-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathecdh.c
120 lines (103 loc) · 5.19 KB
/
ecdh.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <secp256k1.h>
#include <secp256k1_ecdh.h>
#include "examples_util.h"
int main(void) {
unsigned char seckey1[32];
unsigned char seckey2[32];
unsigned char compressed_pubkey1[33];
unsigned char compressed_pubkey2[33];
unsigned char shared_secret1[32];
unsigned char shared_secret2[32];
unsigned char randomize[32];
int return_val;
size_t len;
secp256k1_pubkey pubkey1;
secp256k1_pubkey pubkey2;
/* Before we can call actual API functions, we need to create a "context". */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);
/*** Key Generation ***/
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
printf("Failed to generate randomness\n");
return 1;
}
/* If the secret key is zero or out of range (greater than secp256k1's
* order), we fail. Note that the probability of this occurring is negligible
* with a properly functioning random number generator. */
if (!secp256k1_ec_seckey_verify(ctx, seckey1) || !secp256k1_ec_seckey_verify(ctx, seckey2)) {
printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n");
return 1;
}
/* Public key creation using a valid context with a verified secret key should never fail */
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
assert(return_val);
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
assert(return_val);
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
len = sizeof(compressed_pubkey1);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey1));
/* Serialize pubkey2 in a compressed form (33 bytes) */
len = sizeof(compressed_pubkey2);
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
assert(return_val);
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
assert(len == sizeof(compressed_pubkey2));
/*** Creating the shared secret ***/
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
assert(return_val);
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
* seckey and valid pubkey */
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
assert(return_val);
/* Both parties should end up with the same shared secret */
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
assert(return_val == 0);
printf("Secret Key1: ");
print_hex(seckey1, sizeof(seckey1));
printf("Compressed Pubkey1: ");
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
printf("\nSecret Key2: ");
print_hex(seckey2, sizeof(seckey2));
printf("Compressed Pubkey2: ");
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
printf("\nShared Secret: ");
print_hex(shared_secret1, sizeof(shared_secret1));
/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);
/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* Here we are preventing these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
secure_erase(seckey1, sizeof(seckey1));
secure_erase(seckey2, sizeof(seckey2));
secure_erase(shared_secret1, sizeof(shared_secret1));
secure_erase(shared_secret2, sizeof(shared_secret2));
return 0;
}