-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgym_eval.py
executable file
·244 lines (219 loc) · 6.9 KB
/
gym_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from __future__ import division
import os
os.environ["OMP_NUM_THREADS"] = "1"
import argparse
import torch
from torch.autograd import Variable
from environment import mario_env
from utils import read_config, setup_logger
from model import MarioNET
from player_util import Agent
import gym
import logging
import time
from collections import OrderedDict
import torch.autograd.profiler as profiler
import time
from pprint import pformat, pprint
from gym.wrappers.monitoring.video_recorder import VideoRecorder
import crayons
import numpy as np
gym.logger.set_level(40)
parser = argparse.ArgumentParser(description="MARIO_EVAL")
parser.add_argument(
"-ev",
"--env",
default="SuperMarioBros-v0",
help="environment to train on (default: SuperMarioBros-v0)",
)
parser.add_argument(
"-ne",
"--num-episodes",
type=int,
default=1,
help="how many episodes in evaluation (default: 1)",
)
parser.add_argument(
"-lmr",
"--load-model-dir",
default="trained_models/",
help="folder to load trained models from",
)
parser.add_argument(
"-ld", "--log-dir", default="logs/", metavar="LG", help="folder to save logs"
)
parser.add_argument(
"-r", "--render", action="store_true", help="Watch game as it being played"
)
parser.add_argument(
"-rf",
"--render-freq",
type=int,
default=1,
help="Frequency to watch rendered game play",
)
parser.add_argument(
"-mel",
"--max-episode-length",
type=int,
default=100000,
help="maximum length of an episode (default: 100000)",
)
parser.add_argument(
"-gp",
"--gpu-id",
type=int,
default=-1,
help="GPU to use [-1 CPU only] (default: -1)",
)
parser.add_argument(
"-sr", "--skip-rate", type=int, default=4, help="frame skip rate (default: 4)"
)
parser.add_argument(
"-s", "--seed", type=int, default=1, help="random seed (default: 1)"
)
parser.add_argument(
"-nge",
"--new-gym-eval",
action="store_true",
help="Create a gym evaluation for upload",
)
parser.add_argument(
"-hs",
"--hidden-size",
type=int,
default=512,
help="LSTM Cell number of features in the hidden state h",
)
parser.add_argument(
"-tps",
"--time-per-stage",
type=int,
default=400,
help="time allowed for agent to complete stage",
)
parser.add_argument(
"-tss",
"--test-single-stages",
action="store_true",
help="test agent on single stages",
)
parser.add_argument(
"-es",
"--episode-start",
type=int,
default=0,
help="Used if testing on single stages, parameter value is stage number for agent to run on first (where World: 1, Stage: 1 would be defalut: 0 and World: 8, Stage 4 would be represented with int 31 if want to run first episode on that stage",
)
parser.add_argument(
"-lrs",
"--load-rms-stats",
action="store_true",
help="load saved running mean stats for observations, running mean is no longer updated",
)
parser.add_argument(
"-rv",
"--record-video",
action="store_true",
help="record and save video of episode run",
)
args = parser.parse_args()
gpu_id = args.gpu_id
torch.manual_seed(args.seed)
if gpu_id >= 0:
torch.cuda.manual_seed(args.seed)
saved_state = torch.load(
f"{args.load_model_dir}{args.env}.dat", map_location=lambda storage, loc: storage
)
setup_logger(f"{args.env}_mon_log", rf"{args.log_dir}{args.env}_mon_log")
log = logging.getLogger(f"{args.env}_mon_log")
env_id = args.env
env = mario_env(env_id, args)
d_args = vars(args)
for k in d_args.keys():
log.info(f"{crayons.yellow(f'{k}: {d_args[k]}', bold=True)}")
num_tests = 0
start_time = time.time()
reward_total_sum = 0
player = Agent(None, env, args, None)
player.model = MarioNET(
player.env.observation_space.shape[0], player.env.action_space, args
)
player.gpu_id = gpu_id
if gpu_id >= 0:
with torch.cuda.device(gpu_id):
player.model = player.model.cuda()
if args.new_gym_eval:
player.env = gym.wrappers.Monitor(player.env, f"{args.env}_monitor", force=True)
if gpu_id >= 0:
with torch.cuda.device(gpu_id):
player.model.load_state_dict(saved_state)
state_to_save = player.model.state_dict()
else:
player.model.load_state_dict(saved_state)
player.model.eval()
tempList = []
try:
for i_episode in range(args.num_episodes):
if args.test_single_stages:
player.env.close()
env_id = f"SuperMarioBros-{((args.episode_start+i_episode)//4)+1}-{((args.episode_start+i_episode)%4)+1}-v0"
player.env = mario_env(env_id, args)
if args.load_rms_stats:
player.env.load("test_env_data")
player.env.set_training_off()
player.state = player.env.reset()
if args.record_video:
video_recorder = VideoRecorder(
player.env, f"vid_log/{env_id}{i_episode}.mp4", enabled=True
)
if gpu_id >= 0:
with torch.cuda.device(gpu_id):
player.state = torch.from_numpy(player.state).cuda()
else:
player.state = torch.from_numpy(player.state)
player.eps_len = 0
reward_sum = 0
while 1:
if args.render:
if i_episode % args.render_freq == 0:
player.env.render()
if args.record_video:
video_recorder.capture_frame()
player.action_test()
reward_sum += player.reward
if player.done:
if (
not player.env.unwrapped.is_single_stage_env
or not player.env.was_real_done
): # player.info["life"]!=255: #
if args.load_rms_stats:
player.env.load("test_env_data")
player.env.set_training_off()
player.state = player.env.reset()
if gpu_id >= 0:
with torch.cuda.device(gpu_id):
player.state = torch.from_numpy(player.state).cuda()
else:
player.state = torch.from_numpy(player.state)
else:
num_tests += 1
reward_total_sum += reward_sum
reward_mean = reward_total_sum / num_tests
log.info(
"{}".format(
crayons.yellow(
f"Time {time.strftime('%Hh %Mm %Ss', time.gmtime(time.time() - start_time))}, episode reward {reward_sum}, episode length {player.eps_len}, reward mean {reward_mean:.4f}",
bold=True,
)
)
)
player.eps_len = 0
if args.record_video:
video_recorder.close()
video_recorder.enabled = False
break
except KeyboardInterrupt:
print("KeyboardInterrupt exception is caught")
finally:
player.env.close()