Skip to content

Latest commit

 

History

History
54 lines (38 loc) · 1.85 KB

README.md

File metadata and controls

54 lines (38 loc) · 1.85 KB

============= EvadeML v1.0


An Evolutionary Framework for Evading Machine Learning-based Malware Classifiers

Weilin Xu, Yanjun Qi, and David Evans
University of Virginia

Installation

Several external libraries are required in the project.

Configuration

Copy the template and change to your own configuration.

cp project.conf.template project.conf
vim project.conf

Running

First, run a program to select several benign PDF files as external genome.

$ ./utils/generate_ext_genome.py [classifier_name] [benign_sample_folder] [file_number]

Then start the centralized detection agent with pre-defined malware signatures.

$ ./utils/detection_agent_server.py ./utils/36vms_sigs.pickle

Now we can start the main program ./gp.py with a long list of arguments. The helper script ./batch.py should be helpful in large scale experiments.

./batch.py [classifier_name] [ext_genome_folder] [round_id]

Add a new classifier to evade

Adding more target classifiers to the framework is trivial.

  1. Add a wrapper in ./classifiers/ like pdfrate_wrapper.py::pdfrate()
  2. Implement a fitness function in ./lib/fitness.py like fitness_pdfrate(), and specify a switch in gp.py
  3. Import the wrapper function in ./utils/detection_agent_server.py like pdfrate(), and extend query_classifier() so that the main program could call the detector through lib.detector.query_classifier().