-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
412 lines (336 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
from typing import Any
import hydra
import lightning.pytorch as pl
import lightning.pytorch.callbacks as callbacks
import torch
import torch.optim.lr_scheduler as lr_scheduler
from aim.pytorch_lightning import AimLogger
from hydra.utils import instantiate
from lightning.pytorch.core import LightningModule
from omegaconf import DictConfig, OmegaConf
from torch.optim import AdamW
from torchinfo import summary
from torchvision.transforms.functional import to_pil_image
from torchvision.utils import make_grid
from rawdiffusion.datasets.dataset_factory import create_dataset
from rawdiffusion.evaluation.collection import CollectionMetric
from rawdiffusion.evaluation.metrics import (
MSEMetric,
PearsonMetric,
PSNRMetric,
SSIMMetric,
)
from rawdiffusion.resample import create_named_schedule_sampler
from rawdiffusion.gaussian_diffusion_factory import (
create_gaussian_diffusion,
)
from rawdiffusion.utils import get_output_path
from rawdiffusion.config import mod_config
from rawdiffusion.utils import rggb_to_rgb
class RAWDiffusionModule(LightningModule):
def __init__(self, experiment_folder, **hparams) -> None:
super().__init__()
self.params = DictConfig(hparams)
self.log_folder = experiment_folder
self.save_hyperparameters()
in_channels = self.params.model.in_channels
image_size = self.params.general.image_size
self.model = instantiate(self.params.model, image_size=image_size)
self.diffusion = create_gaussian_diffusion(**self.params.diffusion)
self.diffusion_val = create_gaussian_diffusion(**self.params.diffusion_val)
self.schedule_sampler = create_named_schedule_sampler(
self.params.general.schedule_sampler, self.diffusion
)
summary(
self.model,
input_size=[
(1, in_channels, image_size, image_size),
(1,),
(1, 3, image_size, image_size),
],
depth=2,
)
def normalize_inv(self, x):
return (x + 1) / 2.0
def setup(self, stage: str) -> None:
self.logger.experiment["hparams"] = self.params
def forward_step(self, input_data, guidance_input, sampling_seed=None):
t, weights = self.schedule_sampler.sample(
input_data.shape[0], self.device, seed=sampling_seed
)
losses, extra = self.diffusion.training_losses(
self.model,
input_data,
t,
model_kwargs=guidance_input,
weight_l2=self.params.general.weight_l2,
weight_l1=self.params.general.weight_l1,
weight_logl1=self.params.general.weight_logl1,
)
loss = (losses["loss"] * weights).mean()
metrics = {k: v * weights for k, v in losses.items() if k != "loss"}
return loss, extra, metrics
def training_step(self, batch, batch_idx):
input_data = batch["raw_data"]
guidance_data = batch["guidance_data"]
guidance_input = self.preprocess_guidance(guidance_data)
loss, extra, metrics = self.forward_step(input_data, guidance_input)
self.log(
"train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True
)
for k, v in metrics.items():
self.log(
f"train_{k}",
v.mean(),
on_step=True,
on_epoch=True,
prog_bar=False,
logger=True,
)
if (
self.global_step % self.params.general.log_train_images_interval == 0
and self.global_step >= 0
):
self.log_batch_results(guidance_input, extra)
if (
self.global_step % self.params.general.log_train_images_interval == 0
and self.global_step >= 0
):
self.log_sampling_images(batch)
return loss
def on_validation_start(self) -> None:
self.metrics_sampling = CollectionMetric(
{
"mse_rggb": MSEMetric(),
"psnr_rggb": PSNRMetric(),
"ssim_rggb": SSIMMetric(),
"peason_rggb": PearsonMetric(),
"mse_rgb": MSEMetric(rggb_to_rgb=True),
"psnr_rgb": PSNRMetric(rggb_to_rgb=True),
"ssim_rgb": SSIMMetric(rggb_to_rgb=True),
"peason_rgb": PearsonMetric(rggb_to_rgb=True),
}
)
self.eval_diffusion_process = (
self.current_epoch + 1
) % self.params.general.eval_diffusion_process_interval == 0
print("validation_start", self.current_epoch, self.eval_diffusion_process)
def validation_step(self, batch, batch_idx):
input_data = batch["raw_data"]
guidance_data = batch["guidance_data"]
guidance_input = self.preprocess_guidance(guidance_data)
sampling_seed = 123 + batch_idx
loss, extra, metrics = self.forward_step(
input_data, guidance_input, sampling_seed=sampling_seed
)
self.log(
"val_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True
)
val_steps_per_epoch = self.trainer.num_val_batches[0]
sampling_interval = (
val_steps_per_epoch // self.params.general.val_sampling_frequency
)
sampling = batch_idx % sampling_interval == 0
sampling_log_images = (
batch_idx // sampling_interval
) % self.params.general.log_val_sampling_images_interval == 0
if sampling and sampling_log_images:
filename = f"{batch_idx:04d}_{(self.global_step):06d}.png"
self.log_batch_results(
guidance_input, extra, mode="validation", filename=filename
)
if self.eval_diffusion_process and sampling:
filename = f"{batch_idx:04d}_{(self.global_step):06d}.png"
save_results = sampling_log_images
raw_generated = self.log_sampling_images(
batch,
mode_name="validation_sampling",
filename=filename,
sampling_seed=sampling_seed,
save_results=save_results,
)
input_data_device = input_data.to(raw_generated.device)
self.metrics_sampling.update(
self.normalize_inv(input_data_device), self.normalize_inv(raw_generated)
)
def on_validation_epoch_end(self) -> None:
if self.eval_diffusion_process:
for k, v in self.metrics_sampling.compute().items():
self.log(f"val_sampling_{k}", v)
def preprocess_guidance(self, guidance_data):
guidance_input = {}
drop_rate = self.params.general.drop_rate
bs = guidance_data.shape[0]
if self.training and drop_rate > 0.0:
mask = (
(torch.rand([bs, 1, 1, 1]) > drop_rate).float().to(guidance_data.device)
)
guidance_data = guidance_data * mask
guidance_input["guidance_data"] = guidance_data
return guidance_input
def log_batch_results(
self, model_kwargs, return_dict, mode="training", filename=None
):
x_start = return_dict["x_start"]
x_t = return_dict["x_t"]
model_output = return_dict["model_output"]
target = return_dict["target"]
guidance_data = model_kwargs["guidance_data"]
if x_start.shape[1] == 4:
x_start = self.rggb_to_rgb_and_gc(x_start)
x_t = self.rggb_to_rgb_and_gc(x_t)
model_output = self.rggb_to_rgb_and_gc(model_output)
target = self.rggb_to_rgb_and_gc(target)
vis = torch.concatenate(
[
x_start,
guidance_data.to(x_start.device),
x_t,
model_output,
target,
model_output - target,
],
dim=3,
)
vis = torch.clamp(vis, -1, 1)
vis = make_grid(vis, nrow=1)
vis = self.normalize_inv(vis)
if filename is None:
filename = f"{(self.global_step):06d}.png"
vis_path = os.path.join(self.log_folder, mode, filename)
os.makedirs(os.path.dirname(vis_path), exist_ok=True)
to_pil_image(vis).save(vis_path)
def log_sampling_images(
self,
batch,
mode_name="training_sampling",
filename=None,
sampling_seed=None,
save_results=True,
):
input_data = batch["raw_data"]
guidance_data = batch["guidance_data"]
guidance_input = self.preprocess_guidance(guidance_data)
bs, _, h, w = input_data.shape
use_ddim = True
clip_denoised = True
diffusion = self.diffusion_val
g = torch.Generator(device=self.device)
if sampling_seed is not None:
g.manual_seed(sampling_seed)
with torch.inference_mode():
shape = (bs, self.params.model.in_channels, h, w)
noise = torch.randn(*shape, device=self.device, generator=g)
sample_fn = (
diffusion.p_sample_loop if not use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
self.model,
shape,
noise=noise,
clip_denoised=clip_denoised,
model_kwargs=guidance_input,
progress=True,
)
d = sample.device
result_out = sample
if save_results:
if input_data.shape[1] == 4:
input_data = self.rggb_to_rgb_and_gc(input_data)
sample = self.rggb_to_rgb_and_gc(sample)
vis = torch.concat([input_data.to(d), guidance_data.to(d), sample], dim=3)
vis = self.normalize_inv(vis)
vis = make_grid(vis, nrow=1)
if filename is None:
filename = f"{(self.global_step):06d}.png"
vis_path = os.path.join(self.log_folder, mode_name, filename)
os.makedirs(os.path.dirname(vis_path), exist_ok=True)
to_pil_image(vis).save(vis_path)
return result_out
@staticmethod
def rggb_to_rgb_and_gc(data, gamma=1.0 / 5):
data = rggb_to_rgb(data)
data = (data + 1) / 2.0
data = data**gamma
data = data * 2 - 1
return data
def configure_optimizers(self) -> Any:
optimizer = AdamW(
self.parameters(),
lr=self.params.general.lr,
weight_decay=self.params.general.weight_decay,
)
if self.params.general.lr_scheduler == "linear":
scheduler = lr_scheduler.LinearLR(
optimizer,
start_factor=1.0,
end_factor=0.0,
total_iters=self.params.general.max_steps,
)
elif self.params.general.lr_scheduler == "cosine":
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer, T_max=self.params.general.max_steps, eta_min=0.0
)
else:
raise ValueError(
f"Unknown lr_scheduler: {self.params.general.lr_scheduler}"
)
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "interval": "step"},
}
@hydra.main(version_base="1.3", config_path="configs", config_name="rawdiffusion")
def my_app(cfg: DictConfig) -> None:
mod_config(cfg)
OmegaConf.resolve(cfg)
print(OmegaConf.to_yaml(cfg))
pl.seed_everything(cfg.general.seed)
aim_logger = AimLogger(
experiment="diffusion",
train_metric_prefix=None,
test_metric_prefix=None,
val_metric_prefix=None,
)
experiment_folder = get_output_path(cfg)
print(f"experiment_folder: {experiment_folder}")
print("creating data loader...")
data_train = create_dataset(
**cfg.dataset.train, seed=cfg.general.seed, patch_size=cfg.general.image_size
)
data_val = create_dataset(
**cfg.dataset.val,
seed=cfg.general.seed,
patch_size=cfg.general.image_size,
permutate_once=True,
)
raw_module = RAWDiffusionModule(experiment_folder=experiment_folder, **cfg)
trainer_callbacks = [
callbacks.LearningRateMonitor(logging_interval="step"),
]
if cfg.general.checkpoint:
checkpoint_path = os.path.join(
experiment_folder,
"checkpoints",
)
checkpoint_cb = callbacks.ModelCheckpoint(
dirpath=checkpoint_path,
save_last=True,
every_n_train_steps=cfg.general.save_interval,
enable_version_counter=False,
)
trainer_callbacks.append(checkpoint_cb)
print("checkpoint", experiment_folder)
trainer = pl.Trainer(
accelerator="gpu",
devices=1,
max_steps=cfg.general.max_steps,
logger=aim_logger,
callbacks=trainer_callbacks,
enable_checkpointing=cfg.general.checkpoint,
check_val_every_n_epoch=cfg.general.check_val_every_n_epoch,
limit_train_batches=1000,
)
trainer.fit(raw_module, data_train, data_val)
if __name__ == "__main__":
my_app()