpha_2 - \alpha_3 \alpha_4 = 0$. Prove that $f$ is not separable.
\item[(b)] Let $\beta$ be a root of the resolvent $\theta_f(y)$. Use part (a) to prove that $4\beta+c_1^2-4c_2$ and $\beta^2 - 4 c_4$ can't both vanish when $f$ is separable.
\item[(c)] Suppose that $4\beta+c_1^2-4c_2=0$ in part (c) of Theorem 13.1.1. Prove carefully that $G$ is conjugate to $\langle (1\,3\,2\,4),(1\,2) \rangle$ if and only if $\Delta(f)(\beta^2 - 4 c_4) \not \in (F^*)^2$.
\ee
}
\begin{proof}
\be
\item[(a)] If $\alpha_1+\alpha_2 - \alpha_3-\alpha_4 = \alpha_1\alpha_2 - \alpha_3 \alpha_4 = 0$, then
\begin{align*}
s &:= \alpha_1+\alpha_2 = \alpha_3+\alpha_4\\
p &:= \alpha_1\alpha_2 = \alpha_3\alpha_4
\end{align*}
Thus $x^2-sx+p = (x-\alpha_1)(x - \alpha_2) = (x-\alpha_3)(x-\alpha_4)$, therefore
$$\{\alpha_1,\alpha_2\} = \{\alpha_3,\alpha_4\}.$$
Since $\alpha_3 = \alpha_1$ or $\alpha_3 = \alpha_2$, $f$ is not separable.
\item[(b)] If $\beta$ is a root of the resolvent $\theta_f$, we can relabel the roots of $f$ so that $\beta = \alpha_1\alpha_2 + \alpha_3\alpha_4$ and
$$4 \beta + c_1^2-4c_2 = (\alpha_1+\alpha_2 - \alpha_3 - \alpha_4)^2.$$
Since $\beta^2 - 4c_4 = (\alpha_1\alpha_2 - \alpha_3\alpha_4)^2$, if $4\beta+c_1^2-4c_2$ and $\beta^2 - 4 c_4$ both vanish, then $\alpha_1+\alpha_2 - \alpha_2 - \alpha_4 =0$ and $\alpha_1\alpha_2 - \alpha_3\alpha_4=0$. Then, by part (a), $f$ is not separable.
Therefore $4\beta+c_1^2-4c_2$ and $\beta^2 - 4 c_4$ can't both vanish when $f$ is separable.
\item[(c)] Suppose that $4\beta + c_1^2-4c_2 = 0$ in part (c) of Theorem 13.1.1, where $\theta_f(y)$ has a unique root $\beta$ in $F$. We know that $f$ is separable by Lemme 5.3.5.
Therefore $\Delta(f) \ne 0$, and, by part (b), $\beta^2 - 4 c_4 \ne 0$, so
$$\Delta(f) (\beta^2 - 4 c_4) \ne 0.$$
We know that $G = \langle (1\,3\,2\,4)\rangle$ or $G = \langle (1\,3\,2\,4),(1,2)\rangle$.
\be
\item[$\bullet$] Suppose that $G = \langle (1\,3\,2\,4)\rangle$. Then $\Gal(L/F) = \langle \sigma\rangle$, where $\sigma$ corresponds to $(1\,3\,2\,4)$.
We choose
$$\sqrt{\Delta(f) (\beta^2 - 4 c_4)} = \sqrt{\Delta(f)} (\alpha_1\alpha_2 - \alpha_3 \alpha_4).$$
Since $(1\,3\,2\,4) = (1\,3)(3\,2)(2\,4) \not \in A_4$, $\sigma ( \sqrt{\Delta(f)} )= - \sqrt{\Delta(f)}$, and
$$\sigma (\alpha_1\alpha_2 - \alpha_3 \alpha_4) = \alpha_3 \alpha_4 - \alpha_2 \alpha_1 = - (\alpha_1\alpha_2 - \alpha_3 \alpha_4).$$
Therefore $\sigma$ fixes $\sqrt{\Delta(f) (\beta^2 - 4 c_4)}$, so $\sqrt{\Delta(f) (\beta^2 - 4 c_4)} \in F^*$, and $$\Delta(f) (\beta^2 - 4 c_4) \in (F^*)^2.$$
\item[$\bullet$] Suppose that $G = \langle (1\,3\,2\,4),(1,2)\rangle$. Then $\Gal(L/F) = \langle \sigma, \tau \rangle$, where $\tau$ corresponds to $(1\,2)$.
$\tau ( \sqrt{\Delta(f)} )= - \sqrt{\Delta(f)}$ and $\tau (\alpha_1\alpha_2 - \alpha_3 \alpha_4) = \alpha_2\alpha_1 - \alpha_3 \alpha_4 = \alpha_1\alpha_2 - \alpha_3 \alpha_4$, so
$\tau(\sqrt{\Delta(f) (\beta^2 - 4 c_4)}) = -\sqrt{\Delta(f) (\beta^2 - 4 c_4)}$. Since the characteristic is not 2, and $\Delta(f) (\beta^2 - 4 c_4) \ne 0$,$\sqrt{\Delta(f) (\beta^2 - 4 c_4)} \not \in F$, so
$$\Delta(f) (\beta^2 - 4 c_4) \not \in (F^*)^2.$$
Therefore $G$ is conjugate to $\langle (1\,3\,2\,4),(1\,2) \rangle$ if and only if $\Delta(f)(\beta^2 - 4 c_4) \not \in (F^*)^2$.
\ee
\ee
\end{proof}
\paragraph{Ex. 13.1.7}
{\it In Exercise 18 of section 12.1 you found the roots of $f = x^4+2x^2-4x+2 \in \Q[x]$ using the formula developed in that section. At the end of the exercise, we said that "this quartic is especially simple". Justify this assertion using Theorem 13.1.1
}
\begin{proof}
By Exercise 12.1.18,
$$\theta_f(y) = y^3 - 2y^2-8y = y(y-4)(y+2).$$
Moreover $f$ is irreducible over $\Q$ (from the instruction {\bf f.is\_irreducible()} in Sage).
Since $\theta_f(y)$ splits completely over $F$, by Theorem 13.1.1,
$$G = \langle(1\,2)(3\,4),(1\,3)(2\,4) \rangle \simeq \Z/2\Z \times \Z/2\Z.$$
(This result was already proved in Exercise 12.1.18, since the splitting field of $f$ is $\Q(i,\sqrt{2})$.)
\end{proof}
\paragraph{Ex. 13.1.8}
{\it In Example 10.3.10, we showed that the roots of $f=7m^4 - 16 m^3 -21 m^2 + 8m+4 \in \Q[m]$ can be constructed using origami. Show that the splitting field of $f$ is an extension of $\Q$ of degree 24. By the results of Section 10.1, it follows that the roots of $f$ are not constructible with straightedge and compass, since $24$ is not a power of $2$.
}
\begin{proof}
The discriminant of $g = \frac{1}{7} f$ is
$$\Delta(g) = \frac{174446784}{117649} = 2^6\cdot 3^6\cdot 3739\cdot 7^{-6},$$
so $\Delta(g)$ is not a square in $\Q$.
The Ferrari resolvent is
$$\theta_f(y) = y^{3} + 3 y^{2} - \frac{240}{49} y - \frac{3824}{343}.$$
and $$7^3 \theta_f(y) = 343 y^{3} + 1029 y^{2} - 1680 y - 3824$$
has no root in $\Q$, so is irreducible over $\Q$.
By theorem 13.1.1, $G = S_4$.
Therefore the splitting field $L$ of $f$ has degree
$$[L:\Q] = |G| = 24.$$
\bigskip
Sage instructions :
\begin{verbatim}
var('m')
R.<m> = QQ[m]
f= 7*m^4-16*m^3-21*m^2+8*m+4
g=f/7
d=g.discriminant()
d.factor()
\end{verbatim}
$$2^{6} \cdot 3^{6} \cdot 7^{-6} \cdot 3739$$
\begin{verbatim}
R.<y> = QQ[]
l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
\end{verbatim}
$$y^{3} + 3 y^{2} - \frac{240}{49} y - \frac{3824}{343}$$
\begin{verbatim}
theta_f.is_irreducible()
\end{verbatim}
$$\text{True}$$
\end{proof}
\paragraph{Ex. 13.1.9}
{\it As in Example 13.1.3, let $f = x^4+ax^3+bx^2+ax+1 \in F[x]$, and let $\alpha$ be a root of $f$ in some splitting field of $f$ over $F$. Show that $\alpha^{-1}$ is also a root of $f$, and then use (13.5) to conclude that 2 is a root of the resolvent $\theta_f(y)$.
}
\begin{proof}
If $\alpha$ is a root of $f$ in some splitting field $L$ of $F$, then $ \alpha^4+a\alpha^3+b\alpha^2+a\alpha+1 = 0$. If we divide by $\alpha^4$, we obtain
$1 + a \alpha^{-1} + b \alpha^{-2} + a\alpha^{-3} + \alpha^{-4}$, so $f(\alpha^{-1})=0$.
Note that
\begin{align*}
x^4+ax^3+bx^2+ax+1 &= x^2\left[ \left(x^2+\frac{1}{x^2} \right) + a \left( x + \frac{1}{x} \right) + b \right]\\
&=x^2\left[ \left(x+\frac{1}{x} \right)^2 + a \left( x + \frac{1}{x} \right) + b -2 \right]\\
\end{align*}
As $0$ is not a root of $f$, the roots of $f$ are the roots of $z = x+\frac{1}{x}$, where $z$ is a root of $z^2+az+b-2$, so the roots of $f$ are the roots of the two polynomials
$$x^2-z_1x+1,\qquad x^2 -z_2x+1,$$
where $z_1,z_2$ are the roots in $L$ of
$$z^2+az+b-2.$$
If we relabel the roots so that $\alpha_1,\alpha_2$ are the roots of $x^2-z_1x+1$, and $\alpha_3,\alpha_4$ the roots of $x^2 -z_2x+1$, then $\alpha_1\alpha_2 = 1, \alpha_3\alpha_4 = 1$,
therefore $\beta_1 = \alpha_1\alpha_2+ \alpha_3\alpha_4 = 2$ is a root of the Ferrari resolvent $\theta_f(y)$.
\end{proof}
\paragraph{Ex. 13.1.10}
{\it As in Example 13.1.4, let $f=x^4+bx^2+d \in F[x]$, where $d \not \in F^2$. Compute $\Delta(f)$ and $\theta_f(y)$.
}
\begin{proof}
The discriminant of $f$ is
$$\Delta(f) = 16 b^{4} d - 128 b^{2} d^{2} + 256 d^{3} = 16\ d\, ( b^{2} - 4 d)^{2}.$$
The Ferrari resolvent is
$$\theta_f(y) = y^3-by^2-4dy+4bd = (y-b)(y^2-4d).$$
Sage instructions:
\begin{verbatim}
R.<x,b,d> = QQ[]
f=x^4+b*x^2+d
c1 = 0; c2 = b; c3 = 0; c4 = d;
theta_f = x^3 - c2*x^2 + (c1*c3-4*c4)*x - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)
\end{verbatim}
$$(- x + b) \cdot (- x^{2} + 4 d)$$
\begin{verbatim}
Delta = theta_f.discriminant(x)
factor(Delta)
\end{verbatim}
$$
\left(16\right) \cdot d \cdot (- b^{2} + 4 d)^{2}
$$
Thus $\theta_f(y) = (y-b)(y - 2\sqrt{d})(y+2\sqrt{d})$ has a unique root in $F$ if $d \not \in F^2$, and the discriminant is not a square in $F^2$.
\end{proof}
\paragraph{Ex. 13.1.11}
{\it In Example 13.1.7 we showed that if $f=x^4+ax^3+bx^2+ax+1 \in \Z[x]$ is irreducible over $\Q$, then its Galois group is $\Z/2\Z \times \Z/2\Z$ if and only if there is $c \in \Q$ such that $4a^2+c^2 = (b+2)^2$.
\be
\item[(a)] Show that $c\in \Z$, and use the irreducibility of $f$ to prove that $c\ne 0$. Hence we may assume that $c>0$, so that $(2a,c,b+2)$ is a Pythagorean triple.
\item[(b)] Show that $3^2+4^2 = 5^2, 5^2+12^2 = 13^2, 7^2 + 24^2 = 25^2$, and $8^2 + 15^2 = 17^2$ give two examples of polynomials with $\Z/2\Z \times \Z/2\Z$ as Galois group (two of the triples give reducible polynomials).
\ee
}
\begin{proof}
\be
\item[(a)] $c \in \Q$ is such that $c^2 = n \in \Z$. Write $c =a/b, b>0, a\wedge b = 1$. Then $a^2 = n b^2$. If $b\ne 1$, there is a prime $p$ such that $p\mid b$. But then $p\mid a^2$, thus $p\mid a$, in contradiction with $a\wedge b = 1$. So $c \in \Z$.
If $c = 0$, then $(b+2)^2 = 4a^2$, so $b+2 = 2\varepsilon a$, $ b = -2+ 2 \varepsilon a$ , where $\varepsilon = \pm 1$.
In Exercise 9, we saw that
$$f= x^4+ax^3+bx^2+ax+1 = (x^2-z_1x+1)(x^2 - z_2x+ 1),$$
where $z_1,z_2$ are the roots of $ z^2+az+b-2.$
Here $b = -2+2\varepsilon a$, so $z_1,z_2$ are the roots of $$z^2 +az -4+2\varepsilon a = (z+a-2\varepsilon)(z+2\varepsilon),$$
so
$$z_1 = -a+2\varepsilon \in \Z,\qquad z_2 = -2 \varepsilon \in \Z,$$
so $f$ is not irreducible over $\Q$, in contradiction with the hypothesis.
We have proved that $c\ne 0$ if $f$ is irreducible, and so $(2a,c,b+2)$ is a Pythagorean triple.
\item[(b)]
$3^2+4^2 = 5^2$ gives $a=2, b =3$, and $f = x^4+2x^3+3x^2+2x+1 = (x^2+x+1)^2$ is not irreducible.
$5^2+12^2 = 13^2$ gives $a=6, b = 11$, and $f = x^4+6x^3+11x^2+6x+1 = (x^2+3x+1)^2$ is not irreducible.
$7^2 + 24^2 = 25^2$ gives $a=12,b=23$, and $f= x^4 + 12x^3+23x^2+12x+1$ which is irreducible. So the Galois group of
$$f= x^4 + 12x^3+23x^2+12x+1$$
is isomorphic to $\Z/2\Z \times \Z/2\Z$.
Verification with Sage:
\begin{verbatim}
R.<x> = QQ[]
f= x^4 + 12*x^3 + 23*x^2 + 12*x + 1
f.is_irreducible()
\end{verbatim}
\begin{center}
True
\end{center}
\begin{verbatim}
G = f.galois_group()
G.gens()
\end{verbatim}
$$ [(1,2)(3,4), (1,4)(2,3)]$$
\begin{verbatim}
G.structure_description()
\end{verbatim}
$$C2 \times C2$$
\ee
\end{proof}
$8^2 + 15^2 = 17^2$ gives $a=4, b = 15$, and $f = x^4 + 4 x^3 + 15 x^2 + 4x+1$, which is irreducible.
The Galois group of
$$f = x^4 + 4 x^3 + 15 x^2 + 4x+1$$
is isomorphic to $\Z/2\Z \times \Z/2\Z$.
Note: the polynomial associate to $7^2 + 24^2 = 25^2$ is
\begin{align*}
f&= x^4 + 12x^3+23x^2+12x+1\\
&= (x^2+6x+1)^2 - 15x^2\\
&= (x^2+(6+\sqrt{15}) x +1) (x^2 + (6-\sqrt{15}) x +1)
\end{align*}
The discriminant of the first factor is $\Delta_1 = 47 + 12 \sqrt{15}$ and the discriminant of the second is $\Delta_2 = 47 - 12 \sqrt{15}$.
Since
$$\left(\sqrt{47 + 12 \sqrt{15}}\right)\left(\sqrt{47 - 12 \sqrt{15}}\right) = \sqrt{47^2 - 144 \times 15} = \sqrt{49} = 7 \in \Q^*),$$
the splitting field of $f$ over $\Q$ is $\Q\left (\sqrt{47 + 12 \sqrt{15}}\right)$, which is a quadratic extension of a quadratic extension. The minimal polynomial of $a = \sqrt{47 + 12 \sqrt{15}}$ is $x^4-94x^2+49$, whose Galois group is also $\Z/2\Z \times \Z/2\Z$ (here $d=49$ is a square).
\paragraph{Ex. 13.1.12}
{\it This exercise is concerned with the proof of Proposition 13.1.5.
\be
\item[(a)] Prove (13.12).
\item[(b)] Prove that the two polynomials $h_1$ and $h_2$ defined in the proof of the proposition factor as $h_1 = (y-(\alpha_1+\alpha_2))(y-(\alpha_3+\alpha_4))$ and $h_2 = (y - \alpha_1\alpha_2)(y-\alpha_3\alpha_4)$.
\ee
}
\begin{proof}
\be
\item[(a)] Let $g = y^2+Ay+B \in F[y]$ and let $F \subset F(\sqrt{a}),\ a \in F$, be a quadratic extension.
If $\Delta(g) = 0$ then $a\Delta(g) = 0 \in F^2$. Suppose now that $g$ is irreducible over $F$.
\be
\item[$\bullet$] Suppose that $g$ splits completely over $F(\sqrt{a})$, so
$$g = (y-y_1)(y-y_2),\qquad y_1,y_2\in F(\sqrt{a}).$$
Then $\Delta(g) = (y_1-y_2)^2 = A^2 - 4B \in F$. We choose $\sqrt{\Delta(g)} = y_2-y_1 \in F(\sqrt{a})$.
Here $\deg(g) =2$, and $g$ is irreducible over $F$, therefore the roots of $g$
\begin{align*}
y_1 &= \frac{1}{2}((y_1+y_2) + (y_1-y_2)) = \frac{1}{2} \left(-A - \sqrt{\Delta(g)}\right),\\
y_2 &= \frac{1}{2}((y_1+y_2) - (y_1-y_2 ))= \frac{1}{2} \left (-A + \sqrt{\Delta(g)}\right),
\end{align*}
are not in $F$, and this is equivalent to
$$\sqrt{\Delta(g)} \not \in F.$$
Since $ \sqrt{\Delta(g)} \in F(\sqrt{a})$, and $\sqrt{\Delta(g)} \not \in F$,
$$\sqrt{\Delta(g)} = u + v\sqrt{a},\qquad u,v \in F,\qquad v\ne 0.$$
Therefore
\begin{align*}
u^2 &= \left(\sqrt{\Delta(g)} - v\sqrt{a}\right)^2\\
&=\Delta(g) + a v^2 - 2v\sqrt{a}\sqrt{\Delta(g)}
\end{align*}
Since $v\ne 0$, and $\mathrm{char}(F) \ne 2$,
$$\sqrt{a} \sqrt{\Delta(g)} = \frac{\Delta(g) + a v^2-u^2}{2v} \in F,$$
so
$$a\Delta(g) \in F^2.$$
\item[$\bullet$] Conversely, suppose that $a\Delta(g) \in F^2$. Here $a\ne 0$ since $F(\sqrt{a})$ is a quadratic extension of $F$.
There exists $w \in F$ such that $a\Delta(g) =w^2$.
We choose $\sqrt{\Delta(g)}$ such that
$$\sqrt{\Delta(g)} = \frac{w}{\sqrt{a}} = \frac{w}{a} \sqrt{a} \in F(\sqrt{a}).$$
Then
\begin{align*}
y_1 &= \frac{1}{2}((y_1+y_2) + (y_1-y_2)) = \frac{1}{2} \left(-A - \sqrt{\Delta(g)}\right),\\
y_2 &= \frac{1}{2}((y_1+y_2) - (y_1-y_2 ))= \frac{1}{2} \left (-A + \sqrt{\Delta(g)}\right),
\end{align*}
are in $F(\sqrt{a})$, so $g = (y-y_1)(y-y_2)$ splits completely over $F(\sqrt{a})$.
Finally, if $\Delta(g) = 0$, $g = (y-y_0)^2$, where $y_0 = -A/2 \in F$, splits completely over $F$, a fortiori over $F(\sqrt{a})$.
\ee
Conclusion:
Let $g = y^2 + Ay+B$ and $F(\sqrt{a})$ a quadratic extension of $F$, with $\mathrm{char}(F) \ne 2$.
If $\Delta(g)=0$, or if $g$ is irreducible over $F$, then
$$ g \text{ splits completely over } F(\sqrt{a}) \iff a\Delta(g) \in F^2.$$
\item[(b)]
\begin{align*}
&(y-(\alpha_1+\alpha_2))(y-(\alpha_3+\alpha_4))\\
&= y^2 -(\alpha_1+\alpha_2+\alpha_3+\alpha_4)y + (\alpha_1\alpha_3+\alpha_1\alpha_4+\alpha_2\alpha_3+\alpha_2\alpha_4)\\
&= y^2 - c_1y + (\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3+\alpha_2\alpha_4+\alpha_3\alpha_4) - (\alpha_1\alpha_2+\alpha_3\alpha_4)\\
&= y^2 -c_1 y +c_2 - \beta,
\end{align*}
so
$$h_1 = y^2 -c_1 y +c_2 - \beta = (y-(\alpha_1+\alpha_2))(y-(\alpha_3+\alpha_4)).$$
Similarly
\begin{align*}
&(y-\alpha_1\alpha_2)(y-\alpha_3\alpha_4)\\
&=y^2 - (\alpha_1\alpha_2+\alpha_3\alpha_4) y +\alpha_1\alpha_2\alpha_3\alpha_4\\
&=y^2 - \beta y +c_4
\end{align*}
so
$$h_2 = y^2 - \beta y +c_4 = (y-\alpha_1\alpha_2)(y-\alpha_3\alpha_4).$$
\ee
We have proved that $h_1,h_2$ split completely over $L$. Since $\deg(h_1) = 2$, $h_1$ splits over a quadratic extension $F\subset M$, with $M \subset L$. But the unique such quadratic extension is $F(\sqrt{\Delta(f)})$ (since $\Gal(L/F) \simeq \Z/4\Z$ has a unique subgroup of index 2). Therefore $M = F(\sqrt{\Delta(f)})$, and $h_1$ splits completely over $F(\sqrt{\Delta(f)})$, and also $h_2$.
\end{proof}
\paragraph{Ex. 13.1.13}
{\it Suppose that $f \in F[x]$ satisfies the hypothesis of part (c) of Theorem 13.1.1, and let $\alpha$ be a root of $f$. Prove that $G \simeq \Z/4\Z$ if $f$ splits completely over $F(\alpha)$, and $G\simeq D_8$ otherwise. This gives a version of part (c) that doesn't use resolvents. Since we can factor over extension fields by Section 4.2, this method is useful in practice.
}
\begin{proof}
With the hypothesis of part (c), $\Delta(f) \not \in F^2$, so $\Delta(f) \ne 0$ and $f$ is separable.
\be
\item[$\bullet$] If $G \simeq \Z/4\Z$, then
$G = \langle \sigma \rangle \subset S_4$, where $\sigma$ corresponds to $\tilde{\sigma} \in \Gal(L/F)$. Write $G_\alpha = \mathrm{Stab}_G(\alpha)$. Since $f$ is irreducible, ${\cal O}_\alpha = \{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ is the set of the four roots of $f$, therefore $4 = |{\cal O}_\alpha| = (G: G_\alpha)$, so $G_{\alpha} = \{e\}$. Hence $\tilde{\sigma}^i(\alpha) \ne\tilde{\sigma}^j(\alpha)$ if $1\leq i < j \leq 4$. We choose the numbering of the roots such that $\alpha_1 = \alpha$, and $\tilde{\sigma}(\alpha_1) = \alpha_3,\tilde{\sigma}(\alpha_3) = \alpha_2,\tilde{\sigma}(\alpha_2) = \alpha_4$ are the four distinct roots of $f$, so $\sigma = (1\,3\,2\,4)$.
$$f = (x-\alpha_1)(x-\alpha_3)(x-\alpha_2)(x-\alpha_4) = (x-\alpha)(x-\tilde{\sigma}(\alpha))(x-\tilde{\sigma}^2(\alpha))(x-\tilde{\sigma}^3(\alpha)).$$
As $\Delta(f) \not \in F^2$, $F(\sqrt{\Delta(f)})$ is a quadratic extension of $F$.
Since the only subgroup of $G$ are $\{e\} \subset H =\langle \sigma^2 \rangle \subset G = \langle \sigma \rangle$, by the Galois correspondence, the only intermediate fields of $F\subset L$ are $F \subset F(\sqrt{\Delta(f)})\subset L$, and the fixed field of $H = \langle \sigma^2 \rangle$ is $L_H = F(\sqrt{\Delta(f)})$.
If $F(\alpha) \subset F(\sqrt{\Delta(f)})$, then $\alpha \in F(\sqrt{\Delta(f)}) = L_H$, therefore $\sigma^2(\alpha) = \alpha$, and so $\alpha_2 = \alpha_1$, in contradiction with the separability of $f$. Hence $F(\alpha) \not \subset F(\sqrt{\Delta(f)})$, so $$F(\alpha) = L = F(\alpha_1,\alpha_2,\alpha_3,\alpha_4).$$
Then $f$ splits completely over $F(\alpha)$.
\item[$\bullet$] If $G \not \simeq \Z/4\Z$, then by Theorem 13.1.1, $G \simeq D_8$. Therefore $[L : F] = |G| = 8$, and $[F(\alpha) : F] = \deg(f) = 4$, which implies $F(\alpha) \ne L = F(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$.
Therefore one of the roots $\alpha_i$ is not in $F(\alpha)$, and so $f =(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)(x-\alpha_4)$ doesn't splits completely over $F(\alpha)$.
\ee
Conclusion. Let $f$ be a quadratic polynomial, and let $\alpha$ be a root of $f$.
If $\Delta(f) \not \in F^2$ and $\theta_f(y)$ is reducible over $F$, then
\begin{align*}
f \text { splits completely over } F(\alpha) &\iff \Gal_F(f) \simeq \Z/4\Z,\\
f \text { doesn't split completely over } F(\alpha) &\iff \Gal_F(f) \simeq D_8.
\end{align*}
\end{proof}
Example 1: $f = x^4-12x^2+18$ over $\Q$.
\begin{verbatim}
R.<x> = QQ[]
f = x^4-12*x^2 + 18
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()
\end{verbatim}
$$\text{True}$$
$$(2^{11} \cdot 3^6, \text{False}).$$
\begin{verbatim}
l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)
\end{verbatim}
$$(y + 12) \cdot (y^{2} - 72)$$
\begin{verbatim}
K.<a>= NumberField(f)
S.<x> = K[]
f = x^4-12*x^2 + 18
factor(f)
\end{verbatim}
$$(x - a) \cdot (x + a) \cdot (x - \frac{1}{3} a^{3} + 3 a) \cdot (x + \frac{1}{3} a^{3} - 3 a)$$
These results prove that the Galois group of $f = x^4-12x^2+18$ over $\Q$ is isomorphic to $\Z/4\Z$.
Verification with Sage:
\begin{verbatim}
R.<x> = QQ[]
f = x^4-12*x^2 + 18
f.galois_group().gens()
\end{verbatim}
$$ [(1,2,3,4)]$$
\begin{verbatim}
f.galois_group().structure_description()
\end{verbatim}
$$C4$$
\bigskip
Example 2: $f = x^4 - 2$ over $\Q$.
\begin{verbatim}
R.<x> = QQ[]
f = x^4-2
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()
\end{verbatim}
$$\text{True}$$
$$(-1\cdot 2^{11}, \text{False})$$
\begin{verbatim}
l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)
\end{verbatim}
$$y \cdot (y^{2} + 8)$$
\begin{verbatim}
K.<a>= NumberField(f)
S.<x> = K[]
f = x^4-2
factor(f)
\end{verbatim}
$$(x - a) \cdot (x + a) \cdot (x^{2} + a^{2})$$
Thus the Galois group of $x^4 - 2$ over $\Q$ is $D_8$.
Verification with Sage:
\begin{verbatim}
R.<x> = QQ[]
f = x^4-2
f.galois_group().gens()
\end{verbatim}
$$ [(1,2,3,4), (1,3)]$$
\begin{verbatim}
f.galois_group().structure_description()
\end{verbatim}
$$D4$$
\bigskip
Example 3: $f = x^4-18x^2+9$ over $\Q$.
\begin{verbatim}
R.<x> = QQ[]
f = x^4-18*x^2 + 9
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()
\end{verbatim}
$$\text{True}$$
$$(2^{14}\cdot 3^6, \text{True})$$
\begin{verbatim}
l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)
\end{verbatim}
$$
(y - 6) \cdot (y + 6) \cdot (y + 18)
$$
The Galois group of $f = x^4-18x^2+9$ over $\Q$ is isomorphic to $\Z/2\Z \times \Z/2\Z$.
Verification with Sage:
\begin{verbatim}
R.<x> = QQ[]
f = x^4-18*x^2 + 9
f.galois_group().gens()
\end{verbatim}
$$ [(1,2)(3,4), (1,4)(2,3)]$$
\begin{verbatim}
f.galois_group().structure_description()
\end{verbatim}
$$C2 \times C2$$
\paragraph{Ex. 13.1.14}
{\it Use Theorem 13.1.1 to compute the Galois groups of the following polynomials in $\Q[x]$:
\be
\item[(a)] $x^4+4x+2$.
\item[(b)] $x^4 + 8x+12$.
\item[(c)] $x^4+1$.
\item[(d)] $x^4+x^3+x^2 + x+1$.
\item[(e)] $ x^4-2$.
\ee
}
\begin{proof}
\be
\item[(a)] $f = x^4+4x+2$.
$\Delta(f) = -2^8\cdot 19$ is not a square in $\Q$, and $\theta_f(y) = y^3 -8y - 16$ is irreducible over $\Q$, so $\Gal_\Q(f) \simeq S_4$ (part (a) of Theorem 13.1.11).
\item[(b)] $f = x^4 + 8x+12$.
$\Delta(f) = 2^{12}\cdot 3^4$ is a square in $\Q$, and $\theta_f(y) = y^3 -48y - 64$ is irreducible over $\Q$, so $\Gal_\Q(f) \simeq A_4$ (part (a) of Theorem 13.1.11).
\item[(c)] $f = x^4+1$.
$\Delta(f) = 2^8$ is a square in $\Q$ and $\theta_f(y) = y(y-2)(y+2)$ splits completely over $\Q$, so $\Gal_\Q(f) \simeq \Z/2\Z \times \Z/2\Z$ (part (b) of Theorem 13.1.11).
\item[(d)] $f = x^4 + x^3+x^2+x+1$.
$\Delta(f) = 5^3$ is not a square, and $\theta_f(y) = (y-2)(y^2+y+1)$ has a unique root in $\Q$, so part (c) of Theorem 13.1.1 applies.
Let $\zeta$ a root of $f$. Then
$$f = (x-\zeta)(x-\zeta^2)(x-\zeta^3)(x-\zeta^4)$$
splits completely over $\Q(\zeta)$. By Exercise 13,
$$G \simeq \Z/4\Z.$$
(we know already this result, since $f = \Phi_5$.)
\item[(e)] $f = x^4-2$.
By Exercise 13, Example 2, $\Delta(f) = -2^{11}$ is not a square, and $\theta_f(y) = y(y^2+8)$ has a unique root in $\Q$. Moreover if $a = \sqrt[4]{2}$,
$$f = (x-a)(x+a)(x^2+a^2)$$ doesn't splits completely over $\Q$, so
$$G \simeq D_8.$$
\ee
\end{proof}
\paragraph{Ex. 13.1.15}
{\it In the situation of Theorem 13.1.1, assume that $\theta_f(y)$ has a root in $F$. In the proof of the theorem, we used (13.5) and (13.7) to show that $G$ is conjugate to a subgroup of $D_8$. Show that the weaker assertion that $|G| = 4$ or $8$ can be proved directly from (12.17).
}
\begin{proof}
By (12.17), the roots of the quartic $f =x^4 -c_1x^3 + c_2 x^2 - c_3x + c_4$ are
$$\alpha = \frac{1}{4}\left ( c_1 + \varepsilon_1 \sqrt{ 4y_1 + c_1^2 - 4 c_2} + \varepsilon_2 \sqrt{ 4y_2 + c_1^2 - 4 c_2} + \varepsilon_3 \sqrt{ 4y_3 + c_1^2 - 4 c_2}\right ),$$
where $y_1,y_2,y_3$ are the roots of the Ferrari resolvent
$$\theta_f(y) = y^3 - c_2y^2+(c_1c_3-4c_4) y - c_3^2 -c_1^2c_4 + 4 c_2c_4,$$
and the $\varepsilon_i = \pm 1$ are chosen so that the product of the radicals $t_i = + \varepsilon_i \sqrt{ 4y_i + c_1^2 - 4 c_2}$ is
$$t_1t_2t_3 = c_1^3 - 4 c_1 c_2 + 8c_3.$$
Let $L = F(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ be the splitting field of $F$.
Here $\theta_f(y)$ has a root in $F$, say $y_1$. Thus
$$\theta_f(y) =(y-y_1)g(y),$$
where $g(y) = y^2 + a y +b \in F[y].$
Therefore the roots $y_2,y_3$ of $g$ are in $F(\sqrt{\delta})$, where $\delta = a^2 - 4b \in F$ is the discriminant of $g$.
Moreover $t_1 = \alpha_1+\alpha_2-\alpha_3-\alpha_4 = \sqrt{ 4y_1 + c_1^2 - 4 c_2} \in L$, and similarly $t_2,t_3 \in L$, so $F(t_1,t_2,t_3) \subset L$, and by (12.17), $L \subset F(t_1,t_2,t_3)$, therefore
$$L = F(t_1,t_2,t_3) = F\left(\sqrt{ 4y_1 + c_1^2 - 4 c_2}, \sqrt{ 4y_2 + c_1^2 - 4 c_2},\sqrt{ 4y_3 + c_1^2 - 4 c_2}\right).$$
Since $\Delta(\theta_f) = \Delta(f) \ne 0$, there is at most one $t_i$ equal to $0$. So we can choose the numbering such that $t_1t_2 \ne 0$ (perhaps $t_3 = 0$). Since $t_1t_2t_3 = c_1^3 - 4 c_1 c_2 + 8c_3 \in F$, $t_3 \in F(t_1,t_2)$, so
$$L = F(t_1,t_2,t_3) = F(t_1,t_2) =F\left(\sqrt{ 4y_1 + c_1^2 - 4 c_2}, \sqrt{ 4y_2 + c_1^2 - 4 c_2}\right).$$
Note that $t_i^2 = 4y_i + c_1^2 - 4 c_2 \in L$, so $y_i \in L,\ i = 1,2,3$, so $\sqrt{\delta} = y_2- y_3 \in L$, therefore $L(\sqrt{\delta}) = L$.
Consider the chain of inclusions
\begin{align*}
F \subset F\left(\sqrt{4y_1+c_1^2-4c_2}\right) \subset F&\left(\sqrt{4y_1+c_1^2-4c_2},\sqrt{\delta}\right)\\
& \subset F\left(\sqrt{4y_1+c_1^2-4c_2}, \sqrt{\delta},\sqrt{4y_2+c_1^2-4c_2} \right) =L.
\end{align*}
Since $4y_1+c_1^2-4c_2 \in F, \delta \in F$ and $4y_2+c_1^2-4c_2 \in F(\sqrt{\delta}$), the degree of each extension is 1 or 2, so
$$[L:F] \mid 8.$$
Moreover $L \supset F(\alpha_1)$, and the minimal polynomial of $\alpha_1$ is f, so $$[L:F] \geq [F(\alpha_1):F] = \deg(f) = 4.$$ Since $|G| = [L:F]$,
$$|G| = 4 \text{ or } |G| = 8.$$
\end{proof}
\paragraph{Ex. 13.1.16}
{\it Consider the subgroups $\langle (1\,2),(3\,4) \rangle$ and $\langle (1\,2)(3\,4),(1\,3)(2\,4) \rangle$ of $S_4$.
\be
\item[(a)] Prove that these subgroups are isomorphic but not conjugate. This shows that when classifying subgroups of a given group, it can happen that nonconjugate subgroups can be isomorphic as abstract groups.
\item[(b)] Explain why the subgroup $\langle (1\,2),(3\,4) \rangle$ isn't mentioned in Theorems 13.1.1 and 13.1.6.
\ee
}
\begin{proof}
\be
\item[(a)]
\begin{align*}
H_1 &= \langle (1\,2),(3\,4) \rangle = \{(), (1\,2),(3\,4), (1\,2) (3\,4)\}, \\
H_2 &= \langle (1\,2)(3\,4),(1\,3)(2\,4) \rangle = \{ (), (1\,2)(3\,4),(1\,3)(2\,4), (1\,4)(2\,3)\}
\end{align*}
are both isomorphic to the Klein's group $\Z/2\Z \times \Z/2\Z$.
Every conjugate of $(1\,2) \in H_1$ by $\sigma \in S_4$ is $(\sigma(1)\, \sigma(2)) $, which is not in $H_2$. The subgroups $H_1,H_2$ are not conjugate.
\item[(b)] $H_1 = \langle (1\,2),(3\,4) \rangle$ is not a transitive subgroup of $S_4$ (the orbit of 1 is $\{1,2\}$), so isn't mentioned in Theorems 13.1.1 and 13.1.6.
\ee
\end{proof}
\subsection{QUINTIC POLYNOMIALS}
\paragraph{Ex. 13.2.1}
{\it As explained in the text, we can regard $\mathrm{AGL}(1,\F_5)$ as a subgroup of $S_5$.
\be
\item[(a)] Prove that $\mathrm{AGL}(1,\F_5)$ is generated by $(1\,2\,3\,4\,5)$ and $(1\,2\,4\,3)$.
\item[(b)] Prove that $\mathrm{AGL}(1,\F_5) \cap A_5$ is generated by $(1\,2\,3\,4\,5)$ and $(1\,4)(2\,3)$.
\item[(c)] Prove that the group of part (b) is isomorphic to the dihedral group $D_{10}$ of order $10$.
\item[(d)] Prove that $\langle (1\,2\,3\,4\,5)\rangle, \mathrm{AGL}(1,\F_5) \cap A_5$, and $\mathrm{AGL}(1,\F_5)$ are the only subgroups of $\mathrm{AGL}(1,\F_5)$ containing $\langle (1\,2\,3\,4\,5)\rangle$.
\ee
}
\begin{proof}
\be
\item[(a)]Let $r = \gamma_{1,1} :\F_5 \to \F_5, x \mapsto x+1$ and $s = \gamma_{2,0} :\F_5 \to \F_5, x \mapsto 2x$, corresponding to the permutations $\rho = (1\,2\,3\,4\,5)$ and $\sigma = (1\,2\,4\,3)$.
Since 2 is a generator of $\F_5^*$ ($2^2\equiv -1 \mod 5$), every $a \in \F_p^*$ is of the form $a = 2^k, \ k\in \N$, so every $f \in \mathrm{AGL}(1,\F_5)$, defined by $x \mapsto ax+b,\ a=2^k\in \F_p^*,b\in \F_p$ is equal to $ f= r^b \circ s^k$. Therefore $\mathrm{AGL}(1,\F_5) = \langle r,s \rangle$, and the corresponding subgroup $G$ of $S_5$, isomorphic to $\mathrm{AGL}(1,\F_5)$, is generated by $\rho = (1\,2\,3\,4\,5)$ and $\sigma = (1\,2\,4\,3)$.
\item[(b)] By part (a), every permutation $\chi$ of $\mathrm{AGL}(1,\F_5) $ is of the form $\chi = \rho^b \sigma^k, \ 0\leq b \leq4, 0\leq k \leq 3$. Since $\rho \in A_5$ and $\sigma \in S_5 \setminus A_5$, $\chi \in A_5$ if and only if $k$ is even. Moreover, since $\sigma^4 = e$, for each integer $l$, $\sigma^{2l} = e$ or $\sigma^{2l} = \sigma^2$, so
\begin{align*}
\mathrm{AGL}(1,\F_5) \cap A_5 &= \{\rho^k\ | \ 0 \leq k \leq 4\} \cup \{\rho^k \sigma^2\ | \ 0 \leq k \leq 4\}\\
&= \{e,\rho,\rho^2,\rho^3,\rho^4, \sigma^2, \rho \sigma^2, \rho^2 \sigma^2, \rho^3 \sigma^2, \rho^4 \sigma^2\}.
\end{align*}
Thus
$$\mathrm{AGL}(1,\F_5) \cap A_5 =\langle \rho, \sigma^2 \rangle = \langle (1\,2\,3\,4\,5), (1\,4)(2\,3) \rangle.$$
\item[(c)] For every $x \in \F_p$, $(s^2 \circ r)(x) = 4(x+1)$, and $(r^{-1} \circ s^2)(x) = 4x - 1 = 4x + 4 = 4(x+1)$, so $s^2 \circ r = r^{-1} \circ s^2$ and $\sigma^2 \rho = \rho^{-1} \sigma^2$.
Write $\sigma' = \sigma^2$. Since $\mathrm{AGL}(1,\F_5) \cap A_5 = \langle \rho, \sigma' \rangle$, the relations
$$\rho^5 = e, \qquad \sigma'^2 = e, \qquad \sigma' \rho = \rho^{-1} \sigma'$$
characterize the dihedral group $D_{10}$.
\item[(d)] Let $H \supsetneq \langle (1\,2\,3\,4\,5)\rangle$ be a subgroup of $\mathrm{AGL}(1,\F_5) $. By part (a), $H$ contains an element $\rho^b \sigma^k$, with $k \in \{1,2,3\}$.
Since $\rho \in H$, $\sigma^k = \rho^{-b} ( \rho^b \sigma^k) \in H$.
If $k=1$, then $\sigma \in H$, and if $k=3$, then $\sigma^{3} = \sigma^{-1} \in H$. In both cases, $\sigma \in H$. Since $\mathrm{AGL}(1,\F_5)$ is generated by $\rho = (1\,2\,3\,4\,5)$ and $\sigma = (1\,2\,4\,3)$, then $H = \mathrm{AGL}(1,\F_5)$.
It remains the case where $H$ contains $\sigma^2$ and doesn't contain $\sigma$. Then $H \supset \langle \rho, \sigma^2 \rangle$. No element of the form $\rho^b \sigma^{2k+1}$ is in $H$, otherwise $\sigma \in H$, so
$$H = \langle \rho, \sigma^2 \rangle = \mathrm{AGL}(1,\F_5) \cap A_5.$$
Thus the only subgroups of $\mathrm{AGL}(1,\F_5)$ containing $\langle (1\,2\,3\,4\,5)\rangle$ are
$$\langle (1\,2\,3\,4\,5)\rangle,\qquad \mathrm{AGL}(1,\F_5) \cap A_5, \qquad \mathrm{AGL}(1,\F_5).
$$
\ee
\end{proof}
\paragraph{Ex. 13.2.2}
{\it This exercise will consider some simple properties of $S_5$.
\be
\item[(a)] Prove that $\langle (1\,2\,3\,4\,5) \rangle$ is a 5-Sylow subgroup of $S_5$ and more generally is a $5$-Sylow subgroup of any subgroup $G \subset S_5$ containing $\langle (1\,2\,3\,4\,5) \rangle$.
\item[(b)] Prove that $S_5$ has twenty-four $5$-cycles.
\ee
}
\begin{proof}
\be
\item[(a)] As $|S_5| = 5! = 5 \cdot 24$, where $\gcd(5,24) = 1$, any subgroup of $S_5$ with order 5 is a $5$-Sylow of $S_5$, so $\langle (1\,2\,3\,4\,5) \rangle$ is a 5-Sylow of $S_5$.
Let $G$ be a subgroup of $S_5$ containing $\langle (1\,2\,3\,4\,5) \rangle$. Then $5$ divides $ |G|$ and $|G|$ divides $ 5! = 5 \cdot 24$, so $|G | = 5d$, where $d\mid 24$, thus $\gcd(5,d) = 1$. Therefore $\langle (1\,2\,3\,4\,5) \rangle$ is a 5-Sylow of $G$.
\item[(b)] There are $5!$ arrangements $(a_1,a_2,a_3, a_4,a_5)$, with distinct $a_i$ in $\{1,2,3,4,5\}$. The 5 arrangements $(a_1,a_2,a_3, a_4,a_5), (a_2,a_3, a_4,a_5,a_1), \ldots$ correspond to the same permutation $(a_1\, a_2 \, a_3\, a_4\,a_5)$, so there are $5!/5 = 24$ 5-cycles in $S_5$.
\ee
\end{proof}
\paragraph{Ex. 13.2.3}
{\it Let $G \subset S_5$ be transitive, and let $N$ be the number of subgroups of $G$ of order 5. In this exercise, you will use an argument from [Postnikov] to prove that $N=1$ or $6$ without using the Sylow Theorems. Let $C = \{\tau \in S_5 \setminus G\ |\, \tau \text{ is a 5-cycle}\}$.
\be
\item[(a)] Prove that $\sigma \cdot \tau = \sigma \tau \sigma^{-1}$ defines an action of $G$ on $C$.
\item[(b)] Let $\tau \in S_5$ be a $5$-cycle. Prove that $\sigma \in S_5$ satisfies $\sigma \tau \sigma^{-1} = \tau$ if and only if $\sigma \in \langle \tau \rangle$.
\item[(c)] Use parts (a) and (b) to prove that $|G|$ divides $|C|$.
\item[(d)] Prove that $4N + |C| = 24$.
\item[(e)] Use parts (c) and (d) to prove that $N=1$ or $6$.
\ee
}
\begin{proof}
\be
\item[(a)] Let $\sigma \in G$ and $\tau \in S_5 \setminus G$. If $\sigma \tau \sigma^{-1} \in G$, then $\tau \in G$, in contradiction with the hypothesis. So, if $\sigma \in G$,
$$ \tau \in C \Rightarrow \sigma \cdot \tau \in C.$$
Moreover, if $\sigma, \sigma' \in G$, and $\tau \in C$, then $e\cdot \tau = e \tau e^{-1} = \tau$, and
$$\sigma \cdot (\sigma' \cdot \tau) = \sigma \cdot (\sigma' \tau \sigma'^{-1}) = \sigma \sigma' \tau \sigma'^{-1} \sigma^{-1} = (\sigma \sigma') \cdot \tau.$$
Therefore $\sigma \cdot \tau = \sigma \tau \sigma^{-1}$ defines an action of $G$ on $C$.
\item[(b)] Let $\tau = (a_1\,a_2\,a_3\,a_4\,a_5)\in S_5$ be a $5$-cycle.
\be
\item[$\bullet$] Suppose that $\sigma \in S_5$ satisfies $\sigma \tau \sigma^{-1} = \tau$.
Then $(\sigma(a_1)\,\sigma(a_2)\,\sigma(a_3)\,\sigma(a_4)\,\sigma(a_5)) = (a_1\,a_2\,a_3\,a_4\,a_5)$.
Therefore $\sigma(a_1) \in \{a_1,a_2,a_3,a_4,a_5\}$, so $\sigma(a_1) =a_i$ for some $i \in \gcro 1,5 \dcro$.
Then, for all $j \in \gcro 1,5 \dcro$, since $\sigma \tau = \tau \sigma$,
\begin{align*}
\sigma(a_j) &= (\sigma \tau^{j-1})(a_1)\\
&= (\tau^{j-1} \sigma)(a_1)\\
&=\tau^{j-1}(a_i)\\
&=\tau^{j-1}(\tau^{i-1}(a_1))\\
&= \tau^{i-1+j-1}(a_1)\\
&= \tau^{i-1}(a_j),
\end{align*}
Since $ \{a_1,a_2,a_3,a_4,a_5\} = \{1,2,3,4,5\}$, $\sigma = \tau^{i-1} \in \langle \tau \rangle$.
\item[$\bullet$] Conversely, suppose that $\sigma \in \langle \tau \rangle$. Since $\langle \tau \rangle$ is cyclic, it is an Abelian subgroup, therefore $\sigma \tau = \tau \sigma$, so $\sigma \tau \sigma^{-1} = \tau$.
\ee
Conclusion: If $\tau \in S_5$ is a 5-cycle,
$$\forall \sigma \in S_5, \quad \sigma \tau \sigma^{-1} = \tau \iff \sigma \in \langle \tau \rangle.$$
\item[(c)] By part (b), the stabilizer of $\tau \in C$ in $G$ is
$$\mathrm{Stab}_G(\tau) = \langle \tau \rangle \cap G.$$
Since $\tau \in C$, $\tau \not \in G$. If $\tau^k \in G$ for some $k \in \{2,3,4\}$, since $k\wedge 5 = 1$, $uk +5v = 1$ for some integers $u,v$, so $\tau = \tau^{uk} \tau ^{5v} = (\tau^k)^u \in G$, which is a contradiction, so $\tau,\tau^2,\tau^3,\tau^4$ are not in $G$, so $\langle \tau \rangle \cap G =\{e\}$. Therefore
$$G_{\tau} = \mathrm{Stab}_G(\tau) =\{e\}.$$
If ${\cal{O}_\tau}$ is the orbit of $\tau$ for the action defined in part (a),
$$ | {\cal{O}_\tau} | = (G:G_\tau) = |G|.$$
As $C = \coprod_{\tau \in S} {\cal{O}_\tau}$, where $S$ is a complete system of the representatives of the orbits, if $m = |S|$ is the number of orbits, $|C| = m |G| $, so
$$|G| \text{ divides } |C|.$$
\item[(d)] By Exercise 2, $S_5$ has $24$ 5-cycles.
\begin{align*}
\{\tau \in S_5 \ | \ \tau \text{ is a 5-cycle} \} &= \{\tau \in G \ | \ \tau \text{ is a 5-cycle} \} \cup \{\tau \in S_5 \setminus G \ | \ \tau \text{ is a 5-cycle} \} \\
&= \{\tau \in G \ | \ \tau \text{ is a 5-cycle} \} \cup C,
\end{align*}
where the union is a disjoint union.
Moreover, G has $N$ subgroups of order 5, and the intersection of two such subgroups is $\{e\}$, so $G$ has $N\times 4$ 5-cycles. Therefore
$$24 = 4N + |C|.$$
\item[(e)] Since $G \subset S_5$ is a transitive subgroup, by Lemma 13.2.1, $5 \mid |G|$, and by part (c), $|G| \mid |C|$, so part (d) implies
$$5 \mid 24 - 4N.$$
Therefore $4N \equiv 24 \equiv 4 \pmod 5$, so $N \equiv 1 \pmod 5$, and since $4N \leq 24$, $N \leq 6$, so
$$N = 1 \text{ or } N = 6.$$
\ee
\end{proof}
\paragraph{Ex. 13.2.4}
{\it Prove that (13.19) gives coset representatives of $\mathrm{AGL}(1,\F_5)$ in $S_5$.
}
\begin{proof}
As the index $(S_5:\mathrm{AGL}(1,\F_5)) =120/20 = 6$, it is sufficient to verify that the 6 permutations
$$S = \{e, (1\,2\,3), (2\,3\,4), (3\,4\,5), (1\,4\,5),(1\,2\,5)\}$$
are in distinct coset, by verifying that the 15 permutations $u v^{-1} \not \in \mathrm{AGL}(1,\F_5)$, where $$u,v \in S,\qquad u \ne v.$$
\begin{align*}
\mathrm{AGL}(1,\F_5) &= \{e, (1,2,4,3), (1,2,3,4,5), (1,3,5,2,4), (1,4,5,2), (1,3,2,5),\\
&(1,4)(2,3), (1,4,2,5,3), (2,5)(3,4), (1,5,3,4), (2,3,5,4), (1,3)(4,5),\\
&(1,3,4,2), (1,5)(2,4), (1,2)(3,5), (1,5,4,3,2), (2,4,5,3), (1,4,3,5),\\
&(1,2,5,4), (1,5,2,3) \}
\end{align*}
\begin{align*}
&\{u v^{-1} \ | \ u \in S, v \in S, u\ne v\} =\\
&\{ (1,3,2), (2,4,3), (3,5,4), (1,5,4), (1,5,2), (1,2,3,5,4), (2,3,5),\\
&(1,3,4), (1,5,4,2,3), (1,5,2,3,4), (1,3,4,5,2), (2,4,5), (1,5,3),\\
&(1,5,3,4,2), (1,2,4)\}\\
\end{align*}
Sage instructions
\begin{verbatim}
S5 = SymmetricGroup(5)
a = S5([(1,2,3,4,5)])
b = S5([(1,2,4,3)])
G = PermutationGroup([a,b])
l = [S5([]),S5([(1,2,3)]),S5([(2,3,4)]),S5([(3,4,5)]),S5([(1,4,5)]),S5([(1,2,5)])]
[u*v^(-1) in G for u in l for v in l if u< v]
\end{verbatim}
\begin{center}
[False, False, \ldots , False]
\end{center}
So $S$ is a set of coset representatives of $\mathrm{AGL}(1,\F_5)$ in $S_5$.
\end{proof}
\paragraph{Ex. 13.2.5}
{\it Complete the proof of part (b) of Theorem 13.2.6. Then prove part (c).
}
\begin{proof}
\be
\item[$\bullet$]
In the context of the proof of part (b) of Theorem 13.2.6, $A_5 \subset G$.
Let $$\tau_1 = e,\quad \tau_2 = (1\,2\,3),\quad \tau_3 = (2\,3\,4),\quad \tau_4 = (3\,4\,5),\quad \tau_5= (1\,4\,5),\quad \tau_6 = (1\,2\,5),$$
and $h_i = \tau_i \cdot h, \ i=1,\ldots,6$, where $h = u^2$ and
\begin{align*}
u = &\ x_1x_2+x_2x_3 +x_3x_4+x_4x_5+x_5x_1\\
&-x_1x_3-x_3x_5-x_5x_2-x_2x_4-x_4x_1.
\end{align*}
By definition,
$$\beta_i = h_i(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5).$$
Since $ A_5 \subset G$ and $\tau_i \in A_5$, there exists $\sigma_i \in \Gal(L/F)$ such that $\sigma_i$ maps to $\tau_i$ for every $i \in \gcro 1,6\dcro$, so
$$\sigma_i(\alpha_j) = \alpha_{\tau_i(j)},\qquad i \in \gcro 1,6\dcro,\qquad j\in \gcro 1,5\dcro.$$
Then, for all $i \in \gcro 1,6\dcro$,
\begin{align*}
\sigma_i(\beta_1)&= \sigma_i(h(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5))\\
&= h(\sigma_i(\alpha_1),\sigma_i(\alpha_2),\sigma_i(\alpha_3),\sigma_i(\alpha_4),\sigma_i(\alpha_5))\\
&= h (\alpha_{\tau_i(1)}, \alpha_{\tau_i(2)},\alpha_{\tau_i(3)},\alpha_{\tau_i(4)},\alpha_{\tau_i(5)})\\
&=(\tau_i \cdot h)(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)\\
&= h_i(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)\\
&= \beta_i
\end{align*}
So
$$\sigma_i(\beta_1) = \beta_i, \qquad i=1,\ldots,6.$$
By assumption, some $\beta_j$ is in $F$, therefore $\beta_1 = \sigma_j^{-1}(\beta_j) = \beta_j \in F$, and $\beta_i = \sigma_i(\beta_1) = \beta_1$ for all $i \in \gcro 1,6\dcro$.
We obtain the identity
$$(y-\beta_1)^6 = (y^3+b_2y^2+b_4y+b_6)^2 - 2^{10} \Delta(f) y.$$
Multiplying this out, we obtain
\begin{align*}
&y^6 - 6 \beta_1 y^5 +15 \beta_1^2 y^4 - 20\beta_1^3 y^3 + 15 \beta_1^4 y^2 -6 \beta_1^5 y + \beta_1^6 =\\
&y^6 + 2 b_2 y^5 +(b_2^2 + 2b_4) y^4 +(2b_6 +2b_2b_4) y^3 + (b_4^2 + 2 b_2b_6) y^2 +(2 b_4b_6 - 2^{10} \Delta(f))y +b_6^2,
\end{align*}
so
\begin{align*}
-6\beta_1 &= 2 b_2,\\
15 \beta_1^2 &= b_2^2+2b_4,\\
-20 \beta_1^3 &= 2 b_2b_4 + 2 b_6.
\end{align*}
Therefore, since $F$ has characteristic $\ne 2$,