-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHandTrackingModule.py
173 lines (137 loc) · 5.95 KB
/
HandTrackingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import cv2
import mediapipe as mp
import time
import math
import itertools
import numpy as np
import copy
from collections import deque
import tensorflow as tf
def pre_process_point_history(image, point_history):
image_width, image_height = image.shape[1], image.shape[0]
temp_point_history = copy.deepcopy(point_history)
# 相対座標に変換
base_x, base_y = 0, 0
for index, point in enumerate(temp_point_history):
if index == 0:
base_x, base_y = point[0], point[1]
temp_point_history[index][0] = (temp_point_history[index][0] -
base_x) / image_width
temp_point_history[index][1] = (temp_point_history[index][1] -
base_y) / image_height
# 1次元リストに変換
temp_point_history = list(itertools.chain.from_iterable(temp_point_history))
del temp_point_history[0:2]
return temp_point_history
class handDetector():
def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackCon
# ジェスチャー認識用モデルロード
tflite_save_path = './ML/gesture_classifier.tflite'
self.interpreter = tf.lite.Interpreter(model_path=tflite_save_path)
self.interpreter.allocate_tensors()
self.input_details = self.interpreter.get_input_details()
self.output_details = self.interpreter.get_output_details()
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, model_complexity=0, min_detection_confidence=0.5, min_tracking_confidence=0.5)
self.mpDraw = mp.solutions.drawing_utils
self.tipIds = [4, 8, 12, 16, 20]
self.history_length = 16
self.point_history = deque(maxlen=self.history_length)
self.gesture_label = ['Heart', 'Triangle']
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
# print(results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True, gesture=False):
xList = []
yList = []
bbox = []
self.lmList = []
gesture_id = -1
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
xList.append(cx)
yList.append(cy)
# print(id, cx, cy)
self.lmList.append([id, cx, cy])
if id == 8:
self.point_history.append([cx, cy])
if draw:
cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED)
xmin, xmax = min(xList), max(xList)
ymin, ymax = min(yList), max(yList)
bbox = xmin, ymin, xmax, ymax
if gesture:
if len(self.point_history) == self.history_length:
temp_point_history = pre_process_point_history(img, self.point_history)
self.interpreter.set_tensor(
self.input_details[0]['index'],
np.array([temp_point_history]).astype(np.float32))
self.interpreter.invoke()
tflite_results = self.interpreter.get_tensor(self.output_details[0]['index'])
gesture_id = np.argmax(np.squeeze(tflite_results))
cv2.putText(img, self.gesture_label[gesture_id], (500, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (99, 71, 255), 2, cv2.LINE_AA)
else:
cv2.putText(img, "OFF", (500, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (99, 71, 255), 2, cv2.LINE_AA)
if draw:
cv2.rectangle(img, (xmin - 20, ymin - 20), (xmax + 20, ymax + 20), (0, 255, 0), 2)
return self.lmList, self.point_history, bbox, gesture_id
def fingersUp(self):
fingers = []
# Thumb
if self.lmList[self.tipIds[0]][1] > self.lmList[self.tipIds[0]-1][1]:
fingers.append(1)
else:
fingers.append(0)
# Fingers
for id in range(1, 5):
if self.lmList[self.tipIds[id]][2] < self.lmList[self.tipIds[id] - 2][2]:
fingers.append(1)
else:
fingers.append(0)
# totalFingers = fingers.count(1)
return fingers
def findDistance(self, p1, p2, img, draw=True, r=15, t=3):
x1, y1 = self.lmList[p1][1:]
x2, y2 = self.lmList[p2][1:]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
if draw:
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), t)
cv2.circle(img, (x1, y1), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), r, (0, 0, 255), cv2.FILLED)
length = math.hypot(x2 - x1, y2 - y1)
return length, img, [x1, y1, x2, y2, cx, cy]
def main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(1)
detector = handDetector()
while True:
success, img = cap.read()
img = detector.findHands(img)
lmList, bbox = detector.findPosition(img)
if len(lmList) != 0:
print(lmList[4])
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3,
(255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()