-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_e.c
244 lines (228 loc) · 7.05 KB
/
multi_e.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include "multi_e.h"
// Fill
void asmpp_Qdelete(Curve *omega, int k, int *curve_num)
{
int j;
for (j = k; j < *curve_num ; j++)
omega[j] = omega[j+1];
(*curve_num)--;
}
void draw_all_curves(Curve *omega, int curve_num, IplImage *image, int energy_type)
{
int k;
CvScalar red = CV_RGB(255,0,0);
for(k = 0; k<curve_num; k++)
draw_curve(&(omega[k]), image, energy_type, red);
}
int compare_Single_E (const void * a, const void * b)
{
if(((Curve*)a)->single_E > ((Curve*)b)->single_E) return -1;
else if(((Curve*)a)->single_E < ((Curve*)b)->single_E) return 1;
else return 0;
}
double asmpp_intersection_area(Curve *omega1, Curve *omega2)
{
int num1, num2, in_num;
int i,j,m,n;
int size1x,size1y,size2x,size2y;
num1 = 0;
in_num = 0;
size1x = (int)(omega1->max.x - omega1->min.x + 3);
size1y = (int)(omega1->max.y - omega1->min.y + 3);
size2x = (int)(omega2->max.x - omega2->min.x + 3);
size2y = (int)(omega2->max.y - omega2->min.y + 3);
for (i=0;i < size1y ;i++){
for (j=0;j < size1x ;j++){
if(omega1->interior[i][j] == INTERNAL_AREA_IN)
{
num1++;
m = i + (int)(omega1->min.y + omega1->center.y - omega2->min.y - omega2->center.y);
n = j + (int)(omega1->min.x + omega1->center.x - omega2->min.x - omega2->center.x);
if((m>=0)&&(m<size2y)&&(n>=0)&&(n<size2x))
{
if(omega2->interior[m][n] == INTERNAL_AREA_IN)
in_num++;
}
}
}
}
num2 = 0;
for (i=0;i < size2y ;i++){
for (j=0;j < size2x ;j++){
if(omega2->interior[i][j] == INTERNAL_AREA_IN)
{
num2++;
}
}
}
if(num2<num1)
num1 = num2;
return (double)in_num/(double)num1;
}
double asmpp_C_prior (Curve *omega, int k, int curve_num, double epsilon)
{
int i;
double sum,dtmp1,dtmp2,dist1,dist2;
dtmp1 = sqrt(omega[k].max.x * omega[k].max.x + omega[k].max.y * omega[k].max.y);
dtmp2 = sqrt(omega[k].min.x * omega[k].min.x + omega[k].min.y * omega[k].min.y);
if(dtmp2<dtmp1) dist1 = dtmp1;
else dist1 = dtmp2;
sum = 0.;
for(i=0;i<curve_num;i++){
if(i!=k){
dtmp1 = sqrt(omega[i].max.x * omega[i].max.x + omega[i].max.y * omega[i].max.y);
dtmp2 = sqrt(omega[i].min.x * omega[i].min.x + omega[i].min.y * omega[i].min.y);
if(dtmp2<dtmp1) dist2 = dtmp1;
else dist2 = dtmp2;
dtmp1 = dist(omega[k].center,omega[i].center);
if (dtmp1<epsilon)
return INF;
if(dtmp1<dist1+dist2){
sum += asmpp_intersection_area(&(omega[k]), &(omega[i]));
}
}
}
return sum;
}
/******************************************************************************/
// as_mpp :
//
/******************************************************************************/
void as_mpp(unsigned char **yimg, unsigned char **lm, double *mean, double *vari,
double GD_step, double lambda_g, double lambda_G, double GDepsilon,
double delta, double b_zero, double alpha, double beta,
double F, int cols, int rows, IplImage *image, const char* win_name, CvVideoWriter *video)
{
double test_pointx[15] = {6,-39,-41,-33,-23,-23,-57,-49,-28,1,0,49,50,13,60};
double test_pointy[15] = {-59,-38,-15,-23,-23,10,14,51,36,48,77,82,22,-13,-29};
double test_centerx = 63;
double test_centery = 97;
unsigned char **MP_exist;
DPoint r;
int i, j, ii, jj, m, n, k, iter;
double min, max, dtmp;
double birth_rate, d_beta, d_rate;
Curve omega[MAX_MKPNT_NUM];
int curve_num, succeed;
double epsilon=HARDCORE_REPULSION;
int mpp_iter_stop;
double delta_t = DELTA_T;
CvScalar red = CV_RGB(255,0,0);
IplImage *image2 = 0;
char win_name2[256] = "Birth";
int channel = 3;
int width=cols*SCALE, height=rows*SCALE;
CvVideoWriter *video0001= cvCreateVideoWriter("video0001.avi",
0, 30, cvSize(image->width,image->height),1);
image2 = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, channel);
LoadImageFromMemory(image2, yimg);
if(SHOW_WINDOW*LEVEL3){
// create a window
cvNamedWindow(win_name2, CV_WINDOW_AUTOSIZE);
cvResizeWindow( win_name2, width, height);
cvMoveWindow(win_name2, 1000, 500);
cvShowImage(win_name2, image2);
// wait for a key
cvWaitKey(1);
}
MP_exist = (unsigned char **)get_img(cols, rows, sizeof(unsigned char));
for (i = 0; i < rows; i++)
for (j = 0; j < cols; j++){
MP_exist[i][j] = 0;
}
for(i = 0; i < MAX_MKPNT_NUM; i++){
omega[i].state = STATE_NON_EXIST;
}
birth_rate = delta*b_zero;
curve_num = 0;
iter = 0;
for (m = 0;m<ITER_STEP;m+=2){
for (n = 0;n<ITER_STEP;n+=2){
//----------------------- Birth -------------------------//ITER_STEP
for (ii = 3;ii<rows-3;ii+=ITER_STEP){
i = ii+m;
if(i>rows-3) i = rows-3;
for (jj = 3;jj<cols-3;jj+=ITER_STEP){
j = jj+m;
if(j>cols-3) j = cols-3;
if (MP_exist[i][j]==0){
dtmp = ((double)rand()/RAND_MAX);
if (dtmp < birth_rate*(double)(lm[i][j])){ // birth
if (curve_num>MAX_MKPNT_NUM-2)
break;
r.x = (double)j;
r.y = (double)i;
Qbirth(&(omega[curve_num]), r, delta_t, RMIN, RMAX, cols, rows);
succeed = Single_Object(yimg, &(omega[curve_num]), GD_step, lambda_g,lambda_G, GDepsilon,
delta_t, mean, vari, cols, rows, image2, win_name2, video0001);
if ((succeed)&&(omega[curve_num].single_E < MAX_SINGLE_ENERGY))
{
MP_exist[(int)(omega[curve_num].center.y)][(int)(omega[curve_num].center.x)] ++;
omega[curve_num].state = STATE_NEW_BORN;
if(SHOW_WINDOW*LEVEL3){
draw_curve(&(omega[curve_num]), image2, TEXT_SINGLE_E, red);
cvShowImage(win_name2, image2);
cvWaitKey((int)(1));
}
curve_num ++;
}
// Calculate Interior Area
Internal_Area(&(omega[curve_num]));
}
}
}
}
//----------------------- death -------------------------//
qsort (omega, curve_num, sizeof(Curve), compare_Single_E);
for(k = 0; k<curve_num; k++){
omega[k].multiple_E = asmpp_C_prior (omega, k, curve_num, epsilon);
if(SHOW_WINDOW*LEVEL2){
draw_curve(&(omega[k]), image, TEXT_BOTH_E, red);
}
if(omega[k].multiple_E>=INF)
d_rate = 1.;
else{
d_beta = exp(-beta*(-alpha*omega[k].single_E-omega[k].multiple_E));
d_rate = (delta*d_beta)/(1.0+delta*d_beta);
// printf("k=%d, dp=%1.2f\n",k,d_rate);
}
dtmp = ((double)rand()/RAND_MAX);
if (dtmp < d_rate){
MP_exist[(int)omega[k].center.y][(int)omega[k].center.x] --;
asmpp_Qdelete(omega, k, &curve_num);
k--;
}
else
omega[k].num = k;
}
if(SHOW_WINDOW*LEVEL2){
cvShowImage(win_name2, image2);
cvWaitKey((int)(1));
LoadImageFromMemory(image2, yimg);
LoadImageFromMemory(image, yimg);
draw_all_curves(omega, curve_num, image, TEXT_BOTH_E);
cvShowImage(win_name, image);
cvWaitKey((int)(1));
cvWriteFrame( video, image );
cvWriteFrame( video, image );
cvWriteFrame( video, image );
cvWriteFrame( video, image );
cvWriteFrame( video, image );
cvWriteFrame( video0001, image2 );
}
//---------------- Set up new parameters ----------------//
delta = delta*F;
beta = beta/F;
printf("iter = %d\n",iter);
iter ++;
}
}
cvReleaseVideoWriter( &video0001 );
if(SHOW_WINDOW*LEVEL1){
LoadImageFromMemory(image, yimg);
draw_all_curves(omega, curve_num, image, TEXT_BOTH_E);
cvShowImage(win_name, image);
cvWaitKey((int)(1));
}
free_img((void **)MP_exist);
}