forked from VeeranjaneyuluToka-zz/coursera_DL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanar_data_classification_NN.py
182 lines (145 loc) · 5.63 KB
/
planar_data_classification_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 31 14:25:12 2017
@author: Veeranjaneyulu Toka
"""
import matplotlib.pyplot as plt
from planar_utils import load_planar_dataset, plot_decision_boundary, sigmoid
import sklearn
import sklearn.linear_model
import numpy as np
from testCases_v2 import predict_test_case
X, Y = load_planar_dataset()
def plot_original_data():
plt.scatter(X[0,:], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral)
plt.title("original data")
def sklearn_approach_LR():
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T, Y.T)
plot_decision_boundary(lambda x:clf.predict(x), X, Y)
plt.title("Logistic Regression")
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
def layer_sizes(X, Y):
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
return (n_x, n_h, n_y)
def initialize_parameters(n_x, n_h, n_y):
W1 = np.random.randn(n_h, n_x)*0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1))
parameters = {"W1":W1, "b1":b1, "W2":W2, "b2":b2}
return parameters
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X)+b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1)+b2
A2 = sigmoid(Z2)
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
def compute_cost(A2, Y, parameters):
m = Y.shape[1]
logprobs = np.multiply(Y, np.log(A2)) + np.multiply((1-Y), np.log(1-A2))
cost = (-1/m)*np.sum(logprobs)
cost = np.squeeze(cost)
assert(isinstance(cost, float))
return cost
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache['A1']
A2 = cache['A2']
dZ2 = A2 - Y
dW2 = (1/m)*np.dot(dZ2,A1.T)
db2 = (1/m)*np.sum(dZ2, axis=1, keepdims = True)
dZ1 = W2.T*dZ2 * (1-np.power(A1, 2))
dW1 = (1/m)*np.dot(dZ1,X.T)
db1 = (1/m)*np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
return grads
def update_parameters(parameters, grads, learning_rate = 1.2):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = W1 - learning_rate*dW1
b1 = b1 - learning_rate*db1
W2 = W2 - learning_rate*dW2
b2 = b2 - learning_rate*db2
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads)
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = A2 >= 0.5
return predictions
def verify_predict():
parameters, X_assess = predict_test_case()
predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))
def verify_complete_model():
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
def find_accuracy():
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
def multi_hidden_layers():
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
def main():
print("original data")
plot_original_data()
print("simple logistic regression using sklearn")
sklearn_approach_LR()
print("simple NN using one hidden layer")
verify_complete_model()
find_accuracy()
multi_hidden_layers()
if __name__ == "__main__":
main()