Skip to content

Latest commit

 

History

History
880 lines (634 loc) · 25.5 KB

File metadata and controls

880 lines (634 loc) · 25.5 KB

第 8 章 特殊计数序列

EX1

Let 2n (equally spaced) points on a circle be chosen. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number $C_n$.

EX1

记该问题的解为$h_n$,选择一端固定在 1 上的线段为基线,另一端指向 2k,圆上的 2n 个点被分为两组,一组有 2k-2 个,另一组有 2n-2k 个,同时问题$h_n$被划分为$h_{k-1}$和$h_{n-k}$。所以有,

$$ h_n = \sum_{k=1}^{n}h_{k-1}h_{n-k}, \quad n \ge 1, h_0 = h_1 = 1 $$

显然$h_n$与卡特兰数$C_n$有相同的递推关系和初始项,因此,

$$ h_n = \frac{1}{n+1} \binom{2n}{n} $$

:::info 本题与第 7 章 EX41 是类似的问题 :::

EX2

Prove that the number of 2-by-n arrays

$$ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \end{matrix} $$

that can be made from the numbers 1,2, ..., 2n such that

$$ x_{11} \le x_{12} \le \cdots \le x_{1n} \\ x_{21} \le x_{22} \le \cdots \le x_{2n} \\ $$

$$ x_{11} \le x_{21}, x_{12} x_{22}, ..., x_{1n} \le x_{2n} $$

equals the $n$th Catalan number, $C_n$.

将数组第一行的元素标记为 +1,第二行元素标记为 -1。 问题可以转化为:将 +1 和 -1 按照从左到右的顺序排列,并且保证第 i 个 +1 在第 i 个 -1 前面,即$x_{1i} \le x_{2i}$($1\le i \le n$)。

这与前 k 项和满足

$$ a_1 + a_2 + \cdots + a_k \ge 0 $$

等价,该问题与卡特兰数的组合意义相同,解即为第 n 个卡特兰数。

EX3

Write out all of the multiplication schemes for four numbers and the triangularization of a convex polygonal region of five sides corresponding to them.

考虑固定顺序的乘法,因此一共有$C_{n-1} = C_{3} = \frac{1}{4} \binom{6}{3} = 5$种方案,与之对应的三角形划分如图所示。

EX3

EX4

Determine the triangularization of a convex polygonal region corresponding to the following multiplication schemes:

(a) $(a_1 \times (((a_2 \times a_3) \times (a_4 \times a_5)) \times a_6))$

(b) $(((a_1 \times a_2)\times (a_3 \times (a_4 \times a_5))) \times((a_6 \times a_7) \times a_8))$

EX4(a)

以 EX4(a) 为例,步骤同上一题,

EX4

EX5 ⭐

* Let m and n be nonnegative integers with n $\le$ m. There are m + n people in line to get into a theater for which admission is 50 cents. Of the m + n people, n have a 50-cent piece and m have a $1 dollar bill. The box office opens with an empty cash register. Show that the number of ways the people can line up so that change is available when needed is

$$ \frac{n-m+1}{n+1} \binom{m+n}{m} $$

(The case m = n is the case treated in Section 8.1.)

EX6

Let the sequence $h_0, h_1, ... , h_n, \cdots$ be defined by $h_n = 2n^2 - n + 3, (n \ge 0)$. Determine the difference table, and find a formula for $\displaystyle \sum_{k=0}^{n} h_k$.

$h_n$是 2 次多项式,因此有$\Delta^3 h_n = 0$,

计算$h_0 =3, h_1 = 4, h_2 = 9$,一阶差分$\Delta^1 h_0 = 1, \Delta^1 h_1 = 5$, 二阶差分$\Delta^2 h_0 = 4$,即得到第 0 条对角线。

$$ \begin{array}{cccc} 3 & 4 & 9 & \cdots \\ 1 & 5 & 9 & \cdots \\ 4 & 4 & 4 & \cdots \\ 0 & 0 & 0 & \cdots \end{array} $$

所以$h_n = 3 \binom{n}{0} + \binom{n}{1} + 4 \binom{n}{2}$,进而

$$ \begin{aligned} \sum_{k=0}^{n} h_k =& 3 \sum_{k=0}^{n} \binom{k}{0} + \sum_{k=0}^{n} \binom{k}{1} + 4 \sum_{k=0}^{n} \binom{k}{2} \\ =& 3 \binom{n+1}{1} + \binom{n+1}{2} + 4 \binom{n+1}{3} \quad n \ge 0 \end{aligned} $$

EX7

The general term $h_n$ of a sequence is a polynomial in n of degree 3. If the first four entries of the Oth row of its difference table are 1, -1, 3, 10, determine $h_n$ and a formula for $\displaystyle \sum_{k=0}^{n} h_k$·

由题意,$h_n$是 3 次多项式,那么$\Delta^4 h_n=0$,求出差分表第 0 条对角线,

$$ \begin{array}{ccccc} 1 & -1 & 3 & 10 & \cdots \\ -2 & 4 & 7 & \cdots \\ 6 & 3 & \cdots \\ -3 & \cdots \\ 0 & \cdots \end{array} $$

因此$h_n = \binom{n}{0} -2 \binom{n}{1} + 6 \binom{n}{2} -3 \binom{n}{3}$,进而

$$ \begin{aligned} \sum_{k=0}^{n} h_k =& \sum_{k=0}^{n} \binom{k}{0} -2 \sum_{k=0}^{n} \binom{k}{1} + 6 \sum_{k=0}^{n} \binom{k}{2} -3 \sum_{k=0}^{n} \binom{k}{3} \\ =& \binom{n+1}{1} -2 \binom{n+1}{2} + 6 \binom{n+1}{3} -3 \binom{n+1}{4} \quad n \ge 0 \end{aligned} $$

EX8

Find the sum of the fifth powers of the first n positive integers.

设$h_n = n^5$,那么它的六阶差分为 0,求出差分表,

$$ \begin{array}{ccccc} 0 & 1 & 32 & 243 & 1024 & 3125 \cdots \\ 1 & 31 & 211 & 781 & 2101 \cdots \\ 30& 180 & 570 & 1320 & \cdots \\ 150 & 390 & 750 & \cdots \\ 240 & 360 & \cdots \\ 120 & \cdots \\ 0 & \cdots \end{array} $$

$$ k^5 = \binom{k}{1} + 30 \binom{k}{2} + 150 \binom{k}{3} + 240 \binom{k}{4} + 120 \binom{k}{5} $$

$$ \begin{aligned} \sum_{k=1}^{n} k^5 =& \sum_{k=1}^{n} \binom{k}{1} + 30\sum_{k=1}^{n} \binom{k}{2} + 150 \sum_{k=0}^{n} \binom{k}{3} + 240 \sum_{k=0}^{n} \binom{k}{4} + 120 \sum_{k=0}^{n} \binom{k}{5} \\ =& \binom{n+1}{2} + 30 \binom{n+1}{3} + 150 \binom{n+1}{4} + 240 \binom{n+1}{5} + 120 \binom{n+1}{6} \end{aligned} $$

EX9

Prove that the following formula holds for the kth-order differences of a sequence $h_0, h_1, \cdots, h_n, \cdots$:

$$ \Delta^k h_n = \sum_{j=0}^{k}(-1)^{k-j} \binom{k}{j} h_{n+j} $$

采用数学归纳法证明,当 k=0 时,有

$$ \Delta h_n = (-1)^0 \binom{0}{0} h_{0} = h_0 $$

成立,假设当$k=m$时结论成立,即有

$$ \Delta^m h_n = \sum_{j=0}^{m}(-1)^{m-j} \binom{m}{j} h_{n+j} $$

当$k=m+1$时,

$$ \begin{aligned} \Delta^{m+1} h_n = & \Delta^{m} h_{n+1} - \Delta^{m} h_{n} \\ =& \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} h_{n+1+j} - \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} h_{n+j} \\ =& \sum_{j=1}^{m+1} (-1)^{m-j+1} \binom{m}{j-1} h_{n+j} - \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} h_{n+j} \\ =& (h_{n+(m+1)}- (-1)^{m}h_n) + \sum_{j=1}^{m} ((-1)^{m-j+1} \binom{m}{j-1} - (-1)^{m-j} \binom{m}{j}) h_{n+j} \\ =& (-1)^{(m+1)-(m+1)} h_{n+(m+1)} + (-1)^{(m+1) - 0} h_{n + 0} + \sum_{j=1}^{m} ((-1)^{m+1-j} \binom{m}{j-1} + (-1)^{m+1-j} \binom{m}{j}) h_{n+j} \\ =& (-1)^{(m+1)-(m+1)} h_{n+(m+1)} + (-1)^{(m+1) - 0} h_{n + 0} + \sum_{j=1}^{m} (-1)^{m+1-j} \binom{m+1}{j}) h_{n+j} \\ =& \sum_{j=0}^{m+1} (-1)^{m+1-j} \binom{m+1}{j} h_{n+j} \end{aligned} $$

综上,证毕。

EX10

If $h_n$ is a polynomial in n of degree m, prove that the constants $c_0, c_1, \cdots, c_m$ such that

$$ h_n = c_0 \binom{n}{0} + c_1 \binom{n}{1} + \cdots + c_m \binom{n}{m} $$

are uniquely determined. (Cf. Theorem 8.2.2.)

本题主要证明唯一性,假设存在不同的序列${c_i}{i=0}^{m}$和 序列${d_i}{i=0}^{m}$使得存在 i 满足 $c_i \neq d_i$,其中$0 \le i \le m$,

$$ \begin{aligned} h_n =& c_0 \binom{n}{0} + c_1 \binom{n}{1} + \cdots + c_m \binom{n}{m} \\ =& d_0 \binom{n}{0} + d_1 \binom{n}{1} + \cdots + d_m \binom{n}{m} \end{aligned} $$

$$ \sum_{k=0}^{m} (c_k - d_k) \binom{n}{k} = 0 $$

显然$\dbinom{n}{k} \gt 0$,那么只能是$c_k -d_k =0, 0 \le k \le m$,这与假设矛盾,因此假设不成立。

EX11

Compute the Stirling numbers of the second kind S(8, k), (k = 0, 1, ..., 8).

第二类 Stirling 数的性质,

  1. $S(p, 0) = 0, p \ge 1$
  2. $S(p, p) = 1, p \ge 0$
  3. $S(p, k) = kS(p-1, k) + S(p-1, k-1)$

进行打表,

$k$ 0 1 2 3 4 5 6 7 8
$S(8, k)$ 0 1 127 966 1701 1050 266 28 1

:::details 验证程序

 #include <iostream>
#include <vector>

using namespace std;
int main() {
    auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
    for(int p = 1; p < 10; ++ p) {
        stirList[p][p] = 1;
    }
    for(int p = 2; p < 10; ++ p) {
        for(int k = 1; k < p; ++ k) {
            stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
        }
    }
    for(int p = 0; p < 10; ++ p) {
        for(int k = 0; k <= p; ++ k) {
            printf("%d\t", stirList[p][k]);
        }
        printf("\n");
    }

    printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
    for(int k = 0; k <= 8; ++ k) {
        printf("%d\t", stirList[8][k]);
    }
    return 0;
}

:::

EX12

Prove that the Stirling numbers of the second kind satisfy the following relations:

(a) $S(n, 1) = 1, \quad (n \ge 1)$

(b) $S(n, 2) = 2^{n-1} -1, \quad (n \ge 2)$

(c) $S(n, n-1) = \binom{n}{n}, \quad (n \ge 1)$

(d) $S(n, n-2) = \binom{n}{3} + 3 \binom{n}{4} \quad (n \ge 2)$

EX12(a)

由定理 8.2.5 知$S(p, k)$是把 p 个元素集合划分到 k 个不可区分的盒子且没有空盒子的划分个数。 因此,$S(p, 1)$是把 p 个元素划分到 1 个盒子且没有空盒子的划分个数,显然只有 1 种。

EX12(b)

$$ S(p, p) = 1, S(p, 1) = 1 $$

$$ \begin{aligned} S(n, 2) = & 2S(n-1, 2) + S(n-1, 1) \\ =& 2S(n-1, 2) + 1 \\ =& 2(2S(n-2, 2) + S(n-2, 1)) + 1 \\ =& 2^2 S(n-2, 2) + (1 + 2) \\ =& 2^3 S(n-3, 2) + (1 + 2 + 2^2) \\ =& \cdots \\ =& 2^{n-2} S(n-(n-2), 2) + (1 + 2 + 2^2 + \cdots + 2^{n-3}) \\ =& \frac{1-2^{n-1}}{1-2} \\ =& 2^{n-1} - 1 \end{aligned} $$

EX12(c)

使用数学归纳法证明,当 n=1 时,$S(1, 0) = 0 = \binom{1}{2}$,显然成立。假设当$n=k$时有$S(k,k-1) = \binom{k}{2}$,当$n=k+1$时有,

$$ \begin{aligned} S(k+1, k) =& kS(k, k) + S(k, k-1) \\ = k + \binom{k}{2} \\ = k + \frac{k(k-1)}{2} \\ = \frac{k(k+1)}{2} \\ = \binom{k+1}{2} \end{aligned} $$

综上,证毕。

EX12(d)

考虑问题:将 n 个元素划分到 n-2 个不可区分的盒子且没有空盒子的个数 S(n, n-2)。

如果有一个盒子中有三个元素,有$\binom{n}{3}$种情况;如果有两个盒子各有两个元素,先从 n 个元素中选出 2 个,再从剩余 n-2 个元素中选出 2 个,两种情况对称,因此是$\displaystyle \frac{\binom{n}{2}\binom{n-2}{2}}{2!} = 3\binom{n}{4}$。

因此有$S(n, n-2) = \displaystyle \binom{n}{3} + 3\binom{n}{4}$。

EX13

Let X be a p-element set and let Y be a k-element set. Prove that the number of functions $f : X \rightarrow Y$ which map X onto Y equals

$$ k! S(p, k) = S^{\sharp}(p, k) $$

X 映射到 Y 是满射,映射函数等价于把 p 个元素放入到 k 个可区分的盒子中,即有$S^{\sharp}(p, k)$个; 同时由可区分盒子与不可区分盒子划分的关系,有$S^{\sharp}(p, k) = k!S(p, k)$, 因此映射函数的个数也等于$k!S(p, k)$。

[!IMPORTANT] 翻译错误 中文版中满射(onto)被错译成到上函数

EX14 ⭐

* Find and verify a general formula for

$$ \sum_{k=0}^{n} k^p $$

involving Stirling numbers of the second kind.

EX15

The number of partitions of a set of n elements into k distinguishable boxes (some of which may be empty) is $k_n$. By counting in a different way, prove that

$$ k^n = \binom{k}{1} 1! S(n, 1) + \binom{k}{2} 2! S(n, 2) + \cdots + \binom{k}{n} n! S(n, n) $$

If $k \ge n$, define $S(n, k)$ to be 0.

方法一:考虑把 n 个元素分别放在 k 个盒子中,每个元素有 k 种放置放法,因此共$k^n$种方法。

方法二:先区分盒子是否非空,从 k 个盒子中选出 i 个非空盒子,问题变为把 n 个元素放入 i 个可区分盒子且盒子非空中的方法数,即为$S^{\sharp}(n, i)$,i 可能的取值为$i=1,2, \cdots, k$,

$$ \sum_{i=1}^{k} \binom{k}{i} S^{\sharp} (n, i) = \sum_{i=1}^{k} \binom{k}{i} i! S(n, i) $$

方法一和方法二是同一问题的两种解决方法,因此等价,所以有,

$$ k^n = \binom{k}{1} 1! S(n, 1) + \binom{k}{2} 2! S(n, 2) + \cdots + \binom{k}{n} n! S(n, n) $$

[!IMPORTANT] 翻译错误 本题中文书中有翻译错误,把可区分写成了不可区分

EX16

Compute the Bell number $B_8$. (Cf. Exercise 11.)

Bell 数$B_p$是第 p 行的第二类 Stirling 数$S(p, k)$之和。

$$ 0+1+127+966+1701+1050+266+28+1=4140 $$

:::details 程序验证

#include <iostream>
#include <vector>

using namespace std;
int main() {
    auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
    for(int p = 1; p < 10; ++ p) {
        stirList[p][p] = 1;
    }
    for(int p = 2; p < 10; ++ p) {
        for(int k = 1; k < p; ++ k) {
            stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
        }
    }
    for(int p = 0; p < 10; ++ p) {
        for(int k = 0; k <= p; ++ k) {
            printf("%d\t", stirList[p][k]);
        }
        printf("\n");
    }

    printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
    int bellNum = 0;
    for(int k = 0; k <= 8; ++ k) {
        printf("%d\t", stirList[8][k]);
        bellNum += stirList[8][k];
    }
    printf("\n Bell number B8 is %d\n", bellNum);
    return 0;
}

:::

EX17

Compute the triangle of Stirling numbers of the first kind s(n, k) up to n = 7.

第一类 Stirling 数的递推关系为,

$$ s(p, k) = (p-1) s(p-1, k) + s(p-1, k-1) $$

初始条件与第二类 Stirling 数相同,$s(p, p) = 1, s(p, 0) = 0, p \ge 1, s(0, 0) = 1$。

:::details 程序验证

#include <iostream>
#include <vector>

using namespace std;
int main() {
    auto firstStirList = vector<vector<int>>(10, vector<int>(10, 0));
    for(int p = 1; p < 10; ++ p) {
        firstStirList[p][p] = 1;
    }
    for(int p = 2; p < 10; ++ p) {
        for(int k = 1; k < p; ++ k) {
            firstStirList[p][k] = firstStirList[p-1][k] * (p-1)
                                + firstStirList[p-1][k-1];
        }
    }
    for(int p = 0; p < 10; ++ p) {
        for(int k = 0; k <= p; ++ k) {
            printf("%d\t", firstStirList[p][k]);
        }
        printf("\n");
    }

    printf("\n s(7, k), k = 0, 1, 2, ..., 7\n");
    for(int k = 0; k <= 7; ++ k) {
        printf("%d\t", firstStirList[7][k]);
    }
    return 0;
}

:::

EX18

Write $[n]_k$ as a polynomial in n for k = 5,6, and 7.

由定义可以求出$[n]_5$,

$$ \begin{aligned} [n]_5 =& n(n-1)(n-2)(n-3)(n-4) \\ =& n^5-10n^4+35n^3-50n^2+24n \end{aligned} $$

也可以通过查表写$[n]_7$,

$$ \begin{aligned} [n]7 = & \sum{k=0}^{7}(-1)^{7-k}s(7,k) n^k \ =& n^7 - 21 n^6 + 175 n^5 - 735 n^4 + 1624 n^3 - 1764 n^2 + 720 n \end{aligned} $$

EX19 👻

Prove that the Stirling numbers of the first kind satisfy the following formulas:

(a) $s(n, 1) = (n-1) !, \quad (n \ge 1)$

(b) $s(n, n-1) = \binom{n}{2}, \quad (n \ge 1)$

结合递归式,易证。

EX20

VerifY that $[n]_n$ = n!, and write n! as a polynomial in n using the Stirling numbers of the first kind. Do this explicitly for n = 6.

$[n]_p$的定义形式$[n]_p = n(n-1)(n-2) \cdots (n-(p-1)), p \ge 1$,当 n=0 时,$[n]_0 = 1$。

带入$p = n$显然有$[n]_n = n!, n \ge 0$。

$[n]_p$与第一类 Stirling 数的关系, $[n]p = \displaystyle \sum{k=0}^{p} (-1)^{k-p} s(p, k) n^k$,

带入$p = n$有,

$$ n! = [n]n = \sum{k=0}^{n} (-1)^{n-k} s(p, k) n^k $$

当$n=6$时,结合 s(p, k) 三角形有,

$$ 6! = 6^6 -15 \times 6^5 + 85 \times 6^4 - 225 \times 6^3 + 274 \times 6^2 -120 \times 6^1 + 0 \times 6^0 $$

EX21

For each integer n = 1,2,3,4,5, construct the diagram of the set $\mathcal{P}_n$ of partitions of n, partially ordered by majorization.

这里的图(diagram)指的是 Ferrers 图,这是很容易画出的,以$5=4+1$为例,

EX21

:::info 本题应该是优超(majorize)关系的 Hasse 图。 :::

EX22 👻

(a) Calculate the partition number $p_6$ and construct the diagram of the set $\mathcal{P}_6$, partially ordered by majorization.

(b) Calculate the partition number $p_7$ and construct the diagram of the set $\mathcal{P}_7$, partially ordered by majorization.

EX22(a)

以 (a) 为例,6 对应的分拆为,

$$ 6, ; 51, ; 42, ;411,;33,;321,;3111,;222,;2211,;21111,;111111 $$

因此$p_6 = 11$。

EX23

A total order on a finite set has a unique maximal element (a largest element) and a unique minimal element (a smallest element). What are the largest partition and smallest partition in the lexicographic order on $\mathcal{P}_n$ (a total order)?

最大分拆为 n,最小分拆为$n=1+1+\cdots+1$。

EX24 🚧

A partial order on a finite set may have many maximal elements and minimal elements. In the set $\mathcal{P}_n$ of partitions of n partially ordered by majorization, prove that there is a unique maximal element and a unique minimal element.

:::info 简评 看了几份答案,似乎都不是严格的证明, 只是稍微解释了$n$比其它都大,$\underbrace{1+1+\cdots+1}_{n\text{个}}$比其它都小。

待完善 :::

EX25

Let $t_1, t_2, \cdots, t_m$ be distinct positive integers, and let

$$ q_n = q_n(t_1, t_2, \cdots, t_m) $$

equal the number of partitions of n in which all parts are taken from $t_1, t_2, \cdots, t_m$. Define $q_0 = 1$. Show that the generating function for $q_0, q_1, \cdots, q_n, \cdots$ is

$$ \prod_{k=1}^{m}(1-x^{t_k})^{-1} $$

$$ \begin{aligned} \prod_{k=1}^{m}(1-x^{t_k})^{-1} = & \frac{1}{1-x^{t_1}} \frac{1}{1-x^{t_2}} \cdots \frac{1}{1-x^{t_m}} \\ =& (\sum_{n_1=0}^{\infty}x^{t_1 n_1}) (\sum_{n_2=0}^{\infty} x^{t_2 n_2}) \cdots (\sum_{n_m=0}^{\infty} x^{t_m n_m}) \\ =& \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \cdots \sum_{n_m = 0}^{\infty} x^{n_1 t_1 + n_2 t_2 \cdots + n_m t_m} \\ =& \sum_{n=0}^{\infty} q_n x^n \end{aligned} $$

由分拆数的性质,$q_n$等于方程$n_1t_1 + n_2t_2 + \cdots + n_m t_m = n$非负整数解$n_1, n_2, \cdots, n_m$的个数, 所以$q_0, q_1, \cdots, q_n, \cdots$的生成函数为

$$ \prod_{k=1}^{m} (1-x^{t_k})^{k} $$

EX26 👻

Determine the conjugate of each of the following partitions:

(a) $12 = 5 + 4 + 2 + 1$

(b) $15 = 6 + 4 + 3 + 1 + 1$

(c) $20 = 6 + 6 + 4 + 4$

(d) $21 = 6 + 5 + 4 + 3 + 2 + 1$

(e) $29=8+6+6+4+3+2$

EX26(a)

以 (a) 为例,先画出 Ferrrers 图,再画出共轭分拆的图,

EX26

因此共轭分拆为$12 = 4 + 3 +2 + 2 + 1$。

EX27

For each integer n > 2, determine a self-conjugate partition of n that has at least two parts.

设$\lambda$是 n 的分拆$n_1 + n_2 + \cdots + n_k$,当 n 为奇数时,取$n_1 = \frac{(n+1)}{2}, n_2 = n_3 = \cdots = n_{k} = 1, k = \frac{n+1}{2}$。

当 n 为偶数时,取$n_1 = \frac{n}{2}, n_2 = 2, n_3 = n_4 = \cdots = n_k = 1, k = \frac{n}{2}$。

以 n=7 和 n=8 分别为奇数和偶数的例子,如图,

EX27

EX28

Prove that conjugation reverses the order of majorization; that is, if $\lambda$ and $\mu$ are partitions of n and $\lambda$ is majorized by $\mu$, then $\mu^{\ast}$ is majorized by $\lambda^{\ast}$.

由题意,当$\lambda$被$\mu$优超时,有

$$ \lambda_1 + \lambda_2 + \cdots + \lambda_i \le \mu_1 + \mu_2 + \mu_i, \quad 1 \le i \le k \tag{1} $$

假设$\mu^{} \not \le \lambda^{\ast}$,即存在 k 使,

$$ \mu_1^{\ast} + \mu_2^{\ast} + \cdots + \mu_{i}^{\ast} \le \lambda_1^{\ast} + \lambda_2^{\ast} + \cdots + \lambda_i^{\ast}, \quad 1 \le i \lt k $$

$$ \mu_1^{\ast} + \mu_2^{\ast} + \cdots + \mu_{k}^{\ast} \gt \lambda_1^{\ast} + \lambda_2^{\ast} + \cdots + \lambda_k^{\ast} $$

即有$\mu_k^{\ast} \gt \lambda_k^{\ast}$,记$u = \mu_k^{\ast}, v = \lambda_k^{\ast}$。又因为$\mu^*$和$\lambda^{\ast}$都是 n 的分拆,所以有

$$ \mu_{k+1}^{\ast} + \mu_{k+2}^{\ast} + \cdots \le \lambda_{k+1}^{\ast} + \lambda_{k+2}^{\ast} + \cdots $$

如图,由互换行列前后的关系可得,

EX28

$$ \mu_{k+1}^{\ast} + \mu_{k+2}^{\ast} \cdots = \sum_{1}^{u} (u_i - k), ; \lambda_{k+1}^{\ast} + \lambda_{k+2}^{\ast} + \cdots = \sum_{i=1}^{v} (\lambda_i - k) $$

根据放缩,

$$ \sum_{i=1}^{v} (\mu_i - k) \lt \sum_{i=1}^{u} \le \sum_{i=1}^{v}(\lambda_i - k) $$

可得

$$ \mu_1 + \mu_2 + \cdots + \mu_v \lt \lambda_1 + \lambda_2 + \cdots + \lambda_v \tag{2} $$

其中 (1) 式与 (2) 式矛盾,因此假设不成立,综上,证毕。

EX29

Prove that the number of partitions of the positive integer n into parts each of which is at most 2 equals $\lfloor n/2 \rfloor +1$. (Remark: There is a formula, namely the nearest integer to $\frac{(n+3)^2}{12}, for the number of partitions of n into parts each of which is at most 3 but it is much more difficult to prove. There is also one for partitions with no part more than 4, but it is even more complicated and difficult to prove.)

当$n=2r$时,每一部分至多是 2 的分拆为

$$ 1^n, ; 2^1 1^{n-2}, ; 2^2 1^{n-4}, ; \cdots, ; 2^r $$

当$n=2r+1$时,每一部分最多是 2 的分拆为

$$ 1^n, ; 2^1 1^{n-2}, ; 2^2 1^{n-4}, ; \cdots, ; 2^r1^1 $$

不论奇偶,都是分拆为 r+1 个部分,当 r 为偶数时,$r+1 = \frac{n}{2} + 1 = \lfloor n/2 \rfloor + 1$,当 r 为奇数时,$r+1 = \frac{n-1}{2} + 1 = \lfloor (n+1)/2 \rfloor = \lfloor n /2 \rfloor + 1$。

综上,分拆成每一部分至多是 2 的分拆数等于$\lfloor n/2 \rfloor$。

EX30

Prove that the partition function satisfies

$$ p_n \gt p_{n-1} \quad (n \ge 2) $$

考虑 n-1 的分拆数和 n 的分拆数,显然所有 n-1 的分拆数 +1 都是 n 的分拆数,此外 n 还有它自己作为分拆数,因此一定有$p_n \gt p_{n-1}$。

EX31 🚧

Evaluate $h_{k-1}^{(k)}$ the number of regions into which k-dimensional space is partitioned by k - 1 hyperplanes in general position.

$$ h_{k-1}^{(k)} = \binom{k-1}{0} + \binom{k-1}{1} + \cdots + \binom{k-1}{k-1} + \binom{k-1}{k} = 2^{k-1} $$

EX32

Use the recurrence relation (8.31) to compute the small Schroder numbers $s_8$ and $s_9$.

小 Schroder 数的性质:

  1. $s_1 = s_2 = 1$
  2. $(n+2) s_{n+2} -3(2n+1)x_{n+1} + (n-1)s_n = 0, n \ge 1$

由递推关系和初始项,可以计算出$s_3 = 3, s_4 =11, s_5 = 45, s_6 = 197, s_7 = 903$,

$$ 8s_8 - 3\times 13 \times 903 + 5 \times 197 = 0 $$

求出$s_8 = 4279$,同理可以求出$9s_9 - 3 \times 15 \times 4279 + 6 \times 903 = 0$,得$s_9 = 20793$。

EX33

Use the recurrence relation (8.32) to compute the large Schroder numbers $R_7$ and $R_8$. Verify that $R_7 = 2s_8$ and $R_8 = 2s_9$, as stated in Corollary 8.5.8.

大 Schroder 数的性质:

$$ R_n = \sum_{r=0}^{n} \frac{1}{n-r+1} \frac{(2n-r)!}{r![(n-r)!]^2} $$

带入$n=7$计算,

$$ \begin{aligned} R_7 =& \sum_{r=0}^{7} \frac{1}{8-r} \frac{(14-r)!}{r![(7-r)!]^2} \\ =& \frac{1}{8} \frac{14!}{0!(7!)^2} + \frac{1}{7} \frac{13!}{1!(6!)^2} + \frac{1}{6} \frac{12!}{2!(5!)^2} + \frac{1}{5} \frac{11!}{3!(4!)^2} + \frac{1}{4} \frac{10!}{4!(3!)^2} + \frac{1}{3} \frac{9!}{5! (2!)^2} + \frac{1}{2} \frac{8!}{6! (1!)^2} + \frac{1}{1} \frac{7!}{7! (0!)^2} \\ =& 8558 = 2\times 4279 = 2s_8 \end{aligned} $$

:::tip

题目要求使用递推关系计算,大 Schroder 数的递推关系为,

$$ R_n = R_{n-1} + \sum_{k=1}^{n} R_{k-1} R_{n-k} $$

注意与 Catalan 数进行区分。 :::

EX34

Use the generating function for the large Schroder numbers to compute the first few large Schroder numbers.

大 Schroder 数序列的生成函数为

$$ \sum_{n=0}^{\infty} R_n x^n = \frac{1}{2x} (-(x-1) - \sqrt{x^2 -6x + 1}) $$

$\sqrt{x^2-6x+1}$在 x=0 处的泰勒级数为$1-3x-4x^2-12x^3-44x^4+\cdots$,

因此,

$$ \begin{aligned} \sum_{k=0}^{\infty} R_n x^n =& \frac{1}{2x} (-(x-1) - (1-3x-4x^2-12x^3-44x^4 + \cdots)) \\ =& \frac{2x+4x^2+ 12x^3 + 44x^4 + \cdots}{2x} \\ =& 1 + 2x + 6x^2 + 22 x^3 + \cdots \end{aligned} $$

综上,有$R_0 = 1, R_1 = 2, R_2 = 6, R_3 = 22$。

EX35

Use the generating function for the small Schroder numbers to compute the first few small Schroder numbers.

小 Schroder 数序列的生成函数为

$$ \sum_{n=1}^{\infty} s_n x^n = \frac{1}{4}(1+x-\sqrt{x^2 - 6x + 1}) $$

同上,带入$\sqrt{x^2-6x+1}$的泰勒级数,

$$ \begin{aligned} \sum_{k=1}^{\infty} s_n x^n =& \frac{4x + 4x^2 + 12x^3 + 44x^4 + \cdots }{4}\\ =& x + x^2 + 3x^3 + 11x^4 + \cdots \end{aligned} $$

综上,有$r_1 = 1, r_2 = 1, r_3 = 3, r_4 = 11$。

EX36

Prove that the Catalan number $C_n$ equals the number of lattice paths from (0,0) to (2n, 0) using only upsteps (1, 1) and downsteps (1, -1) that never go above the horizontal axis (so there are as many up steps as there are downsteps). (These are sometimes called Dyck paths.)

记上行步 (1,1) 为 -1,下行步 (1,-1) 为 +1,步行序列为$a_1, a_2, \cdots, a_{2n}$。

因为起点 y 坐标与终点 y 坐标相同,那么一定有 n 个上行步(+1)和 n 个下行步(-1),并且从不经过水平轴上方的格路径,即前 k 项和$a_1 + a_2 + \cdots + a_k \ge 0, 1 \le k \le 2n$,该问题与第 n 个 Catalan 数的组合意义相同,因此等于$C_n$。

EX37 ⭐

* The large Schroder number $C_n$ counts the number of subdiagonal HVD-lattice paths from (0,0) to (n, n). The small Schroder number counts the number of dissections of a convex polygonal region of n + 1. Since $R_n = 2s_{n+1}$ for n $\le$ 1, there are as many subdiagonal HVD-lattice paths from (0,0) to (n, n) as there are dissections of a convex polygonal region of n + 1 sides. Find a one-to-one correspondence between these lattice paths and these dissections.