Let 2n (equally spaced) points on a circle be chosen. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number
$C_n$ .
记该问题的解为$h_n$,选择一端固定在 1 上的线段为基线,另一端指向 2k,圆上的 2n 个点被分为两组,一组有 2k-2 个,另一组有 2n-2k 个,同时问题$h_n$被划分为$h_{k-1}$和$h_{n-k}$。所以有,
显然$h_n$与卡特兰数$C_n$有相同的递推关系和初始项,因此,
:::info 本题与第 7 章 EX41 是类似的问题 :::
Prove that the number of 2-by-n arrays
$$ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \end{matrix} $$ that can be made from the numbers 1,2, ..., 2n such that
$$ x_{11} \le x_{12} \le \cdots \le x_{1n} \\ x_{21} \le x_{22} \le \cdots \le x_{2n} \\ $$
$$ x_{11} \le x_{21}, x_{12} x_{22}, ..., x_{1n} \le x_{2n} $$ equals the $n$th Catalan number,
$C_n$ .
将数组第一行的元素标记为 +1,第二行元素标记为 -1。 问题可以转化为:将 +1 和 -1 按照从左到右的顺序排列,并且保证第 i 个 +1 在第 i 个 -1 前面,即$x_{1i} \le x_{2i}$($1\le i \le n$)。
这与前 k 项和满足
等价,该问题与卡特兰数的组合意义相同,解即为第 n 个卡特兰数。
Write out all of the multiplication schemes for four numbers and the triangularization of a convex polygonal region of five sides corresponding to them.
考虑固定顺序的乘法,因此一共有$C_{n-1} = C_{3} = \frac{1}{4} \binom{6}{3} = 5$种方案,与之对应的三角形划分如图所示。
Determine the triangularization of a convex polygonal region corresponding to the following multiplication schemes:
(a)
$(a_1 \times (((a_2 \times a_3) \times (a_4 \times a_5)) \times a_6))$ (b)
$(((a_1 \times a_2)\times (a_3 \times (a_4 \times a_5))) \times((a_6 \times a_7) \times a_8))$
以 EX4(a) 为例,步骤同上一题,
* Let m and n be nonnegative integers with n
$\le$ m. There are m + n people in line to get into a theater for which admission is 50 cents. Of the m + n people, n have a 50-cent piece and m have a $1 dollar bill. The box office opens with an empty cash register. Show that the number of ways the people can line up so that change is available when needed is
$$ \frac{n-m+1}{n+1} \binom{m+n}{m} $$ (The case m = n is the case treated in Section 8.1.)
Let the sequence
$h_0, h_1, ... , h_n, \cdots$ be defined by$h_n = 2n^2 - n + 3, (n \ge 0)$ . Determine the difference table, and find a formula for$\displaystyle \sum_{k=0}^{n} h_k$ .
计算$h_0 =3, h_1 = 4, h_2 = 9$,一阶差分$\Delta^1 h_0 = 1, \Delta^1 h_1 = 5$, 二阶差分$\Delta^2 h_0 = 4$,即得到第 0 条对角线。
所以$h_n = 3 \binom{n}{0} + \binom{n}{1} + 4 \binom{n}{2}$,进而
The general term
$h_n$ of a sequence is a polynomial in n of degree 3. If the first four entries of the Oth row of its difference table are 1, -1, 3, 10, determine$h_n$ and a formula for$\displaystyle \sum_{k=0}^{n} h_k$ ·
由题意,$h_n$是 3 次多项式,那么$\Delta^4 h_n=0$,求出差分表第 0 条对角线,
因此$h_n = \binom{n}{0} -2 \binom{n}{1} + 6 \binom{n}{2} -3 \binom{n}{3}$,进而
Find the sum of the fifth powers of the first n positive integers.
设$h_n = n^5$,那么它的六阶差分为 0,求出差分表,
Prove that the following formula holds for the kth-order differences of a sequence
$h_0, h_1, \cdots, h_n, \cdots$ :
$$ \Delta^k h_n = \sum_{j=0}^{k}(-1)^{k-j} \binom{k}{j} h_{n+j} $$
采用数学归纳法证明,当 k=0 时,有
成立,假设当$k=m$时结论成立,即有
当$k=m+1$时,
综上,证毕。
If
$h_n$ is a polynomial in n of degree m, prove that the constants$c_0, c_1, \cdots, c_m$ such that
$$ h_n = c_0 \binom{n}{0} + c_1 \binom{n}{1} + \cdots + c_m \binom{n}{m} $$ are uniquely determined. (Cf. Theorem 8.2.2.)
本题主要证明唯一性,假设存在不同的序列${c_i}{i=0}^{m}$和
序列${d_i}{i=0}^{m}$使得存在 i 满足
显然$\dbinom{n}{k} \gt 0$,那么只能是$c_k -d_k =0, 0 \le k \le m$,这与假设矛盾,因此假设不成立。
Compute the Stirling numbers of the second kind S(8, k), (k = 0, 1, ..., 8).
第二类 Stirling 数的性质,
$S(p, 0) = 0, p \ge 1$ $S(p, p) = 1, p \ge 0$ $S(p, k) = kS(p-1, k) + S(p-1, k-1)$
进行打表,
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 |
:::details 验证程序
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
stirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", stirList[p][k]);
}
printf("\n");
}
printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
for(int k = 0; k <= 8; ++ k) {
printf("%d\t", stirList[8][k]);
}
return 0;
}
:::
Prove that the Stirling numbers of the second kind satisfy the following relations:
(a)
$S(n, 1) = 1, \quad (n \ge 1)$ (b)
$S(n, 2) = 2^{n-1} -1, \quad (n \ge 2)$ (c)
$S(n, n-1) = \binom{n}{n}, \quad (n \ge 1)$ (d)
$S(n, n-2) = \binom{n}{3} + 3 \binom{n}{4} \quad (n \ge 2)$
由定理 8.2.5 知$S(p, k)$是把 p 个元素集合划分到 k 个不可区分的盒子且没有空盒子的划分个数。 因此,$S(p, 1)$是把 p 个元素划分到 1 个盒子且没有空盒子的划分个数,显然只有 1 种。
使用数学归纳法证明,当 n=1 时,$S(1, 0) = 0 = \binom{1}{2}$,显然成立。假设当$n=k$时有$S(k,k-1) = \binom{k}{2}$,当$n=k+1$时有,
综上,证毕。
考虑问题:将 n 个元素划分到 n-2 个不可区分的盒子且没有空盒子的个数 S(n, n-2)。
如果有一个盒子中有三个元素,有$\binom{n}{3}$种情况;如果有两个盒子各有两个元素,先从 n 个元素中选出 2 个,再从剩余 n-2 个元素中选出 2 个,两种情况对称,因此是$\displaystyle \frac{\binom{n}{2}\binom{n-2}{2}}{2!} = 3\binom{n}{4}$。
因此有$S(n, n-2) = \displaystyle \binom{n}{3} + 3\binom{n}{4}$。
Let X be a p-element set and let Y be a k-element set. Prove that the number of functions
$f : X \rightarrow Y$ which map X onto Y equals
$$ k! S(p, k) = S^{\sharp}(p, k) $$
X 映射到 Y 是满射,映射函数等价于把 p 个元素放入到 k 个可区分的盒子中,即有$S^{\sharp}(p, k)$个; 同时由可区分盒子与不可区分盒子划分的关系,有$S^{\sharp}(p, k) = k!S(p, k)$, 因此映射函数的个数也等于$k!S(p, k)$。
[!IMPORTANT] 翻译错误 中文版中满射(onto)被错译成到上函数
* Find and verify a general formula for
$$ \sum_{k=0}^{n} k^p $$ involving Stirling numbers of the second kind.
The number of partitions of a set of n elements into k distinguishable boxes (some of which may be empty) is
$k_n$ . By counting in a different way, prove that
$$ k^n = \binom{k}{1} 1! S(n, 1) + \binom{k}{2} 2! S(n, 2) + \cdots + \binom{k}{n} n! S(n, n) $$ If
$k \ge n$ , define$S(n, k)$ to be 0.
方法一:考虑把 n 个元素分别放在 k 个盒子中,每个元素有 k 种放置放法,因此共$k^n$种方法。
方法二:先区分盒子是否非空,从 k 个盒子中选出 i 个非空盒子,问题变为把 n 个元素放入 i 个可区分盒子且盒子非空中的方法数,即为$S^{\sharp}(n, i)$,i 可能的取值为$i=1,2, \cdots, k$,
方法一和方法二是同一问题的两种解决方法,因此等价,所以有,
[!IMPORTANT] 翻译错误 本题中文书中有翻译错误,把可区分写成了不可区分。
Compute the Bell number
$B_8$ . (Cf. Exercise 11.)
Bell 数$B_p$是第 p 行的第二类 Stirling 数$S(p, k)$之和。
:::details 程序验证
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
stirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", stirList[p][k]);
}
printf("\n");
}
printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
int bellNum = 0;
for(int k = 0; k <= 8; ++ k) {
printf("%d\t", stirList[8][k]);
bellNum += stirList[8][k];
}
printf("\n Bell number B8 is %d\n", bellNum);
return 0;
}
:::
Compute the triangle of Stirling numbers of the first kind s(n, k) up to n = 7.
第一类 Stirling 数的递推关系为,
初始条件与第二类 Stirling 数相同,$s(p, p) = 1, s(p, 0) = 0, p \ge 1, s(0, 0) = 1$。
:::details 程序验证
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto firstStirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
firstStirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
firstStirList[p][k] = firstStirList[p-1][k] * (p-1)
+ firstStirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", firstStirList[p][k]);
}
printf("\n");
}
printf("\n s(7, k), k = 0, 1, 2, ..., 7\n");
for(int k = 0; k <= 7; ++ k) {
printf("%d\t", firstStirList[7][k]);
}
return 0;
}
:::
Write
$[n]_k$ as a polynomial in n for k = 5,6, and 7.
由定义可以求出$[n]_5$,
也可以通过查表写$[n]_7$,
$$ \begin{aligned} [n]7 = & \sum{k=0}^{7}(-1)^{7-k}s(7,k) n^k \ =& n^7 - 21 n^6 + 175 n^5 - 735 n^4 + 1624 n^3 - 1764 n^2 + 720 n \end{aligned} $$
Prove that the Stirling numbers of the first kind satisfy the following formulas:
(a)
$s(n, 1) = (n-1) !, \quad (n \ge 1)$ (b)
$s(n, n-1) = \binom{n}{2}, \quad (n \ge 1)$
结合递归式,易证。
VerifY that
$[n]_n$ = n!, and write n! as a polynomial in n using the Stirling numbers of the first kind. Do this explicitly for n = 6.
带入$p = n$显然有$[n]_n = n!, n \ge 0$。
带入$p = n$有,
$$ n! = [n]n = \sum{k=0}^{n} (-1)^{n-k} s(p, k) n^k $$
当$n=6$时,结合 s(p, k) 三角形有,
For each integer n = 1,2,3,4,5, construct the diagram of the set
$\mathcal{P}_n$ of partitions of n, partially ordered by majorization.
这里的图(diagram)指的是 Ferrers 图,这是很容易画出的,以$5=4+1$为例,
:::info 本题应该是优超(majorize)关系的 Hasse 图。 :::
(a) Calculate the partition number
$p_6$ and construct the diagram of the set$\mathcal{P}_6$ , partially ordered by majorization.(b) Calculate the partition number
$p_7$ and construct the diagram of the set$\mathcal{P}_7$ , partially ordered by majorization.
以 (a) 为例,6 对应的分拆为,
因此$p_6 = 11$。
A total order on a finite set has a unique maximal element (a largest element) and a unique minimal element (a smallest element). What are the largest partition and smallest partition in the lexicographic order on
$\mathcal{P}_n$ (a total order)?
最大分拆为 n,最小分拆为$n=1+1+\cdots+1$。
A partial order on a finite set may have many maximal elements and minimal elements. In the set
$\mathcal{P}_n$ of partitions of n partially ordered by majorization, prove that there is a unique maximal element and a unique minimal element.
:::info 简评 看了几份答案,似乎都不是严格的证明, 只是稍微解释了$n$比其它都大,$\underbrace{1+1+\cdots+1}_{n\text{个}}$比其它都小。
待完善 :::
Let
$t_1, t_2, \cdots, t_m$ be distinct positive integers, and let
$$ q_n = q_n(t_1, t_2, \cdots, t_m) $$ equal the number of partitions of n in which all parts are taken from
$t_1, t_2, \cdots, t_m$ . Define$q_0 = 1$ . Show that the generating function for$q_0, q_1, \cdots, q_n, \cdots$ is
$$ \prod_{k=1}^{m}(1-x^{t_k})^{-1} $$
由分拆数的性质,$q_n$等于方程$n_1t_1 + n_2t_2 + \cdots + n_m t_m = n$非负整数解$n_1, n_2, \cdots, n_m$的个数, 所以$q_0, q_1, \cdots, q_n, \cdots$的生成函数为
Determine the conjugate of each of the following partitions:
(a)
$12 = 5 + 4 + 2 + 1$ (b)
$15 = 6 + 4 + 3 + 1 + 1$ (c)
$20 = 6 + 6 + 4 + 4$ (d)
$21 = 6 + 5 + 4 + 3 + 2 + 1$ (e)
$29=8+6+6+4+3+2$
以 (a) 为例,先画出 Ferrrers 图,再画出共轭分拆的图,
因此共轭分拆为$12 = 4 + 3 +2 + 2 + 1$。
For each integer n > 2, determine a self-conjugate partition of n that has at least two parts.
设$\lambda$是 n 的分拆$n_1 + n_2 + \cdots + n_k$,当 n 为奇数时,取$n_1 = \frac{(n+1)}{2}, n_2 = n_3 = \cdots = n_{k} = 1, k = \frac{n+1}{2}$。
当 n 为偶数时,取$n_1 = \frac{n}{2}, n_2 = 2, n_3 = n_4 = \cdots = n_k = 1, k = \frac{n}{2}$。
以 n=7 和 n=8 分别为奇数和偶数的例子,如图,
Prove that conjugation reverses the order of majorization; that is, if
$\lambda$ and$\mu$ are partitions of n and$\lambda$ is majorized by$\mu$ , then$\mu^{\ast}$ is majorized by$\lambda^{\ast}$ .
由题意,当$\lambda$被$\mu$优超时,有
假设$\mu^{} \not \le \lambda^{\ast}$,即存在 k 使,
即有$\mu_k^{\ast} \gt \lambda_k^{\ast}$,记$u = \mu_k^{\ast}, v = \lambda_k^{\ast}$。又因为$\mu^*$和$\lambda^{\ast}$都是 n 的分拆,所以有
如图,由互换行列前后的关系可得,
根据放缩,
可得
其中 (1) 式与 (2) 式矛盾,因此假设不成立,综上,证毕。
Prove that the number of partitions of the positive integer n into parts each of which is at most 2 equals
$\lfloor n/2 \rfloor +1$ . (Remark: There is a formula, namely the nearest integer to $\frac{(n+3)^2}{12}, for the number of partitions of n into parts each of which is at most 3 but it is much more difficult to prove. There is also one for partitions with no part more than 4, but it is even more complicated and difficult to prove.)
当$n=2r$时,每一部分至多是 2 的分拆为
当$n=2r+1$时,每一部分最多是 2 的分拆为
不论奇偶,都是分拆为 r+1 个部分,当 r 为偶数时,$r+1 = \frac{n}{2} + 1 = \lfloor n/2 \rfloor + 1$,当 r 为奇数时,$r+1 = \frac{n-1}{2} + 1 = \lfloor (n+1)/2 \rfloor = \lfloor n /2 \rfloor + 1$。
综上,分拆成每一部分至多是 2 的分拆数等于$\lfloor n/2 \rfloor$。
Prove that the partition function satisfies
$$ p_n \gt p_{n-1} \quad (n \ge 2) $$
考虑 n-1 的分拆数和 n 的分拆数,显然所有 n-1 的分拆数 +1 都是 n 的分拆数,此外 n 还有它自己作为分拆数,因此一定有$p_n \gt p_{n-1}$。
Evaluate
$h_{k-1}^{(k)}$ the number of regions into which k-dimensional space is partitioned by k - 1 hyperplanes in general position.
Use the recurrence relation (8.31) to compute the small Schroder numbers
$s_8$ and$s_9$ .
小 Schroder 数的性质:
$s_1 = s_2 = 1$ $(n+2) s_{n+2} -3(2n+1)x_{n+1} + (n-1)s_n = 0, n \ge 1$
由递推关系和初始项,可以计算出$s_3 = 3, s_4 =11, s_5 = 45, s_6 = 197, s_7 = 903$,
求出$s_8 = 4279$,同理可以求出$9s_9 - 3 \times 15 \times 4279 + 6 \times 903 = 0$,得$s_9 = 20793$。
Use the recurrence relation (8.32) to compute the large Schroder numbers
$R_7$ and$R_8$ . Verify that$R_7 = 2s_8$ and$R_8 = 2s_9$ , as stated in Corollary 8.5.8.
大 Schroder 数的性质:
带入$n=7$计算,
:::tip
题目要求使用递推关系计算,大 Schroder 数的递推关系为,
注意与 Catalan 数进行区分。 :::
Use the generating function for the large Schroder numbers to compute the first few large Schroder numbers.
大 Schroder 数序列的生成函数为
因此,
综上,有$R_0 = 1, R_1 = 2, R_2 = 6, R_3 = 22$。
Use the generating function for the small Schroder numbers to compute the first few small Schroder numbers.
小 Schroder 数序列的生成函数为
同上,带入$\sqrt{x^2-6x+1}$的泰勒级数,
综上,有$r_1 = 1, r_2 = 1, r_3 = 3, r_4 = 11$。
Prove that the Catalan number
$C_n$ equals the number of lattice paths from (0,0) to (2n, 0) using only upsteps (1, 1) and downsteps (1, -1) that never go above the horizontal axis (so there are as many up steps as there are downsteps). (These are sometimes called Dyck paths.)
记上行步 (1,1) 为 -1,下行步 (1,-1) 为 +1,步行序列为$a_1, a_2, \cdots, a_{2n}$。
因为起点 y 坐标与终点 y 坐标相同,那么一定有 n 个上行步(+1)和 n 个下行步(-1),并且从不经过水平轴上方的格路径,即前 k 项和$a_1 + a_2 + \cdots + a_k \ge 0, 1 \le k \le 2n$,该问题与第 n 个 Catalan 数的组合意义相同,因此等于$C_n$。
* The large Schroder number
$C_n$ counts the number of subdiagonal HVD-lattice paths from (0,0) to (n, n). The small Schroder number counts the number of dissections of a convex polygonal region of n + 1. Since$R_n = 2s_{n+1}$ for n$\le$ 1, there are as many subdiagonal HVD-lattice paths from (0,0) to (n, n) as there are dissections of a convex polygonal region of n + 1 sides. Find a one-to-one correspondence between these lattice paths and these dissections.