-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvalidate.py
245 lines (211 loc) · 11.3 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
Utility functions for validating MVCBM and SSMVCBM models
"""
import numpy as np
import torch
from utils.metrics import calc_cMetrics, calc_confusion, calc_tMetrics
def validate_epoch_mvcbm(epoch, config, model, dataloader, loss_fn, fold=None, roc=None, prc=None):
"""
Run a validation round for an MVCBM
"""
model.eval()
t_pred_total = torch.Tensor()
t_true_total = torch.Tensor()
t_probs_total = torch.Tensor()
c_pred_total = torch.Tensor()
c_true_total = torch.Tensor()
c_probs_total = torch.Tensor()
all_img_codes = []
total = 0
val_target_loss = 0
val_concepts_loss = [0] * config["num_concepts"]
val_summed_concepts_loss = 0
val_total_loss = 0
all_cMetrics = []
for k, batch in enumerate(dataloader):
batch_images, target_true, batch_names, batch_img_codes = \
batch["images"], batch["label"], batch["file_names"], batch["img_code"]
batch_images = batch_images.to(device=config["device"], dtype=torch.float32)
target_true = target_true.to(device=config["device"], dtype=torch.float32)
if config['dataset'] == 'app':
batch_names = np.array(list(map(list, zip(*batch_names))), dtype=object)
if config['dataset'] == 'app':
mask = torch.tensor(batch_names != "padding.bmp").to(config["device"])
elif config['dataset'] == 'mawa':
mask = torch.ones((batch_images.shape[0], config['num_views'])).to(config['device'])
elif config['dataset'] == 'synthetic':
mask = torch.ones((batch_images.shape[0], config['num_views'])).to(config['device'])
concepts_true = batch["concepts"].to(config["device"])
clinical_feat = batch["features"].to(config["device"])
all_img_codes.extend(batch_img_codes)
total += batch_images.size(0)
with torch.no_grad():
if model.name in ["MVCBM", "CBM", "Dummy"]:
# Forward pass
concepts_pred, target_pred_probs, target_pred_logits, attn_weights = model(
batch_images, mask, clinical_feat)
target_pred_probs = target_pred_probs.squeeze(1)
target_pred_logits = target_pred_logits.squeeze(1)
# Calculate the loss
loss_fn.target_class_weight = None
loss_fn.target_sample_weight = None
loss_fn.c_weights = None
target_loss, concepts_loss, summed_concepts_loss, total_loss = loss_fn(
concepts_pred, concepts_true, target_pred_probs, target_pred_logits, target_true)
val_target_loss += target_loss.item() * batch_images.size(0)
for concept_idx in range(len(val_concepts_loss)):
val_concepts_loss[concept_idx] += concepts_loss[concept_idx].item() * batch_images.size(0)
val_summed_concepts_loss += summed_concepts_loss.item() * batch_images.size(0)
val_total_loss += total_loss.item() * batch_images.size(0)
# Predict
if model.num_classes == 2:
t_predicted = torch.where(target_pred_probs > 0.5, 1, 0).cpu()
else:
t_predicted = torch.argmax(target_pred_probs, 1).cpu()
c_predicted = torch.where(concepts_pred > 0.5, 1, 0).cpu()
else:
# Forward pass
target_pred = model(concepts_true, clinical_feat).squeeze(1)
# Calculate loss
loss_fn.target_class_weight = None
loss_fn.target_sample_weight = None
loss_fn.c_weights = None
target_loss = loss_fn(target_pred, target_true)
val_target_loss += target_loss.item() * batch_images.size(0)
val_total_loss = val_target_loss
# Predict
if model.num_classes == 2:
t_predicted = torch.where(target_pred > 0.5, 1, 0).cpu()
else:
t_predicted = torch.argmax(target_pred, 1).cpu()
# If last batch_size == 1
if not t_predicted.shape:
t_predicted = t_predicted.unsqueeze(0)
# Append the results
t_pred_total = torch.cat((t_pred_total, t_predicted))
t_true_total = torch.cat((t_true_total, target_true.cpu()))
t_probs_total = torch.cat((t_probs_total, target_pred_probs.cpu()))
if model.name in ["MVCBM", "CBM", "Dummy"]:
c_pred_total = torch.cat((c_pred_total, c_predicted))
c_true_total = torch.cat((c_true_total, concepts_true.cpu()))
c_probs_total = torch.cat((c_probs_total, concepts_pred.cpu()))
if model.name in ["MVCBM", "CBM", "Dummy"]:
for concept_idx in range(len(val_concepts_loss)):
if len(np.unique(c_true_total[:, concept_idx].numpy())) != 2:
print(np.unique(c_true_total[:, concept_idx].numpy()))
print(f"Concept {concept_idx} has only one unique outcome value in the validation set!")
all_cMetrics.append(
calc_cMetrics(c_true_total[:, concept_idx], c_probs_total[:, concept_idx], f"c{concept_idx}"))
tMetrics = calc_tMetrics(t_true_total, t_probs_total)
conf_matrix, FP_names, FN_names = calc_confusion(t_true_total, t_probs_total, all_img_codes)
if fold is not None:
roc.update(epoch + 1, fold, t_true_total, t_probs_total)
prc.update(epoch + 1, fold, t_true_total, t_probs_total)
model.train()
return val_target_loss / total, [val_concepts_loss[i] / total for i in range(len(val_concepts_loss))], \
val_summed_concepts_loss / total, val_total_loss / total, tMetrics, all_cMetrics, conf_matrix, FP_names, FN_names
def validate_epoch_ssmvcbm(epoch, mode, config, model, dataloader, loss_fn, beta, gamma, fold=None, roc=None, prc=None):
"""
Run a validation round for an SSMVCBM
"""
model.eval()
pred_total = torch.Tensor()
true_total = torch.Tensor()
probs_total = torch.Tensor()
all_img_codes = []
total = 0
val_loss = 0
val_s_concepts_loss = [0]*config["num_s_concepts"] if mode == "sc" else None
all_cMetrics = [] if mode == "sc" else None
us_concepts_sample = torch.Tensor().to(device=config["device"])
for k, batch in enumerate(dataloader):
batch_images, target_true, batch_names, batch_img_codes = \
batch["images"], batch["label"], batch["file_names"], batch["img_code"]
batch_images = batch_images.to(device=config["device"], dtype=torch.float32)
target_true = target_true.to(device=config["device"], dtype=torch.float32)
if config['dataset'] == 'app':
batch_names = np.array(list(map(list, zip(*batch_names))), dtype=object)
if config['dataset'] == 'app':
mask = torch.tensor(batch_names != "padding.bmp").to(config["device"])
elif config['dataset'] == 'mawa':
mask = torch.ones((batch_images.shape[0], config['num_views'])).to(config['device'])
elif config['dataset'] == 'synthetic':
mask = torch.ones((batch_images.shape[0], config['num_views'])).to(config['device'])
concepts_true = batch["concepts"].to(config["device"])
clinical_feat = batch["features"].to(config["device"])
all_img_codes.extend(batch_img_codes)
total += batch_images.size(0)
with torch.no_grad():
# Forward pass
s_concepts_pred, us_concepts_pred, s_attn_weights, us_attn_weights, discr_concepts_pred, \
target_pred_probs, target_pred_logits = model(batch_images, mask, clinical_feat)
target_pred_probs = target_pred_probs.squeeze(1)
target_pred_logits = target_pred_logits.squeeze(1)
us_concepts_sample = torch.cat((us_concepts_sample, us_concepts_pred))
# Calculate the loss
loss_fn.target_class_weight = None
loss_fn.target_sample_weight = None
loss_fn.c_weights = None
target_loss, s_concepts_loss, summed_s_concepts_loss, summed_discr_concepts_loss, summed_gen_concepts_loss, us_corr_loss = \
loss_fn(s_concepts_pred, discr_concepts_pred, concepts_true, target_pred_probs, target_pred_logits,
target_true, us_concepts_sample)
if mode == "t":
val_loss += target_loss.item()*batch_images.size(0)
if model.num_classes == 2:
predicted = torch.where(target_pred_probs > 0.5, 1, 0).cpu()
else:
predicted = torch.argmax(target_pred_probs, 1).cpu()
pred_total = torch.cat((pred_total, predicted))
true_total = torch.cat((true_total, target_true.cpu()))
probs_total = torch.cat((probs_total, target_pred_probs.cpu()))
elif mode == "sc":
for concept_idx in range(len(val_s_concepts_loss)):
val_s_concepts_loss[concept_idx] += s_concepts_loss[concept_idx].item()*batch_images.size(0)
val_loss += summed_s_concepts_loss.item()*batch_images.size(0)
predicted = torch.where(s_concepts_pred > 0.5, 1, 0).cpu()
pred_total = torch.cat((pred_total, predicted))
true_total = torch.cat((true_total, concepts_true.cpu()))
probs_total = torch.cat((probs_total, s_concepts_pred.cpu()))
elif mode == "usc":
val_loss += target_loss.item()*batch_images.size(0) + beta*summed_gen_concepts_loss.item()*batch_images.size(0)
else:
val_loss += summed_discr_concepts_loss.item()*batch_images.size(0)
val_loss = val_loss/total
if mode == "t":
val_s_concepts_loss_norm = None
all_cMetrics = None
us_cov = None
tMetrics = calc_tMetrics(true_total, probs_total)
conf_matrix, FP_names, FN_names = calc_confusion(true_total, probs_total, all_img_codes)
if fold is not None:
roc.update(epoch+1, fold, true_total, probs_total)
prc.update(epoch+1, fold, true_total, probs_total)
elif mode == "sc":
tMetrics = None
conf_matrix, FP_names, FN_names = None, None, None
us_cov = None
for concept_idx in range(len(val_s_concepts_loss)):
if len(np.unique(true_total[:, concept_idx].numpy())) != 2:
print(np.unique(true_total[:, concept_idx].numpy()))
print(f"Concept {concept_idx} has only one unique outcome value in the validation set!")
all_cMetrics.append(calc_cMetrics(true_total[:, concept_idx], probs_total[:, concept_idx], f"sc{concept_idx}"))
val_s_concepts_loss_norm = [val_s_concepts_loss[i]/total for i in range(len(val_s_concepts_loss))]
elif mode == "usc":
val_loss += gamma*us_corr_loss.item()
us_cov = torch.cov(us_concepts_sample.T).cpu()
val_s_concepts_loss_norm = None
tMetrics = None
all_cMetrics = None
conf_matrix = None
FP_names = None
FN_names = None
else:
val_s_concepts_loss_norm = None
tMetrics = None
all_cMetrics = None
conf_matrix = None
FP_names = None
FN_names = None
us_cov = None
model.train()
return val_loss, val_s_concepts_loss_norm, tMetrics, all_cMetrics, conf_matrix, FP_names, FN_names, us_cov