-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
333 lines (272 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import random
import wandb
import pickle as pickle
import os
from random import shuffle
import pandas as pd
import torch
import sklearn
import numpy as np
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
from transformers import (
AutoTokenizer, AutoConfig,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments,
RobertaConfig,
RobertaTokenizer,
RobertaForSequenceClassification,
BertTokenizer,
RobertaModel,
RobertaForCausalLM
)
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
from load_data import *
import argparse
from sklearn.model_selection import train_test_split, StratifiedKFold
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("cuda empty cache!!")
def klue_re_micro_f1(preds, labels):
"""KLUE-RE micro f1 (except no_relation)"""
label_list = ['no_relation', 'org:top_members/employees', 'org:members',
'org:product', 'per:title', 'org:alternate_names',
'per:employee_of', 'org:place_of_headquarters', 'per:product',
'org:number_of_employees/members', 'per:children',
'per:place_of_residence', 'per:alternate_names',
'per:other_family', 'per:colleagues', 'per:origin', 'per:siblings',
'per:spouse', 'org:founded', 'org:political/religious_affiliation',
'org:member_of', 'per:parents', 'org:dissolved',
'per:schools_attended', 'per:date_of_death', 'per:date_of_birth',
'per:place_of_birth', 'per:place_of_death', 'org:founded_by',
'per:religion']
no_relation_label_idx = label_list.index("no_relation")
label_indices = list(range(len(label_list)))
label_indices.remove(no_relation_label_idx)
return sklearn.metrics.f1_score(labels, preds, average="micro", labels=label_indices) * 100.0
def klue_re_auprc(probs, labels):
"""KLUE-RE AUPRC (with no_relation)"""
labels = np.eye(30)[labels]
score = np.zeros((30,))
for c in range(30):
targets_c = labels.take([c], axis=1).ravel()
preds_c = probs.take([c], axis=1).ravel()
precision, recall, _ = sklearn.metrics.precision_recall_curve(
targets_c, preds_c)
score[c] = sklearn.metrics.auc(recall, precision)
return np.average(score) * 100.0
def compute_metrics(pred):
""" validation을 위한 metrics function """
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
probs = pred.predictions
# calculate accuracy using sklearn's function
f1 = klue_re_micro_f1(preds, labels)
auprc = klue_re_auprc(probs, labels)
acc = accuracy_score(labels, preds) # 리더보드 평가에는 포함되지 않습니다.
wandb.log({"f1": f1, "auprc": auprc, "acc": acc})
return {
'micro f1 score': f1,
'auprc': auprc,
'accuracy': acc,
}
def label_to_num(label):
num_label = []
with open('dict_label_to_num.pkl', 'rb') as f:
dict_label_to_num = pickle.load(f)
for v in label:
num_label.append(dict_label_to_num[v])
return num_label
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
###################### Basic Train #######################
def train():
seed_everything(42)
# load model and tokenizer
MODEL_NAME = args.model_name
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# load dataset
dataset = load_data(args.dataset)
target = label_to_num(dataset["label"].values)
train_dataset, dev_dataset = train_test_split(
dataset, test_size=0.15, shuffle=True, stratify=target,
)
train_label = label_to_num(train_dataset['label'].values)
dev_label = label_to_num(dev_dataset['label'].values)
# tokenizing dataset
tokenized_train = tokenized_dataset(train_dataset, tokenizer)
tokenized_dev = tokenized_dataset(dev_dataset, tokenizer)
# make dataset for pytorch.
RE_train_dataset = RE_Dataset(tokenized_train, train_label)
RE_dev_dataset = RE_Dataset(tokenized_dev, dev_label)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# setting model hyperparameter
model_config = AutoConfig.from_pretrained(MODEL_NAME)
model_config.num_labels = 30
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, config=model_config)
print(model.config)
model.parameters
model.to(device)
# 사용한 option 외에도 다양한 option들이 있습니다.
training_args = TrainingArguments(
output_dir='./results', # output directory
save_total_limit=5, # number of total save model.
save_steps=500, # model saving step.
num_train_epochs=args.epoch, # total number of training epochs
learning_rate=1e-4, # learning_rate
# batch size per device during training
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size, # batch size for evaluation
warmup_ratio=0.1,
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=100, # log saving step.
evaluation_strategy='steps', # evaluation strategy to adopt during training
# `no`: No evaluation during training.
# `steps`: Evaluate every `eval_steps`.
# `epoch`: Evaluate every end of epoch.
eval_steps=500, # evaluation step.
report_to="wandb",
metric_for_best_model='eval_micro f1 score', # eval_micro f1 score
load_best_model_at_end=True,
lr_scheduler_type=args.lr_sch, # default: linear
)
trainer = Trainer(
# the instantiated 🤗 Transformers model to be trained
model=model,
args=training_args, # training arguments, defined above
train_dataset=RE_train_dataset, # training dataset
eval_dataset=RE_dev_dataset, # evaluation dataset
compute_metrics=compute_metrics # define metrics function
)
# trainer.hyperparameter_search(direction="maximize", hp_space=my_hp_space_ray)
# train model
trainer.train()
model.save_pretrained(f'./best_model/{args.case_name}')
def my_hp_space_ray(trial):
from ray import tune
return {
"learning_rate": tune.loguniform(1e-4, 1e-2),
"num_train_epochs": tune.choice(range(5, 15)),
"seed": tune.choice(range(41, 512)),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32]),
}
############################### K_FOLD #####################################
def k_fold(args):
print()
print("I'm k_fold Trainer!")
kfold = StratifiedKFold(n_splits=args.fold_num, shuffle=True)
k_dataset = load_data(args.dataset)
k_label = label_to_num(k_dataset['label'].values)
for n_iter, (train_ind, test_ind) in enumerate(kfold.split(k_dataset, k_label)):
print("k_fold no : ", n_iter+1)
print("# train : ", len(train_ind), " # test : ", len(test_ind))
train_dataset = k_dataset.iloc[train_ind]
dev_dataset = k_dataset.iloc[test_ind]
train_label = label_to_num(train_dataset['label'].values)
dev_label = label_to_num(dev_dataset['label'].values)
MODEL_NAME = args.model_name
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # for gpt2
# tokenizing dataset
tokenized_train = tokenized_dataset(train_dataset, tokenizer)
tokenized_dev = tokenized_dataset(dev_dataset, tokenizer)
# make dataset for pytorch.
RE_train_dataset = RE_Dataset(tokenized_train, train_label)
RE_dev_dataset = RE_Dataset(tokenized_dev, dev_label)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("cuda empty cache!")
print(device)
# setting model hyperparameter
model_config = AutoConfig.from_pretrained(MODEL_NAME)
model_config.num_labels = 30
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME, config=model_config)
# model.resize_token_embeddings(len(tokenizer)) # 모델(토크나이저)를 바꿨으니 리사이즈 해줍시다...
# model.config.pad_token_id = tokenizer.pad_token_id # modelp에도 pad 토큰 id를 전달
model.parameters
model.to(device)
# 사용한 option 외에도 다양한 option들이 있습니다.
# https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments 참고해주세요.
training_args = TrainingArguments(
output_dir='./results', # output directory
save_total_limit=5, # number of total save model.
save_steps=500, # model saving step.
num_train_epochs=args.epoch, # total number of training epochs
learning_rate=2e-5, # learning_rate
# batch size per device during training 32
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size, # batch size for evaluation 32
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=100, # log saving step.
evaluation_strategy='steps', # evaluation strategy to adopt during training
# `no`: No evaluation during training.
# `steps`: Evaluate every `eval_steps`.
# `epoch`: Evaluate every end of epoch.
eval_steps=500, # evaluation step.
load_best_model_at_end=True,
report_to="wandb",
metric_for_best_model='eval_micro f1 score',
lr_scheduler_type=args.lr_sch, # default: linear
)
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=RE_train_dataset, # training dataset
eval_dataset=RE_dev_dataset, # evaluation dataset
compute_metrics=compute_metrics # define metrics function
)
# trainer.hyperparameter_search(direction="maximize", hp_space=my_hp_space_ray)
# train model
trainer.train()
model.save_pretrained(
f'./best_model/{args.case_name}/{args.model_name}')
print("Done!")
def main(args):
wandb.login()
wandb.init(project="KLUE_MODEL", entity=args.wandb_entity, name=args.name)
torch.cuda.empty_cache()
if args.k_fold:
k_fold(args)
else:
train()
wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="./dataset/train.csv",
help='학습 데이터셋을 선택합니다. default: ./dataset/train.csv')
parser.add_argument('--model_name', type=str,
default="klue/roberta-large", help='default: klue/roberta-large')
parser.add_argument('--batch_size', type=int,
default=16, help='default: 16')
parser.add_argument('--k_fold', type=bool,
default=False, help='default: False')
parser.add_argument('--fold_num', type=int, default=5, help='default: 5')
parser.add_argument('--epoch', type=int, default=5,
help='epoch(default:5)')
parser.add_argument('--lr_sch', type=str, default='linear',
help='LR 스케쥴러 cosine, linear, cosine_with_restarts default:linear')
parser.add_argument('--wandb_entity', type=str, default="user_name",
help='wandb.init()의 entity를 입력해주세요. default: user_name')
parser.add_argument('--name', type=str, default="new test",
help='wandb에 표시할 실험 이름입니다. 기본규칙: 모델명-kfold유무-사용데이터셋-기타')
parser.add_argument('--case_name', type=str, default="last",
help='모델을 저장할 로컬 폴더의 이름! default: last')
args = parser.parse_args()
main(args)