-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrunCicero.R
executable file
·976 lines (884 loc) · 41.3 KB
/
runCicero.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
#' Create cicero input CDS
#'
#' Function to generate an aggregated input CDS for cicero. \code{run_cicero}
#' takes as input an aggregated cicero CDS object. This function will generate
#' the CDS given an input CDS (perhaps generated by \code{make_atac_cds}) and
#' a value for k, which is the number of cells to be aggregated per bin. The
#' default value for k is 50.
#'
#' @param cds Input CDS object.
#' @param reduced_coordinates A data frame with columns representing the
#' coordinates of each cell in reduced dimension space (generally 2-3
#' dimensions). \code{row.names(reduced_coordinates)} should match the cell
#' names in the CDS object. If dimension reduction was done using monocle,
#' tSNE coordinates can be accessed by \code{t(reducedDimA(cds))}, and
#' DDRTree coordinates can be accessed by \code{t(reducedDimS(cds))}.
#' @param k Number of cells to aggregate per bin.
#' @param summary_stats Which numeric \code{pData(cds)} columns you would like
#' summarized (mean) by bin in the resulting CDS object.
#' @param size_factor_normalize Logical, should accessibility values be
#' normalized by size factor?
#' @param silent Logical, should warning and info messages be printed?
#' @param return_agg_info Logical, should a list of the assignments of cells to
#' aggregated bins be output? When \code{TRUE}, this function returns a list
#' of two items, first, the aggregated CDS object and second, a data.frame
#' with the binning information.
#'
#' @details Aggregation of similar cells is done using a k-nearest-neighbors
#' graph and a randomized "bagging" procedure. Details are available in the
#' publication that accompanies this package. Run \code{citation("cicero")}
#' for publication details. KNN is calculated using
#' \code{\link[FNN]{knn.index}}
#'
#' @return Aggregated CDS object. If return_agg_info is \code{TRUE}, a list
#' of the aggregated CDS object and a data.frame of aggregation info.
#' @export
#'
#' @examples
#' \dontrun{
#' data("cicero_data")
#'
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' }
#'
make_cicero_cds <- function(cds,
reduced_coordinates,
k=50,
summary_stats = NULL,
size_factor_normalize = TRUE,
silent = FALSE,
return_agg_info = FALSE) {
assertthat::assert_that(is(cds, "CellDataSet"))
assertthat::assert_that(is.data.frame(reduced_coordinates) |
is.matrix(reduced_coordinates))
assertthat::assert_that(assertthat::are_equal(nrow(reduced_coordinates),
nrow(pData(cds))))
assertthat::assert_that(setequal(row.names(reduced_coordinates),
colnames(cds)))
assertthat::assert_that(assertthat::is.count(k) & k > 1)
assertthat::assert_that(is.character(summary_stats) | is.null(summary_stats))
if(!is.null(summary_stats)) {
assertthat::assert_that(all(summary_stats %in% names(pData(cds))),
msg = paste("One of your summary_stats is missing",
"from your pData table. Either add a",
"column with the name in",
"summary_stats, or remove the name",
"from the summary_stats parameter.",
collapse = " "))
assertthat::assert_that(sum(vapply(summary_stats, function(x) {
!(is(pData(cds)[,x], "numeric") | is(pData(cds)[,x], "integer"))}, 1)) == 0,
msg = paste("All columns in summary_stats must be",
"of class numeric or integer.",
collapse = " "))
}
assertthat::assert_that(is.logical(size_factor_normalize))
assertthat::assert_that(is.logical(silent))
assertthat::assert_that(is.logical(return_agg_info))
reduced_coordinates <- as.data.frame(reduced_coordinates)
reduced_coordinates <- reduced_coordinates[colnames(cds),]
# Create a k-nearest neighbors map
nn_map <- FNN::knn.index(reduced_coordinates, k=(k-1)) # no data.frame wrapper
row.names(nn_map) <- row.names(reduced_coordinates)
nn_map <- cbind(nn_map, seq_len(nrow(nn_map)))
good_choices <- seq_len(nrow(nn_map))
choice <- sample(seq_len(length(good_choices)), size = 1, replace = FALSE)
chosen <- good_choices[choice]
good_choices <- good_choices[good_choices != good_choices[choice]]
it <- 0
k2 <- k * 2 # Compute once
# function for sapply
get_shared <- function(other, this_choice) {
k2 - length(union(cell_sample[other,], this_choice))
}
while (length(good_choices) > 0 & it < 5000) { # slow
it <- it + 1
choice <- sample(seq_len(length(good_choices)), size = 1, replace = FALSE)
new_chosen <- c(chosen, good_choices[choice])
good_choices <- good_choices[good_choices != good_choices[choice]]
cell_sample <- nn_map[new_chosen,]
others <- seq_len(nrow(cell_sample) - 1)
this_choice <- cell_sample[nrow(cell_sample),]
shared <- sapply(others, get_shared, this_choice = this_choice)
if (max(shared) < .9 * k) {
chosen <- new_chosen
}
}
cell_sample <- nn_map[chosen,]
if(!silent) {
# Only need this slow step if !silent
combs <- combn(nrow(cell_sample), 2)
shared <- apply(combs, 2, function(x) { #slow
k2 - length(unique(as.vector(cell_sample[x,])))
})
message(paste0("Overlap QC metrics:\nCells per bin: ", k,
"\nMaximum shared cells bin-bin: ", max(shared),
"\nMean shared cells bin-bin: ", mean(shared),
"\nMedian shared cells bin-bin: ", median(shared)))
if (mean(shared)/k > .1)
warning("On average, more than 10% of cells are shared between paired bins.")
}
exprs_old <- exprs(cds)
mask <- sapply(seq_len(nrow(cell_sample)),
function(x) seq_len(ncol(exprs_old)) %in% cell_sample[x,,drop=FALSE])
if (return_agg_info) {
row.names(mask) <- colnames(exprs_old)
colnames(mask) <- paste0("agg_", chosen)
agg_map <- reshape2::melt(mask)
agg_map <- agg_map[agg_map$value,]
agg_map$value <- NULL
names(agg_map) <- c("cell", "agg_cell")
}
mask <- Matrix::Matrix(mask)
new_exprs <- exprs_old %*% mask
new_exprs <- Matrix::t(new_exprs)
new_exprs <- as.matrix(new_exprs)
pdata <- pData(cds)
new_pcols <- "agg_cell"
if(!is.null(summary_stats)) {
new_pcols <- c(new_pcols, paste0("mean_",summary_stats))
}
new_pdata <- plyr::adply(cell_sample,1, function(x) {
sub <- pdata[x,]
df_l <- list()
df_l["temp"] <- 1
for (att in summary_stats) {
df_l[paste0("mean_", att)] <- mean(sub[,att])
}
data.frame(df_l)
})
new_pdata$agg_cell <- paste("agg", chosen, sep="")
new_pdata <- new_pdata[,new_pcols, drop = FALSE] # fixes order, drops X1 and temp
row.names(new_pdata) <- new_pdata$agg_cell
row.names(new_exprs) <- new_pdata$agg_cell
new_exprs <- as.matrix(t(new_exprs))
fdf <- fData(cds)
new_pdata$temp <- NULL
fd <- new("AnnotatedDataFrame", data = fdf)
pd <- new("AnnotatedDataFrame", data = new_pdata)
cicero_cds <- suppressWarnings(newCellDataSet(new_exprs,
phenoData = pd,
featureData = fd,
expressionFamily=negbinomial.size(),
lowerDetectionLimit=0))
cicero_cds <- monocle::detectGenes(cicero_cds, min_expr = .1)
cicero_cds <- estimateSizeFactorsSimp(cicero_cds)
#cicero_cds <- suppressWarnings(BiocGenerics::estimateDispersions(cicero_cds))
if (any(!c("chr", "bp1", "bp2") %in% names(fData(cicero_cds)))) {
fData(cicero_cds)$chr <- NULL
fData(cicero_cds)$bp1 <- NULL
fData(cicero_cds)$bp2 <- NULL
fData(cicero_cds) <- cbind(fData(cicero_cds),
df_for_coords(row.names(fData(cicero_cds))))
}
if (size_factor_normalize) {
Biobase::exprs(cicero_cds) <-
t(t(Biobase::exprs(cicero_cds))/Biobase::pData(cicero_cds)$Size_Factor)
}
if (return_agg_info) {
return(list(cicero_cds, agg_map))
}
cicero_cds
}
#' Run Cicero
#'
#' A wrapper function that runs the primary functions of the Cicero pipeline
#' with default parameters. Runs \code{\link{estimate_distance_parameter}},
#' \code{\link{generate_cicero_models}} and \code{\link{assemble_connections}}.
#' See the manual pages of these functions for details about their function and
#' parameter options. Defaults in this function are designed for mammalian data,
#' those with non-mammalian data should read about parameters in the above
#' functions.
#'
#' @param cds Cicero CDS object, created using \code{\link{make_cicero_cds}}
#' @param window Size of the genomic window to query, in base pairs.
#' @param silent Whether to print progress messages
#' @param sample_num How many sample genomic windows to use to generate
#' \code{distance_parameter} parameter. Default: 100.
#' @param genomic_coords Either a data frame or a path (character) to a file
#' with chromosome lengths. The file should have two columns, the first is
#' the chromosome name (ex. "chr1") and the second is the chromosome length
#' in base pairs. See \code{data(human.hg19.genome)} for an example. If a
#' file, should be tab-separated and without header.
#'
#' @return A table of co-accessibility scores
#' @export
#'
#' @examples
#' data("cicero_data")
#' data("human.hg19.genome")
#' sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#' sample_genome$V2[1] <- 100000
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' cons <- run_cicero(cicero_cds, sample_genome, sample_num = 2)
#'
run_cicero <- function(cds,
genomic_coords,
window = 500000,
silent=FALSE,
sample_num = 100) {
# Check input
assertthat::assert_that(is(cds, "CellDataSet"))
assertthat::assert_that(is.logical(silent))
assertthat::assert_that(assertthat::is.number(window))
assertthat::assert_that(assertthat::is.count(sample_num))
if (!is.data.frame(genomic_coords)) {
assertthat::is.readable(genomic_coords)
}
if (!silent) print("Starting Cicero")
if (!silent) print("Calculating distance_parameter value")
distance_parameters <- estimate_distance_parameter(cds, window=window,
maxit=100, sample_num = sample_num,
distance_constraint = 250000,
distance_parameter_convergence = 1e-22,
genomic_coords = genomic_coords)
mean_distance_parameter <- mean(unlist(distance_parameters))
if (!silent) print("Running models")
cicero_out <-
generate_cicero_models(cds,
distance_parameter = mean_distance_parameter,
window = window,
genomic_coords = genomic_coords)
if (!silent) print("Assembling connections")
all_cons <- assemble_connections(cicero_out, silent=silent)
if (!silent) print("Done")
all_cons
}
#' Calculate distance penalty parameter
#'
#' Function to calculate distance penalty parameter (\code{distance_parameter})
#' for random genomic windows. Used to choose \code{distance_parameter} to pass
#' to \code{\link{generate_cicero_models}}.
#'
#' @param cds A cicero CDS object generated using \code{\link{make_cicero_cds}}.
#' @param window Size of the genomic window to query, in base pairs.
#' @param maxit Maximum number of iterations for distance_parameter estimation.
#' @param s Power law value. See details for more information.
#' @param sample_num Number of random windows to calculate
#' \code{distance_parameter} for.
#' @param distance_constraint Maximum distance of expected connections. Must be
#' smaller than \code{window}.
#' @param distance_parameter_convergence Convergence step size for
#' \code{distance_parameter} calculation.
#' @param max_elements Maximum number of elements per window allowed. Prevents
#' very large models from slowing performance.
#' @param genomic_coords Either a data frame or a path (character) to a file
#' with chromosome lengths. The file should have two columns, the first is
#' the chromosome name (ex. "chr1") and the second is the chromosome length
#' in base pairs. See \code{data(human.hg19.genome)} for an example. If a
#' file, should be tab-separated and without header.
#' @param max_sample_windows Maximum number of random windows to screen to find
#' sample_num windows for distance calculation. Default 500.
#'
#' @examples
#' data("cicero_data")
#' data("human.hg19.genome")
#' sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#' sample_genome$V2[1] <- 100000
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' distance_parameters <- estimate_distance_parameter(cicero_cds,
#' sample_num=5,
#' genomic_coords = sample_genome)
#'
#' @seealso \code{\link{generate_cicero_models}}
#' @return A list of results of length \code{sample_num}. List members are
#' numeric \code{distance_parameter} values.
#'
#' @details The purpose of this function is to calculate the distance scaling
#' parameter used to adjust the distance-based penalty function used in
#' Cicero's model calculation. The scaling parameter, in combination with the
#' power law value \code{s} determines the distance-based penalty.
#'
#' This function chooses random windows of the genome and calculates a
#' \code{distance_parameter}. The function returns a vector of values
#' calculated on these random windows. We recommend using the mean value of
#' this vector moving forward with Cicero analysis.
#'
#' The function works by finding the minimum distance scaling parameter such
#' that no more than 5% of pairs of sites at a distance greater than
#' \code{distance_constraint} have non-zero entries after graphical lasso
#' regularization and such that fewer than 80% of all output entries are
#' nonzero.
#'
#' If the chosen random window has fewer than 2 or greater than
#' \code{max_elements} sites, the window is skipped. In addition, the random
#' window will be skipped if there are insufficient long-range comparisons
#' (see below) to be made. The \code{max_elements} parameter exist to prevent
#' very dense windows from slowing the calculation. If you expect that your
#' data may regularly have this many sites in a window, you will need to
#' raise this parameter.
#'
#' Calculating the \code{distance_parameter} in a sample window requires
#' peaks in that window that are at a distance greater than the
#' \code{distance_constraint} parameter. If there are not enough examples at
#' high distance have been found, the function will return the warning
#' \code{"Warning: could not calculate sample_num distance_parameters - see
#' documentation details"}.When looking for \code{sample_num} example
#' windows, the function will search \code{max_sample_windows} windows. By
#' default this is set at 500, which should be well beyond the 100 windows
#' that need to be found. However, in very sparse datasets, increasing
#' \code{max_sample_windows} may help avoid the above warning. Increasing
#' \code{max_sample_windows} may slow performance in sparse datasets. If you
#' are still not able to get enough example windows, even with a large
#' \code{max_sample_windows} paramter, this may mean your \code{window}
#' parameter needs to be larger or your \code{distance_constraint} parameter
#' needs to be smaller. A less likely possibility is that your
#' \code{max_elements} parameter needs to be larger. This would occur if your
#' data is particularly dense.
#'
#' The parameter \code{s} is a constant that captures the power-law
#' distribution of contact frequencies between different locations in the
#' genome as a function of their linear distance. For a complete discussion
#' of the various polymer models of DNA packed into the nucleus and of
#' justifiable values for s, we refer readers to (Dekker et al., 2013) for a
#' discussion of justifiable values for s. We use a value of 0.75 by default
#' in Cicero, which corresponds to the “tension globule” polymer model of DNA
#' (Sanborn et al., 2015). This parameter must be the same as the s parameter
#' for generate_cicero_models.
#'
#' Further details are available in the publication that accompanies this
#' package. Run \code{citation("cicero")} for publication details.
#'
#' @references
#' \itemize{
#' \item Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring
#' the three-dimensional organization of genomes: interpreting chromatin
#' interaction data. Nat. Rev. Genet. 14, 390–403.
#' \item Sanborn, A.L., Rao, S.S.P., Huang, S.-C., Durand, N.C., Huntley,
#' M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J.,
#' et al. (2015). Chromatin extrusion explains key features of loop and
#' domain formation in wild-type and engineered genomes. Proc. Natl. Acad.
#' Sci. U. S. A. 112, E6456–E6465.
#' }
#' @export
estimate_distance_parameter <- function(cds,
window=500000,
maxit=100,
s=0.75,
sample_num = 100,
distance_constraint = 250000,
distance_parameter_convergence = 1e-22,
max_elements = 200,
genomic_coords = cicero::human.hg19.genome,
max_sample_windows = 500) {
assertthat::assert_that(is(cds, "CellDataSet"))
assertthat::assert_that(assertthat::is.number(window))
assertthat::assert_that(assertthat::is.count(maxit))
assertthat::assert_that(assertthat::is.number(s), s < 1, s > 0)
assertthat::assert_that(assertthat::is.count(sample_num))
assertthat::assert_that(assertthat::is.count(distance_constraint))
assertthat::assert_that(distance_constraint < window)
assertthat::assert_that(assertthat::is.number(distance_parameter_convergence))
if (!is.data.frame(genomic_coords)) {
assertthat::is.readable(genomic_coords)
}
assertthat::assert_that(assertthat::is.count(max_sample_windows))
grs <- generate_windows(window, genomic_coords)
fData(cds)$chr <- gsub("chr", "", fData(cds)$chr)
fData(cds)$bp1 <- as.numeric(as.character(fData(cds)$bp1))
fData(cds)$bp2 <- as.numeric(as.character(fData(cds)$bp2))
distance_parameters <- list()
distance_parameters_calced <- 0
it <- 0
while(sample_num > distance_parameters_calced & it < max_sample_windows) {
it <- it + 1
win <- sample(seq_len(length(grs)), 1)
GL <- "Error"
win_range <- get_genomic_range(grs, cds, win)
if (nrow(exprs(win_range))<=1) {
next()
}
if (nrow(exprs(win_range)) > max_elements) {
next()
}
dist_matrix <- calc_dist_matrix(win_range)
distance_parameter <- find_distance_parameter(dist_matrix,
win_range,
maxit = maxit,
null_rho = 0,
s,
distance_constraint = distance_constraint,
distance_parameter_convergence =
distance_parameter_convergence)
if (!is(distance_parameter, "numeric")) next()
distance_parameters = c(distance_parameters, distance_parameter)
distance_parameters_calced <- distance_parameters_calced + 1
}
if(length(distance_parameters) < sample_num)
warning(paste0("Could not calculate sample_num distance_parameters (",
length(distance_parameters), " were calculated) - see ",
"documentation details"))
if(length(distance_parameters) == 0)
stop("No distance_parameters calculated")
unlist(distance_parameters)
}
#' Generate cicero models
#'
#' Function to generate graphical lasso models on all sites in a CDS object
#' within overlapping genomic windows.
#'
#' @param cds A cicero CDS object generated using \code{\link{make_cicero_cds}}.
#' @param distance_parameter Distance based penalty parameter value. Generally,
#' the mean of the calculated \code{distance_parameter} values from
#' \code{\link{estimate_distance_parameter}}.
#' @param s Power law value. See details.
#' @param window Size of the genomic window to query, in base pairs.
#' @param max_elements Maximum number of elements per window allowed. Prevents
#' very large models from slowing performance.
#' @param genomic_coords Either a data frame or a path (character) to a file
#' with chromosome lengths. The file should have two columns, the first is
#' the chromosome name (ex. "chr1") and the second is the chromosome length
#' in base pairs. See \code{data(human.hg19.genome)} for an example. If a
#' file, should be tab-separated and without header.
#'
#' @details The purpose of this function is to compute the raw covariances
#' between each pair of sites within overlapping windows of the genome.
#' Within each window, the function then estimates a regularized correlation
#' matrix using the graphical LASSO (Friedman et al., 2008), penalizing pairs
#' of distant sites more than proximal sites. The scaling parameter,
#' \code{distance_parameter}, in combination with the power law value \code{s}
#' determines the distance-based penalty.
#'
#' The parameter \code{s} is a constant that captures the power-law
#' distribution of contact frequencies between different locations in the
#' genome as a function of their linear distance. For a complete discussion
#' of the various polymer models of DNA packed into the nucleus and of
#' justifiable values for s, we refer readers to (Dekker et al., 2013) for a
#' discussion of justifiable values for s. We use a value of 0.75 by default
#' in Cicero, which corresponds to the “tension globule” polymer model of DNA
#' (Sanborn et al., 2015). This parameter must be the same as the s parameter
#' for \code{\link{estimate_distance_parameter}}.
#'
#' Further details are available in the publication that accompanies this
#' package. Run \code{citation("cicero")} for publication details.
#'
#' @return A list of results for each window. Either a \code{glasso} object, or
#' a character description of why the window was skipped. This list can be
#' directly input into \code{\link{assemble_connections}} to create a
#' reconciled list of cicero co-accessibility scores.
#' @examples
#' data("cicero_data")
#' data("human.hg19.genome")
#' sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#' sample_genome$V2[1] <- 100000
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' model_output <- generate_cicero_models(cicero_cds,
#' distance_parameter = 0.3,
#' genomic_coords = sample_genome)
#'
#' @references
#' \itemize{
#' \item Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring
#' the three-dimensional organization of genomes: interpreting chromatin
#' interaction data. Nat. Rev. Genet. 14, 390–403.
#' \item Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse
#' inverse covariance estimation with the graphical lasso. Biostatistics 9,
#' 432–441.
#' \item Sanborn, A.L., Rao, S.S.P., Huang, S.-C., Durand, N.C., Huntley,
#' M.H., Jewett, A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J.,
#' et al. (2015). Chromatin extrusion explains key features of loop and
#' domain formation in wild-type and engineered genomes. Proc. Natl. Acad.
#' Sci. U. S. A. 112, E6456–E6465.
#' }
#'
#' @seealso \code{\link{estimate_distance_parameter}}
#' @export
#'
generate_cicero_models <- function(cds,
distance_parameter,
s = 0.75,
window = 500000,
max_elements = 200,
genomic_coords = cicero::human.hg19.genome) {
assertthat::assert_that(is(cds, "CellDataSet"))
assertthat::assert_that(assertthat::is.number(distance_parameter))
assertthat::assert_that(assertthat::is.number(s), s < 1, s > 0)
assertthat::assert_that(assertthat::is.number(window))
assertthat::assert_that(assertthat::is.count(max_elements))
if (!is.data.frame(genomic_coords)) {
assertthat::is.readable(genomic_coords)
}
grs <- generate_windows(window, genomic_coords)
fData(cds)$chr <- gsub("chr", "", fData(cds)$chr)
fData(cds)$bp1 <- as.numeric(as.character(fData(cds)$bp1))
fData(cds)$bp2 <- as.numeric(as.character(fData(cds)$bp2))
outlist <- parallel::mclapply(seq_len(length(grs)), mc.cores = 1, function(win) {
GL <- "Error"
win_range <- get_genomic_range(grs, cds, win)
if (nrow(exprs(win_range))<=1) {
return("Zero or one element in range")
}
if (nrow(exprs(win_range)) > max_elements) {
return("Too many elements in range")
}
dist_matrix <- calc_dist_matrix(win_range)
rho_mat <- get_rho_mat(dist_matrix, distance_parameter, s)
vals <- exprs(win_range)
cov_mat <- cov(t(vals))
diag(cov_mat) <- diag(cov_mat) + 1e-4
GL <- glasso::glasso(cov_mat, rho_mat)
colnames(GL$w) <- row.names(GL$w) <- row.names(vals)
colnames(GL$wi) <- row.names(GL$wi) <- row.names(vals)
return(GL)
})
names_df <- as.data.frame(grs)
names(outlist) <- paste(names_df$seqnames,
names_df$start,
names_df$end, sep="_")
#FIXME add warning about how many regions removed due to too many elements
outlist
}
#' Combine and reconcile cicero models
#'
#' Function which takes the output of \code{\link{generate_cicero_models}} and
#' assembles the connections into a data frame with cicero co-accessibility
#' scores.
#'
#' This function combines glasso models computed on overlapping windows of the
#' genome. Pairs of sites whose regularized correlation was calculated twice
#' are first checked for qualitative concordance (both zero, positive or
#' negative). If they not concordant, NA is returned. If they are concordant
#' the mean is returned.
#'
#' @param cicero_model_list A list of cicero output objects, generally, the
#' output of \code{\link{generate_cicero_models}}.
#' @param silent Logical, should the function run silently?
#'
#' @return A data frame of connections with their cicero co-accessibility
#' scores.
#' @examples
#' data("cicero_data")
#' data("human.hg19.genome")
#' sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#' sample_genome$V2[1] <- 100000
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' model_output <- generate_cicero_models(cicero_cds,
#' distance_parameter = 0.3,
#' genomic_coords = sample_genome)
#' cicero_cons <- assemble_connections(model_output)
#'
#' @seealso \code{\link{generate_cicero_models}}
#' @importFrom data.table melt.data.table
#' @export
assemble_connections <- function(cicero_model_list, silent = FALSE) {
types <- vapply(cicero_model_list, FUN=class, FUN.VALUE="character")
char_hbn <- cicero_model_list[types=="character"]
gl_only <- cicero_model_list[types=="list"]
if(!silent) {
print(paste("Successful cicero models: ", length(gl_only)))
print("Other models: ")
print(table(unlist(char_hbn)))
print(paste("Models with errors: ", sum(is.null(cicero_model_list))))
}
cors <- lapply(gl_only, function(gl) {
cors <- stats::cov2cor(gl$w)
data.table::melt(as.data.table(cors, keep.rownames=TRUE),
measure=patterns("[0-9]"))
})
cors <- data.table::rbindlist(cors)
names(cors) <- c("Var1", "Var2", "value")
data.table::setkey(cors, "Var1", "Var2")
cors_rec <- as.data.frame(cors[,list(mean_coaccess = reconcile(value)),
by="Var1,Var2"])
names(cors_rec) <- c("Peak1", "Peak2", "coaccess")
cors_rec <- cors_rec[cors_rec$Peak1 != cors_rec$Peak2,]
return(cors_rec)
}
reconcile <- function(values) {
if (length(values) == 1) return(values)
if (sum(values >= 0) == length(values)) return(mean(values))
if (sum(values <= 0) == length(values)) return(mean(values))
if (sum(values == 0) == length(values)) return(0)
return(NA_real_)
}
generate_windows <- function(window, genomic_coords) {
if(!is(genomic_coords, "data.frame")) {
chr_maxes <- read.table(genomic_coords)
} else {
chr_maxes <- genomic_coords
}
names(chr_maxes) <- c("V1", "V2")
win_ranges <- plyr::ddply(chr_maxes, plyr::.(V1), function(x) {
r <- seq(from = 1, to = x$V2[1], by = window/2)
l <- r + window - 1
data.frame(start = r, end = l)
})
gr <- GenomicRanges::GRanges(win_ranges$V1,
ranges=IRanges::IRanges(win_ranges$start,
win_ranges$end))
return(gr)
}
get_genomic_range <- function(grs, cds, win) {
end1 <- as.numeric(as.character(GenomicRanges::end(grs[win])))
end2 <- as.numeric(as.character(GenomicRanges::start(grs[win])))
win_range <- cds[(fData(cds)$bp1 < end1 &
fData(cds)$bp1 > end2) |
(fData(cds)$bp2 < end1 &
fData(cds)$bp2 > end2), ]
win_range <-
win_range[as.character(fData(win_range)$chr) ==
gsub("chr", "",
as.character(GenomicRanges::seqnames(grs[win]))),]
fData(win_range)$mean_bp <-
(as.numeric(as.character(fData(win_range)$bp1)) +
as.numeric(as.character(fData(win_range)$bp2)))/2
return(win_range)
}
find_distance_parameter <- function(dist_mat,
gene_range,
maxit,
null_rho,
s,
distance_constraint,
distance_parameter_convergence) {
if (sum(dist_mat > distance_constraint)/2 < 1) {
return("No long edges")
}
found <- FALSE
starting_max <- 2
distance_parameter <- 2
distance_parameter_max <- 2
distance_parameter_min <- 0
it <- 0
while(found != TRUE & it < maxit) {
vals <- exprs(gene_range)
cov_mat <- cov(t(vals))
diag(cov_mat) <- diag(cov_mat) + 1e-4
rho <- get_rho_mat(dist_mat, distance_parameter, s)
GL <- glasso::glasso(cov_mat, rho)
big_entries <- sum(dist_mat > distance_constraint)
if (((sum(GL$wi[dist_mat > distance_constraint] != 0)/big_entries) > 0.05) |
(sum(GL$wi == 0)/(nrow(GL$wi)^2) < 0.2 ) ) {
longs_zero <- FALSE
} else {
longs_zero <- TRUE
}
if (longs_zero != TRUE | (distance_parameter == 0)) {
distance_parameter_min <- distance_parameter
} else {
distance_parameter_max <- distance_parameter
}
new_distance_parameter <- (distance_parameter_min +
distance_parameter_max)/2
if(new_distance_parameter == starting_max) {
new_distance_parameter <- 2 * starting_max
starting_max <- new_distance_parameter
}
if (distance_parameter_convergence > abs(distance_parameter -
new_distance_parameter)) {
found <- TRUE
} else {
distance_parameter <- new_distance_parameter
}
it <- it + 1
}
if (maxit == it) warning("maximum iterations hit")
return(distance_parameter)
}
get_rho_mat <- function(dist_matrix, distance_parameter, s) {
xmin <- 1000
out <- (1-(xmin/dist_matrix)^s) * distance_parameter
out[!is.finite(out)] <- 0
out[out < 0] <- 0
return(out)
}
calc_dist_matrix <- function(gene_range) {
dist_mat <- as.matrix(dist(fData(gene_range)$mean_bp))
row.names(dist_mat) <- colnames(dist_mat) <- row.names(fData(gene_range))
return(dist_mat)
}
make_ccan_graph <- function(connections_df, coaccess_cutoff) {
connections_df <- as.data.frame(connections_df)
#make graph
cons_info_gr <- connections_df[!is.na(connections_df$coaccess) &
connections_df$coaccess > coaccess_cutoff,]
if(nrow(cons_info_gr) == 0) stop("No connections for graph")
cons_graph <- make_sparse_matrix(cons_info_gr, x.name = "coaccess")
site_graph <- igraph::graph.adjacency(cons_graph,
mode = "undirected",
weighted = TRUE)
return(site_graph)
}
#' Generate cis-co-accessibility networks (CCANs)
#'
#' Post process cicero co-accessibility scores to extract modules of sites that
#' are co-accessible.
#'
#' @param connections_df Data frame of connections with columns: Peak1, Peak2,
#' coaccess. Generally, the output of \code{\link{run_cicero}} or
#' \code{\link{assemble_connections}}
#' @param coaccess_cutoff_override Numeric, co-accessibility score threshold to
#' impose. Overrides automatic calculation.
#' @param tolerance_digits The number of digits to calculate cutoff to. Default
#' is 2 (0.01 tolerance)
#'
#' @details CCANs are calculated by first specifying a minimum co-accessibility
#' score and then using the Louvain community detection algorithm on the
#' subgraph induced by excluding edges below this score. For this function,
#' either the user can specify the minimum co-accessibility using
#' \code{coaccess_cutoff_override}, or the cutoff can be calculated
#' automatically by optimizing for CCAN number. The cutoff calculation can be
#' slow, so users may wish to use the \code{coaccess_cutoff_override} after
#' initially calculating the cutoff to speed future runs.
#'
#' @return Data frame with two columns - Peak and CCAN. CCAN column indicates
#' CCAN assignment. Peaks not included in a CCAN are not returned.
#' @export
#'
#' @examples
#' \dontrun{
#' data("cicero_data")
#' set.seed(18)
#' data("human.hg19.genome")
#' sample_genome <- subset(human.hg19.genome, V1 == "chr18")
#' sample_genome$V2[1] <- 100000
#' input_cds <- make_atac_cds(cicero_data, binarize = TRUE)
#' input_cds <- reduceDimension(input_cds, max_components = 2, num_dim=6,
#' reduction_method = 'tSNE',
#' norm_method = "none")
#' tsne_coords <- t(reducedDimA(input_cds))
#' row.names(tsne_coords) <- row.names(pData(input_cds))
#' cicero_cds <- make_cicero_cds(input_cds, reduced_coordinates = tsne_coords)
#' cicero_cons <- run_cicero(cicero_cds, sample_genome, sample_num = 2)
#' ccan_assigns <- generate_ccans(cicero_cons)
#' }
#'
generate_ccans <- function(connections_df,
coaccess_cutoff_override = NULL,
tolerance_digits = 2) {
assertthat::assert_that(is.data.frame(connections_df))
assertthat::assert_that(assertthat::has_name(connections_df, "Peak1"),
assertthat::has_name(connections_df, "Peak2"),
assertthat::has_name(connections_df, "coaccess"))
assertthat::assert_that(assertthat::is.number(tolerance_digits))
assertthat::assert_that(assertthat::is.number(coaccess_cutoff_override) |
is.null(coaccess_cutoff_override),
msg = paste("coaccess_cutoff_override must be a",
"number or NULL", collapse = " "))
if (!is.null(coaccess_cutoff_override)) {
assertthat::assert_that(coaccess_cutoff_override <= 1 &
coaccess_cutoff_override >= 0,
msg = paste("coaccess_cutoff_override must be",
"between 0 and 1 (or NULL)",
collapse = " "))
}
if (!is.null(coaccess_cutoff_override)) {
coaccess_cutoff <- coaccess_cutoff_override
} else {
coaccess_cutoff <- find_ccan_cutoff(connections_df, tolerance_digits)
}
print(paste("Coaccessibility cutoff used:", coaccess_cutoff))
ccan_graph <- make_ccan_graph(connections_df,
coaccess_cutoff = coaccess_cutoff)
comp_membership <- igraph::cluster_louvain(ccan_graph)
sizes <- igraph::sizes(comp_membership) > 2
comps_list <- unlist(as.list(igraph::membership(comp_membership)))
df <- data.frame(Peak = names(comps_list), CCAN = comps_list)
df$CCAN[!df$CCAN %in% names(sizes[sizes])] <- NA
df <- df[!is.na(df$CCAN),]
return(df)
}
find_ccan_cutoff <- function(connection_df, tolerance_digits) {
connection_df <- connection_df[connection_df$coaccess > 0,]
tolerance <- 10^-(tolerance_digits)
bottom <- 0
top <- max(connection_df$coaccess, na.rm = TRUE)
while ((top - bottom) > tolerance) {
test_val <- bottom + round((top - bottom)/2, digits = tolerance_digits + 1)
ccan_num_test <- number_of_ccans(connection_df, test_val)
next_step <- test_val
repeat{
next_step <- next_step + (top - bottom)/10
ccan_num_test2 <- number_of_ccans(connection_df, next_step)
if(ccan_num_test2 != ccan_num_test){
break
}
}
if (ccan_num_test > ccan_num_test2) {
top <- test_val
} else {
bottom <- test_val
}
}
return(round((top + bottom)/2, digits = tolerance_digits))
}
number_of_ccans <- function(connections_df, coaccess_cutoff) {
ccan_graph <- make_ccan_graph(connections_df,
coaccess_cutoff = coaccess_cutoff)
comp_membership <- igraph::cluster_louvain(ccan_graph)
return(sum(igraph::sizes(comp_membership) > 2))
}
#' Find CCANs that overlap each other in genomic coordinates
#'
#' @param ccan_assignments A data frame where the first column is the peak and
#' the second is the CCAN assignment. For example, output of
#' \code{generate_ccans}.
#' @param min_overlap The minimum base pair overlap to count as overlapping.
#'
#' @return A data frame with two columns, CCAN1 and CCAN2. CCANs in this list
#' are overlapping. The data frame is reciprocal (if CCAN 2 overlaps CCAN 1,
#' there will be two rows, 1,2 and 2,1).
#'
#' @examples
#' ccan_df <- data.frame(peak = c("chr18_1408345_1408845", "chr18_1779830_1780330",
#' "chr18_1929095_1929595", "chr18_1954501_1954727",
#' "chr18_2049865_2050884", "chr18_2083726_2084102",
#' "chr18_2087935_2088622", "chr18_2104705_2105551",
#' "chr18_2108641_2108907"),
#' CCAN = c(1,2,2,2,3,3,3,3,2))
#' olap_ccans <- find_overlapping_ccans(ccan_df)
#'
#'
#' @export
find_overlapping_ccans <- function(ccan_assignments, min_overlap=1) {
ccan_assignments <- ccan_assignments[,c(1,2)]
names(ccan_assignments) <- c("Peak", "CCAN")
ccans <- df_for_coords(ccan_assignments$Peak)
ccans$CCAN <- ccan_assignments$CCAN
ccan_info <- plyr::ddply(ccans, plyr::.(CCAN), function(ccan) {
return(data.frame(ccan_coords = paste(ccan$chr[1], bp1 = min(ccan$bp1),
bp2 = max(ccan$bp2), sep="_")))
})
ccan_ranges <- ranges_for_coords(ccan_info$ccan_coords,
meta_data_df = ccan_info)
ol <- GenomicRanges::findOverlaps(ccan_ranges, ccan_ranges,
minoverlap=min_overlap, #maxgap = 0,
select="all")
olaps <- data.frame(
CCAN1 = GenomicRanges::mcols(ccan_ranges[
S4Vectors::queryHits(ol)])@listData$CCAN,
CCAN2 = GenomicRanges::mcols(ccan_ranges[
S4Vectors::subjectHits(ol)])@listData$CCAN)
olaps <- olaps[!duplicated(olaps),]
olaps <- olaps[olaps$CCAN1 != olaps$CCAN2, ]
return(olaps)
}