This repository has been archived by the owner on Oct 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 244
/
Copy pathfashion_mnist.py
89 lines (64 loc) · 1.49 KB
/
fashion_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env python
# coding: utf-8
# # Fashion MNIST 데이터셋 알아보기
from torchvision import datasets, transforms, utils
from torch.utils import data
import matplotlib.pyplot as plt
import numpy as np
# ## Fashion MNIST 데이터셋
transform = transforms.Compose([
transforms.ToTensor()
])
trainset = datasets.FashionMNIST(
root = './.data/',
train = True,
download = True,
transform = transform
)
testset = datasets.FashionMNIST(
root = './.data/',
train = False,
download = True,
transform = transform
)
batch_size = 16
train_loader = data.DataLoader(
dataset = trainset,
batch_size = batch_size
)
test_loader = data.DataLoader(
dataset = testset,
batch_size = batch_size
)
dataiter = iter(train_loader)
images, labels = next(dataiter)
# ## 멀리서 살펴보기
img = utils.make_grid(images, padding=0)
npimg = img.numpy()
plt.figure(figsize=(10, 7))
plt.imshow(np.transpose(npimg, (1,2,0)))
plt.show()
print(labels)
CLASSES = {
0: 'T-shirt/top',
1: 'Trouser',
2: 'Pullover',
3: 'Dress',
4: 'Coat',
5: 'Sandal',
6: 'Shirt',
7: 'Sneaker',
8: 'Bag',
9: 'Ankle boot'
}
for label in labels:
index = label.item()
print(CLASSES[index])
# ## 가까이서 살펴보기
idx = 1
item_img = images[idx]
item_npimg = item_img.squeeze().numpy()
plt.title(CLASSES[labels[idx].item()])
print(item_npimg.shape)
plt.imshow(item_npimg, cmap='gray')
plt.show()