-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbot.py
235 lines (188 loc) · 8.87 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import annotations
import os
import sys
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt="%Y-%m-%d %H:%M:%S"
)
from telegram import Update
from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler, ContextTypes
from telegram.ext import filters
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SimilarityPostprocessor
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_NAME = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
MODEL_REVISION = "gptq-4bit-32g-actorder_True"
EMBEDDING_MODEL = "cointegrated/LaBSE-en-ru"
PRETRAINED_LORA = "ggeorge/qlora-mistral-hackatone-yandexq"
TG_TOKEN_PATH = "telegram_token.txt"
STOPWORDS_DIRECTORY = "stopwords"
# device: 'auto' or 'gpu'
DEVICE = 'auto'
# your documents directory
STORAGE = "documents"
SYSTEM_PROMPT = "Вы - русскоязычный ИИ ассистент, который помогает пользователям находить файлы, \
отвечать на их вопросы и поддерживать диалог. \
Вы имеете доступ к базе знаний, которая автоматически покажет результаты поиска, \
если найдется какая-либо информация. Помните, что не все результаты поиска могут быть релевантны. \
Адаптируйтесь к запросам пользователей и предоставляйте понятные и полезные ответы на вопросы, \
поддерживая диалог на русском языке. \
\n\
\n\
"
INTRUCT_TEMPLATE = "[INST]{sys_inst}{context}\n\nСообщение пользователя:\n{message}[/INST]"
TG_GREET_MESSAGE = """Привет! Я большая языковая модель, которая может генерировать текст.
В мое основе лежит большая языковыя модель Mistral-7B-Instruct-v0.2 (версия GPTQ). Я дообучена на датасете сервиса Yandex Q с использованием QLoRA.
Просто отправь мне свое сообщение, и я отвечу.
"""
DEFAULT_MAX_TOKENS = 300
# type annotations can be inaccurate here
model: PeftModel
model_tokenizer: AutoTokenizer
vector_storage_index: VectorStoreIndex
vector_query_engine: RetrieverQueryEngine
user_dialogs: dict[int, str] = dict()
stopwords: list[str]
def read_telegram_token(file_path):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
token = file.read().strip()
else:
token = input("File 'telegram_token.txt' not found. Enter token manually: ").strip()
return token
def load_stopwords(directory):
stop_words = []
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
with open(filepath, 'r') as file:
lines = file.readlines()
stop_words.extend(lines)
return list(map(str.strip, stop_words))
def load_vector_storage(path_dir, top_k=3):
global vector_query_engine
Settings.embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
Settings.llm = None
Settings.chunk_size = 256
Settings.chunk_overlap = 12
documents = SimpleDirectoryReader(path_dir).load_data()
index = VectorStoreIndex.from_documents(documents)
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=top_k,
)
vector_query_engine = RetrieverQueryEngine(
retriever=retriever,
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.5)],
)
def remove_stop_words(query: str) -> str:
slited_query = query.split()
# possible optimization with NLTK here!
for sw in stopwords:
try:
slited_query.remove(sw)
except ValueError:
pass
query = " ".join(slited_query)
logging.info(f'Query without stopwords: {query}')
return query
def knowlage_db_context(query: str) -> str:
clear_query = remove_stop_words(query)
search_response = vector_query_engine.query(clear_query)
if len(search_response.source_nodes) == 0:
return 'В базе знаний ничего не найдено'
context = ['Найдено в базе знаний (не все записи могут быть полезны):\n']
for node in search_response.source_nodes:
context.append( f'\tимя файла: {node.metadata["file_name"]}\n' )
context.append( f'\tдата создания: {node.metadata["creation_date"]}\n' )
context.append( f'\tтекст: {node.text}' + "\n" )
merged_context = '\n'.join(context)
logging.info(f"Model context: {merged_context}")
return merged_context
def load_model():
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map=DEVICE,
trust_remote_code=False,
revision=MODEL_REVISION)
config = PeftConfig.from_pretrained(PRETRAINED_LORA)
model = PeftModel.from_pretrained(model, PRETRAINED_LORA)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
model.eval()
return model, tokenizer
def generate_inital_prompt(user_query):
return INTRUCT_TEMPLATE.format(
sys_inst=SYSTEM_PROMPT,
context=knowlage_db_context(user_query),
message=user_query)
def continue_dialog(history, user_query):
return history + '\n' + INTRUCT_TEMPLATE.format(
sys_inst='\n',
context=knowlage_db_context(user_query),
message=user_query)
def query_model(prompt) -> str:
global model_tokenizer
inputs = model_tokenizer(prompt, return_tensors="pt")
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"),
max_new_tokens=DEFAULT_MAX_TOKENS)
return model_tokenizer.batch_decode(outputs)[0]
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
await update.message.reply_text(TG_GREET_MESSAGE)
async def help_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
await update.message.reply_text(TG_GREET_MESSAGE)
async def clear_history(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
global user_dialogs
chat_id = update.effective_chat.id
user_dialogs.pop(chat_id)
await context.bot.send_message(chat_id, "история очищена!")
async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
global user_dialogs
chat_id = update.effective_chat.id
new_text = update.message.text
if chat_id in user_dialogs:
prompt = continue_dialog(user_dialogs[chat_id], new_text)
else:
prompt = generate_inital_prompt(new_text)
try:
model_output = query_model(prompt)
logging.info(f'Model output: {model_output}')
user_dialogs[chat_id] = model_output
last_inst = model_output.rfind('[/INST]')
sentence_end_token = model_output.rfind('</s>')
if last_inst > sentence_end_token:
answer = model_output[last_inst+7:]
else:
answer = model_output[last_inst+7:sentence_end_token]
await context.bot.send_message(chat_id, answer)
except Exception as e:
await context.bot.send_message(chat_id, '[!] Произошла ошибка, смотрите логи!\n'
'Вероятно длина контекста достигла максимума')
logging.exception(f"cannot generate output, reason:\n")
def main():
global vector_storage_index, model, model_tokenizer, stopwords
token = read_telegram_token(TG_TOKEN_PATH)
if not token:
print('Telegram token is empty')
sys.exit(-1)
stopwords = load_stopwords(STOPWORDS_DIRECTORY)
logging.info(f'indexing documents in the direcotry: {STORAGE}')
vector_storage_index = load_vector_storage(STORAGE, top_k=2)
logging.info(f'loading model: {MODEL_NAME} {MODEL_REVISION}')
logging.info(f'qlora: {PRETRAINED_LORA}')
model, model_tokenizer = load_model()
logging.info(f'building telegram bot')
app = ApplicationBuilder().token(token).build()
app.add_handler(CommandHandler("start", start))
app.add_handler(CommandHandler("help", help_command))
app.add_handler(CommandHandler("clear", clear_history))
app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message))
logging.getLogger('httpx').setLevel(logging.WARNING)
app.run_polling()
if __name__ == "__main__":
main()