-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchain_tqeb_config.yaml
91 lines (80 loc) · 1.89 KB
/
chain_tqeb_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
general:
project_name: my_project
model_path:
logs_dir: logs
saved_models_dir: saved_models
display_figures: True
global_seed: 127
gpu_memory_limit: 3
operation_mode: chain_tqeb
dataset:
name: flowers
class_names: [daisy, dandelion, roses, sunflowers, tulips]
training_path: ../datasets/flower_photos
validation_split: 0.15
quantization_split: 0.3
preprocessing:
rescaling:
scale: 1/127.5
offset: -1
resizing:
aspect_ratio: fit
interpolation: nearest
color_mode: rgb
data_augmentation:
random_contrast:
factor: 0.4
random_brightness:
factor: 0.2
random_flip:
mode: horizontal_and_vertical
random_translation:
width_factor: 0.2
height_factor: 0.2
random_rotation:
factor: 0.15
random_zoom:
width_factor: 0.25
height_factor: 0.25
training:
model:
name: mobilenet
version: v2
alpha: 0.35
pretrained_weights: None
input_shape: (224, 224, 3)
frozen_layers: None
batch_size: 32
epochs: 1
dropout: 0.3
optimizer:
Adam:
learning_rate: 0.001
callbacks:
ReduceLROnPlateau:
monitor: val_accuracy
factor: 0.5
patience: 10
EarlyStopping:
monitor: val_accuracy
patience: 40
quantization:
quantizer: TFlite_converter
quantization_type: PTQ
quantization_input_type: uint8
quantization_output_type: float
export_dir: quantized_models
tools:
stedgeai:
version: 10.0.0
optimization: balanced
on_cloud: True
path_to_stedgeai: C:/Users/<XXXXX>/STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/<*.*.*>/Utilities/windows/stedgeai.exe
path_to_cubeIDE: C:/ST/STM32CubeIDE_<*.*.*>/STM32CubeIDE/stm32cubeide.exe
benchmarking:
board: STM32H747I-DISCO
mlflow:
uri: ./experiments_outputs/mlruns
hydra:
run:
dir: ./experiments_outputs/${now:%Y_%m_%d_%H_%M_%S}