-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsample_code.py
270 lines (207 loc) · 11 KB
/
sample_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import glob
import random
from datetime import datetime
from zipfile import ZipFile
from os.path import basename
import numpy as np
import tensorflow as tf
print("Numpy version:", np.__version__)
print("TensorFlow version:", tf.__version__)
random.seed(712)
np.random.seed(712)
# *****************************************Data Preparation*****************************************
TRAIN_DATA_DIR = "./dataset/train"
INFERENCE_DATA_DIR = "./dataset/validation"
TEST_SIZE = 0.2
IMG_SIZE = 32
BATCH_SIZE = 256
NUM_EPOCHS = 1
LEARNING_RATE = 0.001
LAMBDA_BALANCE = 1.0
LAMBDA_REG = 0.0
NUM_THREADS = 4
def gen_data():
img_paths = [p for p in glob.glob(TRAIN_DATA_DIR + '/*.jpg')]
n_train = int(len(img_paths) * (1 - TEST_SIZE))
train_img_paths = img_paths[:n_train]
test_img_paths = img_paths[n_train:]
inference_img_paths = [p for p in glob.glob(INFERENCE_DATA_DIR + '/*.jpg')]
mean, stddev = [], []
with open(TRAIN_DATA_DIR + '/label_train.txt', 'r') as file:
for row in file:
mean.append(float(row.split('\t')[0]))
stddev.append(float(row.split('\t')[1]))
train_mean, train_stddev = mean[:n_train], stddev[:n_train]
test_mean, test_stddev = mean[n_train:], stddev[n_train:]
inference_mean, inference_stddev = np.zeros(len(inference_img_paths)), np.zeros(len(inference_img_paths))
train_data = integrate(train_img_paths, train_mean, train_stddev)
test_data = integrate(test_img_paths, test_mean, test_stddev)
inference_data = integrate(inference_img_paths, inference_mean, inference_stddev)
print('Training data size: {}'.format(len(train_data)))
print('Test data size: {}'.format(len(test_data)))
print('Inference data size: {}'.format(len(inference_data)))
return train_data, test_data, inference_data
def integrate(img_paths, mean, stddev):
data = []
for idx in range(len(img_paths)):
data.append([img_paths[idx], mean[idx], stddev[idx]])
return np.asarray(data)
### IMAGE READING PARSING ###
def read_img(img_path, is_training=False):
img_string = tf.read_file(img_path)
img_decoded = tf.image.decode_jpeg(img_string, channels=3)
img = tf.image.resize_images(img_decoded, [IMG_SIZE, IMG_SIZE])
img = img / 255.0
if is_training:
"""Data augmentation comes here"""
img = tf.image.random_flip_left_right(img)
return img
def parse_function(img_path, mean, stddev, is_training=False):
img = read_img(img_path, is_training)
return img, [mean], [stddev]
def parse_function_train(img_path, mean, stddev):
return parse_function(img_path, mean, stddev, is_training=True)
def parse_function_test(img_path, mean, stddev):
return parse_function(img_path, mean, stddev, is_training=False)
### DATA SERVING ###
class DataGenerator(object):
def __init__(self, batch_size=1, num_threads=1,
train_shuffle=False, buffer_size=10000):
self.batch_size = batch_size
self.num_threads = num_threads
self.buffer_size = buffer_size
# data sampling and spliting
self.train_data, self.test_data, self.inference_data = gen_data()
# build iterator
self.train_set = self._build_data_set(self.train_data,
parse_function_train,
shuffle=train_shuffle)
self.iterator = tf.data.Iterator.from_structure(self.train_set.output_types,
self.train_set.output_shapes)
# for training
self.train_init_op = self.iterator.make_initializer(self.train_set)
self.next = self.iterator.get_next()
self.num_train_batches = int(np.ceil(len(self.train_data) / batch_size))
# for testing
self.test_set = self._build_data_set(self.test_data, parse_function_test)
self.test_init_op = self.iterator.make_initializer(self.test_set)
self.num_test_batches = int(np.ceil(len(self.test_data) / batch_size))
# for inference
self.inference_set = self._build_data_set(self.inference_data, parse_function_test)
self.inference_init_op = self.iterator.make_initializer(self.inference_set)
self.num_inference_batches = int(np.ceil(len(self.inference_data) / batch_size))
def _build_data_set(self, data, map_fn, shuffle=False):
"""
Images are loaded from disk and processed batch by batch. Since our dataset
is not that big, it would be faster if we load all the images into RAM once
and read from their. I leave it for you guys to explore :)
"""
img_path = tf.convert_to_tensor(data[:, 0], dtype=tf.string)
mean = tf.convert_to_tensor(data[:, 1], dtype=tf.float64)
stddev = tf.convert_to_tensor(data[:, 2], dtype=tf.float64)
data = tf.data.Dataset.from_tensor_slices((img_path, mean, stddev))
if shuffle:
data = data.shuffle(buffer_size=self.buffer_size)
data = data.map(map_fn, num_parallel_calls=self.num_threads)
data = data.batch(self.batch_size)
data = data.prefetch(self.num_threads)
return data
# *****************************************Model Architecture*****************************************
class MLP(object):
def __init__(self, training=False):
self.x = tf.placeholder(tf.float32, [None, IMG_SIZE, IMG_SIZE, 3])
self.y1 = tf.placeholder(tf.float32, [None, 1])
self.y2 = tf.placeholder(tf.float32, [None, 1])
net = self._encoder(self.x)
with tf.variable_scope('regression'):
self.mean = tf.layers.dense(net, 1, name='mean')
self.stddev = tf.layers.dense(net, 1, name='stddev')
if training:
self.loss, self.train_op = self._loss_fn()
def _encoder(self, input, name='encoder'):
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
net = tf.layers.flatten(input)
net = tf.layers.dense(net, units=300, activation=tf.nn.relu)
net = tf.layers.dense(net, units=300, activation=tf.nn.relu)
return net
def _loss_fn(self):
trained_vars = tf.trainable_variables()
error_mean = tf.sqrt(tf.reduce_mean((self.y1 - self.mean) ** 2))
error_stddev = tf.sqrt(tf.reduce_mean((self.y2 - self.stddev) ** 2))
l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in trained_vars
if 'bias' not in v.name])
loss = error_mean + LAMBDA_BALANCE * error_stddev + LAMBDA_REG * l2_reg
global_step = tf.Variable(0, trainable=False)
optimizer = tf.train.AdamOptimizer(LEARNING_RATE,
beta1=0.9,
beta2=0.99,
epsilon=1e-8)
train_op = optimizer.minimize(loss)#, global_step, var_list=trained_vars)
return loss, train_op
# *****************************************Training, Test, and Inference*****************************************
generator = DataGenerator(batch_size=BATCH_SIZE, num_threads=NUM_THREADS, train_shuffle=True, buffer_size=10000)
model = MLP(training=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, NUM_EPOCHS + 1):
print("\n{} Epoch: {}/{}".format(datetime.now(), epoch, NUM_EPOCHS))
# **********************Training**********************
sum_loss = 0.
sess.run(generator.train_init_op)
for step in range(generator.num_train_batches):
batch_img, batch_mean, batch_stddev = sess.run(generator.next)
_, loss = sess.run([model.train_op, model.loss], feed_dict={model.x: batch_img,
model.y1: batch_mean,
model.y2: batch_stddev})
sum_loss += loss
print('Training loss: {:.6f}'.format(sum_loss))
# **********************Test**********************
pred_means = []
pred_stddevs = []
true_means = []
true_stddevs = []
sum_loss = 0.
sess.run(generator.test_init_op)
for step in range(generator.num_test_batches):
batch_img, batch_mean, batch_stddev = sess.run(generator.next)
pred_mean, pred_stddev, loss = sess.run([model.mean, model.stddev, model.loss], feed_dict={model.x: batch_img,
model.y1: batch_mean,
model.y2: batch_stddev})
sum_loss += loss
pred_means.extend(pred_mean.ravel().tolist())
pred_stddevs.extend(pred_stddev.ravel().tolist())
true_means.extend(batch_mean.ravel().tolist())
true_stddevs.extend(batch_stddev.ravel().tolist())
pred_means = np.asarray(pred_means)
pred_stddevs = np.asarray(pred_stddevs)
true_means = np.asarray(true_means)
true_stddevs = np.asarray(true_stddevs)
print('Test loss: {:.6f}'.format(sum_loss))
print('Test mean RMSE: {:.6f}'.format(np.sqrt(np.mean((pred_means - true_means) ** 2))))
print('Test stddev RMSE: {:.6f}'.format(np.sqrt(np.mean((pred_stddevs - true_stddevs) ** 2))))
# **********************Inference**********************
if not os.path.exists('./submission'):
os.makedirs('./submission')
inference_means = []
inference_stddevs = []
sum_loss = 0.
sess.run(generator.inference_init_op)
for step in range(generator.num_inference_batches):
batch_img, batch_mean, batch_stddev = sess.run(generator.next)
pred_mean, pred_stddev, _ = sess.run([model.mean, model.stddev, model.loss], feed_dict={model.x: batch_img,
model.y1: batch_mean,
model.y2: batch_stddev})
inference_means.extend(pred_mean.ravel().tolist())
inference_stddevs.extend(pred_stddev.ravel().tolist())
inference_means = np.asarray(inference_means)
inference_stddevs = np.asarray(inference_stddevs)
# Output
with open('./submission/prediction.txt', 'w') as file:
for idx in range(len(inference_means)):
file.write(str(inference_means[idx]))
file.write('\t')
file.write(str(inference_stddevs[idx]))
file.write('\n')
ZipFile('./submission/prediction.zip', 'w').write('./submission/prediction.txt', basename('prediction.txt'))
print('Inference results saved!')