-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSegmentation_image.m
58 lines (46 loc) · 1.28 KB
/
Segmentation_image.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
clear all
close all
clc
% Definition des probabilites
p10 = 0.5;
p20 = 1 - p10;
% Recuperation du signal X
[X, m] = Im2chaine('cible2.bmp');
n = m * m;
% Recuperation des classes
X = uint8(X);
[counts, inutile] = imhist(X);
classe = find(counts) - 1;
X = double(X);
cl1 = classe(1);
cl2 = classe(2);
% Definition du bruit
m1 = cl1;
m2 = cl2;
sig1 = 100;
sig2 = 100;
% Bruitage du signal
Y = bruit_gauss2(X, cl1, cl2, m1, sig1, m2, sig2);
T = 1000;
somme_1 = 0;
somme_bay = 0;
somme_apost = 0;
for i=1:T
% Bruitage du signal
Y = bruit_gauss2(X, cl1, cl2, m1, sig1, m2, sig2);
% Segmentation du signal par la premiere methode
X_1 = classif_gauss2(Y, cl1, cl2, m1, sig1, m2, sig2);
% Segmentation du signal par methode bayesienne
[p1, p2] = calc_probaprio2(X, cl1, cl2);
X_bay = MAP_MPM2(Y, cl1, cl2, p1, p2, m1, sig1, m2, sig2);
% Segmentation du signal par methode MPM
A = calc_transit_prio2(X, n, cl1, cl2);
Mat_f = gauss2(Y, n, m1, sig1, m2, sig2);
X_apost = MPM_chaines2(Mat_f, n, cl1, cl2, A, p10, p20);
somme_1 = somme_1 + taux_erreur(X, X_1);
somme_bay = somme_bay + taux_erreur(X, X_bay);
somme_apost = somme_apost + taux_erreur(X, X_apost);
end
erreur_1 = somme_1 / T
erreur_bay = somme_bay / T
erreur_apost = somme_apost / T