-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy patheuclidean-test.py
45 lines (35 loc) · 1.39 KB
/
euclidean-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from test import test
from euclidean import *
test(1, gcd(7, 9))
test(2, gcd(8, 18))
test(-12, gcd(-12, 24))
test(12, gcd(12, -24)) # gcd is only unique up to multiplication by a unit, and so sometimes we'll get negatives.
test(38, gcd(4864, 3458))
test((32, -45, 38), extendedEuclideanAlgorithm(4864, 3458))
test((-45, 32, 38), extendedEuclideanAlgorithm(3458, 4864))
from modp import *
Mod2 = IntegersModP(2)
test(Mod2(1), gcd(Mod2(1), Mod2(0)))
test(Mod2(1), gcd(Mod2(1), Mod2(1)))
test(Mod2(0), gcd(Mod2(2), Mod2(2)))
Mod7 = IntegersModP(7)
test(Mod7(6), gcd(Mod7(6), Mod7(14)))
test(Mod7(2), gcd(Mod7(6), Mod7(9)))
ModHuge = IntegersModP(9923)
test(ModHuge(38), gcd(ModHuge(4864), ModHuge(3458)))
test((ModHuge(32), ModHuge(-45), ModHuge(38)),
extendedEuclideanAlgorithm(ModHuge(4864), ModHuge(3458)))
from polynomial import *
p = polynomialsOver(Mod7).factory
test(p([-1, 1]), gcd(p([-1,0,1]), p([-1,0,0,1])))
f = p([-1,0,1])
g = p([-1,0,0,1])
test((p([0,-1]), p([1]), p([-1, 1])), extendedEuclideanAlgorithm(f, g))
test(p([-1,1]), f * p([0,-1]) + g * p([1]))
p = polynomialsOver(Mod2).factory
f = p([1,0,0,0,1,1,1,0,1,1,1]) # x^10 + x^9 + x^8 + x^6 + x^5 + x^4 + 1
g = p([1,0,1,1,0,1,1,0,0,1]) # x^9 + x^6 + x^5 + x^3 + x^1 + 1
theGcd = p([1,1,0,1]) # x^3 + x + 1
x = p([0,0,0,0,1]) # x^4
y = p([1,1,1,1,1,1]) # x^5 + x^4 + x^3 + x^2 + x + 1
test((x, y, theGcd), extendedEuclideanAlgorithm(f, g))