diff --git a/docs/example.ipynb b/docs/example.ipynb index 1d86ba8..659f82c 100644 --- a/docs/example.ipynb +++ b/docs/example.ipynb @@ -82,16 +82,35 @@ "source": [ "## Check if data file has any missing values\n", "\n", - "After verifying the data file type, the next step is to check whether the data contains any missing values using `missing_values_summary`." + "After verifying the data file type, the next step is to check whether the data contains any missing values using `missing_values_summary`.\n", + "\n", + "This function will quickly provide a summary including: \n", + " • The count of missing values for each column. \n", + " • The percentage of missing values for each column." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Age 1 (25.0%)\n", + "City 1 (25.0%)\n", + "Name: Missing Count (Percentage), dtype: object" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "sample_df = pd.read_csv(file_name)" + "sample_df = pd.read_csv(file_name)\n", + "\n", + "missing_values_summary(sample_df)" ] }, { @@ -207,6 +226,13 @@ "get_summary_statistics(sample_df)\n", "get_summary_statistics(sample_df, col=[\"Age\", \"City\"])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -225,7 +251,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.8" + "version": "3.10.16" } }, "nbformat": 4,