-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_train_punc.py
511 lines (457 loc) · 25.7 KB
/
run_train_punc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
from __future__ import absolute_import, division, print_function
import torch
from sklearn.metrics import classification_report
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
from tqdm import tqdm, trange
from transformers import (BertTokenizer, BertConfig, ElectraTokenizer, ElectraConfig,
XLMRobertaTokenizer, XLMRobertaConfig,
AdamW, get_linear_schedule_with_warmup)
from punc_dataset import *
from models.bert import PuncBERTModel, PuncBERTLstmModel, PuncBERTCrfModel, PuncBERTLstmCrfModel
from models.electra import PuncElectraModel, PuncElectraLstmModel, PuncElectraLstmCrfModel, PuncElectraCrfModel
from models.xlm_roberta import PuncXLMRModel, PuncXLMRLstmModel, PuncXLMRCrfModel, PuncXLMRLstmCrfModel
import argparse
import random
import numpy as np
import json
import pickle
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, BertTokenizer),
'electra': (ElectraConfig, ElectraTokenizer),
'xlmr': (XLMRobertaConfig, XLMRobertaTokenizer)
}
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Pre-trained model selected in the list: bert-base-multilingual-uncased, "
"bert-base-multilingual-cased...")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Pre-trained model type selected in the list: electra, bert, xlmr.")
parser.add_argument("--model_arch", default=None, type=str, required=True,
help="Punctuation prediction model architecture selected in the list: original, crf,"
"lstm, lstm_crf.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
# Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=190,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval or not.")
parser.add_argument("--eval_on",
default="test",
help="Whether to run eval on the dev set or test set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--eval_every_epoch",
action='store_true',
help="Whether to evaluate model on each epoch.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--noise_prob", default=0.15, type=float,
help="Probability of tokens to remove accents.")
args = parser.parse_args()
special_tokens = ['<NUM>', '<URL>', '<EMAIL>']
processors = {"punctuation_prediction": PuncProcessor}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
processor = processors[task_name]()
label_list = processor.get_labels()
num_labels = len(label_list) + 1
# Prepare model
config_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case)
tokenizer.add_tokens(special_tokens)
config = config_class.from_pretrained(args.model_name_or_path, num_labels=num_labels,
finetuning_task=args.task_name)
model_class = None
if args.model_type == 'bert':
if args.model_arch == 'crf':
model_class = PuncBERTCrfModel
elif args.model_arch == 'lstm':
model_class = PuncBERTLstmModel
elif args.model_arch == 'lstm_crf':
model_class = PuncBERTLstmCrfModel
else:
model_class = PuncBERTModel
elif args.model_type == 'electra':
if args.model_arch == 'crf':
model_class = PuncElectraCrfModel
elif args.model_arch == 'lstm':
model_class = PuncElectraLstmModel
elif args.model_arch == 'lstm_crf':
model_class = PuncElectraLstmCrfModel
else:
model_class = PuncElectraModel
elif args.model_type == 'xlmr':
if args.model_arch == 'crf':
model_class = PuncXLMRCrfModel
elif args.model_arch == 'lstm':
model_class = PuncXLMRLstmModel
elif args.model_arch == 'lstm_crf':
model_class = PuncXLMRLstmCrfModel
else:
model_class = PuncXLMRModel
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=False,
config=config)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
train_examples = None
num_train_optimization_steps = 0
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
warmup_steps = int(args.warmup_proportion * num_train_optimization_steps)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
global_step = 0
nb_tr_steps = 0
tr_loss = 0
label_map = {i: label for i, label in enumerate(label_list, 1)}
start_epoch = 0
PATH = os.path.join(args.output_dir, 'checkpoint.ckt')
# Load checkpoint
if os.path.exists(PATH):
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = int(checkpoint['epoch']) + 1
tr_loss = checkpoint['loss']
scheduler.load_state_dict(checkpoint['scheduler'])
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer, noise_prob=args.noise_prob, mode='train')
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_valid_ids = torch.tensor([f.valid_ids for f in train_features], dtype=torch.long)
all_lmask_ids = torch.tensor([f.label_mask for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_valid_ids,
all_lmask_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
for epoch in range(int(start_epoch), int(args.num_train_epochs)):
logger.info(f"Epoch {epoch + 1}/{args.num_train_epochs}")
tr_loss = 0
model.train()
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask = batch
loss = model(input_ids, segment_ids, input_mask, label_ids, valid_ids, l_mask)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# Save a checkpoint
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': tr_loss,
'scheduler': scheduler.state_dict(),
}, PATH)
if args.do_eval and args.eval_every_epoch and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if args.eval_on == "dev":
eval_examples = processor.get_dev_examples(args.data_dir)
elif args.eval_on == "test":
eval_examples = processor.get_test_examples(args.data_dir)
else:
raise ValueError("eval on dev or test set only")
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, mode='eval')
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_valid_ids = torch.tensor([f.valid_ids for f in eval_features], dtype=torch.long)
all_lmask_ids = torch.tensor([f.label_mask for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,all_valid_ids,all_lmask_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
y_true = []
y_pred = []
label_map = {i : label for i, label in enumerate(label_list,1)}
for input_ids, input_mask, segment_ids, label_ids,valid_ids,l_mask in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
valid_ids = valid_ids.to(device)
label_ids = label_ids.to(device)
l_mask = l_mask.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask, valid_ids=valid_ids,
attention_mask_label=l_mask)
if not args.model_arch.endswith('crf'):
logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
input_mask = input_mask.to('cpu').numpy()
for i, label in enumerate(label_ids):
temp_1 = []
temp_2 = []
for j,m in enumerate(label):
if j == 0:
continue
elif label_ids[i][j] == len(label_map):
y_true.extend(temp_1)
y_pred.extend(temp_2)
break
else:
temp_1.append(label_map[label_ids[i][j]])
temp_2.append(label_map.get(logits[i][j], 'PAD'))
punc_marks = ['PERIOD', 'COMMA', 'COLON', 'QMARK', 'EXCLAM', 'SEMICOLON']
report = classification_report(y_true, y_pred, digits=4, labels=punc_marks)
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
logger.info("\n%s", report)
writer.write(report)
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
label_map = {i: label for i, label in enumerate(label_list, 1)}
model_config = {"model_name_or_path": args.model_name_or_path, "do_lower": args.do_lower_case,
"max_seq_length": args.max_seq_length, "num_labels": len(label_list) + 1,
"label_map": label_map}
json.dump(model_config, open(os.path.join(args.output_dir, "model_config.json"), "w"))
# Load a trained model and config that you have fine-tuned
else:
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(device)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if args.eval_on == "dev":
eval_examples = processor.get_dev_examples(args.data_dir)
elif args.eval_on == "test":
eval_examples = processor.get_test_examples(args.data_dir)
else:
raise ValueError("eval on dev or test set only")
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, mode='eval')
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_valid_ids = torch.tensor([f.valid_ids for f in eval_features], dtype=torch.long)
all_lmask_ids = torch.tensor([f.label_mask for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_valid_ids,
all_lmask_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
y_true = []
y_pred = []
label_map = {i: label for i, label in enumerate(label_list, 1)}
for input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask in tqdm(eval_dataloader,
desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
valid_ids = valid_ids.to(device)
label_ids = label_ids.to(device)
l_mask = l_mask.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask, valid_ids=valid_ids,
attention_mask_label=l_mask)
if not args.model_arch.endswith('crf'):
logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
input_mask = input_mask.to('cpu').numpy()
for i, label in enumerate(label_ids):
temp_1 = []
temp_2 = []
for j, m in enumerate(label):
if j == 0:
continue
elif label_ids[i][j] == len(label_map):
y_true.extend(temp_1)
y_pred.extend(temp_2)
break
else:
temp_1.append(label_map[label_ids[i][j]])
temp_2.append(label_map.get(logits[i][j], 'PAD'))
punc_marks = ['PERIOD', 'COMMA', 'COLON', 'QMARK', 'EXCLAM', 'SEMICOLON']
report = classification_report(y_true, y_pred, digits=4, labels=punc_marks)
output_test_file = os.path.join(args.output_dir, "test_results.txt")
with open(output_test_file, "w") as writer:
logger.info("***** Test results *****")
logger.info("\n%s", report)
writer.write(report)
if __name__ == "__main__":
main()