-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery_processing.py
313 lines (252 loc) · 14.6 KB
/
query_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
kb_entities = {
"Category": ["Chinese", "Indian", "Korean", "Italian", "Mexican"],
"Attr": ["Good", "Sweet", "Spicy", "Friendly"],
"Aspect": ["Service", "Take out", "Staff", "Parking"],
"City": ["Toronto", "Seoul", "New York"],
"Menu": ["Noodles", "Chicken Biryani", "Kimchi"],
"Restaurant": ["Silver Spoon", "South Spice", "Little Seoul"]
}
# "", "find", "search", "recommend", "suggest" __ "restaurant|restaurants"
# "", "what", "which" __ "menu|menus"
# We ignore outgoing edge of City as we are only try to resolve restaurant related query, so only incoming
# relationship is applicable
kb_rel = {
"Category": {"in": ["HAS_CATEGORY"], "out": []},
"Attr": {"in": ["IS"], "out": ["MENU_ATTR_FOR", "ASPECT_ATTR_FOR"]},
"Aspect": {"in": ["HAS_ASPECT"], "out": ["IS"]},
"City": {"in": ["LOCATED_IN"], "out": ["LOCATED_IN"]},
"Menu": {"in": ["HAS_MENU"], "out": ["IS"]}
}
# text = "Recommend best Chinese restaurant in Toronto or New York and Seoul which serves sweet " \
# "Noodles and spicy Chicken Biryani with friendly staff and service"
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'HAS_ASPECT', 'Service'), ('Service', 'IS', '?')], 'concept': 'Aspect', 'op': 'AND'},
# {'triple': [('?', 'HAS_ASPECT', 'Staff'), ('Staff', 'IS', '?'), ('?', 'IS', 'Friendly'), ('Friendly', 'MENU_ATTR_FOR', '?'), ('Friendly', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Aspect', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Seoul'), ('Seoul', 'LOCATED_IN', '?')], 'concept': 'City', 'op': 'AND'},
# {'triple': [('?', 'LOCATED_IN', 'New York'), ('New York', 'LOCATED_IN', '?')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Noodles', 'IS', '?'), ('?', 'IS', 'Sweet'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Sweet', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Chicken Biryani', 'IS', '?'), ('?', 'IS', 'Spicy'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Spicy', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': 'AND'}
# ]
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'HAS_ASPECT', 'Service')], 'concept': 'Aspect', 'op': 'AND'},
# {'triple': [('?', 'HAS_ASPECT', 'Staff'), ('Friendly', 'ASPECT_ATTR_FOR', '?'), ('Staff', 'IS', 'Friendly')], 'concept': 'Aspect', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Seoul')], 'concept': 'City', 'op': 'AND'},
# {'triple': [('?', 'LOCATED_IN', 'New York')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Noodles', 'IS', 'Sweet')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Chicken Biryani', 'IS', 'Spicy')], 'concept': 'Menu', 'op': 'AND'}
# ]
# text = "Recommend best Chinese restaurant in Toronto or New York which serves sweet " \
# "Noodles and spicy Chicken Biryani"
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'New York'), ('New York', 'LOCATED_IN', '?')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Noodles', 'IS', '?'), ('?', 'IS', 'Sweet'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Sweet', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Chicken Biryani', 'IS', '?'), ('?', 'IS', 'Spicy'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Spicy', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': 'AND'}
# ]
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'New York')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Noodles', 'IS', 'Sweet')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Chicken Biryani', 'IS', 'Spicy')], 'concept': 'Menu', 'op': 'AND'}
# ]
# text = "Recommend best Chinese restaurant in Toronto or New York which serves sweet" \
# "Noodles and Chicken Biryani"
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'New York'), ('New York', 'LOCATED_IN', '?')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Noodles', 'IS', '?'), ('?', 'IS', 'Sweet'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Sweet', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Chicken Biryani', 'IS', '?')], 'concept': 'Menu', 'op': 'AND'}
# ]
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'New York')], 'concept': 'City', 'op': 'OR'},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Noodles', 'IS', 'Sweet')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani')], 'concept': 'Menu', 'op': 'AND'}
# ]
# text = "Recommend best Chinese restaurant in Toronto which serves sweet " \
# "Noodles and spicy Chicken Biryani"
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Noodles', 'IS', '?'), ('?', 'IS', 'Sweet'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Sweet', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Chicken Biryani', 'IS', '?'), ('?', 'IS', 'Spicy'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Spicy', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': 'AND'}
# ]
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Noodles', 'IS', 'Sweet')], 'concept': 'Menu', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Chicken Biryani', 'IS', 'Spicy')], 'concept': 'Menu', 'op': 'AND'}
# ]
# text = "Recommend best Chinese restaurant in Toronto which serves sweet Noodles"
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Noodles', 'IS', '?'), ('?', 'IS', 'Sweet'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Sweet', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None}
# ]
# [
# {'triple': [('?', 'HAS_CATEGORY', 'Chinese')], 'concept': 'Category', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None},
# {'triple': [('?', 'HAS_MENU', 'Noodles'), ('Sweet', 'MENU_ATTR_FOR', '?'), ('Noodles', 'IS', 'Sweet')], 'concept': 'Menu', 'op': None}
# ]
# text = "restaurants in toronto with parking"
# [
# {'triple': [('?', 'HAS_ASPECT', 'Parking'), ('Parking', 'IS', '?')], 'concept': 'Aspect', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto'), ('Toronto', 'LOCATED_IN', '?')], 'concept': 'City', 'op': None}
# ]
# [
# {'triple': [('?', 'HAS_ASPECT', 'Parking')], 'concept': 'Aspect', 'op': None},
# {'triple': [('?', 'LOCATED_IN', 'Toronto')], 'concept': 'City', 'op': None}
# ]
# text = "restaurants with friendly staff"
# [
# {'triple': [('?', 'HAS_ASPECT', 'Staff'), ('Staff', 'IS', '?'), ('?', 'IS', 'Friendly'), ('Friendly', 'MENU_ATTR_FOR', '?'), ('Friendly', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Aspect', 'op': None}
# ]
# [
# {'triple': [('?', 'HAS_ASPECT', 'Staff'), ('Friendly', 'ASPECT_ATTR_FOR', '?'), ('Staff', 'IS', 'Friendly')], 'concept': 'Aspect', 'op': None}
# ]
# text = "restaurants which offers spicy chicken biryani"
# [
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Chicken Biryani', 'IS', '?'), ('?', 'IS', 'Spicy'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Spicy', 'ASPECT_ATTR_FOR', '?')], 'concept': 'Menu', 'op': None}
# ]
# [
# {'triple': [('?', 'HAS_MENU', 'Chicken Biryani'), ('Spicy', 'MENU_ATTR_FOR', '?'), ('Chicken Biryani', 'IS', 'Spicy')], 'concept': 'Menu', 'op': None}
# ]
# text = "what menus Silver Spoon restaurant offers?"
def kb_concept_lookup(dictionary, string):
concepts = []
for key, val in dictionary.items():
if key != "Attr":
for concept in val:
if concept.lower() in string.lower():
concept_dict = dict()
if key == "Menu":
# print(string.index(concept))
menu_attr = text[:text.lower().find(concept.lower())].split()[-1]
# print(dictionary.get("Attr"))
if menu_attr.title() in dictionary.get("Attr"):
# print(menu_attr.title())
concept_dict[key] = concept.title()
concept_dict["Attr"] = menu_attr.title()
concept = menu_attr + " " + concept
else:
concept_dict[key] = concept.title()
elif key == "Aspect":
aspect_attr = text[:text.lower().find(concept.lower())].split()[-1]
if aspect_attr.title() in dictionary.get("Attr"):
concept_dict[key] = concept.title()
concept_dict["Attr"] = aspect_attr.title()
concept = aspect_attr + " " + concept
else:
concept_dict[key] = concept.title()
else:
concept_dict[key] = concept.title()
concept_op = text[:text.lower().find(concept.lower())].split()[-1]
if concept_op.lower() in ["or", "and"]:
concept_dict["op"] = concept_op.upper()
else:
concept_dict["op"] = None
concepts.append(concept_dict)
return concepts
def kb_relation_lookup(dictionary, query_concepts):
print(dictionary)
print(query_concepts)
triples = []
for query_concept in query_concepts:
triple_obj = dict()
triple_obj["triple"] = []
for key, val in query_concept.items():
if key == "op":
triple_obj[key] = val
triples.append(triple_obj)
continue
if key != "Attr":
triple_obj["concept"] = key
print(key, val)
relation = dictionary[key]
print(relation)
in_rel = relation["in"]
if len(in_rel) > 0:
print(in_rel)
for rel in in_rel:
triple_obj["triple"].append(("?", rel, val))
out_rel = relation["out"]
if len(out_rel) > 0:
print(out_rel)
for rel in out_rel:
triple_obj["triple"].append((val, rel, "?"))
print(triples)
# Filter triples
for triple_obj in triples:
# Filter ASPECT concept
if triple_obj["concept"] == "Aspect":
for triple in list(triple_obj["triple"]):
if triple[1] == "MENU_ATTR_FOR":
triple_obj["triple"].remove(triple)
has_aspect_attr = False
for triple in triple_obj["triple"]:
if triple[1] == "ASPECT_ATTR_FOR":
has_aspect_attr = True
break
if not has_aspect_attr:
for triple in list(triple_obj["triple"]):
if triple[1] == "IS":
triple_obj["triple"].remove(triple)
else:
(sub, obj) = (None, None)
for triple in list(triple_obj["triple"]):
if triple[1] == "IS":
if not (triple[0] == "?" or triple[2] == "?"):
break
if triple[0] == "?":
obj = triple[2]
else:
sub = triple[0]
triple_obj["triple"].remove(triple)
if sub is not None and obj is not None:
triple_obj["triple"].append((sub, "IS", obj))
(sub, obj) = (None, None)
# Filter Menu Concept
if triple_obj["concept"] == "Menu":
for triple in list(triple_obj["triple"]):
if triple[1] == "ASPECT_ATTR_FOR":
triple_obj["triple"].remove(triple)
has_menu_attr = False
for triple in triple_obj["triple"]:
if triple[1] == "MENU_ATTR_FOR":
has_menu_attr = True
break
if not has_menu_attr:
for triple in list(triple_obj["triple"]):
if triple[1] == "IS":
triple_obj["triple"].remove(triple)
else:
(sub, obj) = (None, None)
for triple in list(triple_obj["triple"]):
if triple[1] == "IS":
if not (triple[0] == "?" or triple[2] == "?"):
break
if triple[0] == "?":
obj = triple[2]
else:
sub = triple[0]
triple_obj["triple"].remove(triple)
if sub is not None and obj is not None:
triple_obj["triple"].append((sub, "IS", obj))
(sub, obj) = (None, None)
# Filter City Concept
if triple_obj["concept"] == "City":
for triple in list(triple_obj["triple"]):
if not triple[0] == "?":
triple_obj["triple"].remove(triple)
print(triples)
query_concepts = kb_concept_lookup(kb_entities, text)
print(query_concepts)
kb_relation_lookup(kb_rel, query_concepts)