-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_global.py
713 lines (592 loc) · 27.9 KB
/
train_global.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
import argparse
import itertools
import math
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, LMSDiscreteScheduler
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.utils import (
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.models.clip.configuration_clip import CLIPTextConfig
from transformers.models.clip.modeling_clip import CLIP_TEXT_INPUTS_DOCSTRING, _expand_mask
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from typing import Optional, Tuple, Union
from datasets import OpenImagesDataset
class Mapper(nn.Module):
def __init__(self,
input_dim: int,
output_dim: int,
):
super(Mapper, self).__init__()
for i in range(5):
setattr(self, f'mapping_{i}', nn.Sequential(nn.Linear(input_dim, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, output_dim)))
setattr(self, f'mapping_patch_{i}', nn.Sequential(nn.Linear(input_dim, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, output_dim)))
def forward(self, embs):
hidden_states = ()
for i, emb in enumerate(embs):
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(emb[:, 1:]).mean(dim=1, keepdim=True)
hidden_states += (hidden_state, )
hidden_states = torch.cat(hidden_states, dim=1)
return hidden_states
def _build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
def inj_forward_text(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
r_input_ids = input_ids['input_ids']
if 'inj_embedding' in input_ids:
inj_embedding = input_ids['inj_embedding']
inj_index = input_ids['inj_index']
else:
inj_embedding = None
inj_index = None
input_shape = r_input_ids.size()
r_input_ids = r_input_ids.view(-1, input_shape[-1])
inputs_embeds = self.embeddings.token_embedding(r_input_ids)
new_inputs_embeds = inputs_embeds.clone()
if inj_embedding is not None:
emb_length = inj_embedding.shape[1]
for bsz, idx in enumerate(inj_index):
lll = new_inputs_embeds[bsz, idx+emb_length:].shape[0]
new_inputs_embeds[bsz, idx+emb_length:] = inputs_embeds[bsz, idx+1:idx+1+lll]
new_inputs_embeds[bsz, idx:idx+emb_length] = inj_embedding[bsz]
hidden_states = self.embeddings(input_ids=r_input_ids, position_ids=position_ids, inputs_embeds=new_inputs_embeds)
bsz, seq_len = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=r_input_ids.device), r_input_ids.to(torch.int).argmax(dim=-1)
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def inj_forward_crossattention(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
context = encoder_hidden_states
if context is not None:
context_tensor = context["CONTEXT_TENSOR"]
else:
context_tensor = hidden_states
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
if context is not None:
key = self.to_k_global(context_tensor)
value = self.to_v_global(context_tensor)
else:
key = self.to_k(context_tensor)
value = self.to_v(context_tensor)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
attention_scores = torch.matmul(query, key.transpose(-1, -2))
attention_scores = attention_scores * self.scale
attention_probs = attention_scores.softmax(dim=-1)
hidden_states = torch.matmul(attention_probs, value)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
logger = get_logger(__name__)
def save_progress(mapper, accelerator, args, step=None):
logger.info("Saving embeddings")
state_dict = accelerator.unwrap_model(mapper).state_dict()
if step is not None:
torch.save(state_dict, os.path.join(args.output_dir, f"mapper_{str(step).zfill(6)}.pt"))
else:
torch.save(state_dict, os.path.join(args.output_dir, "mapper.pt"))
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
)
parser.add_argument(
"--global_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
required=True,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def freeze_params(params):
for param in params:
param.requires_grad = False
def unfreeze_params(params):
for param in params:
param.requires_grad = True
def th2image(image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(1, 2, 0).numpy()
image = (image * 255).round().astype("uint8")
return Image.fromarray(image)
@torch.no_grad()
def validation(example, tokenizer, image_encoder, text_encoder, unet, mapper, vae, device, guidance_scale, token_index='full', seed=None):
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
uncond_input = tokenizer(
[''] * example["pixel_values"].shape[0],
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
)
uncond_embeddings = text_encoder({'input_ids':uncond_input.input_ids.to(device)})[0]
if seed is None:
latents = torch.randn(
(example["pixel_values"].shape[0], unet.in_channels, 64, 64)
)
else:
generator = torch.manual_seed(seed)
latents = torch.randn(
(example["pixel_values"].shape[0], unet.in_channels, 64, 64), generator=generator,
)
latents = latents.to(example["pixel_values_clip"])
scheduler.set_timesteps(100)
latents = latents * scheduler.init_noise_sigma
placeholder_idx = example["index"]
image = F.interpolate(example["pixel_values_clip"], (224, 224), mode='bilinear')
image_features = image_encoder(image, output_hidden_states=True)
image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12],
image_features[2][16]]
image_embeddings = [emb.detach() for emb in image_embeddings]
inj_embedding = mapper(image_embeddings)
if token_index != 'full':
token_index = int(token_index)
inj_embedding = inj_embedding[:, token_index:token_index + 1, :]
encoder_hidden_states = text_encoder({'input_ids': example["input_ids"],
"inj_embedding": inj_embedding,
"inj_index": placeholder_idx})[0]
for t in tqdm(scheduler.timesteps):
latent_model_input = scheduler.scale_model_input(latents, t)
noise_pred_text = unet(
latent_model_input,
t,
encoder_hidden_states={
"CONTEXT_TENSOR": encoder_hidden_states,
}
).sample
latent_model_input = scheduler.scale_model_input(latents, t)
noise_pred_uncond = unet(
latent_model_input,
t,
encoder_hidden_states={
"CONTEXT_TENSOR": uncond_embeddings,
}
).sample
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
_latents = 1 / 0.18215 * latents.clone()
images = vae.decode(_latents).sample
ret_pil_images = [th2image(image) for image in images]
return ret_pil_images
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# replace the forward method of the text encoder to inject the word embedding
for _module in text_encoder.modules():
if _module.__class__.__name__ == "CLIPTextTransformer":
_module.__class__.__call__ = inj_forward_text
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14")
mapper = Mapper(input_dim=1024, output_dim=768)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# replace the forward method of the crossattention to finetune the to_k and to_v layers
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.__class__.__call__ = inj_forward_crossattention
shape = _module.to_k.weight.shape
to_k_global = nn.Linear(shape[1], shape[0], bias=False)
to_k_global.weight.data = _module.to_k.weight.data.clone()
mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global)
shape = _module.to_v.weight.shape
to_v_global = nn.Linear(shape[1], shape[0], bias=False)
to_v_global.weight.data = _module.to_v.weight.data.clone()
mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global)
if args.global_mapper_path is None:
_module.add_module('to_k_global', to_k_global)
_module.add_module('to_v_global', to_v_global)
if args.global_mapper_path is not None:
mapper.load_state_dict(torch.load(args.global_mapper_path, map_location='cpu'))
for _name, _module in unet.named_modules():
if _module.__class__.__name__ == "CrossAttention":
if 'attn1' in _name: continue
_module.add_module('to_k_global', getattr(mapper, f'{_name.replace(".", "_")}_to_k'))
_module.add_module('to_v_global', getattr(mapper, f'{_name.replace(".", "_")}_to_v'))
# Freeze vae and unet, encoder
freeze_params(vae.parameters())
freeze_params(unet.parameters())
freeze_params(text_encoder.parameters())
freeze_params(image_encoder.parameters())
# Unfreeze the mapper
unfreeze_params(mapper.parameters())
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
itertools.chain(mapper.parameters()), # only optimize the embeddings
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = OpenImagesDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
set="test",
)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
mapper, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
mapper, optimizer, train_dataloader, lr_scheduler
)
# Move vae, unet, and encoders to device
vae.to(accelerator.device)
unet.to(accelerator.device)
image_encoder.to(accelerator.device)
text_encoder.to(accelerator.device)
# Keep vae, unet and image_encoder in eval model as we don't train these
vae.eval()
unet.eval()
image_encoder.eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initialize automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("elite", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
mapper.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(mapper):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
placeholder_idx = batch["index"]
image = F.interpolate(batch["pixel_values_clip"], (224, 224), mode='bilinear')
image_features = image_encoder(image, output_hidden_states=True)
image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]]
image_embeddings = [emb.detach() for emb in image_embeddings]
inj_embedding = mapper(image_embeddings)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder({'input_ids': batch["input_ids"],
"inj_embedding": inj_embedding,
"inj_index": placeholder_idx.detach()})[0]
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states={
"CONTEXT_TENSOR": encoder_hidden_states,
}).sample
loss_mle = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
loss_reg = torch.mean(torch.abs(inj_embedding)) * 0.01
loss = loss_mle + loss_reg
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(mapper.parameters(), 1)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
save_progress(mapper, accelerator, args, global_step)
syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, vae, batch["pixel_values_clip"].device, 5)
gt_images = [th2image(img) for img in batch["pixel_values"]]
img_list = []
for syn, gt in zip(syn_images, gt_images):
img_list.append(np.concatenate((np.array(syn), np.array(gt)), axis=1))
img_list = np.concatenate(img_list, axis=0)
Image.fromarray(img_list).save(os.path.join(args.output_dir, f"{str(global_step).zfill(5)}.jpg"))
logs = {"loss_mle": loss_mle.detach().item(), "loss_reg": loss_reg.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
save_progress(mapper, accelerator, args)
accelerator.end_training()
if __name__ == "__main__":
main()