diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree index 0a9404a..35611fe 100644 Binary files a/docs/_build/doctrees/index.doctree and b/docs/_build/doctrees/index.doctree differ diff --git a/docs/_build/html/.buildinfo b/docs/_build/html/.buildinfo index 0e4950c..ab3c793 100644 --- a/docs/_build/html/.buildinfo +++ b/docs/_build/html/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 0296ca83c7de98e5a331c0e059428bb3 +config: bdf77414e9e9ce716ef91ad58ab30f92 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html index 8f30d44..ce2bfd5 100644 --- a/docs/_build/html/_modules/index.html +++ b/docs/_build/html/_modules/index.html @@ -5,7 +5,7 @@
-pyCNN_LSTM.blocks.densenet_transition_block
(x, …)TSFEDL.blocks.densenet_transition_block
pyCNN_LSTM.blocks.densenet_conv_block
(x, …)TSFEDL.blocks.densenet_conv_block
pyCNN_LSTM.blocks.densenet_dense_block
(x, …)TSFEDL.blocks.densenet_dense_block
pyCNN_LSTM.blocks.squeeze_excitation_module
(x, …)TSFEDL.blocks.squeeze_excitation_module
pyCNN_LSTM.blocks.conv_block_YiboGao
(in_x, …)TSFEDL.blocks.conv_block_YiboGao
pyCNN_LSTM.blocks.attention_branch_YiboGao
(…)TSFEDL.blocks.attention_branch_YiboGao
pyCNN_LSTM.blocks.RTA_block
(in_x, nb_filter, …)TSFEDL.blocks.RTA_block
pyCNN_LSTM.blocks.spatial_attention_block_ZhangJin
(…)TSFEDL.blocks.spatial_attention_block_ZhangJin
pyCNN_LSTM.blocks.temporal_attention_block_ZhangJin
(x)TSFEDL.blocks.temporal_attention_block_ZhangJin
pyCNN_LSTM.blocks.
densenet_transition_block
(x, reduction, name)[source]¶A transition block of densenet for 1D data.
-Parameters: |
|
-
---|---|
Returns: | output tensor for the block. - |
-
pyCNN_LSTM.blocks.
densenet_conv_block
(x, growth_rate, name)[source]¶A building block for a dense block from densenet for 1D data.
-Parameters: |
|
-
---|---|
Returns: | Output tensor for the block. - |
-
pyCNN_LSTM.blocks.
densenet_dense_block
(x, blocks, growth_rate, name)[source]¶A dense block of densenet for 1D data.
-Parameters: |
|
-
---|---|
Returns: | Output tensor for the block. - |
-
pyCNN_LSTM.blocks.
squeeze_excitation_module
(x, dense_units)[source]¶Squeeze-and-Excitation Module.
-References
-Squeeze-and-Excitation Networks, Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu (arXiv:1709.01507v4)
-Parameters: |
|
-
---|---|
Returns: | se – Output tensor for the block. - |
-
Return type: | Keras.Tensor - |
-
pyCNN_LSTM.blocks.
conv_block_YiboGao
(in_x, nb_filter, kernel_size)[source]¶Convolutional block of YiboGao’s model
-pyCNN_LSTM.blocks.
attention_branch_YiboGao
(in_x, nb_filter, kernel_size)[source]¶Attention bronch of YiboGao’s model
-pyCNN_LSTM.blocks.
RTA_block
(in_x, nb_filter, kernel_size)[source]¶Residual-based Temporal Attention (RTA) block.
-References
-Gao, Y., Wang, H., & Liu, Z. (2021). An end-to-end atrial fibrillation detection by a novel residual-based -temporal attention convolutional neural network with exponential nonlinearity loss. -Knowledge-Based Systems, 212, 106589.
-pyCNN_LSTM.blocks.
spatial_attention_block_ZhangJin
(decrease_ratio, x)[source]¶Spatial attention module of ZhangJin’s model
-pyCNN_LSTM.blocks.
temporal_attention_block_ZhangJin
(x)[source]¶Temporal attention module of ZhangJin’s Model.
-pyCNN_LSTM.data.get_mit_bih_segments
(data, …)TSFEDL.data.get_mit_bih_segments
(data, …)pyCNN_LSTM.data.read_mit_bih
(path, labels, , …)TSFEDL.data.read_mit_bih
(path, labels, , , , ])pyCNN_LSTM.data.MIT_BIH
(path[, labels, …])TSFEDL.data.MIT_BIH
(path[, labels, dtype, …])pyCNN_LSTM.data.
get_mit_bih_segments
(data: wfdb.io.record.Record, annotations: wfdb.io.annotation.Annotation, labels: numpy.ndarray, left_offset: int = 99, right_offset: int = 160, fixed_length: typing.Union[int, NoneType] = None) → typing.Tuple[numpy.ndarray, numpy.ndarray][source]¶TSFEDL.data.
get_mit_bih_segments
(data: wfdb.io.record.Record, annotations: wfdb.io.annotation.Annotation, labels: numpy.ndarray, left_offset: int = 99, right_offset: int = 160, fixed_length: typing.Union[int, NoneType] = None) → typing.Tuple[numpy.ndarray, numpy.ndarray][source]¶It generates the segments of uninterrupted sequences of arrythmia beats into the corresponding arrythmia groups in labels.