diff --git a/Day3/Day3_InClassExercises/Day3_InClassExercises.ipynb b/Day3/Day3_InClassExercises/Day3_InClassExercises.ipynb deleted file mode 100644 index ec97af9..0000000 --- a/Day3/Day3_InClassExercises/Day3_InClassExercises.ipynb +++ /dev/null @@ -1,609 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "2c0e7067", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# MSEE UQ short course: The $\\texttt{UQpy}$ library\n", - "\n", - "Application of Inference using the $\\texttt{UQpy}$ module $\\texttt{inference}$. \n", - "\n", - "Detailed instructions on how to use this module can be found in the $\\texttt{UQpy}$ documentation.\n", - "\n", - "https://uqpyproject.readthedocs.io/en/latest/inference/index.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e7d3814e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "3e3186d2", - "metadata": {}, - "source": [ - "# Exercise 1 \n", - "\n", - "This exercise aims to introduce the user to the Markov Chain Monte Carlo sampling methods available in $\\texttt{UQpy}$, since they are a prerequisite for advanced Bayesian inference methods such as $\\texttt{BayesianParameterEstimation}$\n", - "\n", - "- Specifically, the $\\texttt{MetropolisHastings}$ algorithms will be discussed.\n", - "- Ways to sample the target function, as well as several diagnostic will be provided." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "32dffcdc", - "metadata": {}, - "outputs": [], - "source": [ - "from UQpy.distributions import DistributionND\n", - "\n", - "\n", - "class Rosenbrock(DistributionND):\n", - " def __init__(self, p=20.):\n", - " super().__init__(p=p)\n", - "\n", - " def pdf(self, x):\n", - " return np.exp(-(100 * (x[:, 1] - x[:, 0] ** 2) ** 2 + (1 - x[:, 0]) ** 2) / self.parameters['p'])\n", - "\n", - " def log_pdf(self, x):\n", - " return -(100 * (x[:, 1] - x[:, 0] ** 2) ** 2 + (1 - x[:, 0]) ** 2) / self.parameters['p']" - ] - }, - { - "cell_type": "markdown", - "id": "1b51f5df", - "metadata": {}, - "source": [ - "### Step 1\n", - "\n", - "Import the necessary libraries:\n", - "\n", - "1. From the $\\texttt{UQpy.sampling}$ module.\n", - "- $\\texttt{MetroplisHastings}$\n", - "\n", - "2. From the $\\texttt{UQpy.distributions}$ module.\n", - "- $\\texttt{Normal}$\n", - "- $\\texttt{JointIndependent}$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b5a9ae18", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "7ad07ef7", - "metadata": {}, - "source": [ - "### Step 1.1\n", - "\n", - "The $\\texttt{log}\\_\\texttt{target}$ function that we want to sample using the $\\texttt{MetropolisHastings}$ samping method is defined below." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dfa1f4d9", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "b30c105a", - "metadata": {}, - "source": [ - "### Step 2\n", - "\n", - "Create an instance of the $\\texttt{MetropolisHastings}$ class:\n", - "\n", - "- The funtion $\\texttt{log}\\_\\texttt{target}$ provided serves as the $\\texttt{log}\\_\\texttt{pdf}\\_\\texttt{target}$\n", - "- Since our proposal distribution is two dimensional, the value of the $\\texttt{dimension}$ parameter is set to $2$.\n", - "- We generate four chain for the needs of the $\\texttt{MetropolisHastings}$ method and as a result the parameter $\\texttt{n}\\_\\texttt{chains}$ is set to $4$.\n", - "- Finally the $\\texttt{burn}\\_\\texttt{length}$ and $\\texttt{jump}$ parameters are set to $500$, $50$ respectively.\n", - "\n", - "To initiate the sample generation using the $\\texttt{MetropolisHastings}$ algorithm, the $\\texttt{nsamples}$ parameter must be provided, either in the initializer, or after the initialization in the $\\texttt{run}$ function of the class.\n", - "- The number of samples is chosen here to be $500$. ($\\texttt{nsamples}=500$)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "259244c3", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "55b51bc4", - "metadata": {}, - "source": [ - "### Step 2.1\n", - "\n", - "The samples generated with the aid of the $\\texttt{MetropolisHastings}$ class, can be retrieved using the $\\texttt{samples}$ attribute.\n", - "\n", - "- After retrieving the samples from the $\\texttt{MetropolisHastings}$ algorithm, create a scatter plot of the generated samples." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "024a8fdd", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "b201d0de", - "metadata": {}, - "source": [ - "### Step 3\n", - "\n", - "The acceptance rate of the chains can be accessed using the $\\texttt{acceptance}\\_\\texttt{rate}$ attribute of the $\\texttt{MCMC}$ algorithm.\n", - "\n", - "If this metric is too low, then the provided input parameters make the sampling inefficient, as new samples to advance the chain are rarely choosen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f8ce23f1", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "48ccbbdc", - "metadata": {}, - "source": [ - "### Step 3.1\n", - "\n", - "Using the $\\texttt{MCMC}$ generated samples, the following graphic diagnostic can be generated.\n", - "\n", - "- The evolution of the sampled values.\n", - "- The convergence of the parameter towards its final value\n", - "- The correlation of between the samples generated for the respective parameter.\n", - "\n", - "Note that the samples retrieved from any of the sampling algorithms in $\\texttt{UQpy}$ are a 2 dimensional $\\texttt{numpy}$ array. The number of rows represents the number of samples, while the columns represent the number of parameters.\n", - "\n", - "To create each one of the plots, for each column $\\texttt{j}$ of the samples \n", - "\n", - "- Parameter Convergence: $\\texttt{plot(range(nsamples), np.cumsum(samples[:, j]/range(nsamples))}$\n", - "- Samples Correlation: $\\texttt{acorr(samples[:, j]-np.mean(acorr(samples[:, j]))}$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c34ebe52", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "ba93bdc2", - "metadata": {}, - "source": [ - "# Exercise 2 \n", - "\n", - "Use **information-theoretic** inference to select between regression models. Consider the simple model:\n", - "\n", - "$$y=m(\\theta) + \\epsilon$$\n", - "\n", - "where $m(\\cdot)$ is our numerical model that runs with $\\texttt{RunModel}$ and $\\epsilon$ is noise. We have 50 synthetic measurements of $y$ using one of the following model:\n", - " \n", - "1. $m_0(\\theta)=\\theta_{0} x$ (linear)\n", - "2. $m_1(\\boldsymbol{\\theta})=\\theta_{0} x + \\theta_{1} x^{2}$ (quadratic)\n", - "3. $m_2(\\boldsymbol{\\theta})=\\theta_{0} x + \\theta_{1} x^{2} + \\theta_{2} x^{3}$ (cubic)\n", - "\n", - "where $\\theta_i$, $i=0,1, 2$ are the parameters of the model. We have also added some Gaussian noise ($\\sim \\mathcal{N}(0, 1)$) in the measurements which is considered to be homogeneous. You are given the file $\\texttt{'data_ex1a.txt'}$ which contains the data. Select a statistical model from the set of three candidate models, given the data, using the $AIC_c$ information-theoretic criterion. You are provided with the file $\\texttt{pfn.py}$ that contains the three models, written in $\\texttt{Python}$." - ] - }, - { - "cell_type": "markdown", - "id": "3806b95b", - "metadata": {}, - "source": [ - "### Step 1:\n", - "\n", - "Read the data from the file." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "76adc29b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "e5630f89", - "metadata": {}, - "source": [ - "### Step 2:\n", - "\n", - "Import the necessary libraries:\n", - "\n", - "1. From the $\\texttt{UQpy.Inference}$ module.\n", - "- $\\texttt{ComputationalModel}$\n", - "- $\\texttt{InformationModelSelection}$\n", - "\n", - "2. From $\\texttt{UQpy.run}\\_\\texttt{model.RunModel}$ module import $\\texttt{RunModel}$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "36740ab1", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "4354cfd4", - "metadata": {}, - "source": [ - "### Step 3:\n", - "\n", - "Create instances of the $\\texttt{RunModel}$ class for the three models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a496b8a6", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "566e5c33", - "metadata": {}, - "source": [ - "### Step 4:\n", - "\n", - "Create instances of the $\\texttt{InferenceModel}$ class for the three models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4f5f2951", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "f637c246", - "metadata": {}, - "source": [ - "### Step 5\n", - "\n", - "Perform model selection. Create an instance of $\\texttt{InfoModelSelection}$ class, employs information-theoretic criteria for model selection, using the $AIC_c$ criterion. \n", - "\n", - "\n", - "For each model print its probability to generate the measurements." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fd2e4e02", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "4e0d47aa", - "metadata": {}, - "source": [ - "# Exercise 3 \n", - "\n", - "\n", - "Learning the parameters of the quadratic model. Consider we have identified the quadratic model\n", - "\n", - "$$m_2(\\boldsymbol{\\theta})=\\theta_{0} x + \\theta_{1} x^{2}$$\n", - "\n", - "as the model that represents the data. Using the measurements, we want to learn the parameters $\\theta_{0}$ and $\\theta_{1}$ of the quadratic model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cf751e25", - "metadata": {}, - "outputs": [], - "source": [ - "# Solution\n", - "data_ex1a = np.loadtxt('data_ex1a.txt')" - ] - }, - { - "cell_type": "markdown", - "id": "8ba245c2", - "metadata": {}, - "source": [ - "### Step 1:\n", - "\n", - "Import the necessary libraries.\n", - "\n", - "1. From the $\\texttt{UQpy.inference}$ module import:\n", - "- $\\texttt{BayesParameterEstimation}$\n", - "\n", - "2. From the $\\texttt{UQpy.distributions}$ module import:\n", - "- $\\texttt{Normal}$\n", - "- $\\texttt{JoinIndependent}$ \n", - "\n", - "3. From $\\texttt{UQpy.run}\\_\\texttt{RunModel}$ module import $\\texttt{RunModel}$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "3e63e30e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "83cbce3b", - "metadata": {}, - "source": [ - "### Step 2:\n", - "\n", - "Create instances of the $\\texttt{RunModel}$ class for the quadratic model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "180e223f", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "0f753a22", - "metadata": {}, - "source": [ - "### Step 3:\n", - "\n", - "Create a joint distribution object for its parameters $\\boldsymbol{\\theta}$ that represents our prior belief. Each marginal distribution is Normally distributed but, we don't provide any information about its parameters." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cb30500a", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "b8376fbd", - "metadata": {}, - "source": [ - "### Step 4:\n", - "\n", - "Create an instance of the $\\texttt{ComputationalModel}$ class. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f6ca1c33", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "d2e312b1", - "metadata": {}, - "source": [ - "### Step 5:\n", - "\n", - "Create a joint proposal distribution object for its parameters $\\boldsymbol{\\theta}$. Each marginal distribution is normally distributed, i.e., $\\theta_0 \\sim \\mathcal{N}(0.0, 0.1)$ and $\\theta_1 \\sim \\mathcal{N}(0.0, 0.05)$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "76b25707", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "5f189bde", - "metadata": {}, - "source": [ - "### Step 6:\n", - "\n", - "Create an instance of the $\\texttt{BayesParameterEstimation}$ class. Select as sampling algorithm the $\\texttt{MetropolisHastings}$ algorithm of the $\\texttt{MCMC}$ class.\n", - "\n", - "Print the posterior values of the two parameters that are stored in the $\\texttt{samples}$ attribute of the $\\texttt{BayesParameterEstimation}$ object." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "881474aa", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "4eddbb88", - "metadata": {}, - "source": [ - "# Exercise 4 \n", - "\n", - "Use **Bayesian model** selection to choose between regression models. Consider the problem of Exercise 1. In this case, each candidate model $m_i$ is given a prior probability $P(m_i) = 1/3$. For each model, our prior belief about its parameters $\\theta_i$ is that they are normally distributed as: \n", - "- $m_0(\\theta)$: $\\theta_0\\sim\\mathcal{N}(0,10)$.\n", - "- $m_1(\\boldsymbol{\\theta})$: $\\theta_0\\sim\\mathcal{N}(0,1)$, $\\theta_1\\sim\\mathcal{N}(0,1)$\n", - "- $m_2(\\boldsymbol{\\theta})$: $\\theta_0\\sim\\mathcal{N}(0,1)$, $\\theta_1\\sim\\mathcal{N}(0,2)$, $\\theta_2\\sim\\mathcal{N}(0,0.25)$" - ] - }, - { - "cell_type": "markdown", - "id": "38c13a5b", - "metadata": {}, - "source": [ - "### Step 1:\n", - "\n", - "Import the necessary libraries\n", - "\n", - "1. From the $\\texttt{UQpy.inference}$ module import:\n", - "- $\\texttt{BayesModelSelection}$ \n", - "\n", - "2. From the $\\texttt{UQpy.distributions}$ module import:\n", - "- $\\texttt{Normal}$\n", - "- $\\texttt{JoinIndependent}$ \n", - "\n", - "3. From the file $\\texttt{data}\\_\\texttt{ex3.pkl}$ import the data to learn from" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "072a5c25", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "d9c2d5bb", - "metadata": {}, - "source": [ - "### Step 2:\n", - "\n", - "Create instances of the $\\texttt{RunModel}$ class for the three models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c0a6b7e7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "8e6a8e71", - "metadata": {}, - "source": [ - "### Step 3\n", - "\n", - "For each model $m_i(\\boldsymbol{\\theta})$ create a joint distribution object for its parameters $\\boldsymbol{\\theta}$ that represents our prior belief.\n", - "- $m_0(\\theta)$: $\\theta_0\\sim\\mathcal{N}(0,10)$.\n", - "- $m_1(\\boldsymbol{\\theta})$: $\\theta_0\\sim\\mathcal{N}(0,1)$, $\\theta_1\\sim\\mathcal{N}(0,1)$\n", - "- $m_2(\\boldsymbol{\\theta})$: $\\theta_0\\sim\\mathcal{N}(0,1)$, $\\theta_1\\sim\\mathcal{N}(0,2)$, $\\theta_2\\sim\\mathcal{N}(0,0.25)$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "93c821bc", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "6924d7dd", - "metadata": {}, - "source": [ - "### Step 4\n", - "\n", - "Create instances of the $\\texttt{InferenceModel}$ class for the three models. In this case, for each model model you should also provide the $\\texttt{error}$\\_$\\texttt{covariance}$ as $\\texttt{np.ones(50)}$ (Why?)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0ba7baec", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "a06c2a75", - "metadata": {}, - "source": [ - "### Step 5\n", - "\n", - "Create an instance of the $\\texttt{BayesModelSelection}$ class. To this end, you will need to utilize $\\texttt{MCMC}$ sampling methods:\n", - "\n", - "1. Import the necessary libraries. From the $\\texttt{UQpy.sampling}$ module import $\\texttt{MetropolisHastings}$ class. \n", - "2. For each model, create a joint proposal distribution for its parameters $\\boldsymbol{\\theta}$, where each marginal distribution is normally distributed. \n", - "2. For each model, select to sample 2000 realizations of the parameters from their joint distribution.\n", - "\n", - "Print the posterior probability of each model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1e11d17d", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Slideshow", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Day3/Day3_InClassExercises/HugoniotCalculations.py b/Day3/Day3_InClassExercises/HugoniotCalculations.py deleted file mode 100644 index 960a827..0000000 --- a/Day3/Day3_InClassExercises/HugoniotCalculations.py +++ /dev/null @@ -1,13 +0,0 @@ -import numpy as np - - -def evaluate_model(samples): - a0 = samples[0, 0] - a1 = samples[0, 1] - a2 = samples[0, 2] - a3 = samples[0, 3] - - particle_velocity = np.linspace(3.5, 10, num=50) - shock_velocity = [a0 + a1 * x + a2 * x ** 2 + a3 * x ** 3 for x in particle_velocity] - - return shock_velocity diff --git a/Day3/Day3_InClassExercises/__pycache__/pfn.cpython-39.pyc b/Day3/Day3_InClassExercises/__pycache__/pfn.cpython-39.pyc deleted file mode 100644 index d56e5b5..0000000 Binary files a/Day3/Day3_InClassExercises/__pycache__/pfn.cpython-39.pyc and /dev/null differ diff --git a/Day3/Day3_InClassExercises/__pycache__/pfn1.cpython-39.pyc b/Day3/Day3_InClassExercises/__pycache__/pfn1.cpython-39.pyc deleted file mode 100644 index f007d36..0000000 Binary files a/Day3/Day3_InClassExercises/__pycache__/pfn1.cpython-39.pyc and /dev/null differ diff --git a/Day3/Day3_InClassExercises/__pycache__/pfn2.cpython-39.pyc b/Day3/Day3_InClassExercises/__pycache__/pfn2.cpython-39.pyc deleted file mode 100644 index b0f00f1..0000000 Binary files a/Day3/Day3_InClassExercises/__pycache__/pfn2.cpython-39.pyc and /dev/null differ diff --git a/Day3/Day3_InClassExercises/activity_data.pkl b/Day3/Day3_InClassExercises/activity_data.pkl deleted file mode 100644 index 35b9df1..0000000 Binary files a/Day3/Day3_InClassExercises/activity_data.pkl and /dev/null differ diff --git a/Day3/Day3_InClassExercises/activity_model.py b/Day3/Day3_InClassExercises/activity_model.py deleted file mode 100644 index 29ae163..0000000 --- a/Day3/Day3_InClassExercises/activity_model.py +++ /dev/null @@ -1,7 +0,0 @@ -import numpy as np - - -def model_quadratic(theta): - domain = np.linspace(0, 10, 50) - inpt = np.array(theta).reshape((-1,)) - return inpt[0] + inpt[1] * domain + inpt[2] * domain ** 2 + inpt[3] * domain ** 3 diff --git a/Day3/Day3_InClassExercises/data_ex1a.txt b/Day3/Day3_InClassExercises/data_ex1a.txt deleted file mode 100644 index 4c75b24..0000000 --- a/Day3/Day3_InClassExercises/data_ex1a.txt +++ /dev/null @@ -1,50 +0,0 @@ -1.963425016964612357e+00 -5.631499495404157507e-01 -1.200015972485620086e+00 -2.363197192182953543e+00 -1.385269229994348761e+00 -3.824801462708962152e+00 -3.317770752303716986e+00 -6.512077471670474793e+00 -6.443022624380614793e+00 -8.892876231298563638e+00 -1.048386738538123275e+01 -1.216169747606085849e+01 -1.535792794033918973e+01 -1.677474298214406900e+01 -1.772587553974073060e+01 -2.120322214021318885e+01 -2.614069350236503908e+01 -2.707815981169664354e+01 -3.043816755204977653e+01 -3.230760340263422847e+01 -3.677482483044258288e+01 -4.027279487613458286e+01 -4.591567430913237757e+01 -4.823501004243204449e+01 -5.331104142443751925e+01 -5.756076242115526043e+01 -6.166029982935233988e+01 -6.705964174250567567e+01 -7.012168669052869063e+01 -7.644649738129326977e+01 -8.239317895529657676e+01 -8.582397577703267189e+01 -9.207151665379811334e+01 -9.757197953688368841e+01 -1.022389493821832360e+02 -1.083099634321731344e+02 -1.143380221215831938e+02 -1.209581935600349141e+02 -1.286398473034360563e+02 -1.329362243612566488e+02 -1.433637115559228334e+02 -1.503849078317284693e+02 -1.555462433432931277e+02 -1.635159315741700539e+02 -1.693900101167623404e+02 -1.769802494566164910e+02 -1.866606932866008322e+02 -1.932824861534327852e+02 -2.016312079357683729e+02 -2.092507232180480798e+02 diff --git a/Day3/Day3_InClassExercises/data_ex1b.txt b/Day3/Day3_InClassExercises/data_ex1b.txt deleted file mode 100644 index 2f2ac0b..0000000 --- a/Day3/Day3_InClassExercises/data_ex1b.txt +++ /dev/null @@ -1,1000 +0,0 @@ -1.276966845582929964e+05 -1.200488075847107102e+05 -1.167781980744362663e+05 -1.147324659197006113e+05 -1.094063209476115153e+05 -6.937412387260155811e+04 -8.773294138317555189e+04 -9.873548411021856009e+04 -7.967290560067309707e+04 -1.040264400008227531e+05 -1.122662555652808951e+05 -9.421001568445064186e+04 -9.770123345997344586e+04 -7.613692141376156360e+04 -9.276254399812793417e+04 -7.680064127237853245e+04 -1.036966711445050605e+05 -1.259266300991969765e+05 -1.230001570719391893e+05 -9.026267828995409945e+04 -1.253917488401414448e+05 -9.601019719883563812e+04 -7.336466097443047329e+04 -9.643457401069949265e+04 -6.768873770995781524e+04 -9.325768340141671069e+04 -7.978429825036607508e+04 -1.008996119768798380e+05 -1.020617020260808495e+05 -9.141637934135401156e+04 -1.135022766753841133e+05 -1.074505400274400890e+05 -1.240793114186520106e+05 -8.762599183894773887e+04 -1.032882833333859307e+05 -5.830255338820820907e+04 -1.254988341439851065e+05 -1.231529299159748625e+05 -1.009680986077983980e+05 -1.239393113856752752e+05 -9.297088114017684711e+04 -1.262878471618498879e+05 -7.951507710579529521e+04 -8.624301512995120720e+04 -1.065540972643194691e+05 -9.628158608892363554e+04 -1.359832454606511164e+05 -1.054424749585186219e+05 -7.658375951454036112e+04 -1.020994957217966294e+05 -7.273672878749639494e+04 -8.558458789146410709e+04 -1.076451657789316960e+05 -8.590594066873998963e+04 -9.303628656084377144e+04 -1.162798185620454897e+05 -7.639035161090812471e+04 -9.870174721296355710e+04 -1.424820725666831713e+05 -9.586989058070267492e+04 -9.957209097430109978e+04 -8.804211506885953713e+04 -1.070704508843791991e+05 -8.498374467625269608e+04 -8.104988129683378793e+04 -1.057809585921115940e+05 -7.003682072046265239e+04 -8.975589001722676039e+04 -1.041127568894748983e+05 -8.777666488439793466e+04 -1.271612511702426709e+05 -1.018782909572464268e+05 -9.961222942944437091e+04 -1.008198199654612545e+05 -1.024495113270886650e+05 -9.849756914661540941e+04 -9.909207805257379368e+04 -1.028580319371780497e+05 -1.264511357249681460e+05 -1.097563939444685093e+05 -7.581085089709419117e+04 -8.903544295169162797e+04 -1.054243447202792158e+05 -7.423092619420879055e+04 -9.297527442504833743e+04 -8.597576771540094342e+04 -1.013311050150023657e+05 -1.250848419372568751e+05 -7.267172264056661515e+04 -1.020620062568407302e+05 -7.929015461754779972e+04 -7.352670566738804337e+04 -9.300737192888860591e+04 -1.423941804243147199e+05 -1.172618201202507043e+05 -1.231668898479136842e+05 -8.775071576073528558e+04 -1.096279046530931664e+05 -8.389580464300599124e+04 -1.097954675802776619e+05 -8.962982400133684860e+04 -1.342130915568963101e+05 -1.049238851715679921e+05 -1.156905737877672946e+05 -8.921929903278438724e+04 -1.766485519993280177e+05 -9.801562458061287180e+04 -8.159496607704050257e+04 -1.068349117552662938e+05 -6.912220703823240183e+04 -9.611911428612124291e+04 -1.139873146669441194e+05 -7.844828710820653941e+04 -1.183251428385652544e+05 -8.079533627543707553e+04 -1.097101865902277350e+05 -9.168092322105269704e+04 -9.958132620455297001e+04 -8.234898781486402731e+04 -1.314970588634981250e+05 -9.928436670083730132e+04 -8.141217568092996953e+04 -8.152795479384392092e+04 -1.256009329895241826e+05 -8.839567072771745734e+04 -1.020366368755247531e+05 -7.946244948285211285e+04 -8.313167786250350764e+04 -1.020303094516468118e+05 -9.562099508297716966e+04 -1.009185016389945959e+05 -1.701986487595455255e+05 -1.157081012578411755e+05 -1.059309566376916191e+05 -9.721104255764048139e+04 -1.070724148587475647e+05 -9.739999308760950225e+04 -1.106076478381592606e+05 -9.116607558279468503e+04 -8.998793607941883965e+04 -8.283196738903607184e+04 -1.332680422538321582e+05 -8.835657869468300487e+04 -8.149499269739974989e+04 -1.076760301404812344e+05 -9.007402935435318795e+04 -8.628914387202532089e+04 -1.206262935395253589e+05 -1.185274534870577481e+05 -8.563356810101290466e+04 -8.366029653430571489e+04 -8.380173293651366839e+04 -9.525237228870534454e+04 -1.046279923980404274e+05 -1.236613414165442227e+05 -6.938592324524279684e+04 -1.127028124722491193e+05 -8.223861083946601138e+04 -9.964066354864150344e+04 -1.041577687358640978e+05 -1.216221220212690532e+05 -8.520259863959952781e+04 -1.000325953877850698e+05 -9.217670774678402813e+04 -9.880864253765786998e+04 -8.146999940674235404e+04 -7.917954004303568217e+04 -1.266897428297365404e+05 -9.904525541069961037e+04 -1.157507474777140305e+05 -9.641729210666217841e+04 -1.350259712960953475e+05 -9.052632101333377068e+04 -1.132877747032828338e+05 -1.217205448344148463e+05 -8.806991773803945398e+04 -1.221483874982358393e+05 -7.931793971950693231e+04 -9.081472713245726482e+04 -7.325500412775724544e+04 -8.753888790705720021e+04 -1.162237892022322631e+05 -1.281018924446007004e+05 -1.094693550376718194e+05 -8.130077442854444962e+04 -7.759249386858058278e+04 -8.393723474061820889e+04 -9.364403450102462375e+04 -1.107108128715589264e+05 -1.011581646505797544e+05 -1.037001576999768004e+05 -8.021897354680960416e+04 -1.136055179882151569e+05 -8.551108743563287135e+04 -8.728999612923456880e+04 -1.055644813129332761e+05 -1.018107710340877093e+05 -1.209328078582024464e+05 -9.539838004703400657e+04 -8.523008730918941728e+04 -6.365305451690102200e+04 -9.380879438208031934e+04 -8.009636644278570020e+04 -1.126675741247783444e+05 -6.693394825490603398e+04 -1.174892182354931283e+05 -1.258855563850358885e+05 -8.235540510156178789e+04 -8.893844972960317682e+04 -1.060751988762042020e+05 -7.118119453951877949e+04 -8.824098626343270007e+04 -1.187669048134927289e+05 -8.769898367400009010e+04 -8.673015551842472632e+04 -1.030981797207171185e+05 -9.537010897876814124e+04 -8.791481674548388401e+04 -9.369220125005576119e+04 -8.341127101099709398e+04 -1.257526873577018268e+05 -8.153646629859683162e+04 -8.724549139328268939e+04 -7.142165583628925378e+04 -1.646204240810816409e+05 -1.301382921421442297e+05 -9.692589783591162995e+04 -7.605601806004375976e+04 -6.693984849394691992e+04 -1.434123433772865392e+05 -6.188487143699831358e+04 -1.076758721307831875e+05 -8.882316736952408974e+04 -8.991203323750226991e+04 -7.811470213499091915e+04 -1.022482029112218443e+05 -7.163967862735784729e+04 -6.747356296022045717e+04 -1.069139526350911474e+05 -1.007323780833161436e+05 -1.205312305869951670e+05 -1.588284849693407305e+05 -1.114478052633951447e+05 -8.055575943716947222e+04 -7.981573413611632714e+04 -1.283595952710974962e+05 -1.032512947698981734e+05 -8.745345318899558333e+04 -1.030994092552030634e+05 -9.850352365130449471e+04 -7.632832540237170178e+04 -9.495399256944906665e+04 -6.624029171259739087e+04 -6.821660856610759220e+04 -1.272009887961844797e+05 -9.641945885733189061e+04 -1.050163267431069980e+05 -7.695086156336522254e+04 -8.735261455151824339e+04 -8.532545338454432203e+04 -9.761949496847085538e+04 -1.106593310054280446e+05 -1.329502254145132028e+05 -8.681850241300993366e+04 -1.412458882172507292e+05 -8.227489515274776204e+04 -9.780246217485639500e+04 -8.083157679793058196e+04 -1.015070947212211468e+05 -1.242779514805110957e+05 -1.381455259761537309e+05 -9.906655554814281641e+04 -7.063166571465850575e+04 -1.085508972502771940e+05 -1.185047910351327882e+05 -1.338590898937181337e+05 -8.718154180203824944e+04 -8.406759895960525319e+04 -9.451763728447494213e+04 -1.028788222476270457e+05 -9.568242217661233735e+04 -1.023008604409065738e+05 -1.192428488774408761e+05 -1.252663674671513727e+05 -9.216087816020837636e+04 -1.434598347887946293e+05 -8.618033945385605330e+04 -1.282029798884280171e+05 -7.155450507536710938e+04 -8.974394917784947029e+04 -9.498627174314013973e+04 -1.348173273884339433e+05 -1.190080784454481472e+05 -4.881138942423930712e+04 -7.153872834756514931e+04 -1.057835959367151227e+05 -9.050110848892205104e+04 -9.163144271482362819e+04 -9.763276225163335039e+04 -7.357143458036986704e+04 -7.827123964322610118e+04 -8.263597794758972304e+04 -1.056457315091009223e+05 -1.170997463726329879e+05 -1.050038648282351642e+05 -1.226195445406663348e+05 -6.973070771470110049e+04 -9.595112478467235633e+04 -7.355471680035637110e+04 -1.106981078240746283e+05 -1.384713569284369878e+05 -7.272029286948863592e+04 -1.346770871605675493e+05 -8.136577164810875547e+04 -8.378648586224563769e+04 -1.051126920913664508e+05 -9.758468851006787736e+04 -9.669860586530889850e+04 -9.041793463810950925e+04 -1.020277366643065034e+05 -9.826718815571555751e+04 -8.308811658930826525e+04 -9.078301629210011743e+04 -7.458429683364139055e+04 -9.958665967344453384e+04 -1.024887211082327849e+05 -6.965921690769564884e+04 -1.437910449278093583e+05 -1.420448045604746439e+05 -9.502976577132065722e+04 -8.278256139962286397e+04 -1.060552889312654879e+05 -7.682120199548317760e+04 -1.165972315645177587e+05 -1.176108973427579185e+05 -1.315089707597264205e+05 -8.521284279748135305e+04 -9.241350840856727154e+04 -7.646326155492362159e+04 -1.153855884544966539e+05 -9.929810087175501394e+04 -1.467448698409405188e+05 -7.680862591893284116e+04 -8.942706348614391754e+04 -1.069347626784747263e+05 -9.560091573619120754e+04 -9.681596189256961225e+04 -9.484044710866744572e+04 -1.074186616125656728e+05 -1.333928823789035960e+05 -9.138254246068948123e+04 -1.166319753050876461e+05 -1.104852243169389694e+05 -1.102136571170570969e+05 -1.031958919048063253e+05 -8.188121484074984619e+04 -9.230369041196955368e+04 -1.296267244747497462e+05 -1.064086382851922244e+05 -1.063244108312640601e+05 -1.313224177348451922e+05 -1.134982534069698886e+05 -1.496370045186250063e+05 -1.137600210747056990e+05 -7.186533889918551722e+04 -1.047901621606997214e+05 -1.031200111117768538e+05 -8.348635826003158581e+04 -8.083794901830371236e+04 -9.894755857811590249e+04 -8.748865569468967442e+04 -8.906974399166568764e+04 -7.437183345388722955e+04 -1.015389374709790718e+05 -7.923344452933689172e+04 -7.209287569110201730e+04 -1.149095708174044412e+05 -1.121136734503035404e+05 -9.459550201543745061e+04 -1.079545404960025771e+05 -1.115239482172301796e+05 -8.523297607064594922e+04 -1.448051657421744894e+05 -1.022784406987676048e+05 -1.088783360818271030e+05 -9.437969855409536103e+04 -1.238927345749915112e+05 -1.329734520492435840e+05 -9.040373428592592245e+04 -8.365788161842898990e+04 -7.654969456866338442e+04 -8.996336902856096276e+04 -6.407207431931807514e+04 -1.066940495265738136e+05 -1.136990618518094125e+05 -9.046854639244088321e+04 -7.533056750558882777e+04 -8.252526546051635523e+04 -9.302490236063511111e+04 -5.672834898619536398e+04 -1.319052160838624695e+05 -7.546956779880510294e+04 -1.195206790829907550e+05 -1.082035053733663663e+05 -7.950113164058588154e+04 -1.107103124750908610e+05 -1.012714083625685453e+05 -7.763487192573952780e+04 -1.023765345207009377e+05 -8.552623768748869770e+04 -1.065178476918962115e+05 -1.261161880886715953e+05 -8.291316632429469610e+04 -1.270451259470774676e+05 -9.905809109669171448e+04 -8.894540624988616037e+04 -6.625144679944904055e+04 -1.006005667804576078e+05 -1.030719253641433461e+05 -1.153341263691649801e+05 -9.547122519750108768e+04 -9.191548305663169594e+04 -1.398698891458607977e+05 -1.199228884538255807e+05 -7.870765191224995942e+04 -6.504674068698253541e+04 -9.622167297087212501e+04 -9.143075151610800822e+04 -9.995501558890048182e+04 -1.284074851296727284e+05 -1.050980705950408737e+05 -9.177863445725501515e+04 -1.002182077995008876e+05 -7.194196758007891185e+04 -1.144442443290655356e+05 -1.110972433991213329e+05 -1.226634763950988126e+05 -1.218345586702606815e+05 -1.068126759407549689e+05 -1.318942898844054725e+05 -1.028916906195409683e+05 -9.643968220015375118e+04 -1.240311310236146819e+05 -7.207933479687548243e+04 -1.080660504854422761e+05 -1.320623984126691357e+05 -9.020084135385832633e+04 -8.879997196778460057e+04 -8.218587476919400797e+04 -1.222183442283339537e+05 -8.978521705990147893e+04 -8.376144511225547467e+04 -9.402606187369220424e+04 -9.559058155185269425e+04 -1.358188195054759271e+05 -1.334283119033751427e+05 -8.296912388421609649e+04 -8.827841312849783571e+04 -9.873680691704354831e+04 -1.129143197408673441e+05 -1.089119303578071558e+05 -6.121523400761787343e+04 -8.815059882975519577e+04 -7.950905921439135273e+04 -1.141412390992317378e+05 -9.221739673219008546e+04 -1.592797252351078787e+05 -1.421435432789092010e+05 -1.024970829590554931e+05 -9.955489352148227044e+04 -1.184498072313687589e+05 -1.220014287148998992e+05 -9.928173428025400790e+04 -8.572798438192153117e+04 -8.770304297882129322e+04 -1.220677838838659518e+05 -8.094841476823795529e+04 -8.609432363286201144e+04 -1.165037304827036278e+05 -1.093468331770207151e+05 -8.487376289356908819e+04 -1.279678730516719079e+05 -1.142186122355619300e+05 -1.311897894146569015e+05 -6.697245285721941036e+04 -6.924412065035229898e+04 -1.496091114270702819e+05 -1.263178023644246859e+05 -8.130924076575828076e+04 -1.162787316581544001e+05 -9.782598960702144541e+04 -6.660881019255041610e+04 -1.438956255545399908e+05 -1.173722825121507631e+05 -6.517755948530508613e+04 -1.078335128450732882e+05 -1.275612826175442897e+05 -8.440835633233492263e+04 -8.908322213395719882e+04 -8.033553935344236379e+04 -9.483983610801148461e+04 -9.304696369982570468e+04 -9.897206424942816375e+04 -9.271532803268406133e+04 -1.347247079509768228e+05 -7.663761226981744403e+04 -7.843760955294799351e+04 -7.998856549884214473e+04 -1.289576509871422459e+05 -1.065864572692163347e+05 -8.281674955956808117e+04 -8.373569195820424648e+04 -1.139872362404640153e+05 -8.812603135035857849e+04 -1.150178437317500793e+05 -1.249855246545559785e+05 -1.285262917092701682e+05 -1.160539490241485764e+05 -1.017298150795751135e+05 -9.445071013702458004e+04 -8.402540393374439736e+04 -1.452683995335740910e+05 -7.389139948483361513e+04 -9.357656626290267741e+04 -6.899183818996933405e+04 -9.130111684360817890e+04 -1.150252395265381638e+05 -9.293030288969601679e+04 -9.405411358028939867e+04 -6.181870900929713389e+04 -1.043206421263305529e+05 -1.029398562458483793e+05 -8.989388548808338237e+04 -1.164988324235288601e+05 -9.525897024124600284e+04 -9.773765730770668597e+04 -1.011176625861035282e+05 -1.027801619424437522e+05 -1.187423660631832463e+05 -7.892665502626875241e+04 -1.521279368585627235e+05 -9.653017198084617849e+04 -9.335313839975409792e+04 -8.319162738274926960e+04 -1.126223795189680968e+05 -9.580382054272927053e+04 -9.327990371261164546e+04 -7.457822712991075241e+04 -8.201911779965738242e+04 -1.103568198202895001e+05 -6.633278695848966890e+04 -7.371691706020891434e+04 -5.990565437912134803e+04 -7.911134839380961785e+04 -8.092259676301652507e+04 -1.097612711442219879e+05 -9.096196165400622704e+04 -1.122052587982795958e+05 -9.312136381492693909e+04 -6.477745559799745388e+04 -8.408898789200716419e+04 -1.380283709498490207e+05 -9.439331710541210487e+04 -1.086683038735165755e+05 -1.016501535469597293e+05 -1.119497054775192955e+05 -1.316278466240825073e+05 -1.190417001999923959e+05 -8.825539593691361370e+04 -9.830013694210574613e+04 -9.216771304707623494e+04 -1.137987311499743955e+05 -7.361152970781835029e+04 -9.165450821614392044e+04 -1.311053037621206313e+05 -9.405828394512945670e+04 -1.088798548139259801e+05 -9.076083324541276670e+04 -1.140966758391231269e+05 -1.110642016920132155e+05 -1.326816831327728869e+05 -9.700815967156180704e+04 -8.118550454555562465e+04 -1.030356157810521399e+05 -9.474536521207941405e+04 -1.369502430671097536e+05 -7.595296762335895619e+04 -1.021760293279805919e+05 -8.878783593023756112e+04 -9.645545368978155602e+04 -1.104017965972489037e+05 -1.071109954566182278e+05 -1.249349551507023425e+05 -1.013625078365919762e+05 -9.102411948999344895e+04 -8.279757110182147881e+04 -1.149363618128340167e+05 -1.005784454819134262e+05 -7.783139343362720683e+04 -1.004009582217356947e+05 -8.393680413266585674e+04 -1.112303050620668364e+05 -1.084211998642108665e+05 -9.795077490510272037e+04 -1.148143760431184783e+05 -9.964506528905915911e+04 -1.542014294263303454e+05 -9.524103559093804506e+04 -8.219678484385900083e+04 -7.780203196711883356e+04 -1.345962142976713076e+05 -1.128804997053558182e+05 -1.031490178081316117e+05 -7.850522968805655546e+04 -9.677248769242872368e+04 -1.074624652288587240e+05 -8.774056007775772014e+04 -7.647374224075573147e+04 -8.963219334109777992e+04 -1.015067053735559020e+05 -1.212597277266768797e+05 -1.273725334037909342e+05 -1.487553708423778298e+05 -6.226174698401964270e+04 -1.081476623968645436e+05 -8.364737036028559669e+04 -1.230941432139305107e+05 -8.563459492010118265e+04 -8.706919427471987728e+04 -8.286299934842238144e+04 -6.591907811792257417e+04 -8.326013025340513559e+04 -1.019083868336619926e+05 -1.069014937110761093e+05 -9.399075093822978670e+04 -9.782373252411604335e+04 -9.421594828812668857e+04 -1.319081007485271548e+05 -9.455374998408043757e+04 -8.689132220510451589e+04 -1.179025192839922674e+05 -1.278558945868348819e+05 -1.108664500975345727e+05 -1.021589756369036331e+05 -8.326784202670570812e+04 -7.903145034639650839e+04 -1.058895242271739698e+05 -8.815060681899772317e+04 -1.046420217174931313e+05 -8.770162370413866302e+04 -1.163988746268656541e+05 -8.266494339784875046e+04 -1.027721004660269973e+05 -1.017289977194831299e+05 -7.443493247839079413e+04 -1.413434563291336235e+05 -1.008299435954048677e+05 -8.121681415193215071e+04 -7.458789418724362622e+04 -1.036149550857243594e+05 -1.224678977476598811e+05 -8.232425517697312171e+04 -8.981838128520183091e+04 -1.064749812274398137e+05 -9.084369703611200384e+04 -1.678159259936891031e+05 -1.423230275809346640e+05 -7.474631968372446136e+04 -9.530464095392967283e+04 -8.704611255038052332e+04 -8.124729085776435386e+04 -6.411502911537783802e+04 -8.990758514497200667e+04 -8.006235633379106002e+04 -1.168378457173692004e+05 -1.220707481262364308e+05 -8.633835179606750899e+04 -9.241792246521427296e+04 -8.403719810834617238e+04 -9.447921550461876905e+04 -1.193309067785090883e+05 -8.892943982644367497e+04 -1.033838396241255978e+05 -9.397870563641111949e+04 -7.178271465858949523e+04 -9.847600366379109619e+04 -1.161172799770593556e+05 -7.473710469332405773e+04 -7.965235907648873399e+04 -6.941996591605908179e+04 -9.151296935032035981e+04 -1.184583650750268280e+05 -1.303555012995890720e+05 -7.511487397665510071e+04 -1.005646357479605504e+05 -9.805402671188084059e+04 -1.106407847362612083e+05 -1.085247467118068307e+05 -1.019284643483199325e+05 -1.051504564399552910e+05 -1.175856821258719865e+05 -7.139071047912479844e+04 -1.069351178846732510e+05 -1.044777062228018331e+05 -1.094840421937619685e+05 -9.129065254735205963e+04 -1.030246610363848886e+05 -1.017782661717524461e+05 -1.183245856616841920e+05 -1.189277832090495212e+05 -8.927067630652833031e+04 -9.327041106754346401e+04 -1.105146084436976234e+05 -1.032242562758349814e+05 -1.035220163281797722e+05 -1.115958200071066094e+05 -1.388656831732664723e+05 -1.065594029361793800e+05 -7.136316464764083503e+04 -9.271323338067704753e+04 -6.774200071568120620e+04 -1.613358635967150040e+05 -1.076240335694917012e+05 -1.073878928504117212e+05 -9.763418775059713516e+04 -9.461120427712824312e+04 -7.697010079200519249e+04 -1.482044559335472586e+05 -7.958807616644439986e+04 -8.894789624104108952e+04 -1.102200629707754269e+05 -1.230799027671201475e+05 -1.029175704509197094e+05 -9.609906646074561286e+04 -1.069089412458744773e+05 -1.569121911768109130e+05 -1.388330351727823436e+05 -1.081534262437254947e+05 -1.218035877454880538e+05 -9.665878065703394532e+04 -1.105507094647109334e+05 -9.355695917595218634e+04 -9.227127450662617048e+04 -7.204537833572001546e+04 -6.573050810188868491e+04 -9.833967570662741491e+04 -1.073003309322335554e+05 -1.370187844367899233e+05 -1.142273154915225314e+05 -1.216185052795012161e+05 -7.622686566349104396e+04 -9.731132559788846993e+04 -8.877407758350943914e+04 -1.522324894032241427e+05 -1.051315536361365084e+05 -9.407298953198321396e+04 -1.024770297193170554e+05 -8.046556595501746051e+04 -1.105170242716486828e+05 -9.220831232155943871e+04 -6.567918998056798591e+04 -7.158937629062951601e+04 -9.070046640890484559e+04 -8.756835312830295879e+04 -1.106010405273591750e+05 -1.116780529022393021e+05 -7.952659563935612096e+04 -8.730328268179821316e+04 -1.198857440965373098e+05 -1.293017220713541174e+05 -1.139123083857463935e+05 -1.298631208297397388e+05 -1.016050382057162788e+05 -1.001992231937059551e+05 -7.037819804251799360e+04 -9.783924279800707882e+04 -1.038081495801214332e+05 -9.110801407858837047e+04 -9.743388147314595699e+04 -1.260186795385844307e+05 -1.069679568556352751e+05 -1.445297849108003138e+05 -1.005589915996477648e+05 -9.495632546398864361e+04 -9.075369074491248466e+04 -1.070567708658506308e+05 -8.148071278846236237e+04 -1.110475309867400647e+05 -1.266586299181460927e+05 -7.172233434634924924e+04 -1.025527709874312714e+05 -9.099076891446365335e+04 -1.402415234061014780e+05 -9.103504935219390609e+04 -8.971975701966165798e+04 -1.004774171491054149e+05 -1.607682928861342079e+05 -1.103561293889421067e+05 -8.086555589935826720e+04 -9.565037818869137845e+04 -1.175130972479996854e+05 -1.116880224479822064e+05 -8.074225489686589572e+04 -8.508525120681649423e+04 -1.223679377715372102e+05 -8.268729498610582959e+04 -1.038044573387302808e+05 -8.485104782134258130e+04 -7.058545727104095567e+04 -1.090983007813120639e+05 -1.271400084258764982e+05 -1.085433159994873859e+05 -1.094275760097357706e+05 -1.484228019389992405e+05 -9.177385003056627465e+04 -9.572528330961259780e+04 -5.807351367176292115e+04 -1.107723373745027639e+05 -1.359902381750513159e+05 -7.405644746028911322e+04 -1.102536987206419144e+05 -1.078875341001014895e+05 -9.203409506841658731e+04 -1.082996753145243129e+05 -1.269071612434999988e+05 -1.196624284949473658e+05 -1.127754580965317728e+05 -9.264422476219202508e+04 -1.081082021023297275e+05 -1.002868520315134228e+05 -8.418645951070153387e+04 -1.574726749098063738e+05 -1.108988141257007956e+05 -9.572476759519215557e+04 -1.173654854832246638e+05 -9.605222052589674422e+04 -1.068212507316726260e+05 -1.293399795122215728e+05 -8.441310999678379449e+04 -1.062262475402977725e+05 -1.091024120994012337e+05 -1.015200586348844954e+05 -1.298978583053130860e+05 -1.019613454528540606e+05 -1.168523011974005494e+05 -7.665484199019537482e+04 -1.163315916576254094e+05 -1.167161114814327448e+05 -8.476691234060379793e+04 -1.001104971111999912e+05 -6.621554465703482856e+04 -1.255515905483170791e+05 -1.158913942012740881e+05 -1.127427790150976070e+05 -9.135713595122464176e+04 -1.003591675390283926e+05 -9.068596733802699600e+04 -1.028491976238531497e+05 -1.284983856595115794e+05 -9.555999247057836328e+04 -8.459511536014625744e+04 -1.221702989708012028e+05 -7.594790798310449463e+04 -9.042590638368547661e+04 -1.112346247482945037e+05 -1.056640019417126168e+05 -6.514455712897815101e+04 -1.389660533000686846e+05 -9.028930611493148899e+04 -9.143928610373260744e+04 -1.032304619663748163e+05 -1.035501241264019191e+05 -9.146982619250146672e+04 -1.045150435893230315e+05 -9.193704298159871541e+04 -1.080235322765727760e+05 -1.106251634596350777e+05 -9.176696537462846027e+04 -8.632142897598729178e+04 -9.893793012397231360e+04 -1.038065175073266437e+05 -1.025685445227831515e+05 -8.700179266102475231e+04 -8.851150847687044006e+04 -1.387862838194177311e+05 -9.488591042494763678e+04 -1.375017379937829683e+05 -1.093785884227211354e+05 -1.027649025811670290e+05 -9.273804625914053759e+04 -1.158312895954029373e+05 -1.296876060103945347e+05 -8.763224931915890193e+04 -9.366473300466551154e+04 -7.510863746909781185e+04 -1.076365105412556441e+05 -8.673503419146733359e+04 -8.889357750759375631e+04 -9.388457461718312697e+04 -1.094988146400570113e+05 -9.346396897769146017e+04 -7.190054995836973831e+04 -1.864203522160233697e+05 -7.993685764031206782e+04 -9.053103941478063643e+04 -7.770098664092805120e+04 -1.046092240727713070e+05 -1.158696965806482622e+05 -1.067511430779887160e+05 -8.735529833255131962e+04 -1.114235425535226823e+05 -1.147350744190651021e+05 -9.848849639574093453e+04 -1.187950216379764024e+05 -1.413376010634485574e+05 -8.431279156313883141e+04 -8.234670665231008024e+04 -1.108173760154328629e+05 -1.363068604433449509e+05 -9.135449970519341878e+04 -9.323906577474506048e+04 -6.991679203525239427e+04 -9.773119223318698641e+04 -1.140587852196028834e+05 -1.102845288311889890e+05 -1.174267171009899903e+05 -1.023349032660820230e+05 -1.119785206690830091e+05 -8.496362390915276774e+04 -1.099672465246477223e+05 -1.289993669058247469e+05 -9.086782039692725812e+04 -1.046986955545884703e+05 -8.526718426011175325e+04 -1.088392494682807446e+05 -1.030341945873493678e+05 -1.210011766619124392e+05 -1.157946814085265214e+05 -8.856230845250523998e+04 -1.211942243694147473e+05 -8.641423819246674248e+04 -9.963050019755317771e+04 -1.216365030498814740e+05 -1.038248506539989612e+05 -1.441603633197766030e+05 -1.171973926374466682e+05 -8.156743394236655149e+04 -9.174465826631522214e+04 -1.214691880165469483e+05 -9.537282586271673790e+04 -8.844929950380916125e+04 -7.963860197245799645e+04 -8.256749352817948966e+04 -1.343070817428726587e+05 -8.464272002270857047e+04 -7.067160163134707545e+04 -1.111011987513089989e+05 -1.302847576313814789e+05 -1.112258132365011406e+05 -7.292301375647708483e+04 -7.992750405775049876e+04 -1.171329983011295699e+05 -1.051221111950220948e+05 -7.127753794893721351e+04 -6.840857510657812236e+04 -9.658291227287061338e+04 -6.042390624400548404e+04 -1.159336910027228878e+05 -7.383770707970268268e+04 -6.675044550798977434e+04 -8.456106466416355397e+04 -7.851075171267632686e+04 -9.651544773678322963e+04 -6.856520781126774091e+04 -1.192197801893093711e+05 -1.157077494899116427e+05 -1.078712891519149707e+05 -9.731067619564317283e+04 -1.131173420690951607e+05 -1.010002245696850587e+05 -8.353412901574453281e+04 -1.006802691307343339e+05 -8.726704827450051380e+04 -8.926213897581309720e+04 -1.033654943121946562e+05 -9.198912154936169100e+04 -8.933968697007345327e+04 -9.723855497312131047e+04 -1.101693494473232131e+05 -1.252734753168424068e+05 -1.089135147817831894e+05 -7.416454447410478315e+04 -9.140641722042055335e+04 -1.138365237649742776e+05 -7.968523854309784656e+04 -1.222448090170490759e+05 -9.253143531778510078e+04 -8.644195462073617091e+04 -9.742381544042652240e+04 -1.012030656298531394e+05 diff --git a/Day3/Day3_InClassExercises/data_ex3.pkl b/Day3/Day3_InClassExercises/data_ex3.pkl deleted file mode 100644 index de42a1a..0000000 Binary files a/Day3/Day3_InClassExercises/data_ex3.pkl and /dev/null differ diff --git a/Day3/Day3_InClassExercises/pfn.py b/Day3/Day3_InClassExercises/pfn.py deleted file mode 100644 index 388f739..0000000 --- a/Day3/Day3_InClassExercises/pfn.py +++ /dev/null @@ -1,8 +0,0 @@ -import numpy as np - -domain = np.linspace(0, 10, 50) - -def model_linear(theta): - # this one takes one parameter vector theta and return one qoi - inpt = np.array(theta).reshape((-1,)) - return inpt[0] * domain diff --git a/Day3/Day3_InClassExercises/pfn1.py b/Day3/Day3_InClassExercises/pfn1.py deleted file mode 100644 index 3809b3a..0000000 --- a/Day3/Day3_InClassExercises/pfn1.py +++ /dev/null @@ -1,8 +0,0 @@ -import numpy as np - -domain = np.linspace(0, 10, 50) - -def model_quadratic(theta): - # this one takes one parameter vector theta and return one qoi - inpt = np.array(theta).reshape((-1,)) - return inpt[0] * domain + inpt[1] * domain ** 2 \ No newline at end of file diff --git a/Day3/Day3_InClassExercises/pfn2.py b/Day3/Day3_InClassExercises/pfn2.py deleted file mode 100644 index 599c90b..0000000 --- a/Day3/Day3_InClassExercises/pfn2.py +++ /dev/null @@ -1,8 +0,0 @@ -import numpy as np - -domain = np.linspace(0, 10, 50) - -def model_cubic(theta): - # this one takes one parameter vector theta and return one qoi - inpt = np.array(theta).reshape((-1,)) - return inpt[0] * domain + inpt[1] * domain ** 2 + inpt[2] * domain ** 3 \ No newline at end of file