-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
193 lines (152 loc) · 6.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import configparser
import glob
import json
import os
import shutil
import time
from collections import OrderedDict
from pprint import pprint
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from data_io import dloader
from models import LSTMSimilarity, LSTMSimilarityCosWS, LSTMSimilarityCosRes, ConvCosResSim
from torch.utils.tensorboard import SummaryWriter
from torch.nn.utils.rnn import (PackedSequence, pack_padded_sequence,
pad_sequence)
def schedule_lr(optimizer, factor=0.1):
for params in optimizer.param_groups:
params['lr'] *= factor
print(optimizer)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def parse_args():
parser = argparse.ArgumentParser(description='Train nn embedding similarity scoring')
parser.add_argument('--cfg', type=str, default='./configs/example.cfg')
parser.add_argument('--epoch-resume', type=int, default=0)
parser.add_argument('--fold', type=int, default=0)
args = parser.parse_args()
assert os.path.isfile(args.cfg)
args._start_time = time.ctime()
return args
def parse_config(args):
config = configparser.ConfigParser()
config.read(args.cfg)
args.data_path = config['Datasets']['data_path']
args.model_type = config['Model'].get('model_type', fallback='lstm')
assert args.model_type in ['lstm', 'lstm_cos_ws', 'lstm_cos_res', 'transformer', 'convcosres']
args.lr = config['Hyperparams'].getfloat('lr', fallback=0.2)
args.max_len = config['Hyperparams'].getint('max_len', fallback=400)
args.no_cuda = config['Hyperparams'].getboolean('no_cuda', fallback=False)
args.seed = config['Hyperparams'].getint('seed', fallback=123)
args.num_epochs = config['Hyperparams'].getint('num_epochs', fallback=100)
args.scheduler_steps = np.array(json.loads(config.get('Hyperparams', 'scheduler_steps'))).astype(int)
args.scheduler_lambda = config['Hyperparams'].getfloat('scheduler_lambda', fallback=0.1)
args.base_model_dir = config['Outputs']['base_model_dir']
args.checkpoint_interval = config['Outputs'].getint('checkpoint_interval', fallback=1)
pprint(vars(args))
return args
def train():
use_cuda = not args.no_cuda and torch.cuda.is_available()
print('-'*10)
print('USE_CUDA SET TO: {}'.format(use_cuda))
print('CUDA AVAILABLE?: {}'.format(torch.cuda.is_available()))
print('-'*10)
torch.manual_seed(args.seed)
np.random.seed(seed=args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
writer = SummaryWriter(comment=args.model_type)
if args.model_type == 'lstm':
model = LSTMSimilarity()
if args.model_type == 'lstm_cos_res':
model = LSTMSimilarityCosRes()
if args.model_type == 'lstm_cos_ws':
model = LSTMSimilarityCosWS()
if args.model_type == 'convcosres':
model = ConvCosResSim()
if args.model_type == 'transformer':
assert NotImplementedError
model.to(device)
model.train()
if args.epoch_resume:
model_epoch_filename = os.path.join(args.model_dir, 'epoch_{}.pt'.format(args.epoch_resume))
print('Resuming training from: {}'.format(model_epoch_filename))
model.load_state_dict(torch.load(model_epoch_filename))
optimizer = torch.optim.SGD([{'params': model.parameters()}],
lr=args.lr)
criterion = nn.BCEWithLogitsLoss()
iterations = 0
for epoch in range(args.num_epochs):
total_loss = 0
if epoch + 1 in args.scheduler_steps:
schedule_lr(optimizer, factor=args.scheduler_lambda)
pass
if args.epoch_resume:
if epoch + 1 <= args.epoch_resume:
iterations += len(dl)
print('Skipped epoch {}'.format(epoch+1))
continue
for batch_idx, (feats, labels, _) in enumerate(dl.get_batches()):
iterations += 1
feats = torch.FloatTensor(feats).to(device)
labels = torch.FloatTensor(labels).to(device)
out = model(feats)
loss = criterion(out.flatten(), labels.flatten())
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
torch.cuda.empty_cache()
if batch_idx % 5 == 0:
msg = "{}\tEpoch:{}[{}/{}], Loss:{:.4f} TLoss:{:.4f}, ({})".format(time.ctime(), epoch+1,
batch_idx+1, len(dl), loss.item(), total_loss / (batch_idx + 1), feats.shape)
print(msg)
writer.add_scalar('loss', loss.item(), iterations)
writer.add_scalar('Avg loss', total_loss / (batch_idx + 1), iterations)
if (epoch + 1) % args.checkpoint_interval == 0:
model.eval().cpu()
cp_filename = "epoch_{}.pt".format(epoch+1)
cp_model_path = os.path.join(args.model_dir, cp_filename)
torch.save(model.state_dict(), cp_model_path)
model.to(device).train()
test_loss = test(model, device, criterion)
print('TEST LOSS: {}'.format(test_loss))
writer.add_scalar('test_loss', test_loss, iterations)
model.train()
# ---- Final model saving -----
model.eval().cpu()
final_model_filename = "final_{}.pt".format(epoch+1)
final_model_path = os.path.join(args.model_dir, final_model_filename)
torch.save(model.state_dict(), final_model_path)
print('Training complete. Saved to {}'.format(final_model_path))
def test(model, device, criterion):
model.eval()
with torch.no_grad():
total_batches = 0
total_loss = 0
for batch_idx, (feats, labels, _) in enumerate(tqdm(dl_test.get_batches(), total=len(dl_test))):
feats = torch.FloatTensor(feats).to(device)
labels = torch.FloatTensor(labels).to(device)
out = model(feats)
loss = criterion(out.flatten(), labels.flatten())
total_loss += loss.item()
total_batches += 1
model.train()
return total_loss/total_batches
if __name__ == "__main__":
args = parse_args()
assert os.path.isfile(args.cfg)
args = parse_config(args)
os.makedirs(args.base_model_dir, exist_ok=True)
args.model_dir = os.path.join(args.base_model_dir, 'ch{}'.format(args.fold))
args.log_file = os.path.join(args.model_dir, 'exp_out.log')
os.makedirs(args.model_dir, exist_ok=True)
base_path = os.path.join(args.data_path, 'ch{}'.format(args.fold))
assert os.path.isdir(base_path)
dl = dloader(os.path.join(base_path, 'train'), max_len=args.max_len)
dl_test = dloader(os.path.join(base_path, 'test'), max_len=args.max_len, shuffle=False)
train()