-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmma.py
583 lines (551 loc) · 22.6 KB
/
mma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
########################################################################################################
### GCMMA-MMA-Python ###
### ###
### This file is part of GCMMA-MMA-Python. GCMMA-MMA-Python is licensed under the terms of GNU ###
### General Public License as published by the Free Software Foundation. For more information and ###
### the LICENSE file, see <https://github.com/arjendeetman/GCMMA-MMA-Python>. ###
### ###
### The orginal work is written by Krister Svanberg in MATLAB. ###
### This is the python version of the code written Arjen Deetman. ###
### version 09-11-2019 ###
########################################################################################################
"""
Orginal work written by Krister Svanberg in Matlab. This is the python version of the code written
by Arjen Deetman.
This file gives the functions mmasub, gcmmasub, subsolv and kktcheck.
"""
########################################################################################################
### LOADING MODULES ###
########################################################################################################
# Loading modules
from __future__ import division
from scipy.sparse import diags # or use numpy: from numpy import diag as diags
from scipy.linalg import solve # or use numpy: from numpy.linalg import solve
import numpy as np
########################################################################################################
### MMA FUNCTIONS ###
########################################################################################################
# Function for the MMA sub problem
def mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,low,upp,a0,a,c,d,move):
"""
This function mmasub performs one MMA-iteration, aimed at solving the nonlinear programming problem:
Minimize f_0(x) + a_0*z + sum( c_i*y_i + 0.5*d_i*(y_i)^2 )
subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m
xmin_j <= x_j <= xmax_j, j = 1,...,n
z >= 0, y_i >= 0, i = 1,...,m
INPUT:
m = The number of general constraints.
n = The number of variables x_j.
iter = Current iteration number ( =1 the first time mmasub is called).
xval = Column vector with the current values of the variables x_j.
xmin = Column vector with the lower bounds for the variables x_j.
xmax = Column vector with the upper bounds for the variables x_j.
xold1 = xval, one iteration ago (provided that iter>1).
xold2 = xval, two iterations ago (provided that iter>2).
f0val = The value of the objective function f_0 at xval.
df0dx = Column vector with the derivatives of the objective function
f_0 with respect to the variables x_j, calculated at xval.
fval = Column vector with the values of the constraint functions f_i, calculated at xval.
dfdx = (m x n)-matrix with the derivatives of the constraint functions
f_i with respect to the variables x_j, calculated at xval.
dfdx(i,j) = the derivative of f_i with respect to x_j.
low = Column vector with the lower asymptotes from the previous
iteration (provided that iter>1).
upp = Column vector with the upper asymptotes from the previous
iteration (provided that iter>1).
a0 = The constants a_0 in the term a_0*z.
a = Column vector with the constants a_i in the terms a_i*z.
c = Column vector with the constants c_i in the terms c_i*y_i.
d = Column vector with the constants d_i in the terms 0.5*d_i*(y_i)^2.
OUTPUT:
xmma = Column vector with the optimal values of the variables x_j
in the current MMA subproblem.
ymma = Column vector with the optimal values of the variables y_i
in the current MMA subproblem.
zmma = Scalar with the optimal value of the variable z
in the current MMA subproblem.
lam = Lagrange multipliers for the m general MMA constraints.
xsi = Lagrange multipliers for the n constraints alfa_j - x_j <= 0.
eta = Lagrange multipliers for the n constraints x_j - beta_j <= 0.
mu = Lagrange multipliers for the m constraints -y_i <= 0.
zet = Lagrange multiplier for the single constraint -z <= 0.
s = Slack variables for the m general MMA constraints.
low = Column vector with the lower asymptotes, calculated and used
in the current MMA subproblem.
upp = Column vector with the upper asymptotes, calculated and used
in the current MMA subproblem.
"""
epsimin = 10e-10
raa0 = 0.01
albefa = 0.1
asyinit = 0.1
asyincr = 0.8
asydecr = 0.6
eeen = np.ones((n, 1))
eeem = np.ones((m, 1))
zeron = np.zeros((n, 1))
# Calculation of the asymptotes low and upp
if iter <= 2:
low = xval-asyinit*(xmax-xmin)
upp = xval+asyinit*(xmax-xmin)
else:
zzz = (xval-xold1)*(xold1-xold2)
factor = eeen.copy()
factor[np.where(zzz>0)] = asyincr
factor[np.where(zzz<0)] = asydecr
low = xval-factor*(xold1-low)
upp = xval+factor*(upp-xold1)
lowmin = xval-10*(xmax-xmin)
lowmax = xval-0.01*(xmax-xmin)
uppmin = xval+0.01*(xmax-xmin)
uppmax = xval+10*(xmax-xmin)
low = np.maximum(low,lowmin)
low = np.minimum(low,lowmax)
upp = np.minimum(upp,uppmax)
upp = np.maximum(upp,uppmin)
# Calculation of the bounds alfa and beta
zzz1 = low+albefa*(xval-low)
zzz2 = xval-move*(xmax-xmin)
zzz = np.maximum(zzz1,zzz2)
alfa = np.maximum(zzz,xmin)
zzz1 = upp-albefa*(upp-xval)
zzz2 = xval+move*(xmax-xmin)
zzz = np.minimum(zzz1,zzz2)
beta = np.minimum(zzz,xmax)
# Calculations of p0, q0, P, Q and b
xmami = xmax-xmin
xmamieps = 0.00001*eeen
xmami = np.maximum(xmami,xmamieps)
xmamiinv = eeen/xmami
ux1 = upp-xval
ux2 = ux1*ux1
xl1 = xval-low
xl2 = xl1*xl1
uxinv = eeen/ux1
xlinv = eeen/xl1
p0 = zeron.copy()
q0 = zeron.copy()
p0 = np.maximum(df0dx,0)
q0 = np.maximum(-df0dx,0)
pq0 = 0.001*(p0+q0)+raa0*xmamiinv
p0 = p0+pq0
q0 = q0+pq0
p0 = p0*ux2
q0 = q0*xl2
P = np.zeros((m,n)) ## @@ make sparse with scipy?
Q = np.zeros((m,n)) ## @@ make sparse with scipy?
P = np.maximum(dfdx,0)
Q = np.maximum(-dfdx,0)
PQ = 0.001*(P+Q)+raa0*np.dot(eeem,xmamiinv.T)
P = P+PQ
Q = Q+PQ
P = (diags(ux2.flatten(),0).dot(P.T)).T
Q = (diags(xl2.flatten(),0).dot(Q.T)).T
b = (np.dot(P,uxinv)+np.dot(Q,xlinv)-fval)
# Solving the subproblem by a primal-dual Newton method
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s = subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d)
# Return values
return xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp
# Function for the GCMMA sub problem
def gcmmasub(m,n,iter,epsimin,xval,xmin,xmax,low,upp,raa0,raa,f0val,df0dx,fval,dfdx,a0,a,c,d):
eeen = np.ones((n,1))
zeron = np.zeros((n,1))
# Calculations of the bounds alfa and beta
albefa = 0.1
zzz = low+albefa*(xval-low)
alfa = np.maximum(zzz,xmin)
zzz = upp-albefa*(upp-xval)
beta = np.minimum(zzz,xmax)
# Calculations of p0, q0, r0, P, Q, r and b.
xmami = xmax-xmin
xmamieps = 0.00001*eeen
xmami = np.maximum(xmami,xmamieps)
xmamiinv = eeen/xmami
ux1 = upp-xval
ux2 = ux1*ux1
xl1 = xval-low
xl2 = xl1*xl1
uxinv = eeen/ux1
xlinv = eeen/xl1
#
p0 = zeron.copy()
q0 = zeron.copy()
p0 = np.maximum(df0dx,0)
q0 = np.maximum(-df0dx,0)
pq0 = p0+q0
p0 = p0+0.001*pq0
q0 = q0+0.001*pq0
p0 = p0+raa0*xmamiinv
q0 = q0+raa0*xmamiinv
p0 = p0*ux2
q0 = q0*xl2
r0 = f0val-np.dot(p0.T,uxinv)-np.dot(q0.T,xlinv)
#
P = np.zeros((m,n)) ## @@ make sparse with scipy?
Q = np.zeros((m,n)) ## @@ make sparse with scipy
P = (diags(ux2.flatten(),0).dot(P.T)).T
Q = (diags(xl2.flatten(),0).dot(Q.T)).T
b = (np.dot(P,uxinv)+np.dot(Q,xlinv)-fval)
P = np.maximum(dfdx,0)
Q = np.maximum(-dfdx,0)
PQ = P+Q
P = P+0.001*PQ
Q = Q+0.001*PQ
P = P+np.dot(raa,xmamiinv.T)
Q = Q+np.dot(raa,xmamiinv.T)
P = (diags(ux2.flatten(),0).dot(P.T)).T
Q = (diags(xl2.flatten(),0).dot(Q.T)).T
r = fval-np.dot(P,uxinv)-np.dot(Q,xlinv)
b = -r
# Solving the subproblem by a primal-dual Newton method
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s = subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d)
# Calculations of f0app and fapp.
ux1 = upp-xmma
xl1 = xmma-low
uxinv = eeen/ux1
xlinv = eeen/xl1
f0app = r0+np.dot(p0.T,uxinv)+np.dot(q0.T,xlinv)
fapp = r+np.dot(P,uxinv)+np.dot(Q,xlinv)
# Return values
return xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,f0app,fapp
# Function for solving the subproblem (can be used for MMA and GCMMA)
def subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d):
"""
This function subsolv solves the MMA subproblem:
minimize SUM[p0j/(uppj-xj) + q0j/(xj-lowj)] + a0*z + SUM[ci*yi + 0.5*di*(yi)^2],
subject to SUM[pij/(uppj-xj) + qij/(xj-lowj)] - ai*z - yi <= bi,
alfaj <= xj <= betaj, yi >= 0, z >= 0.
Input: m, n, low, upp, alfa, beta, p0, q0, P, Q, a0, a, b, c, d.
Output: xmma,ymma,zmma, slack variables and Lagrange multiplers.
"""
een = np.ones((n,1))
eem = np.ones((m,1))
epsi = 1
epsvecn = epsi*een
epsvecm = epsi*eem
x = 0.5*(alfa+beta)
y = eem.copy()
z = np.array([[1.0]])
lam = eem.copy()
xsi = een/(x-alfa)
xsi = np.maximum(xsi,een)
eta = een/(beta-x)
eta = np.maximum(eta,een)
mu = np.maximum(eem,0.5*c)
zet = np.array([[1.0]])
s = eem.copy()
itera = 0
# Start while epsi>epsimin
while epsi > epsimin:
epsvecn = epsi*een
epsvecm = epsi*eem
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
uxinv1 = een/ux1
xlinv1 = een/xl1
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
dpsidx = plam/ux2-qlam/xl2
rex = dpsidx-xsi+eta
rey = c+d*y-mu-lam
rez = a0-zet-np.dot(a.T,lam)
relam = gvec-a*z-y+s-b
rexsi = xsi*(x-alfa)-epsvecn
reeta = eta*(beta-x)-epsvecn
remu = mu*y-epsvecm
rezet = zet*z-epsi
res = lam*s-epsvecm
residu1 = np.concatenate((rex, rey, rez), axis = 0)
residu2 = np.concatenate((relam, rexsi, reeta, remu, rezet, res), axis = 0)
residu = np.concatenate((residu1, residu2), axis = 0)
residunorm = np.sqrt((np.dot(residu.T,residu)).item())
residumax = np.max(np.abs(residu))
ittt = 0
# Start while (residumax>0.9*epsi) and (ittt<200)
while (residumax > 0.9*epsi) and (ittt < 200):
ittt = ittt+1
itera = itera+1
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
ux3 = ux1*ux2
xl3 = xl1*xl2
uxinv1 = een/ux1
xlinv1 = een/xl1
uxinv2 = een/ux2
xlinv2 = een/xl2
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
GG = (diags(uxinv2.flatten(),0).dot(P.T)).T-(diags(xlinv2.flatten(),0).dot(Q.T)).T
dpsidx = plam/ux2-qlam/xl2
delx = dpsidx-epsvecn/(x-alfa)+epsvecn/(beta-x)
dely = c+d*y-lam-epsvecm/y
delz = a0-np.dot(a.T,lam)-epsi/z
dellam = gvec-a*z-y-b+epsvecm/lam
diagx = plam/ux3+qlam/xl3
diagx = 2*diagx+xsi/(x-alfa)+eta/(beta-x)
diagxinv = een/diagx
diagy = d+mu/y
diagyinv = eem/diagy
diaglam = s/lam
diaglamyi = diaglam+diagyinv
# Start if m<n
if m < n:
blam = dellam+dely/diagy-np.dot(GG,(delx/diagx))
bb = np.concatenate((blam,delz),axis = 0)
Alam = np.asarray(diags(diaglamyi.flatten(),0) \
+(diags(diagxinv.flatten(),0).dot(GG.T).T).dot(GG.T))
AAr1 = np.concatenate((Alam,a),axis = 1)
AAr2 = np.concatenate((a,-zet/z),axis = 0).T
AA = np.concatenate((AAr1,AAr2),axis = 0)
solut = solve(AA,bb)
dlam = solut[0:m]
dz = solut[m:m+1]
dx = -delx/diagx-np.dot(GG.T,dlam)/diagx
else:
diaglamyiinv = eem/diaglamyi
dellamyi = dellam+dely/diagy
Axx = np.asarray(diags(diagx.flatten(),0) \
+(diags(diaglamyiinv.flatten(),0).dot(GG).T).dot(GG))
azz = zet/z+np.dot(a.T,(a/diaglamyi))
axz = np.dot(-GG.T,(a/diaglamyi))
bx = delx+np.dot(GG.T,(dellamyi/diaglamyi))
bz = delz-np.dot(a.T,(dellamyi/diaglamyi))
AAr1 = np.concatenate((Axx,axz),axis = 1)
AAr2 = np.concatenate((axz.T,azz),axis = 1)
AA = np.concatenate((AAr1,AAr2),axis = 0)
bb = np.concatenate((-bx,-bz),axis = 0)
solut = solve(AA,bb)
dx = solut[0:n]
dz = solut[n:n+1]
dlam = np.dot(GG,dx)/diaglamyi-dz*(a/diaglamyi)+dellamyi/diaglamyi
# End if m<n
dy = -dely/diagy+dlam/diagy
dxsi = -xsi+epsvecn/(x-alfa)-(xsi*dx)/(x-alfa)
deta = -eta+epsvecn/(beta-x)+(eta*dx)/(beta-x)
dmu = -mu+epsvecm/y-(mu*dy)/y
dzet = -zet+epsi/z-zet*dz/z
ds = -s+epsvecm/lam-(s*dlam)/lam
xx = np.concatenate((y,z,lam,xsi,eta,mu,zet,s),axis = 0)
dxx = np.concatenate((dy,dz,dlam,dxsi,deta,dmu,dzet,ds),axis = 0)
#
stepxx = -1.01*dxx/xx
stmxx = np.max(stepxx)
stepalfa = -1.01*dx/(x-alfa)
stmalfa = np.max(stepalfa)
stepbeta = 1.01*dx/(beta-x)
stmbeta = np.max(stepbeta)
stmalbe = max(stmalfa,stmbeta)
stmalbexx = max(stmalbe,stmxx)
stminv = max(stmalbexx,1.0)
steg = 1.0/stminv
#
xold = x.copy()
yold = y.copy()
zold = z.copy()
lamold = lam.copy()
xsiold = xsi.copy()
etaold = eta.copy()
muold = mu.copy()
zetold = zet.copy()
sold = s.copy()
#
itto = 0
resinew = 2*residunorm
# Start: while (resinew>residunorm) and (itto<50)
while (resinew > residunorm) and (itto < 50):
itto = itto+1
x = xold+steg*dx
y = yold+steg*dy
z = zold+steg*dz
lam = lamold+steg*dlam
xsi = xsiold+steg*dxsi
eta = etaold+steg*deta
mu = muold+steg*dmu
zet = zetold+steg*dzet
s = sold+steg*ds
ux1 = upp-x
xl1 = x-low
ux2 = ux1*ux1
xl2 = xl1*xl1
uxinv1 = een/ux1
xlinv1 = een/xl1
plam = p0+np.dot(P.T,lam)
qlam = q0+np.dot(Q.T,lam)
gvec = np.dot(P,uxinv1)+np.dot(Q,xlinv1)
dpsidx = plam/ux2-qlam/xl2
rex = dpsidx-xsi+eta
rey = c+d*y-mu-lam
rez = a0-zet-np.dot(a.T,lam)
relam = gvec-np.dot(a,z)-y+s-b
rexsi = xsi*(x-alfa)-epsvecn
reeta = eta*(beta-x)-epsvecn
remu = mu*y-epsvecm
rezet = np.dot(zet,z)-epsi
res = lam*s-epsvecm
residu1 = np.concatenate((rex,rey,rez),axis = 0)
residu2 = np.concatenate((relam,rexsi,reeta,remu,rezet,res), axis = 0)
residu = np.concatenate((residu1,residu2),axis = 0)
resinew = np.sqrt(np.dot(residu.T,residu))
steg = steg/2
# End: while (resinew>residunorm) and (itto<50)
residunorm = resinew.copy()
residumax = max(abs(residu))
steg = 2*steg
# End: while (residumax>0.9*epsi) and (ittt<200)
epsi = 0.1*epsi
# End: while epsi>epsimin
xmma = x.copy()
ymma = y.copy()
zmma = z.copy()
lamma = lam
xsimma = xsi
etamma = eta
mumma = mu
zetmma = zet
smma = s
# Return values
return xmma,ymma,zmma,lamma,xsimma,etamma,mumma,zetmma,smma
# Function for Karush–Kuhn–Tucker check
def kktcheck(m,n,x,y,z,lam,xsi,eta,mu,zet,s,xmin,xmax,df0dx,fval,dfdx,a0,a,c,d):
"""
The left hand sides of the KKT conditions for the following nonlinear programming problem are
calculated.
Minimize f_0(x) + a_0*z + sum(c_i*y_i + 0.5*d_i*(y_i)^2)
subject to f_i(x) - a_i*z - y_i <= 0, i = 1,...,m
xmax_j <= x_j <= xmin_j, j = 1,...,n
z >= 0, y_i >= 0, i = 1,...,m
INPUT:
m = The number of general constraints.
n = The number of variables x_j.
x = Current values of the n variables x_j.
y = Current values of the m variables y_i.
z = Current value of the single variable z.
lam = Lagrange multipliers for the m general constraints.
xsi = Lagrange multipliers for the n constraints xmin_j - x_j <= 0.
eta = Lagrange multipliers for the n constraints x_j - xmax_j <= 0.
mu = Lagrange multipliers for the m constraints -y_i <= 0.
zet = Lagrange multiplier for the single constraint -z <= 0.
s = Slack variables for the m general constraints.
xmin = Lower bounds for the variables x_j.
xmax = Upper bounds for the variables x_j.
df0dx = Vector with the derivatives of the objective function f_0
with respect to the variables x_j, calculated at x.
fval = Vector with the values of the constraint functions f_i,
calculated at x.
dfdx = (m x n)-matrix with the derivatives of the constraint functions
f_i with respect to the variables x_j, calculated at x.
dfdx(i,j) = the derivative of f_i with respect to x_j.
a0 = The constants a_0 in the term a_0*z.
a = Vector with the constants a_i in the terms a_i*z.
c = Vector with the constants c_i in the terms c_i*y_i.
d = Vector with the constants d_i in the terms 0.5*d_i*(y_i)^2.
OUTPUT:
residu = the residual vector for the KKT conditions.
residunorm = sqrt(residu'*residu).
residumax = max(abs(residu)).
"""
rex = df0dx+np.dot(dfdx.T,lam)-xsi+eta
rey = c+d*y-mu-lam
rez = a0-zet-np.dot(a.T,lam)
relam = fval-a*z-y+s
rexsi = xsi*(x-xmin)
reeta = eta*(xmax-x)
remu = mu*y
rezet = zet*z
res = lam*s
residu1 = np.concatenate((rex,rey,rez),axis = 0)
residu2 = np.concatenate((relam,rexsi,reeta,remu,rezet,res), axis = 0)
residu = np.concatenate((residu1,residu2),axis = 0)
residunorm = np.sqrt((np.dot(residu.T,residu)).item())
residumax = np.max(np.abs(residu))
return residu,residunorm,residumax
# Function for updating raa0 and raa
def raaupdate(xmma,xval,xmin,xmax,low,upp,f0valnew,fvalnew,f0app,fapp,raa0,raa,raa0eps,raaeps,epsimin):
"""
Values of the parameters raa0 and raa are updated during an inner iteration.
"""
raacofmin = 1e-12
eeem = np.ones((raa.size,1))
eeen = np.ones((xmma.size,1))
xmami = xmax-xmin
xmamieps = 0.00001*eeen
xmami = np.maximum(xmami,xmamieps)
xxux = (xmma-xval)/(upp-xmma)
xxxl = (xmma-xval)/(xmma-low)
xxul = xxux*xxxl
ulxx = (upp-low)/xmami
raacof = np.dot(xxul.T,ulxx)
raacof = np.maximum(raacof,raacofmin)
#
f0appe = f0app+0.5*epsimin
if np.all(f0valnew>f0appe) == True:
deltaraa0 = (1.0/raacof)*(f0valnew-f0app)
zz0 = 1.1*(raa0+deltaraa0)
zz0 = np.minimum(zz0,10*raa0)
raa0 = zz0
#
fappe = fapp+0.5*epsimin*eeem;
fdelta = fvalnew-fappe
deltaraa = (1/raacof)*(fvalnew-fapp)
zzz = 1.1*(raa+deltaraa)
zzz = np.minimum(zzz,10*raa)
raa[np.where(fdelta>0)] = zzz[np.where(fdelta>0)]
#
return raa0,raa
# Function to check if the approsimations are conservative
def concheck(m,epsimin,f0app,f0valnew,fapp,fvalnew):
"""
If the current approximations are conservative, the parameter conserv is set to 1.
"""
eeem = np.ones((m,1))
f0appe = f0app+epsimin
fappe = fapp+epsimin*eeem
arr1 = np.concatenate((f0appe.flatten(),fappe.flatten()))
arr2 = np.concatenate((f0valnew.flatten(),fvalnew.flatten()))
if np.all(arr1 >= arr2) == True:
conserv = 1
else:
conserv = 0
return conserv
# Calculate low, upp, raa0, raa in the beginning of each outer iteration
def asymp(outeriter,n,xval,xold1,xold2,xmin,xmax,low,upp,raa0,raa,raa0eps,raaeps,df0dx,dfdx):
"""
Values on the parameters raa0, raa, low and upp are calculated in the beginning of each outer
iteration.
"""
eeen = np.ones((n,1))
asyinit = 0.5
asyincr = 1.2
asydecr = 0.7
xmami = xmax-xmin
xmamieps = 0.00001*eeen
xmami = np.maximum(xmami,xmamieps)
raa0 = np.dot(np.abs(df0dx).T,xmami)
raa0 = np.maximum(raa0eps,(0.1/n)*raa0)
raa = np.dot(np.abs(dfdx),xmami)
raa = np.maximum(raaeps,(0.1/n)*raa)
if outeriter <= 2:
low = xval-asyinit*xmami
upp = xval+asyinit*xmami
else:
xxx = (xval-xold1)*(xold1-xold2)
factor = eeen.copy()
factor[np.where(xxx>0)] = asyincr
factor[np.where(xxx<0)] = asydecr
low = xval-factor*(xold1-low)
upp = xval+factor*(upp-xold1)
lowmin = xval-10*xmami
lowmax = xval-0.01*xmami
uppmin = xval+0.01*xmami
uppmax = xval+10*xmami
low = np.maximum(low,lowmin)
low = np.minimum(low,lowmax)
upp = np.minimum(upp,uppmax)
upp=np.maximum(upp,uppmin)
return low,upp,raa0,raa