-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathparadox.py
executable file
·105 lines (91 loc) · 4.33 KB
/
paradox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
import argparse
import random
random.seed()
def ports():
return range(1025, 65536)
def easy_hard(hard_side_sockets=256, easy_side_probes=256):
# On the hard side, create N sockets and send probes to the one
# (known, correct) ip:port on the easy side. The net effect, for
# the purposes of this simulation, is that we'll have N port
# mappings on the hard NAT, all wanting to see traffic from the
# easy ip:port.
hard_side_ports = set(random.sample(ports(), k=hard_side_sockets))
# On the easy side, create a single socket and probe M ports on
# the hard side.
easy_side_probes = set(random.sample(ports(), k=easy_side_probes))
hits = easy_side_probes.intersection(hard_side_ports)
return len(hits) > 0
def hard_hard(a_probes=256, b_probes=256):
# On each hard side, probe N targets. Each one results in a random
# *pair* of ports: the NAT-allocated port, and the target port
# from which packets must return if they're to cross the firewall.
a_ports = random.sample(ports(), k=a_probes)
a_probes = random.sample(ports(), k=a_probes)
a_state = set(zip(a_ports, a_probes))
b_ports = random.sample(ports(), k=b_probes)
b_probes = random.sample(ports(), k=b_probes)
# Note: probes/ports is flipped compared to a_state, so that we
# can intersect the two sets and find matches.
b_state = set(zip(b_probes, b_ports))
# Traversal only succeeds if the two sides independently guess the
# same ports (albeit mirrored - A's outbound is B's inbound and
# vice-versa).
hits = a_state.intersection(b_state)
return len(hits) > 0
def probability(a_side=256, b_side=256, hard=False):
# The math is not quite the same as the classic birthday paradox,
# because we're looking for collisions between two different sets,
# rather than collisions within one set. The net result is that
# the probability curve skews slightly more in our favor, e.g. we
# get 66% likelihood of success where the straight birthday
# paradox would get 50%.
#
# We do the math on this the somewhat naive way, which means we'll
# probably accumulate rounding errors even with double precision
# floats. Since this is just an approximate simulation, that's
# okay. We could always use higher precision decimals if we wanted
# to.
num_options = len(ports())
if hard:
# In hard mode, the search space doubles, because we now have
# to find collisions on _pairs_ of ports, each of which can
# cover the entire port range.
num_options *= num_options
p = 1.0
for i in range(b_side):
p *= float(num_options-a_side-i)/float(num_options-i)
return 1.0 - p
def main():
p = argparse.ArgumentParser(description="Calculate birthday paradox probabilities for NAT traversal")
p.add_argument("--hard", action="store_true", help="Simulate two endpoint-dependent NATs instead of one")
p.add_argument("--a-side-probes", type=int, default=256, help="number of probe attempts from the A side")
p.add_argument("--b-side-probes", type=int, default=256, help="number of probe attempts from the B side")
args = p.parse_args()
prob = probability(args.a_side_probes, args.b_side_probes, args.hard)
num_ports = len(ports())
if args.hard:
pcta = args.a_side_probes/(num_ports*num_ports)*100
pctb = args.b_side_probes/(num_ports*num_ports)*100
print("""
Simulating the hard case:
peer A -> endpoint-dependent NAT --- endpoint-dependent NAT <- peer B
A probes {} combinations of (source port, target port)
(this is {:.2g}% of the search space)
B probes {} combinations of (source port, target port)
(this is {:.2g}% of the search space)
""".format(args.a_side_probes, pcta, args.b_side_probes, pctb))
else:
pcta = args.a_side_probes/num_ports*100
pctb = args.b_side_probes/num_ports*100
print("""
Simulating the easy case:
peer A -> endpoint-dependent NAT --- endpoint-independent NAT <- peer B
A probes 1 target port on B from {} source ports
(this is {:.2g}% of the search space)
B probes {} target ports on A from 1 source port
(this is {:.2g}% of the search space)
""".format(args.a_side_probes, pcta, args.b_side_probes, pctb))
print("Probability of successful traversal: %.2f%%" % (prob*100))
if __name__ == "__main__":
main()