-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtermination_criterion.m
56 lines (29 loc) · 1.25 KB
/
termination_criterion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [f,Mean_angle_deviation,it]=termination_criterion(u,v,w,u_pr,v_pr,w_pr,it,Previous_mean_angle_deviation,f)
global mx ttolerance;
[x,y,z]=size(u);
U=sum(sum(sum(abs(u-u_pr))))/sum(sum(sum(abs(u))));
V=sum(sum(sum(abs(v-v_pr))))/sum(sum(sum(abs(v))));
W=sum(sum(sum(abs(w-w_pr))))/sum(sum(sum(abs(w))));
Ac = 0.0;
Mean_angle_deviation = 0;
for i = 3:x-2
for j=3:y-2
for k = 3:z-2
Ac = Ac + acos(( u(i,j,k)*u_pr(i,j,k) + v(i,j,k)*v_pr(i,j,k) + w(i,j,k)*w_pr(i,j,k) )/...
(sqrt(u(i,j,k)^2 + v(i,j,k)^2 + w(i,j,k)^2)*sqrt(u_pr(i,j,k)^2 + v_pr(i,j,k)^2 + w_pr(i,j,k)^2)))*57;
end
end
end
Mean_angle_deviation = real(Ac/((x-2)*(y-2)*(z-2)));
if ((1 - Mean_angle_deviation/Previous_mean_angle_deviation)< ttolerance ) || (it == mx) || (Mean_angle_deviation <= 0.1)
if f == 1
f = 2;
else
f = 1;
end
Mean_angle_deviation = 360;
if it == mx
warning('Something is wrong. Algorithm has either exploded or converge too slowly')
end
end
it = it+1