Skip to content

Latest commit

 

History

History
207 lines (174 loc) · 6.08 KB

File metadata and controls

207 lines (174 loc) · 6.08 KB
comments difficulty edit_url tags
true
Medium
Greedy
Array
Binary Search
Sorting

中文文档

Description

You are given an integer array banned and two integers n and maxSum. You are choosing some number of integers following the below rules:

  • The chosen integers have to be in the range [1, n].
  • Each integer can be chosen at most once.
  • The chosen integers should not be in the array banned.
  • The sum of the chosen integers should not exceed maxSum.

Return the maximum number of integers you can choose following the mentioned rules.

 

Example 1:

Input: banned = [1,4,6], n = 6, maxSum = 4
Output: 1
Explanation: You can choose the integer 3.
3 is in the range [1, 6], and do not appear in banned. The sum of the chosen integers is 3, which does not exceed maxSum.

Example 2:

Input: banned = [4,3,5,6], n = 7, maxSum = 18
Output: 3
Explanation: You can choose the integers 1, 2, and 7.
All these integers are in the range [1, 7], all do not appear in banned, and their sum is 10, which does not exceed maxSum.

 

Constraints:

  • 1 <= banned.length <= 105
  • 1 <= banned[i] <= n <= 109
  • 1 <= maxSum <= 1015

Solutions

Solution 1: Deduplication + Sorting + Binary Search

We can add $0$ and $n + 1$ to the array banned, then deduplicate and sort the array banned.

Next, we enumerate every two adjacent elements $i$ and $j$ in the array banned. The range of selectable integers is $[i + 1, j - 1]$. We use binary search to enumerate the number of elements we can select in this range, find the maximum number of selectable elements, and then add it to $ans$. At the same time, we subtract the sum of these elements from maxSum. If maxSum is less than $0$, we break the loop. Return the answer.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array banned.

Python3

class Solution:
    def maxCount(self, banned: List[int], n: int, maxSum: int) -> int:
        banned.extend([0, n + 1])
        ban = sorted(set(banned))
        ans = 0
        for i, j in pairwise(ban):
            left, right = 0, j - i - 1
            while left < right:
                mid = (left + right + 1) >> 1
                if (i + 1 + i + mid) * mid // 2 <= maxSum:
                    left = mid
                else:
                    right = mid - 1
            ans += left
            maxSum -= (i + 1 + i + left) * left // 2
            if maxSum <= 0:
                break
        return ans

Java

class Solution {
    public int maxCount(int[] banned, int n, long maxSum) {
        Set<Integer> black = new HashSet<>();
        black.add(0);
        black.add(n + 1);
        for (int x : banned) {
            black.add(x);
        }
        List<Integer> ban = new ArrayList<>(black);
        Collections.sort(ban);
        int ans = 0;
        for (int k = 1; k < ban.size(); ++k) {
            int i = ban.get(k - 1), j = ban.get(k);
            int left = 0, right = j - i - 1;
            while (left < right) {
                int mid = (left + right + 1) >>> 1;
                if ((i + 1 + i + mid) * 1L * mid / 2 <= maxSum) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            ans += left;
            maxSum -= (i + 1 + i + left) * 1L * left / 2;
            if (maxSum <= 0) {
                break;
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int maxCount(vector<int>& banned, int n, long long maxSum) {
        banned.push_back(0);
        banned.push_back(n + 1);
        sort(banned.begin(), banned.end());
        banned.erase(unique(banned.begin(), banned.end()), banned.end());
        int ans = 0;
        for (int k = 1; k < banned.size(); ++k) {
            int i = banned[k - 1], j = banned[k];
            int left = 0, right = j - i - 1;
            while (left < right) {
                int mid = left + ((right - left + 1) / 2);
                if ((i + 1 + i + mid) * 1LL * mid / 2 <= maxSum) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            ans += left;
            maxSum -= (i + 1 + i + left) * 1LL * left / 2;
            if (maxSum <= 0) {
                break;
            }
        }
        return ans;
    }
};

Go

func maxCount(banned []int, n int, maxSum int64) (ans int) {
	banned = append(banned, []int{0, n + 1}...)
	sort.Ints(banned)
	ban := []int{}
	for i, x := range banned {
		if i > 0 && x == banned[i-1] {
			continue
		}
		ban = append(ban, x)
	}
	for k := 1; k < len(ban); k++ {
		i, j := ban[k-1], ban[k]
		left, right := 0, j-i-1
		for left < right {
			mid := (left + right + 1) >> 1
			if int64((i+1+i+mid)*mid/2) <= maxSum {
				left = mid
			} else {
				right = mid - 1
			}
		}
		ans += left
		maxSum -= int64((i + 1 + i + left) * left / 2)
		if maxSum <= 0 {
			break
		}
	}
	return
}