-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdoc-requirements.txt
80 lines (68 loc) · 2.51 KB
/
doc-requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# NOTE: These requirements are used for developing code on the repo.
# As a standard they include certain formatters and linters.
# local package
# -e ../.
# external requirements (mostly linters and formatters)
pylint # pylint linter
mypy # python type checker
black # automatic formatting provider
pre-commit # for git precommit hooks
isort # automatic import sorter
python-dotenv # environment variable manager
pydocstyle # set pydocstyle
# linear algebra and general data analysis
numpy # arrays, linear algebra
scipy # linear algebra and numerical mathematics
numba # speeding up array operations
pandas # tabular data analysis
# plotting
matplotlib # general python plotting
seaborn # fancier plotting styles
descartes # geospatial plotting of shapefiles
folium # plotting maps
ipyleaflet # plotting ipywidget maps
# interactive computing
jupyterlab # jupyter notebooks
tqdm # progress bars
# geospatial analysis requirements
rasterio # opening and loading raster data
fiona # manipulating geospatial vector data
geopandas # manipulating geospatial vector data
shapely # working with vector shapes
pycrs # working with coordinate reference systems
geopy # convenient API requests to geocoders
xarray # useful data structures
rioxarray # adaptation of xarray for raterio.
dask[array] # allows to composite multiple satellite images stored in different shards
dask[dataframe] # allows more lazy operation for xarray.
dask[dataframe] # allows more lazy operation for xarray.
dask[distributed] # allows distributed computing
netCDF4 # makes sure that the default driver is netCDF4.
bottleneck # needed for fill forward (xarray.DataArray.ffil)
# additional
networkx # manipulating graph data
rtree # rtree library
# gdrive functionality
google-api-python-client
google-auth-httplib2
google-auth-oauthlib
# make videos for animating timeseries etc.
imageio
imageio-ffmpeg
# xgboost
xgboost # gradient boosted regression
sklearn # sklearn
graphviz # can plot the decission tree
#
pillow
torch==1.8
torchvision
wandb
pytorch-lightning
git+https://github.com/qubvel/segmentation_models.pytorch
hydra-core
#docs
sphinx
sphinx-autodoc-typehints
nbsphinx
nbsphinx-link