-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_agent.py
335 lines (272 loc) · 13 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""Trains an agent to maximize its score in OpenAI Gym environments.
Heavily influenced by DeepMind's seminal paper 'Playing Atari with Deep Reinforcement Learning'
(Mnih et al., 2013) and 'Human-level control through deep reinforcement learning' (Mnih et al.,
2015).
"""
import agent
import argparse
import environment
import logging
import os
import random
import tensorflow as tf
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.INFO)
PARSER = argparse.ArgumentParser(description='Train an agent to maximize its score.')
PARSER.add_argument('--env_name',
metavar='ENVIRONMENT',
help='name of an OpenAI Gym environment on which to train',
default='CartPole-v0')
PARSER.add_argument('--action_space',
nargs='+',
help='restricts the number of possible actions',
type=int)
PARSER.add_argument('--load_path',
metavar='PATH',
help='loads a trained model from the specified path')
PARSER.add_argument('--log_dir',
metavar='PATH',
help='path to a directory where to save & restore the model and log events',
default='models/tmp')
PARSER.add_argument('--render',
help='determines whether to display the game screen of the agent',
dest='render',
action='store_true',
default=False)
PARSER.add_argument('--num_epochs',
metavar='EPOCHS',
help='number of epochs to train for',
type=int,
default=100)
PARSER.add_argument('--epoch_length',
metavar='TIME STEPS',
help='number of time steps per epoch',
type=int,
default=1000)
PARSER.add_argument('--test_length',
metavar='TIME STEPS',
help='number of time steps per test',
type=int,
default=10000)
PARSER.add_argument('--max_episode_length',
metavar='TIME STEPS',
help='maximum number of time steps per episode',
type=int,
default=10000)
PARSER.add_argument('--test_epsilon',
metavar='EPSILON',
help='fixed exploration chance used when testing the agent',
type=float,
default=0)
PARSER.add_argument('--start_epsilon',
metavar='EPSILON',
help='initial value for epsilon (exploration chance)',
type=float,
default=0.5)
PARSER.add_argument('--end_epsilon',
metavar='EPSILON',
help='final value for epsilon (exploration chance)',
type=float,
default=0.01)
PARSER.add_argument('--anneal_duration',
metavar='TIME STEPS',
help='number of time steps to anneal epsilon from start_epsilon to end_epsilon',
type=int,
default=200000)
PARSER.add_argument('--replay_memory_capacity',
metavar='EXPERIENCES',
help='number of most recent experiences remembered',
type=int,
default=50000)
PARSER.add_argument('--wait_before_training',
metavar='TIME STEPS',
help='number of experiences to accumulate before training starts',
type=int,
default=10000)
PARSER.add_argument('--train_interval',
metavar='TIME STEPS',
help='number of experiences to accumulate before next round of training starts',
type=int,
default=1)
PARSER.add_argument('--target_network_reset_interval',
metavar='TAU',
help=('number of experiences to accumulate before target Q-network values '
'reset to real Q-network values'),
type=float,
default=200)
PARSER.add_argument('--batch_size',
metavar='EXPERIENCES',
help='number of experiences sampled and trained on at once',
type=int,
default=256)
PARSER.add_argument('--num_hidden_units',
metavar='NEURONS',
help='number of units in the hidden layer of the network',
type=int,
default=40)
PARSER.add_argument('--initial_learning_rate',
metavar='LAMBDA',
help='initial speed with which the network learns from new examples',
type=float,
default=1e-4)
PARSER.add_argument('--learning_rate_decay_factor',
metavar='PERCENTAGE',
help='value with which the learning rate is multiplied when it decays',
type=float,
default=1)
PARSER.add_argument('--learning_rate_decay_frequency',
metavar='TRAINING STEPS',
help='frequency at which the learning rate is reduced',
type=int,
default=1000)
PARSER.add_argument('--max_gradient_norm',
metavar='DELTA',
help='maximum value allowed for the L2-norms of gradients',
type=float,
default=40)
PARSER.add_argument('--discount',
metavar='GAMMA',
help='discount factor for future rewards',
type=float,
default=0.9)
PARSER.add_argument('--gpu_memory_alloc',
metavar='PERCENTAGE',
help='determines how much GPU memory to allocate for the neural network',
type=float,
default=0.25)
PARSER.add_argument('--summary_update_interval',
metavar='EPISODES',
help='frequency at which summary data is updated',
type=int,
default=20)
def main(args):
"""Trains an agent to maximize its score in OpenAI Gym environments."""
env = environment.EnvironmentWrapper(
args.env_name, args.max_episode_length, args.replay_memory_capacity, args.action_space)
test_env = environment.EnvironmentWrapper(
args.env_name, args.max_episode_length, 100, args.action_space)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
checkpoint_dir = os.path.join(args.log_dir, 'checkpoint')
summary_dir = os.path.join(args.log_dir, 'summary')
summary_writer = tf.summary.FileWriter(summary_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_alloc
with tf.Session(config=config) as sess:
player = agent.Agent(env,
args.start_epsilon,
args.end_epsilon,
args.anneal_duration,
args.train_interval,
args.target_network_reset_interval,
args.batch_size,
args.num_hidden_units,
args.initial_learning_rate,
args.learning_rate_decay_factor,
args.learning_rate_decay_frequency,
args.max_gradient_norm,
args.discount)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=args.num_epochs)
if args.load_path:
saver.restore(sess, args.load_path)
LOGGER.info('Restored model from "%s".', args.load_path)
LOGGER.info('Accumulating %d experiences before training...', args.wait_before_training)
for _ in range(args.wait_before_training):
env.step(env.sample_action())
env.reset()
LOGGER.info('Accumulated %d experiences.', args.wait_before_training)
num_episodes_finished = 0
for epoch_i in range(args.num_epochs):
for _ in range(args.epoch_length):
player.train()
if args.render:
env.render()
if env.done:
if num_episodes_finished % args.summary_update_interval == 0:
summary = tf.Summary()
summary.value.add(tag='training/episode_length',
simple_value=env.episode_length)
summary.value.add(tag='training/episode_reward',
simple_value=env.episode_reward)
summary.value.add(tag='training/fps', simple_value=env.fps)
summary.value.add(tag='training/epsilon', simple_value=player.epsilon)
summary.value.add(tag='training/learning_rate',
simple_value=float(player.learning_rate.eval()))
total_time_steps = args.train_interval * player.global_step.eval()
summary_writer.add_summary(summary, total_time_steps)
summary_writer.flush()
num_episodes_finished += 1
file_name = '{}.{:05d}-of-{:05d}'.format(args.env_name, epoch_i, args.num_epochs)
model_path = os.path.join(checkpoint_dir, file_name)
saver.save(sess, model_path)
LOGGER.info('Saved model to "%s".', model_path)
# Evaluate the model.
total_reward = 0
min_reward = 1e7
max_reward = -1e7
total_Q = 0
summed_min_Qs = 0
min_Q = 1e7
summed_max_Qs = 0
max_Q = -1e7
time_step = 0
num_games_finished = 0
while time_step < args.test_length:
local_total_reward = 0
local_total_Q = 0
local_min_Q = 1e7
local_max_Q = -1e7
local_time_step = 0
test_env.reset()
while not test_env.done and time_step + local_time_step < args.test_length:
local_time_step += 1
state = test_env.get_state()
# Occasionally try a random action (explore).
if random.random() < args.test_epsilon:
action = test_env.sample_action()
else:
action = player.get_action(state)
# Cast NumPy scalar to float.
Q = float(player.dqn.get_optimal_action_value(state))
# Record statistics.
local_total_reward += test_env.step(action)
local_total_Q += Q
local_min_Q = min(local_min_Q, Q)
local_max_Q = max(local_max_Q, Q)
if not test_env.done:
# Discard unfinished game.
break
num_games_finished += 1
time_step += local_time_step
total_reward += local_total_reward
min_reward = min(min_reward, local_total_reward)
max_reward = max(max_reward, local_total_reward)
total_Q += local_total_Q
summed_min_Qs += local_min_Q
summed_max_Qs += local_max_Q
min_Q = min(min_Q, local_min_Q)
max_Q = max(max_Q, local_max_Q)
# Save results.
if num_games_finished > 0:
# Extract more statistics.
avg_reward = total_reward / num_games_finished
avg_Q = total_Q / time_step
avg_min_Q = summed_min_Qs / num_games_finished
avg_max_Q = summed_max_Qs / num_games_finished
summary = tf.Summary()
summary.value.add(tag='testing/num_games_finished', simple_value=num_games_finished)
summary.value.add(tag='testing/average_reward', simple_value=avg_reward)
summary.value.add(tag='testing/minimum_reward', simple_value=min_reward)
summary.value.add(tag='testing/maximum_reward', simple_value=max_reward)
summary.value.add(tag='testing/average_Q', simple_value=avg_Q)
summary.value.add(tag='testing/average_minimum_Q', simple_value=avg_min_Q)
summary.value.add(tag='testing/minimum_Q', simple_value=min_Q)
summary.value.add(tag='testing/average_maximum_Q', simple_value=avg_max_Q)
summary.value.add(tag='testing/maximum_Q', simple_value=max_Q)
summary_writer.add_summary(summary, epoch_i)
summary_writer.flush()
if __name__ == '__main__':
main(PARSER.parse_args())