From 4ed057fcfc8f5e12277f047d65e65ed6748296bf Mon Sep 17 00:00:00 2001 From: keon Date: Mon, 17 Jun 2019 07:42:24 -0700 Subject: [PATCH] update 6/17 --- .gitignore | 1 + .../README.md" | 0 .../README.md" | 0 .../check_installation.py" | 0 .../mat_mul.py" | 0 .../tensor_basic.py" | 0 .../00-image-recovery.ipynb" | 0 .../00-image-recovery.py" | 0 .../01-basic-feed-forward_nn.ipynb" | 0 .../01-basic-feed-forward_nn.py" | 0 .../README.md" | 0 .../broken_image_t.p" | 0 .../images/ReLU.png" | Bin .../images/data_distribution.png" | Bin .../images/img.png" | 0 .../images/mm.png" | Bin .../images/sigmoid.png" | Bin .../model.pt" | Bin .../01-fashion-mnist.ipynb" | 0 .../01-fashion-mnist.py" | 0 .../02-neural-network.ipynb" | 0 .../02-neural-network.py" | 0 .../03-overfitting-and-regularization.ipynb" | 0 .../03-overfitting-and-regularization.py" | 0 .../README.md" | 0 .../assets/horizontalflip.png" | Bin .../assets/original.png" | Bin .../01-cnn.ipynb" | 0 .../01-cnn.py" | 0 .../02-cifar-cnn.ipynb" | 0 .../02-cifar-cnn.py" | 0 .../README.md" | 0 06-Autoencoder/01-basic-autoencoder.ipynb | 485 ------ .../01-basic-autoencoder.ipynb" | 650 ++++++++ .../01-basic-autoencoder.py" | 0 .../02-denoising-autoencoder.ipynb" | 2 +- .../02-denoising-autoencoder.py" | 0 .../README.md" | 0 .../assets/autoencoder.png" | Bin .../01-text-classification.ipynb | 746 ---------- .../02-sequence-to-sequence.ipynb | 1320 ----------------- .../03-Seq2Seq_gru.ipynb | 566 ------- .../01-text-classification.ipynb" | 287 ++++ .../01-text-classification.py" | 0 .../02-sequence-to-sequence.ipynb" | 299 ++++ .../02-sequence-to-sequence.py" | 0 .../03-Seq2Seq_gru.py" | 0 .../03-seq2seq_gru.ipynb" | 445 ++++++ .../README.md" | 0 .../assets/encoder_decoder.png" | Bin .../assets/pics" | 0 08-Hacking-Deep-Learning/01-fgsm-attack.ipynb | 626 -------- .../02-iterative-target-attack.ipynb | 323 ---- .../01-fgsm-attack.ipynb" | 628 ++++++++ .../01-fgsm-attack.py" | 0 .../02-iterative-target-attack.ipynb" | 329 ++++ .../02-iterative-target-attack.py" | 0 .../README.md" | 0 .../imagenet_samples/chihuahua.jpg" | Bin .../imagenet_samples/corgie.jpg" | Bin 0 -> 1234922 bytes .../imagenet_samples/imagenet_classes.json" | 0 .../imagenet_samples/stoplight.jpg" | Bin .../01-gan-explanation.ipynb" | 0 .../01-gan-explanation.py" | 0 .../01-gan.ipynb" | 0 .../01-gan.py" | 0 .../02-conditional-gan.ipynb" | 0 .../02-conditional-gan.py" | 0 .../README.md" | 0 .../assets/generated_image0.png" | Bin .../assets/generated_image1.png" | Bin .../assets/generated_image2.png" | Bin .../assets/generated_image3.png" | Bin .../assets/generated_image4.png" | Bin .../assets/img.txt" | 0 .../01-cartpole-dqn.ipynb" | 0 .../01-cartpole-dqn.py" | 0 .../README.md" | 0 .../assets/dqn_net.png" | Bin .../assets/rl.png" | Bin 11-Self-Driving-Car/README.md | 10 - .../Untitled.ipynb" | 105 ++ .../eye/CMakeLists.txt" | 8 + .../eye/build.sh" | 5 + .../eye/eye.cpp" | 8 + .../linear/CMakeLists.txt" | 8 + .../linear/linear.cpp" | 41 + .../linear/linear.py" | 48 + .../linear/result.png" | Bin 0 -> 22154 bytes README.md | 7 +- 90 files changed, 2864 insertions(+), 4083 deletions(-) rename 01-Deep-Learning-And-PyTorch/README.md => "01-\353\224\245\353\237\254\353\213\235\352\263\274 \355\214\214\354\235\264\355\206\240\354\271\230/README.md" (100%) rename 02-Getting-Started-With-PyTorch/README.md => "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/README.md" (100%) rename 02-Getting-Started-With-PyTorch/check_installation.py => "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/check_installation.py" (100%) rename 02-Getting-Started-With-PyTorch/mat_mul.py => "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/mat_mul.py" (100%) rename 02-Getting-Started-With-PyTorch/tensor_basic.py => "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/tensor_basic.py" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.ipynb => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.ipynb" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.py => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.py" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.ipynb => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.ipynb" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.py => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.py" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/README.md => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/README.md" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/broken_image_t.p => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/broken_image_t.p" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/images/ReLU.png => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/ReLU.png" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/images/data_distribution.png => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/data_distribution.png" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/images/img.png => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/img.png" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/images/mm.png => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/mm.png" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/images/sigmoid.png => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/sigmoid.png" (100%) rename 03-Coding-Neural-Networks-In-PyTorch/model.pt => "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/model.pt" (100%) rename 04-Neural-Network-For-Fashion/01-fashion-mnist.ipynb => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.ipynb" (100%) rename 04-Neural-Network-For-Fashion/01-fashion-mnist.py => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.py" (100%) rename 04-Neural-Network-For-Fashion/02-neural-network.ipynb => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.ipynb" (100%) rename 04-Neural-Network-For-Fashion/02-neural-network.py => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.py" (100%) rename 04-Neural-Network-For-Fashion/03-overfitting-and-regularization.ipynb => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.ipynb" (100%) rename 04-Neural-Network-For-Fashion/03-overfitting-and-regularization.py => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.py" (100%) rename 04-Neural-Network-For-Fashion/README.md => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/README.md" (100%) rename 04-Neural-Network-For-Fashion/assets/horizontalflip.png => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/horizontalflip.png" (100%) rename 04-Neural-Network-For-Fashion/assets/original.png => "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/original.png" (100%) rename 05-CNN-For-Image-Classification/01-cnn.ipynb => "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.ipynb" (100%) rename 05-CNN-For-Image-Classification/01-cnn.py => "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.py" (100%) rename 05-CNN-For-Image-Classification/02-cifar-cnn.ipynb => "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.ipynb" (100%) rename 05-CNN-For-Image-Classification/02-cifar-cnn.py => "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.py" (100%) rename 05-CNN-For-Image-Classification/README.md => "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/README.md" (100%) delete mode 100644 06-Autoencoder/01-basic-autoencoder.ipynb create mode 100644 "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.ipynb" rename 06-Autoencoder/01-basic-autoencoder.py => "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.py" (100%) rename 06-Autoencoder/02-denoising-autoencoder.ipynb => "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.ipynb" (98%) rename 06-Autoencoder/02-denoising-autoencoder.py => "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.py" (100%) rename 06-Autoencoder/README.md => "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/README.md" (100%) rename 06-Autoencoder/assets/autoencoder.png => "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/assets/autoencoder.png" (100%) delete mode 100644 07-RNN-For-Sequential-Data/01-text-classification.ipynb delete mode 100644 07-RNN-For-Sequential-Data/02-sequence-to-sequence.ipynb delete mode 100644 07-RNN-For-Sequential-Data/03-Seq2Seq_gru.ipynb create mode 100644 "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.ipynb" rename 07-RNN-For-Sequential-Data/01-text-classification.py => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.py" (100%) create mode 100644 "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.ipynb" rename 07-RNN-For-Sequential-Data/02-sequence-to-sequence.py => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.py" (100%) rename 07-RNN-For-Sequential-Data/03-Seq2Seq_gru.py => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-Seq2Seq_gru.py" (100%) create mode 100644 "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-seq2seq_gru.ipynb" rename 07-RNN-For-Sequential-Data/README.md => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/README.md" (100%) rename 07-RNN-For-Sequential-Data/assets/encoder_decoder.png => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/encoder_decoder.png" (100%) rename 07-RNN-For-Sequential-Data/assets/pics => "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/pics" (100%) delete mode 100644 08-Hacking-Deep-Learning/01-fgsm-attack.ipynb delete mode 100644 08-Hacking-Deep-Learning/02-iterative-target-attack.ipynb create mode 100644 "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.ipynb" rename 08-Hacking-Deep-Learning/01-fgsm-attack.py => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.py" (100%) create mode 100644 "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.ipynb" rename 08-Hacking-Deep-Learning/02-iterative-target-attack.py => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.py" (100%) rename 08-Hacking-Deep-Learning/README.md => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/README.md" (100%) rename 08-Hacking-Deep-Learning/imagenet_samples/chihuahua.jpg => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/chihuahua.jpg" (100%) create mode 100644 "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/corgie.jpg" rename 08-Hacking-Deep-Learning/imagenet_samples/imagenet_classes.json => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/imagenet_classes.json" (100%) rename 08-Hacking-Deep-Learning/imagenet_samples/stoplight.jpg => "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/stoplight.jpg" (100%) rename 09-Generative-Adversarial-Networks/01-gan-explanation.ipynb => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.ipynb" (100%) rename 09-Generative-Adversarial-Networks/01-gan-explanation.py => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.py" (100%) rename 09-Generative-Adversarial-Networks/01-gan.ipynb => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.ipynb" (100%) rename 09-Generative-Adversarial-Networks/01-gan.py => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.py" (100%) rename 09-Generative-Adversarial-Networks/02-conditional-gan.ipynb => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.ipynb" (100%) rename 09-Generative-Adversarial-Networks/02-conditional-gan.py => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.py" (100%) rename 09-Generative-Adversarial-Networks/README.md => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/README.md" (100%) rename 09-Generative-Adversarial-Networks/assets/generated_image0.png => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image0.png" (100%) rename 09-Generative-Adversarial-Networks/assets/generated_image1.png => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image1.png" (100%) rename 09-Generative-Adversarial-Networks/assets/generated_image2.png => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image2.png" (100%) rename 09-Generative-Adversarial-Networks/assets/generated_image3.png => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image3.png" (100%) rename 09-Generative-Adversarial-Networks/assets/generated_image4.png => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image4.png" (100%) rename 09-Generative-Adversarial-Networks/assets/img.txt => "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/img.txt" (100%) rename 10-DQN-Learns-From-Environment/01-cartpole-dqn.ipynb => "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.ipynb" (100%) rename 10-DQN-Learns-From-Environment/01-cartpole-dqn.py => "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.py" (100%) rename 10-DQN-Learns-From-Environment/README.md => "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/README.md" (100%) rename 10-DQN-Learns-From-Environment/assets/dqn_net.png => "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/dqn_net.png" (100%) rename 10-DQN-Learns-From-Environment/assets/rl.png => "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/rl.png" (100%) delete mode 100644 11-Self-Driving-Car/README.md create mode 100644 "11-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \353\247\214\353\223\240 \353\252\250\353\215\270\354\235\204 \354\213\244\354\240\234 \354\204\234\353\271\204\354\212\244\354\227\220 \354\240\201\354\232\251\355\225\230\352\270\260/Untitled.ipynb" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/CMakeLists.txt" create mode 100755 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/build.sh" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/eye.cpp" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/CMakeLists.txt" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.cpp" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.py" create mode 100644 "12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/result.png" diff --git a/.gitignore b/.gitignore index 75cb6f3..632a274 100644 --- a/.gitignore +++ b/.gitignore @@ -21,6 +21,7 @@ parts/ sdist/ var/ wheels/ +unpublished/ *.egg-info/ .installed.cfg *.egg diff --git a/01-Deep-Learning-And-PyTorch/README.md "b/01-\353\224\245\353\237\254\353\213\235\352\263\274 \355\214\214\354\235\264\355\206\240\354\271\230/README.md" similarity index 100% rename from 01-Deep-Learning-And-PyTorch/README.md rename to "01-\353\224\245\353\237\254\353\213\235\352\263\274 \355\214\214\354\235\264\355\206\240\354\271\230/README.md" diff --git a/02-Getting-Started-With-PyTorch/README.md "b/02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/README.md" similarity index 100% rename from 02-Getting-Started-With-PyTorch/README.md rename to "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/README.md" diff --git a/02-Getting-Started-With-PyTorch/check_installation.py "b/02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/check_installation.py" similarity index 100% rename from 02-Getting-Started-With-PyTorch/check_installation.py rename to "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/check_installation.py" diff --git a/02-Getting-Started-With-PyTorch/mat_mul.py "b/02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/mat_mul.py" similarity index 100% rename from 02-Getting-Started-With-PyTorch/mat_mul.py rename to "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/mat_mul.py" diff --git a/02-Getting-Started-With-PyTorch/tensor_basic.py "b/02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/tensor_basic.py" similarity index 100% rename from 02-Getting-Started-With-PyTorch/tensor_basic.py rename to "02-\355\214\214\354\235\264\355\206\240\354\271\230 \354\213\234\354\236\221\355\225\230\352\270\260/tensor_basic.py" diff --git a/03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.ipynb "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.ipynb" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.ipynb rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.ipynb" diff --git a/03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.py "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.py" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/00-image-recovery.py rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/00-image-recovery.py" diff --git a/03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.ipynb "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.ipynb" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.ipynb rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.ipynb" diff --git a/03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.py "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.py" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/01-basic-feed-forward_nn.py rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/01-basic-feed-forward_nn.py" diff --git a/03-Coding-Neural-Networks-In-PyTorch/README.md "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/README.md" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/README.md rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/README.md" diff --git a/03-Coding-Neural-Networks-In-PyTorch/broken_image_t.p "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/broken_image_t.p" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/broken_image_t.p rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/broken_image_t.p" diff --git a/03-Coding-Neural-Networks-In-PyTorch/images/ReLU.png "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/ReLU.png" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/images/ReLU.png rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/ReLU.png" diff --git a/03-Coding-Neural-Networks-In-PyTorch/images/data_distribution.png "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/data_distribution.png" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/images/data_distribution.png rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/data_distribution.png" diff --git a/03-Coding-Neural-Networks-In-PyTorch/images/img.png "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/img.png" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/images/img.png rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/img.png" diff --git a/03-Coding-Neural-Networks-In-PyTorch/images/mm.png "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/mm.png" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/images/mm.png rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/mm.png" diff --git a/03-Coding-Neural-Networks-In-PyTorch/images/sigmoid.png "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/sigmoid.png" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/images/sigmoid.png rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/images/sigmoid.png" diff --git a/03-Coding-Neural-Networks-In-PyTorch/model.pt "b/03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/model.pt" similarity index 100% rename from 03-Coding-Neural-Networks-In-PyTorch/model.pt rename to "03-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \352\265\254\355\230\204\355\225\230\353\212\224 \354\235\270\352\263\265 \354\213\240\352\262\275\353\247\235/model.pt" diff --git a/04-Neural-Network-For-Fashion/01-fashion-mnist.ipynb "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.ipynb" similarity index 100% rename from 04-Neural-Network-For-Fashion/01-fashion-mnist.ipynb rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.ipynb" diff --git a/04-Neural-Network-For-Fashion/01-fashion-mnist.py "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.py" similarity index 100% rename from 04-Neural-Network-For-Fashion/01-fashion-mnist.py rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/01-fashion-mnist.py" diff --git a/04-Neural-Network-For-Fashion/02-neural-network.ipynb "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.ipynb" similarity index 100% rename from 04-Neural-Network-For-Fashion/02-neural-network.ipynb rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.ipynb" diff --git a/04-Neural-Network-For-Fashion/02-neural-network.py "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.py" similarity index 100% rename from 04-Neural-Network-For-Fashion/02-neural-network.py rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/02-neural-network.py" diff --git a/04-Neural-Network-For-Fashion/03-overfitting-and-regularization.ipynb "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.ipynb" similarity index 100% rename from 04-Neural-Network-For-Fashion/03-overfitting-and-regularization.ipynb rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.ipynb" diff --git a/04-Neural-Network-For-Fashion/03-overfitting-and-regularization.py "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.py" similarity index 100% rename from 04-Neural-Network-For-Fashion/03-overfitting-and-regularization.py rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/03-overfitting-and-regularization.py" diff --git a/04-Neural-Network-For-Fashion/README.md "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/README.md" similarity index 100% rename from 04-Neural-Network-For-Fashion/README.md rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/README.md" diff --git a/04-Neural-Network-For-Fashion/assets/horizontalflip.png "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/horizontalflip.png" similarity index 100% rename from 04-Neural-Network-For-Fashion/assets/horizontalflip.png rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/horizontalflip.png" diff --git a/04-Neural-Network-For-Fashion/assets/original.png "b/04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/original.png" similarity index 100% rename from 04-Neural-Network-For-Fashion/assets/original.png rename to "04-\353\224\245\353\237\254\353\213\235\354\234\274\353\241\234 \355\214\250\354\205\230 \354\225\204\354\235\264\355\205\234 \352\265\254\353\266\204\355\225\230\352\270\260/assets/original.png" diff --git a/05-CNN-For-Image-Classification/01-cnn.ipynb "b/05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.ipynb" similarity index 100% rename from 05-CNN-For-Image-Classification/01-cnn.ipynb rename to "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.ipynb" diff --git a/05-CNN-For-Image-Classification/01-cnn.py "b/05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.py" similarity index 100% rename from 05-CNN-For-Image-Classification/01-cnn.py rename to "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/01-cnn.py" diff --git a/05-CNN-For-Image-Classification/02-cifar-cnn.ipynb "b/05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.ipynb" similarity index 100% rename from 05-CNN-For-Image-Classification/02-cifar-cnn.ipynb rename to "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.ipynb" diff --git a/05-CNN-For-Image-Classification/02-cifar-cnn.py "b/05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.py" similarity index 100% rename from 05-CNN-For-Image-Classification/02-cifar-cnn.py rename to "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/02-cifar-cnn.py" diff --git a/05-CNN-For-Image-Classification/README.md "b/05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/README.md" similarity index 100% rename from 05-CNN-For-Image-Classification/README.md rename to "05-\354\235\264\353\257\270\354\247\200 \354\262\230\353\246\254\353\212\245\353\240\245\354\235\264 \355\203\201\354\233\224\355\225\234 CNN/README.md" diff --git a/06-Autoencoder/01-basic-autoencoder.ipynb b/06-Autoencoder/01-basic-autoencoder.ipynb deleted file mode 100644 index 5ef51ee..0000000 --- a/06-Autoencoder/01-basic-autoencoder.ipynb +++ /dev/null @@ -1,485 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 7.1 오토인코더로 이미지의 특징을 추출하기\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import torchvision\n", - "import torch.nn.functional as F\n", - "from torch import nn, optim\n", - "from torch.autograd import Variable\n", - "from torchvision import transforms, datasets\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from matplotlib import cm\n", - "import numpy as np\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "torch.manual_seed(1) # reproducible" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using Device: cuda\n" - ] - } - ], - "source": [ - "# Hyper Parameters\n", - "EPOCH = 10\n", - "BATCH_SIZE = 64\n", - "USE_CUDA = torch.cuda.is_available()\n", - "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")\n", - "print(\"Using Device:\", DEVICE)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz\n", - "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz\n", - "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz\n", - "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz\n", - "Processing...\n", - "Done!\n" - ] - } - ], - "source": [ - "# Fashion MNIST digits dataset\n", - "trainset = datasets.FashionMNIST(\n", - " root = './.data/', \n", - " train = True,\n", - " download = True,\n", - " transform = transforms.ToTensor()\n", - ")\n", - "train_loader = torch.utils.data.DataLoader(\n", - " dataset = trainset,\n", - " batch_size = BATCH_SIZE,\n", - " shuffle = True,\n", - " num_workers = 2\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "class Autoencoder(nn.Module):\n", - " def __init__(self):\n", - " super(Autoencoder, self).__init__()\n", - "\n", - " self.encoder = nn.Sequential(\n", - " nn.Linear(28*28, 128),\n", - " nn.ReLU(),\n", - " nn.Linear(128, 64),\n", - " nn.ReLU(),\n", - " nn.Linear(64, 12),\n", - " nn.ReLU(),\n", - " nn.Linear(12, 3), # compress to 3 features which can be visualized in plt\n", - " )\n", - " self.decoder = nn.Sequential(\n", - " nn.Linear(3, 12),\n", - " nn.ReLU(),\n", - " nn.Linear(12, 64),\n", - " nn.ReLU(),\n", - " nn.Linear(64, 128),\n", - " nn.ReLU(),\n", - " nn.Linear(128, 28*28),\n", - " nn.Sigmoid(), # compress to a range (0, 1)\n", - " )\n", - "\n", - " def forward(self, x):\n", - " encoded = self.encoder(x)\n", - " decoded = self.decoder(encoded)\n", - " return encoded, decoded" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "autoencoder = Autoencoder().to(DEVICE)\n", - "optimizer = torch.optim.Adam(autoencoder.parameters(), lr=0.005)\n", - "criterion = nn.MSELoss()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# original data (first row) for viewing\n", - "view_data = trainset.train_data[:5].view(-1, 28*28)\n", - "view_data = view_data.type(torch.FloatTensor)/255." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def train(autoencoder, train_loader):\n", - " autoencoder.train()\n", - " for step, (x, label) in enumerate(train_loader):\n", - " x = x.view(-1, 28*28).to(DEVICE)\n", - " y = x.view(-1, 28*28).to(DEVICE)\n", - " label = label.to(DEVICE)\n", - "\n", - " encoded, decoded = autoencoder(x)\n", - "\n", - " loss = criterion(decoded, y)\n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 1]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXWlsXFfZfu6dxWN7bMdxnLhZm80JaUjTNIR0SQu0gSLU\nglICqCw/EAgBYilUAok/SBVqBahABUKiSKUVEghEWpZSSlQFgUjTJK2qNCRt0iRt0jZ7bMf2eJnl\nfj8uz3vfOfd64hl7Zjwf5/kzXu7MnHPPued93t3xPA8WFhYWjQC33gOwsLCwmCzsgWVhYdEwsAeW\nhYVFw8AeWBYWFg0De2BZWFg0DOyBZWFh0TCwB5aFhUXDwB5YFhYWDQN7YFlYWDQM4uVc7DhOw4fF\ne57nlPr/dMwxlUoBABYvXgwAuHTpEgAgk8mAmQV8bW5uBgB0dnZidHQUAHD27FkAQD6fr3QIFzzP\n6y51wVTnGY/H0dXVBQC4ePEiACCXy13xfc3NzXJ/+vv7AQT3olxcaS2ByueZTCYBAG1tbZg1axaA\nYH6cbyaTkbl0dnYCANrb2wEAhUJBrrtw4UIlQxBUc55TRSKRQDabnZbPmsw8yzqw/lfhOP59jHqw\n1q9fDwD4xCc+AQC4++675aBpbW0FEBxKfMCjcOTIERQKBQDAqlWrAAQH1zPPPIMf/vCHAICDBw9O\nZshvTOaiSpBOpwH48/3a174GABgfHwcQPJjj4+Pyt7a2NgBAU1MTAGDhwoX44x//CAB47rnnAAC/\n//3vqzXcSeODH/wgAODee+8FAIyMjADwDy4KEs5l7dq1AIB58+bh9ddfBxAcZqdPnwYADAwMyJwX\nLFgAAHj22WcBAF/96lerOpdywDF1dnbKAfv5z38eAGRuGvPnzwcA7Nq1C4C/t994w99ud9xxBwBg\neHi4auN1ypFulmH5aG9vx+OPPw4AWLduHQDAdX3tenBwUDY4JQ8PsEQigY6ODgDBovKQiloHSu/m\n5maR+P/6178AAJ/+9KdLDfEFz/M2lrpgqmu5fft2eai/853vAAg287x58+Rh7evrAwAMDQ0BAHbu\n3Inf/OY3AILD78knn6xoDNPFPJYvX47vfve7AAIh0dLSAsBfV64RD6VFixbJe/k/vg4MDMi1XH8y\nbB5c/f39uO+++640LEE1GdY//vEPAP494JpRwA4ODgIA/vCHP+BTn/oUACAWiwGA7PH+/n7ZB9de\ne20lQxBMZp7WhmVhYdEwqLtKGKVukXrffPPNAICnn346dD1P+lJ2E15rfv5UsWPHDixZsgQAcO7c\nOQCBhI3H4zImfn88HpffqTZx/AQZmgYl1+joqIz/lltuAQCsXr0aAPDKK69M06zKQzKZFBvUT3/6\nUwCBqjM2NibSmte88MILAIBHH30US5cuBQCcP3++pmOeCN/85jdDY+F6pFIpWU++njhxAoDPpsiC\nuf6cNxAwa64/Vae1a9fiQx/6EADgqaeemv4JlQGqgUuXLpWfZ8+eDQDo6ekBAHzlK18R9kSNgsw5\nHo/L+2oBy7AsLCwaBnVnWJRk+XweK1asAAB87nOfAxAwjOHhYdGZ9+7dC6CYWZHJ8LP4u74mFotN\nxesGALj++usBAEuWLBGmROlJxpRKpcRWoe0ggG/T4vUcC8eaSCRkvLQdvPnmm6F58H28R+XYQqYT\nQ0NDmDNnDoCAOXzjG98A4BvWu7t9JyXZCKXwnDlzihjnTMCvfvUrMbaTadGW1dbWFvKC0aHA+QPA\n5cuXAQR7Nup62i9PnTpVd2ZFHD9+HACwefNm2WdjY2MAiteHBvgtW7YAAN566y0Avr2L+7wWsAzL\nwsKiYVB3hkVmks/n8b73vQ8AcPvttwMIGEZTU5Oc4lu3bgUA/PKXvwTgS0Lad0wGlU6nxbaQyWSm\nPNb3vve9Mh7aKvj5nMfY2Bi+9a1vAQDefvvtonnMnz9f3N5kXZS+TU1N4jXbsGEDAN92APjhAmQl\n/L6PfvSjAOrHsDTr00wD8Md75swZAAHLJOvM5/OhWLR6Y+/evRJicddddwEAnn/+eQA+g+YcyBJ1\nGAeZP6/hOl2+fFlYJsFrvv3tb1dtLuXi0KFDAIptqvRgc560WwEBg9T2WbLLWqDuBxZvCgC8613v\nAgBcffXVAIKb6LounnnmGQDAddddBwD4/ve/DwDYv38/Xn75ZQDA4cOHAQCbNm2Sz9u9ezcAP+aH\nrvVKwUMil8sVHbRAEIIwMDCARx55BADw/ve/H0BwAD366KP4whe+ACCIp6KBMxaLiRryox/9CADw\npS99CYC/Kfj5PHhpdO/t7cWRI0emNK9K4LpuSFDwnjDQMgqO48j7+HDPBDz88MMAILFlJ0+eBOCr\niHyAee+psgPBnHkN55RIJOQ6qoJ0HtXyAb8SqNpls1kRoolEAkAQU/biiy/KXHg95+04joRy1AJW\nJbSwsGgY1E3EmeEMW7duxcaNfqwjT3NGivf29qK3txcAsG/fPgDAa6+9BsBX+2644QYAwLZt2wAE\nAZv79u0T4/TY2Bj2798/pTHTtXvq1CmRRtqNDQSpGQDwt7/9DUAgfdesWSMq3BNPPAEAuPPOOwH4\nkvnFF18EEBj3qXa1trYKi6FKSAZwww031IVhpdNpmTvVIkrdQqFQJIE1XNctChmYCdChKAyl+d73\nvif/J7PiNQysHBkZEUbFVxqsdZgKf/7zn/9ctTlUCpotstmsrBX3GNf10KFDwro4F7KqpqammjpP\nLMOysLBoGNSUYZU6ie+//35cddVVRX+jkTKXy4mtixKQbKxQKAgzIeuiJPzyl7+MZcuWAQjsT5WA\nuWN0eWsbFudEqauD6Pg+St2rrrpKJDffRzboOI4wRYLSb8GCBSGGRePnli1b8Nhjj1U8t0oRj8dl\nDlFhJaVCTfg3M3i2XtAOBNptjh07BsAPqCTTIPPXDIRzoX2UhnY9T4Z9zEQwPOfqq6+WIGTO1wx8\nBgKbM/+Xz+enLfl5MrAMy8LComFQU4ZVyo3d19cnDIvsgTaSeDwuLn+e/mQ0hUJBgtluvPFGAIFU\nnzt3rtiRpgKGKfA7h4aGhPHwbxxXLpcT9sfqDPQEJhIJzJs3D0DArPi+ZDIp3rWPf/zjAIKSJSMj\nI+Jp0lUEgIBp1hqu64ptR3tzAV/6miEmeu3JOGcyOJe2trZQ2g29fLqSg/Z2A8WsjelbMxEMPwEQ\n8hJqOxzXj//j/o3H45KmUwvMGL9yS0uL3CC+8oEYGBgQVYshD7yBjuPI9VQhtfqkM+srBUMjmFu1\nYsUKMa7TMXD06FH57j179sj369d8Pi8Ptxntnc/niyo+ABBjektLS+hQoLpYaaWDqUJvZm1s5+9R\nuZGAP28eWHPnzq3yKCcPjpdzYOzcunXr5H8ct354zbAWnf/J+DSGAhDayD9ToIWISSw8zyvaw/rV\ncZyahmlYldDCwqJhUHOju84dBIKaSPPnz5dTnq+k4OPj48K2qDaRcbW0tIh6ZAbqHThwQD5/48aN\nEtVbLn7+858XvXZ2dmLlypUAgC9+8YsAgFtvvRWAX/uIQaGsVEAaXcrIrO8N1Qw9j09+8pMVjX26\nQTU1FouFQlMmYlVAcTULzo/slOyEf58JYO6c67qyvzh3XbSPaj/VIp2Px/sx09hUFLg+GlqLMR1m\neu2rWbDPhGVYFhYWDYOaG93NlBYamHt6eiRsQBvUAV8S0xalc++A4goIZinin/3sZ1LCWLvhp4q+\nvj6pGkE2yDxIz/NEIpNBmDYeAKGQgEKhUMQogYB50IY2E6BZ8EROFP13M7wBCO4Hgw9nErMiaIvS\na2bmjaZSKfkbGRbtVqzpBgQMeyYjih2btef0dTotq5a2SMuwLCwsGgY1ZVjxeDzk/qW9Z2xsLGTr\nIQubO3euSGHarnhtKpUSJkMpRw/PPffcgx/84AcAIJ67qUDXruI8KGnoKdF1t0wGohN/S8G0ddEW\npv9XqhZ8NcHvqzTo0/O8UDrTTIBpw6Hd6fz587LWpvu+r69P/kd2zxCG7u7uKSfb1xJa+4gKCJ6o\nim4ulxPPfS1Q8YFl0kUdg8MYjYk2gcZf//pXAH6+nRljxIfj/PnzRTQcQFF0rfl9vHbdunXTmknO\n8ejvZkQ0D6yoQ1kbL6MOMYLvM1UI7TY2nRa1hj6oeL+j1IlS/zPnYIYU1APmGKjSdXZ2isOH8XTE\nhQsXJJSGDhK99lxbltMmZqIRXu9DMzvB/BkoJhW1PLCsSmhhYdEwqIhhabWnHGlxyy234O677wYA\n3HTTTQCC4NCLFy8KszLLCGcyGTnRqU6QaXmeFyrOx88ZGhqSCg7TmSnvuq6MjaxQOwN4T8zgUM/z\nJsy/8zxPDNqU2lGlnusNfd81cwSKGdNEKqNmmXzletXT+G6yOzqADh48iFOnTgEI1oXjnDdvnqw7\nQx10SArzEtn+bCaCVVCSyWRR6ImG67qhfav3plnAsZqwDMvCwqJhUBHDirKfUL+fP3++BFVSspDl\n9Pb2huoFkR11dXVJuonOrwN8ozslGaUcXf3pdFpaX5nNLLPZLDZv3lzJFEtC26HMlAXNPEz7ja4T\nRWimxfeZ9h/9ffUuK6wl7EQdsa8UPhJVI2umgfmpx48fl2oL3Je0Kba3t4dyPLlPdeURpnTR/X/u\n3LkZYbcDgHe84x0AfEcVbbOmDVUHCRM6XYn5sczlrWYYzszbKRYWFhYToCKGtXnzZtx///0Agvo/\nTJnRCb50x+v2VWY9HUqm3bt342Mf+xgASGVQemrGxsZCnoh3vvOdcg1tDGRrdDGn0+mQh6ZaYJOF\nvr4+mb/JtK7EPHQ7MH39TKkbBUxuLNpWR2g2xs8wE8HrBd2OngHKa9asAeAzLO5t2mpYd621tVWa\nwnKv64qzBMMb7rnnHgDAj3/847ozK+K2224D4K+LuU9LMXu9x+kpZ5paNRlW2TslFovh4YcfFspr\nZm9rAzhVOtNADQRuYB4oDz74oPyfE9cq4rPPPgsg6KNGtbOrqysUDqAf/Gp0F45Sy7Rh3Jx3KTVK\nR7pz/FFVAUp9dy2hDezmHKLKkZi/62v4Pu6FejVn0IfHBz7wAQBBN5lUKiXjotBk9YXVq1dHVncA\n/G5OZp4hhdqKFSvk0Ks3aDLJZrOhopSlmoXoMtdUlc0ClNWAVQktLCwaBmUxrK6uLtx1111YsmSJ\n0EBWQ+CrDq4jM9Adb8maaDxna6vHHnsMH/nIRwAEIQiUaOl0WhozsDeg7uvHUAcyGyKfz8sYFi1a\nVFSsbLpBVhSLxYRtRUWl829mpHw8HpefzTCNUm2zag3NYkupfaVgZgLMpMh3MqQDBw4A8NeQ+8oc\nZ1QQrS6fTPWSDE0ztZnCsPiM9fX1RTp5AH+eE61pLBaTZ5nOBd6nahRqtAzLwsKiYVAWw8rlcjh3\n7hxOnTpVZBAHIIbvdDotEokGyEuXLgHwi/GTienKjPxstr5iY1Se/rNnzxZGQuMmDdO5XE6kGqU/\nf3ccR8bS29tblJM33YgyokYxjokM8NpQzevNtlLmZ9UDOhjWdC5MBtrWxzWcCWEN3GsM9mSA7NDQ\nUFHeHFC8HvybWUYZCJgy3f60fZkdoesB1vaiI+Hs2bNFQcFA8f4106j4v2Qyib///e8AgO3btwMI\n2tRVw/he/51iYWFhMUmUxbDGx8fx1ltvwfM88YqwUgJP6v7+fmkdRA8dJVRTU1NRlQUgCF1wXVfe\nx2A2VjI8deqUeFoowXhtNpsVKUeJTQnY09MjQaTr16+XyhDVQBRLiGIepRiWaUPgvGgjmAnQdsKJ\nAl2vBDOJfCbMb/HixQAQSk9JJpOyV8kytNeMTMVMx4rH4zhx4gSAwKNNe21HR4fYeql91BqsE6e9\nvhNVkE2lUrLuZpWQXC6HVatWAQjmzue3GgyrrANrZGQEL730Enbs2IHPfvazAILQA4YbjI6OitrH\nw4kHSDKZFDWCqqQ2wJJCk5brImG8GVQh+R3j4+Oi6kWpi4yTOXv27LT1TyulAkXFKZkUO+q6KLWR\n92YmxWHpShpmyZHJQOdhcj1WrFgBAHjppZemc6hlwaw6wr3Y0tIi+5hmCf3Qch/q0siAH8LAeEJm\nYnBfx+NxOejqdWCx47gW/KbjgHNzHCdENOhAyGazYmznPWCMZDVgVUILC4uGQUUhxg888IBIw/vu\nuw9AYLS8cOGCMB2qdJReyWRSmFJUkBpPcb5SmicSiQld6GfPng2FVFBC9PT0iHv617/+dSVTjURU\nXSsz11FD1+kyWUkpthbFsOptdNeVB0wVVs/THKfOnTOrUFDK1xM0aXDP0Zyxdu3aEKvgNblcTkwa\nZsWJdevW4amnngIQMH/dzKLe0f3Lly8HEJhkenp6ZI3I+sic7rzzTvzlL38BEDjLuM/Z+AUIzEPX\nXHNN1cZtGZaFhUXDoOxjnnlXTz/9NADIKwM6H3jgAUm3YcAoT+5YLBaqdUWcO3dOpDLdv7QHDA0N\nTWjzyWazYm/g9+zcuRMAcPjw4Zo3cNA2GjNlxXXdUJa+Zo4TVXmYSTYsMohEIhEql6wNuOaYaa+K\nxWIhGwmrIdQTZFi89yzF3dHRIXuWNigypb6+PtEiohwOzCGkw4jzHh4eltS2V199dfonMwmQMb3n\nPe+Rv3F8OmwDQFGpZ7JiXVmV+517g2FJ1YBlWBYWFg2DshnWRFnmu3btAoCi+lOrV68GUBzysHDh\nQgBBhUZKXqb6NAKi7Ej0lvb29oaCCXVgq/m3KE+o+T0zyYbF9ma9vb2SMqST2gGfafEeRI3XTJw/\ncuRI1cY7WZDtka3TiwcEnjGyCq5Td3e32Lpov2FQ6Jw5c8ROZIZ9FAqFojZg9cAjjzwCAPjFL34B\nwF8z2hLNZ1z/zmuoPWWzWZkLA8V/8pOfVG3cVbX8vfLKK6G/VTMWqp7gw9va2iob2lQzXNedsEed\nVqPMkrzc+Pqz6lWehA/0448/LmYAzlP3YTTLOutQDcYnUciZuZP1AGOlODYeUkAwdrNE8u7du6Vk\nDNecVUW0+s+9QfXxxIkTMvd6gyEIWo0zcwB130FG7VNtjMfjcmCx0kU1VXyrElpYWDQMnHJUDMdx\n6quPTAM8zysZ5TiZOUaFNbD/YVNTk7ixTTbluq4YMM1gUp0TSdWDasnevXvFSDpJvOB53sYrzKGi\ntSwVjsGwkp6enlAhO1bKOHPmTKjZxGSrPJi40lr+97Mn9aFmvqBmsmS4ZA6mWaPamM55lsLNN98M\nICheyG7m9957rzgcuM/Jun7729+K422qmMw8LcOysLBoGJTLsM4DqL8PunIs8TyvZKr8/4M5Av8b\n87ziHAE7zwbC5OZZb6+ThYWFxWRhVUILC4uGgT2wLCwsGgb2wLKwsGgY2APLwsKiYWAPLAsLi4aB\nPbAsLCwaBvbAsrCwaBjYA8vCwqJhYA8sCwuLhkFZ5WVs8vPEYGmYpqYmKUPCBFom++oqq0z4ZZkO\n13WlrAfLrbBWWAXZCBcmkZozpbWMx+MydiZ5m3XAgOAeMLm4UCjI/KKuLwfVTArmeiYSCSk1wxZz\nXMd8Pi9ro9uCAX6JFq4nX0vVCCuFWiQ/x2IxGTvnEtVlivtWN9E151cpJjPP+lbCvwK4QWKxmGwS\nbm7dHqzW6UWu60rTjW3btgEA7rjjDgB+Fjsz2c0F7+/vl0VlETvWSrp06ZIUwmO1B9YTe/LJJyUj\nnjWVrjDnacsp4wblJl60aBEAYNWqVdJsgOvEubCMNhAUemOBw0uXLkntJRa/O3nyJAC/FG896nw5\njiNzYCUG1vpavHixzHPZsmUAgsKUg4OD8j7WhOKcdu3aJaW+2Y/w3//+NwDg0KFD0i/TLBVea7CW\n2datW6UdGYv0ca+dPn1axsn11wf60aNHAQB79uwBEFSxmOoBFoUZc2DFYjGRxtwEugInpTgPAb4W\nCoWQpNYP83Q+ABzPrbfeioceeghAUNRN17U2+yPq91OKcTPw2qGhITkcuIluvPFGAH5fu8985jMA\nIP0guamqfVibDImlbzKZjNQ9J4PkgTVr1iw5fHkNH9ozZ87I/8wSO47jRDaYrRb4XYlEQgQQeySy\nsery5ctljSlAOJelS5dK0UKWnmF/zsHBwaKijvp9IyMj8lCb9d5rBV1UEvCZIbvkmGvQ0dFR1B0H\nALq6ugD4nYT4bJo9HKoy7qp9soWFhcU0Y8YwLNd15YRm1x2qVplMJtSdhHaQwcHBkJrI/zmOI5Jh\nKvSUEoc9+R588EGRRmQcfM1ms6G23sTw8HCofx1f4/F4qCW6rvd+7bXXAgC+/vWvA/C7EwHFHU2m\nG67rhnoOakbJuZBJ8Pf+/n5ZL0pissbR0dGQOsTv0GzKZF/VYFr87M7OTtl77BS+adMmAP5e0jX5\ngcAmdfbsWVGNuP56LmSl3Ddk02+88YaokOb+rBXT4ji5dh0dHbJGrG/P3+PxuLBEtqHXnavJonl/\nqsmKLcOysLBoGNSdYWlvGQvi0/hHe4LneXjzzTcBBKe4tldRmpOt0PA5ODgohs6zZ89WfPKTOWzf\nvh2A37CA9ilKUY4hlUqJ1CWD0HYCXm82kxgZGQmxL96bdDotzGbLli0AgN/97ncAgAMHDlRNonme\nF+qtqJmEaZAnOjo6QnZI3q9cLiefwXlGjd+0o1QDHFtbW5uwebIhMh5tFCdz59xGR0flM8h02TXZ\n8zyZM21X3Ltz586Vv5mex1qB95f7KpVKCYvinHQHdtod2RWI789ms6FS4Nz/UV7GqcIyLAsLi4bB\njGFY2kuxatUqAIG06+rqEpsCT21tpyIzoXSjm/z5558PSf9KQClE5tfc3CxShcyKY9CueY5VMwlT\nz6cNw3EcYTG0ZdGWkEql5G90K1933XUAfBd5NSQZx0REeZVoh+HY+JrJZGTsnB/vYVdXl9hy6OnU\n3xdlz6oWyARaW1tlfGyewRiz5uZmWWPTzpRMJmXdyep5f/QeMftLplKpUAyb9pTWcu6c74IFC2Q9\nybT0tQsWLAAQsC+OsaWlRTSh//znP0XXVAN1P7AILjwQPJTsVpJMJkPBaaSmnufJg0IDLzdDOp2W\ntvWVbAJuPi4W43AcxwltRh0kyr+Zhtjx8XGZJ1/1wXv58mUAYUquex1yg23YsAEA8MQTT4gRuxow\nVULtsuaacExch8HBwSKDNhCoPk1NTXjttdcABPPUB2Mtwhp0OAPg7xeuB/+m50LwUNPryetpvNaH\nGQ9m00SQSqWKhBEAWftawRSOruuKYDUDn3Xrel6vzRXm3tSNf6d93FX7ZAsLC4tpRt0ZlpZ2lDoE\n2Uc8Hi+KegcCaTVr1qwiyQVAVMsLFy5MiZ5Swnz4wx8GEKhoQ0NDwhzMfnaxWCz0nVTZBgcHQ9dr\n5wElN5kLGVoikQiFdaxbtw6AzzSrybAI7RwA/PtP9kHVnWvZ1NQUUh30PTBDMfjZtVaHdMiEGXRM\ndjQ8PCwqkrnPgCDCnfPlPRkcHJQ10+lXvJafRYZm7utqg/OlWp7JZCSI1Rxvc3OzPH8m4x4aGpJ7\nxX3LOVRjPS3DsrCwaBjUnWHxpG5raxMbFKUNWUg2mxW92nSX67w1nuym7ahSmLo5P+/y5cuhYEnO\nI5vNyvvoutYs0gw01ZKKn2UGVOqfzff19PSITWi6oJmHaVPSKToMtuSacB1GR0cl/+7YsWMAAhvN\npUuXimwi+vtqEcqgv4fj1iEIvK/cg5lMJsSYNRszE9S5dhcvXpS14nzJxoaHh+UzzDCXWsG0vWYy\nGRlnlBbA548MknPr6+srsoPpz64GLMOysLBoGNSNYZlJtU1NTSE7CX/X6QqUYNoOQUlJXZrejoGB\nAZGAlejT/FzaXKjvj42NibQ0JWxHR4fY3mj70EGX1PMplfjZhUJB7gX/x2uHh4dx5swZAIGEO3Xq\nFACEgvamEzoZOcqzpucMQKoTaCZper8SiYTMy2QuUQyrGqk5UZ5dvU+AYjsVrzfXrL29XfYm15zz\ndhxH5mmGuaRSKblupkDfXzItPk9A8Nzx2dTeQq6x9vRXC3U7sExans/ni2JfNHTNHZNmFwoFudk6\nLw/wY2N4sLmuW7ZBkxuMC7d//34A/mJxPLyG+Y86mt2Mhs/n8yH1ldfMmTNHDkF+NmN7jh8/LhuF\nhlHGnFHtrAaiSvdoVYZOCG5YXUmDP1OV0C5+vk8/EPw+ohbhDZzL+Pi4jIVz4e8jIyMyBzPPT4dv\nmLWv9PWmGnXmzJlQjbRaqcMEv0+H1RBmlP/o6KiMV9f74u98hk2iUQ1YldDCwqJhUHOGZQYgkn10\ndXUJzSQrIpvI5XKhulN8jcfjIRe6VskozbVxfrKgRPzTn/4EAHjuuecA+KEErJ80b948AMDs2bMB\n+C5+sguyQI4nmUzKeHTIAudj1gNj5PDhw4dFJeTr6dOnAQR1mKoNSmDe9+bmZmGEnB/nm0qlZL24\nlpTInJv+rChU03DL79VZBhwX7yvXSTtRyGqJtra2kMpMlhGLxYSpMLyB3zc8PCw/U73k/al1MUre\ni66uLtnDHK/WTvhsmqq+DnmoBSzDsrCwaBjUnGGZeVVkKMuXL5ecJEpuHVzH4Egz1SORSISMt/x9\n7dq1UvL28OHDZdfEIiMzK4heuHBB8hV7e3sBALfddpu8zwzy5Hy0Yd1kJY7jSF0hBr6yQsU///lP\nke6UzLQpVCOP0KxFpX/WgY4M7eCc+Pvp06excuXKov9pBwbXkPMrZb+pBdMaHR2VNTPtcZo9cCwM\nc8nn88LEuLcYmqMryPKzuIYDAwOyfrWw+0TBTM1pbm4OsWKtBXHOvB/arsfUNc7BVhy1sLCwQB0Y\nls6QB4JmDCtXrhT3OKUdpVdbW1sohUHbu+i50OkxQHHAWzwer9gTQymo3fFm7S1Kl1wuJxKG89DJ\npCb70h4Zcx78zNOnT4c8TbymGoX+S4UX8N62tLTIGnJMHG97e7swYrNSaSqVkvAHM2iyVknQZhXV\nbDYr95EMi7as2bNnS+VNrr/2RnP9zTAFHabDteM+0uEt9Wi6AQT3nM/VnDlzhEVxfnqtOU7z+XNd\nV1Kzqhl+h90qAAAKbUlEQVRiQ9T0wHJdVygljdbr168H4KuGOvYFKDZM6zZRQLAJdAiE6fpPJpPS\nTCCRSJR9YJmlTnQEOlU6PTfA3/y8ngeufjBNY7s+nPk/Xq8N9LoEsx5TNaBVQtPYTvT09IiA4cOu\n7wH/xjXVajtVQh7QUbFWpcrMTFeOmo7zM8tr6zxJjp0HtL4nZiE8mg+SyaSoyGbbNl3Ro14Hllki\nedmyZUWFCTUKhUJIRdbqH/cBTRnVLC9jVUILC4uGQVWOQpPJ6CBR1rqigX3NmjUA/JOerEOrcYBv\nwKT712zUkM/nQ/RatwSjBJkKzEx+z/NCZX7JlICA9ZFBaDWO0oj3ROcWmuWWKdXGxsZC+YVRLc2q\niagidJyDyRJyuZysAaUu1cDBwUG5LzqXD5i8Sjjdc/Y8TxghGRJV2lwuFwpo1vuNrMtsQ5fP5+Vv\nOpyB19Q6fMEEv1+XQebfzCYqen15D3QTFd4DqoY2l9DCwsICU2BYE7EoXeqXoFSeM2eOlDoms2Kw\nWmtrq1QRpeSlAVRLOf6PzER3hTbHkkqliqqElouJ7CiFQiGSdfGV0jqqMgOlsxlwqEvq8nrtZjY7\nX9cCUfdMS13aZsgadSqSWWZXpyRxLbn2hE4FqmWqiuM4Mj6uD5lWIpEIpRBFlTPWOYSAv2bc92TO\ntLE6jhNqUFJrmExd5wFyvGRRrutOWGE3kUjIuptVV6sBy7AsLCwaBhUxLMdxQlUb+bv26Jk68YYN\nG4RZ8YSmW7i1tVUCJ2mn4vtbW1tFItEOcO7cOQA+46I0N20NmUwmVAu+3HlqaOnPn8n4+J2e58lY\nzRrgOl1Dpwzxc0wPIgNOo2pk18IGEpX8rNeGzIPj5jrohFgzkba9vT0U1hBlC6tlM4qoeeo0IzNR\nneNMp9Oh1my6SYdusKL/VygUJrT/1Ro65IZzMGuu6bQ2XaMO8PeqGQTN/VqNtSv7wGIDBj5wOlYD\n8DehfniBYCILFy4M0Ue+plIpWVg+qHxwdRmPt99+G0BAr2fNmiWfwTHwcy5fviyGwKm4Ws0bH1VV\nQJffMPvXade++Vk6/ocbhA++jjiu5QMcBX6vGesGBGvI/7W1tYUqZ3BNdVFA3if9WdXs9DwRdIlk\n7isdPmKGkpSKUyPGxsZEuPJgp+NIC896G9+5TvrgNHt/xuNxGbNZIlmHhJg5iNWAVQktLCwaBmXR\nDsdxEI/HsXTpUskBJKuh4VXXg6IE5bXXXHON5PYxqpa5V/F4XD7D7NmWyWQk78wsCDc8PCyBiGZt\nIi01KqHepkSNUgk5Vx0carq/ybByuVxoHLqZBu8XpRnvrf7uiX6vNszCdslkMhR+oiP8yXK5plpN\nMEtZa3ZSD8ah19NUYXUtNs6Br7qstakGaceMWQOtXs6FKGinl2nm0RkME40zHo+HSiNXs3qDZVgW\nFhYNg7IYluu6SKfT2LZtm0hO0wWvU0woWXiKd3R0CLPi33iqNzc3hwz4ZBzDw8PCrMi0WCtq06ZN\nko9ICUap19fXFzKGVoJSUt9MVdAMivPQ5XdN9qTdxGaoAz8rlUrVxYYVxQR0wKG5zrzHOmhSN8sA\n/Bw9M3C03tB2KjN8RN9vkx2n0+nQniW7Hh8fFzuvWbFUM7p6G921DctMQSvV+Zt21mw2K/PkmWCr\nNVhYWFigQoa1cePGUCtyndCqa6oDKDqBdctyILBTJRKJkCuctoO+vj7s2bMHQOAl1F4LSjDTu5ZI\nJESap1KpaTv5taeLXkh+dzweD3lOdVVRSi+OX9e0N1kUJZa2ZdULZqpNU1OTjMtsyNHe3i5rrmvv\nAz5bNhlkVLWGWjLJQqEQ2hu01SUSiVC1W+0F57qbbd4TiYRoBabXTLOZenkJOSbuX9d1Q4Gu3KPa\nu23aq/S9470wixhMJ8o6sGKxGFpbW+E4jmxSurT1BjVDF+bOnQvAP8y0mgMUx+LQ7csYq4MHDwIA\ndu3ahVdffbXoM3WUtJlfqB+Aaj3sphFadwA2jZea9nMTRG1Y7SoGwmER9YTp6u7v7xeHCR9WfQhz\n7syj012BTZWjFt1WoqDXwOxLqDvq6A4xQHFIjVmITwtbU83UJYXq7UQxyzVls9mQGhwVu2gWjHRd\nV+ZOE47ZwX06YVVCCwuLhkFZDGt8fBwnT57EQw89hI0bNwLwSxsDwLvf/W4AvjpAykwDu6aRppTS\nqt3hw4cBBO20duzYAcA3tPO6DRs2FH12f3+/9As0A0cHBgaklLFWuaYDJjVm0NysWbNCDQXIInXe\nlVmpQF/HuepM+nrDHNvIyIjcAzpCdPsuBksyjEWzL9PgPJVWbNMBz/NC7JbMaWhoSNbBdOBks9nI\nZiJAMcMyI+T1z/VSCbn/WJWir69PtBcz33VoaCi0b3WIhlmjjtdMV90yDcuwLCwsGgZlMSxm6O/Z\nswcvv/wyAEiFBda56ujokL+x2idtWJ2dnSH3v+5kzHZa7Gqsm03ypN63bx+AIOD02LFjOHLkSNFn\nEq+//roY6c+fPz+t0ts0rOvGGWYRf0KHJ+gyzkBxdU/z/WZj2XrALN+sjdGUzGTNruvK/eD79DVm\nMCk/p55BlKZRWdt2yKJoy9JNRfX6AdFVRMwGHjqEpV4wm0noKivcb3w2o9q28dqxsbHQ33Qgt2VY\nFhYW/7OoKCM4n8+HqiiyoafruqEmqZSy6XQ6pLtTX85kMqFAxKjgOrZmp8v45MmTOHToEIBw5YjB\nwcFQMNx0QYdOAMUtkcwaQ9qtbVYo0G3tzbAOuok7OjrqkhQMBGPn2Dje9vZ2kaRk0NwTyWRS1pVh\nELoSB5s6kHWx/ZUORq01TBsW90tbW5swQkKH4phJ3rpuFFkmbXvcD1FJ8LWG3nd81cnOQLD/8vm8\nsGf+T3t9ee84T50gPd2BsRUdWNp4blJpXbCei8lrzUJo+v2aIpc6XHQ8D+A/UPyeqGJ61YokNjcc\nN2p3d3fooNZubT6QptE9n8/LPPjgEyMjI3Wv0mC6s5PJJJYsWQIgUIf52traKgKFBxZd3t3d3Th6\n9CiAYPPXO9pbhzWYxRcLhYKE0Ji5qrqbDPNlucc9z5NmKLpbDr+j3nPmfDk2z/NCVVa0UDUFtHYo\n8VlkWBLvQTXmaFVCCwuLhoFTjuR2HGfKYr6a/eaivisiQK+ktXOyc6SkYdfbm266CYCvKjHUg5JZ\nd342a4TpbtKUyHQUMFxj9+7donJPEi94nrex1AWTnadZ/4hz6u7uxvXXXw8guAd0kbe1tRX1KASC\neQ4ODkrYCsMhOM9MJlNWBPiV1vK/45/wg3Tupskg6Djq6uqShilUfcmOk8lkUXdyoDjs48SJEwAg\nr1GdnycT3jDVeU5wPYBgb65cuRK33347gMBozvVMJpPCnrievCabzWLnzp0AIGFJ7OlYrno/mXla\nhmVhYdEwKJdhnQdQlqifYVjieV53qQv+H8wR+N+Y5xXnCNh5NhAmN896eyssLCwsJgurElpYWDQM\n7IFlYWHRMLAHloWFRcPAHlgWFhYNA3tgWVhYNAzsgWVhYdEwsAeWhYVFw8AeWBYWFg0De2BZWFg0\nDP4PYyyP2zej4ZsAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 2]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMXGX5fubMZWd3Z7tsl7ZLadkCdVugFiwFi1AUAUEJ\nhIB4QU2MlxhFJQhREv8xIQajJipqjGJEiIkaI+IFEQmimBSlULGFAgUKZS2lF3a37V5nZuf8/pjf\n85533nN2OjM7lx39nn9md+bMme92vvd53++9xHzfh4ODg0M7wGt1AxwcHBwqhduwHBwc2gZuw3Jw\ncGgbuA3LwcGhbeA2LAcHh7aB27AcHBzaBm7DcnBwaBu4DcvBwaFt4DYsBweHtkGimotjsVjbu8X7\nvh8r93k9+phOpwEAJ510EgBgZGQEADA5OQlGFvC1s7MTANDX14fp6WkAwP79+wEAs7OztTbhkO/7\nS8pdMN9+JhIJ9Pf3AwDeeOMNAEA+nz/m9zo7O2V8xsbGAARjUS2ONZdA7f1MpVIAgJ6eHhx33HEA\ngv6xv5OTk9KXvr4+AMCiRYsAAIVCQa47dOhQLU0QNLKf80UymUQul6vLvSrpZ1Ub1v8qYrHiOEY9\nWGeddRYA4AMf+AAA4Nprr5WNpru7G0CwKfEBj8KuXbtQKBQAAGvWrAEQbFwPPvggvvnNbwIAnn76\n6UqavKeSi2pBJpMBUOzvjTfeCADIZrMAggczm83Kez09PQCAjo4OAMCKFSvw29/+FgDw2GOPAQB+\n9atfNaq5FePd7343AOCmm24CAExNTQEoblwUJOzLunXrAADLli3DK6+8AiDYzPbt2wcAOHz4sPT5\nxBNPBAA8/PDDAIDPf/7zDe1LNWCb+vr6ZIP95Cc/CQDSN43ly5cDAB555BEAxbW9Z09xuV1++eUA\ngImJiYa1N1aNdHMMq4hFixbhnnvuAQCsX78eAOB5Re366NGjssApebiBJZNJ9Pb2AggmlZtU1DxQ\nend2dorE//vf/w4A+MhHPlKuiU/6vr+x3AXzncvrrrtOHuovf/nLAILFvGzZMnlYR0dHAQDj4+MA\ngIceegg///nPAQSb33333VdTG+rFPE499VR85StfARAIia6uLgDFeeUccVNauXKlfJef8fXw4cNy\nLeefDJsb19jYGG655ZZjNUvQSIb117/+FUBxDDhnFLBHjx4FAPz617/Ghz/8YQBAPB4HAFnjY2Nj\nsg7OPPPMWpogqKSfzobl4ODQNmi5ShilbpF6X3DBBQCABx54IHQ9d/pydhNea+8/X9x7770YHBwE\nABw4cABAIGETiYS0ib+fSCTkf6pNbD9BhqZByTU9PS3tv/DCCwEAa9euBQA899xzdepVdUilUmKD\n+t73vgcgUHVmZmZEWvOaJ598EgBw11134eSTTwYAHDx4sKltngs333xzqC2cj3Q6LfPJ15dffhlA\nkU2RBXP+2W8gYNacf6pO69atwxVXXAEAuP/+++vfoSpANfDkk0+WvxcvXgwAGBgYAAB87nOfE/ZE\njYLMOZFIyPeaAcewHBwc2gYtZ1iUZLOzs1i9ejUA4BOf+ASAgGFMTEyIzvz4448DKGVWZDK8F//X\n18Tj8fmcugEAzj77bADA4OCgMCVKTzKmdDottgptBwGKNi1ez7awrclkUtpL28F//vOfUD/4PY5R\nNbaQemJ8fBzHH388gIA5fOELXwBQNKwvWVI8pCQboRQ+/vjjSxjnQsBPf/pTMbaTadGW1dPTEzoF\n44EC+w8AR44cARCs2ajrab8cHh5uObMidu/eDQDYtGmTrLOZmRkApfNDA/zmzZsBAHv37gVQtHdx\nnTcDjmE5ODi0DVrOsMhMZmdn8c53vhMAcMkllwAIGEZHR4fs4pdeeikA4Mc//jGAoiSkfccyqEwm\nI7aFycnJebf1oosukvbQVsH7sx8zMzP40pe+BAB47bXXSvqxfPlyOfYm66L07ejokFOzDRs2ACja\nDoCiuwBZCX/vve99L4DWMSzN+jTTAIrtff311wEELJOsc3Z2NuSL1mo8/vjj4mJx1VVXAQD++c9/\nAigyaPaBLFG7cZD58xrO05EjR4RlErzm1ltvbVhfqsXOnTsBlNpUeYLNftJuBQQMUttnyS6bgZZv\nWBwUADjnnHMAAKtWrQIQDKLneXjwwQcBAG95y1sAAF//+tcBAE888QR27NgBAHj22WcBAOeee67c\nb8uWLQCKPj88Wq8V3CTy+XzJRgsELgiHDx/GnXfeCQB417veBSDYgO666y586lOfAhD4U9HAGY/H\nRQ351re+BQD4zGc+A6C4KHh/brw0ug8NDWHXrl3z6lct8DwvJCg4JnS0jEIsFpPv8eFeCLjjjjsA\nQHzLXn31VQBFFZEPMMeeKjsQ9JnXsE/JZFKuoyrIw6NmPuDHAlW7XC4nQjSZTAIIfMq2bdsmfeH1\n7HcsFhNXjmbAqYQODg5tg5aJOOvOcOmll2LjxqKvI3dzeooPDQ1haGgIALB161YAwIsvvgigqPad\nd955AIBrrrkGQOCwuXXrVjFOz8zM4IknnphXm3m0Ozw8LNJIH2MDQWgGAPzpT38CEEjf008/XVS4\n3/zmNwCAK6+8EkBRMm/btg1AYNyn2tXd3S0shiohGcB5553XEoaVyWSk71SLKHULhUKJBNbwPK/E\nZWAhQLui0JXmq1/9qnxOZsVr6Fg5NTUljIqvNFhrNxX+/fvf/75hfagVNFvkcjmZK64xzuvOnTuF\ndbEvZFUdHR1NPTxxDMvBwaFt0FSGVW4nvu2223DCCSeUvEcjZT6fF1sXJSDZWKFQEGZC1kVJeMMN\nN+CUU04BENifagFjx3jkrW1Y7BOlrnai4/codU844QSR3Pwe2WAsFhOmSFD6nXjiiSGGRePn5s2b\ncffdd9fct1qRSCSkD1FuJeVcTfiedZ5tFfQBAu02L730EoCiQyWZBpm/ZiDsC+2jNLTrftLtYyGC\n7jmrVq0SJ2T21zo+A4HNmZ/Nzs7WLfi5EjiG5eDg0DZoKsMqd4w9OjoqDIvsgTaSRCIhR/7c/clo\nCoWCOLO97W1vAxBI9aVLl4odaT6gmwJ/c3x8XBgP32O78vm8sD9mZ+BJYDKZxLJlywAEzIrfS6VS\ncrr2/ve/H0CQsmRqakpOmnQWASBgms2G53li29GnuUBR+loXEz33ZJwLGexLT09PKOyGp3w6k4M+\n7QZKWRvDtxYi6H4CIHRKqO1wnD9+xvWbSCQkTKcZWDDnyl1dXTJAfOUDcfjwYVG16PLAAYzFYnI9\nVUitPunI+lpB1wjGVq1evVqM6zwYeOGFF+S3//GPf8jv69fZ2Vl5uK239+zsbEnGBwBiTO/q6gpt\nClQXa810MF/oxayN7fw/KjYSKPabG9bSpUsb3MrKwfayD/SdW79+vXzGduuH17q16PhP+qfRFYDQ\nRv6FAi1ELLHwfb9kDevXWCzWVDcNpxI6ODi0DZpudNexg0CQE2n58uWyy/OVFDybzQrbotpExtXV\n1SXqkXXU2759u9x/48aN4tVbLX7wgx+UvPb19eFNb3oTAODTn/40AODtb387gGLuIzqFMlMBaXQ5\nI7MeG6oZuh8f+tCHamp7vUE1NR6Ph1xT5mJVQGk2C/aP7JTshO8vBDB2zvM8WV/su07aR7WfapGO\nx+N4LDQ2FQXOj4bWYuyBmZ77Ribss3AMy8HBoW3QdKO7DWmhgXlgYEDcBrRBHShKYtqidOwdUJoB\nwaYi/v73vy8pjPUx/HwxOjoqWSPIBhkH6fu+SGQyCGvjARByCSgUCiWMEgiYB21oCwGaBc91iKLf\nt+4NQDAedD5cSMyKoC1Kz5mNG02n0/IeGRbtVszpBgQMeyEjih3b3HP6Oh2W1UxbpGNYDg4ObYOm\nMqxEIhE6/qW9Z2ZmJmTrIQtbunSpSGHarnhtOp0WJkMpxxOe66+/Ht/4xjcAQE7u5gOdu4r9oKTh\nSYnOu2UZiA78LQdr66ItTH9WLhd8I8Hfq9Xp0/f9UDjTQoC14dDudPDgQZlre3w/Ojoqn5Hd04Vh\nyZIl8w62bya09hHlEDxXFt18Pi8n981AzRuWpYvaB4c+GnMtAo0//vGPAIrxdtbHiA/HwYMHS2g4\ngBLvWvt7vHb9+vV1jSRne/Rv0yOaG1bUpqyNl1GbGMHvWRVCHxvbQ4tmQ29UHO8odaLcZ7YP1qWg\nFbBtoErX19cnBz70pyMOHTokrjQ8INFzz7llOm1iIRrh9Tq00Qn2b6CUVDRzw3IqoYODQ9ugJoal\n1Z5qpMWFF16Ia6+9FgBw/vnnAwicQ9944w1hVjaN8OTkpOzoVCfItHzfDyXn433Gx8clg0M9I+U9\nz5O2kRXqwwCOiXUO9X1/zvg73/fFoE2pHZXqudXQ466ZI1DKmOZSGTXL5Cvnq5XGd8vueAD09NNP\nY3h4GEAwL2znsmXLZN7p6qBdUhiXyPJnCxHMgpJKpUpcTzQ8zwutW702bQLHRsIxLAcHh7ZBTQwr\nyn5C/X758uXiVEnJQpYzNDQUyhdEdtTf3y/hJjq+Diga3SnJKOV41J/JZKT0lS1mmcvlsGnTplq6\nWBbaDmVDFjTzsPYbnSeK0EyL37P2H/17rU4rrCXsXBWxj+U+EpUja6GB8am7d++WbAtcl7QpLlq0\nKBTjyXWqM48wpIvH/wcOHFgQdjsAOO200wAUD6pom7U2VO0kTOhwJcbHMpa3kW44C2+lODg4OMyB\nmhjWpk2bcNtttwEI8v8wZEYH+PI4Xpevsvl0KJm2bNmC973vfQAgmUF5UjMzMxM6iXjzm98s19DG\nQLbGI+ZMJhM6oWkUWGRhdHRU+m+Z1rGYhy4Hpq9fKHmjgMraom11hGZjvIcNBG8VdDl6Oiiffvrp\nAIoMi2ubthrmXevu7paisFzrOuMsQfeG66+/HgDw7W9/u+XMirj44osBFOfFrtNyzF6vcZ6UM0yt\nkQyr6pUSj8dxxx13COW10dvaAE6VzhqogeAYmBvK1772NfmcHdcq4sMPPwwgqKNGtbO/vz/kDqAf\n/EZUF45Sy7Rh3Pa7nBqlPd3Z/qisAOV+u5nQBnbbh6h0JPZ/fQ2/x7XQquIMevO47LLLAATVZNLp\ntLSLQpPZF9auXRuZ3QEoVnOycYYUaqtXr5ZNr9WgySSXy4WSUpYrFqLTXFNVtgkoGwGnEjo4OLQN\nqmJY/f39uOqqqzA4OCg0kNkQ+Kqd68gMdMVbsiYaz1na6u6778bVV18NIHBBoETLZDJSmIG1AXVd\nP7o6kNkQs7Oz0oaVK1eWJCurN8iK4vG4sK0or3S+Zz3lE4mE/G3dNMqVzWo2NIstp/aVg40EWEie\n72RI27dvB1CcQ64r284oJ1qdPpnqJRmaZmoLhWHxGRsdHY085AGK/ZxrTuPxuDzLPFzgODUiUaNj\nWA4ODm2DqhhWPp/HgQMHMDw8XGIQByCG70wmIxKJBsiRkREAxWT8ZGI6MyPvzdJXLIzK3X/x4sXC\nSGjcpGE6n8+LVKP05/+xWEzaMjQ0VBKTV29EGVGjGMdcBnhtqOb1tqyUvVcroJ1h7eFCJdC2Ps7h\nQnBr4FqjsycdZMfHx0vi5oDS+eB7No0yEDBlHvvT9mUrQrcCzO3Fg4T9+/eXOAUDpevXhlHxs1Qq\nhT//+c8AgOuuuw5AUKauEcb31q8UBwcHhwpRFcPKZrPYu3cvfN+XUxFmSuBOPTY2JqWDeEJHCdXR\n0VGSZQEIXBc8z5Pv0ZmNmQyHh4flpIUSjNfmcjmRcpTYlIADAwPiRHrWWWdJZohGIIolRDGPcgzL\n2hDYL9oIFgK0nXAuR9djwQaRL4T+nXTSSQAQCk9JpVKyVsky9KkZmYoNx0okEnj55ZcBBCfatNf2\n9vaKrZfaR7PBPHH61HeuDLLpdFrm3WYJyefzWLNmDYCg73x+G8Gwqtqwpqam8NRTT+Hee+/Fxz72\nMQCB6wHdDaanp0Xt4+bEDSSVSokaQVVSG2BJoUnLdZIwDgZVSP5GNpsVVS9KXaSfzP79++tWP62c\nChTlp2QpdtR1UWojx2Yh+WHpTBo25Ugl0HGYnI/Vq1cDAJ566ql6NrUq2KwjXItdXV2yjmmW0A8t\n16FOjQwUXRjoT8hIDK7rRCIhG12rNixWHNeC3x4csG+xWCxENHiAkMvlxNjOMaCPZCPgVEIHB4e2\nQU0uxrfffrtIw1tuuQVAYLQ8dOiQMB2qdJReqVRKmFKUkxp3cb5SmieTyTmP0Pfv3x9yqaCEGBgY\nkOPpn/3sZ7V0NRJRea1srKOGztNlWUk5thbFsFptdNeZB6wKq/tp26lj52wWCkr5VoImDa45mjPW\nrVsXYhW8Jp/Pi0nDZpxYv3497r//fgAB89fFLFrt3X/qqacCCEwyAwMDMkdkfWROV155Jf7whz8A\nCA7LuM5Z+AUIzENnnHFGw9rtGJaDg0PboOptnnFXDzzwAADIKx06b7/9dgm3ocMod+54PB7KdUUc\nOHBApDKPf2kPGB8fn9Pmk8vlxN7A33nooYcAAM8++2zTCzhoG40NWfE8LxSlr5njXFkeFpINiwwi\nmUyG0iVrA65tM+1V8Xg8ZCNhNoRWggyLY89U3L29vbJmaYMiUxodHRUtIurAgTGEPDBivycmJiS0\n7fnnn69/ZyoAGdM73vEOeY/t024bAEpSPZMV68yqXO9cG3RLagQcw3JwcGgbVM2w5ooyf+SRRwCg\nJP/U2rVrAZS6PKxYsQJAkKGRkpehPu2AKDsST0uHhoZCzoTasdW+F3USan9nIdmwWN5saGhIQoZ0\nUDtQZFocg6j22sD5Xbt2Nay9lYJsj2ydp3hAcDJGVsF5WrJkidi6aL+hU+jxxx8vdiLr9lEoFErK\ngLUCd955JwDgRz/6EYDinNGWaJ9x/T+vofaUy+WkL3QU/853vtOwdjfU8vfcc8+F3mukL1QrwYe3\nu7tbFrRVMzzPm7NGnVajbEpeLnx9r1alJ+EDfc8994gZgP3UdRhtWmftqkH/JAo5GzvZCtBXim3j\nJgUEbbcpkrds2SIpYzjnzCqi1X+uDaqPL7/8svS91aALglbjbAygrjtIr32qjYlEQjYsZrpopIrv\nVEIHB4e2QawaFSMWi7VWH6kDfN8v6+VYSR+j3BpY/7Cjo0OOsS2b8jxPDJjWmVTHRFL1oFry+OOP\ni5G0Qjzp+/7GY/Shprks545Bt5KBgYFQIjtmynj99ddDxSYqzfJgcay5/P97V3RTGy+omSwZLpmD\nNWs0GvXsZzlccMEFAILkhaxmftNNN8mBA9c5WdcvfvELOXibLyrpp2NYDg4ObYNqGdZBAK0/g64d\ng77vlw2V/y/oI/C/0c9j9hFw/WwjVNbPVp86OTg4OFQKpxI6ODi0DdyG5eDg0DZwG5aDg0PbwG1Y\nDg4ObQO3YTk4OLQN3Ibl4ODQNnAbloODQ9vAbVgODg5tA7dhOTg4tA2qSi/jgp/nhs6qynQiTFHC\ntCLT09OhHFfMKxSLxaQkGfNL2ZLuVeBQBaE58wp+1qlydOkvoLRkFKGDiZm+pFzOrErQyKBgtj8e\nj0tpOb4yUDqXy0nb+R77OT09Lf1kzjde28og74jvASgG6jMnGNtn16G+nmu7o6NDAvoZ1N7I+Wxt\nJvw2RSqVkrxAV199NQDggx/8IABgzZo1kiuIi5cLVtdQ5Ealk/YxLxTr1z322GMAgJ/85CdSMspm\ne5gDdY8p4wbLnFD9/f24/PLLAQSR+7pWHYsTsIQXM1Ds27cPf/vb3wAEuadsFfBGIaoWJN/n5su+\nnHLKKQCKBRUuueQS+RsoLcTBezA7Befu6aefxrZt2wAA//rXvwAA//73vwEUsz6wrzaRY7PAtcky\neB/96EcltxcFLAvNHD16VLI1bNxYTALCojOZTAZbt24FAHz3u98FEOTW0gUq6oUFuWHZYqN6odnE\ndXqi7fWxWCyU4XM+oAT67Gc/i49//OMAggXOBZjNZkPt4G/n8/kSCQyUsii+x7Qy11xzDQDgkksu\nkeo/N998MwBg586ddetXJeCGpaUtGSHHgA+9rk3JjYr9fv3116X6DN9rVgUZuylodtHf3w8g2GCZ\nLXfDhg1SZJXz8+KLLwIoJi7kuDDzKHPBZzIZSUNja/pNTEzI9dysa02xUyvIivm7R48elbRITMjH\nTWl0dFT+ZiUdCuWpqSkpqkxhxvXbiA3L2bAcHBzaBguKYVESWZuBTjdr7QL8HAikBr83Ozsratb4\n+HjN0osMYPPmzQCAG2+8USQr2QJ/p7e3V1gPpSfbmkgkQhWs2edYLBaqik12kslkJLnaHXfcAQBS\neXvPnj1Nkcq2hDsQ9I/jzVTJup8Er9HVv4lW1+hLp9OSZ/68884DECTpO/HEE2Ue2F+mgp6eng7l\nayfL2Lt3rzAVshF+NjU1hUcffRRAMMe2ilSjYdMgay2Gc8Ux6erqkmeLr8xdPz4+Lmuf67yRfXEM\ny8HBoW2wYBiW53li92BBgDVr1gAo6sSUbmQTTFebzWblPc1WgFKGtX379qqNurwPU/9+8YtfBFCU\nMraCCvV2z/NKjM9Aqb2K19OeodmFZUra9kWpt379egDBGO3du7eEbTYKtrozENi12Ac9JvZEjEw0\nFouFjN+tKqjB9mcyGZx55pkAAhsND1UymUwodTXHO5vNypojq+ChSKFQCB1UcC1u2LBBDhxYs7DZ\nDIvQY09GyLWmK7FzzvgZ0dHRIafidh00Ao5hOTg4tA1azrC4cycSCdGLaUegzaijoyNk99ASiXo1\nTyUoNXbv3i1H6J7nhST7sUCJwSNuJufXPkiUtpSevu+LFNJ94yvZFhmWZo7sE+8dVdKL7hB0p9i6\ndauc7jQSljH5vi99Zh/YT12XkKdmnCPt2sHXZjDEKHBNLV68WNgFmTL/T6fT0gdC15lk220FaM2+\n2Hfavvr6+uTkkfU4G+3SMRe45rq6uqQN1HQ4P+l0usQ1BwjGrlAoyHvWv64RWDAbVldXl/iEnH32\n2QCCenzHHXfcnIbZVColi4R0nJOwbNky/OUvfwFQqjpWCm489D0h9c1msyUTpvsxOjoq3+PEcSNN\npVIhZ1C2PZ/Py2f8Pn9vdnY25AJwzjnnACi6FDRjw9JqNl+p6nDzZZ+OHj0qbafBWc8zx0zfqxXg\nWPb29ko7rfvG5ORkyOSgXVi4sXGOtQsD3T74IPMzrS5a4dYstwZdrQkoCh2OB8dCq3bcxOyGpV2H\nOAaN3LCcSujg4NA2aDnDInPQR8s8Hqf609PTE1nanZ9x16dU57VvvPFGCROqskKQUHkauHWbbYgC\n1SMtlaxToK49yM90NWG2T6uXADA4OCjSmdKaEu+UU07B7t275f6Nhp4Hji29vCmZjxw5InNCBkH2\nOzk5GVJ1m2101w6jQCnzteOcz+dljjVLBIp94RrhWLDf+nu68jc/470sA20W+Htch2NjYyH3IDKu\nmZmZ0AEL12Y2m5X3qBY3UsV3DMvBwaFtsGAYVjKZFIZkg2k9zwvt8NrgS6nI93htZ2en7Pae51Ul\nyWOxmNgnyPR4BN3R0SHMwbIEz/OE6VASU1pPTU2V9BdASUyZDenhfXTAMKUYGcHq1avFCbGRDCvK\n5sax5Xwxji6bzcp1tGto1w7dL/3aLHB82W7P88TexHGlgfzgwYPyN8N32P7Z2VlhKNaO6nmeuHJw\n7HQ4C+/B9VyrJlAr7CHKiy++GAql0UHbdo44TlNTU1LVm2vUOY46ODg4oIUMixJJSx8665GZ0E4D\nRDtaEja1hw4R0Kdy1Ugu3/dFIjJMgwxi8eLF8pu8v7Zv2HQilE4zMzPC1rS0BYoSlp+RKZLhxWIx\neY8Mi5I8kUiEXD4agajUKGQelMw8/n/ttdcko4F1utSnSq0q4svx0rYptk/PFVBkhnQc5hzrdEEc\nA535ASiuQc4Z1wrns1AoCOMkU7c2sEbDOjdrmxvHQLN59tOu+0KhEHqWG8mYm75hWbWHE7V06VKJ\n+ufgcCCAYMFb353u7m4ZPDtwiURC7hWPx6uiqr7v48CBAwCAe+65B0CgEqxbt07aykVIv5pUKiUP\nMCeXbe7p6Qm5B/AaqohAoILyodmxY4f0adeuXQCAZ555BkAxBUgzfXi0bxl9lrShGSjOg84ZBQTz\nHI/HQ35mzUJU9g+guPlzfdFFRPuNse3cgPR9OPbWjKE3QY4FVcSJiYnQetY+bM3cyPXmwg3LPk+5\nXK5E4OjvJZPJkphfoLGCyKmEDg4ObYOWMSyCR+JnnHGGqIBUCbU0p5SzEikqto2SIp/PCwNKJBJV\n020aYn/3u9+V3L+/v1/aeumllwIAbrjhBmmzpduEVlGtSqj7yP4z79IPf/hDkfxkfVS/Dh8+XHdj\ne5QTo523ZDIpTJDsgqpTPB6XqAWyRLY7nU637CjfqixkRyMjIzL2w8PDAErZMcfXOgRrVdxmE9Hx\nd9p1ACiy47179wIIWNd8s6/OF319faHnjtpJOp2WdvE9miRSqZS4IzXD+dUxLAcHh7ZBy4zulGBD\nQ0MAis6ZdNC0zpjajcDaPbTtwIZA5PN5Ce+pxTBtQw742xMTE/IbjDO0NhvdD8LzvJLcWEBgr9JH\n65RiNHru2LFDMlTajAHVHiZUgnKSUqcEpoMvJbOO7reZM7TbBw9XXn311ZJrNDttpLQmy+X4AsF8\nkLmuXLlS3ieb1nYbfsbv2XxRyWRS/ua65HoeHR2VNUWGxWuazbA4zitWrAjldNf1B7R9EgjGMJVK\nSVYVa3tuhHuDY1gODg5tg6YyrFgsJhKJp2ybNm0CAJx77rlyCkeJTYkWj8dD4Q2EtjHYHT0Wi4mN\nLB6P12wzsQ6O2hZFKa1zl1sblg7y5T1sdsZEIlHSX/3ZyMhIpcUn6oKo39DVcoCivUof4QNhe4wG\nWYnv+2LfImvmGDbrhIy/QVZTKBRkXdLORKbV398v/eQc61NZa/fRDrY6VAkIHI/Hx8flvUbmjioH\nO5+Dg4PSdlv9Jh6Ph9a0dhqmDYvPWiPnsCkblvYsZqfOP/98AMBb3/pWAIHLABCm3qlUShY3J5iL\nzfM8eY/IAcC7AAAKBUlEQVQDpb3bSe3T6bQ89LVCU2WdvF+/JpPJUOkntk+rpZZ2x2KxUMya3ris\n71IjDdblFhwX+IoVK2QuqfpEja+N0QOCmE+rNla60Ou1sWkBxDVDAzk3lFNPPTV0SKAPeviZ9fKO\nKnXG3xgbG5tTyDYLNnLhtNNOKylVp9umo0SswC0UCqIK0kTQyLXpVEIHB4e2Qd0Zlt5dbQ6nxYsX\nS4rfiy++GECRigJFSWUTnunvUyLZIhS6mKWNbcvlcuJxXW8nRZ2+WPcxkUjI7/MaMopYLBZqo1YD\nbX4o3Q/LKBrBtOaq26dB6bt8+XIx0tosBr7vS9ttHJ2+B79Pl4dyqqj+bL7syjqQ+r4v80iVkKy4\ns7MzktWzH7aMmT54sK43VLV0LGGrwTlbtWpViNlzDjXDt9+Lx+MlmUMaDcewHBwc2gY1MSxtPLcS\nUJer4g5N3fa0007DRRddBCBgVjq+yroeaBuDdRugC4DneWLfsqEFsVhMDILd3d1Vs6xyLCbKBgUU\nGZYtnKkNlta5lUfdqVRKJDhf2a9mZ6EktK2OYN+WLVsm7WN7dX4sy2yZs2tsbEzWA21gjTwGrxTW\nmMyDAH3gY22S2u5oM4b4vh/KLMJXfWjTavD56+7ulvmLcmuwGVK1Ww3Hh7YsZ8NycHBwQI0MK5lM\nhqSjLiRpmRUdBc8++2zJj06bBllUZ2dnyHalmYktmUXk8/myoR76dLFaplLu9MqWPdIS09rUdEiI\nLlKgv5fNZkNH3DbzYy3trAaVfJ9More3V07UOIdkG+l0WtrOa/hZJpOZM0Qqyk7VCGkdVVCDsMHa\nMzMz0gftfgEU545zZu1c+Xxe3tMOqkBpzqtWheIQfHZ01lXrXgMg9JkG+0BbrQ2jqyeq3rA8z8Py\n5cvFQ92m18hkMuK9TaxduxZA0ZvdHp3qGmg2da5+UDnp1vieTCZDaYe1V65NFlcNyi0mTZd1e7q7\nu0PVcvSRsHXZ0KmVeQ+bYE67BFjU03cpapOw73G+urq6xNhqTQD8HAgbo/ft2ycPMtWRcqp6Ix7o\ncio+wT51d3dLO22GjVwuVxKrql/172gftLl+v9lgG7TJxKr4Op7Smmv0mmS/aAawaabrCacSOjg4\ntA2qYlie56G7uxtXXHGFlOSiVCXl7+3tld2YkpM7bzweF8nLXEpR6hx3aEriycnJkJexdsa0BQ80\no6FUzOfzdVUJCe1Jz9+07FEbMy1dJkvRHvLWobKcStgIBlLunvqwgG1nezUrsZ7ROiKArgPlmGMz\nEOWCY0uQ6YSDNtZOx4pa52VtjLY1KLWq1GqVkGabKNcFraloZ2ygtBgJx1E7aQPRjsTzhWNYDg4O\nbYOqGFYikcDixYtx9dVXSyiNLvfDa8iCdOVYoCiBqfPbQqS60IQ2RANFXZj6MN9j6ITOKmoLQeZy\nOWlLLdkaykk/ShXmgNJpmq2k0nFb1j6n47aszYP/9/T0iHNlI1GOUXL82LZMJlNSHRkoPYDgPWx6\n4SNHjsjcWSbebOh+2kMdvYbtIYFe6zY3FkO0Ojo6xPXGxuhpNt0q2BJtuk12PrSmYjOQ6AMEWzy3\nEXAMy8HBoW1QFcPq7OzEunXrsG7dupLTPSBgRfF4XNjQoUOHAAS7eEdHR6gQoz5hohS2DpRHjx4V\n6cSId0q2vr6+UJlxfczOwhHaMa4eYFtp12C/tASyoUbT09OhfNn8vnbdsO4M/f39eOmllyLbUU9J\nXe5ebAttkKlUStpJhqtPAnm9zSLb1dUVksCtYlhEuX7rEzKuQbZ/ZGSkJCun/kyzbF0Ixf5mq5gW\nn1/aonUOM1tYZXp6OnTay/9jsVgoiy6f90agqg0rl8vh4MGD2Lt3rxjYogzE1gteJ/aaSw0oFApi\nmKX6wxTBIyMj2LFjB4Ag4d0555wj39OGdbYBKFWzurq66vpg2A1HewBb1dZmbwCi1SHr/8J7NnIB\nHAs2voxzOTMzI+2ybiUTExOSPojqFO8zOTkZirHUa6iZD3DUb9kHU6u3NkVyVLEN9nN8fDzkBsHv\nR7mNNBtsCw+/9AZrU0nrNc2+64MxbuTsl868Um84ldDBwaFtUBXDmpmZwQsvvIBbb71VYgE3bNhQ\n8rpo0SIxxlLq6BiqudjH+Pg4XnnlFQDAli1bAAA7d+4EUEymRmMmYxHJwkZHR2XXtw55hUJBkv3X\nW+2wKpKWvjY2LsqtwTqVRqXbJZshE2klbIXifD4fUoN1pWOyZWuk7e3tFbVemwqA4hy1KsbORmzo\nTBRWDdKM0qpP7K821HON6DG092o2rEuKjsKweb80841ya9CV1gGUxJHWu3+OYTk4OLQNqmJYs7Oz\nGBsbw6OPPirS4r777gNQGvXNv2nHoN2JR9xAYFCn3eOZZ57Bvn37AAQOZ9qJz4bA0Aidy+VCOrN2\ncqN+/fzzz9e14CglE6WKPkSwtgtt07PFNXUaXctirOtEK2Btbdp2YQsTkBFmMpmQ0yz7qQtv2kwH\nzWJYUSEyUQyS4LqxoUT6oIgsSrvRWC1C99NqA80okaV/h23RsbZWU9GuLDbjqB4nmxNMu0o4huXg\n4PA/i6qDn33fL8ksQPsUk/YD4R1a68ZWktgsm8cC8yqxRJT+btRRsc6OUE/pZUuT6/aT4emslUDx\n9IyM0vZXhw7ZjA5RgeHNgs3tRZahy7Rbt5Le3t5Q7iiy7MHBQYyMjJTcU7tFtKqgqLVxatcam+9d\nO8hyHrn+dU42W2hEs2v7e83qrz3t1afbdk1qW6xl09r1hv20TrTasbZeaEgRChtHVk/YdB6tAh9I\nRrvTMD4zMyN/c3PRRlc+3Fwo2l/JpkbWR8+tivCfS60pFAoYGBgAUCxIAQQHIalUSubeRgJ0d3eL\nCs9xogEYmFs1qqfLQ9RY2uIKxJEjR8S0wfbyQKGzs7OkdqZ+9TyvRIjre0cVqGgWOJ+6YhDftyYM\nnWrHxkUSUS4a1p+rnnAqoYODQ9sgVo3UisVirQ2AqgN83y8r2irtI2nv5s2bAQDvec97ABRVJhod\nyQIZEZ9IJEKSTScrpESjykQJ/ctf/hLbt2+vpFnEk77vbyx3Qbl+avXTGpXZt/Xr1+P0008HEDAs\nZmHQpdd0Ngr26YUXXgAQHJwMDw8DKHW2rMQIfay5rLSfOp0x+0kVduXKlTjppJMABIdIRCqVCkVX\n6Kwie/bsAQB5ZfXuyclJYWYRfYp6b179jAJZEGtEXnbZZVLBmWOgD4+oDtMkQAadzWbFTEPn7m3b\ntgGoPltDJf10DMvBwaFtUC3DOghgT+Oa03AM+r6/pNwF/wV9BP43+nnMPgKun22EyvrZ6jQXDg4O\nDpXCqYQODg5tA7dhOTg4tA3chuXg4NA2cBuWg4ND28BtWA4ODm0Dt2E5ODi0DdyG5eDg0DZwG5aD\ng0PbwG1YDg4ObYP/A7PkyyXJxTWtAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 3]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMXGX5fuZ+2d1ut9vLUlrKZbtUhHIryl25KYRAjAgq\n4B8ajfEelEQT/5CEGIyaqKgxEROEmGgkgAqISAgqsSq0BCqXWqEFSpFuF3a33e7u7FzO74/5Pe95\n5z1npzOzc9Xv+WfbmTMz33u+73zf894jnufBwcHBoRcQ7fQAHBwcHGqF27AcHBx6Bm7DcnBw6Bm4\nDcvBwaFn4DYsBweHnoHbsBwcHHoGbsNycHDoGbgNy8HBoWfgNiwHB4eeQbyeiyORSM+HxXueF6n2\nfjNkTKfTAIBjjjkGAPD2228DAGZnZ8HMAv7NZDIAgKGhIczPzwMA9u/fDwAoFouNDmHC87xV1S5Y\nqpzxeBzDw8MAgLfeegsAUCgUjvi5TCYj92dqagqAfy/qxZHmEmhczmQyCQAYGBjA8uXLAfjyUd7Z\n2VmRZWhoCACwbNkyAECpVJLrJiYmGhmCoJVyLhWJRAL5fL4p31WLnHVtWP+riETK9zHswTrttNMA\nAB/5yEcAANdcc41sNH19fQD8TYkPeBh27dqFUqkEADjxxBMB+BvXI488gu9+97sAgOeee66WIb9a\ny0WNoL+/H0BZ3i996UsAgIWFBQD+g7mwsCCvDQwMAABSqRQAYN26dfjtb38LAPjb3/4GALjnnnta\nNdyaccUVVwAAbrrpJgDA3NwcgPLGxYOEspx88skAgDVr1uCVV14B4G9m//nPfwAA09PTIvPRRx8N\nAHjssccAAF/84hdbKks94JiGhoZkg/3Upz4FACKbxtq1awEAjz/+OIDy2n711fJyu/zyywEAhw8f\nbtl4I/Wcbo5hlbFs2TLcfffdAIDNmzcDAKLRsnZ96NAhWeA8ebiBJRIJDA4OAvAnlZtU2Dzw9M5k\nMnLiP/HEEwCAj33sY9WGuN3zvC3VLljqXF577bXyUH/9618H4C/mNWvWyMM6OTkJAJiZmQEAPPro\no/jlL38JwN/8fvOb3zQ0hmYxjxNOOAG33HILAP+QyGazAMrzyjniprR+/Xr5LN/j3+npabmW80+G\nzY1ramoKN99885GGJWglw/rTn/4EoHwPOGc8YA8dOgQAuPfee3HjjTcCAGKxGADIGp+ampJ1cOqp\npzYyBEEtcjobloODQ8+g4yphmLpF6n3++ecDAB5++OHA9dzpq9lNeK39/qXivvvuw4YNGwAA4+Pj\nAPwTNh6Py5j4+/F4XP5PtYnjJ8jQNHhyzc/Py/gvvPBCAMCmTZsAADt37mySVPUhmUyKDepHP/oR\nAF/VyeVyclrzmu3btwMA7rzzThx33HEAgAMHDrR1zIvhK1/5SmAsnI90Oi3zyb979uwBUGZTZMGc\nf8oN+Mya80/V6eSTT8aVV14JAHjooYeaL1AdoBp43HHHyb9XrFgBABgZGQEAfOELXxD2RI2CzDke\nj8vn2gHHsBwcHHoGHWdYPMmKxSJGR0cBAJ/85CcB+Azj8OHDojM/+eSTACqZFZkMv4v/19fEYrGl\neN0AAGeeeSYAYMOGDcKUeHqSMaXTabFVaDsIULZp8XqOhWNNJBIyXtoOXn/99YAc/BzvUT22kGZi\nZmYGK1euBOAzhy9/+csAyob1VavKTkqyEZ7CK1eurGCc3YCf//znYmwn06Ita2BgIOAFo0OB8gPA\nwYMHAfhrNux62i/37t3bcWZF7N69GwBw9tlnyzrL5XIAKueHBvgLLrgAALBv3z4AZXsX13k74BiW\ng4NDz6DjDIvMpFgs4uKLLwYAXHrppQB8hpFKpWQXv+yyywAAP/vZzwCUT0LadyyD6u/vF9vC7Ozs\nksd60UUXyXhoq+D3U45cLoevfvWrAIA33nijQo61a9eK25usi6dvKpUSr9kZZ5wBoGw7AMrhAmQl\n/L0PfehDADrHsDTr00wDKI/3zTffBOCzTLLOYrEYiEXrNJ588kkJsbj66qsBAP/4xz8AlBk0ZSBL\n1GEcZP68hvN08OBBYZkEr/na177WMlnqxQsvvACg0qZKDzblpN0K8Bmkts+SXbYDHd+weFMA4Kyz\nzgIAHHvssQD8mxiNRvHII48AAE4//XQAwLe//W0AwLZt2/DPf/4TAPDiiy8CAN71rnfJ923duhVA\nOeaHrvVGwU2iUChUbLSAH4IwPT2NO+64AwDwvve9D4C/Ad1555349Kc/DcCPp6KBMxaLiRryve99\nDwDw2c9+FkB5UfD7ufHS6D42NoZdu3YtSa5GEI1GAwcF7wkDLcMQiUTkc3y4uwG33347AEhs2Wuv\nvQagrCLyAea9p8oO+DLzGsqUSCTkOqqCdB618wE/Eqja5fN5OUQTiQQAP6bs6aefFll4PeWORCIS\nytEOOJXQwcGhZ9CxI86GM1x22WXYsqUc68jdnJHiY2NjGBsbAwA89dRTAICXXnoJQFntO+eccwAA\nH/zgBwH4AZtPPfWUGKdzuRy2bdu2pDHTtbt37145jbQbG/BTMwDgD3/4AwD/9D3ppJNEhbv//vsB\nAFdddRWA8sn89NNPA/CN+1S7+vr6hMVQJSQDOOecczrCsPr7+0V2qkU8dUulUsUJrBGNRitCBroB\nOhSFoTTf/OY35X0yK17DwMq5uTlhVPxLg7UOU+G/H3jggZbJ0Chotsjn8zJXXGOc1xdeeEFYF2Uh\nq0qlUm11njiG5eDg0DNoK8OqthPfeuutOOqooypeo5GyUCiIrYsnINlYqVQSZkLWxZPwc5/7HI4/\n/ngAvv2pETB3jC5vbcOiTDx1dRAdP8dT96ijjpKTm58jG4xEIsIUCZ5+Rx99dIBh0fh5wQUX4K67\n7mpYtkYRj8dFhrCwkmqhJnzNBs92CtqBQLvNyy+/DKAcUEmmQeavGQhloX2UhnYtJ8M+uhEMzzn2\n2GMlCJny2sBnwLc5871isdi05Oda4BiWg4NDz6CtDKuaG3tyclIYFtkDbSTxeFxc/tz9yWhKpZIE\ns5177rkA/FN99erVYkdaChimwN+cmZkRxsPXOK5CoSDsj9UZ6AlMJBJYs2YNAJ9Z8XPJZFK8ax/+\n8IcB+CVL5ubmxNOkqwgAPtNsN6LRqNh2tDcXKJ++NsREzz0ZZzeDsgwMDATSbujl05UctLcbqGRt\nTN/qRjD8BEDAS6jtcJw/vsf1G4/HJU2nHegav3I2m5UbxL98IKanp0XVYsgDb2AkEpHrqUJq9Uln\n1jcKhkYwt2p0dFSM63QM/Pvf/5bf/vvf/y6/r/8Wi0V5uG20d7FYrKj4AECM6dlsNrApUF1stNLB\nUqEXsza28/9huZFAWW5uWKtXr27xKGsHx0sZGDu3efNmeY/j1g+vDWvR+Z+MT2MoAKGN/N0CfYhY\nYuF5XsUa1n8jkUhbwzScSujg4NAzaLvRXecOAn5NpLVr18ouz7+k4AsLC8K2qDaRcWWzWVGPbKDe\njh075Pu3bNkiUb314ic/+UnF36GhIWzcuBEA8JnPfAYA8J73vAdAufYRg0JZqYA0upqRWd8bqhla\njhtuuKGhsTcbVFNjsVggNGUxVgVUVrOgfGSnZCd8vRvA3LloNCrri7Lron1U+6kW6Xw83o9uY1Nh\n4PxoaC3GOsz03LeyYJ+FY1gODg49g7Yb3W1KCw3MIyMjEjagDepA+SSmLUrn3gGVFRBsKeIf//jH\nUsJYu+GXisnJSakaQTbIPEjP8+REJoOwNh4AgZCAUqlUwSgBn3nQhtYN0Cx4MSeKft2GNwD+/WDw\nYTcxK4K2KD1nNm80nU7La2RYtFuxphvgM+xuRhg7trXn9HU6LaudtkjHsBwcHHoGbWVY8Xg84P6l\nvSeXywVsPWRhq1evllOYtitem06nhcnwlKOH5/rrr8d3vvMdABDP3VKga1dRDp409JTouluWgejE\n32qwti7awvR71WrBtxL8vUaDPj3PC6QzdQOsDYd2pwMHDshcW/f95OSkvEd2zxCGVatWLTnZvp3Q\n2kdYQPBiVXQLhYJ47tuBhjcsSxd1DA5jNBZbBBq///3vAZTz7WyMER+OAwcOVNBwABXRtfb3eO3m\nzZubmknO8ejfZkQ0N6ywTVkbL8M2MYKfsyqEdhtbp0W7oTcq3u8wdaLae1YGG1LQCdgxUKUbGhoS\nhw/j6YiJiQkJpaGDRM8955bltIluNMLrdWizE+y/gUpS0c4Ny6mEDg4OPYOGGJZWe+o5LS688EJc\nc801AIDzzjsPgB8c+tZbbwmzsmWEZ2dnZUenOkGm5XleoDgfv2dmZkYqODQzUz4ajcrYyAq1M4D3\nxAaHep63aP6d53li0OapHVbqudPQ910zR6CSMS2mMmqWyb+cr04a3y27owPoueeew969ewH488Jx\nrlmzRuadoQ46JIV5iWx/1o1gFZRkMlkReqIRjUYD61avTVvAsZVwDMvBwaFn0BDDCrOfUL9fu3at\nBFXyZCHLGRsbC9QLIjsaHh6WdBOdXweUje48yXjK0dXf398vra9sM8t8Po+zzz67ERGrQtuhbMqC\nZh7WfqPrRBGaafFz1v6jf6/TZYX1CbtYR+wjhY+E1cjqNjA/dffu3VJtgeuSNsVly5YFcjy5TnXl\nEaZ00f0/Pj7eFXY7AHjHO94BoOyoom3W2lB1kDCh05WYH8tc3laG4XTfSnFwcHBYBA0xrLPPPhu3\n3norAL/+D1NmdIIv3fG6fZWtp8OTaevWrbjuuusAQCqD0lOTy+UCnohTTjlFrqGNgWyNLub+/v6A\nh6ZVYJOFyclJkd8yrSMxD90OTF/fLXWjgNrGom11hGZj/A6bCN4p6Hb0DFA+6aSTAJQZFtc2bTWs\nu9bX1ydNYbnWdcVZguEN119/PQDg+9//fseZFXHJJZcAKM+LXafVmL1e4/SUM02tlQyr7pUSi8Vw\n++23C+W12dvaAE6VzhqoAd8NzA3lW9/6lrxPwbWK+NhjjwHw+6hR7RweHg6EA+gHvxXdhcPUMm0Y\nt3JXU6N0pDvHH1YVoNpvtxPawG5lCCtHYv+vr+HnuBY61ZxBbx7vf//7AfjdZNLptIyLhyarL2za\ntCm0ugNQ7uZk8wx5qI2Ojsqm12nQZJLP5wNFKas1C9Flrqkq2wKUrYBTCR0cHHoGdTGs4eFhXH31\n1diwYYPQQFZD4F8dXEdmoDvekjXReM7WVnfddRc+8IEPAPBDEHii9ff3S2MG9gbUff0Y6kBmQxSL\nRRnD+vXrK4qVNRtkRbFYTNhWWFQ6X7OR8vF4XP5twzSqtc1qNzSLrab2VYPNBOimyHcypB07dgAo\nzyHXlR1nWBCtLp9M9ZIMTTO1bmFYfMYmJydDnTxAWc7F5jQWi8mzTOcC71MrCjU6huXg4NAzqIth\nFQoFjI+PY+/evRUGcQBi+O7v75cTiQbIt99+G0C5GD+ZmK7MyO9m6ys2RuXuv2LFCmEkNG7SMF0o\nFORU4+nP/0ciERnL2NhYRU5esxFmRA1jHIsZ4LWhmtfbtlL2uzoBHQxrnQu1QNv6OIfdENbAtcZg\nTwbIzszMVOTNAZXzwddsGWXAZ8p0+9P2ZTtCdwKs7UVHwv79+yuCgoHK9WvTqPheMpnEH//4RwDA\ntddeC8BvU9cK43vnV4qDg4NDjaiLYS0sLGDfvn3wPE+8IqyUwJ16ampKWgfRQ8cTKpVKVVRZAPzQ\nhWg0Kp9jMBsrGe7du1c8LTzBeG0+n5dTjic2T8CRkREJIj3ttNOkMkQrEMYSwphHNYZlbQiUizaC\nboC2Ey4W6Hok2CTybpDvmGOOAYBAekoymZS1SpahvWZkKjYdKx6PY8+ePQB8jzbttYODg2LrpfbR\nbrBOnPb6LlZBNp1Oy7zbKiGFQgEnnngiAF92Pr+tYFh1bVhzc3N45plncN999+ETn/gEAD/0gOEG\n8/PzovZxc+IGkkwmRY2gKqkNsKTQpOW6SBhvBlVI/sbCwoKoemHqIuNk9u/f37T+adVUoLA4JUux\nw64LUxt5b7opDktX0rAlR2qBzsPkfIyOjgIAnnnmmWYOtS7YqiNci9lsVtYxzRL6oeU61KWRgXII\nA+MJmYnBdR2Px2Wj69SGxY7j+uC3jgPKFolEAkSDDoR8Pi/Gdt4Dxki2Ak4ldHBw6Bk0FGJ82223\nyWl48803A/CNlhMTE8J0qNLx9Eomk8KUwoLUuIvzL0/zRCKxqAt9//79gZAKnhAjIyPinv7FL37R\niKihCKtrZXMdNXSdLstKqrG1MIbVaaO7rjxgVVgtpx2nzp2zVSh4yncSNGlwzdGccfLJJwdYBa8p\nFApi0rAVJzZv3oyHHnoIgM/8dTOLTkf3n3DCCQB8k8zIyIjMEVkfmdNVV12FBx98EIDvLOM6Z+MX\nwDcPvfOd72zZuB3DcnBw6BnUvc0z7+rhhx8GAPnLgM7bbrtN0m0YMMqdOxaLBWpdEePj43Iq0/1L\ne8DMzMyiNp98Pi/2Bv7Oo48+CgB48cUX297AQdtobMpKNBoNZOlr5rhYlYdusmGRQSQSiUC5ZG3A\ntWOmvSoWiwVsJKyG0EmQYfHesxT34OCgrFnaoMiUJicnRYsIczgwh5AOI8p9+PBhSW3717/+1Xxh\nagAZ03vf+155jePTYRsAKko9kxXryqpc71wbDEtqBRzDcnBw6BnUzbAWyzJ//PHHAaCi/tSmTZsA\nVIY8rFu3DoBfoZEnL1N9egFhdiR6S8fGxgLBhDqw1b4W5gm1v9NNNiy2NxsbG5OUIZ3UDpSZFu9B\n2Hht4vyuXbtaNt5aQbZHtk4vHuB7xsgqOE+rVq0SWxftNwwKXblypdiJbNhHqVSqaAPWCdxxxx0A\ngJ/+9KcAynNGW6J9xvX/eQ21p3w+L7IwUPwHP/hBy8bdUsvfzp07A6+1Mhaqk+DD29fXJwvaqhnR\naHTRHnVajbIlebnw9Xd1qjwJH+i7775bzACUU/dhtGWddagG45N4yNncyU6AsVIcGzcpwB+7LZG8\ndetWKRnDOWdVEa3+c21QfdyzZ4/I3mkwBEGrcTYHUPcdZNQ+1cZ4PC4bFitdtFLFdyqhg4NDzyBS\nj4oRiUQ6q480AZ7nVY1yrEXGsLAG9j9MpVLixrZsKhqNigHTBpPqnEiqHlRLnnzySTGS1ojtnudt\nOYIMDc1ltXAMhpWMjIwECtmxUsabb74ZaDZRa5UHiyPN5f9/d01favMFNZMlwyVzsGaNVqOZclbD\n+eefD8AvXshu5jfddJM4HLjOybp+9atfieNtqahFTsewHBwcegb1MqwDADrvg24cGzzPq5oq/18g\nI/C/IecRZQScnD2E2uTstNfJwcHBoVY4ldDBwaFn4DYsBweHnoHbsBwcHHoGbsNycHDoGbgNy8HB\noWfgNiwHB4eegduwHBwcegZuw3JwcOgZuA3LwcGhZ1BXeRmX/Bx6PYDKVmYsvcF6T0yo1VVW7ed0\nORImSLNWmK3OWgMmakjNaWguOcZEIiHlVlgWJ6yarK37ns/nRS7W0bK1wWpFK5OCOT+xWExKzeg5\nBsrzamuW6QR220mH13aTnJyfZDIp82mriupSRrxetzOjPKzv3mjpo1rk7Gwl/B4DF3E2m8Wll14K\nALj66qsB+L3Y1qxZU3EdgIoSu1wErCGlm1bwQWazA5aK/utf/4pf//rXAPySukdoWVZzTllYiWb9\nHh9EFrhjFYZTTjkFY2NjAPys/ksuuUTGz+tYmeGll14CAGzfvl0amDzxxBMA/EoOs7Ozcn+qPdxh\n1TKWAt3GigX42FRldHRUqmaw3tPll18OAJienpb7w02Mcj744INS3I+vce727dsnD3ejm9hSwWoL\nxx9/PADguuuuE1lY14yb0+7duwMNYrge1q9fLz1KWVHkhRdeAFAuatnAYVsVXblhhfW5qzNJW/42\nY0Hw+9gx5vOf/7wUbiObIisqFAoy8SxMx8kdHByUcdhqnaVSKVDRkt1HzjjjDOkj941vfAOAX0t/\nKb0WF3vw9f0jyDL4N5lMyqbLcXODXbZsmYyLRetYmiUSiciDwHI0bHbLa8PG0ooHWrNcu1GxWu7o\n6KiUk+G8sEKq7jTDeXzttdcAlB9kysfNjOshl8vJgxwmcztgq9uOj49LcT6uX27U+XxeXmOxPl1l\nll12uJnx2mZvVoCzYTk4OPQQuoph6e46QKV9h3qxrRUepi/rk1PbTho9pXlCssPIDTfcIN/FE5J2\nilQqFbBrsEV5LpcTRmYL+JVKpYB6wW4r6XRaOljfcsstAPxS06+88kpLyyVznFYlXLNmjbR3p1rB\ngnarV68WGXh/qGbk83kMDw8D8Fkm/1KFqnVMSwXvfSaTEYa1efNmAMCZZ54JoCyn7SVJOQ8ePBgY\nC4s3zs7OCgNlDXvOfSKREJWQ7FR3oWkHqKqT9cXjcSncR2b14osvAiizad0RCfBlGhoakvthexm0\nAo5hOTg49Ay6hmFFIhHp98YTmDr1qlWrZPemvYN688zMjNhLqEPz9Ojv75fPTU5OBhojHAlkPDwp\nb7zxRgDlk9I2TiCD0HYfa8SMx+PCGm1fwmQyGTiZyFJmZmbkc2RaNADffffdTbeDhNkQCd2NO8ye\nAZSNrWRNZJ5kMMViUebJ2spKpVKAsbTSGM35WbZsGU4//XQAkJ6adIZ4nifMn84Qjn9iYmLR7kC6\n+7VtSjI6OiqGat47ruF2Gd+tvTSbzYqNluuOzPnQoUMy13yPDAvwGZnWZloFx7AcHBx6Bl3FsHgC\n0T1Od/lxxx0nJwHZBIviz83NyclHWxF3+kwmg+3btwMou9Dr9VpYhnXqqacCqLRT8YTUNimeXvw8\nGV8+nxc2wVNINz+wNixty7N2lHPOOQcAcN999wnbayC+p+bXtYeLY7TxZroDN8fL13gPpqamxA7G\ne0cGU43ZtQJkiytXrpQ55l/Oy9q1a6UXH+eM9ifdW5ByatbI9/ldZCXj4+PCOOlZ5bpuF8OiLJzP\nwcFBsVNyPqjpJBIJuS/8nG5dd/TRR1e81kp0zYYVjUZFBdyyZUvF34GBAXl4eVNOPPFEAGU1wgbo\n8YHft2+fGKd1kF8tiEQisvi4UWkXNhc7f5NhDbprDq+n8TwSiQSCECmXDlC0Rvt0Oh1QPWgcHhwc\nlLbq9aq89YByUiUvFAryGjcsqukDAwOyGXFsVBGLxaLcK17D+6Pnpx0PLudHh5vofntAWVWifBwv\n5c5kMjJHPKTC4tr4ndy0+/r65Lf5Xqf6TXKjzOfzIgPVYco9ODhY4QADfLVYq8y8P7YrUjPhVEIH\nB4eeQdcwrFgsJqoCjX88lQHfrU5mQzYRi8UCJyBPvXw+LydWvWENmg2RzWkXNMfIcejAUY6Rv0ej\ney6Xqxi3/lsoFEQOfp6nte5CTIbDoMTVq1dLsGKzGJZWb61hnOxVO0k4TzxZs9msfAdbmvNz6XQ6\nENLBz+nfayXD4m9o4z/HR1l4zw8dOiSMg/PPdVosFoVtcR7JmBYWFuQ1fp5rRKc1WUbXSpYcBsqp\n55Ov8ZlLpVKyNm2/Sb2meT9dWIODg4MDuohhxeNxMd6RPegAUJtKoFNueMpxZ+dpGY1GxRha764f\niUSEGa1fvx6Ab9TP5/Nib+M49MloDfI6KNC6k/n/QqEQOKF0WARtQW+88QYA3yC6adMmPPvsswCa\nZzsIM37T2GoDCAHf4ExZEolEwCaj58E6KvTvtsN2xfusQ1Eoj7ZFAuV54dxaQ3VfX5+8RnaiHQjW\nGUFWlUql5Dr+DplWLpdryz3gvHAchw8flrm1Y4vFYgGDOuXO5/NiB2uHHc4xLAcHh55BxxmWDpxk\nABrdwdSlU6lUIKGSp2ShUAh43HjapVIpCXlodFyAz5SYOpLNZgOeLY45kUgIG9IlOIDyycNTi7Lq\ncAW+R+gTmq502rA4Jn1vlopqYQU8NTXTtXYXzlc+nxfGwNOX1+ZyOfGiWkZYLc1Ks45GmJiWjUxH\nV8qw9k+dCmZL5Gg2RZsOr9HzSflsUnA+nw/YK8n2dCB0K6HL4HDcthySfq74npVJMyxqIK20w3XN\nhjU8PCwlWrgIdL4gJ9bWTkqn03JjOdG8RocD1ItSqSTU//777wfgR/6uW7dONo6RkREAkLw6ILhx\nhsVJceK1GstFoMcAADt37sT4+DgAP79r9+7dAIBt27a1ZYETlM3zvEDEOjft6elp2bBsTa9kMllh\n6NXQ/7fG/qWqSdr9znnRBm9+P+dVbyDc2LQRGihvvpwjnQFgv9OqwHNzc4F6aPzbLseDjUrXoTqU\nT29KfBasujg0NBRwhLWiSgPhVEIHB4eeQdsZlj09eNpu3LhRDNm2gFihUAjk3umKkASv0QGNOiK3\nnp3f8zxRw7Zu3QoAeOqppwCUo6GZc3bRRRcBKFdw4FitYZqyRqNROW15ourQBz1WwM9du/fee/H8\n888DAPbu3QvArwqQz+eXZGwPU6+qnfCazelwDcA/dbUxmt9FY/a6desk1CHMSNvKaHdbYYP5fIVC\nQVR0WxVkaGgowHy1G98W4uO9WLFihcwLf49VDZ5//nlhzIx051y3O3CUvzc8PCxMyUIHz1o2lclk\npBigXdOtgGNYDg4OPYOO2bB0WgQAvPvd75Zqj9Y2AvjGQXsqx2Ix+TdPcZ4GxWJRcrbqPbk9z5NT\nhKyIJ+Xhw4flhGSZYG1Yp83K2ko8z5Nx8ETX2fr8HFknT+hnn31WGBavp4xhFQ5qxWI2pLB7ZW2B\n69atE3Zr2W4ymZT5ouxkhDMzMyJ72DzbsYTJ1qi81m7De7h//36Rjyyf9sqjjjpK3iOj1M4Fyzy4\nDmZnZwO13F9++WUAwI4dO2T92LSqYrHY1nLJ/K3169cH5pHPWrFYlGdMO7uA8j1gjqQOcG4VHMNy\ncHDoGXTMhqWZFQCce+65FQmygM+qkslkIP2GbKq/v7/iVAMqbUY8KROJRN3ei7CgUI7LppfwhF1Y\nWBBWQe8Sx9zX1xeousBrdIUDgtdMTU0FOpJoWZp9IuugXOvNogdXMyxbFyuTyQQ8Yzqlgyc3GYsN\nWbBjsFiML6xQAAAKzElEQVRqgKmtODAzMyP/JkvQTResl5DrLJVKiZw2nWphYaEiXQvww2IOHDgQ\neK+VnrUw2LSvjRs3BroC6YoiNvmZ8sZiMbk/DPzetm1by8bd1g0rFovJpLMSwxVXXAGgTL1tJLGm\n3nZB6JZEtoSJrnawceNGub7RMrRhReVsNDrHfPDgwUDIgs6Vo4y6FAvf0xu0RiQSaUn52UgkUvF9\n1rGhx2edJNlsNpBDxmoN2hHCz/Gat956S76DGQ0a7ewiow3slIVzxQNifn4+4AyheptMJgOVCrjx\n5HI5WROUXVczsGppu7vn8HcYlsPyMRyf/jswMBAoSU65c7mcqPgMS/rd737XsnE7ldDBwaFn0FKG\nZdWJgYEBCbC88sorAZRVQaCsMlgjpTb62X51Ok+PFNa6VdPptBTWHxgYkFOzUejTz7q/ddNJnkxk\nElR99Bj5eR0Ia6OP9f2wzCpMjVoqqrVXs2rc0NCQyEJ5+f/ly5cHxsuKEv39/YEczWZF6i8FOjcO\n8NeXZr6W/USj0cBrutSxZSW62ke7qzJYcK7p6BocHAzcg7BgVhs6FIvF5PmjeaeVoSmOYTk4OPQM\nGmZYtnpCWPMF6u7aUPvRj34UAKToP3fzQqEgO7XOlOd3L9b2W5crtobwQqEgVQ3S6XTdJVzrsSdo\nVzDtazaDv1gsBlgnocdGu4YOG1hsLEs5zY5kDwtLE6FjRNuwdLMMoCy3rQnGa/r7+yVIkkzLBmby\nt/Xnm9UUNwy6ai3vva7/ZQ3yOv9usRQbbZC3DUv4m2FoV8UK4rTTTgNQ6djifNgqKECwimosFpN7\nQAeXrUTSTDiG5eDg0DNoiGElk0lxZdsaz9lsNsCU2Or7vPPOk1rk2ssHVKZ8cIfWrl6bmMlTSzMz\n+/lcLlfRKKBeVAtetEmghGZRNiwikUgICwmrJmorcPIeLVu2rCUJsfY0twxVv2a9fbpGvvUu6mBW\nJhNTpmKxGGhLptllO9hF2G/oyrSAzw4mJydljvma9vra9cvv1tVI6T0l49KpZtVsk+0Aq+nq37ae\nQM2ibIOVRCIhzxvXsk36bybq3rBisRjWrVuHs846CwACLt9IJCICkDZecMEFAMpGVlu+g9cMDAwE\nomm1SmSN1Vqd0C5WoFKlojqaTqcbinY/0nscv1b/bOdqXRiN19vOOPl8PhC6oJ0VrUI1Q7uGbZqQ\nSqXk3nLc/Lt8+XL5Xl5PmVauXCkPMCtOhMVjVRtLs6EN5DYnMJfLBQ4lHXtlo8J1mRreA9u3Uf9e\np6Ero9iKKNyEdTaJVd9TqVQgRIMxlgz/aCacSujg4NAzqIthsVD9xz/+cQkXsCV/9Wlkg9MymUwg\nf4xBZ5lMJmDw1DmBpJs2GFNH4VZTJXV0ejNhmxZoY7QNdtX9BS37AhCIkOfnV6xYsejYdTR6sxBW\nl4pjoxt8+fLlMj6esKOjozJeO5esMhGLxYRRMc+TQYvMtatlfEuZy2r3yzbWGBwcDDiPdP9IHc6i\nPx+LxWSOyTjCuoN3Chwncyd1ELENCNbqv21rppu78P4wXOXVV19t+rgdw3JwcOgZ1MWw0uk0Nm7c\niIsvvlhYgDUeRiIRMbRSr2c6TjqdDnQ31qkf1qDHnTsej8v3szQxDbfZbDbQjFKnR+gQh2YyLGu7\n0Dl+ZBy2nKzneYG0B9vmCag8vfQ1rYBmaGGGfZuSoxtO8DXOCe/71NSUzG+Ys4Rzx8+FNSE90pgb\nQbXv12xe/z18+HAgVUqnjpGNUCZto6VcfE/XLWt33SsLsiEd1Gw7cHPdag1Ht3kDynNhK/1q1tZs\nrcYxLAcHh55BXQyLXjcdUEj2pL0HZF+2kWSpVAp4GfTpbsP/deMJFrhn0KH2RFrdmyiVSnJ9s+0G\nltXx1F1YWFg0qLZYLAbYow2w5Hfo72ZFx8Ww1PpQtXyeMlDOeDwu80p7D2s7Af7cMR2K9yuTyQRS\neWwFi8V+vxl13fXvhDFJWzML8NmlDpcByvNp08H0d9tmuTbROexz7QIDqol4PB7wznO80WhUxqc9\nh0Dlc8v1QLt0KxhWXRvW/Pw8du7ciQceeEByAFlSgoPVah8nUxu+CRsNrzExMQEAePPNNwGUGy9w\nw6LRl5HyYRHQfCByuZzc9EYi3avBGlB1KIIt4k/o3+c90YZrG2mss+XbgbAH2cab6aoGjCnjIuY1\n2WxW5p6bLTcuPV82ficejwfimVoRfxZWfYOwkes6z5Hj1IUKeT9YeYJzpqPg7VqvNZSkFeBv0+ER\ntmFa2WOxWKBjuTbMW/WWB5gOh2gWnEro4ODQM6iLYRWLRUxPT+OHP/wh7rnnHgDAqaeeWvF3/fr1\nwhpIO+nW1X35CO7Uk5OT2LFjBwC/ABhd4RMTE3Idg1D53bOzswEjIQulTU1NVfRTa+Zur7v4ApUO\nAhscq8MubH0pncNmVVqOvb+/v62R7vp96yShsTaTyQRUHqp9+tS1ffu0qkTGooNSbU2zdgdYWu0A\nCBaU1A4mO/9EJBKpiIjXaCbTrxeUT4cTAZUNW2zojXYkhWlLdq60+t/sFnSOYTk4OPQM6mJYnudJ\nHtSePXsA+HWOHnroIQDlU9N21qV+r4NDrXv/7bffDrh/NSPi7v/II48AgLCxRCIhOjNTIGj8nZ+f\nFwPp5ORkU7PHbRAh5dINNG1OVjQaDRictc3EBr7qdAiebJSnXSBrtY1R8/m8vEeWoTsHWyMtPx+J\nROR+8D39PZadtoJZhsHam3RDE1s5VOd6cs3ayhwLCwsig03NicfjbZPLwqbNcWzZbDbgENJ5kWFp\nZkB5nmwoCJlzOp0OtEFbKhzDcnBw6BnUnfzseV5F6ostnj8/Py+Bo9yNmeRaDbXal2ifIos6kscl\nrIJAM0DPHb2FOqPf2jXC6mHZscbjcTnJrafK8zyxA7I9VLMQ5mXVpyhZBW0e9PoVCoWALYrzXigU\nKrxlQGUNe5v6wXuZyWQCoQ5h9bBaAWsH1czZent1GzbKaRug6CBhm6rVyQqrZFYM7uTYpqenJUTJ\nBoPPzc1VBGDzNaCyuYvtSaBZW7MqrLakRHIrDaaapnYStmwuJzsWiwWi4MPUhLAuuba0iY6DaVXP\nt2qllkulkoyJmfccm+5WRPn4ELzyyisS7kL3OR/o1atXy8bMzVcval0y2qIdapQugwOUDyTOLWXR\n86m7AfE1XsN7xkM2rCBeu0H5bDzV4OBgYD51fJzNXKAM6XQ6MGe8phU9Fp1K6ODg0DOI1LMDRiKR\n7ijiswR4nlc1pLhWGamiMYD2lFNOAVBpOLZ9+3SgoS7mBpRPPJ5sNOSSlTz77LP4y1/+UsuwiO2e\n522pdgHl1KpWmEGVr7HiBosxnnnmmcI81q5dK/IB5ZPVGnXfeOMNAGVjNk95Omx27doFoBwobNXi\nMLbOMR9pLrWcNVwHAIEee8cee6yo/VSHdZ9CzjHVYbKq+fl5+TeDnl9//XUAZQdTPSpSM+UkqOKz\nrt1ZZ50l641OLJ1LaFV1ztP8/HxF3iUA/PnPfwZQntd69pda5HQMy8HBoWdQL8M6AKD5RW7ahw2e\n562qdsF/gYzA/4acR5QRcHL2EGqTs1tKtTo4ODgcCU4ldHBw6Bm4DcvBwaFn4DYsBweHnoHbsBwc\nHHoGbsNycHDoGbgNy8HBoWfgNiwHB4eegduwHBwcegZuw3JwcOgZ/B8qOcR/giifNwAAAABJRU5E\nrkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 4]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfXuMVGf9/jP32Sssl2W5U7ouKyKlFSpYqLYWxWiJsWKV\namIMxlvUVJvUpP+YNAZTNWqjNVoTbGOqibHW2KtNU5MaUGhJSxEQWqgslOuy7IW9zcye3x/zez7n\nc95zZtiZnTOz8+37/DO7M2fOvLfzfp73c404jgMLCwuLekC01g2wsLCwmCzshmVhYVE3sBuWhYVF\n3cBuWBYWFnUDu2FZWFjUDeyGZWFhUTewG5aFhUXdwG5YFhYWdQO7YVlYWNQN4qVcHIlE6t4t3nGc\nSLHPK9HHdDoNAFiyZAkA4NKlSwCA4eFhMLKArw0NDQCAtrY2jI6OAgDOnTsHAMjlcuU24aLjOHOL\nXTDVfsbjccyePRsA0NvbCwDIZrNX/V5DQ4OMz+XLlwG4Y1EqrjaXQPn9TCaTAICWlhbMnDkTgNs/\n9nd4eFj60tbWBgBobW0FAExMTMh1Fy9eLKcJgjD7OVUkEglkMpmK3Gsy/Sxpw3qnIhLJj2PQg7Vm\nzRoAwGc/+1kAwB133CEbTVNTEwB3U+IDHoSjR49iYmICALBixQoA7sb13HPP4cc//jEA4ODBg5Np\n8v8mc1E5aG5uBpDv77e//W0AwPj4OAD3wRwfH5f3WlpaAACpVAoAsGjRIvz1r38FAOzZswcA8Kc/\n/Sms5k4aH/vYxwAAd999NwBgZGQEQH7joiBhX1atWgUAmDdvHt566y0A7mZ25swZAEB/f7/0eeHC\nhQCAF154AQDwrW99K9S+lAK2qa2tTTbYL3/5ywAgfdNYsGABAODFF18EkF/b//tffrlt2bIFAHDl\nypXQ2hspRbpZhpVHa2srHn30UQDA6tWrAQDRaP50PTg4KAuckocbWCKRwIwZMwC4k8pNKmgeKL0b\nGhpE4r/00ksAgC984QvFmviK4zhri10w1bnctm2bPNT33XcfAHcxz5s3Tx7Wvr4+AMDQ0BAA4Pnn\nn8cf/vAHAO7m98QTT5TVhkoxj2uvvRbf//73AbhCorGxEUB+XjlH3JQWL14s3+VnfO3v75drOf9k\n2Ny4Ll++jHvuuedqzRKEybD+8Y9/AMiPAeeMAnZwcBAA8Oc//xmf//znAQCxWAwAZI1fvnxZ1sF1\n111XThMEk+mn1WFZWFjUDWp+JAw6bpF6b9y4EQDwzDPP+K7nTl9Mb8JrzftPFY8//jiWLl0KADh/\n/jwAV8LG43FpE38/Ho/L/zw2sf0EGZoGJdfo6Ki0/+abbwYAdHd3AwCOHDlSoV6VhmQyKTqoX/zi\nFwDco87Y2JhIa17zyiuvAAB27dqFa665BgBw4cKFqra5EL773e/62sL5SKfTMp98PXHiBIA8myIL\n5vyz34DLrDn/PDqtWrUKH//4xwEATz31VOU7VAJ4DLzmmmvk71mzZgEAOjo6AADf/OY3hT3xREHm\nHI/H5XvVgGVYFhYWdYOaMyxKslwuh87OTgDAjh07ALgM48qVK3Jm3rt3LwAvsyKT4b34v74mFotN\nxeoGAHjf+94HAFi6dKkwJUpPMqZ0Oi26Cq0HAfI6LV7PtrCtiURC2kvdwalTp3z94Pc4RqXoQiqJ\noaEhzJkzB4DLHL7zne8AyCvW587NGynJRiiF58yZ42Gc0wG/+93vRNlOpkVdVktLi88KRoMC+w8A\nAwMDANw1G3Q99Zc9PT01Z1bE8ePHAQDr16+XdTY2NgbAOz9UwG/atAkAcPr0aQB5fRfXeTVgGZaF\nhUXdoOYMi8wkl8vh1ltvBQDcdtttAFyGkUqlZBffvHkzAOC3v/0tgLwkpH7HZFDNzc2iWxgeHp5y\nW2+55RZpD3UVvD/7MTY2hnvvvRcA8Pbbb3v6sWDBAjF7k3VR+qZSKbGa3XDDDQDyugMg7y5AVsLf\n+/SnPw2gdgxLsz7NNIB8e8+ePQvAZZlknblczueLVmvs3btXXCy2bt0KAPj3v/8NIM+g2QeyRO3G\nQebPazhPAwMDwjIJXvO9730vtL6UikOHDgHw6lRpwWY/qbcCXAap9bNkl9VAzTcsDgoArFu3DgCw\nbNkyAO4gRqNRPPfccwCA66+/HgDwwAMPAABefvllvP766wCAw4cPAwBuvPFGud/u3bsB5H1+aFov\nF9wkstmsZ6MFXBeE/v5+PPzwwwCAj3zkIwDcDWjXrl34yle+AsD1p6KCMxaLyTHkpz/9KQDg61//\nOoD8ouD9ufFS6d7V1YWjR49OqV/lIBqN+gQFx4SOlkGIRCLyPT7c0wEPPvggAIhv2cmTJwHkj4h8\ngDn2PLIDbp95DfuUSCTkOh4FaTyq5gN+NfBol8lkRIgmEgkArk/Z/v37pS+8nv2ORCLiylEN2COh\nhYVF3aBmIs50Z9i8eTPWrs37OnI3p6d4V1cXurq6AAD79u0DALzxxhsA8se+DRs2AAA+9alPAXAd\nNvft2yfK6bGxMbz88stTajNNuz09PSKNtBkbcEMzAODZZ58F4ErflStXyhHuL3/5CwDg9ttvB5CX\nzPv37wfgKvd57GpqahIWwyMhGcCGDRtqwrCam5ul7zwWUepOTEx4JLBGNBr1uAxMB2hXFLrS/OAH\nP5DPyax4DR0rR0ZGhFHxlQpr7abCv//2t7+F1odyQbVFJpORueIa47weOnRIWBf7QlaVSqWqajyx\nDMvCwqJuUFWGVWwnvv/++zF//nzPe1RSZrNZ0XVRApKNTUxMCDMh66Ik/MY3voHly5cDcPVP5YCx\nYzR5ax0W+0Spq53o+D1K3fnz54vk5vfIBiORiDBFgtJv4cKFPoZF5eemTZvwyCOPlN23chGPx6UP\nQW4lxVxN+J7pPFsraAMC9TZvvvkmgLxDJZkGmb9mIOwL9aNUtOt+0u1jOoLuOcuWLRMnZPbXdHwG\nXJ0zP8vlchULfp4MLMOysLCoG1SVYRUzY/f19QnDInugjiQej4vJn7s/Gc3ExIQ4s33gAx8A4Er1\n9vZ20SNNBXRT4G8ODQ0J4+F7bFc2mxX2x+wMtAQmEgnMmzcPgMus+L1kMinWtTvvvBOAm7JkZGRE\nLE06iwDgMs1qIxqNim5HW3OBvPQ1XUz03JNxTmewLy0tLb6wG1r5dCYHbe0GvKyN4VvTEXQ/AeCz\nEmo9HOePn3H9xuNxCdOpBqaNXbmxsVEGiK98IPr7++WoRZcHDmAkEpHreYTUxycdWV8u6BrB2KrO\nzk5RrtMwcOzYMfntf/3rX/L7+jWXy8nDbXp753I5T8YHAKJMb2xs9G0KPC6Wm+lgqtCLWSvb+X9Q\nbCSQ7zc3rPb29pBbOXmwvewDfedWr14tn7Hd+uE13Vp0/Cf90+gKQGgl/3SBFiImsXAcx7OG9Wsk\nEqmqm4Y9ElpYWNQNqq5017GDgJsTacGCBbLL85UUfHx8XNgWj01kXI2NjXI8Mh31Dhw4IPdfu3at\nePWWil/96lee17a2NrzrXe8CAHzta18DAHzwgx8EkM99RKdQZiogjS6mZNZjw2OG7sddd91VVtsr\nDR5TY7GYzzWlEKsCvNks2D+yU7ITvj8dwNi5aDQq64t910n7eOznsUjH43E8phubCgLnR0OfYkyD\nmZ77MBP2mbAMy8LCom5QdaW7GdJCBXNHR4e4DWiFOpCXxNRF6dg7wJsBwUxF/Mtf/lJSGGsz/FTR\n19cnWSPIBhkH6TiOSGQyCFPHA8DnEjAxMeFhlIDLPKhDmw7QLLiQEUW/b7o3AO540PlwOjErgroo\nPWdm3Gg6nZb3yLCot2JON8Bl2NMZQezYzD2nr9NhWdXURVqGZWFhUTeoKsOKx+M+8y/1PWNjYz5d\nD1lYe3u7SGHqrnhtOp0WJkMpRwvP9u3b8aMf/QgAxHI3FejcVewHJQ0tJTrvlslAdOBvMZi6LurC\n9GfFcsGHCf5euU6fjuP4wpmmA0wdDvVOFy5ckLk2zfd9fX3yGdk9XRjmzp075WD7akKfPoIcggtl\n0c1ms2K5rwbK3rBMuqh9cOijUWgRaDz99NMA8vF2po8RH44LFy54aDgAj3et+Xu8dvXq1RWNJGd7\n9G/TI5obVtCmrJWXQZsYwe+ZRwhtNjaNFtWG3qg43kHHiWKfmX0wXQpqAbMNPNK1tbWJwYf+dMTF\nixfFlYYGEj33nFum0yamoxJer0MzOsH8G/CSimpuWPZIaGFhUTcoi2HpY08p0uLmm2/GHXfcAQC4\n6aabALjOob29vcKszDTCw8PDsqPzOEGm5TiOLzkf7zM0NCQZHCoZKR+NRqVtZIXaGMAxMZ1DHccp\nGH/nOI4otCm1g1I91xp63DVzBLyMqdCRUbNMvnK+aql8N9kdDUAHDx5ET08PAHde2M558+bJvNPV\nQbukMC6R5c+mI5gFJZlMelxPNKLRqG/d6rVpJnAME5ZhWVhY1A3KYlhB+hOe7xcsWCBOlZQsZDld\nXV2+fEFkR7Nnz5ZwEx1fB+SV7pRklHI09Tc3N0vpK7OYZSaTwfr168vpYlFoPZQZsqCZh6m/0Xmi\nCM20+D1T/6N/r9ZphbWELVQR+2ruI0E5sqYbGJ96/PhxybbAdUmdYmtrqy/Gk+tUZx5hSBfN/+fP\nn58WejsAePe73w0gb6iibtbUoWonYUKHKzE+lrG8YbrhTL+VYmFhYVEAZTGs9evX4/777wfg5v9h\nyIwO8KU5XpevMvPpUDLt3r0bn/nMZwBAMoPSUjM2NuazRLz3ve+Va6hjIFujibm5udlnoQkLLLLQ\n19cn/TeZ1tWYhy4Hpq+fLnmjgMm1RevqCM3GeA8zELxW0OXo6aC8cuVKAHmGxbVNXQ3zrjU1NUlR\nWK51nXGWoHvD9u3bAQA/+9nPas6siA9/+MMA8vNirtNizF6vcVrKGaYWJsMqeaXEYjE8+OCDQnnN\n6G2tAOeRzlRQA64ZmBvKD3/4Q/mcHddHxBdeeAGAW0eNx87Zs2f73AH0gx9GdeGgY5lWjJv9LnaM\n0p7ubH9QVoBiv11NaAW72YegdCTm//oafo9roVbFGfTm8dGPfhSAW00mnU5Luyg0mX2hu7s7MLsD\nkK/mZMYZUqh1dnbKpldrUGWSyWR8SSmLFQvRaa55VDYTUIYBeyS0sLCoG5TEsGbPno2tW7di6dKl\nQgOZDYGv2rmOzEBXvCVrovKcpa0eeeQRfPKTnwTguiBQojU3N0thBtYG1HX96OpAZkPkcjlpw+LF\niz3JyioNsqJYLCZsK8grne+ZnvLxeFz+Nt00ipXNqjY0iy127CsGMxJgOnm+kyEdOHAAQH4Oua7M\ndgY50er0yTxekqFppjZdGBafsb6+vkAjD5DvZ6E5jcVi8izTuMBxCiNRo2VYFhYWdYOSGFY2m8X5\n8+fR09PjUYgDEMV3c3OzSCQqIC9dugQgn4yfTExnZuS9WfqKhVG5+8+aNUsYCZWbVExns1mRapT+\n/D8SiUhburq6PDF5lUaQEjWIcRRSwGtFNa83y0qZ96oFtDOsaVyYDLSuj3M4HdwauNbo7EkH2aGh\nIU/cHOCdD75nplEGXKZMsz91X2ZF6FqAub1oSDh37pzHKRjwrl8zjIqfJZNJ/P3vfwcAbNu2DYBb\npi4M5XvtV4qFhYXFJFESwxofH8fp06fhOI5YRZgpgTv15cuXpXQQLXSUUKlUypNlAXBdF6LRqHyP\nzmzMZNjT0yOWFkowXpvJZETKUWJTAnZ0dIgT6Zo1ayQzRBgIYglBzKMYwzJ1COwXdQTTAVpPWMjR\n9Wowg8inQ/+WLFkCAL7wlGQyKWuVLENbzchUzHCseDyOEydOAHAt2tTXzpgxQ3S9PH1UG8wTp62+\nhTLIptNpmXczS0g2m8WKFSsAuH3n8xsGwyppwxoZGcGrr76Kxx9/HF/60pcAuK4HdDcYHR2VYx83\nJ24gyWRSjhE8SmoFLCk0ablOEsbB4BGSvzE+Pi5HvaDjIv1kzp07V7H6acWOQEF+SibFDrou6NjI\nsZlOflg6k4aZcmQy0HGYnI/Ozk4AwKuvvlrJppYEM+sI12JjY6OsY6ol9EPLdahTIwN5Fwb6EzIS\ng+s6Ho/LRlerDYsVx7XgNw0H7FskEvERDRoQMpmMKNs5BvSRDAP2SGhhYVE3KMvFeOfOnSIN77nn\nHgCu0vLixYvCdHiko/RKJpPClIKc1LiL85XSPJFIFDShnzt3zudSQQnR0dEh5unf//735XQ1EEF5\nrcxYRw2dp8tkJcXYWhDDqrXSXWceMI+wup9mO3XsnJmFglK+lqBKg2uO6oxVq1b5WAWvyWazotIw\nM06sXr0aTz31FACX+etiFrX27r/22msBuCqZjo4OmSOyPjKn22+/HU8++SQA11jGdc7CL4CrHnrP\ne94TWrstw7KwsKgblLzNM+7qmWeeAQB5pUPnzp07JdyGDqPcuWOxmC/XFXH+/HmRyjT/Uh8wNDRU\nUOeTyWRE38Dfef755wEAhw8frnoBB62jMUNWotGoL0pfM8dCWR6mkw6LDCKRSPjSJWsFrtlm6qti\nsZhPR8JsCLUEGRbHnqm4Z8yYIWuWOigypb6+PjlFBBkcGENIgxH7feXKFQlt++9//1v5zkwCZEwf\n+tCH5D22T7ttAPCkeiYr1plVud65NuiWFAYsw7KwsKgblMywCkWZv/jiiwDgyT/V3d0NwOvysGjR\nIgBuhkZKXob61AOC9Ei0lnZ1dfmcCbVjq/lekCXU/J3ppMNiebOuri4JGdJB7UCeaXEMgtprBs4f\nPXo0tPZOFmR7ZOu04gGuZYysgvM0d+5c0XVRf0On0Dlz5oieyHT7mJiY8JQBqwUefvhhAMBvfvMb\nAPk5oy7RfMb1/7yGp6dMJiN9oaP4z3/+89DaHarm78iRI773wvSFqiX48DY1NcmCNo8Z0Wi0YI06\nfYwyU/Jy4et71So9CR/oRx99VNQA7Keuw2imddauGvRPopAzYydrAfpKsW3cpAC37WaK5N27d0vK\nGM45s4ro4z/XBo+PJ06ckL7XGnRB0Mc4MwZQ1x2k1z6PjfF4XDYsZroI84hvj4QWFhZ1g0gpR4xI\nJFLb80gF4DhOUS/HyfQxyK2B9Q9TqZSYsU02FY1GRYFpOpPqmEgePXgs2bt3ryhJJ4lXHMdZe5U+\nlDWXxdwx6FbS0dHhS2THTBlnz571FZuYbJYHE1eby/9/70nd1IwX1EyWDJfMwVRrhI1K9rMYNm7c\nCMBNXshq5nfffbcYHLjOybr++Mc/iuFtqphMPy3DsrCwqBuUyrAuAKi9Dbp8LHUcp2io/P+BPgLv\njH5etY+A7WcdYXL9rLXVycLCwmKysEdCCwuLuoHdsCwsLOoGdsOysLCoG9gNy8LCom5gNywLC4u6\ngd2wLCws6gZ2w7KwsKgb2A3LwsKibmA3LAsLi7pBSellbPBz4PUA3GDZRCIhqUnM7KrZbNaX40qX\nT9JFZQE3V1gZqWQuTiI0Z0rBz7qf7INOIcN+mgHgOkOsWYWmVIQZFKwLhTKtjK4YBHjnk/3kvGYy\nGUknw36aWXYnizD7yTlLpVKSHojrjnnO9Pzweo5FPB6XfvF6M7XQZDGZftY2E36dgYs4Ho9LtPrm\nzZsBuGWTFi5cKEncmOSMC/fMmTPysDLBP/MLDQ8PSx4iJoX75z//CQB4+umn8dprrwFwCxpc5SGv\nWEwZH0DmP2JJrrVr12L58uUA3JxKrPg7f/58X0aG//znPwDypbyY5WDPnj0A3Bxp/f39vlxM1Qod\n44bDefnEJz4BIJ+5gNkZrrvuOgBuDcNYLCbzadbLPHbsmOQ1e+ONNwC4ubIOHDgg9TLZv2r1k2uY\n2TS4bnfs2CHrlsko9bwwywi/t27dOgD54jPs80MPPQQAeOmllwDk057rVMqVgN2wSgAZ00033YR7\n770XQP7BBdwNZHBwUKQQJ5mftbW1ibRmhktWYsnlciKZuIndeeedAIAtW7bgscceAwDs2rULgFuU\nM8yFHolEPMU0gfyGDOSrrTCdDBcsN6Abb7xR7sGCu6yylE6npe+swMNss0NDQ75UM+WmnikFsVhM\nHkQWAeXm1N7eLoKH1WTOnz8PIJ/0jxssNyCmoGlqahLGwgyrrJF5+vRpH8usFjiOTF3ENh45ckTG\nmgkHWf1GFyvmxswxcRxHNmbOK9dKuUyrGKwOy8LCom4wrRgWd/hCr4A/F7rjOAWlcFBFmqm0q6ur\nCwBw3333SanvoCrNZo1CndOb0sfUfWWzWfmbxy9dyv2rX/0qADc9769//WsA4aQXDhp3pkEmK2pr\na5N28pWs7+DBg0X1cBwDSnker4OqIIfNIIH8cZBpfllfk/1tbW31rS8ey998803pp6nHy2az0s/Z\ns2cDcBP/tbe3eyou63tXC5wPJubr7OwU1sT5ZL8zmYzUH+SckU21trbK2mefzJoGlYRlWBYWFnWD\nacWwqPikbkRLOe7olEhUTGvFHqWbloiUnGfOnJHvltuuLVu2AMgrYqnPomTk2T6TyfgqIROO4/iq\nJbOtuugBv8ffSCaTct3nPvc5AG4BhwMHDoRakIJKd+o1KGFnzpwpv0vJyvp7sVjMp8fjazQaFQlO\nVkLJXu1qyNriZerVuAabm5ul7WSAXG9Xrlzx1CgE3AIO8Xjcx7Cpm2xvbxe9HftcbabF9cT57ejo\n8FWx5rrP5XLyLJrPYUtLi+jo+AwE1WisFCzDsrCwqBtMG4YVj8fFXLxp0yYAwPXXXw8gX+vNtKrR\nMjE4OCh6HPqB6J2eZ/Qnn3yyZKsFpRAlD9s1d+5c+U1dCRnISx5KZH5fMyb+bdbyGx8fl3vwlawr\nnU6LNYduBe9///sBAIcOHQrV0sQ+cEzJtGbOnClsgG4b7FM6nZb3OF/sd39/vzAqshj2M5FI+MqY\nhck4tO8cx5csSLumHDt2DIDbP7KotrY2Xz/JTnp7e8VFgv3VLJVrit8vl/2Xi6BxNZkRn7lkMinP\nDtcm/8/lctJ2MucwGVbNNyz9QFD5StPyhg0bALgDB7gbBKk74C54UnBd4p6FIkdHR8s+Oi1evBgA\nsGrVKgD5STNLsetjAhWUpPt81ZuUafoNckLUynd+xrFgJZeWlhY5qlT64dZuDVSssvpNY2OjtI8P\nO8fg1KlTvmOFXuhUzptFZScmJjyK/rChnSbp1sDx5ZxpYcANlmMxPDws/aRind/TZezNY2YikRAB\nwOur4b6hwbVIwT8wMCBtMdem4zg+FQZfR0dHRUDTGBFmnUl7JLSwsKgb1JxhEdFoVCT1ihUrALgU\nOhqNCoWmdKMkjEQiIhlMJScd/IDyJBclMKsCa6Zkht9QuuRyOfl9SihKnGQyKUyDLIz/p1Ipj0lc\n3zuZTPruybEhywkDemwJ0v/+/n4Zbx55ODfpdFrGm33ntblcTo7pZML8njYuVMOdgXAcx3P8AVwm\nPzw8LG0x2VBjY6Osg97eXs81M2bMEHbGMeO1TU1NRV13qgG2iezo7bff9h3tOBbJZNK3Drhux8bG\nZI65psnegup3ThWWYVlYWNQNpg3DSqVSctanspIsIp1Oe5TagFfHYDph6pg/SotydnpKGJptef+B\ngQG5L5mDZgZkimQQWremdVaAV7fDNppBxY7jiNmcoBNiR0eH6JXCCIUg+yHjIJNsbGwUxTT1MWQp\n0WhUpCxZBsckkUiIbofhLEG6EiIMxmWa9AE3fo6hRJwzwO0f50OD40I9ItfK+Pi4MHyyL/7e4OCg\nL2yLn01MTFRFj2Wuw0uXLnl0eoDXKGEaBfhZNBqVdc61EaYBwTIsCwuLukHNGRZ36tbWVrF80Zqi\n03qYFje+ZrNZkU5kA5Razc3NsuuXKrUikYj8PtkBWU5DQ4OvHWxDPB6XPpFd6DAVXsdrdAoa0/Ko\n+2WmKuH/LS0tcl05DEvrGUx9ShDjIcbGxnzpR3jtwMCAsC0znc6VK1eEjZhSvtjvme0sh4WYTFzr\nDDmeZEynT58GkB9fbZHW/R0YGCjobDk8PCzMiu9xvAYGBoSVmGMfjUar4tLB3+B6ooUe8D9jbBfg\nzpVeqxw76rLCdGSeNhvW0qVLJZqdJmJNwbkZcRI1XdWbBeB9gMyj1GThOI4sqv379wNwN9LFixdj\n5cqVAFz6y1ft5U1TOel/PB73+WbxNZVK+TYs+vacPXsWR44cAeA+SIcPHwYAnDx5csoUvBSFr94w\ndYwk4I5BIpHwxRlqxTUXPR/gYl7eQfGgU92wCK6psbEx2aiYCoaCrrOzU9rHo5L29+OGZfrjtbS0\nSBt5ZOcR8dSpUz5hptd1mA88of2ogPy6NQU+/9fjzf7p54/PHT8L1XcutDtbWFhYVBg1Y1hmDF13\nd7dEylOSBdFkk2lFIhGf5NQSmxKwHKlMiss8T0xCN2vWLDm+MraPCc0cx5Hv8SipY9Yo2ahwJgtL\npVK+IxkdLB944AGJPeNxSjvrlSvRCuWeIhzH8blT6HkgEyYz5FzqZIRmxlHz/rwXf6OQmV/3sdz+\nmt/jOsnlcjKudLkgaxgdHfUoxDWi0aiMi3nM1F77HAsyrdOnT8t75j2rwa4Ad8y1ywXXK/uumTPH\nwByLVColBiBTNREG07IMy8LCom5QM4bFXZyxW93d3eKAyN2bu38ymSyoWNZmYF6vpRcZTDmOebyv\nGUPW29sr5m8qZJlls6mpSfpG/Y0O7yDjoDTTeZRM/QB1Hnv27JHsFBwHtiXsOEK2iToarasjezVZ\nxvDwsCjdzdz1iURC5pksMSh3uMn+KiGtzXvpNcG2kwXRZSOdTot7DfvLawcHB8WNgePC9ZbL5eR7\nzGZBneTw8LCPhRTK8BEWzCwjS5cu9bkz6Mwi5nOnjUXME0cjldVhWVhYWKAGDMvMr3TLLbcAANas\nWeMxrQJ+awXg1TsAeSnAHZ2sQ1ufdMBpqdJLV0cBvDo1fsZwBPZLm+bZDlPvpvuhsxOQzZgZHbLZ\nrK84Qximb/Ne0WjUZwEko5sxY4a0l/ofzYj5mZnNIBqNevRD+ntBeqowpLVeO3w1WT3Hu6WlRdgh\n32O7tRVYgmR6AAAKAUlEQVSb/aVuMpPJCGMxXVGC2lINV4YgcN0uXrxYfltbtQGvHo/Qrjpkozw1\nhImqbljRaFSOA6tXrwYAbN26FUA+/TA3BC4MDoDeaDioXAS6zBAXIAc3EokIXW1oaCjb/G8+PDoR\nn3lPXeLKTJWiFdDsK4+N2ufFVFTncjlfiahKLOxIJBK4iQdtFhxvvgbFMLLdyWRSBBIfUv0Zj036\nCAl4BVOxDatSMWpaIHIezU2lubk50NAD5NcZx4GCSx/xzaOVTknEe5Zb+qtcmKoRkoR58+b5UnMT\nqVTKd2TVSnge/5n6iNWBwoA9ElpYWNQNQmVYZsxWS0sLNm7cCAD44he/CMCtaacVe1Te6dhAkwlo\nFsL7m0ewTCaD7u5u+e0gSl4OHMeR3+A9NUOilGX/dY4lnVoWgKcohamkJ9PUcYZBKDfebjLXsy0c\nW62sZXtN50nt2sGxYD/Hx8fleoL9HBsbq/qRCMi3l/0kU9JxdWZsp76Wfeb1XLuDg4MelxrAPRaP\njY2FwpgnA5MlMkmmTshoZqXQjCsojTWfRT5rYWaesAzLwsKiblA2wzIzIwSZiMl86Lqwbt06bN++\nHYC7s2tltRkNr50VzV1fJ++ntKLk0+drOrXNnDlTXAMqATNGzlSYA/5xcBzHx8i0S4CZBytIv1Ws\nLWGAbTJDSVKplLAu9onsYmhoyGckYFxdJpMRic251PM8mb5Uur+a3ZsGAG1goTKa63R4eFhCeAhd\nvotjFpRWuNYwGVZQdlmtg9U6Y74HeJ19qS/meg8ja4NlWBYWFnWDshhWPB4XKWO68escVHSqZNnv\n9evXS350SmDtrGbqoDSr4o7O3VxncyyU9F5nsEyn06Gcrdl+QuubzODg0dFRnwWQYxWLxXzssRpl\nk4pB6+rIDnS+fNNplfM3MjLiyfkNeHVDZtCz/r1awXRh4dwNDg76Mivotcfr2U+dzcAMcK9UYd9K\ngiFm8XjckykU8Gd00O/pcdIJDAB33XJMKomSN6xIJIJFixaJO4Jp5s7lcr7E/PSFWrJkiefhBbwK\ndm365m/xM133D/AWaiiUVqWxsVHu1dDQEMqDTxM9fyeXy/mi17ngdS0/s/ag9nPhvaqVBrnQw1Os\nskoul/OZwbngGxsbxdDAfrIvuVyuoEK+Vgjy/9JxgFx7/Ez7YdH1xvQc18dMM3NFod+uJtg/JsvU\nMbmmoE2lUh6DCuD1dOf17B9VQPRJq2i7K35HCwsLi5BQEsOKRCJIJpO46667cOuttwJwFa5USOZy\nOZ9jIHfcWCwmXrFkFFqxbEaEE7r8EyWYjhrXde0Ab1wW37tw4UJFUwizb2bCfk2R2WZ+po8JpmIz\nEon4Sj+RlYRZEXmyEp7jTUassxGY/dSsTSuo+T/7ac5bKe0JC2ZBE91PUzEfiUR8hTR07CTXhjk+\nQO37ybbxFAR4YwcB79HQVNNoQ5LJsJjX7ujRoxVvt2VYFhYWdYOSRHcqlcKyZcuwbds2kRZkWFSq\nDg0NicNcW1ubfA/IS1TTbKx3akqroNxClG78HTrhNTU1yc5uSrtsNuuJ5wqjkAF1NdpUXYhFOY4j\n/Q/KrUTGYcaX1UrHE+SqosOMtB4D8JYlI+MOCrEx3Rk0851MDGEY7MRcj+xTIpHwGR54bXNzs0+3\no8PC9N9A7YwnQZgzZw4Ar2HHdEAOcs42GZaeO9ONyZb5srCweEejJIaVTCaxZMkSOI4juzGDJ+mg\nCfhd88kQJiYmfM6RpkUNgM9U3NvbK46HZrhPIpHwZWvQke+8fubMmVLKqRIwM6Zq65/ZRyIajfqK\nUGjJVShin7qsSuNq0i+IFWndIa1AZsHQWbNm+Vw7KMlzuZzPdcDUhem/q63r0YVQgXwbzfAbXUg1\nSE/Ja8z8ZjqfVq2dR+lqRF1dLBbzlZ7TzNnsSxBb5Biw3oEORasUStqwhoaGsGfPHvzkJz/B5s2b\nAbixgJzgZDLpi6HSnTQfVGJ0dFSOEUyi1tPTAwA4ePCgFF/g765ZswZAfsMwabw+UunNr5LJ0dgP\nblj6AS2UVlj7NZnHPe1pbJqOw3Rr0AjaJMyNSh8N+SCzL7rKkPkg6yR92gUE8MeumW2oBsx+agOI\n2U4+vNpQQvcGPqDaA9ysNFPtKs8anD/tfwV4i1DoaAZ+h0KJbTeNDPpey5cvBzC1DCkF21/Ru1lY\nWFiEiJIY1sTEBAYHB/HYY4/hiSeeAODu1Bs2bAAA3HDDDZLrilJHV0fmTm0mb+vp6cG+ffsAAAcO\nHADgllwaGRkR1kZHN12NmRKbDE17ZfOYePHixYq6NZgSWXsJmx7RQczOrKisy1+Z8XvTAWbMqC6v\nFhTVb16vy6GZDoW1NvEHgfOi54BriS4aOnrCrGsYj8clrpCfVSv9cTGQBfFIGHSEJYIYr2lcCMpV\nR0dxXVilUnNsGZaFhUXdoCyPxImJCWEzr732GgCXFWnGwzMwXxsaGnzpf4nR0VFfRgBCZ/jcuXMn\nAOChhx6Sz7jbU7ppyaClYiUVneZZnr/T0NDgY186NtDMYqCND0EOe4BXWV/pPky2fJbZp1wu5yse\nynlLJpO+flIPNzQ05HMP0GXdaqVsN6F1bvybJwZtVDHXHHWSOtbS1AnVUofF3zZ1bkE6LO1yZOpe\niVwu55sz/bxbhmVhYfGORcViPnRRTB21XymYlregexfK/x0GzGwEOouEGZ2vWVihMWlsbPRlDNA6\nsDD6UYrUM4uHtLa2+twtzKBtwGVffX19APLWZOo0eZ22uhVCGE6IQdDOyoCXmfOV4Sy6TWy7zkph\nhjMVKhJbLWhLtFmyDPA7POtc9mTM7IuG6erAazTDqhRqVpdwqpjs4g1rkZsLm2htbfVRY02jNQXX\nSCaTch2VuroqbzUWeTG3BtM3Ti90xo7yONTc3OxJsAi4G1YqlfIlL9TpW8JIBT0ZFKo03dDQIP1b\nuHAhAFeQtLW1+R5uJvRLJpPS5xMnTni+Vytov0SqdDg/Wl1jxrTqys9Bhiv2neuWr5U0chH2SGhh\nYVE3qFuGVWtQitC9Q2cnoILZTO7X0NAgxyZdpw/IszAz8wUl1Ouvvx5KutlC0EyG0pNHHbqe9Pb2\nikczY0Z11L5ZeIG4dOmSMI6TJ08C8KYVNtlTtZTwbDtrLD777LMAgOPHj2PVqlUA3ISU2pGUxx+y\nKbKS3t5eHDlyRO4BQJyfa8m0uG537NgBALjtttsA5PtGhmyyae24rFk/kO8v1wbHgGvkrbfeqrhH\nv2VYFhYWdYNIKZIrEolcAPC/8JoTOpY6jjO32AX/B/oIvDP6edU+ArafdYTJ9bPW/i4WFhYWk4U9\nElpYWNQN7IZlYWFRN7AbloWFRd3AblgWFhZ1A7thWVhY1A3shmVhYVE3sBuWhYVF3cBuWBYWFnUD\nu2FZWFjUDf4fxpEqdJmvOIUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 5]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfWmMZGX1/lN7dXXP0tM9M83MMMMyNAjDsDgaUBYdFlGE\nIJsG9AvREDWoKIkmfiEhikETlUhMBIMQjRojShDZwmJIEBgYEIdhZJdmkJkepqeZ3qpruf8P9X/O\nPXXureqq6lp/vM+X6q66devd7nues7znRDzPg4ODg0MvINrpBjg4ODjUCrdhOTg49AzchuXg4NAz\ncBuWg4NDz8BtWA4ODj0Dt2E5ODj0DNyG5eDg0DNwG5aDg0PPwG1YDg4OPYN4PRdHIpGeD4v3PC9S\n7fNm9DGdTgMA1q9fDwDYv38/AGBmZgY8WcDXvr4+AMDg4CDm5uYAAHv27AEAFAqFRpuwz/O8ldUu\nWGw/4/E4hoaGAADvvfceACCfzy/4vb6+PhmfAwcOAPDHol4sNJdA4/1MJpMAgCVLlmD58uUA/P6x\nvzMzM9KXwcFBAMDSpUsBAMViUa7bt29fI00QtLKfi0UikUAul2vKvWrpZ10b1gcVkUhpHMMerBNP\nPBEA8IUvfAEAcMkll8hG09/fD8DflPiAh+Hll19GsVgEABx99NEA/I3rgQcewE9+8hMAwI4dO2pp\n8n9ruagRDAwMACj195vf/CYAYH5+HoD/YM7Pz8t7S5YsAQCkUikAwLp163D33XcDAP75z38CAP70\npz+1qrk149Of/jQA4NprrwUAzM7OAihtXBQk7MumTZsAAKtXr8abb74JwN/M/ve//wEAJicnpc9r\n164FADz88MMAgG984xst7Us9YJsGBwdlg/3KV74CANI3jTVr1gAAHn30UQCltf3f/5aW23nnnQcA\nmJ6ebll7I/VIN8ewSli6dCnuvPNOAMDmzZsBANFoSbs+ePCgLHBKHm5giUQCy5YtA+BPKjepsHmg\n9O7r6xOJ//jjjwMAvvSlL1Vr4rOe522pdsFi5/Kyyy6Th/r73/8+AH8xr169Wh7WiYkJAMDU1BQA\n4KGHHsLvf/97AP7m99e//rWhNjSLeRx55JG4/vrrAfhCIpPJACjNK+eIm9Khhx4q3+VnfJ2cnJRr\nOf9k2Ny4Dhw4gOuuu26hZglaybAee+wxAKUx4JxRwB48eBAA8Oc//xlf/OIXAQCxWAwAZI0fOHBA\n1sEJJ5zQSBMEtfTT2bAcHBx6Bh1XCcPULVLv0047DQBw3333Ba7nTl/NbsJr7f0Xi7vuugsbNmwA\nAOzduxeAL2Hj8bi0ib8fj8flf6pNbD9BhqZByTU3NyftP+OMMwAAxxxzDABg165dTepVfUgmk2KD\n+sUvfgHAV3Wy2axIa17z7LPPAgBuv/12HH744QCA8fHxtra5Er7zne8E2sL5SKfTMp98feONNwCU\n2BRZMOef/QZ8Zs35p+q0adMmnH/++QCAe++9t/kdqgNUAw8//HD5e8WKFQCAkZERAMA111wj7Ika\nBZlzPB6X77UDjmE5ODj0DDrOsCjJCoUCNm7cCAD48pe/DMBnGNPT06IzP/300wDKmRWZDO/F//U1\nsVhsMV43AMCHP/xhAMCGDRuEKVF6kjGl02mxVWg7CFCyafF6toVtTSQS0l7aDt5+++1AP/g9jlE9\ntpBmYmpqCsPDwwB85vDtb38bQMmwvnJlyUlJNkIpPDw8XMY4uwG/+c1vxNhOpkVb1pIlSwJeMDoU\n2H8AeP/99wH4azbsetovx8bGOs6siNdffx0AcMopp8g6y2azAMrnhwb4008/HQCwe/duACV7F9d5\nO+AYloODQ8+g4wyLzKRQKGDr1q0AgLPPPhuAzzBSqZTs4ueccw4A4LbbbgNQkoS071gGNTAwILaF\nmZmZRbf1k5/8pLSHtgren/3IZrP47ne/CwB45513yvqxZs0acXuTdVH6plIp8ZqdfPLJAEq2A6AU\nLkBWwt+79NJLAXSOYWnWp5kGUGrvu+++C8BnmWSdhUIhEIvWaTz99NMSYnHhhRcCAJ566ikAJQbN\nPpAl6jAOMn9ew3l6//33hWUSvOZ73/tey/pSL3bu3Amg3KZKDzb7SbsV4DNIbZ8lu2wHOr5hcVAA\n4CMf+QgA4LDDDgPgD2I0GsUDDzwAADjppJMAADfddBMA4JlnnsG///1vAMBLL70EAPjoRz8q93vi\niScAlGJ+6FpvFNwk8vl82UYL+CEIk5OTuPXWWwEA5557LgB/A7r99ttx9dVXA/DjqWjgjMVioob8\n9Kc/BQB87WtfA1BaFLw/N14a3UdHR/Hyyy8vql+NIBqNBgQFx4SBlmGIRCLyPT7c3YCbb74ZACS2\n7K233gJQUhH5AHPsqbIDfp95DfuUSCTkOqqCdB618wFfCFTtcrmcCNFEIgHAjynbvn279IXXs9+R\nSERCOdoBpxI6ODj0DDom4mw4wznnnIMtW0qxjtzNGSk+OjqK0dFRAMC2bdsAAK+++iqAktp36qmn\nAgAuvvhiAH7A5rZt28Q4nc1m8cwzzyyqzXTtjo2NiTTSbmzAP5oBAPfffz8AX/oee+yxosL95S9/\nAQBccMEFAEqSefv27QB84z7Vrv7+fmExVAnJAE499dSOMKyBgQHpO9UiSt1isVgmgTWi0WhZyEA3\nQIeiMJTmBz/4gXxOZsVrGFg5OzsrjIqvNFjrMBX+fc8997SsD42CZotcLidzxTXGed25c6ewLvaF\nrCqVSrXVeeIYloODQ8+grQyr2k58ww034JBDDil7j0bKfD4vti5KQLKxYrEozISsi5Lw61//Oo44\n4ggAvv2pEfDsGF3e2obFPlHq6iA6fo9S95BDDhHJze+RDUYiEWGKBKXf2rVrAwyLxs/TTz8dd9xx\nR8N9axTxeFz6EBZWUi3UhO/Z4NlOQTsQaLd57bXXAJQCKsk0yPw1A2FfaB+loV33k2Ef3QiG5xx2\n2GEShMz+2sBnwLc587NCodC0w8+1wDEsBweHnkFbGVY1N/bExIQwLLIH2kji8bi4/Ln7k9EUi0UJ\nZvvYxz4GwJfqq1atEjvSYsAwBf7m1NSUMB6+x3bl83lhf8zOQE9gIpHA6tWrAfjMit9LJpPiXfv8\n5z8PwE9ZMjs7K54mnUUA8JlmuxGNRsW2o725QEn62hATPfdknN0M9mXJkiWBYzf08ulMDtrbDZSz\nNh7f6kYw/ARAwEuo7XCcP37G9RuPx+WYTjvQNX7lTCYjA8RXPhCTk5OiajHkgQMYiUTkeqqQWn3S\nJ+sbBUMjeLZq48aNYlynY+CVV16R337yySfl9/VroVCQh9tGexcKhbKMDwDEmJ7JZAKbAtXFRjMd\nLBZ6MWtjO/8POxsJlPrNDWvVqlUtbmXtYHvZB8bObd68WT5ju/XDa8Na9PlPxqcxFIDQRv5ugRYi\nllh4nle2hvVrJBJpa5iGUwkdHBx6Bm03uuuzg4CfE2nNmjWyy/OVFHx+fl7YFtUmMq5MJiPqkQ3U\ne+GFF+T+W7ZskajeevHLX/6y7HVwcBBHHXUUAOCrX/0qAODMM88EUMp9xKBQZiogja5mZNZjQzVD\n9+PKK69sqO3NBtXUWCwWCE2pxKqA8mwW7B/ZKdkJ3+8G8OxcNBqV9cW+66R9VPupFunzeByPbmNT\nYeD8aGgtxjrM9Ny3MmGfhWNYDg4OPYO2G93tkRYamEdGRiRsQBvUgZIkpi1Kn70DyjMg2FTEt9xy\ni6Qw1m74xWJiYkKyRpAN8hyk53kikckgrI0HQCAkoFgsljFKwGcetKF1AzQLruRE0e/b8AbAHw8G\nH3YTsyJoi9JzZs+NptNpeY8Mi3Yr5nQDfIbdzQhjxzb3nL5OH8tqpy3SMSwHB4eeQVsZVjweD7h/\nae/JZrMBWw9Z2KpVq0QK03bFa9PptDAZSjl6eK644gr8+Mc/BgDx3C0GOncV+0FJQ0+JzrtlGYg+\n+FsN1tZFW5j+rFou+FaCv9do0KfneYHjTN0Aa8Oh3Wl8fFzm2rrvJyYm5DOye4YwrFy5ctGH7dsJ\nrX2EBQRXyqKbz+fFc98ONLxhWbqoY3AYo1FpEWj8/e9/B1A6b2djjPhwjI+Pl9FwAGXRtfb3eO3m\nzZubepKc7dG/zYhoblhhm7I2XoZtYgS/Z1UI7Ta2Tot2Q29UHO8wdaLaZ7YPNqSgE7BtoEo3ODgo\nDh/G0xH79u2TUBo6SPTcc26ZTpvoRiO8Xof2dIL9GygnFe3csJxK6ODg0DNoiGFptaceaXHGGWfg\nkksuAQB8/OMfB+AHh7733nvCrGwa4ZmZGdnRqU6QaXmeF0jOx/tMTU1JBodmnpSPRqPSNrJC7Qzg\nmNjgUM/zKp6/8zxPDNqU2mGpnjsNPe6aOQLljKmSyqhZJl85X500vlt2RwfQjh07MDY2BsCfF7Zz\n9erVMu8MddAhKTyXyPJn3QhmQUkmk2WhJxrRaDSwbvXatAkcWwnHsBwcHHoGDTGsMPsJ9fs1a9ZI\nUCUlC1nO6OhoIF8Q2dHQ0JAcN9Hn64CS0Z2SjFKOrv6BgQEpfWWLWeZyOZxyyimNdLEqtB3KHlnQ\nzMPab3SeKEIzLX7P2n/073U6rbCWsJUqYi8UPhKWI6vbwPOpr7/+umRb4LqkTXHp0qWBM55cpzrz\nCI900f2/d+/errDbAcCHPvQhACVHFW2z1oaqg4QJfVyJ52N5lreVYTjdt1IcHBwcKqAhhnXKKafg\nhhtuAODn/+GRGX3Al+54Xb7K5tOhZHriiSdw+eWXA4BkBqWnJpvNBjwRxx9/vFxDGwPZGl3MAwMD\nAQ9Nq8AiCxMTE9J/y7QWYh66HJi+vlvyRgG1tUXb6gjNxngPexC8U9Dl6BmgfOyxxwIoMSyubdpq\nmHetv79fisJyreuMswTDG6644goAwM9+9rOOMyvirLPOAlCaF7tOqzF7vcbpKecxtVYyrLpXSiwW\nw8033yyU157e1gZwqnTWQA34bmBuKD/60Y/kc3Zcq4gPP/wwAL+OGtXOoaGhQDiAfvBbUV04TC3T\nhnHb72pqlI50Z/vDsgJU++12QhvYbR/C0pHY//U1/B7XQqeKM+jN41Of+hQAv5pMOp2WdlFoMvvC\nMcccE5rdAShVc7LnDCnUNm7cKJtep0GTSS6XCySlrFYsRKe5pqpsE1C2Ak4ldHBw6BnUxbCGhoZw\n4YUXYsOGDUIDmQ2Brzq4jsxAV7wla6LxnKWt7rjjDlx00UUA/BAESrSBgQEpzMDagLquH0MdyGyI\nQqEgbTj00EPLkpU1G2RFsVhM2FZYVDrfs5Hy8Xhc/rZhGtXKZrUbmsVWU/uqwZ4E6KbIdzKkF154\nAUBpDrmubDvDgmh1+mSql2Romql1C8PiMzYxMRHq5AFK/aw0p7FYTJ5lOhc4Tq1I1OgYloODQ8+g\nLoaVz+exd+9ejI2NlRnEAYjhe2BgQCQSDZD79+8HUErGTyamMzPy3ix9xcKo3P1XrFghjITGTRqm\n8/m8SDVKf/4fiUSkLaOjo2Vn8pqNMCNqGOOoZIDXhmpeb8tK2Xt1AjoY1joXaoG29XEOuyGsgWuN\nwZ4MkJ2amio7NweUzwffs2mUAZ8p0+1P25etCN0JMLcXHQl79uwpCwoGytevPUbFz5LJJB588EEA\nwGWXXQbAL1PXCuN751eKg4ODQ42oi2HNz89j9+7d8DxPvCLMlMCd+sCBA1I6iB46SqhUKlWWZQHw\nQxei0ah8j8FszGQ4NjYmnhZKMF6by+VEylFiUwKOjIxIEOmJJ54omSFagTCWEMY8qjEsa0Ngv2gj\n6AZoO2GlQNeFYA+Rd0P/1q9fDwCB4ynJZFLWKlmG9pqRqdjjWPF4HG+88QYA36NNe+2yZcvE1kvt\no91gnjjt9a2UQTadTsu82ywh+XweRx99NAC/73x+W8Gw6tqwZmdn8fzzz+Ouu+7CVVddBcAPPWC4\nwdzcnKh93Jy4gSSTSVEjqEpqAywpNGm5ThLGwaAKyd+Yn58XVS9MXWSczJ49e5pWP62aChQWp2Qp\ndth1YWojx6ab4rB0Jg2bcqQW6HOYnI+NGzcCAJ5//vlmNrUu2KwjXIuZTEbWMc0S+qHlOtSpkYFS\nCAPjCXkSg+s6Ho/LRtepDYsVx7Xgt44D9i0SiQSIBh0IuVxOjO0cA8ZItgJOJXRwcOgZNBRifOON\nN4o0vO666wD4Rst9+/YJ06FKR+mVTCaFKYUFqXEX5yuleSKRqOhC37NnTyCkghJiZGRE3NO//e1v\nG+lqKMLyWtmzjho6T5dlJdXYWhjD6rTRXWcesCqs7qdtpz47Z7NQUMp3EjRpcM3RnLFp06YAq+A1\n+XxeTBo248TmzZtx7733AvCZvy5m0eno/iOPPBKAb5IZGRmROSLrI3O64IIL8Le//Q2A7yzjOmfh\nF8A3Dx133HEta7djWA4ODj2Durd5nru67777AEBeGdB54403ynEbBoxy547FYoFcV8TevXtFKtP9\nS3vA1NRURZtPLpcTewN/56GHHgIAvPTSS20v4KBtNPbISjQaDZzS18yxUpaHbrJhkUEkEolAumRt\nwLVtpr0qFosFbCTMhtBJkGFx7JmKe9myZbJmaYMiU5qYmBAtIszhwDOEdBix39PT03K07T//+U/z\nO1MDyJg+8YlPyHtsnw7bAFCW6pmsWGdW5Xrn2mBYUivgGJaDg0PPoG6GVemU+aOPPgoAZfmnjjnm\nGADlIQ/r1q0D4GdopOTlUZ9eQJgdid7S0dHRQDChDmy174V5Qu3vdJMNi+XNRkdH5ciQPtQOlJgW\nxyCsvfbg/Msvv9yy9tYKsj2ydXrxAN8zRlbBeVq5cqXYumi/YVDo8PCw2Ils2EexWCwrA9YJ3Hrr\nrQCAX/3qVwBKc0Zbon3G9f+8htpTLpeTvjBQ/Oc//3nL2t1Sy9+uXbsC77UyFqqT4MPb398vC9qq\nGdFotGKNOq1G2ZS8XPj6Xp1KT8IH+s477xQzAPup6zDatM46VIPxSRRy9uxkJ8BYKbaNmxTgt92m\nSH7iiSckZQznnFlFtPrPtUH18Y033pC+dxoMQdBqnD0DqOsOMmqfamM8HpcNi5kuWqniO5XQwcGh\nZxCpR8WIRCKd1UeaAM/zqkY51tLHsLAG1j9MpVLixrZsKhqNigHTBpPqM5FUPaiWPP3002IkrRHP\nep63ZYE+NDSX1cIxGFYyMjISSGTHTBnvvvtuoNhErVkeLBaay/9/75puas8LaiZLhkvmYM0arUYz\n+1kNp512GgA/eSGrmV977bXicOA6J+v6wx/+II63xaKWfjqG5eDg0DOol2GNA+i8D7pxbPA8r+pR\n+f8DfQQ+GP1csI+A62cPobZ+dtrr5ODg4FArnEro4ODQM3AbloODQ8/AbVgODg49A7dhOTg49Azc\nhuXg4NAzcBuWg4NDz8BtWA4ODj0Dt2E5ODj0DNyG5eDg0DOoK72MO/xcGTqrKlOTsCQZ8z7l8/lA\nVlFdhYZpVpgjzObOqgP7ajia01A/eUh46dKlgYox7KcuGUXonF5Ms8I0JuxvJw8/V0IikZBUKjaz\nqp5PXd4LKM+E22j/iFb2k31JpVKSHojt1VWCbG42ru1oNCr50GxVoXpRSz87mwm/xQjLqtDofezr\n0NAQAL++2+c+9zkAwMknnyxZFpitgQ/m7t27ZaNiDinmWCoWi5LFgMkA77//fgCllM/M08TFtMBD\n0NCZsrBCH2wvFyj7e9VVV8nffDC5YI866ijJkcTybyxs8M4772D79u0AgKeeegoAsHPnTgClRIB2\nsdsCF62CFSDs27nnnitzddJJJwEAjjjiCAClTZtzzPFhRofHH39canc++eSTAPw6fQcOHGhaybl6\nwTmmUP3MZz4DALjyyiuleATX6yuvvAKglCKZ/eMrE/itXbtW+nnbbbcBAB544AEApaIdNi/aYtFV\nGxYHM6yiiM3QGfaghkl1fs/mkF8Mjj/+eNx0000ASpk3AX8BxGIxWYzcgHQCOH5GdqLLvfNvPhDf\n+ta3AABXX3017rnnHgDAD3/4QwB+tZJmLAibe16/r4vgAv7cJBIJaQM3Ko7x5OSkpF4hm9Lf5yZN\nic7XQqEQSB6n29Kqc6+RSETGnmlxTjjhBAClB5KVgjifL730EgA/zQzgzwczcqbTaZlHbtZ8sGdn\nZ2Ws2p2IkXNNocq+JRIJGQO+cqMOy47K9c75BfzKWez3jh07mr5hORuWg4NDz6BrGFYkEhEpzJSy\nlMTRaDRQrYM7e5i9JCwX+tTUVN0sy96X6WFvueUWbN68uaw9+jt8z7ZjaGgotAq07Qf7zT4PDQ3h\n8ssvL/u966+/HoBfxWgx4O/aMu2e58l7nBsmbjv88MPFdsFXMiUmMAT8iitkGfF4XO5BNkO1aqGq\n2a1kWBwDsgPWIzjkkEMCVcc5Jq+88oqMC5kVr+nv75d5ZH0/ViF/++23ZcwaTV7YKNh2nbOeYF/Y\nFj6H7733XtmzCJSzY86tnnegOezfwjEsBweHnkHXMKxYLCa7/jnnnAPAl3aZTEYkFyU2U+7Ozc2J\ntNJ134CS9OJ727dvL9O36wGlykUXXQTATyELIGCLCKtPpxmMrZZMFItFkeT2mnw+L9LuvPPOA+BX\nPXnrrbca6pNtm/5b2wkt69KS2VaxJnTfbMUZzXTJqLSdsRLT8DyvpWyELI92KbKNSCQi7ELXyQRK\nzJLvaQ8pUFqXtP3Qy8j/ly9fLnUPOwX2j7bUTCYjhnS2l3OXTCZlzDkWnLt0Oi3XM0V2pdqjzYBj\nWA4ODj2DjjMsSs1EIiGhArQPHX300QBKtd6snYUMK5fLiT7NayYnJwGUJPHjjz8OoOSxqLecFO/H\n+3/2s5+V/y2r025qSiOyQn7W398f8HbyPtlsVqQWpbYujMDryQBYUunXv/61/G4jtizLjirdx9rq\nPM8TCUrmyvFNp9MSHsDPOAbRaLSiNzjMTtUuG48dB7YtFosJM+J80lZDRgIEazP29/fL9/S9wn6r\nE7BrTFd7tt7CVatWBeIH+X8ymZR+WjtXWLm3xaKrNiyqPSy0uXbtWgClDYsDy4eJBSsBBErDk7JP\nTU3JAzM9PV33A81JoWrKjTQWi8mk6PLsBB9uu6nFYjG5pzXMZzKZQAFW3jMajQbc7qxw8rvf/W5R\ndf0ikUjZ71hYtY2qRD6fl/7xQeZDsGLFClnENl4smUxKP7mp6bGzdRdbuVHpuDquL64XHZ5A9z43\nKG5YnucFHAbsky6aS+j55fWtUJtqAZ8R9oVCHvD7ojceu1HxNZFIyDhyHep7NRtOJXRwcOgZdJxh\naapJhkVDIFlUPB4XAyDVM0p1HQ5ACcZrisViWWR4vdKa92UEMNvneV7Fe83Pz4eqdECJgeiQAcCX\nyFrlstJMMzN+xlp5q1atWlR9PG3MtmwxFosFpK1mWATVCR1yQnbM6zS7IIthn7TjohLzaLVKyPsz\nAJQsIRaLSRjG+vXrAfiOh2w2KyyK65MMOJ/PSxl7rtWJiQkApXHqtFpIdsx6g2+//bbMnz1ypcM+\ntEYElJ6r3bt3A/DNNBzDVsyZY1gODg49g44zLCKVSgmjos2Au3g8Hg8EFXL3zmazwlIISru+vr5A\npeVaEYlE5PcpWfVhZDIl2moojWZmZsraBoTbouw1iURC3rOHbfv6+kSyUQrSwLlx40Y5v9YIqhm6\ntWQlw9K2KbJXjjHHfXJyUvrF6yl19f15jbad2baEzVszgmUtOEc20LVYLIqdh04hbUTnfHDOyLD2\n7dsn7IUhDDrwlO2vFhLSymBZtpt9e/fdd4X58nnSdlob8My5n5mZkbHSoUatgmNYDg4OPYOOMyzu\n2H19fcJk6LrnDl8oFAIsSgf22V1f23soMRtpF71C1Ompqw8NDYlEtS76dDot0ppSjG0tFovyHtkI\nr9V2MUooHunwPK/M26mvWbp0qYyNda3X0scw+4S9RreTY6znxNrj9u3bhz179gAoZW4AgG3btsk1\nHAMyD23nsrarZoQ1LMRUPM+Tfr3//vsA/KwLuVxOxtweD9MgY+K8TE9PS6YK9pN2Me2x7lQhY/aB\n7EgfOueYk+HH4/GAd1CvW2YX4ZzzXq3oW8c3LJ1fiRsVF759qAFfTQw7Y2Zd4jonUb3Qi5in8/WG\nys2MaixVAb2YrYF6fn4+0FYiHo/LdTaTw+uvvy4bL93tTP2xa9euRcW6aKN7GOyDpReqjdfhGIyP\nj2PDhg0AfOfAc889B6A0p3yobciEVYc09KmFZquEOqbMxtXNzs7KmqMazrbt379fHDycT/Ytk8kE\n4tM4h/Pz8xXT6Fj1q1Ubmr1voVAICNiwzCi2n7FYLDB21TKqLBZOJXRwcOgZdIxhWffoyMiIuI/J\nsMgcdHCaRdgOr93yZGmNSGVKyAcffBBAKVoeKEXgs61bt24FAJx99tnSBqvG6CwMlGLsN6ENsWQe\nVE/++Mc/SgI/0m8adPfs2dMw26A6WE0S2qBS/taKFStEBbAR+gcOHJC/GQpCRqrDS2zkt85LZVVR\nPf/NYldhTMauIZ1dgqxCOxDInrhWaSrI5XLSF15vM8naftn3Wqku2rOvfX198qywnzqsQauH+rVY\nLJY9Y0Brg2Edw3JwcOgZdIxhcTem3eO4446TIzBkITp7gTV08n99Xskee4lGo3L/RsD7MuCPkvLV\nV18NOAHOPPNMAOWGdX1+ju2yZyIpzeLxeEAy8XfvvvtuYVTs42ICYivButq1fYtjQTf4/Py8tE/3\nASgxQ7JDjhm/l0qlhIXY7Bk6m4UNINVtaRbD0szOMl7OYSQSkdAM6/AoFosSgkPDOvs9PDwsn734\n4osAfKfIQg6AVqISexseHi4LBgXK7XH8jOOinUfMNLqIGgQ1wzEsBweHnkHbGZbNqkm398knnyyS\njFJW50m3oQJa8tpDw5op0OMWxmCqQUsg/VtAedDk3r17y65JJpNlf+vPIpFIIBSA46DHxrKa6enp\ngHTWHplFVGMp+99KRh2syz6QKWmvHdvG+cpmswEXt361VVnCAlXtmLfCe6Y9tuyr9g4CJVsd15D1\nOMfjcWHE/Z9CAAAKjklEQVSVNsA2n8/L3FpWon/Pagcarc6yqn9/3bp1AVbLtZrL5QI2TB0AzWNY\ndm23Am3dsKLRqLhMDz30UADAhRdeCKBU2MEapPX/XEg6DQZQoq2VqGgsFhM1M5FIhMbPVIN1z4a5\n3cOMtXZTtXEtGnyQk8lk4KHhYsrlchVdx4tZ1NFotGzDswZgfm7f020EEDDWzszMBBLacd72798f\nCMPQ4xuW/YKfaWN9s8MarIquI/VtfBzblk6nAwZn7YCwIQ+8Zz6f73gcFsFNddWqVfLc2bJtOuzD\nhrdEIhEJ7eHG9fzzz7esvU4ldHBw6Bm0hWHp4ovMdXXxxRcD8PM6DQ4Oyq7NnV5L/EpS7uDBgwFm\nRmqaSqUkcDGTydQdCW6hpSH/pppA6RmJRETqsj36TJZmVPo+OlMB39NMpJJEXoyEtuqkZVr6c2vs\nn5+fFwOzTYOs/2Y/qe6HMSzNHnn/MOOwZbP19HMh2DqBOqRGZ27Q91u6dGmgnqHOtEFtgtCFY9td\n3qsSWFhl+fLlAdMK/89kMoFQFB1gy3VOramVYRmOYTk4OPQMGmZYlc6fhZ3wpy6/evVqSe177rnn\nAvBtG9lsVnZkMiHNtKxU1tLOpqDVwYe0YfX19YVm1GwUlDDWcByPxwNZCLQNo1JQqb4u7NhGq2wd\nYfagMGZr5zSRSARSHGu7FY+hMBRAl3Dn/IbZsuzvhH3WbGgblrUVDg0NiZ2H7WaojLZJ8np9Js/m\nEmuH238hWMZMu9Py5csDGUR0MQmOvS11poNKefa1lbm+HMNycHDoGTTEsGKxmOjstjSVlrpkTwws\nO+mkk+QIS1gpIOtW1fYAm1OcCLMV6ABDHqhOp9NNZVgE2aN1bwPBg9q6Dbb/WuryMzvGrUCYtNcs\nx86FzoNkj3fobKrWm6TZprWRhDG6Sjm6WgXbXkIH5to2DAwMBNYlmaX2sDZ6OL0dHkTaFguFQiDQ\nWa9De2if12qWSYbFdbuYWgOVUPeTEIlE0N/fL5uQTrLHzxm3woRnGzduBACMjo6KgZaTr2OtCBu6\nUO0skz5naCOuc7lcILarWeBv8qycTpVr67rxIdCVccIiusMebsDP3tBsVAqJ0JuYfVj5QBaLxYAR\nXKdW4WJlSh5+T8ew2XTR+u8w9anRB7iW9DL2b33ujyqSLRwyPj5ellIH8PuZSCREhdSpkBbbl2bB\nFs1IpVIBhwevmZubC4QahZ0z5JlLrldbCboZcCqhg4NDz6AuhsUzVxdccAG2bNkCIBjJnEgkZNcm\n0+CZqiVLlogKxSqxZEA6HMCqQDoyOKxIgVWhiGQyWSb9W2HsDAsGtSXANJuy0ov90MnrrHppGWez\nEHZ2ULdXw45tIpGQDAy8nqxKn8vjb9BQPTAwEFCjtVnBBig2A/Xcyxbb6Ovrk/YSut3sq02VrQt4\n2ODSbgDng6wICC/vBYQ7fWzIDuCvEWodu3fvbjqT7J4RdHBwcFgAdTGseDyO4eFhXHrppcKaaLeg\nvq7d5NyhKX1SqZRIZb6nS3KFZeHkqy0SQEYXi8VCbQRAedbQVoG/re0x1siqDZX6rJn+XiQSCdyL\nr7rCcCsQFjBqYc++pdPpsqND+jOg3J4FlI+PTWmtQ0JqOe/ZTvvP/Py89IE2GTKIsLOPOpW0DSbt\nJtiyeTp0yOYkCyueQoZVKBQCGWd1ZlbHsBwcHD6wqIth9ff349RTTy3z9lF66DxJlK7chWmDiUaj\n8re23QAlhkWJZD2C8/PzkleJx0H4/VQqVbFk0tzcXNkRkVZIurA2W5uHtr+xrfxe2GFf68FpVVhD\nLcGYHDOyDF3ay3qO9BjoHGCAvwb6+voC88X1UiljQaXPGkUt99SeZs4NbXTs57p168oOfAPlbCos\nkLlbwOdXs3c7Z9qGasNNwo7Pcb1qG2W9CQcWQl1PAqv2Tk1NCe3T6h5QevC4CdlzVvo6Gw6hYz3Y\nSVYu2bt3r6QrocuUxsJMJhP4Pf1A8J5DQ0MYGxurp7tVwd/iOOiFasMTtAvYus05DrrWob1Pq4zu\nQPimpf+3cXa6n7zOptHRsVb8vh4nPiw69Q/bspiCGs2ADauYmZmRs4Q2i0E+nxdTiN3MwuLNukE1\ntPUlOS+JRCKwbnXokE2brGMkbZEOneq82RtW50fQwcHBoUbUxbAOHjyIf/zjH7jmmmtw/vnnA/Cz\nLTALQyaTERZFCarz7Nhzf5TS09PTUmCB+XRY1218fFwCEM866ywA/snwvr6+gFqm66Jxh1+yZElo\nCMJiYUsi6XbY8AbNHuxniUSiYtiFDo5ttmq0UD4sy/r0NWR+dIToqH17+kAbpbWRXd9TByGGZWZo\nR3GGsLOMXMc6ewFQmheOAYOk9RlTqtGVzt1W+v129I9qG9tfLBYD+bC0xmNDXsLWjD250ApG6RiW\ng4NDz6AuhuV5HrLZLLZv345//etfAHxXJvNOjY6OShHN0dHRsmv039SJacvZtWsXHnnkEQCQklY0\ntM/Ozsquzff00R5bYonHJGZmZuTvZ599tqlnm2xBBF11ulI6WX4ehlwuFzDA856WrTQT1aR+LBar\nGGoyPT0dCGy1xUMAf57JUgqFQmjWSr7yu1ZaL5Z11MtctM2N/bIFbvm5fmV7s9lswH5jC120GzoM\nw9qSdQiQZU/6e/b8aDabDRSv0E62ShlIGoVjWA4ODj2Duv3lLPhJCUgGw9dt27aJBOLOq8P4rZ5M\nKTQ3N1dT0OBjjz0GAHjhhRcAlJ8yDysWoRlQMws8Wsmq9X17qFeHboTlKmf7CG3X4v/tdO+HBQza\nIplTU1OB8A1dwJYS3NpDstlsoFS9DiGwR5fCbCX1jkE9NiR74HxoaEj+JnNg25YtW1bmTQTKA2s5\nBgw0JWvbv39/xTFv5QFpbSNkW3TWEMue9Pq1NsWwMnP83vr168v+byYWHeBjB1VnHWi2SxPwI+pp\nhK+2CLXLvukRt0YFIPr7+8Vtb9Mg603JxrHocbNVaFKpVEtieHSV6jDoNtkwlHQ6LQ+yTWg3PDws\nZ0W5eJmK98UXX5TreU8+2Lp4hY37WWwq6EbHb2BgQGKVBgcHyz5btmxZQE1kfUKdzYKoFrLRjuh9\nTTQYN6nNDpVOWoTFAeo0Q3aD0+dkXaS7g4PDBxaRenbASCTS2SQ+TYDneVVFba19pFTZtGkTAOCM\nM84AUJK69tQ6JXRYWAdZ6MzMjETxj4+PA/DDBR555BEJ8agRz3qet6XaBWH9tGqJNoJT+lINPOGE\nEyTPGd+jWeDJJ5+Uvm/duhUAsGbNGgDAc889h507dwLwnSuU9roIRTWGpd5bkDZV66e9n/6MzGl0\ndBSbN28GAEkGyXO0g4ODoiLRGcRq2GNjY9K/HTt2ACipgkC45lFNFWy0n9VA9s4+HXXUURIqRObL\nOUylUhVNOe+8846s09deew0A8OabbwIo9bceY3st/XQMy8HBoWdQL8MaB/Df1jWn5djged7Kahf8\nH+gj8MHo54J9BFw/ewi19bPTqVodHBwcaoVTCR0cHHoGbsNycHDoGbgNy8HBoWfgNiwHB4eegduw\nHBwcegZuw3JwcOgZuA3LwcGhZ+A2LAcHh56B27AcHBx6Bv8PhvEdF82c0QsAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 6]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMXGX5fuY+Ozvbdulll0JpC2VboJRbIUWBghW8EAiK\nCAGNidEYNGpAEk38x4QYDJqoRGMiGoSYYKICRi4iEjAgYLkEuVulRUqx7ba7Wzrd3Zmdy++P83ve\n8857zszO7M5lB7/nn2l3zsx83/m+873Pe49UKhU4ODg49AKi3R6Ag4ODQ6NwB5aDg0PPwB1YDg4O\nPQN3YDk4OPQM3IHl4ODQM3AHloODQ8/AHVgODg49A3dgOTg49AzcgeXg4NAziDdzcSQS6fmw+Eql\nEqn3fivmmE6nAQDHHXccAGBsbAwAMDk5CWYW8LWvrw8AMDg4iOnpaQDAvn37AAClUmmuQzhQqVSW\n17tgvvOMx+NYunQpAODgwYMAgGKxOOvn+vr65P5MTEwA8O9Fs5htLYG5zzOZTAIABgYGsGTJEgD+\n/DjfyclJmcvg4CAAYNGiRQCAcrks1x04cGAuQxC0c57zRSKRwMzMTEu+q5F5NnVg/a8iEvHuY9iD\ndfrppwMArrnmGgDAlVdeKQdNf38/AP9Q4gMehh07dqBcLgMA1q9fD8A/uB5++GH84Ac/AAC88sor\njQz5P41cNBdks1kA3ny//vWvAwAKhQIA/8EsFAryt4GBAQBAKpUCABx77LH4wx/+AAB4+umnAQC/\n/e1v2zXchvGxj30MAHDDDTcAAKampgB4BxcFCeeyceNGAMDQ0BDeeustAP5h9t///hcAcOjQIZnz\nMcccAwB49NFHAQBf+9rX2jqXZsAxDQ4OygH7xS9+EQBkbhorV64EADz22GMAvL39n/942+2jH/0o\nAODIkSNtG2+kGenmGJaHRYsW4a677gIAbNq0CQAQjXra9eHDh2WDU/LwAEskEli8eDEAf1F5SIWt\nA6V3X1+fSPwnnngCAPDZz3623hCfr1Qqm+tdMN+1vOqqq+Sh/va3vw3A38xDQ0PysI6PjwMAcrkc\nAOCRRx7B3XffDcA//O677745jaFVzOOEE07Ad77zHQC+kMhkMgC8deUa8VBatWqVfJbv8fXQoUNy\nLdefDJsH18TEBG666abZhiVoJ8N6/PHHAXj3gGtGAXv48GEAwO9//3t85jOfAQDEYjEAkD0+MTEh\n++C0006byxAEjczT2bAcHBx6Bl1XCcPULVLv8847DwDw0EMPBa7nSV/PbsJr7ffPF/fccw9Wr14N\nANi/fz8AX8LG43EZE38/Ho/L/6k2cfwEGZoGJdf09LSM/4ILLgAAbNiwAQDwxhtvtGhWzSGZTIoN\n6ic/+QkAX9XJ5/MirXnN888/DwC44447sHbtWgDA6OhoR8dcC9/4xjcCY+F6pNNpWU++7tq1C4DH\npsiCuf6cN+Aza64/VaeNGzfi0ksvBQA88MADrZ9QE6AauHbtWvn3UUcdBQAYHh4GAHz1q18V9kSN\ngsw5Ho/L5zoBx7AcHBx6Bl1nWJRkpVIJ69atAwB84QtfAOAzjCNHjojOvH37dgDVzIpMht/F/+tr\nYrHYfLxuAICzzjoLALB69WphSpSeZEzpdFpsFdoOAng2LV7PsXCsiURCxkvbwTvvvBOYBz/He9SM\nLaSVyOVyWLZsGQCfOdx4440APMP68uWek5JshFJ42bJlVYxzIeBXv/qVGNvJtGjLGhgYCHjB6FDg\n/AHgvffeA+Dv2bDrab/cvXt315kVsXPnTgDAli1bZJ/l83kA1etDA/z5558PANizZw8Az97Ffd4J\nOIbl4ODQM+g6wyIzKZVK+NCHPgQA+PCHPwzAZxipVEpO8YsvvhgA8Itf/AKAJwlp37EMKpvNim1h\ncnJy3mO96KKLZDy0VfD7OY98Po9vfvObAIB33323ah4rV64UtzdZF6VvKpUSr9mZZ54JwLMdAF64\nAFkJf+9Tn/oUgO4xLM36NNMAvPHu3bsXgM8yyTpLpVIgFq3b2L59u4RYXH755QCAv//97wA8Bs05\nkCXqMA4yf17DdXrvvfeEZRK85lvf+lbb5tIsXnvtNQDVNlV6sDlP2q0An0Fq+yzZZSfQ9QOLNwUA\nzj77bADAmjVrAPg3MRqN4uGHHwYAnHHGGQCAW2+9FQDw3HPP4eWXXwYAvP766wCAc845R77vqaee\nAuDF/NC1PlfwkCgWi1UHLeCHIBw6dAi33347AOCSSy4B4B9Ad9xxB770pS8B8OOpaOCMxWKihvzw\nhz8EAHz5y18G4G0Kfj8PXhrdR0ZGsGPHjnnNay6IRqMBQcF7wkDLMEQiEfkcH+6FgNtuuw0AJLbs\n7bffBuCpiHyAee+psgP+nHkN55RIJOQ6qoJ0HnXyAZ8NVO1mZmZEiCYSCQB+TNkLL7wgc+H1nHck\nEpFQjk7AqYQODg49g66JOBvOcPHFF2PzZi/Wkac5I8VHRkYwMjICAHj22WcBAP/+978BeGrfueee\nCwD45Cc/CcAP2Hz22WfFOJ3P5/Hcc8/Na8x07e7evVukkXZjA35qBgD86U9/AuBL35NPPllUuHvv\nvRcAcNlllwHwJPMLL7wAwDfuU+3q7+8XFkOVkAzg3HPP7QrDymazMneqRZS65XK5SgJrRKPRqpCB\nhQAdisJQmu9+97vyPpkVr2Fg5dTUlDAqvtJgrcNU+O8//vGPbZvDXEGzxczMjKwV9xjX9bXXXhPW\nxbmQVaVSqY46TxzDcnBw6Bl0lGHVO4lvvvlmHH300VV/o5GyWCyKrYsSkGysXC4LMyHroiT8yle+\nguOPPx6Ab3+aC5g7Rpe3tmFxTpS6OoiOn6PUPfroo0Vy83Nkg5FIRJgiQel3zDHHBBgWjZ/nn38+\n7rzzzjnPba6Ix+Myh7CwknqhJvybDZ7tFrQDgXabN998E4AXUEmmQeavGQjnQvsoDe16ngz7WIhg\neM6aNWskCJnztYHPgG9z5nulUqllyc+NwDEsBweHnkFHGVY9N/b4+LgwLLIH2kji8bi4/Hn6k9GU\ny2UJZvvABz4AwJfqK1asEDvSfMAwBf5mLpcTxsO/cVzFYlHYH6sz0BOYSCQwNDQEwGdW/FwymRTv\n2tVXXw3AL1kyNTUlniZdRQDwmWanEY1GxbajvbmAJ31tiIleezLOhQzOZWBgIJB2Qy+fruSgvd1A\nNWtj+tZCBMNPAAS8hNoOx/Xje9y/8Xhc0nQ6gQXjV85kMnKD+MoH4tChQ6JqMeSBNzASicj1VCG1\n+qQz6+cKhkYwt2rdunViXKdj4F//+pf89jPPPCO/r19LpZI83Dbau1QqVVV8ACDG9EwmEzgUqC7O\ntdLBfKE3sza28/9huZGAN28eWCtWrGjzKBsHx8s5MHZu06ZN8h7HrR9eG9ai8z8Zn8ZQAEIb+RcK\ntBCxxKJSqVTtYf0aiUQ6GqbhVEIHB4eeQceN7jp3EPBrIq1cuVJOeb6SghcKBWFbVJvIuDKZjKhH\nNlDvpZdeku/fvHmzRPU2i5/97GdVr4ODgzjxxBMBANdffz0AYOvWrQC82kcMCmWlAtLoekZmfW+o\nZuh5XHfddXMae6tBNTUWiwVCU2qxKqC6mgXnR3ZKdsK/LwQwdy4ajcr+4tx10T6q/VSLdD4e78dC\nY1Nh4PpoaC3GOsz02rezYJ+FY1gODg49g44b3W1KCw3Mw8PDEjagDeqAJ4lpi9K5d0B1BQRbivin\nP/2plDDWbvj5Ynx8XKpGkA0yD7JSqYhEJoOwNh4AgZCAcrlcxSgBn3nQhrYQoFlwLSeK/rsNbwD8\n+8Hgw4XErAjaovSa2bzRdDotfyPDot2KNd0An2EvZISxY1t7Tl+n07I6aYt0DMvBwaFn0FGGFY/H\nA+5f2nvy+XzA1kMWtmLFCpHCtF3x2nQ6LUyGUo4enmuvvRbf//73AUA8d/OBrl3FeVDS0FOi625Z\nBqITf+vB2rpoC9Pv1asF307w9+Ya9FmpVALpTAsB1oZDu9Po6KistXXfj4+Py3tk9wxhWL58+byT\n7TsJrX2EBQTXqqJbLBbFc98JzPnAsnRRx+AwRqPWJtB48MEHAXj5djbGiA/H6OhoFQ0HUBVda3+P\n127atKmlmeQcj/5tRkTzwAo7lLXxMuwQI/g5q0Jot7F1WnQa+qDi/Q5TJ+q9Z+dgQwq6ATsGqnSD\ng4Pi8GE8HXHgwAEJpaGDRK8915bltImFaITX+9BmJ9h/A9WkopMHllMJHRwcegZzYlha7WlGWlxw\nwQW48sorAQAf/OAHAfjBoQcPHhRmZcsIT05OyolOdYJMq1KpBIrz8XtyuZxUcGhlpnw0GpWxkRVq\nZwDviQ0OrVQqNfPvKpWKGLQptcNKPXcb+r5r5ghUM6ZaKqNmmXzlenXT+G7ZHR1Ar7zyCnbv3g3A\nXxeOc2hoSNadoQ46JIV5iWx/thDBKijJZLIq9EQjGo0G9q3em7aAYzvhGJaDg0PPYE4MK8x+Qv1+\n5cqVElRJyUKWMzIyEqgXRHa0dOlSSTfR+XWAZ3SnJKOUo6s/m81K6yvbzHJmZgZbtmyZyxTrQtuh\nbMqCZh7WfqPrRBGaafFz1v6jf6/bZYW1hK3VEXu28JGwGlkLDcxP3blzp1Rb4L6kTXHRokWBHE/u\nU115hClddP/v379/QdjtAOCkk04C4DmqaJu1NlQdJEzodCXmxzKXt51hOAtvpzg4ODjUwJwY1pYt\nW3DzzTcD8Ov/MGVGJ/jSHa/bV9l6OpRMTz31FD796U8DgFQGpacmn88HPBGnnnqqXEMbA9kaXczZ\nbDbgoWkX2GRhfHxc5m+Z1mzMQ7cD09cvlLpRQGNj0bY6QrMxfodNBO8WdDt6BiiffPLJADyGxb1N\nWw3rrvX390tTWO51XXGWYHjDtddeCwD40Y9+1HVmRWzbtg2Aty52n9Zj9nqP01PONLV2Mqymd0os\nFsNtt90mlNdmb2sDOFU6a6AGfDcwD5Tvfe978j4nrlXERx99FIDfR41q59KlSwPhAPrBb0d34TC1\nTBvG7bzrqVE60p3jD6sKUO+3OwltYLdzCCtHYv+vr+HnuBe61ZxBHx4f+chHAPjdZNLptIyLQpPV\nFzZs2BBa3QHwujnZPEMKtXXr1smh123QZDIzMxMoSlmvWYguc01V2RagbAecSujg4NAzaIphLV26\nFJdffjlWr14tNJDVEPiqg+vIDHTHW7ImGs/Z2urOO+/EFVdcAcAPQaBEy2az0piBvQF1Xz+GOpDZ\nEKVSScawatWqqmJlrQZZUSwWE7YVFpXOv9lI+Xg8Lv+2YRr12mZ1GprF1lP76sFmAiykyHcypJde\negmAt4bcV3acYUG0unwy1UsyNM3UFgrD4jM2Pj4e6uQBvHnWWtNYLCbPMp0LvE/tKNToGJaDg0PP\noCmGVSwWsX//fuzevbvKIA5ADN/ZbFYkEg2QY2NjALxi/GRiujIjv5utr9gYlaf/UUcdJYyExk0a\npovFokg1Sn/+PxKJyFhGRkaqcvJajTAjahjjqGWA14ZqXm/bStnv6gZ0MKx1LjQCbevjGi6EsAbu\nNQZ7MkA2l8tV5c0B1evBv9kyyoDPlOn2p+3LdoTuBljbi46Effv2VQUFA9X716ZR8b1kMok///nP\nAICrrroKgN+mrh3G9+7vFAcHB4cG0RTDKhQK2LNnDyqVinhFWCmBJ/XExIS0DqKHjhIqlUpVVVkA\n/NCFaDQqn2MwGysZ7t69WzwtlGC8dmZmRqQcJTYl4PDwsASRnn766VIZoh0IYwlhzKMew7I2BM6L\nNoKFAG0nrBXoOhtsEvlCmN9xxx0HAIH0lGQyKXuVLEN7zchUbDpWPB7Hrl27APgebdprFy9eLLZe\nah+dBuvEaa9vrQqy6XRa1t1WCSkWi1i/fj0Af+58ftvBsJo6sKampvDiiy/innvuwec//3kAfugB\nww2mp6dF7ePhxAMkmUyKGkFVUhtgSaFJy3WRMN4MqpD8jUKhIKpemLrIOJl9+/a1rH9aPRUoLE7J\nUuyw68LURt6bhRSHpStp2JIjjUDnYXI91q1bBwB48cUXWznUpmCrjnAvZjIZ2cc0S+iHlvtQl0YG\nvBAGxhMyE4P7Oh6Py0HXrQOLHce14LeOA84tEokEiAYdCDMzM2Js5z1gjGQ74FRCBweHnsGcQoxv\nueUWkYY33XQTAN9oeeDAAWE6VOkovZLJpDClsCA1nuJ8pTRPJBI1Xej79u0LhFRQQgwPD4t7+te/\n/vVcphqKsLpWNtdRQ9fpsqykHlsLY1jdNrrrygNWhdXztOPUuXO2CgWlfDdBkwb3HM0ZGzduDLAK\nXlMsFsWkYStObNq0CQ888AAAn/nrZhbdju4/4YQTAPgmmeHhYVkjsj4yp8suuwz3338/AN9Zxn3O\nxi+Abx465ZRT2jZux7AcHBx6Bk0f88y7euihhwBAXhnQecstt0i6DQNGeXLHYrFArSti//79IpXp\n/qU9IJfL1bT5zMzMiL2Bv/PII48AAF5//fWON3DQNhqbshKNRgNZ+po51qrysJBsWGQQiUQiUC5Z\nG3DtmGmvisViARsJqyF0E2RYvPcsxb148WLZs7RBkSmNj4+LFhHmcGAOIR1GnPeRI0ckte2f//xn\n6yfTAMiYLrzwQvkbx6fDNgBUlXomK9aVVbnfuTcYltQOOIbl4ODQM2iaYdXKMn/ssccAoKr+1IYN\nGwBUhzwce+yxAPwKjZS8TPXpBYTZkegtHRkZCQQT6sBW+7cwT6j9nYVkw2J7s5GREUkZ0kntgMe0\neA/CxmsT53fs2NG28TYKsj2ydXrxAN8zRlbBdVq+fLnYumi/YVDosmXLxE5kwz7K5XJVG7Bu4Pbb\nbwcA/PznPwfgrRltifYZ1//nNdSeZmZmZC4MFP/xj3/ctnG31fL3xhtvBP7WzlioboIPb39/v2xo\nq2ZEo9GaPeq0GmVL8nLj6+/qVnkSPtB33XWXmAE4T92H0ZZ11qEajE+ikLO5k90AY6U4Nh5SgD92\nWyL5qaeekpIxXHNWFdHqP/cG1cddu3bJ3LsNhiBoNc7mAOq+g4zap9oYj8flwGKli3aq+E4ldHBw\n6BlEmlExIpFId/WRFqBSqdSNcmxkjmFhDex/mEqlxI1t2VQ0GhUDpg0m1TmRVD2olmzfvl2MpA3i\n+UqlsnmWOcxpLeuFYzCsZHh4OFDIjpUy9u7dG2g20WiVB4vZ1vL/v7uhL7X5gprJkuGSOVizRrvR\nynnWw3nnnQfAL17IbuY33HCDOBy4z8m6fvOb34jjbb5oZJ6OYTk4OPQMmmVYowC674OeO1ZXKpW6\nqfLvgzkC/xvznHWOgJtnD6GxeXbb6+Tg4ODQKJxK6ODg0DNwB5aDg0PPwB1YDg4OPQN3YDk4OPQM\n3IHl4ODQM3AHloODQ8/AHVgODg49A3dgOTg49AzcgeXg4NAzaKq8jEt+rrqu6v8sDROPx6X0BhNo\nWfOrXC4Hqorqtlks68HkZ11TqsmMhAMNpObMay11C3cmDjcyxkqlEtoxaS5oZ1Kw7kOguz4B1V2Z\nbM0ytqErlUpSNidsPZtBO+fJfaz3LcEkdV3KiNczsT+VSkk9NK5rO9ezu5XwewS6nhVf2T6MLZw+\n/vGPA/BqV3HhbRno0dFR2bSsbMBrdQUIFgN8/PHHAXgln1977TUAfrE823LKoGU5ZXwQbWfj5cuX\nSyls3gven2w2Kxub13NOe/fulfLDrH7ARgZ6o4d1H241+N2RSEQK77Gn3tatWwF4DRU4T17DKhrJ\nZFLmx/vEgn47d+7E/v37Afg1tp555hkAwNNPPy33wx5irZxn2L2z7czYMGLbtm04++yzq95jXbbx\n8XH5DjamIIaHh6WSw+9+9zsAkPZm+Xw+8AzYsdnxzYYFfWDNdVKt+nyt77v66qtx/fXXA/CrZ5Jl\nRKNRuY6HCv+/bNky6bzCYnC6UBwlNw+za665Rn6Pm+GXv/wlAL++uO4n1yroB1lLYM4P8DY+q3Ta\nxq+Tk5OBEjLcuNlsVmqc87v1oVhrg7cTQ0NDuOKKKwD4DUZZPiWbzco6svcmmZbuIERBwoMol8vJ\n/CiUtm3bBsDrw3j33XcD8A9tW/BwLrBlj+yej0QiMnbuWx6+mUxG1oH7kIUH+/r6ZHy2P2E2m5W9\nwSqkPNT27t1bszhjpVKp2meNPp/OhuXg4NAzWFAMiycupQBf+/r6hEVQkoXZhSzi8bhIjenp6aaZ\niLVTscDZjTfeKNLHFnzTLb85Rt2enp/jNbp7DtmF7XE3MDAgDIAS7tZbbwXg9cprJ8OyNpqwDj4s\nkUxV78CBAwH2pKWuZRO6k1I9FaLVaiFZwmmnnSZlfrm/+Foul6W0se2/+M477wjL5FpzzYrFonzO\n2uwWL14sqhjZJl/177QD1i7FMRUKhSrWBFTb6uyzuWrVKvk/WRS1B+7R2eYxl3k6huXg4NAzWDAM\nKxqNiq6/ceNGAMD69esBeA0CKKlZape9C8fGxkSyWxY2MDAguvrf/va3qv5qs0GzK0oVNhxYsWJF\noPuNZlhhZXYBj21Y5qGlNq/j7+mOOrQPXHzxxQD83otPPvnkvL1ttaC9k/ZVS12+8l7HYjFhFSyV\nzDml02m5P3bcYXacdhrbab/p7+8POEq0l5CsxNrsIpFIgHHqvn38HdoryUQOHz4szRzITrk3db+/\nZlHrXoUZ3y3TqlQqwv7JtJYuXQrAb54B+GyY9yuRSAT2q/2NVsIxLAcHh55B1xmWjuvgiX7mmWcC\n8G1Gq1atCkhhMqzJyUlxi/OVuvSaNWvEa/Pyyy8H+ufNBjIkurPJ/OLxuEhC6uu2F6Eej2ZrNkRC\n9yIkK9GeOP4Gf4djOf/88wF4LvL5uv6trS7seyyjBBBoNEGUSqVAL7+w+xP2nZ0A7ysZUzQaFZZA\nWxsZUDKZFIZhQ0kymUzNNYtGo/L9OmaJIOsiw2IIQTsQtp5cDz4TlUpFWJMN1dCeb/uaTCbl37wX\nuht2q72+C+bAikQicsOoWpxxxhkAvI2ljeyA70LV6gdvDq8dGBjAvffeC8A72Jp9MLjQHAcPC73B\nuYk5hkgkIn/jgRXWCJUHlQ3EA4JUOplMygbj73JMAwMDs8VkNTxPQh9g9jDTKoR9ELlRp6am5D2r\nQvT19ckcajWVbTd4uHBM6XRaDliuMXssptPpmmpaqVSSefJwomoXiUQCzVL53uTkZJXKCfjrr9e+\n2fvRjGOC+4n7Np/PyxgoiHQog3YOAdWHGT/H54+qb6NjcWENDg4O70t0nWHpk5USj114aRQtFosi\nwUilKb1isZic7GQ0lKBHjhwR1XFqaqppBkIpwmBCYnp6WsZqJUO5XBaVlBKKkjWdTsv4KbX5+amp\nqaqod34XX3V4BuAHl5544onSPny+sKplWOAtx6Td9mQn+/btk8/xOs6d6xeLxQLMqlMqoQ2C5fq8\n9957Mk6qSDpN5dChQwB8FsS1i8ViwsS497QKbNdRsxmuo/4uwNu7cw0ibYSl2KBmzntsbEz+zb3F\n+WqHkGX65XI5ENIxH8fBbHAMy8HBoWfQdYZFJJNJHHfccQAgnXZ5iheLRWEmPPXJsLQB3Bo+dYpI\noVBo2ibA36Rdg8xpYGAgwIZ0kB3HYyVOpVKRMVqGFYlE5DvILIl0Oi12AZvqsHbtWmzfvh1AMHex\nEWj7Qb38vbB8Sr5PGxalbzweF+ZBhst7MR8GMV9wXpwDx3/w4EG8/fbbAPyASM5pamoqEKys9xv3\nIefHPZvL5cThw33E4NBcLidGdrLUsHQoPcZG59dosCb3CllfLpcTFhXGJHk/yCSJcrksnc55D/jd\n1v4525gagWNYDg4OPYOuMyztJaMrmeENlISU1oDPnigZZmZmqoI29Xfq079ZO0k0GhWXM+0vtGUA\nvpeSkoeMa2pqKuCFooQtlUoyDtpR+HktHcNCHshKKJHJtFKplHh15mvLakQihnl1bXjD0NCQjM+m\ne4Sl9nQCkUikKkUK8PfExMSEJCGvWbMGgL+/hoaGhDXZ9KR4PB7w+uq0Mq4VqzZwfXbu3CmMLsyj\nZgOOG0UzTMWGCcVisap5AT7D6u/vD4Tx8Bo9Rt6zdtomu35gcXEGBgYk+13nlgHVLnT7wE9NTclD\nrw8GwFsMGoKbRaVSERXgL3/5CwBgZGQEAHDyySfLe/xNGiqnpqYCKo9+yHX4g55/JpMRSs2HnNfu\n2bNH1FFWDNAR//ONKG4kjsuqi/F4XA4qW3omFotJ1LT9XDqdrqoB1ujv2+vnU72DKh4rXvT398t6\nvvDCCwD8mLvFixeHHlQWOicP8A4sHlT87ldeeQWAF3PFw4vX6xjBToR32EMlHo8HBJaOMbT1vrT6\nz7/Z0KNG4cIaHBwc3pfoGsPSEhfwqDfDB2zlQwCB4DQt1W3QHU/6eDxeFfDWLGUmO3v44YcBAH/9\n618BeHWQyLYYcf6JT3xCfpu/yblpQ6cOVgR8Ccsx67mSATz44IOispBhUT09cuSIMLH5Iozp1Lpn\nmUxGWCXvO+e2ZMmSQF4k59nX1xdQ+cPGUG8sc2Ug3Ds67IXjJ4Mle6JqODk5WRVEClRHhxNkm1Tx\ndCgK15ZG+LfeeitQASIsH7QdFSoIG6Zy1FFHibPHajH11PhEIlGVQ6q/u9GxO6O7g4PD+xJdY1g8\njWm8PvXUU6tq7Ggkk8mAJOLni8ViIG2ASKVSIh1jsVjT0soGftKlOzY2hjfffBOAH/Kg8/4obSnJ\nKZmnp6cDwYucqw5r4Ht8ffzxx4VhhdVDn69xs1H3M38P8BwjHDvZnnagaAeFfm9ychLHHnssgPqS\nux2lke13WSM8EKy3tmTJkkCVTd77RCIRMD7TpqlDcWwIgbZz1kp9ChtvK2Fti8cff7w8Kxwb5xuL\nxao0AKC6jv+6deuqrm8nHMNycHDoGXScYVnbFU/nrVu3ShiBlbw6SNGG/ReLRZGANrCvXC5Lbe5Y\nLNZ0wKJ1/WqpT1sFbRHapsbft5J1ZmYm4HHSjNHaAHiPcrmc2FiITkjiMOZFVrJmzRphWPQI6vQp\nrokN5h2lcIV3AAALDUlEQVQfHxf7ECW69nJaG5b+e6vmGcZIrU2Ha5bJZAIJysTMzIxoCLye1+pk\nYtv4IRqNBkJxOpX4be8vx7h+/foqRqVftT3Oht6USiVhzLRlMWRD/06r5tfRA0tXOeBBxdK//D9Q\nHRsCeDfFqlC6/LB9+PleLBaThyOZTM45x8lucB3TQ5cuH7p8Ph/YDLqAH8dKA7UeE+cd5h62zoaw\nfL9mMVtZGZ33x2t5yGzYsEEyEzhPvkYiEdn8PMx0cUWq0RRQY2Nj8rl6G7xVTUXs4aR/N6wqAa+n\nkOJa6DgsrqcOF+B1VDP5+WKxWLOIYafA+XEt1q5dG1B5tVOkljMkn8+LCYRln5l50Q44ldDBwaFn\n0FaGZYMj0+m0VGK4+uqrAQDnnHMOAE/a1irHq2tM2fLDQJCRaJWSPfMymUzNlkNhmK1dkpXIOo+P\n71npqYud2WvL5bKwSK1Ccq6WWbVKItt2S7Vgy/0uWbKkqkwu5wB4QcBkTZyLDlXhPCndd+zYIWNp\nF2y4QK33ec91FQ3LILXR3YbS6O/j/eB7+tUy5rBxthphdc6OOeYYANUBsoRWYWsVKiwUCrInGGzb\nTjiG5eDg0DOYM8PiCVuvhhKvYUb7KaecgksuuQQAcNZZZwFAVdiBDQfQen4tm422FVhGUygUhNHp\nBp6Nopa0080ZrJE2lUoFxqHtGpYpaWZm76m2JdRiVvOVyLFYLDSA08LasDKZTCAlg6+6RLKt6FAo\nFOQe0Egf9jthTHQ+9p4wdqHXp5aNsFQqydh5nzTztWENmqmRfdn1DBuXNWbr72wnmA6XzWarQoXs\n79s9wnknEgl5jx2y52NXnQ2OYTk4OPQM5sSwdMKjzd7WJy5dvmQ5mzdvxoYNGwD4LnsGY5ZKJZFc\ntHfok75Wuov2ylkJls/nxU6STqfbcvKHJfJam4e1bwDBwFFtJ7Df3c4KB2GBp2HeONsaa8WKFTUT\n0g8fPizvcQ/oYEQyK64N51mvntd8107b6sLsRraipq60Yd39OmWFz4G2ednfI3QTim4grCLESSed\nBMDbq7W86Do4m3PXbcL4nl3PVqWMaTR9YEUiEaxYsQKnnXZa1d+50DrWiSEF7C94wgknyAbmzaHB\nTkfJhnUZtg0PdNyL3WxEpVIR13kymWxI9WkUNp5Mb2b7QOhD1pbg1SqBLZ1jD75Wg6pmrQJ+Ghwb\n76d2YtjuQjqfkmo+Kxfo0A6GPHAP6DLWVlXSZoG5wBbG099dqVQC6ibHeOTIEfkb1WF9SHHP8Rpm\nReRyOVlH7nWtPtY7nFvtWAkD58dwong8HsiR5L7Vzw33or6W87KC6PDhwy2fg1MJHRwcegZNMSwG\nBH7uc5/D2WefXfWeZhG6zRbgS1LNhviellq28J2WtjZaWLOqWqV98/m8SMNyudzS057jITuoFxWu\no9lrtbTSUler1/yNdkhbe99sF2ut1vA+UoqWy+VA/S7NPMi+KIk5p2g0KveMbJt7YWxsrG1u/tkq\nUNj2VRyvbsnFcWp2VCt0YXJyMlDcT4d2NFJ7rJ3gc8c10M9YWCsvy75smzLAfxYYULxr1y7HsBwc\nHP530RTDSiQSWL58OS666CIpZ2wD7aanpwNMSQeb2e6yuimDzl3S76XT6UBen24tZNmXtqfp9Ih2\nuIkpqXTmP6VOWOiCznLn3DgfG2hL20cqlWpr9YJaaRf6tzgnsoyBgQFhWJSszHecnp4OtIPSJXat\nlA6rmmDRilzCejYsW7+Ltb4ymYzMzxrNtb2S90Lbcyxj5r2rZ0vtVD0s7lvNGsPyBAFvb9pKIpqV\nWyZJjaod43cMy8HBoWfQFMPKZrPYunUr1q9fXxU8B1QHbfI96/KNRqNyMtsQBp3BbjP9AT9x1IYI\nFAqF0EBTwDv9KTEHBwfxzjvvNDPdhmBrXYelZHA+2hNo64JrT6BlHu2qM2QDW8Ngk7x1I1j+jWvD\ne53NZuU7yboodbVNiB5Efi6VStWsE6X/1g7Wwe/mfqRtR9vcdP19wFuXWvXe8/l8wItKD2sqlapZ\nh7+dQZf6+5myxjFptmjZpi5aYKFtyLwvrMabTCbn3W/AoqkDq1KpIJ/PY8eOHaISMi6HD1U8Hhd3\nLulmmMHTFqnTEdfaaA54XU3oFieVZdmYRCIRUCG1CqZpeSs3gzVG6/IbtuuNbn5gD6Ow7rpWNdQh\nGXPpPdjsnPT/uVF5uAwPDwPw1ptrMDo6CqD6HnCjMpJaz5OHgc5LBLzO0Tbfs5WHVC3njP6bVf/K\n5XLgsOY8JyYmZN9zr+s+g1xPzkmbD5pp/NFKcOwMOeJa6GKEtlqK7iVpY++SyWTgsD7++OMBeId/\nqw8spxI6ODj0DJpiWBMTE7jvvvvw5JNPSjDopZdeCsArwAd4pXOtJNIntm7BpVEoFKQM8K5duwAA\nL7/8MgCv8QI/d9111wHws8y1CkqppQv4Ea2OFreGYrLBekGIOpqfkkpHA9u+ilrqd4JhWWhVQJd5\n5jisWkt1KpfLydjJzLTb30b563xSa5DWrKhVTpNGVGCWeI7FYhIMaqtoTE1NBUwcnNP09LSEAvCe\nWXYdhnaHNNggT+14sPsuLP8yrGeireBAh4XWalo1L8ewHBwcegZN27AKhQLeffddaVn0xBNPAPCl\n5ODgoIT7M4eQ7y1btkwYAhtJ0ij76quvYs+ePQD8YEPNlMhIWGeJBvSZmRmxodB+wNdcLiff9frr\nr7dUn7aGft1colZmezqdDthodBldm8ulm3K2Mq1oNujAQY7d2pu0i5/si+yir69P2BbXnuuga3vR\n7sPv7uvrq9nOrRXsqhkpz70yPT0tDItz0o6fsKYogLd2XOuwFJ12OhBqQTu2bGqYDmuwmoH+t9WQ\nSqVSQDPgmvf398vzWitguuk5zOvTDg4ODh3EvCuO8qSlzn/o0CG89dZbAIBHH3206tp6Nbnrnbz6\ncw899BAAv328dqvW+85WS7KwWleAxzIs69L2OjsObQuzXhqi3QyrlmQNCxzVyc82XUd7Tq3UJYta\ntmyZfI4Mi9+ZSCQCXqhOMZBa7bYKhUKVPQuornprG47wc4cPHw6so/YM1/JYzyfYspHP2tCMsIoo\n1k4aljZGaBbG39aeZRsMPl+0tURyq4rN6c/ZYn3dgj2o+BAuWrQoYLTUhxLVBF6v41uoOrDkju04\n3Cnow5jqD4sf6rGxS4otn1sul0UV4KFE93l/f798PwWbzju0DpNOH1g2k0KHdnA9OMb+/v7Q3FbA\nM43wb+zgrbtC1zqw5jPf2T6rHUI8hDmmgYEBERa2rJGuSqFNH0A1YbD5o9PT0w0VXWzmkHYqoYOD\nQ88g0syJHolEOmchbBMqlUrd6NFG50gJs2XLFgDAhRdeCKCaYZF2UzLr2lPWFVwsFoW9UFLx//ff\nfz/+8Y9/NDIs4vlKpbK53gX15qkZoTWkMpxkZGREGBaDSXVdKzpTKLUZYHzw4EFhay+99BIAP4xF\n15BqpOnGbGs52zzNdVXzZPDjypUrpb4T585rwhqH8N4dPHhQHEN0UPF1dHS0KQdQs/OslTOpwdAD\nlipft26dqPYMReF6MmAcQMBhMjk5KfuV3dBfffVVAJ6jK6x4JccYooHNOk/HsBwcHHoGzTKsUQD/\nad9w2o7VlUpleb0L3gdzBP435jnrHAE3zx5CY/PsZByIg4ODw3zgVEIHB4eegTuwHBwcegbuwHJw\ncOgZuAPLwcGhZ+AOLAcHh56BO7AcHBx6Bu7AcnBw6Bm4A8vBwaFn4A4sBweHnsH/Ac6bLhsaVPDu\nAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 7]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMXGX5fuY+uzvbpd1eti2lUOoWoRSEguXuhaJGIQQE\nFTQmRmPUqEFJJPEfE2IgaqKixkRMEGKikYAKAiJBCChVbiIgYJFby2132+6le5+ZPb8/js973nnP\nmdmZ2bns/Pyef6bdOXPme8/3zfc+7/WLeZ4HBwcHh05AvN0DcHBwcKgWbsNycHDoGLgNy8HBoWPg\nNiwHB4eOgduwHBwcOgZuw3JwcOgYuA3LwcGhY+A2LAcHh46B27AcHBw6BslaLo7FYh2fFu95XqzS\n+42QMZvNAgCOOuooAMChQ4cAANPT02BlAV+7uroAACtXrsTs7CwAYGhoCABQLBbrHcIBz/PWVLpg\nqXImk0n09/cDAA4ePAgAKBQKi36uq6tLns/Y2BiA4FnUisXmEqhfznQ6DQDo7e3FEUccASCQj/JO\nT0+LLCtXrgQArFixAgCwsLAg1x04cKCeIQiaKedSkUqlkM/nG3KvauSsacP6X0Us5j/HqB/WySef\nDAD4+Mc/DgC49NJLZaPp6ekBEGxK/IFHYe/evVhYWAAAbNu2DUCwcd1777343ve+BwB49tlnqxny\na9VcVA9yuRwAX96vfvWrAID5+XkAwQ9zfn5e/tbb2wsAyGQyAIAjjzwSv//97wEAe/bsAQDceuut\nzRpu1fjQhz4EALjqqqsAADMzMwD8jYuKhLJs374dALBu3Tq8+uqrAILN7K233gIAjI+Pi8wbN24E\nANx///0AgK985StNlaUWcEwrV66UDfZzn/scAIhsGhs2bAAAPPDAAwD8tf3aa/5y++AHPwgAmJqa\natp4Y7VoN8ewfKxYsQK33HILAGDHjh0AgHjct64PHz4sC5yahxtYKpVCX18fgGBSuUlFzQO1d1dX\nl2j8hx9+GADwqU99qtIQn/A8b2elC5Y6l5dddpn8qL/5zW8CCBbzunXr5Mc6OjoKAJicnAQA3Hff\nffjVr34FINj8fve739U1hkYxj2OPPRbf+ta3AARKoru7G4A/r5wjbkqbNm2Sz/I9vo6Pj8u1nH8y\nbG5cY2NjuPrqqxcblqCZDOvBBx8E4D8DzhkV7OHDhwEAt912Gz75yU8CABKJBADIGh8bG5N1cNJJ\nJ9UzBEE1cjofloODQ8eg7SZhlLlF6n322WcDAO65557Q9dzpK/lNeK29/1Jx++23Y/PmzQCA4eFh\nAIGGTSaTMiZ+fzKZlP/TbOL4CTI0DWqu2dlZGf+5554LADjuuOMAAC+88EKDpKoN6XRafFA//vGP\nAQSmztzcnGhrXvPEE08AAG666SYcc8wxAICRkZGWjrkcvv71r4fGwvnIZrMyn3x95ZVXAPhsiiyY\n80+5gYBZc/5pOm3fvh0f/vCHAQB33XVX4wWqATQDjznmGPn3qlWrAAADAwMAgC9/+cvCnmhRkDkn\nk0n5XCvgGJaDg0PHoO0Mi5qsWCxi69atAIDPfvazAAKGMTU1JTbzo48+CqCUWZHJ8F78v74mkUgs\nJeoGADj11FMBAJs3bxamRO1JxpTNZsVXof0ggO/T4vUcC8eaSqVkvPQdvP766yE5+Dk+o1p8IY3E\n5OQkVq9eDSBgDl/72tcA+I71NWv8ICXZCLXw6tWrSxjncsAvfvELcbaTadGX1dvbG4qCMaBA+QFg\nYmICQLBmo66n/3L//v1tZ1bEyy+/DADYtWuXrLO5uTkApfNDB/w555wDAHjjjTcA+P4urvNWwDEs\nBweHjkHbGRaZSbFYxPve9z4AwPnnnw8gYBiZTEZ28d27dwMAfv7znwPwNSH9O5ZB5XI58S1MT08v\neazvfe97ZTz0VfD+lGNubg7f+MY3AABvvvlmiRwbNmyQsDdZF7VvJpORqNkpp5wCwPcdAH66AFkJ\nv++jH/0ogPYxLM36NNMA/PG+/fbbAAKWSdZZLBZDuWjtxqOPPiopFhdddBEA4O9//zsAn0FTBrJE\nncZB5s9rOE8TExPCMglec8011zRNllrx3HPPASj1qTKCTTnptwICBqn9s2SXrUDbNyw+FAA47bTT\nAABHH300gOAhxuNx3HvvvQCAd73rXQCA73znOwCAxx9/HM888wwA4PnnnwcAnH766XK/Rx55BICf\n88PQer3gJlEoFEo2WiBIQRgfH8eNN94IALjgggsABBvQTTfdhM9//vMAgnwqOjgTiYSYId///vcB\nAF/84hcB+IuC9+fGS6f74OAg9u7duyS56kE8Hg8pCj4TJlpGIRaLyef4414OuOGGGwBAcsv27dsH\nwDcR+QPms6fJDgQy8xrKlEql5DqaggwetfIHvhho2uXzeVGiqVQKQJBT9uSTT4osvJ5yx2IxSeVo\nBZxJ6ODg0DFom4qz6Qy7d+/Gzp1+riN3c2aKDw4OYnBwEADw2GOPAQD+85//APDNvjPOOAMAcMkl\nlwAIEjYfe+wxcU7Pzc3h8ccfX9KYGdrdv3+/aCMdxgaC0gwA+OMf/wgg0L7HH3+8mHC//e1vAQAX\nXnghAF8zP/nkkwAC5z7Nrp6eHmExNAnJAM4444y2MKxcLiey0yyi1l1YWCjRwBrxeLwkZWA5QKei\nMJXm29/+trxPZsVrmFg5MzMjjIqvdFjrNBX++84772yaDPWCbot8Pi9zxTXGeX3uueeEdVEWsqpM\nJtPS4IljWA4ODh2DljKsSjvxtddei/Xr15f8jU7KQqEgvi5qQLKxhYUFYSZkXdSEX/rSl7BlyxYA\ngf+pHrB2jCFv7cOiTNS6OomOn6PWXb9+vWhufo5sMBaLCVMkqP02btwYYlh0fp5zzjm4+eab65at\nXiSTSZEhKq2kUqoJ/2aTZ9sFHUCg3+all14C4CdUkmmQ+WsGQlnoH6WjXcvJtI/lCKbnHH300ZKE\nTHlt4jMQ+Jz5XrFYbFjxczVwDMvBwaFj0FKGVSmMPTo6KgyL7IE+kmQyKSF/7v5kNAsLC5LMduaZ\nZwIItPratWvFj7QUME2B3zk5OSmMh3/juAqFgrA/dmdgJDCVSmHdunUAAmbFz6XTaYmufexjHwMQ\ntCyZmZmRSJPuIgAETLPViMfj4tvR0VzA1742xUTPPRnncgZl6e3tDZXdMMqnOznoaDdQytpYvrUc\nwfQTAKEoofbDcf74HtdvMpmUMp1WYNnElbu7u+UB8ZU/iPHxcTG1mPLABxiLxeR6mpDafNKV9fWC\nqRGsrdq6das41xkYePHFF+W7//a3v8n369disSg/bpvtXSwWSzo+ABBnend3d2hToLlYb6eDpUIv\nZu1s5/+jaiMBX25uWGvXrm3yKKsHx0sZmDu3Y8cOeY/j1j9em9ai6z+Zn8ZUAEI7+ZcLtBKxxMLz\nvJI1rF9jsVhL0zScSejg4NAxaLnTXdcOAkFPpA0bNsguz1dS8Pn5eWFbNJvIuLq7u8U8sol6Tz/9\ntNx/586dktVbK37605+WvK5cuRLveMc7AABf+MIXAADnnXceAL/3EZNC2amANLqSk1k/G5oZWo4r\nr7yyrrE3GjRTE4lEKDWlHKsCSrtZUD6yU7IT/n05gLVz8Xhc1hdl1037aPbTLNL1eHwey41NRYHz\no6GtGBsw03PfzIZ9Fo5hOTg4dAxa7nS3JS10MA8MDEjagHaoA74mpi9K194BpR0QbCvin/zkJ9LC\nWIfhl4rR0VHpGkE2yDpIz/NEI5NBWB8PgFBKwMLCQgmjBALmQR/acoBmweWCKPrvNr0BCJ4Hkw+X\nE7Mi6IvSc2brRrPZrPyNDIt+K/Z0AwKGvZwRxY5t7zl9nS7LaqUv0jEsBweHjkFLGVYymQyFf+nv\nmZubC/l6yMLWrl0rWpi+K16bzWaFyVDLMcJzxRVX4Lvf/S4ASORuKdC9qygHNQ0jJbrvlmUguvC3\nEqyvi74w/V6lXvDNBL+v3qRPz/NC5UzLAdaHQ7/TyMiIzLUN34+Ojsp7ZPdMYVizZs2Si+1bCW19\nRCUEl+uiWygUJHLfCtS9YVm6qHNwmKNRbhFo3H333QD8ejubY8Qfx8jISAkNB1CSXWu/j9fu2LGj\noZXkHI/+bmZEc8OK2pS18zJqEyP4OWtC6LCxDVq0Gnqj4vOOMicqvWdlsCkF7YAdA026lStXSsCH\n+XTEgQMHJJWGARI995xbttMmlqMTXq9DW51g/w2UkopWbljOJHRwcOgY1MWwtNlTi7Y499xzceml\nlwIAzjrrLABBcujBgweFWdk2wtPT07Kj05wg0/I8L9Scj/eZnJyUDg6NrJSPx+MyNrJCHQzgM7HJ\noZ7nla2/8zxPHNrU2lGtntsN/dw1cwRKGVM5k1GzTL5yvtrpfLfsjgGgZ599Fvv37wcQzAvHuW7d\nOpl3pjrolBTWJfL4s+UIdkFJp9MlqSca8Xg8tG712rQNHJsJx7AcHBw6BnUxrCj/Ce37DRs2SFIl\nNQtZzuDgYKhfENlRf3+/lJvo+jrAd7pTk1HLMdSfy+Xk6Ct7mGU+n8euXbvqEbEitB/Klixo5mH9\nN7pPFKGZFj9n/T/6+9rdVlhr2HInYi+WPhLVI2u5gfWpL7/8snRb4LqkT3HFihWhGk+uU915hCVd\nDP8PDw8vC78dALzzne8E4Aeq6Ju1PlSdJEzociXWx7KWt5lpOMtvpTg4ODiUQV0Ma9euXbj22msB\nBP1/WDKjC3wZjtfHV9l+OtRMjzzyCC6//HIAkM6gjNTMzc2FIhEnnniiXEMfA9kaQ8y5XC4UoWkW\neMjC6OioyG+Z1mLMQx8Hpq9fLn2jgOrGon11hGZjvIctBG8X9HH0TFA+/vjjAfgMi2ubvhr2Xevp\n6ZFDYbnWdcdZgukNV1xxBQDgBz/4QduZFfH+978fgD8vdp1WYvZ6jTNSzjK1ZjKsmldKIpHADTfc\nIJTXVm9rBzhNOuugBoIwMDeU66+/Xt6n4NpEvP/++wEE56jR7Ozv7w+lA+gffjNOF44yy7Rj3Mpd\nyYzSme4cf1RXgErf3UpoB7uVIaodif2/voaf41po1+EMevP4wAc+ACA4TSabzcq4qDTZfeG4446L\n7O4A+Kc52TpDKrWtW7fKptdu0GWSz+dDTSkrHRai21zTVLYNKJsBZxI6ODh0DGpiWP39/bjooouw\nefNmoYHshsBXnVxHZqBPvCVrovOcR1vdfPPNuPjiiwEEKQjUaLlcTg5m4NmA+lw/pjqQ2RDFYlHG\nsGnTppJmZY0GWVEikRC2FZWVzr/ZTPlkMin/tmkalY7NajU0i61k9lWCrQRYTpnvZEhPP/00AH8O\nua7sOKOSaHX7ZJqXZGiaqS0XhsXf2OjoaGSQB/DlLDeniURCfssMLvA5NaNRo2NYDg4OHYOaGFah\nUMDw8DD2799f4hAHII7vXC4nGokOyEOHDgHwm/GTienOjLw3j77iwajc/VetWiWMhM5NOqYLhYJo\nNWp//j8Wi8lYBgcHS2ryGo0oJ2oU4yjngNeOal5vj5Wy92oHdDKsDS5UA+3r4xwuh7QGrjUmezJB\ndnJysqRuDiidD/7NtlEGAqbMsD99X/ZE6HaAvb0YSBgaGipJCgZK168to+J76XQaf/rTnwAAl112\nGYDgmLpmON/bv1IcHBwcqkRNDGt+fh5vvPEGPM+TqAg7JXCnHhsbk6ODGKGjhspkMiVdFoAgdSEe\nj8vnmMzGTob79++XSAs1GK/N5/Oi5aixqQEHBgYkifTkk0+WzhDNQBRLiGIelRiW9SFQLvoIlgO0\nn7BcoutisEXky0G+o446CgBC5SnpdFrWKlmGjpqRqdhyrGQyiVdeeQVAENGmv7avr098vbQ+Wg32\nidNR33IdZLPZrMy77RJSKBSwbds2AIHs/P02g2HVtGHNzMzgqaeewu23347PfOYzAILUA6YbzM7O\nitnHzYkbSDqdFjOCpqR2wJJCk5brJmF8GDQh+R3z8/Ni6kWZi8yTGRoaatj5aZVMoKg8JUuxo66L\nMhv5bJZTHpbupGFbjlQDXYfJ+di6dSsA4KmnnmrkUGuC7TrCtdjd3S3rmG4J/aPlOtStkQE/hYH5\nhKzE4LpOJpOy0bVrw+KJ41rx28ABZYvFYiGiwQBCPp8XZzufAXMkmwFnEjo4OHQM6koxvu6660Qb\nXn311QACp+WBAweE6dCko/ZKp9PClKKS1LiL85XaPJVKlQ2hDw0NhVIqqCEGBgYkPP3LX/6yHlEj\nEdXXytY6aug+XZaVVGJrUQyr3U533XnAmrBaTjtOXTtnu1BQy7cTdGlwzdGdsX379hCr4DWFQkFc\nGrbjxI4dO3DXXXcBCJi/Psyi3dn9xx57LIDAJTMwMCBzRNZH5nThhRfiD3/4A4AgWMZ1zoNfgMA9\ndMIJJzRt3I5hOTg4dAxq3uZZd3XPPfcAgLwyofO6666TchsmjHLnTiQSoV5XxPDwsGhlhn/pD5ic\nnCzr88nn8+Jv4Pfcd999AIDnn3++5Qc4aB+NLVmJx+OhKn3NHMt1eVhOPiwyiFQqFWqXrB24dsz0\nVyUSiZCPhN0Q2gkyLD57tuLu6+uTNUsfFJnS6OioWBFRAQfWEDJgRLmnpqaktO3f//5344WpAmRM\n73nPe+RvHJ9O2wBQ0uqZrFh3VuV659pgWlIz4BiWg4NDx6BmhlWuyvyBBx4AgJL+U8cddxyA0pSH\nI488EkDQoZGal6U+nYAoPxKjpYODg6FkQp3Yav8WFQm137OcfFg83mxwcFBKhnRRO+AzLT6DqPHa\nwvm9e/c2bbzVgmyPbJ1RPCCIjJFVcJ7WrFkjvi76b5gUunr1avET2bSPhYWFkmPA2oEbb7wRAPCz\nn/0MgD9n9CXa37j+P6+h9ZTP50UWJor/8Ic/bNq4m+r5e+GFF0J/a2YuVDvBH29PT48saGtmxOPx\nsmfUaTPKtuTlwtf3ald7Ev6gb7nlFnEDUE59DqNt66xTNZifRCVnayfbAeZKcWzcpIBg7LZF8iOP\nPCItYzjn7CqizX+uDZqPr7zyisjebjAFQZtxtgZQnzvIrH2ajclkUjYsdrpoponvTEIHB4eOQawW\nEyMWi7XXHmkAPM+rmOVYjYxRaQ08/zCTyUgY27KpeDwuDkybTKprIml60Cx59NFHxUlaJZ7wPG/n\nIjLUNZeV0jGYVjIwMBBqZMdOGW+//XbosIlquzxYLDaX/713VTe19YKayZLhkjlYt0az0Ug5K+Hs\ns88GEDQv5GnmV111lQQcuM7Jun79619L4G2pqEZOx7AcHBw6BrUyrBEA7Y9B14/NnudVLJX/fyAj\n8L8h56IyAk7ODkJ1crY76uTg4OBQLZxJ6ODg0DFwG5aDg0PHwG1YDg4OHQO3YTk4OHQM3Ibl4ODQ\nMXAbloODQ8fAbVgODg4dA7dhOTg4dAzchuXg4NAxqKm9jCt+Lg/dVZVtSGw7kvn5+VBXUV4Ti8Wk\nMDrqRKEacaCK0pwlFT8nEglpwWL79OvWN7aweWFhQZ4He6HV2yqnmUXBnJ9kMilzVM1JR/o9ts1h\nMbvtslstWiWnPUiV61DPj17ngF/gT/n4ys83o5i9vZ3wm4yo9sNLuY/usMBGbaeccgoA4JJLLgEA\n7Ny5E/39/QCCzUg3gOOkspsBF8D4+Li8x64Af/7znwEAd999N/75z38CCPcqKiNXw2rKOD62BeZh\nI2eccYb0RmKjRvZDGhgYCG1G7Le0Z88evPjiiwCC9sD/+Mc/APiHPNhF3wiUO4ZMfwc3XTam47l9\n559/vhxDxi4N27dvB+D3/2J3B3bmYCPHl156SWSmfA8//DAAvwU4e2NFnbKsx93o0jl91iAQHLH2\n6U9/Wg6d4NrkoRuvv/66KBk+A67/2dlZmceHHnoIAOR4s4mJibo36XJYVhsWJ832QtcTZycw6oh3\nzQL0gY/1Tr6972mnnYZrrrkGQNBhlc3r8vm8/Og4yXyNx+PSnZOy8b1kMin3YHsPHkj5iU98Arfe\neisA4PrrrwcQnFbSjEVN6OPo2ZFz48aNAPyDR7ds2QIgYEp//etfAfjdSPms2FaGHWUzmYx8juMe\nHh4G4G/Gtltro2SLWidEPB6XA3r5Q+TGvH79evkb2wbxJKaVK1eKAuGcs397Op2WzqrcnNiiZWpq\nStaBlbOZ8wkE647zqQ8ytueIcoyJRCLUt10fWsw1wvZCfJ2ammr4huV8WA4ODh2DZcOw4vG4mB1s\nKavPiqMmogbW/h571p8+35Cab2RkJNS2t1ZQY1577bXCrKhxqGkLhULoSHPNGvg3jkuzSt7DtkHu\n6+vDlVdeCSBgIz/60Y9Krmkk9Jj4b5q5bCV81FFHyXOmvGQSL7zwgpgcZCWcr3Q6LY0JyWLIvt5+\n++2WtkvWcvI50hziGAcGBkQWMg79ap+BZsy8F58dWU08Hg9ZE1EWRKOZlpaT4NrMZDLyu6Mrgyzq\niCOOkLFTFn0eI5+PZVPJZLLkdJ1GwDEsBweHjsGyYVjat3HmmWcCCByf/f39wjqogenDGR0dLfGB\n8F6Az7CovR966KGSU2prAbXgpZdeCgA46aSTRMtSg9DuT6fTJWyL4wACjRV17/n5efEF8JUaq1Ao\niBa78MILAQC/+c1vAAR+kWaBWp7+NY63r69P5oInqZA9rlq1CuPj4wACZsVnn8lkSg54AFAidyUn\n9FJlKHcvz/Nkzuzp4xs2bJC5tic/53I5+RzZJZ9JLBaTZ8brdfSNc6v9tLymkbJbOfUpTfo7Vq1a\nVXJSEBD487q7u0Uuvc45bo6X69uyzUbCMSwHB4eOQdsZFnfnTCaDTZs2AQC2bdsGIPCXrFq1SnZ0\n7uJkNoVCQfwk1AIMTWtGxZBrPaBWueCCC+T/ZBD6EAlCn3Ks/7+wsBDKbdGnJlvtZ5kWADlV+6yz\nzgIA3HbbbU2NKln5NOMi86B8mlnyc5aJJhIJYS8230xr62YwrXLwPE+Yjp277u5ukZ3j5DWTk5My\nj5ZdzM/Pyzqk7LxG+7Ci5GpFxJBjifJhUQb+5jKZjPjjrA/W87xQVNGeU9lItH3D0olrfCh0xvK0\nknQ6LQ/KJq4BwUM/dOgQgGCRz87OSv5SuVycasDck5NOOknGwMm0P8hkMilU2C5wnVxoAwXJZLLk\nWehXvXC5qJj/dccdd8j9m7G4bfoFxz0yMiI/VpoS+kh2a4bRkQsEppV1WM/NzTVlgyp3T/13ysmx\nUc7R0VFZa5ST66xYLIYCJPowXJ0WAJQmEPO723W+JNcMx3Ho0CGZB8pJIqA3bb1eAX/OeC+bKNuU\n9djwOzo4ODg0CW1nWEQsFhMKzR2ebCKZTIY0GF8XFhZEM1hn7tDQEA4ePAjA13a1ajNqEzr/Ob6F\nhYVQWQodz7OzsyGGxf9ns9kSzQQE2lezC96boeRsNitshNczQDEwMIB9+/bVJNdi8mroE5uBwLk8\nPDwsY6FJwOebzWZL2AQQMKxCoSDZ4PwcWY1mHnZMS80At58vJyeZBNnC2NiYBHH4HhlFOp2W+1JO\n3sfzPFkTNlBUrZzNhHU/TExMyDj5u+M6TKVSIrNdv/l8PpTO0OhkUQ3HsBwcHDoGy4Zh9fT0SKLo\nhg0bAAROv3g8Lru99dfoZMwoRy3t8Hw+X7P2IgPQvivei+yC2lf7tPj9OvTLV46BjIn3zGQyJUmH\n+vt7e3tDWot1fJs2bcLrr78uz6IWlGMqWvtrh7ge2+HDh4VVMJmQ9xofHw85sXUBMBmV9YtpGaIY\nSL3sY7HPep5XkkKiZZmamhLmQXbJa8fGxoQ58hptAVBmyqvLccrNVbNLcwhbEjQ9PV0xDccGHrg2\n5+bmZJ1bK6AZcAzLwcGhY9B2hkVN3NPTI9qKvhuiWCzKzm41vtZG1AI6GkeGVStisZhoDjI+fncq\nlRJtYjVlLBYTLRtly+uiUS1HIpEIfU6zL/7NavJVq1aFIlX1wpaLAMHztUWzuuSCLDOqWNamZhSL\nxZC/R6d2lPPt6LE0CpaRa+i2P3regUD2VColMnA++Z72rTZr/I2ALhsrx4xisZjIbpm2bqdENNOH\n1bYNy5pN/f39kmPEB6AXNB8YoZ2bfND2h5tIJOrOtvU8T+7zl7/8BYBfPwf4GxizmOl8pBzJZDKU\nk6PvadMzNGj2akc84IfWaY4wc//BBx8EADz33HN1b1Q0P6rJCSL4PKenp2WeODeUrbu7O2QO8T29\n+dpnUKnGTm9m9ZpNlXK8dFcPACW1qzbgw80pl8uF5kr3ieIGzrVSzTzF4/ESpdysTc7W5gLhoBWR\nyWRkHJSP672rq0v+TVizupFwJqGDg0PHoOUMy2pQ7upr1qyRdAZtIgDRIWnNXqipbWdHnRCYSCRq\nZiKsg7vjjjsAAP/6178A+Jn4zMZn1frFF18MoLRbA79Ph8XtGHQ2vHXSs5fUvffei7179wLwOyEA\nfhM4ADh48OCSTMEocygq09r2+Orr6xO5rPnH56ZB2WZnZ0NZ8DoNxLKfKCf8UtiV/neUnLbTRjqd\nDiX+Upa5uTlhl3wW/Nz09LSM3aZMFIvF0HOvht02Erw3x8uAF8cHlP4ObZ2rfoZkkDoQ1iw4huXg\n4NAxaCnD0lqFmokM5eijjw51otQ1TdTwtmNnKpUKhaQ1w7H+sFpATcGSE7a6feaZZ6SMiMyKnRy0\ng5LQZQ02nUGX7/Bvum0y4DMsttu19XdLcXBq3w3HpxGPx2Us/F76pNasWSOJtJSPrzMzMyUpKfrz\nsVhM5oRMjP45nXpi2YUu91mKvFrOqL5fUf4X+qxs2H9ycjKUQMz5yGQy8gz4OTLJSrI0sx9W1Pdw\nvKtXrxY5KRPXf7FYLCk50u/FYjGxjGwCcTPgGJaDg0PHoG0+LNr87BG+a9cu6QUd1QHB7t7UVl1d\nXaFyHWqPbDYrjfWX0v3Qspl8Pi9jY9qEDf8DCDEtz/NC6RCaVVEj00/A74g6tKDek0k0bBSq0r3o\nx9FlRrarqL6vLQ7X97bvRRVvN7qnu0alZFldiM2x2nIUjj+dTstc2XvqNJVyc1fub60Av4+/wy1b\ntgjz5bPrG33ZAAAKRElEQVTX8tqoovbnsW/W2rVrS+7dDLRkw9KHSvABsQPCRz7yEQD+wQt8QPwh\naMerdQTq0z/4gOzCz2QyOOaYYwD4G1a9HRsqOUSZF6VbyJSjz4VCQSbcZu5rGa1TWDujG0m3F1tY\n+n0bSOjq6hJnq20nkk6nRcHYcRcKBalVY1BB/2ibUVNnTd9KsG1/9IbFOeMa7u7uDrUH5uvMzIy8\nRzO6UoCj1eBY2NKJm40Gn4FO1bHQbXQGBwcB1Od+qRbOJHRwcOgYLJlhVcNauFNns1lhVmz1y6Z4\n3d3dorm0SQeUpgpYJ/Ps7GxkLyLA14TMUu/u7hZqvlRoJmCPedJmrGVMminRtNItea15oLPgW2Ua\nWVhTQIfDyyXz5nK5UHqAnjdrRulE23b1hyIqmfaW/XG96mt0A0CbOa7N3HZnvVuGpYMEOvmV/9fZ\n/UBpojR/pyeeeCIAx7AcHBwcACyBYUWFhvUrUNpmFvCPyXr3u98NANi9ezeAIGEtHo+XtGvV8Dyv\npLk/UKqtyh3pXigUhGHlcjnpjdUIaPbD8QO+rJZBaCe6fU5R7FB3aQD80o5maOTF/EVRzmHOEccG\nlPYm431tS11+bmJiIuTg1n68qLIZ/f+osVWDajo2RH2f9pESOkFZ90jTcs7MzAj7tv3Rqh17M0tz\nKB/9Trosx3aC1d1S7HpNJBJyLx6Dx883o1WyY1gODg4dg7oYli5GtgmCulsBd2WmLpx66qnCrOjL\norZKp9PCrHRhM+BrLft9tl82UKqp+TkWLGez2Yba1jYtQYe6rR9GRzitJtelOVpraTSrqX81UUKb\nYKi7E5RjJclkMrQG+Pmosp1qfDuVElwXw1KiofF4XMZs15z27ZRLlAVKe/NXM55WgDIcf/zxAPz5\ntImxHKf2VdpSqWQyKffi75ysk9HRRqLmDSsWi6Grq0vym9huROdnMGzN7gt0xm3btk02ELspdXV1\nld2wUqlUqIWFXlDlag912+VmOgL1eHT4lxNd6USdqG4ENnO/WWOvxiS0pit/oGNjY/Kedb4nk8nQ\nj1vXSfI92+GgWmd0PebgYp+z73GehoeHy+aEeZ4nz4Nrl6+JRCJ0QIl2dTRDzlrA+WAjSN3VJEpO\nzpU1//Xn7GEd+/fvb/i4nUno4ODQMaiZYSUSCezatQvnnXcegHAb4GQyKZqEjlfu4qtXrw4lEvKa\nVCoVoqQ6cc2yDa2VbQ1eVOh9fn6+4cmIvK9+7erqCmWzR3WYIKjJtfa1KQHl+hQ1AtWaS3beZmZm\nhF3rgAOvsWabTv+w5/Q1qrVzNXJUc2+gdH3Z9Ug5Dx8+HFpzPGhibm5O5Kw3naaZTnd95iDgs3m7\nFvURb3ad60NJ7LrWAZlGwzEsBweHjkFNDCuRSCCXy+Hyyy8Xv1RUJbplQUxd0CF/20upUChEHtrA\n+1iWon0ktgOCrhm0HSQbBVsTGdVe1nYXjcfjMg6dMMpry3W2tGkejUS1Wlx3x+ArS3PswZnaIc85\nHRkZkWt0G2Eg+sDYdsEGd3RdpO0GkslkQmtV+yv1UVhAuOSsnaCfSacwaIsGKO0KbE+K5rUrVqwI\nJc2yzEev90bBMSwHB4eOQU0Mq6enB6effjpOPfVU0f7UPnoH1hX9QOkx5bYPlA4H2zAqd/r5+Xm5\np9VaHAcQPjaqWCyGohuNArUPv1/7OcqVZPB9IHgOOpXBMg7NapoZEq90b+vTISYmJiQpl89Y+7t0\nh1Eg8O3k83lJAraFxs1kHot1LLWMWXdasJFwIp/Plxw2qpFMJkO+Ha4VfUhHu8BIvvbVWdl1Sotu\nNgAEz0sfpMq/sXvDUjqklENNv+JYLIZMJoPx8fFQHhEF0YvB5nPE43ERwLZQyeVy8lD06cKAf6ry\noUOH5B5AkMc1MDAQOmFZ16jx+/SBAY2Azb/SkxwVFgb8jVebE/o+esOynSn0ptxM1BL+j5JFz7M9\nEITXTE9Ph7LfW7FhLQbdUUT/X28sUV1EbMBHB1xsWoud83aA302TUI/Jblh6I+Lf7MlBmghwrmkS\nplKphm9YziR0cHDoGNTEsKamprBnzx7kcjmcffbZAIJMWSaE6q4LUZrEhvq1+Tc0NAQAeP755wEA\nL774IgDg5ZdflnuecMIJAICtW7cC8BmOZQa6+l/XhDVSg1sTguxOBwhsKoBmeDYwoc1Gay420+le\nLSzz8DxPAh+WXevnbLtZzMzMRB5ysBiaMXdR2fPaDQH4a4iZ7pZh6SABrQKdFR/VmNDKsljNZKNB\n+ciCtDlvAw46PYjQp1cTtlMJ0xqsmdwIOIbl4ODQMaiJYRUKBRw6dAi33nor7rzzTgD+4REAcNpp\npwHwGRATRbnT0mmpQ/f2JON9+/bh6aefBgDs2bMHQFCLpNsHUyPwO7QjlLs/uzJMTk7KcVh79+4t\nqe9qFGxiZaFQEEZktaVOqIyqG4zqXgCUssNGO92rdUZznJxLz/NCiaOadVonLUuk9MnPNnCjGXkU\n07BlQo2CLovSp20DPnO2TugohkU2wVSPqampEAPV/q5KTKqZARaO085dsVgsOSwFKD212yZu684T\n1umumVqjZXEMy8HBoWNQc6yfPYtos/NwUb7qo6zs0evaprXN/ufm5kJdLXXZA3fqN998EwBw1113\nAQg0NwCJJGqbmtp4eno6FJZeCixT0uyADMkm1HmeF+qNraNKtiMCGWa7QuCaeXCcZEV9fX3yb3uQ\nZm9vr7ALGwmcnp4WRsV0F939oJxGbkRkrZK2t35DXR5lWZfuWGH9kzr50q57XfhebizNTu3gb5Jz\nx3nSx+VFdYm1RftR79kj6zOZjNyrXE/4WlFXctJiYW+9CS0FUT9Ue5YdTb5y42qWGUGwFlLnY3ET\ntZObz+dDG4DelLl4aCZzcdmF0CpEPU/tdOUpR9a0SyQS0s2DwYi33npLPs918eqrrwIoPbex2Q3r\noqBTUbhOqCxmZ2fFtWHN4unpafk3nwGV5cTEhMyfzQ/UOYetXLNaYTIvjmutt7c3RDD0Bm3bROt8\nSF7He/I32oyW184kdHBw6BjEatFosVis/Z3HlgjP8ypy7mplpKbZtm0bAOD8888H4Gslmkg0efh/\nnZxneyxNTU0Ja6Sm4usdd9xRwiSrwBOe5+1cZPye+nfkNVFJwGSP69atw7HHHgsAkvFOtqm7S5Bd\nMhAyNDQkbGvfvn0AgpO15+bmQho5ysGtXhe1n2KxmLeYmaVdDhw7w/7r168PHYWlAw82GZlnNI6M\njMgxZpRXB4PKuSc0++J3VCvnYtf89zoAwdpkz7qNGzeiv78fQCAnM9Z1Zj4ZGZn22NgYDhw4ACA4\ntu21114D4LtoanFnVCOnY1gODg4dg1oZ1giA15o3nKZjs+d5aypd8P9ARuB/Q85FZQScnB2E6uRs\ndzsPBwcHh2rhTEIHB4eOgduwHBwcOgZuw3JwcOgYuA3LwcGhY+A2LAcHh46B27AcHBw6Bm7DcnBw\n6Bi4DcvBwaFj4DYsBweHjsH/AYBj3fxF2SIDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 8]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfWmQXFX5/tPb9Cw9mUwmyxASwhKGxRDZxLArm6hFCsOi\n4vJBsSy11EKp0iq/WEVZiEsplJZVYomgVVpYIIgYYgoQEZSErQghkGgSCYQkM2Fmwuy93P+H/j/v\nffu9t3u6e3qZ/nGeLz3T9/a959xz7nmfdz0Rz/Pg4ODg0AqINrsBDg4ODuXCLVgODg4tA7dgOTg4\ntAzcguXg4NAycAuWg4NDy8AtWA4ODi0Dt2A5ODi0DNyC5eDg0DJwC5aDg0PLIF7JyZFIpOXD4j3P\ni5Q6Xos+tre3AwCOOeYYAMDbb78NAJiYmAAzC/jZ0dEBAOjt7cXU1BQA4ODBgwCAbDZbbROGPM9b\nUuqEufYzHo+jr68PAHD48GEAQCaTmfV3HR0d8nxGRkYA+M+iUsw2lkD1/WxrawMAdHd3Y+HChQD8\n/rG/ExMT0pfe3l4AwIIFCwAAuVxOzhsaGqqmCYJ69nOuSCQSSKfTNblWOf2saMF6tyISyT/HsBfr\n9NNPBwB84hOfAABcc801stB0dXUB8BclvuBh2LlzJ3K5HADgpJNOAuAvXJs2bcKPfvQjAMDLL79c\nTpP/V85J1SCVSgHI9/frX/86AGBmZgaA/2LOzMzId93d3QCAZDIJAFixYgUefPBBAMC//vUvAMAf\n//jHejW3bHz4wx8GANx0000AgMnJSQD5hYuChH1Zs2YNAGDZsmXYu3cvAH8xe+uttwAAo6Oj0uej\njz4aAPDoo48CAL72ta/VtS+VgG3q7e2VBfYLX/gCAEjfNJYvXw4AePzxxwHk5/b//pefbldeeSUA\nYHx8vG7tjVQi3RzDymPBggW45557AABr164FAESjee36nXfekQlOycMFLJFIoKenB4A/qFykwsaB\n0rujo0Mk/pNPPgkA+MxnPlOqic95nnd2qRPmOpbXXXedvNTf+c53APiTedmyZfKyDg8PAwDGxsYA\nAJs3b8bvf/97AP7i98ADD1TVhloxjxNOOAHf/e53AfhCorOzE0B+XDlGXJRWrlwpv+Uxfo6Ojsq5\nHH8ybC5cIyMjuPnmm2drlqCeDOvvf/87gPwz4JhRwL7zzjsAgPvuuw+f/vSnAQCxWAwAZI6PjIzI\nPHjve99bTRME5fTT2bAcHBxaBk1XCcPULVLvCy64AACwcePGwPlc6UvZTXiuvf5ccf/992PVqlUA\ngEOHDgHwJWw8Hpc28f7xeFz+p9rE9hNkaBqUXFNTU9L+iy66CABw8sknAwBeffXVGvWqMrS1tYkN\n6mc/+xkAX9WZnp4Wac1znnvuOQDAXXfdheOOOw4AMDg42NA2F8M3v/nNQFs4Hu3t7TKe/NyzZw+A\nPJsiC+b4s9+Az6w5/lSd1qxZg49+9KMAgIcffrj2HaoAVAOPO+44+XvRokUAgP7+fgDAV7/6VWFP\n1CjInOPxuPyuEXAMy8HBoWXQdIZFSZbNZrF69WoAwI033gjAZxjj4+OiM2/ZsgVAIbMik+G1+L8+\nJxaLzcXrBgA466yzAACrVq0SpkTpScbU3t4utgptBwHyNi2ez7awrYlEQtpL28Ebb7wR6Ad/x2dU\niS2klhgbG8PixYsB+MzhG9/4BoC8YX3JkryTkmyEUnjx4sUFjHM+4De/+Y0Y28m0aMvq7u4OeMHo\nUGD/AeDIkSMA/Dkbdj7tl/v27Ws6syJ2794NAFi3bp3Ms+npaQCF40MD/IUXXggAePPNNwHk7V2c\n542AY1gODg4tg6YzLDKTbDaLSy65BABw2WWXAfAZRjKZlFX88ssvBwD86le/ApCXhLTvWAaVSqXE\ntjAxMTHntn7wgx+U9tBWweuzH9PT0/jWt74FANi/f39BP5YvXy5ub7IuSt9kMileszPPPBNA3nYA\n5MMFyEp4v2uvvRZA8xiWZn2aaQD59h44cACAzzLJOrPZbCAWrdnYsmWLhFisX78eAPDMM88AyDNo\n9oEsUYdxkPnzHI7TkSNHhGUSPOfb3/523fpSKV555RUAhTZVerDZT9qtAJ9Bavss2WUj0PQFiw8F\nAN73vvcBAI499lgA/kOMRqPYtGkTAOCMM84AAPzgBz8AADz77LPYtm0bAGDHjh0AgHPOOUeu9/TT\nTwPIx/zQtV4tuEhkMpmChRbwQxBGR0dx5513AgCuuOIKAP4CdNddd+GLX/wiAD+eigbOWCwmashP\nfvITAMCXv/xlAPlJwetz4aXRfWBgADt37pxTv6pBNBoNCAo+EwZahiESicjv+HLPB9xxxx0AILFl\nr7/+OoC8isgXmM+eKjvg95nnsE+JRELOoypI51EjX/DZQNUunU6LEE0kEgD8mLLnn39e+sLz2e9I\nJCKhHI2AUwkdHBxaBk0TcTac4fLLL8fZZ+djHbmaM1J8YGAAAwMDAICtW7cCAP7zn/8AyKt95557\nLgBgw4YNAPyAza1bt4pxenp6Gs8+++yc2kzX7r59+0QaaTc24KdmAMAjjzwCwJe+p556qqhwf/rT\nnwAAV111FYC8ZH7++ecB+MZ9ql1dXV3CYqgSkgGce+65TWFYqVRK+k61iFI3l8sVSGCNaDRaEDIw\nH6BDURhK873vfU+Ok1nxHAZWTk5OCqPiJw3WOkyFfz/00EN160O1oNkinU7LWHGOcVxfeeUVYV3s\nC1lVMplsqPPEMSwHB4eWQUMZVqmV+JZbbsFRRx1V8B2NlJlMRmxdlIBkY7lcTpgJWRcl4Ve+8hUc\nf/zxAHz7UzVg7hhd3tqGxT5R6uogOv6OUveoo44Syc3fkQ1GIhFhigSl39FHHx1gWDR+Xnjhhbj7\n7rur7lu1iMfj0oewsJJSoSb8zgbPNgvagUC7zX//+18A+YBKMg0yf81A2BfaR2lo1/1k2Md8BMNz\njj32WAlCZn9t4DPg25x5LJvN1iz5uRw4huXg4NAyaCjDKuXGHh4eFoZF9kAbSTweF5c/V38ymlwu\nJ8Fs5513HgBfqi9dulTsSHMBwxR4z7GxMWE8/I7tymQywv5YnYGewEQigWXLlgHwmRV/19bWJt61\nj3/84wD8kiWTk5PiadJVBACfaTYa0WhUbDvamwvkpa8NMdFjT8Y5n8G+dHd3B9Ju6OXTlRy0txso\nZG1M35qPYPgJgICXUNvhOH48xvkbj8clTacRmDd+5c7OTnlA/OQLMTo6KqoWQx74ACORiJxPFVKr\nTzqzvlowNIK5VatXrxbjOh0Du3btknv/+9//lvvrz2w2Ky+3jfbOZrMFFR8AiDG9s7MzsChQXay2\n0sFcoSezNrbz/7DcSCDfby5YS5curXMrywfbyz4wdm7t2rVyjO3WL68Na9H5n4xPYygAoY388wVa\niFhi4XlewRzWn5FIpKFhGk4ldHBwaBk03OiucwcBvybS8uXLZZXnJyn4zMyMsC2qTWRcnZ2doh7Z\nQL2XXnpJrn/22WdLVG+l+MUvflHw2dvbixNPPBEA8KUvfQkAcPHFFwPI1z5iUCgrFZBGlzIy62dD\nNUP341Of+lRVba81qKbGYrFAaEoxVgUUVrNg/8hOyU74/XwAc+ei0ajML/ZdF+2j2k+1SOfj8XnM\nNzYVBo6PhtZirMNMj309C/ZZOIbl4ODQMmi40d2mtNDA3N/fL2ED2qAO5CUxbVE69w4orIBgSxH/\n/Oc/lxLG2g0/VwwPD0vVCLJB5kF6nicSmQzC2ngABEICcrlcAaMEfOZBG9p8gGbBxZwo+nsb3gD4\nz4PBh/OJWRG0Rekxs3mj7e3t8h0ZFu1WrOkG+Ax7PiOMHdvac/o8nZbVSFukY1gODg4tg4YyrHg8\nHnD/0t4zPT0dsPWQhS1dulSkMG1XPLe9vV2YDKUcPTw33HADfvjDHwKAeO7mAl27iv2gpKGnRNfd\nsgxEJ/6WgrV10Ramj5WqBV9P8H7VBn16nhdIZ5oPsDYc2p0GBwdlrK37fnh4WI6R3TOEYcmSJXNO\ntm8ktPYRFhBcrIpuJpMRz30jUPWCZemijsFhjEaxSaDx17/+FUA+387GGPHlGBwcLKDhAAqia+39\neO7atWtrmknO9uh7MyKaC1bYoqyNl2GLGMHfWRVCu42t06LR0AsVn3eYOlHqmO2DDSloBmwbqNL1\n9vaKw4fxdMTQ0JCE0tBBoseeY8ty2sR8NMLreWizE+zfQCGpaOSC5VRCBweHlkFVDEurPZVIi4su\nugjXXHMNAOD8888H4AeHHj58WJiVLSM8MTEhKzrVCTItz/MCxfl4nbGxMangUMtM+Wg0Km0jK9TO\nAD4TGxzqeV7R/DvP88SgTakdVuq52dDPXTNHoJAxFVMZNcvkJ8ermcZ3y+7oAHr55Zexb98+AP64\nsJ3Lli2TcWeogw5JYV4itz+bj2AVlLa2toLQE41oNBqYt3pu2gKO9YRjWA4ODi2DqhhWmP2E+v3y\n5cslqJKShSxnYGAgUC+I7Kivr0/STXR+HZA3ulOSUcrR1Z9KpWTrK7uZZTqdxrp166rpYkloO5RN\nWdDMw9pvdJ0oQjMt/s7af/T9ml1WWEvYYjtizxY+ElYja76B+am7d++Wagucl7QpLliwIJDjyXmq\nK48wpYvu/0OHDs0Lux0AnHLKKQDyjiraZq0NVQcJEzpdifmxzOWtZxjO/JspDg4ODkVQFcNat24d\nbrnlFgB+/R+mzOgEX7rj9fZVtp4OJdPTTz+N66+/HgCkMig9NdPT0wFPxGmnnSbn0MZAtkYXcyqV\nCnho6gVusjA8PCz9t0xrNuahtwPT58+XulFAeW3RtjpCszFewyaCNwt6O3oGKJ966qkA8gyLc5u2\nGtZd6+rqkk1hOdd1xVmC4Q033HADAOCnP/1p05kVcemllwLIj4udp6WYvZ7j9JQzTa2eDKvimRKL\nxXDHHXcI5bXZ29oATpXOGqgB3w3MBeX73/++HGfHtYr46KOPAvD3UaPa2dfXFwgH0C9+PXYXDlPL\ntGHc9ruUGqUj3dn+sKoApe7dSGgDu+1DWDkS+78+h7/jXGjW5gx68fjQhz4EwN9Npr29XdpFocnq\nCyeffHJodQcgv5uTzTOkUFu9erUses0GTSbpdDpQlLLUZiG6zDVVZVuAsh5wKqGDg0PLoCKG1dfX\nh/Xr12PVqlVCA1kNgZ86uI7MQO94S9ZE4zm3trr77rtx9dVXA/BDECjRUqmUbMzAvQH1vn4MdSCz\nIbLZrLRh5cqVBcXKag2yolgsJmwrLCqd39lI+Xg8Ln/bMI1S22Y1GprFllL7SsFmAsynyHcypJde\neglAfgw5r2w7w4JodflkqpdkaJqpzReGxXdseHg41MkD5PtZbExjsZi8y3Qu8DnVo1CjY1gODg4t\ng4oYViaTwaFDh7Bv374CgzgAMXynUimRSDRAvv322wDyxfjJxHRlRl6bW19xY1Su/osWLRJGQuMm\nDdOZTEakGqU//49EItKWgYGBgpy8WiPMiBrGOIoZ4LWhmufbbaXstZoBHQxrnQvlQNv6OIbzIayB\nc43BngyQHRsbK8ibAwrHg9/ZMsqAz5Tp9qfty+4I3QywthcdCQcPHiwICgYK569No+KxtrY2/O1v\nfwMAXHfddQD8berqYXxv/kxxcHBwKBMVMayZmRm8+eab8DxPvCKslMCVemRkRLYOooeOEiqZTBZU\nWQD80IVoNCq/YzAbKxnu27dPPC2UYDw3nU6LlKPEpgTs7++XINLTTz9dKkPUA2EsIYx5lGJY1obA\nftFGMB+g7YTFAl1ng00inw/9O+aYYwAgkJ7S1tYmc5UsQ3vNyFRsOlY8HseePXsA+B5t2mt7enrE\n1kvto9FgnTjt9S1WQba9vV3G3VYJyWQyOOmkkwD4fef7Ww+GVdGCNTk5iRdffBH3338/Pve5zwHw\nQw8YbjA1NSVqHxcnLiBtbW2iRlCV1AZYUmjScl0kjA+DKiTvMTMzI6pemLrIOJmDBw/WbP+0UipQ\nWJySpdhh54WpjXw28ykOS1fSsCVHyoHOw+R4rF69GgDw4osv1rKpFcFWHeFc7OzslHlMs4R+aTkP\ndWlkIB/CwHhCZmJwXsfjcVnomrVgccdxLfit44B9i0QiAaJBB0I6nRZjO58BYyTrAacSOjg4tAyq\nCjG+9dZbRRrefPPNAHyj5dDQkDAdqnSUXm1tbcKUwoLUuIrzk9I8kUgUdaEfPHgwEFJBCdHf3y/u\n6d/97nfVdDUUYXWtbK6jhq7TZVlJKbYWxrCabXTXlQesCqv7adupc+dsFQpK+WaCJg3OOZoz1qxZ\nE2AVPCeTyYhJw1acWLt2LR5++GEAPvPXm1k0O7r/hBNOAOCbZPr7+2WMyPrInK666ir85S9/AeA7\nyzjPufEL4JuH3vOe99St3Y5hOTg4tAwqXuaZd7Vx40YAkE8GdN56662SbsOAUa7csVgsUOuKOHTo\nkEhlun9pDxgbGytq80mn02Jv4H02b94MANixY0fDN3DQNhqbshKNRgNZ+po5FqvyMJ9sWGQQiUQi\nUC5ZG3Btm2mvisViARsJqyE0E2RYfPYsxd3T0yNzljYoMqXh4WHRIsIcDswhpMOI/R4fH5fUttde\ne632nSkDZEwf+MAH5Du2T4dtACgo9UxWrCurcr5zbjAsqR5wDMvBwaFlUDHDKpZl/vjjjwNAQf2p\nk08+GUBhyMOKFSsA+BUaKXmZ6tMKCLMj0Vs6MDAQCCbUga32uzBPqL3PfLJhcXuzgYEBSRnSSe1A\nnmnxGYS11ybO79y5s27tLRdke2Tr9OIBvmeMrILjtGTJErF10X7DoNDFixeLnciGfeRyuYJtwJqB\nO++8EwDwy1/+EkB+zGhLtO+4/p/nUHtKp9PSFwaK33777XVrd10tf6+++mrgu3rGQjUTfHm7urpk\nQls1IxqNFt2jTqtRtiQvJ76+VrPKk/CFvueee8QMwH7qfRhtWWcdqsH4JAo5mzvZDDBWim3jIgX4\nbbclkp9++mkpGcMxZ1URrf5zblB93LNnj/S92WAIglbjbA6g3neQUftUG+PxuCxYrHRRTxXfqYQO\nDg4tg0glKkYkEmmuPlIDeJ5XMsqxnD6GhTVw/8NkMilubMumotGoGDBtMKnOiaTqQbVky5YtYiQt\nE895nnf2LH2oaixLhWMwrKS/vz9QyI6VMg4cOBDYbKLcKg8Ws43l/792WRe1+YKayZLhkjlYs0a9\nUct+lsIFF1wAwC9eyN3Mb7rpJnE4cJ6Tdf3hD38Qx9tcUU4/HcNycHBoGVTKsAYBNN8HXT1WeZ5X\nMlX+/0AfgXdHP2ftI+D62UIor5/N9jo5ODg4lAunEjo4OLQM3ILl4ODQMnALloODQ8vALVgODg4t\nA7dgOTg4tAzcguXg4NAycAuWg4NDy8AtWA4ODi0Dt2A5ODi0DCoqL+OSn0v+DkA+4ZllVliihPWi\ndMkVvYUSwfIjTA62VVkrwFAZqTlV9ZMlcHp6eqSGFPuidyuyYCK453lFN8WtFPVMCtYbhXKMdC13\nIJ8YbbcF0xV1WaaFn2HPpRw0op/JZFLK59gKonoecvw5ntFoVPrF86stfVROP5tbCb/OCKuqUO11\ngMIKCyxgduWVVwIArr/+egD5/d7sRhQcwMOHD8vfrCEV9iKzRDRrK917771SR8yWXy7Sv6pyysL6\nyQnKF/H9738/AODzn/+87G3HonVcqLu7u6WfXJS4J9/27dulZPB9990HANi6dSuA/IYGtvBftZUc\nKoVeiAHg8ssvB5DfTOLoo48GANky7swzzwSQL/rHWl4cx127dgEAnn32WXmBWRfuscceA5Cvh8XN\nGxqdGkfhwvHkdl8bNmyQKhQE5+HevXsLNtAA/DHv7u6WPUofeughAJCdoI8cOVLzum3zasHi5Azb\nUcfuzBIGXSiPn3wB5sBWAi/PGWecgdtuu03+BvzibplMRhYebuLKydzV1RWQQiw3k0gkpCgaK7Xy\n89prr8Vvf/tbAMCPf/xjAMEqn3NBsQ00I5GI/M22sYRMKpWShYdlVvhin3DCCXKMtdE5+fV9WIJG\nbwvPsbeVWWslfMIQiURkg15WQz377Hx1nr6+PilQx+J+HN+TTjpJxpOVR/ks2traZE5wo1G+2IOD\ngwHW3aiFi8+XG8fqjWDJdNkWCqAVK1YUMDHAZ409PT1yTV6LO2jt2LEjUAxwrnA2LAcHh5bBvGFY\nkUhEJC2Lg+ndOyiJSKUp2bRk4upPiTgzMyOSbHh4eM70lOVhb731Vpx11lkAfAagd8IlfSbt1jYM\nq+/rQnFkZPwdjy1evBif/exnAfiF8H79618X3L+W0Lv9WMnKMVqwYIHY3CxbPHz4sPSFz4X/60KF\nZCCaEdv653p866UeatWXahHZRSqVkvHkMzh06FCgL7a/XV1dgX6SvXV2dla0W3atoBkzQSY8Pj5e\nYJcCfM0gm81KX/hcNPMmi+b4k4Emk0nHsBwcHN69mDcMK5lMyq7C69evB+DvINvW1iYSjBKBq3ks\nFhMmRilAFjY6Oio2haeeeipQmrdcUBpee+21APIlZCk5KHXJimZmZoQBaIM6kJfIxXawTqfTAYMo\n/5+enhYj/YYNGwD4+8qRcVULbRuy+yh6nhcw8pMtRCKRgjFgO4H8eHFMaGznsx8fH5dnRuainxft\nKPY5eZ5Xc1bC60UiEZk7tNGx39FoVPpF5kBDezwel2Nk8mSdk5OTwtY4nmSn9K7qNjTKhmX7ondn\nJ3tim9jPY445JmBr06WkOSd4LV67Wq9oKTiG5eDg0DJoOsPS8S5r1qwBAFx22WUA/O2tPM8L6N6U\nFLFYTCQ8mRUL5mvP1NatWwt2q60ElDyXXnopgLzeHravIP+npOF3WvJYO4HeLdlu4UVJHIlEREpz\ngwCGFGzatGnO0jmMWfHTtomevd7eXmG77CdZ8O7duwOSWHv77DZommWU2sas1ixE99OOC932K1as\nEA8gGQf72d7eLu0kg+S87OjoCDBJHc/VDBuWfn5khOzTwoULhRVb1qcZod3puru7W94/9o/PZC6e\n+WJo+oKlDXzW2K7VD7vJqN7nzhqGGUuTSCRk48/JycmqDdR00zLMQBujOShcDKenp+U7Tl5O5qmp\nKWkjz9f9sH3kSxSPx+V8Tp7zzz8fAPDEE0/MKcRBq0NhsAsr/z948KDEWNlYrYMHD8oY8Bz+XgfK\n8r78ved5AUdFPVUmrRLyWVs1fmxsTNRUHqPaGIlEZDEi6NoPcwbpcB3+XUqI1iOUwy6UXIAOHDgg\n8WV87zjXYrFYwIGgnUZs49tvvw2g+kDgcuBUQgcHh5ZB0xkWV/xUKiVGd67ilF6xWEz+5vlhKRCU\nZFRDksmkuFyz2WzF0ops4uKLLwZQuJMzJSSliQ5dsGk3OuiV7bYpHXrnZ/bDBm0CvpQ/55xzAOSl\nvVZ9KwEluGYa9rh1cbO9R44cEWbHcaO09jwvwLDY3+np6YChWj+fYhHu1jlQa+bBZ8+5Q1VpcHBQ\n2s5wGW0G4N8cIzKskZERCXHg79jfqampQPsbbXwns+P8PXDggLSPY6fnKp+BnQcTExMyxnxmvE49\nVELHsBwcHFoGTWNY1ibS3d0ttiLasij1tME9LCiTRnFKDZ0KMzQ0VHUbqcOvW7eu4J7RaFT+ti59\nz/MCOjzbFY/HQ9OHgDwb07Yce8xK3v7+fgB5ozCdDNXa6GxbiFwuJ99R6vb19ckxHcoBFOY5cnz5\nO45DJpMJ2Dx0SlapsIZ6wfO8QFgCDe0dHR3CnrQThP9z3O18iEQiwjx4bV5T2zkbDesM0Qn3OpQD\n8PvC44CvNWjbG98/Or2qdW6VA8ewHBwcWgZNt2FxNe/v7xfpvXDhQgC+1NKMhSxCfxd2HpCXBlzt\nK5XQkUikINEXKAyEszY1HtMePdvHaDQaCA7lZyaTCXgJKb3b29sDEpF2rqVLlwYShquFtqexvWSr\nvJ9OkGWbdN/5e9oOOab62dmgRc1OeP2wEItqWZa1eYWFFLB9ZH20C/b09EhKDcectik9Xnz2vE4s\nFhOGxXHU6UlhbQQaZ8Oytrp4PC73toHLOm3OzpFkMinf2cDReqDpCxYnwfLly8U4aaNxk8lkgftf\nI5fLBSYgz0kkEgG3fCXgQLC0Cw2qK1eulHYzFomqj37JbchDLBYLTAY9SfgdFwdOgDfffFPOo/q3\nY8cOAH41hGqh1TcdS8b2cjHkMV3Digs5P6k2TE5OBkJM+LzS6XTBIqSvHY/HA2EC2n0+1wW51KLA\nF5iLyv79++UYKxtQNeTL297eLgssf8d+d3Z2SiYAFzjmII6Pjwf6Yp0N/LteCxjvT3V1cnIy4Hzh\ns08kErKwse9aqFlHEo85o7uDg8O7Gk1jWGQTNNgde+yx4h63uVeafVjDtOd5gfpZZGidnZ0Sma2D\n38qB53l4/fXXAQAPPvggAGDbtm0A8hKX6iLV16uvvhpAnkFQarH9NnBQt1WzSIL9J3t75JFH5Jos\nBsccyVdffXXOkswyHS3lySC04wDIjxuZJKUv2dH+/fvlWlQJtbpugzR5biwWC4wz+12LyPBSbMWq\nSDofTrND3d6RkRG5pq1cof8mw+K1wyoYFAvfqBfsu5BIJESD4H11Nod1aPEZ5HK5gkBt3Zd6wDEs\nBweHlkFDGZaWGJTUK1euBJAPHaAtxIYu6Bwza1PRxkIbBpFMJiUf8amnnqo4ZYBSd/v27QCAnTt3\nSvsY3PqRj3wEgF/JIZlMyn0ooWj70PfXbMt+Zw3c9913n1SrJOvSAatzkWg6cDSMqbFNtF2RSXR3\nd8t9LaOcmJgQqUupzWeQzWbl2dkA2ampKXnm9hkC9TNMa7sjmQTtN8lkUvpAm5RmhGTwYYGuZN+s\nWKEZWrGqHbpv9WQqNnD5lFNOkXHRNle2zQZzc5za29slHInaUj3b7xiWg4NDy6DhNixru7riiisA\nAKtWrQowLK7iukKjTZjNZDIB75auEDAwMCDXrNbdatMYJiYmAvYI7dq3HkAdGGkDDNlXnfxsbUr7\n9++Xule4RNSUAAAKzUlEQVTWJV6LSg3Wa6evzfuxn2Ra3d3d0ibLsEZGRqTtDBNgPw8fPhyon8Tn\nmk6nA7Xca7WJSKnr6HATgm3q6+sTJkiGxbZp77Weq0DebsU5bnfP0aldpWq6NyLEgWM2MDAQsA9r\ndmt3RtJznCxTJ4XXCw1ZsHRUOx8Qd1+55JJLAOQnhi2Cz4eii76FGQSt+qBfAG6M0NnZKYtMuSj2\nIkcikUCpY94zHo8HIoZ5LBaLhaoOPMbf6fYD+Ylei800LIrlEOrj1kWtDcY2mp0Tfnx8vCAPFPBf\n5NHRURknGyGvYResubj7yzmX59gKG319faLasZ3sW1dXl4Ti0LCuwxqsAZ/X1NH+jd41h+DzZMaE\nDtVhu3UVDlu6WocycKGi+eXJJ5+sW7udSujg4NAyqAvDspJbVx048cQTAQCf/OQnAUD+18bzMOlj\naSr/1yWJbbG4XC4noRILFiwQ9aRclCP9wphAsYjhsNAKSrWZmZmAFNPPr5YqkkapTR50dLmN5E4k\nEgEVVm9hZseQ5+raXTZIVG92UMq1X49nYFVfreKHlQVm+3UhSaDQbKBVR8B/PjMzM03LJSTYB0bx\np1KpAmcCUFgtxRrp+fvJyUk5nwU4rXpd03bX7coODg4ONUbVDMuuoppVWT2XdquVK1fixhtvBOBv\nVEl3ss6ls7lp0Wi0qJ1K24WsxI/FYlL5oaurKzSUoBqElZrVYRY2MDJsUwdbIYHnAsH8RHvPWkJX\njLTMOIxh6c0orP1O27v4XGytskQiIcf4O23bIRrBrPR1LYvi/5pFhYXP2Lmn60Zx3tuAZm3DKoV6\nbx4L+Hanjo6OABvWDN++O/oZ8O9TTjml4Hf1gGNYDg4OLYOqGJZOUg2rnUNpSncn0zM+9rGP4dxz\nzy34nfauWZe99gja5GftwbCeLM0G6FqupuJoKVjGQUSjUQmStLYofX8rsXQwofUI1pNZhEEzrTBv\nJv/XrFBfL5FIBAINOQ49PT1Ft38qVVHBHqullzCMYen+sg829SSRSBSEawCFbv8wj7a9X7NAFsV9\nCvS+CTbAOpFIBFJywgJ7bXWTSr3yZbW70h9EIhF0dHQULbIXj8fFDcwo9tNOOw0AsHbtWumondC6\nML+NxdFqi865s8fCDLY8f64R4cUQZiC3KjFfgra2tsBCp18Qq5LxGWnDb61RKv7HhhLoz0WLFslO\n2FR1WMAtmUxKqAPPZ7R4KpWSaH29IYW9d5gqWm2O3WwLnD5m555Wlfiy6t2P7WLG+a33oLSGanvP\nctpVa2gzDZB/j+39bI4u4PdTx0PyPL73XBtYnaKWcCqhg4NDy6AihkU14NRTT5UIcgbFUdIsWLBA\ncot0SAGQl0xc2a1KFI/HAxJJS3W7ZxrppjZg2ghzoLAm1VzrKYWB0jbMCBm2NZllCdoIb5mZLfhf\na+g8Qo0wFdY+u+npaYl6Dyu3y/pQlim98847AaN7mBt8tqDWSlCN+qjZsd1yjP2dnJwMzD2O55Ej\nRwL10BpdpK8UqLZRjdNzIew9sjm8OrSD5/Ed5Y7X27dvr33eZ02v5uDg4FBHVCS6Y7EYenp6sGHD\nBtF9KT24uiaTyUAqA1lVX19fwNUbVj7YMi1tkKdUp70kHo9LeoQN3kskEgUSsB7uVlvqOMxwrPPG\n7M7G2pDL8/mdLUtbD5QydGvY3X2TyWSgsoLeMJaM2waHdnd3S9VU2hd5zWg0WlZAZaVSuxIbFqF3\n7SZzJKtnPwHfzkjwmLY78hlY++tc2z0X8H0lw9LByaUCP21oh3aIcRxXrVoFoD7tdwzLwcGhZVCR\n6GZ9qfPOO08ki806n5ycFA8Rv6Odp6OjI1DrigiT7lzxR0dHpaaQ3dKqr68vNNCSbWOGvbaR1RKW\nBcVisUBYg/YyFUu/0V5Cy2bqybBmgw0/IYMYHh4W2yRd+pot2y3ndZ1+naKij4V5JYlaVqWY7Tz9\nOTMzI+OpN2wAChOcbcL6zMxMwOutbbPNtmNRC9IaT7G9EYBg0rP+3mpELDiQSCRCq6vOBRW9CdFo\nVHKOLOUn3Q0rCKcNdjZuS6tBHEROApYB3rVrF/bt21dw/vHHHy/35QIZtluNzl2rJdiOMNWnVJUH\nG9agJ0KxPLr5sGDZNuVyuUBEP1/szs7OgOqgBRzPpypv47l4fY25vuTl/tbGTk1PTwfmlXaK2Pml\njdG6zHI921wJ2D6GHmh13M5bLVStg0TPY/ueUyVMJpM1X7CcSujg4NAyqEh0j4+P45lnnsHtt9+O\nCy+8EACwevVqAL4rs7e3N1DqV6tLXNGtuzubzcpecI899hgA4IknngAAHDhwQCTZ+eefX3BfXfTN\nuo1HRkbEva4rCNQCVnXQOWg6r5D95rk20FaHdxSLbK9VDmSxPlhoNmX7qY3RtkaWZidkF3SOkDVr\nBm6rH+g81FqHAFSrEqbT6UDkN8dDV6zg+Zxv2WxWVF/7fEqZJmyAbK1ZFtks31edA1mO04XQhnmb\nacKAYutwqQUcw3JwcGgZVMSwcrkcxsbG8Oc//xkbN24E4AeFcsVevny51LjiSqsDSWm3YHoGWdWW\nLVvwzDPPAIBsr6X1X0oG5iVyxY/FYjjuuOMA+NJ4aGhI2ssNMd94442KN6EoBVtlISwA1Gb+awkW\nVmfK5kJqptbIoMMwR4C9/9DQEBYvXlzQXrKowcFBGR8yLG101zWj7H2L2cw0M6vmGei+hNkYrcOD\n9rhEIiGuf2uvmpmZEeO13lpO/6+vybkym/OnntUOqPUwqFsHJ9udvHWYULFnp8eF59PJ1t7eXvN5\n6xiWg4NDy6Bi9xNtNJT+1NMHBwcBAC+88EJAolCX7ejoKNgKCvA9e9omErYac6WmXeuf//ynfE89\nvFjVBqAwjaIWsB48XY++WK2wUrW8dbKsrQoQliTcKNg2sW8TExMBG03YJgsMutSsgc9M18jiObPZ\n1eoBfU9rW5yYmJDQGGt/zGQyBelIQGEdfn5nQwJ0/X7bLz13ap1KposBkEHy/lr7sMne0Wg0wLq0\nvdJuDMP3feHChYEtzuaKmvnL9YO31JJUmgbJuVw/rGRFORS61hOe12NIhabBdoEpFWOmjdm2dIfe\nRageKmE5ZVds5Lk2ATC0ROfPAXm1nW2nus6xP3LkiPTd7qjjeV7RUtDF8h7LwWy/DTuuS8hwjAkt\niDnubDdNHVo4c3HQJbyLPfu5qr6l4HleIMyAbdL7TNowEx2KYuetLu9kYwzHxsaqDukoBqcSOjg4\ntAyaF5FYQzQjapiS6oEHHgDgq7apVCpQwYFsI5FIiPSxwYhTU1PCrBg5TlXktddeq0ulCYtSTJCq\nz+bNmwHkWTPLXPNZcJ/CvXv3yu/uvfdeAH5k9VtvvYUdO3YAALZu3Srf8V6l+jmXcdY5b2EMhn/T\nScDdvsfHx/HKK68A8B0+HM++vj4xstPRw1zXkZERqQe1bds2ABAH0GzqUT3Hmiz4tttuAwD84x//\nAJBnwnSi2FCNRYsWyXxl/8i0JycnhT1zd/IXXngBQN555nIJHRwc3rWIVLICRiKRQQD/q19z6o5V\nnuctKXXC/4E+Au+Ofs7aR8D1s4VQXj+bnYTp4ODgUC6cSujg4NAycAuWg4NDy8AtWA4ODi0Dt2A5\nODi0DNyC5eDg0DJwC5aDg0PLwC1YDg4OLQO3YDk4OLQM3ILl4ODQMvh/EloYiOaC3kIAAAAASUVO\nRK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 9]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMnGX1fuY+u7OXbreXpVxaSllKrQW0IkVaFChiFEIE\nxIAkxmgIGiUIiST+Y0IIRk1U1JiICYImGhXEKCIQAgmmQIGGW1sohQJLlV53t3vfuXy/P8bnfGfO\n9+10ZnYuOz/f55/Znfnmm/e87/u95znnPee8Ec/z4ODg4NAOiLa6AQ4ODg6Vwi1YDg4ObQO3YDk4\nOLQN3ILl4ODQNnALloODQ9vALVgODg5tA7dgOTg4tA3cguXg4NA2cAuWg4ND2yBezcWRSKTtw+I9\nz4uU+7weMqbTaQDAKaecAgA4evQoAGBychLMLOBrR0cHAKCvrw/T09MAgAMHDgAA8vl8rU047Hne\n0nIXzFfOeDyO/v5+AMCRI0cAALlc7rjf6+jokP4ZGRkB4PdFtTjeWAK1y5lMJgEA3d3dWLRoEQBf\nPso7OTkpsvT19QEAenp6AACFQkGuO3z4cC1NEDRSzvkikUggm83W5V6VyFnVgvW/ikik2I9hD9bZ\nZ58NAPjiF78IALjqqqtkoclkMgD8RYkPeBj27NmDQqEAADjjjDMA+AvXo48+ih/96EcAgNdee62S\nJr9byUW1oKurC0BR3ptvvhkAMDs7C8B/MGdnZ+W97u5uAEAqlQIAnHTSSfjrX/8KAHjmmWcAAH/6\n058a1dyK8ZnPfAYAcMsttwAApqamABQXLioSyrJ+/XoAwPLly/HOO+8A8Bez//znPwCA0dFRkfnE\nE08EADzxxBMAgG9961sNlaUasE19fX2ywH7ta18DAJFNY8WKFQCAJ598EkBxbr/7bnG6XXbZZQCA\niYmJhrU3Uo12cwyriJ6eHtx///0AgA0bNgAAotGidT02NiYTnJqHC1gikUBvby8Af1C5SIWNA7V3\nR0eHaPynn34aAHDDDTeUa+KLnudtLHfBfMfymmuukYf6u9/9LgB/Mi9fvlwe1uHhYQDA+Pg4AODx\nxx/H73//ewD+4vfQQw/V1IZ6MY/TTjsN3/ve9wD4SqKzsxNAcVw5RlyUTj75ZPkuP+Pr6OioXMvx\nJ8PmwjUyMoLbbrvteM0SNJJhPfXUUwCKfcAxo4IdGxsDADzwwAP40pe+BACIxWIAIHN8ZGRE5sFZ\nZ51VSxMElcjpfFgODg5tg5abhGHmFqn3BRdcAAB45JFHAtdzpS/nN+G19v7zxYMPPoiVK1cCAA4e\nPAjA17DxeFzaxN+Px+PyP80mtp8gQ9Og5pqenpb2b9myBQCwdu1aAMDrr79eJ6mqQzKZFB/Uz3/+\ncwC+qTMzMyPamte8+OKLAIB7770Xp556KgDg0KFDTW3zXLj11lsDbeF4pNNpGU++7tu3D0CRTZEF\nc/wpN+Aza44/Taf169fjs5/9LADg4Ycfrr9AVYBm4Kmnnip/L168GAAwMDAAAPjmN78p7IkWBZlz\nPB6X7zUDjmE5ODi0DVrOsKjJ8vk81qxZAwD46le/CsBnGBMTE2Izb9++HUApsyKT4b34v74mFovN\nZ9cNAPDRj34UALBy5UphStSeZEzpdFp8FdoPAhR9WryebWFbE4mEtJe+g/fffz8gB7/HPqrGF1JP\njI+PY8mSJQB85vDtb38bQNGxvnRpcZOSbIRaeMmSJSWMcyHgN7/5jTjbybToy+ru7g7sgnFDgfID\nwLFjxwD4czbsevovh4aGWs6siLfffhsAcN5558k8m5mZAVA6PnTAb968GQCwf/9+AEV/F+d5M+AY\nloODQ9ug5QyLzCSfz+Oiiy4CAFxyySUAfIaRSqVkFd+6dSsA4Ne//jWAoiakf8cyqK6uLvEtTE5O\nzrutn/rUp6Q99FXw/pRjZmYG3/nOdwAA//73v0vkWLFihWx7k3VR+6ZSKdk1+8hHPgKg6DsAiuEC\nZCX8vauvvhpA6xiWZn2aaQDF9n7wwQcAfJZJ1pnP5wOxaK3G9u3bJcTiiiuuAAA899xzAIoMmjKQ\nJeowDjJ/XsNxOnbsmLBMgtfcfvvtDZOlWuzatQtAqU+VO9iUk34rwGeQ2j9LdtkMtHzBYqcAwMc+\n9jEAwKpVqwD4nRiNRvHoo48CAM455xwAwA9+8AMAwAsvvIBXX30VALB7924AwLnnniv327ZtG4Bi\nzA+31msFF4lcLley0AJ+CMLo6CjuueceAMCll14KwF+A7r33Xtx4440A/HgqOjhjsZiYIT/+8Y8B\nAF//+tcBFCcF78+Fl073wcFB7NmzZ15y1YJoNBpQFOwTBlqGIRKJyPf4cC8E3H333QAgsWXvvfce\ngKKJyAeYfU+THfBl5jWUKZFIyHU0Bbl51MwH/HigaZfNZkWJJhIJAH5M2Y4dO0QWXk+5I5GIhHI0\nA84kdHBwaBu0TMXZcIatW7di48ZirCNXc0aKDw4OYnBwEADw/PPPAwD27t0LoGj2bdq0CQDw+c9/\nHoAfsPn888+Lc3pmZgYvvPDCvNrMrd2hoSHRRnobG/BTMwDgn//8JwBf+65bt05MuL/85S8AgMsv\nvxxAUTPv2LEDgO/cp9mVyWSExdAkJAPYtGlTSxhWV1eXyE6ziFq3UCiUaGCNaDRaEjKwEKBDURhK\nc+edd8rnZFa8hoGVU1NTwqj4Soe1DlPh33/7298aJkOtoNsim83KWHGOcVx37dolrIuykFWlUqmm\nbp44huXg4NA2aCrDKrcS33HHHTjhhBNK3qOTMpfLia+LGpBsrFAoCDMh66Im/MY3voHVq1cD8P1P\ntYC5Y9zy1j4sykStq4Po+D1q3RNOOEE0N79HNhiJRIQpEtR+J554YoBh0fm5efNm3HfffTXLVivi\n8bjIEBZWUi7UhO/Z4NlWQW8g0G/z1ltvASgGVJJpkPlrBkJZ6B+lo13LybCPhQiG56xatUqCkCmv\nDXwGfJ8zP8vn83VLfq4EjmE5ODi0DZrKsMptYw8PDwvDInugjyQej8uWP1d/MppCoSDBbOeffz4A\nX6svW7ZM/EjzAcMU+Jvj4+PCePge25XL5YT9sToDdwITiQSWL18OwGdW/F4ymZTdtWuvvRaAX7Jk\nampKdpp0FQHAZ5rNRjQaFd+O3s0FitrXhpjosSfjXMigLN3d3YG0G+7y6UoOercbKGVtTN9aiGD4\nCYDALqH2w3H8+BnnbzwelzSdZmDB7Ct3dnZKB/GVD8To6KiYWgx5YAdGIhG5niakNp90Zn2tYGgE\nc6vWrFkjznVuDLz55pvy288++6z8vn7N5/PycNto73w+X1LxAYA40zs7OwOLAs3FWisdzBd6Mmtn\nO/8Py40EinJzwVq2bFmDW1k52F7KwNi5DRs2yGdst354bViLzv9kfBpDAQjt5F8o0ErEEgvP80rm\nsH6NRCJNDdNwJqGDg0PboOlOd507CPg1kVasWCGrPF9JwWdnZ4Vt0Wwi4+rs7BTzyAbqvfLKK3L/\njRs3SlRvtfjlL39Z8trX14fTTz8dAHDTTTcBAC688EIAxdpHDAplpQLS6HJOZt03NDO0HNdff31N\nba83aKbGYrFAaMpcrAoorWZB+chOyU74/kIAc+ei0ajML8qui/bR7KdZpPPx2B8LjU2FgeOjoa0Y\nu2Gmx76RBfssHMNycHBoGzTd6W5TWuhgHhgYkLAB7VAHipqYviideweUVkCwpYh/8YtfSAljvQ0/\nXwwPD0vVCLJB5kF6nicamQzC+ngABEICCoVCCaMEfOZBH9pCgGbBc22i6PdteAPg9weDDxcSsyLo\ni9JjZvNG0+m0vEeGRb8Va7oBPsNeyAhjx7b2nL5Op2U10xfpGJaDg0PboKkMKx6PB7Z/6e+ZmZkJ\n+HrIwpYtWyZamL4rXptOp4XJUMtxh+e6667DD3/4QwCQnbv5QNeuohzUNNwp0XW3LAPRib/lYH1d\n9IXpz8rVgm8k+Hu1Bn16nhdIZ1oIsD4c+p0OHTokY22374eHh+UzsnuGMCxdunTeyfbNhLY+wgKC\n56qim8vlZOe+Gah5wbJ0UcfgMEZjrkmg8Y9//ANAMd/Oxhjx4Th06FAJDQdQEl1rf4/Xbtiwoa6Z\n5GyP/m1GRHPBCluUtfMybBEj+D1rQuhtY7tp0WzohYr9HWZOlPvMymBDCloB2waadH19fbLhw3g6\n4vDhwxJKww0SPfYcW5bTJhaiE17PQ5udYP8GSklFMxcsZxI6ODi0DWpiWNrsqUZbbNmyBVdddRUA\n4BOf+AQAPzj0yJEjwqxsGeHJyUlZ0WlOkGl5nhcozsf7jI+PSwWHembKR6NRaRtZod4MYJ/Y4FDP\n8+bMv/M8Txza1NphpZ5bDd3vmjkCpYxpLpNRs0y+crxa6Xy37I4bQK+99hqGhoYA+OPCdi5fvlzG\nnaEOOiSFeYk8/mwhglVQkslkSeiJRjQaDcxbPTdtAcdGwjEsBweHtkFNDCvMf0L7fsWKFRJUSc1C\nljM4OBioF0R21N/fL+kmOr8OKDrdqcmo5bjV39XVJUdf2cMss9kszjvvvFpELAvth7IpC5p5WP+N\nrhNFaKbF71n/j/69VpcV1hp2rhOxjxc+ElYja6GB+alvv/22VFvgvKRPsaenJ5DjyXmqK48wpYvb\n/wcPHlwQfjsAOPPMMwEUN6rom7U+VB0kTOh0JebHMpe3kWE4C2+mODg4OMyBmhjWeeedhzvuuAOA\nX/+HKTM6wZfb8fr4KltPh5pp27Zt+MIXvgAAUhmUOzUzMzOBnYgPf/jDcg19DGRr3GLu6uoK7NA0\nCjxkYXh4WOS3TOt4zEMfB6avXyh1o4DK2qJ9dYRmY7yHTQRvFfRx9AxQXrduHYAiw+Lcpq+Gddcy\nmYwcCsu5rivOEgxvuO666wAAP/nJT1rOrIiLL74YQHFc7Dwtx+z1HOdOOdPUGsmwqp4psVgMd999\nt1Bem72tHeA06ayDGvC3gbmgfP/735fPKbg2EZ944gkA/jlqNDv7+/sD4QD6wW/E6cJhZpl2jFu5\ny5lROtKd7Q+rClDut5sJ7WC3MoSVI7H/62v4Pc6FVh3OoBePT3/60wD802TS6bS0i0qT1RfWrl0b\nWt0BKJ7mZPMMqdTWrFkji16rQZdJNpsNFKUsd1iILnNNU9kWoGwEnEno4ODQNqiKYfX39+OKK67A\nypUrhQayGgJfdXAdmYE+8Zasic5zHm1133334corrwTghyBQo3V1dcnBDDwbUJ/rx1AHMhsin89L\nG04++eSSYmX1BllRLBYTthUWlc73bKR8PB6Xv22YRrljs5oNzWLLmX3lYDMBFlLkOxnSK6+8AqA4\nhpxXtp1hQbS6fDLNSzI0zdQWCsPiMzY8PBy6yQMU5ZxrTGOxmDzL3FxgPzWiUKNjWA4ODm2DqhhW\nLpfDwYMHMTQ0VOIQByCO766uLtFIdEAePXoUQLEYP5mYrszIe/PoKx6MytV/8eLFwkjo3KRjOpfL\niVaj9uf/kUhE2jI4OFiSk1dvhDlRwxjHXA547ajm9fZYKXuvVkAHw9rNhUqgfX0cw4UQ1sC5xmBP\nBsiOj4+X5M0BpePB92wZZcBnytz2p+/LngjdCrC2FzcSDhw4UBIUDJTOX5tGxc+SySQee+wxAMA1\n11wDwD+mrhHO99bPFAcHB4cKURXDmp2dxf79++F5nuyKsFICV+qRkRE5Oog7dNRQqVSqpMoC4Icu\nRKNR+R6D2VjJcGhoSHZaqMF4bTabFS1HjU0NODAwIEGkZ599tlSGaATCWEIY8yjHsKwPgXLRR7AQ\noP2EcwW6Hg82iXwhyHfKKacAQCA9JZlMylwly9C7ZmQqNh0rHo9j3759APwdbfpre3t7xddL66PZ\nYJ04ves7VwXZdDot426rhORyOZxxxhkAfNn5/DaCYVW1YE1NTeGll17Cgw8+iK985SsA/NADhhtM\nT0+L2cfFiQtIMpkUM4KmpHbAkkKTlusiYewMmpD8jdnZWTH1wsxFxskcOHCgbuenlTOBwuKULMUO\nuy7MbGTfLKQ4LF1Jw5YcqQQ6D5PjsWbNGgDASy+9VM+mVgVbdYRzsbOzU+Yx3RL6oeU81KWRgWII\nA+MJmYnBeR2Px2Wha9WCxRPHteK3GweULRKJBIgGNxCy2aw429kHjJFsBJxJ6ODg0DaoKcT4rrvu\nEm142223AfCdlocPHxamQ5OO2iuZTApTCgtS4yrOV2rzRCIx5xb6gQMHAiEV1BADAwOyPf273/2u\nFlFDEVbXyuY6aug6XZaVlGNrYQyr1U53XXnAmrBaTttOnTtnq1BQy7cSdGlwztGdsX79+gCr4DW5\nXE5cGrbixIYNG/Dwww8D8Jm/Psyi1dH9p512GgDfJTMwMCBjRNZH5nT55Zfj73//OwB/s4zznAe/\nAL576EMf+lDD2u0YloODQ9ug6mWeeVePPPIIAMgrAzrvuusuSbdhwChX7lgsFqh1RRw8eFC0Mrd/\n6Q8YHx+f0+eTzWbF38DfefzxxwEAu3fvbvoBDtpHY1NWotFoIEtfM8e5qjwsJB8WGUQikQiUS9YO\nXNtm+qtisVjAR8JqCK0EGRb7nqW4e3t7Zc7SB0WmNDw8LFZE2IYDcwi5YUS5JyYmJLXtjTfeqL8w\nFYCM6ZOf/KS8x/bpsA0AJaWeyYp1ZVXOd84NhiU1Ao5hOTg4tA2qZlhzZZk/+eSTAFBSf2rt2rUA\nSkMeTjrpJAB+hUZqXqb6tAPC/EjcLR0cHAwEE+rAVvte2E6o/Z2F5MPi8WaDg4OSMqST2oEi02If\nhLXXJs7v2bOnYe2tFGR7ZOvcxQP8nTGyCo7T0qVLxddF/w2DQpcsWSJ+Ihv2USgUSo4BawXuuece\nAMCvfvUrAMUxoy/RPuP6f15D6ymbzYosDBT/6U9/2rB2N9Tz9/rrrwfea2QsVCvBhzeTyciEtmZG\nNBqd84w6bUbZkryc+PperSpPwgf6/vvvFzcA5dTnMNqyzjpUg/FJVHI2d7IVYKwU28ZFCvDbbksk\nb9u2TUrGcMxZVUSb/5wbNB/37dsnsrcaDEHQZpzNAdTnDjJqn2ZjPB6XBYuVLhpp4juT0MHBoW0Q\nqcbEiEQirbVH6gDP88pGOVYiY1hYA88/TKVSso1t2VQ0GhUHpg0m1TmRND1olmzfvl2cpBXiRc/z\nNh5HhprGslw4BsNKBgYGAoXsWCnjgw8+CBw2UWmVB4vjjeV/713RTW2+oGayZLhkDtat0WjUU85y\nuOCCCwD4xQt5mvktt9wiGw6c52Rdf/jDH2Tjbb6oRE7HsBwcHNoG1TKsQwBavwddO1Z6nlc2Vf7/\ngYzA/4acx5URcHK2ESqTs9W7Tg4ODg6VwpmEDg4ObQO3YDk4OLQN3ILl4ODQNnALloODQ9vALVgO\nDg5tA7dgOTg4tA3cguXg4NA2cAuWg4ND28AtWA4ODm2DqsrLuOTn0OsB+MmyiURCyqywRAnLp2Sz\n2UCNK12ShYnRLEPCelE1lJI5XEFqzrySn1OplFTeZOKwru1uD7flNdlsVpK7WcbElqKpFI1MCuZ4\nplKpklIqgN9uPZ78TFfrpJx6/P/b7qra0ozk53Q6XTIXAb/OmT5tysoZiUREPs7bWrNnKpGztZXw\n2wT2sIV4PI7Vq1cD8EtDX3HFFQCKhe14dqI+jxEoTgBOdlY24L1nZ2fl/qxs8PTTTwMAHnroIfzr\nX/8CgEClA8/zwiZI3XLKKANrQa1fvx4AcOGFF0qdp8HBQQB+tv+SJUsCi+2OHTsAAC+//LLIQJme\neeYZAMVSwpz8zU4Z4+LLAnxf/vKXARRLCHOMWD2D5+6l02mRhcqJYzc0NCQPNY/A+9nPfgYAePHF\nF6WiR7PltOdiXnzxxQCAm2++GSeffDIAf8x1uWiOJ6twUBH19PTgvffeA+AXA/zzn/8MoLhQ11u+\nBblglTvnrpIO4Pf1feZT8M6yhWuvvRY33ngjAP9ASmJkZEQ0DTWTPoiTE5zaVx9IyaqXPJnmhhtu\nAAB87nOfkzr1t99+O4DmnDQTiURkseVEPfHEEwEUJzMfSB4Q+tRTTwEAzjnnHOkrnlrEooSTk5Py\nIFBOliqZmJiQPquVjdSCSCQiCzJLq3Bhfuutt2Qx4yLDKqNcqAG/4iw/GxkZCRwWfNlllwEA9u7d\nKwuzLZbXSESjUWFPHEcWLhwZGZFKsPb8Tm01sN3sk0wmI3OZhRx5Fuju3bsDZzfMW4a63s3BwcGh\ngVgwDCsSiQgVJdOghvI8T1gOV3/NUOwqTi2ia6RPTEzUvNqTqW3YsAEAcNNNN8nx3NS6+jQR+/va\nt8N28xoymFwuJz4Dykr5C4UCLr30UgD+iUJ33nlnST/UE5qhsu1kWBybpUuXlvilAJ9d7Ny5U/xx\nfOX5dTMzM8LMKDvN4/3794sGr7WoXy3QzIMsgWORyWSknWwLzyfcu3dvwN/IvtBjPTo6CsCvg75o\n0SLpK8u0GwE9nvrsSMCfT2NjYyUntOt2x+NxGT9eo2vSc4zJ+nXte3t2wXzhGJaDg0PbYMEwrFQq\nJadHf/zjHwfg28KFQkE0lz0DbWxsTFZ0fkb/STabFYfgyy+/HDjdpVLwfldeeSUAYPXq1aJZbUnd\naDQqbSMD0b40amu+0oeRz+dFC1HD8Xuzs7Oi2diGBx54AEDp4QH10mJ6J5Nt4O/rss/63Eig9KxF\n9gs1M08T1rtu1NL9/f0AiozSlo5uJPgbiURC2A83U7Tc1p/GeTY2Nhboc/aJ3kUlU+ZvnHrqqVJu\nmXOl3r4eDc1WOUZ2fLRvkWPMdkciERkrW/a7u7tb7sXnS1s29WaOjmE5ODi0DVrOsGhLd3d3C6Pa\nvHkzAH/7uFAoBOxravVcLicahPeilhsZGcFjjz0GANi1a1cgJOB44H251c0t4EwmE4i/oRaenJwU\njaPZE2E/46uW0YZDZDIZkY0HIPCAgF27dtUcx1QJdNwV4LOE3t5e0c72NODR0dFAiIZmyNwdtKw5\n7BTsZiCZTMpOJU8tHxgYAFD02ZEdWv/pxMREgHVp8J68nuxmcHBQQjo4ro1kWGF9aeff+Pi4tJN+\nSj5riUSi5Jg2/ap9tvTn8p6NGMMFs2B1dnbKNjFpOeNCcrmcXMdO5GTQ4QrsIC5MyWRSHjRtclUK\nPkAMXeCCGolEhC7TNOQg6QWLE1wfY64HWre/UChI+0i79QJGOfje+eefDwD47W9/K8eq1wvahLCn\nydApPjk5KfKxTeyTdDotixmd2Pze6OioOGfZLzrg0JqCjXS+897JZFIWYsqizXq9hQ/45wwCvknF\nz/QCQJltALEO0qQDv5Fy6nvydygfFcr+/ftLlOdc3+dzyLHLZrMyngcPHgSAhsaYOZPQwcGhbdBy\nhsWVuqOjQ4LZeLost9JnZmYCpon9vv5bn+/HrdmZmZmqV3yyC4YzkCqzvQACzvdsNivMg0yJbc/n\n8/KeTX/QLJLv8fc6OjpEIxNke6tWrao7w9LQjn/AH5PJyUlhBzSfNLO1DFSbrZSPznYim802JZzB\nBhYnEgkZF7IDyjk8PCysmOa4dsJzjthgYcDfaGDYBuUeHx+XsW3G5kIYOFZ0rRw4cEDax3nItmWz\nWXm2LOP2PE9CNHhPMslGmLmOYTk4OLQNWsawrKO8t7dXnNv21GDA911pRsXva3taX9PV1SU2uvYR\nVdo++iro/KcWLhQKgSRQaicyC8DXMDpIlJqJLJBt7ezsDPQJ/+/s7JTreU/+7qpVqyT9pRFBpOwz\nm66Ry+VEo+p+AYpjaQMpNTsleI0OZZgrhSrstO35QjMttoUpNmRF2WxW5h7HhXL39PTIPejL0teS\nYfHUZLKZ6enpup1+XS3seOoUIbsJwrmZTqdLgpj19/L5vPi+2Ad2rtQTjmE5ODi0DVruw9JZ8vSF\n6BIdQFFbUbvZXQog6AfQmoKarJYdQmbnMzFW2+Q2jYi+j46ODvktsi7tC+A9+H0dXEq5KZsOPLTJ\nsnzt6OiQ782XYVnfjmY1/A2dnkK2aNutWZJOrwKKLJOycCx1qRJbTYCvhUKhbmEPvI9OnRoeHi65\nLwM74/G4hDpwPHT6DUGWqVOvOEb09VHuI0eOhAYc23s2EjYcIx6PlyTi6zbFYrGS9DIAJf4u69eq\ndzqORssWLF1vCChm7tPZzsHXkbfW9NIDax/+esS2RCIRcdg/++yzACDZ7MuWLZPF1dLgaDQqE9vG\nR5Uza6LRaGDycvIfOHBAJjsrIzDC/dVXX615oWJ77IKv22j7UJeN0eYvUBrhbN/j+I2NjckDTLOL\n0GNqTSTdd/M1D22098TEhJiCb7zxBgB/Q2DlypUS5U1ZGAIRlhvKPslms3J/bvdzc+TNN9+UucVr\nGhmHFQZbxy2TyYgrhvIR0Wg0kEVCJQ6gqRsIziR0cHBoGzSdYdmVnavzunXrRKvZcADNAsKK6VnN\nrrfXef9oNFoV3fY8TzTiH//4RwDF+j5AMVJ548aNAHyNyuDS2dlZYVu2EBrgMw2aCzqz3YZukIns\n2LFDfnvXrl0AfJPl/fffn7eT07IVrSltdDcZZSQSESZJsN8XLVoUMCF4H13/if1ra4SFta0RUfBk\nDRMTE/LbLLbH/2kOAghs7nR0dASi/DWrJjOjuckx279//5w5hI3YXAiD/Y2+vj6ZyzZjRI+zzfCI\nRqPy3Nrc2UaYt45hOTg4tA2awrC0A5V/czVfu3YtgCJDoV1MP5V2xtotcL2al8vdo98pmUxW5SfQ\ndbbog9i2bRsA4IUXXpAKoNdccw0ACOPK5/OioSzzKRQKoll1MClQ1NDsE2pyyvX444/jueeeA+Az\nHN5nZmam7ppMV2uw2pZpGEuWLJHxsU5lz/MC9cz5v/ZH8jPKpMfHMoAw/1atsN9PJpPCItgWyhmP\nx4Xx0++kfY2UnddzDOPxuITFUBZeo+eIlbNZOZT8Hcpy5plniu/KblTpcBPLopLJpAR8a79Wo+AY\nloODQ9ugIQxrrgTWSCQi2orMZ8uWLQCKtaXt98gwtH+HWpif6UqlYZnza9asAVDUBNVWa7BBdrqq\ngA3k1FoMAxheAAAKnklEQVTX1rOiNgWCPh1dzdKeqMN7Hj16VLSz3VJv5Da4ZsQEmZaug860FDKm\nRYsWyff4nt4qp1z8TMtgfZRhjGO+LMT6xfTWPMdT17WinPaUn66urkA1Ui0nmaSt4ZZKpQJ90Gxo\nhgQU0474bFImnY5j+0z3HVOWmOj+1ltvNazd816wwuj5XAtWLBaTrewLL7wQgF8mJZVKyYSwx2Rl\ns9lAbIeOH7EPsc71YsWHrq4uiTSuBNrRbxcH7cC37UqlUoGIe/4fVshPF72zMUi6AkSYU1f/biPg\neV7APOVDl8lkQiPcgeI424M7tMLhAsActLAihs10POvfojuCDvOlS5dKe6lI9Dzjd7UpSPAeNA31\nMW6NdExXA47ZypUrA+FEYRsddvMrm81K/5x11lkAgO3btzesvc4kdHBwaBvUxLD0yjsXmwJKI2WB\nYu7V1q1bAQDXXXcdAN801OVbw7SOdZiH1cGyEbqe50kwqi6CVynKaXkbnBqmra1JqNvMtmr6bem2\nDiq09w/7nWpRCYux5W/J9HQFCb6nI8hpavCV5lE2mw2Eoejg22YHUAKlmwQE59CiRYuEQWg2DBTZ\no3UJkLHMzs4KYyHDovk3NTXVsioNBH+fAdB9fX2BiiDa7aJlBvzx1HOaR6M1kh07huXg4NA2qJlh\nheX08TNbO4c5eRdddBGuvvpqAH5tIcLzvIBPRJdatb+jg9l0bR7dpkKhIAyrs7MzcI9aodtjq0jo\no420k9W21aY66HvZypa9vb1l87Nq1WjHC1LUFS6s73B6elpYF1/5mfZHhlWvtHW/dPXVSnw69Q6u\nzOVy0nY7nlNTUxK6wEBXzuuenp6AI16HstjqsroPW82wCFo4iURC2h72PNn39KYT+4P3aqRsjmE5\nODi0DWpiWMlkMnAYpvbXMB2G9jHrSW3ZskWYFbUOv693+2zgZVgaiPabWA2mmRT9D2GJubVChyDY\nhGvP8wLbwro9dpdPayrri2tk1nsl99Vy2qOukslkILFZHwDL3WA7NnpnjQxUy9vMwycI7TezSfkd\nHR3yd1gStA5uBkp3Cy2jD/PRNqsOlgV/l2cjJBKJQFiN3n2fq7CA53nybPJZmyv5vx6o+ilm7hAd\nbBxEXYKFJuBpp50GoFhkDihunVJwmkJ6K9WGAbBzNGW326oa1mzR1LTenWcnWFh7rNkIIJBnGPaw\n2pNJqt0sqBfCNgn0/9Z844OdTqclO4DX8LPZ2dk5I9z1xks51Pvh1r9pCyQmEonApoJ+MG3VBbZN\nh9DY7AatCFqxQAP+3DzllFPkPR1jB5Q+m4y144KsnzHKwH6hS6MRMWbOJHRwcGgbVMWwaJpdf/31\nUp2AjlPNIri1y9WYdXbS6XRJ2VXAX8V1NLsuKQyUBhta00RfZ89O00XUZmdn6xqkZ4vXse1TU1MB\n2qxNO8uedFttGIhmLK2G3Qg5duyYsAi+p8eS7Invsb+OHj0aiCbX/VMJ42hkRQMbWjI+Pi5jbAOP\nc7mcyGmZ1ejoqLhGKDv7olI5Gwk+T6xGkUgkhPXb8t2xWCxQyUGfCs2+4nPP3EIGBtcTjmE5ODi0\nDapiWKlUCqtWrcJll10WKBusNRPZFj/Tfi6tZez3CJsvqOsO0WdA+7inpyeQ16eZmj5+qZ5ajb9p\n/UthQbX6WvaN9VfpahK2hK+9b71wPIdvWOVRzYbs4ba6/ZYV0o+jfXW2YkGrWEfY72q2YfMF9TVk\nUZyPZFie58mc5bOyEJgywb6nv0n7YG2AbCwWCwQzh81HfVJ5o+AYloODQ9ugKoaVyWSwadMmnH76\n6YEtd1ucHiitFw2UBlDaLf+wFZtaQFcr4O6TPnbI1kDXYLCfzpCvB+aqD5RIJAIMiXJrP5U+REJf\nq1HP9tYLlDuZTJaEpAB+H2QyGWn7+++/D6C0OoWuCwWEVxVtFfSxa0DROrDhDGRVPT098tnrr79e\ncp90Oi19pe8FNK+qaDlw7HRFXsKOp97BJ/T/dpeQx/VVW+W3ElS1YM3MzGDfvn146aWXpPAeBbYU\nEygt2gaURsHbhU7/zdeXX34ZAPDaa6+Jc5MlLLgdWygUAuU7tLPQnlxTD2hzyDrKdRaANXWy2aws\nVLxGh3nY9/iayWQa9jCXe3B0xQo7XrpwoD0JKJFIiKKw8WphJw9Vu2A18mG346o3a8LGnOWPbbFG\nfdIMnwkdRd+qKg22rExYxkpYCBFlsZsoQFB5c8GKx+N1Pytz4alwBwcHhzlQFcOamJjAs88+i1tv\nvRXnnnsuAGDz5s0A/Fo4y5cvDwSTau1qj1jiZ+Pj43LE0sMPPwwA2Llzp3yPK/sll1wCAFi9ejWA\n0jwnnZcHlK8qMV/YfMly1RM0g2CfWPaVTCYD28lhkfv1RrXmiWZVbBfNWu1cpgbnAQXc/NA5o7Vm\nHzTSpLJ9Pzs7G6jIwPbr0srM+ySjyGQy4oAPY+Gtgo3I1yE4dgNJF660zy0tl87OzkCGRpiZWS84\nhuXg4NA2qErFeZ6H6elp7NmzB2+++SYA/wgssqr+/n6p8snsbfqdenp6RKsePXoUgB+msHPnTimt\nqg8zAIpagE5Ce/Lx4sWLxXdFLc7PstmsHDi6d+/ekiOm6gVqFX3Ygs2t06dWsw2WmRUKBbkHtR/v\nnU6nG6qVyzFCG8yrAwZttU2299ixY4FKo9p3Z/1amoHMlUKl29LQekvmBObR0VEJgKScrN4wPDws\nf3Pu6TQeHnrLOa5TzuZ7NFutYB9aFjQ9PR3I19Vs2lpExPT0dCA0iT67RqSUOYbl4ODQNqi5hIG2\n8QE/fODIkSPYs2cPgPLVSO19jqc1qcGefvppAP7x8foYbbtNrlHvXRkbumCrGuj26G1im5ZCzZVM\nJgNa14ZF1Bt6F3Au2ERYfcCGTUSnRu3o6AjU1w/bBtcMEig90NSOYVh98UbAJuAfPXpUUsvISnQ7\ndN19oDSsh3N2ZGQEgN939awcUi0o34oVKwCUppTZawjNpsN2jW1YEf2WnZ2dAWtpvmhoz9lG1qPR\nNqetVbAOVJrE3d3dgWL+5crLEPpUH30iMVCc4I2q2FBuIdALmpVXH0Khq2oAxcWND7lVJvo0bi5U\n2sxsFawCYhsXLVok7aOpwznY19cnlUmoVDiGixcvlnsw7szGc7UCdiOHMvX29gaUkg5L4njaPFd9\nHb/HnEIdDlEvOJPQwcGhbRCpZgWMRCKtDc+tAzzPK6vGK5WRWpInPjPMI5PJlES28z2+2pOUqZ3y\n+XygpC5NiSeeeEKCaCscrxc9z9tY7gIt51xOdw3Ky+37k046SYoxkjlQ7v7+frmeJgHlHRsbw9DQ\nEAA/Cp5O7cnJyTnlCwtlON5YWjkrAZkHmdPatWulECVlJ3Pq7+8XVkFmpV8/+OADAJANKrpKxsfH\nq2IejZCTrJHndm7atEmKLtpo/8WLFwur5NzUpjAtgXfeeQcA8MwzzwCAyF8pKpHTMSwHB4e2QbUM\n6xCAdxvXnIZjped5S8td8P9ARuB/Q87jygg4OdsIlcnZ6iRMBwcHh0rhTEIHB4e2gVuwHBwc2gZu\nwXJwcGgbuAXLwcGhbeAWLAcHh7aBW7AcHBzaBm7BcnBwaBu4BcvBwaFt4BYsBweHtsH/ARJjmCGC\ngjxWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Epoch 10]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztXXuMXFX9/8zMnUe3227bZdvtltKn24J0KVD6QEAQKRJC\nVRAf+PiDSIwvDEiiif+YEINRE5FozE80CNGgMVQNL0uDYNQK5REo0BYqpbAg3e1j293t7M7OzM7v\nj+Hzvd977p3Zmdm5Mzt6Pv/M7syZO+fcc+45n+87UigUYGFhYdEKiDa7AxYWFhaVwm5YFhYWLQO7\nYVlYWLQM7IZlYWHRMrAbloWFRcvAblgWFhYtA7thWVhYtAzshmVhYdEysBuWhYVFy8CppnEkEml5\nt/hCoRAp93k9xphKpQAAZ5xxBgDg+PHjAIB0Og1GFvB11qxZAID58+djfHwcADAwMAAAyOfztXbh\naKFQ6CrXYLrjdBwHnZ2dAIBjx44BAHK53JTfmzVrltyfEydOAHDvRbWYai6B2seZSCQAAHPmzMG8\nefMAuOPjeNPptIxl/vz5AIC5c+cCACYnJ6Xd0aNHa+mCIMxxThfxeBzZbLYu16pknFVtWP+riESK\n9zHowVq/fj0A4NOf/jQA4LrrrpONZvbs2QDcTYkPeBBee+01TE5OAgDWrFkDwN24duzYgR/96EcA\ngJdffrmSLr9ZSaNa0N7eDqA43m984xsAgImJCQDugzkxMSHvzZkzBwCQTCYBAKeffjr+/Oc/AwD+\n9a9/AQD+8Ic/hNXdinHVVVcBAG655RYAwNjYGIDixsWDhGM5++yzAQCLFi3CoUOHALib2bvvvgsA\nOHnypIx5yZIlAIDHH38cAHDzzTeHOpZqwD7Nnz9fNtibbroJAGRsGj09PQCAJ554AkBxbb/5ZnG5\nfeQjHwEAnDp1KrT+Rqo53SzDKmLu3Lm47777AAB9fX0AgGi0KF2PjIzIAufJww0sHo+jo6MDgDup\n3KSC5oGn96xZs+TE//vf/w4A+PznP1+ui88VCoUN5RpMdy6vv/56eai/853vAHAX86JFi+RhHRoa\nAgCMjo4CAHbu3In7778fgLv5/elPf6qpD/ViHqtWrcJ3v/tdAO4h0dbWBqA4r5wjbkpLly6V7/Iz\nvp48eVLacv7JsLlxnThxArfddttU3RKEybCefPJJAMV7wDnjATsyMgIAeOCBB/C5z30OABCLxQBA\n1viJEydkHZxzzjm1dEFQyTitDsvCwqJl0HSRMEjcIvW+6KKLAACPPvqorz13+nJ6E7Y1rz9dbN++\nHcuWLQMADA4OAnBPWMdxpE/8fcdx5H+KTew/QYamwZNrfHxc+n/JJZcAANauXQsA2L9/f51GVR0S\niYTooH76058CcEWdTCYjpzXbPPfccwCAe+65BytWrAAAHDlypKF9LoVvfvObvr5wPlKplMwnX994\n4w0ARTZFFsz557gBl1lz/ik6nX322bj66qsBAA8//HD9B1QFKAauWLFC/l6wYAEAoLu7GwDw9a9/\nXdgTJQoyZ8dx5HuNgGVYFhYWLYOmMyyeZPl8HqtXrwYAfPGLXwTgMoxTp06JzLx7924AXmZFJsNr\n8X/dJhaLTcfqBgA4//zzAQDLli0TpsTTk4wplUqJrkLrQYCiTovt2Rf2NR6PS3+pO3j77bd94+D3\neI+q0YXUE6OjozjttNMAuMzh1ltvBVBUrHd1FY2UZCM8hU877TQP45wJ+PWvfy3KdjIt6rLmzJnj\ns4LRoMDxA8Dw8DAAd80Gtaf+sr+/v+nMijh48CAAYPPmzbLOMpkMAO/8UAF/8cUXAwDeeecdAEV9\nF9d5I2AZloWFRcug6QyLzCSfz+NDH/oQAODDH/4wAJdhJJNJ2cWvuOIKAMAvf/lLAMWTkPodk0G1\nt7eLbiGdTk+7r5dddpn0h7oKXp/jyGQy+Na3vgUA+M9//uMZR09Pj5i9ybp4+iaTSbGanXfeeQCK\nugOg6C5AVsLf+8QnPgGgeQxLsz7NNIBifw8fPgzAZZlknfl83ueL1mzs3r1bXCy2bdsGAHj66acB\nFBk0x0CWqN04yPzZhvM0PDwsLJNgm29/+9uhjaVa7N27F4BXp0oLNsdJvRXgMkitnyW7bASavmHx\npgDABRdcAABYvnw5APcmRqNR7NixAwBw7rnnAgB+8IMfAACeffZZvPTSSwCAffv2AQA2btwo19u1\naxeAos8PTeu1gptELpfzbLSA64Jw8uRJ3H333QCArVu3AnA3oHvuuQdf+tKXALj+VFRwxmIxEUN+\n/OMfAwC+8pWvACguCl6fGy+V7r29vXjttdemNa5aEI1GfQcF7wkdLYMQiUTke3y4ZwLuuusuABDf\nsrfeegtAUUTkA8x7T5EdcMfMNhxTPB6XdhQFaTxq5AM+FSjaZbNZOUTj8TgA16fs+eefl7GwPccd\niUTElaMRsCKhhYVFy6BpR5zpznDFFVdgw4airyN3c3qK9/b2ore3FwDwzDPPAAD+/e9/AyiKfVu2\nbAEAXHvttQBch81nnnlGlNOZTAbPPvvstPpM025/f7+cRtqMDbihGQDwl7/8BYB7+p511lkiwv3x\nj38EAFxzzTUAiifz888/D8BV7lPsmj17trAYioRkAFu2bGkKw2pvb5exUyziqTs5Oek5gTWi0ajH\nZWAmQLui0JXme9/7nnxOZsU2dKwcGxsTRsVXKqy1mwr/fvDBB0MbQ62g2iKbzcpccY1xXvfu3Sus\ni2Mhq0omkw01nliGZWFh0TJoKMMqtxPffvvtWLx4sec9KilzuZzoungCko1NTk4KMyHr4kn41a9+\nFStXrgTg6p9qAWPHaPLWOiyOiaeudqLj93jqLl68WE5ufo9sMBKJCFMkePotWbLEx7Co/Lz44otx\n77331jy2WuE4jowhyK2knKsJ3zOdZ5sFbUCg3ub1118HUHSoJNMg89cMhGOhfpSKdj1Oun3MRNA9\nZ/ny5eKEzPGajs+Aq3PmZ/l8vm7Bz5XAMiwLC4uWQUMZVjkz9tDQkDAssgfqSBzHEZM/d38ymsnJ\nSXFmu/DCCwG4p/rChQtFjzQd0E2Bvzk6OiqMh++xX7lcTtgfszPQEhiPx7Fo0SIALrPi9xKJhFjX\nPvWpTwFwU5aMjY2JpUlnEQBcptloRKNR0e1oay5QPH1NFxM992ScMxkcy5w5c3xhN7Ty6UwO2toN\neFkbw7dmIuh+AsBnJdR6OM4fP+P6dRxHwnQagRljV25ra5MbxFc+ECdPnhRRiy4PvIGRSETaU4TU\n4pOOrK8VdI1gbNXq1atFuU7DwIEDB+S3n3rqKfl9/ZrP5+XhNr298/m8J+MDAFGmt7W1+TYFiou1\nZjqYLvRi1sp2/h8UGwkUx80Na+HChSH3snKwvxwDfef6+vrkM/ZbP7ymW4uO/6R/Gl0BCK3knynQ\nh4hJLAqFgmcN69dIJNJQNw0rElpYWLQMGq5017GDgJsTqaenR3Z5vpKCT0xMCNui2ETG1dbWJuKR\n6ai3Z88euf6GDRvEq7da/PznP/e8zp8/H+973/sAAF/+8pcBAB/84AcBFHMf0SmUmQpIo8spmfW9\noZihx/HZz362pr7XGxRTY7GYzzWlFKsCvNksOD6yU7ITvj8TwNi5aDQq64tj10n7KPZTLNLxeLwf\nM41NBYHzo6GlGNNgpuc+zIR9JizDsrCwaBk0XOluhrRQwdzd3S1uA1qhDhRPYuqidOwd4M2AYKYi\n/tnPfiYpjLUZfroYGhqSrBFkg4yDLBQKciKTQZg6HgA+l4DJyUkPowRc5kEd2kyAZsGljCj6fdO9\nAXDvB50PZxKzIqiL0nNmxo2mUil5jwyLeivmdANchj2TEcSOzdxzup0Oy2qkLtIyLAsLi5ZBQxmW\n4zg+8y/1PZlMxqfrIQtbuHChnMLUXbFtKpUSJsNTjhaeG264AT/84Q8BQCx304HOXcVx8KShpUTn\n3TIZiA78LQdT10VdmP6sXC74MMHfq9Xps1Ao+MKZZgJMHQ71TkeOHJG5Ns33Q0ND8hnZPV0Yurq6\nph1s30ho6SPIIbhUFt1cLieW+0ag5g3LpIvaB4c+GqUWgcYjjzwCoBhvZ/oY8eE4cuSIh4YD8HjX\nmr/Htn19fXWNJGd/9G/TI5obVtCmrJWXQZsYwe+ZIoQ2G5tGi0ZDb1S830HiRLnPzDGYLgXNgNkH\ninTz588Xgw/96YijR4+KKw0NJHruObdMp03MRCW8XodmdIL5N+AlFY3csKxIaGFh0TKoiWFpsaea\n0+KSSy7BddddBwD4wAc+AMB1Dj127JgwKzONcDqdlh2d4gSZVqFQ8CXn43VGR0clg0M9I+Wj0aj0\njaxQGwN4T0zn0EKhUDL+rlAoiEKbp3ZQqudmQ993zRwBL2MqJTJqlslXzlczle8mu6MB6OWXX0Z/\nfz8Ad17Yz0WLFsm809VBu6QwLpHlz2YimAUlkUh4XE80otGob93qtWkmcAwTlmFZWFi0DGpiWEH6\nE8r3PT094lTJk4Usp7e315cviOyos7NTwk10fB1QVLrzJOMpR1N/e3u7lL4yi1lms1ls3ry5liGW\nhdZDmSELmnmY+hudJ4rQTIvfM/U/+veanVZYn7ClKmJP5T4SlCNrpoHxqQcPHpRsC1yX1CnOnTvX\nF+PJdaozjzCki+b/wcHBGaG3A4AzzzwTQNFQRd2sqUPVTsKEDldifCxjecN0w5l5K8XCwsKiBGpi\nWJs3b8btt98OwM3/w5AZHeBLc7wuX2Xm0+HJtGvXLnzyk58EAMkMSktNJpPxWSLWrVsnbahjIFuj\nibm9vd1noQkLLLIwNDQk4zeZ1lTMQ5cD0+1nSt4ooLK+aF0dodkYr2EGgjcLuhw9HZTPOussAEWG\nxbVNXQ3zrs2ePVuKwnKt64yzBN0bbrjhBgDAnXfe2XRmRVx++eUAivNirtNyzF6vcVrKGaYWJsOq\neqXEYjHcddddQnnN6G2tAKdIZyqoAdcMzA3l+9//vnzOgWsR8fHHHwfg1lGj2NnZ2elzB9APfhjV\nhYPEMq0YN8ddTozSnu7sf1BWgHK/3UhoBbs5hqB0JOb/ug2/x7XQrOIMevO48sorAbjVZFKplPSL\nhyazL6xduzYwuwNQrOZkxhnyUFu9erVses0GVSbZbNaXlLJcsRCd5pqispmAMgxYkdDCwqJlUBXD\n6uzsxLZt27Bs2TKhgcyGwFftXEdmoCvekjVRec7SVvfeey8+9rGPAXBdEHiitbe3S2EG1gbUdf3o\n6kBmQ+TzeenD0qVLPcnK6g2yolgsJmwryCud75me8o7jyN+mm0a5slmNhmax5cS+cjAjAWaS5zsZ\n0p49ewAU55DryuxnkBOtTp9M8ZIMTTO1mcKw+IwNDQ0FGnmA4jhLzWksFpNnmcYF3qcwEjVahmVh\nYdEyqIph5XI5DA4Oor+/36MQByCK7/b2djmRqIA8fvw4gGIyfjIxnZmR12bpKxZG5e6/YMECYSRU\nblIxncvl5FTj6c//I5GI9KW3t9cTk1dvBClRgxhHKQW8VlSzvVlWyrxWM6CdYU3jQiXQuj7O4Uxw\na+Bao7MnHWRHR0c9cXOAdz74nplGGXCZMs3+1H2ZFaGbAeb2oiFhYGDA4xQMeNevGUbFzxKJBB57\n7DEAwPXXXw/ALVMXhvK9+SvFwsLCokJUxbAmJibwzjvvoFAoiFWEmRK4U584cUJKB9FCxxMqmUx6\nsiwArutCNBqV79GZjZkM+/v7xdLCE4xts9msnHI8sXkCdnd3ixPp+vXrJTNEGAhiCUHMoxzDMnUI\nHBd1BDMBWk9YytF1KphB5DNhfGeccQYA+MJTEomErFWyDG01I1Mxw7Ecx8Ebb7wBwLVoU1/b0dEh\nul5KH40G88Rpq2+pDLKpVErm3cwSksvlsGbNGgDu2Pn8hsGwqtqwxsbG8MILL2D79u248cYbAbiu\nB3Q3GB8fF7GPmxM3kEQiIWIERUmtgCWFJi3XScJ4MyhC8jcmJiZE1AsSF+knMzAwULf6aeVEoCA/\nJZNiB7ULEht5b2aSH5bOpGGmHKkEOg6T87F69WoAwAsvvFDPrlYFM+sI12JbW5usY6ol9EPLdahT\nIwNFFwb6EzISg+vacRzZ6Jq1YbHiuD74TcMBxxaJRHxEgwaEbDYrynbeA/pIhgErElpYWLQManIx\nvuOOO+Q0vO222wC4SsujR48K06FIx9MrkUgIUwpyUuMuzlee5vF4vKQJfWBgwOdSwROiu7tbzNO/\n+c1vahlqIILyWpmxjho6T5fJSsqxtSCG1Wylu848YIqwepxmP3XsnJmFgqd8M0GVBtcc1Rlnn322\nj1WwTS6XE5WGmXGir68PDz/8MACX+etiFs327l+1ahUAVyXT3d0tc0TWR+Z0zTXX4KGHHgLgGsu4\nzln4BXDVQ+9///tD67dlWBYWFi2Dqrd5xl09+uijACCvdOi84447JNyGDqPcuWOxmC/XFTE4OCin\nMs2/1AeMjo6W1Plks1nRN/B3du7cCQDYt29fwws4aB2NGbISjUZ9UfqaOZbK8jCTdFhkEPF43Jcu\nWStwzT5TXxWLxXw6EmZDaCbIsHjvmYq7o6ND1ix1UGRKQ0NDIkUEGRwYQ0iDEcd96tQpCW179dVX\n6z+YCkDGdOmll8p77J922wDgSfVMVqwzq3K9c23QLSkMWIZlYWHRMqiaYZWKMn/iiScAwJN/au3a\ntQC8Lg+nn346ADdDI09ehvq0AoL0SLSW9vb2+pwJtWOr+V6QJdT8nZmkw2J5s97eXgkZ0kHtQJFp\n8R4E9dcMnH/ttddC62+lINsjW6cVD3AtY2QVnKeuri7RdVF/Q6fQ0047TfREptvH5OSkpwxYM3D3\n3XcDAH7xi18AKM4ZdYnmM67/ZxtKT9lsVsZCR/Gf/OQnofU7VM3f/v37fe+F6QvVTPDhnT17tixo\nU8yIRqMla9RpMcpMycuFr6/VrPQkfKDvu+8+UQNwnLoOo5nWWbtq0D+Jh5wZO9kM0FeKfeMmBbh9\nN1Mk79q1S1LGcM6ZVUSL/1wbFB/feOMNGXuzQRcELcaZMYC67iC99ik2Oo4jGxYzXYQp4luR0MLC\nomUQqUbEiEQizZVH6oBCoVDWy7GSMQa5NbD+YTKZFDO2yaai0agoME1nUh0TSdGDYsnu3btFSVoh\nnisUChumGENNc1nOHYNuJd3d3b5EdsyUcfjwYV+xiUqzPJiYai7fu3ZFFzXjBTWTJcMlczDVGmGj\nnuMsh4suugiAm7yQ1cxvueUWMThwnZN1/e53vxPD23RRyTgtw7KwsGgZVMuwjgBovg26diwrFApl\nQ+X/C8YI/G+Mc8oxAnacLYTKxtlsq5OFhYVFpbAioYWFRcvAblgWFhYtA7thWVhYtAzshmVhYdEy\nsBuWhYVFy8BuWBYWFi0Du2FZWFi0DOyGZWFh0TKwG5aFhUXLoKr0Mjb4uTQYLOs4jqQhYfCzruJj\nZhVl2TLHcSSvFNOtlMspNQWOVhCaM625TCaTklZEZxrlK98zc/FHo1EJfuZ4a02VE0ZQsNnvVCol\nqWZKlWgL+iyfz8s4dbHg9/pdTZcaEvwci8VknExzxHWr51Ov8/f6JulopluVqpJxNjcTfovALLYQ\nj8clYp85oVg2af369TLhfIC5cY2NjQUmiONvMPUuaykyvfP999+Pf/7znwC8Sf91nwyEFlPGfm/e\nvBnbtm3zfNbZ2QmgmBeLBRu4mNnvI0eOSMK+v/3tb/IeAF8OrXqhVBkynTGDDyvzPfX19QEAzjvv\nPJx77rkAIKm/mZjScRxf1XEmcty/fz8OHDgAAHjyyScBAHv37gVQTAFupk2eqo/1gpkZg+O97LLL\ncNVVVwFwkxlyAzp27JjMDeefr5lMRlKSs3I7i1iEMZ//9RtWralLgr7LU+WjH/0obr75ZgDA0qVL\nAXgziDI9jMmmIpGIL+MoWcbIyIgsFLKuiy++GEAx7QeTIX7ta18D4CaaC0p1Uy/oa3MTZr+HhoYk\n3QpTjXCT0uXa+X0u4v7+finCW0tdw+nAnE/+H4vFZLNlpRhmRV22bJmkzdEJ+NiW12BKIaacGRkZ\nkWtxo2OKFsDdyHmA6Y1rOmu2HPR95hxxo04mk7JOuQ4182VfzDWay+XkGkwpxMMpn8/XfQxWh2Vh\nYdEymFEMiycARSPu4vpkIHshXS0UCr4TU8vbvMapU6eq1pWY173gggsAALfeeqtQYpYfZ8rYuXPn\nChNjH9nnSCQiTIXMim0SiYScumYV4Xg8jvPPPx8AcOeddwIAvvCFLwBwxcewYLIfirm5XE76R3bC\nkzaRSAjbIpgmGAiuoMzfCjN7CK9tskbNCJnmmXrInp4eGReZA/OaazZEBkkWBrjrmAyUa+TYsWOy\nRsyq0oVCIVTGaVb3oX5tcnJS2BPnk2s0FovJXHMMXP+pVEquaeroYrGYp7J7Xfpfl6tYWFhYNAAz\nhmHFYjE5hVesWAHArSDb0dEhpw5TDFO5OTIyIicBTwGeVqlUSixZr7zyik9hXSl4Ct54440AgDPO\nOEMUxTx9eSpFIhH5/aCCEbwWTxx+f3x8XE58vqfrvfGamzZtAgBcfvnlAIDt27fXNKZyCDrhzRNy\nfHzclwKabSYmJuQkJuPQ9QzrfepWCpMxa7AOIeeKhTUWLFggbIhrj/9rSyk/43i1tZhrg/dkbGxM\n1mpQBfQwdVe890FMi2MmeyLz1BZEPqP833GcknUzwxiLZVgWFhYtg6YzLK234s5+5plnAoCYWTs7\nO2UXJ9OgWXh4eFiuwVOLp2U+nxfLzIEDB2rWDSxfvhwAxLwdj8dF3tcVqPmZWQk3qCIy2/B76XRa\nTm6+8hTT1kXWg7v66qsBFCtvN6JMlqn/cRzHo8/SYxkcHBT9jem/09bWJszMZFrNyn6bzWZlXnjv\nuRY7Ozt9zF1Xe6aujjoszpNmHtSLaV0PPzNLagHBOqB6QN/foHuuWRPgtRZyjsm6NLtme9M6HkYp\nuhmzYSWTSblBrFLCWnE0K+v2vCm5XE7eo2jIRZTP5/HII48AKFL2am6g3ty2bNkCwK2WEo1Ghe6b\npbuz2WxZR0Gzoo6ebF7TdMCbPXu2p04e4N6jnp4eKULbiAdeV/bhA8iHjwaAyclJuQfcYFlg9Pjx\n49J+Go6xVaGUMl/XStRmev0ai8Vk8+Ur70Emk5ENhaIhN7NcLiciIOfONDLo93hPwhCj9PXMQ5sb\n5vDwsE9NwbFolQzvgb4m3+O1wqyZaUVCCwuLlsGMYViO44jX7TnnnAPAdd4D3B2d9FqzEJ6GZC08\n2UZHR4WqZ7PZqk8uXm/16tUA3BMkmUwKG+IppBXtPHU5NrKNWCzmUUyzPRBMu/W4eE3+Hn//3HPP\nxcGDBz33qF7QJnbzZNZhRmQXNGq0t7f7ag8SqVTKdy39G2GxraDratFFsy0Tpjc611cymZT2ZBm6\n7iTnj3NF5HI5H7ss178wYK7DoaEhn2pBz4t5D7SEQ2bNMVmGZWFhYYEZxLCSyaToqqifoX4HcE81\nQgdmUv5nGzKjkZER0WfVohsg42N/tJMddTO8pv4dU5FKxpTP531OpXzVTohaQc1+8ORme+oZ1q1b\nhx07dsh4dZ/ChD5FTaNHNBqVOeB9oX5xfHzcx2YaocPSr4TWKZm6SP2ZDurWnzmOI2Ph/HCc0WjU\np6Qng8nn8yUZVqOcZzkG9mN8fLxkqFQkEvHNmTYamQ7PlmFZWFhYoIkMyzz12tvbsXLlSgCuSZmM\nKZvN+tJ3aIdLzag0JiYmxMG02lMrEolIMCcZEhnWvHnzpD/UqdHpbnh42Bd2wVetIzBNyLFYTMZL\n9saxxuNxYVvaZQMosjC2N8NhqkWQ20dQehjAyySpw+K8aUdD6jd0KJV5AjeCEQYx2HJMQIcScV1R\nT6WZIefPTBekdZKmi0cQtCNnI+6HyewmJydlfWrHWKC4/tg/HS4GTM0W642mi4T65jC6nROsFets\nZ+Zeikajngcb8PqD1PoQFwoFHD58GADw+9//HoDrh7VhwwaJwOcmwwV+6tQpnz+VjiVkX023iEgk\nIguE4+dng4OD4ln/6quvAoC4MvzjH/8QV4npopzi11x8OsWOOZaOjg4ZC8V89r+trU3uWdDvmb9T\nT1HJVBgH+SURPIi0v5E2EAHFuedcmZ7j6XTa45sHBGdkCIp/rafvVaVIJBIyZyY54Bg1tBGM7cIU\nBQkrElpYWLQMmsawuIvz9FmwYAHWrFkDwHWi46tW4pbLFaTpuH7V36sGFGcefPBBAMBf//pXAMVY\nwo0bNwIo5sYCijmrAK+5n9COdWRbhD7tTYdRKnB/+9vf4sUXXwQA7Nu3D4DrWa1jKWtFKVaj/zZP\n3WQyiZ6eHgAugyTDevfdd33KXfaxra1NRMcg5W4Y4hDdM0qtAW225xxwLWWzWRmfGaWQTqd9jqZa\n8UxFPEV2vS5NFq1ZSpgiFWEyu7lz5/rmRccIaiMX4K6HWbNmiTrEvGYYc2kZloWFRcugoQxLnxhm\nnNWmTZvEjcBUVmvFXlC6YvMUp2JQK0WrRZA5W4cxMNsmw4kuvfRS6Y/p3KpN5TxZqZQOYjP8HnVT\nDz30EPbs2QPA61rB1+meZNV8n20XL14sDrW8x8yykU6n0d/fD8DNQqmZx5IlSzzf43jLjaUep7Wp\nYzGV8IDLqjVbMNvpEB3TNYPrOh6Py1yZOrt0Ou1znwjSAzVC+c4xrVq1Sp4/U1/sOI4nVEl/lkql\nJJ10qawNde1v6L9gYWFhUSc0hGEFnVZkGEzof+WVV/pk4SBLIHd6simtfzAdNh3HkWvqa1SKUidc\nNpsV6yOdArWlkierqf/J5XLyN/vP7yeTSU/mBsBlU0NDQ9LOtHA1KsOBySAWL14sejSOfXBwUNpz\nfGQX+n7RDcJkv2GPpdw9MzNPaLZQKmQqn8/LnJl6xImJCVmXnEfOfTabDdSzlupvmKAUs3HjRp81\nk69awuF7mpUySQElC67fMPof6oYVZLLlTaHP1Q033ACgWMyB7Uwlp+M4PnGJ0H49fAB0JROKKfF4\nfNpVPIKrJI/CAAAKT0lEQVQmgH3lZjk2NuZboFpMMNPyapcH059Fe8MHRfo3EqbfWXt7u2yiZjaC\n4eFhGQuT12mPfm5YFBd5nXqIt0GYanPXURBmeu50Oi3Kc/Oz8fFxWbMcE8eZyWQ8MaQAfBk3SvWp\nEUU5OJ80CNClCHDHoDdtcy3r9Dh06WFECF1YQul3aFe2sLCwqDOmzbDKeUeb5tFkMimM56abbgJQ\nrG8HFE8v02SqTx/TmU7v/ub3+JpKpUQxrEW1esJUrOdyOV8aZO0SYLIoHdFvxmSVioGrNyoxQ7MN\nT+SFCxf6PKJ10QKayM3xRqNRERN5qjMaoR79nO73OXdkU2NjY56khYA3MaOOxgC8cYbm77FtIxjU\nVGAfdFkzjt0s6RaNRoUdaomAoOPweeedBwB46qmnQuu3ZVgWFhYtg5oZlulIqHdcM4SBpv81a9bg\nM5/5DACXWXFXTyaTvhg8XQK7FOvI5XI+HZbO00SlfkdHRyiphHUGTsAbpW+W/NapcbVOR/cZcHU6\n2lkvLN1Vpac921FfsXLlSo/uCfD2lwyF4+X/2g2F+rBKmdN07sFUTqn8zMzIEI/HA+PnAG/WVY6B\na0xnI+V90ZJDqb7ofoaduQGAuJjMmzfPtybNbKhAsKMrx9Xb2xtqXwHLsCwsLFoINTEsx3F8uac0\nuPsyjzeLSlxyySVYt24dAJd1aZQyh+bzeV+As9aNlNJ9ZbNZ6cOcOXOk6Gk9QfndzPetPyPjmpiY\n8FmVNLugmwDHQwYSZF2qF3RW0XLQWTUAb2EQ6rA4Jl3claXayFL6+/sl4wSthCbrDAOVsjcz+0I2\nm/UwZACeIGGT3ev1YLpI6IKtzbL2EpxP6pTnzp3r09/pTCJm9lSt7+J65bX4/TB0xlVvWJFIBB0d\nHeLdqtNwAMVNhx1ev349ANfXqqury+dPpV0RTJFOT6rpGa49bk1vY618Z7YArQStB3QMFuD10aFi\nWrszcAxmAj4qqrUYxfHw+wsWLAg1PquSa3Ju6Ne2cuVK6S8V7MxuMTw8LIcPlboUHw8ePOirTKNj\nLRuRvK7c+5wXXSiDDynXkvYT5EOpKxwBxeeA1+Uc63jYMD36KwHHx6wjqVSqZNxoNBr1PZNaLOZ7\nXPckM2FsWFYktLCwaBlUzbBisRi2bt2KrVu3Fi/w3mmplaxkG9xpdf4gnkRmwYhUKiX02kyHHIlE\nfCeY9jY2Y7yCCkKk0+m65usxnTtZJzGbzfrcGrTJ2ywBxv8dxwmsUQc0JkarUuh0yOy7WV5tfHzc\np3BmEjytTqDIy/VSa2XuavtushgdgWHmfspkMjJXdCDVkQu6HeDOp74/OnW07kczYcbyTk5OBhpP\nAG80iRn7qMViMlFKHXwm6gnLsCwsLFoGVTEsxuZ9/OMfl9AaM15K53viLqxZVJBCD/AyJTNeSTMu\n/o6uvmueeDzR0um053QLQ4dlFpbU6WRN5pfJZHzOlkQqlZL2uigrEGygaDTMjJrJZNJXmEAX5tDM\nEXDHMm/ePGFi5v0JM9vmVC4CnE/T1UIbfEx3nWg0KuuL39PZbnUsHuDVaU43h9l0QYmFOsYgHa8e\nZ6msJ/q5otGFhq633nqr7jo5y7AsLCxaBlUxrPb2dmzevBl9fX2e0tqAV/+gg5YB1xqkd2OzCEMk\nEvHlQtc6KTIqMxBVO66ZGRDS6bTHHG+yhOlAh//o/hQKBV9BAp66iUTC557Bto7j+JwtddBsmFbC\ncjAzZ5A56cIg1FXw/+HhYZkD5g3j90ZGRiTPF+eZFsVm5TMH/AHKZOupVMqXydZc3/q9IOu1aRFP\npVLCMps1r7oYrNlfrletgzYdpDkWnbGCY6dEoN0h6oWqNiz6PL355pvic8FBsZP5fN6nZGQbvbmY\nScKSyaQnwRngxpgNDQ2J744ZXa4puykalisyMF2YXvmcrImJCd9mrJWY5iIOWrCmaDxr1qymKWpL\nbVijo6MiAjDxG/3IYrGYpE/mutBiMefSTMnbTG9+M7UKN5S2tjZ5SM1qRpOTk6Jo1lWB+BrkF8jf\natZ8mgetnl+zgjqhffXM1NdaIc/v8T7pxH91639dr2ZhYWERIqpiWMPDw3jsscfw0ksvYdOmTQCA\nyy+/HACwZcsWAEWlqukQSKahCzSYCsnjx4/j7bffBlB0LgSAl156CUCxFh9PsmuvvRaAl9GVMxdr\neltPkdBkWFoJb45Nu1OYxgYtIpouG1p8bjbDMs3gsVhM5sA8YePxuI8t6bhDMnDOaa1prKcLrUw3\nvbyDqjuzvfbIp/SgK1sD5RlzJBLxsa9GFJ7QfeHccQ70PTBZtRbTzSwjWs3Day9cuDC8/od2ZQsL\nC4s6o2odViaTwaFDh3Do0CEAwAMPPADAlVu7urqwdOlSAG70Nnfc7u5uOV2ZlZAK2z179khoB3Uh\nOobLTE9LNjYwMOCLLidD05WfX3zxxbpmazCdOTUTMdmFbqvdHzS0vG+GSMwEx1GTZRQKhZIVfzOZ\njCjWGcpDnUkymcRbb70FAD7Fs/m3vuZ0Uc6tIRqN+hTp2inWzCqrQ6hM94RyWXL5fe2oWqqvRFh6\nPY6TfdIZQUzGG4vFfFl0tS7ajLUM00HWMiwLC4uWwbSVB9xVafk5duwY9u/fDwDYuXMngOATtNoi\nCtSB/N///R8A4Fe/+hUAfyZSIDixf71PKtOZUPfDZEbaFcAsxqkzFfA9uohMtxBsrQiaLzJCsuVU\nKuVzzeActbW1STvqvIjR0VFh49SjaLZp6nvqNZ6pnEZNlxqdkSHIBYD9Zn/N/O06mJ0gm4nFYh63\nAMAf8gKEVIj0vf7SuZNj0wHO5lrTc2EyrEKh4NPHaveces9nQ7Sd9XQvMP1BmgVODiP4ddoNMx2M\n9u3Rbhz6OrlczrfodRR8PQ0GU0HPEe83DyYtVnPj4QLlBjQwMCDv0f2E13zllVckw4f2cDd/r54P\nq5lCJyjzAMUazgFT5HR0dMimS2MS5zOdTstc8TOqMzKZjM+nS2cVMd1bgpT0YWxYvL/sm86oYCZb\n1OKtWeCF93N8fNyT2QJwRWAtFtcLViS0sLBoGUSq2QEjkUhzs47VAYVCoaxsVekYKcacf/75ntf2\n9nYpbWU61Wpvdp5G2txPJfTRo0cBuIaJp59+Gnv37q2kW8RzhUJhQ7kGlY7TFA/IJDZt2oQLL7wQ\ngBtDxpN2eHhYGCfZFNfZgQMH8O677wJwixW8/vrrALxuL5Vgqrl8r/8F0+xusjgtEtJIwJJVXV1d\nwhI5Fs6v9sw3c18dPnxYjEjvvPMOAFdtcvjwYZl3E5ptMpVypeOcqo0G1+Hy5csBAGeddZY4g5NR\naiZsVj/nXJ88eVLGxerk+/btA1A0qNV7Pi3DsrCwaBlUy7COAHgzvO6EjmWFQqGrXIP/gjEC/xvj\nnHKMgB1nC6GycTY7t7SFhYVFpbAioYWFRcvAblgWFhYtA7thWVhYtAzshmVhYdEysBuWhYVFy8Bu\nWBYWFi0Du2FZWFi0DOyGZWFh0TKwG5aFhUXL4P8Bbo8tXAbjDO4AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for epoch in range(1, EPOCH+1):\n", - " train(autoencoder, train_loader)\n", - "\n", - " # plotting decoded image (second row)\n", - " test_x = view_data.to(DEVICE)\n", - " _, decoded_data = autoencoder(test_x)\n", - "\n", - " # 원본과 디코딩 결과 비교해보기\n", - " f, a = plt.subplots(2, 5, figsize=(5, 2))\n", - " print(\"[Epoch {}]\".format(epoch))\n", - " for i in range(5):\n", - " img = np.reshape(view_data.data.numpy()[i],(28, 28))\n", - " a[0][i].imshow(img, cmap='gray')\n", - " a[0][i].set_xticks(()); a[0][i].set_yticks(())\n", - "\n", - " for i in range(5):\n", - " img = np.reshape(decoded_data.to(\"cpu\").data.numpy()[i], (28, 28))\n", - " a[1][i].imshow(img, cmap='gray')\n", - " a[1][i].set_xticks(()); a[1][i].set_yticks(())\n", - " plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 잠재변수 들여다보기" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# visualize in 3D plot\n", - "view_data = trainset.train_data[:200].view(-1, 28*28)\n", - "view_data = view_data.type(torch.FloatTensor)/255.\n", - "test_x = view_data.to(DEVICE)\n", - "encoded_data, _ = autoencoder(test_x)\n", - "encoded_data = encoded_data.to(\"cpu\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAJVCAYAAAB58IuLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4ZHWZ9//3qSWpPens3em96QWBpqFXaECaVQWHRWR8\nBh0FFXWUB4fx+Y0/HUfGEcQZ3IbRcRtU1J9X+3MZEEEQZBNoGlCBhk7T6U6n0+nO1p2k9r2eP8I5\nVCWVpJZTVeck9+u6uEhXVSqnslR9zrfu730rmUwGIYQQQgghRO1Yan0AQgghhBBCzHcSyoUQQggh\nhKgxCeVCCCGEEELUmIRyIYQQQgghakxCuRBCCCGEEDUmoVwIIYQQQogak1AuhBBCCCFEjUkoF0II\nIYQQosYklAshhBBCCFFjtiJvL+M/hRBCCCGEKJxSyI1kpVwIIYQQQogak1AuhBBCCCFEjUkoF0II\nIYQQosYklAshhBBCCFFjEsqFEEIIIYSoMQnlQgghhBBC1JiEciGEEEIIIWpMQrkQQgghhBA1JqFc\nCCGEEEKIGpNQLoQQQgghRI1JKBdCCCGEEKLGJJQLIYQQQghRYxLKhRBCCCGEqDEJ5UIIIYQQQtSY\nhHIhhBBCCCFqTEK5EEIIIYQQNSahXAghhBBCiBqTUC6EEEIIIUSNSSgXQgghhBCixiSUCyGEEEII\nUWMSyoUQQgghhKgxCeVCCCGEEELUmIRyIYQQQgghakxCuRBCCCGEEDUmoVwIIYQQQogak1AuhBBC\nCCFEjUkoF0IIIYQQosYklAshhBBCCFFjEsqFEEIIIYSoMQnlQgghhBBC1JiEciGEEEIIIWpMQrkQ\nQgghhBA1JqFcCCGEEEKIGpNQLoQQQgghRI1JKBdCCCGEEKLGJJQLIYQQQghRY7ZaH4AQQughk8mQ\nTCZJp9PYbDYsFguKotT6sIQQQoiCSCgXQphaJpMhk8mQSCS0/9QwbrVasVqt2Gw2rFarBHUhhBCG\npWQymWJuX9SNhRCiktLpNMlkklQqhaIopFIp7WM1rKv/ZQd1NaRLUBdCCFEFBb3IyEq5EMJ01FKV\nZDIJgKIoWrBWA3j2Zdmfl06nicVieYO6WvYiQV0IIUS1yUq5EMI0MpkMqVSKZDKZE75ValC3WArf\nwz7biroEdSGEEGUq6MVDQrkQwhTS6TSJRIJ0Op13FRxKC+X5ZIf0bFarFbvdrpW9SFAXQghRAClf\nEUKYXyaTYXx8HEVRqKurmzaQ62mm0pdoNJpzuQR1IYQQepBQLoQwJLVUJZFI0NvbS3NzM62trTU7\nHgnqQgghKklCuRDCULJbHKqlKuWWo1RKoUFdUZQpXV+qseIvhBDCPCSUCyEMY3KLQzWMqy0OZ2OE\nkDtdUFc3qKr/tlgsEtSFEEJoJJQLIWpuphaH6r+L3JRuKIUEdfV28Xgct9utlb9IUBdCiPlBQrkQ\nomZma3GoMnsoz2e6oL5//35WrFiB0+nUbicr6kIIMfdJKBdC1MTkFocz1Y1bLJY5F8rzUcO2WtoC\n06+oS1AXQoi5RUK5EKKqZitVmenz5qOZSl8SiYR2naIoWkhXBx5JUBdCCPOQUC6EqIrsIAmFh3H1\ntrOF8mg0yuuvv04kEsHn8+H1evF6vTgcjjkXTLNX1OHNE5ZkMkk8Hp8xqBu1k40QQsx3EsqFEBWV\nr8VhsSF5pvKVdDpNb28vR48eZdWqVbhcLoLBIIFAgIGBASKRCPX19VpQ9/l82hAioyr2XYHsEC5B\nXQghzElCuRCiYqZrcVgsRVFIp9NTLh8eHmb//v20t7ezbds2ABKJBC0tLbS0tAAT4TQej+P3+wkE\nAvT39xOLxXA4HFOCuhHodbJQTFCf3J5RgroQQlSfhHIhhO5KrRufzuRQHg6H6erqwmKxcMYZZ2id\nSlKpVN7Pra+vp7W1VZsImslkiEajBAIBxsfH6evrI5FI4HQ6tbIXn8+H3W4v+ZiNaKagnkgkZgzq\n6mZSIYQQlSGhXAihm0JbHBZLrSlPJpP09PQwMjLC2rVraWpqmnK7Qu/P6XTidDppa2vTjj0SiRAI\nBBgdHaW3t5dkMonL5dKCutfrnbNBXe32AvmDeiaT0cK5BHUhhNCfhHIhhC6KaXFYivHxcfr7+1m8\neDFbt27V/f4VRcHlcuFyuWhvbwcmwmk4HCYQCDAyMkJPTw+pVAq3262tpns8Hmw2fZ9Ka91pZrag\nrm7WDYfDpFIpmpubtZAuQV0IIUojoVwIURa9S1UmCwQC9PT0YLVa2bx5c1VrvxVFwe1243a76ejo\nACZOPtSgPjg4SHd3N5lMZkpQzw60xX5NI8oX1NUSIK/Xm3Nbi8WSs5ouQV0IIWYnoVwIUZJyWhwW\nIpFIsH//fgKBAIsWLSKTyRhiM6bFYsHj8eDxeFi4cCEwEdRDoRCBQIBjx44RDAbJZDJ4PJ6coD4X\nN0+qg4xU6op6PB7PuZ0a1NWOLxLUhRAil4RyIURR9GhxONv9HzlyhMOHD7NixQpOPvlkhoaGCAQC\nun0NvVksFq3mfNGiRcDEptNQKITf76e/v59gMIiiKHg8Hq3ri9vtnnNBfbrSF7ULTnZYl6AuhBBv\nklAuhChYpevGR0dH2bdvHwsWLGDr1q1arXYhw4OMxmq14vP58Pl82mWpVIpgMIjf76evr49QKISi\nKNpqutfr1QLsXDLdVNLZgrranlGCuhBiPpBQLoSYVaXrxtVpnPF4nFNPPRWPx5NzvRlDeT5Wq5WG\nhgYaGhq0y5LJpBbUe3t7OX78OKFQiMbGRi2ou1wuQwbTcn4mEtSFECKXhHIhxLQq1eJQlT2Nc/Xq\n1bS2tua9/7kSyvOx2Ww0NjbS2NgIwN69e+no6CCTyWhdX8LhMDabTQvpXq8Xp9NpiGCq5zEUE9Qn\nt2eUoC6EMDsJ5UKIvNLpNKOjowSDQdrb23UvVZk8jXOmbiXFhPK5EMxsNhterzenD3sikdCmkg4N\nDRGJRLDb7TlB3eFwzInHn226oJ5Op0mlUhLUhRBzhoRyIUSO7FKVaDTK2NiY1g5QD9NN45zJXF4p\nzyffY7Xb7TQ3N9Pc3KxdFo/HtaA+MDBAJBKhvr5eC+o+n4/6+vpqHnpVzBbUY7FYzobT7M2kEtSF\nEEYloVwIAeRvcWi1WnULw6lUioMHDzIyMsKaNWtywuVs5lMoLyYw1tXV0dLSQktLC4BW5qEG9f7+\nfuLxOA6HQ1tN9/l8hmgtqbeZgnosFtNOMK1WKwsWLJCgLoQwHAnlQsxz2TW7k+vGFUUhnU6Xff8D\nAwMcPHiw5Gmc8ymUl0NRFOrr62ltbaW1tRWY+P6rQ37Gx8fp6+sjkUjgdDpzgrrdbi/66xn9ZzI5\nqIfDYerq6nKCuqyoCyGMQkK5EPPYbC0OLRZLWcErEAjQ1dWF0+ksaxpnMaFcPbEQExRFwel04nQ6\naWtrAya+R5FIhEAgwOjoKL29vSSTSVwuV05QV1tSznb/ZqH+bkz+Pc9eUY/FYtrlVqsVu92u1adL\nUBdCVJKEciHmoUJbHJa6Up49jXPdunU5LQBLUWgo17s7TC1U410BRVFwuVy4XC7a29uBid+JcDis\ndXzp6ekhlUrhdrtzppIWEtSNaroTtplKX6LRaM7lEtSFEJVi3mdXIUTRim1xWGxAzJ7GuXz5ck4+\n+WRdAouUr1Seoii43W7cbre2sTedTmtBfXBwkO7ubjKZjBbUE4mEqQJpMe+ilBrU1amkZvq+CCGM\nQUK5EPNEKdM4LRZLwSvlY2NjdHV1TZnGqQcJ5bVhsVjweDx4PB4WLlwITPwehUKhnB7qIyMjeDye\nnBV1vVto6qHc0qZCg7q6SVptzShBXQhRCAnlQsxx5UzjLKSmPBaLsW/fvmmncepBQrlxWCwWre7c\nYrEQj8fp7OwkFArh9/vp7+8nGAyiKAoej0drz+h2uw0Z1Ms1XVBX35FS/22xWCSoCyFmJKFciDkq\nX4vDYgPATDXlhU7j1MN82uhpxhMQq9WKz+fD5/Npl6VSKYLBIH6/n76+PkKhEIqiaKvpXq8Xl8tV\n1aBerd+NQoK6ejsJ6kIIlYRyIeaYmVocFmu6gDgyMsLrr79e0DROPRTTBUYCTfXM9DOxWq00NDTk\nbPJNJpNaUO/t7SUUCmG1WqcE9Ur9DGt5wiZBXQgxGwnlQswhpdSNz2RyTXkp0zj1YMbV4/mimLBo\ns9lobGyksbFRuyyRSBAIBHJq1G02mxbSvV4vTqdTl1BqtHdRZgvqyWSSo0ePsmzZMgnqQswDEsqF\nmAPKqRufibpCXc40Tj3Mp1A+nx4rgN1up6mpiaamJu2yRCKhTSUdGhoiEolgt9tzgrrD4ZiToTT7\nb1c9YVEURStFyx7spYZ0deCRBHUhzE1CuRAmVmyLw1LEYjF27dpV8jROPcy3oDrf2e12mpubc07+\n4vG4FtQHBgaIRCLU19drQd3n81FfXz/j/RptpXw22X/T2e98qX8LyWSSeDw+Y1Cfi5trhZirJJQL\nYVJ6l6pMpk7jTCaTnHXWWSVP49RDqUOMRGVV80Sprq6OlpYWWlpatK+dHdT7+/uJx+M4HI6cqaTZ\nv7dmC+Xq3/Zk2SFcgroQc4eEciFMplKlKqpEIkF3dzd+v59169bx6quv1jSQw/xbKTfTY63lxsn6\n+npaW1tpbW0FJr5v0WiUQCDA+Pg4fX19JBIJnE4nXq+XSCRCKpWqyfGWQm2lWIhigvrk9owS1IUw\nBgnlQpiEHi0OZ7v/7Gmc69atM8yq4nwK5Ub5npuRoig4nU6cTidtbW3AxO91JBLRppIeOHCA7u5u\nXC5Xzoq6nsOu9KLHsCP1/5ODeiKRmDGoq5tJhRDVY7xnISFEDnViYCKRqFjduDqNs7GxUfdpnHqY\nT6Fc6EtRFFwuFy6XixMnTrB48WI8Hg/hcFjr+NLT00MqlcLtdudMJa3130Elym3U+8tuY5od1NWT\n/kwmo4VzCepCVIexXnmFEDkqXTdejWmcepAgIPSQfVLrdrtxu910dHQAE39ralAfHByku7ubTCYz\nJahXuid/tnQ6XZWykkKDOkysqGeHdAnqQuhHQrkQBlTpuvHsaZwnnXQSbW1t8sJqIGZ5V8BsGydn\nOl6LxYLH48Hj8bBw4UJg4u8kFAoRCAQ4duwYwWCQTCaDx+PJCeqVCs61HnYE+YN6PB7Pua0EdSH0\nIaFcCANR68aPHDlCe3t7RUpVqj2NUxRHwoxxWCwWre580aJFAKRSKUKhEH6/n/7+foLBIIqi4PF4\ntPaMbrdbl6ButJOeQoJ6OBwmGAzS0dGBzWbTOr5IUBdidhLKhTCI7FKVnp4ebbVOL7WaximEUegR\ncq1WKz6fD5/Pp12WSqUIBoP4/X76+voIhUIoiqKtpqtBvdivPV1LRCOZHNQTiYT2jkI8Hs9ZVVdX\n1CWoC5GfhHIhaixfqYqeaj2NUwijqNTKs9VqpaGhgYaGBu2yZDKpBfXe3l5CoRBWqzUnqLtcrhmP\nx2gr5YVQ6+Anv1OQyWRmDepqe0azPWYh9CKhXIgama3FYbkvyJlMRmsBV+40TjOGAzOTmvLKqObx\n2mw2GhsbaWxs1C5LJBIEAgGt60s4HMZms2kh3ev14nQ6tWMspk+5UUx3zPlK8aYL6pO7vkhQF/OF\nhHIhqqyQFocWi4V0Ol1yvbc6jdPpdLJ58+ayhv+o7QjN8qJoluOcjtmOX463cHa7naamJpqamrTL\nEomENpV0aGiISCSC3W7H5/Np5Stm+vsrpmPMdEE9nU6TSqUkqIt5R0K5EFVUaIvDUkP55Gmc2W+n\nl8pisZhm5VaImRjx99hut9Pc3JxTVhaPx/H7/Rw9epRwOMyJEyeoq6vTVtR9Ph/19fU1POrpldvG\nUYK6mM8klAtRBcW2OFRDeTH339/fT29vr+7TOBVFKWvVXgijMMuKc11dHS0tLcTjcdLpNJ2dnVpQ\nDwQC9Pf3E4/HcTgcOVNJy3lHTC+V6K0+W1CPxWI5G06zN5NKUBdmIqFciApS68aTyWRR0ziLmWBZ\n6WmcZlspD4fDOBwO09XiZjPL99ssx6kySyhXZT9n1NfX09raSmtrq3ZdNBolEAgwPj5OX18fiUQC\np9OZE9TtdntVj7laJ/AzBfVYLEY0GpWgLkxHQrkQFVLONM5CVspjsRivv/46sVisotM41ZVyowuH\nw+zdu1d7RyK7JZ3P55u104VRmOEYs5npeM0Yyqd73lAUBafTidPppK2tTbt9JBIhEAgwOjpKb28v\nyWQSl8uVE9T1PnEv9JgrbbagHovFtMslqAsjklAuhM70mMY5Uyiv9jROo6+Up1Ipenp6GB4eZs2a\nNXg8HhRFIZVKEQgE8Pv99PT05HS6UGtzHQ6HvBALwyp21VlRFFwuFy6Xi/b2dmDi+SgcDmsdX3p6\nekilUrjd7pyppHoF9UqUr5Sj0KA+MDBAZ2cndrtdq0+XoC6qTUK5EDqZrcVhMaYL5eo0zra2tqpN\n4zTySvnw8DD79+9n0aJFbN26FUVRtI1gVqs1b0s6v9+P3+9nYGCAaDRKfX19zgY6I9TlisqYSyvl\nhVIUBbfbjdvtpqOjA5gIzmpQHxwcpLu7m0wmMyWol/L8YrRQnk++5+b+/n4WLlxINBrNudxqtUpQ\nF1UjoVyIMhXS4rBYk0N5OBxm3759KIpS9WmcRlopV7+/kUhEm0565pln4nA4tOuzbzfZ5E4XmUyG\nWCyG3+9nbGxMq8t1uVw5vaMr+XZ/Pkb5fs/GLMepMmMor8TxWiwWPB4PHo9HmxycTqcJhUIEAgGO\nHTumTeX0eDw5QX22wG2GUJ5PvhJD9bl9pqCuTiU10++VMC4J5UKUoZy68ZmoodwI0ziNtFKeTqc5\ndOgQg4ODrF27dsr3Q31xLDQsKoqCw+HA4XDk1OWGw2H8fj/Dw8McPHiQdDqN2+3WSl/UcPKOkRFO\n6B1M1b0Bw8MlfXqTovBAS4uOBzQzM4URs4Vy9XmlGiwWi3YSumjRImCiNCwUCuH3++nv7ycYDKIo\nCh6PRztpdbvdOc971TzmSpup9CU7qCuKktOaUYK6KJWEciFKoEfd+EwURWFkZIS9e/eWPY1Tj2Mx\nwopoKpVi165dLFy4kG3btlXs+5H9dn/2KmIwGNTa0anh5MSyZRU5hnLofpIgaqbWEz2tVqt2IqpK\npVIEg0H8fj99fX2EQqGcTdXxeNx0YbSY57fpgrraZSv7dhLURbEklAtRhFJbHBZDrfN0uVxlT+PU\nQ7E90/UWjUbp6uoiHo+zbds23G531Y/BYrFo4aSzsxNg4gV4dLTqxyLKY6ZQZMSVfavVSkNDQ85g\nsmQyqQV1v99PV1cXdrtdC+per9fQ3Y8qNfBIgrooloRyIQpUqVIVVfY0zpaWFpqbm2seyKF2K+Vq\nl5ljx46xZs0a4vG4oaYYVrvOXMw/Rgzl+dhsNm1TdSAQYPny5dTV1REIBLSuL9ndj9QyGafTaYjH\nV82BRxLUxUzkVUWIWVS6VCXfNM5Dhw4Zpo67Fivlx48fZ9++fbS3t2ulKj09PYYoo5nNa6tXU792\nLSSTYLXSeNVVNN1wA4oJN7/Nxiyh0azMuGlSPWa73U5TUxNNTU3adWr3o0AgwNDQEJFIBLvdnhPU\na9GmNJVKVeX7PFNQTyQS2nWKouSEdAnq84eEciGmoWeLw+lMN42z1iUj2aq5Uh6NRtm3bx+pVIoN\nGzbgcrlqchzlUBwOVt1/PwDJkRH6//7vSQWDtH3ykzm3yySTKBVaba/IBtR81J/PLJtSq735dK4w\n40nPTCcSk7sfAcTjcS2oq21K6+rqctqUVvodsmpNIc1HfV3J/p6pC0HZ9fnZQV0deCRBfe6RUC7E\nJJVocTjZbNM4Sw3lH7jJwti43k/SJ+t8f1M1+jLc+qmDHD16lNWrV2ujxLMZqQtMoWwtLSy87TZ6\nrrqK1ptvZvyXv8T/8MOkQyFIp1n+s58x8t3v4n/gATLxON5LLqHtk58kHQ5z5KabSAwMQCpFyyc+\nQcPllzP4b/9G4NFHUaxW3OecQ8dnPpP36xpts6fRjscszBrKiznmuro6WlpaaHnjpC2TyeQE9f7+\nfuLxOA6HI2cqqZ6lfUZ7R2JyUFcXI/IF9Wg0SkNDQ85kUmFeEsqFyFLpuvF0Os3hw4fp7++fcRqn\nxWLRVuiLoX8gr44xv0IymWTr1q3TrlhVa6X82ye5CQ8V+HM/MHvbwrqlS8mkUqSOHwcg+uqrrPrt\nb7E2NhJ86inihw6x4te/hkyGvhtvJLR7N6kTJ7C1tbH0v/8bgFQgQHJ0lMDDD7Pq97+fmFjq95f8\nGIU5mLG9oB6bJuvr62ltbdVOzjOZDNFolEAgwPj4uDZPwOl05gR1u91e0tdMpVI1WykvRHYIzw7q\nmUyGPXv2cOaZZ05ZUVdX1SWom4uEciGofN04FDeN00jlK9Vy0kknzXh9tUJ5wYG8RO7t27G+MWU0\n+NRThP74Rw6+850ApEMh4ocO4dq8mcHbb2fwy1/Gc8EFuDdvnih3qa/n2Kc/jeeCC/Du2FHR4xS1\nV+uWiKWoxDErioLT6cTpdObME4hEIgQCAUZHR+nt7SWZTOJyuXKCeiEbso22Ul4I9Z1DtZwFpl9R\nt1gsOZtJJagbl4RyMa+pdeODg4MkEgk6Ojp0D+OlTOOcj6F8NmapKZ8sfvgwitWK9Y06WktWnTxA\ny0c/yoK/+Zspn7fyvvsIPP44w1/9KuGzz6b1pptY8atfEXrmGQK/+x0n7rmH5T/9acHHUesNqNtK\nHIZUirlSwz4fyldKpSgKLpcLl8tFe3s78ObgL7XjS09PD6lUCrfbnTOVdHJQN2Moh6kr/NOtqMPE\nJtuZgrq6mVTUloRyMW9ll6okEgnC4bCuT0rlTOPUI4DGY8d5/olLAIhFB1EUK3X1E0HlrAufxWKt\nfbvFYhT6PTFSeE8eP86xz32OBe97X97fLc+55zL0ta/RcMUVWNxuEgMDKDYbmVQKa2MjjVdeidXn\nY2znTtKhEOlIBO+OHbg2baL7/POLOhYjbECtlrlSw27GUF7LzYfZg786OjqAied5NagPDg7S3d1N\nJpPJCeqJRGJOhPJ81J9F9u2yg7paJpnJZKaEdAnq1WfuZ14hSpCvVMVqteq2Mp3JZBgcHOTAgQN0\ndnaWNI1Tj5Xyuvpmtl/yIgD793wBm83DinW3TDlWyKAo1XlBSqeTWCylPe3UImyHOc6PuBCAIANY\nsOJios71w+zO+zmZaJQDl1+urUg3XHklzR/8YN7bes49l1h3Nz3XXAOAxe2m8ytfId7by+Add4DF\ngmKzsfALXyAVCtH3kY+QicUgk6F9mk2ehajVBlRRHLOu4BqJxWLB4/Hg8XhyJvSGQiECgQDHjh1j\ndHSUdDpNNBrNWVE3+ve+1Fr4mYJ6PB7Pua3FYpGgXkUSysW8MVOLQ73KRQKBAF1dXTidTjZt2lRy\nK69Klq+EAt386emr8TWejn/sJTaf9yAnhh/nYNe/QwbaFl3OmvVfJJ1O8od7O7joqhEAjh3eyfHB\nRzl183c5dngnB177EopiwV7XxJYdj5BOJ9n38qcZG3maVCrKstWfYMnKDzIy+CgHXrsdm81DOHiQ\nc9/+SknHXYtQ7qKZj/EXAB7jVurwsJ1Pzfg5b9m/f9rrGq+5hsY3Ariq+frrab7++pzL6pYtw3Pe\neVM+f+Wvf13ooc9KNqAanxlXys3AYrFodeeLFi2iv7+fVCpFY2Mjfr+f/v5+gsEgiqLg8Xi09oxu\nt9tQQV3PDaqlBHW144sEdf1IKBdzXiEtDq1WK6lUquSvkT2Nc926dTkjqEtR6ZrykL+L9VvupqFp\nE9HwEV5/5fOcffEubPYGnn/iUoaO/paWjkun/fzuV7/Ilh2PUO9oJxEfA+DIwe9RX9/GWRc9SzoV\n49lHt9PSfjEA/tEXOefSl3G6l5Z8zEYqS5mLZAOq8Ugor450Oq0NMfL5fNrlqVSKYDCI3++nr6+P\nUCiEoijaaroa1Gv1M6r00KPZgnp2WH/yySdxu91ceOGFFTue+UBCuZjTCm1xWGoIzjeNU48n6EqH\ncpdnFQ1NmwAYO7Gb5rbztXrzhUvfw+jwUzOG8gUtZ/Hyc9fTseRdtHdeBcDIwCMEA10c69sJQDLh\nJxzsBqCxeVtZgRwklOut2htQj3//+3N2smmlmLElohlNVyZktVppaGjIWWRJJpNaUO/t7SUUCmG1\nWnOCusvlqsrPrRatHKcL6i+//DJLliyp6rHMRRLKxZxUbIvDUlbKs6dxbtmypeQeuflUOpRbba5Z\nbzNRZ/5mCE6lotrHp2z6DuMnnmPo6AM88/stbL/keSDDKWfeRXP7BTn3MzL4KFaru+xjllCun1ps\nQA0+8cSc3VhaKWZsiWhGxaw422w2GhsbaXzjXSWYeKc0EAhoXV/C4TA2m00L6V6vF6fTqXtQN0p/\ndUVRCAaDU4bgieLJM6GYU9S68WQyWdQ0zmJC8GzTOPVQzZaIjU1b2PfSPxKPHcdmb2Dg8M9ZvvYW\nFMWCzb6AUGA/Ls8qhvrv1VbTI6GDNDZvo6FpK8PHHiAa6ael42IOd3+bBa3nYbHYCPr34XSVtzqe\nzUihfDff5EW+RzO/qvWhFKzWG1CX/fjHeS+XQD4zM62UG+Xvs1hqv+9S2e12mpqaaGpq0i5LJBLa\nVNKhoSEikYhWIqMGdYfDUdbPt9zj1lMwGMwp/RGlkWdDMWeUM42zkBBc6DROPVQzlDtci1l96q3s\nfvxCyEDrostoW/QOANauv50XnryMuvpWGhacSTodA2DvXz5FJNQDGWjuuAhvw6l4vCcTCffxzMMT\nZTF1jlbO3K5faDVSKN/Cx9nCx/k5B2t9KAUzywZUYV5mLbepRJcbu91Oc3NzTivceDyuBfWBgQGi\n0Sh1dXVaUPf5fEU1B0ilUgUNR6qGYDCI1+ut9WGYnjF+mkKUQY9pnLOVrxw/fpx9+/YVNI1TD3qH\n8tWn/rP2sdt7ktYqUbVo2XUsWnbdlM9buPRaFi69dsrlG8+ZGsIUi5W1629n7frbcy5vab+Qlvby\nN/8YIZQR8zcFAAAgAElEQVRv5mM5/7521coaHUl1RFqS/Oa5w7U+DGESZi23qfSGSVVdXR0tLS20\nvDHYKpPJ5AT1/v5+4vE4DocjZyppXV3+mRKpVKrkDl96k1CuDwnlwrRmanFYrOlCcCnTOPUwHyd6\n3uGY7cVlfYH3VJkXqR3cWpH7NTLnyNx5iaj1Cd18YNa+6rUqA1EUhfr6elpbW2ltnZh/kMlkiEaj\nBAIBxsfH6evrI5FI4HQ6c4K63W43TE05SPmKXubOM66YNwppcVisySE4lUrR09PD8PBw0dM49TAf\nQ7kQlSTtBSvPzKHcKMetKApOpxOn00lbWxsw8bsbiUQIBAKMjo7S29tLMpnUFqUURcHn89W0lEVC\nuT4klAtTKadufCbqi7Ue0zj1Oh5Z2RNCP/L3VHlGCrfFMNKKcz6KouByuXC5XLS3twMTv8979uyh\nvr6ekZERenp6SKVSuN3unKmk1QrqoVAIt7v8LlvznYRyYQp61I3PJpVK8cILL5Q9jVMPsqJnDmGO\n8yMm6uWDDGDBiouJt6E/zG5s5K8FBejhcZ7hTq7j/inX3cuHOItbaOMtU657lq+zkRup4822lk9x\nBw0swY6bZtbk/TwzG7//fhouv5zBf/s3Ao8+imK14j7nHDqm6fQCE12SJv8Ny99VZclGz+pRXwPb\n29txvTFjIJ1OEw6HCQQCDA4O0t3dTSaTmRLUK3ECkslkDH1iYxYSyoWhldrisBjqNM5oNMr69evL\nnsYp9GP0cOqimY/xFwAe41bq8LCdT5V9v1fw/byXp0mxi6+znvfmPO4DPMS7+TkP839Yw+WGC+WZ\nTIa+D32IxMAApFK0fOITRYVsz1vfSnJ0lMDDD7Pq979HURRSfv+MX3Pv3r3apjmfz4fb7ZbV8goz\n60ZPM4ZymLrCb7FY8Hg8eDweFi5cCEw8tlAoRCAQ4NixYwSDQTKZDB6PJyeol/P45e9KPxLKhWFV\nqlRFlT2Nc9myZbhcLtMH8saGDGPj5lupSkZG4Y0V5mxzJZwe4gke5GYAFBSu50kA4gTZyTUMsYdF\nbORqfoKCwg84n0u4k042cRseNvERDvIIJ/MuAhzlR+zARQsf4DGi+EkR5zj72cd99PIET/JF/ppf\nEiPA/XyUBGGaWMUV3I2TBfyA8+ngdA7xBGmSXMHdLGZL3mPfe9ppnPzKKzmXdW3YwEmPPELw8ccZ\n+trXWPXb32JtbCT41FP4H3yQhbfdBpkMfTfeSPONN5I6cQJbWxtL//u/AUgFAkWFbKvXOzFkqL6e\nY5/+NJ4LLsC7Y8eM3/MNGzZom+b8fj8nTpwgHA6ze/du3G63NlK9UiuH85FZw61ZTyYK6RpjsVi0\nDaKLFi3SPi8UCuH3++nv7ycYDKIoCh6PR2vP6Ha7i/6emPFdEqORUC4MpxqlKvmmcR4+bP7Wbz+8\nq/TNocFgkL179+J0OlmzZo3WhisajfLqq6+yceNG7bYzdUqZacU4Xzg9yos8zq3002LocFqOZ7iT\ny/gmS9lOjCA2HAAM8Gf+jlfxsoi72c5hnmYZ5+R8boIQnWzlUr4CwJ+5m/fzGG4m2qod5BFWcCFL\nOZu1/BVruJxTmOg5/i3W8w7uYjlv5Q/8M4/zL7ydr79xv2E+xl84xJPcyw18nD0lPTb39u1Y35hu\nGHzqKUJ//CMH3/lOANKhEPFDh3Bt3szg7bcz+OUv47ngAtybNxcVsofvuovWm25ixa9+ReiZZwj8\n7necuOcelv/0pzMeW/amuaamJsLhMKeffjrhcBi/36+tHAJaIPH5fLhcLlOGtFozayg3q1Jr4a1W\nq/a7nn1fwWAQv99PX18foVAIRVG01XQ1qOd7LZafu34klAvD0LPF4XTUaZzRaDTvNM752KEhmUxy\n4MABRkdHWbduXc74aJhYadHr7Ukzh9Nb/AG+6iutD+8StvMQt3Aa13EyV9PAYgA62aJ93MEGxjg0\n5XErWHkL75r2vrv5HWdw/ZTLo4wTZYzlvBWADbyfn/Nu7fpT+V8ALOc8YviJMIaTxin3M1n88GEU\nqxXrGx2JLC5XzvUtH/0oC/7mb6Z83sr77iPw+OMMf/WrhM8+WwvZAJZZ9m+03nSTdjvvjh2zrpID\nbBsennrh4sVw/PjEx3Y7NDdP/JfFFwxy2969WCyWnKEulRiTPhMzlgSYNZyZ8XsN+q7wW61WGhoa\nct4tTiaTWlDv7e0lFAphtVq1lfehoSFOPfVUXTd5jo2N8aEPfYg9e/agKAp33303Z511li73bQYS\nykXNVaLF4WSFTONU2xDOl7eyszvNLFmyhDVr1uT9viuKolt7xrkUTmeym2/yIt8D4Doe4Fw+zRou\nYz8PcDfbeS8PAWDN6qmuYCVNcsp92XBgYfrfyX52czn/VfQxKigz/juf5PHjHPvc51jwvvfl/V3x\nnHsuQ1/7Gg1XXIHF7SYxMIBis5FJpbA2NtJ45ZVYfT7Gdu4kHQqRjkSwvTFIxSj8ViubN28mkUgQ\nCATw+/0MDw8TiUTKmr5YLDMuEJh1o6dZVfp7bbPZaGxszFmoUf8uhoeH+fznP09vby9ut5tEIsHO\nnTvZtGkTK1euLPnYbr75Zt72trfxi1/8gng8Tjgc1uvhmIKEclFTla4bh8KncapTPY0Uyiv1whwK\nhdi7dy9f//6ZBMOds9zaCkxaqbh2anhUOfknAHblCZh2PsVpb5S17AUgCZzDGh7Ubt/CXUTe+PyT\neYQ+oI8klxJlNxkgiT0C/Cb3vqsZTmezhY+zhY9r/z7BAdo5jXZOo5/nGaELR4nBvx4vcQK4aWGI\nV2lhnRba1esAHDTgZAG9PMUyzuUlfqydmADsYScr2EEvf8RBAw7y76fIRKMcuPxySCbBaqXhyitp\n/uAH897Wc+65xLq76blm4h0Ki9tN51e+Qry3l8E77gCLBcVmY+EXvkAqFKLvIx9h5a+nToc1Arvd\nTlNTE01NTdplsVhsyvRFdaiLWg6gVws6MwZcs9Zmm+37rKrFCn/238X//M//APDss89y++23c+DA\nAXbu3MmBAwdoa2tj06ZNXHHFFWzbtq2g+x4fH+fJJ5/khz/8ITAxAXW6aaZzlYRyURPVqBuPRCJ0\ndXUBFDSN02gDe9Re5Xp+X1KpFAcPHmRkZIR169YRDNt1u+9qSjirH07LsYuv08NjKFho4xRW83b6\neLak+9rIjfyEt+FlEau5jJN4m3bdqbyH+/gwz/EfXMsvuJIfabX0C1jJlfxAu60NB9/mDFIkuIK7\np/16b9m/f9rrGq+5hsY3Ariq+frrab4+9x2LumXL8Jx33pTPN2ogn06+6YuRSAS/38/x48dzekWX\nu5HUjAHXjOUrZi1dMZK6ujpWrFjBZ7K6Jw0ODvLCCy+QSqUKvp+enh5aW1u5/vrreemll9i4cSPf\n+MY35lX/cwnloqrUuvHe3l4WLlyIxWKpSL/xnp4ehoaGWLt2bcHTONWVcqNQTxL0eJHLZDIMDQ3R\n3d3N4sWL2bZtm2lXh1TVDqez2cGt0173Du6actkKzmcF52v/voz/1D6+nse1jz9LMOfztnITW5mo\nsb6Hi7mKe7TrlrKdT/Bazu0/zK68x7Se92p19aI02UNdOjo6gPwt6CB3I+l0G+aymbV8xWyh3IzH\nDMb6/QgEAni9uftt2tvbueyyy4q6n2QyyZ/+9Cfuuusutm7dys0338wdd9zBv/7rv+p5uIYmoVxU\nTXapSn9/Px0dHbo+qWQHz87OTrZt21bUk63RVsr1Op5wOMzevXux2+01H4qkJwmn8Lf8vtaHUBGv\nrV5N/dq1WslM41VX0XTDDSgmCE/TtaCbvGHOZrPllL04HI6c50Mjha5CmTHgmvGYwVhTSIPB4JRQ\nXorFixezePFitm7dCsA111zDHXfcUfb9momEclFx+UpV1FVpveovs9v5lRo851ooV98xGB4eZu3a\ntTm1sfnEY8d5/olLAIhFB1EUK3X1E5vwzrrwWSxW49b2zdVwWinZK/FGpDgcrLp/YtJpcmSE/r//\ne1LBIG2f/GTO7TLJJEqVxoiXI19ni+yNpIODg0SjUW0jqc/nw263mzKUGyUoFkpCefn0CuUdHR0s\nWbKEffv2sXbtWh599FHe8hZjzJqoFuM/mwnTmqnFoV6lIolEggMHDjA+Ps66devKGv5j1PKVUgwP\nD7N//34WLVrE1q1bC3rRqatvZvslLwKwf88XsNk8rFh3S85tJuovMyhKdV7E0ukkFkvlnqaMHk6N\n4szOQeqslTlh3XV44YzX21paWHjbbfRcdRWtN9/M+C9/if/hh0mHQpBOs/xnP2Pku9/F/8ADZOJx\nvJdcQtsnP0k6HObITTeVPEW00mbaSDo+Ps7Y2BihUIhXXnklp+OLXgsZlWDGUG6kcFsMIx23XqEc\n4K677uK6664jHo+zcuVKfvCDH8z+SXOIcf+6hWkV0uLQarWWtQo8eRrn2rVry15Vmgsr5eFwmK6u\nLqxWK2eeeSYOh6Ps4wgFuvnT01fjazwd/9hLbD7vQU4MP87Brn+HDLQtupw1679IOp3kD/d2cNFV\nIwAcO7yT44OPcurm73Ls8E4OvPYlFMWCva6JLTseIZ1Osu/lTzM28jSpVJRlqz/BkpUfZGTwUQ68\ndjs2m4dw8CDnvv2VWY5QVFqlAnnBX3/pUjKpFKk3eoxHX301Z4po/NAhVvz619oU0dDu3WVPEa2F\n7I2koVCInp4eVq5cmbORNJ1OaxtJvV6voSaSmrFjjJlXyo1y3MFgkOXLl+tyXxs2bOCFF17Q5b7M\nSEK50FWhLQ4tFkvJq9Lj4+N0dXXh8/m0aZx6MHMoT6fT9PT0MDg4WNTm1kKF/F2s33I3DU2biIaP\n8Porn+fsi3dhszfw/BOXMnT0t7R0XDrt53e/+kW27HiEekc7ifgYAEcOfo/6+jbOuuhZ0qkYzz66\nnZb2iwHwj77IOZe+jNO9VNfHIeaGakwRrTW1+8p0G0nViaSBQECbvKiupheykbSSx2wmRlpxLoaR\n3pUIBoPzqkNKJUkoF7ootsVhKaUi2dM4TznllCnTOMtl1vKVkZERXn/9dRYuXFj05tZCuTyraGja\nBMDYid00t52v1ZsvXPoeRoefmjGUL2g5i5efu56OJe+ivfOqieMeeIRgoItjfTsBSCb8hIPdADQ2\nb5s1kO+aoVe6XuwR2PibN58mXW1pwkPmCh3liLRU/ntcCL2niIaeeYbA737HiXvuYflPf1qVx1Cs\n6VadszeSqlKpFIFAgEAgUPBG0kods9lCuRmPGYx1MhEMBvH5fLU+jDlBQrkoi1o3nkwmi5rGWUwA\nLmQapx7MtlKu9mFXFEW3UpXpWG2uWW8zUWf+Zs/fVCqqfXzKpu8wfuI5ho4+wDO/38L2S54HMpxy\n5l00t1+Qcz8jg49itRpj1SXxRmt7V9vEz+Gj3aGKf82hoSHC4bBubwer8o2dN0OXk0pMEfXu2IFr\n0ya6zz+/+g+oQMWsOlut1mknL2ZvJK2vr88J6noPZjFjwDXjMYPxQrleNeXznYRyUbJypnEWGsoL\nncapB7OslKfTaQ4dOsQ/fXkZ4cimqh9XY9MW9r30j8Rjx7HZGxg4/HOWr70FRbFgsy8gFNiPy7OK\nof57tdX0SOggjc3baGjayvCxB4hG+mnpuJjD3d9mQet5WCw2gv59OF3GK1f55Ni4KV+0C1Fol5N8\nwgPHee4f/oORF/ZS1+DB2d7E1q/8bxrWFP4zjI0FgKkbPSs9RTQTi0EmQ3uNNnkWotyWiLNtJO3r\n6yORSOB0OrWQ7vV6y9pIasaAa6Ta7GIYKZTn61MuSiOhXBRNj2mcswXgYqdx6sFisWidYowgXyhX\nT1La29sJR2rTotDhWszqU29l9+MXQgZaF11G26J3ALB2/e288ORl1NW30rDgTNLpGAB7//IpIqEe\nyEBzx0V4G07F4z2ZSLiPZx6eOLGoc7Ry5vZf1eQxzeSFF17QSgEaGhrw+XzU19cbakPbt09yz1pW\ncy35XjRDsEr9eCXwNDwDU2cdrcx7n+v4q9wLfjfroU7x5wMHp1wmU0Qrs2lypomkw8PDHDx4MGcj\nqTqRtNDQataNnkYJt8UwUigPhUJSvqITCeWiYDO1OCzWdKG81GmcerBarUSj0dlvWCWKomgjoKPR\nKF1dXWQymaqcpKw+9Z+1j93ek7RWiapFy65j0bLrpnzewqXXsnDptVMu33jO1CCkWKysXX87a9ff\nnnN5S/uFtLRfWOqh627Lli0kEgn8fr+2uS4ajeasMOrdqq7Y0d/zqc59vqjGpsmZJpL6/X76+/sJ\nBoPaRlJ1NX26jaRm3OhpxtV9mHit1Lv8qFRSU64fCeViVoW0OCyW1WolFovlfI1ypnHqwYg15epJ\nyrFjx1i9erW2wiX0N1NPdLvdTnNzs3aSmMlkiEaj07aqa2howO12l/Q7bLaVRlEZtZromb2RtLOz\nE3hzI+nkiaTZZS8Oh8OUAddIK87FMNJxh8NhXK7Z9x2J2UkoFzMqp258Jtl9yoPBIF1dXdTX19d0\nDLzRQnk0GqWvr4/Ozk62bt1qmCdgo3jk1y0164muKApOpxOn00l7ezsw8beijlLv6+sjFAphsVhy\nVtOr0QFDlO9zjtf412htJwnWKpTnM91GUvXdo4GBAaLRKLFYjL6+PhYsWFCRjaSVkE6nTXGckxkp\nlGcyGcMci9lJKBd56VE3PhOLxUI8Hqerq4uxsTHWrVuX84RfC0bZ6BmLxdi3bx9+v5/FixezatWq\n2T8JiMeO8/wTl0zcR3QQRbFqGy3PuvBZLFbzvfCUolY90bMDuCqZTGrBJbsDRnZQ16vPfrYwx/kR\nEyVAQQawYMXFxLssH2Y3Nqb/XejhcZ7hTq7j/inX3cuHOItbaOPNwHqkbzfpjjL2Yswy0bMWAkrt\nW0EavT4737tHL774Il6vN2cjqcvlyil9MdpEUtnoWZ5iS+3EzIz11yFqrtQWh8V+jRMnTnD06FHW\nrl2ryzROPdR6pTy79ePq1atpamoq6iShrr5Zq/3ev+cL2GweVqy7pVKHa1iV6IleKpvNltMBI7vs\n5cSJExw6dIhUKoXH49FCejqdLvuFzkUzH+MvADzGrdThYTufKvvxXMH3p1xWViAH7JYUiXTtw4XK\nbqn9iTmYrz5bfQ5vbW3V6tMzmQzhcJhAIKDLRtJKMPNGTyP9fhjhNXwukFAuNJUqVcmmTuN0OBy0\ntrayePFi3b9GqbJLaqptdHSUrq4uWlpatNaPR48eNVQ3GOMxX0/06cpesjfWjY2NkU6nSSaTWnBx\nOp0VedE7xBM8yM0Tx4bC9TwJQJwgO7mGIfawiI1czU9QUPgB53MJd9LJJm7DwyY+wslcXdYxbFw8\nVPbjmIuMVL5SqMknEoqi4Ha7cbvdBW8k9fl8uFyuqj12M9bBg3FWyo12cmB2EspFxUtVYKIkY//+\n/UQiEU455RQADhw4oOvXKJe6sbKa1Cml8Xic9evX54wqrvXKvdHNlZ7okzfWjYyMMDY2RlNTE36/\nn6GhISKRCA6HQ/eyl2e4k8v4JkvZTowgNiYGUA3wZ/6OV/GyiLvZzmGeZhnn5HxughCdbC37GMr1\n8Ds/VVJ/9IM/+z0nf6y8E4pKMnr5ynRmO+bZNpL29PQQDofzbiStxPfDrKHSKCv8oVBI9+na85mE\n8nlMzxaH08kuyVi1ahXt7e0oikIkEjFE/Xa2fCH4AzdZGBuv5AujC9gwzXWdJd9rdktDo8sutQkF\nuvnLs3+d04LxaO9POdj171pP9LXrbwOq1xP9q77c/t6utnTFJ3taLJYpZS/q4JfR0VF6e3tJJpNa\nGQCUtilxCdt5iFs4jes4matpYOKdq062aB93sIExDk0J5QpW3sK7OMKu0h+oDjZ+8SNEhkaLCuXx\nsSB7v/NrQ4dys5WvlCPfRtJ4PK4FdXUjafZ+DK/Xq8sGTaOE22IZZaU8EAhIKNeRhPJ5qBItDvOZ\naRqnUTZVZst3TJUN5ALM1xO90j3Bs/vTZ1/mcDhwOBy0tbUBE2EiHA7j9/sLvu/dfJMX+R4A1/EA\n5/Jp1nAZ+3mAu9nOe3kIACtvdkBSsJJm6sZHGw4s5A8Fek37LGQ1u/n01WQyGXb/4zc58tAuFBRO\n/8z7WXnthSSCYR65+v8lPhognUhy5hc+zLK/OpcXPvttAgf6+Z+NH2DRRZvZ8uWPF3xc1WLG8hU9\n1dXVTdlImn1ievjwYW0jqRrSS9lIKuUr5QkGgzLNU0cSyueZatSNZ0/j3LBhQ97+pUYM5fOhXEQ6\ntMwdFosFj8dT1CrVFj7OFt4MoCc4QDun0c5p9PM8I3ThoLwuSJlMhkev+Qyr3/d2dvz0XwA4/tL+\niq5m9/76CU68tJ8rX/whsZFx7jvrQ3ScezqO1kYu/MXt1PncREfG+M05H2HpO89h020fZfTVg1z5\n4g9LfZgVN99D+WT5TkzVjaSTJ5J6PB6tRn22jaRmDeVG+f0IBoM5ZZeiPBLK54lq1I1nT+Ncs2YN\nLS0t097WiAHYiMekt0I6tEys0mZQFPO9UIni7OLr9PAYChbaOIXVvJ0+ni3rPo89/icsdhvrPnKl\ndlmlV7MHn36ZlX99ERarFWd7Ex3nnsHIC10sfts2Xvyn7zDw1EsoFoVw/zCRwRNlPb5qMWtYrKbs\njaQLF0601lTnBQQCgZyNpOpq+uSNpEZZcS6WEQI5TJSvyEq5fiSUz3HVanFY7DROozyhZDPiMVVL\nKNDNn56+Gl/j6fjHXmLzeQ9yYvhxrZa7bdHlrFn/RdLpJH+4t6PooT0nb7izxo/QXPTs/buDW6e9\n7h3cNeWyFZzPCs7X/n0Z/6l9fD2Pax9/lmDe+xzdc5CWM9dOubwWq9kH/r+HiY6MccXu/8Zit/Hz\nk64hFY2XfH/VZJSVULPJnhegbiRNJpMEAgECgYC2kdRut+P1eonFYsTjcaxWq6m+30bpDy7lK/qS\nUD6HpdNpAoEAAwMDLFu2rCKrLkaZxlktc7n8I+TvYv2Wu2lo2kQ0fITXX/k8Z1+8C5u9geefuJSh\no7+lpePSaT9/pqE9onBmCgbFqNRq9omXu6lr9NDz//+Bk/727cRO+Bn441/Y/OW/o+fnj+JoXYDF\nbuPY438i2DsAgN3rIhEIV+qh6sJsoTyTyRgmKE5ms9lYsGABCxYs0C5TN5IODAywf/9+YrFYVQZ7\nzTWyUq4vCeVzUHapSjKZZHR0lOXLl+v6NZLJJN3d3YaZxlktRiz/SKeTWCxT/5T/+LsNnPO2vxR8\nPy7PKhqaJrqTjJ3YTXPb+doJx8Kl72F0+KkZQ/lMQ3tWnvz/FPOQhIktOGUFh371eMG3L3c1+4V/\n+g5bv/K/SQQj/M/GD6CgsPlLf4ero5lVf3MJv7/yH/n1hr+lZeM6GtYtA8DR3ED72afxqw3vY/Gl\n2wy50dNsLRHN1i1G3UhaX1/P6aefPm2HI3UjqVr+YoRSFyOVNoVCIQnlOpJQPofka3Fot9t13VCZ\nyWQ4evQohw4dYtmyZYaZxllrlS7/GBt5mlQqyrLVn2DJyg8yMvgoB167HZvNQzh4kHPf/sqUY9p8\n/kNFPQarbeqG3MkmTjSKH9pjVvZIrY/AfBbu2MgL//Qdur53L+s+fAVQ2dXsS+77dwC2fPnjU8K1\no6WRd/7xO3k/7/wf31rGo6w8s4Vcs51ETDbbRtLBwUG6u7vJZDI5E3jdbnfVf05G6q0eDAa175co\nn4TyOWCmFoc2m03b3FkudRqnz+djy5Ytury1Z7a3aGdSyfKPsy56lnQqxrOPbqel/WIA/KMvcs6l\nL087Iv7l565n81sfKOmxNDZtYd9L/0g8dhybvYGBwz9n+dpbUBSLLkN7Ro8/w+H93+LMc35Z1HEt\n+flf6GQT/4KNzxHTWvJ9jeXcyAu4mTiW+7iRM7ieJZzFr/kAa7icU7iGKON8i9O4hcPARPeRn/Nu\nPsqf+AHn81b+mZVMTP38Kkv5GC9Dmd1ISmHUMoBCKIrCRb/4Erv+4Ru8cudPsTrq8CxbOCdXsyvJ\nbM+NRlq91ctMG0n9fj99fX2EQqGcgUjVmEhqpN7qUr6iLwnlJjdbi0M9OorE43Fef/11bRqnXoMC\n1LaIxfaVrbRSXwwrWf5xrG8nAMmEn3CwG4DG5m3TBnIob4CQw7WY1afeyu7HL9SG9rQtegdQvaE9\nM5mpRzZAP7u5nP8q+n4VlBn/XQ1mCmLTcS1q4YKf/euUy+faanYlmS2Um21lX1XsCXD2RlLVdBtJ\nszu+1NfX6/bzTCaThgnlMtFTX8ZKQ6JghbY4LOdJYLppnHoxYihXT2JKecKrZPlHc/sFOfczMvgo\nVuvMvWEbm7fNeL3ZhvbMpB4vcQK4aWGIV2lhnRba1esAHDTgZAG9PMUyzuUlfsxy3qrdzx52soId\n9PJHHDTgoEG3Y6wkV1u64kONRHWZbeXZbMcL+r0jNd1GUr/fTyAQ4NixY8RiMRwOhxbSy9lIaqSV\ncum+oi/jpCFRkGq0OISJaZyvv/46LS0tU6Zx6sWIA4TUYyr38Va6/KMQf3xoA+dcWvhGTzPbyI38\nhLfhZRGruYyTeJt23am8h/v4MM/xH1zLL7iSH3E/HyVBmAWs5Ep+oN3WhoNvcwYpElzB3bV4KCX5\naHeoJl93z549fL8mX9mcvn2Su4iTpy0VPRb9eYE2fp91iastXbPfzUJUMtzW1dXR0tKizevIZDJE\no1ECgUDZG0mN1FtdQrm+JJSbSLWmce7bt49MJsPpp5+edxqnXqxWq+GG9eg1QMgI5R9zMZB3MvF9\nmNwjeys3sZWbALiHi7mKe7TrlrKdT/Bazu0/zK6897+e9/J2vq7nIZfEzDXlYnrz7d0Moz/eaq7u\nK4qC0+nE6XSWvZHUSKE8EAjklPKI8kgoNwE9pnHOVp9YzDROvVgsFkOulBcayudS+cdc8rc5a3Xm\nYyGqq+0AACAASURBVKY64rnKm5GXxvmg1iU3xW4kVYO60WrKJZTrR555DCxfi8NSXrBnqt0uZRqn\nXoxYvpJ9ojBxEmSMJz5R+faE2dMqRWEymQyetJWgpTZ/x454hnfvTuLz+WhoaMDr9eJwOPI+T/b0\n9ODxeGhtba3BkQojMtKKs2qmjaR+v58DBw7g9/u11yr1trUa3BeJRCr6jvp8I6HcgGZqcViK6UJ5\nradxGjmUDwwMcODAAeC8Wh/SvGSPwMbfyNOTGXx2bCVOp7NmXz+xPoHf78fv93Ps2DGi0ShOpzNn\nMqPNZjNkN5Mwx/kRE+94BRnAghUXEycNH2Y3NqafENzD4zzDnVzH/VOuu5cPcRa30MZbplz3LF9n\nIzdSx5tB6inuoIEl2HHTzJq8n1eqr/oKqzeuRf15rVfKCzV5I+mRI0dIp9O4XC78fj9Hjx7VNpJm\nd3ypxkRSs3bdMSp51TOYStSNq73K1dBtlGmcRgzl6XSavXv34vV62bx5M+Tv1CYqLOGEXdfm9tfP\nF9RffGeSRA3y4LUfKu+LNvgyfO+r0bzXKYoiNeVFsNvtNDc309zcDLy5oc7v93P8+HF6enpIpVJk\nMhkSiQR1dXV4PB5DBAkXzXyMib0fj3ErdXjYzqfKvt8rptl+mybFLr7Oet6bE8oP8BDv5uc8zP9h\nDZfrGsoLVYv6c7OE8slSqRT19fV5N5JOnkjqdru1oK73RFJ5ntKfhHKD0KNufDpq+DXaNE4jhfJU\nKsWBAwc4fvw4K1asYPny5bU+JDFJvvBdi0Cuh3G/sVZs55LsDXXt7e3ARPjq6uoCJlYZ1Trd7NX0\n6cpejOAQT/AgNwMTvfOv50kA4gTZyTUMsYdFbORqfoKCwg84n0u4k042cRseNvERDvIIJ/MuAhzl\nR+zARQsf4DGi+EkR5zj72cd99PIET/JF/ppfEiOgdSpqYhVXcDdOFvADzqeD0znEE6RJcgV3s9h0\n3WKMWb5SiHzvfOf7vc9kMoRCoYpPJDXq340ZSSivsWq0OLRarfj9fvbu3avrNE49jqvWoTy7pn7x\n4sV0dnbm1Mc1NmQYG5cnHCHyMctKmcVioa6ujqamJpqamoCJdwzVspfBwUEikYj29n+5faT19gx3\nchnfZCnbiRHEhgOAAf7M3/EqXhZxN9s5zNMs45ycz00QopOtXMpXAPgzd/N+HtOm3x7kEVZwIUs5\nm7X8lTb9FuBbrOcd3MVy3sof+Gce51+07kQJwnyMv3CIJ7mXG/g4e6r17dCNmVfKCzluRVHweDw5\nw31SqZQW1KfbSOp0OgvKIUbacDpXSCivoWq0OIzH44yOjjI6Osrpp59uqMlbVquVWCxWs68fDofZ\nu3cvdXV1Wk39wYMHc04UfniXvi0br/zb6Z/A9u/5AjabhxXrbiEU6OapB9/CWRc9Q0PTJqLhI+z6\nw/mcffEubPYGnn/iUlas/QdaOi7lD/d2cNFVIwAcO7yT44OPcurm7/LUg6exZccj1DvaScTHsNc1\ncrj7v1h60sd0fUzVdN4fHuPss8/W/j3T91O86R0jI5yoRIBeuBCCwYn/itCkKDxQhQ5P2SbXlNts\ntpyQnslkiMVi+P1+Tpw4waFDh0ilUrjdbhoaGvD5fDUre1nCdh7iFk7jOk7mahpYDEAnW7SPO9jA\nGIemhHIFK2/hXdPedze/4wyun3J5lHGijGnDtTbwfn7Ou7XrT+V/AbCc84jhJ8IYTmpTClmqQsOt\n0ZTTX91qtc66kTQSiWgTSWfaSBoMBnG7Zx5iJ4ojobwGKlmqokqn0/T19XHkyBHcbjft7e2GCuRQ\nuz7lqVSKgwcPMjIywrp163KmsOnVp1wPLs8qGpom+nKPndhNc9v52qChhUvfw+jwU7R0XDrt5y9o\nOYuXn7uejiXvor3zKgBGBh4xdSgvxpHPHCHtNcbPUmUJWFh8++IZb1OJmvKKBPIyGO14YOL77nA4\ncDgcWh/pdDqtrSr29/cTDAZLXlUsxm6+yYt8D4DreIBz+TRruIz9PMDdbOe9PASAlTeDkoKVNMkp\n92XDoU23zaef3VzOfxV9jArKjP82AyNNxiyG3ivUM00kVX/34/E4DocDt9vNnj17OPvss4lEIroN\nDkqlUmzatInOzk7uv3/q5uX5QkJ5FenV4nA2k6dx9vX11bxMJJ9a9CkfGhpi//79dHZ2snXr1imr\nJEYoqVFZbbO3mVIUC/BmwEml3tw8eMqm7zB+4jmGjj7AM7/fwvZLns+5rSoeO87zT1wCQCw6iKJY\ntfB/1oXPYrFO3wHCaLIfy5IvTe37XmvZJwnTd6XwAp08oOPXvZbiXzgjLUl+89xhHY+itkrpvqIG\ncK/XS2dnJ/DmquL4+DjDw8OEw2Hq6+u1tox6lL1s4eNs4ePav09wgHZOo53T6Od5RujCUeKqdD1e\n4gRw08IQr9LCOi20q9cBOGjAyQJ6eYplnMtL/FhbNQfYw05WsINe/oiDBhw0lPGIa8Os5SvVOJmY\nbiLpsWPHeOihh7jzzjsJBoMoisI3vvENNm/ezBlnnFFyJ6ZvfOMbnHzyyfj9fj0fhulIKK+STCZD\nPB7XSlUqEcanm8Zps9kMEzSzVTMAh8Nhurq6sFqtbNy4EYfDkfd2FotFO2mazgduslSkznymYUQd\ni6+mY/HV2r+XrrpR+/iiq45rHy9e8X4Wr3g/MHHS19i8jcbmbaw57Quk0wlaOi6e8nXr6pu1r5Vd\nQpNtYuU288ZJQOWl00kslqlPT//27XPh29N/XvZjOczcCZS14ByZWy8PerVEzLeqOFPXC7XspZwQ\ntYuv08NjKFho4xRW83b6eLak+9rIjfyEt+FlEau5jJN4m3bdqbyH+/gwz/EfXMsvuJIfaRs9F7CS\nK/nBm98HHHybM0iR4ArunvbrGXlTqJk3elb7uNWNpCtXruRb3/oWAM8++yzf+c538Hq93HPPPdxy\nyy2k02nOOOMMbrjhBrZu3VrQfR85coTf/va3fPazn+WrX/1qJR+G4c2tZ10DU4N4Jc7KU6kUhw4d\nYnBwMO80TqvVSjwe1/3rlqsaoTz7e7Nu3TqtfnSmY5qtzt2sGz8tFjtLVt44+w3fEAp086enr8bX\neDr+sZfYfN6DnBh+nINd/w4ZaFt0OWvWf5F0OjltXfuxwzs58NqXUBQL9romtux4hHQ6yb6XP83Y\nyNOkUlGWrf4ES1Z+kJHBRznw2u3YbB7CwYOc+/ZXKvWtEPNQJfuUTy57ye56cfToUW1FEXZMex87\nuHXa697BXVMuW8H5rOB87d+X8Z/ax9mDsD5Lbr3/Vm5iKzcBcA8XcxX3aNctZTuf4LWc23+YXXmP\naT3v1TZ9zsaom0LT6TR1deZ5J1BllJOJSCTC0qVLueGGG/i/7J15eFTl2f8/s08my2RPCAQImEDY\nBAJJMGBBEBdAENHWpS6tImqtS/Vtq30rWsUuan21/qq1pWq1rYgiaLEossqqKCJkJSuEJCQkZLbM\nfn5/DBkSsk0ms5xJ5nNdXNfkLM95Zpg553vuc9/f+0c/+hHgukE9fPhwp5vWvnjwwQf5/e9/j16v\n99dUQ4awKA8gvs4V9bQbZ7tPudjwtyhvbGykrKyMYcOGedypNBgpNYFEIu3fidyoK2ZK7lp3sWnp\nd090KjY9feo/vea1Hz/2dKdiU4CTFa+jUiUza8E+nA4L+z4vIDHFFcHXtRxi9hVHiIgc6f2bDONT\nBLsdSTfdgEMNddxWzlqsnG0M4EEVEJno+ieVaOhNlAeDW/ksIMcRa1FoqKaviKVA1WAwdKlVU6vV\n5OfnezzGxx9/THJyMjk5OezYscPHMww9Qv9MO0TpTzdOMeVJd8Rf82pra6O4uBiJRML06dN7TFXp\nDjEVeooBfxWbGvTF1J14FwC7TYfJcByA2IR8vwrywsxMVOPGgd0OMhmx115L/I9+hCQIF7hQ6MhY\ndfPN4HQy+l//oukvf0G3eTOC1Ur0woUkP/ggTpOJk/ffj62+HhwOEn/yE7SLF9Pw+9+j//xzJDIZ\nkbNnk/rYYz6Zz0CQSoP7tNApmIJ6fF/SMRLvCWItChWLuPUGMXiD6/X6ARd67tmzh02bNrF582Z3\nGtgtt9zC22+/7aNZhhZhUR5AfPEj8qYb51AR5U6nk6qqKurr6xk3bpy7w5+/5zSYCiUvxF/FphOn\nv0xCymWdxmlq+ByZzL/2WhK1mrHnKvvtTU3UPvQQDoOB5Acf7LRdsKPDYunImP7KK8hiYzHs3o21\nqoqMDRtAEDixciXGgwdxNDcjT05m5N/+BoBDr8fe0oL+008Z+9lnSCQSHEO8cCuMeItCQ9V9RQyC\nHFzBwYGK8meffZZnn30WgB07dvDcc88NWUEOYVEeMgykG+dQSF85c+YMJSUlpKamepyq0h3eRMpD\nqVByIMTG51Ly7c+xWs4gV2ipr1nH6HEPI5FIkSviMOrL0ESN5XTtRvdNSZuxgtiEfLTxeTTWbcbc\nVkti6uXUHH+VuKRLkUrlGHQlRGj6Hx23Ws6gVPX/xqsdeWIiw555hsprryXpgQdoff99dJ9+itNo\nDFh0WOwdGWXnbvoNu3dj/OILKpYsAcBpNGKtqkIzcyYNa9bQ8LvfEXXZZUTOnOm6oVGpqPvFL4i6\n7DKi54krZSNM4PG0KDTQhGqkXCxNuwwGA8OGDQv2NAYVYVEeArS2tlJcXOx1N06xRsp9kSpiNpsp\nLi5GEIQB2TH5ck7tDLZCSbVmBJmTVnNwx3wQICltEclpVwMwbsoavtq1CKUqCW3cdJxOV7Fs0eFH\naDNWggAJqQuI1k4iKjqbNtMJ9n7qSotRqpOYXvBBv+czEEHuHmPkSASHA8cZl4ON+dgxxv7nPwGL\nDodSR8bEVauIu+mmLsvHbNqEfscOGl94AdMll5B0//1kfPABxr170f/3vzS/9Raj33nHo88jzOCk\nP0WhgSQUI+ViEeTgm0h5R+bOncvcuXN9Nl4oEhblAaS/j5ysViulpaW0tbUxYcIEr7/8Yo2UD+QR\nnNPppLq6mrq6OjIzM0lKSvLJnHx9A+NNoWTy8GsYNvL7AAwb+X3363akUjnZU5/rcqzElPkkpswf\n0Hx7s2UESBt1M2mjbu6y37CRNzBs5A1dlufM7uoVLpHKGDdlDeOmrOm03BfzHyiRBQUBjQ6HSkfG\nqDlzOP3HP6JduhRpZCS2+nokcjmCw4EsNpbYZcuQxcRw9t13cRqNONvaiJ43D82MGRwX+UX2tVd2\nsfmj75BKJUilEp54egmP/PQ93v1wJXHxndOptm8tpvx4I3eumtNlnIP7K1EoZEzL6fmpjybZiel0\n6EVmByuhWOgppjkbjUafivIwYVEuSjp24xw7diwpKSkDErBijZR7S3uqSkpKCnl5eT6NdPi60NOb\nQkmZbGDR/jCeY62pQSKTITtXfyDVdM6h93d0OFQ6MkbNmYPl+HEqV7gi8NLISIY//zzW6moafvtb\nkEqRyOUMe+opHEYjJ+6+G8FiAUEgRQRFnj1x+OsT7Npeynsb70apktPSbMRm6/lcOW/BeOYtGN9l\nud3u4MsDVWg0yl5F+arjRo/mJQgCf9TG9L1hCNDfotBAIiaB6yliiu77OlIeJizKRceF3Th98eMT\nS1HIQDGbzZSUlOBwOJg6daq7OZIv8fUNjDeFkmECg/3MGer+93+J++EPu/2NiDU6HKyOjAl33EHC\nHZ0j8spRo4i69NIu247ZIL5uqt3R2KgnNk6DUuW6FHaMjL/z1kF2bivBbnPy/J+uZ8zYJD5c/w3H\njp7i8dWLePzRDShVcooL60lOiebw1yeQyaR8vPEIjz1xNTkzR3k9LzGlKAxmxOL33R/ENOfuLBHD\nDIywKA8gvYnjnrpxhnFFBmpqaqitrSUzM9PdoMMf+NMS0dNCyUAVgw5FBLOZ8sWL3ZaI2mXLSPjx\nj7vdVqzR4UB3ZPQXD0YcGfAY0YKc35i9d5opmD2WV1/eyaL5L5FfMIYrF01iZt5oAOLiNLy3aRX/\nfvsgb/x1L089u7TL/g31Ot5+78fIZFJe+b/taDRK7rirwOv5tBMW5YEhFCPlYhLler2emJjB8URH\nLIRFeZDpqxvnUKC3TnstLS0UFxf79MlBb/hTlHtaKDlrwZ5O+w1my8VAM6GsrMd1sStWEHtOgLfj\nz+hwKHVkFCt6ycBqZTSRKtZtvJtDX1ZzcH8Vj/z0PR56dAEAC67IBmDCpDS2binqdv8rrpqITOZ7\nUScIAoo4K7aWofXbfiEm0KkQ89jlwVaaZKfHqUf+Rkyi3GAwhEW5jwmL8iDRsRtnWlragGz8+nNM\nsaWytKeLyC/whLZYLJSUlGCz2QL65GCgn4+vCyVh6FguDiUUbb4ZJ1AdGQczMpmU3PwMcvMzyBqX\nzMYPvgVAqXQJH6lUgt3R/Y16hKZ/TlieIggCsz/cz7Rp0/wyfn+x2WzodDr3v8/nzO57p0GEmIpz\nxSTKzWbzgB3PwnQmfFUNIO2Crz/dOH1FewRYDD/m2++Xcra1Xfxe0sNWGiBYF6Q58GrXpbFagTde\nFk+3TzFaLn4imw7Aljo9a441snPBGJ+817a/HWD57f4RQIEmf13wT7tiKL57uGarT8apwftxKiua\nkEokjMpwFfoWF9aTNlxLWUlDv8eKjFRhMFi8nktHxJZWoVAoSEhIcDdk+zzI8xnKiEmUA6L6ng4G\ngn91GELY7XZKSkpoaWnxuBunr2iPSIvhx3xekIcWYpy3N5aLHTl+7Gly521FpU7BZj0LwMmK11Gp\nkpm1YB9Oh4V9nxeQmHI5ALqWQ8y+4ggRkb03+9HZnMSdizQabA6W7q6mxerA5hR4ekoqS0e4Hnn+\n5mgDb1edJUklJ12jICc+gkeyu9pb9vfE/+vHXuROlvdrnzBDD5PRyponN6PXm5HJpIwcFc/qZ5aw\nc1tpv8eaOz+Lh+5bx/atxT4p9BTbU80w4kAs1/Hwd9Q/hEV5AJFKpURHR5OVlRXwL3O7V7lSObRy\nFH3NsluDfzLsiDeWix2JS5zFkQN3kJp+HSnDrwWgqX4rBn0xdSfeBcBu02EyHAcgNiG/V0E+9ZMy\nzA6BOrONbZe5ouRqmZQNc0YRo5DRZLGT/2k51wyP5qvmNt4/oePbqzKxOQWm//c4OfHdPwq9V/YV\nkOfx5xITLY78zzDdo8VH+TsDZOLkNN5Zf2eX5Z/uesj9etKU4bzxT1ddwbIV01i2wvUE75k/XNtp\nn9EZiWzYfK9P5hVqgsfEGd7E1WPAQD1SZGhw3VzfxUHk9HzdqWQHe3mOm/m4y7qN3MksHiaZrsW8\n+3iRHFai5Hxq425+i5Z0FESSQFa3+4U6YhHlEHrf01AgLMoDiEwmIy0tLWjHHkxe5WFceGO56HCY\n3a8nzniN1uYDnD61mb2f5VKw8EtAYOL0l0lIuazTOE0NnyOTdW6mciGHr8oEYF+TkVv3neDo1ZkI\nwGPf1rPrtAmpBGrbbDSY7expNLF0RAxqmRS1DJYM922Rl5Y2WhFXvqOqURwXU0/Z30dTrkOHDvGP\n2V3Tik5tP8Q3T61l0fZXOi33VcqKt8ze82BQjw99p78lqWDXpc6QEjsaEriHwwBsZzVKoijgkQGP\nu5S/drvciYP9vMgUbukkysvZwvWs41MeJYvFYVHuR+x2uyjmMdgIi/IAI5FIgmJ3FRblgx9PLRdP\n1250R9PbjBXEJuSjjc+jsW4z5rZaElMvp+b4q8QlXYpUKsegKyFC03u6yoXMSoykyeKg0eJg8yk9\njRYHh668CIVUwuhNxZgd/v8NvM56vx+jN9aPfSKoxx8ommTv6ydajlaQOH2cD2czdGi0uCKQgzFX\nt4qdfMIDgKtZ1R3nvE+sGHiXFZzmKGnksJy3kSDh78xlIc8xnBk8QxQzuJsKtpLNdeg5xZvMQ0Mi\nt7MdMzocWDlDGSVsopqd7OJpvs/7WNC7rUHjGctS1hJBHH9nLqlcTBU7cWJnKWsZQW4wP6I+cTgc\nonjirdfrwx7lfiAsyocI7ekrwcZqtcIF0cuw5Z9v8NRyURs3HafTVZBWdPgR2oyVIEBC6gKitZOI\nis6mzXSCvZ+60mKU6iSmF3zg0Ryucnztfj19KdwGMMr17xoBcED2IrgHILN9n3M7XAxFwOfd3Tt2\nNawRPevKK3w2Vv7IOp+N1ZHdH0yisZfaxDUf9jXCNPhXN4sTJ0EifHDBug+Y1M8Z9k28wsim3NcB\nz1rdhwJ/SRsGDOO/wZ6Ij9nLcyziFUZSgAUDctQA1PMN93KMaNJYSwE17GEUnR1ebBgZTh5X8DwA\n37CW29hOJK5rRQVbyWA+I7mEcVxDFouZiMvi9P8xhat5mdF8j238mh086bYDtWHiHg5TxS428iPu\n42igPg6vEEukXK/Xh7t5+oGwKB8iBDtSLggCtbW1VFdXA509ngNp+RfqNwC+tlzMmd3VW1silTFu\nyhrGTVnTaXliynwSU+Z7O3VR8Noru9j80XdIpRKkUglPPL2ER376Hu9+uLJTN0eA7VuLKT/eyJ2r\n5nQZZ7CIv94EeajQbHP9v3na6j5M8EingC08zGRuJpvlaBkBwHBy3a9TmcpZqrqIcgkyJnBdj2Mf\n579M444uy820Yuasu5vtVG5jHde710/iRgBGcykWdLRxlggCZ8LQX8TiomYwGMKi3A+ERXmAGYrp\nKzqdjqKiIrRaLXl5efCaZ/v5wvLvQsKe30OXw1+fYNf2Ut7beDdKlZyWZiM2W8+/iXkLxjNvwfgu\nyweL+IuwBXsGvuPG5a/7vNV9mIFzkFc4hOspxs1sZg6/IItFlLGZtRRwC1sAkHHeFliCDCddn+rK\nUSOlZzFay0EW8+d+z1GCpNe/xYZYIuUGgyGcvuIHwkpgiBCM9BWbzUZZWRkGg4EJEyZ4dVc9UMs/\nj48jQs/vML6lsVFPbJwGpcp12usYGX/nrYPs3FaC3ebk+T9dz5ixSXy4/huOHT3F46sX8fijG1Cq\n5BQX1gdF/L3YNsWn4wmCgNFo5B2fjho8PG11r/vlLGRpWWhW/hmJquciaeNf7kEx9UqUuUvRr1lE\nxA+eRj5GHI18Qolc7iOX+9x/N1NOCpNJYTK1fEkTxai9jEqriMaKnkgSOc0xEhnvFu3t6wDUaIkg\njmp2M4o5fMs/3FFzgKO8SwbzqOYL1GhRox3AO/Y/YhLl4Ui57wmL8iGCTCbDYgnMs2pBEDh16hRV\nVVVkZGSQnZ3ttZPAQC3/+oNYPb/D+IaC2WN59eWdLJr/EvkFY7hy0SRm5o0GIC5Ow3ubVvHvtw/y\nxl/38tSzS7vs31Cv81j8+ZJ4P7hwSCSSc1Eu8TTDGgietrqPeXYfxj/fhWXbWtRX/cTPs/IMwelA\nIg2+yAoE+3mRSrYjQUoyE8nkKk6wz6uxcljJ21xJNGlksoiLuNK9bhI/YBN3cYCXuIH1LONNd6Fn\nHGNYxt/d28pR8yrTcGBjKWsH/B79TViUD27CojzABMvmSi6XYzT637tZr9dTVFREdHQ0ubm5KBQD\n68I4UMu//iA2z+8wvkUTqWLdxrs59GU1B/dX8chP3+OhRxcAsOCKbAAmTEpj65aibve/4qqJHou/\n7ujLXrAds9lMaWkpU6b4NjruKWdvi0eaPgEcjkEZVZaPm4Wj5hiOxmqML/yAmGddotC8+WUEs4GI\n5b/scV/rvvWYP3oBBAHF1IVEfP9JLNvW4myoJOLG3wBg2f0OjsrDaG79A9Y972L57DUEuxX52BlE\n3PY8EqmMs3cNRzXvdmzHdqC59Tnk42Z1Os4fSA1Zr+95rO5x3dW83GVZBnPJYK7770X8yf26Y+fZ\nxzF02i+P+8njfgDe4nKu5S33upEU8BMKO21/F/u7ndMUbnEXfYYCYhLl4fQV3zP4PJfCdIu/c8rt\ndjtFRUUUFhYyfvx4srOzByzILyQ2Ppfmxp1YLWdwOu3U16wjLunSTpZ/guDkdO1Gr8b3hed35qRf\n02asZu9nudisLbR7fhcsPETBwkN8b1GZ2/+7L8/vUEQQBAQhcNFXp7N/KVkymZTc/Ax+8uA8Hl99\nNZ+dE+DKc91HpVIJdkf384/Q+Pb73BPBqjtxo4wg5ukvXGJVrsSyTTzRQ8HZ+zksMlKF0WjteX+H\nHdu3nyFL779/tbOljrZ3VxP1i01EP70bR8XXWA99jGLGNdgOnRfDtgMbUOYtx1FbgvXAB0T9agsx\nT38BEhm2vetcG1mMyMbOIOaZPV0EOcAMVpHPQ9zDYe7hcK+CvC+W8tduhXW717cNU6fl5WxhLAsp\n5kMaLxC2YuVWPiOaYcGeRkAQiygPu6/4h3CkfIggl8v9IsoFQaCuro7KykpGjRrF+PHj/fY0wBvL\nP28Rk+d3qGCznmX/tktFm49fWdGEVCJhVEYCAMWF9aQN11JW0tDv9xoZqcJg6N93LL+x0fON09Kg\nl+3jJRI2Jyb26/jeEApR5Y701epe/8Rc5FmzUH7vhzhb+mcz6aj4Gnl2AdIY1+euuOR6HMV7UeYs\nRpo8GvvxL5GmjMV5qhRZVj7Wra/jqPoW/ep55z4QM5Jz+yKVoZh5Tb+O306wvL7jGevVfMVMx0h8\nXxw8eBCNRkNMTAwxMTFER0cHRRw7neJoLGUwGBg+fHiwpzHoCIvyABOsH5NMJvN5oafBYKCoqAiN\nRuOTVBXwveWft4jB81vMdHSuMeqPs/uTCcxasJc5Vx4RbT6+yWhlzZOb0evNyGRSRo6KZ/UzS9i5\nrbTf778v8edvmgMQSW+PKiumLOj3vu1R5eindiCJjMX4+2vdUWXDU5e7RbntwAbUS37WKaoskSsw\nvfEzbHvXoZx9ozuqHHHTM30et69W9zFPf+F+LZHJoeNTHZt3aW8Airzl2A5sQJqWhSJnses8Lwgo\nZ99IxA3dNJFSqL3OIw+W1/dQZ+bMmZhMJlpbW6mvr+f4cVcaYnR0tFuoazSagFzjxSLKw5FycIpI\nnAAAIABJREFU3xMW5UMEX6av2O12ysvLaWlpITs7G61W3NXqPRH2/PYdoZCPP3FyGu+sv7PL8k93\nPeR+PWnKcN74p8vreNmKaSxb4cqNfuYP13bapy/x5yumD29AKes+neZBBt5QaPmN3Sy8cQtwlLbG\nVt5/Z0RIR5V7QxKTjKBrxKlvRqKOxHZ4C/LJPf8mZWNzsL/9c5z6M0giY7Htex/V5Std72/GEgwf\nPY+05gjqG54EQD7xexhfvAnVlfcijUnCaWgBsx5p4sCelAXL61vsriT+RiKREBkZSWRkJGlpaYAr\nlUSv16PT6aisrMRkMqFQKNwiPSYmBpVK1cfI/Z+HGAiLcv8QFuVDBF+krwiCQH19PRUVFYwcOZKs\nrCzRnCDCBBdf5OO3Nh/g9KnN7P0sl4KFX9Kej9+eg99OU8PngzIfvzt6EuSBICJJi+bWPwChG1Xu\nDYlcgXrZ/2B48jIkccOQDsvsdXtpbCoRN6zG8OwSd0qOImeRa11kLNJh43CeKkY+NgcA2fDxqK/7\nFYbfXwuCE4lMQcStz/VblIeC1/dQRSaTERsbS2zseVtHq9WKTqejtbWVkydPYrPZiIiIQKvVuqPq\nA0l7CWq9SQeMRmNYlPuBsCgPMKGavtKeqhIREcHMmTNRKsXd+TJM8Ajn4w8+QjWq3BeqhatQLVzV\nZXnkyvPCNPqx/7hfK2etQDmr+3SOqJ+922WZMn85yvzlXZbHvl7r8RzF4vU9lNEke35zrFQqSUxM\nJPFczYcgCJhMJnQ6HadPn6a8vBxBEDqlvURGRnqkDQRBEE0gzGAwEBMTE+xpDDrConyIIJVKvbrD\nttvtVFRU0NzczPjx4ztFBMKE6Y5wPv7gI1SiykOBYHl991bouZ3VKImigEe8mofYMZ2W8kJM71Fh\nTbKTVce72g53THsZNszlEONwODAYDOh0OqqrqzEajcjlcrdI12q13aa9OJ1OpFJxmOaFLRH9g6Sf\nQk0cz01CGKfTic0WnP7We/fu5ZJLLvFoW0EQOH36NMePHyc9PZ309HSf3aHffr+Us63iuNsfDDid\ndqTS8P11R557tu+iQH9zAz8c8Bj5IweeNz4QPvjXpKAe31O+KOjbZ/qMVcPSL1cGYDYD58Fb/ROZ\nXrz/OdRJ3vWrWD+2m9Sicwx2Ue4pD+v0Xu/bnvbS/s9isXRxe3E6nRQWFjJ16lQfzto7FixYwLZt\n24iMHBqphD7AI9ETvpIHGLE8euoNo9FIUVERKpWKGTNm+LxQ5Y2XOz8K7M/NQn9Zdmvw/VwHgq9t\nAYcKZ1ETi/d5z744fkecJhNVN92EYLUSvXAhyQ8+iNNk4uT992OrrweHg8Sf/ATt4sU0/P736D//\nHIlMRv7Rv3UZ21R/hgM/e4mmr4pQaqOISIkn7/mfos3yPKpsOaun4l+fkX1P19SKUCSCH9La2opO\np2NZTfAFi1jxVpD3RW8Ng8J4RndpL21tbeh0OhobGykvL8fhcOBwOKitrXWnvQQrcm6xWFCr1X1v\nGKZfhEV5GDcOh4OKigqampoYP348cXFxwZ7SgInVCiEZlRcEJxKJdMC2gAPxBp+1wLtH4mJg7cjZ\nfW/UA9GCnN+Yzzdb6c5fvGjyZLK/63wjVDx1Khdt3Yphxw5O//GPjP3P5chiYzHs3o3uk0/I2LAB\nBIETK1diPHgQR3Mz8uRkRv7NJbwdej32lhb0n37K2M8+O3cD3zlSLggCn694jMwfXsW8d1z52Ge+\nLaPtdEu/RLn1rIGi1zYMGlGelJREUnvH1JrgFceGCeMrJBIJGo0GjUZDamoqADqdjoqKCpxOJzU1\nNV3SXtrdXgIV/BNLKs1gIizKhxASiaTHnLTTp09TVlbG8OHDycvLGzQ/tguj8p7Q3NxMRUUFT7+U\n1+t2F3p1H9q9hEuvdnWIrD/5AY2nNjM5968A1JT/hTZDBZmTn+5RJB/9ciVtppNuW0ClKn5AtoAD\n9QYPZV6yTMVutwftexxZUIDsXP2FYfdujF98QcWSJQA4jUasVVVoZs6kYc0aGn73O6Iuu4zImTMR\n7HYkKhV1v/gFUZddBndN6TRu3Y6vkSrkjL97mXtZwsWZCILAwZ+/wskt+5Eg4eLHbmPMDfOxGUxs\nXf5LrC16nDY705+6i1HXzOGrx19FX17Lhzm3k7ZgJrm/u4/BQpIKGgfWOyyoaM6GXhDBE0yc4U1c\nxcEG6pEiQ4PrRuouDvbatbSSHezlOW7m4y7rNnIns3i4266l+3iRHFai5Lw71G5+i5Z0FESSQFa3\n+4kVQRCIiIggPT3dvcxms7lTXurq6jCbzURERHQS6nK5b6WeWBxgBiNhUR5ggpm+0u5V3lGomEwm\nioqKUCgUfklVCTXa2tooKyvDYrGgjRFo1Xn+/yU2W8CBeoNf6NsepmesNTVIZDJkCa5uoVJN5+9C\n4qpVxN10U5f9xmzahH7HDhpfeAHTJZeQdP/9ZHzwAca9e9H/979dRHnL0QoSp4/rMk71hp00f1vG\nskNvYGlqZdOsO0mdczHqpFjmr1+DMiYSc9NZPpp9NyOXzGbGM6toOVbBskNv+O5DCCIPRhxxv57j\nRfBfbRVYccDWqdBOrVb79XzdV+FgoHjtlV1s/ug7pFIJUqmEJ55ewiM/fY93P1xJXLzv8oU1JHAP\nhwHf5qAv5a/dLnfiYD8vMoVbOonycrZwPev4lEfJYnFIiXKHw9HFTlGhUJCQkEDCuXNPx7SXpqYm\nKisrcTqdREZGotVqfZr2EgrpuKFGWJQHAYlEEpQ7zXavcoVCgcPhoLKyksbGRsaNG0d8fHzA59OR\nYFs9OZ1OqqqqqK+vJz09nZaWFt78k9PrnHSx2AL66iYglIjVBva3ZT9zhrr//V/ifvjDbr/DUXPm\ncPqPfyT2Bz9AcsGFUBYbS+yyZcQuOx/5lqpURM+bR/S8eVyYvtITDXuOMOb7C5DKZESkxJM6ZxpN\nXxUz4sp8Dv3qNep3f4tEKsFU20hbQ/OA3m+wuHpZEeoI3zRAuxCzUsLbc5SA+dy/0+51GruERxqG\n+zziqEl2Yjod3CeSh78+wa7tpby38W6UKjktzUZsNv98xp5SxU4+4QEAJEi4g10AWDHwLis4zVHS\nyGE5byNBwt+Zy0KeYzgzeIYoZnA3FWwlm+vQc4o3mYeGRG5nO2Z0OLByhjJK2EQ1O9nF03yf97Gg\n52NWYcNEPGNZyloiiOPvzCWVi6liJ07sLGUtI8gNymdzYVCtO7pLe3E6nW63lxMnTmAwGJDJZJ2i\n6f25CbXZbD7p4B2mK2FRPoRo9ypvbGykrKyMYcOGiSJVpT2C7+tHbJ7S0tJCcXExycnJ5OfnYzab\naWpqGtCYYrAFjEu61Gc3AS1n9lJT9v+YPvv9AX0uvubDt7oXEAOw5PcIwWymfPFi14FkMrTLlpHw\n4x93u23UnDlYjh/vIsi9IW5iBlUf7PB4+/J/foq56SxLD/4NqULOuotW4DBbPd5/+Y1He12vcVhY\nVbvb4/EuZGTSw+7XHaPdYsIkF2hqaqKioqKTv7RWqx1QW/Xu7PPaKS0tJSkpyed1PTUXlEc0NuqJ\njdOgVLnOvR0j4++8dZCd20qw25w8/6frUSUasDT53wJvL8+xiFcYSQEWDMjPFU3X8w33coxo0lhL\nATXs6dKx1IaR4eRxBc8D8A1ruY3tROI651WwlQzmM5JLGMc1ZLGYibh85/8fU7ialxnN99jGr9nB\nk1zFi+fGNXEPh6liFxv5EffR++/CX3QXKfcEqVTqFt/t2Gw29Ho9ra2t1NfXYzabUavV7u92dHR0\nj8Jbr9eHXVf8RFiUDyEEQaCwsBCVSsX06dNFUzkdLFFutVopLS3FbDYzZcoU90lGKpXidPadi545\n6dfu15HRF3VJ90gbdTNpo27ust+wkTcwbOQNXZbnzN7QZZlEKmPclDWMm7Km0/LElPkkpvTcvAUY\nVN7gYrN9nFBW1uO62BUriF3RucFMwh1dW5d7w7B5OXz1q9cofn0j4+9aCkDzkeMoY6OofG8bF916\nFZZmHfVfHGbm7+6lct3nqJPikCrk1O34GkN1PQCKaA02vWnA8zHJhka6W1ZWFuCKOHbXVr09LUCr\n1fokgigIQkCCJQWzx/LqyztZNP8l8gvGMPHjrThbtazkCXgZvn9uu68X+va4vbm13MRH7tcqXDcB\nGczll7S6l9/ZwZf9Dna4X6++wLX5Iao6/T2B5UzAld90LW9gO+fQZKYVM2cZzfcAmMptrON6936T\nuBGA0VyKBR1tnCXCy4ZNA8FbUd4dCoWC+Ph491NyQRAwm83odDrOnDlDZWUlDoeDqKgotyWjSqVC\nrVaj1+sH3M3zxIkT3HrrrTQ0NCCRSFi5ciUPPPCAL95aSCOeq9wQItDpK06nk8rKSpqbm8nIyCAj\nIyNgx/aEdlEeKARB4NSpU1RWVjJ27FhSU1M7RbtkMplHojxUCNRNQDsDcXzxle3jYM11lEgkLFj/\nLPt/9n9899w7yNRKokYNI+/5n2IztPFhzu1IkDDz2XvRpCYw9qaFfLbs52yYeiuJOePRjh8FgDpB\nS8olk/lg6g8ZcUX+gAo9//rqbu5cNafL8oP7K1EoZEzLGTwNgKRSKVqtFq1W6y62s1gs7rbqNTU1\n2O32Tvm7UVFR/RbYgUrn00SqWLfxbg59Wc3B/VU4W4dW504FngWmJBdYTF/4d6BwOp1+C15JJBIi\nIiKIiIggJSXFfTyj0YhOp6OkpIR77rkHlUrFRRddhF6vp6KigoyMDK++q3K5nOeff57p06ej1+vJ\nycnh8ssvZ8KE0Mnx9wdhUT7IaWpqorS0lNTUVEaMGCHKR06BFMEGg4HCwkKioqLIy8vrNqollUoD\nepMwmBio44s3to+hTGFmJqpx49xpMLHXXkv8j37Ua6qLJi2Ry/71my7Lc393XxdxrU6MZckXr3U7\nztx/rB7Q3NvpTpDb7Q6+PFCFRqMckCjv6Ml+fcm6Xtf707O9pvEFpBINIxJXdVmnUqk6WTJ2FDIn\nT5505+92jKb3VVDvdDoDdmMpk0nJzc8gNz+D9S8H5JCiQ42WCOKoZjejmMO3/MMdNQc4yrtkMI9q\nvkCNFjXBuXlxOBwBNWOQSqVER0cTHR3N8OHDOXToEM3Nzfzzn//kww8/5OGHH6aiooL09HTy8vLI\ny8sjPz8frbbvz2fYsGHuDqfR0dFkZ2dTW1sbFuXBnkAY/2A2mykuLkYQBKZNm0ZERIT7cZTYCIQI\ndjgclJeX09zcTHZ2dq8nDU/TV8J0ZaCOL9A/28dQR6JWM/Zjl82bvamJ2ocewmEwkPzgg0GemQtP\nBOszq//D46sX8fijG1Cq5BQX1pOcEs3hr08gk0n5eOMRHnvianJmjurzeHef3EWk84Kc92fnAHN4\n4YJtA+3Z7hQ8S/e5UMhAZ9u6U6dOYbVaiYiIcAv16OjoTmkJgUpfqaxoQiqRMCojwe/HEiuvMo0b\nWM8y3nQXesYxhmX83b2NHDWvMg0HNpayNmhz9WX6irfEx8czbtw4Zs+ezfPPP48gCJw8eZIDBw6w\ndetWlEol8+bN69eYVVVVfPPNN+Tl9W5DPBQIi/Ig4M8IiNPppLq6mrq6OrKystzdweB8oafY8Hf6\nSmNjI6WlpW4P9r4+/8Ga+hAoAmn72B2CIFBbW4vJZCI2NtYvPr3+QJ6YyLBnnqHy2mtJeuABWt9/\nHx4uCOqc+ttkqKFex9vv/RiZTMor/7cdjUbJHXd5/h66CPJeCCXP9u5s60wmEzqdjoaGBo4fd92E\nthfj2Ww2n8+hO0xGK2ue3Ixeb0Ymk3IzT3RePwS8xVfxjfv1Xezvdpsp3OIu+gwmYhDl4Or63Z5T\nLpFISE9PJz09nRUX1NJ4gsFg4LrrruPFF1/sVIg6VBH/lSqMx5w5c4aSkhJSUlLIz8/vEmmRyWQB\nO9n3B3+J8vanBQA5OTmiKWwdzPjS8cUbjEYjx44dIzo6msjISHfBktPpJDo62h2Z7I9rRrxEQrMP\nakCmD29AKev8BCa/9VM62R6OVHBp48dAfdAFOdBvwXrFVRORyQLj5hTKnu2vZUZhOh0DpPawRSbb\n/HLkJ7osubaXrcPe4uJCLKLcYDAMuNATXE+QrrvuOm6++WaWLx8c3YUHSliUDwLMZjMlJSU4HA6m\nTp2KRtN9Exu5XI7ZbO52XTDxtSgXBIGamhpOnjxJVlbW+fbbXhCrFTjbGo6ce4Ldpg+a40u7z3xD\nQwMTJkwgKioKm83Wyae33f6roqICk8mEWq12i/TeoumbOzxtGggPyjzzHBcT/RWsEZrgexeHgmd7\nsP3Jfc1g9hbv6O4SbMQiyvV6vUd5470hCAI//vGPyc7O5uGHH+57hyFCWJQHAV+lRzidTmpqaqit\nrSUzM5Pk5ORetx8K6Sutra0UFRURHx9Pfn7+gE9gb7wc2Nzy3poVlR19Crk8iozxD2PUH+fwvu93\nsmE8Vf0OFcV/cPuij5vyDAB1Neso/e5XnQTypJl/4dAX19JmrGT2FYd9Mne54nzkJJCOLzqdjmPH\njpGUlOT23b/w+9TRNQNcFwSLxUJra2snD+qOHR0jIiKGdCqT4BjYdz8yUoXB0Hu/+5rG85ni/b0s\nB9qzPUzPhL3FA4NYRLnBYHC7D3nLnj17+Mc//sHkyZOZOnUqAGvWrOHqq6/2xRRDlrAoD1Gam5sp\nKSkhKSnJY/EZaOtBT/HFvGw2G2VlZRgMBiZNmkRUlP+bXASaQPiihxq/VauAJGCulyN4/xSl34gg\nc+zAz14ibtIYsu5YDMDO235Dxop5WJp1nNyyn++9+Wu3YL1q68CsOObOz+Kh+9axfWuxx4We/UFs\nnu1DmXQK2MLDTOZmslmOlhEADCfX/TqVqZylqosolyBjAtf1OPZx/ss0uvr8h4q3uC8RkygfaPrK\n7Nmzg9LZXOyERXmIYbFYKCkpwWazcfHFF/eYqtIdcrlctJFyi6X3iFpPCIJAQ0MD5eXljBo1iuzs\nbJ9FNwPlFRwmTCDwl2B9fPUiAJ75Q+fs5NEZiWzYfK9/3gzi9Gz3FrEUVHrKQV7hEK8DcDObmcMv\nyGIRZWxmLQXcwhYAZJy375Mgw0nX648cNVJ6Fpq1HGQxf+73HMXiLe5LHA5H0Dtwg+9yysN0JSzK\ng4A3Qs/pdHLixAlOnjxJZmYmSUlJ/R5HrJFyby0ITSYThYWFqNVqZs6ciVLZ84XL2zmJISoRZnAT\nKK/tr371WkgK1t7oybO9Mf8lmKpAAA474PC/zq24b49rPSBZAJ/tA/YBV6+Hq+EkcPJfXYbjAyad\ne+WjdLa3Wi9YIAd2AqAA5GdN3PPTYQM+TH8LKj0ll/vI5fx3oZlyUphMCpOp5UuaKEbtZVRaRTRW\n9ESSyGmOkch4t2hvXwfi8xbXJPs/1TFQVpl9ERbl/iMsykOAlpYWiouLSUxMHFCetFwuF6Uo7+/N\nQnuH0oaGBrKzs4mLi/PLnMKiXPzsv6H/T34UbZDzkThOfYH02l646Q+Ab5oMdesnLiIs5uAXnA4E\ne2z3QtnfBZVqvLOk28+LVLIdCVKSmUgmV3GCfV6NlcNK3uZKokkjk0VcxJXudZP4AZu4iwO85DNv\n8Yd1eq/mOZQxGAxh+0I/IY4rU5husVqtlJSUYLFYmDJlyoC7cQ6GQs/m5maKi4tJTU3t1vbRV7QX\nC3bX8TNMaGOL6H55oP2RIbS8tjsiZkE+mPF3QeUEer6pm8fqHtddTdf6gwzmktGh1mMRf3K/7uho\n8jiGTvvlcT953A/AW1zOtbzlXjeSAn5CYaftxe4t7kvEkk7Z0ac8jG8Ji/Ig0NcPSxAETpw4wYkT\nJxg7diwpKSk++TGKtVOlJ6LcarVSXFyMzWbr1fbRV4j1swrjH4LljxzKXtthAo+/Cyp7E+XB4FY+\nC/YUwnSDXq8Pi3I/ERblIqPd0i8uLo68vDyfdiIUy132hfQmyttb+NbU1Pj0BmUgc/InYV/0wCFm\nf+RQ8NoONc7eFo80fQI4HMjSstCs/DMSVc8398a/3INi6pUoc5eiX7OIiB88jXzMtADOOPAFlYMF\nMXmL+woxOZVYrdZwMz4/ERblIsFqtVJaWkpbW9ugtfTriZ4EsF6vp7CwkJiYGJ/foPRFsCLlHX3R\nBUHg1KlTHD9+nJiYGKZOnRrUGyuz2UxhYSHTp08HunqqWy1n+HLnQgAs5gYkEpm7k+es+fuQynxX\niOsLxOCPPNi8tl97ZRebP/oOqVSCVCrhiaeX8MhP3+PdD1cSF985/W771mLKjzdy56o5XcY5uL8S\nhULGtBzvOrt2izKCmKe/AMD457uwbFuL+qqf+G78ASA4HUikXQVzoAsqw4gXsdghtiPWIF+oExbl\nQaDjl7ljJHjMmDGkpqYOuS/7haLcbrdTXl5OS0sLEyZMCEpBSXuhZ7AwmUwcO3aMyMhIxo8fT0tL\nS9C/FxKJpNfPRKlKcHund2x01BFXtEdAIgmMg4DTaUcq7f40JwZ/5MHktX346xPs2l7KexvvRqmS\n09JsxGbr+WnTvAXjmbegqxC02x18eaAKjUbZSZRrHBZMMlWX7b1BPm4WjppjOBqrMb7wA2KedRUl\nmje/jGA2ELH8lz3ua923HvNHL4AgoJi6kIjvP4ll21qcDZVE3OhygrHsfgdH5WE0t/4B6553sXz2\nGoLdinzsDCJuex6JVMbZu4ajmnc7tmM70Nz6HPJxszodZ0X5k72+hxVMBr4999dM4Mlzy5OAauBJ\nVjAP+A/wH1bwqHsb13YroEO+9r1ks35snx9dmCAhFlEupoj9YCQsyoOERCLh7NmzFBcXo9VqAxoJ\nFpv/dkdRfvr0acrKykhPTycrKyto8+yuK2QgaG8XX19f73aWaWlpEUV+u0Qi8eqEbNQf5+s9y4mJ\nvRjd2W+ZeeknNDfucHcfTU5bTNaUp3E67WzbmMqCa5sAqKt5lzMNnzNp5l+oq3mX8sJnkUikKJTx\n5M7bitNpp+TILzjbtAeHw8yozJ+QPubHNDV8TnnhGuTyKEyGCuZc9V238xKDP/Jg8tpubNQTG6dB\nqXKdxzpGxt956yA7t5Vgtzl5/k/XM2ZsEh+u/4ZjR0/x+OpFPP7oBpQqOcWF9SSnRHP46xPIZFI+\n3njE3XhoVe1u93iz9zzo9TwFhx3bt5+hmLKg3/s6W+poe3c10U/tQBIZi/H312I99DGKGddgeOpy\ntyi3HdiAesnPcNSWYD3wAVG/2oJErsD0xs+w7V2HcvaNYDEiGzuDiJue8fq9hBk6iEWUtyMmDTGY\nCIvyICAIAoWFhej1eiZMmBDQgol2ARzIVJC+kEql2O12vvnmG6RSKTNmzECl8k1EbCBzCrQQPnv2\nLEVFRSQnJ3dylhFL0elA5mHUFTMldy3a+BmYTScp/e4JLrl8P3KFli93XsHpU/8hMfWKHvc/fuxp\ncudtRaVOwWY9C8DJitdRqZKZtWAfToeFfZ8XkJhyOQC6lkPMvuIIEZGepz8Eyx+5J69tX1gXdsRU\n14Q6KRa7ydKpUHRF0b8xVNfz2bL/Yfnhf/S4/wf/muR+/XDB1i7rC2aP5dWXd7Jo/kvkF4zhykWT\nmJk3GoC4OA3vbVrFv98+yBt/3ctTzy7tsn9DvY633/sxMpmUV/5vOxqNkjvuKuj1PfULaxu6X7mK\nH+VZs1B+74c4W+r6NYSj4mvk2QVIY1wpTopLrsdRvBdlzmKkyaOxH/8SacpYnKdKkWXlY936Oo6q\nb9GvnnduDmYk5/ZFKkMx8xqfvT1foEo0YGkaOqmTgfAW9xViaRxksVh82hMkTGfEo8yGEBKJhOHD\nhxMdHR3wu812r3KxiHKn00l1dTUmk4nx48eTmJgY7CkBgS30tNvtlJWVYTAYurW+9IcoVz5wBRJd\n/woEVcClAK+2L/na4301UWPRxs8A4GzzQRKS57rzzYeN/AEtjbt7FeVxibM4cuAOUtOvI2W4q3Nk\nU/1WDPpi6k68C4DdpsNkOA5AbEJ+vwQ5BN4fOdCMH9lVCP+Mk7Q3i5zIClfnmh7oGJtezxPdbnMj\na1wvqqD6HVcSxUqegKdg/VOuC84UYP0612bjgPX/gGnnxtuQ5Vqecu7vj/5qYMmB57scp6+UkG6j\nzx1yytuRyOQgdPht2cw9fwB9oMhbju3ABqRpWShyFrvO7YKAcvaNRNzQzeelUHebRx5M2j/r9WO7\n///1JRf6gzscDvR6PTqdjtbWVtra2lAqlWi1WmJiYoiJifGZRW11dTVqtZqUlBSfjBcIxHLdNhgM\nQ6rmLdAE/394iBIbGxuU6Ge7V3mwI9FwPjKcmJhIZGSkaAQ5BC463Z6uM2rUKMaPH9/tTVpfudze\n0F9BPlBk8r4tLF155ufTYxyO8wJp4ozXaG0+wOlTm9n7WS4FC78EBCZOf5mElMs6jdPU8DkyWd+e\n/v72R/7LSzrWxwqAq3ujuMzmQoOeorYH/6cO/qdjlPllzlg1fO9cSoinSGKSEXSNOPXNSNSR2A5v\nQT55fo/by8bmYH/75zj1Z5BExmLb9z6qy1cCoJixBMNHzyOtOYL6Blfutnzi9zC+eBOqK+9FGpOE\n09ACZj3SRO8KWEVdSDtAZDIZsbGxxMaer78wm83odDpaWlqoqqrC4XAQFRXlFuqRkZFeRY+dTqco\nos79QSyRcr1eHxblfiQsyocYwbL664jNZqO0tBSTycTkyZOJioqisbExqHO6EH/nlJvNZoqKijxK\n15FKpYOquCY2PpeSb3+O1XIGuUJLfc06Ro97GIlEilwRh1FfhiZqLKdrN7qj6W3GCmIT8tHG59FY\ntxlzWy2JqZdTc/xV4pIuRSqVY9CVEKHxjcjwhT+yKXbw/J+FAglKU79TQiRyBepl/4PhycuQxA1D\nOiyz1+2lsalE3LAaw7NL3IWeipxFrnWRsUiHjcN5qhj52BwAZMPHo77uVxh+fy0ITiQc7N6XAAAg\nAElEQVQyBRG3PueVKPd3Ia0YUavVqNVqkpOTAZeYNhgM6HQ6Tpw4gcFgQC6Xd4qmexJwEovA7Q9i\n6TAdjpT7l7AoH2K0p68EA0EQqKuro7KykoyMDCZMmCDaYhGZTIbNZvP5uB0bQ2VlZZGUlNTnPmLJ\nKfcVas0IMiet5uCO+SBAUtoiktOuBmDclDV8tWsRSlUS2rjpOJ0WAIoOP0KbsRIESEhdQLR2ElHR\n2bSZTrD3U1dkVKlOYnrBB0F7XzA4/ZFDil5SQmJfr+12uWrhKlQLV3VZHrnyfJFv9GP/cb9WzlqB\nctaKbseK+tm7XZYp85ejzO/6nKSn+fSEvwtpQwGpVOoW3+1YrVZ0Oh06nY6TJ09is9nQaDRuoR4d\nHd1FgItF4PYHu90uijkbDIZw4yA/EhblQSJYYrQ9fSXQGI1GCgsL0Wg05ObmdpsbKCZXGH8I4Xbf\n9f667QRKlMv+/R2TtWoEQCaBP+WkcUlS32kg3ZE56dfu15HRF7mtEttJG3UzaaNu7rLfsJE3MGzk\nDV2W58ze0GWZRCpj3JQ1jJuyptPyxJT5JKb0nIIQLMxtMtQRwbkhltZ3n4tbyQ728hw383GXdRu5\nk1k83G0X0328SA4rO3U/3c1v0ZKOgkgSyOJH+zejTjL67k14wNHCR4EXB+TOIlZEX0jbCwJOJPgn\nMq1UKklMTHSnPwqCgMlkorW1lbq6OkpLS5FIJMTExLiFejhS7j3hbp7+JSzKhxiBTl9xOBxUVFTQ\n1NREdnZ2p3zB7uYlhkIW8O3n1P4ZnDlzhuzsbLTa3t04LiRQojxCJuXwVa7H91vq9Pzy2wZ2Lhjj\n9+MOFTZ/mO2TrpKPrJ7b4/bbWY2SKAp4ZMDzXcpfu13uxMF+XmQKt3QS5eVs4XrW8SmPksXigAvy\nwY4mUsW6jXdz6MtqDu6v4pGfvsdDj7psHRdckQ3AhElpbN1S1O3+V1w1EZnMcyF6mmPs5Ddcz78B\n2Mz9DGO627v/z1zM1fyJUcxhO6ux0MqV/JG/M5dExrOEV6nmC/7DPdxL97ak/kAikRAZGUlkZCRp\naWmAK8rcHk1vaGjg7NmztLW1ER8fj1arJTo6WjTXnp5wOByicD0xGAxB6R0yVBD3tzCMz5HL5QGL\nlDc1NVFaWsqwYcPIy8vrNTIhNlHuKyHc3NxMcXExaWlp5ObmehWdCUb6is7mJE7pisoYbA6W7q6m\nxerA5hR4ekoqS0eET8peEcSuklXs5BMeAFze6XewCwArBt5lBac5Sho5LOdtJEj4O3NZyHMMZwbP\nEMUM7qaCrWRzHXpO8Sbz0JDI7WzHjA4HVs5QRgmbqGYnT3B7QN7XUEImk5Kbn0FufgZZ45LZ+IGr\neZDy3G9VKpVgd3R/rojQeO5c8gbzBpUDkVwuJz4+nvj4eACOHDlCeno6FouFxsZGysvLEQSB6Oho\ndzRdo9GI5sktiMenPJxT7l/EoYCGIMFMX/F3pNxisVBcXIzD4WDatGlERESIYl79YaAdPa1WK6Wl\npVgsFqZOnYpG07f7SE9427Snv7Q5nEz9pAyzQ6DObGPbZa4ouVomZcOcUcQoZDRZ7OR/Ws41w8OP\nLwfKQLpKesNenmMRrzCSAiwYkKMGoJ5vuJdjRJPGWgqoYQ+jmN1pXxtGhpPHFbgs875hLbexnUhc\nKQMVbCWD+YzkEsZxDVksBo75dP5DncqKJqQSCaMyEgAoLqwnbbiWspKGfo8VGanCYLD0uP52tvvE\ngUisCIKARqMhLi6O1NRUwCV6DQYDra2tVFZWYjKZUCqVndJefGXJ6A1iEuUJCQnBnsagJSzKhxhy\nuRyr1eqXsTsWMWZmZror5j0h2G3tL8Rb9xVBEKivr6eiooIxY8aQmpo64BuwQN3AdUxf2ddk5NZ9\nJzh6dSYC8Ni39ew6bUIqgdo2Gw1mu9vfOhS50CPZH7z4Yc/rBtJV0lvSKWALDzOZm8lmOVpGADCc\nXPfrVKZylqouolyCjAlc1+PYx/mvO62hLwazrZ8/MRmtrHlyM3q9GZlMyshR8ax+Zgk7t5X2e6y5\n87N46L51bN9a3GOhpy8ciMRKdwJXJpOh1Wo7pRdaLBa3JWN1dTV2u52oqCi3UPfWktFXcw4GBoOB\nUaNCozA4FAmL8iGGvwo9dTodhYWFxMXF9auIsZ1gtbXvCW9SRkwmE0VFRahUKmbOnCmK/D9vmZUY\nSZPFQaPFweZTehotDg5deREKqYTRm4oxO8J2f17hg66SnnKQVzjE6wDczGbm8AuyWEQZm1lLAbew\nBQAZKk6eOIgz1cYUbgGghj3M5xkcWKhhD3ewk5MdoqLX8Q5nKOEMJQBM5TYEnNSwhxzuAuAFhnU/\nsd8t4Hu/O//nFzYz8F63m3pr6xevMNJs865IWQzEK7rm40+cnMY76+/ssvzTXQ+5X0+aMpw3/um6\nOVq2YhrLVkwD4Jk/XNtpn9EZiWzYfK8vp+wmFByIPPUpV6lUJCUluV2ynE4nRqOR1tbWTpaMHaPp\n/uoBIiZRHi709B9hUR4kBkv6Sns3Sp1Ox8SJE73+sYoxfcXT+bR3Ja2rq2P8+PHuvMVQplhnxiEI\nJChltNocJKvkKKQStjcYqDa6rCKjnI0YpH1bOooNbUwQbyj83FWyI7ncRy73uf9uppwUJpPCZGr5\nkiaKUeMqvHam+t7+01PMClcajS9t/Tblum5GLnRh+aKg75QKMTi3tM8/jH/w1ulLKpUSHR3d6Tpn\ns9ncXUhra2uxWq1oNBq3UI+KivKJmBaLY0xYlPuXsCgfYvjKp1wQBE6fPs3x48cZOXJkj90oPUVs\notzTSHlraytFRUUkJCSQl5cnikiGt7TnlIOrr+ab+SOQSSXcPDqWJTurmLy5lBnxGsbHuCJB7ymu\nYPV3Dfyz+iwpajnJKjlXDovmrou6vyn5zdEG3q46S5JKTrpGQU58BI9kdxX1lr9/2es89+7dyyWX\nXNLrNoIgYLVaRVWo1RP97SrpLft5kUq2I0FKMhPJ5CpOsM/nx/EWMdj6nbF6X/sRJrTw1blBoVCQ\nkJDgzrNut2TU6XTU1dWh1+vdloztQl2tVvf7+OFI+dAgLMqHGL5IX2lP01AoFD5L0wg1UW632zl+\n/Ditra1MmjRpUFSjO34wudvliSo5+xZe1O26R8YnsnpyCia7k0s/ryAnvvui3i/PmHj/hI5vr8rE\n5hSY/t/jPW7bF+2Fr6EguD2hv10le2Meq3tcdzUvd1mWwVwymEsNe7w+pq/wh63fhYghCh5mcNPR\nknHYMFcKl91uR6/X09rayunTp2lrayMiIsIt1GNiYvpM+RSTKA9bIvqPsCgPEqGYvuJ0OqmqqqK+\nvp5x48b5tAJbbKK8t/k0NjZSWlpKeno648aNGzTi0BtWfllLYasFs0PgtoxYpvcgtPc0mlg6Iga1\nTIpaBksG6N4SqqLcV10lByO+tvUDGHH4HnJ/d1+X5R/8a1Kf+9Ys80z8X93URPMF7khL8kYS0eT9\n5XU9T3i9byigSRZPUX8gkMvlxMXFERcXB7jOX2azGZ1OR1NTE5WVlTidTqKjo93R9AstGcXSPCgc\nKfcvYVE+xPDWp7ylpYWioiJSUlLIz8/3eW6b2ER5d5HydqtHp9NJTk4OarU6oHMSoxD95yWBd76Q\nSqUBsYgc6pjqz3DgZy/R9FURSm0UESnx5D3/U7RZnv+fW87qqfjXZ2Tf07XN/EDpy9YP6FaQ+5rN\n5zpJduSFAQjyUOQHxSXuRj2hQLDPHxKJhIiICCIiIkhJSQHOWzLqdDq3JaNCoXAXkDqdTlGc/8OR\ncv8ytM4cYfotftv9ts1m84D9tvual8XS+wU2kHQ8+QmCQG1tLdXV1f22evTlfMQoyj2lIEnD3V/W\n8ssJSdidAh+f0rNyrHcFsYHybfeWnE+cNIrnq+wVgiDw+YrHyPzhVcx750kAznxbRtvpln6JcutZ\nA0WvbfCLKPfE1s8XvHpRJKbTwS+wEzOhdF4S67mjoyVjeno6cN6SsbW1FbPZzMGDB92WjDExMURF\nRQW8+NNms/nNYSZMWJQHjWCdxDw9riAInDp1iqqqKp/5bfdGMLpWeoLRaOTYsWNER0d7ZfXoK9o/\nHzFU33vDzAQN1wyPYconZaSo5UzWqtEqvHsUK3ZRHuqCHKBux9dIFXLG373MvSzh4kwEQeDgz1/h\n5Jb9SJBw8WO3MeaG+dgMJrYu/yXWFj1Om53pT93FqGvm8NXjr6Ivr+XDnNtJWzCzx8i12Gz9OhIW\n5H0TSuelUDqPdrRkbG5uJicnB6PRiE6n4+TJkxgMBreYb0978adgFvN5d7AQFuVBRKziwmAwUFhY\nSFRUFLm5uQHpYia29BWn04nFYuHIkSNkZ2cTGxsb1PmI9aalP3haFNoXYv3dDCZajlaQOH1cl+XV\nG3bS/G0Zyw69gaWplU2z7iR1zsWok2KZv34NyphIzE1n+Wj23YxcMpsZz6yi5VgFyw69Efg3MUBG\nfnju9/ZWa7/3ffBWbd8bDSJCReSCeHKzvaGjJePw4cOB85aMOp2OU6dOYbFY0Gg0bqEeHR3t8/cb\nSk9GQo2wKA/jxuFwUF5eTnNzM9nZ2Z06m/kbMYny9vx5gLy8PFFccHwtyoWYeCS6Zp+N5wmeFoX2\nhUQiCfkblIFg1DqJbA3Od7JhzxHGfH8BUpmMiJR4UudMo+mrYkZcmc+hX71G/e5vkUglmGobaWsI\n7PerOw7+/JWA5JX3hYkzvInL5tJAPVJkaHDZgd7FQeS9tMetZAd7eY6b+bjLuo3cySweJpkJXdbt\n40VyWImS8ymHu/ktWtJREEkCWd3u5w1iOEd6SihFytvpLZ+8N0vGhoYGysrKOlkyxsTEEBER4ZWw\nDgdD/E9YlA9RLsxPbncUGTFiBHl5eQG/ExaDKLfZbJSWlmIymZg6dSqHDx8Wzcnb16Lc+n9b3K/b\nU3RiYmLIzMzsElVR3THTJ8f0VVHoUI/SvP6y3udjXpjxHTcxg6oPdni8f/k/P8XcdJalB/+GVCFn\n3UUrcJitPp2jN4hBkANoSOAeDgOwndUoiaKARwY87lL+2u1yJw728yJTuKWTKC9nC9ezjk95lCwW\nD0lRLpYmPP2hP3aI3VkyOhwOdzS9vLyctrY2VCqVO5ruiSUjuHLcw/nk/iUsyoNIsB7Dtws8mUyG\n2WymuLgYICiOIu0EU5QLgkBDQwPl5eWMHj2aCRMmuIWfWIor/ZG+0m5x2dDQwIQJEwL6ZGQghFqk\nfPmNR4N27LVRV3Rrw2j59FUsn77q8kVPGg03dhavw+bl8NWvXqP49Y2Mv8vVxKf5yHGUsVFUvreN\ni269CkuzjvovDjPzd/dSue5z1ElxSBVy6nZ8jaG6HgBFtAab3uT39zlYqGInn/AAABIk3MEuAKwY\neJcVnOYoaeSwnLeRIOHvzGUhzzGcGTxDFDO4mwq2ks116DnFm8xDQyK3sx0zOhxYOUMZJWyimp3s\n4mm+z/tY0PMxq7BhIp6xLGUtEcTxd+aSysVUsRMndpaylhHkdpl3KIncUExfGahHuez/s3fm4VGV\nZ///zD6TSWaSkI2EJWyBBIJoQhJFRZRFxd261dalFWqr1r5Vf7XWtmq1WKt9bdVWa4vLaxfUqiha\nd8QFBEQWyb5DdrJNZsns5/fHMENCJskkmeVMmM91cTE5c85zntnO+T73cz/fWyYbYslos9kwGAx0\ndXX5LBnj4+N9Ql2r1Q659xmNxklRk0PMxET5CYi3gFBTUxNNTU3k5OSQmhrZcumREuX9/f2Ul5cj\nl8uHFEIaOHiJNMEW5X19fZSWlpKamiqaFJ1AieWUB07gvuiDBw4SiYSVr27gyzv+yDeP/gOZWkn8\nzKkUP/ZjHKZ+3ii4AQkSlm74EXEZU5jz7dV8cMnPeH3JdaQULEC/wOOEop6iJ/20fF5b8l2mrSkR\nTeR6IOa//hDFknNRFl2M8bdr0Vz9IPLZJ0ekL9t5lLU8xQyWYcOEHE+QpI29/IhSEshkI8s4xBfM\n5PRBxzowk0Uxa3gMgL1s5Hq2osVj2VjHh8ziHGZwGvO5iBwuYCHfAuDPLOZ8niCb5XzMr/iE+zmP\nx4+2a+GH7KOBT9nM97iFoYNMMQQuAiUa01eCHd2XSCSo1WrUarXPktHtdmMymTAYDDQ2NmI2m1Eo\nFMTHx7N3715OP/10rFZrUDzK3333XW6//XZcLhc33XQTd99994TbnCzERPkJiCAI7Nmzh5SUFEpK\nSkQhOsMtygVB4NChQzQ3Nw9bCEkmk006Ue5yuaipqaG3t5f8/PyojHoEKsodDgcKhSKqBIOYiMtM\n4ex//WbI9qLf3TJEXKtTErnw82f8tnPW/90Xiu6Nilk68UrD4WY6y3iPn5LPteRyGXqmAZBFke9x\nBkvopWGIKJcgI4/Lh227hnc5mRuHbLdiwEov2SwHYAnX8zJX+J5fxDUAZHMmNvropxcNgxe+R5PI\nFUtlzLEQjvuQVCr1pbJ4sdvttLW1sX37dp566il6e3uRy+U8+eSTlJSUsHjx4jFX9Ha5XNxyyy18\n8MEHTJs2jaVLl3LRRReRlxecVKpoJybKI0i4xYLD4aC6uhqTycTChQt9I2QxEE5RbjQaKS0tJTk5\nmeLi4mEvdlKpFJfLFRb3mdEIhijv7u6moqKCzMxMioqKArfHDOOiUEE3unf5aKLc4XBQUVGBweBx\nzfA6Eej1+oj4+sYYndO/+AkQvlQf6ztPIFhNaC77+bD72He8ivWtP4AgoFiyGs1V92P7eCPu9no0\n13gGK7bP/oGrfh9x1/0e+xebsH3wDILTDnwTUD928RR7eBaAa3mHM7ibHNZSzTtsZBnfwbP2Q8ax\nPF4JMtwMLQAnR42U4YVbM7u4gL8M+/xwSJCM+DdElyiPxki50+mMyEBCqVQyY8YMHn/cM2uybds2\nXnjhBZRKJX/+85/Zv38/cXFxFBcXs27dOubPH+rYdDy7du1i7ty5zJ49G4Crr76azZs3x0T5UWKi\n/ARAEATa2tqoq6sjOzsbQRBEt1gjHJZ/A6PECxcuHHUaTkw2hBPpi9PpHLSAdawFoAYuCq2srGTK\nlCmk+KliGC5GEuUdHR1UV1cza9YscnJyALBYLBgMBpqbmwf5+nr/hXrQZe2XodaEPzXL2h9d0UAx\n4e5ppX/TfSQ88AkSbSLmRy7FvmcLisKLMD2wyifKHTtfR33hHbiaK7HvfI34e99DIlfAdYGdp4hb\nKOLYrEM3taSTTzr5NLObTipQMz47VhUJ2DGiJYUOSklhgU+0e58DUKNHQxKNfMZMzmA//+eLmgMc\nZBOzWEEjn6NGj5qha0+iSeRGoygXy4yt1WolOzub9evXs379egB6e3vZtWtXwJqiubnZVxwJYNq0\naezcuTMk/Y1GYqJ8kmOxWCgrK0OtVvtypk0mE07n0EhLJAn1rEFnZydVVVVkZWUFHCUWgyOMl/GK\ncq9Izc7OJjc3d8Lvc6CpI8rb14Qsul543N+CLhnT79+ioqICt9tNYWEhSqUSh8MB4HMi8JYBdzgc\nGAwGDAYDhw4dwuVy+RY46fV64uLigvp9fOeNXHrXZQ3J7xacDjYvfISUFG1QzuONNscYmUAGK666\nr5HnLkOq8ww+FaddgatiO8qCC5CmZeOs2Y00fQ7ulipkOSXYP3wWV8N+jPetONpCYJHy4/mSx6ln\nKxKkpLGQeZzHYXaMq60C1vMS55JAJvNYy1zO9T23iKt5k3Xs5E9cyatcwgu+hZ5JzOYSnvPtK0fN\n05yMCwcXs9HvuaJJ5EZj+opY+mwymQaltwAkJiayevXqCPVo8hET5REklELU7XZTX19Pe3s7ubm5\nvlXXIC6xGWrsdjsVFRU4nU5OPvlkNJrAvbGjOVJut9spLy9HEAQKCwuDNjMSaD/C6YEu6etm9+7d\nzJkzh4yMDGBkP12FQkFKSoov2j9wgVNdXR0WiwW1Wu0T6Tqdzu8N8ZfqMoySoYPby67xc9Jr3uP4\nxZQAKYeCI8jDRda0pcjag5+r7RtOXLcs6G37425KPA/eAPgnfO595nO4z/PIpDifv/1g6LGK4stw\n7HwdaWYOioILPNdxQUB5+jVorvy1Z6cRIuUrvCfww/k8MWTbLM5iFmf5/l7Lk77HN/KJ7/EvMA06\nrpjbKOY2AF5kFZfyou+5GSzjVsoG7b+OL/32aTHf8S36HI5oWrcRjZFyMYnyia5DysrK4vDhw76/\nm5qafIWQYsRE+aSkq6uLyspKMjIyKCkpGXIBksvlk16UC4JAS0sLDQ0NzJkzh/T09DHfOKJRlAuC\nQGtrK/X19cydOzfo6wbE6nxyvHMOBG5nOXCB0/Tp0xEEAavVisFgoKOjg9raWoBBKS8qlcqvII8k\nyQoz3Y7xifxAU2xCIcjFSrwjEbexDok2EceO/6Ba5ZmuVxReiOmtx5AeOoD6yvsBkC9cjvnxb6M6\n90dIdZF1svLHdXwQ0vajSeTGRPn4MRqNpKWlTaiNpUuXUl1dTX19PVlZWfz73//mn//8Z5B6GP3E\nRPkkwhsVdjgcI+YOey0RJysWi4XS0lLi4uIoKioad86wmGYUAvHm7u/vp6ysDJVKNaHXPRJiGqgM\nZKwOACMhkUjQaDRoNBpf5N3pdNLX14fBYKClpQW73Q7LI+PpPxxvFj07/oOPBLbbq4Qnki0WTBsu\n9C30VBSsBUCqTUQ6dT7ulgrkcwoAkGUtQH35vZgeuRQEN1AawV4Hj4GR+JGIJpHrcrkCKpQjJsRi\nOGA2mydsieh1b1mzZg0ul4vvfe97LFy4MEg9jH6i65s5yQjWlJ8gCDQ1NXHo0CHmzp1LWlraiG3L\nZDJsNltQzh1sJlKsx1sMp62tbUjKzngQkwAdqS+CIHD48GGampqGtXcMFhOJlMv+/Q35ejUCIJPA\nkwWZnJYaHekbcrmc5ORkkpM97jCCIPDPceYNx4gedL/d7nd7/B2bhmxTllyGsuRobdQAF3p6+euf\n+rAkim8GKlD+8S7sOS86UljEsmhyLIglUm4ymYLiU37++edz/vnnB6FHk4+YKI9yjEYjZWVl6HQ6\niouLA4oAyOVyzGZzGHo3NryR6fFEMXp7eykvLyctLc1vys54+yMmUe5vdsNsNlNaWur7/MPhZTve\n90Qjk7LvvHkAvNdq5Of729m2cnYwuzeEUFVkjaYc2rFy+hc/4dAl0RP5nAxEsyAHOCLOGI9fgl2I\nJxyIpc/ByCmPMTIxUR6lOJ1Oamtr6enpIS8vb8iK6JEQU1rGQMYjyp1OJ9XV1RiNxqAXw/H6lIsB\nqVQ6KELtnRVob28nLy8PvX6oTVkoCFZOeZ/DTZLSM4AwOVxc/FkjPXYXDrfAg4szuHia5/v8m4Pt\nvNTQS6pKzvQ4BQXJGu7MHT1nVyKRRCz/3dLWxc47/kTnV+Uo9fFo0pMpfuzH6HNmhL0vocZCFy9w\nDgAm2pAiIw7P57OOXcgZPq2onk/YzqNcy5Yhz23mJk7lp6Qx1Lt4B49TwHqUHEvP+4yH0TMdBVqm\nkOP3uHBi1rvRGiIvomIMJVoj5WJIuQlWpDzG8ET+Uz6BGW+0zWtzN336dHJycsbcjlgXeo51sOB9\nH2bOnMmCBQuCHr0Ua/pKX18fpaWlpKamUlxcHNYIilQq9VkNjpV+l5sl/63G6hJotTr4+GxPlFwt\nk/L6GTPRKWR02pyUvF/LRVkJfNXdz38O97H/vHk43AKnvFtDQXLg7jmRQBAEPvrWPcz77nms+Idn\nEWDX/mr6O3ompSiPYwo/ZB8AW7kPJfEs484Jt3sxf/O73Y2LL3mcxXxnkCiv5T2u4GXe5y5yuCDi\novzZJ4wB77vuOgcQ+XzhE4VoXegphj77s0SMEVxiojyK6O/vp7y8HJlMNiGbO7Eu9AxUBFutVsrL\ny5FKpUG1+zsemUw2bgEabLzpK5WVlfT29gZ9ViBQJhJ9Hpi+sqPTzHU7DnPw/HkIwD372/i0w4JU\nAs39DtqtTr44YuHiaTrUMilqGVyYJf4ITesnXyNVyFnwg0t826acNA9BENj1s6doeu9LJEg46Z7r\nmX3lOQG3+8xTn/LOW98glUqQSiX8+sELufPHr7DpjfUkJQ/Oy9/6YQW1NUe46eYzhrSz68t6FAoZ\nJxcMP0BIDcHPqYFt/JfbAU9FyBv5FAA7JjbxLTo4SCYFXMZLSJDwHGexmkfJopCHiKeQH1DHh+Ry\nOUZaeIEVxJHCDWzFSh8u7HRRTSVv0sg2PuVBruI/2DD6/LeTmcPFbERDEs9xFhmcRAPbcOPkYjYy\njaLgv/AAeIEVDPBk9NF7fTLS6XngciHLzCFu/V+QqIYv/GX+6w9RLDkXZdHFGH+7Fs3VDyKffXII\nex6diEXgjgWxRPdjkfLQExPlUYDb7aaxsZHW1lZycnImXE1R7Okrw+Fd0Hj48GFycnJITQ2t9ZiY\nIuVms5nm5mZmz54dcPGjUBCs9+TUFC2dNhdHbC7eaTFyxOZiz7lzUUglZL9ZgdUVnTm2PQfrSDll\naKnpxte30b2/mkv2PI+t08Cbp95EmfSHvOZYNGTfz5cN9oTe9/VhPt1axSubf4BSJaen24zDMfzv\nZMXKBaxYuWDIdqfTxe6dDcTFKUcU5UdsMOMN/5/xeMsTbedR1vIUM1iGDRNyPM41bezlR5SSQCYb\nWcYhvmAmpw861oGZLIpZw2MA7GUj17MVLZ7rYB0fMotzmMFpzOcicriAhXwLgD+zmPN5gmyW8zG/\n4hPu93luO7DwQ/bRwKds5nvc4sdHPhxcz1b8+uYoNege9Ih181/WYft4I+rzbg1r34ZDcLuQSAeL\nxI6ODnQ6HWq1uFyJjkcsAncsOJ1OUfQ5FikPPTFRHkECEVbeBYwpKSlBW8gXjekrJpOJ0tJS9Hp9\nwAtaQ9mfcOF0OqmqqsJgMJCamkp2dnZE+xOsPO2KPisuQWCKUobB4SJNJUchleCdzZ8AACAASURB\nVLC13USj2TM7sSw1jh/sbubneak43QJbWoysn5M84XNHgvYvDjD7qpVIZTI06clknHEyXY7AbByP\nHDGSmBSHUuX5zg+MjP/jxV1s+7gSp8PNY09ewew5qbzx6l5KD7bwi/vW8ou7XkepklNR1kZaegL7\nvj6MTCZly+YD3PPr8ylYOjMkr/d4prOM9/gp+VxLLpehZxoAWRT5HmewhF4ahohyCTLyuHzYtmt4\nl5O5cch2Kwas9PpKxi/hel7mCt/zi/BUecrmTGz00U8vmnGWtB8vQm8n+Clbfzzy+afiOlSK60gj\n5j9cjW6Dp8qn9Z0nEKwmNJf9fNhj7TtexfrWH3zWjpqr7sf28Ubc7fVorvkNALbP/oGrfh9x1/0e\n+xebsH3wDILTjnxOIZrrH0MildG7LgvVihtwlH5C3HWPIp9/6qDzmM1mWlpasNlsaLVaX+GthIQE\nUUWmozF9RSwDCafTGVT72RhDiYnyCDOcyHE4HFRVVWGxWFi8eDFabfCs48SavuJPBLtcLurq6ujs\n7AzrgkaIfKTcmzOfnZ3N1KlTaWlpiVhfvBy/4HQseHPKAQTghZJpyKQSrs1O5MJtDeS/U0VhchwL\ndJ78iaVT4rgoS8fi/1aTrpaTr1ejV0T+xjQSSQtn0fDaJ0Ftc9npc3j6iW2sPedPlCybzblrF7G0\nONtzvqQ4XnnzZv790i6e/9t2Hthw8ZDj29v6eOmV7yOTSXnqj1uJi1Ny47rQ+o3v4in2HI3/Xss7\nnMHd5LCWat5hI8v4Du8BIONYrowEGW6GXpfkqJEy/OfezC4u4C9j7qMEyYh/A/zkOv2Q16Ijk3a+\noZp32M2f+Q7vYaJt0KLVt7mVTAo5mRuGpOIMrLz5v5wEfDViPwWXE8f+D1AsXjnm1+juaaV/030k\nPPAJEm0i5kcuxb5nC4rCizA9sMonyh07X0d94R24miux73yN+HvfQyJXYHn+DhzbX0Z5+jVgMyOb\nU4jm2w/5PdesWbM8/RUELBaLz9PfZDIhlUp9It1bfCtSRGv6SqT7LMaicZORmCgXGd6KjHV1dcye\nPZu8vLyQLGAU4w/seFHe3d1NRUUFmZmZYV/QCJET5Xa7nfLycgRB8OXM9/X1iSKVJpAiRsPhujrf\n7/YUlZwdq+f6fe7OBSncl5+OxenmzI/qRL/Qc+qKAr669xkqnt3MgnUegdx9oAZlYjz1r3zM3OvO\nw9bdR9vn+1CcG1ibcVoVL2/+AXt2N7Lrywbu/PEr/M9dHoG2ck0uAHmLMvnwvXK/x685byEyWXh/\nO0XcQhG3+P7uppZ08kknn2Z200kF6nFGpVUkYMeIlhQ6KCWFBT7R7n0OQI0eDUk08hkzOYP9/J8v\nag5wkE3MYgWNfI4aPephItbheC3gZwbI3k/fvZ5ZA3nOqSiXfxd3T+uY2nfVfY08dxlSnSfVR3Ha\nFbgqtqMsuABpWjbOmt1I0+fgbqlCllOC/cNncTXsx3jfiqN9sCI5eixSGYqlF416TolEglarRavV\nkpmZCXiCTN7iW83NzTgcDrRarU+kx8fHh+36Lpao81gIlbXreBBLPyYrMVEuIkwmE+Xl5cTFxVFc\nXCyKCl7hxCvKHQ4HlZWV2Gy2ESuThqs/4cI7IKuvr2fu3Lmkp6f7not01N7LRET5eFi/u5kygw2r\nS+D6WYmcInJRLpFIWPnqBr6844988+g/kKmVxM+cSvFjP8Zh6ueNghuQIGHphh+xbwxfLZlMSlHJ\nLIpKZpEzP43Nr+0HQHnUVlIqleB0+f9cNHGRv458yePUsxUJUtJYyDzO4zA7xtVWAet5iXNJIJN5\nrGUux0Y3i7iaN1nHTv7ElbzKJbzgW+iZxGwu4TnfvnLUPM3JuHBwMRsj+lpg19AnB+SUe5HI5Ecr\nhh7FYR3XeQEUxZfh2Pk60swcFAUXeMSWIKA8/Ro0V/7azwHqIXnkAZ9LoWDKlCm+wmaCIGA2mzEY\nDDQ1NWEymZDL5T6RrtfrQ5YmISaBG02IMZA3GYmJ8ggjkUhwOp2+FI3c3FwSE8Ob1ygWpFIp3d3d\nNDQ0MHv2bDIyMiJ68QynEO7v76esrAyVSkVRUdGQAZlYRHm4Z1n+eVr02QjGZaZw9r9+M2R70e9u\noeh3xyKu+/419Nje65Oh5leDttXXdSKVSJg5yyNoKsrayMzSU13ZPua+abUqTKbQVHpZwX3DPnc+\nTwzZNouzmMVZvr/X8qTv8cDy7gPTPQCKuY1ibgPgRVZxKS/6npvBMm6lbND+6/jSb58W8x3fos+x\nEIrX8jiGgM4t0aUh9B3BbexGotbi2Pce8vzhXXxkcwpwvvQz3MYuJNpEHDv+g2rVegAUhRdieusx\npIcOoL7SY98pX7gc8+PfRnXuj5DqUnGbesBqRJoS3N+hRCIhPj6e+Ph4srKyAE803WAw0NfXR1NT\nky+a7hXpWq02aNH0mCgfO1arVfSLeCcDMVEeYTo7OyOaoiEW+vv7OXz4MFKplKVLl4piMUk4Knp6\nHWWampqYP3++L5J0PCeqKD/hUA6dCbCY7fz2/ncwGq3IZFJmzEzmvocuZNvHVWNu/qxzcvifW15m\n64cVY17oKbjFtzj8Oj6IdBfCikSuQH3J/8N0/9lIkqYinTpvxP2liRlorrwP04YLfQs9FQVrPc9p\nE5FOnY+7pQL5nAIAZFkLUF9+L6ZHLgXBjUSmQHPdo0EX5f5QKBSkpKT43MUEQcBkMtHX18fhw4d9\n0XSvSNfpdKK4T4QasUT2jUZjrJpnGJCM8QYbuxsHmYaGBhITE9Fowjstv2PHDlEMAgbaPaalpSGR\nSJgzZ05E++TFarVSWlpKQUFBSNo3m82Ulpai0+mYN2/eiHmOdrud/fv3s3Tp0pD0JVD6+vpobGwk\nP99/frgX1Y3h7aftud1DtjkcDtxud8huaD/RHJjQ8a/9a6gdYu+6LA6W3TWhdifKKTc1DOu4cedD\nASbCxxgTj78YWKRczBy6JPT3Ervd7stNNxgMOJ1O4uPjB0XTR/u97969O+LX0bHgcrnYu3cvhYWF\nEe1HbW0t999/P6+//npE+xHFBHQjikXKI8y0adMiYrvnzZeOpCg3GAyUl5czZcoUiouL6e7upqen\nJ2L9OZ5QRafdbjcNDQ20t7cH7CgTi5THCBsSWcCOGzFihBOlUjkomu52u3256Y2NjZjNZhQKxSCn\nl2hfm+VyuUSxMNVoNMYKB4WBmCg/QZHL5TidzohcsJxOJzU1NRgMBhYtWuSbEhODL/hAQtGfvr4+\nSktLSU1NHdNMhVhEeaALPQVdMpK+7jD0yHOuSYO9P9I9wFm2bcyOGzFiRAKpVEpCQgIJCQlMm+bx\nu7fb7RgMBnp7ezl06BAul4v4+Hh0Oh06nS7qggpiEuWx9JXQExPlJyiREsBHjhyhqqqK6dOnM3/+\n/EFTjWIT5cEUwi6Xi5qaGnp7e8nPzx/zxS1YRXsmSiD9EASByp88TVtbW0i85dva2jCbzRFPc0oQ\n5BglQfb795NTHm50jwzwzT7OccOsd6M1nJjrXmKMTMJb60Pavlulw7z60VH3UyqVpKam+io+u91u\nTCaTL5pusVjYt2+fL5Ku0+lEHU0Xi4Wj2WyOifIwEBPlESZSCzjCLYBtNhsVFRW43W4KCgr8ruIW\nmygP1mcz0G+9qKhoXO2KYaEPjD5Q8VZeTU5ODtmaBbEMUH5jzRvzMT/RHPCbSy4mRnLcePYJ46C/\nf3Ld+AZcJkkHf5h+1DXEbkVRcjmay35O7w1T0G/sGNZ6b7x5y3v27OGkk04aVAn46blaLB2xAUa0\nILX1je84qdQXJc/IyMDhcJCbm4vBYPC5fbnd7kG56XFxcaK55oolUm4ymWLpK2EgJspPULzpK6FG\nEASam5tpbGxk3rx5pKWlDbuv2ET5RHE6nb6qrJH0Ww8mw+WUu91u6uvr6ejoYOHCheh0upD1QSyi\nPFR02eOYorRE5Nyd3f2YH7kk5I4b8ULaEA9uYEJe2KNxvMi6ucYckvOMh8ffiHQPooNgROPPBGiC\nowlauFU6jCsfwWg0YjAYqK+vx2KxoFKpBkXTBw7owklMlJ9YxET5CUo4BLDXXSQhIYHi4uJRL2qT\nSZR3dHRQXV1NdnY2ubm5oom6TBR/OeVGo5HS0lJSUlLC4ugTDFHe1Pk0biH8wvenwGsMHylPfLaZ\ni4cayYSVhAd+7nuc+GxzyM7j7jsSUi/sgYjFVm44khVmuh3aSHdj3KQF6LMuRqS2PqRSqS9K7sVq\ntWIwGOjq6qK+vh63201CQoJvP41GE5bvlFhEudFoJCMjI9LdmPTERHmEidSNIpSR8oFR07EUQ5oM\notxut1NeXo4gCBQWFqJSqSLdpaAyUBC73W5f0auFCxeGLYoSDFEeCUE+GZmIlZ8UT86vND4J4pOA\n0A0CxC7K3yx6dsi20m9a/PrTX3XJX9n0xnqSkrUcPNDMow+/z/P/vJE3Xt1L6cEWfnHfWn5x1+ss\nPzuH1ectBKChvpO17Z1DzvHQG6X8c3sjMqkEqUTCM99fSvFc/7USxsonZe08+nYlW+46MyjthRu1\nWo1arfZVVna5XL7c9NraWiwWC2q12ifSExISQhJNF4soN5vNsUh5GIiJ8hOUUAngnp4eysvLycjI\nGHPUVCwOI+NBEARaW1upr69n7ty5vgv5ZMP7GXldZNLS0igqKgqrteZkT1+JJn5/zdtjPqavX8lv\n3lg1rvM1NTWh1+uJj48XtcgOBgvzM/nHqzcN2f7+p//je7xocRbP//NGAC751slc8q2TAXjo95cO\nOiZ7VgocJ8p3VHeyZW8LXz+0BpVCRqfRht0pjuuv0+VGLhNXvr9MJhsUTRcEAavVSl9fH0eOHKG2\nthZBEAalvAQjmi4WUR6zRAwPMVF+giKTyXA4HEFrz+FwTDh/Wqw32dGibP39/ZSVlaFSqSgqKhL1\nSv6JIgiC7/WOx0UmGMREeXSj09gndPyhQ4d8ftSJiYkB5/yK9foSKVp7+0lJUKFSeARfSoJnVi/7\n9je5/oxZvLW3BYfTzSu3L2NBpg6z1cltL+7h4GEDDpeb+y5bxMWF02g4YuK7f/kSs80T5Hny+gJO\ny0kZdK7dtV2s//tuXr19GRl6jd92nt9Wx2tfNWGyOnG5Bbb98hy//RZLBF4ikaDRaNBoNIOi6d7c\n9JqaGvr7+9FoNL7vqE6nG7PAdrlcEctnH0gspzw8RP6TPsGJZPpKf//EPZEFQaC9vZ3a2lqys7PJ\ny8ubVDc/b2TY34VUEAQOHz5MU1MT8+fPZ8qU4Ez7jkQkp+ENBgNlZWVIJJKwR8cHEqgoj+aZlxj+\nmTZtms+P2mazDcn59UYp9Xo9arV6Ul2Lgs3q/AweeK2UnDveZuWidK4qmcHyXM9C/JQEFV8/tIY/\nf1DNo29X8Ld1RTy0uZSz89LZuL6YXrOdol99wMpFGaTp1Hxw9wrUShnVbUaueXI7Xz24xnee7VWd\n3PbCHjb/9AxmpGi5Z9N+v+0AfF3fw4GHzyU5PjRpf6GOwMtkMhITE30pm95ousFgoKOjg9raWgCf\nQA/ke+pyuUSRBhmzRAwPMVF+ghKM9BWr1UpZWRlyuZylS5eiVCqD1DvxMJwo9y5i1el0FBcXh2V6\n0StGwy003G43NTU19PT0kJ+fz4EDByJaCTZQUT6eaPozT33KO299g1QqQSqV8OsHL+TOH7/iy+Ed\nyNYPK6itOcJNN58xpJ1dX9ajUMg4uSB0ixdPeV+D0h7ZKf7/bLlyzMeo9P1wxsQHSyqVirS0NJ+j\n08AoZXV1Nf39/cTFxaHX63G5XLjd7oh+b8VGvFrBnodW81nFEbaWdXDVE9t5+KrFAFy21DPwKZiV\nzGu7mwB4/5s23vy6hUffrgDA6nBxqMtMZpKGW5/fw77GXmRSCVVtx2wzy1sMrP/7bt6/+ywykzQj\ntgOwKj9jTII8mBH4UDAwmu5dJOlyuejr68NgMNDe3o7VavV9T3U6HQkJCYPuJ5GuvO3FZDKF1FUr\nhoeYKD9BmYgoFwSBQ4cO+SLE3pLHkxHv++RNSXG73TQ0NNDe3h6Swjgj4R0ghPMC3dvbS1lZ2YQ8\n1oNNqNJX9n19mE+3VvHK5h+gVMnp6TbjcAz/G1mxcgErVi4Yst3pdLF7ZwNxccqARXnvuqwhixwF\np4O+H88n4XdfIVFrMf12LfL8c9Bc9nPMf/0hyswXx/YCRYLNoAGCb0foL0ppsVgwGAw4HA727NmD\nTCZDp9ORmJiITqeblIGEsSCTSjkrL52z8tLJn57IC5/VA/hSWmRSCc6js02CAP+5fRnzMwcLs/v+\n8w3pejX7N5yLWxBQ3/CK77mpiRqsDhd7G3p8ony4dnbWdKFVBS5JxBSBHwsymYykpCSSkjyLm70p\ngV6RXl1djUQi8UXSbTabKHLKY+kr4SEmyiNMtLmvGI1GysrKSExMpKSkJCQXCzE5JQxMgfAubkxN\nTQ2L9d9IfQk13gqkBoOBk046Ca1WPHZtoRLlR44YSUyKQ3lUGAyMjP/jxV1s+7gSp8PNY09ewew5\nqUPcLpQqORVlbaSlJ7Dv68PIZFK2bD7APb8+n4KlM8fcH4lcgfqS/4fp/rORJE1FOnVe0F6rmBDc\nLr/e5P4WkW46+v+3N79PnM02ats6IAOYP3Bj6Fwex0SgFSpDRWVLH1KphHkZHqG1r7GHmSlavjnc\n63f/NYszeOL9ap64/hQkEgl7G3o4OTsJg8XBtOQ4pFIJL2yrx+U+9ttMjFPy9/VFrNqwFa1Kxll5\n6cO2MxZCHYEPJxKJhLi4OOLi4pg6dSrgqXHhjab39PRgMBgGFTdKSEgI+/0nFikPDzFRLgIisXBt\nrJFyl8tFbW0tPT095OXlhWzE7O2XGBa2wLEFsZWVlfT29kZscSOET5R7HXSysrLIyckRzQDJy1h+\nL2MZ4C07fQ5PP7GNtef8iZJlszl37SKWFmcDkJQUxytv3sy/X9rF83/bzgMbLh5yfHtbHy+98n1k\nMilP/XErcXFKbly3LKBzD2cFqFp9M6rVNw/Zrl3/F9gSUNOipHddFqoVN+Ao/YS46x5FPv/UMR0f\niCAXOwMrVEolcWG36TTZnNz2wh56zQ7kMglz0xP4601L2bLX/3fxl5cu5Cf/t5fFd7+LWxCYlRrP\nlrvO5Eer5nH545/z4ucNnLs4Y0i0O12vZsudZ3LeI9vYuL542HbGQigj8GJALpeTnJxMcnIyFouF\nmTNnIpFIMBgMtLa2UlVV5atU6hXqoc47HzhjHCN0RNc3NUbQGEukvKuri8rKSrKyskKewiCTyUS1\nOM/hcHDgwAGmT58e8fSNUItyl8tFVVUVJpNJ1BVIQzWIjdOqeHnzD9izu5FdXzZw549f4X/uWgnA\nyjW5AOQtyuTD98r9Hr/mvIXIRGbjJlpsZmRzCtF8+6FI90QUTEvxDLxcLhf79u2joKBgzG2MVhCr\ntGRwqpW6BJ695rRB29qBt1edRPvRx5oSeOrbp1F69Pkfn7mIHw9s8+j//7pkKTK7kwVf1/C7a5YA\n+NJiAGakaCl95Hzfcc98f+mQ/t2wfDY3LA/ghRK6CLwY8Qap1Go1Wq2WzMxMwBNNNxgM9PX10dLS\ngt1u9+Wme21DgxVNj7ldhY+YKD9BCSRSbrfbqaiowOl0cvLJJ6PRaMLSL6fTGfFcT6fTSVVVFUaj\nkQULFoiikpm/aprBoru7m4qKCqZNm8aCBQtEFx0fiFQqDdlNQiaTUlQyi6KSWeTMT2Pza/sBUCpl\nR88tweny/xlo4iIbRbLbuti9bTUANms7EokMpcqz3uPUc3YglYkof1oqQ7H0okj3QnRMJHUv0gWx\nXMrwyolQRODFyHA+5XK5nClTpvhcvwRBwGw209fXR3NzMyaTaVClUp1ON6FoupjSSiczMVEuAiKR\nvjJS1HVgIZw5c+aQnp4eth+jGGzsOjo6qK6uJjs7G6lUKppUmlCIUe/gw2w2h23gFQxC8Xupr+tE\nKpEwc5bnJldR1kZmlp7qyvYxt6XVqjCZwptioVRNYdnqPQBUH3wAuTyeWQt+Omgfz/smIJGEJ6Lv\ndjuRSv38fhRqv3nkEyXaK1S63e6Y8BmFUEbgxUigxYMkEgnx8fHEx8f7oukOh8OXm97U1ITD4UCr\n1fpEeqDR9FikPHyIQ23ECDvDXfgtFgtlZWVoNJqIFMIJVaXRQLDb7ZSXlyMIAoWFhahUKqqrqyM+\nSPAS7AFLV1cXFRUVzJgxg9zc3KgRA4EOTpxO55hmXSxmu9+y5ts+rhpzH886J4f/ueVltn5YMe6F\nnsHCbKzh6y8uQ5d4En29+1l65n/pPvIJdRW/BwHSMi8gZ/GDuN1OPt6cwcpLPZUfWw9toqv9IxYt\n/SuthzZRW7YBiUSKQplM0YoPcbudVB64m97OL3C5rMycdyvTZ3+fzvaPqC37LXJ5PBZTHWec901Q\nXsfbG95g57+3I5VKuennQ3P1J0OFSkEQRGF/F0M8TOQ7oVAo/EbTvSLdZDIhl8t9Il2v1/u9Xnrt\nRWOEnpgojwEcs/pra2sjNzfXZ9cUbiIhygfODMydO9dXnQ3EEbn3Eqy+OJ1OKisr6e/v55RTThlX\ndDySU5mBzCy1tbVRU1Pju5l5bziJiYnDTuEGu6z56+/8yO95khVmuh3hdbMx91WwuGgj+uRCrJYm\nqr75Naet+hK5Qs/ubWvoaHmblIw1wx5fU/ogRSs+RKVOx2H3uHM01T2LSpXGqSt34HbZ2PHRMlLS\nVwHQ17OH09ccQKMNjk977Y5qDry9l1/uegiFSgEvvzVkn2itUDmQUPyuosl7P8ZQghmlHhhNz8rK\nAjzBqOOj6fHx8eh0Otra2li8eDFGozGoBgd33XUXb731Fkqlkjlz5vDcc8/5rExPdGKiXAREOkLp\nrdSYlpZGSUlJRCM14RblVquV0tJSVCqV35mBSEbujycYoryzs5PKykpmzpw57uqrkSpidPz5/eGd\n7QAoKCjw7WswGHzOBXa7nYxZ4ezxYN4sehaAGanHUkv+oBu7m9GXVwZuaRoXPwd9ciEAvd27mJJ2\nli/ffOqMq+k58tmIojwp5VQO7LyRjOmXk57lGYB0tn2IyVhB62GPUaHT0YfFVANA4pSSEQX5cG4z\nw2Fo6yU+JcEjyIchGitUJry1fvDfQCpA45jeHg8lQz3zI+m9HyM6UCqVpKSk+OqNuN1uzGYzXV1d\nPPLII1RXVxMfH48gCLz99tuUlJRMuHr1qlWr2LBhA3K5nJ/97Gds2LCB3/3ud8F4OVFPTJSfwAiC\nQFlZGSaTKaJWfwMJlwgWBIHDhw/7CiANd5GZLJFyr62jzWajoKAAtVo94X5EavA2nCj3rgWYM2cO\nGRkZuFwuHA4HMpnMZy8GRz/7zs/D3e2IIpOPPvXsyTM/9r66XFbf44WFz2Do3klHyzts/6CIZat3\nAwILT3mCKelnD2qns/0jZLLgzgTkrcrnrQdf4xd5d5B39iJuOnNowbLJUKEy2IjNez+G+JFKpSQk\nJJCQkMDLL78MwIcffsiTTz7JZ599xu9//3sMBgNLlizh1FNP5cILL/T5qwfK6tWrfY9LSkp49dVX\ng/oaopmYKD9B6ejowGKxMG3aNFHlE4dDlJvNZkpLS9HpdBQXF4+4iMbrUy4GxivKjxw5QlVVFbNm\nzWLq1KkT/qxD6X4SCMeLcofDQXl5OS6Xy7cWYLTjxUZcmhtLR3gGOYnJRVTu/xl2WxdyhZ62Qy+T\nPf+nSCRS5IokzMZq4uLn0NG82RdN7zfXkTilBH1yMUda38Ha30xKxioO1TxNUuqZSKVyTH2VaOJC\nE0VVx6v55a6HqP68gopPyobdL5orVIaCSHrvx5g4YnE8USqVLFiwgIcffhjwXHP379/Pjh076Ozs\nHLMoH8jGjRu56qqrgtXVqCcmykVAOH90VquV8vJypFIpiYmJYXVWCYRQinJv3nx7ezt5eXno9fpR\nj4nmSLnD4fBZWgYiVgMllNaMgZ7fK8qDPeCIFDfXDC47v2/fPvLy8kZcpHrlTeNzylHHTWPeovvY\n9ck5IEBq5lrSMj0OFvMX/5avPl2LUpWKPukU3G6Pg0z5vjvpN9eDAFMyVpKgX0R8Qi79lsNsf9+T\nFqNUp3LKstfG1adAkMqkzF+ex/zleX5zyqO5QmWoiHnvj45bJd4qlZGckRyIyWQaVDBQoVBQWFhI\nYWHhsMesXLmStra2IdsfeughLr74Yt9juVzOtddeG/xORykxUX6C4E3XOHz4MDk5OaSmprJv3z7R\n5Et7kclk2EJQra+vr4/S0lJSU1MpLi4O+EIXrTnl3lSO2bNnk5GREVSxKoZIucvl4uDBg+NOx4lE\nBcXjzz8SE7VJnbfoV77H2oS5PqtEL5kzryVz5tAb4dQZVzJ1xpVDthec/vrQPkplzF/8W+Yv/u2g\n7Snp55CSPvqixrHQVtmCRColfd7w9QKiuUJlKAmn977xwr9OrLMh5quvvuKUU04RhdANhEDtEEON\nyWQac3rrhx9+OOLzzz//PFu2bOGjjz6K2mBKKIiJ8hMAk8lEaWkper2e4uJin++2mASnl2BHpl0u\nFzU1NfT29o4rbz7aIuXegk9utzuo0fGBRDpS3t3djclkYubMmWRmZo7rgu6toDheBEHAYrH4FpAa\njUYUCoWvUIderxeNv300Eq+2DvrbZrLxr5+8gMVgRiqT+bVELJiVzPb7Vg3Z3vDHY0WKCmcn88m9\nngGDRin362s9LyOBAw+f5/s7HBUqJ4LXP/13/xm6QDPavfeDjVjSQQJFLKLcbDYPipRPlHfffZdH\nHnmEbdu2xawWjyN21xABobpIuFwu6urq6Ozs9JuuIZfLcToDd3AIB8EcKHirVGZmZlJUVDSu91ls\nonyk96a9vZ2amhrfQsdQEYliV3Cs0JHFYiEuLs5n6RUJJBIJWq12UNlrL5mXLgAAIABJREFUu92O\nwWCgu7ubhoYG3G73IJE+kcW1k41DlwwfqdykGZqaMrNgFnd/dt+xDX7SV2IMZbJ670+EmCgfO0aj\n0XedCwa33norNpuNVas8g+iSkhKefvrpoLUfzcRE+STFK0inTp06bLqGGCPlwejTQPG2ZMmSCY3E\nxfQeSaVSv4tOBxY9Wrp0acDFcibSj3APVHp6eigvL2f69Onk5uayY8eOsJ4/EJRKJampqaSmpgKe\nG6rX/9drxeitppeYmIhWq40qgRAj+Pz61W+C6p9+POHy3o8RGsQiys1mc1Dd2WpqaoLW1mQjJson\nGQOt70YTpGISnF4m2idvLnV2dnZQXGXEFik/vi9tbW3U1tYOKXoU6n6EK1Lucrmorq7GaDROeIAV\nbmQyGUlJSb5CXN5qer29vTQ2NmI2m1GpVL5Iuk6n892AIzUbESO8BNM/PcbkQyyi3Gg0otOJd0Hs\nZCImykVAMKJlgiDQ1tZGXV1dwIv7JlP6ysBocTBzqWUymShFuc1mo6ysDJlMFpbo+EDClVPe29tL\nWVkZWVlZzJ8/f8y/E7FFoQdW05s2zeObbbVa6e3tpaOjw1eBVKfTYbPZcDgcI6a86HUChj5xvcZA\n0Otigw0vwfRPjzH5EIsoP959JUboiInySUB/fz9lZWWoVKoxCbTJECkXBIHW1lbq6+tDEi0eLY87\nnHhdR1pbW6mrq2PevHmkpaVFpB+hjOK63W5qamro6enhpJNOQqsNb0n6cKJWq8nIyPCtAXA6nRgM\nBl/lVbfbTUJCgi/lRaPR+AYbz/7BOlLTQyj4r5sjIlmnN+ONkZ5d63drvNrKry/9KCT9iRTB9E+P\nMTLROPMUE+UnHjFRHsW43W4OHTpES0vLiFUph0Mul4fEfnAijEWUW61WSktLUalUFBUVoVCMzb4r\nEMSUvuJyuWhvb8fhcITs9QZCKN8Tr3VlRkbGuBfnRjNyuZwpU6ag1WqZN28eKpUKk8lEb28vtbW1\nvkWu3pSXhISEgO3dxCLIx4vJemzWwKJSESeya9dYOdJn9fv9Hq9/uhhIeGt9RM7rVukwr350xH2i\nzXkFPNd8Mdg3xkR5+IiJchEwngtFX18fZWVlTJkyZdSqlMMh1kj5aILP67ne1NQ0rsHIWPsT6ffI\nOxtQU1NDfHw8+fn5Ee1PKCLlbrfb5xQ0HuvKyYb3muBNZ/HmcwqCQH9/PwaDgZaWFoxGI3K53BdJ\nn+xWjFf1XwiAa/WFGEfZ14vdbqesrIwlS5aErmNH8SdK99R3+/VPX/rL9/3mhI/XP/1ERmrrG3Uf\nsQjcseByuSIWfBlIsC0RYwxP7FctEgIVOk6nk5qaGgwGA4sWLZqQeJHL5REXnMczWrqI2WymtLQU\nnU437sHIWPsTyUj5wNmAhQsX0traGrG+eAn2e2I0Gjl48CBpaWkUFRVF3Y0znEgkEuLi4oiLi/OV\ntvZaMfb09PisGHU6nU+ox6wYI7u+IFz+6RV2Jy5l5G7pMru41icdj9vtFkUqyFhwuVyi+P3GRHn4\niInyKMJbUnz69OnjWvh2PDKZTHQLPYd7TW63m4aGBtrb2/16roe7P6FGEASam5tpbGxk/vz5pKSk\nYDQaRZFKE6xI+cDPdNGiRbGL/jgZyYqxsrISq9V6NC8/b8ixvdcnI52eBy4Xsswc4tb/BYlqeIcb\n819/iGLJuSiLLsb427Vorn4Q+eyTQ/XSgkI05hKPhwVfx2zmRkIsJevHglgGEmKJ2J8IxER5FGCz\n2XxVGsdTUnw4xJCaEQjePOPU1NRhPdcnE96Fu2q1elAF1khH7b0Eox/eKrPJyclh+0yfnqvF0hEt\n353T+GBCxycSl+bm5hqzz4oRf5pNqUH34OcAmP+yDtvHG1Gfd+uEzhwsBLcLiXTigiQac4nFwENv\nlPLP7Y3IpBKkEgnPfH8pxXODkyrorUK65a4zg9JeIIhl0eRYEEOfT5RBrViIiXKR4C/6ODBaGgqn\nDTGmrwzE5XJRU1NDb2/vCZFnLAgCTU1NHDp0iAULFgzJlReLKJ9IpFwQBBobG2ltbQ3rjAcQRYI8\nOHhfr9eKEUb+7sjnn4rrUCmuI42Y/3A1ug2eAk3Wd55AsJrQXPbzYY+173gV61t/AEFAsWQ1mqvu\nx/bxRtzt9Wiu+Q0Ats/+gat+H3HX/R77F5uwffAMgtOOfE4hmusfQyKV0bsuC9WKG3CUfkLcdY8i\nn3/qhN+HmCgfOzuqO9myt4WvH1qDSiGj02jD7oz8tQfA6XIjl439txyNkXIxiHIvsd9QeIiJcpFi\nNpspKytDq9UOipYGEzGmr3jxViTNzMw8IVw4+vv7KS0tHfHzFosoH28/LBYLBw8eRK/Xhy06Ptm/\nN8FCcDlx7P8AxeKVYz7W3dNK/6b7SHjgEyTaRMyPXIp9zxYUhRdhemCVT5Q7dr6O+sI7cDVXYt/5\nGvH3vodErsDy/B04tr+M8vRrwGZGNqcQzbcfCt5ri0X6xkxrbz8pCSqfZWNKgqfuQ/btb3L9GbOC\nWoV0d20X6/++m1dvX0aGXuO3nee31fHaV02YrE5cboFtvzxnzK8pWhd6RlqUx34/4SUmykWG2+2m\nvr6ejo4OcnNzSUxMDNm5xJi+4nQ66e/vp66uLuoqOI6HgU4yCxYsIDk5edh9xSLKxxopFwSBQ4cO\n0dzcTF5e3ri/08rb1yDp6wZgBcCzox8z2L35wLjOO6mx99N37+kAyHNORbn8u7h7xraY2FX3NfLc\nZUh1HrGlOO0KXBXbURZcgDQtG2fNbqTpc3C3VCHLKcH+4bO4GvZjvG/F0T5YkRw9FqkMxdKLhjnT\n+AnX4Myt0gXkBCJ2Vudn8MBrpeTc8TYrF6VzVckMlud6ZmqDWYV0e1Unt72wh80/PYMZKVru2bTf\nbzsAX9f3cODhc0mOH19hOLHkZ48FMYhys9k86e/DYiImykWCRCKhp6eHiooK0tPTwxJJFFsUsaOj\ng+rqahQKBSeddJKoFpaEYgrcYrFQWlpKQkJCQE4yYhHlYymo1N/fz8GDB4mPj5+wW45XkMcInE2a\ntwb85acoz4Ccci8SmRyEAd8zx9iKFA1EUXwZjp2vI83MQVFwgec3JAgoT78GzZW/9nOAOih55AMJ\nZ/rKaF7Zo1FXV4dOpyMlJWX0nYOEPxvHeLWCPQ+t5rOKI2wt6+CqJ7bz8FWLgeBWIV3/9928f/dZ\nZCZpRmwHYFV+xoiCvLKyEp1O53McOv4zj6WvjA+TyTTpU0fFREyUi4T6+nra29s56aSTTrhRqd1u\np7y8HEEQKCws5JtvvhHVlJlXDAfr4jgwcpybm0tSUtKY+hFpAomUD8yPz83NHXEGIFJY6OIFPNPg\nJtqQIiMOj4PJOnYhZ/iCLPV8wnYe5Vq2DHluMzdxKj8lzY/byQ4ep4D1KDn2G/+Mh9EzHQVappDj\n97hwItGlIfQdwW3sRqLW4tj3HvL84dMFZHMKcL70M9zGLiTaRBw7/oNqlUfoKQovxPTWY0gPHUB9\n5f0AyBcux/z4t1Gd+yOkulTcph6wGpGmzAjJ64mmnHIx9VUmlfrsFvOnJ/LCZ/VAcKuQWh0u9jb0\n+ET5cO3srOka1Zc9PT0dg8FAdXU1/f39Q4psRWv6SqT7HCscFF5iolwkTJs2jenTp4vmghwOvEVx\n6uvrmTt3Lunp6cCxXHelUhxV6oIpyr0+69686rG0KZbvhlQqHVGUe73VNRrNsPnxA1NRIkUcU/gh\n+wDYyn0oiWcZd0643Yv5m9/tblx8yeMs5juDRHkt73EFL/M+d5HDBZEX5XIF6kv+H6b7z0aSNBXp\n1Hkj7i9NzEBz5X2YNlzoW+ipKPBE5aXaRKRT5+NuqUA+pwAAWdYC1Jffi+mRS0FwI5Ep0Fz3aEhF\nebQgFlFe2dKHVCphXoZHjO1r7GFmipZvDvf63X+8VUj/vr6IVRu2olXJOCsvfdh2AiExMdGXGjew\nyFZraytVVVU4nU7UarVPrIvl/jIakRblRqMxJsrDSEyUiwSlUhmxRZeRuBEMLIpzfMl4sUSEvXhz\n7yeSTuN1HWlpaZlQXrUYkEgkfj8fQRBoaWmhoaHBr3vMoDaiKBWlgW38l9sBkCDhRj4FwI6JTXyL\nDg6SSQGX8RISJDzHWazmUbIo5CHiKeQH1PEhuVyOkRZeYAVxpHADW7HShws7XVRTyZs0so1PeZCr\n+A82jGzhZhxYSGYOF7MRDUk8x1lkcBINbMONk4vZyDSKxvXaEp9t9rtdtfpmVKtvHrJdu/4vvscJ\n97zte6w89VsoT/2W37bi79g0ZJuy5DKUJZcF3J+JEimhq33/zjHlmIvF8d1kc/qtQrplr//PZ7xV\nSNP1arbceSbnPbKNjeuLh21nrPgrstXY2IjNZqOvr4/Dhw/jdDqJj4/3FdmKi4sTxYBoIGIYUMbS\nV8JLTJSf4AQ7NWM0Bi5snD9/vl/hJrYFqBMdJHg9uZOSkigpKYl45GOi+Hs/bDYbpaWlKJXKkLkF\n+UP272/I16sRAJkEnizI5LRUbVDPsZ1HWctTzGAZNkzI8dQJaGMvP6KUBDLZyDIO8QUzOX3QsQ7M\nZFHMGh4DYC8buZ6taPHkDNfxIbM4hxmcxnwuIocLWIhH3P6ZxZzPE2SznI/5FZ9wP+fx+NF2LfyQ\nfTTwKZv5HrdwMKiveTIRyehztC76DFcVUoAZKVpKHznft4+/dm5YPpsblo/cZ3+58QNZ5G9j+8ht\nBoJbpZvwWgIxE4uUh5eYKD/B8XqVh0OUe1M3dDrdiKkbYhPlMplsXKJcEAQaGhpoa2sLuyd3KDk+\np7y1tZW6ujpycnJ8VSXDhUYmZd95nvSK91qN/Hx/O9tWzg7qOaazjPf4KflcSy6Xocez0C2LIt/j\nDJbQS8MQUS5BRh6XD9t2De9yMjcO2W7FgJVesvEokSVcz8tc4Xt+EdcAkM2Z2Oijn140DJ19uem6\nh32PL1T+lQXnbA70ZU8axJISEmNyEq0Dr0CJ5ZSHl5goFwmRummEI397YDn1QMSp2ET5WNxGvESi\nYmW48OaU2+12ysrKkEqlQ1KQxsNEo959DjdJSs9Az+RwcfFnjfTYXTjcAg8uzgi4nV08xZ6jfovX\n8g5ncDc5rKWad9jIMr7De57+cswJQoIMN0PTz+SokTL8gLeZXVzAX4Z9fjgkSEb82x/p9uhJGRqO\n8TpoxER5jGhDLIPJWKQ8vMRE+QlOqAVwX18fpaWlpKamBixOxSjKA42UD/SZX7hwITqdbvSDogyJ\nRILJZGL37t2DFuhOlPFEvftdbpb8txqrS6DV6uDjsz37q2VSXj9jJjqFjE6bk5L3a/lugP0o4haK\nuMX3dze1pJNPOvk0s5tOKlD7iUoHgooE7BjRkkIHpaSwwCfavc8BqNGjIYlGPmMmZ7Cf//NFzQEO\nsolZrKCRz1GjR83kmIUZjT179iCVSn15wHq9ftTBoBjycgcSyvL1kTzXiUxdXR16vR6dThc0K18x\n2CGCx7o3Kysr0t04YYiJ8hMcuVwekgWmLpeLmpoaent7yc/PH9NCEbGJ8kD7YzQaKS0tJSUlZdJF\nx704HA5qa2vp7++npKQkZDMs/qLeH509VKAPFPI7Os1ct+MwB8+fhwDcs7+NTzssSCXQ3O8Yd1++\n5HHq2YoEKWksZB7ncZgd42qrgPW8xLkkkMk81jKXc33PLeJq3mQdO/kTV/Iql/CCb6FnErO5hOd8\n+8pR8zQn48LBxWwc92uLNpYuXYrD4cBgMGAwGDh06BAul4uEhASfUD/eo1osEUcIb/n6cJ4rmvik\nrJ1H364c1wLS4UhISKCnp4eGhgbcbrfv+6jX69FoNOP6/olFlMcWeoaXmCgXCZFMXwm2AO7u7qai\nooLMzEyKiorG/NrEJspHi5S73W7q6uro7Oxk4cKFIZ/qi5TIOHLkCFVVVUydOhWLxRJ0QT5a1Hs0\nTk3R0mlzccTm4p0WI0dsLvacOxeFVEL2mxXgqUHCHZesIF7TNejYY2VsXhzSruc57wCrFBi4EG3x\ngH0+Bf5w9PH3jm6fjal/BY+9sRWAYm6jmNuOnmkVlw443wyWcStlg869ji/9vtbFfMe36PNEIfVo\ntpBCoSAlJcVXYMftdmM0Gunt7fV5VGu1Wp8ocrvdohHloSpf//VDa8Z9rm9+d96QY2P4x+lyI5cN\nDbakpqb61tN4v48Gg4Ha2losFgsajWaQZ3ogYltMonwyzviKlZgoP8HxLvQMBk6nk6qqKiwWC0uW\nLBl3ESSZTIbNZgtKn4LBSKLcm56TlpZGUVFRyKPj4XbLAU90vKKiAofDQWFhIXa7nYaGhqCfZ7So\n95OFI0+hVvRZcQkCU5QyDA4XaSo5CqmEre0mGs3HIuXHC/JQM9z5ruODsPYD4Oenv0jy9Cm8+cB/\nALjoV5fz+3Me5IrffZvswtkYO408VHIvD9f8kacu/wNn37qG3BULAfjN0l/w3b98H+2UeP73vIf5\nxY7foE3SsvF7TzN/eS7Lrl8+qC1/DFx46g/jM1+M+TV501m8a1UEQcBisWAwGGhqaqK3t9e3X2Ji\nIjqdLmzuQMcTqvL1EzmXwWJHHxcdnt3DYbDYWbXhkxEHLk9eX8BpOYMrpe6u7WL933fz6u3LyNBr\n/A6Ant9Wx2tfNWGyOnG5Bbb9cvhCWuD/++j1TG9ra6O6unrQPsN5potFlMdyysNLTJSf4HgXek4U\nbxQ1Ozub3NzcCUWmxOpTPhC3201tbS1dXV1jTs+ZCOEW5Z2dnVRWVjJr1iymTp2KRCLB4XCE/PPx\nF/X2hze6DiAAL5RMQyaVcG12IhduayD/nSoKk+NYoFPBJDFJuJFPxn1sfEoCVpOVPa/touCykb3N\n552+gF3/2k7uioU0HzxM0zeHALD29aOKU6HRa+hrN3Dwvf3MX5477j4FG4lEglarRavVkpmZSVdX\nF11dXcTHx9PV1UVdXR0AOp3Ol/KiUg1fvj2YhKp8/b4N5477XJc//gUf3rOCwnvfw+pwI5d6rt3d\nZjvv/Wz5kHNVtRmxPHcFn5S18/1nd6FRynn/7rN8VTmHa2dnTRfbKo7w3A+KR3yPTFYHp9//ERa7\na9BgIvv2N7nj/AXctiaHP39QzdcNPfxtXRH3bNpPXpaeXb9ZPeLA5Zont/PVg8dmFLZXdXLbC3vY\n/NMzmJGi5Z5N+/0OgAC+ru/hwMPnkhw/9u+JP890h8NBX1+fb+DocDh8nul6vR6tVisaUR5zXwkv\nMVEuEqI1fcVut1NeXo4gCBQWFgbl5ib29BWDwUBZWRkZGRlhiY6P1JdQ4XQ6qaysxGq1UlBQgFqt\nHtSHUC+e8xf19ofr6ny/21NUcnasnjto2/3/Cno3o477lvwMXbqe7ILRbSPPunklz9/0DL/Mv4up\nCzKZecosAKafNJPpS2byy0V3kTxtCnNPywl1tyeEIAjI5XLS0tJIS/NEil0uF319ffT29tLa2ord\nbh8iikJ1TQ5F+fpwnkt9wyu+56YmarA6XOxt6PGJ8uHa2VnTNaR4kD9CNXCpGjCjUN5iYP3fdw8a\nTAzXDsCq/IxxCfLhUCgUTJkyxVenw+12YzabMRgMNDY2YjabkUgkSKVSuru7Izq7E0tfCS8xUS4i\njvd/DgdyuRyr1Trm4wRBoLW1lfr6+qA6cID4RLlMJvNFh2tqaujp6QlrdHwg4RDl3d3dlJeXM3Pm\nTPLy8oaIk+Eqek6U0aLeoSQcRYjEwG8r/3fItrs+utf3OCElgYdr/giAUqNk/T9u89vO9zYOrfZ5\nfFtiwd8aDJlMRlJSEklJSb59TCYTBoOBhoYGLBYLKpXKF0kPNA94NEJVvv7G5UMHWaE6l8t97B6V\nGKfk7+uLWLVhK1qVjLPy0odtZyxE42BiIkilUhISEkhISGDaNM/Ao7m5mZ6eHjo7O32zOwMXkB6/\noDlUxER5eImJ8hOc8aSvWK1WSktLUalUQfGn9tcnMYlyqVSK2Wzmyy+/HPfi1WD2JVSi3OVyUVVV\nhclk4pRTTkGj0fjdL1SDx7FEvceDVt2J2Zri97lwFCEKN1p1Z6S7IAoC+a5KJJJBokgQBKxWKwaD\ngfb29oDzgEcjVOXrw3mu4wVqul7NljvP5LxHtrFxffGw7QRKNA8mgolUKkWn0zFjxgzg2OyO9ztp\ntVoHLWiOj48Pyayt2WxGq518AQqxIhnjzVVchq+TDLvdHvZIeVdXF0eOHGHBggWj7isIAocPH6ap\nqYn58+f7pt6Czf9n78zD2yrPvH1LsrxKtuPE8RKvWex4yWonoUChhULbmY8uMAUGSssAbedqaZmF\nTplSBlpIN+jXaWFo6VCWKVPKtGVgSr+WtCwdaNjCEmLJ+xLHduzYsSRrtZZzvj/kcyLLki3ZWo7s\nc1+XL8tH0tF7JPmc3/u8z/N7HA4H/f397Nq1Kyn7j4dAIMDRo0ex2+20t7en/eT07rvvUl9fn/Ac\nP4vFQmdnJ1VVVVRXVy866fB6vRw9epR9+xa2w46VnL9Z/nOTgeGXJhyfCBY0/nLYxn8OWXnqvNqI\nTYg+WhWMGt3ZMcFjQ1ZKc7KoztfTVpLHzU2LdzTtmvFw7h8GmPh4E/f1nuamxoWThNCxhD++z+7l\n3vZKXphwcMHzgwxe0sjkrJ/PvTHK4Yu24BdE9j7bx2e3lEQcy4P/cctK36oV8UjFZxZ9r5ZT6LkU\np06dwuVyUVdXt6L9SHnAVqsVm81GIBDAYDDIfumRrO+Wav2uspA3B6cjTibav/YsR+76IBuMORwZ\nmObmn7/Ni1+7ELfXz9/97G0O90zNmwT0jtu57F9fRqPR8KGd5fzbH/pwPPRX8ywRh6ec8mRiZ01R\nxP088qcBjgxauO/atqhjtl/yk4S/D6OjwclTNI/w0IJmm82G3W4nKytr3sQxEQGzc889l3feeUcx\nDkYZTExvoBopVxDpSl+JJVLudDoxmUwUFhZy4MCBpBagKCVSLgnV4uJi8vPz0y7IIfGRcslP3maz\nxeyYk4qc8lQTTxOij2wycmTaza9PzHD0w9vwCSJ7f99HW0nklQUgalrOYmOJ9PgFxavAvvX5fGRT\nITt/10tZbhY7inIp0qe/QCwSv3tf3ZLvVaJJlIVopDxgyfqur68Pt9tNfn6+LNJVb+fl0VZfwuE7\nLlqwfegHH5Fvt28u4cWvBV1Q8rKzeOD6hZP8beVG3v32GbvH7/z1bgA5LQagZkMBpu/+hfyYSPu5\n9vzNXHv+gs1JJxAILLoaE17QDMGAiTRxlDz8Q2sl8vPz4/pfUJLH/1pBFeVrnKUEsCAIDA0NMTEx\nQXNzs2zzlM4xJZvQNI7du3fj8XiYmJhI23hCSaQot9lsmEwmKisr2bdvX8wn32TllKeTeJoQTXj8\n/HnSxUerCsnVacnVwSWbFl+5kPYdyoYEFK9K3Lx9A3fsKMPlFzjvuYGUit54MOp1S75XiSZZwiI0\nnaWp64doZ1eJvY+KIliO+0p2dnZED3+bzcbAwIDsmV5YWBhXrYQqzFOHKsrXOIv5lEse3KWlpSnt\nUKnT6dIm+qTGR1VVVWzfvl22AFRC5B4SI8olO8fp6Wl27doV9wpAOlZ0UslSTYg8AeUd+2ffGMVs\nm8UTEPl0fTF7FSjK86yOtLxuKqJ9qiBXSTSJsESM5JkeXiuh0WjmpbyEOqgpqfHWWkEV5QoiHV/+\nSIWeUkqD1WpNi8uIVqtNuQiWGh85nU727Nkzr8hRSb7pKx2LNNEqKytbdsHqahflsTQhOqc0n8+9\nMco/N5fiF0SeGbPz2S0laRvzz8+uielxf9jyeR57T7U8wXjxgs08NTKDxRfg6zuCS/r/8NYYlXn6\nqPnxK8l5d6ThvVrN31WV1UsyfMo1Gg15eXnk5eVRXh4sEPb7/XLKy+joKD6fj3//93+nsbGRtra2\npKRtfu973+Pmm29mcnJSjuqrBFFF+RonPFVEihSn02Uk1a95+vRpurq6qKmpidj4SEmifLmCWBAE\nBgcHmZycpLW1dUWFoon4fMTCEjQz03E9J5m2has5jzuUREwwMvG9UqN9KplGqpoHZWVlUVJSQklJ\n8H9eFEUEQeDll1/mhz/8IWazmYsvvphzzjmHs88+mwMHDqzIIvHEiRMcOnRIdpVRmY8qytc4UtGe\nFCl2uVwxF/xlOqENchazAEx3jnsoy5kgOBwOOjo6KC0tTXmzo2h4f/CsfFsURQKBgJxmoNFoyL/h\nrAXPSaZt4WrO4w7lyLRrxaI5096rdBWrHXzKxOcu3MoGY2q6haqsLtLV0VOj0XDWWWdx1llncckl\nl/Dtb3+be++9l8OHD/O73/2OO+64A5/Pxz333MN558VudSnx93//93z3u9/lox/9aBJGn/moolxB\npCua4/P5eO2116irq4sYKV6NSO3jozXICUVJkfJ4xiKKIkNDQ4yPj9PS0qK4BhBSREbKW4xnsjDj\nE1iXHbxgJdq2MFYyIY87nHSJ5nS+V6Iopnwi+krvFM+8PcbNfxm0mp2yz+L1C3KjmpUSausXL/6A\nQJYu8vux+59/D8C008uzXzmf1/pO86euSR7+3IGo+1uJHWDBoZszPh9fyEnOeTVdojwUp9OJ0Wik\noqKCyy67jMsuuwwAt9u9rGvi008/zaZNmxRhd6xUVFG+hvF6vXR2duLz+TjrrLPmFXisVnw+H93d\n3czOzi5oHx+NdBaehhOrKHc6nXR0dFBSUpLSIt1YiRQdX4pk2xbGS6x53JlAskXzanqvYuGk1c0G\nY47cgVKKltfd9D98+r31/ObtMXx+gV/edA7bKwtxevx88T/epOOEDV9A4I5LW/loexVDkw6u+dGr\nOGeDK3X3fbqNsxvm5+C+0X+az/70DX510zmUF+VF3M8jfxrgySMjODx+AoLIn267MOK43/nWh+b9\nnexuls6L70navkNxu9309fWxY0fkVR4lEggE0n7ettvtEWvKoq1DOaAYAAAgAElEQVQqA3zgAx9g\nfHx8wfaDBw/yzW9+k0OHDiV0jKsNVZSvQURR5OTJkwwODrJ161acTqciBXmil50nJyfp6emhvr6e\nioqKmPedjsLTaCwlykVR5Pjx44yNjdHS0pISC8t4CI2OA3FddJayLdz2wl0UlBVxC/DTuefcCDw2\nd/sr0o4+9e2VH0icJKtpzw0JOpZ4RPNSx5JndXD1l+6L/oAPNEBu5KYmyWi20yTdeDNx+xRyChcV\nlBfvKOcbT5po+Mff8oHWMq44q4bzmzYCQYH+1sEPcv8fernnt108+Jn9HHzaxAXNZTz02QNYnV72\n/8sf+EBrORsLc/nDLe8nN1tH77idv77vMEfu+qD8Ood7pvjio2/y9D+8l5oNBXz1iaMR9wPw1qCF\nd7/9IUoM0c/10jk33d0sE40SBG68CIKQ9ki53W6Pu/7oj3/8Y8Ttx44dY3BwUI6Sj4yMsHfvXl5/\n/XW56FRFFeWKIhVpIx6PB5PJRE5ODvv370ev1zMwMIAgCIo6aUl53FlZK/+K+nw+urq68Pv9tLe3\nxz0BUVI6j1arxefzRbzP5XLR0dFBUVFR0hs8LYflRMejEcm2cHeZsiYgaxV38RJuTVEEeSYRmnJR\ncOjmBfcbcvULos4wvwHO5y86413/zSvOLOcXF2TT872/XPDcbeVGWZCHNsB58+AZkR5tP8EGOEvX\nX+y85ffzulmuFpQgcJdDuq89DocjYd2jd+zYwalTp+S/6+rqOHLkiOq+EoYqytcIoihy4sQJRkZG\naGxslLvSwRmvcqWJ8kSkjJw6dYre3l42b95MeXl52k9yKyVSpDz0s21qamLdOmVFuMKj4ysV5BDZ\ntlBFJR1kek50KMe+8+F5f6erm2WiUdr1LVNIpChXiQ31SrYGcDqdmEwmCgsLI0ZQJa9yvV45ESxp\nTIu1GV4Mr9dLV1cXgiAsKzquVMJFudvtxmQyUVBQoNjoeGgx50rE+FJWfLGWDrmKCsi3OZc9jnhx\nFSXe5zd036vlWFRUkkUmRsqV4K/vcDiora1Nyr6HhoaSst9MRxXlCiLRUVxBEBgaGmJiYoLm5uao\n+cVKsvyTWInjycTEBH19fWzZsmXV5apJ74soioyOjnL8+HGamppkj1mlkIzo+FJWfA9GuO+333qK\n135xGK1Wi0ar4Zr7r+fn935xReO4+8K7+MR3rqKuPXo6QCyPSQShx3LHnlvkY9x8ILLLSqys9Bil\nvPNPOP9yQYQyGXnjKiqLobT0zEzB4XAkpXmQSnRUUb5KkTo3lpaWLum+IaWvKInlTBS8Xi9msxmN\nRsO+ffuWHWVXMlqtFq/Xy1tvvUVubi4HDhxISN59vEhNjCIJ7URGx1dC/yu9vPvbt7nt9YPoc/TY\np+wEvP6ln5iBiKLIHW9/W3HHGAgE5P9jrVa76Hfh4FMmfn74ODqtBq1GwwPX7+PA1vVRHx8PK7EQ\nXIxI+eQSmXg8q5VMS19RyiTC6XQqzkp3taOK8lVGIBCgr68Pq9XKjh07ItoZhSOliiiJeEX5+Pg4\n/f39bN26lbKysqSMKV1NSEJff3p6momJCXbt2pXWAhmNRhNxSVgQBPlzS6cgB7CNWzFsMKLPCaZl\nGTcEcyN/c9eTHH3mbXweL1vO2sY1P7oejUbD3RfeRf3+LXS/aMZlc/Hpn3yGhnO343V7eeSGBzjx\n7jDljZX43F75NR77wkMMHRnA6/HSdul+Pnr7X6X0GN/67zf486N/4otP3azIY8zOzpYnaIutfEm+\n3m8d/CA5ep3s660EFvP1jpZPnqnHsxyGh4cpKirCaDQqQkhGItPSV5TgUQ5qTnk6UEW5glipgJme\nnqarq4vKykr2798f8/6UmL4S65hmZ2cxm83odLqkRseltJF0nSil4xQEgdLS0rRXrEuRcgmlRMdD\nab5oB7+560lubf5Hmi9opf3ys2g8r4kLPn8xl3ztUgB++un7efe3b7Pr/+wFQPAHuPWVOzn2u3d4\n5s4n+Ydnv8qLP/4j2Xk53HnsbkbeHebO/bfKr/HxOy+noMSAEBD43sXfZOTdYap2ps6TW8nHmCvm\noNVq5wm1aMI8U329o7Hajmcx9Ho9J0+epKenB51OR1FRkfyjlDolpUSeY0Uponw5logqK0MV5asA\nv99PT08PLpeL3bt3k5+fH9fzs7KyMi5SHuq1vm3bNjZu3JjU8aRTlEurANu2bSMvL4/BwcGUjyGc\n0Jz/RFodJpJcQy63vX6Q3pe76HrRzE+uupdLD15BrjGPZ+95Bq9rFqfFSWVLlSxY935sHwC1e+uZ\nOj4FQO/LXVxwY9B2rmpnDVU7zgjSN375Ki89+AIBfwDbuJWxztGUinKlHuMN//WbuVu/iuk4Lt1X\nzaX7qhdsf+POi/nFK8OK9fWORqb6lMeLkFNIRUUFFRUVQNB+1mazYbVaOX78OIIgUFhYKIv03Nzc\ntJwfBEFIS5rfclGKKHc4HGr6SorJnG/pGiE8ArkUUkOcuro6mpqalnXCy7RI+ezsLCaTCb1eL3ut\np2o8qYz8RMqRdzqdiuguKonyQCAgR8cTGYkSC0vQzEyveD9anZbG85tpPL+ZqtZq/vTvzzNybJiv\nvXoXJdXr+Z9v/Bqf54zve9ZcqotGp0XwL/4/MTl4ikPf/3/c+sqdFKwr4KHrfozP4130OclgNR9j\naWEul+6rAqCtvoQn3xgB4NCxcf7nrTHu+W0XAB5fgOHTTirX5XHjI2/yznErOq2GnnG7vK/OMRuf\n/ekbHLrlfXK7+2j7AbhoR/myBawhV8+bBy/mpa5JXjCf4op7D/PtK3YCZOTxhCLkFDJ57jfo7+9f\n0CFTr9ezYcMGeSUvEAhgt9ux2Wz09PTg8XgoKCiguLiYoqIiDAZDSkS6UkRurCglB14V5alHFeUZ\nitfrpbOzE1EUV2z5l5WVhdebejGxGJFEuSiKjI2NMTQ0RENDA6WlpSkbz0rcYJaD5K8eniOf6nFE\nQ6PR4PV60el0SYmOu//v/1vGs56a99d49xgarZaybcFI4fDR45Q3VDBybBjDBiMeh4c3n3ydtkv3\nL7rXbedu5/XHD9P0/hZGO04wcmwYAM+Mm5z8HPKK8piZsNHx7FEaz29adF+JZi0co5QCotNq8Mur\nM/Drm86hsXK+YLjj18coK8rl6Lc+hCCK5F77S/m+iuI8PL4Abw9ZZBEbbT+JaC+v02rlJj87qot5\n9KXBjD4eCe3sDKIoxiQadTodxcXFFBcXU1tbiyiKuFwurFYrJ06cwOFwkJ2dPS/lJRniWU1fWR4u\nl0t1X0kxqihXGEtFykPTNhJV1KjUQs/QiUKkTqSpJFVi2Ofz0dnZSSAQiJgjH+9KSqKRcsfXr1/P\nsWPH0Ol0rFu3jnXr1lFUVKSoJeJZxyyP/92juGxOtDodG7eWcc2PbiCvOJ87dn+FwrIi6tqWtix8\n399+gEdueIDbdnyZiu2V1O6tB6B6Vy3Vu2u5rfXLlFStZ+vZDck+pAWshWOMxAd3lnPvoV7u/fTe\neW3hbS4fVSX5aLUaHv3TIAHhzP9KcX42P/3sfi761gsU5Oh4X3NZ1P2slO6xGbRaDdvKg/m47xy3\nULuhgGMnrBl5POEsV+RqNBoKCgooKChg06ZNQHDl02azMTU1xcDAAMA8kZ6IHhNKiTzHilJEeaYV\nyK4GNHFe4NPvZr/K8fl8UcVfqDBtbGxMmDCdmpri9OnTNDY2JmR/iWB8fByn08nmzZtlP+7Gxsa0\nFTh2dHRQXV0d1es9EUipSIt1H/V6vRw9epR9+/YlbRzRiJQ77vV6sVqtWCwWbDYbgBwZKy4uTqkt\n5c+zn1r6QSoRuerpQ+TPzqZ7GCumd9zOZf/6MhqNhg/tLOff/tCH46G/mmchODzl5MPf/RMPffYA\nO2uK+Lufvc3hnile+NoFckFmpiKKIn/70BEO90whiCL1pQae+fJ5PPKnAY4MWrjv2raEvM7IeXcz\nPj6elGuG3+9nZmZGzk33+XwYDAaKioooLi4mPz8/7pU5yQAhU1IxTp06hcvloq6uLm1jEEWR9773\nvbzzzjuKqRPKcGJ6E1VRrjAiifLQNuqNjY2sX58Yr1sJq9XK2NgYzc3NCd3vSpicnGRychK3201e\nXh4NDQ1pjcKazWYqKiqS0sLe7/fT1dWF1+ulpaVl0ciQ3+/nzTff5MCBAwkfRzTiaQTk9/uxWq2y\nUA8EAhQVFbFu3TqKi4vJzc1N2jhVUb58zhRmqqgszfC532Fqaopt27Yl/bUEQcDpdGK1WrHZbLhc\nLnJzc2WRHosVo9lspqamJiaLYCVw8uRJ/H4/1dULi59ThSTKjx49mrYxrDJiEuXKWWtWARbaIjqd\nTkwmE4WFhUlro6609BVRFDl9+jQnT55k9+7dCZ+ELAedTpeU9JXTp0/T1dVFXV0dlZWVS0YkUp1T\nLkXHpeXqpcaXlZW1oNBrZmYGi8XC6OgoXq+XwsJCWaTn5eWpURgVlQxDKu5OBVqtFqPRiNFopLq6\nGlEU8Xg82Gw22YpRq9XKxaORrBjV9JX4ybQ8/NWCKsoViiAIDA0NMTExQXNzc1LTJpTkvuJ2uzGZ\nTGRlZVFaWqoIQQ7BC0Mi36NQG8u2traYI8harTYlOeXh0fFYBHkkQnPOIfi9ttvtWCwWenp6cLvd\nFBQUyI8pKChQRbqKigJYrMlQOgWbRqMhLy+PvLw8ysuDBc6SFaPNZmN4eJhAIIDRaJSj6UoQufGQ\naqevSDgcjoxZWVhNqKJcgczMzGAymSgtLeXAgQNJP/kpwac8NEVn+/btZGdn09/fn9YxhZLICLXF\nYqGzs5Pq6upl21gmk2Q2AtJqtXI0S3oth8OB1WplYGAAp9NJXl6eHElXcpfA1Y7aJn7tEWuToVjd\nV1JFuBWjNPm3Wq309vZis9no7u6WC9INBoOixh+OEiYRdrtdFeVpQBXlCkOy/NuxY0fK/iHSHSl3\nuVyYTCaMRqOcouN2uxUTvYfEvEeBQIDe3l7sdvuymjwlm3hyxxOFRqNZsDTtdruxWCycOHECu91O\nTk6OLNKLiooUfTGNxm+/9RSv/eJwcMVBq+Ga+69n84GtK9rn3RfexSe+cxV17dHdVWJ5TCTWUpt4\nlSBOTzAwE0uTIaWnNoRP/t944w3q6+ux2+2MjIzgcDjQ6/XyOaWwsFBRzlFKEOUOh0Pt5pkGlPMt\nVAFg48aNbNy4MaXR03R5X4uiyPDwMKOjozQ1Nc0rokz3RCGclb5HVqsVs9nMpk2baGxsXFPR8XjQ\naDTk5+eTn58vW6Z5PB4sFgvj4+N0d3eTlZVFcXGxIm0YI9H/Si/v/vZtbnv9IPocPfYpOwGvcmo4\nIqG0NvGhpEKQr8VVgniaDCldlEfCYDBgNBqprKwEzlgxnj59WrZiLCwslIV6IqwYl4tSRLnqUZ56\nlH01W4Po9fqUp5KkQ4BJBaxFRUURC1iTVVi5XLRa7bI+F0EQ6Ovrw2q1smvXLkWe5CJZHSqJ3Nzc\nea28JRvGqakpOcWpuLgYWpfe15u/fi1ix0uAj/zLZfMiy/YpOwfP+hrf7vsB/3bZ/+WCGz9I0/tb\nALhz361c86PrKVhv4Psf/rbc8TIStnErhg1G9HOdNI0bgtGn39z1JEefeRufx8uWs7ZxzY+uR6PR\ncPeFd1G/fwvdL5px2Vx8+iefoeHc7XjdXh654QFOvDtMeWMlPvcZH//HvvAQQ0cG8Hq8tF26n4/e\n/ldLvhc36K8+88d/XjnvPiW1iQ8X5clmra4SNG0qirnJUCoLPRNF+HhzcnLkIBicKUqX3Mi8Xq9s\nxVhUVJTSehclFKba7XY1Up4GVFGuMDLtRBcvoihy/Phx2YKxuLg44uMSXVi5UsKbGcWCzWbDbDZT\nXl7Ovn37FPfZhkfH030RiJXs7Ox5F1PJhjESqe54WVi2sCC7+aId/OauJ7m1+R9pvqCV9svPovG8\nJi74/MVc8rVLAfjpp+/n3d++za7/sxcAwR/g1lfu5Njv3uGZO5/kH579Ki/++I9k5+Vw57G7GXl3\nmDv33yq/xsfvvJyCEgNCQOB7F3+TkXeHqdpZE+c7ewYltYlPNUpbJYg1zzsevvrEUWbc/mU3GRIE\nIe2FiIkmvChdqnex2WwMDQ3hcrnIycmZZ8WYrGi2UiLlqihPPaooV0kZDocDk8nEunXrOOussxYV\ngUoTsPGkrwiCQH9/P6dPn05pbUA8KD06Hg+SDWMklup4+dXDd/L1d74jP/7Lz31Nvm3cYOTbfT8A\n4OK//wt5+6bWah7w/Ez++/a3vgUQUZAD5Bpyuf3Nby3YXlBy5ntx/aOfjziGHR/ezY4P7wag9+Uu\nLrgxGGWu2llD1Y4zovuNX77KSw++QMAfwDZuZaxzdEWiHJTVJj6VKGmV4AOtwclkLHne8XDbx1v4\nu5+9zc5bfj+vyVCsZGL6SryE1rtUVVXNs2KcmJigt7dXzl2XUl4SNVFRRfnaRRXlKjKSQEvGfoeG\nhhgfH0+6vWOyiDXH3W6309HRwcaNG9m/f3/SLlzL/awyNTq+XGrb6rnlpTsWbP/4Ny7n49+4PPUD\nSgKTg6c49P3/J6fQPHTdj/F54lvVCScT2sQnK+9bSasE8eR5x0NedhYPXL+wK/C152/m2vOXfr7S\n3FdSQTQrRinlJdyKsaioaNl9GJTQ3l4V5elBFeUKI10RS0l0JrpoToqOl5SUpMTeMVksFSkXBIHB\nwUFOnTpFa2trUk9m0ljiPWmvpuj4WiTWFJqOZ4/SeH7Til7LMevni4++idXpI0unYWuZkZ/csI9n\n3h6N+PhokdfPX7SNy/71Zf7j5SE+tLN8Qb5yWVEuz9x8ntz2PtYIbrLzvpW0ShBrnnc4ycw/z6RI\neTL7Ouj1etavXy/305CsGG02G319fXg8HvLy8uRIeqxWjErIKXc4HJSWlqZ1DGsRVZSrAGe8yhMl\nykNFaktLC4WF6VuOTgSLFZ5KE4/169enZOIRryiP1AhIJfN4399+gEdueIDbdnyZiu2V1O6tB6B6\nVy3Vu2u5rfXLlFStZ+vZDSt+rbb6Eg7fcdGC7UM/+Ih8u31zCS9+LZjfHC3yuq3cyLvf/rD893f+\nOpiKIwlegJoNBZi+eyY9KNJ+wklU3nckMmGVYDE+8r3/TWj+eSQyTZSnsvuoFCWvqamRLV6tViuj\no6PY7Xb0er38mGjuUUoImqiR8vSginIVILEWhHa7HZPJxIYNG1YsUlN5Ql2MSIWn6UrLiSe/XY2O\nLw8l+opn52Xz2f/8YsTnXffQ30bcHpqfvppIVN53Qe7CS6DSVwmWItH555HIJFGezqhzqMWrZMXo\n9Xqx2WxMT08zNDSEKIoUFhbKIj3W7s7JRu3omR5UUa4w0iWasrKyVizKBUFgYGCAqakpWlpaVjzL\nTlZKzXIIF8JOp5OOjg7WrVuX8rQcjUaz5JJsOhoBrRYy0Vd8OVwNPAZk4rciUXnfTZsWTqSVtkoQ\na563RKLzzyORSZaISsjPDiU7O5vS0lI5NUSyYrTZbJw8eRKv14vH42F0dDTlVoyhqJHy9JB+taOi\nCHQ63Yr80WdmZjCZTJSVlSWswFFJXuXSBCG04dFilo7JZKlIuVIaAWUqSvUVTzQDwJ+Bc1P+yokh\nEXnfq5Hl5J/Hg5BTmFGFnkqP6odbMQqCwGuvvSbbBzudTtmKUeo+mopJhirK04MqyhVILJHQRLPc\n9BXJ/m96ejrh9n9K6uqp1Wrx+XwcOXIEo9EYseFRKscSSZSv9eh4rpiDRzO74v1koq/4ctgNDJGZ\nojxRed9rFfslP1nR84WODkUL3VCUUDQZD6Iokp2dTVVVFVVVwVUfyYrx1KlT9PX1zctdLyoqIjs7\nO+HjcDgcGV8LlomoolwFWF76SmhznP379ydcACqlgZAoipw8eRK73U57e7sc0UgXkUT5Wo+O+3w+\ntr67Ca1Wy/bt25dMefp59lNR78s15HLb6wfpfbmLrhfN/OSqe7n04BXkGvN49p5n8LpmcVqcVLZU\nyaJ878eCaQe1e+uZOj4FpN5XPF50QKYm5SQq73ut4vP5AGRb1HhFq9Kjz6EoLX1lKSJNInJzc8nN\nzaWsLJj25Pf7sdls2Gw2Tpw4gd/vl60Yi4uLl23FGIoqytODKsoVSLoi5bGmrwQCAfr7+7FYLElt\njqOESLnH46Gjo0Mu1km3IIf5onytR8cBpqen6e7uZvPmzfJFa6VodVoaz2+m8fxmqlqr+dO/P8/I\nsWG+9updlFSv53++8Wt8Hp/8+Ky5VBeNTovgX/w7mwxf8XjJG58fUZ60uiktzkvpGFZCovK+VyP3\nXdu25GP0er183ggEAvK5P1SgLya6M02UZ8pYIbbGQVlZWQusGB0OB1arlf7+flwuF/n5+bJIj9WK\nMRSXy0VBQcGyj0NleaiiXAWIXQBbrVbMZjOVlZVJiY4vZ0zJQBRFxsbGGBoaYvv27axfv57Dhw+n\nZSzhSKJ8rUfHBUGgr68Ph8PBnj17EuZaMN49hkarpWxbsEHI8NHjlDdUMHJsGMMGIx6HhzeffJ22\nS/cvup9E+4pf5f3Ygm35YRfN9wNfAT4Usu2HQCdwBXAP8Mzc9ldCHrPvC09zBFgPXAeUAt8FDIBj\n7jE/AB6cu20gWCS6JWw8BuCzwCFgI/DE3L7eAf4WcAGbgYeBdYts/zXwVSAPeOc/r4z8hqgsG51O\nJwu/0HOJ5NYEyL+1Wu2CRmOZVOiphO6Y8bCc8Wq1WgoLC+XItmTFaLPZGB0dxeFwoNPpZL/0aFaM\noWRS3cBqQhXlKkBw5j07Gz0fNxAI0NfXh81mY9euXSmZQadLlM/OzmIymcjOzubAgQOKcH8JRUrr\nWctWh3a7HbPZTEVFBdu2bUvo8c86Znn87x7FZXOi1enYuLWMa350A3nF+dyx+ysUlhVR1xbd1lAi\nlb7iEi9E2Pal0DGF3L4v5PZQyO2HQ247Qm7fNPezGI4o23cDr8ax/bK5H5XkIwmvUCEoRdAlsQ7I\nf0sF+Jki2DJprJCYdJtQK8aKigrgjBWjxWJhaGgIQRBkK8bi4uJ5QY1Ur9SrnEET55uvflIpwO/3\np1yMTk5OYrFYaGhYKBAsFgudnZ1s2rSJmpqalAnA/v5+CgoK5JbGyUYURcbHxxkYGKChoWFBN7PD\nhw9z9tlnp2Qs0RBFUY4OV1RUUFxcjF6vT+uYUonkfjMxMUFzc/OyU6cWyylXKjfor073ENKDGilP\nOK6P/TSux0srcoIgMDMzQ1dXF21tbXIEPTySriTGx8eZnZ2ltrY23UOJCYvFwtTUFNu2bUvq6wQC\nAex2O1arFZvNxuzsLE888QRlZWWcd9553HzzzRw9ejRhr3fvvffyb//2b+h0Ov7yL/+S7373uwnb\nd4YQk3BSVghQJW1EKvQMBAL09PTgcDjYvXs3+fn5KR1TKiPlXq8Xk8mETqdj//79ihS60tJydXU1\nVqsVq9UqRzyKi4tZt24dxcXFSanEVwIejweTyYTRaKS9vV2xIkBFZbUh5ZqPjo4yMjLCrl27yM7O\nnifWpUh6rHnpqSITCz1TMV4pnUWy9ZVWQV588UXuuecehoeH+dCHPsS5557LOeecw4EDB5atAV54\n4QWefvppjh49Sk5ODqdOnUrkoawqVFGuAiws9Jyenqarq4uqqiq2b9+elvSIVInyiYkJ+vr62LZt\nGxs3bkz668VLeO64Xq+f13xCqsS3WCwcP34cQRAoKiqSvW9Xg0gfHx9ncHCQxsZGSkpKVry/RNkn\nqqisBQKBAF1dXYiiSHt7uywaY8lLl9Lr0hVNz7T0lXTlwGs0Gtra2mhra8NqtXL11Vfz4IMP8uc/\n/5knn3ySW265BZ1Ox5133smFF14Y175/9KMfccstt5CTE2xqpcTrrFJQRbkCSacA9vv99PT04HK5\n2LNnD3l56XNk0Ol0eL3Jc6Xwer10dnYiiiL79u2LSbxKOdypQrrALZY7Hl6JHwgEZJE+MjKCz+ej\nsLBQFulKaeMcCz6fj+7ublkMJGoF41JfsNNiJqaxrDmsbsggZxilI+bEZ3MndS/etGkTmzZtingO\nCs9LD89DD/1benyqRLogCIqrC1oMJRSm2u12DAYDVVVVXHHFFVxxxRVAsEngcgJlPT09vPTSS9x6\n663k5uZyzz33sG/f2nBDipfM+aaqJJWsrCzcbjevvfYaNTU1NDU1pb14MJk+5adOnaK3t5ctW7bE\nnLOu1WpTJspXYnWo0+koKSmRI8qCIGCz2WTnHK/Xi9FolEV6Oidei2GxWOju7qa2tlYuVlJZg3zh\n6XSPICLCxo2Yn3uO6elpWltbFTPZlZw3LBYLVqsVu92OXq+XU9yKioqIVfJNTEwwODhIc3NzXJ7V\nkdJXQlNdIhWPJkukK0HkxkMgEEj7JCJaN8/FvgMf+MAHGB8fX7D94MGD+P1+pqenefXVV3njjTe4\n/PLLGRgYSLvGUCKqKFeRo+NOp5NzzjlHMSItGekrPp+Prq4u/H4/7e3t8nJaLEiThGRHd2KJjseD\nVquVBXh9fT2CIGC327FYLHR1deHxeBaI9HSeLKUusTMzM+zevVsxYkdphNoVJuPx0XgEuBioTMC+\nMhntqVMIgsDevXsVlR4R6ryxadMmIOgoZbVa5WCERqOR84kj1aEIgkBvby9ut5u2traErFCFNykK\nt3WV8tKlY1hOU6NIZGL6SjzXpWTgcDjiLqL/4x//GPW+H/3oR1x66aVoNBr279+PVqtlampqgZmC\niirKFUkqBdHU1JQcjZyZmVGMIIfEi3LpWOvr66moqIj7fZaswJJFqhoBhbZorqurQxRFWaT39PTg\ndrsxGAyySM/Pz0/Zd9LhcGA2m9m4cSN79+5N+uuuJLf8qqrPkz9hS/CIYidegZ0IQQ7wEWAAVZQD\nbN26Nd1DiImcnBzKysrmdYSUisWHh4fx+/1yilteXh69vQbwUO0AACAASURBVL2UlpbS0NCQtP/B\nSCkv4XnpoSJ9uXnpmSjK0x3Zl9JXEsXHPvYxXnjhBd7//vfT09OD1+tlw4YNCdv/akIV5WsUKVd3\ndnaWtrY2cnNzGR4eTvew5pEoUe73++nu7sbj8cjHuhySmU6TzkZAGo1GbjxRW1uLKIo4HA4sFgt9\nfX1ydzhJpBsMhoSPTxRFTpw4wcmTJ2lubo64dJoMpNzyaETLOf/tt57ihjQK8nRSAryHYGOft4nR\n52uVEt68aSnEjRtxDw4maTSxk5WVxYYNG2RhJFkdjo6OMjExQXZ2Nna7nZGREdatW0dBQUHSz0mL\n5aWHp7xIj49FpCtB5MZDKlZjlyJa+spyue6667juuutobW0lOzubRx99VE1diYIqytcgk5OT9PT0\nLDtinCoSIcpPnz5NV1cXtbW1NDc3r+hYQ9vbJ4pURcfjQaPRYDQaMRqN1NTUIIoiTqcTi8XC4OAg\nTqeTvLw8WaQbjcYVjVlq1lRQUDDP2UGp9L/Sy7u/fTvdw0gr/wm0p3sQGYhGoVZwGo2G06dP4/F4\nOOecc8jOzpbbtg8MDOB0OsnNzZVtVwsLC5MuHBOVl65GyuPHbrcnVJRnZ2fz2GOPJWx/qxlVlCuQ\nZImyleRTp4OViHLJY93pdLJ3796EpOUkOp0mndHxeNBoNBgMBgwGA9XV1fMKyYaHh7Hb7fIFWxLp\nsV4EJyYm5GZNknuM0rGNWzFsSE0kX6m0L9bQx+pWbHGmykK8Xi8dHR0UFhayZ88e+X9XmphL//Me\njweLxcLY2BhdXV1kZWXNKx5NRXFitLz0UJeX8Lx0JUSe40EJotzpdKZstVJlPqooXyNIBT6bN2+m\nvLw8qgBMteXfYixXBEsdSBPtsZ7ISLkoirIvvJIFeSQiFZJJIn1kZAS73U52drYs0iNF1aSUokAg\nkFCrw1TQfNEOfnPXk1Hvfwr4ONAJbI9hf3XAESA8wzJjCzlV+8KMwWazYTab2bp166JFdxqNhry8\nPPLy8qisDH4zvF4vVquVqakp+vv7AeT+CKlqYrZYXrogCHi9XlwuF4Ig4Pf7FdXUKBpKaHbkcDjk\n+gOV1KKK8lWO1+ulq6sLQRCWjI5LojPdJwSJeAsrA4EAfX192Gy2pHQgTYQoz5ToeLyEX7DDo2qh\nlmwQ9K2tqalRdPpUNHINudz2+kHIvSbi/Y8D5879/noqB5YgHgFaWVkhZ7wTE5XUItVwjI+Ps3v3\n7mWtJGZnZ7Nx40a5EUxoE7PQ4lHp/z43NzeleelOp5Njx45RW1tLfn7+gqZG0uPT1dQoGkqIlCc6\nfUUldlRRrkASdeKSOlXG6sWdlZWliBOCRDyFlTabDZPJRGVlJfv27UvKyX+l6SuJtjpUMrm5uVRU\nVMj+4rOzs0xPT8uNqQoKCnC5XExPT1NcXKyY71ysaHWRL+IO4GXgBeASzojyF4E7CEbDO4A24DHm\nF0m6gUvnfj4Ttt+7gf8CZgmK3Whi/++BQ0A58AugFHgH+FvABWwBHgLWRdn+HMGo/dUECzlfmfsd\nLyuZmKz5lYYk4/f7MZvN6PV62tvbEyZIw5uYScWjVqtVtl4tKCiQI+nJKBiXOHXqFAMDA7S0tCwQ\nl1KKS3hTo2T7pceKEq7BavpK+lBF+SrE6/ViNpvRaDQxd6qEoOj0+/2Kacseywlb8rSenp5m165d\nFMTphhAPy42Uh0fHlRSVSRV+v58TJ05QVlZGXV0dPp9PXvru6+tDq9XKEbXi4uK0N89YjPHuMTRR\nPsOngQ8BDcB64E2CAhyCTiUmgmLtHODPBIUrBMXglcCn5n5COQT0Aq8DIkFLwv8Fzgt7nJNg8eX3\ngW8QFMP3ze3vXuB84F/mtv/rItvvA+5hZYWcsUxMuqI8d7WvNIQ7tqTSkcXhcNDR0ZGShlzS/3Rx\ncbFsvSoVjA8NDeFwOMjNzZX/7xNRPCqKIn19fTgcjqj+6pHy0iMVj0qPTfU5WwmFqcvxKVdJDMq9\n8q1xNBoNoijG/bzx8XH6+/vZunVr3DlhyWjWk0xmZmYwmUyUl5ezf//+pEeel+NTvpai45EQRZGR\nkRHGxsZoamqSO8KFL31LIn16epqBgQGAeSJdSTnns45ZHv+7R7k1wn2PAzfN3b5y7m9JlO8HquZu\n7waGOCPKPwr8E8EIdTiH5n72zP3tICjSw0W5Frhi7vYnCUbcbYCVoPAG+DTwiUW2J4pYJiaRWIsr\nDalyZBkbG2N4eJjW1ta0CK7wgnEI1qJYrdYFxaPSTzyTc6lgtaioiN27d8d8rl1OUyPpeauVRFsi\nqsSOKspXCbOzs5jNZnQ6XVzR8VCysrLk4kMlIwgCAwMDTE1NsWPHjpRdYOJJpwm3OlzNJ/BoSN/J\nvLy8Ja0O9Xo9paWlcrGZ1NxEiqoJgiAXka1bty6tqzm1bfXc8tIdoJ8voaeB54FjBMViYO733XP3\nh1Zz6IDQ/7RzgN8DV7HQ91sE/hn4XJzjTPb0zx8QyIqSxnNlyO9oE5NIqCsNiScQCMwrqlbSKpRU\niyJF7aXiUWlyLorivOLRaDVRNpuNzs5Otm7duuKmNLE0NYLg+7qSpkbRUELgxm63ywEUldSinP9O\nlXnEGikXRZGTJ08yODjItm3b5MjjcsiESLndbsdkMlFaWiq3600VsYrytR4dh2BOZ39/P9u2bVvW\nRTK8uUkgEJBF+okTJ/D7/fNEuhLsPX8FXAM8ELLtfOClGJ77jbmfLwD3h933QeA2gtFXAzAK6IHw\n/3RhbgxXAj8nKFiLCEZ1XwLeC/xsbkzRtgMYAfsS473g4PMEBJE/3XZhxPtvYOmJSSTUlYbE4nK5\n6OjooKKigqqqKsWfi8JX0AKBgFw8OjIygs/nw2g0yiI9Ly+PsbExRkdH2blzZ8KL+yF5TY2isZwV\n8kTjdDpVUZ4mVFGewUhNV/R6Pfv371/xEr9U6Kk0pJPU4OAgExMTtLS0pOWEodPp8Hq9Ue9XYiOg\nVCNF5Xw+H21tbQmLaOt0unlFZIFAgJmZGSwWC6Ojo/h8PrlNuOT0kGoeB74Stu2yue1XLHz4An4A\nXEdQXH43ZPvFBIse3zP3t4Fg6ka4KC8gGA2+a+6+J+a2P8qZNIvNwMNLbL92bvti6Re/uukcSgzR\nJfbxkNuxTkzW2kpDspEmxs3NzRQVFaV7OMtCp9NRUlJCSUkJEBTEdrsdi8VCd3c3VquVrKwsqqur\n5wVCkkmimhpFQimWxG63OykTHJWlUUV5BiKKImNjYwwNDdHQ0LCov2w8SIWeSkKn0zEzM0NXVxcl\nJSUcOHAgbakgixV6StFxqUhHCSfWVCMtIVdXV1NZWZnU90Cn08kCHM44PVgsFsxmM16vV46opcqO\n7YUI274Ucvt9IbfvC7k9FHL74ZDboU4gN3EmghyNaM4hu4FX49h+2dzPYpR87r/P/FGUC/d/LOpj\nY52YrKWVhmQiFb9LxY5KKdxPBFqtlqKiIrKzs5mcnGTLli2UlJRgtVo5fvw4drudnJyceZ1HU+Fk\nspymRpGuY0pqdKSUcaw1VFGuUKIJCI/Hg8lkIicnhwMHDiQ0P1Bp6SuiKMrFO62trWmP9kR6fyLl\njq81QS4IAoODg0xPTydtCXkpQp0e6uvr50XUJDs2o9EoF4/m5+evuc8padg8i94dbWISzlpaaUgW\ns7OzHDt2jJKSkriKHTOJ06dP09PTQ1NTE8XFxQAYDAaqqoLJTVKPhPHxcXp6euadG1JVNL5UU6NA\nIIDf71+Qj66EPiFKSJ9Zy6iiPEMQRZHR0VGOHz9OY2PjiotZIpGVlYXHs/gFNlVIuZCiKLJ79+6k\nWh3GSnikfLU2AooHl8uFyWRi/fr1tLW1KSa6IkXUioqKZDs2h8OBxWKhr69P9kqXIukFBQURP79c\nMQePZjYNR7D2WCsrDW6SI9Snp6fp7u6moaFBTvNaTYiiyNDQENPT0+zduzdqHUl4jwTJ2Sm8aFya\noKeiHmWxvPTQ4lG3241Go5GLSNN1PlVKGs1aRBXlGYDb7cZkMpGfn5/w6HgoSkhfkTrNjYyM0NTU\nxPDwsGJm7pIlopo7fmaSKH1O6V7FWAqNRoPRaMRoNFJTUzPPM3lgYACn00l+fr4s0g0GA4Ig0NRZ\nx+zsLM3NzasqDUAlfSRakEti9fTp0+zZsyct9RTJxu/3YzKZyM3NZc+ePXGJ1XBnJ6l41Gq1Mjo6\nOi/Vrbi4OCWraJHy0mdmZuju7pZX+qSxprqpkd/vT3u0fi2jinKFIrmvjIyMMDw8zPbt25Me/Uh3\n+orb7aajowODwcCBAwfQ6XSMjo4qJqVGcl9Z69FxqTlVTk4O+/bty8gTeLhnsiiKuFwuOZo2MzOD\n1+ulpKSE+vp6RdnIqahI+Hw+Ojo6KCgoYO/evYpZqUokUsOjurq6mDpTL0Wk4tHwVTRpgi51Hk32\n+yp1IA21+A0tHJUCQVLKSzKbGtntdrVxUBpRrzQKxeVycfToUVmgpkIUpMunPDQ1p6mpST5ZQvon\nCqHodDpsNhsnT56kpKREETZ8qWZqaore3l62bt2asAJjJaDRaCgoKCA/Px9BEHC5XDQ2NjI7O8uJ\nEyfmFZBJ3QdVVNKJVFi9efPmFVnhKpnx8XGGhoaS2vBIq9VSWFhIYWEhtbW18ybow8PDOBwOsrOz\n5Zz0oqKihAUiRFFkYGCAmZmZBR1IY21qJIrivMeuVKirjYPSiyrKFcrs7KxcWZ4q0iGApcLV3Nzc\niJMPJYhy6USo1+vZvn27bMPn9/vlvMR0N7RJNoFAgJ6eHmZnZ1edo4OE1OwoPz+fffv2yRe3TZs2\nAcGVHOmz7+rq4tySErKnp9M55LQgkvl2gZmMFMQYGxtLW2F1shEEgd7eXjwezwKxmmykCXpBQcG8\n4lGr1cqpU6fo7e1NSPGoz+fDZDJRUFAQU1FuqpoaqaI8vaiiXKGUlJTg8/lS+pqp9CkPbXq0WOFq\nukV5eCOg0GXP0MYWoQ1tSkpKVpVIn5mZwWw2U1VVxfbt21dlys7k5CR9fX2LNjuSug9WVgabxDt6\ne+UCMpvNRlZWFuedf/6C5/0nQf/tnwJnE+wC2UawdfxHmd+l8m6CVnx1c/ffwPwulQaCBYmHCNr3\nPcCZLpX/xMKGOBqCTiNXE7QMPEWwSHIn87tRzhDsRhlt+/s406Vy9X36qWOKoMvLcvPKA4EAnZ2d\naDQa2traMjJ1bClmZ2fp6OigpKSEhoYGRZxvcnNzKS8vl9NnpOJRq9UqF48WFhbKQZql8vqdTifH\njh2jvr6esrKyZY1pqeLR5TY1cjgcavpKGlFFuYpMqgo9pYikXq9fMjUnXaI83Fkl0oksPDdxtYl0\nqYBsamqKHTt2KMIBJ9EEAgF6e3txu91xrwCEX6ijNZZSu1SqSKzEM8vpdNLR0SH3AViNWK1WOjs7\nFe8gE6l4dGZmBqvVitlsZnZ2NqoF6+TkJP39/bS0tCQ0Ih1PUyPpcZGubXa7XY2UpxFVlKvIpEIA\nj4+P09/fH3PTo1hb2yeS8Oh4rJGaSCJ9ZmaG6enpjBPpkuPPunXrFGV1mEgcDgcmk4nKykoaGxtX\nHJGL9HmuyS6VVncqXmVNIeVWJ1rIKQXJ1ODkyZPs3r2bvLxUuruvnNBmZvX19YiiiN1ux2q1ysWj\neXl5BAIBAoEAe/bsSZkVYyx56XCmqZGavpJeVFGuUNKxZKfVapNmPyg5dmi1Wvbv3x9zDl5WVtai\nre0TSaRGQCshvOtkNJEuPUYJhaNSWpHk+CM151hNSAJgbGyMlpaWpC7VrpkulVf/IoYjUomG3++P\nuGIoCMK8Wo5U5lanCiklR6vVrpqUHI1GIxeP1tTU4PP5ePfdd9FoNOTn5/P222+j1+vlSHoii0cX\nI5a89Oeffz5q52qV5KOKcpWkMzExQV9fH1u3bo07fy5VkfLlRsfjIVJreCndZXR0FJ/Pl1aR7vV6\n6ezsRK/X097eviptAL1eLyaTiby8PNrb25N+IVS7VKrEwltvvQUg//8XFxcTCATo6Ohg48aNCVnJ\nUSJSk7jKykq5qHK1IaUd1dbWzrN0nJ2dlYtH+/r6AOYVj6ZiJTVUpAcCAQ4ePMjIyAgPPPDAEs9U\nSRaaOCOjyujisgaQWsynmsOHD3P22WcnZF8+n4/Ozk4EQVh285XJyUksFgsNDQ0JGVM4SmoEFCrS\nLRZLSkW61Lp6y5Ytq9ZeTTrGZNo55q/CvHuV5ONyOvH7/fL//+TkJC6Xi/Xr11NWVhZT8WCmMTU1\nRV9fX0Y0H1su8eSP+3w+uamR1WrF7/dTWFgoT9KSmdJjs9m44YYbaG1t5Zvf/OaqWK1QIDEJi9UX\nClslZHpUZHJykp6eHjZv3iy3O14OycxzDy/mTPd7rtVqUx5JDy10XKx1dSYj2as5nc5Ve4wqmYs4\nNwnOysqipKQEi8VCTk4Oe/bswePxYLFY5hUPprLzZDKQvLltNht79+5VdG3NcpGK5Kenp2M+Rr1e\nz4YNG2T3J0EQmJmZwWKx0NXVhcfjwWAwyCkvBQUFCfn8e3t7+Zu/+Rv+8R//kauuuiojv1OrCTVS\nrmBmZ2dT/pqvvPIKBw4cWHY+td/vp6urC6/XS0tLy4oFkM1m48SJE7S2tq5oP6EoKToeD4mOpNvt\ndsxms7x0nAnvQbw4HA7MZjNlZWXU1NQk/RjXaqTc5XQC6vGvBK/XS0dHB0VFRWzevHnBdzW086TV\nasXlclFQUDCv86TS/4elDqQGg4GtW7cqfrzLwe/3y703tm3blrAieVEUcTgcsg2r0+kkLy9PTncp\nLCyM+7Wee+45br31Vn7605+yb9++hIxTJSpqpDzT0Wg0SSu8jIbU1XM50YvTp0/T1dVFXV0dlZWV\nCTnhJjpSrrToeDzEEkkvLCyU3V2iiXRRFDl+/DinTp2itbV1VVodSg1WRkdHaW5uVt0EVBSNZAW4\nmE9+pM6TTqcTi8XC0NAQDoeD3Nxc+RxhNBoV5Zpkt9sxmUyrugOpy+Xi2LFj1NTUrGiFOBIajQaj\n0YjRaKS6uhpRFHG73VitVrmhmVQ8KnUejVYXJAgC999/P8888wzPPvtswseqsnxUUa4yj+WIYL/f\nT09Pj+z1nMjcx0SK8kAgkHHR8cWIJNIld5doIt3tdmM2mykqKqK9vV1RF+1EIRWsZmdnp6SYU2Vp\nngI+TrA4dXsMj68DjrDQ11tqnhQr8T4+Go8QLK5NtDu4KIoMDw9z6tSpuK0ANRoNBoMBg8EgizQp\n3WVkZAS73Y5er5cj6aly+IiE5Oi0WvsdwJkc+ebmZgoLC5P+epKTS35+vuxb7/V6sVgsTE1N0d/f\nDwSLh0+cOEFzczOVlZV4PB5uuukmdDodhw4dWnW1CpmOKspV5hGvCJ6enqarq4uamhqampoSLnQT\nIcozOToeD6Gtn2GhSHe5XAQCAaqqqqiqqlqVgnx6epru7u5VXbCqRJZKW3mcoB3j48DXUzGgBPMI\n0EpiRbnP58NsNpOTk5OQXgAajWZB19lI7eElkV5cXJx0hyXJ0tHr9dLW1rYqHZ2Wkz+eLLKzsykr\nK5NdzqTi4V/84hfcfvvt2O12NBoN+/bt44477lDraxSImlOuYHw+X8r9Qk0mE5s2bVrSnzoQCNDT\n04PD4aC1tTVpleGBQIAjR45w4MCBZT0/FVaHSkdywdFoNFRUVMjFQ1IkXYq2Z3LERBAE+vv7mZmZ\noaWlJW3Hkldfj+bUqbS8tlJxAI3AC8AlQPfc9heBOwhGwzsIdjl9jGDiZR3BSHkBwS6klwKfYX7k\n+27gv4BZglH4SGLfMPe8Q0A58AugFHiHM9aPW4CHCHq0R9r+HEFLyE1Et4SMN6dcSuWoq6ubZ5OX\nbHw+n5yTbrVagfk2jIkUlB6Ph46ODkpLS1NSz5EOAoEAJpOJnJychOaPJ4M333yTG2+8kWuvvRaf\nz8dLL73E8ePHaWlp4b3vfS+XXHIJ1dXV6R7makbNKVeJn1gi01Ir4aqqKrZv357Uk+1yfcrDo+NK\nPlkmEylyvHnzZjl6Eqm632QyZaxIdzqdmEwmNm7cyN69e9N68XcPDiZlv1JUNTs7m4aGhoSlIbjd\nbrlw2G63k52dLX/+UuHYSos3nwY+BDQA64E3CQpwgLcBE8EI9DnAnwlG1CEovq8EPjX3E8ohoJeg\nB7sIfAT4X+C8sMc5gXbg+wQbMX0duG9uf/cSbI70L3Pb/3WR7fcB98zta6WMjo4yMjKSllQOvV7P\nxo0b5VWkUBvG4eFhuaGZ5PCx3HOA5BjS2NgodzhebUj549XV1fLKhBIRRZEnnniC+++/n1/96lds\n27YNgH/6p39CEATMZjMvvfQSY2NjqihXAKooVzDpEBeLiXLJWs5ms7F7927y8/OTPp7lvAdqdDz4\nWfX19eFwONizZ0/Ei2toukt9fX3GiXRRFBkbG5PzJVORx5kOpCLA0IlVooiU7mCxWBgbG5MLx967\nwtd4HLhp7vaVc39Lonw/ILWM2Q0McUaUf5Rg06SrI+zz0NzPnrm/HQRFergo13KmSdMnCUbcbYCV\nM91KPw18YpHtiSIQCNDV1YUoioqpdcjKymL9+vWsX78eONN1WAq8zM7OUlhYKIv0vLy8Rc+noTny\n0c47qwGp50Fzc7OiPdb9fj9f//rX6e3t5fnnn19wjtRqtbS2tibU3UxlZaiiXGUekvtKODabDbPZ\nTEVFBfv27VOk0FWj40Ekq8OKigq2bdsW82e1mEg3m814vV7FiHQpcqzX69m3b58iBE6iEUWRwcFB\nTp8+HXcR4HLJzc2loqJCdmNYzJY1luLNaeB54BjBtdvA3O+75+4PzWjVAaFnnnOA3wNXsXDdVwT+\nGfjcUgcURrrOWlJXx02bNrFp0yZFnj9hftdh6Rxgt9uxWq1yMb9kwxjulS2lcmRnZyckR16JSM5V\nU1NTiu95YLVauf7669m9ezf//d//vSrPkasRVZSrzCM8Ui7l6k5PT7Njxw4MBkMaRxcdNTp+Jko1\nMTFBS0vLij+rpUT67OzsPJ/0VIl0aWk8GZFjpeDxeDCZTBQVFS0qcJKdw77YWtjHWLrIqIRgfnYk\n3jf3I3FfyO2hKM+R8sm/STAqfjXBvPFRQA+El/YKwK8IRuh/TjAKX0Qwf/wl4L3AzwhGx6NtBzAC\n9ihjWoqJiQkGBwczcjVHq9VSVFREUVHRAhvGgYEB2Ss7Pz+fqakpamtr2bRpU7qHnRQCgYAcCNi7\nd6+iJx09PT1cd911fPnLX+bKK69ck9fDTEUt9FQwgUAgYtQ6mYyNjTE7O0t9fT12u52Ojg7Kysqo\nq6tL20no8OHDnH322RHvy9RGQInG4/FgNpsxGo1s2bIlJZ9VqEi3WCxJj6QLgiB3AkxnMWeymZyc\npK+vL6Z83LXarAfgB8CDc7cNBItEt4Q9xgB8lmCqy0bgCRYWem4GHmZhoWfo9l8DXyW+Qk8p3c/t\ndtPS0oJer1/B0SoTURQZGRlhaGgIo9GIx+MhOztbTncpLCxcFRFat9vNsWPH5JUOJfOHP/yB2267\njYcffpi2traln6CSKmISJqooVzDpEOUTExPMzMyg1WqZnJykpaUl7Y1XDh8+zHve854FYluKjguC\ngFarXZNiHGB8fJzBwcG0F1VFEulGo1H2SV+JiHa5XJhMJjZs2EBdXd2q/KwlEedyuWhpaYnJCWMt\ni3IlES7KJeeRDRs2UFtbuyq/r6Io0t/fj91up7W1VZ50SDaMFosFm802LyVmsYY2SkUqlld6/rgg\nCNx333387ne/44knnkipq49KTKiiPNNJhygfGRmht7eX6upqNm/erIglutdee22ex60aHQ/i8/no\n7u5GFEW2b9+uuEhcuEiXisbiEemiKMqNR5qamhR9UVwJLpdLXpWKxz5OFeXKIFSUS0WA6Z4kJxOv\n10tHRwdFRUVs3rx50e+r1+uVLRiTbcOYSKR0wMnJSXbs2KHo/HGPx8OXvvQlcnJyuP/++xU91jWM\nKsozHUEQ8Pl8KXktqQHCyMgIBoOBPXv2LP2kFHHkyBF27txJdnb2mmkEtBQWi4Xu7m5qa2szpkWy\nVDQ2PT0dk0j3+Xx0dXWh0WjYvn17xkXYYuXkyZMcP358WZOOaKI83g6aKslF3LgxaXaZqWZmZgaz\n2cyWLVsoLS2N+/mhNoxWq5VAICCnvRUXFysiLS0QCNDZ2YlOp6OxsVERwalonDx5kk996lNcccUV\n3HjjjYoe6xpHFeWZTqpEueQMsG7dOsrKyjh+/Dg7d+5M+uvGyttvv01jYyM5OTlrPjqulCY5iSCa\nSF+3bh06nY7BwcGUN1dJJX6/n+7ubgRBoKmpaVmTjmii/ApgDLiAzOyguRqJt8GQEgn1WE+UJa5k\nwyiJ9NDzQHFx8ZI2jIlGyh+vrKykqqpq6SekkTfeeIMvfvGLfO973+Oiiy5K93BUFkdtHqSyONLy\n3OjoKC0tLRQVFeF2u1fc1j7RaLVafD4fer1+zYpxAIfDgdlsVkSTnEQQ6uwgubvYbDYGBgaYmZkh\nJyeH06dPIwiC7JG8WpA6OtbU1FBRUZHQz9IBvMyZDpqSKH+RMx00f5WwV1NZCwiCQFdXF4IgJNxj\nPTTnXHqtWG0YE42UP97U1LRkV+t0Iooijz/+OD/+8Y958skn2bp1a7qHpJIgVFGuYJIpuqTCOaPR\nyIEDB+STrE6nS3ke+2KIoojRaOTYsWMUFxfLqQ5KzUNMBqIocuLECU6ePElzc3PaC2+TxezsLH19\nfaxfv15On7Lb7VgsFjo7O+dF0DJVpEuf5fj4eNI6OsbSQTMa8aa91AFHCAr9UAycsS+MhXgfH41H\ngIsJdghVSQwej4djx45RVlZGdXV10oMBsdowSpF0o9G44pQN6f9yYmJC8U2P/H4/t99+OwMDA7zw\nwgur9nqwVlFF+RpDsrA6ceIETU1NcnRCIisrSxGRi8Qc+AAAIABJREFU8tDc8ZqaGqqqquQ8xBMn\nThAIBCgqKpJFutKKHBPF7OwsJpOJgoICxXQBTAZSXvX27dvnRaiki3NdXZ0cQZN8yj0eT0aJdK/X\ni9lsJjc3l7a2tmV9lrH4ksfaQTPac8+d+52JaS+PAK2kR5Q/wuqbECghcqzRaDAYDBgMBqqrqxFF\nEbfbjcViYWRkBLvdviIbRqnTKqD4pkdWq5XrrruO9vZ2nnzyyaReD77//e/z4IMPotFo2LFjBw8/\n/LCiJyurBTWnXMGIoojX603Y/iSbrvz8fBoaGiLmsIqiyCuvvBLVFzwVxNIIKBAIyLZbFosFQRDm\nRdJXQ1HgxMQEAwMDNDQ0yG2wVxt+v19uPR6vg0yoSLdYLIoW6dJE4n1XXoluaipprzNNUHSXMr+D\n5nHgT8A9wDNRnusAGjmT9tI9t/1FzqS9dBAU+I/N7beOYKS8gGAL+0uBzzA/8n038F/ALMEofCSx\nb5h73iGgHPgFC/3EtwAPsdBPXNr+HHAtsInofuKRSFSU/n0E39/2KPdnUk55aOdKpTuPwEIbxqys\nLFmkL2bDKK0ClJeXU1VVpeiUwO7ubq6//nq+8pWvcPnllyd1rKOjo5x77rmYzWby8vK4/PLL+Yu/\n+AuuvfbapL3mGkDNKc90EvVPJ4oio6OjciRyMYGXzpNSuLPKYhELnU7H+vXr5WPx+/3ySXlwzuVA\nEmfFxcUZJdKlAsBAIEB7e/uqXQWw2Wx0dnYu20EmdJlbqZF0URQZGBjAYrGwZ8+epApyCOaKXwM8\nELLtfIJdKpcilrSXSuAc4M8EI+oQFLRXAp+a+wnlENALvE4wovMR4H8JduMMxUlQzH4f+AZB4X7f\n3P7unTuGf5nb/q+LbL+PxYVxNP6elU8IjhDsMBrPhECJ+P1+TCYTubm5iu9cKZGbm0t5eblcFC7Z\nME5NTdHf3w8gdyeWVlal88T27dsXrBgrjUOHDnH77bfz8MMPs3fv3pS8pt/vx+12o9frcblcVFau\npjUg5ZI5SkVlWUidHnNycjhw4IBixWks0fHFyMrKYsOGDWzYEMxu9fv9WCwWpqenGRgYQKPRzBPp\nSk0DsVqtdHV1UVtbS3l5uaIjN8tFFEUGBwc5ffo0O3fuTJiLg9JEusfjwWQyUVxcnDJx8zjwlbBt\nl81tvyKG58aS9rIbGOKMKP8o8E8EBWk4h+Z+JINVB0GRHi7KtSHj+yTBiLsNsHKm1f2ngU8ssj0W\nlDghUBIOh4OOjo6Mdz3Kzs5m48aNbNy4ETgTtLFarRw/fhyPx4MgCGzevFlRK2rhCILAD3/4Q559\n9lkOHTpEWVlZSl5306ZN3HzzzdTU1JCXl8fFF1/MxRdfnJLXXusoU6GpyGg0GuJMMQLONF2ROj1K\nYlVphDcCSpRwycrKorS0VPbR9fl8WCwWpqam6OvrW9BlLt0iXWohb7Va2bVrl6IvFCvB7XbLQjXZ\n+ZuxiPTQjqOJfM8nJyfp6+tLeQOZFyJs+1LI7fdFed408DxwjPlpL3fP3R+avKADQkvBzwF+D1zF\nwvVZEfhn4HNLD30eyZqKpnNCoHQmJiYYHByktbUVg8GQ7uEkFCloU1JSQldXF3l5eZSXlzMzM4PJ\nZMLn82E0GtNmwxgJt9vNjTfeiMFg4NChQylNIbJYLDz99NMMDg5SXFzMJz7xCR577DE++clPpmwM\naxVVlK9CZmdnMZvNZGVlsX///mWlP0gR62Sy0uh4POj1+nmRE6/Xi8Vi4dSpU/T09KDX6+eJ9FQu\n2TqdTsxmMxs2bKCtrS3tF4NkIeXIp2u5OBUiXRAEent7cblctLW1ZYxL0ErSXr4x9/MF4P6w+z4I\n3EYwim4ARgE9sDHsccLcGK4Efk4wCl9EMF3kJeC9wM/mxhRtO4ARsC8y1utjOJ7V+d8XHUEQ6Ovr\nk7+zqzVdLpKLjBSsCj0XSDaMBoNBTndJpg1jJMbGxrjmmmu4+uqr+cIXvpDya8If//hH6uvr5aDW\npZdeyuHDh1VRngJUUb7KGB8fp7+/n23btskCNF4kB5ZkpbqER8fT4T2enZ1NWVmZvBw4OzuLxWLh\n5MmTdHd3o9frZXFWWFiYFJEuOeGMjY3R1NREYWFhwl9DCSg1Rz5cpIuiKDczChXp69ato6SkhNzc\n3EW/p06nE5PJRHl5OQ0NDXF9pxNlRbhcVpL2AvAD4DqCaSzfDdl+McFjes/c3waCRaLhZ6YCgnnn\nd83d98Tc9kc5k7+9GXh4ie3Xzm2Pltd9KsJrp2pCoES8Xi/Hjh2jpKSEXbt2rdqAgNVqpbOzM+rK\nVei5AILnZofDgdVqXWDDuG7dOgwGQ9ICN6+//jpf+tKX+P73v8+FF16YlNdYipqaGl599VVcLhd5\neXk899xztLdncmJW5qC6rygcn88ni9fF8Hq9dHZ2AtD0/9m787io7nN/4B8QkZ1hEEFAQUC2gWjc\njSKDSZreJm16vWnz66amGrPU1sas1qTJK2m8aZNY9dUlaRaTaIz25qZLlrbpDKLRqFGjhplhERCV\nHZwNGGY75/v7w3tOgKCyzMw5c3jef7UJYb7DDMznfM/zfZ6CgjHt0J08edJv0yIHH+aU64eA0+kU\na9KFllv9Q/pY1y3czYiMjMTMmTMlL5/xF+Ewpz+G5Phb/5AudHe5UkhvaWnBhQsXUFhYeNWLK19N\n4MyEb0P5eFGPy4cz+4sBsA6Xa9+FC4LBBz2F4D/4oGf/f/6/AH6BK18QyK37is1mg8lkUnR3JwDi\nxkdxcfGoS9T6t2G0WCzo7u7GpEmTxHIXX9xdZYzh7bffxiuvvIJ9+/YhKytrTN9vrJ588kns27cP\nYWFhuP766/Hqq6/KvguPzA3rw49CucwNJ5R3dHTg7NmzyM7O9snhnNOnT2PmzJk+HWwih93xsRD+\nIAshPSIiAmq1Gmq1GjExMSN6Lh0dHeLdDLnW+o8VYwyNjY3o7OyERqPxy5CcQBNCuvA+cDqdiImJ\nQV9fH8LDw6HRaK55F2CoUD6WVoTKfPcok1xCuXCHrrW1dUxBVe54nhfv0BUUFPh840PYuLFarSNq\nwzgUr9eLJ554AhcuXMBbb71FA4GUiVoiKp3H40F1dTW8Xi/mzZvns6vYsLAwn071DJbd8auJjIxE\nZGQkUlNTB+yaNDY2oqenB1FRUeIO6pXqDzmOQ01NDTweT1DVG4+U0HUkLi4O8+bNC4qWasMREhKC\nuLg4xMXFISMjAzabDQaDAbGxseA4DidOnBB30oWa9OG818fSipBCORmJwYNylHqHzuVyobKyEklJ\nSZg+fbpfPnMiIiIwdepUsZ3rldowCrvpV7pgt1gsuOuuu7Bw4UK8++67in1NyPBQKJe5K/0x6erq\nQk1NDWbMmOHzsoAJEyb4ZKpnsO+OX0lISAiioqIQFRWFtLQ0MMbgcDgGjIGOjo4WQ3pUVBTsdjuq\nqqowbdo0pKamKuLnMBThLkCgu44EkjCSu62tDbNnzxbvAvTfSRcOiw0O6UMZSyvCowjeftjjTWtr\nq9jZQwp9fX2orKxEamoq0tLSFPs3SCjLCfTfoKu1YWxsbATP84iJicGxY8dw4403IiMjA9XV1Viz\nZg02bdqE73znO4p9TcjwUSgPMsKhOafTiblz5/ql7ls46DkWStgdH66QkBBER0cjOjoa6enpYIyh\nt7cXFosFZ8+ehc1mA2MM06dPl/2QitEaL3cB3G43jEYjoqKivnIXYPBO+lAhffCxrbG2IlwH4C18\neV9UmE75IC7vvI+0FSHxH6fTiaqqKrhcrlHdURmLrq4unD17FoWFheJhRiVqbm5Gc3MzZs+eLXlZ\nzuDZGRzHobW1FdXV1XjzzTdx6dIlOBwO/OQnP8GCBQskXSuRD6oplzmv1ysG5EuXLqG6uhqZmZl+\n3W1taGhAZGTkqKYsAoFtdShnDocDRqMRarUakydPhs1mg9lsHrCDqlarJf/wGCu73Q6TyYT09HRF\n78CZzWbU1NQgJydHbBU2EowxRA/q//wnXC5XGdyK8Blc7gryAoAP/u+fr8flwTSr8WVN+dO4HNSF\nVoRCKP8Yl1sR6nH1VoQkcISacqH9njCBWGi/J4T0qKgon05zPnfuHCwWC4qLixV7sczzPGpra+Hx\neFBYWCjrEhCe57Ft2zbo9Xo88sgjMBqNOHjwIM6fP4+ioiIsW7YMd955J1QqldRLJb5FBz2VgOM4\nuFwu1NTUwOFwoKioyC+74/2dP38eEyZMQHp6+rW/uJ/xtDt+NYwxtLS04OLFiygoKPjKztRQXT2E\nSZNCV49gwBjDhQsX0N7erpjDnEMRBjvZbLYxdyUafNCzDJdbEX693z/bgcttBO/EtUN5Ii63IkzC\n5VaEQigHLrcpfPX//rfQinBw5xESOFc66Cm03xM6ezgcDrH8bSw9sj0eD4xGI6Kjo5Gdna2Ysx2D\nud1ufPHFF5g8eTIyMjJk/bnjcDiwfv16qFQq7NixY8BFEs/zMBgMOHjwIL773e+OuqUxkS0K5Upg\nNptx5swZTJs2Denp6QH5g9Pc3AyPx4PMzMxh/ze0O36Z0JoyPDwcubm5w9qx6T+4wmw2w+12Dwjp\ncmxD5XK5YDQaERMTg5ycHMV+4DudThgMBqjVasyYMWPM7+srtUQkysamTEHfuXPD+9p+5W8WiwW9\nvb3iQXKhR/a13ofd3d0wGo2YMWNGwEazSyGY2jo2Nzdj5cqV+NGPfoT77rtv3H5GjmMUypWgp6cH\nHo8HUVFRAXvMtrY29Pb2Ijv72vtqtDv+JaFuc7TlDQKe52G328WQ7vF4EB8fL4Z0qW9BCyPkg+GD\ncCyEQ6u+nEBKoXx0fNFOsK2tDY2NjdBoNEHVcq7/QXKr1Sq2ZBVCemxs7ICL4tbWVly4cAFFRUWK\nvXsFQLwbWVxcHNDPx9E4evQoNmzYgO3bt2P58uVSL4dIg0K5EvA8D4/HE9DH7OzshMViQW5u7lW/\njnbHL+M4DrW1tXC5XCgsLPR5aOZ5XqxHt1gs8Hq9YquthISEgIV0juNw9uxZOJ1OvzxPuej/PIfT\ne3wkKJSPzlhCuVBvLPx+ymWi7GgxxsQe2RaLBXa7HZMmTYJKpUJ39+WZohqNxm8TmaXG8zzOnj0L\nl8sFjUYj6/pxxhh27dqF119/Hfv27cOMGTOkXhKRDoVyJZAilAvj5gsLC4f894NbHSq1dGE4pDjk\nyHHcgJDO8/yAkO6P0NHd3Q2TyYTU1NSAlVFJobe3F0ajEVOnTvXL86RQPjqjDeV9fX0wGAyYMmWK\n3/pVy4HQMz8sLAyMMUycOFH8exAXFyfr4DoSbrcblZWVUKvVyMzMlPXr6fF48Pjjj6OlpQVvvvkm\nYgYd8ibjDg0PUgIp/uhcrU857Y5fJkys7OrqQnFxcUBvE0+YMEGcJgpcDulWqxVmsxnnz58HY2xA\nSB/LjpnQk7u1tRUajUaxHyz9D+cGW3mD0rFRHngTyskKCgoU3cnCYrGguroaBQUF4t8El8sFi8WC\ntrY21NbWYsKECQMG2QRjSBc2QHJycmQ/CdlsNuOuu+7CkiVLsH379nG9cUVGhnbKZY4xBrfbHdDH\ndDgcqK2txezZswesQ4mDgEajr68PRqMRCQkJmDFjhuz+4ApDK8xmM6xWKwCI9egj+UDu35M7Jycn\nKD/Ih8Pr9aKqqgqhoaHIz8/36/OMnDEDIR0dfvv+cjSSQ44+eTzGxG45RUVFii2zEi6Y29vbUVxc\nfNWuQG63Wyx3sdlsCA0NHRDS5V7qItTJB0P9uMlkwt13343Nmzfjv/7rv8bt5yT5CipfUQIpQrkw\nonjevHniGugw5+Wfg/DhkJ+fHzS7bx6PZ0BIDw0NFUN6fHz8kCFU2GWcOXOm7HelxsJms6GqqgoZ\nGRmj7ssfDBwOh3jbPzw8HFarFQ6Hw2/9saXidrthMBgQFxeH7OzsoH8+V8JxHEwmE8LCwpCXlzfi\njQHhb4JweBQY3kj4QON5HnV1dejr6wuKOvmPPvoIzzzzDN566y3MmjVL6uUQeaFQrhQulyugj+f1\nenHy5EksWLCAdsf/j9DqcOLEicjNzZX9h8PVeDwesbOLzWbDhAkTxJAeExODhoYGOBwOFBYWyrId\noy8wxnD+/Hl0dHSgqKhI9rtvY9He3o5z5859pWf+lfpjq9XqoAzpVqsVVVVVir+QFC6wpk2bhtTU\nVJ98T+HumhDS+59TUalUktxtEC6wVCqVT9qR+hPP89i6dSsqKiqwb9++MXXfIopFoVwpAh3KGWM4\ncuQIFi5cOO53x4HLk1Rra2uRnZ2tyIEOwq3t9vZ2dHZ2IiIiAlOnToVarUZcXJzsynPGSijLiY6O\nVnSPdaGLzHC7jgj9sYUDxMES0oUhVsIFVrBPyL2azs5O1NfXo7CwEHFxcX57HOGcihDSOY4T27Kq\nVCq/X6wLfdazs7NlH3AdDgfuv/9+TJ48Gdu2bVNsuRQZMwrlSuF2uzHC12lMeJ7HoUOHkJSUJH4g\nK7We+Go4jkNdXd242DVuampCS0uL2OpQCGZ2ux3h4eHiTvrgnsjBRrjAGg+7qQaDASkpKZg2bdqo\nwvSVQrrwXpBDSPd4PDCZTJg0aRJyc3OD+r15NYwx1NfXw263S1InL3R8EkK6x+MRB5wlJCT4dApx\nW1ubOHJe7n3Wm5qasHLlSqxevRr33HOP5L8PRNYolCtFoEJ5/9rx/h09rFarWOKQmJioyN3TwcZL\nC0C32w2TyYSIiAjMnDlzyIsvp9M5IKQLg0uEkB4MPxue5wcc/lPqBRbw5ZAcX++myi2kC7upmZmZ\nSElJCdjjBprH40FlZaWs6uT7DzizWCxwu92IjY0VQ/po7lYwxlBXV4fe3l4UFRXJvkTwyJEjeOCB\nB7Bjxw5otVq/PpbVasXatWthMBgQEhKC119/HYsXL/brYxKfo1CuFIEI5ddqdeh2u2E2m2E2m8Xd\nU6EtX7AEs+HoX2us0Whkv1MzFsKu8UgnkPb19YnBrLu7G5GRkeIdleGMAA80oVf15MmTZd/beCyE\nIVZutzsgQ3L6j4M3m80DQnpCQgKio6P99rMW2lcGw27qWAhtAOVexsHzPLq7u8WQ7nQ6vxLSr/Ze\nEC484uPjkZWVJevfUcYY3nrrLbzxxhvYt28fMjMz/f6Yq1atQklJCdauXQu32w2HwxE0jQaIiEK5\nUng8HvGwpa+NtrOKsHtqNpsHBDO1Wu3XD2N/6uvrg8lkEj8YlHo3QOho0NPTA41GM6ZdY8bYgJDe\n09ODqKgoMaRL/V5ob29HQ0OD4ntVC+Uq/hp6NByBCOkcx6G6uhqMMRQUFCi6rC6YxsgPxhgbENL7\n+vqu+F4Q7nhkZWXJ/syOx+PBpk2b0NHRgTfffDMgF4Q2mw2zZ89GQ0NDUH6uEhGFcqXwVyj31SCg\n/sHMbDajt7dXbLWmVquvuUsiB62trTh//jzy8vKQkJAg9XL8RphYmZyc7JcJh4wxOBwOMaT39vZK\nclgw0LvGUvJXucpY9Q/p/d8Low3pwoVHampqwKbnSoHnedTU1MDr9aKwsFARFx5DdfqJiopCWFgY\nrFYrZs2aJfvBZJcuXcLq1atRWlqKxx9/PGCbNqdPn8a6detQWFiIM2fOYO7cudi+fbui7xApFIVy\npfB1KB88CMjXf1z6/wE2m83o6+tDXFycGMx8eShorDweD6qrqxESEoL8/HzZ1zGOFmMMzc3NaGpq\nCmh4G6oOOSYmRnwv+OOCraenB0ajUfHnAYQLD4/Hg4KCAtlfeIwlpHd0dKChoUF2Fx6+5nQ6UVlZ\nieTk5FEf0A0GPM+juroaVqsV0dHRcDgciIyMFN8LciuJNJlMWLt2LZ588kl8+9vfDujaTpw4gUWL\nFuHw4cNYuHAhNmzYgLi4ODzzzDMBWwPxCQrlSuH1eq849n6kfLU7PhJCvaGwk+7xeBAfHy8GM6la\nSJnNZtTU1CArKwvJycmSrCEQ+vdYz8vLk3TnTbhgE94LQu1p/5A+lu/d3NyM5uZmFBYWIjY21ocr\nlxfhjoeU5SpjNZyQPvjwn9wvPMZC+HuUn5+v6Lt1Ho8HBoMBsbGx4sFV4W6r8F7o7u4WD5QLIV2K\nckLGGD788ENs2bIFb731Fq677rqAr6GtrQ2LFi1CY2MjAOCTTz7Bc889hw8//DDgayFjQqFcKXwR\nygfvjkvZe5znedhsNnH3lOM4qFQqMZj5e7e6f011YWGhrHbufU34oJdrj3XGmNjFwWw2w+Vyjequ\nisfjQVVVlTjhUAm3/K9EruUqYzU4pHd3d4sX8Dk5ObI8ROwLwuHyrq4uFBcXK7ozUE9PDwwGw7Dq\nxweHdKE1q0qlQnx8vN9DOs/zeOGFF3Do0CHs3btX0haqJSUlePXVV5GXl4ennnoKvb29eP755yVb\nDxkVCuVKMdZQLuyO8zyP0NBQ2X2w9W+/aLFYEBIScs0x8KMltDqcOnWq4m8PC32NNRpN0Fx49G+1\nJtxV6R/ShwosNpsNVVVVim+Nx3HcgFpjpZZaAZfrd2tqapCRkQGe58WddDkdIvYFr9cr9lmfOXOm\nYg+XA1+WIBUVFY2qftzpdIoh3W63Y+LEieLUUV9/TvT29uK+++5DcnIytm3bJvkdmtOnT4udV7Ky\nsrBz505F301RKArlSsFxHLxe74j/Ozntjo/E4DHwYWFhYkgfbY90Yepfe3s7CgsLZX+oaCwcDgeM\nRiOSkpKQkZERFK/5lQh3VYQP4/6lTyqVCq2trejs7FT8JEcllKsMB2MM586dg8Vi+Uo/+aEOEUdF\nRYl/G4ItpPf29sJgMGD69OmYOnWq1MvxG8YYGhoaxMFHvgq4LpdLnDpqs9kQGhoqlruoVKpRh/SL\nFy9i5cqVWLNmDe6+++6gek8RWaNQrhSjCeWjbXUoRy6XSwzpo+mR7nQ6YTKZxBpGpe5GMcbENmoF\nBQWIj4+Xekk+J0wW7OzsREtLC0JDQzFlyhQkJiYiISFB8h0tfxA6AymtXGUwt9sNo9GImJiYYf2e\nBnNIb29vx7lz56DRaBR99sHj8cBoNCI6Oho5OTl+fT3cbrcY0q1WK0JDQ8WddJVKNaw7S4cPH8bG\njRvx+9//HsuWLfPbWsm4RKFcKXieh8fjGdbXBuvu+EgItYZCj/Sr3dIW6m9zc3OhVqslXLV/CTXV\nEyZMQF5enuJLG2pra5GbmwuVSiV+EFssFvA8L55PUKlUQR3Sx1O5is1mg8lkGvEgq/6CIaQLZWW9\nvb3QaDRB/f68lt7eXlRWVmLGjBmSHKT3eDwDQjoAxMfHi7vp/X/2jDG88cYb2LVrF/bt24eMjIyA\nr5coHoVypRhuKFfS7vhwDfVBHBMTg/j4eJjNZkyYMAH5+fmK/vCzWCyorq5WfBcZIdB0d3dfceiR\n1+sdENIBDLilHSzBdjyVqzQ1NaG1tRVFRUU+HZIj/G0QLuD7h3Qpps+63W5UVlYiISEBM2bMUOxr\nCgCdnZ2or6+X1Z2A/n8bGhsb8eijj2L27NlYunQpTp48id7eXuzcuZP6fxN/oVCuFMMJ5VK0OpQj\noYSjvr4e4eHhYIyJBwXVarWiOhvwPI+GhgZYrVZoNBpF11T39fXBYDCMuE7e6/WKAd1qtYqHiMda\nd+pPQrmKnAKNPwiHHAPVMUfKkC7cCZg5c6akXTz8Tagft9lsKC4ulvVmSHd3Nz788EO8/vrraGlp\ngVqtxoIFC1BaWoply5Ypus6fSIJCuVIwxuB2u6/478bb7viVDNVxZKge6UKdoVqtlvWHxtUIhzkT\nExMVv+smlCDl5+dDpVKN6XsJh4iFkD5hwgQxlPm6g8NIjadyFaE13vTp05GamirJGvqHdIvFgp6e\nHp+HdKF3fktLC4qLixV94ez1emEwGAJSP+4LRqMRd999N5566il8+9vfhtPpxGeffYaDBw/iwIED\n6Orqwttvv43CwkKpl0qUgUK5UlwplNPu+Jd6enpgMpkwZcqUq+6k8jwv3sI0m83geV4M6MFS3iDs\npCr1MKegf0j118RKt9s9IKRPnDhxQEgP1KFgoRNHWlqaokfIA1++f0fbGs9ffB3SOY5DdXU1ACA/\nP1+Wd2V8RXj/ZmRkyL4tKWMM77//Pp577jns2rULxcXFQ36d2+1GSEhI0G7cENmhUK4Ug0M57Y5/\niTGGixcvorW1dVRTHIU6Q7PZPKC8wR890sfK4/GguroaISEhyM/PD4oLiNHq6emB0WgMeEgd3Oln\n4sSJ4iHi0bbjvJbxUq7CcRxqa2vh8XiC4k7AWEJ6X18fKisrFX8mAJBn/fiV8DyP3/zmNzhy5Aj2\n7t2LxMREqZdExg8K5UricrkA0O54fy6Xa0C7LV8E6P490oWdU3+HsuGwWq2orq5GRkaGomsdhdv9\nzc3N0Gg0ku+kCgNLhE4/QjtO4f0wlt8/4U4Ax3EoKCiQfUgdCyGkpqSkBO3QrqFCemRkpPh+EEK6\n0B2osLBQ0XeyGGNobGyE2WxGcXExwsPDpV7SVfX09OC+++5DWloaXnzxRdoBJ4FGoVxJnE7ngFaH\nSu21PVzt7e1oaGhAbm6uX3c7XC6X2NnFbrdj0qRJ4qHRQHRv4Hke586dg9lsVvyAHI/HA5PJhPDw\ncOTm5srqLoVgcDvOiIiIUb0fxlO5SmdnJ+rq6hQXUocK6YwxMMZQUFCAhIQExb6uXq8XRqMRERER\nQTGJ9MKFC1i5ciXWrVuHNWvWKPZ1IbJGoVwpWltb8cknn2DJkiUBrXOVI6/XO2B3MdC7HX19fWJI\n798jXa1WIyoqyqd/7Pv6+mA0GsUWakp+3YU7AVL1NB4NxtiAkN6/vOFqfbHHS7lK/xaWRUVFst9J\nHQuPxwODwYDw8HDExcXBarWKO+nC+yHQLRj9xeFwoLKyMmgmkR46dAgPPfQQfv/736OkpETq5ZDx\ni0K5UjQ1NWH79u04ePAgQkNDsXTpUpSVlWFjEeKLAAAgAElEQVThwoWK3jkdrH8JR0pKiuQfcP17\npJvNZjgcDsTGxoofwmN5bdra2nDu3DkUFBSMueOInAm3wLu6uoL+TsBQLfeio6PF98OkSZNQU1MD\nnucVX67icrlgMBjGRU9uoZPM4AtK4aJNuIhXQkjv6uoS73rIfbosYwyvv/469uzZg3379mH69OlS\nL4mMbxTKlYYxBrPZjP3790Ov1+Po0aNISEhAaWkptFotrr/+ekV+0AdLP27GGHp6esSQ7nQ6xQly\nw+2R7vV6UV1dDcaY4oceCcEtPj4eWVlZirsTwBhDb28vLBYLOjo6YLVaERMTg7S0NPGiLdhC2XAI\nw6z8XVomB0K7zuF0kul/Z0W40yaE9ISEBMTGxsr2/RBs9eNutxuPPPII7HY7Xn/9dZ8OpSJklCiU\nK50wDU+n06G8vBynTp3CjBkzxJCen58f9EGnt7cXJpMJkydPRmZmpmw/tIbC8zzsdru4Uyb0SBcO\nhg0O3DabDVVVVeJt4WB6riPV1dWFs2fPjovg1tLSggsXLqCwsBAhISHiTnpfX5/P7qzIAWMM58+f\nR2dnJ4qLixERESH1kvyG53mcPXsWTqcTGo1mVJshwRLSOY6D0WjEpEmTgqJ+vLOzE6tXr8bNN9+M\nxx57TPbrJeMGhfLxhud51NTUiCH97NmzKCoqglarRVlZWVC15hIuOFpaWlBQUCD7W6XDwXEcbDab\nGNIZY+IgIyG8azQaRe/q8DyPuro69PT0KL7OWOhTfaVyFcaYONjKYrHA6XQiLi5ODOnBFGo9Hg+M\nRiMiIyODIriNhcvlQmVlJSZPnjyi6bLXIseQLtSPT5s2TbIhTyNRWVmJdevW4ZlnnsG3vvUtqZdD\nSH8Uysc7juPw+eefiyG9o6MD8+fPh1arxbJly5CYmCjLkO5yuWAymcQPeDl24fAFr9eLjo4O1NfX\ngzE2oL2aSqVSXLBxOBwwGAzXHPCkBEKf9fT0dKSmpg7rufafPmuxWOB2uweE9OGUP0nBbrfDZDIF\n1SHd0bJaraiqqkJeXh7UarVfH2uokC50+wlESA+m1o6MMfz973/Hb37zG+zevRsajUbqJREyGIVy\nMpDL5cKnn34KnU6HiooKuN1u3HDDDdBqtViyZInkPaGBL9unzZw5E5MnT5Z6OX4ltHUUPuCHmi4p\ndHaJjY0N6pA+XqaQAl+Wq4y1u8pQ5U/9zyhIfZehf0/5oqIiREdHS7oefxKGlLW3t0tWmhOokC6U\nIXV1daG4uFi2F4MCnufx3HPP4bPPPsM777yj+HI4ErQolJOrs9lsOHjwIHQ6HQ4fPozIyEgsW7YM\nWq0W8+fPD+iHvjBIxePxoKCgQPLA4U9CWcO12joKPdKF6ZKj7YktpWuVcCiJ8FyFQ7q+fq48zw8o\nf/J6vWL5U0JCQsB/X6uqqsTpskq9mwV8+VxDQ0NldU6HMQan0zmgRWtERIR40TaakM5xHEwmEyZO\nnIjc3FzZPNcr6enpwT333IOMjAw8//zzATkYz3Ec5s2bh7S0NHzwwQd+fzyiGBTKyfAxxtDR0QG9\nXo/y8nIcP34cKSkp0Gq10Gq1KCoq8tsHr3DAUahbDIawOVrCrf7RPFehvZrQE7t/uz1f90j3he7u\nbhiNxnHxuo6mXGWsBp9R4Hl+QEj3V0ARBh+lp6cjLS3NL48hF0LJlTDkSc7GGtKFqavB8FwB4Pz5\n81i5ciXuu+8+3HXXXQH7+7J161acOHECdrudQjkZCQrlZPQYYzh37hx0Oh30ej2MRiPy8vLEzi6+\naGHXf1ql0g84CreEOzo6oNFoxnyrv3+7vf490oVb2VJ28uh/SFej0ciiLMqfhHKV4bTF8yeO42C1\nWsVQBmBASPfFzr3QAlDpg4+Ay6V09fX1QdGT+0qGmkA7VEg3m82oqakJivpxADh48CAefvhhvPTS\nS1iyZEnAHrepqQmrVq3C5s2bsXXrVgrlZCQolBPf4XkeBoNBPDR64cIFzJ49G6WlpSgrK0NycvKI\ndiocDgeMRiMSExORmZkp+9ukY+F0OmE0GhEXF4fs7Gy/PNf+nTzMZrN4SFAodwlUaYPH44HJZBLb\npym9rMGf5Spj5fV6B5xRACAGMpVKNaLXhud51NbWwuVyobCwUNH98xljaGhogM1mU1yHoKFCOnC5\nVG727Nmy7/jDGMNrr72GvXv34s9//jPS09MD+vh33HEHNm3ahO7ubrzwwgsUyslIUCgn/uPxePDZ\nZ59Br9dj//79sNlsWLhwIbRaLUpKShAfHz9kSGeMoaWlBRcvXhwXh/6E7iqB6NbQ3+BDgl6vF/Hx\n8Vfske4LwtCY7OxsTJkyxeffX06kKFcZK4/HMyCkh4aGiiE9Pj7+iiG9r69P7Jozffr0oHiuo+Xx\neGAwGBAbG4vs7GxFP1eO41BZWQmv14uIiIgBO+nCwVE5bZa43W489NBDcDgcePXVVwN+Z/WDDz7A\nRx99hD/84Q+oqKigUE5GikI5CZze3l4cOnQIOp0On3zyCQCgpKQEWq0WixYtQmRkJFpaWnD33Xdj\nw4YNuPHGGxW/i9p/Z1Hq3baheqSPdtd0MKHUSShDCvYhONciXFQGe2nO4G4/YWFhA0J6aGioOOQp\nPz8fCQkJUi/Zr4QzEFlZWYq/qBTqx1NTUwfsNvfv7iIcLpdDSBcGAt1yyy145JFHJFnHpk2bsGvX\nLoSFhcHpdMJut2PFihXYvXt3wNdCghKFciINxhgsFgvKy8uh1+tx9OhRAJfrFteuXYsNGzbI7la/\nLwkf7sJBODnutgmlDWazWdw1FUpdhEA2HEJpTnx8vE/OGciZ0IUDAAoKChR3USmEdLPZDJvNBq/X\nCwDIy8tDYmKiol9b4UJL6a0dgS/rxwsKCqBSqa76tXII6V988QXuuecePPvss7jtttv8/njDQTvl\nZBQolBPpORwOPPTQQ6irq8Ntt92G48eP4/Tp08jIyBDr0eXUZmwsGGO4cOEC2tvbUVhYGFS7qIMD\n2XB6pAs95QNdmiMFoVwlWCYbjoXb7YbBYEBUVBTi4+PFQBYeHj7gkKASfmeFKcgejwcajUZxF1r9\n+aLXeiBDOmMMf/3rX/Hiiy9i9+7dKCws9Nn3HisK5WQUKJQTaZ08eRL33HMP7rnnHqxdu1bcMRYO\njQmHRmtra6HRaKDValFWVoZp06bJcnf5alwuF4xGI6KjoxUxZtzpdIoh3W63D5g2GhUVhbq6Ojgc\nDmg0GslLc/xJOAPR1NQU9OUqwyFMrBxqeFf/dnv9A9loe2JLzel0orKyclzUyguHkoHLd3l89fdp\ncEifNGnSgGFGo30cjuOwZcsWnDp1Cnv27FH8RT8ZFyiUE+kwxvCTn/wEDzzwAGbOnHnVr+U4DqdO\nnRJDent7O+bNmwetVotly5Zh8uTJsv7AFHaMc3NzFTlNTpgkaDab0dnZCbPZjKioKKSnpyMxMRGR\nkZGyfn1Gy+v1orq6elwMyBHu8nR0dKCoqGhY5wKE94TQE7v/hZvch1sJJRzjoVZeuPhISUlBenq6\nX18XX4T07u5u3HPPPcjKysJvfvMbRZc6knGFQjkJTi6XC0eOHIFOp0NFRQVcLhduuOEGaLVaLFmy\nRDa7lRzH4ezZs+jr61P8jjEAtLa24vz582I9tdB+sa+vT+yRrlarZd9WbTh6enpgMBgwffp0xZer\neL1eGI1GTJo0adRTHPtfuFksFvT09CAqKkoMZNHR0bII6cLFR2dnJ4qKihTxXr0aoSOSVBcfQ4X0\nq5VANTY2YuXKlVi/fj1WrVoli/cMIT5CoZwog91ux8GDB6HT6XD48GFERESInV3mz5+PSZMmBXxN\nQo2x0L1AyR8ewo4xgCH7cculR7ovjLdyFeFQcmZmJlJSUnz2fRljcDgcYkjv7e1FdHT0gBKoQP/O\neL1emEwmhIeHB8UI+bEQBni1tbWNun7cHwaH9Oeffx6FhYW48cYbwfM8Nm/ejJdffhmLFy+WeqmE\n+BqFcqI8jDF0dnZCr9ejvLwcx48fR3JysjhptLi42K9lBsJhqdbW1nER2ux2O0wm04h2jPv3SDeb\nzeA4DiqVSmy/KNfBM+OpXAUIbGtHYQKtENIdDgdiYmIGTKD1Z0jv7e0V73xMnTrVb48jBzzPDxhq\nJef3cX19PT7++GO8//77+OKLLzBr1ix8/etfh1arxZw5c2T7t4KQUaBQTpRP6JGt1+uh1+thMBiQ\nm5srhnRfTtB0u90wGo2IjIxU/LRK4eKjra0NGo1mTG3ihhr/7qse6b4i7BiPh3IVjuNQU1MDjuNQ\nWFgoyc+fMYaenh7xws3pdIolUEJI95WOjg40NDRAo9EgNjbWZ99XjoT68eTk5KA4MO9yufDQQw/B\n7XbjT3/6E7q6unDgwAFUVFTgxIkTSElJwQMPPIBbbrlF6qUSMlYUysn4w/M8jEajeGi0sbERs2fP\nFtsvpqSkjOqDShiikpOTg6SkJD+sXD7cbjdMJhMiIiL8cpvf4/GIId1qtWLChAlfGVoTKIwxNDc3\no7m5eVzc+XA4HDAYDEhNTZVVD33GGOx2u9jxx+VyiSVQCQkJoyq/YIyhrq4OPT09KCoqUvyuq9A5\nJ1halHZ0dGDVqlW47bbb8OCDDw75e3/x4kVwHIfMzMzAL5AQ36JQTojH48Hx48eh1+uxf/9+WK1W\nLFiwQOzsEh8ff9VgwvM8zp49i97eXmg0Gknq1wNJ6EqRnZ0dsKmGg3ukh4eHi2EsLi7Ob8HR6/Wi\nqqoKoaGhsr/N7wvCjnFhYSHi4uKkXs5VCSVQwvvC4/EMCOnX+j0Ueq0LQ63kcvHhL01NTWhpaUFx\ncXFQTNQ9c+YM7r33XmzZsgW33nqr1MshJBAolBMymMPhwOHDh6HT6XDw4EEwxrB06VJotVosXrx4\nwAfaqVOncPToUdx6661BcSt4LHiex7lz52CxWCTvSjG4H7bQak+tVvusi8d4KlfheR51dXXo7e0N\n2h1jnudhs9nEQ4Iejwfx8fFiSO9/mNhms6Gqqgo5OTlf6bWuNMLwI47jgmLKLGMM7733Hn7729/i\n7bffRkFBgdRLIiRQKJQTcjWMMVgsFlRUVECn0+Ho0aOIj49HSUkJrFYrPv74Y/zhD3/AokWLpF6q\nXzmdThgMBiQkJMhuV7F/qz2z2Tygi4darR7xAcHxVq4ivLaJiYnIzMyU1Ws7FhzHDQjpHMchPj5e\nLIMpLi5GVFSU1Mv0K5fLhcrKSiQlJQXF8COO4/Dss8/izJkz2LNnj+L7wxMyCIVyQkaCMQaDwYDV\nq1fD6/UiJCQEaWlpYj26LyfhyUVHRwfq6+uDZohK/y4eQo/0uLg4sSb9ajv8QrnKhAkTkJeXJ/td\nxbESSpGCpcZ4LIRyFafTibCwMDDGgqLjz2jZbDaYTKageW3tdjvWrVuH3NxcPPfcczQQiIxHFMoJ\nGQm9Xo8HH3wQTz/9NL71rW+J9eTCodGamhoUFhZCq9VCq9UiIyND9rtTVyIMPnI6nSgsLAyqXuL9\nCTujQrmL2+0esqxBKFfJyMhQfEs8xhgaGxtx6dIlFBcXK/4cRF9fHyorKzF16lRxZoDX64XVahV3\n0oHLHX8SEhKgUqmCOhQKd3qCpX68oaEBq1atwoYNG/CjH/0oaP9mEjJGFMoJGa4333wTe/bswc6d\nO69YY8xxHE6fPi2G9NbWVsybNw9arRalpaWYPHlyUHzg9Pb2wmg0IiUlRXG18kLtsRDSOY5DWFgY\n+vr6UFxcjPj4eKmX6FdC286YmBiftgOVq0uXLqG2thYFBQVQqVRX/LrBHX9CQ0MHhPRguGvC8zxq\na2vh8Xgka2U5UhUVFXjsscfwyiuvYOHChVIvhxApUSgnZLi6u7sRHR09ohDjcrlw5MgR6PV6VFRU\noK+vD4sXL4ZWq8XSpUtl1xOZMYbW1lZcuHAhKDpwjJUwwdHr9SImJgZWqxUhISFBF8aGSyhpCGTn\nHKkIdwPMZjOKiopGfDfA4/EM6PgTGhoq3l2Jj4+X3fvC7Xbjiy++wOTJk4PiDh3P8/jTn/6E9957\nD/v27UNaWprUSyJEahTKibRefPFFPPTQQ+js7FR8FwTgcrA/ePAgdDodDh8+jPDwcJSUlECr1WLB\nggWSlhEI9dTCtMpgvn0/HFcqVxHCmMViEXukC4dG4+LignJnWRip3traiqKiIsUfcPR6vTAajYiI\niMDMmTN98poNbss5ceJE8eIt0L3zBxMutnJzc5GYmCjZOobL5XJh48aN8Hq9eOWVVyTt5ESIjFAo\nJ9K5ePEi1q5di+rqapw8eXJchPL+GGPo6uqCXq9HeXk5PvvsM0yZMkWcNHrdddcFbDfObrfDZDKN\nm3pqoea2qKjompNI3W63eGjUbreLPdLVajViY2NlvyM53g6v9vT0wGAwIDMzEykpKX57HJfLJYZ0\nu92OiRMnDuidH6iQ3tLSgosXLwZNN5n29nasWrUK3/rWt7Bx48agvMglxE8olBPp3HHHHXjiiSdw\n++2348SJE+MulA8m3G4XQvoXX3yBmTNniiE9JyfH5x9gjDFcuHAB7e3t0Gg01wyowU4oVwkLCxt1\nQBV6pJvNZnR3dyMqKkrs7OKrHum+IgTU8dBrHQDa2trQ2NiIoqKigLeydDqdA0L6pEmT/DrgSjhk\n7nK5oNFoguJi69SpU7j//vvx3HPP4T/+4z+kXg4hckOhnEjjb3/7G8rLy7F9+3ZkZmZSKB8Cz/Mw\nmUziodFz585h1qxZKC0txfLly5GSkjKmD3rhwF9UVJTPbvHLmT/uBjDG4HA4xDDW29uLmJgYJCQk\nIDExUdLOF62trTh//rwkATXQhIAqdAqSQ3vDvr4+8X3R3d2NiIgI8Q5LTEzMmH93KysroVarg6K3\nPGMM7777Lnbs2IE9e/YgLy/Pr4938eJFrFy5Eu3t7QgJCcG6deuwYcMGvz4mIT5AoZz4z0033YS2\ntrav/PNnn30WW7Zswccff4z4+HgK5cPk9Xpx4sQJMaRbLBYsWLAAWq0Wy5Ytg0qlGvaHs9CfOicn\nB0lJSX5eubT611P7+24AYww9PT3iTrrT6Rww+j0QtbPCBEehA4fSzwa4XC4YDAZZB9T+A64sFgt6\nenpGfYdFuLgMlmmkHMfh6aefhslkwttvv33VDji+0traitbWVsyZMwfd3d2YO3cu/vrXv6KwsNDv\nj03IGFAoJ4FXWVmJG2+8Uax/bGpqQmpqKj777DO/1oAqTV9fHw4dOgSdToeDBw+C53ksXboUWq0W\nixcvHrK+1O12o76+Hg6HAxqNRvEHrHxRrjIWPM+ju7tbDOlXG/3uC0I/biW2shyK1WpFVVVV0Bxw\nFAx1hyU6OloM6VFRUUO+dkJnpGCpH7fb7Vi7di0KCwuxZcsWyS4Qb7/9dqxfvx4333yzJI9PyDBR\nKCfSo53ysWOMwWq1oqKiAjqdDkeOHEFcXBxKS0tRWlqKuXPnorGxEatXr8ZPf/pT3HnnnYoPbHI8\nvNq/R7rZbAbP82IHj4SEhDGFls7OTtTV1V2zH7cS9L/7ESwDcq5GmEIrhHSHwyGWQanVakyaNAn1\n9fXo6+uDRqMJirsf9fX1WL16NR544AH84Ac/kOzvTWNjI5YtWwaDwaD4Fq8k6FEoJ9KjUO57Qr9x\nnU4n9kj3er34zne+g+9///soLCxUbA15IMtVxorjOLH9osViEXukq9XqYffC5nkeDQ0NsNvtKCoq\nCtrJq8PFcRyqqqoQGhqq2G4yQhmUxWJBV1cXrFYrIiMjMX36dKjVatlfhJSXl+MXv/gFXnvtNcyf\nP1+ydfT09KC0tBSbN2/GihUrJFsHIcNEoZwQJXM6nXjwwQfR2tqKTZs24fjx4ygvL0d1dTUKCgqg\n1Wqh1WplW4s7Uh6PB1VVVZg4cSJyc3ODLrD1H1hjtVoRFhZ21R7pQj11QkICZsyYoYjX8GocDgcM\nBgNSU1ORnp4u9XL8Tuiln5WVhYiICLEmXTirIFzAyaUMjed5vPTSS/j73/+Offv2SXqHyuPx4Lbb\nbsMtt9yCjRs3SrYOQkaAQjkhSlVVVYW77roLq1atwr333jsgsHEchzNnzoiHRltaWjBv3jyx3CUp\nKSnoAp5QruLv/tSBNLgX9qRJk8Qg5vV6UVNTE3T11KPV1dUllufEx8dLvRy/a2trE7vnDL7b0/+s\ngsVigcvlQnx8/IByl0BzOp144IEHEBISgpdeeknSCwXGGFatWgW1Wo1t27ZJtg5CRohCOSFKJdw6\nvu666675tW63G0eOHBFLXfr6+rBo0SJotVosXboUsbGxAVjx6ARTucpYCR08Ll68iN7eXiQkJCAp\nKemqhwODHWMMDQ0NsNls46I8hzGGuro69Pb2oqioaFj14zzPw263iyFdOFAshHR//8za2tqwatUq\nrFixAhs2bJC8NO7QoUMoKSlBcXGxuJYtW7bgG9/4hqTrIuQaKJQTci0PP/ww3n//fYSHhyM7Oxs7\nd+5U/EG67u5ufPLJJ9DpdDh06BAmTpyIkpISaLVaLFy4UJKduKEEe7nKSHk8HhiNRkRGRiInJ2fA\nICPhcKBQ7iL3uuPh8Hg8MBgMiImJQU5OjiIvOvrzeDyorKxEfHw8srKyRv18+x8otlgs8Hq9UKlU\n4oFiX4b0zz//HPfffz+ef/553HLLLT77voSMQxTKCbmWjz/+GMuXL0dYWBgeffRRAMCvf/1riVcV\nOIwxdHV1oby8HOXl5Th27BiSkpLESaOzZs2SJAwrsVzlaoTnO2PGDCQnJ3/l31+tR7pUJQ1j0b+e\nesqUKVIvx+/8+Xw5jhsQ0nmeHxDSRzNsiTGG//mf/8Hvfvc77NmzB7m5uT5dMyHjEIVyQkbiL3/5\nC9599128/fbbUi9FMowxnD9/Hnq9HuXl5Thz5gxycnLEkO7v6aCMMVy8eBFtbW0oKioKin7NY8EY\nQ3NzM5qbm4esL74SoaRBqEn3eDxQqVRij3Q5TL28EqEf90iebzBrb2/HuXPnUFxcHJDny3EcrFar\nGNIBDAjp1yqZEQYCVVdXY/fu3eOixp+QAKBQTshIfPOb38Sdd96JH/7wh1IvRTZ4nofJZBIPjTY0\nNGDWrFkoLS3F8uXLMXXqVJ+VHXg8HphMJoSHh4+LchWh/V9ISAjy8/PH9HwH75YyxsSQrlKpZNH7\nmud51NbWwu12j4tppIwx1NfXo7u7G0VFRZJdKHm9XrEtp9VqBQCxHl2lUg1439lsNqxZswazZs3C\nr371K8X/DhISQBTKCQGAm266CW1tbV/5588++yxuv/128X+fOHEC7733nuJrW8fC6/XixIkT0Ol0\n2L9/P8xmMxYsWIDS0lIsW7YMCQkJo/r52Ww2VFVVXbF8Q2l6e3thMBiQnp6OtLQ0n39/r9cr7pZa\nrdZR9Uj3JafTCYPBgKSkJEyfPl3xv2NCvXxsbCyys7Nl9XyF1pwWiwU7d+7EgQMHsHDhQsyaNQuv\nvPIKHnnkEXzve9+T1ZoJUQAK5YQMxxtvvIGXX34Zer1e8eUSvtbX14fDhw9Dp9Ph4MGD8Hq9WLp0\nKbRaLW644YZr/jzHW7kK8GU5g0ajCVjnm8E90idOnCiWugzVI92XLBYLqqurkZeXB7Va7bfHkYue\nnh4YDIagqZdva2vDK6+8gr/97W8AgOTkZGi1WpSVlcnq4DchQY5COSHX8s9//hMbN27EgQMHkJSU\nJPVyghpjDDabDRUVFdDpdDhy5AhiYmLE/ujz5s0bcAu/s7MT7733HkpLS5Gbmyt5qzV/43keZ8+e\nFcepS1n37XK5xFIXoUe6cGg0JibGJ7ukjDFcuHABHR0dKC4uls0QHH/q6OhAQ0MDioqKEBMTI/Vy\nronnefzhD3/ABx98IA4E6ujoQEVFBfbv349jx44hOTkZH374oeJ/PwnxMwrlhFxLTk4OXC6XOKBl\n0aJFeOmllyRelTIwxtDW1gadTge9Xo+TJ08iPT0dpaWlmDx5Mp577jls3LgRq1evlnqpfud0OlFZ\nWYmkpCRkZGTIrjRA6JFuNpvR09ODqKgoMaSPpkc6x3EwGo3i+QClBzqh37rdbpe0fnwknE4nNmzY\ngIkTJ+KPf/zjFXfEL126NC4GWBHiZxTKCSHywRjD2bNnsXnzZnzyySeYNm0aMjMzodVqodVqkZmZ\nKbuw6gtdXV04e/Ys8vPzkZCQIPVyrokxBofDMaBHemxsrFiTfq0e6UK9/LRp05CamhqgVUtH6C8f\nHR0dNP3W29rasHLlSnznO9/BT3/6U8VfNBEiAxTKCSHyYbFYsGbNGqSnp+P5559HWFgYvvjiC7Gz\nS0tLC+bMmSO2X0xKSgqKgHMlwu6p1WpFUVFR0NbmMsa+MvZd6JGekJAw4HkJ5RuBrJeXUm9vLyor\nK4PqgPKJEyewfv16vPDCC/ja174m9XIIGS8olBNC5KG+vh533HEHnnjiCaxYsWLIr3G73Th69Cj0\nej32798Ph8OBRYsWQavVYunSpYiNjQ2akO52u2EwGBAXFye77htjNdTYd5VKBZfLBa/Xi+uuuy4o\nyjfGqrOzE/X19UFzAcIYw969e/HHP/4R77zzDmbOnCn1kggZTyiUE0LkweVyobW1FZmZmcP+b3p6\nevDJJ59Ap9Ph0KFDCAsLw9KlS1FWVoYFCxbI9uCg1WpFVVUVcnJyxsXhYafTiTNnzoglEIwxcVBN\nQkKC4npdC3dAbDYbiouLg+ICxOv14qmnnkJdXR12796NuLg4qZdEyHhDoZwQpfjnP/+JDRs2gOM4\nrF27Fo899pjUSwooxhguXbqE8vJylJeX49ixY0hMTBRLXWbNmiX5MBqhvWN7ezuKioquWXutBHa7\nHSaTCdnZ2eIFyOBhNSEhIWKpi0qlCur6Za/XC4PBEFT141arFWvWrMGcOXPw9NNPK+4iiZAgQaGc\nECXgOA65ubn497//jfT0dMyfPx/vvAXv5ZAAABOjSURBVPMOCgsLpV6aZIR2e3q9Hnq9HmfOnEF2\ndrYY0gPd8cPr9Q6YRhrMwXO4mpub0dzcfM3+8m63e0BIF3qkq9VqxMbGBs3PSjjAmpGRgZSUFKmX\nMyy1tbVYs2YNHn74Ydx5551BcRFBiEJRKCdECY4cOYKnnnoK//rXvwAA//3f/w0A2LRpk5TLkhWe\n51FVVSUeGq2vr8d1112H0tJSLF++HKmpqX4LJN3d3TAajcjIyMDUqVP98hhywvM8qqurwfM8CgoK\nRrzz6nQ6xUFGdrsdERERPu+R7mvBVj8OAP/+97/xy1/+Eq+//jrmzp0r9XIIGe+G9YdN2vu9hJBr\nam5uxrRp08T/n56ejmPHjkm4IvkJDQ2FRqOBRqPBhg0b4PV6cfLkSeh0Otx77724dOkSFixYIA4y\nSkhI8En4a2lpwcWLF4NmWMxYCf3Wk5OTMW3atFH9DCMiIjB16lTxAkbokd7Y2Iienh5ER0eL5S6j\n6ZHuS4wxNDY2wmw2Y86cOQgPD5dsLcPF8zx+97vf4R//+Af+9a9/Bc2uPiGEQjkhRIHCwsKwcOFC\nLFy4EJs3b4bT6cThw4eh0+nw+9//Hl6vF0uWLIFWq8UNN9yA6OjoEX1/juNQU1MDjuMwd+5cyevZ\nA8FsNqOmpgYFBQVQqVQ++76RkZFIS0tDWloaGGPo7e2F2WxGXV2d2CNd2EkP5OFer9cLo9GIiIgI\nXH/99UFRZtPX14ef/exniIyMxMcffxy0bTgJGa+U/0lCSJBLS0vDxYsXxf/f1NSEtLQ0CVcUfCIi\nInDjjTfixhtvBGMMNpsNBw4cgE6nw9NPP43o6GhxF33evHlX3RF1OBwwGAyYOnUq0tPTZVlu4UuM\nMZw/fx5dXV2YM2eOX4NeSEgIYmJiEBMTg+nTpw/okW4ymeB2u8Ue6Wq12m871w6HA5WVlZg+fXrQ\nlCS1trbiRz/6Eb73ve9h/fr1in9fEqJEVFNOiMx5vV7k5uZCr9cjLS0N8+fPx549e6DRaKRemiIw\nxtDe3g6dTge9Xo+TJ08iNTVVrEfXaDTiLunbb7+NmpoaPPjgg4iPj5d45f7Xf7d45syZku8W9++R\nbjabwXEcVCqV2H7RF+0Ju7q6UFdXh8LCwqBpHXj8+HH89Kc/xdatW3HTTTf5/fHGezcoQkaBDnoS\nohQfffQRfv7zn4PjOPz4xz/G5s2bpV6SYjHGUF9fL4b0qqoq5ObmwuVywWw2Y8+ePUEzvXEsenp6\nYDAYkJmZKdu6ZI7jYLVaxe4uQo90tVoNlUo1okOo/evHi4uLg6J+nDGGd955By+//DLeeecd5OTk\n+P0xqRsUIaNCoZwQQsaqubkZ//mf/4kpU6aA4zg0Nzdjzpw5YvvFKVOmKK5UoL29HefOnQu6A6xC\nj3Sz2Qyr1YoJEyaIIT0+Pv6KO/0cx8FoNGLSpEmyuCMwHF6vF7/85S/R2NiIXbt2BawrDHWDImRU\nqPsKIYSMxf79+/HAAw9g27Zt0Gq1AC733T527Bj0ej1Wr16N7u5uLF68GFqtFkuXLkVcXFzQhnSe\n58UDlnPnzg2KaZX9hYWFISkpSRxkJPRIb2trQ01NDcLDw8WQLrxOQv34tGnTkJqaKvEzGB6LxYIf\n//jHWLBgAf73f/83oAOBqBsUIf5DoZwQQoZw8OBBPPPMM/jHP/4x4LBfeHg4SkpKUFJSgqeeego9\nPT04dOgQdDodXnzxRYSGhmLp0qUoKyvDwoULA9oxZCzcbjcqKyuhVqsxa9asoL2w6C88PBzJycli\nuZHQI72pqQl2ux0TJkxAX18fcnNzZVuiM1hNTQ3WrFmDRx99FN/97ncV8ToRQi6j8hVCiE9dvHgR\nK1euRHt7O0JCQrBu3Tps2LBB6mWNGMdxYIyNqN0hYwxmsxnl5eXQ6/U4duwY1Gq1WOoye/ZsWbZP\ntNlsMJlMyM3NRWJiotTL8TuhfryjowPJycmw2+3o7e0Ve6Sr1WpERkbKLvD+61//wlNPPYU33ngD\n119/vSRroPIVQkaFasoJIYHX2tqK1tZWzJkzB93d3Zg7dy7++te/jsuDYIwxXLx4UZw0evr0aWRl\nZYkhPS8vT9L6ZcYYmpqa0NraiuLiYkRGRkq2lkDhOA4mkwkTJ05Ebm6u+PPv3yPdbDajr69Psh7p\ng/E8jx07duDjjz/Gn//8Z0yZMkWytVA3KEJGhUI5IUR6t99+O9avX4+bb75Z6qVIThhRL4T0uro6\nFBcXi+0X09LSArY7y3EcqqurAQD5+fkBrUuWSl9fHyorK8VhRVfDGIPdbhcPjrrdbsTHx4vTRgPV\nnaWvrw/r169HfHw8duzYIYuuMNQNipARo1BOCJFWY2Mjli1bBoPBEDQ9nwPJ6/Xi888/F0N6V1cX\n5s+fD61Wi2XLlkGtVvslpAvhNDU1NaAXAlISJpIWFhaOqsc8z/Ow2Wwwm82wWCxij3Sh/aI/DsW2\ntLRg5cqV+MEPfoD7779/XLxOhCgUhXJCiHR6enpQWlqKzZs3Y8WKFVIvJyg4nU58+umn0Ol0OHDg\nANxuN5YsWQKtVoslS5YgOjp6zI/R1dWFs2fPjjqcBhvGGC5cuIDOzk4UFxf7bCKp0CNdCOkARt0j\nfSjHjh3Dz372M2zfvh3Lly/3xZIJIdKhUE4IkYbH48Ftt92GW265BRs3bpR6OUFJKJ84cOAAdDod\nPv30U0RGRqK0tBSlpaWYP3/+iEoZGGM4d+4cLBZL0AzHGSuO41BVVYUJEyb4vX7f4/GIIX0kPdIH\nY4xh9+7deO2117B3715kZWX5bc2EkIChUE4ICTzGGFatWgW1Wo1t27ZJvRzFYIyhvb0der0eer0e\nJ06cQGpqKkpLS1FWVgaNRnPF3VmPxwOj0Yjo6GhkZ2cHxXCcsepfopOenh7wxxd6pF+6dAl2ux3h\n4eHiodHY2NghS1G8Xi8ef/xxNDU14a233gqqwU2EkKuiUE4ICbxDhw6hpKQExcXFYvjbsmULvvGN\nb0i8MmVhjKGhoQE6nQ56vR4mkwl5eXnQarXQarXIyspCSEgIPvvsM/zyl7/Ezp07B/RbVzKhfryg\noAAqlUrq5QC4XJokdHbp7u5GZGQk9u/fj5KSEsyZMwc2mw133XUXFi9ejCeffHJcXDgRMo5QKCeE\nkPGC53lUVlaKh0YvXryIlJQUNDQ0YNu2bSgrK1P8QUGhBWV7ezuKi4tlO7hJaL/40ksv4eDBg6ir\nqwPHcfjGN76BRx55RLygIoQoBoVyQggZjzweDzZu3Aij0YgbbrgBhw4dgt1ux6JFi6DValFSUiKO\nmVeK/i0eCwoKgman+R//+AeeeeYZ/OIXv0BrayvKy8vR2NiIuXPnYvny5bjxxhvHzR0OQhSMQjkh\nhIw3ra2t+P73v49bb70VDz74oBi8e3t7cejQIeh0Ohw8eBChoaFYunQpysrKsHDhwqAeHOR0OlFZ\nWYmUlBSkp6cHxcUGz/P47W9/i/3792Pv3r0DBgJ5vV6cOnUK5eXlSExMxNq1ayVcKSHEByiUE0LI\neMIYw9e//nU89thjKCsru+rXmc1mlJeXQ6/X49ixY0hISBAnjV5//fUICwsL4MpHz2KxoLq6Gvn5\n+UhISJB6OcPicDjwk5/8BAkJCbIZCEQI8SsK5YQQMhIcx2HevHlIS0vDBx98IPVyRoXn+RGXbjDG\n0NTUJNajnzp1CjNmzBBDen5+vuzKQYQ1t7W1ybp+fLDm5masXLkSK1euxL333hsUu/qEkDGjUE4I\nISOxdetWnDhxAna7PWhDuS/wPI+amhoxpJ89exZFRUXQarUoKyuTvESE53lUV1eDMYb8/PwxD+oJ\nlKNHj+LnP/85duzYAa1WK/VyCCGBQ6GcEEKGq6mpCatWrcLmzZuxdevWcR3KB+M4Dp9//rkY0js6\nOjB//nxotVosW7YMiYmJAQvpQv14cnIypk2bFhQ7zYwx7Nq1Czt37sS+ffuQmZkp9ZIIIYFFoZwQ\nQobrjjvuwKZNm9Dd3Y0XXniBQvlVuFwufPrpp9DpdKioqIDb7cYNN9yAsrIy3HDDDX4bemO1WlFV\nVYW8vDyo1Wq/PIaveTwebN68GW1tbXjjjTdoIBAh49OwQnlwnOQhhBA/+uCDDzBlyhTMnTsXFRUV\nUi9H9iZNmoSysjLxMKnNZsPBgweh0+nw7LPPIjIyEiUlJdBqtZg/f75PDjI2NTWhpaUFs2fPDppO\nMWazGatXr0ZJSQl27Nghu7p8Qoi80E45IWTc27RpE3bt2oWwsDA4nU7Y7XasWLECu3fvlnppQYcx\nho6ODuj1epSXl+P48eNISUkRJ40WFRWNqAZcqG/nOA4FBQVBUz9uMplw99134/HHH8eKFSuCosyG\nEOI3VL5CCCEjVVFRQeUrPsQYw7lz56DT6aDX62E0GpGXlyd2dsnKyrriDrLL5UJlZSWSkpIwffr0\noAm2H330EX71q1/hrbfewnXXXSf1cggh0qNQTgghI0Wh3L94nofBYBAPjV64cAGzZ89GaWkpysrK\nkJycjJCQEFRUVGD79u147bXXgqZ+nOd5bN26FQcOHMDevXuRlJQk9ZIIIfJAoZwQQoi8eTwefPbZ\nZ2K5i91ux9SpU1FXV4dXX30Vc+bMCYodcofDgfvvvx9JSUnYtm0bJk6cKPWSCCHyQaGcEEJI8PB4\nPFi/fj1qa2tx/fXX49NPPwUA8dDookWLZHnIs6mpCStXrsRdd92FdevWBcVFBCEkoCiUE0IICQ4d\nHR34f//v/+HWW2/Fxo0bERISAsYYLBYL9u/fD51Oh6NHjyIhIQHLli2DVqvFnDlzEBYmbROxTz/9\nFA888AB+97vfobS0NKCP/fDDD+P9999HeHg4srOzsXPnTqhUqoCugRAyLBTKCSGEyB/HcVi+fDke\nf/xx3HzzzVf8OsYYmpubxUOjp0+fRkZGhliPnp+fH7C2g4wxvPnmm3jrrbewd+9eSQYCffzxx1i+\nfDnCwsLw6KOPAgB+/etfB3wdhJBrolBOCCFKZrVasXbtWhgMBoSEhOD111/H4sWLpV7WqHg8nhHX\nYfM8j9raWvHQaG1tLTQaDbRaLcrKyvw28dPj8WDTpk3o6urCzp07ER0d7fPHGKm//OUvePfdd/H2\n229LvRRCyFdRKCeEECVbtWoVSkpKsHbtWrjdbjgcjnFdvsBxHE6dOiWG9Pb2dsybNw9lZWVYtmwZ\nEhMTxxzSL126hNWrV0Or1WLz5s2yGQj0zW9+E3feeSd++MMfSr0UQshXUSgnhBClstlsmD17Nhoa\nGuhg4RW4XC4cOXIEOp0OFRUVcLlcuOGGG6DVarFkyZIRj7w3mUxYu3YtnnzySXz7298OyM/9pptu\nQltb21f++bPPPovbb79d/N8nTpzAe++9R+8FQuSJQjkhhCjV6dOnsW7dOhQWFuLMmTOYO3cutm/f\nLotSCrmy2+04ePAgdDodDh8+jIiICLGzy/z58zFp0qQh/zvGGD788ENs2bIFu3btQnFxcYBXfmVv\nvPEGXn75Zej1ekRFRUm9HELI0CiUE0KIUp04cQKLFi3C4cOHsXDhQmzYsAFxcXF45plnpF5aUGCM\nobOzU+yPfvz4cSQnJ4uTRouLizFhwgTwPI/nn38ehw8fxt69ezF58mSply765z//iY0bN+LAgQM0\nqIgQeaNQTgghStXW1oZFixahsbERAPDJJ5/gueeew4cffijtwoIUYwznzp2DXq+HXq+HwWBAdnY2\n2trasGDBAmzdulV2A4FycnLgcrmQmJgIAFi0aBFeeukliVdFCBnCsEK5tA1eCSGEjEpKSgqmTZuG\nmpoa5OXlQa/Xo7CwUOplBa2QkBBkZWUhKysLd999N3iex5kzZ/D+++/jiSeekGWtdl1dndRLIIT4\nEO2UE0JIkDp9+rTYeSUrKws7d+5EQkKC1MsihBAyEJWvEEIIIYQQIrFhhXJ5NFglhBBCCCFkHKNQ\nTgghhBBCiMQolBNCCCGEECIxCuWEEEIC6re//S00Gg2Kiorwve99D06nU+olEUKI5CiUE0IICZjm\n5mbs2LEDJ06cgMFgAMdx2Lt3r9TLIoQQyVEoJ4QQElBerxd9fX3wer1wOBxITU2VekmEECI5CuWE\nEEICJi0tDQ899BCmT5+OqVOnIj4+Hl/72tekXhYhhEiOQjkhhJCAsVgs+Nvf/oZz586hpaUFvb29\n2L17t9TLIoQQyVEoJ4QQEjA6nQ4zZsxAUlISJk6ciBUrVuDTTz+VelmEECI5CuWEEEICZvr06Th6\n9CgcDgcYY9Dr9SgoKJB6WYQQIjkK5YQQQgJm4cKFuOOOOzBnzhwUFxeD53msW7dO6mURQojkQhhj\nI/n6EX0xIYQQQggh41zIcL6IdsoJIYQQQgiRGIVyQgghhBBCJEahnBBCCCGEEIlRKCeEEEIIIURi\nFMoJIYQQQgiRGIVyQgghhBBCJEahnBBCCCGEEIlRKCeEEEIIIURiFMoJIYQQQgiRGIVyQgghhBBC\nJEahnBBCCCGEEIlRKCeEEEIIIURiFMoJIYQQQgiRGIVyQgghhBDy/9uxQxsAYBgIYqqU/WfuDAXV\ngdj4QeApxEQ5AADERDkAAMREOQAAxEQ5AADERDkAAMREOQAAxOZxf75cAQAAi/mUAwBATJQDAEBM\nlAMAQEyUAwBATJQDAEBMlAMAQEyUAwBATJQDAEBMlAMAQEyUAwBA7AJ4a/Mr49h4UwAAAABJRU5E\nrkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "CLASSES = {\n", - " 0: 'T-shirt/top',\n", - " 1: 'Trouser',\n", - " 2: 'Pullover',\n", - " 3: 'Dress',\n", - " 4: 'Coat',\n", - " 5: 'Sandal',\n", - " 6: 'Shirt',\n", - " 7: 'Sneaker',\n", - " 8: 'Bag',\n", - " 9: 'Ankle boot'\n", - "}\n", - "\n", - "fig = plt.figure(figsize=(10,8))\n", - "ax = Axes3D(fig)\n", - "\n", - "X = encoded_data.data[:, 0].numpy()\n", - "Y = encoded_data.data[:, 1].numpy()\n", - "Z = encoded_data.data[:, 2].numpy()\n", - "\n", - "labels = trainset.train_labels[:200].numpy()\n", - "\n", - "for x, y, z, s in zip(X, Y, Z, labels):\n", - " name = CLASSES[s]\n", - " color = cm.rainbow(int(255*s/9))\n", - " ax.text(x, y, z, name, backgroundcolor=color)\n", - "\n", - "ax.set_xlim(X.min(), X.max())\n", - "ax.set_ylim(Y.min(), Y.max())\n", - "ax.set_zlim(Z.min(), Z.max())\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.ipynb" "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.ipynb" new file mode 100644 index 0000000..a26ac25 --- /dev/null +++ "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.ipynb" @@ -0,0 +1,650 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 7.1 오토인코더로 이미지의 특징을 추출하기\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torchvision\n", + "import torch.nn.functional as F\n", + "from torch import nn, optim\n", + "from torchvision import transforms, datasets\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib import cm\n", + "import numpy as np\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "torch.manual_seed(1) # reproducible" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using Device: cpu\n" + ] + } + ], + "source": [ + "# Hyper Parameters\n", + "EPOCH = 10\n", + "BATCH_SIZE = 64\n", + "USE_CUDA = torch.cuda.is_available()\n", + "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")\n", + "print(\"Using Device:\", DEVICE)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ./.data/FashionMNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████▉| 26370048/26421880 [00:29<00:00, 1170434.36it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./.data/FashionMNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "0it [00:00, ?it/s]\u001b[A" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to ./.data/FashionMNIST/raw/train-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " 0%| | 0/29515 [00:01" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "4423680it [00:27, 610342.45it/s] \u001b[A" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 2]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMnFX5fuY+ey3bpfeWtrRdCpRSoBDuFwEVDGBEVFD/MRoDXlESTPzHhBi8JSrRmIgJUE00MYJEEbESMBgu5ZKGlpabgNQC7S7dS6e7O7f9fn+Mz/u9837fzM7szmXn53n+md2Zb7457znnO+c57zXieR4cHBwcOgHRdjfAwcHBoVa4BcvBwaFj4BYsBweHjoFbsBwcHDoGbsFycHDoGLgFy8HBoWPgFiwHB4eOgVuwHBwcOgZuwXJwcOgYxOu5OBKJdLxbvOd5kWqfN0LGdDoNADjhhBMAAEeOHAEATE5OgpEFfO3q6gIADAwMYHp6GgBw6NAhAECxWJxrE0Y8z1tS7YL5yhmPxzE4OAgAeP/99wEAhUJh1u91dXVJ/4yNjQHw+6JezDaWwNzlTCaTAIC+vj4cd9xxAHz5KO/k5KTIMjAwAADo7+8HAMzMzMh1IyMjc2mCoJlyzheJRAL5fL4h96pFzroWrP9VRCKlfgx7sLZt2wYA+NSnPgUAuP7662Wh6enpAeAvSnzAw/Dqq69iZmYGAHDSSScB8BeuRx55BD/60Y8AAHv37q2lyf+u5aK5oLe3F0BJ3q997WsAgFwuB8B/MHO5nLzX19cHAEilUgCA1atX48EHHwQAPPXUUwCA3//+981qbs246qqrAAC33norAGBqagpAaeHiRkJZtmzZAgBYtmwZ3nrrLQD+Yvbuu+8CAMbHx0XmVatWAQAeffRRAMBXv/rVpspSD9imgYEBWWC/8IUvAIDIprFy5UoAwGOPPQagNLf//e/SdPvwhz8MADh27FjT2hupZ3dzDKuE/v5+7NixAwCwdetWAEA0WjpdHz16VCY4dx4uYIlEAosWLQLgDyoXqbBx4O7d1dUlO/4TTzwBAPjsZz9brYnPe563vdoF8x3LG264QR7qb3/72wD8ybxs2TJ5WEdHRwEAmUwGALBz50789re/BeAvfn/84x/n1IZGMY8NGzbgO9/5DgB/k+ju7gZQGleOERelNWvWyHf5GV/Hx8flWo4/GTYXrrGxMdx2222zNUvQTIb1+OOPAyj1AceMG+zRo0cBAH/4wx/wmc98BgAQi8UAQOb42NiYzIPTTz99Lk0Q1CKn02E5ODh0DNp+JAw7bpF6X3jhhQCAhx9+OHA9V/pqehNea+8/X9x///1Yu3YtAODw4cMA/B02Ho9Lm/j78Xhc/uexie0nyNA0uHNNT09L+y+++GIAwObNmwEAL7/8coOkqg/JZFJ0UD/72c8A+EedbDYruzWvef755wEA99xzD9avXw8AGB4ebmmbK+Gb3/xmoC0cj3Q6LePJ1zfffBNAiU2RBXP8KTfgM2uOP49OW7ZswUc+8hEAwEMPPdR4geoAj4Hr16+XvxcvXgwAWL58OQDgK1/5irAnnijInOPxuHyvFXAMy8HBoWPQdobFnaxYLGLjxo0AgM9//vMAfIZx7NgxOTPv2rULQDmzIpPhvfi/viYWi83H6gYAOOusswAAa9euFabE3ZOMKZ1Oi65C60GAkk6L17MtbGsikZD2Unfwn//8JyAHv8c+qkcX0khkMhkcf/zxAHzm8I1vfANASbG+ZEnJSEk2wl34+OOPL2OcCwH33nuvKNvJtKjL6uvrC1jBaFCg/AAwMTEBwJ+zYddTf3ngwIG2MyvijTfeAACce+65Ms+y2SyA8vGhAv6iiy4CABw8eBBASd/Fed4KOIbl4ODQMWg7wyIzKRaL+MAHPgAAuOKKKwD4DCOVSskqfuWVVwIAfvWrXwEo7YTU71gG1dvbK7qFycnJebf1sssuk/ZQV8H7U45sNovbb78dAPDOO++UybFy5Uoxe5N1cfdNpVJiNTvzzDMBlHQHQMldgKyEv/fxj38cQPsYlmZ9mmkApfa+9957AHyWSdZZLBYDvmjtxq5du8TF4tprrwUAPPPMMwBKDJoykCVqNw4yf17DcZqYmBCWSfCab33rW02TpV7s27cPQLlOlRZsykm9FeAzSK2fJbtsBdq+YLFTAODss88GAKxbtw6A34nRaBSPPPIIAOCMM84AAPzgBz8AADz33HPYs2cPAGD//v0AgHPOOUfu9+STTwIo+fzQtD5XcJEoFAplCy3guyCMj4/j7rvvBgB88IMfBOAvQPfccw+++MUvAvD9qajgjMVicgz58Y9/DAC45ZZbAJQmBe/PhZdK96GhIbz66qvzkmsuiEajgY2CfUJHyzBEIhH5Hh/uhYC77roLAMS37O233wZQOiLyAWbf88gO+DLzGsqUSCTkOh4FaTxq5QM+G3i0y+fzsokmEgkAvk/ZCy+8ILLwesodiUTElaMVcEdCBweHjkHbtjjrznDllVdi+/aSryNXc3qKDw0NYWhoCADw7LPPAgBef/11AKVj33nnnQcA+NjHPgbAd9h89tlnRTmdzWbx3HPPzavNNO0eOHBAdiNtxgb80AwA+Otf/wrA331POeUUOcI98MADAIBrrrkGQGlnfuGFFwD4yn0eu3p6eoTF8EhIBnDeeee1hWH19vaK7DwWcdedmZkp24E1otFomcvAQoB2RaErzXe/+135nMyK19CxcmpqShgVX6mw1m4q/PtPf/pT02SYK6i2yOfzMlacYxzXffv2CeuiLGRVqVSqpcYTx7AcHBw6Bi1lWNVW4jvuuAMrVqwoe49KykKhILou7oBkYzMzM8JMyLq4E37pS1/CiSeeCMDXP80FjB2jyVvrsCgTd13tRMfvcdddsWKF7Nz8HtlgJBIRpkhw91u1alWAYVH5edFFF+G+++6bs2xzRTweFxnC3EqquZrwPes82y5oAwL1Nv/6178AlBwqyTTI/DUDoSzUj1LRruWk28dCBN1z1q1bJ07IlNc6PgO+zpmfFYvFhgU/1wLHsBwcHDoGLWVY1czYo6OjwrDIHqgjicfjYvLn6k9GMzMzI85s559/PgB/V1+6dKnokeYDuinwNzOZjDAevsd2FQoFYX/MzkBLYCKRwLJlywD4zIrfSyaTYl375Cc/CcBPWTI1NSWWJp1FAPCZZqsRjUZFt6OtuUBp97UuJnrsyTgXMihLX19fIOyGVj6dyUFbu4Fy1sbwrYUIup8ACFgJtR6O48fPOH/j8biE6bQCC8au3N3dLR3EVz4Q4+PjctSiywM7MBKJyPU8Qurjk46snyvoGsHYqo0bN4pynYaB1157TX776aeflt/Xr8ViUR5u6+1dLBbLMj4AEGV6d3d3YFHgcXGumQ7mCz2ZtbKd/4fFRgIlublgLV26tMmtrB1sL2Wg79zWrVvlM7ZbP7zWrUXHf9I/ja4AhFbyLxToTcQSC8/zyuawfo1EIi1103BHQgcHh45By5XuOnYQ8HMirVy5UlZ5vpKC53I5YVs8NpFxdXd3y/HIOuq9+OKLcv/t27eLV2+9+MUvflH2OjAwgE2bNgEAbr75ZgDAJZdcAqCU+4hOocxUQBpdTcms+4bHDC3Hpz/96Tm1vdHgMTUWiwVcUyqxKqA8mwXlIzslO+H7CwGMnYtGozK/KLtO2sdjP49FOh6P/bHQ2FQYOD4a+hRjDWZ67JuZsM/CMSwHB4eOQcuV7jakhQrm5cuXi9uAVqgDpZ2YuigdeweUZ0CwqYh//vOfSwpjbYafL0ZHRyVrBNkg4yA9z5MdmQzC6ngABFwCZmZmyhgl4DMP6tAWAjQLrmRE0e9b9wbA7w86Hy4kZkVQF6XHzMaNptNpeY8Mi3or5nQDfIa9kBHGjm3uOX2dDstqpS7SMSwHB4eOQUsZVjweD5h/qe/JZrMBXQ9Z2NKlS2UXpu6K16bTaWEy3OVo4bnpppvwwx/+EADEcjcf6NxVlIM7DS0lOu+WZSA68LcarK6LujD9WbVc8M0Ef2+uTp+e5wXCmRYCrA6Heqfh4WEZa2u+Hx0dlc/I7unCsGTJknkH27cS+vQR5hBcKYtuoVAQy30rMOcFy9JF7YNDH41Kk0DjL3/5C4BSvJ31MeLDMTw8XEbDAZR519rf47Vbt25taCQ526N/mx7RXLDCFmWtvAxbxAh+zx4htNnYGi1aDb1Qsb/DjhPVPrMyWJeCdsC2gUe6gYEBMfjQn44YGRkRVxoaSPTYc2yZTptYiEp4PQ9tdIL9GygnFa1csNyR0MHBoWMwJ4aljz317BYXX3wxrr/+egDABRdcAMB3Dn3//feFWdk0wpOTk7Ki8zhBpuV5XiA5H++TyWQkg0MjI+Wj0ai0jaxQGwPYJ9Y51PO8ivF3nueJQpu7dliq53ZD97tmjkA5Y6p0ZNQsk68cr3Yq3y27owFo7969OHDgAAB/XNjOZcuWybjT1UG7pDAukeXPFiKYBSWZTJa5nmhEo9HAvNVz0yZwbCYcw3JwcOgYzIlhhelPeL5fuXKlOFVyZyHLGRoaCuQLIjsaHByUcBMdXweUlO7cybjL0dTf29srpa9sMct8Po9zzz13LiJWhdZD2ZAFzTys/kbniSI00+L3rP5H/1670wrrHbZSRezZ3EfCcmQtNDA+9Y033pBsC5yX1Cn29/cHYjw5T3XmEYZ00fx/+PDhBaG3A4CTTz4ZQMlQRd2s1aFqJ2FChysxPpaxvM10w1l4M8XBwcGhAubEsM4991zccccdAPz8PwyZ0QG+NMfr8lU2nw53pieffBKf+MQnAEAyg9JSk81mA5aI0047Ta6hjoFsjSbm3t7egIWmWWCRhdHRUZHfMq3ZmIcuB6avXyh5o4Da2qJ1dYRmY7yHDQRvF3Q5ejoon3LKKQBKDItzm7oa5l3r6emRorCc6zrjLEH3hptuugkA8JOf/KTtzIq4/PLLAZTGxc7Tasxez3Fayhmm1kyGVfdMicViuOuuu4Ty2uhtrQDnkc4qqAHfDMwF5Xvf+558TsH1EfHRRx8F4NdR47FzcHAw4A6gH/xmVBcOO5ZpxbiVu9oxSnu6s/1hWQGq/XYroRXsVoawdCT2f30Nv8e50K7iDHrx+NCHPgTAryaTTqelXdw0mX1h8+bNodkdgFI1JxtnyE1t48aNsui1G1SZ5PP5QFLKasVCdJprHpVtAspmwB0JHRwcOgZ1MazBwUFce+21WLt2rdBAZkPgq3auIzPQFW/Jmqg8Z2mr++67Dx/96EcB+C4I3NF6e3ulMANrA+q6fnR1ILMhisWitGHNmjVlycoaDbKiWCwmbCvMK53vWU/5eDwuf1s3jWpls1oNzWKrHfuqwUYCLCTPdzKkF198EUBpDDmvbDvDnGh1+mQeL8nQNFNbKAyLz9jo6GiokQcoyVlpTGOxmDzLNC6wn5qRqNExLAcHh45BXQyrUCjg8OHDOHDgQJlCHIAovnt7e2VHogLyyJEjAErJ+MnEdGZG3pulr1gYlav/4sWLhZFQuUnFdKFQkF2Nuz//j0Qi0pahoaGymLxGI0yJGsY4KingtaKa19uyUvZe7YB2hrXGhVqgdX0cw4Xg1sC5RmdPOshmMpmyuDmgfDz4nk2jDPhMmWZ/6r5sReh2gLm9aEg4dOhQmVMwUD5/bRgVP0smk/jb3/4GALjhhhsA+GXqmqF8b/9McXBwcKgRdTGsXC6HgwcPwvM8sYowUwJX6rGxMSkdRAsdd6hUKlWWZQHwXRei0ah8j85szGR44MABsbRwB+O1+Xxedjnu2NwBly9fLk6k27Ztk8wQzUAYSwhjHtUYltUhUC7qCBYCtJ6wkqPrbLBB5AtBvhNOOAEAAuEpyWRS5ipZhraakanYcKx4PI4333wTgG/Rpr520aJFouvl6aPVYJ44bfWtlEE2nU7LuNssIYVCASeddBIAX3Y+v81gWHUtWFNTU9i9ezfuv/9+fO5znwPgux7Q3WB6elqOfVycuIAkk0k5RvAoqRWwpNCk5TpJGDuDR0j+Ri6Xk6Ne2HGRfjKHDh1qWP20akegMD8lS7HDrgs7NrJvFpIfls6kYVOO1AIdh8nx2LhxIwBg9+7djWxqXbBZRzgXu7u7ZR5TLaEfWs5DnRoZKLkw0J+QkRic1/F4XBa6di1YrDiuN35rOKBskUgkQDRoQMjn86JsZx/QR7IZcEdCBweHjsGcXIzvvPNO2Q1vu+02AL7ScmRkRJgOj3TcvZLJpDClMCc1ruJ85W6eSCQqmtAPHToUcKngDrF8+XIxT//mN7+Zi6ihCMtrZWMdNXSeLstKqrG1MIbVbqW7zjxgj7BaTttOHTtns1Bwl28nqNLgnKM6Y8uWLQFWwWsKhYKoNGzGia1bt+Khhx4C4DN/Xcyi3d79GzZsAOCrZJYvXy5jRNZH5nTNNdfgz3/+MwDfWMZ5zsIvgK8eOvXUU5vWbsewHBwcOgZ1L/OMu3r44YcBQF7p0HnnnXdKuA0dRrlyx2KxQK4r4vDhw7Ir0/xLfUAmk6mo88nn86Jv4O/s3LkTALB///6WF3DQOhobshKNRgNR+po5VsrysJB0WGQQiUQikC5ZK3Btm6mvisViAR0JsyG0E2RY7Hum4l60aJHMWeqgyJRGR0flFBFmcGAMIQ1GlPvYsWMS2vbKK680XpgaQMZ06aWXyntsn3bbAFCW6pmsWGdW5Xzn3KBbUjPgGJaDg0PHoG6GVSnK/LHHHgOAsvxTmzdvBlDu8rB69WoAfoZG7rwM9ekEhOmRaC0dGhoKOBNqx1b7Xpgl1P7OQtJhsbzZ0NCQhAzpoHagxLTYB2HttYHzr776atPaWyvI9sjWacUDfMsYWQXHacmSJaLrov6GTqHHH3+86Ims28fMzExZGbB24O677wYA/PKXvwRQGjPqEu0zrv/nNTw95fN5kYWO4j/96U+b1u6mav5efvnlwHvN9IVqJ/jw9vT0yIS2x4xoNFqxRp0+RtmUvJz4+l7tSk/CB3rHjh2iBqCcug6jTeusXTXon8RNzsZOtgP0lWLbuEgBftttiuQnn3xSUsZwzJlVRB//OTd4fHzzzTdF9naDLgj6GGdjAHXdQXrt89gYj8dlwWKmi2Ye8d2R0MHBoWMQqeeIEYlE2nseaQA8z6vq5ViLjGFuDax/mEqlxIxt2VQ0GhUFpnUm1TGRPHrwWLJr1y5RktaI5z3P2z6LDHMay2ruGHQrWb58eSCRHTNlvPfee4FiE7VmebCYbSz/e++abmrjBTWTJcMlc7BqjWajkXJWw4UXXgjAT17Iaua33nqrGBw4z8m6fve734nhbb6oRU7HsBwcHDoG9TKsYQDtt0HPHWs9z6saKv//QEbgf0POWWUEnJwdhNrkbLfVycHBwaFWuCOhg4NDx8AtWA4ODh0Dt2A5ODh0DNyC5eDg0DFwC5aDg0PHwC1YDg4OHQO3YDk4OHQM3ILl4ODQMXALloODQ8egrvQyLvg59Pqy11gsJmlWWJKMwb75fD6Q44ppOjzPCxSXtTmz6sBIDaE5cxpLBgV3dXVJsLPtA51axubiLxaLkk6Gr7pyUj2yNjMomHLG43EZR74yUDqbzZaNu37NZrNl4w6Uy1kPWhH8HI/HZS5Sdl19iuBn7ItoNCppc3j9XKNnapGzvZnwOwT2oUulUhKtfsEFFwAArr76agClklVM3m9Lmk1PT0smBiZA4yQpFAqSyeH1118HALz00ksAgAcffBD79+8H4OdUsoUfDGqKKbNFJOz/ulYi+4D5kK699lp8/etfL/sek9f19/fL9Uxwx8wGL730ktS0fOKJJwD45b3Gx8fl4WDf6WSIOg1xPfnAZitDFolE5AFctWoVAOCMM84AUMpccNFFFwHwc2ZxoWa6cMBPAMg6mHv27JECKExQ+PTTTwMo5YmzWTv0a1ja7GaB4/nlL38Z1113HQC/z5nPLpPJiFxMyqnzYr3wwgsAgHvvvReAX4/Q5tVqBBbkgmUfEp3Oxb5Wm4z6e/NJeKdZBQDceOONuPHGGwH4k5d5vnXtw7DKMXaH4qDm83lhWCeeeCKAUlZPALjkkktk8nz/+98H4NeBrJeVWOj+s32k+08zDqCUQoZtZ7bVffv2AShVYuGizYWKec112XNbC3BmZqYsA2ulttRTBzEMYYVCWQ2IRUFZ+WXDhg2SuI+LL1/7+vqkP5g+5/DhwyIbE9sxXQsXgkwmI0ka7QbUanCB7urqkn5lWiRmhp2cnJS/Oa48RWSzWZGB9+L3m7FgOR2Wg4NDx2DBMKxIJCIMhulpdbUdrv7UC3AH1qyFLEfrGHj95ORk3SxLpzYGgLPOOgsAcMsttwhDYjt0DnMe+7jzsO1aH6LrufE+3Jns0Wz16tVCwSnb7bffDsDf0fX19SDsO2FHErabbVy1apXIR8ahy5kzLbCt4p1KpYRZcbfmcYqVangPoPxoOB9mZY9agN/PfX19wrB4FNyyZQuAUnpjji3lJeNKpVKBatAcnyNHjohcTCHNvpucnJR7kYXwN4rFYkvYFvtCpzpmX1sd7NTUVKBWKMc3k8kEmBS/r6vtNAqOYTk4OHQM2s6wuNKnUils3LgRgK/Y4yq+aNEiSTtMUCeidR2WYY2MjIiu4K233gqk5p2tXdyBuVPefPPNAEqpi7njcKfkTpXJZOR7vIa6KW0JJIvkazwel52K7edrOp0W2ZjGlml7R0dHy3bnehCJRMr0RpbZAT7DIYPgmKxcuVKsfOwDssaBgQFRrLNNlHtiYqJMd6R/T1cVsrrHaDQ6b32k1YGxfxctWiTFGKiT5GsqlRI5qZ8kc5ienpZ7UCatk9QnBMCvsnzaaaeJzovzmlWlw9JvNwNWX5VMJmWOaeYJlMbJXq8ZGvuKz0Az62g6huXg4NAxaDvD4mq8ePFinHPOOQCAyy+/HABEr6CrKRPUI2SzWSl4YP1B9u/fj1//+tcA/NJZtUIzLFrttm3bBqBktrf1Bcnestms7LpWJ5DP5wM+S/y+/p591fo9yn399deLjDQ51wtaGG0RiLAK1JZJxGIxYRPW0rV48WJpL+9NXU8ul5Px4Xu6YrTVM2lW1CjmYdnC+vXrhU3wVTMJjq21YMbjcXmPTIn/53I5YSyW0XmeJ3OKritkp62yFlpLfCKRkHGh7Pw/lUoFZA8rnsJXXSKt0Wj7gsVBXLFiBU4//XQAvsKTvkqJREIefnamdsC0ZlStCOWkKRQKdU2GSCQiv3nmmWcC8P2M9GfWX+jo0aNy/OEA6kHWExrwB7dQKMiDwYeGVXM8zxMFKO95/vnnS7/xOFEv7AKlZbewkzKbzQYWSj60qVRKFM223bqqkF3sw1w09OI5j+o6oe9zUe3t7ZV7W6fJfD5fttAA/njmcjlRF9jjXywWk4Wc1/Oe2WxW5qxd2FsF/h7bdOzYMfnbHtWLxaI8R3xP9wnHj0VW61G91At3JHRwcOgYtI1hWWfMVatWYc2aNQB8ZkWmoT2K7W7X1dUlO4M9SiWTSfmdXC5X987MnYZOhHqXsYpfMqbp6WlhFVTWaqZlS6FrlsHdmQxEK/35N5kcvz80NCTVim215dlQqT/0McweZ7RyWYcVAT6bmpiYwAknnADAV7bTvSGTycixln2mjyetZBrs72QyKfJRgcx2a5WDNW7o422Yolm71wAoO9ZTThoxWs2w2Oc8ig4PD4sMHEf+PzU1JfPUjrk+xpNRsp+aYUBwDMvBwaFj0HKGZRWe3G0HBwcxODhY9pnedchuLHvJ5XKyonMn4/eSyWRAyV0rotGoxAtSd8XdVOtTwlwQCB2+AJTYBXctfl/v5GEKX/0/gIBeZPPmzfjHP/5Rdq9ad7VqCm77OXdkynT06FEZO8v+stmsMCqyZc2irLJeK/crQcc1hjHcWmDl4lxim4Gg0/LExIS4MVh2kc1mA/oe6vWSySSOHDkCwJ8b+vtkNjY8qVVuDew/9sU777wTaJOe79ZBWrNMOg5Td0Xm3Aw4huXg4NAxaDnDstYU7lDLli2THTssZQdZBt/TehC723IXSCaTZd+r17GSjIf6GDqr9vb2yu5sXQD6+/vLwoGAch2WlZusKJVKiT6D71FGwGcj/Iwy9vb2BhhZo3ZobbWzDKu/v1/eY3gQWXA2m8Vzzz0HALj00kvL2ss+1ddrvaT9PZ2SpVF6nrAxICtgm/j/1NRUQOdGFjUzMyPWULITbV3kWPGeOgyGYUj2edDB880E+5lzdGJiQtppnX1nZmYCwfpaZ2efq/mmmamGli9Y9ujEQVy7dm3Ab0W7APB71kQcj8cD7+lJr2Pwap0MpOU00+7cuROA74+1adMmUc5yMdJxgPa4yAWst7e3LF0Kr9fXAhAlLz8bHh6W7zH1zGuvvQaglLqER5b5PtDWtB92PGE7JycnsXr1agB+v7Pd4+PjklKFPnUc5+HhYZn8vF67qIRljLBtSSQS8zp22H46evSoLEJceHSsKK/nw62Pztr/Dig/anFcqFLgPNUxrmE+b7qdzToe2vtqUmDzd+n3rGGnWCyKnPYZbQbckdDBwaFj0FKGFYlEAo6f69atA1BiWPo6C7vzagWszpSgv59KpSSPTzwer4uBeJ4n8V47duwA4JugN23aJF745513HgA/yj+ZTAqV5m7NHUfHytk4Q53FgLs7f3/nzp0Sm0eGRfY3Ojo6L7ahd9pqBgrunmx3KpWS93T2AqDEIJgjyzrYzszMCFOx4xZ2JAxri87cOhdZ+btkVXoOsd3MJJHP54UN8Rq+amMI20mmpWMf+R6jLXbv3o23334bAAL31vO8Fcp37V5kDQ7aqdWOA2XSySwrOSI3tL1Nu7ODg4NDg9EShqV1I/yb+ovt27cDKDlCckXnLqMd0fged3PNVKyiVJuRqXfSOqJaoHfdQ4cOAYCYqQ8ePCht5SvDd7LZrLRN54ei/Do8A/CV2MViUdpPpkIH0r///e+yOzMMh6ytWCwGwmbmC2vy1rLo+DKd3hnwx2ZqakraabMY5HI5GXsyUP17lXbnmZmZgI5tvvKxf8lyAZ8F0TE3Ho/L3LGxcrod1oAQj8cDLJFGm4MHD4rSvZJuqNl/xmwCAAALnklEQVSwjGnNmjUSZmTrDmg3EsvC0+k0Tj75ZADAP//5z7LvOcdRBweH/2k0hWHZ1VtbzbgTMc81dT9LliwRnYC1Nmh9gA1A1eZjmyvc8zzRO+mspbPB5l2yVpPp6Wn5Te6U3CG1rswGPwPlOg4AZUGwtgCDzplOnZWVX+t95rKbheXL1/omWwmHerWRkRFpA5kSWZXO801Wql1WKpnPq+3IzQhd0SEktHQdPHgQAMQCqq3LZMA6WwN1UHbOJhKJgCsA+254eDjg8tKunO46WwrbYK3pOjMH2aV20qb+2Vr5m8GwGrZghU0o62MyMDAgSfquuuoqAH6ie53wTPtRAaXjh40WZ6fOzMwE4rn00ZAm5e7u7kASwFplscpa/VuW0msFpR3AXC4nR0Dr8R6LxcoWWvsbWl59jW5rvX5YdkLpNC+V3uODFo/HA57qvGZ8fFwWL5uyJJVKBRZBopoBoBkPNPuyUCjIA0hFPBfajRs3BuaDXrDskVcX1LBptLVvV5jBoZWw/btp06ZAPKSe0xy/sGSRPOLrakLNgjsSOjg4dAzmzLDsCq13IZvAjvFkGzZswBVXXAHAz3lFxpFOp+V6nbiO97HOodytNH21R6pisShHwnrcGmbLYqB/i4xDMxFbyou7UyKRCKRI5n2i0Wiokp6/Ua0I53x36UruDPp+YUcYWwyWSlsNsjAenfr7++U69kvYscgq2G1dwkZAszddgku3O5lMBry76a2vHV05nvqIqHNN6Xvr3GxzjXWdL/j7fDbXrVsn84/Q0RzsA44ZxzAej8t7zLbSTFbsGJaDg0PHYE4MKxaLBRLO67JM3G24Cq9fvx4AcPrpp+Pss88u+0xneLTmY/0/V2vuVjr/FFd07hbavB+WSL8RqLR7RKPRsjLeQLnDoY4PBPxdLJ1OBxTq1fJvEY2QqdJur2W0IUSxWCyguwhLdUxZmIlD55fiHLC6uzA0Uy8ClBtUAF8npTN+hBXI4HNAmbSe1F6vWbItY9aujKOcjz09PRUrgWs5bY4vPS/5/DVTFsewHBwcOgZ1M6xIpFQQgTum1Vd1d3fLbsOwG4Y5nHXWWfK3DWXo6uoKWJt0fiWdUwoo37XIUqz1SWcqnZqaqvtMXYlxRCJ+gQr2g3Z6tW4R2iHU7tY2C4UG2WF/f784HVrMV0+gv291Z0C4oyDba8ug6bGkPLS6kWXrArJ2LMN0hLZtui3zRZi81qo5PT1dMWA9mUwGHIF1u22eNjtP9TWNcvqtFWyDdhYNyydHWB2qdtmxzMxa9BuJuhYs+tCceOKJoWmDgZLrAh9iPnCcrKtXrw7QTZ21wVY+1snN2JnWRKxNrva4qJWi86moW+171i8lGo0GTNb6Guuywf/T6XRggeNmQMNEGBrp6xJ2FLTv6QeSBg2dcobXWMMDPceBYApo21/2b4tGyxsGzqmenp7AYqTjI7lRhcnJ8bTZNMJcUVoN/q5WmVCGsKwmNuUToeNjW5Hu2R0JHRwcOgZ1Max4PI7FixfjmmuuEdbE1ZjKu8WLF8uqbXfgYrEoOxdZhzWlAv7uRqaRyWTK/taf9fT0lDm4sZ1AuVPpXMp8VTPP8j3+lvZ0twpinWzPMkT2WzKZLCtPpl+5i4dhPmyjUlI8Lbc9AhBHjhyR5HWETtJn+0dXtebfNidUpTbw/7C/GwE91lZOHatp2YWOwLBuNrlcrszrHfCZ5XzYfqOhnz97+tGM0qpbtAMpx9iWdmsGHMNycHDoGNTFsGKxGAYHB3HZZZdJSI0urAmUdhOuxpYZ6FhCa/LVOw5ZFJ0VR0ZGJJbOOiKuXbs2EINIJJNJuddcUIsDqdXhheUzCmMxNrtjGPi9FStWNC3GzvO8ACPU7MbqE9mOrq4uyeZKdsG4Sj0OVhHb19dX5jKg7x2PxyvmNgszDswVYQ6y1jGZr7r8mu0nz/PKHGJ5PWWy4VRhBXXbBZvLTMeNWleLYrFYsciq7ks+72GnpkbBMSwHB4eOQV0MK5VKYcOGDTj11FPLzNsAygKQuUtqax1QXrCS1+sV2uqpWNzg7bffFnM4X3U5LZpm7c6ZTCaFpaXT6bqcD7V+J2xH1wHdQLD4pIYOfra7mN6xLOvkZ8zoWKmd84HuM+0oaD+37db9Y1nY9PS0jC9DkTjuS5cuDWS/0P1cC2NsFEOpFmxtxwdAoFDF5OSkfE5ZyDLy+bzMibC8X0S7sjVQBuqdtJVeZ0kByuctYZ28Ab/PtPtGW7M1FItFjI6OYnx8vCz6XkO7GdiHOBqNiqC26owuBMD0sbt37wZQUvAy7QcV+aeddpr8pnUD0KlrKylMa0G1zubEtPUVC4VCoEqyVr5aD3A98FzoaaTgws3jRjMQZmIPi9+zMXNHjx4Vz2ZmZuBxiL56gC8nj4/FYlEqVds+DFN+h6UqaZTvWTWjiq56HHZE4vds/+i6mVYRrzMetCtLA8Fx5Iar+17H4gKl+WCTEeoUSNY/jfO1GQuWOxI6ODh0DOpiWFNTU9i7dy/uuOMOyWs1NDQEoFSBGCjFE5FtcBXWzoZcha0z3bvvvotXXnkFAPDII48AgJSKAnyl/rZt2wBAijKEKQR5z0QiIddpdlMramFYtiRXMpkMKJN13iVr7te7t/bQ1/ceGBioyAbms4PpXZX/6/bq9tldVx+VGL3A419XV1dATsp03HHHBZTYOvayUvaC2dxM5gsbK0kmn0gkROVgU0FPTEwEZNAqD+tNrrN3hB2/WwFrEKOcOgbWsn8Njp0+xegkgICf4y6sbNt84RiWg4NDx6BuHdbY2BgeeOCBgC6KbKCrq0uyfPKVq/HSpUtlRWe6WDKtPXv2SAEAm8nS87yAsp56kKVLlwZYDq/p7e0VheeBAwcaWlXXZhPV1YsJ+xkQjMnSDMsqMnUMotWHNQKWsVhla7FYFDmtYj0WiwVi4zhu6XQ6YNomI8tkMlJJ20LHJ1onxmbreqxrjGZc1tmZcudyuUCIGVlYV1eX9Cev18zbnj6ayR412F6yRM2UK81l7UBs76NZFOXjPROJRMMrWTuG5eDg0DGoO1uDLoSpQcdOIFgEU/9v9SRhhRqqgb9NNhaLxQIWF20F0taeRu5e1p1D5/CitczqNQqFQiA6XxdkYN9YlwB9j0YyrEqOrZrd2D5luw8fPixjbrORAv4uy8KkdFGJRCLYt28fgGA+/DDmEeYKUK/1yV5vv6vvra3WbKN1Z9DB0Db0SIeucB5oJ1SgnLXZcKxmw7pr6FCxSnPL87xA3QQ9Zvyb14RZ6xuFhhWh0JOgkQ+Vha7H105wMFgxhMfSeDwu2Srswp3P5wMPoDbpW/81Tiodm9dIRCKRsvQgtip3mEe/NmFz8tojeSwWCxhV9HjZ1NFUAGcyGbmHVUo3IyuFfq2UleLYsWPivqH9CYHSsUq7cmjZ9FhbNUA1OZrtBU+52G7OtVwuF0icGVYrMYyEVCqo0Yxai+5I6ODg0DGI1EmtF0aI+TzgeV5V34ZaZST7ueCCCwD4Faz7+/vFzB+WsN8yDu3KwFg8vtKR9qmnnsLjjz9eS7OI5z3P217tgkgk4jEK37pTUDbt4UxWQQfQNWvW4OqrrwYAUaI/88wzAICXX35ZXFK2bt0KALjuuutE3l27dgEAXnzxRQC+AWVsbKws6wVQfhTVR9j/ZjyY1U8lEol4YZkf9KuWj067dKhcs2aNyMxx1OmCrbuHTuhHB2hWDucRemxsTI77ldQZbN9/Fd41yTnbNRqcm3RF2L59OzZt2gTAZ8ycB+l0Wtqrvd/5/549ewAAe/fuBeA7ftcbx1uLnI5hOTg4dAzqZVjDAP7dvOY0HWs9z1tS7YL/BzIC/xtyzioj4OTsINQmZ7vTXDg4ODjUCnckdHBw6Bi4BcvBwaFj4BYsBweHjoFbsBwcHDoGbsFycHDoGLgFy8HBoWPgFiwHB4eOgVuwHBwcOgZuwXJwcOgY/B90H6LcT1VnkgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 3]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMXGX5fs7cdnZ3ttvtdrtLaSmFsiBCRWi5gygWLwSiIl5Q4yUqQaMGJRHjPybEYNREJRoTMUHQROMFRURExComFcpFxAq1QEspl7Zbut3ufWZ25vfH8XnPO+85OzszO5edn9/zz+zOnDnz3c73Pe/dKxaLcHBwcGgHxFrdAAcHB4dK4TYsBweHtoHbsBwcHNoGbsNycHBoG7gNy8HBoW3gNiwHB4e2gduwHBwc2gZuw3JwcGgbuA3LwcGhbZCo5mLP89reLb5YLHrlPq9HH9PpNADguOOOAwAcPnwYADA1NQVGFvC1s7MTANDX14eZmRkAwIEDBwAAc3NztTbhULFYHCh3wWL7mUgk0N/fDwB49dVXAQD5fH7B73V2dsr4HDlyBEAwFtViobkEau9nKpUCAPT09GD58uUAgv6xv1NTU9KXvr4+AMCyZcsAAIVCQa47dOhQLU0QNLKfi0UymUQul6vLvSrpZ1Ub1v8qPM8fx6gH64wzzgAAvO997wMAXHXVVbLRdHd3Awg2JT7gUdi1axcKhQIA4OSTTwYQbFz33XcfvvnNbwIAduzYUUmT91ZyUS3IZDIA/P5+7nOfAwBks1kAwYOZzWblvZ6eHgBAR0cHAGDNmjW46667AAB///vfAQC/+MUvGtXcivG2t70NAHD99dcDAKanpwH4GxcPEvbltNNOAwAMDg7i+eefBxBsZq+88goAYGxsTPp87LHHAgAeeOABAMBnP/vZhvalGrBNfX19ssF+4hOfAADpm8bq1asBAFu3bgXgr+29e/3l9ta3vhUAMDk52bD2etWcbo5h+Vi2bBnuuOMOAMDGjRsBALGYL12Pj4/LAufJww0smUyit7cXQDCp3KSi5oGnd2dnp5z4f/vb3wAAH/rQh8o18bFisbip3AWLncurr75aHuovf/nLAILFPDg4KA/r6OgoAGBiYgIAcP/99+OnP/0pgGDz+81vflNTG+rFPE488UR85StfARAcEl1dXQD8eeUccVNau3atfJef8XVsbEyu5fyTYXPjOnLkCG644YaFmiVoJMP6y1/+AsAfA84ZD9jx8XEAwK9+9St88IMfBADE43EAkDV+5MgRWQeve93rammCoJJ+Oh2Wg4ND26DlImGUuEXqfeGFFwIA7r333tD13OnL6U14rb3/YnHnnXdi3bp1AICDBw8CCE7YRCIhbeLvJxIJ+Z9iE9tPkKFp8OSamZmR9l988cUAgFNOOQUAsHPnzjr1qjqkUinRQX33u98FEIg6s7OzclrzmsceewwAcNttt2H9+vUAgJGRkaa2eT584QtfCLWF85FOp2U++bpnzx4APpsiC+b8s99AwKw5/xSdTjvtNFx++eUAgHvuuaf+HaoCFAPXr18vf69YsQIAMDQ0BAD4zGc+I+yJEgWZcyKRkO81A45hOTg4tA1azrB4ks3NzWHDhg0AgI9//OMAAoYxOTkpMvP27dsBlDIrMhnei//ra+Lx+GKsbgCAs846CwCwbt06YUo8PcmY0um06Cq0HgTwdVq8nm1hW5PJpLSXuoMXX3wx1A9+j2NUjS6knpiYmMDKlSsBBMzh85//PABfsT4w4BspyUZ4Cq9cubKEcS4F/OhHPxJlO5kWdVk9PT0hKxgNCuw/ABw9ehRAsGajrqf+ct++fS1nVsTu3bsBAOeee66ss9nZWQCl80MF/EUXXQQAeOmllwD4+i6u82bAMSwHB4e2QcsZFpnJ3Nwc3vSmNwEA3vzmNwMIGEZHR4fs4lu2bAEA/PCHPwTgn4TU71gGlclkRLcwNTW16La+8Y1vlPZQV8H7sx+zs7P44he/CAB4+eWXS/qxevVqMXuTdfH07ejoEKvZmWeeCcDXHQC+uwBZCX/v3e9+N4DWMSzN+jTTAPz27t+/H0DAMsk65+bmQr5orcb27dvFxeLKK68EADz88MMAfAbNPpAlajcOMn9ew3k6evSosEyC19x4440N60u1eOqppwCU6lRpwWY/qbcCAgap9bNkl81AyzcsDgoAbN68GQBw/PHHAwgGMRaL4b777gMAvP71rwcAfP3rXwcAPProo/jXv/4FAHj66acBAGeffbbcb9u2bQB8nx+a1msFN4l8Pl+y0QKBC8LY2BhuvfVWAMBll10GINiAbrvtNlx77bUAAn8qKjjj8biIId/61rcAAJ/61KcA+IuC9+fGS6X78PAwdu3atah+1YJYLBY6KDgmdLSMgud58j0+3EsBt9xyCwCIb9kLL7wAwBcR+QBz7CmyA0GfeQ37lEwm5TqKgjQeNfMBXwgU7XK5nByiyWQSQOBT9vjjj0tfeD377XmeuHI0A04kdHBwaBu07Iiz7gxbtmzBpk2+ryN3c3qKDw8PY3h4GADwyCOPAACeffZZAL7Yd9555wEA3vWudwEIHDYfeeQRUU7Pzs7i0UcfXVSbadrdt2+fnEbajA0EoRkA8Ic//AFAcPqeeuqpIsL9+te/BgBcccUVAPyT+fHHHwcQKPcpdnV3dwuLoUhIBnDeeee1hGFlMhnpO8UinrqFQqHkBNaIxWIlLgNLAdoVha40X/3qV+VzMiteQ8fK6elpYVR8pcJau6nw77vvvrthfagVVFvkcjmZK64xzutTTz0lrIt9Iavq6OhoqvHEMSwHB4e2QVMZVrmd+KabbsIxxxxT8h6VlPl8XnRdPAHJxgqFgjATsi6ehJ/+9KdxwgknAAj0T7WAsWM0eWsdFvvEU1c70fF7PHWPOeYYObn5PbJBz/OEKRI8/Y499tgQw6Ly86KLLsLtt99ec99qRSKRkD5EuZWUczXhe9Z5tlXQBgTqbZ577jkAvkMlmQaZv2Yg7Av1o1S0637S7WMpgu45xx9/vDghs7/W8RkIdM78bG5urm7Bz5XAMSwHB4e2QVMZVjkz9ujoqDAssgfqSBKJhJj8ufuT0RQKBXFmO//88wEEp/qqVatEj7QY0E2BvzkxMSGMh++xXfl8XtgfszPQEphMJjE4OAggYFb8XiqVEuvae9/7XgBBypLp6WmxNOksAkDANJuNWCwmuh1tzQX809e6mOi5J+NcymBfenp6QmE3tPLpTA7a2g2UsjaGby1F0P0EQMhKqPVwnD9+xvWbSCQkTKcZWDJ25a6uLhkgvvKBGBsbE1GLLg8cQM/z5HqKkFp80pH1tYKuEYyt2rBhgyjXaRh45pln5Lcfeugh+X39Ojc3Jw+39faem5sryfgAQJTpXV1doU2B4mKtmQ4WC72YtbKd/0fFRgJ+v7lhrVq1qsGtrBxsL/tA37mNGzfKZ2y3fnitW4uO/6R/Gl0BCK3kXyrQh4glFsVisWQN61fP85rqpuFEQgcHh7ZB05XuOnYQCHIirV69WnZ5vpKCZ7NZYVsUm8i4urq6RDyyjnpPPvmk3H/Tpk3i1Vstvv/975e89vX14aSTTgIAXHfddQCAN7zhDQD83Ed0CmWmAtLockpmPTYUM3Q/PvCBD9TU9nqDYmo8Hg+5pszHqoDSbBbsH9kp2QnfXwpg7FwsFpP1xb7rpH0U+ykW6Xg8jsdSY1NR4PxoaCnGGsz03DcyYZ+FY1gODg5tg6Yr3W1ICxXMQ0ND4jagFeqAfxJTF6Vj74DSDAg2FfH3vvc9SWGszfCLxejoqGSNIBtkHGSxWJQTmQzC6ngAhFwCCoVCCaMEAuZBHdpSgGbB8xlR9PvWvQEIxoPOh0uJWRHURek5s3Gj6XRa3iPDot6KOd2AgGEvZUSxY5t7Tl+nw7KaqYt0DMvBwaFt0FSGlUgkQuZf6ntmZ2dDuh6ysFWrVskpTN0Vr02n08JkeMrRwnPNNdfgG9/4BgCI5W4x0Lmr2A+eNLSU6LxbloHowN9ysLou6sL0Z+VywTcS/L1anT6LxWIonGkpwOpwqHcaGRmRubbm+9HRUfmM7J4uDAMDA4sOtm8mtPQR5RA8XxbdfD4vlvtmoOYNy9JF7YNDH435FoHG73//ewB+vJ31MeLDMTIyUkLDAZR419rf47UbN26sayQ526N/mx7R3LCiNmWtvIzaxAh+z4oQ2mxsjRbNht6oON5R4kS5z2wfrEtBK2DbQJGur69PDD70pyMOHTokrjQ0kOi559wynTaxFJXweh3a6AT7N1BKKpq5YTmR0MHBoW1QE8PSYk81p8XFF1+Mq666CgBwwQUXAAicQ1999VVhVjaN8NTUlOzoFCfItIrFYig5H+8zMTEhGRzqGSkfi8WkbWSF2hjAMbHOocVicd74u2KxKAptntpRqZ5bDT3umjkCpYxpPpFRs0y+cr5aqXy37I4GoB07dmDfvn0AgnlhOwcHB2Xe6eqgXVIYl8jyZ0sRzIKSSqVKXE80YrFYaN3qtWkTODYSjmE5ODi0DWpiWFH6E8r3q1evFqdKnixkOcPDw6F8QWRH/f39Em6i4+sAX+nOk4ynHE39mUxGSl/ZYpa5XA7nnntuLV0sC62HsiELmnlY/Y3OE0VopsXvWf2P/r1WpxXWJ+x8FbEXch+JypG11MD41N27d0u2Ba5L6hSXLVsWivHkOtWZRxjSRfP/wYMHl4TeDgBe85rXAPANVdTNWh2qdhImdLgS42MZy9tIN5ylt1IcHBwc5kFNDOvcc8/FTTfdBCDI/8OQGR3gS3O8Ll9l8+nwZNq2bRve8573AIBkBqWlZnZ2NmSJOP300+Ua6hjI1mhizmQyIQtNo8AiC6Ojo9J/y7QWYh66HJi+fqnkjQIqa4vW1RGajfEeNhC8VdDl6OmgfOqppwLwGRbXNnU1zLvW3d0tRWG51nXGWYLuDddccw0A4Nvf/nbLmRVx6aWXAvDnxa7Tcsxer3Fayhmm1kiGVfVKicfjuOWWW4Ty2uhtrQCnSGcV1EBgBuaG8rWvfU0+Z8e1iPjAAw8ACOqoUezs7+8PuQPoB78R1YWjxDKtGLf9LidGaU93tj8qK0C5324mtILd9iEqHYn9X1/D73EttKo4g9483vKWtwAIqsmk02lpFw9NZl845ZRTIrM7AH41JxtnyENtw4YNsum1GlSZ5HK5UFLKcsVCdJpriso2AWUj4ERCBweHtkFVDKu/vx9XXnkl1q1bJzSQ2RD4qp3ryAx0xVuyJirPWdrq9ttvxzve8Q4AgQsCT7RMJiOFGVgbUNf1o6sDmQ0xNzcnbVi7dm1JsrJ6g6woHo8L24rySud71lM+kUjI39ZNo1zZrGZDs9hyYl852EiApeT5Tob05JNPAvDnkOvKtjPKiVanT6Z4SYammdpSYVh8xkZHRyONPIDfz/nmNB6Py7NM4wLHqRGJGh3DcnBwaBtUxbDy+TwOHjyIffv2lSjEAYjiO5PJyIlEBeThw4cB+Mn4ycR0Zkbem6WvWBiVu/+KFSuEkVC5ScV0Pp+XU42nP//3PE/aMjw8XBKTV29EKVGjGMd8CnitqOb1tqyUvVcroJ1hrXGhEmhdH+dwKbg1cK3R2ZMOshMTEyVxc0DpfPA9m0YZCJgyzf7UfdmK0K0Ac3vRkHDgwIESp2CgdP3aMCp+lkql8Mc//hEAcPXVVwMIytQ1Qvne+pXi4ODgUCGqYljZbBYvvfQSisWiWEWYKYE79ZEjR6R0EC10PKE6OjpKsiwAgetCLBaT79GZjZkM9+3bJ5YWnmC8NpfLySnHE5sn4NDQkDiRnnHGGZIZohGIYglRzKMcw7I6BPaLOoKlAK0nnM/RdSHYIPKl0L/jjjsOAELhKalUStYqWYa2mpGp2HCsRCKBPXv2AAgs2tTX9vb2iq6X0kezwTxx2uo7XwbZdDot826zhOTzeZx88skAgr7z+W0Ew6pqw5qensYTTzyBO++8Ex/72McABK4HdDeYmZkRsY+bEzeQVColYgRFSa2AJYUmLddJwjgYFCH5G9lsVkS9KHGRfjIHDhyoW/20ciJQlJ+SpdhR10WJjRybpeSHpTNp2JQjlUDHYXI+NmzYAAB44okn6tnUqmCzjnAtdnV1yTqmWkI/tFyHOjUy4Lsw0J+QkRhc14lEQja6Vm1YrDiuD35rOGDfPM8LEQ0aEHK5nCjbOQb0kWwEnEjo4ODQNqjJxfjmm2+W0/CGG24AECgtDx06JEyHIh1Pr1QqJUwpykmNuzhfeZonk8l5TegHDhwIuVTwhBgaGhLz9E9+8pNauhqJqLxWNtZRQ+fpsqykHFuLYlitVrrrzANWhNX9tO3UsXM2CwVP+VaCKg2uOaozTjvttBCr4DX5fF5UGjbjxMaNG3HPPfcACJi/LmbRau/+E088EUCgkhkaGpI5Iusjc7riiivwu9/9DkBgLOM6Z+EXIFAPvfa1r21Yux3DcnBwaBtUvc0z7uree+8FAHmlQ+fNN98s4TZ0GOXOHY/HQ7muiIMHD8qpTPMv9QETExPz6nxyuZzoG/g7999/PwDg6aefbnoBB62jsSErsVgsFKWvmeN8WR6Wkg6LDCKZTIbSJWsFrm0z9VXxeDykI2E2hFaCDItjz1Tcvb29smapgyJTGh0dFSkiyuDAGEIajNjvyclJCW37z3/+U//OVAAypksuuUTeY/u02waAklTPZMU6syrXO9cG3ZIaAcewHBwc2gZVM6z5osy3bt0KACX5p0455RQApS4Pa9asARBkaOTJy1CfdkCUHonW0uHh4ZAzoXZste9FWULt7ywlHRbLmw0PD0vIkA5qB3ymxTGIaq8NnN+1a1fD2lspyPbI1mnFAwLLGFkF52lgYEB0XdTf0Cl05cqVoieybh+FQqGkDFgrcOuttwIAfvCDHwDw54y6RPuM6/95DaWnXC4nfaGj+He+852Gtbuhmr+dO3eG3mukL1QrwYe3u7tbFrQVM2Kx2Lw16rQYZVPycuHre7UqPQkf6DvuuEPUAOynrsNo0zprVw36J/GQs7GTrQB9pdg2blJA0HabInnbtm2SMoZzzqwiWvzn2qD4uGfPHul7q0EXBC3G2RhAXXeQXvsUGxOJhGxYzHTRSBHfiYQODg5tA68aEcPzvNbKI3VAsVgs6+VYSR+j3BpY/7Cjo0PM2JZNxWIxUWBaZ1IdE0nRg2LJ9u3bRUlaIR4rFoubFuhDTXNZzh2DbiVDQ0OhRHbMlLF///5QsYlKszxYLDSX/713RTe18YKayZLhkjlYtUajUc9+lsOFF14IIEheyGrm119/vRgcuM7Jun72s5+J4W2xqKSfjmE5ODi0DaplWCMAWm+Drh3risVi2VD5/wd9BP43+rlgHwHXzzZCZf1stdXJwcHBoVI4kdDBwaFt4DYsBweHtoHbsBwcHNoGbsNycHBoG7gNy8HBoW3gNiwHB4e2gduwHBwc2gZuw3JwcGgbuA3LwcGhbVBVehkX/Bx5PYAgWDaVSkkaEr7HgFqdcoWf6QBpfs40JMwXVUMqmUMVhObUNJe6n0wxwrQ4OpuszZ7KPuTzecmBxiBomxusUjQyKFjPj64tAASpZwqFQihnGfs2OzsbqqSzFPvJdnd1dZXkqgfCla2A0uzBgL8O+Aww573NJlwpKulnazPhtwlsAYx0Oi2J9lkuiXmFBgYGZMNiwQYmOxsZGZEFzRxJXMRjY2OSCI+ZDZgNYOvWrfjTn/4EIEi3q8ujRaCimLL5ynPpe+oKv0BQbOSMM86QZHWsQ8d8SFNTU5IjiXUh//nPfwLwc6QxBfa///1vAEHyw0OHDoXyaEW1xb5fbT/L1YtkuzmfmzdvlvdYruvSSy8F4GfVsPX6WNpr9+7dMo9MeviPf/wDgJ+sspKSc1FZQeoNZmS4/PLL5QBh7U9m3Ni9e7ds0ty0mcNs/fr1kk6aFaCZB++FF16oe3uX1IbFhVWuzl0lbIPf1/nDF5Pwjvfr7+8HAFx77bV4//vfDyBIWsfqIel0uiR3N1Caq90yKz7QOrnf2rVrAQRVS7Zs2YIPf/jDAIAbb7wRQJAIUbOZWmG/H5XuhRssH17P8yRLJzdoVlvROcF5EuuisHxPZ6LlPW3aHd2WqPqO9eon/z722GMBAGeeeSYAv8Aq08lwrvmAJhIJYZV8gDnnXV1dMn/c/LhR7927t241MmsFNyWyqOeee076zo2K7QeCDZ3PANdtPB6X1DMcw0Yml3Q6LAcHh7bBkmFYnucJvSb91Glq59MHROlLuNOn02kRnSYnJ6uSrT3PC4lDTHD20Y9+VNgQ78kTy/M8OXX5fYoG+XxerrN6rVgsJsyE/eFpnc1m5cS/6aabAACf/OQnAfh1GRfDsKK+G/Ue50LXsWPOfia4I4NYuXKl9Ivl2TmGPT09ckqTlbDf5SoI6TbV0t+F+knWRzGXlZ9OOOEEYVZkmUyj3N3dLX0hu9R6Ks41S7kzDfGOHTtE/CrXl0aKg2wbE0p2d3fjrLPOAhAkjmR7U6mUXE9wfDo7O0X0WywDrgSOYTk4OLQNWs6wtJWNymkqtClTDw4OyolNSwSrd4yMjJTUSAMC1rJq1Sq8+OKLAHy9gU3NW2nbKMt/5CMfAeCfwmR6vCf1ONlsNsT0mDq4WCzKCUwWpith8zOeZpqJkKGwKhHZ3j333BOyttUT1tJJ9PT0COMgu+AJ+8orr8hc8jPqRSYmJoSdklnpe1v9ma7f2CjG4XmeMEi2iUxrcHBQ5sNWlZmZmZG2Uw+n6y9Sx8fvk5329PSIDqhWi9piwXZyvJcvXy7rnPNDA8vExITMH9c5xycWiwnbIhOt9jmrBo5hOTg4tA1azrCIeDwu1jGyh82bNwPw3QO46/OU5Qk1OzsrbIfWG+7wnudJOaUoJlYOnueJXoMJ98855xwA/gnJk4l6GN5b+xmxzVrvxveoO9B+Lfw9Wzk6mUzKezzFLrvsMgDAgw8+GCrLVE/MZ/nRdfU43hwLbSllu8mMx8bGhDnSbcPWY2w29FxbJjE0NCTjyz7QtWRgYCBkESbjyuVyOO644wAEY8B6jMlksqF6nkrA54ivAwMDMqdsL3VZ8Xhc/rbMt1AoSOkvopGVylu+YXHiEomEbAz061m/fj0An67ywSZl54BNT0/LJmBFo5deegl//vOfAfgbSrUiBX+T7eFmwfYC4QcylUrJ4uXGxc86OjpK+qvbqh1ObSFWvcDZ/02bNkmbuFFXi2rGg9fSfWNqakrEPW7W+pX9Y9u0YyXfoxhF/7NGiXwL3VdvWBxn7efG+WM7eVhGubDoe3Kj41hQrAfCBqJmpyrn7/HgnJ2dlQPHujxkMhkZHztOsVhM7sXxqYYYVAsnEjo4OLQNWsawrGNgMpkU5R2Vf1RWFwoFYR9UjmrPZDISewpMT0+XiGzVekfzt+gNzJNyeno6FK6hf9uyJ4oZ2WxWTiEqZPWJbkuaE52dnXLqsT90ZjzhhBPEncAqxhcLz/NCoRj69CULoShBlhGLxaQvVL7zPkeOHJETmGPHdmtXEjtXjWQg2qWG80Kn1vHxcemnZfnFYlEYp2bfgD8W7BfXMa9Jp9OyRlrtQKrDcawhSFd35rxwrvVa45rk9xo5V45hOTg4tA2WDMNKp9OipCQjiQrM5MlN+drzPNnteRKSGXmeJ7t/NSZ/nvQ8ERkTSHk/l8sJC+SpokNudDVnXs/28T2ezOxjMpmU37NBqF1dXdJ+6n34e+ecc47EqpG5NOKE473Zt8nJyZKAZt2mVCpVEhwLoIQ92jmxYzgfGqXv0cxOsz3AX2fsuw5sBnz2aMeAmJ6eFuU83XOouE6n0w1VTFcCPiu6T2wT54FsOpFIlKxT/f2pqSmRGvhevZm+hmNYDg4ObYOmMyzLrLibZzIZ0XdQf0DGoXd47t7c6bm76/d4qnd1dcnnOhVIpeBvkg0dPHhQPmPbeELx/46OjpAjJU+qXC4XciLUbgPU0+nTi/3hvUZGRkra2MhAU31/6+DoeZ6MN/vEcc9msyF9nA5F4njSqksGE9WXqODneiEq2J56G215ZnvZB63H499k9ezLxMSE/E0HTJtqR/92s62E2vkV8Nem1aeR+SaTSfnbsvh8Pi+Mk2FYjbQSNn3DsrSfEzYwMCB+WJZ2xuPxkB8WF08ikZDFYvP3aDeCalEoFEQEvOuuuwAEHviDg4OyeXGjYryYVtZzMetFYR8SbXSw+ZaoxN65c6f0d/fu3QCCeLZ77703JK7Vuvjt97V3ORezNiiwvfR45/dffvnlkOGBWL58uXzPbmbzpZKJaudiHvCoOeDhxA2Lyvc9e/bIe1RVcH1ls9mQ1z4xPj4uURY8NLmhx2KxeddBszYu+xzNzMzIeuWrfg75bFlxURuZrFjdCDiR0MHBoW3QVIYVZbamGLR+/XoRk3ha8UTSGRn4Hv/XJlfu/prR8P7VMi3tMMjEZH/9618B+Ep4skGyrg0bNsj32DaKdDxxUqlUiUc8EHYX0P0gw/vxj38soiCZFZ0Xjx492jBlu84TRVbBsc3n8zJPbKcW7bSoDgRj0dvbG1KyR2XiLBf53wgWYr3tOb5HjhyRflqP/hUrVsi4cAzYl87OThkDKt95jb6u1WA7VqxYEcoWoo0+82XP6O7uFrcNnT23UXAMy8HBoW3QdB0Wd3QyC8aVnX766aJsJ9vQ+bKjdCiAv6vzb16jf4MuCVpvUCl4evKEZHsOHz6Mp59+Wu6r+5PL5UT3ZJXSxWJR7kkDA09tHRpBvRhPuG3btoki34aA5PP5UFxYrSiXM8qa79PptDAG6nt0bndeT9bMvo2Pj4uOzrY7SrHeCDZl2ZueF/aPbHF6elqyNNCxWc+rdSrVymwbtsPx0QagZivbLTgG69atk+fH6rKicsNpIwozN9icWY2AY1gODg5tg6brsHgSUe695JJLAPgOkGQd1rwaj8dDOhTql9LptNyTp7i2LtIZNZlM1my9sGbaXC4nv8nPKP/ncrlQHiReMzc3J6ezzX0Vj8dDegKeZocPHxbTus3k0OgT2rIRsqPBwUGZQ84X+5lKpUqsT7rdxWIxFMIRVVCjksIRi4VmObSBRdSMAAAKoElEQVSCWWffVCol69LqnWKxmFzHe1lrGhAEgJNpTU1NLRkdFudzzZo1JWsRKM36audDB+1TIrBZGxqBpmxYmk7SNHzeeeeVvA4MDISivvlwZ7PZkBihU7zaZGRaoU0av2zZsqr8Q7TCOephsaItF+rExEQonbNexFGbMeA/tNbXTH9mS35FibeN2MTmu6eO0ufDqR96tp0bls7eYGPVWp1qRYMHg85EodNsA8H8ZDIZWYc8QHUkAMGDlIr8cgkLmw3t88i1adef9szXxi5eS7cWpsxuJJxI6ODg0DaoG8OKKpnEV55Cy5cvx0knnQTAr4MGABdccAGA0oITUUU4rcc1Fb6Tk5MlMU/6e+l0WtwPenp65NRcCJUofq0rhX7fJvDT6ZNt8VGiUCjIPa3rQ5SXfrk2NRIc676+vtDvURSem5sLZaNgKahMJiNzaB1OW62ABgJRUJdt43xExdPZ/GaanUQZHIDoZ6RVoFjf29sra1l7uAOlbeRnOmkk1/epp54KIHgmGpH+2TEsBweHtkHNDMtGdusTw+7UdF0YHh6WgqCUd7UrAk8kmytIhwZYJ0mtTLd6pbGxMblnV1fXgtkALCopwcRTSDvNRbkzsH02QwGRSCRCpnEq3SsNRWm0Ylq3TbtTsC9kUVHMQyvvqaOknqfVKZKB0gy2QKAoZxZcINC5kSl1dHSEXGk0q+DfvJc2mDQz31c5UMerHbCt64LneSG3Dy1hcAyon672OasGjmE5ODi0DWo62uLxeCh3E1lFd3e3nJjUUbBU9/nnny9yri3xrZ3wrLUim82Gsonq/OFW1tangWZt9dQXzGfm1ZlNyQo1S6HujW3UZb4IMg/LUpqNKEupfrWhR1qHyP5Zl4VCoVA2f3ozmYZuk3YUBQKLXldXl6xj9lfrWNl2m789m81K/3gvMo9cLhcZjtRM8HeZuVazfyup6Ou1iw7BftocaI0ojlL1kxCLxbBq1Sqcf/75AMKpYVOplGwgrBJy0UUXAfDppxXfqGzv7e0tScmqkc/nQ0puvdhsRgEtflCp2NPTU9ekaWyPTQmjPZyjEvazbxQX7SIBwm4d3d3dFRsMGgVt4gb8flOc4JwwVXN3d3dJOmAgEBc7OjrkumeeeabkmqUAKxrqepncuBj50NvbK/PPh1OnTOYY2JTQGq1SuvN3GQmiky7ag6Szs7PEtxEodS/iWOm6i0AwFvWEEwkdHBzaBlUxrFgshnQ6jeuuu04qENvSQN3d3SGvaLKcdDodcoBk2tioEkg6apwKPVsP0PO8EFvTdJX3HR0drdrTvRJzO9vF07Snp0dOHI6JVrZaVw9idnZW2mqdZPv7+7Fv376q2l4P6NPfFmnIZDIl3v1AoKCemZkJiQd6TqzBQhsXLBpdfAKIVhJr5sv+8ZXXT05OhkQl7dlvJQVdL7PV7gxsm2ZYNumizldmDWk6BpbvMaaQzqgvv/xy3dvtGJaDg0PboCqG1dnZidNPPx3vfOc7RZ7XOX4A/0RkoQQyBZ121hZC1aZ8q9jV2Q15utnim52dnSVZAgCUnIi1FKHQfZkP9sSx+jMgHOKQz+dDWQ+i9Bo2ZTBPrlbChiBNTU2F9DacE10CzOq+JiYmJIzF5tHSbLnZYHu5vuiKsHbtWpkrGkOsQQFAyFlY53AjG+E9l0K2BureyJh1m6wRRffTujFpFxZ+n3tDI+AYloODQ9ugaoa1ceNGrFmzRk5OWgS0pY6nqc2mGbWLa4ZhXfn1tTydmJtIW6FskLHOSWRLUNUL7GOUk511VdAscr6wh46OjlAue57aLCnWClg9jzZhW50b2ezMzIzoJi2jjNJlabbdanM/WZTOaUYrIaFzglkXHD2f/J52ZAaii1A0G7bYhv47iuXa/PvaIViHwgHBs7nY3PtRqGrDyufzGBkZwdTUlCxIa+bUJmpr+tdR/NaU7XmeiAbcnJgW+PnnnxfxgXSTqSy08lrXkgP8QebvLV++vK5uDZwUm3EgmUyGEvVrEzDFA6tYn5ubC4mZFLF03F6zH2TrY2MTFgLhmMmOjg7ZzLjZcgPQqXlsf3Uaoagke41CsVgMVZHRfnL82yZW7OzslLVGRbNWwtvNTEdrtDp+ks+RPnht5IKee506CChVgdh0SPTtSiQSda9s7URCBweHtkFVDGt8fBwPPvggvvSlL+Htb387gCBCm9Vtk8nkvAUjdEkgG3t19OhR7N27F0BQ7GHHjh0AfCrNe1x99dUAAlFU/56ltNrhtK+vr64e49Ykr09k686gmYSNrdOxhVZJSxajCzfU+8RaCFYU1KXI5kv4Njs7Kyc3lbramdBGQmgx2eY2awa0h72Nmcvn88J0bYYFzhMQXs/j4+Pi7GvTLjdCVKoUnE86dZM1asYc5aRtmbZmwnZt0NUnk8mIk23d2l/Xuzk4ODg0EFVRjrm5ORw+fBi//OUv8dvf/hZAqcMk4IffMGRj/fr1AIATTzwRgG+e5ylDUzgLgz788MPYuXMngKDCMnfxVCol+hHqRKKqQvN6hoEcPXpUfmf79u2hAg6LgS6KCZTmsLKntVZsVmIEsIrqWCxWUj26XljopNeZN2wh27GxMRlbzj2ZiFasc8x1mIZlKNotxTKrZul6+DscexoQDh48KP2j3lQ7kNr00DqFN9kFx6BcObZm9VPrdHV7y4W/FYvFEIsmNDvlWDA7S1dXl7iJ1KtfjmE5ODi0DapW6jBK3+apJnbt2hXaqXXAr5X1ta7A5ivX+hPqA37+858DAO6++275zIZO6Pvwt8fHx+taQpsnjg3+zmazocynbJd2qLS5r+LxuPxto9x1aEQzoMefTJIMl6en53nyN3UWOpuB1uXwXoA/XtaqqPOHkY3U071hISYZi8VCec20PtSGDumy9GwnnwPNNsherJNoPB4P6QabBTJ1Fmfh+tV6R6tf1ZkcLJvSYF+ot+zs7Kw7c1y0FrpcIjLrT2SrAS90zyh/ENJqUs2F0CiqresiAoGI2N/fH/JetyIeUD5+zSrYe3p6GrJh2Qc5qlKNFQ+0EYN9Zqwo/9+/f79sZvTSf+KJJwCUJirke/Y3WwE7Z1odwYeaflV8sHX1a77HdRmLxUI+itptoFUpkrkGraFKxwDbw1QXgbGGq3g8XlJvUV/TiHRBTiR0cHBoG3jV7ICe57W+SsAiUSwWyx5plfaRtHfz5s0lrzqvEF/1KcwTjo6wmjnxhKLjLEWsJ598Eg899FAlzSIeKxaLm8pd4HlekVkDrCgexUrpGEmH4Y0bN4ri9uSTTy5p/+TkZIh5vvDCC9InKqOZD2v//v0AfEX1fEYJHSVBj/iF5lL30/YHKDXl82/OKxnF0NCQKNvpEMl+a1ZCZkVn5+npaekXM21QPJ6dnS1xcQACRme94P/LUirq50LXaHAezz77bAB+fVCuSbJjMsuZmRkZF84P57BQKEjbOcdbt24FADz77LPVNKmifjqG5eDg0DaolmGNANjbuOY0HOuKxWLZ1Af/D/oI/G/0c8E+Aq6fbYTK+tkqJaeDg4NDtXAioYODQ9vAbVgODg5tA7dhOTg4tA3chuXg4NA2cBuWg4ND28BtWA4ODm0Dt2E5ODi0DdyG5eDg0DZwG5aDg0Pb4P8AS5TQ1m2Pm3sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 4]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMnGX1fuY+uztbuhfapS3bFtqlQC1Ii5argqIiAUFACeo/RmPUiAFJNPEfE2IwaqISjYmYIMQoiYoaBERCQEmqlIuA0NZyLQXbbsvudruXuc/vj/k95ztzvm+mM7tz2dH3+Wcv883Me773/d7znMt7TqhUKsHBwcGhGxDu9AAcHBwc6oXbsBwcHLoGbsNycHDoGrgNy8HBoWvgNiwHB4eugduwHBwcugZuw3JwcOgauA3LwcGha+A2LAcHh65BtJGLQ6FQ16fFl0qlUK3XmyFjMpkEAIyOjgIAJiYmAABzc3PgyQL+7OnpAQAMDAwgnU4DAA4dOgQAKBQKCx3CkVKpdGKtCxYrZzQaxdDQEADgnXfeAQDk8/njvq+np0fuz9TUFADvXjSK480lsHA54/E4AKC/vx/Lly8H4MlHeefm5kSWgYEBAMCyZcsAAMViUa47cuTIQoYgaKWci0UsFkMul2vKZ9UjZ0Mb1v8qQqHyfQx6sM4++2wAwA033AAAuPbaa2Wj6evrA+BtSnzAg7B3714Ui0UAwGmnnQbA27gefvhhfP/73wcAvPjii/UMeV89Fy0EqVQKQFner371qwCAbDYLwHsws9ms/K+/vx8AkEgkAABr1qzBH//4RwDA3//+dwDAb37zm1YNt25cfvnlAICbb74ZADA/Pw+gvHFRkVCWzZs3AwBWrlyJN954A4C3mR04cAAAcPToUZF59erVAIBHH30UAHDTTTe1VJZGwDENDAzIBvv5z38eAEQ2jVWrVgEAHnvsMQDltb1vX3m5feQjHwEAzM7Otmy8oUa0m2NYZSxbtgz33HMPAGDLli0AgHC4bF0fO3ZMFjg1DzewWCyGE044AYA3qdykguaB2runp0c0/hNPPAEA+MxnPlNriM+USqVttS5Y7Fxef/318lB/85vfBOAt5pUrV8rDOjk5CQCYmZkBADzyyCP49a9/DcDb/P7whz8saAzNYh6nnnoqvvWtbwHwlERvby+A8rxyjrgpnXzyyfJevsafR48elWs5/2TY3LimpqZw6623Hm9YglYyrMcffxxA+R5wzqhgjx07BgD43e9+h09/+tMAgEgkAgCyxqempmQdnHXWWQsZgqAeOZ0Py8HBoWvQcZMwyNwi9b7wwgsBAA899JDveu70tfwmvNZ+/mJx3333Ye3atQCA8fFxAJ6GjUajMiZ+fzQalb9pNnH8BBmaBjVXOp2W8V988cUAgE2bNgEA9uzZ0ySpGkM8Hhcf1I9//GMAnqmTyWREW/OaZ555BgBw1113Yf369QCAw4cPt3XM1fC1r33NNxbORzKZlPnkz9dffx1AmU2RBXP+KTfgMWvOP02nzZs344orrgAAPPDAA80XqAHQDFy/fr38Pjg4CAAYGRkBAHzlK18R9kSLgsw5Go3K+9oBx7AcHBy6Bh1nWNRkhUIBGzZsAAB87nOfA+AxjNnZWbGZd+7cCaCSWZHJ8LP4t74mEoksJuoGANi6dSsAYO3atcKUqD3JmJLJpPgqtB8EKPu0eD3HwrHGYjEZL30Hb731lk8Ovo/3qBFfSDMxMzOD4eFhAB5zuOWWWwCUHesnnlgOUpKNUAsPDw9XMM6lgF/84hfibCfToi+rv7/fFwVjQIHyA8D09DQAb80GXU//5f79+zvOrIjXXnsNALB9+3ZZZ5lMBkDl/NABf9FFFwEA3n77bQBlfxfXeTvgGJaDg0PXoOMMi8ykUCjg0ksvBQB88IMfBOAxjEQiIbv4ZZddBgD4+c9/DqCsCenfsQwqlUqJb2Fubm7RY73kkktkPPRV8PMpRyaTwde//nUAwH/+858KOVatWiVhb7Iuat9EIiFRs3POOQdA2XcAlNMFyEr4fddddx2AzjEszfo00wDK4z148CAAj2WSdRYKBV8uWqexc+dOSbG46qqrAABPPvkkgDKDpgxkiTqNg8yf13CepqenhWUSvOYb3/hGy2RpFLt27QJQ6VNlBJty0m8FeAxS+2fJLtuBjm9YvCkAcO655wIA1q1bB8C7ieFwGA8//DAA4N3vfjcA4Lvf/S4A4Omnn8a//vUvAMDu3bsBAO95z3vk83bs2AGgnPPD0PpCwU0in89XbLSAl4Jw9OhR3HnnnQCAD33oQwC8Deiuu+7CF77wBQBePhUdnJFIRMyQH/zgBwCAL33pSwDKi4Kfz42XTvexsTHs3bt3UXItBOFw2KcoeE+YaBmEUCgk7+PDvRRwxx13AIDklr355psAyiYiH2Dee5rsgCczr6FMsVhMrqMpyOBROx/w44GmXS6XEyUai8UAeDllzz77rMjC6yl3KBSSVI52wJmEDg4OXYOOqTibznDZZZdh27ZyriN3c2aKj42NYWxsDADw1FNPAQBeeeUVAGWz77zzzgMAfPzjHwfgJWw+9dRT4pzOZDJ4+umnFzVmhnb3798v2kiHsQHvaAYA/PnPfwbgad8zzjhDTLjf//73AIArr7wSQFkzP/vsswA85z7Nrr6+PmExNAnJAM4777yOMKxUKiWy0yyi1i0WixUaWCMcDlekDCwF6FQUptJ8+9vfltfJrHgNEyvn5+eFUfEnHdY6TYW/33///S2TYaGg2yKXy8lccY1xXnft2iWsi7KQVSUSibYGTxzDcnBw6Bq0lWHV2olvu+02nHTSSRX/o5Myn8+Lr4sakGysWCwKMyHroib88pe/jFNOOQWA539aCHh2jCFv7cOiTNS6OomO76PWPemkk0Rz831kg6FQSJgiQe23evVqH8Oi8/Oiiy7C3XffvWDZFopoNCoyBKWV1Eo14f9s8mynoAMI9Nu8+uqrAMoJlWQaZP6agVAW+kfpaNdyMu1jKYLpOevWrZMkZMprE58Bz+fM1wqFQtMOP9cDx7AcHBy6Bm1lWLXC2JOTk8KwyB7oI4lGoxLy5+5PRlMsFiWZ7fzzzwfgafUVK1aIH2kxYJoCv3NmZkYYD//HceXzeWF/rM7ASGAsFsPKlSsBeMyK74vH4xJd++QnPwnAK1kyPz8vkSZdRQDwmGa7EQ6Hxbejo7lAWfvaFBM992ScSxmUpb+/33fshlE+XclBR7uBStbG41tLEUw/AeCLEmo/HOePr3H9RqNROabTDiyZuHJvb6/cIP7kA3H06FExtZjywBsYCoXkepqQ2nzSJ+sXCqZG8GzVhg0bxLnOwMDLL78s3/2Pf/xDvl//LBQK8nDbbO9CoVBR8QGAONN7e3t9mwLNxYVWOlgs9GLWznb+HXQ2EijLzQ1rxYoVLR5l/eB4KQNz57Zs2SKvcdz64bVpLfr8J/PTmApAaCf/UoFWIpZYlEqlijWsf4ZCobamaTiT0MHBoWvQdqe7PjsIeDWRVq1aJbs8f5KCZ7NZYVs0m8i4ent7xTyyiXovvPCCfP62bdskq7dR/PSnP634OTAwgI0bNwIAvvjFLwIA3ve+9wEo1z5iUigrFZBG13Iy63tDM0PL8alPfWpBY282aKZGIhFfako1VgVUVrOgfGSnZCf8/1IAz86Fw2FZX5RdF+2j2U+zSJ/H4/1YamwqCJwfDW3F2ICZnvtWFuyzcAzLwcGha9B2p7s90kIH88jIiKQNaIc6UNbE9EXps3dAZQUEW4r4Jz/5iZQw1mH4xWJyclKqRpAN8hxkqVQSjUwGYX08AHwpAcVisYJRAh7zoA9tKUCz4GpBFP1/m94AePeDyYdLiVkR9EXpObPnRpPJpPyPDIt+K9Z0AzyGvZQRxI5t7Tl9nT6W1U5fpGNYDg4OXYO2MqxoNOoL/9Lfk8lkfL4esrAVK1aIFqbvitcmk0lhMtRyjPDceOON+N73vgcAErlbDHTtKspBTcNIia67ZRmIPvhbC9bXRV+Yfq1WLfhWgt+30KTPUqnkO860FGB9OPQ7HT58WObahu8nJyflNbJ7pjCceOKJiz5s305o6yMoIbhaFd18Pi+R+3ZgwRuWpYs6B4c5GtUWgcaDDz4IoHzezuYY8eE4fPhwBQ0HUJFda7+P127ZsqWpJ8k5Hv3dzIjmhhW0KWvnZdAmRvB91oTQYWMbtGg39EbF+x1kTtR6zcpgUwo6ATsGmnQDAwMS8GE+HXHkyBFJpWGARM8955bltIml6ITX69CeTrC/A5Wkop0bljMJHRwcugYLYlja7GlEW1x88cW49tprAQAXXHABAC859J133hFmZcsIz83NyY5Oc4JMq1Qq+Yrz8XNmZmakgkMzT8qHw2EZG1mhDgbwntjk0FKpVPX8XalUEoc2tXZQqedOQ993zRyBSsZUzWTULJM/OV+ddL5bdscA0Isvvoj9+/cD8OaF41y5cqXMO1MddEoKzyWy/dlSBKugxOPxitQTjXA47Fu3em3aAo6thGNYDg4OXYMFMawg/wnt+1WrVklSJTULWc7Y2JivXhDZ0dDQkBw30efrgLLTnZqMWo6h/lQqJa2vbDPLXC6H7du3L0TEmtB+KHtkQTMP67/RdaIIzbT4Puv/0d/X6bLCWsNW64h9vPSRoBpZSw08n/raa69JtQWuS/oUly1b5jvjyXWqK4/wSBfD/+Pj40vCbwcAp59+OoByoIq+WetD1UnChD6uxPOxPMvbyjScpbdSHBwcHKpgQQxr+/btuO222wB49X94ZEYf8GU4XrevsvV0qJl27NiBT3ziEwAglUEZqclkMr5IxLve9S65hj4GsjWGmFOplC9C0yqwycLk5KTIb5nW8ZiHbgemr18qdaOA+saifXWEZmP8DHsQvFPQ7eiZoHzGGWcAKDMsrm36alh3ra+vT5rCcq3rirME0xtuvPFGAMAPf/jDjjMr4gMf+ACA8rzYdVqL2es1zkg5j6m1kmE1vFIikQjuuOMOobz29LZ2gNOksw5qwAsDc0P5zne+I69TcG0iPvroowC8Pmo0O4eGhnzpAPrBb0V34SCzTDvGrdy1zCid6c7xB1UFqPXd7YR2sFsZgsqR2L/1NXwf10KnmjPozePDH/4wAK+bTDKZlHFRabL6wqZNmwKrOwDlbk72nCGV2oYNG2TT6zToMsnlcr6ilLWahegy1zSVbQHKVsCZhA4ODl2DhhjW0NAQrrrqKqxdu1ZoIKsh8KdOriMz0B1vyZroPGdrq7vvvhtXX301AC8FgRotlUpJYwb2BtR9/ZjqQGZDFAoFGcPJJ59cUays2SArikQiwraCstL5P5spH41G5XebplGrbVa7oVlsLbOvFuxJgKWU+U6G9MILLwAozyHXlR1nUBKtLp9M85IMTTO1pcKw+IxNTk4GBnmAspzV5jQSicizzOAC71MrCjU6huXg4NA1aIhh5fN5jI+PY//+/RUOcQDi+E6lUqKR6ICcmJgAUC7GTyamKzPys9n6io1RufsPDg4KI6Fzk47pfD4vWo3an3+HQiEZy9jYWMWZvGYjyIkaxDiqOeC1o5rX27ZS9rM6AZ0Ma4ML9UD7+jiHSyGtgWuNyZ5MkJ2Zmak4NwdUzgf/Z8soAx5TZtifvi/bEboTYG0vBhIOHTpUkRQMVK5fe4yKr8XjcfzlL38BAFx//fUAvDZ1rXC+d36lODg4ONSJhhhWNpvF22+/jVKpJFERVkrgTj01NSWtgxiho4ZKJBIVVRYAL3UhHA7L+5jMxkqG+/fvl0gLNRivzeVyouWosakBR0ZGJIn07LPPlsoQrUAQSwhiHrUYlvUhUC76CJYCtJ+wWqLr8WAPkS8F+UZHRwHAdzwlHo/LWiXL0FEzMhV7HCsajeL1118H4EW06a894YQTxNdL66PdYJ04HfWtVkE2mUzKvNsqIfl8HqeddhoAT3Y+v61gWA1tWPPz83juuedw33334bOf/SwAL/WA6QbpdFrMPm5O3EDi8biYETQltQOWFJq0XBcJ482gCcnvyGazYuoFmYvMkzl06FDT+qfVMoGC8pQsxQ66Lshs5L1ZSnlYupKGLTlSD/Q5TM7Hhg0bAADPPfdcM4faEGzVEa7F3t5eWcd0S+iHlutQl0YGyikMzCfkSQyu62g0KhtdpzYsdhzXit8GDihbKBTyEQ0GEHK5nDjbeQ+YI9kKOJPQwcGha7CgFOPbb79dtOGtt94KwHNaHjlyRJgOTTpqr3g8LkwpKEmNuzh/UpvHYrGqIfRDhw75UiqoIUZGRiQ8/ctf/nIhogYiqK6VPeuooet0WVZSi60FMaxOO9115QFrwmo57Tj12TlbhYJavpOgS4Nrju6MzZs3+1gFr8nn8+LSsBUntmzZggceeACAx/x1M4tOZ/efeuqpADyXzMjIiMwRWR+Z05VXXok//elPALxgGdc5G78AnnvozDPPbNm4HcNycHDoGjS8zfPc1UMPPQQA8pMJnbfffrsct2HCKHfuSCTiq3VFjI+Pi1Zm+Jf+gJmZmao+n1wuJ/4Gfs8jjzwCANi9e3fbGzhoH409shIOh32n9DVzrFblYSn5sMggYrGYr1yyduDaMdNfFYlEfD4SVkPoJMiweO9ZivuEE06QNUsfFJnS5OSkWBFBAQeeIWTAiHLPzs7K0bZ///vfzRemDpAxvf/975f/cXw6bQNARalnsmJdWZXrnWuDaUmtgGNYDg4OXYOGGVa1U+aPPfYYAFTUn9q0aROAypSHNWvWAPAqNFLz8qhPNyDIj8Ro6djYmC+ZUCe22v8FRULt9ywlHxbbm42NjcmRIX2oHSgzLd6DoPHag/N79+5t2XjrBdke2TqjeIAXGSOr4DydeOKJ4uui/4ZJocPDw+InsmkfxWKxog1YJ3DnnXcCAH72s58BKM8ZfYn2Gdd/8xpaT7lcTmRhoviPfvSjlo27pZ6/PXv2+P7XylyoToIPb19fnyxoa2aEw+GqPeq0GWVL8nLh68/qVHkSPtD33HOPuAEop+7DaMs661QN5idRydmzk50Ac6U4Nm5SgDd2WyJ5x44dUjKGc86qItr859qg+fj666+L7J0GUxC0GWfPAOq+g8zap9kYjUZlw2Kli1aa+M4kdHBw6BqEGjExQqFQZ+2RJqBUKtXMcqxHxqC0BvY/TCQSEsa2bCocDosD0yaT6jORND1oluzcuVOcpHXimVKptO04MixoLmulYzCtZGRkxFfIjpUyDh486Gs2UW+VB4vjzeX/f3ZdH2rPC2omS4ZL5mDdGq1GM+WshQsvvBCAV7yQ3cxvvvlmCThwnZN13XvvvRJ4WyzqkdMxLAcHh65BowzrMIDOx6AXjrWlUqnmUfn/AhmB/w05jysj4OTsItQnZ6ejTg4ODg71wpmEDg4OXQO3YTk4OHQN3Ibl4ODQNXAbloODQ9fAbVgODg5dA7dhOTg4dA3chuXg4NA1cBuWg4ND18BtWA4ODl2DhsrLuMPPgdcD8GpW9fX1SUVKHqDlYeZCoRDYQol/s6wH60vx7wWUkjlSx9GcRR1+1u2vKK9urFqtuW0mkxH5bBeaRtHKQ8FaTraW0z0GgMqquVbO+fl5OeRNOTn3nTzkHfA+AOXSOSwPpGUAygfCOWbdsg8ozznXKcsE2WrC9aIeOTtbCb9LYEsdp1IpKS3Ldknvfe97AZRrH9lGFJzIiYkJqYnEQm8shBaLxWQxsDwv64nt2LEDDz/8MACvFZZ9CAzqOlNWrT1XUMsxysQedBdddBFWr14NADj55JMBeOV2V65c6Suly5ZXzzzzjDQ5eOqppwAA//znPwGUmzzYWkxB8gVVy6gF2yzDfnYoFJJrOB9nnXUWgHK9KJb83rJlCwCvSGVfX5/IyQ3r5ZdfBlCeM9Y127VrFwCv+OGBAwdkMwvaxDgvoVCoZXXPWMOM3ZqvuuoqqcDAyhpvvvkmgHKJZ84jCx2OjY0BKLczY7/F+++/HwDw4IMPAigXtWxWaz3iv3rDCqqXvpD3kzmwY8wtt9wiGxUfVnYPmZycFM2ka9kDZTbFz+TmxEav6XRaruOiOP/88wEA5557rjwkv/rVrwAAv/3tbwGUGctCz4Pywbfv1+Ve9CYNeKVVBgcHZdOlvKyfv3XrVmEjLMHy0ksvAShrZn4W7yfrmmcymaaVnrEIklOD42U1VFbL3bhxo8wxHz4qjVNOOUXuD0sKUckMDQ3JfFImlqeZn5/39d60Y201uGGRJe/bt0/uwdDQEACPaQ0ODsqYWIyQBfwikYhU2+Wm3cpqqs6H5eDg0DVYUgyLGsn2LoxGo7727bpmOLWw7UQTj8flfZlMpmF6Te1J257lcK+99lrRTKT9uosIx0ZNxdcikYhoJsveotGor4Afu2kvW7ZMiqvxe3fv3g0AeP755yu6ZzeKWhpem0oszkcGMjw8LN9LzUrTgGWGAY956HtA/wdNEF1C2JaAbhYDqfWeUCgk95WlksmwRkdHZUzWZE8kEvIa2Zfu5kQ5WQCQa2V6elpqo+t1007w/tI8LxaLss5ZOJLXJBIJcWVwHfB+LV++XGSmtWCf0WbCMSwHB4euwZJhWOFwWBye9JNQMw0PD8tr9AfQ73H48GHRbvxJFhOLxUQT7Nq1SzRAveOh9iSruPzyywGUtQq1LO1+lgROp9MyRvp2NAO0bJAsJZFI+Lrm0NFdKpXkM88++2wAwNVXXw0AeOWVV6TscqPRmXqYCsfEe0r/xMDAgIyJ94LyvvHGG8KayBLZNbmnp0fksv6xoL6NzcDx5IxEIjJ/nGuut1QqJeyC64esaGJiQt5HxsR7oNk0gy5k3MuXLxf2ZZlZI+NeDGxUMxaLicycH8qSSCTkmeTzxHEnk0lhXZSzlQ1SHMNycHDoGnScYZFxJBIJnHPOOQCAj370owC8MHJfX59oJO764+Pj8je1he5QC5QZB309b7zxhkTy6gXZxYYNGyp+hsNhYVbUtmQbs7Ozomn4Gq8FPK1p85Tm5uZEe5FxkDFp5kEteO655wIoa20ygGZF1IhQKOTzJ5IlDAwMyBxQ2/Ie9PT0yO9MU+D7Z2dnRQZ+VlDrs2bLEgTtRyQb4jrj2IaHh2UMnFfNPKzslCWTyUgUlfNP5hKLxeQ63f6snaAM+pngOCkv12EqlfI1TdEsinPcSt8V0fENixPW09MjeT10eDLXQzcg5c2gyZHNZmWRcRFw8czMzEgIempqquFFwYd127ZyAxrdCcb2qCOOHTvma02ue9wRXBw6iZL3gguATtB8Pl+xeQHlzjRAucMJnbmNop7NQPdUBDyzaGJiosKRDnj366233qrYpAHvfh09elSaj+rkQ6DSZG4mqsmp8+s4Bv6P85JOp2XNUSb+PHjwYEUvRsC7B5lMRkxlmky8NpfLyfWd2rAYDGHaydTUlIyJc6UDW1bB6uCCVtaAnzg0E84kdHBw6Bp0jGHZ7HHtdKdGoraKRqM+Zx/fn8vl5Hdew5/FYnFBxz806wM8R6zuN8jQL5keqXWhUBCGRK1Jba1NWx0at+Pj+yiXzqim9uLfvb29vp56zUIoFBKtS3Ccs7OzomXJHPj3wMCAaGLOBV/LZrM+tqzNo1YwrGrQZg7HQPbEOTh27JiM17KwVColZhPnXB/H4vVcg9oSsMy13eBzxPV08OBBkZnj5j3p6+sTmSkn71M+nxf5GFhpZaqGY1gODg5dg44zLGq5RCIhRzWosckcUqmUTxNpZmJTBKi59WvHO5phEQ6HxZbnZzB0HY1GRQtZ30M2m5Xx06bX2siOUX8Or7dh/3w+L6+R5ZG1LVu2TJig9actFqFQSDQxx6uDH9TA/B/ZZiwWE7nIPDnGUqkkfjBerw+AtxP8vlAoJEzDMiWdzEo56ctMJBIyn5wX7aci47AWA+Bn/O0IMmjYYNHExIRPTo4lFov50i84v/l8Xu4Z72Gzzw9qOIbl4ODQNWg7w9In0fXPkZERiXxRg1GD6yMi1jei/R7c/ak1ent7JWKXzWbr1l62BAwPd/LU/fLly4UxkD3pshv8nVpMh3v5mXwfEzHT6bR8pmVYMzMz4vPiSXpd+qPZzCSoWgA1KudmdnbW59PRZUmopTkXvHZyclKO8FB2shRdfseOpZnMw669cDjsi4JxfU1PT8t8WF/h0aNHxYfFueb73nnnHVl71seXy+V8/sZ2MyzKSzbU29srYwqyGvTYAY+FZTIZYZL2/a2QpeNpDVwEGzdulA1LmxZAWXBdUwqoXHQ2j0ebYNVKixwPxWJRFtxjjz0GoJxVDpRzc1h6Y926dQCAzZs3AygvWG2uAR5V1g5lbk56zNbE4ia1Y8cOvP322wC8DYtm1SuvvCILptmLXoezaZKS/k9PT8uDqLP8gcoFb1M1crmcmInWhNB1l6wsjZaUqQUb8CmVSjJmzjnP2E1NTUlOFjcuvQZtEEiX/eG8MI2DZmM6na5qEjZTzlqwrolcLidjtydHtELkGtUbuz332coUDWcSOjg4dA06xrC4G9Ms2Lp1q7AVW9kRqE43o9GoL2uY2jwUCokjv9FwudaQzz//PACPYSWTSTzxxBMAgGuuuQaAx7AKhYJoZzJFXQ/LyqMTLK3cZDX33nuvOPyZba2TY5uVzmDvkQ5UkAlrJkFGbB3zmUzGVwtMp6jYuQwKYFQrttdM6AogmmkAqCiwRwapWSJQaUra8UWjUd+ZUs7nsWPHRFbLtNplEtrCgfF4XBgzx6ZTUrgmbcJrT0+PFDgk3FlCBwcHB3SQYdFPs3XrVgBlhmKPc2hHqK0fRY2oz7tR82lHMUPKWhvWC11LC/D8E6FQSBzHPPpDxGIx0VRkWJpJcPyUlb6sfD7vYzH8+9VXXxXfir03uVyu6VpZa19+j2V2xWJRxmcDD0eOHPHVe9ellukLsqHyIKd7KxDka+HcMsCix2bnjH9PTExIArGdz3Q6LfeA30PGPj097Vur7WJW1bBu3ToZr/WlzszMiAxB9dx4hK6VlUYJx7AcHBy6Bm1nWNTCPOj8sY99DACwfv168RXYCFGhUJD/caenRozFYvI/23WmWCzKifmenp6GDmVqjWcjQaFQyBfK1wcLoZEvAAAKmElEQVRj+buNms3OzvoOluokO8sedZqG9svp11pdN8oeo2F0MplMikZmFExH32wtMB3lpQbnZy2iO9CCEJQ6YWt7UabBwUFhh/ZQeygUkrFzXZOJlkolX91+vj+dTrfFR1cPuFbZXATwnp+gv7lGdbMQVo5tB8Nq64YVjUaxcuVKAMAVV1wBwOtOMjg4WHE+EKjMjuZDz9e4MJLJZEXGsv6ZzWblHKAuOHc8VFs8eqHqsjhAZYic47bjWr58uSxim/qgHb+E3pza9TBXA+87Q/Nr1qzxde7hvUgkEr60DS70RCIhmzZNJH5mu2XUm75WKnpMK1as8KV06OCJPrcKVBYlpGuAaRzcDHX6RqdNQTajGB0d9WW468x3Ozd6bdPtQtPwb3/7W8vG60xCBweHrkFLGJYNj5NVDA8PS3G+6667DoBXDrlUKgnD0MwKKO/mZEfU9Np8qpVZTqfo0NCQ0PzFQje+0A0v+LfNPOcYAM88JLOihs5msyKHTY7VGrndsI0x9Fk7mnaUhXJPT08Lg2QmuD77yfkl49AVKNohZ1D6BtcMmbs2eTgvNqH52LFjviKNuoAfGRbTXHSJZZsgq8fSTpxyyikAPNkAb6702OxJk6CmInTztLLihmNYDg4OXYMFMyybGKg1BndY7sZsRHnBBRdIp1nu7Foj2dpJmilZH4GuO2TTD3RyG53uy5Yta/jMXS1tx9dspYFsNltxPsvKQQ0e5Puy39fKM1n1QH+vTgolbLBDJ1ja6pW2GoJ+vw4ytDOtQfsIbTBH+2woC+eVzCmbzQrzJ5OkvyuXy/mSQ3Uqw1Jxup955pkAKitJ8B5oPyTnj+tWWwF8hunDamXVDcewHBwcugYLYliRSEQ0p42I6Wqco6OjALxdfPv27XL8JqjqpC1iH3RwWdf/JnidZTv6GEhPT09Td35qZ94HDd3GW4+1UChUtCADvFBwOBz2Rd10Al+jDTSaBRvN0n5CW8FBH7GxfhCdfGmTD1vZtKAWgliNZVq5XK4i6RWotCrswXtdwYL3xUZMq313J7B+/XoA5XHr1l0AKiLzQY1CgLIcvD9sy8e5b0Xl0YY3rFAohNWrV+PKK68E4E0GaXIikZCHkGfNGPYcHR31bSr8OyhVQG9KNv+Ii7y/v99X+kKbjfysZoPjYVlnbYbaB5LQhe302TqgvDj4O+Xhgk+lUnKWsN2wWfcalN065Ht6enz3nSZTOp0WJ7R9QNqNIOewVWrRaFTWs91g4/G4r3SwTnPg/2yuVtBm1e7yMpST7pp4PO5LwyF6e3t9PQe5geVyOZGP68GWDW/quJv+iQ4ODg4tQkMMKxwOI5lM4oYbbsAFF1wAwJ9kFolExCTkLsydF/CHTGtlV2uNFvQ//rS987QJxs8fHx9vqumhk0E1ksmkj43wPgSxFI41qMWVLcnbLgQxD5tyoe8tHc1kWjrwQNl1Zn9QUKWTCArf66oNuuUX4Mk5OTkp82eTLovFok++WnWi2m0iMg2DVpBODrWFCrX1Yy0End7CZ4HP+0Lbz9WCY1gODg5dg4YYVjKZxKZNm3DNNdfIbmprIemGoDas39PTI7awvUZrbMumCoWCaDcemWCYdXBw0Of4DgqTN7sSgPV1aLn0WUYNfcTGno2cn5/3+XJ4TZDTtpWoVeWT/oqgVlW6LRmP3Vh54/F4hd8SqNTknUDQutBNN2yDXrKMVCol5wNta7hisShMw85fu6qK1gJ9zvypW7pZxhuLxXx+Sp1mRLZFOXncpxVwDMvBwaFr0DDDOuOMM7B8+XJfYqA+mmL9F9q+t3a8DpdaDcsow5EjR3DgwAEA3s6u0wFslJAoFApy/cDAQKAPaaGgvPbwqw4P897oOlrWB8Cxay2s/URAazVWvbD+jXg8XjOx1foVdcVKO8/VolP6f62sOKp9NASZh65ZznHqe6Gbj/B/QFle+vYIXe+sGptsF/NinXp93MhW2NB13GzdLu27s/XCNm7cCAD461//2nR5GnqCM5kMXn75ZezcuROnn346AO9hIo2MRqO+XCO96ILyqIDyzbGn2rlJ7dmzRwrmbdq0CYDXjTkSichCCOpPqLOxm1kNgAuUC1tvvNU66EajUV8DBG1CaAc84G10/f39voelldAPkx2vVj62DA5/9vX1VT0zmU6nA7Ol+R2t3KDqObdnzRutgOz86I7klFOXGbb5TNpRbcfQ7iYUuuwSv9fOh84pq1adRBfd5PuZKqFNyWbBmYQODg5dg4YY1tzcHJ599lncdNNNwrAuueQSAMD5558PoFxqlXTTIhKJ+OpaUUuPj4/jpZdeAuA1fXjyyScBlB3t1FbUYKSdAHyfqcdLWj43N9dUdmITKrXZZxmfNikspeaYdVDAJunlcrmqzLQVqGUqafZoGbROBbAnGTSDoHyUqZ6xNAPVPktX37CIRqPCIuhw1jJZGfTc02Kopwxyu+pj2YRRDbuW9RlKm6Kh03ns2Gl1OYbl4ODwP42GGBb9FtPT09i5cycA4Omnnwbg+Wl6e3vFPuZZQmqvNWvWyO+sTUWN/eabb4rPiikL2kHP3Z8NRVnVMB6Pi13NekNEoVCQ8Pqrr75aUSmgWbB+s0Qi4bPztQ+DWojaS5+/ozaylTDi8biv0UYzcDx/iX7NjjuXy8n95nh12J/rwfrz5ubmfDLYDtL6+xbaCHehsAGPUqkkjNC2X9PHwuz90TXBiCBG2W45eY9psfBZi8ViPotAN+Ko5nRPp9O+udadspvtk3QMy8HBoWvQcJzfahTrq5ifn5fDrXv37gVQOwpkGYqG1rjc7cmSGEnU7w2q4tjquui2ptPs7KzPt6O1p/Z1acTjcXlN16sHKg9NtxNBPiymkySTSanPb5t0JBIJSfC1jUUGBwdlfdhKpVrGZiaRHo9Jajlt9Fa3irPVbnXCMhkw/VY9PT0yf0Et7vV3txP8Ph7J0TLw+SAz1KkourEs4MmpUx54X3jvksmkWDjNQktKJFdzINY6S1Xrc4I+o9HPaja4GHlukhOfSqWqnm3UQQfKpkPdtvkG/x4YGGjJhmUfZPvw6AACQXMokUhIBYagUjm2ioc2mahsrLLTY2imaVTPhmULUbI6hi5dTVl0ZQZbdkV3UarWrXspbFh0ydAk7O/v9+VP6u5P/J+t1qBJCD+La6QVBMGZhA4ODl2DUCOaLBQKLY2qY4tAqVSqqdLqlZFsglUrLr30UgDlk+q2uoJ2dFKTU9tqhkUzanx8HIDHsB555BE8/vjjHH89w3umVCptq3VBKBQq0RSymdwcr64gYRnT6OiotGhjXzp9ftBWPSADnZqawp49ewAA+/btA+CZF7lczhd40GzdnnE83lwuRE6bCLpu3TopQMlgEmXSme6UgQGX6elp7N69u0JO3ZfQ1m5rhpzHu0aD65dF90477TRpCKOTfDlGe85Q/811y67ZTEs6cOBAQ0y5Hjkdw3JwcOgaNMqwDgPY17rhtBxrS6XSibUu+C+QEfjfkPO4MgJOzi5CfXJ2usyFg4ODQ71wJqGDg0PXwG1YDg4OXQO3YTk4OHQN3Ibl4ODQNXAbloODQ9fAbVgODg5dA7dhOTg4dA3chuXg4NA1cBuWg4ND1+D/AKAA00Yvd/fvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 5]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMnGX1fua6s7PbLcu27HahN1qWAqWFUhQUENTKTdAIKOLlD6MxqGhQEm//mBCDUROVaIxiRIiJGiNqFAEJghK5FIqIyKVQClRYut2y3bKXuc/vj/k95ztzvm92Z2bnqu/zz+zlm5n3fO/7vec55z2XULFYhIODg0M3INzuATg4ODhUC7dhOTg4dA3chuXg4NA1cBuWg4ND18BtWA4ODl0Dt2E5ODh0DdyG5eDg0DVwG5aDg0PXwG1YDg4OXYNoLReHQqGuD4svFouhhf7fCBkTiQQAYM2aNQCA119/HQAwNzcHZhbwtbe3FwAwODiIVCoFANi/fz8AIJ/P1zuEyWKxuHKhC5YqZzQaxdDQEADg4MGDAIBcLrfo+3p7e+X+HDp0CIB3L2rFYnMJ1C9nPB4HACxbtgxHHHEEAE8+yjs3NyeyDA4OAgAGBgYAAIVCQa6bnJysZwiCZsq5VMRiMWSz2YZ8VjVy1rRh/a8iFCrdx6AH65RTTgEAXHnllQCAyy67TDaavr4+AN6mxAc8CLt370ahUAAAHH/88QC8jeuuu+7Ct7/9bQDAk08+Wc2QX6rmonrQ398PoCTv5z73OQBAJpMB4D2YmUxG/rZs2TIAQE9PDwDgmGOOwe9//3sAwIMPPggA+PWvf92s4VaNCy+8EABw7bXXAgDm5+cBlDYuKhLKsnnzZgDA8PAwXnzxRQDeZjY+Pg4AmJ6eFpmPPvpoAMA999wDAPjsZz/bVFlqAcc0ODgoG+wnPvEJABDZNEZHRwEA9957L4DS2n7ppdJyu+CCCwAAs7OzTRtvqBbt5hhWCQMDA7j11lsBAFu2bAEAhMMl6/qNN96QBU7Nww0sFoth+fLlALxJ5SYVNA/U3r29vaLx77//fgDARz7ykYWGuKtYLG5f6IKlzuUVV1whD/VXv/pVAN5iHh4elod1amoKADAzMwMAuPvuu/GLX/wCgLf5/e53v6trDI1iHhs2bMDXvvY1AJ6SSCaTAErzyjniprR69Wp5L//H1+npabmW80+GzY3r0KFDuO666xYblqCZDOu+++4DULoHnDMq2DfeeAMA8Jvf/AYf/vCHAQCRSAQAZI0fOnRI1sHWrVvrGYKgGjmdD8vBwaFr0HaTMMjcIvU+66yzAAB33HGH73ru9Av5TXit/fyl4rbbbsPatWsBABMTEwA8DRuNRmVM/P5oNCq/02zi+AkyNA1qrlQqJeM/55xzAACbNm0CADzzzDMNkqo2xONx8UF9//vfB+CZOul0WrQ1r9m1axcA4Oabb8b69esBAAcOHGjpmCvhC1/4gm8snI9EIiHzyde9e/cCKLEpsmDOP+UGPGbN+afptHnzZlx88cUAgNtvv73xAtUAmoHr16+Xn4888kgAwMjICADgmmuuEfZEi4LMORqNyvtaAcewHBwcugZtZ1jUZPl8Hhs3bgQAfPzjHwfgMYzZ2VmxmXfu3AmgnFmRyfCz+Lu+JhKJLOXUDQBw2mmnAQDWrl0rTInak4wpkUiIr0L7QYCST4vXcywcaywWk/HSd/Cf//zHJwffx3tUiy+kkZiZmcGKFSsAeMzh85//PICSY33lytIhJdkItfCKFSvKGGcn4Gc/+5k428m06MtatmyZ7xSMBwqUHwAOHz4MwFuzQdfTf7lv3762MyvihRdeAACcccYZss7S6TSA8vmhA/7ss88GALzyyisASv4urvNWwDEsBweHrkHbGRaZST6fx9vf/nYAwDvf+U4AHsPo6emRXXzHjh0AgJ/85CcASpqQ/h3LoPr7+8W3MDc3t+SxnnfeeTIe+ir4+ZQjnU7ji1/8IgDg1VdfLZNjdHRUjr3Juqh9e3p65NRs27ZtAEq+A6AULkBWwu+7/PLLAbSPYWnWp5kGUBrva6+9BsBjmWSd+XzeF4vWbuzcuVNCLC699FIAwMMPPwygxKApA1miDuMg8+c1nKfDhw8LyyR4zZe+9KWmyVIrnnrqKQDlPlWeYFNO+q0Aj0Fq/yzZZSvQ9g2LNwUATj/9dADAunXrAHg3MRwO46677gIAnHrqqQCAb37zmwCARx99FP/6178AAE8//TQA4E1vepN83gMPPACgFPPDo/V6wU0il8uVbbSAF4IwPT2Nm266CQDwrne9C4C3Ad1888345Cc/CcCLp6KDMxKJiBnyne98BwDwqU99CkBpUfDzufHS6T42Nobdu3cvSa56EA6HfYqC94SBlkEIhULyPj7cnYAbb7wRACS27OWXXwZQMhH5APPe02QHPJl5DWWKxWJyHU1BHh618gFfDDTtstmsKNFYLAbAiyl77LHHRBZeT7lDoZCEcrQCziR0cHDoGrRNxdlwhh07dmD79lKsI3dzRoqPjY1hbGwMAPDII48AAJ5//nkAJbPvzDPPBAC8733vA+AFbD7yyCPinE6n03j00UeXNGYe7e7bt0+0kT7GBrzUDAC48847AXja98QTTxQT7re//S0A4JJLLgFQ0syPPfYYAM+5T7Orr69PWAxNQjKAM888sy0Mq7+/X2SnWUStWygUyjSwRjgcLgsZ6AToUBSG0nz961+X/5NZ8RoGVs7Pzwuj4isd1jpMhT//4Q9/aJoM9YJui2w2K3PFNcZ5feqpp4R1URayqp6enpYenjiG5eDg0DVoKcNaaCe+/vrrsWrVqrK/0UmZy+XE10UNSDZWKBSEmZB1URN++tOfxrHHHgvA8z/VA+aO8chb+7AoE7WuDqLj+6h1V61aJZqb7yMbDIVCwhQJar+jjz7ax7Do/Dz77LNxyy231C1bvYhGoyJDUFjJQqEm/JsNnm0X9AEC/TZ79uwBUAqoJNMg89cMhLLQP0pHu5aTYR+dCIbnrFu3ToKQKa8NfAY8nzP/l8/nG5b8XA0cw3JwcOgatJRhLXSMPTU1JQyL7IE+kmg0Kkf+3P3JaAqFggSzveUtbwHgafWjjjpK/EhLAcMU+J0zMzPCePg3jiuXywn7Y3UGngTGYjEMDw8D8JgV3xePx+V07QMf+AAAr2TJ/Py8nDTpKgKAxzRbjXA4LL4dfZoLlLSvDTHRc0/G2cmgLMuWLfOl3fCUT1dy0KfdQDlrY/pWJ4LhJwB8p4TaD8f54/+4fqPRqKTptAIdc66cTCblBvGVD8T09LSYWgx54A0MhUJyPU1IbT7pzPp6wdAI5lZt3LhRnOs8GHjuuefkux966CH5fv2az+fl4bbR3vl8vqziAwBxpieTSd+mQHOx3koHS4VezNrZzt+DciOBktzcsI466qgmj7J6cLyUgbFzW7Zskf9x3PrhtWEtOv+T8WkMBSC0k79ToJWIJRbFYrFsDevXUCjU0jANZxI6ODh0DVrudNe5g4BXE2l0dFR2eb6SgmcyGWFbNJvIuJLJpJhHNlDviSeekM/fvn27RPXWih/+8Idlr4ODgzjuuOMAAFdffTUA4G1vexuAUu0jBoWyUgFp9EJOZn1vaGZoOT70oQ/VNfZGg2ZqJBLxhaZUYlVAeTULykd2SnbCv3cCmDsXDodlfVF2XbSPZj/NIp2Px/vRaWwqCJwfDW3F2AMzPffNLNhn4RiWg4ND16DlTneb0kIH88jIiIQNaIc6UNLE9EXp3DugvAKCLUX8gx/8QEoY62P4pWJqakqqRpANMg+yWCyKRiaDsD4eAL6QgEKhUMYoAY950IfWCdAsuNIhiv67DW8AvPvB4MNOYlYEfVF6zmzeaCKRkL+RYdFvxZpugMewOxlB7NjWntPX6bSsVvoiHcNycHDoGrSUYUWjUd/xL/096XTa5+shCzvqqKNEC9N3xWsTiYQwGWo5nvBcddVV+Na3vgUAcnK3FOjaVZSDmoYnJbrulmUgOvF3IVhfF31h+n8L1YJvJvh99QZ9FotFXzpTJ8D6cOh3OnDggMy1Pb6fmpqS/5HdM4Rh5cqVS062byW09REUEFypim4ul5OT+1ag7g3L0kUdg8MYjUqLQONPf/oTgFK+nY0x4sNx4MCBMhoOoCy61n4fr92yZUtDM8k5Hv3djIjmhhW0KWvnZdAmRvB91oTQx8b20KLV0BsV73eQObHQ/6wMNqSgHbBjoEk3ODgoBz6MpyMmJycllIYHJHruObcsp010ohNer0ObnWB/BspJRSs3LGcSOjg4dA3qYlja7KlFW5xzzjm47LLLAABvfetbAXjBoQcPHhRmZcsIz83NyY5Oc4JMq1gs+orz8XNmZmakgkMjM+XD4bCMjaxQHwbwntjg0GKxWDH/rlgsikObWjuo1HO7oe+7Zo5AOWOqZDJqlslXzlc7ne+W3fEA6Mknn8S+ffsAePPCcQ4PD8u8M9RBh6QwL5HtzzoRrIISj8fLQk80wuGwb93qtWkLODYTjmE5ODh0DepiWEH+E9r3o6OjElRJzUKWMzY25qsXRHY0NDQk6SY6vw4oOd2pyajleNTf398vra9sM8tsNoszzjijHhEXhPZD2ZQFzTys/0bXiSI00+L7rP9Hf1+7ywprDVupI/Zi4SNBNbI6DcxPfeGFF6TaAtclfYoDAwO+HE+uU115hCldPP6fmJjoCL8dAJxwwgkASgdV9M1aH6oOEiZ0uhLzY5nL28wwnM5bKQ4ODg4VUBfDOuOMM3D99dcD8Or/MGVGJ/jyOF63r7L1dKiZHnjgAbz//e8HAKkMypOadDrtO4k4+eST5Rr6GMjWeMTc39/vO6FpFthkYWpqSuS3TGsx5qHbgenrO6VuFFDdWLSvjtBsjJ9hE8HbBd2OngHKJ554IoASw+Lapq+Gddf6+vqkKSzXuq44SzC84aqrrgIAfPe73207syLe8Y53ACjNi12nCzF7vcZ5Us40tWYyrJpXSiQSwY033iiU12Zvawc4TTrroAa8Y2BuKN/4xjfk/xRcm4j33HMPAK+PGs3OoaEhXziAfvCb0V04yCzTjnEr90JmlI505/iDqgIs9N2thHawWxmCypHY3/U1fB/XQruaM+jN4/zzzwfgdZNJJBIyLipNVl/YtGlTYHUHoNTNyeYZUqlt3LhRNr12gy6TbDbrK0q5ULMQXeaaprItQNkMOJPQwcGha1ATwxoaGsKll16KtWvXCg1kNQS+6uA6MgPd8Zasic5ztra65ZZb8N73vheAF4JAjdbf3y+NGdgbUPf1Y6gDmQ2Rz+dlDKtXry4rVtZokBVFIhFhW0FR6fybjZSPRqPysw3TWKhtVquhWexCZt9CsJkAnRT5Tob0xBNPACjNIdeVHWdQEK0un0zzkgxNM7VOYVh8xqampgIPeYCSnJXmNBKJyLPMwwXep2YUanQMy8HBoWtQE8PK5XKYmJjAvn37yhziAMTx3d/fLxqJDsjXX38dQKkYP5mYrszIz2brKzZG5e5/5JFHCiOhc5OO6VwuJ1qN2p+/h0IhGcvY2FhZTl6jEeREDWIclRzw2lHN621bKftZ7YAOhrWHC9VA+/o4h50Q1sC1xmBPBsjOzMyU5c0B5fPBv9kyyoDHlHnsT9+X7QjdDrC2Fw8S9u/fXxYUDJSvX5tGxf/F43H8+c9/BgBcccUVALw2dc1wvrd/pTg4ODhUiZoYViaTwSuvvIJisSinIqyUwJ360KFD0jqIJ3TUUD09PWVVFgAvdCEcDsv7GMzGSob79u2TkxZqMF6bzWZFy1FjUwOOjIxIEOkpp5wilSGagSCWEMQ8FmJY1odAuegj6ARoP2GlQNfFYJPIO0G+NWvWAIAvPSUej8taJcvQp2ZkKjYdKxqNYu/evQC8E236a5cvXy6+XlofrQbrxOlT30oVZBOJhMy7rRKSy+Vw/PHHA/Bk5/PbDIZV04Y1Pz+Pxx9/HLfddhs+9rGPAfBCDxhukEqlxOzj5sQNJB6PixlBU1I7YEmhSct1kTDeDJqQ/I5MJiOmXpC5yDiZ/fv3N6x/2kImUFCckqXYQdcFmY28N50Uh6UradiSI9VA52FyPjZu3AgAePzxxxs51Jpgq45wLSaTSVnHdEvoh5brUJdGBkohDIwnZCYG13U0GpWNrl0bFjuOa8VvDw4oWygU8hENHiBks1lxtvMeMEayGXAmoYODQ9egrhDjG264QbThddddB8BzWk5OTgrToUlH7RWPx4UpBQWpcRfnK7V5LBareIS+f/9+X0gFNcTIyIgcT//85z+vR9RABNW1srmOGrpOl2UlC7G1IIbVbqe7rjxgTVgtpx2nzp2zVSio5dsJujS45ujO2Lx5s49V8JpcLicuDVtxYsuWLbj99tsBeMxfN7Nod3T/hg0bAHgumZGREZkjsj4yp0suuQR//OMfAXiHZVznbPwCeO6hk046qWnjdgzLwcGha1DzNs+8qzvuuAMA5JUBnTfccIOk2zBglDt3JBLx1boiJiYmRCvz+Jf+gJmZmYo+n2w2K/4Gfs/dd98NAHj66adb3sBB+2hsyko4HPZl6WvmWKnKQyf5sMggYrGYr1yyduDaMdNfFYlEfD4SVkNoJ8iweO9Zinv58uWyZumDIlOampoSKyLowIE5hDwwotyzs7OS2vbss882XpgqQMZ07rnnyt84Ph22AaCs1DNZsa6syvXOtcGwpGbAMSwHB4euQc0Mq1KW+b333gsAZfWnNm3aBKA85OGYY44B4FVopOZlqk83IMiPxNPSsbExXzChDmy1fws6CbXf00k+LLY3Gxsbk5QhndQOlJgW70HQeG3i/O7du5s23mpBtke2zlM8wDsZI6vgPK1cuVJ8XfTfMCh0xYoV4ieyYR+FQqGsDVg7cNNNNwEAfvzjHwMozRl9ifYZ17/zGlpP2WxWZGGg+Pe+972mjbupnr9nnnnG97dmxkK1E3x4+/r6ZEFbMyMcDlfsUafNKFuSlwtff1a7ypPwgb711lvFDUA5dR9GW9ZZh2owPolKzuZOtgOMleLYuEkB3thtieQHHnhASsZwzllVRJv/XBs0H/fu3SuytxsMQdBmnM0B1H0HGbVPszEajcqGxUoXzTTxnUno4ODQNQjVYmKEQqH22iMNQLFYXDDKsRoZg8Ia2P+wp6dHjrEtmwqHw+LAtMGkOieSpgfNkp07d4qTtErsKhaL2xeRoa65XCgcg2ElIyMjvkJ2rJTx2muv+ZpNVFvlwWKxufz/z67qQ22+oGayZLhkDtat0Ww0Us6FcNZZZwHwiheym/m1114rBw5c52Rdv/zlL+XgbamoRk7HsBwcHLoGtTKsAwDafwZdP9YWi8UFU+X/C2QE/jfkXFRGwMnZRahOznafOjk4ODhUC2cSOjg4dA3chuXg4NA1cBuWg4ND18BtWA4ODl0Dt2E5ODh0DdyG5eDg0DVwG5aDg0PXwG1YDg4OXQO3YTk4OHQNaiov45KfA68HgLJa9br0BlDexcdWFWXbsnA4LGU9dHNZwF+dtQpMVpGas6Tk50QiITWkbI0v3TKKJXN4LwqFgpSToZz1lsppZlIwx9/T0+NrMBpUAdbWMsvlciIn59/WQKsWrZCzt7dXysTYJseFQsEnu17jLJvD9Vtv9kw1cra3En6XwPYSXL58OcbGxgAAW7duBQBcdNFFAEqF7fggc6Nhof5XX31VJpyVDfgw9Pb2yqJnZYOHHnoIAHD//fdLM42XX34ZwKIPe1U5ZZXacwW1JWPlCWbyn3feedi2bRsAr00XSwevW7dO5GN1Ctb4+utf/yqZ/3/5y18AeLWY0um0LHp+d6WO2jXmwC4op76Gc0fZzjzzTKxevRoApP8emywMDAzIfFLxPPfccwBKc8Z5fPDBBwEAu3btAlAqmWwrVlQad7NS57jW3v3udwMArrzySim4yf6JbFM2MzMjBfu4UbEax4YNG6Rqxa9+9SsApTkGSmvU1kVb8rgb+mkNRtBCq2UCw+GwXF/PxNua7Jysiy++GNdccw0ArwQMH+hisSjlYThZ3JSWL18umxc/i9+RyWRkEVPTXXzxxQBKmyE3rOuvvx6AVwt8bm5uyYu60vuLxaKMj8XrdHcZFuyjLJQtnU5LKRZ2mqEW1p/FyqNsyjs5OSn3IKhd+lKx0GfYYnvchE8++WQpJ8Nxc8Odn5+X8ZJFkZ0MDQ3JQ877QmWj39cuUBbdH5EycPM9+uijAZTWpu0xytdUKiVVV3nvWHqG89pIOB+Wg4ND16CjGBZpKhkJfw/qFszXIFpPbalrqKdSqZp8JaFQqKy0MeCZQ1/+8pcxNDQEAJiengbgsSndTcaO54gjjhDNZrs75/N50Ww0M/jZy5Ytw5vf/GYAwFe+8hUAwGc+8xn5XjK6elhIte8hW6Cpt2LFCp8s1Lrj4+PCvqh9ybQGBwfLOugAnrZfqGt2PWOu5z2cV5p/NJMAf+fn/fv3y1plLz8Wb0wmk8KUyVRoRuk+mwuNq5mVVMiGuG6z2aw8b5YBj4+Pl3VvBzym3dvbK2Y8zf5m9lx0DMvBwaFr0DEMKxwOi/Y+7bTTAADHHnssgNIuzt5uZB10aM7NzYnmo4bmayKRkJOaPXv2lPlRqgE1HLXK5ZdfDqCkXahV+KpPwyppxlQqJf+jr4OfHYlEfIyM7Gt+fl4Yy/btpcrHp556KgDgb3/721JOExcFx6t9dECJZdD/wVfOw6FDh4RFcdy69LDtaK1PF9sN65eLx+O+cXJ+5ubmRE7KzvuUy+V8fjH+r5nO9GrBwwWuw0wmI88fx81r4vG4yMeuQLw/yWRS1rD13TZjPh3DcnBw6Bq0nWGRVcTjcTldYPF7+hFGR0eFHfF0hf3RUqmUL+6J/pL+/n7p/Dw+Pu7rn7cYqGk4rnPOOQdASQvbVki6+y01MsdMlheLxeR9ttddLpcTHxb/x88sFAqitegXueCCCwCUjsztWBoJzo+NDQM8nwxl4HF4IpEQrUvfDn/P5/Min41T4ms7QDk5Zzo+juuLLJ/rK5FIyBzZ90WjUXmfZVPNnK9qQV8bX/X64zxQtg0bNvhYJmXq6+uTNcn55GszWtF11IZFJx97xDHWaeXKlXITOdm8GdlstsxMAbyHKpVKSSzTzMxMzTeQY2PvNpqooVBIJpCbmj6mZuwRH1aOPRaLySKwDtxEIuELvOM1XEiAtylzTCtWrKjZ1CWqMUt4Dzg2LvDXXntNjutpEvK+p9NpMX9smEImk5Hx8v22k1CjUc3nch5tA1i9idp7kcvlZB3Y3orRaFTmjWamPihqZLhGPaBrhaEWbAQMeOYe70UymZR1Z8M4YrGYXM+NnK/NkM2ZhA4ODl2DtjEsGz2une40Nfh7JBIRTUZtpdmS1Yb838GDB0Ubaia2GDgmvvJoWzueqXGoXciGMpmMfD/NIG3yUG7+jb+n02m53nZ37u3tFfn5PTxWpmO02eB4yY60ec1je97fmZkZORrnXGpGbM37pYRlNBocJ+dXH3jQ9CGD0EySc6eZCOW0bKpQKLSdYfG5OHjwIIASw9JpOoDHsOLxuO/wRYfgMJyB8nI+mwHHsBwcHLoGLWdYNt1Ghw7wyJTHwGQV8Xi84lH4/Py8L1CN2i4ej4ujtFI+2ULj5HfxvfysoaEhX5AnNZb2J+mgUKCkfelw5vuoxUKhUJk/TyOZTJYdpVNuAFi/fj3+/e9/1yRbLbDsVTMs+rN4X4Jk4fvJBKenp33Jz7w/7WIbOszABgvPzc2Jr43MQR/X831cg/x9bm7OlxRu57Wd0M8PUDrE4rzYQF6d/Gzfn0qlZP6tf7kZcAzLwcGha9A2hmXTV/r7+7F27VoAkOx4fXJDRmO1VaFQ8AX0aV8BT0Nq2fV5ikNNQybBBOR169YJGwzyrfFv1F5kjMViUbQzmRa1UjQa9Z08Mh0mm82WVXwAPD9KNBqtmT3WAntiSYaVy+XEn8Gx8bVYLMoJKZkH72Emk5Gx83RQh2+0G5ZFpdNpYYJB5WJ4PzhnlJOyAR5jsSysndA+Rb5aRqifVTtmHQhMhhWULtdotHTDCnqw+JCuWLFCcvWCHMl2g7NlPfT/NE3Xx9S13EhddeHJJ58E4DkjR0dHMTo6CgDYsmULAGDNmjUAyiOcKYcOYahkeug6WtyouMB37dolMU4TExMAvLytZ599Vh6uZjpy7WeGw2GRj3OgN/iRkRGRCwD27t0r7+MGQNkrfUcrYU07ypLJZOT+2nU5PT0tc0UFquOxGDLAeEJbV6sToNejdazr9WT/RuWkYwvrrfdVC5xJ6ODg0DVoKcMK2nmpdY4//nhhKdRy1Gw64JLgTh+LxYRFUZsHBbXVUeVRtCVNQeYvjoyMiJlHdrFhwwYAJU1lTVRtClBT0YSkZk6n03K9NRfvvPNO7NmzB4DHsFgFYWpqqjWazciiHetkfzqIluYwWQmDS9PpdFkUOT+Lr+10vAP+ek86HCYopIPg9VwX2WzWV2RR37tOYVm6KCXXJM1azf75TNnwjUgkIjK3Ao5hOTg4dA1a7nS3vgL6gnbs2CHOdpv5HuT70oyLGowMSzMzavZ6HNO2sgIrKI6Pj8vnsVzujh075D02704H0tkjY352JBLxpYXwf/fcc49UueQ1QalJzYQNb+jr6/PlnpERxmIxCRil85lae/ny5TLn9pCkXaxD+zc5dxx3JpPB8PAwAP8aisViUj/Lrr2RkRG88MILALwDkmZWMagXlGnNmjXCErnuOM54PC6s38qQTCaluspPf/rTpo/XMSwHB4euQcsZFjURmc/5558PoNTMwR6napvfprRYpgb4d/98Pi/hB0F+sMXA77DMR58E8vie6O3tlet1xVTCnhTxGrJJLT+1va4Bbv1VrdbWHO/atWvFd0F/GhlXKpXyhTWQsaRSqbKQFABlAbrtZFn6VTNCymX9cvPz8yIXTws5d9lsVuQiw+pEcG1u3brVF8zMNalTymyttkwmgxNOOAGA59+yieCNREs3rGg0KqbCueeeCwB4z3veA6CUN0iTIshZbR9MnYPHh9ne8EKhII783t7eunOc7MalTQPdwqvSeHR8kXYv9wShAAAJwklEQVRk6vdFIpGy6GH92br7SLtjlfShgc351NUXKpVQmZmZ8W3W7ZZJw1bRAMo7GwHe/Bw+fFg2M7tGdJgKN3Ten06SV4fqEFyjvBdBWR+aODCXlGWYuNk3A84kdHBw6Bo0hWFZ5yQ16eDgoDjoPvjBDwIoRY0D5fmCtiedNhVsGVZ9hE5tR2oai8Xk8wcGBsqij5eCYrEoY9OtrThmamRqIX0/bKS+jpC3jVd5P3K5XNsdtUGBlbYBB+cmHo/LdWRh2sHOgweaVraeWTtQyem+evXqioG5fX19Mo+s5EAz+fDhwyIn57MTGRYPDVavXu2rdqId60RQBRL+n6E97M3o6mE5ODj8T6NuhmUbJui/096lv4O27datW6XTLMMBeG0qlSor4K+/AyjP7QLKnaR8n30tFAqSnzgwMCABjo0Av9+2PyoWi75aVzqgslI+WVCFA9v4oZ3QrduBkka21TY5Th2iYatP6tLBtrR1O2FZHmUaGBjwdfDmeDOZjK+6rC4TTObP9+mcyU6YUwDYvHkzgFJNM1t1VT/jHG9QGg7XKavg3nXXXfK/RsMxLAcHh65BXaotEon4Tk6odeLxuK/ZIltSnXXWWdi2bRsAf1pGT09PIFsDymtg01egT9R0oCjHB5SHNdjPXio4HvoAdK0jeyysA2H5N8sqCoWCr2qBTiq24ROthk3o1o0x6IdjqEqhUJC/8QSRbGN2dtbnc+wUtgF488q5OHjwoM+no+ut2WR8zao7gTlWAsdNCySfz/uS0vUzbd9HxGIxuY69GLjGm9Fso+Y7GgqFsHLlSqlSwIWpc4t4E3jcecwxxwAoCWS7/dqYHP03vcnYzYgPSyKR8JXY5U3N5XJlDvBGPhgcGzdQa6rqseoocbtxamd0pWP+oaEhibJvFzhO5tNls9nAQw6gVAKH1+tywkBpnVBOvr+Z5XFqhY2vy2QyMj6uJV3cj+vYmkrRaLRiNYpOkNduSpFIpKJSn5+f93VyIvT94XMe1MG7UXAmoYODQ9egJoYVCoWQSCRw9dVXi7OOTkZdsJ6mga2TZD8LKG+4YMMZgnZqG5FcKBR8TRt0UJt21jeDYdHs1V2nbc0rHbFvTegg09ZG+q9fvx7//Oc/Gzb2emArYczPz4ssZFb6XtuAWqK/v18qTtAE6QTGQQRFa1t2wfFmMhmfWavrtFkHflCYS7tAOSlbIpHwVRnRprCNcNdhDba0t2NYDg4ODqiRYfX09GD9+vW46KKLfF1/dcNJnRenf+/p6ZHd1+bQ6V3ZhgPo77GvOkfQtucCmpdrx/HSCa21ks3z0wGh1qlrtZr+bILBr+2ETSlatWpVRSaZSCR886srcdiaSp1QD4vQ6VCEbV+lDx5s12rKNj8/7wsToJ+rExgWmdX69esBlMbEcdo0sHg87mszp+eMfmz6sPg7wzkaCcewHBwcugY1MaxkMolt27ZheHhYdlgyLV0DyoYsUJPq9t22tZNmQjoIEyhpOO7W/B5ek8/nfRUMdGI0kUgkGqrZ+P1BTTUqfY/WYja8IcgXx9dly5a1vfGmTc3JZDIiC1N0dGoH7z1PCenvmp2dlaYFtuGDDjhtF2yAci6XE5nJtPiqq91aZDIZCd/gZ9nk/nbCpk7p50jXaANK649y8n/aMrLPnT7lb3QaUk0bVi6Xw8TEBMbHx8XZzIGTJodCoYrlQ8LhsO+h5O+9vb2+QnAsgLZ//37JAGdzA4ZOBDn4uOjC4bB85tDQEF588cVaxF0QpNRBJWSs+cQxaJPYmsZ6crk56WhrG87RKtgie0Qul5Px6jIkQEmx2T6SuopBpXAI3TSEaNVGbU117eqwB0taAXOt8hodUkM5rXIKh8NtV0AcExVJJBLxxV3pGDNdHggo7/zMOeYzwcyWiYmJMtO6EWj/Vu/g4OBQJWpiWG+88Qbuu+8+fPSjH8WFF14IADjvvPMAoCxnj2xL795Epcz86elp7N69GwDwyCOPAABeeuklAKVoY9LwSy+9FIDXOqm3t9f3mdrU0GyrkSYhNYx1umsWSVBz5XK5QGbF3y27oKbr7+9vO8OyR9fRaFQqE0xOTgIoN2VZX8ma94cPH5Z1waBb+x3tgD2w0QdHHKcOVgZK5pGt0kDMzs6WhQxotNMktIHbOnPEhhVxjabTafmZ1+tQD/v82e7mjYRjWA4ODl2DmhgWm4vu3r0bzz//PADgRz/6EQBPwwwPD2NsbAwApHQqy8f29/eL5qLjlTbuQw89hH/84x8AvFpE2iHP3ZopE2RcgL/IP/1dqVRKnPW7du0qe89SEOSnI3SKQ1DVCatdg5yS1sGp/T6NzM+qxo9SifUcOnRIKmnyXvC+h0IhmVeOl9ccPnzY9z/9HZU6g7fKh8X54BzMzs76KmhyHc3Nzcl82lprBw8e9Pl9Fmq20So5LevRVXitv0n7HYNq1AGlNWobqjSzw7VjWA4ODl2DutLJdcoLd1W+jo+PSxqJTb/RzSRsWENQjaAgzfvwww8DAB5//HH5HJv8rMepNUOjjljD4bDPp0R5UqmUr+UTkc1mfRqK0NUarEbWPoRWQs+X9e3MzMwIsyX704nm9oicDGtyclJ8XrYBrvajtLL1l67hZjEzM+Or0U9kMhk5HbRra2pqSuTkPdCytOuUkHNFi4jWjx6HTbHRbdDsM63DIeib3LhxIwBg586dvqiApaIpT0FQvt9SPkf/bGNa2gG9Edp+fbpAne1gHeR01w+rpeTciPXRcbtgY+qSyaT06+Oi145n5pPaHne5XK6sMzfQ/DIz1UTQWwWix8iDFUZw63gj/o3OaN2H0Ta06IQIdz43XGscYzKZ9GWdBHX5JvTvVFQ0lVlSqBmFCp1J6ODg0DUI1bIDhkKhzqm0VieKxeKCaq5aGal1TznlFADApk2bAJS0C7WtLQVcKBTkZxscCnhO61dffRWAp+V3796Nv//97wCqzo3cVSwWty90QSgUKlZycBNBZgIZxUknnYTTTz8dgBfSogu92VxCsoxnn31WAnhp3rN6gzbvbZhBkLm/2FwuJqd2F9iwDc7vqlWrpDAdQzUYHa4ZM99H5rJ371688sorAIA9e/YAKO8mbctoB5nAZIbVyrnYNRocN9nQcccdJ2XLOccMANVFOQmOc8+ePeIaeOyxxwBADuTm5+drYljVyOkYloODQ9egVoZ1AMBLzRtO07G2WCyuXOiC/wIZgf8NOReVEXBydhGqk7Pd5TwcHBwcqoUzCR0cHLoGbsNycHDoGrgNy8HBoWvgNiwHB4eugduwHBwcugZuw3JwcOgauA3LwcGha+A2LAcHh66B27AcHBy6Bv8H5OcwWVbZN38AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 6]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXmMXWX5fu4+W2c6nU47lEJbmA4tlLJYpFQ2UTZJCQFxQYmJaIwaNSiJJv5jQgzGJSrRmIgRISaaGFCCFCsSTCRVyiJiLViQrdTSTmFm2uksdzu/P47Pe977njN37r1zl7k/vuefO3Pvued+2/m+591jnufBwcHBoR0Qb3UDHBwcHCqF27AcHBzaBm7DcnBwaBu4DcvBwaFt4DYsBweHtoHbsBwcHNoGbsNycHBoG7gNy8HBoW3gNiwHB4e2QbKai2OxWNu7xXueFyv3eT362NHRAQA4+eSTAQBvv/02AGBqagqMLOBrZ2cnAKC/vx8zMzMAgEOHDgEACoVCrU044nneYLkLFtrPZDKJgYEBAMBbb70FAMjn8/N+r7OzU8ZnfHwcQDAW1WK+uQRq72c6nQYALFmyBEuXLgUQ9I/9nZqakr709/cDAHp7ewEAxWJRrjty5EgtTRA0sp8LRSqVQi6Xq8u9KulnVRvWOxWxmD+OUQ/W2WefDQD4yEc+AgC44YYbZKPp7u4GEGxKfMCjsG/fPhSLRQDAaaedBiDYuHbu3Invfve7AIA9e/ZU0uTXKrmoFvT09ADw+/ulL30JAJDNZgEED2Y2m5X3lixZAgDIZDIAgNWrV+OBBx4AAPz1r38FAPzmN79pVHMrxtVXXw0AuPXWWwEA09PTAPyNiwcJ+7Jp0yYAwMqVK/Hqq68CCDazgwcPAgAmJiakzyeeeCIA4NFHHwUAfPGLX2xoX6oB29Tf3y8b7Kc//WkAkL5prFq1CgDw2GOPAfDX9muv+cvtqquuAgAcP368Ye2NVXO6OYblo7e3F/feey8AYPPmzQCAeNyXro8dOyYLnCcPN7BUKoW+vj4AwaRyk4qaB57enZ2dcuL/5S9/AQDcfPPN5Zr4tOd5W8pdsNC5vPHGG+Wh/vrXvw4gWMwrV66Uh3VsbAwAMDk5CQB45JFH8Ktf/QpAsPn97ne/q6kN9WIep556Kr7xjW8ACA6Jrq4uAP68co64KZ100knyXX7G14mJCbmW80+GzY1rfHwct91223zNEjSSYf35z38G4I8B54wH7LFjxwAA9913Hz7+8Y8DABKJBADIGh8fH5d1cNZZZ9XSBEEl/XQ6LAcHh7ZBy0XCKHGL1PvCCy8EADz88MOh67nTl9Ob8Fp7/4Xi/vvvx5o1awAAhw8fBhCcsMlkUtrE308mk/I/xSa2nyBD0+DJNTMzI+2/+OKLAQAbNmwAALzwwgt16lV1SKfTooP60Y9+BCAQdWZnZ+W05jVPP/00AODuu+/GunXrAACjo6NNbfNc+MpXvhJqC+ejo6ND5pOvr7zyCgCfTZEFc/7ZbyBg1px/ik6bNm3CNddcAwB46KGH6t+hKkAxcN26dfL3smXLAABDQ0MAgC984QvCnihRkDknk0n5XjPgGJaDg0PboOUMiydZoVDA8PAwAOBTn/oUgIBhHD9+XGTm3bt3AyhlVmQyvBf/19ckEomFWN0AAO9617sAAGvWrBGmxNOTjKmjo0N0FVoPAvg6LV7PtrCtqVRK2kvdwRtvvBHqB7/HMapGF1JPTE5OYvny5QAC5vDlL38ZgK9YHxz0jZRkIzyFly9fXsI4FwN+8YtfiLKdTIu6rCVLloSsYDQosP8AcPToUQDBmo26nvrL/fv3t5xZES+//DIAYOvWrbLOZmdnAZTODxXwF110EQDgwIEDAHx9F9d5M+AYloODQ9ug5QyLzKRQKOCyyy4DALz//e8HEDCMTCYju/jll18OAPjZz34GwD8Jqd+xDKqnp0d0C1NTUwtu63vf+15pD3UVvD/7MTs7i69+9asAgP/+978l/Vi1apWYvcm6ePpmMhmxmp177rkAfN0B4LsLkJXw9z74wQ8CaB3D0qxPMw3Ab++bb74JIGCZZJ2FQiHki9Zq7N69W1wsrr32WgDAE088AcBn0OwDWaJ24yDz5zWcp6NHjwrLJHjN1772tYb1pVrs3bsXQKlOlRZs9pN6KyBgkFo/S3bZDLR8w+KgAMB5550HAFi7di2AYBDj8Th27twJADjnnHMAAN/+9rcBAE899RT++c9/AgCef/55AMC73/1uud+uXbsA+D4/NK3XCm4S+Xy+ZKMFAheEiYkJ3HXXXQCAK664AkCwAd199934zGc+AyDwp6KCM5FIiBjy/e9/HwDwuc99DoC/KHh/brxUuo+MjGDfvn0L6lctiMfjoYOCY0JHyyjEYjH5Hh/uxYA777wTAMS37PXXXwfgi4h8gDn2FNmBoM+8hn1KpVJyHUVBGo+a+YDPB4p2uVxODtFUKgUg8Cl75plnpC+8nv2OxWLiytEMOJHQwcGhbdCyI866M1x++eXYssX3deRuTk/xkZERjIyMAACefPJJAMBLL70EwBf7LrjgAgDA9ddfDyBw2HzyySdFOT07O4unnnpqQW2maXf//v1yGmkzNhCEZgDAH/7wBwDB6Xv66aeLCPfb3/4WALB9+3YA/sn8zDPPAAiU+xS7uru7hcVQJCQDuOCCC1rCsHp6eqTvFIt46haLxZITWCMej5e4DCwGaFcUutJ885vflM/JrHgNHSunp6eFUfGVCmvtpsK/H3zwwYb1oVZQbZHL5WSuuMY4r3v37hXWxb6QVWUymaYaTxzDcnBwaBs0lWGV24lvv/12nHDCCSXvUUmZz+dF18UTkGysWCwKMyHr4kn4+c9/HqeccgqAQP9UCxg7RpO31mGxTzx1tRMdv8dT94QTTpCTm98jG4zFYsIUCZ5+J554YohhUfl50UUX4Z577qm5b7UimUxKH6LcSsq5mvA96zzbKmgDAvU2//nPfwD4DpVkGmT+moGwL9SPUtGu+0m3j8UIuuesXbtWnJDZX+v4DAQ6Z35WKBTqFvxcCRzDcnBwaBs0lWGVM2OPjY0JwyJ7oI4kmUyKyZ+7PxlNsVgUZ7Zt27YBCE71FStWiB5pIaCbAn9zcnJSGA/fY7vy+bywP2ZnoCUwlUph5cqVAAJmxe+l02mxrn34wx8GEKQsmZ6eFkuTziIABEyz2YjH46Lb0dZcwD99rYuJnnsyzsUM9mXJkiWhsBta+XQmB23tBkpZG8O3FiPofgIgZCXUejjOHz/j+k0mkxKm0wwsGrtyV1eXDBBf+UBMTEyIqEWXBw5gLBaT6ylCavFJR9bXCrpGMLZqeHhYlOs0DLz44ovy23/729/k9/VroVCQh9t6excKhZKMDwBEmd7V1RXaFCgu1prpYKHQi1kr2/l/VGwk4PebG9aKFSsa3MrKwfayD/Sd27x5s3zGduuH17q16PhP+qfRFYDQSv7FAn2IWGLheV7JGtavsVisqW4aTiR0cHBoGzRd6a5jB4EgJ9KqVatkl+crKXg2mxW2RbGJjKurq0vEI+uo99xzz8n9t2zZIl691eInP/lJyWt/fz/Wr18PAPjsZz8LALjkkksA+LmP6BTKTAWk0eWUzHpsKGbofnzsYx+rqe31BsXURCIRck2Zi1UBpdks2D+yU7ITvr8YwNi5eDwu64t910n7KPZTLNLxeByPxcamosD50dBSjDWY6blvZMI+C8ewHBwc2gZNV7rbkBYqmIeGhsRtQCvUAf8kpi5Kx94BpRkQbCriH//4x5LCWJvhF4qxsTHJGkE2yDhIz/PkRCaDsDoeACGXgGKxWMIogYB5UIe2GKBZ8FxGFP2+dW8AgvGg8+FiYlYEdVF6zmzcaEdHh7xHhkW9FXO6AQHDXsyIYsc295y+TodlNVMX6RiWg4ND26CpDCuZTIbMv9T3zM7OhnQ9ZGErVqyQU5i6K17b0dEhTIanHC08N910E77zne8AgFjuFgKdu4r94ElDS4nOu2UZiA78LQer66IuTH9WLhd8I8Hfq9Xp0/O8UDjTYoDV4VDvNDo6KnNtzfdjY2PyGdk9XRgGBwcXHGzfTGjpI8oheK4suvl8Xiz3zUDNG5ali9oHhz4acy0CjR07dgDw4+2sjxEfjtHR0RIaDqDEu9b+Hq/dvHlzXSPJ2R792/SI5oYVtSlr5WXUJkbwe1aE0GZja7RoNvRGxfGOEifKfWb7YF0KWgHbBop0/f39YvChPx1x5MgRcaWhgUTPPeeW6bSJxaiE1+vQRifYv4FSUtHMDcuJhA4ODm2DmhiWFnuqOS0uvvhi3HDDDQCA97znPQAC59C33npLmJVNIzw1NSU7OsUJMi3P80LJ+XifyclJyeBQz0j5eDwubSMr1MYAjol1DvU8b874O8/zRKHNUzsq1XOrocddM0eglDHNJTJqlslXzlcrle+W3dEAtGfPHuzfvx9AMC9s58qVK2Xe6eqgXVIYl8jyZ4sRzIKSTqdLXE804vF4aN3qtWkTODYSjmE5ODi0DWpiWFH6E8r3q1atEqdKnixkOSMjI6F8QWRHAwMDEm6i4+sAX+nOk4ynHE39PT09UvrKFrPM5XLYunVrLV0sC62HsiELmnlY/Y3OE0VopsXvWf2P/r1WpxXWJ+xcFbHncx+JypG12MD41JdfflmyLXBdUqfY29sbivHkOtWZRxjSRfP/4cOHF4XeDgA2btwIwDdUUTdrdajaSZjQ4UqMj2UsbyPdcBbfSnFwcHCYAzUxrK1bt+L2228HEOT/YciMDvClOV6Xr7L5dHgy7dq1Cx/60IcAQDKD0lIzOzsbskSceeaZcg11DGRrNDH39PSELDSNAossjI2NSf8t05qPeehyYPr6xZI3CqisLVpXR2g2xnvYQPBWQZejp4Py6aefDsBnWFzb1NUw71p3d7cUheVa1xlnCbo33HTTTQCAH/zgBy1nVsT73vc+AP682HVajtnrNU5LOcPUGsmwql4piUQCd955p1BeG72tFeAU6ayCGgjMwNxQvvWtb8nn7LgWER999FEAQR01ip0DAwMhdwD94DeiunCUWKYV47bf5cQo7enO9kdlBSj3282EVrDbPkSlI7H/62v4Pa6FVhVn0JvHlVdeCSCoJtPR0SHt4qHJ7AsbNmyIzO4A+NWcbJwhD7Xh4WHZ9FoNqkxyuVwoKWW5YiE6zTVFZZuAshFwIqGDg0PboCqGNTAwgGuvvRZr1qwRGshsCHzVznVkBrriLVkTlecsbXXPPffguuuuAxC4IPBE6+npkcIMrA2o6/rR1YHMhigUCtKGk046qSRZWb1BVpRIJIRtRXml8z3rKZ9MJuVv66ZRrmxWs6FZbDmxrxxsJMBi8nwnQ3ruuecA+HPIdWXbGeVEq9MnU7wkQ9NMbbEwLD5jY2NjkUYewO/nXHOaSCTkWaZxgePUiESNjmE5ODi0DapiWPl8HocPH8b+/ftLFOIARPHd09MjJxIVkG+//TYAPxk/mZjOzMh7s/QVC6Ny91+2bJkwEio3qZjO5/NyqvH05/+xWEzaMjIyUhKTV29EKVGjGMdcCnitqOb1tqyUvVcroJ1hrXGhEmhdH+dwMbg1cK3R2ZMOspOTkyVxc0DpfPA9m0YZCJgyzf7UfdmK0K0Ac3vRkHDo0KESp2CgdP3aMCp+lk6n8cc//hEAcOONNwIIytQ1Qvne+pXi4ODgUCGqYljZbBYHDhyA53liFWGmBO7U4+PjUjqIFjqeUJlMpiTLAhC4LsTjcfkendmYyXD//v1iaeEJxmtzuZyccjyxeQIODQ2JE+nZZ58tmSEagSiWEMU8yjEsq0Ngv6gjWAzQesK5HF3ngw0iXwz9O/nkkwEgFJ6STqdlrZJlaKsZmYoNx0omk3jllVcABBZt6mv7+vpE10vpo9lgnjht9Z0rg2xHR4fMu80Sks/ncdpppwEI+s7ntxEMq6oNa3p6Gs8++yzuv/9+fPKTnwQQuB7Q3WBmZkbEPm5O3EDS6bSIERQltQKWFJq0XCcJ42BQhORvZLNZEfWixEX6yRw6dKhu9dPKiUBRfkqWYkddFyU2cmwWkx+WzqRhU45UAh2HyfkYHh4GADz77LP1bGpVsFlHuBa7urpkHVMtoR9arkOdGhnwXRjoT8hIDK7rZDIpG12rNixWHNcHvzUcsG+xWCxENGhAyOVyomznGNBHshFwIqGDg0PboCYX4zvuuENOw9tuuw1AoLQ8cuSIMB2KdDy90um0MKUoJzXu4nzlaZ5KpeY0oR86dCjkUsETYmhoSMzTv/zlL2vpaiSi8lrZWEcNnafLspJybC2KYbVa6a4zD1gRVvfTtlPHztksFDzlWwmqNLjmqM7YtGlTiFXwmnw+LyoNm3Fi8+bNeOihhwAEzF8Xs2i1d/+pp54KIFDJDA0NyRyR9ZE5bd++Hb///e8BBMYyrnMWfgEC9dAZZ5zRsHY7huXg4NA2qHqbZ9zVww8/DADySofOO+64Q8Jt6DDKnTuRSIRyXRGHDx+WU5nmX+oDJicn59T55HI50Tfwdx555BEAwPPPP9/0Ag5aR2NDVuLxeChKXzPHubI8LCYdFhlEKpUKpUvWClzbZuqrEolESEfCbAitBBkWx56puPv6+mTNUgdFpjQ2NiZSRJTBgTGENBix38ePH5fQtn//+9/170wFIGO69NJL5T22T7ttAChJ9UxWrDOrcr1zbdAtqRFwDMvBwaFtUDXDmivK/LHHHgOAkvxTGzZsAFDq8rB69WoAQYZGnrwM9WkHROmRaC0dGRkJORNqx1b7XpQl1P7OYtJhsbzZyMiIhAzpoHbAZ1ocg6j22sD5ffv2Nay9lYJsj2ydVjwgsIyRVXCeBgcHRddF/Q2dQpcvXy56Iuv2USwWS8qAtQJ33XUXAOCnP/0pAH/OqEu0z7j+n9dQesrlctIXOor/8Ic/bFi7G6r5e+GFF0LvNdIXqpXgw9vd3S0L2ooZ8Xh8zhp1WoyyKXm58PW9WpWehA/0vffeK2oA9lPXYbRpnbWrBv2TeMjZ2MlWgL5SbBs3KSBou02RvGvXLkkZwzlnVhEt/nNtUHx85ZVXpO+tBl0QtBhnYwB13UF67VNsTCaTsmEx00UjRXwnEjo4OLQNYtWIGLFYrLXySB3geV5ZL8dK+hjl1sD6h5lMRszYlk3F43FRYFpnUh0TSdGDYsnu3btFSVohnvY8b8s8fahpLsu5Y9CtZGhoKJTIjpky3nzzzVCxiUqzPFjMN5f/u3dFN7XxgprJkuGSOVi1RqNRz36Ww4UXXgggSF7Iaua33nqrGBy4zsm6fv3rX4vhbaGopJ+OYTk4OLQNqmVYowBab4OuHWs8zysbKv//oI/AO6Of8/YRcP1sI1TWz1ZbnRwcHBwqhRMJHRwc2gZuw3JwcGgbuA3LwcGhbeA2LAcHh7aB27AcHBzaBm7DcnBwaBu4DcvBwaFt4DYsBweHtoHbsBwcHNoGVaWXccHPkdeXvCaTSUm9wXQxzPmls6wyuJbZK2OxmAQFM72HzZ1VBY5UEJqzoOBn3U9b5UdHT9jxicViEtxt+1ktmhEUnEgkpLScnivA7y/7yuBpjsXMzIz0s1xusErQyH5GzSfbyfbrdcvrdf2FZs5nazPhtwlsquNkMilFN5hi9uqrrwbg567SZc14PeCnyuXkDwwMlHyWzWZlw2JmA6Z63rlzpyQ4ZE6leRZHRTFlUbURLXR6ayDIyLBu3Tps2eInhDjllFMABBvzwMCA5Mbiey+++CIA4I033pBsFnv37gUQpB6emZkJlWKLalNUtoyFgv1ku1lr74wzzpC5Zn/5qmsWMlcWi7Ps2LFDkvsxDfLf//53AH6RB51iuBVgu88//3wAwDXXXCO5sZifjOtQl+5j7qvDhw8D8IvP8G9mFHn88ccB+AUq6lVaj2iLDavWBRqLxeShrGXXtxsVN6BbbrlF6jIyeR0faJ24zm5YS5YskYeVG5euEMTMndzMPvGJTwAAbr75Ztx3330AgJ///OcAglQn2Wx2wQ9vue/bB1mXKOci5ibKMR4bG5OioTYHeFdXl1Ra4ZjpEun2QY7Ked8IMIMm6xGw0OiWLVskiyiryTz55JMA/NqDOr87ECQAXL16tRRnZT91Aj8WIm52LC/Hk4cME/INDg7K36wxysSDmUxGWCbnh1lj165dK/1jyhn2+9VXX5X1Xi84HZaDg0PbYFExLJ7m3M11uXCb3I6vmn3x9OCOr3OoT01NVc2y7P0uueQSAH5CM7ICWzUlHo/L9bZScLFYFKZCkGnl8/lQtR3eu7+/Hx/96EdLxuR73/seAJ+a2wpE1WC+E97mntfVvMkuKCaybt/4+HhI3CRrBIL891a/FY/HK0rmVy0rmY+hJ5NJmTOyjLPOOkvarSuJA0Fe89HRUWGZTMxIsT6ZTMo6pnhJEWtyclLEKJuOuNHgOHDuyKI6Ojpkbik1kCXHYjEZA84PK6r39vaG1AZMPMlU3/WEY1gODg5tg0XDsOLxuKTVPeeccwAE1aSHh4dlF3/99ddLXvP5fOh042kwODgoTOjxxx8vqa82H7T+i/egTqm/v1/Yk60lmEgkhPHwhNV9JGOxFaA1+7P6MF2ZZPv27QCAP/3pT9IvMrFa9SHlWA3bZXVu8XhcxoXzxlTCBw8eFObA6zVbpQFB34v9tG3Q7HkBqZQj39fMjm3hOHPucrmc9N1aAguFQqg6N18LhUIJ2wKCcYrH4yXGllr6tFDwd/msZLNZYYtkX2TF2Ww2xKJoWOrq6pqzMEojDAuOYTk4OLQNWs6weMplMhkMDQ0BALZt2wYgYForVqyQk4AmZVbm9TxPmAgtEtQPrFu3Tqw2TzzxREivUmnb2K5NmzYB8E9MtsdW/J2ZmZFTiDqdqGq5PFF1uSQyQF1iiuDpxVPvvPPOA+AXqKAZuhmnNNuRTCZFd2U/y+fzIZ2H1rOxz2Qg/KycLq7RfeOckfnoUm1sJy17nM+Ojg4Ze77H12QyKbqcKD8sa4FeiB6yFtBSS9eLXC4nrJLzyDFJp9NzViVPpVIyVlq3BzRGP7doNqxYLCa+LNwgWL1jyZIloUorq1atkr852RwgXtvV1SVl77PZbNVKd07SueeeCyBQyKZSKfkNTqDelPgZF7OujMO28nt0ZchkMqGHnAuhWCxK2zlGmzdvBuA/NNVuxLZ/lWwG/H2O8fT0dKjk/MTEBAB/o2Y/KV5wEy4UCiXOlbwXPyuHers46Pvx4bQPbTKZlHbyM73erIikRWirEmCbZ2ZmZAxqnbuFgmuTh/vk5KS0xfrQaVUGRWetvOc65QHNDcvWpqwHnEjo4ODQNmg5w9KgwpNObbqcN//mSaYV0tz9eVLzs6mpKXGwrIVy8xSkaMoTM5/Pl4QmAKUnPuk2v8/TLJFISPutASCfzwsbITT75EnOvtKsvG7dOjGXNwLWKKCZJE/U4eFhAAHD8jxPzOXsJ03l2tWEJzhf52NNzVRMc+4mJydlPjk/VD0kk0lhI5qRAT6LmouVLAbwWWFfxsbGRGXBZ00r2q1oz2dB196k8WehRqBycAzLwcGhbdB0hjVX/Fo6nRad1UknnSTvETbwVJuYeZJZRWaxWBSdSz6fr3jHpwmdeheGGlCX0dnZKb/PE5bMQ5u6bRzV9PR0qBq0HgeeTNQJ8d59fX1yf7aB14yMjEioSCPMyBwzy7CKxaL0k5+x/dPT08IAyU6IWCwmjDMqKLwS1CuWUK9FrhMdLwr4rNEq1rWeai4DwtGjR2U+qJPVYVh2zdbqslErOPZkwJOTk6Hf1m2Lck8B/P4yZIlsrd7xgxqOYTk4OLQNmsqwoqw82jmTpzJN99zFY7FYSEegHd/IviwLSyQSJSkyKj29eB0DYrU+A/BPWH5GZ0CeKppFWQfQRCIh7ae1zwYV68/Iojo7O0U/xP7w/3Q6Lb/XyAwA1sIaj8el7dr6BfihOhwPzonWL1q2RjSLXVhWAyBk8SS7Hh0dLQkRAwL9TU9PT+gzMjXP84Rx0P2Dbg7692ybmjUGVo/ItQoEzxjb0tHREbL66jAyrjvOvw3nqidarnTnZrB8+XKceOKJAMIbj+d5MqA23tDzvNCGxQHr7OwUOl9LtgY+UA899BCAICL/tNNOEyUy3Su4cR07dky+Z03XqVRKJlG7MwD+JsX3+NAQBw4cEB8XmqGff/55AMC+ffvkIWnkorf3TCQSsrFyjLnQY7GYzAVFJo5dT09PaC5bBb1x2U2X/x89elQOJ/aPm1kymZT3bFaCrq6ukB+eFqFb7dZgD42ZmRlZRzamdWpqKuTuwWs7OjpkrKzI3Ag4kdDBwaFt0FSGFXXyU6zYuHGjKN2jPL1tHBdftaet/R2tHK+lrXSAI8PavXs3AF8JT0Xq9ddfDyBI4KezNZCBkDlls1lhHLaPxWKxJBMCEHgO33vvvZIEjm4ajKSfmJiIzPRZb1gxKp1Oi6jDk1U7iXJeKS6QbXR0dIhoZJl0pahXP7XiW+fyAgLxP5fLhTKrcj4189dOvvp/IBgDsrDJycmmsJFqsHTpUnFnIGO2inYN7dFPFxaikevQMSwHB4e2Qct0WDyZmJFh27ZtoheKcmGwijytL7G6EB2fyN1fuz9UCl5P0zz1GwcOHJDfICtkFoV0Oi36LJ5QmmnZLKR6PHhqWUfDHTt24NVXXwVQ6jDL12Yoaq17w4YNG+REZn4rsqre3l4ZM7ILshQAoquslf3WC3pNcTwZo0pn3J6enpBulOy4v7+/xDCkX1OplDAqMhayt2PHjoXy9bfKqZS/u379etFTaYMO4K9Nskq+p0PSOJ9RklG94RiWg4ND26DpRxx3ZlperrjiCgDA1q1b5YS2DEOzKG02Bvwd3jIsnSGSrhKpVKpqB0Vr/YjKzcRTU0fwk03YLARR4TdaF0DGYds5Pj4eCuVZQEWdqmCZA0/hjRs3CpO0WSzfeustmQPOKT/L5XJiWaU1VOtImmHej3KQtGya+sNTTjlF+sDPtD6VfeD3dT+5Dvg9vjbSsbJasL3Dw8MlmXqBQAqKstLrZ476XM4rc8I3Ak3dsBKJhEzwlVdeCQD4wAc+AMCmoybsAAAJ/0lEQVRPtmfjlaKS29mHWk8+B1GnT6aXend3d80LxdJ2vYHyPd0eO7na10Wn7ND90WlybEpe/XerihYQnL+1a9eKOM8Fqn2t+LBSJKc7hud5IkpSBdDIBV4pOH86tg4oVUdEGTc4jxT79WHDz3jY8J5ajK8mY0YjwPkZGBgIxavq9W43MxIHnZZmZGQEQFA1pxFwIqGDg0PboKEMy8b99fX1SSGHG264AUAQp9fX1xdiWNqsasUrfdqRkUSZYVmOqLe3V0zrtUKfhvwNnjQ6ZpHtsE6IulxSlKGA97QMq1gstuwktr9HhpVKpaS97CeZ7bJly0oUzEAp2+T4MKJBi4GtYhoca7JEGz8IhGs0Ll26VOadLIrzOz09LX3hvRhrqTOMtBoszdXZ2RlyZmX7E4lEKBmfdvGgyMwcbY10hnUMy8HBoW1QM8OKUr4BpfodW/Zn69atIWalQ2y0kg8oTbFq9Qc6u6iNc9ImeJ7iS5curWveKGvmL1d2TMOGaUSlnrUMK5FItDyXkmXLuuipzSTR29srpy4ZGV91tk3qspodR2fheV4oay2Zoc74YfWVExMT8h51X9RljY+Pi3uAzRNVKBRaHktI8Pno7u6eM1woHo+HPtPGIzJmFiHRmRzqDcewHBwc2gY1MaxkMhkKMeFrJpOR3ZdWIGbsPP/888XNgKdrVJkj3lszFV6nHUaB0vxTltkUCgUJH+np6alrsK0tAabLPVm3DO2CYC2gOsTI6k3YV5sbvJmwDJBMKWqedWC3zXjBMKd4PB5ykG11ELRee3YtZbPZkLMydaE6U4Ytnqv1nESrnUQ12Lb169cDKHVc5nrTelr7bGnWSYmA+jA+E43IHlL1hhWLxbB69WpccMEFAAI/G25AnueF6tStWbMGgO/hbDMRcHB0GlarmNYZGaxCO5PJlIhObCNQanLNZDJ1VQZa/6RyhSb0hmMfVp3WgxPN9/i/HbNWgH3RcWNUUPMBZj8nJydDZnBek81mIyt7txJ6XbCfOi6Sh54W+wF/Xni42lRCyWQyNNdRsZPl1AeNBPvJqtTxeFz6R9GVz3ShUAjFTPIarQLhOqVYvFAjV2S7635HBwcHhwahKobFar+33HILNm7cCCA4GXjyapGIOy0/07lzLGMCwqeNNuVb5z1dz81GyOs0t/xsdHS0rmWH2Eb2UYt9PI1s2l1dFZrg97RYZPtPxtpKcGx1Ejq2mUyQfent7Q0p1qncBcIJCjXzaLW4ZMV4XZaMzJDsXotR1u0kFouFqntH/U6rQGZ45plnAvDnwlaq5jzp9OKcK0pWmn2RibIcXiOKoziG5eDg0DaoimGlUimsXr0a27Ztk5OWp4+On7O7MZVyxWJRTmNeo034UfogoFQfYMNvbIFVfW99slVThKISWMah9WfWgVWbsK3uSiuebQEE/m8rLLcCZBdky0uXLhWGxPYxa0Mul5N5oblfsxJrQOGaiMfjTa+ADJQqyC1Tyufz0nauVfZpdnY2VGJOz73Wn2osBsZF1s7XbDYbkkB0HjfrsE1HWR2GxX6tXr0aAPDcc8/VvV+OYTk4OLQNqmJYvb29uOyyy3DmmWeWWAmA0nxHPEF52vAU0kUYCG194Gf8ng5Nsc6UutCEZWuaYfFEWLp0aV3zL9kS7EQ8Hp/T4qN1atZypK2k1kmzu7u7ZY6FVn/DNo2NjQnbIrPiiayZNEtAabZp9ZC8ttKMGs3Qdek1yDXKXFm6jVFOloA/rzozqb3Gzmez55cha3xuZ2dn5fmhdS9KX6mDnoFSHTLHiU7hqVSq7q4NVT3BuVwOhw4dwoEDB6QzXMia1tuqyNpHidC1AwF/gq2HLD2FJyYmQkniqNibLzEfB7bevj5WbNPKc+uWQBQKhZCxQYsQOimaRiqVakhlnEqSGmo/Mf0KBOKETbEyNTUlDyCTuzFdS19fn8wr59m6c7QCc7mp6L+59gidQob+ZjrNUJSrA9BahTv7wpQwWpyzh7AeA1vxWa9tfo9rk3VFM5lM3TcsJxI6ODi0DapiWBMTE9ixYweeeeYZbN26FUCQgO/SSy8F4NNIexprBfNc1NfzPMmLxIILL774IgC/4AJF0Ouuuw6An3DM3sfWhtPsQYtc9UCUWwZhvdh1fTe2zTI0+zfbDJRG0jcTOg8S20tvfM2GbG27YrEoJnG6NTA2b2pqKhRrqpXSrY4rJHTMJ/un41cB3+xvGZlmYVZZr/vUqv5xHsmKKbZ2dXWVePcDpWKxTchYzqOf7K0RKbAdw3JwcGgbVLUFep6H2dlZvPbaa3j99dcBAPfffz+AwDFw+fLlEorDjJT8bHh4WGRflqmiIvOpp57CCy+8ACDY9bXSkrs9v3fVVVcB8E8x6kdsYc/p6WkcOHAAgG9i5fsLRSKRKFGWAwFLSKVSoRAMHaJh9TQ6DMmyKJ7QqVRKTrYoN46FoFoFtmbP1GtQn0ll7bFjx2QuqCPR+pu5KmMvBmW0zl3GVxsvq1mKzn8FRCvrrdlf/90qI4p1Ri4Wi7K2rISgpRObnSSbzYau18WB6QJSr346huXg4NA2qFnItK4EdMN/8803sWfPHgBhi4s+QW3kutY3WZlY///AAw8AAB588EEApdka7PVWZ1CvXV5nB43KLc/3eBKTQWSz2ZLinbaNtgy4Du1pZcYGIJwlY2ZmZk5n3mQyKayXDFrrcchGdEks3sfq/ZoFu+b0vFqdDqEdXe06yOVyoTxh5UJ1mgUbWsP2aiu1Xdt63Vp3nHg8HiqDpq2NlkUvFA1NkWy9hitNCxulkCcakbKiWuhkg7bKs+d5IZ8lvXHbRasVk9bHhYtKK0Tr3Q/dlqjfsGmbddrnwcFBAAiJx0ePHpXr2Aea/cfHx2Uzs+lM5muLbXe9oA8grlH6jx0+fFhUCXqO+T1eH6VYp4jMAhxRiupWpbymqEZjlq4ARNGX86rTBVG8pTFFJ2TkmGljg/N0d3BweMciVs0OGIvFWp95bIHwPK8sH6+0j2QOTE542WWXyftkTTyNohTVUU6ijM+yaXp37tyJf/zjHwAqrmn3tOd5W8pdEIvFvLkU3IRmAjxRmaRt/fr12LBhA4CgHh3vMzo6GkqlS4Z1/PhxcVv517/+BSDwlJ+dnZU+zyc2/U/En1e2iprPcv3U0QWAbzCi5zadYDkWmhnqAhOAP5cvvfRSSf90XcK5PPqjnsda+1kOZIvMujI8PCwxoZwrvk5PT4cciDlO09PTwqxoNOPrwYMHqyqtV0k/HcNycHBoG1TLsEYBvNa45jQcazzPGyx3wf+DPgLvjH7O20fA9bONUFk/W+1R7ODg4FApnEjo4ODQNnAbloODQ9vAbVgODg5tA7dhOTg4tA3chuXg4NA2cBuWg4ND28BtWA4ODm0Dt2E5ODi0DdyG5eDg0Db4P6CXxX+VS7dsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 7]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMXGX5fuY+u53tdnu/l0tZysVSoBBuReUmiBAVUYIaE6IxaLygJJL4j4YYjJqoqDERE4SYYKKgRhEBK0S0QkuxIBYsSCmFwralu9tu9zK38/vj+Lznnfecme7MzmXn5/f8M7szZ858t/N9z3uPeZ4HBwcHh25AvNMNcHBwcJgu3Ibl4ODQNXAbloODQ9fAbVgODg5dA7dhOTg4dA3chuXg4NA1cBuWg4ND18BtWA4ODl0Dt2E5ODh0DZL1XByLxbreLd7zvFitz5vRx2w2CwBYvXo1AODQoUMAgPHxcTCygK89PT0AgIGBAUxOTgIAhoaGAAClUqnRJhz0PG9RrQtm2s9kMokFCxYAAN5++20AQLFYPOb3enp6ZHxGRkYABGNRL441l0Dj/Uyn0wCAvr4+zJs3D0DQP/Z3fHxc+jIwMAAAmDt3LgCgXC7LdQcPHmykCYJW9nOmSKVSKBQKTbnXdPpZ14b1v4pYzB/HqAdrw4YNAIAbbrgBAHDdddfJRjNnzhwAwabEBzwKu3btQrlcBgCcfPLJAIKN6+GHH8Z3vvMdAMDzzz8/nSbvmc5FjSCXywHw+/uFL3wBAJDP5wEED2Y+n5f3+vr6AACZTAYAsHLlSvz2t78FAPz9738HAPzyl79sVXOnjauuugoAcMsttwAAJiYmAPgbFw8S9uX0008HACxZsgSvvvoqgGAze/PNNwEAo6Oj0ucVK1YAADZv3gwA+PznP9/SvtQDtmlgYEA22E996lMAIH3TWL58OQDgscceA+Cv7T17/OV25ZVXAgCOHj3asvbG6jndHMPyMXfuXNx7770AgPXr1wMA4nFfuj5y5IgscJ483MBSqRT6+/sBBJPKTSpqHnh69/T0yIn/xBNPAAA+/vGP12rids/zNta6YKZzef3118tD/dWvfhVAsJiXLFkiD+vw8DAAYGxsDADw6KOP4r777gMQbH6/+c1vGmpDs5jHiSeeiK997WsAgkOit7cXgD+vnCNuSqtWrZLv8jO+jo6OyrWcfzJsblwjIyO49dZbj9UsQSsZ1uOPPw7AHwPOGQ/YI0eOAADuv/9+fOxjHwMAJBIJAJA1PjIyIuvgjDPOaKQJgun00+mwHBwcugYdFwmjxC1S74suuggA8NBDD4Wu505fS2/Ca+39Z4oHHngAa9asAQDs378fQHDCJpNJaRN/P5lMyv8Um9h+ggxNgyfX5OSktP/iiy8GAKxbtw4A8OKLLzapV/UhnU6LDuqHP/whgEDUmZqaktOa12zfvh0AcPfdd+P4448HABw4cKCtba6GL3/5y6G2cD6y2azMJ193794NwGdTZMGcf/YbCJg155+i0+mnn46rr74aAPDggw82v0N1gGLg8ccfL3/Pnz8fALB06VIAwOc+9zlhT5QoyJyTyaR8rx1wDMvBwaFr0HGGxZOsVCph7dq1AIBPfvKTAAKGcfToUZGZt27dCqCSWZHJ8F78X1+TSCRmYnUDAJx99tkAgDVr1ghT4ulJxpTNZkVXofUggK/T4vVsC9uaSqWkvdQdvP7666F+8Hsco3p0Ic3E2NgYFi5cCCBgDl/60pcA+Ir1RYt8IyXZCE/hhQsXVjDO2YCf/exnomwn06Iuq6+vL2QFo0GB/QeAw4cPAwjWbNT11F/u3bu348yKeOWVVwAA5513nqyzqakpAJXzQwX8pk2bAABvvPEGAF/fxXXeDjiG5eDg0DXoOMMiMymVSrjkkksAAJdddhmAgGFkMhnZxS+//HIAwE9/+lMA/klI/Y5lULlcTnQL4+PjM27ru9/9bmkPdRW8P/sxNTWFr3zlKwCAffv2VfRj+fLlYvYm6+Lpm8lkxGp21llnAfB1B4DvLkBWwt/70Ic+BKBzDEuzPs00AL+9b731FoCAZZJ1lkqlkC9ap7F161Zxsbj22msBAE899RQAn0GzD2SJ2o2DzJ/XcJ4OHz4sLJPgNbfddlvL+lIvdu7cCaBSp0oLNvtJvRUQMEitnyW7bAc6vmFxUADgnHPOAQAcd9xxAIJBjMfjePjhhwEAZ555JgDgW9/6FgDg6aefxj//+U8AwAsvvAAAOPfcc+V+W7ZsAeD7/NC03ii4SRSLxYqNFghcEEZHR3HXXXcBAK644goAwQZ0991349Of/jSAwJ+KCs5EIiFiyHe/+10AwGc+8xkA/qLg/bnxUuk+ODiIXbt2zahfjSAej4cOCo4JHS2jEIvF5Ht8uGcD7rzzTgAQ37LXXnsNgC8i8gHm2FNkB4I+8xr2KZVKyXUUBWk8aucDfixQtCsUCnKIplIpAIFP2TPPPCN94fXsdywWE1eOdsCJhA4ODl2Djh1x1p3h8ssvx8aNvq8jd3N6ig8ODmJwcBAAsG3bNgDAyy+/DMAX+84//3wAwAc/+EEAgcPmtm3bRDk9NTWFp59+ekZtpml37969chppMzYQhGYAwB//+EcAwel76qmnigj361//GgBwzTXXAPBP5meeeQZAoNyn2DVnzhxhMRQJyQDOP//8jjCsXC4nfadYxFO3XC5XnMAa8Xi8wmVgNkC7otCV5hvf+IZ8TmbFa+hYOTExIYyKr1RYazcV/v273/2uZX1oFFRbFAoFmSuuMc7rzp07hXWxL2RVmUymrcYTx7AcHBy6Bm1lWLV24ttvvx3Lli2reI9KymKxKLounoBkY+VyWZgJWRdPws9+9rM44YQTAAT6p0bA2DGavLUOi33iqaud6Pg9nrrLli2Tk5vfIxuMxWLCFAmefitWrAgxLCo/N23ahHvuuafhvjWKZDIpfYhyK6nlasL3rPNsp6ANCNTb/Oc//wHgO1SSaZD5awbCvlA/SkW77ifdPmYj6J5z3HHHiRMy+2sdn4FA58zPSqVS04KfpwPHsBwcHLoGbWVYtczYw8PDwrDIHqgjSSaTYvLn7k9GUy6XxZntggsuABCc6osXLxY90kxANwX+5tjYmDAevsd2FYtFYX/MzkBLYCqVwpIlSwAEzIrfS6fTYl37yEc+AiBIWTIxMSGWJp1FAAiYZrsRj8dFt6OtuYB/+loXEz33ZJyzGexLX19fKOyGVj6dyUFbu4FK1sbwrdkIup8ACFkJtR6O88fPuH6TyaSE6bQDs8au3NvbKwPEVz4Qo6OjImrR5YEDGIvF5HqKkFp80pH1jYKuEYytWrt2rSjXaRh46aWX5LeffPJJ+X39WiqV5OG23t6lUqki4wMAUab39vaGNgWKi41mOpgp9GLWynb+HxUbCfj95oa1ePHiFrdy+mB72Qf6zq1fv14+Y7v1w2vdWnT8J/3T6ApAaCX/bIE+RCyx8DyvYg3r11gs1lY3DScSOjg4dA3arnTXsYNAkBNp+fLlssvzlRQ8n88L26LYRMbV29sr4pF11Hvuuefk/hs3bhSv3nrx4x//uOJ1YGAAJ510EgDg5ptvBgC8853vBODnPqJTKDMVkEbXUjLrsaGYofvx0Y9+tKG2NxsUUxOJRMg1pRqrAiqzWbB/ZKdkJ3x/NoCxc/F4XNYX+66T9lHsp1ik4/E4HrONTUWB86OhpRhrMNNz38qEfRaOYTk4OHQN2q50tyEtVDAvXbpU3Aa0Qh3wT2LqonTsHVCZAcGmIv7Rj34kKYy1GX6mGB4elqwRZIOMg/Q8T05kMgir4wEQcgkol8sVjBIImAd1aLMBmgVXM6Lo9617AxCMB50PZxOzIqiL0nNm40az2ay8R4ZFvRVzugEBw57NiGLHNvecvk6HZbVTF+kYloODQ9egrQwrmUyGzL/U90xNTYV0PWRhixcvllOYuitem81mhcnwlKOF58Ybb8S3v/1tABDL3Uygc1exHzxpaCnRebcsA9GBv7VgdV3UhenPauWCbyX4e406fXqeFwpnmg2wOhzqnQ4cOCBzbc33w8PD8hnZPV0YFi1aNONg+3ZCSx9RDsHVsugWi0Wx3LcDDW9Yli5qHxz6aFRbBBp/+MMfAPjxdtbHiA/HgQMHKmg4gArvWvt7vHb9+vVNjSRne/Rv0yOaG1bUpqyVl1GbGMHvWRFCm42t0aLd0BsVxztKnKj1me2DdSnoBGwbKNINDAyIwYf+dMTBgwfFlYYGEj33nFum0yZmoxJer0MbnWD/BipJRTs3LCcSOjg4dA0aYlha7KnntLj44otx3XXXAQAuvPBCAIFz6Ntvvy3MyqYRHh8flx2d4gSZlud5oeR8vM/Y2JhkcGhmpHw8Hpe2kRVqYwDHxDqHep5XNf7O8zxRaPPUjkr13GnocdfMEahkTNVERs0y+cr56qTy3bI7GoCef/557N27F0AwL2znkiVLZN7p6qBdUhiXyPJnsxHMgpJOpytcTzTi8Xho3eq1aRM4thKOYTk4OHQNGmJYUfoTyvfLly8Xp0qeLGQ5g4ODoXxBZEcLFiyQcBMdXwf4SneeZDzlaOrP5XJS+soWsywUCjjvvPMa6WJNaD2UDVnQzMPqb3SeKEIzLX7P6n/073U6rbA+YatVxD6W+0hUjqzZBsanvvLKK5JtgeuSOsW5c+eGYjy5TnXmEYZ00fy/f//+WaG3A4BTTjkFgG+oom7W6lC1kzChw5UYH8tY3la64cy+leLg4OBQBQ0xrPPOOw+33347gCD/D0NmdIAvzfG6fJXNp8OTacuWLfjwhz8MAJIZlJaaqampkCXiHe94h1xDHQPZGk3MuVwuZKFpFVhkYXh4WPpvmdaxmIcuB6avny15o4DptUXr6gjNxngPGwjeKehy9HRQPvXUUwH4DItrm7oa5l2bM2eOFIXlWtcZZwm6N9x4440AgO9973sdZ1bEpZdeCsCfF7tOazF7vcZpKWeYWisZVt0rJZFI4M477xTKa6O3tQKcIp1VUAOBGZgbyje/+U35nB3XIuLmzZsBBHXUKHYuWLAg5A6gH/xWVBeOEsu0Ytz2u5YYpT3d2f6orAC1frud0Ap224eodCT2f30Nv8e10KniDHrzeM973gMgqCaTzWalXTw0mX1h3bp1kdkdAL+ak40z5KG2du1a2fQ6DapMCoVCKCllrWIhOs01RWWbgLIVcCKhg4ND16AuhrVgwQJce+21WLNmjdBAZkPgq3auIzPQFW/Jmqg8Z2mre+65B+9///sBBC4IPNFyuZwUZmBtQF3Xj64OZDZEqVSSNqxataoiWVmzQVaUSCSEbUV5pfM96ymfTCblb+umUatsVruhWWwtsa8WbCTAbPJ8J0N67rnnAPhzyHVl2xnlRKvTJ1O8JEPTTG22MCw+Y8PDw5FGHsDvZ7U5TSQS8izTuMBxakWiRsewHBwcugZ1MaxisYj9+/dj7969FQpxAKL4zuVyciJRAXno0CEAfjJ+MjGdmZH3ZukrFkbl7j9//nxhJFRuUjFdLBblVOPpz/9jsZi0ZXBwsCImr9mIUqJGMY5qCnitqOb1tqyUvVcnoJ1hrXFhOtC6Ps7hbHBr4FqjsycdZMfGxiri5oDK+eB7No0yEDBlmv2p+7IVoTsB5vaiIWFoaKjCKRioXL82jIqfpdNpPPLIIwCA66+/HkBQpq4VyvfOrxQHBweHaaIuhpXP5/HGG2/A8zyxijBTAnfqkZERKR1ECx1PqEwmU5FlAQhcF+LxuHyPzmzMZLh3716xtPAE47WFQkFOOZ7YPAGXLl0qTqQbNmyQzBCtQBRLiGIetRiW1SGwX9QRzAZoPWE1R9djwQaRz4b+rV69GgBC4SnpdFrWKlmGtpqRqdhwrGQyid27dwMILNrU1/b394uul9JHu8E8cdrqWy2DbDablXm3WUKKxSJOPvlkAEHf+fy2gmHVtWFNTExgx44deOCBB3DTTTcBCFwP6G4wOTkpYh83J24g6XRaxAiKkloBSwpNWq6ThHEwKELyN/L5vIh6UeIi/WSGhoaaVj+tlggU5adkKXbUdVFiI8dmNvlh6UwaNuXIdKDjMDkfa9euBQDs2LGjmU2tCzbrCNdib2+vrGOqJfRDy3WoUyMDvgsD/QkZicF1nUwmZaPr1IbFiuP64LeGA/YtFouFiAYNCIVCQZTtHAP6SLYCTiR0cHDoGjTkYnzHHXfIaXjrrbcCCJSWBw8eFKZDkY6nVzqdFqYU5aTGXZyvPM1TqVRVE/rQ0FDIpYInxNKlS8U8/fOf/7yRrkYiKq+VjXXU0Hm6LCupxdaiGFanle4684AVYXU/bTt17JzNQsFTvpOgSoNrjuqM008/PcQqeE2xWBSVhs04sX79ejz44IMAAuavi1l02rv/xBNPBBCoZJYuXSpzRNZH5nTNNdfg97//PYDAWMZ1zsIvQKAeOu2001rWbsewHBwcugZ1b/OMu3rooYcAQF7p0HnHHXdIuA0dRrlzJxKJUK4rYv/+/XIq0/xLfcDY2FhVnU+hUBB9A3/n0UcfBQC88MILbS/goHU0NmQlHo+HovQ1c6yW5WE26bDIIFKpVChdslbg2jZTX5VIJEI6EmZD6CTIsDj2TMXd398va5Y6KDKl4eFhkSKiDA6MIaTBiP0+evSohLb9+9//bn5npgEypne9613yHtun3TYAVKR6JivWmVW53rk26JbUCjiG5eDg0DWom2FVizJ/7LHHAKAi/9S6desAVLo8rFy5EkCQoZEnL0N9ugFReiRaSwcHB0POhNqx1b4XZQm1vzObdFgsbzY4OCghQzqoHfCZFscgqr02cH7Xrl0ta+90QbZHtk4rHhBYxsgqOE+LFi0SXRf1N3QKXbhwoeiJrNtHuVyuKAPWCdx1110AgJ/85CcA/DmjLtE+4/p/XkPpqVAoSF/oKP7973+/Ze1uqebvxRdfDL3XSl+oToIP75w5c2RBWzEjHo9XrVGnxSibkpcLX9+rU+lJ+EDfe++9ogZgP3UdRpvWWbtq0D+Jh5yNnewE6CvFtnGTAoK22xTJW7ZskZQxnHNmFdHiP9cGxcfdu3dL3zsNuiBoMc7GAOq6g/Tap9iYTCZlw2Kmi1aK+E4kdHBw6BrE6hExYrFYZ+WRJsDzvJpejtPpY5RbA+sfZjIZMWNbNhWPx0WBaZ1JdUwkRQ+KJVu3bhUl6TSx3fO8jcfoQ0NzWcsdg24lS5cuDSWyY6aMt956K1RsYrpZHiyONZf/vfe0bmrjBTWTJcMlc7BqjVajmf2shYsuughAkLyQ1cxvueUWMThwnZN1/eIXvxDD20wxnX46huXg4NA1qJdhHQDQeRt041jjeV7NUPn/B30E/jf6ecw+Aq6fXYTp9bPTVicHBweH6cKJhA4ODl0Dt2E5ODh0DdyG5eDg0DVwG5aDg0PXwG1YDg4OXQO3YTk4OHQN3Ibl4ODQNXAbloODQ9fAbVgODg5dg7rSy7jg5zB0NlXAD3hmahKWJGOwb6FQCAU989pEIiHXMfhZV/+pEwenEZozo+DnVCol/WOQty6sanNA6bJQ7B9fbfbZ6aKVQcFsdzqdlrQy7C/nRc+nrltAMG2OLhb833bX1ZZ295PzwTQz5XI5tG51GTT2i3nRWjmfnc2E3yWwBTCSyaTUYnvf+94HICibtHLlylD+JE72kSNHZBEwswFzSB0+fFgWPfMmbd++HQBw//334/HHHwfgp5IGwgkADZoWU2b7wpJcmzZtwooVKwAE0f1M3rho0SJpHx9aJmh86qmn8NprrwEAnnnmGQBBLqaDBw/K+LQzZCwWi0lmjDPPPBMAcOmllwLwa+zxM/aT+a102ThuVHyQX3rpJSl9x+IVTzzxBAA/D9jLL78MAG3vL9cys2mcc845AICbb75ZCozwGiYnHBkZkU2IY8HXdDotc8vU5H/9618B+HndbG6tmWJWbljTqXMXNcG1vteMBcGH97rrrsMXv/hFAH7mTSBgGWNjY/KQ8qHlCTs1NSWbERc2U9HE43HZFPhAXHHFFQCACy64AA8//DAA4Otf/zoAyEPfrL5Vg2WCzBa6fPlySTHCfm7btk3az+8xnzlzpCeTSUn4x6osTJp38ODBjmRUXbhwIa688koAQY5zPryjo6PSdh4gZIaLFy+WjYrVY5iRM5VKycPKay677DIA/hj+6le/AgD861//AhBOmtdq6Go5bCPXny0cm0qlZN3yM254CxYskPHh2uD8sthyM+F0WA4ODl2DWcOwYrGYpF21dQk9zwvVvtNJ4Gy1GeoagEBvMD4+XrdsbRnb2WefDQC47bbbJKmbZVP5fL5Cl6Pvk06npW9RKY5tiXqe5Ol0Gu9973sBBOLFbbfdBsA/mdvBsDg3ZH/Lli2TU5qiEeekXC6HKiKTScZiMRGHeS+e1plMpq0iEvu0YcMGKa/O3+Xr0aNHZc7YF7LGw4cPy2dkILrupF6HQDDn8+bNwxlnnAEgqAXABIftAtvG+U0kEpKn3dbY1Oyf88rvZ7NZWQfsH6WHVCoVStY4UziG5eDg0DWYNQxr3rx5WL9+PQC/2i4QVJNOJpOSWpgMY2hoCIB/GlB/wB2eMvTU1JScXP/4xz/kFKwXPDFuuOEGAMCqVavk5LBWE80SeNryJC8WiyE2yFdd582e6LqeI/UgZHtbtmxpOMXwdGCtYNRhLF68WMaAjIPX9Pb2CvOk4lYXmtCnM4CKOo7t1GGR2a1cuVIYhK1onEwmhUHSCqathGy7VsAD/nzyM1uLs6enR3RHXKustqzXQStgx5drrL+/XxjW6OgoAFQU0dBrEQj6lM1mZb2yf7a6eTPhGJaDg0PXoOMMizv13LlzxVXg3HPPBRBY4Hp7e+Xksb4t8XhcTj6+8qQ4dOgQnnzySQDAs88+2/COz9JGNNtns9lQtWkiHo+HWBdfE4lEyBrEa2OxWGQdQ/7Pk42WOZrdn3zyyYb9XuoB+0lW1N/fH2KL7NuBAwdE/8g50X2iK4e2QgHtM+1zLKlDW7FihehhyP7Y/t7eXmHmds5zuVyoBqWuLcl+cY7J3vL5vFghV61aBSAoaNFqhkXwdzg/qVRK2se+cD51PU1bZi6RSMj3OE7aKt5szJoNK5vNykZzwgknAICUvAcqC47q7+kHnQPG/5ctWyalwLU4Vi/OOussAIEPUrlclsXIiefCLRQKFSKDviYKUddQhIxqLx8oKv1zuZxQ+FbALlCO/9DQkPxN0YpiugY3OO03xnmy5ew9z2upeEvwd1n0FAg2KM4r2z0+Pl61dHupVKpw/AWChzWTyYTuRRw+fFjGzn6/XWIx54B9ef3118XwwAOFfclms1XblEgkRE1Dwwr/b8VB6kRCBweHrkHbGRZPbC0KAf7JRnGHDmi6nHe10ADNnGxJ8ZGREXFq0+EF9bb1tNNOkzby/vwtnsxUPB85ckRoNtvB07Onp0f+5snG/oyPj8u9+LtkLlrs5L0pzqxZswbPPvtsXf2qB1bk1Yp2siYyY7Z/zpw5IcMBWcrRo0flJOYJzHuWSqW2MCy2ja8HDx4U9rxgwQIAgbEgn89XzBEQzF0ymZT5JKvgeCWTSWExnEfOWblcljHQjIzfb4eIz3lhX4aGhmRtEdowZEVeLQprj3ggLOk0E45hOTg4dA2axrCmo9COxWKhE5u7cC6Xk9g0OhbyxNbf4+mjd2/t/AZUKjvJcho5sekkd/zxxwMIlIj5fF5OGuvsqkFlpDYFs/18jyerNp9bZXQikZDTnW1g21avXo3nnnuu4T4eC/aU5FgXCgUx/VsXjcnJyZACl+OljSTWZcKujWZDs3ndtn379kncH3WDxMTEREgq0PNi28zP+vr65P6cV45BoVCQsBWuT6ugbzXYJrKioaEhWVvUYUWtaTIrPpulUknYJaUMO7/NhGNYDg4OXYMZM6zpMiv7tzaLAr7eirorq/8AwrKz1nXYexKe54XM6vWALIaniTZrW8anYUMy2GZt8rZs0PO8EFPhvdPptFzPNlBP0NvbK581kIbmmOC48d5kTtpRkv0iW8hms5H9Y59smhX2s9XWMas35dqYnJzEm2++CQDYtWsXgErWRx0U9T187e3tlbWhrXx85Togc6HrwtDQkDg0U8fKMWg1yyT4e7VS/LAv2lVH6+gAf87s2mzFOiSarnTXGwihJ9EqVam8PvHEE8XrlxOtNxlrAtcPKQfRUv1sNiv3b+Rh4ATcd999ACBiw8qVK8UETEUqfbUymUxF/ivbf04026gXgs2jxYU+NDQkDxTFP75u3769LUpaLQoC/kNrNx7OQ19fX8XmDATzHI/HK/x7OgFuOHpz4nvMtrBx40YAvsjN+eQhoQ8yu644rxMTEyG/uqeffhoA8PLLL+Oll14CEIhkMzlYG4EVV7XaxW7siURCrrOxlrFYLEQwWrkenUjo4ODQNZgxw7LuBvo9+3+5XA4xC8ZUnXzyycJW7A4P1HaHqCae6Rw/jVBtnn5/+9vfAAA7duwA4DMIKuKvvvpqAMAnPvEJ6Sv7q6PWgUpPd9uPYrEoJ7fNlfWDH/xAfvuNN94AELCEI0eOtCVbA1kfmYDOVGDFvkOHDokxgsxKM13ek33QWVtb2Reb9JDK4lgsJuyJTriMsgAqRXMgYFiaZVqF9djYmKw9/g5Z1datW4W9W3G43fnAdAYJgmyKUky5XJZ+Rqkt6NZivf6d0t3BweF/Gm1Ruke5IPCUYl6gDRs2yC5vzd2xWCzEnjTDsnoxrR9jzFYqlQpF1B8LvI+NjRoeHhalKXUdmkXqsCGgUulu28h7T05OynVkI2Qz27Ztw86dOyvuZSPjWwWepNrBEPBj4Dhfti06MwPZF/uZTCaFrZF5WNbZLtgca0A4xq5YLApTYr/4GjWf+vtW78f01uPj41XXYrsYlu37woULhR1ag1ipVAo9fzqUjG5INiV4K8KMHMNycHDoGrQ1NCcej4segA56l19+OQDfGmOZCaFN/ta5Mp1Oh6yEOsPn6tWrAfi7f6PZD3W+JoJ/2zCTeDweeXLzO9WshJlMpsK5Ut/z8OHDFdk8Ndp9IrNtAwMDoqeywdelUknaa/VUuv2m83dDAAAKBElEQVS2moy+rpWWpqgx43s2e6q2BOpAfX6H7eVYaLN/NR2f/v1O5LDXv8t2r1u3ThiVtQgCwXzYoG0gyH9PffTzzz/fsnY3TeleC1EbCJXVTNnS09MjA2UVe+VyObSJ6QfeLm79ANDdoLe3VzaXehFlyo1K1cw2W1FQ+xtZus3PUqmUvGd9erSxwm50rYb1QtfGD4r1hHYr4YLmZsZxGh8fD42PLmfWbrHQwj6QqVSqoqQVEIxBsVgMfaaTN3J8KDp3yo1Dwxp76Eo0f/78kI+VXn+13IrYP8bcbt68uWXtdyKhg4ND16BhhhXlegBU0mSCStb58+cLs2JRBdJIfR+yCJ5ahUKhqrJ5fHxcro9yONXliKj0nCm0ad6yoSi6H5Wgjv3QUfrVYuv0Z/berYRmr1SykilNTExUKGWBQBmtk97ZcdHxnVb8yufzbXOcrAa2lwpoPdd2LBKJRGhdavGRinuKXVod0GlRkK98/jKZTOi51c+kdXXgaz6flzXMuo32t5oJx7AcHBy6Bg0zLKvoJrRimQyJmR0vvPBCKVRp4wa16dQmtZ+amgqFuegYN3tqaKU3T8q+vr6WxGlFsSHr5KpZlI3d0noDqyfQ7e3UiWwzjepUudTX2NLmsVisgqEAwTjptLlWx9epPka1QZea0zpYoFInG5U1ld+3mUIaLVXfCrAPzOrb19cXMhZp6SHqObegflpnpWg2HMNycHDoGjTEsFKpVCiLInfgZDIp1hFa6M4//3wAvnMo3RlsvqREIhE6rQj9mZad+X1rOdOsgG3RgdfNQJRuBqg8ke2JFY/Hq+a8isVi8pntT7VxaQfsaUt9TH9/f8jRkP/ncrlQXnpdOsoyUM3eZotuh6zY87yKMCj9WblcrtDp6e/rYGIb1D4bwLFn/YRMJhPKyKDXrU0soB23+RnvZR2fm4m6N6x4PI5ly5bhwgsvBBCkMdbpcSnusQoOaWcmk5FFbU3EOiYwyoRqF7kWl6zJXfvycGNsNmxbdfS7NUhwc9Wbkm2rNunbpHfWfaATsP5RY2NjIZFXx05ysdr4yGQyWZGahNfPFtiDkUnpgPAY6BhEG28IBPPOV314dhqcA6aG9jwvJP7rzZfzybnW6972nc+4HrtmwYmEDg4OXYO6GBZzNt10003YtGkTgHDaWK2I5E5L8SCRSITEAK3Yo0JWK6kBfxe3CkztLGoVu1EixujoaFO9p635m0gmk6FiGBybTCYT8hgn48pmsyHWyfswVqvdiIoFY9v0iaydLAGfLdq5oDgFVM9tposdtKIYxXTuGeXNzvVrxfje3l5RjXDtkolks9lQ8kOrtO8kKHlQUd7T0yNuKZZFaUSV2+N7vCfVREwD3Uw4huXg4NA1qIthZTIZnHTSSfjABz4QOvV16IitEssTSccSWsWejv625t9CoVBRCgoITrSenp7QvbTy2qZUbhZ0BWSLauE3yWQypIOLUqzb2LVOMawoJhJVFNZWCtbFNmwmzUwmI/NjszTozJadAvVMAwMDAPwx0JW7gcqMI1YRr+eOa4/rn2Xs9GedAnXPugq3zWNlpQFeB1SyVauLZDXrnTt3Nt0R2DEsBweHrkFdDCuXy+GCCy6QHRSo1GkA/g5szZlRZZyiku7bHV3rP3iSkWnpSHh7MuigWhsi0izoHOVAZZZFq4fRujOe1loHAFRaQu2ppAOq2232t/PLsR0dHQ0xWh3lb/U9/Cyfzwuzsm4cWsdJtEKHFXVv9tPqTwuFQmSpMsBfA2TYXGfa/G8zIpBh6bz/7QbHwFr3dW0EKwV4nhdihFGOwBwf6sXS6XTT+1nXhpXP57Fv3z7s2bMnpFDXifmr+Q1p3xS7yWhxgJVkmabirbfekk2Qv7tu3ToA/sBX8zbW4ksul2uap3ssFpOJtsUW9O/bB6RQKIQeUkKnB7avOlVJlEjWStiNUqfBtaK7nlMrDhF687UioR4TO4atVL7rdWndbrSKQ6e6BipjXO3mrQ8pzhmV0lG+erpt7Ux5HVX9xqoyPM8L9Z3jpfvCMaAKoxX+g04kdHBw6BrUxbCOHDmCP/3pTxgbG8NVV10FADjzzDMBBEn7c7lcKN+RdpKMcvwE/JNp9+7dAIBHHnkEgF8OCfBPKDI45tzh/9p8TPBEKxaLoTxSzYJlQfak1X9rR9IoL2LCJvfTInK76tVZVBOjtLKVbEQzFusKwP+npqYq3ALaiWrMRWdk4DhTxCsUCiEGqdkJ0zzrNcdXziev19EZnfLoJ+uhUcG2W1+jjSF23epn27o62FTnzYRjWA4ODl2DuhhWuVzG0aNH8ec//xl/+ctfAAQ7NdOkrl69WpTyZEEsibVkyRI5dXgy7du3D4Cvr9q2bRuAQIdFZLNZOZX37NkDIHBEXLVqVSil62uvvQbAT19M57Xt27c3LbYpyj1BxwTyRI1ik2QjVmmvi2lQt6P1BGQonVLW2lCkycnJkFOozvtlDSgck2KxGFLg6vGxjK6ZOqxq94jSG+lcXWyf1aPqsBTLmNPpdMhlpxZjaRf4u8w0qufMjn2Uq01UXjbrkM09QYfbNaufjmE5ODh0DRrK1uB5Xqh0EV937NhRdafWZuuoPEvVwkCA4HTau3cvAODRRx+Ve1bTI+n7NVtvYBmHNgHrkla67Tr42TIQrfOwVk5tiWkl6mEzujiDLbaQSqWEdelgYKBSr6jf4+93yn2Dv8s50A7BliFpXZ3NgKtdcrg2dMEG/kanGJYNqKeuLp1Oy2c2ZxsQ7eQL+P211mJKSLpOQbP62ZKqOXaxaUVkPYjqJAexkx7R2tfKmu1TqVQou4Je6LZ2mzYX2+j+KE/jViKK7tuHlPFmY2NjIZ8lPpg2rQ8QpJcZHx8P3auWq0a7Ni57ILBN8+fPD6VCojgFhGNCtWhoU32zv8d6eFu5afO3mTKHKpZUKiXKch64FH0TiURIhaF979hekhbWrmxFH5xI6ODg0DWI1bMDxmKxzud2nSE8z6spW023jzx9TjnlFADAJZdcAsA/qazSnV7F/f39oRg7QnuA8ySmWLV582a8+OKLAKbNUrd7nrex1gW1+qlPeGtUIMVfvHixuLKsWLECQJCwsVQqhRxq3377bQD+KUz3FRpHdO1C7Tlt22JxrLms1s+oe1pzP3O4zZs3T97jPDLld09Pj4hUZCX6f5aVI7skA3nzzTdljqfjONpoP2uBjIl9OeGEEySPHcVh/l8qlUKuK8x1NTIyIiLgq6++CiBgbePj43VlSJlOPx3DcnBw6BrUy7AOANjTuua0HGs8z1tU64L/B30E/jf6ecw+Aq6fXYTp9bNTHrcODg4O9cKJhA4ODl0Dt2E5ODh0DdyG5eDg0DVwG5aDg0PXwG1YDg4OXQO3YTk4OHQN3Ibl4ODQNXAbloODQ9fAbVgODg5dg/8DTOxBRb7hIXUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 8]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXXuMXGX5fuY+O3trWdouvZcu2wK1FijaYikoRbwEYgTEIPqHYoh4C0iiif+YEINRE5VoTMSEi0aNRtQAIrdgvACWSxArFCgFXG7bLd1rt7s7s3N+f4zPe955z5npzOxcdn5+zz/T7pyZ+d7zfed7n++9RjzPg4ODg0M7INrqATg4ODhUCrdhOTg4tA3chuXg4NA2cBuWg4ND28BtWA4ODm0Dt2E5ODi0DdyG5eDg0DZwG5aDg0PbwG1YDg4ObYN4NRdHIpG2D4v3PC9S7v16yJhOpwEAa9euBQAcOXIEADA9PQ1mFvC1o6MDALB06VLMzMwAAIaHhwEA8/PztQ7hsOd5y8pdsFA54/E4+vr6AABvv/02ACCXyx33cx0dHXJ/xsbGAPj3olocby6B2uVMJpMAgO7ubixZsgSALx/lnZ6eFlmWLl0KAOjp6QEA5PN5ue7w4cO1DEHQSDkXikQigWw2W5fvqkTOqjas/1VEIoX7GPZgbdu2DQDw8Y9/HABw6aWXykbT2dkJwN+U+ICH4YUXXkA+nwcAbNq0CYC/cd1333347ne/CwDYt29fJUN+tZKLakFXVxeAgrxf/vKXAQBzc3MA/Adzbm5O/tbd3Q0ASKVSAIDVq1fjD3/4AwDg0UcfBQD85je/adRwK8YHP/hBAMB1110HADh27BiAwsZFRUJZtmzZAgBYsWIFXnnlFQD+Zvbmm28CAMbHx0XmVatWAQAeeughAMCXvvSlhspSDTimpUuXygb72c9+FgBENo2VK1cCAB5++GEAhbX96quF5faBD3wAAHD06NGGjTdSjXZzDKuAnp4e3HHHHQCArVu3AgCi0cLpenJyUhY4NQ83sEQigd7eXgD+pHKTCpsHau+Ojg7R+H/9618BAJ/85CfLDfFJz/O2l7tgoXN5+eWXy0P99a9/HYC/mFesWCEP6+joKABgamoKAPDAAw/gl7/8JQB/8/v9739f0xjqxTw2btyIb3zjGwB8JZHJZAAU5pVzxE1pzZo18lm+x9fx8XG5lvNPhs2Na2xsDDfccMPxhiVoJMP685//DKBwDzhnVLCTk5MAgN/+9re46qqrAACxWAwAZI2PjY3JOnjnO99ZyxAElcjpbFgODg5tg5YfCcOOW6Teu3btAgDce++9geu505ezm/Ba+/0LxZ133ol169YBAA4dOgTA17DxeFzGxN+Px+Pyfx6bOH6CDE2DmmtmZkbGv3v3bgDA5s2bAQD79++vk1TVIZlMig3qhz/8IQD/qDM7Oyvamtc8+eSTAIBbb70VGzZsAACMjIw0dcyl8JWvfCUwFs5HOp2W+eTryy+/DKDApsiCOf+UG/CZNeefR6ctW7bgwx/+MADgnnvuqb9AVYDHwA0bNsi/TzjhBABAf38/AOCLX/yisCeeKMic4/G4fK4ZcAzLwcGhbdByhkVNNj8/j4GBAQDA1VdfDcBnGEePHpUz8969ewEUMysyGX4X/6+vicViC/G6AQDOOussAMC6deuEKVF7kjGl02mxVWg7CFCwafF6joVjTSQSMl7aDl577bWAHPwc71E1tpB6YmpqCieeeCIAnzlcf/31AAqG9WXLCk5KshFq4RNPPLGIcS4G3HbbbWJsJ9OiLau7uzvgBaNDgfIDwMTEBAB/zYZdT/vl0NBQy5kVcfDgQQDAjh07ZJ3Nzs4CKJ4fGuDPPfdcAMDrr78OoGDv4jpvBhzDcnBwaBu0nGGRmczPz+N973sfAGDPnj0AfIaRSqVkF7/wwgsBAD/96U8BFDQh7TuWQXV1dYltYXp6esFjfe973yvjoa2C3085Zmdn8dWvfhUA8MYbbxTJsXLlSnF7k3VR+6ZSKfGanXnmmQAKtgOgEC5AVsLfu+yyywC0jmFp1qeZBlAY71tvvQXAZ5lknfPz84FYtFZj7969EmJxySWXAAD+8Y9/ACgwaMpAlqjDOMj8eQ3naWJiQlgmwWu+9rWvNUyWavHss88CKLap0oNNOWm3AnwGqe2zZJfNQMs3LN4UADj77LMBAOvXrwfg38RoNIr77rsPAHDGGWcAAL797W8DAJ544gn861//AgA899xzAIB3vetd8n2PPPIIgELMD13rtYKbRC6XK9poAT8EYXx8HLfccgsA4P3vfz8AfwO69dZbcc011wDw46lo4IzFYnIM+d73vgcAuPbaawEUFgW/nxsvje6Dg4N44YUXFiRXLYhGowFFwXvCQMswRCIR+Rwf7sWAm2++GQAktuw///kPgMIRkQ8w7z2P7IAvM6+hTIlEQq7jUZDOo2Y+4McDj3bZbFaUaCKRAODHlD311FMiC6+n3JFIREI5mgF3JHRwcGgbtEzF2XCGCy+8ENu3F2IduZszUnxwcBCDg4MAgMcffxwAcODAAQCFY9/OnTsBAB/96EcB+AGbjz/+uBinZ2dn8cQTTyxozHTtDg0NiTbSbmzAT80AgD/96U8AfO172mmnyRHud7/7HQDg4osvBlDQzE899RQA37jPY1dnZ6ewGB4JyQB27tzZEobV1dUlsvNYRK2bz+eLNLBGNBotChlYDNChKAyl+eY3vynvk1nxGgZWHjt2TBgVX2mw1mEq/Pddd93VMBlqBc0W2WxW5oprjPP67LPPCuuiLGRVqVSqqc4Tx7AcHBzaBk1lWOV24htvvBEnnXRS0d9opMzlcmLrogYkG8vn88JMyLqoCT//+c/j5JNPBuDbn2oBc8fo8tY2LMpErauD6Pg5at2TTjpJNDc/RzYYiUSEKRLUfqtWrQowLBo/zz33XNx+++01y1Yr4vG4yBAWVlIu1IR/s8GzrYJ2INBu89JLLwEoBFSSaZD5awZCWWgfpaFdy8mwj8UIhuesX79egpAprw18BnybM9+bn5+vW/JzJXAMy8HBoW3QVIZVzo09OjoqDIvsgTaSeDwuLn/u/mQ0+XxegtnOOeccAL5WX758udiRFgKGKfA3p6amhPHwbxxXLpcT9sfqDPQEJhIJrFixAoDPrPi5ZDIp3rUrrrgCgF+y5NixY+Jp0lUEAJ9pNhvRaFRsO9qbCxS0rw0x0XNPxrmYQVm6u7sDaTf08ulKDtrbDRSzNqZvLUYw/ARAwEuo7XCcP77H9RuPxyVNpxlYNH7lTCYjN4ivfCDGx8flqMWQB97ASCQi1/MIqY9POrO+VjA0grlVAwMDYlynY+DFF1+U337sscfk9/Xr/Py8PNw22nt+fr6o4gMAMaZnMpnApsDjYq2VDhYKvZi1sZ3/D8uNBApyc8Navnx5g0dZOTheysDYua1bt8p7HLd+eG1Yi87/ZHwaQwEIbeRfLNBKxBILz/OK1rB+jUQiTQ3TcEdCBweHtkHTje46dxDwayKtXLlSdnm+koLPzc0J2+KxiYwrk8nI8cgG6j3zzDPy/du3b5eo3mrx4x//uOh16dKlOOWUUwAAn/vc5wAA5513HoBC7SMGhbJSAWl0OSOzvjc8Zmg5PvGJT9Q09nqDx9RYLBYITSnFqoDiahaUj+yU7IR/Xwxg7lw0GpX1Rdl10T4e+3ks0vl4vB+LjU2FgfOjoU8x1mGm576RBfssHMNycHBoGzTd6G5TWmhg7u/vl7ABbVAHCpqYtiidewcUV0CwpYh/9KMfSQlj7YZfKEZHR6VqBNkg8yA9zxONTAZhbTwAAiEB+Xy+iFECPvOgDW0xQLPgUk4U/Xcb3gD494PBh4uJWRG0Rek5s3mj6XRa/kaGRbsVa7oBPsNezAhjx7b2nL5Op2U10xbpGJaDg0PboKkMKx6PB9y/tPfMzs4GbD1kYcuXLxctTNsVr02n08JkqOXo4bnyyivxne98BwDEc7cQ6NpVlIOahp4SXXfLMhCd+FsO1tZFW5h+r1wt+EaCv1dr0KfneYF0psUAa8Oh3WlkZETm2rrvR0dH5T2ye4YwLFu2bMHJ9s2EPn2EBQSXqqKby+XEc98M1LxhWbqoY3AYo1FqEWj88Y9/BFDIt7MxRnw4RkZGimg4gKLoWvt7vHbr1q11zSTnePRvMyKaG1bYpqyNl2GbGMHP2SOEdhtbp0WzoTcq3u+w40S596wMNqSgFbBj4JFu6dKl4vBhPB1x+PBhCaWhg0TPPeeW5bSJxWiE1+vQZifYfwPFpKKZG5Y7Ejo4OLQNamJY+thTjbbYvXs3Lr30UgDAe97zHgB+cOjbb78tzMqWEZ6enpYdnccJMi3P8wLF+fg9U1NTUsGhnpny0WhUxkZWqJ0BvCc2ONTzvJL5d57niUGbWjus1HOroe+7Zo5AMWMqdWTULJOvnK9WGt8tu6MDaN++fRgaGgLgzwvHuWLFCpl3hjrokBTmJbL92WIEq6Akk8mi0BONaDQaWLd6bdoCjo2EY1gODg5tg5oYVpj9hOf7lStXSlAlNQtZzuDgYKBeENlRX1+fpJvo/DqgYHSnJqOWo6u/q6tLWl/ZZpbZbBY7duyoRcSy0HYom7KgmYe13+g6UYRmWvyctf/o32t1WWGtYUt1xD5e+EhYjazFBuanHjx4UKotcF3SptjT0xPI8eQ61ZVHmNJF9/+hQ4cWhd0OAE499VQABUcVbbPWhqqDhAmdrsT8WObyNjIMZ/GtFAcHB4cSqIlh7dixAzfeeCMAv/4PU2Z0gi/d8bp9la2nQ830yCOP4GMf+xgASGVQempmZ2cDnoh3vOMdcg1tDGRrdDF3dXUFPDSNApssjI6OivyWaR2Peeh2YPr6xVI3CqhsLNpWR2g2xu+wieCtgm5HzwDl0047DUCBYXFt01bDumudnZ3SFJZrXVecJRjecOWVVwIAvv/977ecWREXXHABgMK82HVajtnrNU5POdPUGsmwql4psVgMN998s1Bem72tDeA80lkDNeC7gbmhfOtb35L3Kbg+Ij700EMA/D5qPHb29fUFwgH0g9+I7sJhxzJtGLdylztG6Uh3jj+sKkC5324mtIHdyhBWjsT+X1/Dz3EttKo5g948LrroIgB+N5l0Oi3jotJk9YXNmzeHVncACt2cbJ4hldrAwIBseq0GTSbZbDZQlLJcsxBd5ppHZVuAshFwR0IHB4e2QVUMq6+vD5dccgnWrVsnNJDVEPiqg+vIDHTHW7ImGs/Z2ur222/HRz7yEQB+CAI1WldXlzRmYG9A3dePoQ5kNsT8/LyMYc2aNUXFyuoNsqJYLCZsKywqnX+zkfLxeFz+bcM0yrXNajY0iy137CsHmwmwmCLfyZCeeeYZAIU55Lqy4wwLotXlk3m8JEPTTG2xMCw+Y6Ojo6FOHqAgZ6k5jcVi8izTucD71IhCjY5hOTg4tA2qYli5XA6HDh3C0NBQkUEcgBi+u7q6RCPRAHnkyBEAhWL8ZGK6MiO/m62v2BiVu/8JJ5wgjITGTRqmc7mcaDVqf/4/EonIWAYHB4ty8uqNMCNqGOMoZYDXhmpeb9tK2e9qBXQwrHUuVAJt6+McLoawBq41BnsyQHZqaqoobw4ong/+zZZRBnymTLc/bV+2I3QrwNpedCQMDw8XBQUDxevXplHxvWQyifvvvx8AcPnllwPw29Q1wvje+pXi4ODgUCGqYlhzc3N4/fXX4XmeeEVYKYE79djYmLQOooeOGiqVShVVWQD80IVoNCqfYzAbKxkODQ2Jp4UajNdms1nRctTY1ID9/f0SRLpt2zapDNEIhLGEMOZRjmFZGwLloo1gMUDbCUsFuh4PNol8Mci3du1aAAikpySTSVmrZBnaa0amYtOx4vE4Xn75ZQC+R5v22t7eXrH18vTRbLBOnPb6lqogm06nZd5tlZBcLodNmzYB8GXn89sIhlXVhnXs2DE8/fTTuPPOO/HpT38agB96wHCDmZkZOfZxc+IGkkwm5RjBo6Q2wJJCk5brImG8GTxC8jfm5ubkqBd2XGSczPDwcN36p5U7AoXFKVmKHXZd2LGR92YxxWHpShq25Egl0HmYnI+BgQEAwNNPP13PoVYFW3WEazGTycg6pllCP7Rch7o0MlAIYWA8ITMxuK7j8bhsdK3asNhxXCt+6zigbJFIJEA06EDIZrNibOc9YIxkI+COhA4ODm2DmkKMb7rpJtGGN9xwAwDfaHn48GFhOjzSUXslk0lhSmFBatzF+UptnkgkSrrQh4eHAyEV1BD9/f3inv75z39ei6ihCKtrZXMdNXSdLstKyrG1MIbVaqO7rjxgj7BaTjtOnTtnq1BQy7cSNGlwzdGcsWXLlgCr4DW5XE5MGrbixNatW3HPPfcA8Jm/bmbR6uj+jRs3AvBNMv39/TJHZH1kThdffDHuvvtuAL6zjOucjV8A3zx0+umnN2zcjmE5ODi0Dare5pl3de+99wKAvDKg86abbpJ0GwaMcueOxWKBWlfEoUOHRCvT/Ut7wNTUVEmbTzabFXsDf+eBBx4AADz33HNNb+CgbTQ2ZSUajQay9DVzLFXlYTHZsMggEolEoFyyNuDaMdNeFYvFAjYSVkNoJciweO9Ziru3t1fWLG1QZEqjo6NyighzODCHkA4jyn306FFJbXv++efrL0wFIGM6//zz5W8cnw7bAFBU6pmsWFdW5Xrn2mBYUiPgGJaDg0PboGqGVSrL/OGHHwaAovpTmzdvBlAc8rB69WoAfoVGal6m+rQDwuxI9JYODg4Gggl1YKv9W5gn1P7OYrJhsb3Z4OCgpAzppHagwLR4D8LGaxPnX3jhhYaNt1KQ7ZGt04sH+J4xsgrO07Jly8TWRfsNg0JPPPFEsRPZsI98Pl/UBqwVuOWWWwAAP/nJTwAU5oy2RPuM6//zGp6estmsyMJA8R/84AcNG3dDLX/79+8P/K2RsVCtBB/ezs5OWdD2mBGNRkv2qNPHKFuSlwtff1erypPwgb7jjjvEDEA5dR9GW9ZZh2owPolKzuZOtgKMleLYuEkB/thtieRHHnlESsZwzllVRB//uTZ4fHz55ZdF9laDIQj6GGdzAHXfQUbt89gYj8dlw2Kli0Ye8d2R0MHBoW0QqeaIEYlEWnseqQM8zysb5ViJjGFhDex/mEqlxI1t2VQ0GhUDpg0m1TmRPHrwWLJ3714xklaIJz3P234cGWqay3LhGAwr6e/vDxSyY6WMt956K9BsotIqDxbHm8v/fndFX2rzBTWTJcMlc7BmjUajnnKWw65duwD4xQvZzfy6664ThwPXOVnXr371K3G8LRSVyOkYloODQ9ugWoY1AqD1Pujasc7zvLKp8v8PZAT+N+Q8royAk7ONUJmcrfY6OTg4OFQKdyR0cHBoG7gNy8HBoW3gNiwHB4e2gduwHBwc2gZuw3JwcGgbuA3LwcGhbeA2LAcHh7aB27AcHBzaBm7DcnBwaBtUVV7GJT+HXg/AT5ZNpVJShoTlYlgvSpdc0S2UeC2TgllupVxNqePgcAWpOTXNpZaTJUZsVxk9Xv5b1/qyTXRrLZXTyKRg3SiUreX4amvSA/5c83VmZkbuh+0QVS2aJSfXLedMj9vWZmPV1UgkInJyPmvNnqlEztZWwm8T2F6C8Xhc6gh95jOfAQDs2bMHQKFeECfMPpiHDx+Wh5M1pPgQ6AeD1R5Ym+m2227DnXfeCaDizayinLKw3oj279xoeA/WrFkDADjjjDPwoQ99CABw8sknA/CbF0QiESnMSNm5wKempvDYY48BAP7+978DKJTHBgr1oviQ2BLSjU4h44PIebnwwgsBFJqrsKkCOxqzdtbU1JTMA6tTsCnD3r17pa4Za009+uijAIB///vfUhurkXKV6zzOeb3gggsAFBpNbNmypehzXIevvPKK3B/WvmIRxlQqJcU32bn9b3/7G4BC0456tdYjFtWGxRtla4QD/k23r7rUS9gDpz+/0MXBSb722mulWxArTPI3Z2ZmZJL48PG9np4eeYDD+jNyfCz49u53vxsAcOaZZ+JTn/oUAOALX/gCAL8WuP5cLSj3Wf0emSBfc7mclBzhRsX709nZKRsrN219L1i1Ujcd5atd4HrjCpvzeoHKgt2fzj33XBkTy8mw14CuSkp2yU2Xm1RXV5d0GLIKbGhoSNaBLXRYT5Rr5MsNh2ViYrFYoFsVr2VhRsBn01rxUnbKy+8+duxY3TcsZ8NycHBoGywahhWNRqWuNhkGd3PNmKipqa3KdVPO5XKiwSYnJ6u2IfC7+cpj3/XXX4++vj4AftlbfreuzU4NpXsRcoxhHWeojfgeNXl3dze2by/U47vxxhsBQDpvT0xMNOxYEYlEAjY6FiCcm5uT8fKYoNki3+Pn+f9EIiFyhbEMe4wpxZbriVgsJiyCZZ/JnPWa4TjJomZnZ2X+uA74msvl5N+8P2eccQaAQjcnHrcaybDCwPvJUse6xwBZJo+3ZFpHjhyR+0C7pbbBck3wXrDeezqdlue0XnPmGJaDg0PbYNEwLH3mJ5MZGBgAUNjVuVNTM42Pj8tnaVfhNcPDwwAK2o5G0CeffLKov1oloDbi919zzTUACiWAyQ6s3c3zPNE+ZIi6/C7/xu/U/RX5Hbye2i+bzYoHh12JzjvvPACF/nILKDFcJIP9O39bv/K9dDotGpnMmBq5t7dX7oH1kOZyOdHS1jsYjUZLMg7P8+pugNcMmveXa459CZPJpIyJ90AzCspsmcTk5KR8jmuV83r22WeLIX6hntJqQRn4e3xWJicnZW3a9bty5UqRJayvKGWmTZMyLVmyROyb9YJjWA4ODm2DljMsHdfBPoZkWCyG73leEdsAfPtOKpUSjTAxMQEAOHjwIICC54Y97/bt21dVOynNOhjCsG3btsB7HBc1ju5EbV302WxWNFSY11PbeSgbv4c2Ftr3GFLw4IMPLshOEOaJDQPl4/i7urpkTPwOzWAtu9TdsK03isjn8xXJ0AgvIW2SHKduqGFZFOOOtK2O4HvZbFbuD+efbP+EE06Qe8D13+y2bWRWRDQaFTk5Jt4LzaYJyp1KpYR9cd3zFMTnsZ5o+Yal6SdjYGi041EjGo0GNizd6NIa+/g6NDQkfRCPHj1a86JgvzX+pv4ee/TJ5/NCifnKMedyuaKwAP1d+kiog0n5ao3Y3DxPOumkBTehLffwW6O7Dt+gzFzo/B5twOUDzLn0PE/e4wOhP1cJ6rVhadm4Zmywbz6fDzh4aERPJpNyvOXDqg3VlMce9WOxmBxB631kqhRcm/x9vYFx/XG8erPiOqAy9jxP5nh0dBSAvzHb7kj1gDsSOjg4tA2azrDC3NRAQTNRc3FH11qdf6NG01Sa7IMagb8xMjIiQYq5XK4qrex5nrCCnTt3AigOmqMmpRalxtHHTtspWIc1hBkxbRSyNX7qvzE4b9OmTQtiWJXeE95TypvL5URmzg2/i5qW1wH+vdDzZVNW5ufnyxrWGxW+oY9DHAsN5W+//bYc7Sgn5zCbzcr1/DzX58TEREAWHpnHx8cD6VuWbTYavPdca8PDw/I3Gx6kHR6cf96LmZkZMbbzWeN6tx2k6wHHsBwcHNoGLWNYVpN0dHRIWsSqVasAFNtybKAlX+fm5mS314ZAoJBSwOA9MpNqxsm8OdrW+P3RaFR+3xqQp6enA/YpapwwWwARi8UCGpzXJJPJQKgDrxkcHMR9990HoPogxHLhDPZv2qlgZdCBsfy7To4FfJtQKpUKdLjma7ON7po1kKUeOHAAgJ+O0t3dHUju5rrUstjQh6NHj8p8knmwU/To6GggLKZZOZOEtS9NTk4GktcpdyKRkPnnnOtx8h7QyN7IUA3HsBwcHNoGLfcSUrMsX75ckkxpy+IuPjMzU1SeBCjevakJbKgA7QRA9aU9IpGIJIZSc9Bdm8lkAgxCsyr+Fv8WZp+wDCufzwe0Le1hXV1dIi+ZinYZ68DUanE8jW4Zlk5ipgzWLhc2N0yQXbFiReC6au03C2Uhls3k83mZ27179wKArMVMJiNpOtYbmk6nA1UzNMsku3/rrbcA+Anrk5OTMn/NDmcg7BrVf7NrOx6PB1g/2VgikQjYcRdQFum4aPqGZYXgw7Zq1Sqh2qSU+oGwRyFCG2oJbazXxvlqbmA+nxdj4s9+9jMAkHy+bdu2BWpB0Qiuj3ZhVSRKjTWZTMpC4YbNzenAgQNyHcekS7Rw8TQS9ugTjUYD9ZO0q1wvdi2LHitl4ndX4wCoZ4WKfD4vyuG1114rGtvAwEDA0aOdBXY9cu57e3ulugMN+Jy7sbEx+b1aa2QtFGHKwjq7eLyNxWIBg7zeaO1G3shjrTsSOjg4tA1axrCogRmwt3btWmEp1MpkXJp22ohb7XKlRqA27+joCERjV4MXX3wRgH/8evjhhwEUjjWMhL7iiisAAJdeeqn8tq2DRQ2kjbRhVQy0kVPL8Ytf/EKOFTQKM9BveHi4occKe3zSTg8emRl8SPY1PDwsISHM/GduHuDfD1uNo1LNXC959e/pqh5AcQ4kWYg9+hw7dqzkcTwajQpT4XGTYQ0TExNFjgag2PjeLMO7/t2enh6J9reG9dnZWRmvDSQG/MoP1szRCDkcw3JwcGgbtCysgdqV5XXPOuusgHEzrHa2ZUo65MEagTOZDNauXSvvVcuyqP1shcyRkRH5rt27dxf9djweD/wObSCRSCRgi9P2Nmv3oWZ/6KGH8OqrharH1O42JKBRsLJwbBs3bgyUBdaMmAyU2pdGdyAY/Es0k1nY3+U88J7TxpROp0Uuzh3vwcTERFE1TsBfu5OTk0WpOACKUrasrM2w/4SBcm/ZsiVQ14yyzMzMyD2wDpJEIiHPMK/RlVTqPt6GfbODg4NDndF0hmUTlclQNm/eLJqX0KkpNjBPe2xs2oB22dIupr+jWoS53ak9OR59xg+rlMrP2PpZYZVKrRxjY2NiR7NjqYeLv5K67pb9dXV1iSa1ib8AAonRvCfZbFbskGGVK6znsBnQ98Ay197e3oAXlHOQSCREFsuc5+bmSjYj8Twv4G1rNrOyp5L169fLHNsg0VgsFmCgRD6fl2eSAkMYAAAKVUlEQVSMdktbCaKeaOqGFY1GhUKff/75AIBzzjkHQGFh6LIdgP+Q6GOPjWrXmxAngfEv2WxWDIkdHR015zaVW1R8WHWhO15v3cN607QLJh6PB2Jj9CZtC+hZmWtBJQZeu+ny/vf19clccjPieGdmZuS+6A2On+dxkUfKUg/DQsZdLUpFrKfT6YBTgOPMZDKBYxA3oo6OjqLKFvq7dV5rq47BBENTNmzYUFJZ5PN5GbttEBONRiUzhd2EWN7JGd0dHBz+p9FQhmWPP5lMBmeeeSYA4LLLLgMAKdoXjUYDVNS6kwFf8/G9mZmZAC0nPM+Tsss9PT0LLiimNYY9KmlZbZNUXczOalZdJcDWnNJoVUQ0wbExr3LlypXCkHjkodteHw2pmXVkNL+rv78fAPDss88WXdNseJ4XKFBonUNAceYEr7EF/HQzCr7H+6SPXK1mVhyLLlSo2aG+Rgdd2/AWHXB69tlnAwDuv//+ho3bMSwHB4e2Qc0MyzIL/UoNahsxnnLKKbj66qsB+OWPtf3DGrJ1jqAOYtOvnucFmjtq9zNDJTo6Oqqu2FCJ/NbVPT8/H6gYaluc639r17ctURtWD6uZ0LYi3aIeKMxpqVxCzVgsk9QBsmH3pVUoV/WUa802adA2UdrsdECobWKif6vVDIsgy12yZEmgmYtmhNa+pZ0oXMPsHG0dSvWEY1gODg5tg5oYlk58tVUUNFNgINq6desAABdffLE0dLANCMK0rN6hbSa4ZnTUanyP12qvZKO0uE0YTSQSgWapRCwWCzAzaiqdSGttd1ZD1wuV2MWszUKHntgAX52KZEM7aN/yPE/+bZPcW8k67G/r0At6ODkvXG+ZTEbuB1kJoeezkYyjVvCesyqFbrFmbYlaFttgJRKJyPrks8Y9oRE2yZo2rO7ubnFh2oL1HR0dEmPFjYpUkf/Xn+OmpuOQuHj0Mct2GdbF9Pjg2FLJHA9Qf6O1LeCnHQZ2YXJyM5lMIBcrzLFA6D5/jUClMVh6LDQg9/b2isGWGw/nZmhoSB4EZhrocir8N4/rXOhTU1MVbVoNrQZgjuGZTEZkppw6RIPv8eHU/Qyp1LkGrXJvJbh+eSTUFVG4JnVBSb7HudJHRN4rXZIHQFVdqiqFOxI6ODi0Dara8iORCJLJJHbv3i2siW5cauC+vj7JH6MLXLe2ssZNHRDJv9kGD7pbsC25q1tghUW669ywerIsahiyCm3QtzlkuveiricFFLMF6zzg9+iWZs1EGAMjo4jH4wHnCsfb3d0t80UWxTWga2XZahYLGVe9oaswcI3baPjZ2dmiTAWguO6XPSba3MlWgvJt2LABQPEc2FzPsCYUhH6meRIgC2MObj3hGJaDg0PboCqGlUwmsXr1alx11VXCnqhtuGNrg6sttN/b2xvIbtdpL9Z9r+1C1HK0EdAOsnTp0pJNMLXNIKyKwkJg247pM70NBdApOtZOp5mWtW9Z50UrQTn1WDi+sEqx1tBMQ7u2CfHztAnFYrGa8z0rQSV1t2wowvz8vMhlm1Ho9nM26DmdTgvz55rn65EjR1pugOe42WglrHKvrdXF6/R7+Xxe1gbvGVN1WGGknnAMy8HBoW1QFcPq7OzEjh07sH379kBmt05RsAGgulU3tYzVwDqw056Tx8fHpdY2d23LnoDi5FugsOOTmdWbYdm0G82YSgWo6rAGwtpzwt4LS8BtBOxvRCKRgD2OczM2Nib2KStDb29vIJhUh3/wb7odPFBgXKWYh5Z7oTassHtpZSBr0LWrOF6Osbu7W9ZXWEiNtfvogGIrZ7PafFkGyeIA+ndtgrNu82ULEugab1z3ZFiJRCKQurRQVLVhMYJ5bGxMDME2PEHTetvnbG5uLuA21nl2/NzIyAgAYN++fQCA/fv3Y2hoqOj3tNGfYylHYVOpVF03LCtHuSOhPurxPRvNX27D0n0J67kAGIJRqjeePqbaXDudV8cjHe9/X1+fzL2tZgH4D7cuHV0N6t01Jwx6ww0rDw0U7oXdxIiOjo7AXNlmDaXG1gylRBnCzA3WNBGJREIriPAaW8lh/X/7i9Yzs4RwR0IHB4e2QVUMa3x8HHfffTeOHDmCPXv2AIBErm/cuBFAIfubGtO2u4pGowGXqT5SklHdddddAICnn34aQOH4QarN+lmksp2dnaLtbY7X3Nxc3Skpf8fm/RE6PMPm2mn2aUMBNMOy0fypVKohDMv+bjnNzt/nvdXVCCzr0nKSgdAxMjs7GwiEteV3G41yctpwk+npaal1ZXNE9XjJlHVgM1kmHQ7lIvqbFeXPMdgWbblcriTT1vWwbFC37llIMIDU1cNycHD4n0ZVDCufz+Po0aN48MEH8Ze//AWArzlZJnX58uUSjGYDSJctWyb2ptHRUQCQZpNPPPGENAdlWyRtS7G5bNzxe3p6Au3BGPrgeR5eeeUVAIX2WLVWHLWIRqOBRhGaVVVT/lZraZu6oW0DjUjroI3K1vYKq/tlgyZ1Gg3vKwMFDx48WNKIrfPLdE0zIszwr8e6UHn1d2qUSpnKZrMBo7vu6E3WReM7W57Nzs5Kcw5dWaQUmmV0twHPen5thQ1tx9POBP2azWYDzWJ0KlKpSrk1j78u3+Lg4ODQBFSttlnLR7csAvzC87pdlfamAMVBpWEVFsqlzvA7n3rqKQDAP//5T/kN643QQW26+WW9dnnt7uf3U55YLBYIgLWeNv057S62DEDbq5qR1lHOtkJ5dXNQtu6yVWC159G2ApuenpbrbGiIdvfbtVBPD285OW3d9pmZGZHPVijR9krL0DzPEzsnGYee32YxKguuI9qAdY+EUgy0XEVWz/MCXkJ6jbWntF6217qfM3RxMpsvaHOrqv1eoHVldDX0JOnMfaAwoTY3Ti9Ke5TUG5GVkQ+0rvJQbznKfW/YXDKObuPGjRgYGADgKy3KPTo6Kp/jNVox8Z7x+KSdM6WaM+ixNuMh57wsWbJE4s30gwgUHwlpmOfc9fT0FEX36/eOV8CvkXLaiHyGEK1duzbgLNK5rdZJFGausSEe2Wy27o4UdyR0cHBoG0Sq2cUjkcjiqOu6AHieV5aqVCojteyuXbsAABdddBGAAlvge9RQ/H8ymRRNxSOSpuQ2cJYa+de//rWEfFTIMJ/0PG97uQu0nKVYluf5fQI5Tjo4tmzZgtNPPx2A71yhht6/f79cz3AXsq+XXnoJBw4cAAA8//zzAHxzwuTkZCCXUBvvrTPgeHNp5bTfGRbpritOAMDg4KDUfqPsrAOmK1ZYhnXkyBG8+eabAPwmG2+88QaA4ioP5cakZK1KznLfZSPdN23aBAA49dRTJUKdjjQdusO51R2xKQudZM899xwA31wzPDxcVYWUSuR0DMvBwaFtUC3DGgFQ/xTs5mGd53nLyl3w/0BG4H9DzuPKCDg52wiVydlsL4WDg4NDrXBHQgcHh7aB27AcHBzaBm7DcnBwaBu4DcvBwaFt4DYsBweHtoHbsBwcHNoGbsNycHBoG7gNy8HBoW3gNiwHB4e2wf8BERWynQoVutIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 9]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztXWuMnGXZvuY8e+qB7WHbpXRb6rbWthQE0nJUsVWsEEItKugfDyFiwKAkmvjHhBAMmqhEYyImCDHRxLSKClgrB8UUbWkptbTYYgtdak9L99ju7hx2vh/jdb/33O+7s7uzc9j5eK4/szvz7uzzvM/zPvd1n0O5XA4ODg4O9YBwrQfg4ODgMFG4A8vBwaFu4A4sBweHuoE7sBwcHOoG7sBycHCoG7gDy8HBoW7gDiwHB4e6gTuwHBwc6gbuwHJwcKgbRCdzcSgUqvuw+FwuFyr2eTnmmEwmAQCXXHIJAODcuXMAgAsXLoCZBXxtaGgAAMyePRvDw8MAgNOnTwMAstlsqUPozuVyc4tdMNV5RqNRtLa2AgDeffddAEAmkxn37xoaGuT+9Pb2AvDuxWQx3loCpc8zHo8DAFpaWjBr1iwA3vw43wsXLshcZs+eDQCYMWMGAGB0dFSu6+7uLmUIgkrOc6qIxWJIp9Nl+a6JzHNSB9Z7FaFQ/j4GPVhr164FAHzmM58BAGzevFkOmqamJgDeocQHPAiHDx/G6OgoAGD58uUAvINr+/bt+P73vw8AOHDgwESG/PZELioFzc3NAPLz/drXvgYASKVSALwHM5VKyXstLS0AgEQiAQC4+OKL8dRTTwEAXn75ZQDAb37zm0oNd8K4+eabAQD3338/AGBoaAhA/uCiIOFcVq1aBQCYP38+3nrrLQDeYXby5EkAQF9fn8y5vb0dAPDcc88BAO67776KzmUy4Jhmz54tB+yXv/xlAJC5aSxcuBAA8MILLwDI7+23385vt49//OMAgPPnz1dsvKHJSDfHsPKYMWMGnnzySQDAmjVrAADhcF67HhgYkA1OycMDLBaLYebMmQC8ReUhFbQOlN4NDQ0i8V966SUAwOc///liQ9yTy+WuLHbBVNdyy5Yt8lB/+9vfBuBt5vnz58vD2tPTAwAYHBwEAOzYsQO/+tWvAHiH3+9+97uSxlAu5nHppZfiO9/5DgBPSDQ2NgLIryvXiIfSokWL5G/5GV/7+vrkWq4/GTYPrt7eXjzwwAPjDUtQSYb14osvAsjfA64ZBezAwAAAYOvWrfjc5z4HAIhEIgAge7y3t1f2wWWXXVbKEAQTmaezYTk4ONQNaq4SBqlbpN7XXXcdAODZZ5/1Xc+TvpjdhNfa758qtm3bhsWLFwMAzpw5A8CTsNFoVMbE/x+NRuV3qk0cP0GGpkHJNTw8LOO/4YYbAAArVqwAALzxxhtlmtXkEI/HxQb14x//GICn6oyMjIi05jV79uwBADz++ONYsmQJAODs2bNVHfNY+MY3vuEbC9cjmUzKevL12LFjAPJsiiyY6895Ax6z5vpTdVq1ahU2bdoEAHj66afLP6FJgGrgkiVL5OeLLroIANDW1gYAuPfee4U9UaMgc45Go/J31YBjWA4ODnWDmjMsSrJsNotly5YBAL70pS8B8BjG+fPnRWfetWsXgEJmRSbD7+Lv+ppIJDIVrxsA4IMf/CAAYPHixcKUKD3JmJLJpNgqtB0EyNu0eD3HwrHGYjEZL20H77zzjm8e/Dveo8nYQsqJwcFBzJkzB4DHHL7+9a8DyBvW587NOynJRiiF58yZU8A4pwN+8YtfiLGdTIu2rJaWFp8XjA4Fzh8A+vv7AXh7Nuh62i+7urpqzqyIo0ePAgDWrVsn+2xkZARA4frQAH/99dcDAE6cOAEgb+/iPq8GHMNycHCoG9ScYZGZZLNZfOQjHwEAfPSjHwXgMYxEIiGn+IYNGwAAP//5zwHkJSHtO5ZBNTc3i23hwoULUx7rhz/8YRkPbRX8fs5jZGQE3/zmNwEA//3vfwvmsXDhQnF7k3VR+iYSCfGaXXHFFQDytgMgHy5AVsL/96lPfQpA7RiWZn2aaQD58Z46dQqAxzLJOrPZrC8WrdbYtWuXhFjceuutAIB//vOfAPIMmnMgS9RhHGT+vIbr1N/fLyyT4DXf+ta3KjaXyeLgwYMACm2q9GBznrRbAR6D1PZZsstqoOYHFm8KAFx11VUAgI6ODgDeTQyHw9i+fTsA4PLLLwcAPPLIIwCAV155Bf/6178AAIcOHQIAXH311fJ9O3fuBJCP+aFrvVTwkMhkMgUHLeCFIPT19eGxxx4DAGzcuBGAdwA9/vjjuPvuuwF48VQ0cEYiEVFDfvCDHwAA7rnnHgD5TcHv58FLo3tnZycOHz48pXmVgnA47BMUvCcMtAxCKBSSv+PDPR3w6KOPAoDElh0/fhxAXkXkA8x7T5Ud8ObMazinWCwm11EVpPOomg/4eKBql06nRYjGYjEAXkzZ3r17ZS68nvMOhUISylENOJXQwcGhblAzEWfDGTZs2IArr8zHOvI0Z6R4Z2cnOjs7AQC7d+8GALz55psA8mrf+vXrAQC33347AC9gc/fu3WKcHhkZwSuvvDKlMdO129XVJdJIu7EBLzUDAP70pz8B8KTvypUrRYX77W9/CwC45ZZbAOQl8969ewF4xn2qXU1NTcJiqBKSAaxfv74mDKu5uVnmTrWIUnd0dLRAAmuEw+GCkIHpAB2KwlCahx56SD4ns+I1DKwcGhoSRsVXGqx1mAp//sMf/lCxOZQKmi3S6bSsFfcY1/XgwYPCujgXsqpEIlFV54ljWA4ODnWDqjKsYifxgw8+iAULFhS8RyNlJpMRWxclINnY6OioMBOyLkrCr371q1i6dCkAz/5UCpg7Rpe3tmFxTpS6OoiOf0epu2DBApHc/DuywVAoJEyRoPRrb2/3MSwaP6+//no88cQTJc+tVESjUZlDUFhJsVATvmeDZ2sF7UCg3eY///kPgHxAJZkGmb9mIJwL7aM0tOt5MuxjOoLhOR0dHRKEzPnawGfAsznzs2w2W7bk54nAMSwHB4e6QVUZVjE3dk9PjzAssgfaSKLRqLj8efqT0YyOjkow2zXXXAPAk+rz5s0TO9JUwDAF/s/BwUFhPHyP48pkMsL+WJ2BnsBYLIb58+cD8JgV/y4ej4t37dOf/jQAr2TJ0NCQeJp0FQHAY5rVRjgcFtuO9uYCeelrQ0z02pNxTmdwLi0tLb60G3r5dCUH7e0GClkb07emIxh+AsDnJdR2OK4fP+P+jUajkqZTDUwbv3JjY6PcIL7ygejr6xNViyEPvIGhUEiupwqp1SedWV8qGBrB3Kply5aJcZ2OgSNHjsj//sc//iH/X79ms1l5uG20dzabLaj4AECM6Y2Njb5DgepiqZUOpgq9mbWxnb8H5UYC+XnzwJo3b16FRzlxcLycA2Pn1qxZI59x3PrhtWEtOv+T8WkMBSC0kX+6QAsRSyxyuVzBHtavoVCoqmEaTiV0cHCoG1Td6K5zBwGvJtLChQvllOcrKXgqlRK2RbWJjKuxsVHUIxuot3//fvn+K6+8UqJ6J4uf/vSnBa+zZ8/G+973PgDAV77yFQDAjTfeCCBf+4hBoaxUQBpdzMis7w3VDD2Pu+66q6SxlxtUUyORiC80ZSxWBRRWs+D8yE7JTvj+dABz58LhsOwvzl0X7aPaT7VI5+Pxfkw3NhUEro+G1mKsw0yvfSUL9lk4huXg4FA3qLrR3aa00MDc1tYmYQPaoA7kJTFtUTr3DiisgGBLEf/kJz+REsbaDT9V9PT0SNUIskHmQeZyOZHIZBDWxgPAFxIwOjpawCgBj3nQhjYdoFnwWE4U/b4NbwC8+8Hgw+nErAjaovSa2bzRZDIp75Fh0W7Fmm6Ax7CnM4LYsa09p6/TaVnVtEU6huXg4FA3qCrDikajPvcv7T0jIyM+Ww9Z2Lx580QK03bFa5PJpDAZSjl6eO68805873vfAwDx3E0FunYV50FJQ0+JrrtlGYhO/C0Ga+uiLUx/VqwWfCXB/1dq0Gcul/OlM00HWBsO7U5nz56Vtbbu+56eHvmM7J4hDHPnzp1ysn01obWPoIDgsaroZjIZ8dxXAyUfWJYu6hgcxmiMtQk0nnnmGQD5fDsbY8SH4+zZswU0HEBBdK39f7x2zZo1Zc0k53j0/2ZENA+soENZGy+DDjGCf2dVCO02tk6LakMfVLzfQepEsc/sHGxIQS1gx0CVbvbs2eLwYTwd0d3dLaE0dJDotefaspw2MR2N8Hof2uwE+zNQSCqqeWA5ldDBwaFuUBLD0mrPZKTFDTfcgM2bNwMArr32WgBecOi7774rzMqWEb5w4YKc6FQnyLRyuZyvOB+/Z3BwUCo4lDNTPhwOy9jICrUzgPfEBofmcrkx8+9yuZwYtCm1g0o91xr6vmvmCBQyprFURs0y+cr1qqXx3bI7OoAOHDiArq4uAN66cJzz58+XdWeogw5JYV4i259NR7AKSjweLwg90QiHw759q/emLeBYSTiG5eDgUDcoiWEF2U+o3y9cuFCCKilZyHI6Ozt99YLIjlpbWyXdROfXAXmjOyUZpRxd/c3NzdL6yjazTKfTWLduXSlTLApth7IpC5p5WPuNrhNFaKbFv7P2H/3/al1WWEvYsTpijxc+ElQja7qB+alHjx6Vagvcl7Qpzpgxw5fjyX2qK48wpYvu/zNnzkwLux0AvP/97weQd1TRNmttqDpImNDpSsyPZS5vJcNwpt9OcXBwcBgDJTGsdevW4cEHHwTg1f9hyoxO8KU7XrevsvV0KJl27tyJO+64AwCkMig9NSMjIz5PxOrVq+Ua2hjI1uhibm5u9nloKgU2Wejp6ZH5W6Y1HvPQ7cD09dOlbhQwsbFoWx2h2Ri/wyaC1wq6HT0DlFeuXAkgz7C4t2mrYd21pqYmaQrLva4rzhIMb7jzzjsBAD/84Q9rzqyIm266CUB+Xew+Lcbs9R6np5xpapVkWJPeKZFIBI8++qhQXpu9rQ3gVOmsgRrw3MA8UL773e/K55y4VhGfe+45AF4fNaqdra2tvnAA/eBXortwkFqmDeN23sXUKB3pzvEHVQUo9r+rCW1gt3MIKkdif9fX8O+4F2rVnEEfHh/72McAeN1kksmkjItCk9UXVqxYEVjdAch3c7J5hhRqy5Ytk0Ov1qDJJJ1O+4pSFmsWostcU1W2BSgrAacSOjg41A0mxbBaW1tx6623YvHixUIDWQ2Brzq4jsxAd7wla6LxnK2tnnjiCdx2220AvBAESrTm5mZpzMDegLqvH0MdyGyIbDYrY1i0aFFBsbJyg6woEokI2wqKSud7NlI+Go3KzzZMo1jbrGpDs9hial8x2EyA6RT5Toa0f/9+APk15L6y4wwKotXlk6lekqFppjZdGBafsZ6enkAnD5Cf51hrGolE5Fmmc4H3qRKFGh3DcnBwqBtMimFlMhmcOXMGXV1dBQZxAGL4bm5uFolEA+S5c+cA5Ivxk4npyoz8bra+YmNUnv4XXXSRMBIaN2mYzmQyItUo/fl7KBSSsXR2dhbk5JUbQUbUIMYxlgFeG6p5vW0rZb+rFtDBsNa5MBFoWx/XcDqENXCvMdiTAbKDg4MFeXNA4XrwPVtGGfCYMt3+tH3ZjtC1AGt70ZFw+vTpgqBgoHD/2jQqfhaPx/HnP/8ZALBlyxYAXpu6Shjfa79THBwcHCaISTGsVCqFEydOIJfLiVeElRJ4Uvf29krrIHroKKESiURBlQXAC10Ih8PydwxmYyXDrq4u8bRQgvHadDotUo4SmxKwra1NgkjXrl0rlSEqgSCWEMQ8ijEsa0PgvGgjmA7QdsKxAl3Hg00inw7zu+SSSwDAl54Sj8dlr5JlaK8ZmYpNx4pGozh27BgAz6NNe+3MmTPF1kvto9pgnTjt9R2rgmwymZR1t1VCMpkMli9fDsCbO5/fSjCsSR1YQ0ND2LdvH7Zt24YvfOELALzQA4YbDA8Pi9rHw4kHSDweFzWCqqQ2wJJCk5brImG8GVQh+T9SqZSoekHqIuNkTp8+Xbb+acVUoKA4JUuxg64LUht5b6ZTHJaupGFLjkwEOg+T67Fs2TIAwL59+8o51EnBVh3hXmxsbJR9TLOEfmi5D3VpZCAfwsB4QmZicF9Ho1E56Gp1YLHjuBb81nHAuYVCIR/RoAMhnU6LsZ33gDGSlYBTCR0cHOoGJYUYP/zwwyINH3jgAQCe0bK7u1uYDlU6Sq94PC5MKShIjac4XynNY7HYmC7006dP+0IqKCHa2trEPf3LX/6ylKkGIqiulc111NB1uiwrKcbWghhWrY3uuvKAVWH1PO04de6crUJBKV9L0KTBPUdzxqpVq3ysgtdkMhkxadiKE2vWrMHTTz8NwGP+uplFraP7L730UgCeSaatrU3WiKyPzOmWW27BH//4RwCes4z7nI1fAM889IEPfKBi43YMy8HBoW4w6WOeeVfPPvssAMgrAzoffvhhSbdhwChP7kgk4qt1RZw5c0akMt2/tAcMDg6OafNJp9Nib+D/2bFjBwDg0KFDVW/goG00NmUlHA77svQ1cxyrysN0smGRQcRiMV+5ZG3AtWOmvSoSifhsJKyGUEuQYfHesxT3zJkzZc/SBkWm1NPTI1pEkMOBOYR0GHHe58+fl9S2f//73+WfzARAxvShD31I3uP4dNgGgIJSz2TFurIq9zv3BsOSKgHHsBwcHOoGk2ZYY2WZv/DCCwBQUH9qxYoVAApDHi6++GIAXoVGSl6m+tQDguxI9JZ2dnb6ggl1YKt9L8gTav/PdLJhsb1ZZ2enpAzppHYgz7R4D4LGaxPnDx8+XLHxThRke2Tr9OIBnmeMrILrNHfuXLF10X7DoNA5c+aInciGfYyOjha0AasFHnvsMQDAz372MwD5NaMt0T7j+ndeQ+0pnU7LXBgo/qMf/ahi466o5e+NN97wvVfJWKhagg9vU1OTbGirZoTD4TF71Gk1ypbk5cbX31Wr8iR8oJ988kkxA3Ceug+jLeusQzUYn0QhZ3MnawHGSnFsPKQAb+y2RPLOnTulZAzXnFVFtPrPvUH18dixYzL3WoMhCFqNszmAuu8go/apNkajUTmwWOmikiq+UwkdHBzqBqHJqBihUKi2+kgZkMvlikY5TmSOQWEN7H+YSCTEjW3ZVDgcFgOmDSbVOZFUPaiW7Nq1S4ykE8SeXC535ThzKGkti4VjMKykra3NV8iOlTJOnTrlazYx0SoPFuOt5f++e0JfavMFNZMlwyVzsGaNSqOc8yyG6667DoBXvJDdzO+//35xOHCfk3X9+te/FsfbVDGReTqG5eDgUDeYLMM6C6D2PujSsTiXyxVNlf9/MEfgvTHPcecIuHnWESY2z1p7nRwcHBwmCqcSOjg41A3cgeXg4FA3cAeWg4ND3cAdWA4ODnUDd2A5ODjUDdyB5eDgUDdwB5aDg0PdwB1YDg4OdQN3YDk4ONQNJlVexiU/jw0my8ZiMSmzwhIlTPZNp9O+Gle8JhKJSGI060sVqyk1DronkJozpXkmk0kZOxOHdY0vjtnW8M9kMnI/dBNd/t1kUMmkYN0oVPcW0J/9bwwA4Ktllk6nZX5MZrdVdieKSs6T69nc3CzryfmxHI7et5ynLi/DefJ6W1poopjIPGtbCb9OYBtgRKNRLF26FABwxRVXAADuuOMOAPmebKwPxEXlRh8aGpKChazEwA3Q19fna3P24osvAgCeeeYZ7NmzR74D8B6UMR7ysuSUhcNheVhZiYFdfW+88UZ5j00HVq1aBSBfN8oWKmQbuMOHD0sJ7JdeegkA8PLLLwPIF4fjpi/14S4VtuYVKxasX79eehZefvnlALwilYlEwieA3nzzTQDA7t27pSjlX//6VwBeG7OBgQE5xKqdGsd5co+yntcXv/hFqWtm2+H19fXJM2CFVHNzsxSv3Lp1K4B8rTQg38ijXK31iGl9YBXrdzfRhS61dEnQ/+Ii3Xbbbbj77rsBeE0jdXkSPqTsKMJNMjIyIgeOrfuuf25vbwcA3HXXXQCATZs24S9/+QsA4KGHHgLg1RwPKnUzVeh7xgeR5WJ0UULOixVDz5w5AyBfeoT3gGVl2HFGj5ffyVIlbHprx1ANcC6spMk1aG9vl96WXDv2G2xtbZVxsvIo5zlr1iwRaizIyAd7aGiooCZ6NcHxUsiwcOGFCxd8DYm5R+PxuPwd11W3rqdAZpcdCvHnn3++7AeWs2E5ODjUDaYVw7K2Ar4G9bLTerItF8xro9FoQSffqZYVpspz3333SbdisigyrFgs5mttrvsLck5kDroFON+jTYDspqGhAZs3bwbg9Yx75JFHAKCikjoUCsm9ZM1zSszm5mZhI1Rlyab0uGiXI3tqaGiQNeE1um9lrUpAcwycE8sad3R0iOrLdWEXnGQyKXPnK+/P6OioqJf8ezLKZDLpU+2rBa5nIpEA4DF1XWee956FKEOhkKjq3AecWzwel/1NdslnQd+fcsExLAcHh7rBtGFYyWRSJBF1YN18wdqFKLGHhoZEWrF4PqVAKBSSz/bt21fyaU9ptGXLFgD5jjFkB7rnIn+3NgDdg9CySF6rJa1lmKlUSqTW7bffDsAzcB46dKii9h7b1Zm/J5NJ+b+8x2QejY2NMl5KXa5bS0uL3CuyGK5XNputSVcgzSQ1OwfyjJBrxP1DthGPx2WN+J7uukOmTbsfHS1BPQyrBVuGm+syOjrqG5feq2RfvC9cp5aWFt97fF4qsZaOYTk4ONQNas6wtP2Cxf03btwIwHOhj46OSogAWQslg+6JR4al45hee+01AMDrr79e1OtYDLRrXH/99QDyUoVsghKW0ml4eLigAzLfI6ydSntbKKn4XfydcV2A19Pv6quvBpD30JUa9zIeguKpyBIaGxtl7WxDjf7+frmeNixK9sHBQZkDJbhmqbWugMv1ZDurWbNmyZjIFvUetEySGBoaQmtrKwCPcWgWXivoPphAIdO366jjzjhma0MeGhryMe2pxp0Vw7Q5sBKJBDo7OwF4DVg7OjoAFBqkufEXLlwIIL8AY9HcwcFBcblnMpmSHwaOh+5twIux4gNpD0v9sz5Qih2aNhZIP9Dc9NxE69evB5BXDTnfSkD3EwQ8Vby/v9+n4vBVB03awNFcLifGXBtwGIlEqh7OQNh14ZgGBgbk3vMaziWbzYq6SPVPP8g0aNtDQqugtQL3LcMxBgYGZOy6cS+QH/9YfSbT6bQIbzqEGEdY7pAGwKmEDg4OdYSqMywrWbR7f9GiRQAgkcWU4KlUSlgUT38bSa2/iwbC7u5ukeapVGrSUptShE4AuqWz2awvTUOrf9aAqwNHrUGdUiiIklOyNzc3y8+UdGR97e3tgR22pwKOQ6suZBxEb2+vMEGqPhybVgWsupBOp4Wl8XobElBLcEy834ODg8Keua84v1Qq5VOVyPLT6bRPJdKf1QpcW7I/svOTJ0/KeOkM4bM2MjIibN8+f9Fo1Bc0y3b2jmE5ODi8p1ERhmXtEMX0dc0maMMis9L2rbFSA3K5nHzGE512k8bGRkmHKMUmQnf76tWrARR2AyZDoi1L29E4DkpUnYdFSWyTZaPRqLAQayuJxWIFTAzwghGXLFkidrpyBVvq9bNOAm3nsPeU96SxsdFneNV/x3kG2fhqBc6F4+ZcdHIvnR/cB01NTXKv7P1Jp9PCHIPCW2rtXKAN6/Tp0wDya8F56cRvvtr9yvnqufC7qNVUAo5hOTg41A3KxrCCpLJlVkFlOYjGxkZxJdM2QomUyWTktJeBR/1D17YFvlKvLkWi0WbF8WgmoMty6M/i8biPBWpbgB23thfR02RDJRKJhC84lt/d2trqsyuUE9ZWyP8bjUZ9rITjiEQicl8s89BsWSeMA4V2PKJaXkO7Z7nmAHyVFXQ5He5LfqYTuLlW/C7tXaw1OAYyLe2htVqADui11wCFHkP9Wok1q6jRfSIqISfb1tYm2d40eGpD+1iLrSsKWMNgb29vwYM22RvIQ+Jvf/sbAO8A6+joEAcBN6Weq6XW/CwWixU9XDj+oJgzjoUq7pEjRwAAx44dq5hKFaS66N9tlD/V1Gw2K/eFa6nz8WjAt+us70m13f72ENX5oLrWGeCtj85P5XvcI+fOnRODNufO754OYQ1WAMXj8QITDFDoUOIhZGPntElGEwx+Vm44ldDBwaFuUDaGNZHTNEiCMop89erVEgFtGYpmWDZaOBKJFBgzNZqamoSOlyLRGBC3bds2AJAiesuXL5dofAawXnbZZQDykplqEKWuLrZHwy0lFplTIpGQedB9TuPla6+9hoMHDwIA/v73vwPwaiydOHGi7JIsiC3aDAMd1kA2wrnEYjFRo3gPtPufUlozjvHGUkmEQiHZV9aIPjg46Iv8JnsMh8M+tV9/j1WfyFzC4bAv9KXaRnjLhmbNmuWrLqKj2jk+mycbjUZlTwdVni03HMNycHCoG1QlcFSftNZlynSXDRs2yEltXcvhcNh3aluJqD/T/4OG/FIYlq0LRKl75MgRKet77733AvAYlpasNnBOhydY6ZNOp321smjr+f3vfy/lhJn+wO/ReYrlhk57skZ/bZSmXU3bGbWjQc8F8BikrZ6h655VE0HhG3TWtLe3CzNigKS2/5BVcM9qlsl7pO09tYa1NxELFiwQNsw56DAee73WaubOzbcPYABxJeEYloODQ92g6qk5lEg8jTdt2gQgX83TBkxq249NgaHkDnLHammwePFiAHmJV6o7OYgVcR60c2mpq+tY6WtjsZjPBRwUnsHv4jXHjx+Xeun8ziDPWiVgGS3DFSiNgcKKE0Be6urQEsBbr1QqJUw6KJWnVq5/G7Kg7Wu68i1QOE+beK8DZjkXhg7ofWRtg7UC2e68efN8NihqQTqtzd6DbDYr9b74WkmWXNUDKxKJyEH1iU98AgBw8803AyjsQGIfEt3YIehB5cNgN8/o6KjcxGQyWXI5YXuAhEIhUR103A3HzMW0RnedBW9d+rq4H8EHuq+vT+ZoQxgqrWZYw7h2DNgGFRx/d3e3PKR8T1ez0KV4AO++auNutdUnG27C8be0tIgAin0DAAAJm0lEQVRqZ+Pj+vv7feYLLTw5BzoqdBusWs2T4Dj5PC5YsMAnPHW+qxVKXNdsNisCiJkqlTywnEro4OBQN5gywwqqvmBdtloSMxzgs5/9LACvUFokEhFJayVZUD0eIp1OF80KZ9jBjBkzfBUHJgstDW1xPu0KtmEZWp21ElW7+O291BUAdO5kNWHzIvl6/vx5kaxcX95fzWR1tD5/J9vivaPxvZSKGuUC58k56CofnKdlmVq1I8jG9J603zkyMlL1JhuEvb8MJUomkz6nj56bfc9mKQCeA62S7NExLAcHh7pByQzLBsoVfKkp9Usbx4YNG6TTLGte6TpPtlW2rnbA/6PtSEBwnpP+jCk0LS0tkk0+VWjJYccciUQKcrCAQjuQNVpqQ6dNjWBQrc7bqyb0eC37GxkZ8aUlaYM158L3eG00GvXZxYL2ULURZEwG8uO2ZZ6DWtbb0AW9D3TrL15T6xAHjpchCdopZUOINJO01VMzmYzcD5Y416lLZR932b/RwcHBoUIoiWHptj/avQ3kT27q8bQfrV27FgBwzTXXCOMhtGSz3jidmEkEucKt90+HRdANr5t0lgM6oVn/HgqFhCHZ8egWYIRNQgXga2dfq+YMOnCUc2I1yqamJt890FU2rD2S33P+/Hl5z3qe9HXVhq1oq4MmLRvmPHXogvV86qa5ZGgatWZYnAtZUTgc9tmJg+yyhN63tPFxb/CVVU3LOu7J/kEoFEJ7eztuuukmAF4mOg+u4eFhmQDL+PLgmjdvnlzHB0BXJrANC3R/M5ubRuhsentTQ6GQ3LygeKepwOaA2fgoIDh+i6oRN7PObLeGTd0DcLrh3LlzshZBajpd+XSb87OGhgaZM+ep1epa5dbZ/6ebblDoBXUJotpDs4fes9YJUe49OBXYAyuTyRQU5QMKHSVWAPFeJJNJ+ZnPPQtwVgJOJXRwcKgbTOrIZ9TvPffcI40Z7MkbCoWEMlsWlUwm5T3btkob1i2jSKVSvm6yWspZ47aOytWR1uWU2pRCVrJqlYdMQv9uJZR2FFjDNu9jc3NzTZhHOBz2sTw9X1symJ/p5gxkWNwDsVjMV0KXn0UikYJWWED1qjUQND9wvvF43MfqtaOIP3PuXF/AW2PbJbyWfQmJ9vZ2AMCaNWsA5NdgrBLJ4XDY17FcO064ZtwPzC7Zu3dv2VX82t85BwcHhwliUgwrmUyis7MTGzduHFNKBHU+1jl+NmRBsyH7d9ogb9so6cYOunkpUJjSQ1tKKRVHi8Hq7fp9W71Su8MtsyJD1a79sYy81UaQ+512jqGhIV8FTlY4yGQysia0//D33t5eqXpA+4+uL1ULo7ueo23Gq6u9kmXQNqUrcfLvaGDv7e0VozOv192ha21057qQIaZSqQKHAVAY3sDPrJNodHTU95zrGmiOYTk4OLxnMSmGNXPmTHzyk5/E4sWLfaxGt+imtLF6r64Rbu1NOnTB6vqZTEakMaUWWUcul/M14tTVEZmcrJlPOUDJZD1HgMcYLNNKJBIFVRz1Z9rbGdTmS7PGasIGgHKd0um0ry2ZbshggyY1c6ENi+umvaNjNdqtNCzj1es01nrG43FfpRDOc3h4WFga/94m6dcCHC81A9rqMpmM77nVIRtBFVWB/L61AbU6GLXc+3VSB9bQ0BD27duHffv2STwVXZiMytYUMSj/zcYoEbFYzFcs7u233waQLwPMMi6svrB06VIAwZUcdMdlTVPLZezUlRXs4iaTSV9Ygo6etiVw9KFkN7Ku+mA7P5drHkHFFfV7NgpdV8SwpZG1A8E+pCyP09/f75unzYyoBXTcFRCcx2kba6RSKV/MHA/jgYEB3/prgVSr8A0eKoyj1CElNoJfH05WcOlwHCto+WzG43EfsZkqnEro4OBQN5gUw+rv78eOHTvw+uuv49prrwUAqb5w1VVXAci7sa26pNWmoCxvIK8e7N+/HwDw1FNPAfBK72pqqQv+AXn2YYvh6XwnG4xaDmiKbMMsdFdom58WNAade0bDZtA9qlXQoV1Da2ANgpbWQa79YqEd9v8EMZGg9mNThVVFdTWOsZiSnovVHBKJhI856rnUimFRI2AYBtdRsz7LMnWmBVkm1Xldx45/r4O1yz1Px7AcHBzqBpMS20yReeutt3D8+HEAwNatWwF4OnFLS4vU2GFwGlNzFi5cKMY+NlM4deoUAODVV1/FoUOHAHiGT81MKMloyOQ1DQ0NOHnyJADPpczX4eFhYW2vvvrqlBs2aNsYYd29QY1UtfHSfod2HVt7mJb69r1KSOax2Ix+DbLHcdxkGcPDw74AYdpKdGCtrXumpXy150nYkJJcLudrIqobbNi56NxS62AqZqOrFuPi+Gy4ia6CSujgUMv+yUAvXLjga7yqNSzrfJkqHMNycHCoG5RsGCEz4MnL17Nnz+Lo0aMA/NJZsw/r2RtPsvA7tm/fDgB4/vnn5X3reQuqeFgOV3JQg1GbqqC9lkSQ/cnWXdKVEay3M5lM1qT9VSgUKgjJALxwkoaGBrFV8DN6cNPpdEGDTv13mUxGAiltswPdpMPeQ72WlbBf2aoLmhnayiS6EQdtczqVB8jP19q1tO1O246qhXA4LLYraj9EOp2ekJ2UcyAz0+FCZFHUonSV33IxrIpacoMOjlK7hPA7bBxTrWBzIXXxOtt5ReeX2ZgVvZC6swxQuPmtQ6Ec0MbfsT63xladN6bzA/U1+qCzBmvdpMOqmUH9J6thlNbz5L2nUTkcDo9ZFlirPEFrruMB9d9VwmkwEej+gpynDlewDiodcmMPa+1A4p4I+s5yHVSEUwkdHBzqBqHJnPShUKj2rWuniFwuV5SDT2SOoVBIaO/KlSsBeEUKW1tbRRpRYulqFTa/UDdgsAyLwZZ79uzBgQMHAHgsZhzsyeVyV44zB988gwzeZHmcAwOEly1bhra2NgCei5xqXzQa9al2zKPr7+8Xh0tXVxcASOnq4eFhX7E7PRa7V8dby/Hmqb6ngE0AHpPo6OiQIGnWfuM8dS0oGzja09ODd955B4AXnsMsjXQ67Ss6WczoXuo8g8Dxch0Z5Ll69WpR3wlboUOPkyrh8PCw7Mnu7m4AwO7duwEAx44dm1RrvYnM0zEsBweHusFkGdZZAG9XbjgVx+JcLje32AX/D+YIvDfmOe4cATfPOsLE5lnrMhcODg4OE4VTCR0cHOoG7sBycHCoG7gDy8HBoW7gDiwHB4e6gTuwHBwc6gbuwHJwcKgbuAPLwcGhbuAOLAcHh7qBO7AcHBzqBv8HulBAc3RG17QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[Epoch 10]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAACACAYAAACx1FRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztfWmMZFX5/lN79TZbz8YwC7M14wDDNiogg4isEpCAKAH9IJEYNEJAEkn8gkGDEROVaEzEyBITSYggKgyLBBJ0lGER2RmWAZoBZu19umvpuv8P9X/e+9Z7b9dUVdf64zxfqrvqVtV57zl13ue8a8TzPDg4ODh0AqKtHoCDg4NDpXAbloODQ8fAbVgODg4dA7dhOTg4dAzchuXg4NAxcBuWg4NDx8BtWA4ODh0Dt2E5ODh0DNyG5eDg0DGIV3NxJBLp+LB4z/Mi5V6vh4zpdBoAsHLlSgDAgQMHAAAHDx4EMwv42NXVBQCYP38+pqamAAC7d+8GAExPT9c6hH2e5y0qd8Fs5YzH4+jv7wcA7N+/HwCQz+cP+b6uri65P8PDwwD8e1EtDjWXQO1yJpNJAEBfXx/mzZsHwJeP8h48eFBkmT9/PgBgzpw5AIBCoSDX7du3r5YhCBop52yRSCSQy+Xq8lmVyFnVhvVJRSRSvI9hP6zjjjsOAHDZZZcBAC655BLZaHp6egD4mxJ/4GHYsWMHCoUCAODII48E4G9cjzzyCH7+858DAF5++eVKhvxeJRfVgt7eXgBFea+99loAQDabBeD/MLPZrDzX19cHAEilUgCA5cuX44EHHgAA/Pvf/wYA3HvvvY0absU477zzAADXXXcdAGBychJAceOiIqEsRx99NABgyZIlePfddwH4m9lHH30EABgZGRGZDz/8cADA448/DgC45pprGipLNeCY5s+fLxvsVVddBQAim8ayZcsAAE888QSA4tp+773icjv33HMBABMTEw0bb6Qa7eYYVhFz5szB3XffDQDYtGkTACAaLZ6ux8bGZIFT83ADSyQSmDt3LgB/UrlJhc0DtXdXV5do/KeeegoA8I1vfKPcEJ/zPG9zuQtmO5eXXnqp/Kh/+MMfAvAX85IlS+THOjQ0BAAYHx8HADz22GP405/+BMDf/P7yl7/UNIZ6MY+1a9fipptuAuArie7ubgDFeeUccVNasWKFvJev8XFkZESu5fyTYXPjGh4exg033HCoYQkaybCefPJJAMV7wDmjgh0bGwMA/PnPf8bXv/51AEAsFgMAWePDw8OyDo499thahiCoRE5nw3JwcOgYtPxIGHbcIvU+9dRTAQBbt24NXM+dvpzdhNfaz58t7rvvPqxatQoAsGfPHgC+ho3H4zImfn88Hpf/eWzi+AkyNA1qrqmpKRn/aaedBgDYsGEDAOD111+vk1TVIZlMig3q17/+NQD/qJPJZERb85rnnnsOAHDHHXdg9erVAIC9e/c2dcwz4fvf/35gLJyPdDot88nHnTt3AiiyKbJgzj/lBnxmzfnn0enoo4/G+eefDwB48MEH6y9QFeAxcPXq1fL3ggULAABLly4FAHzve98T9sQTBZlzPB6X9zUDjmE5ODh0DFrOsKjJpqensW7dOgDAt771LQA+w5iYmJAz8/bt2wGUMisyGX4W/9fXxGKx2XjdAAAnnngiAGDVqlXClKg9yZjS6bTYKrQdBCjatHg9x8KxJhIJGS9tBx988EFADr6P96gaW0g9MT4+joULFwLwmcP1118PoGhYX7So6KQkG6EWXrhwYQnjbAfceeedYmwn06Itq6+vL+AFo0OB8gPA6OgoAH/Nhl1P++Xg4GDLmRXxzjvvAABOOukkWWeZTAZA6fzQAL9lyxYAwK5duwAU7V1c582AY1gODg4dg5YzLDKT6elpnHHGGQCAM888E4DPMFKplOziZ511FgDg97//PYCiJqR9xzKo3t5esS0cPHhw1mP9whe+IOOhrYKfTzkymQx+8IMfAAA+/PDDEjmWLVsmbm+yLmrfVColXrMTTjgBQNF2ABTDBchK+H1f+cpXALSOYWnWp5kGUBzvxx9/DMBnmWSd09PTgVi0VmP79u0SYnHhhRcCAJ5++mkARQZNGcgSdRgHmT+v4TyNjo4KyyR4zY033tgwWarFq6++CqDUpkoPNuWk3QrwGaS2z5JdNgMt37B4UwDg05/+NADgiCOOAODfxGg0ikceeQQAcPzxxwMAfvaznwEAnn32Wbz00ksAgNdeew0A8JnPfEY+b9u2bQCKMT90rdcKbhL5fL5kowX8EISRkRHcfvvtAICzzz4bgL8B3XHHHfj2t78NwI+nooEzFovJMeQXv/gFAOA73/kOgOKi4Odz46XRfWBgADt27JiVXLUgGo0GFAXvCQMtwxCJROR9/HG3A2677TYAkNiy999/H0DxiMgfMO89j+yALzOvoUyJREKu41GQzqNm/sAPBR7tcrmcKNFEIgHAjyl7/vnnRRZeT7kjkYiEcjQD7kjo4ODQMWiZirPhDGeddRY2by7GOnI3Z6T4wMAABgYGAADPPPMMAOCtt94CUDz2nXzyyQCAiy++GIAfsPnMM8+IcTqTyeDZZ5+d1Zjp2h0cHBRtpN3YgJ+aAQAPP/wwAF/7bty4UY5w999/PwDgggsuAFDUzM8//zwA37jPY1dPT4+wGB4JyQBOPvnkljCs3t5ekZ3HImrdQqFQooE1otFoSchAO0CHojCU5ic/+Ym8TmbFaxhYOTk5KYyKjzRY6zAV/v23v/2tYTLUCpotcrmczBXXGOf11VdfFdZFWciqUqlUU50njmE5ODh0DJrKsMrtxDfffDMOO+ywkudopMzn82LrogYkGysUCsJMyLqoCb/73e9izZo1AHz7Uy1g7hhd3tqGRZmodXUQHd9HrXvYYYeJ5ub7yAYjkYgwRYLa7/DDDw8wLBo/t2zZgrvuuqtm2WpFPB4XGcLCSsqFmvA5GzzbKmgHAu02b7/9NoBiQCWZBpm/ZiCUhfZRGtq1nAz7aEcwPOeII46QIGTKawOfAd/mzNemp6frlvxcCRzDcnBw6Bg0lWGVc2MPDQ0JwyJ7oI0kHo+Ly5+7PxlNoVCQYLZTTjkFgK/VFy9eLHak2YBhCvzO8fFxYTx8juPK5/PC/lidgZ7ARCKBJUuWAPCZFd+XTCbFu/a1r30NgF+yZHJyUjxNuooA4DPNZiMajYptR3tzgaL2tSEmeu7JONsZlKWvry+QdkMvn67koL3dQClrY/pWO4LhJwACXkJth+P88TWu33g8Lmk6zUDb+JW7u7vlBvGRP4iRkRE5ajHkgTcwEonI9TxC6uOTzqyvFQyNYG7VunXrxLhOx8Cbb74p3/2f//xHvl8/Tk9Py4/bRntPT0+XVHwAIMb07u7uwKbA42KtlQ5mC72YtbGd/4flRgJFublhLV68uMGjrBwcL2Vg7NymTZvkNY5b/3htWIvO/2R8GkMBCG3kbxdoJWKJhed5JWtYP0YikaaGabgjoYODQ8eg6UZ3nTsI+DWRli1bJrs8H0nBs9mssC0em8i4uru75XhkA/VefPFF+fzNmzdLVG+1+O1vf1vyOH/+fKxfvx4AcPXVVwMAPv/5zwMo1j5iUCgrFZBGlzMy63vDY4aW44orrqhp7PUGj6mxWCwQmjITqwJKq1lQPrJTshM+3w5g7lw0GpX1Rdl10T4e+3ks0vl4vB/txqbCwPnR0KcY6zDTc9/Ign0WjmE5ODh0DJpudLcpLTQwL126VMIGtEEdKGpi2qJ07h1QWgHBliL+zW9+IyWMtRt+thgaGpKqEWSDzIP0PE80MhmEtfEACIQEFAqFEkYJ+MyDNrR2gGbBMzlR9PM2vAHw7weDD9uJWRG0Rek5s3mj6XRaniPDot2KNd0An2G3M8LYsa09p6/TaVnNtEU6huXg4NAxaCrDisfjAfcv7T2ZTCZg6yELW7x4sWhh2q54bTqdFiZDLUcPz+WXX45bb70VAMRzNxvo2lWUg5qGnhJdd8syEJ34Ww7W1kVbmH6tXC34RoLfV2vQp+d5gXSmdoC14dDutHfvXplr674fGhqS18juGcKwaNGiWSfbNxP69BEWEDxTFd18Pi+e+2ag5g3L0kUdg8MYjZkWgcZDDz0EoJhvZ2OM+OPYu3dvCQ0HUBJda7+P127atKmumeQcj/5uRkRzwwrblLXxMmwTI/g+e4TQbmPrtGg29EbF+x12nCj3mpXBhhS0AnYMPNLNnz9fHD6MpyP27dsnoTR0kOi559yynDbRjkZ4vQ5tdoL9GyglFc3csNyR0MHBoWNQE8PSx55qtMVpp52GSy65BADwuc99DoAfHLp//35hVraM8MGDB2VH53GCTMvzvEBxPn7O+Pi4VHCoZ6Z8NBqVsZEVamcA74kNDvU8b8b8O8/zxKBNrR1W6rnV0PddM0eglDHNdGTULJOPnK9WGt8tu6MD6OWXX8bg4CAAf144ziVLlsi8M9RBh6QwL5Htz9oRrIKSTCZLQk80otFoYN3qtWkLODYSjmE5ODh0DGpiWGH2E57vly1bJkGV1CxkOQMDA4F6QWRH/f39km6i8+uAotGdmoxajq7+3t5eaX1lm1nmcjmcdNJJtYhYFtoOZVMWNPOw9htdJ4rQTIvvs/Yf/X2tLiusNexMHbEPFT4SViOr3cD81HfeeUeqLXBd0qY4Z86cQI4n16muPMKULrr/9+zZ0xZ2OwD41Kc+BaDoqKJt1tpQdZAwodOVmB/LXN5GhuG030pxcHBwmAE1MayTTjoJN998MwC//g9TZnSCL93xun2VradDzbRt2zZ89atfBQCpDEpPTSaTCXgijjnmGLmGNgayNbqYe3t7Ax6aRoFNFoaGhkR+y7QOxTx0OzB9fbvUjQIqG4u21RGajfEzbCJ4q6Db0TNAeePGjQCKDItrm7Ya1l3r6emRprBc67riLMHwhssvvxwA8Mtf/rLlzIr44he/CKA4L3adlmP2eo3TU840tUYyrKpXSiwWw2233SaU12ZvawM4j3TWQA34bmBuKD/96U/ldQquj4iPP/44AL+PGo+d/f39gXAA/cNvRHfhsGOZNoxbucsdo3SkO8cfVhWg3Hc3E9rAbmUIK0di/9fX8H1cC61qzqA3j3POOQeA300mnU7LuKg0WX1hw4YNodUdgGI3J5tnSKW2bt062fRaDZpMcrlcoChluWYhusw1j8q2AGUj4I6EDg4OHYOqGFZ/fz8uvPBCrFq1SmggqyHwUQfXkRnojrdkTTSes7XVXXfdhYsuugiAH4JAjdbb2yuNGdgbUPf1Y6gDmQ0xPT0tY1ixYkVJsbJ6g6woFosJ2wqLSudzNlI+Ho/L3zZMo1zbrGZDs9hyx75ysJkA7RT5Tob04osvAijOIdeVHWdYEK0un8zjJRmaZmrtwrD4GxsaGgp18gBFOWea01gsJr9lOhd4nxpRqNExLAcHh45BVQwrn89jz549GBwcLDGIAxDDd29vr2gkGiAPHDgAoFiMn0xMV2bkZ7P1FRujcvdfsGCBMBIaN2mYzufzotWo/fl/JBKRsQwMDJTk5NUbYUbUMMYxkwFeG6p5vW0rZT+rFdDBsNa5UAm0rY9z2A5hDVxrDPZkgOz4+HhJ3hxQOh98zpZRBnymTLc/bV+2I3QrwNpedCTs3r27JCgYKF2/No2KryWTSTz66KMAgEsvvRSA36auEcb31q8UBwcHhwpRFcPKZrPYtWsXPM8TrwgrJXCnHh4eltZB9NBRQ6VSqZIqC4AfuhCNRuV9DGZjJcPBwUHxtFCD8dpcLidajhqbGnDp0qUSRHrcccdJZYhGIIwlhDGPcgzL2hAoF20E7QBtJ5wp0PVQsEnk7SDfypUrASCQnpJMJmWtkmVorxmZik3Hisfj2LlzJwDfo0177dy5c8XWy9NHs8E6cdrrO1MF2XQ6LfNuq4Tk83kceeSRAHzZ+fttBMOqasOanJzECy+8gPvuuw9XXnklAD/0gOEGU1NTcuzj5sQNJJlMyjGCR0ltgCWFJi3XRcJ4M3iE5Hdks1k56oUdFxkns3v37rr1Tyt3BAqLU7IUO+y6sGMj7007xWHpShq25Egl0HmYnI9169YBAF544YV6DrUq2KojXIvd3d2yjmmW0D9arkNdGhkohjAwnpCZGFzX8XhcNrpWbVjsOK4Vv3UcULZIJBIgGnQg5HI5MbbzHjBGshFwR0IHB4eOQU0hxrfccotowxtuuAGAb7Tct2+fMB0e6ai9ksmkMKWwIDXu4nykNk8kEjO60Hfv3h0IqaCGWLp0qbin//jHP9YiaijC6lrZXEcNXafLspJybC2MYbXa6K4rD9gjrJbTjlPnztkqFNTyrQRNGlxzNGccffTRAVbBa/L5vJg0bMWJTZs24cEHHwTgM3/dzKLV0f1r164F4Jtkli5dKnNE1kfmdMEFF+Dvf/87AN9ZxnXOxi+Abx466qijGjZux7AcHBw6BlVv88y72rp1KwDIIwM6b7nlFkm3YcAod+5YLBaodUXs2bNHtDLdv7QHjI+Pz2jzyeVyYm/g9zz22GMAgNdee63pDRy0jcamrESj0UCWvmaOM1V5aCcbFhlEIpEIlEvWBlw7ZtqrYrFYwEbCagitBBkW7z1Lcc+dO1fWLG1QZEpDQ0NyighzODCHkA4jyj0xMSGpbW+88Ub9hakAZEynn366PMfx6bANACWlnsmKdWVVrneuDYYlNQKOYTk4OHQMqmZYM2WZP/HEEwBQUn9qw4YNAEpDHpYvXw7Ar9BIzctUn05AmB2J3tKBgYFAMKEObLXPhXlC7fe0kw2L7c0GBgYkZUgntQNFpsV7EDZemzi/Y8eOho23UpDtka3Tiwf4njGyCs7TokWLxNZF+w2DQhcuXCh2Ihv2USgUStqAtQK33347AOB3v/sdgOKc0ZZof+P6f17D01MulxNZGCj+q1/9qmHjbqjl7/XXXw8818hYqFaCP96enh5Z0PaYEY1GZ+xRp49RtiQvF77+rFaVJ+EP+u677xYzAOXUfRhtWWcdqsH4JCo5mzvZCjBWimPjJgX4Y7clkrdt2yYlYzjnrCqij/9cGzw+7ty5U2RvNRiCoI9xNgdQ9x1k1D6PjfF4XDYsVrpo5BHfHQkdHBw6BpFqjhiRSKS155E6wPO8slGOlcgYFtbA/oepVErc2JZNRaNRMWDaYFKdE8mjB48l27dvFyNphXjO87zNh5ChprksF47BsJKlS5cGCtmxUsbHH38caDZRaZUHi0PN5f//7Io+1OYLaiZLhkvmYM0ajUY95SyHU089FYBfvJDdzK+77jpxOHCdk3Xdc8894nibLSqR0zEsBweHjkG1DGsvgNb7oGvHKs/zyqbK/x+QEfhkyHlIGQEnZwehMjlb7XVycHBwqBTuSOjg4NAxcBuWg4NDx8BtWA4ODh0Dt2E5ODh0DNyG5eDg0DFwG5aDg0PHwG1YDg4OHQO3YTk4OHQM3Ibl4ODQMaiqvIxLfp4ZTJaNx+NSZoUlOFiuI5fLBaqK8ppoNCr1sVlfyrZ0rwL7KkjNqUlOlsCZN29eSYs2wB9voVAIbcbJRyY/684rtaCRScGUs7u7W1rLWTn1uJk8zYT3aDQqcrKsDK9vZZK3BWXq7e2VkjpMwue61aWCeF8oZzwel2R9ymlLC1WKSuRsbSX8DoMu9cwidOeddx4A4OKLLwZQrKtkqzRwMU9OTsoiZg0pvpbJZGRBs6Tu008/DaBYe+r5558H4Ndi0htACOqSU6a7O3NjZf2kG2+8UeofccHyhzx37lyRhVUaWPht//790sDkgQceAODXTRsZGSlb+K/e4GYaiUSkAgPrW7H12JIlS6TPnm7AYcfIWll6M+OcsQUe78G9994rr3FTaFaKHOeTBQvPPvtsAMA111wjjWSoOFkmemJioqRHIeCv23nz5km/xTvvvBOAXxOsnq31CLdhVQBbm/3000/Hj3/8YwCQJpLE2NhYQDOxBng2m5XXWLSO/09OTsqiZ2mWL3/5ywCKmyJr01977bUAijXwgcYvdMqsO74AxYXKzYhVN8kM16xZI+9/6623APgb7UcffSQldsjQuMHHYrFArf9m/JAPP/xwXHXVVQD8BqNUGh9++KFs1rY00OrVq4V9sfzK+++/D6D4Y2cTX3ah4b27+uqrcddddwEA/vnPfwJAoOROo8C1zDXGjTqdTpecBAB/zru7uwM16/k5uVxONsEVK1YA8MsM7d+/v+4blrNhOTg4dAzaimHZ7ruknZ7nlXRk0Y9aA9vehbpLz+TkZNXa2n4ejwm33nqraEuWM+bYe3p65G9bkC+Xy8ln6n5ufD8ZCjU5qfaCBQuwZcsWAMCPfvQjAMD1118PoMjU6s1C9FGJc0EmQc2cTqfFBkU5ySj37Nkj951MhZo2Ho8Hjhe8X7FYrOZifrWAzGnz5s3CDlibnzKlUqmAbZGvDQ8PB+w9vHZqaipgoyML6+/vl6M1j8PsFNWsoyHtrJzXvr4++duyXD0uzg/nrru7W+SztttkMhmo9z9bOIbl4ODQMWgbhpVKpWSHpkGbZVjT6bTs8LT9UHuNjo6KZresK51Oyzl8165d4sWoFPwcsgXaOVasWCGamOygv78fQFH7Uqvo5hP68zT4ft01h9dTrtHRUbk3NPL/4Q9/AAA888wzDdPKhUIh0GOR3YDnzJkT6LtHO0w6nRZtzbHx2ng8LizNannP88o216g3++L6Wr9+vawT673NZrOB9aW7PPM1rksyj2g0GrDf8DMjkYgwupUrVwLwDfKNtmVp5gj4c5BMJuVv+zvyPC/QwYnvT6VSJYwKwIy9R+sBx7AcHBw6Bi1nWDpUgN6FU045peSxr69Pdmtqamo0anfAZyT0WkWj0RK3eq3nabY2Ouuss+RzbQwSNVA+nw+wQWq1XC4X0D7UWJlMJhDjorU8v4fhEF/60pcAAP/9739LuvBWi7CGGvZ1oLQXH1BkEvRU2rnR94f3nJ9TKBTksyifdpWXG4u2o8yGZVnXfiwWE8ZApsx7mk6nS0JPKAPHQc8un+O1kUhEPpP3gHZPz/PkObI8zdoaCcuU2IKsq6tL1hjXn7bhWqatu31TZt5Pa2euJ1q+YfEGpFIpOW4wVOCEE04AUDTs2YXPmzo5OSkLiY/cxDzPw0MPPQSg+GOq9QbSQEr6Pj09LQuVk8UFnslkZKx2I9EL1bZ3z2QyQsltOMS8efNKfgh6TL29veI2bwS0QVx//9jYmLjted8p79TUlPxYbRPSsDmgvIlEoilGd/sdU1NTslEMDAwA8JVeLpcTGdg8lIpIdzria/zRT0xMiKLjNfrIRGeNVWqz3YwrBedDH4U5dq5Da9rQ0BsX1ybvU60BspXAHQkdHBw6Bi1nWNyFk8mkaKRjjz0WQDGgDyhqH2oCHiP0+6kdbRT5yMhIIM2lGpBVkM1oLWjZkHbt2865RCQSEc3EcVGufD4vWo/HKR1ewPHzs3lv1qxZMyuGFaYFw56z7dbz+XzgiK2NtLqVOQDp1ZhKpUQWyxqb5dKnDBz/66+/HmD3+lobtqHDbxjGYI9aPT098hydDGTl7777roQzMJqcY2o0w7JOEHus5xj0mLQjJMyBZLMTbCpSPeEYloODQ8eg6QzLBmPq52nwZLqADiC1iZl6V6e9xNqTDhw4IKxrpu8tBxokP/vZz5Z8Ri6XEwbBcdCek8vlhAXZIDvP80QDc4w6rMEaK8m0+vv7AzlndFAcc8wxkptXbdJpJdrcMjsdBMuxk2VQs05OTspc6rQkwjKccvatRkDbDYFirh/vNdk5/08mk8KMeD3HqW07vAdkUxMTE2KEJrskq/n444+xY8cOAL69NcxO1EhwvZJhTU5OisyUT8+LDerWrIvXky3ys50Ny8HB4RONltmwbKh/PB7H6tWrAfjuUc1oqKmt12p6elo8htTwuoQLA0xr2e3pwieDo+ZIJpMltjfAt09MTk4GKhxwfJlMRt7H17Qmp/biZ2lZ+RnU0rRb9fX1yWfZdJ/ZQtvOrD0iEokEPFy8T4ODgxL8yzmlzSabzYpcNsQjLGg0zL41W81NWXgPJyYm8PLLLwPwwxpOPPFEAMUgYc4LwxL4vmw2K/NCxm3/B/y5fuONNwAA27ZtEy8h12e9U1gOBZtKVCgU5P7z/nI+x8fHAwGj/K3p4GIbRNsIhtVyo7v+kfIoaEt1FAqFQPwHkc/nZeHbH0AymSxxsVZ7A+navueeewD4mfiLFy+WvEJ7lEilUoGIdR3DwvHzffq4yM2PGzYp+c6dOwNlWl555RUAwPbt26uO4CequR8cCxejltOGaoyPj8tzdA5Q3lwuVxLGoD8bCK+fZTFbwzR/mDQXZDIZ+Ztrj5Hoa9euLQnX0HL29vYGXPraycP55Kbw0ksvAQBefPFF2fSswbpZjgfKxIyNSCQSyH3lXIyPj8sGbGPLgGCuZCNjydyR0MHBoWPQdIZlNQg109q1a6UWkWVTqVQqUPVRgwyG1JtaL5VKlc3jOxSoBe+//34AwKOPPgqgGPm+ceNGAMBFF10EALjgggsAlEa6k0Hwf02fqX0pqz4S8jUe/+68804pAsejFY2l4+PjZfPv6gVqUV2NYKYczl27dslxms+FHS11BgBQ6jQoF+pQLxaiWQ2PSO+9V6x9yKNaLBaTeeBa5VocHh4Wueig4WuZTCbAfMlm9u7dO5tqsnUB7z0fddFJzgefGx4eFtntsa+7uztQcbSRsjmG5eDg0DFomQ2L7ImGzDPPPFNcwjq/kI/UBJahdHV1ya5v03dSqVRoXlSl0KkbgG+o3L9/vxhQmQt2/vnny1ipjWwNr7BaUEQymQxoJrKZxx57DG+++SYABFhNo0MBNDsEfC3a1dUlMpCJUt6DBw+Kzc0acnX1Axtgq2VpNvPg93ENcYx9fX0yTs4d/4/FYgEDNeWNxWIyf2T8ZGq65n2roVPdOM4wp5Gti6ZTevgZtdZyrwaOYTk4OHQMms6wbILlaaedBgDYsmWL7N72Wu1dsx6beDweqPqo61iRAcXj8ZrZiE7JIXR1Bv2aZlHWFpfJZOQ520xCVyqwHrnR0dEZm080I41Dy0ItzHEBwUCOtoMXAAAKZUlEQVTDqakpCYjUIQBAaYVUy1x0ZdlWwc5dJBIJMAe9Hji32uZFUGY+6vSmZtgdKwF/c4lEIpBepIO0re047Ldp6781Ak3dsHQ5DpaOueyyywAUI7etu1nH98wUq5PJZGRB2OML4Hc6SSaTsyrDoj9f/20NjZlMRha4PRpqam3Hqhex3uCA4oK3R6tmQOc+2qKCY2NjgcoZvAdTU1OBcsJhOZPWfd5OGxY35nw+Hwh50Ju2LQmkY/ZovNZF/doFvM8kDp7nyXg5L5RzamoqMFfaaUTZeX8aOYftcwcdHBwcDoGGMKywZhBA0YjHGldXXnklAGDDhg1yjWUm2iVu3bDaTW41gv7eVatWASju/jxi1QP2SKirNlhmpZtpWIaotTDH14jo7lphMxKIbDYrRlnKro3KFvoeUGbLGmsJ7q03bCYCEDzy2r6TgD+POlCZ11vm0WoZNej0AvzfqS0XHYlEZmSJnufJcwxlcQzLwcHBAbNgWNooaR+tEY5pGUcddRS++c1vAoB009Xahuf/MDep1WB8jEajgTwnnfrBpp7z5s2TrPl6wBrP9VitJtY2G5vOwvdls9lAAJ41ALcSNsSjq6tL5sBWLygUCoGqk9TQvb29gbw5zTxazT4s6xseHhYHAu09en649mxITS6Xk9zTMFtduyCMOVkWlcvlAvYtPYe8H0wpa2S5Z8ewHBwcOgY1MaxYLCasydaiAhA40x5//PEAgFNPPVVsVtyFdeCdTRPQwXi2aYP2rvE5q7ny+bzUjUomk3VlKroiBFAaJGqbSJBFxePxkvZIWtZCoRBIhLX3uBWwaUa0x/T390s6imXZ2v7DdcF5OHDgQEmlDf0d7cCwrOdTh5Rwfvh/IpEIJOPzngwPD8t94CPtRe3AmO1cFQqFkr4EQGn7Neth115U2wKukeu16g0rEolg4cKF0omYmxLpciaTEWG4UbHESFdXl0wwqSgXRiKRCESlh00sNzo+JhKJkg0BKI1IZhxWvReJPe5y4jOZTGBT0qV1bXlgbaDmZ9mCcQsXLsRbb71V1/FXC33UAYrxVLagHatbjI6OynU655Hvo3Oh2SVVKgHnkVUmUqmUrCGbL6iPxTrKn7CR4ywBPpuYwHqBY2LVEf07InQJJetI0f/bKiP8vxFwR0IHB4eOQVUMiz3ILr30UpxxxhnyHOAzLN3114YZJJNJ0WC2MoF2FdsOtJlMRtiHrXk1PT0dyOfSYQ7UGhMTEw2JLtZ1noDS4ysZiDZO22MF/+/u7i6Jegf8e2KPHa2AbUKRSCRknnSNLL5mj4K8FvDnjmWCdRBiq4+EZP7aGK1bdwGlDhP+bfNNe3t7A1UPWBywHY6EvOf6BDJTNHvY+uPvOBaLyX2xtd4aAcewHBwcOgZVMaxkMonly5fjoosukp3Zpphks9mSPD/A165hO7XOA7SBlty5dZ6TLukKlGoraoSwSpL1NrrbvCndeMJ2AdbdgW1TBh1Ua2tHWQNwK8Fxs6LG4sWLJUxEh2YARabFObf2yFgsFmg6oSvGzjZ9arawlWCz2WygjZp+LYxFA6U2HsrEqrTtwJhZQVTXLbMOFl3K2gZuaxss5SProl3sjTfeqDtjdgzLwcGhY1AVw+rp6cEpp5yC9evXB5oSaMZAWwZ3aDKMaDQaqIGtM8RtFU5q6UKhIHYS1jSnptefYetijY+PByoC1Au2jrwOybDMimPXbb1tErRO8LYepFgs1pCgw0PZjLRdg9+vmYNOt9HXAL4MujIlUJyjmVKQtJxEI2q6h4Fy0hNI5PN5WcfWU6rnmq/RTpVKpQKy81TS1dVVcx3+esE2zdBpY5SPcufz+UDIkT7NWO+ibvE2U1PhWlHVhpXL5fDRRx/hhRdewMDAAAB/gkkto9FooJyGXpg2u53QcVi7d+8G4Dd92L9/vzzHRhWbNm0CUFqS2EbYx2IxoanpdLqum5bt/KKjvO2PTncVsQZ5btK5XC5Q8E9nxvN76tlN1/7wwzZF28OPZVSGhoZm7PKj+0gSWhnxenuN/u5mG6ZttgSVXlhJZ93/kjJYA7uuZsHredzs7e2VHn7NdjJYBaRL/dhNSReLtE4vIuz3xz2hEUdfdyR0cHDoGFTFsMbGxvDkk0/if//7HzZv3gwAOPvsswEA55xzDoAi7bXNIMpFMpNN7Nu3D9u2bQMA/Otf/wLgM6xcLiefecUVVwDwj4uateiocf5fzwoNhK4TRehaVrZdkn4fNbg99mm2Y6Pow45K9cChtLt+3WYTxGIxCRS0TpZkMhnIo+Q109PTAXe5rsBh5WxW/h3HRJm43np6eoTdW3abTCYDoR10Cmk2T3aqj0etyiu03cg53lwuFwj7CcsbtM1IhoeH5XXKp1ud1RuOYTk4OHQMqk7Nyefz2Lt3Lx5++GEAwD/+8Q8AwE033QSgeE5nThFTcnimXbZsmey63KF5ln/11VelxZLNfPc8T7S3bcd04MCBQIoHu+pms1lprfTKK6/UNXvcskdC22WsNtM2POt06OrqClQ90I6MVgcbWkYwPj5eYssBfI2qu19bR0IikQjUNLM2u1bAVlZlKlFPT0+AOTAYNh6PC7Pi2uI1XV1dgfWmU7RaBbsmGZqibVh2PuLxuFSe0Cl4fOQ9IPui3I2osOoYloODQ8eg5npY1LTcVbkDj4yM4IMPPgAAPPvsswCC2ku/v9pmCn/9618BAFu3bgVQmpoz02dX8/mVwlZn1OENtN9YBqLfZ7WYPu/rBGOiEezjUPYibVfTLdcI/m0Dg3t6emasuqr/tsnBumWUna9Gp+3YNla6SigZlWUn8+bNk7lmcCnfNzExEbBvkbXpKg/NbkZBGZiITZtdOp0OpIbpdWBTs3SoBz+DrIty64Ys9ZKzKU0obAT3bGA75LQKnHjGg+mqEzaXSpfSmSlq3fO8QDyLzktrBL22IRh2QygUCjN2RFmwYIHE27AMNd+/cOFC2aRXrlwJwC+tsnv3bvlbVz3Qn60/q1nlom2MFTeX5cuXyw+S88P/58+fHyiprJuS8LNsSEpY6EuzYMfLtdrX1zejuWJgYECuY7S+7g/K6xnywmuj0aiLdHdwcPjkIlLNDhiJRNqntmuN8DyvrGqrVEayg/Xr1wOA1AebO3euUGIeD6hxdJ0gGiZ1viRZCUvy0nmwbds2vPvuuwAq7q77nOd5m8tdECZnWJQ5n6O8ZEznnnuu1Dvja6zZ9dRTTwmbYEdssrDBwUG89tprAHyTAeUcGxsLDQWxUEf+Q9KUSueTc8PjH8e7ZMmSQCAky27rrtBkZDRij46OynOsE8baYB9++GHZhh0W9ZSTIMPauHEjAOCYY47B2rVrAQTrfr399tvCKik7x/3OO+/I2mR3cj7u27evqlNVJXI6huXg4NAxqJZh7QXwXuOG03Cs8jxvUbkL/g/ICHwy5DykjICTs4NQmZytLpjm4ODgUCnckdDBwaFj4DYsBweHjoHbsBwcHDoGbsNycHDoGLgNy8HBoWPgNiwHB4eOgduwHBwcOgZuw3JwcOgYuA3LwcGhY/D/AOLXeDKSxeWyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for epoch in range(1, EPOCH+1):\n", + " train(autoencoder, train_loader)\n", + "\n", + " # plotting decoded image (second row)\n", + " test_x = view_data.to(DEVICE)\n", + " _, decoded_data = autoencoder(test_x)\n", + "\n", + " # 원본과 디코딩 결과 비교해보기\n", + " f, a = plt.subplots(2, 5, figsize=(5, 2))\n", + " print(\"[Epoch {}]\".format(epoch))\n", + " for i in range(5):\n", + " img = np.reshape(view_data.data.numpy()[i],(28, 28))\n", + " a[0][i].imshow(img, cmap='gray')\n", + " a[0][i].set_xticks(()); a[0][i].set_yticks(())\n", + "\n", + " for i in range(5):\n", + " img = np.reshape(decoded_data.to(\"cpu\").data.numpy()[i], (28, 28))\n", + " a[1][i].imshow(img, cmap='gray')\n", + " a[1][i].set_xticks(()); a[1][i].set_yticks(())\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 잠재변수 들여다보기" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# visualize in 3D plot\n", + "view_data = trainset.train_data[:200].view(-1, 28*28)\n", + "view_data = view_data.type(torch.FloatTensor)/255.\n", + "test_x = view_data.to(DEVICE)\n", + "encoded_data, _ = autoencoder(test_x)\n", + "encoded_data = encoded_data.to(\"cpu\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/torchvision/datasets/mnist.py:43: UserWarning: train_labels has been renamed targets\n", + " warnings.warn(\"train_labels has been renamed targets\")\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAJOCAYAAACA8gAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl0ZHd95/13LVpKVdpaaqlbvblXqRe73e5FAmNiG+IwYI8NMSQT8AQnYJwED4RDzsMTThYIME4eliSezJNhEpMw8IDZHBjiIQaDFzB22wY74JbU2rfWvtWmWu99/pDvdZVUJdVyb9W90vd1jo+7tdy6qi5Vfe6vvr/v16GqKkIIIYQQQghzOct9AkIIIYQQQmwHEryFEEIIIYQoAQneQgghhBBClIAEbyGEEEIIIUpAgrcQQgghhBAlIMFbCCGEEEKIEnBv8nnpNSiEEEIIIUTuHNk+ISveQgghhBBClIAEbyGEEEIIIUpAgrcQQgghhBAlIMFbCCGEEEKIEpDgLYQQQgghRAlI8BZCCCGEEKIEJHgLIYQQQghRAhK8hRBCCCGEKAEJ3kIIIYQQQpSABG8hhBBCCCFKQIK3EEIIIYQQJSDBWwghhBBCiBKQ4C2EEEIIIUQJSPAWQgghhBCiBCR4CyGEEEIIUQISvIUQQgghhCgBCd5CCCGEEEKUgARvIYQQQgghSkCCtxBCCCGEECUgwVsIIYQQQogSkOAthBBCCCFECUjwFkIIIYQQogQkeAshhBBCCFECEryFEEIIIYQoAQneQgghhBBClIAEbyGEEEIIIUpAgrcQQgghhBAlIMFbCCGEEEKIEpDgLYQQQgghRAlI8BZCCCGEEKIEJHgLIYQQQghRAhK8hRBCCCGEKAEJ3kIIIYQQQpSABG8hhBBCCCFKQIK3EEIIIYQQJSDBWwhha6qqlvsUhBBCiJy4y30CQghRCFVVicfjrKys4HQ6cblcuN1uXC4XTqcTh8NR7lMUQggh0jg2WS2SpSQhhKWoqkoikSCRSAAQi8X0j6dyuVwSxoUQQpRD1hcbCd5CCFtQVRVFUYjH46iqqofoWCy2LlCrqpr2n/Z5LYi73W6cTqeEcSGEEGaQ4C2EsC8tcCuKgsPh0MOyqqoZg3cmEsaFEEKUiARvIYT9rC0rSQ3d2udzDd7Zji9hXAghhMEkeAsh7ENVVZLJJIlEQg/EmYJvscE7221r/6VyuVxUVFTo9eISxoUQQmQhwVsIYQ/ZykoyMSN4Z7sdCeNCCCFyJMFbCGFtWnvAZDKph9fNQmypgne2284UxrUSFa2rymYXD0IIIbacrE/60sdbCFFWm9VxW1Wm80wtkQFIJpPMz8/T1tYmYVwIIYQEbyFEeWRqD2j3MLr2Z1AUhampKVpbW/UwrqrquoE/EsaFEGJ7kOAthCi5tXXcTqez4GPZIayu/fnWrozD6s8hYVwIIbY2Cd5CiJJRVZVAIMDKygp1dXXbNljmUqaifZ2EcSGE2DokeAshTJcaKpeXl1laWqKhoaHcp2U6h8OxbvPlRl+bLYzH4/G0DaepQVzCuBBC2IcEbyGEqTKVleQaRrc7LVCnlqpom1FTu7mkhnFt6I+EcSGEsB4J3kIIU6xtD5j6n5HBO3Xi5HawNoxr92UuYbyYWnohhBDFk+AthDDUZu0BnU4niqKU6/RKyuiLjGy3of0/1zCuBXIJ40IIUVoSvIUQhsi1PWApwuh2l08YB4jFYtTX10sYF0IIk0nwFkIULZ/2gGYEbyuXm1jlIiNbGF9ZWaG/v58TJ07oX5Otz7gQQojiSPAWQhSskKmTRgZvM2rGjWT1sJpad+92r74caPdlPB4nHo/rH9MCuIRxIYQonARvIUTeUtsD5jt10spBWbx6seByufSPZQrjsLoynqm1oRBCiMwkeAsh8lLs1MntFry3ws+6URiPxWJpXythXAghspPgLYTISbb2gPnaTn28t3LgzBbGVVXNGsa1toYSxoUQ25UEbyHEhgqp496Iw+EwrJ3g/Pw8/f39VFVVUVtbS11dHT6fLy0MitLJNn1TC+OpgTw1jGvdVCSMCyG2OgneQoiMcm0PmC8jSk0ikQg9PT0oisKxY8dIJpMEAgEmJycJBoOoqorP56Ouro66ujq8Xm9ZWuTZIUiWos+4hHEhhFglwVsIsY6iKMzNzeFyuQwPrcUEb0VRGBoaYnp6mqNHj7Jz505isRiqqlJXV6d/XTKZJBgMEggEGBsbIxQK4XA4qK2t1VfGa2pqpF/1K0odbvMJ42u7qUgYF0LYmQRvIYQutaxkbm4Oj8eDz+cz9DYKDd6zs7P09fWxa9cuurq6NgzNLpeL+vp66uvr9Y8lEgmCwSB+v5+RkRFCoRAul0sP4rW1tdTU1EioK5NsYVxRFJLJJC+99BJHjx5N27gpYVwIYTcSvIUQGdsDmlUnne/mynA4THd3N263m+uuu47q6uqCbtftdtPQ0EBDQ4P+sXg8TiAQIBAIMDs7y8rKCm63Wy9Rqa2tpbq6WkJdmaSG8VgspodsLYzLyrgQwm4keAuxzWVrD2jkJshUua54JxIJBgcHmZ+fp729nR07dhh+LhUVFezYsSPt2LFYjEAggN/vZ2pqikgkQmVlpb4yXldXR2VlpYS6MtlsZTwajaZ1XEntpiJhXAhRbhK8hdimNmsPaFa/7c0CvaqqTE9PMzAwwN69e+ns7CzpCPrKykqamppoamrSPxaNRvH7/QQCAa5cuUIkEqG6ulpfFdfCuDCP9k5MJhuF8Wg0SiQSkTAuhLAECd5CbDO5tgd0Op0kk0nDb3+joBwIBOjp6cHj8XD+/HnLhNmqqip27tzJzp07gdX7MBKJEAgEWFpaYmxsjHg8jsfjSasZr6ioKPOZbx35XlxtFsaj0aj+cQnjQohSkeAtxDaRb3tAp9Oph3MjZbrNeDxOf38/fr+fjo6OtE2RVuRwOPB4PHg8HlpaWoDV+3dlZQW/38/8/DzDw8MkEgkikQijo6N6RxW3W552C1VsGM43jFdUVOj14hLGhRBGkFcAIbaBQsa8m1XjnUpVVa5cucLw8DAHDhygo6PDtuHG4XBQU1NDTU0Nu3btAlZ/vmeffZaKigpmZ2cZHBxEURS8Xq8M/MnTRqUmxdgojEcikbSPSxgXQhRLgrcQW1gxUyfNqvHWLC8v09PTQ11dHRcuXNiSZRlad5jdu3eze/duYPUiKBQK4ff7Mw78qa2txefzSY/xMsonjKcO/HG5XIYNmhJCbE0SvIXYgjK1B8w3DGht24wWi8VYWVnh8uXLnDhxgtraWsNvw8qcTqdedqJJJpN6GB8fHy/pwB+zJ1caqZyBNlsY137PNDMzM7S1tUkYF0JkJMFbiC2mkLKSTIxe8VYUhbGxMcbHx3G73Zw7d07CyCtcLpfeqlCTTCb1HuNmD/yRf4fCZArU4+PjtLa2poVx7Z0PCeNCCAneQmwRm7UHzFe+g242sri4SE9PD01NTXR2dnLx4kUJHZtwuVzrBv4kEgm9reHc3BzhcFgf+KMFchn4U35rL3YzrYxLGBdie5LgLYTNFVPHvREjNldGIhF6e3tJJBJcc801eL3eos9rO3O73RsO/Jmenl438Ke2tpaqqioJdGWUa5mKhHEhtj4J3kLYlPbCPTc3R319veEv0MWseCuKwsjICJOTkxw5ckRvuSeMl23gjxbGZeCPNW0UxuPxuP45h8OhB3Gtz7iEcSHsS4K3EDak1XEnEgl6enp4zWteY/htFLriPTs7S19fH62trXR2dpreKs+sTaB2VlVVRVVVFc3NzUD6wJ/l5eW0gT9VVVVEo1Hi8fiW7CxjJ1qgTi1V0d7RisViG4Zx6YIjhD1I8BbCRtaWlRhZh71WvscOh8P09PTgdDo5c+YMHo/HlPNay05dOcplo4E/s7OzLCws8Itf/IJEIkFNTY2+Mi4Df/JjxmNxbRjXbkPCuBD2JM+oQtiAEe0B85XrincymWRwcJDZ2Vna29vTSh6EdWkDf5qbmwkGg5w8eRJVVQmHw/j9fhn4U6BS/F5q/881jGuBXMK4EOUnwVsIizOqPWC+NmsnqKoqMzMz9Pf3s2fPHrq6uuRF3eYcDgderxev17tu4E8gEJCBP5swa7rmZvIJ406nM20Dp4RxIUpLgrcQFmV0e8B8bVRqEgwG6enpoaqqinPnzlFVVZX38Y0MKeUKPFvBZuURqQN/2tragPSBPxMTEwSDwZIN/LEyKz0ONwrj8XicS5cu0dbWhtfrXRfGtW4qQgjjSfAWwmLMag+Yr0ylJolEgv7+fpaWlujo6EjrMZ3vsa0UUra7fP8dyj3wx6q0d6WsSjs3l8tFMpnUV7xhNYzH43Fg9TlobRCXMC6EMSR4C2ERqqrqZSWlquPeSGq3EFVVmZycZGhoiP3799Pe3l7UuRk9FVOUX7aBP1pbw2IH/tjh8WKni0lFUfTWhEBa3b52X8disbTvcTqdEsaFKJIEbyEsoFx13BvRwrHf76e7u5va2louXLhgSMs5Cd7bg9vtprGxkcbGRv1j8Xhcn745PT3NysoKlZWV+gq6nQf+2DF4Z1JIGNc6qUgYF2JjEryFKCOrlJVkotXx9vT0cPz48bSygmJJ7+3tq6KioqCBP1b5vdiInYJ3vueaLYyrqkosFksL5BLGhchOgrcQZWB0e0CjNyqOjY0xOjqK0+nk/Pnzhr9oGrniLS/o9pdp4E80GsXv9+sDf0KhEL/4xS/SasatNvDHTsF7oxXvXGWbvrlZGNdqy+1yXwlhJAneQpSY0WUlRm5UXFxcpLe3l8bGRjo7O3nuuedMeXGUUhOxEYfDQXV1NdXV1frAn4sXL3L48GECgQDz8/MMDw9bbuCPnYK3WecqYVyIjUnwFqJEzGoPqJVtFBPgo9Eovb29xGIxTp06hc/nK/q8NiLBW+RLG/hTU1NDa2srQMaBP8lkEq/Xq9eMl3Lgj52CtxEr3rnKJ4xrmzYljIutSoK3ECYzu467mHppRVEYHR1lYmKCI0eO0NLSUpIXOQnewghWG/hjp+Bd7nPNFsYVRSGZTKaF8UAgQFNTk4RxsSVI8BbCJKntAZ9//nnOnTtnyotFocF7fn6e3t5eWlpa6OrqKukYcAne1rHV/h3KOfCn3GHW7rKF8cuXL3P27Fmi0WjaJs/U1oYSxoVdSPAWwgRr67jj8bhpLwobTZjMZGVlhZ6eHgDOnDmDx+Mx5bw2Il1NrGWrB5Z8B/6khvF87htVVS3RCjQXdvk318L42m4qiqIQjUbTLna0MK51U5EwLqxIgrcQBipHe8BMEyYzSSaTDA8PMz09zbFjx/QOEuVg1Iq3qqpMT08TCoWor6+ntra2pCv3wr42G/gzNDSkD/xJ7aTi8Xiy/k7LindpbFSmEo1GiUQiEsaFZUnwFsIARrcHzMdmq8eqqjI7O0tfXx9tbW10dXWVfVXOiOAdDAbp7u6muroan8/H9PQ0/f39afW8dXV1eL3esv+8ojilKofJZeBPJBKhoqIi48Afq4+Mt6Nc/+03C+PRaFT/uMvloqKiQi9RkTAuSkmCtxBFKvfUyY2CtzYAp6KigrNnz1JdXV3Sc8ummOCdSCQYGBhgcXGRjo4Oamtricfj+v2uKArBYBC/36/3f06t+y2khEBsX/kM/HG73SiKQiwWo7KysoxnvXUUczGzURiPRCJpH5cwLkpFgrcQBTKrPWC+MtV4a+F0YWGBjo6OtBU8KygkeGtlJQMDA+zbt49jx47hcDhIJpNpX+d0OtfV86aWEAwODrKysqKvWmph3K5jyrcDq5VwZBv4MzExweLiIi+//DLxeHzd9E2rDfyxA6PbHkoYF+UmwVuIPBVSx23kkJtMx9ZWvFVVZWpqisHBQfbt20dXV5clXyjyDd6hUIju7m6qqqo4f/582mpiLj9fphKCWCyG3+/H7/czOTlJJBLB4/HoIUmCksiVNvCnvr4eh8PBoUOHUFWVlZUVAoEACwsLjIyM6AN/UmvGyznwxw4URTF930auYVzb5JnaTaVcCy7CvuQ3XogcpbYHzLeOWysHMeMFRDt2IBCgu7sbr9e7LpwWw4wLhlw7sSSTSQYHB5mbmzN85b6yspLm5ua0VctIJILf72dxcVEPSl6vNy0oFfJvaLUVW7uxy/2Xep5WHvhjpxaSpRz0kypbGNf28mh/dzqdEsZFXiR4C5GDYuu4zQzeqqrqIbGjo4P6+nrDjm3WSn0unVhmZmbo6+tj7969dHZ2mv7i63A48Hg8eDyetKCk9X+WzZtiM5v9rmw28GdqaopAIKA/xrQLPqMH/pQrzBbCSueaSxi/cuUKLS0tes2/hHGxlgRvITZgVHtAM/pWq6rKxMQEV65cYffu3XR0dJiyMm3GC99GpSbhcJju7m4qKio4d+4cVVVVht52PhwOBz6fD5/Pp38sdRjL2s2bWhjfqOWcyJ8dV7xzlbrxV5O6QTh14E/q9M1iLvjscn+CtYJ3JmtfE+bn52lpaUkL49rXycq4AAneQmRkdHtAo4P30tISPT09NDQ0sG/fPnw+n2n142a8LZ3puMlkkqGhIWZnZ2lvb2fHjh2G364RMg1jSd28OTAwkLZ5M5FI6PXjVmSHsgM7nCMYN0An0wbhZDKph/HR0dGiBv5YPcymstO5wuq/k7YZM9XalXGQML5dSfAWYg0z2gM6nc513TcKEY1G6evrY2VlhVOnTuHz+RgeHjZtCqRZEybXBu/UPuOlKCsx2kabNycnJ+nt7SUajeLxeNL6P1tl86YdXujtcI5mriS7XC7q6+vTSsm0C75AIJDXwB87hVk7nStk3wy6UZlK6mRjh8OhB3Ft6I+E8a1FgrcQrzCzPWC+Y93XUhSF0dFRJiYmOHz4MK2trfq5FXvsjZi14q2dsza+3ul0ct1111mmz7gRtM2b1dXVXH311TidTn3z5vz8PMPDw/rmTS0kyeTNzOxSGlHq89xs4M/MzEzG1pl2GvRjt+ANuV8kaq8x2s+nPdcmEglisdiGYdxu94l4lQRvse1pG+gikQher9eU1YViVo4XFhbo7e2lubmZrq6udcEs15HxhTBrxVvryT00NER7e3vacJKtJvXFc+3mTUVR9C4XU1NT+ubN1PIB2bxpH1YIiZsN/JmcnCQcDusdg1Knb1qRFe7TUkl9rpAwvnVJ8BbbVmp7wKWlJRYWFmhvbzfltgopNYlEIvT09KAoCqdPn6ampibrsePxuBGnuY4ZK95zc3OMjo5SX19v2Ph6u6zereV0OvXNm21tbUD2Wt7UFcvttnlTVryLs3bgTyAQYHh4mNraWpaXlxkbGyMWi+mlUFYa+KPVTG9X+YTxta0NJYxbkwRvsS2treN2uVymrRpDfivHiqIwPDzM1NQUR48eZefOnYYdO19GlrFoFxKqqrJv3z4qKyu3xYtCvhcvmWp54/G4vmI5OzubVj6g/WfVFUujWDHQrmXV4L2WqqpUVFSwc+dO/fkldeBPah/7cg/8sduKdyk2Am8UxuPx+IZhXNvAKcpHgrfYVrK1B7RK8NY2Ge7atSvn1WCza7yLvV8URWFkZITJyUmOHTtGc3MzY2NjtulUYQUVFRXs2LEjrdNLNBrVa3knJiYsvXmzWHZ5rNgpeK99bilk4E8p9iXYKXiX83GqPe5S/y1Sw7j2rqiqqnoAlzBeHhK8xbawWXtAo7qOZLNZ8NZ6V7vd7rw3GZpZ411sqcn8/Dy9vb20tramXUiYec7bRVVVVdYVy/n5eYaGhsoyFdEMdgq0djjPXDdXZhv4o4XxtUOlzBj4oyhKyVfZC1WK8fb52CyMx2IxLl++THt7O06nMy2ISxg3jz0ezUIUIZf2gGaWa2x0/NSR6IX2rja71KSQY0ciEXp7e1EUhTNnzqzrYe10OtP62W5lZnWGyXQ7a1csU0PS5OQkwWBQ37yphXG7hEU7sMt9Wcwqcuq+hNTjBYNB/d0XIwf+2GnF2w7nmhrGE4kE0WhUP+dYLJb2tRLGzSHBW2xZ+bQHLHWpidbVY2BgoOiR6GYG73xDo9b28MqVKxvWpxsZRuWFILvNNm+OjIzg9/tJJpNp0zettnnTLoF2u55n6sCfPXv2AOmPs7GxMYLBYEEDf+wQZjV22wiaSCTSwnSmlfFsYdztdjM5OcmBAwdKd8JbhARvseUUMua9lKUmwWCQ7u5uPB4P58+fp7Kysuhjm7Wimk+o19oe7ty5k87Ozg1fgKTUpHzWbt5cXl7mypUrNDU14ff7mZmZIRKJUFlZmdbhopybN7droDVLKcKsUQN/JHibZ6PzzRbGVVUlFosRi8W4/fbbefHFF0tyrluJBG+xZaS2B8x3zHspSk0ikQjd3d0sLy9z/PjxtBekYpS7xjsajdLb20s8Ht+w7WG+x90q7PCzOp3OrJs3/X4/4+PjxGKxtA4XdXV1tqm9LRUJ3hvLNvBH69iTaeBPaocOq7PTRQLkf6GQ+ppql8e6FcmzptgSih3zbmapiaqqLC0tMT09zbFjx+jo6DD8bd5ytBNUFIWxsTHGx8c5evQoLS0tOR/XDmF0u8u2eVObvFnKzZt2eZGX88xfpo49sVhM79izuLjI8vLyuraGVmyfuZVWvDcTi8W2TNekUpPgLWytkLKSTMwKgsvLy/T09OB2u9mzZw979+41/DbMrvHOdOzFxUV6enqyTtPM5bjbJXhvlZ81dfPmrl27gNWLr1AopG/eDAQCaZvqtMmbVgl5ZsvUps+KrL4yW1lZSXNzM83NzaysrLBv3z4qKioIBAIsLy8zPj6e1j7TKgN/tL0SdlFM8A4EAmkbbEXuJHgLW9qsPWC5aW2awuEwJ06cIBKJsLi4aMptlbLGOxaL0dvbSzQa5ZprrsHr9RZ03K0SRrc7bUNmbW2t/rG1mzdDoVBaHW9dXR3V1dV5/b5aaYV2I3Y6T7sERK1FX3V1NdXV1WnvwEQiEfx+v2UG/litneBmkslkwfePBO/CSfAWtlNsWYmZVFVlbGyMsbExDh06xMmTJ3E4HMRisZKvSht1bG1DjfZzHT58mNbW1qIChtk19aJ8Npu8OT09nbZ5M5fSAbtcpOXaH7vc7NQbO9uqrMPhwOPx4PF41g38CQQCZRn4Y7dSE62rSSGCwaAE7wLZ4zdPCPJrD1gOWvlFU1MTnZ2daS9sVuy1neuxQ6EQzz77LI2Njet+rkJtpxXv7fSzZrPR5M3l5WXGxsaIx+PrSgdSH2tW+l3Pxi4r3lYvNUmVz7mmDvxJLYfKNPBn7d4EI+4PO92vsHqhUGhXrWAwmPZOl8idBG9heVrgHhsbo62tzXKBOxKJcPnyZeLxeNbyCzsG71gsxuTkJLFYjDNnzhi6uiFh1FrK8fu00ebNubk5ffOmz+ejoqJCv+i28oqiXYK3Xc4Tig+zpRz4U0zpRjkU8/skwbtw9nmEiG1nbXvA0dFRUzYnFkpRFEZGRvRhMRt19bBT8FZVlfHxcUZHR2loaMDr9Rr+luJ2C95W/lmtcm4bbd6cnp4mFArxs5/9DIfDkTaExUqbN+0SaO20MmvGueYy8CcUCqXtYchl4E8ymbRkt5Vsig3edXV1Bp/R9iDBW1hSOeq4tVrpXG5rbm6Oy5cv09ramlNXDzPbFRoZYrUuLPX19XR2djIzM0M0GjXk2Km2U/C2QxCzKi34JJNJFEXh2LFjJJNJvV7cqM2bRrFL8LbLeWpKca75DvzJNOXVThc0UHzwlhrvwkjwFpZiVHvAQmgrxxs9cYbDYXp7e3E4HJw5cwaPx5PXsc1gxP0Tj8fp6+sjGAxy4sQJ/S1EswLydgreonipQdHlctHQ0EBDQ4P++Xg8rg/7mZ6eZmVlherq6rQwXuyE2HzP08rsFhDLZbOBP7Ozs2kDf4LBIF6v1zaPg2LbCabu2RC5k+AtLMEK7QE3WpVOJpMMDQ0xMzNDe3s7TU1NeR3bql08VFVlYmKCkZERDh48yPHjx9Pud7POezuNjJeLDPNVVFTQ1NSk/16qqko0GtX7Pq/dvGlWqzm7BC47tRO0mo0G/iwsLDA+Ps7w8HDahd9WHPgTDAY5cOCAwWe0PUjwFmVnlfaATqeTZDKZ9jFVVZmZmaG/v589e/bQ1dVV0PlZMXj7/X66u7upq6vjwoULGYdPmBUazew9LraefAOtw+HI2Pd5bas5RVEM7W5hl0Brl7aHYJ09CBvRBv7MzMywf/9+vF5v2oVf6sCf1DBeindhNpJIJAq++JTNlYWT4C3KppD2gGauKK1d8Q4Gg/T09FBVVcW5c+eKWrHIFOrLJR6P09/fj9/v5/jx4xtukDFzxduoF1S/38/o6KjekaCQbgRi68vWak6bvJna3SI1HOWzedMuK95SamIObQU524VfpoE/G7XQLNX5FkKCd+EkeIuSK7SOWwvGZrUT08JxIpFgYGCAxcVFOjo60mpJC2WFcgNVVZmcnGRoaIirrrqKjo6OTe93K9d4JxIJ+vr68Pv97Nu3j0gkwtjYGMFgEJfLpa9ilnOzHVjj397uzAq0qV0rUrtbaDW8w8PD+oa61BKVbI8nuwRvu5wn2Gtz8kYXNJsN/Eltoen1etMu/sx6zSvmcRAKhSR4F0iCtyiZYuu4tWBs1pOQw+FgZmaGqakpDhw4wLFjxwx70i/3i0cgEKC7uxufz5e1rCQTs0pCigmjqqoyNTXF4OAgBw4coL29nXg8nnYfr52UqG22Sw3jud4HovxKeeGSafNmLBbTH09TU1NZN2/apYTDLivedrk/Nfm+PhU68Mfr9Rr2Oljo/SvtBAsnwVuUhBF13C6Xy7RyDW2Hen19PRcuXCh77Z1REokE/f39LC8v09HRkdYqKxdmbYIsNHiHw2EuXbpEdXU158+fp7KyMuNx1m6A0jbbrX2bN/XFrLa21hZhxGh2WY0vZwCrrKzMuHnT7/eztLSkb97U3nUxa/OmUexUi26H89QYcb75DvxJ7WdfyvtKSk0KZ81nBbFlGNke0Ix641gsRn9/P8FgkObmZnbt2mXb0J36tmGmVeFC7nerbK5UFIXBwUFmZ2fp6OhIa++Vi9SaS23QkbaytLy8zJUrV/QXs9R6y80GZuR621aNY40cAAAgAElEQVQPt1ZfVbRaaUSmx5Oqqjz77LNUVlYyOzvLwMCAaaPJi2WXleTtGLwzyXXgTzH7E/IlK96Fk+AtTGFGe0AjV7xTpzNqbfQGBgYs13kkV1q4czgcBINBuru78Xg8+qpwoazQTnB+fp7e3l52795NZ2dnxhe2Qh5bqStL2ouZNjDD7/czODio9+itr68vaT9oYT8OhwOXy8Xu3bvZvXs3kH2lMrVExYiLu3zZJdDa5TzLYbOBP6n7EzIN/Cn2eT0Wi1myRaIdSPAWhjOrPaBRwXtxcZHe3l4aGxvp7OzU3w42c7qk2ZxOJ/F4nOHhYVtsCs3luNFolJ6eHhRFyWtYUTEyDczQSgpS+0HX1NSklahsVm9p9RVvq7PaineuMq1UZpuGmMvmTaPY5f6U4J2ffAb++Hw+ksmkvl8hn8eDPJ8VR4K3MEwh7QHzUWwwjkaj9Pb2EovFOHXq1Lpxt1Zq+ZcP7X5/7rnn2L9/v6GbQsvRTlBVVcbGxhgbG+Po0aP6W/nlUlVVxc6dO9f1g167+Sl1FTP1LV47BBxROpnCUermzcnJSSKRSNpmYKN7PkvwNocV79NsA3/m5+eZn5+nr6+PlZUVqqqq0srsclnNtuLPawcSvEXRVFVlZWWFxcVFduzYYdrUyUKDsaIojI6OMjExwZEjR2hpacl4fqUYcmP0C14oFKK7u5t4PM65c+cM3+xi5op3JsvLy3R3d697N8JKUjsRaCUFqfWWIyMjhEIhfRVzZWWFaDSKz+fbNi9Ub56bY8HIx43DAV4vzM4W9O07HA4eaW427nwMttHmzdTNwNo7LVrpQDG/H3Z4LNopeNtpFbiyslJ/HJ08eRJVVfXpm1pPeysO/NkqrPeqJmwjtY47EokwOjpKs4kvboWseGv1wS0tLXR1dW1YEuByuYjFYsWeZlZasDeiDVQymWRwcJC5uTk6OjoYGhoyJaSWauKm1pM7EAhw8uTJvC8gyr2Cl6neMh6P62OkR0ZGGBwcXNfS0IoXFkYwNHQbwGrns5lsmze1d1pmZmb0zZva4Kja2lrLbN40it2Ctx0uZjSprQ8dDkfGd/YikQiBQIDFxUWGhob4/d//fXbv3s3VV1+N2+1maWmpqJLGz33uc/zDP/wDDoeDq6++mi984QtUV1cb8vNZ2dZ81hemW1vHXVFRYXqZRj4r3isrK/T09ABw7bXXUlNTY+jxC2FU8J6ZmaGvr4+9e/fqmw1HRkYs1fYvV6ndV3Id6mMXFRUVNDU1MTs7S1tbG7W1tfrkuvn5eYaGhgwfWS62rkzvtGibN/1+P+Pj43pnC6M785SLnYK3mTMmzLDZ+aYO/NEu/n76059y6dIlfvjDH7K8vMxtt91GMBjkxIkTnDt3jnPnznHmzJl1ZZyZTExM8Ld/+7dcunQJj8fDO97xDr761a/y7ne/26gf0bIkeIu8ZGsPaGaPbU0ut5FMJhkeHmZ6eppjx47ltQJv9upusccPh8N0d3dTUVGxboS9WYNuzLxPFEXhhRdeSOvJvZVlmlyXOrJcC07aNEUtjGtdCIyWVg7S0FBwGYcon9TNm5rUzjza5s2Kioq0x5RdyiLsFLztdK5Q2IWCy+Xi6quvxuv18vzzz/Mv//IvJBIJenp6eO655/jqV7/KCy+8wAc/+MGcjpdIJPTNnuFwmLa2tkJ+FNuR4C1ysll7wFKUJLhcLqLRaNbPayvBbW1tdHV15f0kaHZXk0Lvo2QyydDQELOzs7S3t6dtktFYbdDNRrSe3OFwmJMnT+bdkzsbq77Vu9F9mGlkeSKR0GstZ2ZmiEQiVFVVUVtbS319vWG1lnYrvxC5ybZ5U3tMTU5OEg6Heemllyw/ydVOYXarrXhvJBgM4vV6gdXH26lTpzh16hR33313zsfYs2cPH/7wh9m/fz8ej4dbbrmFW265paDzsRsJ3mJTubQHLEXgyRaMQ6EQPT09VFRUcPbs2YJrxEpVapKP2dlZLl++zJ49e7L2sC702LkweiV9bm6Oy5cvs3v3brxeryGhW7sItMsq3mbcbve6LgRaiUq2qZs+n89WL/qlcFvnfjxzr77EfbYkt3ozT5XkdtLVtCjc2x/K+vnKykqam5v1dwAvXrzIsWPH9PrdtZs3c22TaTY7hdlkMmmbiwQo7r4NBAJFb+RfXFzk29/+NkNDQzQ0NPD2t7+dL33pS7zrXe8q6rh2IMFbZGV2e8B8rQ3GiUSCwcFB5ufnC5pmmOn4VlnxXllZobu7G5fLldPFhFmlJkYF2kw9uScnJw04Q+sz4ncm00Y7rURlcnKSQCBgicEsRlATCRwGbDpNDd1bXXgmv8CXqX5Xe0wFAoG0Npna5s1yjCW304q3URvnSyWZTBa8uduIcfE/+MEPOHjwoL6Z821vextPP/20BG+xPRk55t1IWo136oa8ffv20dXVZcj5WaHURFEUhoaGmJ6epr29XW8vthmzSk2Kpaoqo6OjjI+PW6Ind7kYfVHkcDj0qZtaXWQymcxY25taTmCHSXMjd93FVV/5CnOf/zz+Rx5BjcWoveUWWj74QZRwmPH77iM+NQXJJM3vfz/1t97K9F/9FYHHHsPhcuF93evY9cd/XO4fw7KyPRZTH1OZNm9qY8lT9yDU1taaeoGnKIptOv/YaXUeVheuCn132Ihx8fv37+eZZ54hHA7j8Xh47LHHOHfuXFHHtAt7PKJFSZgx5t1ILpeLSCTCc889h9frNXxDXrlLTVLLMPKtUS9V2798aD25d+zYsWkrR1E8l8tFQ0NDWnuvtb15Y7EYHo9n9UUzQ6efS0ePUtXeDokEuFw0vPWt7Pid38FRwlXHq77yFYJPPUVseJiDDz8MqsrYPfcQuniR5MIC7pYW9v/jPwKQDARILC4SePRRDn//+zgcDpJ+f8nO1Y7y2Qux2ebN1EmIqSUqVVVVhrx22G3F2y7nCsVdKIRCoZw6l2yks7OTO++8k+uuuw63282ZM2e45557ijqmXUjwFoAxY961VVcznnxSx6GfPXs2rV+yUcq14h2JROju7sbhcHDdddcVtAphpeAdj8fp6+sjGAxmnBC63ZSz/nxtba827MqfJZw6qqs5/N3vApCYm2PiD/+QZDBIy5ouBUaVg2QTfOopQj/+MYO33QaAEgoRGx6m5vx5pj/1Kab/8i/x3Xwz3vPnV8+lqorJj3wE3803U3vTTRmPGWaef+YNq8dnCicualh9m/u9XMRN9ov4IR7naT7NO/nuus99m/fwGj5ECyfWfe6n/DVnuYdKXr3IeYr7qWcfFXhp4ljG7yvW3x/xblJ+chNPFnULxmyI3typTb9is/r2UrHbinexNd5aiUgxPvaxj/Gxj32s6OPYjQTvbc7IshKtFMTI4K2qKhMTEwwPD7Nnzx6SyaQpoRtKv+KtKArDw8NMTU3l3fow07HLvblwbU/u48ePW+odE7H6+11TU7Pa136T9oHu5mZ2f/KTDL31rez8wAdY/uY38T/6KEooBIpiejlI87330vhbv7Xu44e+8x0Cjz/O7Gc/S/i1r2Xnffdx8FvfIvT00wS+9z0WvvhFrvryl9d9Xw1N/B4vAvAj/pxKfFzPh/O49zK7nX/I+HGFJM/w11zDu9KC9wD/xtv5Go/yRxzjVlOCd74133ZmlZ91OwXvYDDIoUOHDD6j7UOC9zZlRlmJFryNaku1tLRET08PDQ0NdHZ2kkwmWVhYMOTYmZi9apy6oq5N1GxtbS2o9eFa5a7x1kbXb5ee3NtF5f79qMkkyfl5ACIvv8zhf/1XXA0NppaD+G64gZnPfY7622/H6fUSn5rC4XajJpO4GhpouOMOXHV1LD30EEoohLKyQu1NN1Fz7hz9N95Y1M88zBP8Hz4AgAMHd7+yNhwjyEPcyQy/pI2zvI0v4cDBF7iRW/g0ezjHJ/FxjvcxyA84zq8T4Ar/zE3U0My7+RER/CSJMU8fvXyHEZ7gST7Bb/BNogT4LvcSJ8wODnM7D+KhkS9wI7s4zTBPoJDgdh5kLxfWnfdn64rb7CaKs51KTYLB4LZ/J7MYEry3ISPKSjIxaohOLBbj8uXLrKysrCtVsFq7v3yPH41GefHFF1FVVe/uYdSxyxG8U3uMF9JZxqq9t420lVodeq+/HtcrNeRmlINofDfcQLS/n6E77wTA6fWy5zOfITYywvT994PTicPtZvfHP04yFGLsfe9DjUZBVWktcmPl03yat/B37Od6ogRxs1r6NcXP+X1eppY2HuR6RvkJB3hd2vfGCbGHTn6NzwDwcx7kt/kRXlbfzRrkBxzkDezntbTzHznGrZxk9Wf871zDm3mAq/gVfsif8jgf4z/w168cN8zv8SLDPMm3+R3+gF8W9TMK4xm56FQKxQbvYruabGcSvLcRs9sDFhu8FUVhbGyM8fFxDh8+TGtra9r5mT0d08wAqCgKi4uL+P1+Tp48aUh9XKpyBO/UzaAb9RjPRgukWz1421lsdBSHy4Xrle46zjUbMo0uB0nVdPfdNK0ZyFF54AC+179+/e09/HC+P1pW+7ief+NDXM07Oc7bqGcvAHu4oP95F9eyxPC64O3AxQl+Peux+/keZ1g/ZCTCMhGWuIpfAeBafpuv8Xb986f4TwBcxeuJ4meFJTw0rDuOKJ/tVmoiwbtwEry3AVVViUQiaSUlZoSdYoLxwsICvb29NDc3Z+2AYdeVQ+1nq6ysTOtbaiSn00k8Hjf8uJlEIhF6enqKXrU3si7d6o8NK59bNon5eSb/5E9ovOuujM8X5SwHMdJF/o4X+J8AvJNHuIGPcIy30McjPMj1vIt/A8DFq60YHbhQSKw7lptqnGQPMxNc5Fb+37zP0YFjw79vZqtvLI3H42VfbbZbqUkx52tEO8HtTIL3FpZax/3iiy/S0dGxuqnKJIUEby3EKYrC6dOnNzw/u62MRqNRent7icfjnD59msXFRdPCcSmCp9E9ua0elo1ip8etGokwcOutejvB+jvuoOl3fzfj15azHMRIF/gDLvAH+t8XGKCVq2nlaiZ4jjl6qC5wdbmKWmIE8NLMDC/TTIcezLXPAVRTj4dGRniKA9zAS/wvffUb4Jc8xEFuYoQfU0091eS3wXyrbyx9oGnH5l+UgZEdUey24g2FPzeFQiFZ8S6CBO8tam0dt9vtNrVMA/Jrx5fa0ePo0aOmrAKXS2rJTGpAXV5eNi1oml1qom10NbInd7k3hIr1TvT1Zf1cw5130vBKyNaUqxzETM/w1wzxIxw4aeEkR/kPjPHTgo51lnv4Em+iljaO8haO8Cb9c6f4Tb7De3mWv+UdfIM7+Gd9c2Ujh7iDL+hf66aav+cMSeLczoNF/4zZ2HVjaaGM7IhitxXvYsiKd3EkeG8x2doDml0fDavBW7vdjczOztLX18euXbsM6ehhJYuLi/T09GQsmTEzHJt17Hg8TiQS4fLly4b35N4uK95gz1KTrewm/jzr597MA+s+dpAbOciN+t/fwn/T/3w3j+t//ijBtO/r5D46uQ+AL/KrvJUv6p/bz/W8n0tpX/9ensl4TtfwLn2jpZm248ZSo/aZ2HHFu1DxeFw6VxVBgvcWsVl7wFKteG90G+FwmJ6eHpxOZ8GDYkqhkCfiaDTK5cuXiUajXHPNNXi93nVfY6fgndqTW5sqZnQN5XYJ3nYqNRHm+c9839Tjr7CorxKnXgzkYztuLH3uuefSJm/W1dVRVVW1+TeuoSiKbYJ3Mc+72+E522wSvLeAXNoD5roaXQyXy5WxhjmZTDI4OMjc3Bzt7e3s2FFYPZ7GzE4YWoDN9QlUVVXGxsYYGxvjyJEjtLS0ZD03Mwf0GBliQ6EQly5doqamhvPnz/PSSy+Z8mS7XYK3yM8zGcrOBgYGqKurw+fzsby8rI8sVxQFr9dLXV0d9fX1eL1e/fnvs6U+cZPkGqJTV4lztR02lm7mwoULRKNR/H4/gUCAiYkJotEoHo9HD+K1tbWbLjwYPTzOTEaszsuCQuEkeNtYPu0BS1VqEolE0s5venqagYEB9u7dW1DLubXyDcZmHj+17rmzsxP3JiO0rb7inXqBdPz4cRpe6ddsVkDeLsHbrJ/zzXNzLGyD+0/jdDrxeDx4PB527doFrC46hEIhlpeXGRsbIxQK4XQ6X6k/va68J1xiIwUMgd8OG0s3szp4qBYofHJwTYvCua/ap9QkmUxu+nqVzXZ4zjabBG8bKmTMe6mCtxb+gsEg3d3deDwezp07V9Bbd9luw8xaulw2iG404GcjVg7eWk/utra2dRdIZp13uYb+bBVbMXTvyPI8lu1dLqfTSW1tbVqHhUQigX+TyZgis+28sbQY4RmnXuZpB4lEouDX0EgkYtkyUbuQ4G0jxYx5d7vdRKNRU8/P5XIRi8Xo7u5meXmZjo4OfdXUyNswe7pktgsUVVUZHx9ndHSUQ4cOsWvXrrzebrNi8E7tyZ2t7t4OK96KosgwHovIVCpSSm63u+hyNjtKXSXeiGwsNUcsFuOFF17A5XLp5Sl1dXV4PB7LPS/JuPjykuBtE8WOeTd7xVtVVRYWFpiamqK9vZ2Ojg5TnmzMrJPWjp8pwC4vL9Pd3U1DQ0NOZSX5HNsI+YbY1J7cx44d27Cdo1nnbUTwVlWVyclJBgYGANLqMuvq6gp+O9VI26WkxkyFXFTVtCiGtouzshUW+RX+tNynkZXZG0utwOPxcP78eeLxuL4HYWZmhkgkQmVlZVoYN+od4ELJ1MryKv+rkthQIWUlmZjZ1WR5eZmenh6qq6tpampi7969ptwOmH8Bsfb48Xicvr4+gsEgJ0+eLOoJxyor3tpFRK49ua264h0Oh7l06ZJezuRwOPRNUnNzcwwNDaEoCj6fj/r6eurq6vB6vZZbfTLSpaNHqWpv1wfgNLz1rez4nd/BYZNNX0bKdzDKaq2vdWirxLXs3vRrPTSW4IxKL9eNpTNcKvv0TE1FRQU7duxIe9dFe17y+/2Mj48Tj8fxeDx6EC/1IkExwTsQCEjwLpIEb4sqpqwkEzMCaywWo6+vj1AoxIkTJ3C73fT09Bh6G2uZHby1AKuqKhMTE4yMjHDw4EGOHz9edGArd/DWLiJCoVDetelWCt6KojA0NMTMzAwdHR00NjaSSCRIJpP65rvW1lb9a4PBIMvLy4yMjBAKhXC73XoQt8Lqk5Ec1dUc/u7qaO/E3BwTf/iHJINBWj74wbSvUxMJHBZ4NyBX27GMaDusEhslU3gu9fTMjVRVVbFz5079nUVVVVlZWcHv9zM/P8/Q0BDJZFLv0KN18DFrL1OxwTtTu1yRO/s8824jxZaVZGJkO8HUFnqHDh3ixIkTOBwOYrGY6S0Lzd6Q53K5CAaDXL58mbq6uoLLSjIxO3hnC7FaOcbQ0BBXXXVV3hcRZk2YLCR4awOKWltbc+qSo3W4SJ2yFovF1q0+1dTU6C3pjH7BK1epibu5md2f/CRDb30rOz/wAZa/+U38jz6KEgqBonDVV77C3Oc/j/+RR1BjMWpvuYWWD34QJRxm/L77iE9NQTJJ8/vfT/2ttzL9V39F4LHHcLhceF/3OnaVcOz7dgzehSq0h7edTfC8raZnOhwOampqqKmpWdehx+/3Mzk5SSAQwOFw4PP59Ocwo96xk1KT8pLgbSH5tAfMl1ErxVrwaWpqWhdKzd74qN2GWSve8XichYUFZmdnOX36tOFPLmbXeGc6dmpP7gsXLhQ0BMfMUpNc7494PK53kjl9+jQ1NTWbf1MWlZWVNDc309y82j5MVVXC4fC6FzztbeD6+npLbpDKReX+/ajJJMn5eQAiL7/M4X/9V1wNDQSfeorY8DAHH34YVJWxe+4hdPEiyYUF3C0t7P/HfwQgGQiQWFwk8OijHP7+93E4HCSla4iwiDAL+p/LOT2z2Iv1TB16kskkgUCAQCCQ9o5daolKdXV13s9NxbQTlOBdPAneFmBUHfdG3G53UavR2tjweDy+4WTGUrYsNErqirC2AmHGE0spS02y9eQ24thGyaWEJXWC5sGDB/V3V7J9bSG/Nw6HA6/Xi9frZffu1XraZDKpr4oPDAywsrJCVVVV2sbNXC9irLS50nv99bheeSwEn3qK0I9/zOBttwGghELEhoepOX+e6U99ium//Et8N9+M9/z51dKUqiomP/IRfDffTO1NN5X0vGXFO7Nbn/k01Tvzq2XfzDcO/5mhx8vkR/w5lfi4ng+v+9xT3E8PD6dNzxzicZ7ik3r5zXf5PfZxPad5Fw/xNm7h00B5p2eaURbicrloaGhIe/5O3bw5PT2d8blps3HuiUSi4JaAEryLJ8G7jLQ67vHxcXbs2EFlZaVpLy6FrhQrisLIyAhXrlzh6NGj7Ny5M+s5luKF0ehwHwgE6O7uxufzceHCBSYmJkwLSWbeP6nheKOe3IUo1+ZKbfNkdXU158+f3/TFxEgul4vGxkYaG1/dtBaJRPD7/SwuLjIyMkIikdDfBl47NdEqYqOjOFwuXE1NADjXvFPQfO+9NP7Wb637vkPf+Q6Bxx9n9rOfJfza17Lzvvs4+K1vEXr6aQLf+x4LX/wiV335yyX5GaA0Qzvs2AXF6NBdDltlemapfvc32rypDZKKxWJ6+Zy2Op66wl1sjbdWHiMKI8G7TFLruGdmZvD5fKZu8ipk1VILcK2trTl1vygFo0pNEokE/f39er/x+vrVaWilWLU3g1a28eKLL27Yk7sQpW4nqCgKw8PDTE1N0dHRYZmezNXV1VRXV9PS0gKk12SOjY0RDAb1Hr7a5k3td7ocK96J+Xkm/+RPaLzrrowXfb4bbmDmc5+j/vbbcXq9xKemcLjdqMkkroYGGu64A1ddHUsPPYQSCqGsrFB7003UnDtH/403lvznMfvCPt8uKGtNTk6SSCTYt29fTl+f+vjx+/0Eg0EcDkfayuVmJU6js0WdsiVslemZ5Xx93GjzptbhKZlM6gsFKysrBf8+hcNhWfEukgTvEstUVmJmqz9NPr9k4XCY3t5eHA4HZ86cwePxmHhm+XG5XEUNAkotXThw4ADt7e1p940dg7eqqoyMjBAOh2lvb9+wJ3ch8l3xfvd9TpaWc3m8dWT5uAs4+sp/uXIBxV24Jn1JJj46kf83VlbCzp2r/6UKBFb/035/ZnNPSTscDh5pzn+EtRqJMHDrrXo7wfo77qDpd38349f6briBaH8/Q3eu1rg6vV72fOYzxEZGmL7/fnA6cbjd7P74x0mGQoy9732o0SioKq0l3FgJ9ig1ST3Hvz/izXH1vB5oK/g27xwo+Fsty67TM62wMKXZbPOm1kDA5XLpdeW5bt6UdoLFk+BdIhu1Byy2/tooyWRSb9PW3t5O0ytvT1tJMauv2hj7mpqarKULLpeLeDxe7GmWjNaTu6mpCa/Xa3johvzaCf7q5CTeZfP6uJvJFbTOC2eh4+BP9PVl/VzDnXfS8ErI1jTdfTdNd6fXvFYeOIDv9a9f9/2HHn64oHPaLlKDdzlLVv7H3z3JI//7FzidDpxOB3/2idv48H/5Og/9yz007kjfm/OjH/Qw0D/Le+69oaTnuBWnZ1qtzGyt1M2bCwsLHDlyhMrKSr1efHh4mHA4vOnmTZlcWTwJ3iWwWXvAcgdvVVWZmZmhv7+fPXv20NXVVfCTiLY6aqVa9UQiwcDAAIuLixw/flwvK8nELivemXpyz+axopqPfLqPzCsK0uFVGM0uK97lDl8v/myMJ390ma9/+31UVrlZXAgRj2d/PrvpjR3c9Mb0d56qmoNE57ZesDK7L7qVVrw3o9V4Z9u8qZU/aZs3H3vsMRYWFrhw4QJ+v9+QFe+lpSXe85738Mtf/hKHw8GDDz7Ia17zmqKPawcSvE20tj1gtidls4fCrD2ntVevPT09VFVVce7cuaLrzLXgatYUrnzuK1VVmZ6eZmBggH379nHs2LFNX7zN7hNerNQOLEYN9tmMWX28xcZefvllfdWptra27KFObMwKFwezswEaGmuorFp9/k1d4f7yFy/yxA97ScQVPvPf3s6hwzv5l2/8nJd/eYWP/vlb+OgfPUxllZuePf+TlutqefFnY7hcThp31PDHf/Zmzp4/sO72StEBpdxy7Ytup9/PjTZXVlRU0NTUpL/jraoqu3bt4sknn+QnP/kJzz//PL/5m7/JqVOnuHDhAufPn+fs2bN5h/EPfOADvOlNb+Ib3/gGsViMcDhc9M9lFxK8TZRMJtN6cmdTqhVvLbRqt6etAre3t6d1byiGVq9uVvDONRiHQiG6u7vz7ohRil7khb5Ap5bKbNaTO/c661wczvkr97N/3cdi0Xmee+IWAKKRaRwOF5VVq/XLr3nDT3G6StetxE4OHDig9xa/fPnyuo1324kVQu1mNjrHMPP8M28AIMgUTlzUsFoW9l4u4ib778AQj/M0n+adfHfTc7j+dYf5+wee4C1v+Fu6rj/Em95yivOdVwHQ2FjD179zL1/90kX+6R+e5uP/9fZ13z895edLX/9dXC4nf/c3P6KmppK733v9prcr7LXirShKzhcKDoeDAwcOcNddd3HXXXdx66238vWvf53FxUUuXrzIt771LT760Y/icrl44okncvo9XV5e5sknn+Sf/umfgNXZCqXsWlVuErxN5HQ6c3pwF7thMFfa9MqZmRmGhobYv39/TqvA+d6Gmav3mx0/mUwyMDDA/Py8Pk48H2aXmhRSilNIT27jQnfxKquauP6WFwDo++XHcbt9HOz4UNrXrNaQqzgcpVk1UpQETqe1n/58Ph8+n4+2ttXNd4lEgkAgwPLyMjMzM/BKz/HtwC7BO9vzfQ1N/B4vAhv3sC5WjbeKr337fbzw3AgXnxnmw//l6/zhH70RgDf+2nEAqj73/3HNUj3f+Nrq97QD3/hfcIbV1euHj61+vPWVv3/jfsNPc0uyU/CGwrsEBYNBGhoaaGlpob29nflvBaIAACAASURBVLvuugtAX2TMxdDQEDt37uTuu+/mpZde4uzZs/zN3/zNthlFb+1Xnm2iFF1NYPWF4ec//zn19fWm9UU2O7hmW5FOrVPfu3cvXV1dBT2xlGIkfT6rDbOzs/T19RnWk9tKQoF+fvaTt1HXcBr/0kucf/3/YWH2cQZ7/h9QoaXtVo5d8wkUJcEPv72LN751DoDJ0YeYn36MU+c/z+ToQwxc+q84HE4qKndw4aYfoCgJev/9IyzN/YRkMsKBo+9n36HfZW76MQYufQq320c4OMgN/+EXm56jmkjgMOndm3y53e703uIm1fSLwhhxcTDME/wfPgCs9oq+mycBiBHkIe5khl/Sxlnexpcy9pIGcLmcXOg6yIWugxxrb+Hb33oJgMrK1WCYXMq+x0UUbis9N28kmUxmfLc1nwuPRCLBz372Mx544AE6Ozv5wAc+wP33389f/MVfGHmqlmWNV5QtKtcnYbNLTWKxGP39/QQCAY4fP65P5zOD2RcRmYJ9OBymu7ubioqKouvUzS41yTXYRyIRenp6AHLuyW32xlYzhPw9XHPhQep3nCMSHufyL/6M1/7qM7gr6nnuiV9j5sq/0rzr17J+f//Ln+DCTT+gqrqVeGwJgPHB/0lVVQuveeNPUZJRfvrY9TS3/ioA/sUXeN2v/Tse7/qSGFgNT8vf/Cb+Rx9FCYVAUbjqK19h7vOfx//II6ixGLW33ELLBz+IEg4zft99xKemIJmk+f3vp/7WW5n+q78i8NhjOFwuvK97HbsKbL3XZcNgvcOkx54dHtfa5vliPM2neQt/x36uJ0oQN6u/91P8nN/nZWpp40GuZ5SfcIDXrfv+ocE5nA4HBw6u1uf2XJqibU89fb3TRZ2X2FhVU9x2K96FMOr3cO/evezdu5fOzk4A7rzzTu6/f/u8tSLB2wK0EhCjqarK+Pg4IyMjHDp0CFVVDRuqkk0pVry146eWYLS3txsyaMXs89eC9+Y12F7gbJ5Hfx3ZhrJZtc66xneY+h3nAFhauEhTy436ee3e/5sszj61YfBubH4N//7s3eza9+u07nkrAHNTPyAY6GFy7CEAEnE/4WA/AA1NXVlDN8CBPz4AfAiaPgRaN83/G/bzCTj+idW/T69+DOCqlu9Dyytf95PV//bz3+C6Vz4WePVrjVJwv/FNPGNCK8rtxIhQso/r+Tc+lDYuHWAPF/Q/7+JalhjOGLzDoRif+tgjBAIRXC4n+w/s4M8/eRtP/PByUee1VXyW/fw+v8g4AOdD/kDBxx0YGMDpLGzIT6kVO8zLiMf5rl272LdvH729vbS3t/PYY49x4sSJoo5pJxK8LcCMVeKlpSV6enpobGykq6sLt9tNIBAwvaSlVDXeZpVgmF1qoh2/1DXYVqyzBnC5azb9mtXzefXFIpmM6H8+ee5/sLzwLDNXHuHp71/g+lueA1ROXvcATa03px1nbvoxXC771xCa1W+8t7dX37hZU1NjqRVmO6x4F3KORo5LBzh5dRtf/sZ71n380Sf/MOs5mLXx89u8h9fwIVpYH6h+yl9zlnuo5NXf/6e4n3r2UYGXJo5l/L5ibDR1sljFjGAvtWLO1cgJvA888ADvfOc7icViHDp0iC984Qubf9MWIcHbROUoNYlGo1y+fJloNKr3dzbjdrIxu9QkEokQCoW4cuWKoWPRNfleOOTfPSTfVWzjHT31pyQSq+OxzaqzLkTDjgv0vvR/EYvO466oZ2r0a1zV/iEcDifuikZCgT5qfIeZmfi2viq+EhqkoamL+h2dzE4+QmRlguZdv8po/9/TuPP1OJ1ugv5ePDXZV7nFqtbWVvx+P0NDQ4TDYSorK/UgXl9fv2EXHbNt1eBt5rj0XJm18fN2/iHjxxWSPMNfcw3vSgveA/wbb+drPMofcYxbDQ3em02dLNZ2Cd4rKyuGTbK+9tpref755w05lt1I8DZZLuO2jSg1URSF0dFRJiYmOHLkCC0tLeteBErRL9ysUg1FURgaGmJ6eprKykpOnz5t+G1A/iveVuoekg+3+9WVXzPqrAtRXbOXo6f+nIuPvwFU2Nn2Flra3gxA+zWf4vkn30Jl1U7qG69DUVa7AHW/+GFWQkOgQtOuN1Jbfwpf7XFWwmM8/ehqCUtl9U6uu/5bBZ/XdrF2kEY0GsXv97O0tMTo6CiJRAKv10t9fT11dXX4fL5ts6EsF0ZcHBg5Lt1o+W78/AI3cgufZg/n+CQ+zvE+BvkBx/l1Alzhn7mJGpp5Nz8igp8kMebpo5fvMMITPMkn+A2+SZSAPsp9B4e5nQfx0MgXuJFdnGaYJ1BIcDsPspcLGc/9Xn5u6n2Tz4b5cismeAcCAZlaaQAJ3haQz0juTObn5+nt7WXnzp10dXVl/aUqRfA24zbm5ua4fPkyu3fvpquri2eeyTzW1wjF/lvYjbf2CG96R0z/e3XNXm68tV//e+dNP9T/rK12A+ze/xvs3v8bAGndQSoqN16dO3rqT9NuWyt/0bQdeCdtB9657vt2738Hu/e/Y93Hz75u/Rhzh9NF+zWfov2aT6V9vLn1DTS3vmHD8xOvqqqqYufOnex8pfZbURTC4TDLy8tMTEwQDAZxOp1pvcXXjpc2ylZa8TZyXHopFbPxM06IPXTya3wGgJ/zIL/Nj/Cy+s7VID/gIG9gP6+lnf/IMW7lJHcC8N+5hjfzAFfxK/yQP+VxPqaPb48T5vd4kWGe5Nv8Dn/AL0t1d6TZLivewWDQkKmV250Ebwso9AVlZWWF3t5eVFXl2muvpaZm43pZt9tNJBLZ8GuK5XK5iMVim39hDlZWVujp6cHhcJhSViLEWj95dLUUyEobULMpdacVp9Op9xbfs2cPsNoWLHW8dCQSobq6Oi2MGzFMyw4Xw3a4OChGMRs/Hbg4wa9nPXY/3+MMd6/7eIRlIixxFb8CwLX8Nl/j7frnT/GfALiK1xPFzwpLeEwuzcnETsE7kUgU/DspwdsYErxNlkupSb6SySTDw8NMT09z7Ngxmpubc/o+s7qnrL2NYle8FUVheHiYqampvH4+K8jWPWTtyq6wJqttQM026Cf41FPEhoc5+PDDoKqM3XMPoYsXSS4s4G5pYf8//iMAyUCAxOIigUcf5fD3v4/D4SDp9xt2fm63mx07dugdhVRVJRKJ4Pf7mZubY2hoCEVR8Pl8eomK1+stKKBaPdRuteBt5MZPN9U4yR5MJ7jIrdlaMm1gbS/zbL3NzSalJiIfErwtJJcn7pmZGb2bR1dXV16/7HYoNdHKZlpbWzf8+az6IpdL9xCxsa6vlf9pqYuPr/7h39d/LlaZ5LtnvlTWQT/Bp54i9OMfM3jbbQAooRCx4WFqzp9n+lOfYvov/xLfzTfjPX9+dQhQVRWTH/kIvptvpvamm0y73xwOBx6PB4/HQ2tr6+q5KQrBYJDl5WVGRkYIhUK43W49iNfV1W3ae9+qv++pynGOkVkv1TtDphzbzI2fVdQSI4CXZmZ4mWY69GCufQ6gmno8NDLCUxzgBl7if+mr3wC/5CEOcpOpHUtysV2Ct6x4G6P8r3AC2Hz4SSgUoqenB7fbzdmzZwsquyjFhMxCg7c2MEZVVc6cObPhzmltA6Rd3tqzAqv28bajypir7IN+AJrvvZfG3/qtdR8/9J3vEHj8cWY/+1nCr30tO++7j4Pf+hahp58m8L3vsfDFL3LVl79c5L2Qu9Q6cE0sFtNLVMbHx4nH49TU1OgdVHw+n+1+vzcaGW+W73YZP3Y+GyM3fp7lHr7Em6iljaO8hSO8Sf/cKX6T7/BenuVveQff4A7+Wd9c2cgh7uDVtnNuqk3vWJIrq18YaooN3rLiXTwJ3ibLt6Xg2jHuiUSCwcFB5ufn6ejoeHVcdAGsWGqiKAojIyNMTk5y9OhRfSNXLrdhtxfmcrJiH+9sZRR2UO5BP74bbmDmc5+j/vbbcXq9xKemcLjdqMkkroYGGu64A1ddHUsPPYQSCqGsrFB7003UnDtH/403Zjzm6OxnC7kr8uZ01LC3+V6am5v1MjJVVQmHw/j9fiYnJwkEAjgcDmpra6mrqzP9ecsIdliV34yRGz/v5nH9zx8lmPZ9ndxHJ/cB8EV+lbfyRf1z+7me93Mp7evfS+YN9dfwLn2jZTFqWsyb3WA1yWRSarzLzJ6velvQ2uCtqipTU1MMDg6yb98+urq6in5St1qpycLCgt6NpbOzM+cgbfZY91KMXrfKCrRZfbyLKaOwq1IO+vHdcAPR/n6G7lzt/OD0etnzmc8QGxlh+v77wenE4Xaz++MfJxkKMfa+96FGo6CqtBY4wt4oihpe9zGHw4HX68Xr9bJ7925gNSBoq+LRaJTnn39+3cbNcvYWXyv1OaOmRSE8Y4/Sg3L7z3zf9Nu4a2BQfyylvrtSV1dHbW3ttlrESSaTm5Z2ZRMIBGhrazP4jLYfCd4WkRpYA4EAPT09eDwezp8/v24VvFBWKTWJRqP09vaSSCQ4ffr0pt1Y1irFWPdiVgVyYaUVaDP6eBdTRvFlbrX8JLyF2SfKPuin6e67abo7vRNE5YED+F7/+nVfe+jh9W0Xrc7lctHY2EhjYyMzMzOcO3dO7y2+uLjIyMgIiUQCn8+nl6h4vd6y1dqmBu97+82puy5WMpnkbxrtMdp8M6kr6ptJbYuZ+u7K9PQ0/f2r7zLV1tbq77AUugHYDop5tzgUCkmpiQEkeJssn1KTSCTC+Pg4fr+fjo4O6uuN3ShS7lKTd7/fyZLfAdQAZ4q4FbOnP7427W8N9Sr/9EBp3oo0agVa67GdixrfYep3rA6bWVq4WPYyimysNAlPBv2UR3V1NdXV1bS0tACrpWqhUAi/38/Y2BjBYBCXy6UHcW3jZilClKIolg9rZr5TaBfZ3l3RNgAPDw8TDoepqKhIe3cl2yqxHVpdpiq21CR1r4YojARvC9CuwC9dusSRI0fo6Ogw5Qm8FMNhsgXvxcVFlvz2aQuYamnZwR3/uXRvRRqxAp1P8Ha5N3/HoZRlFHaYhLcVB/38j797kkf+9y9wOh04nQ7+7BO38eH/8nUe+pd7aNyR/m/2ox/0MNA/y3vuvWHdcS4+M0RFhYszZ/O/uNpIpudEp9Opr1RqvcXj8bheVjA5OUk0GsXj8aSVFpjxbpYdarztFhJLxeVyUV9fn7bYlboBeGJiglgslvFxZKeOJrC6b0y6mpSXBO8yW15epru7G4AjR47oLx52tfaFJxqNcvny5VeG6tgzeBfq/2fvzOOjqO///5zdzWaPJJs7IYRwJwSQK5AEgQqCJyqI1NpqUVvx1qptf7bqt9VWsYf6s7V+1dpSW7X9iVbFqq2IigcKiAgoECD3QU6S7JW9d39/pLtk2U2yd3aTeT4ePNidmZ35zGZ25jXveb9f74FdGoMhEhHoUEnPLOfogbtHNI0iETrhRcry0JrsYt+a6KZ/BcpHHxzj5a03IE+W0dNtxGYbfFwrVs1gxaoZPtPtdgef765HpZJHXHgHSlJSEllZWWRlZQH9YtNkMqHT6ejs7KSmpgaXy+VJK9BoNKhUqrBFcyIIbzHiHThyudynAHjgcVRbW4vT6USpVGKz2dDr9SOa6hQoop3gyCMK7ygz2InYarVy7NgxTCYTs2bNoru7e1RFI1wuF01NTTQ1NTFt2jTPo2GR4YlEBDpUFKrCEU+jGEud8OSW+BFq6Rkq5Mn9l4SBEe4X/7aHD98/it3m5NE/fJMpU3N4/ZUvOfT1Ce69fzX3/vg15Mkyqg63kZuXyv59TUilEt7cepB7fn4hZYsmhj22cM6NgiCgUqlQqVTk5+cDp1ILdDoddXV1XqkF7hSVYGtrEkF4u1wu5JlWrN1jxz40Uo4l/o4jp9PJyZMn6evro6mpCaPR6GWfmZaWhkKhiKvjQhTeI48ovGOM0+mkqamJ5uZmpk6dSl5eHoIgeKqtRwN2u53du3eTmZlJRUVFVIsURzuhRqBVKVMHXefASLw6dZpPV82RTqMQO+GNDG2tWlav/D2VS6Zw/urZLKqYBEBGhoqX37iR//fCHp7706f84uE1Pp9tb9PxwsvfRyqV8OTvPkClknPtxiUx3oPAGZhaMGHCBKA/GKLVatFqtTQ1NWGz2VCr1V6pBUNFMxNBeDudTla8tY9Zs2aN9FCG5fPPP2fRokUjPYwhkUgkqFQq1Go1M2f215C4o9/u4k2z2UxycnLcuPGIwnvkERVRDHHb52VnZ/sIUqlUitlsHuLTkSGaVnnuKL7FYmHBggXDVj/Hi6VeIOzcVjYiYww1Au1PDI9mRlsnvFijwcTTW2/gi88b2LOrnh/d/jJ3/ngVAKvOKwVg5uwCtr9zxO/nz7tgFlJp9B6xx0LQyuVyH/cLd+Fma2srx44dQxAELwGlVCo9Y0sE4Z0IY4TEykU/XcgmJSWRmZlJZmYm0L8v/tx4grmpiyTh5KQbjUZReEcAUXhHGUEQMJvNw9rnuX28o427+DGSUWiXy0VzczONjY1MnToVrVaLWj10AR3El6Wem8GaupweFY4ksYhAj3ZGYye8wdCkudgVQKOpwRi0UY5UQnnlZMorJ1NcksvWVw8AIJf3iwqJRMDu8P/YXqmKbgRvJISYIAikpKSQkpLi8S622+3o9Xq0Wi0dHR2YTCaPt7jdbo+6DWm4JEohYKLcIMDwEWRBEPy68QxsGOW+qXPXHaSlpUWk7mCoMYWCw+GIK+/8RCV+zxCjBKvVyr59+4btyhhL4W232yN2cXAXh2ZkZHii+A0NDWFdgMSmLmObgR7eidoJLxi2/MkU0+35o662C4kgMHFyf0Fi1eE2CsZrOH60Peh1qdXJGAyWSA8xLpDJZB5vcTgVzdRqtdjtdg4cOIDT6UStVntyxeOp4C5RhHeijBNCG6tEIvG5qXM3jNLr9RGrO4gkifQUIt4RhXeUkcvlLF68eNg7zFh0lYzkdmw2G8eOHcNoNDJr1iyvx0+RiKrHW1MXkcQhFp3wRht9RiubHngbvd6MVCqhaGIm9z90MR++fyzodS1fWcydt2zhg+1VESuujNfo58BoZmNjI2VlZTidTk/hpttbXCaTeSKZGo0m5M6B4ZIokeREEt7h5EwPZGDDKDfuFJWBdQcj3XUzEY6feEcU3lFGEISADtRYRbzD7V7pcrloaWmhoaGByZMnM3PmTJ/9i4S4T5SmLiKjh2A64T3FvIh5gscDs84o4MVXrvOZvu2jOz2vZ88Zz3N/73eKWbt+PmvX9zfBeui3l3p9ZtLkbF57++aIji+Rom0DXS3cuL3FtVotJ06c8HhCuyOZsRJQiSJoE2WcEN2xJicnD9t1c6A15nBdN8P5HSXKTVsiIArvGOAuaByKWKeahIJOp+PIkSOkpaUN6VYSCeEdb01dRGJD0shnXQTEatuTGGgD8HiJA3T+N6VlJQ8BMIv+HHwnNhrZiaQticIJ8SvAxzpPT1PT1xGqiDqbj4ecnxnieiOJd2GcKtcZl+3tE0l4RyriHQhDdd3U6XQ0NDRgNBq9nrAM7N4azlj7+vpQKpWR3J0xiyi844R4TjWx2WwcP34cg8HAzJkzh61qjvS+xENTF5GhiVRDmdGOM390WIbGmlhF2kIX3YlJvO5vIglvp9M5ogW1/rpu+uveqlAoUKlUOByOkOq89Hr9sE5lIoEhXi3jhFi0c4fgUk1cLhcnTpygvr6eSZMmUVpaGtAFMNLCOx6auow0YgHo6OXIkSNehXji41xfEinVJNF4LC14e7hoR8oTSXg7HI4Ry9kfDH/dW81mM52dnT5FwO6oeEpKypDfuejhHTlE4R0DAkk1iRWBppro9XqOHDlCSkoK5eXlQVkIhSK8472pSzwQzwWg1mRXXHVhjCaOPGtE1zd+/Hi0Wi319fUeJwO3ENdoNKJ9l0jcEe1IeSzTN8IlEcYqCAJKpZKMjAyMRiOlpaU4nU6PT31LSwsGgwGJROKVLz7Qp16v14vCO0KIwnuMMZwottvtVFdXo9VqKS0t9SoQitQ2REIjngtA96059fd2bfkDZVyPnFN5+h/zKzRMIAk1WRSTy8ygt/EB9yMnhSX8yGfe29xGHR8gICGXWazlOZr4jE95xGNP+Ba3UsBCsmzTQ9jD6OG+yLk7KLqdDHp7e2lsbMRut5OSkhKX9nSxYqSeAvRxkr/Sf1NuoA0JUlT0F7ptZA8yBrd3q2OH1/E3kK1cx2Lu8vs7+IzHo/L7SSQSKeKdSGMdmGLiFtmpqamMHz/eM9/ddbOmpoaamhqefPJJ5s2bR15eXsSCAA6Hg4ULFzJ+/HjefNP39zHaEYV3nBHtymGZTIbV6huxc7lctLW1UVtby8SJEykpKQl5HKLwDp3BGvgACVMAuovHmcNVXsKhhnf4JlvYxo8p5qKQhMMK7h903oU84TNtMsuZzHLPe7cneCM7fZbtazvJ7h/+nq69R5BrUlDmZVLx6O1oigO/0bH06qn9x7uU3rQu4M/443QnA3dkSqvV0tjY6CmeGhgVD8bfVyKocLr6whpjOEiE4Qun4wUVWdzEfmDoG79gWcOf/E534oja7yeRSCQxmwgRbzfDjfV0n/ozzjiDefPm8cknn7Bt2za+/PJL5s+fT2lpKeXl5ZSXlzN//vygiy5/97vfUVpaik6nC2t/EhVReMeAQAWsRCKJeuczf6kmBoOBI0eOoFKpWLRoUdgm/aLwDo5I5W/HS5dPPSf4KytQkc01fIAZHQ6snOQ4R3mDBj7kIx70a8d3BbHvuulyuXhv/T1M/+4FrHjxAQBOHjiOqaMnKOFt7TVw5JnXwhbepzMwMlVYWNi/LavVY0/X3NyMzWbzatoyVL5mYfaNXu9bW1ux2WwUFcXn05REoJ4P+Tc/AEBA4Fo+AsCKgZdYTwdfU0AZ63gBAYG/sJxzeYTxLOQhUljIDdSynVIuC+v3k6h2lqcjCu/oEMpYJ02axKRJk5DL5SxatIi7776bqqoq9uzZw/PPP8+dd97Jb37zG84666yA1tfc3Mxbb73Fvffey2OPDdJFd5QjCu84wl34GG3h7RbFdrudmpoaenp6KC0t9aqKDncb/qLqIr6YjI1AZPK3P3lnblx0+UylgKv5ADX9DjO1bGcyKyniTEq4hGIuYhbrAfhf5nAhTzCJs3ifn/msKxa07tiHJEnGjBvWeqZlzZ2Oy+Viz91P0vzOLgQE5t5zNVMuX4nN0Mf2dT/F2qPHabOz4BcbmXjJMvbe+zT6mhZeL7uGglWLKP/1LVEbs1wuJzs7m+zs/u/Y5XJ5ouID8zUHRsWHKgATCzrD41MeYTVPUsQSLBiQoQCgjS+5mUOkUsBmltDITiay1OuzNoyMp8JjS/klm0P+/ezgAU/nVRt93MR+6vmIrXyPW/g6Vl9H2CSS8E6ksYZzk+B2NZFKpcyaNYtZs2Zx7bXXBr2eO+64g9/85jfo9fqQxjEaEIV3HOH28o5mhbQ74t3W1kZNTQ1FRUUUFxdH9MI7WMQ7XeOiVyte4AcSaAOfQApAl51/MG66fB65OA270v1k5RJUXMIu7IzjT+iBXfTPW8A+2oA27Kj4GWwZchejQs/XtWQvKPGZ3vDah3QfOM7aL57D0qXljcXXkb9sLoqcdFa+sgl5mhpzVy//WnoDRRcvZeFDN9JzqJa1XzwX830QBMHTgtqdr+mvaYtKpfJq2pIogiHemcAS3uEuzuBKSlmHhv4nE+Mp97zOZx691PsIbwEpM7ls0HVX8x/m4ytwzGgx08sk+iON87iaLXzTM3823wZgEt/Agg4TvShJ91nP/+PSuIuUjxUxG2vCCewZjUbPuSVU3nzzTXJzcykrK2PHjh1hrSuREYV3DAhU1IbT3CZQrFYrnZ2dCIIQkbQSfwwmvJ97whmxbXz66aeceeaZAKzdcOqkZ7Wc5PMPzwXAYm5HEKQeb+/FKz9DIo38/oZDVt7ZEW3gEy9dPu3KxLhoDkX7zoNM+dYqJFIpyrxM8pfNp2tvFYXnV/LFfc/Q9vEBBIlAX0snpvbukLdzh/Kg1/tUl4xfmsPP4fVnKdbX14dWq6W1tZVjx44hkUiQSqXI5XLMZrOn0Ua8ES+uUG728CRf8CwAV/I2y/gJxazmOG+zmSVcxTsASDkVRBGQ4sT3/C5DgYTBhVsLe7iIp4Ieo4Aw5Hs3uZwRUqT85MmTpKWlRcV1Z6S9sYMh0W4SQg3sGQyGsH28d+7cyRtvvMHbb7+N2WxGp9Nx1VVX8cILL4S13kQjMY7sMUK47dyHwuFwUFNTQ1dXFyqVitmzZ0dlOxC7HO9rbpP4RNDlyVkeK8LjX/8CmSyFyTPu8lomXnKhARz22LRqjGWXz2RCt5waCVvCjFmTqX91R8DL1/x9G+auXtbs+TOSJBlbpq3HYQ4ttcqfNaFeiM7N98CudwUFBUB/ull9fT1Go5GjR49isVhQKpWe9JRYtTJPNMq5hXJOpRJ1U0MeZ5DHGbTwOV1UofATXQ6EZFKxokdNNh0cIpsZHmHungegQIOSDBr4mIks4wDPe6LfAF/zEpNZQQOfoECDAv+phKFGynt6emhoaPC47riPmUi47iSamE2U30g4YzUYDCG5nA3k4Ycf5uGHHwZgx44dPPLII2NOdIMovOOKaLSNd7lcdHR0UF1dTWFhIYsWLeLLL7+M6DZOJ1bCO5i0FaO+mn0715GWPhdd74G4yIUGcLki+/eOhy6fZVxPqPHJgbaEkabgxd1+p49bUcbe+56h6tmtzNi4BoDug9XI01Ooe/l9pm24AEu3jrZP9rPo1zdTt+U9FDkZSJJktO7Yh6Ghv3V8UqoKm354t5BGm6+rykghk8lQq9UkJyczYcIEXC4XJpMJrVZLe3s71dX9TznclocajQaFQhHzqHg8RuEHsovHvewsp3MBTXwW0rrKuJ4XOJ9UCpjOaqZxvmfebK7gDTaym99zOa+wlr96iiszqb4VawAAIABJREFUmMJa/uJZVoaCp5mPAxtr2Bzw9gONlE+bNg3Ayw+6qakJg8GAVCr1HC8DW5YHSiIJb4j/49NNOKkmoo935BCFdwwYqVSTvr4+jhw5QlJSEgsXLiQ5ORmXyxV1URwJ4e0vmu3NsqDXadRVMad8M5rMhXGTCy1LSo1oA5/Tu3xWrvwYWVL/yXL5RdWe5RYsPdWxU5UyFeg/TpecuxeAVM1siqbd5FkmJa0/BzqQsbouv2nI+fGGIAiseuVhdv3wd3z1yItIFXJSJo6j4tHbsRlMvF52DQICix6+GVV+FlO/cy7vrr2b1+ZtILtsBpoZEwFQZGnIO/MMXp33XQrPq4xqcWW0EAQBlUqFSqVi3LhxQP/F2p0r3tHRgclk8omKRzMtIF7STCJlZwlwLTs8r+/F4PW5Cm6jgtsA+BvncCl/88wrYgm3cthr+Y3s8jumOVzlSR8ZilAj5W78+UH7a1nuPmbc9QVDHTOJJrwTBbvdHnLE22g0RlR4L1++nOXLl0dsfYmEKLzjiEilmjgcDmpra+nq6mLGjBkeT06ITRfNSAjvaBRhqlKmosnsbxcfL7nQ0WCwLp9jHUdvEtJ0m995qoJszv7HL32ml//6Fh8BrchO5+JPnvG7nuXP3z/sOCLl9x0rpFKpl7evu/20Vquls7OTmpoaXC6XV1R8YMc7kdDZwLtR30Yb+yMSKR+Iv/oCk8mETqfzOmbcXRI1Gg0qlcpzzIjCOzqMdKqJSD+i8I4jZDIZFoslrHW400oKCgqoqKgYkZNXvPp4S2XDN+6IZS60SGxpv2UBMHjKSayIpN932b+ddIZ3ygDy+v/7Ipji52Qg97///kvLwPkuCDDhKCcZvrhg8PNUtJuKjUYGRtSH49u87vU+0Eh5MAx8kpKfnw/0i0CDwYBOp6Ouro6+vj6SkpJIS0vDaDSSmZkZ0TGIhC+8xVSTyCAK7xgQTKpJqIK1r6+PqqoqpFIpCxYsQKFQhLSeSCCVSnE6I+dgEg3iIRdaZGg++c+8qOTeFxBeZX64RNLvOxTRfeHaIyiUI3NjbDZJefv1Uq9pw+1DvKSaiEQWqVSKRqNBo9EwYcIEoN91S6vV0tXVRV1dHTU1NajVaq8UlXiKhCfasRmO8DYajWG7moj0IwrvOCKU4kqn00ldXR3t7e2UlJR4Hu2NJNFIZxnKJtDtYhIMp+dC5xSsJrfgQgBK5mxi70erkSfnoMlYgNPZrwyO7P8RJmMduCArfxWpmtmkpJZi6mvi0239KSxyRQ4Llrw66HZHmkSyWzzz3M+jkns/0oyk3zcwYqJ7qG0PZ00nRrxjQzCR8mggl8vJycmhvb2dKVOmoFQqPYWbbgtMQRBGvNjXTaKlxIQz3kSyeIx3xG8xjghWeHd2dnL8+HHGjRtHZWVlwD8oQRDi+oRhMpngtKhkIDaBpzN99qlOiOrUaT4CfbBc6HFFlzOu6HKf6WVLfduZCxIpJXM2UTJnk9f0SBZMRpJEsluUSJKiknsvEn/8srCF03JVgH5P858bItvgSyT+cV+fBjaGGmiBqdfrPcW+bv/5gS4qsRKI8XwdHYxQfkuJFtmPd0ThHQMinWpiMpmoqqpCEISQ0krcRZzxdsJwOp00NDTQ2tpKoK4lRn016tRp0R1YHDGUJ3g4xKvdoptI5t6bOwwockfmkakzFjabV2cimTATHA6kBcWorn8KIXn4+oZ4RC/YmfKmBJgHjb7pa8PlhweLKtdJX0d8nRcjwUW7HkGRY4zoOhs7A1tOIqgozL4xqHUPJWhlMplPsa/FYkGr1XLy5Enq6upwOp0eb/G0tLSIeIv7I5E8vCOBeAMcGUThHSMCSb8YLuLtdDqpr6+nra2N4uJisrOzQxqL27YwGh3HQqWnp4eqqipycnKorKyEp0d6RLFh5zsLIi5SQyXe7BadTntUcu+3L/pfFiz956D70fhwI5VFrT7TXS4X/1pyPcXXXuTl992w9SM6Pvuac/71WyzdOt6ovI6Ld/6Rui3voatpYfHv7qR1xz7+fc7tfPP4ywH7fYeMXEnag58AYHxqI5b3N6O44NbobW8E6bRENup4Y3Vo4vSxtPguOou06A4Gpyv4Yz2Yv6kgCCgUChQKBXl5eZ7Puws33d7iMpnMK0Ul1A6OAxkrwtvpdIqiO4KIwjuOGEp4nzx5kqNHj5Kfnx9UWok/YuU6EogbgdVq5dixY5jNZubMmYNaPbacQJacty9inuBuXtls8TxqXbsh8ItCvNktfrpt4Yjk3tdfeSWVHz/iMz0R/b5lJYtxNB7C0dmA8bErSHvYf1OXvraT7P7h7+naewS5JgVlXiYVj96OpjjwQuGRskncu3evR1QNbNgSS5Q5Dkydo1+AxYpwb6YkEolHZLtxe4trtVpOnDiB1WpFqVR6jplQurQmUqpJOOkifX19Y+7aHE1E4R1H+BPEZrOZqqoqXC4X8+fPR6lURmU7kca9jcFy7VwuFy0tLTQ0NDBlyhTy8/PH5B11U+2fIyJSK7ec+p4fGfCaywOvGYg3u8Wl5+/3eh+r3PsJTz4JmPzOi6Xfd7i4HHZsB94lac6qoZdzuXhv/T1M/+4FrHjxAQBOHjiOqaMnKOEdSZvEYCgvL/cSVS0tLVitVlQqlZeoiqZA+s6+Vtrb2ykuLo7aNsIh0LSQeCEaFpKDeYuf3qXV7S2elpbm5S3uj0SKeIczVr1eLwrvCCIK7xgRSKrJwB/4wHzn6dOnk5OTE7GxRKM1/ekMZSmo1+s5cuQIqampVFRUjOlKaZOxIS49wePBbnHgzUQsqdyyIOx1OPKstDR/HoHRhIDVhO6+pQDIihcjP+u7OHt8U2fctO7YhyRJxowb1nqmZc2djsvlYs/dT9L8zi4EBObeczVTLl+JzdDH9nU/xdqjx2mzs+AXG5l4ybKI2iQGiz9R1dfX54luGgwGryioO9UgUuIu2EfxT09TxziX/Ocx3JYvqlxn0Gk80Q7EDNalVa/Xe3mLy+Vyr+NmYIpmIkW8RQ/v+GHsKp44pru7m6NHj5Kbm0tFRUXE76hjFfG22+3I5afs6RwOB9XV1fT09FBaWopGM3Qr4kCxWro84i/RmD77gbj0BB+rdouRQto+graMA3K83QhSGbj83wj3fF1L9oISn+kNr31I94HjrP3iOSxdWt5YfB35y+aiyEln5SubkKepMXf18q+lN1B08dIRt0kciCAIqNVq1Gq1lxuGOyre1tbmaWMeTqqBm2AjtKOxgHMoEmV/pVIp6enppKene6ZZLBZ0Oh29vb00NjZit9tRq9VoNJq4NCkYDFF4xw+i8I4jLBYLJpOJ+vp65s6di0oVHSeCSLWmH4rTI94dHR0cP36cCRMmUFwcnj3Y6TaBsWCg9Z5RX83+z77lZU94ouFFjwNITsFqSuY8BEBr4xaOfXWfl0idveiPfPHJpREVqbuCSClxI9otxi+NnY8NOT9YpwghLReXrhOnvjvgz7TvPMiUb61CIpWizMskf9l8uvZWUXh+JV/c9wxtHx9AkAj0tXRiag98vf4INErucjoQJKGJB5lMRmZmpqcj4umpBsePHw/ZI1rsrjl6SU5OJicnx/PU2el0ep6mnDx5EpPJRE9Pj+e4SUtLG1Fv8cEIN9VEbJ4TOUThHSOG+hE6nU4aGxtpaWlBJpMxf/78qP5oY5nj7bY+lEgkLFy4MOZFT5FCFKki8YTT1cf/KA4DMwJaXpAloVj7fzA8cDZc/4LXvIxZk6l/dUfA2675+zbMXb2s2fNnJEkytkxbj8NsDWL0vgwVJe/dOJ7kFddgO7QD1YZHkJUsDmtbbvylGpzuEW0ymVAqlV6Fm/7Eiyi8xw4SicTjLe7uiZGfn49Op0On09He3o7ZbEahUHiJ8ZFOqQxXeIsR78ghCu8Rxm2jl52dTWVlJXv37h2yKDESSKVSbDZb1NYP/SenpqYmdDpd3HTUFBk91LGDT3mEK3nTZ95WrmMxd5HLTJ95n/E4ZVyPnFNPkz7mV2iYQBJqsij2+7l4RC/4f8qR/qxvIxqA5HNvJPncG4GvvaaPW1HG3vueoerZrV42ifL0FOpefp9pGy7A0q2j7ZP9LPr1zdRteQ9FTgaSJBmtO/ZhaGgDiJ5NosWIdOpClN95KPLrPg1/HtFmsxmtVktnZyc1NTW4XC6vqLhSqRSF9xjFfa329zTFbDaj0+no6ury8hZ338Cp1eqYHjNiqkn8IArvEcJisXD06FFsNpuXjZ678DHawttsNg+/YIj09PTQ1tZGVlZW2NaHIiLBsoY/+Z3uxMEuHmcOV3kJ7xre4ZtsYRs/ppiLRlx4qxyWmG4v7m0SJVKSFl0SmXUFiSAIKJVKlEol+fn5gHcBXk1NDX19fQiCQFJSEt3d3SFFN/s4yV/pf6ploA0JUlT0pzZsZA8yBq8ZGG03oYnUJdHhcPh9ijvwuDndW1yr1dLQ0IDRaEQmk3mEeLRtMO12uyi84wRReMcI952ty+WiqamJpqYmpk2bRm5urtddbywcR6K1jYGe3OPGjSM9PV0U3SJhU8+H/JsfACAgcC0fAWDFwEusp4OvKaCMdbyAgMBfWM65PMJ4FvIQKSzkBmrZTimXoecEf2UFKrK5hg8wo8OBlZMc5yhv0MCHfMSDfIt/YkHPm9yIjT4ymcoaNqMkg7+wnHzmUs+HOLGzhs0UUu4z7l2N4wLexy087zNtz646kpKkzC/zX2B7V+N2XmV2wNsYiri2SUxShJzXHQ2eLUmjryN9+AWDQEUWN9Fvn/kB9yMnhSX8KOz1JuJNaCI5hQQzVn/e4lar1ZOi0tzcjM1mQ6VSeZ6mpKSkRMxcIZwn6UajkQkTJkRkHCKi8I4pvb29VFVVkZmZOaiNXizzryPFQE/uqVOnkpeXR0NDQ0ya9IgMzmh5/P0pj7CaJyliCRYMyFAA0MaX3MwhUilgM0toZCcTWer1WRtGxlPBeTwKwJds5mo+QE2/C04t25nMSoo4kxIuoZiLmMV6AP6XOVzIE0ziLN7nZ+zgAS7g8f+ut4+b2E89H7GV73HLaekb4WK3O/h8dz0qlXxQ4T2aePUfg99ADJY646bodf9uLaEyXBv6kXToSNSb0GBIJOEdro+3XC4nOzvb04XabYOp0+lobW1Fr9cjCILHW9yd2hTKeT0c4W0wGMTiyggiCu8Y0dHRQU1NDbNnzx7yAI6Vx3akRPFgntzhOqeka1z0ahNfNI4UB3Z9F13vAZae9yWCED/RwkBJGtC/ZgJLeIe7OIMrKWUdGgoBGE+553U+8+il3kd4C0iZyWWDbqea/zCfa32mm9FippdJnAXAPK5mC9/0zJ/NtwGYxDewoMNEL0rCi4Le++PXkCfLqDrcRm5eKvv3NSGVSnhz60Hu+fmFlC2aGNb6RQKjM7aZPkExFm5CE0l4R3qsA20wB3qLu6PiNTU1mEwmkpOTvQo3B3qLD8ZgaTGBYDAYvCL1IuEhCu8YkZubS0ZGxrB3qm7/62gSCTtBu91OTU0NPT09zJw50+dHGW4B53NPDB3FMpvNHDp0iLKyspC3MRCXy8WGW0BvGB0/iUnFP0CTuRBzXzO73l/OmefsQpak4fMPz2NyyQ/Jzj+P97fms+rSLgBaG1/C8sQZSDLjJ6pR8zjIO2Ft5U8oZjXHeZvNLOEq3gFAyqmLiIAUJ76/GxkKJAx+49HCHi7iqaDHJiAM+T5U2tt0vPDy95FKJTz5uw9QqeRcu3FJRNYtkviMhZvQRBLesehcKZVKvQp+AU/hZk9PDw0NDdjtdlJSUjxRcbVa7fMdisWV8cPoUBkJgCAIAT0eipXHdjjiPhBP7minzERy/TqdjsOHD/M/d2QydepUpFIpJ06c4OafDJ7Tdrqv976d60hLn4uu9wCLvvFvujt3eHy9cwsuonjOgziddh+xe7L9PWYv+iOtjS9Rc/hhBEFCkjyT8hXbcTrtHD34E3q7duJwmJk4/VYmTPk+Xe3vUXN4EzJZCn2GWpZd8JXP+DSZ/V7gvd17yMpd7mkwNK7oCno6PyY7/zyfz8ST6HZjzYFuasjjDPI4gxY+p4sqFCFe2JNJxYoeNdl0cIhsZniEuXsegAINSjJo4GMmsowDPO8RHgBf8xKTWUEDn6BAgwL/zaDaf/Mb9O+9hyCVol66lPx77hlyfOddMAupNHDRkZlkpNsmtnIeScIpjByOPTzJFzwLwJW8zTIS9yZ0OG/6gWjyobHz3YCXD9bXPlKMVMt4hUKBQqEgNzcX6L9ZMRqN6HQ6mpqaMBgMSKVSLxvMcIorRTvByCIK7zgjlFSTa26TBJmWoQIqgtqGN+P++y+8ZdI1rmEj24MxVEv6QLHb7VRXV6PVapk1a5bXiSXYiItRV8Wc8s2eKPOxr37uFWXuOPGWX7HrpvrQg5Sv2E6yIg+btReA5tpnSU7OZfGqz3A6LHz23hKy884BQNfzBUvPO4hSHVr+ryBIgFPuAQ5H9FxuwmUXj1PHBwhIyGUW07mAJj4LaV1lXM8LnE8qBUxnNdM43zNvNlfwBhvZze+5nFdYy189ea0ZTGEtf/EsK0PB08zHgY01bPa7LXtPD/pt25j67rsIgoBDpxt2fErV8I+MB/JGeb8o27+vid9ueoe/vHgN8mQZPd1GbDYHV33zz7z0+vVkZJ4S5087ltEnHRk/fVOnFuMTV6O6/imE5MEbhBn/eBNJ885HXr4G/abVKK94ENmU+TEcaeBEqzASoJxbKOdUcWsi34RGE6crCjaWgWw3TqLzEomE1NRUUlNTGT9+PAA2m82TotLa2opWq8VoNJKVleXp1BpozreYahJZROEdIwIthgjF6i9Rc6HDGbe7cUGodHZ2cuzYMSZMmEBJSYnP3yfYyIAqZWpIUWY3GdmLObj7WvInXEbe+EsB6GrbjkFfRWvTSwDYbTr6DNUApGdVBiS60zPLOXrgbqyWk8iSNLQ1bmFSyV0IggRZUgZG/XFUKVPpaNlKNiuC2udYcSFP+EybzHIms9zzfjV/8Ly+lh2e1/di8PpcBbdRwW0A/I1zuJS/eeYVsYRbOey1/EZ2+R3THK7y5LgOhjQ1FSE5mdaf/ISUs88mdUVw369anYzBEFjCcWennqf+fCXy5P5Tultob/voTp9lb2z5OKhxBIJRIueZwm8A/gslezeOP1UkKXsOy/ubUVxwa8THEQrhdMMMhoGFkW6hHiyJehM6WhmpiHcgJCUlkZWV5emhcfDgQQoLC7FarV6e9AMLN1UqlV+tYjQaReEdQUThHWfEItVkNBCqW4fZbKaqqgqAsrIyFAqF3+WCjWJIZYNH79wMFWWetfAZtN276TjxNp++W86Scz8HXMxa8ARZeWd7raer/T2k0sDSCxSqQqbPvp89O1Z62tnnFlwIQMmcTez9aLWnnb0/Dk+fTnJJCdjtIJWSfumlZH7vewhxEOUJlw0E/ig7FASZjMmvvorx00/R/+c/dP/tb0x68cWAP798ZTF33rKFD7ZXDVtcuWTpVFTqyESx/1XxQyxdwacduW8D7/A71wAb3K+3wGfAP4Za29/hE/frT+D+oIcTEAZJF0//dG/EumEOxcDCyKFYMcTOJupN6GglXiLegeBu4COXy7086Q0GAzqdjrq6Ovr6+khKSiItLY0TJ04wZcoUxo8fj9Fo9PQaCYWmpiY2bNhAe3s7giBw/fXX84Mf/CBSu5ZwiMI7zoiFq8lYZKB/enFxMTk5OUMuH87JNJgoszsqbjLWkp5ViSazgs7WtzGbWsjOP4fG6qfJyPkGEokMg+4oSlXwqSWBtrNvpNFnGUGhYOqb/Y057F1dtNx5Jw6Dgdw7vOWVy25HGOGWyLFioJgZCqfRiNNkInXFClQLF1K9fPmQyz/020u93k+anM1rb98c0LYiJbqBkER3opLizI6J6AbvwshKbo/JNgMl2jehAJdd9BQ/f/BifnT7yz7pTwAfbK+iprqT625c5vPZ4TztRwqXy5UwwttfdF4qlaLRaNBoNB6fbqvVilar5aWXXuJnP/sZvb29OJ1O/vCHP1BZWcn8+fODdkeRyWQ8+uijLFiwAL1eT1lZGeeccw4zZyZGl+BIMzaulHFAMKkmovCOLHq9nsOHD5Oenj6of/rphPP4MJgos9PZn0pwZP+PMBnrwAVZ+atI1cwmJbUUU18Tn27rT2GRK3JYsOTVkMcVLrLsbMY99BB1l15Kzg9+gPaf/0S3bRtOoxGcTib94x90/fGP6N5+G5fVSuq555J7xx04+/povu02bG1t4HCQfeutaC66KOjCw0TDYTTSdMMNuCwWcLnIG2X7JzI0QxVGjhYCvQkF+NPfNmCzDf40d8WqGaxYNcNn+ljztI8WgUbn5XI5OTk53HPPPdxzzz3YbDbOOussUlJS2Lx5M/v370cmk7Fw4UIuvPBCzj///GHXOW7cOI89YmpqKqWlpbS0tIjCWyT6CIIwbDvcSKSaWC0n+fzDcwGwmNsRBKknsrp45WdIpKFX2ScSDoeD6upqent7KS0tDSpHbbgT1PTZP/O8VqdOY8m5X3jNDzTK7KZs6Ws+0wSJlJI5myiZs8lrenbeSrLzVg45vmghLyrC5XDgOHkSAPOhQ0x96y2k6ekYPv4Ya309k197DVwumq6/HuOePTi6u5Hl5lL05z8D4NDrQyo8TDSScnOZ8prv33U4nh4/MsWPKoclKvnfiYi7Kc9wzXSGYqjCyLHIwAj3i3/bw4fvH8Vuc/LoH77JlKk5vP7Klxz6+gT33r9a9LSPEqGkaMpkMqRSKddddx3XXXcd0F9suXfvXiyW4E3v6+vr+fLLL6moCMfgIbERhXecEYlUE3lylkcIDrS9G0j/DYDrv3nH0cfptCORRP5wG6w7o7t4srCwkPLy8qBPOIny+HCkUS9ZgjS931XB8PHHGD/5hNqLLwb6Uy2s9fWoFi2ifdMm2n/9a1LOPhv1okX9qSkBFh6ur3kAc6eaNysj4xQR74yU40ifNJk/Pf2xj0dGOHZ5dezgUx7hSt70mbeV61jMXX7bkn/G45RxvVc784/5FRomkISaLIpj0s48ks10BhZG3szByK04Qfh8dz2LKiYBkJGh4uU3buT/vbCH5/70Kb94eI3P8qKnfXzgdDp9rp8pKSksHyZ1zh8Gg4HLLruMxx9/fEwXa4rCO86Ipv91PPpNh4NEIsHpdHqlhVgsFqqqqnA6nUMWTw5HvFaqjzTWxkYEqRTpfyvlJSrvotLsG28k4zvf8fnclDfeQL9jB52PPUbfmWeSc9ttQRUeKnKMkd2RKGPKTsx0setuXMYrv/WeFi27vDX8ye90Jw528ThzuMpLeNfwDt9kC9v4McVcFBPhHSzBFkaOFRyqbn50+8vc+eNVAKw6rxSAmbML2P7OEb+fCdbTPtYM9/R6tBCpdvE2m43LLruMK6+8knXr1kVgZImLKLxjSCCpJtFuPJNoftND4f6upFIpLpeL5uZmGhsbmT59uqexQKiMxYh30U99/0ZFF2nhp+BIcdBw40Fa/+d/yPjud/0+QUhZtoyO//t/0axZg0StxtbWhiCT4XI4kKank752LdK0NHpfeinowkOAn5iHDj/abDa/0ZmBVHZ2DrudscxD979FCT8P6bMD7fIEBK7lIwCsGHiJ9XTwNQWUsY4XEBD4C8s5l0cYz0IeIoWF3EAt2ynlMvSc4K+sQEU21/ABZnQ4sHKS4xzlDRr4kI94kG/xTyzoPVZ3mUxlDZtRksFfWE4+c6nnQ5zYWcNmCimP2HeV6Az8/ofjLl2/p7fL5cJisaDVaj0e0U6nk7xJw6coZfz7Qra+egAAubw/sCGRCNgd/m1hg/W0jzWDPW2NR8K5SYiE8Ha5XHz/+9+ntLSUu+66a/gPjHJE4R1nRPuHHK9+06HgjngbDAYOHz5MWlpawMWTwyFGvL2RGqQ0bNiAZu1asr7/fb/LpCxbhqW6mrr16wGQqNWMf/RRrA0NtP/qVyCRIMhkjPvFL6JSeJgoF8HRykC7PAsGZPQ/bWrjS27mEKkUsJklNLLTp525DSPjqeA8HgXgSzZzNR+gpv/cVMt2JrOSIs6khEso5iJm0X+c/S9zuJAnmMRZvM/P2MEDHns7G33cxH7q+YitfI9b+Dro/XLne7vxb5eYeARTGOlGEARP18S8vDygv5ampdtXeNfVdiERBCZO7n86VnW4jYLxGo4fbQ96u8F42seKePbwPp1w28WHK7x37tzJ888/zxlnnMG8efMA2LRpExdeeGFY601UROE9xohXv+lQkEgk1NTUoNfrKS0tRaOJXMc0UcT5MvWtt7zep69fT/p/RbabrGuvJevaa72mySdOJOUb3/BZXyiFh+GSKQh0x9kj4iSJg8cKVw25TF/bSXb/8Pd07T2CXJOCMi+TikdvR1Mc+E2tpVdP7T/epfSm6DzmHWiXV8o6NBQCMJ5yz+t85tFLvY/wFpAyk8sGXXc1/2E+1/pMN6PFTK+nk+I8rmYL3/TMn823AZjEN7Cgw0QvyhA7PYr4ZzBB12e0sumBt9HrzUilEoomZnL/Qxfz4fvHgt5GMJ72sSKRPLxHWngvXbp0zKTmBIIovGNIvIm5ePObDoauri66u7spLCykoqIi4t+tIAiolFb6TGPDAWas8HZ2dsy3eYcyvEI6l8vFe+vvYfp3L2DFiw8AcPLAcUwdPUEJb2uvgSPPvBYx4T2UXd5mlnAV7wAg5VSxqIAUJ7757zIUnnbl/mhhDxfxVNBjFBCGfC8SPWadUcCLr1znM31gN9XZc8bz3N/7b6jWrp/P2vXzgfA87WPFWIl46/V6UlNTIzyisY0ovOMQdzv0aN9NJ6LftNVqpaqqCrvdTk5ODnl5eVG7obn16t2ceeaZEV3n2g3eJz/R+jFwbpbuHXReqkvGQ/i2Kh8NtO7YhyRJxowb1nqmZc2djsvmXc8qAAAgAElEQVTlYs/dT9L8zi4EBObeczVTLl+JzdDH9nU/xdqjx2mzs+AXG5l4yTL23vs0+poWXi+7hoJViyj/9S1DbHV4hrLLa+FzuqhCEWJ0OZlUrOhRk00Hh8hmhkeYu+cBKNCgJIMGPmYiyzjA857oN8DXvMRkVtDAJyjQoCCwp2J3bIjc0zOR0clYiXiLwjvyiMI7DnEXDUbiRz1a/KZdLhctLS00NDQwbdo08vLyqKqqimohaiwYS9aP0UQv9EdRwy14au56GqerL1LDAiDQUiK9S8qzE31tFXu+riV7QYnP9IbXPqT7wHHWfvEcli4tbyy+jvxlc1HkpLPylU3I09SYu3r519IbKLp4KQsfupGeQ7Ws/eK58HZoEAba5eUyi+lcQBOfhbSuMq7nBc4nlQKms5ppnGrSMZsreION7Ob3XM4rrOWvnuLKDKawlr94lpWh4Gnm48DGGjaHvY9jEVWu/+LHsc5YiXgbDAZReEeYxLq6JjiBCgK3l3dSUnxXdccKd/FkamqqV/FktB1gIo3VagWUAS072qwfE4VIi+5gSBWCO5bbdx5kyrdWIZFKUeZlkr9sPl17qyg8v5Iv7nuGto8PIEgE+lo6MbV3B7TOe+9fzSvPDz4/WLu8ySxnMss971fzB8/rgcV992Lw+lwFt1HBbQD8jXO4lL955hWxhFs57LX8Rnb5HdMcrvIUWgaKqjcx0lHcTiOB0tTUhEwm83QQFAkPUXiLhIoovOOQSDTRGQ04HA5qa2vp6upi5syZPsWTbleTeMflctHW1kZtbS3gW2Q4GKPJ+lEkMPbc/aRPCkjGrMnUv7oj4HXU/H0b5q5e1uz5M5IkGVumrcdhtkZ4pLFjA+9Gdf1jJa0kkVIjQqGjowONRkNycmwaUCXS9xmu8M7JyYnwiMY2iXHUjDESLZIbDU6ePMnu3buRyWRUVFT4dSyJxfcUbiW2yWRi3759nDx5kvLy4DyEB7N+lEiSPNaPQ+G2fmyq/TMuV/8NSlfbdprr/8rObWV89t6Z2G3amFg/hooGk+f1kaeiUzcQT3QfOO4zbdyKMhwWK1XPbj213MFq5Okp1L38Pk6HA1NnD22f7Cd7USlWrQFFTgaSJBmtO/ZhaGgDIClVhU0/chH9WHMtOwLyqD6dOnbwIhf5nbeV6+g4Ldru5jMex4r39/sxv+IgL3KE1wf9XKxIJKEYCkajkSNHjrB7926++uorGhsb0Wq1UbtGJFLE2263h2yzazQaxYh3hBEj3jEk2FST4XA6ndTX1wPTwxtYHGG1Wjl69ChWq5X58+ejVA6emhFt4e2vM2aguFwuGhoaOHHiBCUlJWT9t9NjMMSb9eMWvHMQDn11wq9d2LfW/pGXXr+ejEw1Xx9s4ZFfbeO5v1/L6698yaGvT3Dv/au598evcdbZxZx7wSwA6uu6uPOWLUgkwqB2YZF05IhXtv3xIh47bZogCKx65WF2/fB3fPXIi0gVclImjqPi0duxGUy8XnYNAgKLHr4ZVX4WU79zLu+uvZvX5m0gu2wGmhn936UiS0PemWfw6rzvUnheZdjFlWORRO62Gc2GLxJBNaJpWhJBRdHkyUD/fvb19aHT6WhtbUWv1yMIAmlpaWg0GtLS0lAoFGF/F4kkvB0OR8jCO1KdK0VOIQrvOCQQ4d3d3c3Ro0fJzc0lPc1Fry4x8hIHkq45JRhdLhcnTpygvr6eqVOnBuRWIpFIsNlsURufVCoNSXjr9XoOHz5MRkYGFRUVETk5x6P1Y6ztwoZz5DAajVitVlJTU4OO7P2P4nB/gWbR0H7a0UDlsHBjy9BPL1QF2Zz9j1/6TC//9S0+34UiO52LP3nG73qWP39/yOMcrTxFf0OP0d5tM5oR78LsGyO2ri+++IJ58+aFfN4UBAG1Wo1arfbks9vtdk+nzfb2dsxmMwqFwiPE09LSgt5eIj1BcDgcIafgiDnekUcU3nHIUJHcgRHhuXPnolKpeO4Pwec56/V66urqmDNnTrjDHZSamhrUajX5+flDLmc0Gjl8+DBqtZry8vKAi0qlUilms3n4BUNEIpHgcDgCHo/D4aCmpobu7m5mzZoV0ZNVIlo/RprUqeOHdOQ4fPgwCoUCo9FIUlISGo3Gc2Ed7m/odkUZCfqksclJFfHPaOy26Y9EaXEeDUErk8nIzMwkMzMT6P8uTCYTOp2Ojo4OampqAEhNTfWcM5RK5ZDfVzDXhpFGtBOML0ThHUPCSTVxuVw0NzfT2NgYcER4KGKRHz3cNpxOJ7W1tXR2dlJaWkp6enCev+6IdLQIpnizu7ubqqoqCgoKQm7oE+/Wjz/66b1Dzg+FlBQD99/7u4isa+HChR4bTqvVilarpaenh/r6epxOp+eiqtFohr2ojlUW3ivlNo0TtTYxInnhYsUwZrptJlKENtq/TUEQUKlUqFQqT2DI4XCg1+vRarXU1NTQ19fnExUfmK4RahriSBBucWVaWlqERzS2EYV3HCKTybBYLJ737tQFjUbjZacX7jai7ZwylPB2C9Vx48ZRUVER0gXBHZGOFoEIe5vNxtGjR7FYLMPmpIv4YjBELndw4PEgl8vJycnxVOM7nU6vi6rJZPJcVDUaTaAuj2OCZ58IzqYuXnG7lXzA/chJYQk/8um2mUYBl/CnMdFt0+VyJYzwHgmkUinp6emeAJDL5cJsNqPT6ejq6qKurs5zA5+WlobZbE4YQSoK7/hCFN5xiFuw2u12qqur0Wq1lJaWRvTgj1XEe+ANBPSnyhw7dgyLxcK8efNQqYYvIBxq/dEurhxs/S6Xi/b2dmpqapg8eTLjxo0TI6hRJhxHDolEckpkc+qi2tvbS3t7O4jWxmOC0dxtczicTqd4jgoCQRBQKpUolUry8vKAfgFrMBjQarX09vbS29uLUqn0iorHY/pJOMK7r68PtXrownuR4BCFdwwJ9KQnlUrR6XTs3r2boqIiSkpKIn7CjIUH9kBh7HK5aG1tpa6ujilTppCfnx/2PsXK1eR0zGYzhw8fRiaTsWjRIuRysa17LIikI8fPlEfQq+yQOfRyfW0n2f3D39O19whyTQrKvEwqHr0dTXHgBamWXj21/3g3IEeWb697lgXvLkKaEXtvabNJCjYzLrMBQZHYLgaBNsEZS902EynVJF6RSqWeG3ij0UhhYSFyuRytVkt3d7cnrS0lJcXjoqJWq0f8hiccVxNAPG4ijCi8Y4wgCEN6Q/f19XH8+HHMZjOVlZVRawYQixOBWxj39fVx+PBhlEplUMWTwxHtm4fTU01cLhdNTU00NTVRUlJCdnZ21LYt4o1RIo+oI0cgxZQul4v31t/D9O9ewIoXHwDg5IHjmDp6ghLe1l5DwFaIL7z8faT6z3nywQ9QqeRcu3HJoMs+NoQDy6v/mO0zrXfjeNKfbfGa5rLb0N1eQuqv9yIo1Nj2v4PLYUe57qcY/3gTSfPOR16+Bv2m1SiveBBJ5jj0D6wi9RcfIqjTMf5mHcnnXE9S2Wqcxl4MP1+OJKsQxeUPIJtahqOlCuPj3yHlf95BkpaD09ADZj2S7CK/4xlI49r+i31zczOCIDB+/PjBv4u0wYu/xkK3zUBIlOLKRMEdRU5OTiY3N5fc3Fyg/wbHHRVvaGjwKvZ2i/FYR8XtdnvItrgikUcU3nGC25O7ra2NSZMm0d7eHrMOXNFCEAS6u7vp7u5mxowZZGRkRHT9sUw1MRgMHDp0iPT0dCorKxOmqCYRuJzvDjqvsqg1hiPxpnXHPiRJMmbcsNYzLWvudFwuF3vufpLmd3YhIDD3nquZcvlKbIY+tq/7KdYePU6bnQW/2MjES5ax996nh7VCdCOVxjayJMiSUKz9PxgeOBshYxyScUP3BJCk56O8/H4MD18MLhdJ884lqWx1/zx1OpJxJThPVCGbWgaAdPwMFJfdh+E3l4LLiSBNQrnhESTZwVlYJppgjHa3zVBIhIh3Igm9wYorJRKJJ+3EjcViQafT0dvbS2NjI3a73ScqHs2/Tbh/+0T7/cU7ovCOA9yFhvn5+VRWVmK322lpGTwSlAj09PRw5MgRJBIJlZWVUTmpxMLVxJ1n39nZ6bdtfbCka1z0asfmSczptCORJM4pp+frWrIXlPhMb3jtQ7oPHGftF89h6dLyxuLryF82F0VOOitf2YQ8TY25q5d/Lb2BoouXsvChG+k5VDukFWIsGCy6nHzujSSf6+vDrL7+VGFg6j1veV7LF69Hvni933Wl/PAln2nyynXIK32j/UNFuwcyliK1AyPqkSYRiisT6W/tdlAKhOTkZJ9ib6PRiFarpampCYPBgEwm84qKRzqFMZTvNZh9FAmcxLkKjhIGppoM9OQeWGgolUqj7jjiJtInOrfLh9lsZsaMGTQ3N0fthxttVxOLxUJzczNFRUUhO6+cznNP9N8otLS0YLPZmDRpUtjrBFi7YfAI/PGvf4FMlsLkGXdh1Fezb+c60tLnous9wKJv/Jvuzh3UVv0WXJBbcBHFcx7E6bTz/tZ8Vl3aBUBr40ucbH+P2Yv+SGvjS9QcfhhBkJAkz6R8xXacTjtHD/6E3q6dOBxmJk6/lQlTvk9X+3vUHN6ETJZCn6GWZRd8FfA+JUmiW/wbKu07DzLlW6uQSKUo8zLJXzafrr1VFJ5fyRf3PUPbxwcQJAJ9LZ2Y2rtD2oZanYzBYBlymcdNvh78Ra9Ht25DJHFJhOLKRIjKuwmnYFEikZCamurlj221Wj1Nfpqbm7HZbKjVao8QT0lJifl3I3atjA6i8B4BBnpyT5s2jdzcXK8TokQiickjN3eqRiTsCV0uF21tbdTW1npcPiwWy4gUP4aL3W7n2LFjnDx5ksLCQib/txVxJAln7Oe0tnLytM8WEfije6Ouijnlm9FkLsTc18yxr37OmefsQpak4fMPz6PjxFtk55836OerDz1I+YrtJCvysFl7AWiufZbk5FwWr/oMp8PCZ+8tITvvHAB0PV+w9LyDKNX+xxipdJJIi4qMWZOpf3VHwMvX/H0b5q5e1uz5M5IkGVumrcdhtoa07eUri7nzli18sL2Ke35+IWWLJoa0ntFAIkVB45lEELWJMEY3kT4u5XI52dnZntohl8vliYq3tLRgMBg87kxuMR7tdFS9Xi8K7yggCu8Yo9PpOHTo0JCe3LG6yERKeLuLJxUKhZfLR7RzsKPxPbW3t1NdXc2kSZNITU2NWipLOML7dNEdLKqUqWgy+ztX9nbvISt3uafN/LiiK+jp/HhI4Z2RvZiDu68lf8Jl5I3vb/3e1bYdg76K1qb+VAO7TUefoRqA9KzKQUV3PDNuRRl773uGqme3MmPjGgC6D1YjT0+h7uX3mbbhAizdOto+2c+iX99M3Zb3UORkIEmS0bpjH4aGNgCSUlVBWyFOmpzNa2/fDMAlezbSvdOfnVdiRLdVvQLX3x68Fepjnlez/K8318mN1caQxzXWSIQbmEQS3hDda7UgCKSkpJCSkuIpLLbZbJ6o+IkTJ7BarahUKq+o+OlR+HCCeGK7+OggCu8Yo9VqmTlzZlwczDKZLCxhPLAgdMaMGZ52vG5i4RUeKcxmsycnfeHChSQnJ9Pa2hq1lvSxsHMcDKlseO90QZAAp07YDsep72HWwmfQdu+m48TbfPpuOUvO/RxwMWvBE2Tlne21nq7295BKo+8Bm+ryPZU1dz2N0+Vf8N512nt/DiGCILDqlYfZ9cPf8dUjLyJVyEmZOI6KR2/HZjDxetk1CAgsevhmVPlZTP3Ouby79m5em7eB7LIZaGb0R6kVWZqwrBC7bYntoduXHp2nd30dpwSaKtfp9X60o8oN7dwhCu/EJikpiaysLLKysoB+Ud3X14dWq6W1tRW9Xo8gCB4h7vYVD/U7NRqNYsQ7CojCO8YUFRUFLEajHaEIRxj39vZy5MgRcnNzBy2ejFXKTDgMTPspLi72FL9AdHPIR1J4DyQ9s5yjB+7GajmJLElDW+MWJpXchSBIkCVlYNQfR5UylY6WrZ6ouMlYS3pWJZrMCjpb38ZsaiE7/xwaq58mI+cbSCQyDLqjKFWBRbnXvdPL0qVLUSgUYe2L87QI8GCiOxhUBdmc/Y9f+kwv//UtPgJakZ3OxZ8843c9w1khLt15R8hjFGHEI9+ff/45ixYtitr6BwosrVaLwWBg3z6pR2BFoxhvJBCFd3AIgoBarUatVlNQUAD0p0q6o+JtbW2YTCbsdjsNDQ1oNBpSU1MDzk0XU02igyi84xRBEAa1K4oUoRRx2mw2jh8/jtFoZM6cOQnd0cpoNHLo0CFSU1P9pv1EUxzHi/BWqAqZPvt+9uxYCS7IKVhNbsGFAJTM2cTej1YjT85Bk7EAp7O/2O/I/h9hMtaBC7LyV5GqmU1KaimmviY+3dafwiJX5LBgyasBjUGpVIYtukVERjP+BJY77UCr1XoV47mFeLQt6qJBtK95YwGZTEZmZqbnCbTRaOT48ePI5XJPKiVAamqqJyquVCr9BvnEVJPoIArvGBNoBNudBhJt4R1M9N3dIn3SpEmUlpbGzWPLYJ8MOJ1O6urq6OjooLS0lPR0/y2io5kqE0vhPX32zzyv1anTWHLuF17zCyZeScHEK30+N67ocsYVXe4zvWzpaz7TBImUkjmbKJmzyWt6dt5KsvNWDjm+eDmORKLHQV4kCTVZFJPLzJEezqjAX9qBwWBAp9P5WNRpNJq4f/oIiWNfFw9Bk0BxOp0kJyczbtw4xo0bB/R/z+6oeHV1NSaTCaVSSVpaGsnJySiVStLT09Hr9RER3v/5z3/4wQ9+gMPh4LrrruMnP/lJ2OtMZEThHafIZDLsdntUHx+6tzEcJpOJw4cPI5fL465FulvABnqDMjBFZjiLwGiK41A9yBMlZz5eeebJj3j7X18hkQhIJAI/f/BifnT7y5xfP3gXyFiw7ttfDzrPbxfKqzORTJgJDgfSgmJU1z+FkDx47r6/LpSyKfMjMvZAmMq5bOPHFHORKLyjhCAIHos6dzGe1Wr1pKeYTCb27NlDSkqKV1Q8nm58EyXVJJEi8/4CeFKplIyMDE9TO5fLhdlsRqfTsXv3bjZt2oTD4aCgoIDCwkKOHj1KcXFxyF7gt9xyC++++y6FhYUsWrSISy65hJkzx+55QBTecUosChOH24bT6aShoYHW1lZKSko8kZVgiWauulvADncStNvtHD9+HL1eH3CKTDQb9IQi6t1NiZg4dq3lwmH/viY++uAYL2+9AXmyjJ5uIzZbgt7IyJWkPfgJAManNmJ5fzOKC24d4UH143I6ECTev8eTHOcob9DAh3zEg3yLf2JBz5vciI0+MpnKGjajJIO/sJx85lLPhzixs4bNFFI+QnszPPEcSZbL5Z7GLd3d3ZSVlQ3aznxgMd5IIQrvyBPIk3NBEFAqlSiVSi655BIuueQSDAYDv/zlL+nt7eW+++7j2LFjjB8/nsrKShYvXsxZZ50VUBBuz549TJs2jSlTpgBwxRVXsHXrVlF4i8SOYFJNot1EZyjhrdVqOXz4MDk5OWF1ngw2Ih3K+h0Ox5AXi87OTo4dO8bEiROZMWNGwH+DWBRXPjFRjrE90JuS/P5/NbVRGdNop7NTT3qGCnly/2kvI3PAzZdOD2mJmcsoK1mMo/EQjs4GjI9dQdrDnwFgfvsJXGYDynU/HfSz1s9ewfyvxzzt35XfegDL+5txtteh/HZ/Uanl4xdx1O1HteG3WHe+hOXdZ3DZrcimLkR59aMIEim9G8eTvOIabId2oNrwCLKSxV7bKeJMSriEYi5iFv1dL/+XOVzIE0ziLN7nZ+zgAS7gcQBs9HET+6nnI7byPW5h8CcCI00i2PS5GayduVarpbu7m/r6epxOJ6mpqZ7CTZVKFbP9SxThnSgpMRB6o5+UlBRUKhXnnXcea9b026k2Nzfz2Wef8e9//5szzzwzIOHd0tLChAkTPO8LCwvZvXt30OMZTSTGkTMGiYXw9mcnaLfbOXz4MEePHuWMM85g2rRpYZ1goh25H2r9FouFAwcO0NLSwsKFCyksLAzqAhLt4kqHwxGE6BYJhKH+vkuWTqWtVcvqlb/nlz97k89313vm5f3u99zVuJ2CTZvovfI27mrczpTHfovpe/+fvTOPj6q89/979iXbJGSBBAghQtgFQhIQ3CquqCBVq+2t1rYuXW9t9adVe4tWtLXa6622am2pem1vXap1bVWq4oaAKCgJ2feVrJOZSWY95/fHeMYZMklmX2Der1der8mZc57znJkz53ye7/k83+/1/Lh9J4NfCS4FYKwQXU4cB99AMSf46JEw3MP4U9tIv/lFMu58F1fzx9j3v4xqzYU49r/sWc+x53nUVVtxddVh3/Mc6be95o62yxQ4PnjavZLNgqJ0DZnb358guv1hxYiVEeZxKgAruZI23vG8v4zLAZjHKdgYZZyRoI8vViST8PaHRqMhPz+fBQsWUF5eTnl5ObNmzcLpdNLc3My+ffs4ePAgra2tDA0NRfW+lEzCO1ki3k6nM+S+WiwWH4/37NmzueSSS/jNb36T1IkV4k0q4p2gxMpq4n0RlWY8FxcXR2zyZCyE99HiWBRFurq6aGtrY8GCBeTn50es7UgRaVFvs/ah0RZErL1YYcgK/zH9TfIDmGROUABeDz6OztWtT9Pw9AvXsn9fG3s/bOWGHz7D9Te6vd0bz14MwJJlhex87XDA+x7rHWTPT37LwEeHUWeloyvIoeq+H5K1MPCCQbYRE83/9waLv7M14G2wjzN62wYAlAvXoT716wjDwVUAdTV/jHLxeuSZ7jSRqpMuwVX7Aery85Hnz8PZuA95QSlCdz2KhWux73wUV+tBTNtO/7wPVmSfb4tcgariwqD2PxUyZFP+n0gkg/AOpo9SdcSsrCzPtlJUfGBggObmZkRR9MkVPVlWjGBJFuF9rFlNJiMSebyLioro6Ojw/N/Z2emZg3C8khLeMSYRrSbj4+McPnwYpVIZ8cmT0RbeR9tBxsbGqK6uJi0tbdLKoKG2HUkiLbzfenkumrIycDpBoSBryxZmfOtbyORyRp59lvFDh5i1bZtn/cE//5mRp93RSnlaGkX33Ye9rY2+X/4S5HJkSiWz7rgD5cyZdFx7LaLNBqLIjG9/G8OXvzxh/5eWzg+4rzdbbT7/f/BBaMcsYZIF/jtRKORUri2hcm0JC8vyeeG5gwCo1e4bk1wuw+kK7HsRRZF/X3wLC75+Lqf/5XYABg82MH5kOCjhbR8xc/iR54MT3l4ebwmZQgmiV98doRd/UlVtxbHneeSFC1GVn+++boki6g2Xo7v053420E7wdR+NhgzsmADQkoWObNp4l2JO5iD/64l+AxziKUo4nTbeQ0sWWrJCPpZokwzCWxCEkPsok8nQarVotVoKCtyDe5fLhclkwmg0+mTFkAR7MLmij+5nuJWUY0GyWU1CLS0fiXSCFRUVNDQ00NLSQlFREX/729/461//GlabyU7in+HHKUqlEofDEdV9KBQKRkZGGBoaCmvy5HT7iIXVxLuK5uLFiz2ztcMhmlYTmUzmd1LWGIM8jjv9nple5CjQ4y7qczV7UeJ/ULSkoWHSfRkuvhjDxRf7LJtx1VXMuOoqn2Xq4mLSTzllwvbzn5+YPjAZaWkeQC6TUVziPs9ra3opLMqioa4vpPZ63v4YuUrJomu3eJbNOHEBoiiy96bf0fnah8iQceItVzL/0jNwmMfYufWn2IdNCA4nq++4muILT+ajWx/G1NTFP8q/QeHGiqArW0rIMvMRR/sRTEPItGk4DryGcvnkqRwVpeU4n7wJwTSILM2AY/ff0Zx5DQCqNRdgfuk+5O2for3UPahQLj0Vy/1fRXPOd5Fn5iGYh8FqQp4b2CBjGZfxIlezh99yKc+yhcc9kyuzmc8W/uxZV4mWh1mFCweb2RHS5xErRFFMeBEW6UiyQqHAYDB4UrFKWTGMRqNPrmjvAj8ajcZH/PutLKsFB9DeH7Gu+kUu0zM797qQt08mq0k4fTWZTD7zAUJBqVTy4IMPcvbZZ+NyufjmN7/J0qVLw2oz2UkJ7wRFoVBErVw5uCdPVldXI4oi69ati9pFJBbC22w2U19fH/ZE0KOJZuXNyaJPembwHQ4A8BbbUJPOem6ISh+ON8Ysdu66/VVMJisKhZy5xTls234Bu96sD6m94UPN5K4um7C87fldDB1sYMv+x7ANGHlx3beZefKJaPMMnPHsXagz07AOjPDShmuZe8EG1my/juHqZrbsfyys45MpVWi3/D/Mt38JWfYs5LMWTLm+3DAT3aXbMN99gWdypap8k/u9NAPyWWUI3bUoS8sBUBQtQvvl2zDfcxGIAjKFCt0V9wYsvOeynu9T47Psaj70u+4K/sMz0TLRSYaId7T76J0VY+bMmcDECopWqxW9Xu8R4pGoLBsq4e47WSwxEJ7wNpvNYQtvgPPOO4/zzjsv7HaOFVLCO8bE22rinVavrKyM9vb2hCnSEywul4vBwUEcDgerVq1KlbaNI+GmgIu0MBjrHZywbOnyQv7y7LcnLH/9nes9r5etKOKxv7qfBGy5eBVbLnbnut7+64v4TYD77nv/U+Z/ZSNyhQJdQQ4zT17FwEe1zD5nLftve4Tedw8ik8sY6+pnvG8o+IMDDI92+V2uOes6NGdNjOSlXfOQ53XGLa94XqvXXYx63cUT1gdI/8lTE5ap125FvXaiJWay/hwPJIPwjodQPLqConfZ+56eHvSRf8AaM46XiPf4+Dh6/eT1AVKERnIM2Y4xArlIR0N4HzlyhD179pCenk5FRQVZWVlxzxUeKgMDA3z44YdoNBpKSkqSTnRLE5aOJaQUcJv4PS/wzYC3m8x2EyqS9zraZC8tYeDjuoDXb/rr61gHRti8909s2f8YuoIcXFZ7FHuYnFzF2xSxJt7dCJhw/NOxIhHsMFLZ+8LCQhYtWig2TLYAACAASURBVBTXvoTL8SK8gbifN8ciqU80QYmkYLVarXzyySf09PSwZs0a5syZg0wmm5DVJBpEWnjb7XY+/fRT2tvbKS8vZ8aMGUlVvhfcj+/27t2b0IU3QiHUFHCR9tJL3utoM+v0clw2O7WPvuBZNvRpI2pDOi3PvIngcjHeP0zvewfIrViM3WhGm5eNXKWk5+2PMbf1AqDK0OMwxe+xe4rwSJaId6L3EdyVZTef8zsuOu/3fPn8h/j0QCdnnfLfDA9ZJqz71s5a/vjwu37b2fthC5/sb49aP48Hq4koisfcPSpRSFlNEpRIRLxFUaS9vZ2uri4WLlxIbm6uz/vR9DBLREp4i6JIT08PLS0tlJaWenyECoUi6pNQI4UgCLS0tHDkyBGWLl3KoUOBFwXZy+/Yz6MAzOC5aHUxLEJNARfpiPdk3utII5PJ2Pjs3Xz4k//hs3v/gkKrJr14FlX3/RCHeZx/lH8DGTIq7v4u+pkzKP3qWbyx5SaeX3kFueWLyFrkrkCqnZFFwUnLeW7l15l99tqQJ1emiA/JIrwTXSgGW1n29I2LOH3jxMi50+li355W9Ho1q8oDzy4UDMkU8XY6nWFlikn0czsZSQnvOBCI0AhXeI+OjlJTU0NOTg5VVVVxu0goFIqwLRVjY2PU1NSg1WqprKz0qVIZ7UmokUKqBJqfn09VVVXQN8FKvkclbkH2Qn8btrzEKXWu6VdgIfQUcJEW3rFEX5jLl/7vFxOWV/7qexMEtDbXwAXvPeK3ndP+d1s0upcw3P+EMTrt/iMqzQKQp4H9507/O00G4Z0MfZyqsuxfntjLrjfrcDoE7nvwEuaX5vGPZz+h+lA3t27bxK03Po9ao6S2ppf8ggwOfNyBQiHn5Rc+5Zafn0d5RXFE+5oMAxmJUPsarmBPMTmpTzVBCTVS7HQ6aWxsxGg0snTp0rBzcIZLOEVoRFGkra2N7u5uFi1a5JmkE6n2A0Emk4V1kXW5XDQ2NjIyMsLy5csj4kXfvLaYV/kBLbyFDDn5LGULj9HBbj7gXr6Gu+rgK3yfQtawim/wZ07jLO6liDVsJ51bMXva28MD7OVBMihkAZvQk8sqvgFAO+/zIlejRMOlPIsN04QUcDqy+TOhp4CLtPDOXlpC63NvA8FXc0xENFoHNqtq+hVTRJT+AOMFySBqk0Eort9QysMP7GLTGb9l7fr5nLNpGRVV8wDIztbzzIvX8bcn9/LYHz/gjrs3T9i+r3eUJ5/5FgqFnN/9z1vo9Wquunp9VPqaTBFvCC1qbTabU9Upo0RKeCcoodhA+vv7qa+vZ86cOZSVlSXEzSBUH7kUsZ8xY8aUEftoFrmR2g/1pjU0NERtbS1FRUVUVlZO+D6ma/N0tk363nk8MGFZCadRwmme/zfxoOf1Vbztee0tugGq+AFV/ACAJziTi3jC814sUsCFI7xbeh7gx8JR/s8TgMcvCqm9RGTTRXU893/Lor4f012b0F12J+JwN/aPXiTtWnd03rbrCYTOWnRfuwvbrv9F6DyMvHAhQne9e9nrjyCM9PovrHMckAzCOxn6GG5l2bPPXYpCEZvBRbIJ71AwmUxxD9wdq6SEdxyI9AXQarVSW1sLQHl5OVqtNqi+RPOiHGzk3jtCHEjEPhaVMYONqDudTurq6hgfH2fVqlXodLpJ2040ruCNmO8znLkGrqNFd4qwiURhHXl6+AWskoVkELXJEPGG8CrL6vTBPRXat28fGRkZnrziwZS9T5bPEwj52hqJqpUp/JMS3kmMKIp0dHTQ0dHBwoULycvLC7oNSbhGy8sVjBVkcHCQurq6SSPE4bYfCsG2Lz11mDdvHkuWLJnyGJLlwh0I3hH1YJEGfy09D6SE9CRsvTzwibjAhAi57fWHsb3+sLuwTt485Llz0W39KZY/fAfVynNQV37x6D4ShXUy7tgV5hEnD8kgvBMhneB0RLKybFqaBrN5aq/Q6tWrMZvNGI1GmpqaGBsbQ6vVeoR4ZmbmpFHtZIl4h3Nums3mpEvTmyykhHeCM9kPx2QyUVNTg8FgoKqqKmThLFlBoim8p7OaOBwOamtrsdvtU0aI/RELq0kg7dvtdmpra3G5XKxZswaNRhNQ2ym+8NGnRHf0iFdhHW9GrsxBPmcJuFwoCheiv+YhZJrJi3N4DwokG4xy/qop9xEPkkF4J0M6wUhWlj3tjIVc/72neWtn7aSTKxUKhUdkg2/Z+/7+fpqamgB8ouJarRaZTJY0wjucyHzKahI9UsI7DgR6AZREn7co9rZiLF68OOxyrrEo6T5ZxFgURXp7e2lubmb+/PnMnDkz6JtDvK0m3sfgneYw0LZTRCerySO/e4dXX/oMuVyGXC7j53dewA0/fIan/nGNT7YEcOcDbmrs59vXnTyhnb0ftqBSKVhVPhe9y8aYYvoBVYpJUOvIvPM9ACwPXY3tzR1oz/1+nDvlRhRcyOQThVRHRwdZWVmkp6dP+ntNFuGd6NebcCvLejOvJJfnX/1uUPv3V/be5XIxOjqK0WjkyJEjnkqO4+PjmEwmsrKyElqAh/M022KxpCLeUSIlvBMYpVLp88ORbAyzZ88O2IoR6D6ixWTCeHx8nMOHD6NSqaioqECtVofcfrysJlarlZqaGlQq1YQ0h4GQ6DfCSPGH344yZvhCWN//9NFrLIRaeC9CCQiilQ/4ui7/xToANrz/I5//z9tyGK0uPikfreOJKwQklGXrcLVX4+pvw/Kby8i8ezcA1lcfQLSa0W396aTb2nc/i/Wl33hsMLqv3I7tzR0IfS3oLnendrS9+xdcLQfQX/Fr7O8/he2NRxCddpSla9BdeR8yuYKRq4vQnP4NHNVvo7/iXpRl6ybsS6FQ0NXVhdls9omQZmVleX7vyWDjSIbBQSKiUCjIzs4mO9s9Z0EURcbHxzlw4ABHjhyhqakJmUzmsaZIUfFEwel0hjwwSEW8o0dKeCcw3rm8a2trEQQh6MmT0xHt6pVHt+9d1KesrIwZM2aE1X48rCaiKNLZ2Ul7eztlZWUTChMF07Yuz8V4f+ILpXDwFt2xIBHyAb/6j8VRObZjAdHlxHHwDVQrNga9rTDcw/hT28i4421kaQYs91yEff/LqNZciPmOMz3C27HnebQX/ARXVx32Pc+RfttryJQqxh77CY4Pnka94XKwWVCUrkH31e2T7q+wsJDCwkJ3mw4HRqMRo9FIe3s7TqeTjIwM5HJ51Ceph0syRLyTAZlMhl6vR6VSecreO51OT1S8t7cXm82GXq/3iHHpHIkH4VhiUpMro0dKeMeBYKwmXV1d9Pf3s2DBAvLz8yPel2hbNbxtBEf70iPxiC7S5cana39sbIzq6mrS09PD8tZLbV/xab8nmhIprFYr1dXVlJeX+yw3mUwcOnSI/Px8SkpKgr4ZSE8pVq9eHdR2EyPcwRGMbQSSKx/wcYV9nNHbNgCgXLgO9alfRxjuCaoJV/PHKBevR57pHuyqTroEV+0HqMvPR54/D2fjPuQFpQjd9SgWrsW+81FcrQcxbTv98z5YkX2+LXIFqooLA963SqUiNzfXM9AWBAGz2UxnZycmk4m9e/cGPDkv1oiimDB9OdZQKpXk5OR46kyIosjY2BhGo5Hu7m7MZjNyudznvAhkDlAkCFd4z5o1K8I9SgEp4Z2wmM1mBgcHyc7ODlvgTUW0rSaS8G5oaGBwcJAlS5aE7Us/uv1oIllNvIv5LF68OCJiOVo2maMHC4Ig0NTUxODgIMuWLQs5ihHtQY4/grWNQHzyAbdvcT8ZMZlMnqio5Ac1GAx0d3dTXl4e0d9x+T+FgIu8JAReHm8JmUIJotc55Qi9Cq2qaiuOPc8jL1yIqvx897VBFFFvuNx/jnGV1q+vO1DkcjmZmZnk5OSQnp7OnDlzPJPzJBsCQGZmJgaDgaysrJgJrqMRBCFVhTBGyGQy0tLSSEtL83laIkXFOzs7cTgcpKWlecR4WlpaVKLiqYh3YpL6JSYYLpeLpqYmhoaGyMvLIz8/P6oXzGhbTYaHh7FYLCiVSiorK5PucadcLsdsNtPS0kJOTg5r166N2DFES8h658WWStUXFBSE/flHs7T7CxV/8Lt85eo5PhOupAi394Qrf8QyH/AX+1RgMBgwGAyAb+TLbrfz8ccfo1KpfHzC4fy2AylnHgjNzc1kZmaGbJnyx9x/BHZeyzLzEUf7EUxDyLRpOA68hnL5GZOuH4kc41hNyHPnhn+QnyNZTPxNzvO2IXR3d2O322MiuI4mZTWJLyqVihkzZnislaIoYrFYMBqNdHR0YDabUSqVPlHxUOc9eZMS3olJSnjHgcmitAMDA9TX11NYWEhVVRUtLS1RFcUQPauJw+Ggvr7eE/UrKSmJ+D6ijSAIDA0NMTY2xsqVKyMaqYfoCW8p3VV9fT3Dw8MRK1Ufyf4enVpuxt8ilyYu1vmA3RMrJ/tcdJ//TZbtxv92eZrICetERqZUod3y/zDf/iV3jvFZC6ZcPxI5xnVX3BsV4e0PfzaEowWX92AsMzMz6Ena4fYxXshlegRxLG77DpVIBB9kMhnp6emkp6dTVFQEuFPSSoM0aQ5Benq6zyAt2O8wJbwTk5TwTgCkHNBOp9Mnj3W0bSDSPux2e0Tb7Ovro7GxkZKSEpYsWcLu3bsT8sI/FVKkWKvVUlxcHHHRDdET3iaTCZPJxMyZMyOW/QaCi3jfJD+ASeYeNG693M8Kl7/j+3/7zjB79wWxzgccDfpt7u8xPT09qX43U2F4tMvv8njlGJ+sP8ESzLVtMsFlNBoZHh6mtbUVQRBCrqg4GYkY8Z6d6/udOxwODh06xKpViZer3ZtofZZqtXrCHAJpkNbW1obFYgl6kBaO8E6lE4weKeEdR0RRpKuri7a2Nk444QQKCgp83lcqldhs0TVxRtJqYrVaOXz4MAqFwidFYCxm/EeqfZfLRUNDA6Ojo6xYsYKRkREcDkcEejiRSGdkkXK8G41GdDpdxJ8yBDNQkER3PIh3PuBI0d7e7rnZSh7hzMzMlFc3wQg3naBarSYvL89TeVgQBM9cgcbGRsbHx9HpdGRlZWEwGEhPTw9aTCVD4CMRBwf+iFXxHLlcTkZGBhkZGcyePRsAm802YZDmHRXX6/U+37PT6USvDy26bzKZohJwSpES3nFBJpNhNpupqakhIyNj0smT0fZfS/sIV/xNV7peitxH66IqCcJwL4ZSyfrZs2dTVlaGTCbDZDJFbfATyYj38PAwhw8fprCwkIqKCnbv3h2Rdr3R/OgcTh8dgkenX/dPQbRbe9MmXBmJk/s2UXht3doY7elEAPT5Atc1pqqHBkukRa13Boy5c+d6ckcbjUZ6enowmUw+62RlZU3rB04GUZsMfYT4lovXaDTk5+d7Mpx5D9JaWlqwWCxotVpPTnGHwxGW1SQlvKNDSnjHAUEQqK+vp6yszFOu1h+xspqEsw9pAJGZmTnpAEKK7EbDuwhfZAcJ9QLjcDioq6vDZrNNKFkfzTzhcrk87Gi6FKE3mUysXLky5OhGIMhGh6LSbkp0JwZjRxJf9CQi0Y4mS7mj9Xq9J72bvywZU/mBk0HUJkMfIbH66T0Ak5Ay6wwMDHDkyBEGBwcZGBjwiPFArUtWq9XnXpgicqSEdxyQy+WUl5dP65f1LqATLUKNqguCQHNzM/39/SxZsmTKAUQsyrqHKuyPHDlCQ0MDJSUlzJo1a8IFKZop9Lyzj4TC0NAQtbW1PhH6FClSxJZ4VK48OkuGPz+wWq32iDKXy5Xw14d4RpKDIdH7qdVq0Wq1FBQU4HK5KCwsRBTFCdYlSYhPlW8+UQYYxxop4Z3ARFuwhroPydYwc+ZMqqqqpv1xxqss/VTY7XYOHz6MKIqsWbNm0vy60SxJH2o03el0Ul9fj8VimTbKrf7Ps6MWqU4RGUTBFVY+6UQkT0Ny5Rj3Q16AKbcTwT89lR94cHCQoaEhzGazZ66AVNo83v32JpEiyVMRCVtjrJACUlI9AXCfr5Plm6+rq6OsrIzS0tKI9uPGG2/kpZdeQq1WU1payp///GdPf45HUsI7TgSSISIWEe9gRLG34DvxxBNJS5tYNdAfsSjrHqg4FkWRnp4eWlpa/E5o9dd2NK0mwYr6wcFBamtrmTt3LosXL572xhlt0a3422csz9IiAgoZPFheyEl5gZ0X0xFsxcp4YXtzB0Jfi6dcue3dv+BqOYD+il9jf/8pbG88gui0oyxdg+7K+5DJFYxcXYTm9G/gqH4b/RX3oixbF+ejiCyRTIX40UcfsXr16oQVZYIgJJSAlfD2A9tsNoqLi3E6nRiNRvr6+rBarR5BlpWVRXp6elw/42QR3tGcrxRp/EXnJ8s3bzKZeO655/jd735Hb28vdrud3/zmN5x00kmsXr06rOJPZ555JnfffTdKpZKbbrqJu+++m1/96ldhHVsykxLeCUysrCaBCEvJklFcXByQ4AtlH6ESaPtSKXWNRkNlZWVA1pRoW00CbdvpdFJXV4fVamX16tUJ473TKeQcONede/m1HhM/PdjHro3zw243lIqV8WDQokC15kLMd5zpEd6OPc+jveAnuLrqsO95jvTbXkOmVDH22E9wfPA06g2Xg82ConQNuq9un7L93dxPOdeg5ounGu/yS7KYg4o0ZrCQfJZE7Hja2trIysoiIyMjYaJ60SraFCkSIeI9HYIgoFKpyMjI8FTd9S7w1NXVhdlsRqFQ+EzajNa8nMn6mAyCNtGtJt4E2lelUkl2djY333wzN998M1arlTPOOIPc3Fwef/xxfvjDH6LRaKiqquKyyy6joqIiqH6cddZZntdr167l2WefDfpYjiVSwjuBiYXVZLrIu81m4/Bhd2ntqSwZUxFvq4l31pVFixZ5fJGBth1v4T0wMEBdXR3FxcUsWbIkYW/yow6B7M8rQ5odLja/28aw3YVDELlzxUw2z3bPkP/FoT6ebB0hT6Nkjl7FbX7a6u83YcjWo9a4L1HeEe6/PLGXXW/W4XQI3PfgJcwvzeMfz35C9aFubt22iVtvfB61RkltTS/5BRkc+LgDhUJOdo5+0lzcG97/EdZXH0C0mtFt/SmWP3wH1cpzUFduxnTXJnSX3Yk43I39oxdJu/YRAGy7nkDorEX3tVzk+fNwNu5DXlCK0F2PYuFa7DsfxdV6ENO20907sVuRZX5eHVKuQFVx4ZSfp4CLD7mfFfyHj/Bu4jUu4Wle50YWcn5EhbdGo6G3t5eGhoagM2dEk0Q95yE5hLc/H/pkpc2NRqNPERfvnOJHp6uLJMkivJOlnxD6IGFsbIzs7GyuvPJKrrzySgBGR0fZs2dP2N//jh07+MpXvhJWG8lOSnjHiUBO3nhezL1zjC9YsMCTvigUom01mUocWywWqqurp8y6MhXxtJpI2Vbsdjvl5eVotYFn/5DJZJO2HUl7yLhLYOU/G7C6RHqsDt78kjvarVXIef7kYjJVCgZsTta+3sSFRRl8NDTO3ztGOXjuAhyCyOp/Nfptd/2GUh5+YBebzvgta9fP55xNy6iomgdAdraeZ168jr89uZfH/vgBd9y9ecL2fb2jPPnMt1Ao5Pzuf95Cr1dz1dXrpz4YhzWkzwBAVbUVx57nkRcuRFV+vvu3K4qoN1yO7tKf+9lAO62v+x22Y6KbxzkdPbl8g7ewMooLO4M0UMeLtLGLd7iTr/B3bJh4metwMEYOpWxmBzqy+TOnMZMTaWUXAk42s4PZVPrd58yZMz2Pn71FWEdHh48IMxgMESnsEgiJLmwTvX8QuB1GpVJNKOJiNps96erGxsbQaDQ+RVwiFf1NFkGbTBHvUM9Nk8k0oWplZmYmZ5555qTbbNy4kd7e3gnLt2/fzubNmz2vlUolX/va14Lu07FESninmIDFYqGmpoa0tLSQxOrRxCqriTeCINDW1kZPTw9LliwJeSJHvKwm/f391NfXT5ptJZC2J3uSEUl7iHdbuwcsXLG7g0PnLUAEbjnYyztHxpDLoGvcQZ/Vyfv9Y2yenYlWIUergAuK/Jck1qdpePqFa9m/r429H7Zyww+f4fobNwKw8ezFACxZVsjO1w773f7sc5eiUAR+ExcdNhwHXkO5/IxJ11GUluN88iYE0yCyNAOO3X9Hc+Y1AKjWXID5pfuQt3+K9tLbAVAuPRXL/V9Fc853kWfmIZiHwWoKuFz5afwXn7CDK3mLNNxCqJmdlHAGczmJMi5kIeezFHcVx9+zgvN4gHmcypv8F29zO+dyPwAOxvgOB2jlHV7gm3yPQ9Pu358Ik3IGNzU1MTY2hk6n83iEMzIykkI4RZpkEd6hfDdyuZzMzEwyMzOZM2fOlBPzpPMgVC9wsghvQRCO+SJWoZSL37lz6urDjz32GC+//DL//ve/E/73Em2O7bMnRVAIgkBrayt9fX0sXrw4YrOOFQpF1Ko/Su17C2+TyUR1dTUzZsxg7dq1YV3MY201cTgcHD58GJfLFbK1B6aOeHsTjD3kZ8umnoi6LjeNAZuLfpuLV7tN9Ntc7D/nBFRyGfNerMXqCs6rq1DIqVxbQuXaEhaW5fPCcwcBUH/eX7lchtPl/xh1+uC8qeZ7tiCftWDKdeSGmegu3Yb57gtAFFGtPAtV+Sb3e2kG5LPKELprUZaWu/tftAjtl2/DfM9FIArIFCp0V9wbsPD2RyP/YhVXTVhuxYiVEeZxKgAruZKnucTz/jIuB2Aep2BjlHFG0BHc7/vonMHehV26u7sxmUwolcqIe4QT/SadDMI7Un2cbGKelFO8u7sbu91OWlqaT07xQK7BySK8XS5XWBMNY0mo37nZbI5oufh//etf3HPPPezatSuqtSaShZTwjhPB/CBiUaBheHiY2tpa8vPzA0oRGAwKhQKrNfTH+NMhCVhBEGhqamJwcJClS5cGPWKfrO1YWU2kCazz589n5syZYX3nU0XTQ7WHTCe8a0etuESRGWoFRoeLfI0SlVzGW31m2izugdf6PD3X7uvip0vycAoiL3eb+JaftlqaB5DLZBSXuP34tTW9FBZl0VDXF/RnkZamwWyeOrddxq3/9N3mmoe+eO+WVzyv1esuRr3uYr9tpP/kqQnL1Gu3ol67dcJyw6NdU/ZnMrrYy/k8NP2KRyFDNuX/oeCvsIvdbsdoNDIyMkJbWxuCIPjYU0JJYZeaXBk+0eyjUqkkJyeHnJwcz76knOIdHR2YzWZUKpWPPcXfgCxZIsnJYjUJ53fjz2oSDt///vex2Wweq8ratWt5+OGHI9Z+spH4Z/lxjhTNjdYFyel0YrPZqK+vZ/ny5REd5UrEIqvJ6OgoH374IbNmzaKysjJiA4do3lAlceydU7yioiIik9gCtZoEYw/xhyTiAUTg8bWzUchlfG2egQt2tbL81XrW5OhZlOmOEFXM0HNhUSYr/tlAgVbJ8iz/vvUxi527bn8Vk8mKQiFnbnEO27ZfwK4364P+LE47YyHXf+9p3tpZO+nkykTk/ieMyDjIowAYP1+6i99i/vz1/9AGvPH5e3I+437PernAW5///wIveLUhH3kb7Q8nL3gVDmq1mry8PPLy8gC3SJHsKQ0NDYyPjydUCrtIkAzCG2L35EAmk5Genk56ejpFRUXAFwOy4eFhWltbfQZkUjXFZBG0yRKZD6efoVhNpqKx0f9cnuOVlPBOcKSUgtEQ3pKPWKVSsXz58qg9Aoqm8HY6nfT29mI2m1mzZk3AucUTAblcjtVqZd++fZSWlnoe3UaCQK0m4dpDXJct97s8V6Nk91kn+H3vhkW5bFtewJhT4JR/N/tdZ+nyQv7y7LcnLH/9nes9r5etKOKxv7ptF1suXsWWi1cBsP3XF/lsM68kl+df/e6Ux3FcYQg8q0+4KBQKDAaDT/EOKYVdZ2fnhGhoVlbWhGtdoovaZBHe8cTfgMxsNjMyMuKppigIAgaDAbVaTXp6esKK8GQZIITTz0hbTVL4khLecSLQC3U0cnlLEVZBECgvL6euri5qPmaInvCWislkZ2eTkZGRVKLbbrdTXV2NzWbj5JNPjniqtkAnhQZjD7l9+dRWk0C5Zl8XNUYbVpfIlSWJWb1s9es61PbEj2odjV0t8PFZ4/HuxqT4S2EnRUOHhoY80VCpnLXBYEgKq0kyREATCe984eD+DA8fPoxKpaKnpweTyZRQ6Sy9SRbh7XQ6wxLekYx4p/AlJbwTnEiKVlEU6e7uprW11adqY7zzbAeLlGbPZrNRXl6OxWKhv78/Yu1HE1EU6e3tpbm5mRNOOIHx8fGo3FAC8XhDcPaQSPHXk3wnF1ZHrOXIkYyiG5Kz3/6iodJkvbq6OsbGxjh06JCPPSWRIsypiHf4yGQyFAoFeXl5HjHucDg850FnZycOh4P09HSfSZvx+NyTxWoSbsRbsgmliDwp4Z3gRCriPTY2Rk1NDTqdbkLVRoVCEdUKmZEU3n19fTQ2Nvqk2bNarVEvNBQJbDYbNTU1KBQKz3cgpeOKNFN5vEO1h6RIEQsUCgXZ2dmeCot79+5l3rx5nqIuFosFlUrlEeKZmZlxnZSXEt6R4WhBq1KpmDFjhqfgmSAInkmbbW1tWCwW1Gq1z6TNWJwHyRLxDmduWCriHV1SwjtOxMpq4p3PevHixZ6bmTeJUtJ9KqQKmjKZbMIExGim/JMI5+YqiiI9PT20tLSwcOFCT2QvmgTq8Q6Ua/Z1TYhUH0tsvdw3r3X3y1Vx6knkEQXXtMV6Ep2jJ+vZbDaMRiMDAwM0N7vnCXjbU2KZ7i0lvCPDdJFkuVxORkYGGRkZzJ49GwCr1cro6KjPeeA9aTOULDrh9jNRCDfinRLe0SMlvBOccETr6OgoNTU10+azTmSribc9ZrIKmtGujCmTyUK+uVqtVqqrq9FoNBOeNESTSBf+OZZFN8CfrviOz//n8nGcehIZRq4uQnP6N3BUv43+intRlq2Ld5ciikajIT8/f7APUAAAIABJREFU33M98M4l3dPT48klLUXFo2lLCLQqZIqpCUXQarVatFqt5zzwtin19fVhs9nQ6/UeIR6JLDrJFPFOCe/EJCW8E5xQIt4ul4vGxkZGRkYCymcdbatJqCJwfHycmpoatFrtlKI1FhH7YG8KoijS1dVFW1sbZWVlnup/sSKaFTcjjcJkxZXhP61grPY/HXbbIPt2nQWAzdqHTKZArXF/p+vO2I1ckRgTvzzYLChK16D76vaAN9HnJ8f54g9/uaSlUueSLSFapc4TPeKd6JNTJSIRST7apuSdRaerqwuz2ewzsTPUIk+J/H1LhCu8MzMjN68nhS8p4R0nAv3hBlt8ZnBwkLq6OoqKiqisrAxoP9GuLBlKwYyOjg46OzspKyvzePwmI9oiU4qoB+qX8x4wVFVVxcV/OpXHO5pU3/nliLSz4f0fTVg2cnURhke7EF1OLL/9OqoVG1Gu2IjlN5eRefduAKyvPoBoNaPb+lMsf/gOqpXnoK7czLln7kaX6zsAPTrKPRVqzQzWn7UfgIZDd6BUplOy6Mc+67g/bxGZLDaPoQXBiVw+ybklV6CquHDSbX88avK8bmxs9BGtxwIymcyvLeHoUueS+JLS2IVCMgjvRO6fRDQsHJNl0ZGi4u3t7TidTh97il6vT4rPazpS6QQTl5TwjiOShWEqArWB2O126urqcDgcrFq1Cp1OF3A/ol1ZMhjMZjM1NTVkZmZSVVUV0IUjVhHv6RBFkc7OTtrb21m0aNG0A4ZoEmmPd0JgH2f0tg0AKBeuQ33q1xGGewLa9OnT70R32Z2Iw93YP3qRtGsf4U8R6JLF1MjH728l03AioyMHqTjlnwz1v01z7a9BhPzC81m44k4EwcmbL8xk40UDAPS0P8Vg379ZVvEHetqfoqnmbmQyOSp1DpWn70QQnNR9ejMjA+/jclkpXvB95sz/FgN9/6ap5i6UynTGzM2cfO5n/jum0ia9rzvSSLYEKZuT0+nEaDR6oqHeWTMMBkPAAizRhW2yeJJj1U+1Wk1ubq7nKaQgCJ6nI83NzYyNjaHVaqPydCSWOJ3OoHSAN6mId3RJCe8EZzqriXd6utLSUgoKCoK+CUQjV3iwCIJAa2srfX19LFmyxJNSKhBiFfGeirGxMaqrq0lLSws6yh2NG7f0mYiZOchGhyLa9mQ40qM8oU2tI/PO93wWyRRKEL2+e0fsB5CW0VpWVO4gK2cN1rFO6j/7OSed+SFKVRb7dp3Nke5XyJ159qTbN1bfSeXpO9FoC3DYRwDobH4UjSafdRt3I7hs7P73enIL3OWWR4f3s+HsT9GlHdu++2ijVConZM2QBFhLSwsWiwWdTucRYBkZGX4FWKIL70Tvn0S8BghyuZzMzEwyMzOZM2cOoihO+XQkWQIa4US8bTYbWm387H/HOinhneBM5b+WLA3hTtyLdsR4OkZHR6muriYvL4+qqqqgL77RvqlMJey9bTGLFi0K+nG9ZAmJlvC2/89rft+XJn1qtVrKysoCHijU1taSl5fHsPXRSHY3ZGSZ+Yij/QimIWTaNBwHXkO5/IxJ11eUluN88iYE06D/9//2GcuztMw6K/A+6NNLycpZA8DI0F5m5J/m8X/PmnsZw/3vTim8s3PX8emeq5g558sUFLmrbg707sRsqqWn4ykAnI5RxszussuGGWsjKroT3QMcK9E4lQDr6+ujoaHBb1GXRBe2yRLxhsTwTstkMnQ6HTqdzlNNWJq8OzIygtVqZe/evaSlpfnkFE+0zzicdIJAwh3PsURKeMeRUK0moijS1tZGd3d3QB7o6YiF8JasD94/ZpfLRVNTE8PDwyxbtixhZ1FPZjWRotwZGRkB22KORhLIkb7ITTZY8M4SE8qkz+ksLI/87h1efekz5HIZcrmMn995ATf88Bme+sc1ZOf4VhZ9a2ctTY39fPu6k4Pqg09/lCq0W/4f5tu/hCx7FvJZC6ZcX26Yie7SbZjvvgBOnvh96RRyDpy7gHOD+DkolPrp+ymT4y5X5Mbl+iIyv3TNIxiH9nCk+1U+eKOS9WftA0SWrn6AGQVf8mlnoO/fKBTTV2g1PNoVcP/d/Yu/4JmMeA0M/Akwh8Phsad0dHTgdDqx2Wz09PRgMBjQ6XQJ91kmk/BOVKTJu1lZWQwPD7N69WpPTvGOjg7MZjMqlcpnUBbP3PIQesQ70QfixwIp4Z3gHG0DMZlM1NTUkJ2dHbLY87ePaAtvSdxLN4Dh4WEOHz5MYWFhwJNA48XRVhPvgc9kudGDaTsajy79CWSbzUZ1dTVqtTrkSZ9TTdo88HEH77xVzzMvXItao2R4yILDMfl5dfrGRZy+cdGE5U6n/20mE5Oas65Dc9Z1E5anXfOQ53XGLa94XqvXXYx63cXwz9AF/2QYciqpO3gTdtsgSlUWve1PM6/sx8hkcpSqbCymBvTppRzpesETFR+3NGOYsZasnCr6e17FOt5F7swzaW98mOy8U5DLlZhH69DpU9aSeKNSqSb4g/fu3YvT6aSpqYmxsTF0Op0njWFGRkbcRW+iR+STCWkQI5PJJuSWt9vtGI1GhoeHaW1tRRAEn0mbsR6UhZv2MHXORI+U8E5wJKuJFB0eGhoKKEVgKPuIJpLwlslk1NfXY7FYWLlyJXr99NHCeOMtji0WC9XV1WRlZUVk4BOtHORyudyTqSaSBXymekrT32/CkK1HrXFfVrwj3H95Yi+73qzD6RC478FLmF+axz+e/YTqQ93cum0Tt974PGqNktqaXvILMuA/fhJyH8Nh3CWw8p8NQVlNvNHqZ7Ng2Tb2vn0GiJBXuIn8wvMAKFtxFx+9swm1Jo+s7NUIgg2AwwduYNzSAiLMmLmRjKxlpGcsZnysgw9ed1tY1No8Vq9/LiLHmGwksgCQy+UoFArmznUPikRRZHx8HKPRSHd3NyaTCaVSGXb6unBIRbwjx1RiVq1Wk5eX57m+ulwuzGYzIyMjNDY2Mj4+HtNBWajC2263x/wcPd5ICe84EmiqP7vdzp49eygsLKSqqiriN6JYWE0UCgUDAwO0tbVRXFzM4sWLI34c0YrsSJ9PS0sLPT09LFmyBIPBEJG2oxXxltqVytQrlcqIFPCZqr/rN5Ty8AO72HTGb1m7fj7nbFpGRdU8ALKz9Tzz4nX87cm9PPbHD7jj7s0Ttu/rHeXJZ76FQiFnw/thdTNkArGaLFj2X57XaRkneNIMShQWf43C4q9N2G7W3EuZNffSCcvLNzw/YZlMrqBsxV2UrbjLZ3luwRnkFkzuYT8WSaZH3zKZDL1ej16vZ9asWcAX9pSRkRHa2tp8IqEGgyEq1RW9SUW8I4cgCAGLWe984eA7KOvp6aG+vt7vnIFIEarwNplMqVSCUSYlvBMYh8NBXV0ddrudioqKkFMDTUe0hbeUN9Vut1NeXh6V2dLRmqQI7u+hoaGBgoKCKSuAhkI0hffo6CgfffTRpBU/Q2GqiLc+TcPTL1zL/n1t7P2wlRt++AzX37gRgI1nLwZgybJCdr522O/2Z5+7FIUiFZlLcWxxtD3F5XJhMpkwGo00NDQwPj6OXq/3REIjUV3Rm2SIeCfL4MrbLhkskw3KpJzinZ2dPiktw624mhLeiUtKeCcgoijS19dHU1MTJSUlGI3GqIluiO6j3N7eXpqamtDr9cyfPz9qKYoky0akb1itra309vZSVFTEggVTT9wLhWgIb7vdTktLCw6Hg6qqqog+NvR4xyc5ZRQKOZVrS6hcW8LCsnxeeO4gAGq1+wYgl8twuvwfr06ferx5PPDwCWmMHQnmd3oG702/Uhz5Eu9O8k5a1gg3/H5ioSYDMCeqffqCDGA2ILRlYjnr3hjtNTiSJSof6XLxKpVqQkpLadKmVHFVrVb75BQPZm5OKJ+pxWJJ2EQHxwop4R1H/P0orFarxxpQUVGBWq2mtbU19p0LE8nioFAoqKiooKWlJar5T6WofaREpslkorq6mtzcXObPnx+RNv0RaeHd19dHY2MjBQUFOJ3OiHv1PJMr/VzPW5oHkMtkFJe4byK1Nb0UFmXRUNcX0T5Ek3A93slAXpTTrU9HcKI7ubEYI2NJiwRy22i8uzApyRCVh+j3Uy6X+624Ojo6ysDAAM3NzQA+kzYjbVVKVa2MPinhnSBI+aA7OjompHnzl4ovURFFka6uLtra2nwm8sWiumQk2hcEgZaWFvr7+z2TWLu7u7HZbBHo5UQiJbztdjuHD7stHBUVFVgsFnp6AqvqGAyeiLefU3HMYueu21/FZLKiUMiZW5zDtu0XsOvN+qD3kyU3YRRiH3VxXbYcIKh0golG+5bEv06kSOFNMN7peBLpiHcgSBVXJbugy+Xy2FP6+vqwWq0+OcXDtSqZTKZUxDvKpIR3AmA2m6mursZgMLB27doJP+yjU/FFi3Af942NjVFTU4Ner5+Qri7awjsSAlYq5JOfn09lZaXn845mZcxItH3kyBEaGhooLS315BseHx+Pim9yqiwsS5cX8pdnvz1h+evvXO95vWxFEY/99SoAtly8ii0XrwJg+68v8tnmlXX+C7rvnhtBu88/J38rmwGGCS7HeSKQprOzb98+MjIyPJ7h6SJiyeKvTXHsEov7WySIh/A+GoVCQXZ2tieNrSiKjI2NYTQa6erq8mTSsdlsDAwMBJ1JJ1UuPvqkhHccEQSBxsZG+vv7pyyTLuXyjmaKH0kAhppwv729na6urkmrNyZyxFsQBJqamhgcHPRbyGeyAjqRIBzh7XA4OHz4MIIgeGxJEtMVugmVQIo+HQv8VRF5r0nXr//pmashk8mQy+VRERuCUI7JZGJkZIT6+npsNtuEyXuJ4qcdY5DHcWdpMdOLHAV63E/JrmYvSibP8tDC23zAvXyNlye89wLfZh0/Jp8lE97bzf2Ucw1qvkhl+i6/JIs5qEhjBgv9bhdr3q7p495X6nj5xlPi3ZWokyxPdBOxnzKZjLS0NNLS0igsLATc9pQDBw5gNBppb2/H6XT62FP0ev2k14CU1ST6pIR3HDGZTCgUimnLpB9dRCcaSMI1WOHtHa2fKq+1QqHw5JWOBqEKb6PRSE1NDQUFBT5Rbm+ilWtbajsUgdzf3099fT3z58/3zJCPRLvTEc3o/7FOVlYWoigiCAKCIOByuXC5XIii6CPCw72xe6coKy4uRhRFz4St9vZ2LBYLGo3Gs048J7bpmcF3OADAW2xDTTrruSHsdjfzR7/LBVx8yP2s4D98hHcTr3EJT/M6N7KQ8xNCeIeD0yWg9JMhSLpWh5sxI9IkoqD1R7hl2GOFXC5Hq9VSWloKuD9fKad4c3MzY2NjaLVan0mb0r3bZDKFVRQuxfQk/hl0DGMwGEhLm778cyzybEviPtA8opIX+siRI1NG6yUUCgVWq3XKdcIhWEEoPW0YHh5m+fLlU47wE8lq4nA4qK2txel0smbNGjQa/zPlolkR83iIeEcDSVhINzhBEDxCXBRFz29cKjQl/YUrSPxV2bNarYyMjHDkyBGOHDnCyMgIM2bM8IiyRCug0cou/sl/AiBDxlW8A4AdM09xMUc4RCHlbOVJZMj4M6dxFvdSxBq2k84arqWZnSzmy5jo5nFOR08u3+AtrIziws4gDdTxIm3s4h3u5Cv8HRsmXuY6HIyRQymb2YGObP7MaczkRFrZhYCTzexgNpV++17bPcqiwkwsVic/eGI/hzqMOFwC27YuY/Oa2bT2m/n6Qx9isbm//wevLOekhb42p31Ng1zzp308+5/rmZml89vOY7uaee6jTsxWJy5BZNfPJuZ7nzt3rk/GDO8BmLf4ijXJJLwnu+YmEkcH0eRyOZmZmR4LiSiKWK1WjEYjR44c4ZlnnmHHjh2sXLkShULB2rVrI96n++67jxtuuIH+/n6fOWzHIynhHUcCjTbEMuIdCFKUOD8/f9pofSjth0Iw7Y+MjFBTUxNwufpo9j0YgTwwMEBdXR0lJSXMmjVryn5PVdo9HKT+Jtot8pW7/8Gev33gLucsl/H133+L+VUnTLnNWFYaeqMlJv0TMyfar44W4oAnEi4JcsBz7kmlqiMhULRaLZs+yafflg987pv3mYsbvacaPwphmw+4l038jrmsx4YZJe60pL18wnepJoNCdrCedt6nmA0+2zqwUEQVZ3MfAJ+wgyt5i7TPPfzN7KSEM5jLSZRxIQs5n6VcDMDvWcF5PMA8TuVN/ou3uZ1zuf/zdsf4Dgdo5R1e4Jt8j0N++37vK7X88epKtr9QzZeWFLDjmipGLHYq/+sNNi6bSX6mljduPh2tWkFDr4nLH/yAj+48+4tjrx/gB4/v54Ufn8zc3DRueeqg33YAPm4Z5tNfnkNOun9x6C9jhiS+mpqaADxC3GAwRLSgy1Qki/BOln5O9/RaJpOh0+nQ6XTMnDmTsrIyLr74Yt577z2eeOIJ/vjHP/LII4+wbNkyTjrpJE466SSWL18ecrS/o6OD119/3VPh9XgnJbyTgFgIb6VSOa24dLlcNDY2MjIyMm2U+GgSQXhL/TcajZx44okBPW2A6Ee8p+u30+mktrY2qAJEx5PHu2l3A5++8gk/27sdlUaFacCEyz797+WvD/xgyvd/fcadXPKrrzJvzeTpJKdb56v2LdP2w5ujfd+SLUX6g8gJ8f7oJOqJCnNYz2v8mOV8jcVsJQu3cCyi0vN6JisZoXWC8JahYAlfnrTtRv7FKq6asNyKESsjzONUAFZyJU9zief9ZVwOwDxOwcYo44ygY2L6wNZ+9+Du9c96efHjbu59pdbdvsNF+6CFwmwd339sPwfaRlDIZdT3mjzbHu42cs2f9vH6zadRmK2bsh2AM5fPnFR0+0PKmFFQUAC4rzVGo9EzUc+7oIvBYJjSGxwOx4qgTRRCscTk5ORw4YUXsmvXLm655RY2bNhAdXU1H3zwAf/93/9Na2sru3btCun7v/7667nnnnvYvHlixeLjkZTwTgJiVdJ9qn0MDQ1RW1tLUVFRQFHiYNsPl+nE8fDwMIcPH6aoqIiFCxcG1f9oC++pvO+Dg4PU1tYyb948CgsLA+53NK0mgiCglqfhEmITLZ4OY+8I6bkZqDRue0RGrnty7Et3PsfBlz/BYbVTunYBX3/oW8hkMn59xp2UVJZS93YNY8YxrvzD1SzcsAj7uJ3Hvv0IHZ+2M7OsEMe43bOPJ7+3g9aPmrFb7ZRvrWTzzy+OybH5E+LePnEpQg74iPBkEDFTsZffsZ9HAfgar3IyN7OQTTTwKjtYz3/wGgAKvhCZMhQITBxwKdEiZ3Kx1MVezuehoPsoOyqZ/dH/Szg//x2KIvz9P9dTVuibMWLb3z+jIEvLwbvPQRBFtN94xvPeLIMOq8PFJ63DHuE9WTt7GgdJ04R3S1cqlRMKupjNZoxGIy0tLVgsFrRarceSlJGREREhmizCO1n66XQ6Q/5ezGaz53tdsWIFK1as4Lrrrgu5Ly+88AJFRUWceOKJIbdxrJES3nEk0awm/vbhdDqpr69nbGyMlStXotfr/WwdWPvRjnj7E7Aul4v6+nrMZnPI/Y+H1cTpdFJXV4fVag04yh1Iu+EiWVhKZvlGi6XzZHx8nKVLl07aX2/RCHh8zNMxPj7OyMgIsGfCe0vOXM5Ldz7HrUt+wpIvLWPNpWspO2UxX/ruWVxw21YA/nTl7/n0lU848fzVAAhOF7fu/gWf/fMAL//iOX782i28/fBO1DoNv/js13R+2s4vKm/17OOiX1xKWk46gkvgvrPuovPTdmaviP1j03j5xGNNJd+jku95/h+iiQKWU8ByutjHALVo/USXA0FDBnZMpJHLEarJZZFHmEvvAWjJQkc2bbxLMSdzkP/1RL8BDvEUJZxOG++hJQstU89zOXvFTB54vYEHrlyNTCbjk9ZhVs3LxjjmYHaOHrlcxuO7WnAJXzxRMujV/OmaSs68+y3SNApOW1IwaTvRwNsbPGfOHB9vcF9fHw0NDT6TebOyskKypySLoE2miHc4wjvYdIIbN26kt7d3wvLt27dz11138frrr4fUl2OVlPBOAqScnNHEn7iUMmcUFxezePHisB4xxkJ4Hz15U4rSz549m0WLFoXc/1hPrpSi3MXFxSxZsiSkfkfb4+2N9DRhzpw5U54n3qI7UMEtIfkR/aFN1/KzvdtpeK+W2rdr+MNXH2Dr9q+gzdDx2r0vYx+zYRm2ULh0tkd4r95SAUDx6hIG2gYAaHivli993+2tnb1iLrOXfyGs9z3zIe/+8S1cThfG3hG6D3fFRXgfjT8hDu4bbyj2lJErc5DPWQIuF4rCheiveQiZZvLBquUP30G18hzUlZsx3bUJ3WV3opy/KmLHJ/Eh99PCW8iQk89SFnAuHewOqa1yruFJziGDQhawiRM4x/PeMi7jRa5mD7/lUp5lC497JldmM58t/NmzrhItD7MKFw42s2Pa/f7soqX86H8/YcXN/0IQRUry0nn5xlP47pkL+PL97/HEe62cs2LmhKh1QZaWl284hXPv2cWOa6ombScWHO0NBveE79HRUUZGRujo6PBJXWcwGNDpdNP+1pNFeB8PhX6kiHcw7Ny50+/yzz77jJaWFk+0u7Ozk9WrV7N3717P+XM8khLecSYQz2wss5qAuwpibW0tLpdryswZwRBLq4l3lH7VqlWTCrZAiVUeb+9+r169Oqx+R8uL7d2uIAg0NDRgNBqnfZogCUGpjUj7ROUKOWWnLqHs1CXMXjaHXY++Sedn7dz24Z3kzJnBi3f8HYf1iyciys9tKTKFHME59XnZ33KE1//7VW7d/QvSstPY8c2HcVjtU24TL/xZTSb3ifu5Mat1ZN75HgCWh67G9uYOtOd+P+r9BjidbZO+dx4PTFhWwmmUcJrn/0086Hl9FW97Xt+K2We7Kn5AFe4nNk9wJhfxhOe9uazn+9T4rH81H/rt0wr+wzPRcirevs2dXUSnVvLItyomvL9gZgaf/vJcz/+/unwlAKctKeC0JW7v9dzcNKrvOc+zjr92vnHqfL5x6oTFUUelUk2wp5hMJoxGI01NTYyNjaHT6XzsKUeL7GQR3sdDoZ9IFtBZvnw5R44c8fw/b948Pvroo1RWk3h3IMX0xMpqYrVa6enpobm52acKYqTaj8XkSu9ocbhReoloTVSEL0R9oFHjeCMJb6nK56xZs6ioqIhKlDtQeuu6kcnlFCxwn6/tB9uYuXAWnZ+1k56bgdVsZf9zeynf6j/dm8SCDYvY+38fsPj0pXQd6qDzs3YArKPjaPQadFk6RvuMHHrtIGWnLg6rz7p/Xo/MNhpWG+Hz8JTvKsvW4WqvxtXfhuU3l5F5tzvCbH31AUSrGd3Wn066rX33s1hf+g2IIqqVZ6H7yu3Y3tyB0NcC/DaSBxEWV/BGvLtwzOFtPQH3NWB8fByj0Uh3dzdmsxmFQuFjTxEEISnyYyeT1STUlKA2my0pUiYmM4l/ph/jBBKZjIXwFgSBrq4uDAbDhCqIkSDahVdEUWRgYACLxRKSJ3oqoimCRVFkcHAQs9kckeh8tJHJZIyOjlJTUzNtZhvJcywVaInW52gz2/i/Hz3OmNGCXKEg/4QCvv7Qt9EZ9GxbeROZBVnMK588M4nEaddt5LFvP8LPlt/IrEWFFK8uAWDOicXMWVnMz5bdSM7sGZxw0sKw+xx/0T01osuJ4+AbqFZsDHpbYbiH8ae2kXHH28jSDFjuuQj7/pdRrbkQ8x1nkkjCO1S8I+oppkYmk6HX69Hr9Z5iXw6HA6PRyMjICG1tbYyPj3uyTBkMBrRabUIGH5IpMh/OACFan31ra2tU2k02UsI7CYhmtFgURbq6umhqaiIzM5Ply5dHZT/RvIgODAxQU1ODRqNh9erVCXnB9sfw8DDV1dUolUrWrFmT8P02m818+umniKI4aZVPmBjljvaNqri8hJvf3TZh+UV3XMpFd1w6YfmN/77N8zojN4NfNv4PAGqdmmv+4j/F4Dd3+J/V793WMYF9nNHb3On4lAvXoT716wjDPdNs5Iur+WOUi9cjz3Q/TladdAmu2g9Ql5+PPH8eHJl6+xTHPiqVitzcXI/loKmpCaVSid1up6GhgfHxcfR6vceekp6enhCCV6oym+iEKryjHSRJ4SYlvJOAaEW8x8bGqK6uJi0tjWXLlvmdlZzISFUcHQ4Hy5Yto729PSkuGN75xBcvXkxnZ2dC91sURdra2uju7mbBggW0t7dPKbpjEeVOESW8PN4SMoUSRK+nVY7QK9CqqrYySZ2ZFHEg7cYLkI8OxWx/QmYOll+/NGG5KIpkZGSQk5Pj+X9sbAyj0UhnZydmsxmVSuVjT0kGa0q8cDqdqc8ngUl9M3EmEGESaeHtLaQWL15MdnY2JpMp6hM4I8mRI0doaGjwVHG02WxJ0X+paqaUT9xqtSZcQRpvxsbGOHToEFlZWVRVVeF0Ov32N9ZR7hSxQ5aZjzjaj2AaQqZNw3HgNZTLJ5Yjl1CUluN88iYE0yCyNAOO3X9Hc+Y1AKjWXAB/ilXPU0xHLEW3tL+Ma9dPWO4vD04mMJMvxLrdbsdoNDI0NERrayuCIJCZmenJnhJJe2GyE2rE22azxaxa6fFMSngnAZHMUGEymaipqSE7O5uqqirPjzMWmVMiwWQZV6LtIQ8XQRBobGxkeHjYp2pmovZbFEU6Oztpb29nyZIlZGe78wR7Z8bwXjcV5Y4M2/9RzV8/aEMhlyGXyXjkWxVUnTAjIm2/XdPHva/UBZ16TqZUod3y/zDf/iVk2bOQz1ow5fpyw0x0l27DfPcFnsmVqvJN7vfSDJiVQ6Q7c0I+jmQiLWsk3l3wIGgik6ki1kiDA7VaTV5eHnl5eYBbXI6OjmI0Gqmrq8Nms02wpxyv16JQhbfJZAqqInWK0EgJ7yQgEhcPQRBobm6mv7+fpUuXTkgXFIsJnFJ2kFCjoX19fTQ2NvrNuBJt4Ir6AAAgAElEQVSLgYMkLIPFaDRSU1PDrFmzJlT9TEThbbVaqa6uRqvVUlVV5fPI0nsQGGoxnBT+2d0wwMufdPPx9rPRqBQMmGzYnbE9NwyPdvldrjnrOjRnTfS5p13zRcXHjFte8bxWr7sY9Tr/1T3/uEMBGMPr6Oe0b5l4LZEio9KfIAgee4LBYIhoxobR0VF6enooKyubZA0FJv4Qsf2FwsGDB1m0aNExl6lCoVCQnZ3tCQqIoojFYsFoNNLR0eGxp0hCPDMz87ixX4QjvIPN4Z0ieI6PszCBiYVQkYRfQUEBVVVVfoVvrMrShyK87XY7hw8fRhTFSTOuRFvASu0HczETBIGmpiaGhoYmzQAil8uj+rkHO1iQ0kmWlZX5zbUqfQ5SlFv6PmMluLWiBqssusWkIoXCLmf//v1kZ2d7bv5TnT89I+PkZmjQqNzr5Ga4hdK8/3yRK08u4aVPunE4BZ75z/UsKszEYnXygyf2c6jDiMMlsG3rMjavmU1rv5mvP/QhFpv7vHrwynJOWuj7Xe5rGoR50TnuWJJx7foJvuHJIqMjIyP09PRgt9tJT0/3CHG9Xh/y+RvqYDyWJEsmjnCR/X/23jw+rrre/3/OkmQmyWRr2qRpuqRtmqXpmjbtlVUsIHoVrV8B9SI+KJfrQ0VUQFGWi0i/cpWfyxcEReGCC27Qy1avgAIVKdCF0mbfk2Ztttkns5/fH9NzmCQzyWxnlnSej0cfTSYzZ85MMue8zvvzer/eCgW5ubnk5uayYsUKwGedMBqNTExM0NPTAzDDnhLOxYhoo0sFIhXeFotFWo1NIx9p4Z1ChHuQ93g8dHZ2YjKZFox+i0flVRxLH07VYXR0lO7ubtavX09JSUnQ+8l9QBQvGkI9mIk516WlpXOq3P7EYypmKPvsdDppaWlBqVTS0NAgZcD+WfniTKGrAs6HLg4k1dFDI2Sx13XFwnechSAI9PX1SStBsT7p2DfaMRgMUk+CUqmkoKCALQHue9mmUu490MyGWw6yp66Eq3ev4qKaZYBPhL+7/3IefqWTBw628at/b2D/c81cUlvC4zfuwmB10nD3K+ypK2VZnoZXbv8gmkwVnaNmPvPQYY7dd7n0PIc7JrjpyeNwb0xfasJYyKc8uzLq9XqxWq0YDAZ6e3uxWq0LDngJRiqIsXDPG6o/NLIpX4MAqBTwUH0ZH1iammIsKyuLZcuWsWyZ73Pk8XiklRDxIiwnJ0cS4jk5OUHfq1TJ8BaJ5O/SarWmK95xIIlOnWnmQ7RphPrBn5ycpL29nfLycqqqqhb8EMbj5BHOBEiHw0FLSwsqlUqWXPFwESvTCw0lEC09ExMTC17sQHTv+xxRPJvzoJPA1oE5aIF635cn6Yx4nxJFJFXw6elpmpubKSgoYMeOHbJUBTUaDaWlpTPGaxsMgX2/uZoMju+/jDfaxnmtZYyrHzzM/VdvBmDvznIA6iuKOHB0EICXG0d5/t1hHjjYBoDd5eH0pJWyQi1feeI47/UbUCkVdIyapedoHTZy42NHefn2i9kY81ebAP7V9yp0L9wY8kO8WXkoL3sAnU7HypUrEQQBu913geQ/4EUU4vMlaCzGirdWpeS9K3w+/pdGzHz75BkO7Vk4Bz8VUKlUFBUVzUhPsVgsGI1G+vv7sVqtZGZmzrCniOfcVFo5iLQnLG01iQ9p4Z1gQj1oq9XqkK64XS4XHR0dTE9PJ91AllDsLIIgMDo6Sk9PD5WVlVKlItGEUpk2m800NTVRUlIyb851rEgVy0W8eCrz2fAekAl8AGCQI1Fm3IVacc/IyJAsEIFQKZXSqPBNKwt48o1eAMl+olIqcJ/9OxQEeObm86gqm9mvcc8zjZTkazj5/Q/jFQQ0X/iz9LPlBVrsLg8n+vSwOeyXuShQzhpepFAo0Gq1aLVaacDL7AQNQRDIy8uTBJloUUgF4R3NPppcXgozfX97FpeHK9/oR+/04PIK3Le5lCvLfX9732s6w2/7DCzNUrMyO4P6Ii231gT+O39u0BTR4+RAoVCg0+nQ6XSUl/subu12O0ajkfHxcbq6ulAoFOTn56PVapP+dx0tsRwXnyY4aeGdIojNj/NVfsXl7DVr1lBbW5t0BwnRahIMscqtVqtn2B2SgfkuGrxeL729vYyPj1NXV5euGJyDxOIiqH3YhFKpoLLU9/fzXr+e1cU5NA4ErpBfvrmUB1/u5MHrfEOjTvTp2bamEKPNRXlRNkqlgicP9eLxvl/9KsjO5LEbG7j0+6+ds8I7FObziQ8NDeFyucjNzUWlUiEIQtIL8HD2bdrjZev/dmL3CIzYXbx6ia/arVEp+Z8LVpOXoWLC4Wb3y918fIWOY1PTPDNg4uQVlbi8Atv/2kV9UfCCzy0nRiJ6XLzQaDRoNBrJ2uh2uzGZTIyNjWEymThy5EjMegTkIJoENIvFkk41iQNp4Z0izCda/ZsP/SP2IkHOE0gwq4kgCAwPD9PX18eGDRvmrQguhFz7H6zibTabaW5uZunSpXGpcqdZvFgcbm568jgGqwu1SsH6Eh2P3rCTF08Etgvd9cmNfO03J9h8+1/xCgIVS3N58bYL+dKllXzqJ//k1//s48ObS8nJmnmYL8nX8OKtF7LNPIZXlxwrSpGwLEbJKKEQzCc+ODiI0WjkyJEjEfvEkw1/q8lbE1Y+/9YATR+pRAC+c3KUf4zZUCpgaNrFGbubN8dtXFmeh0alRKOCj62Yv/AQ6eMShVqtpqioCJVKhUKhoLKyUrKniD0CGo1GEuI6nS6hXvBwQwD8MZvNAZvq08SWtPBOMOFaTfwRBIGRkRF6e3sXbD4MBbGqK1fkUqCqsRhdl5WVFXWVW4y6i4fw9nq99PX1cebMmYDxjInk4Pef5Z0/HPaljSgVXPvwPtbuWh/VNn/4ofv49H99ljU7gns9Q7mPHI9dLNRXFHH4nkvn3N73049LX+9YW8Trd/qG12gz1fxi3845968s1XHq/vdtL//1ma0AkoUFYFVxDpPcHbN9T8b8cTlRKpXodDqWLFmCVqtl9erVTE9PYzQaGR4exmw2o1arKSgooKCgIGWj7P6lOIcJh4dxh4e/DJsZd3g4/uH1ZCgVrHm+Dbsn/OpqiUYd0eMSjWj1VCqV5OXlkZeXN6NHwGg0cubMGamJ2n/KZjx7lKJpArVYLFRUVMR4j9LMJvWOBOcos3O2YylYReIpvAVBYGhoiP7+/qDRdZFuX45Kk/++WywWmpubKSoqChrPmCi63+rk1MET3HVkPxlZGZgnzHic8uazJ4JUvLhYrCRD/ngw3B4valXgrG+lUil9diP9DPsPjcrOziY7O3uOT3xycnJGlN1sn3gy02ay4xEElmSqMLo8LMtSk6FU8NoZC/1WFwDnLc3mP44O8e3apbi9Ai8Om7lxXfABSZE+LtEEa6707xHwb6IWrUkDAwO43W50Op1UFZfTLx6t8E5bTeQnLbxTBFH4+U8UjJVgFQlUVY8l4msQ0ySys7PnDGiJxfbl8IaLqSa9vb2Mjo5SW1tLfn5+zLYfq0q9cdRAbrGOjCzfe6Ar9i3fvnDfAU6+eAKX3cm63ZVc+8g+FAoFP/zQfVQ0rKP99RZsRhvXPfrvbDi/Gue0kydu+AUDp05TWlWGa9opPcdvv/w4fcd6cNqd1O9t4Mr/DDwoxZ/9/3JXRNu/9+QP5mzrXLm4SBXinT9+42NHefrm8yjN1wbczhOHejhwbBCL3Y3HK3Dorrnj7dVqNbpvXonSHN3I9IXMEWLN35tXhOn+Z6UoO3+fuFgVT5bmPdHjDSAAT+4uR6VU8Lk1BXzsUB+b/tLBjqJsqvN8v+edS7L5+Io8Nv9vJyUaNZvyNeRnBBd+kT4u0YQjaDMyMliyZAlLlvj+ArxeL2azGaPRSHd3NzabTTZrUrTCO92jJD9p4Z1gwrGaWK1Wjh07Rm5ubkwFq8hCzY/RolAomJiYoL+/n+rqaumgFCvCiSsMF7fbTUdHx7xDiCIllhaZ2ks38cJ9B7ij9hZqL6ljx1W7qbqwhku+dBkfu3MvAI9d9zCnDp5gy79uB8Dr9nDHW9+j8X/f48XvHeAbL32H13/+NzK1WXyv8YcMnjrN9xrukJ7jk9+7ipyiXLweL//fZf+XwVOnKd+8at79uuOt7834PlObyY2/uyngff/tZ9fPu611/1LJt//5Xel78eIiUswTJn79xceivrg4V4l3/vhz37iAVcU5fOePJwNuB+DdXj2n7v8wRbmBq8oZGRlRi+5wUJqm5kTZeb1eySssirHs7GypKpqbm5uQ1TTPNZsC3l6cpeatywKvKt1aXcw9m0qwub1c+PeeeZskWz+6IaLHJZpoBK2/9QR8hRZ/a5IYYelvT4m0gBTNfqZzvONDWninAIIgoNfrMRgMbNmyRWrwiTVyTq+02WycPn0alUoly0UDyDMFUhAE+vv7OXPmDCtWrKCysjKm24f3/eOxOMlqcjXcdWQ/nf9so+31Fh797IPs3X81Gp2Wlx54EafNgVVvpWxjuSS8t3/C5xNevb2Cif4JADr/2cYlX/GJnvLNqyjf9L6wPvrnt3njV6/hcXswjhoYbh1aUHgnM7riPK68+1NRX1ycq8Q7f7ysUDvvdgAu3VQaVHQnC4G8wtPT01JyitlsJiMjQxLiyewTv/HoEC1GB3aPwHUVBWwPUUBH+rhEEMsc70DWJJfLhdFoxGAw0N/fj9frnWFP0Wg0IRVn3G53VBXvZOpXWqwk56f4HEOseAZCTM3IyspixYoVsolukEd4C4LA6dOnGRoaoqysLOzJleEQ6/232Ww0NTWRn5/PmjVrZOtUj/X0SqVKSdVFtVRdVEt53UoO/fJVBhtPc+fb91G0cgnP3/sMLrtLur/6rC1FoVLidc///o33jvHyj//CHW99j5zCHB6//ue47M55H5MKlG9exS/sv5G+zyny+RyVKiW3/f1O6Xb/r6NByMpDMStPOpWJZ/64KLyDbeedrsk5SS6pgL8YKysrA3w+cYPBMMMnLlZECwoKEj5YTOSpD0R2URrp4xKBXDZGkYyMDIqLiyX7qGhPMRgMdHZ2Mj09TXZ2tmRPCbYiEk2fVtpqEh9S7+h0juD1eunu7mZycpKNGzficDiYnJyU9TlnN3BGiyhc8/Ly2LVrFwaDgfHx8Zhtfzaxqnj7XyzU1tZSUFDA4OCgbKsBsRTeo+3DKJRKSip9S+6nT/ZTumE5g42nyS3WYbfYOX7gCPV7G+bdTuX51Rz5/WFqPriRoaYBBhtPA2A3TZOVnYU2X4vpjJGml05SdVFNTPb9XGL6ih8DkP3svvg+8YvN0T3+X+fOu4x3/nhOloqLa0uCbicakm1cemZm5oyR52KmtH+e+HxNe6kw0j5ViCamLxIC2VNsNpvUI+CfnOM/YTVaj3e64i0/aeGdBMyueBsMBlpaWli+fLmUDe3xeGT1X0PsKsaiPWN4eFgSrhCf5s1oBazNZqO5uRmdTseuXbukA5hKpcLplKeyG0vh7bA4+P3XnsRmtKJUqVi2voRrH7kBbUE292z9Fnkl+aypXziR4+Iv7uGJG37BXZtuY3l1Gau3+yKmVm5Zzcqtq7mr7jaKypew/gMbFtjSXORIJEmTOOKdP37FDw7x+I27gm4nGpJ9XLqYKT3bJ24wGGb4xEUxlmzDXVIZuRKzQkWhUJCTk0NOTs6MFRH/CauiHSY7O5vp6emQ7SkiTqczJdJ2Uh3FAlOOUi9sMwVxuVx4vV7cbjednZ2YzWY2btxITs77lRaz2Uxvby+bN8s3bm5wcBCv18uqVZEv/1mtVpqamigoKGD9+vUzrrwtFgs9PT2yvYbu7m5ycnKkSKdwEASBgYEBBgcHqampmWPpOXPmDGazmfXrYy8QT548ybp168KOcfqN6pmY74vcdL/VyZ9u+y23/v3OGYkkBWXyWagSRShj5BdDxTsVsX3iMbJv2D3n9tw/N2P5tO81/vm0kd/1GXj2wtUxGZc+9dDrCIIgDWKRQ8T5+8QNBgNmsxmHw8HKlSulqqj/MTnnto+hNMWvyTRSzL94M9G7IDXXxzLNKtZ4PB46Oztxu914PB4cDseMht2cnJygf3eCIHDBBRfw3nvvpS/WYkPQNzFd8U4SJicnaWtrY+XKlVRXV8/5w4+1DSQQKpUKl8u18B0DIAgCfX1980btydH86E+kFe/p6WmampqktJhAy3Sx9mH7E8l+j46OwgpZdkdWYp1IEi1yZnfHYox8PEg2e0UikXNcekZGhhQJ6/V6pWOhKMJjIcRn+8SdTifNzc3k5OQwMTExwydeUFCAc/8zEfnE4y3Ydf9xnuzP4c0rwvrDF4L+PNEV71BQqVRkZmZKXnFBELBarRiNRgYGBrBYLGRkZEgrIoEadtOiW37SwjsJ6OrqQq/XU19fj0ajCXifeAnvSJ4j1IEycltNwhX2/kN8ampqpOXbQMiZ+BKOqHe5XLS2tvrun4LCO01oyDkJcjbJbq+IJ3KOS1epVNJFvdfrlQS4KMLdbrc0jCfawT4ioi85mE98cHBQ8omLYiyUPPH5BGq4WCwWTp8+TW1t7Yzb4yG2/VnoQiIa73Q88d9PhUJBbm4uubm5rFjhO2E4HI4Zg53uv/9+ioqK2L17d8yDDx588EF+9rOfoVKp+OhHP8oPfjB3LsO5SFp4JwGrV6+moqJi3oOdnMIv0ufwer309vYyNjYW0tj0eFS8Q63Yi5M/tVptSPGGcla8FQpFSNseHx+no6ODtWvXsnz5chrplmV/FgtPf/v3sg8GihRBEOjt7aUuwM9CngT5chs4o/88idYKgMuX67h8+VzxOOE4KzKjfrbUQY5x6SKioPYX4oBUERePk+L/SqUyIntKoAi8+XziXV1dM9IzFrInxIJYxvTJSbybKyNloTjBrKysGRdijz/+OG+88QaHDh1iaGiIrVu3UldXx3nnncf555/Pxo0bI/r9vPbaazz33HOcPHmSrKwsxsbGIn5Ni4208E4CMjMzFxSkSqUyaORgrAinqi7GHBYXF4c8UEbuiweVSoXdbp/3Pv5V7nCG+CSy4u12u2lvb8dut8+7KpJmJvEYDBQJ4uTWYNGgoU6CbLwgflFsxVlqbjkxck4JbznGpQcjUIVbrISLlXF4X5iH6hMPZTCXf574qlWrZqRnzLYniHnisRSgqSK8U8FqAuHHCebl5fHRj36UnTt30tHRwcsvv0xTUxNvvvkm999/P83Nzdxzzz184hOfCGs/HnnkEW6//XapWVMU+mnSwjspSBZPVSji0uv10tPTw8TEBBs3bgwr81Pu17mQgBWr3BqNJuwhPonyeOv1elpaWli9ejW1tbVJ87eSCsRjMNBC/m+XyzUj+3dkZES66CsoKIDGuY8JdRIkjvjmpw9NR9b/kUrIPS49HGb7vkVbir9NRbSnBKuIRyJqA6VniPaE8fFxuru7USgU5OXlSfaUaPLEw9nHRPYjpKLVJBzEDG+VSsWWLVvYsmULX/rSl6RthktHRwdvvPEGd9xxBxqNhgceeICdO3eGvZ3FSFp4p5FYSHibTCaam5tZtmyZFHOYTATbf0EQGBkZobe3l6qqKmlAQTjIKbwDbVvsTjebzWzbto3s7Ow5j9MIWUnTwCdHRGC0jY/3X3yv9PU3ADI+xw0Azx+Xbr8B4F/uev9rf/7tIfi3h2bcZzbz/cwfV1ERhw8cIDMzk/r6+nkHcYQ6CZK20QWfN5aUaNR4pl2otDEaIhIjq0xIZKrgsmrAN7woGHKPS4+GQELc3yfuXyEX7xurKu1se4Lb7cZoNEpVcbfbLfnEw5myKL6OUPcxkf0IoaweJAORCm+z2Ry0kBZse3v27PE1+s9i//79uN1upqamePvttzl69ChXXXUVPT09KfEeyk1aeKcYcn74gzU/+g/z2bRpU9ixd/EikIB1OBw0NzeTmZlJQ0NDxJPH4mk1MRqNNDc3U1ZWRlVVVdDf9//xfFQ64YpNWdGQnTO3cvQr1+8WfFz3W52cOniCu47snxERmGhC2fd4oR01sHYgE7fbzfHjx9HpdBQWFhLs0iSUSZABHydjRbDf6mLguSbGHW7+4+gQhy9dh9srsP2lLm5cVxQwQs/2q7eDbi/7xblxfrLh9GD7xGOybDpRY88D+cRFIS76xK1WK4IgBGzcjAa1Ws2SJUskq544ZdFoNEpTFnNycqT0lNzc3KDHp0itJiaXl8JM32uPRdxjKKSCaIxGeOcEOAfMx9/+9regP3vkkUfYu3cvCoVCKtRNTEywdGlk7/1iIi28k4BQP8yi+JNz5Ppsj7fRaKSlpYXS0tKkrHL74y+OBUFgdHSUnp4eNmzYEPWHPR4Vb9HGMzk5yebNm+e9wBFPrOKFWCJPCMZRA7nFOjLOjp4XIwJfuO8AJ188gcvuZN3uSq59ZB8KhYIffug+KhrWJW3joxxMlxawpWgL8L5I0ev1Ae8b7iRIf+SsCMbDXpGKJMvYc38hLjbvTk1NSfG0/j5x8f6xEuL+Uxb9feIGg0HyiWdmZkpC3N8nHo7wljPucbEQaXEu1uPiP/GJT/Daa6/xwQ9+kI6ODpxOZ0SrzYuRtPBOIeQW3v4NnB6Ph+7ubvR6fUyr3OKUTjmEovj+OBwOWlpaUKvVUVW5/ZFbeNtsNo4cOcLSpUvZuXPnvEMORJEuPlYuQk3prb10Ey/cd4A7am+h9pI6dly1m6oLa7jkS5fxsTv3AvDYdQ9z6uAJtvzrdiB5Gx/jwbNZL2HXOGAp1L439+fhToIMRqwrgq0ffX9KabzsFbHE4XAkdCpfoIE9oSLkFTH9o7+EdF+n00lTUxM6nY7t27cH9YnLKcT9feL+MXYGg2GGTzw/Px+PxxNyw7iccY/nOlarNabj4q+//nquv/566urqyMzM5Mknn0yJFYN4kBbeKYSYOiL3yUMcWV9WVkZDQ0NMPyyi71COiweVSoXNZuPYsWNUVlbGtItarlQZQRCYnJxEr9ezffv2eQ988a5yPw2EcgrW5Gq468h+Ov/ZRtvrLTz62QfZu/9qNDotLz3wIk6bA6veStnGckl4x6PxMVlZyJdfX1HE4XsunXN7308/Ln29Y20RtIzMuU+8KoJy2SvktMo0NTXhdDqlpsDKmGw1PihCHFZjMBhobW1l/fr1AVf5QvWJAzOaNmNxrMnKyqKkpISSkhLgfZ/4wMAAU1NTjI2NodPppKr4QhJZzrjHVCbS35XFYompjTQzM5Pf/va3MdveYiItvJOAcKwmcg7R8Xg82O12Ojo62LJlS9h+r1CQq2rvdDppaWnBbrdz/vnnR9VlHy9sNhtNTU2o1WpWrFgRVHTPrnLHy1rye+BzId5XqVJSdVEtVRfVUl63kkO/fJXBxtPc+fZ9FK1cwvP3PoPL/n4qhvqsLUWhUuJ1z++dH+8d4+Uf/4U73voeOYU5PH79z3HZ45vokSrEqyIol71CTqtMfX09Xq8Xk8lEd3d3SgnvhRAEgdOnTzM2NsbWrVvRakO7EArFJy4iHndi7RO3Wq1kZWWxdOlSzGYzBoOBzs5OFiqbxDPuUa7VzlgTTXHIbDanI//iRFp4pxByTn7U6/W0traiVCrZuXOnbMJOjibFM2fO0NXVxdq1a3E6nUkvugVBYHBwkIGBAWpqanC5XBiNxqD3jWUDZTi8BvwqhPuNtg+jUCopqSwF4PTJfko3LGew8TS5xTrsFjvHDxyhfm/DvNupPL+aI78/TM0HNzLUNMBg42kA7KZpsrKz0OZrMZ0x0vTSSaouqllwv+7e8s2kSlmJN6leEZSjec7pdNLV1UVRURHevKK4jj2XC5fLRUtLCxqNhvr6+qhE8XyDfeSyp4jJK/4+8WAkKu4xVYbnRJOJbrVaY+rxThOctPBOIeQYG+92u+ns7MRisbB161ZOnjwZ0+3PJpbC2+l00traiiAI7Ny5k4yMDHp7e2Oybbnwn5jZ0NCAWq1mYmJiTkUlUVXuSHBYHPz+a09iM1pRqlQsW1/CtY/cgLYgm3u2fou8knzW1C8sRC/+4h6euOEX3LXpNpZXl7F6ewUAK7esZuXW1dxVdxtF5UtY/4ENC2zJR7KlrDyV+Wxcny+eFcFgZN+wOyx/spxWmfHxcbq6uqiurqawsBB7kH2anp7GYDCg1+sxmUyo1WopJq+goEBarYvGsx0rTCYTLS0tVFRUSBaOWBJssE8gn3g4g338CUcsJiruMVWEdzRZ4/PFCaaJLWnhnQQkymoyNTVFW1sb5eXlUud7PJJTYiG8x8bG6OzsZN26dZSWlsZgz+Rlvizx2Y2biaxyR8Lq+gpuf+OeObd/8t6r+OS9V825/ba/3yl9rSvWcX/XTwHI1GZy4+9uCvgc1z/+xYC3+29rNudiykoyDYARCdWfDPJaZQYHB6mvr19wRUyr1aLValm+fDngu8A3GAxMTU3R09MDQH5+PtsCPDZeA17EVbORkRE2b94cMOdfLoL5xP2nbM72ic8nrOWeXBmLfoRUmloZqfCOtcc7TXDSwjuFiJXVxO1209HRgc1mY9u2bTP8gKK4T1bh7XK5aG1txePxsGPHjoSmFISK6D9XKpUBU1b8hffsk1ayi+5kJhVSVmxZWWQ7YjcEKZkHwIRLrK0yW7dujejzlJmZGXB4TCDiMeDF7XbT2tqKSqWivr4+4ZXY+Xzi4vFs9mAf/8fJLbxj0Y+w2KdWQuzjBNMEJy28kwQxZm8+1Go1jihP0pOTk7S1tbF69WpqamrmnIjkHBQT7fbHx8fp6Ohg7dq1lJaWxl2Uilm44ZwkxMr8+vXrgy4Fi8Jb9FGmBXds+Pwj+5I+ZeWpKy+L+PXd8GJzxI/1J+SK4L9ujPg5sp/dF/ZjYm2VidVnSmwKXAg5POpms5nm5mZWr14tVeSTjVAbNmf/n8ycC1YTi8US0zjBNMFJC+8UIhqridvtpmCDoqkAACAASURBVK2tDYfDQX19fdDcVDl85P5EIrxdLhft7e04nc6EVrlFgRyK8Ha5XLS1teF2u9m5c+e8y9tKpRKTycTY2BiFhYUxyR2PBGHZMhRjYwl5bjlIp6yERrIMgIHktMpEsv9yeNSHh4cZGBigrq4upSwBs4U4vL+yZzKZMJlMrF69GpfLNcMnnghcLlfA4++5YDVJN1fGj7TwThJCrXhHUh0QK8Vr1qyhrKxs3oNaslW8JyYmaG9vp6KiguXLl4d0QJZrQE+oQ3TEVYWF9lmsAmVmZrJ+/Xr0ej19fX2Az0NaWFgYVyE+HbAxNb4NgXKQLCkraRYm1a0ycnrUp6am2LFjR0pUXhdCqVQyMjLC0NAQ27ZtQ6PRzGnYTASnTp3C6/WSl5cn5YlrNJqUsZq43e50xTsFSAvvFCLcarRYdXW5XPNWuf1JFuEdaoV+NvGYjBkMj8dDe3s7NpttwX32b0ZSKpUUFxdLDZeih1Sv19Pf34/X650hxOMRl3gg438XHPSSzFgmLfzgg99NqpSVNPIg1zCfaIm1R33jxo2LwoLm8Xhoa2tDEIQZHvU5ySlxjnv05hVRX1+Px+OR8sTb29txOByoVCoyMjKwWCzk5OQk7e8hmmAEt9ud9FG8i4W08E4hwhHForc4XD+0nFnh4HsNTuf8y/JixTiUCn2g7cu1LDhfxVuc9lleXh7QOy8Sysh30UMq+kg9Ho8kxAcGBnC73TOEuBzWm1QW3QC5S3K599QPZ9yW6JSVxcTrLWd44GA7L952YaJ3JamsMv4kq0c9kYhDw8rKylixYkXQ16RUKmfEPc72ifsfh2M92EelUknRkeA7Zvf19WGxWOjv75cG/ogV8by8vKSxoURamRcEQZbJzGkCkxbeSUIoB9VQKt5Op5O2traIUz/kno4538WDmLYyPT0dVpU70PblsGcEEt5er5euri4MBgNbt26dN9Yr0pHvKpWKoqIiiop8J2R/IT40NITL5SIvL08S4pG8b2mSj4WG8djyc8g2WuOzM5mxW2Z3e7yoVckhVGKNnB71xsZGCgsLKSgoSOqqazDGx8fp7u6mpqZm3iE5gUjEYB8RhUJBZmYmS5YsoaysDPDNYzAYDJw5c4bOzk5UKpU0/Cc/Pz9hfTrRnvtS7W8qVUkL7xRiIeEtTnCMJts6UVaTqakpWltbg6athEqoPuxImL3vJpOJ5uZmSktL5532GethOLOFuDgGW6/X09LSgtPpRKfTSUI81PHRaVKLpx68SRLn9/XMTDg5cHSA/z7Uywu3zqxIr7n5ea67oIIXTgzjcnv5883nUV2Wh9Xu5qZfH6dpwIjL4+WevXVcuaOcvnEL1z7yNlaHBw7189B19XxgQ/GMbR7tnuTGx47y9M3nUZqvDbidJw71cODYIBa7G49X4NBdH5L9/UkEcnrU16xZg16vp6enB6vVilarlYS4TqdDqVSi/cZHwspNj4ZQByMJgkB3dzcmk4nt27fHxM4Qj8E+/ng8nhn7rdFoKC0tlc6z4vRhg8Eg2QNn+8TjQTQV7zTxIy28U4hgolXMiVYoFAsmaCyEWq1e0AoSDbNfgzg502q1sn379qhFopwXDqKo93q99Pb2Mj4+Tl1d3byd4GKVW0xDkavpU1waraiowOv1YjabpYsZh8MhCfGioiI0Gk26spEAxJWOeAzsuWxTKfceaGbDLQfZU1fC1btXcVGNL4e6WJfFu/sv5+FXOnngYBu/+vcG9j/XzCW1JTx+4y4MVicNd7/CnrpSluVpeOX2D6LJVNE5auYzDx3m2H2XS89zuGOCm548znPfuIBVxTl8548nA24H4N1ePafu/zBFucmfvR9PQvWo63Q6dDodq1atQhAEpqen0ev1DA4OYjabycjI4II4eqJDEfhOp5OmpibfwKFt22Q97sR6sI8/CwnajIyMGX06gXziOTk5FBQUkJ+fL9uKRaTCe3p6Ol2giSNp4Z0khPIhDHSf0dFRuru7582JDod4Wk30ej2tra2sXLlSmpwZy+3HGpVKhdVqpbOzk6KiIhoaGoIeuAN5ueMldpVKpbTk6S/E9Xo9bW1t2O12dDodBQUFFBYWkp2dHfK+Hfz+s7zzh8O+16NUcO3D+1i7K3AlLxCfLf8S2WcCDx+JhF+5fhezbclNPAf25GoyOL7/Mt5oG+e1ljGufvAw91+9GYC9O8sBqK8o4sDRQQBebhzl+XeHeeBgGwB2l4fTk1bKCrV85YnjvNdvQKVU0DFqlp6jddjIjY8d5eXbL6asUDvvdgAu3VQ6U3RnqsAZnwxnIS+wbzoZiMSjrlAoyM7OJjs7mxUrVgBEPeMh1hiNRlpbW1m/fv2MSb3xIpTBPm63e4ZHPFhVPNz5DYF84haLBaPRSF9fHzabjaysLOk+4opFtESaapKeWhlf0sI7RXE4HLS0tKBSqaKucvsTD6uJmFhiNpsX9EWHi1xWE0EQMJlMjI6OsmXLlnk9isk28t1fiK9Zs0Y6Cej1erq6urDZbOTk5EjWlJycwCOuu9/q5NTBE9x1ZD8ZWRmYJ8x4nOFdpD01+PCc2xbyMod6n2TGNGZiuGUwrgN7VEolF9eWcHFtCZtWFvDkG764yKyzHmKVUoH77GdFEOCZm8+jqmxmnNg9zzRSkq/h5Pc/jFcQ0Hzhz9LPlhdosbs8nOjTS8I72Hbe6ZokJ2vW6eay6jn7rL/iYfR6PQaDAaPROGM1x2azMTo6ysaNG9MiIQDJMsXXf5z9li1bkqaSGo1PPNo4QYVCIa1YlJeXIwgCdrsdo9HIyMgIHR0dkk9crIpHkk4S6X6mp1bGl7TwTjEEQWB4eJje3l4qKyulMcaxQu5UE4vFwuTkJMXFxVRVVcVclMpx4TA9PU1TUxNer5d169YFFd2x9nLLhf9JQFy2FoV4d3c3NpsNLpr7OOOogdxiHRlnh83oin0H6hfuO8DJF0/gsjtZt7uSax/ZFzdLRTJy/Jl35gzsef3nr8y4j9wDe9qHTSiVCipLfb+j9/r1rC7OoXHAEPD+l28u5cGXO3nwuu0oFApO9OnZtqYQo81FeVE2SqWCJw/14vG+7wUtyM7ksRsbuPT7r5GTpeLi2pKg2wmVrKysOd7ZyclJOjo6cLvdaDQahoaGJG9zOv4sufB4PLS2tqJUKpNinP18BPOJ+1tTwPeaRPtlrMbbKxQKtFotWq12jk9cnOcg+sTFC89QLqwijRM0m81p4R1H0sI7SQhFoNntdqanp5mcnKShoUGWzmm5rCYej0dK/8jJyWHVKnkiwGIpvAVBYGhoiP7+fmpqajCbzUGbUJKtyh0OgYR4L8/NuV/tpZt44b4D3FF7C7WX1LHjqt1UXVjDJV+6jI/duReAx657OK6WCoAbMj4357Y1wDFg9gJ3LmAJ470JdP/Z9pbR9mEUSiUllb4TaDIM7LE43Nz05HEMVhdqlYL1JToevWEnL54YCnj/uz65ka/95gSbb/8rXkGgYmkuL952IV+6tJJP/eSf/PqffXx4c+mcqnVJvoYXb72QK35wiMdv3BV0O5EyPT1NX1+f1DDun3F/+vRp3G53whJ9hLyiuDYyRorqD41sytcgACoFPFRfxgeWBl7Vigar1UpTUxPl5eWS/SXVmO379ng8DAwM4HA40Gq1eDyeiH3iCxHIJ24ymaSquNPpJDc3V6qKB7IIRlrxNpvN6VWkOJIW3imAWOXu6+tDo9FQU1MTcUj+QshRMRYzrsvKyti5cydvv/12TLfvT6ysJg6Hg+bmZrKysti1axdqtRqr1Rpw25HGBCYrwfZfk6vhriP76fxnG22vt/DoZx9k7/6r0ei0vPTAizhtDqx6K2Uby+NqqUg0DouD33/tSWxGa9IM7KmvKOLwPZfOub3vpx+Xvt6xtojX7/Sli2gz1fxi3845968s1XHq/iuk7//rM1t9+3rWwgKwqjiH5h98RLpPoO184aK1fCHAKspssp/dN/N7oBRg9P3bdFl5LLnix8DcRB//RuJg4iRakjE5ZD78p2m+NGLm2yfPcGhPbC1bY2Nj9PT0UFtbu2imH3o8HlpaWlCr1ezYsUM6t8z2ifsPQgtURY8UlUolXVDCTJ94b2+vlGwjCnGdThfxDIu0xzu+pIV3kmO322lubkaj0bBr1y5OnjyJ2+2WTXjH0moiZlzr9Xq2bNkS1DscS2Jx4SA2rG7YsIGlS5dKtyuVSlwul/T97Cp3sgxRiAbxd0Zd4J8rVUqqLqql6qJayutWzrFUPH/vM7js779HclsqAP4P0ATUA78Fnhr4GXeWFgQcdv8T4FcLbjG8+6+ur+D2N+6Zc3tcB/bMihNczCgcJunrQIk+gfoXxEbi3NzcqIV4vES3HM9lcnkpPJvJbnF5uPKNfvRODy6vwH2bS7my3Ceav9d0ht/2GViapWZldgb1RVpurVk6Z3ter5fu7m4sFgv19fUJy6+ONeKgnxUrVsyo3s/XsCkWYMAn2mM92CeYT9xgMEg+cZvNRm9vb9g+8bTHO76khXeSMPtk4G9zqK6ulqYYhjs2PlxiZTUxGo20tLRQWlpKQ0ND3KrAKpVqhjgOB6fTSWtrK0BAK49KpcJutwOLr8oNvuVG8XcWiGS0VIBPHJcB5wFvAtOlBWG86jSLCaVSSV5eHnl5eaxevRpBELBarRgMBmn6oEajkSqJsUqTSGbEoT52j8CI3cWrl/iq3RqVkv+5YDV5GSomHG52v9zNx1foODY1zTMDJk5eUYnLK7D9r11Bs8Vff/11cnNzWbVqlWzzE+LNxMQEnZ2d1NbWLjjoZ7YQh+A+cfH+sRTiok98+fLlALzzzjvk5eVJPnFBEGbkiQfziaeFd3xJC+8kZHp6mubmZrKzsyWbg4jcqSPRCkixAjI1NcWmTZvivnylUqkiitUaHx+no6Nj3uFD4lKj2AW/WKrcgiBw+vRpzpw5IyVGvMmJOfdLRksFQPnZ/7cCfSG+5jTnBgqFgtzcXHJzc2dUCcWpryaTiYyMDKkinp+fn9QNgZHgbzV5a8LK598aoOkjlQjAd06O8o8xG0oFDE27OGN38+a4jSvL89ColGhU8LEVwQVZXV0darV6xhRdf6uPVqtNmaKEOBp+amqK+vr6iBt3A+WJBxrsI943lucRhULB0qVLpZVa0ScuVsX9feK5ubnShafFYol46F4g3nvvPb74xS9it9tRq9U8/PDDNDTMX5A5l0gL7yRCEAQGBgYYHBykurpamkzoj9wV72gQJzmWlJTEtcrtjxj9FCpitKHT6WTHjh3zdo4rlUpMJhNWq1UW72giEK1MeXl5ko8xGElhqZgHFZCcn4w0yYJ/lVAc/+1wODAYDIyNjdHZ2SnZV0QhHop9Il4NjNHyL8U5TDg8jDs8/GXYzLjDw/EPrydDqWDN823YPeFNMBRTtfyn6IozAzo6Opieno651UcO3G63ZOnctm1bTAsqwQb7+Ivx2Q2b4uPCIVDj/2yfuNfrlVaADh48yP3338/KlSuluRROpzMmSUHf/OY3+c///E+uuOIK/vKXv/DNb36T119/PertLhbSwjtJ8Hq9HDt2jNzcXBoaGoJ6s5JReHu9Xnp6epiYmAi5yi1aNGJNOCsC4mTHNWvWUFZWtuDId7FS0NHRgd1un5GmkCxZteEwMjJCX18fVVVVAS/y0qRJNG6PF7VK3lWlrKwsSkpKpAFkLpcLg8HA1NQUvb29CIIgLdUXFhYSaOpAPBoYY0GbyY5HEFiSqcLo8rAsS02GUsFrZyz0W30WvfOWZvMfR4f4du1S3F6BF4fN3LgutOOD/8wAQLL6iNYH0eojvpd5eXkJXzW0Wq00NjayevVqybIhJ3L5xEOJOlQqlZJP/LOf/SzXXHMN7e3tfP/73+cf//gHTz/9NAUFBZx//vmcf/757N69O6JmWYVCgcnk68UwGo3SRW4aH2nhnSSoVCpqamoWFK1yW03CxWw209zczNKlS+ed5OiP+BrkaBANJdXE4/HQ0dGBxWJZcEy9v5dbrVZTUeGzRQSbBllUVJT0QtzlcklZuzt27Ej5higx3m8r8a94J8vwH1tWFtlJNrkwXOwuD5oMFU8c6uHAsUEsdjcer8Chuz40576z009iTV5WHkvPJqd4PB4MBgMGg4HBwUEuWOCxsW5gjBbR4w0gAE/uLkelVPC5NQV87FAfm/7SwY6ibKrzfKt9O5dk8/EVeWz+305KNGo25WvIz4jMfuNv9Vm5cqVvf6anMRgMDA8P09bWhlqtnrHCIFdwQCDENJaNGzcmzOMczWAffyKJElQqldTU1FBYWMitt97Keeedx9jYGG+++SYvvfQSjz32GH/84x/Dfk0/+clPuPzyy7n11lvxer0cPnw47G0sZtLCO4nQ6XRBc6JF4lHxVigUC149e71eent7GR8fD/ugJafwXujCxGg00tzczIoVK+YdU7/QMJxA0yDNZjNTU1MzhHhhYSFFRUVoNJqkWGIVh5GsXbtWqvClSRxiBnlpvob7r97MPQeaePM/97CiKJt3uia540+n+Nt3PsiOO1/C7vKiVvr+hqasTl761kXSSPef+o10t/33p3m95Qz7fnkEbaZ6xkj3QFjsLs7/7t+xOT3sqSvh6t2ruKhmGWtufp5bPlLNTZdv4OFXOnm3T8+v/r2B7/zxJLUr8vm389dgsDppuPsVTuy/HIUClAoFmkwVnaNmPvPQYY7ddzmvt5zhgYPtfOfKWm568jj/8/XzWVWcE3Q7AO/26jl1/4dnjpiPI/7JKSqViiVLlkgN7oGQs4ExWjzXbAp4e3GWmrcuWx/wZ7dWF3PPphJsbi8X/r0npvs2uyHQ6XRiMBiYmJigu7sbgPz8fFmHJAmCQHd3NyaTKenSWIIN9gnkExcEAZVKhUKhiOqc6t9cuWzZMj75yU/yyU9+ct7H7Nmzh9HR0Tm379+/n7///e/8+Mc/5lOf+hR/+tOf2LdvH3/7298i2rfFSFp4pxhqtZrp6WnZn2O+PFCLxUJTUxPFxcUhV7n9kbNqH2zb/k2fC0UbRjIMR6FQSGkK/kJ8dkXc35oSTyEuDjCyWq1s27YtroNGUoH/3PqthE7dfOi6+riMdA9EriaD4/sv4422cV5rGePqBw9z/9WbAdi709e6Wl9RxIGjgwC83DjK8+8O88DBNsBXqT49aZUuAt7zuwgQaR02cuNjR2dcBATbDsClm0oTJrojQc4GxkRw49EhWowO7B6B6yoK2C7TRQFAZmYmy5Ytk/ziwYYkiVXxaFcTXS4XTU1N6HQ6tm3blhQFkYUI5hP3T0+xWq0oFArcbnfYg30iSTWZT0h//vOf56c/9fX0fPrTn+aGG24Ia9uLnbTwTiIUCsWCFe94WE3ESMHZVQBBEOjt7ZXSLyIdlCDnawhkNTGbzTQ1NS3Y9BnLke/+QlyMNZvddBQvIS7GBC5fvpwNGzaE9DwaIQu7IrWtC+Hw3ff+KyFTN0XiNdI9GCqlUhqKs2llQVwuAoJt552uyTkTMlOJWDcwJoKnPpC4oVVqtXrGCoP/kCSxiJGbmysJ8ZycnJCPnaI1cu3atZLQT0Vm21PGx8fp6emhuroa8BVaxJXxUAb7xDpOsKysjEOHDnHxxRfz6quvUllZGbNtLwZS9+h2jhIPq0kgYWyxWGhubqaoqIhdu3ZF1RATr4q3GA81OjpKXV3dvAcWuUe+J0KIC4JAf38/Y2NjUkxgqOx1XbHwnebhqcxA42vg4Pef5Z0/HPb5FJUKrn14H2t3BV7uDpVY+Kzv2fqthE7dbBkyxWWk+671c+0S7cMmlEoFlaW+z0e8LgKCbSfVkbuB8VzDf0gSvD/B0WAw0NPTI01wFIV4sGz20dFR+vr62LRpU1yGucUD8Rg/MTExIwJxvoZNmOsTt1qtMZ04+stf/pKbb74Zt9uNRqPh0Ucfjdm2FwNp4Z1ixGrAzXz4T6/0F6+hDBQIhXgIb5vNRmNjI4WFhfNeKMSyyh0OgYS4xWJhampKEuK5ubmSRzxcIT49PU1LS0tIMYHxovutTk4dPMFdR/aTkZWBecKMx5kcCT33vPdfCZm6KXLg6+cD8RnpPhuLw81NTx7HYHWhVilYX6KLy0VAsO2Ei+ghj+SxsSKRDYznGv4THFeuXIkgCFLD5uDgIGazeUY2u06no7e3F5vNxo4dO+LavCknHo+H1tZWVCoV27dvn3GMD2ewj5htH0uf+/nnn8/x48djtr3FxuL4C1wkhCKsYjnSPRiiuLdarTQ1NS0oXiPZvlyvQaFQYLfbee+996itrZWqJIGQu8odDv4nE38h7l8RF4V4YWFh0BxxQRAYGRnh9OnTVFVVSfmtyYBx1EBusY6Ms4JWV+yrsL5w3wFOvngCl92ZMJ91oqZuApCfWL99fUURh++5dM7t8bgICLSdL1y0li9cFOGLCZNw4wqDHbfkbGAMJ1tZyCuK20h7IS85KvQKhYLs7Gyys7PnZLOPjo7y3nvvkZGRQUlJCVNTUxQWFiZVM2Uk2O12Tp06RVlZGeXl5Qs/gMA+cY/Hw89//nPMZrNsgQdp5pJ+l1OMeFhNlEolIyMjmEymBcVrJMglvO12O01NTXi9Xnbt2jVvtFKyj3z3F+KrVq2aIcS7urqw2WxzhLjb7ZYqIMlY2am9dBMv3HeAO2pvofaSOnZctZuqC2u45EuX8bE79wIkzGf9k4/cn5Cpm/zumtDulyYkjnZPcuNjR3n65vMozddy06+P0zRgxOXxcs/eOq7cUR5SXGEgxELEB2O0r6E2MDY2NuJyuaS5AeJEyEBM/+gvYe+H2Cy/Zs2amE4vTCRZWVlotVqMRiObN28mPz8fo9GIwWCQGjb9s9lTqdncYDDQ2tpKTU1NVOdmp9PJ17/+dRQKBR0dHUl3vljMpN/pFENuq4nNZmN0dJScnJwFxWukxFp4i1Xe3t5eqquraW9vD7rfs6vcyWDBCIWFhLjJZMLtdlNSUsLq1auTcuy1JlfDXUf20/nPNtpeb+HRzz7I3v1Xo9FpeemBF3HaHAnzWd/+j3tmfB/vqZtpoudwxwQ3PXmc575xgRRXeEltCY/fuEuKK9xT5xOW4cYViv7g2tramO1vqA2M9fX1ARsMdTrd+0N9IpykK66O1dXVhdUDkuwMDw8zMDDAli1byM72jTwqLi6muLgYmDlKvaWlBYfDEZP3U24GBwcZHh6OOplqdHSU6667jr1793LzzTenzHlwsZAW3klEKB90lUq14ICYSBAEgdOnTzM0NMSyZcvIycmRTbzFUng7nU6am5tRq9Xs2rVr3qv2ZK9yh4MoxLOzs7HZbOTk5LBmzRosFotUEc/JyZEG+iTLiUSpUlJ1US1VF9VSXreSQ798lcHG09z59n0UrVySUJ91mtRFrrhCr9dLR0cHDocjoXnPwRoM/VfAsrOzpRWwhUazi6/L6XRSX1+/aKqdXq+X9vZ2XC4XO3bsCHoO8x+lXlFRITW7GwyGGe+n+J4Ha9iMF+Lr8ng81NfXR3VuPn78OF/+8pf54Q9/yOWXXx7DvUwTKovj03YOIYd4stlsNDc3o9Pp2LVrF6Ojo7hcroUfGCEqlSom2z9z5gxdXV1UVlbOGw2VqlXuhTCZTLS0tLBixQqqqqpQKBQUFRVJFXGr1crU1NQMIS42ayZCiI+2D6NQKimp9FUdT5/sp3TDcgYbT5NbrEuszzpNSiNHXOH09DSNjY2UlpZKn69kIdAKmM1mQ6/X09/fj9lsDjqa3W6309jYyLJly5LudUWDw+GgsbGRpUuXsmrVqrBel3+zu//7aTAYGBgYwGKxkJmZKQnx/Pz8uK0qOp1OTp06RXFxMatXr4749yUIAn/605946KGHePrpp9mwIUQ7XJqYkxbe5zCCIDAwMMDg4KA0NhZ8wthut8v2vNHaZcSR516vl507dwZsPBKr2oupyi0iJs2Mj48HjcbyH9XsL8T9K2SiEA83CzdSHBYHv//ak9iMVpQqFcvWl3DtIzegLcjmnq3fIq8kPzE+6zQpjxxxhWKDdiySnORGoVCQk5NDTk6O1GwXaDR7VlYWBoOBmpoayXaxGBB9z1VVVRQVRd/06f9+rlixAvBdsBgMBsbGxujs7JyxClFQUCDLaohYXKmsrJx3cupCeDwevvvd79Le3s6rr76aEn/TixnFAgNbkj/pfxHh9XpDqgQfPnyYD3zgA1E91/T0NM3NzeTk5FBZWTljqXFiYoLJyUmqqqqieo5gTE5OMj4+LoX9h8PExATt7e2sXbtWGjk8m7feeouGBl/VNN4xgXIj/t4KCgpYu3ZtxNV7fyGu1+uxWq0xFeLBcrzTzOSGjM+lGyyjxD9O8PSEVYor3Lwqn6/95gSHOyZmxBU+caiHY716HvpC/bzbNXzkkYAX9dpvfCSuySGRNEzO2Y4g0NXVxcTEBPn5+ZjN5rgIR7kRBIHBwUFGRkbYtGlT1FMtw8HlcmEwGKR/Xq93RsNmVlZ0k1dHR0fp7+9n06ZNkk89EoxGI/v27WPLli3cd999Sdn/s0gJegJNC+8kIlTh/dZbb0Uc7ycIAkNDQ/T391NTUxOwOqDX6xkZGYlpI5E/YhUmnO273W4pVm/jxo3zNpYcOXKETZs2oVarF43g9o8JrK6ujnnSTCAhnp2dLXnE/YW4tqICxdjYvNv7let3Md2/xYh71MAXV36ZMz+7kpKC+AmGYMwepHPnn05hsLl48cQQx+67nGJdFsd6prj1qRO8fueH+M4fT2Kads+pKH/9N+9SXpTNLR+t5r8P9XD9o0cQfneNJJDFyvT/+/x2Lq4tCbqdUAWyXNg+8VhCnjfWuFwuqciybt066bwRTDiKySnRCke58Xg8tLX5/PvV1dUJF5Qej0dKTtHr9bhcLqlhs6CgIGR7n3iRZLVaqauri8p/39HRwb59+7jlllv4zGc+syjOhSlEN/tejQAAIABJREFU0Dc7bTVJQcTmxHCFt91up7m5Ga1WO28jotxZ4eFaTfR6Pa2traxcuZKampoFR77n5+dz/Phx8vLyJOGYSnFRs3E6nbS2tpKRkSFbTKC/NUUcSiEKcXE6nNi8Vb2A6E5Fbsj4XMKeu+TLz8X/SQNU2VN9kE6aucw3Ij0jI4OlS5eydOlS4H3hqNfrGRwclCIMxQpuPKvJCyH675cvX055eXlSCEqVSkVRUZFUzPJ6vVLDZmdnJ9PT0+Tk5EjvZ6AGWJfLRVNTE3l5eWzZsiWq1/W3v/2NO++8k8cff5wdO3ZE9drSxJZ0xTuJEAQBp3PhFIZ3332XmpqakA+EgiAwPDxMX18f1dXVC3rFbDYbHR0dbN26NaTth0uo2/d6vXR2dmI0Gqmrq5t3uW12A6UgCFL8ll6vx+l0Sjm4qSTEJyYm6OzsZN26dfM2kMqN2Gw0NTVFVQgWoVSreCdSeCeEtL1lQVK94i1G6tXV1UU0Il2MMBQruHa7PaQhXnIzNTVFe3t71DnW8UYsZogrDGazmaysLGmFQa1W09zcTEVFBSUlJRE/j9fr5Wc/+xkHDx7kj3/8Y1BLZhrZSVe8FxPhDNERq9xZWVkLxu2JyJ0VHkqcoMlkorm5meXLl7Nz584Fq9yzvdwKhUJa4quoqJiRg9vc3CxVc8SKeLItq3o8Hjo6OrDb7Wzfvj3h++ffbJQmTZrkxePxSNFz80XqLYS/B3zNmjUzIgy7u7tnrIKJkXtyCnEx8nZ8fDwpjonh4r+qKDbA2u129Ho9vb296PV6cnJyMJvNqFQqSYyHg91u56tf/SqZmZm88sorKfcenSukhXcKEopw9R8qU1VVFVYHu5wj3cXtBxP2Xq+X3t5eKbFjvqEO4Yx89z+J+AvxqakphoaGcLlckr+xqKgo5BHNcmA0GmltbaW8vJzq6uqkWEZNkyZN8iOnBWO+CMPTp0/PqODOjjCMFo/HQ3NzM5mZmWzfvn3RRMJmZWVJCWIXXHAB4OuBmpqaoqenB2BGw+Z856XR0VGuvfZarrrqKm666aZF8x4tRtLCO4kI9SC5UMXb4XBIB6mGhoawu9XjIbwDDQESRxcXFxfT0NAw74FDEATpPYikgXL2QAqv14vRaJwhxMWD3UIHvFjh9Xrp6+tjcnIyaExgMvMs8EmgFdCOGpguTY1lYO2oAYAngMuAskTuTJqkwJupkyJIUwXRlhYvC0aoEYZiRbygoCCi6rvNZqOxsZGVK1dSVrZ4Pp3ixURWVhZbt26VznfLli2TbIUej0eypoi+e3FlQaFQUFVVhVKp5NixY3zlK1/hgQce4LLLLkvky0oTAmnhnYIEE96CIDA6OkpPTw8bNmyQmmbCRe6TjejBFhEEgf7+filJZb6M0XCq3OGgVColkQ0zG40GBgZwu92yCnFxiFFRURH19fUpWa34PXD+2f+/u/LLC95/DXAMmL0WkwtYwnjecO8fjCeAOtLCe7HjUuXg+OhP5nzG/K0Uer0e29tvhzUNMlEIgkBPTw9Go5H6+vqErtZptVq0Wq3kK3Y6nej1eiYmJuju7gaQjqOhRBiKFxOpkqceKuLKRHl5+bwXEyqViiVLlkh9WeJK7dtvv82PfvQjhoeHWb58OQMDAzz88MPs2bMnXi8hTRSkmyuTDKfTyQK/E/r6+sjIyJCC/cXHNTc3o1KpqKmpiTqTNRZZ4aFs32az0dTURH5+PpWVlQtWuRM1DEcU4lNTU+j1erxe7wwhHun7LcY7ikOMUuHkkh2gEm8BqoDXgI8B7Wdvfx24B5+4bgLqgd/i6zpZg0945wB7z/77d2YK6R8CfwIc+Krp3w2wP7lnH/cyUAr8AVgKvAd8EbAB64DHgcIgt/8d+AKwAtACb539P6X52ZWQBDGFyUgojZP+Vgq9Xo/FYkGr1Uqf+0SPEYf3j/s6nY5169Yl5YWBPy6XSypozBdhKAiC5HvetGlTQi8mYo3YHBrtxYTb7ebuu++mo6ODPXv2cPToUZqbm1m9ejUXXHABF154Ibt3747hnqcJk3Rz5WJidsV7dHSU7u7uBUenJxPi1MyBgYEZUzOD3TfRI99nR0WJS4DiiOZIhLjT6aSlpYXMzEx27tyZ8BzaaHgO+DCwAVgCHMcnsgFOAM34KsnnAW/iq4yDT2BfA3z+7D9/XgY6gSP4KgAfB/4BzA6aswI7gB8D9+IT5w+d3d6DwEXA3Wdv/8k8tz8EPHB2W0lPOpVEdmZbKQRBkKwUg4ODmEwm2TzNoSBONVy3bl3Eq5vxJiMjg+LiYqnnyD/7WrRS5ObmYrFYyMvLY+vWrSl9XPRHHPYzOjoadXOowWDg+uuvZ/v27bzwwgvSeyRONX7jjTc4ePBgWngnKWnhnYKo1WocDock3BQKRdDR6dEgl8fRbrczPT2N2WymoaFh3s7tZB35PnsJUBTiU1NT9Pf3IwjCvEuq4+PjdHV1sX79+pQ5ac7H74Gbz359zdnvReHdAJSf/Xor0Mf7wvtK4JtAoDC/l8/+23b2ews+IT5beCuBq89+/W/4KudGwIBPXANcB3x6nttTjVAqttnP7ovDniQet8eLWiW/4FUoFGRnZ5OdnS3ZA8RUCtHTnJGRIX3u8/PzZRGN4irZ8PAwmzdvjmqqYaKZXdAwmUw0NjaSl5eHw+HgyJEjUoRhQUFB1BN1E4XX66W1tRUgaithe3s7+/bt47bbbuOaa66Z8X4oFAoqKiqoqKiIep/TyEdaeCcZs/3PgVCpVJhMJo4ePcr69eujyvwMhlKpxOv1xvzEMTIyQk9PD5mZmSENwxGbMBO9pLsQs4W42+2WKuK9vb2Az9uYn5/P+Pg4brc74X7MWDEFvAo04ltb85z9/4dnf+5f11EB/t0J5wF/BT7L3HU5Afg28B9h7k8iT8ux9JunGz19XP/oOzQNGHF5vNyzt44rd5TzxKEeDhwbxGJ34/EKHLrrQwnZN41Gw/Lly+d4msfGxujs7JSauP2zmqPBf1pjfX39oqkGA4yNjdHT08PmzZvR6XzTU0XfvcFgmDHIy38ITbKfGxwOB6dOnaKkpISVK1dGdeHwyiuvcPfdd/P4449TX5+Yia5poictvFMMp9NJX18f09PT7N69WzbhJiabxOrALlbnlUolDQ0NvPvuu0GFfbJWucNBrVbPWFJ1u90MDQ3R2tqKWq0mMzOT/v7+mJ2QE8nTwLXAL/xuuwh4I4TH3nv235eBh2f97HLgLnzV8FxgCMgAZpupvGf34RrgKXzV9Hx8fu43gAuA35zdp2C3A+gAcwj7HA+eIN3oKXJJbQmP37gLg9VJw92vsKeuFIB3e/Wcuv/DFOUmT1ZxZmYmJSUlUjFEHMvuHw8nJnyE2xsi9sOUlZWxYsWKlDwuBkIQBLq7uzGbzdTX1894T/wjDMWJujabDYPBIHuEYSwwGo20tLRQVVUlVfUjwev18uCDD/LXv/6Vl156idLS0hjuZZp4k7pn+3MQsYpSVlaG2WyWtVoq+shj8RzifvtX55VK5RxhH2wYTqrj9Xrp7+9namqKhoYGsrOz55yQxYE/RUVFEcduJYrfA9+addunzt5+9dy7S7f1nf3//836uVgxvuzsP5EVBMZ/fehOv69P+n19Twi3vxBk++EwX7V7EvggoTV6HsN3wSFHo+f+Z5t56nA/KqUCpULBL/btZNf6+afZhsrrLWd44GB7TEe+3/9CKw8c9FV57S4PpyetAFy6qTRi0a39368zfcWPY7aPwZg9ll1cCTMYDFJviNhcOF9a0vj4ON3d3SnTgB0qLpdLspZs3bp1weO9v+9eDBcQ7T4jIyNShKG/3SdRRY3h4WEGBwfZunVryFOmAzE9Pc1Xv/pVtFotL7/8cnooziIgLbyTjEAHHpfLRWtrqzSJTPQTy0kssrzdbjetra243W527Ngx44ChVqtnbF+scnu9XpRK5aIQ3ABWq5WWlhaWLFkyw9s3+4Tscrmk2K2urq4Z8YbJLsRfC3DbV/2+vtjv64fk3ZWkZglwisQ2er7VOcGLJ4Z5d//lZGWomDA7cLrnZuongmBe7WduPo+qsrwZt73TNUlOVuSnL4XDFPFjo2H2Sph/bKnYXJiXlyd99rOysqRq8Pbt2xeFNU3EbDbT3NzM2rVrowoFCGT3MRgMEUcYRovX66WzsxO73R61HWh4eJjPf/7zfOYzn+ErX/nKojkvnuukhXeSMz4+TkdHB2vXrqW0tBSFQoHT6ZR1pDvMFcbhMjk5SVtbG2vWrKGsrGzOAUMU9oG83Ivh4BJuTGBGRsaMwQnBhHhRUZFsTVtp4kMiGz1HDNMU67LIyvD9/RTrfBfDa25+nusuqOCFE8O43F7+fPN5VJflYbW7uenXx+d4rPvGLVz7yNtYHb5jxEPX1fOBDTMT2Y92T3LjY0d5+ubzKM3XBtxOKF7tB1/u5MHrtqNQKDjRp2fbmuAJSKnG7OZCMadZr9fT1NSEyWRCq9WyatUq3G43GRkZi+L4ODIywunTp2UZFJaZmTnjWOq/ytDX1yetMohiPJYVZLGCX1BQwIYNG6L6XR09epSbbrqJH/3oR+l87kVGWngnGeIH1eVy0d7ejtPpDFgtllt4zzfWfT48Hg8dHR1YrVbq6+vRaDQB76dUKnG73bIMw0k0DoeDlpYWtFptxDGBs4X47KYtlUolVcXiKcTPnDlDul8+dblsUyn3Hmhmwy0H2VNXwtW7V3FRje9vrFiXxbv7L+fhVzp54GAbv/r3BvY/1xzQY70sT8Mrt38QTaaKzlEzn3noMMfuu1x6nsMdE9z05HGe+8YFrCrO4Tt/PBmxV9vl8bL59r/iFQQqlubG1MaSbIjNmAqFgtHRUSnDWq/X09HRwfT0tJTyUVhYSHZ2dkodN2dXg+NhAwm2ymAwGKQpxTqdTqqIa7XaiN5TcfJytPGOgiDw1FNP8eijj3LgwAHWr18f8bbSJCdp4Z2ETExM0N7eTkVFBcuXL59zEFAqlQsmn0RLJFYTg8FAS0sL5eXlVFdXz5tYolQq0ev1aDQa1Gp1Sp085mNsbEzKVBcP9LFgdtOWvxDv6OiQRjOLFfFYNxi53W7a29vxeDyyCW//kfPVIdx/Dck3+TKUJJJENnrmajI4vv8y3mgb57WWMa5+8DD3X70ZgL07faGP9RVFHDg6CMDLjaM8/+7wHI91WaGWrzxxnPf6DaiUCjpG39/b1mEjNz52lJdvv5iyQu2824GFvdq/2Ldzzm1fuGgtX7gowJ1THDHreWRkZIY3WFwx85+u2dXVhc1mS4npmuA7ZjU2NlJUVBR1NTgaAq0ymM3mORc3YkU8lAhDMZGlrq6O3NzciPdNHIrT19fHq6++KqW7pFlcpIV3kvH/s3fe8W2VZ/u/5O14y3E8E894yXZCnAkZDi3zbcsLLy38Ck3SEFIo0ARIGaUto6wWCmWUAgWSNNAQVpltGuIsAiGQiSTveMR7SZa1xznn94f8nEiyZMuWdDTyfD+ffFpkW+foxDnneu7nvq+rr68PHR0dE1aLhWAqwptlWbS0tECpVGLevHkTbh2S1pKsrCx0d3fjxIkTfPXWV6JRCIgwFcom0JUQ7+vrQ2NjIyIjI+0q4p5cU5VKhfr6esyZM4fvo/QFdpHzPjuK79iGyZ1IqgAUANg69t/bcW640vb1dWOvT3e40mAwwJW7c3hYGGrK01FTno7K2cnY/oXV7pK0n4SHiWAZa/3iOOc91g+9L0V6UgxOP3E5WI5DzLp3+a9lJsfCYGZwsl3JC29X7+Npr3YowTAM6urqEB4e7rI32NblY86cOXbpmu3t7dBoNIiJieH/7QdCuiZwzt3D2wUJbxAWFoakpKRxixtbC8PY2Fi+Im57TTmOQ2trK0ZHR8c5skwVpVKJ9evXY/HixXj//fdpO2EIQ+94AUZ6ejpSU1P9XrVwt51FrVZDJpMhIyMDixcvnvC8bW0C4+PjUVpqrWs6E41isTgg7aGcMTIygoaGBl6Y+uPvzlGIG41GftJ/uteUpKANDQ3ZBXVws2ZBNDDg1fPXADiMc5HzRHgfgOvIeYIe9pHztrgTOQ8Ad8LzyHl3nEi+c/jv+QC+dvJ9/zf2ZzqQcCZnztaNPaMICxNhboa1knaqQ4ncmXGQdjof1r6sKsNpj7VKZ0aOeAbCwkTYfrANDHtuBy55RhRe37gYlzyxH3HR4agpT3f5PkIgVMCOJ2i1WshkMsyePZsP53EHZ+maxOWjq6uLd7/yp91ed3c3uru7MW/evKAI+3FmYajX6/lrShJLExMToVQqkZSU5JYjy0Q0NDTgpptuwn333Yef/OQnfn/+U3wLFd4BxlSGC32VLAlYK95Go3HCY7e1taG/vx8VFRUTbolNFvnuKBrJg4P4XkdHR9uJxkC5KbEsi9bWVoyMjGDevHkeWUZ5m+joaGRkZPB+r44Je5M9jA0GA+RyOZKSksYlrenHAoGmywwnOyI0ct5zyM4Tma/Av18b9z0aowV3bD+OEa0ZEeEiFKUn4NUNi/DpyW6n7/m7qyXYvOPkuB7rX14yF//3l8P4x+F2XF6VMa5qnZ4Ug0+3rMQVfzqINzYucfk+vuRHfz7k94Add+jv70dbWxskEonHrQUikQixsbGIjY11ma5J2tJ8PR/CsiwaGhrAMExQh/3YJpYSC0OlUgm5XI7Y2FgoFAocP3582haGu3fvxkMPPYRt27ZhwYIFvvoYaGxsxHXXnTN4bW1txSOPPILNmzf77JgU54gm6RX2bSMxZRwsy8JsNk/6fUeOHMHixYt9djPr7++HWq12OthBqjNisRiFhYUTVlC8EYZDqg0KhQJqtRoxMTF8j56/ehq1Wi3kcjnS0tKQl5cXMIsBdyEPY3JNo6Ki+MWNXq9He3s7SkpKkJLi/aqkM+H9A1gj5y+B1df7LKwi9gCAxwB8PvZ9t8Iqvm+Etcc7CeMj50nP9hZYg3WSx17XwJqE6RikHg5rRTwCQCuslfODACrHzgMAzsDqOLLfxesnYLVNFEp467Rau//W6/WQyWRIS0tDbm6uVSycJ5Hxrsi5/aMJhzZ1//u6wGdkD1ko6XQ6SCQSn9vcEcgOo1KphEql8nq6JmC9v0ilUsyaNQtz5swJuvvjRAwPD6OpqQkSiQSJidbWKWJhSK4pcC4oKTk52WnrIcuyeO655/D5559j165dPkmgdgXDMMjOzsbRo0eRm5sr2HHPM1z+0tOKd4Dh7g2K2P35Sng7sxPkOA5nz55Fd3c3JBLJhBZ5k1W5p4JtBYds+ykUCr6nccaMGbxodGcQxhPI8FNPTw/Kysr4G2+w4eh9q9frMTw8DKlUynsJk4eyr3cZaOS8Z5CKaaiFq3iKJwE7vsZoNPLFi3nz5gkqTN1J17QN9ZnqgkCpVKKhocHjtMZAgzz/BgcHx83xTGRh2NHRAYZhIJPJwHEcvv/97yMjIwO33XYbkpOTsWfPHsH92Wtra1FYWEhFt5+gwjtI8WaypDMc7QRJRS0+Ph5LliyZUPD7MvLddtuP9DTqdDr+oaHVahEXF8cLcW/abdnaBC5cuDBot06dYTKZ0NXVhcLCQmRkZPAV8c7OTrtdBjKw5c2/0/Mqcv6t6934VJNjW83OH/uDPq+8dUigN1kCdmhzZGQE9fX1KC4uRmqqdxJDPcFZuiYJ9XFM10xOTnbpe02KEn19fbjgggv8ag7gbRiGQX19PcLDw7FgwYJJC0nOLAwZhsEnn3yCHTt2oLOzEwUFBbjsssv4/y/k4uvtt9/G//t//0+w41HsCcw7E2VSpuuzPZX3J+K5p6cH7e3tKCsrm7CC4SwMx9fYDheRQRitVguFQoHm5mbo9Xreo1UsFk+7D7u/vx+tra0B87D0FqRXf3h42G6A0nGXwWAwQKFQ4OzZs1Cr1fyUvzfafaYaOe/IcwDWw9py8ieb1y+F1Zpw2dh/x8M6mOkovONg7QN/dOxru8Zed+U44isnEsrE/OCpQ/zQ5vNrFqCmPB2/2XUao3rLuKHNXUfOTv6GAkMqpgMDAwEtTCMiIpCamsrf5yZL14yJieGFaVhYGBYsWBBSRQnSNpOZmYmcnJxpvUd4eDguuugiREREYP/+/XjzzTeRkpKCQ4cO4e6770ZrayskEgl+/OMf45prrvHyJ7DHZDLh448/xhNPPOHT41BcQ3u8A5CJhhoJdXV1yMzM9EkPLgDodDrU1dUhLCwMUVFRKC0tnbD3z5dVbk/gOA5qtRoKhQJKpRIGg4F/aIjF4kkffrb+1WVlZYL1YQqBXq+HXC5HSkoK8vPz3V4o2bb7KJVKaDQaxMbG8hXxyYS4sx7v8wYvVbzPS254GwDAJESjKjEab2xcgqo5Sdi84yS+ahqyG9rcdrAVx9qUeHFdtcu3G7nyb4Jt8VssFtTV1SEqKgrFxcUB79Q0EbbpmuSeajKZMHPmTBQUFEw7gCYQIbsTpaWlHj1rOY7Dm2++iddffx1vv/02CgoK7L7Osizq6uqgUqlw0UUXeXraE/LRRx/hr3/9K/bs2ePT41Bcdy1S4R2AuCO8m5qakJKS4lFC1kR0dXWhvr4e8+fPn/AYjlXuQBLdziBhCUQ0mkwmJCYm8qLRdhtVqVSisbERubm5yMjICOjPNVX6+vrQ3t6O0tJSJCcnT/4DE2DrJUyEOAn1EIvF4/ruqfCmTIsx4Q3AK9fxUM6tYBjGrp/ZF0KcJBrm5ub61AffHwwPD/P3SIvFAqVSOa0AmkCEzPJUVVV5tDthNpvx29/+Ft3d3fjHP/7hUcCON7j++utx2WWX4ec//7lfz+M8gA5XBhMikWjSZEpftZqYzWbU1dWB4zjExcW5LboDXXATbMMS8vPz+eqNQqHg44OTkpJgNBphNpsDzibQUywWCxoaGsBxnMeBDwRnXsI6nQ4p5eWIGBrywlmf3xyo68fTnzWGdFT6pIzovf6WCxcutGuj6OzshMVisRPirvqZ3YUscD1NNAw0OI5DR0cHhoaGUF1dzV+n3NxcpwE0wZKuCViLM01NTTCbzR7bICoUCqxfvx7Lli3Dc8895/edDq1Wi88//xyvvPLK5N9M8RlUeAcpzlxHPGVwcBBNTU0oLCxEeno6jhw54vT7gq3KPRHESotUfUdHRyGTyfgHyXfffcdXbqYz4R9IkKAfX1feiBCnotv/uAyPsa0en8c4iw8nQpwsxB37md2BZVk0NzfDYDBg4cKFXrHoCxRs22acDRo6C6AJhnRN4FysfWpqKkpKSjx6rtXX12PDhg34zW9+g2uvvTYgnpFxcXEYHh7292mc94TO3eA8IyIiwi2/b3cgfczkITFRlScYq9zuwHEcOjs70dvbi8rKSj7IgmEY3mqrvb0dgNWfVSwWe83z1tewLIu2tjYolcqQq+AHI1qDBXf84zhknSqYGRYPXVOBqxbmoH1Qg5/97WtojdYF9Ytrq3FhsX289rdnhrHx9W/x3qaLkJEU6/R9th1sxQfHuqYUHpMHa/KmY5g38UR3l6l+vyu2wToc636Go3cICwvjBSFg389cV1cHo9FoJ8Sd/VsyGAyQyWSYOXMmiouLQ+YeCVhnf6RS6ZQSNt1N17QNoPGHEFer1ZDL5SgqKvI41v4///kPHnnkEWzfvh3z58/30hlSQoXAVw3nIe62mhgMBo+PpVAoUF9fj9zcXJSXl0/4kGAYJiSq3I4YDAbU1dUhLi5unE1geHi43YQ/6WMk9oUikchOiAfaND8ZoBSLxW7ZYFF8z2MfyXFxeTre2LgEI1oTFv/+c3y/IgOzEmPw+X2rERMVjuY+Nf7fi1/h2KOX8T/3VdMQ7th+HB/dtQJzZsbhN7tOO30fADjRppwwPCbQ2QagAsILb0dsd8RIa5parea9qg0GA++aRMKnmpqaQs7DGrDuiJ45cwbl5eUe5Re4StccGRlBX18fGhsb+XRNcu19fV/t6+tDR0cHKisrEefBDArLsnj22Wexf/9+fP7557yvN4ViCxXeQQrx8Z4uDMOgubkZarUaCxYsmLAKGqpVbuCcTaC7D8qIiAg7z1uz2QylUomhoSG0tLQgPDxckDhmd+jt7UVHR4dXBii9iQFAYBqp+RZFeBjEAPZI+/DxiR48/VkDAMBgZnB2WIuslFjcvu04TnWMIDxMhKa+c67g9T0qbHz9W+y5rwZZKdZ/q67eB3ASHvPLDwGV64V6u4vXp1q99ka1G7Amlk6IO60ySTHAS//r9Etc9PSEo+2MSF5enp1r0qlTp2AwGCAWi6HT6RAdHe3VHAF/wXEcWltboVKpsGDBAp8MoMbExCAjIwMZGdaFI0nXHBwcREtLi0/SNQHrZ2tpaYFWq0V1dbVH76vT6XDbbbchJSUFu3fvFjwUhxI8UOEdpHgivFUqFeRyObKysibtYyOCO9BsAj3FbDajsbERHMdh4cKF0+7djoyMtEssIw+M/v5+NDU1ITIyknf3SExMFKTiTD4bgIDsL10LoAfAxQAe9ueJ/PUqINn7bTfvHe3E9i/aIO0cwbFHL8PMhGgca1Vgyz9P4gAAjgPe33QRSrLsxd9D70uRnhSD009cDpbjELPuXf5rmcmxMJgZnGxX8sLb1fscbRkeHx4zgegOWVQGn8fCk+qtSqVCamoqioqK+H5mEgcfFxfHL8aDzeHDbDZDLpcjLi4O8+fPF2zHbCrpmq4i2SfDbDZDJpMhISHB4/TQrq4urFmzBmvXrsUtt9wSVH/HFOEJrCcyBYB7sfEk4GYqsCyL1tZWPixloil7juMQFhaGnp4epKamhtTqnWwT5+XleX3I0PGBYTQaoVAo0NPTg4aGBkRFRfFC3BdDRWSAMi8vj68eBRIaAIcB7AfwQ5wT3gcAPARrj7EMQDWsYTcinOs/jgNwzdifm2HfT/wUgHcAGAFcDeeCPn7s5/YAyABQ6yXR3dgzirAwEeZmWOeQlQ2gAAAgAElEQVQCTnUokTszDtLOEafff1lVBl7Y0zwu9EWlMyNHPANhYSJsP9gGhj3XbpY8I4oPj4mLDkdNebrL96EIB+kLzs/P5//Nk8HCOXPm8IFeSqUy6Bw+iA2i7WfzF+6ma5Kq+GRuNFqtFlKp1Cuf7euvv8bmzZvx/PPPo6amxqP3opwfUOEdpEy14k1uomlpaVi0aNGEgo+E4RQXF2NgYACdnZ0AwAvGQOxldgeWZdHS0gK1Wi1Yclx0dDQyMzN5gU8SILu6ujA6Ouq1KPZgGaD8CMDlAIoBpAI4DqvIBoCTAOSw9vVeBOBLWOPbAavAvh7AmrE/tuwB0Axr+iQH4EcADgFwNN/TAlgI4FlYY+a9hcZowR3bj2NEa0ZEuAhF6Ql4dcMifHqy2+n3/+5qCTbvOImq+3bbhb788pK5+L+/HMY/Drfj8qqMcVXr9KQYfLplJa7400G8sXGJy/ehCENvby/Onj07oVWgSCRCfHw84uPjXTp8kBRYT+8B3qS/vx9tbW0Ba4M4UbrmZG40pFddIpHwQ/TTgeM47NixA1u3bsXHH3+MvLw8Tz8W5TyBBugEIBaLZdJqttlsxsmTJ7F48eIJv4/jOLS3t6Ovrw8SiWTCoZiJerltt/pGRkYQFhbG23D5awp9Kmg0GtTV1SE9PR1z5swJiIcbAD4BUqFQTBo84wqdTge5XI7U1FTk5+cHzGdzFpTzAwCbAFwC4HkAZwE8DWvF+zEAn499362wiu8bYa14J8EaCX+DzXuRivcWAO8BIF3sGgD3A7jJ4djhsFbEIwC0Aig4n8JszlP7QJ1W6/X3ZFkWjY2NMJvNKC8v96iVi6TAkvAptVrtV6s90vOs0WhQUVERtPapjumaRqMRCQkJYBgGRqMR8+bN88ij3Ww244EHHkBfXx+2bdsWkIsTit+hATrBhLdaTXQ6HWQyGZKTk7FkyRK3qtyuerkdt/pILzOZQo+MjOSFeCD5snIch7Nnz/ILj0C7QcbGxiI7OxvZ2dl21TCyLU36Q8Vi8bhBLY7j+KpbWVkZkpKS/PhJJkcBYB8AKax3JGbsf58a+7rtYzAcgO1+zkUAdgP4KcbfzThYhfYvvHSej30oxz+/6kB4mAhhIhFeuWkRlhSleundA4sPYW3NqQdQ6sb35+H8th00GAyQSqVIT0/H7NmzPV7kikQizJgxAzNmzEB2djYA8ELc1mqPCHFfzomYTCbIZDIkJSVh/vz5AbOAnw6ObjQWiwWnT58Gy7KIiorCiRMnpt17r1AosG7dOqxYsQLPP/+8z591IyMj2LBhA2QyGUQiEd544w0sW7bMp8ek+BYqvIOUsLAwl5aDxJO6q6sLZWVlvCetq++dThiOYy+zrS+rbQuFWCz2Wx+jwWCAXC5HQkLCpO01gYAzv1utVguFQsEPasXHx/OLm/b2doSHhwfkAKUz3gPwMwC2mWmrAHzhxs8+MvbnNgAvOXztMgC/g7UaHg+gG0AkAEcjL3bsHK4H8E8Av3VynCPNQ/j0ZA9OPHYZoiPDMaQ2wmRh3TjD4GQnrO08O+HnQddpsg3C2Q4ODw+jqakJZWVlPnUJcma1p1Qq+TkRMrDtTc9r0qteWFg4YVpxMKLX6yGVSvkCB4Bp997X1dVhw4YN+N3vfodrrrlGkOfapk2bcPnll+O9996DyWSCTqfz+TEpviXwn9bnIZ78YybhDTNmzMDixYsnFGSkys2yLMLCwjw6bkxMDN/LTLZPSeiMRqOZsHLrC/r6+tDW1hbUfrq2/aFkUEuj0aCrq4vfZUhJScHAwADEYrEgPeuesBPAvQ6v/d/Y69e58fPPAVgPa8vJn2xevxTWii2pAcXDOpjpKLzjYO0Df3Tsa86Ed++IHjMTohEdaZ1hmJlgrcPnbfoYa1fk4+FrK9040+BgOoOuBD3sB11tcWfQFQDuxLlB17cBpAE4BeAWADoAhQDeAJDi4vVaWKvvNwCIBXBk7H+9Dcdx/PzEggULPI6Rnyq291bAtef1dC1Mya6Zpx7WgQgZpHdcLE3Ue9/R0QG1Wg2j0Yh9+/Zh9erVWLZsGWpra/HYY49h+/btmDdvniDnr1KpcOjQIWzbtg2AteAVSkYH5yu0xzsAYVnWrVTKr776ChdeeCGAc20HbW1tKC0t5YdOnCF05Ltt5VapVEKn0/GhE2Kx2KuDgGazGQ0NDRCJRCgpKQnaHkVnEFcalUoFiUSCqKgoPsxDoVDAaDTyFltisVhwgeCIsx7vgMJJj7fGYMbyh2uhMzH4fkU6rls6B6vKZiFv08e4+8pS3HFZsR9O1As46fF+C9bWn9cBXAjgBVhF9gEAV8F+0PUpWCvjeWNf3wD7QVfSOrIH1l2FV3Bu0PUejB90FcEq5m+AdSdjAMCLAKrGzmMVgN8DGAXwlwler4F1RmChi4/taY83sZyLj49HYWFhQO6akbY/pVIJlUqF8PBwO89rV0LcNtZeIpEExa6Zu3Ach66uLvT19aGysnJaRYmBgQG8++67OHz4ME6fPg2NRoObb74ZV155JRYtWiRIoePUqVPYuHEjysvLcfr0aVRXV+O5554LuQVSiOJSVFHhHYBMRXgvW7aM91qNiIhAaWnphGIzEMJwbEMnlEolDAaDVwSjQqFAY2Mj8vPzA9JKzxPIAOXMmTORl5fn9O+NDBSR62o2m5GUlMS7pghdKQlG4Q0ADMvii4ZB7K8bwCv7zuDJ66rw0AcyfPng95EtniHwSXoJJ8I7kAZdrwFwEEDl2HkAwBkAP4a1Iu/s9RPwrfAeHR1FXV0dCgoKgiqB0GQyYWRkBEqlkh+EdwyfMRqNkEqlSE1NdXk/CVZYlkVDQwNYlkVZWZlHDlxarRa//OUvMWvWLNxzzz04cuQIDh06hG+++QYJCQlYsWIFNm/e7LNd1WPHjmHp0qX48ssvsWTJEmzatAmJiYn4wx/+4JPjUbwKHa4MJty9CYaHh6Ovrw+tra2YO3fuhA8HoavcEyESiZCYmIjExETk5eXZCUaZTAaz2czHsKekpExatWYYhk8fE8omUCimMkBpO1AEWB9A5AHc2dkJhmHshHgo7QZ4k/CwMNSUp6OmPB2Vs5Ox/Ys2AODbT0KBQBt0DTTZ193dja6urqBsv4iKirIL9XIMnyHOHnPmzEFOTk5IiW6yoJg1a5bHw69dXV342c9+hvXr12Pjxo0QiUTIzc3F9ddbF+yDg4M4fPiwT3cWc3JykJOTgyVLlgAArr32Wjz55JM+Ox5FGKjwDlLMZjN0Oh16enqwaNGiCauZgVDlnghHwUg8WRUKBTo6OsBxHC/EHeOC1Wo16urqkJmZieLi4oD7bJ5gNptRX1+PiIiIaQ1Q2lo+AtbrSoS47XUl/aGhtNU8XdwJw+FTKH/7Pfxm12mM6i3jQmzu3HECOeIZuPt/SrH1YCvWv/oNuLeux4G6fjz9WSMfhvP8mgWoKU93+T7bDrbiWJsSL66rdnXK07IKDLRB1+WwVtJTxs5hBYAdY+fk6nUASACgduOc3YVhGDQ2NoJlWSxcuDAo8wocsXWk6urqQnd3N+bOnQudToeTJ08COJcCGcwLcpVKhbq6OhQXF0/YaukOX331Fe688068+OKLWLVqldPvSUtLw9VXX+3RcSYjIyMDs2fPRmNjI0pKSlBbW4vy8nKfHpPie+iTNggZHh5GQ0MDYmJiUFJSMqnonsgmMBAJDw+3E4wWi8WuYiMSiZCSkgKTyQS1Wh2QNoGeolAo0NTU5NXUuPDwcLvQCdvr2tZmreoGe0iSp5wvYTiBNui6a+z17Tg3RFkAYOskr68be90bw5XE/SIzMzPkKsG27ReOCwpXKZBEiAfDMB/ZFZw3bx5mzJh+OxjHcdi+fTv+8Y9/4JNPPgmIUJwXXngBN9xwA0wmEwoKCrB169bJf4gS0NAe7wDFaDSOe41UY/R6PSQSCVpaWjB79myn7QeBXuX2hNHRUcjlcv4zEXcPsVjsU59bIXAcoBSybcZZSBK5rtNxSwjWHu+g4zwNx3EHd3u8h4aG0NzcjPLy8oD3w58qU/Uet02BVCqVsFgsdkLc30PbtnAch+bmZv6Z6Mmundlsxn333Yfh4WFs3bo16FqMKAEH7fEOdpRKJerr6zF79myUlZVBJBK5DNEJxiq3O3Ach76+PnR0dKC0tJT3JzcajVAoFOjp6UF9fT2f/Eb8roPl82u1WtTV1SEtLQ0LFiwQ/LxdhSQNDAygqakJERERfH+4O/7B3KxZEA0MCHHqFIpTGhsbJ2yh4DiOX+hWV1cHRXV3KhA7Pdv75WQ47jhOJY5dSMxmM6RSKZKTk1FVVeXR/XJ4eBjr1q1DTU0N/vrXvwZ18YYS+NCKd4BiMpn4qnVzczNUKhUqKirsttGam5uRlJTED9GEcpWb9DuHh4ejpKRkwsoG8RAnEczTiWEXEo7j0NPTg87OTpSXlyMxMdHfp+QUo9HIWxeOjo66nVaq1Wohl8v5fsVAuf4zPnT02ghSaMXbJZ1nz/KVW5Zl7dw9AEAmkyExMRGFhYUB83vpDUiIWn9//7Tt9FzhLI7dVoh70x7WFRqNBjKZzCuOM3K5HDfffDMefPBB/O///m9I/R5Q/Aq1Eww2TCYTVCoVL1icWT61tbUhOjoaWVlZIVvlBs4lxhUUFEy535kEIxAhrtVqER8fb+ch7s9rZTabUVdXh8jISJSUlARVXzVJ1CNC3HGnATjXexmICwoqvEMf21YT2+HioaEhaLVaiMViZGdnIzk5OWSq3QzDoL6+HmFhYSgtLfV59daZECc5DUSIe/MeOzAwgNbWVlRUVHg028NxHD777DM8/vjj2LFjByorQyccixIQUOEdbNTX12NgYGDCm8vZs1Zn2+zsbN4mMJS2yGxtAiUSiVd6C0n6o0KhgEKhgMFgQGJiIt9CIeS2KfEdLywsDCqfYFfY7jSMjo7CYrEgOjoaJSUlSEpKCrjFIBXeoY9jjzfHceju7kZPTw/Ky8thMpn431mGYexcfoJRiJMB0aysLOTk5PjlHFiW5YO9SE4DKXakpKRMO7nYti2osrLSI/cVlmXx1FNP4csvv8Tbb7+NmTNnTvu9KBQXUOEdbPT29iI5OXlCId3d3Q2VSoXCwkKEh4cHnLDxBGITSB4gvvps5CFBhLgQoTMsy+LMmTNQq9UoLy8PKd9x4JytV2ZmJiIiIqBQKKDVajFjxgz+ugZCy0+oCO/BG96eNG59NgDPDNaCD27WLOjH3HqAc5VgkUiE0tLScbtLzoYKg0mIk53BQBsQJcUOsjum1+sRFxfHX1d37gUWiwVyuRyxsbGYO3euR/cOrVaLW265BVlZWXjmmWeC1j6REvBQ4R1smM1mvortCOnl1uv1aGtrw+joKKKiouz6bf0taqYLx3Fob2/H4OAgJBKJ4JPlLMvyHuIKhYLvCyWC0VOva9LvPGvWLOTm5gbt35MzyN/d0NAQJBKJ3TwCx3HQarX8w1en0/m95Sf2P3dCZBwV9JjeRjOix323feSTuHVv42l8u0fH1ukgk8mQnZ2N7Oxst34mWIQ4+Xc3PDyMysrKgHIdcYatEFcqldDpdPwcTkpKCuLj4+3uBTqdDlKpFHPmzEFmZqZHxz579izWrFmDm2++GRs2bAip+y8l4KDCO9hwJbxdDVAaDAZeLJKBQiLEp7u1JzR6vR5yuRzJyckoKCgIiLYZ0hdKtqOB6Xldky3u7u5ulJeX8z3QoYLRaIRcLkdCQgIKCwsndzyxaflRKpXQ6/VISEjgFzhCDGi5izNbxPMhbt3b+Et4k55gT+cMXNns+XJ3bDJIJTgmJgZz584NiHvmVLFdlJM5HCLERSIROjs7UVFR4fGMyOHDh3H33XfjpZdewooVK7x09hSKS6idYLDhKJQni3yPiYlBVlYWP2hJBgpbWlqg0+kCVtQA9rHopaWlvONAIOAYOmM2m/nhrJaWFoSHh9t5XTt78JlMJtTX1yMqKipk0vBsIR7IU0mME4lESEhIQEJCAnJzc8FxHN/yU19fzzsl+KP33hZndp00bn16eMPX3bF9ZCJIS5dGo0F1dbXHLQUT2ex1dnYK7net1Wohk8m8Ugn2JyKRCPHx8YiPj8fs2bP551dLSwtGRkYQGRmJM2fO8Nd1IgclZ3Ach61bt+Ktt97CZ599hjlz5vjw0wB5eXlISEhAeHg4IiIicOzYMZ8ejxJ8UOEdBEzVJlAkEiEuLg5xcXH8jcxW1JhMJiQmJiI1NdXvW6ZElE43Fl1oIiMjMWvWLH4Ykgxn9fb2orGxEVFRUXZhPiSBMlQGKG0hVpc6nc5jD2SRSITExEQkJiYiLy/PzilBLpfzvffk2grxO6vRaCCXy7Ha4XUat+4/3PWFN5lMkEqlSElJwfz5832y4+dMiI+OjkKhUKCrq8unQnxwcBBnzpyBRCIJud0zlmXR1taGyMhIrFixAiKRCHq9nl/gqNVqREdH2zkouRLiJpMJ9913H5RKJWpraz1KtZwK+/fvpwObFJfQVpMAxWKxwGKxTFjlni62fcy20/ze6mN2F1IpDSVRatvyMzQ0BACYM2cO0tLSxvUuBjOkVz09PR1z5szx+edy/J0l/bbkd9abA1LEV72rqwsSiQSzHCwsV8Mat365zWvPwxqVfh2s7Rufjr1+O6ytHOtgbTU5BuuQ43oAabDGrZNWE8Aaxf7a2P8nceuFDucXD2AjgD04F7fuOFxJYtVTJnj9fQC/gXfi1oVkspaVkZERNDQ0YO7cuW7vwPgC8jtLWihsF4/TFeK2zh4VFRUB02fuLUjKJvH8dwUR4iSrISoqCklJSWhtbcWKFSsQExODoaEhrFu3Dt/73vdw//33C9aGk5eXh2PHjlHhTaE93sGGxWKByWQSJAyHYRh+6G1kZAQikciuj9nbNyyGYfiY3/Ly8oAfBpoqtgOUaWlp/LXVarWIi4vjxWKw9N7bYtsW5E9vbrLNT4S47RBscnLytIW4xWJBQ0ODnfOFN1okKN7DlfC2DY2pqKgIuJY6Z0Lctp1qsvug2WyGTCZDfHw8ioqKgu7eMRkjIyOor6+fUsomwWAwoKurCw8//DCkUini4uKgVCpx88034+677xa0VS0/P5/vT//FL36BjRs3CnZsSkBBhXewsW7dOiiVStTU1KCmpkbQwRmz2cxXbVUqlV1CYWJiokc3/NHRUdTV1SE7O9unNoH+YLIBSjJERK6t7UChWCwOeFtBi8XCB3NMlh4qNBaLhQ9HsR2CJSmF7pyrWq2GXC7HnDlzkJWVxb9OhbewbANwKYAsF193JrwZhkFdXR0iIiJQUlISFEOGroS4syh2ktSYn58/5RCxYIDcNysrKz1aMHEch08++QTPPvssfvzjH6OtrQ1Hjx5FfHw8Vq5ciVWrVuHCCy/06aKsu7sb2dnZGBgYwCWXXIIXXngBK1eu9NnxKAELFd7BBsuyqKurw969e7Fv3z60trZi3rx5WLVqFS6++GJkZmYKJlodHVNiY2N5seiuHzPLsrzlVXl5ueA2gb7GZDKhrq6OdxdwZ4DStvdeoVDAaDTyLglC9TG7i0qlQn19PXJzc4NikMtsNvNuNCqVit/FIULc9u+H4zh0dXWht7fXqYUlFd7CUoOJ3VYchTcZMpw9e7bdginYIHMNZBeHCPGwsDAoFApUVVV5lNQYiLAsi6amJphMJkgkEo8Gz1mWxR//+EccPXoUO3futGszGhwcxBdffIGDBw9i3bp1uOCCC7xx+pPy0EMPIT4+Hlu2bBHkeJSAggrvYMdiseDYsWPYu3cv9u/fj+HhYSxduhSrVq3CypUrkZycLIgQt3VMsfVjJmLRWSVBp9NBLpdDLBYjPz8/KKpRU4EEVxQVFSEtLW3a72P74FUoFD7tY3YXjuPQ0dHB+6oLNZzkbYgbDRHixI0mMTERPT09iIqKQnFxsdMHPxXeU0MCIAPA2xjfe+4Y7OP4ei2s/fDZcN17biu8+/v70dbWFpJDhmSHaXR0FNHR0bBYLC4r4sEIGYBNTU31ONNAo9HglltuwezZs/H000/7LRRHq9WCZVkkJCRAq9Xikksuwe9//3tcfvnlk/8wJdSgwjvU0Ov1+PLLL7F3714cOnQIDMNg+fLlqKmpwbJlywQTSMSPeXh4GEqlcpwN3NDQEDo7O1FWVhZQaWrewNbVwxe96sRDnGxFcxzHP3RTUlJ8bks4VW/uYMJkMqG7uxsdHR3WPm6bVE1SZSRQ4T11HgEwAPgk2Ec3Jm6IVapEIgm59EGTyQSZTIakpCQUFBRAJBLZOf2Qe63tsGYwCXHS1lVYWOhRsQIAOjo6sGbNGtxyyy1Yv369X9sXW1tbcfXVVwOwLpx++tOf4oEHHvDb+VD8ChXeoQzHcRgZGcHBgwexd+9eHDlyBAkJCVi1ahVWrVrlFQ9bdyEPh4GBAfT09AAA0tPTMXPmTEEdU3yNRqNBXV0dP30vxM3eYrHYDcGGhYXZeYh7U4hPx5s70InNz3fbjo7imm2YuAcb8G2wj1KhgEwmg1gsRl5eXkjNiQDWORi5XD7pDpozIR4I3veTQXYpKisrPW45/OKLL/DrX/8aL730EpYvX+6lM6RQvAIV3ucTHMehr68Pe/fuRW1tLU6cOIGcnBysWrUKq1evRnl5uU+rl4ODg2hpaUFRURHEYrFd8qOtY4q3xaIQkH7gnp4evydQmkwmu/YJMgTrrGrrLrZVfIlEElB95p4SKJXr6wD0ALgYwMNufH8erDaEjuZktjaE7jDV73dFDSZPvGwF8H+wJnl6W3jX7t2LkpIS3j87lOjp6eGTGqcqSl0JcXK/9bcQ5zgOZ86cgVqtRkVFhUfFII7j8Prrr+Ptt9/Grl27JrQepFD8BBXe5zMcx6GlpYUf1Kyvr0dZWRnvmOKtqhHDMGhqaoLRaER5eblT0Wbba0tSybzlmOJrTCYT5HI5YmNj3R6gFBKDwcBf29HRUcTExPDX1h0PcaG9uYUmEIS3BkAJrMLzhwAax14/AOAhWMW1DEA1rB7eIpwT3nGwVpGvAXAz7IX0UwDegTVK/mo4F/TxYz+3B77twQaARwH0w9pKMg/WlpMVY59RBeDZCV7/IYC7gHHBRQTF8LDfRaS3sR0yLC8v98rOIMuyUKvV/D3BVogLnWBssVh4K8TCwkKP7i0mkwm//vWvodVq8dprrwXt3Akl5KHCm3IOhmFw+vRpXoj39PSguroaq1atQk1NDdLS0qZ8YySuFzk5OcjOznb75x3F4nQcU4SAtF7MnTs3aIIR9Ho9P6ip0Wj4PmaxWGznIR4o3ty+guM4tLe3Q1JR4e9TwVuwxs2/DuBCWIVpNazC+yoAclhbOC6CVUwvh1V4HwCwAcCasT/AOeG9B9Yky1dgvWH/CMA9ABwNzESwivkb4Nse7Ar4NthnsgCdYMNoNEIqlWLmzJkeDxlOhL+EOHGdycvL89gKcXBwEOvWrcOll16Ke++9N6TmTighBxXeFNeYTCYcOXIEtbW1OHDgAHQ6HZYuXYqamhosX758QiFG4n0VCoXHrhccx9mJRa1WO6ljiq9hGMZuiCtYWy9cudEkJydjaGgIUVFRAefN7Q3IkFpCQgLmzZ/v9Hs+hLVKXA+g1I33zMP0Wz9+AGATgEtgTbs8C6uIPQDgMQCfj33frbCK7xvHjpcEq5i+wcnxtsAqvJPHXtcAuB/ATQ7HDoe1Ih4B3/Zg+5pvjh7lW6oCLSRnqpDQGH/MUtgKcaVSCYPB4HUhPjQ0hJaWFq+4zkilUmzcuBF/+MMf8KMf/cjjc6NQfAwV3hT3UavV+OKLL7B3714cPnwYERERWLFiBVavXo3Fixfz27xSqRR//etfcc899yAvL8/r1QfimELEosFgENTnWqPRQC6XIysrKyTDfnp7e9HS0oKoqChwHMcPZonF4pBIE1UoFGhsbOR3KVy1mgjVc60AkANrFVgEgBn73w5YBfBEUfNXAlAD+AfO3c3J8e4GUAzgF5Oct6Pw9lUPtq/p6+3lZ0Z8IRaFgIRt9fT0eBwa4y2cCXES8DXVa0tsSIeHh1FZWenRvZrjOHz00Ud46qmn8Oabb0IikUz7vSgUAaHCmzI9OI7D8PAwamtrsW/fPhw9ehSpqalITU3FiRMn8Je//AUXX3yxIOfi6HPNMIxXYsIdIdHTfX19KC8vD7nQCmfe3LaDWQqFAmazGcnJybygCaZKP8dxaG1txcjICCQSCb9QdCa8fdlz/WuHY70K4DisLSGEVQD+AIDFxML7GKztIRYAL419j22rye9g7b+OB9ANIBLWdg9bRAB2Argevu3B9jdmsRhnv/kmYJ09GIZBQ0MDOI5DWVlZwM2KEGwDvmyFuO2wprNiBEkRjYyMRHFxsUcFGYZh8OSTT+LYsWPYuXNnSA7UUkIWKrwp3qG/vx833ngjLBYLMjIyIJVKUVhYyDumCBltT3yuyYMBAF+xna5jitFoRF1dHWbMmIGioqKAfShOF3e9uRmGgUql4q8ty7J2HuKB2pJiNBohk8mQnJzM+x8TnAlvX/Zcv+pwrNUA7gVgG6XxPKwtLtdhcuGdCmA9rBXzP8Fe6D8H4DWb83gT1oFIW+IBbBw7P1/2YAcCcpkMSqUSJpMpoEJnDAYDpFIpMjIygm4XjQhxsji3FeKkIk4+X3Z2NrKzsz06nlqtxi9+8Qvk5+fjqaeeCth7DoXiAiq8KZ7zySef4Le//S2efPJJXHHFFQCsVej6+nq7aPuqqiq/RNu7ckxx116P2CAG0wDlVPDEm9tisdiF+QDgr61jBLu/IAmirqzmnAlvX/Zct3v8iSjThQxgOlrsESFOfneFbKkirU+lpaVISUkR7Li+wlaIK5VKaDQamM1mfsA+NjZ22vf+9vZ2rFmzBrfddhvWrVvn82cIwzBYuHAhsrOz8emnn07+AxTK5MnFXcEAACAASURBVFDhTfGMb7/9Fk8++SReeeWVCUWpxWLB8ePHeSGuUCiwePFiPto+JSVFMCFuNBr5thRir5eamoqUlBQ7ez2GYdDc3AyDweDSBjGY8YU3t+MiJyIiws4WUki3AZZleX9giUTiUkw5Cm9/91xTfIcr5xPbdjWlUgmz2WyX/ugLIc5xHM6ePYuBgQFUVlb6veruCzo7O9Hb24uCggJotVoolUro9XokJCTw7YDuCvFDhw7hnnvuwSuvvIJly5YJcPbAM888g2PHjmF0dJQKb4q3oMKb4jkcx01ZNBsMBj7a/uDBg7BYLHbR9p4ml7mLM8eUuLg4xMXFYWBgADk5OUG39esOQnlzG41GO1vIqKgoXognJCT47LgGgwEymQypqamT+tE7Cm9f91wfnf7HoniIu5aDLMtCpVLxVVsixElF3NNFKul3joiIQElJScjZ37Esi4aGBrAsO65f3XY4ngjx+Ph4fpFja2lKvv+1117DO++8g127diEnJ0eQz9DV1YW1a9figQcewDPPPEOFN8VbUOFN8T8cx0GlUtlF28fFxfHR9gsXLhQ02v7MmTPo6+tDbGwszGZzyLl69PT0+M2bW6/X80JcrVb7xJ+dtAa5u3XvKLx93XO9aeofKeTxVnrmNkwcWz9dr2+GYewq4gzD2FXEpyLEdTodZDKZV/qdAxHiP56WlubWop4IcXJf+Prrr/Hf//6XL8Rs27YNBoMBr732mqAuL9deey3uv/9+qNVqPP3001R4U7wFFd6UwINE29fW1qK2thbHjx9HdnY2P6gpkUh8UiEiA4bx8fEoKipCWFiY0y1oskWakpIi2ILAG1gsFjQ0NAAASktL/T6URDzEyQOX7DbY+rNPRYhPt3UmEJIrz3eEiq33VsgOGTImFXEixCe7L5B5ivLyciQlJXnlXAKJ0dFRyOVyj/zHGYbBsWPH8Nlnn2H37t0YHh7m05RrampQXFzs8x3ITz/9FP/+97/x0ksv4cCBA1R4U7wJFd6UwMdZtH1paSl/I87Pz/f4RkyqpJM9MJw5phAbrUAZJnQGSRDNzc1FZmamv0/HKY6VL71ezztPEJsyV+j1eshkMsyaNWvKrTNUeAtDFfwfW++rdEtnbj+2tpsRERFob2+HQqHw2L86UCEpt5WVlR7HtZ8+fRq33HILHn/8cVxxxRWQy+U4cOAADhw4gObmZkgkErz88ss+W7zcf//92LFjByIiImAwGDA6OoprrrkGb775pk+ORzmvoMKbEnwwDIPvvvuOF+Ld3d1YsGABH20/a9Yst4UXwzBoamqC0Wic1gCl7TChSqVCREQELxSFHiZ0hjNv7mCBBHcQMWMymfjtfdugpP7+frS1taGsrGxaD2IqvH0Ph8CIrRcqVp4s0G13c2JjY1FQUBB0O2WTwXEcmpubodfrIZFIPNpJ4zgO//rXv/DMM8/grbfeQllZ2bjvYVkWdXV1KC8vF+T+SiveFC9DhTcl+DGZTPj6669RW1uL/fv3Q6PRYNmyZaipqcGKFStcDvGNjIygsbGR77X0xvYlcUxRKpUYHR1FdHQ03zph65giBO56cwcLZOCNXF+LxQKO4xAeHo6KioppLyqo8LZyPsTWCyW8CVqtFlKpFDk5OYiNjeXdfjiOG1cRD0bMZjOkUimSkpLG+eNPFYZh8Pjjj+PkyZPYuXNnwFgrUuFN8TJUeFNCD41GYxdtHx4ejuXLl2P16tVYsmQJIiMj8Yc//AH19fV44403fOqgYuuYotFoPOphngqeeHMHA1qtFjKZjA9E8qTthwpv/1soChVbL6TwHhgYQGtrKyQSCRISEuy+5sz/nojw5OTkoBDiGo0GMpkMBQUFmDXLMQ91aqjVamzcuBFFRUX44x//GBSfn0KZJi4f+vS3nhK0xMfH44orrsAVV1zBR9vv27cPH330EbZs2QKtVovS0lJs2bLF5y4lsbGxfEWd4zhotVooFAo0NTXxPczedExhWRYtLS3QarWorq4O2V7Sjo6Oca4sZrMZIyMjGBoaQktLC8LCwuwSS4O94u9L3gPwM4y3UPzCjZ99ZOzPbThnoUi4DFYLxRswcWw9O3YO1wP4J6xJoEmw9nN/AWs8/Y6xc3L1OgAkwLoI8Cccx+HMmTMYHR1FdXW107aSiIgIzJw5k88+sFgsfFtKa2srRCIRP8QdiLMjg4ODOHPmDCoqKhAfH+/Re7W1tWHt2rW44447sGbNmpCzbqVQ3IVWvCkhx0cffYQHH3wQ99xzDwwGA/bt24dTp07x0fZkYl4ogWbbw6xQKDx2TBHKm9tfMAxj5w08WVXMZDLZ9d+TxFLiIU7+nmPz8yEaGBDiIwQs50tsva8r3mazGTKZjG/vmu6/QbKIJL+7IpHIriLuLyHOcRza2towMjKCyspKj3vVDxw4gPvuuw+vvvoqli5d6qWzpFACGtpqQgl9dDod7rrrLgwODuLVV1+1a70gQQ9kUPPMmTOorKzko+2zsrIEE7COzggcx7ndOuFPb24h0Gg0kMvlyMnJmfbficFgsAvziYmJ8Vv/vSMMw6C+vh4ikQilpaU+F1bna3uNL4W3Wq2GXC73SuuFI2SIW6lUYmRkBGFhYfy9gbRb+RqLxQK5XI6YmBjMnTvXowIFy7L4+9//jvfffx+7du0KST9zCsUFVHhTQp9vv/0Wp0+fxk033TSpuLJYLDhx4gQvxIeHh7Fo0SI+2l4sFgsm0Gy3n0dGRhAeHj4ufj3QvLm9Dcdx6OnpQVdXFyQSicfb2rbvS/rvlUol339PxIxjep4vsV1UCCVAqPD2Ln19fWhvb/dK64U7OLophYeH8xVxXwhxvV6P7777DrNnz0ZWlqt4IvcwGo24++67YTab8eqrrwoaikOhBABUeFMoE2EwGPDVV1/x0fZmsxkXXXQRampqcOGFFwoWbQ9YWydIWwp52BoMBuTk5HjFyzzQsFgsqK+vR1hYmM+rwLb990qlEjqdDgkJCbwQ95U4IP3qzgbwfAkV3t6BzFTodDpUVFT4beFL2qqUSqWdEPfGfINCoUBjY6NXQn/6+/uxdu1a/PCHP8Tdd99N5y4o5yNUeFM8489//jO2bNmCwcFBflAoVOE4DqOjo3y0/VdffYUZM2bYRdsLMcxIvLn7+vqQnp4OjUZj55iSkpIiaMXWF5Bte38F/nAcZ9d/bzQa7TzEPR2EZRgGjY2NsFgsKC8vF1ywUeHtOSaTCVKpFCkpKQG38HU232BbEXdH8HIch87OTvT396Oqqsrj3/lTp07h1ltvxRNPPIErr7zSo/eiUIIYKrwp06ezsxMbNmxAQ0MDjh8/HvLC2xGO49Df328XbZ+ZmWkXbe/tKq0rb27biq1t6iMR4hOlPgYSHMehq6sLvb29kEgkgu4oTATLshgdHeUr4p4Mwup0OshkMmRmZiInJ8cvgo0Kb88g0ehz584Nivue0Wi0q4gTIe4q6ItlWbuZA08q0xzH4f3338dzzz2Ht956C6WlpZ5+HAolmKHCmzJ9rr32Wvzud7/DVVddhWPHjgXFA8iXEBuxvXv3ora2FvX19SgpKeGj7T0NmJiKN7e3HVOEwGw2o76+HpGRkSguLg44CzVbnEWE2w7Cuqpgk5RNfw/Bno9OLtysWdC3tXn8Pj09Pejs7PRKNLq/IEKcDBpHRUXxFfHo6GjIZDJkZGR4vDBkGAaPPvooZDIZ3nrrLSQnJ0/+QxRKaEOFN2V6fPTRR9i3bx+ee+455OXlUeHtBJZl7aLtOzs77aLt09PT3Xqo2XpzSySSabWzsCzL25PZOqaQP/4WuSqVCvX19cjPz0d6erpfz2U6kEAUMghL7N9Ij61IJLKL1Q7EhY+nqFQq1NXVoaioCGlpaV59b9se5pGREURERPCLSKE82lmWRWNjI8xms092s/wJcfzp7+/H8PAw4uPjMWvWrHHWm1NhdHQUN998M0pLS/HEE0/4tJ3KYDBg5cqVMBqNsFgsuPbaa/Hwww/77HgUigdQ4U1xzfe//3309fWNe/2xxx7D448/jj179iApKYkKbzcxm8120fZqtRpLly7lo+0TExPHCfGOjg709/d73ZvbmWOKt4axpgLHcTh79iz6+/s9in0PNGxdJ2x7xPPz80MuzMe2PaiyslIQlwrHiq0rj3ZvHk8qlSItLS0kPfIB8O5BlZWVEIlE/PVVq9WIjo7mF+nuXN/W1lasXbsWmzdvxo033ujz60Va7eLj42E2m7F8+XI899xz1BucEohQ4U2ZOlKpFN/73vd4kdTV1YWsrCx88803yMjI8PPZBQ8ajQaHDx/G3r178cUXXyAsLIyPtl+6dCneeOMNvPLKK/jss8+Qk5Pj03OxdUwhW8+2QsYXD06z2Qy5XI7Y2FiPfYEDFZLwV1hYyC92VCoVYmJi+IWOr66vEBD/8bCwMJSUlPitCuzMo91b13dkZIRvGxOLxV4868CAZVk0NzfDaDS6rOTr9Xp+x8Hx+sbHx9v9292/fz/uv/9+/P3vf8eSJUuE/CgArDMUy5cvx9/+9je/HJ9CmQQqvCmeQyvensNxHBQKBfbt24f//Oc/+PTTT5GdnY3/+Z//wSWXXIILLrhAUOcLW49rtVqNGTNm8ELcG44pRMwUFhZ6PWwkEGBZFmfOnIFarUZFRcW49iBX1zclJQVxcXFBIcS1Wi1kMpmg/uPu4nh9Y2Nj+evrbliSPyr5QkOcWcRiMfLy8tz+vSNCXKFQ4NZbb8WMGTNw4YUXgmVZHDlyBO+8847Hft9ThWEYVFdXo6WlBbfddhv++Mc/Cnp8CsVNqPCmeA4V3t7j2LFj2LhxI+68806sWrUKtbW12LdvH06ePImCggK+P7ykpETQdhBnHtdEiE/FMYXjOLS3t2NoaAgVFRUhKWYMBgPkcrnbYobjOOh0On7HQafTIT4+3s5DPNCE+MDAAFpbW/0+JOoO5PoSoajVaidd6DAMYxdMFUr93ARi2VlYWOhRTz7LspBKpXjiiSfQ1NSEqKgoFBYWoqamBqtXr0ZFRYWgu1kjIyO4+uqr8cILL6CiokKw41IobkKFN4USCLAsi2effRYffPABtm/fjqKionFfb2xs5Ac1W1paUFFRwUfbZ2dnCybOiJ85ETImkwlJSUm8EHc1OGgymSCTycZZIYYSw8PDaGpq8qgtgeM4aDQaXogbDIaAsYYklXyNRoOKioqgHBIlC0ny++u40AHgd7tHX0PcdSorKz227Ozr68PatWtx9dVXY/PmzRCJRDhz5gwOHDiA/fv3QyaT4ZZbbsGtt97qpbOfnEceeQQzZszAli1bBDsmheImVHhTKIEAx3HYtm0bbrjhBrdcSxiGsYu2HxwcxKJFi1BTUyN4tD1xTCFCxtZajzimkPS7YPE9niocx6GtrQ1KpRIVFRUeh43Y4swakix0UlJSBAltAqwDhjKZLCADYzzBdqHT398PtVqNlJQUZGRkICUlJaR2ZYjlKWmB8nThdOLECfzyl7/En/70J1x++eUuj6nX6306OD04OIjIyEgkJydDr9fj0ksvxb333osf/OAHPjsmhTJNqPCmUEIBg8GAI0eOYO/evThw4ABMJpNdtH18fLxg50KGCMkfk8kEACguLkZaWlrIVbpJJT8xMREFBQU+/3wsy/Ie4mShY+vR7otZANKT746HfDBC3HUGBgZQWVlpN2xsNBoDZsfBEywWC2QyGeLi4lBUVOTRwonjOLz77rt44YUX8M9//hMlJSVePNOp891332Ht2rVgGAYsy+InP/kJfv/73/v1nCgUF1DhTQldfv3rX+OTTz7hew63bt163gQ4qFQqHDp0CHv37sWXX36J2NhYrFy5EjU1NVi0aJEgVVLS65yQkIDExETe0UMIxxShUCqVaGho8Gsln2EYO492AHZhPp70J9vGhodqTz7DMJDL5YiMjHQ6O0FSS8mODtlxINdYqB0HT9DpdJBKpcjNzfXYeYphGDzyyCOor6/Hm2++ed7cUykUL0GFNyV02bNnDy6++GJERETg3nvvBYDzctLdNtp+3759+Pbbb5GZmcknalZUVHh9eIykbDrrdTYYDHw10ReOKULAcRw6OjowODiIysrKgKqCEg9xEjYzXY92i8WCuro6l4I0FCCCdPbs2W67cNjuOCiVSlgsloBOhR0aGkJLS4tXBmFVKhVuvvlmSCQSPP744yE5dEqh+BgqvCnnB//617/w3nvv4a233vL3qfgdjuPQ2trKR9vX1dWhpKSEd0zxpF1iMhs9Z+fi6OgxXccUoSD+4zNmzEBRUVHAC1JXHu0pKSlOQ5uAc1aBUxGkwQZZHJaXlyMpKWna78MwjJ0Qt239SU5O9psQJ4vDoaEhVFVVeVyZb2lpwc9//nPcdddd+OlPfxoUC2QKJQChwptyfvDDH/4Q1113HW688UZ/n0rAQezAyKDm2bNnccEFF2DVqlVYvXq129H2BoMBMpkMqampU/IEtoXjOLtBQlvHFCEHCV1Bou0LCgqC1n/cccfB0eN6YGAAbW1tkEgkSEhI8Pfpeh3bQdjKykqv/05ZLBZ+2Ni29SclJQXJycmC+PEzDIO6ujpERER4ZbeitrYWDzzwAF5//XUsWrTIS2dJoZyXUOFNCW4mirW/6qqr+P9/7NgxfPDBB7RK4wZmsxlHjx7lo+1HR0exZMkSPto+KSlp3HU8efIkDAYDysrKvNrz6WyQ0LZ/WahQIdswlVCKtieOE+T6KhQKhIWFITc3FzNnzgya1h93IQOGQu5WmM1mvgd/ZGQEYWFhdkLc2+0aBoMB3333HbKysjxOvGVZFn/729/wySefYNeuXcjMzPTSWVIo5y1UeFNCm23btuGVV15BbW1tyIglodFqtXbR9gCwYsUKrF69GvPmzcO9996L7u5ufPDBB1610XMGqSYSESMSifhqbXJysk+ElG2vc3FxcUj2tRqNRkilUqSmpmLmzJn8IKFerw/41h930Wg0kMlkyMvL83jA0BNIDz75HY6IiJhWD74zyLCvNxbABoMBmzdvRlhYGF5++eWg/runUAIIKrwpocvu3btx11134eDBgx4ls1HOwXEclEol9u3bh3/961/4z3/+g6qqKj6lTuhoe5PJxIsYW8eUifqXpwJJ9/O3WPMlRKw5G4R1bP0xGo12YUn+bv1xF5K0GYjtM6QHn7j+REZG2v0OuyvEu7q60NPTg6qqKo9Fcl9fH9asWYNrr70Wv/rVrwJ+joFCCSKo8KaELkVFRTAajbzv8NKlS/Hyyy/7+axCg/feew+PPfYYXn75ZWRnZ/ODmqdOnUJeXh4/qFlaWiroQ9uVY4qraHBXcByHnp4edHV1oaKiwuN0v0DEdviuoqLCLbFGrPXINQ50Rw9vB8YIgcFg4BeTo6OjiI6OnnAxSVJtGYZBWVmZxzsyx48fx2233Yann34al156qUfvRaFQxkGFN4VCcR+j0Yi77roL/f39eO2118ZtZ7Msi6amJn5Qs6mpCRUVFXxFXMgIbleOKWRb35UnNcMwqK+vh0gkQmlpaUi2llgsFsjlcsTExGDu3LnTXhwRD3EySMhxHN+/TFJL/YXZbIZUKkViYiIKCwuDtlddr9fzQlytViMmJsZux0EqlSItLQ1z5szxOBRn165deOmll7Bz507MnTvXi5+CQqGMQYU3hUJxH5PJhPfffx/XX3+9Ww95hmFw8uRJXogPDAxg4cKFfLR9amqqoELc0TGFJBISEaPRaCCXy5GTk4Ps7GxBzktofNnrTFJLHQcJSf+yUEKctAgFs/uMM2yHYQcGBqBUKpGYmMjH209lV8cWi8WChx9+GM3NzdixY4dH9oru0NnZiTVr1qC/vx8ikQgbN27Epk2bfHpMCiVAoMKbQqEIh9FoxFdffWUXbX/hhReipqYGF110kaDR9o5BKAaDARaLBQUFBcjKyhK0V10oent70dHRgYqKCkGutWMP/nT7l6cC+YyVlZUh2SIEWHuwyd8jALtdnbi4OP4au+NKo1KpsH79esyfPx+PPvqoIIuj3t5e9Pb2YsGCBVCr1aiursaHH36I8vJynx+bQvEzVHhTKP5g9+7d2LRpExiGwYYNG3Dffff5+5T8wujoKA4ePGgXbb9ixQrU1NRg8eLFggzvMQyDpqYmmEwmZGRk8PHgIpHIzrowmAfMSAuQyWRCeXm53xYVjv3Ltm0T8fHxHu1+sCyL5uZmGAwGSCSSkFw4cRyHlpYWaLVaVFRUjPuMHMdBo9GMc6Vx1V7V1NSEm266CVu2bHF7F8sXXHXVVbj99ttxySWX+OX4FIqAUOFNoQgNwzAoLi7G559/jpycHCxatAg7d+4876s9HMdhYGDALto+IyODH9SsrKz0ejVOp9NBJpMhMzNzXP+5o+0bqdaKxWKvOKYIhcFggFQqxaxZszzuA/Y2th7iGo2GH4YVi8VT8hA3mUyQSqUQi8XTDm8KdMxmM2QyGRITE1FQUODWZ7Rtr1IqlfjNb36DpKQkrFy5EikpKXj++efxxhtvoLq6WoBP4Jz29nasXLmS/2wUSohDhTeFIjRHjhzBQw89hP/+978AgCeeeAIAcP/99/vztAIOkjBIHFPkcjmKi4t5IV5YWOhRFZpYzJWVlbnV0+pYrSWJj2KxeNq9tb5meHgYTU1NKC0tRUpKir9PZ0KcDcPGx8fz19jVMKxKpUJdXR3mzp2LmTNnCnzWwqDVaiGVSpGfn4/09PRpv4/JZMLhw4exdetWfP311xCLxbjwwguxevVqPqVWSDQaDVatWoUHHngA11xzjaDHplD8BBXeFIrQvPfee9i9ezdee+01AMCOHTtw9OhRvPjii34+s8CGZVnIZDJ+ULOjowPz58/HqlWrcPHFF7sdbU9aEvR6PSQSybQs5ohIJEJcq9W6JRKFguM4tLe3Q6FQoKKiwufBRr6AtE0QIW4wGOyGYaOjo9Hd3Y3u7u6QShN1ZHBwEGfOnPGKB7nBYMCvfvUrREdH46WXXoJIJMK3336L/fv3Y//+/RgZGcHPf/5z3H777V46e9eYzWb84Ac/wGWXXYa77rrL58ejUAIEKrwpFKGhwts7mM1mfPPNN3y0vUqlmjTavrOzE729vUhPT/dq24UzkeivoBmz2Qy5XC5oLLoQEA9xpVKJ4eFhaDQaREZGoqCgAKmpqUET5uMuZPGkVCpRUVHh8efr7e3FmjVrcN111+H22293+nthMBgwMDCAOXPmeHSsyeA4DmvXroVYLMZf/vIXnx6LQgkwqPCmUISGtpr4Bq1Wiy+//NIu2n758uWoqanB0qVL8cknn+DRRx/Fu+++i5KSEp+ei2PQDMMwdkEzvhr8IzZ6nrYkBDKkZ33mzJlITEzkPcRZlrXzEA/m4UqGYSCXyxEdHe2Rzzrh22+/xR133IE///nPATHAePjwYaxYsQKVlZX8Z3v88cdx5ZVX+vnMKBSfQ4U3hSI0FosFxcXFqK2tRXZ2NhYtWoR//vOfkEgk/j61kIFE2x84cAB79uzBxx9/jISEBFx99dW4/PLLsWDBAkGFGQmaIUNuto4p3vK37unpQWdnZ8gmbQITx9tbLBb+Go+MjAAAv9BJTk4OmiAkvV4PqVSKnJwcZGVlefReHMfh7bffxssvv4ydO3eiqKjIS2dJoVCmCRXeFIo/+Pe//43NmzeDYRisX78eDzzwgL9PKSTp7e3FjTfeiJqaGqxbtw779u1DbW0tTp48idzcXKxatQqrV68WPNp+IseUhISEKZ0Ly7JoaGgAwzAoLy8PGoE5FTiOQ1dXF/r6+lBZWelWvL3jNY6IiLBzpQnEFhyFQoHGxkaUl5d7HGJjsVjw4IMPoq2tDTt27PC4P5xCoXgFKrwpFEposn//ftx555145plncPHFF9t9jQxYkkHNxsZGSCQSPtp+9uzZgrqUGI1Gvi1lKo4per0eMpkMGRkZ4+wQQwWGYVBfXw+RSITS0tJpLyyMRqOdK01UVJTdYsef147jOHR2dqK/vx9VVVUeD8OOjIzgpptuQnV1NR5++OGQXIxRKEEKFd4UCiU0efnll3HVVVchMzNz0u9lGAanTp3ihXhfX59dtP3MmTMFjba39bd25ZgyNDSE5uZmlJWVITk5WZBzExrSdpGVlYXs7Gyv/h3o9XpeiKvVar/ZQ7Isi/r6egBAWVmZx5X4xsZG3HTTTbj33nvxk5/8JCQXYxRKEEOFN4VCoThiNBpx5MgR1NbW4sCBAzAYDFi2bBkfbS/ktr0zxxSRSASWZVFVVSVI9Ls/IB7kQiwsnNlDkuh1stjxhYA1Go347rvvkJ6e7pVdlj179uDBBx/E1q1bsWDBAi+dJYVC8SJUeFMoFOd0dnZizZo16O/vh0gkwsaNG7Fp0yZ/n5ZfGB0dxaFDh/ho++joaLtoe6F8ss1mM6RSKaKiohAbG4uRkRGYzWY7x5Tp+JIHEhzHoaOjA0NDQ6isrPSLB7mz6PXExER+INadHvPJIME/zgZFpwrLsnjhhRewe/duvPPOOyHraEOhhABUeFMoFOf09vait7cXCxYsgFqtRnV1NT788EMabc9xGBwc5KPtv/nmG6Snp/OJmlVVVT7pqR0dHUVdXR0KCgowa9Ys/nVHxxQAvEAMJjcP/P/27jQmyvPtAvhBcQNlUQEpyCKIyiJWRKQRQdCaWKPWqomNBQVaqrV1iUlVrMUYq8m/dSuxH2pFLBGXxGpqrKaAVI1ISqrIAFYNIDsKA8MywGzP+6HheUVF0GGeGcbz+yaSmQtizOHhvq+D/y4EFhUVYejQofDx8TGZC5A6na5b9bpKpYKtra34fX7dHdvV1dWorKxEQECA3mVL7e3t+PLLL2FtbY3k5OQBWZZE9BZh8CaivlmyZAk2bNhgEnuATUlX0UlXtb1MJsPEiRPFIN4fJTaVlZWorq7uU0Pjs9s8FAoFLC0tRDU0xgAAERdJREFUxYBoqts8AECpVKKgoADjx4/Xe42eoel0OigUCjGIazSabjvEe/qtQ9el3s7OTvj5+en9Q1F1dTWio6Px8ccf44svvuB5biLTx+BNRL0rKyvDnDlzIJPJYGNjY+xxTJpOp0NhYaF4UbOsrAyBgYFitf24ceP6HJC0Wi3u378PQRAwZcqUNwpqz29MGT58uHh2eeTIkSYR1rpq0X19fQfkv6++/Nah65iQvb09PDw89P6+d5XiHDx4EFFRUf3xZRCR4TF4E9Grtba2Ijw8HImJiVi2bJmxxxlw1Go1/v77b7HavrGxETNnzhQ3ptjZ2b00hLW0tKC4uLjfN3oolcpuG1OevUTY29P0/iYIAkpKSqBQKPqlFt1UqNXqbmU+giCgs7MTbm5ucHd31+u3DoIg4NSpU/j555+Rnp4OLy+vfpz85WJjY3Hp0iU4OjpCJpMZ/P2IzBiDNxH1TK1WY9GiRViwYAG2bNli7HHMglKp7FZtr9PpulXbW1lZ4fTp0/jpp59w8eJFg270ePYSYUNDAzo6OmBjYyMGcUOeF1ar1SgsLIS1tTW8vLxM9giMvp48eYJHjx7BxcUFSqUSCoXijQuTNBoNvvnmG5SXl+PkyZOSbde5fv06Ro4ciejoaAZvIv0weBPRywmCgJiYGIwePRqHDh0y9jhmSRAENDU1ITs7GxkZGcjJyUFHRweGDBmCb7/9FlFRUZJuKdHpdGhubhbPiBtqY0praytkMhk8PDwwbty4fnlNU9P1NL+5uRn+/v7dvncdHR3dynz6cvynsbERa9euRUhICJKSkiS/NFtWVoZFixYxeBPph8GbiF7u5s2bCAsLQ0BAgPhE7rvvvsPChQuNPJl5evr0KVavXg1fX18EBgbi2rVruHPnDsaPHy9W2/dHwcrr0Gq14iVCuVwOQP+NKXV1dSgtLYW/v7/Z7iDXaDQoLCyElZUVvL29X3lM6NnCpMbGRrS2tgIAbty4gQULFiAgIAAPHjxAfHw8tm3bhhUrVhjlXD6DN1G/YPAmIjK23NxcJCQkvPCDjU6nw6NHj8SLmvfv34evry8iIiIQEREBd3d3SUPY82eXBw8eLD6p7W1jiiAIePToEVpbW194AmxOurazuLm59ak19XmCIKC2thYnTpzAzZs3UVpaio6ODqxfvx4xMTFwd3c3wNS9Y/Am6hcM3kRExqTRaLB69Wrs27cPnp6er/xcrVaL/Px8cXVhTU0NZsyYgfDwcISHh8PBwUHSIN7Z2dltdWFPRyZUKhVkMhlsbW0xYcIEk9ikYghdbZt+fn56b2fR6XQ4fPgwMjIykJiYiPz8fGRlZaG6uhrBwcGIjIzE/PnzMWbMmH6a/tUYvIn6BYM3EdFA9Xy1fXt7u1htP3v2bEmr7QGIRybkcjlaW1thbW0NKysrPHnyBN7e3t2Kf8yJIAgoLy/H06dPMXXqVL23syiVSmzYsAF2dnY4cuRIt9dTq9XIy8tDVlYWQkNDERkZqe/4fcLgTdQvGLyJyDxotVrMmDEDLi4uuHTpkrHHMYqWlpZu1fZDhgwRq+1DQkIkbTXsKhaqqKiAlZUV1Gq1ZBtTpKTValFcXIzBgwdj0qRJep/Br6qqQnR0ND755BOsW7fOJH47sGrVKmRnZ6O+vh5OTk7YvXs34uLijD0W0UDE4E1E5uHAgQPIy8tDc3PzWxu8nyUIAurr67tV2zs4OIiNmoGBgQbbjNHV0NjR0QE/Pz9YWlp2q1035MYUKXV0dKCgoADOzs5wdXXV+/Vyc3OxceNGHD58GHPnzu2HCYnIxDB4E9HAV1lZiZiYGCQmJuLAgQMM3i8hCAIeP34sXtS8d+8evL29xSA+ceLEftmY0tnZiYKCAowZM+aVDY3PbkxpbGyEIAh6b0yRUlNTE4qLizF58mTY29vr9VqCICAtLQ3Hjx/H6dOnez3rT0QDFoM3EQ18y5cvx/bt29HS0oLvv/+ewbsPdDodioqKxCBeUlKCadOmiasLnZ2dX/uYg0KhQFFREXx8fF770p9GoxEvar7uxhSpVVZWorq6GlOnTsXw4cP1ei21Wo2dO3eiuroaqampZrtikYgAMHgT0UB36dIlXL58GUePHkV2djaD9xvSaDTIy8tDRkYGrl27BrlcjpCQEISHh7+y2r5LVxgNCAjAiBEj9J5HpVKJx1Kam5sxbNgw2NvbY8yYMT2WzBiaTqfDgwcPoFar4evrq/dTeblcjtjYWLz33nvYtWuXSf1wQUQGweBNRAPb9u3b8euvv8LS0hIdHR1obm7GsmXLkJaWZuzRBrT29nax2v769evQarVitX1oaCisrKzEz9uyZQtWr16NWbNmGeyIyPMbU6ysrMQn4lZWVgYP4iqVSjxC0x/704uLixEfH4/ExER89NFHJnGJkogMjsGbiMwHn3gbRle1/V9//SVW248aNQpBQUG4evUqFi9ejB07dkj2xFYQBLS1tYlBvL29HaNGjRKDuL7HP57X0tKCwsJCeHt7Y+zYsXq/3h9//IE9e/YgNTUVgYGB/TAhEQ0QDN5EZD4YvKUhCAIuXLiATZs2ISgoCA8fPuxWbe/r6yvpsQlBENDc3NxtY4qtra0YxPXZmFJbW4vHjx/D398f1tbWes2p0+lw4MABZGdn48yZM3BwcNDr9YhowGHwJiKivhMEAcnJyTh79ixOnz4NFxeXl1bbT5kyRay2f9V2E0PQ6XRitX3XxpRnVxf25ThMV8V9W1sb/P39YWlpqddMSqUS69evx9ixY3Ho0CG9S3aIaEBi8CYior77+uuv0dTUhCNHjvRYgvNstX1XzXlQUJC4ulDqavuXbUzpWl1oa2v7wtN5tVoNmUyGUaNGwcvLS+9ZKysrER0djTVr1iAhIYHnuYneXgzeRETUd/X19a99zlmlUnWrtlcqlZg1a5ZYbW9jY2OgaXuep7GxEQ0NDWhubsbQoUPFYymDBg2CTCaDp6cnnJyc9H6vnJwcbN68GUeOHEFERIT+wxPRQMbgTUQkpaamJsTHx0Mmk8HCwgLHjx9HaGiosceSVEtLC27cuIGMjAzcvHkTlpaWCAsLw9y5czFz5sx+vxzZm/b2djQ2NqK6uhoKhQJ2dnZwdHTUa2OKIAg4efIkTpw4gTNnzsDDw6P/B3+JK1euYOPGjdBqtYiPj8e2bdskeV8i6hMGbyIiKcXExCAsLAzx8fFQqVRQKpWws7Mz9lhG01Vtn5WVhaysLOTm5mLs2LHiRU1DVts/O0NZWRnkcjn8/f2h0WjEi5pKpfK1N6ao1Wrs2LEDdXV1SE1N1ftSZl9ptVr4+Pjgzz//hKurK4KDg5Geng5fX19J3p+IesXgTUQkFYVCgWnTpqGkpITnfHsgCALKy8vF8+H5+fkGqbbvotVqUVhYiGHDhr30tQVBQEtLixjEVSqVuDHF3t7+hUuSDQ0NWLt2LebMmYOdO3dKut0lJycHSUlJuHr1KgBg3759AP7bdU9EJqHH//j1u75NREQvKC0thYODA9auXYv8/HwEBQXh8OHDkj0RHQgsLCzg7u6OuLg4xMXFQafTobi4GBkZGUhKSkJJSQmmTp2K8PBwREZGvlG1fZf29nYUFBTAxcUFLi4uPc5jY2MDGxsbeHh4QKfTQaFQQC6Xo7y8HPv27YOjoyOioqLg7u6OzZs3Y9euXVi6dKnkP1xVVVVh/Pjx4p9dXV2Rm5sr6QxE9GbYW0tE1M80Gg3++ecfrFu3Dnfu3IG1tTX2799v7LFM2qBBg+Dn54eNGzfi4sWLuHPnDr766is8ffoUCQkJmD17NjZv3owLFy5ALpejl9/WiuRyOe7evQsfH58eQ3dP89jb28PLywvBwcH45ZdfEBkZifPnz2PFihUYNGgQ7t69ixs3bkClUr3pl01Ebxk+8SYi6meurq5wdXVFSEgIAGD58uUM3q/J0tISISEhCAkJQWJiIjo6OsRq++TkZGg0mm7V9s//NkGn0+HWrVsYNmwY3n33Xb0vctra2qKsrAxtbW0oLi4G8F+RU3p6OjZt2gRHR0d8+OGHSEhI0Ot9+sLFxQUVFRXinysrK1/rhwoiMh6e8SYiMoCwsDAcO3YMkyZNQlJSEtra2vC///3P2GOZBUEQoFAoulXbW1tbIzw8HOHh4fD398fnn3+OwYMHIyUlRe9Lm21tbVi3bh2cnJxw6NChlzZkVlRUoKSkBOHh4Xq9V19oNBr4+PggMzMTLi4uCA4OxqlTp+Dn52fw9yaiPuHlSiIiKd29e1fcaDJhwgSkpKTA3t7e2GOZJUEQUFtbi8zMTPz+++/IyMjAtGnTMG/ePERGRsLPz++NLz9WVFQgOjoacXFx+PTTT03msuzly5exadMmaLVaxMbGIjEx0dgjEdH/Y/AmIiLzlpeXh/j4ePzwww9wc3MTN6YUFxdj8uTJYrW9p6dnnwL0rVu3sGXLFiQnJ2POnDkSfAVEZCYYvImIyHylpaXhxx9/RHp6OiZMmNDt77RaLe7duycG8aqqKkyfPl1cXejo6NgtiAuCgNTUVJw8eRJnzpyBu7u71F8OEQ1sDN5ERGSetFot9uzZg61bt2LkyJG9fr5KpcLt27eRmZmJa9euoa2tTay2Dw0Nxd69e9HQ0ICUlBSugCSiN8HgTUREL3fw4EEcO3YMFhYWCAgIQEpKiuR17sbU2toqVtufO3cOCxcuxNGjRyUtxSEis8LgTUREL6qqqsLs2bNRVFSEESNGYOXKlVi4cCHWrFlj7NGMQhAEk7lASUQDVo//ifDHeSKit5xGo0F7ezs0Gg2USiXeeecdY49kNAzdRGRIDN5ERG8xFxcXbN26FW5ubnB2doatrS3ef/99Y49FRGSWGLyJiN5ijY2NuHjxIkpLS1FdXY22tjakpaUZeywiIrPE4E1E9BbLyMiAp6cnHBwcMGTIECxbtgy3bt0y9lhERGaJwZuI6C3m5uaG27dvQ6lUQhAEZGZmYsqUKcYeyyydO3dObNHMy8sz9jhEZAQM3kREb7GQkBAsX74c06dPR0BAAHQ6HT777DNjj2WW/P39cf78ebZgEr3FuE6QiIhIQhEREfj+++8xY8YMY49CRIbBdYJERERERMZkaewBiIiIzMW8efNQW1v7wsf37t2LJUuWGGEiIjIlDN5ERET9JCMjw9gjEJEJ41ETIiIyabGxsXB0dIS/v7/4Mblcjvnz52PixImYP38+GhsbjTghEVHfMHgTEZFJW7NmDa5cudLtY/v370dUVBQePnyIqKgo7N+/30jT9d1vv/0GV1dX5OTk4IMPPsCCBQuMPRIRSYxbTYiIyOSVlZVh0aJFkMlkAIBJkyYhOzsbzs7OqKmpQUREBP79918jT0lEBIBbTYiIyJzU1dXB2dkZADBu3DjU1dUZeSIiot4xeBMR0YBmYWEBC4seHzAREZkMBm8iIhpwnJycUFNTAwCoqamBo6OjkSciIuodgzcREQ04ixcvRmpqKgAgNTWVO7KJaEDg5UoiIjJpq1atQnZ2Nurr6+Hk5ITdu3dj6dKlWLlyJcrLy+Hu7o6zZ89i9OjRxh6ViAh4xeVKBm8iIiIiov7DrSZERERERMbE4E1EREREJAEGbyIiIiIiCTB4ExERERFJgMGbiIiIiEgCDN5ERERERBJg8CYiIiIikgCDNxERERGRBBi8iYiIiIgkwOBNRERERCQBBm8iIiIiIgkweBMRERERSYDBm4iIiIhIAgzeREREREQSYPAmIiIiIpKAZS9/byHJFEREREREZo5PvImIiIiIJMDgTUREREQkAQZvIiIiIiIJMHgTEREREUmAwZuIiIiISAIM3kREREREEvg//2K5u29d1vsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "CLASSES = {\n", + " 0: 'T-shirt/top',\n", + " 1: 'Trouser',\n", + " 2: 'Pullover',\n", + " 3: 'Dress',\n", + " 4: 'Coat',\n", + " 5: 'Sandal',\n", + " 6: 'Shirt',\n", + " 7: 'Sneaker',\n", + " 8: 'Bag',\n", + " 9: 'Ankle boot'\n", + "}\n", + "\n", + "fig = plt.figure(figsize=(10,8))\n", + "ax = Axes3D(fig)\n", + "\n", + "X = encoded_data.data[:, 0].numpy()\n", + "Y = encoded_data.data[:, 1].numpy()\n", + "Z = encoded_data.data[:, 2].numpy()\n", + "\n", + "labels = trainset.train_labels[:200].numpy()\n", + "\n", + "for x, y, z, s in zip(X, Y, Z, labels):\n", + " name = CLASSES[s]\n", + " color = cm.rainbow(int(255*s/9))\n", + " ax.text(x, y, z, name, backgroundcolor=color)\n", + "\n", + "ax.set_xlim(X.min(), X.max())\n", + "ax.set_ylim(Y.min(), Y.max())\n", + "ax.set_zlim(Z.min(), Z.max())\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/06-Autoencoder/01-basic-autoencoder.py "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.py" similarity index 100% rename from 06-Autoencoder/01-basic-autoencoder.py rename to "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/01-basic-autoencoder.py" diff --git a/06-Autoencoder/02-denoising-autoencoder.ipynb "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.ipynb" similarity index 98% rename from 06-Autoencoder/02-denoising-autoencoder.ipynb rename to "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.ipynb" index 364dd00..1545edc 100644 --- a/06-Autoencoder/02-denoising-autoencoder.ipynb +++ "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.ipynb" @@ -45,7 +45,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.2" + "version": "3.7.0" } }, "nbformat": 4, diff --git a/06-Autoencoder/02-denoising-autoencoder.py "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.py" similarity index 100% rename from 06-Autoencoder/02-denoising-autoencoder.py rename to "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/02-denoising-autoencoder.py" diff --git a/06-Autoencoder/README.md "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/README.md" similarity index 100% rename from 06-Autoencoder/README.md rename to "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/README.md" diff --git a/06-Autoencoder/assets/autoencoder.png "b/06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/assets/autoencoder.png" similarity index 100% rename from 06-Autoencoder/assets/autoencoder.png rename to "06-\354\202\254\353\236\214\354\235\230 \354\247\200\353\217\204 \354\227\206\354\235\264 \355\225\231\354\212\265\355\225\230\353\212\224 \354\230\244\355\206\240\354\235\270\354\275\224\353\215\224/assets/autoencoder.png" diff --git a/07-RNN-For-Sequential-Data/01-text-classification.ipynb b/07-RNN-For-Sequential-Data/01-text-classification.ipynb deleted file mode 100644 index 86e1cd3..0000000 --- a/07-RNN-For-Sequential-Data/01-text-classification.ipynb +++ /dev/null @@ -1,746 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 프로젝트 1. 영화 리뷰 감정 분석\n", - "**RNN 을 이용해 IMDB 데이터를 가지고 텍스트 감정분석을 해 봅시다.**\n", - "\n", - "데이터의 순서정보를 학습한다는 점에서 RNN은 CIFAR10 같이 정적인 고정된 형태의 데이터 보다는 동영상, 자연어, 주가 변동 데이터 등의 동적인 시계열 데이터를 이용할때 퍼포먼스가 극대화됩니다.\n", - "이번 프로젝트를 통해 가장 기본적인 자연어 처리(Natural Language Processing)작업이라고 할 수 있는 '텍스트 감정분석'(Text Sentiment Analysis)모델을 RNN을 이용해 구현하고 학습시켜 보겠습니다.\n", - "\n", - "이번 책에서 처음으로 접하는 텍스트 형태의 데이터셋인 IMDB 데이터셋은 50,000건의 영화 리뷰로 이루어져 있습니다.\n", - "각 리뷰는 다수의 영어 문장들로 이루어져 있으며, 평점이 7점 이상의 긍정적인 영화 리뷰는 2로, 평점이 4점 이하인 부정적인 영화 리뷰는 1로 레이블링 되어 있습니다. 영화 리뷰 텍스트를 RNN 에 입력시켜 영화평의 전체 내용을 압축하고, 이렇게 압축된 리뷰가 긍정적인지 부정적인지 판단해주는 간단한 분류 모델을 만드는 것이 이번 프로젝트의 목표입니다." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 워드 임베딩\n", - "\n", - "본격적으로 모델에 대한 코드를 짜보기 전, 자연어나 텍스트 데이터를 가지고 딥러닝을 할때 언제나 사용되는 ***워드 임베딩(Word Embedding)***에 대해 간단히 배워보겠습니다.\n", - "\n", - "IMDB 데이터셋은 숫자로 이뤄진 텐서나 벡터 형태가 아닌 순전한 자연어로 이뤄져 있습니다. 이러한 데이터를 인공신경망에 입력시키기 위해선 여러 사전처리를 해 데이터를 벡터로 나타내 줘야 합니다. 이를 위해 가장 먼저 해야 할 일은 아래와 같이 영화 리뷰들을 단어 단위의 토큰으로 나누어 주는 것입니다. 간단한 데이터셋에선 파이썬의 split(‘ ’) 함수를 써서 토크나징을 해 줘도 큰 문제는 없지만, 더 깔끔한 토크나이징을 위해 Spacy 같은 오픈소스를 사용하는걸 추천드립니다.\n", - "\n", - "```python\n", - "‘It was a good movie.’ → [‘it’, ‘was’, ‘a’, ‘good’, ‘movie’]\n", - "```\n", - "\n", - "그 후 영화평 속의 모든 단어는 one hot encoding 이라는 기법을 이용해 벡터로 변환됩니다. 예를 들어 데이터셋에 총 10개의 다른 단어들이 있고 ‘movie’ 라는 단어가 10개의 단어 중 3번째 단어 일 경우 'movie'는 다음과 같이 나타내어 집니다.\n", - "\n", - "```python\n", - "movie = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]\n", - "```\n", - "그 다음으로는 one hot encoding을 거친 단어 벡터를 '사전 속 낱말 수' X '임베딩 차원값' 모양의 랜덤한 임베딩 행렬(Embedding Matrix)과 행렬곱을 해 주어야 합니다. 행렬곱의 결과는 'movie'라는 단어를 대표하는 다양한 특성값을 가진 벡터입니다.\n", - "\n", - "워드 임베딩은 언뜻 보기에도 코드로 정의하기엔 골치아픈 동작이지만,\n", - "다행히도 파이토치의 nn.Embedding() 함수를 사용하면 별로 어렵지 않게 이뤄낼 수 있습니다." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "그럼 본격적으로 코드를 짜 보겠습니다. \n", - "가장 먼저 모델 구현과 학습에 필요한 라이브러리 들을 임포트 해 줍니다.\n", - "\n", - "```python\n", - "import os\n", - "import sys\n", - "import argparse\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torchtext import data, datasets\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "모델 구현과 학습에 필요한 하이퍼파라미터 들을 정의해 줍니다.\n", - "\n", - "```python\n", - "BATCH_SIZE = 64\n", - "lr = 0.001\n", - "EPOCHS = 40\n", - "torch.manual_seed(42)\n", - "USE_CUDA = torch.cuda.is_available()\n", - "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "BasicLSTM 라고 하는 RNN을 포함하는 신경망 모델을 만들어 보겠습니다. 여타 다른 신경망 모델과 같이 파이토치의 nn.Module 을 상속받습니다.\n", - "\n", - "```python\n", - "class BasicLSTM(nn.Module):\n", - " def __init__(self, n_layers, hidden_dim, n_vocab, embed_dim, n_classes, dropout_p=0.2):\n", - " super(BasicLSTM, self).__init__()\n", - " print(\"Building Basic LSTM model...\")\n", - "```\n", - "\n", - "__init()__ 함수 속 가장 먼저 정의되는 변수는 RNN의 '층'이라고 할 수 있는 n_layers 입니다. 아주 복잡한 모델이 아닌 이상, n_layers는 2이하의 값으로 정의되는게 보통입니다. \n", - "앞에서 잠시 언급했던 nn.Embedding() 함수는 2개의 파라미터를 입력받습니다. 이 중 첫번째는 전체 데이터셋 속 모든 단어를 사전 형태로 나타냈을 때\n", - "이 사전속 단어의 갯수라고 할 수 있는 n_vocab이라는 숫자입니다.\n", - "두번째 파라미터는 embed 라는 숫자입니다. 이 숫자는 쉽게 말해 임베딩된 단어 텐서가 지니는 차원값 이라고 할 수 있습니다.\n", - "즉, 한 영화 리뷰속 모든 단어가 임베딩을 거치면 영화 리뷰는 embed 만큼 특성값을 지닌 단어 텐서들이 차례대로 나열된 배열 형태로 나타내어 집니다.\n", - "\n", - "```python\n", - " self.n_layers = n_layers\n", - " self.embed = nn.Embedding(n_vocab, embed_dim)\n", - "```\n", - "\n", - "다음으로 drop out 을 정의해 주고 본격적으로 RNN 모델을 정의합니다. 사실 원시적인 RNN은 입력받은 시계열 데이터의 길이가 길어지면 \n", - "학습 도중 경사값(Gradient)이 너무 작아져 버리거나 너무 커져 버리는 고질적인 문제가 있었습니다.\n", - "따라서 이러한 문제에서 조금 더 자유로운 LSTM(Long Short Term Memory)라는 RNN 을 사용하겠습니다.\n", - "\n", - "```python\n", - " self.lstm = nn.LSTM(embed_dim, self.hidden_dim,\n", - " num_layers=self.n_layers,\n", - " dropout=dropout_p,\n", - " batch_first=True)\n", - "```\n", - "\n", - "앞에서 설명했듯, RNN은 텐서의 배열을 하나의 텐서로 압축시킵니다.\n", - "하지만 사실상 RNN의 기능은 여기서 끝나기 때문에 모델이 영화 리뷰가 긍정적인지 부정적인지 분류하는 결과값을 출력하려면 압축된 텐서를 다음과 같이 다층신경망에 입력시켜야 합니다.\n", - "\n", - "```python\n", - " self.out = nn.Linear(self.hidden_dim, n_classes)\n", - "```\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "본격적으로 모델에 입력된 텍스트 데이터가 어떤 전처리 과정을 거치고 신경망에 입력되는지 정의하는 forward 함수를 구현합니다.\n", - "모델에 입력되는 데이터 x 는 한 batch 속에 있는 모든 영화평 입니다.\n", - "이들이 embed 함수를 통해 워드 임베딩을 하게 되면 LSTM 에 입력될 수 있는 형태가 됩니다.\n", - "\n", - "```python\n", - " def forward(self, x):\n", - " x = self.embed(x) # [b, i] -> [b, i, e]\n", - "```\n", - "\n", - "보통의 신경망이라면 이제 바로 신경망 모듈의 forward 함수를 호출해도 되겠지만 \n", - "LSTM과 같은 RNN 계열의 신경망은 입력 데이터 말고도 밑의 코드처럼 은닉 벡터(Hidden Vector)라는 텐서를 정의하고 신경망에 입력해 줘야 합니다.\n", - "\n", - "```python\n", - " h_0 = self._init_state(batch_size=x.size(0))\n", - " x, _ = self.lstm(x, h_0) # [i, b, h]\n", - "```\n", - "\n", - "첫번째 은닉 벡터(Hidden Vector) 인 h_0을 생성하는 _init_state 함수를 구현합니다. 꼭 그럴 필요는 없으나, 첫번째 은닉 벡터는 아래의 코드처럼 모든 특성값이 0인 벡터로 설정해 주는 것이 보통입니다.\n", - "\n", - "```python\n", - " def _init_state(self, batch_size=1):\n", - " weight = next(self.parameters()).data\n", - " return (\n", - " weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(),\n", - " weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()\n", - " )\n", - "```\n", - "\n", - "next(self.parameters()).data 를 통해 모델 속 가중치 텐서를 weight 이라는 변수에 대입시킵니다.\n", - "그리고 new() 함수를 이용해 weight 텐서와 같은 자료형을 갖고 있지만 (n_layers, batch_size, hidden_dim)꼴의 텐서 두개를 정의합니다. 그리고 이 두 텐서에 zero_() 함수를 호출함으로써 텐서 속 모든 원소값을 0으로 바꿔줍니다. 대부분의 RNN 계열의 신경망은 은닉 벡터를 하나만을 요구하지만, 좀 더 복잡한 구조를 가진 LSTM 은 이렇게 같은 모양의 텐서 두 개를 정의해 줘야 합니다.\n", - "\n", - "RNN이 만들어낸 마지막 은닉 벡터를 h_t 라고 정의하겠습니다.\n", - "\n", - "```python\n", - " h_t = x[:,-1,:]\n", - "```\n", - "\n", - "이제 영화 리뷰속 모든 내용을 압축한 h_t를 다층신경망에 입력시켜 결과를 출력해야 합니다.\n", - "\n", - "```python\n", - " logit = self.out(h_t) # [b, h] -> [b, o]\n", - " return logit\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "모델 구현과 신경망 학습에 필요한 함수를 구현했으면 본격적으로 IMDB 데이터셋을 가져와 보겠습니다.\n", - "사실 아무 가공처리를 가하지 않은 텍스트 형태의 데이터셋을 신경망에 입력하는데까지는 매우 번거로운 작업을 필요로합니다.\n", - "그러므로 우리는 이러한 전처리 작업들을 대신 해주는 Torch Text라이브러리를 사용해 IMDB 데이터셋을 가져오겠습니다.\n", - "\n", - "가장 먼저 텍스트 형태의 영화 리뷰들과 그에 해당하는 레이블을 텐서로 바꿔줄 때 필요한 설정사항들을 정해줘야 합니다.\n", - "그러기 위해 이러한 설정정보를 담고있는 TEXT 와 LABEL 이라는 객체를 생성합니다. \n", - "\n", - "```python\n", - "TEXT = data.Field(sequential=True, batch_first=True, lower=True)\n", - "LABEL = data.Field(sequential=False, batch_first=True)\n", - "\n", - "```\n", - "\n", - "sequential 이라는 파라미터를 이용해 데이터셋이 순차적 데이터셋이라고 명시해 주고 batch_first 파라미터로 신경망에 입력되는 텐서의 첫번째 차원값이 batch_size 가 되도록 정해줍니다.\n", - "마지막으로 lower 변수를 이용해 텍스트 데이터 속 모든 영문 알파벳이 소문자가 되도록 설정해 줍니다.\n", - "\n", - "그 다음으로는 datasets 객체의 splits 함수를 이용해 모델에 입력되는 데이터셋을 만들어줍니다.\n", - "\n", - "```python\n", - "train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)\n", - "```\n", - "\n", - "이제 만들어진 데이터셋을 이용해 전에 설명한 워드 임베딩에 필요한 워드 사전(Word Vocabulary)를 만들어줍니다.\n", - "\n", - "```python\n", - "TEXT.build_vocab(train_data, min_freq=5)\n", - "LABEL.build_vocab(train_data)\n", - "```\n", - "\n", - "min_freq 은 학습데이터 속에서 최소한 5번 이상 등장한 단어들만을 사전속에 정의하겠다는 뜻입니다. 즉 학습 데이터 속에서 드물게 출현하는 단어는 'unk'(Unknown) 이라는 토큰으로 정의됩니다.\n", - "\n", - "그 다음으로는 train_data 와 test_data 에서 batch tensor 를 generate 할 수 있는 iterator 를 만들어 줍니다.\n", - "\n", - "```python\n", - "train_iter, test_iter = data.BucketIterator.splits(\n", - " (train_data, test_data), batch_size=BATCH_SIZE,\n", - " shuffle=True, repeat=False)\n", - "```\n", - "\n", - "마지막으로 사전 속 단어들의 숫자와 레이블의 수를 정해주는 변수를 만들어 줍니다.\n", - "\n", - "```python\n", - "vocab_size = len(TEXT.vocab)\n", - "n_classes = 2\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "그 다음은 train() 함수와 evaluate() 함수를 구현할 차례입니다.\n", - "```python\n", - "def train(model, optimizer, train_iter):\n", - " model.train()\n", - " for b, batch in enumerate(train_iter):\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - " y.data.sub_(1) # index align\n", - " optimizer.zero_grad()\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y)\n", - " loss.backward()\n", - " optimizer.step()\n", - " if b % 100 == 0:\n", - " corrects = (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " accuracy = 100.0 * corrects / batch.batch_size\n", - " sys.stdout.write(\n", - " '\\rBatch[%d] - loss: %.6f acc: %.2f' %\n", - " (b, loss.item(), accuracy))\n", - "```\n", - "\n", - "```python\n", - "def evaluate(model, val_iter):\n", - " \"\"\"evaluate model\"\"\"\n", - " model.eval()\n", - " corrects, avg_loss = 0, 0\n", - " for batch in val_iter:\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - "# x, y = batch.text, batch.label\n", - " y.data.sub_(1) # index align\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y, size_average=False)\n", - " avg_loss += loss.item()\n", - " corrects += (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " size = len(val_iter.dataset)\n", - " avg_loss = avg_loss / size\n", - " accuracy = 100.0 * corrects / size\n", - " return avg_loss, accuracy\n", - "```\n", - "\n", - "본격적으로 학습을 시작하기 전, 모델 객체와 최적화 알고리즘을 정의합니다.\n", - "\n", - "```python\n", - "model = BasicLSTM(1, 256, vocab_size, 128, n_classes, 0.5).to(DEVICE)\n", - "optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", - "```\n", - "\n", - "이제 학습에 필요한 모든 준비는 되었습니다. 마지막으로 학습을 하는 loop을 구현합니다.\n", - "\n", - "```python\n", - "best_val_loss = None\n", - "for e in range(1, EPOCHS+1):\n", - " train(model, optimizer, train_iter)\n", - " val_loss, val_accuracy = evaluate(model, test_iter)\n", - " print(\"\\n[Epoch: %d] val_loss:%5.2f | acc:%5.2f\" % (e, val_loss, val_accuracy))\n", - "``` \n", - "\n", - "4장에서 배워 봤듯이, 우리가 원하는 최종 모델은 Training Loss가 아닌 Validation Loss가 최소화된 모델입니다. 다음과 같이 Validation Loss가 가장 작은 모델을 저장하는 로직을 구현합니다.\n", - "\n", - "```python \n", - " # Save the model if the validation loss is the best we've seen so far.\n", - " if not best_val_loss or val_loss < best_val_loss:\n", - " if not os.path.isdir(\"snapshot\"):\n", - " os.makedirs(\"snapshot\")\n", - " torch.save(model.state_dict(), './snapshot/convcnn.pt')\n", - " best_val_loss = val_loss\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 전체 코드\n", - "```python\n", - "import os\n", - "import sys\n", - "import argparse\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torchtext import data, datasets\n", - "\n", - "BATCH_SIZE = 64\n", - "lr = 0.001\n", - "EPOCHS = 40\n", - "torch.manual_seed(42)\n", - "USE_CUDA = torch.cuda.is_available()\n", - "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")\n", - "\n", - "class BasicLSTM(nn.Module):\n", - " def __init__(self, n_layers, hidden_dim, n_vocab, embed_dim, n_classes, dropout_p=0.2):\n", - " super(BasicLSTM, self).__init__()\n", - " print(\"Building Basic LSTM model...\")\n", - " self.n_layers = n_layers\n", - " self.embed = nn.Embedding(n_vocab, embed_dim)\n", - " self.hidden_dim = hidden_dim\n", - " self.dropout = nn.Dropout(dropout_p)\n", - " self.lstm = nn.LSTM(embed_dim, self.hidden_dim,\n", - " num_layers=self.n_layers,\n", - " dropout=dropout_p,\n", - " batch_first=True)\n", - " self.out = nn.Linear(self.hidden_dim, n_classes)\n", - "\n", - " def forward(self, x):\n", - " x = self.embed(x) # [b, i] -> [b, i, e]\n", - " h_0 = self._init_state(batch_size=x.size(0))\n", - " x, _ = self.lstm(x, h_0) # [i, b, h]\n", - " h_t = x[:,-1,:]\n", - " self.dropout(h_t)\n", - " logit = self.out(h_t) # [b, h] -> [b, o]\n", - " return logit\n", - " \n", - " def _init_state(self, batch_size=1):\n", - " weight = next(self.parameters()).data\n", - " return (\n", - " weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(),\n", - " weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()\n", - " )\n", - "\n", - "print(\"\\nLoading data...\")\n", - "TEXT = data.Field(sequential=True, batch_first=True, lower=True)\n", - "LABEL = data.Field(sequential=False, batch_first=True)\n", - "train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)\n", - "TEXT.build_vocab(train_data, min_freq=5)\n", - "LABEL.build_vocab(train_data)\n", - "\n", - "train_iter, test_iter = data.BucketIterator.splits(\n", - " (train_data, test_data), batch_size=BATCH_SIZE,\n", - " shuffle=True, repeat=False)\n", - "\n", - "vocab_size = len(TEXT.vocab)\n", - "n_classes = 2 \n", - "\n", - "def train(model, optimizer, train_iter):\n", - " model.train()\n", - " for b, batch in enumerate(train_iter):\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - "# x, y = batch.text, batch.label\n", - " y.data.sub_(1) # index align\n", - " optimizer.zero_grad()\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y)\n", - " loss.backward()\n", - " optimizer.step()\n", - " if b % 100 == 0:\n", - " corrects = (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " accuracy = 100.0 * corrects / batch.batch_size\n", - " sys.stdout.write(\n", - " '\\rBatch[%d] - loss: %.6f acc: %.2f' %\n", - " (b, loss.item(), accuracy))\n", - "\n", - "def evaluate(model, val_iter):\n", - " \"\"\"evaluate model\"\"\"\n", - " model.eval()\n", - " corrects, avg_loss = 0, 0\n", - " for batch in val_iter:\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - "# x, y = batch.text, batch.label\n", - " y.data.sub_(1) # index align\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y, size_average=False)\n", - " avg_loss += loss.item()\n", - " corrects += (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " size = len(val_iter.dataset)\n", - " avg_loss = avg_loss / size\n", - " accuracy = 100.0 * corrects / size\n", - " return avg_loss, accuracy\n", - "\n", - "print(\"[TRAIN]: %d \\t [TEST]: %d \\t [VOCAB] %d \\t [CLASSES] %d\"\n", - " % (len(train_iter),len(test_iter), vocab_size, n_classes))\n", - "\n", - "model = BasicLSTM(1, 256, vocab_size, 128, n_classes, 0.5).to(DEVICE)\n", - "optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", - "print(model)\n", - "\n", - "best_val_loss = None\n", - "for e in range(1, EPOCHS+1):\n", - " train(model, optimizer, train_iter)\n", - " val_loss, val_accuracy = evaluate(model, test_iter)\n", - "\n", - " print(\"\\n[Epoch: %d] val_loss:%5.2f | acc:%5.2f\" % (e, val_loss, val_accuracy))\n", - " \n", - " # Save the model if the validation loss is the best we've seen so far.\n", - " if not best_val_loss or val_loss < best_val_loss:\n", - " if not os.path.isdir(\"snapshot\"):\n", - " os.makedirs(\"snapshot\")\n", - " torch.save(model.state_dict(), './snapshot/convcnn.pt')\n", - " best_val_loss = val_loss\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 원본 코드" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "import argparse\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torchtext import data, datasets" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# get hyper parameters\n", - "BATCH_SIZE = 64\n", - "lr = 0.001\n", - "EPOCHS = 40\n", - "torch.manual_seed(42)\n", - "USE_CUDA = torch.cuda.is_available()\n", - "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Loading data...\n" - ] - } - ], - "source": [ - "# load data\n", - "print(\"\\nLoading data...\")\n", - "TEXT = data.Field(sequential=True, batch_first=True, lower=True)\n", - "LABEL = data.Field(sequential=False, batch_first=True)\n", - "train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)\n", - "TEXT.build_vocab(train_data, min_freq=5)\n", - "LABEL.build_vocab(train_data)\n", - "\n", - "# train_iter, test_iter = data.BucketIterator.splits(\n", - "# (train_data, test_data), batch_size=BATCH_SIZE,\n", - "# shuffle=True, repeat=False,device=-1)\n", - "train_iter, test_iter = data.BucketIterator.splits(\n", - " (train_data, test_data), batch_size=BATCH_SIZE,\n", - " shuffle=True, repeat=False)\n", - "\n", - "\n", - "vocab_size = len(TEXT.vocab)\n", - "n_classes = 2\n", - "#len(LABEL.vocab) - 1" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[TRAIN]: 391 \t [TEST]: 391 \t [VOCAB] 46159 \t [CLASSES] 2\n" - ] - } - ], - "source": [ - "print(\"[TRAIN]: %d \\t [TEST]: %d \\t [VOCAB] %d \\t [CLASSES] %d\"\n", - " % (len(train_iter),len(test_iter), vocab_size, n_classes))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "class BasicGRU(nn.Module):\n", - " def __init__(self, n_layers, hidden_dim, n_vocab, embed_dim, n_classes, dropout_p=0.2):\n", - " super(BasicGRU, self).__init__()\n", - " print(\"Building Basic GRU model...\")\n", - " self.n_layers = n_layers\n", - " self.embed = nn.Embedding(n_vocab, embed_dim)\n", - " self.hidden_dim = hidden_dim\n", - " self.dropout = nn.Dropout(dropout_p)\n", - " self.gru = nn.GRU(embed_dim, self.hidden_dim,\n", - " num_layers=self.n_layers,\n", - " dropout=dropout_p,\n", - " batch_first=True)\n", - " self.out = nn.Linear(self.hidden_dim, n_classes)\n", - "\n", - " def forward(self, x):\n", - " x = self.embed(x)\n", - " h_0 = self._init_state(batch_size=x.size(0))\n", - " x, _ = self.gru(x, h_0) # [i, b, h]\n", - " h_t = x[:,-1,:]\n", - " self.dropout(h_t)\n", - " logit = self.out(h_t) # [b, h] -> [b, o]\n", - " return logit\n", - " \n", - " def _init_state(self, batch_size=1):\n", - " weight = next(self.parameters()).data\n", - " return weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "def train(model, optimizer, train_iter):\n", - " model.train()\n", - " for b, batch in enumerate(train_iter):\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - "# x, y = batch.text, batch.label\n", - " y.data.sub_(1) # index align\n", - " optimizer.zero_grad()\n", - "\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y)\n", - " loss.backward()\n", - " optimizer.step()\n", - " if b % 100 == 0:\n", - " corrects = (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " accuracy = 100.0 * corrects / batch.batch_size\n", - " sys.stdout.write(\n", - " '\\rBatch[%d] - loss: %.6f acc: %.2f' %\n", - " (b, loss.item(), accuracy))" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate(model, val_iter):\n", - " \"\"\"evaluate model\"\"\"\n", - " model.eval()\n", - " corrects, avg_loss = 0, 0\n", - " for batch in val_iter:\n", - " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", - "# x, y = batch.text, batch.label\n", - " y.data.sub_(1) # index align\n", - " logit = model(x)\n", - " loss = F.cross_entropy(logit, y, size_average=False)\n", - " avg_loss += loss.item()\n", - " corrects += (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", - " size = len(val_iter.dataset)\n", - " avg_loss = avg_loss / size\n", - " accuracy = 100.0 * corrects / size\n", - " return avg_loss, accuracy" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Building Basic GRU model...\n", - "BasicGRU(\n", - " (embed): Embedding(46159, 128)\n", - " (dropout): Dropout(p=0.5)\n", - " (gru): GRU(128, 256, batch_first=True, dropout=0.5)\n", - " (out): Linear(in_features=256, out_features=2, bias=True)\n", - ")\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sangjunyum/anaconda/lib/python3.6/site-packages/torch/nn/modules/rnn.py:38: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.5 and num_layers=1\n", - " \"num_layers={}\".format(dropout, num_layers))\n" - ] - } - ], - "source": [ - "model = BasicGRU(1, 256, vocab_size, 128, n_classes, 0.5).to(DEVICE)\n", - "optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", - "print(model)" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Batch[0] - loss: 0.703324 acc: 42.00" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mbest_val_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mEPOCHS\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_iter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mval_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_accuracy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_iter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(model, optimizer, train_iter)\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mlogit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcross_entropy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m100\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/sangjunyum/anaconda/lib/python3.6/site-packages/torch/tensor.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(self, gradient, retain_graph, create_graph)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0mproducts\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0mDefaults\u001b[0m \u001b[0mto\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \"\"\"\n\u001b[0;32m---> 93\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mregister_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/sangjunyum/anaconda/lib/python3.6/site-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables)\u001b[0m\n\u001b[1;32m 87\u001b[0m Variable._execution_engine.run_backward(\n\u001b[1;32m 88\u001b[0m \u001b[0mtensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_tensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 89\u001b[0;31m allow_unreachable=True) # allow_unreachable flag\n\u001b[0m\u001b[1;32m 90\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "best_val_loss = None\n", - "for e in range(1, EPOCHS+1):\n", - " train(model, optimizer, train_iter)\n", - " val_loss, val_accuracy = evaluate(model, test_iter)\n", - "\n", - " print(\"\\n[Epoch: %d] val_loss:%5.2f | acc:%5.2f\" % (e, val_loss, val_accuracy))\n", - " \n", - " # Save the model if the validation loss is the best we've seen so far.\n", - " if not best_val_loss or val_loss < best_val_loss:\n", - " if not os.path.isdir(\"snapshot\"):\n", - " os.makedirs(\"snapshot\")\n", - " torch.save(model.state_dict(), './snapshot/txtclassification.pt')\n", - " best_val_loss = val_loss" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# class BasicRNN(nn.Module):\n", - "# \"\"\"\n", - "# Basic RNN\n", - "# \"\"\"\n", - "# def __init__(self, n_layers, hidden_dim, n_vocab, embed_dim, n_classes, dropout_p=0.2):\n", - "# super(BasicRNN, self).__init__()\n", - "# print(\"Building Basic RNN model...\")\n", - "# self.n_layers = n_layers\n", - "# self.hidden_dim = hidden_dim\n", - "\n", - "# self.embed = nn.Embedding(n_vocab, embed_dim)\n", - "# self.dropout = nn.Dropout(dropout_p)\n", - "# self.rnn = nn.RNN(embed_dim, hidden_dim, n_layers,\n", - "# dropout=dropout_p, batch_first=True)\n", - "# self.out = nn.Linear(self.hidden_dim, n_classes)\n", - "\n", - "# def forward(self, x):\n", - "# embedded = self.embed(x) # [b, i] -> [b, i, e]\n", - "# _, hidden = self.rnn(embedded)\n", - "# self.dropout(hidden)\n", - "# hidden = hidden.squeeze()\n", - "# logit = self.out(hidden) # [b, h] -> [b, o]\n", - "# return logit" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/07-RNN-For-Sequential-Data/02-sequence-to-sequence.ipynb b/07-RNN-For-Sequential-Data/02-sequence-to-sequence.ipynb deleted file mode 100644 index 03f1d54..0000000 --- a/07-RNN-For-Sequential-Data/02-sequence-to-sequence.ipynb +++ /dev/null @@ -1,1320 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Seq2Seq 기계 번역\n", - "\n", - "2010년 이후 가장 큰 관심을 받은건 역시 알파고 였지만, 그와 더불어 크게 화제가 된 또다른 머신러닝 모델이 있었습니다.\n", - "바로 한 언어를 다른 언어로 해석시켜주는 **뉴럴 기계번역(Neural Machine Translation)** 모델입니다. \n", - "항상 RNN이 기계번역에 쓰였던 것은 아니지만, RNN 기반의 번역모델인 **Sequence to Sequence**(줄여서 Seq2Seq 이라고도 합니다) 모델은 기계번역의 새로운 패러다임을 열었다고 할 정도로 기존 번역모델의 성능을 아득히 뛰어넘었습니다.\n", - "\n", - "이름에서 알 수 있듯이 Seq2Seq 모델은 순차적인 형태의 배열 혹은 문장을 다른 문장으로 바꾸거나 번역해주는 모델입니다.\n", - "일반적으로 Seq2Seq와 같은 기계번역 모델이 이러한 능력을 학습하려면 원문과 번역문이 쌍을 이루는 형태의 다량의 텍스트 데이터셋이 필요합니다.\n", - "당연히 이런 데이터를 가지고 학습하는 모델들은 고용량 GPU와 복잡한 텍스트 전처리 과정, 그리고 긴 학습시간 등 꽤 많은 리소스를 필요로 합니다.\n", - "\n", - "그래서 이번 프로젝트에선 임의로 Seq2Seq 모델을 아주 간단화 시켰습니다.\n", - "한 언어로 된 문장을 다른 언어로 된 문장으로 번역하는 덩치가 큰 모델이 아닌\n", - "영어 알파벳 문자열(\"hello\")을 스페인어 알파벳 문자열(\"hola\")로 번역하는 Mini Seq2Seq 모델을 같이 구현해 보겠습니다.\n", - "\n", - "## Seq2Seq 개요\n", - "\n", - "지금까지 이 책을 읽으면서 이미 눈치를 채셨을 수도 있겠지만, 복잡한 일을 처리하는 딥러닝 모델이 단 하나의 신경망으로 이루어진 경우는 매우 드뭅니다.\n", - "우리가 앞 프로젝트에서 같이 구현한 비교적 간단한 모델인 감정분석(Sentiment Analysis) 모델도 RNN 과 다층신경망, 이 두 신경망이 연결된 형태였습니다.\n", - "이번 프로젝트의 메인 토픽인 Seq2Seq모델 또한 마찬가지입니다. 엄밀히 말하자면 Seq2Seq 모델은 서로 다른 역할을 하는 두개의 RNN을 이어붙인 신경망입니다\n", - "\n", - "두개의 RNN이 연결되어 있다는 점에서 Seq2Seq 모델이 매우 어렵고 복잡하게 느껴지실 수도 있습니다.\n", - "하지만 실제 우리가 번역을 할때 거치는 생각과 과정을 곱씹어보면 Seq2Seq가 왜 이런 구조로 구현되었는지 쉽게 이해가 되실겁니다.\n", - "일반적으로 우리가 영어와 같은 외국어를 한국어로 번역하는 과정은 다음과 같습니다.\n", - "먼저 외국어 문장을 읽고 그 내용을 이해합니다.\n", - "그다음 이러한 이해를 바탕으로 한국어 단어들을 하나 하나 문맥에 맞게 써내려갑니다.\n", - "이처럼 번역은 원문의 이해와 번역문 작성, 이렇게 크게 두가지 동작을 필요로 합니다. \n", - "\n", - "Seq2Seq 모델에선 이 두가지 동작을 **인코더(Encoder)** 와 **디코더(Decoder)** 라고 하는 각자 다른 RNN에 부여하므로써 기계번역을 실행합니다.\n", - "첫번째 RNN인 **인코더(Encoder)** 는 원문을 입력받고 그 뜻을 학습합니다. 인코더를 통해 학습된 내용을 이어받는 **디코더(Decoder)** 는 원문의 내용을 바탕으로 번역문을 차례대로 출력합니다.\n", - "\n", - "### 인코더\n", - "\n", - "인코더는 원문의 내용을 학습하는 RNN 입니다. \n", - "한 마디로 원문 속의 모든 단어들을 입력받아 문장의 뜻을 내포하는 하나의 고정된 크기의 텐서로 압축시킵니다.\n", - "이렇게 압축된 텐서는 원문의 뜻과 내용을 담고 있다고 하여 **Context Vector(내용 벡터)** 라고 부릅니다.\n", - "\n", - "### 디코더\n", - "\n", - "다시 말씀드리지만, 번역을 할 때에는 항상 '원문이 말하는 바가 무엇인가', 그리고 '번역문과 원문이 전하는 뜻이 같은가'라는 생각을 하고 있어야합니다. \n", - "이는 곧 번역문의 단어 하나, 글자 한 자를 작성할 때도 원문이 주는 정보에 입각하여야 한다는 뜻입니다.\n", - "즉 디코더가 번역문의 단어나 토큰을 출력할 때 마다 인코더의 Context Vector를 어느 형태로든 전달받아야 합니다.\n", - "\n", - "![rl](./assets/encoder_decoder.png)\n", - " \n", - "사실 인코더의 Context Vector 를 디코더에 전해주는데는 여러 방법이 있습니다.\n", - "원본 Sequence to Sequence 모델에선 인코더의 Context Vector 가 디코더에 입력되는 모든 번역문 토큰 벡터에 이어붙였습니다. 이렇게 구현함으로써 디코더가 다음 번역문 토큰을 예상할 때 원문의 내용을 고려할 수 있도록 말이죠.\n", - "우리가 구현해 볼 Mini Seq2Seq은 이러한 동작은 생략하고 단순히 디코더 RNN 의 첫번쨰 Hidden State 을 인코더의 Context Vector 로 정의함으로써 원문의 내용을 디코더에 입력합니다. \n", - "Context Vector를 입력받은 디코더는 번역문 속의 토큰을 입력받아 번역문 속 다음 토큰을 예상합니다.\n", - "디코더가 예상한 토큰과 실제 토큰을 비교하여 오차를 줄여나가는 것이 Seq2Seq 모델이 학습하는 기본원리입니다. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Seq2Seq 모델을 구현하고 기계번역을 해 봅시다.\n", - "\n", - "여느때와 마찬가지로 구현에 필요한 라이브러리들을 임포트합니다.\n", - "\n", - "```python\n", - "import numpy as np\n", - "import torch as th\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torch.autograd import Variable\n", - "from torch import optim\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "이번 프로젝트에선 워드 임베딩(Word Embedding)이 아닌 캐릭터 임베딩(Character Embedding)을 사용하겠습니다.\n", - "즉 단어가 아닌 알파벳들을 벡터로 표현하여 알파벳의 배열인 단어를 벡터의 배열로 표현하겠습니다.\n", - "\n", - "앞의 프로젝트에서 했던것과 마찬가지로, 임베딩을 하기 위해선 '사전'을 정의해야 합니다. ascii 코드엔 총 256개의 캐릭터가 속해 있으므로, 모든 캐릭터를 사전에 담아내기 위해 vocab_size 를 ascii 코드의 총 갯수인 256으로 정의하겠습니다.\n", - "\n", - "```python\n", - "vocab_size = 256 # ascii size\n", - "```\n", - "\n", - "Seq2Seq 모델에 입력될 원문과 번역문 ascii 코드의 배열로 정의하고 파이토치 텐서로 바꿔줍니다.\n", - "\n", - "```python\n", - "x_ = list(map(ord, \"hello\")) # convert to list of ascii codes\n", - "y_ = list(map(ord, \"hola\")) # convert to list of ascii codes\n", - "x = Variable(th.LongTensor(x_))\n", - "y = Variable(th.LongTensor(y_))\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Seq2Seq 모델 클래스를 정의합니다.\n", - "전 프로젝트와 마찬가지로 n_layer는 1로 정의해 주고 RNN 의 Hidden Size를 입력받도록 설정합니다.\n", - "\n", - "```python\n", - "class Seq2Seq(nn.Module):\n", - " def __init__(self, vocab_size, hidden_size):\n", - " super(Seq2Seq, self).__init__()\n", - " self.n_layers = 1\n", - " self.hidden_size = hidden_size\n", - "```\n", - "\n", - "임베딩 사이즈를 설정하고 인코더와 디코더를 LSTM 객체로 정의해줍니다.\n", - "원래는 원문을 위한 임베딩과 번역문을 위한 임베딩을 따로 정의해 줘야 하지만 간단한 Seq2Seq 모델인 만큼 임베딩을 하나만 정의해 주겠습니다.\n", - "\n", - "```python\n", - " self.embedding = nn.Embedding(vocab_size, hidden_size)\n", - " self.encoder = nn.LSTM(hidden_size, hidden_size)\n", - " self.decoder = nn.LSTM(hidden_size, hidden_size)\n", - "```\n", - "\n", - "디코더가 번역문 속 다음 토큰을 예상하기 위해선 다음과 같이 작은 신경망을 하나 더 만들어 줘야합니다.\n", - "\n", - "```python\n", - " self.project = nn.Linear(hidden_size, vocab_size)\n", - "```\n", - "\n", - "forward 함수를 구현하면서 위에 정의된 신경망 모듈과 객체들이 어떻게 서로 이어붙여 지는지 알아보겠습니다." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "인코더의 첫번째 Hidden State을 정의하고 인코더에 입력되는 원문인 'hello' 속의 모든 캐릭터를 임베딩시킵니다.\n", - "\n", - "```python\n", - "def forward(self, inputs, targets):\n", - " initial_state = self._init_state()\n", - " embedding = self.embedding(inputs).unsqueeze(1)\n", - "``` \n", - "\n", - "'hello'를 인코더에 입력시켜 encoder_state 이라는 텐서로 압축시킵니다.\n", - "원문의 Context Vector인 encoder_state를 디코더의 첫번째 Hidden State 로 설정합니다.\n", - "디코더가 번멱문 'hola'의 첫번째 토큰인 'h'를 예상하려면 null character 혹은 문장 시작 토큰(Start of Sentence Tocken)을 첫번째 입력데이터로써 받아야 합니다. 이번 예제에서는 ascii 번호 0을 문장 시작 토큰으로 설정하겠습니다.\n", - "\n", - "```python\n", - "\n", - " encoder_output, encoder_state = self.encoder(embedding, initial_state)\n", - " decoder_state = encoder_state\n", - " decoder_input = Variable(th.LongTensor([[0]]))\n", - "```\n", - "\n", - "디코더의 동작에 필요한 for loop 을 구현합니다.\n", - "디코더는 인코더와는 달리 번역문 속의 토큰을 입력받을 때 마다 loss를 계산하는데 쓰일 결과값을 출력해야합니다.\n", - "위에 정의한 decoder_input 과 encoder의 Context Vector인 decoder_state을 디코더에 입력합니다.\n", - "\n", - "```python\n", - " outputs = []\n", - " for i in range(targets.size()[0]): \n", - " decoder_input = self.embedding(decoder_input)\n", - " decoder_output, decoder_state = self.decoder(decoder_input, decoder_state)\n", - "```\n", - "\n", - "decoder를 통해 나온 결과값은 다시 작은 신경망에 입력됩니다.\n", - "이렇게 해서 원문의 내용과 현재의 번역문 토큰을 기반으로 추론해 본 번역문의 다음 토큰을 예상하는 결과값을 구합니다.\n", - "이 결과값을 outputs라는 배열 속에 저장해 loss 를 계산할 때 사용하겠습니다.\n", - "\n", - "```python\n", - " # Project to the vocabulary size\n", - " projection = self.project(decoder_output.view(1, -1)) # batch x vocab_size\n", - " \n", - " # Make prediction\n", - " prediction = F.softmax(projection) # batch x vocab_size\n", - " outputs.append(prediction)\n", - "```\n", - "\n", - "마지막으로 디코더에 입력되는 데이터를 번역문의 토큰을 업데이트합니다.\n", - "\n", - "```python\n", - " # update decoder input\n", - " _, top_i = prediction.data.topk(1) # 1 x 1\n", - " decoder_input = Variable(top_i)\n", - "\n", - "```\n", - "\n", - "번역문의 모든 토큰에 대한 결과값들을 배열이라 할 수 있는 outputs을 리턴합니다.\n", - "\n", - "```python\n", - " outputs = th.stack(outputs).squeeze()\n", - " return outputs\n", - "```\n", - "\n", - "이렇게 모델의 구현이 끝났습니다.\n", - "이제 vocab_size를 256으로, hidden_size를 16으로 설정해 모델을 생성하고 loss 함수와 optimizer를 정의합니다.\n", - "\n", - "```python\n", - "seq2seq = Seq2Seq(vocab_size, 16)\n", - "criterion = nn.CrossEntropyLoss()\n", - "optimizer = th.optim.Adam(seq2seq.parameters(), lr=1e-3)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1000번의 epoch에 걸쳐 모델을 학습시킵니다.\n", - "\n", - "```python\n", - "log = []\n", - "for i in range(1000):\n", - " prediction = seq2seq(x, y)\n", - " loss = criterion(prediction, y)\n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n", - " loss_val = loss.data[0]\n", - " log.append(loss_val)\n", - " if i % 100 == 0:\n", - " print(\"%d loss: %s\" % (i, loss_val))\n", - " _, top1 = prediction.data.topk(1, 1)\n", - " for c in top1.squeeze().numpy().tolist():\n", - " print(chr(c), end=\" \")\n", - " print()\n", - "```\n", - "\n", - "matplotlib 라이브러리를 이용해서 loss 가 줄어드는 것을 한 눈에 확인하실 수 있습니다.\n", - "\n", - "```python\n", - "import matplotlib.pyplot as plt\n", - "plt.plot(log)\n", - "plt.ylabel('cross entropy loss')\n", - "plt.show()\n", - "```\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 전체 코드\n" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import torch as th\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torch.autograd import Variable\n", - "from torch import optim" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello -> [104, 101, 108, 108, 111]\n", - "hola -> [104, 111, 108, 97]\n" - ] - } - ], - "source": [ - "vocab_size = 256 # ascii size\n", - "x_ = list(map(ord, \"hello\")) # convert to list of ascii codes\n", - "y_ = list(map(ord, \"hola\")) # convert to list of ascii codes\n", - "print(\"hello -> \", x_)\n", - "print(\"hola -> \", y_)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "x = Variable(th.LongTensor(x_))\n", - "y = Variable(th.LongTensor(y_))" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([ 104, 101, 108, 108, 111])\n" - ] - } - ], - "source": [ - "print(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'nn' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mclass\u001b[0m \u001b[0mSeq2Seq\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mModule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvocab_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhidden_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSeq2Seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_layers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhidden_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhidden_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'nn' is not defined" - ] - } - ], - "source": [ - "class Seq2Seq(nn.Module):\n", - " def __init__(self, vocab_size, hidden_size):\n", - " super(Seq2Seq, self).__init__()\n", - " self.n_layers = 1\n", - " self.hidden_size = hidden_size\n", - " self.embedding = nn.Embedding(vocab_size, hidden_size)\n", - " self.encoder = nn.LSTM(hidden_size, hidden_size)\n", - " self.decoder = nn.LSTM(hidden_size, hidden_size)\n", - " self.project = nn.Linear(hidden_size, vocab_size)\n", - "\n", - " def forward(self, inputs, targets):\n", - " # Encoder inputs and states\n", - " initial_state = self._init_state()\n", - " embedding = self.embedding(inputs).unsqueeze(1)\n", - " # embedding = [seq_len, batch_size, embedding_size]\n", - " \n", - " # Encoder\n", - " encoder_output, encoder_state = self.encoder(embedding, initial_state)\n", - " # encoder_output = [seq_len, batch_size, hidden_size]\n", - " # encoder_state = [n_layers, seq_len, hidden_size]\n", - "\n", - " # Decoder inputs and states\n", - " decoder_state = encoder_state\n", - " decoder_input = Variable(th.LongTensor([[0]]))\n", - " \n", - " # Decoder\n", - " outputs = []\n", - " for i in range(targets.size()[0]): \n", - " decoder_input = self.embedding(decoder_input)\n", - " decoder_output, decoder_state = self.decoder(decoder_input, decoder_state)\n", - " \n", - " # Project to the vocabulary size\n", - " projection = self.project(decoder_output.view(1, -1)) # batch x vocab_size\n", - " \n", - " # Make prediction\n", - " prediction = F.softmax(projection) # batch x vocab_size\n", - " outputs.append(prediction)\n", - " \n", - " # update decoder input\n", - " _, top_i = prediction.data.topk(1) # 1 x 1\n", - " decoder_input = Variable(top_i)\n", - "\n", - " outputs = th.stack(outputs).squeeze()\n", - " return outputs\n", - " \n", - " def _init_state(self, batch_size=1):\n", - " weight = next(self.parameters()).data\n", - " return (\n", - " Variable(weight.new(self.n_layers, batch_size, self.hidden_size).zero_()),\n", - " Variable(weight.new(self.n_layers, batch_size, self.hidden_size).zero_())\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Seq2Seq(\n", - " (embedding): Embedding(256, 16)\n", - " (encoder): LSTM(16, 16)\n", - " (decoder): LSTM(16, 16)\n", - " (project): Linear(in_features=16, out_features=256, bias=True)\n", - ")\n", - "tensor(1.00000e-03 *\n", - " [[ 2.9970, 2.8114, 4.2799, ..., 3.7746, 3.7840, 5.4948],\n", - " [ 2.9797, 3.4032, 4.1419, ..., 3.1983, 3.9454, 5.4524],\n", - " [ 2.9936, 3.4686, 4.0216, ..., 3.4292, 4.0596, 4.8199],\n", - " [ 3.2152, 3.3866, 3.9634, ..., 3.1042, 4.0616, 5.8624]])\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sangjunyum/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:36: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n" - ] - } - ], - "source": [ - "seq2seq = Seq2Seq(vocab_size, 16)\n", - "print(seq2seq)\n", - "pred = seq2seq(x, y)\n", - "print(pred)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "criterion = nn.CrossEntropyLoss()\n", - "optimizer = th.optim.Adam(seq2seq.parameters(), lr=1e-3)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Context Vector torch.Size([1, 1, 16])\n", - "0 loss: tensor(5.5453)\n", - "…", - " ª 5 ^ \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sangjunyum/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:30: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - "/Users/sangjunyum/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:8: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "100 loss: tensor(5.3443)\n", - "h l l l \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "200 loss: tensor(4.9505)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "300 loss: tensor(4.7128)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "400 loss: tensor(4.6448)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "500 loss: tensor(4.6143)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "600 loss: tensor(4.5861)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "700 loss: tensor(4.5741)\n", - "h o l a \n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n", - "Context Vector torch.Size([1, 1, 16])\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcriterion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprediction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mloss_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/sangjunyum/anaconda/lib/python3.6/site-packages/torch/tensor.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(self, gradient, retain_graph, create_graph)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0mproducts\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0mDefaults\u001b[0m \u001b[0mto\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \"\"\"\n\u001b[0;32m---> 93\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 94\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mregister_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/Users/sangjunyum/anaconda/lib/python3.6/site-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables)\u001b[0m\n\u001b[1;32m 87\u001b[0m Variable._execution_engine.run_backward(\n\u001b[1;32m 88\u001b[0m \u001b[0mtensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_tensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 89\u001b[0;31m allow_unreachable=True) # allow_unreachable flag\n\u001b[0m\u001b[1;32m 90\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "log = []\n", - "for i in range(1000):\n", - " prediction = seq2seq(x, y)\n", - " loss = criterion(prediction, y)\n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n", - " loss_val = loss.data[0]\n", - " log.append(loss_val)\n", - " if i % 100 == 0:\n", - " print(\"%d loss: %s\" % (i, loss_val))\n", - " _, top1 = prediction.data.topk(1, 1)\n", - " for c in top1.squeeze().numpy().tolist():\n", - " print(chr(c), end=\" \")\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XPWd7/H3d2ZULMmWLEsWtmVbtiyKKTZGNONCC30h\nIUAgoSWAA0koN9nNhpvkZsuze282m1ASILTQsksKJWEh9GZMMZYBG2PAVW6ALXdbsmVp9L1/zLEs\njMtI1szRaD6v5znPzDnnN6Pv8QF99Dvld8zdERERAYiEXYCIiPQcCgUREWmnUBARkXYKBRERaadQ\nEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXaxsAvorLKyMq+qqgq7DBGRjDJz5szV7l6+t3YZFwpV\nVVXU1dWFXYaISEYxsyXJtNPhIxERaadQEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXYKBRERaZdx\n9yl01byVm3hy1icU5MUozItRmBulIDdGYV40mI9RkJt43zc/Rk5UeSki2SerQuHWlxYk1TZiMKi4\nD/tXFHHE8P4cN6qMsUNLMLMUVykiEi5z97Br6JTa2lrv6h3NbW3O1tY4jc1xmra1srm5laZtcRp3\nel2zuZmla5uY88lGFqzaDMDI8kKunlzNV8dVEo0oHEQks5jZTHev3Vu7rOkpAEQiRkFujILcGJCX\n1GfWNW7j+Q9X8vu3lvDDR2bzpxnL+PXXD2dQcZ/UFisiEgIdON+L/oW5XFA7lL9+9zh+ef4Y5n66\nka/c9gbL1jaFXZqISLdTKCTJzPjqEZU8es14trTEuey+t9nc3Bp2WSIi3Uqh0EkHDerHby8+gvrV\njfzo0dlhlyMi0q0UCl1wbPUAvv+l/Xly9qe89NHKsMsREek2CoUumjKpmpHlhfzL/8yluTUedjki\nIt1CodBFubEIPz1rNPVrmnj8nRVhlyMi0i0UCvvg+P3LOWRIP+6auoh4W2bd7yEisisKhX1gZnx7\nUjWLVjfywoc6tyAimU+hsI9OP2Q/Kvrl8acZy8IuRURknykU9lEsGuHccZW8Mq+BVZu2hl2OiMg+\nUSh0g/OOqCTe5jrhLCIZT6HQDarLixhTWcxT738adikiIvtEodBNTj1kP2Yv38An67eEXYqISJcp\nFLrJqQfvB8BzH3wWciUiIl2nUOgm1eVFjBpYxLMf6NJUEclcCoVudOrBFbxdv5Z1jdvCLkVEpEsU\nCt3o5IMqiLc5ry1YHXYpIiJdolDoRodVllDcJ4fX5jWEXYqISJcoFLpRNGJMGFXG1PkNZNqzr0VE\nQKHQ7SbtX8bKjc3MW7k57FJERDpNodDNJtaUAzBVh5BEJAMpFLrZ4JI+jBpYxNT5CgURyTwKhRSY\nVFPO9MVr2dqiJ7KJSGZJaSiYWb2ZvW9m75lZ3R7aHWlmrWZ2XirrSZeJNWVsa21jRv3asEsREemU\ndPQUTnD3se5eu6uVZhYFfg48l4Za0uLokaXkRI1p83W/gohklp5w+Oha4FFgVdiFdJeC3BjjhvXn\nNYWCiGSYVIeCA8+Z2Uwzm7LzSjMbAnwFuGNPX2JmU8yszszqGhoy4wTuxJoy5n66kdWbm8MuRUQk\naakOhQnuPg44HfiumU3aaf3NwD+6e9uevsTd73L3WnevLS8vT1Wt3WpCcGnq6xryQkQySEpDwd1X\nBK+rgMeBo3ZqUgv8wczqgfOA283sy6msKV0OHVJMcZ8cnVcQkYySslAws0Iz67v9PXAKMKdjG3cf\n4e5V7l4FPAJ8x93/kqqa0ikaMcZXD2DagtUa8kJEMkYqewoVwDQzmwW8DTzl7s+Y2dVmdnUKf26P\nMaGmjE83bGVhQ2PYpYiIJCWWqi9290XAmF0s/+1u2l+eqlrCMnFU4rzCtPkNjBpYFHI1IiJ71xMu\nSe21hg0oYFhpAdN0sllEMoRCIcUm1JTx1qK1tMT3eIGViEiPoFBIsYmjytjc3Mp7y9aHXYqIyF4p\nFFJsfHUZEUN3N4tIRlAopFhxQQ6HVpYwTUNpi0gGUCikwcRRZcxavoGNW1vCLkVEZI8UCmkwoaaM\neJvz5sI1YZciIrJHCoU0GDesPwW5UQ15ISI9nkIhDXJjEY4eUcrU+Q0a8kJEejSFQpqceFAFS9Y0\nsWDV5rBLERHZLYVCmnzpoAoAnpu7MuRKRER2T6GQJvsV5zNmaAnPffBZ2KWIiOyWQiGNThldwazl\nG/hsw9awSxER2SWFQhqdMjpxCOn5D3UISUR6JoVCGo0aWMSIskIdQhKRHkuhkEZmximjK3hr0RrW\nN20LuxwRkS9QKKTZWYcNpiXuPD1HvQUR6XkUCml2yJB+jCgr5In3Pgm7FBGRL1AopJmZcfaYwby1\neI2uQhKRHkehEIKzxw7GHZ6crd6CiPQsCoUQVJcXcciQfjwxS6EgIj3LXkPBzK43s36WcK+ZvWNm\np6SjuN7snDFDmL18g8ZCEpEeJZmewrfcfSNwCtAfuAT4fymtKgucc/hgYhHjz3XLwi5FRKRdMqFg\nwesZwEPu/kGHZdJFA/vmc9JBA3n0neVsa20LuxwRESC5UJhpZs+RCIVnzawvoN9i3eDCI4exevM2\nXvpIw16ISM+QTChcAfwIONLdm4Ac4JsprSpLTNq/nP365fOHGTqEJCI9QzKhcCzwsbuvN7OLgZ8A\nG1JbVnaIRowLait5dV4Dn6zfEnY5IiJJhcIdQJOZjQF+ACwEHkxpVVnk/NqhAPxRvQUR6QGSCYVW\nTzxY+BzgN+5+G9A3tWVlj6GlBUyqKefht5fSEtepGhEJVzKhsMnMbiRxKepTZhYhcV5Busmlxw5n\n1aZmrvn9O2GXIiJZLplQ+BrQTOJ+hc+ASuAXKa0qyxx/wECGlvbhhQ9XUr+6MexyRCSL7TUUgiD4\nL6DYzM4Ctrp7UucUzKzezN43s/fMrG4X679hZrODNm8E5y2yTjRiPHrNeHKjEe6dtjjsckQkiyUz\nzMUFwNvA+cAFwHQzO68TP+MEdx/r7rW7WLcYmOzuhwL/CtzVie/tVQb2zecrhw/hzzOXsbZRD+AR\nkXAkc/joxyTuUbjM3S8FjgJ+2h0/3N3fcPd1wexbJA5NZa0rJ45ga0sbD725JOxSRCRLJRMKEXdf\n1WF+TZKfA3DgOTObaWZT9tL2CuDpJL+3V6qp6MuJBw7kwTfr2doSD7scEclCyfxyf8bMnjWzy83s\ncuAp4G9Jfv8Edx8HnA5818wm7aqRmZ1AIhT+cTfrp5hZnZnVNTQ0JPmjM9NVE0eypnEbj72zIuxS\nRCQLJXOi+R9IHOs/LJjucvdd/vLexWdXBK+rgMdJHHr6HDM7DLgHOMfd1+zme+5y91p3ry0vL0/m\nR2esY0aWcuiQYu55bRFtbR52OSKSZZI6DOTuj7r794Pp8WQ+Y2aFweB5mFkhiaG35+zUZhjwGHCJ\nu8/rXOm9k5kxZdJIFq1u5G9zPg27HBHJMrsNBTPbZGYbdzFtMrONSXx3BTDNzGaRuHrpKXd/xsyu\nNrOrgzb/BxgA3L67y1az0RmHDmLUwCJueWE+cfUWRCSNYrtb4e77NJSFuy8CvnDfgbv/tsP7K4Er\n9+Xn9EbRiHH9STVc+/C7PDn7E84ZOyTskkQkS+gZzT3UmYcOYv+KIm55Ub0FEUkfhUIPFYkYN5y8\nP4saGnlilq5EEpH0UCj0YKcdvB+jB/XjV8/Po7lV9y2ISOolM8zFtWbWPx3FyOdFIsY/nn4gy9Zu\n4b+nLw27HBHJAsn0FCqAGWb2JzM7zcws1UXJDpNqyjhu1AB+/dICLrl3Ojc9ryt3RSR1krl57SdA\nDXAvcDkw38z+3cyqU1ybkLhv4UenHcTaxm28Nn81t7w4nzWbm8MuS0R6qWRvXnPgs2BqBfoDj5jZ\nf6SwNgkcWlnMEcN3HMG7R8Nri0iKJHNO4Xozmwn8B/A6cKi7XwMcAXw1xfVJ4KYLxjKmspjRg/rx\n4Bv1rNPw2iKSAsn0FEqBc939VHf/s7u3ALh7G3BWSquTdsMGFPDX703gpq+NpXFbnPteV29BRLpf\nMucUfgYMMLPrgiuRxnVY92FKq5MvOGC/vpx28H7c93o9G7a0hF2OiPQyyRw++inwAIkxisqA+8zs\nJ6kuTHbv2pNGsam5lQfeqA+7FBHpZZI5fHQxiSev/SzoNRwDXJLasmRPDh5czMkHVXDvtMVsbm4N\nuxwR6UWSCYVPgPwO83mAxl0I2XUnjWLDlhYefLM+7FJEpBdJJhQ2AB+Y2f1mdh+JZyKsN7NbzezW\n1JYnu3NYZQnHH1DO3VMXqbcgIt0mmVB4HPjfwMvAK8CPgb8CM4NJQnLDyfuzrqmF+3Ulkoh0k90+\nT2E7d3/AzHKB/YNFH2+/LFXCNXZoCScfVMFdUxdxybFVFPfJCbskEclwyVx9dDwwH7gNuB2YZ2aT\nUlyXJOn7X9qfjVtbufe1RWGXIiK9QDKHj34JnOLuk919EnAqcFNqy5JkjR7cjzMPHcS90xazVnc5\ni8g+SiYUctz94+0z7j4P0HGKHuSGk2toaolz59SFYZciIhkumVCoM7N7zOz4YLobqEt1YZK8moq+\nfHnsEB54o55Vm7aGXY6IZLBkQuEaYC5wXTDNDZZJD3L9STW0xJ3bX1ZvQUS6bo9XH5lZFPidu38D\n+FV6SpKuqCor5Lxxlfz39KVMmTSSwSV9wi5JRDLQHnsK7h4HhgeXpEoPd+1Jo3Cc37y8IOxSRCRD\n7fU+BWAR8LqZPQE0bl/o7uo59DCV/Qu48MhhPPz2Uq6ZXM3Q0oKwSxKRDJPMOYWFwJNB277BVJTK\noqTrvnfiKKIR45YX54ddiohkoGR6CnPd/c8dF5jZ+SmqR/ZRRb98Lj5mOPe9vpjvHF/NyHLlt4gk\nL5mewo1JLpMe4urJ1eTGIvz6JZ1bEJHO2W1PwcxOB84Ahuw0Gmo/QMNy9mDlffO49Ngq7nltEd87\ncRTV6i2ISJL21FP4hMRNalvZMSLqTOAJEkNdSA82ZdJI8mJRbtW5BRHphN32FNx9FjDLzP5bo6Jm\nnrKiPC4dP5y7pi7i2hNHMWpg37BLEpEMkMw5haPM7Hkzm2dmi8xssZlpSM4M8O1J1fTJiXLzC+ot\niEhykgmFe0nczTwBOBKoDV73yszqzex9M3vPzL4wXpIl3GpmC8xstpmN60zxsmelhblcPr6Kp97/\nlHkrN4VdjohkgKQex+nuT7v7Kndfs33qxM84wd3HunvtLtadDtQE0xTgjk58ryThqokjKcyNcYt6\nCyKShGRC4WUz+4WZHWtm47ZP3fTzzwEe9IS3gBIzG9RN3y1A/w69hY8+2xh2OSLSwyUTCkeTOGT0\n7yQeuPNL4D+T/H4HnjOzmWY2ZRfrhwDLOswvD5ZJN7py4gj65sW4+Xn1FkRkz5J5RvMJ+/D9E9x9\nhZkNBJ43s4/cfWpnvyQIlCkAw4YN24dyslNJQS6XH1fFr19awIJVm3QlkojsVjLPaK4ws3vN7Olg\nfrSZXZHMl7v7iuB1FfA4cNROTVYAQzvMVwbLdv6eu9y91t1ry8vLk/nRspPLx1eRnxPht6/qwjER\n2b1kDh/dDzwLDA7m5wE37O1DZlZoZn23vwdOAebs1OwJ4NLgKqRjSJzU/jTJ2qUTBhTlceGRw/jL\nuytYsX5L2OWISA+VTCiUufufgDYAd28F4kl8rgKYZmazgLeBp9z9GTO72syuDtr8jcTQ3AuAu4Hv\ndHYDJHlXTRoJwN1T1VsQkV1LZpTURjMbQOKkMdv/ot/bh9x9ETBmF8t/2+G9A99NulrZJ0NK+nDO\n2CH8YcZSrjuphtJCPTtJRD4vmZ7C90kc5qk2s9eBB4FrU1qVpMzVk0eytaWN+19fHHYpItID7TUU\n3P0dYDIwHvg2cLC7z051YZIaNRV9OWV0Bfe/Uc/mZg12KyKfl0xPAXdvdfcP3H2OBsfLfNccX83G\nra08PH1p2KWISA+TVChI73L4sP4cO3IA90xbRHNrMtcMiEi2UChkqe+cUM3Kjc089s4XbgsRkSyW\nzM1rxwX3GWBmF5vZr8xseOpLk1SaMKqMQ4cUc+erC4m3edjliEgPkUxP4Q6gyczGAD8AFpK4Akky\nmJlxzfHV1K9p4uk5ul9QRBKSCYXW4H6Cc4DfuPttgAbP6QVOPXg/RpYVcvvLC0nsYhHJdsmEwiYz\nuxG4GHjKzCJATmrLknSIRoyrJ1cz99ONTJ2/OuxyRKQHSCYUvgY0A1e4+2ckBq37RUqrkrT58uFD\n2K9fPre/vCDsUkSkB0iqpwDc4u6vmdn+wFjg4dSWJemSG4tw5cQRTF+8lplL1oVdjoiELJlQmArk\nmdkQ4DngEhIjp0ovcdFRwygpyOGOVxaGXYqIhCyZUDB3bwLOBW539/OBQ1JblqRTYV6My46t4oUP\nV/LxZ5vCLkdEQpRUKJjZscA3gKc68TnJIJePr6IgN8qdr6q3IJLNkvnlfgNwI/C4u39gZiOBl1Nb\nlqRb/8JcLjpqGH+d9QnL1jaFXY6IhCSZUVJfdfezgdvMrMjdF7n7dWmoTdLsyokjiBjc/ZoewiOS\nrZIZ5uJQM3sX+ACYa2Yzzezg1Jcm6TaouA9fOXwIf5yxjNWbm8MuR0RCkMzhozuB77v7cHcfRmKo\ni7tTW5aE5duTq9kWb+M+PYRHJCslEwqF7t5+DsHdXwEKU1aRhKq6vIjTDt6PB99cwqatenSGSLZJ\nJhQWmdlPzawqmH4C6KBzL/ad40exaWsr/6WH8IhknWRC4VtAOfAY8ChQFiyTXurQymIm1pRx77TF\nbG3RQ3hEsskeQ8HMosCP3f06dx/n7ke4+w3urvEQerlrJlfTsKmZR2YuD7sUEUmjPYaCu8eBCWmq\nRXqQY6sHMGZoCXdNXURrvC3sckQkTZI5fPSumT1hZpeY2bnbp5RXJqEyM66ZXM3StU089b4ewiOS\nLZIJhXxgDXAi8HfBdFYqi5Ke4ZTRFYwaWMQdr+ghPCLZIra3Bu7+zXQUIj1PJHgIz9//eRavfNzA\nCQcODLskEUmxZO5ofsDMSjrM9zez36W2LOkpzh4zmMHF+dz+ih7CI5INkjl8dJi7r98+E1x5dHjq\nSpKeJDcW4apJI5lRv44Z9WvDLkdEUiyZUIiYWf/tM2ZWShKHnaT3uPDIYZQW5uohPCJZIJlQ+CXw\nppn9q5n9K/AG8B+pLUt6kj65Ub45voqXPlrF+8s3hF2OiKRQMkNnP0jiqWsrg+lcd38o1YVJz3L5\ncVUU98nh5hfmhV2KiKRQUoeB3H0uMDfFtUgP1jc/hymTRvKLZz/mvWXrGTu0ZO8fEpGMk/LHappZ\n1MzeNbMnd7FumJm9HKyfbWZnpLoe6brLxlfRvyCHm55Xb0Gkt0rHs5avBz7czbqfAH9y98OBC4Hb\n01CPdFFRXoxvT67m1XkNzFyi4a9EeqOUhoKZVQJnAvfspokD/YL3xcAnqaxH9t2lxw5nQGGuzi2I\n9FKp7incDPwQ2N2Iav8EXGxmy4G/AdfuqpGZTTGzOjOra2hoSEmhkpyC3BhXT67mtfmreXux7lsQ\n6W1SFgpmdhawyt1n7qHZRcD97l4JnAE8ZGZfqMnd73L3WnevLS8vT1HFkqyLjxlOWVGezi2I9EKp\n7CkcB5xtZvXAH4ATzez3O7W5AvgTgLu/SWLwvbIU1iTdoE9ulO8cX82bi9bw5sI1YZcjIt0oZaHg\n7je6e6W7V5E4ifySu1+8U7OlwEkAZnYQiVDQ8aEM8PWjh1HRL4+bXpinEVRFepF0XH30OWb2L2Z2\ndjD7A+AqM5sFPAxc7voNkxHyc6J894RRvL14LW+otyDSa1im/Q6ura31urq6sMsQoLk1zvG/eIWB\n/fJ5/JrxRCIWdkkishtmNtPda/fWLu09Bek98mJRfnDKAcxatp7H310Rdjki0g0UCrJPzj18CGOH\nlvB/n/6ITVtbwi5HRPaRQkH2SSRi/PPZB7OmsZlfv6QH8YhkOoWC7LMxQ0u44Iih/G7aYuav3BR2\nOSKyDxQK0i3+4bQDKMqP8cNHZxNvy6yLF0RkB4WCdIuyojx+9nejeXfpeu5/oz7sckSkixQK0m2+\nPHYIJx44kP989mOWrGkMuxwR6QKFgnQbM+PfvnIIOVHjuoffZVvr7sZBFJGeSqEg3WpQcR9+/tXD\nmLV8A7949qOwyxGRTlIoSLc7/dBBXHzMMO5+bTEvzF0Zdjki0gkKBUmJn5w5moMH9+OGP77Hx5/p\nMlWRTKFQkJTIz4lyz2W19MmNcsUDM1izuTnskkQkCQoFSZlBxX24+9JaGjY18637Z2gYDJEMoFCQ\nlBo7tITffH0ccz7ZyBUP1LFlWzzskkRkDxQKknJfGl3BTV8by4z6tVz54Awam1vDLklEdkOhIGlx\n9pjB/PL8Mby1aC1fv/st1jZuC7skEdkFhYKkzbnjKrnz4iP46LNNnPfbN6hfrbueRXoahYKk1cmj\nK3joiqNZ27iNs38zjZc/XhV2SSLSgUJB0u6oEaX8z/cmUNm/gG/dP4NfPT+PlriGxBDpCRQKEoqh\npQU8es14vnL4EG59cT7n3fEGCxs2h12WSNZTKEho+uRG+dUFY7nt6+NYsraJM299jTteWaiB9ERC\npFCQ0J152CCevWESE2vK+fkzH3HaLVN5bX5D2GWJZCWFgvQIFf3yufvSWu775pG0tTmX3Ps2l9/3\nNrOXrw+7NJGsolCQHuWEAwbyzA2T+NHpB/LesvWc/ZvXuerBOuas2BB2aSJZwdwz63m6tbW1XldX\nF3YZkgabtrZw3+v13P3aIjZtbeWYkaVcMWEkJx44kGjEwi5PJKOY2Ux3r91rO4WC9HQbtrTwxxlL\neeCNJaxYv4WqAQVceNQwzj18CAP75YddnkhGUChIr9Mab+OZDz7j/tfrqVuyjmjEmLx/OecfUckJ\nBw4kPycadokiPVayoRBLRzEi3SEWjXDWYYM567DBLGzYzCMzl/PYO8t56aNVFOZGOeHAgZx+yCCO\nP6Ccwjz9py3SFeopSEaLtzmvL1jN03M+5bkPVrKmcRt5sQgTa8qZfEA5k2vKGTagIOwyRUKnw0eS\ndeJtztuL1/LMnE954cNVrFi/BYARZYVMqiljYk05R44opbhPTsiViqSfQkGymruzaHUjU+c18Oq8\nBt5atIatLW2YwehB/Th6xACOGlHK0SNK6V+YG3a5IinXY0LBzKJAHbDC3c/axfoLgH8CHJjl7l/f\n0/cpFKQrtrbEeWfpOqYvWsv0xWt4d+l6moPhNA6o6JsIiJGl1A4vZb9iXdEkvU9POtF8PfAh0G/n\nFWZWA9wIHOfu68xsYBrqkSyUnxNlfHUZ46vLAGhujTN7+QamL1rD9MVrefSd5Tz01hIAKvv3oXZ4\nf2qrSqmt6s/+A/sS0X0RkiVSGgpmVgmcCfwb8P1dNLkKuM3d1wG4uwbXl7TIi0U5sqqUI6tK+R7Q\nEm9j7icbqVuyjrr6tby+cA1/ee8TAPrlxxg3vH97UIypLKFPri5/ld4p1T2Fm4EfAn13s35/ADN7\nHYgC/+Tuz+zcyMymAFMAhg0blppKJavlRCOMGVrCmKElXDFhBO7O0rVN1NWvaw+KVz5ODNIXixgH\nDynmgIoiRpYXUV1exMjyQoaVFpAT1cgxktlSdk7BzM4CznD375jZ8cDf73xOwcyeBFqAC4BKYCpw\nqLvvdhQ0nVOQsKxv2sY7S9cxo34d7y5dx4JVjaze3Ny+Phox9uuXz+CSfAaX9NkxFSfmy/vmUVqQ\nq0NREoqecE7hOOBsMzsDyAf6mdnv3f3iDm2WA9PdvQVYbGbzgBpgRgrrEumSkoJcTjywghMPrGhf\ntmFLC4tXN7Jw1Wbq1zSyYv0WPlm/hXeXrudv739KS/zzf3RFI0ZpYS7lRXmU982jLHhNvM9lQGEe\nJQU5lBTk0L8gl4LcKGYKEUmftFySuoeewmnARe5+mZmVAe8CY919ze6+Sz0FyRRtbc7qzc1BUGxl\n9eZmGjYlptWbm2nYvOP9zuGxXW40QnFBDv0LcigpyKWkTyIsSoL5fn1iFOXF6JefQ1F+jL75ifm+\n+TkU5cU0cKC06wk9hV0ys38B6tz9CeBZ4BQzmwvEgX/YUyCIZJJIxBjYL5+B/fI5fA+nwtydDVta\naNjUzNrGbaxramHDlsTr+qYW1jdtY13TNtY3tbBkTROzlq9nXVNLUk+oK8yNBmGRE4RFYirMjVGQ\nG6VP8JqYti+Lti/rk7NjfZ+gjYKmd9PNayIZyN3Z0hJn09bWYGphc3Pi/eatrWzsML/pc+8T843N\ncZq2tbKlJb7bXsru5MUi7SGSlxMhLxYlPydCXizxPi8WIT8n8fr59cGy7etzdtE+llieE42QEzVy\no8H7WGI+JxLROZku6rE9BRHZd2YW/GUfo+ILdwB1Tku8jaZtcbZsSwRF07Y4W1riwbLE/I71cZpa\nWtvfb22J09za1v66fksLzcH75p3WtbZ1zx+gsYjtCI3Y9gDZPh8lN2o7lsUin5+PRsiN7ZiPBUET\njRixiBGLRohFjGjEyIka0UgkWG5Bm8RndrTZh8/20IBTKIhkuZxohOI+kZSPCdUab0uERWsbza1x\nmlva2Bq8dgyP5tY4rXFnW7yNlngbLa1ttHScjwfzrW2JZa0dlnVs0+ps2dLyhc/sPB93J95NgdVZ\nZrSHRNSC10giUKIREsuiO9ZddNQwrpw4MqU1KRREJC1i0QixaITCvLAr+aK2Nm8Ph5Z4G/E2p7XN\naY07rW1twXIPlrcFy4P5eNuO9zvNf/67dm7nxNvaaGlz2tp2fF98ey3xxGv7OnfKilL/j6dQEJGs\nF4kYEYycKFn/sCbdfikiIu0UCiIi0k6hICIi7RQKIiLSTqEgIiLtFAoiItJOoSAiIu0UCiIi0i7j\nBsQzswZgSRc/Xgas7sZyMoG2OTtom7PDvmzzcHcv31ujjAuFfWFmdcmMEtibaJuzg7Y5O6Rjm3X4\nSERE2ikURESkXbaFwl1hFxACbXN20DZnh5Rvc1adUxARkT3Ltp6CiIjsQdaEgpmdZmYfm9kCM/tR\n2PV0FzPvad5GAAAD1klEQVQbamYvm9lcM/vAzK4Plpea2fNmNj947R8sNzO7Nfh3mG1m48Ldgq4x\ns6iZvWtmTwbzI8xserBdfzSz3GB5XjC/IFhfFWbd+8LMSszsETP7yMw+NLNje/N+NrP/Ffw3PcfM\nHjaz/N64n83sd2a2yszmdFjW6f1qZpcF7eeb2WVdrScrQsHMosBtwOnAaOAiMxsdblXdphX4gbuP\nBo4Bvhts24+AF929BngxmIfEv0FNME0B7kh/yd3ieuDDDvM/B25y91HAOuCKYPkVwLpg+U1Bu0x1\nC/CMux8IjCGx/b1yP5vZEOA6oNbdDwGiwIX0zv18P3DaTss6tV/NrBT4GXA0cBTws+1B0mnu3usn\n4Fjg2Q7zNwI3hl1Xirb1r8CXgI+BQcGyQcDHwfs7gYs6tG9vlykTUBn8j3Ii8CRgJG7oie28v4Fn\ngWOD97GgnYW9DV3Y5mJg8c6199b9DAwBlgGlwX57Eji1t+5noAqY09X9ClwE3Nlh+efadWbKip4C\nO/4D2255sKxXCbrMhwPTgQp3/zRY9RlQEbzvDf8WNwM/BNqC+QHAendvDeY7blP79gbrNwTtM80I\noAG4Lzhsdo+ZFdJL97O7rwD+E1gKfEpiv82k9+/n7Tq7X7ttf2dLKPR6ZlYEPArc4O4bO67zxJ8O\nveIyMzM7C1jl7jPDriXNYsA44A53PxxoZMchBaDX7ef+wDkkwnAwUMgXD7FkhXTv12wJhRXA0A7z\nlcGyXsHMckgEwn+5+2PB4pVmNihYPwhYFSzP9H+L44Czzawe+AOJQ0i3ACVmFgvadNym9u0N1hcD\na9JZcDdZDix39+nB/CMkQqK37ueTgcXu3uDuLcBjJPZ9b9/P23V2v3bb/s6WUJgB1ARXLuSSOGH1\nRMg1dQszM+Be4EN3/1WHVU8A269AuIzEuYbtyy8NrmI4BtjQoZva47n7je5e6e5VJPbjS+7+DeBl\n4Lyg2c7bu/3f4bygfcb9Ne3unwHLzOyAYNFJwFx66X4mcdjoGDMrCP4b3769vXo/d9DZ/foscIqZ\n9Q96WacEyzov7BMsaTyRcwYwD1gI/DjserpxuyaQ6FrOBt4LpjNIHE99EZgPvACUBu2NxJVYC4H3\nSVzdEfp2dHHbjweeDN6PBN4GFgB/BvKC5fnB/IJg/ciw696H7R0L1AX7+i9A/968n4F/Bj4C5gAP\nAXm9cT8DD5M4b9JCokd4RVf2K/CtYPsXAN/saj26o1lERNply+EjERFJgkJBRETaKRRERKSdQkFE\nRNopFEREpJ1CQURE2ikURESknUJBRETa/X9mA/8pb2kQdQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.plot(log)\n", - "plt.ylabel('cross entropy loss')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/07-RNN-For-Sequential-Data/03-Seq2Seq_gru.ipynb b/07-RNN-For-Sequential-Data/03-Seq2Seq_gru.ipynb deleted file mode 100644 index a6f530a..0000000 --- a/07-RNN-For-Sequential-Data/03-Seq2Seq_gru.ipynb +++ /dev/null @@ -1,566 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import torch as th\n", - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - "from torch.autograd import Variable\n", - "from torch import optim" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hello -> [104, 101, 108, 108, 111]\n", - "hola -> [104, 111, 108, 97]\n" - ] - } - ], - "source": [ - "vocab_size = 256 # ascii size\n", - "x_ = list(map(ord, \"hello\")) # convert to list of ascii codes\n", - "y_ = list(map(ord, \"hola\")) # convert to list of ascii codes\n", - "print(\"hello -> \", x_)\n", - "print(\"hola -> \", y_)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = Variable(th.LongTensor(x_))\n", - "y = Variable(th.LongTensor(y_))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([ 104, 101, 108, 108, 111])\n" - ] - } - ], - "source": [ - "print(x)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "'''\n", - "Model using GRU and conventional concatenating motion.\n", - "'''\n", - "class Seq2Seq_GRU(nn.Module):\n", - " def __init__(self, vocab_size, hidden_size):\n", - " super(Seq2Seq_GRU, self).__init__()\n", - "\n", - " self.n_layers = 1\n", - " self.hidden_size = hidden_size\n", - " self.embedding = nn.Embedding(vocab_size, hidden_size)\n", - " self.encoder = nn.GRU(hidden_size, hidden_size)\n", - " self.decoder = nn.GRU(hidden_size * 2, hidden_size)\n", - " self.project = nn.Linear(hidden_size, vocab_size)\n", - "\n", - " def forward(self, inputs, targets):\n", - " # Encoder inputs and states\n", - " initial_state = self._init_state()\n", - " embedding = self.embedding(inputs).unsqueeze(1)\n", - " encoder_output, encoder_state = self.encoder(embedding, initial_state)\n", - " outputs = []\n", - "\n", - " decoder_state = encoder_state\n", - " for i in range(targets.size()[0]): \n", - " decoder_input = self.embedding(targets)[i].view(1,-1, self.hidden_size)\n", - " decoder_input = th.cat((decoder_input, encoder_state), 2)\n", - " decoder_output, decoder_state = self.decoder(decoder_input, decoder_state)\n", - " projection = self.project(decoder_output)#.unsqueeze(0))\n", - " outputs.append(projection)\n", - " \n", - " #_, top_i = prediction.data.topk(1)\n", - " \n", - " outputs = th.stack(outputs, 1).squeeze()\n", - "\n", - " return outputs\n", - " \n", - " def _init_state(self, batch_size=1):\n", - " weight = next(self.parameters()).data\n", - " return Variable(weight.new(self.n_layers, batch_size, self.hidden_size).zero_()) \n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "model = Seq2Seq_GRU(vocab_size, 16)\n", - "pred = model(x, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "criterion = nn.CrossEntropyLoss()\n", - "optimizer = th.optim.Adam(model.parameters(), lr=1e-3)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "y_.append(3)\n", - "y_label = Variable(th.LongTensor(y_[1:]))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([4])\n", - "tensor([ 111, 108, 97, 3])\n" - ] - } - ], - "source": [ - "print(y_label.shape)\n", - "print(y_label)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sangjunyum/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:8: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 loss: tensor(9.8896)\n", - "o l a \u0003 \n", - "100 loss: tensor(1.00000e-02 *\n", - " 5.8784)\n", - "h o l a \n", - "200 loss: tensor(1.00000e-02 *\n", - " 2.5069)\n", - "h o l a \n", - "300 loss: tensor(1.00000e-02 *\n", - " 1.7165)\n", - "h o l a \n", - "400 loss: tensor(1.00000e-02 *\n", - " 1.3201)\n", - "h o l a \n", - "500 loss: tensor(1.00000e-02 *\n", - " 1.0703)\n", - "h o l a \n", - "600 loss: tensor(1.00000e-03 *\n", - " 8.9372)\n", - "h o l a \n", - "700 loss: tensor(1.00000e-03 *\n", - " 7.5901)\n", - "h o l a \n", - "800 loss: tensor(1.00000e-03 *\n", - " 6.5043)\n", - "h o l a \n", - "900 loss: tensor(1.00000e-03 *\n", - " 5.6150)\n", - "h o l a \n", - "1000 loss: tensor(1.00000e-03 *\n", - " 4.8858)\n", - "h o l a \n", - "1100 loss: tensor(1.00000e-03 *\n", - " 4.2929)\n", - "h o l a \n", - "1200 loss: tensor(1.00000e-03 *\n", - " 3.8155)\n", - "h o l a \n", - "1300 loss: tensor(1.00000e-03 *\n", - " 3.4330)\n", - "h o l a \n", - "1400 loss: tensor(1.00000e-03 *\n", - " 3.1181)\n", - "h o l a \n", - "1500 loss: tensor(1.00000e-03 *\n", - " 2.8503)\n", - "h o l a \n", - "1600 loss: tensor(1.00000e-03 *\n", - " 2.6270)\n", - "h o l a \n", - "1700 loss: tensor(1.00000e-03 *\n", - " 2.4303)\n", - "h o l a \n", - "1800 loss: tensor(1.00000e-03 *\n", - " 2.2549)\n", - "h o l a \n", - "1900 loss: tensor(1.00000e-03 *\n", - " 2.0972)\n", - "h o l a \n", - "2000 loss: tensor(1.00000e-03 *\n", - " 1.9543)\n", - "h o l a \n", - "2100 loss: tensor(1.00000e-03 *\n", - " 1.8242)\n", - "h o l a \n", - "2200 loss: tensor(1.00000e-03 *\n", - " 1.7050)\n", - "h o l a \n", - "2300 loss: tensor(1.00000e-03 *\n", - " 1.5954)\n", - "h o l a \n", - "2400 loss: tensor(1.00000e-03 *\n", - " 1.4944)\n", - "h o l a \n", - "2500 loss: tensor(1.00000e-03 *\n", - " 1.4010)\n", - "h o l a \n", - "2600 loss: tensor(1.00000e-03 *\n", - " 1.3145)\n", - "h o l a \n", - "2700 loss: tensor(1.00000e-03 *\n", - " 1.2343)\n", - "h o l a \n", - "2800 loss: tensor(1.00000e-03 *\n", - " 1.1599)\n", - "h o l a \n", - "2900 loss: tensor(1.00000e-03 *\n", - " 1.0907)\n", - "h o l a \n", - "3000 loss: tensor(1.00000e-03 *\n", - " 1.0264)\n", - "h o l a \n", - "3100 loss: tensor(1.00000e-04 *\n", - " 9.6664)\n", - "h o l a \n", - "3200 loss: tensor(1.00000e-04 *\n", - " 9.1094)\n", - "h o l a \n", - "3300 loss: tensor(1.00000e-04 *\n", - " 8.5902)\n", - "h o l a \n", - "3400 loss: tensor(1.00000e-04 *\n", - " 8.1057)\n", - "h o l a \n", - "3500 loss: tensor(1.00000e-04 *\n", - " 7.6533)\n", - "h o l a \n", - "3600 loss: tensor(1.00000e-04 *\n", - " 7.2303)\n", - "h o l a \n", - "3700 loss: tensor(1.00000e-04 *\n", - " 6.8345)\n", - "h o l a \n", - "3800 loss: tensor(1.00000e-04 *\n", - " 6.4637)\n", - "h o l a \n", - "3900 loss: tensor(1.00000e-04 *\n", - " 6.1160)\n", - "h o l a \n", - "4000 loss: tensor(1.00000e-04 *\n", - " 5.7898)\n", - "h o l a \n", - "4100 loss: tensor(1.00000e-04 *\n", - " 5.4833)\n", - "h o l a \n", - "4200 loss: tensor(1.00000e-04 *\n", - " 5.1952)\n", - "h o l a \n", - "4300 loss: tensor(1.00000e-04 *\n", - " 4.9242)\n", - "h o l a \n", - "4400 loss: tensor(1.00000e-04 *\n", - " 4.6689)\n", - "h o l a \n", - "4500 loss: tensor(1.00000e-04 *\n", - " 4.4284)\n", - "h o l a \n", - "4600 loss: tensor(1.00000e-04 *\n", - " 4.2016)\n", - "h o l a \n", - "4700 loss: tensor(1.00000e-04 *\n", - " 3.9876)\n", - "h o l a \n", - "4800 loss: tensor(1.00000e-04 *\n", - " 3.7855)\n", - "h o l a \n", - "4900 loss: tensor(1.00000e-04 *\n", - " 3.5945)\n", - "h o l a \n", - "5000 loss: tensor(1.00000e-04 *\n", - " 3.4140)\n", - "h o l a \n", - "5100 loss: tensor(1.00000e-04 *\n", - " 3.2433)\n", - "h o l a \n", - "5200 loss: tensor(1.00000e-04 *\n", - " 3.0817)\n", - "h o l a \n", - "5300 loss: tensor(1.00000e-04 *\n", - " 2.9287)\n", - "h o l a \n", - "5400 loss: tensor(1.00000e-04 *\n", - " 2.7838)\n", - "h o l a \n", - "5500 loss: tensor(1.00000e-04 *\n", - " 2.6465)\n", - "h o l a \n", - "5600 loss: tensor(1.00000e-04 *\n", - " 2.5164)\n", - "h o l a \n", - "5700 loss: tensor(1.00000e-04 *\n", - " 2.3929)\n", - "h o l a \n", - "5800 loss: tensor(1.00000e-04 *\n", - " 2.2758)\n", - "h o l a \n", - "5900 loss: tensor(1.00000e-04 *\n", - " 2.1646)\n", - "h o l a \n", - "6000 loss: tensor(1.00000e-04 *\n", - " 2.0590)\n", - "h o l a \n", - "6100 loss: tensor(1.00000e-04 *\n", - " 1.9585)\n", - "h o l a \n", - "6200 loss: tensor(1.00000e-04 *\n", - " 1.8627)\n", - "h o l a \n", - "6300 loss: tensor(1.00000e-04 *\n", - " 1.7699)\n", - "h o l a \n", - "6400 loss: tensor(1.00000e-04 *\n", - " 1.6750)\n", - "h o l a \n", - "6500 loss: tensor(1.00000e-04 *\n", - " 1.5913)\n", - "h o l a \n", - "6600 loss: tensor(1.00000e-04 *\n", - " 1.5129)\n", - "h o l a \n", - "6700 loss: tensor(1.00000e-04 *\n", - " 1.4385)\n", - "h o l a \n", - "6800 loss: tensor(1.00000e-04 *\n", - " 1.3679)\n", - "h o l a \n", - "6900 loss: tensor(1.00000e-04 *\n", - " 1.3008)\n", - "h o l a \n", - "7000 loss: tensor(1.00000e-04 *\n", - " 1.2371)\n", - "h o l a \n", - "7100 loss: tensor(1.00000e-04 *\n", - " 1.1766)\n", - "h o l a \n", - "7200 loss: tensor(1.00000e-04 *\n", - " 1.1191)\n", - "h o l a \n", - "7300 loss: tensor(1.00000e-04 *\n", - " 1.0644)\n", - "h o l a \n", - "7400 loss: tensor(1.00000e-04 *\n", - " 1.0124)\n", - "h o l a \n", - "7500 loss: tensor(1.00000e-05 *\n", - " 9.6306)\n", - "h o l a \n", - "7600 loss: tensor(1.00000e-05 *\n", - " 9.1610)\n", - "h o l a \n", - "7700 loss: tensor(1.00000e-05 *\n", - " 8.7147)\n", - "h o l a \n", - "7800 loss: tensor(1.00000e-05 *\n", - " 8.2903)\n", - "h o l a \n", - "7900 loss: tensor(1.00000e-05 *\n", - " 7.8869)\n", - "h o l a \n", - "8000 loss: tensor(1.00000e-05 *\n", - " 7.5033)\n", - "h o l a \n", - "8100 loss: tensor(1.00000e-05 *\n", - " 7.1385)\n", - "h o l a \n", - "8200 loss: tensor(1.00000e-05 *\n", - " 6.7916)\n", - "h o l a \n", - "8300 loss: tensor(1.00000e-05 *\n", - " 6.4617)\n", - "h o l a \n", - "8400 loss: tensor(1.00000e-05 *\n", - " 6.1480)\n", - "h o l a \n", - "8500 loss: tensor(1.00000e-05 *\n", - " 5.8496)\n", - "h o l a \n", - "8600 loss: tensor(1.00000e-05 *\n", - " 5.5658)\n", - "h o l a \n", - "8700 loss: tensor(1.00000e-05 *\n", - " 5.2959)\n", - "h o l a \n", - "8800 loss: tensor(1.00000e-05 *\n", - " 5.0391)\n", - "h o l a \n", - "8900 loss: tensor(1.00000e-05 *\n", - " 4.7950)\n", - "h o l a \n", - "9000 loss: tensor(1.00000e-05 *\n", - " 4.5626)\n", - "h o l a \n", - "9100 loss: tensor(1.00000e-05 *\n", - " 4.3417)\n", - "h o l a \n", - "9200 loss: tensor(1.00000e-05 *\n", - " 4.1314)\n", - "h o l a \n", - "9300 loss: tensor(1.00000e-05 *\n", - " 3.9315)\n", - "h o l a \n", - "9400 loss: tensor(1.00000e-05 *\n", - " 3.7412)\n", - "h o l a \n", - "9500 loss: tensor(1.00000e-05 *\n", - " 3.5603)\n", - "h o l a \n", - "9600 loss: tensor(1.00000e-05 *\n", - " 3.3881)\n", - "h o l a \n", - "9700 loss: tensor(1.00000e-05 *\n", - " 3.2243)\n", - "h o l a \n", - "9800 loss: tensor(1.00000e-05 *\n", - " 3.0684)\n", - "h o l a \n", - "9900 loss: tensor(1.00000e-05 *\n", - " 2.9201)\n", - "h o l a \n" - ] - } - ], - "source": [ - "log = []\n", - "for i in range(10000):\n", - " prediction = model(x, y)\n", - " loss = criterion(prediction, y)\n", - " optimizer.zero_grad()\n", - " loss.backward()\n", - " optimizer.step()\n", - " loss_val = loss.data[0]\n", - " log.append(loss_val)\n", - " if i % 100 == 0:\n", - " print(\"%d loss: %s\" % (i, loss_val))\n", - " _, top1 = prediction.data.topk(1, 1)\n", - " for c in top1.squeeze().numpy().tolist():\n", - " print(chr(c), end=\" \")\n", - " print()" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VYWd9/HPLzcLSUhCIBsEMKIIQkTBWLcOLlVBa5Wx\n09qO9vGZ+gydeWba2mU6Onamr5l5TV+d2s3ajlOqVtvpaFurLU8X0FrcR2tAUHYUkB2CLGFNSO7v\n+eOe0BgScwi599zL+b5fva97z7nn3vP1NOGbs5u7IyIi8ZUXdQAREYmWikBEJOZUBCIiMaciEBGJ\nORWBiEjMqQhERGJORSAiEnMqAhGRmFMRiIjEXH7UAcKoqqryhoaGqGOIiOSUhQsX7nT36v6my4ki\naGhooLm5OeoYIiI5xczeCjOdNg2JiMScikBEJOZUBCIiMaciEBGJORWBiEjMqQhERGJORSAiEnMq\nAhGRmFMRiIjEXNqKwMweMLMdZra0l/c+b2ZuZlXpmr+IiISTzjWCB4GZPUea2RjgSmBDGuctIiIh\npa0I3P1ZYFcvb30T+ALg6Zq3iIiEl9F9BGZ2HbDZ3Zdkcr4iItK3jF191MxKgDuBq0JOPxuYDTB2\n7Ng0JhMRibdMrhGcBpwKLDGz9cBoYJGZ1fU2sbvPcfcmd2+qru73ctoiIjJAGVsjcPfXgZqu4aAM\nmtx9Z6YyiIjIsdJ5+OjDwP8AE8xsk5ndmq55iYjIwKVtjcDdP9rP+w3pmreIiISnM4tFRGJORSAi\nEnMqAhGRmFMRiIjEnIpARCTmVAQiIjGnIhARiTkVgYhIzKkIRERiTkUgIhJzKgIRkZhTEYiIxJyK\nQEQk5lQEIiIxpyIQEYk5FYGISMypCEREYk5FICIScyoCEZGYUxGIiMRc2orAzB4wsx1mtrTbuLvM\nbKWZvWZmj5vZsHTNX0REwknnGsGDwMwe454EGt19CrAauCON8xcRkRDSVgTu/iywq8e4J9y9Ixh8\nCRidrvmLiEg4Ue4j+Djw2wjnLyIiRFQEZnYn0AH8+F2mmW1mzWbW3NLSkrlwIiIxk/EiMLNbgGuB\nm9zd+5rO3ee4e5O7N1VXV2cuoIhIzORncmZmNhP4e+ASdz+YyXmLiEjv0nn46MPA/wATzGyTmd0K\nfAcoA540s8Vm9p/pmr+IiISTtjUCd/9oL6PvT9f8RERkYHRmsYhIzKkIRERiTkUgIhJzKgIRkZhT\nEYiIxJyKQEQk5lQEIiIxpyIQEYk5FYGISMypCEREYk5FICIScyoCEZGYUxGIiMScikBEJOZUBCIi\nMaciEBGJORWBiEjM9VsEZvZpMyu3lPvNbJGZXZWJcCIikn5h1gg+7u6twFVANfAXwFfSmkpERDIm\nTBFY8HwN8AN3X9JtnIiI5LgwRbDQzJ4gVQTzzawMSPb3ITN7wMx2mNnSbuOGm9mTZrYmeK4ceHQR\nERkMYYrgVuB24Dx3PwgUkNo81J8HgZk9xt0OPOXu44GngmEREYlQmCK4EFjl7nvM7Gbgi8De/j7k\n7s8Cu3qMvh54KHj9EDDrOLKKiEgahCmCe4GDZnY28AXgLeCHA5xfrbtvBQieawb4PSIiMkjCFEGH\nuzupv+bvdve7gbL0xgIzm21mzWbWvHXHTlIRRERksIUpgn1mdgfwMeDXZpYgtZ9gILab2UiA4HlH\nXxO6+xx3b3L3pp1HCrj0a09z1/yVbN17aICzFhGR3oQpghuBNlLnE2wD6oG7Bji/ucAtwetbgF+G\n+VD9sGLGDi/h3qff5E/+fQGf+cli1u08MMAIIiLSnYXZ5GJmtcB5weAf3L3Pv+S7feZh4FKgCtgO\nfAn4BfBTYCywAfiQu/fcoXyMpqYmb25uZuOug/zghfU88soG2jqS3HjeGD5zxRlUlxX1+98gIhI3\nZrbQ3Zv6na6/IjCzD5NaA3ia1IlkfwL8nbs/Ogg5Q+kqgi4t+9r4zu/X8N9/2EBxQYI7rjmTG5vG\nkJen89xERLoMZhEsAa7sWgsws2rgd+5+9qAkDaFnEXR5Y8d+7nz8dV5et4umUyr58g1ncUZt2vdj\ni4jkhLBFEGYfQV6PTUFvh/xc2p1eM5RHZl/AXX82hTdb9nPN3c/xtfmraO/o98RnEREJ5IeYZp6Z\nzQceDoZvBH6TvkjHx8z4UNMY3ndmLf/26xV8Z8EbPL16B9+6cSqn1wyNOp6ISNbr9y97d/87YA4w\nBTgbmOPuf5/uYMdreGkhX//w2XzvY+eyefchrr3nOR5btCnqWCIiWS/MGgHu/nPg52nOMihmTK5j\n6phhfPLhV/nsT5fQ/NZuvvSBSRTlJ6KOJiKSlfpcIzCzfWbW2stjn5m1ZjLk8aopH8KP/8/5/NUl\np/HfL2/gY/f9gd0H2qOOJSKSlfosAncvc/fyXh5l7l6eyZADkZ/I4/arJ3LPR6eyeNMebrj3Rdbr\nJDQRkWNkxdE/6fSBs0fx8F+ez56D7Xz4e//Dmy37o44kIpJVTvoiADj3lOH85BMXknTnxu+9xJrt\n+6KOJCKSNWJRBABn1JbxyOwLMIOb73+ZbXsPRx1JRCQr9FsEZva3J8stJU+vKeNHt76HA22d3PrQ\nKxxo64g6kohI5MKsEdQBr5jZT81sppnl9AV9JtaVc8+fT2XF1lZu+8likknd50BE4i3MCWVfBMYD\n9wP/G1hjZl82s9PSnC1tLptQw53vn8STy7fzXy+/FXUcEZFIhdpHENyhbFvw6AAqgUfN7KtpzJZW\nH7+4gelnVPPl36xgrY4kEpEYC7OP4FNmthD4KvACcJa7/zVwLvDBNOdLGzPjqx+cQmEij8/9bAkd\nnbpQnYjEU5g1girgBnef4e4/c/cjAO6eBK5Na7o0q6sYwr/OauTVDXt45JWNUccREYlEmH0E/wSM\nCNYMPmlm07q9tyKt6TLgurNH0XRKJXc/tYaD7TqKSETiJ8ymoX8EHgJGkFo7+IGZfTHdwTLFzLj9\n6om07GvjgefXRR1HRCTjwmwa+nPgPHf/krt/CbgAuCm9sTKrqWE4V06q5XvPrGWXLk4nIjETpgjW\nA0O6DRcBb6YlTYS+MGMCB9o7uO+5tVFHERHJqDBF0AYsM7MHzewHwFJgv5l928y+PZCZmtlnzGyZ\nmS01s4fNbEj/n0qv8bVlXDmplof/sIHDRzqjjiMikjFhiuBx4B+ABcDTwJ3Ab4GFweO4mFk98Cmg\nyd0bgQTwkeP9nnS45aIGdh88wtwlW6KOIiKSMf3eoczdHzKzQuCMYNSqrkNIT3C+xWZ2BCgBsuJf\n3gvHjWBCbRkPvbieD507mhy/moaISChhjhq6FFgDfBf4D2C1mU0f6AzdfTPwNWADsBXY6+5PDPT7\nBpOZcctFDSzb0krzW7ujjiMikhFhNg19HbjK3S9x9+nADOCbA51hcCXT64FTgVFAqZnd3Mt0s82s\n2cyaW1paBjq74zZr6ijKh+Tz0IvrMzZPEZEohSmCAndf1TXg7quBghOY5xXAOndvCTYxPQZc1HMi\nd5/j7k3u3lRdXX0Cszs+JYX5zJpaz5PLt7Pv8IluARMRyX5hiqDZzO43s0uDx/cZwE7ibjYAF5hZ\nSXBJ6/cBWXWG8qyp9bR1JJm3dFvUUURE0i5MEfw1sIzUkT6fBpYDfzXQGbr7y8CjwCLg9SDDnIF+\nXzpMHTOMU0aU8IvFm6OOIiKSdu961JCZJYD73f1m4BuDNdPgDOUvDdb3DTYz4/pz6rnn92vY3nqY\n2vLIT3MQEUmbd10jcPdOoDo4fDRWZp0zCneYuzgrjmwVEUmbfs8jIHWJiRfMbC5woGukuw/aGkI2\nGlc9lCmjK/jF4s385fRxUccREUmbMPsItgC/CqYtCx5D0xkqW1x39iiWbWll/c4D/U8sIpKjwhTB\ncnf/5+4Psuwon3SZMbkOgPnLdPSQiJy8whTBHSHHnXTGDC+hsb6ceSoCETmJ9bmPwMyuBq4B6ntc\nZbSc1A3sY+HqxpHcNX8V2/Yepq5CRw+JyMnn3dYItgDNwGH+eKXRhcBcUpeZiAVtHhKRk12fawTu\nvgRYYmb/PQhXG81Zp9cM5fSaocxbuo1bLmqIOo6IyKALs4/gPWb2pJmtNrO1ZrbOzGJ1G6+Zk+t4\ned3buo2liJyUwhTB/aTOKn4vcB7QFDzHxszGOpIOv1u+PeooIiKDLkwR7HX337r7Dnd/u+uR9mRZ\nZPKockZXFuvoIRE5KYUpggVmdpeZXWhm07oeaU+WRcyMmZPreH7NTl2aWkROOmEuMXF+8NzUbZwD\nlw9+nOw1s7GO+55fx+9X7uD6c+qjjiMiMmjC3LP4skwEyXbTxlZSXVbE/GXbVAQiclIJc8/i2uDG\nNL8NhieZ2a3pj5Zd8vKMGZNrWbCyhcNHOqOOIyIyaMLsI3gQmE/q/sIAq4Hb0hUom82cPJJDRzp5\nZnXm7qEsIpJuYYqgyt1/CiQB3L0DiOWfxOePG05FcQHzdQtLETmJhCmCA2Y2gtQOYszsAmBvWlNl\nqYJEHlecWcvvVmynvSMZdRwRkUERpgg+S+r6QqeZ2QvAD4FPpjVVFru6sY7Wwx28tDZWp1KIyEks\nzFFDi8zsEmACYMCqOF976L3jqygpTDBv2Tamn1EddRwRkRMWZo0Ad+9w92XuvnQwSsDMhpnZo2a2\n0sxWmNmFJ/qdmTKkIMFlE2t4Ytk2OpMedRwRkRMWqgjS4G5gnrtPBM4mx+54NnNyHTv3t7Pwrd1R\nRxEROWEZLwIzKwemk7qYHe7e7u57Mp3jRFw2sYbC/Dzm6eghETkJhDmh7GIzKw1e32xm3zCzU05g\nnuOAFuAHZvaqmd3X9f25YmhRPtPHVzF/2TbctXlIRHJbmDWCe4GDZnY28AXgLVJHDg1UPjANuNfd\npwIHgNt7TmRms82s2cyaW1qy7wSuGZPr2LznEK9vjuWRtCJyEglTBB2e+rP3euBud78bKDuBeW4C\nNrn7y8Hwo6SK4R3cfY67N7l7U3V19h2dc8WZtSTyTJuHRCTnhSmCfWZ2B3Az8GszSwAFA52hu28D\nNprZhGDU+4DlA/2+qFSWFnLhuBHMW6rNQyKS28IUwY1AG3Br8I94PXDXCc73k8CPzew14Bzgyyf4\nfZGY0VjH2p0HeGPH/qijiIgMWKg1AlKbhJ4zszNI/cP98InM1N0XB5t9prj7LHfPyeMwZ0yqxQxt\nHhKRnBamCJ4FisysHngK+AtSVySNvZryIUwbW8lvVQQiksPCFIG5+0HgBuAed/9TYHJ6Y+WOqxvr\nWL61lQ1vH4w6iojIgIQqguASEDcBvw7GJdIXKbfMmFwHwHzd2F5EclSYIrgNuAN43N2Xmdk4YEF6\nY+WOMcNLmDyqnHkqAhHJUf0Wgbs/4+7XAf9hZkPdfa27fyoD2XLGzMl1LHxrNztaD0cdRUTkuIW5\nxMRZZvYqsBRYbmYLzUz7CLqZ2ajNQyKSu8JsGvoe8Fl3P8XdxwKfA76f3li5ZXxtGadVl2rzkIjk\npDBFUOruR/cJuPvTQE5dJC4TZjbW8dLaXew52B51FBGR4xKmCNaa2T+aWUPw+CKwLt3Bcs0VZ9bS\nmXSeXbMz6igiIsclTBF8HKgGHgseVaROKpNupowexvDSQhas3BF1FBGR4/Ku9ywOLjD3DzpKqH+J\nPOOSM6p5ZnULnUknkWdRRxIRCeVd1wjcvRM4N0NZct6lE6rZdaCd1zbl1A3XRCTm3nWNIPCqmc0F\nfkbqJjIAuPtjaUuVo6aPrybPYMGqFqaOrYw6johIKGH2EQwH3gYuBz4QPK5NZ6hcVVlayNSxlTy9\nSvsJRCR39LtG4O7aMXwcLptQzdeeWE3Lvjaqy4qijiMi0q8wZxY/ZGbDug1XmtkD6Y2Vuy6dUAPA\nM6uz7z7LIiK9CbNpaIq7H937GdxEZmr6IuW2yaPKqSkrYoE2D4lIjghTBHlmdnTPp5kNJ9xO5lgy\nMy6dUM2zq1vo6ExGHUdEpF9hiuDrwItm9q9m9i/Ai8BX0xsrt102oYZ9hztYtEGHkYpI9gtzGeof\nAh8EtgMtwA3u/qN0B8tl7x1fRX6eafOQiOSEMGsEuPtyd/+Ou9/j7ssHY8ZmljCzV83sV4Pxfdmk\nbEgB5zUM1+UmRCQnhCqCNPk0sCLC+afVZROrWbltH1v3Hoo6iojIu4qkCMxsNPB+4L4o5p8JlwWH\nkS5YqcNIRSS7RbVG8C3gC8BJe1jN6TVDGV1ZzFMrtkcdRUTkXWW8CMzsWmCHuy/sZ7rZZtZsZs0t\nLbn3V7WZcdWkOp57Yyf72zqijiMi0qco1gguBq4zs/XAI8DlZvZfPSdy9znu3uTuTdXV1ZnOOChm\nTK6lvSPJM6tyr8hEJD4yXgTufoe7j3b3BuAjwO/d/eZM58iEpobhjCgt1E3tRSSrRXnU0EkvkWdc\ncWYtC1buoL3jpN0dIiI5LtIicPen3f2kvqT1VZNr2dfWwYtv6l7GIpKdtEaQZhefXkVpYYL5y3T0\nkIhkJxVBmg0pSHDphBqeXL6dzqRHHUdE5Bgqggy4anItO/e38eqG3VFHERE5hoogAy6bWENBwnT0\nkIhkJRVBBpQPKeCi06qYv2w77to8JCLZRUWQITMm17Fh10FWbtsXdRQRkXdQEWTIlZNqMUObh0Qk\n66gIMqS6rIhzx1bqMFIRyToqggya2VjHiq2trG3ZH3UUEZGjVAQZdO2UUZjBLxdviTqKiMhRKoIM\nqqsYwoXjRvDLxZt19JCIZA0VQYbNOqee9W8fZPHGPVFHEREBVAQZN/OsOgrz87R5SESyhoogw8qH\nFPC+iTX86rUtdHTq0tQiEj0VQQRmTa1n5/52ntady0QkC6gIInD5xBpGVgzhgRfWRR1FRERFEIWC\nRB63XNTAi2++zbIte6OOIyIxpyKIyEfPG0txQYIHnl8fdRQRiTkVQUQqSgr4cNNo5i7ZzI7Ww1HH\nEZEYUxFE6C8uPpWOpHPf89pXICLRyXgRmNkYM1tgZivMbJmZfTrTGbJFQ1UpH5w2mgdfWM/GXQej\njiMiMRXFGkEH8Dl3PxO4APgbM5sUQY6s8PmrJpDIM74yb2XUUUQkpjJeBO6+1d0XBa/3ASuA+kzn\nyBZ1FUP4y+nj+PVrW1n41q6o44hIDEW6j8DMGoCpwMtR5ojaJ6aPo6asiH/8xTLaOjqjjiMiMRNZ\nEZjZUODnwG3u3trL+7PNrNnMmltaTu4zcEuL8vm3Pz2L5Vtb+foTq6OOIyIxE0kRmFkBqRL4sbs/\n1ts07j7H3Zvcvam6ujqzASNw5aRabjp/LHOeXcvza3ZGHUdEYiSKo4YMuB9Y4e7fyPT8s9kX3z+J\n02uGcttPFrN+54Go44hITESxRnAx8DHgcjNbHDyuiSBH1ikuTHDvTdPoTCa56b6X2bznUNSRRCQG\nojhq6Hl3N3ef4u7nBI/fZDpHthpfW8aPbj2f1sNHuOn7L/HGDt3fWETSS2cWZ6HG+goe+vh72Hvo\nCB+453ke+cMG3dpSRNJGRZClpo2tZN5t0zn3lEpuf+x1brj3RZ5asV2FICKDznLhH5ampiZvbm6O\nOkYkkknnJ80b+e6CN9i0+xDjqkqZNbWeWefUM3ZESdTxRCSLmdlCd2/qdzoVQW440pnk/y3Zwk+b\nN/LS2tQZyE2nVDJraj3vP2sklaWFEScUkWyjIjiJbd5ziLmLt/D4q5tYvX0/BQnj0gk13HJhAxef\nPoLUEboiEncqghhwd5ZvbeUXr27m8Ve3sHN/G2fVV/CJS8ZxdeNIEnkqBJE4UxHETFtHJ48v2syc\nZ9eyducBxg4v4ROXjOND546hMF/HBIjEkYogpjqTzpPLt3PvM2+yZOMe6ocV838vO02FIBJDKoKY\nc3eeW7OTb/5uNa9uSBXC31x2Oh88t56i/ETU8UQkA1QEAqQK4dk1O/nmk6tZvHEP1WVF3HLhKXz0\nPWMZMbQo6ngikkYqAnkHd+eFN97m+8+t5ZnVLRQkjKsm1XHDtHouPr2KIQVaSxA52YQtgvxMhJHo\nmRnvHV/Fe8dXsWb7Ph55ZSOPLdrEr1/fSnFBgulnVHHlpDreN7FG5ySIxIzWCGKsvSPJS2vf5onl\n2/jd8h1saz2MGUysK+e8hkqaGoZzXkMlIyuKo44qIgOgTUNyXNyd1zfv5fcrd9C8fjeLNuzmYHvq\ntpm15UU0jqpgcn0FjaPKaayvYGTFEJ24JpLltGlIjouZMWX0MKaMHgZAR2eSFVv38cr6Xby+eS9L\nN+9lwaodJIO/GypLCmisr2DyqAoa68tpHFXB2OEl5OkkNpGcoyKQXuUn8jhrdAVnja44Ou5Qeycr\ntrWybPNelm5uZdnWvdz//FqOdKbaYWhRPpNGlnPmyDImjixnYl0ZE+rKKCnUj5lINtNvqIRWXJhg\n2thKpo2tPDquvSPJ6u37WLYlVQ4rtrby80Wb2d/2FgBm0DCilIl1ZUysS5XEmSPLGV1ZrE1LIllC\nRSAnpDA/j8b6ChrrK7jxvNS4ZNLZvOcQK7a2smLrPlZua2Xltn3MW7aNrl1SQ4vyOaN2KKdWDWVc\ndSmnVpXSMKKUhqoSrUGIZJh2FkvGHGjrYPX2fazcto8VW1tZtW0f698+wPbWtndMN7JiCGOGlzB6\nWDH1lcWMGlZMffC6flixznkQCUk7iyXrlBblM3VsJVO7bVqCVEGsf/sA63YeYF1L6nnj7oO8tPZt\ntrUePrqDukvV0EJGDSumtnwI1WVFVA0torqsiOqhhUeHq4YWUVqkH2+RMCL5TTGzmcDdQAK4z92/\nEkUOyQ6lRflMHpU6AqmnI51JtrceZvPuQ2zec4gte1LPm3YfYuOugyx6aze7DrbT24ptSWGCypJC\nyosLqCjOp6K44JhHeXEBZUPyKSnMp6QwQUlhPqVFiaPDBQldqE9OfhkvAjNLAN8FrgQ2Aa+Y2Vx3\nX57pLJL9ChJ5jK4sYXRl37fl7OhMsutAOy3722jZ18bO/e3Bcxu7D7bTeugIew8dYd3OA+wNXh8+\nkgw1/8JEHiVFCUoL8ykuTFBckKAwP4/CRB5FBV3PiXcO56cehfl5FOUngufUcH4ij/w8I5FnR58L\nEnnHNZyfl0d+IvU6z7qe0c53GbAo1gjeA7zh7msBzOwR4HpARSADkp/Io6Z8CDXlQ0J/pq2jk72H\njtB66AgH2jo50N7BwbZODh7p5GBbBwfaU8/vGG7v4PCRJO0dqcfuA+20Ba/bOpK0dyZpO9KZeu5I\n9rqWkm55Bnlm5AXlkGepsjDjaHF0lUaeQcIs9TovNW0imLbfz+UZhhH8DzMwUtN3fw2pz/xxmncO\n0/WZPr6DXj7TfZjun+nlO/r8fv5YnMeO7/b9wTyCbzo6fbfR3YZ7f79rRNjpuy+37kJ/rsf7YURR\nBPXAxm7Dm4DzI8ghMVaUn6CmLEFNWfjyOB7uTkfSjxZFqiw66Ug6nUnnSGeSzqT3PtzpdCST3d5z\nOnsZPtLpuDtJh2Tw7J6aput11/jOZM9pnWSyx+e6ve/B+51+7DySQQ7HcQcHPAlO8o/D7sFzaph3\nDAef6zYtPd/r9h30+p1//A76eo+u94/9Tvf+vx+6ff/R/2O7nnp//+h/y9HhE/1JyowoiqC3njpm\ncZnZbGB2MNhmZkvTmmrwVQE7ow5xHHItLyhzJuRaXsi9zOnMe0qYiaIogk3AmG7Do4EtPSdy9znA\nHAAzaw5zCFQ2ybXMuZYXlDkTci0v5F7mbMgbxSERrwDjzexUMysEPgLMjSCHiIgQwRqBu3eY2d8C\n80kdPvqAuy/LdA4REUmJ5DwCd/8N8Jvj+MicdGVJo1zLnGt5QZkzIdfyQu5ljjxvTlxiQkRE0ken\nTYqIxFxWF4GZzTSzVWb2hpndHnWe3pjZGDNbYGYrzGyZmX06GD/czJ40szXBc2V/35VJZpYws1fN\n7FfB8Klm9nKQ9yfBjvysYWbDzOxRM1sZLOsLc2AZfyb4mVhqZg+b2ZBsW85m9oCZ7eh+eHZfy9VS\nvh38Pr5mZtOyJO9dwc/Fa2b2uJkN6/beHUHeVWY2I9N5+8rc7b3Pm5mbWVUwHMkyztoi6HYpiquB\nScBHzWxStKl61QF8zt3PBC4A/ibIeTvwlLuPB54KhrPJp4EV3Yb/HfhmkHc3cGskqfp2NzDP3ScC\nZ5PKnrXL2MzqgU8BTe7eSOrAiI+Qfcv5QWBmj3F9LdergfHBYzZwb4Yydvcgx+Z9Emh09ynAauAO\ngOD38CPA5OAz/xH8u5JpD3JsZsxsDKlL7WzoNjqSZZy1RUC3S1G4ezvQdSmKrOLuW919UfB6H6l/\noOpJZX0omOwhYFY0CY9lZqOB9wP3BcMGXA48GkySbXnLgenA/QDu3u7ue8jiZRzIB4rNLB8oAbaS\nZcvZ3Z8FdvUY3ddyvR74oae8BAwzs5GZSZrSW153f8LdO4LBl0idmwSpvI+4e5u7rwPeIPXvSkb1\nsYwBvgl8gXeeUBvJMs7mIujtUhT1EWUJxcwagKnAy0Ctu2+FVFkANdElO8a3SP0Adl15bQSwp9sv\nU7Yt63FAC/CDYHPWfWZWShYvY3ffDHyN1F97W4G9wEKyezl36Wu55sLv5MeB3wavszavmV0HbHb3\nJT3eiiRzNhdBqEtRZAszGwr8HLjN3VujztMXM7sW2OHuC7uP7mXSbFrW+cA04F53nwocIIs2A/Um\n2K5+PXAqMAooJbXa31M2Lef+ZPXPiZndSWpT7Y+7RvUyWeR5zawEuBP4p97e7mVc2jNncxGEuhRF\nNjCzAlIl8GN3fywYvb1rlS543hFVvh4uBq4zs/WkNrddTmoNYViwCQOyb1lvAja5+8vB8KOkiiFb\nlzHAFcA6d29x9yPAY8BFZPdy7tLXcs3a30kzuwW4FrjJ/3hMfLbmPY3UHwhLgt/D0cAiM6sjoszZ\nXAQ5cSmKYPv6/cAKd/9Gt7fmArcEr28BfpnpbL1x9zvcfbS7N5Bapr9395uABcCfBZNlTV4Ad98G\nbDSzCcGo95G6bHlWLuPABuACMysJfka6Mmftcu6mr+U6F/hfwZEtFwB7uzYhRclSN7r6e+A6dz/Y\n7a25wEeIRdK1AAAA60lEQVTMrMjMTiW1A/YPUWTszt1fd/cad28Ifg83AdOCn/NolrEHl5nNxgdw\nDamjAN4E7ow6Tx8Z30tq1e01YHHwuIbUdvengDXB8/Cos/aS/VLgV8HrcaR+Sd4AfgYURZ2vR9Zz\ngOZgOf8CqMz2ZQz8M7ASWAr8CCjKtuUMPExqH8YRUv8g3drXciW12eK7we/j66SOiMqGvG+Q2q7e\n9fv3n92mvzPIuwq4OluWcY/31wNVUS5jnVksIhJz2bxpSEREMkBFICIScyoCEZGYUxGIiMScikBE\nJOZUBCIiMaciEBGJORWBiEjM/X/UJ4l+Jwd+SQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.plot(log)\n", - "plt.xlim(0,150)\n", - "plt.ylim(0,15)\n", - "plt.ylabel('cross entropy loss')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([3, 5]) torch.Size([3])\n" - ] - } - ], - "source": [ - "# l = nn.CrossEntropyLoss()\n", - "# i = th.randn(3, 5, requires_grad=True)\n", - "# t = th.empty(3, dtype=th.long).random_(5)\n", - "# print(i.shape, t.shape)\n", - "# o = l(i, t)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.ipynb" "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.ipynb" new file mode 100644 index 0000000..a9122c2 --- /dev/null +++ "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.ipynb" @@ -0,0 +1,287 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 프로젝트 1. 영화 리뷰 감정 분석\n", + "**RNN 을 이용해 IMDB 데이터를 가지고 텍스트 감정분석을 해 봅시다.**\n", + "\n", + "데이터의 순서정보를 학습한다는 점에서 RNN은 CIFAR10 같이 정적인 고정된 형태의 데이터 보다는 동영상, 자연어, 주가 변동 데이터 등의 동적인 시계열 데이터를 이용할때 퍼포먼스가 극대화됩니다.\n", + "이번 프로젝트를 통해 가장 기본적인 자연어 처리(Natural Language Processing)작업이라고 할 수 있는 '텍스트 감정분석'(Text Sentiment Analysis)모델을 RNN을 이용해 구현하고 학습시켜 보겠습니다.\n", + "\n", + "이번 책에서 처음으로 접하는 텍스트 형태의 데이터셋인 IMDB 데이터셋은 50,000건의 영화 리뷰로 이루어져 있습니다.\n", + "각 리뷰는 다수의 영어 문장들로 이루어져 있으며, 평점이 7점 이상의 긍정적인 영화 리뷰는 2로, 평점이 4점 이하인 부정적인 영화 리뷰는 1로 레이블링 되어 있습니다. 영화 리뷰 텍스트를 RNN 에 입력시켜 영화평의 전체 내용을 압축하고, 이렇게 압축된 리뷰가 긍정적인지 부정적인지 판단해주는 간단한 분류 모델을 만드는 것이 이번 프로젝트의 목표입니다." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "import argparse\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torchtext import data, datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cpu\n" + ] + } + ], + "source": [ + "# get hyper parameters\n", + "BATCH_SIZE = 64\n", + "lr = 0.001\n", + "EPOCHS = 40\n", + "torch.manual_seed(42)\n", + "USE_CUDA = torch.cuda.is_available()\n", + "DEVICE = torch.device(\"cuda\" if USE_CUDA else \"cpu\")\n", + "print(DEVICE)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Loading data...\n" + ] + } + ], + "source": [ + "# load data\n", + "print(\"\\nLoading data...\")\n", + "TEXT = data.Field(sequential=True, batch_first=True, lower=True)\n", + "LABEL = data.Field(sequential=False, batch_first=True)\n", + "train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)\n", + "TEXT.build_vocab(train_data, min_freq=5)\n", + "LABEL.build_vocab(train_data)\n", + "\n", + "train_iter, test_iter = data.BucketIterator.splits(\n", + " (train_data, test_data), batch_size=BATCH_SIZE,\n", + " shuffle=True, repeat=False)\n", + "\n", + "\n", + "vocab_size = len(TEXT.vocab)\n", + "n_classes = 2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[TRAIN]: 391 \t [TEST]: 391 \t [VOCAB] 46159 \t [CLASSES] 2\n" + ] + } + ], + "source": [ + "print(\"[TRAIN]: %d \\t [TEST]: %d \\t [VOCAB] %d \\t [CLASSES] %d\"\n", + " % (len(train_iter),len(test_iter), vocab_size, n_classes))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "class BasicGRU(nn.Module):\n", + " def __init__(self, n_layers, hidden_dim, n_vocab, embed_dim, n_classes, dropout_p=0.2):\n", + " super(BasicGRU, self).__init__()\n", + " print(\"Building Basic GRU model...\")\n", + " self.n_layers = n_layers\n", + " self.embed = nn.Embedding(n_vocab, embed_dim)\n", + " self.hidden_dim = hidden_dim\n", + " self.dropout = nn.Dropout(dropout_p)\n", + " self.gru = nn.GRU(embed_dim, self.hidden_dim,\n", + " num_layers=self.n_layers,\n", + " dropout=dropout_p,\n", + " batch_first=True)\n", + " self.out = nn.Linear(self.hidden_dim, n_classes)\n", + "\n", + " def forward(self, x):\n", + " x = self.embed(x)\n", + " h_0 = self._init_state(batch_size=x.size(0))\n", + " x, _ = self.gru(x, h_0) # [i, b, h]\n", + " h_t = x[:,-1,:]\n", + " self.dropout(h_t)\n", + " logit = self.out(h_t) # [b, h] -> [b, o]\n", + " return logit\n", + " \n", + " def _init_state(self, batch_size=1):\n", + " weight = next(self.parameters()).data\n", + " return weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def train(model, optimizer, train_iter):\n", + " model.train()\n", + " for b, batch in enumerate(train_iter):\n", + " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", + " y.data.sub_(1) # index align\n", + " optimizer.zero_grad()\n", + "\n", + " logit = model(x)\n", + " loss = F.cross_entropy(logit, y)\n", + " loss.backward()\n", + " optimizer.step()\n", + " if b % 100 == 0:\n", + " corrects = (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", + " accuracy = 100.0 * corrects / batch.batch_size\n", + " sys.stdout.write(\n", + " '\\rBatch[%d] - loss: %.6f acc: %.2f' %\n", + " (b, loss.item(), accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def evaluate(model, val_iter):\n", + " \"\"\"evaluate model\"\"\"\n", + " model.eval()\n", + " corrects, avg_loss = 0, 0\n", + " for batch in val_iter:\n", + " x, y = batch.text.to(DEVICE), batch.label.to(DEVICE)\n", + " y.data.sub_(1) # index align\n", + " logit = model(x)\n", + " loss = F.cross_entropy(logit, y, size_average=False)\n", + " avg_loss += loss.item()\n", + " corrects += (logit.max(1)[1].view(y.size()).data == y.data).sum()\n", + " size = len(val_iter.dataset)\n", + " avg_loss = avg_loss / size\n", + " accuracy = 100.0 * corrects / size\n", + " return avg_loss, accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Building Basic GRU model...\n", + "BasicGRU(\n", + " (embed): Embedding(46159, 128)\n", + " (dropout): Dropout(p=0.5)\n", + " (gru): GRU(128, 256, batch_first=True, dropout=0.5)\n", + " (out): Linear(in_features=256, out_features=2, bias=True)\n", + ")\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/rnn.py:46: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.5 and num_layers=1\n", + " \"num_layers={}\".format(dropout, num_layers))\n" + ] + } + ], + "source": [ + "model = BasicGRU(1, 256, vocab_size, 128, n_classes, 0.5).to(DEVICE)\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=lr)\n", + "print(model)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "Batch[0] - loss: 0.695334 acc: 48.00" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mbest_val_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mEPOCHS\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_iter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mval_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_accuracy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_iter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(model, optimizer, train_iter)\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mlogit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcross_entropy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m100\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/tensor.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(self, gradient, retain_graph, create_graph)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mproducts\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0mDefaults\u001b[0m \u001b[0mto\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \"\"\"\n\u001b[0;32m--> 102\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mregister_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables)\u001b[0m\n\u001b[1;32m 88\u001b[0m Variable._execution_engine.run_backward(\n\u001b[1;32m 89\u001b[0m \u001b[0mtensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_tensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m allow_unreachable=True) # allow_unreachable flag\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "best_val_loss = None\n", + "for e in range(1, EPOCHS+1):\n", + " train(model, optimizer, train_iter)\n", + " val_loss, val_accuracy = evaluate(model, test_iter)\n", + "\n", + " print(\"\\n[Epoch: %d] val_loss:%5.2f | acc:%5.2f\" % (e, val_loss, val_accuracy))\n", + " \n", + " # Save the model if the validation loss is the best we've seen so far.\n", + " if not best_val_loss or val_loss < best_val_loss:\n", + " if not os.path.isdir(\"snapshot\"):\n", + " os.makedirs(\"snapshot\")\n", + " torch.save(model.state_dict(), './snapshot/txtclassification.pt')\n", + " best_val_loss = val_loss" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/07-RNN-For-Sequential-Data/01-text-classification.py "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.py" similarity index 100% rename from 07-RNN-For-Sequential-Data/01-text-classification.py rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/01-text-classification.py" diff --git "a/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.ipynb" "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.ipynb" new file mode 100644 index 0000000..e4fc37b --- /dev/null +++ "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.ipynb" @@ -0,0 +1,299 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Seq2Seq 기계 번역\n", + "\n", + "이번 프로젝트에선 임의로 Seq2Seq 모델을 아주 간단화 시켰습니다.\n", + "한 언어로 된 문장을 다른 언어로 된 문장으로 번역하는 덩치가 큰 모델이 아닌\n", + "영어 알파벳 문자열(\"hello\")을 스페인어 알파벳 문자열(\"hola\")로 번역하는 Mini Seq2Seq 모델을 같이 구현해 보겠습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.autograd import Variable\n", + "from torch import optim" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello -> [104, 101, 108, 108, 111]\n", + "hola -> [104, 111, 108, 97]\n" + ] + } + ], + "source": [ + "vocab_size = 256 # ascii size\n", + "x_ = list(map(ord, \"hello\")) # convert to list of ascii codes\n", + "y_ = list(map(ord, \"hola\")) # convert to list of ascii codes\n", + "print(\"hello -> \", x_)\n", + "print(\"hola -> \", y_)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "x = torch.LongTensor(x_)\n", + "y = torch.LongTensor(y_)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([104, 101, 108, 108, 111])\n" + ] + } + ], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "class Seq2Seq(nn.Module):\n", + " def __init__(self, vocab_size, hidden_size):\n", + " super(Seq2Seq, self).__init__()\n", + " self.n_layers = 1\n", + " self.hidden_size = hidden_size\n", + " self.embedding = nn.Embedding(vocab_size, hidden_size)\n", + " self.encoder = nn.LSTM(hidden_size, hidden_size)\n", + " self.decoder = nn.LSTM(hidden_size, hidden_size)\n", + " self.project = nn.Linear(hidden_size, vocab_size)\n", + "\n", + " def forward(self, inputs, targets):\n", + " # Encoder inputs and states\n", + " initial_state = self._init_state()\n", + " embedding = self.embedding(inputs).unsqueeze(1)\n", + " # embedding = [seq_len, batch_size, embedding_size]\n", + " \n", + " # Encoder\n", + " encoder_output, encoder_state = self.encoder(embedding, initial_state)\n", + " # encoder_output = [seq_len, batch_size, hidden_size]\n", + " # encoder_state = [n_layers, seq_len, hidden_size]\n", + "\n", + " # Decoder inputs and states\n", + " decoder_state = encoder_state\n", + " decoder_input = Variable(th.LongTensor([[0]]))\n", + " \n", + " # Decoder\n", + " outputs = []\n", + " for i in range(targets.size()[0]): \n", + " decoder_input = self.embedding(decoder_input)\n", + " decoder_output, decoder_state = self.decoder(decoder_input, decoder_state)\n", + " \n", + " # Project to the vocabulary size\n", + " projection = self.project(decoder_output.view(1, -1)) # batch x vocab_size\n", + " \n", + " # Make prediction\n", + " prediction = F.softmax(projection) # batch x vocab_size\n", + " outputs.append(prediction)\n", + " \n", + " # update decoder input\n", + " _, top_i = prediction.data.topk(1) # 1 x 1\n", + " decoder_input = Variable(top_i)\n", + "\n", + " outputs = th.stack(outputs).squeeze()\n", + " return outputs\n", + " \n", + " def _init_state(self, batch_size=1):\n", + " weight = next(self.parameters()).data\n", + " return (\n", + " weight.new(self.n_layers, batch_size, self.hidden_size).zero_(),\n", + " weight.new(self.n_layers, batch_size, self.hidden_size).zero_()\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Seq2Seq(\n", + " (embedding): Embedding(256, 16)\n", + " (encoder): LSTM(16, 16)\n", + " (decoder): LSTM(16, 16)\n", + " (project): Linear(in_features=16, out_features=256, bias=True)\n", + ")\n", + "tensor([[0.0046, 0.0034, 0.0034, ..., 0.0036, 0.0037, 0.0028],\n", + " [0.0038, 0.0039, 0.0033, ..., 0.0038, 0.0039, 0.0030],\n", + " [0.0033, 0.0037, 0.0034, ..., 0.0040, 0.0037, 0.0036],\n", + " [0.0031, 0.0041, 0.0032, ..., 0.0039, 0.0035, 0.0039]],\n", + " grad_fn=)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:36: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n" + ] + } + ], + "source": [ + "seq2seq = Seq2Seq(vocab_size, 16)\n", + "print(seq2seq)\n", + "pred = seq2seq(x, y)\n", + "print(pred)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = nn.CrossEntropyLoss()\n", + "optimizer = th.optim.Adam(seq2seq.parameters(), lr=1e-3)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:36: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 loss: tensor(5.5452)\n", + "Ü M ˜ ˜ \n", + "100 loss: tensor(5.3849)\n", + "h h l l \n", + "200 loss: tensor(4.9332)\n", + "h o l a \n", + "300 loss: tensor(4.7019)\n", + "h o l a \n", + "400 loss: tensor(4.6077)\n", + "h o l a \n", + "500 loss: tensor(4.5834)\n", + "h o l a \n", + "600 loss: tensor(4.5725)\n", + "h o l a \n", + "700 loss: tensor(4.5666)\n", + "h o l a \n", + "800 loss: tensor(4.5631)\n", + "h o l a \n", + "900 loss: tensor(4.5609)\n", + "h o l a \n" + ] + } + ], + "source": [ + "log = []\n", + "for i in range(1000):\n", + " prediction = seq2seq(x, y)\n", + " loss = criterion(prediction, y)\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " loss_val = loss.data\n", + " log.append(loss_val)\n", + " if i % 100 == 0:\n", + " print(\"%d loss: %s\" % (i, loss_val.item()))\n", + " _, top1 = prediction.data.topk(1, 1)\n", + " for c in top1.squeeze().numpy().tolist():\n", + " print(chr(c), end=\" \")\n", + " print()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XPWd7/H3d2ZULMmWLEsWtmVbtiyKKTZGNONCC30h\nIUAgoSWAA0koN9nNhpvkZsuze282m1ASILTQsksKJWEh9GZMMZYBG2PAVW6ALXdbsmVp9L1/zLEs\njMtI1szRaD6v5znPzDnnN6Pv8QF99Dvld8zdERERAYiEXYCIiPQcCgUREWmnUBARkXYKBRERaadQ\nEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXaxsAvorLKyMq+qqgq7DBGRjDJz5szV7l6+t3YZFwpV\nVVXU1dWFXYaISEYxsyXJtNPhIxERaadQEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXYKBRERaZdx\n9yl01byVm3hy1icU5MUozItRmBulIDdGYV40mI9RkJt43zc/Rk5UeSki2SerQuHWlxYk1TZiMKi4\nD/tXFHHE8P4cN6qMsUNLMLMUVykiEi5z97Br6JTa2lrv6h3NbW3O1tY4jc1xmra1srm5laZtcRp3\nel2zuZmla5uY88lGFqzaDMDI8kKunlzNV8dVEo0oHEQks5jZTHev3Vu7rOkpAEQiRkFujILcGJCX\n1GfWNW7j+Q9X8vu3lvDDR2bzpxnL+PXXD2dQcZ/UFisiEgIdON+L/oW5XFA7lL9+9zh+ef4Y5n66\nka/c9gbL1jaFXZqISLdTKCTJzPjqEZU8es14trTEuey+t9nc3Bp2WSIi3Uqh0EkHDerHby8+gvrV\njfzo0dlhlyMi0q0UCl1wbPUAvv+l/Xly9qe89NHKsMsREek2CoUumjKpmpHlhfzL/8yluTUedjki\nIt1CodBFubEIPz1rNPVrmnj8nRVhlyMi0i0UCvvg+P3LOWRIP+6auoh4W2bd7yEisisKhX1gZnx7\nUjWLVjfywoc6tyAimU+hsI9OP2Q/Kvrl8acZy8IuRURknykU9lEsGuHccZW8Mq+BVZu2hl2OiMg+\nUSh0g/OOqCTe5jrhLCIZT6HQDarLixhTWcxT738adikiIvtEodBNTj1kP2Yv38An67eEXYqISJcp\nFLrJqQfvB8BzH3wWciUiIl2nUOgm1eVFjBpYxLMf6NJUEclcCoVudOrBFbxdv5Z1jdvCLkVEpEsU\nCt3o5IMqiLc5ry1YHXYpIiJdolDoRodVllDcJ4fX5jWEXYqISJcoFLpRNGJMGFXG1PkNZNqzr0VE\nQKHQ7SbtX8bKjc3MW7k57FJERDpNodDNJtaUAzBVh5BEJAMpFLrZ4JI+jBpYxNT5CgURyTwKhRSY\nVFPO9MVr2dqiJ7KJSGZJaSiYWb2ZvW9m75lZ3R7aHWlmrWZ2XirrSZeJNWVsa21jRv3asEsREemU\ndPQUTnD3se5eu6uVZhYFfg48l4Za0uLokaXkRI1p83W/gohklp5w+Oha4FFgVdiFdJeC3BjjhvXn\nNYWCiGSYVIeCA8+Z2Uwzm7LzSjMbAnwFuGNPX2JmU8yszszqGhoy4wTuxJoy5n66kdWbm8MuRUQk\naakOhQnuPg44HfiumU3aaf3NwD+6e9uevsTd73L3WnevLS8vT1Wt3WpCcGnq6xryQkQySEpDwd1X\nBK+rgMeBo3ZqUgv8wczqgfOA283sy6msKV0OHVJMcZ8cnVcQkYySslAws0Iz67v9PXAKMKdjG3cf\n4e5V7l4FPAJ8x93/kqqa0ikaMcZXD2DagtUa8kJEMkYqewoVwDQzmwW8DTzl7s+Y2dVmdnUKf26P\nMaGmjE83bGVhQ2PYpYiIJCWWqi9290XAmF0s/+1u2l+eqlrCMnFU4rzCtPkNjBpYFHI1IiJ71xMu\nSe21hg0oYFhpAdN0sllEMoRCIcUm1JTx1qK1tMT3eIGViEiPoFBIsYmjytjc3Mp7y9aHXYqIyF4p\nFFJsfHUZEUN3N4tIRlAopFhxQQ6HVpYwTUNpi0gGUCikwcRRZcxavoGNW1vCLkVEZI8UCmkwoaaM\neJvz5sI1YZciIrJHCoU0GDesPwW5UQ15ISI9nkIhDXJjEY4eUcrU+Q0a8kJEejSFQpqceFAFS9Y0\nsWDV5rBLERHZLYVCmnzpoAoAnpu7MuRKRER2T6GQJvsV5zNmaAnPffBZ2KWIiOyWQiGNThldwazl\nG/hsw9awSxER2SWFQhqdMjpxCOn5D3UISUR6JoVCGo0aWMSIskIdQhKRHkuhkEZmximjK3hr0RrW\nN20LuxwRkS9QKKTZWYcNpiXuPD1HvQUR6XkUCml2yJB+jCgr5In3Pgm7FBGRL1AopJmZcfaYwby1\neI2uQhKRHkehEIKzxw7GHZ6crd6CiPQsCoUQVJcXcciQfjwxS6EgIj3LXkPBzK43s36WcK+ZvWNm\np6SjuN7snDFDmL18g8ZCEpEeJZmewrfcfSNwCtAfuAT4fymtKgucc/hgYhHjz3XLwi5FRKRdMqFg\nwesZwEPu/kGHZdJFA/vmc9JBA3n0neVsa20LuxwRESC5UJhpZs+RCIVnzawvoN9i3eDCI4exevM2\nXvpIw16ISM+QTChcAfwIONLdm4Ac4JsprSpLTNq/nP365fOHGTqEJCI9QzKhcCzwsbuvN7OLgZ8A\nG1JbVnaIRowLait5dV4Dn6zfEnY5IiJJhcIdQJOZjQF+ACwEHkxpVVnk/NqhAPxRvQUR6QGSCYVW\nTzxY+BzgN+5+G9A3tWVlj6GlBUyqKefht5fSEtepGhEJVzKhsMnMbiRxKepTZhYhcV5Busmlxw5n\n1aZmrvn9O2GXIiJZLplQ+BrQTOJ+hc+ASuAXKa0qyxx/wECGlvbhhQ9XUr+6MexyRCSL7TUUgiD4\nL6DYzM4Ctrp7UucUzKzezN43s/fMrG4X679hZrODNm8E5y2yTjRiPHrNeHKjEe6dtjjsckQkiyUz\nzMUFwNvA+cAFwHQzO68TP+MEdx/r7rW7WLcYmOzuhwL/CtzVie/tVQb2zecrhw/hzzOXsbZRD+AR\nkXAkc/joxyTuUbjM3S8FjgJ+2h0/3N3fcPd1wexbJA5NZa0rJ45ga0sbD725JOxSRCRLJRMKEXdf\n1WF+TZKfA3DgOTObaWZT9tL2CuDpJL+3V6qp6MuJBw7kwTfr2doSD7scEclCyfxyf8bMnjWzy83s\ncuAp4G9Jfv8Edx8HnA5818wm7aqRmZ1AIhT+cTfrp5hZnZnVNTQ0JPmjM9NVE0eypnEbj72zIuxS\nRCQLJXOi+R9IHOs/LJjucvdd/vLexWdXBK+rgMdJHHr6HDM7DLgHOMfd1+zme+5y91p3ry0vL0/m\nR2esY0aWcuiQYu55bRFtbR52OSKSZZI6DOTuj7r794Pp8WQ+Y2aFweB5mFkhiaG35+zUZhjwGHCJ\nu8/rXOm9k5kxZdJIFq1u5G9zPg27HBHJMrsNBTPbZGYbdzFtMrONSXx3BTDNzGaRuHrpKXd/xsyu\nNrOrgzb/BxgA3L67y1az0RmHDmLUwCJueWE+cfUWRCSNYrtb4e77NJSFuy8CvnDfgbv/tsP7K4Er\n9+Xn9EbRiHH9STVc+/C7PDn7E84ZOyTskkQkS+gZzT3UmYcOYv+KIm55Ub0FEUkfhUIPFYkYN5y8\nP4saGnlilq5EEpH0UCj0YKcdvB+jB/XjV8/Po7lV9y2ISOolM8zFtWbWPx3FyOdFIsY/nn4gy9Zu\n4b+nLw27HBHJAsn0FCqAGWb2JzM7zcws1UXJDpNqyjhu1AB+/dICLrl3Ojc9ryt3RSR1krl57SdA\nDXAvcDkw38z+3cyqU1ybkLhv4UenHcTaxm28Nn81t7w4nzWbm8MuS0R6qWRvXnPgs2BqBfoDj5jZ\nf6SwNgkcWlnMEcN3HMG7R8Nri0iKJHNO4Xozmwn8B/A6cKi7XwMcAXw1xfVJ4KYLxjKmspjRg/rx\n4Bv1rNPw2iKSAsn0FEqBc939VHf/s7u3ALh7G3BWSquTdsMGFPDX703gpq+NpXFbnPteV29BRLpf\nMucUfgYMMLPrgiuRxnVY92FKq5MvOGC/vpx28H7c93o9G7a0hF2OiPQyyRw++inwAIkxisqA+8zs\nJ6kuTHbv2pNGsam5lQfeqA+7FBHpZZI5fHQxiSev/SzoNRwDXJLasmRPDh5czMkHVXDvtMVsbm4N\nuxwR6UWSCYVPgPwO83mAxl0I2XUnjWLDlhYefLM+7FJEpBdJJhQ2AB+Y2f1mdh+JZyKsN7NbzezW\n1JYnu3NYZQnHH1DO3VMXqbcgIt0mmVB4HPjfwMvAK8CPgb8CM4NJQnLDyfuzrqmF+3Ulkoh0k90+\nT2E7d3/AzHKB/YNFH2+/LFXCNXZoCScfVMFdUxdxybFVFPfJCbskEclwyVx9dDwwH7gNuB2YZ2aT\nUlyXJOn7X9qfjVtbufe1RWGXIiK9QDKHj34JnOLuk919EnAqcFNqy5JkjR7cjzMPHcS90xazVnc5\ni8g+SiYUctz94+0z7j4P0HGKHuSGk2toaolz59SFYZciIhkumVCoM7N7zOz4YLobqEt1YZK8moq+\nfHnsEB54o55Vm7aGXY6IZLBkQuEaYC5wXTDNDZZJD3L9STW0xJ3bX1ZvQUS6bo9XH5lZFPidu38D\n+FV6SpKuqCor5Lxxlfz39KVMmTSSwSV9wi5JRDLQHnsK7h4HhgeXpEoPd+1Jo3Cc37y8IOxSRCRD\n7fU+BWAR8LqZPQE0bl/o7uo59DCV/Qu48MhhPPz2Uq6ZXM3Q0oKwSxKRDJPMOYWFwJNB277BVJTK\noqTrvnfiKKIR45YX54ddiohkoGR6CnPd/c8dF5jZ+SmqR/ZRRb98Lj5mOPe9vpjvHF/NyHLlt4gk\nL5mewo1JLpMe4urJ1eTGIvz6JZ1bEJHO2W1PwcxOB84Ahuw0Gmo/QMNy9mDlffO49Ngq7nltEd87\ncRTV6i2ISJL21FP4hMRNalvZMSLqTOAJEkNdSA82ZdJI8mJRbtW5BRHphN32FNx9FjDLzP5bo6Jm\nnrKiPC4dP5y7pi7i2hNHMWpg37BLEpEMkMw5haPM7Hkzm2dmi8xssZlpSM4M8O1J1fTJiXLzC+ot\niEhykgmFe0nczTwBOBKoDV73yszqzex9M3vPzL4wXpIl3GpmC8xstpmN60zxsmelhblcPr6Kp97/\nlHkrN4VdjohkgKQex+nuT7v7Kndfs33qxM84wd3HunvtLtadDtQE0xTgjk58ryThqokjKcyNcYt6\nCyKShGRC4WUz+4WZHWtm47ZP3fTzzwEe9IS3gBIzG9RN3y1A/w69hY8+2xh2OSLSwyUTCkeTOGT0\n7yQeuPNL4D+T/H4HnjOzmWY2ZRfrhwDLOswvD5ZJN7py4gj65sW4+Xn1FkRkz5J5RvMJ+/D9E9x9\nhZkNBJ43s4/cfWpnvyQIlCkAw4YN24dyslNJQS6XH1fFr19awIJVm3QlkojsVjLPaK4ws3vN7Olg\nfrSZXZHMl7v7iuB1FfA4cNROTVYAQzvMVwbLdv6eu9y91t1ry8vLk/nRspPLx1eRnxPht6/qwjER\n2b1kDh/dDzwLDA7m5wE37O1DZlZoZn23vwdOAebs1OwJ4NLgKqRjSJzU/jTJ2qUTBhTlceGRw/jL\nuytYsX5L2OWISA+VTCiUufufgDYAd28F4kl8rgKYZmazgLeBp9z9GTO72syuDtr8jcTQ3AuAu4Hv\ndHYDJHlXTRoJwN1T1VsQkV1LZpTURjMbQOKkMdv/ot/bh9x9ETBmF8t/2+G9A99NulrZJ0NK+nDO\n2CH8YcZSrjuphtJCPTtJRD4vmZ7C90kc5qk2s9eBB4FrU1qVpMzVk0eytaWN+19fHHYpItID7TUU\n3P0dYDIwHvg2cLC7z051YZIaNRV9OWV0Bfe/Uc/mZg12KyKfl0xPAXdvdfcP3H2OBsfLfNccX83G\nra08PH1p2KWISA+TVChI73L4sP4cO3IA90xbRHNrMtcMiEi2UChkqe+cUM3Kjc089s4XbgsRkSyW\nzM1rxwX3GWBmF5vZr8xseOpLk1SaMKqMQ4cUc+erC4m3edjliEgPkUxP4Q6gyczGAD8AFpK4Akky\nmJlxzfHV1K9p4uk5ul9QRBKSCYXW4H6Cc4DfuPttgAbP6QVOPXg/RpYVcvvLC0nsYhHJdsmEwiYz\nuxG4GHjKzCJATmrLknSIRoyrJ1cz99ONTJ2/OuxyRKQHSCYUvgY0A1e4+2ckBq37RUqrkrT58uFD\n2K9fPre/vCDsUkSkB0iqpwDc4u6vmdn+wFjg4dSWJemSG4tw5cQRTF+8lplL1oVdjoiELJlQmArk\nmdkQ4DngEhIjp0ovcdFRwygpyOGOVxaGXYqIhCyZUDB3bwLOBW539/OBQ1JblqRTYV6My46t4oUP\nV/LxZ5vCLkdEQpRUKJjZscA3gKc68TnJIJePr6IgN8qdr6q3IJLNkvnlfgNwI/C4u39gZiOBl1Nb\nlqRb/8JcLjpqGH+d9QnL1jaFXY6IhCSZUVJfdfezgdvMrMjdF7n7dWmoTdLsyokjiBjc/ZoewiOS\nrZIZ5uJQM3sX+ACYa2Yzzezg1Jcm6TaouA9fOXwIf5yxjNWbm8MuR0RCkMzhozuB77v7cHcfRmKo\ni7tTW5aE5duTq9kWb+M+PYRHJCslEwqF7t5+DsHdXwEKU1aRhKq6vIjTDt6PB99cwqatenSGSLZJ\nJhQWmdlPzawqmH4C6KBzL/ad40exaWsr/6WH8IhknWRC4VtAOfAY8ChQFiyTXurQymIm1pRx77TF\nbG3RQ3hEsskeQ8HMosCP3f06dx/n7ke4+w3urvEQerlrJlfTsKmZR2YuD7sUEUmjPYaCu8eBCWmq\nRXqQY6sHMGZoCXdNXURrvC3sckQkTZI5fPSumT1hZpeY2bnbp5RXJqEyM66ZXM3StU089b4ewiOS\nLZIJhXxgDXAi8HfBdFYqi5Ke4ZTRFYwaWMQdr+ghPCLZIra3Bu7+zXQUIj1PJHgIz9//eRavfNzA\nCQcODLskEUmxZO5ofsDMSjrM9zez36W2LOkpzh4zmMHF+dz+ih7CI5INkjl8dJi7r98+E1x5dHjq\nSpKeJDcW4apJI5lRv44Z9WvDLkdEUiyZUIiYWf/tM2ZWShKHnaT3uPDIYZQW5uohPCJZIJlQ+CXw\nppn9q5n9K/AG8B+pLUt6kj65Ub45voqXPlrF+8s3hF2OiKRQMkNnP0jiqWsrg+lcd38o1YVJz3L5\ncVUU98nh5hfmhV2KiKRQUoeB3H0uMDfFtUgP1jc/hymTRvKLZz/mvWXrGTu0ZO8fEpGMk/LHappZ\n1MzeNbMnd7FumJm9HKyfbWZnpLoe6brLxlfRvyCHm55Xb0Gkt0rHs5avBz7czbqfAH9y98OBC4Hb\n01CPdFFRXoxvT67m1XkNzFyi4a9EeqOUhoKZVQJnAvfspokD/YL3xcAnqaxH9t2lxw5nQGGuzi2I\n9FKp7incDPwQ2N2Iav8EXGxmy4G/AdfuqpGZTTGzOjOra2hoSEmhkpyC3BhXT67mtfmreXux7lsQ\n6W1SFgpmdhawyt1n7qHZRcD97l4JnAE8ZGZfqMnd73L3WnevLS8vT1HFkqyLjxlOWVGezi2I9EKp\n7CkcB5xtZvXAH4ATzez3O7W5AvgTgLu/SWLwvbIU1iTdoE9ulO8cX82bi9bw5sI1YZcjIt0oZaHg\n7je6e6W7V5E4ifySu1+8U7OlwEkAZnYQiVDQ8aEM8PWjh1HRL4+bXpinEVRFepF0XH30OWb2L2Z2\ndjD7A+AqM5sFPAxc7voNkxHyc6J894RRvL14LW+otyDSa1im/Q6ura31urq6sMsQoLk1zvG/eIWB\n/fJ5/JrxRCIWdkkishtmNtPda/fWLu09Bek98mJRfnDKAcxatp7H310Rdjki0g0UCrJPzj18CGOH\nlvB/n/6ITVtbwi5HRPaRQkH2SSRi/PPZB7OmsZlfv6QH8YhkOoWC7LMxQ0u44Iih/G7aYuav3BR2\nOSKyDxQK0i3+4bQDKMqP8cNHZxNvy6yLF0RkB4WCdIuyojx+9nejeXfpeu5/oz7sckSkixQK0m2+\nPHYIJx44kP989mOWrGkMuxwR6QKFgnQbM+PfvnIIOVHjuoffZVvr7sZBFJGeSqEg3WpQcR9+/tXD\nmLV8A7949qOwyxGRTlIoSLc7/dBBXHzMMO5+bTEvzF0Zdjki0gkKBUmJn5w5moMH9+OGP77Hx5/p\nMlWRTKFQkJTIz4lyz2W19MmNcsUDM1izuTnskkQkCQoFSZlBxX24+9JaGjY18637Z2gYDJEMoFCQ\nlBo7tITffH0ccz7ZyBUP1LFlWzzskkRkDxQKknJfGl3BTV8by4z6tVz54Awam1vDLklEdkOhIGlx\n9pjB/PL8Mby1aC1fv/st1jZuC7skEdkFhYKkzbnjKrnz4iP46LNNnPfbN6hfrbueRXoahYKk1cmj\nK3joiqNZ27iNs38zjZc/XhV2SSLSgUJB0u6oEaX8z/cmUNm/gG/dP4NfPT+PlriGxBDpCRQKEoqh\npQU8es14vnL4EG59cT7n3fEGCxs2h12WSNZTKEho+uRG+dUFY7nt6+NYsraJM299jTteWaiB9ERC\npFCQ0J152CCevWESE2vK+fkzH3HaLVN5bX5D2GWJZCWFgvQIFf3yufvSWu775pG0tTmX3Ps2l9/3\nNrOXrw+7NJGsolCQHuWEAwbyzA2T+NHpB/LesvWc/ZvXuerBOuas2BB2aSJZwdwz63m6tbW1XldX\nF3YZkgabtrZw3+v13P3aIjZtbeWYkaVcMWEkJx44kGjEwi5PJKOY2Ux3r91rO4WC9HQbtrTwxxlL\neeCNJaxYv4WqAQVceNQwzj18CAP75YddnkhGUChIr9Mab+OZDz7j/tfrqVuyjmjEmLx/OecfUckJ\nBw4kPycadokiPVayoRBLRzEi3SEWjXDWYYM567DBLGzYzCMzl/PYO8t56aNVFOZGOeHAgZx+yCCO\nP6Ccwjz9py3SFeopSEaLtzmvL1jN03M+5bkPVrKmcRt5sQgTa8qZfEA5k2vKGTagIOwyRUKnw0eS\ndeJtztuL1/LMnE954cNVrFi/BYARZYVMqiljYk05R44opbhPTsiViqSfQkGymruzaHUjU+c18Oq8\nBt5atIatLW2YwehB/Th6xACOGlHK0SNK6V+YG3a5IinXY0LBzKJAHbDC3c/axfoLgH8CHJjl7l/f\n0/cpFKQrtrbEeWfpOqYvWsv0xWt4d+l6moPhNA6o6JsIiJGl1A4vZb9iXdEkvU9POtF8PfAh0G/n\nFWZWA9wIHOfu68xsYBrqkSyUnxNlfHUZ46vLAGhujTN7+QamL1rD9MVrefSd5Tz01hIAKvv3oXZ4\nf2qrSqmt6s/+A/sS0X0RkiVSGgpmVgmcCfwb8P1dNLkKuM3d1wG4uwbXl7TIi0U5sqqUI6tK+R7Q\nEm9j7icbqVuyjrr6tby+cA1/ee8TAPrlxxg3vH97UIypLKFPri5/ld4p1T2Fm4EfAn13s35/ADN7\nHYgC/+Tuz+zcyMymAFMAhg0blppKJavlRCOMGVrCmKElXDFhBO7O0rVN1NWvaw+KVz5ODNIXixgH\nDynmgIoiRpYXUV1exMjyQoaVFpAT1cgxktlSdk7BzM4CznD375jZ8cDf73xOwcyeBFqAC4BKYCpw\nqLvvdhQ0nVOQsKxv2sY7S9cxo34d7y5dx4JVjaze3Ny+Phox9uuXz+CSfAaX9NkxFSfmy/vmUVqQ\nq0NREoqecE7hOOBsMzsDyAf6mdnv3f3iDm2WA9PdvQVYbGbzgBpgRgrrEumSkoJcTjywghMPrGhf\ntmFLC4tXN7Jw1Wbq1zSyYv0WPlm/hXeXrudv739KS/zzf3RFI0ZpYS7lRXmU982jLHhNvM9lQGEe\nJQU5lBTk0L8gl4LcKGYKEUmftFySuoeewmnARe5+mZmVAe8CY919ze6+Sz0FyRRtbc7qzc1BUGxl\n9eZmGjYlptWbm2nYvOP9zuGxXW40QnFBDv0LcigpyKWkTyIsSoL5fn1iFOXF6JefQ1F+jL75ifm+\n+TkU5cU0cKC06wk9hV0ys38B6tz9CeBZ4BQzmwvEgX/YUyCIZJJIxBjYL5+B/fI5fA+nwtydDVta\naNjUzNrGbaxramHDlsTr+qYW1jdtY13TNtY3tbBkTROzlq9nXVNLUk+oK8yNBmGRE4RFYirMjVGQ\nG6VP8JqYti+Lti/rk7NjfZ+gjYKmd9PNayIZyN3Z0hJn09bWYGphc3Pi/eatrWzsML/pc+8T843N\ncZq2tbKlJb7bXsru5MUi7SGSlxMhLxYlPydCXizxPi8WIT8n8fr59cGy7etzdtE+llieE42QEzVy\no8H7WGI+JxLROZku6rE9BRHZd2YW/GUfo+ILdwB1Tku8jaZtcbZsSwRF07Y4W1riwbLE/I71cZpa\nWtvfb22J09za1v66fksLzcH75p3WtbZ1zx+gsYjtCI3Y9gDZPh8lN2o7lsUin5+PRsiN7ZiPBUET\njRixiBGLRohFjGjEyIka0UgkWG5Bm8RndrTZh8/20IBTKIhkuZxohOI+kZSPCdUab0uERWsbza1x\nmlva2Bq8dgyP5tY4rXFnW7yNlngbLa1ttHScjwfzrW2JZa0dlnVs0+ps2dLyhc/sPB93J95NgdVZ\nZrSHRNSC10giUKIREsuiO9ZddNQwrpw4MqU1KRREJC1i0QixaITCvLAr+aK2Nm8Ph5Z4G/E2p7XN\naY07rW1twXIPlrcFy4P5eNuO9zvNf/67dm7nxNvaaGlz2tp2fF98ey3xxGv7OnfKilL/j6dQEJGs\nF4kYEYycKFn/sCbdfikiIu0UCiIi0k6hICIi7RQKIiLSTqEgIiLtFAoiItJOoSAiIu0UCiIi0i7j\nBsQzswZgSRc/Xgas7sZyMoG2OTtom7PDvmzzcHcv31ujjAuFfWFmdcmMEtibaJuzg7Y5O6Rjm3X4\nSERE2ikURESkXbaFwl1hFxACbXN20DZnh5Rvc1adUxARkT3Ltp6CiIjsQdaEgpmdZmYfm9kCM/tR\n2PV0FzPvad5GAAAD1klEQVQbamYvm9lcM/vAzK4Plpea2fNmNj947R8sNzO7Nfh3mG1m48Ldgq4x\ns6iZvWtmTwbzI8xserBdfzSz3GB5XjC/IFhfFWbd+8LMSszsETP7yMw+NLNje/N+NrP/Ffw3PcfM\nHjaz/N64n83sd2a2yszmdFjW6f1qZpcF7eeb2WVdrScrQsHMosBtwOnAaOAiMxsdblXdphX4gbuP\nBo4Bvhts24+AF929BngxmIfEv0FNME0B7kh/yd3ieuDDDvM/B25y91HAOuCKYPkVwLpg+U1Bu0x1\nC/CMux8IjCGx/b1yP5vZEOA6oNbdDwGiwIX0zv18P3DaTss6tV/NrBT4GXA0cBTws+1B0mnu3usn\n4Fjg2Q7zNwI3hl1Xirb1r8CXgI+BQcGyQcDHwfs7gYs6tG9vlykTUBn8j3Ii8CRgJG7oie28v4Fn\ngWOD97GgnYW9DV3Y5mJg8c6199b9DAwBlgGlwX57Eji1t+5noAqY09X9ClwE3Nlh+efadWbKip4C\nO/4D2255sKxXCbrMhwPTgQp3/zRY9RlQEbzvDf8WNwM/BNqC+QHAendvDeY7blP79gbrNwTtM80I\noAG4Lzhsdo+ZFdJL97O7rwD+E1gKfEpiv82k9+/n7Tq7X7ttf2dLKPR6ZlYEPArc4O4bO67zxJ8O\nveIyMzM7C1jl7jPDriXNYsA44A53PxxoZMchBaDX7ef+wDkkwnAwUMgXD7FkhXTv12wJhRXA0A7z\nlcGyXsHMckgEwn+5+2PB4pVmNihYPwhYFSzP9H+L44Czzawe+AOJQ0i3ACVmFgvadNym9u0N1hcD\na9JZcDdZDix39+nB/CMkQqK37ueTgcXu3uDuLcBjJPZ9b9/P23V2v3bb/s6WUJgB1ARXLuSSOGH1\nRMg1dQszM+Be4EN3/1WHVU8A269AuIzEuYbtyy8NrmI4BtjQoZva47n7je5e6e5VJPbjS+7+DeBl\n4Lyg2c7bu/3f4bygfcb9Ne3unwHLzOyAYNFJwFx66X4mcdjoGDMrCP4b3769vXo/d9DZ/foscIqZ\n9Q96WacEyzov7BMsaTyRcwYwD1gI/DjserpxuyaQ6FrOBt4LpjNIHE99EZgPvACUBu2NxJVYC4H3\nSVzdEfp2dHHbjweeDN6PBN4GFgB/BvKC5fnB/IJg/ciw696H7R0L1AX7+i9A/968n4F/Bj4C5gAP\nAXm9cT8DD5M4b9JCokd4RVf2K/CtYPsXAN/saj26o1lERNply+EjERFJgkJBRETaKRRERKSdQkFE\nRNopFEREpJ1CQURE2ikURESknUJBRETa/X9mA/8pb2kQdQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.plot(log)\n", + "plt.ylabel('cross entropy loss')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/07-RNN-For-Sequential-Data/02-sequence-to-sequence.py "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.py" similarity index 100% rename from 07-RNN-For-Sequential-Data/02-sequence-to-sequence.py rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/02-sequence-to-sequence.py" diff --git a/07-RNN-For-Sequential-Data/03-Seq2Seq_gru.py "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-Seq2Seq_gru.py" similarity index 100% rename from 07-RNN-For-Sequential-Data/03-Seq2Seq_gru.py rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-Seq2Seq_gru.py" diff --git "a/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-seq2seq_gru.ipynb" "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-seq2seq_gru.ipynb" new file mode 100644 index 0000000..dcf79c4 --- /dev/null +++ "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/03-seq2seq_gru.ipynb" @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import torch as th\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.autograd import Variable\n", + "from torch import optim" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hello -> [104, 101, 108, 108, 111]\n", + "hola -> [104, 111, 108, 97]\n" + ] + } + ], + "source": [ + "vocab_size = 256 # ascii size\n", + "x_ = list(map(ord, \"hello\")) # convert to list of ascii codes\n", + "y_ = list(map(ord, \"hola\")) # convert to list of ascii codes\n", + "print(\"hello -> \", x_)\n", + "print(\"hola -> \", y_)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "x = Variable(th.LongTensor(x_))\n", + "y = Variable(th.LongTensor(y_))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([104, 101, 108, 108, 111])\n" + ] + } + ], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "'''\n", + "Model using GRU and conventional concatenating motion.\n", + "'''\n", + "class Seq2Seq_GRU(nn.Module):\n", + " def __init__(self, vocab_size, hidden_size):\n", + " super(Seq2Seq_GRU, self).__init__()\n", + "\n", + " self.n_layers = 1\n", + " self.hidden_size = hidden_size\n", + " self.embedding = nn.Embedding(vocab_size, hidden_size)\n", + " self.encoder = nn.GRU(hidden_size, hidden_size)\n", + " self.decoder = nn.GRU(hidden_size * 2, hidden_size)\n", + " self.project = nn.Linear(hidden_size, vocab_size)\n", + "\n", + " def forward(self, inputs, targets):\n", + " # Encoder inputs and states\n", + " initial_state = self._init_state()\n", + " embedding = self.embedding(inputs).unsqueeze(1)\n", + " encoder_output, encoder_state = self.encoder(embedding, initial_state)\n", + " outputs = []\n", + "\n", + " decoder_state = encoder_state\n", + " for i in range(targets.size()[0]): \n", + " decoder_input = self.embedding(targets)[i].view(1,-1, self.hidden_size)\n", + " decoder_input = th.cat((decoder_input, encoder_state), 2)\n", + " decoder_output, decoder_state = self.decoder(decoder_input, decoder_state)\n", + " projection = self.project(decoder_output)#.unsqueeze(0))\n", + " outputs.append(projection)\n", + " \n", + " #_, top_i = prediction.data.topk(1)\n", + " \n", + " outputs = th.stack(outputs, 1).squeeze()\n", + "\n", + " return outputs\n", + " \n", + " def _init_state(self, batch_size=1):\n", + " weight = next(self.parameters()).data\n", + " return Variable(weight.new(self.n_layers, batch_size, self.hidden_size).zero_()) \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model = Seq2Seq_GRU(vocab_size, 16)\n", + "pred = model(x, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = nn.CrossEntropyLoss()\n", + "optimizer = th.optim.Adam(model.parameters(), lr=1e-3)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "y_.append(3)\n", + "y_label = Variable(th.LongTensor(y_[1:]))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4])\n", + "tensor([111, 108, 97, 3])\n" + ] + } + ], + "source": [ + "print(y_label.shape)\n", + "print(y_label)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 loss: 5.611233234405518\n", + "E 7 V 4 \n", + "100 loss: 1.9432737827301025\n", + "h o l a \n", + "200 loss: 0.5616824626922607\n", + "h o l a \n", + "300 loss: 0.2673376798629761\n", + "h o l a \n", + "400 loss: 0.16206204891204834\n", + "h o l a \n", + "500 loss: 0.11266088485717773\n", + "h o l a \n", + "600 loss: 0.08434617519378662\n", + "h o l a \n", + "700 loss: 0.06614077091217041\n", + "h o l a \n", + "800 loss: 0.05353283882141113\n", + "h o l a \n", + "900 loss: 0.04404950141906738\n", + "h o l a \n", + "1000 loss: 0.03680562973022461\n", + "h o l a \n", + "1100 loss: 0.03102242946624756\n", + "h o l a \n", + "1200 loss: 0.026388049125671387\n", + "h o l a \n", + "1300 loss: 0.022706985473632812\n", + "h o l a \n", + "1400 loss: 0.019757390022277832\n", + "h o l a \n", + "1500 loss: 0.0173567533493042\n", + "h o l a \n", + "1600 loss: 0.015371441841125488\n", + "h o l a \n", + "1700 loss: 0.013707399368286133\n", + "h o l a \n", + "1800 loss: 0.012296199798583984\n", + "h o l a \n", + "1900 loss: 0.011086702346801758\n", + "h o l a \n", + "2000 loss: 0.010039806365966797\n", + "h o l a \n", + "2100 loss: 0.009126663208007812\n", + "h o l a \n", + "2200 loss: 0.008322954177856445\n", + "h o l a \n", + "2300 loss: 0.007612466812133789\n", + "h o l a \n", + "2400 loss: 0.006980180740356445\n", + "h o l a \n", + "2500 loss: 0.00641632080078125\n", + "h o l a \n", + "2600 loss: 0.005910158157348633\n", + "h o l a \n", + "2700 loss: 0.005454301834106445\n", + "h o l a \n", + "2800 loss: 0.0050411224365234375\n", + "h o l a \n", + "2900 loss: 0.004665851593017578\n", + "h o l a \n", + "3000 loss: 0.004323482513427734\n", + "h o l a \n", + "3100 loss: 0.004010438919067383\n", + "h o l a \n", + "3200 loss: 0.00372314453125\n", + "h o l a \n", + "3300 loss: 0.0034592151641845703\n", + "h o l a \n", + "3400 loss: 0.0032155513763427734\n", + "h o l a \n", + "3500 loss: 0.0029909610748291016\n", + "h o l a \n", + "3600 loss: 0.0027837753295898438\n", + "h o l a \n", + "3700 loss: 0.0025925636291503906\n", + "h o l a \n", + "3800 loss: 0.0024156570434570312\n", + "h o l a \n", + "3900 loss: 0.002252817153930664\n", + "h o l a \n", + "4000 loss: 0.002102375030517578\n", + "h o l a \n", + "4100 loss: 0.001963376998901367\n", + "h o l a \n", + "4200 loss: 0.0018358230590820312\n", + "h o l a \n", + "4300 loss: 0.0017178058624267578\n", + "h o l a \n", + "4400 loss: 0.0016088485717773438\n", + "h o l a \n", + "4500 loss: 0.0015087127685546875\n", + "h o l a \n", + "4600 loss: 0.0014154911041259766\n", + "h o l a \n", + "4700 loss: 0.0013294219970703125\n", + "h o l a \n", + "4800 loss: 0.001249551773071289\n", + "h o l a \n", + "4900 loss: 0.0011754035949707031\n", + "h o l a \n", + "5000 loss: 0.00110626220703125\n", + "h o l a \n", + "5100 loss: 0.0010418891906738281\n", + "h o l a \n", + "5200 loss: 0.000982046127319336\n", + "h o l a \n", + "5300 loss: 0.0009260177612304688\n", + "h o l a \n", + "5400 loss: 0.0008738040924072266\n", + "h o l a \n", + "5500 loss: 0.0008246898651123047\n", + "h o l a \n", + "5600 loss: 0.0007789134979248047\n", + "h o l a \n", + "5700 loss: 0.000736236572265625\n", + "h o l a \n", + "5800 loss: 0.0006957054138183594\n", + "h o l a \n", + "5900 loss: 0.0006580352783203125\n", + "h o l a \n", + "6000 loss: 0.0006222724914550781\n", + "h o l a \n", + "6100 loss: 0.0005888938903808594\n", + "h o l a \n", + "6200 loss: 0.0005574226379394531\n", + "h o l a \n", + "6300 loss: 0.0005280971527099609\n", + "h o l a \n", + "6400 loss: 0.000499725341796875\n", + "h o l a \n", + "6500 loss: 0.0004734992980957031\n", + "h o l a \n", + "6600 loss: 0.0004489421844482422\n", + "h o l a \n", + "6700 loss: 0.00042557716369628906\n", + "h o l a \n", + "6800 loss: 0.0004029273986816406\n", + "h o l a \n", + "6900 loss: 0.0003821849822998047\n", + "h o l a \n", + "7000 loss: 0.0003619194030761719\n", + "h o l a \n", + "7100 loss: 0.0003426074981689453\n", + "h o l a \n", + "7200 loss: 0.000324249267578125\n", + "h o l a \n", + "7300 loss: 0.00030612945556640625\n", + "h o l a \n", + "7400 loss: 0.0002872943878173828\n", + "h o l a \n", + "7500 loss: 0.0002694129943847656\n", + "h o l a \n", + "7600 loss: 0.0002536773681640625\n", + "h o l a \n", + "7700 loss: 0.00023937225341796875\n", + "h o l a \n", + "7800 loss: 0.00022673606872558594\n", + "h o l a \n", + "7900 loss: 0.0002143383026123047\n", + "h o l a \n", + "8000 loss: 0.0002028942108154297\n", + "h o l a \n", + "8100 loss: 0.00019216537475585938\n", + "h o l a \n", + "8200 loss: 0.0001819133758544922\n", + "h o l a \n", + "8300 loss: 0.00017189979553222656\n", + "h o l a \n", + "8400 loss: 0.0001628398895263672\n", + "h o l a \n", + "8500 loss: 0.00015401840209960938\n", + "h o l a \n", + "8600 loss: 0.00014591217041015625\n", + "h o l a \n", + "8700 loss: 0.0001380443572998047\n", + "h o l a \n", + "8800 loss: 0.0001308917999267578\n", + "h o l a \n", + "8900 loss: 0.00012350082397460938\n", + "h o l a \n", + "9000 loss: 0.00011730194091796875\n", + "h o l a \n", + "9100 loss: 0.00011134147644042969\n", + "h o l a \n", + "9200 loss: 0.00010514259338378906\n", + "h o l a \n", + "9300 loss: 9.965896606445312e-05\n", + "h o l a \n", + "9400 loss: 9.441375732421875e-05\n", + "h o l a \n", + "9500 loss: 8.940696716308594e-05\n", + "h o l a \n", + "9600 loss: 8.487701416015625e-05\n", + "h o l a \n", + "9700 loss: 8.034706115722656e-05\n", + "h o l a \n", + "9800 loss: 7.605552673339844e-05\n", + "h o l a \n", + "9900 loss: 7.224082946777344e-05\n", + "h o l a \n" + ] + } + ], + "source": [ + "log = []\n", + "for i in range(10000):\n", + " prediction = model(x, y)\n", + " loss = criterion(prediction, y)\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + " loss_val = loss.data\n", + " log.append(loss_val)\n", + " if i % 100 == 0:\n", + " print(\"%d loss: %s\" % (i, loss_val.item()))\n", + " _, top1 = prediction.data.topk(1, 1)\n", + " for c in top1.squeeze().numpy().tolist():\n", + " print(chr(c), end=\" \")\n", + " print()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.plot(log)\n", + "plt.xlim(0,150)\n", + "plt.ylim(0,15)\n", + "plt.ylabel('cross entropy loss')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/07-RNN-For-Sequential-Data/README.md "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/README.md" similarity index 100% rename from 07-RNN-For-Sequential-Data/README.md rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/README.md" diff --git a/07-RNN-For-Sequential-Data/assets/encoder_decoder.png "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/encoder_decoder.png" similarity index 100% rename from 07-RNN-For-Sequential-Data/assets/encoder_decoder.png rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/encoder_decoder.png" diff --git a/07-RNN-For-Sequential-Data/assets/pics "b/07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/pics" similarity index 100% rename from 07-RNN-For-Sequential-Data/assets/pics rename to "07-\354\210\234\354\260\250\354\240\201\354\235\270 \353\215\260\354\235\264\355\204\260\353\245\274 \354\262\230\353\246\254\355\225\230\353\212\224 RNN/assets/pics" diff --git a/08-Hacking-Deep-Learning/01-fgsm-attack.ipynb b/08-Hacking-Deep-Learning/01-fgsm-attack.ipynb deleted file mode 100644 index 1fdb36a..0000000 --- a/08-Hacking-Deep-Learning/01-fgsm-attack.ipynb +++ /dev/null @@ -1,626 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 8.1 FGSM 공격\n", - "\n", - "정상 이미지와 노이즈를 더해 머신러닝 모델을 헷갈리게 하는 이미지가\n", - "바로 적대적 예제(Adversarial Example) 입니다.\n", - "이 프로젝트에선 Fast Gradient Sign Method, 즉 줄여서 FGSM이라는 방식으로\n", - "적대적 예제를 생성해 미리 학습이 완료된 딥러닝 모델을 공격해보도록 하겠습니다.\n", - "\n", - "FGSM 학습이 필요 없지만 공격 목표를 정할 수 없는 Non-Targeted 방식의 공격입니다.\n", - "또, 공격하고자 하는 모델의 정보가 필요한 White Box 방식입니다.\n", - "\n", - "공격이 어떻게 진행되는지 단계별로 설명하도록 하겠습니다." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import torchvision.models as models\n", - "import torchvision.transforms as transforms\n", - "\n", - "import numpy as np\n", - "from PIL import Image\n", - "import json" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "\n", - "torch.manual_seed(1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 학습된 모델 불러오기\n", - "\n", - "`torchvison`은 `AlexNet`, `VGG`, `ResNet`, `SqueezeNet`, `DenseNet`, `Inception`등 여러가지 학습된 모델들을 제공합니다.\n", - "대부분 ImageNet이라는 데이터셋으로 학습된 모델이며,\n", - "컬러 이미지를 다루는 컴퓨터 비전 분야의 대표적인 데이터셋입니다.\n", - "\n", - "간단하게 사용하고자 하는 모델을 고르고,\n", - "함수 내에 `pretrained=True`를 명시하면\n", - "학습된 모델을 가져옵니다.\n", - "이미 학습된 모델이므로 재학습을 시킬 필요 없이 우리가 원하는\n", - "이미지를 분류하게 할 수 있습니다.\n", - "\n", - "본 예제에선 `ResNet101`이라는 모델을 사용하고 있습니다.\n", - "너무 복잡하지도 않고, 너무 간단하지도 않은 적당한 모델이라 생각하여 채택하게 되었습니다.\n", - "ImageNet 테스트 데이터셋을 돌려보았을때\n", - "Top-1 error 성능은 22.63,\n", - "Top-5 error는 6.44로 성능도 좋게 나오는 편입니다.\n", - "모델을 바꾸고 싶다면 이름만 바꾸면 됩니다.\n", - "성능을 더 끌어올리고 싶다면 `DenseNet`이나 `Inception v3`같은 모델을 사용하고,\n", - "노트북 같은 컴퓨터를 사용해야된다면 `SqueezeNet`같이 가벼운 모델을 사용하면 됩니다.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ResNet(\n", - " (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", - " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", - " (layer1): Sequential(\n", - " (0): Bottleneck(\n", - " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " (downsample): Sequential(\n", - " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " )\n", - " )\n", - " (1): Bottleneck(\n", - " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (2): Bottleneck(\n", - " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " )\n", - " (layer2): Sequential(\n", - " (0): Bottleneck(\n", - " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " (downsample): Sequential(\n", - " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", - " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " )\n", - " )\n", - " (1): Bottleneck(\n", - " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (2): Bottleneck(\n", - " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (3): Bottleneck(\n", - " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " )\n", - " (layer3): Sequential(\n", - " (0): Bottleneck(\n", - " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " (downsample): Sequential(\n", - " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", - " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " )\n", - " )\n", - " (1): Bottleneck(\n", - " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (2): Bottleneck(\n", - " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (3): Bottleneck(\n", - " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (4): Bottleneck(\n", - " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (5): Bottleneck(\n", - " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " )\n", - " (layer4): Sequential(\n", - " (0): Bottleneck(\n", - " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " (downsample): Sequential(\n", - " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", - " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " )\n", - " )\n", - " (1): Bottleneck(\n", - " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " (2): Bottleneck(\n", - " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", - " (relu): ReLU(inplace)\n", - " )\n", - " )\n", - " (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)\n", - " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", - ")\n" - ] - } - ], - "source": [ - "model = models.resnet50(pretrained=True)\n", - "model.eval()\n", - "print(model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 데이터셋 불러오기\n", - "\n", - "방금 불러온 모델을 그대로 사용할 수 있지만,\n", - "실제 예측값을 보면 0부터 1000까지의 숫자를 내뱉을 뿐입니다.\n", - "이건 ImageNet 데이터셋의 클래스들의 지정 숫자(인덱스) 입니다.\n", - "사람이 각 클래스 숫자가 무엇을 의미하는지 알아보기 위해선\n", - "숫자와 클래스 이름을 이어주는 작업이 필요합니다.\n", - "\n", - "미리 준비해둔 `imagenet_classes.json`이라는 파일에 각 숫자가 어떤 클래스 제목을 의미하는지에 대한 정보가 담겨있습니다.\n", - "`json`파일을 파이썬 사용자들에게 좀더 친숙한\n", - "딕셔너리 자료형으로 만들어 언제든 사용할 수 있도록\n", - "인덱스에서 클래스로 매핑해주는 `idx2class`와\n", - "반대로 클래스 이름을 숫자로 변환해주는`class2idx`을 만들어보겠습니다." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "CLASSES = json.load(open('./imagenet_samples/imagenet_classes.json'))\n", - "idx2class = [CLASSES[str(i)] for i in range(1000)]\n", - "class2idx = {v:i for i,v in enumerate(idx2class)}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 공격용 이미지 불러오기\n", - "\n", - "모델이 준비되었으니 공격하고자 하는 이미지를 불러오겠습니다.\n", - "실제 공격에 사용될 데이터는 학습용 데이터에 존재하지 않을 것이므로\n", - "우리도 데이터셋에 존재하지 않는 이미지를 새로 준비해야 합니다.\n", - "\n", - "인터넷에 존재하는 이미지는 다양한 사이즈가 있으므로\n", - "새로운 입력은 `torchvision`의 `transforms`를 이용하여\n", - "이미지넷과 같은 사이즈인 224 x 224로 바꿔주도록 하겠습니다.\n", - "그리고 파이토치 텐서로 변환하고, 노말라이즈를 하는 기능을 추가하여\n", - "`img_transforms`를 통과시키면 어떤 이미지던 입력으로 사용할 수 있도록 합니다." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "img_transforms = transforms.Compose(\n", - " [transforms.Resize((224, 224), Image.BICUBIC),\n", - " transforms.ToTensor(),\n", - " transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "이미지넷 데이터셋에는 치와와(Chihuahua)라는 클래스가 존재합니다.\n", - "그래서 약간 부담스럽지만 귀여운 치와와 사진을 준비해보았습니다." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAEyCAYAAABwLfy/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvcmObEmSpveJDufY5MMd40ZETpWdtSC44KI5rLgkwB1XJEguuegVH4Dgo/SCOwLNF2iAz9BokATYjcqurqzMjIg7Xx9sPIOqChei55jfm5HZlWQlOypxFXC4uZmb2Tk6iP7yyy+ioqp8bp/b5/a5/Tk19+/7Aj63z+1z+9z+vttnw/a5fW6f259d+2zYPrfP7XP7s2ufDdvn9rl9bn927bNh+9w+t8/tz659Nmyf2+f2uf3ZtT+ZYROR/1JEfiki/1ZE/qc/1fd8bp/b5/a5fdrkT6FjExEP/BvgvwC+Bf4F8N+p6r/+e/+yz+1z+9w+t0/anwqx/afAv1XVX6nqAPwz4L/6E33X5/a5fW6f20ct/Ik+92vgmwd/fwv8Zw//QUT+CfBPABZN+Mc/fX6FiEyvAYqIe/A3qDz8AFCFlEZUlZwzh8OBkjPr9YpcEkM/4L3De/scJw7nPd55EIdzQogNIo4QAs55RIScM2kcybkwf6Uqhm4FtMAnQFc/ekJRBUHBbuV7/sc+6tM/dX6/2MsCqtYXiqJaAMF7h/Mt4gScs/uR+rh+Wu02RO29Mn+WULQgOFJK/PrX35LyeZf72Y+fs1i0aE52RTJ3gd2DFvu7PLh259BScN5zPBzY7fbcHXW+xSDwo6+fIALeTc/qx52gateJzPdp31NQLYhI7SO1y3Ly0XvqXdf/dfUjdf4aEZl/9MH3lrnX672IMHW+1Be0fpaWBzc9X3au73H2fSIIDq3fNc0rvMd5P3/eeb67+ftsfAK//OVfU4oNpxb4+uunXF9d1aus91sKRRUtGXO8Pp5v8qBrBTnPpfriOA6UXEhppOSRXDJ93+Ocq32sgAMRcsooULt8ng9TxzlPnfPUeTaNheK8J+VMmO4fcN4RfMCFQIyRRbu098x9OPX+x2vm//zlb96r6rPfGYRP2p/KsP07m6r+U+CfAvwHP3mq/+v//F/jp5t2Du893ntKKYR686ecEO8owO60J6XEy1ffst1u0VzY3W+5u7vj2N3y1VdfksvI6+++I5fE4+srnARSynzx/Gu8jwzDwH/0j/8TjqeRq+vHZHVcX19zudmwWrQcDgdyl7i9uSGlRHSePNSBHxI5ZygF54QkSimFUg0tALkgrj4uimqm+AcDJfZY5PxcKQUoeLeYn+vHniEn+8NpXSwOt3hO27asrq9ZXF7SrFa4dkXWQggNOdkijGFt/egFZcQ5Z9eaQcQjRL799jseX1zhNLH0I+m453IpdIetXZMPgGNIGZdP82YymX4nNpWGIeGcY71e8+q4JLjCctGQuj1BEq6MlHSCkvBOYdq8FFJKlFKQUvuyFNI42vfn43mhFsV5yDkjxTacUhKo0rpQ31sNkSpOAjlne+w8TdOQ6gZQBNQ7VGwJFcHmWDUCLp8325TSPLaes5H03tt3OY+ElqyQxbFYbojtks3FFT427MRxdfnIDKtz+BhAnVkFQDADeDw5nj59wnG/paSRGBXJAykNbFYtJWdOpwPNKPT9iWEYiME2alWlCQ4ocx/afTu7hzxw3O/JZeTb3/yaU3fgcDjQ7d6RtPDhw3v64UTX9ywWS4o6SoHdYcB7z3g4sdksyTlz6gZitPU6jtbnm01L3/f4YnNsudrgvedut2W5WlJK4R/95S949uwZ28Oeq6df8uLFV/zi5/8hJXtibClZETeti7qG1ObXo//8f/jN38W+/KkM23fAjx/8/aP63Pc2212FnAvee5qmnSfLtNuFEGmDp6Dcbbe8ev2KUgpXV1eEEHj35i2r1YqcMxfXC7p+YLVe8ZOf/SPu7+/JOXN58YiUErvDka+/eM5+v+fVt99QXAQnBN9ym0fevXnF1199SXCexWLJk6dPGYaB/e4edUKhEFYNURRyIaXEwgVSSiTnqr2ySWVm2FopZRofVPPZAD7clVwCPKIeFRvchV8SKXUB22+Vgg5HUh45kBjHnnBY4ldrMkK7uiCGBc45sjhc48hA8A6nEBtPGkYAQoj85MdfMZw6vCq571CBw6kjhBZNCXEB5wJOM07MyIovaJlQhqAqxCgsFgtCCKzDwGrZMgxHosvoOIKDpjGj7VGK1s8SwVWjlHMmqBmuGUcWKKUaPqfEGGAcbcMgUxKQC904EGMkZdtgQmhIOYFzFfVCN/aIi/UenC16hOIFBxQFycWQYKlIDyE6oZRpM7If5wRcxIeIeE8ujiZEmuWGxeaK0EQKnqzgnBnYGCPBebwPNpbz4GdEPJerhshI6Q9st3c8e3TJOJxwoty9u0dEKSmjLFAV2rgAKahmnArjmIGCF4eXQKYASsoDu/t73rz9jlISYzqR80DXHTj2AyklDoeOIQ14H8jJkYrSxAWPLtfE0PKu+xYRj/eOi01D3/cEH2kbT9/35CR419JGx35/MkN6GgjBExvH5fUj2kXg0O0pZZzRbkoDwsI2q78HhuxPZdj+BfCXIvIXmEH7b4H//vf984RApgUy7S7TTjMZABExdwsYR5u44zjiva8oRGnblpFCdA25QBMj64tLTocjoV3QLgN3d3eoKtELb968YXP5GO/v2VxckXMijSO3H94TY+THX/6MpmkYU0/JI0PwUAohOIRi1wEEF2akqapQzHB5pE66iiy81seh3leZd35zQRsAvG9skEVQzQw51feZMUIdDgUd0dEZAtKCr66Z5kJx9tlFKjLTDOJRKcRoiNWLYxx7xnFgtVrQH7d0w4lGhLZdMQ4dKgHRQFFBxaPTxBNBbeWzWK4B2G63jDnRDT2Rht3dFhFhERvUC945QvBoNgPmJJ9dMu/mKS3lPOaqiuYRVW8osSSc8zhXKGSkeJxAcYXQVLc4QVElzUhNcBOyKmckLaKgGRWpcA2cSEULipsQ5XQt9frc5GaKkAk4CYiLFAEXIuo8znlQf0a1ztXNWxEpuGleUwy5AUpGdOT2w5b1akGUDWhmPB1Zb5aod0Tnud3fENrWjIwTcimoTnNo8r3tWkMIdYxHTt2BcewZuiPb7T3D2JHLyNAnuq7jeOpp20gTG0P93chisSYnc0tVIWfbtGOM5FxYLAKr1QrnvM0p78hpIIQz2l0ul8QYERHe375HRFiv1zjnCGHaXL7HoMlESfwuBfCH2p/EsKlqEpH/EfjfAQ/8L6r6r/7Qe5bL5Ucc22TcQgjzAgetXJjj9vaWYRh4lK5q5wQKQoyR3ZB5+vgxr1694vZuRxsXrDePyEUIoSH4Bdu7W4Lz/Pa7b/lRbNhut3z9Y6UU8AK/unljRmEsOOdo25aLizVtjpy6Q3VDM67xrBZr8hG8D8R4dqNEbeGoKk5t0qY620o5uzVIeXDP9pyTxhCfc/gg3O92AMQYZ4PeFCFpYexP0EczHG0gZyGLLazgDOUGEUpFDZoT/ZgBGIaB9XrN0J1AEk0TGZsG74VuGIEGCULKhVIU5yLiGjPGFVVNRltV8S4gONarJUO3o1l661Ov5GIT2KyHI7iI94acPPJRv6WU8N4TnTckXMLs/qZhRJwisSGPiVISUgrBOST3qAohtrWf5zkJKudNNFdDJZBmslBQETNmvo5TyjYOYu5qjBXp1fnpvSeHq4okPevVGnxgUREb4unHZPyws/sSsXv13tfPcIizeZNTRnVEh467wy2bzQZJiWV0aN8TFaQUFs7Z2JZCzorDVf4r04Q437OqMnRHXr/+juNpz27/gTSc2O+37LZ3cz9vLq8oCJvNJevVhpQSw5A4HQYeXUVSHjh1B7yLbNaXDMNAKYX16gonDiHinXF/Qz/igKvrx+xPR7ImCsr+uGO7v+fLH33JZrOGurlMwMS41MqdVi6xjt4fYX2s/ck4NlX958A//7v8ryGdOBuzT39iDIAQgsOH8wTvuo6+X8xGsZTCYrGg3/Ucj0cWiwXffvOS9dL8/MePH1e4fWDf3bFcLtGUCQLr6wv22x2LxYJu7DjutngnbHc3tG0LklhrS7toiM0lu929LaAQ6i4Vpvs+8/eAVNLbJpmnKLYL+VDRZ+VCJnduIlxDIJeeogXvWpZtO7tpSgbnkcpHBYEynNDo0XGJd46h71iur/HicMEbyoGZF5zctOgbM5KLFtVCEWgWSyQn8EqhksY+IqpkBRCcGiLCmWs7ZrvPtl7nMAwEV/ujIh1Rc8dFAPEzma2qFCDUIA4wI9+sigQPOeCK4lwwY1gy4zgijaAaZgMktV9zqhtKECboct44Pc7Z6+IdopWLmv7HuTlQJeI/Mmbe140iBDNqOUMMkIp5BKs1zkdCXIB4JHgWsaWo4rWQnW0EopDHRNPGGSEqBTSTR0XILGIgDz1xAl+lBgqAZbtgLBPaNwwt4kljmr2YlMy9PHU73r57zem047C7o+u3HA4HVssFMUb6vqeJNu/W6zU5GQWw2x1Yry7oTgP39/c453j06BF3d3eVbmhmXrzrBvb7PU3TIHgWixVd11OKMo7Fvm+z5PLRJTFGCgWHO2+KZJxrcM643JxHi4nJtCn9ccbt31vw4NM2WW04T8CHbYLXOWdSSrRtOxuzlBKbzYY3u9d89913rK48Hz58QFX56Y9/Rt+PxnsVczeWyzVFD9ze3LBaX/Dyu29ZLFdIsB3wFz//CwYPeey4efuSEIIt2Nxxdf2IpmlolsYTaRGaEPEY2poXT10sIgIlz/eQxc/3NEctp0UmE5orlZCN1QAFyJVjU0N6XdcheQBvn9P3PafBJnJcbmhXkXLcoW2hBOaNwxXM7Sk6RwNFbMG6NJjBCQ3qHEU8mgYotpFMkUVyJKuiko3I14knLQ/uTdAsFklVmY0XKnNkVZ1APn+/vW5uqIibI2wATbuaeUlfFETxHwUaKv+WeotsJ537ceLprH8nzu7c576O1Vg9A/fQsHkBV6kCC+kSKtLLqrgmUkJgsYy0yzW+WRJ8xC8WqGsQ78EFHA5JCZFEziM5JyiZPA74MHGUmZKyxQJTBuxaktr1SjVsYGDHuWKRQy22ayjEGJDaT7vDjr7veXf7kjweEAbud2/Zb81I9Z0FHtJQ2K06+r6nOw2Ap22WrFcXdR6OPLq+JsbI/nBD0waapqkBvkiMLW/fvkWLcHlxTUqZoTvQj5lShOtHj1hfLFlfrvFBcME2wNVqxcXlmhBc3YRMuZCzzutFmMbpB+CK/rFtgvQPUVqpPsRDI2cT1aKlm83G/kdsUvZ9z3K5ZLPZcDy952c/+QtygpffvWXVrtjv99y8e89quWS1WqBF0TSy3d7hfMvpdOLFV1+y3R54//YN++1N5cp6ctJq2Hr291suHz1itb4AF8zNig2xsV2dGqErKjjxNuEqSSwl41x4gBzOAwg2SUsxvkVcIDYeh+A8ND5UlHpEc2ERLWLFOKIkGhFwShmOdH3HMCTW146sBZFEXKzO3+08IVTjNMfoFRFPCAH1xiPmkEijQ3OBNAClugytIbZS0GzOtZRK9EuemRItDUULpS66mSZXRZ1JZooace8wQ2aTuaKsalAcQnIZISAUpO7eTifDqpTKWfq0YJLs2MYyXY37aC49jHBKzogUoj/Px3Ngx50Nm3OId+CtX7UUJFrgYLFZE2PLUDKKI+WEDw2+cpwWSDJeEGLlXjNaEiXlqcPMeGcsSCEOKUpStXmggPqKzgSRGoAShYIhPilIyZxOJ169/pbj8cjLV3+DuEyIwjAcQRI+RN6/uSMl5dnTL7g93rPddvzoxQsOh46cM76i55IzMXqcg+PxwHK5tKDAMfHs2Re8f/+2ggszhO/evaYUePr0KT4K3gv397echp7NZsX1kwtibJDgP1oLKSXQgvfRggpuAmoTf/h3bz8IwwbYYhZX3WmZdUkP3euHVntCbIfjjnEcGfuBJkSurq64+/Yb7u/vWa8vSMPAzaEzuA/c399yPEYaPSAijENhfekQHzgej5SSOBx3dF1HTiNBRyM9NfPh5h39mHAx4MOCtgnEpsX5QB7y7ErPnIGqEfzTLWaHinswmDWwUI2ZIaJ5NOfPc+IQb5M4uEghzZwjQD+MFl3MEJuWvhR0HCipYxQheEdxHnUZFSVEX4MIs3LL+lz8jHCKFDzYwps1WoKouYNKwQGqdr1zAGTSjWGSB6QYghAQbAEXecif1L554Gqok2rmzoS9yqSOcajYdzsXUZcrmplc+KrTm/qPCSF/7A0ErW6QAJKRckbYxsFPXKdxuurM0CYtFXWan6TO42OwDUGAKrlgdrErokSJvq3fOVJUKSnhQ1VrVaNmBtDVqKvMWjCq2/bR8n7Qj6oZxIJH++Oe7dakT6fTiWHsGMYDzsHQnxjHvtIFpm00NA8xQrtqORy6eTxKtjHrug4RxXuZ5ULilJxHUkqEEFgsmwpIlKvLx6xXF5yGPbvdgbv7LV9uvsDHhuAb8Oe1EmM06qE40HOw8BxtV+SPs2s/IMPG+UbgPAEfTvgQAmM2DmGz2Rgf1h9JKXE8HjlUuchf/vzn/Ot/9UtCWPDjr35KKY6+7znu9uS24e271ySxHcw52O8PtMsFu1f3bDYbfnvzgdUiEL3j1csDv/jFVxRG/vZv/oavvv4Z2/s9T5+fuLx6xNPnXxIaz2phrumEuEoxUvahYSuuUMq00Kqbip9dWDeTc9UVExObarGFMiFVVeV0OlBcNTaukBOkMjKcjhTnCHHk/evX+LDgyVdf4IqZIqUlLhy9G/BNa4Ll6CmiCB4nvootlSSK1wZPQbNSii286IK5pz4hyQOFnBKuin7B0FBxvkb8PIVs6s56FVqNnKtTsBRwPBC0zrxxnQ94zI+e3lPIpSA66S5MmhF8rAbBW99UGcrUpnmVpmtURVQQCjGco/Hz4nLV2DsLLASUVMxlbWLEBY9bNPjoSaq0YWGRYxcYxpE8DoS4mDnDaTF7IuphTD1oppRcI7+ZJNGiwg7rpVHxrrr8arIdj7EGpoPRWe5x7E588803bLd3nA62eQ/DkTdvX1F0pG1c9T6UzaZFJHB/v+Vu3/H48Yrdbsc49mw2l/THkTSOtK1t7Iu2YX+Avj/Rti3Pnj3lsO94/PiarhsAOJ1OPHnyBNElNzd37A535DLyk5/+jPVVi4/eOMAUCetI05hbm1JCCAQf5oDPw/X/x6Z+/nAMW5UNzD9U4tmfFeSjV/CekYG//eZvWK+X/PSnP6ZZ/ISXr77l229/S9t6dtsDX/7kJ2gRDuNICAuSeLRdIap8/fPHvPvmVxTn6fodqDKcOi4uVuRTQgZBQsv1xWPeltf85u0N19ePwEfW6zW77R2//uX/wfPnz3H9W378k68Zmh/hQ0NypscrmFvnC0Qx1yfGBk1VaIuf3W0vZ/f0YX84Z4YPD6VMglJzV91ihaaO0ATKEEhDRPOA9wlyhv7IsiSkbOFmSWk62y1XazRlVDy+uSAXh5TGAIoXRhnRGhjIXsCb26nZ0EZJmbGYTkolgrPosIaAFqXkRNW04sXNWQOuTGp0V8W0HtUCaTRjUg2HIuRkQmypnJaI4OsmAJg0A3PzP53uxhtaRgVUg1iDJZOcIOdMCvZZpRSKEwpnEavWPp6yAJjQqDcuMEjlhIOnbVu65jGyXCJVYKyqpKFHSiEqBBIuF2QBjTcEN4x7SAN+TJAHghYL2FBwOpxvSOs1TWLqCXH6hjxYp/oYuNvtOJ0O3O9uebd7y/G0Z9TBIryauLq45ng80XeJYWwIsWH0MI6TLOkCTRuOp4Gskf3uSN/3PH36nKuLa8Yx1YDcT7m+vKBpI9vtDcE7hqEjpUTOe8po7nnX3RHjkmePHqOauX/3juvrL1kvW5rVBc1qg7KgiRtiXOKksQ2w6gZ9qBIPSdXV/uNM1Q/HsP0d2hSazjnz4e07bqNjuWx5+uyJEZEXFybuDIGLiwu0OF69fEcT17StY7XasNvtcM5xff208iye/tTRdSfaZo2WhJaRvhvZ7o+EEEj9SH/sEa0kuwRubkwLd7FZc3e7JV5sWSzXuBBrNMeiuK4oWmzRTAtnag81ep+2s7btYyT78LXQxDkamLNHNZKYhL9aJ0kxXk6KRdfyAh0TxSkNEL0gvkoqNMMDFb7CORtExPgsBMlmYJ2KcZUiaCXexTmcfqxJtFu0aJdqnqNhpSh5Sm4qOhsQ8fZ6RvEVbZWHkebfZSnOr2WYIs1gkVbEWLyzW2NBDUNPAdWEVKkKWIxpSsMrWo2pE7zzuBr9nlLzvDPUhptctPTRlU2uKChkVxG4BbwkZ0oZIWccxhWKMF+7adsmrtkhUtBq6MQpFI9UFHs6Hdjvd5ZFcDhyOhzoaiDldOrxPlTUmCuXCzlXiY6PLBaBEBqGYQB1+OBYrSLL5RrvPafjQMmw3qxZr9co9R6qcDylxGKxwKkzfs5HSlay1MAZ58BMjCbwLVOa3AMv7fsCh6j83nXy+9o/KMNGMfh9dXHNF198MUstXr16xZMnj/j6yx9xe3tLKDAOJrvYbC7pTh3HY8cXz79kvbrg9u4Dx6Njubzi2ZMnOCfc3d3x9s0rNpsVz7/4Ea9fvuRm2LN+5Mij8WMlK7/+61/z4sULhi5z+2HL68UrypgY/HtefP0VX7z4khAacKHKtQIlm6peiITwsfAUPobb8wA6nV3Tj56vf4dgkxPvcCETcmOLNsZqTAriLRqcS8fpONL3R1ZSWFw8powDuVuSvSeo8WulEra4ulAFZqlEMCJbvcOPD2QaSdCSEK16NJFK2Cte3BzF1Zwpmgw1JYxXdEqVsc1cGoBWTRdaI4/ikPJgws+T/3cXwfSMn7guVyUZGGJTICM4qap/EZp2CZz1bLMNFQEX5wXpgp8NvTrzLMaa3qVkLAW5upFaKKPl9ioJxXHaHaocopD6nvF0xIni1cy7mMdrAmPVjxQOthGUeeGXUijiCKHhzdvvePXqpWnNTjvevnlJKYnuuLe0wDHx/PkL0IblouFwGiEVnG+QKvd5dPGEGAM5KeKUNkQ2mxXjmLn5sGMcM2274HTsEYVxrJKqNjD0iXHMOJcoY2KzuWToR4JfMI4jSOHx48eMqeN4KhA9UYQQVrO8x8TaxXJj1Vzr84CW7xnpP9z+QRk2zaXqqKr7ptD4hnYR2d/vkWBq5mVsePXyLSLCT3/6F9zd7nj/7maWiXz91Y95k28Zh4HQrOi6I9dPnnA6nSxPruvYXF5wf3/P5fopt8MtmjxtuySNmXevb7h5u8d7WIYGitD5xJB2dL0ht83mmia2LOIVUhzOL8ipUOqAfZpRMf2eMiuK6SBmQn6KGE7v8SEgGVzNHQ0h0KaWrjPOMVeleSkF3wzkrEj2DMeaGuUj2h1RZ8p4cYHBDYh6HA1aLAoYgvFVUlOSBHA6cWVC8oImj1YknUtBvMfXe5FS0ZlL82N1DqeZUgL+QSb9ROaXnA0FPeib8uCxPnj8aZsEsFM6lsWi4vy+KeCq7vz5KhYYcBOaexCVz9XtxHt8jOTJ+NX0rFLFxDlnwsSRlmTRTcaztEUdURSnA5oLTkeCYLIPKgOjYq6nhW3M1a4GzrlJLTBRGYVBlLvtLd9891t22w+IKC+//Q23718TQuB0PHJzM4LA5cXI/d2efiiEZknRwmId8C6QEEq2ANNycUk/HOlOifu7d6xWK7x4ri6vDIVVPjIE5fLymvfvXtE0kcuLa5xzrK4XHA8ntFh+aM6jRfeD0mum7QNh2eLbhqa9pGkWBB9roOW8QX7cfr9n8/vaPyjDNhGvq8WyRkVN/Bl9YLGwRS3FRIZPnz6tCCkQQ0sIgeOxo+sGLi4uuLhcc3s7ENvAt9+9pW0bnr14xtvXL9nt96zWS8acaJs1Q/+Bow5o8QTnKN6iViGY5ubtm/f4K4/3QmxbLtJI05jsoAkDTlssZO0Q97H4GM6ux6eL9fv+fuiWng2dMwTilRgtWhxm2KFkMilZcv04dJT9PS60qATwlipVEHJIhKYliuBjM8schPNvoFYTqdVSiunkSJMbaJkFKg51ilLdH7XnxFU9lgrOZcgP0KjM33C+x3rPXt3sPtb/+N454pxxYlNylvdnY2QBBaU4w2+T65wxusD7asCdudaGHMREvyHgQvxoTCaheB7N/fRtS/QCLtANvUUqi6KVCwwOK5KQTa/mHOiDqirTXZ0R/FmX+ulcUFV2px33Nx+4v7/jdNwhmukHK1BQcmYYRvoeQrDiBCkVcy3jgpQV72J1cT2r1QaAw2FHShkvjs3mgrZt8RJYLtcInlPf1X71ON/SdZabO4vrcXz48AHvLIXq6dPHIImbu29ZBPBpMacehoqATUI0aQXLJ2Psa2Dke4f797YfjGH7ff51eRAiCRJM0lCjct+9fMkv/vJneAlozjTB0mjubrd439B3mb47sF5foirc3d2TUuL29o6h6xi159ffvmO5jqQ0crt9z+piST9AZmRzteLXv3nJsr2kaVtyUkKIbHdHkMipH7m73xs/dzSC93635dGjR5SixGbBsydK6y/Qkmjiag6GFNUzDxRC1eSZe2NEt38wmA+5tjOBPI2epeJYDmkJhcYtyNmEoUqm6+/xUkipMPYJxkzxHadcaJdrxpKITUNNB0RHx1gKLkfCMiACach4b4uwoLVyk2ngdDJa3kMyw6IIWcqcA6je4So6KWrcYylCzszGfrpHF8+aQPfpBjDzdh+76ueeUlIpMyLLgIRmJv8BolYecUJokwjUmUbNOUdTU/cGZZYjeO8Z+t4CWaNJNlLROSA0lqO57CK4kklpsHRAzRQRvMOqlaSMZEO8FrOZAiR+RoKTxOEcpS3z9XpvCecvv/01d3e3jMOevtsyjj05daDK3d2ekuHpE0cukdOpx0lgt91zeb3A+0jfD6RUiKHldLQAQNHCZn2NFzPaWjxF4Hgwvs6KRURyGTnsjzx+9JTYeMaxtwITd3sWixVNtIIUH27egWQWK89iYZv/8XgkqeP5Fz/BVy2oQOUXz7KpyfX+f5OY/dasAAAgAElEQVQU/4MxbA/dst8LOx/KQYpQxsR+dyTGyOXlhlN/ou/76jJ5YnSkmq0QQmSz2VgajgjLhed4FNuhtJA0cdof2GzWBN/Q9UfAocXTD4mmXRGCZ315Qbq3ROduPzJmZcgwbJXNZc+YR8Bx/XhLzncsmjUsTekfQwuEB6T6uVrHp618DyCZJaO1ntkklRDJmBK/8j9kZJyMgS3UrNm0wk7QPCKqjJ1xPG0wF8hJNAF7LjjJBLeYF5iXWvmimEDW0mAweYhzpDSS1aKLUwK7F1crSwhOTSsIBZdBfQEJ50TwOSIwITo9c2kiTHXB7Mc4vKnk0UOyPkuxiCrGzxVqDTFxePFzv06J/OLcLGPBeUOlziOxwXlvaVwxmtFzjhAr36ViBk0LJWc8ihZhzMm0XmKbgFJFtwopZXJKVs4K8M7PRmyWugBFPFXoMRuzychNGrLD4cBue8vxcI/oQCmW0RCCpaIE74gLq5LT9YVFu2KQgW1dL6mo0RPVbd/v94gIsbEqNQ9tyRQcUFVCbCmic2bHYrFgGDvbNEeruXZ1dcXx0M3Ceeczl82CxcLTLCzjILQrmrgwWmROgD8js4/XxJ+BYfs+Ldv024khkDY2fPnFC1IaeP/2LTfv3/Lo6SO++vpLNus17z/cWHRTPXe3W04nSzUahzyTv6fuRAiRp8++oO86UmpZtJc0TQOlVP+/YbN+xJs3b8iqnE4jsck8e/4lF1eXvH71DYfDlpJhPML9h4719RJP5ObmZuZ5vnz2Nev1JU3rUDHI/1DM+/D+5z5wHw/mQ8M/9UeuWjiHt1pr7pyak5xJBnLOLBYrpJwoTvFZyX3B+cI4HOhyj49K0Z7cr2DRQkqWTRFbXIl4KZblUBTJhsRKsbI4tXAWzaKlJIuwkSs/lTrj6jBNW8lTtG8qwaS4UFPToJYg0jnFxjI/JsFtrsnRIM6jpVDOiQznJlbFQ2oQQ6iGSTwypUMBZXJ9nMOlBKUgD1yj0QlJBAliekGxCLBvGihKqO523w9o31dNoaEzgnFkuZaVyuMwu1nTRhadXVMTPKITN1fIWqUvsxs68Ww21qfuwN3dHb/61a84dLfs91usxp7llw7DwG53pF0sURpu73dcXlxwc/uenJSLiwsryIqwvrhkvb7ASeC0PdE0DYtlS0oDDtOEUgXYaZxS1KxSiAhcXl5T8sDpZLq2GCP9oefmwx1NG+iHA6t1i6pVFXnUPOX6+pqnz15QZEGMRikB5DISfFNzeK18k835PzZsYO0HYdimXethm5Dbw/xRUSWnRGgaNpsNF+tLxCmbzYrFoiH3iVTTL4YxIWJ5lsulDdButzMDN458uLlnvV5zsb5EmwaRkeP+RE5akYsydkI/bFmsLiil0DaFD3d3/Pa7b1ktAlqM1D704Hu4edfhG8/lpVBS4ub2ljdv3rBqF4TouL1V1mvHcmlROAu1+4/c7bkf9GPD5qrLZK+d0Q0IRUqNGk79VWUl1SiQG/zCUcZEOnb4GKrQVhhyR3cUYmmRJiIlUEYhlcLQLWgJqCSrs+U94Mi+pgD5qsCvu/+0KZWaD+tDgzyIioq3a7O7yNX/eDAF1WQR6lw1jsZPWbTAzYvbck8/FjRPLUutp1uNkfgI3pu2Ts4Gs2BZLh5BY6Qy9BRv73POVTSXSNUweXF4aimq6j5nVRpxtYqtEpygKTOWgTQOkK0mn1NByARnBtcBWiztymGc4yxrUJN22BDbYxHT5r19+5a3b9+y3W45HT8wDB2Hfs9yGWsNvT3L9RIfF+TkuXr0jLHbslxa7ufl9SOO3YhlnpiqoO8OuDxVrs2zXCmlwa6ryKynyznTnwZMjDOQxo7TqSNnS7zfLFc2Nj7VbAZP0ZGmNSnJdrvFN3csN094+uQLvIugoGpR85LPBRAeroffFyz6fe0HYdjgd7Van/4N58q604QupbDf7xnHnl/84ucsFguOxyMSW3bbUy2XU7i9vaWJi5qDJrXSx1NL5JXAMFT+abA6a+2yJfWJlEbGbmC1WqGl0LQNPgSePn3O6XA7E9ulwLIxXU53Gui6gXZlCmu7vpFxHEnDlmGwtJNPyzT9u9pDDurT/plclYfkuqt5jV5tKTpxZITiBpwTchZDQCXR9x2ZQhkPtsnEiIRAHEZyzHVCT9eoMzKcr0cVP0d5PW6K5uVknFEl2edKs2oZE7h0DkjYjcwPizBnH0x82O+b7B/RF1Krjjzg51y0JHSTethrAZN7uHCeT1bhpOYsejNsLhnBj4L4YNVdK69o0bopu2GqqotVHhlGSjL3UChodWNnkn3SAGpG1QIuhr6tuu7H0mOZK6bc3d1xe3vL8XhkHDorgX86kpLxhn1fWC2D1Wcrgc3Fhtd3b1nWenk3NzeIbywqLrYhWS5yM3e4zSetGj8zbK6KyMdUS4kVJRdYLCyrouuOD9zkE7h+LqnUDx2pwOLCE1Kc3dgp2vmQU8vl7FX9f2k/DMM28wi/GwX8SJjaFaL39N2RzcWCF18/4a/++v+aZRxffvEVznlKf6J1AYkNy9iwaK2S6bubd2y3d9ztbtjvbnES8EQ260cUVZbrFTkroYmsVitDdq/fsz8d8UEooSO6QvQJt/bkrFxePWa5vWN7OyIC3Ul4+dt7Ahds/Atev/8r/ur//itefHnDz3/+U3anG0bteOq/YL26qqnvYrWsREm5N22PnqtSABXg1MhkPQ/Bi7mbWn0yrXwRGKfkfAtSWDTROJKQCX5JSoNZwTTQRI+MI4yF5rSlnE64ZoFvF2jypBGKCxSxyGAWR4vHB4/LDc6ZFGJMCSWT8jhHtoIPqBoidU0kumrY/DkBfagCzzwmck2gDyGQxrEmddfoI2rBifOkIYivlUVkDkAcS8HFyRX1hCaiPiB4UnWBEdDQIECsxiw6T2gq0ky5ohVFGHC17LhLZuXmyKlmgh9xx6NVStZMGUfjuigMecAVIQYrROnF1fHDOE3vUYRZwFESWoQYBxymn/Ti0QSvvvsN97dvuP/wDf3uhg+vX+Lr5jUcYHO9ZtGu6A/37O4HqzvYQNedCOGSrsscDjuaxYrl0lFywQcrrtA0C7ysjCvNQ014d6TcV6OsHHsLvOW+r0tWWbYN/dCRh55xOFHSSAiOw6HncukIznG473ANZDU1mgsNq9WGy/UjokSQhlwUihm36IWSpsioGDqm6gb/iPbDMGwP2h8KHthrH5fafvr06axd6nvjCZbLJceSGHPGB6vyWkrixYsXLBYNd7sbmrhgtdpwuD9ye3OP94HV4sLI9eI5HCxs/vz5c3LODGPH4XBPDIUPH+5pG6u6IRK4vHjM9YXnt799Sd8PHA4D//Jf/htevDAB4rt3N1Y6Cc/ls+cMqWdMiadPE+vVhbkw3iJG4kKtVAXm6E7Vas9VVqtvNruwk/5rkiyo6FmTpUoaysyVmEL+POzeW102q9M2klJHNw7QH+nSyIpE0y4ZxSOjw8fIGFqgrUU/AyJTZWCZ80xFYNSq0G8aHEI/DJbc7ixIYTrgmr7ECGKhhrEoxcUZwJWqjZvPRFBsA9M68dWMvsNkKlKDDd57mmh1w0SEIObteu8ZlSrvsBzMpmkMiZXp4Bhf0Vc0eqOMlJxworhSrDS7ZrwXgrfo7pgSuZa7LrXktfe+yioebNJ6zkA5I2+ZxaoUKCbAYRgT79++5Lff/DXH/Y5xOJCTMg6weLSpiPSeYUiU3HFxcUHZHhFRXMl0+471+sJ4VhH6MZNSRvBVctHQNA1tLdc+juaC5mT3Qd14yAVywYsVJ7WquzvGvjMENw6IKNfXj3l8XThsd/RD4uJiQbNs8EvLgHGh4XA4EZsTaSwsVhM9UM7UwkNP5o+UeUzth2HY5GNd1x8ybs45W/bljGhMR8P83pwzfRoZekMQ/WCk6hdffYELztxVtTy5YUjEsMS5SBpL5W9Ghs7kE+lk5ZByzqa0boxn6scRN1rYf71eoYyEAF1nVRL2e9jtjjx5eonqyO3tHZvNBWGzZrFYkPLA4bAHoG2WhkrUoL04U+dbe2DcPmofu2azar/ybtMJP0WU0LS4knDZQuklJvJYk8Cr4DPnjNOpGm62EjllIKeePLllNTm7jFalRPNIokZd00jWwjj25woQWmt0VMJevDtPVDEhrCBVfW/J/KL1HqoBsy4oZBJpMNfGe0/bLD7iX6eoYq6pOxMiMiNe5SiA81KFpqXOJYsi23dyln7U8KkSUB0syyMXsiZEzbAVzYwp4dODGmtSqKn/VmrIuQdcoGGQyfue3K9PW7E6ogxjR9cdubl9w/G043CwUt4WtRYOx76i1YaS4TSckCEz9lbdtmnMaC4WK1arlUmI5ETTCFqEVGz+2vZg6N97K0BQKv/rqGuxatWGrqekAS2pCsETTfC0bbST4nb35rL2iVwyrbNNczh1xKUdyhRjtOwcmCUdU6qkfiLxmTeA71kBf6j9MAzb37EpGSeBkgubzQaczi7jerMiNo5cBjQ4Iy6bgMuR++0tx76jvHnNOBrU/urFjxn6kf3dicvLK/ouk0erg2XkqasdXVCBpm25unpE0ZHhkOiPxlXZCToDWvpajXTEe/j6a0sn6U4Dd/cmalwtdyyu3+McPH4sfLgfuLl/z4sXP8JPlWGdlb9Z1YG3NpU1+tjIxeiBjzeB+ZEPxs1X42VT1JBIKZEmKtJZSD6NPWWwBes8hGJR0jQAu0zqI3G5wmtDGYUxr5BixtKKG5lLlNWqdqg4ijgyjdW/r0ZnKOcy6WB9TGOC4tgu8TNnWWZ5wWQUuq7DS0SS5QK7tp2jr1TEo0BbU9EKNVdV4tmAuoA4R2wa/IMyRWksptOrVVY8JtqlFBMvFzM2kgtOplOTMkKipCOn08k8CbGADFJoQ1M/v0ZaRYz7Y7rkMxc6IZZci4kGWTB0J16+/jWH3R2vXv+W7f0t2+2e7c0R7x1pBCs7X0i1nHhOSkkDMXii9ywbk1YMSbm7tdPGVhcXLFqjXLp+ZKrK3PcnADarNbEJ+OKITuwYyjLi1dfj8g50mhCUxsFy3dYj+wztFhdxoiyXS079YMLgPkFTePblEzZX12zWFyyXa5qmfcA5nvtCHvbRP2jE9qB9SpJ/+ppiJaEbbWpl22UtzS1AYRwHvK+nIMVAs1hwOWxo05LdYcsw9LgY5tN1RITjscNJIMamniXqUTVx5aIJVftm19Odetp2iWhdYM6qllImt2LkdILVytcFmuk7WK9hHKz67+l0oJRrClpz7vY0zYKmhazFZBHBksZ/t007/O9GBJWJl/TzmZbTewomhPXJdG92jkR1f2VBkwoBqxvWD3bGZBlPUMPvMXqbLaqQI5o8xfc1SdyRBq1RTyUXRZLg23bOW4UHeZazPZK5JHoI4YHrPJyLYNbWLte40KAp19QtO11rukc/nSPKaOiyIi47n6XW+ps9g6mcks6oSYriojsT+BV1iVLPq7BPz+OIEZ6G0sb+yMI5VA39WVK61JzHGhCYx+HTHINzPzyU/pAdOScOh33NBBgwKtOKVjq10k7744BY/IfVqiUGYXfXEbwJuUvKaC6knDAQPEVcreBl0zR18/BzP0yBHik2jnlMdgANRhuMOZF62xCnApSr5ZJh6ChFCTU3V0UYx5FcCllguYDlck3bLK0CddNY9pAL8zjPQcGp8ObDwNI/xMwDgXmnnkSID0+qgsng2dmFTdNYVdtmyePHj9nubnn79jWPri9xThhOSogrVOFwOLA97K2i6JtXLDdWZffVq1eslmuePHnC6TigRRnTiEWndO58xGC0c47V+mI2ZmlhrlAQK8vdDXuci1xfn92jvh/YbNa8eBG5vz+y3R5492pgv1uTU2JzccVisWK3vyWGlqtHTxkGK/KXY8QK2RpKm0Lw03F3qqmaKyYFqvWhOLMcyeGCRe2UwFSUUILDaUAlE7VWmtXEcr3BB7uXNgQaVYY0kjSTxyP7+xNuZ7xVJ/fEZsFqdUFoVtUIWAZ3aKLVhxWhjIaeRcQOXanGFMw+WgHLUJ9z8+lHuUYgUa0liqY6a96kJv1QNxtfk+6FjB3kI9g5okWm0xqwxVXKfHBMzplALV6oxVKdiqE2VatvNs2/nDpK7hFNlNQRSJQ8UrRHSiJKwYuQckK8INVq5wzO4qRMmSTT6pzm+PmQonqaWD3H4bQ98e13f8vrNy8Z04kPNx/Y3e85Hq3unm8d4iPrxjY/KwaRGMea2VFpGnGR42lAmobFYsl0tkgpZnTPByY1nE57BOj608xbIo4gVvLeIaQxUbqBpY9IkHrWbSENI3m0ApzH/QkVOOUEYmX4kw6UPHJzc8eQlMePC8FHKxBR1/dDobpwBjgPhdt/TPtBGLaHOrbJmD38DedwvwIhBrIqwzDQNA3r9ZoPN6949uyKEBx9MXcgxAW+Tzx+/NhcJafc3n5gf7qfk8UPerBUJ2dH+lE5owkB5DIy5ERb803v7y03rmQTD2TvKUSuLp6z32859XYY7TCMXFwsGceBpmlZrxtUhd3diUVc0O0OVgnhq5bj9obt/sDV9QV9Z1HB/XHParU2Ny1aLh0iiMfy6pDpnN0K2W1xy1SB1HvjTgSyzMW2a1ltE+hqTeXyKdk5AyGgviOloVZ9FZgej5kio3FHIZGHjm4cWW6qKJdz2Z6xnhAoC890skIupswvrsokipUnCr5FciH3Qz1CrrqAE9dVxz+Xky1CTPrmxFHG3jRv1dVEClkyxUPR6fzVM8eV5+KWDq0lfUpKnI42F2rGFUEgNE09mSqBy+Sxh9SjZaCknlIGiiby0KNhjbiMd4b6Sy3NZP3v63kYDq0BEKjVOcp0qI47yznub/jw5jXfvfwtr1+/rsit43Qq5GxAviCUMjD2CeeEsNzQhkh0kSePnyPiGYc8C2oXq818yEoRVxGz1MwN2yzbppnXGaMVMzgedizbBWQ7D6KUAimzXlkgIm+35GJBq+5gBn25iYzjyNAXS8+THgngG+Hq8pqrx4+qG7pAi+kAZyNQEZptBvXp86k6f5RN+UEYtoftU6P2fQI92/0y0yEhUwsVHTRNY9UKioWqLak3sFgsrFqn9sRohQ5PpwNoIEaMtK8GNNfzO+0A5wbnHN2Y5l1uSjafghUiyRKMgyOlgRDsiL5xHEkVWq/Xa8axpzt0xHio+XZblqsNh92W425L266RtiXjGQZLD3POzZE1sIoeJsI9900R00ZNeqhJZGpo4YHbWv/P1no0hytQF8ECyYoXj6hVxPWqiFiSt1XrndJrIOPJ8QQxIb4F1ApKYijE5WRnIoiY8SogxU8QHScej9pJXlYmg8J0wvws463v17rhiBW2zKk6jGcZjGDnKwRH7QtqStO062dKUUrxdv5qKfN5sVK/1/rXW3QTh+QBHTvS2NXDok047MUMjHgrzeTFULXWcyFkitQqc8bEmU+bSnL7M8+XEl1/ZLfbcX/3gd32nu3dPaXAqRsq2iqEEOegT1tzWClKu7Kk883lI8YEfegpNdCScqbvRmBEQiRW/lZEmAoDzHOpfFyBJtbqL1qDOadTT1PHIvWJIWW8t3t3zgbMDoa2szBSSiYuT7XIQE3Bm47V5GGVle/hIJm1mf8/IjYR+TWws9shqep/LCKPgf8N+Bnwa+C/UdXbP/hBqr+Dzr4PsTlnLsqQM+qto66urvhw85bXr18hmAbs0fOf8ejRF6h6xm2H9w273Zabm/d0/ZEPHz4gYyb45v/h7k16dEmzPK/fM5rZO7nfKW5EZGclWUXRqCXEjhULEBJbdmxZIPVXoNes+ivQOzYsetOCFQIhsWfBqlTVKmrqzIgbcQef3sHMnpHFecxev5mRWZlVRSsaC7ncr1+P6+9gduyc859wXmRaOSeMcohVTFrlP8sCu1ZBkJzr1gtPPRufx5ToOk/JF1JqiJu+Fr7aOsyN00yXmRwDfrCcnp7443/8jylp4q//6v+h72U8/vLLn7diw2qe+VwMrNYb2WJttKBsVS64irhK1KvUSq13vwq5oozCmILO17HIeUV1GWrGWE+Yz9QcmeeRnBO1FHpVpAusiTJP1JhQrjTfeishykDJR3Tj1cUsXaUw9iV0uRqDtoNQIqzYUOkiNyJqvepllQKVoNlih2lmnoUAatU1stEZS+pMy15dCJ8SAJRXMMFibWBrpVuax7F16oXSaEOJwnhpJowcSeOMygmVAqSZkrIEv7Q8B9dtMEY1ErIVmKaUFSSRC7aKAQGsq5bSyKjjKDKpDx+/5927dxzvf8nd3ROnY0ApQ8qmifDlfY5pFvK5iqQUKUWTq8ZZT8oG2rhZ0Kha8avJpHT9i9RPlCmLJlVQUV3FNooiodshhNbpNxdo7SRr12r6bsDoyBhmVJVkMIWscW5vPcpYUoloZ4jqzPl8Znu4wbQ82VrVet4978c+L2Gt4P1+Dds/SMf2n9daPz778z8D/o9a6z9XSv2z9uf/7rf9A8vi9HlX9qvVW2vNXJy4jdoCRTzSD/1LXu6+ZON21Jzpho7xMeKMZBLsbw588+57Pnz8wPly5O7ujt46khrIpdD1W2rSaOsIl4AxDquNEE2BzvkrqVKrFndXSVUuGrTckbWyaNfh6wuMu+YpoGdKHQnxwuPjiVOQO5v3B44PE9P8BPEv+OqrN6jpCOUJhsD7X2hev/lKAI2g0KrHdQ5lF3Y21Cx3Y1niOqSryiyWjYt3nWIP9QouADJ2tsJcVKFog1YJ7bvmSlGpzlJKR9YaZQ26IWipOUiUAml+gqpxWtLPvbWr9jHaI+rSY5zD+p6QlOSp+gGUIkaNnp8wfU+pViRaRlxXx1FuUra5XWgV5WZTpVM1iNDc2ErOIt8pOqBqj9VXM8iY28VTq4xeOlFS4TGOguDmSE4zqmSckouZGtFVKBX58QM1FSHT5oJqy3ex2TF4Y9GmoanOyo5NyShV0CjlmruxonBm6A/EBDmJ7bU2ibuHX/B0euT+6Y5vv/sF0/1MnDQfv4XNJrPbbOSWVitJS3FMFb78+j/gZn/g6emJGIR+MU8J7wURN230zizW4gqdtRh3tr2muCArlFlG0UxNiZojJZ4JubZNYcJqSAOEOTDnCYVGm0rnLHFO9M7gjJVVQknkeBGuJ/DlV1te7g5sTE9vOywVq5PYXanPcybQej1XFxjhOWXmdzn+vxhF/yvgP2tf/4/A/8nfUth+12MhMi53aKUU1lnRXlbNOI54b9nu9BqMvDnccnt7S60V38nTnc4n7h8fAU1ne9mHNCpCKYVU8nonGcdx/V2Lg6oxemW8L3uSxUpm6fAWxwhlMtYZOt2x30cuR7nbTvMFpRVdZ5imiePxSKkeo8TR1KhAjMLypmh8H8GArrK3yoDXHZLqE37FJeTz1v2HuuHPX9N2c2nBJSKnMaQ8UasnZwlcLlUMFXNdglBEDlRrldEtN7voBnAEW3ApYlxHXxTa9VALNcXmQGuYzidyjnRDT9HCrUpthC0UQhOre3/l7Im+se3cqm77qorKEswSVuBJ3p+YmnznOa9MR+lKFmscpUgpopUI3OHXgRttroJ1yfW0aGNYwmuur/319a9VHGll/BdtZskS2RhiIiZxoh0vF6ZGvxnHkTRnrDhANVKyUC+MLtjOsBs0u90O6x3DdoP3iRACtbBKm5ZJwWpZE1CVpJkVBWR0tRQELa1pah1tm0Las5EYQ+ngocpNXEu3V6r4vtXawPJUoMRG+O1IFbJOKCupcvM8r6acy4dS9rMm5h/q+PsWtgr8b0oG9P+h1vovgLe11nft778D3v7Q/6iU+qfAPwX4+vXh1y6433bIz11FuV3X0XUdx9M9XecYNnKBHT9+5PiLX6BtzziOPD09yS5jmpguZzlpdnusFtqB1mC1onOe2rILSrarvbU83avv/AKNL4z40+kkxnzGEOJIyhNKJ7oerBN6wqtXjpQK0/mCMRbvHafThRhH9oeep87x9PTE7RsJae6GDV1XmWdHKR12kL2KwhCyPC5lXCPQqnU5/dmb9AMnzvM74FV0bDBt3M85UZOiKiN8tVJYfO47bddld6gz5EKYA7VGGWFb911CZU4RpS44BboI6kyzD1JazBtr0qTUg5eingGrHTVWYos1PM4FY+T3zlO+WiNZ1QqboLumQAoB1fZX1khwybKcLlSoBZ1EYVBzwuYsez4q5EyJImAvpeDb+WaURhsrHZ28Utc1wBrxd11fGGMkJ1sVFFaaRaMFga8KInz69IFxeuTdd99wPp+5+/TEPE4YLE/nmZsbR0mFlAIxF1KF271ht9+wvRnIeebxURB/KfbTNcqu1pXndzweG53G4I1f0WHyouOtpHxujYII/amFMI+kcBHicc1tz7dQMyxOQ9KaaYrULCBCzBlrxDq8qMQUBOx5uH/ip7dv6AZR49jmd5erXHufaUafoaPrNf9vGRX9T2ut3yilvgD+d6XUnz3/y1prVUr94CNqRfBfAPxHf/hVvS5Vf3NxW4IynmdAWtNhjeOLL95y/Kv3hJC4v//EF19vePvlG25i4XQJWGv5sz/7M2KaidPMtrPEmJhOj0zVoarmdJzYdAMvbm7XbkwVswa7LlwrlNhIU6/CfArc3koiTyVjbEepClQk5VFUEKkQVcJaje80MSZySCgFKcsJdrlMxJiZ0y8wRrHdHnjxslA1DMOGosQZZNhuUMoiDqhaZDLqmVzqmTtIVc93c7/On3r+c7L4zqgiQniibe+X3P1VCFi3kQLmAlpfRCPYgmVSmOR9quCUEk5aKRxzWEEY44SmsPCdUslo39Htb9DeY2yHsZ5YCg55bXMVmU4p4hLsbNdAntqIwUIF0jmKdEtZYsnsdvv1otHatr2XhixWRWWeuYQLKmd0EYshcsAb0TpWdd2xAmuBWG4MukK1EkF4LXBLHW3aWLLsxuYR5zvCnPjw8SPv33/Dx0/vuH+QwGDkejoAACAASURBVOGP7++YLwkdd6QAG2/BQ62F42lm2EHXa0oNPDxcsE6S0FCZSsJ7Qy4zOl87NgCn+8b2SaSSIGsWvXEtAgwYlaWbjorYrM3jPJFToJQqcX9KQp8BUaDUKlZVCrBNgaLlPO42WpDPeaJq2c8VJV1dKuV6LVV+54bm9zn+XoWt1vpN+/xeKfWvgP8E+F4p9VWt9Z1S6ivg/e/4b/2tP/N8bJKF45KIY0SmlAphThgrSdjGefyw48WLLd4LobfWSqiThKFk1SxjmrSoJHJOpBzlhK2yDHVVxjSp0artl2T00xUwBtuyLmtdxhZFia0bwjRWucSKCcqpGqlYN13ewuUTtVjJkelykru/9Tjfk5xDRU0q4HyP7a7hzNTPeX8/9Lr96te/9j3j2uLfioZSK7l7A7QRxaAwMVGrxTrpELXWmKLIRnz+yXLBL5d5zYWaElMQBcZz51vlpQtTuSPXhBs2+N2BDNRc0S2ubg6RaZ5QSPbE8jzXkavJouIcGKdZJDqpEnyH91CrpaqrX92SFaKVWnWQtRRMFTqIocm0GtixriP01Sh04RXKKPrDF+fzdYXQQyrTHBinE3EeifNICs0vcE5tbynqleW1SmFms4XNVjcAQTqoECZqXgpEplJRJVNUkXyQxrsRFsHyNWB8A5Oe2Tg18ECp2mzRC0ZOq4bsXgGrdXppVllUCKGgtTQbMSe21jZJG2gHfrNhM0gWcN/34kgt9sm/cbf+/Ph9x9W/c2FTSm0BXWs9tq//S+C/B/4X4L8B/nn7/D//Lv/eynhWV5+t57s0QJbCSu5+y4KYqtn0W376kz/gT//0/yaFzBd/+GaVWj4+PtINe06n02prFEKinNodOAdqyVANQ9eT5pmpaTi11gzDjjnIPkecR2EYBsoSXKIUznhUgVLF681YqEUkV1DYbDbtuVU6LyNOnOb2O8APfRtpsxQOYwnTmW9++Tf4rm/RZp5SAzbsVu6PUrcs9BahDohR40IRWUnPtX72Wj5HnJ//WdxBFgtuQVSt7aUQqIauYslFkDKNxvm2S6SDIt1ojLJrrOexid0NtSRiEI88UiNkkimzWI3Hi0L5AeUc9viE7XaEXJrrsOaSIiXTsiSqIIOAU0J/wGjCPJEuJ9nzGdtQbLfqIfu+B3Rb8gvp1DmP9h01RlQSFNoqDSmiFcSMFHmjsdo1xFUcZKuqEtPXNLHL672cO0tcpPeOECdKitzff0JXzeX0wDg9UUtEqwwp4pXGaM1UhWuWksjcho3FbxTGgLOAsZzGjO80zmimaaKmhNWGEMUqSoGg1VVs7gXhVWgrRODFpVMpoaSIPK/d5JyG3OIuMWhz7VpVEkqUUqrRQOQ6GwZH13UcDrfknHma32GyYrPv2ey2YB3Wd4SU0VbskJQ1jSws5+2vkvKfl7Ly+9W1v1fH9hb4V63oWOB/qrX+r0qp/wv4l0qp/xb4G+C//nv8js+O657rGWLaPhuznHSyWzHOibeasiuJ94/+6I95+/bEn//rPyXcPVCr7EryEjdQrhe7VrJzK0nEvEuxKFUxTZOMI0qhmyzLWoPSIlVRuqWUK9qIVNbCNo7NO76KwmG5Y5pG3jyfIime2OwcqciyNUwX5iAGkcZ1crNMgWmW3FNjn8HmahmLmjxI2c9uFMvnH7oDfkaS5nl3t/ZeK5pWaxar7K5H10KKkzj0Fr+Sa/u9E1pGTszzgty2VCey7KlMbWCzIiJctnC5oFMlpMzQ75u9dcBoR0qBcbxgjG8XSCXXQk15dXlJpdJ72UPKvk5jln3euu7QTdUgXVg1FVXiurtbbrCGzzMXpDvUq/24gE3XYqatu/7/jTcY0swcAtN4opRMLZl5vlByFD5le+wUoYSEUEkZrBWFb0qROkvkouktzjv2e4dCzr3eeaaYKSlR0tXGu0Q5r7XKcp1oTUmsZgdKqYX1QeXZc9Ctm65C80AtN7y67rqWU0MBztrVPCDGWQwVNBh3VRA576F5IV5vxFft83Nw6x/i+DsXtlrrXwL/8Q98/xPwX/x9HtRvPEp7pde1nSQXlVJwxrPb7Ilx5v7+E/3uQMqVkDXzxwfmOfLtt98yTRMxZOIZSoHATGjgo3M0wbP4Smmj8O6acCRBEwZVHMablYiZo0Dt2lRSntBakfKMsYqUZowVvaT3npp66d5LILf2v+RM3/cc9rek6SMhZPokPLg4j8zhwjw9NYshQ0E4TUmVdpLIxSlo1TXlR2uD0tfQ4/b+yPP5lW5Yvink05Ubwq+PsaUUut1GLvIwQ205Bs5CSSTjMS01Ph1PaD9gtcZt2gWXxQdfZfE7K0piBrWxWGOoSrM93OD8IH53h1ucc4zzBUmPrxQ8zndio61EE4yubHYb5ssZM0t4bykVbdxVSiXyUEH27IBSFa2bSWaeyZeG2OYoI6c2+DZ+loZOyk3wioCWCoujsQTcNKpLClgnY+84nZnnkafHO0wzuCx5JseJzilx1W3cMYqsKzZaM3SyCJinSuc0/bZnf7PBd5aQA4ftazrb4Yzn6eFMnGa+/eV3HM9nUsjEuRU2G5smGFAVtwQna7BKobWiLrILbRrwUsmpASOqBWqnCjmuRd81p5sQg8Qm1ivNyXcaZRTn84WQIjctta3vxGnEeEcqCf1szF/XOz9E7fh33Y/ttx1a61bYRAoCwsjPWbPd7NltDxxPj8zzzMsvNgybLfvbt3zz7gMvX8oY+m/+zS+Y55lebUhVCpJKRagUSI6m1UYMGFVtlsdOLvoi+kttaPbPBWe1dCJKLJDlTYfOdozTkZSDaDWhkSoHQfCyAAzaAEWY4UYHnOsoZeZyjmx3sgt5//037HYbxlGY6cZ5Xr5+i7OKNEW5qIcdNYO1Xmgb9iqqzquoWI7nOyJ4VuyKEGOXU6g2Zn9tnZqMDCKDMUZhN4MUAgo5aqgi29FFLt6N24gBZa2kVEjThOk0w66dxEXhNha0wvQev9lirCWUynYrduzWOkop3JQ9IWZAoUwnlkhWum1x8xDULmx2dF0nhgNFEslTLA1Blv2o6wZylaV80mJcoJRD204UHBpKqihtsK1js0pRrROlQaOXLOPT4uIhZFL5+a4byCVQSiSEiXG8SOc9x1YAE/N85nScsM3mqSZwGI5jwnfwdDzjLWy2hmHwGKvJMVOsZej35DkwTonv777n04d7SoDz40SJQDHouY2QShDvQsZpKWQUJcoNTSPqNoQ0VlKN5FzJC0l9IVwXg0piRCHql4rSGaVkRNZWgwoobSSPo1SME7PP/X7PsN3hhw2lOecqJa6/QhOt7WvFD60rtfr/cWH79VH0OsotVT6lxNwoGCkljNWr+eSrV6+Zppk0B+LDxOKdD837vtZnS/yE0pVar4jXOvs34k4pdeUK1ZhRekFroZR5LSDPpTS1JUkZ41BKGO9d1630iWUsrSmLP5wuXI6Jh4c7/LBh2IjxY4mREEKTpkRJ1aqaGGMrbiIylsd6LWI/2KmtL3C+QuxVr0KlCq0dkb1U0UXGuOV1VwqKkwW2s9CS4ktOQshVknPaW7ciigVwzmMHoZRY71CdoyoDKWJdM79UhlpE8tP3PbVCrgarHRiNqcvuMzZQRmNdh/MCxIhsp6Cyk6LcsheckVwLXRKqCjJNNljl5X0UQtjnfhzPd5NarWLtBYlei3/7mOaRnGfmeWp5n1J8U5Fi770nzGKpbbWm85bzXHCeRj0C5/VKafHYRqWRYhrHictl4vHjE+MpUKIih0yJGl11i/OzxDqLT2kF2pSxOPgtWRkV2rkvXWnORfSe8r+gWqix4io7LEXsD0TQoFojIOaUcppXnLcrvWOhZV2dXD5fi/x2RsSv+9b9tuNHUdgqULUQT9XCb0Tg5RbNIfSBNiLltaQXtEnkGtHGU7kh58RuF8g5EUvkr7/5K6ZUeZweOY9nHh7ueXp4pO8U2IwuBTWBthVjm6Nst6BAWsKO221FG01JCW0tSkVJKkqRyzxja1MtWC9+9nh0EYPGWiNag3NK7K+1pWYjwnoj4bzOKmoemThJ/qXJhCmhq0ZHxeNfHzH2iPbfSkZj/oS7/ZLD4cA4d7DdU0rF9ntScihV2ZiXkttYE0bLTsO7ZvDX9izLobRC10btaC9vbtIgmhNFRqx9SLV1bYZIEeuZZquthy1xHtFaM8ZZsmBLxVaDrpWuG7DWEnNh2G6YLet+cDpfsMbgqiafZV9W8ySUEefZbDy5ZMI0sdlCiYXL+cx2u5WLxmvK9rCSQOUBeXyW7s1auxoaumVvWA0lGTSF8WzIMZKjJ3e5ARxh/bfEL05dlQ2tE06DkE83nWO8nIhhJM8n4nxPyYEwPRLDhfA4Mc8jIUxiy+2ynIfVcbi9JeUzcz7yqhONousUtjPkmnj91Rd0XSeAhzG8e/eOy19r7u+fOD+BNbKWqUn4czEmObdqwDjQvSD1ulaMFsqSkI3FTSWeG0UkZkppRaZYnGspUlnOW2VyQ5wTylpiKWz2PbhKqhnTO4oBbQq7w5a5RoorFJeputD3Hq86VHR0yhHquG5wBam9FriFmfB3OX4UhQ1Y7V4EcWnfU63GPeO31Vob4+IK94tbqOfm5kaIuOcHTNczxshw84KXN7d89+57pmnin/yT/5A0zZzfiXxVa+g3MuE6b1demtx1CzXP1wdZbSNe5rVTW0wRcypol2UFviy0awZbMb7gvUNjmphYzL93my1d76g5gyrEaDC+vSXzI6fHC2kWftbpdJSfjZHTBdzwntf6Fqs6rC+kWJvNs4RDxzlwKWcBVbwmN5LtwseT535l6MvreaVhyBsgb4JSau0UxHq8UQd0pRTb1M/tvaDim7ut7pxQPxCCa+8E4U1VPLceHh4wB6Fu+H4QS/fzmRKDZBBYjTUGbx2hVs7nM7VWnJPitDD1xY/PsNEbQojiGtJE1iHGdRe6IO+Lc4nWskbQDek0TTalK42hX4k5iOVSY+Nba1GlChFWiRuzLiN977Fa8+HDN6RxxBA4H48oZmqZmMezUJGMWXevzlqc0ZxPJ0rRKJ2oQNc5pijAgrGWzvkVeHn37ntqypxPE+ODJsyy4pjTQhwWAKnrRd5USiHkKGn1BbQ31GxAVQGjTE84nzkfp/YerhQ/tIZ5ThThLQsYpqHvwXhDZx2UyMPjheHGoCzEXIlTpOvg4fFIvx9wrls7VNd5lBKNaq6mObks1/u1sOnK1fnj73D8aArbDx2/2qL+UPVeTtRaxU3Xe098iszzLCxye0RpS0yBlIJ8n+fkVLXy2z6jRFQAg7Z6LWJi56OpVagEKweoFLzxYqlcMqkVO2OVjKi1khC7ZPGZ12htmKeJGCPDppPgYevQTeVgvIi5VUlUrVfENmc5uaYx8HB3h6qVw+2tjAU64rodqITRG4rOUBR2oSjkKxp2ZXqb699dl2ttn0Yb1eVjpYaoZglU5ORTz+Vc6vp+lSIFXGuNa7uyGKN4xtFuXEpBG+mHwQstBEm4orC6lJQUGpKWWUwra630XpLDnpNoWQKXEUSUhapQl82sUA2WJPZcS/s7g7ZtdC5iwljVBtP2hEthM7SuTRWcMviiKSkzXU6EaSTMF6wKUBK1JhQZZw1FizGjVh3JQEgzlYix4l7iTOXmAGWqbDYd+5ud6HgRVYszQjAuykAFox3OJeKcVzqEVouxpxL2fytQujUJKWWs05RcESm8RuOwjafY/AdowPEKuCwfSkEsQK7EXMRy3ea1q61GYhXlXGqkIGVx1mOclcxYJSqPWvOz6UxdMcHfUgt+1+NHUtgaO3v9kxyL5n/ZEy1fV65PtNa6FqY3b95wPp/59vtMmGecUtx/uiMnxZtXr9kPgT//s3/Nx++/p1cO7bQ4FWhxfp3G0CgegvQBlDhetYLtIglpXouE+MJDmhrE3lwkrFLC16qVeYrMp0h4mtluxejS7wQdJUmWgvcO1zncwmK/nDBegTKES2zGfpkQwHo4Pk2k+gGVE713K5XhYju08WyHHWmSpXZ1G0BGjU4L56uWIv5tsraVVUB5vmeEWira6mc3AXGqrc60Qp+wrSvQVr636AFjTnRbQU+nlAjTjEHG4Vhkz2WdvM7KwP2nD3BzC4D3ltPTyJzCmmWgvGXoB86XC+fzkS5JfOHSyWitOZ/PmL5fl95KazrXUEi9WAQJWhyzBMeYqsTEUitqkX1hrc2QE4MyFj3U1nVWvJUxv6QsSoLNjr5mHh8f+e77b8hlpJaZOZ5wKpJTYBqfsE6KawgTSonF1oePn3DOsd14dNVM5xNfvNpwuXjO5zOfHj+hFHSDZ99G7JIU0zRz9wHcVJjnTIpgm4ytltIQULGusk6zGaoI45Vinmee7iMSSD/i3IjRvsmrZLxHgzEiRI+lSH5uK0DOWkJMjLFwCmcOry3d0HOJE6qIU+7t7UEKi1PkWgixUJR0x8Y7IVM3XqR+popZAAJdufK42pe/b/f2IylsSO/Lr1RuwebbhfV5MWP9kbbriZFhGOj7nu2wod/u8JsNN96LVvRyYjxO/Pt/9HM8mr/+878Rm5tUSSm2hWbbg5dCTaIicAqcNlf9Y2mWRMvtv7b9A45xmpiloxf3W0XjBMlH0oVyPvP04cyw6/n5H/+c3c0BPWhiSpzGswjMtcLUQjf02K1hthN3Hy/YNvWlBDVpKGeeHiYul49sdweMd8zzmaoNJU90vaQTzfb1urDNbVysCxJVSmOmS3dUkWK8/JdC4LkqzhhD0bFdpAGtxWFEOEyZcZ7akl86aI0izjOUytPDoyzMw4T1jm7w3D3es9vtEHumSOccT09HCQypkk4lHWERaymteP3qlSRCNZAohMB2u6UglkYSFiLPdxFqX88n0FrRD44cIiEk4VdpEclTFTlmrBVKTckzOkOmkEpiClGQ7ihAzzxemB6+4XR+4ttf/gKrEqpkVL6gTcXowm4jr4fagNadeJXpzNdffy2h1UH0o48P96R0YZoj1lWGTrPZbDgcDsSgCJfIdJ4pWfPTr17yy7sTMcg5OE2ZCAwKzCD0DIXsda0G8Ti2WOupKWDaJZdmTaqVVARAscY0aovcAEsWw4WFDx9jxnYOTSGUTD9sCWUCJSaY4wT5/olOQ8hw88WBnd+gTbdK9lKNWC05vCZfeWwLq63AZ4zcyr/DqOgSca+UEBKX0ceYZ0+8LPDzdZQc+n79vjD0r38uKfPi1YFLiHRdx7e/+Ja7kLm7+8g8Z6q/JvEIcVAW3cYYLmMQKU4CP3Tr6BNSaB3Bc0WEJk6ZWhTGSMeTJIqS50SLpdBlwJiZj+8/oZ2l014u9N6RkCSfXHumy4i3hqIKS1h5AwrbglgyLEOaMA56teEyPtJ1PSnPbOyWXCZJk0pplZVd0SfV+Hmyx0spCFUihpU1v5CIdbMpL62gLQU+V0kAizHiun7dx5Ui1tym3ZjGaVx3oafLmc70hBB4vLtn0/UMwyBWOUZRckZrxdBvKTGBgcCSMSF5AMuNxiIX/7Ji2Gz34q/W6BghthG2nTO1NDuiKIXRe9+cN3QjopbmPDELWtlVjGqeekEkUNRCCjOawnR+4OnxE+M4YnUlTRO1RKyS1K5SS0NdFaXtMmNODA09Bk0Iicvl0lj4ogJQRnSvpUQulxOfvj8yXiqv9q+pWfPx+zumqRGSmz9VpwWpjlEIstYu18yVqK0rbLeOGCpzEE2vtRbbSLmp1tbHt3lJPF0pCenkmnyv1IRzipQyuVRSbTdxC9ZYUkl0w7Mci1JxXS8zsZY0MWvs6hEohGY5nq9LePa93+f4kRS2ChRQi29qa4W4PjnZ11xH0eWJi/e9FJnD4YC1lv5PBh7u7qkovv34kd3+Bmstx8cHcshoBV989ZJaqwirW5HQSpFLxmmLt6CqYr4II10KSyWEvJ44y0WstW5GiWX1wFJK6AYUKULrMy3iAluT4a/+4j3vvn/PzesNw2HLP/r5T9BKMU8XtpsbpikwzhJnZzv5t9boySKJUjmDUfD4cGQeJnZKYtuU89SapdjYGw6HA13fkRF001hDLc09VQtGWLRizpGqK7azGKOYR3ECNkUkQjFGbC9j1f3jeaU6bHf7dYemjOH29iVTmDG+w3UdVhvGy4l333/LdruVC9cpvLeM45nXr17x6f09zorjSZgulNJ81kqhc4aSxCDAdZ0swpUm5YSpht535AJeK1zvOZ1O8ridgyKIZqGSYiROo9BQtCYj6U5L0ZTQl0RNmVIU1ERV0rmP4yN1vlBzYjw9CP/wdGR+vCOFgM0BrTJZZVTOsoOqQrzVWpFKwhlHNYZQFDEqokrMsVCywvp2EzeW83hqfPTC8Tiz3+94++ZAOnvuPjxxvE9tBaNQKjXSt3Q7iw42JaHJTLOiIiNqKYrLJJw+34lcLSfIRq2ThSzYpCB6Y6i6rv9oVtKBFwWDN5ITAXSdpx88qQZ09UROzCnxcrNl0zhsw2aHdQOLOUAsCVfbKoFnK6hnNWz5+jdIcX/j8SMpbHKIJtGsFVu+97xq/+b/V/hKsnPpug4r4QHkUghxQusNOUbGy4VwnlFGOrvLJeGM6AO1uXLVlq4jRZhqpuT2ZsRKjG0hq6FaITymtEhJFta/SGJqlpNByKGK8zFgDPitwznwVnzcuFSOD49opwkp0puezvfkFFtugqIkKZa1COM9RRknXCe9l7VO4Hltybkyx0QlsvWGfhiEL0cl5SyAAopaakuSF9vvNSi3SgBwzBFVMymIfY5zDQRIidPpxO3tLf2wXXeQrusYhi273Y54Ei6hZCdEUstmvbk9cLmcGXZbbm5uGhDT3ChqpfduBRRKFXAoT6yF0zRrnmka0cauuzadG2hQ2y6wueJWpdYU+aVTU6Zcn0uMUESSp7QEmBQjxdtohVE0Q8rINB6pOREuJwEH0gQpUmOgxJmUZ3KODJ0XjleV3aXYYbdJAvGcK0oz+IGcFqG9aeO1nIPaSfcmqHvi+HAkjx1xioxnIKZnS/1FlJ+vBW5Z9ocKZMnLqJWYa+MGRhROTFOhpdsLFcg0qs9iFLkK5oXJhtHS6ZUoma9Va3KopFJQKuMGRdUKP/R0Tfi+PD+tLLXKSoBaGq3j1wEERb2CC79nLflxFLZaUTWjq4Ga0QiuLOLtitRyA+bXwYOFwuCcWwvbT7/+CedpxPU9uiaG7Z7D4cDT3T1PWnFKhcfjuMLXtREW5QQCnPhNGSplrjw9RryPK/oKV6pEMlLYJpXpPez2vqF4mXkOlAhxWqRaCl0cIUUe7ifMAJudxhrQtXA+PfDm7RtuD1uM8cQ5kENoQnlHmMX3KmdFSeLz5b1l8Fu2+x2282g/YLRju33Jzf4trhvot1v6wa/JQL7lNSyuILG5moR8EeZGFRPJnAIxTehaeDo+EkLgZn9Adb6NqmI5NE0T3nfYzvPq1StKKaKQsIYwThKnVhKvXr2iHzr2hwN39x8JYeL29iV3d3c8PDyw3Q3CedMa5wzeasZxFhlWjWw2PSkpKInSLhLbtJnjKDcWmkmoMUasjs5n6caaSWhq9A+iYIIlt9e4NNsio5u9ktCI5jmjqYzTmen0JO6yJTKHkRxmYhixOZFzoORAZ8RQUymFtl0DvdpI5mYpohWsGzjcvEGriutGSkyM48j59ES3he5iSFWsHOZLM2cMle9+eSSO0Hmo1ZCSEGpLKVAF5ay1UvO1KOSimLO4b9RaxakYQTWVmlHGECjtZlDlZF2oVkWmx1pBF0hEjJKdm8qF8RzxvSZOiZxF33ureuqust1tRQJYCtvdgWG7R9QGllqEL0du0ZANHa/LtcW1g/u7HD+OwtaOSuYaLrEUrxVJ+KxjW7q6xVhxGAamICf3brfj++++w3QdeEtqb/ynDx+5nM6UkDFOTmDnCvMpMGcRPtWCSEyKdG296xlP92SEamFMk0e18bIouRtGD8OAjKRAKrEJh+UayklkOp0yEogSEwHo58hwM9D3ns3Qc/fpAzln+v4lVksxjfMMVhbhQz9QCkwPI87t2W63DNsNP/npT1Fa8/7jA8YP7LavuLn9SmIEb24E4cpJ3ENaOK81FuOMtJcx4o0giKfxSE6h8cUipRZ2uw0xOqb5hGbLNE1Y62Q31lYCxjsOhwOXy8Q0TeheIgxDmblcJsxGVgZ39x/52c9+xnfv3zMMA2/fvuXh4Y5tczI5Pj409FFRkqwaHh8eePny5TqaOkejv2TG84WYC4fDgZyEY3c6ieVT1wt5lpRWOVTXddRSmKcJSXCPqFoIobkhWyXPuxRctxM5VVVY3/F0ekAhJgepCh+uI8v+1FlSzZSSKGiM7VDOUYucM8YVMTEAyPJezuNI12/RvWLodxjjmOZHttst5+lMjJGYxMqIZPj5H/wjrO75+O7It794T0p1ddioTSkiJak0iors4BTNHFNnsX1vyGOtEHMmGYSGUZs/pYbOsOY2aKT76xuHsBRIIeI6Q0kF2zuctSiV6PsNVZ949eqFdGrW8ObN20YrSmhnKWi8ttQa1rWS+r37st98/CgKW62KXERvKXIVLeOSdVc3TXW139FVRq+qFM42cmiV+DRjFMp1fPX1T0kpsdtt6Dc7rLW8ubnhuzkw5QypUkMijhmVFK5KTBoKQqloD1MaGRGvxUhCO0AL30cruwIaOWeGDC4OqHEjjzc6dEjM44hVCusUc4kUJlnARjAZwntQw4C2A113g7/NhBTR0TKfL2ityBUSFeU0pzhinad74TnVB3xnOdzcMpZC3+94+wevJOOz29LdiMni4+nIy5cv5XUqhbH5om22llKS8LxsZciWOYx4lZhLxJQsHYh2WGU5h4q2W3y3J5wjXbdhvsQmkzFMp8CDe5IlOZrL+cjNbi90gOlM0Ro3DOjs+Ku//Bt2ux2nxyMAnfGUlBl6z+PHmcELUinorgPTEVuXdT498fV2wzmeUdVTlcH7HnQlWk8tBT8od76/8wAAIABJREFUSTA3ihpnconc7HfkEnEFwuKEq0A5Q86pCcI18zg3obhC5Qvb7RaK4fEixGFVICjJEK0lMFsJt5kvhRDEKnuz26H7nVgyVbDOoXlJ7zuMUcQUuFzOlKzpOkctiTmN+P0bqntBHo/oeEe8PKL0iPca03tgJMSJ0dzRG/H0G7MTlQgFpaIkiwGidNVondsNG3L1jVxVoZl7KWSFZljyTuX7eVEDCVQOQAxGAmuMQulIzRntwNhIIbJ9YcnmSHE9T6Fyu91jrKdm8bqzyqyhObV+nnOS66JJva6i1s+/Z/v2oyhs8Jwwe/3zssBcjue7N9W4GStSmq96st3+BZvNhsfHe0KYmRu5cwriE+bsIEG7VZPGC6VqDJoUpA3zylBrImfWu5NS7Xcs/LZnLhqSD5A4nWfGKa37oVrruhRVSuGteFipRhA1umK94e7hnks+k4aZF1/tUFqJnU3nWn6mw5r2b3Suiekd3aEj50LX7Xnx6i37/YHt9iVFaWKT+3Rdh9t24kFXCp2XEBtrHSkstubt9c9h1baaxl9bEWYlrqd935Mw7HY7XDdgjBXHWm043IiRYAiJECMPn+54cbjh4eGBWgpPT08457gcj9zeCmft8fERrRWH/Z6Hu0+kHIjTiDOgkdcxRtg15HMeJ272W77//jsOhxvOc2hsfs3Dwx3D9gW5JGj5DKpKepZ1mtPpxKK8WByBF6JyzukzAvPSGc6XWbqVyrqKKDkzzzNhmohxZtCsHv7DMKzn5kJ61i0lyhtPVZBKxVjH7nAjziXnEzFqho1c6PuD4fHBEOeRfkjsNntUUUznyP2HE9MUmeam6aygVEa3JXxp59yzq4bUxotGllqZ/utPKPB+CbKu9AuIodQ6MC1dVVFJgmFKxXYi07LOUkrL5NAK7aDf7Hj79i2b7Z6bmxtubm7aiKmpWWhGuSR8fbZHX9Y8pumUn13rpf7qo/7tx4+isCkFRrU3RMl0vWQy1loa8rPM/HW1MDEocnsHdevglFLcHF6z2x64v//E/fED5/OJnAvjKI4C59NEjYJUkRROGchgishwxjnIQl4tcqBVNbQey0WxFOS5wjwXdNO7usaztRIzLntEBakIOueUJJSnVOmNjKfj5QSfJpSuvH31tZywGrRxaC9BIIftLdvNjs3ultsvXq9Ire92aD2Adnjv2B48l8uZlCKm68QcsxRKbnZGpQWwpEoM4nVmXSaGJMXQWx7v78SJ2IiuFSQp3voNL168EH3kboudHdMUVj+0YZCkK601cQ6oCi9evOD7b9/RDRuic2il1gAT1TrvECem84UUJ2oMxKHjeHpEa83u9itZxueIdxZqIoYZ76wE9l7OjT4gYEcukmdQERF5rXIDEsAgYVSVi0WBNQqjDGlxCTaSOatUpXOuEWMFxJjGQEwj42UmLeoIo1HG0m0EDEgpcR5nWd4bg3cWZy1FmZVyY7VaSc7adXROxOElJ0oE7UaK8qB7fO853j8SaqbaAiYz3MD0BHWGNGVU0ujWh121IgWquJU828OvNy9MG1dVJRu73gistZDl+a8DopIdXtVlHUsVkuT+dIzoYfGnjOy3HTevXvH2i6/ohp5Xr95grRfZoZbzT24oUEL57JoCVlfm32rY8LccP4rC9oOHes5lubpr/KpQdv1xpVBFClEuht3uIPym45F+sExzxsSCxeMc4psmb70gQLUhMqVQEiLkbS5JmgZHq89/H8ibIZyt9jCbfEVMB4XaoRvCVstVeF6VaYG9lR5EdqKVdJKCm8lzMtLdzSFRisa4nt3hJa/ffInpPV3fkxJ0w16kYzlBMgxbuzrzClorz6KU3JxM5Hdpa8hRQm211kzTRWgi/vNRW9dGrkyZkMpq8bw8r773pFJX3WYIgd1my/39PaUUbvZbNptN65hll+e959JSwMZxZEnIgmsHBLLncX4xZIyczzK+TtNE12+EYJoV+5sXrcNO1EVqpyXdqdYqoT1FLKquholq1ZUuF9TifgsNHW9FDaQDVro2q6pCjqVlexaM1sQignvnHEXrhjSKHE/bDTQtsl64fjFgm7ZW1AIGp2XftjvctjxZMRowLUsXXTFG7IzQmXmuoNK67F92Z8t0sTRetQjR2Cr17PrKbZ+dWdQ2utLSq2QMLeq6385Z0Fq93u0LXWcwm4ofWuFzmhBlpbL3tzJ+K904fUvRvSKgv4l4v7w/zye13/X40RS2xfak8YxbO//8iebPlotiy6YgLdmJ11E04fniy68Z45FPT99w8+KAOV34eHfPPE5YvWO76Ughc75LhDiJl1mRvYrXFpNFblVzXt7vtZXXWvaAIHeXlCtRS6eZCzhEDKxzImTYdnKxhMjabSrjmENCReApCWTuNdpbtIE4T6QsET+lKoq29JsN2/1LtoeX3L7+CrvZULKI38fLjN8NbeSeiI8J76U7CSHxcPeIUopNNzC3BKbeD/TeE6rsHB8uj/S953x5Il4mSo50veN4PKJqpe82pJR4uHvgfD5z8+IlQ78lpcRm25MnEXu71t15axlj5LDboSp4K5SKzlr+5E/+hK+//poUI10nY/GXX7zm0Ro+vHtHKAFnhHrhnBD2Prx/R0mZXWfpOod3ogEOc2RKia5zKNeL60atKARhn6aLFCRluYwnXr58iWo27pfLmct4FHmYFXK0qkUI49bS+Y6ohNhqfcd8PgPytbaGqCHNCaUMCdALncHS3DA0zhopcAoZC7PCqyZWH/Z0nbxeMUYsmjTObPbwhbE8Pt7z8PE9tt+gdGQ4VExveGkt0WUeHy6EEEizESYBCVVlz0cR1Fu7tlbRgmzWKiNyuzWLSeQz5U9pmbpaqXVwXSRV3VYABK0t85R5vCSGLbw57BluOuw28LOf/wFm94b9/oaXL1+z3e7Xm6vVYnu+kL3XUJl69QFUSqGV+uxzeVb0fpfjB6wq/+0fy4hZc5FRs31IQO3VHUIDtD2HQNrP6Bdt1Hgu8O66DmVEQ1hKYb/fsdsNoCSuTWtBMmOUjxAyOSQpaKlQ8jKayM3JW3np88KXaocUVRmRFYqiFMZ6CgprFakUke4AqsFMhdqUFsJHO51Ep5fGxHgKPDzeNVGyCJynUEB7bD8Qq6RaHU8jVWl2+xuU0cSYiSWjrSg4nk6PjPOE1TKCWSUd2zzPxBC4jCceH+/ZbrdM00UeXyM6g+y/np6eVj+74/FICIFXr16hteb4+IDzIme7v79f76q+s+y3Aw8PD5xOJ6bLuCoftBJr9devX7PpekqR/FfnDXd3H3n54gVvvnhFzpk5iMVPrZWcApQszhfThTAJX6wkAQicNrI+T5FpuqBUZTsMTdImr7nwGTXzPHP/6Y7L6bwaMmtE2K4qsuhWmpqF6yZOI4uvmF+R+1Vob6WAqVasUuvMFwvsy+UiyoKmQBBunxQUZTSpVNmVGSs8MStIvrGeftijjGfYHOg2W3wv57RxmqxmskotFAhSlhtWau4cxhhcc3peXZoq680VrlPIdey7dk8lF7QW9Y/18mEaeooWBcXCo3OdCNxfvX7NsN0wDFtq88oTfh3U1hXXWqVgwWev4/qYfqVz+3292OBH1LFJKyxYDiwCc4c2bWlZJFlIRs4iTqcLoW/Zsy3QtKnsbw685Wv2f/2Sp8sT2ipuby1hyJzOkXpuFtUWbm4taS5cHkRaVHP7XCs6t+rflpwGwApqW5YTkiadKnUdB6Ywo5G08uXk0aqJeZVinCMGQ9UdNc6QIE2G4sWdIQ6B5HoMGu0Hem/Q/QC2Q7meWCtv/9HXnE4nilF0251cPJdJCpGVvAFjFF0IhHmmlMIwDGw3HSEIKhemiZgmur4jhMKnTx/oh24tcO/efcOnT594+/otu/2Gy3kihQmrFZ/uH7l5ccJbTUgS9Hs4HESMbgxxDnz99df85V/+JfvdRgqYNmz6nuGN0DBe3NzivafURImBjx8/sOsHqBlveuYUKTnz+OkjKUyi3e0smoylMo4jBYXxHb1zTKlwsx8aFSQIudlJXmquihgjx+ORNJ/QWnM4HJjnQC6RXKog81x3O5fTCYVpppBzu1AHctlSc2JSijhFGS1bJ+SNp+/lsQu6rzHeUlKk5Ll1ICInWiyjSju/5CFouu2WOFt6bXnz5U95uP+eKUb8RpZZ59MDxSRMD9UUlNJ46ygxyfMAaHtC5erV4IArwbsCfLbuac4ny9gZYbPzKK05xgltDLEUtBUtdLdX2EPlxastRc9EwHdbTmNh6zJfvv2KzbClFvDOiFyrgipS4O2az/EPf/woCttSla93DL1+vXRgtVactqtOVCsBCxY7mueHspHBddT6ip98/Yfo9++YpolvP33LPM8SauxlHFSlCnkxweGwoaZKCEuKdoFaGo+pNr97IceK0wdrcVuDdVsPLN+vJIRSAA0x0nJGpVKpGKy2pBhQuvJ4l7nZbnh5+wXB3pNzBWt48/ott6++wPqeTaOunOaR49/8BS9evODx9IjCsL/d8/T0xHk6U1TH7auXciF/es8XX3yBcz2fHu742Dqmm9stsJVOUynKJFrOp6cHsUTXrKDD5XJiGAZubvfEUJrhwAZVi4zisXnU7fdcTjKu/eynf8D79+/5o5//ITVldsOmEUnlNn8+ndi/3EkH9fETu+3AeDqhct+kcpJHEMLM0O+IAXKcmKeC0RvGHFFVOgqtoGQpgl1zwggpEsO8JlU9J1dvt4N0k5OMckqpFkTSQnDazksXjbdQsuzNDl9+RQoz+TvpDKs2IhYvRWg6KJQTNv+yv0OLuYC3FdPQZUpmCUkRV2EF2qHb/oy+Y44JZTpst+PmtuK7gfF8R708kk6VagvKVr76yZd8+uXI8fGyjnYiR2wdUaxtZyYvfW6vv0bI5eVzGLVFUgq3+HKZUU7RbYROY73oj0NNYCsvXmqUGdkcdrihw/d7dvsX+KFfjVcpkuqlMW1MlgZANd7crx5KKczCHmgPLP/6j/3W40dR2IBfaUc/L2jwjA5Sr/DO6gQAn3VutWZibBId7TF6wDvNZrOlkpnDGZMVqojFs6xZKynOopuL9fPfLQ9AZCi6Fd9WXDUZnWlhFs9IxO1zaV8rZHkrmc+FipYRNmVBnkplPMLpNNH3G8xG0w9btPdUpfH9hm7o2e0ltckow/f3H4kx8LOf/Xs8PR7p8sBXP/ma+/tPPD3e0w9OMhyT4XyUwrTpOh4fH3j/4Xt2hwO+72TR3bof76+L9IyMYre3t8QpMk2N/zbsW+J44TLNjHNAW78ifsao1QTyeDzy9s0bxnFqfLDK6SzJ5ItJ5Dj+v9S9SYwlWbrn9TujmV27g48RGZFZw6uqxxvZoJZgg3hSr0AgWLXEikZIvYE9vWPbWyQkJBaI7g3DDhYskNiwYtVCKonWe7x6VZlVOUSEj3ew+ZzD4jtm7pFDVWb1oHwmudzD4/q9du3a+c43/IeWtm0pC7tc81npdm7Ml2VApyTTzrwoh3HEugJlZBAztyaGYVh0+gC8d+L0NH8meTMUg+dR+n9L8BOQtZ0VXbKP6MxJlieQfpH3Hm02xEqmv8fAgtweBjGIVlqjbS4HtcpTQWkJBDTeiQyS3G8CvYkqUthCwK2lCDoe84S87x/zRmQ4O9sylIZ3HwsAOoa0ONUnKTFkOKbguZjojJyIiOVi9tvi2R0r18TPbqTIoCRE4ih/p3Qm2ruIMop6W1OUa6wrsEZEDRZfDYUMreZJ5/xKMQp29F/C8TsDm1Lqvwf+feBtSunP8+8ugP8Z+DHwK+DvpZTulXzy/zXw7wEN8PdTSv/025yISsI6mOOzVVaCVZhQZP7ejFl7bjL4NdOSxEiKlqqq2W2v+OzTN2jtubi4oFp5bu8+Y2oDU4SiWrF9taXd99x0R7SOhGx8nPIsQ2dOiYqgjPQNxvgEDfDeMCXpoy3TLZ1YlDMyzFtrjYpi5mG1JUadJ1eiMLJaJQiWqU+0h4akHTYq6qjYHw9stWF3bvHOsV6v2VzvuLm54dPPP+WD69eEEPj001+zWq14+eoD3r75DGstW6S07NqGpCI/+9lP6MeBfXOibU+0fQKjlwUmjAzD6bgXGW3nGAYR6dztfkTfdqJmYS3el/iyojlJIPviiy948eLFMmn8gx/9iM8++4zdbsPhcc9qteLdu3f88MOP8Mby8PAgcI/sazln7gYldCiTdbxQwnUNAZWkXzb0E9o4GEZO/YmiqsQMpmvyRpj/1ph8rp4pyIYX+5YQJ/pBsHLWGWw+h3EamLIbU1X55blmqpa3lovzK1CRfmg4PEoQ1dYK0DgHVeeccJWHTgYRVSETTiSgKya6rsP5Fc4VeFdgvWNMDVPe/LQytP2IUoaQFEW5wjmDtYr287c8vLnjs88Co4iOYHOYAkQmCE2IQ14XkC3Cl8Bnk2R2Xwf67zuozwu0dwxKnNybdmCzKShXnmLVcn65wq8cly+u8NUG62uOh54xjby8+iBDSJDNc7GIzGY+IYL6amD7Mjj39zm+Tcb2PwD/DfBPnv3uHwL/Z0rpHyml/mH+938J/LvAH+avfxP4b/P3334kIXdrPUMhFFOa0MZkZM6ss/7clOR5yaowymKyaJTTkg044/jgxSVvPt/xcHhgaBNOb9itfkhwtwzDQHccaOM9wUGxDbSniNeG8RQYp5x4xbik5kJ0iDnfkvQeAoVSlF4vDjwhkEsTgOwUFET7LAE9E9aNeCVULl/Ayz/wrD+osAVsij+irEsxod3sqDdrnHUMbc8wjDweDhz3EihEkulXXFxc8OL6mvv7e+7efcHl5SXee/rDia7rF8mizz77grOzM0zSTMNIVQtFqj3cLLLhMUrWMI4jaVLU9WYp2c6urilKx+PjA+M45HJwxBpYlyvUNOGVGIsoY9iuNzhjOZ4eSWHgfFfjXWK/f8vZhQB4a29oHm+4Or8gjR06TjSnE5cfvOTx8ZEhJZROWBJpGghYnNZ0hwe6YaJY1RgmjgdhQviykBaC0jht6PNwaRgGUoysVmf0veDIDvs7mlPPbrfDiW0Y1jliiHT9EWvtovu2OzsjJC0UKqWJxmFNTVV6UvTvwYCGYWCKE/X6XDa1SZGSph8hJY8tCgovwgSusLRDjyVQVmvGfsKV2S3dgivWpMLSE3Aaphbuh8/onaM81/SnyBQViRLNSKBnUhPOgRlAe2mBRCayylGezEZsMgyIfExIiZRGue8dtFOPSj1tgknBYYDtxlNdWF6+3rLbXlHaDVZtaB+O/PwX/wfXH3iu/+DfAp2HO0pUc0zMwN8EJgn1cE4fBeqSw4FWRJWzzvx/4Tsmdr/z4Sml/wu4+9Kv/0PgH+ef/zHwHz37/T9JcvzfwJlS6tW3PZmUUr6wWQjxa3Atv+1vvwyaTSlRFAWXl5dcnp0vTjnr9TpPNmVCNYNL0QlrEfqKh0wLXUoYpd7fRQTAO/Po3t9dZmXd5bHzcyAE5OeTHqXBl2KdN/d35klkWZa4QjTv56/ZVk8ULvLUMIiHQNM0y3v/xS9+wZs3b94rC5RS1HXNOEpp2bYtp9OJrhOBSHHMkoDtvef164/w3rOq1ry4/oApKw6LG9bTvjiOUrQ459BaL8Deqqrw3mei/OwpoRbO5nq9wvts17daMQwdfd/hnRN9PMhT7Lh8zsMwCPA4m0yD4Mv6vmcc5SuMAyGIUskUpIcpAEVxo5/f62zw0nXdYgIzX3chw+snaSrzNA2d8X3OSbm/Wolf5gwZee5MNpfF8juVM1QHeRN80pl7wjk655bzqKrqvZ/n86o35+x257jCYmxEqwj0REaSiAFnHbrcl56hRs8A509r5gnXNt/v82Pm/pZOUJWRqoC6ctRVhYoGdMnbm0c+/uQtN3cD6DJrBT7J9v+u9fvbjpRfW3+Hp/h9e2wvU0qf55+/QFzhAT4Efv3scb/Jv/uc33bkK60yqx/9zOb+S723/Af5+xNwN6nAIpSaZV9Ex8vz+vVrzs93vLsTQUCAoRfZ7Kpa0YUJNASvRdVhAJdEAy30PgsrJgEujjLRMelJY19FRWBeeFHS/SxrFOdUH1CZo6ezRNJMlL+48lQrwzBFbEx4YwnIQi+qchHPDJnKE2Pk1DXESVgCp9NJAqBzPD4+EqMQwqdp4vPPP+eXf/XXfPjhh5RlydXLF0sj3RjDaiXc1j6KVPgwiKekVuI0Pg6Rs90lXdex3e745JNP2J1fsT88MEsN1XW9DBnu7u44P7/EGMP9/T1de6KuK+r1iso7ur7hdOq5uX2HtZa+bykLw93dI7vthvZ44nTYc7Hd4HxNiD06iVafQZRIpmnEe0fXtaLrrzQxBJrDkfXumr7vaZN8zqvVim5s8+0ivbWyLJaAqFHsdjvp2yWWoN3l+8QU5bLDzSX5HORiHg6VRcUwDDg7YY3LggDC0wSWIAcWnQQWZJwjZYHLMImN3Wolw5XT6UTpK7yXUrqu6yVblqAGV1dXbIwmXgWGwy+4+fxTxjHhdaQsQVmVZeqhKAu6YYK5CM2+BmO+HqhpgYdAxJc5GGooNwXKWUYlwzO9nfjg1YaL6w277TmPd4pPfvWG/+ef/iVNO/LBD+D+bqI4a4hTwOVNQYdvjkqLrcaXf/98tcfvFhj/uYcHKaWk1NfNNn77oZT6B8A/AHh1sSbLlb2Xbcl4+psC3PPgNvff8sg6iEsRRqATl+cXhLMt/9pPf8YXX3zB52/fcHF+LYTwY8tgjuJm5EBZQzSi/jqNUFpLQKhHgsXJMJBFmQpIgnlSJmvFpwRR+gk6qYzcVsuZJ5Ubt7mP1w4DrqqorGMKglkrV5qqzq7ZzqLdUxmutWa7Xsu7j3Hp9c1CkOv1mlO2pdtutwxdz36/J3SJ8OYNP/7xjwVou39cvEyLomBserwvCFPPMI5MU8K5EucKznZXdO3IH/z4Dzm2R3a7HcfjgdPpRFVVhBAoipKubRjHkdPpxMXlC+5vRZ7o8uosB7UD3jsKbzidTrx98xlnZ2fc3rzBIppvKo2EOJBCoM9WdWHoaZKwHIx0/plCYJxGrHHCrUUTpoEwDVROVEecUXRNK6YzSfTZQq/QzrFdb+iseH5enp0ze9Pa7AmhtUi2z1QxlSWNwjQtGaRFqOQxxiWDnbFqM55yyViMON7LoanqCmMcY34+ebwMC7TSy+t67/P1lc8mpcDZ2ZkQzR8eKbeWH/zRChUTzWOLNQUhgXGSlXKw/PrTzxZV52wRu+i1JS09bqO0TPGdzlS+hDKKpNKCZXNlwmlDewj88i9/yT/7f7+gaRNTFCmj3fmWP/mzP2Zz+ZqL3Zlc028ISgI3efr3DAJe+NXPHrvIu3/L4/cdSbyZS8z8/W3+/afAD5497qP8u68cKaX/LqX0d1JKf+d8U71XSn67tPX5Y97Hwsw3nU7PmtFaL5nFbJ9WFAW73S4Tui3dODHFAUzEODAe0AJITDl9f48zquITJ49clmZKjgS1JI9JZJqUMO/is1JUKbCuwBcVzpf0fc9hf1wyA+89dV0vzxlDYMppfgqRsR/w1tE1Lc3xxDSMDF1Pe2oonEfnpvvl5SU//elPUUrx5s0b8eF0XnwfhpH21HA8Hp99PirTeQzTGNntdkvpJTpl/VLKzRPDuWQKIXA4HOi6Rt7PcZ9LzVIWv4p5gqqxTlNWPlOoBK6xiHyGYUGsy4Tx6dJPkzTEp2EU56s4iUba2IvEeJzElaxtaJqjKAHn/wtxXKTEtdaZF5kVmfshE++lVO/7lq5r5PViICU5z3ESxZBEoBsnAgqMZUqQtEE7LwY52oCxKOtQxuBcgbUebUWRJObMWRrqcl8+B6XOZes8/Jj7pLLJaTa7Mz54/RJlJpqhpdp6TKkxXuErT1mX2MLmyeT7K0ipuVjShJBNwhVLeW28IzwrpWVxaY6Hkft3DW/fHDgeEiTZkJOC9abAlZZVlomfrQu1/vah5utW/3ctZ3/fjO1/A/4T4B/l7//rs9//F0qp/wkZGjw+K1l/+2G0uIvPX0gT0WSgrOTB6ulNJ4PAQma71flTk3J2hiwojfAQDVxlxPzDg+jUa62JeuL88ozNbs12d2AaBWiaoiirTo8JrxV2StKiGUAHMt1ALbuRtbILxlzioDK+KinaGPIOIqVoSOKErpXQxvpxomk6Xp+/5N/5t/8u55dntN3A/cMt725v4BaqqgCjKcty2QWV0QuSXmu9sAMEtjH3tTzXL19ISfrxr9hsNnz00Ufs93seHx8Blszu8e6BEAJnZxdLo31+rt/85jdobWmaTrTOCKxWlbiwTxN1nalVqxXjGDg/P+dw2KM0bOs1bXvi4e6Ic46+OTE4z/G0p65WTMPIZrOh6zqMhpUvGHuhVGEM49ChS0sYBUIxdD11VTNF4WC2fYd+94ayqrFKMqpmn3FrccIiU99p7DOOLqBsKeDenBUBS6C/uX2Lijnbmq95EgGAvu8Zg7xfpcQ8pnR1vt/EVDimiDGaqhRl4TlQG+eX/liIMOQNSvxaLSoHgKqqcvryRNuTCSt5M9Hs93uiVoKBLA0f/uFHtKcT7alDpRJnS+rVOTFG3jze0U8wJVAZcK7yQFJrlb1gs5sXUrUELQFmmEYiiaGV+7x7B2N/YpzEuAUc7TRydq55/aNzfvSHL3n9wwvOVi/Z1Gth8sQoPhaLNfLTsWRpeibbqyU7XgJ8XvT/QgObUup/BP4CuFJK/Qb4r5CA9r8opf4z4GPg7+WH/+8I1OOvEbjHf/qtzmJG5+ev7zbk/UrSyhzc5svgvc/aXIZ1LbLV+8db2ZmnicI5tJEUPAEFkkEoqzDBEZXs4KHLwTOAmnJKH8SM11rFGEOWYQZtn4Kw4B/ljJahiHyKBAQVPoXI/d0jD/d7bOH52c9+hv/c8vj4SNM0C0l8hhxorURC6FnJA7Ber5cGe9M0pJR4+/YtZ2dnbLdbbm9v+au/+it2u91CYu8i1RIdAAAgAElEQVRODe3xhNbSDxF4gizA9XpNVVXs93uOxyObTS1ZgzZL9gZ5nB+fALBlWdL1Qnsqii1FaRk6JUbEABmoKgq4iXW14nTcE5G+Ut+2xClS+iLj0zIhnojNzk4xRpROqGlWqZCrrGc4Qb4TtNYYbSicXza8hPCOhPguUuIzts6gFtPlqJ98Z0kspftz2ILg0uLy3p8PGt47Ml80pMg4hmegdAl+s4rKEEfCFDBGsre+aWUgYZ4mrlVV0Y4NY5Y+r7c7rC9o+7esipqyXKEx9H2k7RtGyQvIbyM/D4jDp4DQF4mqJMo64/zvKHL4IUA/IMKXE8iVMihGzi82vPzgilVdUdYlm1WNlqUiXiIhoPVXAxs8G7x9A7wj5Z7Nd6FW/c7AllL6j7/hv/7u1zw2Af/5t37153/L867Zk7vR03ueCbk5pVWR2Wv0q8EtPyR/z0NmYpatqcoSX0j6X628SBodWpq+IcaILwvGTno41ZlDl3A6BZSN6E68Bxg1REUa5XWmEMWmz0emuYeBbIveaEK2MZsSzC6qKYkETNNPFLXjg9evObUt93/zSz794nOury/FG7MoRIwwlwVhGBmjNMuNMaIcGwL92AqYdhzF1Fdp0hR4HA4cm4a6qnj9+jXExOPjo/SgtGFzdbX06lJKebqYp45mAhUpSsc49bTdSUoip6mqcmlqz8H1dGzR2lLXNeWq4O7mHbe377i4POPFyyspTQ9TzkLE70EoWI56tcEoxWF/Io2BpMH7ksNB5L27vqE9jazKisMxn79fYUpHUXia9ojDM44jZVliC0+KgbHrGGaEdL6XrHNLkPNW7oWmadBIBgvkABjFA8AYmAJmFjYN2a7OGsaMx/JlNa8DhmliyKogcwBX1iJ+FGKoU/giB+gnr48QGmzpsk2hbFpzlh7TlCeoZAD1iCsdlx+84OH2gQnL+QsRBQ1T5OHxkWmaePdwhzIipRUSEGRiH1VEZ1B5GAT8jIZT16NUIqSAL0UWSmuBMFkNzlmCsZx6RUeHVWBLxXpbcfnyFWdnr7GToWtaVN4wZuAwSJY2TzgXeExer0qp97isYcbcPdOV+zbH94Z5IIFLbgoFYOY+wpfTzy8FN35HcEtPAoHP6/TD4XHpbRhjsN5ycXVB13Wc2o796USMYFc9ujLoSWGSEVCjkxKFANGIXBKjAHSLosArQ9sP+fWy6UUcMInlYwopLWc8ixrGpLCuQCtHVZVZhDFrZ8VpOX+tNc4JdCWlRNMILcg5t0x95xJ1HEfcWiafx6x/drbdMQwDpRPvguPxyND3y902W7XFCGdnZ0uwM0ZxOBw4u7jg1Bxwzi7XsOs6VqtaMrVuoOs6hqnPm0chZWmaCGEUscmhoygKoV9NCZ31yhSK47FhU5W5v9UThomx6FExMU4T9bri1By4urricX+k6zvW6hyiaMutViv6zD5wOYABdE1LRLKdvu8z/lEvGZlZMGgCu7BaMIcq8V5GODMRQghoI6oaAtSWoDrLH7nsLSEBNGKtWvp38nl5ylpofEtfcZoNcJJshiEwTHI+IY4YLWXjer3GeclJ+y5g7ZqzaeKTX/2aoR2YwsShawjDyO58QwrilSDZvlAJgwoolYiIXDjIWjjsJ4wDW4ihdEiKVVVCBadDK1liDHl8lkhaKgVnK863HzGNG0zeLFJIXzs8mIPb82zty8Dc+Hw5G813iGvfD3WP33WoZ2/69zlmhYG5Cdr3knkMo1CEBEohDeVhkKZ0CNCPcGgODEMnWu0arJMJgjZPZYfOJjLp+QKYA2ZWhRAalJzP08cswbwsC66vXnJ9fc12u2W328njcmNZJHeeSp8ZLDo37TebDdaKEOXhcFggGHPpOmO05vP47LPPlvOcpom2aWQBDYOUWhm5lFJaPEbn3l1KYTnHthWv0Lqul+Ax95DmCW3f95K9leV7GD157RHnigUzNn/WT9CWcYG3yPVUyzWfaVPzZ2ozTanrugWyMX+W83sV/bMcOJ5tdjN+bd70QpAJ4dzIB5aSfz7HhWHybLOcG/1zhjVf0/lzXO6DGQKh9VcWM7CwPOa/mSeic5CeP3spg2eYBoCmLFc45/CFYBenFMVEpyyl9Myl8/PXfsKt2RxgZdAwB5J5MLReb7m6WlOvS7x3793Jm82GzWbDer2j8NJvfU9952uGB/Er6+Hrj98HA/e9ydjmvoj8jIzmY8LMbIQkuxOQwYSGRbcN6QOkTDwm5jmliLbRj2IBF7WhHSewhgnDw03Dx399w6sPf8iLD3+A3Y74bYc63nF+HJn2A80JlPWsVCWNVT/Q06BsNtEYFWGyFK20RodmAD0tzkHKgbYD9VY8BuxBcGdjhKASmzPNX/wHf8H5+Q5XGYFMjAOFb8VtPvVopdidrZfMaV6YPt/oN+/eUVYVm42wA4Yw0Y0DtvA4o3HWs91sluxsXdW0x4axGyTwGpd7UiqDZAe6IAj+CQhh4uzqEmstb9++5e5O8NphglNzxBiLMZbmIAKQc29vu6k53j9yuJcNYyhEWnwcZKHc399TWg0WprFFIxi1Lz7/Nf/6n/0pWkWqwuLtOmPvDN6vuL07YosNURWUK00yItG9Kj1hLEgoga0EKaOnocEYkVU3GrrTHbo/SVZlC7pWHJbKUvTsQh9IOuFcgU6GOCZMVn21KgN9lFl0zLQ5MEyRbiBLUWms9XhfZjcvAVUfT8MChDW2oB8GlJaNtxlFbcSvPC5eZDiG3O9OlQjbxYjJTcoBw4o59HF/j3cWy8SucoTTyMTExaai95rUDhSV6KYNMYPEtSaMPVqDL0SOSDJYw05XuTKITN0AGnoeWVUlr/54w6vkOe5H/r9/9jlv38GqhovdBVdX11hvCarHaCsK2EEUsOMoKieQA1r2EA4qr1klGodJqUXeKaZIRKYdMaSlz/ptju9HYHuW6YBMSOZ/fxvGwfNd7+syO4FJCNZrRm/f3Y4cDwNvb+A3n36CLj7hj/6NH7LZWT58eYVeB/p04njfcOz3OA3erUT1wgg+LaHpAigK+rHLzViy2ix5XC6wgmJVcHa5Y/1yy/G45+b+LcceiiryePiM9Rns1hcM8cAwdrgcpGfAZpuVZmdclNaa+/v7pVFf16JQ671nzBZ0MzzEGilXrbW8fPmS5nBcMrmmaeialvV6jbYyCX3x4gVJK25vbxftNKUUj4+PbDYbDoeDKF1st6xqAQaHYUDn0liclXpC36FjEopaiNx8/obz83P0pmaz2XA/StMmpUTXDmgSm7XAb8qy5Lg/cHM65AlkypLjkq1utjXGKnEzJ2KtztfqgHNSXho7q8VE4rO6Zhz7pQyKMRKmzBfN0JWuG6jrGms1KqgM8QgCeAUB7Si1BDbrLEpJGdx3cp1XK8upOxAjVJVkb864p4w2SHZstBEdOOPlXDPkQynN0PULA2S/fwCVJOtX0p8NQ1YGdoYYNAlDWZes+1W2HdRoXdCNJ8papIpMTHgbSFGh8jDMV6AsKBVQcSQM8j7HAGPGua1cwBYQdU9ZFLxYbZimSBfeyDo0Db6MrNaKpDu0rklTeA97+XWHEj0UUkyEZXAoyj3Pkbspxe+UuX0/Ats3HE/Tw/d//spj8rGAe7/0mLnMMBkL5L3n4vIlITyQ4i19hNDCz3/+CZdXHqc+oOhF4NE62eXGCCaMkGTniVk9JEaHCkooWvPrJbFsGYcBbQFDzow85abAV1t0EajaPVXtSWni7dvP6cY9Vy+vsU6hlQSsEAKn02lp0s9lh9aa6+vrRV9sLi9fvXpFVCzGK2hF4UvOdtJXu7u7w2kRPyyKQmAaw0jTNGzPdksZVKwqrq6uOGRs21zazecE0HbS1E+TSDw55zBao5WoTFgvGUbfdoRxIIVIe2ooC0eYJvquo6yk3LPW4q2USJvNJpdehuO+y+WdlKpzL2tmDswsCmttdn+fSe05YM5luDM5kwxLj0ymx1M28E2LIgmoTNuaGOKwTDjHGCirShgH2c5PVHal9Cx8oOv6pTwVapUV2fQpMmUKn1KKKYy5lJ6WaWzK5tAxPtG5QGBPs6y6VpFEYBx7kpLpZVUVaIQ5EaaBoapyGS56bFFNVCuD0RobJwgynLOlIyVxmcKIV0cKoF2GmoQgLl4WytrhVpaYRpHVd4aLF2f8uB94PBwxOTDCJA5Wk6zDZbD0LVpJz5OUb4wH3/L4fgQ29bR7gpSVz7Ovfx6eGeSeyDN05263Y3u+5dR2+BJCDwOw38PhONA3n/Nqo9hktP84CIZNOdhu1qg00Y4dMUjZ+/BwoMqfR4h5d1FaUNtayU0dEm3fUZuKzXpFubXs+opiVaJdwnmFNonbuzfSfE5PvShpRIsL0fOFPN8IZVlSZTL8ZrPBlYVozhmzyBH95jfCdDs7O2N//0BKiZsb8TCtVyu22y1jnuL98pe/xBaen/zkJ1ldt1umcykllBE4S9M0FDnL2azXhGkSsrPSWG0gRKwSxHoYe15cXbDf79mtNxAiP/zwQx6bI23bcrbdcHfzltE6NpsNbXvi/Pwc4pSzTb0E9Wma6Kdx4XVqY5bAuzs7Q5vINHUZzjNvCDbTxYJgAqPOATohKASVDWgsSknQjjHiq3K5F+fpqchVG5H9dp6+f/JH8F7ob23To3VAqTEHOJV9FgTuXxQFq9UK8ZAt3uvxDf1AO00UvsQ5gzEi8U4Sh6xpirT9ACZzMTNwmBz0y8rT9Y4pSj+uH1qKVYFzMHY9XRNQDlyRWQXeEGduaUioINLfpV1xdrnBlY6QRqYwcDzt8Q5WK8PFxTnr3Za2lwFFUYtCMvEJ8KyzpNQ3Baz52oY5G04pK1HLMc9S/1UBdP+lHs8j93cNanJBf/tj6rrm8mrNMHSs6s+IjzLfsZRMceLt2wFzgn6l2K6cYI6mhMVgtHglyDmK1M/QgiuAjOJOWqGNo207rJGsz3vPer3GeI8rCgwO5TVVVbA9W1OsPEpFxhhQ1kCM7wWUeQBSlqXg8dZrhm5cyNJd39M0wh6o1oLVs1aEOecJXtu23NzcMGXLuuvra1ISwUdjDEUprAHvPWjNmzdv+ODVK4wR+lNKie12y36/l+u8bERZhkcJ93CGmjzc39N1DZeXl6QgNLW+7SAmpjDKVLM55sGG53A4samFSH44HFivajF8aY7PPtu0sBHmSXDMuD1pikMII6gnQYRx7LFW54xoYhgUSbn8/2SyvCIGAVpPU1wyQmWFlgcKW8wDjqzVllVF56b+NErWqpVGqSdNuGkaZKMJT8q8Omvwlc6jk2x+MqCSaeo80RaQKgyDkPdVvr+kVJMb3RiDLgu8dUJHytngarWSAUTaoZNl7AKP9oj1MtlXCpLW+NIRTP4sJ0OKFqU92/MLrl9eURSO/emB/f6BqU8U3qCNxZcVDk9QJ5Q1aGXQyhPT+JVA9k1tpZmkv4Bwczn6RJD8/Y7vR2BLT5Zby68yIO+5CsGc2b33p2n2gdTLTT+LAyotZPOUcTFjBrdaa3nxqiLFkssXhv1xYt8kugkMa3RM7A8PDIfE0UVhOaRAV0es7iicgmRkphkizmYiQpgxhpp+GtHOEGKAAN0wst7seAgTU9NTVQXGlmjjSThSsJSbEpulpNvmYTnXoiiWxTxPF+/u7nBGCPrSg1KLosb9/T2n04nNZsMUA33fintXEDcpn2W6Hx7v8gRPFvfxGNjtdkI7s8I9vb29zdOuNW3bst/vBdIQRrZrGVZopegakQNXSfS3ZsepOcDWtch1//CHP+Rw3LNer3nz5g1hiqxraYJvNhtUkqk1MYrmWjZ3Viqx3z8sVLghTFRVwTj24jcww3CYclALyyTYe8s0ZQUXJTpnKLHYCyGSpJudm9wTJC19OK2J8ans1U7ki7pRoCrGekYCRVGhlENYo3qZuM4KIiGOtN0JpcplYwKWDHKeps4lbyQ9KdBEWezlqmI2OwrBYZwlpp4wTnTNkb4bmHQQAxxfUhYju/Mz+rajt444BbwLnF8K5W7KODtjDNoblHb0/QDWcnX1mnp9hitWoCLBWDAlxtdszWuUdVi3wZU1/ZjQtmB3ds2qPkdTESdHzCKlMRvrJJ5lXOopwCeV4UzIMIEEGJNhUAI5mrO1f6EA3X+Vx/OBwYyPei4P/l0iuDFGbuIkeCCd+zczavsHH7ymsiWf/uwd43TLp1907G86EpoJacQmknxwQoRCnQJ7P7CpLaVXxKgY+xFrxEVn0ZNSkJImxgnjFf2UOLUtGM2qrqUZnSZiiPTjgB4MSSemQ+7fxScy9dz7mcvAu7s7lFK8ePECbwuOR8l4qiybo5TKu6BapqdlWTJmXF3XdRz6nqqqhPg+jpS+oG1bun7i/v6en/70pwzTxMXFBR9/8gnjOHJxcYG1ls1mw6k5ioZatWLoGupqRdf3eKspfUHXNJRlyXq7YRx72l76d59++hs2G3EsqlYrbu7eUa3Pubm54eJ8x8XFBc3xQNceWdc14yAEdesEpNzk51VKoZN+goLEJ7u8opDFswCOp5BJ5DEb6WQf2BwwZ2XZObjJNVcLxGSc+mxC8766r1byGXkv9CWtxbVeVDIcZblCFmtYQLUol4cGT/ARrQ273U6mpsdG6FQIH9XaEpLCFQKE7scxMzYMJIslYrSlaVqUdmgrysreR9JGcdaPNK7B6oLT4V6u+9qhbEANkeYo4OApjNioKArPyw9/wMX1R4QITTfy8CB4z7pybLY1zRGKqqTebEhW8/hwx/HY8PoHH6GNJQQx8yYNX7u+5fvT75aeeM5A07MydBbGSM8+z297fD8Cm3qqtQUE+ZSVvYfz+ZZV6TdNRufnNUZTFVvWqyD9ruoB75dQhsKhmF2lwBkxnS2slCoxBmLUpEkRJgCD0hMqylCelIgxi2fOyO6Q5cdjn88HjBWp6LL0OG+B2WshYM37kjd3d3fSP8kBbr/fc3Vxvei2jdNE22bqjbPLNaiqSoJL2y6Yqv3DA5eXl0tjvbi65vLykmEU2SFr7YIxmhvtTdMsWmAvXrxAKbWUgiEEiBNdF/HqCWi6qj3jKFzdeXKbUuL6xSUPj3dL73AuZavNaslQjVGMPIkYHI6PhCjTVgBlDEol6roCrRb82jwciBnQLHi4J12wmVs8/6xmTXmlFkoYKKFq6Wcaf0aypRifNpyU8XbJSjCcPy+Rg9rSNEdinIOURau4kMJnee5ZonzmHVttMNbQtbn5n6lrISUcgIo471FGE3rxBN2sd4yuzRi9wDiIBWBRVFnV+QREUAGtI74ApRVlxqslo7AK6rpis6kRMyWYQo91Gq0Tw9iiVMJ7MeRWxjBNA2MccaWhWvnFi/ab1unXBTa52k/32kL3+hI2/7tiWb8fge1rLsTXwz2+3RubQZeomLExM7JfFkkIgVJfcLld8dEHP+Q3nz5yPLV8fhvkg0ojlxvHptRY31MUQoKe+k4ClUq0bSCNECaLmkqSOz1NbpNGKSHnDUEyuX6E/eORalOIYsdu/cS7VNLAVkpIx13X0B0lo5gBvmdnZ8uAJaW0TO2MMXz66adMuaSZe3zAAkkYx36hqG23W64uLhaRyRk2st1uef36NbvdbqEBzVZ7Mxh2HEdubm5Yb2rOz8959+YLfCaTr6uKMEowqUov5xgmMJpqXfOYZcbbtiWqyOPjIy9evOB0OmVxyyhUqjw4kizVE8YVh8MhZzLSL/Te5wloyAKharkWKvc5h0ECoPxeFlxRFDn4Sc9MqSSk9QhJSc90vsdmMG3gKVMwxhCiTNfFJyKDpgOZdiSy7YnIfr9nCl1+L0LVK4vtIio5D3dEvy1grfRPU1SEIEolKSmmkBjGiC9FGaUbWhhHhnEgDomYJlJIhEnRNjK1V1rwepv1Fu8KNC1arRgnTVcNnJoePUqgDJNwQrf1mt35hmplSTrgSke1O1uA5X23h5gwWoRP0ZqJyIfra1arNa9+8IJ1VeGsYmi7hdf6/Hg+5QXEm1eZHLBEIEJ+zsExJcGa5DL0b13GpgCXEmFWl8UQ81TNaS2k5CRjaJUzgpiBhjBPUednUsv0aJaJU0iW5YwogsQoU7Wqqnl19SE/OLsl7SP35h3HAVY7+MEfRurtCnOsGHtpht41Yo/mnaftBpzWJDVRbBua01PjHAxhigLqjJFUQLGGVh8xoYWpJO07muMDrihY1WUOQiHDGiJFVS9KrIfDgTG0S3+pKETw8DeffZz7cJ7Lq3OcsUsZf3g8LoMAe7FdYAan45Gb2xN933N99ZLVasWmrrl7uJeyWAlsYndxzvn5Bbuzs1zykQNc4v6hwRjDq9d/wP7hns22ojkd0RjCFHBZWid2A23Gz1k01hpcbelOPbvdBd5XdGPP9vyMMPQYrZgmBb3G+xX1pqYbetwUaJuRoigZQkdz6qgKCXTEiEqKYtY5GyZCSnSHvQhD9j2bTc00ThinmDLl6hgVQRi7GRQaQWuMdiLhQyDFgPJrkjGMygi7IWPIhtBngO8KbwS/14+BrpMhSkqKen2WAbCCv5uGIHpzSrBx3gvw1heelCJt12T1Ethsz+hDxBnRSENnhsVqJR4CxmNWA0PXiz+qNRRVydidENPkSFXBqvbEeI62AncZo2JlK47HPX5M9PTEFgZz5DA01MmzqV5IaWsUtnJ0/YnJ9NhSC2SprLPopgx91vUGh4Ng6NOA8QWEQa6VFbPpKSV0BtQvpi5K0ecMWpEwiJLH7GSlU0SFrH0X7KLS/G2O70Vg+7pDxbS4Ps1NRfUtM7avPJdSOd69T3dSad6ZFdZqikI02K5eSQknmV8gxOmZGupMdQLjDC7EpyGHRgJZDBJMU8jIcvCFEgeoKTIibkhFYZb+jljITEyTwBCmxazZvKfc+lyfjFi+J1e9qFMYs8gIAUu2NZdmz+lQt7e3rHKZeDgcuLy4Fq5l3/M3f/M3/Nmf/3l+XnnfRVHQdE80q5l+BLlsjDHb3fWImQ25ua44NicpfYsKox19N2Iyf7JpGtb1CpffbwwDx+ORJtO9nJEG86z4O2eU4ziidFxK4plvzJe+P6c9CWVrhgE99d0UNkNAREZoBkJb4yBlqpVx2W0q05ISTFE2Pu89QhyOqABWqwwJyabBs0ip1ouu2kwL09ou+nZTyjQ4FFZJZjhjIYuikNecorByYiJVoAsRR2gJtMeeMI2QwFhRaEnEnMk2TM2Qs8u8oaYOZ0BrQ8i9P2PI70ded7veYpwhjcVSRSgl8JbNZkNVyWf6ZSnwNK/hlObJ2peOr5Zr8rdPUvApJaYwMIWv9u2+6fieBLYk7tIzqV1FUpKpVUpSoyWlf8+wlutzrRZgqbUap4VUfHV1wctXLzk2J/7oj0fKesXZ9Rl3+3c8HB4Io+CGDAq3gkIXjKPggKyXRXg4NKgKCuuIgxJHdgJaCQykqGFVWSqv6HOGsV5vOdtdiKS2ghgn+eB0ROtE33SkKWCrirqseHl1/Z5KLgjxeA52+4dH7qbbXDroJTB3Xce+32ckvaVtW4FSrNds6hqjFMej0HnOzs4W+Mipa9FaylzBXIlib1VVoOV5Hu5uWOdp5ziOQhqPkbIUpLwtCjTiNjX/7WAEohImcWgqVxVGa5yVyWXM00tnTeboBpwzTO24lCNaa7pOJpNKvz8sCDmYO1uIoutuR9ueFo6lTI97jC2AhDUKbcV/IIQkyi1IHxYF2rhlw5ixhVprjBXoh9Ya1CSLVvOMBA9tPy1tgxgnukYgHDMI2ZhpIb+DBLumaXBlLbxcI3Ad44onjFsGAJ9OLfVKL6wJrQ3KRqwvCDEyhQnnHb4oUXqkmEqMtYQ0oYzFugKURXUN46gY25apG/mifUvfJFb1hqI8Ua7WoBWr1UaGMP4peHnv2e12y1ReOMYzWOPpiCoLiemnPvey0cyPVTA3HmcRgogkBzFFWSPfIQB8LwJbUoh8tgLyxdFGLSPfpEwWnvj9gLopCddvDmwi9BdwWqGqgrPzNWXleHNzx6o7UJ8VoKIssmyIHBVoD1MccKvZVEXjjCf5RNu1OB0xdcE0atJRGru+AlOCsxMhnHAZm1U4T9v29L0sdNmRjQAkk3kPxtK27UKKnvtRAF0vKq9xCgskJIwzoTuwqWvWqxLtAoeTOJo7Y1jV65yBiIx40zQLVWocRHZahhKW6xcv8q6pFlL7GJJY0F1cEAdZaOtVzdi13N7fcn625fLykth1Sya4Px4ySt/z+Zsv0Frz4Ycf0o0dKGkRzKTpsiw4HR+ySq4seufNkp1OYUAbzTB2rLNEetM0GO1Q9ilTGIYBPLIRPYPDaK2xSEYWlEHjQEW8KTAldN1AiBJoxn7KyhwW73Xmgio0JkvZa1z5DF9nEy4bKM/VQV3X0uPcSe/wudHJnH3P1KmUEmEUaSas+L0676nXGyndWsEgWmUJasCkwICSVaMM9WZNipccj3tO7YEJxWa9woUJEyPn1oJ2VOOWRInzHc531DqAigxDz2l/4LQ/YAvPBx/8EK09sdMURSJ4yfaqyrLZ7AREneaWkEiJxRgFxMz7VCqVq69l6vksM9PE5T8iIgEPAtGKMTLGkTH+LSxFZxZevi3fS2GVminA39UPWg4RD5yblHKomNBOIBnr9YrN2QZtZMcdx5HCCaD2oT2htWRsWinCEAmM2GyqoZSUpKXWjEPA6oAzikJ0DHFegltRarzXKO8XKpPRBdqapRyZpuymTsi9tGIpWWamwfzYEILAIXLAS0kmar7MUt0pLRJGNw83Swmb0uzPKT2zWVByv99zdXXFoERyyHiHMbDf75e/Exxcyf5wj1WaqhCUvTVayvVc5u3vHzg7O1vcr7bb7XIu8DThstbicOgE3licV5mQLgHbORHUDGHCKc3pdFyI/rOh8pyFLVJLQZSLQUpHa56oWDGfozFGJpEgoqFeoZBGfgwTqFmBw2K0XT6DJ7VmTUjSD9JaM4TZtzMtFjSO00UAACAASURBVJDvqYEkjbaKYegXVQ1RSlHL5xzCkwIJ2cPUFyUkyUSnrI8XgqgxxyjNi5iyTllKck8rhXUe6x19b9HOMoyj3KjKYKynKNc4HwlRU3biT2F6AUGnlMTlK8n5d22LYqIoHCo5otLUdblwrp+ubczDF0EApKQWCMdXsKfzxD3lgPaVIyc58WkqbZV4C3/b43sS2DRRO1SSiKyWiD2n6RGtZqefeVr6JMHy/Hh+EeeR/Cxjs9A3QkArxdhPWKu5uL7iR13LRz/8a97e3BBTEDFK79EI11GpRBwnoqwTKudkkDFB4S0mOMKxZww9RilWG0XTJFwFu7MS7TSrTcmoFSYrwCqkZ3P/+LAg1H0luvarwmK0ZsyQCpuluh8eH1FKPaPj5GlZ0xLCyPn5OSqFJQsb+4HCKDAZaGo0cQpcXl/hrJTVScH11Uvu7m94HLM8kVb8yZ/8KfvDAa01u925BDxjeHF5RVEU/PqTX3F1fs7tzQ1ndU0bJ87Pz/nlr37BT37yE1QY6foWoxIffvSKTz/9FGMUF2c7PvvsM/q2oaxkSjz0DQqFtYbHh0ehPanINBiGsSMmzfG4Z71eURQ+6771PDw8CI8yqqXUnntYc1ZUFivGqacsV3nhToL6LyvJpJABjPEFqQXrDCZrq5VV/SQdVK9FiywFnM/9TRRTEKxbczrhbbHINnmf8WfTsARW59xSRk9Z+Vd09+ziGbE/NJgYOXY92hp2ZxdL+8FmxkWcErYqMErjXUlhsoBl3zKMDcp5+jByvGs426xliITBa81qfcY4BlZ1i9g27jm9+Zy+b+n7I+vNGUoLpIYkhjZ9f6IqNWe7C16//mjh85L5r3JIf1J8JJ7AuIksgz+LWzxnGaivMoxkbc8wG9lk4mkkdhPf9vh+BDalUNqTokRwTUYZR4FWpPTkVvW7jt9FpF0eF2VnN85T15qrF9e8/uij7Niill26cJ4wDsJVLGXhTMNEHzqcdhjrGfqY4SQIXEhJf6DeKVbrQsw0dCKEEW1XMoAIE90woFT3TPCyoCx8LjmFGzrDDuZMcsZ+zSR3YwylL9iuN2gtCqcxCgRjVRWoVYk9yvUcw0RKirYfuLu5pV5vca6gqDJkY71mFk3cXZwvvTdRl9gv3Myu69jv9xRFwe3NDUUhAN9xGrFZH6zve2ycNd56lNV0XUtKkXqzpqwKbm7fsdnUWfcsECe1ZFLj1JNSXFRj0zQubk1AHhwM+fZR6HwNZzMZ+XpSBZ5LpBjFy6KwEnRiUmAL6eHG+KS1n5R8kYgojBPsWByFd6qdJSHA7DEkbJC+nrEWrRTlak3XNABcXFxkMYPDovEm2Vda8HezZ2xKSQymC09Qks/MOLZxHLFK7geyrqDWmjgloo6kKL3Jer3FZ2+EcRzpTo/ElPXsrEwzpxjQ1qCto6gG+sIzpYiylqiUpFMBYXEgPdvtZs2rV69Yr9e5fI5P6ddyZGqWUovDwW9dj3Gp0d77tUJ67LPyj1YWo93vXNfz8b0IbEpZUCvCJDeyViPOasLypsk3nHgjvgfazcdvC2gLvmx5vYw9SooxTRgn/aI//tM/od6s+fTTT/FGtLScVhiV0ESUDjgXKAvPOAZ0CqQ4MYUObz2WkSj+I7lE1ax3G6qtI6pItIZVpfHe4H0ujbV5UuywBpOVg7u2WShBzzE8M7UkpTwRMzCqkdPpQBjle0pBFHHJEjhpXKaL2pYcjidevPhAbpat4+LskpgSTXtktz3n3bt3fPzxx2w2W168fJnLUctqteLnP/85P/7RD/IIPiu+Dj3rVSnZj05cXVxKlmukb7Pf70FNnF9e0DQN+8dbfvzjj/j444/ZP8qw4PLynGPbLRZ9xkJROAKSlcZ2Yrtb8/B4R+ErUnpS4hjHEZNViFWSsnSMY96c9DIVDiEsnguPj3u6ruP86iX1+TVow4RC+4LIRNIOpa30ubTCFAVBaYq6xhazUKZQqErjcd5TKp2n+YG+7VjXW5qm4d27W7y3WCuyWZJtdtze3iyN97nyaNsW7yqSAltWpBi5v7/HOXnNslxhM2jXVTUqiuRTCCNJaY77RxQBRaQPkSGMdP1IQktWlyLVakXXdaDk/ppiTbMuUGpC9SuimYVTFbvzczHLfvEBu90Z9W7L7PEgUmD669edUos5kwyen0mRPV+LeWFqIKYEaNG6M+JSH4J4WyQZ037rmPK9CGzaWOr6mjZBmHpUSMQAWmfQpFKEFNHpeen5pemKev7zV/mkpPdZDIUpiUrEHrU2jDrx6tWHeF9ye3sPWArrYL3CWUFht90j63VF37aU3hIm6IYO5y3TKTL2orwbDGgLRWXQ3jIhU91hHAmPdxjjcMUJZyu8L0lJSm49aWIGhK6KkqouFxT/GMf3+kpWGy4uLkTpom+xWuPKMmO2+nw9AmPfc3i4xTth419ev8B6kd5puok3n3/B/f0jl5eXWC/mHLMk0rt3N6AEOLrdCp7t6uqKv/zLv+T6+pq6LCm8JU6K4/7ANA00xyPbdU2MiRCF2bCuPfvDLV1/YHt+xv3DDf1w5NWrVzzcHBjGifZ4IsQBnSLXl+fc78Ux6/HxUVgInQCWp0m4sVVZ07Y9McqQwBpRgJ2GnvV6jUI2iTkjmjNwneTnvtujjGa1WWO9F7MT70FpNAbrKpJS+FIAqSmlnN1IX+l0knK9LH0WG9UEwCiF1ZZV5TgdHhcyumijwe3tbS5TvXiDZnjOHNy22y3TKP4Ds/T4qqow1uXeYGIMI85pmmO7bHQ6gTWWkMTgMcZJJqrWMwYxvFFmoi4KjDeY6JhSBKNwpcVuPCoNxMaTosaYih//6Cd88OoFdV1RVg6lEmM3Ln3Cua2j5gzv2aGe9cOSVsvgAFgkjJRSWPXMHYuscRdmWJbQ4LRKdCsN5d+ywCZdNWlQxwhxHJcbQQLZE+D2mzKzb1uCzo8JIaGsIoXIMCRCFDDr9mxHvdow9D0h33TGKpR2pOBRKVDXFUOfoSNOM/QTVhcZ4ybVrDFihDyNgeRlMTljUaGVktHqjAfS2f8gCqJdW9Ggn2ZqUFzKr5gxYj4PIB4fH3MfaaL00jxvjgf6oUUpKUtnWWlrbS5HhFjfD0NG4lusFzjB3d0d/qVkE2MUefHZbKWqRMjy8fGR9XotUA3nOB47vH3SVJsHHCkluqFZyO1CdUp0XcN2u+ZwOEhmZswiEjkvmHHsxY3KFpkdIPLrMSZWq9UCXBZcmV0azOM4otUzzTpliQxM09PQaWErPLsXphiYpoRVCrTFF7IzhSQ0OJ3bE8bYrHXnsYW8R1d4Qsw4uCQKHcSJOI3ZFCbRnA7ZD6HncDgsmDfn3DL8mdkWKSWh6qlESD3JaJSxTGGeHsrGY1R4z/Rkxoltt1tSGBjGJvNTE7HbLpP1+XW1Bp/vmWFI+NLjeitkezz1asf1y9fUmxpfaDBiqzJf2+e9sRkn+tvW25dZRF/urc2UtFlcMiURJ9D6uS3g3zJKVVSKtnJMsSR0E+MUgEihNSkINca7ghTF7GMmJEtz8clZez50lBs3KUhTyk1QtZhyhABa92g0Jge3Ir+GTYqf/uQn/M0vfym7aZ42hTiixsDh/gGlhHxsosEnRZmBtq2Cco3c7DpQ1SXbqxXt2ICe0FpR1+doDePYEcaGfpIpEhN02lOvtljrmUjESRrG2sgkarbDAzJoNVEUjrZ55Hi6Zxo67u5ucNZSFhuGID4Mh2GkLERdt2kV15sdVWWIKIZpZL3eEmNkXe/o2o6xD8QJrl5dAdB1Hce7/5+6N4m1LUvzu36r2e3pbv+aiHgRkZERmZWVhaujJISFCsHQEqIZwISBEQYZxIQRTIxkeUYzQSDZAiEkGjFEliUk24BlVBhRlkuZlVmRERnNa++7/el3sxoG39r7vojMqoqyCylrS1fvvnO7c/bZ+1vf+v7dHar3HE5mHJaG6+trbi9eMKlLojHs1msinsPFAc61EiZyc8lqfcs58OTdx/h+T24nTOZHtNvIF59+wumDE5RRbHZL8lxItrv9BggsFjPwcHd9g7Yluc1AR4LKuFmuZBa4WLC6k3xUDFRZTrffYJUEy+W5ZbnfjoWzS+hs8BlFPqMop9iyBgw9FqIlL2aAIQOyLMckikddTaWLy3OMmuKCJ7c5rkiuMQrubq9xAWb1lM3tLdPpAToYoU9YzdnBydhl5WiUtkwSgblpGmLb4rWlKGva3uPbDm0iITnWYC3aFuTTKbrbQTLFXK2XhDyXBVJpfB/JtGRlnM3f4tKd03UN/b6hS3NQqyWpCiDEI/K8pqyWnJ4ec3i04OCkwrmGXePQKmKMolT1uAOCFOmXqBlvNha516nohdSNyrySAQBMIyUXknZXySwTIg5PVJqYK4yyaeb9CGu/ebn6Jrmi/y3wF4CLGOP302P/CfBvA5fp2/7jGOPfSl/7j4B/Cxk9/gcxxv/tj/sbWiuKvML0FR6PclOsFhZ7CIK0BCwhpakLRg+gx5P6JikwM+Yrvk5/yOuSnxrF0WpEno6Pj1mt15LetJPCKhfjvXXKejUUHdi1UClFVkLnAN1RLySE2FqLjRabCyDgXUvX+cS4d4mSUGCLnDqfoBN7OxDHAA8g0QPiSHUIIVAYy3K54/rqFfUkG9nwwcNms8GqiizLeeutt9IcKgOjWa3uUDYjzwqU0VxeXlLWlfikJZpC27b89Kc/5fj4mPl8Ttd1XF1dpa3Shul8TpYZnj59ymxac3J4yHa7ZbPZIBZDK0LvyYuKssx5/vwlFxfnHB4ecnh8SpYViG2QuMhKHsOaLDccHBzw2WefpvPu6TopAqvdjrcePZbXboXNv9uI0Dw4KVzZdMo+pbwroNm3YIS3qLQarYeEaCyW5RMlGk+dT2W43jOmrscEJAUFXdKl6mDIihwTxGOurKoRvR9yXaOXoOHb5R3bzYqqKKnrbHTpNcawS2HUry8uRvrLzc0NqqglPGV+IM8Bxq5OrNEl41UWtvtrpOs68iIbg17EuURSWQbjhNX2jidP3hae4mSG1Zo8j9SVMAW0VpydnDBNyWaZsdL6pzvJu5+lXH0jsE6lrebYtYkud7QlSzrd4fvQw/Y8gXhl/adb2ID/Dvgvgf/+a4//FzHG//TNB5RS3wP+deCXgcfA31ZKfRT/2BQGkZ5oawk+QxsLCnzsZACJONNC0sYyyKTekMrE+45NVob77/8Kfy3+4TBzZq1kK3JProwxjjZAIAPOkITtSoHONJWOZFjpMPctpNnL4MQxfISQAn7fkJsM7h0xRvoQ0b6XFrwwYxTboAoYXGJdcvLYujcpLAHXNaxWgmRaVUKRQ2L453mOyUTitN/twbTECWTkNN2ealITdbI1V/J+OOe4uLoErZhOp/TeSTJ48ILIWbn515sNJyfH5FVJcB3Nbs96veV4WrJai5XPvk0Fhigyrromz0v2+52QkBsxESiKmt1uk4isLWVZsl6vubu5TefTE3qPdym4OCvJjMVFNxblIcV+PPdBYXQmKGtayGxeiNuKc7ggXbnVGoUYMA40haAYrXSiApu2YsPjA9dKOrqaTkuBUUZxt94Qo+f46JCyLOk2a+ybigVIUjk75nGcnFhcCo6RMUhOH4JYrmuN0jKeCErj+/24GI/Xp4/jzw6FoO+WZJkhLzLam5b9viUqQ60MWhuM8YDHGM0sRSgaY/C9KCiUjqgRvHqDcPsNChowNhnDz4SRAqLHuVtI3yfnXKNU8lEcIhCV/src7o87vklg8t9TSr33DX/fvwT8zzHGFvhcKfUp8FvA7/xRP6S0pqymtDiUMSLN8B5cj8qkfe37QGa78QQYLf3YGLz6Rm/Wu3sS6IDCfP0t8ONMLq1qpGGmMZweiaXPlVE8X15JcG2ay+R5TsRTz1OkXwxoawhdQGtDzCNKW/JJJUhoL9mWJllbt7sVoGm9ZDmWZYXWVmZdJifLCkCjTBjnIm9qQAdbnMViwX65pKoLdgbWm2uUUhweHpPZXLZASpCtalqxXq/Z3d6irWF+cIRPtT+qyOxgQVEX9M4R+gZjNDbLqLIarTXbdidW6CEQt5HZtAIdaXcb3vv2h7TNjs1WCqrrPUVVcvrgDO33qGbHvu8pyzqZLSradofzbYoVlK5jvxWjSs0MbTXWKG6ur3nw4Iy22TMthb928fIFvpfIP7FScugorsgH8wM2zZ6syNnuBQWeTqfoRG5t25YsKnG1iAGblxRlLU6weY0uSlyIZMqQ5aJFDRhMCEQt1uC2yIUQm3iR2hqilmvHa+iCx4XA7fUVJ48fktuMIhO6TjUjvf42gSKiJDk8PSUEeb9Pjo6IJme326G0TW4tenQvsVkxzlnbTo8ZFZPJDGOE+Bs8I63FGIPJNNWk5sRqXl9fsFxvCWhmc8a/MSkVuq6pq/tw7uDTIheiNA4qyOfD3CzdM4z34M8eUUn+x9AcxDhkISQOYEKpIxZRWGt0XqASKq2tjAFCOR/ne9/k+CeZsf37Sql/E/h/gf8wxngLvAX83298z/P02M8cSqm/BPwlgLcfnRG1ES6bcaBLCYewXbJQVqBb0ZMCxIBXkgblkxpBE0ZgRg1WKDq1VV//2/G+UxuKH9wPQoui4Oz4hEwbmt0a7zr2GxGmYzRlUclKZjRRBTrv0EEcIepphckKJpNKVAV4ssIkX30nesgQMCbDJZJxZu9zHgcffuiJePLCJoF3jzbgvKPrpfNQvqfrRIvpXKAoMoIRcbLrA9bKNn82mzGdzWjbnvVuy9XNNUVRgZKiefrwYfrbYr0D0gGC5+hoIRFvKdTFGCsSM61QSRCeF4k71rW44On3Irh32y3HR6d0fcNyeYM2WTI28LRtJ883BBHAz4SCEKIjMwVVVXF3d0dI2+Nimkt35AN939J1GaF3lHNL17nREkkl5v9gDzQAGs55lNLkeZEkOlqQxiwX0ApJHjPG0oV7/7agEH5XkO69T9tmY/OxixoWn6Io2Hct3b7BFjmLg0O0SjkVTmyzmr1IqoqqZLFYJLTVoKImCzmd64nBEEVdiUtgzHBND2CSqEZsMshMnVBIKgB/74kHoIKAGoLi1vIavDjkBC8z7rqqkuGCgSDb0pioGtLFRuC+sHylcXhj1/PVG02wzuEQ52LZdsaoJYdEedLKAMoQ0KioidGgo6D0IFb75k95K/rzjv8a+KvIHfhXgf8M+It/kl8QY/zrwF8H+NXvfzeafCJvZlGibEHwPSZpzvABazsxNgmB6HtU8NKjeY0KHh/j2L0Zq/FBVpc3g23T30WpYWsiqxKpxdUxEEOkD45JXTKdPOboeMGLZw9Yrm65fn3O1dUF+/2WruuxuaGPslVUpQEXKWczymJKVUmI8Ga/RCeio3MdiiCGib1HK1ED1FWGQhOUZ5eyBSZTMXXsuk5W7/QahpQtpRR94rcZY5jmgnwdHJwIi95YJvVCBPLrLbtWqBfaZMwPDqVz6D3KWnb7PcvVhnq+YHF8MhI/8zzn/OoKYwxvvfX26Mt2dfOahZ5RVzWmKNlt12RlhcksRV2xWa6kk/CefR948OAtbpdLHjx6h8xEPvn0Y7yHtrul68TJ4td+7ddYrVZcX18zmQhpd3AZqesJ15eXMutrWzKTs99sE+ooHWyT6CDFbMJmJZ2hsYY2uZq0fZcUBhZrFD5m1LM56IyinLJte3IDysTR4gniiCL2fU/vHT4GNpsNk+mcg2TpVFQlAE+fPsUHsUyviwUO2G0kPrDd7ljdrTk6OmKRUqRa54gRXKL4+KAIzoFuRyv2rnPjvA8YicghEXRBHHubphHkPSsokmpioGIoA7bIyUPgwaOHdG1PPZtzcHQCSIThRMX0HKQTjcFjkCR3FYV2EvEjSgn3SOfw75v3WAiBqCJaD7kGgxZcSzeGQRkr8YYmZQRri1EZQWdEZYnaErNCfNtsnr7vmx3/WIUtxvh6+Fwp9TeAv5n++wJ4541vfTs99kcfSqFsISxjZ4i5RhEhiH9+CAF0T6bF7Qzv8P0eFSK4jhgcuJ6YaBE+Qd9KMWZB/syb8AbT+U0KjnBrpL2OITCbzfjOd74DwN3NDc+fPmO9XfHs5TMCni607Jot2iqsyqmmC8qypshruqalig5te5kNxR6tFVVRktkKY6W7cy7i8ejgCKoHRerC3Oi2MXSV6xRKXNe1+NtbK8EuXUeWBWbzQ4qiEmS1D7LSFTlZMaH3TrhfEbKiYDKXVbqoxDjSJ4S5ck6UBZMZ33nwaLxB5kcSMlLMK2IUBDT2Pdubax6eHEsxiYHpdJ5Qwnf58Q9/n2fPX3H24B1cv8e5ju//8q/y5Zc/5dHjM9xeOpCPf/SxZB4Exepmw2KxoFzUXF9fS7LWtuf1+SXT6ZQHjx5weXnJartDW+GZdb0jzwswmoPjA5pkraRTBzvNS/p+cHexWFNTTqZkkwV5PUUXkdaDc55BF+t9T86MZrtDWUOmNLutSNUym3NzdU1eFrx8/kKsfeZzjo/fSqlMke1qzWa7x7tIVU341kdi8BlBUqIyWbiCUihj0UYsbatySoiRyXTOPI0f2k7mqr7bj1rjgQmgVEzJWUNHF3AuQKLK9A7yosQQyIoaH+U5dK4nz0TSFppNAj0CWt0nRsnWUyfumR3u/6EQjFrQr8zblBodgn1CRgfEU2kl5GcM0WuiqsXeSmmizkAZMLmMpJQh2ELCncfp+jc7/rEKm1LqUYzxVfrvvwz8MH3+vwL/o1LqP0fAgw+B/+cb/EaiSqxWez+QDckwLyph2GPKhJg4TFBE5RLx1uDF3iDByXIjRhijwH720F9poWVWkKBplXg0UfSb3svGYFJPefudJ2w2G/rgabo916sbdN/jo8NYK4IwZeX3K51WOGGGd11H2DVEreiNwthIVkSMKQDwcdiGChoYgiMEcXrd73djMMkQfjGgXwDWZhRFyXq9Zbfr0DYfu7u8KPGxwyqN0o7ddk+lDNoEkQPlkdnigCZJfGbzKfVkNnLFijJRRXY7zh484nd/70sppq7nwckxy6VIdiZVSaYNl9tz6GGSQ1FXtG2LDxFtCqosw3VbynKK64V7NplMuL29pe883g3Is8yVVqsNDx48BjTlZIrOcozO6JKpY1UnQwJryUvJcCgGY0fnyGzO4E4irhOW4KGYFNg8p66mosAwgHMELz6AJIPD4cMGLVvfsqTdN/RGXFBWqxW73Y7Dw0PKomB5JyE8mTbc3a2E/PytE6qq4vbmcty2Dl2YTsJ6a+zI07JZMV6XIYLrfQrdEbsm0XfeUdfTdG2HccPXdY2Mb5Qa2f4uRmIv15Nzjt1+T+8C02k7Fn4dI3jZ5WBS8UoefEYJsRnCaB30FUDsTXBu/HywI5LWIkZPVAaDaHOjEtJ6VFnahiqp9tqC0nhlJYxJG5TWkgimf959/POPb0L3+J+A3wZOlFLPgb8C/LZS6lfTXfgF8O+kF/v7Sqn/BfgREtnz7/3xiCiAEGCxGpViebRSeNdjPKjoMXhCcs1VxqEzK3M10xKcw0QhY8op3aVzGwWBGVrkNyp+UNK1DfOD4UKQ13EPJiglcyoVFWVVUddzTs4Us8MjNvsdP/7kRwT1miZsKYspKhYyK1QZNldo42VY7hxd15AntwhjS6p6RlVN2DvZ4nX9TjhvwKI65uTkZEw+H5CqcfYTAjo49s2OtvfkecF0tmA+X+ACVNWEgNA2rm+WBBSHh4e8+/6HMt/znsXR0dgNxKCZHxzy3tERT58+pSySqWE6f2VZcnB0xvn5Ob/9L/yLdH3D6xevuLlb8uu/+RvcXF4Qnadr90ymc6b1hOfPP+Xk9AHr9Zbl7R1VZjl6eMryTvPd75zxO7/z96nzjL7zFPmE3U5sjubzQ7pWPMaWdxtiMKy3De+++y77tmG93VJWU6p6RlaVBJ0xnUogSre/YbPbElFkeS7FrhOajNKWspIcgHo6p6hqTJZzeX2DC4rFwZEgn1hiENcQSwpT8Y6+7TCZlQJA4NM/+BgXAx9++AHdvmG7Wo/2T7e3t7z16DGPHz4S77q7OzrnUTbDFNKFOBS2rISagxodWNj3LBaLr2THDohvnmRFSkTJgJhOenePCis9ZGVIwnpZTMWxI3hsVlCWHptnmEyIz871ZNEjfZUABYNz2sBKkF2NFgPv+FUPvOFeub9n0k8PrAUVCMlb2iOFMg5FLJYoZVHDzNZoepDOTWmCkkJnrP1DGpSff3wTVPTf+DkP/zd/xPf/NeCvfeNnID8lK4GSQWE0uQTuIsNFhcVoD2krYVQgt6VIR9otSjuC0mBy4T25VtjvSoapwxb1a8/zD3v+kGZzWmlcEOG4QuGjwhqLVuKQMDs8wqtIHwLLJiPParp9AG3RZvDM72liTIZ5DqUMeVai7cBpgn2iLmSFpq4rjFGYeG9n9OYbOjD7u65DdxKjdnB0wnSyoKhKbm/W9MGzWm3ovWxlf+l7v8J2I8TU3a7hnScPki1OTVbknE1mwquKmtV6x7c//O6I3t3PcQRV/JV/6tf4Rz/+HVSIvPvkbX7yo9/n8vqGqqhQRcBqw9PXF6zX4r9WFbUgvtqyXa24vLjlwdkxzW5DWU44Plzw6tUrPvroI1ardbLoCdzd3fEbv/EbXF7eEqOink548fKcuq65uV1y9uixCLzbnma55d3pnKYXu6OmaZjPDpA8hyVHh+JG0ra9yNkyNS4S2mTkmaLKc3rvUEo0yT4Gisziuh4XhoR2AQKapqFte45OjtFa8/mnP+Xs7Iyu6/nd3/1dHp494K1Hj9Ns1CSqghn5gAMfcbFYoJRKgdCykJRlSQga5z3WWGxanIaj73v6rpGw6nI6BvxMJ9XoRNzstuN7JvPkHFVqtDM0raDGQ/fX9j3W5lRRzCAHKpQeaFGJgzHO0MxX75VhkYX0c4m+ZJVEI0X5xjT+ARUjLs3OtTGoUMrYSFvhriWVZY3U+AAAIABJREFUidIKjEYnjewQqPxNj18M5QEkdwKPjpESj/KeLEmNYmIrNykNyJuMPmoIHluWsm3Qe6LuiN4RzZ6+le7NKMkXlW3pvbeT1gkxGjWk9ysOKpFHgiJPvKEIaNvjkwZPW7kBjYKjxQFNjLguktkcS47rInWRC6mz74l9h2t6Ggu4jkmRUeSGqHroG4L3EGtCF6inU/bdnmYloEFZloAUWa3E1+vy8orD+hClLPudQ+mGtguUk5qJMSglXC5tDS+vX3NweCz2PljW3qFsxqrtqE3O9e2W9z/4FrpvoOt4fnGB95HDw0O6IJSE6XxOf3vLctvx5OG3cH3LfuN59OA9VssljXHUdU1VH3D48D1evXrF43nB9fU1RoFSgYPDKVdXV7R9L8P66oBuo9BhQrcz7FYeZWET1hydHPLi4jlZrXj66jPqvMT3HbOjOZtXW9p+R4yKg0Ph9/WhlWDfjUFb2Yo+fPiQq6srfGjZNR3VdIGyGToXx9yoNLt2Rzmb4YOWUOekAil1jeoU+xT+a4x492VG44xnelRD2HJ1ec0H735A3/d8/PGP+KVf/h7T6ZTLi9fM53P6dk3XieuxLwI2z1BRYxXstrcE4PjkkECkLKR7K63F4Yh+j1cKbcC7gS9n0HnFLJ/Igh48MTS0nSxCTdvhFNi8oMPQe8cUj44Go0tyO0OFjOA6tBNljQk9SmUyLwMpajGKlhS5d3xUKKUpXCtNBMLpVBhiiPcE2yidVauT+jMWEAwx5GhVo4wlkhGUAZ3RZ6XQpbQiGlEZRGXu9ahe7s3eJhT1Gx6/EIUNhGArM/shX2AYFsrnUYlpYIxiYSIkV4XvO3RUWJOjtQIK+r5GkQkfrvdELauRMTIcDfGeGoJSaV2Jo3f/CFGnVjrEBESEQFRKKA1pFbeZYT6bso+R5e2Kdtfi1L3VtYrQti1d6zBGNHHOBbGnTgPSphE1gVaGtuvYbnZomyXypHzsdsIjG8Juz87OeHj4UJjnRS7221GPaUaPHr3F4fERXdexbBuWyyVN03B0/ID50Qk6y0FZIpqsqPjis8+pp5Xw46L4L11eXnJ8eERmtSCBKT4vKIW1OVmmaHzg0ePHxODZrpesVg3Tac0HH7zP7uILEfBHISU36bnf3NywWCx49OgRpnFMZlOyLOOdd59we3cNRs6ZyTTeB0nEevWao5MT7u7uODk5YzIT1DCzBavlBpvXhCABKSqDusz54osvWSwW7HYNPirathcjyrwgywuyomLbdWR1ApS0IjcZPva0yYI72DREzzKsEX88FeH68grnpOv67LPP6PueDz54n8vXF5yfn3N2djZmVbiuRSEo86ANLasJnRMUfLAFv7u5ZTqb452jyHP2jeSmlmUNiXSrM9DOsd3s6PqtcAcVFGU+aomjS7NBpDPtnEczZCsY4WIaRWZjAix6kt1NokjJPWe0TvhATFtQxNAhzd6kCGlICWhxiFpL1A0JATHp92mZBMb0GFZ+VqcmQplEn0qzwaRACGm3oiMy//uGxy9MYfNOtmvRR0hBJgoZZsZUxIiaGEJKChKajIRrCD+GKB1YruaEzEHw9HqPb/fDMiRAhBMeFrzZsfGGncq9GZ5WlqjvlQg+SFEcTnJdVuijY7K6Jkdz7VdYFVGhx9iMosjI85LeNaherKUzK0PrsixlptDJdtPmGcbIx5AFGmPE9aL1BDBKBON1LdtIHwO+EYvsPCvHTNGma7m6upLzmOfMZjOszdlt11zd3pIXFfODEyZpJuT7luXdnpvrSyaTCaenp8Sg2O22rNdL5vMDhnFpXU5SkRXnjOVyzWxa8eDBA7quYbtZCRk3y5gtDuj6ltXtDXVV8qB4wNXVBbvdjqurS2qVMZlMuLy65OGjMxmqF5b9PnJ29pCf/OQndN3BSMht25aqmnB1ecNkMqNtPZP6gGYvqWNGFxA9fSeLYgyG7WZPNZmNN1TXClVC2YwQ1GgY6VOehOs6nOtlEfRiC97se4y5n4MVuRVnE+8TQglffPEFH330EVpbmqbhxe3z0cnDOYdVReouPXq1EUAA2C7vmE6nBNfjWtm+jtvPKJkUeZ5L6I8S77a8yDBWci1824xGCSiVrIgiWmnhUgYw2hB8y77dMi8LAp7cRoxWYuWkxBJsiLsbFBtRC7vd6iyhrkmUHiPGZGiTSUFCHIaHaL0QJZ0qDiOlaAkqRymL1wIYGDL8YNuVGaKx4nmXtsWkWZ0QoQfQ7JsdvxCFbZgbhRClsAWfzPQUmIAZxOtIVqdSBpWKFDGmDBjhoMnKlguxLw3aYxBnCRV6cfY0ErmmI7KXH8DoVNhSYDgg9t5feZ6J5xOCG4yTxCkhs8wmFYMtu+t6fAomkS2ErFrGWIacy+AHzo/EA/Y+pPPAyKUapDaDg/DAL5vO71HLkbSpHbNaKBx5USTZUk60lvPLC2JUWJvRr7a4PnB7u2R+cMTZw4ecHh+x3W/ouo6bywtc2/HkyROadBIyo0YZU6+ycZ6S5+IGInMiLR20lqi91kfyUpxFNssVWlny2qattXRl82lJ0+wFafbHTGYzXr56jrV65NMN2/FlcsawNqd3sNnscL0oF9quJ7OBzolg2wfPbCoDeOcCEoasR/5i13XorEPntczQkoFj2/doa8iiSXMdhYpeOhplMErR7GWGVZYl3nvOz1+S5zlHBwe0e3Glnc8OhJ6k7o06JXA4x6aLatQBuz2ub2XBKytc1xOdzAMxCnxMAThil/+mbtR7T+j7gYqZSMcZyihB57WiJwhdJeb4rqQoclwPKkpeRnBOUMpEzQAYtIcxsQ6UFov+qOT8qajBWpRJCVxKLGKVUmNnJnNzi4ryXIKyMktTmYyHTE7UiqBldDJ0bHJPStc3+rXpP8T37Q85fkEKG/RdSB2bXITK+dEPXU5kuLcWNkoGnTFCDISosTrDKAUaPBUqBpSR0BFltBBj+x3a94Al9ELw1YokF1FEiXWX4JbUsQ0WPFKI/BhP1jnhpsUY6foOfORgNuNwdohVmu1WHCXOL75ku5Gos941qWMrsKaUQTWMq3OiPUpoMFCkwanrerpeCJhVVVFUJZvNhm0nJNWTlMxuTCas8uAJqKR7hX3fc3JyItud1Y533n6Lpu2oqgl3qw3tZksxN1ilKOoaHSO73ZZPP/l4tKuWxUbR947NzpFbsXNyMXB6esr56xfSIbqOui5R2tCFKFiYsex7URooJbbmLmlYzdEJn376KZNJNZJKz1+/5vDwkE8//ZTT0wdir0TE2nxMvCqKKhXTnN2uoekcbXNLPRPfsu12R1nWtK0nBtjvW3ZNYDIRiks0lmg6ZpMF+32LthEfIl3fMMlLnBPnk9wENncbQbJLOe/OOU5OxPnk/NU5Z48fjRKm4OQaOX/1Ap3ciGezGfSeJrTj4tR1HV98/jl5nnN6eopX0O22+GbLfHHMpKronLx/1aQeicaSmqVTgbejs7IP0m1GFJPZApPl4u1HROcTMT2wOYXRFBq0isSuQ0eNMhkxdEAkjGMgUDbRQEgUmBjxpkQnbh1GipV0UjaZTsisLYREKI5iSRbQeIxoP1NnZoy4BMek4hF7KGkAdNrejj68IQpR9xse3/w7//88hiLi0vAW6Vja3o+IiwtiwRzT3t0FcAGBjLVIMQSNzJI0Q1DMqExaJcwbX9dg5CMiMwUfQxqK6nFw6mIYbbgHudPwYZDtsqRE9Sjv8G2DiRKyUuSWqi6YzWaj136elYnJXoxSnKFwAkwmU6qqEmoHSjIWkt3OsEoP2sCDgwOm8znaWtbr9fj1octBqfG5EwPPnj7l6dOn3N1ccXt9w2a94vb2lklVcPH6FTE4ZlXJennLtC55cHLKbrNhsxJ7oPVmyd3tNVWZp62OH8/JZr9jPlvQtj2nDx+M9JTJdMqulS7P2oyoFZvtlj6Ixbi14j2HjkxmU26Xd/RebtCqqri5vhuT6e/u7iiKYix+w/ZutVpRliWPHj1KsX8rqqpOCwsjRSLGKIvBVsKiXX9/nQ2Gluv1euSLrbZrJEimT4YGEt5TFMOYYMvd3Q23t9e0+warxaIdoMoLTg6PODk6pipK7m5uUUhmxna1FsmVUswnE6ZVhe868J66KAh9z/nLFxAiZZ66yKYZO7ShkFWVkHTl+pJ80MFZZLfbfYXjOCDrLnjp3LKMTJsUcKRlx5AcNbSWe8snb8SITl6JkZiKUjQZ0WRoW2BsSdQlQVmiLlC2IqgMTEZUOQ6DiwaPwQVFFyIuQh81XYjj/ae1Rtv7eyOmLg4S2qrsfZH7BscvSMcWaVsRhYfgE8FQODM+aoiyZzdpvx6iTo5OkdZ7VACrZLBvkOyAaAw6BtAy9I3RoZ0EapgY7l0ZohcWZDIHBNBBUoxijOOFJCtyS9PtU+FIlju9SHlUiCKdMhodRPGgo2Yxm9KdngKBFy+eUVcWnQwgvfcJeSI5Usiw2NqM6WRC3wllJYZI33XUkwlVVeGC/OxicTjeiENM23Q+w8fAs6ci+JhMJswOFpSlWJ0XWU6zk7SnSMAqODuc8wc//MHYDWZK2Pnffu9dNrstV5fnPHzwmKIs2WzW+CC8trZvCTHSNT06BurJlDyrycs5PhpsXnP2IOf6+hKTCRG0cQ0mFfLFYsFys+bR229xfv6Ss7MztluRHSml+O53v8vtzQ2Hh4dcvbqk92vaViIAq3qKtZqua/n0px/z4Xe+S9NuEqWiZT6fc3NzxWazw5qMcjIV1URR8s67b3OzWoM22OkCNFJQE3pZJHcQW2tA1Avr3WakvPTB0zqZlc0OFthM07sW33mMUmx3e1wni3KVF2zWW9a3d0wOC7zryacTLl9fJNcVy+npKe16jeol18FpTdfsWK637Jo9Dx+/jY4y69s1Io0LROwbwc2bjSgH8uI+RNsag7aGfdfjvMGSrMtVKi4uyGNYQSSVktmzF+WOi4FBoyodlkEVs9SxWTCWqDLR576h98RHYrRp95WyguUuEXcSYwQ0MJpMi+pAReGKhjQ3H1LlVEQWecWfxa1oxPVBRAPCLhRtWtT37Wf0dL3YqwTcyKGxOqV5a01UHo+iyBRGiZWxNlHs24KY1wkB2IOX8AvZznqis2Q6k9FCcECbHFpVCrxNc6zUZYmbr8f5FLASFQYNqTiGEAUUMAIwLBaHXF1dSUgJfnRgCBGyrCDLLG0vKgdrLe1uL5bOSgz66rqmyHPm87kIz/MC1zvZxibPsK7rcEFY6u+99x67VorufrOl73v2+4bpYs5suqDdC11it96glGIxqeRmbSKhKkErdpuVdEATceYYEuY3rRCJ55MpxhiqquLVy5cspjO805SF6GQxBpNZ7tYbTFbQ9ZLcnuWGu/WS3ndUdSGpTZUU3tlCNK8XyaPMu8jlxTV971lv73DOcXUlluWr1R1N03BwOOP27jwtDpbLi1e8fvmKyaTi7OwhbdsDgSyX/FIfeurpDG0Ny+WSw7Oag4MDXl9d8vDRA9y+xbXSJd2tbsWdRYuy4+XLl2PnVNe1dJS9S91rz83VNX3bCQVo57ClwURx7jBHFdum5Q9+9GMO5zOmVcnN9TUmCphhVOTg4IDjx9/i7uaWh48fEdA0bjByvHcnLqpS5E8pCGY2myVakqIohSdZlGUa7LdpK6/JsXT7HV3rEhih0CrDjVs/RVBBVDPJvXeYpxpr8XmNMmZ03kBZ6a6CWD4JSiq0lOj8OOeGgRQPIfncKaOJPmKiKHSstWOavIjvFTYNvu2fYBsKvzCFjRHVUWlO9qYMBlJQhzIJDEhBX1HsogV2luHwYGsUBtR5kGopkXXoKFpAkWoZYnBpEGrwrpUJgTKCCAVBhEZfrwRyONfx9fMsgvsB+LC44Mgyg08i+UHe5EObClpIv1skUyAXadBOaCoImTFEEQ9Pp1NCSMEoWlEUJRniKTYEguz3e6ZzCdbNqxKTy3A6N0L+vL295ebmlvnsgBgjs9lcbt67Fc1+D0pcPdpmLzdqDCwWC9brNScnJ/RBnI2zzHB7e0tdSIDL3d2ddHtFQdO1uE5GCn3f03pBBTOT4ffQd82YurXf75nUkpCVZRmbnRTPphfh/8XFVQqW3o/bfqXEzaSsJZ5Pm0BVFSw3a6qqZLMdktK71Bn36fyKA6yYf8iCUZUTfMp1lWCShNBZS1bkFHlB1/doY3C+odYTXOjJioJ6WlOVMiv0ScLne9FzRh/4/PPPIShmk8mYxPTJJ59wdnbG6dExznUcHx3x8MEp88kU5zvOX75ivVrT8py33npHHFW0ZTY/YNd19z6Cw6xZqdHFYyTjWrEbV86TlxO0UoTk5qGDJ7PlyDLQJpM+guQwMlArdEzec7mMbFKknjKCekZtCGnbGpVJKgGTbLAygnICHGhFjFqIujESEunX82YgU3reSmOV3KdyD+p7S7I3VA3f9PiFKGwAVlsRGiQkUCmBoYc4NEWk3XfEILMCufUjRkUhgHqN1zK6LMvByM6ARvRwIbl1Bi/bTyMnW5PLINUHfCtIKTG56nY9odvTO493/cg6j1E6uQEVFXqIuH3eUxpJfl4ea7MkFTpg39yNN7ZKHeRQMOV9kyCOrunwkcRIL8fZ2XQ2E4KwNhzMZSsqYSEWidZLfLdkSOmcY1rVKekoY7FY8OzLz9Ha8oPf+z3yrGS6kOR25yTB6Ic//CFFUXB0fMLZwwe89fYjnj9/zunpKbfbLfOTA6bTmo8//jEfvP9tEcxnJSY27HZ7JlWNUhKU8vrVS84ePODu+jVZkdMvncw+o+hSz1+/JsZIlbZPL168SDM5AQomJzVnZ2f89Cc/ZbWCooiS6WBuRKFhNJ/+9BPQcHR8QN8VHB0uqCotThvzOauVbNOWyyW7XcPRyRkxdbi9M7y6+oL1dse733qfzz77jNiLWeZiPgUDWZnx5ZfPyMqCyXzGYn4o872toMivnz4HoMwLDhcH1PUUl2VkCYGd1LVYRzkxcby+vubB2QmXl6+ZlBWruxsmVc3z50/56aef8v3f/PMopXj9+jXKZFxd3/LwnbdkRGEyohK79klVj+ajfZLlaeOweUleFCNIoVUkdD2dD5SmQCuLtTKnNEZB9GTJMQYGwTkUeTnqM1UizXpVS/HXBmOSfBAFQdQVISJIqIKgPFFJhxmIqCA5DSZL+k9rKGI2Ip4hyP1rtMWiUqByoll9LSzmj60n//il6E/xUNDiMMqgVBKDxwTxJsg5qgxlHD4Egje4Lo5Ag7GKUCmy3JJlhqazqVuK9DGSZRq0oKQMSZFDtF+Moz+bzjpU9Khujw8GT0vrOnbREehp+hUh7lPLb1HaYHSBU5bcOjxROrEIIfYYMZVntZXtXlWU7K8Urd9jC4UykcpYvDOSw6gjeWnQGlpm0sYD2JzpZCZb9mRj887jt9FKUqxuL6+oq4y2bdivNxAV2/UOHS1lWXNbl9hMaCOPH53xne9+i9Vmx8N3HhKDxgWdCpIU3G9/6z1673n27BnbzZLri3OapuH108/5/ve/j9ts2V3dcDSpubt8RW4y7m6v2WYZk2rK3ksRPi4W5KFCdYZZccjl+XPW12uYZazubgh+z76T4f6zZ6/J8xT+nJKQVquGvN6x7XtcryiTNlwr2G8cvXcYo2hbODqdcXWxRrPEqp6gAjbL+PzFC5QpOSjmHJw+Qeucy+uGX/r1D7i4uOLVsxe8/fYT9jdr3M0aqzVt1+GaltuuZd+sWF7fcXZ8zPLihrcfvs1yuaQwGVkwvHh9I11MUPzkk8/5tV/5dfbrFXc3t5wcHLJer8mtyKlClTGfZ2x3kZcvlpycnLFve/bbHXem4f1v/Rbfev+fRleWLz5/ymRe8+F77/H6+oKbi1fYQkJWrLXUxtDtRQJ2fPSIm+trdKbRmSWva+FHBo/KLL0O5HVJYQt8sOjcYqJQq6KSBb8pJEvjTaeO/TC8x9w3Gwm5VErUAkQpIUEDKZDJ65h2SskwNhG0c3Xv4SZdmpFdi1KSIaJ0ojUFQnILvi+sf7KS8otR2GB0h33zxH7dDmXo5lwv7XcIEZM6OmMylAqjJg2tEmlQGNgq6U7HQaZJK4DsCNFJrkJAXDqMxWkHw++McZyzDURVoxSksIoQ761eXLKgVvIA0XlCjBQ2w+RCNYl0whNCjP5kQGuS7zwjEgqMDroDwleWJbvdDqM9mRFFxWq1FCH2ZiOETlPy4OSRFLamZbNaUVQVITjW6yk2K9hv9xidYWzJpKzIMz1y0rIs4/jwkKaTudjp6SnnF6+5vL7i7ffelaSuznF+fk5dlJRlNZ6fwUZJtJjC14peOrKqqug6+f3bfUOR5QmYAaX6UVgdY6QoBAnc7XbEGMmSDlEZ6fh8HxNSqWl3e7S1qNgLGTbTox4yLw3OdcymB0xmhzx79oLLy0tiUoUMKfKr1VpyKkwO7NDast1usUZs2o3SNM2O5XLJwWzOZrVO10FgtV1xcjJns12y32x5+60n7Ddb6mnJ40ePUCrSGbg4f8F0OiXLNe+/9w63t0tevGg4PT2h3e0oigJjFacnJ/z+j3/IixfP+Of++d/m9cUFfROJlcc5sTxyLpBrIQmrNJd2zqGdw+iMLM/QmaVrfJph5ehosSqXHQpOdhhp3gWMyKOYHwwGEgGiSdZIg/ZVoZJAPaR5GDDy3t60vB9mbF+/v990xB1AkJ/nFCL//hns2LTWKQru/sUNIuWBgBpjhKIgRkXvO6J2hBhpmr3MWjLIC4X2Gu16mkayNetJyejSQZZmY4E4FLZkARQBEwxECf2IXUdwXqgeGqITxNZHRwz3NIwYPZlOxVPJzG94u4KTbIBMC8oWeicyoajYNg1RGYpCUFwXFLHzhF62utPqaITpR+Z6KnBd1wnpc3uNcx23NzdyE9U103pGZoTfdHFxjtaW87s1MUYODxecv3zJarVkNpvjoyLPS7SyLJcrjk7nnJ2d8eyLz+m9Z7aYE7Xix3/w+/y5X/11Hj5+RFVV/OAHP+Cjjz6i3e85PTqm73sOFnM26614mGWGGDQq+vR8G7quYzabYWzk6ec/YTKpRNmw2ZJlGbsNqImnDbIln80mHCwW4kvXd1ijQVnatqPSYinujEdjKfKcpmuZ1xP6uOXyZiXvp2mJqsXmJTF0vHj5lAdnHW235tmXzzk6OsJqg+t7oo+46Lm7WbJYzHj+9AVlWZKXkt+6Xa05XBzx8uVL6rpmvV6SFznLlzesthccHx/z4vk5GTCfH7DZ3XFxdUVRFFwtL9lut9zc3PD+++/z8cc/5uzBCVeXryjLgswYXp9/xsHBAQBvPfmA1XbDdz/6kF274+/9H3+HX/lzv0bXOy6vXjOfiT42r+foqLnb3NH2HbnKUcbiiWh0KkKyZdQqB50RKYQCZQx5mQqNjmS6euOOvJ/hjRpVY9AmUUTMADQka64o822f5sUGsf36ulLg643K178+FMABrBj+leObUz3gF6Swwb2V8/Dih5V7ICLK6isWz+L5LsNp5zQhBtbrLUUvgm2lh5+BzsU0u9MCbUexvw7JNhmt0MNJSzw2fEevDN5kMnyNERf6xHnqscakNw6IEnjRh4iJCClWMw51fddDjIR9S6kM0/kM5zL6ZYsPkBcFIWYSM0bAp4si04IqWWMwKLq+x2a5ZHiGyPXFJav1K7quoyonoDyXl6/ZVXum0zmPHz+mLGucC7zzwQeSuNV17PdbJkWWOifH3d0dRMX1q+c8+1JmUsdnpxwdHnB9d8ejtx7z5MkTXl+e8/L8Be998C1ur6/4gx+JTrJvJfGp2W25ub7iyZMn3N3dgg8EpyD2OC+vaTKZkBeW7ckZd7eXZGVFVLKozedLqmrCZrMlptmitXYElQbu2jCicM5RZRW7tmG33XJ4eEDwhqbtCBEWCyH87hrHvlmT7y1dH7i5VcwmU5SGp59/wZMn71PYDN/1bPYbHj9+zGeffMakqFEo6sJwc3lDjJGjA/WVa/Tq6orbuztKa/ji48/JqinrbcOL1z/l8mbNP/PP/nmImn/wD/4B3/ve9/it7/wq2+2aJ/Uh7737Dl988Tnnz8+5vbqkrHIO11s++OBbYJKfX4z43lEVJdcXl5g8I6JYxojNMqZGbKU672hdT+McWVFR5zlRafreE13AhcFIoQCdEXSeeJ9vbA11MRYWsRoauGtya3ilCDGpAaKQcDEWgsJoncC81J1FTVRuJCPDV4vVmx3cIPF5c4sqH3r8V44/gx3b0KG9edEMqecDKgpDuxqxVpHl7h5G9mKwF4KFqNFW4GPQdK1oTnUyz5PfESBLfztogh7gaA1JPOyjJmLGLWiMghKGIPIUUXfFBFKkLaj4u4xF2Xc9MQRc2wliWQt6OejpQFBRYzKi0skaWnzj3rQLGvJERQy/Gy+SAQ0zVnF9dUPXOQ4OTmS7HoQe4/qep0nyE4IU2s1mQ9MIIHH5+koSqLo9RpXc3Szp0uyySFFueZ5T2ZqLq0uUigTfs7pbUhWyJX7nrbdZrVbc3l5zdnwypq+LVCxglU5SN4s2BfP5nNvba6zJaUOLSL3yZC3U0jZCRSBqMlugcLRekFoS0u19T1EXxKan7wPG5hDFiTb2PUMAr7Ukg8WO3JaiI+1b6toSohMvNCMSr0E9MEjg6roGmtF2PMsyDg4O2O9bPIrXV9dMJjO6zYajw4esdh0vXl7Thcijtz9A2zmHx0d8788FDg4OuLrd8dFHv5SkZy3vf/A9vlNYgutpuz1/9+/+Hc4vl3znuw0ffvsDbu82PHr4gLbv6FPGgS1y2nb/BoKphaOYOGOCXgpFo/fJDXjs3kQtkJU1MUCXxjbKKozK0/UY791vvR+NMIe/J7djcvIIP7ttBJKi56tGrsPW9OvHm13bH6UF/ZMgovALUthAfSUzcCAYDp3bcEKyvMDYQNN02CxDGyNe9kZDr3De4bzCK0PXiz3rLe1cAAAgAElEQVRziBCiR2tFnluMla1dcB3KCAt7+FvgEg+nx0VJArdRbHBi19F3jqKoCF66MOcCeabxvZPta0I3o1Kpm3TgPH3byZan61HWUOUV89kBd8sNfe+ZloWIsNu9kEC7Dm2LrySeA6MzRN/33Nzc0PYNT5484cWLl3z7u7/Mer3F99D0EE2OynI2my27bs/Li1eEEDg6OKCoK9abDa7tyCtD0264vml59aLl0duGvJjyD3/3BxydHDE5qEEr3nnvHcrCslutODk64vXrC25vrsjznLubK9brNXWZs7y7GV1xg4kQFLbMINpkptngfeT09AE+9ORHDyRVvuxomoaHD5/QNA11CojunEN1HXqm2Wy3NB0UwdP6wMwWlBXcrW9ZHJ6JxKrbYyw4L469u5VjOo10zY5OOzbbFQrDrFdJxN7Rdzsya7BGdKAPzsTxdr/fs1xfcXJ0TNd1fPnlMx4/eotm37NabVjMT3h9fonbTWg7x8efv2DVecrJnL//j35A638g8ycF1sAs17T7v4lz8Ju/+SGTacVnn37Cv/qv/StorfmLf/mvsG+2XF695G/973+bRVXy5dNXVKXh4HDOZrvj+OyUIs9HupH3nl3XYsocqxT1ZEFRiSg/dm4E4LTJyLKSaEocyZEjEWWV1uRJUH8/41RElYT1b0TuGfvVYibrjwTPoMQgVhg1w8ztq8Xsze3l0N0NjxPvOzZp0ERPDSSt6p8xuodSXx0kvukUO7Su0h4zbk2N9eD0eJKEX+bRuifXBtww1Ff4kHg+xhNIiVFKfNmUskhwbxK1R4UT63lciMTepSGqPKaMSe6lw4kWaxcVIjEEYgh4IDpRB/AGP2947tYa6qJniWwPlVJopID5IK4SJOa4ShdLZi1ayTC92e8xWvPBh99NXKeSfRtw3vDBhx+y3e55+uwFq9Wa29sbdl50pocHx2yanuuLcx6enWIyw3a7hxg4Pc3YrHqurzxF2XI4P+aTT6747vc0OtNsVkvKumazXpIZgfObZs+Lp88wKDKTM5/O6LoUGqMno0V379oErEgX5pOjSpFX1NkEH1aU1Qyb7chyCTEuSulQexeoJ4re7rhbbVEGdvsWk+fYvCQLmixbMl8csm868qKi7TpiNGRZTt9vx3OfPCiAgOsbMlNjFKyXd2w2DUTN6fExTdMS85z9djtugbvO4Z1jt+3oes9+16VsiYJXtzu22z3n1y1bB+31DVsHfRiG6aACtK0ASkrD7/3BF6w3PWfHNf/V3/gfqOqS//P/+of85b/873L6+H0ev/Ntdstrnr265HBWpVlvJCtXzOZzcqNHQnbf9wkS0/TeU2nZsQySMmuSntMMw3kDRom/mRatZki1JCjRe0bZ8/N11eWbbjhBkbIQ4j3HblQ8/2wR+nlg4ODe8fWv/ZMevxCFDRgL2Ndf5H03ldBLbTEmDSYNo04uhIhWkvbUdA7t0lutPVlu0NrTB0EQOwfT0uIiokKQJ4CLsmq4XtE7kODvjO2uxbeBzFa4fkue5QTnZZAaklGmkm2z61IqUtvi+l7CMIyWqDYU/x93bx5r6Xnf932e5V3Ofvc7+3BIDkWKiyiKmygpli3FdeVathG7QOo/4gJFUCRtEaB/NOi/DdoABQIEDRrAaIDacOrYSWzHaGw3TmJXi0lZIilxEffZ586duetZ3+1Z+sfzvueeGQ4ljQ0DdF9ieO8999yzvOd9fs9v+S6p7qKUh8TSiif4qsBkBUmrRTtNKMoylGhFQbvdnr+/hhN5cHCAMYaVlRUORxXTqcHYhFZnjetbFzh89W0uXLjA1lbF+gb0+202zj5MNs3prKxRTgumxYQ3376BwqO0QNigWHL8+H0Mx4fc3D4EBWdPLTMdz1he6XH90hXSVuBMjteGSCk5d+4Bdrdv4p3lytYlTp06RbfVRgnBeDgkjtrYylEU4fGTJCHPgpJHFGvavT6rg2OsHz9Np9OhLEtu3LjOsSRBqbAJ9GczPI6DmzeI9vbmSrgnTp0h0glrm11k0macFXSX1tjbnbA02KAyGWmSotU+3olAT/OhfRFFCZPJIVGkmGWHtNIBiIrpNMe6DeJE8eb3X+fMmTPMDqZcGl2s/V5jdncPGA1n3NzeZTrNmIxz3vogIytyhg6sVBTeUXqJbVpRItCCCgWlDT4de5OKbtriyrjCW0Uxzflg503+7bf+W1Lg577yBX7+p7/En339a3zn5dd46IETdLotjA1yQl0H3SXodXrotIWIgoQQaHQUFFVaaRvnHJl3qDiIAzgZdP+CFpqqMZGBahUwtXoeFaxZzLaa9VgLU0hfA2lr+mAd1Brqk3QLWdkd6/y2tc2HkRCL7ac/7/GxCWzAh6J583Veltb8UC8FOg4wAW1jLJ7ICYRytbR0HlgABBR1VYWMDS/R2qNkRFUZtNdILee2YMbkocdW9xEEUdDw8hpXO+ngJdYAJvTUrDCB4OwDo6Aqg3JvVWdilgDzCD0nh/Ia4RyxTlhZWiVWGdZRK/5aqiLHmJIkas3J941BSVEU89J5Z2eHqLeJ8wkOyWhqaPWW+frXXubcueP8nV/4Ihsb6xhvOJi1uHrpKtZ6qmJMty9ZXlJsri5RFBlb1y5z6dIlhNvDeUN/sIIxBQcHI4rS1gBOx95oRLcXMZwG9/bJaEwchz6bcI6L73/AI488gikrptMp/b5mNs3DdDFO565badpGKUGn02E0LTl+/Di39nYYDAasbp7CmBJjSryUtAdRYF2UGcdOHGc8HjMtKqKkRVVZrJA8+NBDTMY5SbuFVBYpHZPpEImj203DRFwuiBhUGd2VFrGGrWuXefyxp8C2mQzHvPHaKzx0/mHKbMbuzW1Gk0O8U5w4MWAyqnj3nbf44P1tnnv2OarykPff22LiO5REOCmYeSi8xSoVZu2BVgN4kk6bcjabX+Mj6zCVpdPtk08mRDqiMhUew2///td547U3eewTD3Brf8SxjRWkDB6qw/0hURQxGo3oeLBKBY1BY1karAVcnQdRO8rLqGEONL2vWu/MM/cOhUZCqzrK9LS+rQyFoP/hwjf1mqx9GmjWWwhwTU9tMYjddb3726ehd7tfeICjQcOPcnxMAtuHU9Q7v198w4sTlka5wRoQNTG9qm5/9AZGEsrJEOgqGh+EAPeYq2w0z1P3CMo6UDnnKIuKCF/rxtl6chNOt615p4tTvKZvGGgogeTbHFpHRDomigy+ClJFri5vpWwoZAtjdxsUMW7evMlsNmNlZYVbu3ssLy+jo5jvvvoaFy7s80u/9DOcf/g8VVXwzZde5NatbV58dYvtLQsOojAfYbkD3VSyub7K4cEOVQmz8Zg0FeR5hlTQ7sBoDEmas76RYG1QwxjPDhkMgn6/UmGBVWXJ9evXGQwG9DpdpAzSTdNJNlcZybKMqJancbU6yHA4DKY1VThfoWHvyLLpkbSRjOj3+xw/CfHeHl4cBBK1D59lt9tF6jAAyCbiyHqPI7MRpSLAghOUpWU0PpxfQ8PhkMFgmaWlATduZFy7fgUhPXkRcGXjUcbu7i5KtDl27ATff3Oba9eucbA/YlKAi0PbQiVJ8CgwQeJqwcEbgCKfQaTAWGQcYwqDjBOm0wkoWdtGSiIZgy25dG2fcjbhrz39CMZM58omjVZfuNarwDKI47qF4ubDt6ZXHXyVbs+CwnV1xyqc/92iefcPOMTtjxkYiEe3LQaquwUt7+/Nx+Bejo9JYDuKJ0AtCgggkPKo96YNWOFREqQOWDKfgKjVLewsI4oExsR4HNEc4KrAeaJII1VgBRgVRPVmVZCXDvIsCmcd+Synmk0xpiQqDPk4w1mHMBIpYgQGrSLA412FscGnMWQE9eRUKhAaHcnanVwhI0lE0HrHCSIt6fZaHIwPwXvSVpdqCsIY7HSbbDJhMFgiUgmzcoyxFYmQFEZwcGMGDHjxWy8zqeAX/9bf5Cd+Zon/45//Ftu//vtcu2WJ2wnZrKKU9cUm67Um4NIUxMwhDnZQc9qKY7mEVSPoKU05rjAS9nchTjTjcUGrvcJSTxIJwXhnh5m+yfaWYe3UCfqbbbwq0YTnkSaipT3VrOSw2mM03qfT6dDthcnoZDLi4UdOY21GqyPpL/XIigprodUeIBEk0YxUJbjVsww2FN1bu3QGuxjjWFoJYpsHozyIAwCDY6c52NtGdzTD0T7d5R6mLHCVoSqC36bwkuPHN+fX1a1bV5hODtAi4r6T61y8cJW33tzhzJkuojvg7In7uPjBJa5deI/xGEYj+N7kFpmBUneZmhyPIbKWM6sDhE65cmOXcbBPAB08FhJTYG3ATLo8B6FwZRHoTNJT5jlJLDmRxOyPYaMP5x88Q3u5g8lLZCLo9xJu3dyim3rWT56k3UqxIsWS0ummxL0w3TSAlxqnNcLOcCpgOb33tRqHwPqANwRqOTBoeLR4MNYiagB607zXPr4tQHkfRCag9hep/3l5e0k5n9g2v2+yuYXNfjEINscczEszUPjRjo9JYLsdoXw3EJ8QAq8Fsj5BkazxGkbOy7z5ThZbbJ22KSXRUqEihY7C/WKlUXiElZgKXN0XizRBlrwKsAhnKrJZ0PBSMjyvNSVC+rky7vy1hcH5PJtUtbKoFDp4Rta3xzIOlBQlIZIYZxlOg3O6W+B3VlZSWktpHEp7huNDirxi/2DGaFjy7puHXJ/dZHUl5Sd+6if5n/7X3wgXcwLTIuzPxcwH27O7pPfN6/VNOYIgNqCjmMo5Jk5RCE+JQRiYVGHiqnyOY4oGNlZa6MThtcRlhtJW3DLXaR3ToadkJnS7bSKVYMpg9tLutOoLXDHLKpS2dLs9jp88g3FBo0tIj7fQaofy1UvB0tJGrWXXodNd4u233wYp6PS6QTEkCZeyrQydToft7QCa9SblxvVrtNttsul+jYd0vPX6NaSEzY3jDPeHiLU2rVbwDF1a3uCFL2wSxzE3rm/z1vfeZP9gzM4hzCowst5MlcW5Aq8M1kGC49iSZmmpjywOubgbjH9GxoOOqShrKHjTlA/pflXmCKDfilkZDPg7/8Uv8r/8o/+dv/d3/2twFVcuvUWv1+X45gqnT52kmI65fv0q9z/5PGm7jUwGRO0uVnpUJIPbVu2j4BxIFXBtc+iSC793BPGI2zOro/XXtELCL+remrsjqH3Uivb+tlL0bvf/qIztbiWsF/fWd/tRfEVPA78GbBJi5q947/+xEGIF+E3gPoK36H/uvT8Q4RX9Y+ArwAz4Ze/9Kz/seRYD2+JJufPkHI2L60GDNXP6kZKBfq7CmBXZOEypQDnB1uNO5ZAiwnuBdCLowHkDFrytwBH07/MCV1VBDtzXl+J8x5E0W1XYeZrXX9uHNZO4RkSvnlRJIWt+nkSJ0LyNoiDVIqOIFsFGLffBB9N6h61coAtpR2kEs8yT56BbCWcf/hS/9bt/GBrVCsYFNS0/HDGaDPOR51yIYJzhCYyJiAYoLLEIcm8QFmIb/CZ2d6bEMSz3EnwV8d6FjKgF3eUCoYLqr7cFUZJCLLHOUFZhx24EN5XWDEcjVlfXGI1Gwew5rciNDwToWg/NC1WrTkjiVpt2u01pHXllArhXClQcMVhZZjQaEUUR7aiNM8X8mtjfC4q30kvKEqQM8liRaOGdZ7g/RasWN7d36XZLNjc3eeeddyhLQ9pus/3BISoVjEcgY8F05hEaUDI4V81yZBwuq9JAPjmkjDwt5UkABOT1ec6FPMpQ6i9SBK5yt52Qzwqe/YknsVXOQMPG2gpvvvE9TJmzvtQjiYJpdZZl8zaMUkFmWwjxoaATFJ5reSxsaHc4hZBRUIIWHhXF9etoEojFCb46Ckb167WLUvl3XE/hb5lnhneu3TuvvR903C3JuZfjR8nYDPDfe+9fEUL0gJeFEH8E/DLwH7z3/1AI8feBvw/8D8B/SnCAPw88B/zT+utHvwnCCfPNKNmBrbWmFMybv54A+ZD6yM8gkkd8ygYy4iJRNzE5mnraQJoOASYGFwDA1BQlnA8wEGeQzkFVYYqcKpvgqhKLx/uSbqLmpXKj8OldwPEI3+iN6vmIXUo9x6NJKdEiwsHctELU8tHNRZAkCc45kvg4zlbMyirYrCmFjFMOx3tc28ooHWxlghsvvkbmK7SMSeKUSFa1ooNidbDKwcFBjRRfON+iOet1C6AGWraAdu1VUDjLxBsgQuGRuSIFxmVBOwMzKsh3C44fixgsd7BTT9qJKGczbs5m4Bz9zQHGBHPe48dOYq3l1q1bLC2vIYSg21tGyOCKfjiZEiVtev0B02lG3O7gEOi0Q1UVKNUiSXq0O444abN98xbD4RAdJZSmYu9gnxMnTlBkM3pLAzaLE3TaKUU2QwlJVVV0+yW2sjhXsnUp+Kx2uyXWO/r9PuPxmKTd4pnnn2NYO7zracT+DHw0YW/qSE+uYazn0o2tIN9OyJBx0JcBqhRpycagw3Q6YmZhkllMNQotiCYc+CCyJbylJaGaFTx+7gR71y7zp1ff4b/65Z/n9e98i9lkyCfOn0WIgjhS7OzskFclzz33HL3lZRCKSCcoHRNHksoHJ3hHow4cHKYcIrRTREynHQC61iuEajJdWwe0D3M6FzmfAR71w5v9DVxrEelw14ztLnHrrhnbPTIPfqh6m/f+RpNxee/HwFvASeBngV+t7/arwM/V3/8s8Gs+HC8BS0KI4z/4SW57vvnXxSzuI9+AlGgR/imCgm7DB5WioXQ03glBIFJJ8NYFhU8TfBawDlsVmKqkzDPKIsOUM5ypcM4Ew+Na8C8IS8m5Ztv8NXq5ADhUNTRFzZ2nlDoKcIuwlrDz1kG55scaYzHWU1kHUtZULYGpIMuCDVqOY+oLpIyZOcM4nwV/RhHef9rSKO3nhc9cx/TOU1q//hRIEtA6AK8qLBWeSkqmrgweBipFyBbIJKg+yBbjccboYEw+C5Ph/qBLu51SVjlKSVRdBqVpiq9Nh1vtLuPxlNF0hooTWq1O2NyEJG116HT7pO0OOo5BanSSopOUpNVhsLxKu9sHJYlbKdOsQEUR/aUlhNKkaQsVJ8GdKYpJW12iKCaOklBCWkijwD7Mc0e/32U2Cwost25t861vvciVq5d45923eOgTT/LBtR1u7GbcnBS8f22L63uHVIRMOwdQHbxKMB5mBUynhpOnT3HixAprq13aumY6+oV/OCSOVCqcg34CrspYbqf82Oc+y3defJHNtVVOHj/Gze1tFAItJLNpxng8ZTLLalZBMLPB+QDZ8B8OSkqpOUUtiqLb5Ogbhei7LsuFNdgEqoYNtMjj/ss4fti6/2HHPfXYhBD3AZ8GvgVseu9v1L/aJpSqEILe1YU/u1bfdmPhNoQQfxv42wDHjx8PlmRzsK0BQfD/rKVNnD9qPgK32UcJEfT9m5IujkKKH37ng6Gy82glEASJb2GqehexYCqcrShdAa6gnO6TDXco8gkum9aS4R6tqadtTbAMr9choAqClc66IDzoStAxSTsJvqciGMvK2ojDC4hVjBfQbreDd0CR0Wq3EEJQlBJjSqyrsCbD2MZrU7O2kbK7LamKGQLIXRF6ataBE1gZDExu7V8Pck21U5IxBlFfoEqIWsOtmeR62hKWOp5pNkPFEld4ytpYWgIzUSGswNAhxqG8Y383w8uKtVbC/t6YTktxaf8CSkhWT61iisDmWN84RhwlHDtxkvEkJ5tVdPot1jeOMRxN2Thxgr5OGU8zrPMst7tEWpJ0OrTKIAWeVxVZaVjudPnk40+wurGJjiTdwTIHB3t4qYnbHSoEre4ynVaKE5LpcB90QpY7ks4SVuwyPZiwtJIgtebMmdOUppqrD3d6PQCe+cxn+J1/8RozpxlZQwZUCCxBD3BcVbQEzKo2UBEJxTAXOGn4RG+Vp58/S9Lp8Pt//CdcvbZLamQQZwCiSJEoQZFbnnrsHK1IkUhLfrjNv/yN1/jpr3yJ117+NseObdBqKXZv7dHupewOdzh28iRPP/8CZdrFe8ksz4nTLkVR4aVBxxInJd4rZN0aQAbHJ+8JzBvrcfaId2tq7rQQRy5YUh6VpbKelEqlbws6c1qjq2VyFtZqszbv1mu7G1j3Bx9/SVxRIUQX+NfA3/Pej+54oV6Ie1OC897/CvArAI8++qj3ToRE6I5eG94iZY2LUXZ+QpyosTjUbASpiHVUg2SPpIWwJoBQfYPTsVSVR9k6m/MSfIlzJbPhDsIbzOwWRb5LmU+xWcjaokiFFN9YpNYoFE7KGuwYniqUlGLhw/aUZYVSDkEg6CNC+zicv3C/fr+Pc47CHUmex3EaOKSmIrOOyWSP/d094iSi1ZYcP9Giu5VjrcNYKH0oMa21dWPYMcsD0l3hqWqZ8FYUk1cl0nsiW7M7vEPVr6bVEkTSU1UWUb8npGdWOCrviRNJVmQkdXasi5LBcsp4WrKy2qGV9iitw9mKfFZgbKDAfeLhFO8F08mM5aU1CmMoC0NuRqyurrJ9c4f+8gZRq0U37YKUVN7Taad4pVFJoAxFrZQsz/BKs7KxyWg0Ym19BS9j1tbW6C1P2Nu5RS9K0EIwEJpefwVblRwcTsmKjLjd58y5LuPxmEuXptx3n0JiKbOKg909nN2l1xtw4e3rvHN5GxvBsc0+v/TVr3A4m3H1+nXefvt9FILpcILPpxhviJVge1iwM4SLv/t1fv6nnuf8+RW+9OyzfLD6Pq+9cRkfxxyMStra8ugnH2Zvb5fU5zz7+KfRwnH18gV+/NlPIzy88NnnUAisKxjPRhhnOXf+YT71mac4nOYhu1YRRWbRylGUOToBEUV4woDLCUOkBMZaTOUpS4fzMd6BcQGkGwQej9Q0GtGJ26ibdfP+Ts7nnb20BmArFgLb4n0Xb2umrz9ivPjR7lgfP1JgE0JEhKD2z733v13ffFMIcdx7f6MuNW/Vt18HTi/8+an6th/2HPPvP0SlOrpT0D2r02vFEdZmEdsWRQpR239VUSg1QzCp+3hAZbJ5GWuqAmcNHgMux9sSb3PwBd6aoNIrg+668G7uO3r0AakgsyyOwImBzhMEE12N/5JSEsUBXxQlMU4F1Lav8kA0b7XCz75GcltwUoPXdNs9DuWQLJsgEHS6PdpaU/gSb+vergdn6osstCqD7JwMnFmtoNfvUO2VoTRyJigO16e314NBr0+kJqjSERNAnmhFVWah1LK2tlgDg6LyoSxOVERelHzwwWUSCWUBz95/hhs3b9Fqddjb3Wdj8zStdp8k7aCTmIuXrtDpdxhNxiwtrWFqjmJ/aUBZloFupoLp76zIgntXpIhIkVGErCpSa2l1u7SyjChNSQW0+nkw8nHhsygyiXGeY6dO463j+tZViskBOo5YW9dY6+l2lri1fRUpYj54/xqbm479/X2khHMPnOLBhx9kcznlxLEe58+u8/nPPEEct3nvrff5k5e+zeHhIeM8bBACSAV85zuv8Norr/L4Iw+x1htAVpDEglMrYTK+dfkDlpcH/NgLz9Jup3zw7pv0uim9Xo9et02vlZJGMYfDXdxUkGUF59ePoaMYGadhoCQjZG3qkugEJ8qw4ctGzy9Iezk01gSssNYa70ASHN6AOcyteaywlm5fe83avPPrndnXnWt48ee7rfcf6fhLmIoK4J8Bb3nv/9HCr34P+FvAP6y//puF2/8bIcS/IAwNhgsl692fgw83KpuT0gAOF8ng8g44SHP+tQgct7k6LnbeY/CNMgdQVQWRMMH9yQe0dYgiM6wpmE53mU73cCYP4ob29pMaXmuD/5HzHtURv1XWWVfwEA2mMOECqqoK37gMtWKkkrVoZi3RVA8SIh3hTAiikUq4fm2LIstxzrC2sUSVFXTjGGU9QgS3K4cEEdfS28HtywuPFwFkHKT/DWmdnnWTFGsMpjKsLS1z/7mYIjfkE1d/LhJFGnBXMgfrGRlQNfo8JwS/w0nG8uYKZTEmK0F3od2C1157i9WVVQb9AW++/jbDccHq+gYWxfr6OidOnGJ5fYW9vT0Gy6vE7S6TaYZxoOOUynqozXp7vS7WBjlxpRTegZA6oPYLCyKirAReagbLa1hjUEKgIk2UJiyvrQeVjKLkVBTzxpU/5fLlEbaE5cGE5599nPG+58bWDj5XvPnaHq3aqTHVGR+8+RLXL77IbFawcXyd5575a8TC8/CJZT733/0Mw+GIr734XXYOSvLcsHNjH1Up8mnGO3/2OmUGZ9YVabvDY088wSSf8cSTT9JqJ2xvX8eXM5Qv+fwLX6CTrnLp4gfsbd8im45ZW1tBCMm5Bx7kkcefoLCGyksmBwdIH9FJVphMJsH31eQob4Ium4qQ9XBG6rTGrLWI6lLU+kCtcs6h9BGOrVmHDYg6rL/wtXK3Z0++Xo++Wb+EGKk/ItgdrZ97O+41YxM/7A+EEJ8Hvg68zhF8+X8k9Nl+CzgDXCbAPfbrQPhPgJ8iwD3+S+/9d37Qczz26Cf9v/rN36gnj42w3RElQ9S7j/S3Z2bNzw0eJs/zoHaQFcxq7X9jLTL4R0EVBgCmqpBmEqZFxRSKEdKXFKNdvC3JJgdMJ4cARD6YgyRxHMpdER5L16k7LgwhqtgSa02DrEijwPFMWm0cIliWRZq21jgcxlUUIgQ4ESfMipK9wxFeRFjjcIUFEXoVs9mUyTjwM1979RUm05y1tT63DuDa1oitXchRzPDkCIzwOBkcixAKZUF5g0aQEGAIKy3Jj3/+WUbDA9556x0eeeR+kmiFP3vjDW6VJaPSMXGEle2pbdDqoCYAJJHSrCWetqh49oFljq+2mA1vICPPxvFN1h84y2Q84/BwxP3nHmJlZZ12q4sxgcVx6tQZbCcYzbTabWZFSZIkdHsDDqdjkiRBR1HIiF3TOgiljlIKY9zcjb0oKrrdLtYL8tkEcFRFialyqmIKPjimz2YzbmxdwxVTsizjjVdfY6mzTLfdpxgb/nljG7gAACAASURBVMMffZsYeOKTT3LpwiW+8JVn+d5b3+Pi5ZssrWuGU8NDD5+l015mNBrTSfs4XfLwww+TZQXf+farCKH44o99matXtvjSl/46f/AH/w97u/v84i/8TV761je4sb1Fr6PZ3dum1UpYGvTo9/scHowwxnGq1WF1JdDapFaIWPLQY59ksLqGjSMssLSywsz5WtwhQuraxFhqVBRMURpNs9x4VNwItya0W5vhShDB19X5AlFLfAshFuS4F3kE84CxGBvm39859NNSfej3/o6/FUKwgFCpfX3r+zeJQxMMXZhiHzt5/8ve+6d/UDyBHyFj895/g48maX3pLvf3wN/9YY97+9Fgvo6ytLs87vxl3HUcvHDS7pw63q2OL4oi9LuqClcUYHOKbAr+yEd0Xg43kuDWAZZIKUSNo1PN67AW60Gigv4YofyMjMEgiIRAuNCoj5KIJIqp8jHWGmbTafB+NAZdT0iFAuePKFqNe/ra5gbRwR4AG5treCGZZIdk08CkFQujjeZ9O29IdEyqFX0taQnH8WNrqCgmilNOnDrG6fvOMRo7CmvIiqBQspCMNp8CAdQbzDmUA2s9VsBoMub0sQH7h57NYwqlNEWWc/+5c+RZyc7uIWnaAR8waXErpXIWb8UcWN1ktYvmHlVl0Tq4GFlzlL2HibOd31epiDRNKY3DaF27Ux0pqkgiXP15bhzbZDbcI44TTp89w8H2AVtb1/n0o8+wsvI9zAzW1tbY3dlhd3eft9+6SdIKGeL588drVY+Q6QyHB3QHKVVecLi3z/KgR1kYimwaZJz297BlQawV73/wNoNeG8k6o8keRTYjTRRJEhPHEWU+Y319k0tvvcflSxfZ3b2FiiRf/fmfqz1NswC+lZLZbEa6tMzcKarOqByLVY9HyiMo0WIVhA/yWl44rLPBTOkvcPwg6Me9Ht57Gmer+ePf42N8LJgHzSRGeo8VR0HLNvuF9w3I7Y7afaHHNn+sI56cEMFTwNc+hYiAanfOEemaOyqCRZsrG/20kqrM8cbihSdK9EJQEzjvmBUF0oXdy1bBSbySQUo8jdIgN+QCydtbj4p0UHhIIhCesigQVtBttUFHlHv7eFfR6M1LKdGpxlTUblZirsN23333cbOV8O7b7+EpwEAiIZDCBB6H8eBr02bvAzjZuIpZafBVKCF33ruK8Y5+r0PUW+HtKze4tDPk+tQQ6PjMBQfDiQ2u3Q6H80GQwDhPVgbA681bhmx0ia98+ZM898IzGGP45ssv8ebB90mShBOnznL67FmUinA+mI6srW0S99LAgXTMYS/OOdIoxgkoqypMvHVM5UPPMo6DSKYQgrLWHIui4DpF43cJyESQJhHeJnhv8S6h7T1ra2uM9rpkWUa/0+fFgxfZvnCJ77qXefb5p/nut1/jT77x70l0xHt/fJ3PfuFJnnrmKa5sXeTK1hWuXbvGk596ijOnT3P1ynXSTkSrneCc4YUXPsvBwQEfvP8OJ06c4j/+yR9QVZadvR32d3so4RkP9zl+fJ0zJx4PptHDIa1E8+D9p+l1BwwvXqGqCn7si19glk9ZWu4RRYrKFCBEPekMXhBa69Brq9ktSImtQk85CCY4VD3JbNZOEIRQwX5SBK22Ztb251u/d598Lh53ZmzeN0T5hfsslMF3BrZ7PT4WgY2FHpvyYOvGvLce6498RZs6/6Mak00wE/XOPs/YhJgL4YVMwOBNhbUV5XRClc3AFJg8w5kKW1aomt1QZFnw93SunrqGNFtHYXgharUNZBtrDNI2/T2HLSqMzMlnltlkwvBAonUwuE17HZRL8DI/MsFNEixhQBLE3wRxklBV5dw+zxvL0tISx05sUo4mWKtp3b9Mb7fiYDhjt8goHEQOrAysikoJnAlZltUKkbTRznB1d4jfOWQ4CnLch9RgaB86iANdU5oEtYlu83kphK/5hrX+XNySaO3oD9b55p9+m3a7xYP3nQulYRECchTHtLs9UDFFZcidw5cBitNqBSaBMUHFNriBwzib4oxl6qbEcVDZ1TpAbWTtbalkRNwg6KNwn3w6Cw1nZ8kzj3eKVtpGytq6brBCf0kSRQnPvfBZHnjwQb7xH79ONNxBJ4InPv0QWVaw/b3LfPe1t3jng4s89/nnOHvfA7Q7PXZ3brK2usx9Z46xtLSEEIJsPOLapQ84f/48OzeuYcsxS72Yra0tsskOW1feYm9vDy0kX//jVzl9OsJbR1kGn4cTmwHuud5e4nuvXmb75jV6gx7tQZuol5J0umgdpthSeGRUSxER+sY+aBAF0G29nqSUyDiaY88auXXvQhvE196s4odDWn/wCl5Yj6IZ8i3cPv/vtmrLwSJXlMUe3O05mnX3lrN9TALb0RjZ11PPuamq50ORfjFja46jJuftJhDS+wBuxSGkrzkhDmNKcGY+5XS+UfcI0zRUGELomocaekx1eWQrpPNh8tRow1sbTCwIFJlIa+JYkyZxKFF1uACtKyjKjGJYktoeIooZDkeUzpO0O827nO9krgbmNhLhRZ7PJX+2L9ykMkEQwBcG4Q0dJdDSIyxYGQyknfMYQrAqjKU0M9pJRD6aBEHN+kx6Ge6jPUQIWkJghAjnCzA+BLfKh9xNBsYtHjg8dMRL0O0PyIoZw+Ehqxt9vAiZ5u7OHmsnWngh6A/6xFUo3RugZ2kN0muaT3VxaCSlvE2u2hg35wdLES7hUM4qUG4OV0DUi6ceMJUmXANSanr9AaasQGpW1teIoohPPPIJnAk9091be0wmE6yD0bhge6dgZeMCjz/5CM6KuUOXxDLo99nZ3eXE8U3G4zFXr1xi6/pVTp06hbOW48fW2Fhf5uDmDmdOnERKgZI3sKVBRRGRDJl/mVecOH6KtU6bZ589T6vbJitmdPs92r0ucZIg4jgoxYgFypQXc+6yUFG4CgXzEj+RMTI6Ku9Rt0Mt7gV2cbfjbsnG4nq98/s7s7s7j//fZGxCEHiePjifQ5iqFKYK9CaowYVHOk/AHA+2iItZ7KtYG2zvZKTAisCP88FXFBM8BaTwOFtgyxItwIlacco4rHNob8CHVmZVlPOJbFOeunmm6QKZ3NYLEoEpKwqRoaIIR1hwSRqMaX0UI+IUhCRJWlAajHHzbNW4YJxM/XhpuxVwdD5I0DjnyKbQG8DG+jppatk/HDMuQ5/u0vY+49IigXavR1EF+ETpPIkKQaHV7SKEYDYNXqmxc6RAX8U4W9KuCmKlKayl9KAjTeUdM+/JXUWkE6QxREKileOZZz7NlctXeelbr1JWMMuGPP3Mc/T6SzgpGQ6HTIsSI0Kz2wrJ0mCAMIbZLJ+vrVargxchi+i1u3jvyeoszhiLd8HxKizmkJWG6bfHWU9hSoQOCPtgJhwWSxLFOG+wLmxixgSoyHC/RGhFZ9Dn9e+9xk/+xJf52h9/jUc/9ShXfvcbLK2scvXCDq+9/j6VccSJ4oEHTrG3s80br7/DuRNnSKRmdX2JP3z5VdT5B/jyF79IkkS89NJLLC0t0V9dpu0TvvGNb/PpJx+jFy0zLTP2d/ZZ7i8TScHWxV0++P4urQTSDqxs9nng/P184tGHaQ/6VK7eAFD1ZlszAgRz2p4TIdA1mEZrHfFCGeicI8sy8BYdt3BYjC2JdWuhof/h6WXz91J8GMGwKG90t2B0J9Jh8efbMkXRxAMx39jna93dW5D7WAS22zIvjgKWQmB/SFPybruElBopw8UrZN1Ik4sfVAhuwSbMUhsjhGDVUKxqcrI15VGK7cEJERykZDCbbVx0lFRBNlmFoBYa4Q4tRRD4k6CUwNsq7LhOBycnGXpLCIXTIXBIKZlVed0YFojK1qR5WbMFLFES0+pCnsPly5fxrksxK/DWErcizhxb5vK1AyoHRTYjqek0uioxziGcwJcGRBhseCnRzqGBrhJ4K9A4kgCJIxYiBATn6UaayAb9MIlAS2ilIaN95dVXWF4JBsFxHHMwGpJWHVSSsL66joyTegEFkYKyLJFS0h8M6kBk6rIpcBybjA2Coqu1HqGD/JBzoHVtLOIhjhOMa+hzNRVIEPputdGL9AodgXBhfF0URSjRgwMJabvFzu4u71+4SFFZnn72aa7duMEDxztcvjHlzTcvcPbsBsfXV+h3lrAVvPHamzz11FP8uz/6Q77w+c/z27/9+2xv3eBzn/sc9505yyuvvBL6hvTxBv7fP36D+8+tcv3KHtZCOdtn0OuzurzOpeEOUTe0lE+ePsXps2dodXuB8K80kQ8be14WRLUlo4w0OtJIqfFSUBk3V8ZthgXyh5Sad8uiQtBcANPewxE60vVjc5QQLn4vCAnM/LhtIHj7893r838sApuAOojdntYqpYjqsvRuo+JFvXQWdoRG2QGoJYpDT8bJOtDhkNbihcPZElsVOJPjyhJvAyFeiVDCifqTkP7otXpXa2o1z+ehIkAQav8SGuaD9QbpatqV9SjpQ1/B1cYZyNqzlPnu1/RCXMNEiDSiEkitiIkpy5xer8czzz/B3u4+L37zGpox/W6fvCwY3Tqg8nBqqU1ZWA5LizEVxoayOyxpj8xDltRV4aLpRAS5IFEitAcPkS6DQS+eNI2IkoS8LJkVhqmpAIeyjljCjauXOH18jf5Kh4ODPZJOG+uCLPWxEyfRrQ7UuClbVVh/pNmliyIMFlyggIWMKlB94ihFyCCX7hxEUVKfp6Zk9+BrIHR9DkOpBkonRHE6fx7nKryUSOFRskVXCLy1RDrl2KmS3mCFRMacf+RRuq0237+4xVf/xs/z/Tff4ubv/HusE7z37i0uvHuL5587z6CT8u2X3uHGtRusra3x7lvv8vgnz7O2tsZv/Pq/5tixVarKcu3aCFEN+fKXv0iatvlXv/n7jApYSiFWLfBBYmi5H9Nf0fSXl/ixL32JpbVV9icTWoMe1nmkjknTDsu9HplrwNjiiMMp5DxAwEKAd0c0p2bSH9oct9/Pez8Hny/2zOZV0cIabP7uL3J8VFm6OGxoXtO9HB+LwAa17pprMFLMcQZCCKQLqrVCyw+dhLv9LISfBzZhAoYM4XGScMEHfSK8s9iywJQlrqoQ1gS0Oh7hAw3LVXVwWXz8mmMZcHR1hqkjtFZoGXBuSjX0FInX9fvQggjwUuGlrLE6IpDJlcBJiS1tMLz1isoEuaQo1thGvURolNckLsHKiDMPbpIkx/mDf/Ntdg5H3Hc84dTGAKE0W1v7uNzTlaEXJuIIKyC3QcyxncYB3e+C5dqShs4gobQVSOj2O/SXVhiNJgwPJ6RpG61jlmeO3aIkSRRZUdGKBZsrfXZu7tNrJVSF4+zpY3TXj9FfXkEoyeFoxFLcQipNHKfzLLWglqKuz63WGmNsDf/ReBfKSYSYy6K7+nrw3jOb5nNy9+HhITKJjq4nwDlLWdq5dZ0z9TBJeTAVKklZWlun2+mzsrRKmZXsbe/w8CNPcOPGDaIW/IP/+X/j2Wce5vkXnuGbX/s2Euj2FJNhRax7rA4sN66OSFTC4eFhaDnINg+cOcfFixfpdrs8/5nHmU1LXn31VTqdDl/96peYTjLefPNN9naHDEcZCOj3obKax5/8NBsnTxF3WlDOmFUVKk5ot1pYJAfjKXErrd9rkNFqrCFb7S5Sq1rdw+KEmvcsm4BlrUVYWw/JmAf+JlBCYCjYxeACc6rU4nr7iwS3xedtqs27laL3Srb/eAS2hdpaeo8T4kNvpAHhNvdbzNjubFyGRSHn2ZsEGp/JxXK06VE4b3DOLBi+hl6fdVVQg73LOPtOWpX3fj7g8Qv3c3Up5whDEWRI0oU7CpbhNXisCLLPxrvQlhdH2D4v75g64SkrS14MidOEXg/KQxgdFiTrYaELPKkGLzWVNXiC85UUmkoYBp0WlZaUeYEznlYEylusCxzTWTFFmwTdUgxEn8lkFl5DPgMDaSSQSczm2oBjGz1u2hEbG2ucPL2Bw5K0W2GqbRx6oT9qirq8F4oCOw9owHxCbK2dk7SFDzl3E9gWd3Ln/JyupnU8p6Q1LJCyrMLnoRyyvk1rjfACK4IsVhy3UEKjhSZWCXkn56lPP03xyYLO633+3deu8dJLb/OLv/BVzp07zfUrV6kKy7WrW/Q7MSv9hJ29ilOnDEVRMR5XvPPOe7WqRkyeGa5fu0mv32E6HXP58pBLH2zx2c8+zWee/jRXL18my6fcunWLOBGcPnuGlfU1gt+qJhIpjrAJHQ7HRFFEt9ujKILuXKwVoqZCBbn0CrUwgZRSYt0R9XAxO7tbNnS3QcBHJRR/0Yxt8XHvfI7Fz9n/1ZyKCpC6LvFCmixQYWJZ/15IiSB4JCrZ4NQWxseisVaDyMp5lqW0DgELh0aDs+hCQG3AW5gZ2hd4Sio7RgmHo6Ass7AIXYGt+ZeJjhEimHQ4UXNDRS1yGSXIKAJVX2R1M1epI2YEQuCiUBIYIXDaUToLkcIaR24s6BjpQLpyIetwRFHQaSuyCmMk1ocMUXhPXu7z43/9cS6+d50L399n/6ZDuBkb60tEsWPck5iyROJJY83NG2OOHetQUZKXZZh41lXJYLVDtjWk04Jq5rnx3h7ra6tcv7ZHJODY8T47donMj3GzGV/+0mP0ezH7e1ssrw/Y3s3ZPL5Et9tFpz3SbhICmnbsH+6E6XAkaNFGJ220qKEuOuLWzi1A0u32qMrw2UZRghCKzM2IiAnqER6TO9I4BQWz2tA4SRJQgmyWzYObkBIlFXkVaGchqDki2UIn4I2lwKKjFBknlHmOcn2KomA6NvxnP/Oz/F+/9nsI4Puv/h6/8NM/zeuvSl7+s8tMD0vsrM2ZfodzqzliEmNHilbS4tbVCbMcBv0WWVFx/cothIOl/gotUZCPM77zze+TZzMcECdw3znNQ584R++hhzn76Hmi5QE+TUjosdILr+lwf4hAkU8MqAaErIgiiOMU6z2RV4iKmksqMAKkjHFWYoXH2AInaiybidGqU2/GKnBJIwne4epeM7i50oevuaUNfMMJV0+f/fz2psqaT13r/wVg8EKCQni8eZCscavWHNn5NRudd+aesraPR2BbnJLU/xoZlbv21uY1/2LvbfF+EmvCRFRJiTVF3VMw839KiKBAkc+oqgLpTe3QHfo6Wuu5K3jzHBaPqrMJSfOB3K7lHprdRzCFBnsHNfBW29t6HloKZlmBMY0YoMe4gDM6QtWrefaZJMmRMCU+9M6coddKOXP2GJff3afIM6SIuLE1Q2iYRRDXXiZ42NxskQ9LSlPhBPSXeshI4wXcuHbAxnqL5aVVLr63xSx3VCa4PeVFztb2iMxBO9J88rEHyPIpB/vXwZfcd+4MTzz6GIPBgCzLqLQIDA/piURE0u7g64FBURns4RhjctK0Tb9f2xcaQ56VAbqBJMvzsHBbCaUx4BxaxTiXM5vMiOMYreO5/+fMFcF6rtU6yl4iPT//ELLCJAra/XErwpYVxpZAyPoGSyvgPHl/xrVLV/gn//Qf8MZ3X6YYT/j1X/23fP5zj/GFH3+aP/3my5T5hA/eP0RryVa+QxKneCuQTtFPNdk059B6OkA7VkzH+2GTjBRpSwe4joAogcHKMifPnGbl3DmiNKkHGwIRxUyn07ABtFKkDyKplQsBIJw3h6M8ymoFc/qT8wYhYwQCWwXxUOnrmEWoWIQ/CjDWhmAGR4HNe4kQLgxhmsyqbsfU3843cAHzyeqf5xBCzOEei+vvXo6PRWDz/GjYljt//kGDkqZn1wyij4QKXFB+8Ha+G8jm8X39IWLrZr4N4K76URbTdi9ACjUPZncG3TtxddDoXDU9heY5F95bPVBoJrRN8GuGIR/GAXmkrNUapKXdS9k8scz+zoR8JsJ1CXS0YDjyRAJaCQx3M/Ic0nYA1mIkWZbjI02nHbM0WGU2LfBO1uwPhXGOsgoBcr0/oMinvPH6B3gBnS584XMPce7+++ktL+G8J0oTfASz2QSkp5f2aHc6CK2wTpKXFbPZhMPDQzqdTs06iPHe1OwD6pJYhcVaB6XKWspiRpblc55oFDmmdhoGLpGiqixpErJ8KT2+HlI0m6VxDikrtFSARUiBs0GmR6ggke6EQaqIU6dOcbC7zebxY8h1y9/4xS+wt3PIZ5//LJcvX+XmjRHZyDBINEVREmnIsgneQhRppnnBsgiT71biGFuorCfShpu7I9oB8QMKWt0OaxubDNZWiZMWFa5uIUA7iuuNLQIv0dahF9zMpNSBdWAtQrm5wYoQAlQzWRb4MiAAFj0EbltLwiGEhjpELbIB4O79tGaj/qi1+hc9moB5L4/7sQhsUOuI3WWa86HpCIuNxMXU9OhNO2dIdITFYmZFcLgRHi0cgVhucLbElDlKWCwGXIUxVZBrFoK8DKWqkgJ86Oc18AspNUpGdX8jCQvvR3iP8wugzsLCBM8h616axOFthTUGqHtBUiKVwjS2fnU/znmPxaKkIGknTEcHxCrmU08/yMULW7z7xhamAm8EjD29BipiHKY0pFrjS4t1it3REOegjAX9QYfLF3e5fCWn14YkVuSVZ5yV6AjWTqwhy5LhoeHUqYRHn3yQ1dUlzj14hiiJiHstTA1s7qSK9qA1xxPuHuyTxC2SbhePI04jlpeXMcYwnWZEcVBGqaxB65hYa0rrmGQzbA6tVouqMsxmGVVeMBwO6XW6c2Vis7KCKS0OH2TgvSROk+CYbgxFLSMVPDYjdJKQzyYBZF1DjkHj68FPqoIXQxQHl669mzc4++BZPv30U7z31iW+/FMv8H/+s9/BA3lZorVgfzhjbaVFEsXs7Q351CfuY39/n1s7I9aOp3zykdPs7e1xMJkgxo64BY8/9TBnzp7g4cfPc/r0cVjeIE5TVBLUg60IwRnfeBs4ZJQEy74aIkMNWFZRvJBR1cMpEYZmwomaceNBREhlaxpfAC6LunEsGiuz+T81X2v15bvQYwsy/n5hg16cot5+NGCuxZ8/eq2E5wvTW28d1v4VLUXDt3cPEXdPS49G2He9f13vO19PQet/oga5emuwpsLXgE0ta1J3TaAG5lkXC9CS5vQKIUIdIcX88wqv8e6I65CBHeGrQpkaMkPhHM5ZnDUhwC4wMRZ3wyZ7S5KEkkClMbbEekNZGWIZk6QSnSrsLNBmKkB6hTACrROStB0I6N5QGUdRQJoKTh47zXQ2ZDadsdSB8RRiLRiPA+WqXSPhy4MZywNYWu6xtrbK0sqAbq+HiCReSdJOWp+3EHw9YEyFd2Ho0Uzr4jjmYO+QPM9pt7vkeY5znm5vgHECoQSJTgAY5znzpJoQ5La3t+l0erg6YM1mM2QaB5meBaHDhjsc3XYOg2oIUiOVwBnwzmC9C71dKRFSMBkf4mxF2mqxefwY+XTG/uEe6xvL3Lq1y0/+J0/z9f/7O2QFPPboKa5fvcZ4krF0skU3g6vXLvG5F55le3ubt9+9whf+2lna3cd4/a23KaxlfXOdk/edYrDcpzPo0+4PmElJZW2oCKRACkVlLdbZOfsl1o2XhqayDQpA3hbUXI38sN6hrMXVLY5AZjlCtjnB0eCMxUnl7TQo72FRo21xjSweHzUpvVcs2p1r6K9cj23xFNyp0Hm3k9dMvJrAFgLAQq9LOoytfUetRTpPZSpcmYHNcTajLKY4U5BnYyhzpLBBituUARria6lyHziJoe6XKKHnCG9FPThQel46NnzV5r00lCFgDq71SJwMWC4nAVuXv7aiyjOsMYhWgpAa5w150VgJqiOdeeGRsSKSMd4FwrjHoeWM9hIUPpQwsVYIo8gweG/RlcRXtg44oY+iFDgjGF+4QRQLqioAPFMt8S5kUEkSLEJu3cx55FzEYDDgE4+c5/jJDZZWBrQHXZJ2i8JUiKQerHiDKaCsPDppgwrnJ5vlVNaQpjDoDtA6Zng4RuqgHTadZkRJi/FkRrfbI+12KX04/3HSoiwMyysrDMfTcP7j0NCe5Rm+qtjY6KB0Y6QdaEZpO0YUwZNBKBmYGKailSQBNC1CNhw2uAhj6+GNkrTSLkJ4bJHyyBNtxsMRr7/yGivrA9bXBpxcGbC3t8effv27PPrEKe6//36WBj3efett/j/q3iTGsj2/8/r8hzPcOSIycnpjlV/NthrbbYPBagxCQiAmsUDAwgjRolmAEBIrvEJq9Q4asQK5xQYEQrRg0Wpagu5VY9nd2O52t10uvypXvXpD5svMmO54xv/A4vc/996Il/kqSzbWq79evIiMuPM55/f/Dd/h3Xff5Tf+n7/Lduv4V/61b3G9fooqHvKr//6/zUfPnjE9mTM+XYBW5OMRGx+IhRHuq7VELVaNZSFYvL7tiK2ncy2ulfOraRpUIrprp8mKEcYMkgrgQ090QXjDjcd5J1anJHaLljJca1IvV+7pfZ+uPX24ShPyNnLAuxllCDEcguBQxt5JRozR+wHf/sI/QkQMfzHmIE81UMWGzO111xcisMGhV3C8XlWKHt1ir36hNPsAEkPYu2a3bYvxLcH1xNATfE3frOjrnXh5OgHnajzBtTI1zTQhKIR+pfdB7ZChiVELJnkzvqT/F2NMXL2DWGYIEsBiDPRRbAGj0mij0A6R6NaAUahEbj4+qJajMlwpOieAVZNPmC9A4ai2K2wZ+MV/5m1++7c+Zrny6CyIxn2AmpqITkj0dMJF0CEw0uLqlGWargsoFTAKrFYYEyizwM9884R7Z5rxuOThm2dgnEx3Y49vFaP5FJ3J4MXVnm3VEtFMyhlFcuw6ySTAbzYbttUKFSJ5UVKOx6AM18slixOLsoZoNF2iU1mbJs2J8H52dgYMNJ9I37eEENlVFVlSCvFIz2xovA9QEp2UYbqmEsXZ6LFGyvXetbiuTSorOXUjA4lyNGMyP6McLfjq1xtMVDz96EPq9jlf/+bb/PwvfIWriwsuLy+5uLni5//pb6KU4lf/4r9F3/f83j/+fS5W16hxzrJdsweclwAAIABJREFUE0uFt4qQG7JiRLmYoUwGxVR4wT7geie+qYPTGTLEsum8MyajHE/251dg6Pdq9OBni+Azo3e0TU0UbWR836FyUNHuz6vB8OhuW+g4IB33w39Ub/x4DdzV2wPAzy7ZFG+DdEHz40DZvjCB7WXrFo4lxtupnfxlPy08bsLro+g/eB2oGFHRQ/DSX3MdwYsDFTEQoihBREIKasfBVKfmqgb0Zw6Mj3HPIT1usg5N2ePbx6gZ1HwDXqheA6hXKYy0UlAGRA45Sl/QgNJRen6knTJYTIiUdkyvNDG0TKeeqtqijeXLX7nPhz+84PpaWsDKgPGAtWnypZJ7d+rfpY0hpKHLxGayc0aPBc7mE84WY66unuBihy0Uo+mIyWSCyTIxpbaWqmlkGuoiSucYrQkYAR13gbrd7TXVINnExUb6RFGRl2OyUmAiAx+0KCdCfUMy4N4fhgFBa4rMJFUQYSgMsuw6AbWjgjyTYrTrOkIrG100BqVTNylAVB7Xtfvjn9mcXjtQ8h56B2hDkZe4tsV7z2Z3zQ8/avilX/olmnaEc1PyPOfq5gUPHz5mejKl6zr+qb/wy/zRH30XtGZd7zg5f0hA2AQ6y/FYVIC+kyzFDZNBBSokQG06z2xxcDbzqVrRyibxiDt2izHuh1YC4/Bo5fHBoYNNmd2gP8jnBq27GLcft7wc7rO/Hl7SnX7VY/9EDg/uRvBhYnnsT3hMhB2gFpDecDiK7r2n6do9eJO+w7cV9foa12xpqjV91+Bcj0q80Rg9WkPwnr5PZWVmsTrf99mszbFaxunaGIy2aaeUNH54LcM0s+97rNW3lUuGSWlM9mXeEbQRld0EEzExHh4wrcE39fik6HAyHKAAFfEemu6aYlzg+5Zv/Lk3ePNL5/z+b/+QDz8Sye0IRNfJMESQROjUu2ppKayB4BlncO/0hMsXF2jgzfM5ue64+OSGh1+b8ODRA5zqiCqw3FzzcPY2vfd8+umnBCWYshgtk9lJYhAYopUJ57RcoLXm+uYF08mcGBSdd5TFmKzIwQqkJUTonfTilFLJHVMu4BijmDIndzMXHXVd49tAVTU0vWM0GjGbzeQ4Wosxcr50LhC7SjIIonB2oyO3Bt/37HYb5tMZ1kLTR7JiIj25iGSfkwn3H3quXzzn/Pwh7777JjFGPv30Cd/5zvvkRcHp6RmP3niLYDJinpMXBbttw7tf/wY2yzh78JDae4rRCPIcU5SoPANlsLpg19Q0XYLKZBnXlxf0rdD9MmM4P7uHzbN9pjYqJzIrSMDvsK8YFD0dJlh88EKpCw7vHcF5lO4JuUclXObd1s+wsQ81o0mNzn3pGCNaDxmWfClEeuzuehl64CXZCnvHK9jr83l+QktR7w/2e8O6m7G9JLbvy7RwrJTnepkUpfv2XUtX1yyXS0K7o2kqfN8RfRoohADBJbs/RZ4LF1FAgqKIq5SgwK22+xNmkFB+2TpOo+/2B4d/932Pj4GgjZiWKINR4FXcY+huUV3SOj4xWufYbDbYoLBac3Z2Tt1eU47G9J1nOjP84s//DPPpD3FBcb3s+PT5khAiZoCrhJ4YIR9N6F2N0nB2ckL0DgfkwKiwEDuig/OHp7z5zmN63zFdzNjsdjx//ina5owmU6IW+lOezzE6J0bFZLwgy/KD/0R0zGcn+LyWvlvXJXiGZn5ywrZqUNowTlJOMUJZjsgyUeatqko+w7aRiWcCVPvoODs7EzBzQubPFvN9v9OlTUeyygYVIkWZoYnsNlvatpUGexzRt56QZWT5mOBB5MNkojqdLGgnFauLC775tW/y4Scf884771COpnz00Uf0XvHi4oa+92g7oixLismct995h9VqRRsCpiiYzBd4LLYQTivako9n4pfa1JKdupYsywQO5Px+o5RzNd8PtCSDVWm6yd4vNNgg2WXr6boGZcaJ0XLwF923ceKhdSLPYTheMQyVBzAEp6gHzFaa7qgUmOLRF5DECuQp5ffqJRFokOo6hkv1uJ/AjO0lY+K9vtQAjXCO4A8BJkSHjwrnB6mjQ1bUa0swIpVNaInthlDfMI41TbukdBW9XuOjx9PgVE/UEeVktB06hdU5WmnQhTAYlGQKISqsyW9NkKzVKfsRCeshBFmrMVYl6xOEThV6lNYUSuF6+WpcEG370Yi6qQGLDg43NGhNhg9Ssqp0QpV5QaYNNjTYWFNVFZ33tI0ihBGulcmvMgo//4STL++kkT6pGU9heQUnE4fyMLJT1ust2+WOGOCrP/Umu92Ojy9ueGMKTQeXl9dEBYszQ1GeUleRs/MJP/zoA5QyPHzzbSnPQkRFKw72ucYWBQpNzCxmNNoDnwkGXcxwKKzOyNqK3Ig6RQgOm2dEDF0QVY6Rytht5ULvnKMoJ1TVDkxO8IGrmw2z2QytA21bSyM8y5jPp6J1ljIbpRRN0xBrB11AW0W1EjHLpq3Ic4vVGb4L2KJAB3BbEbnUZclO9WxCTa8qzGmJWc+IXUUoS252O/q+4/zeGZdXV5SjOSrXPN9co3aGol6TzZInmC3ofWBTN6iswKoJfdT7qafJLLrRaKPJs4zdzYqY+sUxOLzpqe0ZwXhsNhKtPy2mygoFMWBVEFXlbor2O2Hb9DuymKFUQR4tRIOJwiwghkS5A0hKezGV+6laUsZK24YjCXcOZHq5ZxKIVSIDNqwhcdhv+NaQD8T8/f8OPbZ0J0k8+PHK3i9EYIvw0szk7tpzDZ3D+Y4QAp1zSaPsgHlx0dF3LUQPzQ6/W9Hu1vh6R9c2RNez2+32O4IxRsqRwWT5WDVkSMn1APtIt0/mIkPgHXTT5DEHcChirqGOSlAjr7Hv/D5we+9wPjAZjykyQ+skWzNWPEttnpMVgrCPqbdU1zVdaLBWc3JyilI69ZiOTDBSXyX6wDif0TQdJt5gT0vsly312rFdbfnB97bkBs7OpVS8XD2hzCxfe29M1AEfA3ZkKMclJ/fO9ubL3nsePHgkmWxq1muTMZ1K+UkxZjqVUjNG2RisETjGAPfYbAMx7ujWjmg8QSHMg6wkywuMtjjfU0dREZbJsyKEnu1uJQBgIMsVy9UFZV7iQ0vvRmht8Xju3buP7mToUBQJdzjKiTpyfXlJVe0IITCdjIhRkZcjnAs4V1NMRoxzgYbEGGmSSZAKkSIvmEwmfPLxJQ8fPuTDP/4Bs9GIiGSX2mRYJUMbrwKzrOT6+hq05d79B0wmE5xXe+ZEW9ecnJykY6dEVThG1psVV1cXXF9dUOiAVbBZ54xcz6gcM52dMp4sBIiLPmrLCO4yxkhT72jrnQwiLNzGgB4qjB8VPI7LwWPFkFctFTlwqO88vo6f/d2f1vpCBLa761Up5wB1iFHgGILSl68YIy6ZsDhf45sahUe5GvqG2Dd41+BdR/DdXvnWeUcMAaOOVHc5UKKGXpcxBmUNBnPr9Un5E8j2gUvwT0NjV4jQ0oszmRgtExWZdbjNjp5AjD0R6aOVZUmoAv2dtmrXdcSoyEyyU8tyJnZC3/fUVcOonFEUEvAGDNmw8vwElznG48B0dEK1qlndrNBZ4OGb55zdm9NULV2/o28a5meW2WzG5YsbERPOYLaYcnVzw+K8pO8nZFmG95HdbodzjrMHmfB7tVykPkbOzheMRzP6vme7aVi3W5RSzOfSXAdHDAptCubzE+rdimqzpQ+ecjqj7Rv67YosyxnZEoXDmkjT1lxcLHHO8eLFM6p6u1cVdqMJN0vPaDQCNE1zn83qhqwYMZstxJvUGIrQ0zQNzy9foJRo7NnsBKUN1uT70lVbS1QaFzy5LlnMTmj7hmojz1+MxowmU65vlrz1zrvghZI3mTk++Ohjtk3P43ff4fTsHnXbY7zCGk1Vdzw4vY8JkJclxWhCVpREZciLMm1ska7r2GxWLJfXbDZLOiv+sMQStb4C1+49aQWWZKTXFrUILyjB5wl+U+Ad2ojBuDEGjNkHxOPS71XX4XGLZf8ZvWZwG3pyt1tM6TavEdz+VDM2pdTbwP8IPESSq1+PMf63Sqn/EvgPgYt001+LMf6tdJ//AviLCLHjP40x/l+v+6I/r44+hj7E1EzcB7qEF/PeYwh0fQvBEbsd3W5NX29xXYtzHZqA1tKADi7e7hcgGZuMyg4H+dD0l38H9fLp0PHJEVKPbgh4xhgUKcj520azAzRFJJcUbS/lqc2s+B54tw+WA9bIh4RIR4Jw34oKQlRC9h4Cqo4OoyHqyGiU4xvHu+++g288VVXxweULurrj7HyCWRT0TYvzO4ox5KU8xrbaYguRYxps3YTOlHHshCQy3qkpHERF2PUe1/l9H6crMhQyvR4GIsGLO1jbttRdS1GW6FwTvad2jm2zwvkBiLtlu11TNzvqZkNdC4+y62v6NnFg4wKFYTyV4F8UbcoSJWicjm3Se+uwNqcPXo680ihjRDgUsDZPpd0A+yGdO0qgRiGQlyUPykfcXF0yzgueffqUR2885r2vfZ2r1ZrL1QadjwRfllmKRFaPypBlogBijCGzxSFbNwabqFDT6RTnHNvtlptmTWYN/ckUlXjDmkiWG7TK6ZPfB2bww1XEKMbYSkfyI+mvoJJwljoo5bzOutvvfdk1q4G7ghyvmrIePfLnPuefdinqgP88xvgPlFIz4HeVUn87/e2/iTH+V3dewLeAfwf4aeAN4O8opb4W43F3/7PrLqVquIhvLaMhBa+hFPW97EYhBLpajFFMv6StlqKv1u9Q/Y7YbYh9RexrQugSGZik9jBMX1Ppdjy1SU1MZQYcm/TQjJffEY/cdobbKg3aoAiJEiUYJGsytDIpoxHFDm0Dtmqo+prlzRWz0xOmkxHVUi5Em2f7EyKEIDI8MaLLEUGJqqrWjhBUwnrFffbqE4MhtxpjLE3foAPMT0/om5aOhqh7fuaf+Bq7XU3Xb+malsk8Z71aYgOUE4FPuA76Ht586x2W0TOdzjCZkQDrRY3FezG/8U4AmpO6pe9CKuvcXppouVzSNBXjcUk5FuDpbrejaRqyzKBUztX1hQRPpanqluXlku12S+9a6rqmLOWx1psVTVNRFAVKRVb5OqmgNHSdSyY4IzKbU44ncjsMJ4tMshxrMNbuKVc2L9G2lC1cJxyjNmilcG1PQALRbLbANTu0Ntx/+AaffPIR5WgGwfPVb3yTi4srRrMJb7614N2vTbHliNn8lBgjo8kMY3Pmp6fUTUcxmUtv2DnyvKCuW/KyELn5KPg7k2d0rqfvOvrOs1ld0bWOxdk9RuWMspiAsWTFhCzLZVNJQqX4jq7d0bctxmiC64Ee5T3R9CifYfUBOvV5UI6XDbFelYwM0/ag2HO1BRPH8I/DWOFHBK1j8djXWa/jK/op8Gn6eaOU+g7w5ufc5d8A/tcYYwt8oJT6Y+CfBH7rc55j/wEN6Pph8nic+g7Z2b6XhdqT3PFhfz/6mti2xNBhQkNwDSZ66rbChx7SBQ9pZxlSa5vkvVWSSdJ6XyIOWViWZaL/deSBiVboeMg+fIxYBpL8MCofsgHRilOqQ2tL1wpmyihN7xxt2zKbzeRxwoFZIe/9tqP8nuCfgt6+wZteZ13XErhzi3deVDGiSxSm8d4vdbVZ4vqepm2ZjEuuLl/gOsfiZIpW4haumi15Yej7wHg+lmOSlB4E2jHo70uJU5YjptMp4/GUEOD6asluJ/i16+trtts1WWY4Oz+jLEti9NJ/Qibcm90Ok2XYckRTVyyvr1Eqslmt2Gw2zGYTIp66qogxUPc1o9GIXbMVf9G6ow+RthZn9rKQ0rRrWvK8pM4CXSvslPtnpUxftdkfaykFszTMSGY9mZWSDaF0dTGwWa6xSvHw0RtcX7xgUpT4ruf+w8cErelCwGQFeVawXG959OgN8qLAxUhVt2SF2A+iZJNomobxbJ6gQgXWatp2wvn5OSp6nj/5kL6tUIU4iLm22zNeTFbK8fIQU6M+OGHUKAWZUUQnvFdtcpGIj5HMDoDtHx1gjqf6w7X5qlJ0T9CPYgQknh2Hc/T4uj++rpW63fPTqV+dZdlLn+dl68fqsSmlvgT8HOIC/8vAf6KU+veA30Gyuhsk6P29o7t9wksCoVLqLwF/CeDxo0evrOePS80Q1D69DU4yN98lG722pU2AybC6xtVrgmuI3ZrQbxPpfQdehg0ZR2WdGhyN0hQS4ecpFEEfsreojoKwAqLCDNgcZOq9B+tqKVuUMoKMVaKYG+LQcLDE0O0PbAiB9WZNIJAZzWKxoAuSsbW9Ty5Vlly4MITeSTmXeoFd19H3XVKgdWRZtm8+55Z9/xHj8SaXLdQaRuMxbVuzuHfGxGvq3Y5Hj9/G+57rqwtGZYHrPMYW3D9/iA8agyF4UHniYeqMru8Bw2QxYT47wRjDZrVCR7EbzK0mljm73Yabq+dstxuyzLDt1jK48T3OSzZW77Zsq1q8S31ktd2wulzvBxbGZDzfXu8/uyETdG2ffCtyuqai6zpGIyd6Z3nFYhHEms92LFdCr1osFpyd3SczAjMpi0JEMouRQFNsQAehk8UIrg/4riPLRR+wmExo62tMnlOOpkJQzws0itH8lLrrWbcd0Xpmp+dEndG5KP4LpqDpHMaK3Pv1akkMCrtaU47H3KxW0g/MDG+8+S7jYsxuuWYbDKPSgnfEoFler5lMt4wnimJkhR4lJzfKB1wnvWUdPGbwvsgzislI9JK0vjtL+BMvxe3CUt/J3IY/HrNylBoC68szxR/Vyzterx3YlFJT4H8H/rMY41op9d8BfxlJ2v8y8F8D/8HrPl6M8deBXwf46W99K96SCL4zeTlg1RL30rm9YkPoHUQxYKl3cjLPqw2hXuNdi29WBL+B6NGxFxUDFPTDBJR9yXmcgg+lp1Zadm0lGgdRIX+L6R9a71kH+/emhsYqqXcnmVuMChVVGnub5Jl62P26vqGpDM2oYHR6jutlAmyM3b++ruvkwClhMLgU4J0TnbmBYhZRVLUYwhg1xvlI9NKTixFCH+h9YDKZci+XYKmcohiXbG4uiSrw9rtvs7pZsqt7Ts7mFONMwL9KNNV8DNiyIc8D4/kpIUQhoquM4MEWPW3b0CUz6hACT558IgYsyvHtP/zHjE4lO603ay6ePWc6GTGfnbCrG7wL7OqeqqlZ3ez2wT14KIsFWotEkUb8AozJCG6HUTOssrhY4Ts5lvW2Q6kto5GnaRoW92ZkWU7wirZzjMZW2BIqYLxBa3BekWUJR6cSpEdFtEoKxTYjti356RkqRtqqZZQ2lCwrsOMpKM1N3dK5HpNP2NUNTdNgbI7ZJemlUKO15vTkngTe2O1Le2OEAD+bnmFUxk9/y7Je3XB9eUGWD7aMI1wfATHqFiUMAeD2fU/X7mi2GxSe6WiGjiIA4foebYx4LvwJAtvLkpJDv/plEFwJcAq5lmCAjhxBP17yeH/qcA+lVIYEtf85xvh/AMQYnx/9/a8BfzP98wnw9tHd30q/e/UaALhHvaRhHTMPhgHBsHPvXaVIv+vE7LjvGvq2JfqW6HuC71HREWMvBixKNMaGxzXmgA9L7+elX0fvl8NhSz25z7ypg4nM8f2HZr9kG4egdpCy7miqmvLkgO421ibJaykthsezxu5LVHFryhmcncQ5XtzSBRSbg46E4IhKkY3MXiXEWstuJ1itutqQl0KlapotnauJOPJCo3XAWkXddQKoTrr6g0s9iEBon4uShy0G4GdkPB5T1xXn5+c8e/4Jq9UNzjk++OD7UrpaQ9c1NEZRFh1d09J2PetNTd12RCeZmVYW7yK2zAgOQhf3mbGxJdOTKXmeeLxeo1TEB5cyLUewnrpqGM/GWCPN9qoSwcrz87ODRDmRGDx4j/YaFSLGWAwadJoEhiQtZYSx0PZ94qBWuLDB7mry8RhMTgyKZ89eMBqP0Sbj/PyBvMYoBs4+Cr6urmtirlAYimKUhBMUhIgiYzydEX1ku9phbUDbjDwv5XwLImmkQkTYg17oU4kLa5SiLMt9UPbDEIH4J7RL/vw1XBs6wssa7ceDN1mvplm97nqdqagC/gfgOzHGv3r0+8ep/wbwbwJ/kH7+G8D/opT6q8jw4KvA//t5zxE5UKjggIK+25gcgpqUXT14QZd3fUO13dFUlTTcd1u6eguhwapOyONJyUCyM/Z80KFHcBx8XhbM4DDlOQ5s+qgUhcNY++5jIbPYNGFzEA9N2r7vhb/YO1bNjrarKU7vYcsiZWUuje7NvscmGezAlMgTuT6SF7M9+X4ykWxDa31QVvUGT0vXOfK8pE9mNTbLWW1WuL4BX6FwQM9kWjJfTNGmYDadE2lRKqMoCqbTKW0nfqU6HzEajSFNfSOwqzZs1hIwp9M56/WSGCOz2QTvW5r2hPtv3+fJkyfsVkvmiynL6xueP39O10acj/gocjyz0QlFMaEsS9rG4Z0hBpjPTphNFzx8+AZnp+cEap49e8putyEaCDqSJT2z8WjKYr4gxsh2W9G2PScnJ2x3kjHVtQCAFZGiEBB23/fgFCZCbmVAEWMU9kBdobuORSY6KQ8fPuZ0NmW9XvMP/8E/ogNGkzmP3nmH8XzBg4ez1KMN9MFzc3lF3TacnZ2LZHoIGJOBgcwWqCSyEFIgWy9XhL5Bq4yHD9+g7jZYk3N6dh9blBid4VqXzIjE+Q00nZH3pkIQf4eswcQcUxqRD/8xMqGXXr+fk7HdXUNJOqxjk5lDCPzsfY977a+zXidj+2XgV4HfV0r9XvrdrwH/rlLqZ5G49EPgP0ov4NtKqf8N+ENkovof/6iJKCASydoQvdq/rBCOuaKKNka6EKm9pWszgnfQBGLTkW2vsdUN0TtCsxH8mvKgAi70qHSwo/dorejyIUsEjBHcVwAlYkQEL76mphDpIvmLYNDka3jlGoNGJSnvqCCzRrByWqOVS5yE5LducnzwNL7Gxz5lVQ34NcpdUtLTrx3076Az8cqs+ijMTqWp0uQXFTHhEPyHqfJer63M9oT5LBkkEyKtlz5UZuz+tq7r6b1jmpds2oZgLD6IebPJcrwyeK9QQXGaTyhMKRmiSWoT3uO6inVb44Ii1w9RSuF8jiHSNy3L9pLLyxdUVUVb7/Dec/H0Oc/dlpubJfWuwQRL33naVji2QUkLKNDhwxaV55AVtMHy4NEbKGXIs1LArI/nfPfj7/PixQsWiwVmOuHRT32Z+/fv8+3v/CEnqff4dNfRxxGZjaK3VrWUyw3Vbscbjx9CjIzGYzzSdzVo9KTAaFhWK+rVjtA78kwxnU6Zni2oqoa+b7neXnMTe6ye8gv/0r/Kdr2hrmvaVjKx6ayQiXfVsFvvyE3OaDaiWm3QCVIWM81unTMa90wnBTpzhK6i79dEVWMyRdv2BB05ffSOZO7FSDa3dC50vsUASns6OnxdU9JjCGSdbFreeGxm8cpAqw4MgFcGj8+auwyVxsuCmHcDtUrt/QskoInQw9ED7Z93X6nFQWxiSAzA2Ab1p8kVjTH+Bi8HmPytz7nPXwH+ymu/itv3vfXz3QGC7x19Kz2b6Byx7wh9S+h68B5issuLATg4HplkRhFSkDwQ0+8+d9wPEnzqqw3r7gF8WYnKUbYX02MGYto7UxCKB/wdsC+th8cQr2UxdFZKCQhZH6mJRgFe9kkgs+sOk7GyLNE6YlMW55xDDzZs6b5DAB5OJB9DMi4WeeqqlkHDaDyVskUZug4xaLFWsogwGBanflPacWOMQlmKEZ3ZPUuh6zryvMS5wMXFBb7rCdHgnSYGw2rpqNcCwZmMk6WcFvQ8KELvxZrQRoIPnMzmnJycCZey71nMpnyv2nFxccHbb7/NZDLhdLHgwYMHtK3AJ7bbLev1mouLC4zxyWhH+pIhqj1lS2lLMer3TBHvxVS77/uEXYuEYMSTwDmuk+Xe6ek9mdbGSNc11G0jmLognwlqi7W5KMsEL2rAnWe1vsGndsJ0NkYXJ7hO0+eDqowAtLuuI9N2n4EXozIBzdUR1zqKvp9We6pi9KLoMcCaZOBkkpCDmGUfTymPr70/y7Xvcb/kbz/O4AC+IMyDEOLeEXxYx5nIPpoHUEFhYqBuW2LfEZsa5Xo0jt41hL5DhZaIl0kWQt3xriMESfEBPGJM4b3Hq0FBN0vqEccNzdvgxX2ZevT6pbw1otOmlHA6U29LWysnUcqOmqNmv0sBbugXDnptOkJT1UxmpxTaUkePVhoX4570nNmEH1OHEl2puJfyQQXMIBjoPGiF9yEh/qWv47pufzKLhHZDXhbobMFup6jqihEWa+H84SO0shTjEdPxQgZpwYmIoXxabLcVq01FkQvpu9ouaV3PZr3jyZNPWa8qxtMJq+WWzWbHrq748MWV9JZ2kFnIjaauAk0ngX6cArHVmgf3JEs7feM+D8/OmE5mhBC4uHzBp598yPe/+23Wm4qu3bGYj/GuYbe54fHDe0wmE5r+lM1mg9GB1fqa6MTMp80Vxssxy/KStnPUVY8tcrQNUsZFDwF2u4osszRtRXfdcTKfcf7gIVYbQnDUadNtqi1V3RJ9QGnpw15dvuD5p89Yr9es1xXb7VZ8XZWiKDImkxHzxRQ12nLv3j2K8hSloK53PHnyMU3TcTo/YTZbcHp6SjEuMSajbzsxcwkBjZNMRw9m356+ruirhkjA5SO6ukLFnHImk2yUl3QxrZfh2IaffxyFjddZLwuk8qvb8v9/6j22P6v1sg8sxnhLQTNGaeLKGNsRXQ+hQ0WXeh+ip6aIKBXFJCOp7HrYZ2oiWte9+sPSERVf15z5qPGpb2dsA2A3pi+0JiTts2HKeTcrHbKztm7omxZjczSK3ntiiOiERh8yQhCHeI0nRjCZCFdGeVFoI7CV4bP0UbLerusEqoH0+FzwEozqDb1v6JyjaTpcTPpgKifPSuaLs5QxGGLUdE5eRdtKhiNUJjl2eZ7hXE9uRcBxs9ngPCzXO65ultxcb1i3Pb7TvgmBAAAgAElEQVSDrgXfQRsDRZGEUzTEIO5ZWVYSvaZpG6ajjounz7g2F0ynU3arJZ1zdG1NjIFnT57QJ6zearWkKArG08ke/qKJiW96KKUBqqZF20w4nnlHgWKxmCVZI8FNzhcLXN+lifKE6XyRjKwVbeuIXoY5H33ylBfPnrHdrgEStk6m9uvVlt16x2q1YjweU5QySe3bCdF3FCclbjYh9A4XPdv1EhVFut4WOVmZoffMEp0m8A68Q1mBIJm0kQEonzxVEeqgTVQqjeihBe9TGbs/s29lb8PmLgdW/p7KmpQV/sl6dJ9ZKqRy9LD+/+ix/ZksgSHcVveQbOYI7uGEctNtd8SuRvsOQkfoa3A1RjmUdkTVoY0HAgpkjJ9YBX0f0Vr01NI8DZMUcaVfIKYXou0e0dxGO78qY1P6EMyGABcQRyQbRGpbD8KB+lAKDxlb8D5ZmYmBTLPdcfXiglnnyCYLdBDjl8xaOcl82AMWQ/QJsa8gDRiKUtyMvI8EkpVfkD6ccz35ZEToHVVds16vGZcjljdLQvCcnE4pJ2MW986pqkoyuvGEPCv58JOPUWZEXli87/eT13sPHqJSr/LFixfEGHn0xmO0gcVizqicsdt5blZbvv1HH3CzctSdNGGt1uTWEtLx2taOaTbCao2LOb71XD675AffvSQEeOvRgvl0Qtd1vPeeWNUpIxAYoyN//L3v8cEPfsBkOuX8/Jy6awGYTCaMx2Muri6ZTksyazHKY7VGG3j27BnW5Dx8/JizBw9QRi4PUdX11E3DbrcjyzLGsxkxCiC5cxFjNCYriIn58fVvfouf/fk/T1s3fPLJR4QQaDZLPvzBB6z8DSjHdFZitcL1DVXoITqmZU61W7Pd5CikH/r02ROszSmKEYvFnOl0dkTBU+S2wFqHDwoVIbcWYxRd6GRC2nb4tkGriO8F96miSwYuMmRw4bOZ0XFj/8eFW7zuuj0gPJD3BwGH4bsE4ddfX5DApm6xCoYS9BjW0fe99IraDuUaYrOi62p0t5HSs1vh3ZYYPYoOH3pJaaOUpIrE/4uipy4SyOqAN+NoOqMFda61JjifAp++9dqMOmROQKLeCMzAR4FiKKPRNsNkmfwehM3gPVGrWyXoULp610smFaBabWibnsfvTMW1SEe6ZERpjMYHyTzyIpPNE+mVBR/QvWEymZErKZGapiErcjabDXXSMovpeU/unaGUYjQp6Z2oC5NQ8IuzB2RZxmQyS7ARIBtjFNTNLqHahTfpXSQEhYoR7xyfPnmadPE0de3ZbHbcrLbcrB1VB16LLFEfFF0XyUhZQoSrZS0+Dtc72RSc5AW5gbyY0LUeYywffvgxrevJi4LVdstqvaNpAiaD8XjDbtewq+vEC3W4IGDn8Sjn3r1T5tMx7aRhNp1QVRX3zse8+c5bnJ6eyvM7Txvb/TmojMVHCFGRZTlFOToEQJUnxWYvvUjv8Epz//Fb7HY7fu93fpfJqOT03n0ub96nzDJGkxFdW1OWpTAYHj6k0TlnJ3P6vqVpdzT1jqIUaEnXdbRty2Q8YzIRFZLdZiMtGqsgeHE5i4rYe3Glch3WKELwbKsNcbsm0wWqrjC5oijk9R+XoMc94OF3x9+PmQKfl0kJ6P1wn8/8PQwQrwMqIoTjWeMh4P4ECk3enq4cC90dY9diU4m5bd8SfIfyLc5VKN8QfU2MrexQyRk4xsDBUwoOSqBaSk0GaeIjmsf+trc1p/av9OiADvdJfG9x++FQlg4HKupDhnfcU+v7nnCkO6eVwocoU7dC43qP1z1923J6ckpQijLtaiF6tj7gouCzIj0heuEChkAfpYenoqLtWlw4cHEDEpytFp6kNobNZkNZZGy2W4qiYJSVSX5nLAE3im+C0RatRINrNBnTtzr1QT1BhQO9xxh8lMy373t2W5EG6vueuocOQNmkijucBVHAo6QKJx6UWHOduIcKXIRMGXl/IdI7j1MdOitwvsJ5mbJ71+DCSp43BTbvwVpHZjXVpqardsTzBUaLuXObKG62SPaKMdL1ch7e0uw3yXtBG1yaTlvkRSpsAtdabJaz21VUVUWWFaAN0/mC9957j/XNjZgVK1EmsUraJEVmya1ht5N2RFmWew+H4wHQgYlhCNERPRg18KwDvROJ9K6u9kODEAKta4ldg+0brDJkWZGc4IcAJNfKYSo5/E0x8KnVndL1s+vodq++8D8zLDxca3+yXt4XJLDtBzgJOyQX+3Ci9b1IzBSuIjpP327x9Qp8D92aEFuUr1A0ROXFtCWdMHeKRqRxczSkiAfkhvc+qTcIlEEZg3aIVdk+wB2wa/vvqX8mkkXieRa1CGJ6IqSTL8sycP1e6UMEM4MEGBReKbLMkueW0PbYrECjaeuG4BxYS54e0wcYlWVSj93S9Y2YkDhhZLgesuxKgLKZWNOFEGgqyV6m0ylNYmp477m8vMSaA/dzNBphrKWqO2yRM5vNKMuSk5MpfVRJXcQNwurS4LdSuI9Gk1S+adq65ubmho8+fJ9Pnq+42Ta45OfrAjKRS4FahHbk4oyQnLfkYu+DwyCZ28fPLimtbEuj8ZgQApvVmqZz2Cgery56XAfNTZ18AEQwwDlH6yLxoqLetOQ55JlhMZuzWCw4PVvQ+4am3VKMSnoX9gMsrUReGxQ+Knof2dXSl1NKoTJzgNEgSrZRibPWZAon9x5w7/wsTUwr8olQneq65uLqkm987Zt0zjNf5Fy8eMbVzZVMtfOMcpRTFuUej9j2HVVXCV5NWRSyaea5xXUtxihc21Fvd2JopESJJZuNoDCQGfl8lbh2EW5nbHcnpMP3uwM+eHV/fP8z+6TtM+u4zB0eO0Z/KEXTOpgFvt76QgS2u5COobF9nN1475Oct6Ott/TVBhUalN9BbCFsib6GGNBRFD+QMQLqMx+KRqeMzZNMXkhClukWAuaNqGj2G5LWev9Yt3oPKKIyCPJNJyaC8ClNZveGviIdF/bZWtt3xK6jqqrkqemklOhFcyuiIIhk9fvvv09UmtbJ1C3LLfn5Pay1TKY5eWEpSoNzNimJjFHKojDko5y6rtM7TzaAqbHcNA1WaXa7HfPZhCzP04Ta7nuBMnSQaetqs8bkUwaf1mEw4DoRiTSpXKrrmqI8oe88wcO9e/fZNpo2bNBmiQrSIECLTSDhkKl5uIUTBAVZiUgeBDZNh7OCc940HShD3Xv6CAVJdHToje6b3QLK7pP5tc01bevoO3j69DkPH97fyzBNpiNMJpp2wwY7ZGx98Hvf0uH2PkkFdao/ZMZBJKF0BGMVxajk9P4jPvnkI6pqw9XVDX/nb/+fBAf//K/8Bc7PzynKEaPJFAN0XYvWosJcFAVFljMejynLHJ0msFluiV6k7wtbkBcFhoC2GqNERty7HmMFg6kU5GVGNptixmOyUY42GSHBou6Wii/73XG18jKm0OG+RxnbMOU0nx+c5PGG59xfifJ//xNZih6i/jFWa98XSV+qa0hcEXSaekYf0IhLSbgjzvjjriGwRX0og026QI5Lz9sp86vXIDt0iy0QDiXusPsWRYGKjtB7mlowaXVX020bWh/o9JL7b79FURS88fZb5HnObD6lK8U/UmnHrr7G+566lv5OZnO8B6PtXrFiKAWHz3M6npDn+R6H1rQNfSpvtJZANZkkqR8jjurL5ZKSHGMVubW0rWSARlnRwzd6z6TICzEiKcsxk8mEyaQhGzK2GMFYoGfQhR6uIZUw0PvpGwqcwyVcoYsioWSAtkfwegw4xQE1KEsukXRmJApbZmVa6xyIl0rGfD7fl9B5koqSvm7cq5dUu2ZPIRsueqVkwmiVJrMZWZ4Mflwv9Ch1EGQ8OzujrndYq/Gu4SvvfRVUFD+EokhZr6VKDBrSNZAFt98QBSMokKLxdEyRFQLO9TFJQ6Xzyvf7c805h7FyXsv7y9F5js0zSD65/g6E/lV9s8P7Vp9727sZG7eOymdvdwiidwPb3b+/3vpiBLYYsQRxtFbJz9NHcA1ZaMm1J/Rb8maDdx2+XhOaG8nU/JZIj6HFKtnRoxHMEVHQ8uIYoaQETWWoN4cPz2ibMqyAVkpc071AJXTCpumYdr00nVFRDpSKMirPYwYuYHOTRP3AqUCgJ5hh+AClz2m8o6p3bG5eUFdbrl48FyUKW6D1CXhFMTvhZDqXSVtWQFYwmk4oxhPQik4rQujw6YRuW4NzkczeI/pI52QntaOc0BkKM5UemHJcXl6iNGzWl/R9y3w+Zzqdcm8y5eLigqZp9mDU96+u9odJKSmvJydr5rMT7t9/hNIZWaZSVufZ1S3lKCcrLSZPbI5dz/bmkm63ZWI0swxWHYD0AdOjo2PKzyJ7LGEX+0MvNGVzAYV7xcbSqQgxkGflETZQJNZRosPfRseDwmJGmj40TCYFTV8RVSArCro6MB1PCC6wXV8RowTooigwVtG5nvV6SQiB5fKas9PHjEYjxmVObkTfzykIrWxko9mMT59d8Nf++7/O3/ib/zdFBsHDN79l+XM//S1GkxJtYLVa0nUt2/o5m80G7yKdD0wnC55+8il5XnCyOGMymQnU4ySD6Yzx9JQuilxWX/VY3+GaHc8//B5tXZOFmny0IM+nKH1C04CxERNE1ZlYYAYzF8WAUZfPbjAs2ts+Hhg7Q2tm8M49XiYksdUopkjaWiIxEXcUJKFW5QUyIgIDAwk+QjT7bHDgQ//kBTYERR9Qe+MGn0T2vO8heNquxlcbCA7X13sfAaIihpQOKyeBMQiMQ0pMi/iFivptRHbC4bI4vjz0UXlplNoPAgZpoOFn6bd8dgw+6EaRsGZF4vt576U8axuaZUXf1LTNDmsto9GIs/P7uFYoWAYJgq06TGJtluFUTHirgFIa7xwhgX5tZuh7fatE6jq3BwXPpqd8+OGH3NzcsNmu6Htxovr44w+pqorxpGQ8LjmdzgWxf3qP8VQytfe++rU9Nq1pGp4+fSpltzJ8/NETQgClDPfv30+QmZamFgWS7XZJnibK7777LrZccnGzYfTkii44Nq5Nkim3z4WIZDG9d5CAuodBD/sg97JltCbEkPp1IQ2SAioNeBLCh5PTc9quot41FEXBcrnkwYMHjJLhTFXv6NoeDXuz4vVmQ+9aAjCfzwUfNx4zW8wJIXB18+ne6WoymTAqCurtlutPnklZqjWjHEKEsoS3Hr/BfDHjzTceMR6P2SxXSb47cHJywng0R2eWL3/pK2hTMB5PmE0XKGXYbHb88MP3+d4Hf0TnFV//+jeZTqfkQL1Zs76+xDU14yJDhZ6iKPaNLp0Ue6UySVnukRvVPlfSn83KjhkynwcBiTESVaJDQgpMCedJ3OM9jzOy4fvx8PDu1+uuL0xgCzESlErf2UfogZLkQyCL4sMpmLRImu+lYOURFom0m/cfwr7hmaSGOEijvKqYHDoBL0NF7z/kO7dRR9PT4YB3XZcyBSXN7L4XmefMkllF9C0dim3YSGA+fg4jvS0VFd50qFyoOF3XiWS4hr4RCECe50wnYwaJ7qqq2DbiRVDvKv74/Y9YrcQIZTobcX52Sl5YFrMpEU9Z5hirUZ69+gNISTng2LyLyZpOSeIbkRMVRWZzbq6XogvXt0ynY2wqU/sQsdokOz4xUynLnHXt5Cik8lDdPWe1As+e9fHjnNT7iy7exj/F4eki+7JzPi+4d/8ePsixmc1mh4tLQ7WpmM3Et+Hy8pKmrcRcJwmOdl3HqlrL+ypyRuN7AHzv/feJMbJYLPjggx/wB3/wB2y3NbsOMgVfeW/GN77xDaaz0R5gG4KjT+KXVVVhTYlFsdvtePDwBIDnzy/2JfB8ccZ8cU5ejnny5Ak//P4PeHRvztgGdPDgHL3vKUdJcCEOnGOR0hLsaLx1IcQ7n+PhH/LtVdzQzyyd+m8qNROG6WiIYFRS0/nsVPT455cFt9ddX4jAFom0rkdrsWYTbl4A5OTSTmAbmpaAI7gKFcSsJXihU1klabI8oGRkMYCKQfpyRGIcpITuzEoHqI1SSRHhdk/tdTK2EEWe23uDjuLs5PFkRc54MhGsV/C0y11qb0tgCESMFe9NFWIC2FocSXs/syitMdYSlaLIrLiAZ5rpdIz3ns1mw83NKsneiIvSfHbCYrEgyzLu3/vS3snr4uJTlqsrPnnygmfPnuBDz9nZCT/13pfJdUbbtlibM51O0NoyKidobaiqismkwJicXV2z3VZ8//sf8MEPPuL09JSf/dmf5/R0ymQykfIjgrUZ1XqTMH8WTWAyynnnjUcYe037dIm/c64GwGpRUW6Tttz+eERuZW0vE4uKMaJixITAoK8sR5/Uh5Wff/DRU4yBL3/lvpSLk5KmqdAGlstrFqfneJ+CvpES/NHjB3StwxY5jx8/3ttCdrHdT5JDCHRNw7379yGKhtu3v/NdfuM3/z7f/f0NX3/vPpvVNb/w53+ON954g9OTGUaL5JYiYjPFyI5o6k4ctYoy+TSANRnGSDbeNDsmixNpt2j4qXe/hP0SrC+e8OT7f0R0LfNC+oXBCm/XmhybF3ReEX1E+6RsYwwhnZTHyhvHG8oxj/OAN3t1Mz/uE5QIKhCjAOIP5atkbv7o9rzi55/cwBaHFFenvog7mmMGlI5oAir0oqKhAiZZ3CltZE8OWtx4kjjQ7cePHJ3eEO/e4vbaX0zxiC96J/W+O6IOw46Y5JACEZMfHKpijLi2uwX0HbwVBJcm6YSJotqrzeF2wXsxpokDQLinc46rq2fEKFnbeFxSliX37omo5WQ82+96GsOzp09ZLpd8+9v/iKvrC4yB8/unnJ+fM19M6TvHaFKm0lJKlKbuyGxJlmlGo4lI+1Qtq9VGfAtqkTF/4423sNay3Vbc3FyxWMwYjUYsV2tcU2O1YTZbcHKyIGt7zneetg88fbGkSmf2rYxNa3yMhCh811c2sl9SjwoIOwogFS2KEPKfqONF8Bq6dEp0Xceurji7/5g+eOq6ZjQaMy4LlusN0XWs13LctDUsFgtcEg0oioI8LxmPJnjv2e1qxuMpeaZ59HDEb/3W36fa7viVX/kX+Lmf+0X+p1//6/zmb/8h7709Zjqdcv/+fcrCQmzpmnoPds6z8siY+CCP3bbtfmI9Ho/RxlIUBW3d4PoOaxXnZ6d0qxOunj3l4sVzRqMR8wdne+xdjIlvnBV7KfsY1S3/z+Pr5rjySSf+51w5hyVoA9KGKqDt4aITkUlJMIbr/JBVy8YEe3BWerwfb31BAlsg9IEQxLkan1yo+g7lHb5vpdehPUp1oBwhdkTXE2OLUYHg24MbvDukyzHhiQDUfsIZCO7QDN8HqxAT9UmYA8eZmrzOgzrC8O/hxPOJbA+grWYymdAH4ZyGxKfUGJr+NlhSa5u09uUE0xjJKrRkc9E5QojUvsdkGTc3V6ACWZlRFplkSEnHqyzHKAzL5Yp/+Lu/y/X1NZkteO+nvoG1lrfffMjbb/6LLJc37HYbslwEIut6x7Q8ZbPbUhQjxtMTptMpq9WabV1RX7U8f/6cEIQfeXZ2xv379/nSu+9xcXGzfz/r9ZonT57gvfSq7t9/zPnpCXVd8+L5c/FwUJFpaTiZlYwz2AUt2DCl00QTeu+kv/YSKMFxlhaJ+yHDYOIbgoB5Y/CM84xci5Bo1bXc1CIaUBaWt04mFGXG9fKSN9+5x+M33+TRo4eUZYHRhvV6jYqR5XKZstXEC9WZmOH0nhASXAaZak7LkQxu2sinT5/ym3/3d/jOd77D7//e+4QA//q//M/ya//crzKZjClymE2mWKPITIGezqh3FZvVDYUZM5+fMBlPyUfj/bkyKAgbYyjyEaoo0UTmkxLX9HTVlovnHxO7hvOzOetY0/c9NzcXzCcn5HmOKUZ4nYmrPWItiFZoq1+aGQ0845dftwfXuGNMWwhB+mshHlzIoscqK4otKkiFwiErPDaROf75+Bp7rRI4rS9IYBPYxkBwj71DKzCpXxaUxhuDpkUrh6H//6h7s1/Jsuy877eHM8SJ6Y45VWVNXV3VA7ubZLPVpGUJIGXZsAHZD7IheYIgGNAf4H/AfvCDDD8Y8AAbhgVBth8IQ36wIdiyBIqGRkoyTbLJ7lYP1ZVVWZmVwx1jPMMe/LD2ORE3q6pZJVFC8QAXmTdu3Ihz45y99lrf+tb3oWJHVIKtERNQ7BOHqXOIHLcazDgAlEl8NWUBM3xQBmFRS7fzo+Xnx37tnb9cHI+xooi6G/9QA7YRopL59hQUu+RB0CX3JknbZXC5l5mJKLJyRFGUMnOaZ2RFJvZ6ecboYMZ6vebBgwc8+fA5VVXx9a/9PFmW8e1vf1tUY71HaU9di6HHarmh6zoWC3GGL8uS6fQO49EJJis4OjrCO8+Ddx/ywQcfcOv2CUdHR7z19psDUXW92rLdbhHZIk1VTVitNozHI956602atkYbxeJ6xfMnT3GuZVRKOWWMZlwVHLuKuydzrh5tiD3LXAnkH/d29t/v2C+X+qsivEdoOs9L908py5K6a/n63XvcvvsSeVXx//zff43rs2tOb8/48s98lddef0XGmqzFe4d38rrzg1nij5WMxhPqbctyuaSPt6OyYnV5zQotlBEM9WrNX/4f/zJ//f/8NZYrGI+gzOHv/v2/zb2X/xT37h5x784pZ2dP+f73fo/T4wPGo5KTowM2yxV5nnN4eIjRFpPnLBdrICfPS0ajEXkm5ynSUx6LZ7W8ZLW8YrO8wIStOFDpSFXl+HHOcr1CZxOOT0oox/h8DNoyYM46ScaHOGRl/Ua/nxjvY18/fU33WLQ0u4iCm6sghuLEiFIBohm6sPREhRCHoCdWj6LG84cusCmkRJAWc0TFgHMdquvAO+kAJj9QFTuI0jBQQTpeUmvEoZ43qKE7oEIk6l7Ars+8RHMLuImphV26LFTbnavO71fj2zzDBY81wglzzqGS8UqUqCUXbC/7G143dYdijJJVak1Uu/EdYwxlVYFW1F1D51ty7/jBez/m4uKCPC/55jd/jslkRp5VQDJYDhKgO78hz2Wn32wYTG+urlZYW2PNmKvLNeUs4733H9O0W/I859XXX2M+F2qBD47WiXLxarVmu90ynR6itbxXWeZJsTdwdi4A92KxgiA/K4oMH7RMG/g1isjJwRT7tMW3ni4Geh/XT8tGVPvXLv2K1tIEMYrkFCYuTEpnXF9dst1uWXcdl9cb8gzu37/PvXv3ODg4wFr5jOq6YblY03We+aQYPs+y2mFLMSqauuVgfsioyOk6Mb8py5Lnz874J9/7LiYB5zHA1QJ+5Ze/ztd+5quCjYaO+/fvM5uO+cF3v8u7T97DtS1lLgq7m82GIi8Z5QXT6RQQPlqekzrfgRA7lIrUzZrF9SVtvUbF3hRF5ohNnpGVJYUWZRPXeZljlidJLAnstFOV2pWd/wyHTI1EaXoPa2dv/Sk1fP+x11bdLMU/K0H1cxHYiBAT8zyEIBkbUYi4IRCDF3E/LzOiBAl4IUg2Ig5CgkOB2N6F2GMrSsZFdKrnlexMiptBLcabLexPwtSGx/bSY6WSPFBKuVVyZgovAJ9D2q4ZyJhd1w0YR1SiGttr6dt850h+69YtLq8v+M3v/C6L5TXHp0d87VvfTF4D8lrr5QpfSnnbNp4sK4R8S0PTrJE2VOD0+IQyr7h49g6/853v83euv4/WsHTwp//0N/nKV77EdDphsbwa+Gwnp+KJ+f777+NDx3gyIs9FZLJtOvl7g+PDJ49lQRkp5y7OnnF4OOfk9IDrqyVlWdG1MkFydDDnjddmXF9f8+jZE5oeSuiDv/r9s7bh5k+AtPOODBmWH+eWJx+ccXCwwJYl7z9d0HhJEnIDd+6e8PaX32I6n6CMHoxyRPU2OZ4F8RH1XvA3o2WzyrKM1XLN2dkFbX3O0dERhwcjPnj/Eb/1//0mL9894fHDJ5weweuv3ecXv/1t/qU//lWy1MX2bcfF2TnlKOett96S+8B11Nstq+2Sx48fM5seMpnP+Jmv/ixtF8jzAtcFVt2KECLeL9ExUq+vWS8vsAScr7EWMUYzYlflnOP0ZEZezGWSpPMioJGaOvt6g0P2u0fFuLFU98vUn5K5xUTX6u2KZI32a+lmM+LF4+NK0d05fbrjcxHYhKjnMNFBdLjtJUYHlN8Q2xW4Gttu6DqNdxrftejYoJUHJ+VRFjJcFJrCVm2IUbhWRhfD6DvBJXpI+tC1lEZRJdlvs+PpBAVKK2zKILMESmujIXkNRC3PCURMEKlphrlSgzFaxqyUAm0wWQJTgx+wjSzLWK0X4MGanKZphRoxEhqAj4Hl1Rm/8cG7VFXFG/deIoS7HMwP8YsmtRENdSMjZA2BthWVk8k40LVLNmFNVVWoEClKhWs8bbfk8NYxr7SR3/m9nxDUiLfuzlk8U7yj3ueNL7xM65aMT47Y1Ft+8KP3WVyvee31L3B0Al3dcXF+TWZKxtUEm8BtEwzHhxIE3a2C44MT5tMZ61XDdrnF6pLJeEJkwXJ9zkunF7x0qpiUnoePwDnoYqRTYmATTJ/K52njcpQKckQb0WSRzdbTAEpZDkyHd3B664j5fM73v/8uZxctmpYaS0ThveWrL2V86e23ePuLXyJ6hwqWq0vhqR0dHXHv3j2UUmy3HdVYpLdXqxXL9QJtDVVVMT+acnQ05+zxksXVgg8//JD/4i/+RR49WvG1n3mJP/VvfJtRWfLn//yfI4TA02dnMgfbOkqtaHXH+vIS13Z45yiznMPphKmuOJwdc3jrFnlW8oMf/YjVasXp6Skv3b2L1QAO12zpui31s/comisyFaiUx3mDiwadFzg0o6AILhJzhRlXUI2olUGHSGEUWbR0iVuGTlZ4McjkbqqCULJOTdi19fYxsRtrWSl0MIgEGEAULcL+//RQj0ky98h7q5slaYxBAjSK0FlivIm3/rTjcxHYIruMhj3FXBUcMY2TxO8sl78AACAASURBVL4fTU/6E1Z5D3aE4ACbyky12/XxIqWjEn7Hx2RQSuYH9zG1F9PnTzz3GD/lTrIbGes7mXmeY5ROw+k1ZSFmtkVeoozIBq2Twchrr71GjJHL66vB80DOMaDIUnYRaTufmiI6jd948nGezDwiVVkBUfh0ARbLGucCSnX85IMP+f5PHvPLf+KrdAS+9JX7VOMJF5dXPHr0kDfffIvXXr3PanFJLCOuiyyu1nStZzaZEGPk6OiIqhpJKVUURJNmU2M9EF378jrLMoKp8D4yHk85OmpYrTquNj2sACJaEBNlRzre/URvCFAVBT42NLXcDy5AnskomNaa4+Mxj8/XwwSpEHocBwennJyccHx8SIgdxijqeoPSMBnPBr0za0tiVDgXmEwmlGUJwKbeslqtqKqKr3z5y1xcXPDOOz/m9PRUcLA858tf/jLXV1ecn5/z1ltvicLw9SVd1xByRdOm+V2jhg0wBEcxGtH5mLrSBS+//DKLxYLLy0seP37M4XxKURSih5dUkL1zhNCRZ4qYqgdrLUpbdForPm3IWZkRYk4XkzyYCiLesH8/f4bS7+PoGZ/1936/47Nka/B5CWxBjElc2xB9i8bh3BbaFb5bEVxL59Zo5RCDFo93HoXoTSmlCBiUCtJAVn0qm7qYAh4kxnokhj29f+8xJIqF7r0jd904qz/6EfXlYUhdn37H2i9JlUoyllo6PmKf5/fS98Di6pq62RA6R1FkHB3OaZoO51vOH50P9IJ8VPDgwQPpSJ4corVmtV0RGhkVms1zqqKkC57lap2oAdJUKYoCbWA6rqjrmvfee0BTB0blhCKb8OYXXuH5+RX/4B8/4AyYjnL+t1//LpMx/Inrr+O2Z7xy/x5/7I/+Il1TM7I1T1Yrrq6uGFcz7t+/z3a7xTUtEHj48CEnyd1dZmTlGsxmMxH81NLQGY/HBBX48MLTNQ2ZrTg8rOjcJXrboqJHkRPRQn0gKa8kGkFmYT6fcHLrNk3neefdD3DysXL31gm5zbBG8fM/9w34zu9yvViyaQNdCEwnJf/qv/bL3Llzi6urC27fOcH7jtlsJpvJek2WFSIE4DyLS9lMxuMx5bhkMpmkuc8ti6tL/tF7P+HBgwc8e/KY/+Df/3dZrVbMJpUo7k7H/L//6B/ya3/zb/Bz3/x5JuMR3gWePn1GNcoJscNagy3zgUS2WKyYHRyRjSqx/NMZt2/d5fbt29A5lssl3/vRd7l76xATHavVgsx3jDIt44EmCTAYQ16UQtbV0uCKMWKNDAc6n/w4zF5Jv49r/dOs5Y8pZV8sa/9peGkycfOHjMdGjHT1lhgalG/wYU10W7xb4bulYGuuRsWGSAfKEXsFj8FxnQTISHtTXNtFlTbqJHqSbNhuiH34QEw1fa94obUmOk9aSR9zuj2+dvOxvpM6ZH7pd3saojGKprcARIJeURQUNiP6wHq5Yr2WDO3o4JSiKgSsXyx44/VXyYsCF7pkE9ewWTe4RLUop3NcYBjQzvOcGCTrWK1WvP/uA4wxvPrKKyiMOB2FjNF4zK/88h/he7/3gCe+5LJpqcqKZdvy1/7md/jlX/oS0/nLuE4xm0z4tb/x17l9/0vcvX0Ho3OaRrKdD58/pa5rDo+OKKtRmlpoWF4tyG3B6eltYox0bUfUsqAWiwV5NsXois4vKUea2WxMfPchT886QmwJXuAFi0MlzY6TgzGnhwdorajyjDIvyK3CNx2Fgjsnt7i8OgMCF+dPuHU85mCeEY2Mnb359lt88a3XmE7H1PWGcmQB8VadTCaJytExKivarh4ysNxmbOs1K+e5aHfztO/88HcJzvPS3TvcuXVC/vIdzp49Z71aMJuOUP6Qo4MZP/zB9xiPCubzKfODCdvNgtxa2rYhRj/Iq0/mt5hO51SzGZktaJ0ntzIpcV2fkWcZP/+Nn+WH3/vHXDx7xsh03L81E/EM74ZsLS8K8tzinSEvS2wh0ysmeLS1ZFlODJq6bVHJC2QIOJ8xm9qnbfRTNDcw6RfWSp84fJYA+s/FCf6f6xEjvmswtBA7fCdBzrsa72qib6Vp4DtC2Lkt7X/4IQaZb499aSuE37509UqGrGXX0ugQIQa86jlmkZD8EXQE91Mu7Iu8mn1u241mQ7rIMTL4HwgwKgYhXddhraXIC5bLJU3TMK3GqVwoaeotm7pmeiBS0M634txdWNY1aC2UGO+lU2yUpShzgo/JAbylbRvatmYymTEaCTt+u92SZQZtMly7pRqN+cVffJUf/92H2CJnu9lgEFLk+fmah+8/w7gV69U5VaE5PjyiKAraduc10RNOu04yTq01T54+Zb1e4zLP9fW1TJXEIOWcVmKi7LMkAy+/U+QZt06mLFcXdA4a1wEWSxDJJWQkiRjQyjLKc7Sx6ODJgEkhemSagHOtyGDjKHLNq6+/wsHREbfv3CKElsWyIcsyuq4d+IxKKbx3WCOqGZvFUiSVfECNhEsWk8u6VpGQPvtylBN9x2azwpoxJ8eHPH7/AcvlknlSDjk5OmC7XdM0W9raUFVlalJI1aEMVKNKaDQmQyuRq2+ahugN6/WawirKzPLs6VOODg9otwuunp7RHY4oJ5UMGSolGoIxjUAZsxdARKYrptK+55N9BKz/DIHt46YGPqn58E97fBqKyf7xaQyTS+BvA0V6/l+NMf4nSqnXgV8FjoHfBP7DGGOrlCqA/wn4JnAO/JkY44Of+iYxpkxtBaEhuhXeb/DtNd5tCE502r1rhBaSZqDinqSQjxHvhRsTB/zJCdv8hV3BhJAkcxI9IEKnJNuxSuOM4HpG7XaIQak0YXI6CUoOH3gU3bd98m7biKFI0zRkRY7SEmSlkxk4PT0ldC0/+uEPIUReuvMSm9WWGCKuazh79ozZwZzD+YzFVhRoTbbLCJt6CWiaeoU2GUVVkWVTnPJsNh0+BIqi5OjWEV0nyrC9Qm7XSUmvdOT4YMQf/6M/zxe//sf4r/+r/wU0tAmn/d53H/Kj7z7kmz/7El/72tt88UtfQoVAvd6gs5zvff+7vPzyy9x9+a5getvIZlFjjOHu3bu8+nKO7zzPnl3QuQaUYrVaEfBMJhW511xdbcFvaF0LHcwnBV+4X7HeOq4vW5rWoTuock1eZBQKnn/wIeNxTmkVh8dHmBCYj+D28Zzl5Rm12xKj540vvIKPHcZGXnvphOl0ilYNi8tnrFYr7t27w4Nnj6nrmrKcMJ8dcP/+67gusLy8Yjab0rU1MTiuL1eUucVaQ72+Yrlckuc5x/Mpbdsym1a8/+47oALjckSRW+IoY3F1xvHxMQfzCUsdcL7l4XvvcnrnlCy3dEFsIw8OjxiVYybjU0KE5eoaUod9vbxOVoqgc8uotKwurphUGYevvsRqec2TDx/xxS9+AddF6qamqCqpPKzFt55IRxk83tUoZfCxgZjB4Pfx0ezpRVrGi8/pN/l9KfF+897RO6SS2mVcce/x3Wvuf/+iNPlQjX3K49NkbA3wKzHGlVIqA/6uUur/Av5j4L+MMf6qUuq/B/4j4L9L/17GGN9USv1Z4D8H/sxPf4sohNvQEUNL8A1ER0S6pEQZEFbRy5C87xIWxkC+DVFJQEs4mihwRZlHiz1tIFECiOg+FY4CKSulEtaWAH4fCCoMfo279nQcTFT6Y/9iD/iEkgZBCGEYAF+v1zSdKAKPRiPq7ZrVasXRgXQRM2MZl6KkcbGW4evJeJQyO7EFVBiMkdcmCLm32awx+Qjrcy6ePcHmBWUxGjS+XNsNzHzvY/IhQMqrKmO5uuLwYMaj9x/x9TcP+J0fXWGRjM0ieNYHD59RZCX37r7M7WPLfD7l+fPnvP7KfVrv2NYb8jzn8rJmNpsxm824OF/QbttERk7wfQh0oRMqRys4D7GhazYo7bEmx3c1mQlMS0t2aHFdpF22zCYTsszQtTXjSlMWloPZmEmZczAxlNWIPNMEHyiznnwaKIuM0aggU+CaNVVV4tqOttmyXq3QSmZ/xS+go62Fo2eM4cmTxzTNVmgz0SfhAY0mEFzLulmzXkk2enV5TqZl8xvnOUZFRqOC8agUbEsbDg8PWW+WLJfXPH78mLv37qSGhMbYnLwshjUh95wnJJas0QqtgozUtU2iQUmXfzQqUMg1mR+cSCbathibY3o8Jch4XuYj3oYdbzMEwTL3ca9PpHHEj3y/H4SGMnMv/vWl6O5341C27j9nPyn4Zz0+jWFyBFbp2yx9ReBXgH8vPf5XgP8UCWz/Vvo/wF8F/hullIo/5WwVAfyG6NaEsMF31yLv3W1w7RaCOFQpQf2T4ZQWiaK+VYyUo0opIfGm2VAfnVxAECMXpAPlkPGtkIKWVeAS0O87N2AAZVkOH7rWeugeic6XGiS+b3SiVUQpea7zrfCWfCdjTFlGcThjcXkxLJjqsBCRydWW0MVkjLLl6PSEvChp6g1eifUaPtIFUCrj+Ggu2mp2xNnzDxmt13zlZ3+BGAx107LdChdL4bAqGxy5XYBRUdA1LbHzzCdz/tav/RpH+Yw/86//Mf6Vf7nj1//O3+dH7y7oEiD//Lxju3yH7/7OO/ybf+prnJyc8OZbX+D52VMRQ0zjXqe37mJtznq1pRqXtNuWvMi4c+cO221D23Ws6zWta3jy/Bm+2UqQbh02y8g6g2s6RokOU+SBFoeeZnTdiuAVzcZxfCodytw6NqszDqeiIJzjyCrN/OgY3XdeY4cJcP7hc0ajgjozmLEoqjxvGl5//VXyInJ0dEiMitXFGc1iRQiBldtilcKWmlGR8+TxB1xcnEEMZFZTljmu3pJZy2q9YBuke/rjH36fN15/Hde0hCDilA/ff5+iyGldI7hgbnn4/gd84YtvMZ8dMppMsXk5uIkRRH3YOeFw2kzj6i0hOlyzArdFK4eOUTbBacXiesXl5aU0H7KMEDyZsmRKi5yX64iuAWXRmRdp8BjxYcdG0FoLufgTMrj9IAbsmTUzfK/MzjOh/73deNzN3//ncXwqjE0pZZBy803gvwXeAa5ijD0H4wPgpfT/l4CHADFGp5S6RsrVsxde8y8AfwHg9GCOClsIW/Brgq+JvsF3NdF34tXoA1p5lDaAISQRPq1E9YIYByJApNvtJPhB4w2szBPEgEsZhDEGoxShx8jYm3cLvUP6jqKgjB5oC31gkyxtb8dLZF90pLBiRNx5R1FmdG1ks92Il2R2AlFKnjZ2xOjZ1lt85zi+dUC9XdE0W0aTKT5E8rxE2QzftpSjCWdPfoLR8ODhE175wqscHh3w4QePiMpQjWeiadaJRV7npN0flQTi88tr5tUUnSl+57d+h2/9/DcZ5WNciPzw8fd49Yu3+eq3vsLpyW1C53nvnQe4tuPJw0f8vb/3u5yeFhSVZTabAIGyzDk8fIX1pkmzlRPOz86IiKJv23iaZktAGhvaiqDo1dmldFCdJXSWVecgGpxvBQdS0gWNoSPXIm195/QIHwKjScH6+pyu66gK6NolZDI/a7Us1s22ZTqesL5e0i5WvP76q7itZ7W+pKpKLq+vyaKIdT774DExKqaTOffuvQxobKnJc8Nmfc3V2YbtZolRjmdPHrPZrnnl5ZfQNmO1vOKV+y/z5NFjnjx6xJfe/iLL66vEUZTudPBGusnjiqywTOczbt97ibrp2LYdmfNJ3r2lH9OTUUFQWrhlPjRCXNeREB1WC8cyIvL5R0dHXF8vOT8/J4B4VyibnqOxMRLqmhCtkNu1R/mQpl/kiFFEGYQGBT1VCRgmdvY7m/vNgOGxkKwsB0L7fqD8KOl9//d7xembR6/L8umOT9VmiDH6GOPPAi8DfwT40qd+h09+zf8hxvgLMcZfmI5HeN8lTSqfwM0UlPaiev8B9MqoRE0IMX3Jwu2D0r7Lev/Y/te+l8LwvP3H+vfYO/oL4/d+tn9R++9ffG5P+u3Z+b2x8Iutdd+J4a78LCbNMH2jHBanJD3wwDabFaMcjg4O00D7dih/95sc1sqUgNw0KunmS+COMXI4P2TdtoTM8PTiOcUo42e+8TaHR2PGU8ubb7zEV95+g9k45ytfEXny3/vO72KSw9V4PKbzjsvLSyaTCSp18fqOYlEUFEUxWMj152m1xXeergm020i7jRgKMVHeRrpGPHusglFuMAqqqiTLDb5rQAXywpLnGXmeSRaVZck70zMeVSIt1DhWqxXnzy+w2hKcZ7vZ0NYNy+sF11eXlHnBdFyJqQ1BqCUqopDyr2lrGeVTkYPDOVVVst6ILFOe59R1zagqGE9GokLsGqqiZDqdEpz4XORJXGEymWBtTjWaMB5Pk6x3Ttu4gUC+0yQJCKQb0VqhNUn624kfrZZ7q59kqSqRYnetSIAlmjjRh+EeI6QRvx7KCTvZ+n49vBi89rmf+1+x58MlWfkXf/Zpvvo181k6nz/t+Exd0RjjlVLq14FfAg6UUjZlbS8Dj9LTHgH3gQ+UUhaYI02ETzwULYRHqK5G+Q7TdTIb6oX17HUgqAbX5cOHuB9MVD817XfBRgVDDJHgNEQnc6Z0kHhQzjHw1rzOUDYnBINWOd5pDBnRBXztReXVaKLvBDvLMulCRoMyEaszjJYRsCwaTNQYBzbPWa7WFJMZEWi6ltlU/Dm3q6VMJ1gjXpUhEgzMTyYSfDq1K3tjIM8suVUEa7BZxmK94uwyEM2cb3zjHr/5279N18JXv/5NTOtxdYfOM3x0OC+ZJd6jUllfZRlXZ2fEGDk6OeLZ1TnRwo9/+AP+5K/8Es4FaJYczyastOHCO7qu4+1vf4HtasvJ7UPyPOc3fuMfce/ePb7z27+N1prXX3+dMgssl9dMihGhkGA8Giu2bs3yfEnXdSyXW9oN5BziOsf1+QJrHU0L85lOlB7QBsbjksnBIVmWUW8bimLEuDrg/PySzaKVTJYRJ/M5Jpcmi2saslKTBTFhmY5KimJOUVY0XSQ3BVopssxACBhtiamkm07nBA/n58+YzBTlfIJpa2jWuKYWbHI8oSpHrNdLmlVHVY3xtSc3JbdP7/Ds2ROqcQ7G0HQNxSSjMkLfGVUFeVlweHIba3PmJ3OazvH8/IIvfvFtNleX+BDAgSGQGUVZFAL6W2jqlnWzQLWiGKxUhne7AGXyjLIqWK1r2utr5qNjnDY4FXExkLU5Rrdgc7wOYDOM23X4e3zN7XWLISUW1gleqyBqmT3tA2FvOm6M2dlQDmu0/9+O5hFCILMlJBGKXqw1+H44fpc0hISRf9rj03RFT4EuBbUR8CeRhsCvA/820hn9c8D/nn7l/0jf/4P087/10/C1/ojs7QK9Vr33+Cj6bN571AsR/sVsbuiuIB2gELwArKk7GoOUqARHDAkzY2fcYXWGtx4wwwjJwLeJYn9nrBZ9tB7Xcxqv9SCJ1AtlGpNUUEsxQfEhUE3GEBpZ6KMRXdPSpG6n1noYe3KuI7clXdcSFGRGyK5d11EWJW3bcnl2zvHJIVor3n33XSaTnDwfcXV1RZZ1qHxCaUSvTpj/u93We5FYattWsJnJhMvLSz48e8I3vvGN5GilsVkmRstZxnK5ZLVa8eqrr3Ktrzk4OOD58+ecnp6yXq+TKGNJXdc8evSIu3fvChM+Fwdz7z2urTmYTZhPLAZDoQvqoub8/DlZBrfvzAGYTEqcLyU7MSRBR41RGd45nj654OpyQQiwWnqUWqCA6XRJNfWcnp7inWY2PmI6nfL8+TOqcSWqt62jmJbYopD7g47bt4+pW8ECu67jnXfeQSnDwfyIZ8+eSslnd53DXYYhPMT1lTjNT6djrq4uCFE+i/Ozc4xVHB8fAckJbCaSUJPplNlsBmkgfTweo23G8+fPmeSSfYnDhgQ2pfyQsffZlNEaa/e8AaIfVJSVUoNUfF3XFJMR2hhIWRvGEbqOqBsiDd7Zj2RQ+02z/pDZ5t36c86nbC2gtdxf1lpg5y8reGEcqoX90tb7nd/tfvXy4jr/rHjcp8nY7gJ/JeFsGvhfY4x/TSn1PeBXlVL/GfBbwF9Kz/9LwP+slPoxcAH82U9zIjoiuJcPw7TAC3g8ouPUy4HHvU6LtKR3qhCpHk8cK8HYBDOLUYTsVARSEOm9AXzUKOXBO6K19P6G+w5HL3ZA+3Pz3g83WX8DQsoKrUWl8tAlVdidRLPM5ylryK2ma1pCSAPy3hETc3+73VJNJ4AMaU8mE7Ajnj/9EB8cXdNiTE5lRG1XzuOm5tX++a9Wq+QgVQ6uUsfHx4mKIqVN23XCQ3OyUKtKFHun0ymbzYYPP/yQN954g9FoRFmWHB4e0jQNSikeP35MnokL1mQyIbcZRweH1HXLatlQFgUmWtxaBBvv3TtmOpsQgmMyqViurrHWiHlK23J9vaVtr1mvt6zXnm2S2M6sxhgZxH92vaRYQts8J0ZP8Bp/Grg8v6ZrOqbTKb7t8JOWxskG03YbbCFzrqv1ksl4KiVh21E3G7LcDN6r+0TU/u40xqBiYLtekRlNU9c41zGfTxM/06PRGKWZTGYcHB4yHk+TarJgUZKaClyx2Wyo7HSYaNnrjd14f+cc+R4ZPIa+VJTgppS6IfMuGmlJsDE4VHAiJLG3Lvp7+tMEEcHNFEKU38usQm+jGQUHTBnczdf9/V//xSD7Bx7YYozfAX7uYx7/CYK3vfh4Dfw7n+UkYox4V6dMyskHj4ClJv09mt2H9uJXf7H7Lx9qghO9M9c1SXI7pjnDXWcmxih6aNqgVUaXTHu9zdDBEjQ4lw+Br59RFCURk8YYJYBIllXsgFM0NpcMYDweEyEFO02elTTtVoi4xYhsW6MrTeidvYkEoyjGFUoZsIagxbf04uKCYlRyenKbxeYZzWzC9UJTFBqN8NJUulldF7Aqu0kaVgrvPU+ePOHVl+9L9nd5SVVVTGZTVqsVSikuLq7Ii4KyLPEJ/NZac3V1RVdLVvqtb32Luq558uQJh4eHnJ+f0/uQirrHJQ8fPhQRxmrK8npN6ALzySnr1ZbV9ZqYMKdbt+6wWFxRFAUfPj7j2fNLsgysVaxWkVUNw5y21uREmXXshPNXUjDSFhfWPHu+obCay7MPqZcNH354QQDGogNKVf2AlYnMDxS3b58yPRgnj4YGg+LVV1+TTraLnF1fDn97llm0Vom6srNonE/HXF9f02zXTEYjus6yWiwY5YUYftcddqQZz2dM5weMyjEmz8mygi5EtDFS0kXpqIoMVIk1krNpFfHO31jk4i2bkVkz3HMRcZ/vI6FOGROJsG2iRWea2DmiaaFwaCO+rlF9/Mb9YkDpZ62JavB86DoxK+o3U+8lodB6RIw+sQZuiobK2wR4oU/Q35+f1Jz4tMfnY/KAOOipCfMoQBA3KSkd+w84ZWw3rLgiMe51MmMEOkSRIJUOeFEZiBHfNyR8onCYHbaggsIrSa216jBK42KHzbOU7juUi4PvaH9eMQoPyvtdB7YshI9m0sSDT6NeyEaXmOYaHSPFqIQoZZ/3Mu5itcWnwfy8KPBpWH4+nzOdzkHJjbXvRxljn+0mRyvnUsa4+6R7JnvfvOgDWVmWQ0nci2AWRZE6wIa6a2UEKs9xjePevXuUZcnFxcXwGfTPv7y8lFLXbxhPhIf3wcP3eP7kjM3Sc+fkgrYNnD294PSl+1xfX5Pna9577yk2neumhtxClkVcJ07gAdkwgle0BFqgwopJsDI0QQJTJOJcwAGXl1fkmdAhVYQsE4VkbUQI4OTkhMlkQlVVZEan0gn5Pss4XzwW5n8MeC9356AAEwJ1s2EUi8Sp9BgjmZhqFWUpvhHyuRSUo7HIHqXGT9RGuv799dKGLNO4TuSThoyNm6B+f512MvM/fTxpP0D5zqGyDu2DuLgFwbFffN4nHVJp7F43hN15iUFMDyn1E0I7Cz2Nprfd6yut/ffbD2Afl6l9lqzt8xHYYkRFhyWIzn0MOO/RMRKDx/uAjoEQxQBCEYeL2afRg4dkjPjQCEUkRoJzwwyo6oN+CnJBeejAWpkp7fXTrK4xyuK1JkYDXcDogq7bS60T/hCcB2PJ8oztdotWKmnhi/hgUUkWp/RuFxV8JMPkBUq1jDNxQepNW0IIuFa06NAieVRvt0ynU2YHh1Kato1QXuqO3GYstmvBUGKH8w06Buq6xnnP7EBAa6UUm80GYwz37t3j7Okzttstt2/flpuzSx3lxEvTWnAhrQ3Pz0Q88tatW7z68qvD64BY0fWL4vHjx7RtK9MFKvDlL79NcJ7f+Pv/kOl0Qm4bOlfjXaDtPA/efcRm0zEaWYjgWukBjQuxiFtvtqQtDY3BxYBBk2EYKSsZLbK4MgyjshyULiqrca7DGlAZVGPFZDxiudzw9pfvcPfuXe7cucNsIh4NVqv0OUWuLs+oqoqjo0MhVjcNeW6HsrRuROK96zqaIGXjZrMhRNlMxH/iGGukIzwejynmByIaqRVaW3xQ5MUIrQ02ywlJN1ClwBajdEGNNrjuZoe9L1WttdTbBryTGzwGTK4wSTTTWosyORDwriVEhXEd7WbN9ECjc8Pa1YSQD+/ZBxfhX+7e78WJgF4QE2C7bYaAVdf10IWXLrjDGDV09wO71+w18PbxuP0K7GaW9wfYPPgXcsRIDK2UodGJxHeQwOZ8QCdKx4CxxZ0xSwh9jb+76CG5YMcgHRajtCjphrQrBUnvncjqU2Y2pc/xZoPCBwI1QefEaEmjqIQYyWI2zOL1NntaKQqbDdpt1lrhYMWIjgqdWQKCxYUQqKoKY6asF9eSvVlDWK+EFpDlGC2Z4nq95u7dl+TnaRcss5Lp5ACjLav1JcvVFd55mqYmyw0RhzEFWkXW6/WgtiEUC3GdCkGoJZKRRFwrY2NyXjt7uZgwxIODAzabDYtswXa7pa5rMTdxjgcPHlBVFYeHh8PjOk1xNF3L219+izIf8fjhY/7Jd39MOa0YbxStyxiNci4u1rKwgdwKwdjqDKtlYwixJTOKsBcYWQAAIABJREFUXMmC2dYbtA44LzLSZZnLItquiAGKQnhgxycVxooAwWRaMhqVfO1bX2Fyb8bh4SGFzahKkf6uyoKuazg/e4ZzLVoVexmEp2kEZ8tyw6g6BBBaSSf3nYsOnWnKomI6nVKWVfIeFQmlqDTKWJHkVgrXddggm5lNGX9/TZTazTY7528ElB19xwLJsT5KhdKPDzrn0KaXXN/RKExIUzfK0dVbNBm2LIkfw/z6uGxKvhjewzk5r9VqRUg6oVmWUZQZzlXDPQAaY/qAlV4zia/tB7JPDhF/8M2DfwFHTIFHOp+SPUkAkyZCSM42Uk7sj4318t394ze6OvLK9EaYwaeB9AA+BX8DOOcFu0HLWFZQSVJc3kgNYLFCxZs+CMCQufVGG/1NNAzGp3OVpoH8juxOGqO1GNNGi1IebY1gbF6Y9yFGsiIXx25Eg0zFpKLgRdBSxV6vHlFvsIVgG6LglNRPeocrj90Dl/d3ZW13s7dAcphvUEoPY2T9Dd627TAruVqtuH37NpPJhOVyyWKxAKSc6xsdB/fmnD+/4PjWMa/VnXgveMdsIjOmq/UarWG9hlGV4RaeiEOrjBgDhQGUQ2uR+zYKMhuHzzYzjrKwRC/6b7N5Rdu2HN2aU44EG5tOx+SF5e7Lt7EHOaNRQa7zwSS55y+CUB2apk7dcXmTrusI0d2YGYaATtCCzYWKk5cFo3FFlhVYm2OzDGMyyEsxmwa0Nhhzs8va3xcmlWgq9NjFR0uz4RwS5uW9yOVnew2sFzOcfg0FJ34IpGF4lXhzL3YnX3ysX3G9sER/DJxQt7f2kmirrEeVyme7W7gvvM+Lf99+EP+sQQ0+N4ENSMB9jHKj6FR0BkLaucCpxMTuu6LIB4iSLEq2kvR41KDEGQoPIYpOfIwpgHWeLNdorai3niyDzCrkN+RFY1RYK9pqqlcF0VqaDQnf0CiMsqls0INuvmRpe0oJexdHsLES750YnYwrfOfoNOhEzfA+ijyRc8znh0Mbvcgk+MQYGY+mFFnJefkIo5KcV0hyTrEjy7So/JrsRkmRZeIfKlmVHlzKXcIXZdoiQMoMvA8cHgoBuCgKNhsxhDk/P+eVV17hzp07hBBYr9cYY3jzzTdpGvENKEoJiNWkYjQeYYzl4OSIJx8+427riE0HTNB2zQcfPKeawGyaU5QB5wLLhWTDs7GiaQTT8a1jLPQnRoVc9hgDud3QZjAeR15+5Zi63nJwOqOajNAG7rx0l8lszHw+p5yO8J3DdQzEVqulA1uNCjbrKxaLK6qD2VByhxDITE/raRJZWiWahWY0nXB8fMpkMmFUTgXIB2w+YjQao4oyQSUBazQZxXA/9BBHVU3w7SZ1HdMg+YtTAQNXLNDP8q3Xa9qu5uT4lmSV1g74q6KnbQRU1ETvKIzGajl3l3C+/axsf+PeDz5q3zE+Baz1es1qublBRNd6OqjXSPNtH1fzL7zmrhHz0UB6MyH4tMfnJLAJwxulUEYRXAom7AyKg/p4GZQXJwmkwxqTUbIi+D2yrgcVDSpJ//RpvjEpAEYNcSftrZS6kakYRCpoH9Oz1krw0wqr9EfOrb8N+gvnYhQ58nRBrbX4xosxshE7t7AHEE8mEzKbJTpJPjDYlVK0jbhzeRfR2pJpL+a+RhOix9gof1LKAHoco67rIWPbbrcDEO1dOzic95jfdDrl6dNngzjkxcUFucnJ85w33nhjyNy0FvZ9jJGzM8GnqnKMj47Nphb5nqNDvPdU04qv3v4K223D5eOHXFxc8KWvvMLbX36N4DXvv/eI23dO2G5rHr7/IVpbTufz/lOlbjYcHMzx3nN4OCfiWa/XHBzM2NYOZRVvfelNXAwcHh+QVRk+SgduPK2wuaEoMshynj07E8WYqKjrhrZpsEbcu4rMsNpuh+tZjnJCCOR5TlUdARIURxPhKrouMJlMKYoRo3JMU4sHaFaUol7r+jElQwyKtm0S3rZzZ5frLDird5JBRr8z9tkPBsEHQnJmq6qKIsi92l+LokildEyeu2mWejQaYYuC1nscHaoMg41hf69+XMbWf9+vs55T13WddIUbkYE6ODga1mFfQmudsZP21vSeCC8yGj7p+KwTCZ+LwLYDh4HYW25ZQhSYMWorEwh+LR1FmyVzd8FeUIoQRIDSGGgdqCjE2+gjyMgh1qiUFXp0SFmWimJsoT3KeLSNRNPiDWAMWiWdLiQAOt9g84yQDFliBh01hoImtOS2AGPoguBVOkZM8BhlyEIkqIbM5GQ2UrfSBQ2xSTwGUAaKPMf7Lb4NMkxs5aZ3LgGtmcb7yCiPtG1glJUUdkTjGrSJYDqyQuOjRVNAaFGI+7dVOVu3ZTye0XSBQAZaY7KMKgqBNVdZUlyNtMuOUTZGecXybEmVVUQTB5C4v/H7RbTdbgepJqP0MGu7WdX47iJhThUH4zlu85yTu/ep5se0jZS9m6blrrnPtqk5sacUxzKGtdlsEvETTJ1x5/59QBoXPR0nRlFICSFw6+5LrJYbjk5PUVocmzabFWEbmE1nrJ7LGNji6TMO7r/E9eJa4AEi3mkyVeHagDU1oAhRUZgxMWUgB7NbKB3pfMf8YDbQHYoi4WPakqUNpQvdwHfTyRPDBYEdemFGWdgyHuWUwTuZ68VA17aoqPC98rNWMhYWV3jfYGJLbjTKjlAYSnKsKokhQwHeOJRReK/QymLKkqANVmuMkfLdGbGs7GdTJUHSiQaiBO5XkegbSRaUksmDANrm1C7QBYhB0zhF4xo8ns6LTl4Iu4YU0aN10uGLH/UM3Q+ow7/6D2XGxuDnGRNZSSm1+xdSKiqoWQzS4o7DDbHjt4XeQRshRnoSHuE8bStihXmOAPkh0HWePJP0WRmFNhb0TpPfe09RFDtl2qJAGWHlg9xoUm7JLhlCwNFiTZ4Y827wq2zbFjvO6QmTRlkweshKhQYiJhiNaZlMZLxKdsg06J92dq3DQAIejUYybtTVbDYbsqgYNQ0qd0QsRu/hGDEOc6T7AaHPPgUQdgPg3JemZVkO76MyoZpst9shu1gul0OmNx6PB4fy/mZummbA5PpMcTwe0zqZTjg9uc1isWA0GnO1XJBnBSazaC0by3J5zXg8xhjDarUaPA1ANpjxeMx6vabebFPWGXj5/j1WqxXT6RilInmR0bY177//gNvHt7heXBKCY9tsgUjTiCquMZYiH6GjxZqcyeSAzBbk+QgfJYufHcwFzzSGalIMI0UgLmkAzvRlnUkE8D1Xsz2Jnn3lZemgpwzOQPRpSDzx2IzsrnRdiw5SrjvvMNpilYznYXSiL0nJirEQhJJkbLYr7RK+GwbZbZkhFcMhjVJB+JokuhJSindtc6Mk7v/tuo66rhlXjhh3eofSnTV7Jf2u7O2l9PextY/rfvZl7qc9PheBbV/KfAhoWuS8NX2aCpmVrCCoJChJrzEG1mb40Hc2d9QNpRS+k0HvLNlVqQhN2mFtbtBWOjQhaV7ZvEDbXJyk2LXW+9LRJVmZEAI+9MKTarjI8kviRTkajYYyWZREhNYQHcRo0EpkhGQkxhEDOB8oihHB9Z1eTW6MSGoHZGKi7VJQSsC/ls5fV0eiqqnrDfmohWjQ2c7NHhXJkoWcMQql9kZpQhwG5V0yM+lb9j1WUtc1OugbC7K/SfNcStS+41rmxQ3spC9Vr66uuLq64vj4WHCrLMMea4qiYDod0zjxH9hsNrSJ+pBnljwT/PJgPqMfQ+o7ulpB8I7xpGS1WpHnJU2zxrma5Urky0NwhNjy3vs/4eRgzmp1xXRWsd2KhFGUwh6iYtsIZjQ7PqAYTSiLisnkgNV6g1KGgKEYzbDW4LqWGMWJVoxxAqNyDMYTVGpYxR2O9CIw/iLNQYe9n5MI4Yl03S/wPM9xK9lIutaR5RatInmeoY0RvNV74l7wj0o2636NaSWEWxU9Bk+MiawbBavW++TuVA73ogn9ubZtO2yw8jcw3EP7wXsfu+vvG2vtDXBp/3P5SIz4DFQP+JwENiAh34KjSeBKnJ4IghIplBJlC61T9qFu7oAxZUJAajhIGygEeT1jUwYYAh5ZDMakCQKlMImgubvRRF2jP/Zn54b3SaVEv3D6XVuUSXpzW2GqZ1nW97h3AVgpwfcSsTT4QNd68szg9y60XFgNybXLey/2dP1ipN8d04LoXb3SwuozH7kpo+CJSMdvd9PszGn6Tmp/A+47eGlk4+k70f1XcHIeRVGgbTaUjvuLdh8P7QPgeDxmeb1AackYu3pLncv/iWHYpPpF3eM7fTbY88kAjIq4tmY2nrBYrCgyy2q1IC8sWWYorCW3ms12Tds1jEaZqHb095ORnS+EiDKaoigpiwk2K8jyEXkLLgZikEkQpbMkqxRAmYFi0etyxKEKAWvsEBT6z3Y/E9ndW9IA0v16CAHvpNHknEPh0PQbf/pstYzmRaWSWbGWFlsifCstxGOlDCHGwQMEAkSRT1doQowYFZMQ+83zElf3m25uSu2ku/rnvZhd7WNo+yXmJ3VvP+5Qn06IaDg+N4FtOG2tUEFco1SQi0VE/o9Bdi4IPiYKx24X3GUHSXQyKlQ0YPQuQMaAtoILgNAhTGaxVjMeVUPjINMZWVaQc7PFLpMBZthpbb4DbKVrqIcbVnwB2mEBeu+woUx/Q8QPuIpGR4UPCtd66k2DnZZDCROdx4VUJoRA8MLJa1sRMexvNqMiwtgItE1N126wMQLF3jmkm9OoVNLLza21IrfFjaZILzMUFKlEE8Jn53YE0jzPh5t7/0Y3xkDKAPvstm9MjNIgv1Ga5XqJMYbf+q3f4vT0FJNZLi8vMcZQjEQFeLFYcHh4iNYH5Hmeurprrq7OODk5GTIHYwxXVxs2G8HPrhfnlGWJ8zWqy5KmnSWElouLZ8IXLGe0TnDAznuMtmg040lFnufMDm9zcnqLGBRZNmJ2eBvvA9fLa7oQMFi00vjQSUaUaCMS+BLhaJj1vJm97CYH4o3vvQ8JPw4kYG3YNKxRhKDwvqOwBTGDWASyIheA3mpCVGib9Gyckw5sKdcpoBNX02OiE+VpFzG2RmEIWvw+DZo2JLwNhiYFqXMcQqD1O6n7bbKJzPNyeKxvMuwHcq31ACGFED7S8f2k47OWon8w4kf/rEeMu+kApSRwKIaOUX/BM1tg08iKHD02YW/gLTJXykC6FQ0rNWQjA08olZa978HAuDY5xuw8MPM8H7Ak2CkS7O84/cLfLzVCCNhM37hxdQR86rIqTWbyHaPcS7Acj8fyt0XAC47iO+lAuU50r0ivN3RbXZveQ7Kwut6gQjK+TVmSLH49lJbGyvn30jT73V6zh3302Mj+ouzLiv4z6XfdPqj1pWqP2e0EOW+WM3ly6Do8FErLerkaGhPRy+xriI7gHA9+8hOW19csrq5YLRZsVivauqZrGlzbslmtePL0MQDL5TWLxRVN0wi2ac1QulprBbi3Cuc7MVTpiaIKlNGU1YjDo2PJ3LRlNJ7I5IsRE5yyHJHnBR5FCAycNVmr5qPSWi9kKvv39f7G4NIYXP95D7+joxC/lUo4cY5iNxFgsgJlDUpbVDIBl9fNhuunlEkk75juOSH2Wh1QsUPFDqOCqOfqnbS9cDQ1VjM0Sfav7f759/dGf4/1f9P+z/r7at9ntv97X/zq793fr2v64vH5yNjSYgdJqV2MSeYvkop+IStqQ5blaJ2z2ayShHe/4GS8NCTSoe25GV0gOEm9o0LGlowZuluZNRityIwi0xk6KlzdoDONVjnK7C3cPv3WH3djJgHA6AlBMkutwbmd+q7sVk44bUFMapUOAzAcoickTlPP2A4BGQ8j/QFB5JxcF2hacTjaBRMvO3qUHbZra4yx2KJMpfIuMPVl8jBP6yO9VFP/9w7KwT0ekm60IsuH5/SLpg/2RulhnE0ZRZHLc93wd2nGo9HwWFmWFEUhrHlj0Bpu3z7l8ZPHoofWTOjalh98+D1OTk5YJX8BmXiA58+f3Mgcfedo6hqrLUWWU2+2HB0dQIy09ZbxqEocryx1Sjc0rqPbBPK8ILMFo8mUajYjH48pijnbpqXtIuPpAT4aAkFmd7Uhywx5ytC99yhtpZRM6i2koCSL2Q+f235A6zfDAVIJDqWS8GhwZJnBd5oYYVyOcF5Tb9eYLtC5DpMJgTvEiFeglcYai81HO76lNqAMMarkf+EJbQsxooND60bIwzESEu0yINQORUD5QIgSUNerzW6j3oNn+vugtyV0zg24KuwCV9hr9n1cqHqRzyZff8AuVf+ijj7VJioxYvk42lpUeBfoOmlNW6tlRi5JG/fdniHQREXX9aNNHmF2hNRflUVoUGRKY5TBRLDKUtgSq3Os12DCjcUOu8wFpFJ2cQeeysUmnZ9NxMT/n7p3CbUlW/e8ft94RMSccz323pl5XrdOiaDcjg3Fhk2hQFARtGdL0E6haFPR6igINgQ7NkSojlqtQgoEEW2pIDYUrKIQQdBSiyrPvcc6mblz77XWnDNiPD4b3xgRMdfOk2dfuBfyBKzMvdaaaz4iYnzje/wfLRuqqcnLbDg1FYVq5PlcE6UR0IuzXb+Xn9oYB2mxBZSWhUUzZVlYlis+CMMQSbWQi92I18uT+Uu6xx0OqFLKLZjYPteCFFkno7CV3mv56kwzLuflJnvrj+27a8f++T7t1dsJ7ArNiAY1iYOnqpWYMXieX55483hPiK4p8h755Z//A56envhb/9f/wR/+4R+a5DaGI0OV63zmdDpxd/fAd999h3eBuzsbQBwOB56engDBOQvA1+sVo3tl4jDgfeB498B4OPL49h3DeKJUGA4Ty5xJaSHmhCuWeSzZwORSPV439diugWbTTW19LUPrdzmhrWfKGnj2jXW0VRDOWg7RB+aqLPOCMFuPuCSW85lSK/cPJ+IwoM6DBHyMOB8MGylCaPCdFU/kmqF3XdCieA/Rpbbmamv4QMpdIt96fqKVa1M/BkhVV/zay8uLlfbDZL9rUlj9Wge3G8Kx9aed/1QGvG+St9nb7+HwQHujXy1Dq21MqtKyrF2A64vH8G7c3CT9cEjzQejBBqQ6aEME58xoxYluWQnSAp+YfLO47Xm4zWT6jmPvXTcpl1fHugO3i2Ij+LJKzNTaL2Bpi2RP/DUp57V/2Dh5XdgvpUQmN8J3XQNH1owTOzd70PLtZ+j/fj2cuAVCrj2gndHH72r2/rbn6lllv2nXwL5ckRrW919raWyHxN3xRFfTGMcREWGeZzrP1ojpwxqoYoxEP/D+2+9wLjBNE8uS11bFMBjjwjuDg/T+pCrWh/XBMrbpxDAdb/qN2jJbCR6njkiDFnnz0OjBrDSechx8C2iwVxbcZ8Kv+0/7x7D7Xe72k8Vs+jqfuZ/DECP4gPM2+fTer+rLqDMMWGcMvHp9ajEJdK2Wmb3KJnpgsU22kHeKHD0z23+OPsgpxa/3X98At5J477H7/VnY6yyP31fmQc9MQKhya821PsoabzhnNz5YL23f9ym1EMTKrp69uVbRerHJZ4yR4jzBCcF5Bm80KS/O2AOVdgNYhfxJ4HxVhooIPuxYEi2Lmee57VIbpKJnO+sUzilLz9JqIrXGrERTqbCAL+u/U7JgtiwL5/xMKYkhutaY97hsmKPgHDUtlLTcBLeVv7rrEa4/l08nXiklXDCYQG8a9+C0z/h62dGxfP0c7CejK8D2Vb/NFCg2OZwQrOy6XM588cUXDMPAH//qj8g584uf/ZRjs6g7NnVi7z1jDE3qKq7AYedMY80Wn3A4nPj1r610vVwu5Jy5e7wj18I4HHj79i2nuwe+/OnPCH7gep1bgHCUJfH09MQXXx0BB04pxTalZbbhQ2xeC33I0uW17BRX9v3v/T2176mpWttkaVNe6zee16mv3fN2fjvXd5qO1HZeiwo+BrwzuSmhZ2g2iBMctV33igVJakYpUIWKCVBqA8mvG1o2cYpFaRpsiY8vZ5Zl4euvv15pebXSzLEN8PzwYKZCVBvGeO/NU6KV4R0PervOt6DWN9Oc0yeP+6HjRxHYVJQckmVhVQgiaBEjJKuNoK1hLmhJuFoMAa0LrjlZ+ZqQupHcnbY+UjScmwESD6iLZHcgemuI+hCp6khVcDHaIF0h+MoiBb2BFVhp6J1DSkLUeKUxSsN2zYgPaM14HxFpkuNBQbxJKImRlUstoGbhd81mbFI0UyhUKvXpbMhzHEUhp8JSMvNyRoHETK6FqnBNIO4OHzy6CCqZTMHFmeye1tKyZx+l+7JWj+ZMGCdyqWgNhDiwkNFivRALXAYRmaahlUy3t03vccHt9KqKebOCBbgwBmjk6DC2ktc7slbIdR3AiDi0eKbhjjLDdUn89Ktf8OHDB5w4nj8aDex0OnGcxm2YozZ5vr87cTqOzMszX3z5wNOLmQ3/33/7a+ZlNiXd83cM3nN390BSzEfh9NZs64YJnGf0nnmxDca1BXg+X7eeKR6qIOPWH5OmwJJr34i3QK5yRb0FFtENxyVr1tJgTtSNRE7CuWrGyqng6kB1Ga6R7LOpJU8HvDqcjxbQJGJ3vLmqBdeMg6QDYDeMHCIkB4e0gKuoZjQKF13I6WI9w5TRBHmp1JI4Pz+TFC5Picv7M/pUcB8SVZUlCt+5Jx6uI+N4MgB8k/CaDsNK9XLO+nWppA3TVreNsJQe3ISUMvP1U3OlHzp+FIENeim656n1bKKs/645oQ3IWlogW5vhpf+7DQpuQL/c9OssK9mIvtb4t96Yk21KYwKRdqxlGB2Ddju96Z9B645AfNOHMmlm6paa4xTRzXlL1SAdVjKHFfWtBear8VqXbEGmZKGqt9lKtQ1AxLByFTVLtZopJTcHdlssxni4zcz25cAN1og+LNFVR+51idC/zz27ZDchDVvmZy5MW+a6Dhtaxvcaz9Wfo9/M43jX+nttOpzNderNmzdrtvT8/Lw+vrtgueDXwUX/SimtWbeVbZ5xHJmmY2NlQGzS3aUG/A5vtp94r5l7YwRL40Ci/by2/qxaW2RfeoV2Pu3vfvfaeF2yOeeQuuMAO8tinQ9WAqtDGi4TZRU3rdLRoqyy8fYapYGIpQHFHSlVqNZKyTmTlkLOiZfnC0upfPx45vp8Ic8ZzSZNUSgkzbzUzNPT03rNLcBByUpyfeCllim281nL1o/dsxN6xfF7F9jsg6e17IJ2EeqGzi61UNXbRKd5I5SWQa1RTJ3Jd5dO0WIdKIAzbpwTggPnTZPdSbXy1HmC9wYNAUSLOQWJULOuwBhXrfVZxQJflSYl1AKfh3anVkrp4NJtUbg2PEi1Q0bM7VSLMreysdaKLtqAo8KyQCVQq6cmy1CWouRYEDXEOVpw/kCMlYoy14WULlwl48ML5f7OxvdaLZukS+9soOZ+rn1ocp7ZUdiMawCDXqyT6Nve0Q08obUDupCgqq7qH/tJWe/TdEgNWCnT0es9W356eja0fTbg809+8lO++eYbvvnmWw6HAx8/PpnApw8MPvDtb76252jGKL0vqwXSnJkebGL47ssvCMORlM23NSeFKTCNxv88HgdSE5cECO622W3KVlsQ/r6Sfw1oTWVFZMM6wqczsu0cKh2gawE9UbJJJ5WSDTzuPd5FxvFALqbg63ykK2/kbMbOTgwC4ntTXm57wFWTTUhFze+wCIM7kFKlpkJKZtjy3bcf+O6bj8wp8823H3j5+pmaCpcn84ytB89LmrmMziSnquN4nPA+NviIbTpdev10bHJcZQtizm0DrNJkza+XZb2XPuf4UQQ2oxjt5L7VkO291yUApZoCbimrVhstIBq3rYtQ9tS+WXpJB0luEI0NF05jCHjsyVuGRF3LCFm1sVhT+fVtq+L100UOWx/ESzFJJQB1a99Fqrb9zR6bU2KZ5zXzqUltkeFAfaOLiQ2BC5TiSA48Ar6BQaX3yYJJ8JRKLQulLixpBjGaTK0VcTvBv9cNXJE2gDD1VvuRGDSkYfH2DeP++9cZW2muYP2896DdcWylFMOrrVm60lVW99NCAK1CccYTXuYMaoKOz8/PlKw8P52NciebP+w0TQw+UNSYBFq10wEMOIzRuMbpxPk6G8dTfNO5M/5dv296ljhM8eazai74Vz0y+C2BzQWgf67t3Pezv/Xdbu8lO4dQq5BrWjm5MUSCH3Cu+xz0a+HbonLrs+37piq32ZoJpmbE2f3mRW2gUCtaMjXbJL0UpcxKnu3158vCcpkJBDQrSzav05f5zMmfmhdCJoTM+eXC4XBgHK1X5H385DO+vhdfVwe/dxkbXd9Dt+9XRVuxbKvWSsom+V01WzOxapsK5nYxLJjpjmvnMCswJ4HYCOdoNr0CtdJVEYroisEyZZE2wHhVchG2khPX6FRVKSmvUx+ggeoqVSA0ZQKVJveNBcl5tqFBap6deZmNrqNKTgvLDFWFUiPzYs7zqQi5Wnm+OJuADRLNeUscITRiPCNFzQHF6cz88hHRO8bRoSVQtVCqyR3Z4VCpVMq2GF3HGhVK2TVzKzcbRV/ofTH3G3BJZXWt2g8ZenM/xmh9mWUxKk8TDVBV/LJBSgxm8sB3H41E/3K58ke//v9Wc+DrkigKl3khnT+aWXFKHA8Hnp9feHx8pJRqmc3guL+753R/IAwD0/GBu7t3hHFhmO4YxwMv54QmIYYDeMfxcGBZFn7zm9/clNDrnbsGqb6Rdgqb3TO9x1bUgpGqkpZry2DKSlXaH3uqm1JaRVPba7uG/xs4ne7wwVgHZlc4NkaJCT045+w6C4hrVLhdu2TdhMh4BecqgcKA4+PzR1RPSFHyvPDycuH6fOXjt9/xfJ358M0T+SnhysLzdx+4zFeSF769PPPh/ExKmWk84l0kJWWZE4KjtGl0CIHjFFq2lvA+UiuUsqzKvD2Iv7xcV5jJ5xyf4ys6Af8DMLbH/zVV/XdE5D8F/nHgQ3vov6iqf1PsTP2HwD8NnNvP/8YPvYYDoh6PAAAgAElEQVRqj8qbXpOIZUuW3jdn+GrpspbSQKumsOvEGvZ9QdVkixwx2hBqeLEsC94XQnBNh80TxICtNQtFM+oCInXlbzoVytJNUWxnqo3P6rRBPQJ0TqaWDoBsfbSS6BC9WivMZc1M5jYNvS4z3ZsRQEU4L2cus3ES1Z1QHQ1bpOYVineEkxmw+MFDAqozty9MzWHyHnUFrQknGeqC5hEJjZImDaKg1kPru7gEu9knP5HKArT+GhWvHqtaOnp946muEI7d7toDQA9YPdDV2nxXm9LIx48fdxk1a+9oY3vY6728PLV7pUNZSitvAynNxGHg0KAgx9OJMI44Cdw/vuXp5bwqhLz9yZfNUvCR090jw1gQf2CII9frmZeXC+M4muRPez93d3eIskJLRAQtxuvd9yv7OXgN4XBiqH+A0Ch93t/Cmew859ZLNk9d2+CVLoHrnMNFZRiPOD+QszLEYFWOOiO+a+v9qfFfi1oAthlvz0a3PmspCyKOXK5MhxMqldFVLvMMpXO31SbFeK7n2eSO5kyZF54+PBmtKjpUCvM18fXX3/L4+IiIcLo7NE+Iwul0aIFtK8e7FL2td9nk6pOZD12vV67X6w+FkZvjczK2GfgLqvosIhH4H0Xkv2m/+zdU9a+9evw/BfyD7esfA/7j9v8fOExae0s1t5tCd2j57mVgmJq6pdNVqftUtdJuAnPF0dYr04IFIglI3HZIaWq7qmJgXxc2ifA+GjdcycqBvGmeV7vx9ilzp4jZjdrLrIRv8JTUPBp6iWOBbgsSl5Q5XxK4gThCppWi4kw/LQwWSHGUismDY3pbaKYPXMyPtVBqopaEG+0z0qAAgjEprNS0SabrDUWp23WQVqYA6dWgYF+OOudWw5N96dDPyx720YNXz8z39Jr+fDd3yS5zvsmadAMcTxFQx3m+Nou7CE3O5+7ujuPJPDsP071h4LxJIw1DJBXWQUSH6mgbbHRaGHWjihk/d9d/rJ+CuW8/TysRqSY22aoUwbeNUVum1oUTbjNjBNJiAb5rM6zDjI4vkzYNbSrPzjmSbBLqfRoqn7y3TcZea8ZV820910StgvObJPjaHtBNJn4+X5iXGSVwWS6Eo+flxehqPeu6bXlskk7mbtXpfFDrJjO+N4j+pGXyA8fn+Ioq8Ny+je3rh17hnwX+Svu7/0lE3ojIz1X1j3/gNchlWc0gnHOkdCtVXKsiZWmlUGt20y4E2Piy9OmqtKC0n7RCdY3fqInIiMOx+kDXpnogHlWoYg3XlVtoTY4Vd0VVVHZyLK73JAq1TTtF1JRTW7M9lcz12uzWKqvN3dJ4nC/PF14u5v70PnuWJAwRXC7gBXEBPx7Nnu94JE7J4nfJeMlQwDXQrsObP4PaZHmZX8zUBsilEMMIbceuugEo1yyZspbjldr8Im7Bkj1I9YWuvays2wJ43Tvp2Vr/WxVwwXP3cH9TevhgE9/u9eCCMUWkqZcM0y3P0HvHMMamjCzo+RkXA8PhSBwPDVP1xvxDrwvjdA84xuGEjwdqhXR5IXjT13v++j0iyuCPN3CZmstNQLDPZT0577to5L5XtC8pba+l+QbYphCQuh/QbIOIZVnIy8KyzAisUtshOC7nZ3seDYgbqAXzxi1KdHZfOx/wPkDYNlp79e8BUIehBTsHueAqBAEppW2OEXGVMBhkZ5gi8ZpZHGtJndJC1sTz+Zlwgnfv3q1DoHGMjNNACA5xBecDw3gra5TSttHnVNcM3ybgL3/6wwOx1f/XgX8A+I9U9X8WkX8F+PdE5N8G/lvg31LVGfgD4O/u/vz/bT/7rYENtgUhbCRqM1/d0MuUZvFl9AQLaJWtD9akj7SpI2gDUlpgq4YfQqlOSMmAvloWRCJOK9HRemIeT0WdyeZQGxnb282Q23BBiiJegYynyyY3YGXjB+aa15Kpm8ta7G2j9Vp5ej6bccqS+PD0Ee89H/VLVCOpDngdkWEk+In7kwFW7+4fidN7PML1+Qm9ZkARAoHBApdakJ6XMy665jp1ReREnhfccMA5sdK2+a0azQWUgMcyNdEtc1UKQrgZw6/uYHXTC9smoxt9pmdqPeA556jCphrSJM97NtbJ06pKSkZk78/dS8FOYVqFQWtinAbiYWIpmTfTxOPbt2gVHh7fUFAO9/fIcNc+z0Ba6tbzqxUfgznApyu+jOtG2t9nL5FFDPzdwbP9fNhCHr9vHa3yO5aBbeoXtCmoDa3svThGcgCpE+ePBl8Rb7zPGONKeF8FC5yJGTkXGifaNh0Vh/qWFYusoq6+A01UcaFlnICWjCMwes9xEliUZVZiFI53Jw7nF6qzIUs5J7yaBhsX84IYx0gYR06nA+/eveXtu0ceH++5vz8xTQPjZHJgXSLfkoONKfPyfFnX/PPzMx1u8qeasdnn1gL8wyLyBvgvROQfAv4S8GtgAP4y8G8C/+7nvrCI/EXgLwK8Pbgt82FbEPvAVkrBteZpd6ZSVTNm6dlAf7/0Ru5WvtjEtL+OwStM82q3qDXgXG3GvPa3IcqaJfYF12/qDteotTZHIdaGcX/domX9mfWhErluO1SuhfPZUPCXeeHDhxnv4aO+4PwBF+DkTwwacE1KKcSJOE6rTZumhVoTKpVcrOQJzpHxSO/1YVgly8zYynmRht3bdu9a61rau7BN9+z/jrzrq/VjLzbYP/vrsnLPAeyvI00eu/9Np171nt3687ANIMDYCTHGNbD1c+99ZNip/U7Hg7nZZyWMA17Nz+C82MLqATfGuGbQ0blGxzJWQ21ZhIkmxPV92dTYnMb6/dtL2e8tqW/KdrtORfNaHvbHdrGCbn/Ye0s2y7IJb1fO2FoB279NgbeT391KUezPv/ZS2b/HTtqvrZy1QBtCwBcTZVgzr3GkqJCmwnUYqD6t18ypYxwjw8GyZOtjHhucx3jBRoPDyu+6fvKb7H6r1EC1rtfmc48/0VRUVb8Tkf8e+CdV9T9oP55F5D8B/vX2/a+AX+7+7M+1n71+rr+MBUR++WZQikcKgFLyAk0xVNQmibqktgCaFrzl+y1ha2UrhskodQ9P6DdEo5S4gVoVXzLOD4i2LMN5incW9LygIVivIm/ZRylmsuy8J2tpst7CkhJTGwrIDnAq3hnmSG1yOy9XPtQrNWekCOWloNXx/F3iMisfnpW/9zXkClct1PrM23cDJ3/g8fELhsOBNw8/JUwDh/sHxvEdlMzw5g2z/oq5vrfgpjPqCsVZA9rnI8ENRJlQPBmIw4iLBhPoU+VepDhpeYXza7+tQ2lqEYTN4KZ0AYB6u5Cdc6tfhJXeO6s5ty3CGLdbcJrGdVMzCk0zDPaB4Mc1gHnvmYYR7297oEMcKFKI3vPmzRumw5F3P/m5GRMfR+LpHQW4ZkWimQrHccT7YP1Jb9lZmrdS3okQhsGcyRrmzyPEwTIyy+bMFjCEcQ1ctfdV9od4fLApPVVxXggxMl9eAFbakIh5R6TrM2W+spxf8M7ubdfOUQjBfEuHA1UdYTg0oHA1rw7vwQuFinDE+w1K4rxrclC2uas20QlvgwetxpEOMeB9wbtEXS5IyAz+K948KNM4GxB+vnA8CMvywOFt4Ls04w4jx6/u+fnPf86bt0dOp5HT3ZFxPJhXLoEhDgTvGozFBAJ6T7BvEAakhmUp5ra220h/1/E5U9GvgNSC2gH4J4B/v/fN2hT0nwP+t/Yn/yXwr4nIX8WGBh9+qL8GNEJ4Kx+71LX0EseyoQ69eP21+h2U2uA/PVPQtdfRsWh9RyhFQSuqs+HY6g4vpYqkRIxjy87WE4HPNo2sqHlwtt1evKPE9rcN/1aKucwbLaa0/lNCksDiSLnw8clAwB8v8HKt/ObDwh9/hJRhOlyIcaQMnvH+xHB35PBwx+HxHj9NDMcDLl8gOgY3IccDTs+8XF3reWwyOWuzvtkbCjTcnnFzt6Oyn5TBlpX1nbNnBjeDElWQim83Z28U770oetkoIqvqhKoSgl+5h52W1TO3/t6dc4SdPpxtYgYf6CyCu+OJEAZ89AzTgTA6/DCyLInTwzsOpztUHFMcKNVczIfBXL+yq8Rgmcj1erUF1LK06/XK/f09rpWHvWXSJ3iorplUWy9r4OmfZbeY1r4aFJzbEP1mVmTeA0MQ017zAynk9rpXy5gG80Adj4dVDFUlIETr84VNo61PGCq6qmis2aGlbWYiLmVt8VlCYBo40XtCFmJWondo9PhpYCoDLgil3sOcuYYXyldf8bAsnMoM48jwduQXv/gZX371Bff39zw83HE6HQjRtay2Zep5c76y+6zerEn72sRUP/f4nIzt58B/JmuXnf9cVf8rEfnvWtAT4G8C/3J7/H+NQT3+Fgb3+Jc+6420JrWqa1i1ltpvvWpzOVbaxKAPCdrCqtJoTp8+99rPqayuSd1Loff1rEyzMbjq7mSKNskXyKo4uvmJlcFVwVVHrr0p3sqsVnblhlGrxV6b2ZNzYc7Kdx+uzFl5f1Ve5sLXz5nnCrn9/RgKC5UkSh08bhiRYcDFgMSAI5qyhDY6WKOF3S4yZ23CuklyO1fWnXrNon4Xr+fVsZYtu9cp/Xw6w005F7cNg00tZI996++hB7AeKPv33y+GsAF5+yIOgxkVZxGGcUKdx69mxaY04WM00nU2895e9nr5nvdlH4xOwaLq2mOTur0+quu9sp4Xbie4/djT9fr/ex/RrbJPlSK7aXnWtXe3nqcYVqVaaSILHWfoQrRV2t+Hk7VH2j5SuyYbwFoIqGu9UbVszTWyfAdqh9ZbtpaA2HChiUkOQzOdjhHVAR0C8W7krvXUpmmwvlvcAlrvr+0Nu/eSWes561jJTk/7zONzpqL/K/CPfM/P/8JvebwC/+pnvwMA3RRgO+ezlGag7EzpIWcjSm+9s16TuzUz6/eRNWHX92Mmsf13zqzrFIVS8K3nZD221lR1ASornUhXuzEjL7vWw6gqeDJZhHzOxoDoI/EG2J0vmcvZAIfLnJm/hrlmLkX41ZMyV/gIXDJ8SJCdkFAea+btdILTAXd3ZHx4YHh7jz9OuCES7u+4TxEtmXK5sIigUvFDJF1sGjuOB3It5KWxG/KC5AvBR2oNiC5oaUKR2iWsFbdjG2yZrAGl7Ret32gjShsoSEDUNOechnUXXvtfrzBqfbPRRrTfwz76JG0f/FRtYi2tZOpB6DCMgMP5gTAeiePI2y9/wpIsYNw9vEPFUTGBS+ccYfDk1Ix4wFoYpclduaaG3DJMbfAVaUMC50zDb4Mj1RWa0Y9972ufaYgErKYyJL+0YBm7i1m4Ms8zrjZOdFsHhm90RoXzI94F4jAZG8U1IYemEI261h5ooFwgriKor2E1W8+qNPAPws5jVJiikdNfQrDsdoA4OHCWXbtUWeKEL0IuhVESMg34R8/bt/cWBH1FXGEcmxqM27x1KVY52LAgk1KD2TglVIeIZfnk9Keesf2ZHxa48ipdtN+h7PfasGO0ACW7QLZHN7bfv/r8+0XmnU3ftgqzOV5pwxeJ4Nw2aEipNuuxTjxuWYJJla7PW7OpYQg2vclpIV3VVAlmG7e6ErheM3N1XFRYtDALzOpZHFwpXKvRgk8OagjU4KhO0GAacuoEdabaoEtrMte6vvdteGHwEOn9xhtNMF3L49bYpFPIegkpcquVdVtRbVmHOMucnXNGaJZNEXavv4Vsph9Ft0mpGe3I+jc9K+nZ9PqaTQZehWZc3V3Wrfc2TEeOxzvi3T0Pj294OtsUMY4D1yUT29Q0lYxzsloQmkLsLoh3q0LvVhu7PSWscz335fr3Dgr4NMCtp1Ad2oJPjBFKvpnszs9WYqfZ+JHLnAjRN4xXbV4ZndEgFFV805JbclqXRJU+pLiFp2yZqaztAnHGgfbsPle7Rj44ghe8E1JzzBK3Eys9OMphtqGSi7jDiD8Ix2liGiPHceI4TgRnGohaFecamLvRGLeK41ZWy3nFVfDqbz7H7zp+FIHNEgWT8qnVTFi0WrZmStqbNPDr7GxdfPp68W3/th3P+HkGt9gHACtRDRTZiOk4qjQBPXdrl9Z9GPb0Ke89kiJIJueZXBaWxWSYrhfl/AzLDOczPF0dS1WeBX69wAvwTCEBmWBCfiiLz7z72U84PD4Q7w74cSBMB6bTHS4GwjDg8hlxkOdKkWyI9UaJCnFENaA1oR5SqSiJfH1Cou2C4n3j7LUGvGYQD9Ua3KoWQOxmMziNk7BzxbLzp63PVLVnA9xcKytPb8n2/eiLbJ8d9lG/iDSJG2sR+DYJ9D7iYzSYayOB3799y5svvsAdHlA/MB2MIypx4jQ6nA8s2XiWEvw6EVRn8KAYAufLhev1yhBjW6Qmo1VbVlaraaBpqWsJaUHR3wS6jX1hN+YKDdkFehPObCDUahTBlBLPz89MzjHFCRkLQ4iQbbLu40CIk/V+1ROdBxfs9RsEp8tMFbRNfdt7oDTTYesRCzSJ+9Zakd4ykFb2ebwKQWD0jinYcO3CghmT23UehoGimcPhwHW5kJ3ix0CcIt2oqDbIU39/+yC2d5brm7P3wrLkFfLTe3K9b/k5x48isNnwINtCUrsM1geT1rQGLVDdFrx0S7m252npmmjdPbstSjDJFJGGRasdrEuDamg7caYj2jusXT3WXkp2U8I+iLCLJ3mwpqs4lAjRsyyZcxE+zJXrpfL8rHytkHF8UwvvMSbUFUcFYoiQF0B58/YtX3z1E968ecPx7oHpcDJRwWFsQoKBOEDNykVmcr6ylCvzstiCJpASFBVgWXtitZZV7FJCbJ/LvE6d7/V6ZbPn61infh4dIh3a4czPszYK2y6D3k8rrYzckcHbU/ZSdB8U9q95u4HsoA3O1G4HF5lOJ1zw+DASxgMaRuZsfN9pGhkPRjvDu5VDGjQQovWHnp+fGaP1LVO71sfTiY8fP67vod9n3pspcC8h+1CjZ5r9ffdeXP8s68/DsGXP2uBGboM4eO9tUJGfSVSSc0Bc4SNxGC3ghAkfR0JwNmUURyq2+ftmwecVPGrtAt1n2VuS0K+xKjR/4/0lRCl4Mamj0TuydygJcZYouO4r0vqDHWcnQlOj9usXalxuh8cJhLZhVicoe+HW3nq4BUJb0PtTxrH9mR8tSNigoF2AXYbWKUzW8gSQRvG5bdZ2dY6OrKY9VsSYCP0mEvHEVzLFgPkRyFYSAY1KssfaCB1EadNYW9g522SwOuvZZK3MFc6l8pzhmoWPRXl2Jqz4AlwwKsyqaFozYH6SX3zxBYfTcXVOD96vC91L43U622lLMX26qqZimyikEhHviZgng2ix/iImIkCBUpJ1VqSXrt9/4/RScj1fLUBZxrIPSq816rZgti8x9pfndUm3/3fvvfVzbze/36AkwZvtnITmvgSG77Gyz4WI99H4rllvvByATbGjTWs7rm7zejDljhjNhPg1+PiHys495m597Po3vpWirOfJWiCRGIF6Mepv7htRteZ8U/KwbMfuA+8cVR1OtwDZezaqVrp6t71Gf8zrss6IdK9wYm3dudbXdtL7sLWtg22D7/93zU/BrlNor9M4rOvttfWK1ntlF7T291Dnyq7S5p95/CgCmwLameK4NvRsKOyOXBdPFvMK6H/DzbRnE+7jNYRIXcvU9jZz/Zevpy1ys1v4cMtPtJ+XpiSyCSYuYcB5R3aVrLDkRBki10F4Cco5KM+y8E1VZipnHItzrSiwjFFr4hQ8bx4e+eUv/zz3pztitB7FFAeiH5jCgHgj6FcSVWdSvpBKMo0uDM7SKTa1snIecTa9VTUTXSsPrjgZiC7YpNcVbAD+6eLtN+TWFN9+VmtZd13jiiam6bSxSNhUP3pge92j2k8le6nSgw6t7Kw447kG3/BtA+NhMo8CVZ4+njkejyzLlYplMiZ6kHG+U66UXCs5mYKvqvLhaSPhf3h+Ys7mlTk4z+FwMOOf1gPbwNjtvUpAMKDzWmI1ZkwPaNbBzVtm0n6Xc8/+pNnZFUbv0VIbtMSUPR7evOF4POKHsRlvu9XvGG2qzmINfKkGZzITcmPMWF+1lfxq95vs1xI9uKmxQaj06scA357ojZGhZzP4Sami2cFOiSeExq/Ndg8au8baQbUlAbaBm/pJ0W1avw9m/fsuccUaJD/v+FEENlFB0zZ1M49HqKWuYM5aoS6b5I94y1hKG1NXCh0jOslt3W6pv1tTWXFC9W1XEI94WYX3TOetmryQwFI9zruVMgUt1oaBqkL2AfGDSYOHO7I8MpfKNXpyUdJUyNN7KgvzJfO1Cjk3ddmqBBG82o0YC/zszT0//9lP+IM3P+H+9MjhdM/gDozxwBACqhnX+iWHOTLUynfzBakXoi8sSzUVVQ9emnnMPOGkqUWQ0PRC0YVwbzzDVAVCwOmI+MicZnww9QVtLQKRjqZ3lDYVrWw0InbBaRwnVEfC0MyDm6hBXnuYG2tjG9wY2BkUcX5F1tdsr5URvNp1cs54oS4OhONEds2fwinBVd69ueP9ezNAOR4fTSlC4DAZU+Pl5cXENMvC4M2noNa68lbneaYiTMcTaV6MmucDVYSq2yCkZ2aRNsGVnQELm/csjV63uLCS5msuSDErxuAMT5ZqoaZMlivfvXwgFZOyoiplKdTJHmfquJHUYEhdxEDUeoaUgNaKKwYyrg3P7lx7bJt6V5Quzha0tyXs+wImElMrtSYkzvi6EDxEKuma4BJJV2FZlOzuKJoYqkOWCnGknCtERTVRpFKiI9P6uxUEz7Xh99RFMkp1kSKBS5qbMETz2NCK6udnbT+KwAY9Pd7+bdMzxe36AOvvsX/vwO7sqqX2ff/mVvp63wex8tYswExar7THb8/1eoe1v3UspYDY+DrXao1ZVYoYits7b71DKah02zFw1aY8ms08Ay/t5xCd4zidOB2OK14pxsjhdCTEuJHxmwH0Cl5s5foWzG/HwuKtOSl4nJS19M3ZNPO7EW8nuotsihK5Ie331wnh5pzuz+vrXfV1qfJpGbQNGz45VNYMvapRoXwciNPIeDwajKNWkN6IhsPhsEl/tz6Xc47ot6lmrZXaFkwMpkhslJ2tr2fZVL55r59M7PpjO/+zBy1hHU5UdOdpcHu+RGQFp2vHGeYFrfNqX1dSwrOzrnNbP+r7zvdvO/Zl8ved6s/9W7sH7ZPtecCmQF6NzysmWmHA64hIRYLpDkpu16qtl6TbNekCCMD6fSfB+7bWPvf4kQS2NkHb8Sz3UapgJq4it1h5kS2NtoveewiyW+TSvtxaEtiTpjYNctRi4/dCU8qtQkFwqhSpeGc7mEd6ds+cbdLh3Ugq2coj71F1uGCyyEN0yFwIYbDG7vDC/UsmS6sUUHwR7sYj1MKbuxN/35e/4Bdf/pzxeGCcJoZpxIdAGAckRls0FWrOBJLBStKy3WRK81j1TUnCRvlFBUfB4ci1cLlc0UsmjifuH0ekJCO/S5vgiGVHlYKqQ8jQdbx2vZXb82z/3w9W9oT318HNgoO/eR4R0y2jyTDZ4xzjEDicjoa0b0G9K9f2Zn0IYVVNubu7Q3t25s2pqbMFQggmWtrez/l85uXlhYeHN+vi6dNYE0S47Z31+20tnfuEtd+/WGa0lXhtAlZNiMGMdFr55pQ0m+T3crlyubxAfkJEiD7gtTI0VsQwDLjRQNq+Cbnt5YgQq376hr/vda78W91A2b3E/76Nv1+TPY3Ne88wAlJACktKO425fj6a03zKfPz2DHXhcJjwC+v0NE4jpAXnwnotVe1vSspczxeu50tT6b223uhvt+r7vuNHEdgUmlnrdmN0b0x1PVtqN0x/LLKm0XY42N1ge39VEWkLpb2eqjmm9ymN94ZVy7UN/wRqaa3UauUHtiNpEYoWnIuo9HG0Zy6VcfTUhh+raqYyzntc8LiqhDgykIkYrSapEgncDROUyt1wZHQjvvZJUaNroSvMxPBb9p4cpvFmF94WeoVVvWH7ssGIBWVHafJPuSRwyehokpFozlqqtAFD12LbbycO9k7ea7DqpfwW9Lp92/5x6/Xg02FBNz2xl3K74OeIO0f5rBUXFYnWg4sxkhphfW8OoyIrsn0/OOjwi/58wNrPG8dx1eSPMVoQz1vTdg8SXfF6Ltzcv/Y6jZXQ71V2Wes6FW0tl9o3gLI2/0MIuEkoyQLhnrXhevbWDIK+b+ZTZcvb9+e/X6OeLW4/2wLddk32/U9vXyiiCdGElowPd1Azjkh3mcNo1Cwps1xnvHfENlF2MeBqBJwNvpatt9apdRuVauu/2Xn6MyLB/1keBvmxE51VCdJTejtUWEmw9VVGp4KRkdvnLrBeNFZ0wZYt9HFybYtIpBiROByB9tStQZzdeXUDyilbPwBHdWaOIVGoBeYm75PUHIjIypwK43jChYwUz+H0hndXg50UNbnrw2Tu5ZoLDw8PHIY7UMvwrvOCxMihWmO3utb3arvb9fzE+fk7Sr421H9v/FdL//E4p0gw/S9TQrEbJjgP6vFaqctMGI7kfKUU17h6btVj61mTndsCaXMN2sob3bBh7VwH2fVt2IJCz3Z6GWd/a39nmDBHx4bFVoJ3HJzBVIwEP4yTlXA5My/GqTzeDVwuZs8n3q+laa119Tz98OEDw2hlfvdcuLu7Y5omYoycz2cjxqvJxeO2wVQPAPvvqxRQmwj281Xb/dqDg4jg1DcokgkPoAXFbCZVDaxbS8H5ieV6xoeAo5KXruFXCd15yt1Cj/pAo9P/7FoZw0aromrTRdcGT9t12VHI6G2e1nJpAybLLM2YOQ6JOMAwCsoCkggRvIRWyhtlUJcFKcJyvdoAIh6Zr8l62tE2qUM8EsTZ/SKNVmkRDM3WbyxLouRMGH8Pp6IA5VUPLddbt3dkBzNojV7opNlXzyVbv27NWHr540yxQVPBR48ykIuYo44E6+ntFmsuV8tycqZkz7KAk8B5WfAx4AaHj8JFBJftRcuSEUzkr1bP6NbXPJkAACAASURBVA/4SXCSkGRE6vmqvHv4ii/efUXtE7dxIB6P+OMBNHKZFULl5Tpzt8zglGXxDMF8TV9e3pOXF0SzLRiFjk0KYaCUmVKtBIrDwJJmQ5dLQLxSZiPoL+cz0Q9WijNhfF0Yp9EI1M6yRlVD6XfJqD0qv3+/p0L18tCmffkTgGUpZRvz7wKBQmu4mxqGOEcqmcGbxphvEkM0nKP3xgvNl5lvl2/XSWpqkj8ppXUI1afYdo4C55frKuC4yhbFyPl8pdbKcTpwGMc16+sBLcZo95GqLcZ253a0vw2Mt2oDWPGVUg3TVUUoy2J0wpQZosd7U3o+Tgeuz8/22UaDCMV2Tn0IJGV1nIKt31xzaS0EhbJJtfc1cCu5tWVo5uNpLRtdy50ObzJEgeHmZg5TIC+Z4Cu1XAh+Mm9fZ4G55kKVgkfIcyZGpaa6bkyaC7jAPCfCfnMspnqS5qX1hFknvkHMSe5zjx9FYNsHJm09LNv1NhKuKpRWAtW+iMGC0Kvnczsi+L5Usoe37MJ1ZydDsqsEIFDUTrDr5Yob0FxIWSkLLMks+5ZU6aALj6KjNPFIXXsyNRfAHLmDOrITtF5BA96BEFE19L84Z4yAOFAlkhZFJZOCqYlav6ogbWpLXVjmF1Kaoen+46DkjMgOGOuMJ9k/ez9vwXmWVhLVps1mA4m2EBsjowtibs5dt/LX++xl35/pP9+LT/7uq9+ftw0wPLTxGTFsirmlGEvFOc8wtj5XMfZGJa7qIkVNgTXGiAq3KiJSV6WO7pY1DNPaRzscDlYOFdPc38jYbCWh3GY7YBhKwco8U4KSNu1lK9NlK+XX4N8UbrsenJfGaMGa7lMrPwvmtVF7a6Hf47trsF6X3Qzpdw0Z9tn0/m9eX+shBKYhkMeBaQikuZLTtfGxFZHIGANzbRP8HfG/ZuNQ51zB5Tbw2TLgfd/2RmCW23L6c44fRWAD6IoETqyHpa3Rb20XNaedZjLSS9J+k3/yVNt1thJBBLp7UA+DoSHSiYThSFVHybaYSxGkGNbnSqUWR1oCaVHmq+HrluJwBTyOQxypMlIJULOpl+JNoluE0U3mNh5gFEXzBS+eSU74Ek0jTgRhIFfhZU7E80CWCpr4MDwzTp50P3IKmewL1+f31HyFuuClULS0HTq0z1vRYFAN3ICScCEiaZc5qVLSgtRAXRaiP6CXjB8nawrPRqoXGsdP16hoi7tuk7FaOue0P7Wiy26osQP17g/1pSkf24aECM5HXBCcF3OT12r9ammB1RmuqmbDE1JNYfdwMixbKYXjsUmoh2BCja7rvGUTmrw8r4OEHqhWCSa2gYRDSNd568u1z9d7eCJihkCWXrSw1vBt7T7sSanN4Ls/R25WktosFO09DCHikoOGpdS6CQN0brLUYqq4rwc4qmugWIPFrk92m6nZ30nrZXaJI92Vsoplgtp+XhXGOPB4f88YCpcn5dd/9IwTxTtThs7JoFUVTHlkF7gEDNA+p0YL9FCWTWyyWAnqETQbHm9srl6+XfPPPX4UgU2w/oSKjew72VmrrmqtuXQt+XVoB9z0a9fD1YbZkY2f12vXHthydaCerI7SLkYuFVFTUch5oeRMFtPQz1l5eZl5eppBra8eBiGqMh4CtYhlYgJS7SYZ/EBO2IOTEghM+chyzUzjgQf3wJETp4cH8I48ABFKreQzvJSZ88vM33v/G2r+isfHAyNnBl8p14/UyzOQaZNzVAx86UWI48RSKjlfrVeSKiFALkZcLotRg0RN3trVajjBvpE4BW/qsGIn0wLMura1mRf3G7cDa3umZhlnn8btS8D9/5Xa95zV11JcATpSvVOy+qAGBFOuGMe49p98HLg7njhLZJqmFf6xdzbqlKhvv/2WeblYTy1sQOBuQmNBrSvzWlB5zVq4gXywZRzaqwWna9+3aLEJuDdfjW7yraoM0RNcZLlW0nxlWWZCySzzhbosqJY1e5RqZtjbubtt/iPSbCGtpJS+kcinGZu2IKhab7K015nRBprdzFeGYURQvvgCPryfeX4y71rB2gbzNXFVJY4BH9wKri1LWs9ZqEL1aaPxgZ2XqgwhMoRIdZ4h2LlX/ycLVT+KwKY0UG7fgdCWwmIXq/3c7Zq4jq1n8vqQV/QMYNWtt99bb8EUYg0iYKWWYc+0y5FX8wVd5sT1cuVyMa9PXIP9aqW6xDwnGLqmfDBEd7UdqpTS9NCs7IhURjfy9vSWx+MD4+HA3XSHBse5Xqxf48xlaj4vJBILZ94/BFQvPBwrY6iQz/g04xyEHsSx8kN3Y7Len+w9pv6zXnJpQ66XUkxFd2wCBBWii6Yk2xaGp7ksrfzIuv6uLwB7DQtwwoat66+9z9qs59lLqa0MtXvCjLEdt4KNtZrEkO6zDjGjl1orYQxM02R9vZahmfBm5Xo1WSBg/b8/xubROXI+X2/K6p6h7aeo+/tqP2Vfz3crEaXqOrgHdmwatbSlHV2ivTRDn2VZcDtanyo3maSqkrWa0Vh//V25tse4qdvMeG7v/d37XlucLWCvTJj+IBpgyn7jnaBekAB3J8fpeCAvyvnFpJacjCaljk38O0XNu0gIwuADMQSCD5Z1v2L+iMhKI+yfO6WEH22w87nHjyaw2VdZM7A+4u0fOXhs6te+L30I1L6XnrUoZBdwzc2oYooeiMOJeUw6GVF3ai9unqMmHV6gZuZyYa5nUp4hf8G3312ZZ+HDiyOOR67LQnEVKYrOC5oyUQsnH0AcvjqojjxXohzJc2ascAh35MOZU/RMX95x/MUjdw8P9AngWEdK4y7+mu8IT564BL77O19zzifksfKb5YXDIfF4NyP1ineeUoyjSi1kl3DRmrCmvBNQX6nFmvHBH8i1mpzW5QNxDJSiXMtMGCaoC/fHiZQKbvQMhwafaDe890JyLVNrZQI4UmpemNWwaYLD6wZwLWVzvRIaYV4FLU3Xyzkacq1lCO1vfQsCq4JGYZSJw2G0zJJMzoocJlIQXs5XDqd7Xi4XVNWgGwd7n998+zVgEuQhdKpXYUkW8CzT687viVLgYTihsnmo9n5ZrV3jZGPw7c2UVyd5XVmBCK5NQG2i6XwEsaFMKYU4Wu8vpjNzvqDFMHlxmNYAF4vCshB9NPB047BaDmBS432oo1FYckaibkVyO48mzNo8ahG8lDXQ7QOl9GBcK14gicAYGEdH0sS7nyp+Wvi7f+N/p+SAL18whLeksRKBwU1rz1vEeoRBC1WvLGnLZMdxxPlKEJgkEOLdDjhtbITfzx7bZxwd4d37F+vPm4LBOknBoBh9sDCME7bnjNBklOfazDCcifOJWulQSGQKWQfTx1+ufLy8ULKJEM5loXrFLokSveCngRi9qYM2Dl9pkbeUQhgHanVcWip+PB758ssveXx8ZJgm49FVw9CVWrlcr8bJmxP5nPjNH/0K587cv4lEH3l4FN5OB1NS0P7R941F1+g9bdIlvnFAO1rezlKMsfFn64rv6pnDXp+tnfy1xMTdNpZ7uaaqa79MxEPeJmH9tV83pLu6x35yt84Y+/M1b9gQgoF3aXi2mnEhIE2b7f3797jh0awMX17oEApR80LtWcDz8/NarnYYiG/v3ya426TuUi7r++0laf8s6/to0jr9+fbfw5bx7cs8RzYVZ6pR5ERb1bAZuZTdJLHWNqxqz5NSusHkud172p9f49du77n31YAGjt42nvWcf88wqB/OmZy3inI4HPjyq3eoKm/ePvDNb15YlitaLjAcELHBmH05k9sfPCFs0kV8z/Cg94BNrsiytMxmnv05x+9VYOv9McWtC20PzF27P07axbNFLZhmlRJAA6rO/o2ZBlvJ4KiabARPorJQiStFqjoDrmYtJuwYsWFG8NZP0U9PuuApuZVZKtSyyUs7ZxLoJSWqKqVsZUQpBSmViLkijc5R5it5rmgWJHt8dTjfebS6+avuX783mJ2Vor0kXYVwvWvNSmMZ3E4xd47ublM4uSm7doGtf7+FJdkaoWwLEl4BLdcJtol7bo8zlQgLdLcldH+OlAqDNxepy+Viah/RsjRgdbHKxRRwrVxtktspGw6sQS+Ca+od6+TSPkLRTdFjb9C8/9r/7FM4xUbLK7luwbsNQvpF8943w5vOz7y1MtwHSV65ivWg9rqkW/+vfUMxYco1GLp27f8EmdDa2mC7X6bDwPF45L27sKAcQiCJsW9Mgj1ayyQE41377w9sr9sVe3YH+nvIPLBj7Rjs/t/urlaofu9C6gofui0+K1tiW2gB1Yiqo6rJSKMe4tEa4s3KweABwfoRJmpKKleuciZHyA4uWZlLJgFvDiPHuwNuEGpwNlQyG227GDGC96SlmlkHSq4QnQ0jrpeFw32BbDAR8ZaZ+CmgGQbnOAwRrQtSF+bzmXE6QAkmAIj1p6ysKLsg38+Qa7HF5Lv7DeJdREJtTfK4Ys9q3QKOqcwargvfcWJ9yqbrour9NRErh4EVa6i6TUJff/UF671HQw8A2+8drm0W3Cw+rdY3KrWg1TaIaTxyXWaWZeFnX/453HjPx48fGYbNUu9yPa+Lpys1w7Ywr9crM4lpmuxO3GVbgqxBpmPc1ueBVfO/f669htzrnmYVXWl/1A5lqOSyUGrier2Qlitxp/vffUzBytJyueCHyDAeVm5q7yHu+81rABJp/bPtuvT1s/VJb4PiDx7VHu99IARhmkeOxwM/+8UHlqT8P//nB9QXvDMf3ODHphlX8S7igzAMxnBxXgxn2d5vn1Bv720TG1iS/n5mbL3Jug9rPa71HpxvN7+xevZBTlZYiP1oQMVh+mweS+IDigU8MGlt+2tpTIU22nYCLlC9UJwzJ/dgeKLimlBlATd6wjgQRkcYBytnzDyBrhlWq910JQklSyP1V1ztWmCVSsKFgHOe1CzbSmu6qyhZC+oyh7uJ6RQIEXs/3jfhvn7iHEZ0lSY4w/rfdYHh240sdDMT+72Z2bRv1p0x1YIrnWDeBxDbNfteGIF2ZZUtW9kHs9dlB3Qfiw0OYj2dW4zcPrg4dThxnI7HlWbmgkkK5V3W2fFs6Wq80GmaDFpRKhSTtw7iGiyjomuPLNxo+u37hK+J8HC7CD8ZPuyeI4QA63DEPDNEHDn38nOxMnbn29oDm7Nx8CeZWQ/C67lp02BhI+Xbe2xUKvr72jKgPsnun+WHS1HozoLeO8bDQEqJ0+nE27eP/J3wsQ0E/ModtY2w7u7BDXjfX3svPtDP5/5rGOT3M7CtU7F1N7GdoZaOg/I2NleIARN0rGBTAqglr5idSkAYMP39Aa3BfiYBLxHnB2rodl8ZUQfOoA2msFDIpZBrgmGgXhNuiCzPV5yHu4eB0/0dd/f3uOgZDxOH8UBsmmxBPTp7c5yfbVJHEOrzlVrguiwMlwuHyxUXPMPRAvN5ueCaHV32StIr1V/hWImPirtT8lBIITFLZdhZllmJUtcyQ10zDmk3sEmFK1LNZ8CF3rz2u91943YWVVwplOIQ73C6BbWtlNn8DfYlg10/C542FbaA69fHW2bnYyDrpuawz07W3pxuqha9RPYI42ED7IoId/ePPD098ZKfqbkQgkEkSjJdNS9W+nfaktbKcp2NWXCY1hINgVzTmoUtudxkEp1itA84e4K/fXYL5K+Nk8dxbMMCRYtSm91eSbZhilNyXoi6gXd7jymEAN4RDwckeBCTBvfet88bVjhJB7VXFPHOzMR0K+3WYcar4Nsz2N8W2OzesHNkw5VkmTyOt18+4OPA+28r3349g+tBt0O5XpeZ0joj22vsP+sWdHsV4n4/A9vn1M/iwXtYbJ2YagUVUTMBpjZJHz9SXTRkvwSqawRdN6AuoM4T2ixLW39N8PbnzuHcEajEOeJTxbuDvQH3ZIFoPBDHEYdn8CN34x3TcDReaDUxZBVI18L944n5CvNSSLlyaa7vyzXx/v17KsrDu0fCELhqpjal1xrhZXnP8vyEP1yJdxF3UIY7OL2ZcKMgVzWaTqloNZMNZduZrTfm6HM72z2NR7o1+S1DsYzJNdNcgTXAGQsj12Jyz55VUHET+vxUCqdDJfricc78RkVkXfCqeqM0a03xHkh6Nmm9UstGLMCcjidOx3skWM+o+32GYULEGCqHg/lvfnj/3gQSY+S79+8ZhoEv333RAhTM12uDKRhMRDAoSCeemzryVhquXNBqzIUefPrn6tPTcRy3HiVWds/z3DYRpaSZtJy5Xs+UfLaJdl7IZeZ6vdrQabCF3jeuEK3k1GxlnHPhRt2jr6HSmDkrcX6dKLrWutldI2Dv6vZ6Te6f1z7Hdq1VbYgWJ8/9mzvieOKnv0jM+RsuRQlRiYPD+dpGbaUNuoLdo+qMRcRtEH2dlbaf3uDtftfx2YFN7E77X4Bfqeo/IyJ/P/BXgS+Avw78C6q6iMgI/BXgHwW+Af55Vf3bv+v566vP0UvRm4oT+9C1VJRmuFptIVbB+gnSJHqqZ0O8NYdrXNvNFF/7IMICnTRddit4wRFxVKJX3MFuXBciIY62O8ZmouE9ntYglWA77zpWb25PklEtSBCGYQJsaoczQndKieKUa51ZasPQzYn58sz55VtCVEq9IG5gGM0UVxzfq/O1lm7oSpJuZ267llbU9+u6Bh709uap7MGZt81mm671m17Xn/e7XtVMjbWV94oYul2kcVLtMWFX8lmQ6+Xcq/5UhRC6Np6ds3RdCMNIiCM5VcQXQhhXlY+eOYUQ1my8pmzAZNmGAaWYkkv/u1K25vX34yS3c/C6NH1dTt0yGgwH2IPifL3y/7f3drG2bNl912/MOatqrbX3Pp/3dvva3Y4d2gnyQwhRFByFh8gSkjFReDHCIRJ+sOQXHoxACrGQEEjwkBecIFDAkhEIIYz4kGL5JQq285pAcAhOLJMOQsTG7k7fvueesz9WVc05Bw9jzKpa65zb9177dp/Tp/c82tprr7XOWjWrZo05xn/8x38cx1u0TAh5NYqbz2x43lLhUSulqlU7nHmJ23ASWOtWz4zEq5IMHzU+3uFoawNiF3jw+IqHH87E2RrqdJ29Zn0xtoknl6Svp5/fNo1FEmqZ12fcV3Qzfhr4DeCB//2XgJ9V1V8Qkf8c+Engr/rvD1T1SyLy4/6+f/XjPvxVbu/5KHpBKeK9DwJFo6kFIKjEhXGtKpTSsNNAij3a8hDe9jlV88KEBNojIXoPU2WsIzVGUjcT67QcW5/2S/ZwP1x5TeGBYbcjph37oUdLJWJaaCl1TCPILMQ+0KGEPjFNE1/5ylc43OwZDnsmMmFIlKSUaFnM2w/fh5sPuHv2PheHIzKPHOIVD3aBnVS64j0uJbjuvdfTlrJketsZrRssgxBQB+ZpVRkusRNq2yll3SSKFVWTjXTLprlwI69uDZvWDYZD5XS3X0H1NZVfFgNkCVhvRt1kmsSWaN9H6xDlXuKHH35I7Ab6nV3HeZ6ZSiYeAg8ePCAEkwMfup6b8cjtODKkztQ+polxmuj7wSgg2WpP725urI60QNGZwkzo+lXefIP3tXmomtxOGy3cyzkzDMMqaFqNSxg8yZRSgmFAQiFP1UncVu26De9PsuibEFFVoRiXrlarBq5aHY82knCrd7YNzpI+du5P77mPMhhbj23J+paMtcxr2V9IKTJn88avHl1y9XhkfDYS4kzqekQqvSt6qJbFUMcYvafI6qWdH8sJfvspxicybCLyBeBfAv4j4N8S+5YfBv41f8t/Dfz7mGH7l/0xwP8I/KciIvqNTL+D2dthuuinHkcpJjuT+oGiLminZtCqRsRvzBitls74W3HRdAshON1BSdkyYCqBKDsDNUMyNz52pMMBVeUmP19i/qJWETDXwtDvKFrZdTv2/Z6ZiLX6acfdLnxlGAwPur69YbwTjscjwzDw4sUL/smH7xO/ntAYyEnR3nf92+c87DLz8Zp0ED7/+BFXlwcu+sTFkOhUmX3hnmjGO+8LPDB9aXcOiJyqcpwD+iKyKLWGtDZVCcE17cOq3WWfIUt5VTNsIlD11NvZeoeqyvX1NbncEYMZHJGmWrt6ZttjMzXVStyvnpaqcnNzQ9pZJ/JcK7e3t+wHM0g55yVUzTlbQ243wuM4LrprpehSmZCi0ReApXJBxBopt6zoefaz/czzvCQZto8bMVlELfvddaS4Y7dP3F4X5unI8VgXb6Xx48A28eiGO+2w8ruilN5qQapWtFgIKiG4VPiGlrJpfLRmfD8ZXnV+29r1qX5vWUJjziMilrx58ODAfn/LfjL8MCYztV3n+Cpbuk8gz1YBsqV2NL7gNqHQGst80vFJPba/DPwF4Mr/fgo809ZqB34L+B5//D3AP/aTkkXkQ3//17YfKCI/BfwUwNUgjDGRQl0nIZE5CzEeDP9SIdIjAcY7JXR7KkIugkiywCo2OWsWPEZD8vIsA1xFPZTpfeerkEMhxmA4VRBEdkQHv6W7BAyLy2KdOwNKEfu+vBsYh4GuWI0pkYXEWuemjHrjhEpBwhHixIsw81W5YeqOlHhHlUwsQrgzEb6SZp5Pd+zjzMO+J+0Du8sejTBp4Rg6YmdaYLPmpYPXEo6UbOkrEaSLS91gcthNKyTxxh6lOJcLtGZSOhClI5LopLN60mLZyJgDWSZCjOQ8ggPYRTOlkUkLC/F1u9uuWFrzSLxONVZyOaIqpNgj0gQgMyn2S4h6e3uHAqmbCF1ApTLlO7o+UvWWoD19GNh3iTKaIUu+RmK1pI5k2HU7O3YEHWdiSCQiczGFkyggs9WMSlCik4hDipSSSdFKgabJDJ2UtIZO1frJllKY3TDtdjuGXUccDC+c52xbX4W+G9gNF3SxR0smzyOxGq3oNk/0ATpNlNkM7iCWQS+lMEqmdQmNkkip85AvOUyxKa/StfHQFvdrG2N737LZsSYTWm2rgEU2qqAF0Uwo1o0KicbxzF/n0eE5t3d7bm5uqF2PhISG6km6SJmFKsG1BZ0oH6P1MRGhlOr3Cq6mgokhfJbJAxH5M8BXVfXviMif/sSf/DFDVX8O+DmAz19GrWM1WR8tVA+najXuT8TA7lHvbGedlEPaEWJHKRUpBemSZWu0kvAaR1wh13G24F6Aaa41V9sybjFGUj8YOq4B9WxcJysVJaMUrwaKu95Y79EoIZeunZ/EAOfx7gjNA0mRKMCtvXcqmdvjHbfljrkcGecXSz1f9Fg5M5uxTvDOO0959PgB+/2OPI9ozexSRNxja+DyeTareWPmQTphWcFUdDPWMWj1vkotoIlMpordeIt3oq2bEkw1I16CU1kVaLcZr9Pvt3FeN2ry1mkl23a7k/eqmkRUCIE8FXbDYQXEQ2um4tlRtQbF6rSH29tb0yYrhXEcl25HqkbgXZIHLmsUw2k1wRJCRjHyb/N2GqVj46GF6F5c3OB0NXvzHeX27poX14XUmWdqNA7DZ29vb7m9/pBaMkFM8LKbJ/q+58Pnzy1B0Q12jcWrGjDPeGnwLVu6hxGW7dyc4n9bb/l8vFR5oGvLxI8b7RhiFPoe9vuB/X5YzrPUyvPjRJcG2/xDRMQwRcIGO1uOEWoVtrhalQW+/UTjk3hsfwr4syLyo8AOw9j+CvBIRJJ7bV8Aftvf/9vAF4HfEpEEPMSSCB85tEI92t5Tq3W9qXWiZCEsfRCEvLPsVZHEVLIp2xIpiHkWCLkWenrz0vCaPLw9mnpPRs+CtguybZCxJBz8hA773eK0x+CAbDIenLW0M4nu7DQR6SzcNeA8kKlItO+vUchqPUctS9SwqO3FczJyiFALKcGuT1zsd/QRUlCSKDqPiwjkFrA+X7SNMmE0DFssEIkxkGcBLeRcqDWTRUkRcp6ATMiZUnpiFFJN1NRKgyoarFjZiqztO5OqtwZsN8h6Q22Pa9tqzTxr1yWLvVMRhK6LboAL4zgTh0SKgy18CVxePlyMUylKDB2ddBxzocyZ/bBDk/KV3/kd2/W9yXHDxFIX6Tortm7HtxJdV8Be3PC2xEBqRjl1C90jOmRSdNM2MFmIi1SGfb9w69r3l0mhzqDm2aKJ25s7Pnj2Plw/5zjNHA6X1mwnJQ77AyH1dIO3I9Sw1EOrKjG1hAmIcxSjG9zG5zu/Dt9onKynLb7Iyhe1KKDYXRZMsbnfB/YXBx7OF7x4/oy72xekbgCEcaqkNJPiztf7TF260NUlodeM20lZ2qf02D7WJKvqz6jqF1T1+4AfB35FVf888KvAj/nbfgL4a/74F/1v/PVf+Yb4GoAKeRSmUf0H5kmYJ5imyjgLxwlmrSbDHwMFYS6F6kbKvAcnnn7UP7FCq6DbztPy0o62egWb33GVs2673rYOMgZTNvVzZlLeeBZXTYNLnPBbUMf93KBh/bFUac0CDUgXGAYTPUydsf+DKFEULfnESzthy288tvUyb3400NQcTl9bF3TzAIyvVE68whASKXS05tGiaz/NuDmXS2eltuvWeuK1NUPTbtSthxikhXf2nhi65e+1P6wXcmOhaq1GXUhRKHWmzCM3Ny+ASurMEBAV3AtsIo/bMOy0SfPmeHwerXtUU9v1/2g8yGboUrDEQZI1GvAKhS33rc1/myBo57jME3gfi5ROj+t8AzvBRn29ts873/A+qWH7qPcpjSK1/lRcYw6DPkIKdJ3NaRzvON7dcDzeWYVMMSKytTzMa/lYnRdcsfV+aK+1zWZV9v348fvhsf07wC+IyH8I/Brw8/78zwP/jYh8Gfg6Zgy/4ShVef7MJlaBKfuuWQAqhJlaoE/Go0GEocwUhavLK0Ly7lDq3heOC0mw31iR/BKeboyWXb9GZG38Essa1qIu9GfHqVFMX6tYo10R0ygzXGktt9EqDMPAzc0NIfVM+WhVBTGQdgN9LgylEOdI0eAlRLVBGQD0URgSPHl8xXuff4eHVwklQ80ml1Qz1Qmv57SD7bAdN6wem3++EWcNbEuxQ4Myz0eMz+ZqvSK2K9eW8bRGT7UoKAAAIABJREFUwITGfRO6vluSK2a81wxarmtI2Qi4qrpIbDeDBdZQFya6rkerMC8ek3keZVLzfkWZyNzeTIQQOFxe0PcDWpTn1y8YLg7sHw88e/bMwP5o3svgCQRVNX6Ye9VzaZpxhqGJCFLMsDfSyTAMi1eRPQNa/bMsO2wJAtt8vEWimCCmETzMsxTSYkw1z5TZ/t/x9kjxBs2qSqyFPkXD3MYj+/3e1C9ST8V6bFQBShM2iCehaOoGGgfPwj3Lerem2bUZQlYf/jwUXZJtnBpSRZd0++oFGl1Ga1t/lS5Vnjy64Pb6A8CMnupIyXkV6IymGK2K427+wdXUedgcQ/2EBrmNT2XYVPVvAn/TH//fwJ94xXuOwL/y6T4Xbm9Hw8xUuL4pFmeryRN5j1rKCH2n9Lue4jt1zpWOZDWMrJyd893qPG1ca6uRW/lOxQmoKXVm0IKYFv3eXWc3aFqqyUI7uBlEyH4DW1bQZKiNq7OSYxu7vYU9EWHoOsZi3kqIRlPBDUoEnj5+SIiKoEir61dFdS1V2lIKloWwKcbeLtDmZLT/13Z3Kxw/Te2LeEVBOA95LWvX9z2ip5p4W8+u1HXn33LCTo3vtijbDPWcXfQOa6LcEg2LakaXjMuVViB9miZSbF7CSJ5mqkt+X3qGuxmo6+trWtu/Fqp1aZ1fCLYxTdPEVPLChQvBBClhLXuz0jdLKSXZeH+NIkJZlGaoq5EIISApsdVmWz1D1wScM6GPbOhfi7G3j1yvb6mteqNzzHImpd4TO3q27tf/t00etPls75tqbvRy3Xzb9/Wxzmf1cs07vjgMPH9WiEmY54kgPbVOgCXZYoikTqihzd9LwcS97crp2uWTe5vwhlQezHPl+S02IUAxxdqsLNLECOzvQLUjpYGq3sKrREiJISTLalYjhRatllbfMNtLmZfvjGlAvOmLei2beNlGE4c0jbbKfHe0GzsEcsmgddlBihuTQIDZeD4igs4VGktcA1JN8rjvew4q3D5/YVLHCULGF4wPgVAz7z655HNPHvDock8XZ2tX1pjmIRHCy7wq4MSQt9fX81A9ZLP9egX8Ayn1J8XdYHib9UVVx55G9vuBLvZ0IS19A0Ijz7aSIcHDBz35jpev/Zp8KLmRVzN9v7O+oWrqJSka3qVquvm7/YUp4npDXULgcDiw3w188PX3kWp0Di2ZcTwisqPvDbjf7aw3qYRI8CYucy1U52TVYlBBGnp0XkPzvu85XJiOX9bVU94fLlevRqr3l1UkWZOg2K5R2VAutFLmyjyZR5bnyO3NB2Z0nz9DRIwCg3J3vKHfHyxrLY49bmCQEAJ5g1u2NXAesp4bt+062V4bgwZO1TYWyECs8qTpyBn3DhfSFKz1htKnzMUB9ntFqEzTNV2/J8ZI33cGyZQX4FU99vmGEQbZRBiN8rMxsJ9kvBGGDYHbjBFGQ+TFNAHGUM8+lyqgt8I0Vso08/jBBV03IFnINRMT9IN3qRbbVUSMs5ad+AgNR5GTgmaVYEqyzmoVUSPuktHj6gmloSe3chkpHrWq6aJJRbSguYJYIxet3jqt2O+WhUhe3xfcJQ1qvOFl73Zv/3OPL7m6GNjvIyEaPSFXAzY0dgjz6aJrp/Ns0SrFEyQ2PwNpjWFvqQrbBIIkiprAZ8tstgJmyxRaCFqKUh0TqWI1qp0k80oiQPU0/dnN8ooxtA5Qc128wmR38ILnrd4iTqOwazDNo9VNIqQQ6LrEeHtHdWN5e3tLSmZ8G0zQyrpiSqTYLY2RReJCtDW1EvNoD4fDkkhYPBhfKs3DMu9cbP21WlfNhEZlCMZdo6xZyaCgIXB5ecnzZ6Y+cnFxQfx6ZOg7nj+/RsJz9vsLuhAXsrWIizZsjNY2QbP13Jf3tCw1IEFILrNtybpi4fgZ1rwsRT1TZMEoMCLGn6OFsMExsApSMkVv6HfKowcDd13l+rYSo60tZCSKRTrF17Bts3W52c07FKi2rlrp1Scdb4hhE+slGiKVwIwVQhmTSZdQNM8CpTIFpRTbHUq2hVOD30y6MWpSPWRr2vx28kPoTP7aygiMYS5Nz7/15GwSOl4+E+zEFpTJj7ktmthbNrUANXs5SHVsqlYTsCzmCTaBzIDLWVOWDM5WPDMBVxcHdn1cVE1aNkqDFztvFvZ6KuUlQ2cKGqbcKuLdn4gL0x3i2Q1RlnCpGThYPcEVjxFiEpBXN9k4P65XjSDJMZf55MayG2pT/+iVFqAukGneXlCrcJhz4Xh3g7rG2pa9v01gbJ9r4aUZzrTQPHa7wa6Be63N223hmrTQsr0WotXQbrLTFYcMKI6dWkOSrWEjRgvJUqIKiyT2bu55IWpk4ro2UjYc04rlttfk/Nq351cv8vQabJNf55/xquu3fW9wD9r2LF0kz8Hw6IolCIiVGJSYICZT6O363iOhjBF8rTu8OYgN8bONhbbmxfDJTxOGwhti2Koq0gljyQamh565mu7Zki0UuNAONBGx5ima3fNKgdAHK41RpSarKzRLMy83a3H107lmkvtItWBeoQqQrOu7t8SrtYIXZTdMJfWu2ODJg5QSddfY5Va50EKDEJI1fa1KnmanLhh7vuYMtTJP4wLiLqpLCkOAL37Pd/P44Z4YlLFm68geEmi0piy60hDa4js3IOYxNIytLDd0DaabL0U8O5WZZ2G378m5oloxxkk1GR//jGnMmLjEahh0e0NVBS+laiVq9t0vd6gCVm+nN6pHzgYJdH2r+Wzy49k3JcsStiYtLbPWMqU5F8fQrONTdmHJnDOtN2jr+L7fHRYqRJtfM9qt/8AwDKYI4uF82WTpoJWJza6EZNSNU12xuvCz2ufnnEmOkY3jkcvLS/I8cf3ifYZhIN1ZQX4/7IjOdTs8MK8pV18DPs6x1Y/LgDbjvH1fCAEt+eS581B02SiKh9uWh7CieKo3rnFHomQ0BGJULi8GUjLe3lya8RW02nHMi1qWuQZm1MoijdTO87Z71icZb4RhExGkmpRLQbkhIykxqumX9VUYNDKEQtdB1x9NHmjYW6VA15FjpIqFApLbrmYu3DQ7DlA7K+nQRI4zlWKNMTRbP9GakNpR7zrmW+PRDTVRwpHUR+oA/UNFukpIZiR6UWoG7Qb6aIKLAetorTUjXcd8e2tE3jwTpYNQGFCuJHKQC7TOBAI3eoSoaKz84ffe4fJB5OLxwG35gE4DUaI56zKS6wvU3fTi/QGElUslUSglUyqkbO3sJIi1P/NGukkGJBnQPKQLNE7EKHSd19EqTK4+i87LzR12A9ZhXlEvmSnqSrfLzSQwV0JcaTVZVwmq1tlddHBMx6Wn6qb1nW9IYLhQN3iyQE1GPQTD3FJKqFhT5Wm8o5aRYWch5NB3jI4DTtNE1kqSnpJhmjKHwwWl6NJv1MrTZrrO2f3z0UrwUrKWgFiZVvQwu8zjSnfpBFXLdkqKy2bXwupZzRBbcF+QMrPrejRb5vrRxVOm5yNzuKAfDGtGBgi99R2VQogGt0wlI/EClUiumyy/Y8SWFfV1oS617SwBsVZay7XSUslYmGh6rSZNpGpeI0DnFQeFtS5WECTbozq3ZtJ31FoZUqHvrQH5vuvROpFKJFclV+PdHedC5/BCKQWJTYVk3YwbQFM+BYcN3hDDFkKAKBQHrgPBOGuWCtl02rbRGuBad/C1bKdhAYIQasv0GHXBEg2+Q3nLORGjO8xztROndgNNNxPHG9AceKGmaZVyR6yB0gX2h4Eq5nqXGMhFmOu4yYRlshuPipFxF6WL5Iq5qXU5z8SxEYlZvLb9oWMYOlQLeZrpuiVgNZe/gm6Io9uhqrBx308znR4WuYpFO/9BArFu6ho9pG//f8uZ2ypNaFm9AtvhN/yqYm3ymjfRbr4YTUFlW8pzwgncaLKtGdNtZte/n003J3nZe2nvN8Da1klww9koJy1Teu61xWi1j3NZexqYR7h2gwevUpC0PF7OwzYU1HYN7LuDQpknQsOuNvPs+56423F9c4M2IQDPKNt5Oa0m2J77xoPbElnbpnG+Pj5JaLfNdpb8CpWThn/X+tL6UA1WGePviRKoAToxSS9x8lUVE/y06EohVLeuq1yqfdm3oWGzax+spkwha2YsMNEOsJJCWIxZ3SzCbdq6ugRKkOByR2pZS9ftUvFSFC3IdUBCZdbCcZrJWrk73lAyHO+UPJuU0c1Q0FkIc0f4MHHx4cR+v+fh00t2hw7prMYwpkpWpyPEQIqunVUESYEoiT4KhUSdZ3ZcUK4LOc+k2hHniZ5gxmqGB1cdfQcpFmt3plaV0UpLctWFx7Q1Bu186MagVExXrTZOngTGeTKeVbI623m2etGaC3OZNoZQTn6DKWm0m0g2jWHAuVF+wzVy6pIJ7NKibLuGZ3ZD5GxedaM75Dyd4GT7/R6qUupE9jKweb4j9TvPqE5cl5noWnE1l6Vre5cSw7CW+ETHbxv36xRri4vBbU2Kx3FcCuCbAGUj6MZo9cdtU13wqw0vrNXkqRX0UapBElJmNBe0TuR5pE6TlbI5/pZST+x65uIQg1cUGC55qmO3NVQtIdJee1UyoI2Pwj6BxTNt4et2tD5BwCIDJSLEBj/USsGl0tXUi8UdiDIbjh0ihNzEK12AtIrZMw2YtWu44LdhKIpA7DuSGMie52KYFs5fwTC2itOBhIVsqLLkUs7A0cbh93UlijhXphYzCrWY9HYphTGbekKuylELWW13fM5opSLs6AiUAtfXdwyHAemMiyZBKTrTSW8UBXe9qig1KDQGeorseqXmjuGyZ7jekeeJ23LNXCdKGYG6VBwI2cKIoNY+DzfQOOt+41Fts6Dbc9HGupgtBLEbegXF2415jr1scbtGo1lFIF8tM7O8dgbat5Aj5wzNGJ94k6/+vC3YbSx1xy83WJGFtbJ0qd9SYPq+p4uJo2yoDa4W0bKk58B6O+bz728GY55XQ9xEAxvXqnlny/vdY6tFmQoL+TVg0IVi723NwdV5dF2/I6TecT7P3tLKuITq9b92bIbnNeXik6zo2Tp41Wa1WKk2EX9gn7k2mTEe5frWlgRZuIu+WfS9neMUIhoKQxcpapjuXO1eTEGYPeMnWv0+dcRZAA3URZnk2zB5kEvlw+MIoaeERI2FUjM1NJwhEqIpKwx9Z/VyMRDSSrIsKK0wGlVyLagWa/6R3bMJHVUqx5zpdzumaeJ2umNm5nq+5WvPn1Eq3AHVjeDXyx19GRh0z4FHyBy53F+SpVDCTNh37B7tidrz5MmTpfZwmrxEZK5L+BJCIPcGRCcJXD/7kLu7G3Ickd/9/8jv33LZ7+n6yLtPLkixME6TNUamB1wbDfGSqFXZdbmhaDfpJoPHmliwm2OVX25Cf33fI9mOdVzIxgpiFRwu+EWtxbh5YS2jaoaksd1X41C9osBuitbTQUSs1rZUgraicm90Iso4rd3bjcUfoJpmWp69CUqH11gWarZ2gcMwmPeAMGZrTxclrB5MVZMIb7icG7amgtu8t61Xlnrz0uZ5Xq5jSsm14exGno7zkiltyYfQpY2BXb3a2edmzapNEinrvBoFlDjs2IVIiB1dN/Dk6TvEbo/EYKB6dLmiumZCm6FtDWy2Wd9yZhO2Bm/ZSPQU04LWryMv3msuE3VdcksW37p76VLRY5xPbH7RqEWhF45TptRCna1qJAquZG3Z1IplCSWqYeQSFnv7Ta08+GaNKnCLUKaJSSs3rnVRsQYohUqVaBtjDGi0QvPWPq71OoANszoJWo01bxQrkw8XScQUef7sltrBUQtjrdzGmWNXmKpyM2cytJYBTOFolQGa4HBFvILPf/9TLh8fuHjacflkz9DtrE9oZ6GR6Xi14ufVe7gLBanKPGeunz+kTDOPnl7y3tc+x1d/6//l2de+5rWBBdTqHfsQDJBWRaPjSVKWKou2S5rn0eovtx3B7aZb9mbfFEOMhoPFwN3dSPTdP/mCKo6yNeBfgv3uPCTa0jNWA1eWYxINy3da6n695mtT3ub5NAHESginpGPVwjiu9apEE9ikFkLqFvJsmUdrd8iKZeWcqdlwykbnCAjihq1haa/y2tpPMxDAorG2rfnsolUj1E3YJ1tvuNkOL7szqk8hu6gks4kt5DyToiIMTKUSU09MHRUH/d2oNVn3LRyzFcPc3gt2XV6ubT7HTUMMnnhQ0lnUp973dMmo5uZZrmH3UsdaLDyPKKTkjdsyqMli5VAMCNBIybPRoxAEa4eowXQWVQqm0bzq+32a8WYYNoW7MpPVfJClENxdeq3VbuQU7SeEZeG0YRe1kSdbOKQetgJSqWq8rCCBuB8Mo9IOmSsq0X+q0UwElnYB1fpLKsr+0Z6rxxc8ee+x6bxfwdWjHX134OLqalPMzHrDsIL7t/WOWnFPIRpxVzMpBbqgZsTKvHTlCV5J0SxE824Mm3r5am+fOQ01eOl8bZ9vIHNgbbzRQlYRC3+3fLCT79yA70E2IZDqwvczb3IztB3PAiQsN11KYW0ivYRx63dFWbGwFOyWWAjXqqtIZlibGJ8X4J9XQWxD8m2lRtG6ZGm3vK/22KSXVnxpW7u7Yo3tHJxiU8uxpIi4p1sqtsYloSGYxmCydVRFDIMSV0VZwHX3pBUQr+cVWR5rOA1Jz/lrjYKxSMOrUYMMozZv0jY942E2n265xu2xe/jtMxOCOuapLurQx8SdKKVmL4RvYXxd1oiELdThi+VTjjfCsGVVnqmR1oVADbI0D1F1QFotxZ1KYqYyuBex63ov8ZAlrKo1o8EykVV06eoTJLiGWk8ce6b5juPdyN2ozLeROvWA0oll7bRApx0pdjy4vOJLX/pD/KF/6ks8fecxT58+4uJyz8XDHV1n3uMwbImddoP3fU+XhmWRP6jWzHfWwN1xopbC43cecHzxeb7+8JLL/Z48z+yH3zZzqDAfR1IYDO9w/E5DIdKf4GEnhmyDWclmZw/ebLe9X4Qla1jH2cJ3D4mK4x7FQV0VS4q8CrtZcCh1r6RlVjfZynY/GxDuhiS3w12NRSsUB/O45nkmqoVW2ubq39PCoDT03N2NUMX11ZyEK5vu7DRkfs3IttCxcc/O1VvwGtUWorZjXSgKYvm95rm0ELDhbYuXo+rZ0zVzuC08R8T6aESoc6E/2PEPu4Mng5pm1ub6hXhy3rafu/Wk2+Zw/tOGQQP2OIYOUfeOy9rCsF3HE8+P1SuseSV1qyolZ2JIINmJ6Fa5oirUeWYuziv1TT+ooiFa9jMGCNH5keIh6stZ2W803gjDhkAW8Hocy/gREIEOpZPALnVcXg1cXOy5uLjgsLMuQF1oYGpaTj6ecQG1hRJtQRQM/J6O18j0kK4KlymRr59TakdXA4IyUKzJSAjs9JLv/d4/wHd/4T3+8B/5Ab7w/d/NsOvY7Tq6FBi6aABpNzIMw7LbN9Z8Sj3J8RYR4SpEslZGrWgMXmD9lPlizxAUrYXb6xsOw/uoHhdw3QxD83Cax7ahViw75ymADyxqCgCtI3xRA9utXZvJqw/DsMjyNHqKBBfojBsCq6yGUqLduM07DbI2NAnI0hBmezwtPBMRWtxjc/TynTrT2gJWzZSaCfSLV9S+n1oITdHVicEhdIvEz1K0nwtjGZdw7e7mlrDbL6FoKxpv7996NCIm8d0wrGbcWuhlSYDT0PUcnG9F4+M0kjxbHWLL7M4cj0dqzRzv7oz0qmLS5DHR9zumXOm6VsIVUTHcLG7O59YYN8O2hqenhq2Nk0ynmtEXUVNZhtM5qFI9pFyMqRv4FFZ5KqmK5kLFCvirKjEEJlX6mFC1xtQpZ55NI9KSH1qt1WZw6pMEZzEY7SiE043048abYdjcPV9uPnc/LYxba/Ja78Rtpm3lXcmafg5hKfnQgAHVMdF7HwSJkWMGrYEh7RHuCFR2MjCpMjMTQiR2iXeGz/OF7/oi3/Xeezx6+ITLB1eIKBdXB1IUdMp0qafEfEJtaCz5VkbTLnwIlaiRTiI7MTD4Lhc0Ja4ePuThw4eWTZKEZmN0twW8DgvWz72mzcl75diGkc1Q1k350fbctvc3UHy7wHVjrLaYTghh9cR0DUu+0VgoKXWtb2yfu70Rt2Fky7aWUui7VcQxhECe8uo1qZX+WMVAOeniHrwSoYlltmPZcufacbTv32aNt/hiw4G2YdlKMF1HrXWpYKHJgMemTjJyfX0NVLoEF+GCIXUeGp5ek214f35tX73ZfbRRWN5TdTFsrZJk3Yh0yew2Q7RBR176fPUwq52TFb+0e6If0nrNXTSBqo6si2dFTMy0+DxD/HQg25th2ABCYi7ZyomAQ4zsVXm4H9ilxONHD5h0JojSEehJpihRMWA1mZoC7tW0G0BjRwg7qkaCDtQSON4aL46aGXOhzHvy2DHwCJi5YIAKD4eHfPcf+y6++L3v8fTdJ3zuyZ4n+0Sh0Mlszs8hEpMyhB0i0bJh7nnO88zQD3S9G7kohHCgo5IY6UqiVqXnEWW44Hn9XXZPI2XXc/n+gZv5OUHUqgY8Lg8pUV1fTnS7GXj3+aaKUCz8Biiy3rw4/01VSVGJQdB5RmrlWKDb7ektOcU8j0sDXtRImiklx4O8GoCO5Ox6VKyhDoEuJfJsYgYxRL82NjSsHlws3iinJVlUvRBfvIymECOmmd9jogblSAo9Isqcb2k1sCkK3SGZNHashCjs9z1TzkQvbUpdQEMmxdlKw2QkxaZPlyEkhEJyvTlCYJqyraoC01gdB2y9T5XSCNIbQx42sEDAMa/dQC0zMSWm0UK8aZosmRACQ2cJEJFEztB1ME+FlIxLBywZ2xgjJR7alxE9iSJLFYgdcNa6sAcAhDUEDtRlHwxSl+tCgVqNYyc5W5io1rJS80xnWxu5TITaOmMZ1lhQJCSq7Jiq1WXPCjHtbPMRIcWBWSwJNY12jBKTJZ40UqdM6Eyo1WTErab604w3xrBJKSQsGN0BPcKTB5dcdB1dijzYXzF3hS5E9r319gysNIMY4yZcMm5bFwc0JpDejI3uSLFDLiF1rZQn8fDhHcfjRJCBacocj0fmeeadd97hvffe43PvfheP33nA5eUFQ783OZrOdrKCLphH8O7rTXctxm7JurVsXzMwUay3ZxSYdWLKmS4mrq6uCAH6Fz3HMRrBd/EO3DhJ9SJ+/9u7cL00dPWkGg0ol2ILVkwlYvEmQ0TzppZUvA7T9cjyPFM1e3MTC8eCboB41RNPR1RWukEpSLXmK1tMyDy08pKXsWYly8bTDahmSvHXyIvnYnbDerqm5D0bqoHfTk8ml0xUa3QCtlHUWtnt9oSAZ65NMXie1TPTiZCGTSLDDVEIBIlGSzjzMLfe+fb5NofO+54GKUw1LwarGcsoan1YVa1XKmuX9613m2K/UCDa+m+PGy1lCTU35Fb5CJWMbViqWqBUU6DxsyjaknnlJJt6nqCyJBCuANI8fnNmrZt9pWi/0RE0loAG+04NQnSyt83H9oSGWX7S8cYYtujJgwj0QdilyMV+x+Uw0Hsn75DOJL1Zwd7gZ0BEmF1G2LQ5EkWtsXLFdtIgHXFnTY6Fjr1G6EaOdzNp1/HgsKfWytWjB+uikrT5ng0TWr30wwt724VVdcpBSItRak7TAuzCgjW1hR/xzk2+WJVI1ckNYTHD6aGg9SfCkyxtERtHRbemrq7ZSdiEH7x8461hw9lNW2YzpqFAXMuOaq1LG7vg3798HmFjpHS5PqJWSmNvP81aSvAQR04zmLJk9lbAPYQtIdn+traNlaoZalrOixlDxwfPDOwW5G9/t1B21+2XJEUI6QTwXwz5Wdi8zbC2seJVhufhRjClhM5h0WqLKTHXQpC0GCszVHauUuyttpUZCWkz/5dlh86xTYCTLXCbaW+GGXkJaljOn5aTa3U+3/PHp2VRpqcXxAriF1n2MBrroBRqVZDAPE+eLAhLAieec1A+ZrwRhk2AHmUQYd8lnl7s6ULkarfjctizc6WHsDcva4iJ3lPgYCdzqcdUJcQdaKCS6OKeLh4oGqjam3Z+GqyPQOrJM8Rhor/LyPNrYjDyZdPiury8XIQWpzFbWJKM9d1S8KgwZzMui4GKPYJ4JQXewciKuDUYhmbSSFY2tet68h2kEBn6HjD575InCwui54xjK6syb8TOXlxIE4FWi2d/AUutIzipcpNBrWA3mYhx2txYxLboS0Wr9ePM8wxaSLsDIKbEIV6TG62ULUpa5bG1oEWJEgmt1jWsgHQrS1oMgNj5KGp4ZWyeiDimSDu/CWU2Eqeu2V0RyE7MtflaHaJYFEqMa5+BdgM2A91CvIaljS5gGdJuadRsnlK3vM8+J6JNq2zjVZ0PVfXua/b5MaxKysH7I2gp5OlI1+/spo/GA5wdOiAHdg8v6KR3tRJd5t2SbWbwE1ujelI7qqdY5nJ8zrytYB6Ur69aK9StV92oJboY21MvNSyy8fZjxkrWTzep9qHn6uqS4+1IzkfyVCiIb04Qg1GvSrGM/LdlETzYLbhLkcvdwKOrK3Zdz0XX0XebAuZkzUJSdO14T+XbjW74jHllieqga5DeitzVFn8QoQvdQvANKnR9T1WhH81wpr7j4sKMWoiyXLCmGdV1w5IeL7VQirqel3V7MsOm9H2CeUbVsJ0YxWr81FCJNrY3FJiSQpW1EbJ4WNgUZNv/XDyDYF6QSDSjZulMmm6XsfGbRt1p2dJ2R65FHctzGgjCtHh3BaV46Y57OJ70aFSJZtRblqypuprH5ZUQaomdxWNqjmYU6kY6vc2veW5K9eOym2XVarN6wva36qu9F9hQYjgtlWoZxOa1tdeWMNqxNGDxUu04V89ou8luf29HrZW48dq39JYQoQwDWuZFrNLmZ3OYxgy0vgZ2XEr9SEO6XR95S5XYntutx3Y2D2oTKNhcj83nvpRAEaGV2r086uZ/r+d3K+9kxGvfbOcM4l3rBNu8PqWleiMMWxThnYsD715dcHU7JF+dAAAHT0lEQVTY8eiwZ9d3XPQH2328y7QGLzJHFpqHupEQESZXTp3VmlrEMID0pG4gauTuzlRtLy929Lu0tD0LMRO7RIgW26eUePTooWmTRXVZm0IpkXlSik7EztVTS7G+kyUuiq0xRg4XO+Y+MewStceFMc0AWUhkDWooynR3ZDqOhKLM42i9MKc70xzTiSAzsXX3JhjIG02Xa+FLYT5NULtxLS3sahrhlFzbvBb8/86u6hFTZHYDa+VFPSmP5NxUfoXoOFPO2crH/OYYus5VV1ZvrIsJ0qoCUvx7tKw8sKbcGlx4UFUpGhFRYr/Wg4YQl0L7PFuDa5HTjPM0ZmLcE9zrTrEnxd4VlC0DPE0TT999h64/LJnUVlK1DcXb+ZlyXXC1WpTUr57JQvoNa5XBefNhWNsNppSopQkIWPIg58ycR2f3G+WmBvfOQ7t+HbWzz7m7G/1YrRhplSjadnQqC+3oJX4jGyUVXfvSim9AdZ6c6yiUeaSLibnOJimFYWe4cbX5bUVBq3E2saQPYt6XChAE9X6+IRpRtx97+j4xjiBaKFmMASCB4tQSz4Jg5cWfPBx9IwybAI8u97z75BG7ThgEdimwP/RI7IEAkui7FbRuBMycVy0y8N0ENwAEtEaX/nYX18OR/d6wE60RrZEQvKM1lnm6uBwYhoEPj7eLIsV4FMZxJpGMQCxW/3Zzc+TFB7c8e/YMgNQFHjy4YrfruXq443BhctfHcWB3OKAUQiyLYRvHifk4Mo8j891I1ewL1LLAVSsi2byyYNhDCGFNva/xiOcLLDOJWqicNuVPy/vUfLBa1lZnUq2Fnf3UBb8TtcL8iMnPlLkax2iwG1xaFyy1TaeFwLWaNp2oK6qohbvq1jCFbjFWDY9RVfroxjpF73FqXvLC/vekwhb7NA8koKVn6Hfsdxe0DvKxAGpNRESE/e6K3f7qJImRUjohtjZDEGNmnlYqT87tpl49+VeNc/xp+5mqyjxNVJccz9NE1UwKgRS9Aka96xcBraZVVkvlOFk/2d1uZ70Z1IQWtLq4A7JkqI0D9pGHeDKCVoKudSBbmaBWjGev183rK03GoIe2yTgefPI58eT/iJiSc7dRHVZfMxrEIBBnfgDWm/dTGDb5NJmGb9YQkX8C3ABfe93H8i0e73A/5++EcT/nz278AVV99+Pe9EYYNgAR+d9U9Y+/7uP4Vo77OX9njPs5f+vHJ3BS78f9uB/349tr3Bu2+3E/7sdbN94kw/Zzr/sAXsO4n/N3xrif87d4vDEY2/24H/fjfnxW403y2O7H/bgf9+MzGfeG7X7cj/vx1o3XbthE5EdE5DdF5Msi8hdf9/F8VkNE/ksR+aqI/PrmuSci8jdE5B/678f+vIjIf+Ln4O+JyB97fUf+ex8i8kUR+VUR+Qci8vdF5Kf9+bd93jsR+dsi8n/4vP8Df/77ReRv+fz+exHp/fnB//6yv/59r/P4f69DRKKI/JqI/JL//cbM97UaNrHisv8M+BeBHwT+nIj84Os8ps9w/FfAj5w99xeBX1bVHwB+2f8Gm/8P+M9PAX/1W3SMn/XIwL+tqj8I/BDwb/j1fNvnPQI/rKr/DPBHgR8RkR8C/hLws6r6JeAD4Cf9/T8JfODP/6y/79tx/DTwG5u/35z5NrmV1/ED/Engr2/+/hngZ17nMX3G8/s+4Nc3f/8m8J4/fg/4TX/8XwB/7lXv+3b+Af4a8C98J80bOAD/O/DPYcz75M8vax3468Cf9MfJ3yev+9g/5Ty/gG1SPwz8ElYZ+cbM93WHot8D/OPN37/lz72t4/Oq+jv++HeBz/vjt+48eLjxzwJ/i++AeXtY9neBrwJ/A/hHwDPV1q7mZG7LvP31D4Gn39oj/n2Pvwz8Bdby0qe8QfN93YbtO3aobV9vJddGRC6B/wn4N1X1+fa1t3XeqlpU9Y9insyfAP7p13xI37QhIn8G+Kqq/p3XfSwfNV63Yftt4Iubv7/gz72t4ysi8h6A//6qP//WnAcR6TCj9t+q6v/sT7/1825DVZ8Bv4qFYo9EFiWx7dyWefvrD4H3v8WH+vsZfwr4syLy/wC/gIWjf4U3aL6v27D9r8APeDalB34c+MXXfEzfzPGLwE/445/AMKj2/L/uWcIfAj7chG7fNkNMV+bngd9Q1f9489LbPu93ReSRP95juOJvYAbux/xt5/Nu5+PHgF9xT/bbYqjqz6jqF1T1+7B79ldU9c/zJs33DQAhfxT4vzBM4t993cfzGc7rvwN+B5gxvOEnMVzhl4F/CPwvwBN/r2DZ4X8E/J/AH3/dx/97nPM/j4WZfw/4u/7zo98B8/4jwK/5vH8d+Pf8+T8I/G3gy8D/AAz+/M7//rK//gdf9xx+H3P/08AvvWnzvS+puh/34368deN1h6L3437cj/vxmY97w3Y/7sf9eOvGvWG7H/fjfrx1496w3Y/7cT/eunFv2O7H/bgfb924N2z3437cj7du3Bu2+3E/7sdbN/5/e0gP0KkxIooAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "img = Image.open('imagenet_samples/chihuahua.jpg')\n", - "img_tensor = img_transforms(img)\n", - "\n", - "plt.figure(figsize=(10,5))\n", - "plt.imshow(np.asarray(img))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 공격 전 성능 확인하기\n", - "\n", - "공격을 하기 전에 우리가 준비한 학습용 데이터에 없는\n", - "이미지를 얼마나 잘 분류하나 확인하겠습니다.\n", - "분류하는 것은 매우 간단한데,\n", - "아까 준비한 모델에 이미지를 통과시키기만 하면 됩니다.\n", - "모델에서 나온 값에 `Softmax`를 씌우면\n", - "각각의 레이블에 대한 확률 예측값으로 환산됩니다.\n", - "\n", - "```python\n", - "out = model(img_tensor.unsqueeze(0))\n", - "probs = softmax(out)\n", - "```\n", - "\n", - "그리고 `argmax`를 이용하여 가장 큰 확률을 갖고 있는 인덱스,\n", - "즉, 모델이 가장 확신하는 예측값을 가져올 수 있습니다.\n", - "\n", - "우리가 준비한 ResNet101 모델은 정확하게 치와와라고 분류하는 것을 볼 수 있습니다.\n", - "신뢰도도 99.87%로 매우 치와와라고 확신하고 있네요.\n", - "\n", - "```\n", - "151:Chihuahua:18.289345:0.9987244\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "softmax = torch.nn.Softmax()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151:Chihuahua:17.840199:0.9977261\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " This is separate from the ipykernel package so we can avoid doing imports until\n" - ] - } - ], - "source": [ - "img_tensor.requires_grad_(True)\n", - "out = model(img_tensor.unsqueeze(0))\n", - "probs = softmax(out)\n", - "cls_idx = np.argmax(out.data.numpy())\n", - "print(str(cls_idx) + \":\" + idx2class[cls_idx] + \":\" + str(out.data.numpy()[0][cls_idx]) + \":\" + str(probs.data.numpy()[0][cls_idx]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 이미지 변환하기\n", - "\n", - "\n", - "입력에 사용되는 이미지는 노말라이즈되어 있으므로,\n", - "다시 사람의 눈에 보이게 하기 위해서는 반대로 변환시켜주는 작업이 필요합니다.\n", - "`norm`함수는 Normalize를, `unnorm`함수는 다시 사람의 눈에 보이게\n", - "복원시켜주는 역활을 합니다." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def norm(x):\n", - " return 2.*(x/255.-0.5)\n", - "\n", - "def unnorm(x):\n", - " un_x = 255*(x*0.5+0.5)\n", - " un_x[un_x > 255] = 255\n", - " un_x[un_x < 0] = 0\n", - " un_x = un_x.astype(np.uint8)\n", - " return un_x" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 적대적 예제 시각화 하기\n", - "\n", - "적대적 예제의 목적중에 하나가 바로 사람의 눈에는 다름이 없어야 함으로\n", - "시각화를 하여 결과물을 확인하는 것도 중요합니다." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def draw_result(img, noise, adv_img):\n", - " fig, ax = plt.subplots(1, 3, figsize=(15, 10))\n", - " orig_class, attack_class = get_class(img), get_class(adv_img)\n", - " ax[0].imshow(reverse_trans(img[0]))\n", - " ax[0].set_title('Original image: {}'.format(orig_class.split(',')[0]))\n", - " ax[1].imshow(noise[0].cpu().numpy().transpose(1, 2, 0))\n", - " ax[1].set_title('Attacking noise')\n", - " ax[2].imshow(reverse_trans(adv_img[0]))\n", - " ax[2].set_title('Adversarial example: {}'.format(attack_class))\n", - " for i in range(3):\n", - " ax[i].set_axis_off()\n", - " plt.tight_layout()\n", - " plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 모델 정보 추출하기" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "criterion = F.cross_entropy\n", - "def fgsm_attack(model, x, y, eps):\n", - " x_adv = x.clone().requires_grad_()\n", - " h_adv = model(x_adv)\n", - " cost = F.cross_entropy(h_adv, y)\n", - " model.zero_grad()\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "out[0,class2idx['wooden spoon']].backward()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:22: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151:Chihuahua:0.99063826\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEgCAYAAABsCt3QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvcmOLEuSpveJqtps5u4xnTtk3hyqWSTQRPeCC3LFFUGAO64IkL3kold8ABLc8il6wRVB8Aka6GeoTQPsKrIGVuadzhgnfLDB3QZV5ULVPeJkZlVWAnlRWQmXewMnItzCTE1V7VfRX34RE+89V7va1a52tatd7WpX+/2b+sduwNWudrWrXe1qV7vaH6tdHa2rXe1qV7va1a52tR/Iro7W1a52tatd7WpXu9oPZFdH62pXu9rVrna1q13tB7Kro3W1q13tale72tWu9gPZ1dG62tWudrWrXe1qV/uB7AdztETkvxGRvxSRvxGR//mHus7Vrna1q/2+7YpfV7va1X5fJj9EHS0R0cBfAf818B3wZ8D/4L3/i9/7xa52tatd7fdoV/y62tWu9vu0H4rR+s+Bv/He/633fgL+L+C//YGudbWrXe1qv0+74tfVrna135uZH+i8PwK+ffHzd8B/8XcdvKly/8VdA4CIxH8B4vdKOPNuIoKPP1lrWZYF5yyn04izC2maYO1y+VwpQSmFEoU2BkFQ2pAkSTy3RhuDUholwrIsLPMSrwzeezizft5zZgAFcJc78IQm/Qo7GI/18uufXc7/4ufzmS8so/jLpZUIojTKpIhSiFIorV+cUJ6/9wrw8Vf++coe+u7Ioe1x1pIYzd3NCqPj33p3aZg/38+Le35u7/NB/XGkP1nsPAOgjaYqUsoijUd5BB/ad+7GS39xObd37tKjwnm8/SfjICKfjssnjZXw/2X+KLyEXvWXy8V2vOirl+c7f73oyRfdK8/jg1yuo7RGKY2P4+F9bMO5Hby4nhf2h46u6/HOkmUpAHd3axJj4rU9OI9z7pN+R0C85zc27oUt8xy+7IKzM/M8Xfr8uZsEa8O8UJehf+4n4UUXPU9Mzl2otMJah9IKpTRJYp77QhuKokQrw8vGym9o97//y68fvfcPf/8d/aPY74RfADd14b+8rxFRn4y9SJzT5/kjGufAY4GAUc45lmW+YFieZ8xuunyeKINSHhGFiEG0oPgUw9I0QymFiGAXy7iMaK/iOcJzrBQ4C1484BH3/KSBDY+78jgUONDqRTsdoBRg0eFotITzqRfbdQtoNAsWbJwrcR4rJYgXkjRHtMJ5UDq97PaduPjX9oJhaBX7K5qH43Hg0PYskyUxwsP9BnU+i8xoCe31CpSXgGEvB8tbwtzUWDx9N3B8gWEm1ZRFTp6ZcFTER/eiIQqPP/en92gFzgv4OY63xlrHb8IwrfTlZ+dc7Bv1Ys7E63mPF41S57VM4cXinAZ5viOtFDiH9R4lKp735YiE83sveOVQGKxzv4ZhKklQSrNYG9p5fmi1xjmJ4yxst4cLhhVFDsDNTUOWGvCCw8LiP7k+FqwoxNswsZwL89XJuUPjPPMs8/j3Y5gOz5O1gvIOL+rSn947lFc4cWhR4OO8is+Chss5vAOURqFIkvC5SRIQRVGUpInBxnkS7jz2Zfz56zcfeNwefgsiB/uhHK3faiLyr4F/DfD5Tc3/+b/+d8EhipPQGIOKq0CaZix4nIJpWdj3BwD6vufD4zuOQ898mvj+zTcUhaYsw+Dvdh8ZT0dWdYMSTWIybm/vcU74yc/+GQAqyamaDUVZURUFTV1jp5lTdwSgbVv8YnF2QZwD6/A2dLg7Tw5rccscBto5VHwIno9z0dkCiBM8OkHOxcETDT4CpXcsdmFxFlFnpwtEUtLqgWLVkDYryvUGq8MQapOiRIFolMoRPFo5EI+zZwdGg9f0/RE/L2i3kKsFGUN/JsqyzBMojUPhlhPeTlj37PAJCufCcuysw5Qb9pPBL2MYKwOp8TAdwY7gF4wW3AsHxlnHsiwBABfLNM94Z8GeLn3knQ/j7x3eObyzWGs5u5YKwbkAoCIKbz3WuQuIqSTBiwr9rhVeKZyE581HAPHeo2wcC++xNgCwujhrAfREabwoRCdYNJJkFFXYGBTViiTLGE1CUa1QRqOMIUSfQktRChGFXTRZVjOderydyNMIqMuI4PBuQXtww8TxdLwsYFoLynu0Frx38ctfgBIc0zSy3z3x8eN7tk8fOBz2LOOBQ7sHoOtbxmkM9+I1Ignz4lmOoc+TRFisxS6WJNFhcQa0kQtoeutIshREMVtLmmXcPTzw05/9LDyPpxPr+8/5F//pf0ZT36EkAy/Bt43zWOJiCnDzX/6PX/NP2F5i2Bd3Df/H//IrGLbZsFICdBHDKg5Dx7Qs2OiA9X3PL375/6GVMJ8m/vKv/4Ki0Lx6dQ/Abvd1wDBWqCZgWHp7j3MN/zxi2DAuzxj28MAXdc3+aXvBMO89fmdxdkfvyoBhhYUOnOoAKGwRMayldWXAsBr8Pswfpxy+gZoaugO9CHVT03UtriyAZwxrRLD+wG6/sLjiVzBsIq0eePjyC9JmhdPmgmHrzS1DP1DLGqWWgGGrEsRz2B/iKTT4NX3/AT8vrMucZdhdMOxmVbDbPlGvIobtDK19wrrqBYYNlGVF9xLDnk5ULzBsihhWFwn4hdNRcL69YFhpHUu+0LXPGFaVxacYdmgZfgOGralDfyEcXEtV159i2BDmz5CMeFFUTU13HPBKUTY17dB9gmGrooG+o/OeoijCHfY9AE3T0Pf9BcOa9Q0WTT/OFwx7+OxLxixjPI08fPYlg9GsTgZpIoZ1ik4pRAaKfE2WwXQSvH1imZ4xrKlLvFs4th1umNBGP2PYsUdVFcdjT1WVAcNaTy+hnXVdfoJh337zgcPhe/LkwKENa+Tbd28Y0+QZw/qRefHkOvT5mAiLLbCL5SbR7PdtuLbR1PkZw8qIYQPbveX27o7s4YGf/iw8b3Iy6Lz+BMPqqqGXDhkihjUlcOS/+lf/29+BDL9uP5Sj9T3w1Yuffxx/dzHv/b8B/g3AP//pqwtxZExo0nm3BoHNydKUxVvaoefxw4fwe6NpmobpdMInCTc3N+gkLEYAt/efMU8T0zhRlg3jOLFYxzJNfPvtLwGomlush+Mw8NE77m9vWTcNq/UagCzP6do94/EE3mKMCg/MvCA+TERnHdaYMHmcQxF2jGdGwikfvfHgcb8kVZw/O0EqgAieRGCxC9bbiyNmvUO8YE8dJxacWwCPSwIrotOSNCsxicFrHc6vwi42dilusYgomqbETTNuGrCnE8n5ABQoD6IRZcKuAx+8f3teKBWJ0izLgkkEa0dKZZHs2bnUzoNSaBMeKPEOxfK8U1MuOCLe45VDVOw7G55K5xacXdBK4b3DWYuzCkHh3XKeFFhnA4MUaCR0YqITCN4uENkFkcDciAjOP88P533cGEpkDOUTB0apuLs0OTpJsQ5MVpDkFUW9inMwJXRNYHmMSdAI8mKbH9xBR6IUfupJWLBuwk/x8+UEONwys8wOcZo0yRDO7Qxsw7JYhLAj9i/YhtNxYLv9yOPjW7p2R9fvWZaRfjix24WFdJpnirJimR3WwXq1Yhodu+N5YVAkRqNVuP+qKhjHE8tiietgaDOeeRrRqSEvU7Jc83H7PswNZeIcCfPcB+7v0gvP9gf/ftXfil/w6xhWVTVKKebIjCTjyBGg3pCLYZ4SEnOiHXp2h+8AUGbNF180fPxwpB1Hbr76Cj32dCos+rf3n7GdJrpxonYNB5nYWEc+Hfn2//kPoR3NLbaqOZ6OfPyL/8Bwe8uPvviCWx0wbBxHutwyfuhZV4bTacC7guLVQt9mQMCbwhR4P5OWOcMZw4rgRDnlqfIqOGJTzk0DIhnpbYZrI4bViuaCYQ/k4y5gWHTEitbR+5ni1HE6bHFuYdHJBcPSJCPLSnwi+HRN34M+eZTquL0LC6FbLH0/0DQlZZrhpoGxW0g2GwC6zoFKoI8YttKs3A2HDnxxxrCEebDofGGTNOztSKlGiBiWWEtRVpAnaCW07YGVLugYL9hwUg47apLEU61KlmWhbQ/4uKl15UJ5c4MZFN4fcLagtBaLxbtdaKsSrHMR2yOGjSecnCM2AqJo93uazZr+OKDxKM8nGNa3FsSxbhqcO+B9xaqJzpwS1qsGTMlxnFA64zRbquaG4vOAYcaUDBHD9vsDd3d36PoZwzrVoRDquqE/tKSyYux22Hlis6rj/LD46ZHDkuEQZHFY62gow+dVA21LXhcc9h3rVYNXXXDcgdNjx7fbr58xTCxLfqJvDbtdcPaHYaaoNyzzAXuA9WpDOjp28zOG3ZiUg2pRUvDllz/m48fHiGHhOtY90XYjc7agdcCw21zz8dtnDPuT/+RzpAmkia8rOjoaavo6OPN0HXXE/3+o/VCO1p8BfyoiPycA1H8P/Ku/62ARiZ74s6N1psHPYRiPxyQJSoRDGzxV7z1FmaG0QTtHmmWoNLgsAIfDgSKrUConyyu0tmy3e8pU8eb7gJt3n1msc1RVjV1m2t0jt5sNX3z+09CexFCvKooq43QccM6GCFsiyBwpxbh4O+fAuRB6wV0eBgs44sAFzyCGNF+GsASlEpy3aK04jSPjfLo4a9YueOtRfsGeekg12haXB98ysqgEYzK8BNbGiwLhEkr1eDSBcbPMiAKTJ2gbzjGfTqAznBeci0yOSlAo/HlX6kMIQ+vwkGs8RsbnIFGicNYhJtDRzgbA1so8L7nKY3RgrfCeMi5O3gXn2nkb6OLomNplhmVBJR4T+xTvUDoJFHjs8RBaOcfCCGyKEhweF5qBEfkk1uHxOO+Co6U1InKh8ZXWgYnSBShNmmfotCAtKrI8Prii8B6UDmHnQNF70khnK6VAPNZZxFlYHDiLcssFlBPx2GXGOIeDwMS9iOsp5wGLFh3vz+Pcwn73BMB2957D/pH28MTHp/ecTifqskKUIV6CqlqTphn9PCDOYWdhPM0XWjYxWQAkJWhtyLIS5xTLfML5MH/yogQlTIsjTVOmeWS7e6JZh51xkhXRsTdorSNHfw53np0rzz8BR+t3wi8AEUNRWMBSVWHRPx6PAcNOhq4RqD0bc8OuPfD6TcCwqjpQlHcMest6vcIcWwZZAtMKnGZHOieo4p7MenRWMG/3JOkTf/02MFY//WeW0/sSHTHsw/vX2Gngi8/vADCFoTZrrJ8xWpGWCe1hjylLNklg//u2x3pH6UooHCUglPg8fG7pcDi8K0hvPfQetSoplNDF6JC4HpTCect6pRjTzxi3J3waxjvdLCT7EVXl2Md3AcPSjCY+s/unj9zcBwxre1CN4JUCtcYuwTnxFNR1Sec8fjzRDx0mT1inwWHcuUfq9R227QOGDUc8M8oofFIBUPsUtVIc9nuoVMAwlSBEdu9mhbOO3mhWSrNa3QKejbqn78IxXnk26xLvWrrWs17dYIsa7wIJUPqC7fyEsRbvC+ySofIFhcf4VwDkPjgje+eQrgcamrRAmtAfWdvRRQwzStF4aNsOo9SvYNiRsqoDhh01vYysVuHz4ahpmlXAsAUmJ2RFw+3DZ+R5eG73MiAtrNY3dH3PPM+0bcttegvAelXT9R3idjSl0G3fUZcWnyz4+RGAsY8YVo6U1LTNCt92dOoY+zyHukb3HWulAeHg7AsM+1vc/oR1Pe/ff8vJGOqyoh+ePsWwWehJkDJimJlhDE5PYha6RaPVDePxhDGOm5tXHIcTLjq3iy1JEmHqHWmV8rT9SH/sPsGwYejYmA1lsabzLXQKGk9NmD993dJ17d8HB79mP4ij5b1fROR/Av4dIU7wv3vv//yHuNbVrna1q/0+7YpfV7va1X6f9oNptLz3/xb4t/+QY5VSJMmzmPP8u4tGRgQnPoRMvGccY0x2HNFmTZqmnOaZJE0Yl1PQKgFDf6JvT5RFiVYL8zTTdwMjI1PUnUzHI73as8wnyiKn2x/o9o9MY4jr1HXN7e0tZVWRVxmn8YQSg/PuOebvJcp8QohH4k7eR0ViZIXhLFD3kUVRXFgtaz1KJzgrKGPIELRSl9DhYhfsNMNiEW+xx465SzBV7EMf9GbKuxBy8oDXeBvCkhBYF1xg1JI0AS3Y0UXRJjiTIi4qoh2gou7LP2ts8C4IazGIc4i3KG9xL8TtWmtsFHSLMi+E1eEbrQQlkfCI+ntlUuxZGOkdSVaAd9glhBGtXXDWI1EkjDi09VH7FQXqBKodQKOQKIL1wGwtDo9ohaizviGKv5XEL4XS6kKZax1Eo8oUKJOSVQ1JWpDkJSoLDKzoBOeFxdnYRofDYlVggZRRIVQcx8/NC957EqVQZ7bS2diXHvESRMLiYwiaoDFzkSH1jtN4pB8OvH7zDQAfP75mv/3A8dThXWBW+8GjVBZCIITw9niamSZLmuSMpxHv3IVJnsaRsqpQyiCiGPqRvjtSVRUuMqLLcgrzcPFMi6UuS6qmoqzK2Bcmir5DO7XWeC84t1xE4f7c8X/g9rvgF4AywjgGDMvzMEfX6xv6PmLYscelFVppqqq6YNjhMPLjrxpu01tOc884jSzLwqoJc/Dx/Yh3UIrFFCXt4xPt9iPmEwzTvFN7su0jr4p73nav6fYrpo+BLag/r7m97dGmYnEzJjXcFHcc7IHKBCZotdnQdx2JtzCDVB7IaA8hXDJXd1QC0CJSQ95yaOfAYEatYWETjE5YCkGZDXfM7DKFm0LoZ7ELVhtqQKqC/Ye3FOsb5LPADq+MYdjvcItDFfkFw6pPMMzQvcCwm7sU+9Gx7wYAys1tYMpXBlwNvUOJQjzIKYRjB19SV56VNvjhyKYqGBqLi1qgvt2DaLzzuGYVMKzvoM5BBbZSKyHNwPuc2zRg2J1J2R+C5mj2jpI19ecl+90OZ3OK4jdj2J33SFnTdsKEUEcJxbEUHrynBZbFk93cs8EjeqAfnjGsqmv6M4blnkIr8jKco2o27J3DGstd/TmZl4Bh64RhDuco1Qb3ZcNy2JMl97T7A+t1w34KLNCNW9GUOfv9DjvNlFnONEKiUpQPzE4xWaR0iPUc2paqumWQ6oJh+ujxpcP7CirP6dgzT0d2+4BhT09vLhh2HLqAYV37Kxh2AD+TDpY6uQc6djtHUwcM240feVXdoJShd8LQjwgzVVVx2IfwtCtO5NZil+HvxbC2O+AWzXpd0MbwsVqFY2oq8M9r8z/E/tHE8J+YCMaY51DhJ589f+Mi1ZrnUTcQF5W8yDl2Hd9/+w23DxuQcFs3mxuWyWGXkAWRpzm2yNh/fAoLObB9esQ6y3Y783B3i51HlHi2jyG0OBxynD1y6x4oypI0zS4ZHUkew5xA0GQFoXx0u4LAG0hEBTE156S3uBi9CKE461Bah/CNFqwyGGUuYT+1zMxO8G5EiwpZSvstSXSS0hqcSvBJgmgwOomSY/3cwhg/U0oHbZLykGS46JyImvFLcGpEK3D6OfvNnXPu4n8qOAV4wXv1nJgZsyadJ2Y0WTyQeLlkSXpCdon4c1YeISxm8nNvxGxPh3FB9+bsEkKzdr5MC2tD+FFEhZaJPE8YzyU05/FgF6zzwdmUZ5ASHQRcIaNHEKMvo7J4h0pTkqygKGtUkqHTHEkMnDM+tUaJQi1RnO8tzjqmU8x8VaBUTHqwDm99dMqfs7HEeXAuOLcCSizyQuMnBK2dFmEYBnbbD7x7fE3fRTp87jm0H5nnEbs4jsOE0QlOKebxnIELaVKQmAA4Sik265Ku38exD8knSiBJU47HE1mWUxQlXQyXWG9AKW7v1ySZJitTkjQJTjtQVg1lmceQucdj8V5fxPsQ9Ft/jKZFMGaDSM/xGOZXXQchfC0NUtccuo7DZsXeOvI8JFs613M4HHj18OqCYT/5+Y9xS9SqGscyOfp2wCYF+e09hYH91399cfa3T4+snKXbzdi7ATuPfBxhPoWwzZ27x9kjafZzitKRph5nalR3xzKF66xqKIqCtj1QFRahATzpFObLwQ04UQgNdVPT9yua5sBLDCuLgGG7ncX7nCI33N8Z9vvgWAQMazgOH6GpUUuHsTMfXwe92u3nP8YtK3xyRPR7zD5B64QBDVETUzmP71pWq4a+BZymTDKaJnxul4Bh+z1Io2hWa5ybKXx8xoC+a2k7aFaCWAEn+FbhfTiHR6gqYd92uLaFRuGrmsSBEBMMAOsqxHf0CI3UaNGYNGBYjaP1nnGxZGVF5RyuaH4FwzqsDeHHvlcUpdA0DV0Xk8C8wtiSG6ClJcnyiGEOY8IxVVUjXpiUsFKKdvY0RuPjyr54RZOmSNZQlDXDOOPSnDQ11GXQ8PXHETWeUNrg3DHgt7VMJmDc4/t3rFae1BR0YjjYGenAiEKirKBxPqR6OqCsUVia2l9CbB0eGTzaeNQkFwx7FzFsmN/Rtt+y3Y7YvESfJvba49RCFjFsbzvSsWDd3NJ1HavVih//KOdtxLAbtblgWJqmaG1onWCLEm9jWHgxtMPA7f19wLBXKUmecNPchDlcNdy/un+BYQVVpTkctvgoWWIVdFu/S3WsPwhHSyAs/iIXNiqIabmIaX3c8WutqOuwAzJGs7iZYegxSUpdF5yGllf3XwKw3/ZMx5l5muh2e9I0QTMHQeUcdh5JtgQRolE8Pr7DziNG4BQHLzEp09TRty33r76gbDYonYZSC3GxDS6UC2yUfpEPf46j+2eWJFQ58HgXRNpnHdeZSUlTHdJ1k4RlMkxx5yteMJlm9jAvIwqP+IVlCDvOZbEUa8ViDNovmKzAiUWpHJWEXasDEIdH0OJQxuC1w+k5tmHC6glZwv0on+BdWCgvgXK3RAcpeAVe5LKYhmuc84qDGNrHtHHnTUi1PvdBZAFDVp8KWYTKXv72rHMLu1qLs0EwLy7ci/KBCXLuPEcCm/UyldpFFitkgpqwu3rhyAemMY6NErx61gPGI1BJSlIWpGXOtDicmxGrMcZf7sV6G8qHaAPe4t2CxP4ImUYO5y0SiJ6Ygv3sfCgHOHlO7RYbhOTnc+AQPKdx5P37N7x+8x0fPn7DPB9jb01MU4/3jq4dsYvQ3N7w2D6RxbGvqpLjMId79WETYJeJZQ67/CRNOI1HkiRjHhamceLu7oFxPDH0YQ6uN7ckiWJcBvbdjrVruC9zkjQsxqIVSim0PmsDbczgfNZlef/8/R+XCauVpu/1BcOUKJpmFca0g0oqhtaz1orPP48i4JNmd5h5//4d3lbU9QOP799cMKxMcx73W+ZpgsVeMOywWJaIYekZwxJFf9pSzAlGegYJY799fM3T0yt+9GOPfvUFp9GgtCDqeEn6GbqeGkfTrOnbA3WtoOvo4jxXPrlg2PE4Isrj3RppoDrrJoF+GEhv1+hhwFrHMls267CI2d2OQ2bJqju2y4iqPabdIevgqL//7muK9QOL2aD9wubugb4/oVTOKiYeHbqORta0nWDkgDI5iXYcYgJCsVhsnmHSBEbBVAnt4UhVlRcMU1ojFSgOBAwzVI3GuYCljrD21ECLx3eWurYcvMF8gmGKHoWSBlGKoRNQ5yW1jKh0CNpQbzlMC1VVvsCwGuv2OPc5Wf6MYekcnIKqeoWzew6dR7mMweTUeLq+QOsujkWGyIBRikGVrG4LEKGNDo5jYnNTk5QFk1soxdO5me1eY7JwTLO5xXpP4aJuzVt6uOBPVWbs5wOuPSJlHTDMBwyrIhPUHjrkEPTRogZ68VR1RV0FJ6nrAoaZJOHt2zf81Zv/l+PHJ7bbD5d2TpPg3AStZ1qEIk04+RM6YtiX1Rcchy0iitpX+MMemyjy7cfQF2lC27YkScx2xrDKCpJpREUMsyZlvbonyRX9qSXrClblmnGKJSTUwKshYFjd1Nj9HtVsgIozbrXtmbD4zUjwm+wPwtECQsdEZgK4ZKWdMdkkmsU7rHM0TRCuZVnK2/ev6dsOheJms2G3fcfb14GNaqobFJ48TZmcZ7d9Yj4OVAW4OZx40TPTeIQRphOIt/hlYT6FXry5ueHbr3/BbnegHyZefb5we/8ZaZ5dHIcQXlMoCV7wM8N1pnlCDZNL6BCHiI+L0HMtrGc2z6PQmARMTBVfllBPRGK8bXEO6+Znp2DW9Lsn5mmm3mxgXvCk6MQRowOISUL5ARXEu1qHsJY9zxgJ4UVnBGfnWIOGT0M/ThDvEK9AWZzVMeQXM4+8xcly5vTi3wni1CW8KOeU/4t4XUIZhsv9nx0mCQyIF5RYvFPos0AcQZz71NHimRH13uP0gnMhZdooGz9/jlx5D6L0JWx4Lh9yLsVhEoNoHRgbJSijcaLxAuMyxXvxKG0wYkLUUgyWZ0o5sHFzzJZUlxCI9YLETE6PIC7wfzpmi+JtZD0DCzROI29ef8+bN6/puj3DcGC7C0JU50asndESRKaJSRmGEUEoqsB6DO0JrROWZcZaS2o0zj7XCLJuoSgKtDbMk6OqCxDPsiys1yFckuiMrj/Q9QdWtzV1s0JEcy7coXVClqWYmIGroqg/PMYvkyn44zQvCCsgOEDSH6Gq6NqOGjBJjfOHX8GwiQ9jT/9mQfGGm41ht/V0h7DRa3zCigpJ4eloeP/um1/HsCVj+niko2O9rjn6iXa3o8ieMWz78QPL4gKG1WvSe02al5fEj9V6Tde21KcTOklIkhRubjDnXbxXVFVguXrpgDLIBkQ4vsAwrQ21NkjToLqOQ8KlvEzx8IrT9onJnLghYefWtG5LsY/PgQkYlqUZeZExdi2alOOgyIuwIbCLw280cuwQ2bBeK/o+CsSBo4CfZ5I8w9kTemwwacZxHJEltENvchrvEL+hU3vcfsTOgnPnTYnFSU6vA2MnTXSaXmBYUzUg0MgaJUKHINJdMKxjQKgBjYinjximtOE4hPmxqhvE3QcM63oChjVsbgIrFjDMsNl49s6xcQHDkgx8ez6mQ1RBoxp6NWDSOmBYDHGaxNAnmiJNMNOMMmuQE14gycMGaZzHC4bplaaeDXv7/JC2zuFshs8WsLswx32H9cJhF8J6TV0hThg6QUsPytN1e+oqOuEx1Pv96+/46zd/RffWMtsD749vAHCHkaLIsItF9RNJfcswjOgd+wlSAAAgAElEQVRCYX3A0w+Pj6zlht2yxVrLrVnj9lu0Ds+Sdd0Fw7Kp5OBa6qai7/qwCSZgGOLYPu1RtzU0ir4/8sUm3EepE7K7lM1mg/eOQRRVG/rZxwxKvEcaPsH532Z/OI6WxHRweekm+gsQWKNwwOQmdm3QHjw83PLz5ic8Pn3g3bs3OLGUzYq+D4ugU4pqs2EYRrxTPHy54u3r75jtyBLp27lb8HbCaOE0LWRpxmq1YXcKXrKZQrhnXhbefP+3jP0TMm25udmQ3fxJaKZOWNyCtR5BkUjIZDlrtEwMp3kkMHOEAqrP9bSAcxHBWJTTeR8cgEgRK2NijR4wieDmFDsd8XEnJ/MJmY+4+RB0SumEyQrwC0TGCpVjXRLSn5XDSnBwXMTJRZLwg0txi4VY+wXn8PqZ0fLe4u2CtXMMdcmFlsedb8UGZ8FL+J3zz0yrBOdi9g7R8lyA9VJ76pypJpfyF/gklJmIC7Yj1MBxzoVihTHL0HHWPTmcTrBicaJiyQuJeqd4Du8RCZmFZ+2WSi8yL5I0RZsEV93jTIJfggPplgWJ+hjtLAkKlSwoQyhj4Sd8LLKHnVDLBHYJzuHFiVQviJ1QZ0shKJXiFwcil9Diod+zb7e8277lMO5wZgI/c5bNjROMk6GoGvLGMBxnhmlGUzKea/KcHKmemMeJ1WrDqllzPB7DfACqsqKscsZTh9EzkxvpDrsQgj3v5A4d3sOqrCi0Jk+gyFPSNLAiSlUkpkBJgnehbpkIhCSjS2oa+BeFdv9ozL7AsGeGp+sPobBrXWPngZIV3x6+5+37sMD8/Oc/4V80G36Z/IJ373a4xlLmK/p3YRH0iUdvNvRDQVVOJPVP6V7vONmP5EVwDB7fLmTFE2bd0G+PzNPMarVhMcE58WnJtLRsd5rtdsv44x/zk2lLfbNB6n8Z2nkcyc2Kj9Yi9FidBAyLDM0GwWvB09McIGxth08xrKmoV6FuU1ODW61o8PRdcCyGxbK6u2e7feRUJ6jthL15oN1ugYBhTaZx3/8lXf8VmzTnlBVIdk+3BAxryhzrBsoqI5UFK8Is8wXD8uYmhuEd+92eg3N4l4NzVOszRuW4iGGJ3dCZDiVCfdbUJiDtCVEafBHY+jOGlc8bBk/PtoVmLcxqRbNuGPpYfoYq9ktCGTGs8wkkBdVtcJIOnVAUAcOGJKX2dcCw+GDbw4EDPjL3nrSu6PsetKK6i7qldkJEszQzy/GOduqxwCbq3pI05XhKcD7HPdzgl4WGDrfkdLtYZ0ppkiQhTzbcrEr23YBJW/wc5iD7CZVP1HZhoKdBIwY6BE7vwthuFY0oVrWgTyltxDBcbKfb8ze/+CVv37/msF9w5gmWGRX9+CCJNlhZ4RqD0jMutcgeliK0Yzg58vXE0PZ8udqw+uKe44cP2DI4QIVb8arK+XjqMOuUeoa3r78Dz8XR8i4sTQHDjtwmX1A2NakKY6JWn2JYWYaMS6Whbp4xTHz9smL5b7U/HEfrt5i1C5JonLN8+83XADw9vecnP/uKh4d7lIHhsGdURzabkD77+GHHNM1UVUNZerqu47PPv2Q89Bft09APHLuBm5sVizsydDPGTKHKL9AeevK0wKiEaRz5+he/RGNx88jswySqVhuSLA+p8WLQCFiPOe/0Yl0hEJy8qPzunwuBgoSKz5HhUeeK7BHElPeYJEXFqrgOcM7G8glEIb7D25m+3ZEVFVnUhru4y8qSBC0J3jlmNwd9klbP80WrIAb0oLRDrMPbJTiMcVdh56DXEmNC9QEbGLxzWMFZCJSQwlkJ5TAk1I85OxbiwwosWgXNgahLtd1zX8QeCfzgC+nV2aETHysnRyeFqPU6d6iPQUxtEsTFBVCFez07UkoEzwutlVZopWP4N1QJNkmKzYtQ9V0ErI3h0uisOYtdwGFReOb5hB1PEIsfYheUs2g853IVHglPPOd2qBByUAqPxRGYxrYNoYy3797Q9nu2Tx/YHbZM04mp60jTwFYtVjHNE8sSArbWCSbJKUxxuY5CY3RCddPQ1Cu8E5ZFqOsQ1tmsNxyPB8ZxBr8wHE8UacYyL9hliV2kUSpBxGHtjFGKPE9J0ljmRMCY5OK8ngu/fjJ+vJj/f5T2QrtR19C2sVIQ2CJHEsF9V1wwbJoGfvKzr/j5z3+G2kQMG45sfhT+6vG4MO0ChlVVwLDqP3KMB421YXEYx/ccO8fNTUXvPpCzoNTEYR8cnOlkub8teHWfMI0Jf/5//5Ljz7/iT+eRuQoLZbXa0M+hvMdaNuhEwLYYFRxx3VQRw9Yc9AHlh3CfVYWPGj58j+hQS6wfQnu999SroH067PeYJCXLc5okYby5ZRqPzKvAvrTtnq5tUUph2h158Rl5o+nnE+4UJlA/Jqg0oZIDc5nRH3tqrXBRToIS5Hii95BkGWIdVZFHDAssod0eoczpTyeczVHrDSvL8zNtd3RaWNerqA0NGFZg6Xwsd+EXOllomhU716Jkx6HTKDmPdjBBcPUKBEo6HIru8IxhB+/x3cCmUeCPhCqxcWNDWMvXmxucc7Rdi04SHDXDeeVOU6p6Tdd11JsErW+R4cgQ2TsvlizXFPcPQQMsQmdXFDJf2uhcgV00Sz2iRk+aGvRo6JYgTWDaoU4FAy11VeP9Dk9D6Q9QxHpdouiGEytRtBHDGqnZd8GJfvvuDe/fv2N+OrKNGJbScXsbMOz9USFHwzIHuUcqDSZR2MJSn2tN1muMTvjxVz8NkYHuyLI01DrMr82N4agPjHZm3B7pjyceIoZJxLB2PqJUYN73+5lXX0YMq8NmUSTndBrp+yNNXaCkD+yzLCDb2GPV74xh/2QcrUC9eMq85O4mFK8ziQq7Je/ZrDbI4vCLZ5ri7qdZ03Unhn5gvd6Q55b+MGDMmroOALJeeb7/7hu6duLu4YH905Zx9OE1AYA4jTjD04cdRZ5x2PW8/e4d2is+dmExffXFlzx89hkmKfFigTSEEeJu0Hsba2eqi0bmcltnx0BCJo1EndH5dTAXU8GZsYvHJLH4qXuuth6y82a8eOblyNJPOCyl0RCZIns6gRN0msfXcAAvdUuRRbpk4CkbfCbvcecy+N4F8aizURQfnbko/BcdCrp6t5xPRyCS5FN9FFGrRsjAFC8Xh0+CkO35+Jdz2qvL787RRi/qkn3ozj0iJgrKo7MViwO+KF0GorASdUWRMSQWLg19rgI5rDyIwyQKL8G5c/OZaQt6qvm0YIzgl5npdIIYWtTehTqwIuGVEFzyCi7mvEf5UJ9twSKJph86vn8TQuBdt+NweOTDu9fYZeLj4xPzPPPqIQiql0XQKmUaQ2hCqRS7uJAdeX5LgVckRpGlCaeTZRwm0qy4OLh93zMMPctiw/hZj7UOrQ1Ghx3lPHum04xOPGWTcDx1qF7hY8HJsszQ2sSackuksggs1rOXzcsh+GOxM6Fb1zXDEDLguq6jrmu6YaDuOtCezjS8ui/56Vc/A8CMA+/evqP6rGSz2tAsJW9vXzM9nTHM0PWGQQaS0UQMW2HMBgj488UXFfvdE207cVc8YNkyfvTUEcPsBcMW7KJxyxnDBtbdnwHw6ov/mOKzzzCJoxWD6VJYBL2KS4QfEFUiolhvDF17plNHfKx96E3YNInSgbVXZwwLjthqpfEEgftpnJinmSTJL/Nho28vGIZo3vXf8tB/GRJPtmHRt+UErmBIcypaQOjwlMGnpFNdcPKVIGrFamVpFwutx53r9BlHbUZWK0N7GJERjkVNGTGs1ymrm4L2sAsZz26hLouwkY4V11Vd09Dg8VR4xJcc/REX7/WMYbWEcGuY/gL01FWsx+ShcdCJwssqYFgnl03+GcPadmC1XnNzm7M/HFg1SbwKsL6l6xUqzUiyPGDYbJ9rNKoVBUdQLcgKkyi0eIZO0ZwjDNUePSimU87p1OPmGSMwxRpX2pegDqhGGERBpyirT59i5z1VVeCdZrFHJNG8HXq++fYv47Oww7kTv3j3VxR5yn7/xGGeefUQHK18aViUZ0o61NEw5BPFUnKzyZ4xbDwynmDVVDgHr98/cZvlDDFBIekVg+rJl4J23v1GDFOzJz3NLNaS3SR8eHyLyp8xzLmZP/n5n1JVJfv9jvUqA/Z0vaWuQzu6vkVI+V3sn4yjJQjeeRKTkmdhVyHiKLMcbz2n4UjTrEhUyiGm2Db1Hatm4dtvvmMcZ+pqTaoLDh+7yyJwOg7cPTzw4f1b+r4nrwqOx4G6DF7yMlkwBus8+6Gn3R7JdYJWH1AxhHkc9wynA5ube5pqQ540KJ/E970RyxzA82LzPEnPodHoclw0RhLFRJdsLRXf5qXDO+SUDu9oHKOWbJlH5jEU+3QSKsdPpw5RiiSPdLYHu1jMvLCowBCaLAWdxLa81E6pS4hTAe78OiER7DIzTyNIKEEh4YBwCbfgreCUxOzG8FIp9fzyrUsoKlTRDw6Ywz+/r+zsZHme6ado51BiqI4cqRKlL+HIcx+7s9MUC946ATFyKSgKsDiHi4VKVZKGshQvKsN7wgJqxxFtDCZQeOEeiTtCHzLrjNjAAC5TYDwvIU8fNWmB5Qtz2cc+kMsc8N5j/Ywooetavv/+a96//z7O0ZbHD29o90+ICLuPI9YKdRkW2sN+wKQFiAFt0CrBi0Wr9PkVGMoyjxPTKWQTVtU6FiV9ZkSrsqbrF4bjkbKsydMMgcvzNI/PGsO23TMCKlfUEgobZllKlubB4fUuzufLTD+P4B8toxUqSDe/9vu6rum6jhkB1zKeJvI5FgrVE3V2j7c9ZtC4RnEz3OPuIw7UGSsJGJZsKgqbkN6kHD52LPEtCUYr7h4ecBHDNpuCoxogZuLlcwEOrOux80K7PbIcE7Q68T5i2Idxz89PP2Lz1T1SbcjHBlUl6PYFhq0g8Cw1dcMlG/WCYYNHaoU0DXTQD4G9rOKiLEoxcGStN+zZB4Zlnpgj+5JnM/M44nwRMSzh6fEtWTlwE4trJlWNqA4jOacBTuOAyVIOOrC/K7VGNRrVH5HG0B8U2g2sbmucDfPU7bbY08ycJlRNy6lXyDgxxAr2K7fB233QtEYMM9mCciUqZmn24xFf1/FdhStqEcq6YujPGNZB0+CBrldARx2fAZeH/qg8HNqeulZ40XR90Hhd5BFqQ90IfS90Q0/V1DSbu7AWnDHs4HDS06w3zxiWTEgfr1FrbA/7jyPrzYxRQo1l63a0ZwxrLVpppN8jRAxLzEUMT+VphiCBUSi6WtG3PVVVwzksrBRVVWH9TFWX9OPMN9/+OcMQWMRp7AKGbT9C0/Dd1x9D5fu4gbd2xqQFXgzUAcMGmbhTFUoF1kyr98zjxJvXj9zd3fPZZz8iyxzl4RnDvKvReiFNZrSuqSKGvT6cozoe71M6Dkh7DBj2uKK++XUM85XDU9L3XUzAi5XhL1nx/3A1/O+gm7/a1a52tatd7WpXu9rvYn8wjNZvrKEFL95uHjKqqrwkNYGB2e0eqeuSosxYrGGeRsqyxuiwMzkdLVlWsF7fcjgcOBwOLPPCuPQMl/pCM87OrG5rjkMHWKZ5xC5BYKdVyvHo0AjzZHFOGIaJ4es3lPeBPjyNJ9r2wFc//RP8g4MKEilRSSz/oAOVfSnlEENdZ/E7RPKGT0XCL2sOKRX0TqKCBszj0dqQxrotWmuSJMW5hXEesItlOna4eWE6BuYjnxZMOTGqDlKFztPwDsBYcNArQZIkvGj1wrQFNuhCjSgdQ0E6cHCR8ZJzqFUrnJpRTkXRvOC8xXr7K+Pr4/2dGTwu34dXJapIbD2nCXpA6/i9dRfWCgSM/iSRQnMuEuHxEl5qrc1zSY4wDoJVQpIkJEmCUoplnkPdNWKBRevx44SbZ1RiUOIQv+BjMoW3CyghwWPnCTtNYC/KL7QotKgo2I/9HLV5L7NMwWO0ZhiPfPv9d7x7+x19F9iGrn3idGpZFst+e8SYkC243w3xfIE9NEmOF8M4LmRJjmA4DoFW1yYhK7MQxhaDiME7ifOQWIQ3lMvI8hytDdM40XcDLmYghcKBHut7ZjuREeq8nYv75nke5qA/J7XEjNMXuRLyR7y3k16Qpqeuz6xWSB441/t7iWFTFKr3u5bPP3+FnTNmu7D4nFevNjyNgQkwx4LqLuNgB/avD8xlwdJ3fNy9o4g606nIOOy3JKlmHDJ23YC4hPUSSzcMR7TIr2GY+vpI+bOAYWY88bftga/Sf8n9Q4mpPOP2hLqJ+jsdXpbtfWDnVhJYHPAMLzFMNDXEOkMBw3qJ+hfVw8EiK8PabVjsjF1mdnFyzIvGcUvpFz5O71mvLMtUoe0T77ahv+7THFNWfFS/pE4VWX7LPKVIGp7HVh3YqAxX+svi5uvmUwxbrem2WzKOeDRlo1C+vtR8GrCUxYbVxuG9pd3v6Y4WvxxpYpSiAxhOiK+o6/DyHukBFRiestqghiEEN1UDPurQ6DARj711lKsNToSu68EkNLK6hAXXdcSw1OP7jMOxZb0JGBarO6AqwaqavFldMGw3Z3AMGLZrdxRlRT5ObD984O5mgxJHU+XstgE/KrugVg1jdwwYlqZ0+/0zhvUDR6VZswIv1DS4Kr7Yvg5jX6uKtm0xWqNSy7fff8ebt98iBGzo2iceH9+Q5wWP71s2m5q2HV5gWEP2SnOb/P/svcmuJNuVpvftxnoz99NE3MvLZLKYWSVBzUhjvYtmqpFmmmmkBxAgaKqhHkITPYEASdCggFJmkknyNtGext2tt91psLf5OXGTpbpZSqAIFg0gGGSccLdjtu23tdf6mzf0YmF9jBg2otE6cqOUvuWrryR9cCzjgjOCfL3HJ2XjNI6pqzVQlG/IMs12OjMOE7mLz6SVAcpAGzzWbYDGuRNPj7Fr9p/9539NluVc+h7RHCH5XYoRErWOrjsw/CNx7I+m0Pq3jRO891eCrUgO4v25p2kb6qok1xnzNGG2kd2tzZhIFi/LGik167ri3AbC8vyUhvoiMG8ziIKybliWkaKuGce4UMsyo8gLqqqisIZxmBnnFYJn+WTTuUku/YjSOeM48tXbX3Bs79nVoFXVRNK2UgTvcdcRobhaCfwhd6HwUodcrRi0lISgkUoTdIZJpnLeZhiz4ZzB+AW3GRQgzIZPCrnFOSph0VVNCAXSOdy2ku1+YEpFh3Iij8wn8jY+GjKmH4rGT1KB9zGk+dWZCyRCZQjpCEHipUR6RZCvCq0Q77d4Zd+x/2uII0Uhd4L1S3Ei4KoqJNljuKTmFEohlL5ez90iQqRWfPCeoBReCnQKLFc6wxMDzJVS8edVhjCpCF8XvN3AbNHSYVvIMoXEIxIHy9s18ri8S2aJHq3U9XcRIZ6JkjKqTkPE+x+vdykly7rw6dNHPn34lrF/JoQIyN6tyYYhUFSxKLRWRAsUYOgn7DDTHSuMM6iUAXnpe7JsD3qOgoHo9SXxLjCbGZU2LUIr7OYo8hLvVSTczyt5XqATf2GdN6Z5QMiVw52m7RoO3YGiiAs9zyqUitcyeJGKOvUjI/g/zUJLAk3TEML4oxy0K5uGuq4Z5wkpBF0dgf/58TNDP1DXJXc3GeeLY9xGzC7fV5aL63lTfsXhFzc8Pj6CaKm6E2aLa2wYzsybShimWRagEa8w7IBUBucqkAa1OELzzBg8D38fz+0Xv/oZl8uI+uF7Pn78yF//1X+CoqBtErm7qgkERqVACM5cEKKjbSEk3lJo2yvPMv16hPBCDp9nSXdsGfs+Whd4R/Ce+8Q1vFiLed5YnOFQH3j+/EhTBoTJqad4HZfLI5WwKOeZioJj5qjylTVZSBz+AYb1hN5hm/aKYcM0R/yaFNT1FcOqRKgfhx6hVsTk6IOny27p/YUgHVLEX0yGIWHYhlQtB2Ik3i4u8d4zpnxXIRagZQg9Ak3dpjiPvofN4JqGWmeI45FhXgg7ob6UjCTRjgsEv9Fvik4KDl/F53bWt3iS0ClhWDZniGLHsBF/GeDQEsTAOg5kmWIaXjAs2Izz4yeUdzhbEFjRRCsJgK5p0WpGyYmAoO+jL18I4bq8BzFcMezDd7/nt9//9gsM6y/JhsF/oqgqsiyjDoHximFn7IcJ+Re/pHAG+wcw7PZ2AgRH1TKIA97NfDYzxyIpp5uWbZX4vsR7wzaMbCojz+9ZEobZ+Qk5w3QYONxpbr5q0MWB+x9hmBCeMAlC44CGPrx+pqPH3D9GdvhHXWi95ispIaPEVWV8/TaqCj99esf56RlnDfdv79FKMy8beieBWsP5PGI2gzEWIQTzPIIQ3NzGwNV1XVGyJNMZIoCqG+qqwacXwtgPLJvFh43bmwM3b9/y+dM7jHGEZT/PmduvjtgtGg8u88IvvrFkqQjK8hwZMmTY7Rv+sPJqV+7FC8KPOFsy6QFiALJSRBVcKiz8tVMTKPIiiiTweOsJ7A/dwDaBVBYf2qjcS2RBiD5IUu28MB+d+INDhpeXulJxUi+EIrjk2u7NlQy/m4BGEI3FGgGEKl4pByORX0lxDZaORPakLpHiSuDfOy4vlytx1pSKpFsBSIXUOtpE/Jhwvne5rCFoFYurV2R3BLi944VAZTm7E5owFudXpHN4EQjeopwCHG6NnSJjlhj1I1zinElkEKjEe9vjmbx1BBGVizHFKF7j/XDO8sMP3/PD+28Z+geG4UyWfJCyTDCOK9OyUlVH5nElyxTLHBdgnucUdYv3lqKoaLsbrHG4xb1ESwgP3qKUjEVQUoTuN8UYG3loAoZ+wXvIshxnHCIplKxbyTKJ1BrvDXmW0XUHqhSiXFcdRVHgnLvy/F6KrXTf/hSZ8EROYAiBYfjSJ2x/fruuiyHvPnB3vOVTFe+LNZbzt8+4n7dspqAsS+Zlu/J5Pp6eOZ9nzLYmDNMo1VPXHaJJjv2+RUlDpldEgONXX+FdwJdpHQdYthN5tlHUB9a/esu8Y1hsnHH+/cztX0cMe3zaWOb/m1988ytub2I3at1ypMyQMiBES9dG48Y+QJfI3SHAkIQAu31J3YgvMAwhqduOaRiuGLaucX1l3kKW07YBYwvusgKxrPiypt8x7PEDKgPfBWrd4tctxV6li368RfqSECYgdhJd47iEC2r8EsM2oQhFHV3bX2FY3XZ40eObCns5cwqBNrSIo6Yf4zVvfUbwgVkKhMwhxI3fMCaTzyZiWAuEJsAwEprk95TUxOJ4ZJxmwrbRvHkTMawJCBEnMkOfvqs7EAqwpyX6IN5kXFIEjzQzbddyHqM6TiE4ZhundL2E0RHDzIlaNFi/oJyi1o6nc8SwZ/OMCA2hE4T5AWkkUmVXDFvmia7t8Bb6caYRHZeLJ4SeazeBgaoq+fTpA7///a//jRhm7UpVveHzx0dubzXZHN89d3d3GA/+csLkFbe3N9iionqFYeN4oawtSq3c3AiCO3A6nYHIr7pi2N09H97/gPXQlTnn4YxO74GyygilY1peMOzrbw44ETHMJwyL6zUW7E3jGEcIaZ0DV9P0n3r8URRagX9YaIkkod8zD2Mii0cqTb37ZpQ1RaW5uTlS6ZxVCDbzkt0npIrdhUxircc5izEOqQR1tecnZRhm1tVHZYKHy8WRlfF8srImywPTOPD9D+8RGITSzJtBJ4755dlSdQbv4XR+5vOnzzR1R5sWyDI7bm7eXG9gzIAL198xnSyv2jEAr3ylkkp/t00Q4cXgMrWypRCEzKfOX4muJMYvqXsUP3cLnnW+EKRFFi/FEilhXcocfHwRK6lxMkQFkJLXN6RLBqFS6tgpEi4S6FPx4n2KIUqFX/QbDQjxaqmJaLYVC8UA19zIvXslroXVyzgwEUTTeeweTUIppM5AKzwvRPcgUv6hiP5YKtMRYOVLB07I6GhvXHR2DzJmCu7FWSDmDmYhdsS0kHhjMXbBmb39b2Lsg4y+ZzKNzHYNpRTqqjjaUw72cadM985aw9PzE9//8D1PT5/Y1jPjdEHM6TO0ZJpndJ7jEBRVwzb3aB3P83h7i9I5xkXQX5YZaz06aEw6T6UkSsb8SYIAIckyfS0qrbFsbiUQX+jbupJnGp1lOB9fhD5YtJbROiPAPE+cTmfy6mcANE2HQOGDJRJGfVwnr2xM9nX/p3YE7+n7nq7rrr/fOI5fYFjfxyzKaZy+wDBVKe6znOrmjtUZnp791eRTyCNabZAVWHvBOcvFjxxUh08YdnuT8+nDzLpu3BxzvHNcLuGKYV0nyPKOaYSPH98jKMiyG+ZtJjU0efd8wn2uefszsM/P/ObTia+/+oZpShEp45mbm19xf18kEvyREHoE3T/AsJ38DzCJZFkACB+7Og0NdScQvouFOLFb0PeCkK2xozBa9Nu3mI8PME/cJYuIp/7COl/IZY0pJOP4RHO8IUuFq1sNg5eEy4o6OKqyIXjPPM9XDKvqFhECwyUQ5p4pqaR9ipOp65rgOoRyMcInOPo+ICfNHu9G58E3sZs3zlDXhLDHLkWSu5SS0LZxPXRDJE8PA5fUrW+EwIkWoWamLGJYww39jmFS0rQdl3Gikx1zVXFUGpF3tHn8GTXNhGnGOIc9e4KcCF1Hm/ZwcpoZA6x9oGk8i5Cs5kRlNTZ19oMMHKRDh8D4CsO69CETijEMtHRXFBMiGqweDjuGNfzu8TPvf/iedZkYL88I6XFJ6DAlDKubO86DoKi+5vT8nraN78TjbYbSdxg3ImTOyc2UqyAEzXNyflfqAMLj/Qi9gBC7XWPC68JYntxKw0phSsZ1IFjHTZbhkhntYz+htaRtay79GfV5omgcX30T18/XTcc4zPhQ0nWeEC5M8oa2aa7Cob7vo+DjH3H8URRaXHe7r+T/rwAKQHmJFhJjVvJ8H3V5vv32t2j9H3FzuEO5OCbbZbxlluGtZjMWEzzbvBJyy7IZWNKL2yusC1E5lhVkWcbYDwxPcWdW1gW5llS5RhZxt6mzDIRhPKccwkxwelxo6g2lO54/fMcP3YRn1/QAACAASURBVLc0qaUp9cTmLG/ffB2VXkktJ0S4PtxaZi8qung1viy8QjIvCPZVMcF19BZEHNnpPI4WnTJ4UWDNdjVOlc4izIoZZ7JZYocFWZSIdnd912yZxQuNyku88GS5RooXgIlO4B6LAeERWiMc0SkeCMGisiyyo6S7frcVXP/sgwMZeTzW21gQ8VrEIbFJEq14CRaXArZ0fZyMvDepNEpnKK3xHuzVZkITUjEhpCTXijzLCMFjk6dKcBbhYy6OtNH6Qbyyd1DCo4RDmhUlPEJ6jFnAmRej2ABK5KhU0AlEHM2FV521dJ+E8jEo3IAUefxu4PT5HR9++DtOn/+W09MDQgjMZq6pR2XdYTeFswGpHWVZ4FyWOD/w9DCgi4KqakBYhFTURYmk+EK0GX8vnwK9HcYumG3nmjkgkGkRDRsROLOwLRvrzvErJJsJOOHJBGzOo3ROmSc+o8gJaEKQqVkX8F5cu7hAzJaTf3qF1o5h4zhed7uhaZBS0u0h5QnDiiLj7i6ZvCrP09NntNb84nBHXdV8dRe4XNI1zzJq+w1PxlKEez7N72iykoeniTep83HyZ8oqo+9fMOzSDwxb2sXPJmHYSjiUzNoTQoYan0Eko8bQcXp84Ok3dwnDvudv/tW3hB3DlgN59YFm+zrZqQigQ4w9YccwlSFRSODQtjGzrx/Zx8VtKxhCx9I/07QB6OmFj0adQNsFrDvhTo5QdDhruLRHrNlokiJQmpVxHBkZyT5L9E0R80Pb2CXqvcavp4hhpmQWz2S5JtN3IJZ0jwxNU2NaA6FDjMOXGCY0KssYBwj+TPAtdxmcxEDwcQTlRgdNRpA5z97SDArDgEkxYtXxhjD0bAjmQdCJA4KRSWnypEx9WCakFhyOb5h1hloWzt5dMazTJTaroBKMEgp9pL69JQTP6RQL4CAVrfccmprpfOIoWsTTFvlwgOpq1HjGmZXtotDygik0uJEmYdjQw6xz9I1EyRyBoG0kPmU/lkEwiBEbwEnPKAeaokUKfcWw7z+/48Pf/B2n54hhahQ85C8Y9qbueNxmjNSYZcewW/o+bvLPZ8PNvUkYVtJJRVbkSIqrcTNEmx6GjUlHDCvKhectcrikc9SEaLNzC/fPAlcszCZnXWMxLytJ7gPL4lmdZ6s8Sm9XDJtFToMmhI3gWuAGfxkJ3eFqvCsRcacvXxoh/7bjj6PQ+gk7XInAOQcK8vTwt11H9pgxjgOPj49UTUGmFFu6uVpn3NzeIKSi6At+9+2JeVkQwJB4BUoU5EUBQaF0XGRVXZOlwsLYLe6G2CJXRgvyvKQoc7SMxdjlPOH8xm9/8wP3bw5YC999944inefbn/8zHJEAf3/3lqpqUwzOSxhz9IF6Rcr6Q5cpEYuvo0fx8tKSRAK4EJLgYsGmciCNbwCk00gVTV/DsrFtBr8umGTdYLwjb444qXHOIDKF0iVC5Cj5Egjt03e74OJoTMorkT/XeeJ1BYSPhPcgklP7zn2Kb/rYyZQ6/b278q/CK+6WT47pu6d6ePErICCQKkdnBUprAgK1X1CpQMZCixAo8kj8987tFmmJg2YJPo7uAgElxKvixKIzgTIBZw3ObTi3xoI3naBSWXL5T47vQabCcI81SqkAwiOSgCBG28w8fPoAwHe//zX95SPzNDGOG3Vb4r3AbPE76kbT1i3DuEZ+ltnQWXGV1ROi4em2WfJCURYVRVGQqeaagOCciaR053HeYczKNI2pwCJGBIXAisesC9syo7O48yuyNIrfNhyBts0Rhcdaj9lejGgznUUfLW9iYbx3CNPahWvN+ad3CHH10Nq7OW3bMvHip3VoO5x3nAeDSR5YP/vmGx7+1SeEgPXxEdkUrN7TpRDlcfKE28DXsuDUG+pvPadlw/mBDx9jcXHs7pmNoShKlL5DMEYMUzsHp+XzvAILtcjohGDNS4r7X+ATIfoiJ+S08dvf/A33v/o5toTvvvtbivsdw+459xHDiryibhq8iJ5VIfG4LtNyfS6GF2oa+5RlAMQgEKJlGgeaJnY3x7SOGwYUN4jbS8Qw13F82jiLZ5ZUFGRFGTHMOIJ7Ip86Pq0PZOdYvOTdjmE3MakjW1D6DaKD4xXDWpx3IARVcIimRjAwDvHvNxsz/ITuEf4NQgRmAcKbFww7dBACVkiC1PRio66PmDSyC6Fn8LHQVPLAiZEOSYngac9DVPpLDHPQtIJL8ijbpKIta+gOtCFQbBvTnOHdmWPqJHnX0J8fKT1UruTE8xcYli+gbzvcJ4WzG65SVOvCBU+T7pV+hWFdKxjCgVGMiHEfA4toVCp8WuMjiMDp9PkVhn2gv3zk4XHi4fGJr372Br8IzFMqcJpbfla3fBgX8lxQFprstmCSsYCmn5gmzTxb8mLg7dufXTGsqiNGnc8LUkWTheAdRZExDBvLOZruzt5CaOjahGHWooWibQvMGn8XJaKUrGVD1JoyYdgQ4oLNlhXVlDR1gUAwTROiOzAMwysMawkDV0ujn3L8cRRa8A9Uh3+IwyRletEm7w0pJYfDgaoqETJ69gQhWLYIYuu6sm4eYx3tscU6g5QKJRTzFH9GZgLvBcHBFgzWGAiBLBUwmdachjNgcXaBYJAyUNUFVYoGGPoZYwIhGD6+f+R4WzING7/97TsAZhv45a/+CqkF7tFxe/uGIi+RQl6LRnUdMXli2fTjoiv6bO3eWns3a3+hCxGVaEIGgozEeyEkTmX4pE7ax0h+g4AhEMepO9fMS49QIYVQZzifYaSL10JfSU9Y57DWQMrusl6gEx9N6wzvkspQpfFeCo0OKi5M7VwaafoYa4FAeBeJ58C6xBOqiiLxKdK4Ugj0zqcX8Vx0lkc3cqmj+m+/HlJFZ3gpoorQpyLRBUJy0xdBAQUeh3MG6SwWl0xnwfqoihJ2xZoNcLGuDS/eQVonzloqBREvY+/rfUsKQ+8iN81sM0+PH/jhh8hE/vj5Hf3lhN0sAcm8eXyQO02N5+ceqSRutbjNUpY17fGePE9cgiBYnYUgsS6wrVscv+YKpXZeisJsK0qmcarKEGWNWeOGYx43rN1w1iJEoMg1ITjsusXxMmCsJ88zhBAxqYHo57aPpq2No2ulNcH5a6j06+daXF/Ff3qHECNdJ78oMhiGyAUcYPAxL02qidbHQipi2M/j9TzUiLqivfS8SxiWOdhMxDCdaWxVICfHjbrj8xRHKiGM1PU9/XliWw3WCKZxITvE4mPVPWpYGYaNwZ4ThjVUtWF/z8lJYAz0wWDfP3K81VwuG58ThikbaH/VIbXg3J8x3nJ/94ZJSMp9ob7GsFbGVgnyWngCBGpoAk2ouaQCdMewQUjCvFCHjFAfEOqMuC+5t19xOccOzmsMayi4DE9U7QGZRml6fMaoENWS64rzGcWhojICp8t0Fisn57CnZ0zCMOcFNwnDNp0RlKbsDozDcMWwQ/s2bvYB784MPYiypqsbhmFk9o6ijJ2RdZGsDAnDOrq2QzAiRYdOPK8g3kArWNaNzAu6wx1Iwf1d4gdLxTaANiOirKBuCcOQMCyOjUUICAo8ElcZzPlLDOv9iWosKO2KLTbwierRw8xrDJvo6BAc6QQI0RFemZL2oacTAu8EVdmybROfPn/7BYYFb8m0JXDg89OFumowKnZuv/vuPYfjgSrLgRB9FY/33CcM6+4ihg39hHWBp8cnsrygyGeOKfhcqQvOZkhhEUKSq4zReu51fJY+jx+wdmCmRIiA2Ra21WEzTSjjQjebgW2leiupZss4CKQ60oSkSrQ13tcoLejPF3xdx/RSIdhH4F0ruIwD8NM7Wn+aEqA/H38+/nz8+fjz8efjz8efjz+C44+io/VTGBs+2JhV5z1lGXcmN7e3nM9PVFVBUWT4YHGIa7ehKDTWbVzGke1pwzlHURSUWc2SPIqyrMAaASF6/cQMOAMp7y7PM8qqxmwz1hqsNZE7tni09OkzFNZa6lohhcRsnr53mC22K6vjifPlkbzIMdZgg+N4uIvdH5kUOxnkUrGbGBBkJI2/4mwJRFSN7bys11cv8dlEGocJFztaSnt84iQhJFJmWD8h5Br9uLzDuTgn32YLGMqmRVHgjAZhMSJgUsyBJ47sPB4pY3wOqrzOq206FytcPH2SHUeWkeW7o38cHVpncTbaPiggJL5QrgrwAZm/8JBk4vlkKbA3GscLlFQEYsyQFPJqV5BlGc66SNwmYLc4MowDvp0/FTtHwYnoy+UdgtipA3BmZlsX/GogOJQMCBlb7fs9UFIihb52aWLzRl6n4SH5pXnvkSLDWcPDw3vevfs1T4+x7d6Pzzw8nMBLjAdnLN6Ha1Zg8AGzBJQSFIWizAqcDYxpfQkhqLsDSuYsW/QBCz6wbRtFnq6H1qAztABrN4SHQhWIJISY3QrWognJ882ltQEq7dyk1BjjmK2lvs24u73n0B2p0+goy/Lr/RIpcmm3gntt7fGneCgpiTteSdumjkV4yT0cWhBnS3eA5+EFw3SWcXubkWWawqz4fo0YNsV/Z/zCPG8YH5iXCeccxhiOzS1LGlOtq6QsBDQt3sd8VmstbXrut01inUepDGsNpTXIg2T5AsM0tmtp3IxzK2brsOaJp887hn3PD+8kb99+A+IGGz6SlwWLXvHyawCKuuROqmunCoCuZseoYRjpWsEySaYGlDoyqUiyBhBSI7RgDoGwrniXU1cl83LhrogWEFu3cj6dKGvJ5dOHqBQezzgVR1SbvmW7fKasZo7lPU/DGftgMW9/huEzAJ4D2zBeMawOnkGVcIidEzvN9NNEXhSUu5ClFniVkW07hoHtIobJsuLoGwaGyP8F8ubIXXUgyzP0FcNaBILb1F0Zx4Fguqi+RBHEjBSHK4YV60p1rOiHBcGE3Rq8daTMDgAu/YU6HNjcGH256opxeP4SwzKDzwycHbPs6Q4NtzcZfVI1HqVjEhoxqrhOx7Rud65h31/J4HJcObsT0/TE6fyeNfm99WLj4Xff09YHsgzOo+XSn652GMEb+uflimF2NQTXM/r472UnqLufU709oDfD2TrCPLNt27WbmWlNpjOcyrA2R3hDoQryw65Ky8COLMPGQQmW4AneUTlzxbBnqSkKydBb6lvH3e09UrzCsNsc6WfGMXp3tkox9gNt213d9gFauisF5accfxSFFpB8Vfy1SHpRG74y9QzRckAln6w391/x/Xe/Y1knqirDGAcyR6YrsFmH0gqdKR6fP1PWJc/Pz2SyoEleJutsyHSVChyB0gqlCkR0R2JZFhAitjGrAsERrSTGbGxzXCRFURBCwBiBlJ66LijLwNDHh24eJz5/eo9Siro+YMyGFIKmPV6NPrWqY6ZXCh2WaXr4OrxYimTgGquM+M668nREesmFSMCWDoFESXcd7SgdCEFQVh1Ky9hadQ6TeAfGbZjZEtyC30qMzBBmQdgNqWKL13mRwpo1Ik+2oK+iXoK3xFMUJCubOE6TCpW8TALgnMM5v0+BkUJQ1PE78rKOZHBrcUTDzyBE9IlJZFNJ/Gx/VW9GteJuQxFHjTHrSosUbu3iGntRSYG3Bm83hHcEu+H9SvBxPOHcgvQOKaJkX4hAtFH1V0Vo0g/G0eCPlaSk0amQ0SrDbDx8/sT7d99zen7k3EcSZ98PLCtURRYJ/9ZEAcJeUHsfpfgBqjJj2ywEg06ArLM8ceQkeVYgCxkNR7f1GggdnAMfsIT4//n4uS6NadksIkSloJAaJRQ2eOzmMLugwUJeZsjkYWasxxpPmcKt87yISs6dlyXkS6G18xsEV+L4n9oRQuByuSAPcVF38oAQI03ygBuJGFb7miHEke2v7v+a0/NDzNFsDcZVIDcOWbxeD48VSjtCCGwfFqwqUdmMqxxNurjrbGLg9zAyth3q5ojqPfMSn5Ui1yAEt3mBrApE+xdoNfH8XFwxzJgCa3usjRimtaYsMz68jy+5vOtwvud4POK9pig2+r4jcETMsVi/eVszzDOR5hDixHQcYlQLUNclIZyp6woQ0EAfGkKiaTShSyrFQN20hN7RzyFmlTbxmZyfNw7HW5z3hMP0gmEyrvPCbRRKMl8eWLaBdcr4bBa+KnOkinh8vlyuGNbdKfrFIw53LxhWl/jLgBhHkCJaWIiWcZop8ohhDbd4d6aq6ojJHYTxSFHH5yl4T1EVCcMm5lFG+4VXGKZ1TtOs+NAxzipmGh4E45iy+7SKOX/es4yCuoqK7rqu8clUmRC42GdyyRXDqlzTX1KAtluQc8W09nSyQYjANPQcDgcO3V7gLnSjJNpRBGR3jMrHYTedhWmaqBuPK2uWzyf+7m//H56ff+DZxkI8YlhL12ZIMVBVIMUNY/qM4CXPJjJQOrsSJ4gFNzfJQmLdYqF5KMmzgq8LySw1eb4y7p5yTrApi8wLKmkY3ACmwdlP8VpspyuGjVKjE4adns40daIC2RZRZkyipxWKoqyxxSsM2wpEbgne09LSjz2iPRDTkeIzexAtNCHy/H7i8UdTaP2h47UFgkj/O5JtI8CUZUlRlHz89B0CQ9l0OAdFkSpxIVkuM947VrOBcxiz8bQ80RT7Llxhto3gYidMCnU1XoNY8B0PR+Z5xG4bPoBFIkQeiyPAuYksy9EJEEMIVFWGTQXMw4cerSCTGWPd8/Of/yXPTx/RWrG7v08hQOnJszxK2RDJ2XK/GEAKexbJiwnxKoA0CAIyKfclIqgUHO3Ru2JQqvgS9THk2gdBph1SJfWk3TDOss0TZplwUiF0gRsHqjqppHQRnda9xnlJUBnKy6gkJH5mzLmTEGJZEoOOPT7twD3JX8u/ZDkGIV6ytQgokcxJvY2csxALN3Elu78kBkKIQciAcXsqvUMFhxKwbSvbusafC/6VQatAhpVcecy6glsRbsG5VHzYJZmqxmtZZDrZZ+wSaBLnT+BedW52M8b491HAYLeNp4cHvv/ut7x7/y3DeOF8jiA0XCzOQaYdIRWWeZFf/c3WaeNwkOjUMRJSkxcVRbGnAujo0ZUaoLt6NdHY9ocJfMA5hyL6nHnrkem8u7rBOhfXvYVxiS82nQlMCtAOiGidoqMZcPCBPC/ROgW2ygyXvNV2IzMRvuSs7Ua9f3qHZ2BITtkRW4ZhiH/qOvoQOLQNfX+hVtAk02VTlhhjOZ0/I7inbDKcy6O6FSjeHNCXikv/nrXY0NIxTTuGxW+OGPaEKToOzkQMO0geHh/iZ5SCv/jFLfMssNsT3ksskq6745w6MJWTVLd39P2ZEEKyqrjl9ja+9B+Gnpvjmd//ZqWsa26P/ynfffsb3n71H18x7NPU81X5lnzdIp+09TBKhlTA1AnDxmmKvmJ+XxvJPDocXjBsyhAHhewDLQU+T6aV94rTc/S80kWTMKxCpjzXImFYPks+PDxdMez9OPD2q78AoNEFl3GMGLYcsPOIqscrhlVB4DPJZZggSBogWIewHk985lxr8L2D7AXDmlawjLuvVM88DtHSx5c0jWS4WLQGKXd7GejHuDEWh0DoqyhUeYVh+Jlj1/L0+MiKZ5klSk5XDMObhGEZz4+PBLPQugW+wDBJGypC58jzI/7iGccXDDsejsxS48JATROf0b6/Ytjh0DGOI6fnjaeHd5yePnM+PfHp0zNnFzeLXEqKEuz5TGhfMKyuo+flOm1kSPS6JQy7Ib+vruKCt29qgjjGDaCAvh8Td6yNhDKI78BLQ1U5ZibEBerSYx4ijnZ1Q1lVLI8LgwWxbGRkLNnI89OOYT3ZqmlvWp6fB+6/Dtx9gWExR7apa5y/UNMifGBsBIHYnOnDQA1XgdhPOf4oCq3AS+fmy27A645WSCI7eTWjjGHNAmNWlArkhSaIYmdKEwgUZcF9kbPYhY8P71Fasi4Lj2nXUOQtmSoJQeCcSsVA+KKzFpPmHRBjKGTqUBRF/B6tM9Z1Yt1ihM+yLCnKJBGRZWAdVnp9Zp0nvvn6ay7nS3JFjm132QR0Go1meR5DPZPKMB4yjakSsVpG+we1S5KR1y6LEwFSUI8AZNpBKaWjIadzhCwnyCwSwG3yhFolsOHY8MGhvcWvHmsdNl3TrGyQOkfiCQ68tMigX+5bIPmNxB1SQCJ0QGVFbIkAwVmc91GJmLSG/pX5qhQC6QMymQgGL/EijrNs2umL1L1zuws0SeHmdxWmQASHtZZlmXHGEEIkZ8uQHpAgEG7GbxN+HdE4gl0h+Ubh9w6PRKtojqq1TLT3tD4SEV5phTcGa13y1dofQs80jZwvZ969+x3v3v2edz+8Z5kNJu1KA4IsF7jg8c7GUcNmIdmY3N/fU7c3WBuY5iV6p0l19ahxziJ1CvhGIZB4F72z2ItX52MUkrVopSOGG882Jp8tGW0uttnE52u3EwvySl+3LhBWiwQKkVPXLXlRkqVdvrM+dVjFy7O7W178B3CE0NAiroG/YwgxWDgEWiGuZqayO1w7ud7PdIeO0/nXzHOOvMtoxD1lucd7BdayoDD36JuF8WFm1hPrw8ZDHoG/yEkYduJ8VnQ0DK8xTB1YVo3ZFobhwKETSFEmDItFodMrRdZAF+j7M3rRjPIzRRk3WH5SPH545Jtf/Ay3LgT3xOU5Ytg/+6t/DkC+HtnkymXNyILn7rb7Qhwga4mSR6Q8M00THoEIgjlNKJpWv3SKO8UwzBxuGsahoMlix0Epx/1XMRYnZDnhkCHPFps8w/RaMgxPOLfRtS0QuPQT1jpOCcNu33zNoSyQWhEeH/BSIx8+E+7fpBsJ/tLHzaJQ9K3kxhhUgLbczZ8tlda4deUyXGjalss4XsU6UnRIPyN93NT0fkJUHUE6bBKgvGDYM+IioZVY313DwiUC7yrs6TPLMiNCwbaeKbcOebMngiwIp7g8DVcMm+yKShjW1jV9f6Y73LLMM8eiY9RTxLA2mnTOw4QQiuONxpiB0ykkDDumle2RUvD0/Mi7d7/j+29/x+Xcs8wGbLVfMtZtxAiobckyzWzjieNdNAa/v7/nFo21DVItKLkwTAsuFXtPTxapPUpOtN3xCwxTux3MKwzrZjgnDHtKGHaUHp95nuZnfIhj9O4AbXbgdNoxrCesltPJ8/WtxtctW1Gybj/CsBBFQ30Y42aZlw1Ui8C/Frz8hOPfudASQvwl8L8AX6fr/D+HEP4nIcR/D/zXkAbi8N+FEP7X/88PS12gHxsZfmnq6ZEyw3iPF7u0PpqXDmPPd99vHKeJ2/u/pEkOrm5amKaZyzByOj0zDD12W1H+pSjx3uKlSzlekRtD4CWaRESV3T4S8YHkth6uY5EsKzFmQykdCzEpsdZdcxrLTOCWjf7phMgkv/v7X1O3DZ8+LEwpWuKXv/wXZPqFw6SkJMuK63cQTZXjDY/yynj+P1K3ecRV4pDcqV6UiSp2xDySIDRZkChvUTaZnkqFVRPbFnA2FiqBkNRne0tcoHKHyjOQ4DGxG5h2P94TuzsiGqIiYiSGzkrUbpAXQHhPsLGojTQIcVXKBCnx1mLWDWdN9KhCEJQiJI80RYZAYKxLv3cAIdF7MacFQUSe0rrOUXkZojI1CboQwSLDiJ0XMCvWbmA3lNi7Lx6VzE73okGJaIoqXnmchRBwJhZ8UiU1ZVrLy7Ly/sM7Pn9+4MMPf8/D549cTjOxxtqVmrErtpk1xUg6vPPRjwpYs40gJhAZQWgsEh1eLCQCkuADLrYIUnEeAHMttILzBOsI1mM9aKEw4UWB6axFak2pcxZjY+6hA63k1bculzIWtllgXTa2bUPr7GqaG0LAO5d8s/ZV+ePjpaD+9338k2IYktD3DAfJgaiCats2mnqOsVRt2xqpjhjvuYxpYykjhn0Ye6Tc8FKy3Aua5i8BOH964NLPeAT29MyHD5+x+Y5hcafv/dsrhjVdyeVyShh2u/+eWOcYpxnwXEJLaz09gRsbXx5rFkeGMT81x8gNuyrmOVpI1IXALTn904lxnSjLgrptmIbv+e738Qr88pf/glWXZDaOWZy7J8sKpEjmpVN8gR+7LtrrhPjy8kndFvo+Xo+2AxGLUzFOIATjuBNiRpqm5ni8Jfges0kupeVYxqLByIU3SvL09JllWuiairuuoR8XyjWu06dPnzjeFaj8FvIMN0iaCsw8pus5cJ6jI/soJKwK51dCUEx9vObOOYqqjBhmHeHkaETFIs7pvj5HDMPjrMGME6KVBKVoTIrPYf0Cw+qsYREzy56FqAUmF2zrxLrOKOkxRvMkPtOOyQQ2WGQ4IcMDRZYhrAPJ1dV9OJ/QUpBnmnWJ3Eklo2F2lx7EkRgf5czEiOSoWkITu14A6/rI+w/P/P7x93z4LmLY46eIYW0bizGtZ5TIyIsMb6GtKoZh5PT4nD7DkpctrSiwdcQwXmFY0x4YZcCNNeezR4jI7TudotIfoHGeUC74zXMyipvuyPLw8IJhZYkME29u7liM5XQ+czm33N1J7u5S1M/0FucviCzncRn4+bZx8wWGNXg3cLn46C85QLh6k8Z7PyCo2xa3B7j+hOP/T0fLAv9tCOH/EkJ0wP8phPjf0t/9jyGE/+GnftDuuXP1BeLLzpZSCh9yHAGkvSbUFrrgtn1DLiu2ZcZvgfE8k2cJ6LqWaTNMDwPLOuHWDYHEBkmRZKWSSGzepejB2Tju2KWbIhYnUkq8SH5PMlb4Iu3EkAKdtcisJNOANARWxjGC1DpvWA+lynCb4zf/+jv+6p//BYdji+2jB8j0VMPqOd7c4fMAXqMzRUghyp4oy3VO4F0qDEVgr8RiKWoAQQhVfNnuheseEB0ied0JgVQBmUOwiXwPCKJju9QanMXbFZyNZGwTO4DWbGRbBiqPMv8QMPpM2Mm9RQUiw0uN0AUIxeotKlMoWabfJeCkZ2PDuRimLIJAiFQkRReL6O3kPUHGnYyQEtJuT4fIjVIiYFwMQyadD8DsPAsb3lpc6lKpECC464hSuA03nfDWx4gnY2M7/TqdLNBCuP6hhgAAIABJREFUxaJJ+OhPI+Ly2yOaCBK8IgibMgZj580n8cDp8oFT/4HPjx/59OnEdPKcH6HIJGWZinnACgsSZJ5z99UvyHTGlsY6m3GYNcr7ZUgZlFpcnYqFCATH1SJFJmGHUC8cKecdGIvdligQkPF+62oHU0dwlqBAJ7sTrRQakSw4wIU1Fp9K0N3WNHlFIfLEW9tBPwkBQiqhxatwcMDBF8/5v+fjnwzDAA6HA9M07RvfhGENQxhRStHI8ophbcKwTRsySnJZ8bTMiKeecim5+1XcdPys+xnT9sz3P/wNj9uEyzZEkJSNxCwRww5thgwVw3mAztNUcYOmVfyO4SToDpLj4YAPnrN3OOlppWDUcQOlpY6j6axEHN7Q/gjDnj4/YWvgvOIcCcOOSNVix98AUOKpHz3HX9zhR8ejP/P1z7/BJx7qFcMQFFXFNM2ElBIB0Hd55EWhCb2L7tvJ75Dri1Dj0ZzFGG0Z8hahnxhSSHdJpF7IuqOtLN5m4CyNzng+x7pZGIXJb0GdEKPAhZ7HXnH3JuLTYiKGXYqEYePM2h2o2wPG7qKggJsU2/bE4gKlKhFB0Ik0z/Xgm4x1WVNn3OIvC+JG4usUj2PdFcOKqorcSSFwyeZGVZ7L4vDbQGEznBvjLjYExtMPAHRVjvv0fcSw7vAPMYwKnYRCx0PHnKJ6nAtcSD5ZjcY5RRAVR5Vx9oJwcYS0zxg+DXz//tfM549MkwVbc35UFNmEriKGjcNKd1vihUXmOXl9w9e3LxiWFxX0A33W0/gGH6p4L328nlx6QlAIcfMPMKxr4vvceQPbFg1R8WzbmRHPzdtkY7LO9E4TVKDygmPbomeFHkbEIeLP0ZVcRIY6Grq7rwiboxA5hzZesK6x9L1HCEfrKkIVmNyUMCxFKDEwTpckgPlpx79zoRVCeA+8T3/uhRD/GviLf6fP4pUq6d90CA3CRZDeCeLOU1cdZV5zujxxdxeQQvH0lJxi84K8LLi5uSXg8Mbw9PjEvFjyu8Rv0YJgUmC1jAo5qSQuzY4JAaEkSsvoGSQVOLDWXs0e+8tClmUICfM8IpWlqKBK8QJFIdkWw2bWqJpwgo/vP2G2kSJP7s1Fi/cFeZHhXCAIicozVOImSA2OgJY6MawlIcQi5PV1TIPY6KOUOoJfxNjEf4oU0T/F6QxpE2fJKoTW6OSDZdcZb6OX1O7+7I1lMRuLH5MnUsArwTLF1mtZt9TtAVB4sxJUdGZf+pXgEn9Ba+Z1xQZBEBK3pq5b8uqSQrJtlnlaYm5gJgnBYmxA2JfYmthlJHXOZOIQ7fwHB6wE55HCI4IDZ5G41EmDYLfo5yICmZJ4kcVRYOpWaaVjgU004PR+J8W/4s4hECqGnW/rgpQlLljOfVS1fvz0A48PH+n7M8u4MV5WMgUEfyWNGxsLytuvSg43b2jqW7ZtfXFpMRGAvd/iuvMBa/T1vkqhECi0zCIvzkfPLucnZFLPKhEQOLxZ2MxCsFt8Ie1fEncX4KP/lbPgTXwhN90eHSXYQkDJmMqE37M700ekP+yd3Ng9TfeDl0O+XLx/r8c/JYa5xN17HT/zOg+tbVsCC8PoUudqNxG+iRi21Zz8xl0eMezbb7+Lf/8Kwxpb8WAKnh6/pV8sRVLxzstIMPE5n6aRpiy/wDC79djnA+omYthBKryD0+mEuhrWaobhhJCQF4IPynL/CsO+Kd6wLc9cZkemY4rFb/7uE7+8FxR5fGGfipa6vmf+vOLyliAkDw8Lx7vk6q6j0m6YFuqmopWKS5gIsr5ep9C1BAIDgTYMhLqlGUdGsZtnxhiWTh6ZxwHdWVzZXDFssytFFXiTf3PFsMsp5uF2SVXojWX5/JGHFCcWCNRKcHmNYT/7OW6b6M0jYdWEQrD061UYgta4bMYuI5U48Lj2CDFxr+M0ZRITOSXztDD1Y8IwiVkCOmHYsm1XDFuVohETgQ6XihNnKmAlWMMkFKI/g7McqOjTZ/TzA90rDLuMK4f2cMWw7LbhICWX4RnRNeBDwjF5deSHjHGeEMKQZyVNFTHsh/cRw3749GseHz7y8HDm4eOJ/nHi9tgix5r+Egtx6y3rqrn9qkTqkqa+Jd9WUsOUeYz44n3O8/NMUwcy9RKfs40jHUcWOSUMG6mrhrOdmIZUJCUMqwuNfV54Z59ABA7HxIncMeziOa9niqzBL2fcQdBMCcNuBLIPqGlAlRUcAmIcv8AwIcDXcXo1yn3dwR4VBXBoX3IPf8rxT8LREkL8CvgvgP8d+C+B/0YI8V8B/wdxx/j8B/7NvwT+JcDP3xz+4Ojw9bErDsFfx2UqE2RZxu3NLf34gWVZ0MVCc4ht5HFZOT+dOJ/OfP/DdyzjwLauBOdYh7hAnN6waySqd20beS3APmwPIRGa0/8QSR3pnMOtO2lxD1GO/7HB4EaL3k30lCcvJXbxqUCAedo460BS32Pt94yzAxG4ufVILVkmSRbiAslCjpQSEyIHyIX4wt9Vdl9eq13h9eV/Q+wO7h0FsUfY7HwRIdFSx+6RsyiZIZKAYBPJAoIFZwzOb0lxFxAOrIu7sNmsqGBROos5dyLmBW4CTJ+sBpoGhIpkb6GxJiotl/gROGuxDpTYg6LjZ/gQENZcf0aIyEIriipKw8WLrQLeIbyP52pXpDMIZ1jXGZKBqxQhFSBJcaoUIvDCE0m8MSV12nXvRYN6CbGNc1ACHqUF2zrzfH7g3Ydo5Pfp8w88Pz3x/NhjN7AmqcACrEsKa/aBYyvIc4l1M/34hDWGdU3Gu9OClDLmDLqYC+mdvpIxlU4qQaGiKMJGMA2YvVkZx8nOsiwjZp3x1pP9v+y9S48kSZal98lD36pm5u6REZlZ1UQTM1wQBIFZzI6/gksuuOaWa/4HckuABJdckiv+BO7ZAw5n0GR3V1ZXZmXGw93NTN8PEeHiipp7ZNWgs6e7gZxCCpAZ4Y8wUxMVPXLl3nPPsdwCMaUU1lh8DJyskYwhQd28Q7XxBA/TKG3eb43B+XCzLNJaS4NENEP/cQfmy/r8eQRar8c/Boa1bYvW+rMAq+u6V13TJWXp0Nrig+BPkvSg7rj79Z/R/mXHVAiGvfv61wC8//T8GYZZtWNYQbL7aSLl4GkYaOqaaRzkGiKGaaswh88x7Hr9HMNmv2BMTfAX5tkS1DMfri8YdjqWLJvGWk+eZ6Cu6FDz3aUjlQol9bdnlPktXx3uKe88q9VMww8UlfB0kpDit8AapBPalUCvUZFjIy9SI3qeJV0nPo3UNepmVt0zjlLqUscTSisO9+HGM13XJ5yzXFuHc46qOFAuFev6RBoFSZ+YcNrcMKwhgINzxDCTJXzZPmFswkFPBN3g208sqqOfXjBsU4bKnKAZ4dkT6Pm0SAbObTl50WGUpdEHjOq5BPBtwDVxzocBpRRV3bBenlGHE726ousoWHq90JQpl3QlbFJ9aRQ8Pv6e2kXrJGW4qkBDA12PMScGDYcdw/qeTimO5kQ3tKBF9kf8/KI1Unmkbjxd5xmnnjQJPF++4elJuvm+//2F56dPPM+BbSnZVo3yE1jIrATRyqdsa8+yeGxT3TAsiWXSx2FCDxprLwTnebZQOsu6Y1hqufZD9IbtqfKKbb7gu2eIVDGn6xuGPQ8f8Zvn7lSzRlqL719jWM00tqjTAVrFVsj+deiEVziNoPtH3poHLj5wF026s3ygbg44t9H1PfqgCaGSDsx9b6lr2hBwP73p8B8uWKqUqoH/DfhvQwhX4H8E/hnwL5DT4n//x/5dCOF/CiH8yxDCv7xvyj/2K7+MX8Yv45fxTz5+wbBfxi/jl/FPOf5BGS2lVIIA1P8aQvjfAUII71/9/H8G/o+f8lq7LMK/K6ullJzEUOqWFg0e0iTj7u4Nv/vWMI4TmCtpdLU/HA/Up3usSfjmm9+wzBsqKFKlbnYv6xoY+wWrU5LY1RiCxyhJIyfZi0ZUFGtCBxFP07tsAkHI1kZhQ4I2mnWdbu/hcGgLaS6kZa01bok2LzEpNo0j18snkkSzLDN324K2Ghd20cGFuj5grUFrIx2XfzROFk7Zq3vw2d9vp2ttEd68cKTkewkGMRfethU/ryjvMMkmFjeAsSneLazziHMLyoudws2aYp3pH2UJ7JmzQMApBVGuwJQlxfEOU9R4DBqDc54xpsyneSXPKpI8kWvxnnWVTGCIrc/LPEfi935diXTT7fckSEZLOY+bF9wyodyC2hZMzExZq0TyQkmnnFEGE+d3n0sCeCVzwu3TyO8DBCWfPYQZt3ku15bnpw88ffwegMvzI/21oztP+NneCKDWalzMrDW1om4sbhuZ1wWlg3g0sneLBvDSdOBWKR0qn0qnJuAXxYbCxs8iHDcPOGLHOpt3sSHAofFSPtY3XV7hVDlP8PKZt+11G7r8mZcZYR5JEijrkqKoyLKCPAowSslQMoP78/zHxs8po/WPiWFVNJHuus9bkvYMV9+3+OBojjkq7EKOM2my8md3b/hdMIzGUuN5fpZ1fvjV13ypLH/9V3/DN9/8hmu70VSKpe/xiWQ1np9bjEqxOmXqQauBsYdjIxh2IDAMHXWthNkbAjp0EcMk+69o8UUCo+VUJQxjTpZZrlcpH10uFxIL9280wWuGweKWnjQ/scVc35SP/P67b5jnga+Xmbs8JU0PfPoQ8cAmfPnl1yQ2YRhGSq/F0/H1fHUjHQqlo71U7LLe57BDsjTjaNB6Egyrqz/AsDelYNj18Zn7Nw3OFTxOch1f2APXPGd9/IhzC7as0FfPnRMiu19n3j++h677AwyrjzJfZz9QmIS+mPFPhgNHLk5josHxkky4LTBvJShFVQaW52eUrnmKWcTluoHq5dlTinzNCWahjvekzy+ozdK4km3uCcvE6haqeUYTuXW24XA4opSmGxasGjHzkTkKEZskhQCtGoEjdd3RdiN1faBrJfvW9lfKsiLLA5fzlY8fP/D4+IHvvtsx7LfSpHOeSIyF0NOoO6wdmIbIbSoVurG4zTD/cEHpA0myMHfRY3BOoVoJg2BYtQQ6n972I78ocqWYIoadl47QXqnrArV0cb6uXN1GXTkOtSd48Qweo6WRDk3EsB6qnHyu0T7QVdw6p/MyI5kNSdLxtn5LUbyLGLY3c3kgMI5jzMjHbFbNZ/yHXYj6p45/SNehAv4X4N+GEP6HV9//KnIfAP5L4F//lNf7sWBpfK3PJB7MrsETf8dvnizJeff2S/K8FD+qQy0aLsA8zdhMY63lcDgxDRNzP5B4sLvYmIfUGPy2MY0DVhtsYvFRAG+ZHcZZ4UwZG0sywt8xu5yCWwghilkqhdaKvMhxTq4ztY6gVvwqZNA0TfBGpByWqFFkrWPsr3y/zIzjSCCQFzkmtjUrbdFKkxclSSKK6f5VYKoj6Th4WQ/73P24fLPPr9c6xo0+ikBIELVv7kpZNm9EiVittxKCNgZcgk2M+I5tK1LziyUoNty64v3GFkRgTynYVGDbH6qppx170rLB6wTZ6wzDupdiDXma49yCD+rG9QnOM0dy7LLMEhApub/GOnySoWLzgNUSkCdR0sI5CTCsVqhdvoEgr494TZrIydpLr+ySE+G1P19cg2GfD41zC9PcMvYTfTcw9Ge8lyBbx4DPBHBO/sMG8BtVKesnqxTWKEhEpV5pwG/4WDpUTtT9PYrgRP9KlngsoWuD0nym5UUQTtV+X4wS5QsfhNMm8WiIBuSgghLhSC/OjUmiKIqSLMvZgoDlvIzY1FDf15SHIzbJbgrw8igJRyL4yAWM1wG3Jln5vZ9JnPVPhWE/lqh50QIUDBu6nn1ivGswRlOVNXnuUcOAPjwQiI00n1bcwxecTie+/vrX/M1f/RVPj4JhIR7WwryyBIfNNTYZmAaDTS74IDW9JTGs08TTojHGvcKwE8dmxzDFts7oOhBQHA6NBPypSB4Ihj3j1wKlwisMCyyZYNgpd4x9R5smvDeG9lEwbJx3DLsyqAP5FyV5sdINhorALrh9aA6ErqMqa5RCtJ60ou/7Wyd5Awxa5Fx2DGvbHl/JXFS2ZsewXlmOdyN+29D9il0k65gWCW9cwval4fl5Js1X6J7Yt0OlNdX6zHXd2CpPuDhUU7P1Vz5EBfpyumcoStKr46pnFvUJ6iNdPDl35wu/+tV/dMMw5w6U9UQI7oZhw/CI1ka8WpXhMStIkpUnI8HaSTe0wXM0ljFJcZcLBzdj0wzlI+meFt8e6RXY05GjTdB6IOytckqJnlvVxA7yhqoSesk+p8M4EMLKp8fvMcrSd+eIYRJk6+C4XnvGdmEZT4JhpxZ0RdAyH6FSnIyGu4HVHeiHThoCbhg24p83PA1V4fCzx107iNpURhs4QBFilU4pCCPDdRJCMfLHqanFwUN5+gkWWmlIAppKw9DTesUBhUsUrih5WDfySg4lsx45VRrSX3H4+ohNVppDQx0xLEV8hH2IGDao2z7wYv3Y0bfc4oyfMv4hGa3/Avivgf9bKfUX8Xv/HfBfKaX+BYIk3wD/zU95sR/raP04syWK6D52HO5AJuKlWVpQVQ3dODAvM0U86XnvGMaREBRff/0rVIDf/dU3hNlHXayoQaQTUV4HQiJipG6fxADaCldoU5YkyyRz8iqrYW2C1g4fXLxJHiKXBqSjS+6VhrAxzzNZmpKmGecYjffbSNUkDOOA0Zr7hzvmqaW46fwHprEj6IDSJTiNNQne7xkq4V8po26tqvs83sjJnwVekTgo7WGAcNG817ELVGESUEqI0Vmxd9mluG1CrwZtE1hXgl5upFrvNlyySRA5z6xhEaV+5W9cnqAU47LizEpQniRVlEXsyEKCym0TYTub5vh97gAdJSKUc2RZTsAI70AblHnhqwWkcUHpgI09pH6O2hPxwbTRpFx4boptc9L0sF8nKhpkixL6Lt3h/HbL8mxuYZg7uvYZXGBZeua5JfYwYAiEzUkDxbLhHaSpxSjHGjOe2wq5SqjKCmVS0uQOqw3rGEG77bg+tYzdyDpHDwO9vRhsa/8q47t3cQacMTeXBIwRLtqmIOqIrev6IiyqxCAa5W/rQ+ROFun0BUwCGJERCWh8UOR5id1lO5CM7+0+/x28y5/B+MfDMGNo24BSHYeoDN/3rzIxXUcVErGkURv7Q9e1iqqseLj/gndVQ2c0SZpQlDE4sQXbONK2PYfDkX/2z/45v/urf4159Ky9ZGAMFfM489w/8fBwz7pqlFpYn8R0mgBzxLC8OTH7ldPxBJGDB2CnGV1afGgI6gkfMrrLlbCnRP0SMWyAsKG14uH+nskmnH8rVlLvtyvvmjva6zPjMPCfRQyr4vOmWPk0/sDD/A6lS5ZMhI5DIZ/1cr1ijKE2GjNMHA2g65tLCLzGMDH1rRsIbeAak2KD6qOocMOhVLjkHqUuXAw87BhW5bhtYng2ZEVCtq6EMmWMGa2yyHHJykPueZpn1sMios6nB5SOWSClSZcVV6zYfuacKt6mCZc9c5LdcT4vpKnjdP8G33eoUgLEYQ8+jOXh4Q0Bw7rlqGGkuX9g31daRk66FgzrFCYvGOaSg3uCePix2tLqEauO1DuGTaD360RRFiWr8wyq56ANw6ApyvwzDHPzjA/PXM8vGHZ/ilzD80cum6Muaj5cNrwLLIvFqeFWydjWGtXMEcMMX35xhx0Ma3QU6dqO3//t94zdM93HiqaGVG/YKOnTD1dWW6FCYB0D9mhoQoIyI9pI1+E4jqjQ051FDkMB61pRx6r9Ont0Cr73tG3Ah5Y3eUpapnglGcAdw8oKAgM+PJDnJVPEsIRA17YoLc9u27aopqEGOuIie0XX+qnjH9J1+H/yx9/v79Cb+fcbes8kxK9ufwZFmmQcqiPDODBNA3kp0XxiLcMwMwwD33zzDR++f4/G4Kdw6x5ZVzB2wRiwZsVow7p5kTpAtKXYAtomWKtuJZHdAgaEmO3CijYSXDg/Y4yUoQCyRKLwbREdG+88+IWkzqhqCQqH64hbpWQ0zwN9d+Z6rZij6FOaVRQ4Nu0JOLKswOOwJo1ToUVr69Wc/bgc+1kZMcSANbzMpmTCXn1lLMZaEm/xsWTn/YY2kt3TJoHEgd1umiIhBNZtY1tXyNyNvG4ThUpimS/PpZuqqLBJirUp1ooPIIjUhg8WdEJQsqFjpOS6ldXtfVDSXZekmYhpiiy+TEeS4lF4FaIOl0c50ZUKu7aUFgVjY4zonAYB8Z38vbegSKlauoa8l6Bvn8p1E52uoWtx68o8r7h1Yp0jEBrxUdReTmRZikhUaEeex5PYKadsMvIiB2UpkozEpHTxNfRq8H3A94ptFCkHnXmC3e+V+DjaqLW2y58E726ipl55mSPPbY6WBdheJCJsorBWEy0qCYi/aBJFYr0V2515XamNIU1zkiy/vV64dbXG52RfVD8aPxd5h39MDNMg5YW+3r+SUt2rMaCo6enIIJZUNKcbhunqiJ7aiGHybxPbMHx4RA+ab775hqHt0Ry52g33XrIJ6xowNsWYDreteGdYN8sZwQ6tDXqr0HZm7BXNXfWHGLZuuC0wjFfSdMZ5z7psHK0wkddkihhmgGdKVzJ/ekLVDe++lKyXYFjLPGtc5ui7b7leKx43CfjuH95RJI73Hz3lFyUP2RcM3YXT8R6AUYebXmAX9/gqBMqyvGFXv8s9AE1VCg5UcAgyF6qXIAh6NGXEsAfy8kJSyKZ/9Rth1GS5YNiSOGq7kXnZN7aqZd0e2NaV9IZhdcSwuGHnOXrJuC8q7D9PmaaU0+mO4izZKHcs8JWFYRZNuqKk0YFBa+4fxLcxhEDdNHgXmJeVzRlCP4rKJnBI7rl2PYkKHO8yuvUN6mNLFyy7Pt7pcOCoBoyZ8Kqma3ua45GLjx1yqqFDHDsaDoRg8L6j7waU3rueF0LY+PBDS5FlzLMSDPNiv2SPDVV/of3YcVDQRgyrDwUmJjVUsqFUTfkaw8p7ussLhpWqoleWLXiW845hcpnL4NisZ9LQZGDXq2hYHZqbjVhmMj790L7CsJolXUli+VL1LTYxVKcD526LGHZG6ZQkVoautifbyohhb7i/f8O8bjcMayOGNbqh7VuCglpB+7q8reCgZd/4qeNnoQz/08Yf1huUFnvNNMlI04zNbYR5vk3A6XREJwvHwz3btrGtG/2HFhf0LXDQwWOVljhFicdg8JtkSiCWkvbiWsCtjuD3uGY/ue9XJN1nt3LJTYZCfOi0digCSSpNxeM44t0uaQDzuJGiGeaF7be/ZfUbeSkP3cPDl+jU3tpPN+fQypAkAh5lUUdujGgmveZj/XhjC7ue1K1ouP9fWp2JfXhBBfG2VlqkAwC8xhuNUyL6GrxHWY+LmREfQDtPQkBpE1PjFpWJXAWAzlKCMbggEhMhSLYn26UstBU9KqxwybTBWFFOv5XstMypc9KGu24e50XyAyI3AYXyGzhQYcOkGVq/CL+rELBKyoJWaYI2BMLnHDcke7OXD6XcGpijv9u8DLTdlWWZcNvKvMwYA+u6xH8fSK3FqO02p86vZJnFJi/3XiuLUka6iM5nzp9a+otsKuvgmTuPW0A7HXlYHuUiL4Uggb2SCxTdq4D3L2XjEHz0JoxlI2sI2JegLPiYUfRgAiZahTi/3DKifvPYxFAWBXVVU9UNWZbdgs6AepVBVf/ObNb+en9qowZU/fo7HV2nXmVkgtA9GvazMUoPDINmSVfu7x84/+6Z9vGR7At57ktrsMcTv/5as+X/OX/x//1f9B9aTMjwkZqgQ4dVB/RBMyhFqjuCLwnsNlCaqgrYpGaaXjBsGEAja6yqarpuRBtP23nKAmpqQhWf68EABw6HCcWJJFX03YIfx5dsc98xm5rcDSzzwm9/+1tWn7NFGfwsz9DpG8Z1QH2C/q5j6EfSyM0si5r0aAihpfDiE4nqgFr0yXg5LFZVRQiOnhBly+QA1jNgqIAeQ0dQnnYAddTYIPiTeo1PP8ewzHoeSvms19Cg3fWPYtjxNYaNhkuA4+nEIXRsS8rbtxJEDcNEUTaEwx1BTxHDGo7tlS4+k4fDEdBcnCdpIcsFw66XKBKrPDYvUX6jswmqPWPSFa3zG4b1w8h9o28YdjyeCLQ0+nBbhQq43DCsw/s/xLDz5RPLMmF0IElnjseab38nXYdFlr1gWF1D2+L8ypRU2DmWUu8fODQVSq0RwzbOn/4V7797wbAET7rUZE7T9wNh1pyOMVhxCtNPHDVAzIrXFX57wbC2vbJunnwNtCAdjOOBUEQM2xQXAuZ8BeM4nl5jmATI+VZiEoN3DqqaqlYRw6JtHxNN04iNXAeNal7kWl492b584SX/lPGzCbRCrIPeuBwKUAEvRg0YVlkoL5UuAquAmDYo1aBVjjGaOYprfjx/ZN6km39Z52jE6Qnphto1mzYwaUDpgLaaoOT9dsHS4JW0wMfgRKtA2DbmtRMNJogaW2IZoFyCVgpw2JhxCEaI68bmWFNhrcKogHcLyxxJi2XALxvr6HGrCMB9mL8nLWWxh/4ZlncU91+xbCU+zYSY7gVgtApRWDVF4SIfxMTg6yXbJHP9Uorbv4ZYVVNijhx0DHicI9wCMBHUxCfoJMdtC8E7VjwqgqnygUwZkujLF5QmKwrGeK8AyXY5LwagTkpebpxREcSy3LLOE0mm8JtY1dRNTWIUJovE67BnTSSTlXgn2Tj18qHEhseAN7BallHjlgRia7RzK2uQNnClxFZHfAyja4CTAvJqFFop/LYxjx3r1DFPz/GzdIzdJ5ZuZFsW5mlAmUAaOW1rMFRNzTi2aC18OB8CNvckefRve3NHlqU4t3H92PL8zcD7D+PNhzA48KsCpyKPMaCmgE5jIJ1I4K9s3Ii8tB4vc7hltEKsuocgdkJulgB6L5MqLY0awYOyBm0NTgd0YsHGE2VhUImBNEAKSWYp8xLjJavqUYSwyMpSMv/7w3pzOJCFyJ/ecIS+BwUVZFU5AAAgAElEQVTtLp+iFEoFylcY1gXxKfXlHh5IIJY6jVINg8qxR0uyyhoct494A9928LQ+Um4FPRfBsHzHsBqTtqg5cKgD41ai6Glq2fT1MIoQ6HGmrk5AoN02tr7jUMr6uDxOn2NYn4Jx2Cny8xJLUytUyJnGgN8asuIO754Ypyg6WVr80NH7mm3tCD8kfJi/Z4milKFfefPP3/HF/VcsoeXxhzPGpjz6XXsq8MV2YBgWVLgIL1cbjkd948PsvKKWIJnlDnq6257gqakU+Kpio0UPlrpyQIOPgSdLSp0mhCSXbI53LFxRPkoiVIFMPXyGYQ9Fwcduxcay8Pl5pS5LVOtpH1uaquLy8SOne+HFNfWJ8eMnkizl6j3r5vjyq4LkGAirYFiWr7RtICdQvW3Y/AWlDhxOct+6tueIoqmO4De68iuWj+//AMOenWBY04xoDihl0UoOeteLo6ohMw1OKa7nwDx3ZBa2TbTagoOx+5aUkem6ME/6MwybppGq+ZKP9fcchp6m0TK/+ZXERgzLEw6qxrVnrp9afvfNe95/GDlEQ3F16VhWBcXA9RoFv6cKb+W+NmmNzg1qinIoZcCtgmGXswSeO4bNQXM6Hmk7UGpARe0yVZ4Ik2S8mtMRbceIYSewkp1b3UxeGtb6CAvMq6V8U3IsBMOu3QpOMEyHDFNvmFbwb4qLrK4BV/Gauft3jZ9NoLXThV5fe/gcnQWgX5G7RaXbYYzlcLiHYFjnmS7ynlI0RXPifHlEKWiamufvH7HGSycXUrM1OmCtxabm5f13SxnnIBgUoo+1k123dUXHLI4xko1w3kuXoPaY1JPupTIrZsZaW4qiJs8ztAo4P5Ou0Zl8G9imjvGywgYKz9JNzGMkvLoBcHxhK9S2YtOMvDyQRB2TdV6AicRKmS6EgFcGbfJbkKS0dLx5v1vIKPEafEVm3gnMSqsYMEae1z4vxqAij0frTKq3waEjDyNRBot0jmw+ME4Tm1a4xJDGTGOSaNrLGe0DqTVYa8iMZYnZvXGYCMFjtWaZR/zm2JZESgj7coi6tdvmIlnSxTmOm1wIGG1IjPinhTQhSRMh58f149yG8ytuFeslo6Rzz95SwoFhGMiUw2rF08cPtN2ZsHbM43N8n551uuCmNZ4NZnTgZuMzuwWlwWaBsAaCVyS5xRaGNCrDa6u5XC4M3UD/YaF/hDCK3SEIwBglHzO1NgqWiqgsiJGPSkXPTBuNNjnzODL3fl/GNyK+1p5N+xcNmBhvJxkUTYYymmkZ2YzHGsW2erH1AFwsT+bGgAabWow1t/lUgZuNEjFTqFBRguxPMbh6NYKW037XUe+bi1J0QxtzLooODaGj63pCDBiUguv1gtY6YtjIOqf88CMMaz/DsJncjHAXeV50HHUtOoKpoUmgo3nBsGIRHqMr2MJHvC9Z2pZ8zVhiNL+M02cYZvUQMUzw5WgDgStanyKGpRyaCuerm2tEOH/gPHWMlw62GrUJhoWoUP/D+Xfwg6OxFe7sON1n5MuBLWJYliyMw8QybZzuGtq2xSvJMld1dZvTvh9QNwxrKOuGNpYUPaIbVeoaNSRySDY1fd9TBnkfzEivSsobhnWE8AW6kqDyjTJMP8KwXitWbwjxEHZ3d+D7775F+4r7U84IZMZyuUiGp7l2tMHz9qApRsM8DpyfZt6+PaCJ1ZQBDhrOW0HXOzZXABva7GXlCqNH1tRwUCN5WuGWE6F4jWE5F7/i1jPGVxjVMw3lDcPe/ccVw/CBtXecmoaPH7+n7c74DB4jhjVBkdkLW5ehWFGhY3iFYUmRMk0bNgvYrCL4PmLYPUvULxMM+46h0/Qfnmkfa8JoWPbDYh8xbHuNYXB5FF7c/UONWgK9CRyOB7SeefzYMXbhhmFFUeO6Dn3wTMMqB9GQ0MbO2CSrqZsj0zbw6enC6YuGaezRpwW1SeXn3ncsDg5mpD50nFLL8TWG+UB3vdDUNXWpaF1HUzafY5iT//19KBA/D7LEL+OX8cv4Zfwyfhm/jF/Gn+D4WWS0IqPk9ncZ6rNyw95l8GMNnp3sfXd3R5amfLo84aIOUhgnimlGK8uyjHJyVNzKJRA5Qt7hvMdswqOQk9JO/vZ4wG1SZtk20VRSSmGJRPQtsIVFarYKPBtu2WCVa00zQ900ZHnGOokyfV7m0qa7E5o3MGplW7yUKIMY+EYeIMOw8f3vP+JVxZdff42eV9bZ47ZIqG4yvFpZHQSd4JwjSRJSYbjLjGobOQ6O4KSu74O+eeYFELshmSS09milhH+1E569v5GclQ+sqwPzYsOitcY7zzYvbFFrYs+XjdG0tS4KUZd2G9u84LdFMh87p8xoxnEmy1NAPAFNtF4K7mWd+CBEd601GuFw3SrPRjoJxWhZSynLppjkxf8vKM2qNSpy8LSCLEluJbtlnbH1it4uPH58Tz9cGPpnlBsJ0fPMrT251UzWQPDYsmAYW9aoEJ1YS0g8TRlwScayBIoqY/XbjeTZXq/4FdbJIyLHkjV8WaOxDIcYfIcQyFOIjTIoC+voWBCuVZYZ/GbR3rFF+RAXeYUocfSJlml75zRuga1fyILB5Jp59SwqkBsoYubNWuGHqeiLl2Yp2nCTQsG/SIrsTa2vLXr28afK0QrdFeoXeZmu61GqpqNF0WBCR4Os2x3FOiBUFWqaSO7uyJZ7Po0/4KIOUhhTik8/xrCaQbfUkeh1f7K0fqAqa5H+IFAFRYgYdr0msVP1vUjPbI6JQNLMTO3OJTySV56Lu1CrGtedcctGFzHs/uFI7RTZtgpWOscleE73zQuGJW95mFb6xfMcOqZFM6+BPDaw5MPG9//vbygjhn1oO+7SEh9tXA7VA149syYJqyuY14UkSQgKuh0bhik+2wWh0ISu49oGymrn2AT0OKKGEbRl0B6mnlpVRK47ofUEOmgq+ksgy3IwREV6SI2GoiSfN/r2CrUYL9e15+NHea6//KIkf/NAHTFs3p5oyoYsXucwDSzjjHP3wDN5nmP0QBcK6kLa5HzXcQ0Bowa0PnCoFZfWoyIbSJkBULj2ylVr6lKhTyljr2miA0xQB4zWqPAlPR21uiObE/L48+555vD2a06b+wzDjDf4c3T7yAK5PfDJnoVHUhZUYyCk5/gmCSHxfPW2wq0py7LggmOeZ8q9lBsxTE8d8wR1bRh6f+M3HU+N8AG7QFU5gg8kCSRz1JibOoZIb9ZhI8s8ZWqZX2HYZe7QB6hVzbrBJXSEtt5tMFF9x2noyd4amqB5fG5p7mu24ChyybzZLPscwx5StKlfMEzlKLXSD5q64rYv9XTUvNjuSFzwH1zpMJJw42by2beVIraESUCmXnGN9s4z7ymKnLquuA4pefQAC0lCYixleSRXGf3zlfbDM9rqGDDJxqSUls5BEA0gH/8EsSmxGoIX497wIvuwzJGHswgZ3BiRRfDI10u0lkgTYILQwPHhiC1SvAqszt+sXExsxc+rnMRsjO0s5O74dm5RzONGe/5AYhxZUZAWtfCdkNRkmk5kRcWmSoJSGCuipLsulPP7HGuC0jeO0+sF89JVGXDBEYITL76bjYjo7EzTJNT/EKiPh5vx8DRPuHVDodi8J80yNr8ACdsq8zEER2YTllkscfZAJ40t7WITJPfGaHlP5xyEcHsNpQ3GCDcuEISjxgtZVlmN84Ft2wCDUcK12PyroNAkeKXQ5iUYXJ3DRyL7Mk8EvzE+v+dvf/vXjN0FP3cYP5EomXflNrTyJNZIR6K2pC6hDvnts4z9IkGxgnVznM9XyiblcBDCqgqG57ZlGjb8ZpnnwLpyK906JweRJBHttSzXlLkQ2omfeZxW+j6wusA8yMbsvL+tHyW/SAiwuoDfCey7XROBeQisauNUZ8As5VltUFFodt0kevLe4IMWfTMVCGoHKWlf3z0Qgdu6eF06/HkrPvz7DecdHZ6aQNfFDjilqKuA0jV9UNAFQl0T+o62ffFNo2nwZUkB1HWIGCZcn5AkJAWUPmKYuaKU8EmvkXN0FzyNOnA+n7kz+oZhbeQ+CYYNEBqqAq5XaczAQzpKEP28/IBbK1KTsOkFb3IuvqVZ5OfdpwEmT2hqjg/3TEUKQ8vzxVPWP8Kwdzlvp5yxnbleO65ReyHJGma38f35byKGOdoCijIaE7ewLA0PX7xjUiPLtnI8nUBBFddp5z3QUNeK4DUtiopwk4aBjjbIoUwTCKGgCo4lXyBqxuVFRkD0ufqpJZgKjEYb6bCc5idc1zFEDLs3Ge2OYZngz4ehI7Mzl1kzPX6kqSo+dR9I3wqGnY53zPMUMawmhIHCOcoQOO8Y5jaM0RyOmrYTDLMq2g4B/aQpfMDnOdM40vU9VXlk8z1b9CkcxoRF9RwONXQJHZ5D5XCzJAHGcUCrnPH59/yb/+dfCYYlkM8DqhQM6586Ds1GMkUMO1isA9odw1Zqv/A8txRbzqoLtnkjqI1DPJX2ec5z28Kw4bcT8+OOYRLdXi5wqEuSw4D3JVk+UG4DNmoJou4ZpxWlAh+6luPQoFVBlq5Mk6wfBdSqIYSO1VXkSsrmu2aYoqXXFevHDvtFBiSCYcNIU0tn67q1oGrBsPYPMSyoAcEwORzV1IJhXaCLna3UNUF1u1zbTxo/k0ALgtukkyxuDCKsqNBBiyL4j4IrEAKvMQbnHNZamvpA+mhvBL3yeELZlK6/8PzxGYMnyy1uFqCS1wNrRO2YoFnnDaMhje+RJ5m0/G9b7D40MbMmhGy5do/fwC1BCMfxM932EwPP3UD7PLCtjq/+/CuyPMPhWGPglhjFtLSYBBJjmIZZSNDxxbYtkDgY+ifG8ZmyLqkOJ4pSTh2ehdPpDUEdcHiMSSgKCbjCbWdTN+VvFxxaG9zmb9IMWotZMwrxyyNqg706gU/TTEAxThOJtWRliU0TkliFnnwQM1sVuVtGzFO3baKMejlu2cBo5mnEGk0SBWN30r7RmqosKPKceVluc+C9v/n7EUB7CH67yRHIt2X1J2nCLosefNils9i27UYQN9ahk53rsLKuC26dcFFSw7mF6/mZ9vFb2udPuEUyWTYsYGJHF0DQGCsyECFs1HXNGon98zSy+RmtwKmNvDDoxFFWFh9bh/rLgCGhzhIWN7JM0hW2Rs6aRx5UpbxkpaL45Y1orkW0NU2cnLQ2TVBG+Hc7P0+JKbbIv0XS+6vuZKUMWjuSRDo+twAJiml2hDDtq4fskKNthjIJJklFGT+6F2jsLRt461wlCHfrT5yjZYCqyOUgtndpBumC1UHDEA8prRxtXjDsgJlGwbAso/nya9Lffk8yyZyXeYEqU7re8fzxhxuG2bkhnPYmF8EwyfpqniOG3ccNe3NZ1MPTaBcwQTBs9FBGFcZgSq7PLaGC0tcEIKUm2o/SjR2rhvbhPefnC1/9+X9CVr3B4bBJFIgeFdNgqDZIqoxpmKmqmksMtM7nlqK8Y+gX/vLjX1DWJe++nnGRhH7tFn796z9nmh65dFeMCPl9hmFBK4Lv8QFcG6i0weXlDcOGwRP8Sq1qQh7wjIzBEbbPMaztesZp4u5k0eaATi13UWpnGu6YB1EGX8/PaFOTLQvjduXNrvm1XMDcMX/6ltPxQGIMy6gJbcSWLwTD/LaRpimn45Gu79mu1xcMaw4ctCasAb+e6S4ANW0kUN4fDmzOweqoyopxmOi6jjwv+PRJeEnGGnRS0T19IEQM6+ZJCPOAdgvv/+2/4fsbhhmqfOS5fSKJGHaoawhXwbCqoQobI1eaKDORWMO5/Y6DgrXJ2a4jnoW3777AK3mf63fPHElwD3csj68xTIITD5zPNXd3JVp30Cr6QhGp0mg9YK3D6IKjr7meB5RKKOuVqpbr6FXP9dqDVqR5R/DSwTsMMRBrjujgmLVFecUWpOs3mMAP7z/JlFOxHlryw4HeJIxzSuivuEaet6o+3fjGHVcaIFBRV8ULhoULUMNPV3f4uQRaQTbIaH8D+wFY3zIse1t9UC9ZCxGmiwFRnvPm/g2/+c1fcnmS4OPcddi8IDjFp/c/MPejENQTw9TH1LyTNk0pHSmMFpmjKabMdRRgXBaP22J3mtGixr3LIhiNwbOrD6gXrAXEzsQajdfw3d9+4jpcOb498PbX70ijtosOnqxoGK4Xgt9Ic9F+svvrROL/5gL4QNt2YNQtM6GvCcYoVrehbcWhLNCJvgVd8mF3QQcpH65+JeDQNwPtjXWbQQXWdcPjxAB7nG9G3lpbsjzHWotOEvKiZFnXKKcgLdxuWzifz6RZxuoW0IF1WrAx3z0PM6vykgEMAaMVnsBegQh+JXgJfiCglSZNUoyxWLtLQCiGcRLBWWtjCz3MS7RWmudY/tS4zYvxshZrGB8DMLUFjHeSPXMLc3clrBPz2MXXGJkuZ8bLE3qdICziAsAmAIiUUrWOxG+tIEjpdIn6VPPqcU4kPbQxDJND6cC6Tayx4zRLa8rijt8/P9FdF1DmJgcgT4H8bSewr1tgngNJGoVXUXgvJV6tDUolkg3VOhqxxyWkFEpBYhUmZhH3DWxbHVjQaNziMYkhtWns1IoBn1pJs4y8qiiqhryohEC9H4Jw6KhFtmcpb8Hgy+Pw90i4/wc0tLphWFVJaWjHrN1suqpqfOtpVaBpogUPV8ZREPtNvvHn92/4zW+4YdgG2KkAp5j6jvP6yJYE6uR4w7DWSSlP1ZJBOKYr13PHpw8y02XRorQmXa70rmDsBcOO1rALvDRGcz3VBN/RB+AqMgCx2kYeIBjN9XlgXuGq/5JjqXn763eoVTDseEwJWYO/OtrLxrJp1uXKw318EQXzemG7lKBKwbD331HUkkk6XBPatuHZndH2P+Xw9hgx7IoxsZtPH7jSw6jotMP5ldDZF5FhtbFuCc/qI9mURwzr+PjxDzHsdDoJhrkSMnXL7O8Y9u2335JmGfaGYSk2Bh/bh+/J7maGY4MOLUbfQV1xygUHW78SvKNwK1s3M6DJk5Tj8XTDMLRiGicu7swhPwm5WjnmSTDs/eMjaM3hcMBtnmWeMNrQzhNlJQHf2LcY34ojiguM64jrPvH48QXDwuWMcQs6myBJ6J+eONQ5QytE9NleGLSiKmv6vuPqHXVV0w9ynT4MOBeYU0WxjqAczaH6EYYZ7oo7fv/bJ364XsmbI41TXGL1UTCsw10kQFlNhZshSaOVEApfKhgEw4yNGGY01xApJ0B/aFB9xzwpfBVogLn54xh2vDuSN4JhOpGA79p3HLMj+bt3FO++Ii/e0StD1UYMqx1D29M0DU2oPsewXUurjt9yrzb5v2P8PAKtEJDeTcfOz1dBVJ3w0rF3O9Hsv8/nARdaWj6PhwN93Gw3oyTityZ6Iomy9uZhGSN/SuSYUF6CodRapnljkDXIOqxorYSLBCJsajXGKJYQbVZ0IE002iiUluwWK/iYqp7HwISnQKMzcOvK9fyMTgOnBwGZIs+xSUWSrczDmSSTLo2doyVanqIblRcJSZZQFEeSJAp4esOyQuIVdZnTHBqMNbjgSXYfMC/6S94HtrBGrz3PEnVstnWBsDFPE95vZEXBsjjOl/PNz66sUumQOh0xOqGoKqZ1Zown8N33cF0XbGpZ14WyrvDBMfbDfsNx24q1Br8sbNvMPI9sMX1rfYLRlm2zzPNCkqSYssKaBBdLpVvwqJg9W+YZmyRoY1gnyUatmyNJUqy1DONAmiSkmXyd7oGlWyUg8J6xu7AMLevUMcnRkm0Z2KYJNQ+EqSOEFY0jTdMX7SgvoqcqhW1bWJcFhaGMcsU2KTG6YJ4nlnnDMWCDRVt9K1HO00x7+cj5cWIeQXn3I2d4kde4mSI46DcwsS1RRVuVzUkwLtlExPLI7J91w8SDjFZgNOBlHolPXZoY8IF1dugAU7fhgqO+ix2llaGsK6qq5nC4xyTZZ6VYRYAgqs3sPK1bNvU1+/JPbzgHXesxB0f9CsP6rkUpKxgWSw8BaHcM62v00VBeLvhWMOxXh6/pc1kb57FHUFEwzPSG62PL1RuWUV4vNVAfavqrl7b80oIDvXeczitaN7SroVs6jkZh1YllUDy1O4a1pMmBQ33E6yvXk6Jea7yTTW7+GDGsPtAHT/H8zHU5oNMf+PXDrwDw+cQpeceYnXGcSR7guNQvGPbcUacaXcDmZu4e3nI43TPHQ0kojyxrR7ieqH8tGDZOIzY93TCs1QMhHiryKsNtG133zJJKsJevgTQfePz0zOWy8fDFFyzLFDFMZBPKquFwyLFLhmkSHAE7WMbsBcMulx9hGBXX9cL4XjCspuJyfuZU1/il5HyemcePTG8kqpyvCeaQsWU58/xEmaQEVWHNTJRwpA0edw24NGea398w7PmTXIdg2D2X5QltNEuSkM5DxDDJviV1hlUtyq98/OE75qEls6Aih3RwA/N0ZXSeaoJrGNBhI00WsgfB9OA19+pAv3Qc7x94fnqiHVfKWoLGZS45HgvyRDDsYfyAC5OUr1f5ncKm/PV3H3l8nEiMdOs7192cEegU0OJ9FzGsY9jgmMrPt6AIvWF2gev1Qq0MoYKzam6Zo8vljFEtoSoFw1TH5KGJGHbpOrbiiMkq1vnCZQlww7DINXxreHhb8e4zDPP4eJmqFUuf4IUu07Xd7VDUxXJb3YGqfQTRnzZ+HoEWIjSg8DfOiJS5gkgJKC0+bLfQ8gWq97JhUGI1UJcVH5+lbTVkKblNycocqw1ZanDbSmINu/J7WCXw0g7RjlKaLEmIqgpMs9hN7BufUkGER5VnizojZQ1JnkIIzOPM5mCZwa173c9ACHStxwYotSZLE1TYWCJB3GpLajNC0KgQjXmNJ4tpZr9JCa8q7iirUvRarMXHVVjX77i//4rmcEda17LBKUh2xjRCVDdG4/2KDw5lAtu64bwgoQuL6Fa5iWWeCTqIDlYmQco+9S54qkyudRhHbJbc0i3LLL6Pp7s7lBE7ohA8ZVHeiJFlnoFzbPOCteZmlOyjyXJSFMLxWpfbve67HmsTQvydLZZynXO44FmXVbSfYiox0QYdIKwruI1gYJ03vDPRAxDWZWXBYrTcZx8Cq3Os8T3meWFdZhLv8CoICVdbPNyyhMrmksXSI1iLQVOkst4A0mSmyA70fcc4XkkyzbTODONEPA/g55W+3UhNzt1J0Z7lBLkvd7GxjoeKKCTnUbgtcmMi/doroaEoHF5JO8eulyb7uo+ipsjc+BdTaaWRe7I4gsRbtyaIEDXSikKT5ynOO5rDgTQrCegb/UoH/Sq9vj8vewnxT30EwbDOvzJFEwxrlIcmemju87MfjhtonWOKGCauEYEhyhXMWUq+lWSlv2GYNoHkpGkW2QDaZ8Ew52paDboXDNvioWOaA1p3uIsjrWFSlWBYf0WnUQIiYpjNAvNYkTuYH9tbUHDDsO+v2C9r1EHzkCaUIWMZxax5ejoKMX/HsNHQp1cOQywNKmhCoCoSfDhSv/0zSmvJOwkK6rriPv0KtWNYr8DCPM83QrTWFmM0lBneiWZdUeYx+w3bDcMsy3zh0xyolObhIYnNNTDPgmEhW0ltQWg9QzZSDpGbOU74kHO6+zOaY8SwzPO2fssPP4jd0Nv8gawwnB8XrDaUfmP0getFsKP6skB1ivOwUFQKqFH0vH+fEKLVz5bnhL7FXR1jKFGq53A6Rl4p3B2OaA09GcwjlQGdCE3hcpY5z9KVp85y1As2yRnClefLFUs8tM4LbZqQ9AOzainGQH3/EDFM1kc/5dRVTdhGumnieP+GIs2Zhh3DHnGZJusbxuZKktUvGPYkC3maFH3bkJqM/KRozwp3AaI9TqgDumvo6KgjhuV1w/IKw65dRxmgUOBrhw81a7ehDjuGiRHOURJfrzBMoiR7w7CLYNjjladEgToQoo3P18VAvqW464VGC4ZVaHzcm4agua/EOaELvMg+vHrSRUL371U5/LkEWgrvbSyZ7N1tsYMNOSn74NAqdiLu3n3WxFpdwDuHTixlc8RoeRgSY8m1IfH8/+y9S5MlSZqm9ejF7mbn4reIjMysruruoaWhBWYxwooFbNiyY8tu/gKsWfEX6N0sWSGwBBkR/kAzgAzNFNU36haZGeHu5xy7m+mFheox98isLuma6YaaktRNePhxP27HTPXVT7/v/d4Xoi1MkL54KamYFYSXCKJWlHKsymOjRsbsPJIXpfXwcwEQt2YblyHWHGssdvKs0wqveCkeS6LDhmQ7WM8CXZXUxR5ZxEBiWRiGFW8XrDEoVoRkKw0mTco4L4hCUd3sqW7uSbOGNW6CebWjuXkgSTO8kngtgqmzWTbNsCSRuCiQmK0au87M64iNnntaBWPhvKzpnECLhHEJQrFXqx8hFN6CtR6tFWPbkbiUKg8nrK5tkcKHbiEX1OvXeaWq0q3bBm9DsdjMpFnKOHcIYRnGq4J0iXM2lAvxrIvBCx00ca4dpSrwyYQUaCTTOJD5BHW1TkLjTAj6UuGx0xjER696bIAXQZAzT1OSRDEt/qWrErB+BeHwCWAFi7HY1ZMXFTIt489IpE5IVE2pNGGtr1vmTecVKjV4VSDSGjn1uOFC23/YOgt1qnn4vMLNKR9+fkF7j/ESG5dykDkNSv6hcTBkJq9VweB3KbGE7K/gVVfhVdDfhYOEUKGs52NfxFUXKKjhO6QPvokqAVVIZCq5NteSFRTNnrLaU+QlGyHxlUDnNaTazMq924L+bfwORl1Seko3McSmCwgYhgwzUnQeJyzDtzCsF6EZpG4OIVudHSg/+5zxfQD+otTkpeKYlvzN6Secnp8D8Rm58Tv92sG6Q5QCtxAxzOHic3m8XA+HAjEIBCMBcz2HKCB+LG+xq+HyMdh6PX98xntB/isxrCOrNDovqQuFvL8F4Mk4hl9+hbcd1lgUzwgD7hD+RqJSnpOFfbHnzd0D+uaeY9bwnIUskeEFw9hLMtPTeUmVp4xjCAquGDasAz5imJAj1tVPV38AACAASURBVATO0jQKqsKyf9jRfdWjRcJ5WclfYdgiRtpzytt3FXJQjLIjGVPm2F373LZIsXA8HgOG9SPP3cCbN294e/8AQNeeqcgDht2mPL3/CiEscgx2Q7kpuSwBw0YyWEa80JTebBhm1MQJIoYNgfC+5uyLyK9yC848YVqPFZ7RxQxU5+FKzBae9KhplxS7zFSuYnIn2shbGvtnyFJ8ArUNZdkPjyfu7t8wLKEc6w6STicc+RGzmpBAkmdIFRutREWbnpjVSKlr5LSPGPbXNE3Awd5pHj73uLmOGNZjqh22/RTDoGIAGga8a/GXAAwXKahrhek8rXc0p9hVqGDnwyQ9uy5gmOw/wbBWhEC92e3ohwvSC5qmQhWgCsWwSEjD/eiyin2zp6w+p8gddRkwLDpikQhBcHQAYuOXixhWNS/a8G3b/UYw9lsRaHkIJ2Pkywlc+K1LyuNRzode9FfWMtffdC6IVSI0x5sHmvqXQDDL9HZhneImJYMwpl1F6KQDpJMoFyQOrASPY17d5oVoiRuWDProXBvtpSBygBk7wzKMIV1qopinYAvEXOQPKC+RwrF0jvNjj6gE+yKcSrMsxUuPXRUkCQofkjlXxrJX7OoKryUqy6l2R+4evkCqEOAY51FpSpJnOJ1grEMJGbMScUdeV9bVBEsdZ1ECEi23BgRcML+WSIosR6XBt8o6TxEV2ad5RmdpFD51OOs5Pz2R3kf/LjzGBXd2ZwxZlmGt5Xw6U5VhUY7jyNhfUHhS5XB2CQKlUeF3nuYg6OodOklwHpIsCyrOIu76InR4WhNKzkqCWSZ0TOeGMlYgzUmpMHbF2dCbpGMXncMymxFNiVsNzhq8dSGTBsxT6DpUGBZnkVKTao2Q6ZZJdAKSLCWVJVKoYMbtLCJqI5plZpknsionr2/pugurgSJfaKKfnVugfR5pL8/MJgqfxrnGdqVXdl0M9rf5T5TnkHE1xNsDaCG2Z5vIwM/yVyuh+DfsdbO24VSpVHRCEMFaSWWQlmGO7Q53VM2e27t7irwItkWwWVH4GEQEtf44G65djVfyd5wjv4vDI6mQdF14bqWvqHcK30JLx76sAob1PaK52nrsYln4BcO+vHngF1cM6xd89i0MSzPOzz1jG8UinURZSek8kwm8r3l14MJ6K+qVoYfdrgoyBUhEJ/CSYHhOwDAlNZczW+PPrqnDyRBwsgH672BY72FfRG7T8YYqTTivI3USGjxEU28YtrtRHNOUdhqospy3uyNNeWB/9wrDbm6YjaHUCSZJ8f0U8OeKHcNMluUIoZmmFSVgnCRZLEFRXhDUyC5iWPaCYTbSPypbMmcjoj/iGoe7BAy7/1HAsApP6yzz4yMXY7i9vcWez5x/fqZ6CNcxjSPPH3sUnhvjaCOGra8wrMg8i3Zon9D7jkP2wNpOn2DYbiewpgRnWWeJefpIF3xoOKDoWkddVYzDiDk/v8KwEL22tSUfV6pCcekXBttRFQ5s+Bunxwk/dOzLlMlZmt2BYZjohwURnSWcqDlmKYt17EWN3DVBtPMaEN7NVI8F9ZscIXYbhlmzp4r8qCKD9lnh3UiSTyxtwJeOEME4SsCj6WhoEHWD685Qh7lT4LFO4h1UdY3vOgRwaBq6a9eqFDRNjff9r8QwYx1lWaESGFRHI0qEduwbyI4hqCy/eEdVN9z+8AXDWgAbg1ih6dsOXmNY20HTfIJhEMXM/47je8HS78f34/vx/fh+fD++H9+Pf6DxW5HRCh1/sfM8nnZV/P7GafCeaNL3inwbo1of30OlHPb30XAYTqcnnDeM48wwWpyTDN1MqhQqnrS1VMG4crXMi0GnRAuVmIUS/hPdH++C9pQQYrMXmAeLJGRVpIDkarn3ilJmY5pTEHg2xq707QX3MfITmpq6aILuh9YhbemgrPbx9QO7ww1JmeO9Is13CJlSRKE+nSTMy8SyLiSyRCoddL9g04iwJojreS8QiQNvSJNkkxloz+EUkeqQsVrXlbIoQ6t3nm0fxjqPNYaiLCnLnK4/M0Sie11WjFOP9OCUYl3X0C1p7JZtmueJru1QwuHWFO8CAX9/f7je5OA1FTyW0EpjzYJ1kiS9TtlQGsU7BB6lJNbZV47qPngpOoeQkkRdS2uvuhtt6Ghc1xW3rjjnGaeZYYhk1DWW0ZDoJCVPC6x1TMuyzUGVpkHPSmqkSkiTBCnY+GYeKJIMIQXeOObVgsxIs3qzuOjnAYvDC4POwaSA9Yj4Hp/yBCIX6BXdJ3T0hO7YUG4PrzslN5NtrSPxyjte55SceCkNhYyZCqK5QFl5pHbsDmGOffbZ5+x2e25vbkmSBGsdUqoXqyb8i/htvDjnfeymupLBfhep8OFjySYYNX8bwzrfblhWe0FX1zRXwjzQdh273Y6+6xBKo9U9chezCU9PPH00/PTDI1IVlOWO97945Ga/35pxtFSIy4DPChJvmHqH9DVCBJ6XErBrarqYJWidoK5r+l5QupAtmIeaAYuau78FwzqsCwDWA0dfYezK7Edc9Dp820mUbFASBn1A+GfoZh7eBrJ83RyQOuX4cEfbjqQmYNj9myuGHSOGpfhBIdW0tfZ3l3ghzmB8wDBrL9RVjnUJSscy11nygW9I0xtEVrGumrI4BgyL2btJLNRXDEtKnDOczImqj4KUZYWeerQHHTHMmJVH84ieY2NIohn9E51wuF8uVGXO48ePfP6jL8J7eMfQdaRJAjvJQR2w5onz+oJhNQ2n9pkyDxi230vOa83+2iWOp6nOXNyZQ33EOcf5fI4YFp6bbw1DU5KuK1mWonpPu8wMQ8h2ZllJLyxdZzHrwt3NPVnu+Pj0CsM6j941pIcdg0q4SRJy55gj/qQz2Dqj2TV443h8PoPMuLl9y9iHEmY/D9ja4ReDzusXDBNXDDtT40LAUXv67oIVbBKgEmi7ULWS04DTcGhqnJI00dhcT3sQLZ33BPU0qOlYRHgXh6XvOlSiKGXFx66l9JALQRGbB/5RxLDsJtswjOFTDCudC0LCEcMu3iMvl40Ujwjr5986eYdroBXEB8T2zWAl6mNL/iYB9JLCe1Ur8bF8kqY1dw9vAHi8/JJESxbjcd6FjTCTyHVlvZIrjcQvgBFxDxKfBCexghmoYEIEgTPncM4xX3crH+65lIFXJgi6WD6aNE0m1KgVitU67OzJnUR5iYgboTMz3gfvQJUkLHNQNK/2dwD8wR/8MVlRoYsCIRRCJkiVMc0BbAulSIuc1aysiyXNdLx+gY0Ak2pFqjRmMThrmaYeY5YrZQClJUPXs8qVLM2Z5gFrHcebG0xcdForFCIEPibFGsOubjbyrpaCOq+YppHVLlG1XWLNRNeF6yjyhCxLmfqWVUCRp1gpic2AtF0XCN1ZFgzDdcI4r2RFTRJlJKyxOGdxLpT8nFlJtWaNfLM0DQrvxjucDz/r8SSJ3qQZhIQ8TXHG4XwoKaZpRhoFb51bMWbCWINQGus9xnoSneBj0CilDPdQFySJQqUpr2hg5NU+SEw4h18djVc4L3j68J4p8iikNiT5SlJNHJRkFeC+XhiHyEWMnX2CECc5fFBkv4rZxu9pAUJJhAOlA+F3i2+8B9y2lq5LJzbGotOgYr+aELCVTUa1k6hqpbjKFQhFUVbUdYNEhiCKl88qgp5BeO/XunfxPsHrLsTftaEYRI1AbkFUJzp2nQw9o95zaVu0CtId4hAOUH0bu7A6qMoKITOm6Zm7qKb+44vgVkveJxXn04lFH0mzW4Z2pcjCcxnGiXYBO/QUpYG5QdBxbaUS3iOi7HkjGthJLpfQpPJ4iZfvu4BhCex2OzQRwyI2bBhW71nPJz7Kli/cnr3fsZ7D2r/YR3ydUcuaNjEs8x7EsGHYmzd/TFZ4Dvf39P2IkAm7/S3THMtP6sJiJUJlZItlyaDrOhQKb8P9SLVgGSfyNGe2lmHoo+RKGKOWTN1IJr9mTXP0nDHYC8f0BhPv6aEoAmPIBwwr8jxg2Nfhc8gG6rwKzTWPHxFdx67eMU7D1tBT5AnrumD6ljU9MkuNfoVh77/6CoGlvM0Qg2KKGGYsHI8Bw87PjwHDLiOuMDiTIaeJZxme602aIH2Na09c9BlXWHztOeoD5kqo72ryVTMoRx4xbBkylqszRWaojWaoDKI9BAw7Bwyr9iGIHeaFU8SwImJYk9xsFIpxSCnljrSMGNbc4rxAqQSdXEVNW5Ku55fVhB4HshqcSPGRDe8vPaKuEXT4S+jf2+3rTzDM0m0Y1pQBw87+Qh3J7r1voXNQVZS+owUMNVaEZ6LTmsQHDEMKHj67w99KlH/BsLYfqd6+o6ZhV+9w1iNrNr6raEMgV9V1FBWu8b6j5gXLetFTUyN/g0jrtyLQAiJaf8oy8VxVXqLUwxXRYxDkxAuwBz5TICYfbwM5M/1ZymI6dJrgpWW1liRRCLcyx/Lq2BlYQVhQSiBQwaz3ahgtXjJS3vstKDHuatLzMpwP8guhdsxVLzNGhAIvJR7NagyXi4XcIq5SA84gvAvGx94zro7d/kBehSyPSAvScofMcsqiou8G0BkuEsX6ccSNBqUDUDnrSXWCMcvGTbB6Jk0yhPCMQ0+aJWEynwOR1IbOAJQSDENPkhYMQ8+yLhyOoW3ZWBBKodMMa4I8grd2a79OtUZJSZakmGXhcr6wqxuWZaaIWbEsSUiOR76ZBuZ5JFGeJFEvp6PLibJIsRLyvMCYBbeuWDViolH3YixaKRIlg8K+dyD81rGjncSsE955pmXCumBJ5CWb2a5UkjxNscKihcSuQRxVxIeskyxkaXB45yPfLTgFyNjN6QgnY6EtxlvmdSZJMnTktGmtw4y2HotBJI66uWOaLfbazecFSIGTjsRKBjtz7hai6gbeBINvbz1Sh84rIc0m4xLlxkLGNPDiQ/J3Wxjgnd0yv0qFAMsLiF3xpGloCOlmgxBwKBTVoeLmbcHdu3cANM2B3e6I1inO+iiNETPNEAj616Dr1boQvAqwXgkO/66N2nt63wbzaKCuG7zoaXyN99B7H1JeAC4KOTrAV7Q4qr4DWbD7BMP+Ty4K9E2CvzSs53PEsInuOWweCTlImMeOIRXoVWF9zRDVY13f0UhoHPiqRYo90GGcJ6tfCL4JkGuJtRfaLshGXDHMCE95xbCdJjOGy+UMOYgkaoI5QeNPrOlM5j12Tdnt32F8WLNNWlCXB2Se89nxLV9/9c2nGPahw9U58/KRRa3siwOpnnEmxboQOIz9tGGYkoIkmVDTyjkeOKfTCtajDg3n4USSOvLB0a8Lh/QHAKzfwrD+imH7EADtdw2J1pzWFSUkrXXsPN/BsB98+SV/9ZMfbxh2PO6/hWE3nNckYtgTw/PKzd09ZrlmxVqKUaH2knVxOH+hbo6cTqFr/pKl5OlEZT3nZcJ2luR4xEtDdwn3bLf3FFXKebXkQnLWA+UrDFvnDJFNCBL8LmBYJ8Kh+tqRLuYZezoh7mryTzDs6jxQ4euCi/UUGJrjPdZLPs6WJL9iWE83wNtjzSwDhll4wTAlkFOPL2DQoctea15hWOQsNjWjlqFhSoBoQUQdrco7eg+NB6lqZN8xiA4fMQw3sL/Zc25XHs8X9Ls3fLFhWMg0Noe31DJB6xucbRGtp9ntNy5pd8WwtiVYIUUx1GsnP1D76lOA+zuM35pAy0f9nxeDQ4lUCiGjorUPHWFXpWCIIVlsH5cInPAoDcdjAKnj8Z5fvB9ROuHmJidJVtZpxVqIgTjKCuYO1sXjbVhwznvUKy2yjfwGGGNjBuFFgV/FazFxI05EWMzXmNGJsCHPxiK8RCrNMBjyHlwRJuriDUL1lKJBJikq18ishDRs2IsDJxVpliGzjMTBpetI0rCgslwzDiPaKgpV4EQs12mNj4Db9RcEIe3psXTdSJLKzel96FvaS8u+2ZNGENJK054vpGkAIZ3mmHVFRAsfrRSXYdy6RbtLR1UV2NVQ5QV2WUm0jkT4cFOXeaZIE5q64vlxYOh7mrqm78Lx2q4zMtchgrAhAye9INVyK7flSZSqsIHAr5QIZNQ1yj8sI3adKMoSqcBYE8sN28wBr1imCSkUaZpyGUeyNMfaaJEhPLNzeLdEsVyHTjRpmr40S1hLkoigUO/C3NI62br5rPOhbR8BSqKzDC8E9e5mk4h4fvSsbiXzK0vbYuWMTF6yQF6I4BJgrzFNSO++SqiGfz1bMHh95VrGuv6ad5AWCSsOI+E60Z3wJIknryGrFSoP7gl5ucf7cJ1Ns2O/O4ALgrE+blBiK4OJV1fzavwKv8PfueEt7eVMIxSiuWrbOaSq6Yc+YFhZ4suSWvT4aLxXFYCAYewYETjRUnwLw87tE7lOKH+Q07YV67Ryfq9J8vjsekGioChq5ALjfMb5CnXdgKgZ6CiBSxdcIazzEcPCRqKCeRDGNdBDJWqkhS7WdpwMeONPZ5pKwisMO96F5993hm9Uz4NokMcUVYPcOepXGHaRinxdqQ8ZSVl+gmGrEoj5AzrZY5cFN8+cThNaG4qoyI5wPJ8+kr19GzDsq5bkZsf0GNB4nt/TXlpsZknTW6yRTOOE58KyhG50neYY68mLkt3hwEEpfjqMmx3RV91XG4a9ubvncrlsGNZ1cd0vjxTpMWLYBwZh2YvXGJYg8wvYA7XVfHwakV6wTBIf6NdU9Q6Vq4Bh/YQqAoZlWcCwzitsZ7G4DcMqbyKGxZ9pLUpNVEKh05QsL+jTnLSIGDZXzNOAcF9R+Yq2v6CThJubG54jhhVFzmxmvDtxcTOHc4K+LfAiEMhtqWK3qaCzkiLL2Gd3TLt1Cyw9Hp1naNXSO4PtHbIzLxjWNPizxVlPYUGhsK+Mk9ood9J6EJcWmjLIKNRVJKdfXTgCxeX+7ZFDusfIjnZ6wTCZBgzbv91T555BD+xcTRsbR3ZHyefvviBLAjXF1xXt+YxgF/+GiCvhW+M7GPadn/i147ci0PLeR5V3tg1biGvXVcgpBM5U4KBc66lbLBQiLpxbEKnarAPePPyAcba07YXL+ATSUtaKaRW4aMa8rkG1O5UJZvFYFybDVr/mlcr7qz3E83LzFKH06bxndWEJqFdcsuClJ4KqOwKNwnrD0EJThXc57ku8XHFOUNU73t7cUe1uqCNHy0vJ0+XEPlVBK0lIql3N+RxOP04kVE3DskzYaaSqKua5Y+otZR3QsqyzkPlJHGINi/py6fBXCxUpcM7S9x2Hw5F5DoHW8bjfPvcyT6zWI5VCO4dSAYD6yNGyq0EimOYZayRFUbAsM1mW0rUBhDSey9Rj1hXvgx+fMSs6ijpJ4TDLTKYFdp3BexKVooWI8wKKPFgidPMYSs7iRVsLgo2PkzBNQeAvSFg4nFu38rRUoYyXJiFjVFUVh13D42N4j7OzuHnEK4WzKzhHkqYgXwzPk0SFDkhhUcKhpce7dfOwDLIgIcsnlSLNEuzFo9KC4tq56CwqUTgM09CCduxvaorYUfr4vsNEs2Dvg7RGWDfhGq4WRdaF1SJV4NG9SmiFbJYPsg/zuiKzhCSV2FgC9RgWt5LVUO09WQVpmZJmO5I0zJ8sK8jzYsuMCWTsVI1leCG/E2cJEcIw+Qqm/u56yv8WDRsw7CKgucrPbBgGnhIleugEg5Tsdp9iWF2FE/NpAHGjaLhi2L/LmPw17ftf8vj0SO4s5W6PvBM8vsKwGUEjE8zShudvXsohLeBcTUcsU8ZNogJOcb/Y1yBFjfOeZwuCDiXqrWFZjiBEQ14IVqfRDFifM7TdhmF1HTDs4gQNki9v76je/YC6ipIsuWRxJ+ySUUxfUzY7hBg4nwMnMstnrGvox4FjdcM6eMzSoUVBz9UGSnH75vAphv3yl4yvMay0iB7KQ8n8uKKTA56Ea+7u8grDTk9P7PcH3jw88PXX3wCgV7Vh2DRNFEXB09MjImnI0hhILSuX6efkWUblHco5TqfnLUMjGzDpwq232OdH8J7j/gbre4SI1ARrsCaj60Y8jlLUEcOq+FkcAVYlh4NmHDqenx/Z73esa5SA2M88rz03Scogcnzledi92TBsdCvdPOLVnotdqcsSYwzd0CMihWIWwEGxEwWpcEzSs1xWml3MNPYCsdMoObDb1/T9jExm9jf3XIlKpbOMB4U1hnJoUdqxpC8+lnMbxZE7j6/BCg+GTaUiYFhN4aC3nrbtQQZv0DrKKoyuo7HB0umKYfOi2SdhHbR1zuJW1hpS1bL6lfvy7tdgWMNVFF2IaGwudlAFR4Sugzpmsr6LYTW/idnhb0WgBbygwpXToRKEdwgEygvktUHSvyohwqdlCGmwbo26QlAUB7JkjykkdbPwfP6abggZkDSPVi6rwgyGZTXYNXB1/KukgAx87BAESoESAiGDf5uM12Fe7xwibGZBjSJutsa/8nqTLC4EXlPnOX8Mk7neJ6SFJMsKpEqQScbueOSwD6eKPMsx1vDNx6+4vb1Hq5SyKLmNGjZte2aaZuqqREyWuetIshRLOAFCcC5Ps5TVzSyjCRIKzrIugcxqreF4c2SdVi6XMzeHu1COlYoxpubnZUUlGVoHA9l5GlFSb89EK8m6LKRpStu25Fka1NvXhWkIf8fME8JbpI+7gZD0Xb+pzysEdl3wNmG2Fp2GAHGZJ9JopLxMPopqWrTSCCmxdkbEwMHZFWcXhmGiqsogAOsMXqgtra6kCL/rYRynIBdBIJACHI+SosxZ5wvt6RwJ845lXciyfJt/Mgn3IlEOiWOZR3RynQ5x7gqBFRalNGlRkCYVY+S1hQBwZhxP1E1DI3J+8RczT9GGZZ7tJ3PeesB+mtESyGCFY0OWEed4ZTy4cbwSFa5ZaMHqLLGqjNSBE5HlUO8Fh4c9u9sHsvxIEjXDpAwnW0kQ4pQEzuKmS2bdyzrdZrsIP8fv9giJ0gAEXSxN71VC314QQrGvBEMnA4lWBL05iIGWEAi5QzRQ7yKGRT5RUWhuu08xbPmmp0lr0rtXGPZoeOpPFKnDteB9h4iNMlIEpQfRQyMFvmlw3mM93MRnd3KgIllebBjWIbvrgcEHCyEPMLBcagSPfOzBTGGefv4H968wTDEkGZ+9wjCzXjHspxTVj9BqoixqsiIc0tp2YrdL0EqySIE7dyRZQ8/CdAr6VIfslsVMrG7maTTsCBg2XzGsyDlyZNEL7nKmur+DXiJlSZsEDEuensmTjPqwRyrN48cP38KwHeuScpPe8P6b99xlKXbNSbOeoQ1/ZxoFTSUx5gki/0cgNlqCGkeKpsLbM/MMMs3w7YXlmHOTh4Or1pJL+wHrZg77Ax44nx9DZQQQNtkwzLsyZO2dob2ckbvwHnspmEZNP4EtJ3ayQTNwGzFMJhNF+YY1CRi2rCt1mtL33acYtiiWYqBSKVnEsPPpKV5nhrzcgKg4dyf2WrPe35OeBrLY6PANjoey4/HxBE1D3ud4HlmuGOaKlxNhB+dwwz7BsKYOGJYXFdMyUpdBEqKLB4MDgeN1jBjWTz05JUsR8Lxwjm7qeLOv0WXAsLx84PbuSF4H/bMrhg0IaucZup6d3G2G0a29sIuHnKts1tD1SCXZxewcsdzu/r80lRZC/A3h0GQB473/J0KIG+C/A34I/A3wn3vvn3/tGzkfItgrlSP0TuG9CeXDKw8EkJuKUMhuSSQidj8Zt5LoUOa6v3vg/Vdf0XZniqzGFIZJDqx06CQ+nDTHmZFlWTbbitc+hde4TsiwMIwJXJdECpLrtTqCer3zWHdVNBJ4f7XiuHYqSkTMfAgPzQ3UD/FUmgiczdA2oZQFeM3YT+TRikPpULI67Ha05xM3hxusmenjwk/SBBm9sxhXvIfVGtIi41AGntdsopaU9dh1wBG6i1wMCMdpCYaaQgRtJCWRKKZlRsYApqpyjLHMQ0+a5SRK46zYdLbSVGPXBSkCcXXsL1hnMZgQWAFDO3DcNeAEZpqp9zvGoUfGmZsnCrBRjFBiFximjrLekUZh1NWFjrdMJ4RspiNNUmR8eMatCJEAC8ti0MoHTa/VsJiQRjZpSlYolFQYGwQddVVS7mK9RJRwliEwlBlpUYTyNS/3DAFSaKTIwCmW1eKQGGHjdcwUZRIcBbQOc0vIwOcKvkpYKXEqo7n9AqE07z/8Je8fe2LzI85rVMiDsrIipUfGLtbrNXgZ+BdKEA8oEuPZSofxZIBxkCahzL46y2iuzgIZu1vJ8T7h9vae/f4NaZ5zPv014xzJuXe74C0pVcg1u3jKc9uifQmoonYcUuBj6Txcx4s/52/D+PvCLykllBVIie8iaCuNVIqqynHCYRrPiZaKmjVaNPlOIsWAZKCRe5wQnC7PHPeBEznd/T7vv/qKsnAkyVvyNGd6/IZVQjZHDLsNGJamJfZjxyCgdHDNXPkKvKtpRE2vR3J/Qfj6Ewx746DVAcOKsg4Hwy4IhkLEMC82DBvVivCwu4G3EcOypEcVBzI7s5O/R+01H77+SJ6H9VRVGrEsG4alOmWdx426oJVkGkfqysHgGaaOtTiQ6pVDVD1N1MTFjnhbYZ8HTgxUO9hHQv1X3cIuy8nIsfZMrR4Y5BgwLA8baPXmLmDYN1+zZDmJOuBsv2HYzU3G2Sw4ATeqYZw+kOiC58lsBupT+w23zWfgGsz0V9T7dxHDwnPNk4VEC+zzhJCSYqn5enrmoXgHecCG1TmqoqByJV3f48oyYlh4D+O+QYiZupYkiUErQ7ZmnFfDEq2AxpuUrKhRw8hptcxCRQyL/DxVwvmEWVIamTFay+wch6xBNFcMq5nmiV1/C3JksQUXBuSGYQlF2SLEHqkPuBK65xbjLd05zPUg8J0hsgPFOPF+vPD+0SNjt597HCOGFays+A3DXrhZfvCcXcu+qRG+RLYDZldTXZtL+p6mBONhmXt8qljLFwyDlcOPMu7ua7LbH/H5viLN7zifPvDhMSjp/8Ef/QdYa/DDSO9hVwbDLHm5JnJCTVe21wAAIABJREFUg0pd1yBF6NSVMmBYfd0XwInuW0fKXz/+vnS0/hPv/T/23v+T+P//Cvjn3vt/BPzz+P/vx/fj+/H9+G0c3+PX9+P78f34Bxv/UKXD/wz4j+PX/wz4X4D/8m/9aR9Ka1fNIwgnYC9iB5+4Cj9c+Q7fHi+vpVpt3QFNU/Hu7Vu67syltRz2b7mcPzKambkLmSK7rIhEkOQEraXJM49+y3JCSKXLaF2yWS56j46ndqHCcdghNt2icJ2RqxGvbfUWrSwaKEs4PiTUn4WIv9gdyIsDVVOx2+8o64qiKLcMQdf3rKfTprb++PEbDofj5gR/fn7GGMPd7S1CKcwaOEXTvFDIa7ltxkaldGsWtBSY1W7lnuP+JpZNBUpprHFUhx1qUSHjB4FL5y2JTsmUZlksSqbkkazatmeqImMce7SGuirohxbhPfMSTmFFqnBmCt2HSoBZkXjMGpWuJYEMK6EoSsa+CzpV2K3cJlVClmdIFVoRhPBI4XHxOrMso0hTlsXhneX5cmbX7MhTTVVc7XM8xi6AZp4nlFYsq9qyMUIpsrxANAeUyljNihTBVWAaQyZRCoVUKQKNC9YCKC1ROjCRZaJAwLhE+wqpSQrFJGayqLie5gkWy7KMPJ+ekHnF/t5j+nA/xjnInDgcK6ClDxpN8SDnBHjhEe6TJFewS4rlLOsMuPA7q3WsS3gvJ0JWLatTHr44cHO7o8wemMeUv/jJX9CNP+NHf/yH8dmvWLuiwx2HLdvxogn1HQaW+BXr9bcoo/W3jN8MvwifuvIenENE3Z9h8lSNw3JBCIFhj+gGLnWHIJDh6xqkrJFC4xnocNwc7ujjPP/ss4pp+kP+1//tz+i7BK3e4m41af+Bdr1i2DPNsaH3kFSSRFc8fmgpfShxlIQmikH1SC+Qogbf0bU1ev+CYcddjbt0LK/K1HV8nqreYfE8+zNa1aTCUj5UfPllQv1ZyPIU8jWGFZT1G8r7ChElEbquDZp1JmfKRnyRU+QZKq43u648nk5Uv3eLUGPg9FwuaKmwNvK8phntPcNgsKZFy4bTcsZvGHbEeGgQjEpyPl1498WBpyfFMkXSfunIvSVRO4QqWRbLXu5I7sPfeB8x7OlDz+EAdXVPP7wnaQ3zJUrUpAp3msiS+RMMS7MrhuWcHh+REu7vH/jw+BXIw7cwbGY1AcME0AiP31V8/BjKpFmWcX9zw+PTT/Eu5fli2TUTwh+oilC1mQaPSp+gPDBPE0ZPzKuijt5baTGSzQVNljGojKpZGfqexRg0VwxLkXsQXYKzGZ0HpZNXGLaCSFDpiHMwDAfyomASCVkZfibNLdY9MZqVZ7Mg7zr2957HvwmfRUHEsAsrlkLWpDVEm0vEDK0OGNaPHRpBjyTvR3wVOxvLHONAqG7DsGVZWSKv+/6P3vD7X5Skt5Iy2/E4pvzsX/zvdOpn/OiP/3FYp27lfH7mdn+M2XiADlGFbGeYq46u66h3V92sqFb/esGLOrRv/x3H30eg5YH/SQTm53/rvf9T4I33/n18/Svgzbd/SQjxT4F/CvDZTQ1ShgDp2qWA3+w84IrNntcofdW38sK+dJNJsWG9lILP3r5lWWd+/JMfB+kF74OxcJRVMLNFKklWevwiWYUNm1EUpjMm+rnZUP6TVyKwf9HVcPFrISVKRimIV1fqomOjkAprLTIVVJVCoDBX42kh0YmmrmvKqkJrjYAtcFvMyrIuSILJ6saBiqW0oij4+PEjP/7xj6mygt1ux/54oCgK5ldBEt6zrCtaaJz1wZMsdr9laUGel9v9tc6zzAurWV9xzMIHM2bFJkFSYVnnWKYD7x15kQOGfgi6QUWRM84t4xQApjgcgkaLW6mqjHWZCaHq1bNIsK4zKgaMxiwkRcK6GrSOgcO6MnmL0jp0+eHD1xG08yx0TSaJJlEZ09SDc0HQ81r+i+VHqSVaa7TWGPOqU8Za0jRDFxXeQ7Jq1nUFLSCL81JEiqQIAX6iVex+iBtYLLekSYoxhkRLkqRASoWOADFNI3mWobXg5nhPJRIS94HLh78GYGgt3ll0AkkSDh6pe9EDc96xRhqX82C8D56P6qV5AAlag9CQlRqfaiZnkTEb/vZtzpuHBxJd8uHrmT//lz/h49M3fPaFZBzDe6zLGjhXQiB+Tf3PXxtBxMs62GaP9xvB+rdk/GvhF3wXw7pBIhpBHedPVVfgFZ6WrgsEc+qG1xgW9twOKQVNvafEc5GOOh5cJAHD/uTf+xP+7F/8WcAw47mcR/aHsFYfvxYM00BWFrSTJNOQ1zXzHA42eV5+imEOemq0716RkWt85embmtw4zq6jQnBlEdI5fC1o5B7OZ3zaUHlF3ynMcwjWizvJlGjevK0pdxXTMlFR4eLBZjErCyATS6ISpFS0bYvJo4lycaTve378Zz/GZwXv3r1DKPkJhj2fHJX3LDZiWCGxS42KtlpZasPn7aAmxXrPMqesa7t1zwJ0PQhWiiuGZTPChNcr77grcj4WJ56eWw77PUVxB7Llwzc/AeD+8AVmfaJzgrq65flppizsZjmzcw3rOrPf7zk9P2PMwvFesK6GaQrE67qSaF2gtELrhMvphNKHTzBs1CNJcmAexyg6XCDlgCujjdjF0V8gSQcOWco0RZ3EqxGzTdFaUGqN9zA/TyipQAuySBDvxYDoGjoxvsKwlFqEQENWinFZWOaFutmRaIc1N0hpOVwxTI+0bcbDwwOphKpPSH7vA5cPIfC0/oy/WPTximE9qTugshDgPLeX0FXt61CB94Gr2y4jsg/osasChvUOHh4O+FTz8XLeMOwP3+ZUZUmSlXz4y4Bh0/INn32xQ0UMy9Jsw7D+0rOrGjrYDgN1XdN1F7wIGm4I8JGTde1F7FoiQf9XdFj/LePvI9D6j7z3vxBCPAD/sxDiX71+0XvvxYb2n3z/T4E/BfiTHz4EGYvox/bqh7iqsHuuYqavQxhPIBKH7wsBwkhUzPIIEUQAf/Dll5xOJ376s5+SJBm73ZGpD6H0Og0swqALhVMOg0dKQRaDDzfOn3TwyK2VS2C2FpMYH36i4P0p0c8T2vStCzIQXiik0luXymodWmvqpqYsS4QSKK02Hzm8J4nB1/X/Sukte2et5ebmhjzP6S9tqPmLwO3KojTDsi4sy4LWmnU2CEIH2xoNkLMsiKFqnSClDOAWg9nLJYBDnucoFYI0Y8wmTnk+h0m42zdYu2LsSpommHVmmmaWdWSJhNVp0mgB4zRTZBlSOKxbWZeXhgjvPEp75nlkWVayogyCsFuGxiGdjn6Jgn6cEDjEi9MySqpNw+uw24e8p5Av3nwIjAlE/StdW1zZwPFJSkA6hxSSJMnCIzYGH9nuVzHSIGar8AR9miSKnlrnglyIUlGY3bGuK1eT8ut7JGmCtHB398CcVvTniZuY7UyzATN5Eq3wUpKlFWpO+fgYTotmDrzCq/C7FyBVUJC/zkIhgyipTEBnCpFqlExImnAv6qpg7j3/91//nL/8i2c+Pg0kGdS7A28e3gJw3O1JdbIR6789PJ++4Liq1n/68878BizSf/jxr4Vf8bUNw/79Hz54LzoYJFwVpOnovKSgAoZXuoCe+jrfag+do3OC88XQ7MGfJIOOXXYygP8Vw/78Zz/l6C2Hd1/y8esPAOyUYhE5vR1RRUU/Wna5oIsYJhVYA1VV0wFD26GahhqJKV4wrO9Dg09XBOpMDxvx9xMMq6BKWnxzi9xrbBRGXYuSQmvq5i1lWeGFYJwUSr/GsCnQcuqarm3ROiGNvnxnceYmTTH39wjn6fqesq5YlmXDMO8Xnl5hWJM4xk8wTAYMO0YMewoYVlXwi18E/8h8uUPtNe58xbCOtvV8jAr37z7/DGtX8iIjMxOnyzNpmvD0/ArD9FfoBNQy03W3SHHBu5RsiV12fgwYJjwyUZzbKbj5yg5ponjmxZFoh05bsuwWs8wInjYMq8uSruuwGPb7PU+PC+u6kmiFPZ/jcxEYI0mzBbMIjEkQDSzLdQ4KzLpwGYaAS0lG5eFkDDpi2FEeOcsXDKuQJMnxBcPmC1VdIYYBJwTt5UKSLDRNg4kJCzkPzMuMtSt3dyVi8fR24gfn8B7dk+P00aO1wsuBLK3YJ8cXDKvAnQLN0dprBjZiWH0NCD3ZAkkG0zrSNEeqKv8uhv3Ln/OXXz0zPclfiWE3h2NwYUDQXVXvXs3zSlzZjTVlfcWwjr57QbHL6bwJgf9dxr9xoOW9/0X89xshxH8P/IfA10KIz7z374UQnwHf/Nr3IJQ/5GsEj3pZ4npMl37Lbm1RD4rXGOivxtPuSuILQVpZFHz5xRc8Pz2yzhNpWVNFM+c0aXn+eGKdV2QiIBFMfTB5BRBJyBB6S9BtcGwM+StxXxLlBDwkHgwC49yrgCvQ99coYeEBITW7wy3lm5B6FZlGJwkeUDroh3nnNrkLKcB7gVlX8jzHWUc7XGLpDNIkoW4aiiynuM+RUlKWJeu6buVFnEfLYMXiPSilyPNsE/k0q6fvRna7BIQkzwv6sQ1luWvHBT5qc4WApe97pNKMUYgxzRR4TZalGBOCVCkhLxLy/KrqvuJdyNIYExT0nV3J4uvLvOC9iWbeCmtW5nkKzRHuulUJFCmrM9h1Ca+bFBFPgwugk5Q0SVjmKShyI1nXefu83sfirhSBKG9WnN9o2ySJxjmFsQ4fy68ySRG8qO0LqUjTDCE0OkmRQobyd3xuSlzbViWJVtthQSlNErMWQgqEdKzLyGVaSLOSz37w+Xbyff/TnyO8xCwCIXN29ZHl2fHNc+gKWq/Nm1zL3GFSev+yZvJMkVcaJ4Jwr5stMk3wQ3j9Z3/1SN9+5P1XA90cpvmbh4R3P7zhzdug7L1vdqHj0DqU/K6Uw7YOg07LdkHi+nW8559kR/9/Hn8f+AWAgjJa8LRRhV0IiZQCUQVrqm4Y8fioMh0l2TuFaOrQT9W1eFdRecH0CsPO5zON9Hz5xRf87KePPImJ1MHv/fD3AWjPLT/7m58jZ79hWN+3VC6s+zlJUKqjPYPM65hibKF8aWYdui7o0vmaRIKRktw5ukjs9/UOBzxfLjSA19A8fIphrJrD8bBhmFJ90M/zrzCsbTitz+TjRFmWzPPMGlUt0yTBN3Bf5HRdOICk6Q3Pq+Veh7VSlx5nLF3EMCkVd3nGyYTuNrOm38GwDx8+0DQVUm4y+OhJUx1llLMJ+njrcs0wD3TtRJpo8sOOZhpZ1/lTDDtFDCsL8nzBJwXrPG0Y9vT4FDHMMgwRwx4/4m7vyWIjlkewpAuZVEhaEhmarNIYAC3TiCssqUtCULrfIxhYzYw5RQyrKkpgmTVZtlLkK25xzIT3CBhmMdahs5F6v8cYQ7M+hyw/YS9Kc03T3KOTBSl2n2DY2CqKfoDdjkQpFr1QU6FGRVJdMeyeN29K1uUDl9PCzW1JmnyOjhj2kz//V9y92WGeBELueff2yNPPLlyGcA2rr/EldB5k37G/YpgQ+DZiWH7FsInVWj4+fkSmCVVMaf1f/8f/g/AVP/mLb+iSUDJ/83Dk3Q9vqOoQ8O0bGTHMo6SkpqanC1oOQBcDriqaSLeiQwpJIwSx2o9vK7z/zQ6L/0aBlhCiAqT3vo1f/6fAfw38j8B/Afw38d//4de/EbE76eWUfz02Sy+2zNYL/+O66b8+M/vYkRiyCGF4UArvPcfDgXfvPmeaBtZl2jzZqqZAahj7kXU1WGPRxcp6tbAZLXb2QX17IbTVG8ALYrYa6z3WhJ1OCIHCRzm561U6DDKAmghdE+O8Ms4rP3wb+C//zp/8EVmW8eHj15xOJ7x3qEQF3SZAKbndm3makVKQ5/nGnVrmmUFKmqYhLwvmeaYbelKdbHyPdQ0cIyFCt6a1jizTW/lxXQL/axyDAGndBF2XLEs3wdIkScLXXuG9xLvg/ZdHzkCaJli70s091q1BZ0lColP20besby8478ijenxy/Wz+qsfkUVpGaQ2DMTPt5UReGXR9Tf9LpmENgK4TlPAo/OaoPhuHMTZs6j5kQxOtmaeesYt2QUkCSpLp0I3oCGXVInKnvPOsy4KWGc6GsqNSKUqlaBU+rxBBuFPqhDRLwQuW1Wxeh1JKEp2Ee55orA2SJcYYfAzWlAyisSZmtuZ1YjAz9V1o4b7xM92ppU5qqvKIN4rL4wf6xcT5x6ZtFbJK/y97b7IdSZKl6X0y6WCqagMAd485syqzi1XFw8MdX4DvwBfgu3HBDbd8BnLRO7Kru6qYY3h4uDsAM9NZJi5EzAwemXWYSVY3o/KEnpMeSBhgAFRVPr1y73//K/BEtBBXzy2UJAiJiw4XA+sasb0jvwXrCuMCPp1FDneav/1vvuGLn93z2ecp0NpuUh7Gk0ZQ/dDKIZI2Hznhe1vLUly1Ypd1F1629v7/dPyr8YvscP0DhrWiZRQjI0NykybScgJa+v5Seg7Zs+cMbUvMSq0L6loaBqU4x1Nm2I75n0dsIziGdPG6ruZnv/zqE4Yt04Q9p0694f1H/AK6bqGA9q7l7ECdhyvDFnlhWEAMAkVDz/nWyt4HXCuJsSWKU2LYxyeKneLnv/g7IDHsvix5Pw/87nfPxHjCB3dl2DSN13NjZoMvHFVV8bimDQMfI6Os+bz7nKbzN4YVhnfvLgx7Ytt1tEIS7BF/PGFfb2irnFVbK0obmN5nhn3+Ge5skVJdGXYwK1WhoNxxPo9sas+8qivD1mIhzg6M4N04Q/C0Eu72BZo0JeHd228RMfCwrLi+x+y2iGGgz34pF4aNQ88mRp6c4e3pmYe6ujKsZ6QZG9bMsGk449aCTbaLWFxAu4IoIm3TcA5HzGxYGFC5qKvXgpAZdrQTgUhhS3xqO0WfIkqt7GXJ0zGw3V4Y9gat7GUdUJVnpC4pyg6i4NE6NplhTdPk6snIaPZst5qhH4gOmiVb8kjJrBRabjHFlBj2/JH2IQWVd1+/oneRtoRm8wXRTcxhYVhz1kzfGNY0wCKoiWjRcfQ5QFaHzLD4CcPGMWuQ14HvPw7U7Y7ICVNovvqrO7b3N4bJ0DIPI9u2pc/nsKVFtNmLKzOsH/pr1aHtkrSpyQw7XQXcf3ov4f/XjNYb4H/Ji0cD/1OM8X8VQvzvwP8shPgfgV8D/8P/0xvF/O/lTxCI/Ie+3DjnSOWTTP4PdFvcXg4iZRSCEBhj2HZb6roixuU6eNo5z3yasFhMbcCBwl+1SuIUmPoVuUJQpKyWlZBLNAAKicUToiDENCvOxBRQQWJmyNJ4EcE5sC6gdME5P/T/0z/9M5999pqiKKk3gXVZIAbWOdW4Y0hBg1KKuq6TJi3E7DUC8zzjV8syTZynka5t6bqOdVmS5QOpPl0VSSsUhESINOD5kq0qihJjFM6nETzaSKqyoqqLa4YvxpjnOUqWxdN2HYVbOD6l7vfVzuy3Lc4pxvFMFIEQPNO0Xs95VW1wy4T3AWc9m7JmmRZsDhqXeUBJweI9PjiUMOjCIIi4/DVEidIKowpiDHjnifIWjCqZckfrmnRtQqSh2lpq2uYyhBS8SIGggJzpCrcSsLgELxJdlDkYjDjvr4akRFIgZTSBJJSPxOtuMISLa31uJBDJgyoFXPmeFcmIVyuNNppZBepmcxW7z9aDrCh0TfSCc9/z/vnpOkaqMKQxUrmEHrIRXHC3ERfWeqKIBJHGPsUI1oJfL/ewwAiDjxGBp+1K3nz+wOH+M9puf70HvQ+pDJrcUT9Zfdeya/6fuHzMLXMS8qbI/TkmNP/5jn81fkEKo5pWXOd+9vTsuh1DiPScadttEtm2Pe1Fw9fm73xRunjJMDrYacFJdCzWsv38C+q3vyVKcV1P0nk+fDuxrk8c9ofMMHljWBmY+kfi2nP6CJMDbbfMhbgy7K7dYp3ndB4Sw7Yd5tjisqFpADZEfJs+fu5h6wK7/R15ZDZv331P/GxDsSpebQLrYujPPZu83sYITUj3z9kfaS0QdrTZzmDeavw6sEwTj/05M0ywjgPznDVYd3tCUVA5RzgcGIYe93Fmu02buFAIjFS4umP8/h37eeThPjHscEh+Xufzmc12iyBl5ZXqkGq5btALu7JvWlxV0H9/JoYTBM97u1LblL27MOzoNzg78YUuWeqWUl0mZFiUnDHe0wfHThyYC8PQnwl5zbVxC/vAMq1EpmS9IyVD9lhrt/tPGMbQ4sXAvtgTsi7p1K944XF1iezBVRUpG3BhWE/X7jiPyY9QmRVi8wOG9Rh9YFhmZmspy4rQR2heMGwaiAiCPjHQEWOkrjfXdT0MAmlH5lWjlz0fpm/xzYZW5wyR9XASN4Y997x3Tyx1KsUWtFeG9bRsmx4knE6fMqzpIkLUFHrAOJhmeP540Vd1mG6hP48IGtqfwZvPf87hvqXt0gieGGrqOjCOI23d0Kc6dnbO+uMM60VqXXnJsLaNRPlfqHQYY/xn4L/9I5//CPz3f9abCfFpzkqIa5nlotHKX/jie64/8dPPX15OAqI8UPf24PS50yy9RaTelCitmJeF8zQSI5Sb9D3KSZRL2W8lJNHmGqdPFx7SLr0sC5yPLEvaJSilcC9quD5nuS6x2ro6yqpml/1yogg8Pj1TFCqV5mIkxnAts0ipUOriBG1xLu0Gl2XJv0MCmF0tTgnGaSKGwKauMTkV7VfLPKf5f1GkzEoKAPLfqgQ+2BxMJTNQYsp2XLJewzDgnENJybquVz2cyTMInUtmp1qnTKP3LmW9xgWdAzotDfM6QPTImDJrwSedFsCyTDR1hSdl2ObV4r1DaJOF81AWFcE57LImMbjzWX+WHj6m2iCyQF3nrGb0DqUkMnfkWGshJH2blHmkUBbEX6+b0qlIWZR471mWNWe2bkvH+ZDG8ORAS2t93cXjk3u+tQ7hPUobQvTpZ+ZbeloXfFgwRlNVBik3tF1Df04Bso8lgQ+4xdEPR07jmSgjdZPu+TCmRgDhJTH6HNxGvE9zKwHmJSB8QJeglUBIQbNRTDkrYn1E4pFZR6QLRVl1HA7fYFTKmYvs5pt2nrf1dnlYp83RZTXmQCKXcq/+eAKQ8kfhpfWvyi9SZ3Dbtmxy0KSlQvSpCUMgoEuABnHNFPVCZSuhSNvmk9K211KGiMnctGs3PPY9Ykimov74yCUdJTYN9cay2z8wLwtv339PjPDF6/TAVk6hXMtZ9piHLfHpwjD5gmGBsiw4zAuLsYm2O8XH5+P177uoJxRQtbAWnzIMEXh8chTrOTGsaQjn49V7bisVahqT+FgIpqnCuWfK+xS8bLxkUi12tVS1T914YsCYGnOpHgyC+TQzhUjsAl1VZoZdjEIH/OGOGFxi2MlDB4+PPbsssziG8AnDdvs9azAs36X+B21qTvOReZTAgveOUwjocSFKm6/thWEOGbs/wrD3NPUDgafMsCPe158wbCzONM8ttijYNAGbdy46c947xzBM1FXFPE1IGYl+g1IeKVPQ2LVPPJ+h9p6xaYguSUVMZti8rjxai1gcd3f3OOf5+PFDmrBy6apjz+ADho7IxJNz7DuNySbV5J9prSN4j9IDodlwtEdkbqbwvsIHgzGKtVrYZoaR51wezpYN85VhYYw0suFVnioQxjPTrBH1lng+0ivBponUdURm/kQZGKYLwzqEhGajkJlhT8czstixbSOP/Qld7Lh/6Pj6679LnaGA2ETwiWFDP6SsZwvn7OclehBKfMKwLjPsIgmIIhBl+2d5Y/1InOFF3unfsglISSQgr1u7SzB1C6rEtVaSMi0IkbsQL++aa7yk8TfWB079iY9PzxQ6xbBV3YExuHBMDulrxE2RYclukVFjZA1FIApHUBF0JHqJFOn0jYMlioASGqNCulAv9GbeC0TILfkC9oeaX/67r/j859+wP6SUpigdIcy5ww+kTFmPayYJgZAmZ1BSh5y19poxaLs2LfQYKE2dy1Oe79+9v94QbdOyLguCVM4MMVIUBdqkoMD65Ng6z1MCLzVt23HuTzibNFibpk6deVqiZMStI9YurEueFm8UyxKQskwzAe2SynFVwcU8c55WpqknBk9dFIzDkMXi6XWtDEoVLKsjaIkQGoFAS4HNta6mLlizNktrhRTJlT1c9GYr4C0SiQ+3uYwx3sTwWuhkdxEl0Ue0UJ+UfiIJ4FKm3a6UCqVjGtCcuyxDiGhdIFWRAlORxkZdrr3MGgmhIiEK/OpRMjcx5AeQ1gXRekQAo0uUNtjVU5bpTfbbgJtWTu6JstAUheKbnz/w7rep5PI+bw6SnUP+0cIjlEBfA2APLiC1IrqAMoJ2V3P/Rb4mi+e7txPzMVJoePXwioe7L2ibO2K+z31M8yK5lCrFRSCd89ExbVyQguQ1IbLtsMidt3CxPLkp4f4yDqkUnRDE863chpScM8PatuXIiZaOlyUHkbsOIcmm+m3HLnJ7D9KszDgMuLrB1oETJxbrWM/pXM5LSWt2jNrz9Pj+yrB3V4YpKl1TFGVi2EOE5zONl9dr+/3xzH6vUa3GPAfEbiKKlvtD+j1GPzCcIqq9MOwVv/x3e7qHO74yiWGDcQQ/c24q9lojw4m23XDMJSjRD0mAnRk2zzMxRtos3HbCo8qS4/mEqWtcMWDcjnmcXjBM8fjxI4KWsJyYmsjdS4atBXiPnidWV9DT81nb8fY7y7eZYa+bV3/AsMIuPGeGNUHzMU7UsuSuKHhnFwprMQ8FIpd8ww8Y9v27ga1QnHIb54Vhx1VQakkpNF0rKGuBe8yD7+uCs4XGzJyDYiMCkhPBpXP+vPYwH6j1Sl2azDA4B0l9ZdgewRMyShofCUIhxXBlWNNKRPDI1nAM75Fy94Jh6Ws2ITLNBbJc8ZuWdllIDMuTBYwkBInYBTZRcI6SHZrnQV/lHj9k2G5/wK6ed9+lho39dsesCr59/i12nVnXibuH6poBfD+daRqQcSK0CqHg2Hv2zYA2KaPuno8gNshq4mxg7F4yAAAgAElEQVQC24Og3TXcf5F+z4el5h//03uefUNxaG8MiwVNvs9VTI0PRqkrw3r6a4clLQzTGaSgFQG6G8M22WT4dDpx7k/XTNufcvxrGZb+dPx0/HT8dPx0/HT8dPx0/HT84PiRZLTiLVd1zUbFtPsVubE4AkiEiC86DdNYmxBSJ5OI8jI6L70qUzYrCoknEgSsPvD7b898++u0i7x7uOebv/2C9r6i3NRU9pF+ODMPKW1a6IpSl8RgsXFJrdIWgpWIPPZBRLCLSyWbrEFRBu5epdN7Z3a8fxo49jM2wOuvd/z9f/e33D3sQaW/ZVkmpFwI3hOEp65rhCyuHTnruhK8I/gk+NbGUFVVMvUD5mVJ3ltaU2hDYUzKAm1kMi8FxnFEiWR/EYOg2VSp8yUbH0ql0AXsDocsRE3jB1Lm7iKclCgRcHZhXSaIASXBZc8eO0Wct0i26M0GLSVBSrTi2oLt3UIUnqF/ZvfZF9k41V6zmVqXTPMKQqPLGqTFeodWEHP63+dSacr+gV1mdFVed1jT8IzSBYUpcQG8D1RljXcRm7Nem6ZBx3jVGwkp0piRrH2JMbV/CzUzjA6BwpiSqtwQwqVzMXmyzFMaF1SYkphLgwBCg4uWojRouSHGZI2hFWTzN6xdMKpECI9EEYRgnk5XYb8SkbrUrEbgtWTXFthhQhd5Z1ymTJECgvUgA4UBpSP6oiP0khhEFvgHtAFZrdx/kwT3RVmz2ff8h//jA/OaRvLsD1t0IQhcBL6KiE+XKd50RNeMlsg+TUKmdSBksjSQqVMxrdiQuoP/zK6dH/shANG2xNPpyrChPyNkR9tF+v4ITUtPRAwRIVLmQ4gdXddxOp05x4g4D5zlji6LRs4yzYqMnaSeIxvRsvrAP3z7ltOvc+d0tWSGRb76+WvmcuW7t2fmU+4E1hVlVVJkhqF6/D14KxF9Lgv3jzx9dDRdINSR/hhRxtF+cWHYN4lh333gKbR8/dc7vvn7zLBd+luW5x4pDeHoCXuP93uEHKnzWlmlINQV4Xgm1HVimHPEXLYxxjBTXxl2VxmG3kKIFGUqL47jSLNpmLUinhRvNg9EBh6fEsMeKkUloDoccGGhH98zDFu23Z7Hx6QHGoSkzQwrFsE8nlBjf2XYOA3EusRMHjLDZinxM9iYPcMqkxn2O3af/Q37zLCL/rN2Ncd5BbFHlx1ma7H+OTFsl9Zc0jtOTKNnpzsWMzO7CDGVa7UtmPSR05NlE1qO/pQZ1iCqG8P23Z7gTyBaOikIsUPkubJnEfH+GbGrKEfHiUfM+inDzueBwtwzTwudKVGm5Hw+0sl8b1wYZg16u8GfNYs9U5XNC4apFwy7R+s/xrCZh0PHu2VMDBOKj3mU0GyhMQFFS7BrYliZhqXXWSio6m2SvYTIugYcIKuC+2+yT5v1hP3P+A//26/QuuWz9h5tJLroCG02ifWKpq0xUkKIjHJMA7i63F0rGjZskN3IqY8wSJo2IKTg/IJhzaa5dtP+KcePJNBKD7WL+D19ghfdhn/8CAFy5jFpbH7wusjvG2KgKArapsGYDetS8HRMdfK3H97zj98+8cu/u+evftahigrdTPg+LajJDpQ6CbGVFkQL1klwxdXJPMabtkxISSCZnjZ5KuXmsKO9b/j49IHzNKPNwvPxW3S1UjcXv6Wk/SnLEmstp9M5ic6vYuL0ALt8HGPEe5863fLp0lojVDLfLIoiieczqC/fN/YDMUbKqkJIweFwuAoWh2G4WkHE7NM1jiNt2yTzRVIKVCqFKgqCd6zzhIwCc1Fuq8g6jTx/eEQ/pOsyDxOyKVmzfg0Ed4d7ZIgUhaE/nYnBU5apHJc0TTmvS8D5NXt7CeZ5zO8gKasCIVKJ1QePteu11Opcamle1zVptXLXp7P+KiK2dsV5RyQkEbgUuTPwUr5OIvWyaDDKs8xreg8frg4jxiTtlkBidPJMtz5cB6hqpVBCEZzHK48xBSKG7BJy2VWIq9bNe0skUBSGkLugJIG22xBcxzSPSC2IaqHO1aX9vcANES0C1qctijKAjkiye7hNMehliLTaQNEqgkyvC6347OsD1ke+e3dEFgumchSlQ4R8bd3tfrx2FP7gEEJCzJrKePm6F3X0vKUK4V9e1/8Wjxgj8XxGdN0nDGubyPkcoW25FANFezEqhRB6YEfbtqmdvB/IxQwgdZT3MRLChqI40zYNB/Oadfkdvz3mss2Hie9Ov+aXf3fPq3uNWkd0o/E5mJ1OA8GvdDQoPRCteMGw9FBvIvg2b3alpKFmUT2NSCLiutvxqmyQpWQ/fWB/+IjzJwIFj9lqIDFs5f5+lxzgT28Zt1uEyWbG84zs+9RdeWVYzZq1QMa0aD0jtGK/31MUJYs5o6SgyKXB8/nMyECMDWVV8XH5yNeHr2llCizeDQNtXktNE1kXzfffj7SfNTRt1rvSo1WHKgpOxTPFeULKDpMDvlVFeLT8Tg78/Oct203L79ZntvX9Vbfj7SPffP0zfhcid3eJYeflSJltFbpCsC9LEIKiCszzitY7xjHgXWKYr1rKqqQTkWP/hJlmSqMJmxy8uJHlKFmFRHQSO680seVs3zHnOZfLulDWFZESH9cbw+o8Y1AOyEFSrhHvYat3yEazLI6YgyCjFN4f6V4wbLPZ4Pu8kbsy7MjxaDGmpms6womrzcEqluz9VuG95dwH7Lrw8Crp99ZpZupXgjO8//A9233Hh++eXjCsww09XXfC+ppzH2l2gI4UbbbUsJbzqaes01q6MOw0JgnFq7qm+/oNpY/84z/9Hnm3YKqKtXzGTul8bc0WIZLzu2haBC2X0v3lEN0Iscsd6yMDQy7550Xbdlmh/1/QR+tf6xAiDQa+5qrETYt10V/94fGpJ89LgW56lSTelQIlk8Pww6tXtNu3KJ2CpNXC88nx9O/f8fj+xGetYKsVMo8mWSxE59jUFQrJ4leiF0yjhSx2DyKbrOVsFgp8vI7zxfqZuzd72gfDOPXU25Jxeub9h5nW3rQYpSkpywrv/TXwfPn3FaagLJJHVlGWSClp8g6qqmsKUxAlOeJfEsicx2bBvLUWU6QgTEiFtZZv337LqzfJ+Hq32xFJ3Xfe+2SY6hzTPN6yTUJQ1TUiBqRITQuFVKxZ6C6VZNUKa1dEjJTaoKVkWS0qZ6OCk2gpaduOsixx1cLp+JQF9KmRQEnJYi3zaU6t2WXFutrL4ACEDIRgsXbFB4vWCmuTcBVAmxLrQhoZow2C1Jwgpb667Z9PK7LQ1+YDmfVVl1Oulc4t4anZwZga55IoVOVgLYnrJdGnIEnI1OF6uW5a62xlELHO4mzEmCKZn+YHglSSGF3epaWWEKkEKp+Psi4QocbbGfVRstqZeR2pspBURsFZLBBWCi2JMgs61SUTnAwrQVMKSd1VlK1BGpiWBBkXVg77ll/+/Tc8fDnQ7FqUAUFAchk1kcx8Cf9SoPVC20bWa11bWl6syb/AQwiB6DpCCJyzkH0ntyQ36UgTk4EnJMfpTrxoJ4+RBPuOru0QUl5m7XKWfZqaMQimPFmiqmva7eeo+VcAPE4wAk///plffPWKloHtPlznei8W4geHfGVQvcGolfNRMPUWcnt+Lfo80aJJjtiqZx8FTcbT6j/wzS++ovWG8X3H3ZsXDNvdGKZjsoc5Ho+JYevjdS20pqUwBbYoEsOsRRpD06TgpKoqClPQ3EMMmnX9yLpGauf5kA2TrbUc2j1rsaaMvxX8x//0H/mrX/winXOtEcOAaxr88cKwM9MsbgwbBjaZYduuZV00hVQcrgzb8lb/HqzLDFvYy+0nDDs9S/ad5rPPbgxbF433eRSZmmh+wLDVpqkTi06Bw4MM6GCZ7ZqmaGgFdqHOlgfzEgkhUNcl3ltqX/HBTUgZbgwLBcIuzPNM3TTIQcJecD6nG0jfGYqqoG0bpimN0CmKCiEcKq/GKjNszQwbRoGUhkb/gGHtnvI4IGwklFVqmshf45XHxJKikKwuggicXRrIDbDxjiHUNK1GKcm6jolhbzLDGsH5Nw2TH1Da0dzVV4atsc8/A8qDBlHQdRVlu7CKirgk5r8Nnq8Pgl/+/TdUuxJTS3aHTxnW92e22dRdXHY77fUfoE99KKIntA1ibLgorK4M63v+LIEWP6JA6xpQXMbahIBEEET8tKb46XcBN+jfnJe5fl5KRRBJ+L3ZbPjiyzd8/s2OX/9fHwA4TqAoWFfJr37lOBaWVxt57ZDzPlCXmrqs8WEghFQqsotFvDDLEkoAEhcD0efOnDx6wjQbhNG0TUXZ1rS7mnbbUlaaxeWuQZ86AsdxpCxLqqpGa321XijLEikkMnfSXYKwPkN9XpZseJp3itbhnMOu67Vso5TK/lmeqqoR+ePHx7QjmOaZ169fE0LIwUFyMY9RXa+LkBK3LqzOo5VEeE8/DOkBDIgQ0Nk1U/iIUZLXDw98PD5TFLnbb1mzrYRgGPrk+C5v1zOES+ktuf1XVZlN9+zVrThGy2qXHJQGvL/4NF1218n0VUZBCJ4QPQSBlGk+1uX+KESVOhqVwpQFIJC5c1FKlfXqEmd9KlUG8M4TrnNkkuOyEAZjDEprQojIy/2aO1ykTB4SLgSsXSGK2zzNGFKwJRVSqVSuFNnnCxBKUWgNBHb7HXadKZS8jsHp5cQ02WQZoZL5ojYaLxds9hjRsaCqtuzv77l7OBCl5+13b68ZQqk0Qhna3R5VNRRVSVHUCKorYaSUXOuGf+yQuZvtKvQXuXzItZ6fMl1/eeGW95lhuYMQ4BRObE+CTddcN4t932cT4gvYh7yGBW0LsY8Msr/KHzohGGVa87FpeF0W/M1/9Qv++fHX/DpphDlOsOOOdR351a+eORQl67NmztlKfwzU93vqU51K7uKRrRCExTK4tBYiMChB7EfqpiUOZyJQ5XXVdRuEmWnjnvJVTbWpabdQVprpMkXDW+I8M34/YkvLQ1UzLzeGqTJ1/94VK0IIRqeIzW1D7ZwDIVgeIzF+5Pj0kmGJpUopJjly70tcdaQTDXNd85vf/AaAV69fs8sMO4UTbdvy9GhpnOMyb2jxN4bNk6Tynn54d2PYJqD7G8OWSbKpqk8YBl1mWPcJw+o6XftB1DwfHXU4I5oa51LjkqtLjLpUJiyr/Yj3nk0IqHpD38PplMxXlSnpth2n4xnIvAgCKfcURWbYMuFEhTEaf3Qsm5WWLWqfbo6t1MjNRAgjy7xBqYnzqccYc2VYvywcDgeGYcHME1WxJ4QzNjPMekOMPdtegOhwQfD09IjZ35Ob8+lXw1bBIj8gVercbjvwPjNfKVqt6b1jt/+S+ft/oviqRoRUnuzlxFQ/UdcN0yTQRr1gWO7ijStV9UVmmMkMO6N1YlhZasS0wG7Hz968pni4zww7vGDYSC8atm1kHATQ5z1O3tnIDuRAmzdNAwLESKSlzYvySOT8ZzLsxxFoxRct9vlTt/7C1MGVYq2Xe+P8rdnX6aXj9GVhC3nr/kplNMVh3/HVVx1ffp12HuMy8/tHj6cmBME4n3mcA1pcSmgwFwHNRNem4dUxeyBdKkwxl0gCIpsWRpyPV5+Suu1YQ0hz76QhYghBIVVFrVPgIEWagRUjlGXKWiUbgaxJ8h5PoMoZGIRgHEf85W/WirqqWN2KlMm5PHiPVgqZhTpKCYLzLMvEPC/s9nvu7+4R+hLt9zw/P7Pb7TDGsCwL5+FE13ZXK4LVWdy6UGjFOlm0Su7KF7uDZFhaUFUVPjimaUJpRcw2DpAyRTYG/LqiFUnTJVOZEGCeFzabBpzDO8c8j+iiyDYfKZAK2f4ihIvzfbgGKJACrhBTV2DwkbQrSVlT5256M+kVMiqUFHjnsCEg3cVVGUwhU0eN8ISYS2Pc7C6KUuOsRaCzvxjE4LE5ijLGpB2vcyglMIUBJCGAli+Xn8cUJQqJ8YZxGBjH1DWmhKAyhrJq2O4OOOuYixqXM5XRp0B4GifGeSHICCa56It8/9y//oz7hy9AGhZvUVJTNd01Q2iMoWr2yKLCT46y7jC6RcaaGC7mq4HoL+X8nG0Vt3OS/FOSM764tN1mk7Kb9jKVaa+jpf5CDimTg/tWSprcMSiF4DwO6OyVlzpaFW0b6YdLuaIjRpXL2ZFzPKPQbC8M23a0csyl5nSND/uOr/YdX/5dnodoNP/weKTkM0IY/oBh59gy/yag7ya6dqA0W2Kd7BovDHNNS+xHAoJ+HNhIePaRU2bYV5lhLgqEXIhINmFDoypyhQkpGmb7LbGCh/tXiWFa3xgmBmo2DINjv9dIKRg/fEDkrLzUCl9VFJlhoxoIeHS5Q+bTpZQgRM/HZaKZJWIvuL+7Z5jTz/j44TuKomC323EwhiWEZLDqxY1hq+Xdd99xt98x9pZCSU7Bc3jBsPuyYKgqjsFxVxSs8/QHDAsxcFxXtOppvM3Pnfz6vCBNw+QkBZF5luhipYsBTQqkQlTEcyDUJXqn6fsTzlUIkYLKEAzHoyWEkuAvPmyCEB6RMk8UEZLxOCXrDKOpXcWHjzMyB79PBg53DfNsEUIT8uxVuDFMKuj7I0LcI6VDkLopy026LsvSU5YloqqY+gFZGCpKwgh6m86ZLkC2HuNLFBbj4ftBMo7p9V0nqDYG++FDZtg91VDjqgvD4P71jmmcaPcGoSKFEzwHgVCpLPyzv/6bK8Oct0zzQNV05KlIVJWharZURcVJvWSYJ4b8t0pBsg6OwEBsGhA9QmRR5DCAkohRIeqXDBuv501cpSb/BjVakP/4LKyVImckromBPy2CvAQokPVZISB0GoIrlWS/P/Czr77h3S+SwWY/fsf784K1MyHX1yMRH3NLsoiEAMs6UVmJUQK3+ksUmL8eokiyHB8iQsPqYcnib2kUSuT2eCLOO3wMzMtyfQAZnRaNECmosnbFWnXN1iV47AkuZeeM1kkwry5BZQo2q6oiZqPTdV3praXMmZGiKGjqDVpr+mHi8fGJzWZzPV91XXM6nVBK0XUdptCM08A0TTRVHrMRk5mqrircsqLKgmpTs645KDCKkoppmiiLGutXPIoQIi4LhIqiwC6aKNfku+IXIgHnLxqudB+kQCpcx0gkd/FLMK1SpiqE5O8E+OCu+qvoLc7fLlK4eBkRr7oCRAryipyFCXnk0cvAQUqNVgUxJrf3oqzSbjAHHyF4TKERQuXxPoGYrSAAqrLCu4B3kbI2OO+zS7VBZd3JvKxY5yiqCmeTNUhZ1vg6C+pDyHonRdeltmkRBX0OGKUOVK0iKslKxAbPGmcKrXj9OpWFH958CaqmH0aGqccYRVkqJDnrWpQUVcVsZ/ql56F4lbJs4YXdxcslGP8wC32zhc+nXb5YIy/++2Mbw/OvcviQRuu8YNgoFNvtFj309EAdI+Jq25CeDm2blB+thPO5p21bjCmQ+sKwM6cA3YVhWqGF4b/+27/n3TFd/378jrtzZLAfCByAyLk/Irkw7ERQYIqWsiwg9ri1hthfx4qcYw9CsmlafDzCDIVvWbJBpzzsmISH9ZlIpKorfBOYzYK5MGxeWH7AsMkm2wuAtSjwytM0kVOMGKV59erVlWHDOCLHEbeFGDf4D46iWHmyv+feJN8oYwpisUHPmtPwHh/OhPAlu5xpquuab7/9NjHs1SuW4xPFWjBNgSavlzYG3LIQniPVYoj3BQ/bV1eGTcuErSu8UpSFwfqVwq0/YJhDRM1WrthF088LRve440XP6KEJV4ZJORM2W5xb6fsUXGy3ipOvCaenqza2DgqZ9WaDl1SZYT2kWZitACqczdGtAFdb+kWwywzrhGQUY37dIuWG/a7j6dkRvKAoK5qm5hRSwLfdtCjVMAwTpQ24apMmVeTnl5IK7wJHFymNxvkaKVeKYuVqFSlXnk4rd/cPOPsxWYOUC75OGsBi9WAcXafQo6Fc7+ibjv70u/TtekP12UictpzOIzZ4pP2QGPbXqSz8xZsvQXm+e/eEEGSGTWyz7cKyWtaqorczq4WHYmScRj5/8zkiP8/Hc0ootPWGNraEc4BLxpk0AgiRZiBuxIZ2m5DW9y8SKyK55f85xcMfR6AluJbDbjFi3jVf//2T3uYqEr98IkqRdtd5sWtZ8vrwM754k2rHv/3tM5tmYT4uqGjZFLCvFLrKC0prZPAYFfEhJDH8ArgSIS8u5aloGWLEh5iMeQWMY3Y6tyO6MdSbis2mpqwLytIgJbhLR8484O2KkBJjculUqmsQNM8TdrVoaVIAqvLA6RyJSqWuM/u0SoOOi6KgKkt87rIbhoHz8cRXX33FL3/5S87nHqluZ/wSpF7KkaY0vHr1ig/vv7+KzCVJl+RWi1EKKcFUBpe7cZ5OR5SSzHZFWom1K0ppnAvXsTTtpkIqmbRiOIRII2lyPEgksCxTyuJ5x2ZT467lRHX9fa1dCCFgc1OCUuqa/r987aUzUSByGTAis3mdlIIYPSH4a7AlpboOW02Zp4BzqaPVmBIp+SQrZuf0OxSmydcrjU26BFreOqTSGG2QUmGXBSnAuYDJd7vWmhAvGV2BsyClYbPJI4tOp1w+gapu6FqLswPOXZavwjhB1BErQdiU8dttG16/Tg8oVUSiDLS7gm53Rwwrwc2oXdq1mqJGVZLgAm++vOfzr1+z2RRIEa/jcm755E8zyy+Dpk9K21kIn7SSl6/N2ee/NLVWZtggBDJnsJSQ9Eqy61paYgJ132fDztt9TA99Ttkkhp05Hm/vG2VHv4dWCGTbcj4HNuaev3mTxsH89v98JsSPqAFU/J7NXUuxvTHsTu+Rm5cM8zx97MGVdCIPdI5nmlbgQ8SHBnyfhpPLG8NkY6i/fOD1xmNrjbSGEKC6MMwOFHZFbLeE4DmdAvv9dB2RUgXPB6nZL4ZBPrFVivF7D9u8HicF2w77vWW/M5wywz4vS7xL7/Hu3TuCq68Mi7GnsH+EYd99Bz240lO/qpmnkdOazscWUDuJO1uMqpAjmMbwvKTNtzEF05q6uLWVvLePKKOpqhvDCBXjNNJUBW6VCDHiXIWJKVg7E9ibxMfVWYwxuKEnVCVte3tEl+XC6WRIMU3Pqmb22VC59p6YGSYjCEZ60r30kmFNrFnCisoMG+WE1vf5J4ycQmDvIqKRGHWP1D0iCJxLQfS7D98Rwoa7Q5P0c0SW4jbJQw0KudtjpEJGT2mekOKAEJrFpkyR1oHNlWEdzn5EysDrC8PCCbusxGNimGgt7ulbqk2uf3NkcR1R9zeGNQ07qfjr1+l8TOuZZvtAu3N0LcRQcFIDapsYt11rVLWwqTYIpegOF4adCaG8ra/8Uc85ubzTcr648e92yKJgGAaGYaLZdvRkreWFYc2W88fvrx2Xf8rxk4/WT8dPx0/HT8dPx0/HT8dPx3+m48eR0YogYySGNJcQAJHc1FOWS4K4dOG9LGH8oKSR3eUvDuNCpjE+3iYfjEjyTNo2Bz5/ldqWXx/e8qo+Mp+gqgNff1Xxal/jc5ZEBMF0nlinSIgpmxUCCHkrf8RIFj8n/yAfAlGDjXk36Hq0TFE2Igms19WStilpd2N9coRPg4BTulnpm6dTVRd47zAmOSprmUTilzqxsw7vAuPaI41AK826Lml48WWGV1Gy6bb44K+O6qfjiW6ffF3atqVpW9bVJjHpaaAoCg6He5Y8L1HFAFIRrcOF5MTuzufrtRAx4lZLaQrmcUYXBm1KlHcURb7dhMQUJeMyUZUa7Q2mKNJQW8jWCYKiqEEsBB9S54gQ+Oz55SOsy5QzmAGtFaosr8J/pEmjEvDJa02kmroQt/yokIIok29VFDlLGLN/G+maSiXRylxF98tiWdeJqkq7LF1o5mnEeYeKuSuP2+gbgUDIpBlbZoeU6T19BJvT2UaVCDQuglAaU5HO98VKQaYyulEFInh2+wYhDphcszmZwLJIvAhMzqYWwwBCraDSdSvKDchAbSp0ofBOEqNEZfdnU9QgBBsBdd2wbdtUNo/+tpMTqawpJATEtUvzOmZHyqsuMYrcAxwjgoi8DAyP2Rrj5dT1v4BDRIlsGtphhC7V46SUDEPP6dSzbTv64YyUO9oIfUylnb4XSRMTc4ZLCGLY3ETVUtDJwPnpxCAFbRsJa+CL5sD5VcoGvD4Y/uoV/DakGXyHrwpeaUWd7VJEEExvJ9bhTBBgDWw2EEzDc0yNME1skWIGJkLv8IKUXcjX7eOzpOleI5SiFw4TEk+QEZezc3awnCPsxYD3El8HIg9020vGOWK8YjEaN5ecxiXZG1SZYcpxdCd89OhBIDp4vDAsdx3e3ZVsqgPeH1mWkhAUH/oT3VdfAvCmaWiAx8cnQjgTThZdFJiiJLicvY0nWBVRVjeGxTMbl0pQbrZUG8s0BT70fWLY/X1mWLou8zhyKEpG75Bao+sDw3BCZl1lmgstKAoPomBZ1n+BYRa7nKmzpMNae/NrkmmI8q5VdEiO2VZyHIZr1UZKzWa7Y9N1xBCRSrFpImZJ7zGKiJwkemcQ3hPPJ5ZgOa8nqoeUCdq/fsOH99/zfLTstjukFLQ0mKzzGrbqBcM0m667MqxsMsMKgfP7K8MWd49RM3RZ/vB2QBQCc5cY9mX7hq5TvH2bSofTIqgc+GZzY9gJxP7GsLvtBuSJz9uKeVX4amK3f40aMsM6T9u9IYieum5oNplhZw91nr5AntoiYSMFo5CMk0brtJamaWRTlFkO9IJhMXzKsE37Z7VQ/ygCLUEqCHm4gtrH9I9QKVgSKmmYkr7j9hDLoU76fz+wQxAxZlFuvMQzyexUwX6b/D1ebx/4vPuWWnjuPqto7zXWL4jH2xzDENLsvxhEEjRvJMu8ovLDQkWSkWjw6YIo0Bto79KNKpVlWc6AI3pHK3cgFNbO1+BDSokPIKRGKp3kLVIlpWL+OPrAale00ZRlQVPX1+62WERW67DOsrASCfjg8MFdp9aL3PlW1TUfPr5n2+0wheH9+8B9tqoAACAASURBVFRGtdayPxwoy5IQItWmZRhG+mG9zouMwDItyBDTgG63oqJkyfBIIvjAtEwURY1UGi0LqkoyjbmkUhiqekPfH7E+cB56QoiofO1NURNjpDAFUiQ7A60lShlc/jnB+zRHUIr8IHeIIK83vzARHyVCGJTSSCGJIZm9XsqLgYgyFcYUWB8QJs06vEi0lJJIkcS3Sl+ug0bJDaa6mJoGYoRpnFnXJMZP92EekaENEZ0DPIUPsEaLrkpcviljtJRVjYiCEByCNY38uXheCcHcR6bzERlXqrrkcLi7diVGBPH8xLxGyjLgfJ+E/XHieHqX70HNdldRVIYgIjFKTNUgckrd6BJjCkIU3O3v2TY7pDCfdFCG6LOgO3f3ijyT9CIKlZIgxNXIVMSYVK4xJJ0ZIL3Du0h0f3ra/d/CIQDVgxefMqxykUUJzqcBoQRdJzmdzsSYSiqiFTS0WRcoGPrhOmAaoItnRNzSNQ3DMCBPsOsiSNifbwz7rfiWv/ms5u6zCsoZ60vEemPYKZwJEmTo6NSA2WxZ5kdUkulQND3BK0KoEY1Hzv0nDNvuLOPyFqiJ/jWtrPEiYu0HiiI9pEYpU4Av90il2dMj5AR5Lt8wTpTlyPrUo+WW8j7ypq4Z8/2likibGTbQI3uJN446VKzFmt9Dsql7Hl4d+PDhDxlWWos2hrK8p9xE3DQThhGGlapJa9b1LYsakcJR+8yw441hrnL4ucKuE3d3rxj1zF4WPLmRmNnRtA3LDGE6Y/2J8+NK2EQ2bQqyl3nFmIl1qahchawEWkuEmHCpQpkYtgqUBM0ZGaELxVW0z2HlsZeczobdTrPNDDuFG8M2bcO0OIyRzDTcGYfWe0SZLUYmwyIGTucNu62iVxKx1ezCaxaXtGBLDNw/vOb99zOPjwtl2WMOd8iLcao2RPaJYa3ieIK6+0OGWacTwzY1ZbUyfndi69O9rLYdH/qkj5XR42qJOdzxtUlB+G9+kxkW7I1hB0e5Ufw+M+xrpZGZYaaOxGfJ4SEy5PmSB11jIpxCx8P+Z0nqIQxhE5ExXZfEMAgiIETLRghGIei22W5llJyGga7p6PszQ4QuenrvEHn4uTw6/HS+Xac/4fhRBFoQCSIk76yrIWLKYhHlLbL8f3MIkELig0epJHQOBO4OKYvz8PqB3V3D4Y1k97DnND/T9z3e5sgsgCwixiiCAxUkpS5BzyzZv6PQGrcKwmhRQFFCuYHSvBALR0FhSjZ1S2EqkKm+ftUUhYllHKEsKbsCrQ11XV8DR+csm6pKBp3OMw4Dzx8f0blTpq5rjDFM/YBVK1qZqx+WyTYTZVEkx/e+z8aoKQjrsrGq82kwc1GUKKUwRQkInh8/oi5NCSF5fDlvqaotU5+CgouA/OJQr7XBWkttUgedqQr0pfvIWYJNQ10hUJQl09hfM5EhWCKRdc26utxVGIK/Og3HGFMALiTaSJZlSq71+WcIAkpJlCD50+S5hiEGLhXzSwCWlEQSiaQsSlTWSMTctCpVsrrw3uVB2pKYH2IXHVkMF3NUkbUNN61YjGkT4ILHx+S7JpRCl3kgtzbEkFzonVuvjRGXwn5RVkTnGIcT07RiqoKyrrBZL7I/3CVLCiGJUeGDZF0XpF8ZThfD0vdpfmJ9ZtN0mKKmUS0hB2vep4zxtu1o2yY7NHh+qMdKAVY+Z5fs8wtRvCDkL0qp5xSIhmuW0AXHisP+hTnDe+AkAhtRw5AeUENm2L6RKNEh1O08XmKpdAZ7QKbsVraAuMyXZtvSDz1d17HZbBimkVZKAhuKK8N+zu7un9getqgHzWl28Lzw4cKwU2LY4bDj9Nyz1DvudUmvNSozrN7ucY8DYTmiWig6KLv2E4a1saMzClFDYSqUBClfXRlGgGUcsXWdGVbifY3Pdipd06D1TFM3eOf5+M7xD/MzOmcs6levkj6qf8JOK3p3oLIFR//EF7uUsbJFycflEdMnTeaFYZ83ORvlfZrhegdKKMqixLRdYtgpnQ8fPFFeGCaZAH8OiCwg10uk2u+xtcNai1wE3z+9ywzLxsLOYtSIzZuMorSoCKe8FvabMs+SNYT1iJ4baAMh1AQ/5VMaEaTBxnqRLEYh7Hpj2NMJpTRKHJiFos0Ma5vu+rsO48z27jXzPNO1ktFJqtWyk6kjNarU7zCpE/0A9abi8eMj1d6wrpkN3jMMIjPsESFKpPe0pAzg5CeaeGQYBG7TUhdplqxQCm3TtTNFRUHEVxVuWTAaJiHpZfo9d/cPlM7x9PE7ChWRVUHpHdSvAPjq6w3fvlXg1sSwk6QoFka/Ik7p/vrV08SXX52hPrNpPif+3+y9y49sWZbm9duv8z5m5o/7iHsjIqsyuwqyxaBUzLsHiAETJGYwAAkkmgkzRjBg0jMEYojU/AGIERPEX4EYVdH1zIrsjNd9+HVzO+9z9oPB3mbuNzKrKqsz6Y4uxQ6F/F43v+bH9tnn22uv9a3vw1CrhvImBvLuoWMQglcvP6Fp6qgX1k/Qi6jIm561iGENon3EsD5xtNjtaJWMD40INKSGhuAJxKxq4TMGLPbvEJV8LwKtIEhB1mOXWOTRJnESIfm7qLB+/OZRENIHn7JGFq3kpfRzuG4JMnD/cKS5rsgyjbMOd65gyphUCs6hjUKhUFpRmhym1PaOx5QGYSSb9ZgCsgqUSk7vWpAXJU3VoGQskQkZW+99OtkLJFqpKHbpA/M0RnkGfTYFtsnN/UTwAWMMEC5EcHBIKvJcs04D3RD1eozJmYa42L33EARd1+Gcw+cBbfQl41VWNWVZ4n1g2yx2GrHOUdc1LjnOK6nRAu77jg93dxzalnUcL+9hrWVZFsqq5EPXobWmKktsOAdWkR5tracoMob+geDtk40dgpJkWX4hnBdFGQMaG8U+4ZxJisGJNpIQIqH+IhRKPF17D0GamBEzBh+2S4lSCR3btYOLArBCIYXhnNKKagUKVOxuRAZMrpK0RPw9SinKvCSUMdCapolpmmJZBS6CstE03WG0QeU5XkqMfhRqtKtDGUkMPTf82RqImInM64pmO3C3zcybxeQZ6nzfpEBog1AZSlco07DMMzkbPp325mXg7u235GUF1y/RxsFqCHlaw1qz2+3Z7fbkRZHaBAPR9SC1rJ8PPFJcYqknX9LGcV7PUfrB4wmpOxTApu5R//cs0ArCEUSgbwOhTyff1BbOKKF9xLCmaQjdWd4hZrJ6AVFb6wze6fW+p5GScRyxruBw2PFwOqKUoCjiBvPp5y31H9f84qsv+Sx7xXVz4M/tG1ySkBCyQaqGbn5AlwpVTyhd8czc8G6N2QLlPMteUl3tEob1rL5Hqbhhz1qQWwd+jxoz3HLiJGOloWniz7TNjnVaWJaFOsBcWrKsZEkyJFIInNW8efNXTzDMs50DwqlnR4XLNetpIJzuWYSkNTXv3rwFIC8LqFu++eYbnj9/jtYTVa3RTzDMOYdXiofNEpQkrEvEsHQdk9S4pWdbZj4MfcQwJ8myOJ9nDMsqw9SNtFJyePYMG+ylsUjQJQzbcHZhlgXDMhM+wrANawVUOdYuuDFiWPsdDKusZTASFQS2KOimGIgdiJZy3m+Eo0EdJNOyMK85ZREzNLt2u9iLSanYtTXWBfqEYU3CsEY5Tt6DzLi62XPqOtoU7QshyHQWu9XXmnfv3jG9e4e7joT6ut4R7e9G6tMJdbhiyvMoKp2kg2TCMBaDzUGz4UMdrYEA3wtu6optO7AsfcQw2TLP8Z6UjeD1Z79Dezqx1xVfLWDmmY0NX0UsnZeBn7/9ltx5fvR5xbzAkBlCHudr3Cw/evUauVNstiDPBbF7/RHD2rZl6HvGaaRtGvqup22aSzdwCIFT/0DTgCRSezyeqirxqXy9+gfq8G+kMrzAC0XUIEklKu/BE/0DgzpX0ODvEEXGbqfojXRp2Q8BfLiUh549v+X15y95+OdHlnWm2dVcHVomtaYf95F3tFmUgCLTyBBtDryJ0zcPFik3yhbEDHkJ9V5R7+JGmhcZxkRBS6MNm7UMw4hzFpl4NplWlFVJZqJtQ1lWrOvKPE+XT62UxFkXg5pkr2Py2PWxLTPDcMJuG6uP0g7b5qiahnIff2YaBhCKoigZhpFxmJjmhV0St5NKJz2zeFKsqgrvUrrVP5YhtFLUVcn7t29p8gxnbcoUxcBi6zekEJRFwTyN7Pc7cqEvQaGUhvv7E84uCBHi5/IbIr3HsjiUEpdr6fsOYwqkUKzLfLm7FyFEaVBqfbzHxG4/IUBLg0SR5wUBzbQ4TPJN80iyvCRPc6izWPY8rzGlonby6rYoLRFAohIPMP4ebyMfL+Au17Msy8ViRimFECpJQni22aFCQBgTOVSklnVPtOnxDmUMJheIlE1QgNsWRGYIUtLPM0KSMo5gpEbqgrzY0e5W9oeBh9MDy4f3qWQNeRbIxIY2Gcu8sMwKbEV5HQPBq2dXPH/+Mq0tgQ+esyXWOSaK8hdRsDeQOG4+PD6SqaT4nZ7EyFt8JFKiHKi/X3FWFFduE4Ylq5caD74iTAunU49Ujr3agxc8qmgBDTSiob84gfSXlFeQRN7WNKUsRhtP5+MjhpXVLfvrhq/eOJZ15qrYc6UFUxPXRwgLbaixOb+EYfkSMexhOHG12yE8DO97hIf2oKhTR1deGExh2O8NRl+x2SNv30UM80kmINN7nlUlq8kRbUtpFj58eGBLNmFinp5g2DWEPmLYzRnDjrwZbMSwaSBzZwx7ydUhlknvPtzDOFMUJW/evEUgePZ8QR5iANROOw6HA3qeCZvFVxWjA985yu9gWOZL3r/7WcIwwynEjbSua4a+pwoVrrC8f7D8JDPfwbBb7u9/hjsuiLxGTfe43iFsfI+7AM+fP8M5yzhOlGVJUVSMg2I1SXqh75ByB3xAScOkBK2IjhkAD92QMGxAItg2TWZumJbxIh00bRqdR/uyedmo2gMmCUYDdNOEAspyI+88x+7IrlHUVcXDQwqCrI9ZdRxyJ6GB5d2Cfx9FvdU0YVpFUVxhzYn79+9ReY65umKzMcg2ZiP4Bl9sOO+QxnB1IxhO8d4aelyuaUfD+/sRuy2IqsBkMZhb1hnf7Cntjnb3AaVb3OmBZX3P3V3CMFeRtRHD7uYFqBhOhvI6UlI+++x3eP78ZczUCUnfe4SIwWZIT5z3NVVdM44jXd+z27V0p462PWdWGtqmRhAfwb7vcaWlpMSlQzPHDeW4UCR+nfH9CLSEJMgC3PLkRJx0sJxHyDPp/GNbmvPff2k8IalDTBVHnaRYbgpnIidw++yWP/x3/5BhHlm2BWMyrq9ueBAx/e/9hlGCeRpxmyewIFRUG5fpuoSK7fpaQdlAsy+o9hnKnG1aIDMSvGMcu1hKIgZOWQrWiiJHCnDOorXBWcu6zFEtGaiqOlnu6CiW5ywQ0OfSo4jZqarMmaZAoTVIhXWeJQVrVbWjrGrWLWbntNI4H2JpDbDblkQ/Y4k1nkQD6zLjUpo5OIsWseyplOB0eiBTgrGPv2NbJ6RWPBzvyMuSfhx5++3XVFV5CZYFnuAtyzKDsNFCx8jHjJaPJScpY7BlrSUzcfvWF09Ae7EqCqmRAhnYks5NcAGJi7pWIkNlDpllKFPEG0Islyml8EKSFwUhqZhn+Vl9PkTTbqlQwhC8RxDFOM8+YUopEJHAL6WgrmuUMhcD7bP4qpSCQuXoLI8EfCUvYqLLPKOVSWs+einGVOqZGxUQWlM0Lc/kK7rTkW0eLzynLMvJlGFZNnSQHLICoTXHZWJYklimypKqvozzIQztruWTz2NTyNXtNVmWXQza4+e/EBvj1yTIyjmzJcQv9S1fjKYJqXooEGjOpz8hAO8Q7u9Xw7MXkjBamtIw9PGzDvQE3yKER+1q0J5u7OIkXFrFa0Q/0oukqZVcQc6ljGYXA66yOmOYR9ASKrhOGOafFfyjf/yPGGbJst1hTMbnn/2Ir778Kr7uc/Z7wTx1uHtPyA1CRVkTuUsZ1/mB48MJvW8uGPb89fUFwyYFYZH03pGP39B1grZpCHjWFKwpsaGVQbmCoe9phSAzmjE5T+jnL5BS8uLFS/SkObmVpqlZZPzQbgjoKxUxbOkoywPICetGljlu6M9vn1NWgfXeMZs9Ws2EUKOTYKk1G/P8PmHYjvXujjOGTWvKJDnLQUiQ3RMMa/F9vE6bKeo6ZqH2ZctXy1f87C/+jOr5M3ZPMKw7WaZlpsks1m8crjR+ifN5OnWE7oSsG8qyvGBY03Sckv5Z2QoeHk7YELipa8Z3E90uRGN4oDYZYz9RFB5jrsnyEplJ+sWCSv5/LrDf71mXnLywBDkRaFgThrHmFLUnyIA6jOxOnmGSeDtzPiHt93vkKDn5B+QoeFG/YFYr9/eRTDZrw04kDJtyml3EsNO2oZJP7jIL9N7RelgD2IcTfeDSKHMKimbWFC8/4XdloPOW4zwS5jOGHcjcwpJtaFPw6Y9ueXj4ii//fMLyBMNsQVNIpiFDtQaxE3z2+U+BiGHrutI0Iu0hAFW0zPkbMKzZPR58GnpESIccArUPPHQCUWl6zpZ7OiUenki0/C3jexFoSalRukl6RcnkVj0K/yHjCfoxsPo4uPprAy646PU8cksUwktS/ILJcj55/Sn/4Pd/ny9+/gWZKhBKkJtH42GEJcvBKRE3t7ARhL+YPIvg4m+RkFeG3fWOrNG45NGjtECpQCA+YMZkZBc9rPN1P1rDRLG/+OdzyWWaojVPprNLJ8S6DJxSEOXsinMuBk1+ZRqjOvDmAqaIILUulqKs2bUtQoFWhr4feJPS8vv9nqquCcHhXODbb79hv9+hhLiQmf22xVPpttA2Les8YNnY0oRaO1FWFVJrlrljv6vou55p7GiSsJyUMI0j6zqCDPiwIrVE+jif27oxTgOZybE2ZpisXdE6S1pYUa/JhqhIH0KcJ7c9HjMkglPfobOC9voFSIkTAjKDTa7rymhUXoDWkGWEEBsFzmvJWg9CYIwmMzpmb7zDKcsyxnlf14UsM/FnsiyWLfx0WX/GRCX/8wEheJ9KmLDO524sjQiSTBsKY/BKYld7EUd0dmUeB6R0BKkQxrD2ni2VBXUWPeIyJJuLAq+5LZBVBmMCZCsxpkAbw9XVLc9unvPixQuq1CEnpIydTGci+686v/DYiXPOFn/UxcnjazJEkr4U4KWAdK0uQDAZFL/8/v8mDyk16vCSMHdQJQybdiA6aA40MmoEjmnOzlkLwtm1p6PvJW3bQpI+hSSu2AK0CIa0QSQMO8bt4SrL4fWBP/jD3+eP/viPfgWGBRiO0cuuaKn1I4btztzKAKEBZE9eGV59/oq10QxDzFaVc4UqA6HP6W2PMdeUTjLIgTw/pycbPqwbsCHdDPkGtrlg2Lt3Izc3CcMaaGzNOg/cvY9EdmdXynVmThj25i9PyL1he+gwRfysL1/uKcqfsvukQinQ0x54xLDXr1/jXEUXoHQzDw/37PeSzLQMU9oot41OjRHDXn6SMOyBLU/dj90Hyqpi1BrmjtevnvPtN98yffEzlpfP0/3umcaRbB1Z80BeZpFz62O2qhWeUQ1krsBaT98PrMvG4XB9yQBKoQjBofaHhGEn3N0jhoWmxYdAP0ja6xzkiBMVXF9huzOGzai8oKk1ebGj63pun7XYFLEX+4o+Ydi10YS8pvAOdzyypJPverewZgtXV4cLhp1O7y5r+2qZ0bs9Qgi6ENAJwwiwznfxOpRG2GukNhTLwqkokU8wrCwyHsZ75OoIO4UYBrLeM6xPMeya68by5u07rq4yNlsgq2sYj2l9WK6ubpmXheuXVzy7+TE/+cmLi1LBumyUlSf4GCgNQ0oMtw2EFKzR0w0CmRrpuq6jbdvERoO+H2KJFJB1Q2gO7LoeL/MnGKYiholf/7D49+tY+cP4Yfwwfhg/jB/GD+OH8T0a34uMlpCaPD8QNoc/tyQTNYeEiHyR4Nyl1PJ0fLec+EuZrfD4M4JIUBUiw4VzB4pAm4zPf/S73N8/4FZLXTTgIxdoXmBZOkwm8TrgLSyTjboiNpXtVi6ZFh+iFphFEpKX3bxMOLtisgWlS7TRWOcQnosxcPCe3GRIqXFuQ6Vo+dLRE6I3XgiBeZrQ8sztSfOlZVQhnidc8CgZO0zKqiVxv1lWy1dffUnb7inrmAUJQVykCx5OJ9ZtY7fbo1Q0EL6/v+d6fyC4Mwk0MM8T09BjlEIEx2bHS4u/856um6nbhnlZQNTsdhXHu+6SBdJZLJkKMpZtYhyHqAmWsmIu/a48b9E6sK42utOXkjW1YJd5hRTRLDqWO0XKbp1VzAWegMkzsiKmuqUxKC0RyQNOSI0uCrIij4RQk6HzjGVOiv9Z8mlzOmZAQ0BLiVaSVS6X9aaVYltXjscjEGiaXSz/AUpGdfloEB4Nox2AyS6crrNZ87ZtyADL5iJJP91bITXa5MDK6lekNiDVZQ1vzpGLgMo1xkXPRZNrdJsh+pjRYs3Q1RWff/Y5L18+Y7erUSZlAQGsT6rO5ywyPElVxS9eRL6QiL5xkfzOhRsnhUAJiU/ZLM9jf4sQ5zK7YCkkIfteQM9vbWidc5MfmDdHnTBsdEekFLRS4MOJ8GCplUqFkMdRh5pBjDHj2XWI9pHl1gB9B8jAbtdEDBskwq8XwnNVCea7iGG/+MVXCBR10bBr4jldG8GyWG6k53Tq2GyDURYhe07HJxiWbkm1ayOG9SMhddlpoxBhQ3DE2hJtThxdoPUgqpidC34GtyLlAeckSiSJkzNnIPTosSaIjtmuaAmLCOSJyO61pG0D29zhgkHt4FlV4IqSImUp7u5PPHR/Qtu+vmBYXQv2SQvwq6+/5tmzZ8jdnilh2C9+cc/n+xrrHons85wxDR41TAzhAW/7jzDMupnQNnx7d8fLly949eoZX/68Y3kbMz1nDNvIMN3EKAes3WiT6b1zEwTI8wytA+M4Mc8zzlmyxFmTskKK91QIjgnD9krTped6GCY8gWVbyexGN+bIwqBqiSgSho2C2brY+b5o8rpidtujTF2mUdMES8VRrBBGDrsGvc/48CaWp1cx82x/w7aufPnlEehomlfYRGRXux2n0+niIflw6n4Fhu2g69iaFlk4dOcQzrNcMKxEmxvgA+tpZVxM1PWrE4aVjpwOlbeYXCO1xOQHDp/03PWRn8fao6sb/uHra5qEYdVVycN9eqKsR7Aj0EW+o6yJJg09zbnJrmppWhGlUhKGQeoQBna7HdMwogIEYSKGNZHD3CYM2/bXzMEis38FXodCiH8L+N+ffOvHwH8PHID/EjjnHv+7EML/9be8G97keK1Z57RBeUumZezmIaCSWKL8bqz1JLAShKgI8UvtUFxKHCEEtOQiJRCtZDTPb5/z2aef89WXXyOCI0/8Byk8mYI56WY4oMwNTscWV4DVbCBA5wqdq8hrEOESwGRakWsDEnyYmWfLZh1aaYo8lvWUVli7AlHaQCuVJB5iuS3LY8nQbht2C0zjia4/cnq4T59dpLKiYFuX+DAHidF5lKMAqlqjshwhJG5zTNuC0hqTbDjaumFZFoZTT7treXZzw+nhng/vvqVI4KAECO8TWT1awcz9+0Qih6LM0VqzzJ4sK7h7/4Zde0BKwWqTgahQBCz9cKKscsqijGKsqQsvUwqBxDpPCIKiKBjdFBsAzvIfOASBTCvmecVtG1IppnFM902hlYktvkrjlcYLjc5KxJnf4ANKZxiTx/+zLOp+mcdW8czk+KQtO89j5EGJgEnvkdWaeZoYhp4QomVIpg066cuYLMNaxzyOGJOjTIZ3HucXgjxztFaUMlRVE/l5ziJCuHTkCMBohRQ5BEeVFeyzmrsPkay6LQuLnsjznLLIcd5FL7Ciodql8rXMePH8Fa9fvcZkki1sbNtGlmp4QkgIkTwanlTtgaRFF793Ltyf7XMFAXEWqSNqwRFikOWJUhbeh8uDq5RG6vYC0P86x28Tw4LweJNzmmfWPm1QWK4PO7x/oOsleyEIbYOYJobEfG/qFsQACJoGhKgRQdD1jxytBujHjmHQCNkiQ4eWOVVqWV/WjSul8bcVP/23/yF/+id/RlaXFwzLt4msapnfdeiwx9HjNoN3Bc/Oe9i0gYXDfv+IYXlgn50xbCXXV/Rjj2dgng/khWNRmiJh0KQVTdXQ9+8I1KiEYYfDZ/F3bCtt02C3nOP9Hd14ImD5+utfxPuBYJszBgTbasjyjL6T7PYZtY66Y9WLa1SWMwwRw9S2sK0ak4K1T1685O5uIet7PnnVIvMbtnnkX7z7ltubhGHjwOA7lCp4cBt2E+h+vmCYLXOcfcu18firlp9/8ZfsPvkUuROsD0maQShqLJvwaC0p1xXnPGN6Zuvb248w7Pa24O2bib7rcMnM2ScMW7UiJAxjr1AXDNtz6nrawzVCaer9gWGd0fkzxJQwzDTsDxmFsyxGYLKW3f6AD3H9HB8c1fPX+A12oeb9+7fc3T2gReAqYZh4cWB+N/Fm6KlrT5Yd2O0Mp4eIx74okTpjPh4p80it8M7jqicY5kaUWmiFjrIeuwLxcMSm+Th+MBz2inHIWbVjnxU01xt3H2JCY1sWlrqEk6MscrQeaQVsRUP1KmLYXr7kRbW7YNgQct7fv79gWNvu6LsTiNjZKwaggb5vGJNAcBtA0CODYEfDiY6h7xAylfIbSVk1hCDw4RHDTqcOn7hbVauRWiDUrx8+/UsHWiGEPwX+AEBE466vgP8D+M+B/zmE8D/+2u8lBb7MEK5A2iTymTaL4BxKCgKxhf/8Pzxlaj3ysCTh0cDWh3j6RqbuwyhSacNy+cdGRIUfLwXPnz9nGEa60xHt0ynLbmxOso2BbdmwGwQ2rBOI9Qn/S0bBvfpQUDSGLSwX7z6lMmzwBLcmbz2PlgYlKuTZvDoItuBiVkWbmF0IHpc4a/0wp3mxPDy8w/uF4EbKaswCFQAAIABJREFU5PWspEF4g9Y5ednS1juyoiAgUToGc0iJtQGlQcrYLTj2Eyp1v8kgqaoKay3DQ0ddGgoVT5r3778FIhC7Laoc13XNMi1MQ49L9WtBzt3QURQF1zcvmMcZETxllV+yUfOSNK6UYOg7pBRM44jZJz0U6xABvLUoqSEEvLPYTVAmc+ttXcA7fBBoKVjxBBcunYsEiVIF2pRInSPziqALhCoRyTw8KwxSR0mHEBTeG6TUl4BPSo+QkixXOGuRKnqW+W3FJVPXaZxYppVDvSfgsdYxdUNqXYdpWZFCMM8zD66jqJsoTqrM5QQdM3GCYZpZrUWrQJFlrGlO12WBzCACOBujncwbVIiP7939O8ax5/b2hrwoLn6Nmb6iTKrbTVPy8pNnFJWIkg/BxsaQcwYwpOPJE+m3c3ZYpqyrcrFdWojkKYcnpMMNxKyVR1+isSCSv6SWT06+Bp1doy5+kv/6xm8Tw1xIGPb8Fpk6z6QvEQqCK9m3msD0Sxh21tCKE98wRKRDpkkdTifqtmXXtNF8WQQGPBZDntbxMnRUAswYMezNm7cEb9FJRkDZjc0JNhlQ20bYVgI53gnWM4Y1DUx99MQ8FNjGILuSJZw5oBmqPrE5SwiOqvIIDGrwSJPkHYJgCxtSg9YLyybRmeIhYZgTnn44sfOWdX1gkAtuGynzs6hlRuYzvN7IS8kn9SuyoqDrJerwBMOOgfoA45jR2SNr/6g9tQs7nj9/zvFoefNVx4tnhmLf4JeRX3zxFwB8+vo18/0DLY5Q1yxq4f5NT5meN8/G3dDxYPuIYbKnPX3AVTnrFu/tbDxS7ZiGgdO2sJOCSUp2+5j9OCYMa61FyRnCgaoMLPPCs33c1O/Xu4hhxyPaW9bmuxjWoWTEsFHnNEXFvokYNohHDFuWicoU1PWeednou4X9IWYzsytPK3NUrng4WqSK3e9VnrElfu80DNwNH/j0xc0Fw95984arq4jHp+5bpGiZ+54vHjpuX7xkKxzCXiFS1WavNCGsCcMKtJqxeodMweu69NjSkOuMsR9o2gbpB1SI/Ku7X3zDfLPjtrghLypGOaK1INNXPCvOhzJ3wbCT3yAo2qZl7mIw13fH+BTVDQRH8D2ia2mAKXWBaweIGuUGJjmgqROGpQaWvsOHJM0jGkJ7xrA9u91ZmHlhXp8R/jWQ4f894C9DCD//60jpf9MQQsaOqLwilImWtsnYcSc8HkWi4hLb+uOPxI3hLKpIhKgnvz+czW15LGGcx5mg6UMkAiupKPOcuq7pu4eLhtG5jT+4wGYDzoE00WpFm3ghptKMS0wJR92kaBUkLptLFLsMIRr0RlNdhVAady4dbg6pJduWMg3phDYn6xvrbLS20QprHUIE5nljSpormfIYIxDCkGcZLljWbcH6wJAkEYqqwdpoRF2WNdu2EkTAppblr7/9mt1+T9u0MfDrZ5QM6CxHJDuGfhjY73Zs68I0LwzjjMkLbMpEDuPMME3M68K0rDgf8P4AYse8PBLIb29vGIaevu+5vb2OJrT3sesny/JYgnIBJ1a8MuTG4J1/LBFLybaul/kU0hAuaimQGYPJyqjEvjmKyqCyMqrFp1OYjIqLCK0upa4gxUX9GSHxgFaKItcUhcGuC6NduUuuv2VuuHnxHL9FDR2pA+u6sdqzsGp0mS+rGo3AJw8bY7KLCotUCiEVPsQuy21dYukwLVhtIuHfOYs2Jto0zSMqrb9lW/lw6smynOusIs8LsiyQZRPXSbrj6mpHmee4La4dKeVH+lYBcQms/rZn+KJ7x6Nx9Hm+wMfXSaKtSoJQyPPpTyVLpu9BoPWd8RthmNKaJSu4yis+PHsRv3n/juNgwXlaUSRmbsBRI1OnXZANNBD6gQ6HQlILcZF38PAdDOtjbNYQdZEAH2oGqdjLDp9vUZ7g2xOVi5nZNRGBu4cOpTeca5DGf4Rhn1Sat3cxc16EAL0ghB6RxHt3uwrnLHWd4f3DBcMGJdFPMGwcxot23JrK6TYdSmxpKdack1YxEBEd8+yZ+kcM24wgHzz5s+sLhk1Lx/1X8TqLqsEWJf1bQVkG8i1DC3Pp1Dt9+zVMA+3LTxCj4Mtv37Pf1Ryuc5yPgUM/DGRFSb9q5HzH8OE9V3nBpBOG9V3EsK+/Yrr7gKtqKv8lQewuZVB32pC3PdMEfX/P4fYa7x843Ud8KhKGbS7wMIwc9jm5WVjGRwxr5Y65fI/3FV23IBZD3/gLcTozhjyUlFUTOw6VYVodLoxIHVORUo0gFeKwp+sHlM6ody0h3TdE4NT3ZOqaop65vf00Ylj38BGG/egnP8bfv6fzUTexlYoPx/h6CGCu5AXDBjGSifIjDFNqQsgDvhtwPHDvFq6vb2iS8q6vHjHsYAzaGNycMS3x095tK8NfvSd7vXGd/Zgbc8ub9R1ZZp5gmKTc3+CCg+GElCP4kipVfYZ+oG2jTmQrYidhe35Y0ojNJQ21aJIjQfgIw5p2TwiSIHpCP9D3AidkNJu+YFjDob5G/avIaH1n/MfA//bk7/+1EOI/A/5v4L8JIdz/Tf9YSElW1AS/4l2yWFEZInm2eRdlFXyqXZwPg+dSoSD6qXkf8E5eWkpJE3nWlRch/tsziweAJBqntebqsGfbNpZp4O0cU6/b5rDWITNFZSKfKZyvwZ3b4AXKaoqyRhmFJ5BlT5XQR+y24lPrfp5VSKlip1JK3yIEQnqmeSb4qEartb60KxipL6UyyOiH+FC1SSunqnbRM09osip6aw3zGDe0dOpY1pm8KCmquDAXG7lr55NvvW/xPvAwdHGzDY6mLglu5fblSwCmoWfettRmHsiKkrAFTDqFrduM0hneb/TDiRA8RalRs7wIkG7Lgndb5DisC8u8ELxDnzkSy4z1AZB45ynyAi0VdV3jU8pF6ahxhRCYzEAIWOcoivi6D5IgJVlRok2OMQXCGIITF+sa6xzWg/AOpTXaKJwIuHSdQiqM0Xg8Qmds3jKuM7O1l/ko8gy3bal8FhiGAScgT3NcV3XikEFb1iyLjZumUoTESfPeo5XGKIXWmnUTLMuMSQ9ynuesy4x3AmctQimk5ML1uL655vjFA6d+pD14TKaQKmdXqwv/pcgN8iKXcu4QlBdrJcljkHXJUPHxV4glMoEgCBn5WkHGP6efc8KlnEzAI1PmLkPoxEvRGSZvIs/s+zV+IwyTATIbmMsGfcawKaMtLf2pp3eees3wosOp5oJhp6mjraHZNwgc/anjWO1on2BY33e0UsIuSYsAFdB9B8Pmg+bqYc+rlxt/NQ2sibqwnUrsMkQMCwL1zNHFaiUuYVhdt7ShoLmqqduGbooYdthH7pOzI8ftA76LGHZzvWMcFbc5qH2qPw4CJU9sx3tCVbEkl4gLhhnNgqbVCkNGP6zsdYU+Y1i+w+wfMaxbVpb3b1H6Ci/jYXFZZ/JdS6M9DS1jMSEGgb5K0g3bNVT1I4Z1HUtVEB4+cNskDBM9wVmktghKsqJk2kaWNZag6t2BaZ0fMYwjd+UN1SwpPsKwH3N9Zbn/sHA3L2jt0DKWhN0SOJ46zhgWrOOwU1RlTU9SIdctfQ8hDJg8g7qOdIULhu2od5AVJfOyIRaLysuPMKwoJVZKNu/wEg5Xex6GLpakATeq6GrCifZwzbYuvP3wnnkYLhhmtxWZ54jraw4E3rx5Q1mWXD+PGBaqGmsLhGj55Nkjhg1KUV8wrGKeBqSOGJZtgmVZLhi2bRvrMrFtW3Se8B4pI3YBnPoHjl/8FSeuaIuonbnb33C8P1ImLN03Bhl6vMtpq4Zx7Bn7kbZM4q115DNKIRhDXHZx6fW0xHU8MhKGE0K0CcMGQthRt/EnPeDEA4EdoVHYXiHUyjAXyCcYtoko6fLrjt840BJCZMB/CPy36Vv/C/BPiQmnfwr8T8B/8Sv+3T8B/gnAp69eIPMK5T3yLN2TLajgUQjsurHZI8FvuPB4Ijh7qEUr22jYKZS4gJgU4pdO58InY9zzJAlSWsuRacOrFy9oqpKvr+ON+eJnf8H9+7dxI7crUgukkVhvLxIMwQva3YG6OUTCs1uICaBzVmNjXQeE0ASvQEq0NlGrKmWTnN2iMrgUKBPtEYTk0adQRE8/Z2PGK89K8iK7RJ1aZ+RZjTEFQWxszpMrzbJZtpTRsuNMKwUqM0idU7V7vIsimRAXTtmUCOJD4oNj8SEKl6YgqN7tsevCOk+s88Q4L4zdiVev40PbdffMy0zdFLx//xbnognzOMzc3kZxOgrDPEdOkVJR9XrbNow+B8SJe7LMZCajyDK2zdKdTsgzkVQbRCTbkRVFUs725EUKIjePLkqKpkWanM2D8VEn65zB8yLW2YNIBFjv2Ob1IgSaa33JSvbDwOn0gFaSw+3t5dS5LgvDOjB3PVVRUO32MYhJ684BaIP1jnVaUDojhJj1Or93DMjjnC/LkoJceVnn3geyLEfKqG0WQsBLEGkjbfZ7bm5vMVmByUqkytGZpilAXSyeNvABSZTqEPEhuBxCnj4vT/1C4/pNB4qzr9nlwCMJItobpUUKWAQSLzQIjVcZyAyhk56DzpGm+F4FWr9VDJtAVun19Y6l9tzuXmDXjfvjlwSf0wSDrCO+9N2JY+eRjacl2pCJaaC7YJh89JIk0nrbaiCEnlYkYcsWIND4EnnQvJKKl1XJnyXD3vdvv+X+/VvyokIXGeM8cP1s9xGGee9pr1+jS01e1UzbHerqijOGdWFj/RAxrK4U/ThS5hLRPnvEMLkxLxNCCtS2kBcrWdZcfArFIBD5zIPNI4atJaIwvNzFDzvrkjzUXOmCbr1nmzX57S3LZnl/THqD44l21wICd5BUes/JP1AuieqhHI6Gdhefp1OWY04d1fPneB3nMQwKawuy7B3rPCG1YZw8u6uY+ei6GYTmxctbvnj/M9zdxiomZK4hURes/RjD5ChZ8gwzx/kcwpEGuEsYdnsdMSz4E2qJwcWotwuGXd/e8nZ8i3UFoogSEmbz6EJRNC1Fa5BFg8lrjh3YPGFYiBh2dgKx3kU8TUKieT7TJtHZb9+8SRi243D77GIDtS4L337zNXP3wPPbguevXhOtgW7TouvpwoIVjjfv5guG5UVJlyx2zJTR7g5pPfUUeYtzji5xxZTfc31dY4/33PUDSgra2lww7OXr1zz0gau84CpzjNNGbh2Htr1gmOg3egJNGBBNhXB8hGE9H2NY0zSciVrdKV7HTrTQQDd2CLGnbncEFCFRc6LC6RWCES80zeFANwmQ2+Va0RXSmMs+9euM30ZG6z8A/p8QwhuA89d4zeJ/Bf7PX/WPQgj/DPhnAH/w7/w0oApEFi4n62A3ZIj2rFJbjFMQ1igU6eJixtnISE9ec2fByfPW4UI8fcs08UKI2AGVThkQT/ZBAt5HPSchudrtqJvfA+DVi5fcvX/Hl7/4OV9/8yXj0hNkQCiJ1ufSYEbV7qibPc563OwQ0qXyCkDqrBEaKXOyrAAEXji29FmssxQ6bqbRSiaC35D0UM4lI5myZdu20Xczz57HMkWR17Fj0Xs2S9zkfAw8qkSGF9qQ5wUmzwlSUyQhvZDqo1VVsawreVFQ7xQP/ZEsV5RlQX5Wwe97iqaJAp+2pd21LOOecYgLuW6vCAjyLJ68j8f38bNuG3fvInm7qRvWsKJQ7Oo9wzCS65w+EYTd5ri5ucVnkhBgc54gFcuyUSdjWGkUWoqYcfQeZTKCUBfOQK4VpqgweRWzpbrABhGzk+cYWyoyE7NhQgrcFhXgw4VXsOKdZ1kXlmmmrmuauiJ4x7rEzWPZHD5I9tfPKIsI9suyXoLXcwOG9dGcVaeupKwQT5TkV7ZtS2Knir7vo57Nk4yXMgajxcXgXAZJlqVslFbsr67RJqeoKrQpUDZg3HzJzikEJHX7EEAokNFk4rsPZpybMyuex0DLhxhgxVJW4nTJRNLn7OugQagYgKkcVEaQGqcSmVBn+CTy+j0avyUMu0VkE3JNZcHqc3aVj+Rb3XKVKwgf6B4cpPuyv67hmIGMGFa3OTA8mZ6KYRjohGAXahigbxpaJryLz5zoIUjomxq6D0gh2b96xe8la5zf/8k/4O79O/7kn0cM210VFwyb5zOGrbQ7Sd3syaxHaE0rBZ1I2Rc6bq6vHzFsi9jpheM+CXBaaxMOTVhrMabhdDpRlvFZmI1BhycYJnTEsB9HDLvKbxjHmd6P5BbGVuPT4en54YxhLfkuw2w3dNtMoa+5eVFdNtJPn/+Yu3VlKwqud4rJWWyuKHftBcOkUqzzRLBXXBctQk4crn4Zw5q25QY4zl8AgtP9PUMSTG7qhnVamfqJXb3nNMRGg76Pic+HzbH/0e9gjse/FsN2RnHKrtg2x/F0Yl9ecxSONmFYN09gK5bNI4uaOmFYUbhLQqKXCrMskeS9O2NYRfCRS5aZA3fv7zBZ9L4ty4qXL67pTg98OCYMmxd8kLz+/HdxdiWvGpYlw/lUOkSwfYRht6lxY0CMMdg3Tcb9/T31ixcoJel72GUZ6hjX1yhPiNGw6AzjA1I2LMsDQpzFQRX7z67ZmRzrK0xRYG3AOH3BsAmLDJ4xQJ3kxmQ8OsZ7QoNsRoY+BllCCPou0PAownwKJxoa6jZEDUeAcULK1KDQQOgtiJJOKFCB5vCCTmpcCqIbveH3t8hfoYLw143fRqD1n/Ak5S6E+CSE8E36638E/NHf+g5CIHSesjPp4pWNSuEhELDIIFDCI7zFrzH6DHYFueC3hWA3vI/8k3MnYvDRPuc8IWcj4kejEICADCLZKkYCunf2IiTa7ne0zS52bL35hi/ffMnd8R2n4cSSJCC0LpCmROkKwkqWFYQwMqXr3IYRgkcqgTYhJdEcuIAP2+U6lmVGKUmeRzPnbVujzEL8MGzOoVwkgCulOVy1nG/hYj1SxBKYyWuU9jgfGKbpEonnpgCZcXv7EtM0bNbFDpIUWBit2esosGk3S3W143i6I28a6vx8knMURlOXBafjESGhKjPWFBTMy0KetxgjqKvANE7U1Y7SBE6JE9D3I1UpsdtIWVZ0p5Gb6xt08lUTwsYMVF7y/v0dQhfUbY0OXMpUpLbnIitAKEQQ0T9SPko31G1Luzugqx1OGJbN4r3lafFY+CirYEyUg5BKENxZ+sNy/+EDQggO+z1Sysi/mucLsOdZPMmtU89DN8QTrjbg45x778lyg/EerTOUylK2K1wIvNrkTNMUDauVpixrIOD1WQR2Y1kWlIigEnxgdZdlzrpFmZJlHCmGgatDQRABby0kBftLPTA9E0oqpBCxHJ+uM3j/+KY84Wo9PiqPSvwBkBopTcxeAcGryD2UKkZyyhCkxkuFTCXyoDNQsaz7PRq/MYZJJRB6g+Bpmk8A6B6OnNaADA1+s7T1ASV23BQfY1if3eFnT13keB83nz4dsOoqZpR1CsDbNvInQy+gThtMEw+Rg4iG5nVdRQx7Un78ndsXvPjHr/iLN9/w5V/+yQXDSIG/1gd2V1e09TUP9x+4vi4IYWB9gmFz6JFTJGc/e97iKcGt+EtVNbAsMmLYzQ3TKXmqJiHi/b6KzU1uwwdBpTT5VQt9wrDphBEqulrc1Nw6z4OXDJPgRORx3ZgKxozb33tJC2zW0bYthyLywozWqKJC6wN2s/zeT3ccv/45G3CdZN2tLZFtS+0s/ngkk6CFQ9tjmq+SPHeYrKX2HVNW8+L5K/wW+PqrqLYfMWwXpROePSd0M7LJmFU0SdYny+Z7rm6e8cUXP0e8v+VFG9DFEwzrA8v2gdvsFtqCh4cTbVFdMExq84hhfse6eZZtTB2WiZ9Hj2DHcdu4Ogp888CuaRnHhGHWMo0j798NfPr6NdM88+HDPZnW3N3F+5ZnGZ+8+vSCYfNaoNRCVcXMm995bpKFmNYZ05SR5QIoyJJBtveB7Pqadf2AmjSl0mzO4ovkpWoVizEUQrJmGTWBhwcQIh6u103hvGAYR6wXfPbpLc4F5vfDI4a1RfT+rCrwARUkUgjkcOaBeYKvqMNA33UI0cbngiEJAUPvzxhWEcIDyJxR1jRnDGNPYIr+kAnDvCzw44Q0cT46vVJP4y8fUv+G8RsFWkKIGvj3gf/qybf/ByHEHxAP819857Ufxg/jh/HD+N6MHzDsh/HD+GH8/z1+o0ArhDAAN9/53n/6L/Vm0iCMRCT2i1eOYC3CBwQOHITgEMqhzFnwbQUx44ImsOHDTMBeSh6xJhiiVxxnnsn5z0/IvwIgPLa6Cx593oLEmJzr65aqOXB49oK/+sXP+Bdf/ZxuielZo3OQMVukjCKTjmUZ2dbHjsFcZ2iVYXROluXMdmOzC4tNsg0odtUVWZ6xrmuydDEf8WWcC9htZdk8WZ5TScOWuttyXWDygm3bmMcFk+fc3r7gZV5cuiXqNhIAlVQUuyvKuqbreorEO/DexwxMFrWepq3jd58dOB2P9Km78bMf/Yh1HPHrglCaqmk4Hd+zS4TYD+8/ME4jz+oriqzArpa7u/eUxiQX+GhzYEyGQBEtGzXbFtgSMbdtDyzLQl7UNLsrhDYgM8q2ZbUxk7QsU8yASolSBu+j4F+WdMm2AFlVI03GOC9YPFlRkonoXwnRSlD4QGEM67amjkCBdfGeDMNIUZXs2ga7rgTnOfY93lquk7N9nsXGA+sBZRAqGj+fM6LLNOGtx/tYJq4KQ5abpHCbMq+p8cE7i3c2ZoSSHEm87z5W/WQyRw9RMsT5RLoOgqwoEXZDKoELjs1bdHCXVnHx5L8QVRoiTyu9/sgH8+nZkpdnQ1wYaYIg/KVsKIJPma3EfREZEMnMSkq80gQhCFJduqCC0KnL8vuR0frtYZii2Rk2L1nv432ps4o+YVjblOBGuu4B2dS0TzDs+jrj4e4dZt7wIaNjujT0DMNI09ScQkCFmq7rQEhaNN/FsAYYgqfve+qmpq4TWSyM6CknUxk//slP+TRh2P/7p39Mt5yz2TmMFtqMvSlx+V+DYftrrrKKLGuZ7cb98e5jDHv+Gdd5xodfgWFSDjiXRwy7P7HmOa8+wrBbTB55Y++/Xbi6yfnR7QtMfotU8XecMWwaBe3hirJ+QQg9NmGL954XVcW6Znh3QuWBZz/5ScKwmNG6urmJGFZViACVlvjje3YqYdjwATk5shct+/1z7Fo8wbBXwBMMW0oyC/0Zwx4eMWxdF/Iio9l9htCGXjYc2vwRw8xEPQV6KdnPC22rOB4nbm8jR0tkjuvnNc3umtkpTv1CVpQRq6qI2XvRkBXRh3C9v+e0ChqxXhLYP/vzv+D2+TNevXyBXT9QmAN93/P2eOTzz38U5z3LuFtWllMP+6v/j7337JEkSdI0H2XGzUlEZGaRJtMzg13c/v+fcrczGNakqpIGcXfjZkrug6p7ZPXMAr044NBbaAUSVcjw9HA38pioyCuvILaFIDXjkmQHauJyUnE2ptBURcU0ZzTe06RM0dmd0Xamci2XskMskWF1FUuD67ZwOZ9RUiCahiH07Pcl50u8V6oa7kTJ9jXDLicIGlFfLWgEIrSo1Nl8Y1j9lcSh7/F1jet7pIyid9HyGhP8jGEVImyEwC3DHoYVRPUVww5040CQd9S7yDBlPKNVN1b+Jeuvwp45QGqxfG2910ISEEjnEULiRZ5ONCiddCR+Q6gMITPCtuGdxLohtcZHja4IIZUf45Jcg620kubEp9cJoufP6wMqLk8c2nw83hGUYPOO8BSrC95LZMiQ0sRyUIhz8fxNf+Up82jAFwgs68yyLkgtMKm9OjclXkQ9UPA+vjaEWxlrGEbsupIhKYuSut2hpL65mIdlZl4XiqLk7XffoqRG6oyyaTFpwKjJS/KyJs8LvNZY4HD3cBuw7X2IQZ6O7uLZlnHpnmh3B06pfXq1HpOVCJPT9RPz0lMUBW6Ln/Pu/o6XR1hXy2HfkBcNQlzY1sAxuTdnpmRZNpQCkxW0ux15UTDPUVh57jqMMSzbhjKGzXmGaeJQVCxj6vrZFtq6ZdtWvIcsL1E6oLN4M4gQAwUXQrIS0OnGeG1bFVJi140AeOfYnMcHd7snq8Lg3cY6Dmyb5XzpuLu7o2maWJYDlijCoizz6HvmLFpq9NV8Nc+SK7xEcnVND3FeZEqJe++xNg7Zts6ROUdmzC0AVgbmaWFb1zQdQaCFTG7xkHlPvlmUVHjrmMYOKdWtSA7XZoroRydCtMEIPtwucEG8V0IqD7rgX4Otr+4VjwAvCEIDGS5IZEjlfmlAlHitopGhVlGHJgVSX1ujNe7r9/ylLOEIQtD3kvzKsHbH3lnG84VJGyqR41WOnD1TEwMD4TdalXF4k9G9vOCdpHUD7tay3sfyfwiEpoWhQTJGhiV9CwKGYaCqA3VVMfQjYz+SN8X1x0Bi2DJTm4zw8I7t4nifGHbxI1O4Zy8Nk8nYRs0gvmZYRZkLsm2FvGRZZ57WJ2T4imHHEi8uPD2LyLCyjJ3C6TofPn3GZhsZEleUfNfuUPLAMkdbl8iwgaJ4w9//t9+i5IycM8pcYHQUdBsfGfamfeCiZywT9z9jWMe6Zqh5Rsp7TB64dE98+92vOD3FuXyrrTBZ9Kua5ILOcuTDA+4lbpzvfvsbfvjDn3h+PiWGXbBDxstzx9///e/iexwjwyYL1WQRUpJby5we+i50yGB42jb2R8P5EhlmiuomF3l5eeLbd9+iw8rLtHLXvuH+4ZVhd+E+MaxjmksOhwNIRddtXLslxF5in1/oiAzLVcVj94mQXJLePhy5nF9w80ieF/z0/n9yd3fH7ptvuKRS6S4caEJg9+Y+MkwrtNE3L8BlLfFhRkrJrtnFOa3LwqgkZbik4x4ZNi2PCFcm53wTZwUTm3GUjl3QQwjQRzf2wzGet2WZ2DZHIQvWdeHL5w9IqfimmRjO6Vksdwgx0A8BgqeVO4QfoOvTdR413aHrqUMNtUDKgPCCy9UguGnxCPoTxl9YAAAgAElEQVTLQL0/Ai1lcISkm+sHQyNK/GFPGBW9VkhZ0ey+ZlhFWer/3zVa/59XDLQCQrjXD+R98o0JUUdiND4onFDcnEbshiBDyhL0RvCCsDnCdaxI8ODSwQ8xKyAECOG+esCIrzyEXt3j1VUIjEfIqP+yIXamKRk4tDsuyeOq6yZEMHgrkBLcZtmmCZsE094HVmeRbkEqzbosLMtKXpa4tJszcmP1KwJFkRcE4Vm3DbfGB/q6rtRlzV1zhzIG6zYCkrv7uBlvmpa8KNisZXQWlefs7u7Iyob8tquARRpmG6hyjTGal9MZKWO2Ks9LyqJCG4P3gVLJGPAGx5u77HZM13VBScPh4Vu650/IteM0XAelwvFux+OXj4SwUtQHDkfPdh7YkvC2LA8EBqZ5QG4TXlpmO95mdEqtQAmkUczLSlmUCKUxmY4ia6J4MgiBkhIpA9M8IEx18zYxukDrHOscKo+mtc55cAJp03s4WOUG3mMyg/Qe7zZ8GtVx7gbquqEfe4Z+4M27bwjrxOotdR2P6TwMzOtGkQWECBiT4zbJnAbYVnWLNiJ2mSZLDO8WtqSzA1BKYbICLxRhmVntjPcLgtdGic1tWAFIk8Y9+ZuRqBQZebbD2BkZNrS3CL++BkDpyg7J3uRq/iuEQKdGCAVfmZRKogeEBiHwP/OtywENzhBEgZAFjqszr8HrHKE1QUmCVoS0cbmdXC+ipYb8ZYVa1kE3RIbN17+8XBBVhRY1frhAW1Ld3TENEykZCUXD2mfsipKqhM4LQl7SvUQ9ozCGxnlk08TNX5OsyYTj2hEYpfP+xrC6hb4PKB8zJ4GWIczgHTZUTL5H7WoO3+54P8UGlTbcMXYLl5PgsGt4Es9sP01YUjeft2SuZHULtn+m9OGVYWlovXE5q+9oM4XdIsOe7fONYeO68m5/5K65Y1oWRrfRILm7j5mVpmnZCktuC0YsKlfs2juyN9+Qp+TB8wa9NIQiUIUDx2Nk2DhGE//7+zc468nyOjLMrsyyxC6OMovZl6Z22LVlGkd08S1KDpFhWTwWY79wvNsxTz2b3SjqX7GszxSH9j8x7Hz5hMwzKm0Zx/Gmrxq1QilBvSi2ZeX+oWSYNCabeXyOvK2b/Y1hu13Nl8dPtMe3Ny4ss0Xr+9iJaGK3u3OexrVQpGabFdZtY00MG4cLTZXjUhD104dH3r37hu7liU8M/O7bf6TrLqxfPvLuXewUf/x0Zl5fKLJA29aYZeMsJXk6r1UQHO6OaJ0h/AXRB1bvyeuWYYyfQznF0RUsxZVhgctloUza3qKUBDTWe7ZxoUKQN57LJXVF24x83eGsxpCjfUdbrUivopkuIMaOEAS1gA6JrQVCtMxd/K4CqOvIsL6fYNjR7jQMgiqZcp+nCYKmab8FtxAGEId3nPvYxYk+sh3ayLBSss0TgR29HtldJ2BcNk6ZuEnH/pL1VxFoAWkn/VVreSCVJ5JHjyBlmWLnVXyNQAuFVAYlJfgSqSzBxCPg1hUXFhABEQQeiyP+v0xCX09Iwderf1B87/SQSs+DWFZzeOdQSnI47JmvZRf3hbGbCW5FKkWeGXqpvmqdF3gXbSCUNkgjkoN7ybZey1gKrQJ2c6xr7Haz1rPMc3qHOIqmKEt0ZhCiIsvK6BZNhFTTtvTjAHbDOk9/uVAFSZbF3XF0+lV8/PLINHRUdUlmMlwahjh0F1SykUAIlBIYk2Ptxuqu42ACRVkwTxHveZmzbP1tgvoyThgdze3ctiLEihBQN3WcfQgUVUFRFAgVMJlm6RakVLcdlPPX8wyZKZAyAxTL7JDJEVkIyzSurOtMXTYEocmUwKbMWhS9RwNQlcxjhYydJlsKpOy24VVqCQ4+tqULyZpa3ou8QCLw6fOfTy/UdUPbtNGtnegPY5REycCyTFjnMSa2cgMM/oLJcuZ15dC25FkeS4FXQTlAiMGIMZp1BSFitmtJv0OqaHAqPKw+BmbOX/dvcZYm3qGEQCuJkSF1GDq45nKDuj2IY208ZoqvwlzvPB6BkLFzM5AE60Lir/cAAoGCoAjCINDEEC0FrkKlsqkiKAlK3bLVt9yajPfszV7lF7Qiw1pCmvZAuBD6PrWBS4ZhSp5AXzGs+4phd/fceYN1HUWVxMzrSh8W5KTYBYEvLY4qMSy+RWRYoB97RIglxLbl1pBxDXIjw85UrmQtNw5a8fe/+zsAPn38wniG2q1IobjPjvTyAyI9CCl+zrDFCN4d7snLkpefMUwTtpIs08zjROErnuaY9RAIbGJYs98xDIIsK2n2XzFMiMiwosI6z8fLhbdBkv0qfs5ffxMZ9m+//wOTd0xDyfF4h0omqZ8+vGe3298YNnzFsKxMlgg+YJ3F+Q0BbG5jGQZ8ssuQ6jPbJnG+5nxe0fqZtgVjA3MqpxVVgbWWt+/esmSa84efMCZ2AAKUSjH1A76CzOyQMqNtFGYubwwbBsU8Pt8YVrcH+suATpM81tVCLzjLM1lzYBhGnA80sv45w/RMKVrmOVlriJH1JX3O+4IRQdu2NKHhfPqBECLDnlOGb8tXjqUkMzVPT19o9weKZeU5zaYN+ohZPt4YtmU5ZRmbxoo0TqjvRuROYrxmfQZRSVzpWFQ8Hnl4ZVg95YxqYu4FbROP+fzpE2VVMmEjw9SOOdhYFeyvTQoKIVoGhpRpdwzDeOve9s5jaRFS0R40XT/SjQ4hJT6NmasQDCh8bwhNxcAG/UTyYyK0Ci8lo1LUN4YNhFHefOvElWH8n1Y6DIFt9XjnbrYL6uqPkXbgsdyTdts3CyyRdt4C7wVSlhj1qjtxesGqEfwWp6YKn547V0drIAVaPxslErj9/Nrl7oJNnVkWLQRllvGwi+l/aQNDvhB8wG4T6+ZRUt52N0oqsqwiz8uohVAy2hKsAZ+eYt679CdgtEFrjVYi2g8AZVVRFhHS1lryokBn5nahSx0HLtd1TSUl07aRZQXTsvLTj3+K3+XDB473byizAudh7DumceLNm9gpc9i1DGOHURLrHE4Shz8LRZFKGX3aPUgZZx0iBEhFm4wNvfeI4Dgcj9Ej6OWJeRxpTMEwxU6qrDQIGRiGkUO2J5bWB6rkGTZOE22bscxb7F4LBhf8z4ZXK5WjgLoweC+w3pOXBpPGgazbxjiOZO0+ZiiNxm+O1S3RER5g82A9QcJqF4yJ3jjXQd1FXtP3fcyqlRVFkROcZej6Wzkkzwv6rsdmoJRg22b8ZlEpzbwtM1pClew51nmK17CIaW2IgdRmPcbE874sa9SEpc8pZHy4KZOTaUUQUQ9irl2LuUfYlUIZcBP4BeHjjNBrnCVESBuZeG1LpeO8yjTGx0uBEBqpdPIWix3AQbyOiwkhWgCKoAhB45UBld9mfgWVE5SKZqxaIbSKJUkhY4BGDGqlvgZ9v5wVhCTPKi7n0+3aUG1Li2cIgTqEOL+wn0jeGgAIZhAVTALvB2QTGXb3EHfxzi7Yp8/0fmNwK6XO/xPDagJyH18/dn10xB4aQvWfGVZVHussmoHyLuNhiveLPHXIB0Hta6ycWLfLf8kw7x3Hw/2NYae1w/v4Ht47Kh8lHleG2XzjWxO7MN27itJ6+kHQSMtOFdjMUNeJYfPIejDUIjGsyclWy5dlpfvn/wnAoAy//u3veHM8cL5Yxv6J5fNn3ryJJb3Ddw1iDFR2xZYlSkJW7Aje3mQYfWfJtp5sJ3Au5zwHkCfafZ2+h2fNHYdiou8Up5fPzOPIN6ZgSGa0mVvYZOD5FDgc97FUtw7UdWRYP060rUKOOUtr6Z8NZfC86D9jWJNT9x3eC15eLnzz3W8xKVFQ9p5x/Ez97fdkVc1kwW+OF3dCrsmCZp6oak+QG+s8cjSGx09T7NgH3umaj33Py9Mzb968pSgMUhQMocf38TX39w98/PCR4x00Vc32+IjfH9gljd92eUTLgup4RDvPME9kegfCM8rkk6UM/vIVw0IgX1d0YtjTOKC0YW9y1kyhxB3b1iGSVnHOS8Sy8nZfg5vov2JYqFM3upTUWELII8OmHq3VK8N2LUJoxmlGKNgVNT2KIFpCmo4QgqQm6lzDVOOuDNu/MuyiFHulCHoCrWmJfnbjVwzbHfa3rvG/ZP2VBFrRgd3b15Eg9mrCIEiBU/S8kEp+FRBdg7GAVtHbBy9vkaZRJjlwz3grwMXBud79XKPlfbjpVlJYdxs6TYhWDNZZrI//dc6x2Q2RLua7XcP97oCzjmmaeHre6AeNSSaNSnoyk6NVTgiCbXVs25b0aFcrCocUAaMMSqpoWIq8BVJZnjOOIxjJbr8jywukigZ1ADgZDeumCQfo5MNU5flNv2AtDKcXsrv7OCTaW4LRnJ/jzmboLhRlxbbO5HmGdZ5l2TBG4q5eW3VNd3mmyHTMSkiJQ7yWc5Op5nXMi9GaRUhOlxNTGsFTbRXLMjEvM9Y7iiJDa3/LJIUA4zjx9u2Rrh9YV0tZtUzzfJv9mOcGu23s9zucdSzjxOVywbp0PIXEbJZCKjbrsEscaxMlQ69ZUhUs8zhjMoPHs4wDRdK0jV3H+fmF3fFIbjTBeVzwzJtFpRKmQ6CDwC4LVkRd06Xrbvqrtm2xIuCYkd5R1TukktE1PX0Om3an0dojw/uVdfZxRwv44PF+pKhqdNEQpEPq7KZnLKuKXFYIO2PHFaxII3bsa0Y23jBpVxg3Fj54vEwlYZXHpgmlCSJltEQMrEKqHfog08R7Fc+50KAyUFdLDRMf/koiVBwxFc1b1S2DLBDxvv2FBVoyBLbNkWfljWFiPbHQYAQ8dxcgsBAZ1qbS8xACorvgRIFWhm5aEd7TNleGNYi3E/o0422Lyjf67kLlAkP63ULEB6QIngroCXR0+O46eqTHB0dRFmzrGXseIsOKHOHjNXb3XcN9f+BsHUo1PD1vHA4jwxhLmCqryExOUZQ3hr28vPwnhok2YNSCGgNZVTG8jCxFzGq8PR55ujyB2VG4HWtRsFeS0yXeK1o7Dm6HnfrIsG3DyQNv8xybJY2NhU8//sCvf/NbHo4r87JnynN+ev4jAIdwpCgrXpDctzEr9vT0gjnuKH0KpMKJx2XhodYIMYKccAgu/ZhOpsQsC6u17HYaEQ58nGZ+vJxQySrHi4JlUWgz8/h0jgzLv2bYxjhmvH37az58HNB7y963nOdHyhDvuS3vsY8533//Fmcd/Tjx/v173r77HoBusTeGvZwc7THOMS2WhfFrhlHw+PkjJjNcEsMeEsM+f+hw68b98ci2zGyLoKlfmDcRB4cDblk41C2npyeatkLagsuPP/ycYW2NGzqkqzC1ZltnqkayDmk0Ullw6XoyJdnyDDP1rMHz/Bw35lWIQfpUDVQP3xCkoxsOSXP6yrCimLHjhLZR39l/xbAK6IYOmj3NVwyrdmkygcoZlY4aaaEJzY5KSPp+JPjULFHvIsO6iTMlvtWwZDAlhuWGMAy4+7v42ZRmQLBr968M6wVDGOD/1IyWte6rLqgYXEVxeUgCYk3wr47ZMsRhrirErIoMcZd+86YSSRCc5tdJtxKCR3l/60IQIRCsjbt27+Mg6leNcATStrLaJXpsece8znF2YQo+BIqYwPDsmhIl79lsR99HSGklyLI8OsEvS1JWyFQqi79JCY0MDudB+AA+YHJztYXEecduf0AnzQTpJ9fszMvpxLbZ2DFINDjNizgn67orBYn0nvc//IHj8YiQkrv9/lbW+fL4BMFTVyXzbOODNwis87dgQEviOBsp0ErjnKNs98xDBGFWFJxOzyxTQAZLUZWsy8y2CmQyeF23lWme4ugjpfEejMq5dNHXJQiBtQtZlqHUxDQNNLsdVV1y6WIp1RjD5hx9P2C3DecF09ghkjFmVlSM40RlHUJ6zi/PEARtVbFdtXPbgmJDqqgtW5aJaRxuRrTjMKC0jJ1T3kfTWReNTEPKRnXjDCGwhriLrOsKIwR5ykSqEFDeYZTGLQudfSEg0FlOkeZ6BgSbtfg5Zq/KskIEz+k5ioSFjNrBcZooVIYyBU6410HN6XgI73BIhNDxupby1hHo/dWwV6bdiwClESZ1pukKoQ1SaQIah0TK2NnmU/AqgkpZ3fh5PBIvFeniR8go+g9CxhFTyhCdm2MjQLxXxM0w9pe0QuA/MazrLPDCXimyEOgI7PcHBqnYEjuKAINveQkWI/fI8MJ+33JO98K+tYi+QGaCIGdkViKyHOU9bRJeD12gH0+pHCz+lwxDBELQXNYBvc64/kSo4jUoMMxhQ1EhmXj7cM/L6QP7XZwzJ4RgXTfKsubp6emVYccjN4YNGreeyaodopoiw8wrw86XM9/tf8VMRg9kBDrA3BhmGb/8K2uWUQHaHMmLM65qaHeJe7lkd7rwL//0f/PrXx8Rcke2V9zLGJxMU2RYXpQ8Pn5GKk0TWpQ7sbl4T1Z1wzyNN4YJ9XOGjcvEOE0oAl/miUNVcnd3YFgnlqTRWtXKNPfUqv6KYfdfMWzFWvPKsC8D6h92vA1veP/hBwC+PX7DNs+JYS+4S8tl6xD7yLisbhilorIO5z1//OFPNEHQvq0QyQl/3QzOrUjVIMWCMQolBaeUeZNCoPRIllWMg+Q+y0A2sKyotFH78PknmjogguLDj2fe1RVGtOQmndc6vzHsvCxgNTHMzynLaDbrgycvMiatovlzWdFIsGv8HN0Y8PRcJkmxrexNgfVnLn08JwegNQYhI8N2QjN0HXVb3xh2uXSI9ghC0g0ChEYpzZC9MmyvDbK+IzDj2DGOM7L4nqpMWrDEsM5IAhV+ltFAOTGslRq52xHEiJSG3d6AaBn6EX1tYNkJpDzcqlF/yfoFIu9v62/rb+tv62/rb+tv62/rr2P9dWS0PNjN45P2AEBJQ9RPpZJgCPibq+vtX6KTJ5YkZbW0eNWDSB+zez62Ygafw3XEytUDwzuC3KLQ3kfvLm8tzr92+23byrxMhOAIeJxdCT7EzBMgcDGJGELS2iiOh3seHz8DRJGiuAq0o7O21tFp95pqrvMMJaI7eXCxtKi1SXO9iONisoy22MW6tRDUdX1rBfaeOH+sqtBScul65nFkW+1NDCulpq4bSqN4efxMlufgLWUSkh73DcM00V1ONG3LuM5oYyjTaCCIZa55WWnrBikF2nhscOjUoRKGAZMVBLcifMB7i8kMeZUzLjE1H2RAGs08jAghmMeZuq5YktB0mmMpr+vO9H1H13WYQsVBqqlu/Pz8xDwMaK0IAUxWknrn4vGsK2Yb6PqB+pCTXf2unGNdk8gch/fRHmKdV7bNMm8LNrUTG2Oo6orgNubNskwj/blnmzeKVI6NGVeByD3DONCdzxR5hk3nNc8Mdlt5uL9nf/8upv6Lgs1GKwiIZd6weZZ1Rsq4I71qHeLxmJBKU9YVRhukVnjnbj5bWkffM7tZ1i2gg0TLDK/Ez0uHXN3kkuWCMviU0RK6JGiDV1m0bggqdkEG8SqG9wKfPGyCiD1vXkafrHiNQnYd5SpUKhnGIRmKa/ZN8NVt/otZITjsywUfHH06yvvdkb6PDtWBQFNHhhUhcEot6eDRRO2lRNDs9gTtaU3SLa2ePgeVGGaKgmy7YKqWPjFMG0ewBtFdaCpHsAX+dMIlQf3zU2TYpTtR1yXGKKwwBK8ZTvEaFDiEzmjqlfNFUO8mjof7m+VKZFjgcjkRGVZzOBj6yyVyBAh1hhItgws0rmTbnqmqdyhzzXgqsmwlLx5uDHv37pVhle/5OOaUVYWSEhcsj+Nn9uuJ8/krhr37hrJYeXkcWXNHcxGUdcwCHfc7hukL3WXhm2+/ZbGWdXmk7HNkGd/j5CyzyRhE1Joejh67Oqx7ZdiyWuoyo/2aYW/vGV9iNko23yJzzcunz9zd/QYt44zS5Sne91/mCyabePeuAQIvpw+YnyYOxyNNG3n7pz/9kXkQaD0RAhyzDKjiZGTg3f0Dj6eOrf/Eu8NvmGwctF06x7o+paun4OVyZdjAqXOEsDAnexljDFWo6c4b22Z5P430f/qRbd54yGLHulKK/iQY8hPDKBLDVuwWz+v984LNI8NU/g/sdoq8uGezF87nWBrUWcY4G1w9I9eV/a4luBfm1My1rgqpPGVdcdSGUSsEjqvVm9YZvvfY3vLcBw61pGnusNPwyjCZ04icru8jbGQWGZa84Nrya4btI8O0IoSaS4p03GWIQ75VTt3mnHvwcqBOVZ/TKLjbHYAd/bByMHtGITm0+xvDxn6gbhtuU2z+gvXXEWiFEFPucHugx+AgpBJFwKd0uAsO/5XHlZOQqVT2UyEaol1rqUohPOBl1I4EG19nHbdhUcERUFGrIBzWBTzupp8JIeC9Z1tX1m1OwtJkjnnriBQIH1VlgthRlhnDLg3znKaBdYsXnPcBIRVax6AKe9WCRQ8r5wJeQFGU5EXBmjp6lA7M84zwkrKqEMDL6YWHJGS/e7insYc4u9Ba2qrm+eWF/aHgmrgMBC6nF4SIw6vdurDO+jbmR2mDIKAVOLvStA3PpxeWZaRN0+DXbSPLK4Q0rMuKtR7nHGvqshNGszvs6Z6fQMDpdMZtCyG4m3iwHweWacPbjS+fv1CVFc9Pp1vH4DTFgOjjx/cgQWuPtSPP5wtlcRXdw+cvX9i3Nfv9HilDKqP623ctithVuW4bXmqyIqcsClwKtAiBoRvjIHAbGxGGcWCXhP1Xu4xgY7fpPE64LSDw2OQPg1U45wguitOXeQKjaKsI7cwofK4ZuxMeSdEeEUJQtftbx99VCyGEiKNcgM3aWxdmHC0kY9kuBIxWOL/F6xiItc9YxhVCJUPQEEXqqTVNplmgWumYihcCbQwhPdCDKhDGIGSGEAYfYjdhCOJWIg8+gIwbFR8CnoBTkpBKrUpIRJAoqTHKoJUhpEHWMlytKFLX4y9shRCwhYMeml1i2DDSCEloBL7r8L66MUynQF30PbPsyFQD3nMikEvBbp/KFNPAzjf0/oW6bSFYlNlQqkCNl/TLHXVeMOw1yjvs+Sl2iKbrq65r1mdNt54YhU8MO8Wuv5B+T2JY1L1eINTcHQWfPn9M329g3RYaGmY/0e4C8zwQJVrXDsqOdctwZeBZQGYL8qK4+Q2pWTPPM6X/SFW9RdDz8uOJh98lhv1dYtipoLMnjDJsy8qidkAM+Oqm5nL6AS12COlxz0+s9TuUivrPs7WYIjLsfHqmaBs+zz37RdKmjc2qNdnmEWPOuqyMhY/By1cM++5X3/8Zw54IoUSpyIbu8ycWleO3jWn8gvhfMOzf/u09za7hoD2FHfmPP3zkzUPyE8wb/vSHf00M+55RdhzUHfWVYX1HUZTcmTueX16odpq6TQx7TptFPSG6CbNT2JNm8hvzNCC/Zpi/EHBUomT+PFFsOUVjsEOUJlAonCuZx4mjanmaJ5pjebNmWJeGnT8zdpai/z1D9muEGKjaPXaI149zAhpLi2BS0UB3s8VXDCtodw2XfrwxrGxLrg26jA52mnOfGKZzBhmwKtAkhu28JxjP8eE7+nEEITgcDZuJw6+DKhiWhXa3uzFMaAh1SZ0Y5vRGlxh2GSe8DJT7PS7p1ephZOhHjg8Vx33slJc+IGlvDNs1gn4Y/zfCrL+SQCsuGYNUdd0dCyAKDYKLNWC7OVzgJswO3qMVYAReRvF14LXtPQpzRQy4pIpvFAJC+9uGWgRPMCtsK/gNHyTCBWy6AlZnWe3KvM54tyFlMm2QIs5V5FVcrURgsw6HQyrFbhcv9sv5OQr0RQAVW92D8yBAimRaGSzeBXwAk+VkeR57LOVV2xIF8fv9kaoskFIyzTMhDdx0q2QZlzTM1aCUpK4rTi9PN+flS9dFt/V2h9Fx5t6Xx0eq5FOS5RnffPc9Uz+QHTXT2CPxfP70Cfk2NSlsDiMNRmrmecFoSZYXTGMMJKuiYrJbbD+2K85uPD0/xQn36YbRSjMvE27dABltKoRgmiI8pjFg7Yb3J4o66qMWt+HcgrPxPcqyxvuNvMwweY4PknmzuJQpqPcPZJlkXhbmYWJ1IWYH141litB2bmFeJ4KPHmI+eN68eYNMGZp5mjifzvSXC0JIClOwb/ZsiyVctf9KkJscVUTvr+ACAh07JgG7OpSUdN3MZfjCg8hwzjEu681wtDnsyTODF3HYuZQK76LVB8SgS0iJygqUjoPDfbh20Mafa6MRMiMrNEYnd7jsVTDvfUjBVZq1KKI+xctroGWQOgNhEEKnDkOF8AIZXu8351zSMnri/E55E8MbqciESfeaiHNG5c8zWgJux+6Xt/4zw3oCjVSEZoe3FvtyxtVfMWyODMvMGb2rsd1IyNubXUqnNa1aQRUIk0M4I7IaWVTsiySo7y7oIkNtK8pveDMyuIDt0tDpIbDaZ3SmsXZjHKM1i/gvGDYNgco53OkF2fgbw7xb8UXBPATu9gc6BGL+OcO2YPFuSQy7J1MlQ9+jTNxwStmzy4+JYQopD3/GsB3LeOHUnzkeDe4sCXXF6eMTm41613///IH7oqZpJ5Y5Q4iWL/MfeZv2TuuW8Y/ffU9vXxm2ayo+f/6ArKOeSE/PLIvB7DSzWzBEhoWQGPZQoXrH5iz96ZlweuGPT5Fhu1Rh2O12/PB8wk0z07Tym1/9OvL0xrAaazu8PyG0oBsGlnJDCkPfxwC5LEu8z7l/c0fb5vhQ8ng6ce7iJq3+/u/AC+Zl4Xy68OUx8O13Lf1XDCvLhTl7IYyQi5IqONo3bxivDPvyBWcdH9+/p213rwybLWFNyQ3bkpsMv6tw08BdWUSGPaZN/s7xsgTC4yOX/ZHi4yece+Dz0xe0ic+F5ld77qXBixGjW+Q4cek6ii1N6ig2XlaJQqK0ZvEXZNCvDCsKdLA3hmVVy9Z3iPrAmr5LVdX0YkAvGUVT0rTtzxjWTQaV7eOGMTGsPVZ4H01fAcIxozk7Ll8xbJwUpOkGRh95037NsJqdHBnH8cawttnR7jKkL+IAACAASURBVMBffbX+gvXXEWgJcNInY8N45H14DTKCAGQUBLpNkpI8OBs1bKEEkwlUyJBWo3QSvrmAUqmEqDwQRfCxkfE1kyQzB3ZFbiMhDDgnXlPm3rLaEWtjp45UBqXyGDGL1+wJwSXXb0cIMQNm0gOoUjVDd0IZjzQKIQzWSYQIlOYKZUUQBdI7pDFonSUhZZr0vt9zf/cGgmYeBiSey+mZJXmdSDTBCrKsYs0UWW5o9g3HuxabvuswrUiZsWxxsPCyzFTJEwvg6fEzwVmUUmzDhd3DPd45shAYU4pYIhiXlezhDcJZfBCUusL4eLy0zhiWC+N5hDAxjhfWpUfrjL6Pv6coiuhn5R3OeYZ1wdpAqrbFDlIbd0n9ecUHj1lic8Q8xpR5sAs6l3TzxGShrI9U9R1bCsTG1VMcNe9/eE9VtHTdSBgXqrKkG9JU+mBZtg4tNUZocmHITc4yxGMqlpXLxy+MOLpLz9u7b1gGj3BQpJ3ausy8ebhHqwokbKvisLtDJV+WoRvQOuPdu29Y/co0LczLwrdtxZYGsl5eNqq6pShqHJJtC9TVHrddO/VWhJbkdY3UhmAkQWao5MdjshrvFULXKVEbR/XYvIzZrvQuQki25KMlhSIofbOQQKoobE+lP5/qg0Fyy4xIH8vaqYaPRiQLgFTuV9eSvYp/T/IVkOI1uBKvD/df0gpI3JgYNiSGCah2u+jCL6AfHaaqcM/jzxl2aAjrwHIZqPN7doXmNMd7RbiCTMEqPc+rp2l+RZYFXvqeOgnZ51WTVSW5XXHbSLg3lONHvnyI9+TgT6x2ZOpecM6x2x8jw5TBDX/GsBqUc3SdRy8ZJrW9+/eBKjim1TN5hREGayVtG5AmDRbeoontLi8xxuDKjGxtbtfFd9+/eWXYMiKD4/2XjuWPV4Z9IhSRYdvjC1luePP9N/z6f7RYH801I8NWlhePzwPLcuZtVTFPqXN6+MyHskApxSw8uyJnK0vWrmNMGRrZD5yXlax9gzhb/E6Qf82wMWN7+sj402dkUHwYL2RLj9Z3/PEPfwASw8LPGXb6M4bVRcviNB9/esbXFfN5hn5it0tmo9ag73/OsPu3v+HlFM/9+Hzh7h9+yz//03uqh5ZuHAkfDVU50M2RYetUsGwBPc6YRrMJg5y3m7nmy7BweXmhH0c+fBx5e/cNT+JC65pXhn3+PeXDb9FtBTJglOYgM1SbGHYZaO9+hauKG8POpzPtsSV30SjWv2xsiWHnfiB3DXUluGwxqMx0Q64l+bFGzgvNcc8st1eGrYHLliHaml3V0NOxq37HnLsbwxwCPxzIH1oQAismukmzqZhV4yEyzF8Z1iWG1SBELJOOlw6XOaT3NHWNQDCNEiFjAK2UAhW73rXe2O/3QA3jeGNY0ANxROpfvmP8qwi0hBApC6NeO6lu3VLXLkRFnksmZ7H26rgOfvNkRUZAslmXrBmupbDY5u5DfLCkwW0gwqsLObGbSsroaxSsJcgxtjQStRfO2WjrYNdozyg1AhUd6+OLbp/1amzq1hWfOi6yzDAZxeJi6c9kOmbdhEiZA8D56Dmi5C3AinMHU4kBwefPH9FCsiwTp5dnZAi3ETxaZLy9/4aApz9NaKOw68Y4T9dNA85LmmZPCIKyNuA2Pn54T5N2rbu24Ycff+DXv/kNi9349PEjb7/9hqLIOL/EbpqqrCiLkr7rqOsGrSTeb7fnuRQiZvP2e7rLwrJsLGvUEExTPJfbNqJkzOzluWKaRubZkiUxkJbx2IgQmEeHKWXMogSBTl5bwzRhXSBMIy7MSJ2T5SVNE1t9P396jxeBYD1Pj8+UZc3QjQQXWJdkJjpesK7jeLxjGkdEUTOfnpEpKfz8/AXrVggTbSXZlhPogqbcsWzJE6zK+Xz6gByip5m1liIXHA+xWyvLHcH1bOtC1TZoX3DpTvzhP/6d3/7u79J5sUzjEP2mVAbS4FwcaRGvY4UL0Wi1kDlZXuBWddMimryKDspBgY+zPKWUaFMks5KrzCEec+88XkiU0qikTQhSpkxezAoTkn9W4LWtWUTN5M2+QIjXUj9fB1oy/RE3t/lbOf82W/SXtUIILIlhuyvDks+ev1zoyxKxU2xWonYT9lNiWAV+eyFrM+p8R64cL6eefSodKi0IRlJJzzj29MNEQwNKIZKGb388IsIFKfOvGLYD+Tl9NkdZFoSTxRUrzm03hlWiu34BQHDxFd5X+PLMeXqmWuP9lmWGs+/IpGBYJGad8Rj8IAjpsxblkHyTYrddphSDv3B3F0uDAsF//MdHDkKyLF/48eUZGeqfM+y3kWEfbc9BKOyXnM+PX/5Lhr15d2SRgX/7l3+6Mez+4Rv+6Z//if/rN/+DJX/h3z/C22//kaK44/xD1Ff5suJNUUIX0AeVGJazS15k8ygY1Rfkfk93+YxZNsYsw+v1xrA8H5nHeD/dJ4aF2RK+Ytg8D+wOLV8+O461YPEVwcWNF8CnLxNFGZinkXP3yPFuI8tLvvkmlsL+4/17fFsTij9nmGNdYhbn5cowc8cyjrx9eId9eiY08Xgs64Q9P9OEiaaSaHNimQvWEobtUzy3VU53+ld24khRFMzWUmwF5sqw+5LgPpJnRw5tw3opeP/8I8vL51eGXU5MQiKGkXJ/hxcCd/Y3eyIxDLi6ZjufsHXNMS84P0831aiq9hivaOs9+EBLxTiOrLa6MaxtGtQ6IMyGdxWXQWGMRiWLmvrKsH6M46rkQBcEboQ2mdHu9/vbc5q+ZxACc7fjaoQyTRNaN+z30SdrHAdCgJ3cMYoxfZeWQXT8H2fvIIQgy7IboK/rdRipRAiw+DhOTcUH0LYtWLfihaVwmpAZttXeHJOLMgOZo4laFZmCLIe/6UQ8EF2BBD44nDIEld1M5UIIOGfx3uKDRQWNEB4p/E0EHIK/WVAE73HLigrgr0M5tSQrM+a+x9oNmQkQBh88LukCMiVRWmK3DWHAbRt5nt/kD+u84v3Ky+WRaZoIziM8zFNyZUazTAt1s8MGxTQ4+u4UAXBNz26en6zj+eVC2eR89/13iBB4/hKBnJUFm3f89OFH/u53v2NbNz7+9CMPDw+Y5B8TRf0OJRXLMiPTgORr8GudI88y9ocjw/CMVBpjCoJ1qKsmafM4AlkmqcqKvu/RyiOTk7V3KaMsBMYoggvxwSIkLg2eHmeLNrBuDuuhrAfmL8tN6C5Myfl0oiwa9ruarhuRUuNdYBpimrjvO5qdYl1W8qqh73skgiK7XhuOaRrwPj7g2vYOUSu+nB4h+Wgt8zNCCsZ+YL9reXh44I9/+gP//h/xeGzrwq5tePf2LWYZCEJxd39gGDu+fIpz5prdgXm9EAhkRYMpDNMyMaTygM6yOK9SxEBoWx3Bvc469EETpEEKEx+gKmZTpMi46fPSg1QEATI13Ct9+x4xAFJJGylRQeCI9hSvg839z+7R6yzE689fDfyifUQIIpbaxeu/+aX5Z13XlWE7uUPuvmJY19EnX6a2yDnhkeaA2MdxL9vjgi1XvCiw50eqzKAEyKQ5KsqMftw47Fuq5oiU0A8dVXPEpfDZ96AwiDLjEhxZYlibAr3u9ITzJ3xV4J1k6s7keY7SniVlNOvEsJrAyXvKJWMNE5cl2UwcJNOUcelXCrvFsUvCcA4e9xLL9Xf7PUo7Ti9nHt6UuBfBPs8RIf58nTPsuvL7xLDaeQbfMauvGPbjlWETXWLYly//BcM2T8nGd//9v9GWFU+JYfSe3M+RYcXvWNeNjz/9Mw8Pf8eYGHbXgjcORcAshjI3OL/eGDZPZ/Is4/vDr3k/PLPsNab7c4ZVZAbWdaJ685a+/4ieSqz4M4Y5gTkqOgd3SkFzwLkY3PbDCZ01PL84rJ8oa8Hvf/8vfP99zL607RvOpxP7oiHfBboPT8idxruKaYjXT98/0UjFWq3klaLvPyLzliJltC79OTKsgo+fPvGtNpS1Ytoeb5miT58+0ErB408d++9aiqJg/PwRe2VYZpAC3r39e0z5ibrds9/vEDLwZUgMkwceL39gf7znrqwwhUEtissaM1q6yDFa03vPQ7O7MexwvE/nFWpp8NoyyQOtivYxUmQ0zZVhJe2xou8GvPc0h4c4OUXEzzkMIgZa0lDLFbW7owW6rkOE5JE2eGRdRx4dNGaUiHlmSg1hSinUNEHT8jOGtZJdypyJITbc/e+w7K8m0LoN3v0qwPHe33bDUgq838gySTIpxzmHcxvDMLOuAuqK3LyOclnXADhMplAuHTAFQUVvn+vvDiKK5YNf2VB4ZW7eUtZ71mRWKgEhfNzZE8XAEPVj+Bhk2W3DrhvLOOLm+NDPioxClMy2gG2LonOZRx+s64PQbbhtQ0pJnkUdj1Yal0TX3llO52eW9QWjcp4enwDFw12c9H7Y31OVO8ZxxCiFkNE1eFuiRD8dMPr+hPIrX3468fjxid1xx9tv43ss40S13+G944c//Ym2bZinCRH8rVnh7nDgy+cvsftNSObcoFW4ZfWCd2S5QYqWw/6e0+mJ0jvcvKJ10r1tW5x5Zy1CKKqypuv72CFJdKFWWmOto6hKxnHGO4PSCp+GxAkBWRaF7kaDtRPGVMwppZ5LwTZLZJCU+4osCd7tut2C27vdHSrb6LoOv1nqqkFKRTdch1sPOA9+Vvgt4+PnHsvC7v4tv/7Nb+P1cT5TlhX7u0BTVTw83JFnmmGIMF2XEec3/p9/+z3ffvur2Ak1OzJT3srTkxrJypKuP5O7wM6USC0xaTfoAesDUkicBztbLJI8DZ0WMkOZEiENNmVKhRJIMl5bdmKg5b0HKWMjydVPi9jzFlLKXSAISiJ/1uEL8Dpw++sM1euG6BU+1yDs9bU3VSS/xCWE4KA1cjcjx68YJiV7IRCtwPsM6TeybKT08dw64zj3G849YkzLOK7/L3tvEiNJlub3/d57trjb4kssuVZmVXVV94x6m5aGItlaIA4lHkYQwLmQgE6SIEAX6S7edOVVgAABPAgjHrRBFwmCMAS0kIJEkQC36R5Od1fXVFVW7rG6u+1mb9HhPfeIrKqertYMB61RvUQiIiM8wj3NzX72vW/5/zleLzFBJPbqqiJJYi5NhVoukG2DUAJtBSIIbDZC+CC7GXBDR9N1pLcYNrMZr3aviYVB1jUiTg4Mywp/gzF2CzuHszv0FNONE0PLgWFaJ8zsnH4miaaJYhbTtCl5UWDwj6m21wxCIeWCNCnZdlvy5S2Gbc84344Hhj0JDHvnsQf6almSzR9w1rbEylcdkl6xWojg5wiM19RXG5Y24fnLCy5eXfLg0QOy0v+Oy/acO8sHWLvlR5/+Pvfv3+P1q3NEnqGV/x1Fdsr52TlD9AwpJOn0xQzTQhMtj4n1wNzWbC9Glsu9ftU1RVaSJv0Nw7Y1U+J7kpRWqGiF1ltOslPO2gusSQPDfHalLGPGMUGqa9ZRyUx3DHFG3wfXCXnB1LdI17JenjAsvohhj1kmEy9fviQ7OaHOIGq7gwWYcQJjC+zFOXZK+PCjV2guWbz9Nf65PcPiFXNjWT52FNkdZrOENIkOJf6rocXsJp68+piyXPF+nBO7Erl09Beec+d5y9HpKdt6y2hyFqs5OmoZWv86uplmsZvIT08xFjYXGzQSGXQPhXF08RwxxRgmrkVJuZ4jSaiDNG9uZ9R1g5VrkC0immHKOYSWFMECRwtImlqQLxTSOd9nWO+nfA1V31MAjYhRyl+7+T4bv1A0jYCuY7FYIOWCogjX2P55RElRlIde3i+zfmkCrX1w9NmM1n7SCiFJZxKYSKx/2alOmfSEcZZh1IyJC+Pje5FPG1TdBXEivZibECAsMoy/InxBxQmJFRPaRWgXHSbCQKInPwkhsEGk3tv17G8wzjlvH6QNUz9gJn8h7Hc/k3UkSUqRl2x3O5wTJFHCqCefRQAfQET+OFhjiOMYrfWhTNO2HW3Xkhc542BYHN0hmxe4ICbZDCPaNpydn9HpDqUiZokf+x+D+bUUglG37HYNl+eOOFF07cTz53765N5bJ8TXV5zeO0VKcFZjjeHFi+fMg3xDW5bosUcBXT8g3ByRSmK1NxaWSOEtfKIkYbFcM59njE1/8HXsh5409EvEsW/Q1dZhCCW9uiOW3nsvnuXERuEQZPmCIewG0RPGgDYSnMHoCUF/8Iasmp7F+h5KSvqu9pGZ86bO9+74wLLtK6pmwzydMfQjcWQQUURTh1JGlOMwtJ3iybNXvLzaUR7fZfPJC/r/+2k4fxRxJOh2O4SVvP34Pu+++xZD6LF5+PA+77/3Lv/SX/yzDGPDj3//Bzg9cLzOybMknKcwt45ZkYHzE32j1l4dFj8EkSRz4mSOdaCkAyIvCApeTkMlOBkjgt8gSnhx2xAYWefCuWu5sbO6FYRzU95z+yBJ7D1B9yVycTjf9x9vX69+dsX/7OGPl6E/SFE4bsr2f5rWgWGqQC7D7pniFsMqEAOpNkTxkuTYXwuT1qhZiphGhlGzLHKurxui0Lu5XC6I4p6uK4nnEM+XLKMGZ2PkwgdrNFAWOc1uwooU7TqU2x02DDWSWTpnN515AcusAB0sxw7vZY41W+y1YWp2mCnFtBqV+V38ZFvPMJVgdjucK1mvIq42DVkZ5B0yRxGVJEnMzmxZr9doDdb6rEa76Wi7irv3Vp5hjz3DlPHXSjOMbOxrzj4+Q80USkXoJCEzlk0wv5aiZNSS892Wy7OIOOlQ8hKNZ1ixmnERGHb6BsN+wunMlzDPRMl2c0GazFD9QFLMmVJJvPRN+9QgRYc2htVRwqjXGGN5sFwwJf59u7h0rI+PqeuMolyidYa2W8YQWDRVx3phsbb0DNt2uEmQPbjNMIUxNdpITO4wswnd97x84RlWLFMWMaiZpE9qCiHYOIsg5/07oeeof8nL12ecHp8w9FcQLSlnK7Zb/xx976jQNF3Bk2e1Z9jbSzZ/5wP+l/FH/nnKJUPfoKw9MOz0dEUcep2XD+/z/t13+e573yQODKv0pxyvc+7e8a0acyfomjMWxR0G7RmWzGYU+6b8KSVbzBmcQXQxKoopitsMW+DURL5YUzUdThpISnpGVs6XUq1zyEhT5Ck4H3QJHCL8jqKIECJMhbYtTdPg8Mr2rPx5XFcVKwpc7pB1jXM5UraHqVVcgaCjLMsDw9qmgaK4xbAK57xsx5ddfwqR99X6an21vlpfra/WV+ur9cuxfikyWiAO4oy3S4f7HbO1Fun89JNNvCUM4I2X45hxmtAGhsH3Wo3aHn7XOFnixJEYSIzPaiWp1x2CvY+cRiIwE4zhrwumnZPxDZiSyDd6B60gZx0uNMNZY7wNzDgxjgNOG7+rDxmJSMXM0oRYRTR1jx412UwihfDWGIDVGmREHEW+jBoajTdhRFtrzXp1xOgMo205ObpLVXVsNv77Z6+v6duGXT0yXyqOj484PV6w3W6orv2O0hmNnTTz+ZyyjHn5akc2Gea535E++egFDx4fcY5hdbSk2W0pipIkTnj6yUeEF0I296KoOIszE5Lk0N8ghWSyFqMt02SYzXOyWY6dK6LQI4FwVPUOKXy2ZppGsnLF9tzvWpuux0rvWFmu1sTphEVydHTE5ZUL74tGSkcSW9qu9T1yRt8kX6yk2l2SRhF9V7HdtsySjCSJOD/z5UXLRDc0iFyiZExTd5hUsd343U3bDpy93vDhH9Q8u9hRa0f96hUdsJd/EUAMvjRpDX9w9SHqdz8kVCmQAuJEcefuA37jX/l1fu2bX+fls4/4wT/9hKPSZ7TWRyXlIufB4wcINWMYBiarDz5gTki0gyxJiaLYWyIJSRyEHr1eVoRQse8blHubHXk4HjJMEPrR2Jvy3cE3NHzJSd+07IR/7e5W1ks4Xya83ZvwZgaaQ+/C/u9Nf9ftkuGfvqlDpRTRakVd1yyCbU1VVTjnyPOcnVXkDqLVguFK00W3GFY3IFs22wk9aGZpdGBYFE+MU8IwXpOcrzk6kgxxwTg1RMGQ17qM66sNkjlmqknSgqHdkQRrksnU7HaSxXxFVxoWQjK5FmfHQ0bcbmfoaWI7TiRJTNVOCNFQRr7MZXRCdHzEqBs+qHv01YYHD77Gohy5vPZaW1k6o24dedGznseBYS3PXvqMldaaR295hl3ZnncCw86e+czbR4FhloS56jg+PmJ+fIdu1FTXwdZoe4lNbxhWvRJUk2F+12eaLs9GHjxO6Oo5u0TRPPsRRXGfxCX8KDDs0WrDnVNfItt0Hfl8YpEd4QLDWtMyWYmZWfRmzmyuWS4cdq7IA8Peevt9Xr56wdEs5yg95nq64n65IgsMe3VgWE25eo84hV0tObrzmMurDwC43m5QKuFondF2LXVVoRYKQsKr2knEemDSEVFgmB4zkgcR52f+mO3qiW4QCKEhW5PVgrNUc/EsMExK2p3mw08afnyxo944qD+kozgwrHn6EeuiYGw7Ztmc3/30Q5SoUaVvEZcC1onizt0Fv/E9z7B2c8ZHT57w7NMXgGfY/UXOg8eCbDEjjgfG2wzTLRtnWCQrXASn87tvMMyOPchj2m7w1SYpkTKmYPYGwxarFdZW4ErkMoK6OPQAqq6jxjNsIUsqUSMF1G1FWfjzWMoFTe4oCIM8hWIhb0qLLu9YLJYI0SBEGQZ6BAWCpggMqwvq2mHM/8ea4f3yPSSf++o+tR3KEEKKg05NksSkaYoxoJQ3pO5HgxA3U1HDZIgnS6oFxvpm4khJTHj3/E0jQmuN0QJjJM6pINgIk4YommHNCAiEDbpe1h7kHYzWmHFkGicvGGotUXRjpCvVHIkiUZplvmSz7bCTJokUZvSvY7QGY40HbxTRdZ0vfYbSoXWWth9oJpAi55OnF7x+ec7ZmW9WXSyO+NrX3+f+gzu0OmGW5hTzglfJSyQehNcX5wzjjmGcsDZnvT5inFr64P0npKBvevTUUm8umOU5VVFydHRMHpoFwXF5ccHJ8Qmz2YztdkMcL7Bm36fjJ+ZwFmMdRbnEOkc+O8YFA2ypJFm5xjrD/ioahg4TpjTT3Y5xMn5KL52xLtYIGSFExDwLQnzzGbiJrquYxh49WSY3eL0oIJ1LFsWMpt4gcsAattsL7t09pdr4UXCDpmsamqrj3t1HXFxesbl+SRL7MunzT1/zyacXPLsWVM4xImmBCXkoT/uWeUfvfPl5fwbvPxOA6RwvPnnKDz95yrunK37zN76P7iJ+/wc/BOB7332HB2/dpViWoFLmC0eeF4zhvZfxjHRWeH01lZLg6J05GNxKJUDemECzL/u5mwk/6xw4UOJGyNI3ewYdN26Z40lfTg897YfpRunkrcCJW9fPrc+d+BmB1v8f1hf9XwuqaufLp7mgFC1XckJ2NxPJaZoiZcGdU0O9273BsOHymsViQTwMNHqDsSmnJ2uymTdZBxCiwTOsYj4TDK3EVQrr/M02nUEUaepasiwEza5mHaeIzGImH4yZZMLUCdPYIOIIbS1RtDxI5cjlHMnI2E0s3ZKNS9hdbyhXJavAhqurc9JkYLV6TBQNdOeXbG8zLPcMex0Y9ntPL2henvPRR55hDxZHfPOfDwzbeIYxL6ifvUQGT7wd5wxXLQMCa3PidUIztTSXPmwoF5a+sejpknrzCdrlZPe2HB29TR68IYsi50lg2MlqwfPnrzg5ycgCw5JFgjGWuc3Y2BaEYlYuuDs7pgoMWywXWBGT5XOoK8riGwxDxzb4k04YhEqwYkE/adanX+Pobo8QFmM9wx6/PQOX0nUV11cXrI8Urh/YdTcMk8WM5mrjTchtynZ7wfvvvcurwDA9abrm3DPsvUdcXV7x7OlPOVr7Mul5YNiPnzY4Z7DFgjMkU92Th/M1QdDXUIscI6DxQpEswnW/q2sG43hxvvUM+1sr/tXf+D561/PpT58A8L3vnjD/1fcoTAXNGfM6JZ/PuQoOK2mWkc4K1kfHJN2Em1t6l9IFhkXGeYaVkqKRUN4wrAkelNbmOFdTFAIhWlZIWHShjOcZljc1NVDLihIHZUElOBiwy4XEVRUtsFiEnlQhoPSBWFM3FLmgacrAsIY8388kFuH8gabd93x9ufVLEWj5+8Jnp5Ju9Hac80KeznqD6ChYOiAkk3VoB1Ibxq4PWlfhxgAYYxHCoJRhmjRSeCPj6NCjJbDai4USsmY4MHov2eCd6jH+5mNwODeF8Xd/EmkzoafJq4j7eXY/JSdvMgHSSlQ0pywcWkdoY7HaHSA0TRNJtLfTsQcF7SZE2kZr3/CcLLEoLq87JjfnN3/rNwBYHS95+eolv//Rp3zyYmC7GXGTQY8j832tPU8YuojrTcvQXZBGinymiJUJ/w8DruPkbkJXt7T9QFW39G3Deu1r8ZGCzfWWKFYUoxcNbZv2MNac5RFSghTe7ieK8eKbt6Qq4jgimc2x1jAMPcMwsFznhJeJSuY8e/6CJJ4hVEI6z4mi1GtICX/M23qLkxGuq3H7iTksNgjZ9KKnbbfEak7fVRyt73BxvuH3fviPScPr0Faj0gQ0vH51htGKjz54dTCmrpuBi2sY95YykfLnyhs3VInGIiKf5cTtM0bhBuUk1jveIKzm6fmG/+q//x3+tX/hPe49fABA108Yo9ltNqRZRtvW5FGECzps2llmSuKkQCgZrKrcofAv5CH9FDJQ6iazd7t5fW84vM9SCXdrI+P8RKJv3Dk8fq+IEq7Iw//6ywRQP/Mxf0oVS4VoKUsRAh8oSw/ynV346cPWiy6WC4022/BDnmFt2zObGwpKqu2GxTIwrAFjdojZEj1ppklzeXlFnkWcnvpew7ptsFqTzR3uGkTUgoPtxh//3a5hGg3FXGC3FQbH6Cboy4NIpzYTOpoY68G7G5QFRIomMKxwc6TtSZRn2GxWoo1gu9nQDz5jPk0TR6t1eE7LJATLsuSTy7Cx0ZohniOSh4FhH6PcnL9ym2F1YNgHA883I3kaH+evEgAAIABJREFUGNbfYpha8fTZC2I1kvYKN8uIw+SicNvAsDnnr1pEGhi2aHj06LF/bepTzp8aokExO8mZhpi2OUPsGSYKWhyLsiTPC9QA2dyxqSzJke+NGoeeB4+OsXbOpXHEMkbFjgeP3gE8wzbbHeOgESphMo6VWCCXMUXjGSbZ4mRKdf4qMGwJ7MgCwxohac88wy66ikfrO+z0nmFTOM6eYcUs4vWHZxjd8dEHNR+H44G4YVhcLmn6DqsVmchvbRZrNIJ5JDHSMSsddSUYQ3iSOoVe+HNRNJof1Ruuf+d3+PVv3DBMRQKz1bx4tiF9kNHKmjyNyLsgH+MyiuXCM2wp2VUQF/IWw7wcQ0GMK/YMEz7R9AbDJHXtKAqvgVU3NVm2Z1iFyEsK4ajbGlGW1E2DFMUNw1wDQlAUnk917R+3X0VRgAvBVFOT53uG1lDf8K8oF/wi60sFWkKI/wL4t4Az59y3w9eOgP8WeAf4BPirzrlr4SOl/xT4N/G+Cf+uc+4f/bzn2DN5n5HYTyrtO/uVASOcv4mrME4uBdYpnJC0XU9MxNA5hLoZP5fSe4hFkQyN8YbJgZj2Dc+J93OzgnEYGbsOPXRMQel8aifs6JBGeqcTaXFWY4zxWQIIOlvewkUIhVIK4XUoAIhljJQRiJQ4Uszm0PQNKkmIwshoZAbGYYseSvLyGOsm9NCjQyN73xiMljx//YRJCB5+423uvP+Q//0Hvin77/+j/42zqy3taP5QdQ+Fb4oXyrEcLSe15jgEprGSTJMhSmDSkuVxRiRixl3LZbcvYa6xUUTVX5FKSZHm6M5PdwKMosWgMXY6+KopKdEGrPPHPE5nXitqMiRpRtp2zJKEPGSryvVDZvldzs7PWB7dQ0pFmnr1eMIOaHAGrStII6IpRgBTbwjDNsSxlzHQtqfvW5yZyGcFure8+Dj4laUp5Z1T8njORz/5hIuznvPrievOB7eNi5nEjN51RAJOsoiTaMbr64pqb5WpIpAJkR69FAgcdKj2B1xicc6ySiKiyTFPYHlUcHrsswlje0FRZDTbc5bLOfP4EYlKGaQP+JIsIylnIARaSpyLkMbiwk3QihAESeWdDVzkS+/INzSrhBCY8B5IKbyKedi1qkNg5tibGx7KguF5bodN+7L+myPONwHmPsh6c/Jwf0j+ZCcP/yT4ZbFUlQf0DcOCirhU1CpCGRibHm1mpIFRy0WJddOBYbP5jJwlIkh7tJFkkQgkklUkaW4x7OLaZ09WqyOctWyvB8ZhJJkUm1sMS2WKTHKYelorUdLishlG9+zC+zQ3Gr3dktmcRrSoKPkChs1ZiZY0UuziiuaiZjU7og/6U2l1zni5RQvByf1jzs4mdkOPDhuGfiMwOn6DYeW95Q3DPrhh2I4C6pqiKKipISQQiqJA1bVn2HLHUhac9Jq089m79XLBNDmiBHZW8jC7wzyLie3E5QuffdGbmCmKqKI56Si5t8xpO4XBB4xXomWOZsdIns9xrCkKiZ7XZOH60ccRsVxjpi3l4jFj27GYj+TZQwDK9QWb6y1n52c8uP+Itu0wx3OsEBRrf0wvrwx68AxbTWuEhKmfM4Vp4nwuKGSFsILN6zM+NRP5rGR78YonPwnDAccp97NTIixPn5/Rf+QZNu0ZlsdcN5rezUiZeCcrqaOO5lrfYlgJUnmGbR1boMAeOIDAyxnllmiIWKeORVKwPCp49+09w3qKwjKakbG5Dgw7ZpA+4BszFRjWoOUMO0a0kaTcu4WUXp6hbhXzXCLcyvPUtpShwb0GhFDM8wRTbWmloFwUNLsgMO0iikJRVRXLcgWmJrIR0L/BsKIogDq0QUhE4wMv/xwC6oaiKMjD1PU+FjmwjAL1xrbz568vm9H6beA/A/7mra/9NeB/dc79dSHEXwv//o+B3wS+Hv7+OeA/Dx9/5nLuzZ6s2+sG5gInLNJJby6Ml1Y0ztuCaKO9KfPkd+T+Z73NSBJHqEgiHSRRhDMCHbJlZpr8NJq1TP3I2A+YfqQNEzvj0KOkgJB9skYffv/+xuNCJkwp6T/KGKWi4L0HsUyQIkIoiYglo9G0Q4u15mbqR0i0lUzGoZ1h0AN119H1/vs//tE1V1dXmHzB177xNv/4n57xk7/1T7ho7eG1eKOTCHuovn9+2RADJBqEjBisY2v2N1aB0ZZKt6RKgDXsaClnkjT1j+mHS9b311x0r1i9ldE7i4gl870UgYVuaMnyzFvJWMEwDBTF4qD7JKIUqRIGRpIoIo0TYqVQif8deaFR0YxRW6RSZFnGbDb3GcMQEaxXKzbbgdPTU+pU0lY1Vjt0KD9WVyN9vyOfF+jJMjuJ6I3DGsXJPW/F4ayjvdpxuXvN2fmOp68MvQG3L8lZh9dS98+5mMPDe2sYWkztA8vOaIyN0W4/7ep7o/Y6bAKHwiGl4Pu//j2e/vRD/uyf+SbvPr7DxdknANw5OeLRWw/59OOay8tL3lUx8yynzH2vj0xjiME4i5IKQYSU8UGY1xoLwuDchBURzng4WGc/F2h5CYbQkyVu9VsJ9pqVn6+AHSYXb0ry/rx/s1/LOfc5+Owfczu75X4B64o/pvXb/DPkFxDcvRzW5rRtEDYUFUVR3JKtCQzLJZHzmZ+xdhwdHWHOO7TRpGmCnapD09xiUd4wLM5YOZim/g2GXZ5fU+QZZvIMq9sNph9vbHWGnq5tKBKJzTIyp9lMGuqafUOAMZpGSJzqWZarA8Pazv+OYZEgmx6xTsiQjLXmTLQ4u2WsQpa5aTG2ZTVfot2cQV9QT+4Ww55ydeUw+QO++423+cd//yN+8uzFgWF5AYIlLQ1Qh5tfTUEItoC6rilFQSUakg2sFj2DdUSjf52fXjaY5ZyXmzOOlyVba3hRn3H/FsMuSukZ9uErVm9Z+vUJKpawZ9jQ08WSLFK0bYcQJWfnA/fuHX+OYZd1Szqbka4T1rcYNk1rnkZPGbWl7TqyPOOkOGXSmqsTHyCvrWfYu6fvUh9feoZtHFoGhn060mcD+dxSTZaTZURvKuxccfL+DcPGK8uT3Se055antWFqoYp88NHLCCkmBJK6hod34dG9NU+H7c9kWF4IqBeIw3nsULVDliXf//Vf4frlK775q4959/Ed+vYTAO6czALDfsLlcMMwceoZlqUxaQzbqme5WBJHA3IYkHk45sbfx/M8ZbvtcVwjyhKhNboMlaO6pix931SjFFJA0zSHyf1CFFRNTbEowfm2Kynx54/z2TnrvIpB00CWFeS58ELAtY+0nKsQKOq9HEQNUFGWJfvuGYejwh7u719mfalAyzn3fwgh3vnMl/8y8BfC5/8l8LfxoPrLwN90nqx/TwixEkLcd869/MOeY28afRPE3EBcypueDxkpRLjBSOeIIi+FEI8RwliSWB2yY84arPUSCk5rRKQAAUZi99G80eAsyk1+Vz9p+rpmCLY0ehp86VHue04kzgWrjb1CtpMIJFGkEEiUVERBJRr8blAI5QMtIZnNZ0RNhJWCLCidR5FEjwNWRVR9y+gdE7na+h3B2bmjGSQsCv72P/kDtm3PrPSjqf744bV0nBdkdUFF582QEJzzasYRjhkxDtiF72sLzlpGoUi1oa9bVpkkXkS8Cg3i996ZsVwZ8nxGvbvGzWfEWcI47v27cu8tKQTWwmyeYiyMk0YEA+NI+GGEKPVq/VI5lFLMc79zmQuBRrE+rWiailWeUTU1cZIctKOULJimCkFE39QI0WKtO/gpYgXVuaOLGiIVUW9eslguKZcLXr30PWsRgvNPNrgk5uWVZUoVqBn1XjsIg1ISbfFSEn1PpCtWsd33qwI+uzYJ9UbJcH9uRMIicTy4c8RMGH71nfv82e99m0/+4J9yvPAX99GiYBh6rLPcOb1DVpYolRAHBWmkxGExLjglOI2x5uCXZzSoyI9KG2NI0tQHNu6m3Le/hqJoDwd3Swluf174SOtQUjhETTclfOBwLd7+2md+4Nb59rN7uv6k1p8Ev6SELHPsrA/QwRsgm11FLRWLhdcn21mBdLcYtqxQY8x6HTOOEZEUJPGSKvKgj5xjt7tmPjthUXiGFUVJ13ZY68+fbG65vtig3MQyL2hNT9Pv6ALDNteXxMIg2o6ynFM5iassUi5vGJYbygq6qCPuJtTC0g+WNMhMxHGJWGtKJdGBYavVip0U3Ak3nHFcoMdLdl2ESs8Cw6Ibhn3saOIFxQL+p//zdw8MWyz2LiDQNgPLXDH6jhsENVXIMIAPtCrXUBQlVDtmrHHU7IIe2Kbekk+CcYzo6pqLV9WBYZsDw05YrubcvRt5hk2KOBsZw510Ps+p6xpHzlFSMDtNubiAq2tNmvmbfhRbZGSJ0jlFmSCdo+s6Ttc+ADKNoFx39LqiaRxHd+a8fP2aOEk4Xvjy4+aeJp0qRJHQP3mFaFp2VqKDNAy2ODCsVxEf658i1ZL7Dxd88AUMO79KmSZFXc68Nx3QG4NaWvQO5nPPsJWeqD7HsC2TyME1UPtMbB3OjaPSImvHg+M1J8JwNzDs4vVnGBZH2NwzzIqSrhs5Wr7JsCKHnd3B3GvF7d0vtpsaFeW4GubZnHHKcG1FsSgRoWSnlK8WRZEkilZAhcOSh3PDVYIccEJQ1RUIKARYarKQsbI2p6oqpJQ0oqGgIM8ddb0/GiUUymdTASioXIXbp6sB0TRQ7rcoX279UXq07t6Czyvgbvj8IfD01uOeha/9TFA5HPawaw5fcy7svPcBgwuTUPLGAgSIlcJGMYNUiEhiomAWCVjhbzNWT14ZXkbgHGbyfVvgJ2GU1Tg3YPse3beMXY0e/UWpxwHwKuQ4ws1UYs3tMokILTNRsBKKiOMEFU52b0YpcNLLpCZxQhRFDOZGxV6pFJIEbSeMHpFKMjq4uvY3/WGCBsmTV2d+2lFInAUTdq0WQ5HPaNsGaUMG8HB0P3fAKaRgMVd0g2EXTF0bHBESOzpWIkZNlnoHND0nJ8GKQyja655ESgZRM7Yboj5BhfKAUpCXR+yqmjQ1RMmc5fqEyUxIFXSjkMTpnET6C8dMvsdNRL4JPY5jjo5jJmP56KMPESrCIJhF0eFGHc8yZtkCJQ3TNCGcwGqoJn/BSARDbeisJl9AksbsdlvKVcG9t7wui24tq+QBf+8HP+V6hC3gEkkVzJwVjhhHR0zKxGT9ZOo33nvA7LUPLD+97jmrR4yID71TIvwcQITjtJxzf5mxzmNmheDs6SeUs5R85t+7LInZbjbUTcvd+w+ZZQUqig/aZFYKjJv8uR802/y1EVLZUoQJ3ITIqdDvwU3qn88HR855jbmDBdRnNLI+m6naf/xcBut24PTF8yxvnnrBQeGXYP2x8csvh3UFOdDsm3OtQ2Q5mVK4usMVOblwIOoDw0AwBoatFkuMrjDRSBTGVruuQQqB1dfsdiUnJ59n2LXasIxnXli4b24xzPvQ6XGgQCPWwA5/My1ysrDpAnBGUOcQ9yvGeECNEWlyi2FxQsFE1QpmwDgm9P0lzsxoYh8Uap0zn99H9tdcbBIWKsJMZ4zXvkdrmKCJWz591eIaiywlnYUuBGoZhiyfIaVnWI0kZ4Hg5kZYFKXPNji4J0sWpqOLYbfxDBuKOdva30DfEop0srDzrRdvnfg+00WpkFPP1EmMnQ4M2279//XRo7dZrY64vH7FkM55dHTCw0f3mMxE1/mNniliYrcgkR3ZYomZJtphPDAsOYk5kneYTMaoP0SoFYaGk1V0yMDEswyVPUBhmBZrhCvZ6atb/GkODHMLqHcxLA2lyD7DsG/wez/4KddX12yLBdV4o6SvcHQ4ujwms3uGFXzjvewWwy44qyeMcOwcFFQ05MT4smBfO969b7ivLOvcC7m2Tz+hlClOh/tPsub5ZkPbSO6WDznJCrooZggm21laHhjmKkc2NzQNNHlg2KIkGiVJnNBPnZ94Fb7Has+URVkiRENdizDNm7Fzhu1uFy7BcC6Hf5dlSR2ycrnzgZELWfmiKPxUcO4QoqAoQgbL1b4/rPBOIUUBVD6xdXgI7nMbyJ+3/li6UsPu7xd6ZiHEfyCE+AdCiH9wfXX9x/Eyvlpfra/WV+sXXv9v+AVvMuzyK4Z9tb5aX62fsf4oGa3X+5S6EOI+EMymeA48uvW4t8LX3ljOub8B/A2Ab3/rW844Gyb+bu2eCcGsc775cd+/dSualEISR76HYcIRx5owgeubUoM6vEJ6lWDnEFaCDA/SE9PUg27Q7RXt9py+vmIagiO9HkE5nJU+YA4ZLec4ZM4wwnscOoMSijSJiWSE2vvIAQiJFd5eZjabkWU5Y7U99KTN5jOG0aFNh9UOYyb6YSRK/Fs0yxKua8uIxvsyaoa6Qu0Fm4SjnyoQlkh5Ha5J61t9Qxw0ySyOIhYscks/DYeeGe1gwjcrp87hiMFFKDNQh3r+6EZKFyGVZSYczg3MIosN2RdjDM5alosV4+QwRmCNxFhJMve7wTRb4FD02rAqMpKZf5/iIKswaY2IU956+10GbbySeBRRFAVdG2rteiLNlihpSIcJiKibgWgW7Csmw9HaMhlYnSzI8jld32GmgdWR74+ZHa35h3/3JZ9ejVwCW3yD/T4pEwHGOgYyBCPVYHi903z9O+/xzjf9bu+Dp8/5O3/3h14HRIaysnNkiX9fT5Ylb99d8+DuMc31BTKN2AjD0bqkHnyzsrMdox24++Ahb73zNdRsFqRG9obqYKVFxT4DoSLfTi5F0NES3oxdCoFxzg9qWPuG56k3Tb8pme//7Zw6PMf+EyGCkjxu38wF+NT97X6r/ee3+7z26w8vEf5SZLT+SPyCzzDsu99xxlmaRrIXQjIuRwBNXSOlZAEIKalryXy+Lz1UtEIyOzDMe4OuViErb00o7zmGbke161mWS5yeKKTv9TE6ZZoa6k2Dbj+FqeLi1aeku1sMW+ZeW87VFHnpS8WuxoXx+3prybOMLjUskwxj3ZsMawRtuaAsYddWzGYz7ty5y7OXz5EyXE9zTZTk6LjF6Z6tSemHhCjxfTond664fmUZC40oSmxV4QqHDj2lu6ZiniiymSXqIo7KjknPkIUDfDkrlhKFoKkrSEsWd+f0m55K+CnOXV2QF3M6dpwjOGENRKhm4FVg2NUfjJRVT9vN+Nr6Ls4ZZlGPDMrw23D9PHzwFuN1FRjWst1NzHN/XR8vTnEoho0kNpaklJj8EUNgWKo1U5zy1ttzBr3FSlgeHbM6uXdg2FLHtHeeo1pIhzUUjugWw5Ip5Wi98wx75wE2n9NdnAeG3fPH/Cg+MOyJdpjNFl0Uh2n1qIDIlgxkXNUji/QLGHb9E/7O3/0h9bUmk5J57od3DgxTgl99/DYP7h7z+sUzyi9kmAoMW3qGnczIdMkU5EN211vmC42KBWUpAIVSNTL0W5diRjQraPsG5wTGGK7thsJyKNlN00TbaqS8aWaXbXvLc/hwYVKK0I8cGFY3+0b2juVy6UuB3GZYqC0KQV13UISMWOgLo64PfYIFUPyCDPujBFr/I/DvAH89fPwfbn39PxJC/Df4JtLtz+tvcPgeGCHcrZR6+J4T3o9I3ro53J5dFwIlgwWM1Uyhydd/34aGX58y1HoMw+++TwLAmZFprNDtNaa7pG/PGZoLTPChE876dKexofdIgvSWMMKEhuco3AytQyDRowYD0dyfRCpSYXIDjIQoURRDQTv2BzsSGUXMpWLSihHfq7DbNaQz/zrv3M3Y6oZkAOO8VOpnB766wYRWbI3BQ8lPQPljGjuBDRIVCsc8NcTK7j05kYCNoNOOCIeVltFOSCRR0Npa5xFd50jiGW07YM2AiCNM8CCUasfDh+/jZEyUxGgLo7aoNEWGnqMomdFrS5rNMEKRpBGRlEj88UqSGK0njHWc3L3POI0k84I0TShXPv1/dXmBTFKUsCSzgqGtqduRYBOGZCRLHOcXFc4Zhm4gjmYoZrx84u+p2u74Bz96SpQqvvX2W5w+fsDr6w0X5/4G5kbN1eWOaeoAx26Y6F+OqH/4Ad//898F4P1Hb1F//ZwffvDaS3I4iOKIo2D5cFTO+MY7d7l3cszlK8Nb9+4jrCZLY7TeB6cTSVbwa//i9zHB+Fo4cZAYMW7CRYYo8tOV1nmZk30afJosWvckScRkBdZJL3OCPPSsSRmFQImbvxJu/HBuNLKs9cMhfCZYul1+9Jffm6XDvd3Oz1u/JNpaf2z8ApDOM8yY6sCwzcZ/XK3mKKWYjKFtGxaLBdaEE9XlICxdu2fYguvm7PD9bDb7HMP01JPNO5z0PY1u6pjGCsU1ddNRbz4mFj1T5BlW5BlSQLW1xKr0liJSkZMg5mGjl4KZZUTW0dQtq9Xae62GYF9FMXQ1vYDlMkIkSy6vLzk6Pj6cQu2wYq47puMCORScvX7Oixe3GJZnPJ81JKLAVI4dUDT1YSIMASqeM5oaOdcYDbGcs7KOug4SEkKRBoYtCxsYtjsgX1LT9AWLmQ9kz1rLyvqS1SIwzOY9SuUkccxZe0k2jxEqZ/viNQAP1JzF8h5RPxHdvY+2klFnqLhncYthF5sdyztrTJKQJD2J5KD3NbqBxdEaZx3vvPd1rq6vSOYFbpGQ7Rn25BOI71C8ZUlO7jG0Na/Org4M08VIdJQxXVRU1ZaobYlXJ28ybKf58Y+u6SfFt77xLU4fL2iuN1x0Nwz79HLHdD0AjhdDSl+NdP/wH/GX/o0bhr36+jnJBw2tUFBtebCOSFb+jX0cGFbMjomHLb/6/tcRVmOnmEL76UdjGpI7K/7l3/hzmEXELjAs1vtNx0QyzYmiAUHBzlUsSoF1oTw5TWjdM44wWUGWS4yZs6lb5M4H0VHkW3PKUtE0S6QMWlhiL7UQGFbX7GxGJqzX47oleSWEoGkaciEoi30IIQ5WiEI0FEWw66lv/WBR3PglFgVVtcXsr+Evsb6svMN/jW8cPRFCPAP+Ezyg/jshxL8PPAH+anj4/4wfjf4QPx797/3c379Xab21/CSin0RQQZPKBvG7vS8ixnrtIqmIoghnHXGk2P/3DcbrBllfGXAWjPMN8nsxUTNNWF1jdMU4bBiHa6ypDuKakRLEUiGdCdpWXhhSihtBUsIYaDrzRss4gbXuYJJsrCFKYtLZDJEotLPEUUyWZTftyMKP5QsncCJDjzuaXYMO9fo7d094tW0pjKCf9jcqhTH7sVXf3OzVpDyYV8scPYy0YcxbOoMCUuDkeMZqueTs4pwoBGIzGWHThNH1NMainSHGMROSIGTNOo6ZZZJnTy9ZZt5ZMs2LwyTo9eWWZ09f8tbb7zKbZwgZk8zndFN38LWygIxiVscnvr9K+EDTTHs17Jg48kFiJgSJsWTGj7XvlYSXMgJrcHpk7BuGrOb+pElzv/O9evmK6+dnOKBrDXfvnLK5bHhxeUlT+RvQq6sWlOR733qXB+/eY3FU4uSaovwzAGSzFZ8+ec7v/uiH/N6PP6btBVo7fvTxK14+882oj45y8iTlyDrSmePk9AgRKb757V8B4PR4zXbzmsvXT3j78TukUUIaxazLHBt02J69fs77v/JNssUajUIBwoIx+/dZeC9NI3FK4bAMwwgho+WsQkbC99NYCdLLO4hbCvBKSZRSuDCJ6IOm/cjEzdQv3ARUN9mr/cblVqM8Xyzd8POXw/HlAfXHsf5Z8wv8Jqtt23As9hNMtxjWKZqoIc8ytNY3DNta5ORAen/SzzKs6/3PVNYhnCXPCowZfdO98MGHma6Z6xqjR5J4wzhMJLLCWZ9d6RWItkOKOVIICuGFIYVQtFUIxBcO53qOZ2taB5EasDa6xbArVkdrpvmMLDBs6Ic3GDYZyeQixk4Qqwg9Cprda5LQt3TnvRPKbUuxbehxrIqCuukO6vSuyNliUbVA4CjLgkg5tE6J9pO/uc8QpsBJqlmpnDMWrII0Q7pYsZsn0HuGTc6gcMxES5T51/FwHTPLNM+e7lhmC64YuOsKotgHQE+fPGe1uk9xfIo2FiEVsyynum4PWS8LLKKYKJ0xTBOTiYmj6CAREcUxg548w8oFSVZgzRZt5geGmdMerCGfjYy98Ax7/B7Hdz2fPv0Chumd4+PLS5qXe4adQbbge98+5cF33mJxVJLLNYUIDDvxDPu/fvRDPvnxOWcXhl1Tsa1rqt8ODHt8F5GkJLamnDlOHgaGfdMz7N231zx/9prL16/41je/TRqNTH3Mo0d32VW+SvHs9XPef/g22WLN5jbDQua2wLA1l0TbmGxZkSMYhoS62QCg0yXLyGfri2wBMqKqfOZ0v5SSPhvlLELUNI2gXJSfZ5hzeGX3jFKUVFTcMMwTqAbyukAUQF3fYthnWRY8DW8HXTjyYs4vsr7s1OG//TO+9a9/wWMd8B/+Qq/C/yTW3mS0hAg7a+nH1J32iFfyphlehn8754ikxEpvkWNlkDewXgVbKIc1Fq01wk5g+sOO0dkJoVvGbkdTX9E3G6zuvPn04ZXty2/eZHIvR7F/8/xu0/msV6yI4zRMeO1LOw5jDV3XEdmIaJ4SJzFRFN2q7kifvRMRSTInTTLKsuDFLii/5z0na0FeRzD5kqAR0WHE3+ENky2OSEzgQsnCwTL1r2OVF1TbLUWW8c7Du2yuNgydJQpaSliJGcE6b39jg1BE7QxxiIN3/chSFigXo5QgUpLdrmUdynHHJ8c4JJdX17Cpuf/wLeIoZpbPGULgkKqYeTrzpc1Q7uLWzcc6i7ZeygCliGSMkQahHFHqT9lFFDGNA85ohJQkSYrDMQsqvjOVUp1X7KqaeTry/nsndLuY50+eoggj2pPk4YMlJ+uUlx/9kBcfDTgU3/nO9/zrXDzgKLX85l/4FX7tm6f8wZML+iFiag1laOyPx55ht+O3/tKf5/zygqM7J0RpwtGph3bX10irOT5ecLRaIpxEGsfV5SWzzEPk3ffe4+13voZxAoekqWqyJMIXcv3VyML3AAAgAElEQVT5gwSjfT4S6Xd2QoaMqYyI4tRPuYaNgLOhFB+WEPvhiFuTqM5LRkAICm49FilD+fBmclGo/fn/xc3xX6QM8cuw/mT4BeCwWU4W2CIEbLeWXdWQJAlC5xhrUVKy2/njvihgaSRVJenblmQcWZQSbcJI+8Zv7mTnsIU4MGy6zbBdRTJrGbtzXr96QS9q2usONfPvTVTXuDgGBEXRIMQCV7VUOFSY1itF7d9vs6MsY+LoGCEEZRBmbJqKarfD4Zh2fWDYGmc32JAyWKkFlRtZliu0NhwnGW1Z8MHzwLA1vPOo5BoLF5qqdigZYfM9w3oEOZYVUTlRVzXz9YJpvOLhsc/erfKCqmsp7tzhnYc5m3HDcL57k2FXsDMCLCyEpQPqfE4cTtUDw2SMWkaslGS3O2N95CvGxyd3qeqWy3ICXVM+fIuhH1ivjtD2hmEmExAYNs9zOgFx4Zu/bWXRWYZqO2qlKGTMVqbYzjAPApkPHj6+xbAd4zhx5/5DXy4GtEqpPn7JRaWZpxNlecKZ3bJ9ckFXBzZMCx7eVbzz6JgnP/ghLxjIC8W7774PwBQ94CjN+Ct/4Vf44PEpry97Li570tZQhonA4apnsJbf+v63OR8uOMo8wx6/6wVeu75GZprj2YIkUuBy0uhNhn3nvfe4987XMK7EYBAVZMmGAX88tiIHWTCfKawZQK6Ih4okBJ0qTZjFKSrKMbuWSigWpUBwIwzaSs+wuq4pygIhaqrPMCwHyHMy0QAt1uVk3DAsWpY0deMlHmhwdU5ZlhQhkBJFgXM1+82ST4flUHiZiP11DjXqM8mhP2z9UijDe+hrnyKX+yYSgZQOhPHTCgikEIcS3f7HQhMXMhZgJSKJMKM/UY1zOAnKCbAGa8COE2YacVNw6x52uH5DX19i2gozWF/Csj4LhNinz4WXkxCOSFgwmkl5GCqlvL6Xg8j6shtCHvwbYyWIIoWTjt729F3jXxs3N0urwU4GIbz9RlmUfO3db+DMhwA01YbHj5YYRj78tGIzwM5O6ENGzIWhiwhtBXMpSZHMpOP9+35C5b3H93n6yUfcu3/CLFvzez99waWEbbBh0RgIqsQx/sTtgddE9DLcXAfL2/iJxSR2nDw6ZXnvDnHkg5dpcog45f9h7816bTuy68wvIlbf7H36219ekpfJJJmdUkrJECTZMqpgAVY9uf6Vf4D/QD1WAfVcqHLVg2G7lCrJTjOVSSZ73v6ebq9ury4i6iFi7XMumTIyBRmgEwyQ4OFu1l5djDVjzjHHyLI9ZBDSt7NrKw4EmQ+CpnFChQF6gmGeCMIQLQOsVxsVXHVNKp8unmeXyZQ+eO23HVIqhm1HFKfYIOAouk0cuwdHlqTsHR5y5/MvOH9xzsSWbB1hBRweOKB7uL+mvBnz0WdfQjhBJDk4PuCscmn304sNSkasTcbRqoCbA00z8MYffJeycLwTPVmePH7Kd999lydPHnFx8YzN5oz2sUupHx8fcnh8wOnpGR/87H3KUNEPHVme8qOfuFXn3YcPEALmQZMmijLNkUogvdgfUoAMkCoAKxBWMBmBXCyg7AA69hpZEaCxYkYQsluhLXwFKa+CIQtiyWLBVYbWD7PwJHdCfb8+g3XF0RI7ooTjR/hFiec0+q0ivxmlw3/UoZSAPAFm2msYttq3tG2Ktj0STdsIhGiQ0t2DxjS+Dd0yhYLGSFR/hWEbZbF9j1IlhdhH64lqnNAX5+SxDy7mLaefPSbwGJYqi0xDpPZixzZH656iAH1p6UWNFIJAz0y+89WoxGPYcA3DOoLAPUiPDg7o+y02z+iNpK8M2tYewzwPx8yYaU07aJLk6xj2vL7k/v4dNs05H9U1q8GJis5ezasQllqMsApIjEBLxdRsubVa8bB0+3Hj/jEX1Ny8VTBn+zz6VcXnEjbWZRhmMcJ0ARSEQG1d9umiCViHHsPSjNcouXscMYaWfD/l9s33CAM3364wLEAGewTtTHy0ptUDymfMp3ECq0knGJKYSU+MssdeeDpJUVJYUEWBNjCHA4fzEeHq12PYOKVEScaDg+/w9ImjBN69odn7H/4pj87OGV+cE4dbssZj2Gu3AHgYrrn1cOKjz74kDi9oxhJ1dA3DJo2SI2uT8eB2QREO5Eh+8AffpbzpMGxzYak2NXfv36d68ogvL56x0QNfPnaejMfHMa8d3+ezzz7ng5+9z639Nf3QYazmT/78n7l9vXmMKGEeNqyTO3RpwrDtrzBs5RaI3bYHBKVsmYwkF96P0w7MOwyLEWgQCYKahZ9XCLDU5FJiRAdIZit3GFZyHZvcs6aqKwpAlO71tllcG0rq2rLwKZf3aVvIC5qmxkpBjkBLsI2kzpfAyrCy+W+1qPxGBFpCuMyU4GqFbK3ddac7Lop7QAhxtfS25pqFiHUPChlIpG85lUq5sqGxu6yT0yGyu9LgNPTMXcew3TINPWaaQUKogt1+6HnGGNBmdFwA4wyMB29fgbUkYUwgA5I4I0lnZBQReqsgKxXGuNRnmmSYaWBqt+jZuAARx+tBBoxjjzEGpRRRlPDggVtV/OL9mnkc2S8k+5mgGy0pV3yXwYJLGC3SFvisFJy3LqgsNjXx3j6jjHj88own7Uht+LWFHI17+GoExsLgy5WdtXzxaMN7b675w3/yY2Ss+Ozpl1hv17B/cMzB/gFZWaCCiCwvKVYrbCx3GZYwcn87cVfJOExkeYRagk6tCcPIP5wNxliiyEliWL+NIIiwxhAnMTaUCKvBzKS+PMDxEZenL9jfO+STDz/m//v3f8uto9vcunvA+UvfDixnvjwfuff6Le68cZuJkcdPHxF5bbMbJ7dp24YoDmnrivv37vLixUtePn9EvXFAdn5+iZQBP/8vPyXLItZlSJqsONh3IBYohZIKPfZ8+eRLXl6ecXxjH/KI9V6x3Mj0XUuY5czj6I5dGowv/TkTc4OZXPbO+RV+deouc8cRsKSQr5Dh/yHja0Kjyzzi1VLjteo311/afe6VdujfvSALnFWX6iSisIh2wbAaUbjVsO0MTvfHe01aB/DWWGztShkLhnWBpPcYtlJramPB1AiROgyrKgqbU1WOUzQ1ZyRdx+l2Szz0zKEC2TBs/Q1gLWlSMo0Tm+2WMi88pUJzee6kFy5tvcOwozhjTmdW0QFh6BY/dVe50o0AkWSY7RlTO2NE8BUMmxjHwGHYek1kNEcew16+X3M5nnOvkAwnJfKyJm7ghX/Ydbbwt4fLkR2WBabrMDSce7JysamJ795jtCmfvjzlw+cjtSmuMMzC8pD9Ooa533lxavi7qeG9H97hT7/3Y2S85bOnX5J74+EwSj2G3WQbjOzlByAlWZpTLlniSKLHnE70RJ1kTCZkLlELPaJpGcKIPC8oMCiTE0Qhfd9jRxd8RKHDsGmeSE8spS1pqpmTm47oXrz+wGHYk5pPUo9hyYryOoaJSy7+bsGwh1w0I5v6EaG3Crpxso9oG8bJYdjB/l2S6SUv20uefuAwbBxnj2HPybKIO7dCjqeJ6BqGrWWGvn2DX/z1L3j5+We8fuMe63sr1AJDucOwIcsJxxE7jNggIPOBqbCW2hjMlCBkRy0EablH4/MdUwNqbYnbFktEWZZYRhpT7DhWQjYUZcniXPhfcxtc+FVCCHZKo1zDMGuxtibPc4dZXtBU+GpVnufUbUsN5HWNLSS5XQDVWfdo84/M0fpvPxxHy0Wm1zSwjMFY968UV2ULe21FbXxH4qK+LIXc8b2ktRi/grYCrNUYM2P1xOjJ7tOwxU4Dehox0+QUr6zFeIVxYzQI5Qj00nd3ITAEJLgHspkNYrZoOzLMroSI7Bi8jYYKFHEckRQZMokQUqBUQBTHmGXi+tqxCgKiKKaqzn0g4Vdyd27x9NETYkLunqyQSvP4omUR2ZbWBVeTNRghmLWmtwYVR9SzuyG+OKvoupa6brmYrbMiAsKlK9HrNF1lx3BdaVax0IW2k2HQlr3DA7RVXJ5fcuPwmLNzV2sPg5isyFmt11jpgkcRR0gldt6PMgjQBgSaQIX0fce22zLhLXrCkChahGEVUigCFboOKD+zZRY4xX4bYfTINPQoGe94tWPfsX94gyhKqTYN+8cHPHr8hFt31/T+uhzfOuD0k5c8enJGvCopDwrKcp8odtc1S0OyZE1RlHz2+WdIqzk53Of09BSl3L5uu1MuzzdYIyiygEC5/fnCK9jneU4SJ0zjzL1baz6tL2jqjoOTfarKn7MiIcwLlDQIzE5sVHt9M4PASonw9x8IRBjuyPBCCJRUGGPQZgZpEOrrbIPfdHyNc7ULnq5kcJ323VI69/+18muB1i74uzaM+Yfu2Td4KONdLCyUHsOaFW1TkecZIs/oO4UoJLYVWOHuwbp5FcNWckVYjoyjK7l0ViOokHZJGDoMM7oi8mT3dtgyLBgWx0hzSVtbAt+gYjLNPMYoWigct1TSYjDXMCxEXFp0HnE2t0Qbw3Yl2fPm19tAEU8Rw9TvMGy93qMdJkx7FdFbclSgdxhW6/lrGFYU+9yVPXJb8FheYdjWQiUaYltQtS2Xec5hmnCxHYmtI0R/Ecd0X37K07plSnIuJnd37RfunuqE9AbplrzEB7AewxpXhtpOl4Rpzt3DA7TdMo+XvPna6zsM27+GYaLrafqA1X6IVGKnK9b1AcZjWK8GmCVBF9L6ICBM9jnIcqqqIs9LunZLFBmUDHYYNhvDPGtu3CgxOmIaeg6PQQoXJIynHWGcc/9BSqWfsX8c8eiDJ9y6e4PAY9h6tceXL17y6MlAvKoRkcOwbMEwHVIc3gEEp2efsco1xWv7nJ72bP213XTnPPriMdaUFFnP3jqi2oys14v2lCU5TIjHhHtv3eHTv5l4Vr/gINzHeAzrhyPCvGDuZlpRobISbPEKhkVSImKFlDH9MDpSeukyWptKoDqFkQ7DtNa0ymWpdt1+PhC+8stpKIqGK1KE60ZsGoc7RVFQW+viih0u5Vha6qYmL3KqygXfZenFSPMOa2ugcMFW03ovRMluI01DlourJo7fYHwjAi0h8ERduzP21NZihd2lZawvfbzSXs4VcVdK6Wxv5LxTZDdOg8GXJF0Qp/WAGTqsvwGYJ8w8I7RxmS9rEcZcXTwXEWBwpstCBY4IL4WTiQCiQGGNIRCSQLo2bakUwu8HwqCnnnozQhexNYbNtkMlmVerdyR97FUGIIoTxmHL5MtpBwcHnL84Y3NRk8crDlIFNuPMC7LVk2VGMGrohRN+nY2l2g60Xun8xWW9E4Sd/PlLgNy3cAdWYDBMuCBstmDRTsDt2sPSGMXJyS26duDpkxcc39jj9k3n8TUjODu7QMY5hzdugQoYfYv68ttKaYIwdP2fwmUPpZA7WQ6tLX0/EASRD24dqBmjUT4wVUGACSKwrhXbioBRz7vrFkYZUZRgheC1h2+ihOD9v/kZzHDSOjC0gaXrB55ejFx0v+Lkxorv/eBtjHHn9KNffcDJ0SFJEHK8t8/TJ4+4efMmJ4drnj55AsC920fcPF7RXjZgLEEYsa0lnW/hPq8uGPqZaRQMR1uyNKQ8WBFEirXnnZR7JTYIIZC7jkCL2a2YZmOwwtn6GGthHEhSQZgsHEDH3VFKe86eQcqv2+H8Q8dCgN9V6rmSf3AyLEugfv0T/rvW7qx72G3ld28IQK23WJtfYVhpsVVJYzWl8Ty4eukYzf33nKlt2bbUUrJVPV3Xs/b8mWm2mA1OiXrWgCFNQ+amo+4dhhXzxGbBMCloa4uwGcLDe6FnmnaDAFZoKnXp3BkQqGzBsH3sqiIQA4EMOCgDuu3IZDw2rAxpHFBtLqGLUFnGZtuxnQ1l4PiZ2tauWmAtdVMTxQnlqma6cBh2/+CA8cUZj589Z89jWGMzZo9hcQwFglG3hGVBVdVcAmVR8Nx34L54/DGmLmiw9FNDWRQew1xq5MiWmMIwCctF3RDa4hqGuTlZFAXGKLKsRLYDj6oXHN+Idhh22bScnV2wOrzB4Y1bNNue0aRgDMpjqVKaaR52GBYFAZ2Q+HgQHdT0MsCYkrZV7Kk9ukyRAcpzUbd9TxZEEKQY01O3PcYkr2DYycERbb3hvYc/ZC1K/mP+M5gbROuCxr5fMOwRX764cBj2x7+PMK4r8dnTD8iSQ06ObuwwrChuchIrnnoz8Hu3E24ev8PzywZMzV54gO5eYno3by/GS4ZPHYbdPlpzcpxSHhzSj1vUa1cYVvcDKggQJZRZgVCGy82CYRVWSMrVCmMtTbclSV3jF0BZCpp6Zr0uMTZ0mN7VNDa4CrCuDZexcqKi4hqklGVBUSwLvAYaC3lO3fgPFVCKHGicG43HMOPlHuRqRUPrQzZ3rzgMq66l0CxQIH8LGdJ/FMHSb8e349vx7fh2fDu+Hd+Ob8fXxzciowWOm2DBmYaxRIDWifV5kq2QV1o/wFe6qthlP5TyZHjjUrUai5kmrDBYq1F2YS/BpCfsPIKZEd73UOsRaYbdtrXVPnMmXYeDEyAiuCbvID2/Aut+S0gn/OmODedzGETYMEZKiZYBEwLttyGlZJxG589oreM72Nhn4mC7nUE4wUlpNaskod+OZPtuZdxpeHLWoqwlCUM0MEwTxrIzl41izwmYZgJjiQQUQhH5Lk61tGlbywiMwv2rLSjf3RgAt24cUG0qfvafPkGFFiEn1vuOcB/lBUEYoI1hGEdkJAiUIo6Sq643YxjHydlxzQYlnA+cX7RiNPTzSJZHvgHCiXcGQbDLnsyTBiGZ5plJW7SVqCBm11MnnOgrKsIIRZwXJGWO7ieOb58AsKlHXn/rNZ6fnfPFkzNOL51f4utvODeWqdf89D/8jD/7kz9iHHvWWcHf/ex97t27zY0jd7yfffoJcRIjZ8Xnnz4jCEKiIOTizK/So5A8K7i8vODD8+eUK7ifBvzgzR9zfNsRWm0YMPiMqp1nrJ5Rkp0vYRTEGATaGJfptW6uLN23Fi+Yq0fHS7QGi+NdLMan13lSVyW9r//XGPMqL8t+3TBn95rPLu8+bwzSZ0dhkYdw277Sx7O/q0ktVkJgaamkm5OyAaSlENcxrMPaYvcdIUpHDCkKRFNfwzCf6TYV2zAgVRIzTdRtxVBvWOUZa2/WfKqfOwzLEkTfgjZofY7MXOak0VDGrhPath1pnvnMsKBfrkVdOwyTgqK0mCnG2gHliciybRhUx1EYYfdjJmnZdJJAKRrhMkVSKsZ4g61SjM3pw5nZHhIfOi7rdvsCyhXZ03qHYdk2Itv3ZT8N1VCgrGUeeu4c7HN2MTE2DVK6DE4UJ9h45CBeUVWWsG04fgXDLn3iwXKXglE0nAuBzg9YW7eNgDPK/BijK/7P//IJarC0XbzDsPDggEAbNlVFsX9InKYEEUzjjKdXkYcRURQTBAM0BhElrGiZfcPPtus5fTlyciOi37bUNoANtHt7KE/IzmyBFRMXm5pp7NFWst6LaXw517aWTTM5OkK7ZbKQCItOD0hvu+ajsT7ndeUw7O8+XDDsl3z/B1cY9vO//Rl/9hd/xNj2qKzgi08+Y//e6hUMm+YYuZk5e9nztP+UKNhn8hmvOMpJpWZeMOw23E8f8sf/5E84vv2WO96hRwsoshw5J8z6km0XXMOwY7JCoCuDzq1TC6Agy5aOQYcR43iFYXpOkHLe+flacqy13oeSncxfuWBY6Yyzs2zBMEOeO6udnKs5Z4G6tuR5A2WJrSoqj2ErYyhE4dQcREsrnJm0aAUmXzAsBztj9G9Ogv1GBFrCdxS63j7/mhDOt01et779yveE2H3eWhz3yfvnAaidRLzA+tKhsAZhZ6zxteN5xEwjehyxWrugyFjsTlDQPVSkEFghMUgQ1ol7+gBGIN1++LKPEMaVtBaSsPFvSok1IVKGBCr0PCj3IW2csbKVAoTzMlNhANJNqHmeuHPvJlkY8MufnyHMRColXedS5rEMuFNGVM1MN88YIYmAEXYK9mLbE0pBKgWxxAVlUhMtndGzE0KNBaAEKElvoB71LlgLLehhy4tnTzi5UZAVMWES0/ZuP8qDI1b7h8R57ktaTiTCGEMcu2ORKgQ9omenjTXPM0mSYq3Xl5lnpFRYA7M1SE+yFiisD8Fn7REPSRhlyGD2l8tLf0iD0IrIQjpPpOWaN956m6Ht+eTDTwFonn3J3o0T3nj3LYb/+//l40dnfPTxM5qNA8J3vnuXcTvyn//6fY5P1kgl0f3Ehz//1U6sLo5DHl2+hDnizq17PH18weOnZ4yD2488sYQqYZUXjHNDvop470c/5K333mXw195Yg0GQpClBlGK8QOWOa+hq5M7DEInWS0Dk7z8p0Na4e1Y4fpb1213Mi5fPWS/y+9X5c31O/X2Cotfp7L+O2r6Q31/leC1m8dc+/ztJ0brCsNIfYCsFgd2iZMKVha+iAFoWsq7ypQwA8WswbIVUFUoJrKwpMER5htieUxsnm2DmERNHpNuaarO5wjBftilyh2Fd27IqV553WiMpfPeW49eVFARii2hBxBWFDeis4+A4DCupZYw1Kaab2FvvcyEA70OYZjl60tRBBWJCtzEqCxg6N++HIeTOvYIsfI1f/vxzhJk4Xkm60fsHBgHrscGECaabMRtDyYJh3r9OFfRDyypNON6DbW3ZW6VE/nxWl65JKBZQrFtQir0KntYbci9VcYVhFSc3bpIxESaW56cOwx4eHLGKU+IbOUK0zHOIYSYIAibfld1tB8ZxpCxKLgdNIhqPYW4/ogi6rsGagnm+hmHNFuvpIrPe+L12GLbam4GMlcewbeQxbACdF1cYJgI++RuPYe2G4xsZb9x/i2H+Of/50RkfffzRDsN+8t27jNsv+Pj/+YzjN9Z0qkP3lzz5ecsvNq7OGcch8/wS5gPu3LrHrz5YMMyd8xtJQHiwYpUXJEnDeodh968wLDeYSjCkmiDShK2i3C92HrhSQdW2aGXIg5LVakWjKuraEe7LlSCzhmqzYbU3OX5WkRCIDFu7QL3Bi9taC8Kxt8qy3MGJ8yYs3ELUuvLebix9R35L1vO3rl5zo24aVsWKohBYUdC0rvxo83LX6WOxNC3Y3wLHvhGBFjgTYP8PcLXqVlKC1hjx9dU34Gx5PLhbjedqedsI7VrhEd5kFwNorJ7Qnmw6D6MznTYaJ1fkV+nzVccOWLQQiMCTtYRf0QcLXyhEIQiU298gVI5v4wMYJa3Lvgmnk6StBetAVc+OkDh5UVWtXZAhAwPaiZC631CU6zVFvs8w5Pz0P37BqgjYL7ysgrY03cgwa0IhmTFoKR05nmU/BHa2SGNZx5I8VYx6Jk3dCkoq6VTbe027HTjKEy42DWqG2UtAFKkiC53mz95eShRnrI+OWO073SgZBD6gFARBRBqnWAGjmX1rLwQq8Jw8dy31bOm7wTH6cZnKMHRZLClh6EeiKKbvB8wSN4jFQgaMcd14QRjsOG0WjVCGIE5YB0eEKuRgdcjzR884P3Xwdtj2/Orzz3h+WvG9H73LNP+cJ8/OkZ6jtc7OSeOCs5fnBBKqquL4+IiDkyOePHYcraHVHO8fM/QzdVPx9rtvsK1u8vixExO/OL/k8ZMLQmVZHwU8fOe7vPPDH5HvH3DebHb3WF6skWHsxHC9lY/2WkrjPCODgChJkUowjNppbvlIXirhO2pdBlgF0i8QzCuEeRButehv668GXcv4hyq3L4GW9c0nLET465HZsv3fsWDL9UUvGOYOriwWkm8HqePw9r2gpfU2JNC3VxgmVyvsBqSc2Xpl7yBydlqybRFboDBQbbCbix2GJWGE6bdYs/kKhrkHpb3MobCkc+qsR6SCUmCpKXrvxhCGqGIk2AYOwwaHYaVyT6hQWtcCHwhqJDrPEbNGdO1u0TFpDViSNEFKQ7XZgkqw6grD0vwO2I7Xzyw/ff8LVgTs33QBUKEtTZqwqTVrBMmCYXmxw7Bt1xKaHC4rjg5X5Lf2GPXlDsMOj1ZfwbCZC9mg+isMQzsMO33xgod7x7C/Zn18k1XottH1Pas09xh2gJ40aTwxmuRrGFY3DUJk6Nly2g0gHZ6XYoUxA1pXZJlE4DDM2hAjPdk9LpmlJLeWyswkTUcfjsSxax6wbBBqIjhMuRM8YF+FjLdf4+NHzzg/uMKwD55/TrCtePDwPtNs+fCjZodhT7JzjuObfP7yC4LVfaqqIk0TVndW+FwD1lj2929wdnpJ3Tzh9//wNbbVTT744FeAwzBZeQxb73HznQcew0rOG+/xWQfkxZrVECPiFWLlslIb7QL1dC6Y54koSZnnkTDSlPaArfHyCu0h1tYYU2AqA5GkKWvW7FN79XghWhYMywtJbUvqukb5uVSW5aJ69QqGFYC9puq+vFaz6GVdz3a5uVPXNbmQGOGN169hWNM0WDv9d6ij5YMoYa+iRHuthOFWya68xFcCrleDLk+q94rZSk9gXNlulsJn7w3CaldWArQesfPsSpR2RmvLPI8EZt79tuuK9L/pGrTd7y4ZLaVQvu1eBRIZKOePuLwvjAvEWUo47kGnjWGa3e/0w+hWstJt29ivZwIMgn7U3HntDhcvOz77+JTCa+kUaUJXDxShQIYR22mEQKKRu/JRnia0TYOZDOsEwhAGDcMy44SiiCyxDKi7DjsOBKMhExK85+KPv/8Q0z1DiS3rVcnJzZsEq8OdD6UDWyedOg2jy0AJwWDmna6YxTL7Tsh51q5bC3ZdbE7EbiF4h77TaiCK4t35WFwCpnlyZcUwdNlAf52CIMJog9WGJMlIooQp7YmDjHXpUubf++GWz559xr/+1/8LX3x5zj/90z/mr/7DX/PimVNM/uTjl9y5scJOksuzLW07cPbiMev1xS6AGYaJi9OZNAs5PW34xS+fc/Nwxf6eb2s+KDgQM2B56703+cGP/4D9wyNkGLE6cPsxWkPbDwyzK+8yQRCFRB5wl5K0nmeEDAiUQoGSgXwAACAASURBVIoQ4x8cy51prMEajbISK8TuPrs2zZbUoL+f5VW8I7gKhq7//VsM8bU/YKHS7wj11qLN7175UKlrGLY0W2SZe4gCic0RokMgKEpfMgRK0dG2LUXufBHFCtazYjaOYL4dOlarFXYemUNF+6QmqF/FsHpzTq4sVIYiT8BYLi8r9oy7fyp7CZVgJd2DKMAiG+FKLt5mRYwKNUjUWqD66xjmM16ltyJjgkZjV/tgIc0y6tFto365Zb3aegyTZHmO1ZpqySZsHYapKGX92h0evux4/+NTuHALjjRN6DY1TJa7x4dsL0bYk2g6pHLBmE2kxzBYJw1hKBl0wVnlzjnrS4ooh05SWUN8PhDojEx0LKn7H//kbaoXDsOUx7C91SHCl6iiWdMg2MdwMZwTxEeMZy191rFXXEkeLA+reZ6xRiIaMKXLToZRSDiMvwbDYJkgxhjmynCaTKTaMMaaeBI0nXs/DiOMzqibC46P9kkO3mRqT5n6E9b/3GPYsOWzj97n3/yb/91h2J/8j8T9yCc7DLPcubEiiVdcnm153p4RvYD15QX1DsNi1qeXaBPy6ScNv/hlS3EouXfsqA1lkdCIGah5/b371zAs5/aBe9ae1w7DwqQgmkaaC9g7CBGTLwvTUZQlKozox55+qzBioPCBTzs0hIRk1rAxmshK8kZgiwabu3NeiAKhJG3bApaVFLBaXRHN/x4Ma669bBvXfGK5nvG6EooQOH9DBFAUFDu5qXpHqF8w7LdZj34zAi0ECOWCmGUFvivICZRfHQv7alp9JxTkz7QS0tvs+P8PFEYbhJEoK5GTQI6awAyIyU0qaXqcdnCLtQNaj2g97bz7rHWrF3Aq7IYAvByF9CsggtClg4MAAoVQ8pUOLSs1NpAYITGh43xpoRkm7U1zQKkQifYBi0WpwJk8+wyNthFWzEThzGwavvfDG4xtw+lTt6qtBcRpSLlnMHsRpQ0Q1jINA1nhLvM49wS5k3wws0GFkj2t8J6ubBvD9nRkHCYYNLVN2MwzJ8cFP/y9NwEoMsvZy4CTozfY279Nlh9ho3DXAScDQTvU2LEl1SOpWKNkSBRLlM9Y1VUFQhIGMcYIpFBoBDrQ/nLOCCGRZkZ7bp5EEijJLBd/vwmsdaXFQGKFYTZ6F8wZqVCqQAaG2RqQGp26Mkua+S6pjeKN7CF//mfv8uH7H/D447/ivdfXhL0D/henPS9ezNxfBwznE4GM0KPm5Zct88K/k5LZ9ti5I1QB67igPh84feK2EQZwcivgwYM19966y/Ebd1BljkxzMi/ymklFLRrMbJn7Gc3g4n6/AI/iFBUoAiuRWqB8xlJJd6xau+yWYURYhTYhyiZYqVhMo8FitXWlRbEEW2CXtKsQXrTBlwIwDp1cpdx9xLdJOwxzmatr8qcIJNYvFITfhtavcry00Vgz/4OzZt/cIUCsHYYVHsNMjWSNpEKJgKZVrFYlSii2W1emilYrShqHbzSshWQ2KdqXoLb9QJbGr2BY5zGsjD1vMgswQwWFwF62bOZztJ4YMq/8XXcEKsCQkuUJgerpREm93XKwYFgWYnsFOqBJFXtKYoviCsO6DfWCYfsF2mpaoZGTJvMYNqmQru2QymkiZqZnThJij2HkB1SbS+yYIBU8+OGbjAJOnzotr24oiIXDsOxORLkKaG3NNEB202WSojmhnzO200g3G6JQEoRbysRLNzyr2Z6PjOEEQ0KtAzSKk/QWb/6e4y3dPMlJwp7s6Ji9/RNO7B52lIRHDhdkX9IONc1GkOqIY9GyjUMOgniHYU+fPPEYdkiWCbp2iy1KUq/oddFcUpYrpInY1FvK1QpJRKAMsxd4vbgYHIbVBrGS2NZwGWj29txZD4M1Sghqk3FpK+g0Widkt0ZGn+1ONwqZ/Yif/NmHDsOe/xXvfb8kDBz+fPJZzfAi4907DsP2ZMTZqDn/smVuFgwbObOCPHEYZgKovxj42w9/6fZjD05u7fHgwRH33voux2+8jSotq9QiA6fXla3W1NUzqjmjO3UYNvauXAwQxZoAh2GTLj2GBQydVwhgxmYWoyOybiI0IeQJ1iqsdfdojaXQFq0N9WZDWRZfw7CMK6rRgmH5KqetfaneWqg1ggab5+TWUmN2IZegppbSGUn7beiNpV4ekkBqUmqjdhWH32R8IwKt6+RaydWJX94DdlkksSsDXit/sHzG/bl8R0qJ1Y5kZ40TtHQrwZFp9M72ekJgMMsKUdhXHwTWeQdKnNipkdbzsK6yacJrHAmlXNlPyVfeD6R0FiqLWJpxv2XMVRZH6wljNdKLlSopEYsfmj8P0yiwgWUcZuIs5O1379Fculp93810rWWYDV07Y4xFWVivFFXrhVWVIS1jAhFTzyObduDWzRVN5YK1Yeix2pHRNdCPE0EoGGfNJx9/CUAYtjx86zYP3nqLo8MjUIJeaAavOxbJgCSMCJMMpOByc0k/jARSsr+/749FMM0zUoRYK5mtW/Ut9fxJa6ye2XY9SijCMKIxLXrWRLkLToyxpElKuIQG/p5YTHCtnV05RAVIYBx7UAFxlpPKBcgiOnnBv/qf/5Jnf/guv/rFR7Sbkb/4l/8MgP/tf/2/2HYd1cbdA2EYYrVEWEHkJ/cwzUghSQKY9Ui/nQkCRbBcOgkqEhzdOuH+66+Rr1ZMWqP7Aa9tiAojpzVkJFpPzHitLH//aG/ybIy3eZJghdm1iTszYw3WPeCstd6WQl5pXEnr2satxQqzm0OLtpkwPrtlvO2OFwO+bt3zWy3h/FjE4q9np+Eqw/W7MnYhpxBIPLZQANXumMui/BqGAU7qoanJAZFDUzf0frW4Wq3Q00hVVUQWiixhOHcYpj2GVZsLyllgIs1GX1CUORdnp5jazes8L1BBQN3WBFXI3l5ILiAoy6v7o5OIPYUYPIatV24/fXYu2A9Zy4JzYxEtWK1Jw4mtaXZEYq1HsjxFSsV2q9jKDjMMxJ7XZKOR9Xqf+mJkDGdiuWCYw/rTF5eAJUwyXj6uqaraYdhtRfV8wbCO4/KQslzx9OU5WoSUhQTj5sIcZtSdxnSQJqDGmNZWnIea8rl7YF+cP+LhW7f57lvf5egwga3gVGjmc49hiSYJA/aLYodhp2fnPJeSe/vOpsdY7TCsNBgjiZKEbd2w9QvOoiwYhpFt17MVCtV2PKuesy5WHOReu8zUpMkxYeGaj4okYcUVhtX1pcMw6YK0KA8g1ejxBqWXjwnijlgq/tVf/CXP3n2XX335EWJzzl/8y78EHIa9fPGC6nGBoWZYMCwSRIXHMD0jW0kewOVmBGaCPcWe134WElTUclTe4v7rhw7DNiPbfkDt+8sSzsTJEcdGspkumElRSuxK5DLIMFVFFUQItUKsIBeG7TD4e8eZSGMrRJFhwxxtFE3Ts167+6uVbiGYZzlNW1FVFVKCkO44ynKFABrjyO9t5URJy7Ik96KlzS5eyKFpaOx1mvyVpAO4EqEhJyuB+gq7HLfrvyaX+vXxjQi0wD0ovsoTeRWc7e61VzqYvrINhCVaPPNGjTYGiUUJg8ubzEzjgGDxSzQYM7ntC8s0jZ5wdxXNCc9yF1IiZeBcxIPkGllZOAIq7DS9rgdaBu18GZUT/rRmyQyYHel+nmeENQSBcFkZKV0X11IHFl5HKpDEacy0bTm5s+Ktd5yK8Ad/95S+B3RIoC121oSBZLiwjJ5vFqeCURvqqWYKFHuHJfVGc3q28NUcz6wdZvb2Uo721lycbRh6p44OcO/BXb73ox9wcuOEOIoZzUSkYBgdEIrANQ1YnNu6GTqs1fT9uBOHS9PcpdNxZV1hBOM07TosHVBv6dstUkqyJGUcZ6yxrJRLI8/WEITae/5J+qF3wd7SxSkUSkVeS811KAoZ4ATVfYkySclOFFEISmgODvZpNx2DF2D8vd9/k3//736BRhLHMVXdc7hXEAZiRzI/iDKqqmFvHXF0vObTRy8Yhgkvcs+DNw/50U/e4TvvvMHd118n2T9AKOXMoT1ASK/N5vh/IYaQaZp2xH+E8P6TFqGdeK+8Jm0mrGvesFaC1ODJ9Uqwe5DuPrsreRusFSwdG1ZYb8Ej/UJgkSe9ys1+3Tz6qzXGX0+8+upcttqid3P4d2NYaz2GtTsMtqm9ItwuGFbX1Mpltq5evwJ4fdm8gmHSd5uuipypefoKhnXXMKw2FTkBubCMl+dYKWg8hhXgS5Ylwzai6ybCoGd/7wgpvTCqEOy1IAKnabRgWOvxpyBFAmul2ORgZwsjtI3BJt7+JpFczpogEEQiALkCU13DsAJjTlkFFjPGTKYlW6+4dW+xS6npg4KNVuhNTTgL9vdWiIuaesEwLTjXFeGUoIKZ9V6E1prTM/f+5dAS5MeItkMLzb3vHKA/3xIGEMUuoNs/2uPBw4fcPrpPfDAxmpjb24azHYYlWLHdYVh19gJrU/p+w5PKcS+Pj29gtsM1DGuJ4hQRuW1Mk/O2PX3uMKxL9A7DjPIlR2vYCzVDF1KuJKdnC4a5IGol1mgFxtaQa0I70nYBWTKxAMyYpByFivHNY1SpObi/T/v4BaG4wrD/49/9gs0AcRxT1z2Hdwv2Z0F7DcOMchh2++aal5cdw1AvnvU8ePOQh+9cx7AIsU3RSjF76orcDjsMy4oMU0xMFzGjz7oW1zCs1IauFnRBg/BZ/dJaWn1JXUeoULMOKyoU+3sHOwxzmrQNQuSU5YqmqV7BsKqqWZUlBRJj7A7DXODqzmkuymtyWALnG3+dayV283GZPE3lFkNXGLbBastvQdH6Vkfr2/Ht+HZ8O74d345vx7fjv9X4ZmS0XslSLS99pdRgnJ2Oe21ZYS+r7Fdamnb/v3CjjZnBjMCAtAN62u5Kh1qPrixo56vSobW7jgIrltKgdFkRIRAycGRRPxwxW34t87YMIYwjgGNdVoUlmzWjfVp9GnukUkgk2mpH5LZeHR9nS4MQjH3HbGcmO8J4QX7gzkW6ktT9xDwJz2+TSO0Ka3Lxnp0N3WYGaVkdltg54Pz8gr7zNW0jGRlBSbIy48XpSxJhePftE9754dsA3H3tNkc3D1FJhIgiYhkhpUCNPg09TvTjiLaTsyUyhixLefbkxe66zbMlCCL2DzO0hSiOsWqi91yOMBBM00wYx2wuLgFBoEKGcaD3q840z33jg/OQVEFAcP2cywDhleOVCLB6Yp5GtLFewdw1MejZkBQZN5O71OdntN2nRF4t+w//+F2Oj3N++m/fJwokd1YFURhjZ7HbRhqHHB0esR0rvvPOLf7kz3/Ci4tzUm/pcOu1uxzdPKRcZyTlCi0EcRQj43CXsRqnGT3PYCxxHBGECdpcI3DapcS3SIwIV2b2HavzaGEGYwVKOQ6Wu2/MlU2OWVp6ffnQbXm3KnPfcXNpkVux1jeQ7Pbj1Qzy1zNcf/9YvmuMwWizK4/8Lg1TVa8UFKxXm87z3NEXqppKCiTsOvUWDMtzV+agKCi0pWq9UnXbIIctVd8SE9E0z5A2RMeK6YnrKkzTCBnl6KndYVhuc7a+u01sFWK9YFiHEBFCBnT9lnJwN0CmDCaT2NCVVax1Hoxp4bJVxlx6DFtRyIAtDTCSpzPS0waaBcMaiQ43GF2S5wm1Pw/zMBBnKaOUzKdfMtmaItLcuO+ye188ek79omI2CkGJpEbrEMs+UrljmcOMbnMJsub24T523uP8/MKXHcFkK8bmHCsM3/nOPV6cvmRdBBzdSHn7nQeAw7AHN19DHUWIURCvcuRewfb8JQDhGHI61vT9RHtZozPDyV7KRx/W2Nxj2NNnBMEB9w4l2sI4xURJSO/J30Nf0bYtYbxic/EIKAjW+4RRSOAbi0prUWtFvoVu26GCiMBaCk+4F7Inz8sdhtUbxx2ejXWd60Cp1uj5OQmGm/f3qM9T2q4jcpeEd39wnzS1/PTffkYUzNxZFRzsHWLncw68rEgaT3B4xHY0vPX7t/iLm9/lxcUXaHENwx46DDtaMOzgEBmH1I3jOo/MpElCU9UcHkbIMOGl6rG+a7W1IGTJmh4rOjIklRVXGBblMASYeUQpQytyilIBhqpebHIETQtC1BRFjjFOv33l6HkIkWOrBoocgfUYtvKNaO4eq21N4YuFTZ4j2vaVObtDNCekde2dZtcAlWUZ1eVmJ6/zm4xvRKBlWToLr3UQfqWzcKnkOf0g97dS0nE9/HfdVzR66Wgbnb3OPI2YqcdOW6axZp56xt53Bo0dSkzM8+j5U9bZ6/iT6DwOA6QMHGFYSFfqkVeB1lcfQPPsdKOWlLlSBmssWlhgdJlOa8Bo9ORS90ZPyMAR4RefM6XULgA11jipB6VAuYf0JCbCzB1rtlbMLyaEsBgrmIDBGGbMNXNh9xAOBJyfd0jlpANe8UvEksYBF+eXFBG8+cYhr715h6NjN/nzdUaUJ8gwhCBASoE1mnHXgRCShikyUC5AnSeM1hRZsSsXzbNGhYJ22yNkgBUBcZoyGRdESaWI45QwcNY7oXINENroXXt1khWoIPTyDhCGMUIFzP4BJqVimiaCwN0jiw2MUsFOQ00bjbUGFcZEcUwSJyRJxqNPPgMgjgPSWHJrv+BXv/yIOFZ87713aOua509dCWG9WvHixUvGKUVGM2985y7f3/8BjX/4JKuSII0J0wgThARJhohCJ1Tr749AxphpZuwH+qFHaCfEqs21wFEbwkgRhK6MbdAYX04ZB83Yu+AqCDOs0QglEOLVOSXllXDo7vVdidyVD4Vg14biXrx2Y/u/jTG+BMmuVOv38tq2HSFeKYmQMPrzAXyl/P+7MvQrchng2s3ruqZtW7Is253qzGS7QOsKwzKEaGnbmjRJSRNXUjk7b9Aew0KmKwy76Bl7Zyo9jA3rMnYYVhZYPTs5CN8I0dMjuwAlA1ZCEZYr5kkjpdo9ShxPbKAJIQwbCnIqUyEv3VNsrTJqarTYUKz3yOxMZzMwE3pyi9ZMT/SBBGqiKIfmlE2yxvhjyaKBWRtQA6iQnBUX7YWzt8FhWNLFtHWHsQ1xUfC0qki8yTQAhUa0OYFq+EJIpHrCeDnsMGxlweQ587zl4vwSxobX3tjntTff5sHrdwE4vHVEdJQghwGigG4csEYTpd7bLxUcd2tkmjPngnKOPYaB9vSHOTpC7QuevzyllAHRYUaU7HFRnQIQBHvEcUa4F2DMHvvr9TUMc59J4iNU78qPxogdhm1Dd2+sZMo0bT2G5Zh8hDlCWUtROFmFzeYKww7ymKP4iGQ2Owx7cHKX43jFrf2b/OqX/4nDWPG9P/oJbf10h2FKOgzbiyUySji5fZfX33vjCsNu32IvjRnSEROE9HPGPDpZpGLt7o/MCsx0SZpn9EOzw7B0vFguHCIyzKPdYVhGSjMvHNGe895ix4QgTLFmQ9sEhCraPUebBpQSGJP55mmHM7uJVTfUQiBqFySJIgNrnQvPshdW0CAwpqIUJSLzWlm7+0vQ0HjdSBd7KNUhZEA0Om7dzLyjCvym4xsRaMHXg5XltavskLhGoHUndpompJK7B4jyLe6zz4xM44SZR9ATVo/oqWHoKqahw8wLGX7AmhFjZkesM1cdVeDMrSV4jo/yq0LhdXO+PrTWLvi4zksxrtNwstapyaoAJRy3YlFjDwKFClyGRlufzbr2LBJKgtVYCUm2JlIhVncI3Kr2zXcPEUHNhx9WTLPru5it9t1xi7CqU7A3BkJrsF7BfvkdBQQCAjFz8yRntbZEmWb/uCQpffdIFmEFBHGEjEL67ZZ5mBgmdxxxkhJFKSoIUIEiMjN1VWF0y+K+FwShEzLtB/IyccKo40Tg6/VBoNDaYqzjFezOKYbRZwCbtiWMIqI43gUsURwTLrma2aDnGT1OCOWCQSUFwhq2/eh/RxCkKX3fo0RIFMccHCfM3kOuOjvj5dMnEFT8+b/4Pfqu5+zsOUc3jji88RCALEv5fvI2H3/6OZuq4Xl1ykmZYiLPE4wUQVEQpgk2SDBC0E0Tk9YszgZKSeciIB0PUCkFQu4mp7WeUShc27wz2p53s8HoibF3xxnEI8JMXi/LEej9V691IF7NoWUj1+fWb5KoWoKlhctzfZPXh1jY8LsvAkh+zXT/73t4wr9zUXOjrusdDtR1TSEEeWGxjaWp/ULPalbrlcewFJu1GF0xT14fb5wwcwQ6pm6eo6eGsKswYUfmMazSA/NYY6qBTrqFXlEU5GaRl5EEXY8SK4QMaLuOOErcPbUQf1sIcf9qrbHSel6KCyxslqNrh2HDOILK2LYV3TCw9YufwRqUNVgp0U2FzS2z0TuycatWTPaCSBYkGWRKgrY7vuyb776GCJ7y5EnGxWXD2G5IioKzpmWHYU2NJHcYtqnIs4koK7jc+C7NuqEUJcVxws2TDKk0Uaa593pJUroFbJRF1G1DnN9ARgPjdksSxnRb936caMa4RE0rjvf20TsMS7Ge6xPshcyXhmw/RpQK1IrT8ysM29uLOTuzmBriw0PqjSYKWooiZ/TXtkkE4TAyxjHlakXTNETxmtDP2TEypHOKPq8QaiTPUqQUtHWFkl77UDQ7DKvakIMV3H/9LRKPYU/OzuieNhRBxf/0L/6UXnoMyzMOHzoMM9kx309mnr8843HV8Lz6jJNb72AKF0QtGJbpGTsmmEAgpxidap49d1nABcPM7GSK1nuKMJJMs7v6ee6vcpwihoFOKmZh8UkzTD0R9RMiEiTJSG/ENQxzYVJZ4rp1/XeKwgda9TIFLXlR0Latw7CmgTz32amreboTL/UYZrP8CsMav4D0Uh801zBs8bK+aIDVFffwNxjfmEDrq5pYi07SK8HWdUIv7FJ5S1eTBfSkmX060hiNmTV66Bm6mv+fvXf5kWzL0rx++3He55i5h4fHfeWtzFtd1QVV1QjBHJCY9ABmTJgBg1b/BUgIJCSm/ActgXqCEIOWGNMzmLQEiBFVVFFZ3XnzviLC3Z7nvV8M9jZzj7g3K292VWclqbulULiZHTM7dh7fXnutb33fPB5Z5pjRChfV+OBTl6HFmLgq1VmOiqxphFCxLCV1/FtphIjmvvI98n7c5xh1P1fYjgF3skmxFh9CssYBnbq+HBKUIIQoMimEQGfqqt8lhUJqAUqSUWBCzjJaiipO6DoX/NG/9TFZpfl//589wxieFKK5SGYkuPLgcGgVhTGbRHSXQbCalfu2otIGMOhGkzcKdVGyyBVZkTHNE/P5SAgCJXOKKtlbqBzrBEIqMpkjhEIIRZ6VTPN8Pbc6LyjrmqwoMNahk6VFfD3gvSAE91S2kgK7GpxJWTEXtUy2tzdkWYbUijLLrtfG6gbMPBOCSzZHHi1gGnsu7tVZU+OFQucVQmY4D5ku2GzvAVj6iZd3L/mq/wLrJob5xGxGrLBsNjHDV7UdZVHw2R/+YXx/VZO1DaTfIooSWZQ4keGRrPPKYlaEfgpQpmnEG0eZ5Wy6jiAE1tlnqsr6Skr3IYB3WMw1YxG1IDzeGqwxCGcRmX8n4fR0zzyR20HEdue0nSAS64UUyPAUH31368nTPfu8YeP9bsJLBvqpQ1dcz/Fv1RCK4dJRmJ66YFjTNJxOJ3zTgIfen67t4yE4TscTQsYSY0nJcX9kXof0GY66hOPpgWU8o6Vj1GfsNHNO13EbasJpJARLUVTkebReegfDsgotZ4TYvoNhl9G2PVrfoC8m98rRDoLhGYa1XcfueOR4OOCVShjWohOhvmo39GalCR7XeIZBkOeKdROPSCEUcn7BYg+U5YasmWnGF7gyShFoJ/ijD/8u2f/+l+RfdAxjwAFd21wXaSP9dYFbUSGlIwT44C62v41nwWR2fNLeU2nDEqYnDEtJVZ0rBIJpfsscchohMV5gXKKLzCU+CISckDJHCIcYJvLMMiXPIn/y6NxQ1bdkRYuxDrqVF3nEjtPpjPcjTXAEHL6tyPIOs67PMOyM23yM8p7cWoxWvLwdIWms7aaEYVrihgEkzEPPNPa0dcwCiuCpuy1l3TGPC65vyUTP5pPPAFh6hb2bnjBs9xXz4Yj98GM2m5jhq9sOWxR8dv8BLzxkzr+HYRZZWJzK8EoibM5X+9d0asN8rb5IvHHYZeXjjz7COo2xB1T0nGZUmtBH7JEqIL2jbGFIpuXjyTNworEZ1hgcku62xkwGIS4uCh1t23LynjMDHR3QMVxETwV0Ic55VwxLsg5JZY0aaOnxtHFBNESNzIvNDwKatiH5nNO2cD5fMCx+SsSwnl8lKf8bE2i9n9F6HmCFkLQxEmA/bRswxjwJN4bo43fRnop8EMs0jvSnPfMQgyxnDQiXvscR0vu1VoSQSoepfV8JiVIaJRUQs1oxPfBUzhTP9jdyLmJW4mlyc9eORGtM7ChTKqrYy0tmIRB8SIFWuP5O79PrqSPPWMs8B7SPtg3OxStCCyBI/vDv/YhN0fAXP33DMMNpWDEp2ySJYvbCQ5Dx+BRacn8Tg6TToccDuQooFyUvPvzRPToX6BSMzeuM7aP9kBeCoihRskw+g6BkSVnUFGUBwbPambpawbqrmGhRlLTbLUIXGGNRWYbO9HViz7KcUAXG/hyPt3P0fc+6LtgEhlXtQUaV/aZtabsW5zzWX7hAAbNOmNWQaYkInnGdmcaeOoGUWRXeaqqyidkeGcvEdRvRoW23zJsb5CefkuUZ3gvevH3kq9dv6ed4jd2TkZUdN/dbqrrhNAwUXYdMdkOogqJukDpH6ILMephHjLVYF5F/WZbkUGDJMk1ZxbKpTPoPLkTVdyEFzjms81jlCOk6X1dDsDZy0rxPHKxYLn3uMP9031w8CHlGwBIXwhB4ES+QkEqH14/4bo7WFXAE76R5Qwh4F7lfl0WJlAqE+60rHTrnCE1DK0QUPCRluC78rBA4nU+0QNN173ROXzBM6xkRasZ5vGJYXdc4MzGNEryJGLafOfb7K4adQ097wbBZEZqEYcMFw0YmnRVBBwAAIABJREFUnXMjNTDSyZfMYo4YlvZC0BLCmRBUvAyGLZOaUAkHz+eetq0QosOaPcYYmu2WQgrWNWHU0NPc3OLPJ87nwGYjWJYz/pQuCrkBekxZMj8oJi/ZdDX6+CbuuzC0XYP+ez9iU+z55vXI64cerXKMiZPpLW3CsJbzGHkzdzeSKmGY6b/B07JOAdV6alHxe//aZxHDUpb5YffAzYuXzMuMXxfyu3smWVKEOB0q+ZLyruauLCCcWA8zvloprQMZg6C7u5J2qxHaYYxlyjJuF01Y4rnPspzmvmHsv0aMCkxPn2t2u8crht2/+gDGb/BNw9K2fNh9iHOGwynxzczMPtiIYfOImHrsOqMkHGw8L5VzzPOOqmxo2hv6fqCS99Sp0nHFsD/4lGzNOPkt69vlHQyr+IiX5WeU91t+5AMnMVB0AlnE34oyzzDsLmKYVuwPB8oqiuJ+8/UZu+y4y14wzROlc9ze3HwLwwYpcK6irDzWraz7+FvX1RBkyaDPrCdN1m2fMCxl1uIce6aNQihXDGuTv6RAgB+gkTD8Mgwbn7JVcJ1n267lOc6FVIVqhEgcVthsFLvHp7jh+4zfjEDrO8oQT4FLyg65i/6MvPJtjHMR4IhA5kLABa6keeFX1nHP0r8lDDsYDsjlRAhHZEiCpMLEwxoUwgu0kMigQKXAQUi0ypBCIp7NIoKASo8l8mqMLKVAqMihuWwvRORO5QicAG8C1ofoEZhWpX5dCOsc5zgd+WA+qGvrqnABKRVVrrHCMk891qyoLKZVIwlWIGq4+z3I7ytOu5njAyx9Ck6yHDs65tExDx6tFTebhnmIK8qbHEStcHZhXRV321vyosMjmZZYpjA+0OoMmWVIFNZJsqqmKKMIX8xuNVRlhfcBaQq8UIg8h+Gy8ohyDoXOkFojdYET+irQOZ8HjF0RUrOaBWMc535kmsaoNwVkLsOuC67ICN5hV/MunWheCbPDm5Vp8szjgPeOssierCfyaEvEaslLjRGBvR/xeQQgcdfBuUaZjuNhT6Y1H37wCusDQcVvexyOmEzRCc99nSOqnNlZwpzKpFVG4QXBeopcUFQFXkDhPEs6pr3Z4+cBt/RMYsXJG2rdXTMSNgX/ChA++k76tcYs8Xi66YSbfTS/DRIZYok0eH8FGCEuoBO4KNR6Dxd3AwSJBC+5UB/iQeLakOFTABfUs6Dt2cJHSkV2NbFOwCdIgqcpoxWeFky/VSME/OlE2GyuOjzOxYByeIZhvRDIfqZu4v1inCMzjjOex33AhRMuxBZ5AGdXdm9+ztJ/Sb4eYTgwLifkexjW09KGM4PXqH5ESk+7jROlEhU3c4YUI4INPXDTtkiGq/H9iGQrZCShjwNDFstc4qIMLwzDsJLLDidavDmBCSzWUPl4nU7rQnjzgO9avNb4oPDB0CYMm90ZKbfc5wuH6sA8Kd7YFaUTKdsVPA4D3auOH9eG/Bi4+VxwfFiuGHZ/W3J4c2QeHS82ddSskwGdMGzzomKYA84u7HYTd7/bRQzrJVMT7zftA+7mlm6z5dwrDseRqn1B0TzDMBGohMQ3W2RR8KrbMk1nhncwbMXMGU4opCtwKnBOGFaEgWHIGUZNYTL2ZuK8272DYfa4cqgDH9zd0tQVNjeEx4XycknNK3MI+P3K5Ee0FJxOJ8oio1hSoqC5ZyKjWlfyUiB0wxd+pH4fw9aO4xd7pNZ8+HdeYU9ngorHfRGOr487OuH57Hc/oPMFvVtoEsVirhoOJ0HYRAyTVUElosn2sqSsutnjZ8Fx+Zz86xa3vaGmfcKw8zlWZ9oOcYruFaedxydPWDedqJTFuArdRgwbzh4tajjHbQY50nUbCGcg0PcHQtNefXgR0OGik0n3rGL4DMNOIdCIhqDAyXgu2667YpiV54hhImGYiLIoiUge9+N8oG14Jpz+y8dvRKAVyYDvkXTfG1LE7IW3DpfscYw1WGeuWhnGpcepdCjsjB1OmHnALBPWzJh1xJn5yo+RMqqKh+tE8669DjJa2EihEKgYcMlLmfMZYV/GfzKJl0r5zBRYQnCW1bqYtSJglhVVlGSpPDT6AaHiZBWEJM9TKe1SvlljWUhqGTMyImDNky631mUsEQZPdttRFAWZPrFtA2ZMJqXHlcNi0Vry8j5aBgkm7l5eRGIDLjjyNqfbNrSvbgle4H0gS2nkrMiRiZxeVh06r8mbDXUVQd3ZgBAKKTPyQpHlkavlvL1yOQiOZZlZjUXmJdpDkJok+k5/7gGPlIJxGjgdD9h0bq2b0/csLMvAMJ6wzmLMQpYX1GmSU1IgZDQJPR+PSCFo2walc1RaZU3zSiEkeZ6yn0ow2zUqgAJVWVJUFZNUlHVDWA1103I8n0iCXIBkWBbM4cgwrxR1w83tS9TFPkdlWOeRMpadkSrqj60rQyJhvv7mK8x0ps4k+XSm9bGZoklif0oXMTN1ERNNQb9dY8S4LhPeJ2eFyzUJMbMVnq/O3s8iPZWVY3YjBUHvka3eSTY/qzx+q4ElPfe9SF6/ZeOCYafTCZHKgg1PRrcnYCOiRyDnM/t9JAlfMKxpA87VBGc4uSP0sVY/HB6ww4lCC9ZzwrB8pBo0VkSck1LSdILzSbBtBVp2KfP+DMO2knFQCGakkAxSIQeBTidTdYJBdmykYJSRB6i0Rsqb9BGW7XRgZ88Ebwg0mGWl2UjeLMlaqx4YpljmlwnD2nZzxbBsZ7CFoRcJwzoZMayO90oRAjkBQslyK3hZvCTTJz5pA0ZGL9XpuOIfG6zuKfOZbTIVLvL4W099QOWOFx/mdNtb2GScTwJ5G+heRBXzzBjGaWJbNrQfdtwkDPMuHouqbCKGVYF8UWTNDWp+y9E4xjGWymgqykUzjB6Zj9z4nkVqUtzAMkPPipwHVjUwjpYzhjIHIeL89dXxZ9xlL3nz+isOR0vbLty+eIZh+YI4h4RhX0eNqLajCTVGxf2Y5h139iXkLaeTp1CC2e6YXZF+S4mpHMNBYesGueYUduHICUTCYzrE8sjuMDD8yY67Vx9wc/uSvoiB6Qt1g608G7YENdPKLS4vUEoxDNHq5zmGMQVaX3LyR5oultu2+o4xZZGaFvphpGPLmzV6eq7LxGxX6qZ8hmE9hOxZd59KGHYhWvXQn6+ZJhD4Nnqcd50gapS2yZvw6V7tz6kU3rZP+JiiskEplAx0oqNH0PdnqqqJNj7PxLX6fn+dJ77P+KWBlhDivwf+A+BNCOGP03P/LfAfEo3Vfwr8pyGEgxDiJ8CfAn+W3v7PQgj/8PvsyDVz9QtYsj54rHUE76+lQuccwXm8j52G3s4Es+DWVGB1M246Y6ces07R1zAEBPKpvdwHpNQEPJKLKKm6EqyllEidoYTEu8QTS91510BaisiJUCqRmTVZpqLBMiCFRRLQ2mH9CHZO5QRPkUpyalI43DtlRx88OnU36qIgL3KMMyzrSq5r8PLKR4tq9BIhQAlBoSx13jH1K2Nycm9KR9fWDOceITwy+Nj1lC6YeVlRAnQROU5K3yawFtGWJx4ussKhskhollLT1BvyVDoc1pllWVmmWAYoihwpFDor4moEGPojx8dHhFZU7Qa/zAj1FGgZY/DOcjofGIae3e4t/Xiirirq6tI/IimKirKsmaaBumlp2i1NAimNRznL/rBjGEa23Qatc6TMyPIksOgdKstBSryPPoNBwtDHdLa1jrKqkSpDyJWizvABbm7vOQ4pGzVO3G9vCULhoywtQSqqpESclxVN14GMpUCtNSGPHY/TFK/T/WHHdN5Rl4rOtIhMkucZbfoMLUtCECkTnqxynEFw8TqMwqJKCqQS8fpR0bbostp7l6P1NC4PL7zAqxPDXxEsXQMqLplnvvX3L8tY/TozWr8ODLt6HQpB8w736Ul3+hQ8hbWEwmDP72GYqXDWcDo80BQLLsmY2PEUMcwO7Ne3lG5POJ8RraRyMQOD98ggYpNEatiRcuJyQ8lRMhYv2eoC7wKyk6igoOkpLvZlUjBPkkkpxEaxzW9Y3sew2lJfMWzAe0MIH3N3F++Fx8OWwJFOSKRSDMOAzvInDLsryMlZjnuWtSEXA21ecrC7dAwlQlQIEaiGDYWw1O0W1eZXDAv2yO1nBS9CETHsfGJSEp8w7KbKOQuYTU/h4P7mR/hOQivYPUYMu8kX2sLR9yOFFcj7DcFLiixiWDgNLJlleSuga7iraqRQ3GQF9UcXDHP885/9DHGzpdIbTqcJsdUXhgfGFCzO4ocnDPvmzVfU9/fUlw5tJPv9G16Wr5DbiGG73ZZUCXvCMHtm6AOIHq0zuvstt4kTezgdmZYcbyVSQn6X8+r0Aa/7LwAobcHL+1f48S2Pa8Qw+T6GvXnL/UcfkwlFzoa+n9gWiiqPgamzFa3Q1HXLNBnWm5Umb9n6LbvdX8bfa3e8fYgYphOGZXnGh00U1NZS0AVBkANBVBHDqj1diFgsbeB0iBi22XaoTiGcZH6GYV0noB8IlykgjecYdj4LpAyczykb1fbQcpV0OBHgfKZr2ytPNIRASAc9TJIQBOc2LSJD++Tpd72nIcta/K+AYd+HNv+Pgb//3nP/FPjjEMK/Afw58F88e+2nIYR/M/37XkHWD+OH8cP4YfwrHP+YHzDsh/HD+GH8LY1fmtEKIfyvaZX3/Ln/5dnDfwb8R3/dHbkQRi/ju1a8wXustdfSoU0aTcFb1sUQ7EBYR9YptSSbATvuMcMes/R4t0DwiBA5VUBc9YVYchEpoyWkIly6/ZR8KgcSUtbrWsCN+5pS5dHvUESdLZWRJcM7pSKPyFiD1hlaOawdOR33VF0kXudFRj8ZdAZFWRBE3B+TykP6aqatkEIDAe8lhIuxcFwNKK2QMiekv9sup6vjEmA8D5yyI2W7QaqAMzPzMGKWmBWrMokuFONkkDqjaVvyokDrp24+JTV4gXeOdV2RymAWi1sTD2NccC7y7U6HEyFYuk1DpnOWEFdQ8zwjRWCdp6gPJhX9NHPaRZ7Fsswsy4wxM94b+uHENI2cc31tn5ZS0XVblCoiKbOoqeqGsoy/VQnPtisxxiKVZLUW4z1dViBTC6VSPnLEhEYgsMai8oyiiKssZyx5VbO9u2f/xpMrxTwbVKb5/U9/AsBhnCnaDbd3L8nygiwvkVlB2aQuzKJE6jwKjfrIHtRKUzd1Il7CYha+ef0VufLUVclHxlAWJW4byyU+MwQ0Wmd4RDSHDmuULgGkCGR5lhopXBQzfdalC9/OZL0/njz4vp35unxMNO7hnQzWO3dpymh9S0T4vaGU+pX4DX/d8evAMOeeMOx0ikTk6PMWr8e2jRIEZ3+itCXGXLKmBXWlOKwr6+OeYAfOx5E5cQDD8QE7GkLYUyzgXBYx7KxRqaTSB08bQspmJf06uSVc7HWUpJAjYrNlPJ6Ro2CzkakBImaKhlGRZbcIqejUBqk0G5WxzM8wTK8UZYHUBfP6wO4wYvj5OxjmTjW9gPuyYHWWoR+ok0WPloopYdim0/S9xHtJG27SMYxC0dM8sd284Gj2bM0WHFcM62j4KvsSbys228Bxb7gZRkwyxxZIhJkYJ8c4DwRaiqJAzxmiShi2uYG6wxtHnq+Y1VC3ZbSQAd48w7CN9fzlX/wF3aZh1TmkTt+H+S+QIpDPU2y0Gad3MOzxcWZZdMSw2tC//oppkpyPM/omYthmnBDdlp1auLcHhr7mm68bypfx3G9FjRIWk5dstpJ1jRimswKZWii3twV5tWCG6gnDthmFSUKz5nzFsNPxRK7Azxkqu+f3P40m2weZMKwoyfI7shclcimwVwyzyJucUWhCveCBSc344N/BsH74it2DZ5cw7NP3MOxMxY3O8FOy/zqv+HDBsIa7FxXzWhPORzxbZBVou9jZChDCQB9I+inf9hp8B8NaaIiZLQDRJh5pD3Xbcj73+OCpm+Y9DDsTQkeHYEgY1vd9grPkl9hDWf5qGPY3wdH6z4D/6dnjz4QQ/xdwAv6rEML/9l1vEkL8A+AfAHz00UffKllcvA+fug6fNUglPldMuRuctZhlwU9n3LhnnRNh0Y4IN4CJRGO3jojgUJdediAESfD+mRG0TObQSeNIa4SM5Rgvog6VSArxl5SmVIogYgePFCq9Lq+di0JohPIIGRXRlTRIYJhnSOTherNlWmcuLDzrbEyNp6SjvxD/Uzu99y56CV61PHx8PYAgirwFafDeXTsWUZAVkpBH3pUXOdKulHnczyLPWY3DT4662ZJlJVplEKLnVzweCh8iJ06qyJ1TStHUkZdSFBVv3zxirOHh4Q3TdGa77ajamjWRv3e7R5Z5jBIRxpCVFcfTmcNjCrTmif1+h85iB9Q8T4TgUEqjdSyp5HmOmT0Bgc6OlEVN223IU1kwzyWnUxJp3NxQZzqWgPP86vZ+KREHJDhiWSUI6jre2NO64JaVuumwtxaM5UblIGTs8AM2ty1ZVYMqKOstKstRWU6eJhepC3yI17MLsBhHlml0pihTGfRHP/od3DIxHB/wztMfT5yPJ25fpI7SvEVrCT6arrtgseuMM8mbLSR/uVxHLa4k3vucR/iLxvP77iJR8r7USni2rbhwsBKX612eVgy0nsR6xaXS/s73CCGi08FvzvgbwLCPCSF2Q4nES3HOMQznp+7DtiHsDlBCU8eynzUGZwzWHiiyDH9IGKYThp1GukqwDhHDjrs3iOCQXXYl+8owMvgapRTjPCE7yUZtkTJOlEpnCJkxTRNSK2SAYYwYZhOG3WwVUgnk1Ee8EiVCSLoudS4qTd8XCKnROme72WK94/XDjnJKzTabT1Bqhn6gbzpsaelE/Ww/jzRtS1bXV9X8eZ6fOjDbKOSqm5aBE1IWDHLGnxydT2XSLWSTJLzQjD4g8heMdqVLdJIi31LKGtTI7V1FdltyozJsBVrO6Xg0nM5ntrcvCb5mHEbyarpi2Ke/8yPevnnEB8+fffUF09szn3zS4fDkWTwe6+cLfj7y84Rhty/vOZ7OfPGzL4ELhq0RwzqYHx4IoYoYdoz7MeYrd7rmzGt2y5GXCcPWOWLHnJ9xlUbJgY83N2xvb9jojGldKcooZyEl9ONILiKGnY6BTTnw6lUs2U1rhgvf4IOgu72jNRabMGzQMcjZbF+SVTW9DXxUKyYn2N63bFJ39jgbPG3CMMtiHLfZDT60WJcw7OYF7vGGwT0gHeAihs3PMExqSe+HWMYLcFhnFHExIIJj1oL8hUZUHaLtEFWBEAUXDOt7kpZV+4421rcwrPZ0oYNUOuz7yNW9bCt8Ext0AjGcCoFhuHRFR5eGk/dsEoadgKZtrwsoIeqEY9+/c/qvFWgJIf5LYgvT/5Ce+hr4nRDCoxDi3wb+ZyHEH4UQTu+/N4Twj4B/BPDHf/RH4X1ibdrmqkXjLkKiEEU/SSC1GtZ1YV5WGHvEcMClQMsvJ4I5Y5Yz3oyEsAIBiXo6ORAn27QSv2SvwpXbEgnnlw6EIKLRq7y0wpO6SNPr8TkJQl0n9DgxSQTq2kYaQmAc+qsZc73p2GxuMMFfBVO1VmSJuI1PtiUyZtjWdSUEcyU4a60oygJBlHCwxiCFJiiHTerzWVlgbXyP0iV2NVRlxTSeL0ccu1ikzri5uUOrPJLzQ3ji+qCw1pEVmrpu0Eox9v21A9O5QK4Eh9OZ/rhjt39D31foMmNNOlrjeGIeBuZ5YlpWbBA87vac9slmw7hrZ5r3IcpgqCiwuF6002qwy4p1jjx3TJnB2niTAIzSsz9YiqKgqjvKuqaq63iekqmrzjVCS2SIRHNCwBr7JDORl8jCIkxJ3bSYeaGqG5AKnTJn58VQ1C11d4vSeZRtwLH2MaiU2rKa+E/nGVlZspgVpTRVCuh+/OPfxy2Gb4RGJX2zeTQcdvG2yctbVF1ExXcgGMM6D9fzijeI4KIkRJ4j8oygJPhfFmb9auMSNL0Tvr1Djn/iesEvCvTe0976Wx5/kxjWXGQVEh/EcyI0Df7kOTpHderJ24CzTxh2MHvcbiXPM+ZloU8YVumLTMnMwxdfY5Yz1vSEsNK2DeNJIJKYaNdugcD5vI3HdpSIreI8xEku17cEegLZVb9rYowNIlcMazn3PVpr5CC4zSX9oLhJgQVK0KKZ++m6uIu4AMd95FjVm4/4+OMb9ucTDQETmihanF+uU42Ukn4ckXnOJl95fDQ0qdtvVorCGoTxaFdRFgWn4UAoKgbzCEChC7KXLwnBs9UltjSEg+NtwjDDyLisjHPJZzc/plM5o1TchkCXMm9DPxE2t4zjTKcrsixi2DbJCOweHlinkcPJ0n/9OasZ+fLLdzHszeGrK4apLOeLz/+Ex53hq59HcnhZVMgA573APwak7NgqDS2cT/HcN69ahtPKyTny1aEyg/1YcBGJFZuacLAUpqD6w44P6poqK6kAMcVgfs517AAPmrYOWBGwuiQc4qI1yy2Sl9wUjrIxCcMkSEX2DMMoWtrtLZNeKcqSxTxh2DgvrOaYMOyWrDT0ZmSa5iuG3f349zkuBt1pJhyLcszS8MXuKwBelRlV3RK8hNbRrAVhESxJJLY/7SlzTyY2FNucYV1o2go8PDfJaRO5/aoeSnj6c0hqWT0gevrvqIp1bcv5fKbrOtz5ROhb+nC+kqhCIDa0CIHfbCLPi/a9/PyAEDVR4vv7jX/pQEsI8Z8QCab/fkhRSwhhgRiihhD+TyHET4G/C/wff9VnXRVanwVbV+uZS6AVBNY5nDFXi5p1WcFZvHXM44Q4n9HTGTdHTHTrEb+e8X5ABIOUARE8eHmtf8jYHvgkJaEunmAXABLXmUXKlG4nBlTvrvpD0okS12zWU/dWVLhFxGxQnJAC1qys5vJbFrKmw5mVIAR5FjXOjY2lQxXi5OSCZ10N1lrAX7U8hJSs65zanUvAASqVNZOHYFFRNxumaSAESV5a5sFTq7hyUUIwzhPtpiQrJFkRM1zWOVQeb7pNXqK1juU/NaK1JysCyxxfX9eoBXU4PLCsI2/ffs385YjT4JKlw3G342bToVXOMM7048r+cGLqk2K7ylAyI8sKCl3gbCD42PGZpe6iXMWuF7dO4DXrZDn7Ez5phjnh6DYNBM00RYkI4y3KLoiU4QvOo7MKH6IQhxISRLhm76QQWOvQvmOZF3QOXdMitUYVEaRqqZitZ1kd4zISgqAo9fW8BONAKqqqRmaxJC1D7EBUImbFttuXfPaTP6DOG06HHUpDXjQ4p9J+CnAQkgBv1AebWRKZPpMepQRKRG9JEXwkxIdn5PZfMeT6paXG8JTpEk9KD7FsJcTVoup9AdO4nfjWoupvY/xNY9jpFIVIL7/t5B0tDl95TscTxyAoXYUze3a7SxC0gi3ZjztO5/6KYeN3YFjXFASZIZwHP9KmRYWM4BTxTQwRw8Yt3SYGVVoL5hHoWqQY6YNA9BI6wXDRBuIZhrVdwrAJQdKDQxHYQJfjv/mKkNwvrFmZEs1iXRYaLZLo7kCedTGTEOJMuG0EwzgSgifPC6wdaNsa55IUwTiyVhU3WmFmS5z9tgjp2aQgyXvPXZBM04DxgWbTMivPKxU/Q3Udb948ILVhMZLc5Nj9kbcSVJ6y0DcZSs8cg0IOIzc3NUrCw8NPAdjtLhj2Dcs68vAvvmZeI4YdU5fccbfjRx9/hFYr5+NM/2bl588wTG4zJpmR+YhhlQ0EPyEPkhepgpCraMsjEobtJkv/xYnmg9TBvT8lDJuZ3j5iXn2I2ZaoPEMkTbBizdCZI28EWJiGEacDWdLx23QdduiZ6w4xP76DYS/uYunQJgw7nCOGNSiMnWmSieA0zbAoqhevkNlEkB3jeeTm5uZKwamyirA6Xp8a/GFlmnvyckNVxfPWVIK6guHkOI4r6zrRrzPT2wuGGdS2Q7VRd86LlnFSCCuuTUFDO8QuXqDnEmz1T1XEZ5jSx5vy6nxwzYA9y4SJJi4u2vQ3wDAO38KwM2ea/qmxJQpqX/u1v9f4lwq0hBB/H/jPgX83hDA+e/4e2IUQnBDid4HfB/7yl35gCNdS4fuBVnw5/jBjDGZdrrwlawxmmZnHkakfkeOAGk7YpC8k/ITwS7TfwUAQiGgxeJ0AhBAoISMn6lIOfJatEs+EyoSUKeUorifjuo9wlYxAxKzThcEShCL4ELNjKcgy1uKdY3xWTrsrY/rfpkCO8DQ9XhSnlYoXgM4kIairsKGU0SA4ltd0NFx2HmdNElsl8dlc1KdaF4yZkdpfuT7zNFE1OnbzNRrvV5yHqqyvXZrn85lmo0HK6OkYFlwIGHMx3Gyw1tC0FdN8RGUSt1geH3fYOVlgaMnbt2/wDsbRMIyGaXXUOq5sq6JBoAheEUz0u9ps7thubtls4zbjdGIYB7zXaC2izpeXV17cMi+M44pSOadzz7kfeHF3i3EGlaxJghO41RC8oCBDZwpkvM4AzDiQeY8UgiwvyMuKcRgYhok1ROsJXbeIvCSvtlRVTV6UuAD7Q+Tg6CxH55J1iVknqRVZVqB0TkhehfNkcV6x2bxEiQzrF5o2qj3HEyexi4t2Td4hfOTjWXPpOI1SFk8ZWRl9C3/JbffXHd/FxHrejfjdwVT4Fh/zb2P8q8KwWC5Mqu6154gjGtJeMGz/DobJULCfJubxjCLaiU29/xaGNVWOcyv9eUB40E5erUmECCghk9CyZNNt6MeBIOJEeSMEQURhoUFpZAN0EcO6pELe930siYuLQ69ks5FXrmrQiuACYpWEpuX85psnDHtMGKZ/hig/pZkmbCvoh7TwTLrcwyAQXYcaA1kWmJecJlhMEr30wbDJ4iIkaDDW8bL0HK0hT9kXfzySiQ1aZjyuj0y7gGw8J+K9kE9fUDUtNy80L+40qlpRvqSqa47HVPqZcpqNpt5IyqpkNQnD9olbV38AJXzw4T1KO37+5U85LQeWZxjW3Wx4+/YNJ9czvjGI0WBWx+bmFQDONBQoQq0Hgf/TAAAgAElEQVQIQpPVORv5ImFY3GacTrweBwoTMUxlE+sqyRIvbtEJwwT4c8/X37x+wrAkAhuyAZe/JKwrBQtbpXGbBpe08vq+J/OethOM/XsY9k3EsLluEflL8kpxf/8qZq6kpu/jeVtyg14l+WIYzivy5kAmLxgWj9nDdMDVig0vGcQR4TUNL2naC4ZtoiizCZA5uoRhZxMDV6k6Ogl+GJC+ZvPRDbjAyFP2qqWlTyHWNch6b7RtnDovya10EN7ZoA3n9N6ajpYTZ0Taptt0IOK1GsKZqEYP4fz8W5Lu57e+/ReP7yPv8D8C/x7wUgjxBfBfEzt0CuCfJjC9tED/O8B/I4QwRN7sPwwh7H7ZdwREEg5/4k5BrMf54PFeYIJnCTA7xWISAXxZCcNKOO/IxyNh3OHGI86lso1YUcLHuMlFfkkAFu2uM0SmRTQ2DgIpFM6DQiGzSy5RIEMSK/WX4EtFYAvPrG2UQOCRApT0CCwXDy+EwAuP8QaHxbiZ4Hv8ukOaeEX0j56bFzfkVQ1Cs7pIsr9M+kvweOfIZLTlcZfJ6jJhaUGRFZEMH2Kx03obVfAv2bukRVZkFXZZWdboLeUvthuZoigalK7wOgORkZc5RVXhuaiQz2TLiMo8wmu898yTYU4p9f50wqwL+/0OITx5EPjZsFrH/pBUk2XB48MhynVAlKQSsCatrqbL8OQQclTeUFcb7j74kJvtlt0urSidx0jNR3/nD5iWGX8+oZSiT3L9qyRaXQwrWbaye9zx8uUtdVVFf0RAhijrEDKFFZ5xPjNPAyHEY14XBarMIXuBd5reGOZcIouO8kIIB+qmoaxrpNAc9gcQGk0ES2E9Qq54AmaV6LwgaxQ+DKxLKqVOB4ydMXjyrqNUt5RlTZNWWUprHPH6UTrgsIRlRSSvO1aHHWrWakFlEqRGuCxyqLgEPulOuywGfkGm6Wp39e4r1/8F8r0yOt9acMSgwsX3hcTVupSepUDIp2vy1zF+PRimsA6cE5TVxUwtasLVDZycoGg80xoxrE8YdvSCRqwov8OOR85vJpw8UuXxmI5DxLBhGKmqlU0FgRZXB3bnlKnWA5nMCUKw6W5wvgev2KQFVn8e0HJ7xbA2tAgxocXmimEyXDDshBw2TC56xnabJ2/RytUY9QzDTj2n3efPMOwFNy9u0PevYJjx/j0Mazx+lGSjirpg08oSAu2FQ+o6zDxT39S4uQDO4EuqUl55uaOQVGGkyDzbpePN+hWKBn8TMyduWTFGUoeK07wg/Qvkbc5NVbG4mNHarY5lkajDhDMPBHJWK68YJk+eIl/4+c8/TxjW4fXEWlbs+xhoLZ8/8vhwoCwrzn1Pd9PSr5I5j5ns2zyjbiOG5WtDXUnuPvg9bj7Z8vnn72PYJ6hFcwon/DTRJ8mDC4a1JmPMcnaPO14PA7WraLrkqRg2+FPPOdNMAvIsMD+8JpyjTtsVw5oX+Feab/Z7dL5BFj1lyjQWbU/dCKyvKXLN2zcziJnQxGuwsw2znTiZNxgkeizIgsIvA+sSv2d8e8BMM0XuKbqPGKeZsiy4eLdNxYrCM2NQOmPGki0rXcKwLAc7eMqyImQS5IxYA4INFzPDEKJN1TCMgIhRVQhwfpalunJNUzbLe9q65oJhp1NP124ShnnCBjY8ZaGjXlbUvosY5mJGtn1mV3bBsL+i4ef98X26Dv/j73j6v/sF2/4T4J98729/emc8MPJJcDF9Hs6l0iGBdTVM84pJirV+MYRpxE0DLCOYKfoWXnwMlcd5l8gjMaOj8owgot0NACJqYkUSecAHGTNH1714t8whuPiZPfFPhHxeShSx+4qASDWVgMd6y2rXtOqNApvBG9RF64ZofK1EEw2rA1GE1dp0LCJ3y67RksF7i9Y5ZRkv5KqsUEqwrisaeS25KvXERwupk2ZaZgJEp/W1jx0gQFE15HmJEJHMLfMSobLo65hI+0WWEbynP5/x1pPlDciSLAVr4zhhXbSleHj7hrEf2B0Hvnrc8+ZN4lFMoBVoDUoLtIwlu4vZc2scSgXuX77ks9/9A5xzVEXBssz82Z//3wD8+Cef8cmnH/Ppp58ipGReV6y1fPFl1I/ZPT4gpcOFqFd1PB447A9Y69F50l4WGUp6nI/nZxjO2GUhT0H2amJXq3GOoqioui2VWQneM88xCWKWlXPfsxpHXbU4Z7FmZUmdnP1wJhAV6cvulrxsUdJTVeWTMvxwwhmHlhllXdOk0s3F4+nC2fPeIWV0PvDGEOxF4j4gnEMJUBcSevh2ee5CVP+Vx3M8+Z5psmtg994bBeFqdfXrGr8eDIvZXB/exbC6aeL16048ngK9LBCzIEscrOnhLct5pgoClpGmmDk+HAjVBZo9lXfQNHi34l2FylPGUl1aqjR12xB8JPaezgL9Dn1EEH3a4pMDA12iNlyyFjLRJeI1M0CwBLJrXTjgOfgDMsDxeMQ5y9480tQFlY37sWBoqhUlBJ72imEXJfRgPefeY92B01cFde2YdU6dLrC8dCh1i7Erzkm8L8lqhwrqSp5vgbOUqEUT2on77hUPu55wThi2/YBuWyJEwc32HpmXDNPCyVtkUkK/YBjngC8dWS7RmaUqnzBstz9ijGWeRt4MEcN+9rM9Y+KC7d/2aBXNo/O84egF+CcM+7BzBH+mKj/hs3/996iqisoUPB4f+PKrPwXg7uU9n3z6GZ9+eku3kcxrzuFweMKwxSPHI8dO4aYRf4wLubLzLEtSlxcLSuY47ym95bzO2GVhTRWI2RhOzmFOPXcvbuleKMoiJ/j7Zxi2cO7BFA77+IirFNZIlmMMCL8edhHDvlqeMOzDms6ZqzJ8P5yoigohSsra8/KDn8SA6IphDafg8fUjEk+N53G/55ww7IVbEa5ECZikpKVjCIZNJwghZV3pacJAXQf6/gSnJ426y7WRNqR99yWuaqPh6d7se/Dde7mxvn/GOW3p+zNdu6WnJ6RvCH2gadUzodRfPn4zGKk/jB/GD+OH8cP4Yfwwfhi/heM3woLnwr963ol0SQFaa5P+kIh+f87jlpi+tWOPtAsyOKxd8XaJZZ/UdhmCQ0qBtwGQZFkWycLyKaPlgkcoj5LR0V4ikEpdeXXPO6jezxAIKa//X7W2lELopM6c7HU8XPkbseTn8M5HQl1aeXjrWIaZtk18C6J346UNXiU9L2ctrvRYa3inqSsRkZXW0aol5kZRWjNPMXPibMzuCSWQWewAykXJNMdVrZaK1QY2mxqZZbSbjryMSs3OpeyJFMzzyjiOsYSqCqwZmNM5+eqr1zw+7vFB0J9n3rx95HA88+V+4NLcKIEiE1gZQAUKDypXNImHcdPckuc1H764p80yrBQcdg+8fvOah9exi+X+5R1u23HcP9BtNtxuWnSWIS9m4X5hGk+s88yyWOa5wLmAdZ6+jyWCIDRNlsXSRoiq/C54xumSjbK8SJ5oUkaNmmV17HcPnM+Rm+CdQ0gwyxuWaWH3eGAc56cyhBTUTUXXVbS3H3L78gPy/AVKRl4ewNvXr9FZzoevPmaz2ZCXJQRYZnM9b0rEjJUUIJzDzjM2WRopAc4anFmRziK9B2EJIuPZ8oyY2bhcLjELG64Zru/qEPwVh3i6b7lkiS9M+SeRiF9Qnvz/9/Dest/vk6RCXB8LIWiaJmJYnuP7AbFMSJFdMcyMIO0jcjxihxWvF+pg8KljsBEOsenwdgY2ZJnieDrRbOqrD6oLHh88SnaIYUQpwWa7JXWss+k69DgyJwxrRcslu9UlwvMoRzZKojOFnBRrwrBxSvY6YsE5x3noE4ZVTxhWRd5kXVY8vp5p2zMTORsaTBOzfACTkrRhxNkaV3rKsiWIHlJTCAE6OWJ1CfIJw6Z5Zr7YYlmHCQG9LZAmYtiLu5Ivv4wYdj5PiG3Bx5uacVn48OVHvHj1CjGcOV4xrIoYJkeGh4m2KShrwbzEDE7EMIMPA/3XM3/5drli2FUpR0KuBfPYgwLjt6hC0czJzSFk5HLL7734jPvbDOtmDq/PfP7mp1cMq8o73PYBt3c4t+H2I819ccemi7/1Z58/8Nacya1JGGZwx1ccPNR13JGm+5CmrSl6OISZfJ5xScsRYLUHWn1LudlifcCHjsfdyH59ILyDYW/YP64samH3aBnHh3cw7FVzj+gc7elDPv3JBxRrx27sGcZ43N++fs3N7QvaekMtb6nqiqqqeHx4H8NapIDBHbHzTJkwzM3g2oJjkZO5EuE9bV0SAvSJ40eAvhe0LXQdDP0IQlxlObhkY5/uwO+4U59SXW0b52b6HroLMLYIMVyts2IXe4A+0DaJp8yZcyj+Zjlav67hnH+HthFClDO4BCggccuKn6dYewKknRF2RmCIlAoLwl71LYR4AnxSQVDED+di+CyTGXQIIelNiZQuf1b0eCaEJp4/VtdoLOoXKQky6ml5Eucs/e1TIHThsDgX7YSuVnPWcd7vybKCsntBlhes04xOgZYU0YogKI1QAalijfkSnOpcR9K7kJGZYwxrWHHOcnVkUpJx6HHWYu3KMo9EKlas989mZTj1TItnu3pmK2g3W7QW1+7IaEmU0zQtzlr64Uy32RJ8BO6PPnjFPBk+//k3/PRn3/DzL3cMk2d2oNPxKLTAW5AKyirysbwJHPYxwBlPPyfPNPuv9ygluX91j1Bw3L/Fp1Lqn//pn/DFv/jn3L68o2lbpJJ03Ya8iKC93z8CDm9XLJpxnHj9+i3ttPDqw7hNUdfkeY5CYOyClJIsK/BJiK4sNpR1jdA5q1kZxol5mpA6R6Vjdjg+kGmNXSa++fJLvv76a6y119KhloK6qZm2G6xT6LygLCT73cLDw0O8fPDxpu7aVKINCCmjdhawTAtSSfJMI1XAeg/LSkjfETQQojekUjGQDd7Hkvize+wdLSuZrvvri+ke+WvFP+83s1zupcu/+EXi+cPfohExzAMx8AjhxLKsVwyzi8EtK31/QCe2rrQBYTUDBisMVX+IGNZdMKyh7w84k0EQ3KgpckzCkS7JEYzjxNAPCCTb7Q0tEsSZljQB9T1iu0VMM0IIhmGg67bvYFgrOpCS/4+9d/2RLEnP+34RcW55LplZl+6e6Zne2V1yqSV3liJpSrxIMGBbsOC/0l/MD5Zhwfpi2KIBy8DKFCxZEkmJFHeXe5mevldVXs79nLj4Q8Q5VT27FJaAaa8WE0CjqiuzMrPinHjijfd93ucRagIpKCjpid7DsLwq/YGvaxGFY2MMd+czznhs2McFbp453x3IxSVN0iPmaMUw1XZs5ZajOlPtHNbGzEKRSv+4NhuU7CGe2KeOOfWeoJPRbEItqKlrpIBuGDge74gHyRA3VBd+PR5mQfv8OX1+Zre7ZNCCD55+RBQJ7GnpNG/Io4STA6MzmrZGKMUcymBV8ZihP/HZ84Y//v6B56c72ndnIgNRkMdII4nVJZ1yXG9iLBP2oDkKH6x15zZg2MzuBx7D2r7BHHrOx4Bh3Z9x/NGGl1+9oiDYqFVbLq8WDBuJVI+eY7I0outm3rx5xwcqptx6IdDj6ez9ZBOB0opOSuZxIg/+kVn6FbIiZ5w105zQdo3HsDShCbZq4zAwDhPZ2HM+veCHr2q01sQh8Iyk4Fy85aPdU7LHivp8hZ4/Z9bjGoytGFZ8gFQzNDWikkSR/1tH0yPVliQe2KqCweY0PwXDtlIwKeibhqLaYanJHwRHtak5G0ITRxfK9Itwb0NFBYX7CXxZ18LD+mJYpw8teigFQlbUdU1d15RlBcJRVvkqpVRW+T096WccPzeB1sLrvhcsdSHQ8h6H6AndD9ixw40+XrXTGTk32LnG2R4nJhwTzvmLa7Fg9ErEtUaEjkDuW/zXGrLFYVEqRir5HodLBDFSay1q6TYUsFxgETwOHdL7Jobs1uKX6BbiuhRrAGmN9V1b4W0kAjvOHG9uuYxy8mRDpKJ7mQvncNKi0oRICbQF5/SDxw1xlKCiBGNmhLVIpRj1iAnR3DgNGCzxJiMTKcW2wNiZZOH6CHia52y3lyAkk4YoTZjGnjqcXNIsJXYC5ySzNrRtxzAOXjIDTwq2Fg7Hhs8+v+OusXjaoAzEaGD2+jsYy2Bm6LU3tO7vV8eTC98urCScjkdkrBinkePB68O0/YyKJI9PZ4q8oB379zIlXngu49H1BVMskULQ9R1PPnzKLhBnoyhi6HqSOGLWM+M0M88zaWidllGMilOMdagoYbu/Yre/JIkjdJizrm2p65q//PM/I81yhBRYqynLoMxsNEpCFseUecomjZjGjrvD7RpoldWOKPJZVBnEcefwWQAipRDOYLUlUhFYC7NGBgkJPWvGsUcNLWKeSBOLEgpj3ZL0QMp7ovuyxr6oZeV//JOE+PtEbjiQLNInzvnm2HupeBYD0IdZrfffw/Mxf9EyWqAoitJjS5gfrYsQZJ3ROluzkHbscEEeL0/OdM1r7Oz+CgxTGJ2FQ2PD2ShK160q8MDKOynKHMcZpa7oesniIa4kXApBUZa0tUDJjrZt2VUVzXLgVD1bucWhkds9LpaIoQfp70FnWTGsLnI49dhNjjjeY1jXtEzzASljLj+IiJAIFT0QehSY7ZHdnBBpgc5jYre7xzB9QkaPUKnCDAeE6pEqIc03nMIBa5x6NmlKvNGU9kOKpxZj9xzCenwmYPOVryFlQlltuTs2HsNu3/Gq85/jKrsidoKNy5gzzTR29H1Gs2BY9BDDPmMix2UwNRJsaECZvZZibyyfnw6UuwpLjekX9fC3/NKzR7xJ3nHTeQzrxp54ih9g2IHnkeTr5qsUecGb2wXDfOp/u60oioxNFnN1sSWKFF3f4RyoaMEw7yU5xRFpD+fp7HEjfEzrvGCtA9Q+4en+CsElUxyhP/mqv/Zty6v6FW/+/DPS8YCQr7FWQcCwxGTMckLHMWV+tWLYNN9ycxOMqYViGBQffABZVqGSmXmaSdOQ0XI7RH3CSou8wpPUZ03zAMNub9+hLp9hdxOpU/RtQ5LHa0a0ky2uKHDnGltZ8jyn69aGYS/TEDCMFcNC1+J7GFaDqIAzde2oqvI9DGtaSVmWnE4nz412D3W77jHsrzN+bgItY0xo+/b/d87b7UxBkNQNA/PQo6cBGzRmdHdA6DPMJ9zc4lzvQWpNE1nf+eckPihaiMI8OOsvAVUInqTxmjThykhxb3a9uooHMvzKqxMCJ30rtAuZK5S619kIgZqxlnmeMUb7sl0UM2l/GowQKAdD21Efj8RpQZFv1vZqay3aGSbrcMIiVNjowuMGE+pKEm0sKIGVMEwTJsg3eJHMgmma0OE0Eicxm2C1IJQiz3NU4oVK0yIFoUizhKzwJ8ZxHNGzZZ40wgo26YZJ21XT6Xg4czj2tP1EPVhmJDPSl0/DdCjn1m4na5YQFxat8AjQIsISYa0Xzhv0hIwi+tFfr7b15ZJpekeUnBjHiVkb9CoyrdjvCurjmYt9QRxFDMOIkFBUHgyLoiByDm28LtlsZp/pCWn3OM1wUuGQwSz8XulcRuG6iIG67bk9nJAq5unHX6FtzoyBaKrnkcuLS4q8pCw2FJuEvm+Yho5N5uc0jhRaax+8iQ3GarzwpwtzZIgkKKnQ48jYd3T1adUfiiNohxbbN9iuxkYFaVrgSB6sMBEOFUt21q+FBYE82f5Bd+F7Wfcvlv9++nAQDij3CvP+FPheXu1vXHbi/59hOJkTla3ew7Dj8ciUpCRTT+csKYa2r+nDpj+3dwh9pkwNDks9Bgxr/I1clRo4UxZbYEfrJE1TIyXk5RIol5T0NKJlJ3Yew7YlMkisypDFKsuKshQoWaKU70oNjWUoUeFkh5M76rYhTmL2F5eILnRriZq6gaE/Mx8OdPXRl+32F0yDF+nUmUBN9xh2+eQj4syQB/sca3O0OzGNDidy2t5gC0cZMGyTbGg2gkpIjlhsLxjHhtq4ewzb7WGeaQeLLSxtPzA+wLBcKay17JIEOad8uNvC3JN+9BGZ9ibJ4+0teo6ZpyMiEmzSmEk75AMMe/75O968u6MeLDLrmImw5UMMK+hqHzBZwPQWS0HcLHcD6DYijyIaTpxPlkFPdNF5xTDR5hxdw3/4Dz9kf3nJ7e0dabZZMezly3fsdwV5FjN//IRnz556OzQJRRVKh8UeZ2sqKXirj8xmptpuSeegf5aCk4qi3Abh5xYBFMy4IKfzsr2hfuMxrOtjfuXjX6NtztzevAUgmUc+/ODKM3KcwZkJPUqmSbLR/n30pkDrI8djwgcfPsXYDOdi2jY0c+nTimHH21vcPNA5gwnSHuPQwNDSvHtNXn1ILx1pWhBzGQRKw+F5I6Dc0ratp+ssAuGAc9WKYSV+P28aRVn2rPY51PfZK99a8d4qdk2DFYLz2ZHnOc7V1LWgLE88FElt+euNn4tAa8lmLSU18IHXNE0Mw0DfD6ipxU0j89CgH4j5CX0G24DrfaBl79suH57EvVyEIiyLVWRxGYuOly8BijXQWux2wJ9gpPTZESnkmrEiaBct9j3Gp79IosV/yz6wRrnnzHj192D1IyXCOtIoQRiH1RolBDpEzlprNJZOa7Tu0bZlnLrVtV4biFWKcxEI67V65pl5nFZPJmuM36y1Zp5GhPBWNnkQhFORou17sk3ObrclTTKc8BIbS1CplALn9cRiFZFmJVr7Gxjg+Y9f8PzHr3j95sRkYAIMCoRjEfE02HWL92VWgUOumTeF4/bcMk8zkYQkTRjmmW5qCTaXOATGOerWIPoBhECqGB2Cj7o22KnmpBx6GvnwwyeUZUGcRYyzB9Rcpljtglq+Q7ggVhsW7mwsdpwRShFHMUJFKBkkE8KEqChmU5Q8/uBj4khyOt0wzAP92afdrdbM2lJst6gooq1P3Ny+Y5xH0rAB5XnmW6GBaZ6wowELksX+RBJLgTUTWMPY90x6XOczyjKiIkPECivBCrsaE64h0nqe8DNvrT+ZLVmth1zEL2a07r91DzhY/AQFwh8mxXvPWQOtBwvuPlz9xRnOgavBlg5z8huw2RiGYWLQJ8Y+op/eIKeYRGi63uusLRh2GhrKTU9eKOrDTFku82PxliOCppQIp6DYQn+4F4oFmrLEnM6cozOX11dUStBtl2u6RfSKtm1RQrKTOzrp9QNRfi3s9vv3MGxTlGh7ZpILhm0ptx1xJHBzRVff0dQ1SjiiyAc5hRSIvMCpmPZUE6Wa3El0wJdEz+jG0OnMb8q2ZXzZYTf+Ps4MjP2Mc/uAYbfMc8ocfwHDup5MZxySEdE2JMnlimHHqCdJU9zmMbvdTJpo7zPanHFm8ThVNC5i4xJiGzEnJZGDIZRA63PN8x8/5/WbE4mBDjihKEVB7U5hPs6IsqRqGlxZMjctrtxiSo9hfQO3tmXuZ4au4TKV3MwHZJLS9D5wyNlgHNStATXQj45Rj0xBG3FXFkx9zenOkSUxH374BErHxfWeOA3BxVZjjxp99KLbVbFFtB1NkJlITYYdZyJ9JI5i2jhGyUAaCN6zu/0Fxjpu3wzs9pLT6Uf0hxv6yYcHIoNZWy72AcOc4ebNO8b5lqvci55e5hlV5gPZu8Odl0b4IoZtBbmZwG748cvnmOMtLvX36D6L38OwvMox2uuAFWElyKJcVdu9awhUwq26dX6UVJWgdjWudqH7sFy7Vh0OKh9rNA86DJfRslCDKqT0EjWFs7ja0YjT8ha+RPn/przD/zfj3mpnKZcs30/zzDRPRNMIemAaW+ZgscPUIV0HpsOZDuzkSc2LdtDaUr70OnsdIOHkfdYrPFeF9mbrDNYGQCMkukJgJZDrRfblw+U5CpA4Ib0el/Sie8tVXEol1nmCu9EGM2sfbC2+jdpghcZamE4nJgfydLjPikmINzkmTYmTBIUmiu0qJBqpDRChZIqMBeMwrDvkvX3OA/sgZ4iTGGMcMoCYiqOghGGZtMb0g087W40MqO7LqhYZR2AcbdOSJMV6z+V5xW7fk92NXj/KhHmS41rXdvfTvl4XELjwOZyz9Nri2oHIAdHA7KA3EC+ZxnCVHSCdb1X3a9s/HkuJng3TBHd3DVp7c+mi3JCk963z1vqGC6MtczCVXgJorQ1xkmKdwBiLkAZrvVDoGIQLpXAUZcn1Bx9wd/OWbhj5/OXnfP8vvgvAr/3qr7Ld7ck2BUop+qEPMg2CaJHMSBKyTYrDe1xGUYS12kuTAEmceOmGSKGnCWuNvy/VvTbVptgQbQuiPEPFCsSis3Z/lz8UE/3i8AcK1iDrfRmIh0ET4dBwX0L84niY0fFBlnlwvb0ZujO/WIEW0kuqaH3kEMRI88h6ntFNjVKWeYo5Hm+IhVnlHeKkQ44djenQWoKdyIvN/bXC4gsgPTQ7sAJRSapiy7nxB86yzJFAs91C33OuT+x3FxRhI43EBWMlkG3AsEogutZnNUXYTEUPbHFCUhQVbddzcXHfTGFtjRByxbBN5jGsH2us9sHatC8phMbahnrImNz3kacUu2QCthAbyyadiBPHFSmn2GKM/zuii0dcXkSobkZeVNwOFdQOSpDCv4doYPuJx7DGGS6SC07GIfsFwwYKV+JKy4TG9Aa1v8DZIzLYnUkl2doW4pjGODIERV6ACdZtVrDb77meRm6HiXPAsEaevNo14CgpnfduomlokJQI6uVzSEmvz7i2JHIR7w5n5kLRd5o4+LFOk2CDwFFyqnuEUFhTYvEbuux6tHQoVfLZZ6/5tW99A9lLHIYpYFiMxeY5Wg5sRE739t17GJZlGzbWegzbWLLY0LXvY9i2KnDA9S9/wHTzlldvRj5/eeT1C49hX3n2jF/62lOuHxXYcrdi2HZbMQSt30fJE7JHKX2vyTYZwxBh7ZFNHpoY4oREANGO4927gGElbf8u3MMpm+IR0fYJg9X0Y89ldI12BS5EWnVdv4dhZVli8FlMfw8vGOaDLGst5zOUpYVAZLe1t8OiEzuM34kAACAASURBVFRVjusekufxgqZS0jQNTWNwRe45X61hlYioHaf5jNEPMfI/Pn5OAi0Q1gS/Of/hzTxjpgGlBxIzQH/GTS1yaFBTWBDzGVyDdD3YGSc0KLsKi/rASvlAyC3cKoeVdsV9KaL7QMRJmARE9yUVIQWhF9GHA85nZiyO2AWrFuPWjjCk9al7pXChvMTk7W0i4ZDM3kJlnpl6xxS6emo3kxQD5e6STV6ikpRyf0Va+vRunCXEmxQjJc4ZtPEl1XVDdF6JPk1ThHD0yYDAZ0iWElMU+YxMlmW4eWIaRuJUrsHa3E84Z5j1jJ5nRNSyKUq21Y559gtmnHxjAs4X/CwgYk9qB090V8ZwUeQUaUfbGT/f7gF50Pmep/uMlgPMuvkaQt4xKOM7ver4MzwoY8Uq9l1Pznde+YyLfzRyjlJ66phS3rrHOoOSCZH0QKd7x9R3/vMET8dh6JgD8V+FEmJR7MnSDUpK4lgxiRFMaEKQktevX/Ov/9X3+d53v0fb3dDWJ77y1U8A2O23GDtze3vD3UnTNAdmbTBOkIduGTNbnHaU5c6L3aaCJC1Ww99xnjHCEaM5vntFc/uSsT+Txv6EHsVbkCVSZsRJShRnOBP77sN1zv1sO2u9/ov087nqJK3Xx5f7HlpiLdldhcQR+AlqKZ0+bBoBsd6PIXPl8EzX8DRrLc7aNYj8hRnWIayhOd93Jx3uZsx4RmUR09Aj373ETYJueE0W+7/fzhbSBln39OcJJ2bKMl8xrGlaJAohInCd9+sTDtudV8qjVB7DtkDrtjB1NHPLLhwwhRRskbQrhtUUxdZbWqkg3mv6FcMaaf1pXu0ootCxnJRMQ8/QFkga5kmRpjONLpjufFmvPs3YJwOohE1Rsru8guSKNGR54uySi818j2Gbmf0Ucw7ef2XR4ahIH820rePjbUm7helwh9n4Nbt/7DFMZxkfzRN3w0iWbjFRwLDDxKHomeuZbJ4R0Yh5PfC02jEb/xq30wmQlC5n5kzcaETRkBmPYVd7wYu7DbHLKVLJtjthZU7tJOuW7HzWasGwqvQYxoJhZc5d07ArPYbV2lGcgFJw09yXqy5UjLU9qig5Nf41liV1co6PWq/1pJ0kniR5sUHJhH3AMBUwzAQMq50jGzpU6v+W8/lEIxVPnuzJ0kcoKamuFdM40odu9EhKXpxe890//j7f++6/CRh2w+W1z1B99PFTTueZob9B7JsVwzaNWEt1m9niMo9hd8d3XKWCqSjoGh+IdW5mLxwjxxXDYtVRao+BQ3xNuS2R24yL5IohTlYMa4IgqaQCaoo8pxaCurWUpaBpg8ZaAb68l1MUltPpTFE4rD3dY5jzyRDftSmgLDk/yIhVVQn27DegBcNqgAjEHoDcWmp75j+9jJZzGGewjpX4Zp0N4qNeyNMMLXZsmYcGo8PE6NFb7DChpHmQ43hYnvOvhRMIZ4Io6v1YSikegDx3RTm5pqplsNORQvkC15Lhkg+UYvH/l9IjlZISqQQmbF7TNNGcTtTnA6e7W9quwRjLJq+42HugE1GCiDOSTYFMcrRU4XUXY2rQxmCxOOuYJ4M1XtkcYJ59Z9Mmy1EqBqfph46ua+n6ILJ3uGOaBtI0QViHNYY0TUmDUvomy0jTDSpSWDvTnWuclQirsG7JiimiSDFNE0JYhFK+I9EumbWI7bbi3XFEYYlwjGZ+T7FtmX+Jn+fRzD/B3AmhF0u2a3n0oRiBxWHc0lvna/JLSKaiiF2R044NcSQYx4G8KDwwBjDUzqtfA0Rx7OU/Jr1e+80mAyzD1NE0J5RSJHGEMzZ4TfqD493hLd/5zv/JH/5v/4IZeHoJ/9V/+bcAuLq6YFdusdoymYkkVWRZRpRkPH78FIBsUxJHCfM4cHO8ZZ4bNtUFF8GLrKp2YA3N6Y7TzRum9kQUsZrxxlEGRMzGEhmLctw3HjyY0RBqhUyX/99y/ywCvFI+LOouQRjrV4fFCQeLxVSQC1kv2nvXWKzreb2C9j5r9gs1HJhig7UNVoeScHFHrDLM1DOe7thEAmta2r5hCK31ZdYibMwmNfSdQpAgakvjlpZ2QVGU/hBY+0wC0tFSrqKMbdtSlVsEUBWCTkpULVG7BcM6OnmBkjsENV0HVdXSSUnkgo0TMXspkLJFdhXqYkv3EMPubmkOM/X5Oae7t9SnO4TNeZRH6A89z6baXyLijMkUyMT6DupSoFcMa9Am8hiWO+Y7g93M5EEe4vbWsNmMmCxmv4up69pjmG3pfuQx7HvzT8GwOSW98hj2KLtmHgdUtAsY5oCOV1aRFwtvUrGPFNN0IqtyXN8wzRnkQeRT7dluHe+iW3rODI1j5EC53dzb6oHPtDVbdjuPYXXTLLv9cktgmhoQGKCmhKZZM3xVCVZFmJOlboKTQgUuFMtUPKwYVuU7bscb8qKgKktc6KA8Fpbp4MvQ+4sLLi4uGKb+PQwbx5ibuw49fX/FsGKTc9T+96SEaX7Ld77zT9/DsN/5ux7D0jTmow+eYvWZ6XRmmhVZ5THs6wHDtCnR08Q8Drw53vL54QsY9mEF9ginO05DSyIMfdRwuf8YgKzIaJoBkZx5dGV9VnLFsHtuVGCU4moHsqWuF5FmqOsKIWrk1h8IKR0+HSao69Dl60oKa7HC0XQdxa6idI5WVQ8WcxlE553vTSx8mVGEzsVmwTB+9vGlYOmX48vx5fhyfDm+HF+OL8ff0Pi5yGg5wDjPmtJLN5qzawlj0hN27mHqcGYMbmsglPM8EGvAGqT0p/CVS+IkAq81JZZTvPzJOHTNsIigrvVXmOGuX8LDC0fGm/r67JO2GhO0XxZitrSSKIrYZBm2qrBmxhnr08xLOzzCE/KnCSkiSFLmeUTNPgVsVUwsAalCCTDFR+r+pDd0LcZYbozG6Ijz+YS1mjiRxMFvKokjoigljiM2SUq+ycnzkigYMQsh2e8ucAjq05m4bRAq4nTyJqQAkUrYbDZehiASKCXp2jMiZInKsuSJSzh2hur1kZuu9TT3+wTJOqSSqEiBmd/LZ73/NPfez+SDZwZ6bMi9OB7SfoTwnLOIiGfPHqOiiMvLS+I4ZgpmzHqa0ENPUZQ0TcOLFy8QCh498aewzHlvwChxyEgwTyPd2HM+nzzHDnj96iXf+c4/58WLlygJRQK/+7vf5Jd/6RsA7LZbkkjRjgPzNKK1pSxStheXXF9fA7DdXeKcRM+O7XbL8Xxkmg1950uY58NzlJ1Qc8fct0hniOJoPbW68DmljLBCsNhJfXEWHYSO2pXLv5aeffb0rzh3PWBdO0eokUN4o/ts1dpl+Ffzwaz7xRQslcqxcQ5LwRS8Ms+1JYsE5/OZSU9Ecw93b9/DsL53FFkNVlHmhq6rkVhEuEBlETCs6xByS9M1IC3VNnvv/UXTBC7Tji0lQ5WwrJCmiUjiBqotizWvJ9h372FYq1uUjrGc2UwljdGrp6fRmiga2GTX2KrHmhmMoTnVqMBVdbQYEzNPE1JYUmeZ55Es3Fa9ikMDeMCwLIWi4tWrV4DHsNY5EpPwRh+w5xPnsya+lMQ7j2GXpz3naA4YNvN48xj7AMMq0REpj2Eut8RtQ9sPnE4t57P/nFE/waNHyH5CzTNKXdC1B8TG/7EflCXOJRzfnqiaI0PXMjeGxjWU61LwrKx49z6G3edefJGx8RfR27w0jrIs1vXSNA2JUhg0itJjWM3yW4g0RkV7hnngl589WTFsHEfupG+2ybqEYVA8eVLy+vVrXrx4QaXg0ZNfAkDrmqv0miQpsHvD4e5AN/a8fnfEzD6j9frVS/7tv30fwz799Jv8xt/+TQA+eloEDJsCho2UyVO2F5dkWcCwjwKGHWp+9Stf4/N9wDDpMcx+9pzGTqi5Z+5bxvpEHEf0yu8rs62JLwu2co8Vgto1bJmgVJSNn9V6mdeuY7stcaKiaZoVw6rS0nUuGBZCmZXUOETDvXCycLgW2ArKsqSuHaUsqMKFa5oWpwMPzxVAQ23z8M6BsuQ24bGfffx8BFrOeSd4x0qGxxk858YhnEW5GetGnOkRLih7B/K71wl1a41jKelhbWhjX2Qj/HPeKx2GjUOGeuxqfvtAa2hphxeh62r52bKpaDNjhfdjtNISJzFZmq2bmZkMzDOzihDSk+S9kbXFLTo2oXNxETxdPqMKm1qsJFIKZqMZh55xnOn7nj4o68ZxSp7nxHFCEu0o8i13d++4uX1F03rjz2nuybKY9GJLnudI4Ut3ZbHAQ0Qcp2htvLZTknFzd+DVq9d8/7s/BOCjj5/xySdfZbPJPJFfCfRsGIOSdRonqEiyqwq+8vQxh+Y5h04zfmFfdYCQktmYB60LYn30C0XgB7/nny3x3Yn3PK8w1+FrN868ujly/SgjSmKyTUroT2YIbdxKKZTyRcgkibi8vkCguLr04LHZbPx1jx1CJKTZBjNrrHMc7zxItf3ED370hh9/9opiI/naV6/59rc+5ZNPPgjXzTEPLaBJ4ggbFOiVVGuThnOCedL0/YQTgnJ77eUkwh8fO8P55iU3r99iujNZIhAqRgZDuzhJENKXd531HZxCKoy5D6iWeVo7Ap2fywV/lpLiTwuClv8a4UL3aBD8DV/Fgye6h7/w8LW+8LNftEDLOcdBa2zdME1T+KGhaXqEKBBO09c/Ji9GilGtzTbNeQK3oe/ukEJTFgU0NVWxYFhO29aBZ2q9tpGoaR74uVVFCbJHupK2EUjZsdtNntcFSHmxYliFo20lUnZBuT6INgqBjBRyGIikRQpBnmqWCmaWppRpShfXSLHH6Jm2fk0pd8ggM9F2I/m2g+0GFy+Y0qC2vuRysdnSjQOp0Yxtz3ic6etXvHsXMOziisfZhjGeSKJHxPlT0uQdP/rx91YMS1KPYfJiS57vkaKjUgpR+EDLNVviLCXLDMYIhinj7BSv3tzx/X/9pwD8rY+fcRWlnhpgLXvVegzTi5/rhIo6dh8W/Nr0mD9unlM3GfHDW7ZpcGWDkJcczImElKIsaIN3ZBFKiA4Wqcz1etWBo7VgWFWW1M1PwbA45Xs3n3P9tWuGaeR647sxy7JY9w2HQ6kWGsvl5R4VS0TTk176QHyzeYQRHVEcI7KED556DMuLmuNd0DdTCX/yozf8+z97xa6UfO2rX+Xb3/qUqyvP0ZpnR1ffEkcZSTyycwbbdqirx4gyYFjdMicbeqlo7458cJkh5HbFsNEZzj/6Lt3xLVF3RluNUDHboGmYbi5opeLsOhLbkrKhlYpNg3cP4P6wKISgabz3oKNABJJ6Xddst1uUUmsCggYQzQo/m8qtWCeaDoQ3rl4wrCoKzqczON+x2NSOImgCtg8wrFikEn7G8XMTaPksw71Lu3CeEi2cQTiDErNX35WapcffiRklAWuxxiCde9hFHjgk2utOrTpa4KxbswFCCESQUBDS29AoKd97fNmmpJTvbfyW+2yAExIVSS8aGkdIEaEXgrG5Fzgz1qt+yyjGOLMuGEs4GQnh7W60AC1pglaLqQ0oEGlCmqTk2YZdVa1E9q7tOR7PzNOZcbih7c4YMzPrkUT5RXd1ceFPmFGBdZIoSpEqway7saMfJ/p+pGkaxnFmmiauLh+RfCtYS0QRfT/w2WefURQZl1fXKBlxcekXpZlnYuO5SU8Hw6t3B5ruyPTFiy4kk9Yrh8dfr/vv70Oun/69b09w5EmEMxqNbwxZhpJQVBtkJLk93vHbv/eb5EWOilTgNPlT+rltuLl5R7Xds9vuKKvtygSIogTnHCqKwXpy/DD1ODPwr/+VN7f+oz/6v/j1T3+D3/rV/4zvffe7PH265/rqiusrH6wpNKejoW8bhJIUeUmeF8RxvCZOtfb2GlIqVJQQZwWRdMxBi8tMPRGGchNTtxO3NweKqx37yqtDR3GMUwmoBBmspIRQELnVpmVt/1gyTUu36zKfIZu1ZrgWUVLrPMcRz88SUqyHDC+F4VgaWIQQqKAZJ0Sg7YUs2BcDri/aWf2nPrQ2TIc7HmJYVWywscCOHcqeUNOM7RPO8i1YH1xsq5ReHNiWOefzTHM6IRyUJhjYYsFqnMgRHMBtKdnQ5Gek8JuUx7CCBocSDZFMiB5gWFUJhr6CpqZbtYd89nnpXKwqgRN7VCQZowQ7zlzkl+ggZ3A2LvDzG4yt7zFsG1EHwrOQygtpti1GDOiLS9Ca168ChpUT9FBdTaTCY5iKKzYfBwwTirfHM/NkGIeB9u1Lj2FZzOXuOryHYU5jsqHAipnuIqXqE7IVwwpUHHNubmkauL09eAxLNlz+zqcARMMe1Ue8uHtJUWjk1VdReUUcKhDpPLMxCZ9cXeAChr1+q2nX1jQ/qlYycSQpCprmfT0mABHyW3XT+GCrLHFh3gGGpmVbOjIV4dRxxbDl8VRC/uGjgGETv/17T73VUqQYB49hSaQRAj4/3iFkxOMnTyg/ekYdMGyfJ7g6po9GaGG32wcMu3mAYX/G73/69/nPVwz7mOtPPuH6yoeICo3RhsPtQCsE28cluX2CHUfEEog/yqjf3rGtdqj4mlg7IqlXDNtMHZINr82IdBPj0BAVii50/TmZI8vdT8WwJmBYEdCqfQ/DmvcwrGkaqqrCFS5wrhucdeThQKHNjOha/3dI4bPE1GyDcbUQgl3lleEjKdhWFefzycPWimE1DRb118Cwn5tAy85eoNGFmx1jEFqjnCUCIqnRYkIx4wiqyW5GoLHW4Kxv0RfW3etb8UDvatHDcjKUFBe67hc27+Bb+FBf6Kf6HAqxbl5pkmCdQ8qwYS0bSziieOkKg7EmtM77bE6URCtp2TqLthYhDDKOcc5i9IwNysxxmlDtt8x43ZC2bRhHzRT88KI4JY5Sttuc9FFGknyMlJLD4cDbt2/WeVYiothcIyLnM2+bcu0+effuhixLEcEX8vr6EucE06SJ49CCrWKGcSSOFeM4ME+a7eUlBCXrpmmx1mGMoywSHu8LXr85Muj7Td0h1s17uQb/seFVXxZS9ULK96XXNFVcXl0yac2I5INnzwDIIsHbF59xqo88/vApj588pixLLx3Rt+vrLgF0HCvmeWIYRqLQzTeOEziHNFDkJXa2jJ3hf/4nf8gf/MH/CMCbNwf++T/7v/n46RX/8L/+Pb75K7+MQPPi+ecA5JkiTxOKvEQ7Q14URFFKUVTo0B4caUuapkQqJckynBAoDJuN/xy35zccb18j5p58k6BkyeA0pxCEV5cfI9MNNs58pnSZVHlfQHThEOKW1NYXxvu6WW6958P5L1w3n3UU0n9/X+L6STL8mkMLP1s6e534xQy0HmJYEUQY3axpj0dKHRE1EHWaY3dATTPO+ue0pkMJjdsIilzTHGeEdZyOx/DKHsPKraYVGtEcoNxSunLNnmyrcCJvGqSKkXKLlP0DDGsRIqKqKi9eGsqMrWjJl01/mrFjQ/boCjlMlEVQy87947kcefvmFX2/oa4dzkLbScoiRcXBBcGd0daS5YZujKmdRR5TROIjlAu5Qewls7liGFrenN4xxtk9ho0zF1FKmmakz66ZnuzZSsnhMK8YVruaXbshu/YYdpHEZFv5AMM+R7+dEeU9hhVFxTRpnn/mPQb3m5ibcSTWinGEw92Rq8vHrFYuCJrWMcwxZXFJHj0hj168h2FFWXH29HaaENaUlFAu0Zj/WpYlrgFRhrXYgCgXDHNgCtK05cOvXzLpjBFJeXEBQLYXdC/uePHqc77+W0/5+i99nQ8+KHHuTN/7tT/0gr6pieOEKFYcDndEcYoJGHZ7e0dZOGKRUFQl50PL+VTzT/+XP+QP/uB/BeAv//I56cX/wTeffsI//P1v881vfI12Gnnx3L/H4+sdeXpBkdekG0NePCGKUoS6QOugaXnMubq6Yuhn9pXAVVuPYZW/z2/ftHx++33E3IOZiBQYp9dmiyhJ2V49wm6vacUDDNtWuHPQwCoKj2EN4BqfcfK12bAGBWXpM/a5y2lE47O2FJwa/7cUWFop2UpwZUGlLN7myl+vqrw/hHhVrfyvxLC/Tt/0z0WgJfASCeAQS31Uj6BnpNYoa5B2RroR6Wbs0injDGDAGa9N5OxSHQovLHDCradvISQ+7oruld8Dm8XLAkmU8EJ+X9x4llKX4EFZMYiNWmFRSvmslfVpd2fujat9CdSLojpnPU9GRSExt5zEvPxAJKXvAowikizFqHDaG2qal2cOXQ1OUJZbLi+fUH7oxQLjOAXnpRqM65DCl6Ka5rx2XJyODWWxI1KarITjqeHm5rRa0mx3O6qqJI4j79c3jNzeeP/FRVhV65k8z/jmN7/J6XxgGg2fP/8co/0JvaoKojgmFYJYDlzvSz55ekn9/MT4UOJBLoQffurG//DeeE8kc51RP5SzlFmEijdMQpKGUuvd4ci72yMff+Wa3/m93+HpRx+SJEkQqvMLdxwn8jQi26S+GyfN0HpmXu5BC1VVoYSgrQ8YbfiLP/sL/od/9I95/TKUMiIo8w1/+ze+xrc+/QaPrq+IBauq8usXn5NnEWmS0I0dUZJSFNuglWXXz5FlMUmSBrumGes054N/jePta/TUouyIMSNJFpOVGala1Ppn8l1EnGRYGeOQPosU7v91JgVrhuuvGj+tpLcEWpbFNmrRqwmX8mEWzPmDhu/i9RdKPjioOMR7khC/KENJxXbjOR0mWKy4bKCYZ7zqzIbOzkgXs3WWc6A/yMJQtgbrJNaewFmqvKQJpfgFw6zR5DJD5F4DsOsG4tDN1yFwTRMwbIuqBEpsce7enqQofLmklZ3X0QrXoItCGV2rFcPKPMc5R32q2eShtIhDiBJjXryHYU3TsRTHymqLeYhhmw1JPLPZPfLvNdQc3mkO3Z9TFhVluWW73d5j2DhTOonZWIwD6zRjn9A0L6lrb1d1OoIpRiIVkX1Q8oMfvEZKyUc/gWEDR62Jh5G/fPOaeExXYVWdWXIluLjw0it3tyeOh+OKYaJy7C8uKLTgx889hn3r6SX/7nDiNhxuGiqQgmZZBOXCfFvJPmH/bxAliNbzjhwlMsRiKjy3ry3lkwgVCyZRYcK1mQ5Hfvjjzz2Gfft3eLqrSJKE+gGGxfFEUe7pOkl6XXGZZmh9oD96vC6uNiSJx7A39QFz9hj23/6jf8xnLz3PK6k8hv3Sb3yNTz79BuX1FRcCbm/8vfH9735Ong1cJQldLIkmTbHfYtOI3IaAbrzjunrCZZLibI7TA7bWvDz8AIC7ty/Qk2CXx5h+xGUxMs5Is3sMa2XENsnYbi5oowLXJjghKBYClXM0bUNZFjQP+CJLkbpdSrO18zxE4Q2oz6dmxbAzFgXUbovAsXWeK7eVIaPlBI3rKJzPSLb1GRxsRUUb0ncFAi3uiS4/y/i5CLScI2wwrErnThuENrjln5281IPVuMWF3XmVd+cszhqE80J2S7ZkKV2wlDikz2Iod59FEQJw3nLEq2555ff39YHeN5VefrZwZER4z0UWdSnf2sDOttqAIGTKvF6TExLkqn+HcQ4VJAYQEMcJ8zzx2Wc/BqBuz+wudzz5+CM2mxzwoo/T6MmG82QQSKRSOAas8H9zkedcX3py9/MfvuNf/tEP/On2SvF3f+9X+eSTr3J95UtQxk5M00BRbnBoDqdblFLEcYQMxq9DP5KmMXVzpu8bcBG3d3dMQ/BCTCOa9owxgnlypEnER08ecTsVvHzrrToGO78XXP00Ltb9WOQdFnGC+5EoENbw+sU7tvucm3rgrn/u5xy43MZ881d/mWefPAPB6ovVhdPvPI5kUU4UpYzTiLU+MxjFfllM08TxeCKNZpIk5Xh3y7/6l9/hokoYHwVy7n7LP/gH/wW/9/e/RVVtkE4wdj37fdBcSRLa5oydZ7SxvH79irGfyKueywtfDsk2FUJIuq7DmBlne+w8croJ1iZji3OzNxKPJDYcHpYSg+eaeFNjIbwUyTpza4CzTKd7f+6/EFj9xzJN1i0cRxe4Vvcip/79fpJML6V8j5Pl3D2v7hdrBI0yZ38Cw2rdMWrY5QlH0VAPR5zx92DpMnAGV/fU2rAvKqQTEEod1kEpoD6fqKSE7W7FsCpc/65tAOEDjEhg6OjEDtv6a7ndgggbRdQqROnzMJUQdMM9huVFvtpg1XVDpGLOJ7+hm6mHSrEVW6SA0+mAqySlKb+AYSNxnKETiMeJ2c785Z9+z8+HsKhE8eTjj3j06DENncew24BhVUTfdmxjhcOhjUJxpHj8mOvZB1LPf/jv+Jd/9D2EiBALhn3rU7LrBcPumKcDRblFoXl+ukX1ijjds10x7BaxeUTd1LRtAy7leL7HsIu54pjecjp5DLtKIoYnj/gwKTxuAzd2pnSLr2GDcw2iLEOGBQhSDj7lJUAIqnCob1aRiJypb0gj+P5fvOPpxzk39Wvu+pAhbBoutzG//Xd+mWffegaVxzDfT9CHv2VED5CkV4x3IzcR7C9gv/cYdjdNnD4/ke5nkuSK4/SS//Dn/5ZnDzDsK/un/O4DDNsGDNt87B/PkwnRWOx8QJ8OvD7ectt/Ql694ysXX/Vz9uiStu3A+qau+vQOO4+YgGHpKBjdTKfwQVrrcC5ZMayormnPDUadEfkVW6HoaWipyAMm1U2DEJXnqbmSurGUlLjAZ7z3km5pIBDcS8rScqyPYT0tGFZDXVDLju1W4ISPGdpaBjJYw8LteK9KBdTuXu78Zx0/F4GWANAa5TQEw2hhBoTpYGpRc4OZDVqD1RPCTuH3ZnAWaSGyKRaLEQa3qLrLKGw6PtPk8CcxF6x2/JPEqnYOXuBSSokMJ/9IilVc0x/VRThlsmYHhJIrSU+GMiVCIBaeVxQjzOQ3QaWIQtlNOLWCchTHZJsMhGAcWk6nO5CQBdHMyydPuXz0iBmB7R0GG0jU/TqPaZLgnMFGE0pFKCHJ84gxpOavnzzh3//Fa87NxO7iisMbSxbdkYXAItlI81fRZQAAIABJREFUtJ754Y+eE0UZj558TKIijnc14+g/Z55VwXPvQJGVCBFzeQkKf2qt8i3Pn38OQpBlG2o5IuXANz4xbBL/Pq/ezLQjGAQa4QnWwoFdQlWvvxUBSjiEsswWZieJw1JKBFxf7UiiiBcvb7l92zIh0WGrcGieffyYb3/r1ynyEjPDzc0dm03GRQiClgDOd1FKmrZl1IYk7BxXV9fEUUR7uuHVyxf8k//pn/DP/vd/wTe/8Yzf/PWvAfD7v//3+Pann3I83dL3HUkkkWia2me8zDSDnijSlO3uY3o9EScbrJO8eOlLGWXdcLm/JN/4TXfuG8bTO+zZl0sSO6CkwVmJVhIpJImTXuwSkHFCVBWMSYR2jgiBdBIt70uuDntvbg6eBCpYu9uWI8RD02lYslRL9lcinPDnm9DdaC2hocC/isN6Xpbwy2BhsK7BmBJg1H3Dyi/IsAgafUTWmk0wvBPzQKs71NSiUs+z1BpyPSHyYG1zvoUipztPAcMiTg8wrJIRTdsDKY21lNaC7HAiXzGsrCrapqNpGy52KbksGboOaX0gMDQDSjXIqoJSgoBSVDjRQu6vQ6W2OKAVgp30wqhKRZxC2abaX5CMLW/absWwfExo3Al98utldxGjNxuUEIw3LafxfQx7/Oia5NEj5q7l/K72quhFTSMW4nJJmiTcvD1howS1izCzId9EjKlfTx7Dvs+5mfj6syvmNqd98RDDEo665vCj5wwLhj2NOH5Wcxf7Ob0uKpSaOYx6xbB4aFCJxzCVS54fjtB5DHsnR7bbgQ+lwQR1eftGIWIwtJTFlqat8QlE/x5laRkomZuG3QMMO7iOJKzJywq22Y4k2nN6ecuf/qAJGOYDzwLhMewTj2GnA5yOd2weXbONPIbFex/AGeNLxo1oefOuI7ny1+STq2vGqwcY9t/99x7DfvMZ/82CYb/+9/j2737K8TTS929x0RbJkdev/JxvkpQ5m3Ay4ZMFwy4vONeSv3jp1eNL95TL6BL9KIP6DXMP4+lIHAzFEzvwJGDYse+QSnJZZCuGdWNCfFVQJxGb2hFdCLbFljshqBcMEwJna4wLhxBRU1cl1RcwrCiK92x5hBCUpc9Y2drQuvYLGFY+wLCWoixXe54Fw1rXrIH1WdVg7qOCn2V8qaP15fhyfDm+HF+OL8eX48vxNzR+LjJaAMJarB4g1MnRLegaMzXYqcFajbf/0EjrMzTOTsESRwARTvr09SqZgAyn8aAK7wxCSrQx62lQ4VAyeBlKgbEWaYO6NiBCqWQpG7qgHfRQc8hXJ2WQhvCv5cuPK4sO61zIfHkPpnHoSeOMalESloquH7g7HNjutmw2GVIKFoaEUoqh63BRQpwqnFAMWq8m3FIKprEnTmKiWIb36OjakbbzRPX9RcknX/+If/Onn/Enn93yJz++5dlXKn7n73jNp9/89V/h7Zu3JHHMV7/yCbvdnvO5YZNbktDbPA2+A0WJiEgIVJywv7hEhRO4dIpNtvMK+bGirGaMmDH9yKMLnxKPVMyPnp9ptJcHcCJaO9cezqkCqk3Edr/j9bsj82zWM8S2SLi6uiDPMoRS/OXnbzHOsohFPNpt+K3f/HU++PBxKI0amuaMtaxq+8MwEsmErhtRkaIoStI0XfXPmvrMdvv/sPcmsbZlaX7Xb621m7O709zmvftevBdNZkZmZZXLTVG4sFEJC8mW7UJCSCDDhAEIMwAxYQQTkCzPaCZISEYgiwHtAMlgLKRigrFdWJastCuTalyREZmvve05uz1779UwWOuce19GVFVUKp2uQrlCId137rln77P23v/1re/7f/+/z+B95zvfQQn4xX/2j/LVjz46Xre7m7e8eb0kz0uEc2xvb8BNGD0ebmyyLPHdeNaSxAuiOGW1OSVJPD+hH3p221vqO022WLCIBNPQMnWeD6LkiIxjrIoRMiHNcqIH5ThtNEkSkRQ5vQZtDbGM323isJ7EechvBULPA2mG+7l/p9Rnf5DQ7h5kv965ZCF5dciIuS/c8B0KwZ9zdf8DPqRzVDbHpT0umPGiO5gaTAL5vsVYTYFjzhf0teffYScqPVJkFY6InbSYpqHIPJ+obnuWpQQquuaOerdjtdmwyDK2IVugECgZvYNh1lpWoaSyjxwiKhCiRbSSoixxAnopWAaGiwCvFN/1EMXIZY8Unu8EsNUTQ9MgVktcvaWua7a3E+lmEexnIM9WXF7d8OrujqfvLamWZ/QPMMwMA/u+p4hSxlnTC0WkNVGwxpFyorm5Ij7ZsC4EvbWMCq5fXNH1B/Xz+AGGjfyDb//fPP/pip/5p73m00MM+/pDDHuUk8zhnt5vMdqwEhFjwLDsAYb1TpHpFeW5QI0D6knJyzd3LNaW88hnvSK15frO8mbrsHSUyw00loeNiaL1PKwq2yPXK9pBw93uHsPyhA+eP8VqTaVyxi2opkWHB+70vYBhH3+Fs9MT2nYHWHTdIjeh43iKMXJCqhEVTTxelKQnp2xN0MgKGLaSin/wnW+xqsqAYT/7Doa1r5+yzEv2RwybyRYBw9yAMYpVJN/BsK989ZRp+sDP2dCz07fUrzTniwVuIZjetDTdSwAyOXISx9hmg5CSNHvE1DsaF+xzzjQnJ2t2Ksfplm3tyOSCalkdaTxNtaSwO+pdC67wGNK1tIeMVhGENEL9traOEouzDYQsmBR9wKAKaCmKEhd4WuB52g5HWZW+n6G6x8MDJlauxGjBwfDgy4zfNdASQvw3wL8AXDrn/lB47T8G/i3gKrztP3TO/e/hd/8B8G/iSfn/nnPu//hdz8I6MBozTwgbBM5Mj5077Nwy6w7JiBDaG/seOBDWBPFF5fW2js1PwS/RahDKa1EJAG8b4nD3omTSc6UOOjPOWkJb4OfnAl/j/UEa3EGsVErP9UJYkOp+LfF5SpSU6HliGvfkiwVZVrAPopTdMGKc4P1n72Mw7JqaalmSpL7EMIwDfdsyO1iuT0mLpdfVCh6EvvLpYNZMjWEae8ZxJI4SilAH35ysWJ+ecXO341c+q0EJmlcdr3/5WwD8w1/7lD/9p36eb3zjKyg38P3PPmHSgqpYsQgPZdu03N3cUjdbqrIgUREgGUcfIJf5kidPLnjz9g3a6DAnCiiJVDAxXcL5OUxva0ZrvMUPMTJ0kwociRSsi5TTzYqyWtF1E8OuOZLdL87PsNpg9MT56RJt99zsWnQIsn/u577GH/+FP0KSSqybiCLJar0kUjHzodtPpUiEjzmsQI8zSshgveP1bl6/fMH3v/ubYDW/9Of/LGPfM457smBb9OL73+Nbf//vk5c5Z2cblHToeUCFi6+k8BYX04SKM4q8IitK0kV+DNY36xPO1hua3Zary1fc1NeIqT0KPcooQUYKoRROSOI4QiCO3ZEI0POMxBHFCpzAYAH1+WjoS4xjx+EPCJLeB1FH+gJwb+Mjv0AM+Is/3/0wp/VDjx8LhrmHGHYDgDWSJBXYqWHSHX17g5kV87jj4C1Z5F7M1wnoAoaVVUm9DRY9hcQ674HJsoS2PmJYsfABytD3RwzrhKSyNaWNjwtOuY4Y2haW8rhZFAi/kPh4jk4KZD8go8hf285C1NIFexwaS1lWpGPP9RHDLOel4zpg2Pdvv49B8NM/9dMYdrx8feUxLHBAh6Ghb7dMAcMK57juBXF8j2E6s5Szpm8MtzeXHsPWJzwuHwEwTYqffwfDJM1vdLzeHTDsV/nTP//zfOMXDhh2GTBMHTGM5pzvf/Y9Li9fU5WPSVSEomQcfalM5UuePClpu5at0ah98MslZx0wzCwd3X7HiS0Zay+CVbvxiGGqnTk5YtgHlNWKz7rXXGGOGFZmC+x2R3a2oThgmJPo0l+Un/u59+8xrLlluV4ihGA/jMwLf10WzlMVhANRd+iuR52lnGee//m6fc3rX3/B3dVv0tYNv/Tn/yw3lz3jeE2WekmeF9+/42/9/b/Jo/IRZ4sYtSzQdwNKhO8iBEsFU5KgRkPx6AlZUTJry3rt5yNNE854RGM0l5evGOprxK5lsfRrz3JfBAwbUCJms4no2o5o4/nDZcAwoRzRZkXSGJIy9519ASxKwFFSlsa/FrwmDyt19yDMFUJQySpgmECEDl0HVKJClND1nlMnRBOsx2C59Mdq2/bIH/uiIUTD76Ug+GUyWn8V+C+A//YHXv/PnXP/ybsHFz8N/KvAzwBPgV8WQnzdveMo/PnhnGUaOpQbsNpPlp0bzLTDzC1m7jF6xJkJGwjxflhM4IX4IEjg7H07+oFe4um3oR3ROTDmmG0SzncNChka4Yw7LjDvnmQgbcv7ReghCfggYqqUOPo0ikPWLJIgHPv9nmnec7Je03c99XZLFAiaVV6QZiVD32OF42SzISsW6JC9Y7IYMzHPM/s+JkoSpIiPPoXzPDNPM23bYMVMksScnpz5TrvAfbLOy0T84p/4Br92+y1u2xkjBbeBY6GHLe8/eYsyjlR1VMsNF0/fJ4lTdAjohn2HVPDs2XMc3gPq5rpmH5Tj5/WMFDHzPJPkKTGKOI4pi4xp8guQkJqvfLBBKs3LNz17PaGIiA4gBVSx4qTIyaKIMo15fLLmZtdQhcAzjxP2Y8dVc02UKNbLlA8++IBnH/gd1gcfPiNdSKLYEUVgtNdpUyKiDdotRVZgtFdZz9IIISzzfmDq/T0465nd9o5xaFmWGfPYs16X1FvD5Ru/U8PMvPfkEU1Xc3P1muWypChSbLhu47DHqAiHYLFIyfOSLC+RUXxsADSzZr8fkM5xullxs7/h9eu3rHJ/3U4enSJwGCRJFHuxUxURJUHRXwqsmZFOo2KB0TYIwd7fxAcz5x9m3AdVoWnkkLHi0PjxgOj+pToKBV/qbT+68Vf5x4xhRmtur96ycj12EXbU8w4zabK5ZTdfUi5iXDQQqxR35wMph8VQ0bQ1QkjyssJYRxE2i20HUuxQQlCWOS2OtmmQcn9sN18tV+z3k8ewrqU1js2moO39M7nGi2V2DTiF1xFaSqqiusewtkdGa4QYGJQnxjs5IIJh72qd0raO6+trbu+uOVk/Q4pL6q322oZ4DDvNLhj6nrrb8/5mQ/b47Ihhg7CY3S1zmnJ9OVKuz5BVzOzuMSybcl68eXHEsA/e/9B32gUMS1xETMIf+9P/FL/2P/4tbtsUIztudz77ux2kx7C/7UhXHdXyecCw+Yhhl9dXHsN+6pu41mPY6+uaSPj5SsYUKUaMtSi1JGbPZrPBbPfcBiX9s01OlkmutwMvJVxvb9/BsBSoNoqTOCeL9pTpGY9PIj7btVQBsx/FJ+zHt1x99zeJTlasn8Z88MHP8OwDHwCdfviMdLEkGhv2VYHZ3lKWS59lDp3ktfEBdxTvyaKITlj664Fb+6k/j8XM2+mOmyuPYXc3lzx7dsGrFzsu3/w6AGWW8vjsEa/f1nzWTCzHC4oiZbQ+0JiGG9arNU2zo6hOySzkAcPqYPhcZJq76wFpZk5jxc3U8frmLavBX7fFo1MEDYYlJ5FGSeWrIQ8wrDYzkdOoSLATllVtaOQ918paS5Fnx3+3lFRld8y4l86/RtlSCn/ubdvi7NGjnaKsEF2L6ARldWhmKDnoAzvXH7Ep+Cf8NuNH3HXonPu/hBAffsnP+xeB/8E5NwLfFUL8I+CPA3/ndz6IhbnHuhYzh0BL1+i5xs49Wg+gZzCz3wkeOqmCCbTFd1wRyL9HG5BAGD8sL15RIMg3yMM23G8nRRT57kD3blXDWou0EmRQkz2qwt9ntnyn170elpRBqiHy0zvPlnma0HZmWS0Z2pq63pHFCxahfCRUyn7c0zUNF8+eoOIIbczRIkNF3tTa6r0XextS8uqUOdxBxhhmPbFIF2TlGqmE/3vty0r+qzriSPBHfvar/Muj4q/99V9hmOx9xmJy/J+//C1efLLil/7cL3Lx+DnS+e68mzu/20sXMZuTNdM4sdvWpIuc09MYt/LzOe01fd+i9YQbLSKWnJyccHNXY4MZuNY9sUi4OIuRLmK3s+xHgwrxc55EZIuIsW2wY8+6yskTyULApvCB1r7dMeo9aSo5P18TxfCVrzzhvWc+tZ+mcHP1isUiRY85t3dbimLJ0yfPqbL7hzVKE+ZppGu3OGtYLJJjID+0LfPQkicKo0fevHrBXRIRCXkUze2aLesq5+LshLZv2N5e07WS1cZ3SWlniOOUZbmkKjdEccKwH5ByRoX7Yxw60DNJJNBjRywNj85PsHu/yN3cXHNycoKQ0mvGGYNQibdxAtAGYbXfiOgJnMKhfGB1fFbccWfoX/o8TDyU0bCBOH8s9R3/JDwH4t33H4/Bu52LQojjZ92/GBjyP6bx48AwGTCsdi2mf4Bho2Y39+ipQ+sZshTnDG3lyxyu3h4xLMtytLM4Gtyh67BtKZzfgd/ttg8wbIlb+nne6S1qjqnWa/QUMKxpKVf+HqzrnvV6SeF6eufopER0wos6voNhPWVZ0UXSl/xchlKB/O0sd7e3AcOeoqi5ujSYWFNOwVS6POX6Zk/dvOZrP/UxKt7/thiWZCX7oSGPTpmtxwUjFXfbWxbpGecXi3cwTAYSunRL4rXHsPlG8df++i8zTI6uFeEcHP/PL3+LF49W/IV/5c9x8XiDdC3zWHJzFzrgFjHP33/GNN7ysm3uMUw/xDAYhgmVWqZYcrI5wYma69/4HgDbhSTOJi4iR+/2SC3ZxxkrHcqoyd5j2O4hhi09hj32Gb49LxnVnnSz5DyLiFTEV77yhNUzf91O05Kb4RWLZsYFDHtcLHn68TeJQ4NTi2SeJ/puppVbnM1YnCUUARrevr5ipiU/UZh6pK1f8O3rN6yrJWXur9v3bz7lG9VTvvbh+7R9w4vvf0rXSt57/h4AvTSIWPHe+2sEz4ninKvrK5bLNYuw8e27O9J4JskEQyfYLDOyjx5i2KecnJzQyZ7crmh2O2RyThMw7EQbKqvpzUS9vaUszmlqh7M5ZeWvrbXebq8FKgGiEkBJG7JVooBKCJoALdZabJ4j2vb+Pu+EF45tW0Tb0oVN49EsvBFUlXsnm9V1HVmWHTGsBXLx47Pg+XeFEP868PeAf985dwe8B/zKg/e8CK/9LsMh7YDRLSYIoDndYk2P0T1OTzijcUZjrT4qsgpibGiZtTiEc1h3r2TtS3YhFRWCMuV/PJZtnAIsCOuYhUI4QaSi+987r+ouhPWeXmEH739/v6C4h6VLZ0ni+ChoOgw9Dku2WDC0E9YYzjcnKCQuPJjDONB1PacnayQOPY8QK6TyEb+SXvpBDpqhr3FCYoUiXnjArqqKPC9wzqHNHm09H80Yn0kDyLMCiXe8fxqP/IV/7pv8vV99wffe+IdhCjfSyxc7/s7f/g5d3fHNbz5jGAbfEQkgBdO0px/2rDZrsiyna3p2d/4zal2T5wXWOoZpYBpnz50aB0x46LSeWESgZsN5FbNaSPa9Pohls0gSZj2j0SzLjFURI92eD84TNqV/sKd5JlssyIsFRZKwKLx2V3vtK0G2KjFCsHWGZ8/eI48VmZLooaNY+uBWSsnrq9dYM7OqSuZ54vaq9nZOQNc1OGvYD61XMLYOYS2r5ZIy7KxONxX7vsWahCxJGZKYptkxTj6l/vjigkVekFcr4iBEi7NoM+GCyCt2RskQjI8dTg8o6Y72FNO+5er6irLakFcrnA1CoYGbYKcJO40orUFqX1iyBv0g2xQu3e+4C/siCx5r7X2HbhiHjJbXAfPitIf5PJQdDz/bHzKL9mMaPzIME9KxtAO7BxhWLEDLnt3QUyxi6l1HYXqsXRwDYMEmYFiEbQeE8BhWH4Jot0CXE+2uBSeoqiUKxV7MyDsvV1KsIvYzbG/vOD09o2s6zGqNPGYaC+q6QSjBplrRdt0Rww6L1EmaMgSLpRLoGssUx5QHHs/dC49hZ2f3G8XNCasHGHZ1c/UAwxr0bCHWP4BhG5y94qqvWbgIKxSbgGGr1RrzEMPqHZ2UrJRkL/x78qxDtjP5ImMZ33gM+3TLd/6R90uM8FpmHsP+Ln+4/hmeP18zDFcsQjmtXEmm6Zr+as97zw8YJnl5wLC7mhyPYSpg2Lap2Y0DWeS/a399xdlFxn42nFcbVl+VRO9gWMXd9o6F0iwvzlk9jpGt9Ri29F3z8ZxhFnDulrjEoIoNaSVgH8RXxxeYWlAUGWssj+IVRgn08JZC+mBtISXN0GDNjBIwz1tu/98aGbI1omvA7rBDy9Vlx5AXCGtp5xsucr8pPY0rri9bktOJOIk5PdnwutnxyW95Dayvfu1rAcMS9Dh63HIWvbv11BuAJEXJ+LfHsIXiqh8ohWaoEpb5hmjumBv/HNTTikjcED8uQS4Q9h7D5vldDPOyGQW0bah+H56lksY5f783ofRelrg8pw0Y1nYtJQWi8qK0RR58DNtwXWVPXdesVqsjhvlgbkdR3AdXP2AS8LuOHzbQ+i+Bv+TPkL8E/KfAv/F7+QAhxF8E/iLA2XqFsAPOdLhQOtRTi5567DxitcY6g8QhhbrnTQdela/pWa+F8SDD74T1AZrzClmHjbRz9xY8EoF1AovxGS28DsjDQAvhCe42ZAg8H+s+i3W/y/d+hEI6jJ3Zh8VWSsEiW9A1e6QULJdL9H5kaHvmwe9M9vuBIo9R0mDNjLaGxWIZvBEBEZMkGQLNOMz0o2Z1+vhIVp1nh5SKaZo4KE9Y4yUm40NmbdSoSPLZp9/lfF3w9Y++wvsfvc//8jf+pj/PKGGRZtzebPnub3yX7/3WJ3z2ySP+5C/+Aiak/7PCa3idnJxgnWCe9b0QK14w0Ghfik1Nys3ullcvXhJbh9KhlDoqhnFGW4dUjtRZBNMxvWunkURJ8jzhZJkxDTvGbkeROoQNi8siolpVSBXhnMPsNVcv3vLsvScAXNdvUIuEOBK0WUaeZwyTYdjV7KtAfFQKrRxprLB2RLiJ26tX3N56ccSyyCjyDDuPLOKIrm2JpKRvd2A8WFqtAUe9ExhniSJBWS3RIeM1zZbTvAIVe1mRYAllrTsuUILZX/NpwMwDwk7Eyh3JlsvVijTN2e1qZJSQlxGRiEjCvSEcKGNgGhFSgzJgPB/xocWRlOJhHdC/9oCL+ING0F4ZnqPwblAtCefso7bweBzff8hy/aCVz7vjx5vR+m3GjxTDHp2sEPlAMQu2d/7+2t7uWCRg5pG632KdoW0d2AFCWQYhqKoe4zbopsYJS+sywJOZi2pBvdM4pxEoP68OZtegdPCZM4I8q9gr5XmLxgQMCxZORlJWa6SS1HX9LobJewwrCofoOvpIIVWBsTPD3mNYLwVn52e8bbZI2bGUSxZJzND23F35bPd+P/A4j1ksM+wuYNiTp4j+gGGa5CRmutaMV3f08pT3PlhRxT57dzcMFM5zgQRgi5IMmNVAETQLp37vMew3P+F8XfD8Z/8w7/9sS/c//w0AluuYRfqU73225bu/ccV3vvW/8if+xFf4k7/4C3SdD8Zyclokj99/P2BYgzEDRfDMK1crTGGpm5ZpF3Gzq3m1bRjrhiEEpqtYMdzMbK1Dqh2pq5jaCRvkiZrWkSjJ8tFJwDDDTfeSInVUAcOixUS52lAOGY1zmP2W7/6aOWKYSgYGPaF0RWsMNlfIKeaT3fdYBgyrViu0cszxwCKNqXTCy+tX3P76AcPOefwow84xZ5s1b9+8IVou2bSONztPf7ALDa2jNoLM5ez3HRdnG7a1vwdv72rSR++ByimqBKxl2lmMdTTaB6dicghzhx4Hxu6WrL9ldJbKeBmKZbRiji2dsVRK0bYNZ4vnRyp0VUCUZcgk5k5v6RqDMBscHba+x4peCqqqesfyqA8fUgoBTQPOB+sl5dF0+sBT7pwLHPcSQUvXCYoCuuCnKIX0WbGmCbIQJWUp8JXpcH8AluIfvzK8c+7t4WchxH8F/G/hny+B5w/e+iy89kWf8VeAvwLw1WdPnNF7nN1jTTCMNp6T5awJGaUHnBDzoHQopc9iBRlE6yw2LHLWhlKj9QuMt0V0Xsn60LGFBOUTiwffQGs05mGgBdhglSPjyOtfWXvUyXrIUzmsK9M8HmuQSRLT9z1FkZNFink/0I8Tzhj2QTwzy1OiLEKbGae86bSU6thBmaYFxowMfcd+gCfvX9C2LfsQ7S9XZ0RRQhw7HCPOyrBTloyjD5JEJNhevWGZV1w8eU7d97y8+T5/5pf+OADnjy+Y+5H2tub2zTXf/fRT+n7g29/+VZ6/7zf1KpI8vniP7a4lilKUSjDWHAnkdhaMdvLdT6NG6xlnHUO7Z+oPqXnBuPe2M/tpD8IiI4jC3EWxYLkqSbOM2Wr0NLJID26V/toW+QKYcVYQpyn7vmfXNmwKTyRN84Sh6Zml48X+U7JswXq9IYqSo65PWhRESYxSjtvbS8w8IpVlkfo5396+xZklcbwgUhHrZcn11SXZas00+usmgXE/YEyEVIo8W7JYpJQrfx5OSPphzyKr0GYO2TKLcwZ1MDCXfvcmhIEgzBsFoVh/P1qiKGK5XNP1PVGcUmYRcRAmtcYhtMXOM8ShQcR6JfeH4YzW5oFfZ9DgOmRWnO9WO5bdD5ktxwPOp0AKv6G4j8/cFwZov/P4Jx9o/agx7OvPnjijI5xt3sGwZtfh7ILcOjrhSxLNrn2AYR3WrrCuwRYCOodxljyUdbSe0XZHmVe0ImZna0QtWFrBPrRGb7eS9cpg2pZdMgFlwDC/FGRZgdEa6yTzPLPcRETRCmtrCrzdS+P2LF1By55VVdJ2DdM8sk/9Lj6ZYnZyR1HknEdPuUsG5K7+HIZl52u0ucPZBCEj+n7AhR3D6WlB3098+/It+wE+/ukNb9684Toc4+nqjCHyWZNkFjS2J0fgqnsMW6QZb1685DSPuPj4D/Hq8pJf/+zX+DO/9M8D8NFXL7jrR9rvveL2zTVX19dcXl7x7W//CpsTj2FxXwCMAAAgAElEQVSrteT5xTfY7t6w36eo1QmNbY/WSXaeGOuJrhdI7d0iXO1QbcTU+6CwiZofwLAb5B7WgRvkMUyQnq+5s5p8GlnMAnkCY8Cw6IBhuWETeGuGPV0RMP/RCbHT9Ls36P2aMWuJDhjW+4wNVUaUjNhBMnWXDPPIUuX0px5/tq9+C5c9ZRNrIhXx7OkFn373E/ar9VEUV5qBWAy0XUSsRpJ4idGWjz/+Kf9du57+6pqz9z+6x7DS0ux2nkYBCOmz/5UwjDbB5SkrpYjDs2BNThRFOGe96KqK2Wd7HlWPw+/vMazMV0hV4gwM7T2GtYAIGwkv2m29qvuhDG8dxtjQaGLZud0Rw+rac/iQFbLeUR8xrKFtCyCYgLseRwmiDybgLS0i2Lf54K5twdrmXm38S4wfKtASQjxxzr0O//yXgF8NP/814L8TQvxneCLpx8Df/V0/0GmcucbNHeLQFq81wlnA4sQMVmKNQ2tzlN53CITzzbB+B2180BVAzPjaCQKDwHf3CMsxwwUgxYSUCdYmGCORLsJM3s4H8MxsBxh76IgPgVmECmqywhqUlSgnEAamWaPi5LjgGDuzXC6x80g3zsiQ3TDOkhW+jLVYpJ4PJqUPLJX0Yp3B+iaNIq6vewwpz59tuLm9wcmeRxcf+rmYDUYYv7g6iZICZyzOmKPd0O72xouYViXXzQ13uy0ffvQeWUiJLhYgFgsiOaFtwh959HXarkNKwYsXXlzTOUE/jAiEJ8RbQ54uEIuQrZIxwzCw63bsp5Fm1yNdgnCS+taX9UxoGlkVDoEFCetlevRdIxiKluWKy6trhl6jVEyRn5MkoZsvEkxakxcxcRIj5oTFasMcskRFtEBpDwrCgrOWPM8o8iVR5EsZfV2jJojLDMYeO09IZzlZ+V3YIvamp1lcEcsYa2Y2qxPq+o68CH52ziBjQZQq4jghK1Kq9Ql5EMhLspy22zMbQZYssHr23bIO0hBISSHQbmIyI+O0B+1QSnh5knAPjvOESmJim9B1Petiwi18GXVGM+kt8ZRDkmNFhhUCoR+Q4Z31jSJCoJQ8dhMeFmOcPT5Hxphggu43L/IgvOsIvqHm+Cwc+Fp+LkBJT/xHCIQM4qZOHgM4n1EWP9auwy8aP2oMM07T7D7FzIJq4e+vbb9AuAaocVVKYSVGNyRpBrEPHJp2ZjYjjsRnm8iwzmBN4C3pGDt7D9gSA07SzS2mEGQhyzPuJ+omIZITxkiWRcZu2rFxnlSNsrSNV7qO4zVOR6A0Assg/IIt8xVD3RKfbOh2MM+a1eaEOtiOmFKwjJbYOYZxZqliXncdu6bm/LE/zkLP2LpDLhU2d3SxZFEViNAdW0QRn376DzGkfPOnngcMM2zkh34uZsNSGHZYXBGx6tZsjcVuaw4uLLvvfUYhJPmTC65ff8bb3ZY/9LPfwBxuKN1yklREH56hbc3Tr3ydtnv7DoYVRcXl1T9AlBXPnp3hrOFRevYAw0YG6zHsdrqhMRJZJHTNQwybccW7GPYsS8lLj+dUyyOG3Xz3mqt+i1Ixjx99dMSwIeqYtpr8scewLE5w1pIuPB5He42MFFKs7jHMGh6vN0yJpy5cvqpRCyhKQ2t70nmidzPvBwy7jBX95Vuix6eMfUyeDTx/731evfo+eebv08JF9LHgNFXE8QnVaoWIEqj87z949DFv3u65M4LzZEGtvZXP0imyjT+OFBo9drx9vWWcrokjxzB0lOe+PElbk80LbDKiogRrBHaeaDr/HEylxm1fEIuc8gGGdUb7wAdPyXG2wUxTwLDWK9EfqliuJi9L6t0Wk2Xk1oXS+D2GVU6jZOF9EF0ZMGxHFQJkUeQ0UrCUFc4KhOwobIl1lqY5yhp4SSn35fUdvoy8w38P/CngTAjxAviPgD8lhPij/pB8CvzbfiLct4UQ/xPwHUAD/87v1q3zk/GT8ZPxk/GPc/wEw34yfjJ+Mv5Jji/TdfivfcHL//Xv8P6/DPzl39NZCItwvff/0kHOQGtvGWINxs5IE+NsKGlwKG/4PbcQAin8rl1440T/e+v9xyQGZz3PC+tQIkIcvrqbcHbERRkSQSwXWGOw8n4HjgClJMZoRMg2oATOhk5DvAWHwWfZZKS8hUZIq+ZFitV+15ouMtpxwlhLnMRHYr8zFiUjJqMR0ptbC2cJm1budjdYYzg7v6Bvb5nGhjgWDI1PZ6qoJFMxTgmUijFGY41BhHQq+Bb0zdk5w7jnZnfN44snRFGMCylQM40g4Or2LcSQpRmLfME4jsjQOVTXNfv9ng8//Ijbm0silbJIK5LQpquUZNgbFouY89Nz5r1hnW+4s7dEkZd3WC0T4iSirBKsjRASkjRGRKEb0CnaduDu7pJd3dPW3odwtTRsTv2OsapSnJasqzVaa1QmKIoCEUq+SsaUeYUxI8tVgRUWPWvGceTmxnMPIiWhGRBmDc6hp73nGIVrkqQp1jj2w0isYqZx9tpgSnIXujDzIvOdjXoiL/Lwf0FZeRKojBOSrKLfjxgLSiYIpRFSkYSL66xltgZtZow1KKGIVHzvlem0T7tLiYoUUgj2+540dGC6OGI2PWLqEdOAZcBIiTXyaBN15ExJiRSRz7YKXyb3x7DH981ao7XxunLOEYXzlFLglAoSJ4eGkoOhqN9xHhS3wCHdofwOzt6/59is8mMaP14M60EHbFlob7Bb37Gr71iaDY11ZNk9hlmnqZs7qqpiWeXUzY7K2aPNiLMT1vgyDXZBXhjmuWW3811qAEpNuDymiDLSOKKptyRxht0cMKzFGslqtaQbtuy2ipPTE1AZRR7a641hrzXZNNMM3QMMC/Y5xSn19oYimxgWhnbkiGGLUOZ0uwm1PGDYEiUSj2GD57a8rHdYY/jwo6/Rt7fc3rxms3nKcNBJEhHWOJwSDCrGFBo7Gyqbs7v1z9ugNR8eMOyq5uTiPco8PmZIh/0eqpirT95C7FiUCxb2A27GGy4ufDnt1atXJEnCh+UFtzeXrNWMTCuS5CTMZ8pQweJsQyZjzvatx7D8lrdHDDsjPtkfMaySkKQbRBTmvLG0reDu7hP6vufNK49huznj+RHDlozz9ohhZZZTFAVx7OdTSnB2Zk4TMuVYLLKAYTe8+cyXayO1DBgWURYFV7c1VSVogixHks/kpznXVyNVGXM7ziyMYLlacvV97wsbPz6nXCzZasvTIsI6y5OioKx8qVXGCSdnFX17wy5asypPcKstolEk0Rju05G72mNYlmcwjx7DglemdZp9ZJFSMUSKQgiiSKKtN7Yu1Jp5jJmmS3a3CptYsuVjsiyFYLlnraUlpTZb1mKNEAVlIbDm4GNoAY3JF8x3d4yLjCRNcI0jWvv50nKmGQaErKgqQ9/3lGV+nC9qgVqeYHG0OJauAByuaY8YVhQ5dWPg98DS+v2hDO88R8UZgw2BlnAOGboIvQ+uCfBtjgRfD+z+P+f8xbRWY4LptDYjGB06Eq1P8TqBtYYpiJ4qJXGRAyuIRIyKFY4Y6w7G1RLlYoRQR7E/f77umLJMEq/CPU8TQkXEcUQUx0fTaaVA28gHhoGvoKKYvCzQczjXaSaKYp9SFRJtNCmSoQ9tzULy/vPnvHz1CdO8R0lBFAkfLEDgmDkiFWGlxRi/EBprqIPjfJUXaK1pmpqyrPyiOs+hTARDXWOsIc8LlFJYbdlPA845Tk99x8719RWnp2fBANnQ93fE0fYoIrtcLpFIUhWBM5yUG/bDwJj3fP1rH/r5SiOkgmEY6LoGJSW3Nz27QDQdR82wN8cSuOcRCW52Dbc7X+rIFoI4Voy9JVKSrmtZLSsvTgtkqwwtJqQynO43JElEXe84P3uMDAuUEYIocvTDQBRFpGnKPM9HMUkhBGma0rQtu3lCStjve1QkMUHw1s6GpEjIliVn548pyoooSY/BmrXOm4dby7gfyRcpURQh39kweP2pA4l5EcV+/g/Bj/HdfQJJkiQkSYYiYtaha1EIEAajZ6SecVLjlMa5+J4/FR61H2RP2Xf4VQJjLFprpkkf/+Jwf8SxN0RPkuQB4f2ePym+QOT3vpPx/rv+Pu9E/OGGczibUWQOM3qys3COpXPoouB2O9KwwwFNuyMPPoTWaQSC2u0oXEleLDA77b1OgXQeybIFXbtHuJG2tpSuorPdEcNWqyXj3R3zqiMSMbbIcJMP4MDjwGaz8SKOZUm/72mbhniMWVaBZD4tUFIxTxPGGOJNxBiPLKIgp6IG5DJCmhIhB9p2h4piHl08Rs/+OHolifYxNgsYttOkRc8QuJnLSnJx8ZyXry6PGLbfd2ySMF8b2BnHWkXUfY9JE6SU1PU9hj159BitNa9vbzgpUzJrubu7Iw/36BRFmKsr8tyxWj2l3n4ew5xzvPfeM/r+EtMY9v2eMdpizaf+PJdLJEvSISJ2FSdlfMSwn/ua/4wkXdOvWlTAsEFK2pueXeheuxk16tpgMx9kGhsw7OVrbnf+PeeLinEciOX3iJTk7ds3rJYVq6WnHRhl0GJiucpos5iTeU0URUTDSL66D7KjxNErxaQ1aZoixAMM6wSzTtFxi5kTUrPn6voWtV4eMay+27F89ozNsqTIHvP4omI/zd4LE7A2piyh7XPG/Q2Up0TRGhk1uDY815mjqgR3dwZhDHo/cna2eYBhd2Sto2NJMg2IJEPFEbP2QeW8NZh4h9LZPYYZTdOMuNw/Kz7k8RVD1uD5UxU26DkUQQwrM5ZBa26nGWhhEqyn4A0ZWxZaMyX3TTvWNkfR5QOGHZTiWyk/j2FNE5xqvvz4fRNoWTOBPfCyCCR2n6GS1nlrnZDh4sHicCCiW+twbsTa+WhLY83sNYdweNFqi7O+0/CwJkirMGZGOoeJErSQKKl8DRaI4wjnFM5qzwmzfvH0ImiHTJHBYFAhE+WsX/wP+3utNVIqjDUIIYjShIIleh5xQx9ORCJlTCoSVJx6+QY42rScry/ohoY8X4RshCf92/BAGWMQ03wM7g5jGvf3at5S8PbtG/I8J44TtPZk9YO6fF6U3qLIWna7LVhQUvH06Xv0fej2K4pjd5nWGiFhW1/TBjuQly8d7a7j9rKnypZ0zZ5pbxEh4wWwe9UicLT9wDhqkgT6HvYP1l9FsCsKXaFBmAMXiKT93qH2mn13SZkn9O3E7duWgwqFjiBeSz7+2nvEccTp6RmRkizSmPV6E+YDrm5fcS+gKXHOHAOLefZ8qljBNO1ZFCUiTdFmpsp9TV8pxSLJWC5PyIIYqYoTTOAAOmAeJ9I0xUwT1lriOOHQqgBgrAm8KM/Ri2OFQIQAy183KVQI3nzHGM6fH0CsJBiNm0efEU4MMtjt/CAY/KB8wwPFK6z1HMhxnBnHMcyLfNBBGIfzC8ATdLUOqsrOOZz0HMGHx3qoo/VFEhL/vxjOkWcTZtQIF4jKTQzZQwwrcNZS2B3O7cKfOW8Doh13dsK5kVzP6EAiHs1MYRRZliIdtG2NzjUZiyOGOWswZma3dSRnI1r0rBaPUMoHSeO4p3EWZbfQClbrFVM6UyQl9qDDp2cMhmyxYFl5+5u1WlIHnqDebllWCmMFXXePYWk64gafCUJq+nzEiYRVrChWSywtnHgMWx0xTNN1HWWVs99rrPOZbGMMWlvqgGElPmdwNV5TBcKzkILfChg2xifEWqO04E0wJ370eKaTktPslN1uyzC0KLni61//JpdfgGGLxYJ5v/8CDBNMlz3V+ZLu9UMM80vm7tUbRNnwph8Ybx5gWMCFEiALnb8IdCGQrPAY5jMwl9cNCvjss0uwE7JNmN42vFl46uABw/7Y+TeI44j09Iy1kugs59n6IPQJV7cDMQLdtaA8hmXZAwyTho0uuZ2uKYqS7DRFm5bq0QUAahjQk+G9JyeoGIwtOTv/PIadnqbsbjvquuZ0kyBXEhECy11tiJUlz3Nu3tyyDO4V9xhW0a8GRNcBymOYeBfDymxBP4+UOsWdGBrhEGWJC8bmrXNeAyt0FdI6nGgQgdsrnKOuG8ZxYhxnYgsQ0409t7d+43J6GiMXS5xpaGpHWYGtHU4eslUFsbPI0J1YFP5YdV1TuANhvvHyKO5Hqwz/YxgOYTUy+BECPkByFmG8JU6QIsV3bAWQDsGXtRZjLcZOWDvel1xC+VE6b+/gfG0PKRwyOgQfnpg8C4eSeyQKo6IH2ZQULQXWSlQUe5kHbXDKIgOZeRz3CARVWSGFJI4ihLtXv5ZSeZ0tGSHjmKwosYuUse+PgZGeDWb22TqpIiyQJt5HELyHowrSFnGk2I8WIexRXNMZ7aUdIkW6EEcNo3EaWS59GautdwgEeV54UDMzWhsWWSBfRhHTPNP1HcYYTtanVIHU3Qc19YNWV9u21LsdBoOUgq9+9SMAXr14ydtXb2jrju6uASN5czkxA0nsb8z9aA8GMcSxYug9UVtxKMW6kL+RKLyFj3MOiyUSHmAOEKakYz9MKAlJAmXhf28Xhve+/pSPv/Yx2WLBZr1ikaZe2DXIbmR5ynK5pOu8XZFSwivsa5+qnqY9WmtSG3lA6H3ZOEnSoxt8HCesVyvKzSlZWaDiBGR07ChEBnsopdA2lLWFD2BlCIMm546AI6VEKeUVw0NZTzowziIjgYwjpPDdtocAx2jNrB1RvEcVM0o4tNM4Fx1LKtbao77V4Wel1IPf+4BommamaWK/n45ZrkP3oxAQx7FvSCFoyYn7bl0ppA++w3EOmbp3vBO/dGfiH7QhjhjWNiGbYHq6ZibLFpR5Tt0aHA0tlvxQLisKnNHUBwyrJ+Z8ZGF8kFQPPbvdyLIoqesWZ2A7OKRoWK4PwYfBac0sHNO0x+AwajpimNEzCz0hbYzSI844cp3RqBoV+52+GfdUZeU1BIX+QgxDFoheBwy7ID+bGS8vkZW/P7Z3O5bxCdY5ejWRI5mnBc+e3GPY0CmcLYnXCtfVVNUFTcCw2WiKZEE6zcwLQdd1JElCnMRUwZbmXQzbcWPSgGF+PqPoDDPf8fbyDeM48v6zD3zNQwhk7xtN83zzOQxbLiu++tHPAvAbL17SvfqMN3XH2wcYltKSxP48rsca2wUMcx7DirwgDRhWt46KDoliQBALv3m3Zc1a+I1eLxoElqiXUCR0siVNYBUwLD/LWH3jKU++9jHniwWbtWKRnmKM4e7WB2vnecpSSjpbE8cSpQT7/UMMi9hqTWod8xxT9o5MpYyJ5KL0HX9xnBApxXpzRlYW7McE+j2qOmDYCiEcnVLEUfwAw1b06lC2c9zd3dECUi5ZrSKatsYEaza5LHEuZZkn9GOCFI5u6Fmp4AG10Mx7hxGCtrhjKc7BbXHu7KhfVdcW0TjkysuUCCFYrVY04Vmq6wZrLUkyY0zC1dXNEcM2gbQ/TSnjWHN2dgo4T/8pWrLgyNlYx1Jrunn2FSGzQwjvoNCEjFnhCmh2x0TLlxm/PwIt5wMt4fQx0MIan2VyNmS5pL/ABxFSAt/DGg9Qxvpslp3vP8JanAm7dh0sDAFtQYbutCgDrS1K+ujbWh+VWRdqzy5C4Hklykkkvhzjszn3HJQkioikRCjltYmcQ4UyocUQqQhtHekiw0QR09iTFPmxccHJGZUIpIzQekY4jpkXAOkEi2hBWSwp8pKhb5inkXnytee0mBEixZiZefYLIkBZVJhQjtWzJl2kDEPP7DQykqTJgih0ZAzDwDRNdF3Her3BWl9GgvvMmrWW29sbsiwnjmOW5YosW7AIthKbkzV5lrF70vDZJy/pm5GsgIVI6Hv/8AvubzyjQYoYh+fSAURSEoXSmdEa44IHYRIfA0trDEpBHAuyPCFSgryIOT3xQWX1qOTio6ecnZwSxwmrqiKJY9pmxz5Yk6QLHxBEkQrlZokQ3rfLf+cYY2aUAdsZtNNkixVFUVAEGYmyKEjSFBHFREmGVBHm2LEHcRQTRV7hOoljH+RzEPK8L6cB4VwilIqYpuFYGpTS68eJQ3YIFwKtew0kaS1o7TsnzYxUB1033jnGw599pilcB+Ozw8YY5lkzDAPzpBFCkqT+XorjGKXiIBMhAPtOwOSkO2rQ/Xaq8Ycs9OdzbX/AhzN09ZY89XZTALvb3u+Mm5pUT5QsqT+HYYa63mGsJTMWm0cYM9PsfOkitxaXlTgLxaKktq3HsBq2136nv8gEVblESUVtahb2grauj1n5RVY8wLCMvm1ZbtYs9IJYHrhiJeOwZyNXiEghjaSdHSoOGCYgUhFb2ZAuMrJ1yu3NJbrIiUNn9Ep6n81eRkg9MzQtz98/PU6RdBWLaGLnJEV+wfVlQ9eOFGV4HtsZcZJispR5aonjmGmaPodhp2enKCWxzpIuZuSkWa98SW8YBobb/ohhtbUUuWOrt0yTP5f9vqZtmyOGPS1XZOdnRxrH5mRN/s9kPLtp+OyTX6dvBowYaUSCCbIKYoQ1JbQtoirpuwHB/ohhiZRkAcOigGGDmDhPNzRBn0oKw2pVMo4N5/GG049Oyd1IGjDsyVdKLj76mPOTlDiOWVUVUyzYN4I58XNWW8EkJfvBZz3btg8UlZBlLB3V7g7FAjsZtuOWJxfvERcFLshIJMUZyZzS7UeqkzOWWYSxCQcMG/c+u73cR7TxhmV1j2GHbLdzXrpE9jt20R6l1sGtJGDY9o5ltTpmuAtK9vJe6w2KILvkMYzdHcuTJbPoacJbhDBASQm0roDDOQQbIGN8dvjNG+i6S4ZhIE18Bajr/IfEcew9NY8YViOCGC7cY5jNLWIQNK5AtA2UJUX4rk3IQvMHMaPlbCgdhm2YcCGTZR3yUKZzD/7HZzUQPtMhgnaGs/e2EhLhW821wGhzCMQ9kfegd7V3RMoigxmvsBzTnf48fJZNcC/wp4T0HK1wE8VxShJ7npYS4eju3vctVrF/4GLfxjtN/x97b7IkSZad6X130FnVzN0jcqgC0CgQLUIuuOgH4Z6vwJfhjmtKC3d8E74ByUV3oxsAqyozItzMdFa9AxfnqrpHVnWjsIEUUlJTQmIwTxvUVP977jn/sOCDIyrIEVCOykCUiBWrC8qyQhtDSAWh0RpjLFVxpchqQMnYzyXPnriTGXGwD0k04Jwjz3PWVT7P9XrFGMu6LuRZLudNcRZTyzyxbjvGmHOxXNeV2+317Li0bcfHj9+wbRv7vmG1ZR4XXOL0/OY3/x3zMjN/u3B5eeY//90/8Ou/saiQ8x//w38G4P6Y2VYocss0OZHtEikOfUL0mGQhYCz4AFoHqmJ7xxeyXK4NSke+/4tvMLnicm34+FEA9+X7F4qmwJqcuqixSlrqEmi8n5/XVkXqZIXk5u5l947wAbWSrk1e5WRZwcuHj9RVS54k60VRUtctpmpAW1Aam+nT5DN4GYDK95dDEmxEH8/OawzJ8BaFMTZ5wUXcLoWp8xtV2WBz4SNqdTiwn7cPKiYrjxgg7BDcu6Lm6+LquC4FJN9ZQAS5drZtZ55m1m2HCJWXeWxdV+R5jvfJ7kFpuXfPLpWMd4/XOF7nZzcm/KOHShimUCFxIptADDX748YtQKkeEGuId4ZDEDAEtGoI3Bmjp2Iihu3EsImOBgVuxLuKOrSCYU3LkqJ+tiXii4RhvUJlgmFHjEhdVwy9p+0Mk57Idck8TrRd94ZhZkdlBUqNGPWMYoHYo1SeHs8YhgGbZTy/PLN9+YTJcsGwtDHpE4apA8OuFm2uPG5SEGo9v2HY598DirLcKUrBsKbZsQnD6rpmXVeccwQq1lUKHGMMTdPy+fMnsIqwBfJEgwC5p2czY65X9CVh2OflDzDsN7/5hu1LzlTk2LphHhfW1Ln9zcdvma1hrj9xecn+KIb5JmGYfmKabjSdwvuGYpHvJFce01WoIF0v/wCnB6riC8UHuR/W1fLrq0FdfkV7PTAs8pvf/Eaeo8358F2BnXNCVrOuGqxHqZ6Y8iEXM2ERDHs8HuyuoG1hSkHfTeYp6hpNYA85Wdbx8u1HQsWJYR+KmrqG2TcM0yLYr98wrO2u9EPPrCderi1DDKi+FzPw9DNN3fDj7/+exSiu16d3GCav4fwXYoDim+9QKCaluXY1apZJyTAMFFVL4z3FgWEPef7DkP1+j9CmQq1RjONACN3Z8QrhKJJgexUMcy78BMOkWLvfe67XLmFUf2JUo670RLpQM9cG1fegFOKhdTjDDwzU/OsjwxPRhBRjk8BZQVAqdQDkZyIhEYgTcKv0Kz12cKfO9ScqCFLpeg8qpuBn9Qb+3gWs1kJ6x0rnAH26coMUdtrY04+KEDHWnq7aJvG6FAiP7B1hHiBocejObAYEjDEUZYlx+sy7y/KSPanicltQFgUKfZpFhhCw2pJnNUZnaXGFM8kxOowBZSI+dSaUUlJQpUo8N5ZtXcmyDK9kMfTBn58jy3NCBJ1bMVz1sK0b8zzz8iK7wTx/A7Wuu7CuG5rsLE6mZeZy6eiertgyp/vwzDLNLI8beSWt6t/94yecUxAt47Dx+cuId3Cp0hjVB5yL2ByKUpNnMrrLck2KIyMrLH/zt9+BgQ/ffcAWhvba8e2vvgWgaWuyPGMaBHB8CPj94EjJOd+2lWDUV9yoLCvO68s5l9SWgUwXXC5Xnj88U5Zvuxlrc8q2haxIZnnCpzpJoNEjSQQZxijh+nn/1TjtfUGi9emehU/f27btlCVooymrCptnKPSpFiVGNJrMaqxRuOAI0aXP8dNd11u3Ta6L93wq+V3CySfmeSbLstN3zO3hLN7hrWP109/fnu8PuViiED5v3J/R4dFtzXRzNHkyUFQrQUkhdcGxEYl4Gmp6kspJDaAkBqRpA85HYmhpGzk/j/sAD/A73N1A12iU6pjVQJs6Et7XEDVDnPi+/RVunOme81MpLBj2YNIvvLRCdCZE5nFGp27US/aBVpcoLDE8iDGjbRp0LgvluGhCvJPZZ7QOzAnDru6CKwUPvs9LXg8MW3bKbyoWsnS9vGHYy3PN73/bhG8AACAASURBVH7338Cwucc3Ld5XKLWSZxshpC6zkYSG9xhW1dWJceu2ka0ZOvdsewV+YvvyBWMM338vjuuCYQraB525nhh2OTDMzlx0R/cX37GtOeodhv0PCcPsP37C3bqEYTvrljDsoIJUNc712LxlLzV5Zfmu6Fi3iTJ5gmUfnvjm+xcw8Nd/+y3LLhj29CsZY333/bdkecYPv/tMBlR1wG85wzsMy7eArXL0NLJpTfZsqLOCUKdi7ua4XDXwoGgsl8sLzx+fcSXQp45WHSnbjjIruN8PDLsSEtdQDKkrts0xzwuXuqSnJcbXk7e0K8mRbGJETxNT+k59eKRzXtC0LXXCsDVfmeZAVyd1bR+ZhoHnX/0Ge+1wlSPsTpKiYxov4iR2R3d0agSlkvfcG4ZVVU0TI0teABOP+2fWNeNXv5LncK9/DZ1g2DCIR2SnIKaxYJ9U/LHrhIvVGCINxIEhOcMrpbiM45ku86ccf3rv65fjl+OX45fjl+OX45fjl+OX4591/Jl0tI59tj5390qZpK7LxLMqbtJnSIorELK7tAt3fHDn6OPgJoQdohNncB0Vipj8qTilmrIBCSgdwHiC3okH6Q+EyKwQlZ/a8VHek3oX/BYIRCMdOEU8rSlM2mW5fUfnBmsiLngiHnTEFpaQ2o9KG5Z1QRtDWYlLvDl1aW8yfLz4LOVZSYgLJsVwKBPF38jkaO9RKKzJ2HdPZpNbMYrAjskyVFK5HWRBORcZjoBfpXMRiVhr08hRqvdlmcmyPHF5dmk/R8W2SufofpPnK8qC5+dnvvn4DeM0cftccn0R3sDf/Nu/ZZxXPn+6sbvAh083nPMU9iBdK3a3kecZl6cLTSM7fq31mXOpjaghq6aRwGsTcWGnSLvnTFn0rnDzzO4GrLX45MputZyPaCJun4WHlGUYI+Pa6+WSzqkmLywmN7jdUZYVRVFhTY5LSk1lNZvfURgZnWkZU5/f19m4iUStiVHjCWJvFd6sF3wiEGoD3q2EsFImfkxpGyyaTGUUeYXSmVw1R4PVi11IVlaQlLE6RpQ+p+zpLSjxgtHqTZEYD86b3DsueHwQRWjfD1RVTVElZWtwOC+fzSrO8eXREf1jHbr3fz/+/MdsIP71H5o4gGo1epfPO44zIQQK5cA4YszlnF8M9CleyTlC6BOGlYRgeQSP6pO0fle4MqIyuPiOcRgweuDStvSHhH8eKIuOTteCYVVJNCXrIryUstxQ3UdQgce4Y+wG6pmuy5nSPfdYHjjjeFLPKBqaJkPFyJw6EnVRMW0N9hoZEoa1OsKHhbAeCjiDXxf0PPPx2+94hAdm6M+cOe8f3G+Ar7h2V/KsZFkmlJUugp17gq1QWUkYZ7TusOaZfX+QWemot63i0/ojJntGeU8dAv29p0Xu+6frM8u6cl8DbvwiGPb0xNUY5oRhYZlZV7GxaNuFbc2hUcSEYeqW83ga+LAVNC/PVO8wzL78GwC++bc9448Znz/9A4Xr+LKI99y+yBhUKUVRfnNimKw3DZfLG4ZN88yvf/0XfNM0uKqkNQ2u3nGpe7eOC4XKKY2hd6/k8xPe/Z7w8NhE/l9NhtpnVBt4Uc/MxlIaw3cJw8ZWk3+wXHPD7fVGWVbUncaaF26zjLjHRZNXgmFNYzCmg+gJycttGAaapqFtG2xmiN5TtQ8er/AIiSdIS1UvbOvvmAw8uRVdZ9SHCj6+Ydiee66XZ/ww0CePtaAixhbvMKxFNw1Kt+8wbEgYNhK1pgbpC58YVvN43AmMX2GY9zVfbnKvZN/eaHxDiJGnrmWaJpSCaXqbm7Vty8CAQURYLRGl2reO1qjQl8u5/v8px59FoXWA/iGxh8T/UMJdUkYRvUssf/VWaEWVZsGeGB2oSESfhdbxxDEIH8ZqsFrGKclCBGsgyw3GKjABbMBk8VwfxZdJAn6NUWiriMqDCScZWVst6jsMRlu89xR5jjl4MTpitZKijYgxGqUNkUiW+A3BeYy1ZFrGhcFH4YYd40lr8N5hVKAua8q8Ypwnlk3AtHIrzofEr5LRpVb6VDGCiAG0KUBFMmPZ3Er0AXWMGLwiOGnH5yYnrwqiimzrypaUekKQl7HS5XoRie62vsUN7Z7Xz69orbl0Hc8vLzx1F7TSmBSCvK0bGMO3vxowWSaFhve4RHgtigLnJKz6crmgtaGqhMu2plw1k3Igq6IWonlu2LaZcUojmS2SG0v/+kpZZhAN+7bjXSBPhoBKZ2TWU1UdRV6DsmiT8ZQUKiF62rYWzkuQolMn9ZC27rzGtDFySSYCoNIK/ZMxmkqPeRRojVJaVIjIaPuommS45PBuOa+fXBdYnWF1Rkj+aNjAoaRQRHSeS8yE1tik+HO8s0IJQYospcU4Q4mKV6vjPbj0PpCCUClciMzrfhJafZQCURt9EvdFnJA2HN6fApG3z/2HYPRz5GxpDZEBNdaQ/wTDuqtw6O4ztXrA2NEmnLslDKvrCv/YGWKk2TXERNCNA7GHWDU87gGrI08XIQLHRJi3Ly1rPuNtTpMwbF57XjrBFqMVLT1mfmbNRrTNTwy7pO9rSxgW2sBsLNw99Tc5Jo2GpsljP7zHsAuLvtOYhnUXcnddVphlIStz0FD7Bl2PxBQAbLorbbfyu9/+A8EJhimjv8KwsqqZN8Xl0kCMjONE3XTYoyB8DFyuH0BF5n5BuYy26k4MG+4jk5tODHupPhArwbA8Ydj98UjjfEM/PCjykmLPz4Xz/nqn84oftOaCYFimLuhSc/1WsOHL5y+0f2Xo+wsmy+iHA8NkE1cUO2VZCoZpjdZXfNqwZIf4aJqJaMqipkwY9mXbyIwUa3O/46edYbxTlhkuTuybZjEDeZ8wLK6s1lJ982s+JAyb5pWXQq4fm3va8lvUM3yT1Tw9PSUMG8mrwyC6lVg4MgY1c1WKcRq/EukIZxeGcaQsK4bpawy738EoxTCAIeJbh//tQ7irQJ7wa5lWbGXFAuYK9H+IYcM0EfxHmuLAMLl+mhDog6LtLgSj6cee2DZcEoa5bcf7gmlRRH2nHxW3R+TJFn+AYZfrBa01T09PxOBQyTfr8INkgPbaMsaRQUGX/g2g7VoR4vl/bRytGBPdSp1+FiqF3xqi+DmZTOSxAWKSVYo83WCMBQLRB8DDUWiJNkIMS5H7yAchBpz2DkYRFURtsFmOtbn8f+mmM0Y6a9ZYlJY/O+/JItjEbzDGSDGnAyoEUTbE5CkB2CxHR413QDTiYp+yq1Q83MHF+Tf6QEgu8fodDyZ4T/BJom9ExqtUKloQi4nC7+jgUq0qBaK15iy8rdXEaE4DzOOzbYl0HaOQCW3i5XjniSrI+0zg4BO/qCgKvPOsYSEz2dldiUq4ac57fvjxR8Zpom1aUPDyzjCwLKt0voV/pbQ+u2JN06CNFsVR24qBYpYRfDgLg+BF3HB/iD+KDzkxesZRdmmDD3x8/kCMOzYr8H7DhZ09BHirkajqhrq5crm8oHWG84Es5YgZmzh0ymNsyudTBptlSQEj1gYKI8zBdxYKx3GIChQKQuIbKpX6mGe/8uRnqahw+y4+MOlRmxfoLEMZjfMeY4MoCo8vVimyLEcdJHlCKvwl+zJdYISYxBpK3iuEs/N2KBC997h9/4pfdXQz9TtLifiO9H68jxjjuVj9fG0c/vjhvacDdKuIN+lGnRimdcKwlRifCTXER1LqGYOLV7xZGPQD5WsG7rRHoUWLwvMYHiig61rZrY/9iWGd0VjVYhOGhWUDkzGO8viHD1eUsixmQWsR7ZSVhwh2STyvzNDUjWxcHw+y7Jk6RqZHwrAi5xI10UHfHxhmiF6jGlHJ9aljEn39hmGDpT/u2fudfM0Thk0YoxgfA1VKUcgyS/A7TX1BhF6Klgg/wbBlmamrmrZtubsbta1PDMvzlX4UDHuyGb70xFsgFoHRpPDrqkqbgJFlsWS1xWjDMKaOhVY8QiTcPZ+WH2kmzfexZVET334jHNAsz+iaCrsKhql2p9OaLam9Y2zQZjr5aZX3ZFlB8DVLJu9j31eaumWaPjGO4OscN3u21ImMPqCygr5/he57/P0LW75ThJq8lKW7x1Kpkrq58nx5YZoyTPY4May2GmMrGO8Y+5GhH7hcDDYreXkWFLrfd8Yh4NuMNgSCehAbnfR9fxzDLkqRnODSVRqZYkTrC12z4Kadz+vO85pSOF6+EwyLsn76GFDqwuWSyPC94vk5Z1Qa3XWoPDAOntXcKVN2MU2gfqSpkUIW0YfnkQox5xx1LevFbX9Nflt3aN8w7HK5nCKRfugx2tB1DZfUAbzf74zjeKqmG6II51Ihdh4//fs/cfxZFFoKhQpK2P2Hy7QW08ajADPRElJXyB+qQwVK7eJThUGFkMqLA+SF4KsBk8nPRyJRg01jGZ1rtNHkRY6xOdpkaJt9ZUZ2fEkxemI0cmO9W0C83xNhWFpo4lXkz66YRkMQy4cYg3QVYkYM+6lwdLvHGo0joBBlo7RJ04K+i+xeKnIvnkZWnyo8t6+n6WtU+twBygL+1uHTWkarBo1JnY9jsXVupygKSAt2CA6lpcg8lXg6vFtgNbnNMea91UDqbDnHGnbmaeJ2e+VyubJtAobGWty+M0wTWSEFQowxmWTKe8yyjGVZ0ErIq8u8Szdtl93e0D9omgtjfwMi22ooiowieXUNy8j98QVjYXMz27ZKJ8oY/FGoZznd9QNPTx8pypY8r1jW7SSyG5uD1sToCDFijPhShaA5ep5KSRizSV5pPz1Oorg6hBLuHF0fHbxtW9P356TjqjTamDf1bGZRmZHRtJJiS3uFzQ5PMU1UEtxsCMS4E92C0RuRN3l+1Fbex0lUfzdXTKNA6Syrk1yslPoqMicEKc5icrw/PIpACos/qVsVf37F14FhwzgRUhe6u1zxIeCCZxxGNm0pdCaCleQ9Nd2h6BTaGy7myh52diAmsvyoNDHWJ4YZA3HoCdq8wzB7Yti8bDw/F2Q2Y+/fXK5tVmDyjKap0DZHac04jrgiubZXFyAyDD1GP3G5iCO70bKgXNoKwoWh74lNBaNg2Bgm6qTo+lJ4nsyF2+3GOIBRV1o0bS0Ytm8Vn4bPVE2g3iu6ruXWb4xH/In9DKYlLwPaaOb5ifZyIcZ4+vgppbhcWryPmEGT5y/se49NUTDOdXz4ACjNOGn8Y0fpkTg3WC3dqGX/Ql3XKHVBq4Vt2aiuJfmz2Om0B4apG2somH/4gf9n+3sulyu/+60EU8/LQrnvDHoim15YlMbEyJr16X0OPD8/s8wTIdS43FPPOyEMuDQ2fvQLVZEz9o5h6HnOrhRFhkIKrWHp8aYWDLv9KBi2KHzHGQZuspxfffsXZLakaizX55LlsyY0Mva77huT3mliToyW2ZT0vXR0jmus6wIDEgiv1QVQtOjTHb3rOoZBCrQmQOgdYwzEGChTB2/LH7hxxbsbOhYnho3pXDbrglKG+kODmjW3+x2dWz48H7FHE1FdiP0D459onnfu7hNX/YJLGPYYwWkL48AlXRcxBtpWumY+3IlhpB9mlOqo6xu3G4zjyPffl+e9+ggB+khuIuik4k0Y1l0uQohP48NuUKAHBqVS2Sn3U/xnYtifRaElq5dwjA6ljEveWWLQENFRXKnd7r5eIN6NCaUoi4QjmSQeHQYptrSS1wjWYrLUsbLCzynzisxkZDqjzErsu938YfJ4VPbWWsl9O7sBUoDFGFBa/i7Ot/F8bwSVuggKsaGQHWVM9g0q6lQUalHIRekkHYVYcAGidIoi8metxXEaYF1GtnXCmBJUQfrE6b0mI1AvoxxjxHn9iGA4dl2S8wfbvhGjTipO/5VUP0uSYK2lQDXaoCNvRUFqM1sj7r/WGtZlYV0W+l7AwVrJgZzmCWst3fXC4yEtfHmfm9xIwfPjD7/len3zXxkHeY51XfDOMS+DfEcmI0SF98mrSwW2bcZkmmle8NGjlMFYTZF8oV5ePlI1T7RPH7C2xOicustPF/zNbWhtUEGjFUlNeEQDHYVWGhOJ08H5Pt93teQSD3KpxpRicKQcpGvWGnMqKo3JyLISmwpkkxdEY6TbmxIHdFRnsYexKGWkKxV2dNxk5xkWbOKuBGWFP5a6VqRIKnfwCF0Qtee+p66W+8oS4vgMSsl1rA7uxTsF7xu/8q2r9dPC62fpCg9fYdjlmhROzjEME76uULpDx55JZ5TBEWNyEG9v7K8jhAwaUA7Ul0g41oX+wLAOzYAeB5RRXJ+esF9h2IrbMoq8JNPPlJmDZ1mArsYwL6K47SM8KcWyLGnj8IZhfZyxzTNddmDaDOrg2LQMj5EYIm1Q9P5BU1c8HjuxkOfoek00Q8KwGh8Dri54vKbYrH2FGLndPZEHxMjlEvnspChYl5E801SFxeQFeS5rgLX2zNusq8i+j8xGxpfCAWnZNrlG9307LSdinAj1RkPNOAZUipR5znIoHNOkKYqC6+XKFEGlCLBZay5aYz8U6L2kazv+/u//C+uy8OOPPwDCVf2kBAOX5U53vfBfHv8fH17ki+u6jm3diaFinn7LtibT5bpmXCWyqO8XqlIwbNsXvK94REXuDzwWDGu6C7vbWMsVNRqMihR7wrDuIz5anp8+UFFiXE74mDMl/PFuo11nCBqtCrSSjfrjPtK2byPuDhinEfXOCf3yUwzrA1HDEHuxXahr1tTXGr9ECmu4dC3D8IraV7LsI/Yi1+i8B3JjiJMC+x7D5Jy3V4m5C3VJDK9M/cZVZaz1gh1SMaYW2kvHvdfc73eIga4V3JL7rRIMKx5Uk2TbNk2kKCCEZEgaH7RjJH7f0uUdxiAYltSGR9GllKKlpY+D8F2BmDphYRhOlfafevyZFFqAl538sXgEZNFX6ii2xKpAK8eSeDoSP6Mgin3CMYI8GjgcNgtpomGVAmPQmSFPY7/DHFNHRdzFV8pg0MnIT+vDv/vrLwGku3b8jIxexM1bcurepPUq5SvG4KXQiwG/O0LyPgKZb8vYUGJQxBAuElMx5J0jOInaUCgp4kLkoFe5fcNtM5RiXCqtcemwnQubEoK0ijLKOBY9824sqIzwuqRYUKAMWpmzcFBKTqt0uaTzobSR8Qip0EifKc8sxhgyayny4jRRjUS8d7Rtw/3+ihkUr18+n88R/Ma2irWA957Xz5sUiNaeGXBGW3xeJHFDJLdZ6gimgs9o8jxj3RbGeQStyYuCPM+pU5zH5fmFPG+Tq7pB21wKEvvmPq+txcSIDylrMwq36a2okI7hEXhzjA7fF1pfeV4hIwFiOBeP6DU6z9BY4rZJUa0UtkirrTXCm9JGSO82T0V/4jdoK5FN3qP3Fa0t2niMn4k6nteucLokU1EjMT3H+wrBn0X9MQIUL7b9LMi/NjpNo8N3/67028j9fZ6h/Nvx/77dFz+rI8LgI5cuxc4Aj2Enqg41BhQ9CsvLc4VzjmX+ERCeKW0HPiVaRFl66vS9tG0DLjD2g2BY14H9GsOWaSLmljJLGOYHDN9xOTBsmmguT6AV8zAwFi51Qzs6dXSRFXWoyWLgfnfk+SzFQpY2LlHRVJ4QKsa+F6zbHVVRcrvLeIh3GFaWnmkY8fdISNfP/R2GjZOCsYcQuabL4Vbk3L7MePfK0zffE/ueUUlSQtdJ8RpjTGkeChiIsUwYJuNH7zeUmViWDBCbBhQ8XQ3TJB3kWUGjWp7Mgr50PB4Bqw3X69trBIAgaRYHhn14+fBV+HpVOaJquN//HjOM7NvKjz/IazzuG9s3hiz7gr97gr7wj2rkGj3/+I8Hhi3cfYE9MGxZaduKT6ngW/IL+baxTq+gweqcvJUor28vfwXAt88X8rylKBvwoG1O3T0xfZbrS5cb2ufMMeLrDMiI/k4k0h+bxTFy0R1tG+n7AIyCYWmcNgwDXdcJVqTxavTCBVzOPF/NnmfsWNq6of88gJp5Shhmm4w4a3pteHp6prA5Fz39BMMmKp+xliV6X5mMJ/eGPpmHKw5Dc0kuubQVKj5QSgqgx+OOKwMtLV/iHcaRSINz2YlhTZSOTB0Cfey5hItgmD9EafqMe3qkSCYA1ckaDuBKR8uFf87xZ1FoRSD6iFcBr94KLXlQWvLqSIeL6gxmVsFwqP9UlIVBK9BpfBTWQFCknEOSQkoIwYdru9WaTNmkiLCYoNFevZ2Zo7B6t0s/XL3f+wdpLYuW1seiekQGId5JIUqnK4ovk4rS0QgpZsUnx2/vA8EFfNohH4aC2+rY3Ma27amY01irTpqP92m23zmsNRKWnThXR8CotQZjjXTWonTmvPfnZ9NK4dNYMMtytM7TzvatWBPWW3pfxqCVEjPOo0hKi7B4eAkfpMgLiiIXtaWcVHywKK3wfuXzl0+8vHRiLgfc76+UZYH3CGfEy0VeqOLsqC3TTKgaiqLEOYcxFu/CmXO5rULQX9eVqBSZzSiqlu76RNelrEOTUTYNbvfM6wYmJ/jIdgRGR/FIU0EURdbKeyZy5swprU7+wsmResfTOtyTtTbCL9OaiJPrNIkUNi8FugK2fcfNC8postRpNFkGKkNZiXDKbC5Kv7P4FSVuVEi+p1uwOscqx2GqtyshxnsvJM4YHTE69nSfzctKDLAsK8u8sK4L27ah9VvXQ7Ix0y9rMMeu7rg23nG0zns7vsXwHH8/ooV+TkcEYiXn9z6mohJF2yqG+4gK4t4eoqLvR7YtbW6coSzfYVgvGGZT1EtYA2EcuLSgVcuohB8zqIlKS3FhL4ZstTy1FzJTYELBdB9RT4lrqBTdOMKlo21h3iJ1XaN1IG7S9er7nqu5MmYD1maIUWmkSSaNgmGlhOl6EYncbq+4dxhW1TX9EPH+QWYCReHwj3gSkQ8My/OCUJVM1wv2t/8ZmpRVd/fk7QQxZ1lm4ZAmDDvMRq01zNZwCYFBddgneZzxDcOquqYIgWnK8S4QQkXTRLrUkdBqJETwpQP/QKO4Xp6Yk0t5Her/BoZJB8e5gso/MWrF99/XfP6yfIVhnz995mNZ4K9XHvFBW+3YYHB+I0vF6zKthPuDXRkulyvmIr6OPpHUt2lAuZJ1vbMFJzxMW3B9eo9hmvK77wTDshJqz+P19cQwG1tmtWGCo3SexVo6LZEy44FhV9kMjcOItaDUM12nzs6+1hfJypxmLl3HNT5wa0l0G9ksVI7NByrvcMPA63inNAsZX2PY4DLxn8wynq00TUhqP9VdGfqJuoPa7+SuZNEby+h46uSz/PjwDEOP94bgPf7miE3GK1K4zstKo1t+/+kTXz7fWVfLl/FHyvJbqvLgcRV0ncO5G34p8BdPjANUR9Mkgr9/RcFqmgblFbcjn7Rv2KrtK0rFP3X8WRRaxEjwMlrxhwfYW52VDhl17fsb2V1rKyonT+oyIEB/coQ1RiNSdCSnzlhZoLLDpFNrrFJYZaiyAqMy9NfUFXk69Wa1cBRb4Sw+3v28UhijU5ftXTs7RCkakorRe0fwjnBkUrkAWqd8xigVeIjsq1xk67qy7Suzn/Beiqkst2LqBuggXa3g3NmRODlihzryjASSU6jOjtSbYak4u0qw8lE4HJ/r+F3HYwQpnayfkr/tO5sGgDzLIPjTnNVYw+42IoG6qlAfX7DWnkaoRsO+z9T1E94HjNH4YNBacUm7jXVeiFFa/9bm6GStsMwpOgkZj4SYHNfzgrrueHr+wNPTN0CKnSFgsvTaWmN0Rn6oWPx+XktGG+n6BE+Wm3e8NzHRVUjY81vnL411zNfdQMLBe4rsibPmtg23bcS4SRRQhKqs3jhYeQ4qSyIFc4ZMn/k6SkaxOrnfE3cMBo/nIO2rt62LCEKcg7CSQgPYd4fbPcMwMs2T8AFDYNu2E3CnacLaDG2UZEtmuRSdxyZEbo7zWjgI/u9DpUNInMCf2/RQCYZ5FfApJLntgBhpupa4e/aEYUXh2dY3DBunEbdrij0yKlCqQx3E7FXI9NbIeP6aMOxJazIl30uYZNNlx5mq0BgF9umZo8g2tIwstKPI4snfYVgyamQ+Rpkt2ZqzG3HWNhe5Z1/3jSZEHv0DdekIbj8xrHbJjmDb2N1EcCX3zFHdcobQU2Rp42IyHg+PisOJYWtuyZLDvVYWtz/x/FziY6TtOoZe3t+cWvdmmjFtywSoDrqouD0CKhVJWR4wpgLlaZpG7CPUyDhGUtQznbowxZ6uMxhjeHoSBVp7LK7thLVP4laeosXyLGN43Lk8Cc/r5WVmdwY9BMqtQn1sBG8Sb6WuC173mb8oPpAvT1RO42vBjV//SoxT/9N//E80zSVtXgJaPYN+YH/8DEDTlGAFwzoU+4Fhf/XX5DapsH2kHQIzC84teP4NJltPDLOZZXcbLRC0ITzu3OuK59yc1ATxTwh0bWRKlI+J9xg2c7ENg5L8STy4XeG3/rTT8XnP6+cvxCbHhwLmA8OkINR5jtlX7PNzwrARrSxcEoaNM8oYpnmiswaaHbN7KrxsEgHV1nSxYfWGz59fubkb7ZZhgxR7++5Ylk/AiDYTe3HD93XCMDlf7zEseiG/Gy0dK5C1vI2NFF/IfdLHniY0+NSwCO7O/dH8szDsZ9jD/+X45fjl+OX45fjl+OX45fjzOP48OlpEAk58ft6RjGMIJ5eIGCBEbORUHQa/o71DB4+BND582z0rq5KUX6FVhspytM0wxmDT2EYrBVFsD7xH7B7OvX/i14gZl2TMIXFBRgspUZ5dHg9BvKC01tgsR6XOm2cXEnUI8jGQn3NhP5VnzkXASmcPISd771mddGj2sLK4iXVf0VphbInSxVfGmIGdPYwUwRPDW17h8WlU6nQZrfFKVHTehzMq6OgoZZk9bRxAujI/jRs4ulYh8c7e4j7EVyymroVOSoTdOYojnsI56filyKTn60es1Xz6UXgFVhsIEbc5yrLE7RKybc3byFd2E4F9XymKgt3vrPPMMKf2f10xTb3kfGlDWTRcnz/w/OFb2iQnMVmyHwAAIABJREFUX1ePDxnBeza3My8LdW3PzhsKonf4GLGZJcaAjikH7FC2iozz3O3EGCTGSb11tiQMWlSrIXhCFJ6KS98tRFFDOk3EYMuSsmnfEc4zlM6wthByvjKSm/jO3iGcXSUJD/bRY8JOSPYhJmp2ZUDnoL18v1tgT2OfdduY151xmBm+9Cy3gQDMxvH5yxEsrghe1KnBSUC5GL3Ka9tg0+hcur9avXWzjsvUOYfb37rBP5tDRcLgeOhXuEjXVYWEYY+BWFYQA8Ojp3ZIJiUJw6qSSzZzuw+YWBBjYEpmkdGOtA4wHVpZVLahl4C55ixz6hBrwbA+GgoPynTEQTHksivPsoyuvTBMCq0WLkSm4cHVPDO7Y2TSM8QL1+Bx5U6RFyzrxpCMU9u24dZ7QsiIbmHBkxVijrvefg+Acw1us4RqI94HXl2N9xs+8cBeHyuL0yxfVi5aYfaSThf88EcwrK0/0D8eYhfQvWHY1DQSKpwwzBqLUo8Tw8qyTArmhaqqaJqG2D+YjMGYZIUD5OR4b4WeEEaM1lzsoVgGaye6a3diWHtpE2dHXud2c8Rmp64cu23JQqC61nxK/GGbl7BIBuyHLGFYkGzC6xH4HGEYHlyv1zcM+3HgdweGqSR4MpZMG64fGr779V/TfPiW708Mu3N/eOrqyrruzHahrluuyPXjvRMKStOwzDPXpydiDGK7k9R6o9YMMVLHlhrD2D8Ew95156dpBsw7DLtTVQXbnBSj9FyuV+5uITJjyxJnWtQi53zYG5QOPL3HsDmHNKFAj3Sqo2cgDg9CllN9+AD5TrjLOb02JZ/UTKZfaC8V9x8n3GrY7/IaWZ7zux96HveZ/Yee5fcDoYV5Vnz+IjzCv/u7j7w8Q9vt/Or7EqaROcswZfIdC5b7dKPrFP0gGFaHWqZR/bFOlrj99VT8/ynHn0WhFRV47SFw2ipEkiFYVHgfZMzjPDHsRJ/GQ34h7gvRb6jg0D5CUMJvQojK0UL0SgjOpgJtxYfoWEwR81ClLQEIKohb+ylvR8ZDQaGiR/kdpayYjh6Lqw9EZRPZOPFtEhdMniQSvJOLXkVc9Gz7ik+LLoB3keh2xDlcse+eaV3Y9jfi/+Z3XFQoD5ECbRqO+mdjA72x+ZHdbedsXCtORWCijqGUqM+0MmgMLoUsa60TYV5htBUX8DRaei/3B07OhDDRJMPsPJQ8lw9eSJx5JiHUh2lc8sUiKrSy7Ksj7IaXNNKbl5kYI9vq0MpRFOU5htqTb5i1BqKkAaxbYHeOaR7eva+CLDfUZYXOK6r2Qts+U5QNSstIzhYFYctQypGrnIBwuk7fKDQoi7LqFAZ4H74afWmj03x5Ez6g0qAM8SiC0ujyEE6gD2J4ED4AoKyW14pW/l8dwGbkZZ3OuRipai3XmLYWpRNfLD3b22BbEZUiKMj9fo7ejSGR2zdikAJ7nx3rJm33cZoYlp3H68B6X4iDYw+OxQTGc7Sj8F6KMu8D1S6mjHme8joz8TnLbJb4kiZZd7wR5p3zbFs4yak/lyOGNwy7+MMlTTBscA53v1NWmrh5Yl0QD3PY+41GG273L6jguFQ5w2PEJ6NQpRpGOxDHQUbexpwY1qUx1sSEmgydtgRagnoQsNQpR865nSEGYq1Qq2BYpyzG3Omi4MTgFU3nIc6AxftnqrJgGGXRvz1eCVUpIhYf+RI9+etnfKgIUe4nf/tM4S70s8bj2PdXdGZP9+9p9+RVRrmNvHpH3RZM03cYI8Xcxhf66Qut72Tc1bVM48A0Kro2Fa/AGIWn9toPTDbngsE1MuILMTCoiNYd2zrgvKe+XGgRmb+cUwW07PsALTQ0EsqcXN3btpVx0zxRhQougmFodWLYmq08x2dCfDCphUt2wWjDS4LB2bXEImFY6Shw9GvDtai/wrC2cYSws26B19sNbd7GlZHAui183/4lU17RtBfgpxj2Ld01I4QbuYpoFNm6ck8Fn0Zx7Z5Q3NHGYLKM+/0hqvKH4Fxz1eIh1uZiA5MwrDnoIk1E0Z05gFw62m3FLeOJYaPVNGiu0fLjaOhV4C/+8lkoMUCuIpfrdwnDZrEYuTy9YdjlKqK3oWNkIOsEw7b7K7uSz2pUS9NPTEV+Ytj64411k5P+++l3J4ZN94V+cBTBsZiaZRUe1zh2+Ooza75R3QNV/RE3GXInj2eZRXeRymeUZWQaBfP7fiCm8Gq372yjf8P0P+H48yi0opCrZVdy9l/OXbAPgeBFVRWiI/r3sSHi6XP8Ok0heXuqiARJW61IzgKn8WVmFbkxWH0YQAaid+cF4F0EFdHaEHwq3gL4AOqsaKNwm2xM5PG3hSV9EoL3uPS8SoPykbA7XJrpR6clbsM59l04W7tT7EnGu/uIi5nUcjFClBgeH6SwWNcN51bWpSefR5qyBKWJ2r51gdI5PcKEY4gow9vjPhK1cK+kCAwnmfun39dBFpVOlv7qZ9Z1TZJsi8e/I+W/dciAJDE3SdkZzx1UWVaM40hV1azritsdRVmyrhsm3fxWGW5fvghvKZMAXfnvzQA2L0vqtqW9vGCKiqIoCQ6yVub1mcrIMs2+73jnpEsX3n9vKgFD8p0KqUun3nW0TlsL2e0Za5Ni9A+Jkme/VotC0fk3RWn0/s1pWGlQmjIVWiIAsWhtRaWWiinedc1EYvGmehQtxX4WfOLZpojpl9sc2+YYHrL4fHm9cxsmXj/d2R4rSz/hiKw2siWHV3WQ+6IisznWZsSwsO8pKqjIKXKD1UbIxkE87iRsW87Xtjm21Z0F8c/l0ErjXUkM/WmeKffbQFm33O8PHveEYcEQk1KvrmqcW0QuHyIx9DQhnnEfqJa2benvM/M4UGUN1sKo4UnJwvdsn8hfVqy+MI0jGsVTVZLs4qjKBkJgmmaCMcSuIS6rYFgti0eNmAAPtkE9NErtGNOfn0+1DWFdcf7GTXd0Gjbf8Ni/nBjWOM1j73GuYd8LNhfIS39imCWyLSuxvlL2N8JjJs8cVS3F3m8/g3Mrnz/9lm1vaf6qpK1Lxmk5Y54UiubEsI6mtrzuK/Ui1+Dg00bRGHyAuqnTOhHOAgYgxpUYLWpVOOMAffr8bdtGjJF5ntnsRru1J4YdYptrUjl+WhauxjBo0PTkWj6LYNjvqaqPgmFKUVWBef4aw/7hv3zh6TmyrBvaaJzXb76NwQmGfd9S6xe0qSgKR7hB9pfvMGydeHUl3jmerIfdvXFqUWLoHS80Tc/j3kOEi7qcweYXLnStop9mmqbien1iGkb6Y3PdQ9dKNM2Ip/MbLmHY7cCwm+PuR0Lig5nukjCsTOf7EFhZQiyA+Q8wbBoGlI4oZZkmzWWDoAuiku+lf7wSfU60nv6ucFvJuMHj8Y+AYJhD098GtmEl7pHpPvF5GcnbA8M+8038CP3AaHOW5Y61A/su32dZrHyoDDFhWFHsOCch1DFdH8OXG9vq+CMQ/189/slCSyn1vwP/E/BDjPF/TP/2fwL/ffqRJ+AWY/x3SqnfAP838P+mx/6vGOP/8k++ixjx2/5Vp0Adpg5phBj9nkDqTeWybytu34hpMcfFY3sPiOQ0oqT1aq1U38qR5pHptRWSqyhdBtmZgkkjFyHpH27aUmTFkFSS2h/nSLpBqTjRWkixJ2lfqhtU8Hgn6sJt25iXCZd8n6LX+F3jnCJEy+4Nu4N9lwtx3Q2egC8smUkjTOOSkz2U3jLtG/s6sK4PlqWgyBtx4j3MV+ObFYX4hycLh1SaBiVO1pEgna13VgX/NYfviFgAHIWFtTZ1TtxZkIXgWZaFPAFdWZSyGL2zCzDGpPGpdBG3zWFMwBjphi33HucdT0k55PaNeZp5fpYFJaoIAYoskVfzkryxtNcL33z7HesaMabAeY0KaYdUFGgjo64p+UeV+RsYE6RAPoxdj+LyvYruVBcqBcqK+o/3HivHZ0qdLHW4w8XkqwYQ8MGxrYuQpZuCPK8wJnUKQkyWDTnRRyKKw2UORL0o3cqQRsUaFSCo/RxhWiw27uhgYI+4bWfdHMsg3eHhNnC/Ddw/3YmjZxs3pm1h0Z7tsAlQhiKfyPMq+cRpssxQJ5WUNZYiM2eUTwhiKHhkkIJ0M9d1Pc1p/yWOfwkM897ht1dCjNy+yO64azsiO2q809Q1/vbAVRWPm3SHAPZtxr1+weN5xAi3SBt514mcUHRcr0/km2PSkUtX0hIYEkY9xzvjmPN06WnbC2oQeoWJqRvun4hK0TSgdUP/GDA24+ob8SNCfJ+01vC4E1TH5RIY5+0Nw9wOjweq9nj3hZ2GzWzMr+OJYdpr9H5Bu4E1WvbKMH4eyIsDw654XvH7QnZ9QfWf0dcSu/0WgI9PT/zw+kPCsMCy/I4i/466qnBepPauh3i58HgEuoRhF90RTvNNOa/D+KDtRFEsGDah1OG2DwMDLa2YTxKpqjf7mfv9TtM0gmV9zyM8CKHifr9hrJxTt5fkxUYZI56WLWwYU1Cmzr4xr2ybY98Fw758+YL3rzjv+Mvvv0/PkTNPn/j4oaQLhuHAsFIwqL48kTfLiWGfP/cJwybGx3cAXD8U6JeSl31nGkfu00SZF2eqRFs3PPydq67pe43WMVk1KGwyThUayBPG3FnWgnUZkLzL1K0aIn0vTvqKEuoBzUok0qQb+0aND4ptfaBLT5EVbFt1enVVdcM0LWiTU/lIj0YbuFzeMOxiLI8Y6DqF1hfGaUArTafkO83bkt/eFqbHjba4MqwHhsmnHW4Dq+Mdhn1h2hbu2pPP8j6n0bBvgd/8zV/z+up5fpFpxTKJt5k1FcQr3mcMQJ0w7BEepNjPNJFZ+crP8584/pSO1r8H/jfg/zj+Icb4Px9/Vkr9r5A0r3L8hxjjv/uT38H5RBLGfPqPBlmsIgLU3suuP0aPT7wm75zkqyWfreS68BZNgrhra6PEEwlR8kUd3uosvxOUJlidpjoyPouHUagWblYMkYAYhEp0zpvHlbYm+QlJhy0EdYbuypNICywGz55GaNu+sa0L7nB+9wGXulg+5OzOsjlwIdldRFGNeJJJaACiQ6fFOMtySlbpILkFv80Ek2OiPi+IZLuWOiQqFVOaQ52kojq5ZEFIRWdh8dNC680vybN5d/K7nNtRSjpzx2KaZRk+hFO9tq7ryd15U0Rq4R1BCgr3TPOCtZY8L9JuMvJ4yKW2LrP4RmmJYMrLUgK0E1hmlaW6VLTdM017RRtPWbaEaFhmuX66vEaZZHPhHMu8sLG9Gx2SilKp3o9A5FNxeJ6Hg1eI+G39QUf57R+0jtKejx4f3kapRMjzDK8UZdliswKl33iEStmTw6iMSTrHt2cXp37D4dgPEgKNT2otm5OryLhMxD0n+sC6rMyjfEdLv3D7fGfuVxg9y2PkNvTMyrHmqRsVA3le0LYXttqzzAshZGTZwdcrz+/uGBmGENh3dxbiy7IyzwtzkoX/Cx3/nn9BDGuOmMIQiLGi9yPhfqOsSnq3EeucKnX0Nud4eE/XNsBAcBKiq9KYCwzjY0YbTZnlXNqKIdzQusYeyij/RHA7j4fmqQtQa+h7YvKFCjowjROXJ0Mg0tQN87IwxsgR+qpiZBwGbPZECDec62jq6rzPJ38DX9N4z7pt/Hj7/YlhZZBCe/EPnIO9VP8/e++yI0mSpel9ctH7xcw9IiOzqtnV1TMYbricNQmC4BNwQXB2XA34EAQI8DEG4HpWA/AZyC0JbgkQw0E3a6orMyPC3U3vF5HDhYiqWWRls6vI7mJ1IQWwdA9PMzVVUdVfj5zzn/9nuKVsvWXdB/IY4Hi5PWBYyaiAfmB04Z5dt473Txdc78n2GbfW3KYXjM5o2tC9VpaR2ykD6Av90EFbU8SOQuUcvnujqEqcc/TSwaBolEY1dx5pS3t2TnvvcO6VfY+aT9awrguvr68Bw94gScaIYYft2hvffntg2ATUaD3S/QDD/uqv/xprr6RpRVFsuDfPr38dMjABw8KixVwtH/acl81hYlmwLBqK9gOoJGDYBPn7b7h1hnkKgUHS/RligmVMlmWIF5ZYKYDwTCp9yQ2hrhqGoWcYJnTbYEwsPWsF/RDxY8Z5RVU94H0NIDDU1LzCiWFvuFvIzBbFiKQpffHE+vJKlkFRZjRtFc+9QulAwekfMKyLOgrGXmmahhYeMEzh/M7Nxe7aoeK5eUL9uuNTlkcM+4SJGS8rln/76a/Q3Uz/bcQwAoYlEcNqKUnTno/fv1CWJR+//8jzuwQip837nJsXLs7hB00nIHL7AsOsTRj6uzfs7zL+zkBLRP6nuMr7raHCXfhfAv/Z7/yNP/4d+N1FInt8aOkw0SGD5fBui8a394xW0O3RyB6kE9hjtukHvZTiBMeGFh+SDqLvou1RW0jj8CoGW0qd/Zh+j6bLPmYqfAjCRAtKHyt38E6xPwiEOr+eAY7aw/HtzrFuG8u6BpDa9nt5FM+wzCxrWHV6lbNLACUAZVNIDCQKrEI5D25DR36EEjCEjn8lG+JXkA0kvbufq6hDZuLxR4mHI3sXLNl0EFJFEBesfx7LfuF9+szq7PFcPApVBnPV/fz3vu8IoVR4DGOD5+LjtpLkUPgN59laG3R7JPxurCaNYqJZlpFkI3Xbok3QlnLiqcoA6rqwtO+uVGVNltUYq9AmByzzFG7MaZpRqSYxQVi1qiuWab5bBalD4f5+fMFf88sbLGSRIlleq5ipi+eekAIVAaJv5KFNdsSu2sSHB4JJDNqkkTx/XMg6XNTaoiOn0Os7K8tJuFwPgDrMjJ3scNwresd6TYJn2WPGWPkH3pxnWzZwwjxO3F5e6aeBGcdWhOtjwVGWOdfrhaouWNeFLLc83ExxboKrwL6HoHNdAqcLok7X/IfNaP0hMExrjd8LRG74PfKJtND3A94HGZN93yh+gGFj1wWtNqfwUtG/3qjKmqoIgcMRkIoT3th42ldqmzF0clJApZVQZp8S/Gv0ZjPNGd/fXm+hfHQL7xUvSOGRpaNp72KP1lryZqPvN95ePoFRVIfdWV5xG27sPmBY172xbitplvP9+BEIGKaWnU+vPVpXlCrHimGJbg7qEjGsVmAzlPHUxYZ7CUHUIsLWdxHDXhDfUldXplHoDu1INdDoluZyYeiApqbRiq6b4rl2+DShTBO6vuO5eIczjre3N+qHWs84juciL3c5r8uIcyG4LX2Jc2+s8d4ofcm0Twjwcf4Yt1BjtvSOYc2KdNOJYfm+g3PM1yt+mhF5o3AWYxXP13cADH0fMezn6Gkh+ZCSdR45MOzdlTyzAcM2MM2VcXXkWcM8Re2o6SPNc0tiLJ9jJlVEWNOAYdsWBL6NrpnUgNaGy+US+FZHLNWDUg0NQYiWVtHLzBF86P4WMKyq6VRJ5S3eG7ruBdtEbbLN4P0MfYdJDO3lmaJ4tKppqasWtKXvR5S+4FuF9FFotuq5SVjMXpRGqRbVaAoR+uERwxxJvcP3n2lsw9aU/Lt/H9T6nfNsnzYyXTHrb7ltO/10Y+4fMewzZZkzqIFlWbleq0AHOm4WqZBO6O0YKzMBw9IkPTHs+48fGfrp7z2j9f80/mPgWxH5Px7+9pdKqf8NuAH/rYj8z3/3ZoRtC4KJZ+Ykqr0fKwNxa9RtcQ/lRWKnoQpq2jGjdZxc5wOnSinB70EQ1WqDwTxkaILmlbjYuaUCCdqpqOkEiA62K5og9ulV4OAYf3R9xYfn7kAFQqbyD92Rm8PvO7v3bGv4uWwr47gwLwFInTa8TjvOabKixCtBtEHZsMpKspwkT0GvBM/FBOVTTOQEENXejQJkY1tHyvISs1JHHTwQqAWJqvtRUJN7CTSozvNFCRfuvKrDB+8oD+5R4f6Ls/mgs3X87hDSmBIPVkrBSDoaVgbCuDnOSOAgJZklscmZfUuShKKMrvVK4xSYNCVNc5I0J88LiugWrxJLXoTMkLEl6NDJWZY5QyT4TtNIposvgu7HzN29XBh5ZAdXS+716RAkEo5BhWYIdb9tY0B7qPSHFeaxYLjrvXF26h3bVurgY4XrWQBrDEYnmMTijZydVsd5UnF/ju3eOV2gnMf6nRSFcjMKi9IPhE4lJKllm7ZQ6l0WlnlmdCvzFt5TpG0wGpdA5DdWx/srZnZNmKsDoLYtZDq31Z2rwW3dYqC18kcy/l4wzDlh2z4Fo/MtZBsODCvLKgjnPmBYH6e9qWtubzeQAb9niIfeB30oAJfVqKE/Mezt7YXr0wXDdIpWgqbvBq7NE35Q9AquaNxb5H8aT9UW3EaDvnUYe6G9lCRleuckxq7pt9eVusmCXpaHl3hvl3pkXnf6OWBY7ku6rGcbhTVWGN7GiVeT4yTl3SrclCCtQdlgJp9sO8klhXFFUoPohX5Yqb/AsB6jyoBhn7+jLC/UVXXyN4fxim4PDOtpVBMWd3Is+BqaGt76h/vrBxh2kOJFhDzPWfVCmZYn2bunZxc5y6kiwjqsAcP2ECS1rWZPNrzXKK0YlKK5tCTJEq8HhbgmYFiV0OgMlGJZVp4iR7RsKn7zm28DhtU6YNi7gqIIZUGVWHZFwLBrCb6mfL1Rfsj5q78KxzsZTbk7lAQSv4iQ2oWD7ikiVJWwzGPkkQpd1/0IhvXQKBQX4IbuhaoOOKnqFghioXWd4sXz9vYaFsNJ1HtThiFiZ1VV9P1AWdZ3DOsGpG6xxnC5PDMtM34TJAl4jb3QPGBYr4AexsZS1yEzO40b9vZKqhua4o1hy38Uw3rXRQz7xDJbRuWZYyUkf65wu6OS8gHD7sLO2nQoVSBVGzDsJWQ6u9tGGWuH2xq8jf+QXYf/AvjXD//+G+AXIvJJKfXPgf9RKfUficjthx9USv1L4F8CPJfmh//7p/HT+Gn8NP4Q4+8Jw/4o+op+Gj+Nn8Yf4fh/jQ5KKQv8F8A/P/4mIgtBpgQR+V+VUv8W+A+B/+WHnxeRfwX8K4BfPCeybSsSJQfiN4RsViSQ4xaCBLw6sy2hQiPhF69Cy3Qs8YV9lJgtCFkoMQrvBLdb1JFtwod2KiWgwyeVd8jhTJ0AooJmSxo4Ml4IUfChMyIqlAKiQaXze9TUiq3AsXQSZBUUu3MM08i8rLzF7qNFFQwuBxJmNKI1aVlS5iG1mtYtZZVgzI19nvGzR0mCiqbBicnAWYSVbZ+j1seCNQX6KGPpMK8SUocchtuKQ68pcLSUDytxrRXKGkTJXSIifm7btpDt0bF0+5CWP9Thj79pozFKndpbzjlctLY4yobhFd5vrAZJQrnQGKwNvydpcnaDKqPRicXmKXlRkhc1VVWfq9YkL9FpGYxzsaF5QAXyrE3Ce7ZtwewJEsn4Byn/WD1rwvW1bUFh3XuPUpoksWfJV501WBWvNY1SnsfV4oO9AahwfDbR+NjosEWeYZJY9t0T5Bws6qhfKx1KvrFsaIwFe89ohb7PuGqPDQ1IcFnQh4yACFZBahWZ1cxOMBbSIlw/aZ5R1iVu8bhsJU0s27axugVJ7uXay/VC01Y0TU3dVBRFQpZHmw0bjXO9D2n8bWOeFtZ1P/XiDn7WcW/8/zn+oTGsrhtut46X188UefkFhtWn8nQdCMtvb+zbQFXU9A5ujxi2C43yzKpBzMDtbcc8VQEXCRi2b57XF8HqjpZL4AoeHMDE8fZyg6bhmpZM043XV02SJNg0Yphu8IVQmyV0PacT/nbHsG1JeZNbsM3aGjr3keFlxNr0xLBPg0MVBZDwlilEt6RcKPcwH2vzDmsTLk83dmtJ9BPq83LiT8CwK8LKyz4z7znVgWF9ONb6CvSKDk/d1KCCxMDlEnCyHwb60aEoKauasRsQBxd7+ULe4eA0ee8ZtCbf5ZTD6Puetm3Rejwx7Pp0pRuGYHtG0OsKGDagFFSdR6oKkZC1n+YeqpzniGHzvHC9Wi7XgiFyVZtL+4BhKbmrqZ6+OTFs2T3Pzx8ihlUoOnRj8HiuT+F4X7aF/cSwCe9dxLCQBdL04Guy7F7BGIbxtzCsrhu624BSA03T0jSejljyVQN0jiaqp/dDH9wJnlrWeCybe4N+I3m6Mr566sqizRUVO5Z7pfH9wNNTcWJYbQWJC5Sxh6QO25+UDoGJtrh5xcYqBbJGDBvIbMtH1zHZlOevgi7Z67d/TflNifv0iGHfs7qZqgrZ323bTgwL9FrBS877ImqbWX4Ew3rWNee2Rz6ZsUzTdGZRf5fx/2UZ9p8D/7uI/Or4g1LqK+CziDil1D8B/hnwf/5dGxIJHk/i5TTBlViecs6xbztIcGXTMdAB4OgAFDm34z2nppA2PnaBeZxXoeEQhRKPMw9GuRpEh0DMRIrN0YK7rR5vXbBpcYELFppD7kCmItcpxIBBMFKUw0V7nXlfQ3rdgVsd6+Lpu4Vx2vj0KaSaJ6+ZvEUbTX3RVJeaxFwoqpB2L5sLVZNhTclmO3Y0u7uniK3ReGtZ9w3ZQ+ly30MQedhiWxsfykfrrxycsoNPFDowtNIYA34LJMZEp0Sb1XARPrTr3+UE7g90rXU0GOYsRSZJegZaWgdtrGBKHc6x9y4GKEQrm2DkmiSWJE3DuY8lSACbJPhKUdU116evQjdL3WLtYVxtcaIxSYbRCaIkiCdujjIPqfthns9937cNYyza3OumSgVBRu+3+MA5DLjldL85zj9H5ymxeeKoW/jAIwxNAvEadY5tWVkjTyl0H4ZyqU1CaVCbBDkMV5VBi0abIKaqlEZjT47OsQ8aHjhiRA5hDIBFgWiSVJOVCuM3bLpTVWEu2vaJHQ27x48zaWEwKSQk1E+BM3K51FyuNU9PV8qqJM8yqqokjWR4jT55lkd5eduDftxRKlzXjW3fcL9Pb/Q/3Ph7xrAyyDNEDNs/f8KJUBQF+zL9AMPCvOMdcvsSwwoPw4Fhk4e6xCtPYT3z4oCOZk2/wLB93ajajXnaeVWOywOGZatnsg7TwasVtA4YVuJYTwxbUIvis+qpas/afYlhTglq1+C0piFqAAAgAElEQVR6+tvtAcNeWZawr5MvmP76ldE8U18yvr5A0hiK9wHDvA4YhimRoaPIR/ZLgvscLGfsReM3y/r6guwFja95fb1xTTSjDvt55R26Bj0oRqCRCvqOLiYcA4Y1aCWsU09bNdzeFEkLpp/P+SqLkt3t9H2PkpLRjad0A4TF4jBqvITu0R9i2LIsaH2hbSPxPQlirkPEsMK9R1cGZotWM392acJaPlWk6YFhKUVVIsDT+79knFaKyxPzHHDherU4SZiWDVioqiec+4zb3vCxQ9vOM2PbUouwbxnGzIyTAuZ4XhOUXynL7MSwy6WJ3NhwrH3fM44dbdsyjiPjONA2FaaPC4aygtbz+vqCUj0iUBYF3//6Vyxj2NciKxFuyDBiE8Pl6QPaJHTDgUUX2ipg2HTI+mBROlBB2rZHqTpg2DiACLV94k13qIO2YjSDaJZVs5WGiy+4rZ9IYvfJz9sncjS/esSwFZ7qhOwpHOzTz7/BXINe1oevP9C2JSiPi9y6p/oano/es3nPXFVs3YArdpaP0Wd3XpjshvweUoC/i7zDvwb+U+C9UupXwH8nIv8D8F/xZcod4D8B/nul1EZA+P9GRD7/nXshRH0fjyOsfBWCeAfiUH4PLfwiQUztIaN1dDYJQpQ5upP8lAcdODRKB22ibXUY4/D24L94nFVBsd0L1gpe+XMSD+6MQ1A+EOO1WJQ4/OrP/dfGBBlK8QgOLxtrVP6eZGNcJtg8bhK2WfH25ni57Xz3MXxRNy+s3lGUJWX2Nfm7hrZ+5nIJIJW3LXmVY6QiMxWr94zLK36LO6p92G8NxqdYnaAweDT6UBg/9KqObsIYDjxmqw7TaO9Dj7mKYdpduHSP2iwmdJcRIvxjhHNxEOZ1DMQOk+u7BITW+gywtFYkSYZ94IEprclsgjU6yiWEICeJ6s1JlpHnFWXdkpYVNqnIm+uRtmNddqy2JFkOxoRGAReCxKMrT3w4/jTLQoODBME/fbKMBVHRIzN2d54yDRzXTwhWg6YYYc5UVOsG1tnh/R4dA3wQu5tntmXG73ctKZOkpGmKMZasKDFJgo5CfdpkOC8oa1FGh8ZYkgePyWhobhTgYwOBBJ2a49xHnpexGotDLzvGLuRp6DxqmwSvgH3H7Bt+eYZM6MWTPwcg+/DnX/Ph62eatqSuS/K8QCtDksb268QGPTAvKOXv+yec596LC3pfD52b/9DjD4ZhhULeAmkdHjAsNQx+p/HQdUKjNNGrOQghCnhfInQnhlUqrJ4nFf4jVcWgNUZZtrRA1juGdXLjWiTs+0q6Jcz2hRd1IXpKowZHYKG80PgLyqxosUziyNaYxZGPaHNB6hTde+bhjbLKeOsin/H2hk4m+s1TrEL3KWDY5nO++xgyRX8zL6y3maLcKbO/JH/3MzQVFxMx7Oc/J69ypu57MlOR7iXjsuNVIDMz3vDrjU6D8c/YNiGrLtwWzfUBwzok+K32QQh4UKG/HKJMhTr4vQ2314ELmq4H5cP1WJY5zjuMmSKvydP1DxhWliEgjhg2LTNaG67XyxkQBzL9RCdC4R1aNyzLRHlgWO5Re032PsGaGnNg2DiTXA8My7lerieGeVOSN8/kbZjzdcmxeqZuPzBPE5NdSdwT3nnq2CjT+wnVQ/a80b15qkrRNgqt2nheO6QTpmk4j68oMqADYtNGU0HfMyjhcqlBhGHosBFrg8frzp5n6HFh3zaGt44smTGRd9t1r9gDwy7XE8PaNFzoX2DYvgcMqxO0PjDwmWHoA4YZS1nuvHV9xLDQ6IA1VHVNJpZxdmwRw9YuXOi6uXBV0O87Zs/wnyb4hUDl2dNwrO/et3yonvnZzz9Q1yX77nh+vlLE7v802xFXcPMdmcpptQ6KdgJSRQybHL7vML8HhP0uXYf/4m/5+3/9I3/7N8C/+d2//vxcyEIpOQlmIlEZnvDwEwllwaijEN7jIoBHfSsF9yCLEBwceO597Ep0np01SD0AiAEPyniQQFRN0wQfOwzQCu00ymm8Umhrgiil0Th7fJmELJfI2VXm3M62HcKqIBOsq3DrNvrZ8zp6vn9d+a4L37PsC8bsIcIvUmxdkl9q8ku4QLKmQluN2R2pytBFjhsTfBSLdC4EJAc4ePEBTMRxEP3O7IYKvx+B0EEAP82PY4YlpmpCJ4/cV89K37MXzh+ryHuQhNKxS/CuXu69O0UqH4n1SZKcoqX2B4R7Jx63h+AkSzOSNEOnIfjIiwJt02B1gSYvC7TRpFkky+sdY4JYq4iQpBkiwjzP5z4dEhRpmqKUIk1T3Lad5/6QuDgje0LGKJD841QeNkxR+iE0/PmzG3OP5HHngvqVEjDKYLRhPa91SJOcoqxI0pTUpqRpgfdHGd1gE402wThbYsCs451+EEjlLGMa0D7s20GGVypsRxmMhsQYUmNQWYCAdVUUPsetDcw78t6RlDkjHtuGOf36Z1/z4cN7np6eaNuSosxCSTeWYo3WEANoEc++hzL1IXx7HOyPyYX8Q44/CIZpQdH9NoYVBd2tQ3tP74Q6Zji5hQeQOKGSkpsXqjJIO/RDTx314soSxmmg78GYG3XbIrtjZ2U87utu51WDMp+pq5Z0TknThfVYCGaGRGuU0Yyqjxim0NOIiwHMiKWpBroXQUoPtqcbd3oVMiOlh/UNllWYuo3ffPTso+ffvXZ89xopEnvN5WKZdRkxzJNfavYDw9qIYeaZ9G1lXXayLMFfI4Z9Ctd1q0PH2a278Vw8IRX0cUF5xQM9dVMx9DcGpWlUc8QMJ4YNtxvOFQHD6oaqe8PF7K33we1A0BSFwvkQoPlIdhYJGnFpmmGspdGKHpim6RQ9vVwu9H0g4w/JgJk20jQ9MaxRCl+OKGnoXz3D9sK753cBw/aIYU81XkcM60fyyzPjNJ4YlhU7xuRM40RdV+zrxrouWDuj2lA63Ls9EvAblOrYtoBhZRF1x7yHQqiPyB643frQZV3puK9C37SoYWC4Whpdh4Yll8drY0S6G0WeM5clahkChqkLn2+/jnN2x7Cn5vK3Ytg4TWitkFbjqdAmZt5QqEtLdXTuew/mFuk/x/MpWAGVzZWLhj1iWPMuYlinWHxOEzGs+uVf8PThPd/1N64/D8F+9Vzz4cN7kiRBa6GqCwRH9u6OYf24YJ1hzjTzrqiqkpd1p4wYNkUM+31y8n88DM7oUXjoV7ltQ8RjjA6Byu4RF7q3joecFzmzWn/rUR9dby6UqIxSrLvDxI1oHcqWRixaaXYBnMfekwV4iSwYrZA96E550Szx5vd+D11BzqFQbOvOPG2sU+xAGTTL5Bh34dvbyqdZeNngZYpkEEKFKfOOPFHsRYqUKcmlwVRhxWmqAmssxaaRZWXXocx3BjJ4rE3ZXBBZ3fYNtc2IzbBy2FOY039R6zB36uTE3csXYRwP6NAufujth4SiYnd7KDMa+9CJFz91CJzqRw0uOUHqyGYdXK4jO3YvR+qQSZMgOptkBpOkJFmOjeKY9eWKTTKSNCcrG0RpjLWnjpbS9pS1UEqzi0d0yNYdZavDpmieZohlaq1OZtR5gx/K5o9Cpafy8qkzFkp6IrFcfXyHTdA2ZZ7mU/3duZ19d2e7sDUGm4ZjyYsSUOgku8tycFhEedDEjNlv63mdHYs6zJ9XhwZYOHGGEAxmVpHZ8PAlCUebporMJ/iqhHlDrZ60zJmVx1zCefvqwzN1XZDnhjQz5HmCtebucylBWDVw2cI51zrwAG18oDufkIh8sSD6kxgOkJKq8vioTeW2je7l7QsMuzmhUcLBrS+lijgWuDRh1IcuPA1QVxXDMMTORsc0DAyNYCTycKoC1w0YsXj/wl49gfXMt7u6vNIajEbpAaU1l+sVnyd86oJPofc7va7w3RtIw7a+MU8fTwwbhpZP399+FMOSGBTeBPqb45/+U0X+VUpXpjSXhsvXHwCYqgI7zRTOI0/P7PSoT9/fMaz22D3lxVlKPNvu2V4+shcX7PsDw3Z85/D1jaqq0OMIqqc/DlU1QA/U1LXHuxpuHaOG4lhI6hBo5G6nGwdQNVXVIV3EjjoDrdn3nTp2FOofwbDjZzInmKdLwLDIWUJphl4jDBjT8vTuPSZJWRRcDwy7Ztjk5yRpTlk2DNPyBYblziJZwNxxnmiblmVbufXCpbljWN/3JJHHOs8zWimO/JUaFHVV8+ZeEBEa1VAUBdM0nV2WTdPQKMWgLGrQdNLTSM2rjx6C24L+6ivm72fEvZ0Y1ndvJ4ZdLxd0YknSnN3B7jZ2sTh/CEBPNNpStgqta5Qamcbx7qFbBxzt4z7VdUXbXAOGSRenVHOh4TaObFZODEsiH+05FRK/UlYl9bzxm8833r9/R/1VgrkEDlb1XFPXBe/fX6ibkqoqsHZ6wLAgVOvLDfXyQm0svx4H9Jqd3F6bLDxVBn6PxeIfRaAlImzrGk5gJHiKCyUlTwi+nJP44LkHWl/8PGIE9fA7R3nxEMYMHoJacz5sjYmEUZGgBOxUyEYdXDEC4VtpHWxejEZtQS3dn4JlHpGdfVtxm2edHcsobJG7MLwK3eAYge9W+LhDJ/AmcDfrgKsBKXMkT9BljikKdCQa6yLHKIWRhW0VUA4MJ/E/ELlTnIB4jXjHvq9ot+GicjNR5R25z0sItu5lsMBZigVFFThzGh1tY4BYSlSGk4dzfDYciDpB6LCEUZEofgznImHzyFw5d5YYIVoC2fBvZSzaGLI0o2ou1M+hvfry9By8GEWTZAWiQjbrkNQwNsHFjKd4Hzha4nGhyAyEEuYud3HWeZ4x6m6BobnPUcjsRQ4UxysEcTpKVBz2NN5zcsWUsRgNPvXM48i+7WxLyHbumzu3IRJe2pigk4U6uQnGpLhoSL4TSplJMLH8YgS19qA9Fzbsz4YNLSHTqIA0MRRZymgm9ihjogwkqUXyDNteSMUwLCOLhSQGWte2pipS8sySJRarNUYJ5vBsVAZxh69jeB2LgQOkAn8xfSh7/mkM0Ypt/czmCt5eY2YkYlhZC+JK3l49VQmvfX9iVyVBTqCqapDAl0HV1OeWe0RqylIYR83QTxR5hd57xkcMcxlOZna5BiN0tzMtUbSyHgOGjeH60hfN99OAHscTw+q6RPqR11sHn95YbcCwl08Hhn1ElOO7Hr5L4aOq6ZKeNw1rJPYraq6mR8r/AMkT2g/vMUXBGHleWfGOS1lQzAkv3/0VqLeIYSHbcrt5avOMljVIsKgn9nylLLbTOPgteaFtW/ytR5RDtEOkxqsQWlTVzjiWVBWhgUQJ0lboXjHNR2Zfc7WhWeRalhG7rsg1Wg6pBa1brlcbRKqHO4ZNJpSxCldwuRiGYaGqKpRzDMNAewml+GmcsFbRaoO6eLS5kKXBUPnd818AcPnmjmFLVmB24fnd+xPTtV5wb1C3nt6XCEJRlaAV+4lhV3a5cbvdqKOavVEaExsQxqLnzb0hHVA3J4bVdcMQ52xQmlYrmkYxjgHDbr7neo33tWQYvTKnKx9Hz77lbMsb27aTZyFodB6aqsVHGk3AsOYBwzIoy/BcQpgmRWYeMCz+PDCsH8aQ1VWePorEaqXQjcb0kC4GnSVkRqMIzRjK1CTrgWF/RvqLC99++o6n65+zmFBNubY1X3/1HDFsxmrBKJjGeKyNQbeKZhHWumL6/iNaNyi9nRj29GRY92e0/d3Dpz+KQAsE74O20KM2UOBuBaX1M3PFw8/jPQ8f+WH5UB6CCriv/O9cXEErjccHkrffQ1YikholBgsohbH6DAa01hgf9V/w7NvCvE64XVgmGDro433bjTA4xQ3h+x0+AyOwofEcD/UNXeZc3r8jqSpMnmPzjLQIGa00y9Di0buAdjj24PsYb0pjMxAf9ZRiULHPsE2YJAZriYXYpegl6j3FwOA+NzGIiFwjxAX+j7qn+AIfTmGU+SLYCvN9//3HypKP7zk+e/giHnpfxpjwSjKUNmhjKaqKy7v3lJcQaCmbo43D6pANstYiCtazPBn8ARHF7oXMGNZxjBy+GFhqhZZgfu13dxJdT89BrWOW5q67dq7AHq4v7zmtfKxNUNgzmNvXhWVemZcVv3tSk0CaoqUOgrsEYDImRekUEYvVFmVSDtVchQplWAde+VCiU/eAUamQZZTYWam1CVmSIwCM+6kBJLgW5NaQGsXIA0/MKIzWqCTBZxmzW0gTdc8SHufzzNiFDNbBR9MxQDyItsdLxHPPAIYs5RGI/skM5/C3nbd8D7ysOOqqRpzidusI+nehO7aLt0kH1FIjMcgKDxfOjBYQLHmkpigGoI73bY0/MlY6cHI8npu7obymkhIbCb6yBAzrjcLMI20ayk5aj6xjwINdO15fFuZ15LYLiakZOvj2N+E7uhFU0fDrseN7/4hhLWXEsLF/of2zRwzbv8SwLWOSG5UV6rZAfcr5rntF93cMm2SnqTPeXlNc5Vn3DF4mig8hI5FG7zzqmlt/w6BoK08RmwtEBKkihnVDeBSUBUr1aHWUzzS6Fm6dgmmiLEtEOr7kXR76UE3ouiNiWExYjYWGHqoqBGqztaTPz5gDw56umMmQPX2JYXn+FerAsHlnjCLHNiu4Vs0XGDZNOUrPMCr2vUM9PfP5u++Cf+CJYUPEsIKXbcNaG5SworWSPjCsvaCUYqLnEjGsPjhaEsqJ2ljMpcFOI019vWPY508s28rHA8MuCXX+zFYVTEOwTxonhzEp4mtEHNf2ippS+jhhDS0yDwxup2xKLlozP2LYIFS1on/AsH4YKdos4BjEpEDAQ6tCJSA1it2FhWDfv7AaRTq0DMsra5Zh7IV1GXi+hOumaVTsojSIy2EX9JPloqNIbFSs/zhqkuXAsJ6qSvD+wLAaYzrs75HR+tNaVv40fho/jZ/GT+On8dP4afwRjT+ejJa4qND9yNMJ7f/ehbjXH2XUMwMT/y2EDMwXHKNjKIgZrKOb7c6qD+llh0JLIEXeZcKPjFb4m1Ya5YTgtRgzRzGjJQgOcMqyiKffhLdZeIutrZ9WxaDgVeAFmFGsRL0dObg8iq+++Yr3H77m8vREnhekSUYeeURWJxi1Y6zHycLmZja3nlVSo1O2PXj/eTXGVa/H+aCrBaD3FEwoDWojgAnHe06bPrNaIXPhwxzrez1WEan1Z+bxnp06TspJdFaPWa1HQrnmkeMUsllfZr+UtihtsWlGXlaBRGpTlA2rl01AYSmqGlSQ1lj37bSU8WgSbYKUgHPkec7uffADi9fJOk1h9aQ0yoSVrPPBRPrYt2NfHzNaR9nzeE9430H8l3hOH7J8BM0ebYR98eyrRitzdjKmWYqxaVSxz0isxZiE/dTACrwxUQqDwpwE/IerXMXMrY8TL+H9X665whs0BqsgM4ZDUiOo1xuUjnIdPpRc1aHLRWiA0ESen4A6/qIO2Y6Dt3I/58FuyJ9dh/cuzR+7V//xDq2FsnL0rz3HuW+a9rcw7G0M/KFIvYzZSJCuDyv3AaiD4TFA30NfD1RS4X2NUopBj9D7k18ZMGykFY3x0CsJxo1xzisAJZRKY4rARQwYlhIrYXw3dTgWiubKst74m24MGBZP/qdEoRz8Kq/ZgBsDK4pWGbroj5NfFV9985e8/1BxeXpizwuen95xfQ7ZqHlfuDQGMy04+cTL20c2t7LG7NFFp7zsjnEsUWqMzRweVxa8vAbrm3fvA4Z13UBrKkz9Ixg2DPSiqJWGKjSgKK1O5puqaxxCXQWsuN1uiEBRHPdCw6As9D3SKFSjUMOPYJgxJ3b5eaZJ0zP71eorY2sZxplrmpF/eMeSZpQ2RdmQsdoqRYWlbr6hHxT91gcMOyzAbMqTztjyDOMsg9EBw7aMLvKW9oNXGjGsEuHt9nZiWNM0jMNAE3GsR2PMhWmaaFTYj0EFfGrbK0oPkFxAPH0syWSA1A0ZgjZCngjTqtFqYpoChr1794yxKUiGsQXLbDF2wbioxi8jCkXTNIBnUrHjPV5fNT3DoKnrmqEfgcAt29U94x6GUFcl3hu++/hKZsxdKkY5GnVh1R2tbvnu5dcRwyrUofyOZsRwFUUvUB4Y1sQO7zE4rNwxrKIsPcuy0sXGtTUViqhF8LuOP45ASwjefdzJ3RwNX54QKOk73/2wgDssYw4OjYpmz/ehH7apYmnqByQuFPjgd7izn7V4bR/qkwpEyUlwPsiu27Gv2rCj2QRWpem04gX4HDvPPgE3EXpgQOOVDgAiOybuy4d3z/zyl7+kaRrKvKDIclJrT28/g0YrjVMhcNr2GS/bKa2wrwatktDNLytIsNnxsuOjVs62LXinsPFBe4iVHiW7M0iSoAOlNGE+teJIfvqggxEbDFx0Mr/rywgP5VkeO8zuPK1HTpgxhjQ9ODsx0DIGpSzaWkySkBcFeVEFUvkaL26TIOJJXeAsuWj5kmRp/A7D5hzzupJayzhPoftNwR5T813fkWhDURZB+0oEm9hT/PMeL+rTsNno0Ml4Xj3qLrpKDFCPhysQNckMoLEqwS+abd2jsXZ4T56XZGmOtQlGGww6elfqc069C6JxgkOcguSRUB7e50TOT3gk8LxO65+4JfEggdxrtcYe17ly7M6z74LyQS9OG4VK9Pk94VoxCBrxKmrY8dBlJ+w+mGWfcg6Rg3doFO37gij7g8aLP4EhoFxJwwBtbIHzUb7BCXVVsWvB94GT5XUIpIZhQKGodIsw0PsBNUDkl9M0LX2vGGWgrhuUGmm40qsfYljHm/NUS06qFEo5xnhub11P3dR0Q0fbKOCN2+uBYVGoMWLYLrCqNmBY3/M52vgsRc1NOhYqBkYSZVjE4+SVA0//ybtf8Mtf/hKlyoBh25cY5nZhHlrG6Ve8vQYMK6uMwgZe0/L9SqsSbsaDzGAqhgHqbKeM/n8vL5+46PfkZHj1ipYriukBw4JZdC0tUiuU8qgucOVMtHLx4ulvN1xVUjxgWJZd46ns2dSGtJqScE8PjaJGcXh9K2OgbVEiGDORphnbtlHXkSxvVq6qRLuKKdmxRUHlqtgpHefeJUjnSUvByRAwLMtJ4v3WKMNWOOY5YJh+wLAsYtgYqS+Fd2il6bqOJLG0dZivQfUoFAMjrbpwUU9M44wxyVEFRasQAIkIvYSOyaEfThrPqDSFMVhjsU2C7ne29ZVPnxbKMpRjDwxbXYLRExcMgxgucc476fFdeHYEDJMvMKyLqOsQyrqm73tcxLBKhZthlLiIkRvIhbZpuL31zHPYSN2UTJ9feN2FJpLi+2VAPWn6WM5/wtCoC1JXyL4iHroOrjYElaJadu8o/M76iGFvwasYYB8XfPP76QD+UQRaIpwCbOfMSzQ/jcxrkWDA/CiyzbEa1HfeT9QoPbZ8kr21iv5YsTPrTsI7yCuaIJ4VTv7+oIRw8p58eJ+L7b/racZscNqw+JQFxZrCmqysseGiWxwvzrMphdcafJRI8EITxR7//Otv+PlXP6NpWtqqpcgKEm2x6sgSgFYCTvDbjNsXlPJn8KlU4Dkt6xrd3yVmEoKqeXiTw0nwGDRYQEcF+CNbdc88BF7aMTecXDCJhXKjLXH2sYm9Z7EkeDz6qISvY+AqPKrLx4zlkTHi8Fg8wgSNj9kwYy06SdBpgtcKF2+YsqxZl5k9cquEnTRLsXE+9z088IPigApEd2vY9505gpRXis057O7IUxv2Ne4PxIAPhVbmFHJVOkhn8BCEKQTRMSARH7Wkwn4aHVZM2+YQtzOvM8u2sq4rEgPxoPNmQFtEBY5ASLres2Z4QfkQBKu4gHjoPwh6M8f9EKLdc98g3DciKnaEgjaCTSCJqK7wuHnHbRq/Kpw3KJ1hlEZii7bbwn3qN8dudvzucFqdN5xSnk18FPblfO3es8XFybLugRP3e/iE/WMYzmn8LvSugrfInZI6ZAarmh5NJjtdCTKEhzlA1QRC1q3tqaRmunVcyvv/7/smLF6aGqUGup7QsVg33FvLwn1aoxETOvCUqs9tKILwcFlVbG6APmLXA4a12mC1YTYbn2gihmWsWRAT7czA//UmZM2A1wZuQtOA9hVNEjLmT1/X/Pyrn6GUpq1arC1YxvnEMKOhVR1vTigzy54nuNFziy2Dm7I0V4t8XjH6CaaOqinpujfyPKQA66birX/hqt9h6gv0I741aB0e+EN/QykLtWfoB2pV0ZvoAxjRMhgqq6Dw3XcYo7k+XU8M67vgHOKdZ2gGWtXQqp4OoYnq5T0BwxKlGLXBboqmbuijj2qtNb4F1Sgu5RWSBG0Chu23aFb9Tc3aBwxTSiPsPGcpc9zPfnekt51xn8mvT8zzzMVe2POdWcUuzH1nc29Yl7KPc5CjaNsTw1pzRV0U4zAx6pG2aVFaU1bliWHDMHLrb1RaUzQNu3jWH2KY0bgSxOXs60eWLWVdX1imcLzm+kShDXVlSVePR1GUIDHDpwZN3Ugw7haPwlLHYPDYB4mkTgHKOly5A5rLiWEa6TW9aKTqSUyJTWoihZRt9Ti7UmQt623grZ9QesOogiqq/r+9QF0GDMvzHL87irbhdTpkOfYvMawC/6uevTSksXlJ2JmmO2frdxl/FIGWAmQPDy2v7g907+W0QzmydAo4HGOIrtuiwBvQPppDPxKykUAMVu68kTxyV92OQqOCQ7wLQnhwktSN0kEtHsGJZhcNaYHDYFQsHZqUDY0zBjEGt89IfkNnoTV6c541dkwaF7JmqYcUxTfROuJnz+9osoq2uFCXLWXZkKTZmZFQ2qHFoTeF3neUX+ORHCs5ixeHNg7lcrQ4RC042dmWGK1rhU0tTgtODFZbnDhM1APzfgfZ0cqCmJCR4igB3Us/RxbHmAAeSqszY6Fi15tIEAY9MoQKvgziCECltUFiBsXHv+dZSlLkpEWBTTMwGqcFaw1ZzJylVqHEYqKSuzEWFCzzGvfT492GUZag6bShdcieqe3ohElARyNkFfTHUPrslNHWBiPnw5bwx1IAACAASURBVBhVhVeYlzj0DkrhtQpyFv6IdsL/3iWKlE4L+97T92/M84hbl3u2UlvQFq8MYmy41B/KlSqWAUV0yCJ5ExZ2cpQzNYK+l6HirhkxJ+CCCveWimVes6OTnTQN85loQdYVWTL23SC2RLuETJlTV2zrVhY9kygQt2C1ID6/d98owypBtmJ3wuoEh2LZPMMQalTTNIEPcit/SkOh6F57mvrCLa7ApesoywpFT9+3UAB9MJI+9QiM0CmhUjXeeMSCTHcM87qniWbBThWIGaiB2/yKRMkMdbkgveYVR2UduREGXinrgC3TMNJNA3Vd4TrNq9LUz1/x1k9cmpDRErPy0mvWyVDVF/w+I/mv0Vk4lm18IVXQ9YKqcpo6YNja93zzPmzjnz3/BWoT2suF2re0ZYNOM4Yh4I9ONboqeFobvnv99wz+MzseIWQ96mbHi6O9TAxvoCVlHhRtk3+BYbXRvOmOZ3mPba84ecPMx3xt1JIjaqUi540dxYCj5nY7dLIkkNyHIWLYE0or3iKBXClF6QtuckP3LYPuaZqalo4uYlijenpaBjVy0RdUqbg5f3Zx2iwlAVKrmfHYacQVJdYatphpTGeFerZMZiDZEy4XS68mtjksBKUqsXbjogKevr6+oLXh2T4/YNgC+glVTsiaopSmV+Zs2rlGDEuzghrohh50jdMeFQPxoq3oh4EXrWDqUT4G7lUsX3c3Pm0b6WR4ff01/cu3zH3/BYZdHjHscsXRhxLsaXt0YFiL+BviTRTrja4TpqVjjBnzHolE/YsYBonbIOWmZmhaSu95NdsXGPby2iFriizCa66pbMnuEjLVsEYM0/PM0n1kUTnPTmNVhZQFyxIWC4u6kFYON97YnWPtZxwNy9YzfBsxzAQMe7Sd+7vGH0WgJefrrsd0rMqPvx9JKFH3ks4B1TpqCoWH+V3+AQJ35/iQxA2L+HvWS0yQwHEK8SZwxRAOrpYoj4/1QyeOXUArF2QUotiWig86bQwWi5o1xiTYKDxXjBuXSCNwQKYycmsp04RfPH0DwHP7HDp0shSTJCRpikns2XHhvQTl031hWxe8D4HMvcylUUoQDEoklpEMu98Yo7aLLEJ7yUjSFLF7eDhriUKXIYBAJBaeJGpuyRflobOWSvQoBLzX50V3SDY8amtB7IR7uDAPDl44QWHFlESNmqIs0EkSK12C0ZrE2ChsGgBk33fSND31blAqZkriDaXDfigtwa9qnqnr5ixVHoeiiMoVMbt2iKdCSKmHEqgG5c9rUetTnSqskiVaM3lQBx8pzqnbNtZ1ZZ4ntrlHREiTBOc9eTzeNE1J0wSTpkGUlC8V+1GEc3Eme8N5OjtgjcYfmdwzqOWL8UMJD2MSjLGcMZLe8X5hdx4oUKIx2qDQSMxGTVuP32eQhmQ1eCXUCtRu4zZMdBXw7LtjXVaWaQ6vOQLZNAeplj+x0mFY8tXc+o6qjmKkVR2umR5KhG6ApvkSw2JjMlprxnFAtS3dm+AjB6emwRvouyGcQ91wkw4RT3wOMnQ9rq6pnMe9vuHFkSN4F7aRFw2673h57YLXqhA8ZAsXbJeAYdKIiRiW3jHsGsUgew2XBTQ1ru+x7XuercVX9gsMu75/F/ikSULy/Ex9aciqcJ0Pug8Lsn3h5fMnypuHbOQ1dkIPwwg4ivJC2wpv4tCsiN/47rugHi+m4+eXD0ia0vWvpNkzahS6NBxrSYWvPNJ5pA559Frl3G6vJ4bVtaCUQw2OToSqdl9gWKMUrvRIJ1SVMJmavh/Q7ZUmvqenp1GakSakKGnRkyaJSunFh68Yl4VUoPJCrjWbmTGmPrNv+56wqga9j+yy470i844lZl+0Grj5mYt+esCwn32BYX1X0FAyTj3m2tBqwzxNJ4aNkU/a1hd8fJZVtUdpRdeHi7CqBV+VeG1Rw3himMQAed831r7jNugHDHvClcsPMGxhWi1OPG2tUQxf8nUHBVsPDqqnin7VD/s50pQ1jwWnH0JE4HcJXdeh65qLSZjMfMewNuf2m99g9RPgHjBsRKILhyHh7dNnTNewFIbqEjCsibIcw/gRtfwQwxyfbh9RsUT5afyIc4Lf/5EFWsjBrb4HQErrk++DxGxBzF7dH3LHw4OTwOXVvcwVHqQ6BlkxAItE5fPBozXidRQsk5jW9Dh1lHUE56O/Hxoxhn0XMHAIL1tlQklQW5yDJM1JEkeahTfUdsNsG4JB65S2vpIlKUWWcS2C2aUhxUcQ3LzgjQZrTg6Wly145M096zKiJBDf3dk4Gm4eTSTYe4/C4P1yisB6v+GWlURviDEQq+DbecFEPpvyiAQemT/LPA+l3VO8M/xbq+S3HpzqIXBRsYzFw8MeUSgdOD9am8DziqrvzrlQ0kszsiwnTVL8tjO7ifZax2MRlnUly3PSLGWaJh73YBxHtFHse5ANybKMsiyjmGZ4T1VX4AW/PXhWHnwrOA11tYmB/hHMR/J9vFBD9kliWCSRy3dkJPYdvI/Cnfr/Zu9dfmVZsjSv3zIzd4/wV+x9zrk336K6mhZjmDBlyqj/BUY9BYkB/ScwZoLUM5AYwj/QQjCEAQyQeKhBLaqyK2/evOfuvSP8EeEPs8XAzD1i35tVlSlVFlmpa9LROWeH7wgPc/fPlq31re+LXAvrWIWd67UR0G1mUyk1fZPH8po8WEFtmhLppjchcRG38qGmHaTe7/NHnlz8uUZT4UTMtbJgZInmtJKnrJ6JAd5morB6prAy5paDKTBXi80L7Obd5gQNPgbm3hPWNfIb1pV1TjzBeQExv9du8B/EUAgaie5bNipiWI+0Qt8NYDxiKlTuAVaVyidd18eL1kNoQDUuxqFTpB9j2aSuqDTaItW9wpCeJ2uocIzWQFtAd0EIHMeEYZXBly3T+YLSojbj5a0D6/gck0k4ORHMSN0+MftY4s2yw54xr90nrq+vPNUF5qnhp/UTS5ZzXJYHDJsJKhwqWELF5WqguBI2DT5VLsuZ5fOvyaeRpfKYYGnquBF8eYn4M45X6mMJIdBguf4WDCNhWI8Hjsga56KoNS7o9oKOhqqq8MGz+pkNwy6dAC80TYPvekJYMZJRbZv8uqa/XBCJnoD2ekVOFumvjGUKxrQFHWjMU8Sw8cbzhxx3iNm9s/eE2w2fF3yZMCxbVtR/g3n6Il7zcEPnmuJQkxcT3lu6vo+ROWCcpbLKuq6cz2eK4iNffllyuQTmOZWe64oQSvIlh7FnEMFZt98/azJCfr2s1A0c6yoG/yL7Jr6/jiBCU7VIXTNczlTlXbYnjAcI0XKobVtYHUbh7QanhGGDEY6mxWZbM1P8/Lre7nToLkLBHcPKMmBMnM/bTaOGHELVNO8wbNthDsNAXdcYYxmGkePx+B7DhoW2Kfj6qwmLcPOWrDY02vDqUwl8Pcd64DwmDDth84L57TU+By7nHDxVwrDLuhKCclwP9HnMrC1vBcjI+xXvbx5/HIEWd6L7Xd4q7nolkaRl87wLui+U+/HpIVTDb/nyaWHdEzHJ0mdb9AOIZLGurxLLNMETEgEiBCUsgdWD97Cy4g6O4AM+j+/hVgGruOSrmGUHrPNk6fUPrWOQgXkJNM0Hvvj0Y6wtKA4Fx6QSnBUVGgzDOJEdZ5o1Bhu7zogqyzRyHc6gSwyC1rAHL1t2AwmIdYgokjrMjNlWyqjrFOyMt0IIdudLQVwYjNnmRlEf9bjuSt/p49IfSbyf72pkbUHWY8ee7r+cfheTavJR0d1l2T1ARqOmi7WAMI1XTObIc8ucMiNeDVnmmOeZZVnwGjsKb+n18TpSVSWgjONIVdX7uWzfZVkWcuvI83wXLb2L27Kbb+tmAyESuzbvvP27xpbGYEuTenvYXQNihrTIHVYLVp0JycB6u429D3EvYWzkUOn9fo6XVFNWd8sixvToY7k2XvN43fYSuT5sRtiaEaKlkhJLv3kW3+NwsGRZAPWI8TirMcMbdG/+MCr4ZWWZZrLFsS6eZV0jP43YeSch6eAkspif5/j7W6aRGGBm39Ej+4c/AiEx2M+pLFg3DaolMo6UCIM1qB3RUFE3McDa9ojhGKAHNWeqB7nSMz01cGyiB91l6KlrhVZQie9RktMPE0Yc9bFB2iPd5cwlYVgZLOH1QnZs8R7e+jfc4RAx7BKPcR9LuColQqc9z8+foPMMJm5+PpgbS9mSZ0dEPvBc19jTR4p1+R6Gff2bienjCz9an1l8haZI/R2GVQXcSi5vVw7Jh65tA3Dm3AWG6w0pFwYtuPWWNql/h8rxNk+UNsfbiRDOSAly3ey72ohhTRN1yaTj3K2UZbk/F4MISE8nPU1boyqMxlAmGseGYW0bNz5NIwxD2lyl4LavB6SPbiHWRCwqs4wuhdDSW4x9wtqFvm6wJmHYbPfsrteW7DmQ316QRVirMmkKxtfPlyiGSh8x7Ec/ahkkdkE2c5yzy0XJLXz4kHMJT9B1qCptm9YFaen7HpWOfhCatqW/joiBOjVtGAODDNx0pNGG1gjBwOU1YVgJTV5BdWSdOlZ9ISwFJ3tjSBXw+ulDxLDmBOO4lww3eoMEpaor1mVBXxXtO3on1IksfzweEesYhjHq+j9gWJUwbEToBwFpUT2jCCebMewYduXlmyTcap4QPaDhxiX0lGu8R5fuyoUzX/z0E37xrIunOKy45Pk5m4UmVAwycKhq6ITz/JeEVcDcMezUnpDfw+zwjyLQ2hNS8hgoacxi2Wh/oxISGf6+HN//sddU3pPl04K0LZ6xbV2ipUwy7FXNwGSEkMVW0KCIGEJKZ0/LzHIDvwqzj8Re61fEOdi8DlWQpIgtamEViuyIJACS5YqfLEYDh6zheHgCY3GHHEmpZq858xXWNXAtZ8brRFlNhCXxcIxnvl6Ypx7CijMGbLbnAKORasycqMa2fV0i8T2zm5+d4qcJbyey3MUA1WaR4MZWftxMnH0sT4nZS4vxmHvGh4eAavvZZq2zq8M/yD7c3yMRsk0SyXQpQNlI6EmJf11WkIny6FAfmG83Jp+ItXkRy5veczweccbFgCsFH8fDMWYjU0ZrXVfmeSbPc7Ik4Lou8TVE76R8kd2vzNoo/LkJfQhRQiS2iz8EYymLpOp3WYT7LRjwftmzXcfiwBxCMh9P82Hj91VhFwKNv/qY9YlZNd0ytspuwaPERexRXPdxHrfrdh9xgTBOyVPzQFMW1OWBa3dlnW9oiBlkQyRJx9O3yW7KxAyvD/hljcKwwMqM1Thv6uOz5NeY2dJNBDYoYh/Kon8iQ62hBBDodmqDwjgwWEtdGyoJdF30L9yufd/1KERicA3d0LGR2AGquqbroQ6asrQWGQTTQDdEDmhZVdRtTX+ZOF+uNGWF1s+EIe70p2VgcTX+qrycI4adjgfGm4OnREhWQY4tflVE24hhz18gL4lQ//GnHKavmW+Bn/y04Xg4QVHj3PyAYR+Yr3CbAtcvc0Y78WU+URYxs2bNkf52Yc3g8zdv6MHgTs+M30TP7sOhJGiDMa9UeuJ8fUWX+Kxlp4RhLx3eHBKGKbUvGa4T9ZZZ6a60Ty2KUlUV6jtaMfhH/BkGVKFuojTMOI44tzL4iNfrev4OhpV431OL7FemGVoGM2BMH8vwTuj6wOY03D5Hb8muW2Ga4Fih3jK7+y4tL2ayRZmyjOPxyG0Qgo6IxPM4HqI5/Hl52zGsml/I8w/4hGHWvHE8lpz95nPb0jTvMcw6t2PY0A+pm7zeN5JGhEYaOu3pujNVKNGwsPuWdAGfLwx9T8iFbDmQW0PQE+aU5mPDsCG6HMRcbk8Vkml539P1HcdDjcorHUpd1UgKyDpraY2lEsOQcLjve6pU+YCIYXVt6OmpQxsbuZ6eyKco/dGUH6nLK990Pdf5AGGg4QNGLbfkjtK2J94u3yYMO6D+wvk18JRoPiuWUOXUtuL19ZWmNHz+jadbwdqEYeVG7fjdxw+CpT+MH8YP44fxw/hh/DB+GH+g8UeR0Yr8F8DI3YJHBE1slZAEe/ShuLSNd5YvbDYjD2+dal17077YSG5OX93kB8Jq8UEI3kAq180pXp1XxzTDPAfmORCM4MSQmxyz29k4rAaMGnRRjAoZ2d5Fd3SOcfVkQSm0xIUCtRYjOdiUOZtSxiT3dOeRrHjlkAVKm5QN9catf0HDjBGf5iTs2YRY6/YolqCxPVmsxQSz2+eon/HrQsgWZFXC5MmKfDeajpkOh8Gn+QZxBrFht6VRTdcjzTchEML8N5ObBdQ86G6YmNUyTjBOUKOsuiAhkap9iGWo2CKHAH5ZcTYjJSIJ3mOLgvxwiDyg4BMxfyPDG5Z1Bt0sZPTBVzHukIqiQFRZp3T+6fw2AbxdpFSiKKI8ZE432smWqUoEwMRp87u9TmYd4nzk8BiDrjFzF0LApb7kmDkL8XMlZs2+a9QdZTXYy7DmsSvxYbcerZWSIKx94MUlnmI8JmWRhV3/rKkqvvgk3Hp4m2ZEMjQIYV3u5XxjMCbbk5NhDazXJc4PpHlNTQMp42WimNvetJGZJE77p8WFB2AwUI/DvtXtx4FKGpQRryWxaaKj26x2SBmrrqPrOuq6pqnq7Vbah5WB62A4beKxYgm0aLKkjxh25Vi2hEV5fTujdck8xxPpekdmLPN8YRgihi3fGvIvctqEYbk6rF4wXUaz1Fx0IJsaQuqsPt5KTgfPapWiCzx9UaBS4ES4JQz79tuOQ1/QfGjQ88hSvNK/w7C/4NbPdwzrOjgcdgwbxxtlnWFay9DdED3R2BuvpcG8Jgw7HjlqTrksVIcTYTrTHr/Ysx5cr0hwGM7QeTq1iDPovNwxjChv4FMzzOFYYmSk66Z9zuuk5QQg0kADako08ac6EzCDYpzQOsEYpX/AsMs50D53kZt6uSDHivPyxpN9vmPY+YwtS/JPnwiXwBI8FQfebsm7T9gx7Pn5mb7v8L4iy85IE1NJRfGRw9rhspxeFarI99uycU+nE3VVIcOVfsewWIYeu/hdmpOAVjRa0tPRhTPHUNBUyYNyfomm1acnyimmZF+nb1kvDvf8HsOOZcMF5aRKqeXOV6yqKmX7L0jTUNkRGYb92jeNgNQwjJT60E1vDf0Dzl3GeM4XH0n5h+OBp6dIZF9uL/yjT7/A8crbX84MUtKHV8q15nWTSxkDxiUMqyKGHa7xXgZo5EB/udC2beQFCgnDLoxJnPW5cLE0+ntg2B9HoAVJsiF2wQGpZKNo8JGMzs4v/mvTcEIiNKcD4mJkYlo8/Z5XQXFokm/QJarGawAxFr8qy7KypBt1WQLXa2DoZ+ZFkcyQqcdkBhe2soyNgZwHh2WJMvHxD3CkJp9vHMXynD3zlD+RNwWLA01XIKyweuU23Hi9vNH1L1i+xIUIyE4m5u4Fu9ww25IpNlk8g80yPMq8rGAtRh1WDd6bu6de6hqQENAlIDY1CSSMspnZGOH3rs9A7LDYK4ACah5e9wTCgyq42U2idz6UgMp6z7WKgtFI8N26F7fGBcCva/LMczgnrHOUxCiOOTaVY21xiA93iByyjcM0TREsx+uACJTHSJ601jLPczLfjg+Mcw6LwWYZ67K8Kx9uwxhzN5dGIcT7ayPnqo9lQLFmL1NrKuHGOXWs841lidwsP90IyxKDtYfyagiRp7U1bjw+xLp9fprPu2zGYzlW7scRuXlwf2Ye/711kQav0Z0AKPKCU+sYPgSG7ttIWk/XZkrNAiFzuCyp4KsQvEe9R5cUEFoFq/fAMyi5yzjkxe4Bt2Yej+wB3p/MCMAVejE0G4ZVyqVXJHjezm+Udc2cGk8e5S3KKBrE5RLXGpGe5gHDTk0bMWwYGIkY5rsbVRMXmPW14xIc1bFHTEuoWpZ5ZjlE/kshbwyXC1//OmJY89wyXs+Yt0CoHzCstwwCdW2Rt5reC5mPpcUjxx3DsqzCzU/kRUHx4YCkClN5qLFi6V6/4fUy8dWvC679l9y+vGNYrhN2+UxbK+e5hnNHm3g6w3Blmm7URU04FXTdK1c1tMawVAnDxohhQ7gQXoWPn36MonTXuJDaLIM1Ydixph6EPgx4r/s8DxKDf1XoZaAKRwIHqiqS8o1po+/uLmUzgAi9nB8w7Ezdtlg70V2FVqPuUpO+izVX1kXw3vH01LDOb9TSsPgcmzhFtmmYrcVdApdwQamgEaavE4bZgUbi/aH6iGElp0MsC7vSodRY7dDXBWNaoj9j/C49Pa0xjCIYVSoUysAw9lTHeG3Dy4WLvtCcWsqy5PK2ot2MSRpYWebou46iyFmWV/w0UCwFi54xYyy5XaQlCxeyZF7faUhzfL/Pq+MRlQaRFSMt0gzIuO1KYDADilCq0vUBI8lxcn+LKHNS11HNvwzK+oBhHz985Ov5TH6xZM+Gal5AD/jXhayIx1ynApf1GONoVLj54zsMG2xHc6pAlVqVQZUPT89M1wmbgrHVe/K83BMOv8v4o0A7ZeOz+30xiB107Dv8ncz+bqTXhPfRZfp3SOSZEKJWktGYyRJ3jF11gA8xBAuAX2fWdWJd150LdDlf6bqFZRGWIOADRie8zWiaxAeyLhLDVwVv0NWgq+A07RblQHtoqJsTH7/8Ee2HJ/LqyKQzs6ZuLALXZWE8X+mvF2695Wg9Zo6BRVnMmLWntBN2s02JjY7xK4cF0WjQ7IGgBiMOIw5rUzDmgBBtaTLvydNCSgL97JDF35c1qpPbZFywyB6sCVEzK6RuELPbznyfx7WT7FPwJg+vb1fIhwXFI8ZGXhigQTGelIlLtjguS1mZOPKiiNdpmiIvzBn6vmfa7CussCwrs5so8uLhXO8jqqNb/LJE4n1QxMjdAWD/LjHwV9UYnIYklk/kTIlG24JddgGz34SqSRk9+GhYHnzM0IWw7/YSbxy/rrD3NrMTyDfhVgCfskGbBEe8Juy/o5rkX43sALSNLVES9S03AdZ0TXJHXcOHj57zW8ev/s1nlslCyJlSxtO4A87G1n1rDVYMzhrunNCQrnvqG7CGqjpijOzWSMuyoMalLt8/naEGfAk1fnucUlDcJwyrEjmbu+x7PArRDqRGaqgBoabv7oR6VLlcugcMe0Keyr1bwoeVCkPo4by8cMgzZF3RhGFvZ8tXX00URRMbG28BU2ScxVFunEZ7Y3A5dlW6s6E6GK4i3OY7hpk1doT9W3/+I9qPPydXz1TlaIgZmCU/wAOGlacT3bcdfZ4C9eVlx7BTE6gx9G3NuGwTFjHs5hxH0iZHboyDY02drVcHdbDYLGf1nq4fsDaHZBj9fKgShj1jOSMfG1yf87as3LL4Hq4fGL2P3DbatLlXkuMMxvZopbSVSVytjUD/2zCsxIcBj6dqozwQgIYV44HqEcPuVRqIGHY4HPg8TXjvaN3CL3/5a6Y8YtiJhmV5SxhWU9cN4zhSw55ty5+feTaW86smDOM9hl2gOwltWXPpAhftkK6L/LTN0aGqkQ76S49WFXWl8d5JgriqgaM/soQZDQe6ywV8Twjl/fvW7zGsbmrQPjLp03xdr1GH6nj0iNY81qgihtWgm8vGEM24xd5bQ+qIxV3f0yho3WC8Z0hQUuaOH//4C25Xj1+Vf/V//b8U2QnGnG9TE4Mp13cYdjoYbhoFsgFyyoRhPdLU2N98pqqO/OxnP2FZ433+uhxRE11LftfxRxFoAd8LokLqLhQ0ktcf1vI9GEsEYUmveUldW/b+nhoENRYjMT2okuMp9iCAdFMGFlYmJmZufubaR4B56wLDJGByVgurrEjwGAuHjQyfZaga/CqEVTEcydUQ1OzfJauPHL9oOP6koTjVBK/kWmCnFIxknpuZyVfL7Zcjt7+aqZZANsXP+PGPlKdaU1kp2jD4MEfBTIilrQBWk0K5F4zJsEYIKbVvXbTbCSEw4TFhoiwytjqOySJBOnaoOYL1cREVg/cPEhCYKMyZclCi634BY+kuHmPEJA63gZDt9kpb5jFex9RGrAHddKGSCn5m40FrWFCxTBKQpOqerco4XpnnCWNjSWVepl3NOATFWMtmRhOCT/eR4H18jzl4nDvEstbe4cq93KaxtTqW4yIAGI3ZpPBwTPyVJGAXAkbuTRkaAkE9LjOERVnXK+sSCEHJD8d9zkwAWRcUIYjZg1UAm5oONsui1a+o+H3OYwNDnNkYnCbl+HD3CXuna6ZRgsKgrHvVWMgOjuZk+PRjw6+/fqF7mTDrB/S4dcitiKSOVpOCPxFIUig+8fitjY0h1sU5NbZgXVNQ4B2L3psn/lSGBRDoqaO3IHC59A8Y1qMKpqrpFbS7q7Y3Tc2QouANw9YkBLk6S3cZUFfQNh8TjuWcKcgThvXGoiHgdwzrEoZFqYG37sJlEihy1iscmohhJwuvLq6mNvuIswa/NoS141h8wQc1hCptON13MQyCN+Ra8EUqP96yjF+NL8xvltu/NtzMX1C9BrJvE4b9Y8XVgowLegmEMFIcM/okQ4G90ZQ1XTdwlegqETFspbzG+2V2R27DSJnlZMcjNz9RFj0b6JusjhjWDwziKE899rnm6c1wvkXBUp4aZA1IGABh7COG7VI6ZUmtIFiMXOmVuHkKGU3CsIGYgWuaGq0C3ahIF1ATRU9bc2I0E4cPDb12VMHQDRcOtdIUXwKwrIofr1xfJtqTYSFh2C1i2CsvmJNlpWTuA9Z4nA10ekFSED1/+xl9+oRBqKtq7/bbulrjTQSfu29p6gbtVkzV4tfAJR1bVRXr0iMilC5SGMzQ0SXh3aqcGMKF22gIY0d5sLwtA+Ey8uHTTwEoQuBYNYzrHDFs9YiUaNKDs9ImDKu42o6D13cYNojB0FPXLaqGRp4YGahCQZfKfnp+oaoqqmNO13WUYcGg+NT6qKUjOzh+8jNDN4yY7IWvvv7qHYZV9Seq8sAwdGSrI//4zIeDkKfNgHVwPvfkec7xqFydEuaRqj6yrvF5OvoLr6rsPrG/w/jjCbT+liFJ+Tqll5ASWwAAIABJREFUEAAeyk2xQ0pEUGPuQVRS+TaSo2SgGUpG4HDf7YuAAR8mFgJLiGrWtxB3FRMedTD7GQ+IM5jCIZllW5eN2U5JQSzrsqJSENJq64NSHAqqsqRwWcqypZ3AtiAvnmyFXMGuE+fxlfNvZp7auBhzKsmqHBH/ftHcC6l3Dk+0kQGjFrG6C+nbNS6MEmJwuSwrk5nJUseFDyGlcRJHSIi+0/Io4SBIZtFtC6DAGu7GntwzWo8ipip69/8zEj9ns/eJ1YA92DYmtlX7EJinKZb2dCKIIT/GBWgYepZlJssyRITVz+RZxpACsXm6cTgcURsgUzLn0KD4Zb0HUsZyS4bb1lqyLNvLnvG8dP8eW6ATS493UdOtvLCuSQ0/hnXsKviqWGfxftlF8KZpxrnsnvFD8En7DGP3jpZN3fl7BtZqWIPBZPfXvY9cNmNcDLy+Q/TZvsv77sMtaxg5XCi4zNGeWj598ZGvv/olyvpgoZLjbIFzBZmzFEVBlltcEu61NnVO7venpC5YJc9j2l2MYdW7F+SfzojyDNTcewbrOl7IYQuq4uajVYEmecB1PYIDhh3DutFgUqp6GGaMPdA2H1Ayes0I/UTghDbx+ldtGb3hQsbC1/QXZZ6FyyVqA73hqZ5qXvyMVyjsiCkaZLpixnge7cca2xr6q8JkeXt7ozp+/B6G/ejLkuKW0RtlXT1wISxxQb7pC8+HmlV7ruu3nMdXzG9mXMKw+nPJP6o+MDQNXffGsVIIPXdRH0M/jDRty9kY5OwxeqY5KUm0HXu9gbNcb1fqoqYoSrIs38vbPlwgtJGvpBplE6890lS0weyfo5mlCxn0KdO/lvikkUXXRRkFEdq2pSTyNN+GC5e09rStMIRo5yMCVVszDPdNh2ktZjQcQ8BPGWs2kbkMIwPLS7wuhy9r5jkne864ibCeX95jWOb4tB5ZbeQoRwyrORa6Y9h1vPL5dqN2bseurewJ8Vnsuu5OTyhLwtuKtZaqrfZjINqWnc9nDAGREtG39PoB6yxVtXDuS978lWzKcFW2lygHYO4UW+SxA7SPml5m7xgck6bigIyG8Wg4hBZjpvR6xLCItS52MGqN4vesV/WAYXUdlf61qmi3Z+lyRRRc9sRPfwb9r77h669+ScWKa7aS7oyzJ5pTxbxcKZaV2VSEMt4bJxu1H6uq4nz2QIMxMI7nPREtpiJXITP/EDNae0rruwAcayIm1Uf03bF3E+T4X5P+3C1B0Awf8hRkOVRyyA7oo6+eJwmEQnAwL4E53QA+gynAVSNP7KkuONQF5pBhtpqJxEyTyXKMN9wmWJeA9/eMA2qYp5VlWdFpii39IkieFtvVkIUczRyZDZhwI6yC0cQnEhNNhiVy1ghbeLnNRMpkJekEMYJ5UP6G6N2nqmBMyhrHbJH18TPmZYn+ii6xwLbATR6kBDZdlC3QCGEXl4U7Gf1OPH/PA4vvkVqcU7AVQgxWeQCH4APBr2TFkSwrGG4Th6ahTATN8XrbRUBvtxvrOsWsUgJc9Xfh0HVZmZlScHMvqdmkTh9CYJ5nvPdRmuAhS7UFVdv3ylK6+DH4MSbyAJVY1otB9IPAol+YbldY7k0DzmUPRtzKPM1k1pAlz8XHYG4TThVjdt6hMXa/FhokbUDiu8GjmfffPPY7SKLFURYy2rbmRz/5kr/8i1fO385RSgRw5oBzBdZkGDE468hyh0vPgbHRO3MLtDf16nfaZMayev2Ts+ABqOsBqOm2GpQCTZRu6LqOtqmBgU3zHUCapI2khpqaNxmpxWCapMg+WOoq4xyO0E1UdYNWLZfpQHeLi1xFy6E54NaZ6bVKGFYym68AONqaawDTddDU5PVHDizvMKwfOlzZYrMc4xZuE7y+XvA+LZTeUDcnXqYD5elAnk0sa8KwDwnD3gyTmfn0/ER/KlE6wjrQVlHQ9KlpufYGk3l8pbDWCK97Y4BobOkXY5EBpBXM2XG7wekUj8nzKQUPStf1fPh4ZA0L5THpIBUFkz/jMFGQeOgRK+82i103UlXQmpbe9FRlifiVc4gB8ZatDiHwuiw0G4Zp2Mu+qgbVgboEMTWXS49pG2p7D17CMW1mF08WjohbOEhO+ZQw7OYYx45Pnz7y+fONdb3RiNBtGJYylXWn3LKIYU9PGTFz/YBhw0AXSkJ44XQ6URQFb28boX7DkpYNk7JsC25ilkeGgdPphF8DXX9JGHYPgM+XV6bbyHSz1MXM+LXSZ/DJZbhkCJ6TQZaRHVZkdoyNYK8n2jTnb+sbdV0jxjAOAzKMjNWRtkqZJol41vc9xkTj52bj+SY7HkFhUPZaYl1T67382DQVt+vCNE0Rw/7Jn/OTv1j4q287PqXzuI1ps5hNCbue4t9T0pM7GU6nE8MQGxzuGHagLN9j2KN+5N82/mgCrT2zk4KobaFXAAGTdLQibWdb9CESt0M0gDQ5kKPb19IM1YygOSI5Qh47sdxddFsVglWCGlQd3lpmlHXjkOSWdfGoheJoKZ9q6qbC5Y5jci7PsjwGSji8s2S5IQRh2vyVEh/ndpuYbjOrBvLyEMVA0w7puswE7/GysNqJvIHjUwZFfD0YjRYZG6En/bW77u0BZxQhNSJgQiSCpxKnc2FXeV+iazOqsG6ZpnXBOkNw2yJ9Dzi2ERdRQYgBSUiB2x6IrUmk05qonZSCtVjLv2eKdmX57TwwbBbZqgtePcZklFWOtZaiOHDIjyzbbm+esTZ+7jrPDH3P4XDYsy+L94TFYwrh4DKCV4KukQC/lTA13mdbYLAmJfMtANoCrE3h/jEr9PiQiZH4QIpCWFnXOxNj8YoPK/M6YVLJMlpoZDh391SULIsG2iKR+2TszhvY5tkkQny8Dg+B1p45ipkiY3TPwG2ZtS2D9N3ga8/ehXhsnjuCWp4+NPziz37KdPtmF+Yz1qUgyyZwuxtux/na68HR6Fs3bZ/385Xrez/SP42x6c31VNuc1opIzQVAYBgvEcOkhk2UVoFmoFLB60oYQc0dw6rqmaAZXmdEjvRSUVlDHbUpgahIH2zFRQ3qEobVnjVlq663V9R49ATF8UrpvqRulNt3Mew6kx1L/FNGtkQMy1IAM772vK4r1edv+dbUnD46juWBc3chnKMOli1yxFvehl/xdv2WvOn54uc/pV/iiYbRUn3xBeMAtVZ45ncY1stAXZ9QLCI9ZjhC22KWM9dLDA5ut4myrHh66ni92AcMS36KbxPlpwJXNwluIutNhn5fN9pWUG0Y+iumbRHvI4aNqYHEJAw7tVQJw4ZhoJIQOcFA1ynGsGOYloJeRny76TMuZJqzmJXMFZysZSoOHD58ZMlidncebxRFwTzPrPMLQ99zfMCwYsMwIoaVR+Xy+saTc1xTQ0/cbFdIA/p2x7D9rjSGMpSMpudqm5gVqpRhEE4mBuq0BjEDeX7i48eP9JeVdf0WSUXwxQ+xurD2vA2vwJWTLZnzjNsDhjXZhHUfMcuEHVqenh4w7CV23Bptqeo6ZtgATT6GHZbWCDVCHyo606XN5LJj2DkoUNOk61iTOKeJtN9dBGtz8g9P3KYRlwvPf/ZTJvcNQ8Kwg3nCmoy2qTFTR1UPHKoP3G7xe4yjUGpMVkQM65Jo7RcPGNaTa/M9zu/fNP7WkExEfiEi/4OI/B8i8r+LyH+cfv5BRP6liPzf6e/n9HMRkf9CRP4fEfnfROTf+53P5ofxw/hh/DD+jscPGPbD+GH8MP7/HL9LRmsF/lNV/V8l5hr/FxH5l8B/BPz3qvqfi8g/B/458J8B/yHwT9Kffx/4L9Pff+P4bqdk6p3a7V9UdEt+sIkYhdRq70PKrIgBk99V38kJwRE0w5gcZwrEgZjlHUfKiMVYQWXFLoYsz8h93Ml5FtxyJRjPsTyQuYwsj90ixyJyD4rsiHUW6y2LgmoitGrMYCzzwnybcEXBdRgxiwUrLOL3DMWkC56VOfQsdsQWC1IucEyZiNKy4MlWH33kwhp5PWnEzIGDZIBsrCPoGhX1N9K0sVgTMyTW2NjYhu6dI6v3LD51yxjBJAXvqKgfPydoKpeJpJJf7Fzb7WBMJMKrRjJ6TFvfNZzS1Y7EYLOV6bYs2cZ7iq+VZZWMox15HrNOG9lzmldObYM1hmma0BC4jiNZUjo/Hg+oCss0s2YZxjg0BKbbhHPxy1hjQWXnQm3jUYtry8Zs2a1N+X47RlWx2HhPamoQkHu5b10XYjeljx1364o17p2avjUWm2WxnEwkv8fuxXjdsizbM0CBSDCXcN9NRR5EzEDG841k9PcNJPey7CMHbSsPiDGEsKIEXGZonmp++osf8/YWeDlvXDuPsYqxsVElaNQM01QXTn0Q+/sbY/ZS6za2jOjf8/iDY5gS0NDs3WAQDaEFQS8XRIRKKi4SCfK08XqUF5CrspZK6M6oqehMjhk2DFspjzVHrRklx10XRgfVYUmlSFAsRgz5VdDMYhfDszHMxYZhE14twXh8CExuIst/wvHTgWPyWvx4qLl2V+zqWYoPVJ8sy8vIIJv6PMy3ielkuA6/YVos5enHLHLbMcxOwjm8MYee4mTAFRHDvkjyDaXF9WcyP3F5y/HhDV+V+3y1poXhBhhqK/T2RikHFmnwdbwHp2nlertRqcO634JhxyOLzxnPZ+q2wdQwXIdIb0gYVlLvz0lIz7eYzbQYvD9zudwx7Hq90p4MnupBWyvi/DBYqkqoaBirkSjAAajwbJ4py4qKNmLYLHRdx7BEUn6WH3YMy7KMKpR8M/Y8Pz/t91TXCQc3o9kE3RMqgemWMadmCWssVDMnb9EaoKfvTfQkBG63G4MMWHPCXEfGsuToS7QaCakjsOs6TqcTjErPAKy0zR3DrCzx2Teec79QHVaMGaNPsDb7eUxThuhIW5+w1wE6s6vPP2cZlzGV/foOQSjLhi3XY4yl7xuUDpGBaG32HsOqqqLvO0Kov4NhqbPRjBHDLq881UeKn/+YoCVv64UxYVhTe9o2YtggcOw84eij1RHRs7Ef+p0HNgyRu7uVWwGGwVFV7vdq6PlbAy1V/Qr4Kv27E5H/E/gZ8E+B/yAd9l8B/yMRpP4p8F9rPIv/SUSeROQn6X3+2hG+g72JkrWtXZGCYoTV671kIhZViye9LgWCQ3UD92ivI+piEOIEIeDUsguiGYfi8AKSGUIe8Ats+nd1BW2zoCJkeUGW51ibc8yPu0dX5o4YjZ5XugaMyVA8JgkGuiJnmT3dpWMNK8e2IjhhtYEpyTvMuuKXG8Pbr5j8G00rmPxKWceHrjjaSD/zG8kzOazvM2ZTy/w2kQaRaMXzGONs3nwhCCQvwX0R19iGvHiJ8g5bq+27MGnjLyTCfHpVzf1zQZMumaT0sL5r54/8oUfbnxhkbedhbUaWFTjruF5v2KzA5AXX64TJkz1FmXE4HgjrihGhyPPI70gB0LE8pu8r3MYrzuXUVTT0DYkfJCbptX1HoHT7/zRN5HmOc24vH27p4+3YjXi6rtFTc10mbreO2zWyd/16A12Ylwn8Gls3ZOOFJS2cImCCsswLmSWK+OnDpUzDa0CCYJzDkO0p9e3ALTD828Y7kd+Hw6N+VwCj5AfH86cnfvaLgGSxLVuyjGPpYqBlQGTjg22kfsWnjdHjXH7XC/P7PMw/7Pj7wLAQ4DL0IFAnEkk39FGcsYlWIxfpE4ZBlQDPyxXVPGJYA0fzETHHSHMA+n6mH2eqqqRpHNfpgHAh6+wd54yjw5GZHsm+pPxQ0g8DTZ0kIn7052RLxLBpThh2ShiWMCqrA8XTgWsw6DVjHSfchxbTx7Lgbcnj5uwS+JZvE4Z9zeFUMifS9DCuhOXGtF4Shg2Mc8Y/Thj28QvL0cC0VLDO6Dmgl0CVODehvzLanBqJ/BsMZ3+mkOJ7GHYTwQRB3IZhyYRbO3xwFP6JyyVw+iBEg+WRaudXJXmE1P0a78gONVu/aEvdnrmEgd40NHWN73pGO757/pvmRN/HsmLTNO8w7GSf7xjWf04Y9pHr9XbHsHB8h2FLPlP0OesUG7F88Hx0NaMRGEcOT0cytczidkkeMVAmDOt7pUnNXZeEYVWWMc8zT08D1+sJOw1kxyM2Bef7M9Ipqwa8eA5Fxle/vnK7/kU8j/UGGnlN3q/0EzgrHI7lOwxry4q3sY/cXK1jDTaV9TY+1VkDEkqMuzGOE1rZNOMCNQzS0ojsG+rfNvok+Nv3PSGEPUBumpquG7+HYf/OL/5t/tX0TfxlmTiWp7hhNMogyoEOkdhRKHQcy5JhGOi6jqZpcO5G3z8W/5S+v2B+Dxz7vThaIvJnwL8L/M/Ajx6A59fAj9K/fwb88uHX/k362TuQEpF/BvwzgCb/Pndk34Gn/wcKCDYasG5ijFhUbPy/CCp2FwlNnxG7d4wFB2Jje74LGZBq3JohJsOrMjMTjCFkGTn3DI33AU/c3RSHI3lx5FCWFGnHmGfZLq1gCcwTmCzgitSNtWbc+pnPnz+TdZan5ZnrOhFyYTGbEmhg6l6Y3j6jc4cNljIraA+JiBwWMrEYkllziHpOezk+yTtETrRJ8yHxSUw6WlibWiQfzZXvfniqGjM2HkRc/IzEsX5QBgBNmUaIQbB6HjMnkbStiYjpYjearg9ZIEk7QhKh3SEILmWjsjzHYrndbgQ1VNkBvwYWXXex0bpscdYxryt5ljMOHaKQJ37VfL2hQFlWiMAyTczORUL8tsgtK8Zlu/Dp43233T8bUR7ugUwIYSdJWmtjsLXJkaTa/vb6ojPrqmmOoidB1Ae689ogKrqrxm5Q9SER8FKwIncBXwQISuxN3EB/2xX+drX4x3Hnx23q899NJccgiqDkheX50zPnrbV+9WS5Yh1Yd9cH2rKZZmvw2LIE3+H27f/+rWf29zP+UBh2OgjSNHHDvrWjd0APXYg75DuGlfiEYV19opIrQU8PGDZACrR8iM9HP15pnzKaVRnV4MIz/Y5hEwcjeK3J65zbFDFsLtK9EIQjGWdV8kMVMaw+8qksWZKA6jJnNGWN70bs8cA8HhjGV1wRMyN5MXH5tuN6HcjyK9nyzLfrRLi8ULQPGHZ7YXq70L18xdPpRJldMGtUMb9dHO3JUmBYjGFpGha/kooLoEoVIDQ1Q9+BCNWx4W14Y928Mq2lbltEhNfLwDgM1JwYbMwkte0J7w2jf8OJ4xIamhKEcu+MVo0mxpfLgJzPhKam6zxVdUmvV4hpI4YNA1frsHlOqwdCSBIRibgdMaxlHG809Qn5LoZ9vhHUUWUNfg1kVYb1yVevXLldb+SZI8/yqAuoN+rbJwDOfmCqHU1ZMQwRwypVbi7sGHYsGkQyrL0iEr0YG1X6ROAbGuFUnpjnkev1G1pjWLOMPORo0iY7nU6cz2c0CE1Tgy48PTlmH+/BV51Z1y7ymXcMa99hWM2GYbpjmFYKY5LbuUQNr4BSG8GWT1gKuiT/MIihZqQ1zY4hIkINpBlPz1XNJhlRVRXhcuFyiZvauj5RVSUMF/qxZ12VvGh5/pRRfRPnfMOwq+v58LFlGEfOF8+H53iepa3ph45mz3SOQAuMdwyroenh90Gy3znQEpEa+G+B/0RVL4/Aqaoq8vuZaqjqvwD+BcCPG6OSNEw2STjv15h1ko3weMCHVB5LXYXLqqjJiERUg7UxmmezchGXRJlMFMQ0AsFiQ7lv5UUKRLKUpswxh5IiX1mSvQUiePX4jfRto1BZUVRYGy9eDBQUCYKYFTGBLHMYmyQilhvzfAMrnG89n3/1inmxhCx1OwJ5buHWkc0XCrlRmCPPzSHqXAGFNeBXAtEOJ7bC6k7qF9XdfmVXNOZ9t419JHDHq4ARs//cuQzrDM7EjrKoE7IRuzdWI4lwmd5F4N6evU3rVm4TQvBM0w1Y9+ADiebZJpXu7tFcfHm6TQQTFdxVIjF1WVey42Ev+S7zjBY5ojFtHXnofrcTEqI45jLNMbsVAtfxirMLRSr5GjF4v5I5h8DedbjdG3HeFDQp3q+eeVkw9qHsZy1Z5tD9WEtuDuQp2TBZZRyjOawQyxzLuuCyfCfWTvOMFYPJsxi4mDWW47bMrdkI75GEroF3Rt/bfG+B3uNkfi/w2qQXtsB410cL0cYkRdVGDEWeUdeG8hiDAj8siCxYY3DWxpJ0EPy6lfIDQde91BqzgIrH7+VZa2O5B/294OLvZPxBMezkVGy8j1pil91ZNgx7ppYBnzBskIq+j7IixfHAYhr6DcOuAqzUZcSfuvnAeM3BXBOGDRHDypLTdm1tg4wZoVEWHxKGvYHZnjfhWB2hSxh2ctgpY8mU01N8FjL3hASlaQ6clzfElGSZ45I6KA9Fyef5BteB82Xkc7swvljKDEIKcvLcglOy+QKlYxkvPDc/58uPcT6e6wr8ecewsw8cHjGsqriMM9J1YCtERgaEpmk4X+Jye0pY1QNNXdMPlrEx2Fv8+XSbOHjD8cnhsqffimG9wmFd8Wt0P3h7e6Ouywf3i44ewZgmdtKGI9P0ykjgw4dkkjyM6Bpo2xPWCOO4vXcMsstbFTFMMzqJ2allXcnsgfIpYtghP6AaGLqe+TYhWhPW4R2Gvb2+ktkM27bYNXCVkdtwx7C+66haQ+Y+0dSB8/lMby2kjsJIK1DQGiMj59Uz/+YbjDVkqWPwdLKcTlG/qu876upAPq7Mqaz85UkZxwOX7hWhJnBmWReeQk72gGHXYaTNM/zbmZDnrOcTfUokqAkoNcaMCIqGHpV5z/5euSYMGxGpaZqWvo8KWk26zy+DQCNwibZVdRUVfjWVBbvzK9KegECtymXHsA98+UWc86++fkVk4WQqnLUYaSFcOScMa0IgzwoWM2LGaP1kT55lXrA2bhhsd6WD36uh53cKtEQkIwLUf6Oq/1368ddbOl1EfgL8Jv38r4BfPPz6z9PP/tqhCpNKknDYuCgG9YKVAlFHCIbghXlVsiK5xQcTs1nWJMkCi2B2UPdiwLrYJZXKjGos3rCXH41VXBYzRQUOVYO1jnXrgBNlRe+OOpnFFakTLnHBnDEQYobEh4WFiVVX7ovdjOdKrxO/CR2df2X1I6CYdAmCGIxZecLz5x8dT1/UVO2RIPEGufmVTMCyMoeZNWwdhGmEQAi3qFVisqjfZKKu2LaYGh6EYDXa6ogFmzg2JhicTzpOkuQRTOya81tnopXkLbhxq3hXUktXFFBCkLTji3yeZU3ebMaRubgIrH7BavQdXFI6fPUe8ig2Csrib1jrCOuVLOkx5day3ibm20RY16jKvyph3nwYBZ09i94orCOzeczCaUAlprtNnqMEwjLH8xeSvVHK4CwLmY38LoPBq8eamP3aFOhVA9YZ8qLAZRkGwUnGOiURRiyZK2jqNnaETTPj9cY63TgkAHEKlc1xTvB4brrirOwLkCVuJlCDwezl1u/yrjY1fmMM67p+j0MgbFyskARLucucaABdMUEwOKKt1ErlBp6qeJ63m0HXlYBhXhVjcsIieNkyWmlTZCQ+kxYwAWvNPbBSJUj4vfgNfxfjD45hPpCpsDxgWFEbuvPAqflIoCaEkeAbrquSLRuGlQSurFcTMzWVRajpxms68QL75DDDAR0snfmINZbz1FNVMdtkrHLLr9R5y4KjUsP1euApZZoqqXij46e/qDkL1JnltswRw5K0yy25GxyLA8cwI3WGuIpLvwXqE8fa8utu4l+HDl1eeBtHoKMlLtgXGTFm5ef1kS8/Op6++DE/+ukXO4Z9Pr+RCZyqlZfLC+u6cgl3jtbpFCgPjuv1iphAU7X0wNUY2lRfXPLXiGFDz6A1VRWfn6xKi6DNcO6KrO8x7Hx5e4dhlxBSx6UkHtC9xN0n35e6CfQhUFXK5QJBz7y+bdljx/NTEoT1C/Z44Hq9cjTpPL2nn6849wwohb8RrKM8XMlM6py2Bmda5jUQCtD1FVblkjCsQbjlR5brDaxjus6EAE1TMqXyoslzzCVwcS+YtuXU1IzjiKY80Lx4LtcMZz7ijOFYHfEhcOkuTHMsC3/9m4hhHz5+pGxLQLllGbzDMBfthW43/HRkvAa++vbG4ZAwLO+pyobRCQHPc3XAuwtLV6d3GKFuqeUU8asfESN0VQxMoxB0g2qHyIgxbbTGU73r0gHSQ9MaLhfoLxdqiMESoNWGYZ4b7v9j7112ZFmyM71vmZlfwm+Rufe51K3JJlkEgdKtAQ011EwPoJkgCBpKT6An0EhvoLmgmTTQE+gBBGigCYlWi2QVT52zd2aE3yLc3cw0WOYemaeqmsVBE9WFY4WN2jsjT4SHuflvy/71r3/xsT2zfnqlvo081brPfmcN/bbxhOHza0/XfUBMhXyTTGLtTNNWimGZYtjw6ZowbLdtsQQJ39vz/u3jHw20RI99/zPw/8QY/6c3L/3vwH8N/I/p//+3Nz//70Xkf0EFpJd/TJ8Vo8BqCUS2TRdh8JHoLUY8gnDnzuYjW7CcnDJJ0RT4ELBOXcfFC1ZcalOhKRVLCr7QzdKiOf2jJD0ZlInJINoUaFmM2322wKZAi8xqCbM1+BjUhR1dDNa51HMPtqD9BiUJgaNZWIPnvq0scWXDs+6Ca5LRHgbjPQtwKkuePzxR5o7o9YEKmwXrUvDx7v68n0vQljBYdiXhvqeFsBtFRraQjDbjcpiPWhsIIRlQigq8NzacdQfrFUkMktlTa4/N/Tfv667hUdZqPwE483CajyESw6b2Bem+FvkJMQZntfDAZZlu/MbgV30g7rcbwTn8tnGfb0d6bxdwhrAd9HMIAY3H1QR1t4jQlKkGJYcGK8/ZTfZcoogE8NGDCFmiqmxaH+u2crvf8POMW1eMgJWIX5SxuN/v+HVh21b8cod11UCXeBwIMpda0ojeu4eD+z6PpIICkumf/c2U328Zb41t3xmWvknz7kHlI0Wvp38RwWaW8nSiSoGWexm53++EAN7fsXbTwHfX23kDErHW6caVUsSWysrxAAAgAElEQVTeiwIVYMxGEP5ZA61/HgyzDC+Wpom8vqohZXWqWSa42wvCE3csr5dv2MKZL7/S4KQfR8q6oWmLNxh2w8RdwzhjhydEJmaesUwJwx62GtM8kWUVt/uCix5Xd7inDZNYnrw58ZESL/BVNmNXiznVnOrqwLA6RubpxjhPONuwhZFhng8M618ThpUr+X3lm+HCiqVpataEYcuwYbzn8wv86Xnj+U8Uw/pk/1AVJ5qze7N2NTG0a2yS3yt1A2Y2wEwTa7YYWd9hGHhfs4VAfxVEFqxRTc/5/EwIGe42MeSvNCbyemBY2pABawacuyHSEkJklOkwbzXG0DQw7MJ2+sSqLQeGPXUd3gdNH1a1Ypi7kdoYUiw5m3k+MOyeZVix3M2EWZMu7ubI3ILdNj7N35HnOTNyYNhSZQhaAHQKFWQN1kAfA1IohrWFwd8Mt23DLAvr+UyGplBB03mjTAiDyrpEuOd3iuIj56cHhn336ca3336Lc090LRo0Jgy7uYzLy6/Zthm/3GnWVffZJlIljdWy8gbDuvR8pzY8qE2JkQeGjfaJGK+HJdYERyq26xr2mpL3GFYTa5VYNHWTdMqpfyNK2AIEagTHMI6EzCmGpSyX6wL3T5/4/PyRkxFu80SWFwxr0qF6w/JZD/bxqcJEYV0HTl6w5319CEFgi3vO+x8fvw+j9Z8B/xXwf4vI/5V+9j+g4PS/ish/C/wb4L9Mr/0fwH8B/HWav//mH/2EAMtA2gR1tvwWUsNI1bcs+UpWZojNWQ7xciSKtr8hWiwWF7OHYBHBRGW0rLYP1j9v3ON3F3JJXk57qs2mNFcQsAIhndJD2qestUeePAbdsLyguihjNBpPQLgRWGNUbaC3B5Ed0Y2N9HdByF2k62rKwpFnkKUKSxMWYvSElJJxKbDb9THwdlGmQCu9tzXJlVtQQAiq97FWXYT9povMWE8IjhidSrvcbnbnDlCXhw0+iCRD9/di5+/rnYwxRJxWyADWOELQ9xasauC2gMv213NEDHlWarWgl9S02R0fbY1gDcz3G8NwJbcOc7BgyqAVZUFVNYd2yTmHeH+kCELwavz6Rrh9v99xKZjSwgdlO2OaUZc5sjw7egRmIaMoC2KMrOvKti7o8kusRp7jjWear4yvryzjSFlVNO0TZaFrrDid9DPFJKPZFBymAMY5XTPOZuR5QQiR+/3BWL1lt36foeaL3wuw5OH9pd5u2tDRFpaqTs7etWfoX9mWO2LdLth7dFmwmv4KwROCpo5N8jrz/iEifnRp/Gcb/84xzARYhoE5nDBeRdXf/N2VzQtcIrH+xOelICsDcrYHhm0xEkWZ9CFanrC4PuBSYNo2LWa+MUnGGcuEw2Dpuo5xTE2QXZ7+faNutCDGGMP5gzIu13Gg3jGMgtBCY7R1z5owrA6RuqlZ1oVlHsEYKumYjIqIN64Jwxqk6alpeRkmrm+6/tZNgyWQ33q67i8oC8dyhyJ5AXZVTv86I2al67rkVv70DsP62NNFqxeIBWbgxDwpht3ujrIwnMqejAprhev1gk+9pD599jy7J2JWUJo7/YFhT28wbKJpNZ2JCGEYWMnBaWARo0Wk0ix6c2WI0JqJrntg2GwcVRCenp4YE4adtgqTpUOrybGykGcGYxaiXxF7hvjE2CveFn6kfDonDAt8sIbnDxYz6Nrw0VNsBa7J6MyNWbximDtRhdQQOsxQNTQyMk0N4Rq4y51TIiyyPOf5+YlpuFE3DQMD2f2Z568z0vIhxDs//emZ2He8rC+EkCcmSe9bk+cURcE0X5Ft47v515TVVzT2iS1h2Mk1uHwF6ZBOmGahteGQYdxuM3XTcpvvxAjO5dzvgRD0WanF4uo34UgDzWvDhUe1X9PA0A8MIlRVRZ90aFW6zqqpNDBloGqfmMaKxsxsH89UieH7UV3y17+aKMeM1d4Y+lK9v0TvfXPuWMeJa/DYz5/oupaiKHgxIyY5+retaDD3/Qq+f8v4faoO/09+t+rrP/8tvx+B/+73vgJSxc7Lig+RZU3iTB/xYRfrCrGNFOIx1uNSpZ7LIkWREaJBAhjJMDE7GC0jBgkGa5KIHNUjyVEOD9rEEkh6phA1ZSN73mYP2iL4zWvwFA3BB3zcmSCrrAMWxGBcRthux+lHnMXlTjfuzWKjZUN0QztK3ZU5qaqMH/3oCz4+txRZTH0EIawBLza1GPrtImP9PqBsljkYrcOFOxqsyVC514K2atkeZpZG0olRzTBDFDJjsfJIx7osS8m1kJieqHP2Jrh66wR+lPqLZcdT7z1Zlqsjf/CJsdGACsCvAQwM/YwxllNVafnw7Y7ZgxNnuc035nkiek92Omla6mgIrfcixEAMgs0E4yzG2WM+QpqfPM8xb9iuo5ZzLxgQZU2ds2rj4eSxfBCiGG3SbNU+Q6Jn3XuR3TfW5YbfvLJYkhZ8DBQpBZ7nOWJ1fgIRExJDmtaPMm4Ok2mQ7f3Gwy1R12j8XrAV0MBxZw80JtIehb+N0eLxY2IMah6bXs+S4W3bFFxKy+2+pLkWwrqyt4txolYc3kMMGjTaYNXNft/k0qn2n5PR+ufAsC0EwsvK9Z7z+eU9hr3EAC9C/HHGx+yEWT1Teq6zskaMYlgVYBrvZGR0e1qQCQmOc3fGTBMdBtt16p6+R/tRtJWPZIyjUNVCFRuuhyuziqTr2HDZeuJFoOtU65nwZ5xnmhqmwXK7GW63O65xVMnpfHIjt+WWMOyMjX9L2wh+jAxxrxA7IwNUXcbPf17yp8/CVltkVKb6+rJgZSEaQ1kWKIdVsRtOQktDwxAtZwRix9D3lKV5h2HzdKdpcvymmp66rghXff1m7inQn4mxoIrC3VjOrcG6HcM+apXhEJCm4WIt5g2G1XXNNVyV2YIULDQY8QeG5d4jCcPWhGGTcQ9boGKhnIB+hu6MD4GzsSzf3ZkKvfeFsyzzjW/niXi5cG9+pM9Vsp8prWXwE2Us8ZXAPWHYuuBOe5WlY+h7bYf1nHEKgXUt+fxZWcS8+MiHD0JVB4y15LcP2Hxmvi1HZX2kZbpdMZnw0X7Blt/YFsvqdQ2+vPyKNXecyhOfvvsHSgNcr9B0DwzbcsQGvB8IPZisYZpuh+u/MTf6a09elAnDInTdIx1nzu8wrAJeGahCoD9MlwNVVTFOkhqAqzD+wLBhIDY1ddPQ9wGRK6FudW5vu+6t4FRaYIFYUFUZw/gPdAnDYiggrgeGvaw59jrTtS2S63u8fB6pm+yfhGG/f5Lxh/HD+GH8MH4YP4wfxg/jh/FPGn8QLXi2LfDpRXmEXX+3d4tLtqIgUAucThk+6RdihNypeF1zWMLbg6s2AN5jSWXHNg8WOU6DMQS21Gj46HMXDbLpJ7tMGa6Q0oN7axnh0cbnSCH6ACEmbsrw8OqyuCyjKAryu6UkZ92+n0IJWCIf2oovPrRUVY6xt4ciy6c2KkdD7UfaaP+u2gdPubHH9cnBaljjMM6oz0lqcqy6ncc1RBIbtVcDJt+moxp080lVrSaxPgZ8eHhP7df0fRsB7w8WGWMMy7ISfMSYTP15woOgCV4bYYu1OOsIW6C/94gIbfLHus0zt/nGtiz4sCFE8iI/3uN+vyFJ1+S3DWuVdkdEq6NQ0f19XXSdGEORKPLDCDYxWtapoa0Y0fmXR/pUnMFEOfRIkmVItPh17yeWUuLbxrrcif5O8I7oN4Lf3txDbQZO3IDUyzDNqZqkqgh/27bjut6ymbux717tt7/n91vvxN3/LPlbHe8Q95Ri0BJuAUQLI8pS56s6CaeTJO8cj6CecalgWHVkyRA3REnPhcHDG4bzbbnBH8/YtsCntSJeNj5rPg2Pnsy1+DzCP8DaDnx5EnyX7kesE4bdEg2Z06RqL0gY1nQwDAxGaOuKV+85I4fJIuIwZmEYFcOCDwz9hKR1/vT8RBi04XLd1IzWUK+efhgODGut4/oK0Vc0wXFnYRgm5lnTXE135vOnnnWaWeZZMaxcCU2kOW5mYKbnQ3vmiw8/pqpKjP2OYBRLZ28IQZ+dvu+p6wgM2owZqKrdgw3GQRAzUNfgL0KMmvqx5onuKWHY5VtC29L3lwP2z82ZaHtMcYKshZtAmDHyHsOGMdBI5Hq5cooBHxpCtTMnV1ppoYdYxwPDLpfhDYZZvB8JvqbrFMPGK8SUkQy+xlYzMiuGFbmjv2iz6h9Xqp9ys+VmZ8pl4RY2hJ68yKmT8P9+/451s8Sm4fX1wsePJwShaVumUe/L5j1N05BlGfcBVpfTtG8xbETGFfuUY+YRsZambbUptyRWzEVCfWbqR25y45TdybIcv+7Y0eDD3+MThi33O88fn+gvr3z84iudUxkB9wbDRK02Dgw70TQLt3ugLEuKUlg34dBgMBCCINIyGYOZJtq2ZVscVcJJ9T6LNDT0saeuKoxpj8rYGCH2g1aQ+oCRjb7XPe2LL3TOp/Ezp5PgLyu0imHWrKQCTIxZid0GfSTEFrl+pukM63Y/MKwsDa+v939Sv9Y/iEDLBxhXxZk1UdlLiGyQ6s6gWMDdM3Kb43KloiXmRG+wyZhzb5C6G1Lqv9U1OHoN1lRP8ib9Jhq8aGASkKCmc3E3jVtWXJ6pT5LRiw0pnWkT3Ujw6nPkI2ELhNUjIaq5KKT0VIEdb2pHkATW2mtPhyGSA1881Tx1FbkLBBMPPVE0Fosj4I9N9a02R1Nc6XIIOGOxSQi+LxB9+Hb3cMe6bckSQF8PwatYOXi2zWOjIbMZRGFdUgozehWCS9LIxeSd90Z0/buMM49YLEZiELyPh48WwG4rFcPGbb1TFCU4y7LeCT7QdO2hXZmGgeAD93k+tFV5nh9A6JLTunX68AfUkM8ax5L4f2sNhSnYewlm1pLn+QFSar5pMFZNXjFRS+x5zGlmLT5sxC35SJFB2B6O6EVBjCXXKyy3mXibsMbh/YZPVhVGYupWL4Q1pnumqVudLu2V+VYY+i4RZtIBI+mfiI+AOcYHaf3WZHWvPHxvZSFqLxFDei4CRiyC6j3KwtO1jm0V7uuKc0ad+FMVpz+aab85bERt3L13FRfMIzX7RzSiGMZ1IAxgklv2a+hZm+aBYTnc7xkXm/PxmjDseSH6CSsZIhVaDvPAsGmGs+25WqE91Wx+IYwzF1uwm/427RNIpK7B2ABB//s6Ydh9nLmtd05VjaweLleuMdC8xbDqRBV7gvfcJVCJx5nIbdDrGPqePC84i2P2N+axR4aBkUCVFqOhJwf+5c++xnWB3KEYlhTPdbQ4nrgOFz2YDYI0QtM8GjEPoq5F0lTcbnfmWVhleGBYDYphI5NxFF77Se4Ydr1eeHr6QAgnts0zrxPl+SNE4eWzGquG6Dk/dWwCYdwx7HHSi33AmPgOw3ZH+KpKqTAxhKvw6q8wfMA8OUQGJtHUYRM2bquhKHMYepYQCL7ii3cY9g+EU8Wnb78lhPCmYb1+lsueOZcTuXNcs4zr0FPXDf04ckqpQz9PrOtKnueE2PNsS/ItJ/tCvbh8CIzTzPNskbaF28hoDG1TMc6asu2swbsSEejOHcG/crYlPvtGv/zHgnj7gun6ywPDwnoHxwPDrKU1hq1u+fzymRCuTJOnTL0yFcNq6npNGDaAnB4PkBGgBRmp6JgODJuIUZ+Vtm0ZhwHTGLioKWsbAvVJ8XqaFMMInlMZmMcC5AUjlnFQfdUXxYlL6/i8Xshcye02UX78gizd68v1O+rzB5omItxBcmKcEIRhr84fDHWzARu/7/iDCLSiwC2CWMeUNFoLEW1ckqB7gXjZ8PeVj6laIjcZ2+yxOZSFetgECY/Tu2gLnbgqC6Nia9Fmx+mhCgTMhmqOZE0VXRwRkAA2c0SRR/m6RJzLwO5tfIJWSQJx9fh1I6yebQ9OtuQIHiMuCjaqzDPwcKAyQJUJXz7XnDIDLKqb2Zk3HIEMov+dGi05jJT0nY01uCjA3mImpMrI5NyuHbqP4EQr2vThVFso4X5fWdftyOeb7OHTpZ+poPM20Pp+kCUiZFl+BGtgUsNOr0xKJIHMoRLa7c/Y1jsxsSDbunBLco6waTsR7z0maeTgfSugPFOGSq0OhPv9Tl1nWlXJw5ZCgw4NtrZtOyI+LTqwWknnNOCCmEB5v9RIEG1pJFgkqh+VLVNl7DZT5AV1VePrE+Pcc5sn6rbbO0klFvXhJ5Te9t08PpiomBjF782xeTCym/eq63oT0Gi14eMeqRA5YHfWVdLmElUjhtm0qseEnVbGZoGqttzuBns3GAsxLsepVIxN0LNzBzb9TfReo7Ytf3wNpfWZufWKYb9edZHmNMzAZRgIwFfSUNiSbS3Y6oRhl4wtnrC5pSwSEz1eGY8AWLiwEgvPsllumdVQ9Q2GLcvC9LpQNxXjOCFyp64bpj7dl/4b5sxBEKZ5pmmFOEV4i2HLK8HX9MOF+7pis5KwOspc2YJp2zBNw/j//R23XlLdI3RNw7YHWsNAkTDsy6xjGG4EC0X1BsOGnemVo8rwodGq1TMpYVjTBIzpuLxeAGUksKuuSypiWBjHiaY5MaVlbKfzOwxr6pbxvjKtG+tdDwRdplVx4zgiUjMKbDLRTCng67rkTN4QB6jrhGHPH5Adw4YJ556w8YkhDjz1OS7L1KQLGJpImOB0gq3IFMNiYFsXvktfd9tKTrfXNxg20LY/xnvlQHcMW9eVLHtOGGaoaxWXAzw9PTFNE8uycDZnQu14nWeaN4VIT08W5oh1wvl8ZkgYFtKB8hprTqJzbSaLnDrkyfPlpsHar4e/5WNeIFXN119/yTf/b8933/6aP/3zn7/DsD5Gir6naRpcJpxONdckWF9Xz/n8nDBMzWj1Pu/srWYM5jQP1anidX3BDPEwtG3b8XCEjzESroGXKnBGA7awCMb0jBdlu5rTRn9d32PYs+MrOXO7R7Jso2ka+n5hkt1LskTkM6BBXdNYxiFlHNqEYdFwvd4x/wQc+8MItNAD7xbBJ4BZo2FVSS4AIVrwmmIKyRogrJ5gBTJL8BEfPWLVPwpUqE2IiUEJbN6rWBnRDQuSGHQhRIcE9UwKPuJ2JkDA4xFnIKWPrLMURYHbDThJnkcihM0TNg2y1nSi3JaN7b4S1w0JAUE7sr/dKi2R56rk668+kucG7xeixOPUqum3FSNq9PmO3UjX+firshpEZVn2m6xeZBshKGtl3d5rcKfNlBXbjUa3qMGaGHdUlh37ewyJmUgu78dn7yzM2zssxKDBlr4mrOuGIDiXa9CKEELyt7KW3GVEkku6NamkeyUd+JlvCti5cyrID/6d+NuajLwoyLLssG/YndBtynUt60LmtEhhv/YQwrG+xBoyp+XomvoUnHsjQka/t8Go8N5rKlaJVZ2H06mCsGCNpchLtqIkmgzvw2FlEkPEx5Uo7kh/v/VIO4xKE/P2fbJwN6c9ArF0o/Zq2ONCE9O0pw6DV18xSCJ8ozGmCOCV8QohHilMK3AqDG1TqM+XOKXrU+p8i+B9RE0i90DcEDzp2ARE+0fIZ6XKWhPeYdhLNKzDlUBD08C1t5xk5pS3XJPJ4laccJvnlFmWS09tLOs5cjLJ8mDsFcMukc/VirlcsOYDwkpdaWDw7TzDOBNxyDVjNDNxNbh+xzCHx/Or11+CbbleRqyzfPxYcLvr2m8yIcSMbV0Jm2cUw/3zK0N64Mq8ZBhfFMOqgHBiGoQFWFMpfkHk5199cWBYxkJ/C4xjYt6qyMWvdG1gMpY61u8xbOwhpU0VwyqIge5suF4S6z4byB8Ydn46E6OnSRhm6keAGoLnNV7pbEc0ji49t6MMdIPQSE1PAMaEs6mP4QBN2xBj+klE07lBkIRhvV1Z1wtt05JlH3C3O1kj9L0yJ2Y8kz8nDLu8wbAvVopkkXa9fWLiLYadCCHQR2WBzsawrAV5lrFtA113pu97YqyxVnNdy7pwOpXcl4U7d2RaqGLk9SVZ2JwN5Q1qo4dSEcHeLLY1h1B9nGFK/nzXU6AOESsDJCb7y1PFHF6xxrIuG0VREs0zl8uVj18lzG4dflzJ2yfdexgJoTo2hgeG1YR4Txi2h9qKYSMjbWwTbvU00jLGlZiS730Umr1KP0ZiuBIugWtKtTZFZJpWOmn0pvmgEo1Qv8Gw7cAwmzAsL6DfMayHcYw0zYXWCEwgXcKwfq+O3THs37NAKxV2EYJn2U9p1rBGwYbICUtBpMgCebYgNh0JXIA8x1vHIgYTIiaER1890c1EMyGWkPQi0d7YEvB7At4LccvhXrLNjrgYspDeI4dQRmxtMWXEZEIeLcFyfI5JTIJg8USiMWzBs8dqwYsaWcaQYu+chZyN26H1yQz8yVdnuucTwXlkhXyzR1HiFid88ESy5ACvt/ltNZcPm+piJMcazUtGD/uFWMkJRojekOcrGMGY7MHu7SU1YSPEVT2lMofJoroCorHYFiKS3p8IEh9zLsnyISancSNC8BGhPBiazStb4pwjyzJ2P659GGvBiJ64ko7IZpYowrpqGe623sjLQmn/Lah7/Loec+7E4reIKRxZVuC9arTWdX00kY6BZVsQKxRFgTGGdV2PilOJgXW5qSWIUx2gD6rT28u8dyf+jZR6Rb3gsvQQCoZccqqs4SYnXN4mP5ucbX+4vQbyRiJBDGJLfLSPik0rBwslsqV03uPRNVi9F7v3SNLWeeKxPkJUtkqdG9T5XRuyr+ldIhF5pKpTWyHY2A3Ty8xCIRBzDT6DYfEBUjVX2CKOyJb0jUh6LvbUZnri9nTDH9UQYQyQVyfy9Dxd54E1ttjQsw2Wr5uaU14phu0ppqcJl+cs843FOsoQMWtgmlM1lgTCqSJeB1pjQc6M/UC0kWFSHDw1Fd5ow+Lh88Y2O+rFvcGwgfBFzRw3TLlgspy8tsxbxpT0L/NgqasLWW2ZLpE4TWzBUzvdxBa/YAbhqa4w04WZnJKcbRghaX0yAx8qS/fsCe6iGFaeDwyzfqWuPNGXhH5i4JUAtF0KrrrmPYZNPYOxVKeWJvmaXtYFOxX060SeO5wzTNP9wLDqlA6/YePav+A+5EzZFXfPsMk+BoHXEGm7gB+AGGnrSi1k0N6FYZgIMdB2HSKqxRLKowdfXZ1Z15V5vlFVDZIvhFDTpH3FWfU5C71i2MiAZJZCSl4ODJv58MVHYhx4eQ1cw4XTeiJ1XWMcZ/K8pPv4RFkG/GUkyzLFsHPCy1UxrDwVrGuBMRPjWwzrA6txBCxme2VwjtadYTPYZIp7th39a6RsdA/ohx78SpZSujIsLEYxzLQnnuKP8RG2KAeGdd4jjUEkEmRinE+43B69eneZy/V6xZ4t3YFhKY3KDFEYglBHGKKhDIKnf2BY0vZ1dcu6rFyXTTFs1EAsNDW+CWxRGazoPWVRAne2hGGbnamKkq7JucTA6TqxnALnJNJ6OUeefGR79RoGtmdinGhNy3Awr4ph/t+/QMsQgC2qXSLAGqL6tkDaMDQRkmfZY+KJWGuw1qTmwB4r5mhtErwnBk+MJnkmWWyMGHF7T07m5c4WIsvtxn3qWWYheMua3Iyty7BZxmk80T7XFJVDSkdc0RwuUJaFfofoVU4uUcmhPfgoM2UMThku5GSbx21OE3rpOpzAh48t1SljW0ZcDERjj3RSSJt8TF3SxLx3B99ZDpVL7TYHqQP9XroalQ1zmdXS/GTRcMh+RNKpx6cAQlnAyCMXL8mTSmxistRHQDd7SA2YBWtUbxDe5GEfZqIBay3OuaQX8hiT9D56ofhtS/39VMNlSaaFiYExxhwat5j0DWrR4I/Xl2U5fh5jPHoa7unF8lSqSH1dj99727JIPcY81iiTFGIkN9pDUti93NLpKvl0+eWGX9eDWcOvrH7DWktZVdySPsVa92BVQyAT7TlpedzXI9BKlg7vfbPeP0PvejTyu0fY52Hb3qUn31lDhEBIwZK+/nieDGpYm2dOQdYYQopuffD67ElIvR/3K3lb3JyC9D+yISZSnTpuPtAPCsirNKyxJwInIjIZYq4YtlUPDJtnQ56l1HV1Yu4nnN0DhxPRr/TB88kvcLWc65JpvD0wzCuGff7uOzLTsszCLy/fUrR6rJtf7px55uQ97TOslUNeHbePOfP9gWFRDCGeCPREidRtw6fPnwBYthOhdEy3ntu2kJU5T80TMwP7+nhyjWKY3zHsTpyeCYkpuoaFsiqJeGIIiDG0bXv4IYkRTpW6IvV9j7NqMt334Si/V02nxWU5IQjTNL/DsHEcUyutM0JDHR2jt8TV4sN0fE4rLf4SCDJQVw3b6ytTOjA8PT0xTCPWZNzmmRCF0zZAXb7DsHmeybKMy8UTwp3OFGTPe2VIwrBSMWybTpwbPcht/pq+i2JYP0AMFdn9zCSTtgzjgWHLsmBMR+wu2JslVIFTwrD8VPLy+ooxhqrKuN30me2MfteLP+E3z6vp6eozuXP065UmnBmTK7/IlTrW+Cjc3I0YAr4oiMkEmjxnvZc46/mi+oq/G37Fcr3S/vhn9AnD4jWQFYb2rKbgbauBf9ftJp8Tl8uGiKGhYRxvVBEOx9JBMahpE8YNMGxvPeFTmrnRojBr1Rw4+IaYBAt9f0VaYWCgCtU7DNuZ/XDxTB6smcmnjOzZgjeEmDzpgkdiC+1GvPYMg6awh6GHJuHZUCPmqt0vfs/xBxFoRVIrgTUcC/keA3sTm03U7NPHwEY8vK0whofNoppYGhFNGaKBRTSpwtCDl8h298gtsiZadF5XpuXOfPfMt4DflPm65qkr+ZqT305Uo2ecAh+/OtNkho2ITe9hRCtLrHXELagPV2FxTj1GTCnYJSc/51Rjw+v1M9N3E/fVsCePz4XQtg5nAy7pi4NXhgPUEVkzWg8hvKb5dvZOEsuki2oLib+LyXcpXad1Fr9sKdX2aAisb5GYkxiUxQgG8d/TgaGpU02xJ4d9s+uXHjqxkCrtJM1/CNtxHZBMOKM/tEIij6UYvJzYtS8AACAASURBVPYFA2ELgSwrMSZjXWatHITD98okj68y+bnsi2F3gd+27WDNdtPSx/dVrdiyLAfTVRTF4TIfYwQDEoW94XaIEd7oYw6TzwiIfl4MgZDSgn69cZ8mtnUlAllZ4MSSleWRenYuw9gMY52yUXw/fRiI0VAUhQZJ39PBPRpEf18f9+bvKd4NYTt6qYXglUpGidX9t60uLPb+jAfjGVSLljuhKuG+BiL+OAx4L2w+YNAm7ET/iLF2Yb+o+P+PbXifMOzlemiWslrnL6NhE6GfB1xsFMMmBfZh85RFIFLSNI32sTAPDAsx0E8j4rTVmLc9n7xBBnNg2PR6w+QZn6PHjp8Vw/zEp7TZuiLn/qtfUnU146XiYxFYvOEG5I0+N4vf8PZJfemeW8Lygr3PuK8+AmCuv4lh63cLHwpzsDh2Hfnxj59w58DtBm3RUPme6xsMuwQ4sz/zGsTvmzEyqpQjjkTKhGEniD0vyWOvE0twM3Gpqar7b8Wwvu8Vw9rIJWFYWwkm9d2TuQUHo6jAWqIwOHsw3eM4IkaoqsC6lYgZgY7gN5UvAH3vcQ5i9FRh5Ro2ernyATWJDRfPWm4MwwPDYsh4+fztgUFdpxjV1g3bKfAhXxkw7G7q1mjV3uvrK8/Pz4i0tO2NUdwhzi+2UhtAL9rbNcao7HzCls5fgAaJ7TsMu148XTrwjJwIXLm+Qte2bCX0r58IpX7X0+rw08TndeU2DGTbytPXP2IrS9ySMKw8Y6xnnu/46Gi6Fhi5Bg2iOzpiHPj48SOznWlcS2RmSIcSabX9zjVVfNZNnXpQCuMeb8WGIUbC9ZW2FqDhen2lSaL6tm4Ye30/G4TBT8QYaZvm0KxRVYxiyF8dVanSksiFEDXie/JXbv6KoaRpKsbxAmJp2gaSX1xsrwxjfFPd9Y+PH3y0fhg/jB/GD+OH8cP4Yfww/h2NPwhGy8fILUa8dUfpt98CXiATEGtZfSArslS2n9gTo9VoKuTV9joxBu01CKpvIB3IjWX1Hs/epFkp83u88918YbjfuQfYEDbgGvT1IlQ0PBOCxWyOe1g5ZQVFm5N0kXRdR56rXmhdtEqv2LaDXYlFRtCaNG7jRPttyyo37r8cDi3Px6bkfM4g3lnXG84nEf/um/U9+fwufD5+YlIaMe4pQkm+JMryvR3GGJw1rEENNOLxniRmTFIl3oYRx1sH8b2QIGWN9PdjPNgq73e3eBWGG6e9Jgly6NFUPB/ZtiX9WxADMaX9NJ23pT6UGcRNGYPkUg/6Vpv3mMxS5gV5lrOs29GTUUSU1Uqn3f0UmWUPR1+/bdjMHYL5/ZSd7+2XEiMWtocA02+pMOJhtZXmxbD5NbF8lmiTyNyrXk91WI6iahDrqOuWJvUjy4oTiE1FDpISug+n6hA81tokNFfbhsBvtt35TafiR9rv7b0Pm8c5q6ym39eXHKzWwY4dS2vPS+u6clY0degXYtjYWzBZE7B4QvofiW9W9/xU1CHwqLX94xleDN/138OwYUgYNjBaRxsqcOqpl6reye+GnMidGjHajTVSs1X6PF1GncsYgWlgrT2nxUMDL5cHhn377TcM2Z17aNiGkZK3GPYVkNFeLd3ymeaLn+GyyF0Wnjs9yVfG8PThAzbC+vmFov6RFpEkdiX+i4wwfIXlCTdO/G3CsF9ePxGTj9Gf/sWXCcMy1vWFcJuhfqZOvV5eMbRpVTVNwzQZriEgiZ1pOiHGHnohUGHMTAhXROxjDTYwXJUNWr3h5fpKeSrfYVgtNbekj4pnxbC+7+lSr7qRARNSE+MeBhkR5DcwzNiKGBeM2xBeITwfejQRbVnkvecyvB4Y1l9VL1SUJevnV7ztHhh2gc4YsnbHsIbNXzBZTpk/sWQ5rNujJ+MbDHtZV56cAxqyLCdanXO/bRjzRJb5345h14KttO8w7LR5Rhe4Hhg2EJoGGSZeX18QAraz1KkoaDsw7II8OYqt4dS01HVL+6QYdl89TWsx9sylHxmGkbZtuV6v6d5fDgyrpMYYw5UWSFrEYaCp1R/rvcteS9Poe/TXQauijaHvPW1tMeeW4fKS3kPoGq0WjLFXNgutUtxZ9KapOBvh5dyRbwFzW4ihPKQg1lRYLgnBroBhHCJ1sxLH3WUA6qZSHfTvOf5gAq3rurGFjSl94RX9Qj4mswKJGOcwudONjr2J5cO4cYteH8ijtYBaMYSoenDJctZ41+aoqz5UE56BGxdm5hhY0ZhgJ6O36IkIuXHk52c+/PTM808bTh9yulS10XUdRV4Ski4lhMi2hWOjWp2mPcMWmPuR8xctRW1p25xP36hXyYcWiiwSwwJxS11azCHujhKOfXP3QRL7MJwUzJH7iWLedPZJRpgAYlJKMCJ+dzpSzREkHzHR5s/ap/HhifV9G4kYAlEMfluJ8X0g56Pu2Ifmi6Cb+NFfUsu3NSWmTalj9KyLzrraMSTRedJ3S4w4B9u6Hp9jrNpKxGTLsC6r2jGglhNZZpK1RPbOyPPQYAVPjFH7h6V057ZtR1DmnMNZR8x2rdlDqL8HvYeeCiFzmZbeSzgCemOEvCjwfsO4jGitpgmzHOP2qlWtWoxR06yG92lhrabUFX2kXN5M+W48++7vonOwC9OFqM/GbqwqWmXodwDevFqYkPzDeFQzujdmo2IM27aqVkuirtU9Fbl5CB4jMc2Dpjnjvn7he7W2fzzDx8i12ChDhiQAWqMWZ1wi/Ng1XK8XuFWUS07VqbPltC3kbUubPTAstnJIV3ojxBaq2NBPMxJy1uzOGk7MqTXSxASNw3964cUPFE3DTQZ8epct9gTMb2CYzxd+8qMdw37Cumz8uKoZv3wihEhZVuzy38LBJV4Jr0/YKNhftXz8+szf/eu/5t/8zd8AkEvNeu/pQ0V+KhXDLp5oNKqsxRPGV6gbLv6CbIJcDW23m0cbUiaJujUY0zAOlqa94Q7/ho72HHl5uVAWGULDNFyoU2Pqa39V/WpU7GxoyYzBiRxC9tYIswgxXOnFELZAjO0x5zR6P733jDLCRZAmIHFFJGl5jDAMLadToK5PyQrmxnBJ5qxGdcHODpzb56TZjbis4fVFg4umecHYjqFfsK6n7c4UeXFoN82TIRsNrQj3ZdHG0Z0hk5XurGvMhxMxRm63G6fTCWvtIZUAxbDbuhEDVMng1niPMRNtqvAcZ2EYBoQzz0/os3v5pObUwHQfWdaV1nYEZ7mfM8Y5o33KmW6KYdbeQTr6fqRtO/pUjf4ewxoGIiZcsXIGGY7Kx11XHIfIJV6IsQaJCcOS7UYd6UQgBILfEAKdgbVOGPZ6wr++UqEtsZqmQUYwtLjUdPw+32i7gnZbeRkGbJYz9K8HhhXFCUKOkQ1Dicisqdb+5TgsCgJDwP8TEoJ/IIEWvHivhqXpZxtolRfq5OsNRCcaAKSbd5iXa415Chp4E3BowBCAaAwuy3AY7vF2sF7bJizRECRjYVH9hDVaqw4IlqIs+PqnX/Fnf/4n/NnPf0b7saSo3bFwy7JKInD1ZbLWYY07Fvvi76yJlbnNN27jTNud+PKLM9/+3S8BcOEbysIiqWzZRHMwC0ByVw5HUPPY4PeRSvcFtTVKNgEicgRdov+hGnCu6lsfRfBHI+ZkpxB3HZY93v03vLHMI/gS4kHtqAg8CfHh3fXtAnH1yRScM3ivv+/9StznXAzOWLJkNmqMUZZs8+n3NYgwzh1BgN82wrbxts+nMkQhiWMTMKXqQ0Bd55M4vCiKg0HadYLWqm7DiNHPiap9s+ZREfhgEpXZ293o96DSOofLMp1PcpwvQCw2L7AuSzNjtB+jNcogJu3Klti4GPQ9g0erPEXAvO1qH9/9eawPZdf2exT8RgyedV0wUa0w9kOZD8qeeng40kcNLA9XLNFg3iWdn7VCboVh3quoNu1XmWhkSUxzxBL2QOuNuP6Pa0RW77nzwLDXQZmbHcMAatcSjTCkwOHDuXmDYVemQTBdy5CEKXVXcZ2E0ED1ZLjdM27OINGxWTXg3MqW5fNCkIychXUY4KmD1yQyJ6MoP/AXf/Xn/OWf/1wxrNgUw77eMexLbrcbxli+/NnXzNZhpxtfpnWenzLW+DXeD9xmx6k78blXDPvZj38MwO36N5SFpQ0bc/AMvYHYU0dlPa7mQkNQtmFQDKnfsbB1wrCBcRo0sBeLjI6YmDdhYBihO595uX2DaXLq0B4YVtWpxbAZse7MMA48PxXQNLTuUXXIPCOmpRWDxzPQH95lNRUQVC9FRBpQKXakrjVoHAVkvHC7GbVwIeB9wbalOR83nFUMM5NhMhOnCKHrDuYshg7jDK7rYJrw5Ya92wPDzJDR2fcY1tAwXSZ4emDYte/J85yqqn4Tw6oKmWeMqLCeGClpOJsbMqdDqTHUsYZaGPuezkRiA5J6HdrTgtsyprGnKnNuvkBWy7wUtO2OYSshdYKYxhtd2wKRWGkwF69XIgOVf2aKqF+aedh79ImBqqs6FUf0R6FETE3tOyJXv1EnDJvilTpWmKSv8pWnHwMNDTFc4Rq4ROispUhhtJURxgHnA4b4GxhmDUQvDAHKGGmbkmgsPTNhfINhjT8yNL/P+IMItAIwoRez80A7fWgAl0wOo3xPeO0eG2EMAodvUNqABLBateZF2BwEMYQ1Z70pHC6TQZYT4g0ZapoZNkOORupfffyaX/ziF/zlX/2cr3/yBeeupusq8sJik/m3y/UEYa0jBMhcRp4Xj82WjYDn7iO3ZWO5LTTNibYuKJIbcBiFwr1ADPh1Iwb1bHo0/d1AAhJ392AVnR/pop2pUCrpYKH0zx55y9HgN66WbdWTwW5cF4XEoBlN/QR5iNXT02+zZPIZtVLQ5EbnPYFDCJLShCkQS+xP9I/0Y0hpTycOl1m89yz3O5nod3NOGR5iTClQDW5CfFQM2iw1uzbJCsIH/e57JZ/37J5RoMCzVzruU6r2EaKWDmLI8+wQjMIjgCFGwrYdYvq3hpsxJJYpMUaSGLrdKkNF/VHNDC04a4gR8qI41rqIeXQsSIGlMlePFNteLalVpPZx/TxShm+ZL0knyv3GaPugR1GCj16rNsP7IHt/LysPY9q91YRE0T8I1kC2t/BJG4eeMi0iaiURk7Bb7OO51nv/R5g6jDAxcBvgdGCYJkaqAW4ykUtLFKHpOmqvpfXjzZHbJ9Z2IgahrWtGwuGW7scenMFkN7wYyhNMo2FcF1anAcwyfqsYtpVkzTPD0FO91uTo8/TVx6/5k1/8gr/8T/8Vf/GTL7Cmpu3COwyTXKiKr7DWsVbwpctYiuwdhn1sDHf/zG0pMc7SXE68xL9/YNg3Ix/dC0M/wDISQ4tzgZ7X9CEbtBXiM9o2sR1GiElkPPQgZkDbzAhjwpBR2sMDC1qMGXGZ42k9893LN1yLktM7DBuATtM/Yf9zZQw6X+fM0nUd1/7CZBzkkAVH3epmHEJgCKIdPMQkDDPUbzCsipF4KnC3G/N9wntPnuXqbgq4+x3E0LzFsO6cMEwDBxFhloln4xk6Q/AVQmC4arDWfsjwCLGOhFkx7Hq9alowBRchXgG1p7lcruR5Rh0jl4Q/bdtS17UyfDEyjoph1xiRlLaLocFX2s0kxsgYI5V0hLRG122jaWry3DFcX6hoiZVi2M55ilhkmjV9eDOInQmhok0Ydknzerlc6LqOfuppuvbAsCp5h12v1wd7f71StxwYNk4j4jf6dSHLDEUsuMQLdaqeDDHgt5LXeqXhxDzGoyLcn/bK1hYxwjiMWNNwn660NCTfJe4vr4xYJEbGKlLzhDHCk224Pk3pWut/Mob9QQRasKfr3nhZR01N5AiFtVQnR93UlKdS2xqgAVjmHDZaotF0llgON3VMIDpLzBwKFULYII8NbUrbrN5SicNzR9SaFOMyvur0lPaL/+Q/4K/+o7/kJ3/2NU1bUJYZzgiZMZhit4DYUyvJ4sDmuMwiaUMskpbMxojJNlzmcAZy4uEuO/66J5eRECZ1kZfva3ASI6RCqiNN+ZZoUrbAaEAq5qjK3PtNxZjSR2KTH4vlvqwPFsQIYmxqBxMTKKjZpwk7vR8xziSndKM0t30ExunWkfJThxWHFadVbhwesqnqMLmU49WUNl2HMZoWjrsVQmItjyA6RhCdE4NjW1ckBWMA99uM2AyEpFfQANx7AylQ15SkzuX9rvoja+1D52WM+k3Jw808xPBIxeqFAMrmSIxECyEsh83Ecr8zTT3LfcZZKPKMrCgwLjuqCp2VlJZLZch7mnJnbvdqoZQ2jG+Yzcdl7AF3cv736Rvut8VyzJ+IBsMxPCwj3rrFC2n5iKjp3/4hxrG3WFKdn1AWOeumlWv3dSUGn9aNrgj9XR6BeAy8nb4/lhEEwtjgZSKm03NTR+YxkstIYZ+pTjdiE9n8xlrqnOUYMpdhrScaYbqq4/6UdDyVO3N+mn8HhqnGsfAN/zDe2Hii4sTaPGNud/7lT/5jAH7xrx4YhhSU5f13YFiuGLYO3Kua57piTF5LhTH4Ldmc1CVV9hXOwIem5l///d8DMK6/IpeRvJqYFhAZqesP7O0cwoFhPcOg+NCeO0QeNf4a2Omz30jHaCw1wmXHsL6nk5Zr7OmynPP5zK+//Y4+MU1xErCWtrPHmr5cXnl+/kBMAUx8PmOcIXt+xsxTwrCGadLXqyrQoe2pBumQaQRGbtERkvVCFdWdPNYNYZoODKsShm0Jw0YRJFzVJHnoGWKgSaZgfR8pv4jEWCHDja1Z4XsYltsMsobTacHaiHORPO8I8eigSV23eL9xv890XQvzfGCYtZZpx7BeJQXXeEVMd6RKYx259gOnoqK4L7gzrItwCfoZ+T3jOvV8/vRtwrA1Ydida9iZtYRhk9B0EWKtAX+l31Utak6EYOljT0bGtb8ez4/OZerdmTAsnBp1EN27Snj/GxhWB39kSmLsqaoTwatCNIQdw677W4AZiLHBSIsxnqfzmSGfeflmTSswEoOnqitWH7kMr5jnnM6cqWVn+j3GDDzyPf/4+IMJtBAtdU0HLGqgQjjnGV19wuQGa8Ah5FEv20oKAKyenDVlE4/UorEZYkuinAiUxDtYdfBkDYny3DxmU2KxVYcqvvzwFV//h18C8PO//Bf89EfPfHmuyEqDzQxid/fyx4YsOIjKROQuJ88sLmkojDkBEctCllsWl7FKjg2eaUmeKcuJcjhx9yPG/f/tnUusLNt513/fWvXoenT33vuccx9yfGM7ipAyAitCGUQZAvHEMMuIDJCYgASDDIwyyRQkGCAhJBCRAkJkAohMkHgIiRGBgBzHIXJiwBIYx49z9u6uqn5VrbUYfKuq+1z7yveae+4+p11/aZ/du7tP93pU/eur7/H/YiNoy0V+VarKxGMwTgSLnTSM8IY4MLzkcUxMja5BJQ9CEPAq15pkBamHIYpWDl6bZRsRhiE2qfZh+v+65hpKMljEq6GnrvCYE2ASRLTlkSrbq5fNuGQqWccNeiIFjxPNabLmnMdDonphGieLBkC8wKfpGKLsCSSYJGBt0LGboBIJgA9HElHjysgolZEihElKIjFGDfwhQLAcD632pIyGmAkJCHhjp/mNobvJOEXvfEkMzg848Zz60+TlCT4QnEdcoHcqY2ETvWiZ2Gz35D1Jot0CIAObqmEedcWCUfFRF42w4IbJqwujB9tPgqmj5ITgJ/e2eMEPJ4JzmEH15STE4wOQ4HHBwWR8qUCsF/CoUTCE2OwaDUlKcKRprvkZgA2GY6+9EgOCCw7PgMVMoUM1/j+K1N8bAudpzY66LLHoBSS08JnlEntKWVWO1d0ThqEnQbirVCDRimFnDHW8026eOKQLcNLz+pCnLDOh6QrK+inNEWwzcph6isLgMIucd6jpsCzajs9+7nNUn1FueffdWz71zi2F9aSLFHubI3sw64TsEL0nqxVdO3JYRnY4kZcFIVdjzqwuOMznZEnKfX2D+CNvRw777osC1xakQVjdJLRNA2mL9PFYXd6CH+janmVdg1HNpW3UMBKfTBy27XJklbEEBucZopFkjaEJW7j3uDpVDssXDCfl82HpWJoaI8LDw1ZvlHwFPkz5QPtuz3AaWK3XSGlBajabB84cdoPIhrYDKy1LI3QsMa7HNTFHq6ho2oYybChEaMRjTXbmMJTDarSARbzHBdWDHDnskPRUFJikwSYJC/OAmDUmisT6KkHSE3DESI93FV72CM/pOuWG9WqFlx43BOqw4HhoOfU967V677rgkQ7KlaW1HTXQBvUUtpHDagQrhv3hgLPCSkpe9B210zZivd/RbLaIC+RFSZbnFM6TLypMlCmh1PSZnRG22xPYhqquJp4yaYJjh6OmDhWmGCNTUY0/1LTtFu8LDA1CxQ6HsIBOk92X9ZLtwwuqomDz4gWhLKCpqfrYssh7XKEc1oSA9ZZKuvdx2IrdTrnNmD3dzpFmOeu1no+tNxxPGzb9FofgFoK/H9ikDeVyjOkamvajMdjrY2iFgOU8oMJabosFdZ5xt1xhFxabGBZZftZCin3fjIl9CI3FDQMSL7ZJmuNDSpCMEFJtn7KAJMmoYygsXdTs2h4fLIfDEQnCe+99mqefUj2UZ8+eaXf0JCVNLTYRjWfGO3UAYxJELN7pHcT4XmNGz4RF01u8GoY+MOz2GBGWMYkzXS7hmHLqz0mEZuqHAuBjawKIudJTErtiSkybjCzvvFbJTUZBFMkzGmLTUJgacABhOOK85+QcITg17kzCZU7NuZXN6EEJU89AUPf22FdPzZyxubFDpqpDTZJHYk6X8NJnaANS0MauWsxwTu4cKwJjvWn0kPhBPT7Z6EGzGcbE/Ugtfa8Vln1/mppX23SBtSneHaN3TfvGZVnUP5OghqaMrW8k9oM8r/voZTLGkGa5Gjp+4Hg4a4aNa26jx3MYBtLEn/On4noNvcemHqbj5uz6GdfM+5i4eFmcEA2t9yNc9mSUse2OXqRFJLYMGu8G3fQZGnI8592N3yTxwJPo8kpEyNBQOagncnSph+hNk7hGXsabDjUDv79C8s2GiekNlxyWWktaed65e5tMDDaxlIv8+zislhZjEoxdc2MsGx6Q2GLl5lY5zCwXdE1K4izyFJIho/Z6nLrFO5g/vtc+lIeUzuTc3d3ymT/xHgB3P7mirmtWN46jy7AH0daBxmBW0eAzCWtr2TpYry2LRUWa7umjkWTsOob1Soz3nLYNy6pm176YOOz47rvwjY62+zqrZcJ6vcKYnFbUKza0W8pFQVXXY7cvDaVG30rHHqghJIjRasStKykWjqJQYy6xlt1uhxhN4C7LMnJYbO+1OxJK5TDnTsphqxa4Pe9VzEnSY1Bz46y1k57Xw/BAJRrG9dIQuoCYjhDsxGFd1+m5uKz1WDewl46VUQNnGPpYhFUhsps4rAZszBVb+0DDliwsWK3gcHJ431PHNkK9zdjtwK4tHD1937K2lj45UY29+2Jl9nbznJoKv23JVuspl7WSgCmVr8vSE2TJyu5jYcCYH1VO14bbuycYAk/8wPPvqSGfJwZjVohJx2AAw2JB6j1jOVbXCetVYNF79mUJhxPQYqJw9Xq9Zrvd4tyebeN1rbtuEiyV4Kf8Mupae0a2ECpPXY5Nx7Ut2PaSw0pP8xDnesFhSwETGqY+rFGLS25k7F195rAs4xhbusmuI+wih9UVhI5lXdPuD2y3kcOSRq9dU8ncD8drY2ilIZAAdSTkVZ7xZLViVRRUeYEsNAyVWa0EAzCJXuAkGWP9woAg0eMlLBCTQcgwogQnWUKRVwQfw3rLI9v7DjeocKQg3Lx9N3Vpz7IFidUeiEbsObyDwUcRveDNdBFSgyGJSfE6NxHDWEEhSOxXKJosGS+2LrH4RJsYD4MKjXLRM84HT8Cr4KRYgnj1GL0UxtKm1zhPGL0umnmu3xGNAolGnCDqVRnbrgQI3uGGXpPGF0kMJ4XJ83E8nsgy7U1orMGaMU9KP0O9QYYgetFxxLwigWGIrlc/xHVUYVQxUSxQxvBcH3PQ7BQeFUQbW1+0b/F+wPkekYwwTsKMxpyGKXQJRrkLx/F4IZwqQlHlMRH+HJIdex06cWBjhSW8VIF5aShohaQaLi44jDXnvo7DKVYkqZfK2IQkSXEXoqYEyLMcEIZBlfnNhRdtNO6m73x/FejFv3FhlEKjMQogY1VP/MHr+vhYFOKmQoNYaXpRoTm1eTIXxRcSsMaQSkIexWIXi5zj8UTfDzG53uL6XsczVpx6j0lfDnteAzyeNEBGSy1qeKyfLKjMDUXiePvJM+WwndDbw8scthvovAGzp6qEQIoEJf6ONX6XIdUFh9UJz/KKxr8NQLt8zh0WN0CxTLl7dsdP/NR7k55idlqQ2CPGPMX4vSahU9Gyo3Q6Vrc1dHTUUrPb7SnLEmPWZw7bGVguMdIjdKyWht22I7GWYwwvponVhP2TZdtsWNUrkHPz4ksO68RCt2W5zpBonFTAPljqpbBNSkLXqdyDX7zEYSF6hrQDxZ7VasUpSsW86FuCy9kMPe545ObpDdZnbH1Duknjmie4bEO7STDWsF6tuFlZWhOFQq0lYUWQwL5NcUYFilfLmj72ENz4h5j3GOi6BrOyWJtMN3G+6pFOaGWDlSTeHCuH1eGSwxY4nytftR7qDa1RT9JCFoTKU4UtWZnTNIIvI4cl+h6OR1zoyfOco8+BAd8KiVWv6s3NTeSwLYEaYzq6ziKynG6yaPW15TrBO8+m2YA/TRx22LeYleGmTwk0kcMCbjvg4/XnGF7g/BMmDnMFTbMny3RBlkvLer3m4UGNt7bTfptjWauELnKaUAu01ZbQQu0XU8djaZozh5WlXueaLWWpazEMjs29o64DZrdDIm8aY+hi79D1yGE11F2AlWHwZw57+vQJm03D8/4BN9wTOkt/c0/f2wsOKzFpd3kp+qG4wmyJGTNmzJgxY8aM1wOve9z+CQAAD85JREFUhUdLgByok4S31mp53hQLlouCMi8o8gUsDNYIaZKQjeX5Ykc1Js0HCRaT5oxCWmIKUlvQu4REMrK0IskzirJkGOJdepITJKE/OfJiQbFYcHN3Q75Ip9ENg2MYPElICN5oUqcfR05M8tYmyQL0/UAIQp7rONJUq++ssXg8Rjw29rkaK0SzNGUfAn1/Yuh70jTBD/3UFy6YMLmoQ6wme39gJ4hBsFqBFzWRJDa8HuFjKCzE6lT1sI1iXeq5Cs4x9EcGk2PzHD84hmiT5yZBsFijnkWbqF7MWJWYJrHpteblI4PQj0J6Y7pZ0IbRPjhs7I2I+MkVqxVz6g/zUaNKTExuHaviTKJyCGbUhWLyNumHjJ4nrUAc71gu23UcTydMcqQsax2PCyT2LBTqXAxLhrOe2A9CiJV0IXjwLuZI6TjzLEOo2HcaDrVpCqJFH2OYbegdSZKRZSm981rCphmHF2cIiJzDq5ObnXPoUPcxnENz4ZwoqslmWh2pnqyXb8e0wlArJsdkd2NsXMfL+7HzuELUXRvbH5VFSdfu2O33DC4gScAPmvPnLxJJJVyfR2vksHVyM3FY4gaWTwvKvqBcKIftfUeRPKMoLzjMlxxpcKEgsH+Jw5a7gl1S0O8SEnsiS4UbsRQ3hmGIkgdJTui+Q38qyItBOezpDX1yjKNbMgwFw7ClqjJ2yQrvA27L1C5o6zfU9VIrs9Oavn8gNIKbOOwJtRFt8ozhKJ79zmBCPXnfsmNK0zTkeYY1OduwoR5uKQr1OPhdpue4Ae2gsgSOXB7n1dLQYvEbrbo1qIepCVF7ipqyrNjtd1SuJmxbxAmm0GO0DoGHzZYwZMphp0E57MExJBccVq9ZpymHw4FjmuG3m7OuVCLsmy0iKnAsg5AvFnjv6S44rKxKvHcslyt2ux0YT1M/xBVfYpZWQ4yRw5bG0oWKTYjSCybB7g071xF8iVkqhy07HUfvO8RYGoGbG8dtmkNW49xmasGzP6QU5ZK33lIO226OJDbDxyT1zcZzews+VOx2XYy4aHRupJDtVhPJt9s1IWzBO5Z1hcv0MzqXIafvYtMD2yZlfZtCp1qNISa7n+43uG3gdJfinad2gT2BOq4pdNCWE4fVdX2Rz6Yc1raaF9y2DVWp4qVN43RM6HWhLkuCd2yDx8dk/bgULPKASIMxq/iz/4EcVhOAjoDQNB5PN3FYYhO6dofb9wybwPKmYvNwwKSCj43gi+qE2GxKh/gweC0MLQPclQVvrSreuVU3cp0vKNIcY1JskiKZhiqsWFI7JsMLfaxQGE5HeqeaWcmYMyI5xhQYbzj1kGcJeVaQLnIyxtyDhCBWDakkZb1esVxVuGS82AaGIeAGGKL2FAi7w4HhqCfM6dhjE8tikVOWOdlgSdJAGJfXWK1skZ7gA6539McTYXD4KMAZvOd0OnA4HpHQRxe0YGy8qImfcmPGsvuggWKFaFUSmqY+hQjh5XyYIeb52Nhw2jk/trsjtQmuPyLBY1EDsj/1pFnKKEFjjCFL02ggGbzTHK2p0bfXvKBRwqE/9fjgsaKG5vgZLgx4L1pcYMbm1zrexCYXYSxNvLbW4oZzKNVIQppmFIsSaxOSxEd5g1guXJQguu42sWTZQg2RywhbgL539H0/hXWtTRjlakM4C5VOfSC9nwyRES/1WjOCHzxDFMQlFhrkWa5d5WM4VEOsOpihDxyPJ4xNEMxUJTqGXCSo0TfKO4zJ+uc8Of1HjRhdN+ccNsosxANM3xjUyFehWSZLX/MJ7eS+B61UkqglNH5RiCKzIb4HA1mu59uiyPUmKAStaPQqhjsM53xCNTDlA43WNxUGeO+tZ7y1qqhT3Z86X1GkN5gnKYvkiGQDuJz1Mps4bN919KsSaQ3D6YHTwy09p/dxmMP4ilPfK4fdPSNdLHgrctj39gnhZsliUXI4pKzXBpOcedC5hmFY4IaaoU9VNb7t2B2ObI7fApTDjjdh4rD9kJEcG4bIYfVq4NQHTt09R1/R7w/kacap2+N7TVauSs/mdOB+85xl6CiSlE39gNnrOKqbEpEWupQmwLK+IbBUOQhATIZtLSI71hLlHYz2I02aaJhyYCgKFmXJtoGqqtjcvyBsY6P48gbh20jYYoHtdsPNOqMsSk6n2Jv2JQ5b4TcN1lr2Bw2B4j11iCrlPpBnuXZnEMHaffyMlMNxr1yarrCJoaoCXdRHy+wRV5RQV5j9gdVqreftw5YazYs7SkJ6m1G4G9brhP3pxHa75ZiqYfHes8+CWJptw/FoWS6eYnIDUlJVsVF3M9D3jvv7e4wYlvWS/T5RnScgNLBtGur1Dcul0HUB78uX+Ha1WrHZbIAWalgi+GHLw31cjzKDU01/yri9Uw7rpIsJ9+N5bHh+fMEz9xZDu8OT4HAXHFawcW7isLZtCVKeddQCVDRQ1XSNo2kaiqJg3w0sw1iNGAjthtYNrEPFKSsJvqUVNcJ3uwFr1+z3HYiwIkGWK+WwfVSgZ03AqwEnZw67e6I5fP93+y3lsKYi+Ae813zlxaImSEyz6FvCVibFgA+D18PQEuHZ7Yq3b1Ys4x1UkSZRcVc9TjYBI5qCM15ovPeIm9SItKLJRwME8FjEW33Oh3hxTrVTfZQr8E5whb6ephl1vWBRZDQHraYYBqckdOyRxGCcilZ2+yObF7p57bbVvIeqYLUqqeqcorL0gy7v4IMmw4te3IaD53Q40h9PnGISHn2P8wPeD9qU1/WT4CZxflMy+ZgNL0xxY9E/tJpi8vSYlxKPXdDWOSF4JBhN1vTh4mSYLp9YAfEB5x1JmnDOBIq5XdMAwkt52KMyeZCxjYuKfY6kz7QzBlCphCBq1KVRj8eahMGoOr6qumvT7kEcLq5pmi0oipIsywgI1gb1eMa8grJcYkw2rd/42apKf857Ow3ausKaBGtszAE/G1EhvGSbfR+mnK34t3OqgzYaS8PxRPA9iQFrLG767nOyuxjhNDiSYSBJsmlPwtgeR2B0koULxYYfBhmTffVTUENpPIbiZ0+9hM5etCk3S2zc6cvPuER8vzlXtVprotcsfl9QAdzxnAwhHrNXlrSQJpZntyuqxLB8ojeLz9KcUBWYXc+iLLFJTV20mJCx3+tFbLla0bsBV9ccXhxozY7gUyrUE+Bri99VBK+6VKvlzfdxWJZ1uCKnKhckyYl33nkLF9xLHPbi+T2n4cgiyVm5FcZkiDh2OxVqbLcd3/zmdyKHvcXb7+QUYc9iEauxum8jpma/2xHCjuHgsc5y//zFxGFZ6CnKBc/vBxo8a9dTBcsunoNt22EMrOoaaToQaAUQTUIXjtRB3dM7qxEMEYPZ7aZzpQmBvGsJocKHHa6pCD5QRnmHxvcTh62XNbudZ3O/4UmZQx71q17isE4PY18zJgx57wlVoJJACBXDMHDY7UiSdCpiqCnxNICnMyeqZYL3BXmm+3oyCcPxiC1rbm/LicPSNCOxkaOygbLIOJ16dvuBw6knTRakaWxMXS5ZmYxQGmrgeHRwcCrhEIWf7m63nAbD4XDCmoS2AbOGZaxGD0vodtC2LdZalsv6oo5GjbWu0xv3qq4JYYtzns39BYc9f0HwOYmBvbG4tkOAbdCWQnocL3nYNPTDQFXDZtuwrJaEjV4jG6kjBdXxRm0PtLQTHynqVtXi27ahbVsSeiTKYWh4IlBvAi0tfXuI//tlDqvrmq4z7MwR0+0RLm+MG/22egmdUNeGZreji9IedmfY73cIDVVVEWioqjVt8JMWYNV4Gnu+If4wkNeh+kdEvose5d977LG8Yjzluud47fOD65/jJzm/nwwhPPuEvuuVQkQa4GuPPY5XjPnYf/Mxz/Hjw4fmr9fC0AIQkd8JIfzsY4/jVeLa53jt84Prn+O1z+9V4cdh3a59jtc+P5jn+Fi4Mgf+jBkzZsyYMWPG64PZ0JoxY8aMGTNmzHhFeJ0MrX/w2AP4BHDtc7z2+cH1z/Ha5/eq8OOwbtc+x2ufH8xzfBS8NjlaM2bMmDFjxowZ14bXyaM1Y8aMGTNmzJhxVXh0Q0tE/pyIfE1Evi4iX3rs8XxcEJFviMjviciXReR34nN3IvJvReSP4u/bH/Y5rxNE5NdF5Dsi8tWL537gnETxd+O+fkVEPv94I/9w+ID5/ZqIfDPu45dF5AsXr/2NOL+viciffZxRfzSIyKdF5D+IyH8Xkd8Xkb8Wn7+affykcY0cNvPXm3ncXzuHvbH8FUJ4tB9Uyvx/AJ8DMuB3gZ95zDF9jHP7BvD0fc/9LeBL8fGXgL/52OP8iHP6BeDzwFd/2JyALwD/GtWi+zngtx97/D/i/H4N+JUf8N6ficdrDnw2Hsf2sefwIeb4LvD5+HgJ/GGcy9Xs4ye8nlfJYTN/vZnH/bVz2JvKX4/t0frTwNdDCP8zhHACfhP44iOP6VXii8BvxMe/Afz5RxzLR0YI4T8CL9739AfN6YvAPw6K/wTciMi7n8xIfzR8wPw+CF8EfjOEcAwh/C/g6+jx/FojhPCtEMJ/i48b4A+AT3FF+/gJ48eJw2b+es1x7Rz2pvLXYxtanwL+98Xf/yc+dw0IwL8Rkf8qIn85Pvd2COFb8fEfA28/ztA+VnzQnK5pb/9qdDv/+kW45I2fn4h8BvhTwG/z47GPrwLXuj4zf13Xvl4dh71J/PXYhtY14+dDCJ8HfhH4KyLyC5cvBvVrXlXJ5zXOCfj7wE8BfxL4FvC3H3c4Hw9EpAb+OfDXQwjby9eudB9nfDTM/HU9uDoOe9P467ENrW8Cn774+yfic288QgjfjL+/A/xL1CX77dFtGX9/5/FG+LHhg+Z0FXsbQvh2CMEF7U79Dzm71t/Y+YlIipLUPw0h/Iv49FXv4yvEVa7PzF/Xs6/XxmFvIn89tqH1X4CfFpHPikgG/BLwW488pv9viEglIsvxMfBngK+ic/vl+LZfBv7V44zwY8UHzem3gL8Yqz5+DthcuHbfGLwvnv8X0H0End8viUguIp8Ffhr4z5/0+D4qRESAfwT8QQjh71y8dNX7+ApxdRw289f0/FUc99fEYW8sfz1GBv7lD1oV8IdoxcOvPvZ4PqY5fQ6t5vhd4PfHeQFPgH8P/BHw74C7xx7rR5zXP0Ndzz0a6/5LHzQntMrj78V9/T3gZx97/D/i/P5JHP9X0JP23Yv3/2qc39eAX3zs8X/IOf486lb/CvDl+POFa9rHR1jTq+Kwmb/e3OP+2jnsTeWvWRl+xowZM2bMmDHjFeGxQ4czZsyYMWPGjBlXi9nQmjFjxowZM2bMeEWYDa0ZM2bMmDFjxoxXhNnQmjFjxowZM2bMeEWYDa0ZM2bMmDFjxoxXhNnQmjFjxowZM2bMeEWYDa0ZM2bMmDFjxoxXhNnQmjFjxowZM2bMeEX4f+vWC54B2Os1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "img_grad = img_tensor.grad\n", - "img_tensor = img_tensor.detach()\n", - "\n", - "grad_sign = np.sign(img_grad.numpy()).astype(np.uint8)\n", - "epsilon = 0.05\n", - "new_img_array = np.asarray(unnorm(img_tensor.numpy()))+epsilon*grad_sign\n", - "new_img_array[new_img_array>255] = 255\n", - "new_img_array[new_img_array<0] = 0\n", - "new_img_array = new_img_array.astype(np.uint8)\n", - "\n", - "plt.figure(figsize=(10,5))\n", - "plt.subplot(1,2,1)\n", - "plt.imshow(unnorm(img_tensor.numpy()).transpose(1,2,0))\n", - "plt.subplot(1,2,2)\n", - "plt.imshow(new_img_array.transpose(1,2,0))\n", - "\n", - "new_img_array = norm(new_img_array)\n", - "new_img_var = torch.FloatTensor(new_img_array)\n", - "new_img_var.requires_grad_(True)\n", - "new_out = model(new_img_var.unsqueeze(0))\n", - "new_out_np = new_out.data.numpy()\n", - "new_probs = softmax(new_out)\n", - "new_cls_idx = np.argmax(new_out_np)\n", - "print(str(new_cls_idx) + \":\" + idx2class[new_cls_idx] + \":\" + str(new_probs.data.numpy()[0][new_cls_idx]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/08-Hacking-Deep-Learning/02-iterative-target-attack.ipynb b/08-Hacking-Deep-Learning/02-iterative-target-attack.ipynb deleted file mode 100644 index 0388ef5..0000000 --- a/08-Hacking-Deep-Learning/02-iterative-target-attack.ipynb +++ /dev/null @@ -1,323 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 8.2 목표를 정해 공격하기\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import torchvision.models as models\n", - "import torchvision.transforms as transforms\n", - "\n", - "import numpy as np\n", - "from PIL import Image\n", - "import json" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "\n", - "torch.manual_seed(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "CLASSES = json.load(open('./imagenet_samples/imagenet_classes.json'))\n", - "idx2class = [CLASSES[str(i)] for i in range(1000)]\n", - "class2idx = {v:i for i,v in enumerate(idx2class)}" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VGG(\n", - " (features): Sequential(\n", - " (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (1): ReLU(inplace)\n", - " (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (3): ReLU(inplace)\n", - " (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (6): ReLU(inplace)\n", - " (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (8): ReLU(inplace)\n", - " (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (11): ReLU(inplace)\n", - " (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (13): ReLU(inplace)\n", - " (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (15): ReLU(inplace)\n", - " (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (18): ReLU(inplace)\n", - " (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (20): ReLU(inplace)\n", - " (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (22): ReLU(inplace)\n", - " (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (25): ReLU(inplace)\n", - " (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (27): ReLU(inplace)\n", - " (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (29): ReLU(inplace)\n", - " (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", - " )\n", - " (classifier): Sequential(\n", - " (0): Linear(in_features=25088, out_features=4096, bias=True)\n", - " (1): ReLU(inplace)\n", - " (2): Dropout(p=0.5)\n", - " (3): Linear(in_features=4096, out_features=4096, bias=True)\n", - " (4): ReLU(inplace)\n", - " (5): Dropout(p=0.5)\n", - " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", - " )\n", - ")\n" - ] - } - ], - "source": [ - "vgg16 = models.vgg16(pretrained=True)\n", - "vgg16.eval()\n", - "print(vgg16)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "softmax = torch.nn.Softmax()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/torchvision/transforms/transforms.py:188: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.\n", - " \"please use transforms.Resize instead.\")\n" - ] - } - ], - "source": [ - "img_transforms = transforms.Compose([transforms.Scale((224, 224), Image.BICUBIC),\n", - " transforms.ToTensor(),\n", - " transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])\n", - "def norm(x):\n", - " return 2.*(x/255.-0.5)\n", - "\n", - "def unnorm(x):\n", - " un_x = 255*(x*0.5+0.5)\n", - " un_x[un_x > 255] = 255\n", - " un_x[un_x < 0] = 0\n", - " un_x = un_x.astype(np.uint8)\n", - " return un_x" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAEyCAYAAABwLfy/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvcmObEmSpveJDufY5MMd40ZETpWdtSC44KI5rLgkwB1X\nJEguuegVH4Dgo/SCOwLNF2iAz9BokATYjcqurqzMjIg7Xx9sPIOqChei55jfm5HZlWQlOypxFXC4\nuZmb2Tk6iP7yyy+ioqp8bp/b5/a5/Tk19+/7Aj63z+1z+9z+vttnw/a5fW6f259d+2zYPrfP7XP7\ns2ufDdvn9rl9bn927bNh+9w+t8/tz659Nmyf2+f2uf3ZtT+ZYROR/1JEfiki/1ZE/qc/1fd8bp/b\n5/a5fdrkT6FjExEP/BvgvwC+Bf4F8N+p6r/+e/+yz+1z+9w+t0/anwqx/afAv1XVX6nqAPwz4L/6\nE33X5/a5fW6f20ct/Ik+92vgmwd/fwv8Zw//QUT+CfBPABZN+Mc/fX6FiEyvAYqIe/A3qDz8AFCF\nlEZUlZwzh8OBkjPr9YpcEkM/4L3De/scJw7nPd55EIdzQogNIo4QAs55RIScM2kcybkwf6Uqhm4F\ntMAnQFc/ekJRBUHBbuV7/sc+6tM/dX6/2MsCqtYXiqJaAMF7h/Mt4gScs/uR+rh+Wu02RO29Mn+W\nULQgOFJK/PrX35LyeZf72Y+fs1i0aE52RTJ3gd2DFvu7PLh259BScN5zPBzY7fbcHXW+xSDwo6+f\nIALeTc/qx52gateJzPdp31NQLYhI7SO1y3Ly0XvqXdf/dfUjdf4aEZl/9MH3lrnX672IMHW+1Be0\nfpaWBzc9X3au73H2fSIIDq3fNc0rvMd5P3/eeb67+ftsfAK//OVfU4oNpxb4+uunXF9d1aus91sK\nRRUtGXO8Pp5v8qBrBTnPpfriOA6UXEhppOSRXDJ93+Ocq32sgAMRcsooULt8ng9TxzlPnfPUeTaN\nheK8J+VMmO4fcN4RfMCFQIyRRbu098x9OPX+x2vm//zlb96r6rPfGYRP2p/KsP07m6r+U+CfAvwH\nP3mq/+v//F/jp5t2Du893ntKKYR686ecEO8owO60J6XEy1ffst1u0VzY3W+5u7vj2N3y1VdfksvI\n6+++I5fE4+srnARSynzx/Gu8jwzDwH/0j/8TjqeRq+vHZHVcX19zudmwWrQcDgdyl7i9uSGlRHSe\nPNSBHxI5ZygF54QkSimFUg0tALkgrj4uimqm+AcDJfZY5PxcKQUoeLeYn+vHniEn+8NpXSwOt3hO\n27asrq9ZXF7SrFa4dkXWQggNOdkijGFt/egFZcQ5Z9eaQcQjRL799jseX1zhNLH0I+m453IpdIet\nXZMPgGNIGZdP82YymX4nNpWGIeGcY71e8+q4JLjCctGQuj1BEq6MlHSCkvBOYdq8FFJKlFKQUvuy\nFNI42vfn43mhFsV5yDkjxTacUhKo0rpQ31sNkSpOAjlne+w8TdOQ6gZQBNQ7VGwJFcHmWDUCLp83\n25TSPLaes5H03tt3OY+ElqyQxbFYbojtks3FFT427MRxdfnIDKtz+BhAnVkFQDADeDw5nj59wnG/\npaSRGBXJAykNbFYtJWdOpwPNKPT9iWEYiME2alWlCQ4ocx/afTu7hzxw3O/JZeTb3/yaU3fgcDjQ\n7d6RtPDhw3v64UTX9ywWS4o6SoHdYcB7z3g4sdksyTlz6gZitPU6jtbnm01L3/f4YnNsudrgvedu\nt2W5WlJK4R/95S949uwZ28Oeq6df8uLFV/zi5/8hJXtibClZETeti7qG1ObXo//8f/jN38W+/KkM\n23fAjx/8/aP63Pc2212FnAvee5qmnSfLtNuFEGmDp6Dcbbe8ev2KUgpXV1eEEHj35i2r1YqcMxfX\nC7p+YLVe8ZOf/SPu7+/JOXN58YiUErvDka+/eM5+v+fVt99QXAQnBN9ym0fevXnF1199SXCexWLJ\nk6dPGYaB/e4edUKhEFYNURRyIaXEwgVSSiTnqr2ySWVm2FopZRofVPPZAD7clVwCPKIeFRvchV8S\nKXUB22+Vgg5HUh45kBjHnnBY4ldrMkK7uiCGBc45sjhc48hA8A6nEBtPGkYAQoj85MdfMZw6vCq5\n71CBw6kjhBZNCXEB5wJOM07MyIovaJlQhqAqxCgsFgtCCKzDwGrZMgxHosvoOIKDpjGj7VGK1s8S\nwVWjlHMmqBmuGUcWKKUaPqfEGGAcbcMgUxKQC904EGMkZdtgQmhIOYFzFfVCN/aIi/UenC16hOIF\nBxQFycWQYKlIDyE6oZRpM7If5wRcxIeIeE8ujiZEmuWGxeaK0EQKnqzgnBnYGCPBebwPNpbz4GdE\nPJerhshI6Q9st3c8e3TJOJxwoty9u0dEKSmjLFAV2rgAKahmnArjmIGCF4eXQKYASsoDu/t73rz9\njlISYzqR80DXHTj2AyklDoeOIQ14H8jJkYrSxAWPLtfE0PKu+xYRj/eOi01D3/cEH2kbT9/35CR4\n19JGx35/MkN6GgjBExvH5fUj2kXg0O0pZZzRbkoDwsI2q78HhuxPZdj+BfCXIvIXmEH7b4H//vf9\n84RApgUy7S7TTjMZABExdwsYR5u44zjiva8oRGnblpFCdA25QBMj64tLTocjoV3QLgN3d3eoKtEL\nb968YXP5GO/v2VxckXMijSO3H94TY+THX/6MpmkYU0/JI0PwUAohOIRi1wEEF2akqapQzHB5pE66\niiy81seh3leZd35zQRsAvG9skEVQzQw51feZMUIdDgUd0dEZAtKCr66Z5kJx9tlFKjLTDOJRKcRo\niNWLYxx7xnFgtVrQH7d0w4lGhLZdMQ4dKgHRQFFBxaPTxBNBbeWzWK4B2G63jDnRDT2Rht3dFhFh\nERvUC945QvBoNgPmJJ9dMu/mKS3lPOaqiuYRVW8osSSc8zhXKGSkeJxAcYXQVLc4QVElzUhNcBOy\nKmckLaKgGRWpcA2cSEULipsQ5XQt9frc5GaKkAk4CYiLFAEXIuo8znlQf0a1ztXNWxEpuGleUwy5\nAUpGdOT2w5b1akGUDWhmPB1Zb5aod0Tnud3fENrWjIwTcimoTnNo8r3tWkMIdYxHTt2BcewZuiPb\n7T3D2JHLyNAnuq7jeOpp20gTG0P93chisSYnc0tVIWfbtGOM5FxYLAKr1QrnvM0p78hpIIQz2l0u\nl8QYERHe375HRFiv1zjnCGHaXL7HoMlESfwuBfCH2p/EsKlqEpH/EfjfAQ/8L6r6r/7Qe5bL5Ucc\n22TcQgjzAgetXJjj9vaWYRh4lK5q5wQKQoyR3ZB5+vgxr1694vZuRxsXrDePyEUIoSH4Bdu7W4Lz\n/Pa7b/lRbNhut3z9Y6UU8AK/unljRmEsOOdo25aLizVtjpy6Q3VDM67xrBZr8hG8D8R4dqNEbeGo\nKk5t0qY620o5uzVIeXDP9pyTxhCfc/gg3O92AMQYZ4PeFCFpYexP0EczHG0gZyGLLazgDOUGEUpF\nDZoT/ZgBGIaB9XrN0J1AEk0TGZsG74VuGIEGCULKhVIU5yLiGjPGFVVNRltV8S4gONarJUO3o1l6\n61Ov5GIT2KyHI7iI94acPPJRv6WU8N4TnTckXMLs/qZhRJwisSGPiVISUgrBOST3qAohtrWf5zkJ\nKudNNFdDJZBmslBQETNmvo5TyjYOYu5qjBXp1fnpvSeHq4okPevVGnxgUREb4unHZPyws/sSsXv1\n3tfPcIizeZNTRnVEh467wy2bzQZJiWV0aN8TFaQUFs7Z2JZCzorDVf4r04Q437OqMnRHXr/+juNp\nz27/gTSc2O+37LZ3cz9vLq8oCJvNJevVhpQSw5A4HQYeXUVSHjh1B7yLbNaXDMNAKYX16gonDiHi\nnXF/Qz/igKvrx+xPR7ImCsr+uGO7v+fLH33JZrOGurlMwMS41MqdVi6xjt4fYX2s/ck4NlX958A/\n/7v8ryGdOBuzT39iDIAQgsOH8wTvuo6+X8xGsZTCYrGg3/Ucj0cWiwXffvOS9dL8/MePH1e4fWDf\n3bFcLtGUCQLr6wv22x2LxYJu7DjutngnbHc3tG0LklhrS7toiM0lu929LaAQ6i4Vpvs+8/eAVNLb\nJpmnKLYL+VDRZ+VCJnduIlxDIJeeogXvWpZtO7tpSgbnkcpHBYEynNDo0XGJd46h71iur/HicMEb\nyoGZF5zctOgbM5KLFtVCEWgWSyQn8EqhksY+IqpkBRCcGiLCmWs7ZrvPtl7nMAwEV/ujIh1Rc8dF\nAPEzma2qFCDUIA4wI9+sigQPOeCK4lwwY1gy4zgijaAaZgMktV9zqhtKECboct44Pc7Z6+IdopWL\nmv7HuTlQJeI/Mmbe140iBDNqOUMMkIp5BKs1zkdCXIB4JHgWsaWo4rWQnW0EopDHRNPGGSEqBTST\nR0XILGIgDz1xAl+lBgqAZbtgLBPaNwwt4kljmr2YlMy9PHU73r57zem047C7o+u3HA4HVssFMUb6\nvqeJNu/W6zU5GQWw2x1Yry7oTgP39/c453j06BF3d3eVbmhmXrzrBvb7PU3TIHgWixVd11OKMo7F\nvm+z5PLRJTFGCgWHO2+KZJxrcM643JxHi4nJtCn9ccbt31vw4NM2WW04T8CHbYLXOWdSSrRtOxuz\nlBKbzYY3u9d89913rK48Hz58QFX56Y9/Rt+PxnsVczeWyzVFD9ze3LBaX/Dyu29ZLFdIsB3wFz//\nCwYPeey4efuSEIIt2Nxxdf2IpmlolsYTaRGaEPEY2poXT10sIgIlz/eQxc/3NEctp0UmE5orlZCN\n1QAFyJVjU0N6XdcheQBvn9P3PafBJnJcbmhXkXLcoW2hBOaNwxXM7Sk6RwNFbMG6NJjBCQ3qHEU8\nmgYotpFMkUVyJKuiko3I14knLQ/uTdAsFklVmY0XKnNkVZ1APn+/vW5uqIibI2wATbuaeUlfFETx\nHwUaKv+WeotsJ537ceLprH8nzu7c576O1Vg9A/fQsHkBV6kCC+kSKtLLqrgmUkJgsYy0yzW+WRJ8\nxC8WqGsQ78EFHA5JCZFEziM5JyiZPA74MHGUmZKyxQJTBuxaktr1SjVsYGDHuWKRQy22ayjEGJDa\nT7vDjr7veXf7kjweEAbud2/Zb81I9Z0FHtJQ2K06+r6nOw2Ap22WrFcXdR6OPLq+JsbI/nBD0waa\npqkBvkiMLW/fvkWLcHlxTUqZoTvQj5lShOtHj1hfLFlfrvFBcME2wNVqxcXlmhBc3YRMuZCzzutF\nmMbpB+CK/rFtgvQPUVqpPsRDI2cT1aKlm83G/kdsUvZ9z3K5ZLPZcDy952c/+QtygpffvWXVrtjv\n99y8e89quWS1WqBF0TSy3d7hfMvpdOLFV1+y3R54//YN++1N5cp6ctJq2Hr291suHz1itb4AF8zN\nig2xsV2dGqErKjjxNuEqSSwl41x4gBzOAwg2SUsxvkVcIDYeh+A8ND5UlHpEc2ERLWLFOKIkGhFw\nShmOdH3HMCTW146sBZFEXKzO3+08IVTjNMfoFRFPCAH1xiPmkEijQ3OBNAClugytIbZS0GzOtZRK\n9EuemRItDUULpS66mSZXRZ1JZooace8wQ2aTuaKsalAcQnIZISAUpO7eTifDqpTKWfq0YJLs2MYy\nXY37aC49jHBKzogUoj/Px3Ngx50Nm3OId+CtX7UUJFrgYLFZE2PLUDKKI+WEDw2+cpwWSDJeEGLl\nXjNaEiXlqcPMeGcsSCEOKUpStXmggPqKzgSRGoAShYIhPilIyZxOJ169/pbj8cjLV3+DuEyIwjAc\nQRI+RN6/uSMl5dnTL7g93rPddvzoxQsOh46cM76i55IzMXqcg+PxwHK5tKDAMfHs2Re8f/+2ggsz\nhO/evaYUePr0KT4K3gv397echp7NZsX1kwtibJDgP1oLKSXQgvfRggpuAmoTf/h3bz8IwwbYYhZX\n3WmZdUkP3euHVntCbIfjjnEcGfuBJkSurq64+/Yb7u/vWa8vSMPAzaEzuA/c399yPEYaPSAijENh\nfekQHzgej5SSOBx3dF1HTiNBRyM9NfPh5h39mHAx4MOCtgnEpsX5QB7y7ErPnIGqEfzTLWaHinsw\nmDWwUI2ZIaJ5NOfPc+IQb5M4uEghzZwjQD+MFl3MEJuWvhR0HCipYxQheEdxHnUZFSVEX4MIs3LL\n+lz8jHCKFDzYwps1WoKouYNKwQGqdr1zAGTSjWGSB6QYghAQbAEXecif1L554Gqok2rmzoS9yqSO\ncajYdzsXUZcrmplc+KrTm/qPCSF/7A0ErW6QAJKRckbYxsFPXKdxuurM0CYtFXWan6TO42OwDUGA\nKrlgdrErokSJvq3fOVJUKSnhQ1VrVaNmBtDVqKvMWjCq2/bR8n7Qj6oZxIJH++Oe7dakT6fTiWHs\nGMYDzsHQnxjHvtIFpm00NA8xQrtqORy6eTxKtjHrug4RxXuZ5ULilJxHUkqEEFgsmwpIlKvLx6xX\nF5yGPbvdgbv7LV9uvsDHhuAb8Oe1EmM06qE40HOw8BxtV+SPs2s/IMPG+UbgPAEfTvgQAmM2DmGz\n2Rgf1h9JKXE8HjlUuchf/vzn/Ot/9UtCWPDjr35KKY6+7znu9uS24e271ySxHcw52O8PtMsFu1f3\nbDYbfnvzgdUiEL3j1csDv/jFVxRG/vZv/oavvv4Z2/s9T5+fuLx6xNPnXxIaz2phrumEuEoxUvah\nYSuuUMq00Kqbip9dWDeTc9UVExObarGFMiFVVeV0OlBcNTaukBOkMjKcjhTnCHHk/evX+LDgyVdf\n4IqZIqUlLhy9G/BNa4Ll6CmiCB4nvootlSSK1wZPQbNSii286IK5pz4hyQOFnBKuin7B0FBxvkb8\nPIVs6s56FVqNnKtTsBRwPBC0zrxxnQ94zI+e3lPIpSA66S5MmhF8rAbBW99UGcrUpnmVpmtURVQQ\nCjGco/Hz4nLV2DsLLASUVMxlbWLEBY9bNPjoSaq0YWGRYxcYxpE8DoS4mDnDaTF7IuphTD1oppRc\nI7+ZJNGiwg7rpVHxrrr8arIdj7EGpoPRWe5x7E588803bLd3nA62eQ/DkTdvX1F0pG1c9T6UzaZF\nJHB/v+Vu3/H48Yrdbsc49mw2l/THkTSOtK1t7Iu2YX+Avj/Rti3Pnj3lsO94/PiarhsAOJ1OPHny\nBNElNzd37A535DLyk5/+jPVVi4/eOMAUCetI05hbm1JCCAQf5oDPw/X/x6Z+/nAMW5UNzD9U4tmf\nFeSjV/CekYG//eZvWK+X/PSnP6ZZ/ISXr77l229/S9t6dtsDX/7kJ2gRDuNICAuSeLRdIap8/fPH\nvPvmVxTn6fodqDKcOi4uVuRTQgZBQsv1xWPeltf85u0N19ePwEfW6zW77R2//uX/wfPnz3H9W378\nk68Zmh/hQ0NypscrmFvnC0Qx1yfGBk1VaIuf3W0vZ/f0YX84Z4YPD6VMglJzV91ihaaO0ATKEEhD\nRPOA9wlyhv7IsiSkbOFmSWk62y1XazRlVDy+uSAXh5TGAIoXRhnRGhjIXsCb26nZ0EZJmbGYTkol\ngrPosIaAFqXkRNW04sXNWQOuTGp0V8W0HtUCaTRjUg2HIuRkQmypnJaI4OsmAJg0A3PzP53uxhta\nRgVUg1iDJZOcIOdMCvZZpRSKEwpnEavWPp6yAJjQqDcuMEjlhIOnbVu65jGyXCJVYKyqpKFHSiEq\nBBIuF2QBjTcEN4x7SAN+TJAHghYL2FBwOpxvSOs1TWLqCXH6hjxYp/oYuNvtOJ0O3O9uebd7y/G0\nZ9TBIryauLq45ng80XeJYWwIsWH0MI6TLOkCTRuOp4Gskf3uSN/3PH36nKuLa8Yx1YDcT7m+vKBp\nI9vtDcE7hqEjpUTOe8po7nnX3RHjkmePHqOauX/3juvrL1kvW5rVBc1qg7KgiRtiXOKksQ2w6gZ9\nqBIPSdXV/uNM1Q/HsP0d2hSazjnz4e07bqNjuWx5+uyJEZEXFybuDIGLiwu0OF69fEcT17StY7Xa\nsNvtcM5xff208iye/tTRdSfaZo2WhJaRvhvZ7o+EEEj9SH/sEa0kuwRubkwLd7FZc3e7JV5sWSzX\nuBBrNMeiuK4oWmzRTAtnag81ep+2s7btYyT78LXQxDkamLNHNZKYhL9aJ0kxXk6KRdfyAh0TxSkN\nEL0gvkoqNMMDFb7CORtExPgsBMlmYJ2KcZUiaCXexTmcfqxJtFu0aJdqnqNhpSh5Sm4qOhsQ8fZ6\nRvEVbZWHkebfZSnOr2WYIs1gkVbEWLyzW2NBDUNPAdWEVKkKWIxpSsMrWo2pE7zzuBr9nlLzvDPU\nhptctPTRlU2uKChkVxG4BbwkZ0oZIWccxhWKMF+7adsmrtkhUtBq6MQpFI9UFHs6Hdjvd5ZFcDhy\nOhzoaiDldOrxPlTUmCuXCzlXiY6PLBaBEBqGYQB1+OBYrSLL5RrvPafjQMmw3qxZr9co9R6qcDyl\nxGKxwKkzfs5HSlay1MAZ58BMjCbwLVOa3AMv7fsCh6j83nXy+9o/KMNGMfh9dXHNF198MUstXr16\nxZMnj/j6yx9xe3tLKDAOJrvYbC7pTh3HY8cXz79kvbrg9u4Dx6Njubzi2ZMnOCfc3d3x9s0rNpsV\nz7/4Ea9fvuRm2LN+5Mij8WMlK7/+61/z4sULhi5z+2HL68UrypgY/HtefP0VX7z4khAacKHKtQIl\nm6peiITwsfAUPobb8wA6nV3Tj56vf4dgkxPvcCETcmOLNsZqTAriLRqcS8fpONL3R1ZSWFw8powD\nuVuSvSeo8WulEra4ulAFZqlEMCJbvcOPD2QaSdCSEK16NJFK2Cte3BzF1Zwpmgw1JYxXdEqVsc1c\nGoBWTRdaI4/ikPJgws+T/3cXwfSMn7guVyUZGGJTICM4qap/EZp2CZz1bLMNFQEX5wXpgp8NvTrz\nLMaa3qVkLAW5upFaKKPl9ioJxXHaHaocopD6nvF0xIni1cy7mMdrAmPVjxQOthGUeeGXUijiCKHh\nzdvvePXqpWnNTjvevnlJKYnuuLe0wDHx/PkL0IblouFwGiEVnG+QKvd5dPGEGAM5KeKUNkQ2mxXj\nmLn5sGMcM2274HTsEYVxrJKqNjD0iXHMOJcoY2KzuWToR4JfMI4jSOHx48eMqeN4KhA9UYQQVrO8\nx8TaxXJj1Vzr84CW7xnpP9z+QRk2zaXqqKr7ptD4hnYR2d/vkWBq5mVsePXyLSLCT3/6F9zd7nj/\n7maWiXz91Y95k28Zh4HQrOi6I9dPnnA6nSxPruvYXF5wf3/P5fopt8MtmjxtuySNmXevb7h5u8d7\nWIYGitD5xJB2dL0ht83mmia2LOIVUhzOL8ipUOqAfZpRMf2eMiuK6SBmQn6KGE7v8SEgGVzNHQ0h\n0KaWrjPOMVeleSkF3wzkrEj2DMeaGuUj2h1RZ8p4cYHBDYh6HA1aLAoYgvFVUlOSBHA6cWVC8oIm\nj1YknUtBvMfXe5FS0ZlL82N1DqeZUgL+QSb9ROaXnA0FPeib8uCxPnj8aZsEsFM6lsWi4vy+KeCq\n7vz5KhYYcBOaexCVz9XtxHt8jOTJ+NX0rFLFxDlnwsSRlmTRTcaztEUdURSnA5oLTkeCYLIPKgOj\nYq6nhW3M1a4GzrlJLTBRGYVBlLvtLd9891t22w+IKC+//Q23718TQuB0PHJzM4LA5cXI/d2efiiE\nZknRwmId8C6QEEq2ANNycUk/HOlOifu7d6xWK7x4ri6vDIVVPjIE5fLymvfvXtE0kcuLa5xzrK4X\nHA8ntFh+aM6jRfeD0mum7QNh2eLbhqa9pGkWBB9roOW8QX7cfr9n8/vaPyjDNhGvq8WyRkVN/Bl9\nYLGwRS3FRIZPnz6tCCkQQ0sIgeOxo+sGLi4uuLhcc3s7ENvAt9+9pW0bnr14xtvXL9nt96zWS8ac\naJs1Q/+Bow5o8QTnKN6iViGY5ubtm/f4K4/3QmxbLtJI05jsoAkDTlssZO0Q97H4GM6ux6eL9fv+\nfuiWng2dMwTilRgtWhxm2KFkMilZcv04dJT9PS60qATwlipVEHJIhKYliuBjM8schPNvoFYTqdVS\niunkSJMbaJkFKg51ilLdH7XnxFU9lgrOZcgP0KjM33C+x3rPXt3sPtb/+N454pxxYlNylvdnY2QB\nBaU4w2+T65wxusD7asCdudaGHMREvyHgQvxoTCaheB7N/fRtS/QCLtANvUUqi6KVCwwOK5KQTa/m\nHOiDqirTXZ0R/FmX+ulcUFV2px33Nx+4v7/jdNwhmukHK1BQcmYYRvoeQrDiBCkVcy3jgpQV72J1\ncT2r1QaAw2FHShkvjs3mgrZt8RJYLtcInlPf1X71ON/SdZabO4vrcXz48AHvLIXq6dPHIImbu29Z\nBPBpMacehoqATUI0aQXLJ2Psa2Dke4f797YfjGH7ff51eRAiCRJM0lCjct+9fMkv/vJneAlozjTB\n0mjubrd439B3mb47sF5foirc3d2TUuL29o6h6xi159ffvmO5jqQ0crt9z+piST9AZmRzteLXv3nJ\nsr2kaVtyUkKIbHdHkMipH7m73xs/dzSC93635dGjR5SixGbBsydK6y/Qkmjiag6GFNUzDxRC1eSZ\ne2NEt38wmA+5tjOBPI2epeJYDmkJhcYtyNmEoUqm6+/xUkipMPYJxkzxHadcaJdrxpKITUNNB0RH\nx1gKLkfCMiACach4b4uwoLVyk2ngdDJa3kMyw6IIWcqcA6je4So6KWrcYylCzszGfrpHF8+aQPfp\nBjDzdh+76ueeUlIpMyLLgIRmJv8BolYecUJokwjUmUbNOUdTU/cGZZYjeO8Z+t4CWaNJNlLROSA0\nlqO57CK4kklpsHRAzRQRvMOqlaSMZEO8FrOZAiR+RoKTxOEcpS3z9XpvCecvv/01d3e3jMOevtsy\njj05daDK3d2ekuHpE0cukdOpx0lgt91zeb3A+0jfD6RUiKHldLQAQNHCZn2NFzPaWjxF4Hgwvs6K\nRURyGTnsjzx+9JTYeMaxtwITd3sWixVNtIIUH27egWQWK89iYZv/8XgkqeP5Fz/BVy2oQOUXz7Kp\nyfX+f5OY/dasAAAgAElEQVQU/4MxbA/dst8LOx/KQYpQxsR+dyTGyOXlhlN/ou/76jJ5YnSkmq0Q\nQmSz2VgajgjLhed4FNuhtJA0cdof2GzWBN/Q9UfAocXTD4mmXRGCZ315Qbq3ROduPzJmZcgwbJXN\nZc+YR8Bx/XhLzncsmjUsTekfQwuEB6T6uVrHp618DyCZJaO1ntkklRDJmBK/8j9kZJyMgS3UrNm0\nwk7QPCKqjJ1xPG0wF8hJNAF7LjjJBLeYF5iXWvmimEDW0mAweYhzpDSS1aKLUwK7F1crSwhOTSsI\nBZdBfQEJ50TwOSIwITo9c2kiTHXB7Mc4vKnk0UOyPkuxiCrGzxVqDTFxePFzv06J/OLcLGPBeUOl\nziOxwXlvaVwxmtFzjhAr36ViBk0LJWc8ihZhzMm0XmKbgFJFtwopZXJKVs4K8M7PRmyWugBFPFXo\nMRuzychNGrLD4cBue8vxcI/oQCmW0RCCpaIE74gLq5LT9YVFu2KQgW1dL6mo0RPVbd/v94gIsbEq\nNQ9tyRQcUFVCbCmic2bHYrFgGDvbNEeruXZ1dcXx0M3Ceeczl82CxcLTLCzjILQrmrgwWmROgD8j\ns4/XxJ+BYfs+Ldv024khkDY2fPnFC1IaeP/2LTfv3/Lo6SO++vpLNus17z/cWHRTPXe3W04nSzUa\nhzyTv6fuRAiRp8++oO86UmpZtJc0TQOlVP+/YbN+xJs3b8iqnE4jsck8e/4lF1eXvH71DYfDlpJh\nPML9h4719RJP5ObmZuZ5vnz2Nev1JU3rUDHI/1DM+/D+5z5wHw/mQ8M/9UeuWjiHt1pr7pyak5xJ\nBnLOLBYrpJwoTvFZyX3B+cI4HOhyj49K0Z7cr2DRQkqWTRFbXIl4KZblUBTJhsRKsbI4tXAWzaKl\nJIuwkSs/lTrj6jBNW8lTtG8qwaS4UFPToJYg0jnFxjI/JsFtrsnRIM6jpVDOiQznJlbFQ2oQQ6iG\nSTwypUMBZXJ9nMOlBKUgD1yj0QlJBAliekGxCLBvGihKqO523w9o31dNoaEzgnFkuZaVyuMwu1nT\nRhadXVMTPKITN1fIWqUvsxs68Ww21qfuwN3dHb/61a84dLfs91usxp7llw7DwG53pF0sURpu73dc\nXlxwc/uenJSLiwsryIqwvrhkvb7ASeC0PdE0DYtlS0oDDtOEUgXYaZxS1KxSiAhcXl5T8sDpZLq2\nGCP9oefmwx1NG+iHA6t1i6pVFXnUPOX6+pqnz15QZEGMRikB5DISfFNzeK18k835PzZsYO0HYdim\nXethm5Dbw/xRUSWnRGgaNpsNF+tLxCmbzYrFoiH3iVTTL4YxIWJ5lsulDdButzMDN458uLlnvV5z\nsb5EmwaRkeP+RE5akYsydkI/bFmsLiil0DaFD3d3/Pa7b1ktAlqM1D704Hu4edfhG8/lpVBS4ub2\nljdv3rBqF4TouL1V1mvHcmlROAu1+4/c7bkf9GPD5qrLZK+d0Q0IRUqNGk79VWUl1SiQG/zCUcZE\nOnb4GKrQVhhyR3cUYmmRJiIlUEYhlcLQLWgJqCSrs+U94Mi+pgD5qsCvu/+0KZWaD+tDgzyIioq3\na7O7yNX/eDAF1WQR6lw1jsZPWbTAzYvbck8/FjRPLUutp1uNkfgI3pu2Ts4Gs2BZLh5BY6Qy9BRv\n73POVTSXSNUweXF4aimq6j5nVRpxtYqtEpygKTOWgTQOkK0mn1NByARnBtcBWiztymGc4yxrUJN2\n2BDbYxHT5r19+5a3b9+y3W45HT8wDB2Hfs9yGWsNvT3L9RIfF+TkuXr0jLHbslxa7ufl9SOO3Yhl\nnpiqoO8OuDxVrs2zXCmlwa6ryKynyznTnwZMjDOQxo7TqSNnS7zfLFc2Nj7VbAZP0ZGmNSnJdrvF\nN3csN094+uQLvIugoGpR85LPBRAeroffFyz6fe0HYdjgd7Van/4N58q604QupbDf7xnHnl/84ucs\nFguOxyMSW3bbUy2XU7i9vaWJi5qDJrXSx1NL5JXAMFT+abA6a+2yJfWJlEbGbmC1WqGl0LQNPgSe\nPn3O6XA7E9ulwLIxXU53Gui6gXZlCmu7vpFxHEnDlmGwtJNPyzT9u9pDDurT/plclYfkuqt5jV5t\nKTpxZITiBpwTchZDQCXR9x2ZQhkPtsnEiIRAHEZyzHVCT9eoMzKcr0cVP0d5PW6K5uVknFEl2edK\ns2oZE7h0DkjYjcwPizBnH0x82O+b7B/RF1Krjjzg51y0JHSTethrAZN7uHCeT1bhpOYsejNsLhnB\nj4L4YNVdK69o0bopu2GqqotVHhlGSjL3UChodWNnkn3SAGpG1QIuhr6tuu7H0mOZK6bc3d1xe3vL\n8XhkHDorgX86kpLxhn1fWC2D1Wcrgc3Fhtd3b1nWenk3NzeIbywqLrYhWS5yM3e4zSetGj8zbK6K\nyMdUS4kVJRdYLCyrouuOD9zkE7h+LqnUDx2pwOLCE1Kc3dgp2vmQU8vl7FX9f2k/DMM28wi/GwX8\nSJjaFaL39N2RzcWCF18/4a/++v+aZRxffvEVznlKf6J1AYkNy9iwaK2S6bubd2y3d9ztbtjvbnES\n8EQ260cUVZbrFTkroYmsVitDdq/fsz8d8UEooSO6QvQJt/bkrFxePWa5vWN7OyIC3Ul4+dt7Ahds\n/Atev/8r/ur//itefHnDz3/+U3anG0bteOq/YL26qqnvYrWsREm5N22PnqtSABXg1MhkPQ/Bi7mb\nWn0yrXwRGKfkfAtSWDTROJKQCX5JSoNZwTTQRI+MI4yF5rSlnE64ZoFvF2jypBGKCxSxyGAWR4vH\nB4/LDc6ZFGJMCSWT8jhHtoIPqBoidU0kumrY/DkBfagCzzwmck2gDyGQxrEmddfoI2rBifOkIYiv\nlUVkDkAcS8HFyRX1hCaiPiB4UnWBEdDQIECsxiw6T2gq0ky5ohVFGHC17LhLZuXmyKlmgh9xx6NV\nStZMGUfjuigMecAVIQYrROnF1fHDOE3vUYRZwFESWoQYBxymn/Ti0QSvvvsN97dvuP/wDf3uhg+v\nX+Lr5jUcYHO9ZtGu6A/37O4HqzvYQNedCOGSrsscDjuaxYrl0lFywQcrrtA0C7ysjCvNQ014d6Tc\nV6OsHHsLvOW+r0tWWbYN/dCRh55xOFHSSAiOw6HncukIznG473ANZDU1mgsNq9WGy/UjokSQhlwU\nihm36IWSpsioGDqm6gb/iPbDMGwP2h8KHthrH5fafvr06axd6nvjCZbLJceSGHPGB6vyWkrixYsX\nLBYNd7sbmrhgtdpwuD9ye3OP94HV4sLI9eI5HCxs/vz5c3LODGPH4XBPDIUPH+5pG6u6IRK4vHjM\n9YXnt799Sd8PHA4D//Jf/htevDAB4rt3N1Y6Cc/ls+cMqWdMiadPE+vVhbkw3iJG4kKtVAXm6E7V\nas9VVqtvNruwk/5rkiyo6FmTpUoaysyVmEL+POzeW102q9M2klJHNw7QH+nSyIpE0y4ZxSOjw8fI\nGFqgrUU/AyJTZWCZ80xFYNSq0G8aHEI/DJbc7ixIYTrgmr7ECGKhhrEoxcUZwJWqjZvPRFBsA9M6\n8dWMvsNkKlKDDd57mmh1w0SEIObteu8ZlSrvsBzMpmkMiZXp4Bhf0Vc0eqOMlJxworhSrDS7ZrwX\ngrfo7pgSuZa7LrXktfe+yioebNJ6zkA5I2+ZxaoUKCbAYRgT79++5Lff/DXH/Y5xOJCTMg6weLSp\niPSeYUiU3HFxcUHZHhFRXMl0+471+sJ4VhH6MZNSRvBVctHQNA1tLdc+juaC5mT3Qd14yAVywYsV\nJ7WquzvGvjMENw6IKNfXj3l8XThsd/RD4uJiQbNs8EvLgHGh4XA4EZsTaSwsVhM9UM7UwkNP5o+U\neUzth2HY5GNd1x8ybs45W/bljGhMR8P83pwzfRoZekMQ/WCk6hdffYELztxVtTy5YUjEsMS5SBpL\n5W9Ghs7kE+lk5ZByzqa0boxn6scRN1rYf71eoYyEAF1nVRL2e9jtjjx5eonqyO3tHZvNBWGzZrFY\nkPLA4bAHoG2WhkrUoL04U+dbe2DcPmofu2azar/ybtMJP0WU0LS4knDZQuklJvJYk8Cr4DPnjNOp\nGm62EjllIKeePLllNTm7jFalRPNIokZd00jWwjj25woQWmt0VMJevDtPVDEhrCBVfW/J/KL1HqoB\nsy4oZBJpMNfGe0/bLD7iX6eoYq6pOxMiMiNe5SiA81KFpqXOJYsi23dyln7U8KkSUB0syyMXsiZE\nzbAVzYwp4dODGmtSqKn/VmrIuQdcoGGQyfue3K9PW7E6ogxjR9cdubl9w/G043CwUt4WtRYOx76i\n1YaS4TSckCEz9lbdtmnMaC4WK1arlUmI5ETTCFqEVGz+2vZg6N97K0BQKv/rqGuxatWGrqekAS2p\nCsETTfC0bbST4nb35rL2iVwyrbNNczh1xKUdyhRjtOwcmCUdU6qkfiLxmTeA71kBf6j9MAzb37Ep\nGSeBkgubzQaczi7jerMiNo5cBjQ4Iy6bgMuR++0tx76jvHnNOBrU/urFjxn6kf3dicvLK/ouk0er\ng2XkqasdXVCBpm25unpE0ZHhkOiPxlXZCToDWvpajXTEe/j6a0sn6U4Dd/cmalwtdyyu3+McPH4s\nfLgfuLl/z4sXP8JPlWGdlb9Z1YG3NpU1+tjIxeiBjzeB+ZEPxs1X42VT1JBIKZEmKtJZSD6NPWWw\nBes8hGJR0jQAu0zqI3G5wmtDGYUxr5BixtKKG5lLlNWqdqg4ijgyjdW/r0ZnKOcy6WB9TGOC4tgu\n8TNnWWZ5wWQUuq7DS0SS5QK7tp2jr1TEo0BbU9EKNVdV4tmAuoA4R2wa/IMyRWksptOrVVY8Jtql\nFBMvFzM2kgtOplOTMkKipCOn08k8CbGADFJoQ1M/v0ZaRYz7Y7rkMxc6IZZci4kGWTB0J16+/jWH\n3R2vXv+W7f0t2+2e7c0R7x1pBCs7X0i1nHhOSkkDMXii9ywbk1YMSbm7tdPGVhcXLFqjXLp+ZKrK\n3PcnADarNbEJ+OKITuwYyjLi1dfj8g50mhCUxsFy3dYj+wztFhdxoiyXS079YMLgPkFTePblEzZX\n12zWFyyXa5qmfcA5nvtCHvbRP2jE9qB9SpJ/+ppiJaEbbWpl22UtzS1AYRwHvK+nIMVAs1hwOWxo\n05LdYcsw9LgY5tN1RITjscNJIMamniXqUTVx5aIJVftm19Odetp2iWhdYM6qllImt2LkdILVytcF\nmuk7WK9hHKz67+l0oJRrClpz7vY0zYKmhazFZBHBksZ/t007/O9GBJWJl/TzmZbTewomhPXJdG92\njkR1f2VBkwoBqxvWD3bGZBlPUMPvMXqbLaqQI5o8xfc1SdyRBq1RTyUXRZLg23bOW4UHeZazPZK5\nJHoI4YHrPJyLYNbWLte40KAp19QtO11rukc/nSPKaOiyIi47n6XW+ps9g6mcks6oSYriojsT+BV1\niVLPq7BPz+OIEZ6G0sb+yMI5VA39WVK61JzHGhCYx+HTHINzPzyU/pAdOScOh33NBBgwKtOKVjq1\n0k7744BY/IfVqiUGYXfXEbwJuUvKaC6knDAQPEVcreBl0zR18/BzP0yBHik2jnlMdgANRhuMOZF6\n2xCnApSr5ZJh6ChFCTU3V0UYx5FcCllguYDlck3bLK0CddNY9pAL8zjPQcGp8ObDwNI/xMwDgXmn\nnkSID0+qgsng2dmFTdNYVdtmyePHj9nubnn79jWPri9xThhOSogrVOFwOLA97K2i6JtXLDdWZffV\nq1eslmuePHnC6TigRRnTiEWndO58xGC0c47V+mI2ZmlhrlAQK8vdDXuci1xfn92jvh/YbNa8eBG5\nvz+y3R5492pgv1uTU2JzccVisWK3vyWGlqtHTxkGK/KXY8QK2RpKm0Lw03F3qqmaKyYFqvWhOLMc\nyeGCRe2UwFSUUILDaUAlE7VWmtXEcr3BB7uXNgQaVYY0kjSTxyP7+xNuZ7xVJ/fEZsFqdUFoVtUI\nWAZ3aKLVhxWhjIaeRcQOXanGFMw+WgHLUJ9z8+lHuUYgUa0liqY6a96kJv1QNxtfk+6FjB3kI9g5\nokWm0xqwxVXKfHBMzplALV6oxVKdiqE2VatvNs2/nDpK7hFNlNQRSJQ8UrRHSiJKwYuQckK8INVq\n5wzO4qRMmSTT6pzm+PmQonqaWD3H4bQ98e13f8vrNy8Z04kPNx/Y3e85Hq3unm8d4iPrxjY/KwaR\nGMea2VFpGnGR42lAmobFYsl0tkgpZnTPByY1nE57BOj608xbIo4gVvLeIaQxUbqBpY9IkHrWbSEN\nI3m0ApzH/QkVOOUEYmX4kw6UPHJzc8eQlMePC8FHKxBR1/dDobpwBjgPhdt/TPtBGLaHOrbJmD38\nDedwvwIhBrIqwzDQNA3r9ZoPN6949uyKEBx9MXcgxAW+Tzx+/NhcJafc3n5gf7qfk8UPerBUJ2dH\n+lE5owkB5DIy5ERb803v7y03rmQTD2TvKUSuLp6z32859XYY7TCMXFwsGceBpmlZrxtUhd3diUVc\n0O0OVgnhq5bj9obt/sDV9QV9Z1HB/XHParU2Ny1aLh0iiMfy6pDpnN0K2W1xy1SB1HvjTgSyzMW2\na1ltE+hqTeXyKdk5AyGgviOloVZ9FZgej5kio3FHIZGHjm4cWW6qKJdz2Z6xnhAoC890skIupswv\nrsokipUnCr5FciH3Qz1CrrqAE9dVxz+Xky1CTPrmxFHG3jRv1dVEClkyxUPR6fzVM8eV5+KWDq0l\nfUpKnI42F2rGFUEgNE09mSqBy+Sxh9SjZaCknlIGiiby0KNhjbiMd4b6Sy3NZP3v63kYDq0BEKjV\nOcp0qI47yznub/jw5jXfvfwtr1+/rsit43Qq5GxAviCUMjD2CeeEsNzQhkh0kSePnyPiGYc8C2oX\nq818yEoRVxGz1MwN2yzbppnXGaMVMzgedizbBWQ7D6KUAimzXlkgIm+35GJBq+5gBn25iYzjyNAX\nS8+THgngG+Hq8pqrx4+qG7pAi+kAZyNQEZptBvXp86k6f5RN+UEYtoftU6P2fQI92/0y0yEhUwsV\nHTRNY9UKioWqLak3sFgsrFqn9sRohQ5PpwNoIEaMtK8GNNfzO+0A5wbnHN2Y5l1uSjafghUiyRKM\ngyOlgRDsiL5xHEkVWq/Xa8axpzt0xHio+XZblqsNh92W425L266RtiXjGQZLD3POzZE1sIoeJsI9\n900R00ZNeqhJZGpo4YHbWv/P1no0hytQF8ECyYoXj6hVxPWqiFiSt1XrndJrIOPJ8QQxIb4F1ApK\nYijE5WRnIoiY8SogxU8QHScej9pJXlYmg8J0wvws463v17rhiBW2zKk6jGcZjGDnKwRH7QtqStO0\n62dKUUrxdv5qKfN5sVK/1/rXW3QTh+QBHTvS2NXDok047MUMjHgrzeTFULXWcyFkitQqc8bEmU+b\nSnL7M8+XEl1/ZLfbcX/3gd32nu3dPaXAqRsq2iqEEOegT1tzWClKu7Kk883lI8YEfegpNdCScqbv\nRmBEQiRW/lZEmAoDzHOpfFyBJtbqL1qDOadTT1PHIvWJIWW8t3t3zgbMDoa2szBSSiYuT7XIQE3B\nm47V5GGVle/hIJm1mf8/IjYR+TWws9shqep/LCKPgf8N+Bnwa+C/UdXbP/hBqr+Dzr4PsTlnLsqQ\nM+qto66urvhw85bXr18hmAbs0fOf8ejRF6h6xm2H9w273Zabm/d0/ZEPHz4gYyb45v/h7k16dEmz\nPK/fM5rZO7nfKW5EZGclWUXRqCXEjhULEBJbdmxZIPVXoNes+ivQOzYsetOCFQIhsWfBqlTVKmrq\nzIgbcQef3sHMnpHFecxev5mRWZlVRSsaC7ncr1+P6+9gduyc859wXmRaOSeMcohVTFrlP8sCu1ZB\nkJzr1gtPPRufx5ToOk/JF1JqiJu+Fr7aOsyN00yXmRwDfrCcnp7443/8jylp4q//6v+h72U8/vLL\nn7diw2qe+VwMrNYb2WJttKBsVS64irhK1KvUSq13vwq5oozCmILO17HIeUV1GWrGWE+Yz9QcmeeR\nnBO1FHpVpAusiTJP1JhQrjTfeishykDJR3Tj1cUsXaUw9iV0uRqDtoNQIqzYUOkiNyJqvepllQKV\noNlih2lmnoUAatU1stEZS+pMy15dCJ8SAJRXMMFibWBrpVuax7F16oXSaEOJwnhpJowcSeOMygmV\nAqSZkrIEv7Q8B9dtMEY1ErIVmKaUFSSRC7aKAQGsq5bSyKjjKDKpDx+/5927dxzvf8nd3ROnY0Ap\nQ8qmifDlfY5pFvK5iqQUKUWTq8ZZT8oG2rhZ0Kha8avJpHT9i9RPlCmLJlVQUV3FNooiodshhNbp\nNxdo7SRr12r6bsDoyBhmVJVkMIWscW5vPcpYUoloZ4jqzPl8Znu4wbQ82VrVet4978c+L2Gt4P1+\nDds/SMf2n9daPz778z8D/o9a6z9XSv2z9uf/7rf9A8vi9HlX9qvVW2vNXJy4jdoCRTzSD/1LXu6+\nZON21Jzpho7xMeKMZBLsbw588+57Pnz8wPly5O7ujt46khrIpdD1W2rSaOsIl4AxDquNEE2Bzvkr\nqVKrFndXSVUuGrTckbWyaNfh6wuMu+YpoGdKHQnxwuPjiVOQO5v3B44PE9P8BPEv+OqrN6jpCOUJ\nhsD7X2hev/lKAI2g0KrHdQ5lF3Y21Cx3Y1niOqSryiyWjYt3nWIP9QouADJ2tsJcVKFog1YJ7bvm\nSlGpzlJKR9YaZQ26IWipOUiUAml+gqpxWtLPvbWr9jHaI+rSY5zD+p6QlOSp+gGUIkaNnp8wfU+p\nViRaRlxXx1FuUra5XWgV5WZTpVM1iNDc2ErOIt8pOqBqj9VXM8iY28VTq4xeOlFS4TGOguDmSE4z\nqmSckouZGtFVKBX58QM1FSHT5oJqy3ex2TF4Y9GmoanOyo5NyShV0CjlmruxonBm6A/EBDmJ7bU2\nibuHX/B0euT+6Y5vv/sF0/1MnDQfv4XNJrPbbOSWVitJS3FMFb78+j/gZn/g6emJGIR+MU8J7wUR\nN230zizW4gqdtRh3tr2muCArlFlG0UxNiZojJZ4JubZNYcJqSAOEOTDnCYVGm0rnLHFO9M7gjJVV\nQknkeBGuJ/DlV1te7g5sTE9vOywVq5PYXanPcybQej1XFxjhOWXmdzn+vxhF/yvgP2tf/4/A/8nf\nUth+12MhMi53aKUU1lnRXlbNOI54b9nu9BqMvDnccnt7S60V38nTnc4n7h8fAU1ne9mHNCpCKYVU\n8nonGcdx/V2Lg6oxemW8L3uSxUpm6fAWxwhlMtYZOt2x30cuR7nbTvMFpRVdZ5imiePxSKkeo8TR\n1KhAjMLypmh8H8GArrK3yoDXHZLqE37FJeTz1v2HuuHPX9N2c2nBJSKnMaQ8UasnZwlcLlUMFXNd\nglBEDlRrldEtN7voBnAEW3ApYlxHXxTa9VALNcXmQGuYzidyjnRDT9HCrUpthC0UQhOre3/l7Im+\nse3cqm77qorKEswSVuBJ3p+YmnznOa9MR+lKFmscpUgpopUI3OHXgRttroJ1yfW0aGNYwmuur/31\n9a9VHGll/BdtZskS2RhiIiZxoh0vF6ZGvxnHkTRnrDhANVKyUC+MLtjOsBs0u90O6x3DdoP3iRAC\ntbBKm5ZJwWpZE1CVpJkVBWR0tRQELa1pah1tm0Las5EYQ+ngocpNXEu3V6r4vtXawPJUoMRG+O1I\nFbJOKCupcvM8r6acy4dS9rMm5h/q+PsWtgr8b0oG9P+h1vovgLe11nft778D3v7Q/6iU+qfAPwX4\n+vXh1y6433bIz11FuV3X0XUdx9M9XecYNnKBHT9+5PiLX6BtzziOPD09yS5jmpguZzlpdnusFtqB\n1mC1onOe2rILSrarvbU83avv/AKNL4z40+kkxnzGEOJIyhNKJ7oerBN6wqtXjpQK0/mCMRbvHafT\nhRhH9oeep87x9PTE7RsJae6GDV1XmWdHKR12kL2KwhCyPC5lXCPQqnU5/dmb9AMnzvM74FV0bDBt\n3M85UZOiKiN8tVJYfO47bddld6gz5EKYA7VGGWFb911CZU4RpS44BboI6kyzD1JazBtr0qTUg5ei\nngGrHTVWYos1PM4FY+T3zlO+WiNZ1QqboLumQAoB1fZX1khwybKcLlSoBZ1EYVBzwuYsez4q5EyJ\nImAvpeDb+WaURhsrHZ28Utc1wBrxd11fGGMkJ1sVFFaaRaMFga8KInz69IFxeuTdd99wPp+5+/TE\nPE4YLE/nmZsbR0mFlAIxF1KF271ht9+wvRnIeebxURB/KfbTNcqu1pXndzweG53G4I1f0WHyouOt\npHxujYII/amFMI+kcBHicc1tz7dQMyxOQ9KaaYrULCBCzBlrxDq8qMQUBOx5uH/ip7dv6AZR49jm\nd5erXHufaUafoaPrNf9vGRX9T2ut3yilvgD+d6XUnz3/y1prVUr94CNqRfBfAPxHf/hVvS5Vf3Nx\nW4IynmdAWtNhjeOLL95y/Kv3hJC4v//EF19vePvlG25i4XQJWGv5sz/7M2KaidPMtrPEmJhOj0zV\noarmdJzYdAMvbm7XbkwVswa7LlwrlNhIU6/CfArc3koiTyVjbEepClQk5VFUEKkQVcJaje80MSZy\nSCgFKcsJdrlMxJiZ0y8wRrHdHnjxslA1DMOGosQZZNhuUMoiDqhaZDLqmVzqmTtIVc93c7/On3r+\nc7L4zqgiQniibe+X3P1VCFi3kQLmAlpfRCPYgmVSmOR9quCUEk5aKRxzWEEY44SmsPCdUslo39Ht\nb9DeY2yHsZ5YCg55bXMVmU4p4hLsbNdAntqIwUIF0jmKdEtZYsnsdvv1otHatr2XhixWRWWeuYQL\nKmd0EYshcsAb0TpWdd2xAmuBWG4MukK1EkF4LXBLHW3aWLLsxuYR5zvCnPjw8SPv33/Dx0/vuH+Q\nwGDkejoAACAASURBVOGP7++YLwkdd6QAG2/BQ62F42lm2EHXa0oNPDxcsE6S0FCZSsJ7Qy4zOl87\nNgCn+8b2SaSSIGsWvXEtAgwYlaWbjorYrM3jPJFToJQqcX9KQp8BUaDUKlZVCrBNgaLlPO42WpDP\neaJq2c8VJV1dKuV6LVV+54bm9zn+XoWt1vpN+/xeKfWvgP8E+F4p9VWt9Z1S6ivg/e/4b/2tP/N8\nbJKF45KIY0SmlAphThgrSdjGefyw48WLLd4LobfWSqiThKFk1SxjmrSoJHJOpBzlhK2yDHVVxjSp\n0artl2T00xUwBtuyLmtdxhZFia0bwjRWucSKCcqpGqlYN13ewuUTtVjJkelykru/9Tjfk5xDRU0q\n4HyP7a7hzNTPeX8/9Lr96te/9j3j2uLfioZSK7l7A7QRxaAwMVGrxTrpELXWmKLIRnz+yXLBL5d5\nzYWaElMQBcZz51vlpQtTuSPXhBs2+N2BDNRc0S2ubg6RaZ5QSPbE8jzXkavJouIcGKdZJDqpEnyH\n91CrpaqrX92SFaKVWnWQtRRMFTqIocm0GtixriP01Sh04RXKKPrDF+fzdYXQQyrTHBinE3EeifNI\nCs0vcE5tbynqleW1SmFms4XNVjcAQTqoECZqXgpEplJRJVNUkXyQxrsRFsHyNWB8A5Oe2Tg18ECp\n2mzRC0ZOq4bsXgGrdXppVllUCKGgtTQbMSe21jZJG2gHfrNhM0gWcN/34kgt9sm/cbf+/Ph9x9W/\nc2FTSm0BXWs9tq//S+C/B/4X4L8B/nn7/D//Lv/eynhWV5+t57s0QJbCSu5+y4KYqtn0W376kz/g\nT//0/yaFzBd/+GaVWj4+PtINe06n02prFEKinNodOAdqyVANQ9eT5pmpaTi11gzDjjnIPkecR2EY\nBsoSXKIUznhUgVLF681YqEUkV1DYbDbtuVU6LyNOnOb2O8APfRtpsxQOYwnTmW9++Tf4rm/RZp5S\nAzbsVu6PUrcs9BahDohR40IRWUnPtX72Wj5HnJ//WdxBFgtuQVSt7aUQqIauYslFkDKNxvm2S6SD\nIt1ojLJrrOexid0NtSRiEI88UiNkkimzWI3Hi0L5AeUc9viE7XaEXJrrsOaSIiXTsiSqIIOAU0J/\nwGjCPJEuJ9nzGdtQbLfqIfu+B3Rb8gvp1DmP9h01RlQSFNoqDSmiFcSMFHmjsdo1xFUcZKuqEtPX\nNLHL672cO0tcpPeOECdKitzff0JXzeX0wDg9UUtEqwwp4pXGaM1UhWuWksjcho3FbxTGgLOAsZzG\njO80zmimaaKmhNWGEMUqSoGg1VVs7gXhVWgrRODFpVMpoaSIPK/d5JyG3OIuMWhz7VpVEkqUUqrR\nQOQ6GwZH13UcDrfknHma32GyYrPv2ey2YB3Wd4SU0VbskJQ1jSws5+2vkvKfl7Ly+9W1v1fH9hb4\nV63oWOB/qrX+r0qp/wv4l0qp/xb4G+C//nv8js+O657rGWLaPhuznHSyWzHOibeasiuJ94/+6I95\n+/bEn//rPyXcPVCr7EryEjdQrhe7VrJzK0nEvEuxKFUxTZOMI0qhmyzLWoPSIlVRuqWUK9qIVNbC\nNo7NO76KwmG5Y5pG3jyfIime2OwcqciyNUwX5iAGkcZ1crNMgWmW3FNjn8HmahmLmjxI2c9uFMvn\nH7oDfkaS5nl3t/ZeK5pWaxar7K5H10KKkzj0Fr+Sa/u9E1pGTszzgty2VCey7KlMbWCzIiJctnC5\noFMlpMzQ75u9dcBoR0qBcbxgjG8XSCXXQk15dXlJpdJ72UPKvk5jln3euu7QTdUgXVg1FVXiurtb\nbrCGzzMXpDvUq/24gE3XYqatu/7/jTcY0swcAtN4opRMLZl5vlByFD5le+wUoYSEUEkZrBWFb0qR\nOkvkouktzjv2e4dCzr3eeaaYKSlR0tXGu0Q5r7XKcp1oTUmsZgdKqYX1QeXZc9Ctm65C80AtN7y6\n7rqWU0MBztrVPCDGWQwVNBh3VRA576F5IV5vxFft83Nw6x/i+DsXtlrrXwL/8Q98/xPwX/x9HtRv\nPEp7pde1nSQXlVJwxrPb7Ilx5v7+E/3uQMqVkDXzxwfmOfLtt98yTRMxZOIZSoHATGjgo3M0wbP4\nSmmj8O6acCRBEwZVHMablYiZo0Dt2lRSntBakfKMsYqUZowVvaT3npp66d5LILf2v+RM3/cc9rek\n6SMhZPokPLg4j8zhwjw9NYshQ0E4TUmVdpLIxSlo1TXlR2uD0tfQ4/b+yPP5lW5Yvink05Ubwq+P\nsaUUut1GLvIwQ205Bs5CSSTjMS01Ph1PaD9gtcZt2gWXxQdfZfE7K0piBrWxWGOoSrM93OD8IH53\nh1ucc4zzBUmPrxQ8zndio61EE4yubHYb5ssZM0t4bykVbdxVSiXyUEH27IBSFa2bSWaeyZeG2OYo\nI6c2+DZ+loZOyk3wioCWCoujsQTcNKpLClgnY+84nZnnkafHO0wzuCx5JseJzilx1W3cMYqsKzZa\nM3SyCJinSuc0/bZnf7PBd5aQA4ftazrb4Yzn6eFMnGa+/eV3HM9nUsjEuRU2G5smGFAVtwQna7BK\nobWiLrILbRrwUsmpASOqBWqnCjmuRd81p5sQg8Qm1ivNyXcaZRTn84WQIjctta3vxGnEeEcqCf1s\nzF/XOz9E7fh33Y/ttx1a61bYRAoCwsjPWbPd7NltDxxPj8zzzMsvNgybLfvbt3zz7gMvX8oY+m/+\nzS+Y55lebUhVCpJKRagUSI6m1UYMGFVtlsdOLvoi+kttaPbPBWe1dCJKLJDlTYfOdozTkZSDaDWh\nkSoHQfCyAAzaAEWY4UYHnOsoZeZyjmx3sgt5//037HYbxlGY6cZ5Xr5+i7OKNEW5qIcdNYO1Xmgb\n9iqqzquoWI7nOyJ4VuyKEGOXU6g2Zn9tnZqMDCKDMUZhN4MUAgo5aqgi29FFLt6N24gBZa2kVEjT\nhOk0w66dxEXhNha0wvQev9lirCWUynYrduzWOkop3JQ9IWZAoUwnlkhWum1x8xDULmx2dF0nhgNF\nEslTLA1Blv2o6wZylaV80mJcoJRD204UHBpKqihtsK1js0pRrROlQaOXLOPT4uIhZFL5+a4byCVQ\nSiSEiXG8SOc9x1YAE/N85nScsM3mqSZwGI5jwnfwdDzjLWy2hmHwGKvJMVOsZej35DkwTonv777n\n04d7SoDz40SJQDHouY2QShDvQsZpKWQUJcoNTSPqNoQ0VlKN5FzJC0l9IVwXg0piRCHql4rSGaVk\nRNZWgwoobSSPo1SME7PP/X7PsN3hhw2lOecqJa6/QhOt7WvFD60rtfr/cWH79VH0OsotVT6lxNwo\nGCkljNWr+eSrV6+Zppk0B+LDxOKdD837vtZnS/yE0pVar4jXOvs34k4pdeUK1ZhRekFroZR5LSDP\npTS1JUkZ41BKGO9d1630iWUsrSmLP5wuXI6Jh4c7/LBh2IjxY4mREEKTpkRJ1aqaGGMrbiIylsd6\nLWI/2KmtL3C+QuxVr0KlCq0dkb1U0UXGuOV1VwqKkwW2s9CS4ktOQshVknPaW7ciigVwzmMHoZRY\n71CdoyoDKWJdM79UhlpE8tP3PbVCrgarHRiNqcvuMzZQRmNdh/MCxIhsp6Cyk6LcsheckVwLXRKq\nCjJNNljl5X0UQtjnfhzPd5NarWLtBYlei3/7mOaRnGfmeWp5n1J8U5Fi770nzGKpbbWm85bzXHCe\nRj0C5/VKafHYRqWRYhrHictl4vHjE+MpUKIih0yJGl11i/OzxDqLT2kF2pSxOPgtWRkV2rkvXWnO\nRfSe8r+gWqix4io7LEXsD0TQoFojIOaUcppXnLcrvWOhZV2dXD5fi/x2RsSv+9b9tuNHUdgqULUQ\nT9XCb0Tg5RbNIfSBNiLltaQXtEnkGtHGU7kh58RuF8g5EUvkr7/5K6ZUeZweOY9nHh7ueXp4pO8U\n2IwuBTWBthVjm6Nst6BAWsKO221FG01JCW0tSkVJKkqRyzxja1MtWC9+9nh0EYPGWiNag3NK7K+1\npWYjwnoj4bzOKmoemThJ/qXJhCmhq0ZHxeNfHzH2iPbfSkZj/oS7/ZLD4cA4d7DdU0rF9ntScihV\n2ZiXkttYE0bLTsO7ZvDX9izLobRC10btaC9vbtIgmhNFRqx9SLV1bYZIEeuZZquthy1xHtFaM8ZZ\nsmBLxVaDrpWuG7DWEnNh2G6YLet+cDpfsMbgqiafZV9W8ySUEefZbDy5ZMI0sdlCiYXL+cx2u5WL\nxmvK9rCSQOUBeXyW7s1auxoaumVvWA0lGTSF8WzIMZKjJ3e5ARxh/bfEL05dlQ2tE06DkE83nWO8\nnIhhJM8n4nxPyYEwPRLDhfA4Mc8jIUxiy+2ynIfVcbi9JeUzcz7yqhONousUtjPkmnj91Rd0XSeA\nhzG8e/eOy19r7u+fOD+BNbKWqUn4czEmObdqwDjQvSD1ulaMFsqSkI3FTSWeG0UkZkppRaZYnGsp\nUlnOW2VyQ5wTylpiKWz2PbhKqhnTO4oBbQq7w5a5RoorFJeputD3Hq86VHR0yhHquG5wBam9FriF\nmfB3OX4UhQ1Y7V4EcWnfU63GPeO31Vob4+IK94tbqOfm5kaIuOcHTNczxshw84KXN7d89+57pmni\nn/yT/5A0zZzfiXxVa+g3MuE6b1demtx1CzXP1wdZbSNe5rVTW0wRcypol2UFviy0awZbMb7gvUNj\nmphYzL93my1d76g5gyrEaDC+vSXzI6fHC2kWftbpdJSfjZHTBdzwntf6Fqs6rC+kWJvNs4RDxzlw\nKWcBVbwmN5LtwseT535l6MvreaVhyBsgb4JSau0UxHq8UQd0pRTb1M/tvaDim7ut7pxQPxCCa+8E\n4U1VPLceHh4wB6Fu+H4QS/fzmRKDZBBYjTUGbx2hVs7nM7VWnJPitDD1xY/PsNEbQojiGtJE1iHG\ndRe6IO+Lc4nWskbQDek0TTalK42hX4k5iOVSY+Nba1GlChFWiRuzLiN977Fa8+HDN6RxxBA4H48o\nZmqZmMezUJGMWXevzlqc0ZxPJ0rRKJ2oQNc5pijAgrGWzvkVeHn37ntqypxPE+ODJsyy4pjTQhwW\nAKnrRd5USiHkKGn1BbQ31GxAVQGjTE84nzkfp/YerhQ/tIZ5ThThLQsYpqHvwXhDZx2UyMPjheHG\noCzEXIlTpOvg4fFIvx9wrls7VNd5lBKNaq6mObks1/u1sOnK1fnj73D8aArbDx2/2qL+UPVeTtRa\nxU3Xe098iszzLCxye0RpS0yBlIJ8n+fkVLXy2z6jRFQAg7Z6LWJi56OpVagEKweoFLzxYqlcMqkV\nO2OVjKi1khC7ZPGZ12htmKeJGCPDppPgYevQTeVgvIi5VUlUrVfENmc5uaYx8HB3h6qVw+2tjAU6\n4rodqITRG4rOUBR2oSjkKxp2ZXqb699dl2ttn0Yb1eVjpYaoZglU5ORTz+Vc6vp+lSIFXGuNa7uy\nGKN4xtFuXEpBG+mHwQstBEm4orC6lJQUGpKWWUwra630XpLDnpNoWQKXEUSUhapQl82sUA2WJPZc\nS/s7g7ZtdC5iwljVBtP2hEthM7SuTRWcMviiKSkzXU6EaSTMF6wKUBK1JhQZZw1FizGjVh3JQEgz\nlYix4l7iTOXmAGWqbDYd+5ud6HgRVYszQjAuykAFox3OJeKcVzqEVouxpxL2fytQujUJKWWs05Rc\nESm8RuOwjafY/AdowPEKuCwfSkEsQK7EXMRy3ea1q61GYhXlXGqkIGVx1mOclcxYJSqPWvOz6Uxd\nMcHfUgt+1+NHUtgaO3v9kxyL5n/ZEy1fV65PtNa6FqY3b95wPp/59vtMmGecUtx/uiMnxZtXr9kP\ngT//s3/Nx++/p1cO7bQ4FWhxfp3G0CgegvQBlDhetYLtIglpXouE+MJDmhrE3lwkrFLC16qVeYrM\np0h4mtluxejS7wQdJUmWgvcO1zncwmK/nDBegTKES2zGfpkQwHo4Pk2k+gGVE713K5XhYju08WyH\nHWmSpXZ1G0BGjU4L56uWIv5tsraVVUB5vmeEWira6mc3AXGqrc60Qp+wrSvQVr636AFjTnRbQU+n\nlAjTjEHG4Vhkz2WdvM7KwP2nD3BzC4D3ltPTyJzCmmWgvGXoB86XC+fzkS5JfOHSyWitOZ/PmL5f\nl95KazrXUEi9WAQJWhyzBMeYqsTEUitqkX1hrc2QE4MyFj3U1nVWvJUxv6QsSoLNjr5mHh8f+e77\nb8hlpJaZOZ5wKpJTYBqfsE6KawgTSonF1oePn3DOsd14dNVM5xNfvNpwuXjO5zOfHj+hFHSDZ99G\n7JIU0zRz9wHcVJjnTIpgm4ytltIQULGusk6zGaoI45Vinmee7iMSSD/i3IjRvsmrZLxHgzEiRI+l\nSH5uK0DOWkJMjLFwCmcOry3d0HOJE6qIU+7t7UEKi1PkWgixUJR0x8Y7IVM3XqR+popZAAJdufK4\n2pe/b/f2IylsSO/Lr1RuwebbhfV5MWP9kbbriZFhGOj7nu2wod/u8JsNN96LVvRyYjxO/Pt/9HM8\nmr/+878Rm5tUSSm2hWbbg5dCTaIicAqcNlf9Y2mWRMvtv7b9A45xmpiloxf3W0XjBMlH0oVyPvP0\n4cyw6/n5H/+c3c0BPWhiSpzGswjMtcLUQjf02K1hthN3Hy/YNvWlBDVpKGeeHiYul49sdweMd8zz\nmaoNJU90vaQTzfb1urDNbVysCxJVSmOmS3dUkWK8/JdC4LkqzhhD0bFdpAGtxWFEOEyZcZ7akl86\naI0izjOUytPDoyzMw4T1jm7w3D3es9vtEHumSOccT09HCQypkk4lHWERaymteP3qlSRCNZAohMB2\nu6UglkYSFiLPdxFqX88n0FrRD44cIiEk4VdpEclTFTlmrBVKTckzOkOmkEpiClGQ7ihAzzxemB6+\n4XR+4ttf/gKrEqpkVL6gTcXowm4jr4fagNadeJXpzNdffy2h1UH0o48P96R0YZoj1lWGTrPZbDgc\nDsSgCJfIdJ4pWfPTr17yy7sTMcg5OE2ZCAwKzCD0DIXsda0G8Ti2WOupKWDaJZdmTaqVVARAscY0\naovcAEsWw4WFDx9jxnYOTSGUTD9sCWUCJSaY4wT5/olOQ8hw88WBnd+gTbdK9lKNWC05vCZfeWwL\nq63AZ4zcyr/DqOgSca+UEBKX0ceYZ0+8LPDzdZQc+n79vjD0r38uKfPi1YFLiHRdx7e/+Ja7kLm7\n+8g8Z6q/JvEIcVAW3cYYLmMQKU4CP3Tr6BNSaB3Bc0WEJk6ZWhTGSMeTJIqS50SLpdBlwJiZj+8/\noZ2l014u9N6RkCSfXHumy4i3hqIKS1h5AwrbglgyLEOaMA56teEyPtJ1PSnPbOyWXCZJk0pplZVd\n0SfV+Hmyx0spCFUihpU1v5CIdbMpL62gLQU+V0kAizHiun7dx5Ui1tym3ZjGaVx3oafLmc70hBB4\nvLtn0/UMwyBWOUZRckZrxdBvKTGBgcCSMSF5AMuNxiIX/7Ji2Gz34q/W6BghthG2nTO1NDuiKIXR\ne9+cN3QjopbmPDELWtlVjGqeekEkUNRCCjOawnR+4OnxE+M4YnUlTRO1RKyS1K5SS0NdFaXtMmNO\nDA09Bk0Iicvl0lj4ogJQRnSvpUQulxOfvj8yXiqv9q+pWfPx+zumqRGSmz9VpwWpjlEIstYu18yV\nqK0rbLeOGCpzEE2vtRbbSLmp1tbHt3lJPF0pCenkmnyv1IRzipQyuVRSbTdxC9ZYUkl0w7Mci1Jx\nXS8zsZY0MWvs6hEohGY5nq9LePa93+f4kRS2ChRQi29qa4W4PjnZ11xH0eWJi/e9FJnD4YC1lv5P\nBh7u7qkovv34kd3+Bmstx8cHcshoBV989ZJaqwirW5HQSpFLxmmLt6CqYr4II10KSyWEvJ44y0Ws\ntW5GiWX1wFJK6AYUKULrMy3iAluT4a/+4j3vvn/PzesNw2HLP/r5T9BKMU8XtpsbpikwzhJnZzv5\nt9boySKJUjmDUfD4cGQeJnZKYtuU89SapdjYGw6HA13fkRF001hDLc09VQtGWLRizpGqK7azGKOY\nR3ECNkUkQjFGbC9j1f3jeaU6bHf7dYemjOH29iVTmDG+w3UdVhvGy4l333/LdruVC9cpvLeM45nX\nr17x6f09zorjSZgulNJ81kqhc4aSxCDAdZ0swpUm5YSpht535AJeK1zvOZ1O8ridgyKIZqGSYiRO\no9BQtCYj6U5L0ZTQl0RNmVIU1ERV0rmP4yN1vlBzYjw9CP/wdGR+vCOFgM0BrTJZZVTOsoOqQrzV\nWpFKwhlHNYZQFDEqokrMsVCywvp2EzeW83hqfPTC8Tiz3+94++ZAOnvuPjxxvE9tBaNQKjXSt3Q7\niw42JaHJTLOiIiNqKYrLJJw+34lcLSfIRq2ThSzYpCB6Y6i6rv9oVtKBFwWDN5ITAXSdpx88qQZ0\n9UROzCnxcrNl0zhsw2aHdQOLOUAsCVfbKoFnK6hnNWz5+jdIcX/j8SMpbHKIJtGsFVu+97xq/+b/\nV/hKsnPpug4r4QHkUghxQusNOUbGy4VwnlFGOrvLJeGM6AO1uXLVlq4jRZhqpuT2ZsRKjG0hq6Fa\nITymtEhJFta/SGJqlpNByKGK8zFgDPitwznwVnzcuFSOD49opwkp0puezvfkFFtugqIkKZa1COM9\nRRknXCe9l7VO4Hltybkyx0QlsvWGfhiEL0cl5SyAAopaakuSF9vvNSi3SgBwzBFVMymIfY5zDQRI\nidPpxO3tLf2wXXeQrusYhi273Y54Ei6hZCdEUstmvbk9cLmcGXZbbm5uGhDT3ChqpfduBRRKFXAo\nT6yF0zRrnmka0cauuzadG2hQ2y6wueJWpdYU+aVTU6Zcn0uMUESSp7QEmBQjxdtohVE0Q8rINB6p\nOREuJwEH0gQpUmOgxJmUZ3KODJ0XjleV3aXYYbdJAvGcK0oz+IGcFqG9aeO1nIPaSfcmqHvi+HAk\njx1xioxnIKZnS/1FlJ+vBW5Z9ocKZMnLqJWYa+MGRhROTFOhpdsLFcg0qs9iFLkK5oXJhtHS6ZUo\nma9Va3KopFJQKuMGRdUKP/R0Tfi+PD+tLLXKSoBaGq3j1wEERb2CC79nLflxFLZaUTWjq4Ga0Qiu\nLOLtitRyA+bXwYOFwuCcWwvbT7/+CedpxPU9uiaG7Z7D4cDT3T1PWnFKhcfjuMLXtREW5QQCnPhN\nGSplrjw9RryPK/oKV6pEMlLYJpXpPez2vqF4mXkOlAhxWqRaCl0cIUUe7ifMAJudxhrQtXA+PfDm\n7RtuD1uM8cQ5kENoQnlHmMX3KmdFSeLz5b1l8Fu2+x2282g/YLRju33Jzf4trhvot1v6wa/JQL7l\nNSyuILG5moR8EeZGFRPJnAIxTehaeDo+EkLgZn9Adb6NqmI5NE0T3nfYzvPq1StKKaKQsIYwThKn\nVhKvXr2iHzr2hwN39x8JYeL29iV3d3c8PDyw3Q3CedMa5wzeasZxFhlWjWw2PSkpKInSLhLbtJnj\nKDcWmkmoMUasjs5n6caaSWhq9A+iYIIlt9e4NNsio5u9ktCI5jmjqYzTmen0JO6yJTKHkRxmYhix\nOZFzoORAZ8RQUymFtl0DvdpI5mYpohWsGzjcvEGriutGSkyM48j59ES3he5iSFWsHOZLM2cMle9+\neSSO0Hmo1ZCSEGpLKVAF5ay1UvO1KOSimLO4b9RaxakYQTWVmlHGECjtZlDlZF2oVkWmx1pBF0hE\njJKdm8qF8RzxvSZOiZxF33ureuqust1tRQJYCtvdgWG7R9QGllqEL0du0ZANHa/LtcW1g/u7HD+O\nwtaOSuYaLrEUrxVJ+KxjW7q6xVhxGAamICf3brfj++++w3QdeEtqb/ynDx+5nM6UkDFOTmDnCvMp\nMGcRPtWCSEyKdG296xlP92SEamFMk0e18bIouRtGD8OAjKRAKrEJh+UayklkOp0yEogSEwHo58hw\nM9D3ns3Qc/fpAzln+v4lVksxjfMMVhbhQz9QCkwPI87t2W63DNsNP/npT1Fa8/7jA8YP7LavuLn9\nSmIEb24E4cpJ3ENaOK81FuOMtJcx4o0giKfxSE6h8cUipRZ2uw0xOqb5hGbLNE1Y62Q31lYCxjsO\nhwOXy8Q0TeheIgxDmblcJsxGVgZ39x/52c9+xnfv3zMMA2/fvuXh4Y5tczI5Pj409FFRkqwaHh8e\nePny5TqaOkejv2TG84WYC4fDgZyEY3c6ieVT1wt5lpRWOVTXddRSmKcJSXCPqFoIobkhWyXPuxRc\ntxM5VVVY3/F0ekAhJgepCh+uI8v+1FlSzZSSKGiM7VDOUYucM8YVMTEAyPJezuNI12/RvWLodxjj\nmOZHttst5+lMjJGYxMqIZPj5H/wjrO75+O7It794T0p1ddioTSkiJak0iors4BTNHFNnsX1vyGOt\nEHMmGYSGUZs/pYbOsOY2aKT76xuHsBRIIeI6Q0kF2zuctSiV6PsNVZ949eqFdGrW8ObN20YrSmhn\nKWi8ttQa1rWS+r37st98/CgKW62KXERvKXIVLeOSdVc3TXW139FVRq+qFM42cmiV+DRjFMp1fPX1\nT0kpsdtt6Dc7rLW8ubnhuzkw5QypUkMijhmVFK5KTBoKQqloD1MaGRGvxUhCO0AL30cruwIaOWeG\nDC4OqHEjjzc6dEjM44hVCusUc4kUJlnARjAZwntQw4C2A113g7/NhBTR0TKfL2ityBUSFeU0pzhi\nnad74TnVB3xnOdzcMpZC3+94+wevJOOz29LdiMni4+nIy5cv5XUqhbH5om22llKS8LxsZciWOYx4\nlZhLxJQsHYh2WGU5h4q2W3y3J5wjXbdhvsQmkzFMp8CDe5IlOZrL+cjNbi90gOlM0Ro3DOjs+Ku/\n/Bt2ux2nxyMAnfGUlBl6z+PHmcELUinorgPTEVuXdT498fV2wzmeUdVTlcH7HnQlWk8tBT8od76/\n8wAAIABJREFUSTA3ihpnconc7HfkEnEFwuKEq0A5Q86pCcI18zg3obhC5Qvb7RaK4fEixGFVICjJ\nEK0lMFsJt5kvhRDEKnuz26H7nVgyVbDOoXlJ7zuMUcQUuFzOlKzpOkctiTmN+P0bqntBHo/oeEe8\nPKL0iPca03tgJMSJ0dzRG/H0G7MTlQgFpaIkiwGidNVondsNG3L1jVxVoZl7KWSFZljyTuX7eVED\nCVQOQAxGAmuMQulIzRntwNhIIbJ9YcnmSHE9T6Fyu91jrKdm8bqzyqyhObV+nnOS66JJva6i1s+/\nZ/v2oyhs8Jwwe/3zssBcjue7N9W4GStSmq96st3+BZvNhsfHe0KYmRu5cwriE+bsIEG7VZPGC6Vq\nDJoUpA3zylBrImfWu5NS7Xcs/LZnLhqSD5A4nWfGKa37oVrruhRVSuGteFipRhA1umK94e7hnks+\nk4aZF1/tUFqJnU3nWn6mw5r2b3Suiekd3aEj50LX7Xnx6i37/YHt9iVFaWKT+3Rdh9t24kFXCp2X\nEBtrHSkstubt9c9h1baaxl9bEWYlrqd935Mw7HY7XDdgjBXHWm043IiRYAiJECMPn+54cbjh4eGB\nWgpPT08457gcj9zeCmft8fERrRWH/Z6Hu0+kHIjTiDOgkdcxRtg15HMeJ272W77//jsOhxvOc2hs\nfs3Dwx3D9gW5JGj5DKpKepZ1mtPpxKK8WByBF6JyzukzAvPSGc6XWbqVyrqKKDkzzzNhmohxZtCs\nHv7DMKzn5kJ61i0lyhtPVZBKxVjH7nAjziXnEzFqho1c6PuD4fHBEOeRfkjsNntUUUznyP2HE9MU\nmeam6aygVEa3JXxp59yzq4bUxotGllqZ/utPKPB+CbKu9AuIodQ6MC1dVVFJgmFKxXYi07LOUkrL\n5NAK7aDf7Hj79i2b7Z6bmxtubm7aiKmpWWhGuSR8fbZHX9Y8pumUn13rpf7qo/7tx4+isCkFRrU3\nRMl0vWQy1loa8rPM/HW1MDEocnsHdevglFLcHF6z2x64v//E/fED5/OJnAvjKI4C59NEjYJUkRRO\nGchgishwxjnIQl4tcqBVNbQey0WxFOS5wjwXdNO7usaztRIzLntEBakIOueUJJSnVOmNjKfj5QSf\nJpSuvH31tZywGrRxaC9BIIftLdvNjs3ultsvXq9Ire92aD2Adnjv2B48l8uZlCKm68QcsxRKbnZG\npQWwpEoM4nVmXSaGJMXQWx7v78SJ2IiuFSQp3voNL168EH3kboudHdMUVj+0YZCkK601cQ6oCi9e\nvOD7b9/RDRuic2il1gAT1TrvECem84UUJ2oMxKHjeHpEa83u9itZxueIdxZqIoYZ76wE9l7OjT4g\nYEcukmdQERF5rXIDEsAgYVSVi0WBNQqjDGlxCTaSOatUpXOuEWMFxJjGQEwj42UmLeoIo1HG0m0E\nDEgpcR5nWd4bg3cWZy1FmZVyY7VaSc7adXROxOElJ0oE7UaK8qB7fO853j8SaqbaAiYz3MD0BHWG\nNGVU0ujWh121IgWquJU828OvNy9MG1dVJRu73gistZDl+a8DopIdXtVlHUsVkuT+dIzoYfGnjOy3\nHTevXvH2i6/ohp5Xr95grRfZoZbzT24oUEL57JoCVlfm32rY8LccP4rC9oOHes5lubpr/KpQdv1x\npVBFClEuht3uIPym45F+sExzxsSCxeMc4psmb70gQLUhMqVQEiLkbS5JmgZHq89/H8ibIZyt9jCb\nfEVMB4XaoRvCVstVeF6VaYG9lR5EdqKVdJKCm8lzMtLdzSFRisa4nt3hJa/ffInpPV3fkxJ0w16k\nYzlBMgxbuzrzClorz6KU3JxM5Hdpa8hRQm211kzTRWgi/vNRW9dGrkyZkMpq8bw8r773pFJX3WYI\ngd1my/39PaUUbvZbNptN65hll+e959JSwMZxZEnIgmsHBLLncX4xZIyczzK+TtNE12+EYJoV+5sX\nrcNO1EVqpyXdqdYqoT1FLKquholq1ZUuF9TifgsNHW9FDaQDVro2q6pCjqVlexaM1sQignvnHEXr\nhjSKHE/bDTQtsl64fjFgm7ZW1AIGp2XftjvctjxZMRowLUsXXTFG7IzQmXmuoNK67F92Z8t0sTRe\ntQjR2Cr17PrKbZ+dWdQ2utLSq2QMLeq6385Z0Fq93u0LXWcwm4ofWuFzmhBlpbL3tzJ+K904fUvR\nvSKgv4l4v7w/zye13/X40RS2xfak8YxbO//8iebPlotiy6YgLdmJ11E04fniy68Z45FPT99w8+KA\nOV34eHfPPE5YvWO76Ughc75LhDiJl1mRvYrXFpNFblVzXt7vtZXXWvaAIHeXlCtRS6eZCzhEDKxz\nImTYdnKxhMjabSrjmENCReApCWTuNdpbtIE4T6QsET+lKoq29JsN2/1LtoeX3L7+CrvZULKI38fL\njN8NbeSeiI8J76U7CSHxcPeIUopNNzC3BKbeD/TeE6rsHB8uj/S953x5Il4mSo50veN4PKJqpe82\npJR4uHvgfD5z8+IlQ78lpcRm25MnEXu71t15axlj5LDboSp4K5SKzlr+5E/+hK+//poUI10nY/GX\nX7zm0Ro+vHtHKAFnhHrhnBD2Prx/R0mZXWfpOod3ogEOc2RKia5zKNeL60atKARhn6aLFCRluYwn\nXr58iWo27pfLmct4FHmYFXK0qkUI49bS+Y6ohNhqfcd8PgPytbaGqCHNCaUMCdALncHS3DA0zhop\ncAoZC7PCqyZWH/Z0nbxeMUYsmjTObPbwhbE8Pt7z8PE9tt+gdGQ4VExveGkt0WUeHy6EEEizESYB\nCVVlz0cR1Fu7tlbRgmzWKiNyuzWLSeQz5U9pmbpaqXVwXSRV3VYABK0t85R5vCSGLbw57BluOuw2\n8LOf/wFm94b9/oaXL1+z3e7Xm6vVYnu+kL3XUJl69QFUSqGV+uxzeVb0fpfjB6wq/+0fy4hZc5FR\ns31IQO3VHUIDtD2HQNrP6Bdt1Hgu8O66DmVEQ1hKYb/fsdsNoCSuTWtBMmOUjxAyOSQpaKlQ8jKa\nyM3JW3np88KXaocUVRmRFYqiFMZ6CgprFakUke4AqsFMhdqUFsJHO51Ep5fGxHgKPDzeNVGyCJyn\nUEB7bD8Qq6RaHU8jVWl2+xuU0cSYiSWjrSg4nk6PjPOE1TKCWSUd2zzPxBC4jCceH+/ZbrdM00Ue\nXyM6g+y/np6eVj+74/FICIFXr16hteb4+IDzIme7v79f76q+s+y3Aw8PD5xOJ6bLuCoftBJr9dev\nX7PpekqR/FfnDXd3H3n54gVvvnhFzpk5iMVPrZWcApQszhfThTAJX6wkAQicNrI+T5FpuqBUZTsM\nTdImr7nwGTXzPHP/6Y7L6bwaMmtE2K4qsuhWmpqF6yZOI4uvmF+R+1Vob6WAqVasUuvMFwvsy+Ui\nyoKmQBBunxQUZTSpVNmVGSs8MStIvrGeftijjGfYHOg2W3wv57RxmqxmskotFAhSlhtWau4cxhhc\nc3peXZoq680VrlPIdey7dk8lF7QW9Y/18mEaeooWBcXCo3OdCNxfvX7NsN0wDFtq88oTfh3U1hXX\nWqVgwWev4/qYfqVz+3292OBH1LFJKyxYDiwCc4c2bWlZJFlIRs4iTqcLoW/Zsy3QtKnsbw685Wv2\nf/2Sp8sT2ipuby1hyJzOkXpuFtUWbm4taS5cHkRaVHP7XCs6t+rflpwGwApqW5YTkiadKnUdB6Yw\no5G08uXk0aqJeZVinCMGQ9UdNc6QIE2G4sWdIQ6B5HoMGu0Hem/Q/QC2Q7meWCtv/9HXnE4nilF0\n251cPJdJCpGVvAFjFF0IhHmmlMIwDGw3HSEIKhemiZgmur4jhMKnTx/oh24tcO/efcOnT594+/ot\nu/2Gy3kihQmrFZ/uH7l5ccJbTUgS9Hs4HESMbgxxDnz99df85V/+JfvdRgqYNmz6nuGN0DBe3Nzi\nvafURImBjx8/sOsHqBlveuYUKTnz+OkjKUyi3e0smoylMo4jBYXxHb1zTKlwsx8aFSQIudlJXmqu\nihgjx+ORNJ/QWnM4HJjnQC6RXKog81x3O5fTCYVpppBzu1AHctlSc2JSijhFGS1bJ+SNp+/lsQu6\nrzHeUlKk5Ll1ICInWiyjSju/5CFouu2WOFt6bXnz5U95uP+eKUb8RpZZ59MDxSRMD9UUlNJ46ygx\nyfMAaHtC5erV4IArwbsCfLbuac4ny9gZYbPzKK05xgltDLEUtBUtdLdX2EPlxastRc9EwHdbTmNh\n6zJfvv2KzbClFvDOiFyrgipS4O2az/EPf/woCttSla93DL1+vXRgtVactqtOVCsBCxY7mueHspHB\nddT6ip98/Yfo9++YpolvP33LPM8SauxlHFSlCnkxweGwoaZKCEuKdoFaGo+pNr97IceK0wdrcVuD\ndVsPLN+vJIRSAA0x0nJGpVKpGKy2pBhQuvJ4l7nZbnh5+wXB3pNzBWt48/ott6++wPqeTaOunOaR\n49/8BS9evODx9IjCsL/d8/T0xHk6U1TH7auXciF/es8XX3yBcz2fHu742Dqmm9stsJVOUynKJFrO\np6cHsUTXrKDD5XJiGAZubvfEUJrhwAZVi4zisXnU7fdcTjKu/eynf8D79+/5o5//ITVldsOmEUnl\nNn8+ndi/3EkH9fETu+3AeDqhct+kcpJHEMLM0O+IAXKcmKeC0RvGHFFVOgqtoGQpgl1zwggpEsO8\nJlU9J1dvt4N0k5OMckqpFkTSQnDazksXjbdQsuzNDl9+RQoz+TvpDKs2IhYvRWg6KJQTNv+yv0OL\nuYC3FdPQZUpmCUkRV2EF2qHb/oy+Y44JZTpst+PmtuK7gfF8R708kk6VagvKVr76yZd8+uXI8fGy\njnYiR2wdUaxtZyYvfW6vv0bI5eVzGLVFUgq3+HKZUU7RbYROY73oj0NNYCsvXmqUGdkcdrihw/d7\ndvsX+KFfjVcpkuqlMW1MlgZANd7crx5KKczCHmgPLP/6j/3W40dR2IBfaUc/L2jwjA5Sr/DO6gQA\nn3VutWZibBId7TF6wDvNZrOlkpnDGZMVqojFs6xZKynOopuL9fPfLQ9AZCi6Fd9WXDUZnWlhFs9I\nxO1zaV8rZHkrmc+FipYRNmVBnkplPMLpNNH3G8xG0w9btPdUpfH9hm7o2e0ltckow/f3H4kx8LOf\n/Xs8PR7p8sBXP/ma+/tPPD3e0w9OMhyT4XyUwrTpOh4fH3j/4Xt2hwO+72TR3bof76+L9IyMYre3\nt8QpMk2N/zbsW+J44TLNjHNAW78ifsao1QTyeDzy9s0bxnFqfLDK6SzJ5ItJ5Dj+v9S9SYwlWbrn\n9TujmV27g48RGZFZw6uqxxvZoJZgg3hSr0AgWLXEikZIvYE9vWPbWyQkJBaI7g3DDhYskNiwYtVC\nKonWe7x6VZlVOUSEj3ew+ZzD4jtm7pFDVWb1oHwmudzD4/q9du3a+c43/IeWtm0pC7tc81npdm7M\nl2VApyTTzrwoh3HEugJlZBAztyaGYVh0+gC8d+L0NH8meTMUg+dR+n9L8BOQtZ0VXbKP6MxJlieQ\nfpH3Hm02xEqmv8fAgtweBjGIVlqjbS4HtcpTQWkJBDTeiQyS3G8CvYkqUthCwK2lCDoe84S87x/z\nRmQ4O9sylIZ3HwsAOoa0ONUnKTFkOKbguZjojJyIiOVi9tvi2R0r18TPbqTIoCRE4ih/p3Qm2ruI\nMop6W1OUa6wrsEZEDRZfDYUMreZJ5/xKMQp29F/C8TsDm1Lqvwf+feBtSunP8+8ugP8Z+DHwK+Dv\npZTulXzy/zXw7wEN8PdTSv/025yISsI6mOOzVVaCVZhQZP7ejFl7bjL4NdOSxEiKlqqq2W2v+OzT\nN2jtubi4oFp5bu8+Y2oDU4SiWrF9taXd99x0R7SOhGx8nPIsQ2dOiYqgjPQNxvgEDfDeMCXpoy3T\nLZ1YlDMyzFtrjYpi5mG1JUadJ1eiMLJaJQiWqU+0h4akHTYq6qjYHw9stWF3bvHOsV6v2VzvuLm5\n4dPPP+WD69eEEPj001+zWq14+eoD3r75DGstW6S07NqGpCI/+9lP6MeBfXOibU+0fQKjlwUmjAzD\n6bgXGW3nGAYR6dztfkTfdqJmYS3el/iyojlJIPviiy948eLFMmn8gx/9iM8++4zdbsPhcc9qteLd\nu3f88MOP8Mby8PAgcI/sazln7gYldCiTdbxQwnUNAZWkXzb0E9o4GEZO/YmiqsQMpmvyRpj/1ph8\nrp4pyIYX+5YQJ/pBsHLWGWw+h3EamLIbU1X55blmqpa3lovzK1CRfmg4PEoQ1dYK0DgHVeeccJWH\nTgYRVSETTiSgKya6rsP5Fc4VeFdgvWNMDVPe/LQytP2IUoaQFEW5wjmDtYr287c8vLnjs88Co4iO\nYHOYAkQmCE2IQ14XkC3Cl8Bnk2R2Xwf67zuozwu0dwxKnNybdmCzKShXnmLVcn65wq8cly+u8NUG\n62uOh54xjby8+iBDSJDNc7GIzGY+IYL6amD7Mjj39zm+Tcb2PwD/DfBPnv3uHwL/Z0rpHyml/mH+\n938J/LvAH+avfxP4b/P3334kIXdrPUMhFFOa0MZkZM6ss/7clOR5yaowymKyaJTTkg044/jgxSVv\nPt/xcHhgaBNOb9itfkhwtwzDQHccaOM9wUGxDbSniNeG8RQYp5x4xbik5kJ0iDnfkvQeAoVSlF4v\nDjwhkEsTgOwUFET7LAE9E9aNeCVULl/Ayz/wrD+osAVsij+irEsxod3sqDdrnHUMbc8wjDweDhz3\nEihEkulXXFxc8OL6mvv7e+7efcHl5SXee/rDia7rF8mizz77grOzM0zSTMNIVQtFqj3cLLLhMUrW\nMI4jaVLU9WYp2c6urilKx+PjA+M45HJwxBpYlyvUNOGVGIsoY9iuNzhjOZ4eSWHgfFfjXWK/f8vZ\nhQB4a29oHm+4Or8gjR06TjSnE5cfvOTx8ZEhJZROWBJpGghYnNZ0hwe6YaJY1RgmjgdhQviykBaC\n0jht6PNwaRgGUoysVmf0veDIDvs7mlPPbrfDiW0Y1jliiHT9EWvtovu2OzsjJC0UKqWJxmFNTVV6\nUvTvwYCGYWCKE/X6XDa1SZGSph8hJY8tCgovwgSusLRDjyVQVmvGfsKV2S3dgivWpMLSE3Aaphbu\nh8/onaM81/SnyBQViRLNSKBnUhPOgRlAe2mBRCayylGezEZsMgyIfExIiZRGue8dtFOPSj1tgknB\nYYDtxlNdWF6+3rLbXlHaDVZtaB+O/PwX/wfXH3iu/+DfAp2HO0pUc0zMwN8EJgn1cE4fBeqSw4FW\nRJWzzvx/4Tsmdr/z4Sml/wu4+9Kv/0PgH+ef/zHwHz37/T9JcvzfwJlS6tW3PZmUUr6wWQjxa3At\nv+1vvwyaTSlRFAWXl5dcnp0vTjnr9TpPNmVCNYNL0QlrEfqKh0wLXUoYpd7fRQTAO/Po3t9dZmXd\n5bHzcyAE5OeTHqXBl2KdN/d35klkWZa4QjTv56/ZVk8ULvLUMIiHQNM0y3v/xS9+wZs3b94rC5RS\n1HXNOEpp2bYtp9OJrhOBSHHMkoDtvef164/w3rOq1ry4/oApKw6LG9bTvjiOUrQ459BaL8Deqqrw\n3mei/OwpoRbO5nq9wvts17daMQwdfd/hnRN9PMhT7Lh8zsMwCPA4m0yD4Mv6vmcc5SuMAyGIUskU\npIcpAEVxo5/f62zw0nXdYgIzX3chw+snaSrzNA2d8X3OSbm/Wolf5gwZee5MNpfF8juVM1QHeRN8\n0pl7wjk655bzqKrqvZ/n86o35+x257jCYmxEqwj0REaSiAFnHbrcl56hRs8A509r5gnXNt/v82Pm\n/pZOUJWRqoC6ctRVhYoGdMnbm0c+/uQtN3cD6DJrBT7J9v+u9fvbjpRfW3+Hp/h9e2wvU0qf55+/\nQFzhAT4Efv3scb/Jv/uc33bkK60yqx/9zOb+S723/Af5+xNwN6nAIpSaZV9Ex8vz+vVrzs93vLsT\nQUCAoRfZ7Kpa0YUJNASvRdVhAJdEAy30PgsrJgEujjLRMelJY19FRWBeeFHS/SxrFOdUH1CZo6ez\nRNJMlL+48lQrwzBFbEx4YwnIQi+qchHPDJnKE2Pk1DXESVgCp9NJAqBzPD4+EqMQwqdp4vPPP+eX\nf/XXfPjhh5RlydXLF0sj3RjDaiXc1j6KVPgwiKekVuI0Pg6Rs90lXdex3e745JNP2J1fsT88MEsN\n1XW9DBnu7u44P7/EGMP9/T1de6KuK+r1iso7ur7hdOq5uX2HtZa+bykLw93dI7vthvZ44nTYc7Hd\n4HxNiD06iVafQZRIpmnEe0fXtaLrrzQxBJrDkfXumr7vaZN8zqvVim5s8+0ivbWyLJaAqFHsdjvp\n2yWWoN3l+8QU5bLDzSX5HORiHg6VRcUwDDg7YY3LggDC0wSWIAcWnQQWZJwjZYHLMImN3Wolw5XT\n6UTpK7yXUrqu6yVblqAGV1dXbIwmXgWGwy+4+fxTxjHhdaQsQVmVZeqhKAu6YYK5CM2+BmO+Hqhp\ngYdAxJc5GGooNwXKWUYlwzO9nfjg1YaL6w277TmPd4pPfvWG/+ef/iVNO/LBD+D+bqI4a4hTwOVN\nQYdvjkqLrcaXf/98tcfvFhj/uYcHKaWk1NfNNn77oZT6B8A/AHh1sSbLlb2Xbcl4+psC3PPgNvff\n8sg6iEsRRqATl+cXhLMt/9pPf8YXX3zB52/fcHF+LYTwY8tgjuJm5EBZQzSi/jqNUFpLQKhHgsXJ\nMJBFmQpIgnlSJmvFpwRR+gk6qYzcVsuZJ5Ubt7mP1w4DrqqorGMKglkrV5qqzq7ZzqLdUxmutWa7\nXsu7j3Hp9c1CkOv1mlO2pdtutwxdz36/J3SJ8OYNP/7xjwVou39cvEyLomBserwvCFPPMI5MU8K5\nEucKznZXdO3IH/z4Dzm2R3a7HcfjgdPpRFVVhBAoipKubRjHkdPpxMXlC+5vRZ7o8uosB7UD3jsK\nbzidTrx98xlnZ2fc3rzBIppvKo2EOJBCoM9WdWHoaZKwHIx0/plCYJxGrHHCrUUTpoEwDVROVEec\nUXRNK6YzSfTZQq/QzrFdb+iseH5enp0ze9Pa7AmhtUi2z1QxlSWNwjQtGaRFqOQxxiWDnbFqM55y\nyViMON7LoanqCmMcY34+ebwMC7TSy+t67/P1lc8mpcDZ2ZkQzR8eKbeWH/zRChUTzWOLNQUhgXGS\nlXKw/PrTzxZV52wRu+i1JS09bqO0TPGdzlS+hDKKpNKCZXNlwmlDewj88i9/yT/7f7+gaRNTFCmj\n3fmWP/mzP2Zz+ZqL3Zlc028ISgI3efr3DAJe+NXPHrvIu3/L4/cdSbyZS8z8/W3+/afAD5497qP8\nu68cKaX/LqX0d1JKf+d8U71XSn67tPX5Y97Hwsw3nU7PmtFaL5nFbJ9WFAW73S4Tui3dODHFAUzE\nODAe0AJITDl9f48zquITJ49clmZKjgS1JI9JZJqUMO/is1JUKbCuwBcVzpf0fc9hf1wyA+89dV0v\nzxlDYMppfgqRsR/w1tE1Lc3xxDSMDF1Pe2oonEfnpvvl5SU//elPUUrx5s0b8eF0XnwfhpH21HA8\nHp99PirTeQzTGNntdkvpJTpl/VLKzRPDuWQKIXA4HOi6Rt7PcZ9LzVIWv4p5gqqxTlNWPlOoBK6x\niHyGYUGsy4Tx6dJPkzTEp2EU56s4iUba2IvEeJzElaxtaJqjKAHn/wtxXKTEtdaZF5kVmfshE++l\nVO/7lq5r5PViICU5z3ESxZBEoBsnAgqMZUqQtEE7LwY52oCxKOtQxuBcgbUebUWRJObMWRrqcl8+\nB6XOZes8/Jj7pLLJaTa7Mz54/RJlJpqhpdp6TKkxXuErT1mX2MLmyeT7K0ipuVjShJBNwhVLeW28\nIzwrpWVxaY6Hkft3DW/fHDgeEiTZkJOC9abAlZZVlomfrQu1/vah5utW/3ctZ3/fjO1/A/4T4B/l\n7//rs9//F0qp/wkZGjw+K1l/+2G0uIvPX0gT0WSgrOTB6ulNJ4PAQma71flTk3J2hiwojfAQDVxl\nxPzDg+jUa62JeuL88ozNbs12d2AaBWiaoiirTo8JrxV2StKiGUAHMt1ALbuRtbILxlzioDK+Kina\nGPIOIqVoSOKErpXQxvpxomk6Xp+/5N/5t/8u55dntN3A/cMt725v4BaqqgCjKcty2QWV0QuSXmu9\nsAMEtjH3tTzXL19ISfrxr9hsNnz00Ufs93seHx8Blszu8e6BEAJnZxdLo31+rt/85jdobWmaTrTO\nCKxWlbiwTxN1nalVqxXjGDg/P+dw2KM0bOs1bXvi4e6Ic46+OTE4z/G0p65WTMPIZrOh6zqMhpUv\nGHuhVGEM49ChS0sYBUIxdD11VTNF4WC2fYd+94ayqrFKMqpmn3FrccIiU99p7DOOLqBsKeDenBUB\nS6C/uX2Lijnbmq95EgGAvu8Zg7xfpcQ8pnR1vt/EVDimiDGaqhRl4TlQG+eX/liIMOQNSvxaLSoH\ngKqqcvryRNuTCSt5M9Hs93uiVoKBLA0f/uFHtKcT7alDpRJnS+rVOTFG3jze0U8wJVAZcK7yQFJr\nlb1gs5sXUrUELQFmmEYiiaGV+7x7B2N/YpzEuAUc7TRydq55/aNzfvSHL3n9wwvOVi/Z1Gth8sQo\nPhaLNfLTsWRpeibbqyU7XgJ8XvT/QgObUup/BP4CuFJK/Qb4r5CA9r8opf4z4GPg7+WH/+8I1OOv\nEbjHf/qtzmJG5+ev7zbk/UrSyhzc5svgvc/aXIZ1LbLV+8db2ZmnicI5tJEUPAEFkkEoqzDBEZXs\n4KHLwTOAmnJKH8SM11rFGEOWYQZtn4Kw4B/ljJahiHyKBAQVPoXI/d0jD/d7bOH52c9+hv/c8vj4\nSNM0C0l8hhxorURC6FnJA7Ber5cGe9M0pJR4+/YtZ2dnbLdbbm9v+au/+it2u91CYu8i1RIdAAAg\nAElEQVRODe3xhNbSDxF4gizA9XpNVVXs93uOxyObTS1ZgzZL9gZ5nB+fALBlWdL1Qnsqii1FaRk6\nJUbEABmoKgq4iXW14nTcE5G+Ut+2xClS+iLj0zIhnojNzk4xRpROqGlWqZCrrGc4Qb4TtNYYbSic\nXza8hPCOhPguUuIzts6gFtPlqJ98Z0kspftz2ILg0uLy3p8PGt47Ml80pMg4hmegdAl+s4rKEEfC\nFDBGsre+aWUgYZ4mrlVV0Y4NY5Y+r7c7rC9o+7esipqyXKEx9H2k7RtGyQvIbyM/D4jDp4DQF4mq\nJMo64/zvKHL4IUA/IMKXE8iVMihGzi82vPzgilVdUdYlm1WNlqUiXiIhoPVXAxs8G7x9A7wj5Z7N\nd6FW/c7AllL6j7/hv/7u1zw2Af/5t37153/L867Zk7vR03ueCbk5pVWR2Wv0q8EtPyR/z0NmYpat\nqcoSX0j6X628SBodWpq+IcaILwvGTno41ZlDl3A6BZSN6E68Bxg1REUa5XWmEMWmz0emuYeBbIve\naEK2MZsSzC6qKYkETNNPFLXjg9evObUt93/zSz794nOury/FG7MoRIwwlwVhGBmjNMuNMaIcGwL9\n2AqYdhzF1Fdp0hR4HA4cm4a6qnj9+jXExOPjo/SgtGFzdbX06lJKebqYp45mAhUpSsc49bTdSUoi\np6mqcmlqz8H1dGzR2lLXNeWq4O7mHbe377i4POPFyyspTQ9TzkLE70EoWI56tcEoxWF/Io2BpMH7\nksNB5L27vqE9jazKisMxn79fYUpHUXia9ojDM44jZVliC0+KgbHrGGaEdL6XrHNLkPNW7oWmadBI\nBgvkABjFA8AYmAJmFjYN2a7OGsaMx/JlNa8DhmliyKogcwBX1iJ+FGKoU/giB+gnr48QGmzpsk2h\nbFpzlh7TlCeoZAD1iCsdlx+84OH2gQnL+QsRBQ1T5OHxkWmaePdwhzIipRUSEGRiH1VEZ1B5GAT8\njIZT16NUIqSAL0UWSmuBMFkNzlmCsZx6RUeHVWBLxXpbcfnyFWdnr7GToWtaVN4wZuAwSJY2TzgX\neExer0qp97isYcbcPdOV+zbH94Z5IIFLbgoFYOY+wpfTzy8FN35HcEtPAoHP6/TD4XHpbRhjsN5y\ncXVB13Wc2o796USMYFc9ujLoSWGSEVCjkxKFANGIXBKjAHSLosArQ9sP+fWy6UUcMInlYwopLWc8\nixrGpLCuQCtHVZVZhDFrZ8VpOX+tNc4JdCWlRNMILcg5t0x95xJ1HEfcWiafx6x/drbdMQwDpRPv\nguPxyND3y902W7XFCGdnZ0uwM0ZxOBw4u7jg1Bxwzi7XsOs6VqtaMrVuoOs6hqnPm0chZWmaCGEU\nscmhoygKoV9NCZ31yhSK47FhU5W5v9UThomx6FExMU4T9bri1By4urricX+k6zvW6hyiaMutViv6\nzD5wOYABdE1LRLKdvu8z/lEvGZlZMGgCu7BaMIcq8V5GODMRQghoI6oaAtSWoDrLH7nsLSEBNGKt\nWvp38nl5ylpofEtfcZoNcJJshiEwTHI+IY4YLWXjer3GeclJ+y5g7ZqzaeKTX/2aoR2YwsShawjD\nyO58QwrilSDZvlAJgwoolYiIXDjIWjjsJ4wDW4ihdEiKVVVCBadDK1liDHl8lkhaKgVnK863HzGN\nG0zeLFJIXzs8mIPb82zty8Dc+Hw5G813iGvfD3WP33WoZ2/69zlmhYG5Cdr3knkMo1CEBEohDeVh\nkKZ0CNCPcGgODEMnWu0arJMJgjZPZYfOJjLp+QKYA2ZWhRAalJzP08cswbwsC66vXnJ9fc12u2W3\n28njcmNZJHeeSp8ZLDo37TebDdaKEOXhcFggGHPpOmO05vP47LPPlvOcpom2aWQBDYOUWhm5lFJa\nPEbn3l1KYTnHthWv0Lqul+Ax95DmCW3f95K9leV7GD157RHnigUzNn/WT9CWcYG3yPVUyzWfaVPz\nZ2ozTanrugWyMX+W83sV/bMcOJ5tdjN+bd70QpAJ4dzIB5aSfz7HhWHybLOcG/1zhjVf0/lzXO6D\nGQKh9VcWM7CwPOa/mSeic5CeP3spg2eYBoCmLFc45/CFYBenFMVEpyyl9Myl8/PXfsKt2RxgZdAw\nB5J5MLReb7m6WlOvS7x3793Jm82GzWbDer2j8NJvfU9952uGB/Er6+Hrj98HA/e9ydjmvoj8jIzm\nY8LMbIQkuxOQwYSGRbcN6QOkTDwm5jmliLbRj2IBF7WhHSewhgnDw03Dx399w6sPf8iLD3+A3Y74\nbYc63nF+HJn2A80JlPWsVCWNVT/Q06BsNtEYFWGyFK20RodmAD0tzkHKgbYD9VY8BuxBcGdjhKAS\nmzPNX/wHf8H5+Q5XGYFMjAOFb8VtPvVopdidrZfMaV6YPt/oN+/eUVYVm42wA4Yw0Y0DtvA4o3HW\ns91sluxsXdW0x4axGyTwGpd7UiqDZAe6IAj+CQhh4uzqEmstb9++5e5O8NphglNzxBiLMZbmIAKQ\nc29vu6k53j9yuJcNYyhEWnwcZKHc399TWg0WprFFIxi1Lz7/Nf/6n/0pWkWqwuLtOmPvDN6vuL07\nYosNURWUK00yItG9Kj1hLEgoga0EKaOnocEYkVU3GrrTHbo/SVZlC7pWHJbKUvTsQh9IOuFcgU6G\nOCZMVn21KgN9lFl0zLQ5MEyRbiBLUWms9XhfZjcvAVUfT8MChDW2oB8GlJaNtxlFbcSvPC5eZDiG\n3O9OlQjbxYjJTcoBw4o59HF/j3cWy8SucoTTyMTExaai95rUDhSV6KYNMYPEtSaMPVqDL0SOSDJY\nw05XuTKITN0AGnoeWVUlr/54w6vkOe5H/r9/9jlv38GqhovdBVdX11hvCarHaCsK2EEUsOMoKieQ\nA1r2EA4qr1klGodJqUXeKaZIRKYdMaSlz/ptju9HYHuW6YBMSOZ/fxvGwfNd7+syO4FJCNZrRm/f\n3Y4cDwNvb+A3n36CLj7hj/6NH7LZWT58eYVeB/p04njfcOz3OA3erUT1wgg+LaHpAigK+rHLzViy\n2ix5XC6wgmJVcHa5Y/1yy/G45+b+LcceiiryePiM9Rns1hcM8cAwdrgcpGfAZpuVZmdclNaa+/v7\npVFf16JQ671nzBZ0MzzEGilXrbW8fPmS5nBcMrmmaeialvV6jbYyCX3x4gVJK25vbxftNKUUj4+P\nbDYbDoeDKF1st6xqAQaHYUDn0liclXpC36FjEopaiNx8/obz83P0pmaz2XA/StMmpUTXDmgSm7XA\nb8qy5Lg/cHM65AlkypLjkq1utjXGKnEzJ2KtztfqgHNSXho7q8VE4rO6Zhz7pQyKMRKmzBfN0JWu\nG6jrGms1KqgM8QgCeAUB7Si1BDbrLEpJGdx3cp1XK8upOxAjVJVkb864p4w2SHZstBEdOOPlXDPk\nQynN0PULA2S/fwCVJOtX0p8NQ1YGdoYYNAlDWZes+1W2HdRoXdCNJ8papIpMTHgbSFGh8jDMV6As\nKBVQcSQM8j7HAGPGua1cwBYQdU9ZFLxYbZimSBfeyDo0Db6MrNaKpDu0rklTeA97+XWHEj0UUkyE\nZXAoyj3Pkbspxe+UuX0/Ats3HE/Tw/d//spj8rGAe7/0mLnMMBkL5L3n4vIlITyQ4i19hNDCz3/+\nCZdXHqc+oOhF4NE62eXGCCaMkGTniVk9JEaHCkooWvPrJbFsGYcBbQFDzow85abAV1t0EajaPVXt\nSWni7dvP6cY9Vy+vsU6hlQSsEAKn02lp0s9lh9aa6+vrRV9sLi9fvXpFVCzGK2hF4UvOdtJXu7u7\nw2kRPyyKQmAaw0jTNGzPdksZVKwqrq6uOGRs21zazecE0HbS1E+TSDw55zBao5WoTFgvGUbfdoRx\nIIVIe2ooC0eYJvquo6yk3LPW4q2USJvNJpdehuO+y+WdlKpzL2tmDswsCmttdn+fSe05YM5luDM5\nkwxLj0ymx1M28E2LIgmoTNuaGOKwTDjHGCirShgH2c5PVHal9Cx8oOv6pTwVapUV2fQpMmUKn1KK\nKYy5lJ6WaWzK5tAxPtG5QGBPs6y6VpFEYBx7kpLpZVUVaIQ5EaaBoapyGS56bFFNVCuD0RobJwgy\nnLOlIyVxmcKIV0cKoF2GmoQgLl4WytrhVpaYRpHVd4aLF2f8uB94PBwxOTDCJA5Wk6zDZbD0LVpJ\nz5OUb4wH3/L4fgQ29bR7gpSVz7Ovfx6eGeSeyDN05263Y3u+5dR2+BJCDwOw38PhONA3n/Nqo9hk\ntP84CIZNOdhu1qg00Y4dMUjZ+/BwoMqfR4h5d1FaUNtayU0dEm3fUZuKzXpFubXs+opiVaJdwnmF\nNonbuzfSfE5PvShpRIsL0fOFPN8IZVlSZTL8ZrPBlYVozhmzyBH95jfCdDs7O2N//0BKiZsb8TCt\nVyu22y1jnuL98pe/xBaen/zkJ1ldt1umcykllBE4S9M0FDnL2azXhGkSsrPSWG0gRKwSxHoYe15c\nXbDf79mtNxAiP/zwQx6bI23bcrbdcHfzltE6NpsNbXvi/Pwc4pSzTb0E9Wma6Kdx4XVqY5bAuzs7\nQ5vINHUZzjNvCDbTxYJgAqPOATohKASVDWgsSknQjjHiq3K5F+fpqchVG5H9dp6+f/JH8F7ob23T\no3VAqTEHOJV9FgTuXxQFq9UK8ZAt3uvxDf1AO00UvsQ5gzEi8U4Sh6xpirT9ACZzMTNwmBz0y8rT\n9Y4pSj+uH1qKVYFzMHY9XRNQDlyRWQXeEGduaUioINLfpV1xdrnBlY6QRqYwcDzt8Q5WK8PFxTnr\n3Za2lwFFUYtCMvEJ8KyzpNQ3Baz52oY5G04pK1HLMc9S/1UBdP+lHs8j93cNanJBf/tj6rrm8mrN\nMHSs6s+IjzLfsZRMceLt2wFzgn6l2K6cYI6mhMVgtHglyDmK1M/QgiuAjOJOWqGNo207rJGsz3vP\ner3GeI8rCgwO5TVVVbA9W1OsPEpFxhhQ1kCM7wWUeQBSlqXg8dZrhm5cyNJd39M0wh6o1oLVs1aE\nOecJXtu23NzcMGXLuuvra1ISwUdjDEUprAHvPWjNmzdv+ODVK4wR+lNKie12y36/l+u8bERZhkcJ\n93CGmjzc39N1DZeXl6QgNLW+7SAmpjDKVLM55sGG53A4samFSH44HFivajF8aY7PPtu0sBHmSXDM\nuD1pikMII6gnQYRx7LFW54xoYhgUSbn8/2SyvCIGAVpPU1wyQmWFlgcKW8wDjqzVllVF56b+NErW\nqpVGqSdNuGkaZKMJT8q8Omvwlc6jk2x+MqCSaeo80RaQKgyDkPdVvr+kVJMb3RiDLgu8dUJHytng\narWSAUTaoZNl7AKP9oj1MtlXCpLW+NIRTP4sJ0OKFqU92/MLrl9eURSO/emB/f6BqU8U3qCNxZcV\nDk9QJ5Q1aGXQyhPT+JVA9k1tpZmkv4Bwczn6RJD8/Y7vR2BLT5Zby68yIO+5CsGc2b33p2n2gdTL\nTT+LAyotZPOUcTFjBrdaa3nxqiLFkssXhv1xYt8kugkMa3RM7A8PDIfE0UVhOaRAV0es7iicgmRk\nphkizmYiQpgxhpp+GtHOEGKAAN0wst7seAgTU9NTVQXGlmjjSThSsJSbEpulpNvmYTnXoiiWxTxP\nF+/u7nBGCPrSg1KLosb9/T2n04nNZsMUA33fintXEDcpn2W6Hx7v8gRPFvfxGNjtdkI7s8I9vb29\nzdOuNW3bst/vBdIQRrZrGVZopegakQNXSfS3ZsepOcDWtch1//CHP+Rw3LNer3nz5g1hiqxraYJv\nNhtUkqk1MYrmWjZ3Viqx3z8sVLghTFRVwTj24jcww3CYclALyyTYe8s0ZQUXJTpnKLHYCyGSpJud\nm9wTJC19OK2J8ans1U7ki7pRoCrGekYCRVGhlENYo3qZuM4KIiGOtN0JpcplYwKWDHKeps4lbyQ9\nKdBEWezlqmI2OwrBYZwlpp4wTnTNkb4bmHQQAxxfUhYju/Mz+rajt444BbwLnF8K5W7KODtjDNob\nlHb0/QDWcnX1mnp9hitWoCLBWDAlxtdszWuUdVi3wZU1/ZjQtmB3ds2qPkdTESdHzCKlMRvrJJ5l\nXOopwCeV4UzIMIEEGJNhUAI5mrO1f6EA3X+Vx/OBwYyPei4P/l0iuDFGbuIkeCCd+zczavsHH7ym\nsiWf/uwd43TLp1907G86EpoJacQmknxwQoRCnQJ7P7CpLaVXxKgY+xFrxEVn0ZNSkJImxgnjFf2U\nOLUtGM2qrqUZnSZiiPTjgB4MSSemQ+7fxScy9dz7mcvAu7s7lFK8ePECbwuOR8l4qiybo5TKu6Ba\npqdlWTJmXF3XdRz6nqqqhPg+jpS+oG1bun7i/v6en/70pwzTxMXFBR9/8gnjOHJxcYG1ls1mw6k5\nioZatWLoGupqRdf3eKspfUHXNJRlyXq7YRx72l76d59++hs2G3EsqlYrbu7eUa3Pubm54eJ8x8XF\nBc3xQNceWdc14yAEdesEpNzk51VKoZN+goLEJ7u8opDFswCOp5BJ5DEb6WQf2BwwZ2XZObjJNVcL\nxGSc+mxC8766r1byGXkv9CWtxbVeVDIcZblCFmtYQLUol4cGT/ARrQ273U6mpsdG6FQIH9XaEpLC\nFQKE7scxMzYMJIslYrSlaVqUdmgrysreR9JGcdaPNK7B6oLT4V6u+9qhbEANkeYo4OApjNioKArP\nyw9/wMX1R4QITTfy8CB4z7pybLY1zRGKqqTebEhW8/hwx/HY8PoHH6GNJQQx8yYNX7u+5fvT75ae\neM5A07MydBbGSM8+z297fD8Cm3qqtQUE+ZSVvYfz+ZZV6TdNRufnNUZTFVvWqyD9ruoB75dQhsKh\nmF2lwBkxnS2slCoxBmLUpEkRJgCD0hMqylCelIgxi2fOyO6Q5cdjn88HjBWp6LL0OG+B2WshYM37\nkjd3d3fSP8kBbr/fc3Vxvei2jdNE22bqjbPLNaiqSoJL2y6Yqv3DA5eXl0tjvbi65vLykmEU2SFr\n7YIxmhvtTdMsWmAvXrxAKbWUgiEEiBNdF/HqCWi6qj3jKFzdeXKbUuL6xSUPj3dL73AuZavNaslQ\njVGMPIkYHI6PhCjTVgBlDEol6roCrRb82jwciBnQLHi4J12wmVs8/6xmTXmlFkoYKKFq6Wcaf0ay\npRifNpyU8XbJSjCcPy+Rg9rSNEdinIOURau4kMJnee5ZonzmHVttMNbQtbn5n6lrISUcgIo471FG\nE3rxBN2sd4yuzRi9wDiIBWBRVFnV+QREUAGtI74ApRVlxqslo7AK6rpis6kRMyWYQo91Gq0Tw9ii\nVMJ7MeRWxjBNA2MccaWhWvnFi/ab1unXBTa52k/32kL3+hI2/7tiWb8fge1rLsTXwz2+3RubQZeo\nmLExM7JfFkkIgVJfcLld8dEHP+Q3nz5yPLV8fhvkg0ojlxvHptRY31MUQoKe+k4ClUq0bSCNECaL\nmkqSOz1NbpNGKSHnDUEyuX6E/eORalOIYsdu/cS7VNLAVkpIx13X0B0lo5gBvmdnZ8uAJaW0TO2M\nMXz66adMuaSZe3zAAkkYx36hqG23W64uLhaRyRk2st1uef36NbvdbqEBzVZ7Mxh2HEdubm5Yb2rO\nz8959+YLfCaTr6uKMEowqUov5xgmMJpqXfOYZcbbtiWqyOPjIy9evOB0OmVxyyhUqjw4kizVE8YV\nh8MhZzLSL/Te5wloyAKharkWKvc5h0ECoPxeFlxRFDn4Sc9MqSSk9QhJSc90vsdmMG3gKVMwxhCi\nTNfFJyKDpgOZdiSy7YnIfr9nCl1+L0LVK4vtIio5D3dEvy1grfRPU1SEIEolKSmmkBjGiC9FGaUb\nWhhHhnEgDomYJlJIhEnRNjK1V1rwepv1Fu8KNC1arRgnTVcNnJoePUqgDJNwQrf1mt35hmplSTrg\nSke1O1uA5X23h5gwWoRP0ZqJyIfra1arNa9+8IJ1VeGsYmi7hdf6/Hg+5QXEm1eZHLBEIEJ+zsEx\nJcGa5DL0b13GpgCXEmFWl8UQ81TNaS2k5CRjaJUzgpiBhjBPUednUsv0aJaJU0iW5YwogsQoU7Wq\nqnl19SE/OLsl7SP35h3HAVY7+MEfRurtCnOsGHtpht41Yo/mnaftBpzWJDVRbBua01PjHAxhigLq\njJFUQLGGVh8xoYWpJO07muMDrihY1WUOQiHDGiJFVS9KrIfDgTG0S3+pKETw8DeffZz7cJ7Lq3Oc\nsUsZf3g8LoMAe7FdYAan45Gb2xN933N99ZLVasWmrrl7uJeyWAlsYndxzvn5Bbuzs1zykQNc4v6h\nwRjDq9d/wP7hns22ojkd0RjCFHBZWid2A23Gz1k01hpcbelOPbvdBd5XdGPP9vyMMPQYrZgmBb3G\n+xX1pqYbetwUaJuRoigZQkdz6qgKCXTEiEqKYtY5GyZCSnSHvQhD9j2bTc00ThinmDLl6hgVQRi7\nGRQaQWuMdiLhQyDFgPJrkjGMygi7IWPIhtBngO8KbwS/14+BrpMhSkqKen2WAbCCv5uGIHpzSrBx\n3gvw1heelCJt12T1Ethsz+hDxBnRSENnhsVqJR4CxmNWA0PXiz+qNRRVydidENPkSFXBqvbEeI62\nAncZo2JlK47HPX5M9PTEFgZz5DA01MmzqV5IaWsUtnJ0/YnJ9NhSC2SprLPopgx91vUGh4Ng6NOA\n8QWEQa6VFbPpKSV0BtQvpi5K0ecMWpEwiJLH7GSlU0SFrH0X7KLS/G2O70Vg+7pDxbS4Ps1NRfUt\nM7avPJdSOd69T3dSad6ZFdZqikI02K5eSQknmV8gxOmZGupMdQLjDC7EpyGHRgJZDBJMU8jIcvCF\nEgeoKTIibkhFYZb+jljITEyTwBCmxazZvKfc+lyfjFi+J1e9qFMYs8gIAUu2NZdmz+lQt7e3rHKZ\neDgcuLy4Fq5l3/M3f/M3/Nmf/3l+XnnfRVHQdE80q5l+BLlsjDHb3fWImQ25ua44NicpfYsKox19\nN2Iyf7JpGtb1CpffbwwDx+ORJtO9nJEG86z4O2eU4ziidFxK4plvzJe+P6c9CWVrhgE99d0UNkNA\nREZoBkJb4yBlqpVx2W0q05ISTFE2Pu89QhyOqABWqwwJyabBs0ip1ouu2kwL09ou+nZTyjQ4FFZJ\nZjhjIYuikNecorByYiJVoAsRR2gJtMeeMI2QwFhRaEnEnMk2TM2Qs8u8oaYOZ0BrQ8i9P2PI70de\nd7veYpwhjcVSRSgl8JbNZkNVyWf6ZSnwNK/hlObJ2peOr5Zr8rdPUvApJaYwMIWv9u2+6fieBLYk\n7tIzqV1FUpKpVUpSoyWlf8+wlutzrRZgqbUap4VUfHV1wctXLzk2J/7oj0fKesXZ9Rl3+3c8HB4I\no+CGDAq3gkIXjKPggKyXRXg4NKgKCuuIgxJHdgJaCQykqGFVWSqv6HOGsV5vOdtdiKS2ghgn+eB0\nROtE33SkKWCrirqseHl1/Z5KLgjxeA52+4dH7qbbXDroJTB3Xce+32ckvaVtW4FSrNds6hqjFMej\n0HnOzs4W+Mipa9FaylzBXIlib1VVoOV5Hu5uWOdp5ziOQhqPkbIUpLwtCjTiNjX/7WAEohImcWgq\nVxVGa5yVyWXM00tnTeboBpwzTO24lCNaa7pOJpNKvz8sCDmYO1uIoutuR9ueFo6lTI97jC2AhDUK\nbcV/IIQkyi1IHxYF2rhlw5ixhVprjBXoh9Ya1CSLVvOMBA9tPy1tgxgnukYgHDMI2ZhpIb+DBLum\naXBlLbxcI3Ad44onjFsGAJ9OLfVKL6wJrQ3KRqwvCDEyhQnnHb4oUXqkmEqMtYQ0oYzFugKURXUN\n46gY25apG/mifUvfJFb1hqI8Ua7WoBWr1UaGMP4peHnv2e12y1ReOMYzWOPpiCoLiemnPvey0cyP\nVTA3HmcRgogkBzFFWSPfIQB8LwJbUoh8tgLyxdFGLSPfpEwWnvj9gLopCddvDmwi9BdwWqGqgrPz\nNWXleHNzx6o7UJ8VoKIssmyIHBVoD1MccKvZVEXjjCf5RNu1OB0xdcE0atJRGru+AlOCsxMhnHAZ\nm1U4T9v29L0sdNmRjQAkk3kPxtK27UKKnvtRAF0vKq9xCgskJIwzoTuwqWvWqxLtAoeTOJo7Y1jV\n65yBiIx40zQLVWocRHZahhKW6xcv8q6pFlL7GJJY0F1cEAdZaOtVzdi13N7fcn625fLykth1Sya4\nPx4ySt/z+Zsv0Frz4Ycf0o0dKGkRzKTpsiw4HR+ySq4seufNkp1OYUAbzTB2rLNEetM0GO1Q9ilT\nGIYBPLIRPYPDaK2xSEYWlEHjQEW8KTAldN1AiBJoxn7KyhwW73Xmgio0JkvZa1z5DF9nEy4bKM/V\nQV3X0uPcSe/wudHJnH3P1KmUEmEUaSas+L0676nXGyndWsEgWmUJasCkwICSVaMM9WZNipccj3tO\n7YEJxWa9woUJEyPn1oJ2VOOWRInzHc531DqAigxDz2l/4LQ/YAvPBx/8EK09sdMURSJ4yfaqyrLZ\n7AREneaWkEiJxRgFxMz7VCqVq69l6vksM9PE5T8iIgEPAtGKMTLGkTH+LSxFZxZevi3fS2GVminA\n39UPWg4RD5yblHKomNBOIBnr9YrN2QZtZMcdx5HCCaD2oT2htWRsWinCEAmM2GyqoZSUpKXWjEPA\n6oAzikJ0DHFegltRarzXKO8XKpPRBdqapRyZpuymTsi9tGIpWWamwfzYEILAIXLAS0kmar7MUt0p\nLRJGNw83Swmb0uzPKT2zWVByv99zdXXFoERyyHiHMbDf75e/Exxcyf5wj1WaqhCUvTVayvVc5u3v\nHzg7O1vcr7bb7XIu8DThstbicOgE3licV5mQLgHbORHUDGHCKc3pdFyI/rOh8pyFLVJLQZSLQUpH\na56oWDGfozFGJpEgoqFeoZBGfgwTqFmBw2K0XT6DJ7VmTUjSD9JaM4TZtzMtFjSO00UAACAASURB\nVJDvqYEkjbaKYegXVQ1RSlHL5xzCkwIJ2cPUFyUkyUSnrI8XgqgxxyjNi5iyTllKck8rhXUe6x19\nb9HOMoyj3KjKYKynKNc4HwlRU3biT2F6AUGnlMTlK8n5d22LYqIoHCo5otLUdblwrp+ubczDF0EA\npKQWCMdXsKfzxD3lgPaVIyc58WkqbZV4C3/b43sS2DRRO1SSiKyWiD2n6RGtZqefeVr6JMHy/Hh+\nEeeR/Cxjs9A3QkArxdhPWKu5uL7iR13LRz/8a97e3BBTEDFK79EI11GpRBwnoqwTKudkkDFB4S0m\nOMKxZww9RilWG0XTJFwFu7MS7TSrTcmoFSYrwCqkZ3P/+LAg1H0luvarwmK0ZsyQCpuluh8eH1FK\nPaPj5GlZ0xLCyPn5OSqFJQsb+4HCKDAZaGo0cQpcXl/hrJTVScH11Uvu7m94HLM8kVb8yZ/8KfvD\nAa01u925BDxjeHF5RVEU/PqTX3F1fs7tzQ1ndU0bJ87Pz/nlr37BT37yE1QY6foWoxIffvSKTz/9\nFGMUF2c7PvvsM/q2oaxkSjz0DQqFtYbHh0ehPanINBiGsSMmzfG4Z71eURQ+6771PDw8CI8yqqXU\nnntYc1ZUFivGqacsV3nhToL6LyvJpJABjPEFqQXrDCZrq5VV/SQdVK9FiywFnM/9TRRTEKxbczrh\nbbHINnmf8WfTsARW59xSRk9Z+Vd09+ziGbE/NJgYOXY92hp2ZxdL+8FmxkWcErYqMErjXUlhsoBl\n3zKMDcp5+jByvGs426xliITBa81qfcY4BlZ1i9g27jm9+Zy+b+n7I+vNGUoLpIYkhjZ9f6IqNWe7\nC16//mjh85L5r3JIf1J8JJ7AuIksgz+LWzxnGaivMoxkbc8wG9lk4mkkdhPf9vh+BDalUNqTokRw\nTUYZR4FWpPTkVvW7jt9FpF0eF2VnN85T15qrF9e8/uij7Niill26cJ4wDsJVLGXhTMNEHzqcdhjr\nGfqY4SQIXEhJf6DeKVbrQsw0dCKEEW1XMoAIE90woFT3TPCyoCx8LjmFGzrDDuZMcsZ+zSR3Ywyl\nL9iuN2gtCqcxCgRjVRWoVYk9yvUcw0RKirYfuLu5pV5vca6gqDJkY71mFk3cXZwvvTdRl9gv3Myu\n69jv9xRFwe3NDUUhAN9xGrFZH6zve2ycNd56lNV0XUtKkXqzpqwKbm7fsdnUWfcsECe1ZFLj1JNS\nXFRj0zQubk1AHhwM+fZR6HwNZzMZ+XpSBZ5LpBjFy6KwEnRiUmAL6eHG+KS1n5R8kYgojBPsWByF\nd6qdJSHA7DEkbJC+nrEWrRTlak3XNABcXFxkMYPDovEm2Vda8HezZ2xKSQymC09Qks/MOLZxHLFK\n7geyrqDWmjgloo6kKL3Jer3FZ2+EcRzpTo/ElPXsrEwzpxjQ1qCto6gG+sIzpYiylqiUpFMBYXEg\nPdvtZs2rV69Yr9e5fI5P6ddyZGqWUovDwW9dj3Gp0d77tUJ67LPyj1YWo93vXNfz8b0IbEpZUCvC\nJDeyViPOasLypsk3nHgjvgfazcdvC2gLvmx5vYw9SooxTRgn/aI//tM/od6s+fTTT/FGtLScVhiV\n0ESUDjgXKAvPOAZ0CqQ4MYUObz2WkSj+I7lE1ax3G6qtI6pItIZVpfHe4H0ujbV5UuywBpOVg7u2\nWShBzzE8M7UkpTwRMzCqkdPpQBjle0pBFHHJEjhpXKaL2pYcjidevPhAbpat4+LskpgSTXtktz3n\n3bt3fPzxx2w2W168fJnLUctqteLnP/85P/7RD/IIPiu+Dj3rVSnZj05cXVxKlmukb7Pf70FNnF9e\n0DQN+8dbfvzjj/j444/ZP8qw4PLynGPbLRZ9xkJROAKSlcZ2Yrtb8/B4R+ErUnpS4hjHEZNViFWS\nsnSMY96c9DIVDiEsnguPj3u6ruP86iX1+TVow4RC+4LIRNIOpa30ubTCFAVBaYq6xhazUKZQqErj\ncd5TKp2n+YG+7VjXW5qm4d27W7y3WCuyWZJtdtze3iyN97nyaNsW7yqSAltWpBi5v7/HOXnNslxh\nM2jXVTUqiuRTCCNJaY77RxQBRaQPkSGMdP1IQktWlyLVakXXdaDk/ppiTbMuUGpC9SuimYVTFbvz\nczHLfvEBu90Z9W7L7PEgUmD669edUos5kwyen0mRPV+LeWFqIKYEaNG6M+JSH4J4WyQZ037rmPK9\nCGzaWOr6mjZBmHpUSMQAWmfQpFKEFNHpeen5pemKev7zV/mkpPdZDIUpiUrEHrU2jDrx6tWHeF9y\ne3sPWArrYL3CWUFht90j63VF37aU3hIm6IYO5y3TKTL2orwbDGgLRWXQ3jIhU91hHAmPdxjjcMUJ\nZyu8L0lJSm49aWIGhK6KkqouFxT/GMf3+kpWGy4uLkTpom+xWuPKMmO2+nw9AmPfc3i4xTth419e\nv8B6kd5puok3n3/B/f0jl5eXWC/mHLMk0rt3N6AEOLrdCp7t6uqKv/zLv+T6+pq6LCm8JU6K4/7A\nNA00xyPbdU2MiRCF2bCuPfvDLV1/YHt+xv3DDf1w5NWrVzzcHBjGifZ4IsQBnSLXl+fc78Ux6/Hx\nUVgInQCWp0m4sVVZ07Y9McqQwBpRgJ2GnvV6jUI2iTkjmjNwneTnvtujjGa1WWO9F7MT70FpNAbr\nKpJS+FIAqSmlnN1IX+l0knK9LH0WG9UEwCiF1ZZV5TgdHhcyumijwe3tbS5TvXiDZnjOHNy22y3T\nKP4Ds/T4qqow1uXeYGIMI85pmmO7bHQ6gTWWkMTgMcZJJqrWMwYxvFFmoi4KjDeY6JhSBKNwpcVu\nPCoNxMaTosaYih//6Cd88OoFdV1RVg6lEmM3Ln3Cua2j5gzv2aGe9cOSVsvgAFgkjJRSWPXMHYus\ncRdmWJbQ4LRKdCsN5d+ywCZdNWlQxwhxHJcbQQLZE+D2mzKzb1uCzo8JIaGsIoXIMCRCFDDr9mxH\nvdow9D0h33TGKpR2pOBRKVDXFUOfoSNOM/QTVhcZ4ybVrDFihDyNgeRlMTljUaGVktHqjAfS2f8g\nCqJdW9Ggn2ZqUFzKr5gxYj4PIB4fH3MfaaL00jxvjgf6oUUpKUtnWWlrbS5HhFjfD0NG4lusFzjB\n3d0d/qVkE2MUefHZbKWqRMjy8fGR9XotUA3nOB47vH3SVJsHHCkluqFZyO1CdUp0XcN2u+ZwOEhm\nZswiEjkvmHHsxY3KFpkdIPLrMSZWq9UCXBZcmV0azOM4otUzzTpliQxM09PQaWErPLsXphiYpoRV\nCrTFF7IzhSQ0OJ3bE8bYrHXnsYW8R1d4Qsw4uCQKHcSJOI3ZFCbRnA7ZD6HncDgsmDfn3DL8mdkW\nKSWh6qlESD3JaJSxTGGeHsrGY1R4z/Rkxoltt1tSGBjGJvNTE7HbLpP1+XW1Bp/vmWFI+NLjeitk\nezz1asf1y9fUmxpfaDBiqzJf2+e9sRkn+tvW25dZRF/urc2UtFlcMiURJ9D6uS3g3zJKVVSKtnJM\nsSR0E+MUgEihNSkINca7ghTF7GMmJEtz8clZez50lBs3KUhTyk1QtZhyhABa92g0Jge3Ir+GTYqf\n/uQn/M0vfym7aZ42hTiixsDh/gGlhHxsosEnRZmBtq2Cco3c7DpQ1SXbqxXt2ICe0FpR1+doDePY\nEcaGfpIpEhN02lOvtljrmUjESRrG2sgkarbDAzJoNVEUjrZ55Hi6Zxo67u5ucNZSFhuGID4Mh2Gk\nLERdt2kV15sdVWWIKIZpZL3eEmNkXe/o2o6xD8QJrl5dAdB1Hce7/5+6N4m1LUvzu36r2e3pbv+a\niHgRkZERmZWVhaujJISFCsHQEqIZwISBEQYZxIQRTIxkeUYzQSDZAiEkGjFEliUk24BlVBhRlkuZ\nlVmRERnNa++7/el3sxoG39r7vojMqoqyCylrS1fvvnO7c/bZ+1vf+v7dHar3HE5mHJaG6+trbi9e\nMKlLojHs1msinsPFAc61EiZyc8lqfcs58OTdx/h+T24nTOZHtNvIF59+wumDE5RRbHZL8lxItrv9\nBggsFjPwcHd9g7Yluc1AR4LKuFmuZBa4WLC6k3xUDFRZTrffYJUEy+W5ZbnfjoWzS+hs8BlFPqMo\np9iyBgw9FqIlL2aAIQOyLMckikddTaWLy3OMmuKCJ7c5rkiuMQrubq9xAWb1lM3tLdPpAToYoU9Y\nzdnBydhl5WiUtkwSgblpGmLb4rWlKGva3uPbDm0iITnWYC3aFuTTKbrbQTLFXK2XhDyXBVJpfB/J\ntGRlnM3f4tKd03UN/b6hS3NQqyWpCiDEI/K8pqyWnJ4ec3i04OCkwrmGXePQKmKMolT1uAOCFOmX\nqBlvNha516nohdSNyrySAQBMIyUXknZXySwTIg5PVJqYK4yyaeb9CGu/ebn6Jrmi/y3wF4CLGOP3\n02P/CfBvA5fp2/7jGOPfSl/7j4B/Cxk9/gcxxv/tj/sbWiuKvML0FR6PclOsFhZ7CIK0BCwhpakL\nRg+gx5P6JikwM+Yrvk5/yOuSnxrF0WpEno6Pj1mt15LetJPCKhfjvXXKejUUHdi1UClFVkLnAN1R\nLySE2FqLjRabCyDgXUvX+cS4d4mSUGCLnDqfoBN7OxDHAA8g0QPiSHUIIVAYy3K54/rqFfUkG9nw\nwcNms8GqiizLeeutt9IcKgOjWa3uUDYjzwqU0VxeXlLWlfikJZpC27b89Kc/5fj4mPl8Ttd1XF1d\npa3Shul8TpYZnj59ymxac3J4yHa7ZbPZIBZDK0LvyYuKssx5/vwlFxfnHB4ecnh8SpYViG2QuMhK\nHsOaLDccHBzw2WefpvPu6TopAqvdjrcePZbXboXNv9uI0Dw4KVzZdMo+pbwroNm3YIS3qLQarYeE\naCyW5RMlGk+dT2W43jOmrscEJAUFXdKl6mDIihwTxGOurKoRvR9yXaOXoOHb5R3bzYqqKKnrbHTp\nNcawS2HUry8uRvrLzc0NqqglPGV+IM8Bxq5OrNEl41UWtvtrpOs68iIbg17EuURSWQbjhNX2jidP\n3hae4mSG1Zo8j9SVMAW0VpydnDBNyWaZsdL6pzvJu5+lXH0jsE6lrebYtYkud7QlSzrd4fvQw/Y8\ngXhl/adb2ID/Dvgvgf/+a4//FzHG//TNB5RS3wP+deCXgcfA31ZKfRT/2BQGkZ5oawk+QxsLCnzs\nZACJONNC0sYyyKTekMrE+45NVob77/8Kfy3+4TBzZq1kK3JProwxjjZAIAPOkITtSoHONJWOZFjp\nMPctpNnL4MQxfISQAn7fkJsM7h0xRvoQ0b6XFrwwYxTboAoYXGJdcvLYujcpLAHXNaxWgmRaVUKR\nQ2L453mOyUTitN/twbTECWTkNN2ealITdbI1V/J+OOe4uLoErZhOp/TeSTJ48ILIWbn515sNJyfH\n5FVJcB3Nbs96veV4WrJai5XPvk0Fhigyrromz0v2+52QkBsxESiKmt1uk4isLWVZsl6vubu5TefT\nE3qPdym4OCvJjMVFNxblIcV+PPdBYXQmKGtayGxeiNuKc7ggXbnVGoUYMA40haAYrXSiApu2YsPj\nA9dKOrqaTkuBUUZxt94Qo+f46JCyLOk2a+ybigVIUjk75nGcnFhcCo6RMUhOH4JYrmuN0jKeCErj\n+/24GI/Xp4/jzw6FoO+WZJkhLzLam5b9viUqQ60MWhuM8YDHGM0sRSgaY/C9KCiUjqgRvHqDcPsN\nChowNhnDz4SRAqLHuVtI3yfnXKNU8lEcIhCV/src7o87vklg8t9TSr33DX/fvwT8zzHGFvhcKfUp\n8FvA7/xRP6S0pqymtDiUMSLN8B5cj8qkfe37QGa78QQYLf3YGLz6Rm/Wu3sS6IDCfP0t8ONMLq1q\npGGmMZweiaXPlVE8X15JcG2ay+R5TsRTz1OkXwxoawhdQGtDzCNKW/JJJUhoL9mWJllbt7sVoGm9\nZDmWZYXWVmZdJifLCkCjTBjnIm9qQAdbnMViwX65pKoLdgbWm2uUUhweHpPZXLZASpCtalqxXq/Z\n3d6irWF+cIRPtT+qyOxgQVEX9M4R+gZjNDbLqLIarTXbdidW6CEQt5HZtAIdaXcb3vv2h7TNjs1W\nCqrrPUVVcvrgDO33qGbHvu8pyzqZLSradofzbYoVlK5jvxWjSs0MbTXWKG6ur3nw4Iy22TMthb92\n8fIFvpfIP7FScugorsgH8wM2zZ6syNnuBQWeTqfoRG5t25YsKnG1iAGblxRlLU6weY0uSlyIZMqQ\n5aJFDRhMCEQt1uC2yIUQm3iR2hqilmvHa+iCx4XA7fUVJ48fktuMIhO6TjUjvf42gSKiJDk8PSUE\neb9Pjo6IJme326G0TW4tenQvsVkxzlnbTo8ZFZPJDGOE+Bs8I63FGIPJNNWk5sRqXl9fsFxvCWhm\nc8a/MSkVuq6pq/tw7uDTIheiNA4qyOfD3CzdM4z34M8eUUn+x9AcxDhkISQOYEKpIxZRWGt0XqAS\nKq2tjAFCOR/ne9/k+CeZsf37Sql/E/h/gf8wxngLvAX83298z/P02M8cSqm/BPwlgLcfnRG1ES6b\ncaBLCYewXbJQVqBb0ZMCxIBXkgblkxpBE0ZgRg1WKDq1VV//2/G+UxuKH9wPQoui4Oz4hEwbmt0a\n7zr2GxGmYzRlUclKZjRRBTrv0EEcIepphckKJpNKVAV4ssIkX30nesgQMCbDJZJxZu9zHgcffuiJ\nePLCJoF3jzbgvKPrpfNQvqfrRIvpXKAoMoIRcbLrA9bKNn82mzGdzWjbnvVuy9XNNUVRgZKiefrw\nYfrbYr0D0gGC5+hoIRFvKdTFGCsSM61QSRCeF4k71rW44On3Irh32y3HR6d0fcNyeYM2WTI28LRt\nJ883BBHAz4SCEKIjMwVVVXF3d0dI2+Nimkt35AN939J1GaF3lHNL17nREkkl5v9gDzQAGs55lNLk\neZEkOlqQxiwX0ApJHjPG0oV7/7agEH5XkO69T9tmY/OxixoWn6Io2Hct3b7BFjmLg0O0SjkVTmyz\nmr1IqoqqZLFYJLTVoKImCzmd64nBEEVdiUtgzHBND2CSqEZsMshMnVBIKgB/74kHoIKAGoLi1vIa\nvDjkBC8z7rqqkuGCgSDb0pioGtLFRuC+sHylcXhj1/PVG02wzuEQ52LZdsaoJYdEedLKAMoQ0Kio\nidGgo6D0IFb75k95K/rzjv8a+KvIHfhXgf8M+It/kl8QY/zrwF8H+NXvfzeafCJvZlGibEHwPSZp\nzvABazsxNgmB6HtU8NKjeY0KHh/j2L0Zq/FBVpc3g23T30WpYWsiqxKpxdUxEEOkD45JXTKdPObo\neMGLZw9Yrm65fn3O1dUF+/2WruuxuaGPslVUpQEXKWczymJKVUmI8Ga/RCeio3MdiiCGib1HK1ED\n1FWGQhOUZ5eyBSZTMXXsuk5W7/QahpQtpRR94rcZY5jmgnwdHJwIi95YJvVCBPLrLbtWqBfaZMwP\nDqVz6D3KWnb7PcvVhnq+YHF8MhI/8zzn/OoKYwxvvfX26Mt2dfOahZ5RVzWmKNlt12RlhcksRV2x\nWa6kk/CefR948OAtbpdLHjx6h8xEPvn0Y7yHtrul68TJ4td+7ddYrVZcX18zmQhpd3AZqesJ15eX\nMutrWzKTs99sE+ooHWyT6CDFbMJmJZ2hsYY2uZq0fZcUBhZrFD5m1LM56IyinLJte3IDysTR4gni\niCL2fU/vHT4GNpsNk+mcg2TpVFQlAE+fPsUHsUyviwUO2G0kPrDd7ljdrTk6OmKRUqRa54gRXKL4\n+KAIzoFuRyv2rnPjvA8YicghEXRBHHubphHkPSsokmpioGIoA7bIyUPgwaOHdG1PPZtzcHQCSITh\nRMX0HKQTjcFjkCR3FYV2EvEjSgn3SOfw75v3WAiBqCJaD7kGgxZcSzeGQRkr8YYmZQRri1EZQWdE\nZYnaErNCfNtsnr7vmx3/WIUtxvh6+Fwp9TeAv5n++wJ4541vfTs99kcfSqFsISxjZ4i5RhEhiH9+\nCAF0T6bF7Qzv8P0eFSK4jhgcuJ6YaBE+Qd9KMWZB/syb8AbT+U0KjnBrpL2OITCbzfjOd74DwN3N\nDc+fPmO9XfHs5TMCni607Jot2iqsyqmmC8qypshruqalig5te5kNxR6tFVVRktkKY6W7cy7i8ejg\nCKoHRerC3Oi2MXSV6xRKXNe1+NtbK8EuXUeWBWbzQ4qiEmS1D7LSFTlZMaH3TrhfEbKiYDKXVbqo\nxDjSJ4S5ck6UBZMZ33nwaLxB5kcSMlLMK2IUBDT2Pdubax6eHEsxiYHpdJ5Qwnf58Q9/n2fPX3H2\n4B1cv8e5ju//8q/y5Zc/5dHjM9xeOpCPf/SxZB4Exepmw2KxoFzUXF9fS7LWtuf1+SXT6ZQHjx5w\neXnJartDW+GZdb0jzwswmoPjA5pkraRTBzvNS/p+cHexWFNTTqZkkwV5PUUXkdaDc55BF+t9T86M\nZrtDWUOmNLutSNUym3NzdU1eFrx8/kKsfeZzjo/fSqlMke1qzWa7x7tIVU341kdi8BlBUqIyWbiC\nUihj0UYsbatySoiRyXTOPI0f2k7mqr7bj1rjgQmgVEzJWUNHF3AuQKLK9A7yosQQyIoaH+U5dK4n\nz0TSFppNAj0CWt0nRsnWUyfumR3u/6EQjFrQr8zblBodgn1CRgfEU2kl5GcM0WuiqsXeSmmizkAZ\nMLmMpJQh2ELCncfp+jc7/rEKm1LqUYzxVfrvvwz8MH3+vwL/o1LqP0fAgw+B/+cb/EaiSqxWez+Q\nDckwLyph2GPKhJg4TFBE5RLx1uDF3iDByXIjRhijwH720F9poWVWkKBplXg0UfSb3svGYFJPefud\nJ2w2G/rgabo916sbdN/jo8NYK4IwZeX3K51WOGGGd11H2DVEreiNwthIVkSMKQDwcdiGChoYgiME\ncXrd73djMMkQfjGgXwDWZhRFyXq9Zbfr0DYfu7u8KPGxwyqN0o7ddk+lDNoEkQPlkdnigCZJfGbz\nKfVkNnLFijJRRXY7zh484nd/70sppq7nwckxy6VIdiZVSaYNl9tz6GGSQ1FXtG2LDxFtCqosw3Vb\nynKK64V7NplMuL29pe883g3Is8yVVqsNDx48BjTlZIrOcozO6JKpY1UnQwJryUvJcCgGY0fnyGzO\n4E4irhOW4KGYFNg8p66mosAwgHMELz6AJIPD4cMGLVvfsqTdN/RGXFBWqxW73Y7Dw0PKomB5JyE8\nmTbc3a2E/PytE6qq4vbmcty2Dl2YTsJ6a+zI07JZMV6XIYLrfQrdEbsm0XfeUdfTdG2HccPXdY2M\nb5Qa2f4uRmIv15Nzjt1+T+8C02k7Fn4dI3jZ5WBS8UoefEYJsRnCaB30FUDsTXBu/HywI5LWIkZP\nVAaDaHOjEtJ6VFnahiqp9tqC0nhlJYxJG5TWkgimf959/POPb0L3+J+A3wZOlFLPgb8C/LZS6lfT\nXfgF8O+kF/v7Sqn/BfgREtnz7/3xiCiAEGCxGpViebRSeNdjPKjoMXhCcs1VxqEzK3M10xKcw0Qh\nY8op3aVzGwWBGVrkNyp+UNK1DfOD4UKQ13EPJiglcyoVFWVVUddzTs4Us8MjNvsdP/7kRwT1miZs\nKYspKhYyK1QZNldo42VY7hxd15AntwhjS6p6RlVN2DvZ4nX9TjhvwKI65uTkZEw+H5CqcfYTAjo4\n9s2OtvfkecF0tmA+X+ACVNWEgNA2rm+WBBSHh4e8+/6HMt/znsXR0dgNxKCZHxzy3tERT58+pSyS\nqWE6f2VZcnB0xvn5Ob/9L/yLdH3D6xevuLlb8uu/+RvcXF4Qnadr90ymc6b1hOfPP+Xk9AHr9Zbl\n7R1VZjl6eMryTvPd75zxO7/z96nzjL7zFPmE3U5sjubzQ7pWPMaWdxtiMKy3De+++y77tmG93VJW\nU6p6RlaVBJ0xnUogSre/YbPbElFkeS7FrhOajNKWspIcgHo6p6hqTJZzeX2DC4rFwZEgn1hiENcQ\nSwpT8Y6+7TCZlQJA4NM/+BgXAx9++AHdvmG7Wo/2T7e3t7z16DGPHz4S77q7OzrnUTbDFNKFOBS2\nrISagxodWNj3LBaLr2THDohvnmRFSkTJgJhOenePCis9ZGVIwnpZTMWxI3hsVlCWHptnmEyIz871\nZNEjfZUABYNz2sBKkF2NFgPv+FUPvOFeub9n0k8PrAUVCMlb2iOFMg5FLJYoZVHDzNZoepDOTWmC\nkkJnrP1DGpSff3wTVPTf+DkP/zd/xPf/NeCvfeNnID8lK4GSQWE0uQTuIsNFhcVoD2krYVQgt6VI\nR9otSjuC0mBy4T25VtjvSoapwxb1a8/zD3v+kGZzWmlcEOG4QuGjwhqLVuKQMDs8wqtIHwLLJiPP\narp9AG3RZvDM72liTIZ5DqUMeVai7cBpgn2iLmSFpq4rjFGYeG9n9OYbOjD7u65DdxKjdnB0wnSy\noKhKbm/W9MGzWm3ovWxlf+l7v8J2I8TU3a7hnScPki1OTVbknE1mwquKmtV6x7c//O6I3t3PcQRV\n/JV/6tf4Rz/+HVSIvPvkbX7yo9/n8vqGqqhQRcBqw9PXF6zX4r9WFbUgvtqyXa24vLjlwdkxzW5D\nWU44Plzw6tUrPvroI1ardbLoCdzd3fEbv/EbXF7eEqOink548fKcuq65uV1y9uixCLzbnma55d3p\nnKYXu6OmaZjPDpA8hyVHh+JG0ra9yNkyNS4S2mTkmaLKc3rvUEo0yT4Gisziuh4XhoR2AQKapqFt\ne45OjtFa8/mnP+Xs7Iyu6/nd3/1dHp494K1Hj9Ns1CSqghn5gAMfcbFYoJRKgdCykJRlSQga5z3W\nWGxanIaj73v6rpGw6nI6BvxMJ9XoRNzstuN7JvPkHFVqtDM0raDGQ/fX9j3W5lRRzCAHKpQeaFGJ\ngzHO0MxX75VhkYX0c4m+ZJVEI0X5xjT+ARUjLs3OtTGoUMrYSFvhriWVZY3U+AAAIABJREFUidIK\njEYnjewQqPxNj18M5QEkdwKPjpESj/KeLEmNYmIrNykNyJuMPmoIHluWsm3Qe6LuiN4RzZ6+le7N\nKMkXlW3pvbeT1gkxGjWk9ysOKpFHgiJPvKEIaNvjkwZPW7kBjYKjxQFNjLguktkcS47rInWRC6mz\n74l9h2t6Ggu4jkmRUeSGqHroG4L3EGtCF6inU/bdnmYloEFZloAUWa3E1+vy8orD+hClLPudQ+mG\ntguUk5qJMSglXC5tDS+vX3NweCz2PljW3qFsxqrtqE3O9e2W9z/4FrpvoOt4fnGB95HDw0O6IJSE\n6XxOf3vLctvx5OG3cH3LfuN59OA9VssljXHUdU1VH3D48D1evXrF43nB9fU1RoFSgYPDKVdXV7R9\nL8P66oBuo9BhQrcz7FYeZWET1hydHPLi4jlZrXj66jPqvMT3HbOjOZtXW9p+R4yKg0Ph9/WhlWDf\njUFb2Yo+fPiQq6srfGjZNR3VdIGyGToXx9yoNLt2Rzmb4YOWUOekAil1jeoU+xT+a4x492VG44xn\nelRD2HJ1ec0H735A3/d8/PGP+KVf/h7T6ZTLi9fM53P6dk3XieuxLwI2z1BRYxXstrcE4PjkkECk\nLKR7K63F4Yh+j1cKbcC7gS9n0HnFLJ/Igh48MTS0nSxCTdvhFNi8oMPQe8cUj44Go0tyO0OFjOA6\ntBNljQk9SmUyLwMpajGKlhS5d3xUKKUpXCtNBMLpVBhiiPcE2yidVauT+jMWEAwx5GhVo4wlkhGU\nAZ3RZ6XQpbQiGlEZRGXu9ahe7s3eJhT1Gx6/EIUNhGArM/shX2AYFsrnUYlpYIxiYSIkV4XvO3RU\nWJOjtQIK+r5GkQkfrvdELauRMTIcDfGeGoJSaV2Jo3f/CFGnVjrEBESEQFRKKA1pFbeZYT6bso+R\n5e2Kdtfi1L3VtYrQti1d6zBGNHHOBbGnTgPSphE1gVaGtuvYbnZomyXypHzsdsIjG8Juz87OeHj4\nUJjnRS7221GPaUaPHr3F4fERXdexbBuWyyVN03B0/ID50Qk6y0FZIpqsqPjis8+pp5Xw46L4L11e\nXnJ8eERmtSCBKT4vKIW1OVmmaHzg0ePHxODZrpesVg3Tac0HH7zP7uILEfBHISU36bnf3NywWCx4\n9OgRpnFMZlOyLOOdd59we3cNRs6ZyTTeB0nEevWao5MT7u7uODk5YzIT1DCzBavlBpvXhCABKSqD\nusz54osvWSwW7HYNPirathcjyrwgywuyomLbdWR1ApS0IjcZPva0yYI72DREzzKsEX88FeH68grn\npOv67LPP6PueDz54n8vXF5yfn3N2djZmVbiuRSEo86ANLasJnRMUfLAFv7u5ZTqb452jyHP2jeSm\nlmUNiXSrM9DOsd3s6PqtcAcVFGU+aomjS7NBpDPtnEczZCsY4WIaRWZjAix6kt1NokjJPWe0TvhA\nTFtQxNAhzd6kCGlICWhxiFpL1A0JATHp92mZBMb0GFZ+VqcmQplEn0qzwaRACGm3oiMy//uGxy9M\nYfNOtmvRR0hBJgoZZsZUxIiaGEJKChKajIRrCD+GKB1YruaEzEHw9HqPb/fDMiRAhBMeFrzZsfGG\nncq9GZ5WlqjvlQg+SFEcTnJdVuijY7K6Jkdz7VdYFVGhx9iMosjI85LeNaherKUzK0PrsixlptDJ\ndtPmGcbIx5AFGmPE9aL1BDBKBON1LdtIHwO+EYvsPCvHTNGma7m6upLzmOfMZjOszdlt11zd3pIX\nFfODEyZpJuT7luXdnpvrSyaTCaenp8Sg2O22rNdL5vMDhnFpXU5SkRXnjOVyzWxa8eDBA7quYbtZ\nCRk3y5gtDuj6ltXtDXVV8qB4wNXVBbvdjqurS2qVMZlMuLy65OGjMxmqF5b9PnJ29pCf/OQndN3B\nSMht25aqmnB1ecNkMqNtPZP6gGYvqWNGFxA9fSeLYgyG7WZPNZmNN1TXClVC2YwQ1GgY6VOehOs6\nnOtlEfRiC97se4y5n4MVuRVnE+8TQglffPEFH330EVpbmqbhxe3z0cnDOYdVReouPXq1EUAA2C7v\nmE6nBNfjWtm+jtvPKJkUeZ5L6I8S77a8yDBWci1824xGCSiVrIgiWmnhUgYw2hB8y77dMi8LAp7c\nRoxWYuWkxBJsiLsbFBtRC7vd6iyhrkmUHiPGZGiTSUFCHIaHaL0QJZ0qDiOlaAkqRymL1wIYGDL8\nYNuVGaKx4nmXtsWkWZ0QoQfQ7JsdvxCFbZgbhRClsAWfzPQUmIAZxOtIVqdSBpWKFDGmDBjhoMnK\nlguxLw3aYxBnCRV6cfY0ErmmI7KXH8DoVNhSYDgg9t5feZ6J5xOCG4yTxCkhs8wmFYMtu+t6fAom\nkS2ErFrGWIacy+AHzo/EA/Y+pPPAyKUapDaDg/DAL5vO71HLkbSpHbNaKBx5USTZUk60lvPLC2JU\nWJvRr7a4PnB7u2R+cMTZw4ecHh+x3W/ouo6bywtc2/HkyROadBIyo0YZU6+ycZ6S5+IGInMiLR20\nlqi91kfyUpxFNssVWlny2qattXRl82lJ0+wFafbHTGYzXr56jrV65NMN2/FlcsawNqd3sNnscL0o\nF9quJ7OBzolg2wfPbCoDeOcCEoasR/5i13XorEPntczQkoFj2/doa8iiSXMdhYpeOhplMErR7GWG\nVZYl3nvOz1+S5zlHBwe0e3Glnc8OhJ6k7o06JXA4x6aLatQBuz2ub2XBKytc1xOdzAMxCnxMAThi\nl/+mbtR7T+j7gYqZSMcZyihB57WiJwhdJeb4rqQoclwPKkpeRnBOUMpEzQAYtIcxsQ6UFov+qOT8\nqajBWpRJCVxKLGKVUmNnJnNzi4ryXIKyMktTmYyHTE7UiqBldDJ0bHJPStc3+rXpP8T37Q85fkEK\nG/RdSB2bXITK+dEPXU5kuLcWNkoGnTFCDISosTrDKAUaPBUqBpSR0BFltBBj+x3a94Al9ELw1Yok\nF1FEiXWX4JbUsQ0WPFKI/BhP1jnhpsUY6foOfORgNuNwdohVmu1WHCXOL75ku5Gos941qWMrsKaU\nQTWMq3OiPUpoMFCkwanrerpeCJhVVVFUJZvNhm0nJNWTlMxuTCas8uAJqKR7hX3fc3JyItud1Y53\n3n6Lpu2oqgl3qw3tZksxN1ilKOoaHSO73ZZPP/l4tKuWxUbR947NzpFbsXNyMXB6esr56xfSIbqO\nui5R2tCFKFiYsex7URooJbbmLmlYzdEJn376KZNJNZJKz1+/5vDwkE8//ZTT0wdir0TE2nxMvCqK\nKhXTnN2uoekcbXNLPRPfsu12R1nWtK0nBtjvW3ZNYDIRiks0lmg6ZpMF+32LthEfIl3fMMlLnBPn\nk9wENncbQbJLOe/OOU5OxPnk/NU5Z48fjRKm4OQaOX/1Ap3ciGezGfSeJrTj4tR1HV98/jl5nnN6\neopX0O22+GbLfHHMpKronLx/1aQeicaSmqVTgbejs7IP0m1GFJPZApPl4u1HROcTMT2wOYXRFBq0\nisSuQ0eNMhkxdEAkjGMgUDbRQEgUmBjxpkQnbh1GipV0UjaZTsisLYREKI5iSRbQeIxoP1NnZoy4\nBMek4hF7KGkAdNrejj68IQpR9xse3/w7//88hiLi0vAW6Vja3o+IiwtiwRzT3t0FcAGBjLVIMQSN\nzJI0Q1DMqExaJcwbX9dg5CMiMwUfQxqK6nFw6mIYbbgHudPwYZDtsqRE9Sjv8G2DiRKyUuSWqi6Y\nzWaj136elYnJXoxSnKFwAkwmU6qqEmoHSjIWkt3OsEoP2sCDgwOm8znaWtbr9fj1octBqfG5EwPP\nnj7l6dOn3N1ccXt9w2a94vb2lklVcPH6FTE4ZlXJennLtC55cHLKbrNhsxJ7oPVmyd3tNVWZp62O\nH8/JZr9jPlvQtj2nDx+M9JTJdMqulS7P2oyoFZvtlj6Ixbi14j2HjkxmU26Xd/RebtCqqri5vhuT\n6e/u7iiKYix+w/ZutVpRliWPHj1KsX8rqqpOCwsjRSLGKIvBVsKiXX9/nQ2Gluv1euSLrbZrJEim\nT4YGEt5TFMOYYMvd3Q23t9e0+warxaIdoMoLTg6PODk6pipK7m5uUUhmxna1FsmVUswnE6ZVhe86\n8J66KAh9z/nLFxAiZZ66yKYZO7ShkFWVkHTl+pJ80MFZZLfbfYXjOCDrLnjp3LKMTJsUcKRlx5Ac\nNbSWe8snb8SITl6JkZiKUjQZ0WRoW2BsSdQlQVmiLlC2IqgMTEZUOQ6DiwaPwQVFFyIuQh81XYjj\n/ae1Rtv7eyOmLg4S2qrsfZH7BscvSMcWaVsRhYfgE8FQODM+aoiyZzdpvx6iTo5OkdZ7VACrZLBv\nkOyAaAw6BtAy9I3RoZ0EapgY7l0ZohcWZDIHBNBBUoxijOOFJCtyS9PtU+FIlju9SHlUiCKdMhod\nRPGgo2Yxm9KdngKBFy+eUVcWnQwgvfcJeSI5Usiw2NqM6WRC3wllJYZI33XUkwlVVeGC/OxicTje\niENM23Q+w8fAs6ci+JhMJswOFpSlWJ0XWU6zk7SnSMAqODuc8wc//MHYDWZK2Pnffu9dNrstV5fn\nPHzwmKIs2WzW+CC8trZvCTHSNT06BurJlDyrycs5PhpsXnP2IOf6+hKTCRG0cQ0mFfLFYsFys+bR\n229xfv6Ss7MztluRHSml+O53v8vtzQ2Hh4dcvbqk92vaViIAq3qKtZqua/n0px/z4Xe+S9NuEqWi\nZT6fc3NzxWazw5qMcjIV1URR8s67b3OzWoM22OkCNFJQE3pZJHcQW2tA1Avr3WakvPTB0zqZlc0O\nFthM07sW33mMUmx3e1wni3KVF2zWW9a3d0wOC7zryacTLl9fJNcVy+npKe16jeol18FpTdfsWK63\n7Jo9Dx+/jY4y69s1Io0LROwbwc2bjSgH8uI+RNsag7aGfdfjvMGSrMtVKi4uyGNYQSSVktmzF+WO\ni4FBoyodlkEVs9SxWTCWqDLR576h98RHYrRp95WyguUuEXcSYwQ0MJpMi+pAReGKhjQ3H1LlVEQW\necWfxa1oxPVBRAPCLhRtWtT37Wf0dL3YqwTcyKGxOqV5a01UHo+iyBRGiZWxNlHs24KY1wkB2IOX\n8AvZznqis2Q6k9FCcECbHFpVCrxNc6zUZYmbr8f5FLASFQYNqTiGEAUUMAIwLBaHXF1dSUgJfnRg\nCBGyrCDLLG0vKgdrLe1uL5bOSgz66rqmyHPm87kIz/MC1zvZxibPsK7rcEFY6u+99x67VorufrOl\n73v2+4bpYs5suqDdC11it96glGIxqeRmbSKhKkErdpuVdEATceYYEuY3rRCJ55MpxhiqquLVy5cs\npjO805SF6GQxBpNZ7tYbTFbQ9ZLcnuWGu/WS3ndUdSGpTZUU3tlCNK8XyaPMu8jlxTV971lv73DO\ncXUlluWr1R1N03BwOOP27jwtDpbLi1e8fvmKyaTi7OwhbdsDgSyX/FIfeurpDG0Ny+WSw7Oag4MD\nXl9d8vDRA9y+xbXSJd2tbsWdRYuy4+XLl2PnVNe1dJS9S91rz83VNX3bCQVo57ClwURx7jBHFdum\n5Q9+9GMO5zOmVcnN9TUmCphhVOTg4IDjx9/i7uaWh48fEdA0bjByvHcnLqpS5E8pCGY2myVakqIo\nhSdZlGUa7LdpK6/JsXT7HV3rEhih0CrDjVs/RVBBVDPJvXeYpxpr8XmNMmZ03kBZ6a6CWD4JSiq0\nlOj8OOeGgRQPIfncKaOJPmKiKHSstWOavIjvFTYNvu2fYBsKvzCFjRHVUWlO9qYMBlJQhzIJDEhB\nX1HsogV2luHwYGsUBtR5kGopkXXoKFpAkWoZYnBpEGrwrpUJgTKCCAVBhEZfrwRyONfx9fMsgvsB\n+LC44Mgyg08i+UHe5EObClpIv1skUyAXadBOaCoImTFEEQ9Pp1NCSMEoWlEUJRniKTYEguz3e6Zz\nCdbNqxKTy3A6N0L+vL295ebmlvnsgBgjs9lcbt67Fc1+D0pcPdpmLzdqDCwWC9brNScnJ/RBnI2z\nzHB7e0tdSIDL3d2ddHtFQdO1uE5GCn3f03pBBTOT4ffQd82YurXf75nUkpCVZRmbnRTPphfh/8XF\nVQqW3o/bfqXEzaSsJZ5Pm0BVFSw3a6qqZLMdktK71Bn36fyKA6yYf8iCUZUTfMp1lWCShNBZS1bk\nFHlB1/doY3C+odYTXOjJioJ6WlOVMiv0ScLne9FzRh/4/PPPIShmk8mYxPTJJ59wdnbG6dExznUc\nHx3x8MEp88kU5zvOX75ivVrT8py33npHHFW0ZTY/YNd19z6Cw6xZqdHFYyTjWrEbV86TlxO0UoTk\n5qGDJ7PlyDLQJpM+guQwMlArdEzec7mMbFKknjKCekZtCGnbGpVJKgGTbLAygnICHGhFjFqIujES\nEunX82YgU3reSmOV3KdyD+p7S7I3VA3f9PiFKGwAVlsRGiQkUCmBoYc4NEWk3XfEILMCufUjRkUh\ngHqN1zK6LMvByM6ARvRwIbl1Bi/bTyMnW5PLINUHfCtIKTG56nY9odvTO493/cg6j1E6uQEVFXqI\nuH3eUxpJfl4ea7MkFTpg39yNN7ZKHeRQMOV9kyCOrunwkcRIL8fZ2XQ2E4KwNhzMZSsqYSEWidZL\nfLdkSOmcY1rVKekoY7FY8OzLz9Ha8oPf+z3yrGS6kOR25yTB6Ic//CFFUXB0fMLZwwe89fYjnj9/\nzunpKbfbLfOTA6bTmo8//jEfvP9tEcxnJSY27HZ7JlWNUhKU8vrVS84ePODu+jVZkdMvncw+o+hS\nz1+/JsZIlbZPL168SDM5AQomJzVnZ2f89Cc/ZbWCooiS6WBuRKFhNJ/+9BPQcHR8QN8VHB0uqCot\nThvzOauVbNOWyyW7XcPRyRkxdbi9M7y6+oL1dse733qfzz77jNiLWeZiPgUDWZnx5ZfPyMqCyXzG\nYn4o872toMivnz4HoMwLDhcH1PUUl2VkCYGd1LVYRzkxcby+vubB2QmXl6+ZlBWruxsmVc3z50/5\n6aef8v3f/PMopXj9+jXKZFxd3/LwnbdkRGEyohK79klVj+ajfZLlaeOweUleFCNIoVUkdD2dD5Sm\nQCuLtTKnNEZB9GTJMQYGwTkUeTnqM1UizXpVS/HXBmOSfBAFQdQVISJIqIKgPFFJhxmIqCA5DSZL\n+k9rKGI2Ip4hyP1rtMWiUqByoll9LSzmj60n//il6E/xUNDiMMqgVBKDxwTxJsg5qgxlHD4Egje4\nLo5Ag7GKUCmy3JJlhqazqVuK9DGSZRq0oKQMSZFDtF+Moz+bzjpU9Khujw8GT0vrOnbREehp+hUh\n7lPLb1HaYHSBU5bcOjxROrEIIfYYMZVntZXtXlWU7K8Urd9jC4UykcpYvDOSw6gjeWnQGlpm0sYD\n2JzpZCZb9mRj887jt9FKUqxuL6+oq4y2bdivNxAV2/UOHS1lWXNbl9hMaCOPH53xne9+i9Vmx8N3\nHhKDxgWdCpIU3G9/6z1673n27BnbzZLri3OapuH108/5/ve/j9ts2V3dcDSpubt8RW4y7m6v2WYZ\nk2rK3ksRPi4W5KFCdYZZccjl+XPW12uYZazubgh+z76T4f6zZ6/J8xT+nJKQVquGvN6x7XtcryiT\nNlwr2G8cvXcYo2hbODqdcXWxRrPEqp6gAjbL+PzFC5QpOSjmHJw+Qeucy+uGX/r1D7i4uOLVsxe8\n/fYT9jdr3M0aqzVt1+GaltuuZd+sWF7fcXZ8zPLihrcfvs1yuaQwGVkwvHh9I11MUPzkk8/5tV/5\ndfbrFXc3t5wcHLJer8mtyKlClTGfZ2x3kZcvlpycnLFve/bbHXem4f1v/Rbfev+fRleWLz5/ymRe\n8+F77/H6+oKbi1fYQkJWrLXUxtDtRQJ2fPSIm+trdKbRmSWva+FHBo/KLL0O5HVJYQt8sOjcYqJQ\nq6KSBb8pJEvjTaeO/TC8x9w3Gwm5VErUAkQpIUEDKZDJ65h2SskwNhG0c3Xv4SZdmpFdi1KSIaJ0\nojUFQnILvi+sf7KS8otR2GB0h33zxH7dDmXo5lwv7XcIEZM6OmMylAqjJg2tEmlQGNgq6U7HQaZJ\nK4DsCNFJrkJAXDqMxWkHw++McZyzDURVoxSksIoQ761eXLKgVvIA0XlCjBQ2w+RCNYl0whNCjP5k\nQGuS7zwjEgqMDroDwleWJbvdDqM9mRFFxWq1FCH2ZiOETlPy4OSRFLamZbNaUVQVITjW6yk2K9hv\n9xidYWzJpKzIMz1y0rIs4/jwkKaTudjp6SnnF6+5vL7i7ffelaSuznF+fk5dlJRlNZ6fwUZJtJjC\n14peOrKqqug6+f3bfUOR5QmYAaX6UVgdY6QoBAnc7XbEGMmSDlEZ6fh8HxNSqWl3e7S1qNgLGTbT\nox4yLw3OdcymB0xmhzx79oLLy0tiUoUMKfKr1VpyKkwO7NDast1usUZs2o3SNM2O5XLJwWzOZrVO\n10FgtV1xcjJns12y32x5+60n7Ddb6mnJ40ePUCrSGbg4f8F0OiXLNe+/9w63t0tevGg4PT2h3e0o\nigJjFacnJ/z+j3/IixfP+Of++d/m9cUFfROJlcc5sTxyLpBrIQmrNJd2zqGdw+iMLM/QmaVrfJph\n5ehosSqXHQpOdhhp3gWMyKOYHwwGEgGiSdZIg/ZVoZJAPaR5GDDy3t60vB9mbF+/v990xB1AkJ/n\nFCL//hns2LTWKQru/sUNIuWBgBpjhKIgRkXvO6J2hBhpmr3MWjLIC4X2Gu16mkayNetJyejSQZZm\nY4E4FLZkARQBEwxECf2IXUdwXqgeGqITxNZHRwz3NIwYPZlOxVPJzG94u4KTbIBMC8oWeicyoajY\nNg1RGYpCUFwXFLHzhF62utPqaITpR+Z6KnBd1wnpc3uNcx23NzdyE9U103pGZoTfdHFxjtaW87s1\nMUYODxecv3zJarVkNpvjoyLPS7SyLJcrjk7nnJ2d8eyLz+m9Z7aYE7Xix3/w+/y5X/11Hj5+RFVV\n/OAHP+Cjjz6i3e85PTqm73sOFnM26614mGWGGDQq+vR8G7quYzabYWzk6ec/YTKpRNmw2ZJlGbsN\nqImnDbIln80mHCwW4kvXd1ijQVnatqPSYinujEdjKfKcpmuZ1xP6uOXyZiXvp2mJqsXmJTF0vHj5\nlAdnHW235tmXzzk6OsJqg+t7oo+46Lm7WbJYzHj+9AVlWZKXkt+6Xa05XBzx8uVL6rpmvV6SFznL\nlzesthccHx/z4vk5GTCfH7DZ3XFxdUVRFFwtL9lut9zc3PD+++/z8cc/5uzBCVeXryjLgswYXp9/\nxsHBAQBvPfmA1XbDdz/6kF274+/9H3+HX/lzv0bXOy6vXjOfiT42r+foqLnb3NH2HbnKUcbiiWh0\nKkKyZdQqB50RKYQCZQx5mQqNjmS6euOOvJ/hjRpVY9AmUUTMADQka64o822f5sUGsf36ulLg643K\n178+FMABrBj+leObUz3gF6Swwb2V8/Dih5V7ICLK6isWz+L5LsNp5zQhBtbrLUUvgm2lh5+BzsU0\nu9MCbUexvw7JNhmt0MNJSzw2fEevDN5kMnyNERf6xHnqscakNw6IEnjRh4iJCClWMw51fddDjIR9\nS6kM0/kM5zL6ZYsPkBcFIWYSM0bAp4si04IqWWMwKLq+x2a5ZHiGyPXFJav1K7quoyonoDyXl6/Z\nVXum0zmPHz+mLGucC7zzwQeSuNV17PdbJkWWOifH3d0dRMX1q+c8+1JmUsdnpxwdHnB9d8ejtx7z\n5MkTXl+e8/L8Be998C1ur6/4gx+JTrJvJfGp2W25ub7iyZMn3N3dgg8EpyD2OC+vaTKZkBeW7ckZ\nd7eXZGVFVLKozedLqmrCZrMlptmitXYElQbu2jCicM5RZRW7tmG33XJ4eEDwhqbtCBEWCyH87hrH\nvlmT7y1dH7i5VcwmU5SGp59/wZMn71PYDN/1bPYbHj9+zGeffMakqFEo6sJwc3lDjJGjA/WVa/Tq\n6orbuztKa/ji48/JqinrbcOL1z/l8mbNP/PP/nmImn/wD/4B3/ve9/it7/wq2+2aJ/Uh7737Dl98\n8Tnnz8+5vbqkrHIO11s++OBbYJKfX4z43lEVJdcXl5g8I6JYxojNMqZGbKU672hdT+McWVFR5zlR\nafreE13AhcFIoQCdEXSeeJ9vbA11MRYWsRoauGtya3ilCDGpAaKQcDEWgsJoncC81J1FTVRuJCPD\nV4vVmx3cIPF5c4sqH3r8V44/gx3b0KG9edEMqecDKgpDuxqxVpHl7h5G9mKwF4KFqNFW4GPQdK1o\nTnUyz5PfESBLfztogh7gaA1JPOyjJmLGLWiMghKGIPIUUXfFBFKkLaj4u4xF2Xc9MQRc2wliWQt6\nOejpQFBRYzKi0skaWnzj3rQLGvJERQy/Gy+SAQ0zVnF9dUPXOQ4OTmS7HoQe4/qep0nyE4IU2s1m\nQ9MIIHH5+koSqLo9RpXc3Szp0uyySFFueZ5T2ZqLq0uUigTfs7pbUhWyJX7nrbdZrVbc3l5zdnwy\npq+LVCxglU5SN4s2BfP5nNvba6zJaUOLSL3yZC3U0jZCRSBqMlugcLRekFoS0u19T1EXxKan7wPG\n5hDFiTb2PUMAr7Ukg8WO3JaiI+1b6toSohMvNCMSr0E9MEjg6roGmtF2PMsyDg4O2O9bPIrXV9dM\nJjO6zYajw4esdh0vXl7Thcijtz9A2zmHx0d8788FDg4OuLrd8dFHv5SkZy3vf/A9vlNYgutpuz1/\n9+/+Hc4vl3znuw0ffvsDbu82PHr4gLbv6FPGgS1y2nb/BoKphaOYOGOCXgpFo/fJDXjs3kQtkJU1\nMUCXxjbKKozK0/UY791vvR+NMIe/J7djcvIIP7ttBJKi56tGrsPW9OvHm13bH6UF/ZMgovALUthA\nfSUzcCAYDp3bcEKyvMDYQNN02CxDGyNe9kZDr3De4bzCK0PXiz3rLe1cAAAgAElEQVRziBCiR2tF\nnluMla1dcB3KCAt7+FvgEg+nx0VJArdRbHBi19F3jqKoCF66MOcCeabxvZPta0I3o1Kpm3TgPH3b\nyZan61HWUOUV89kBd8sNfe+ZloWIsNu9kEC7Dm2LrySeA6MzRN/33Nzc0PYNT5484cWLl3z7u7/M\ner3F99D0EE2OynI2my27bs/Li1eEEDg6OKCoK9abDa7tyCtD0264vml59aLl0duGvJjyD3/3Bxyd\nHDE5qEEr3nnvHcrCslutODk64vXrC25vrsjznLubK9brNXWZs7y7GV1xg4kQFLbMINpkptngfeT0\n9AE+9ORHDyRVvuxomoaHD5/QNA11CojunEN1HXqm2Wy3NB0UwdP6wMwWlBXcrW9ZHJ6JxKrbYyw4\nL469u5VjOo10zY5OOzbbFQrDrFdJxN7Rdzsya7BGdKAPzsTxdr/fs1xfcXJ0TNd1fPnlMx4/eotm\n37NabVjMT3h9fonbTWg7x8efv2DVecrJnL//j35A638g8ycF1sAs17T7v4lz8Ju/+SGTacVnn37C\nv/qv/StorfmLf/mvsG+2XF695G/973+bRVXy5dNXVKXh4HDOZrvj+OyUIs9HupH3nl3XYsocqxT1\nZEFRiSg/dm4E4LTJyLKSaEocyZEjEWWV1uRJUH8/41RElYT1b0TuGfvVYibrjwTPoMQgVhg1w8zt\nq8Xsze3l0N0NjxPvOzZp0ERPDSSt6p8xuodSXx0kvukUO7Su0h4zbk2N9eD0eJKEX+bRuifXBtww\n1Ff4kHg+xhNIiVFKfNmUskhwbxK1R4UT63lciMTepSGqPKaMSe6lw4kWaxcVIjEEYgh4IDpRB/AG\nP2947tYa6qJniWwPlVJopID5IK4SJOa4ShdLZi1ayTC92e8xWvPBh99NXKeSfRtw3vDBhx+y3e55\n+uwFq9Wa29sbdl50pocHx2yanuuLcx6enWIyw3a7hxg4Pc3YrHqurzxF2XI4P+aTT6747vc0OtNs\nVkvKumazXpIZgfObZs+Lp88wKDKTM5/O6LoUGqMno0V379oErEgX5pOjSpFX1NkEH1aU1Qyb7chy\nCTEuSulQexeoJ4re7rhbbVEGdvsWk+fYvCQLmixbMl8csm868qKi7TpiNGRZTt9vx3OfPCiAgOsb\nMlNjFKyXd2w2DUTN6fExTdMS85z9djtugbvO4Z1jt+3oes9+16VsiYJXtzu22z3n1y1bB+31DVsH\nfRiG6aACtK0ASkrD7/3BF6w3PWfHNf/V3/gfqOqS//P/+of85b/873L6+H0ev/Ntdstrnr265HBW\npVlvJCtXzOZzcqNHQnbf9wkS0/TeU2nZsQySMmuSntMMw3kDRom/mRatZki1JCjRe0bZ8/N11eWb\nbjhBkbIQ4j3HblQ8/2wR+nlg4ODe8fWv/ZMevxCFDRgL2Ndf5H03ldBLbTEmDSYNo04uhIhWkvbU\ndA7t0lutPVlu0NrTB0EQOwfT0uIiokKQJ4CLsmq4XtE7kODvjO2uxbeBzFa4fkue5QTnZZAaklGm\nkm2z61IqUtvi+l7CMIyWqDYU/x93bx5r6Xnf932e5V3Ofvc7+3BIDkWKiyiKmygpli3FdeVathG7\nQOo/4gJFUCRtEaB/NOi/DdoABQIEDRrAaIDacOrYSWzHaGw3TmJXi0lZIilxEffZ586duetZ3+1Z\n+sfzvueeGQ4ljQ0DdF9ieO8999yzvOd9fs9v+S6p7qKUh8TSiif4qsBkBUmrRTtNKMoylGhFQbvd\nnr+/hhN5cHCAMYaVlRUORxXTqcHYhFZnjetbFzh89W0uXLjA1lbF+gb0+202zj5MNs3prKxRTgum\nxYQ3376BwqO0QNigWHL8+H0Mx4fc3D4EBWdPLTMdz1he6XH90hXSVuBMjteGSCk5d+4Bdrdv4p3l\nytYlTp06RbfVRgnBeDgkjtrYylEU4fGTJCHPgpJHFGvavT6rg2OsHz9Np9OhLEtu3LjOsSRBqbAJ\n9GczPI6DmzeI9vbmSrgnTp0h0glrm11k0macFXSX1tjbnbA02KAyGWmSotU+3olAT/OhfRFFCZPJ\nIVGkmGWHtNIBiIrpNMe6DeJE8eb3X+fMmTPMDqZcGl2s/V5jdncPGA1n3NzeZTrNmIxz3vogIyty\nhg6sVBTeUXqJbVpRItCCCgWlDT4de5OKbtriyrjCW0Uxzflg503+7bf+W1Lg577yBX7+p7/En339\na3zn5dd46IETdLotjA1yQl0H3SXodXrotIWIgoQQaHQUFFVaaRvnHJl3qDiIAzgZdP+CFpqqMZGB\nahUwtXoeFaxZzLaa9VgLU0hfA2lr+mAd1Brqk3QLWdkd6/y2tc2HkRCL7ac/7/GxCWzAh6J583Ve\nltb8UC8FOg4wAW1jLJ7ICYRytbR0HlgABBR1VYWMDS/R2qNkRFUZtNdILee2YMbkocdW9xEEUdDw\n8hpXO+ngJdYAJvTUrDCB4OwDo6Aqg3JvVWdilgDzCD0nh/Ia4RyxTlhZWiVWGdZRK/5aqiLHmJIk\nas3J941BSVEU89J5Z2eHqLeJ8wkOyWhqaPWW+frXXubcueP8nV/4Ihsb6xhvOJi1uHrpKtZ6qmJM\nty9ZXlJsri5RFBlb1y5z6dIlhNvDeUN/sIIxBQcHI4rS1gBOx95oRLcXMZwG9/bJaEwchz6bcI6L\n73/AI488gikrptMp/b5mNs3DdDFO565badpGKUGn02E0LTl+/Di39nYYDAasbp7CmBJjSryUtAdR\nYF2UGcdOHGc8HjMtKqKkRVVZrJA8+NBDTMY5SbuFVBYpHZPpEImj203DRFwuiBhUGd2VFrGGrWuX\nefyxp8C2mQzHvPHaKzx0/mHKbMbuzW1Gk0O8U5w4MWAyqnj3nbf44P1tnnv2OarykPff22LiO5RE\nOCmYeSi8xSoVZu2BVgN4kk6bcjabX+Mj6zCVpdPtk08mRDqiMhUew2///td547U3eewTD3Brf8Sx\njRWkDB6qw/0hURQxGo3oeLBKBY1BY1karAVcnQdRO8rLqGEONL2vWu/MM/cOhUZCqzrK9LS+rQyF\noP/hwjf1mqx9GmjWWwhwTU9tMYjddb3726ehd7tfeICjQcOPcnxMAtuHU9Q7v198w4sTlka5wRoQ\nNTG9qm5/9AZGEsrJEOgqGh+EAPeYq2w0z1P3CMo6UDnnKIuKCF/rxtl6chNOt615p4tTvKZvGGgo\ngeTbHFpHRDomigy+ClJFri5vpWwoZAtjdxsUMW7evMlsNmNlZYVbu3ssLy+jo5jvvvoaFy7s80u/\n9DOcf/g8VVXwzZde5NatbV58dYvtLQsOojAfYbkD3VSyub7K4cEOVQmz8Zg0FeR5hlTQ7sBoDEma\ns76RYG1QwxjPDhkMgn6/UmGBVWXJ9evXGQwG9DpdpAzSTdNJNlcZybKMqJancbU6yHA4DKY1VThf\noWHvyLLpkbSRjOj3+xw/CfHeHl4cBBK1D59lt9tF6jAAyCbiyHqPI7MRpSLAghOUpWU0PpxfQ8Ph\nkMFgmaWlATduZFy7fgUhPXkRcGXjUcbu7i5KtDl27ATff3Oba9eucbA/YlKAi0PbQiVJ8CgwQeJq\nwcEbgCKfQaTAWGQcYwqDjBOm0wkoWdtGSiIZgy25dG2fcjbhrz39CMZM58omjVZfuNarwDKI47qF\n4ubDt6ZXHXyVbs+CwnV1xyqc/92iefcPOMTtjxkYiEe3LQaquwUt7+/Nx+Bejo9JYDuKJ0AtCggg\nkPKo96YNWOFREqQOWDKfgKjVLewsI4oExsR4HNEc4KrAeaJII1VgBRgVRPVmVZCXDvIsCmcd+Syn\nmk0xpiQqDPk4w1mHMBIpYgQGrSLA412FscGnMWQE9eRUKhAaHcnanVwhI0lE0HrHCSIt6fZaHIwP\nwXvSVpdqCsIY7HSbbDJhMFgiUgmzcoyxFYmQFEZwcGMGDHjxWy8zqeAX/9bf5Cd+Zon/45//Ftu/\n/vtcu2WJ2wnZrKKU9cUm67Um4NIUxMwhDnZQc9qKY7mEVSPoKU05rjAS9nchTjTjcUGrvcJSTxIJ\nwXhnh5m+yfaWYe3UCfqbbbwq0YTnkSaipT3VrOSw2mM03qfT6dDthcnoZDLi4UdOY21GqyPpL/XI\nigprodUeIBEk0YxUJbjVsww2FN1bu3QGuxjjWFoJYpsHozyIAwCDY6c52NtGdzTD0T7d5R6mLHCV\noSqC36bwkuPHN+fX1a1bV5hODtAi4r6T61y8cJW33tzhzJkuojvg7In7uPjBJa5deI/xGEYj+N7k\nFpmBUneZmhyPIbKWM6sDhE65cmOXcbBPAB08FhJTYG3ATLo8B6FwZRHoTNJT5jlJLDmRxOyPYaMP\n5x88Q3u5g8lLZCLo9xJu3dyim3rWT56k3UqxIsWS0ummxL0w3TSAlxqnNcLOcCpgOb33tRqHwPqA\nNwRqOTBoeLR4MNYiagB607zXPr4tQHkfRCag9hep/3l5e0k5n9g2v2+yuYXNfjEINscczEszUPjR\njo9JYLsdoXw3EJ8QAq8Fsj5BkazxGkbOy7z5ThZbbJ22KSXRUqEihY7C/WKlUXiElZgKXN0XizRB\nlrwKsAhnKrJZ0PBSMjyvNSVC+rky7vy1hcH5PJtUtbKoFDp4Rta3xzIOlBQlIZIYZxlOg3O6W+B3\nVlZSWktpHEp7huNDirxi/2DGaFjy7puHXJ/dZHUl5Sd+6if5n/7X3wgXcwLTIuzPxcwH27O7pPfN\n6/VNOYIgNqCjmMo5Jk5RCE+JQRiYVGHiqnyOY4oGNlZa6MThtcRlhtJW3DLXaR3ToadkJnS7bSKV\nYMpg9tLutOoLXDHLKpS2dLs9jp88g3FBo0tIj7fQaofy1UvB0tJGrWXXodNd4u233wYp6PS6QTEk\nCZeyrQydToft7QCa9SblxvVrtNttsul+jYd0vPX6NaSEzY3jDPeHiLU2rVbwDF1a3uCFL2wSxzE3\nrm/z1vfeZP9gzM4hzCowst5MlcW5Aq8M1kGC49iSZmmpjywOubgbjH9GxoOOqShrKHjTlA/pflXm\nCKDfilkZDPg7/8Uv8r/8o/+dv/d3/2twFVcuvUWv1+X45gqnT52kmI65fv0q9z/5PGm7jUwGRO0u\nVnpUJIPbVu2j4BxIFXBtc+iSC793BPGI2zOro/XXtELCL+remrsjqH3Uivb+tlL0bvf/qIztbiWs\nF/fWd/tRfEVPA78GbBJi5q947/+xEGIF+E3gPoK36H/uvT8Q4RX9Y+ArwAz4Ze/9Kz/seRYD2+JJ\nufPkHI2L60GDNXP6kZKBfq7CmBXZOEypQDnB1uNO5ZAiwnuBdCLowHkDFrytwBH07/MCV1VBDtzX\nl+J8x5E0W1XYeZrXX9uHNZO4RkSvnlRJIWt+nkSJ0LyNoiDVIqOIFsFGLffBB9N6h61coAtpR2kE\ns8yT56BbCWcf/hS/9bt/GBrVCsYFNS0/HDGaDPOR51yIYJzhCYyJiAYoLLEIcm8QFmIb/CZ2d6bE\nMSz3EnwV8d6FjKgF3eUCoYLqr7cFUZJCLLHOUFZhx24EN5XWDEcjVlfXGI1Gwew5rciNDwToWg/N\nC1WrTkjiVpt2u01pHXllArhXClQcMVhZZjQaEUUR7aiNM8X8mtjfC4q30kvKEqQM8liRaOGdZ7g/\nRasWN7d36XZLNjc3eeeddyhLQ9pus/3BISoVjEcgY8F05hEaUDI4V81yZBwuq9JAPjmkjDwt5UkA\nBOT1ec6FPMpQ6i9SBK5yt52Qzwqe/YknsVXOQMPG2gpvvvE9TJmzvtQjiYJpdZZl8zaMUkFmWwjx\noaATFJ5reSxsaHc4hZBRUIIWHhXF9etoEojFCb46Ckb167WLUvl3XE/hb5lnhneu3TuvvR903C3J\nuZfjR8nYDPDfe+9fEUL0gJeFEH8E/DLwH7z3/1AI8feBvw/8D8B/SnCAPw88B/zT+utHvwnCCfPN\nKNmBrbWmFMybv54A+ZD6yM8gkkd8ygYy4iJRNzE5mnraQJoOASYGFwDA1BQlnA8wEGeQzkFVYYqc\nKpvgqhKLx/uSbqLmpXKj8OldwPEI3+iN6vmIXUo9x6NJKdEiwsHctELU8tHNRZAkCc45kvg4zlbM\nyirYrCmFjFMOx3tc28ooHWxlghsvvkbmK7SMSeKUSFa1ooNidbDKwcFBjRRfON+iOet1C6AGWraA\ndu1VUDjLxBsgQuGRuSIFxmVBOwMzKsh3C44fixgsd7BTT9qJKGczbs5m4Bz9zQHGBHPe48dOYq3l\n1q1bLC2vIYSg21tGyOCKfjiZEiVtev0B02lG3O7gEOi0Q1UVKNUiSXq0O444abN98xbD4RAdJZSm\nYu9gnxMnTlBkM3pLAzaLE3TaKUU2QwlJVVV0+yW2sjhXsnUp+Kx2uyXWO/r9PuPxmKTd4pnnn2NY\nO7zracT+DHw0YW/qSE+uYazn0o2tIN9OyJBx0JcBqhRpycagw3Q6YmZhkllMNQotiCYc+CCyJbyl\nJaGaFTx+7gR71y7zp1ff4b/65Z/n9e98i9lkyCfOn0WIgjhS7OzskFclzz33HL3lZRCKSCcoHRNH\nksoHJ3hHow4cHKYcIrRTREynHQC61iuEajJdWwe0D3M6FzmfAR71w5v9DVxrEelw14ztLnHrrhnb\nPTIPfqh6m/f+RpNxee/HwFvASeBngV+t7/arwM/V3/8s8Gs+HC8BS0KI4z/4SW57vvnXxSzuI9+A\nlGgR/imCgm7DB5WioXQ03glBIFJJ8NYFhU8TfBawDlsVmKqkzDPKIsOUM5ypcM4Ew+Na8C8IS8m5\nZtv8NXq5ADhUNTRFzZ2nlDoKcIuwlrDz1kG55scaYzHWU1kHUtZULYGpIMuCDVqOY+oLpIyZOcM4\nnwV/RhHef9rSKO3nhc9cx/TOU1q//hRIEtA6AK8qLBWeSkqmrgweBipFyBbIJKg+yBbjccboYEw+\nC5Ph/qBLu51SVjlKSVRdBqVpiq9Nh1vtLuPxlNF0hooTWq1O2NyEJG116HT7pO0OOo5BanSSopOU\npNVhsLxKu9sHJYlbKdOsQEUR/aUlhNKkaQsVJ8GdKYpJW12iKCaOklBCWkijwD7Mc0e/32U2Cwos\nt25t861vvciVq5d45923eOgTT/LBtR1u7GbcnBS8f22L63uHVIRMOwdQHbxKMB5mBUynhpOnT3Hi\nxAprq13aumY6+oV/OCSOVCqcg34CrspYbqf82Oc+y3defJHNtVVOHj/Gze1tFAItJLNpxng8ZTLL\nalZBMLPB+QDZ8B8OSkqpOUUtiqLb5Ogbhei7LsuFNdgEqoYNtMjj/ss4fti6/2HHPfXYhBD3AZ8G\nvgVseu9v1L/aJpSqEILe1YU/u1bfdmPhNoQQfxv42wDHjx8PlmRzsK0BQfD/rKVNnD9qPgK32UcJ\nEfT9m5IujkKKH37ng6Gy82glEASJb2GqehexYCqcrShdAa6gnO6TDXco8gkum9aS4R6tqadtTbAM\nr9choAqClc66IDzoStAxSTsJvqciGMvK2ojDC4hVjBfQbreDd0CR0Wq3EEJQlBJjSqyrsCbD2MZr\nU7O2kbK7LamKGQLIXRF6ataBE1gZDExu7V8Pck21U5IxBlFfoEqIWsOtmeR62hKWOp5pNkPFEld4\nytpYWgIzUSGswNAhxqG8Y383w8uKtVbC/t6YTktxaf8CSkhWT61iisDmWN84RhwlHDtxkvEkJ5tV\ndPot1jeOMRxN2Thxgr5OGU8zrPMst7tEWpJ0OrTKIAWeVxVZaVjudPnk40+wurGJjiTdwTIHB3t4\nqYnbHSoEre4ynVaKE5LpcB90QpY7ks4SVuwyPZiwtJIgtebMmdOUppqrD3d6PQCe+cxn+J1/8Roz\npxlZQwZUCCxBD3BcVbQEzKo2UBEJxTAXOGn4RG+Vp58/S9Lp8Pt//CdcvbZLamQQZwCiSJEoQZFb\nnnrsHK1IkUhLfrjNv/yN1/jpr3yJ117+NseObdBqKXZv7dHupewOdzh28iRPP/8CZdrFe8ksz4nT\nLkVR4aVBxxInJd4rZN0aQAbHJ+8JzBvrcfaId2tq7rQQRy5YUh6VpbKelEqlbws6c1qjq2VyFtZq\nszbv1mu7G1j3Bx9/SVxRIUQX+NfA3/Pej+54oV6Ie1OC897/CvArAI8++qj3ToRE6I5eG94iZY2L\nUXZ+QpyosTjUbASpiHVUg2SPpIWwJoBQfYPTsVSVR9k6m/MSfIlzJbPhDsIbzOwWRb5LmU+xWcja\nokiFFN9YpNYoFE7KGuwYniqUlGLhw/aUZYVSDkEg6CNC+zicv3C/fr+Pc47CHUmex3EaOKSmIrOO\nyWSP/d094iSi1ZYcP9Giu5VjrcNYKH0oMa21dWPYMcsD0l3hqWqZ8FYUk1cl0nsiW7M7vEPVr6bV\nEkTSU1UWUb8npGdWOCrviRNJVmQkdXasi5LBcsp4WrKy2qGV9iitw9mKfFZgbKDAfeLhFO8F08mM\n5aU1CmMoC0NuRqyurrJ9c4f+8gZRq0U37YKUVN7Taad4pVFJoAxFrZQsz/BKs7KxyWg0Ym19BS9j\n1tbW6C1P2Nu5RS9K0EIwEJpefwVblRwcTsmKjLjd58y5LuPxmEuXptx3n0JiKbOKg909nN2l1xtw\n4e3rvHN5GxvBsc0+v/TVr3A4m3H1+nXefvt9FILpcILPpxhviJVge1iwM4SLv/t1fv6nnuf8+RW+\n9OyzfLD6Pq+9cRkfxxyMStra8ugnH2Zvb5fU5zz7+KfRwnH18gV+/NlPIzy88NnnUAisKxjPRhhn\nOXf+YT71mac4nOYhu1YRRWbRylGUOToBEUV4woDLCUOkBMZaTOUpS4fzMd6BcQGkGwQej9Q0GtGJ\n26ibdfP+Ts7nnb20BmArFgLb4n0Xb2umrz9ivPjR7lgfP1JgE0JEhKD2z733v13ffFMIcdx7f6Mu\nNW/Vt18HTi/8+an6th/2HPPvP0SlOrpT0D2r02vFEdZmEdsWRQpR239VUSg1QzCp+3hAZbJ5GWuq\nAmcNHgMux9sSb3PwBd6aoNIrg+668G7uO3r0AakgsyyOwImBzhMEE12N/5JSEsUBXxQlMU4F1Lav\n8kA0b7XCz75GcltwUoPXdNs9DuWQLJsgEHS6PdpaU/gSb+vergdn6osstCqD7JwMnFmtoNfvUO2V\noTRyJigO16e314NBr0+kJqjSERNAnmhFVWah1LK2tlgDg6LyoSxOVERelHzwwWUSCWUBz95/hhs3\nb9Fqddjb3Wdj8zStdp8k7aCTmIuXrtDpdxhNxiwtrWFqjmJ/aUBZloFupoLp76zIgntXpIhIkVGE\nrCpSa2l1u7SyjChNSQW0+nkw8nHhsygyiXGeY6dO463j+tZViskBOo5YW9dY6+l2lri1fRUpYj54\n/xqbm479/X2khHMPnOLBhx9kcznlxLEe58+u8/nPPEEct3nvrff5k5e+zeHhIeM8bBACSAV85zuv\n8Norr/L4Iw+x1htAVpDEglMrYTK+dfkDlpcH/NgLz9Jup3zw7pv0uim9Xo9et02vlZJGMYfDXdxU\nkGUF59ePoaMYGadhoCQjZG3qkugEJ8qw4ctGzy9Iezk01gSssNYa70ASHN6AOcyteaywlm5fe83a\nvPPrndnXnWt48ee7rfcf6fhLmIoK4J8Bb3nv/9HCr34P+FvAP6y//puF2/8bIcS/IAwNhgsl692f\ngw83KpuT0gAOF8ng8g44SHP+tQgct7k6LnbeY/CNMgdQVQWRMMH9yQe0dYgiM6wpmE53mU73cCYP\n4ob29pMaXmuD/5HzHtURv1XWWVfwEA2mMOECqqoK37gMtWKkkrVoZi3RVA8SIh3hTAiikUq4fm2L\nIstxzrC2sUSVFXTjGGU9QgS3K4cEEdfS28HtywuPFwFkHKT/DWmdnnWTFGsMpjKsLS1z/7mYIjfk\nE1d/LhJFGnBXMgfrGRlQNfo8JwS/w0nG8uYKZTEmK0F3od2C1157i9WVVQb9AW++/jbDccHq+gYW\nxfr6OidOnGJ5fYW9vT0Gy6vE7S6TaYZxoOOUynqozXp7vS7WBjlxpRTegZA6oPYLCyKirAReagbL\na1hjUEKgIk2UJiyvrQeVjKLkVBTzxpU/5fLlEbaE5cGE5599nPG+58bWDj5XvPnaHq3aqTHVGR+8\n+RLXL77IbFawcXyd5575a8TC8/CJZT733/0Mw+GIr734XXYOSvLcsHNjH1Up8mnGO3/2OmUGZ9YV\nabvDY088wSSf8cSTT9JqJ2xvX8eXM5Qv+fwLX6CTrnLp4gfsbd8im45ZW1tBCMm5Bx7kkcefoLCG\nyksmBwdIH9FJVphMJsH31eQob4Ium4qQ9XBG6rTGrLWI6lLU+kCtcs6h9BGOrVmHDYg6rL/wtXK3\nZ0++Xo++Wb+EGKk/ItgdrZ97O+41YxM/7A+EEJ8Hvg68zhF8+X8k9Nl+CzgDXCbAPfbrQPhPgJ8i\nwD3+S+/9d37Qczz26Cf9v/rN36gnj42w3RElQ9S7j/S3Z2bNzw0eJs/zoHaQFcxq7X9jLTL4R0EV\nBgCmqpBmEqZFxRSKEdKXFKNdvC3JJgdMJ4cARD6YgyRxHMpdER5L16k7LgwhqtgSa02DrEijwPFM\nWm0cIliWRZq21jgcxlUUIgQ4ESfMipK9wxFeRFjjcIUFEXoVs9mUyTjwM1979RUm05y1tT63DuDa\n1oitXchRzPDkCIzwOBkcixAKZUF5g0aQEGAIKy3Jj3/+WUbDA9556x0eeeR+kmiFP3vjDW6VJaPS\nMXGEle2pbdDqoCYAJJHSrCWetqh49oFljq+2mA1vICPPxvFN1h84y2Q84/BwxP3nHmJlZZ12q4sx\ngcVx6tQZbCcYzbTabWZFSZIkdHsDDqdjkiRBR1HIiF3TOgiljlIKY9zcjb0oKrrdLtYL8tkEcFRF\nialyqmIKPjimz2YzbmxdwxVTsizjjVdfY6mzTLfdpxgb/nljG7gAACAASURBVMMffZsYeOKTT3Lp\nwiW+8JVn+d5b3+Pi5ZssrWuGU8NDD5+l015mNBrTSfs4XfLwww+TZQXf+farCKH44o99matXtvjS\nl/46f/AH/w97u/v84i/8TV761je4sb1Fr6PZ3dum1UpYGvTo9/scHowwxnGq1WF1JdDapFaIWPLQ\nY59ksLqGjSMssLSywsz5WtwhQuraxFhqVBRMURpNs9x4VNwItya0W5vhShDB19X5AlFLfAshFuS4\nF3kE84CxGBvm39859NNSfej3/o6/FUKwgFCpfX3r+zeJQxMMXZhiHzt5/8ve+6d/UDyBHyFj895/\ng48maX3pLvf3wN/9YY97+9Fgvo6ytLs87vxl3HUcvHDS7pw63q2OL4oi9LuqClcUYHOKbAr+yEd0\nXg43kuDWAZZIKUSNo1PN67AW60Gigv4YofyMjMEgiIRAuNCoj5KIJIqp8jHWGmbTafB+NAZdT0iF\nAuePKFqNe/ra5gbRwR4AG5treCGZZIdk08CkFQujjeZ9O29IdEyqFX0taQnH8WNrqCgmilNOnDrG\n6fvOMRo7CmvIiqBQspCMNp8CAdQbzDmUA2s9VsBoMub0sQH7h57NYwqlNEWWc/+5c+RZyc7uIWna\nAR8waXErpXIWb8UcWN1ktYvmHlVl0Tq4GFlzlL2HibOd31epiDRNKY3DaF27Ux0pqkgiXP15bhzb\nZDbcI44TTp89w8H2AVtb1/n0o8+wsvI9zAzW1tbY3dlhd3eft9+6SdIKGeL588drVY+Q6QyHB3QH\nKVVecLi3z/KgR1kYimwaZJz297BlQawV73/wNoNeG8k6o8keRTYjTRRJEhPHEWU+Y319k0tvvcfl\nSxfZ3b2FiiRf/fmfqz1NswC+lZLZbEa6tMzcKarOqByLVY9HyiMo0WIVhA/yWl44rLPBTOkvcPwg\n6Me9Ht57Gmer+ePf42N8LJgHzSRGeo8VR0HLNvuF9w3I7Y7afaHHNn+sI56cEMFTwNc+hYiAanfO\nEemaOyqCRZsrG/20kqrM8cbihSdK9EJQEzjvmBUF0oXdy1bBSbySQUo8jdIgN+QCydtbj4p0UHhI\nIhCesigQVtBttUFHlHv7eFfR6M1LKdGpxlTUblZirsN23333cbOV8O7b7+EpwEAiIZDCBB6H8eBr\n02bvAzjZuIpZafBVKCF33ruK8Y5+r0PUW+HtKze4tDPk+tQQ6PjMBQfDiQ2u3Q6H80GQwDhPVgbA\n681bhmx0ia98+ZM898IzGGP45ssv8ebB90mShBOnznL67FmUinA+mI6srW0S99LAgXTMYS/OOdIo\nxgkoqypMvHVM5UPPMo6DSKYQgrLWHIui4DpF43cJyESQJhHeJnhv8S6h7T1ra2uM9rpkWUa/0+fF\ngxfZvnCJ77qXefb5p/nut1/jT77x70l0xHt/fJ3PfuFJnnrmKa5sXeTK1hWuXbvGk596ijOnT3P1\nynXSTkSrneCc4YUXPsvBwQEfvP8OJ06c4j/+yR9QVZadvR32d3so4RkP9zl+fJ0zJx4PptHDIa1E\n8+D9p+l1BwwvXqGqCn7si19glk9ZWu4RRYrKFCBEPekMXhBa69Brq9ktSImtQk85CCY4VD3JbNZO\nEIRQwX5SBK22Ztb251u/d598Lh53ZmzeN0T5hfsslMF3BrZ7PT4WgY2FHpvyYOvGvLce6498RZs6\n/6Mak00wE/XOPs/YhJgL4YVMwOBNhbUV5XRClc3AFJg8w5kKW1aomt1QZFnw93SunrqGNFtHYXgh\narUNZBtrDNI2/T2HLSqMzMlnltlkwvBAonUwuE17HZRL8DI/MsFNEixhQBLE3wRxklBV5dw+zxvL\n0tISx05sUo4mWKtp3b9Mb7fiYDhjt8goHEQOrAysikoJnAlZltUKkbTRznB1d4jfOWQ4CnLch9Rg\naB86iANdU5oEtYlu83kphK/5hrX+XNySaO3oD9b55p9+m3a7xYP3nQulYRECchTHtLs9UDFFZcid\nw5cBitNqBSaBMUHFNriBwzib4oxl6qbEcVDZ1TpAbWTtbalkRNwg6KNwn3w6Cw1nZ8kzj3eKVtpG\nytq6brBCf0kSRQnPvfBZHnjwQb7xH79ONNxBJ4InPv0QWVaw/b3LfPe1t3jng4s89/nnOHvfA7Q7\nPXZ3brK2usx9Z46xtLSEEIJsPOLapQ84f/48OzeuYcsxS72Yra0tsskOW1feYm9vDy0kX//jVzl9\nOsJbR1kGn4cTmwHuud5e4nuvXmb75jV6gx7tQZuol5J0umgdpthSeGRUSxER+sY+aBAF0G29nqSU\nyDiaY88auXXvQhvE196s4odDWn/wCl5Yj6IZ8i3cPv/vtmrLwSJXlMUe3O05mnX3lrN9TALb0RjZ\n11PPuamq50ORfjFja46jJuftJhDS+wBuxSGkrzkhDmNKcGY+5XS+UfcI0zRUGELomocaekx1eWQr\npPNh8tRow1sbTCwIFJlIa+JYkyZxKFF1uACtKyjKjGJYktoeIooZDkeUzpO0O827nO9krgbmNhLh\nRZ7PJX+2L9ykMkEQwBcG4Q0dJdDSIyxYGQyknfMYQrAqjKU0M9pJRD6aBEHN+kx6Ge6jPUQIWkJg\nhAjnCzA+BLfKh9xNBsYtHjg8dMRL0O0PyIoZw+Ehqxt9vAiZ5u7OHmsnWngh6A/6xFUo3RugZ2kN\n0muaT3VxaCSlvE2u2hg35wdLES7hUM4qUG4OV0DUi6ceMJUmXANSanr9AaasQGpW1teIoohPPPIJ\nnAk9091be0wmE6yD0bhge6dgZeMCjz/5CM6KuUOXxDLo99nZ3eXE8U3G4zFXr1xi6/pVTp06hbOW\n48fW2Fhf5uDmDmdOnERKgZI3sKVBRRGRDJl/mVecOH6KtU6bZ589T6vbJitmdPs92r0ucZIg4jgo\nxYgFypQXc+6yUFG4CgXzEj+RMTI6Ku9Rt0Mt7gV2cbfjbsnG4nq98/s7s7s7j//fZGxCEHiePjif\nQ5iqFKYK9CaowYVHOk/AHA+2iItZ7KtYG2zvZKTAisCP88FXFBM8BaTwOFtgyxItwIlacco4rHNo\nb8CHVmZVlPOJbFOeunmm6QKZ3NYLEoEpKwqRoaIIR1hwSRqMaX0UI+IUhCRJWlAajHHzbNW4YJxM\n/XhpuxVwdD5I0DjnyKbQG8DG+jppatk/HDMuQ5/u0vY+49IigXavR1EF+ETpPIkKQaHV7SKEYDYN\nXqmxc6RAX8U4W9KuCmKlKayl9KAjTeUdM+/JXUWkE6QxREKileOZZz7NlctXeelbr1JWMMuGPP3M\nc/T6SzgpGQ6HTIsSI0Kz2wrJ0mCAMIbZLJ+vrVargxchi+i1u3jvyeoszhiLd8HxKizmkJWG6bfH\nWU9hSoQOCPtgJhwWSxLFOG+wLmxixgSoyHC/RGhFZ9Dn9e+9xk/+xJf52h9/jUc/9ShXfvcbLK2s\ncvXCDq+9/j6VccSJ4oEHTrG3s80br7/DuRNnSKRmdX2JP3z5VdT5B/jyF79IkkS89NJLLC0t0V9d\npu0TvvGNb/PpJx+jFy0zLTP2d/ZZ7i8TScHWxV0++P4urQTSDqxs9nng/P184tGHaQ/6VK7eAFD1\nZlszAgRz2p4TIdA1mEZrHfFCGeicI8sy8BYdt3BYjC2JdWuhof/h6WXz91J8GMGwKG90t2B0J9Jh\n8efbMkXRxAMx39jna93dW5D7WAS22zIvjgKWQmB/SFPybruElBopw8UrZN1Ik4sfVAhuwSbMUhsj\nhGDVUKxqcrI15VGK7cEJERykZDCbbVx0lFRBNlmFoBYa4Q4tRRD4k6CUwNsq7LhOBycnGXpLCIXT\nIXBIKZlVed0YFojK1qR5WbMFLFES0+pCnsPly5fxrksxK/DWErcizhxb5vK1AyoHRTYjqek0uiox\nziGcwJcGRBhseCnRzqGBrhJ4K9A4kgCJIxYiBATn6UaayAb9MIlAS2ilIaN95dVXWF4JBsFxHHMw\nGpJWHVSSsL66joyTegEFkYKyLJFS0h8M6kBk6rIpcBybjA2Coqu1HqGD/JBzoHVtLOIhjhOMa+hz\nNRVIEPputdGL9AodgXBhfF0URSjRgwMJabvFzu4u71+4SFFZnn72aa7duMEDxztcvjHlzTcvcPbs\nBsfXV+h3lrAVvPHamzz11FP8uz/6Q77w+c/z27/9+2xv3eBzn/sc9505yyuvvBL6hvTxBv7fP36D\n+8+tcv3KHtZCOdtn0OuzurzOpeEOUTe0lE+ePsXps2dodXuB8K80kQ8be14WRLUlo4w0OtJIqfFS\nUBk3V8ZthgXyh5Sad8uiQtBcANPewxE60vVjc5QQLn4vCAnM/LhtIHj7893r838sApuAOojdntYq\npYjqsvRuo+JFvXQWdoRG2QGoJYpDT8bJOtDhkNbihcPZElsVOJPjyhJvAyFeiVDCifqTkP7otXpX\na2o1z+ehIkAQav8SGuaD9QbpatqV9SjpQ1/B1cYZyNqzlPnu1/RCXMNEiDSiEkitiIkpy5xer8cz\nzz/B3u4+L37zGpox/W6fvCwY3Tqg8nBqqU1ZWA5LizEVxoayOyxpj8xDltRV4aLpRAS5IFEitAcP\nkS6DQS+eNI2IkoS8LJkVhqmpAIeyjljCjauXOH18jf5Kh4ODPZJOG+uCLPWxEyfRrQ7UuClbVVh/\npNmliyIMFlyggIWMKlB94ihFyCCX7hxEUVKfp6Zk9+BrIHR9DkOpBkonRHE6fx7nKryUSOFRskVX\nCLy1RDrl2KmS3mCFRMacf+RRuq0237+4xVf/xs/z/Tff4ubv/HusE7z37i0uvHuL5587z6CT8u2X\n3uHGtRusra3x7lvv8vgnz7O2tsZv/Pq/5tixVarKcu3aCFEN+fKXv0iatvlXv/n7jApYSiFWLfBB\nYmi5H9Nf0fSXl/ixL32JpbVV9icTWoMe1nmkjknTDsu9HplrwNjiiMMp5DxAwEKAd0c0p2bSH9oc\nt9/Pez8Hny/2zOZV0cIabP7uL3J8VFm6OGxoXtO9HB+LwAa17pprMFLMcQZCCKQLqrVCyw+dhLv9\nLISfBzZhAoYM4XGScMEHfSK8s9iywJQlrqoQ1gS0Oh7hAw3LVXVwWXz8mmMZcHR1hqkjtFZoGXBu\nSjX0FInX9fvQggjwUuGlrLE6IpDJlcBJiS1tMLz1isoEuaQo1thGvURolNckLsHKiDMPbpIkx/mD\nf/Ntdg5H3Hc84dTGAKE0W1v7uNzTlaEXJuIIKyC3QcyxncYB3e+C5dqShs4gobQVSOj2O/SXVhiN\nJgwPJ6RpG61jlmeO3aIkSRRZUdGKBZsrfXZu7tNrJVSF4+zpY3TXj9FfXkEoyeFoxFLcQipNHKfz\nLLWglqKuz63WGmNsDf/ReBfKSYSYy6K7+nrw3jOb5nNy9+HhITKJjq4nwDlLWdq5dZ0z9TBJeTAV\nKklZWlun2+mzsrRKmZXsbe/w8CNPcOPGDaIW/IP/+X/j2Wce5vkXnuGbX/s2Euj2FJNhRax7rA4s\nN66OSFTC4eFhaDnINg+cOcfFixfpdrs8/5nHmU1LXn31VTqdDl/96peYTjLefPNN9naHDEcZCOj3\nobKax5/8NBsnTxF3WlDOmFUVKk5ot1pYJAfjKXErrd9rkNFqrCFb7S5Sq1rdw+KEmvcsm4BlrUVY\nWw/JmAf+JlBCYCjYxeACc6rU4nr7iwS3xedtqs27laL3Srb/eAS2hdpaeo8T4kNvpAHhNvdbzNju\nbFyGRSHn2ZsEGp/JxXK06VE4b3DOLBi+hl6fdVVQg73LOPtOWpX3fj7g8Qv3c3Up5whDEWRI0oU7\nCpbhNXisCLLPxrvQlhdH2D4v75g64SkrS14MidOEXg/KQxgdFiTrYaELPKkGLzWVNXiC85UUmkoY\nBp0WlZaUeYEznlYEylusCxzTWTFFmwTdUgxEn8lkFl5DPgMDaSSQSczm2oBjGz1u2hEbG2ucPL2B\nw5K0W2GqbRx6oT9qirq8F4oCOw9owHxCbK2dk7SFDzl3E9gWd3Ln/JyupnU8p6Q1LJCyrMLnoRyy\nvk1rjfACK4IsVhy3UEKjhSZWCXkn56lPP03xyYLO633+3deu8dJLb/OLv/BVzp07zfUrV6kKy7Wr\nW/Q7MSv9hJ29ilOnDEVRMR5XvPPOe7WqRkyeGa5fu0mv32E6HXP58pBLH2zx2c8+zWee/jRXL18m\ny6fcunWLOBGcPnuGlfU1gt+qJhIpjrAJHQ7HRFFEt9ujKILuXKwVoqZCBbn0CrUwgZRSYt0R9XAx\nO7tbNnS3QcBHJRR/0Yxt8XHvfI7Fz9n/1ZyKCpC6LvFCmixQYWJZ/15IiSB4JCrZ4NQWxseisVaD\nyMp5lqW0DgELh0aDs+hCQG3AW5gZ2hd4Sio7RgmHo6Ass7AIXYGt+ZeJjhEimHQ4UXNDRS1yGSXI\nKAJVX2R1M1epI2YEQuCiUBIYIXDaUToLkcIaR24s6BjpQLpyIetwRFHQaSuyCmMk1ocMUXhPXu7z\n43/9cS6+d50L399n/6ZDuBkb60tEsWPck5iyROJJY83NG2OOHetQUZKXZZh41lXJYLVDtjWk04Jq\n5rnx3h7ra6tcv7ZHJODY8T47donMj3GzGV/+0mP0ezH7e1ssrw/Y3s3ZPL5Et9tFpz3SbhICmnbs\nH+6E6XAkaNFGJ220qKEuOuLWzi1A0u32qMrw2UZRghCKzM2IiAnqER6TO9I4BQWz2tA4SRJQgmyW\nzYObkBIlFXkVaGchqDki2UIn4I2lwKKjFBknlHmOcn2KomA6NvxnP/Oz/F+/9nsI4Puv/h6/8NM/\nzeuvSl7+s8tMD0vsrM2ZfodzqzliEmNHilbS4tbVCbMcBv0WWVFx/cothIOl/gotUZCPM77zze+T\nZzMcECdw3znNQ584R++hhzn76Hmi5QE+TUjosdILr+lwf4hAkU8MqAaErIgiiOMU6z2RV4iKmksq\nMAKkjHFWYoXH2AInaiybidGqU2/GKnBJIwne4epeM7i50oevuaUNfMMJV0+f/fz2psqaT13r/wVg\n8EKCQni8eZCscavWHNn5NRudd+aesraPR2BbnJLU/xoZlbv21uY1/2LvbfF+EmvCRFRJiTVF3VMw\n839KiKBAkc+oqgLpTe3QHfo6Wuu5K3jzHBaPqrMJSfOB3K7lHprdRzCFBnsHNfBW29t6HloKZlmB\nMY0YoMe4gDM6QtWrefaZJMmRMCU+9M6coddKOXP2GJff3afIM6SIuLE1Q2iYRRDXXiZ42NxskQ9L\nSlPhBPSXeshI4wXcuHbAxnqL5aVVLr63xSx3VCa4PeVFztb2iMxBO9J88rEHyPIpB/vXwZfcd+4M\nTzz6GIPBgCzLqLQIDA/piURE0u7g64FBURns4RhjctK0Tb9f2xcaQ56VAbqBJMvzsHBbCaUx4Bxa\nxTiXM5vMiOMYreO5/+fMFcF6rtU6yl4iPT//ELLCJAra/XErwpYVxpZAyPoGSyvgPHl/xrVLV/gn\n//Qf8MZ3X6YYT/j1X/23fP5zj/GFH3+aP/3my5T5hA/eP0RryVa+QxKneCuQTtFPNdk059B6OkA7\nVkzH+2GTjBRpSwe4joAogcHKMifPnGbl3DmiNKkHGwIRxUyn07ABtFKkDyKplQsBIJw3h6M8ymoF\nc/qT8wYhYwQCWwXxUOnrmEWoWIQ/CjDWhmAGR4HNe4kQLgxhmsyqbsfU3843cAHzyeqf5xBCzOEe\ni+vvXo6PRWDz/GjYljt//kGDkqZn1wyij4QKXFB+8Ha+G8jm8X39IWLrZr4N4K76URbTdi9ACjUP\nZncG3TtxddDoXDU9heY5F95bPVBoJrRN8GuGIR/GAXmkrNUapKXdS9k8scz+zoR8JsJ1CXS0YDjy\nRAJaCQx3M/Ic0nYA1mIkWZbjI02nHbM0WGU2LfBO1uwPhXGOsgoBcr0/oMinvPH6B3gBnS584XMP\nce7+++ktL+G8J0oTfASz2QSkp5f2aHc6CK2wTpKXFbPZhMPDQzqdTs06iPHe1OwD6pJYhcVaB6XK\nWspiRpblc55oFDmmdhoGLpGiqixpErJ8KT2+HlI0m6VxDikrtFSARUiBs0GmR6ggke6EQaqIU6dO\ncbC7zebxY8h1y9/4xS+wt3PIZ5//LJcvX+XmjRHZyDBINEVREmnIsgneQhRppnnBsgiT71biGFuo\nrCfShpu7I9oB8QMKWt0OaxubDNZWiZMWFa5uIUA7iuuNLQIv0dahF9zMpNSBdWAtQrm5wYoQAlQz\nWRb4MiAAFj0EbltLwiGEhjpELbIB4O79tGaj/qi1+hc9moB5L4/7sQhsUOuI3WWa86HpCIuNxMXU\n9OhNO2dIdITFYmZFcLgRHi0cgVhucLbElDlKWCwGXIUxVZBrFoK8DKWqkgJ86Oc18AspNUpGdX8j\nCQvvR3iP8wugzsLCBM8h616axOFthTUGqHtBUiKVwjS2fnU/znmPxaKkIGknTEcHxCrmU08/yMUL\nW7z7xhamAm8EjD29BipiHKY0pFrjS4t1it3REOegjAX9QYfLF3e5fCWn14YkVuSVZ5yV6AjWTqwh\ny5LhoeHUqYRHn3yQ1dUlzj14hiiJiHstTA1s7qSK9qA1xxPuHuyTxC2SbhePI04jlpeXMcYwnWZE\ncVBGqaxB65hYa0rrmGQzbA6tVouqMsxmGVVeMBwO6XW6c2Vis7KCKS0OH2TgvSROk+CYbgxFLSMV\nPDYjdJKQzyYBZF1DjkHj68FPqoIXQxQHl669mzc4++BZPv30U7z31iW+/FMv8H/+s9/BA3lZorVg\nfzhjbaVFEsXs7Q351CfuY39/n1s7I9aOp3zykdPs7e1xMJkgxo64BY8/9TBnzp7g4cfPc/r0cVje\nIE5TVBLUg60IwRnfeBs4ZJQEy74aIkMNWFZRvJBR1cMpEYZmwomaceNBREhlaxpfAC6LunEsGiuz\n+T81X2v15bvQYwsy/n5hg16cot5+NGCuxZ8/eq2E5wvTW28d1v4VLUXDt3cPEXdPS49G2He9f13v\nO19PQet/oga5emuwpsLXgE0ta1J3TaAG5lkXC9CS5vQKIUIdIcX88wqv8e6I65CBHeGrQpkaMkPh\nHM5ZnDUhwC4wMRZ3wyZ7S5KEkkClMbbEekNZGWIZk6QSnSrsLNBmKkB6hTACrROStB0I6N5QGUdR\nQJoKTh47zXQ2ZDadsdSB8RRiLRiPA+WqXSPhy4MZywNYWu6xtrbK0sqAbq+HiCReSdJOWp+3EHw9\nYEyFd2Ho0Uzr4jjmYO+QPM9pt7vkeY5znm5vgHECoQSJTgAY5znzpJoQ5La3t+l0erg6YM1mM2Qa\nB5meBaHDhjsc3XYOg2oIUiOVwBnwzmC9C71dKRFSMBkf4mxF2mqxefwY+XTG/uEe6xvL3Lq1y0/+\nJ0/z9f/7O2QFPPboKa5fvcZ4krF0skU3g6vXLvG5F55le3ubt9+9whf+2lna3cd4/a23KaxlfXOd\nk/edYrDcpzPo0+4PmElJZW2oCKRACkVlLdbZOfsl1o2XhqayDQpA3hbUXI38sN6hrMXVLY5AZjlC\ntjnB0eCMxUnl7TQo72FRo21xjSweHzUpvVcs2p1r6K9cj23xFNyp0Hm3k9dMvJrAFgLAQq9LOoyt\nfUetRTpPZSpcmYHNcTajLKY4U5BnYyhzpLBBituUARria6lyHziJoe6XKKHnCG9FPThQel46NnzV\n5r00lCFgDq71SJwMWC4nAVuXv7aiyjOsMYhWgpAa5w150VgJqiOdeeGRsSKSMd4FwrjHoeWM9hIU\nPpQwsVYIo8gweG/RlcRXtg44oY+iFDgjGF+4QRQLqioAPFMt8S5kUEkSLEJu3cx55FzEYDDgE4+c\n5/jJDZZWBrQHXZJ2i8JUiKQerHiDKaCsPDppgwrnJ5vlVNaQpjDoDtA6Zng4RuqgHTadZkRJi/Fk\nRrfbI+12KX04/3HSoiwMyysrDMfTcP7j0NCe5Rm+qtjY6KB0Y6QdaEZpO0YUwZNBKBmYGKailSQB\nNC1CNhw2uAhj6+GNkrTSLkJ4bJHyyBNtxsMRr7/yGivrA9bXBpxcGbC3t8effv27PPrEKe6//36W\nBj3efett/j/q3iTGsj2/8/r8hzPcOSIycnpjlV/NthrbbYPBagxCQiAmsUDAwgjRolmAEBIrvEJq\n9Q4asQK5xQYEQrRg0Wpagu5VY9nd2O52t10uvypXvXpD5svMmO54xv/A4vc/996Il/kqSzbWq79e\nvIiMuPM55/f/Dd/h3Xff5Tf+n7/Lduv4V/61b3G9fooqHvKr//6/zUfPnjE9mTM+XYBW5OMRGx+I\nhRHuq7VELVaNZSFYvL7tiK2ncy2ulfOraRpUIrprp8mKEcYMkgrgQ090QXjDjcd5J1anJHaLljJc\na1IvV+7pfZ+uPX24ShPyNnLAuxllCDEcguBQxt5JRozR+wHf/sI/QkQMfzHmIE81UMWGzO111xci\nsMGhV3C8XlWKHt1ir36hNPsAEkPYu2a3bYvxLcH1xNATfE3frOjrnXh5OgHnajzBtTI1zTQhKIR+\npfdB7ZChiVELJnkzvqT/F2NMXL2DWGYIEsBiDPRRbAGj0mij0A6R6NaAUahEbj4+qJajMlwpOieA\nVZNPmC9A4ai2K2wZ+MV/5m1++7c+Zrny6CyIxn2AmpqITkj0dMJF0CEw0uLqlGWargsoFTAKrFYY\nEyizwM9884R7Z5rxuOThm2dgnEx3Y49vFaP5FJ3J4MXVnm3VEtFMyhlFcuw6ySTAbzYbttUKFSJ5\nUVKOx6AM18slixOLsoZoNF2iU1mbJs2J8H52dgYMNJ9I37eEENlVFVlSCvFIz2xovA9QEp2UYbqm\nEsXZ6LFGyvXetbiuTSorOXUjA4lyNGMyP6McLfjq1xtMVDz96EPq9jlf/+bb/PwvfIWriwsuLy+5\nuLni5//pb6KU4lf/4r9F3/f83j/+fS5W16hxzrJdsweclwAAIABJREFUE0uFt4qQG7JiRLmYoUwG\nxVR4wT7geie+qYPTGTLEsum8MyajHE/251dg6Pdq9OBni+Azo3e0TU0UbWR836FyUNHuz6vB8Ohu\nW+g4IB33w39Ub/x4DdzV2wPAzy7ZFG+DdEHz40DZvjCB7WXrFo4lxtupnfxlPy08bsLro+g/eB2o\nGFHRQ/DSX3MdwYsDFTEQoihBREIKasfBVKfmqgb0Zw6Mj3HPIT1usg5N2ePbx6gZ1HwDXqheA6hX\nKYy0UlAGRA45Sl/QgNJRen6knTJYTIiUdkyvNDG0TKeeqtqijeXLX7nPhz+84PpaWsDKgPGAtWny\npZJ7d+rfpY0hpKHLxGayc0aPBc7mE84WY66unuBihy0Uo+mIyWSCyTIxpbaWqmlkGuoiSucYrQkY\nAR13gbrd7TXVINnExUb6RFGRl2OyUmAiAx+0KCdCfUMy4N4fhgFBa4rMJFUQYSgMsuw6AbWjgjyT\nYrTrOkIrG100BqVTNylAVB7Xtfvjn9mcXjtQ8h56B2hDkZe4tsV7z2Z3zQ8/avilX/olmnaEc1Py\nPOfq5gUPHz5mejKl6zr+qb/wy/zRH30XtGZd7zg5f0hA2AQ6y/FYVIC+kyzFDZNBBSokQG06z2xx\ncDbzqVrRyibxiDt2izHuh1YC4/Bo5fHBoYNNmd2gP8jnBq27GLcft7wc7rO/Hl7SnX7VY/9EDg/u\nRvBhYnnsT3hMhB2gFpDecDiK7r2n6do9eJO+w7cV9foa12xpqjV91+Bcj0q80Rg9WkPwnr5PZWVm\nsTrf99mszbFaxunaGIy2aaeUNH54LcM0s+97rNW3lUuGSWlM9mXeEbQRld0EEzExHh4wrcE39fik\n6HAyHKAAFfEemu6aYlzg+5Zv/Lk3ePNL5/z+b/+QDz8Sye0IRNfJMESQROjUu2ppKayB4BlncO/0\nhMsXF2jgzfM5ue64+OSGh1+b8ODRA5zqiCqw3FzzcPY2vfd8+umnBCWYshgtk9lJYhAYopUJ57Rc\noLXm+uYF08mcGBSdd5TFmKzIwQqkJUTonfTilFLJHVMu4BijmDIndzMXHXVd49tAVTU0vWM0GjGb\nzeQ4Wosxcr50LhC7SjIIonB2oyO3Bt/37HYb5tMZ1kLTR7JiIj25iGSfkwn3H3quXzzn/Pwh7777\nJjFGPv30Cd/5zvvkRcHp6RmP3niLYDJinpMXBbttw7tf/wY2yzh78JDae4rRCPIcU5SoPANlsLpg\n19Q0XYLKZBnXlxf0rdD9MmM4P7uHzbN9pjYqJzIrSMDvsK8YFD0dJlh88EKpCw7vHcF5lO4JuUcl\nXObd1s+wsQ81o0mNzn3pGCNaDxmWfClEeuzuehl64CXZCnvHK9jr83l+QktR7w/2e8O6m7G9JLbv\ny7RwrJTnepkUpfv2XUtX1yyXS0K7o2kqfN8RfRoohADBJbs/RZ4LF1FAgqKIq5SgwK22+xNmkFB+\n2TpOo+/2B4d/932Pj4GgjZiWKINR4FXcY+huUV3SOj4xWufYbDbYoLBac3Z2Tt1eU47G9J1nOjP8\n4s//DPPpD3FBcb3s+PT5khAiZoCrhJ4YIR9N6F2N0nB2ckL0DgfkwKiwEDuig/OHp7z5zmN63zFd\nzNjsdjx//ina5owmU6IW+lOezzE6J0bFZLwgy/KD/0R0zGcn+LyWvlvXJXiGZn5ywrZqUNowTlJO\nMUJZjsgyUeatqko+w7aRiWcCVPvoODs7EzBzQubPFvN9v9OlTUeyygYVIkWZoYnsNlvatpUGexzR\nt56QZWT5mOBB5MNkojqdLGgnFauLC775tW/y4Scf884771COpnz00Uf0XvHi4oa+92g7oixLismc\nt995h9VqRRsCpiiYzBd4LLYQTivako9n4pfa1JKdupYsywQO5Px+o5RzNd8PtCSDVWm6yd4vNNgg\n2WXr6boGZcaJ0XLwF923ceKhdSLPYTheMQyVBzAEp6gHzFaa7qgUmOLRF5DECuQp5ffqJRFokOo6\nhkv1uJ/AjO0lY+K9vtQAjXCO4A8BJkSHjwrnB6mjQ1bUa0swIpVNaInthlDfMI41TbukdBW9XuOj\nx9PgVE/UEeVktB06hdU5WmnQhTAYlGQKISqsyW9NkKzVKfsRCeshBFmrMVYl6xOEThV6lNYUSuF6\n+WpcEG370Yi6qQGLDg43NGhNhg9Ssqp0QpV5QaYNNjTYWFNVFZ33tI0ihBGulcmvMgo//4STL++k\nkT6pGU9heQUnE4fyMLJT1ust2+WOGOCrP/Umu92Ojy9ueGMKTQeXl9dEBYszQ1GeUleRs/MJP/zo\nA5QyPHzzbSnPQkRFKw72ucYWBQpNzCxmNNoDnwkGXcxwKKzOyNqK3Ig6RQgOm2dEDF0QVY6Rytht\n5ULvnKMoJ1TVDkxO8IGrmw2z2QytA21bSyM8y5jPp6J1ljIbpRRN0xBrB11AW0W1EjHLpq3Ic4vV\nGb4L2KJAB3BbEbnUZclO9WxCTa8qzGmJWc+IXUUoS252O/q+4/zeGZdXV5SjOSrXPN9co3aGol6T\nzZInmC3ofWBTN6iswKoJfdT7qafJLLrRaKPJs4zdzYqY+sUxOLzpqe0ZwXhsNhKtPy2mygoFMWBV\nEFXlbor2O2Hb9DuymKFUQR4tRIOJwiwghkS5A0hKezGV+6laUsZK24YjCXcOZHq5ZxKIVSIDNqwh\ncdhv+NaQD8T8/f8OPbZ0J0k8+PHK3i9EYIvw0szk7tpzDZ3D+Y4QAp1zSaPsgHlx0dF3LUQPzQ6/\nW9Hu1vh6R9c2RNez2+32O4IxRsqRwWT5WDVkSMn1APtIt0/mIkPgHXTT5DEHcChirqGOSlAjr7Hv\n/D5we+9wPjAZjykyQ+skWzNWPEttnpMVgrCPqbdU1zVdaLBWc3JyilI69ZiOTDBSXyX6wDif0TQd\nJt5gT0vsly312rFdbfnB97bkBs7OpVS8XD2hzCxfe29M1AEfA3ZkKMclJ/fO9ubL3nsePHgkmWxq\n1muTMZ1K+UkxZjqVUjNG2RisETjGAPfYbAMx7ujWjmg8QSHMg6wkywuMtjjfU0dREZbJsyKEnu1u\nJQBgIMsVy9UFZV7iQ0vvRmht8Xju3buP7mToUBQJdzjKiTpyfXlJVe0IITCdjIhRkZcjnAs4V1NM\nRoxzgYbEGGmSSZAKkSIvmEwmfPLxJQ8fPuTDP/4Bs9GIiGSX2mRYJUMbrwKzrOT6+hq05d79B0wm\nE5xXe+ZEW9ecnJykY6dEVThG1psVV1cXXF9dUOiAVbBZ54xcz6gcM52dMp4sBIiLPmrLCO4yxkhT\n72jrnQwiLNzGgB4qjB8VPI7LwWPFkFctFTlwqO88vo6f/d2f1vpCBLa761Up5wB1iFHgGILSl68Y\nIy6ZsDhf45sahUe5GvqG2Dd41+BdR/DdXvnWeUcMAaOOVHc5UKKGXpcxBmUNBnPr9Un5E8j2gUvw\nT0NjV4jQ0oszmRgtExWZdbjNjp5AjD0R6aOVZUmoAv2dtmrXdcSoyEyyU8tyJnZC3/fUVcOonFEU\nEvAGDNmw8vwElznG48B0dEK1qlndrNBZ4OGb55zdm9NULV2/o28a5meW2WzG5YsbERPOYLaYcnVz\nw+K8pO8nZFmG95HdbodzjrMHmfB7tVykPkbOzheMRzP6vme7aVi3W5RSzOfSXAdHDAptCubzE+rd\nimqzpQ+ecjqj7Rv67YosyxnZEoXDmkjT1lxcLHHO8eLFM6p6u1cVdqMJN0vPaDQCNE1zn83qhqwY\nMZstxJvUGIrQ0zQNzy9foJRo7NnsBKUN1uT70lVbS1QaFzy5LlnMTmj7hmojz1+MxowmU65vlrz1\nzrvghZI3mTk++Ohjtk3P43ff4fTsHnXbY7zCGk1Vdzw4vY8JkJclxWhCVpREZciLMm1ska7r2GxW\nLJfXbDZLOiv+sMQStb4C1+49aQWWZKTXFrUILyjB5wl+U+Ad2ojBuDEGjNkHxOPS71XX4XGLZf8Z\nvWZwG3pyt1tM6TavEdz+VDM2pdTbwP8IPESSq1+PMf63Sqn/EvgPgYt001+LMf6tdJ//AviLCLHj\nP40x/l+v+6I/r44+hj7E1EzcB7qEF/PeYwh0fQvBEbsd3W5NX29xXYtzHZqA1tKADi7e7hcgGZuM\nyg4H+dD0l38H9fLp0PHJEVKPbgh4xhgUKcj520azAzRFJJcUbS/lqc2s+B54tw+WA9bIh4RIR4Jw\n34oKQlRC9h4Cqo4OoyHqyGiU4xvHu+++g288VVXxweULurrj7HyCWRT0TYvzO4ox5KU8xrbaYguR\nYxps3YTOlHHshCQy3qkpHERF2PUe1/l9H6crMhQyvR4GIsGLO1jbttRdS1GW6FwTvad2jm2zwvkB\niLtlu11TNzvqZkNdC4+y62v6NnFg4wKFYTyV4F8UbcoSJWicjm3Se+uwNqcPXo680ihjRDgUsDZP\npd0A+yGdO0qgRiGQlyUPykfcXF0yzgueffqUR2885r2vfZ2r1ZrL1QadjwRfllmKRFaPypBlogBi\njCGzxSFbNwabqFDT6RTnHNvtlptmTWYN/ckUlXjDmkiWG7TK6ZPfB2bww1XEKMbYSkfyI+mvoJJw\nljoo5bzOutvvfdk1q4G7ghyvmrIePfLnPuefdinqgP88xvgPlFIz4HeVUn87/e2/iTH+V3dewLeA\nfwf4aeAN4O8opb4W43F3/7PrLqVquIhvLaMhBa+hFPW97EYhBLpajFFMv6StlqKv1u9Q/Y7YbYh9\nRexrQugSGZik9jBMX1Ppdjy1SU1MZQYcm/TQjJffEY/cdobbKg3aoAiJEiUYJGsytDIpoxHFDm0D\ntmqo+prlzRWz0xOmkxHVUi5Em2f7EyKEIDI8MaLLEUGJqqrWjhBUwnrFffbqE4MhtxpjLE3foAPM\nT0/om5aOhqh7fuaf+Bq7XU3Xb+malsk8Z71aYgOUE4FPuA76Ht586x2W0TOdzjCZkQDrRY3FezG/\n8U4AmpO6pe9CKuvcXppouVzSNBXjcUk5FuDpbrejaRqyzKBUztX1hQRPpanqluXlku12S+9a6rqm\nLOWx1psVTVNRFAVKRVb5OqmgNHSdSyY4IzKbU44ncjsMJ4tMshxrMNbuKVc2L9G2lC1cJxyjNmil\ncG1PQALRbLbANTu0Ntx/+AaffPIR5WgGwfPVb3yTi4srRrMJb7614N2vTbHliNn8lBgjo8kMY3Pm\np6fUTUcxmUtv2DnyvKCuW/KyELn5KPg7k2d0rqfvOvrOs1ld0bWOxdk9RuWMspiAsWTFhCzLZVNJ\nQqX4jq7d0bctxmiC64Ee5T3R9CifYfUBOvV5UI6XDbFelYwM0/ag2HO1BRPH8I/DWOFHBK1j8djX\nWa/jK/op8Gn6eaOU+g7w5ufc5d8A/tcYYwt8oJT6Y+CfBH7rc55j/wEN6Pph8nic+g7Z2b6XhdqT\n3PFhfz/6mti2xNBhQkNwDSZ66rbChx7SBQ9pZxlSa5vkvVWSSdJ6XyIOWViWZaL/deSBiVboeMg+\nfIxYBpL8MCofsgHRilOqQ2tL1wpmyihN7xxt2zKbzeRxwoFZIe/9tqP8nuCfgt6+wZteZ13XErhz\ni3deVDGiSxSm8d4vdbVZ4vqepm2ZjEuuLl/gOsfiZIpW4haumi15Yej7wHg+lmOSlB4E2jHo70uJ\nU5YjptMp4/GUEOD6asluJ/i16+trtts1WWY4Oz+jLEti9NJ/Qibcm90Ok2XYckRTVyyvr1Eqslmt\n2Gw2zGYTIp66qogxUPc1o9GIXbMVf9G6ow+RthZn9rKQ0rRrWvK8pM4CXSvslPtnpUxftdkfaykF\nszTMSGY9mZWSDaF0dTGwWa6xSvHw0RtcX7xgUpT4ruf+w8cErelCwGQFeVawXG959OgN8qLAxUhV\nt2SF2A+iZJNomobxbJ6gQgXWatp2wvn5OSp6nj/5kL6tUIU4iLm22zNeTFbK8fIQU6M+OGHUKAWZ\nUUQnvFdtcpGIj5HMDoDtHx1gjqf6w7X5qlJ0T9CPYgQknh2Hc/T4uj++rpW63fPTqV+dZdlLn+dl\n68fqsSmlvgT8HOIC/8vAf6KU+veA30Gyuhsk6P29o7t9wksCoVLqLwF/CeDxo0evrOePS80Q1D69\nDU4yN98lG722pU2AybC6xtVrgmuI3ZrQbxPpfQdehg0ZR2WdGhyN0hQS4ecpFEEfsreojoKwAqLC\nDNgcZOq9B+tqKVuUMoKMVaKYG+LQcLDE0O0PbAiB9WZNIJAZzWKxoAuSsbW9Ty5Vlly4MITeSTmX\neoFd19H3XVKgdWRZtm8+55Z9/xHj8SaXLdQaRuMxbVuzuHfGxGvq3Y5Hj9/G+57rqwtGZYHrPMYW\n3D9/iA8agyF4UHniYeqMru8Bw2QxYT47wRjDZrVCR7EbzK0mljm73Yabq+dstxuyzLDt1jK48T3O\nSzZW77Zsq1q8S31ktd2wulzvBxbGZDzfXu8/uyETdG2ffCtyuqai6zpGIyd6Z3nFYhHEms92LFdC\nr1osFpyd3SczAjMpi0JEMouRQFNsQAehk8UIrg/4riPLRR+wmExo62tMnlOOpkJQzws0itH8lLrr\nWbcd0Xpmp+dEndG5KP4LpqDpHMaK3Pv1akkMCrtaU47H3KxW0g/MDG+8+S7jYsxuuWYbDKPSgnfE\noFler5lMt4wnimJkhR4lJzfKB1wnvWUdPGbwvsgzislI9JK0vjtL+BMvxe3CUt/J3IY/HrNylBoC\n68szxR/Vyzterx3YlFJT4H8H/rMY41op9d8BfxlJ2v8y8F8D/8HrPl6M8deBXwf46W99K96SCL4z\neTlg1RL30rm9YkPoHUQxYKl3cjLPqw2hXuNdi29WBL+B6NGxFxUDFPTDBJR9yXmcgg+lp1Zadm0l\nGgdRIX+L6R9a71kH+/emhsYqqXcnmVuMChVVGnub5Jl62P26vqGpDM2oYHR6jutlAmyM3b++ruvk\nwClhMLgU4J0TnbmBYhZRVLUYwhg1xvlI9NKTixFCH+h9YDKZci+XYKmcohiXbG4uiSrw9rtvs7pZ\nsqt7Ts7mFONMwL9KNNV8DNiyIc8D4/kpIUQhoquM4MEWPW3b0CUz6hACT558IgYsyvHtP/zHjE4l\nO603ay6ePWc6GTGfnbCrG7wL7OqeqqlZ3ez2wT14KIsFWotEkUb8AozJCG6HUTOssrhY4Ts5lvW2\nQ6kto5GnaRoW92ZkWU7wirZzjMZW2BIqYLxBa3BekWUJR6cSpEdFtEoKxTYjti356RkqRtqqZZQ2\nlCwrsOMpKM1N3dK5HpNP2NUNTdNgbI7ZJemlUKO15vTkngTe2O1Le2OEAD+bnmFUxk9/y7Je3XB9\neUGWD7aMI1wfATHqFiUMAeD2fU/X7mi2GxSe6WiGjiIA4foebYx4LvwJAtvLkpJDv/plEFwJcAq5\nlmCAjhxBP17yeH/qcA+lVIYEtf85xvh/AMQYnx/9/a8BfzP98wnw9tHd30q/e/UaALhHvaRhHTMP\nhgHBsHPvXaVIv+vE7LjvGvq2JfqW6HuC71HREWMvBixKNMaGxzXmgA9L7+elX0fvl8NhSz25z7yp\ng4nM8f2HZr9kG4egdpCy7miqmvLkgO421ibJaykthsezxu5LVHFryhmcncQ5XtzSBRSbg46E4IhK\nkY3MXiXEWstuJ1itutqQl0KlapotnauJOPJCo3XAWkXddQKoTrr6g0s9iEBon4uShy0G4GdkPB5T\n1xXn5+c8e/4Jq9UNzjk++OD7UrpaQ9c1NEZRFh1d09J2PetNTd12RCeZmVYW7yK2zAgOQhf3mbGx\nJdOTKXmeeLxeo1TEB5cyLUewnrpqGM/GWCPN9qoSwcrz87ODRDmRGDx4j/YaFSLGWAwadJoEhiQt\nZYSx0PZ94qBWuLDB7mry8RhMTgyKZ89eMBqP0Sbj/PyBvMYoBs4+Cr6urmtirlAYimKUhBMUhIgi\nYzydEX1ku9phbUDbjDwv5XwLImmkQkTYg17oU4kLa5SiLMt9UPbDEIH4J7RL/vw1XBs6wssa7ceD\nN1mvplm97nqdqagC/gfgOzHGv3r0+8ep/wbwbwJ/kH7+G8D/opT6q8jw4KvA//t5zxE5UKjggIK+\n25gcgpqUXT14QZd3fUO13dFUlTTcd1u6eguhwapOyONJyUCyM/Z80KFHcBx8XhbM4DDlOQ5s+qgU\nhcNY++5jIbPYNGFzEA9N2r7vhb/YO1bNjrarKU7vYcsiZWUuje7NvscmGezAlMgTuT6SF7M9+X4y\nkWxDa31QVvUGT0vXOfK8pE9mNTbLWW1WuL4BX6FwQM9kWjJfTNGmYDadE2lRKqMoCqbTKW0nfqU6\nHzEajSFNfSOwqzZs1hIwp9M56/WSGCOz2QTvW5r2hPtv3+fJkyfsVkvmiynL6xueP39O10acj/go\ncjyz0QlFMaEsS9rG4Z0hBpjPTphNFzx8+AZnp+cEap49e8putyEaCDqSJT2z8WjKYr4gxsh2W9G2\nPScnJ2x3kjHVtQCAFZGiEBB23/fgFCZCbmVAEWMU9kBdobuORSY6KQ8fPuZ0NmW9XvMP/8E/ogNG\nkzmP3nmH8XzBg4ez1KMN9MFzc3lF3TacnZ2LZHoIGJOBgcwWqCSyEFIgWy9XhL5Bq4yHD9+g7jZY\nk3N6dh9blBid4VqXzIjE+Q00nZH3pkIQf4eswcQcUxqRD/8xMqGXXr+fk7HdXUNJOqxjk5lDCPzs\nfY977a+zXidj+2XgV4HfV0r9XvrdrwH/rlLqZ5G49EPgP0ov4NtKqf8N+ENkovof/6iJKCASydoQ\nvdq/rBCOuaKKNka6EKm9pWszgnfQBGLTkW2vsdUN0TtCsxH8mvKgAi70qHSwo/dorejyIUsEjBHc\nVwAlYkQEL76mphDpIvmLYNDka3jlGoNGJSnvqCCzRrByWqOVS5yE5LducnzwNL7Gxz5lVQ34Ncpd\nUtLTrx3076Az8cqs+ijMTqWp0uQXFTHhEPyHqfJer63M9oT5LBkkEyKtlz5UZuz+tq7r6b1jmpds\n2oZgLD6IebPJcrwyeK9QQXGaTyhMKRmiSWoT3uO6inVb44Ii1w9RSuF8jiHSNy3L9pLLyxdUVUVb\n7/Dec/H0Oc/dlpubJfWuwQRL33naVji2QUkLKNDhwxaV55AVtMHy4NEbKGXIs1LArI/nfPfj7/Pi\nxQsWiwVmOuHRT32Z+/fv8+3v/CEnqff4dNfRxxGZjaK3VrWUyw3Vbscbjx9CjIzGYzzSdzVo9KTA\naFhWK+rVjtA78kwxnU6Zni2oqoa+b7neXnMTe6ye8gv/0r/Kdr2hrmvaVjKx6ayQiXfVsFvvyE3O\naDaiWm3QCVIWM81unTMa90wnBTpzhK6i79dEVWMyRdv2BB05ffSOZO7FSDa3dC50vsUASns6Onxd\nU9JjCGSdbFreeGxm8cpAqw4MgFcGj8+auwyVxsuCmHcDtUrt/QskoInQw9ED7Z93X6nFQWxiSAzA\n2Ab1p8kVjTH+Bi8HmPytz7nPXwH+ymu/itv3vfXz3QGC7x19Kz2b6Byx7wh9S+h68B5issuLATg4\nHplkRhFSkDwQ0+8+d9wPEnzqqw3r7gF8WYnKUbYX02MGYto7UxCKB/wdsC+th8cQr2UxdFZKCQhZ\nH6mJRgFe9kkgs+sOk7GyLNE6YlMW55xDDzZs6b5DAB5OJB9DMi4WeeqqlkHDaDyVskUZug4xaLFW\nsogwGBanflPacWOMQlmKEZ3ZPUuh6zryvMS5wMXFBb7rCdHgnSYGw2rpqNcCwZmMk6WcFvQ8KELv\nxZrQRoIPnMzmnJycCZey71nMpnyv2nFxccHbb7/NZDLhdLHgwYMHtK3AJ7bbLev1mouLC4zxyWhH\n+pIhqj1lS2lLMer3TBHvxVS77/uEXYuEYMSTwDmuk+Xe6ek9mdbGSNc11G0jmLognwlqi7W5KMsE\nL2rAnWe1vsGndsJ0NkYXJ7hO0+eDqowAtLuuI9N2n4EXozIBzdUR1zqKvp9We6pi9KLoMcCaZOBk\nkpCDmGUfTymPr70/y7Xvcb/kbz/O4AC+IMyDEOLeEXxYx5nIPpoHUEFhYqBuW2LfEZsa5Xo0jt41\nhL5DhZaIl0kWQt3xriMESfEBPGJM4b3Hq0FBN0vqEccNzdvgxX2ZevT6pbw1otOmlHA6U29LWysn\nUcqOmqNmv0sBbugXDnptOkJT1UxmpxTaUkePVhoX4570nNmEH1OHEl2puJfyQQXMIBjoPGiF9yEh\n/qWv47pufzKLhHZDXhbobMFup6jqihEWa+H84SO0shTjEdPxQgZpwYmIoXxabLcVq01FkQvpu9ou\naV3PZr3jyZNPWa8qxtMJq+WWzWbHrq748MWV9JZ2kFnIjaauAk0ngX6cArHVmgf3JEs7feM+D8/O\nmE5mhBC4uHzBp598yPe/+23Wm4qu3bGYj/GuYbe54fHDe0wmE5r+lM1mg9GB1fqa6MTMp80Vxssx\ny/KStnPUVY8tcrQNUsZFDwF2u4osszRtRXfdcTKfcf7gIVYbQnDUadNtqi1V3RJ9QGnpw15dvuD5\np89Yr9es1xXb7VZ8XZWiKDImkxHzxRQ12nLv3j2K8hSloK53PHnyMU3TcTo/YTZbcHp6SjEuMSaj\nbzsxcwkBjZNMRw9m356+ruirhkjA5SO6ukLFnHImk2yUl3QxrZfh2IaffxyFjddZLwuk8qvb8v9/\n6j22P6v1sg8sxnhLQTNGaeLKGNsRXQ+hQ0WXeh+ip6aIKBXFJCOp7HrYZ2oiWte9+sPSERVf15z5\nqPGpb2dsA2A3pi+0JiTts2HKeTcrHbKztm7omxZjczSK3ntiiOiERh8yQhCHeI0nRjCZCFdGeVFo\nI7CV4bP0UbLerusEqoH0+FzwEozqDb1v6JyjaTpcTPpgKifPSuaLs5QxGGLUdE5eRdtKhiNUJjl2\neZ7hXE9uRcBxs9ngPCzXO65ultxcb1i3Pb7TvgmBAAAgAElEQVSDrgXfQRsDRZGEUzTEIO5ZWVYS\nvaZpG6ajjounz7g2F0ynU3arJZ1zdG1NjIFnT57QJ6zearWkKArG08ke/qKJiW96KKUBqqZF20w4\nnnlHgWKxmCVZI8FNzhcLXN+lifKE6XyRjKwVbeuIXoY5H33ylBfPnrHdrgEStk6m9uvVlt16x2q1\nYjweU5QySe3bCdF3FCclbjYh9A4XPdv1EhVFut4WOVmZoffMEp0m8A68Q1mBIJm0kQEonzxVEeqg\nTVQqjeihBe9TGbs/s29lb8PmLgdW/p7KmpQV/sl6dJ9ZKqRy9LD+/+ix/ZksgSHcVveQbOYI7uGE\nctNtd8SuRvsOQkfoa3A1RjmUdkTVoY0HAgpkjJ9YBX0f0Vr01NI8DZMUcaVfIKYXou0e0dxGO78q\nY1P6EMyGABcQRyQbRGpbD8KB+lAKDxlb8D5ZmYmBTLPdcfXiglnnyCYLdBDjl8xaOcl82AMWQ/QJ\nsa8gDRiKUtyMvI8EkpVfkD6ccz35ZEToHVVds16vGZcjljdLQvCcnE4pJ2MW986pqkoyuvGEPCv5\n8JOPUWZEXli87/eT13sPHqJSr/LFixfEGHn0xmO0gcVizqicsdt5blZbvv1HH3CzctSdNGGt1uTW\nEtLx2taOaTbCao2LOb71XD675AffvSQEeOvRgvl0Qtd1vPeeWNUpIxAYoyN//L3v8cEPfsBkOuX8\n/Jy6awGYTCaMx2Muri6ZTksyazHKY7VGG3j27BnW5Dx8/JizBw9QRi4PUdX11E3DbrcjyzLGsxkx\nCiC5cxFjNCYriIn58fVvfouf/fk/T1s3fPLJR4QQaDZLPvzBB6z8DSjHdFZitcL1DVXoITqmZU61\nW7Pd5CikH/r02ROszSmKEYvFnOl0dkTBU+S2wFqHDwoVIbcWYxRd6GRC2nb4tkGriO8F96miSwYu\nMmRw4bOZ0XFj/8eFW7zuuj0gPJD3BwGH4bsE4ddfX5DApm6xCoYS9BjW0fe99IraDuUaYrOi62p0\nt5HSs1vh3ZYYPYoOH3pJaaOUpIrE/4uipy4SyOqAN+NoOqMFda61JjifAp++9dqMOmROQKLeCMzA\nR4FiKKPRNsNkmfwehM3gPVGrWyXoULp610smFaBabWibnsfvTMW1SEe6ZERpjMYHyTzyIpPNE+mV\nBR/QvWEymZErKZGapiErcjabDXXSMovpeU/unaGUYjQp6Z2oC5NQ8IuzB2RZxmQyS7ARIBtjFNTN\nLqHahTfpXSQEhYoR7xyfPnmadPE0de3ZbHbcrLbcrB1VB16LLFEfFF0XyUhZQoSrZS0+Dtc72RSc\n5AW5gbyY0LUeYywffvgxrevJi4LVdstqvaNpAiaD8XjDbtewq+vEC3W4IGDn8Sjn3r1T5tMx7aRh\nNp1QVRX3zse8+c5bnJ6eyvM7Txvb/TmojMVHCFGRZTlFOToEQJUnxWYvvUjv8Epz//Fb7HY7fu93\nfpfJqOT03n0ub96nzDJGkxFdW1OWpTAYHj6k0TlnJ3P6vqVpdzT1jqIUaEnXdbRty2Q8YzIRFZLd\nZiMtGqsgeHE5i4rYe3Glch3WKELwbKsNcbsm0wWqrjC5oijk9R+XoMc94OF3x9+PmQKfl0kJ6P1w\nn8/8PQwQrwMqIoTjWeMh4P4ECk3enq4cC90dY9diU4m5bd8SfIfyLc5VKN8QfU2MrexQyRk4xsDB\nUwoOSqBaSk0GaeIjmsf+trc1p/av9OiADvdJfG9x++FQlg4HKupDhnfcU+v7nnCkO6eVwocoU7dC\n43qP1z1923J6ckpQijLtaiF6tj7gouCzIj0heuEChkAfpYenoqLtWlw4cHEDEpytFp6kNobNZkNZ\nZGy2W4qiYJSVSX5nLAE3im+C0RatRINrNBnTtzr1QT1BhQO9xxh8lMy373t2W5EG6vueuocOQNmk\nijucBVHAo6QKJx6UWHOduIcKXIRMGXl/IdI7j1MdOitwvsJ5mbJ71+DCSp43BTbvwVpHZjXVpqar\ndsTzBUaLuXObKG62SPaKMdL1ch7e0uw3yXtBG1yaTlvkRSpsAtdabJaz21VUVUWWFaAN0/mC9957\nj/XNjZgVK1EmsUraJEVmya1ht5N2RFmWew+H4wHQgYlhCNERPRg18KwDvROJ9K6u9kODEAKta4ld\ng+0brDJkWZGc4IcAJNfKYSo5/E0x8KnVndL1s+vodq++8D8zLDxca3+yXt4XJLDtBzgJOyQX+3Ci\n9b1IzBSuIjpP327x9Qp8D92aEFuUr1A0ROXFtCWdMHeKRqRxczSkiAfkhvc+qTcIlEEZg3aIVdk+\nwB2wa/vvqX8mkkXieRa1CGJ6IqSTL8sycP1e6UMEM4MEGBReKbLMkueW0PbYrECjaeuG4BxYS54e\n0wcYlWVSj93S9Y2YkDhhZLgesuxKgLKZWNOFEGgqyV6m0ylNYmp477m8vMSaA/dzNBphrKWqO2yR\nM5vNKMuSk5MpfVRJXcQNwurS4LdSuI9Gk1S+adq65ubmho8+fJ9Pnq+42Ta45OfrAjKRS4FahHbk\n4oyQnLfkYu+DwyCZ28fPLimtbEuj8ZgQApvVmqZz2Cgery56XAfNTZ18AEQwwDlH6yLxoqLetOQ5\n5JlhMZuzWCw4PVvQ+4am3VKMSnoX9gMsrUReGxQ+Knof2dXSl1NKoTJzgNEgSrZRibPWZAon9x5w\n7/wsTUwr8olQneq65uLqkm987Zt0zjNf5Fy8eMbVzZVMtfOMcpRTFuUej9j2HVVXCV5NWRSyaea5\nxXUtxihc21Fvd2JopESJJZuNoDCQGfl8lbh2EW5nbHcnpMP3uwM+eHV/fP8z+6TtM+u4zB0eO0Z/\nKEXTOpgFvt76QgS2u5COobF9nN1475Oct6Ott/TVBhUalN9BbCFsib6GGNBRFD+QMQLqMx+KRqeM\nzZNMXkhClukWAuaNqGj2G5LWev9Yt3oPKKIyCPJNJyaC8ClNZveGviIdF/bZWtt3xK6jqqrkqemk\nlOhFcyuiIIhk9fvvv09UmtbJ1C3LLfn5Pay1TKY5eWEpSoNzNimJjFHKojDko5y6rtM7TzaAqbHc\nNA1WaXa7HfPZhCzP04Ta7nuBMnSQaetqs8bkUwaf1mEw4DoRiTSpXKrrmqI8oe88wcO9e/fZNpo2\nbNBmiQrSIECLTSDhkKl5uIUTBAVZiUgeBDZNh7OCc940HShD3Xv6CAVJdHToje6b3QLK7pP5tc01\nbevoO3j69DkPH97fyzBNpiNMJpp2wwY7ZGx98Hvf0uH2PkkFdao/ZMZBJKF0BGMVxajk9P4jPvnk\nI6pqw9XVDX/nb/+fBAf//K/8Bc7PzynKEaPJFAN0XYvWosJcFAVFljMejynLHJ0msFluiV6k7wtb\nkBcFhoC2GqNERty7HmMFg6kU5GVGNptixmOyUY42GSHBou6Wii/73XG18jKm0OG+RxnbMOU0nx+c\n5PGG59xfifJ//xNZih6i/jFWa98XSV+qa0hcEXSaekYf0IhLSbgjzvjjriGwRX0og026QI5Lz9sp\n86vXIDt0iy0QDiXusPsWRYGKjtB7mlowaXVX020bWh/o9JL7b79FURS88fZb5HnObD6lK8U/UmnH\nrr7G+566lv5OZnO8B6PtXrFiKAWHz3M6npDn+R6H1rQNfSpvtJZANZkkqR8jjurL5ZKSHGMVubW0\nrWSARlnRwzd6z6TICzEiKcsxk8mEyaQhGzK2GMFYoGfQhR6uIZUw0PvpGwqcwyVcoYsioWSAtkfw\negw4xQE1KEsukXRmJApbZmVa6xyIl0rGfD7fl9B5koqSvm7cq5dUu2ZPIRsueqVkwmiVJrMZWZ4M\nflwv9Ch1EGQ8OzujrndYq/Gu4SvvfRVUFD+EokhZr6VKDBrSNZAFt98QBSMokKLxdEyRFQLO9TFJ\nQ6Xzyvf7c805h7FyXsv7y9F5js0zSD65/g6E/lV9s8P7Vp9727sZG7eOymdvdwiidwPb3b+/3vpi\nBLYYsQRxtFbJz9NHcA1ZaMm1J/Rb8maDdx2+XhOaG8nU/JZIj6HFKtnRoxHMEVHQ8uIYoaQETWWo\nN4cPz2ibMqyAVkpc071AJXTCpumYdr00nVFRDpSKMirPYwYuYHOTRP3AqUCgJ5hh+AClz2m8o6p3\nbG5eUFdbrl48FyUKW6D1CXhFMTvhZDqXSVtWQFYwmk4oxhPQik4rQujw6YRuW4NzkczeI/pI52Qn\ntaOc0BkKM5UemHJcXl6iNGzWl/R9y3w+Zzqdcm8y5eLigqZp9mDU96+u9odJKSmvJydr5rMT7t9/\nhNIZWaZSVufZ1S3lKCcrLSZPbI5dz/bmkm63ZWI0swxWHYD0AdOjo2PKzyJ7LGEX+0MvNGVzAYV7\nxcbSqQgxkGflETZQJNZRosPfRseDwmJGmj40TCYFTV8RVSArCro6MB1PCC6wXV8RowTooigwVtG5\nnvV6SQiB5fKas9PHjEYjxmVObkTfzykIrWxko9mMT59d8Nf++7/O3/ib/zdFBsHDN79l+XM//S1G\nkxJtYLVa0nUt2/o5m80G7yKdD0wnC55+8il5XnCyOGMymQnU4ySD6Yzx9JQuilxWX/VY3+GaHc8/\n/B5tXZOFmny0IM+nKH1C04CxERNE1ZlYYAYzF8WAUZfPbjAs2ts+Hhg7Q2tm8M49XiYksdUopkja\nWiIxEXcUJKFW5QUyIgIDAwk+QjT7bHDgQ//kBTYERR9Qe+MGn0T2vO8heNquxlcbCA7X13sfAaIi\nhpQOKyeBMQiMQ0pMi/iFivptRHbC4bI4vjz0UXlplNoPAgZpoOFn6bd8dgw+6EaRsGZF4vt576U8\naxuaZUXf1LTNDmsto9GIs/P7uFYoWAYJgq06TGJtluFUTHirgFIa7xwhgX5tZuh7fatE6jq3BwXP\npqd8+OGH3NzcsNmu6Htxovr44w+pqorxpGQ8LjmdzgWxf3qP8VQytfe++rU9Nq1pGp4+fSpltzJ8\n/NETQgClDPfv30+QmZamFgWS7XZJnibK7777LrZccnGzYfTkii44Nq5Nkim3z4WIZDG9d5CAuodB\nD/sg97JltCbEkPp1IQ2SAioNeBLCh5PTc9quot41FEXBcrnkwYMHjJLhTFXv6NoeDXuz4vVmQ+9a\nAjCfzwUfNx4zW8wJIXB18+ne6WoymTAqCurtlutPnklZqjWjHEKEsoS3Hr/BfDHjzTceMR6P2SxX\nSb47cHJywng0R2eWL3/pK2hTMB5PmE0XKGXYbHb88MP3+d4Hf0TnFV//+jeZTqfkQL1Zs76+xDU1\n4yJDhZ6iKPaNLp0Ue6UySVnukRvVPlfSn83KjhkynwcBiTESVaJDQgpMCedJ3OM9jzOy4fvx8PDu\n1+uuL0xgCzESlErf2UfogZLkQyCL4sMpmLRImu+lYOURFom0m/cfwr7hmaSGOEijvKqYHDoBL0NF\n7z/kO7dRR9PT4YB3XZcyBSXN7L4XmefMkllF9C0dim3YSGA+fg4jvS0VFd50qFyoOF3XiWS4hr4R\nCECe50wnYwaJ7qqq2DbiRVDvKv74/Y9YrcQIZTobcX52Sl5YFrMpEU9Z5hirUZ69+gNISTng2LyL\nyZpOSeIbkRMVRWZzbq6XogvXt0ynY2wqU/sQsdokOz4xUynLnHXt5Cik8lDdPWe1As+e9fHjnNT7\niy7exj/F4eki+7JzPi+4d/8ePsixmc1mh4tLQ7WpmM3Et+Hy8pKmrcRcJwmOdl3HqlrL+ypyRuN7\nAHzv/feJMbJYLPjggx/wB3/wB2y3NbsOMgVfeW/GN77xDaaz0R5gG4KjT+KXVVVhTYlFsdvtePDw\nBIDnzy/2JfB8ccZ8cU5ejnny5Ak//P4PeHRvztgGdPDgHL3vKUdJcCEOnGOR0hLsaLx1IcQ7n+Ph\nH/LtVdzQzyyd+m8qNROG6WiIYFRS0/nsVPT455cFt9ddX4jAFom0rkdrsWYTbl4A5OTSTmAbmpaA\nI7gKFcSsJXihU1klabI8oGRkMYCKQfpyRGIcpITuzEoHqI1SSRHhdk/tdTK2EEWe23uDjuLs5PFk\nRc54MhGsV/C0y11qb0tgCESMFe9NFWIC2FocSXs/syitMdYSlaLIrLiAZ5rpdIz3ns1mw83NKsne\niIvSfHbCYrEgyzLu3/vS3snr4uJTlqsrPnnygmfPnuBDz9nZCT/13pfJdUbbtlibM51O0NoyKido\nbaiqismkwJicXV2z3VZ8//sf8MEPPuL09JSf/dmf5/R0ymQykfIjgrUZ1XqTMH8WTWAyynnnjUcY\ne037dIm/c64GwGpRUW6Tttz+eERuZW0vE4uKMaJixITAoK8sR5/Uh5Wff/DRU4yBL3/lvpSLk5Km\nqdAGlstrFqfneJ+CvpES/NHjB3StwxY5jx8/3ttCdrHdT5JDCHRNw7379yGKhtu3v/NdfuM3/z7f\n/f0NX3/vPpvVNb/w53+ON954g9OTGUaL5JYiYjPFyI5o6k4ctYoy+TSANRnGSDbeNDsmixNpt2j4\nqXe/hP0SrC+e8OT7f0R0LfNC+oXBCm/XmhybF3ReEX1E+6RsYwwhnZTHyhvHG8oxj/OAN3t1Mz/u\nE5QIKhCjAOIP5atkbv7o9rzi55/cwBaHFFenvog7mmMGlI5oAir0oqKhAiZZ3CltZE8OWtx4kjjQ\n7cePHJ3eEO/e4vbaX0zxiC96J/W+O6IOw46Y5JACEZMfHKpijLi2uwX0HbwVBJcm6YSJotqrzeF2\nwXsxpokDQLinc46rq2fEKFnbeFxSliX37omo5WQ82+96GsOzp09ZLpd8+9v/iKvrC4yB8/unnJ+f\nM19M6TvHaFKm0lJKlKbuyGxJlmlGo4lI+1Qtq9VGfAtqkTF/4423sNay3Vbc3FyxWMwYjUYsV2tc\nU2O1YTZbcHKyIGt7zneetg88fbGkSmf2rYxNa3yMhCh811c2sl9SjwoIOwogFS2KEPKfqONF8Bq6\ndEp0Xceurji7/5g+eOq6ZjQaMy4LlusN0XWs13LctDUsFgtcEg0oioI8LxmPJnjv2e1qxuMpeaZ5\n9HDEb/3W36fa7viVX/kX+Lmf+0X+p1//6/zmb/8h7709Zjqdcv/+fcrCQmzpmnoPds6z8siY+CCP\n3bbtfmI9Ho/RxlIUBW3d4PoOaxXnZ6d0qxOunj3l4sVzRqMR8wdne+xdjIlvnBV7KfsY1S3/z+Pr\n5rjySSf+51w5hyVoA9KGKqDt4aITkUlJMIbr/JBVy8YEe3BWerwfb31BAlsg9IEQxLkan1yo+g7l\nHb5vpdehPUp1oBwhdkTXE2OLUYHg24MbvDukyzHhiQDUfsIZCO7QDN8HqxAT9UmYA8eZmrzOgzrC\n8O/hxPOJbA+grWYymdAH4ZyGxKfUGJr+NlhSa5u09uUE0xjJKrRkc9E5QojUvsdkGTc3V6ACWZlR\nFplkSEnHqyzHKAzL5Yp/+Lu/y/X1NZkteO+nvoG1lrfffMjbb/6LLJc37HYbslwEIut6x7Q8ZbPb\nUhQjxtMTptMpq9WabV1RX7U8f/6cEIQfeXZ2xv379/nSu+9xcXGzfz/r9ZonT57gvfSq7t9/zPnp\nCXVd8+L5c/FwUJFpaTiZlYwz2AUt2DCl00QTeu+kv/YSKMFxlhaJ+yHDYOIbgoB5Y/CM84xci5Bo\n1bXc1CIaUBaWt04mFGXG9fKSN9+5x+M33+TRo4eUZYHRhvV6jYqR5XKZstXEC9WZmOH0nhASXAaZ\nak7LkQxu2sinT5/ym3/3d/jOd77D7//e+4QA//q//M/ya//crzKZjClymE2mWKPITIGezqh3FZvV\nDYUZM5+fMBlPyUfj/bkyKAgbYyjyEaoo0UTmkxLX9HTVlovnHxO7hvOzOetY0/c9NzcXzCcn5HmO\nKUZ4nYmrPWItiFZoq1+aGQ0845dftwfXuGNMWwhB+mshHlzIoscqK4otKkiFwiErPDaROf75+Bp7\nrRI4rS9IYBPYxkBwj71DKzCpXxaUxhuDpkUrh6H//6h7s1/Jsuy877eHM8SJ6Y45VWVNXV3VA7ub\nZLPVpGUJIGXZsAHZD7IheYIgGNAf4H/AfvCDDD8Y8AAbhgVBth8IQ36wIdiyBIqGRkoyTbLJ7lYP\n1ZVVWZmVwx1jPMMe/LD2ORE3q6pZJVFC8QAXmTdu3Ihz45y99lrf+tb3oWJHVIKtERNQ7BOHqXOI\nHLcazDgAlEl8NWUBM3xQBmFRS7fzo+Xnx37tnb9cHI+xooi6G/9QA7YRopL59hQUu+RB0CX3Jknb\nZXC5l5mJKLJyRFGUMnOaZ2RFJvZ6ecboYMZ6vebBgwc8+fA5VVXx9a/9PFmW8e1vf1tUY71HaU9d\ni6HHarmh6zoWC3GGL8uS6fQO49EJJis4OjrCO8+Ddx/ywQcfcOv2CUdHR7z19psDUXW92rLdbhHZ\nIk1VTVitNozHI956602atkYbxeJ6xfMnT3GuZVRKOWWMZlwVHLuKuydzrh5tiD3LXAnkH/d29t/v\n2C+X+qsivEdoOs9L908py5K6a/n63XvcvvsSeVXx//zff43rs2tOb8/48s98lddef0XGmqzFe4d3\n8rrzg1nij5WMxhPqbctyuaSPt6OyYnV5zQotlBEM9WrNX/4f/zJ//f/8NZYrGI+gzOHv/v2/zb2X\n/xT37h5x784pZ2dP+f73fo/T4wPGo5KTowM2yxV5nnN4eIjRFpPnLBdrICfPS0ajEXkm5ynSUx6L\nZ7W8ZLW8YrO8wIStOFDpSFXl+HHOcr1CZxOOT0oox/h8DNoyYM46ScaHOGRl/Ua/nxjvY18/fU33\nWLQ0u4iCm6sghuLEiFIBohm6sPREhRCHoCdWj6LG84cusCmkRJAWc0TFgHMdquvAO+kAJj9QFTuI\n0jBQQTpeUmvEoZ43qKE7oEIk6l7Ars+8RHMLuImphV26LFTbnavO71fj2zzDBY81wglzzqGS8UqU\nqCUXbC/7G143dYdijJJVak1Uu/EdYwxlVYFW1F1D51ty7/jBez/m4uKCPC/55jd/jslkRp5VQDJY\nDhKgO78hz2Wn32wYTG+urlZYW2PNmKvLNeUs4733H9O0W/I859XXX2M+F2qBD47WiXLxarVmu90y\nnR6itbxXWeZJsTdwdi4A92KxgiA/K4oMH7RMG/g1isjJwRT7tMW3ni4Geh/XT8tGVPvXLv2K1tIE\nMYrkFCYuTEpnXF9dst1uWXcdl9cb8gzu37/PvXv3ODg4wFr5jOq6YblY03We+aQYPs+y2mFLMSqa\nuuVgfsioyOk6Mb8py5Lnz874J9/7LiYB5zHA1QJ+5Ze/ztd+5quCjYaO+/fvM5uO+cF3v8u7T97D\ntS1lLgq7m82GIi8Z5QXT6RQQPlqekzrfgRA7lIrUzZrF9SVtvUbF3hRF5ohNnpGVJYUWZRPXeZlj\nlidJLAnstFOV2pWd/wyHTI1EaXoPa2dv/Sk1fP+x11bdLMU/K0H1cxHYiBAT8zyEIBkbUYi4IRCD\nF3E/LzOiBAl4IUg2Ig5CgkOB2N6F2GMrSsZFdKrnlexMiptBLcabLexPwtSGx/bSY6WSPFBKuVVy\nZgovAJ9D2q4ZyJhd1w0YR1SiGttr6dt850h+69YtLq8v+M3v/C6L5TXHp0d87VvfTF4D8lrr5Qpf\nSnnbNp4sK4R8S0PTrJE2VOD0+IQyr7h49g6/853v83euv4/WsHTwp//0N/nKV77EdDphsbwa+Gwn\np+KJ+f777+NDx3gyIs9FZLJtOvl7g+PDJ49lQRkp5y7OnnF4OOfk9IDrqyVlWdG1MkFydDDnjddm\nXF9f8+jZE5oeSuiDv/r9s7bh5k+AtPOODBmWH+eWJx+ccXCwwJYl7z9d0HhJEnIDd+6e8PaX32I6\nn6CMHoxyRPU2OZ4F8RH1XvA3o2WzyrKM1XLN2dkFbX3O0dERhwcjPnj/Eb/1//0mL9894fHDJ5we\nweuv3ecXv/1t/qU//lWy1MX2bcfF2TnlKOett96S+8B11Nstq+2Sx48fM5seMpnP+Jmv/ixtF8jz\nAtcFVt2KECLeL9ExUq+vWS8vsAScr7EWMUYzYlflnOP0ZEZezGWSpPMioJGaOvt6g0P2u0fFuLFU\n98vUn5K5xUTX6u2KZI32a+lmM+LF4+NK0d05fbrjcxHYhKjnMNFBdLjtJUYHlN8Q2xW4Gttu6DqN\ndxrftejYoJUHJ+VRFjJcFJrCVm2IUbhWRhfD6DvBJXpI+tC1lEZRJdlvs+PpBAVKK2zKILMESmuj\nIXkNRC3PCURMEKlphrlSgzFaxqyUAm0wWQJTgx+wjSzLWK0X4MGanKZphRoxEhqAj4Hl1Rm/8cG7\nVFXFG/deIoS7HMwP8YsmtRENdSMjZA2BthWVk8k40LVLNmFNVVWoEClKhWs8bbfk8NYxr7SR3/m9\nnxDUiLfuzlk8U7yj3ueNL7xM65aMT47Y1Ft+8KP3WVyvee31L3B0Al3dcXF+TWZKxtUEm8BtEwzH\nhxIE3a2C44MT5tMZ61XDdrnF6pLJeEJkwXJ9zkunF7x0qpiUnoePwDnoYqRTYmATTJ/K52njcpQK\nckQb0WSRzdbTAEpZDkyHd3B664j5fM73v/8uZxctmpYaS0ThveWrL2V86e23ePuLXyJ6hwqWq0vh\nqR0dHXHv3j2UUmy3HdVYpLdXqxXL9QJtDVVVMT+acnQ05+zxksXVgg8//JD/4i/+RR49WvG1n3mJ\nP/VvfJtRWfLn//yfI4TA02dnMgfbOkqtaHXH+vIS13Z45yiznMPphKmuOJwdc3jrFnlW8oMf/YjV\nasXp6Skv3b2L1QAO12zpui31s/comisyFaiUx3mDiwadFzg0o6AILhJzhRlXUI2olUGHSGEUWbR0\niVuGTlZ4McjkbqqCULJOTdi19fYxsRtrWSl0MIgEGEAULcL+//RQj0ky98h7q5slaYxBAjSK0Fli\nvIm3/rTjcxHYIruMhj3FXBUcMY2TxO8sl78AACAASURBVL4fTU/6E1Z5D3aE4ACbyky12/XxIqWj\nEn7Hx2RQSuYH9zG1F9PnTzz3GD/lTrIbGes7mXmeY5ROw+k1ZSFmtkVeoozIBq2Twchrr71GjJHL\n66vB80DOMaDIUnYRaTufmiI6jd948nGezDwiVVkBUfh0ARbLGucCSnX85IMP+f5PHvPLf+KrdAS+\n9JX7VOMJF5dXPHr0kDfffIvXXr3PanFJLCOuiyyu1nStZzaZEGPk6OiIqhpJKVUURJNmU2M9EF37\n8jrLMoKp8D4yHk85OmpYrTquNj2sACJaEBNlRzre/URvCFAVBT42NLXcDy5AnskomNaa4+Mxj8/X\nwwSpEHocBwennJyccHx8SIgdxijqeoPSMBnPBr0za0tiVDgXmEwmlGUJwKbeslqtqKqKr3z5y1xc\nXPDOOz/m9PRUcLA858tf/jLXV1ecn5/z1ltvicLw9SVd1xByRdOm+V2jhg0wBEcxGtH5mLrSBS+/\n/DKLxYLLy0seP37M4XxKURSih5dUkL1zhNCRZ4qYqgdrLUpbdForPm3IWZkRYk4XkzyYCiLesH8/\nf4bS7+PoGZ/1936/47Nka/B5CWxBjElc2xB9i8bh3BbaFb5bEVxL59Zo5RCDFo93HoXoTSmlCBiU\nCtJAVn0qm7qYAh4kxnokhj29f+8xJIqF7r0jd904qz/6EfXlYUhdn37H2i9JlUoyllo6PmKf5/fS\n98Di6pq62RA6R1FkHB3OaZoO51vOH50P9IJ8VPDgwQPpSJ4corVmtV0RGhkVms1zqqKkC57lap2o\nAdJUKYoCbWA6rqjrmvfee0BTB0blhCKb8OYXXuH5+RX/4B8/4AyYjnL+t1//LpMx/Inrr+O2Z7xy\n/x5/7I/+Il1TM7I1T1Yrrq6uGFcz7t+/z3a7xTUtEHj48CEnyd1dZmTlGsxmMxH81NLQGY/HBBX4\n8MLTNQ2ZrTg8rOjcJXrboqJHkRPRQn0gKa8kGkFmYT6fcHLrNk3neefdD3DysXL31gm5zbBG8fM/\n9w34zu9yvViyaQNdCEwnJf/qv/bL3Llzi6urC27fOcH7jtlsJpvJek2WFSIE4DyLS9lMxuMx5bhk\nMpmkuc8ti6tL/tF7P+HBgwc8e/KY/+Df/3dZrVbMJpUo7k7H/L//6B/ya3/zb/Bz3/x5JuMR3gWe\nPn1GNcoJscNagy3zgUS2WKyYHRyRjSqx/NMZt2/d5fbt29A5lssl3/vRd7l76xATHavVgsx3jDIt\n44EmCTAYQ16UQtbV0uCKMWKNDAc6n/w4zF5Jv49r/dOs5Y8pZV8sa/9peGkycfOHjMdGjHT1lhga\nlG/wYU10W7xb4bulYGuuRsWGSAfKEXsFj8FxnQTISHtTXNtFlTbqJHqSbNhuiH34QEw1fa94obUm\nOk9aSR9zuj2+dvOxvpM6ZH7pd3saojGKprcARIJeURQUNiP6wHq5Yr2WDO3o4JSiKgSsXyx44/VX\nyYsCF7pkE9ewWTe4RLUop3NcYBjQzvOcGCTrWK1WvP/uA4wxvPrKKyiMOB2FjNF4zK/88h/he7/3\ngCe+5LJpqcqKZdvy1/7md/jlX/oS0/nLuE4xm0z4tb/x17l9/0vcvX0Ho3OaRrKdD58/pa5rDo+O\nKKtRmlpoWF4tyG3B6eltYox0bUfUsqAWiwV5NsXois4vKUea2WxMfPchT886QmwJXuAFi0MlzY6T\ngzGnhwdorajyjDIvyK3CNx2Fgjsnt7i8OgMCF+dPuHU85mCeEY2Mnb359lt88a3XmE7H1PWGcmQB\n8VadTCaJytExKivarh4ysNxmbOs1K+e5aHfztO/88HcJzvPS3TvcuXVC/vIdzp49Z71aMJuOUP6Q\no4MZP/zB9xiPCubzKfODCdvNgtxa2rYhRj/Iq0/mt5hO51SzGZktaJ0ntzIpcV2fkWcZP/+Nn+WH\n3/vHXDx7xsh03L81E/EM74ZsLS8K8tzinSEvS2wh0ysmeLS1ZFlODJq6bVHJC2QIOJ8xm9qnbfRT\nNDcw6RfWSp84fJYA+s/FCf6f6xEjvmswtBA7fCdBzrsa72qib6Vp4DtC2Lkt7X/4IQaZb499aSuE\n37509UqGrGXX0ugQIQa86jlmkZD8EXQE91Mu7Iu8mn1u241mQ7rIMTL4HwgwKgYhXddhraXIC5bL\nJU3TMK3GqVwoaeotm7pmeiBS0M634txdWNY1aC2UGO+lU2yUpShzgo/JAbylbRvatmYymTEaCTt+\nu92SZQZtMly7pRqN+cVffJUf/92H2CJnu9lgEFLk+fmah+8/w7gV69U5VaE5PjyiKAraduc10RNO\nu04yTq01T54+Zb1e4zLP9fW1TJXEIOWcVmKi7LMkAy+/U+QZt06mLFcXdA4a1wEWSxDJJWQkiRjQ\nyjLKc7Sx6ODJgEkhemSagHOtyGDjKHLNq6+/wsHREbfv3CKElsWyIcsyuq4d+IxKKbx3WCOqGZvF\nUiSVfECNhEsWk8u6VpGQPvtylBN9x2azwpoxJ8eHPH7/AcvlknlSDjk5OmC7XdM0W9raUFVlalJI\n1aEMVKNKaDQmQyuRq2+ahugN6/WawirKzPLs6VOODg9otwuunp7RHY4oJ5UMGSolGoIxjUAZsxdA\nRKYrptK+55N9BKz/DIHt46YGPqn58E97fBqKyf7xaQyTS+BvA0V6/l+NMf4nSqnXgV8FjoHfBP7D\nGGOrlCqA/wn4JnAO/JkY44Of+iYxpkxtBaEhuhXeb/DtNd5tCE502r1rhBaSZqDinqSQjxHvhRsT\nB/zJCdv8hV3BhJAkcxI9IEKnJNuxSuOM4HpG7XaIQak0YXI6CUoOH3gU3bd98m7biKFI0zRkRY7S\nEmSlkxk4PT0ldC0/+uEPIUReuvMSm9WWGCKuazh79ozZwZzD+YzFVhRoTbbLCJt6CWiaeoU2GUVV\nkWVTnPJsNh0+BIqi5OjWEV0nyrC9Qm7XSUmvdOT4YMQf/6M/zxe//sf4r/+r/wU0tAmn/d53H/Kj\n7z7kmz/7El/72tt88UtfQoVAvd6gs5zvff+7vPzyy9x9+a5getvIZlFjjOHu3bu8+nKO7zzPnl3Q\nuQaUYrVaEfBMJhW511xdbcFvaF0LHcwnBV+4X7HeOq4vW5rWoTuock1eZBQKnn/wIeNxTmkVh8dH\nmBCYj+D28Zzl5Rm12xKj540vvIKPHcZGXnvphOl0ilYNi8tnrFYr7t27w4Nnj6nrmrKcMJ8dcP/+\n67gusLy8Yjab0rU1MTiuL1eUucVaQ72+Yrlckuc5x/Mpbdsym1a8/+47oALjckSRW+IoY3F1xvHx\nMQfzCUsdcL7l4XvvcnrnlCy3dEFsIw8OjxiVYybjU0KE5eoaUod9vbxOVoqgc8uotKwurphUGYev\nvsRqec2TDx/xxS9+AddF6qamqCqpPKzFt55IRxk83tUoZfCxgZjB4Pfx0ezpRVrGi8/pN/l9KfF+\n897RO6SS2mVcce/x3Wvuf/+iNPlQjX3K49NkbA3wKzHGlVIqA/6uUur/Av5j4L+MMf6qUuq/B/4j\n4L9L/17GGN9USv1Z4D8H/sxPf4sohNvQEUNL8A1ER0S6pEQZEFbRy5C87xIWxkC+DVFJQEs4mihw\nRZlHiz1tIFECiOg+FY4CKSulEtaWAH4fCCoMfo279nQcTFT6Y/9iD/iEkgZBCGEYAF+v1zSdKAKP\nRiPq7ZrVasXRgXQRM2MZl6KkcbGW4evJeJQyO7EFVBiMkdcmCLm32awx+Qjrcy6ePcHmBWUxGjS+\nXNsNzHzvY/IhQMqrKmO5uuLwYMaj9x/x9TcP+J0fXWGRjM0ieNYHD59RZCX37r7M7WPLfD7l+fPn\nvP7KfVrv2NYb8jzn8rJmNpsxm824OF/QbttERk7wfQh0oRMqRys4D7GhazYo7bEmx3c1mQlMS0t2\naHFdpF22zCYTsszQtTXjSlMWloPZmEmZczAxlNWIPNMEHyiznnwaKIuM0aggU+CaNVVV4tqOttmy\nXq3QSmZ/xS+go62Fo2eM4cmTxzTNVmgz0SfhAY0mEFzLulmzXkk2enV5TqZl8xvnOUZFRqOC8agU\nbEsbDg8PWW+WLJfXPH78mLv37qSGhMbYnLwshjUh95wnJJas0QqtgozUtU2iQUmXfzQqUMg1mR+c\nSCbathibY3o8Jch4XuYj3oYdbzMEwTL3ca9PpHHEj3y/H4SGMnMv/vWl6O5341C27j9nPyn4Zz0+\njWFyBFbp2yx9ReBXgH8vPf5XgP8UCWz/Vvo/wF8F/hullIo/5WwVAfyG6NaEsMF31yLv3W1w7RaC\nOFQpQf2T4ZQWiaK+VYyUo0opIfGm2VAfnVxAECMXpAPlkPGtkIKWVeAS0O87N2AAZVkOH7rWeuge\nic6XGiS+b3SiVUQpea7zrfCWfCdjTFlGcThjcXkxLJjqsBCRydWW0MVkjLLl6PSEvChp6g1eifUa\nPtIFUCrj+Ggu2mp2xNnzDxmt13zlZ3+BGAx107LdChdL4bAqGxy5XYBRUdA1LbHzzCdz/tav/RpH\n+Yw/86//Mf6Vf7nj1//O3+dH7y7oEiD//Lxju3yH7/7OO/ybf+prnJyc8OZbX+D52VMRQ0zjXqe3\n7mJtznq1pRqXtNuWvMi4c+cO221D23Ws6zWta3jy/Bm+2UqQbh02y8g6g2s6RokOU+SBFoeeZnTd\niuAVzcZxfCodytw6NqszDqeiIJzjyCrN/OgY3XdeY4cJcP7hc0ajgjozmLEoqjxvGl5//VXyInJ0\ndEiMitXFGc1iRQiBldtilcKWmlGR8+TxB1xcnEEMZFZTljmu3pJZy2q9YBuke/rjH36fN15/Hde0\nhCDilA/ff5+iyGldI7hgbnn4/gd84YtvMZ8dMppMsXk5uIkRRH3YOeFw2kzj6i0hOlyzArdFK4eO\nUTbBacXiesXl5aU0H7KMEDyZsmRKi5yX64iuAWXRmRdp8BjxYcdG0FoLufgTMrj9IAbsmTUzfK/M\nzjOh/73deNzN3//ncXwqjE0pZZBy803gvwXeAa5ijD0H4wPgpfT/l4CHADFGp5S6RsrVsxde8y8A\nfwHg9GCOClsIW/Brgq+JvsF3NdF34tXoA1p5lDaAISQRPq1E9YIYByJApNvtJPhB4w2szBPEgEsZ\nhDEGoxShx8jYm3cLvUP6jqKgjB5oC31gkyxtb8dLZF90pLBiRNx5R1FmdG1ks92Il2R2AlFKnjZ2\nxOjZ1lt85zi+dUC9XdE0W0aTKT5E8rxE2QzftpSjCWdPfoLR8ODhE175wqscHh3w4QePiMpQjWei\nadaJRV7npN0flQTi88tr5tUUnSl+57d+h2/9/DcZ5WNciPzw8fd49Yu3+eq3vsLpyW1C53nvnQe4\ntuPJw0f8vb/3u5yeFhSVZTabAIGyzDk8fIX1pkmzlRPOz86IiKJv23iaZktAGhvaiqDo1dmldFCd\nJXSWVecgGpxvBQdS0gWNoSPXIm195/QIHwKjScH6+pyu66gK6NolZDI/a7Us1s22ZTqesL5e0i5W\nvP76q7itZ7W+pKpKLq+vyaKIdT774DExKqaTOffuvQxobKnJc8Nmfc3V2YbtZolRjmdPHrPZrnnl\n5ZfQNmO1vOKV+y/z5NFjnjx6xJfe/iLL66vEUZTudPBGusnjiqywTOczbt97ibrp2LYdmfNJ3r2l\nH9OTUUFQWrhlPjRCXNeREB1WC8cyIvL5R0dHXF8vOT8/J4B4VyibnqOxMRLqmhCtkNu1R/mQpl/k\niFFEGYQGBT1VCRgmdvY7m/vNgOGxkKwsB0L7fqD8KOl9//d7xembR6/L8umOT9VmiDH6GOPPAi8D\nfwT40qd+h09+zf8hxvgLMcZfmI5HeN8lTSqfwM0UlPaiev8B9MqoRE0IMX3Jwu2D0r7Lev/Y/te+\nl8LwvP3H+vfYO/oL4/d+tn9R++9ffG5P+u3Z+b2x8Iutdd+J4a78LCbNMH2jHBanJD3wwDabFaMc\njg4O00D7dih/95sc1sqUgNw0KunmS+COMXI4P2TdtoTM8PTiOcUo42e+8TaHR2PGU8ubb7zEV95+\ng9k45ytfEXny3/vO72KSw9V4PKbzjsvLSyaTCSp18fqOYlEUFEUxWMj152m1xXeergm020i7jRgK\nMVHeRrpGPHusglFuMAqqqiTLDb5rQAXywpLnGXmeSRaVZck70zMeVSIt1DhWqxXnzy+w2hKcZ7vZ\n0NYNy+sF11eXlHnBdFyJqQ1BqCUqopDyr2lrGeVTkYPDOVVVst6ILFOe59R1zagqGE9GokLsGqqi\nZDqdEpz4XORJXGEymWBtTjWaMB5Pk6x3Ttu4gUC+0yQJCKQb0VqhNUn624kfrZZ7q59kqSqRYnet\nSIAlmjjRh+EeI6QRvx7KCTvZ+n49vBi89rmf+1+x58MlWfkXf/Zpvvo181k6nz/t+Exd0RjjlVLq\n14FfAg6UUjZlbS8Dj9LTHgH3gQ+UUhaYI02ETzwULYRHqK5G+Q7TdTIb6oX17HUgqAbX5cOHuB9M\nVD817XfBRgVDDJHgNEQnc6Z0kHhQzjHw1rzOUDYnBINWOd5pDBnRBXztReXVaKLvBDvLMulCRoMy\nEaszjJYRsCwaTNQYBzbPWa7WFJMZEWi6ltlU/Dm3q6VMJ1gjXpUhEgzMTyYSfDq1K3tjIM8suVUE\na7BZxmK94uwyEM2cb3zjHr/5279N18JXv/5NTOtxdYfOM3x0OC+ZJd6jUllfZRlXZ2fEGDk6OeLZ\n1TnRwo9/+AP+5K/8Es4FaJYczyastOHCO7qu4+1vf4HtasvJ7UPyPOc3fuMfce/ePb7z27+N1prX\nX3+dMgssl9dMihGhkGA8Giu2bs3yfEnXdSyXW9oN5BziOsf1+QJrHU0L85lOlB7QBsbjksnBIVmW\nUW8bimLEuDrg/PySzaKVTJYRJ/M5Jpcmi2saslKTBTFhmY5KimJOUVY0XSQ3BVopssxACBhtiamk\nm07nBA/n58+YzBTlfIJpa2jWuKYWbHI8oSpHrNdLmlVHVY3xtSc3JbdP7/Ds2ROqcQ7G0HQNxSSj\nMkLfGVUFeVlweHIba3PmJ3OazvH8/IIvfvFtNleX+BDAgSGQGUVZFAL6W2jqlnWzQLWiGKxUhne7\nAGXyjLIqWK1r2utr5qNjnDY4FXExkLU5Rrdgc7wOYDOM23X4e3zN7XWLISUW1gleqyBqmT3tA2Fv\nOm6M2dlQDmu0/9+O5hFCILMlJBGKXqw1+H44fpc0hISRf9rj03RFT4EuBbUR8CeRhsCvA/820hn9\nc8D/nn7l/0jf/4P087/10/C1/ojs7QK9Vr33+Cj6bN571AsR/sVsbuiuIB2gELwArKk7GoOUqARH\nDAkzY2fcYXWGtx4wwwjJwLeJYn9nrBZ9tB7Xcxqv9SCJ1AtlGpNUUEsxQfEhUE3GEBpZ6KMRXdPS\npG6n1noYe3KuI7clXdcSFGRGyK5d11EWJW3bcnl2zvHJIVor3n33XSaTnDwfcXV1RZZ1qHxCaUSv\nTpj/u93We5FYattWsJnJhMvLSz48e8I3vvGN5GilsVkmRstZxnK5ZLVa8eqrr3Ktrzk4OOD58+ec\nnp6yXq+TKGNJXdc8evSIu3fvChM+Fwdz7z2urTmYTZhPLAZDoQvqoub8/DlZBrfvzAGYTEqcLyU7\nMSRBR41RGd45nj654OpyQQiwWnqUWqCA6XRJNfWcnp7inWY2PmI6nfL8+TOqcSWqt62jmJbYopD7\ng47bt4+pW8ECu67jnXfeQSnDwfyIZ8+eSslnd53DXYYhPMT1lTjNT6djrq4uCFE+i/Ozc4xVHB8f\nAckJbCaSUJPplNlsBmkgfTweo23G8+fPmeSSfYnDhgQ2pfyQsffZlNEaa/e8AaIfVJSVUoNUfF3X\nFJMR2hhIWRvGEbqOqBsiDd7Zj2RQ+02z/pDZ5t36c86nbC2gtdxf1lpg5y8reGEcqoX90tb7nd/t\nfvXy4jr/rHjcp8nY7gJ/JeFsGvhfY4x/TSn1PeBXlVL/GfBbwF9Kz/9LwP+slPoxcAH82U9zIjoi\nuJcPw7TAC3g8ouPUy4HHvU6LtKR3qhCpHk8cK8HYBDOLUYTsVARSEOm9AXzUKOXBO6K19P6G+w5H\nL3ZA+3Pz3g83WX8DQsoKrUWl8tAlVdidRLPM5ylryK2ma1pCSAPy3hETc3+73VJNJ4AMaU8mE7Aj\nnj/9EB8cXdNiTE5lRG1XzuOm5tX++a9Wq+QgVQ6uUsfHx4mKIqVN23XCQ3OyUKtKFHun0ymbzYYP\nP/yQN954g9FoRFmWHB4e0jQNSikeP35MnokL1mQyIbcZRweH1HXLatlQFgUmWtxaBBvv3TtmOpsQ\ngmMyqViurrHWiHlK23J9vaVtr1mvt6zXnm2S2M6sxhgZxH92vaRYQts8J0ZP8Bp/Grg8v6ZrOqbT\nKb7t8JOWxskG03YbbCFzrqv1ksl4KiVh21E3G7LcDN6r+0TU/u40xqBiYLtekRlNU9c41zGfTxM/\n06PRGKWZTGYcHB4yHk+TarJgUZKaClyx2Wyo7HSYaNnrjd14f+cc+R4ZPIa+VJTgppS6IfMuGmlJ\nsDE4VHAiJLG3Lvp7+tMEEcHNFEKU38usQm+jGQUHTBnczdf9/V//xSD7Bx7YYozfAX7uYx7/CYK3\nvfh4Dfw7n+UkYox4V6dMyskHj4ClJv09mt2H9uJXf7H7Lx9qghO9M9c1SXI7pjnDXWcmxih6aNqg\nVUaXTHu9zdDBEjQ4lw+Br59RFCURk8YYJYBIllXsgFM0NpcMYDweEyEFO02elTTtVoi4xYhsW6Mr\nTeidvYkEoyjGFUoZsIagxbf04uKCYlRyenKbxeYZzWzC9UJTFBqN8NJUulldF7Aqu0kaVgrvPU+e\nPOHVl+9L9nd5SVVVTGZTVqsVSikuLq7Ii4KyLPEJ/NZac3V1RVdLVvqtb32Luq558uQJh4eHnJ+f\n0/uQirrHJQ8fPhQRxmrK8npN6ALzySnr1ZbV9ZqYMKdbt+6wWFxRFAUfPj7j2fNLsgysVaxWkVUN\nw5y21uREmXXshPNXUjDSFhfWPHu+obCay7MPqZcNH354QQDGogNKVf2AlYnMDxS3b58yPRgnj4YG\ng+LVV1+TTraLnF1fDn97llm0Vom6srNonE/HXF9f02zXTEYjus6yWiwY5YUYftcddqQZz2dM5weM\nyjEmz8mygi5EtDFS0kXpqIoMVIk1krNpFfHO31jk4i2bkVkz3HMRcZ/vI6FOGROJsG2iRWea2Dmi\naaFwaCO+rlF9/Mb9YkDpZ62JavB86DoxK+o3U+8lodB6RIw+sQZuiobK2wR4oU/Q35+f1Jz4tMfn\nY/KAOOipCfMoQBA3KSkd+w84ZWw3rLgiMe51MmMEOkSRIJUOeFEZiBHfNyR8onCYHbaggsIrSa21\n6jBK42KHzbOU7juUi4PvaH9eMQoPyvtdB7YshI9m0sSDT6NeyEaXmOYaHSPFqIQoZZ/3Mu5itcWn\nwfy8KPBpWH4+nzOdzkHJjbXvRxljn+0mRyvnUsa4+6R7JnvfvOgDWVmWQ0nci2AWRZE6wIa6a2UE\nKs9xjePevXuUZcnFxcXwGfTPv7y8lFLXbxhPhIf3wcP3eP7kjM3Sc+fkgrYNnD294PSl+1xfX5Pn\na9577yk2neumhtxClkVcJ07gAdkwgle0BFqgwopJsDI0QQJTJOJcwAGXl1fkmdAhVYQsE4VkbUQI\n4OTkhMlkQlVVZEan0gn5Pss4XzwW5n8MeC9356AAEwJ1s2EUi8Sp9BgjmZhqFWUpvhHyuRSUo7HI\nHqXGT9RGuv799dKGLNO4TuSThoyNm6B+f512MvM/fTxpP0D5zqGyDu2DuLgFwbFffN4nHVJp7F43\nhN15iUFMDyn1E0I7Cz2Nprfd6yut/ffbD2Afl6l9lqzt8xHYYkRFhyWIzn0MOO/RMRKDx/uAjoEQ\nxQBCEYeL2afRg4dkjPjQCEUkRoJzwwyo6oN+CnJBeejAWpkp7fXTrK4xyuK1JkYDXcDogq7bS60T\n/hCcB2PJ8oztdotWKmnhi/hgUUkWp/RuFxV8JMPkBUq1jDNxQepNW0IIuFa06NAieVRvt0ynU2YH\nh1Kato1QXuqO3GYstmvBUGKH8w06Buq6xnnP7EBAa6UUm80GYwz37t3j7Okzttstt2/flpuzSx3l\nxEvTWnAhrQ3Pz0Q88tatW7z68qvD64BY0fWL4vHjx7RtK9MFKvDlL79NcJ7f+Pv/kOl0Qm4bOlfj\nXaDtPA/efcRm0zEaWYjgWukBjQuxiFtvtqQtDY3BxYBBk2EYKSsZLbK4MgyjshyULiqrca7DGlAZ\nVGPFZDxiudzw9pfvcPfuXe7cucNsIh4NVqv0OUWuLs+oqoqjo0MhVjcNeW6HsrRuROK96zqaIGXj\nZrMhRNlMxH/iGGukIzwejynmByIaqRVaW3xQ5MUIrQ02ywlJN1ClwBajdEGNNrjuZoe9L1WttdTb\nBryTGzwGTK4wSTTTWosyORDwriVEhXEd7WbN9ECjc8Pa1YSQD+/ZBxfhX+7e78WJgF4QE2C7bYaA\nVdf10IWXLrjDGDV09wO71+w18PbxuP0K7GaW9wfYPPgXcsRIDK2UodGJxHeQwOZ8QCdKx4CxxZ0x\nSwh9jb+76CG5YMcgHRajtCjphrQrBUnvncjqU2Y2pc/xZoPCBwI1QefEaEmjqIQYyWI2zOL1Nnta\nKQqbDdpt1lrhYMWIjgqdWQKCxYUQqKoKY6asF9eSvVlDWK+EFpDlGC2Z4nq95u7dl+TnaRcss5Lp\n5ACjLav1JcvVFd55mqYmyw0RhzEFWkXW6/WgtiEUC3GdCkGoJZKRRFwrY2NyXjt7uZgwxIODAzab\nDYtswXa7pa5rMTdxjgcPHlBVFYeHh8PjOk1xNF3L219+izIf8fjhY/7Jd39MOa0YbxStyxiNci4u\n1rKwgdwKwdjqDKtlYwixJTOKsBcYWQAAIABJREFUXMmC2dYbtA44LzLSZZnLItquiAGKQnhgxycV\nxooAwWRaMhqVfO1bX2Fyb8bh4SGFzahKkf6uyoKuazg/e4ZzLVoVexmEp2kEZ8tyw6g6BBBaSSf3\nnYsOnWnKomI6nVKWVfIeFQmlqDTKWJHkVgrXddggm5lNGX9/TZTazTY7528ElB19xwLJsT5KhdKP\nDzrn0KaXXN/RKExIUzfK0dVbNBm2LIkfw/z6uGxKvhjewzk5r9VqRUg6oVmWUZQZzlXDPQAaY/qA\nlV4zia/tB7JPDhF/8M2DfwFHTIFHOp+SPUkAkyZCSM42Uk7sj4318t394ze6OvLK9EaYwaeB9AA+\nBX8DOOcFu0HLWFZQSVJc3kgNYLFCxZs+CMCQufVGG/1NNAzGp3OVpoH8juxOGqO1GNNGi1IebY1g\nbF6Y9yFGsiIXx25Eg0zFpKLgRdBSxV6vHlFvsIVgG6LglNRPeocrj90Dl/d3ZW13s7dAcphvUEoP\nY2T9Dd627TAruVqtuH37NpPJhOVyyWKxAKSc6xsdB/fmnD+/4PjWMa/VnXgveMdsIjOmq/UarWG9\nhlGV4RaeiEOrjBgDhQGUQ2uR+zYKMhuHzzYzjrKwRC/6b7N5Rdu2HN2aU44EG5tOx+SF5e7Lt7EH\nOaNRQa7zwSS55y+CUB2apk7dcXmTrusI0d2YGYaATtCCzYWKk5cFo3FFlhVYm2OzDGMyyEsxmwa0\nNhhzs8va3xcmlWgq9NjFR0uz4RwS5uW9yOVnew2sFzOcfg0FJ34IpGF4lXhzL3YnX3ysX3G9sER/\nDJxQt7f2kmirrEeVyme7W7gvvM+Lf99+EP+sQQ0+N4ENSMB9jHKj6FR0BkLaucCpxMTuu6LIB4iS\nLEq2kvR41KDEGQoPIYpOfIwpgHWeLNdorai3niyDzCrkN+RFY1RYK9pqqlcF0VqaDQnf0CiMsqls\n0INuvmRpe0oJexdHsLES750YnYwrfOfoNOhEzfA+ijyRc8znh0Mbvcgk+MQYGY+mFFnJefkIo5Kc\nV0hyTrEjy7So/JrsRkmRZeIfKlmVHlzKXcIXZdoiQMoMvA8cHgoBuCgKNhsxhDk/P+eVV17hzp07\nhBBYr9cYY3jzzTdpGvENKEoJiNWkYjQeYYzl4OSIJx8+427riE0HTNB2zQcfPKeawGyaU5QB5wLL\nhWTDs7GiaQTT8a1jLPQnRoVc9hgDud3QZjAeR15+5Zi63nJwOqOajNAG7rx0l8lszHw+p5yO8J3D\ndQzEVqulA1uNCjbrKxaLK6qD2VByhxDITE/raRJZWiWahWY0nXB8fMpkMmFUTgXIB2w+YjQao4oy\nQSUBazQZxXA/9BBHVU3w7SZ1HdMg+YtTAQNXLNDP8q3Xa9qu5uT4lmSV1g74q6KnbQRU1ETvKIzG\najl3l3C+/axsf+PeDz5q3zE+Baz1es1qublBRNd6OqjXSPNtH1fzL7zmrhHz0UB6MyH4tMfnJLAJ\nwxulUEYRXAom7AyKg/p4GZQXJwmkwxqTUbIi+D2yrgcVDSpJ//RpvjEpAEYNcSftrZS6kakYRCpo\nH9Oz1krw0wqr9EfOrb8N+gvnYhQ58nRBrbX4xosxshE7t7AHEE8mEzKbJTpJPjDYlVK0jbhzeRfR\n2pJpL+a+RhOix9gof1LKAHoco67rIWPbbrcDEO1dOzic95jfdDrl6dNngzjkxcUFucnJ85w33nhj\nyNy0FvZ9jJGzM8GnqnKMj47Nphb5nqNDvPdU04qv3v4K223D5eOHXFxc8KWvvMLbX36N4DXvv/eI\n23dO2G5rHr7/IVpbTufz/lOlbjYcHMzx3nN4OCfiWa/XHBzM2NYOZRVvfelNXAwcHh+QVRk+Sgdu\nPK2wuaEoMshynj07E8WYqKjrhrZpsEbcu4rMsNpuh+tZjnJCCOR5TlUdARIURxPhKrouMJlMKYoR\no3JMU4sHaFaUol7r+jElQwyKtm0S3rZzZ5frLDird5JBRr8z9tkPBsEHQnJmq6qKIsi92l+Lokil\ndEyeu2mWejQaYYuC1nscHaoMg41hf69+XMbWf9+vs55T13WddIUbkYE6ODga1mFfQmudsZP21vSe\nCC8yGj7p+KwTCZ+LwLYDh4HYW25ZQhSYMWorEwh+LR1FmyVzd8FeUIoQRIDSGGgdqCjE2+gjyMgh\n1qiUFXp0SFmWimJsoT3KeLSNRNPiDWAMWiWdLiQAOt9g84yQDFliBh01hoImtOS2AGPoguBVOkZM\n8BhlyEIkqIbM5GQ2UrfSBQ2xSTwGUAaKPMf7Lb4NMkxs5aZ3LgGtmcb7yCiPtG1glJUUdkTjGrSJ\nYDqyQuOjRVNAaFGI+7dVOVu3ZTye0XSBQAZaY7KMKgqBNVdZUlyNtMuOUTZGecXybEmVVUQTB5C4\nv/H7RbTdbgepJqP0MGu7WdX47iJhThUH4zlu85yTu/ep5se0jZS9m6blrrnPtqk5sacUxzKGtdls\nEvETTJ1x5/59QBoXPR0nRlFICSFw6+5LrJYbjk5PUVocmzabFWEbmE1nrJ7LGNji6TMO7r/E9eJa\n4AEi3mkyVeHagDU1oAhRUZgxMWUgB7NbKB3pfMf8YDbQHYoi4WPakqUNpQvdwHfTyRPDBYEdemFG\nWdgyHuWUwTuZ68VA17aoqPC98rNWMhYWV3jfYGJLbjTKjlAYSnKsKokhQwHeOJRReK/QymLKkqAN\nVmuMkfLdGbGs7GdTJUHSiQaiBO5XkegbSRaUksmDANrm1C7QBYhB0zhF4xo8ns6LTl4Iu4YU0aN1\n0uGLH/UM3Q+ow7/6D2XGxuDnGRNZSSm1+xdSKiqoWQzS4o7DDbHjt4XeQRshRnoSHuE8bStihXmO\nAPkh0HWePJP0WRmFNhb0TpPfe09RFDtl2qJAGWHlg9xoUm7JLhlCwNFiTZ4Y827wq2zbFjvO6QmT\nRlkweshKhQYiJhiNaZlMZLxKdsg06J92dq3DQAIejUYybtTVbDYbsqgYNQ0qd0QsRu/hGDEOc6T7\nAaHPPgUQdgPg3JemZVkO76MyoZpst9shu1gul0OmNx6PB4fy/mZummbA5PpMcTwe0zqZTjg9uc1i\nsWA0GnO1XJBnBSazaC0by3J5zXg8xhjDarUaPA1ANpjxeMx6vabebFPWGXj5/j1WqxXT6RilInmR\n0bY177//gNvHt7heXBKCY9tsgUjTiCquMZYiH6GjxZqcyeSAzBbk+QgfJYufHcwFzzSGalIMI0Ug\nLmkAzvRlnUkE8D1Xsz2Jnn3lZemgpwzOQPRpSDzx2IzsrnRdiw5SrjvvMNpilYznYXSiL0nJirEQ\nhJJkbLYr7RK+GwbZbZkhFcMhjVJB+JokuhJSindtc6Mk7v/tuo66rhlXjhh3eofSnTV7Jf2u7O2l\n9PextY/rfvZl7qc9PheBbV/KfAhoWuS8NX2aCpmVrCCoJChJrzEG1mb40Hc2d9QNpRS+k0HvLNlV\nqQhN2mFtbtBWOjQhaV7ZvEDbXJyk2LXW+9LRJVmZEAI+9MKTarjI8kviRTkajYYyWZREhNYQHcRo\n0EpkhGQkxhEDOB8oihHB9Z1eTW6MSGoHZGKi7VJQSsC/ls5fV0eiqqnrDfmohWjQ2c7NHhXJkoWc\nMQql9kZpQhwG5V0yM+lb9j1WUtc1OugbC7K/SfNcStS+41rmxQ3spC9Vr66uuLq64vj4WHCrLMMe\na4qiYDod0zjxH9hsNrSJ+pBnljwT/PJgPqMfQ+o7ulpB8I7xpGS1WpHnJU2zxrma5Urky0NwhNjy\n3vs/4eRgzmp1xXRWsd2KhFGUwh6iYtsIZjQ7PqAYTSiLisnkgNV6g1KGgKEYzbDW4LqWGMWJVoxx\nAqNyDMYTVGpYxR2O9CIw/iLNQYe9n5MI4Yl03S/wPM9xK9lIutaR5RatInmeoY0RvNV74l7wj0o2\n636NaSWEWxU9Bk+MiawbBavW++TuVA73ogn9ubZtO2yw8jcw3EP7wXsfu+vvG2vtDXBp/3P5SIz4\nDFQP+JwENiAh34KjSeBKnJ4IghIplBJlC61T9qFu7oAxZUJAajhIGygEeT1jUwYYAh5ZDMakCQKl\nMImgubvRRF2jP/Zn54b3SaVEv3D6XVuUSXpzW2GqZ1nW97h3AVgpwfcSsTT4QNd68szg9y60XFgN\nybXLey/2dP1ipN8d04LoXb3SwuozH7kpo+CJSMdvd9PszGn6Tmp/A+47eGlk4+k70f1XcHIeRVGg\nbTaUjvuLdh8P7QPgeDxmeb1AackYu3pLncv/iWHYpPpF3eM7fTbY88kAjIq4tmY2nrBYrCgyy2q1\nIC8sWWYorCW3ms12Tds1jEaZqHb095ORnS+EiDKaoigpiwk2K8jyEXkLLgZikEkQpbMkqxRAmYFi\n0etyxKEKAWvsEBT6z3Y/E9ndW9IA0v16CAHvpNHknEPh0PQbf/pstYzmRaWSWbGWFlsifCstxGOl\nDCHGwQMEAkSRT1doQowYFZMQ+83zElf3m25uSu2ku/rnvZhd7WNo+yXmJ3VvP+5Qn06IaDg+N4Ft\nOG2tUEFco1SQi0VE/o9Bdi4IPiYKx24X3GUHSXQyKlQ0YPQuQMaAtoILgNAhTGaxVjMeVUPjINMZ\nWVaQc7PFLpMBZthpbb4DbKVrqIcbVnwB2mEBeu+woUx/Q8QPuIpGR4UPCtd66k2DnZZDCROdx4VU\nJoRA8MLJa1sRMexvNqMiwtgItE1N126wMQLF3jmkm9OoVNLLza21IrfFjaZILzMUFKlEE8Jn53YE\n0jzPh5t7/0Y3xkDKAPvstm9MjNIgv1Ga5XqJMYbf+q3f4vT0FJNZLi8vMcZQjEQFeLFYcHh4iNYH\n5Hmeurprrq7OODk5GTIHYwxXVxs2G8HPrhfnlGWJ8zWqy5KmnSWElouLZ8IXLGe0TnDAznuMtmg0\n40lFnufMDm9zcnqLGBRZNmJ2eBvvA9fLa7oQMFi00vjQSUaUaCMS+BLhaJj1vJm97CYH4o3vvQ8J\nPw4kYG3YNKxRhKDwvqOwBTGDWASyIheA3mpCVGib9Gyckw5sKdcpoBNX02OiE+VpFzG2RmEIWvw+\nDZo2JLwNhiYFqXMcQqD1O6n7bbKJzPNyeKxvMuwHcq31ACGFED7S8f2k47OWon8w4kf/rEeMu+kA\npSRwKIaOUX/BM1tg08iKHD02YW/gLTJXykC6FQ0rNWQjA08olZa978HAuDY5xuw8MPM8H7Ak2CkS\n7O84/cLfLzVCCNhM37hxdQR86rIqTWbyHaPcS7Acj8fyt0XAC47iO+lAuU50r0ivN3RbXZveQ7Kw\nut6gQjK+TVmSLH49lJbGyvn30jT73V6zh3302Mj+ouzLiv4z6XfdPqj1pWqP2e0EOW+WM3ly6Do8\nFErLerkaGhPRy+xriI7gHA9+8hOW19csrq5YLRZsVivauqZrGlzbslmtePL0MQDL5TWLxRVN0wi2\nac1QulprBbi3Cuc7MVTpiaIKlNGU1YjDo2PJ3LRlNJ7I5IsRE5yyHJHnBR5FCAycNVmr5qPSWi9k\nKvv39f7G4NIYXP95D7+joxC/lUo4cY5iNxFgsgJlDUpbVDIBl9fNhuunlEkk75juOSH2Wh1QsUPF\nDqOCqOfqnbS9cDQ1VjM0Sfav7f759/dGf4/1f9P+z/r7at9ntv97X/zq793fr2v64vH5yNjSYgdJ\nqV2MSeYvkop+IStqQ5blaJ2z2ayShHe/4GS8NCTSoe25GV0gOEm9o0LGlowZuluZNRityIwi0xk6\nKlzdoDONVjnK7C3cPv3WH3djJgHA6AlBMkutwbmd+q7sVk44bUFMapUOAzAcoickTlPP2A4BGQ8j\n/QFB5JxcF2hacTjaBRMvO3qUHbZra4yx2KJMpfIuMPVl8jBP6yO9VFP/9w7KwT0ekm60IsuH5/SL\npg/2RulhnE0ZRZHLc93wd2nGo9HwWFmWFEUhrHlj0Bpu3z7l8ZPHoofWTOjalh98+D1OTk5YJX8B\nmXiA58+f3Mgcfedo6hqrLUWWU2+2HB0dQIy09ZbxqEocryx1Sjc0rqPbBPK8ILMFo8mUajYjH48p\nijnbpqXtIuPpAT4aAkFmd7Uhywx5ytC99yhtpZRM6i2koCSL2Q+f235A6zfDAVIJDqWS8GhwZJnB\nd5oYYVyOcF5Tb9eYLtC5DpMJgTvEiFeglcYai81HO76lNqAMMarkf+EJbQsxooND60bIwzESEu0y\nINQORUD5QIgSUNerzW6j3oNn+vugtyV0zg24KuwCV9hr9n1cqHqRzyZff8AuVf+ijj7VJioxYvk4\n2lpUeBfoOmlNW6tlRi5JG/fdniHQREXX9aNNHmF2hNRflUVoUGRKY5TBRLDKUtgSq3Os12DCjcUO\nu8wFpFJ2cQeeysUmnZ9NxMT/n7p3CbUlW/e8ft94RMSccz323pl5XrdOiaDcjg3Fhk2hQFARtGdL\n0E6haFPR6igINgQ7NkSojlqtQgoEEW2pIDYUrKIQQdBSiyrPvcc6mblz77XWnDNiPD4b3xgRMdfO\nk2dfuBfyBKzMvdaaaz4iYnzje/wfLRuqqcnLbDg1FYVq5PlcE6UR0IuzXb+Xn9oYB2mxBZSWhUUz\nZVlYlis+CMMQSbWQi92I18uT+Uu6xx0OqFLKLZjYPteCFFkno7CV3mv56kwzLuflJnvrj+27a8f+\n+T7t1dsJ7ArNiAY1iYOnqpWYMXieX55483hPiK4p8h755Z//A56envhb/9f/wR/+4R+a5DaGI0OV\n63zmdDpxd/fAd999h3eBuzsbQBwOB56engDBOQvA1+sVo3tl4jDgfeB498B4OPL49h3DeKJUGA4T\ny5xJaSHmhCuWeSzZwORSPV439diugWbTTW19LUPrdzmhrWfKGnj2jXW0VRDOWg7RB+aqLPOCMFuP\nuCSW85lSK/cPJ+IwoM6DBHyMOB8MGylCaPCdFU/kmqF3XdCieA/Rpbbmamv4QMpdIt96fqKVa1M/\nBkhVV/zay8uLlfbDZL9rUlj9Wge3G8Kx9aed/1QGvG+St9nb7+HwQHujXy1Dq21MqtKyrF2A64vH\n8G7c3CT9cEjzQejBBqQ6aEME58xoxYluWQnSAp+YfLO47Xm4zWT6jmPvXTcpl1fHugO3i2Ij+LJK\nzNTaL2Bpi2RP/DUp57V/2Dh5XdgvpUQmN8J3XQNH1owTOzd70PLtZ+j/fj2cuAVCrj2gndHH72r2\n/rbn6lllv2nXwL5ckRrW919raWyHxN3xRFfTGMcREWGeZzrP1ojpwxqoYoxEP/D+2+9wLjBNE8uS\n11bFMBjjwjuDg/T+pCrWh/XBMrbpxDAdb/qN2jJbCR6njkiDFnnz0OjBrDSechx8C2iwVxbcZ8Kv\n+0/7x7D7Xe72k8Vs+jqfuZ/DECP4gPM2+fTer+rLqDMMWGcMvHp9ajEJdK2Wmb3KJnpgsU22kHeK\nHD0z23+OPsgpxa/3X98At5J477H7/VnY6yyP31fmQc9MQKhya821PsoabzhnNz5YL23f9ym1EMTK\nrp69uVbRerHJZ4yR4jzBCcF5Bm80KS/O2AOVdgNYhfxJ4HxVhooIPuxYEi2Lmee57VIbpKJnO+sU\nzilLz9JqIrXGrERTqbCAL+u/U7JgtiwL5/xMKYkhutaY97hsmKPgHDUtlLTcBLeVv7rrEa4/l08n\nXiklXDCYQG8a9+C0z/h62dGxfP0c7CejK8D2Vb/NFCg2OZwQrOy6XM588cUXDMPAH//qj8g584uf\n/ZRjs6g7NnVi7z1jDE3qKq7AYedMY80Wn3A4nPj1r610vVwu5Jy5e7wj18I4HHj79i2nuwe+/OnP\nCH7gep1bgHCUJfH09MQXXx0BB04pxTalZbbhQ2xeC33I0uW17BRX9v3v/T2176mpWttkaVNe6zee\n16mv3fN2fjvXd5qO1HZeiwo+BrwzuSmhZ2g2iBMctV33igVJakYpUIWKCVBqA8mvG1o2cYpFaRps\niY8vZ5Zl4euvv15pebXSzLEN8PzwYKZCVBvGeO/NU6KV4R0PervOt6DWN9Oc0yeP+6HjRxHYVJQc\nkmVhVQgiaBEjJKuNoK1hLmhJuFoMAa0LrjlZ+ZqQupHcnbY+UjScmwESD6iLZHcgemuI+hCp6khV\ncDHaIF0h+MoiBb2BFVhp6J1DSkLUeKUxSsN2zYgPaM14HxFpkuNBQbxJKImRlUstoGbhd81mbFI0\nUyhUKvXpbMhzHEUhp8JSMvNyRoHETK6FqnBNIO4OHzy6CCqZTMHFmeye1tKyZx+l+7JWj+ZMGCdy\nqWgNhDiwkNFivRALXAYRmaahlUy3t03vccHt9KqKebOCBbgwBmjk6DC2ktc7slbIdR3AiDi0eKbh\njjLDdUn89Ktf8OHDB5w4nj8aDex0OnGcxm2YozZ5vr87cTqOzMszX3z5wNOLmQ3/33/7a+ZlNiXd\n83cM3nN390BSzEfh9NZs64YJnGf0nnmxDca1BXg+X7eeKR6qIOPWH5OmwJJr34i3QK5yRb0FFtEN\nxyVr1tJgTtSNRE7CuWrGyqng6kB1Ga6R7LOpJU8HvDqcjxbQJGJ3vLmqBdeMg6QDYDeMHCIkB4e0\ngKuoZjQKF13I6WI9w5TRBHmp1JI4Pz+TFC5Picv7M/pUcB8SVZUlCt+5Jx6uI+N4MgB8k/CaDsNK\n9XLO+nWppA3TVreNsJQe3ISUMvP1U3OlHzp+FIENeim656n1bKKs/645oQ3IWlogW5vhpf+7DQpu\nQL/c9OssK9mIvtb4t96Yk21KYwKRdqxlGB2Ddju96Z9B645AfNOHMmlm6paa4xTRzXlL1SAdVjKH\nFfWtBear8VqXbEGmZKGqt9lKtQ1AxLByFTVLtZopJTcHdlssxni4zcz25cAN1og+LNFVR+51idC/\nzz27ZDchDVvmZy5MW+a6Dhtaxvcaz9Wfo9/M43jX+nttOpzNderNmzdrtvT8/Lw+vrtgueDXwUX/\nSimtWbeVbZ5xHJmmY2NlQGzS3aUG/A5vtp94r5l7YwRL40Ci/by2/qxaW2RfeoV2Pu3vfvfaeF2y\nOeeQuuMAO8tinQ9WAqtDGi4TZRU3rdLRoqyy8fYapYGIpQHFHSlVqNZKyTmTlkLOiZfnC0upfPx4\n5vp8Ic8ZzSZNUSgkzbzUzNPT03rNLcBByUpyfeCllim281nL1o/dsxN6xfF7F9jsg6e17IJ2EeqG\nzi61UNXbRKd5I5SWQa1RTJ3Jd5dO0WIdKIAzbpwTggPnTZPdSbXy1HmC9wYNAUSLOQWJULOuwBhX\nrfVZxQJflSYl1AKfh3anVkrp4NJtUbg2PEi1Q0bM7VSLMreysdaKLtqAo8KyQCVQq6cmy1CWouRY\nEDXEOVpw/kCMlYoy14WULlwl48ML5f7OxvdaLZukS+9soOZ+rn1ocp7ZUdiMawCDXqyT6Nve0Q08\nobUDupCgqq7qH/tJWe/TdEgNWCnT0es9W356eja0fTbg809+8lO++eYbvvnmWw6HAx8/PpnApw8M\nPvDtb76252jGKL0vqwXSnJkebGL47ssvCMORlM23NSeFKTCNxv88HgdSE5cECO622W3KVlsQ/r6S\nfw1oTWVFZMM6wqczsu0cKh2gawE9UbJJJ5WSDTzuPd5FxvFALqbg63ykK2/kbMbOTgwC4ntTXm57\nwFWTTUhFze+wCIM7kFKlpkJKZtjy3bcf+O6bj8wp8823H3j5+pmaCpcn84ytB89LmrmMziSnquN4\nnPA+NviIbTpdev10bHJcZQtizm0DrNJkza+XZb2XPuf4UQQ2oxjt5L7VkO291yUApZoCbimrVhst\nIBq3rYtQ9tS+WXpJB0luEI0NF05jCHjsyVuGRF3LCFm1sVhT+fVtq+L100UOWx/ESzFJJQB1a99F\nqrb9zR6bU2KZ5zXzqUltkeFAfaOLiQ2BC5TiSA48Ar6BQaX3yYJJ8JRKLQulLixpBjGaTK0VcTvB\nv9cNXJE2gDD1VvuRGDSkYfH2DeP++9cZW2muYP2896DdcWylFMOrrVm60lVW99NCAK1CccYTXuYM\naoKOz8/PlKw8P52NciebP+w0TQw+UNSYBFq10wEMOIzRuMbpxPk6G8dTfNO5M/5dv296ljhM8eaz\nai74Vz0y+C2BzQWgf67t3Pezv/Xdbu8lO4dQq5BrWjm5MUSCH3Cu+xz0a+HbonLrs+37piq32ZoJ\npmbE2f3mRW2gUCtaMjXbJL0UpcxKnu3158vCcpkJBDQrSzav05f5zMmfmhdCJoTM+eXC4XBgHK1X\n5H385DO+vhdfVwe/dxkbXd9Dt+9XRVuxbKvWSsom+V01WzOxapsK5nYxLJjpjmvnMCswJ4HYCOdo\nNr0CtdJVEYroisEyZZE2wHhVchG2khPX6FRVKSmvUx+ggeoqVSA0ZQKVJveNBcl5tqFBap6deZmN\nrqNKTgvLDFWFUiPzYs7zqQi5Wnm+OJuADRLNeUscITRiPCNFzQHF6cz88hHRO8bRoSVQtVCqyR3Z\n4VCpVMq2GF3HGhVK2TVzKzcbRV/ofTH3G3BJZXWt2g8ZenM/xmh9mWUxKk8TDVBV/LJBSgxm8sB3\nH41E/3K58ke//v9Wc+DrkigKl3khnT+aWXFKHA8Hnp9feHx8pJRqmc3guL+753R/IAwD0/GBu7t3\nhHFhmO4YxwMv54QmIYYDeMfxcGBZFn7zm9/clNDrnbsGqb6Rdgqb3TO9x1bUgpGqkpZry2DKSlXa\nH3uqm1JaRVPba7uG/xs4ne7wwVgHZlc4NkaJCT045+w6C4hrVLhdu2TdhMh4BecqgcKA4+PzR1RP\nSFHyvPDycuH6fOXjt9/xfJ358M0T+SnhysLzdx+4zFeSF769PPPh/ExKmWk84l0kJWWZE4KjtGl0\nCIHjFFq2lvA+UiuUsqzKvD2Iv7xcV5jJ5xyf4ys6Af8DMLbH/zVV/XdE5D8F/nHgQ3vov6iqf1Ps\nTP2HwD8NnNvP/8YPvYYDoh6PAAAgAElEQVRqj8qbXpOIZUuW3jdn+GrpspbSQKumsOvEGvZ9QdVk\nixwx2hBqeLEsC94XQnBNh80TxICtNQtFM+oCInXlbzoVytJNUWxnqo3P6rRBPQJ0TqaWDoBsfbSS\n6BC9WivMZc1M5jYNvS4z3ZsRQEU4L2cus3ES1Z1QHQ1bpOYVineEkxmw+MFDAqozty9MzWHyHnUF\nrQknGeqC5hEJjZImDaKg1kPru7gEu9knP5HKArT+GhWvHqtaOnp946muEI7d7toDQA9YPdDV2nxX\nm9LIx48fdxk1a+9oY3vY6728PLV7pUNZSitvAynNxGHg0KAgx9OJMI44Cdw/vuXp5bwqhLz9yZfN\nUvCR090jw1gQf2CII9frmZeXC+M4muRPez93d3eIskJLRAQtxuvd9yv7OXgN4XBiqH+A0Ch93t/C\nmew859ZLNk9d2+CVLoHrnMNFZRiPOD+QszLEYFWOOiO+a+v9qfFfi1oAthlvz0a3PmspCyKOXK5M\nhxMqldFVLvMMpXO31SbFeK7n2eSO5kyZF54+PBmtKjpUCvM18fXX3/L4+IiIcLo7NE+Iwul0aIFt\nK8e7FL2td9nk6pOZD12vV67X6w+FkZvjczK2GfgLqvosIhH4H0Xkv2m/+zdU9a+9evw/BfyD7esf\nA/7j9v8fOExae0s1t5tCd2j57mVgmJq6pdNVqftUtdJuAnPF0dYr04IFIglI3HZIaWq7qmJgXxc2\nifA+GjdcycqBvGmeV7vx9ilzp4jZjdrLrIRv8JTUPBp6iWOBbgsSl5Q5XxK4gThCppWi4kw/LQwW\nSHGUismDY3pbaKYPXMyPtVBqopaEG+0z0qAAgjEprNS0SabrDUWp23WQVqYA6dWgYF+OOudWw5N9\n6dDPyx720YNXz8z39Jr+fDd3yS5zvsmadAMcTxFQx3m+Nou7CE3O5+7ujuPJPDsP071h4LxJIw1D\nJBXWQUSH6mgbbHRaGHWjihk/d9d/rJ+CuW8/TysRqSY22aoUwbeNUVum1oUTbjNjBNJiAb5rM6zD\njI4vkzYNbSrPzjmSbBLqfRoqn7y3TcZea8ZV820910StgvObJPjaHtBNJn4+X5iXGSVwWS6Eo+fl\nxehqPeu6bXlskk7mbtXpfFDrJjO+N4j+pGXyA8fn+Ioq8Ny+je3rh17hnwX+Svu7/0lE3ojIz1X1\nj3/gNchlWc0gnHOkdCtVXKsiZWmlUGt20y4E2Piy9OmqtKC0n7RCdY3fqInIiMOx+kDXpnogHlWo\nYg3XlVtoTY4Vd0VVVHZyLK73JAq1TTtF1JRTW7M9lcz12uzWKqvN3dJ4nC/PF14u5v70PnuWJAwR\nXC7gBXEBPx7Nnu94JE7J4nfJeMlQwDXQrsObP4PaZHmZX8zUBsilEMMIbceuugEo1yyZspbjldr8\nIm7Bkj1I9YWuvays2wJ43Tvp2Vr/WxVwwXP3cH9TevhgE9/u9eCCMUWkqZcM0y3P0HvHMMamjCzo\n+RkXA8PhSBwPDVP1xvxDrwvjdA84xuGEjwdqhXR5IXjT13v++j0iyuCPN3CZmstNQLDPZT0577to\n5L5XtC8pba+l+QbYphCQuh/QbIOIZVnIy8KyzAisUtshOC7nZ3seDYgbqAXzxi1KdHZfOx/wPkDY\nNlp79e8BUIehBTsHueAqBAEppW2OEXGVMBhkZ5gi8ZpZHGtJndJC1sTz+Zlwgnfv3q1DoHGMjNNA\nCA5xBecDw3gra5TSttHnVNcM3ybgL3/6wwOx1f/XgX8A+I9U9X8WkX8F+PdE5N8G/lvg31LVGfgD\n4O/u/vz/bT/7rYENtgUhbCRqM1/d0MuUZvFl9AQLaJWtD9akj7SpI2gDUlpgq4YfQqlOSMmAvloW\nRCJOK9HRemIeT0WdyeZQGxnb282Q23BBiiJegYynyyY3YGXjB+aa15Kpm8ta7G2j9Vp5ej6bccqS\n+PD0Ee89H/VLVCOpDngdkWEk+In7kwFW7+4fidN7PML1+Qm9ZkARAoHBApdakJ6XMy665jp1ReRE\nnhfccMA5sdK2+a0azQWUgMcyNdEtc1UKQrgZw6/uYHXTC9smoxt9pmdqPeA556jCphrSJM97NtbJ\n06pKSkZk78/dS8FOYVqFQWtinAbiYWIpmTfTxOPbt2gVHh7fUFAO9/fIcNc+z0Ba6tbzqxUfgznA\npyu+jOtG2t9nL5FFDPzdwbP9fNhCHr9vHa3yO5aBbeoXtCmoDa3svThGcgCpE+ePBl8Rb7zPGONK\neF8FC5yJGTkXGifaNh0Vh/qWFYusoq6+A01UcaFlnICWjCMwes9xEliUZVZiFI53Jw7nF6qzIUs5\nJ7yaBhsX84IYx0gYR06nA+/eveXtu0ceH++5vz8xTQPjZHJgXSLfkoONKfPyfFnX/PPzMx1u8qea\nsdnn1gL8wyLyBvgvROQfAv4S8GtgAP4y8G8C/+7nvrCI/EXgLwK8Pbgt82FbEPvAVkrBteZpd6ZS\nVTNm6dlAf7/0Ru5WvtjEtL+OwStM82q3qDXgXG3GvPa3IcqaJfYF12/qDteotTZHIdaGcX/domX9\nmfWhErluO1SuhfPZUPCXeeHDhxnv4aO+4PwBF+DkTwwacE1KKcSJOE6rTZumhVoTKpVcrOQJzpHx\nSO/1YVgly8zYynmRht3bdu9a61rau7BN9+z/jrzrq/VjLzbYP/vrsnLPAeyvI00eu/9Np171nt36\n87ANIMDYCTHGNbD1c+99ZNip/U7Hg7nZZyWMA17Nz+C82MLqATfGuGbQ0blGxzJWQ21ZhIkmxPV9\n2dTYnMb6/dtL2e8tqW/KdrtORfNaHvbHdrGCbn/Ye0s2y7IJb1fO2FoB279NgbeT391KUezPv/ZS\n2b/HTtqvrZy1QBtCwBcTZVgzr3GkqJCmwnUYqD6t18ypYxwjw8GyZOtjHhucx3jBRoPDyu+6fvKb\n7H6r1EC1rtfmc48/0VRUVb8Tkf8e+CdV9T9oP55F5D8B/vX2/a+AX+7+7M+1n71+rr+MBUR++WZQ\nikcKgFLyAk0xVNQmibqktgCaFrzl+y1ha2UrhskodQ9P6DdEo5S4gVoVXzLOD4i2LMN5incW9Lyg\nIVivIm/ZRylmsuy8J2tpst7CkhJTGwrIDnAq3hnmSG1yOy9XPtQrNWekCOWloNXx/F3iMisfnpW/\n9zXkClct1PrM23cDJ3/g8fELhsOBNw8/JUwDh/sHxvEdlMzw5g2z/oq5vrfgpjPqCsVZA9rnI8EN\nRJlQPBmIw4iLBhPoU+VepDhpeYXza7+tQ2lqEYTN4KZ0AYB6u5Cdc6tfhJXeO6s5ty3CGLdbcJrG\ndVMzCk0zDPaB4Mc1gHnvmYYR7297oEMcKFKI3vPmzRumw5F3P/m5GRMfR+LpHQW4ZkWimQrHccT7\nYP1Jb9lZmrdS3okQhsGcyRrmzyPEwTIyy+bMFjCEcQ1ctfdV9od4fLApPVVxXggxMl9eAFbakIh5\nR6TrM2W+spxf8M7ubdfOUQjBfEuHA1UdYTg0oHA1rw7vwQuFinDE+w1K4rxrclC2uas20Qlvgwet\nxpEOMeB9wbtEXS5IyAz+K948KNM4GxB+vnA8CMvywOFt4Ls04w4jx6/u+fnPf86bt0dOp5HT3ZFx\nPJhXLoEhDgTvGozFBAJ6T7BvEAakhmUp5ra220h/1/E5U9GvgNSC2gH4J4B/v/fN2hT0nwP+t/Yn\n/yXwr4nIX8WGBh9+qL8GNEJ4Kx+71LX0EseyoQ69eP21+h2U2uA/PVPQtdfRsWh9RyhFQSuqs+HY\n6g4vpYqkRIxjy87WE4HPNo2sqHlwtt1evKPE9rcN/1aKucwbLaa0/lNCksDiSLnw8clAwB8v8HKt\n/ObDwh9/hJRhOlyIcaQMnvH+xHB35PBwx+HxHj9NDMcDLl8gOgY3IccDTs+8XF3reWwyOWuzvtkb\nCjTcnnFzt6Oyn5TBlpX1nbNnBjeDElWQim83Z28U770oetkoIqvqhKoSgl+5h52W1TO3/t6dc4Sd\nPpxtYgYf6CyCu+OJEAZ89AzTgTA6/DCyLInTwzsOpztUHFMcKNVczIfBXL+yq8Rgmcj1erUF1LK0\n6/XK/f09rpWHvWXSJ3iorplUWy9r4OmfZbeY1r4aFJzbEP1mVmTeA0MQ017zAynk9rpXy5gG80Ad\nj4dVDFUlIETr84VNo61PGCq6qmis2aGlbWYiLmVt8VlCYBo40XtCFmJWondo9PhpYCoDLgil3sOc\nuYYXyldf8bAsnMoM48jwduQXv/gZX371Bff39zw83HE6HQjRtay2Zep5c76y+6zerEn72sRUP/f4\nnIzt58B/JmuXnf9cVf8rEfnvWtAT4G8C/3J7/H+NQT3+Fgb3+Jc+6420JrWqa1i1ltpvvWpzOVba\nxKAPCdrCqtJoTp8+99rPqayuSd1Loff1rEyzMbjq7mSKNskXyKo4uvmJlcFVwVVHrr0p3sqsVnbl\nhlGrxV6b2ZNzYc7Kdx+uzFl5f1Ve5sLXz5nnCrn9/RgKC5UkSh08bhiRYcDFgMSAI5qyhDY6WKOF\n3S4yZ23CuklyO1fWnXrNon4Xr+fVsZYtu9cp/Xw6w005F7cNg00tZI996++hB7AeKPv33y+GsAF5\n+yIOgxkVZxGGcUKdx69mxaY04WM00nU2895e9nr5nvdlH4xOwaLq2mOTur0+quu9sp4Xbie4/djT\n9fr/ex/RrbJPlSK7aXnWtXe3nqcYVqVaaSILHWfoQrRV2t+Hk7VH2j5SuyYbwFoIqGu9UbVszTWy\nfAdqh9ZbtpaA2HChiUkOQzOdjhHVAR0C8W7krvXUpmmwvlvcAlrvr+0Nu/eSWes561jJTk/7zONz\npqL/K/CPfM/P/8JvebwC/+pnvwMA3RRgO+ezlGag7EzpIWcjSm+9s16TuzUz6/eRNWHX92Mmsf13\nzqzrFIVS8K3nZD221lR1ASornUhXuzEjL7vWw6gqeDJZhHzOxoDoI/EG2J0vmcvZAIfLnJm/hrlm\nLkX41ZMyV/gIXDJ8SJCdkFAea+btdILTAXd3ZHx4YHh7jz9OuCES7u+4TxEtmXK5sIigUvFDJF1s\nGjuOB3It5KWxG/KC5AvBR2oNiC5oaUKR2iWsFbdjG2yZrAGl7Ret32gjShsoSEDUNOechnUXXvtf\nrzBqfbPRRrTfwz76JG0f/FRtYi2tZOpB6DCMgMP5gTAeiePI2y9/wpIsYNw9vEPFUTGBS+ccYfDk\n1Ix4wFoYpclduaaG3DJMbfAVaUMC50zDb4Mj1RWa0Y9972ufaYgErKYyJL+0YBm7i1m4Ms8zrjZO\ndFsHhm90RoXzI94F4jAZG8U1IYemEI261h5ooFwgriKor2E1W8+qNPAPws5jVJiikdNfQrDsdoA4\nOHCWXbtUWeKEL0IuhVESMg34R8/bt/cWBH1FXGEcmxqM27x1KVY52LAgk1KD2TglVIeIZfnk9Kee\nsf2ZHxa48ipdtN+h7PfasGO0ACW7QLZHN7bfv/r8+0XmnU3ftgqzOV5pwxeJ4Nw2aEipNuuxTjxu\nWYJJla7PW7OpYQg2vclpIV3VVAlmG7e6ErheM3N1XFRYtDALzOpZHFwpXKvRgk8OagjU4KhO0GAa\ncuoEdabaoEtrMte6vvdteGHwEOn9xhtNMF3L49bYpFPIegkpcquVdVtRbVmHOMucnXNGaJZNEXav\nv4Vsph9Ft0mpGe3I+jc9K+nZ9PqaTQZehWZc3V3Wrfc2TEeOxzvi3T0Pj294OtsUMY4D1yUT29Q0\nlYxzsloQmkLsLoh3q0LvVhu7PSWscz335fr3Dgr4NMCtp1Ad2oJPjBFKvpnszs9WYqfZ+JHLnAjR\nN4xXbV4ZndEgFFV805JbclqXRJU+pLiFp2yZqaztAnHGgfbsPle7Rj44ghe8E1JzzBK3Eys9OMph\ntqGSi7jDiD8Ix2liGiPHceI4TgRnGohaFecamLvRGLeK41ZWy3nFVfDqbz7H7zp+FIHNEgWT8qnV\nTFi0WrZmStqbNPDr7GxdfPp68W3/th3P+HkGt9gHACtRDRTZiOk4qjQBPXdrl9Z9GPb0Ke89kiJI\nJueZXBaWxWSYrhfl/AzLDOczPF0dS1WeBX69wAvwTCEBmWBCfiiLz7z72U84PD4Q7w74cSBMB6bT\nHS4GwjDg8hlxkOdKkWyI9UaJCnFENaA1oR5SqSiJfH1Cou2C4n3j7LUGvGYQD9Ua3KoWQOxmMziN\nk7BzxbLzp63PVLVnA9xcKytPb8n2/eiLbJ8d9lG/iDSJG2sR+DYJ9D7iYzSYayOB3799y5svvsAd\nHlA/MB2MIypx4jQ6nA8s2XiWEvw6EVRn8KAYAufLhev1yhBjW6Qmo1VbVlaraaBpqWsJaUHR3wS6\njX1hN+YKDdkFehPObCDUahTBlBLPz89MzjHFCRkLQ4iQbbLu40CIk/V+1ROdBxfs9RsEp8tMFbRN\nfdt7oDTTYesRCzSJ+9Zakd4ykFb2ebwKQWD0jinYcO3CghmT23UehoGimcPhwHW5kJ3ix0CcIt2o\nqDbIU39/+yC2d5brm7P3wrLkFfLTe3K9b/k5x48isNnwINtCUrsM1geT1rQGLVDdFrx0S7m252np\nmmjdPbstSjDJFJGGRasdrEuDamg7caYj2jusXT3WXkp2U8I+iLCLJ3mwpqs4lAjRsyyZcxE+zJXr\npfL8rHytkHF8UwvvMSbUFUcFYoiQF0B58/YtX3z1E968ecPx7oHpcDJRwWFsQoKBOEDNykVmcr6y\nlCvzstiCJpASFBVgWXtitZZV7FJCbJ/LvE6d7/V6ZbPn61infh4dIh3a4czPszYK2y6D3k8rrYzc\nkcHbU/ZSdB8U9q95u4HsoA3O1G4HF5lOJ1zw+DASxgMaRuZsfN9pGhkPRjvDu5VDGjQQovWHnp+f\nGaP1LVO71sfTiY8fP67vod9n3pspcC8h+1CjZ5r9ffdeXP8s68/DsGXP2uBGboM4eO9tUJGfSVSS\nc0Bc4SNxGC3ghAkfR0JwNmUURyq2+ftmwecVPGrtAt1n2VuS0K+xKjR/4/0lRCl4Mamj0TuydygJ\ncZYouO4r0vqDHWcnQlOj9usXalxuh8cJhLZhVicoe+HW3nq4BUJb0PtTxrH9mR8tSNigoF2AXYbW\nKUzW8gSQRvG5bdZ2dY6OrKY9VsSYCP0mEvHEVzLFgPkRyFYSAY1KssfaCB1EadNYW9g522SwOuvZ\nZK3MFc6l8pzhmoWPRXl2Jqz4AlwwKsyqaFozYH6SX3zxBYfTcXVOD96vC91L43U622lLMX26qqZi\nmyikEhHviZgng2ix/iImIkCBUpJ1VqSXrt9/4/RScj1fLUBZxrIPSq816rZgti8x9pfndUm3/3fv\nvfVzbze/36AkwZvtnITmvgSG77Gyz4WI99H4rllvvByATbGjTWs7rm7zejDljhjNhPg1+PiHys49\n5m597Po3vpWirOfJWiCRGIF6Mepv7htRteZ8U/KwbMfuA+8cVR1OtwDZezaqVrp6t71Gf8zrss6I\ndK9wYm3dudbXdtL7sLWtg22D7/93zU/BrlNor9M4rOvttfWK1ntlF7T291Dnyq7S5p95/CgCmwLa\nmeK4NvRsKOyOXBdPFvMK6H/DzbRnE+7jNYRIXcvU9jZz/Zevpy1ys1v4cMtPtJ+XpiSyCSYuYcB5\nR3aVrLDkRBki10F4Cco5KM+y8E1VZipnHItzrSiwjFFr4hQ8bx4e+eUv/zz3pztitB7FFAeiH5jC\ngHgj6FcSVWdSvpBKMo0uDM7SKTa1snIecTa9VTUTXSsPrjgZiC7YpNcVbAD+6eLtN+TWFN9+VmtZ\nd13jiiam6bSxSNhUP3pge92j2k8le6nSgw6t7Kw447kG3/BtA+NhMo8CVZ4+njkejyzLlYplMiZ6\nkHG+U66UXCs5mYKvqvLhaSPhf3h+Ys7mlTk4z+FwMOOf1gPbwNjtvUpAMKDzWmI1ZkwPaNbBzVtm\n0n6Xc8/+pNnZFUbv0VIbtMSUPR7evOF4POKHsRlvu9XvGG2qzmINfKkGZzITcmPMWF+1lfxq95vs\n1xI9uKmxQaj06scA357ojZGhZzP4Sami2cFOiSeExq/Ndg8au8baQbUlAbaBm/pJ0W1avw9m/fsu\nccUaJD/v+FEENlFB0zZ1M49HqKWuYM5aoS6b5I94y1hKG1NXCh0jOslt3W6pv1tTWXFC9W1XEI94\nWYX3TOetmryQwFI9zruVMgUt1oaBqkL2AfGDSYOHO7I8MpfKNXpyUdJUyNN7KgvzJfO1Cjk3ddmq\nBBG82o0YC/zszT0//9lP+IM3P+H+9MjhdM/gDozxwBACqhnX+iWHOTLUynfzBakXoi8sSzUVVQ9e\nmnnMPOGkqUWQ0PRC0YVwbzzDVAVCwOmI+MicZnww9QVtLQKRjqZ3lDYVrWw0InbBaRwnVEfC0MyD\nm6hBXnuYG2tjG9wY2BkUcX5F1tdsr5URvNp1cs54oS4OhONEds2fwinBVd69ueP9ezNAOR4fTSlC\n4DAZU+Pl5cXENMvC4M2noNa68lbneaYiTMcTaV6MmucDVYSq2yCkZ2aRNsGVnQELm/csjV63uLCS\n5msuSDErxuAMT5ZqoaZMlivfvXwgFZOyoiplKdTJHmfquJHUYEhdxEDUeoaUgNaKKwYyrg3P7lx7\nbJt6V5Quzha0tyXs+wImElMrtSYkzvi6EDxEKuma4BJJV2FZlOzuKJoYqkOWCnGknCtERTVRpFKi\nI9P6uxUEz7Xh99RFMkp1kSKBS5qbMETz2NCK6udnbT+KwAY9Pd7+bdMzxe36AOvvsX/vwO7sqqX2\nff/mVvp63wex8tYswExar7THb8/1eoe1v3UspYDY+DrXao1ZVYoYits7b71DKah02zFw1aY8ms08\nAy/t5xCd4zidOB2OK14pxsjhdCTEuJHxmwH0Cl5s5foWzG/HwuKtOSl4nJS19M3ZNPO7EW8nuots\nihK5Ie331wnh5pzuz+vrXfV1qfJpGbQNGz45VNYMvapRoXwciNPIeDwajKNWkN6IhsPhsEl/tz6X\nc47ot6lmrZXaFkwMpkhslJ2tr2fZVL55r59M7PpjO/+zBy1hHU5UdOdpcHu+RGQFp2vHGeYFrfNq\nX1dSwrOzrnNbP+r7zvdvO/Zl8ved6s/9W7sH7ZPtecCmQF6NzysmWmHA64hIRYLpDkpu16qtl6Tb\nNekCCMD6fSfB+7bWPvf4kQS2NkHb8Sz3UapgJq4it1h5kS2NtoveewiyW+TSvtxaEtiTpjYNctRi\n4/dCU8qtQkFwqhSpeGc7mEd6ds+cbdLh3Ugq2coj71F1uGCyyEN0yFwIYbDG7vDC/UsmS6sUUHwR\n7sYj1MKbuxN/35e/4Bdf/pzxeGCcJoZpxIdAGAckRls0FWrOBJLBStKy3WRK81j1TUnCRvlFBUfB\n4ci1cLlc0UsmjifuH0ekJCO/S5vgiGVHlYKqQ8jQdbx2vZXb82z/3w9W9oT318HNgoO/eR4R0y2j\nyTDZ4xzjEDicjoa0b0G9K9f2Zn0IYVVNubu7Q3t25s2pqbMFQggmWtrez/l85uXlhYeHN+vi6dNY\nE0S47Z31+20tnfuEtd+/WGa0lXhtAlZNiMGMdFr55pQ0m+T3crlyubxAfkJEiD7gtTI0VsQwDLjR\nQNq+Cbnt5YgQq376hr/vda78W91A2b3E/76Nv1+TPY3Ne88wAlJACktKO425fj6a03zKfPz2DHXh\ncJjwC+v0NE4jpAXnwnotVe1vSspczxeu50tT6b223uhvt+r7vuNHEdgUmlnrdmN0b0x1PVtqN0x/\nLLKm0XY42N1ge39VEWkLpb2eqjmm9ymN94ZVy7UN/wRqaa3UauUHtiNpEYoWnIuo9HG0Zy6VcfTU\nhh+raqYyzntc8LiqhDgykIkYrSapEgncDROUyt1wZHQjvvZJUaNroSvMxPBb9p4cpvFmF94WeoVV\nvWH7ssGIBWVHafJPuSRwyehokpFozlqqtAFD12LbbycO9k7ea7DqpfwW9Lp92/5x6/Xg02FBNz2x\nl3K74OeIO0f5rBUXFYnWg4sxkhphfW8OoyIrsn0/OOjwi/58wNrPG8dx1eSPMVoQz1vTdg8SXfF6\nLtzcv/Y6jZXQ71V2Wes6FW0tl9o3gLI2/0MIuEkoyQLhnrXhevbWDIK+b+ZTZcvb9+e/X6OeLW4/\n2wLddk32/U9vXyiiCdGElowPd1Azjkh3mcNo1Cwps1xnvHfENlF2MeBqBJwNvpatt9apdRuVauu/\n2Xn6MyLB/1keBvmxE51VCdJTejtUWEmw9VVGp4KRkdvnLrBeNFZ0wZYt9HFybYtIpBiROByB9tSt\nQZzdeXUDyilbPwBHdWaOIVGoBeYm75PUHIjIypwK43jChYwUz+H0hndXg50UNbnrw2Tu5ZoLDw8P\nHIY7UMvwrvOCxMihWmO3utb3arvb9fzE+fk7Sr421H9v/FdL//E4p0gw/S9TQrEbJjgP6vFaqctM\nGI7kfKUU17h6btVj61mTndsCaXMN2sob3bBh7VwH2fVt2IJCz3Z6GWd/a39nmDBHx4bFVoJ3HJzB\nVIwEP4yTlXA5My/GqTzeDVwuZs8n3q+laa119Tz98OEDw2hlfvdcuLu7Y5omYoycz2cjxqvJxeO2\nwVQPAPvvqxRQmwj281Xb/dqDg4jg1DcokgkPoAXFbCZVDaxbS8H5ieV6xoeAo5KXruFXCd15yt1C\nj/pAo9P/7FoZw0aromrTRdcGT9t12VHI6G2e1nJpAybLLM2YOQ6JOMAwCsoCkggRvIRWyhtlUJcF\nKcJyvdoAIh6Zr8l62tE2qUM8EsTZ/SKNVmkRDM3WbyxLouRMGH8Pp6IA5VUPLddbt3dkBzNojV7o\npNlXzyVbv27NWHr540yxQVPBR48ykIuYo44E6+ntFmsuV8tycqZkz7KAk8B5WfAx4AaHj8JFBJft\nRcuSEUzkr1bP6NbXPJkAACAASURBVA/4SXCSkGRE6vmqvHv4ii/efUXtE7dxIB6P+OMBNHKZFULl\n5Tpzt8zglGXxDMF8TV9e3pOXF0SzLRiFjk0KYaCUmVKtBIrDwJJmQ5dLQLxSZiPoL+cz0Q9WijNh\nfF0Yp9EI1M6yRlVD6XfJqD0qv3+/p0L18tCmffkTgGUpZRvz7wKBQmu4mxqGOEcqmcGbxphvEkM0\nnKP3xgvNl5lvl2/XSWpqkj8ppXUI1afYdo4C55frKuC4yhbFyPl8pdbKcTpwGMc16+sBLcZo95Gq\nLcZ253a0vw2Mt2oDWPGVUg3TVUUoy2J0wpQZosd7U3o+Tgeuz8/22UaDCMV2Tn0IJGV1nIKt31xz\naS0EhbJJtfc1cCu5tWVo5uNpLRtdy50ObzJEgeHmZg5TIC+Z4Cu1XAh+Mm9fZ4G55kKVgkfIcyZG\npaa6bkyaC7jAPCfCfnMspnqS5qX1hFknvkHMSe5zjx9FYNsHJm09LNv1NhKuKpRWAtW+iMGC0Kvn\nczsi+L5Usoe37MJ1ZydDsqsEIFDUTrDr5Yob0FxIWSkLLMks+5ZU6aALj6KjNPFIXXsyNRfAHLmD\nOrITtF5BA96BEFE19L84Z4yAOFAlkhZFJZOCqYlav6ogbWpLXVjmF1Kaoen+46DkjMgOGOuMJ9k/\nez9vwXmWVhLVps1mA4m2EBsjowtibs5dt/LX++xl35/pP9+LT/7uq9+ftw0wPLTxGTFsirmlGEvF\nOc8wtj5XMfZGJa7qIkVNgTXGiAq3KiJSV6WO7pY1DNPaRzscDlYOFdPc38jYbCWh3GY7YBhKwco8\nU4KSNu1lK9NlK+XX4N8UbrsenJfGaMGa7lMrPwvmtVF7a6Hf47trsF6X3Qzpdw0Z9tn0/m9eX+sh\nBKYhkMeBaQikuZLTtfGxFZHIGANzbRP8HfG/ZuNQ51zB5Tbw2TLgfd/2RmCW23L6c44fRWAD6IoE\nTqyHpa3Rb20XNaedZjLSS9J+k3/yVNt1thJBBLp7UA+DoSHSiYThSFVHybaYSxGkGNbnSqUWR1oC\naVHmq+HrluJwBTyOQxypMlIJULOpl+JNoluE0U3mNh5gFEXzBS+eSU74Ek0jTgRhIFfhZU7E80CW\nCpr4MDwzTp50P3IKmewL1+f31HyFuuClULS0HTq0z1vRYFAN3ICScCEiaZc5qVLSgtRAXRaiP6CX\njB8nawrPRqoXGsdP16hoi7tuk7FaOue0P7Wiy26osQP17g/1pSkf24aECM5HXBCcF3OT12r9ammB\n1RmuqmbDE1JNYfdwMixbKYXjsUmoh2BCja7rvGUTmrw8r4OEHqhWCSa2gYRDSNd568u1z9d7eCJi\nhkCWXrSw1vBt7T7sSanN4Ls/R25WktosFO09DCHikoOGpdS6CQN0brLUYqq4rwc4qmugWIPFrk92\nm6nZ30nrZXaJI92Vsoplgtp+XhXGOPB4f88YCpcn5dd/9IwTxTtThs7JoFUVTHlkF7gEDNA+p0YL\n9FCWTWyyWAnqETQbHm9srl6+XfPPPX4UgU2w/oSKjew72VmrrmqtuXQt+XVoB9z0a9fD1YbZkY2f\n12vXHthydaCerI7SLkYuFVFTUch5oeRMFtPQz1l5eZl5eppBra8eBiGqMh4CtYhlYgJS7SYZ/EBO\n2IOTEghM+chyzUzjgQf3wJETp4cH8I48ABFKreQzvJSZ88vM33v/G2r+isfHAyNnBl8p14/UyzOQ\naZNzVAx86UWI48RSKjlfrVeSKiFALkZcLotRg0RN3trVajjBvpE4BW/qsGIn0wLMura1mRf3G7cD\na3umZhlnn8btS8D9/5Xa95zV11JcATpSvVOy+qAGBFOuGMe49p98HLg7njhLZJqmFf6xdzbqlKhv\nv/2WeblYTy1sQOBuQmNBrSvzWlB5zVq4gXywZRzaqwWna9+3aLEJuDdfjW7yraoM0RNcZLlW0nxl\nWWZCySzzhbosqJY1e5RqZtjbubtt/iPSbCGtpJS+kcinGZu2IKhab7K015nRBprdzFeGYURQvvgC\nPryfeX4y71rB2gbzNXFVJY4BH9wKri1LWs9ZqEL1aaPxgZ2XqgwhMoRIdZ4h2LlX/ycLVT+KwKY0\nUG7fgdCWwmIXq/3c7Zq4jq1n8vqQV/QMYNWtt99bb8EUYg0iYKWWYc+0y5FX8wVd5sT1cuVyMa9P\nXIP9aqW6xDwnGLqmfDBEd7UdqpTS9NCs7IhURjfy9vSWx+MD4+HA3XSHBse5Xqxf48xlaj4vJBIL\nZ94/BFQvPBwrY6iQz/g04xyEHsSx8kN3Y7Len+w9pv6zXnJpQ66XUkxFd2wCBBWii6Yk2xaGp7ks\nrfzIuv6uLwB7DQtwwoat66+9z9qs59lLqa0MtXvCjLEdt4KNtZrEkO6zDjGjl1orYQxM02R9vZah\nmfBm5Xo1WSBg/b8/xubROXI+X2/K6p6h7aeo+/tqP2Vfz3crEaXqOrgHdmwatbSlHV2ivTRDn2VZ\ncDtanyo3maSqkrWa0Vh//V25tse4qdvMeG7v/d37XlucLWCvTJj+IBpgyn7jnaBekAB3J8fpeCAv\nyvnFpJacjCaljk38O0XNu0gIwuADMQSCD5Z1v2L+iMhKI+yfO6WEH22w87nHjyaw2VdZM7A+4u0f\nOXhs6te+L30I1L6XnrUoZBdwzc2oYooeiMOJeUw6GVF3ai9unqMmHV6gZuZyYa5nUp4hf8G3312Z\nZ+HDiyOOR67LQnEVKYrOC5oyUQsnH0AcvjqojjxXohzJc2ascAh35MOZU/RMX95x/MUjdw8P9Ang\nWEdK4y7+mu8IT564BL77O19zzifksfKb5YXDIfF4NyP1ineeUoyjSi1kl3DRmrCmvBNQX6nFmvHB\nH8i1mpzW5QNxDJSiXMtMGCaoC/fHiZQKbvQMhwafaDe890JyLVNrZQI4UmpemNWwaYLD6wZwLWVz\nvRIaYV4FLU3Xyzkacq1lCO1vfQsCq4JGYZSJw2G0zJJMzoocJlIQXs5XDqd7Xi4XVNWgGwd7n998\n+zVgEuQhdKpXYUkW8CzT687viVLgYTihsnmo9n5ZrV3jZGPw7c2UVyd5XVmBCK5NQG2i6XwEsaFM\nKYU4Wu8vpjNzvqDFMHlxmNYAF4vCshB9NPB047BaDmBS432oo1FYckaibkVyO48mzNo8ahG8lDXQ\n7QOl9GBcK14gicAYGEdH0sS7nyp+Wvi7f+N/p+SAL18whLeksRKBwU1rz1vEeoRBC1WvLGnLZMdx\nxPlKEJgkEOLdDjhtbITfzx7bZxwd4d37F+vPm4LBOknBoBh9sDCME7bnjNBklOfazDCcifOJWulQ\nSGQKWQfTx1+ufLy8ULKJEM5loXrFLokSveCngRi9qYM2Dl9pkbeUQhgHanVcWip+PB758ssveXx8\nZJgm49FVw9CVWrlcr8bJmxP5nPjNH/0K587cv4lEH3l4FN5OB1NS0P7R941F1+g9bdIlvnFAO1re\nzlKMsfFn64rv6pnDXp+tnfy1xMTdNpZ7uaaqa79MxEPeJmH9tV83pLu6x35yt84Y+/M1b9gQgoF3\naXi2mnEhIE2b7f3797jh0awMX17oEApR80LtWcDz8/NarnYYiG/v3ya426TuUi7r++0laf8s6/to\n0jr9+fbfw5bx7cs8RzYVZ6pR5ERb1bAZuZTdJLHWNqxqz5NSusHkud172p9f49du77n31YAGjt42\nnvWcf88wqB/OmZy3inI4HPjyq3eoKm/ePvDNb15YlitaLjAcELHBmH05k9sfPCFs0kV8z/Cg94BN\nrsiytMxmnv05x+9VYOv9McWtC20PzF27P07axbNFLZhmlRJAA6rO/o2ZBlvJ4KiabARPorJQiStF\nqjoDrmYtJuwYsWFG8NZP0U9PuuApuZVZKtSyyUs7ZxLoJSWqKqVsZUQpBSmViLkijc5R5it5rmgW\nJHt8dTjfebS6+avuX783mJ2Vor0kXYVwvWvNSmMZ3E4xd47ublM4uSm7doGtf7+FJdkaoWwLEl4B\nLdcJtol7bo8zlQgLdLcldH+OlAqDNxepy+Viah/RsjRgdbHKxRRwrVxtktspGw6sQS+Ca+od6+TS\nPkLRTdFjb9C8/9r/7FM4xUbLK7luwbsNQvpF8943w5vOz7y1MtwHSV65ivWg9rqkW/+vfUMxYco1\nGLp27f8EmdDa2mC7X6bDwPF45L27sKAcQiCJsW9Mgj1ayyQE41377w9sr9sVe3YH+nvIPLBj7Rjs\n/t/urlaofu9C6gofui0+K1tiW2gB1Yiqo6rJSKMe4tEa4s3KweABwfoRJmpKKleuciZHyA4uWZlL\nJgFvDiPHuwNuEGpwNlQyG227GDGC96SlmlkHSq4QnQ0jrpeFw32BbDAR8ZaZ+CmgGQbnOAwRrQtS\nF+bzmXE6QAkmAIj1p6ysKLsg38+Qa7HF5Lv7DeJdREJtTfK4Ys9q3QKOqcwargvfcWJ9yqbrour9\nNRErh4EVa6i6TUJff/UF671HQw8A2+8drm0W3Cw+rdY3KrWg1TaIaTxyXWaWZeFnX/453HjPx48f\nGYbNUu9yPa+Lpys1w7Ywr9crM4lpmuxO3GVbgqxBpmPc1ueBVfO/f669htzrnmYVXWl/1A5lqOSy\nUGrier2Qlitxp/vffUzBytJyueCHyDAeVm5q7yHu+81rABJp/bPtuvT1s/VJb4PiDx7VHu99IARh\nmkeOxwM/+8UHlqT8P//nB9QXvDMf3ODHphlX8S7igzAMxnBxXgxn2d5vn1Bv720TG1iS/n5mbL3J\nug9rPa71HpxvN7+xevZBTlZYiP1oQMVh+mweS+IDigU8MGlt+2tpTIU22nYCLlC9UJwzJ/dgeKLi\nmlBlATd6wjgQRkcYBytnzDyBrhlWq910JQklSyP1V1ztWmCVSsKFgHOe1CzbSmu6qyhZC+oyh7uJ\n6RQIEXs/3jfhvn7iHEZ0lSY4w/rfdYHh240sdDMT+72Z2bRv1p0x1YIrnWDeBxDbNfteGIF2ZZUt\nW9kHs9dlB3Qfiw0OYj2dW4zcPrg4dThxnI7HlWbmgkkK5V3W2fFs6Wq80GmaDFpRKhSTtw7iGiyj\nomuPLNxo+u37hK+J8HC7CD8ZPuyeI4QA63DEPDNEHDn38nOxMnbn29oDm7Nx8CeZWQ/C67lp02Bh\nI+Xbe2xUKvr72jKgPsnun+WHS1HozoLeO8bDQEqJ0+nE27eP/J3wsQ0E/ModtY2w7u7BDXjfX3sv\nPtDP5/5rGOT3M7CtU7F1N7GdoZaOg/I2NleIARN0rGBTAqglr5idSkAYMP39Aa3BfiYBLxHnB2ro\ndl8ZUQfOoA2msFDIpZBrgmGgXhNuiCzPV5yHu4eB0/0dd/f3uOgZDxOH8UBsmmxBPTp7c5yfbVJH\nEOrzlVrguiwMlwuHyxUXPMPRAvN5ueCaHV32StIr1V/hWImPirtT8lBIITFLZdhZllmJUtcyQ10z\nDmk3sEmFK1LNZ8CF3rz2u91943YWVVwplOIQ73C6BbWtlNn8DfYlg10/C542FbaA69fHW2bnYyDr\npuawz07W3pxuqha9RPYI42ED7IoId/ePPD098ZKfqbkQgkEkSjJdNS9W+nfaktbKcp2NWXCY1hIN\ngVzTmoUtudxkEp1itA84e4K/fXYL5K+Nk8dxbMMCRYtSm91eSbZhilNyXoi6gXd7jymEAN4RDwck\neBCTBvfet88bVjhJB7VXFPHOzMR0K+3WYcar4Nsz2N8W2OzesHNkw5VkmTyOt18+4OPA+28r3349\ng+tBt0O5XpeZ0joj22vsP+sWdHsV4n4/A9vn1M/iwXtYbJ2YagUVUTMBpjZJHz9SXTRkvwSqawRd\nN6AuoM4T2ixLW39N8PbnzuHcEajEOeJTxbuDvQH3ZIFoPBDHEYdn8CN34x3TcDReaDUxZBVI18L9\n44n5CvNSSLlyaa7vyzXx/v17KsrDu0fCELhqpjal1xrhZXnP8vyEP1yJdxF3UIY7OL2ZcKMgVzWa\nTqloNZMNZduZrTfm6HM72z2NR7o1+S1DsYzJNdNcgTXAGQsj12Jyz55VUHET+vxUCqdDJfricc78\nRkVkXfCqeqM0a03xHkh6Nmm9UstGLMCcjidOx3skWM+o+32GYULEGCqHg/lvfnj/3gQSY+S79+8Z\nhoEv333RAhTM12uDKRhMRDAoSCeemzryVhquXNBqzIUefPrn6tPTcRy3HiVWds/z3DYRpaSZtJy5\nXs+UfLaJdl7IZeZ6vdrQabCF3jeuEK3k1GxlnHPhRt2jr6HSmDkrcX6dKLrWutldI2Dv6vZ6Te6f\n1z7Hdq1VbYgWJ8/9mzvieOKnv0jM+RsuRQlRiYPD+dpGbaUNuoLdo+qMRcRtEH2dlbaf3uDtftfx\n2YFN7E77X4Bfqeo/IyJ/P/BXgS+Avw78C6q6iMgI/BXgHwW+Af55Vf3bv+v566vP0UvRm4oT+9C1\nVJRmuFptIVbB+gnSJHqqZ0O8NYdrXNvNFF/7IMICnTRddit4wRFxVKJX3MFuXBciIY62O8ZmouE9\nntYglWA77zpWb25PklEtSBCGYQJsaoczQndKieKUa51ZasPQzYn58sz55VtCVEq9IG5gGM0UVxzf\nq/O1lm7oSpJuZ267llbU9+u6Bh709uap7MGZt81mm671m17Xn/e7XtVMjbWV94oYul2kcVLtMWFX\n8lmQ6+Xcq/5UhRC6Np6ds3RdCMNIiCM5VcQXQhhXlY+eOYUQ1my8pmzAZNmGAaWYkkv/u1K25vX3\n4yS3c/C6NH1dTt0yGgwH2IPifL3y/7f3drG2bNl912/MOatqrbX3Pp/3dvva3Y4d2gnyQwhRFByF\nh8gSkjFReDHCIRJ+sOQXHoxACrGQEEjwkBecIFDAkhEIIYz4kGL5JQq285pAcAhOLJMOQsTG7k7f\nvueesz9WVc05Bw9jzKpa65zb9177dp/Tp/c82tprr7XOWjWrZo05xn/8x38cx1u0TAh5NYqbz2x4\n3lLhUSulqlU7nHmJ23ASWOtWz4zEq5IMHzU+3uFoawNiF3jw+IqHH87E2RrqdJ29Zn0xtoknl6Sv\np5/fNo1FEmqZ12fcV3Qzfhr4DeCB//2XgJ9V1V8Qkf8c+Engr/rvD1T1SyLy4/6+f/XjPvxVbu/5\nKHpBKeK9DwJFo6kFIKjEhXGtKpTSsNNAij3a8hDe9jlV88KEBNojIXoPU2WsIzVGUjcT67QcW5/2\nS/ZwP1x5TeGBYbcjph37oUdLJWJaaCl1TCPILMQ+0KGEPjFNE1/5ylc43OwZDnsmMmFIlKSUaFnM\n2w/fh5sPuHv2PheHIzKPHOIVD3aBnVS64j0uJbjuvdfTlrJketsZrRssgxBQB+ZpVRkusRNq2yll\n3SSKFVWTjXTLprlwI69uDZvWDYZD5XS3X0H1NZVfFgNkCVhvRt1kmsSWaN9H6xDlXuKHH35I7Ab6\nnV3HeZ6ZSiYeAg8ePCAEkwMfup6b8cjtODKkztQ+polxmuj7wSgg2WpP725urI60QNGZwkzo+lXe\nfIP3tXmomtxOGy3cyzkzDMMqaFqNSxg8yZRSgmFAQiFP1UncVu26De9PsuibEFFVoRiXrlarBq5a\nHY82knCrd7YNzpI+du5P77mPMhhbj23J+paMtcxr2V9IKTJn88avHl1y9XhkfDYS4kzqekQqvSt6\nqJbFUMcYvafI6qWdH8sJfvspxicybCLyBeBfAv4j4N8S+5YfBv41f8t/Dfz7mGH7l/0xwP8I/Kci\nIvqNTL+D2dthuuinHkcpJjuT+oGiLminZtCqRsRvzBitls74W3HRdAshON1BSdkyYCqBKDsDNUMy\nNz52pMMBVeUmP19i/qJWETDXwtDvKFrZdTv2/Z6ZiLX6acfdLnxlGAwPur69YbwTjscjwzDw4sUL\n/smH7xO/ntAYyEnR3nf92+c87DLz8Zp0ED7/+BFXlwcu+sTFkOhUmX3hnmjGO+8LPDB9aXcOiJyq\ncpwD+iKyKLWGtDZVCcE17cOq3WWfIUt5VTNsIlD11NvZeoeqyvX1NbncEYMZHJGmWrt6ZttjMzXV\nStyvnpaqcnNzQ9pZJ/JcK7e3t+wHM0g55yVUzTlbQ243wuM4LrprpehSmZCi0ReApXJBxBopt6zo\nefaz/czzvCQZto8bMVlELfvddaS4Y7dP3F4X5unI8VgXb6Xx48A28eiGO+2w8ruilN5qQapWtFgI\nKiG4VPiGlrJpfLRmfD8ZXnV+29r1qX5vWUJjziMilrx58ODAfn/LfjL8MCYztV3n+Cpbuk8gz1YB\nsqV2NL7gNqHQGst80vFJPba/DPwF4Mr/fgo809ZqB34L+B5//D3AP/aTkkXkQ3//17YfKCI/BfwU\nwNUgjDGRQl0nIZE5CzEeDP9SIdIjAcY7JXR7KkIugkiywCo2OWsWPEZD8vIsA1xFPZTpfeerkEMh\nxmA4VRBEdkQHv6W7BAyLy2KdOwNKEfu+vBsYh4GuWI0pkYXEWuemjHrjhEpBwhHixIsw81W5YeqO\nlHhHlUwsQrgzEb6SZp5Pd+zjzMO+J+0Du8sejTBp4Rg6YmdaYLPmpYPXEo6UbOkrEaSLS91gcthN\nKyTxxh6lOJcLtGZSOhClI5LopLN60mLZyJgDWSZCjOQ8ggPYRTOlkUkLC/F1u9uuWFrzSLxONVZy\nOaIqpNgj0gQgMyn2S4h6e3uHAqmbCF1ApTLlO7o+UvWWoD19GNh3iTKaIUu+RmK1pI5k2HU7O3YE\nHWdiSCQiczGFkyggs9WMSlCik4hDipSSSdFKgabJDJ2UtIZO1frJllKY3TDtdjuGXUccDC+c52xb\nX4W+G9gNF3SxR0smzyOxGq3oNk/0ATpNlNkM7iCWQS+lMEqmdQmNkkip85AvOUyxKa/StfHQFvdr\nG2N737LZsSYTWm2rgEU2qqAF0Uwo1o0KicbxzF/n0eE5t3d7bm5uqF2PhISG6km6SJmFKsG1BZ0o\nH6P1MRGhlOr3Cq6mgokhfJbJAxH5M8BXVfXviMif/sSf/DFDVX8O+DmAz19GrWM1WR8tVA+najXu\nT8TA7lHvbGedlEPaEWJHKRUpBemSZWu0kvAaR1wh13G24F6Aaa41V9sybjFGUj8YOq4B9WxcJysV\nJaMUrwaKu95Y79EoIZeunZ/EAOfx7gjNA0mRKMCtvXcqmdvjHbfljrkcGecXSz1f9Fg5M5uxTvDO\nO0959PgB+/2OPI9ozexSRNxja+DyeTareWPmQTphWcFUdDPWMWj1vkotoIlMpordeIt3oq2bEkw1\nI16CU1kVaLcZr9Pvt3FeN2ry1mkl23a7k/eqmkRUCIE8FXbDYQXEQ2um4tlRtQbF6rSH29tb0yYr\nhXEcl25HqkbgXZIHLmsUw2k1wRJCRjHyb/N2GqVj46GF6F5c3OB0NXvzHeX27poX14XUmWdqNA7D\nZ29vb7m9/pBaMkFM8LKbJ/q+58Pnzy1B0Q12jcWrGjDPeGnwLVu6hxGW7dyc4n9bb/l8vFR5oGvL\nxI8b7RhiFPoe9vuB/X5YzrPUyvPjRJcG2/xDRMQwRcIGO1uOEWoVtrhalQW+/UTjk3hsfwr4syLy\no8AOw9j+CvBIRJJ7bV8Aftvf/9vAF4HfEpEEPMSSCB85tEI92t5Tq3W9qXWiZCEsfRCEvLPsVZHE\nVLIp2xIpiHkWCLkWenrz0vCaPLw9mnpPRs+CtguybZCxJBz8hA773eK0x+CAbDIenLW0M4nu7DQR\n6SzcNeA8kKlItO+vUchqPUctS9SwqO3FczJyiFALKcGuT1zsd/QRUlCSKDqPiwjkFrA+X7SNMmE0\nDFssEIkxkGcBLeRcqDWTRUkRcp6ATMiZUnpiFFJN1NRKgyoarFjZiqztO5OqtwZsN8h6Q22Pa9tq\nzTxr1yWLvVMRhK6LboAL4zgTh0SKgy18CVxePlyMUylKDB2ddBxzocyZ/bBDk/KV3/kd2/W9yXHD\nxFIX6Tortm7HtxJdV8Be3PC2xEBqRjl1C90jOmRSdNM2MFmIi1SGfb9w69r3l0mhzqDm2aKJ25s7\nPnj2Plw/5zjNHA6X1mwnJQ77AyH1dIO3I9Sw1EOrKjG1hAmIcxSjG9zG5zu/Dt9onKynLb7Iyhe1\nKKDYXRZMsbnfB/YXBx7OF7x4/oy72xekbgCEcaqkNJPiztf7TF260NUlodeM20lZ2qf02D7WJKvq\nz6jqF1T1+4AfB35FVf888KvAj/nbfgL4a/74F/1v/PVf+Yb4GoAKeRSmUf0H5kmYJ5imyjgLxwlm\nrSbDHwMFYS6F6kbKvAcnnn7UP7FCq6DbztPy0o62egWb33GVs2673rYOMgZTNvVzZlLeeBZXTYNL\nnPBbUMf93KBh/bFUac0CDUgXGAYTPUydsf+DKFEULfnESzthy288tvUyb3400NQcTl9bF3TzAIyv\nVE68whASKXS05tGiaz/NuDmXS2eltuvWeuK1NUPTbtSthxikhXf2nhi65e+1P6wXcmOhaq1GXUhR\nKHWmzCM3Ny+ASurMEBAV3AtsIo/bMOy0SfPmeHwerXtUU9v1/2g8yGboUrDEQZI1GvAKhS33rc1/\nmyBo57jME3gfi5ROj+t8AzvBRn29ts873/A+qWH7qPcpjSK1/lRcYw6DPkIKdJ3NaRzvON7dcDze\nWYVMMSKytTzMa/lYnRdcsfV+aK+1zWZV9v348fvhsf07wC+IyH8I/Brw8/78zwP/jYh8Gfg6Zgy/\n4ShVef7MJlaBKfuuWQAqhJlaoE/Go0GEocwUhavLK0Ly7lDq3heOC0mw31iR/BKeboyWXb9GZG38\nEssa1qIu9GfHqVFMX6tYo10R0ygzXGktt9EqDMPAzc0NIfVM+WhVBTGQdgN9LgylEOdI0eAlRLVB\nGQD0URgSPHl8xXuff4eHVwklQ80ml1Qz1Qmv57SD7bAdN6wem3++EWcNbEuxQ4Myz0eMz+ZqvSK2\nK9eW8bRGT7UoKAAAIABJREFUwITGfRO6vluSK2a81wxarmtI2Qi4qrpIbDeDBdZQFya6rkerMC8e\nk3keZVLzfkWZyNzeTIQQOFxe0PcDWpTn1y8YLg7sHw88e/bMwP5o3svgCQRVNX6Ye9VzaZpxhqGJ\nCFLMsDfSyTAMi1eRPQNa/bMsO2wJAtt8vEWimCCmETzMsxTSYkw1z5TZ/t/x9kjxBs2qSqyFPkXD\n3MYj+/3e1C9ST8V6bFQBShM2iCehaOoGGgfPwj3Lerem2bUZQlYf/jwUXZJtnBpSRZd0++oFGl1G\na1t/lS5Vnjy64Pb6A8CMnupIyXkV6IymGK2K427+wdXUedgcQ/2EBrmNT2XYVPVvAn/TH//fwJ94\nxXuOwL/y6T4Xbm9Hw8xUuL4pFmeryRN5j1rKCH2n9Lue4jt1zpWOZDWMrJyd893qPG1ca6uRW/lO\nxQmoKXVm0IKYFv3eXWc3aFqqyUI7uBlEyH4DW1bQZKiNq7OSYxu7vYU9EWHoOsZi3kqIRlPBDUoE\nnj5+SIiKoEir61dFdS1V2lIKloWwKcbeLtDmZLT/13Z3Kxw/Te2LeEVBOA95LWvX9z2ip5p4W8+u\n1HXn33LCTo3vtijbDPWcXfQOa6LcEg2LakaXjMuVViB9miZSbF7CSJ5mqkt+X3qGuxmo6+trWtu/\nFqp1aZ1fCLYxTdPEVPLChQvBBClhLXuz0jdLKSXZeH+NIkJZlGaoq5EIISApsdVmWz1D1wScM6GP\nbOhfi7G3j1yvb6mteqNzzHImpd4TO3q27tf/t00etPls75tqbvRy3Xzb9/Wxzmf1cs07vjgMPH9W\niEmY54kgPbVOgCXZYoikTqihzd9LwcS97crp2uWTe5vwhlQezHPl+S02IUAxxdqsLNLECOzvQLUj\npYGq3sKrREiJISTLalYjhRatllbfMNtLmZfvjGlAvOmLei2beNlGE4c0jbbKfHe0GzsEcsmgddlB\nihuTQIDZeD4igs4VGktcA1JN8rjvew4q3D5/YVLHCULGF4wPgVAz7z655HNPHvDock8XZ2tX1pjm\nIRHCy7wq4MSQt9fX81A9ZLP9egX8Ayn1J8XdYHib9UVVx55G9vuBLvZ0IS19A0Ijz7aSIcHDBz35\njpev/Zp8KLmRVzN9v7O+oWrqJSka3qVquvm7/YUp4npDXULgcDiw3w188PX3kWp0Di2ZcTwisqPv\nDbjf7aw3qYRI8CYucy1U52TVYlBBGnp0XkPzvu85XJiOX9bVU94fLlevRqr3l1UkWZOg2K5R2VAu\ntFLmyjyZR5bnyO3NB2Z0nz9DRIwCg3J3vKHfHyxrLY49bmCQEAJ5g1u2NXAesp4bt+062V4bgwZO\n1TYWyECs8qTpyBn3DhfSFKz1htKnzMUB9ntFqEzTNV2/J8ZI33cGyZQX4FU99vmGEQbZRBiN8rMx\nsJ9kvBGGDYHbjBFGQ+TFNAHGUM8+lyqgt8I0Vso08/jBBV03IFnINRMT9IN3qRbbVUSMs5ad+AgN\nR5GTgmaVYEqyzmoVUSPuktHj6gmloSe3chkpHrWq6aJJRbSguYJYIxet3jqt2O+WhUhe3xfcJQ1q\nvOFl73Zv/3OPL7m6GNjvIyEaPSFXAzY0dgjz6aJrp/Ns0SrFEyQ2PwNpjWFvqQrbBIIkiprAZ8ts\ntgJmyxRaCFqKUh0TqWI1qp0k80oiQPU0/dnN8ooxtA5Qc128wmR38ILnrd4iTqOwazDNo9VNIqQQ\n6LrEeHtHdWN5e3tLSmZ8G0zQyrpiSqTYLY2RReJCtDW1EvNoD4fDkkhYPBhfKs3DMu9cbP21WlfN\nhEZlCMZdo6xZyaCgIXB5ecnzZ6Y+cnFxQfx6ZOg7nj+/RsJz9vsLuhAXsrWIizZsjNY2QbP13Jf3\ntCw1IEFILrNtybpi4fgZ1rwsRT1TZMEoMCLGn6OFsMExsApSMkVv6HfKowcDd13l+rYSo60tZCSK\nRTrF17Bts3W52c07FKi2rlrp1Scdb4hhE+slGiKVwIwVQhmTSZdQNM8CpTIFpRTbHUq2hVOD30y6\nMWpSPWRr2vx28kPoTP7aygiMYS5Nz7/15GwSOl4+E+zEFpTJj7ktmthbNrUANXs5SHVsqlYTsCzm\nCTaBzIDLWVOWDM5WPDMBVxcHdn1cVE1aNkqDFztvFvZ6KuUlQ2cKGqbcKuLdn4gL0x3i2Q1RlnCp\nGThYPcEVjxFiEpBXN9k4P65XjSDJMZf55MayG2pT/+iVFqAukGneXlCrcJhz4Xh3g7rG2pa9v01g\nbJ9r4aUZzrTQPHa7wa6Be63N223hmrTQsr0WotXQbrLTFYcMKI6dWkOSrWEjRgvJUqIKiyT2bu55\nIWpk4ro2UjYc04rlttfk/Nq351cv8vQabJNf55/xquu3fW9wD9r2LF0kz8Hw6IolCIiVGJSYICZT\n6O363iOhjBF8rTu8OYgN8bONhbbmxfDJTxOGwhti2Koq0gljyQamh565mu7Zki0UuNAONBGx5ima\n3fNKgdAHK41RpSarKzRLMy83a3H107lmkvtItWBeoQqQrOu7t8SrtYIXZTdMJfWu2ODJg5QSddfY\n5Va50EKDEJI1fa1KnmanLhh7vuYMtTJP4wLiLqpLCkOAL37Pd/P44Z4YlLFm68geEmi0piy60hDa\n4js3IOYxNIytLDd0DaabL0U8O5WZZ2G378m5oloxxkk1GR//jGnMmLjEahh0e0NVBS+laiVq9t0v\nd6gCVm+nN6pHzgYJdH2r+Wzy49k3JcsStiYtLbPWMqU5F8fQrONTdmHJnDOtN2jr+L7fHRYqRJtf\nM9qt/8AwDKYI4uF82WTpoJWJza6EZNSNU12xuvCz2ufnnEmOkY3jkcvLS/I8cf3ifYZhIN1ZQX4/\n7IjOdTs8MK8pV18DPs6x1Y/LgDbjvH1fCAEt+eS581B02SiKh9uWh7CieKo3rnFHomQ0BGJULi8G\nUjLe3lya8RW02nHMi1qWuQZm1MoijdTO87Z71icZb4RhExGkmpRLQbkhIykxqumX9VUYNDKEQtdB\n1x9NHmjYW6VA15FjpIqFApLbrmYu3DQ7DlA7K+nQRI4zlWKNMTRbP9GakNpR7zrmW+PRDTVRwpHU\nR+oA/UNFukpIZiR6UWoG7Qb6aIKLAetorTUjXcd8e2tE3jwTpYNQGFCuJHKQC7TOBAI3eoSoaKz8\n4ffe4fJB5OLxwG35gE4DUaI56zKS6wvU3fTi/QGElUslUSglUyqkbO3sJIi1P/NGukkGJBnQPKQL\nNE7EKHSd19EqTK4+i87LzR12A9ZhXlEvmSnqSrfLzSQwV0JcaTVZVwmq1tlddHBMx6Wn6qb1nW9I\nYLhQN3iyQE1GPQTD3FJKqFhT5Wm8o5aRYWch5NB3jI4DTtNE1kqSnpJhmjKHwwWl6NJv1MrTZrrO\n2f3z0UrwUrKWgFiZVvQwu8zjSnfpBFXLdkqKy2bXwupZzRBbcF+QMrPrejRb5vrRxVOm5yNzuKAf\nDGtGBgi99R2VQogGt0wlI/EClUiumyy/Y8SWFfV1oS617SwBsVZay7XSUslYmGh6rSZNpGpeI0Dn\nFQeFtS5WECTbozq3ZtJ31FoZUqHvrQH5vuvROpFKJFclV+PdHedC5/BCKQWJTYVk3YwbQFM+BYcN\n3hDDFkKAKBQHrgPBOGuWCtl02rbRGuBad/C1bKdhAYIQasv0GHXBEg2+Q3nLORGjO8xztROndgNN\nNxPHG9AceKGmaZVyR6yB0gX2h4Eq5nqXGMhFmOu4yYRlshuPipFxF6WL5Iq5qXU5z8SxEYlZvLb9\noWMYOlQLeZrpuiVgNZe/gm6Io9uhqrBx308znR4WuYpFO/9BArFu6ho9pG//f8uZ2ypNaFm9Atvh\nN/yqYm3ymjfRbr4YTUFlW8pzwgncaLKtGdNtZte/n003J3nZe2nvN8Da1klww9koJy1Teu61xWi1\nj3NZexqYR7h2gwevUpC0PF7OwzYU1HYN7LuDQpknQsOuNvPs+56423F9c4M2IQDPKNt5Oa0m2J77\nxoPbElnbpnG+Pj5JaLfNdpb8CpWThn/X+tL6UA1WGePviRKoAToxSS9x8lUVE/y06EohVLeuq1yq\nfdm3oWGzax+spkwha2YsMNEOsJJCWIxZ3SzCbdq6ugRKkOByR2pZS9ftUvFSFC3IdUBCZdbCcZrJ\nWrk73lAyHO+UPJuU0c1Q0FkIc0f4MHHx4cR+v+fh00t2hw7prMYwpkpWpyPEQIqunVUESYEoiT4K\nhUSdZ3ZcUK4LOc+k2hHniZ5gxmqGB1cdfQcpFmt3plaV0UpLctWFx7Q1Bu186MagVExXrTZOngTG\neTKeVbI623m2etGaC3OZNoZQTn6DKWm0m0g2jWHAuVF+wzVy6pIJ7NKibLuGZ3ZD5GxedaM75Dyd\n4GT7/R6qUupE9jKweb4j9TvPqE5cl5noWnE1l6Vre5cSw7CW+ETHbxv36xRri4vBbU2Kx3FcCuCb\nAGUj6MZo9cdtU13wqw0vrNXkqRX0UapBElJmNBe0TuR5pE6TlbI5/pZST+x65uIQg1cUGC55qmO3\nNVQtIdJee1UyoI2Pwj6BxTNt4et2tD5BwCIDJSLEBj/USsGl0tXUi8UdiDIbjh0ihNzEK12AtIrZ\nMw2YtWu44LdhKIpA7DuSGMie52KYFs5fwTC2itOBhIVsqLLkUs7A0cbh93UlijhXphYzCrWY9HYp\nhTGbekKuylELWW13fM5opSLs6AiUAtfXdwyHAemMiyZBKTrTSW8UBXe9qig1KDQGeorseqXmjuGy\nZ7jekeeJ23LNXCdKGYG6VBwI2cKIoNY+DzfQOOt+41Fts6Dbc9HGupgtBLEbegXF2415jr1scbtG\no1lFIF8tM7O8dgbat5Aj5wzNGJ94k6/+vC3YbSx1xy83WJGFtbJ0qd9SYPq+p4uJo2yoDa4W0bKk\n58B6O+bz728GY55XQ9xEAxvXqnlny/vdY6tFmQoL+TVg0IVi723NwdV5dF2/I6TecT7P3tLKuITq\n9b92bIbnNeXik6zo2Tp41Wa1WKk2EX9gn7k2mTEe5frWlgRZuIu+WfS9neMUIhoKQxcpapjuXO1e\nTEGYPeMnWv0+dcRZAA3URZnk2zB5kEvlw+MIoaeERI2FUjM1NJwhEqIpKwx9Z/VyMRDSSrIsKK0w\nGlVyLagWa/6R3bMJHVUqx5zpdzumaeJ2umNm5nq+5WvPn1Eq3AHVjeDXyx19GRh0z4FHyBy53F+S\npVDCTNh37B7tidrz5MmTpfZwmrxEZK5L+BJCIPcGRCcJXD/7kLu7G3Ickd/9/8jv33LZ7+n6yLtP\nLkixME6TNUamB1wbDfGSqFXZdbmhaDfpJoPHmliwm2OVX25Cf33fI9mOdVzIxgpiFRwu+EWtxbh5\nYS2jaoaksd1X41C9osBuitbTQUSs1rZUgraicm90Iso4rd3bjcUfoJpmWp69CUqH11gWarZ2gcMw\nmPeAMGZrTxclrB5MVZMIb7icG7amgtu8t61Xlnrz0uZ5Xq5jSsm14exGno7zkiltyYfQpY2BXb3a\n2edmzapNEinrvBoFlDjs2IVIiB1dN/Dk6TvEbo/EYKB6dLmiumZCm6FtDWy2Wd9yZhO2Bm/ZSPQU\n04LWryMv3msuE3VdcksW37p76VLRY5xPbH7RqEWhF45TptRCna1qJAquZG3Z1IplCSWqYeQSFnv7\nTa08+GaNKnCLUKaJSSs3rnVRsQYohUqVaBtjDGi0QvPWPq71OoANszoJWo01bxQrkw8XScQUef7s\nltrBUQtjrdzGmWNXmKpyM2cytJYBTOFolQGa4HBFvILPf/9TLh8fuHjacflkz9DtrE9oZ6GR6Xi1\n4ufVe7gLBanKPGeunz+kTDOPnl7y3tc+x1d/6//l2de+5rWBBdTqHfsQDJBWRaPjSVKWKou2S5rn\n0eovtx3B7aZb9mbfFEOMhoPFwN3dSPTdP/mCKo6yNeBfgv3uPCTa0jNWA1eWYxINy3da6n695mtT\n3ub5NAHESginpGPVwjiu9apEE9ikFkLqFvJsmUdrd8iKZeWcqdlwykbnCAjihq1haa/y2tpPMxDA\norG2rfnsolUj1E3YJ1tvuNkOL7szqk8hu6gks4kt5DyToiIMTKUSU09MHRUH/d2oNVn3LRyzFcPc\n3gt2XV6ubT7HTUMMnnhQ0lnUp973dMmo5uZZrmH3UsdaLDyPKKTkjdsyqMli5VAMCNBIybPRoxAE\na4eowXQWVQqm0bzq+32a8WYYNoW7MpPVfJClENxdeq3VbuQU7SeEZeG0YRe1kSdbOKQetgJSqWq8\nrCCBuB8Mo9IOmSsq0X+q0UwElnYB1fpLKsr+0Z6rxxc8ee+x6bxfwdWjHX134OLqalPMzHrDsIL7\nt/WOWnFPIRpxVzMpBbqgZsTKvHTlCV5J0SxE824Mm3r5am+fOQ01eOl8bZ9vIHNgbbzRQlYRC3+3\nfLCT79yA70E2IZDqwvczb3IztB3PAiQsN11KYW0ivYRx63dFWbGwFOyWWAjXqqtIZlibGJ8X4J9X\nQWxD8m2lRtG6ZGm3vK/22KSXVnxpW7u7Yo3tHJxiU8uxpIi4p1sqtsYloSGYxmCydVRFDIMSV0VZ\nwHX3pBUQr+cVWR5rOA1Jz/lrjYKxSMOrUYMMozZv0jY942E2n265xu2xe/jtMxOCOuapLurQx8Sd\nKKVmL4RvYXxd1oiELdThi+VTjjfCsGVVnqmR1oVADbI0D1F1QFotxZ1KYqYyuBex63ov8ZAlrKo1\no8EykVV06eoTJLiGWk8ce6b5juPdyN2ozLeROvWA0oll7bRApx0pdjy4vOJLX/pD/KF/6ks8fecx\nT58+4uJyz8XDHV1n3uMwbImddoP3fU+XhmWRP6jWzHfWwN1xopbC43cecHzxeb7+8JLL/Z48z+yH\n3zZzqDAfR1IYDO9w/E5DIdKf4GEnhmyDWclmZw/ebLe9X4Qla1jH2cJ3D4mK4x7FQV0VS4q8CrtZ\ncCh1r6RlVjfZynY/GxDuhiS3w12NRSsUB/O45nkmqoVW2ubq39PCoDT03N2NUMX11ZyEK5vu7DRk\nfs3IttCxcc/O1VvwGtUWorZjXSgKYvm95rm0ELDhbYuXo+rZ0zVzuC08R8T6aESoc6E/2PEPu4Mn\ng5pm1ub6hXhy3rafu/Wk2+Zw/tOGQQP2OIYOUfeOy9rCsF3HE8+P1SuseSV1qyolZ2JIINmJ6Fa5\noirUeWYuziv1TT+ooiFa9jMGCNH5keIh6stZ2W803gjDhkAW8Hocy/gREIEOpZPALnVcXg1cXOy5\nuLjgsLMuQF1oYGpaTj6ecQG1hRJtQRQM/J6O18j0kK4KlymRr59TakdXA4IyUKzJSAjs9JLv/d4/\nwHd/4T3+8B/5Ab7w/d/NsOvY7Tq6FBi6aABpNzIMw7LbN9Z8Sj3J8RYR4SpEslZGrWgMXmD9lPli\nzxAUrYXb6xsOw/uoHhdw3QxD83Cax7ahViw75ymADyxqCgCtI3xRA9utXZvJqw/DsMjyNHqKBBfo\njBsCq6yGUqLduM07DbI2NAnI0hBmezwtPBMRWtxjc/TynTrT2gJWzZSaCfSLV9S+n1oITdHVicEh\ndIvEz1K0nwtjGZdw7e7mlrDbL6FoKxpv7996NCIm8d0wrGbcWuhlSYDT0PUcnG9F4+M0kjxbHWLL\n7M4cj0dqzRzv7oz0qmLS5DHR9zumXOm6VsIVUTHcLG7O59YYN8O2hqenhq2Nk0ynmtEXUVNZhtM5\nqFI9pFyMqRv4FFZ5KqmK5kLFCvirKjEEJlX6mFC1xtQpZ55NI9KSH1qt1WZw6pMEZzEY7SiE0430\n48abYdjcPV9uPnc/LYxba/Ja78Rtpm3lXcmafg5hKfnQgAHVMdF7HwSJkWMGrYEh7RHuCFR2MjCp\nMjMTQiR2iXeGz/OF7/oi3/Xeezx6+ITLB1eIKBdXB1IUdMp0qafEfEJtaCz5VkbTLnwIlaiRTiI7\nMTD4Lhc0Ja4ePuThw4eWTZKEZmN0twW8DgvWz72mzcl75diGkc1Q1k350fbctvc3UHy7wHVjrLaY\nTghh9cR0DUu+0VgoKXWtb2yfu70Rt2Fky7aWUui7VcQxhECe8uo1qZX+WMVAOeniHrwSoYlltmPZ\ncufacbTv32aNt/hiw4G2YdlKMF1HrXWpYKHJgMemTjJyfX0NVLoEF+GCIXUeGp5ek214f35tX73Z\nfbRRWN5TdTFsrZJk3Yh0yew2Q7RBR176fPUwq52TFb+0e6If0nrNXTSBqo6si2dFTMy0+DxD/HQg\n25th2ABCYi7ZyomAQ4zsVXm4H9ilxONHD5h0JojSEehJpihRMWA1mZoC7tW0G0BjRwg7qkaCDtQS\nON4aL46aGXOhzHvy2DHwCJi5YIAKD4eHfPcf+y6++L3v8fTdJ3zuyZ4n+0Sh0Mlszs8hEpMyhB0i\n0bJh7nnO88zQD3S9G7kohHCgo5IY6UqiVqXnEWW44Hn9XXZPI2XXc/n+gZv5OUHUqgY8Lg8pUV1f\nTnS7GXj3+aaKUCz8Biiy3rw4/01VSVGJQdB5RmrlWKDb7ektOcU8j0sDXtRImiklx4O8GoCO5Ox6\nVKyhDoEuJfJsYgYxRL82NjSsHlws3iinJVlUvRBfvIymECOmmd9jogblSAo9Isqcb2k1sCkK3SGZ\nNHashCjs9z1TzkQvbUpdQEMmxdlKw2QkxaZPlyEkhEJyvTlCYJqyraoC01gdB2y9T5XSCNIbQx42\nsEDAMa/dQC0zMSWm0UK8aZosmRACQ2cJEJFEztB1ME+FlIxLBywZ2xgjJR7alxE9iSJLFYgdcNa6\nsAcAhDUEDtRlHwxSl+tCgVqNYyc5W5io1rJS80xnWxu5TITaOmMZ1lhQJCSq7Jiq1WXPCjHtbPMR\nIcWBWSwJNY12jBKTJZ40UqdM6Eyo1WTErab604w3xrBJKSQsGN0BPcKTB5dcdB1dijzYXzF3hS5E\n9r319gysNIMY4yZcMm5bFwc0JpDejI3uSLFDLiF1rZQn8fDhHcfjRJCBacocj0fmeeadd97hvffe\n43PvfheP33nA5eUFQ783OZrOdrKCLphH8O7rTXctxm7JurVsXzMwUay3ZxSYdWLKmS4mrq6uCAH6\nFz3HMRrBd/EO3DhJ9SJ+/9u7cL00dPWkGg0ol2ILVkwlYvEmQ0TzppZUvA7T9cjyPFM1e3MTC8eC\nboB41RNPR1RWukEpSLXmK1tMyDy08pKXsWYly8bTDahmSvHXyIvnYnbDerqm5D0bqoHfTk8ml0xU\na3QCtlHUWtnt9oSAZ65NMXie1TPTiZCGTSLDDVEIBIlGSzjzMLfe+fb5NofO+54GKUw1LwarGcso\nan1YVa1XKmuX9613m2K/UCDa+m+PGy1lCTU35Fb5CJWMbViqWqBUU6DxsyjaknnlJJt6nqCyJBCu\nANI8fnNmrZt9pWi/0RE0loAG+04NQnSyt83H9oSGWX7S8cYYtujJgwj0QdilyMV+x+Uw0Hsn75DO\nJL1Zwd7gZ0BEmF1G2LQ5EkWtsXLFdtIgHXFnTY6Fjr1G6EaOdzNp1/HgsKfWytWjB+uikrT5ng0T\nWr30wwt724VVdcpBSItRak7TAuzCgjW1hR/xzk2+WJVI1ckNYTHD6aGg9SfCkyxtERtHRbemrq7Z\nSdiEH7x8461hw9lNW2YzpqFAXMuOaq1LG7vg3798HmFjpHS5PqJWSmNvP81aSvAQR04zmLJk9lbA\nPYQtIdn+traNlaoZalrOixlDxwfPDOwW5G9/t1B21+2XJEUI6QTwXwz5Wdi8zbC2seJVhufhRjCl\nhM5h0WqLKTHXQpC0GCszVHauUuyttpUZCWkz/5dlh86xTYCTLXCbaW+GGXkJaljOn5aTa3U+3/PH\np2VRpqcXxAriF1n2MBrroBRqVZDAPE+eLAhLAieec1A+ZrwRhk2AHmUQYd8lnl7s6ULkarfjctiz\nc6WHsDcva4iJ3lPgYCdzqcdUJcQdaKCS6OKeLh4oGqjam3Z+GqyPQOrJM8Rhor/LyPNrYjDyZdPi\nury8XIQWpzFbWJKM9d1S8KgwZzMui4GKPYJ4JQXewciKuDUYhmbSSFY2tet68h2kEBn6HjD575In\nCwui54xjK6syb8TOXlxIE4FWi2d/AUutIzipcpNBrWA3mYhx2txYxLboS0Wr9ePM8wxaSLsDIKbE\nIV6TG62ULUpa5bG1oEWJEgmt1jWsgHQrS1oMgNj5KGp4ZWyeiDimSDu/CWU2Eqeu2V0RyE7Mtfla\nHaJYFEqMa5+BdgM2A91CvIaljS5gGdJuadRsnlK3vM8+J6JNq2zjVZ0PVfXua/b5MaxKysH7I2gp\n5OlI1+/spo/GA5wdOiAHdg8v6KR3tRJd5t2SbWbwE1ujelI7qqdY5nJ8zrytYB6Ur69aK9StV92o\nJboY21MvNSyy8fZjxkrWTzep9qHn6uqS4+1IzkfyVCiIb04Qg1GvSrGM/LdlETzYLbhLkcvdwKOr\nK3Zdz0XX0XebAuZkzUJSdO14T+XbjW74jHllieqga5DeitzVFn8QoQvdQvANKnR9T1WhH81wpr7j\n4sKMWoiyXLCmGdV1w5IeL7VQirqel3V7MsOm9H2CeUbVsJ0YxWr81FCJNrY3FJiSQpW1EbJ4WNgU\nZNv/XDyDYF6QSDSjZulMmm6XsfGbRt1p2dJ2R65FHctzGgjCtHh3BaV46Y57OJ70aFSJZtRblqyp\nuprH5ZUQaomdxWNqjmYU6kY6vc2veW5K9eOym2XVarN6wva36qu9F9hQYjgtlWoZxOa1tdeWMNqx\nNGDxUu04V89ou8luf29HrZW48dq39JYQoQwDWuZFrNLmZ3OYxgy0vgZ2XEr9SEO6XR95S5XYntut\nx3Y2D2oTKNhcj83nvpRAEaGV2r086uZ/r+d3K+9kxGvfbOcM4l3rBNu8PqWleiMMWxThnYsD715d\ncHU7JF+dAAAHT0lEQVTY8eiwZ9d3XPQH2328y7QGLzJHFpqHupEQESZXTp3VmlrEMID0pG4gauTu\nzlRtLy929Lu0tD0LMRO7RIgW26eUePTooWmTRXVZm0IpkXlSik7EztVTS7G+kyUuiq0xRg4XO+Y+\nMewStceFMc0AWUhkDWooynR3ZDqOhKLM42i9MKc70xzTiSAzsXX3JhjIG02Xa+FLYT5NULtxLS3s\nahrhlFzbvBb8/86u6hFTZHYDa+VFPSmP5NxUfoXoOFPO2crH/OYYus5VV1ZvrIsJ0qoCUvx7tKw8\nsKbcGlx4UFUpGhFRYr/Wg4YQl0L7PFuDa5HTjPM0ZmLcE9zrTrEnxd4VlC0DPE0TT999h64/LJnU\nVlK1DcXb+ZlyXXC1WpTUr57JQvoNa5XBefNhWNsNppSopQkIWPIg58ycR2f3G+WmBvfOQ7t+HbWz\nz7m7G/1YrRhplSjadnQqC+3oJX4jGyUVXfvSim9AdZ6c6yiUeaSLibnOJimFYWe4cbX5bUVBq3E2\nsaQPYt6XChAE9X6+IRpRtx97+j4xjiBaKFmMASCB4tQSz4Jg5cWfPBx9IwybAI8u97z75BG7ThgE\ndimwP/RI7IEAkui7FbRuBMycVy0y8N0ENwAEtEaX/nYX18OR/d6wE60RrZEQvKM1lnm6uBwYhoEP\nj7eLIsV4FMZxJpGMQCxW/3Zzc+TFB7c8e/YMgNQFHjy4YrfruXq443BhctfHcWB3OKAUQiyLYRvH\nifk4Mo8j891I1ewL1LLAVSsi2byyYNhDCGFNva/xiOcLLDOJWqicNuVPy/vUfLBa1lZnUq2Fnf3U\nBb8TtcL8iMnPlLkax2iwG1xaFyy1TaeFwLWaNp2oK6qohbvq1jCFbjFWDY9RVfroxjpF73FqXvLC\n/vekwhb7NA8koKVn6Hfsdxe0DvKxAGpNRESE/e6K3f7qJImRUjohtjZDEGNmnlYqT87tpl49+VeN\nc/xp+5mqyjxNVJccz9NE1UwKgRS9Aka96xcBraZVVkvlOFk/2d1uZ70Z1IQWtLq4A7JkqI0D9pGH\neDKCVoKudSBbmaBWjGev183rK03GoIe2yTgefPI58eT/iJiSc7dRHVZfMxrEIBBnfgDWm/dTGDb5\nNJmGb9YQkX8C3ABfe93H8i0e73A/5++EcT/nz278AVV99+Pe9EYYNgAR+d9U9Y+/7uP4Vo77OX9n\njPs5f+vHJ3BS78f9uB/349tr3Bu2+3E/7sdbN94kw/Zzr/sAXsO4n/N3xrif87d4vDEY2/24H/fj\nfnxW403y2O7H/bgf9+MzGfeG7X7cj/vx1o3XbthE5EdE5DdF5Msi8hdf9/F8VkNE/ksR+aqI/Prm\nuSci8jdE5B/678f+vIjIf+Ln4O+JyB97fUf+ex8i8kUR+VUR+Qci8vdF5Kf9+bd93jsR+dsi8n/4\nvP8Df/77ReRv+fz+exHp/fnB//6yv/59r/P4f69DRKKI/JqI/JL//cbM97UaNrHisv8M+BeBHwT+\nnIj84Os8ps9w/FfAj5w99xeBX1bVHwB+2f8Gm/8P+M9PAX/1W3SMn/XIwL+tqj8I/BDwb/j1fNvn\nPQI/rKr/DPBHgR8RkR8C/hLws6r6JeAD4Cf9/T8JfODP/6y/79tx/DTwG5u/35z5NrmV1/ED/Eng\nr2/+/hngZ17nMX3G8/s+4Nc3f/8m8J4/fg/4TX/8XwB/7lXv+3b+Af4a8C98J80bOAD/O/DPYcz7\n5M8vax3468Cf9MfJ3yev+9g/5Ty/gG1SPwz8ElYZ+cbM93WHot8D/OPN37/lz72t4/Oq+jv++HeB\nz/vjt+48eLjxzwJ/i++AeXtY9neBrwJ/A/hHwDPV1q7mZG7LvP31D4Gn39oj/n2Pvwz8Bdby0qe8\nQfN93YbtO3aobV9vJddGRC6B/wn4N1X1+fa1t3XeqlpU9Y9insyfAP7p13xI37QhIn8G+Kqq/p3X\nfSwfNV63Yftt4Iubv7/gz72t4ysi8h6A//6qP//WnAcR6TCj9t+q6v/sT7/1825DVZ8Bv4qFYo9E\nFiWx7dyWefvrD4H3v8WH+vsZfwr4syLy/wC/gIWjf4U3aL6v27D9r8APeDalB34c+MXXfEzfzPGL\nwE/445/AMKj2/L/uWcIfAj7chG7fNkNMV+bngd9Q1f9489LbPu93ReSRP95juOJvYAbux/xt5/Nu\n5+PHgF9xT/bbYqjqz6jqF1T1+7B79ldU9c/zJs33DQAhfxT4vzBM4t993cfzGc7rvwN+B5gxvOEn\nMVzhl4F/CPwvwBN/r2DZ4X8E/J/AH3/dx/97nPM/j4WZfw/4u/7zo98B8/4jwK/5vH8d+Pf8+T8I\n/G3gy8D/AAz+/M7//rK//gdf9xx+H3P/08AvvWnzvS+puh/34368deN1h6L3437cj/vxmY97w3Y/\n7sf9eOvGvWG7H/fjfrx1496w3Y/7cT/eunFv2O7H/bgfb924N2z3437cj7du3Bu2+3E/7sdbN/5/\ne0gP0KkxIooAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "img = Image.open('imagenet_samples/chihuahua.jpg')\n", - "img_tensor = img_transforms(img)\n", - "\n", - "plt.figure(figsize=(10,5))\n", - "plt.imshow(np.asarray(img))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "151:Chihuahua:25.7853:0.997884\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " This is separate from the ipykernel package so we can avoid doing imports until\n" - ] - } - ], - "source": [ - "img_tensor.requires_grad_(True)\n", - "out = vgg16(img_tensor.unsqueeze(0))\n", - "probs = softmax(out)\n", - "cls_idx = np.argmax(out.data.numpy())\n", - "print(str(cls_idx) + \":\" + idx2class[cls_idx] + \":\" + str(out.data.numpy()[0][cls_idx]) + \":\" + str(probs.data.numpy()[0][cls_idx]))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fake generated in 8 iterations\n", - "919:street sign:22.0811:0.371603\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:16: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", - " app.launch_new_instance()\n" - ] - } - ], - "source": [ - "learning_rate = 1\n", - "img = Image.open('imagenet_samples/chihuahua.jpg')\n", - "fake_img_tensor = img_transforms(img)\n", - "img_var_fake = torch.autograd.Variable(fake_img_tensor.unsqueeze(0), requires_grad=True)\n", - "fake_class_idx = class2idx['street sign']\n", - "for i in range(100):\n", - " out_fake = vgg16(img_var_fake)\n", - " _, out_idx = out_fake.data.max(dim=1)\n", - " if out_idx.numpy() == fake_class_idx:\n", - " print('Fake generated in ' + str(i) + ' iterations')\n", - " break\n", - " out_fake[0,fake_class_idx].backward()\n", - " img_var_fake_grad = img_var_fake.grad.data\n", - " img_var_fake.data += learning_rate*img_var_fake_grad/img_var_fake_grad.norm()\n", - " img_var_fake.grad.data.zero_()\n", - "probs_fake = softmax(out_fake)\n", - "print(str(fake_class_idx) + \":\" + idx2class[fake_class_idx] + \":\" + str(out_fake.data.numpy()[0][fake_class_idx]) + \":\" + str(probs_fake.data.numpy()[0][fake_class_idx]))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADHCAYAAAAqC0ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvcuvbFt25vUb87HWioj9PI/7yrx2pikju2xcEiWVELQQ\nQqJBQRdKJYQQVS3+ACRaNPgnXBJNRIN2CVqmQZXABqssbJcrnY+b997zuuec/YzHesw5B40xV8Q+\nN9M408pLHuMYyrxn79gRK9aaa445v/GNb4wlqsrRjna0ox3taEc72tF+seZ+2SdwtKMd7WhHO9rR\njvb/RzuCrKMd7WhHO9rRjna0b8COIOtoRzva0Y52tKMd7RuwI8g62tGOdrSjHe1oR/sG7Aiyjna0\nox3taEc72tG+ATuCrKMd7WhHO9rRjna0b8C+MZAlIv+BiPwrEfm+iPzX39T3HO1of13s6BNHO9rB\njv5wtL8JJt9EnywR8cD3gH8f+BL4A+A/VdU//YV/2dGO9tfAjj5xtKMd7OgPR/ubYt8Uk/X3gO+r\n6g9VdQT+R+A//oa+62hH++tgR5842tEOdvSHo/2NsG8KZH0L+OLB71/W1452tL+pdvSJox3tYEd/\nONrfCAu/rC8WkX8M/GOARRv+7nc+vMQ5h4jUv9t/Us6M0wgIKU2oKiUnEECg5IJ3jqKKF4c4h/OB\nGCMohBCIIVJUKTmjJdvBtYAKCqAFtcOBKir1JFXri++cef2Toqi9B0GcR3z9v/OIOEQcODefKooi\nCFoKqgVKwVHQegw7Xnnne+bT0HqE+u0P/2r/U7VvqOlf1VLPjcPrWr9FtV6vzCdWB7z+K/sj1//8\nxL0DcXaOzq7Th2DnKYL3vr7n4eBJPc+CUPYXpuXB2+o1MJ8XSimFod9RSialiZILKaX9eSvgxJNy\nwsn+04hzlFI4HFpBhKZtEBFEhNOzS7zzzLHGfB6fv3zL25v7n7jz37T9NJ8Q53BS773YeE/jxJQm\nxAlpMp/IJVNvMCUXnHNoUZxz9n/viaFBgRDqz1ooOVNKwYnYnEFsfhTdj4k+mASquh+nvXvI13wC\nBRVwHheqPziP1LmCOOTrE6vo3ieEUn1hnpw6O8H+/BBBRUB177f7afNgvqvq/px/widK/Ztjf70g\n9XIe3P4H83h/Sl/719YtV/2n+kQMe98NMcyD9WAsxT6u5YHfK7N72G3Xd77L7k1mGHbknMklU3I2\nn5jHBhDx5OoTh8uoPrG/f+/6BCKcnV7gfEDm+Lu+94v3wCdijH/3yZMnh/PS+T1Qila/ttd+ISqY\nr9/r/SbBO9Pjp62RP/H3d85X3vGpdz7/8Du+/rL8lL/P52WT8PC3n+X6H5zTw99V6/L+9WPIgw/o\nT3zsJ8/765/XeT2pP7u6K/5l1/9g/MXV86tjKPyULVMefOwvGIefuHT5+efMzc0N2+32L/WJbwpk\nPQM+ffD7t+tre1PV3wV+F+C3vvOh/k//7T8khID3/gC2ouft3Q1//Gd/WhfLTJ5GNrt7QuO4u7sj\n+shqsSJNGR3uuV3vePzhR3z8ya+S04R3wm/9xt8hxEAMns36jlIyJU/I5BEVck51cQc0kYGCgTJE\ncU5wTioocXjv6IeBftyRc0KzojjaszNWjx4zdZfE7oRucYJfrPBOcCWhJePFMe12kCakjLBZA1BU\n0DIAE4JDc8GJs8VTFaHYIpkL4hyoeYF32TaoUtAKOKdpIuc10zSCKmkayCkBSiiJnAu5FATbDAQB\nFdu0UdSJfYcTNCtFS90gBeccPkSyP8G3S3yzoFmsiKtzskL2QtO2hBBomgbnnX1XERgntCQimZxG\npBRyitWpFfKAE3OgrBO3N1dc33zFsy++x9urrwjOs92OvHr1irOzCzbrLSkVRBp2mztWq46cC94H\nVicrrt7eICTaNrDZ7ViuOtpVy+n5KbFd8Pf/o/+M5eISNFRQXBBR/t3/8r/7pfvEb3/3Q/0f/pt/\nQLtoicHhpUL11vPm+oY/+bM/pWgBKeRpYtOv8dFxf3dHdJFltySlgqY1N7cbnnz4Ed/69DtM44hT\n+O2//Xdo2kjwjs39PTkn85fi8c4zjROUjHMgvpByIWWlpIwL4Bw4BM1ABXJTSQypZxpHSlKKOpaX\n5ywuHpFWj8wnuhW+WeIAR0bEgp1ps4NpJDCh/QZFzSfyCEy4IpRUEIVccsX4BecCeaiBk50RwWfK\nZGCipIxDSDmRy5qcJiiFcRqYxowIBBIlZaYx44NHnBgYLLIP9BTBe4c0jpIUpewDjDnImOQEv1gS\n2wXd6oTQnqHBMSksupZ22RBCJE01sMoOKQmkEHUi5wlNGS0NmhWkIDoiczASM29evuH67jUvv/xz\n3l5/RdNF1rc9b958xXJxwW67ZZoyIi399o7loqVowbvIYrnk+vYWR6JpAut+x3LR0Z60nJye0q2W\n/Id//x+yWl6i2R/AsCj/3j/6hfvEX+oPX/eJT771if4X//k/wjcOJxV0qxrYzhV4q63XMyjRhz+U\n+rM/gGrnbY3TYkDcObcPQm3PwdZ/LwbKUZsfQdCkaK6Bnhcbq6LkPAfN4INDvKC5MGN8F+xYBjLs\nnKUUSlZbZwOUgp2vKrbcywMioA5OsTEoqhaI+Xp9Uq+p4vM53i1ZES9Q1D5Tv38GVKr2veIOwXdJ\nBRdrMDBHsaqQ7Fqljk15AIAOYK0CKCc4sXEsqeCDt+MKhMaRFcZ+qt4rSHB2DlrACSUrfr5PVIBV\nbDxDdIxDRpzDi80BiUKZCsE70mTnOIPaefzmQCoXxfmHYK/eDxEjboIcwGGx98xg7J/8k9/9mSb6\nNwWy/gD4dRH5LuY4/wnwD/6iNzvnaNvFfhOfQVYRizSHoWcYBh49uqSfJmITmfLIdtOzaB3eJaZx\nYnf9ljEp427H7c0blouO9e0dP/7xn3NycsKjR4/oVi390ONobRKqTRJbSxQtviJlCI2NaNFCCLJ3\nHhcCrXFStniPEzlN5N2aaR1xfoGLHU4L5oUewdn3FCU2EbyQh0IODVKdBVGcuHpTM6jinUc04zST\nVfHe28Rwfh+1+eCMxck2iVxoyFmJ7QK0MA09OSdzMu3x2ZzMNiXBS7BrByRnCop4i8oVczoXPM4b\nU4g4XFiwOH9EbBbEbolfnlFUSCUzTSOFTHbJ2MV5jMaJ6Bw5J6QU+04FJ4rDFss5qr++fs3zF5/z\n9u1zXr74DC0F5zzOtSyWK4Z+YhwzTexIKbNYLBiHgZPTc0Qc281A1y4pOdHvNuSkjCnz6HTFcrVE\nfLCNUouNabYN/xcRAP8ifELEsVwsjclC6mZujq+q7HYD/TDy+OkFJRViExmnkfX9jtXCEVxm6Ee2\nt2+qT/RcX71htey4vbnji8+/z8npCY8uH9GdtOz6gm87dDuvbR4Xg7FKWuqCrTQLW/yKFrwXJi34\n6PHeQ/Y2no0nFwP2w+0tMQRcXCKuRWIBMiIe0cqGAt2yheRI24L6iNRNURxIZTudzzbfk012KdnO\n1RuTLeLx3jaE0DTG4gTbDLwqJSulKYgUwjCQ21Q32wFNiosZ570BfQ0ISlFwKZNLwXljBEtR84UK\nyFTF/tYsWFw+JjYd7XKFhlNcCOSS2b29QyYld0rTeaZhQnNG84QUoUyTbagoRRSn5h+VvkIoXF+/\n4cXrH/Pm7QtePjefGMYAJdK2K4bdyNAnmqYj5cJisWCaBparM0Q8u36k61akYWQYt3ufeHy6YrFc\nENpITokyZUJsyDnb4P80auX/Y38AQA3cUxT9mqeqSL2XtuE7L3VDtDXcCEahlGLgGQAxFsTZv27e\njIUaeFZGB8ipoFn3YKtkm5+lGGgqqewzFqjsgZTOa/uDTEQeMi54wFhnYQY7Bm5K3Wdsgxc0FQNa\nHFggKkg0DCP761cqeKpjNbM+VHA4s66i1CxC9bPKgnnPHplp2aORPUibTR5QpPOrMpNc2ZhF5+yD\nNoaWISqlHj44prsBJk/xgvPBiAVvzH2aigFNsfvhKjutBcTX83XGLPvoUAyMCYomoSQlz7PkAfs+\ns8mlZk2ct+vOSQnBVUa0XkcFxWWy8bfg6/91hv5U+0ZAlqomEfmvgP8Fw9f/var+yV/0fhEhxgYn\nzjbZOf1QJ9KTJ0/p+x3TNOBD5PbN5zx5/ITz5Sn3txs21/c0TWRzd0dS4cWXP+bu/pq2CeRpYH31\njBgaHj35gH/tX/8dlqcX+LigWXkcQskJ0cIM57O6ytxgEfU+rDBA6M3T2d7f26IUM9v1NSWNpJvX\n5GGC8wGfBpZcItLg23M7ghSCE5xv0bhgCg05jZQ04tUfUonTiCi4kNDiKCmQNe0jl6wjKAQNuOBJ\nGYIYAxURpKljS6FdrijZjuuzpZZssrt9+FFmcDVOzNDdHNTGQoOBroLiYqQ7OcM3HXhP8oIEbyCw\nNJSc0JyYdiNpN1E020apjpIt6pRiEM/7EcWYOCeZaRp4+fIFf/TH/5xp2lEYWa/fcH87cHH2AW/u\nX9LGFk2RJnagyumq5X59Q7dsyGUCFXbbnpOTU+7vtjx5+jFD2rLp72m7JcuTFU23qIuAkvK4j7zs\njv/iodZfxSfarrXormS0guo51frBx0/Z7bakNCICN1df8fjREy5Ozri/3bC+uqdtI7v7OxKOF89+\nzN36mq4NpLFnc/MlTWx59PQDfu1v/RssTy9woaNZepxUn6hjIRQ6nVdfG7PZJ7oa6Ydgc3e7Dgbo\n45Ld5oacR6arr8j9yPL8KdPYs9RLnGvNJ2pA4Qo4H4nnC8Z+yzT2kEaCeiiRogWXx+qGiYJHciSX\nVOcrFDeRC8QS8M6REYIAwRFVyK15hFCIbbZ0aSlEgWlKpGySA2qqVUsho+Rx3IfoKgKtsVfZibEU\nDgiR9vQM1yxQ50heCF0gq+IkEFcteRqRMXO7HvANeAWdlIBAKji1DRPX21CXgneZlEdevHrJH/6L\nf8aUd4hPrO9fc3cz8uj8KW83L2hCi0hL2y3QopwuGu7XNzRtRDWhms0nTk+5HyaePP6INm1Z7+5p\nuwUnJ0va1coYhwApjwYeRQ/p21+iP8zmKojWmZWq4ElzwQfZMyklZcS7A/NRPy9+jzxqKteAj6sp\n4xlUlVLT0OUB6AoPjiN21t7pgZWa8dR8LLG1ei/OEMBLDaQVzWpgZ47qZzBU/SxPth754CjYNSKK\n1KyDzqCzHsNICiMLKlVsx5pT4TPbBPvPz6Ch6ANApsZ4GWtnH6xClz1ycw5wdux3jlHZMhdcZbEO\nwMqJ4ILdPEXwi2iMlncMYyE0HnH13oExUxXMlTyDnJlBc+AgT4YXnK98RlFEMyGYD4dY91Tq34oB\nLOf3E3E/r8o+NV9fqwDUAKrb3/s9o/gz2jemyVLVfwr805/1/aYBEET8XlcQoieXwunpKW3b8IMf\nfA+H4/LigpfPn3G6uqRrGsai3Fxf0aCUSUl+YrfZMPYgamnEy8tLvvjxjwjNOR98lPjo29/FqU14\nVzlEB5VJcaaXEAUsheQk2nlWR3B4losVKU1M08jUR1Ip5DKhU8/m5oppnPA+oDS02iEhmkZFsNSD\nQMmT3eAgkCqIKjVFqAUpSsmeXMRAiqQKxrONV3GUIjVSs41QBYzqt5EVJzjJaHEE54yaLocxByg+\nUYpS9vdhpo5rtB4cY0qogMTG2LjgKeJRgWEacD4QJOAlkDHWISdLEYIjSCCrRY1SbMFyQUEzSmEY\ne148f8aLF8/Zbu+4vnlDKUPlzoXtdkAQFqsFw7qQ0kTOmTaC90IuidVywTQWVicLUkqcn1+w3uxY\nb+44e3Ri8wvB+0gIAVVLy+Yy64C+OS7rr+ITFjHOKyl451CnnJ2d0oTAD374fRyOi/MLXr58wdnq\ngkXTMKlyfX1FI0oeE4jQbzeMvc2r0t/x6PFjPv/sR/h4zgcfJj759LsEsejZUgm28YtTpiJoqZof\nZ4usk4Cq2lymQHEs2iVZE1OamPoAZHIeIfVsbq9IORFiBDfRsDCf8AHnIHqHloL4SLcScvIwWLCR\ncjZ/cFVvVYy9MMiUUAqqaa/5qjvMYY47LL1Xd0FbsDMkh/ceJSBi1zKzIaoZr0oODi1SAxxAHS5Y\nsDXlZKxx09K0DRo8OTvSmNF2NH2TOryPTClRpKAk+vuR2ASCOpI6fJ5pk1kbV1AKOQ08f/aML589\nZ7szn9AyQGVOdrsRUWG5WrC7L0xpZEyJLi7wXihkFu2ClJTVakEpmfOzc9bb3nzi8gSRUH3Cszxr\n6/dHKr2/X49/0fbz+gNwAFb2i51fMSCCGjOEm0GEMfJS6Z95Y7S0l+5TaWUm62ZUMLM+Zb4lYozT\nHPxTmZxSIZrMr1U2Rx8wPTXFNIO3eSilXouIIuIO2kCtB5vZNxHKlFHncMEYL016OFYFOTMrJfIA\n7GWoNNU7rBwPz+Hr51R/l6pprBzbPsiYmTDvH4zbnGLbMz2W9XFhTtsaQMy5ENoA1JSqE0pl75x3\nTEMiRleB7YFBA2rQY0DUe6rGmj1YNhbLvntO7YkIacy2RtTU35zune9RmdOF5RBGPLzPoDSLQMlK\nTjPT9mDQfgb7pQnfv25KtgUS6gIPOTjGMnJzf8XTp4/46Fee8urVC4pkQtdRnIOmQ4vj6SdnvPni\nB6Q8Ma0Tnol+TLRNy9BMhNHo3hfPfsiwueLRSmkvfw18ZJhMnxTFISUT6qSxaMbhpG52orOPGxpu\nW1wIOOcIJyeUqSGPO5h6ZNpRpjtol4R2AV0DriOXCNGTxcBQaiIUD6VBZTJhfikgAdVMGnc2CcWi\nXXPijJZi/lMUvDn7SNVOOYcT/4AaLaARvAHzki2Cd2p8ayqZ4iNZMllMFI535FwsrSMOFz2uMUft\nlivK6glVpUZJCT9lIg4XEzEmREd0GnHjFnLC2UhiYZ4xAQ7BpQAiZFVevn7Bq+uX3A03oBNOYRjB\nxTO608DN7RbPkmHrGcaeaRg5O7ugSEMukdVyhZAIfmIsA5onYyLHxNlyxcJ7Fl1D05zj3Aon0VhC\nwSIbmdMj74cVsoGEungLMImQJHFzf82Txxd8/J0nvHr1EtVMaFuyCjQtWoQnH33Km+c/IueJaWOp\n2n5KBNfSt4nQZ8iYT9y/5cmJEi++i/MdwzQgeII4nGSCE4pgDJbU9OWcXlHFiUcbcNFDyZTBfEJT\nS95t9j6RpzuIS3y3gDaitCQiTRNILqMOskQD+y6gJVZxfsYvAqUkprzDeYvaLWfDHshTTLtBVFSF\n0VcWwTmcBKipBi3mE+JAnaISKJINxBYh5UJxjlIyWSugCxb0oabLdE2AogSB7vQETp6afkdhuu9x\nu0S79BSf8SFRUsKlkU53FCbcJAQcqgefQAVfvG0eXnj25iUvr15yu71BJBG8ZzsILpyzuAhcX28O\nPtGbHu704pJEQyqBk+UJognHRCo9OY04l8lD4nRRfaKNtN05sTlh6s2rnRNcUFuX3fvjE4d82SHT\noapINOZC/IENUq3vqQyVVLBUJ87+gM4ZKBCRQ5prPq7DgP/DPNEM8uffq+B+lk1S04mW4n64YRt4\nkaozMvAnh+vRB8d/SDM5CxjmYo752kupqTKdsyw1/VkZOtV3v989FIvX4+wJwQo890IunYtFDoB2\nr/FSJZcDyJIKdKljsAflWtPqYgxY7rMV5URvTF4qVSKi+EaMZQSc9/tU76xFo1Sywzt7raZvJTp8\nsPSg1tTkQ0AsM1vpq9ZOZZ9GNY1XBWscGKqHbKUPjrG3tUVqzvbBFPyZ7L0BWT/Ncsp0Tcv2fsOz\nfsejp+c8+s3f5PbqisbdoiUwvr7nww8/ZrvbcnH563RdBFW+/PwHPH76IbdX1zg865uerlkybTP/\n94/+hEYVf/o5H3z8CR9/+7t4F/B4fF6g+kCLoAdHVqloHXBVGxOq6BVRwjgw+MiwW1PyRCmJt68/\nZ7E6Y+U9YZnxzYKJYIuBdxA8QsSJ4GNEk2mx0iBQ8j5/LhlcDpY6Kolpsr+jilYtUVajQ714dK/t\nqp5f/VVmQaQYBS1imhJFrSqzC8bqCPjGkcU0crFpbDFxgm8iLDuL+VImOaWMAyklUp9wmug3a0gj\njRSCiKWgylxFZdo7FU92Ddvtms+/+BHPn3+fly+/JKeRly9e8cHTpwie7SZXtmPJ+eoSJ0pwHe1F\npBTQ7Dg76fDBcXf3Ci2JYdixaDu8a+omrIQAKfdk7RG3ZAagXmpl22FFeT9sJtbmUFhARYkE1jf3\nDP2WR0/OuPyN3+Tu+pou3KIaePPyjqdPPqYfdlxezD4BX37251w+fsrd3S3eB7b3A21YMq0Tf/Tn\nf0IA4tnnfPDRJ3zy7e/gfcQT8LlFS8LJLKY1n7ApVvYM0QzAQin4EFEUvxugcaRxSykTOSXeVJ84\n8Z7QrfDNguSLpUadQ6L5hCCEECmTzfNxtyE23opQiiBJcZWNLNlABBTISip5v1CLCk496oUyKU3r\nSEkPKRedGWwhq9S0Rk2L4GhrYU0RiMGT1HwrLjsaZz7ku4h2DU4VsuLPGnI/0G8mhpSJOrG+uSPo\nRNNAqKxVRtGUEck1oPOUENn1az777Ic8f/FDXrz8kpJGvnr9FY8vn+CcMPQWKIXuhLPuAifgXUfb\nRIpCmRxnJwtC47h9+wItE2Me6JoOJw2VpMcL5DIwpYEmrxA8lU43IDrTGd8cwftzmUkL6inVpc2J\ns7SRYmmuyji6Wr0mzpkeb04zzVpTMPF6KQZGHDVVbo5XbEpY4KrK/lNzqlEfnFXdfH3V+Mypyhn4\n7VmirBWog4Q5FTaL4PcoC6jnP79cmGlUm7cFfBByyoS2Ms8PquzmfYMKoLQYE4McSAytbF4pSnDe\nxrDmHyXYNZfKKgkQPO8CwFp8IE5QJ8b0VKF/HeaqOTMAG1rzmzRkuz+iNv5AjX5q/YJUjSV1D1O7\nN/U7mJlIb2nCPOU9w5SnYvtWNjjp/Lxe1WuZiw1qSnIW7VsKdAZ0hzmTmYO0CratMutd0P2X2HsN\nsgQhhoau7RAx5Npvd5yenrFbT5yePOb2emAYJk5W5/Q3GZyn321RcWw2G7rVAh8a0pghBG6vNtxf\n73j54jXu/ordcEuzaDhdXdDFU7xEK3N2c2Rig+mcs6i9qvvmaNiEyRBji/PeWhmUiWmAoplcBsZ+\nTbO9BzXgSA5I9IS2wfmuRkEO8caamVSomJi+VgxakKtoNoo1VOWiKwe9hKubXME2lpkmPvDEtpno\nvDrV1FlxZT9xiljljHOOKWf73Xt80xqIEyEXyMNA20TAQJ/qhKonSCZPA55sVYnMQM9qR0yYaVFF\n1ontOvHs2Y/56qtnvHz+Bfe3V4gId9fKyXLg7nZLaE/BB5w4vGtwDvrtjrHvaduO89NLSrHqU+8j\n292O5fKERdNyd7epkVXh/v6WVR85kUe0bVNpZEvL1LvMuyHq+2BzdUy9lWrVm01okVLQDGPfc3py\nSr8eWS0fcfvWfGLZnbILBRXH0G8pzrHre7rFAvGRNCgNnvWw4/5mx1ev3uA312x3t3SryGpxwaI5\nI/qGqW5Ergq9QWvbB4v+tbJbaaridO9pu47QBJopsr7NjL3N2VJ6psExbu6serUUEgH1Dh8bXGdF\nMLNP+MqBkjNIIkkh2IqPCsb+esES+gXJahrEujupirGy2HxPYwHn95u0zZ2aGHGWOss57yPjKQsS\nTOc1pswE+BCMOawpo5QUTSPRW4pU1fSFbdfQSaFMA4sFlKEgxVXMbD6Rc6ZpI9OUKJIYUuLZl5/x\n1VfPeP7sC9Z316jCzZXS+p5NPxDjCS42qDqapkWLMmy2TENP03ZcnD0i1QrF2DRWJLQ4oWta1uut\nBY2lsN6sOd02nJw/YrFobSMrBZW52toZkH5PbBZXzyw9ehB7p6lYkUN0e0Zlv9HPc7WK11FbTxET\nqZei6GRFHKgxGPP6LjMr5KRKKKgI4sD2AAfmjAObowp5sP3EeSuycrVirRStVXmH1Nh8rBlgzYAP\ncXvNlGXuDlVwUirLVKvB7VhipMAM+h6CApnZLGOYFCoAk/246p5lqyfG3PJE9oHfzGSXrDV2dvvz\nqrG0gZiaMvXeMfUZ39S2Rs6AIkVn6dMejJasxGj3VETxwb8zpvtK+1zjdl8rS+u/PlSg9WDMXBW2\nIwaGZ+w631v7Yva6NOer5jIbFjlg6p9PofjegKyHk8BEteCcZ9UtaULk5uYNTz+4JOXANA48unxC\nv8ucnz/i7u6Ou7s7hrRhOyRynjh7dMJuuwYypAbvGna7QhkzpQhf/PgFyycN/dBz8egJ+rTACkLT\nGSp2po1wMlcu7eP3d87ZHC9X7ZXifaDtlsTYUEpiu7tn3K3ZXL+hGxNhOVJSxHdW/SSxQWK0fl/U\nKgmD2CAFxVMq8HKxobgJVyzaKJrJmvc6MXngE0UrW/TgjBVQyZZmFQFnrQs8VJhhk90Hj/OeRoTs\nhBgjTduSpomcMuM0ocNIRHFSEE2UNIITIkoethbNA17qFqnV+fZcqxK854vPf8irl1+yWV/R9/ek\nlLm93tE0jtubLapC03SohNq/J7Db7lguT1HNpieZxYwSKAXarsP7wNXbG0oWFsslWTdMeSTnxDiM\ndF1X76sBK0sV2Mb3vpiJfOeo0+6QK45lXNA1DTe3V3zw4SOKFoZdz/npY4Y+c3Z+yd3tPffre4Zp\nzbZPpDRy9viU3WaNihBKgxfPOKhV6WX44sfPWVxGdrsdj5485vIiI+eCb1p88Pg6151zteWIRfoz\naMYJ7dJ0gWmcoHgT6xZP0y0JsUE1sd3eMe7uEXlLu0j4YaC0kbBoaZcgTYtrYm1jYEL0ApY+zErR\nQBZLQ4iPViJeDBwUavWi9xaYaQ3WIqQRYmfH2CdOnEBKqFjaWL35BC7Ya2rX6L3DBU9sBR8dsQk0\nbUfJE9OQ2O1GtPTE0w6hoCVRpkQOBaeFabe1TRwI4vEPJAm2aWWcKE0b+d73f8Drr55xv76mH9ZM\nOXN/19NE4fZ2i/Oe0LVAsPmfHbtdz2J5CtUnSrbNzQcDjW3XEduG6+tbVB1d7FDZkspEqj7RxIZp\nsqDOeZ3NBAzBAAAgAElEQVRDjvfKJx72VhLYsxqW5qsbZzJwpIUaGFetkMNayVR9kdZ2BfN7TIZY\ncE7wTsl2gHdA1GGd1ncX1vrzLHjfs6QCoTGAUHIhTfogcK+aLHdYG2fiKicLSMRVTeEMlN4J8jGA\nUnN+c6pwf8IVpM06qT0urePholhVXVP9dE/UyYN+VNSqRQMz6uqxanCy71cVawMGOQDPnAwE+dZT\nStU57geqAsiihz6A8/kVY5/mGjgfnFXUz+dVL9NHX0mDyjzm8iDtWRB9AIxmwmH+1Vc20Mthf8+l\navgO311SnVv+a1nmn8PeG5BVHuS952aRKHSh4aPHH/L65QtePnvJ46ePoQjTVOh3I7ttD+rwztOu\njBUahgFNcHp2QimFbnHK5n5NGhMffvQxcXHC8y9/jF5PnF0MLFc/4kc/+iFnp+f8m7/zb3N68gSn\nEe9drasx8KFwGOkaCTnvkeKIzhNp0VJo2oZpGJimgTT2tKGQtzdst7fEkxOaRx9CWTCMEydNh5eA\nqiNpJmvCqdDEFnERCGgplDKZwwRHyRMZ27wk1vYLRfFzhIGQNVUhPMwNGQFyG5EaxUvT1qqJGlmI\nI6eJEjwuRNtYBWsjIc7Kv6fE+vVr3LRls5log8eRGdfXiCpJrJIw+oj3EaeCFLX0ZV22c87knPjs\nsy/54ff+kPX6ltg6ch7Z9j1njy5IY6bfDTjnSSkRmki3WDL0A6uTE0RHvG/QIux2O2MrNXN6cs76\n/pZhmPCuoW0du90dLkw0C/jWJ99mcfoJF2cf2FxzijEPvkaGnvfFjH2Zg0u3X4Hb0PDx04948+ol\nr56/5MkHpo9LpTAM1trEFsJId2o+sdv2aIazsxW5FLrFCdv1mjwWPnjyEbgFz199jt6OnF0NnFx+\nwY+/+JzOr/i3/t6/w8nqCUUjoUaKilbRqlCk6sbE0l+iAiHSiKeRDiik3DJue+tPtdvRuEJeX7Pb\n3hBPT4nnH6JaSJoMJGMp70y2RrMqNG2H0OJiS54yRcbaB8dRmFCvSFEkBnROH80hMoJvkoEnVWN7\njaph8t76Yym4Rbf3CSusEoomcB4JtibEKATnIQkxLvBN5n7zBu633G7uWTQeL5np9i3lTnHeNu5A\nwEm06uRigRBF8SJMYyanxGef/Ygffv9fsNncEaIAI+M4cHp6Sk6ZYRgRHClnQmhYtEuGfuT07JQy\n9cSmJSfYbLc0Xcc4TJyeX3Bzdc1ul/ASiY1n198jbqLt4JOPv8XJ5cc8uvwQH+aCn4QS3jufeFeu\npPsNeU7pUBmYGVTNNmeKihZbs2EPcGsC6Z2AdBor+/Ug3SbREYJj3CbahT98fk4YzCxQBQrMoKBg\nmq96jjMIE2pKct//iTovBRcrA1SZOet7VSsPK/ARZM+O4di3ftBccZaCzPdT2bNLqrU4Cus/xT74\nlf21aJr3Yz2kEGvQp7OofSY461tEhDyWChxNZpKTokPVtgk4LehUCYpgmRNrg2Fkhl1XqS2Jajoz\n1eo+qQFPZdxKsj53MVbg/XBvxpZM3YvjD2NZir23ZCssqzMJEbdnIotCCGJwet/yY4+Pfy57L0CW\nYYMDQp//b5GAY7lcsuiWPL58xCI0DCL0/YQ4T4wtKRVrpphhuVhRcuR+syF40+MMYyZ2S2KjfPns\nBcLEboSQ4O46UQrc3F7z+qvX/Mbf+tv0u8zFxRPatrXKo31kUGdKNWGOHmqarVbMBR/RaJqJ5WLB\nVHp8KYxaGHZ3yO4UEYse8jBBqdVLwRuF7R25UJ0oopLr5Fc01yhd7b0yd67bNykpdSGSQ0DzoH1v\nnsX73gBawe0jDBGHXwS8D7YIOBNVTtnSMVq58qIQq16lTIkp9eg01aat1svLuLHCvmp0XviwxePq\n+oovn33J5u6azfYO2RW2u4HQNGSENI2E4Di/vKRIizhjHYMGpmmgiZXxVCHGgOJIU2IYtkxTYhwG\nFm1HLlOtKikUhZubW5rFR6xWp/s0omrtkK6HefjLtjnydbMGANiPI0LXLVh0C548ekznI6Iwjgnx\ngRia2mcmkRIsuiWxiWzuNgTXUCZljEq7PCHHzLNXr9A8sBmgKcL6JjH1mbvNLf3mFb/z27/Fbps5\nv3hiLJObK1epO0yNHuuabPS7o8yLu0LwDaWxJriLxYK06fGuMFIY+3ukO8U5T55g2o1oY1WCxjCZ\ncHVKpiFCvVU3xmh6xJzx3lOStSGhHHrIIYLooRFk0TlanUX7gvpCFlDn0RBs5hZqYCC4xhhU9WJV\nbE6ZciaIZy5rL6XQ1EqxMmVy6RFNez2Or2knhwmec6KyFNazToJwc33Ni1fPuX/zlt20Rnyh70d8\niKQiaEkE7zg7vaT4DnENw2RtLsahJwaTI6gKbRsqm5CZsjUoHYaeRdMaaHUYUy5wc3tHu/qI5eKk\nYhRjyR2zWPj9SRc+FFUrFRHUajEr86cCiQfCb61AxiJJZlE4IvjKIpVcmeMKVlzwte1NZX0cpKlY\nT8JwoHkqz8zcmHPOskk9V5t3uhe8zzTMzKLt1+35fRX84MWClVmwX/sgmGh+Xw5ZuzOoFXyosT3F\nH86Bqv/SOu+s0fNB7zRnFpyb03oG/pwcWMD6k6XS6j4yN3C1wTmwi3PaTUT3QGd2RhHsupzs03RU\nds7uwaFSEsBXBlAcpL7qvTjcI83gGldZLEPR9p2H86k3wgDnDJb3wPjQW8s52QNcsOC7lAP43Z9/\n2X/4Z7b3AmShh4vTBz/74kjTQNN4nC+s1xsuzh7h80hqR7oY6XcwaWHcDfR5C71SiqeoJ8SWGCNX\nL1/TLVua4Dg/69j1I+cXgc1twkXh6tWID6dcv/yCq7cvcWHLmBPf/tZ3LdpEUCaCi6jO4dG8uVgR\nuUFme6ngEB8JjZWFFWmZhh6XEzINlJtb0rrHtR3anjHGRJGAtA2xCTgJiGtRCkkGJISaey74GC1t\nhDXCSgJ5nMApOVv/kboPkSqkD7WRpRPona8djANNWFAKtdLREWOgbSJNjAauhh6pYnU3jpVGFrxk\n3DQQfGKaesgTkjNeGry42gfGUdQdcu2+QBacNFy9fsHLZ3/Ozevvsbu3Vhe5QMqenBQXMjlHnPNc\nvVlzetGAJJbtAkdr0eDcYkBgnHqm0Zo7xgAaDY7stlcMu4EQhSzWD8mHhq5Z4qVBtWE+QVtcBMl/\nhVDlGzI3N8Gpzi8iSHZkHVgsAi4o9/cbzk8fEcJImgba0LC7LyTNjNueXdmSq09kDbRNy2IVef3s\nFYtVRxMcp8vIOA1cXkS29wkJwvWrCXFLrr+64s3rF4jfMKTEr/zKr1Glf+Q80vjG2otQExJqKW9y\nJjjbxItCKQI+EtqqL3QtaRpw00RKI3pzS7rd4doWlROGmK0paRuJMVrDXNeioqTSIyHgauowxAbv\nTcCtKKM4VK3fm86bmACNtVmhWKra/EjZhlh/CrSuM3ASbGcNIdDESPAR8co07qBMkDOuWKdp58FL\nwZeJJmaGfgd5xEshiD31QFRAPeo9idqg3BfcBN61XH31Bc8++1e8ff7njJtra09SoPiGPNqmlVPE\nec/1zYaT8xZILNoFXrqDHqVkfBCmacc4WAf5tnW0jbXgGKdb8wkPWTIJCNEYMScNpURcManEvmjm\nPfKJA5PwIN2nBgp+ok1C7Z81FyvNpsgenMzBiw9CmvI+5ZhTrrqsuqdmCyqNqanYRRUcNeNRX6+a\nr/L1TVgOTVJncJNrug0BqfUG+4bDqaY/i5LHQ/nbLESff6eCBXRO0+kebMm+Cs9CXmsRVp9gIrVC\nvuqUTBpTU3+q1hU/13SjVgZuZgyZAxbwe0BT/yYzUcJ+TrogFbAqPs5C89oOhrnj+uG+7hGMqona\nnZ27VCrOV8bqoUxm33yWKniXqr9zM0C17ygWV7+jp3OxFolVmnQGykajsQdrqlQ//jkmLO8LyJrT\ng7zLJDhMV9S0LWfn5wzDjqvr1yyWC4ZxsLSgKB998iF/9r3XiHhubu5p4pLgF+QsDP3O0ksoV1dv\nyekedGJ1csLpCl5/dcu//JPPCB7OLzv+19/73/no04/5le98l6kkLi+f0DYdXddiTQcK+75F+wlR\nb05lanzt/VOiEmIgxJGp6ZimgZg6hrt7hnFD2joGnVicXeBiC9OSsljgFydIgClnUu5xPpARlqfn\nlmpLGddYWsMjlGjNNMm1J0jJ3K/vAFi0bdUyGSMSa049Ng1NuwBnPaMKlp/2NTrLJRkQEc9UCmm7\nRsiVVRvR3LPrdwimPOzaDquOEub+Tqpz/xSLMtO05ertS/7wD/437u9uSOPIZrI+YKWAx1tz19zz\n+OmnNE2LqDAke6SLc4G2afDeMw47vDOAqymj047dZs1Nv0VECU5ogiMu7Xl9fiFkP5IzaBEETwgR\nre0s5vn3gKP55doDRndeSASrhCtY6uzs/Jy+33F19RWL5YJpHOjHAfXw0acf86f/8g3iPOvthkCH\nlwXTAP16w+nZqfnE9VvG8R6RiZOTE046ePvmlj/7l58RnHJy1vJ7v/f7fPitj/jV73yHMU1cPjKf\nODlbQhG8tajFWMFK6wM6JKi9c3wMOPUUr5QmEELHWFPqTZnYvbkhqzJtPWMotMtzfNMieUnpFjhd\n4aP5RM47nAtMWVidX1BKZkoZf9IaG1uEnI1ZzcOEifMz2+EeBdqmxfm4743jgpWPx7Yhhg68+cTM\nVARvi3DOCU8LEuiTkrb3OFfAF8RNkHfs7neYFqwQQlf78BnAmQXOFizZxjPlnrdvXvKHv//PuF/f\nmO8OBopRYFKYMkUKF48/pW07k0uUwtBn84k24sQxbHeW4hAlDRnNA9v1PbdvtxUICjEIYWHPrQyL\nhuwHpmwl+VSfIB8KGVDeef7h+2LixCo56wZvDIaxGnuQ9YCxmVkg0/mBbx065QMjg+4ZKlv/appK\nTLfkkVp9WNOMc3fwQu2Mbym42Pn6KKd5L64ZhVoRmIe8bychIvv9bgZ3WpugihPKaI+1UrEnbuQq\n4HeuMmR77KB7EKBlZnTs+5w4K9xT7F/nKKlYWxJ4oKGq6/XDflFeCFW4vmfSK3iyYPsgvt+zcyjq\nDfGKqzqvUjvWq5DqE7BmoDpPLVUleIw1rYApTwaQXfSkIRsD5RQdUmWB58pMVx8TBDopEg+gM6ey\nB2Fzn6uCGmiulcH7cXxAUu0J0wdzzlVeZd7yf1Z7L0DWX+TDRZNpqrqOi8tL7m4LbRspmuqjeAKv\nr+8Zr0ZyzpyszujXV5ZC7Gu0UYRJJ5qq6Vnf70hpou8LwRVi9MRoj7OZxsLV6y2L8xtu797SdEuS\nZs7PHoH3aIToAgZva/Oimr7x9TEJCqbfEKmPxbB03dxd3bnI6NYmfC2ZcXcLTHSrE2ACSUyiDAwW\noTir0sN3JADnTPeklp4kRrrTBagyDAMiVoTdVArBNabBMvAjtK5223UeFY8Te6RRTtYQNI0T3hnY\nKCoUdVbRWDLCBJIZhzVlmPBiVTPBm87ESXhAr84VPrUnl0TevHnB8+ff535zxZs3N1AcPbZoORHG\n7YT3Qtsao7UZt4gIp+dP6McJLco4jrRNJIaI9W8daX2LuB27PBAotWghk3PG4xmnzC4llpeRs9Nz\nlqsTYmyYez3NnjUvFu+DHRYfKvUvNWq1TuVN03BxecntTaFbNNZTq/rEV1f3jG9HVJVlPGHIN8S2\nMYCpoOoYsz2/brlaMqUd0zjRD0oU84kQ7J5MQ/WJ01vWmxu61Yp0lbk4f4x6z7KNeOYFtaYIxRiA\nbmn1fgqUOtccSknWBHhmRnOK9O4OoeA0M2xvKXmkW67wPqFMjDnDOFBUEJ/JrqCuszQfQhIopTKo\nPtAtlqZldIO1ZFAleocUrenwwFxW0IZSH6fjUGfPbmziwh57QyGNqZakWIl/yoImKFNCXUJzZhrv\n0TERgm14jY8IphVVBAnUJ1pgczMVYmx5+eY5L17+iHV/zdXNNRRPP7McCnkzYe0AO0qGzXYHCOeX\njwHrRD+OVtXYdg3Rw5Qmlm3H0Pdsc4/XghdH0UTKQlDHOBX6PLK8iJyfXbA6OaVp2vrAdGMDNM8+\n8Z44BYfQ9vCDARLZp9erfqgKoGdmfwY7zgl5ynh037ASmVkRmHVU9h1zVmUGEbr/d86O+/3je+xt\n02Ab+Vzuvx+6+rnYzD2v2Ou59imq+p9ZtqAzQKMyTDOFtE/h6U+9P/vu9TMoQPbnPD/+Z2ZpmDOP\nAKKVDZR9y4Q96BPTlc3ABPYdJQ5Alhk4qQnpwfiIGUzO51pZxFn4P49PKZaOLTX1yvxdat384QAs\nrb1IXb8dUNO64g5BgdZGo65WEs7PKJyv9+GwPdTWVT5ing4Hm8fsryWThQ3w/NzCvT4LAyia4dvf\n+hX+5z/+Az784DHd6pR2ecE4GlX/4vVzCPD6zWtWyxO0FKtGwEo/x3GgjCPnl4/2G7ATyMOGtvWk\ntDMq03t224kvfvCKqd/Sb7d88smn3F5/xae/+ut0zYKL03OLhBwojpKNzpyrFRChFIcLweZq8IhX\nxE+42JGmicZ7xn5L0kzfb5m2twzrK4r3SGhpuxWrsw8oIsRFg/qIb09JOdWWA5aKcz7gfUPNgJD3\nzVwdp+cX5CkxTVN1VsGHgA9GE5fKfBWFlCZ8TXdaRabRx20TIPUEHRiHezT35Nzjpx0OT9v4ygLZ\nMxa9eEuDVIrWqi4dwzDy+s0L/s/f/+esN3c8++LG9HOdRcpd2+J9wGsixAZ7RmFgsbAqQS2OJrbE\n2DKN9hxGl5QhZ6uMHBLa95yGlvWYYIJtnwhR2E6J0Fqn/ZwKThpOlud03Yl1HS4HoLzXCLwHbJZS\nRboVHGtN/dpCYsKTb33yKX/0R3/ARx88Ynl2Sru6ZBwdPsDLNy8pXnn79g0nixNAa3NT05ukNLLb\njZyfXdZUabbqwWkL6umHDah1Yd/sRr74/kvSbsPuu1s+/Ohb3N2+5tNPf51x1/Hk8aX1b8vFnglZ\nRkI0FjoXrMN28Si14KJW/kXX4GLH2E88+tgx7jYUp2y3G9L2hrv1W8obj2s6YrNiefIUgiMsGogR\nF04Ysz1gWXEkq2clhqaWx0t9IoE963O1OqfkxDQl23yd4MTvfSLXNKeldqzfG6qMm3tb3R00TUDy\nQNCBaVqD9pTU46YdznmCc/boHb7mE2LMVUqZJjpyyTz78jP+rz/8P1hv73n25Q05wcL6m9J2S3wI\nJJ/xLoB6vHPWcFc8JQmxaekWHf1uRyHhRtiNkzFnaYLNhvOm4X5KMKo917AV1kMxn3DedEYSOFme\ns1ickMvBJxwPdp33wCfgXeZj/1oF2k4OAmdqWmwGLfMlWMrO1h0r46/vqbJWVUxwLXPqawZssme2\nnDNB9JzWE+8OncNR8lSIjb1WZjZGLFVmYK/ub3uxOjDLvOqpljKLy7U+Mkb312pC8Hmd1X07ghlw\nlfl56XU9syrTh8zXYeDyA2ZJ9XBMCvUZuWID4yorVp97u395fnyOWMWluJrmnAGuQEq1D1kFWIcW\nQ8bIlVKseq+u0SbWrydaGcWZDRRnm6+mYmNTr0PmNhAVgc+9x0Tqo3ecPZexJAs4dE9JWcqzZH0w\nuXhnuu9//NrrP6u9FyDL6Dn9muPYILgqtC6l2LMLvdK0VpasKI+fPKZPPa/evGCaet5udrTNCYEF\nOXtbfCp464cRxeGcUfFta80O7+4HINP3PW3n8U4Z1gO3b9/w8Ycfcnd7x+bxU9xK6ZuW2DSW/rDY\n1lgcV6zaSgUnwTquA9lXwatzBiRiQ/EedRGXEykXYCQzUkqiDLYQa3vy/zD3Zk2SZMeV5qd3MTNf\nIiKXygKIjSRItnSzu/n/30ek52WmZciWaZlhA2CBtWRVrhHhiy130XnQa+6RAEaGNdIUpomgkJnh\nHm5mbnqv6tFzjuJCh86V6jJOQ5PrKuBQiUhQfOypczb5es0NNWgLQVVcTUYqFEsuc2hjDWo1T6Ba\nKcUhWsg5k5axJaFCdQEpI3U54+uC5hmqudKvsx1DIyPaFEhpSe3SSPCe8/nIw+MD3333Fd998x3T\naO2b2AlFK0EFlgyd5xd//pfkrJzHCecCpQkaYhcRPLUY/wGtVM2UnAk+UFNlOc1GpB7Tte8e7N4v\nc8YBvXR0/UDsumZq5y6Q/Tpt4LM59NoGsb9WKzgwtdcqT691od84+k1sMunKixcvGNPMDx++J6WJ\nD9NkMaEbFA+aMejfMY6LDYMWDyp0HlznmZMZey41MWxtg59PM/fv3vLqxRcczkfGV1/iBuV07Ok3\nPd0QGshrMSHeWg4mK2oDoRVK4zGJekKMhL5QpoD6SK2FkAqkRNWZUjN1PJv/VrdDaoe6CrWg2SMd\nZhhYhSKdxV4sUK0gqW0UlK3RDqeKJzVTSEuyUliHQZuQpOSF6ASqqWDneUSrzUMLEtA8omW0mCgz\nriRCtYkVqxO9E4crbT3wnlwSAsQYOI8HPn645/Xrf+brr75jnhO1OkJQqkAngiZT9/30J39BWgrT\nOOEI5DlTtdBvDSnTio0iQanLQl4SQ9+xLIVlnPFOSXM2i5aqqBoXLS0mpumd0QZCjKS5mE/Udce9\nIhWf8XFt7bQkyHNJUNbWzmoxYknXmgjYm4WW8FQu41l843WuLbiV5K2ONsLH5lzWRixf0RcfLBFZ\nEwsfbb26FnFcErsrctV4T0+QudWV/EKmf3qtrTW3InDrZ38CxK8Jp155XBfuU9U/Shbk8nq9fNA6\nsFqgUY71Sv+o1/NZE9vVcd7+7Xqv1za5c7S2tFwfL7VkUoCaLIZKvooN1t8rmBq3VrGkqeoFBdO1\n/beO8WnIpo0+Mi6Y0GYTrhYPbf8yhE8/+T7sd6732RT9lwzrj8h2/9/HZ5Fk/Sk4elV+1SpUMYj/\neDrw9TcLd+czv/jV31HOE2/evuP+/iPH4wGtyRyTa0aCoppbph8REXIpsKrpio2oidHQEkNPHMuS\nGKJQpoUP797z1e9+w3a/4+vf/5Zf/eqv2W721pJzji70tC4gT7DZ68PdYFdr9TQJrHOUKkR1+JpN\nAebPLItVPaZ8KSznM74reKLJ04tAthEf1u/ukFoJcTC1V62QSys8BfVKzZk0LxeulnqPi1sEIeVi\nQ6bF4SmoWNthSaMtCgJpyjg9kccJGQ+QF7wowSs+htaXb8hjC7aSalNkGn/g9fff8fbtO77/9nc8\n3o82yDp0eBGWNNMLjRTpOJ3OIBGV0OBfk9KXUltFVoBkSVZOaK7kRkDVopScGULHlGwjkuroOk8B\nJCrztBBCxDcZv9Z6WWueMBH+dZ/1H3VcSydbXM09uVZBpeLFczg88tU/Tdw+f8Uv//zvKHnizbt3\n3D985Hh8BMl45ykpEVzHxcM49HikeQGZDrQxiYndhrBEKxzUMY8LvYeSFt6/eUff/4793Z6vfvMb\n/uIv/4btbk+uHq+OTiJVuBCS18p9RQmN62MrtDSSi8NBFGIVas1sSibNJ5al4lO1drkUlvGMC4Ug\nEUpGozCnZpgrDvEF9T015RZzFV2ycUQQ8IXclKdarJBQ55GwtTagVnKZEfEEV/G52CzAFhM5m1s1\n1WLCTwcoC06fxIQ0Vdhlw7SN+5OYeP0d796+57tv/onHhzO5CH3fEaKw5IXolVISS3FMy4i4iOuN\nI+bEG2qdCyqmKKUmoFKWhZIrNRYTwRQoOdO7yJTNAV+Ko+siWRUXlHlZrPhz1trNTRZva1zj4ujn\nExPr5ifr3572dVQb4tvWUl2ThzVfXBGkhii1FoDA6kFgRqHV1Khry8xa2m19EIzzVPTyfdZabX6n\nswRAQqOHrHtzWaGitmm3Npyu7bD13NvlrAnMp0kTl4QRWvIRmrBqRa7EksuSV7sHLnwktLmhh9VT\nUNpnNHVlXX2y5JOPEq5IoBNDt1YLCFGzmfFtHI6qFVXGc2p7QkND66Vj8HRteEJYr01AsH5w+9A1\nMXTe7nnNxmd0K7+uca+s66sNldTLvV6Vii6Y6vep2/3T52ndv9bE8oL6rdfCE1Tzyfv/JcfnkWSJ\ntF769eS991S2OG8LnNPI7fCS+/ffsN++5Ifv3+G6nm6IbHcD52PHtw/3vHzxytoFyzqHLFNTq1K9\nI/aRgpJqQmvl+DDR9V+wpBO+y7x4makpsUygo/Cb//4Nu13gz/7sDWE50eHpuj39ds/tFx0uQBXb\n+MyksaKSMF9oQLetH9xdHmbXBbMXKAUNgstbQinM05GaEyUnxsN7SwKqIXbVC7u7F2z3txQ8NfRk\n50jTB/rbW07zTMJDaahMFJYlM54nYvDY8Fwlyog43xaRiCIc0wjMNsk+r7MGCzqd0eWMqOIl4OJg\njuOxo0oyfy67Oop6RALOJXIKFC08HL7nt//097x798C7b+4537dCImbSUnn+5cCf/ew/siwzOSfG\n04RzlZIzWdvMRPFEN4A6SoJSzzgvBMnkeeScJkMTIpRqfCWhQgYtme2NZ3ETIQo3L7YMrse35lLJ\nbSFx5sckIs3b+sdXK//TD5HGj7FDAec8VY1/ZpV0x93mJR8/fMN+/4offniH7weGbcd2Gjg9Rr5/\neODZzRcMfY9gc/U0Z+q8kHLBeSF2kaLKnDJZK/M00fUvSPmMj5lnXwbqklgWIc6Of/z733N72/Hz\nP7/jtU5EFWK/J3Q7Xv78FT42/kZpG4sALFdUrm5s0XaRdVwVwbMdBnIuhkCmzSUmtGaLieMH24He\nWHuP6Ng9e8Ew3FCcp8YBnKMsHxhub3k8z1QfYKlotUkJy5JZltkUSlIQUYJMFhMK4iNVhWMZoU62\nMaUz1GxTDM4nJJ1NJOICzpngI7hIlWTn50DVUTHrB5GElkguE/f3P/Cbf/oH3r194O039ywHQbMy\ndpllW3n55YYvv/xbSl5IeeH8OBG6SjrPLJhJsHMBybbZTTMs04F+44kuk85nxscJJOGiGuJX1Wws\nFgLy8FYAACAASURBVCgpcXPrmWXCB8fNsy2D7/GqSE2sJb0iWF4hVy7QZ3C0/OiygV85T0/RCHvR\n2jJz3rg/xtG1tl5JliCFwawaULHRUA3J0moWAUVAnF6yDRtfczWRtX3YUeeCiw7fmfCjFnvmSq50\nfZtFmc0g82IQuloWKE+oVusvNdRnHV68XiLt8tfkBJ4kUUu9IFqrpcH6i2Xl2RZtVggYZ7FY8mnJ\n1zWxkNU8+okKj5awXRyDpHHhUkvMgyWqis0YLHldTRvXS5+4CGBtuqcoYWnJVQiWEObsLaESJS/W\nNl2J+IhRdUQEm+wlFw5cVchLIfZmoFyqmut+aIO4RZAVcWuPj13jim5ec/enSFxtvhMrEvovPT6P\nJOv/JYBVbX5WVetnP3/2nMPpe6Zp4u5V5DTNvHv3lm++/ZrpdETLzHx8pIQFSZGb/d6yY7mSHlGT\nqJZSzKMKZxLyWsiamMZE8JVucMzHhDgYzwv394/k/A23z3/Os+fm2bHMG6J2hiSJa9wLx1PzvrWa\nuthSeI+qVT3OB1zZEFygqpm8SCmktJCXSkmJUhcERQqMD+/xmpt60WaULQLUM4gnhIGcjNh+OGdy\nwaTvYgFUValnI5MrwrC5sfOtilT7vDrPSEnM84irCS/a2oDBevBt8LR3AS6IhOnLjBtTSWnk48M7\nvvv+d7x/+46P7w/kBeN4KYxT5m4vdJ3jcPpATol5nkmTeWNpqZQcjNMSAuIyqBndKQkqZM1M04k0\nj3hqW0it0hdszpaoa7YWMI2KO81GKHaWEOem1nmq8rEv7V/nMf9Rxx/ExBVxMzRr9dR5/vw5h/MP\nTOPI3Rcd53nmzZu3fPPdN0zjkZom0nSgTAuOnrubG/s+O6FGfyFy2hpYSHOiLJUaE9RMTgu4TPRK\n3zvmx4U4wDQvfHj/yDT9M7ubL3nx6if4LjAeT3RD34qmRm5H7JlvF1KbB9xK5jczUUO5XPRIGogu\nUGoGceaYviw28yxncpmtlVAy0+N7mGe6ocenSBVHmkDzCQi4biAv1t4+LYlUIDibHVqqJXh1HO3m\nOkff74yUny0mNFtMkBMlTbgyE5y1d5yElTCACHhvohg1UoKh0lSUQl4S7z+85euvf8P7N+/48OFI\nKdAFszk5ngov7mxTOJ4+UGtinmZSWog4Ss6k2RtVIQRL+Cqk0VSEqKcsiZROzOPZxCvOiPpeAg6l\njwK1Dbl2sMyVcZzNKNOZg3Yq1tq6kJ4vO+zncVyw3ct/9NO/qz7ZINd/0suGKt5dCPKlKDkZR6uU\n5oHlmg9VbYlB83pLcyVumuJzVe05DE2pNi8PseJinbvnPLh4nQkoDS1xoa039ZpTWX7xdHe3C9Bm\nYtpymj+8MNaWoZbVwsPUdpR6Qbdw0gj/Lemp2mY7NpFAQ5tEFRs3cj2Pp2vjeq6WZ9p7LslGS3BX\nJWJdDUXXE1+pD58gcs0fK9s9ARq3uX2npYD3F1+vdeqK+ZkZL6yWikR/uQ+CoZhOmgdaGwe2tjEv\nnjKyomoNtYJG0reTXNGriwJR9drC/ZHdjs8jyYJLhvn0EGlS4jbC4/nzL/j6G884TqSUuL275eVk\nLsnLnOlEqHkhJSWNI1EaN4JA7LtmXGtlQwzNjwqlMhE04hpJu1BwAYZtc61dCjnBNI68e/sNyzLz\nPC/EzcCyLOz3t/iuzTz8ZASFXKSmdj3tC3ONFI8S6g5raCkLEakFHzMlF2pZmM4PSFVc46Sd3v8A\nWIAoShHBnz+yuXuObO5wmNT34XBm6HfEIZJrISVLGOfz0R4wCfgQCc3eQWpFSiWdR6QsSF4IAaS5\nvXsxV2zjswlVrPVK21JUzMlddebh8YGPH97w4e1rTo8HjvcTdbZxJSE4Ql/Y3wRKHs3tPdq8N1Fr\ni5aUIUdzA16EdfyPmfDZCJglzaAFh8mDV+HIWonkDM4ZETMaT5rtfkvfbxiGTYP4/ac8hM/sWFWX\nPG1mPokJFJ4/e8HX3zimydDA27tbvpgzv//6K5Yl4wtoXshFmQ5net+MMYtt2OJ94yWYchcXiKHi\n+oSTRBwC5/M9LhZiFIaNI3SenAq5wDyNvP/wmiUvPHs+E4eeOSXubm/xITQSraym0YBYa0WuKKKI\n2HgcseuLm50lk6JMhxNSC863mKgL46niSsVVJaeZcRwZ1UQuFaV4h9/fWkxwh8eTl8rjeaSPW3CG\ntKacEQeH+4dL4eBfRbx4BIdvz8Y8TdYWLIslWHgEUyG6ppoUWkxoa4dKIJeKpoyPiQ8fP3L/8JaP\nH99wOhw5PoyQIy4EglNebCq7rSOnM0kf6EKglIzmhSqOmhekdpSlUJPAMuFDoCyLob+LME0TosXO\n0UNohGBVyxVy1nZuQuiE2MFmu2Gz3bLdbZsKuI2Aaa0W5z6z2NDL/nxJgC7HytGpT/eSloitrR9A\nS+NcOUM8uo2tS7XREqQheYqRymuxLohgMzBDdI183pKXxgeqet281yS1lmYb0BARbWKbC6KiayvK\nMqJrnLetvGU2FwRP5OLovuZka/KyJjQiekksXDv/Wq/3AAydq9qur6rZVIT1843kD81Lq015WGV7\na2p2uedPUR9x1zVV1tev2ZlrbddK7H3zwHKor5d7vrrFl2LrTVnbqO7qgH9JrUUuQ7YVS46NP8Wl\nzbgS3NcW8Tq30U5NuQgfLjfe7rkV7Vw+c33k9EmC9i89Ppskq5TSECG5KAxXszLBFAa/+sVf8u13\nv+U4nqk1MZ7PeB/59//+P/L622/57v/8HSoLpcyA47FkYnR03Y55OuFCwPmO2PdE3zUZeSWXCW0w\nZ9cPUBfr12tCtbLZ9RwfZuZzYpz/gWfPXvLnv/4rtvst4jqW6czzL14BzkwLJTTXc2spwDWJFBEz\n/2z/Frv+6tO0DdRcIC/cfREpeaLbDJASuiykZTYfqVo5HQ9WgUllvn/Pm4d74vYZsRuMN1YrOY0s\ngpmeOqFSGeeZobe5fcuc0M7hXSRIR9dHul2izieb06YZdYbMqQraGm2lms9K8LEpyDLKwmk6cDy8\n4/DhyMcP3xPcAkvCZ5jHzG6zwUtBohID7O5u6IeXBOdJY+K7+9eMxzNpVpxLBLHgKhg+HZ0zZZp3\nRN8IktqRJzNuFAEXtHHt4PZ2T3UTsnFsb2/Y3j5ns901V/lqiKNcvV4unYd/iwD4E0dOuSUkQojN\nrVC5jIKoWfnzX/6ab7/7Jx7HM6UkzqcT3kf+3d/8La+/+47X/+23pCWR0kzKwsd3SghCF3eUj490\n2wHnA8NmwBPw0eM6JaUZ9UIpmWG7hTKj1ZDKWgqboeN4mJndzH//b3/Pi5cv+cu/+iu2uw0uDKTz\niZevXoEzZWipNu+vFrM3sDbhdXMpDapXlBCuMdFtvcnOy8xtFynlGhN1nMnFyN6qyunxER9NOXnW\nzNuHj8TNM2I/sN/fUJdKam0kH3rU2+dNy8x2t6FUmKeF2PVWCNETYmC7uyOfDjiE6Ap4a2Nba8ZI\nmbkYf9QREBy5FvAL43zg8O4tj2+PfHz4gaHPMCdChvM5sfE9fQdEpYvC9mbPsH1B5z3pnPjn337H\nmEfSqRhHsz2rRSsVpfMOYkCrJ7ZNzNXOlMVqsSCxtcZ6uLu5oTKinbC7u2F3ZzHhY9fmoK4ed8Yh\n/dxi4uIyrlel35ptrDykdXPXlo1dQK4nsv8VlcCZd5NWa+WVpRA6izXfUC8Roeu4qu5SvRhY2set\nyIdCmyVrCNnKJWpGn7khMq61/ovNJrzOF7yiNdoQs3bqT7hDbaETru3FBmyZR6K1kVc+GbV9tjYx\nwKqoFiPwp1UxGVhzEEtEXLM+qLXdx2sSuDqh13Xs18qbEmvp1frk3B3Wqm9okfN2jXkphuSJ4jtH\nSVYJqEJZzAgWaMVkvdwAESjJ2pGgl0HeFx70bM4BshrCtoyqNrRW2q+7JKwtsdPWSpZ6vbcrp+sp\n9rO2Dn/M8dkkWX/quBpDWuuhiz23uzvO4xnVSgyB8/nAV199xZvXPyCTmfSlBF1fCD7hnSdnm4FH\nVmLoLRhbJVByRl1lmWdKnen6jj7uqbWQl8cGHS/s9gPnx5HoAvN85nS85/7jG7p+x4bCaRzo+w2V\nQt/tGuHdjqcJFtCca9uGCazKNu8DPgRiDeQkVgHVCrFAyPjeqm+zgRgACFHY3exxXc/29jkhdIQQ\nWeaJqgFcpODBm8Jxt9leHzrfoSo2eJomMOgGpBi5XBW8uMaPawniWu2ptYDWocpLXpjnkfPxwDyf\nKWkizWdbYGorgmoGV7h7tmV7Y/LzTWcJ73E+U09KPQl5VCRUNDig0AcLVryi1TyGlrpaZjiWBcim\nNhk2/iLlFZeJUZhLZU6JvffEfuAqN16lxvC0NJEfH0f/OsefOI9PY8ITQ8/t/hmncQQsJk7Hj/z+\n97/nzesf4AxzKpyOSuig9Avee3KaCDGQzyO7m1vzDuoiWiHXRKUyzzPIQr/t6ePeWlb1EaSypMRu\nN3A6jNx1HblOnMcHHu7f0g87NvtbjueezW7HeSxsNvs21gRWyNFdpNRt+W5B+TQmgg8QBWogLw5X\nDHkjFvAbSpvXWGuhkx5VUw3v725wsWP/7AVaPMN24HwaKRoQbzEhwTbSzXCNCRc6ajWkt4pQJeD7\nBZcXdCxINB3tOvQcaW1HbBMtzkbtOG9Dm8fTifF0ZJ6PlGViHo9IybgMrsEqtVRefLlnc2MqzaHr\n2Q4DD9OBeqyURUlnyJ0pHLUWhsiFQF1rpqZqQ7vVqvclqdEAgF7bOC2viCS6KExUlpK48R7nelY1\n2Mor5cl6dUGCPotjbWM9iVN5gvXKk0TsCRr0dJixJVve0JoW/M4behM6R0mZEFvCuqr71hxK1/ba\nFTW7tKqcXHg7PrqrpcOqBGyvt+5ItSRWr6jWH7Vlm//TpTO4ZotrEvBHC9eVBF6fvH7lVa3JmAvO\n1KVeL9dkP2rvR5qCsF7uNdqSqvZna4ca7yr69TnkkihJUxrW0ojy0DzyWivVSRuBBarVuKLarpl2\nn/06U9e4siEa+kVDl1TV6B/rNTppcyP1ifpyTQ/bPbRUgnX24+V62kWtyODK2fuf8dh/1knW0/pJ\nWkXctdlb3nuePbtDwo6cMzllHt98oJaE0zZJXqxiqbU88d8yq36h4FjJg1ahrw9cLR6zZgjEzvq8\nKWWcGLpwnhfy73+PH7a8fPlTXBcI05lcCk48wa8zD83raEXnLkfNNIcWxGzxAKGImsepODo6qndQ\nilVZoeKK4kolouxDRwgB6R3xZod6bx5FCnnJ3A0DpQpKQEOPD1b9uvaUlVKZUzUEqJUxUjNSIr7r\nTWyzjIRWWXkfWmLSSJOsxop2z87nM4fjI8syMS9nvIeUFroQ8JIRoNRE3wfMZy4g4nm8v+f+3YHT\nw4njx0xZwBXjO0ixe+Ojtw+qhhaoKkuyifYK+BCbVLeScwVvvjClLtRaCYNnu9mw3+3p+/4CTdsi\n8nQzaU/dZ1K2y9MV4nKKbXFvi32MPV3XkWvGOc/d3R3Smd9RmhKP332AUoiuEKIYYTuam7Tvg/nk\neFOVLTURQwTMPBOPiUZqpUoTIqin6yLiTNnmgDQtnMaJZfoKH7e8ePElEgNx2aEO8izEbmhoHFfn\n6k+g+mKyayxpX2OiivGmxDti6NDg0ZRBK84ruSoaCuKF3YuOEAPSCXG/RYMNda5FySnz/OVAyoBE\n6AacM26muw2sMTEthVLAhdjQhAxyJg7mBK/ziRicnZ1YTLhPfJQaGqGV0+OJ4/mRZR5Z8oTDVINm\npmu+Vipmm2BqZ48gHB/v+farI4/vDkzHYiari6Dekj+tC2GI1oKiUrO1qlKp5MUgA/HR7hHmGYhT\nvEAtC4RK6ALbwWJi2PQXtMQUvOv3cg2EzyYmVgTq06C4JEFrMrW+Yt1C1hmgNbfdV6+k8qtqbEVG\n5MLTqrkZYYqAXwnj10RCnLmK2w9W+gRQ1gRgtSLg+pnSvKtcU5w/ubdP77PF/6ffwaVGeXLZqweb\nrPyhT26YXItJozi21qVr/llyGZMlzgZR10uh0z7jyfWar1e7Z96ZeegTTtXFvLRlOOuYodXgNc9t\nXFH7/bVWQmxzeNWKldU8VFeET9X4VW1eoe8MRS6F1Q+8fcl2L3WlJuhq6KoXc9q6Tl6QZubaXreu\ntev9X5PEP1lc/MhY+GySrBYjAKb0QgioQY2qiCyE2HN39+e4r1/z/v4thzRznExmvdtseNgsBJQA\n9J0zd13FRh+khHOVvByptTI+Lrhq1hBVhaIFHGw2DtfZkNXbZ7+ycTqiTPM9ms8cfvhImeB8P/I/\n7v8rr58FfvqLn/Grf/d3hK5n2N7iFGJ/QwwDPmAcD983NMuZ55UtjyTs4a4KIQ7Uki1oumg8qX5j\n3AEtbIgEbLN7PI+EvqNEI4cfHu4ZnBKDh6UwLZZ0bHeex4c3bPd79tst2huSl3PG9wCCF+PpRL9F\n6kBJC1qKKR1roiaT4QXnCd5zPp9wUnh8/5bD/Xs0HVnOX3N4fE8+Jpb5iPOw6Sv7u4FUz3R9JXSR\nsPG8/MlLzscTH16/483fL5yOlZLBqRkKeu9Ix4yGSteD84YMTGNlPBZqgWVpxF4HpSRwEHvoth1T\nsvEiiiK5su0jsnEwwM3+hlBMQaYyXapdp9cIk89lIK6jWR48jYl1FpmCJGLsubv9FU5f8/7hHYds\nMbHkxG6/5XT3Bkphs4W+D8TBgRacDyyjoVnz+ZFaK1PNFhPiqc5RtKDO0augPoEKL35iMaEo4/SA\nfzFxfPMBPcP0OPN/vf/f2d86fv7rX/LLv/lPhH6g6284RmFJt3jpEJToA5v9xha5Al4DOIvDvPri\nVAhhoGbbHeoQoRbc8x6csKTMLnbsssN5x/1xxG97tDdPrvPxgcHbWBxNlXMyEcRuF7h/+x27mxtu\nbnbo0JsZaSn4jW0QhhM6urhD80DNRiGoKRnSlzNSITpHFwMf3z8SbuDw0WKiTAeW6VtOxw/UUyKd\nHhERhq6yvRlIeqbfmDFs2ARevvqC0+ORD98fePsPMw8fjZy+uvH5EJjeJTQm+h5oKNy8FM4P1Ujw\nubWonFlhVDE+YrfpWMpIiMJRFZcq25uAbD1shNubG6J2zRpkauU++BYT1kH6TGJCVho4XAuO9Wf8\nQcGkl/hpIEvzsrIWngl6Lr0hQpuxZyiWPSsueuNaFZBgXDe8kLLiGkIUvLW9ahPZhLWVaCQpS3yr\nXgYea1lJ9dfzzslabasH16rMW18jLXFYk+E10bqQ6dvrSqrmm9bO2RSKNBsKax2yojk8cVdXtZE/\n0pIcd7W+kAYyr+S+p9wyniRTq6AK7HyWseB73z5LKUXxQ7B1G3u7rpZK1fhhQOMCWvJX1iStKilb\nm9a6oJYQ59rQ/fYLq3L5uaGL64Ohl99Zq17Gx1nxz5p3XxHHFfV6ggBe/v/yJfzLjs8iybIEq7bz\nbqReuHA01kNEeP78OX3XcXx8RMeJzc1LlmXk8fHhonQIIVBqwef2hatlzBXQ6i9eMIEOspLzAgKV\nzOlDoes9+5sb0mR+OsN2oNvsIMO0ebRNSh3LXDmfM6+/e8uXPx9xcyLNle3mJ1QxJVNWR4yRzg2I\na0q/0nra6lCtVhG4ZqK3th/qurgpKRXwrX1YKnleWAl8NILwMPTk89kIsphKaxxn+qFjGAaTrKui\nuRjhURqpX6u1UjGky4vgQmcmejiSc83CAfoYcQphPOLyA6+//g3n00ekjOTpxBAcU/AEv+E8HkjL\niT46brZKiT0+dqSaOTw+UhOkyWD71TfJN3hdtTA0sroEGI9mzeB8wNVCTvVCBE0ZCzSBsoAfE35w\nzMlGtGwG48iJs0HCzkN1GWoTJbSF6w/RrH/rY40JEUu0XIPoVdsAWdpmI+6PYmLYv2AezxwOD7Yp\nIHgfzLIhY8qculBTYZ5n4hBZ5gRe2MhAKUqR2WBzyUyHQh4dNze3pGlGROn63lzJRRiD0G9MATsn\nOI2Vr3//A1/87K/wS2Y+F3b7n5J1oXpFg0AQuuZhF6KwnGtDfpuflPM2FNbZc1FWHx8nSKqktvj6\n4Km1sMwLYus5qRT8YEnc8ng0DkczJD6dJ/oY2N/uiZ3NrtRSrguvCxfEVxBKQ3Z8P9hGG616pyoe\n2PSR6B1+bzHx7Vf/yHS+p85nlvOJUIUsju2w4Xg+sCxnYhS2g1J8hw8dxVUe7x+oWchJqdURe6M9\n2LOplFwYAnQd+ChWbGi1gfIUcq74htDmoqQErgPNwuExEbeOca70fWG37Qy9dh7vo7XKfIYiVyuL\nJ8/ij9xT/vWPthGuJ/b0/C5IxJMEpjUrbIhzEwwhqz/TypOSS2KUkyWwpeonQ4adXonhviVk5uXX\nHM3F+EJrO2sljEtrwa5u5m7dxfW6F6woVMk2FswQosq6yl9QpfafC7FcuLbLxFqBuKbAw4pQwOx5\nOm9IVm4CDY85uGf7VaE3pNlG77S7+qT4tBa/XJAt51ZkcEVvV7NSASfEwZDZlEpDsa2YLrQ5hW2P\n09bXKZc52La61abwFCfUZApOm0Nq51MbgIK7Uj8MxX0KAK6YOFgoN2X5UvGuoeUrnUWeFBVyueRP\nH7DVTuxHPK6fRZJ1xbGelCRNSqoNtl4fqs1mYL/fURZFY+Ruf8cgPaePj0xvHswtXSu1VNPsVUVz\nJgZ7AA2Wtzu1zEpq8LprxPDlrHQRmOBnf3FH2HRUUbIK3nuG3UD0mfEwUwuURZjHzPsfvqbfbOg2\ne/Y3L+i6iX6zQ90OH8yhvrT2lDYFz+oytV6floo21dP68J2nkarK/u6WaZwozWjRx0iuCxA5n4/0\nIXKax0vLZTvcNnKnkQJLG1ynxcjUzluCJdh9KbWhW6FDxZGrDbquYskfVFIp1GTcq/HjD3z88AN1\nPuLrhCsZJ9U8uQh0JbLXgcUV0lwpAu8/PrK96dgMN3w8HJjOmXn2tiE0vleMxkPb7xwh2AzId+8X\nUlGipznbcxkimoq5ZNtoGOU4Zp7te2A2o0kfWBLU6qlttp6KISNS3TW5Wnufn83xJCZUbeWo8sSt\nWS/t6GG74eZmT10UusjtzS0b13F+PPDDuwdS80kqqaK9I42FMma2GxuUW0k4X9AK8zyyTBXfSasU\nC3lWghckOZ794meE2JmKz9lsvrgZcL0yHiZygQ7Pkirv335LP2zo+j3n4ztCGNnsbshsiDU27lBB\nsq2MFgulwfbVeEItJnI1g02cZ84zKVdunt8xTiNlyYiC95GiC0Lg8PDIZuhYljNSbaHe3N5chtDW\nDGii6x15SYQumFKsFkvuvCOnQqlKkM5adtgUA3UenCkyl1KNfJ9GHl5/y+H4ljwdCXXBqdESYrD3\nbKUnRCVoMh8g4P50YLPruNnv+fj2wHhamBczLJZWkceWZD5/7omdoeCvX08UUfLsyLnFREsUcsEG\nABdDJB5PmS+ebVCdmvrKW0yUFhPUS0xwiQltCczVD+rzOPSKNLTzfBq18nRDhMuQaBs1+ykssVId\nfNeGJicldtbGVsyfqeoT+4fWUqt15WrZM3HhHsE12SpcWmhVFRevZrSr0pCWsDgvpkRt570ONX7a\nq7LVbc0guXB8a66mJA2tfeY+vQ+q62NhMxtdU/au9xFpP2+okdk4qFkwrAa67XzVNQTQO1aem3PX\nlmBdp04DiCN4ZR4TYQitSG6cqdyuSFYVn3myWVu1ErrW2WndiJVgZkOe9eK5hZpKVpzd0zxbUV5V\nr4OcVzXg+h6whLtYIq1qSN+KBj5N1uVPoVby42Phs0myBJt9VhXwHa5JTCvaqg+7Efv9nr/81a/5\nL//1v6BdYJ7+mdfffMd8GhluNkyn0SBf53B4UkrUEfpND8UxnkdEhBiNe2JOyZU5Y1lqhaywfJh4\n9+Yfufmi4+7LW37+N7/CaSSdHogbqDUh52ry2FT46qt/xHm4eXbDlE+8eP4Thu0dz371n3Cdh9is\nD6ohRkULqgWRwjzNIMqcZvPlGmcQTz8MpKLc3N5RBXY3e87HA/f39+zvbihVGT8+MsSAq5EuCF3o\nSMuCo7AdOvrobeOLpqYcYuA8TiwlE7oOEZjHCVqlP+eCd55alGU6EJ1Ngj8+vEOTEXc/vHnN4/0H\n8vkjZRkpZKSpQ9VZU6vf7BEXOBy+p++FEpTdLYQuM5/PfHH7JcvHDyzzCVRIqalIa8V78/BRdYQQ\nGsLlyMVTHFRXL5yBGJuyRISclU3sWCaF6CmL56iZ21dbtncv2N6+sDZTTTgcHfGqQL7A+5/JoQol\nU3LjDVYb3XRZc5z5SqHKfrvj17/6S/6X/+1/RTvPOH7N99++ZjqOdNsNVUdbvLyD7CBn0hHUdWhx\nTPMMFbq+AwEflbJUpmMxHofAXJQ5Trz74X9w+7Lj+U/v+Nmvf4nTjrR7RJeMG4XtRqFWpMDvfvt/\n49eYqCdePv+SeLjl5a//M37wuN7j2hDyZSnUajHhqORlRrUypcViYjLxStf3lmA9e46KsNnuGdVi\nYrvfU5IynxeGLphTfeeJ4ik1I1rYDR19DKiYEthFz/NNx8PHA9U34rsqs05tQxKyV5yaCqzmTO+N\ni3Y6fqDOI9N04sMP33E8fmQ5fKSmkZwXXC2WlAHiO6II4Bm7t2y2juSVTTUl7TKO/OTlT1k+vqXm\nM1oM1UIbmuJhOhVyErY3G5xMOB+oEtAoaCoXNMS5QmzrZloqN6960lQsJpLjKIXb3R/ERLbxSp1E\niy19UtzaA/lvFQmfHOZ3tLap9BM+E3Alt+tKJeCSSNCEArTESbygxV3m3Jl1hSGHtAQpiFzaV6rY\n5rAazlZsIN66WTffLK2YRUGxtl8IYpCL4+IcL2sS29p4oY1GuqC10l7bEi1FP0mc1hLMR1PRmdfZ\n6tXFJwlDrQ0RDtYG9VEaKmVdgNbxs6SjKogpkNOY8J0JiWqb0SihKS87d3FWl6b0c85uQlWzswZ/\nXwAAIABJREFUC0ErbhOb0EDQbP5kEtZicb33Sr81Urste/bM+84TgiPP2RKuJ0ndSkm3uYaVuA2k\nMSE4awEXa8uu969mWuJsv6cfrIu0/ny1nngKUz1FRVcE8f/P8XkkWaoNy3NWbTTfHhVpGan1V2s1\nU7dnd3ds+p7shdhHnIPxNDKOyjIqnXmTEbyjC4EPD5l0TjgnpGRxob2w6IJzSh894qy6TZMwj8pE\nZdcbl+vx/iMvjrdshoHYb5nP98QetEBOAI4YPbGPbDZ3aLVKMVbh5vbG/KW8R6vJTbMmSrGsbh5P\noJl5moh9ZFkK9w/3vHj5Jc45brd7NrsdU5qZppHSzEpTWtjud2ZiWpWSTRGY88w8j9CZfUTOgVrB\nb3cEH1mmGalKSbkN5vScjydiNCJ9zomutz8r2aqYWlnOj6TpyHR8IE+PyHxG5zOOQtd1EAa8OKSz\nIdOCZ7vfcjcr8zyxzJlFCy44ju9mDg9vuX8/UWt5AhOvrrpwOoNfMuILS9a2AUMWsdZpI7q7Vllk\nrSZMqUqaC05hPGT2zx3b/Y7dbs/t7QtyXXvxiq44+ZOq+Hom/9aHxYTgTFbc1DQVQVcDvaamqarc\n3d6yHXpygK6LxiM8j5zPynyudB46QHMl+sDDKfN+SsTOkSp4hJqEOc+EoHQxELSSVdEs5LGS5sxu\n40jTzP2HDzz7Ys92syGEDefpnrgR6txGb1ShD5F+27HbPUOLY14gbjz7/b6RYc2YtxalkihqiZap\nUhPLNBG6yJIKj8dHnj/7AsFxe3vHZnuNibRk5mWhKxYTslS0DYXVXEgUljTROQghUkqmVmF4tmXY\n9EyPR1xVUk7NvNZzWmPCe4qe6HuzOEmaDOmqmXS6Z56OLNORND6i45lyOuK9UQxK9ngEF2HJJ7yL\nxG5DSoqXCd8VppwJQ+DDNyce5sL9h5l5zvYIiGEqtRkpniaBpfBwOto4qWoSxeIFojdXdy3EsBaL\nFe9NTTePGVdMXLN77tjd7Li5ueHu7gXpSUzUkky+v47S+ex6hXA5qUv77npc7FjahnnVG2kzEV0V\nmE/8j5o7uvOO3DyvzBHc1oaLcq0lOLUlXWbUbBt1yfX6erg6wjeboJUmIrTWpLhGEjdu0WqHAGui\neG0h1kYaupxvg9UMPbLPNWRtRZJWVKsloqwcJ3N7fzryRmRNNttQZQ+xC+TzghNDwM1M2NAfsyZr\nSlUaulRau7RyIf246MgzuGqJkHemuFzXeivmrHWX5kyebb+XYKbT3juWk6FgznnSUhqFhYvpKopZ\nExVhPGZ8I77X3JIwuT6+F4d8MbRrTahVr4O9wRoGq0jhD5Othsn8aCjr80iyEKquzqqAmmeJigUF\nIkgwM8xSCvvbW+ZxJg4d2xAJVfFSGfqI10welaqeIgYFVo08PCbWwa2CcDwkQqfc3vY47VjmmXky\nTpUWiN5xeFeJ3nN3c4sC98czzNnk7lTi1uPVM84Lv/7l3/LsxU/o+hvi5hk//dnPiV0P0dmokrIQ\n44A4T0RwWjmdDwg2cHnbB6YlMS+JvutwzpNzZd/1vH//njh0LOOIE+XFl6/QWlimmbv9DWme0JKR\nKJwOxhkT9lZNt2rl44fEsNmSC+ScELUEr+8ivXfUOZMmk4OPZ1ors+JiYOg6cjHZ/lIySxoJvuBF\nKNXbaJF+jwsR7z1f3ARKSZSU2Ox+yjyNjNOI//Ca9+/folrZ3UY2/Y7fvnnDhDNJPZl1lUoZUrYS\ntGBqraqFDPjWUoxBWhKImUK265CouACxj2gQnr96Rb/Z8+WXP7VK2Akeg8LXKst796OD51/zMO6V\nXFQvpdqsTZFGSG7tAhc8tVZ2t3cs80zUyO6mI1YIUtn0kUAmjZWaHTpAdZBTIC2FkCtUhwfGU0ac\ncvdsIEjHMk9M02LVYoXOeR7fFJ5/Gdg9uwMH96cTbkrUXBCn+J15No1z4te//g/c3b0idjf0++f8\n5Kc/I/Y9Gh0ZZa6JEAYUUz06KmM5AQsihU0fmJfEkjNBIs4Fa991Pe8/WEzM5zNOlC++/MLaisvC\n7faGnGbKPIMXzucDQkH8TZtbqFTneP9uYdhsjddXMpRCnQ549fQCOiesFCqcDspRFA1w7AKDjyyp\nssyJ82kmpTOdS0wKZRak3+C3WzM4FcfW/5mJSEpm2PyEeZ6Zy4x033H/8I4QC/0QGfot0+u3TIvF\nhBf7TqQR21UEnKOoUksBV8zFvvMmWmiVflDMaNY56pTxAVNdNwrAs5df0PVbvnz1Ews5b21EsJgo\nmGM28DmNLrxysVqwrkibXP67cmo+VZWJW5OLq+Jvfb+1yyzJCL27JB2ufc6KYjhncwINsTHu8GqS\nubb/jCcJsvpTBaHiLu1c72g8QLUxL3WFptfrk0siJwDebCVyMfGPrlMqGh/qk8HQlxZZZdWAr3N1\na0Puaq4XBE2rqRvrOgOwKeqWsRilJXpyha43Q25ZrSAAoU3mqIA3eon5gRkKWsaMcxbTtRiAIZ21\nKqXNjMxTuxa/JpLtNc6Srdjb61fl5Ipi+mD7wuoWYH5khqbVopdxPaukUYvtZrbEr358ciH1r7Mi\nHS3hbj9bn7PVf00vL/pxz+xnkWS1W2VfnKxkOMVXNdlsQxlqm02HBG72N+SykKYzguKcJ1RPyhlX\nHTVDcaBUUlXjZyk0ppx9SRnGY2bS0ioRJTiobXHpgOVYeXh/4lm9pe87cpkgRjyKOA/qud3v8P3A\n7vY5X3z5C6r0+K4jDj25VLyYgScpkVImasELxOBIs5HwHY6h34DYRqKlEvrOCPtFefjwwcjttVBn\nS/5KKTzcP9jmdHrkdhOpZUG1Mk8zTtR4Vz4S+56UF9T1xj3JFe8gL4YWrHMHtJjZpLU4hDmPBLbU\nktFSyWlhSQuejLhAFwLiOqoIse/o3Nb8vmpBNnA+PNDvBob9Sw7HE5thYfelcPg4cnj8eKmgsWmJ\n7e/NQ4XmPI27FBahSYWsIl0rWbtOLdDFNlRUKr6vdNuB3c0dL794xWbY4MWMb9dWm7YVdOV4fDb7\niQDNbX8d01HVLDzs3wVxitLmNfrAfndDrTNpPLWkJ+BxLAlcNb5NyYp3tSVarbrXavdYFZ/h9JDJ\ngzKfMipmMlLEFrgOSEfl4f2JF3rL0HeUNKIh4Jyi4nHV8ex2j+sH9s+e88WrX1DcgIsdoesvrY9S\nK5oSqRRirTiMTF6KTUBw4umHDbpkYgStlTh0xrcsyvn+I0OIlFqYF+MDlly5/3CPD8p4eGTfebTM\nlGKjeTRnvDl00vU9S1pQ6awYafyTqgsBb/wwtbZDrdlIDUXIy4j0A7UWai42zDknOipIZLvvqZhp\nrguRKBti3xEb32w6PzB0GwZx3H840IeZ4RU8fhw5pZOtB2KF4qILnULA3K+hkarFxvHUamo2URqX\nxpSRpWKGqBiy75wYar9Tun3P7vaOl69esdls8Zg1TW1dgwvPWdaxSJ8PlCXuCjJczrO1w2RNvlrL\nkDXRas+utcr8ZfQL0jhUupLN/8BTCi7oUammWNdaEG+/g1Ul2I5LS4/2/pa4lIacufgk8XvS91t/\nBmZRgFzbkzYCx86h1idtsgtpSC/WCqu/1eWznySidl2urf16VehFZ9fhrxeiDbKTlr3Z6zx1Kesm\n2q7DEvCcW9JZaSODzAPsupgKvjejbd95WhMHF5uKuCVONi+yIfapNPPX2n7G5VovvKx2qfbnNh1D\nm1lss9tYLTuUhsSt/eX2FVib1P5Byx9YOaySVFjtyi5o2I8Jic8iyRJYKYR4eBI91ypFgFYk4Lwh\nPff3Hzj9cOI8mpdMnhNeheCMeDsvmdA1Q025BsAaSIvCfC5Ey7mIq1xVLKh88xTJJfHx3Rv2N3s2\nwaEhgCqb7R37m2fcPntB2OzohlvEdTx//oJ5mVjSQh9uLXCq2uDjecEFBc10MfLw8YwAXejAdWw3\nNlC6iqdUJcbAdjtwPD2w375gnE44xbhmtZBzwVE4Ho5ICmi11uPd5s6UutI8X/Jirtt9JJu9bVPQ\n2EIsDdWJ3lPQCx/DiWufpYzTzPk8UaricWx3++YttBC6jhA8uEA3bNtcqcxmrZpyBdfT9XumdKI0\nsq3rsCAv+cmEhnVhbIWDw/heUqlNYemfmM/Y/bKEo7YRKgDbULl9tufu7jkvX7y88PBc2zhWQzto\nCMH6v8/gEGitUIsJrQbbr4vAxdx2XTOkQ9Tx4cM7ztPIebI2bFkSvpplwvnR0MphZxuxVFhn31r5\nbDGxLEY0r7m13tvn5VVajZJS4t33P7Df79lHhwseJxC6W26fPefZyxf4fkOINyCR589fWGsvLfRy\nY0hdrqhmakkUqUgtBDyPrXCqroPQs9tuLaHAuIJdF9huLCZe3twxTWdTFaZMLYWUMjIVjocD0tvI\npmkc6W9fWBtRaDL9RMnWHinNU0owXqA4wVMoqvSdGcPkXHGqqDpSyuSszDkzpZmczX39+Zd3LFPm\neFzoN6YoJnbETYuJ3AbHt40xbrb4w5bsJ4iCSiYMsKjCYq91bpWlN9W8KuqUvjPVWo3OSM2NKLS2\nQpKlhbjiqYslFhtXLCaePefFc4sJrWK+gqwclxZ/grUsP5OY+KOjFUbrzLl1I1zR8Ety0TbnlbQu\nbbcUEVKqeCeEKBc+1erpZCaYqxefNLXh9b3XWXetMFS1dpgq4bKcaEOhmh+W8kmSZ29u5HG5mmra\nuB4jwNe8Kuu4FIPrZV7UbpeiUS5o3R+OqivZ2nruSUyjK9FebHD0ygFrz4AhSW0aCza/r6ohYK7d\nz2sBYPfIe0OjSrI46reRnJsnY1nbrc1TrN2TlWenGJ9tOWXC4BuKqBdj0lqu+9LqUaatBVlpnnVe\nLonnJReFCytpJbRfErV6/bc1iVrft+5Dl07set9/xPHZJFnW+7WnVi43Xy8Qpa5zU0TRGvib//C3\nHP6Pd2SZOYyZgqNzhdNUmQ8VmUz6LYuHnAk8SZ68Y1oKU/v8G3EIlVwhYl9WFVg0MJ0yiyg39yPH\ntBBe3qLiOM/CL//6r/nlr37N/uYZ+2cvOR3PuH7L4+lEJVuv/TjRhchxHOlCoIs9p8MDXR+omkh5\nppZiSJEmDocDIUb2ty/w3rNMIzUlbjZbpFbutjfklHj9/jtu9zcczg/89NVLdn3k+69/x347sOkj\n715/w3bTMfQ9od9wnhLdsCGlmeA93jnG6UzXRSqFnCe0KmNazHKiKcj2u721R/sNY+zphx1aF0oe\nbZOsSj+Yb9E8nQlDx//D3Jv82JZl532/tZvT3DYiXpPvvWyqYVWxWKRs2hZpGJYBGxbskeFm4JEN\nDQzoX7D+BP8NmnliCJ4I9siwYMADExIhC7AomaoireorqzLz5XvR3OacszsP1j7nRhZJFJNVUuUB\n3ouIGzfOPd3ae+1vfev7ohS8b7FNz2Z7TU6FNEW+8vV/m9evP+LTn34P07TYlWND4MMfHTncZiRd\nYHoVE9V5xpjKJTA6ARojSNbIMhaiB9tC0xjuHxQZfOf5mi9/8ylPX73HOy/e4+rqCSTlUZQikBOP\npX9Kzoi1lwT/17wJCqtLXbqbykmcywwClLlcQKYkyzd++7c4/tGnpGPgfojEbHAkxqkw3gdkqhyI\nYJCS8KKlx5R0pTqEyAhQkWFDYgo6SBRXyMCULeMhMhXYPQwcY6C52YKxHKfMN7/+Nd5//ytstles\nd084HU/YdsXh8EDKUUu6x4C3jmk6qPaa8ZzGexXwJTJNAzklooswRu7v5pi4xljHeD6Txoldt0Jy\nYb/eEmPkw59+yH6z4/50x8vnT9j2np/95Pt0TUPjG372ox+wWXfk2NCkjuMQaJqO2K61wcJYTscT\n/aohkYjjQMkwjAec97TWY01mt1qTYmHMPePQ0DYrSjcxnQ+VY1hY7zstg+QzsXiSXSGuxTYr3Oam\nloQS73/Z0zQ/5eH2h5jmAWkNqxj42Y+PHO8zbazlHCu0rXZEK5hZaHpPCJPqexnBkRSxsoaJQttB\n6w1v3mpMvHi+4cvfeMLTd2tMXD+hRF1caoKhGnTzij2XrBPvFwjJmo9kQRSoCcE8aV9eBmoyUGko\nc+KRyowUFYxXlHxKOi+kqHxCJVkXjFwQsVy74nJUHUXVtNLPmbWfqJ6BqtekXW52Nj8uF+V5XdiW\nBXXCWZ2bvP59qNYy2j1oFiV5kKXjfrZunPej5/ho0Yh85jrVpkAQo41GRhM416rxtZk7emdETqhj\nZX0vKg9Sp+GlzGhFZZKKFR7dFKy5mFKTC77Ve+Qao80xczNBUbK7aryZZZEsVT0+V8hWamI0dwNS\nKo9uyss1to2ljGkRBrZOy5Hz9ZmPL8a5a1a7SCkX6YY50abo95fk6oJ0fZ7N/OK3/OvZSs6UrOrm\nptaZodTXcxWPU4KuSOH6+gnX18+wruXm5or9zUp5OB2sVkr8i5OSoK1yYJeFR4yJDMwcvJgLs8NC\n1AU9mUJMAuI4nSAPhukQCSGp1Ua3gqZnypCNxbQtfrXi/nAAK5zHM8M4kMeROAwYUzgc73l7+5pC\n4nB4IISJcRx48+YN5/OZFAPOCA939+SKSMUYcNYyns4c7g9M40gYJ9Zdj3eO9WqlXBxrySlxOh5V\nDiGMmJIhBeJwxpRE4wydN7TeKAvKKrR7eLjjeLijEClF/6U0QUlMw0DJmRATbdPRdB3GNkpaFtHJ\np21JKSKSKTmqsW3Rgl8qkBCwBtt2bHY3+H6D6zradU8yI8ZXpCrpSiMlqmX2ZQxKeRlekVmdPynJ\nWxqrE5oUug3snlpsV+hWe0rx7HdXlxJjSsqX+PlI+SKVCuuWU6KkuMTE7D6fosZJTlritRnEFK6v\nn3K1f4p1HU+fXXPzfF25abDdWe3aCSrlYLNqn0ktK8QYNYlCr30WLbEbV38GUinqIiCe4wnSURju\nAjElYrFI20PTMWYo1i0x8XA6IBaG8cQUB/JwJo8DlMTxfM/94Q1IYhiPhGlkHAc+/VRjIsaAtRoT\npSTGQeOkcY7heOLwcCCEiWkY2fQ9zhrWfa8x4V2NoxPOGcgTkiMlBtJ4xpJoG8uqEbZrTSqdN+SU\nOJ8PnM8PFKkxEQMpDJgUCCe19ZqmSNd2tKueIk5N4kVw3tG2HeMwKR8lJVIMNSZKHXvUM8/1HZur\nJ9hmje87unVPsROmUeHirFQxpkl5UmVGmBDOp6jIVkWiTYEcCo3XmEAgkdk+EfbPLabNGhPZaUyk\nmmxkhRfs46gQwJgFBfjCbPOgAMuke/EOfITwlJl6UCdpoYp9CnMB1DhTF/csXoY6yT6qeqCde7NM\nAUaNyOe5VnOWmedD5R9lTUqWiX1+4+XYjRG9ZzP6UipKVNEr6wzGKOL6Zwzsa7IwC63OidRSKpxR\n7lr6KY+QsxldM06qzpxyynKVOpg9D40pKmoKC5/NOqM6XPPn5oKkjEmpJkGiHNcKw6dcEFef2Xro\naVIz6rmZY76fs5BpqOgXRh0U5sammVumZTxNRFPIFzQT/Tqd42cWz0bQwaveC7XcyfjmImXx6JFa\nEi15fM+W7VGC9Tni4pdKskTk+yLyz0Tk/xGR/7u+diMi/0BE/rR+vf5F+1F4O+lKvWJ/hVxtcdQe\nZymNFCHnie12xzvPP8DbNefzAGbCd0LTG2wD63WjUHitTFepp+VqFnSF7qBaUsA5wpghKVZMyEJK\njhQgnh2bbkvOQr/Z8f6Xvsr26oZiDG/ubzkOR7Jk1rsN53Fkvd0i1tCaQhwPCIHVpqVduxqUmfv7\n+9r1kTgeDzhv8d5xfb1nGgfGcSBOEylG1qsVKUQMQhhH+r7X0kvbkGLg/v6WUjI5Z2IMGNE2eCkJ\nSsRbwYmw6jsa74hxQgRijAoFGxiGEylOhDAyhTMxjoSgk8N6veb583fYbnZkEYq1SsZ2VoXnvGLQ\nRhLOFEoO5Fw1vYzFNw3Ge2zTs79+h+3VU5q+B5fZ32x49vx6nj00qaqTSy6KaKWkK/h5MWJqZIwh\n4BuH9R1FHO0G1vtCu4am3eGbNV3XY4wK41E1owxlUTKWMifh8meTr19rTGTlLZVUhfu0xGudXfgW\nOsgYSglstztevPgSpvQc70/AxGpn6FYGkcR+19B4v4wVc0xIVUMO9TWHIoZFatJlqu5SUXHdGKxq\nMCXPfr8jJqHb7Hn3va+y2T8hi+GTt285xzPZFFbbDecpsNoo4tU5iNMBCHRdQ7Ny2mGYEsfTYRFv\nPJ2OOGfx3i8xMY0DYRiJIbDqV6SoSvhxUuPzGCa6riVNE7efvoGSyUVjwZBJUeVNSop4azAZttue\nzlvG8xlEiCnV6wLTOBCHgTCNhHAm55FcvT37fsU7L17Rt1ukcdA41f3yHnEqP1KMUdTJAaXGRALJ\nQtM0iHW4tme7eVpjogOX2F2tefbOtT6RdYacxkyMlW8Vqd9L7cKW+iwL5/OE9w7XrMjicX1hcwXd\nRvDtHtdslpgwCKaiEXPCMf+zoovaL0pMXIKj5iu1w8yYR9YxS8JxscsyVhGVFPT3zmvNJIeEc7po\nl3nH9exF6t9N+eJxWLJaU3lZkp85gZm5Vq4RXGu0zFgukg0Fqv1MJXNnoPItl4m93ueUtOQbQ16U\nzcv8JiOfuRBLspfLI3mL+RPR8W5GpWqnn8xJ0lx6M3NZTMfEFFV93UipJf26tE2KQAhyuSai1nXW\nAlKWUmAKGeu1bDhztjD1PDCItcvniihqn6NyIudzuHhLKupXKppVeTCoufesHjbf/0tnJmjzEIiW\neZmvnyzJ7F/8zM5Ja/nMa8s3nwPc/VWUC/+jUsrrRz//HeD/KKX8DyLyd+rP//0v3EtOFFFV75RD\nrYdXRfKi5GeHQYzF2ATG88H73+BP/r/v8expw8PDLQ/DkW3TYnYdP7y9086HClfpg6j1XomK4lDd\nt3MRncBLIRSLmUqt7xayBAxCcplThL3b4fwO49asdlvW6xVN0/Czj37MzdUNTdtirRBDxGC4e/0a\n6x2+cQzTmSKF6XjUZJ/Mw/0Dm/UGENabDQbLMI1VyC5TUqgEQF2hD8ejol1vX5NyIhI53t1yvdsS\nz2c2+x3HuzvWbQslEIeM8S3HhwM5RopRQUXVEROsKQxxpOTC8Xik71q8c8RxIplI2ztiKKScMesV\n18+eYVrH4c0nnJqDIiqocJzzDmdb4hjIJIxLGKdaXMUZmtUa4zqmOBEF3GrDm598xIc/OHD6+IDk\nDksiEHCRZdUeKNgCTbJkQ+VY6ITgG8MxTZzHhs1Vy7tfb3ny5Bn7/Tuch1sOMhFjxBuFxJ3YJdk2\nsAxas74O8ispjvwKYqJULoQo0RbV9spUlwD1CNEp0FiMSVjree/V1/jOn3yXpum4v7/lOB3ZP2mR\nq47v/9Nb5UVkHTRNheO7VcM0RXatoZAoCcRZYtT7HovF5vl+aDt2SZBs4jgVdm6Ha/fYZsVqv2Wz\nXtE2np/99Idc728U/fSWWAoi9hIT3jKOZ7JBY6JASUljYlNjYrvBFMt5GKreECBRJywM667j/HDA\n1pjQDtTI4e0tN1c7pocTV1c7Tvd3rLsWIRDPEd91HN8+kNcjWO1O9b7yXpwanlMKD3cHulWHQRhj\nJJVM0zbkcSDkgkvC1c1TbGM53b3m5O9r15XQdB7feJqmI5xHkiTERNa7ltrFT7vZgulIEolvhWcf\nrHj7k4/58IcHTp8cMdJjTWKMIz7Vsd1AMNoOYqIl2xkkUfzXGuE4jZyHls1Vy/tfaXj27Dm7ncbE\nA7pwc8ZA1k5bqi/cPBHNiXeRL1JMzHyeeX6fZz1Njh5zbx6/Pic3M99cytxdqB3cC78KFj6W8Va5\nn53yb8mlOm5ckgAzc38y2sWZVEZmQWiMLDnRTMyXXD6jc7c0ttQ0T0uMjxOFSt5+fHIz/yoX1SU0\nFwL53KG/vI1Hf1q7CZUrxQJcGKMo9aUJoJLZQ1XIr/s1BmYhz1IbLzBVVqeW1mbT6JzQxawBa2uS\nVIVTRSpaVXWsSgHbqHzTzIcUUzQXSLGKiBeoigNSEdY0VZugmkSamjzOHZQ8uhczuqiaZnr99Lrp\nM1LyoyaGGXF8tI8FCayo5edBeP9VcLL+c+A/rN//j8D/yS8KnrpqF2OqJ1te4EOpnWWgNWGp0WCN\nsN2uWfUr7h8SV/sXjMe3jIeJNAV8pzIMaSicTzXXFTCldlaUgjNqLRDypYX00p8D2QQcsFrB7mVH\nv7vi+tkrdvud6vEAh+ORcHuLt5ZPX3/M1dV1LXNEnj55oiTznElRJRdSKZQ44YwQQ+J6f7PUhlPM\nrK922MkyDANSEq11TFPCmobz6cC6bzmfj2zWvUpAlELfWHIc8FYgBgxFS37TRDZUYpPab0znkbZr\nMdbqQCqFtm3pm4Zpyrx9+5bddkfXOJyxxDQBjhADU1DUqu16ZHtFLooyhhiZxknLiDhKUesR61oQ\nOE9nVm5D13cMMrLZ7UkkpumM6dbsnxXicWQcy+Ln6A2LyPlMiFeAUaUXYtaADUnfnyXQbhreefWC\nVfuc8dzwnT/9R3zlt75GSnofCwLFIGVem19w5c9MIr/cwv3P2z53TOhAqYKsWdBVolHOhJTaTUZB\nimCKPq/OmBoTax4OievrF4TzG4bjyHSesA00jSWeM+NQZh1FDBnvCuOY6TqDadQeJ+VagqqTQClQ\nfCRPme0Gts9b+v0VN8/eZbffst6uMQUODwfeTBOtsXz6ycfsr645DwMxRp49e0rMCSmGlBLjeSSJ\nkKeRxhtS1JjQi4DGyJMdtjEMwwA50YhlmhLGNJyHI9t1y+l4YL3qOZ4f8Aa6GhOualqZUqBE4jCR\ngDgFinGIZMI44Zu2ijnqdZGuqbGWefPmLdfXezqnXMYYJ3yjsg8hWLBC168wcU8uOnqEGDmfArbp\nMMYRIoh3iG0oVhjGga5ZsVp1VZpmR4gTIZ2RdsXVO1CmwOmjTDGJPKMFRoii7ehkkACK0mJGAAAg\nAElEQVRgNW6KkFBPvZAAG2hWnpfvvdKYODn+5F/+Q778za/XmFCkvyTB5BlhuTRYLM1VyyzzK90+\n/zzBz01unzmmsrxUHv281H1mhGP5maqJRtVNoqI6WioTlOcTJi0hC4qmM0+wc5mrlqtiUBHlpexW\nJ3/NPxRB11JX1czKS660aFzV5Z6+b5ZYMLJM/iK18SHPlj3zqcyIT+36q8lfqdB/KZr8lOV6zOh3\nWa6HJlBVDLwev3Z26wwstboj7mISbe0l2YOK/FUw0PlH5yyPz++CPKasHeK5EtkRqhwP2NaSoxo6\nl/m6Gy3xKhpXP1+oPDL9fcloklozIRFTeWHa/GakLNd1vjaPDcKXAsHPPT4s3av6wueh7v6ynKwC\n/O8i8k9E5G/X194ppfy0fv8z4J1fuBfRzg+qr9TigfTZt1BIKiSYEiklDMKXv/Rl2rapSrAW69Su\no10Zmt7gekU75pVESRmTwdWgShVOnWWSFD/SyTclfXDWa0VzEMNms2G1VqJsTplpnFTzZlRF6oeH\nB/q+ZxxHvvOd73A6nRBrGKdJxVRzRsSRkyFFaJueq/0T9jXZmsaJEGoHkuhEhxSmoArYXd/R9y0x\nRfq+w9qC8zrwr9ctIY2A1tlCGIkxql6WFUKIpBAYzifG4UyOWn7s2hbrtFTpnFWdFaPcFH3oDd55\n5e3EhHOeVb9m1fVaCnSetml1NSYqyup8w2yI3fhG0STfsFop8te1LavVivc/+A3e/dIr/BqKHbFd\nYrWFduUXXsJMfkxJ2XIiBaeNZ6zWjs3G8/S55cWLjlV7wycfjfzDP/h/OR4M53MVBxFZPDGXh3eB\nfy8P8wyZ/xLbryYmdKpjFp5ZShOPiAy6ulL9sFyy2iKJ8JUvf0DXNZRcCIPBiHLouo3F9wbbC74x\nWm6KEMdEnkCSKu0PQxVGzPORaKmyoN1V3gvbjScGEGPZbNas1mt1CoiZaZgI01RjwnB//8Bq1TNN\nI9/59rc5nbQsN44aEyVGVS9PSvDtu56rqxv2+xvIMA4TYQpLmSPlDLYwpZGSM41vVUqiRFZ9h7NF\nzy+MbLcdMWpM5FiYppGUEtM4IEYIMRNDJMSBENS2yojQNi2lCEaMGkzHVK2fknJCEthiCGOVhbCe\nzq/ofY8RhzOe9aqrnaFgnEesx7aOOBW8byolwtH3PdZ6+lXPerPhgy9/jXc/eIVdFYodsF1ks4PV\npsHWDrAQCqkmwnNMWFdoetjuG7a7hmcvLa9edqzbaz7+6cAf/qN/wfFoGceK5ojoufxcLMzclZkM\n/MWJCZaS4GPE5jG3Z5nwjVneMz83IorCpFCNhJ1dykrzPuKU9bpGRXNyKkxjJoQLKlaJcJWXlBE0\n6Z11tWZ0RdCS3GxVs5Tt5isy76PO2J8hWefyqJx2SbTmAy313iz1Qrm8t1TkRkve8iixgrm8SqVL\naMNDTapSbQqq2YSKaMslUcoqgzE3PF3QHj2AFAp5yopY1dJhChVxqwmgreXZEmv3cwbTWMIU9dic\nJkWloCijFa1by+UYqNd8RltnnFW5Xo9gp/o8GAPW61w+J3h6LRRpE3gkfcGcg9dNluuWM5fz/hzb\nL4tk/Y1Syk9E5DnwD0Tk249/WUopIn9+eNZg+9sAL59syFYu2XJlERZTR/m5rporBbcUvPWklPnm\nN77BdrPhj/7on/LixftIER7uHvg4fQIF7ISWWMasD3EdYMgQCtWUmQodCjFnLVMCAQi5gG158vwV\n0jrW2w3b3bbqdUQMhdZ5nLXkqIa7OSaur6653l9VvpPBO8c0jsqZmhLOWrxfMY2FnCZ2ux1d7zme\nHxAplW+lydrxeMRYR9tYjqc7Gu8oQ2AYRsREjoe3mJzAGSiJFAaGGMgp4G3heDzN+DhgaJqGHA1D\nDPimoWk7nG94en1DY0AwCx8rn89ghK7vyZXMvikbcsj4boW4qEmhiTjnEHE0TVdRAUNMmpQZawlh\n0gRtvcY6CNMZ+/7X2e2f4PvCz37wIXESxHR0Yc/3vvsjzg95meyLL1CSdj3etGRJJKDrHMYW3n50\n4u/9X3/IQV1i+K/+26/x27/z23SuUYPUuc5AjaU68hYBK/Oq6LGVyK8xJm42ZCe1ZRodjSonowCS\nZ85JJJEosdB0GhO/+Rtf15j45/+MF+99gCnC4e6Bj6ZPEFPwU4FisaMOZuGk8WbQhYVvdTJy1SIj\nUUgoojYk7UqUpuX5q3fJ1rLZrdnuNlpOyRGRgp9jIhfG8Qi5xsRur/pyosbpwzAC2qDinMO7FcNQ\nSGliu9nRr+aYgDCNtG3PFAPH4wFwdI3leNSYoASGcQITGc53ECLFGUrSmEgpkmPEWcMwnhHf6MCZ\nBJMaxAjDGEhTj/Mtbdfy6tVT3r4Gax0xVYHT6UyxBuc68piwXujWW8QW2r5HYkMMQT0RnVVLnb5X\n+ZRQiEFN5sQaYopItNWwGkI44z74GtvNNbbJfPTiJ4RJsH5FN+743vd+zHhIC/cIVzBGJ76nH/RM\nUyCKInm2FN787MTf+4M/5DRpdea/+G++zrd+51v0rqHEjDV2oVIUdLW5ADVFlnj4IsTEfr+v6MSj\nZEv38Oj/WjqbvQBrwlBSVqcIb6oeEspBK6XyMUtFC3VMSLEs3VJGlOyegiYLCwqlB1hRLKnSCzwy\nWGbWYWEpudYYnue4ZT8z4mSUPG7srA1Vfz8319d9UXTXixirvehqabOcfOaKlDQbrdeEZ0n6atkP\nqXpRtdPPVGSvlIqe1VKtE5peLXCQyu/KtSzohDjVsaRAcaLaYPFyL8pcyjOCaZTblkbVtSoVSTNG\nCENavB9LlbfIMS/cwxTQLuugHZxSyx1zIi1WOzP7lVGBcV2dKUeroo3WqEirXt+fe/zmxQaPE7DK\n+arf/2W3XyrJKqX8pH79WET+PvD7wEci8rKU8lMReQl8/Bf87d8F/i7Ab3/ledH6tD6Qpp5hVUBC\nn/b5q76aqv9KMcL11RWvXr3Ld779hpwL623P/ulGkZuoE5CcE2lU1gIJShCVCSjKOxFR0UXVScvE\nWqaMBc5j4PmL9/nG7/wm9w+33N4qybxb96oJIqIrYCN0Xcc0jpyMYVvJ74fTkTYEQghK5hclN7at\nIydo25bz+czWK1rUtg3eNzRNQ3Hq/TRME03jSSlwGI+kqD6HviYQSu5N+Ho8OjAoDyHGkYf7W7p1\nZLdpGU4B6yzWOyyF8XyuxtpaFvLOMQ5H4hTAGlrXMo0jUwj0q44wTTjTahJrG6xtSDFqUDqPbxqm\nEMlJ0SsRg/F6rjFGrDE4a4nGEMmc4sjm6R7/9jUbv2G9uubDb7/hOEVSAVsf9oSKkaZUyGKIJRJL\n5vgmMkWYJhhHSyFzfeN49aUnvHj5FCeGhDYF2Arelhkarqs/ajNC/vlg+3XFxJefF2pDAiJYBGp3\n2kXMZ44JHRC1rKd4+9X+ilcvX/Kd209JubDZ95zPG2KO2mQSChwjeYISa4QlQ+shJl0pGqPoVkLL\nuGkuD5fC6TRy8+QVv/lvfJO7e40J5pioCEEOERGhbTvCNHI6HNhst4gxHM8nQoraPTgvcEJive5I\nsdA2LcNwxjeeGNMSE75pcMWTQ8cYAm3rSXHiNB2JaUSsolBvpggla/ImM18n46rgVIojp+GOpt/g\nc8/5eKRpLUaUsxnyQJg0YbTG0LSe8eFIjGoM11hPShMhBla2JYZA4zoQsNZixOONdmyapsE3LdMU\niVNcfESxDooa0zsj0DhyNgQpnCWwfb7n9u5TNmbFenvDh//iDYcaEyZrKT0aaIwhpkwswhAS0WSG\n08Q4wTjBMDoyif2159UHN7x89RRnVIfv4gOoMSFGfxZRH1Llhc7k4l9vTLx69arMJZsZFZpTsxmx\nWraKehi12tOkhYpE1MRmfnue0a5Hv4eaQBizCHfOn6np6IWnZqsXX8mFGFVOYk6cFoBw1mSCRY5o\n4bA/mswvKvXL+VfqzPzXj85/PnFde37mnGaKxfwXppqMl/o3OWu5TVGmup9qNG2cJpkzKZ5clChe\nUSYR9LrM/CQ7NwFoUmUEJbLXcRVjNGGsyW2prwmKHOZ0MWeeeWbqV8tnkLS5i3TWEFsQwHnBMV/L\n8gjRS0XLhVXXay4jLklUudxrHneYPrrOMzDGgoz+3LP2C7a/crlQRNYisp2/B/4T4J8D/yvwt+rb\n/hbwv/xl9leYk6oZ4nwcMH82xE1ZjgPvPbvtDueFtncYLwQCvnfY3rJ9tqK/8tg12B5sB67RG9k4\nq/AuZSE9zhIOuWgHT4iZh8ORP/2X36VpWvrVCufUB/D0cOBwd19Xyyo26owlTYHxfKYA2+2WYRhw\n1rHqerz3tK1nHAes08486yzDcKJrO/q+qw+48lY22y27/YYpDKzXPav1qvotZc7nga5T+44YEt61\nlATD+cA0DRwPD1gR2sYjFOI4QRUdzSFSUvV8AsI0QaGSYh1N0yi8ayDn2UG7dtNgsL7BOQ9iNBly\nHuMdY4yVW6eiGVru06BIKWkSaAzOOorN9OsVm+snbG6esb6+oTjDJ7dvGZPCvIvKMSwt7echME6J\nXCAESGO1m0F1fTbblusnL9hsr4ghqPhdKZ8JnnlpeBHgo3YF/dWmlF99TGRVdq5ckUey1oiZB99L\nnGg+pitq7z3b9eOYMKoevvKIN2yf9qxvmiUmmo2h6QzOGSymfp6ukOcljiZbEJPyIx8ezvzJn36X\ntuvoV2usbxiHkeP9Aw9v7yg5EadImgJGNCamYaAIbDYb9et0nlXb07YNXdcwDGesVy9QYxRxatt2\niQlr1FJpu9+xu9owxYFNjQkl8iaODyfadoX3nhgiTdOSIgznIyFNnE8HTAabVa8nThMlq6l8iSrX\n4Kyu/EMMxFgIY8Bkh/PNInaosiWqTl1iXuQtnPMqcWJUYsR6yxRiTdqqbUglVc2d1cZYcihYsSST\n6bdrds+esNrfsL6+QRrHR5++ZcxgG2pypp3QKSnY/3CYGCa9R+NI9Y4T5mF+tW24efYO69WOOE1I\nXaLPrnlSSe5iTeUmzZpPy2z0a4+JeRJdkqo6Ay7z7GfzLP06t//X7OqCItVJW1jKo1KTKFBRTY2D\nWWW8xoSZk9L5g/R76y7j3WLLIhcphxkBm49pBkTm05hLnfP+Hnf9wYwsXhKIpbQ3j2P1WGd0Typi\nRWEp8c1Jy7wPRKpAqXK4wpiUc/WoHKvTY0X/jOpOxVS04zuprIs2jsmSWOZaVsxJE8/5flir1kJz\nZpmnvHC+jJOF7C9Gy9lxTNVxoYBRyYkUq5yTlWqMLcszcLknyk2LMevzLZfu07nUOkuPKUeufPaG\n/vxWXzJ/zq9+0fbLIFnvAH+/TlAO+J9KKf+biPxj4H8Wkf8O+AHwX//iXcmyEtcWV73oWgyywGwX\ncCHSXUiZEFMh5szHrz+mcTu6fovfbTifHjjfnTE5YZuGbmUpdiKHQhkNZRBOx0DnO0IM1QogkpIw\nZoUhN9c9H3z9Pb705W8gbeTN7etaFsukMGnbrvekGMmlME0T109uyCkzjCPZWsIUmM4D3jhuj7fL\n5Nk0DZmWIQwMw5n1astmveXh4Z6m8QzDQEnCmFVWIYYzn3xyWDhZ0zjiKzL2cHdP5ywP9w+KlMVI\n2/ecpgljPTklfAON80xh4hDuMVaI0wnbtGA9BqNwrLV465CsK7gSVeF97rgZxgFjonZNBdUlMcaB\nOIxtGaaTlkNbX72hcrVyaMi5EFIihIS3nndeviBMiePhzHgS7m/fcjoeeP+rT2j8Gz758UnLMjmR\ny0QG2rbh+BBoOoeUzMt3t/i+MIyJ+2+faB28fPWC99/7XZzzlDFoEFdJ6GzqIGse8yQKSTJZ8i/j\n1fari4n5uEpBnE6A1qlVSi7aiWNUf2TRAYp1NLdGCLGQSuH1xx/h3Z6m29Jc7zmd7zk9DJhUMG1L\nmy2tnUgB8EI8wBgzTdshOSDOqA1PMSpP4OD66Yb3vvyKL3/165hV5tM3n+C8R0Rtl2yVL0gpEWMm\npoknz58SQ+I8DmRjSDEync64Yri9P6qafyk0baucqTwxTCdaNuz2O+7u7mm7hvMwkqOQw0RMIzGc\n+Pj4QNc1pBwI06SyA0Z4+/qOzlqOhwPOWU7HSNuuOQ6hdtZlGgFnHFMKHA4HKJkcT0hskKZDslGL\njpIVES2OTF0dZ4tYRywCYaCUhHUd4xQr2OgprsE0PcPxgG893jmdfHJQrkKxUBQJT6XQ+IYXL14w\nDZHTaeD8nnB/95bT4cCXvv6Ufv2G1x+ewDTknJBGjd67lefhIdCtPSlm3nl3j18Vppg5/vEBEXj3\n3Re8++p3cU1DPo+4KsxbRMWXQQ8JKWBVzTvbolZnX4SYgIWgPCcSmjwVlRSZNbNkJibL4ksnFKhe\ng6oNp9wssXYhe+d5MZOrB2RQVDhX5ClXJKgUwYmiPjFWnpE3lFgekbrLMrHPGeClxFivtVP/P53T\nZlsYtZb5THkRBa+t10EhxbmLsCIwj8q5cxJXimoLiq0JXdUR07FamEt9caqCrLlcpDpE+a8yK6zm\nVMugSSkBhSooWm3PqohoKbnyKgtYjxPlZomV5bxTqXp/1cbLNWZJAoWCc6pxOR/LXIZNBUpIZJkX\nKIpSWatJpVgIo8q5q+SFNkalUnB9FZmd/ZCrPlqJlXtc0UMtM9Yu88drCpmT60ui/Hn6bf/KSVYp\n5bvAv/nnvP4p8B9/zr0Bjw5+zp4KuvKrP88cASl6Y0pd3Sd0kPjJhw98+IMDN0+f8K1//yXtqqcL\nb3j9kyON67Tslc4YC1M2yKj13WmcFq+8m2eOG7/nk7dHXt8PPH9/z7d+/5vgirab54ksScmqTpim\niZwiY0w47+m6jmEcNRFzjnXXKxLjE6fTCSvacr9eqTFuTAnXwP76mtu3txWedogYrGRO4xGK+gye\n7u+JKWDY4ZwhG4OzcIojRRJN09auxYBzLedhAnH4piWkiLNaZrXWVmLhGde1nI+3WNfQ+JYQMl3b\nk2LBty2uVKjYaieIGKu2JXbgdHrA+5auXakTuwjDeaTxLaVocwKSaVqPMytStDgLYTjhbYtIwolj\nON+TkxoCT15IzjC1E66JuLba1oZE04J1allhglVi95Qx3cSTD/Y0bc8PP/w+wwSbTYtrBJVwvBBb\npVAnDR1kFsTNqOBtYVbJ+3XHBMvKU0G4qjshKlDovK5Sc9EypxYURVWXrSWVQsyFH3904Kc/PHH1\nZOK3/r2X9OuednrDJz8+1JjoCPaM8zAc68odCDHUmIg8eeq49ns+fnPkzWng+tmG3/p3fpNiC+fT\nUWPCJFarHutUCLTkyDhlrHV0q57jadCYsI5130MRio+cz2dMlaFY9R1qfpzIpbDdX/Hm0zuMs1jj\nMGIwJnOcDkQKzsL54YGYAtbscN4SsnJGhqMy+dsaE2GaaJqW03EADE2r5UZrlC5gxerEWybEeIbh\nHpNGnG3IAzSuI4WMa1sImWLKoiROMaQQyXng4e4e61u6bl1L3YbD/Zmua6AktbGy+nlWeorxlFSI\n0xkrDTOfbUSN3jcrRzgJubGMfsC6gG0KNgnjqLpNxmacczCopVSShO0mnr23xzc9P/7RkWEqrFcN\nvjNkoo6bs5SJqTGh+IlydIrGSEqJFGdp4F9/TMyIiplRjFq6sb4aKFe9qLlepyWt2tqfdNE4i13L\njAyZC+KzICMpaSfbo/KRqM+azkmz+wIFshCntJTP5u475IJ+XSD0igaZRx3tc0lwRucqB6hwGQPm\n8tZCIpJZOX5Gmi77pnDxAgRiyPhWx8ulPFxqUmG4lINNNaDO9dpQr5fVtj0tuWoyaudrUq9dhFoR\n0eMrWQVPSXlRwBeBUiUUcsoo8KcJ84xQqfK7Idb7lItWrWYUjVqonZOdlJRTh4jOiRntSCyzJIWS\n76Em1wKl8u1mkVWZ+W8yf53zkCWVp4J5yz3In2OO+ELY6jzeHkN6j0uGs9+Teh7JZ97f9z3Pnj6l\naZ9wf3zND15/wj/+7if8xns9LzZCaxL3pyNOhG3fMJ4nzvcCo7Zzh1SqMiOsthuaXcsH33qH28On\n9LuGD3/2xwT7FCjsNnvO56AdUnVrfEPfrWjaFmMMT54+pfENxWireC652m0oR6Pteg6HAzFFvvSV\nr2ggxEjTtpzOR7V3mKDre/rWMw0DnVhy1/HwMHL70ce8//77nM73BAsiludP36ExhePDPYfDHZvN\nFmeFMQSG8cxqvSbGSIoPOKckdDGZ02lCjOV8PnE4POBdpxOfcZTDPaZxOoAXgzhHjJHVZg0UpLPE\nmBjGifVqq+THWnDVRK7gXQu5MISBxuk1UnuHyDSdSelE1zeIJGx+Qt8ZfviDH3JOb7l+x7Fetzy8\nHhSK90KxBcpEig7E0m/X9NeeY7hl4sB/+l/+W9zeHVnvW9p2wmQl3VNF8i6hUduHKZX8atAh86++\nZP9Vb3NAp3gZjEvViIljbT9HO+DmExMgxcR6s+L582c4/5S7h0/4/scf80+++zFfeXfFi53BSeLt\n/YGuNexXDdMwcXxbMCVSrA7Mphqz9tstft/zpW+95PXdx2yuGj786R8zuWcghe1qy3QOHI/nZaJp\nfEPfturfh3Bz80Q5hgKpCtzmnMkkck50bc95ODJNkfc++JJOcDnRdi2nk8ZEHAqrzYpV5xmOZ7xx\nrJuO+/uRNz/9mK9+/QMOr+84ZkMY4fmzl3gSh7t77u/vubrZkqMwhMjpfGJ/vSPGiMgB38yNKZGc\nA+Isp/sjMd3TNh1nTljnycMD4hzeqviuVBR7tVljnOB7S6EwnAOrVY+UTOO5aJ6J4J0mU6kEbLIY\n1yrHet0yjSdiPNJ3DdYkbLrBG/jRT37CkN5y/VRj4vhWOzdnuyOxE2rfLbT9ivVNxyndYccDf/M/\n+13uH45srnradtSY8A6T54mrPjgIJasMhORUuUVSOTf/mh/+v2ArtWyUos54MwoByiWEzyINM+em\nzIrt+dFkWSsmSgIXcpXycX5GW9BudF+5wCVj5SJtAMp9VUNiuczGNSGSGRS4tAYqkiQ1sfm58tSc\n/8yegHOvUqnaVNag8gxFUTmkvu408UgpKwBRK0MATatE/5xQzm7nK4dXP897LQeXooR712qHsJ01\n6bKQospYzCjafFAzX20m0n+m67IIU9QOxWJlQaikFEqqyNgsBVH16Zw3WuIbtauzZEW6ZjK/7rsm\ncamAMxjJFf0zVbqiIJUfp6iWRYoKykpN8EqpCv5Gk/VcLsn65ZY8mgceJVfzQvfzcLK+WElWUb2s\nvGTmj0/kkrn/PHcrl8JqteLlB3t+8L3X3J1hmjq+//3IXRN4uTGklOlbx8prMIUxIFH3LNYQixpN\ndv0Kv14h3nH97Bmbfc9mtwGbyCnw9u0b2ral63qapqFtW4wYrHELhHt7e4vznkIhToEYI9N5qIRY\nqWRwbQf/9M0bnj9/riW1dK4K67ZCuSOmFCQlDkedaJwu4/DW8PzpUz69uyUhjONAyBNVCaMmdboC\n7bpWzaST2pFMQdvYF14bOlCZIoQ0QRaMyYQQaaQjpUi/3QKCcbZC8LULKeukPgwnvPeIeLqm10Fi\nISoq2S2ESVdQuXaTGEuuRErnPZv9Dsjsr/Yc754hWTiYM4fDiNhMu2pJZiTEwqa94urJE26eXvPh\nxz9Wk2Dr2FxdYbs1TdcidI+eo5+bJSr5cq61lYoH/3IU3381mw64czeVRryuWOcW5su2rJJLYb2e\nY+ITbs8wjh0/+N7EQxd5vrHEKZFWlrUXUra1vKerPNs6QkikXGhXK2zTkTBcP33G/smazW5FskVj\n4u6W1jf0XUfbtTS+wZpKIq8zzu3tLb5V2YI4akyEQWNCmy28oqsp8vbulufPnwMaE9MUlKMlkMOo\nLeI58XB/om0s3gjFWLy1vHjnOR99+gYRw/l0JpRR5T68ltBVByrTr1o9hhDpOk2whuNEu/aEKWIp\nWp4RQyqBHLRjbYqZpoOcIqvNRlvOq5hxmrTclnJhPAec1bK5mIbWtwqYGiGHqmWUM9kmIJJFrZMy\nRlvXKQiO9W5PSpnr4cjp9hkGw/2nZw7HkWIyq03HGM8kI/TNjuvrG66u9nz09mcMhwfa1rK7uaJZ\na0xAV7WEHpWW5q+mEr0pyyJXxFTplC/GVtBEdUYWlqbEUgU955yxIh9pRlAqOiTmkmTN3n/LxGkq\nakJd6Bslged6LYwVSryoyqeonLrHIpYFKnImS/ImcEkGK7F+Of5HdqnzMDWrwM+lTsojAvhchswX\ngdDH+y9VQ63kORnkIkBKVTpH+WalsFh2ZaCIVOeF2c5GmIaEXzk1IHdavlNdq1o+FaGIzgVKvShL\n6bAU5QtiNTlLseAbmS8BmVJ5bJo0ZTThda1FYlkS0dmnkPo3YvVGiZnLn0bLs1V3S4nx2jFeYnWQ\nqZWWWYpFqppBzSTq884ydspyQ8uCai0Nm4XPVe34YiRZ5fJlBgSRRwFQtzmJmUnhMj8cpWCN5b33\ntrz7fs9pHDi8aclZOA0PvBn1gRqazPVmNopIi1VIEdHuMlESaL/ZMuVMYzwFT86WdbfBSOR8vqdt\nO4wxWKsTUyLTrjoQ4XQ6UcJE36myuXrMJbyz+oDGxO3tLfurK57cPOE4nPXn/Z6cMw/He7abLSWr\nFYgtGWd1Vd/3LSk1dJ2iTdZZ5QdYRyjq/RhTwBhhGE6sVmuIkWE44RpN7HKJFUUIGOOqtpJH5UcK\nWT2Fqj1PwiSLKZYUIyFnTPRY2+BcQ8ppWaX1K+2wElxNvhIhF9YVQbNW8E1LzuBcAyR802LshtPx\nyOk0sG4a2m7Nbn/NYf+MOI6UZNnuT5yGUZGsrJyxL33ja2A8Ywp0a0XRvPeYpiOdI22/xZSekiNC\nrMmTRolUArkYW7WzdITVFXD+QqzaF0JmXT1DJSLLRdl6Rh+oq1jvtUuv1DZwa71Q4VQAACAASURB\nVAzvvbfh3fd7hmnUmCgdx/MDt6OuEOOUudpYctZV+VSgRBCjytPiDSkLm+2OiUTjWzKeVByrtkck\nMIUj3vmaWOmknGJms+4QIxyPRwgTa1kxTIOKDKZI63VhkmPm9vaW3f6Km+snnIaBu7tbrq72lJI5\nnDQmJGf1AZVC2zuYMk3T0XWqMfVw+4BvG8DQdZ7j4UQia+ODlcp7XFFyYRxHrKvPalFLL4iIWEKc\nEF91kkohR1m4KOOQMN5U5DNzOo4gDjEt3jekXJTnYqDvPDEGndSMqHjpmOnbFRnlg1jnybngOy2x\n26als1vOpyPn8ciqaehXa3a7PQ/750zDwGZvGaYzp2GqMh8WYywffPU3AEuymW6zwVqNCfEtcUis\nuy2WlfLBsjanLIINtVtMRFvpEYtpVB/MFvO5JpV/lZtoRvFI16suMiqCCuixmksiorE0o1HMOdWS\n6eiXmhBZqgK6VM4Pl0m1omBS40uEKtEgFVgqy3uXpAgu1ju1Q3E5hjnpriXAUlh0AXl0KkspUC5J\n5Mz3UlRMO15t5cwqrqXHkMZa9qzyFDkVmFGqmi3OpH/VRiwzFLiUKqVeLKnzgn7Vsp4YmKbaqUjB\n1Q5EyiN51VKIoV6T+brJLFehDWalqvKXUj0J672YrXKA2pimz6sml5kiRku8VXpjXvhbb7AW4qSc\nYOe1VGUbpcrkrB3ac3I684/N/DzNpVj0mOfNVv7a59m+GEnWPM+hHQVitEMs/QXnMgdFSUpcFFHY\n8vf+2n+AjT2++WN+9Ad3SDGsGthfKYJjclLSdgJCi5iJnAuxFIWaLby9O7J+b8SvPTdP97R9Q9t6\nMhPD+UhOiRBURHH2CbTGMQ0TpiZdxjumMNG2rRJxjWEcR4ZhIMfEX/+9f5eHhwPGGtbrNYfDgfP5\nzPWTa97dvMvrTz6ms5rYqJUQbG923N7eYq1hGM5MZcRaxzRlVm1Lig0SI1OeCHHCGMM4nUgp0fYr\nYk4qIWF0gsk5w6jt5qkEChZrHZpgASgEHuKAd43W4a3H+RbtdfV467EOmqbh4eEtOWcar2ikcx5j\nbOUqOFzrOA8BEVclHkba1YrjfaDvd7R+zf3r15Rsefb8Pc7Hew73bxB7JhrBHgun6cyT3Z6Xr97H\n9B2xZDoa+nWLNTt80xPNwPppy/tfeVFXquXy1JTawzpPIqJSA8VILRWqptqfQb1+DZssMaHJlXEa\nE7ku6oyYhcS6DPx1kNcONoMg/N5f+xvY2NO0GhMUw7oXtttAYx3ExGkYIAt5bBATVNYkFWLMYAq3\n90fW7460u4arqy39tqXrPKlMjOcTMQSKR/82alncGkuYJrXGiBHTeMZxol+pxIl3luE8cj6fyTHz\n13/v93k4qH/n2q04HA4M45nd1TUvu1e8efMx1lkl4WJI58B2t+Hu4Q7XWk6nI6GAjZrorLuWnFoI\niSkUYpowYhjjQEwR39XyeQq0vhCCnvftp0ctHQ6RXCy+ceC0y0lItK0lhjPONEwhY3yHaxqcNxjx\nWCdsNj3TyXEa7okx4b0qhzdNg7FW7x8Oa2tCZzzWe0Iu9P2a432k67Y0bsXDm0+R4nly8y7HuzsO\n929xzcgkYM6J83TiZrPj5Tvv43c9sSRKdrTrDu+u1ObKjaxuPO9/9QXzoGpUUg8xLPdZrME5lVzB\nKuKPCKnq430RthntmeNjfk35onymAlLqm80jbs1lu8gwFFj4OaWo0CtWuWmS51K9dtSWCjHZWUOr\nygnMHpMGjc8c9NOs10WEiCzI2cLxEkWYZgL8IjHwc6ADS+Kl2WF5xC0roFwq9Bk1UsjGYJwmEmL1\nDOeSonEspcSZXK+itJXfWVMjq7/AeCEOebm2QkX0mOUcCs7WBDZrNz7GIBbl89aEuO0NaQzaEJOr\nLU9ItcQHUon0pUpFgHrVziVAajlzbl5YSsZ6IheUztabUMcv5w0UU5sb9Jz0WssiRD7z3KypiJat\nHYyi12wWs6WWisUoovmX3b4YSZbObqqrIYLJYDCK584PNpeVAbXUJkYglGWC2a2vefnsPZ5f/5SV\n3NH1mfff67hZGyQL54czeSiEsa7UK//LYrVjKGdCmRjjAWdWIBM5wzQFsImQArau1NUGyNL1DSlF\nYgo4g5rT1pX8aTrQdJ5pGhfi7Wq7YxwHnLPc393z4t1XrDcbpilwf3+kaRqur58QTycwljhO5BiJ\nD2qhE6dA6xuKFJxvsSmCVJSICZdUpypOERCapq+rG4VLwzAwjedl5WbbFqylSKaQFPpd1JK1DKMd\nHUqmLmipz1lPyoFxDEzTmX61ZjifiElFSaF2flT5h3GIGOcVPbSC4IgFfNcynoeKLAneNkhO3Nxc\n471w7zNjOnCOAUJE7AR2oG0zve9wjSWGiJUNvunJRuj7NbvNhlzFY0otBWTkUWKl/Kwyr1xKxtR/\nX4gZpaAegwaKMcSg4qCFvBD21RqDurIyxKC8n2UlT2G3ueHV8/d45+ZnrOSOts+8+37PzVowWA5v\njxB0cBTLQgC2xVbZhkQ0gSEcMKnH+BUlC8N5ApOYUvX2jMo2bjcdTdeSQiClADUmYtL4Oj0c8I1n\nHAaNibaj368YpxFnLXdv73jx3rus1xtCCByPJ5x1j2Iik6rkQj4eoBS1ivINRXK1corkYnBNRzEB\nW0V3p3PAe1GR3yGCFKQI43HQrkd0gad8BUsumZQSRQrGW1zjiGMmJS0jYa3aO4WEXVls8YhJjMPA\nOJxZXa05Pij3snMWyBiZjQaT8sGsI4mu4sk1JtqWsQxI1e/z3kNKPHvnCd4Ld3eZVT4wEjlNAbEB\n/Ij3mc6rT2TKCcNa41+gbdfstxuKGlfWxELIgiJ6VpGQWHWK9BATgjYYfCFiom7/P3Vv+iPZkWX5\n/a4tb3X32HIhWVyqe2Z6wfwTgoCG/nRBH4TpGWEAQVJXT3eTLJKZyYwIX95imz5cex5ZQmNQBUlT\nOQ9IMJOe6fE2M7t2zrnnSEVBttzBawGygTCiIvcNjdmo0U+Wj2uVtgE6G11kjbBFOG7RRVfkq9JW\nUummHFTrY51ydrkKyLeOP2SLoJENgvvkfLnSkJRP/k09wa2Y3IoufR76e+MMkrbzfrnmK2cnpfp6\n1TmuFM1vrGjPVhiaimwVlReSlnTt3iylWnuIdtfWO1yRpwIWxAnOW+KSVLBeqb+t63AL0XZOYDNY\nRbVtIFfN56Y/M1Z03a8BlX+o8nhpbNgKOhG9F2lNpKpNK7UA2lzyFZmrmm5rqhv9S6MDtQni6o94\nLeK1wLJOQ8JlKySLXt9mlPrHHJ9FkbW9Hxm5Gu0JChdqcSVXCBSqr1Hhxe9ka9N1cHu4583hFX/1\nxb9w/0XH7sGxvJuVCqswgLVCblds1Ip9XZKGWVrY3XuMDSzLkcu5YWduQCwiuUY1OIx1NVzYqh9O\n0oq5bRvGvkcy6osTA4FIyhHXOJ3ABd5/eMdhf4NvPI+Pj9ze3dG2LU03cD5fOJ1XXIFlWhjblhJX\nbFGH6ZQz0zLRDSPONHSdIceVrh94mp44nk/kXGibnlK0JfwyndT/yHrWeYKUsUagRCSrHUAqBhGP\nsRrHklOiiMX6Du8bMkW7w6p/SS5JjViNw5pBu90KTJdZKRIRSkk0TdUnYFliwHUtawmaf1iE4mv4\ndNLFeDo+YcrK3d191bUJT8cTbZtpl0dCmXh6/pnb+69oOk+WgmtHJLd412Jdy/3tA4fxRjtTRHTx\nlK1xoi6kRrU0UN+jHNW5OMXPghnRHZTSFiEWbC46LrZ26DpqYtVa6HPZxkTh6hBtdfPxanzgr97+\nM3dfdAz3jvi4QMkKtSdwYqAPlBVchmVSXzRjoN1ZYCWskencYu1NnYQy1hpso1RhSVlFSWLJ6Pvh\nfcPQ91DHRIqBKCp2951Se5TCh1/fcbO/oWk9T48fub+/x5qWZhg5H8+cTiuNgWWaGbqWtK44LK11\nJMksy0TTDZji6TtDToF2GDh+fOI0T+Si1GKOhb71hPVc319PPJ10/GMwJWKSqOA3CyYXrPfEnFim\nRMHi+z3d0BGjds7aStNmksZ1BaFtBkoUmnZkmlaSURuRmLIijSKUYoiSMK0jlKi2GQVNMsgZMQ3D\ncGI6PkFauDncYawHa3l8OuJtom2fCGbiOP3C7d1XNI0n24JzAwQ1cHWu5fZGx0SqGpZc5Orm3TT2\nit8WMdqFlYGcKDFRYvysiizV+pSrJ+/2/zYaPcVypY6uEpNPYS82mwQqliXqiO6lohT52uC+BSRf\nc/j0pxFXFVdbK1UXJlfT8CsyU2phxEb7ydVKASkVS0N1UVuWYKXQ6j6JLY9vKywp5Q/oKlM9pyoO\nweYFth1bSMoGUujSuRVcepE5qYGoa146HHOo5qOlqLYpffK1tagtCdaUkFKNr72wTjrurZdrwZlj\n1gLOWeKs7vhUu43N/DaXSpvmgqm2Gps5K2xdjtszqdeWVSe50YxxzYjjxYBWjBZIG9Va9H7oWrAh\nhtXBf8M16/uiBrNc3eY/fcE23dofe3wWRVaRQjEBkNo92FLEUvcU/9XDWVfREwuS+erLV/zbv/kL\n/tf/7T/wm2/uCaz8Gp/U+mUHbrBYPGO2TNMZg2G9FEIE38HQrTg70LYD+/FekY8aYSJZITc1QYvY\nAmFesNZwfHpi9p7HDx9w1jD2AwC/Pv2CiKHv9tje1M49w5Eju/2e3X6P96rLWEPCe4c4C7EgTcPl\nfOR2v2e9XJBkWGNgGAaNsnGuRkMk5mkmhAXvLcsSSHmhaVqm+UTf97UVWwulnDVLMMRESjNtrgiP\nhW7cg/PMa0DEq6A3JPre07WjCmONxXilhgqFLEUXFt/THFqenp5YFkXurG0wxrCGQDPuyKmwv90T\nV322IenEEErm8PAKYw0fPvzEq7FntIZ2HLBtz/PTM7/8/AstgZwD/8d//g+0/cDD/Rfc3HxDbg2h\nJL777mv6ftAJrWQyGS+i9wquu8OSM+IyW8kSUyDnrDq6Lcfnz3gUgSyxLhYZ27QIFojXSZdSJ966\nU940HdZYEklF5Sbz9dev+PjxO/7+P/89X3/zQDCBf/rpCcng9uDRMWGCYV7VUqE9ZWIC38N+F+gG\nwbc943BPSUoneWtJcSUvEesNOWUdE9NStVhHlnni+fFXrBiGrkcMfHj/DjGWvtvRDsI0XbDO8FyO\njLsdu/0B7x0lFy5rwvnazRczjfdc5mdudzvm44TNliUE+n4gpoRpwFIoITKdF9Zl0U1VKBRZaVzD\nNJ0Zxp5MIYSM61vSKqxrZFmCiuEFtXVIhbbd0Q5qiSLFEWJhPq/cPgy0zaCbsGIQu7LEjHi1zyBo\nDqM3LcfTkfOy0PUddB7nLOu60u50TPRjXzUrhYAoXUdhd/uAsYZffvk9r246Bmtohh7bdDw9HXn3\n7h2dKGr4f/7vf0/bD9wd3nJ7/w3SO2JM/Pbb37A77CtaWcgx0dSq3BTtjiuiPxOjTvm6aC3V5yx8\nFmMCoKCWPqVoV5qunBWp2Oiv6ha+FUWbF9JGr20ao5wKrnYFqjj8U0Ns/eqy5eeJqWyAVj9ZlErL\nIZGzZQuGdl5pwc0xHbh2P5ZC1S7pz7+i0J+IrTdEbSsAtoKqlmYKRly9vyolKAK+dtWlqjndEBcj\nV+PTreASs3U9vuiiqBs1a831+zeAUGm12ni2FRylXC0uSFrs5CzazZi1m3EDQVIC490VCdOiVgvK\nVBG2HJUhESnXbr+4ZnynXepme65VxG8/6bykFo6biP5TitU4gaJ2H8YUBQOqoN41queyVoXzUu8Z\nFPK60YRyjRXaNuqlxvb8scdnUWTVfTsKA+ZqTGh1U7ztQP6VY3to1xbZrJ0er9+8okhiWWd2h5Fx\n11JqTlWJha5xECzZO+ZzpN8bZIa2h/HgabsG7z2N94QYOZ8vFJNonGW/G0GEvh84nY7KX1tTbQ5U\n4FpS5Hx+JobAOl8IIan1w/msnAzC5TwxzQtNP6iOy1hFjBLkortHZy0/vnvHrtXYmt1hTziF6kd1\n4ebmQCuOlISPH5/RZHJDykFfRKu06ul0xPsOI5Z1jbWQVT2WppRHRMAZT9t2FBzTksA6mranbTtc\n09UoI3UAX5O24RssJWfWkCkOanBR1X0VnGtqEZmZ5xnxXjU8eTO38/hWEF8gLEjjKcZwulzwTYs3\njtdvvmZ/WMEMLL++Z1mODP2K2xzGZaG/H7l7fcc4jlBUML7pTrZumLo5rbNV+QP1VUbNO0H+34bh\n/n90qMhdFzxtmKCo1mLr1tRQ9DqpbBNmHQrbMybpTu7N29ckIvMysbvZMY5tFc7qhNk1HiaB5JhO\ngf5gCGuhHWDoLa1XGtpiSDlzvsyczpHWGg6HAUTo2p7j6YQR9awxmCvKm0PkcjkSU2SZJ9YlcfPd\nDfN0AQzmJEzlzDzPtONIzlGRpaZHUm3YCBFnHT98/47Re1IIjMNAWHVMXE5nbg43DL5hbYRfP2gO\nqDWGKQZiSNhex8T5fMI3HYJlWWJFqdFuQFH9iJCx3uDEA5qNmMXRNr160vnu6q9HKaQcavafLsgx\nZsIaSDGQ1sT5edJFIfsqM0jM6wLO0cVIyRrKbqyvguMCZQXvyRjmuIBx+KaOidsVsR3h8VemyzPj\nMGCMZ11XLs8LvXU8vL1lf7PXBZas6LFsVgWWnCoaIvq5la1g10hwDLrJ/K/Mw/8tjxdxOYqcUlGe\nalq5IScbdXY1L62LMZvmqcoltnzA+gj1+2xlS+oHW/GjyHAtmGK+mpheLRxEqifTpod/sVJAqhC9\nJl6onUD1c3ipW65JC6auhVLRrVwRKiVjapFUtRAFNLKmXp7ZrqXU67Ny1WTl8knH3ifP9EqeXj9/\noSG3YuuKolX6UWypDSFaGF4pOBFFk6ozu/H2Os86MbWoSqSgZqiuNZ+44Uv1raqoUvWvAq62HVud\npw0jlrjkqx+ZyMuzzRU13uKBlEauCKTbfMpexPwbJXkV/9fnvnkHUiqT6f74Ags+lyJLDKUocnWt\nzs3LjmLrKBT55N/UlyEp/qc7mQJN0/Lq9Su++4tvWcKC9w27g3bUeCucn08UForxGFNqB0Om38Hu\npsN6i7XQeMPlcqxUJTTeV71VxDn1xgnryjCMGGPwzpJTBAo5RJx3DH2LMQmMVY3GcKAfRjKKwKVc\nNEg2atxGrlX0uszE6YLKPoTn5ycaKzx+XDDO8vT4gTms/PLTj2oAaTMlR3KJpBxw3hCjdhEaIyxL\noPF1sql6ti1rClNY1oBB3bn7Q8I0DdZ3BLSDMovaLRSgaTti1mvSFn2lG61NdaDBOI5Y6wlBaUNj\nhM622G4gW8MyzzjrESCkivkbQVyi2+15bb7i4y8/UqIarBrAFcPt/QOPy8R5OeO7PWAo0rA/7Pny\n26+5e3WP7hA3iD5VJEiu9MEfrBWlAu0FBAek60D/sx9ioCgFt02OWxKCiIqVE2CN2k7IBrcXNQYk\nKwJmDDRdx9uvXvPdX3zHGnVM7G9GcgkMo+Pp/RM5z5phlKr/VpPpe2HcddjG4hpD01mW9QyiZqhG\nHH3XVB8dp9rEirQaY2jblhwDUBAbsc7SG4+1GQ6WeZoYxj1dN6jbu3OkUgjLSooGiuCLUgphnYiX\nM403GDE8PR1prfD48T3WWZ4fP7CGwM8/fs9u7DG+QKXqiyRca1TcvpkjpoAzLcbpjjwGzd7MCZyH\nZVmx6EKY6vOwtmEthmINWEMRFRw3Tac/xzot1rQ8xKyaLypGuL3f0w09a9SCzjmjIdrDSDZCTCu2\nOKxoL6zqYASxiW7Y8ebLLzkef6IE9c8TDw7Dzc0Dz+vCaT5jzK4i0g373Y4vv/2Guzf31aBRV7Hq\nqsWnHWK6eG7sUV2Ic8GYhlzi/0Mb82c+6mK+FSRb3mpByLFWX9fzLbwAcLoh2dBesZqU8ULnVV8q\nA661pDW9iJzrgu68FuLaLai0VgGMqYiRNaSlWgZU2PzaEVgXL2NfdJSbBUFONemErftOalH8goLV\neqqeK1dnejUJNcRS54ENmavnIABps+So9yyV6yYsJ9XopZLxjTqjizUv+sx6j9RjTOcf64S4hYfX\n90pKpel4uffGbJ2qLzNqihljLWIM3oJvVfObp3z1MdMT1c3RVuSIq/qxrdgrW2FYrkiXTuX1POu9\ny5thbUXP+MQba4tDvurkynZ+eg+3orFsN718gpL+CR2Gn0WRZV2HMbfk9Ugx2u6fRU3LfEV+gOvi\nCdd3VhELMYgYbOmriWLH//h3/xP/8e//nrRGXt8tzMuZZTlyuLXkWDgfVyQZ8pKIFsaxYfdwQ+kt\nIc1wUYqk60cV4pvCMl/o24F1nhV9QpgvapWwTNPVwXZZJkKAp3liOh/pxz2+2/P+9AviPG++eFt5\nXuH7H36g73sOhxt+/ukncsnc39xCXAlhpXGOZT4xxdPVrmLc7+haR9cVfn33M13vKETWZeJ0eaq+\nWCvny8phf0cIhtPpmb4fcLYjpxlrIaWZHAEMj8dnxv2NBlLXIsvYjqZTIXPTtPi2YZlXrB8wyWEo\nes058fjhHX3nyCXy9PTIbneo1GKlF8WQYgBpIGVSjjrRW68IWU7ERXVAwRjWLGpyaj27wx4uEzuz\n45J3SL7g/B3ffvMtX3zxmruHnhREfVLqyy+fiHVLMdeJQD80tVXXYIqKf8WClKhieffnHxbWdhh7\nQ84nSl6xjULaeY14ZyqeuG1AgJxwjYqqc7XWcN7gZCCsCUzL//B3f8d/+o//ibxG3j6sTOdnpvnI\nza0hrYXTccVkFZKuwNB6hts9svdEZristL3QdSMxqxZinifGcSDGQFgDkmE+TwxDz7KuOsFIZpkv\niBTCMnOZzvT9jrbb8/75F8R7vvjideU/hB9/+pGu67m9u+Pnf/4vxBR58/qeUiLzZaV3nnU6M8XT\ndUc/7Hb0vadtCr++/5m2daQcWOeJaXmmaVsgcJlXduMdYco8Px/V767tSEmtIYoNJA3i5PH0zGgO\n7I3D9i2uH7GuxfkW3zT4rsf5Rr3tZMAVhxWQlBCXiWbWMPpU+OnDrxwOt1jn6TqLNQZrDDEs4BvI\n2niSipCMbsBSVPROKARjmBbAJEzOjPsdTDP7hx2XMkAZcXLHd999y1dfvuHuriUG0QgirQTYBoCY\nQjG60OWoKK/xttYCFlsM2W7IQSC7RHH2X3lL/9sfQkHcS5ZgyUpnvVSBf7gIGv+JyHlbsG1FuFGU\neNM+geqxQgo13q3CONe1RrU4UkC8ubqlm0rr5RyRGkdkahGXU3Un36K8rqs2Vfe2ed7xYm9QETpd\nTmrB69Wf0HoLKdeiT8hJizML5KJrSilVh0RR2nnTD2UhV1Bi8zC0puYOAmuoaFhMmDqXlKS2DABF\nJ3tSqexAtVFSCi1XBEyLd2sNIWlzmCnVlqFA05nq3yhMs1679YW2064/scpCKONQqqVFeaEFS7kW\nOnL13tJ7rqhkBRKqhqvUXamIgoalfOIptlEZnyBwinbpzzKbE7zZngbXe7mdwx9z/PlXEwCE7Bzr\nnLE5Vm5dBXf/2qV8ChmrVk0hU0090A68N6/e8M3X3/LD9z8iucVIprEwnY8kYOg8cYXVB1xnca1V\nFMtZGmdpnSczM8+qXdoNe6yzrOtEoeCsZb+/pWkbBJgvJ6bLM8fTI8enRxrX6H5RBIphHA4Mo8M2\nLSlkpqA+PYfbW5Zl4fx84vXDA89PH/n13U+MXaNmhSkQw5n59B7fepxzLHPm6Slw2N9ijGh+IBHn\nDH3Xk1Kk6ToEQ0yZruu4pKnCqNox1DjLdA4Yq630znqapqNYRxaHa3qyeKxr8L6lH/YY63B+wBhH\nDrBOF5Yl4KSwG3fM06Q0jHc0rmZXAfPlgvct4ltSXoglYK1nGHY4I0gpzLO29RtpoSS+/vJbPvz6\nnrAsMCb6rmWeJ3y3YzhEvvrit/zmq9/gG8McLjR0ShvX3LKrQ3CRajC4DZOCiI6ckqWGgddOH6M2\nFmL//MOiiJCNJZQMKSFL0I45EWxntL2eTYMgSi/EWBFBrp02knWXF2Lgizdf8PjNR3745x8xtJjS\n0zZwOZ8UgexbDd/2gXawSpW1DrEW11gaccznE6VEMpnBHnCNYVlmdYu2lpu7G5xzGIR1PXM5HTme\nHzk/P+JdA1urfRbGcUc/Osw2JtYF4zz7/YFpWnh+/8zr+weeHz/w4Ycf6bu2xpmspDQxHT+o8Fws\n81R4fAzc3NwiAiEEFaJbQ+s7UlRh+eaN0/Ud03RRk9JVvay61vHxwxHXeC7zqn5wTQ9tQxannZVG\naVPvG/phr/Rdj+rUkpDiTCoFiYmh3XGZZo7PJ4axY3/TkpaAt5DzREme7DpiWphjoG0ahmFXndgL\n67rQegdZaHzP119+x+PxA+uyAJm+b5kuF1y/Y9gnvnj1Hd/89lucLUzLmc6NFQnJVUi9ddJKNSIu\n17Z1MRmy0QD2kq9WIeIctjgV3H8GxxXZkGoGWhdf619E25RytW+42idU+k4LByolZ64L7ZVSMnVh\nrkj/FmmzdRmWVJCqRSpZf8Up4HuneiaRGjgNsdSmFIoa0AqVJqyFlRQV1tfrko3C3Fa9SuVLlQWQ\nNRZNFOghB3U6S+j7osgPlWYrVzRG6cb6/RUduvppVXQrbxSigHOGsCasV51uilusWkWBcrn+mfqu\nSkXINk3bpyWvOPVy3LoAc9GiqOmdzlMpaVHqDHFNbHY6KajOSihXgfsLVVifJ0oJGxGVe4iic7LZ\nW1TtXo4am2a91fPc6Mn6a0PIgKvnWkFUL16L4VJ0XoUXvd0fc/z5VxPQxWDoMNFjcoKcdPCz2eBv\nxVbdicELbGvsFe6OLCDgpZCM8ObNG87nC4/vj+QYCMkwPa3EACFFZK2eIE1hvO3odh58xNqGWDI5\nT+r5ZDymaDecOFs9oAyprJzOMwDHj78n54WSLoy9R7LHuZZxf0vTdVjXWeCRLAAAIABJREFUgzHE\nWPCNaqwup4nWdwzDQIyRvMx0FrIzxHUihZXd2LNMC9P5RM6GD+cjXdfh2xukqHP1fJl15xBnjBGm\ny4VhPGinUoxY78gpEkMt53MiF6WTim5LsLbD+R7fDRTXIban9QPGWYx4cvYY4/DOk4GmtcQ1qN4q\nrByfnlimldvxhhAD0/GsreclMM8zT+nIzcNrxHqsbyhFOE8zfWfpmoY1B+28KrqDborHFseHj+8Y\nhpa263DO07g7+s7wxZev6QbRCBTkRXN3Ra90EJos2LyJPA1Zku5EpZDF6QDTDyvq5pHPYUExAn2L\nwWNzQkLGG0MuNfsrU9uiIWfBWt1kxJgQ66q4MxNZyVLwApHC61evuZwu/PrLCSP1+TytzFMhETHq\nbIDYwnDoaHcN2UVEdEzgZuZwpms7SmgxpsF6h/ctADEthKjdvKfHn8ms5DIx9B5JHtd0DLtb2rZF\naLHeEQLYpiHlyDzNeD8x9KNSeOvC4AS8JceZuK7c3g08vn9kOp0o2XJ8fqLre3x7w5FMP3Ys5wvW\nO5ZVG03meUIGHRMpBzpvgURYZtVgRTV0NFLIMWjUktHGDd/0FNsipqXpd9g6B+TisTikOMSr6Hme\nk0ZLFXj85ZF5Xri/vSOlhcvHZ1rfcHmeWcPKkmG4e4Nxruq7DFNYaKzgjcemtYZ+K40iyVMWy+OH\nZ9rG04+KpLX2jr61fPn1G9o2E2PEFCGuL75EwDV42CR77SDUxT6rAa0UMmpxorRT9WiTz2RMQNUY\nqS4mVxuCK3VT7QU2g09bdThqV7BVU/Li3C1KGW0UYkpbB3INbo7VrrX+/WvGX6Wk1EYFXKO0oVgh\nLflqXWOoIdupXM9zQxWv5wBVyrAJwfM1xmhTwIoV2HyZsiD+E0pQZ3Gst4oW8QI6bEzlp0WnGCDV\nIm6DdrayTrYiSs8hparZrGst9Ro2U9Wrtq0WoqYWR4jaa1gLptqWhDVW2w09F+csRvLVbmE5rThn\ntGisGwCplKZGCVXqj5f131TUMK5bEagGzGmjuUrNfU35aggba/F4HRPbfdxu2CfF05b9uAnUjNle\nhD/tnf0siixjHf3tG6xz5HWCEIkpU1jAbBb/BVNUn5KyQaq5R2XoNqahwraZtmn56u0bnDH8L+++\nZ1mTGgP2nm5vydWwbF8E6wfG/U5zBX1DjhdiWFljpm0GxDRgWwraCVVyxnt/dYyOIWCwTNOCIIz9\nvgYgOyKB83HCLjPWNbRdjzWOKS2IEy5x5vSoxdyH58xu7BXGFUOxjqfzhZSFbnfH8fyBOSQuyyMx\n/sL9wwPDcuB8OvH2ize8++Un7u/vSXFleX588U9yE85YhtaRxXA6rZRS6IYdMSViCbhmxDY9bbdH\n2p6YBAysdWB6b4kGYtaMxYIw3t9wOT4zz5G7r77STLp1IpxP5JSgaWmblu5wg+9H5kV9gWKu7uxG\nzVsfH5/w1pNTIFT7h8xKv+sYlx3f//gLv/n6W7r+jlcu8pu3bxkaR5qD+qsY3Q0VNhNOPbYBWUS3\nLdlAxkN1d4+iLfkZg7Q7jGswrkHMn39YGOPob78gtC15nZAYNEC1LMwm6w6vFEqJOKORLutqMM6+\noHZFUQmAIoW2afnmqy9oveV/fvcD85qJa6IdGoaDJRpBYuamgGkHxv2ekFUUX8rEuswsITMOe2J0\naviZhcv5TFwjvmloeg+5EELEiGW6LBgn9M2exrYY68gu8LjM2LjA5PG+xbYDc1nBGp7DwimtIIV3\nP/zKYT9SsuCMYBrH+48nchS68Zbn0weWkJnCE2H+hYfXD8zLgcvxxJuv3vLLLz/z6tUDYV2w6ZEU\nEmIsqZmxYukaj20sT88nUhL6cU+IkVAC3TjSDgNNO2L6kZy10ykYRUCliNqPuFR9uoTe7zk+PTGF\nyKvffq1jYrpwfE7kknG+Y3dzq/O264kpYrxjWQrOO4xYUopcpqNu7ogsa1DKRFaGsWWYB3786R1f\nf/Mtu8M93gd+8/Ytu9aTzgu2usCTC2lV2EY1KrquWvciDs8UcnFKoSMEiSBOu7vbHSK6KfocxgRo\nAaH9N5VKYisCuC7KlIyvGp4YqsfRVStwrV6qKFptSDaaCfT7nZXqmaVNDN6of1iRqlu60kmF4gTr\nDGHNOLuJw7WjDbhm8121P1sxEypms8kVqig8xVrIGNXkpqxUoPPqyh/WGktWCoZSnc2TosSyeT5V\nn6i4dSBTJ0NDqdrOa/GXqna1fmdJopmGGUA9FNXOIGMaLVzipq3aNFvOaEbvminCS1wOtbO3aJ1o\nq66NlEirFm7GCn5sKFktaVyj9ypFLYxyfNk0a2YhSC4a9bMJ1NMLwunchlzpvdlsGEqlSVN6QaI2\nwbz1ctWnqempeVlANsrwE9TzTzk+i5EjYrDdjcLkzUJTKb8QH0lp0YsqlUqsppoI1xu8Hfog6s3J\nicZ5vnr7lr/923/Pf/nd/8XH978Qg076YrNqKbLw8PqVupOnBUiUEljXM6W0YAzOeZawkGLANRbr\ntYOn7TSqRijMpwtt09N2Dc62tM2I9x3n+UhrHadpJl5m9kbww45hf0NOiSzQ73oEYZovLFlzGAdv\nievC6fFXLvPC5fjM/rBjXmbGXcfPP//Auk5czjO3tzfM84S1hsvlQgiBpkoolmXm8GpHCJHj8zNu\nHNVRN7843RvX4LqebrcnZPB5g7ArKiKoY/y84puW1vQAvHv3HmcNt69eEZeF83pmPp64u725UqWl\nFGJOrNOCsZ51DUrbICzLcqVTSykqcq/u+NmAOMvu5obLGvBNj7Edu04NA3NeMYgaNvLS/WQ+7eiB\nF2HstiMTC+Lq7jFXNMuRbYu4Dlz7SWfRn+8QI5jmoNfYLNg1amNFegRW9ZEpGUmRECOlWGzvsJuJ\nn9nuybZwZCQlrHV8+fYtf/M3f8s//sM/8PE95HWuHWaFZBI5wav7V1jvkbggEil5ZZ1P5NQSm0Ln\nrbqnr4Fm8Pim5XKe6fctW5fSGiKN7xjGFmt0TDjbclpOOOc4TwspL+xvDEks/XhDDAlxQtO0+l64\nhSlnxnGgN0IKC9Nl4XKamE5PHO72LMtC37Wcnp4I68T5PHNzuOF8POG95Xw+E2LAJp2E12Vm7HfE\nkDifnuludlhvCAEiEJOmG9impelH8BaKUb1no1SRNRBL0nmpeJrSghF++ukXrHfcvXlNDjPnZeXy\n8Zm7+1tcq2hQSplUEnldETGs06pdvaUwLxMgiCiC0TilwadpUQNIY9jtDywp4n2HmI5939A4S0l1\nTFTd0Lbj9q0mL2wUSIzaRVio74l1YPTcvCTVSaJjwpiW4lr4DMYEbMaV+k6nNV07va46HXQNSCFr\nfl3rrlDFNh/ppZRrs9SGdJVPUIqsAlhyzlfApxQURbP6PwRtKChZSDldCyOkdqAZarehXGUMagCa\n631XtFALG1D7TzXp3ETbeaOprJoNg3brbUam10aODVWSWjjUJo7rRjNvOvmkcUkVxYyZGsvE1UHd\nbJQn9d4YnT+FiublQtM5Ysjaxe40VLouyjSdJadSP9P3TZGgT86lIli20WtRh3UtkDQmSB1FlJKt\n97Dq3CoVcb3enKr4fit66/dtTQbAFY16oURtzZ6sH8dSaUJdL1QKru+UtXqvrujXn/jOfhZFFmKQ\n8TWmOVBSpKSIhEhbHnBlJa8zJa7kyzMlBnUzFu0s9Na+VKXYazumKQWT1WT0r//6r/jrv/orSPCP\n//g7vv/5e/7xh3+g5JnGdRweviSFlTWcuSw/Ec5npBTarqdvOnLJxHTUl351GgpthMvlhLWOknXx\nEvE419N0e0QsxTq64U49OFpo+wHrGr79d/+OELWV1xqDdQ7nHDEvPD5/4Ga/I57P3N7csD8cWOcL\nThI//Ms/8frtAe+Fy2ViHG7IofD06zOhzxx2D/z000883D9wOh8Zxh3DfuTpvDDuR10QvcLAXd+R\nsoDNWNdxuH/D7cOXyHjPEiLrumKd0FlHWAIhz9XlOPL9P/8LIsLDwwPOWi7TzDovjPt7vGso1qih\nXM5YayFnWqemiLpjVL8w71UHBpplN88XrFga35KSxTUFXyy2ORJK4dD32PlMWaPC2Fmx/qZRU1Kd\n8F4g841ivqI5pWD8AaQlZwu20aLLeZJrKb6hNE2F1v/Mh1jM/jUm30CKyBqQGGnLK2xaKFF/MT9T\niGCU7gop4qogVU0UG0pWJ2eliBLkwt/8zV/x13+tY+J3//A7fnj3A//4/e+Y48TQ9Yw3b6BkTDqz\nxJ+Zn09Yga4b6HxLsYU5nigUSsh0TYNvDZfphBFHigmLwxmHlR7vR0VDrKPxB00RcEK/H3Cu4avv\n/g1ZdJFytVnCGseSZ87TI4dxJJ3O3LW33NwdWKcLpiR++PFfePV2j/fCvEz044EmwPPzM+O452Z3\nz0+//z13t/dM85m+H+mGgdO0MOwG4hK1u89Av+tYAzjX0rQt4+E1+5u3GLkhpkzMARMTjbXkJYJb\nKUYAy7/8/D3WGe7v72kax3S+sMwru5sHfNcqvWSc0tpu6870WNMoSm+FaZrpxgZnu6qbScxBg9cb\nNMTb9R2NcZjLmSUVbsYOP58J5zN+tLooxUzTNSTReKQcUl3gav5l0cU5CyoVaG7AtFAsxrfELBTr\nSU1HttoIw2cwJEDRuM2M5dp5RzWiNNV0WLRIsRXZoAq7t2so6OJt7EuWYU6l6rH0z6lqmaQGfhtv\niEvComPLWKWYt+JMfbsqwmm1mBXZQsZRih+Q6tpeqo+WqTyddvVVny/ZUCgVkIuopQOCCvZjwjVK\naeq5qGluqRosTJXSsJ0/lQrX/0opFLMZfOqGO+faHVgLiRgr5bldf73mnDIpQj5rgauB0Xo91um5\nhC2nUGqzoFFLh5IKqShiZgdDCUmR5VosukbtgEqWSnGixZZXreAWSG1EEA+SVLu9NShULAZjwDeG\nOEdtFTba0IAt1xch12DswksHadl0d7WTcDMnpdK4GUUF9ZH98QPi8yiyAPEq1M42UdaAkCABReFq\nY1bSmigEcpkpJaCZRJtMDrYYHqkjq1wXV4X/vG/5y3/zt9y+fsuH0zPH5RnvWjAN1lsak3g6arZZ\n6xoap111cwws6wWD5W5/x7queP9y61IqTNNE07YMxiNi8W1X89CEV6/e0g47xv2eIobxcE8/jhyP\nJy0QcqZpGs7zE3/x+pbnx0e+fPWK9XLh6f07ht2O58f3IC2X6cLr8Y7bwxs+fHhP7z0pouG0ESiO\nEArjTgX1bTeSyGAa+v2ey/KBqnZUA0URxHmaYcT4htO00HQ9jQAlILnQec+8rsq1pxlK4bDfEZeV\nx9OJHCNffvEly7ISM7jqdWWssKwrOWsk0W03Qs6knNUUNUXdkVVNnT4mLcKs7Ul5JRfBt50O3rzi\nSrq6c2/CTSm65Sml1M4Vqr6qSsIls0ky5aqJaDAyYo0hW0cxjmI8RT6bIYFpe0y2GrCdHcYkzZuz\nHmtbxC6kNWFNIMmCSMBUUSkhX3e0YKpPTJ1JRHfNBYNzLf/2r/89d2+/4NfTEbM+0zQd1neUFPES\neD5eSCXR2IbWt3Rdy1IS58sZi+OwvyeGBe90d1sqxX8+nenHjrbrKMVhXUuIiSyGN2/e0g07drcH\nDWW/eaDtes7Tha51YArOeo7TkcPdDZfzM1/95h7WCx+XQD/sePr4AaRhDhPjeMPN4Q0fPryjdTom\njFhSAIonrIW+OxDWQD90TFMAaWnHkXn+SCmG0giucZQlgTjacYfrOpaScE2HLQVjM5ILgiGuK0kM\n02Ulp8LDw44wB54fH8nrypdf/YbLZSZGlSEUhFIMSZIWPiIc+h4pmVy2RIVUO6V0TssRktVsPO8H\nwjKTArimU6GwiTSScA4kmyrQFawYMqnmq+a6+BhsyUiljDAFrK1WBQakgTLgnSE5S7YejKPgPg8k\nq6I0myv6VmQJXAOCt0Vy8z16oc02ikhePJlqMfOySdejFBW3V+ivmmSq19TV/Z3Ng6vqqerir8+u\nisPrKYU1gjFYZ8i1AHHeEBZFjTfxuXbqbT5QqinLWyFXUZ5Um3aWSQ24JVdUslDF+Rv6stFildip\nSE4O1c1cNsInX+9pXpMK41PGWS0MKaX6qeU/KNya1lSj6qzxOEBYEra1WsRn3QOr4Wf1oZIqwq/F\nUkHPOaWIazWKTYx6aKn+WYsgY4Qs23doUWdSvUebiez2PtTCmKyC90LtCMxcU0m0Q1TPA7iK4KUi\ncWqlUT65Ry/FqAhXn7I/9vgsVpQKUiLG4sQgVhfaLC0Uh3UFyQFJmRICORmW9Yg4autzPeRFwFfq\n4i01YHkbQM477u7u+fLLrykffk/OKna21kJx2s2XMn3rQQrLOrOsC94bWt+zrAslZ5pqEHo+X4jr\nyr4bGfcHrHHMy8y8LnRdz6vXbzGuYXd7h2972n7EjzsicHv/CucaLdqchig/Hz+wP9yyRqXIMJ55\nOdF1HfcP93x8D+saabsdIs+EtXB/90q9sPaO/eFA23U8PX3Ee88SArEI52nithuY54X9uCeElb6/\nwbqC8UqRpbI5wlcvHVFxe0HzG3NRysE4y3o58/6Dxp/sdjuWZYVS6PuWGCPOOJzziFEK0Gj/WxXo\nR2KMLMuMsfHqQRaiZjyK1ffA+ZYmZ7rmQo6JHFe23hs1FzVIyQrjypUV0GKrKmQFNBMzC0UcqRhM\nsWC0s6sYC86qwN8p0vI5HNcxIaaigzomiukgOcR0YFqaXSEvKxKO6l8mBZP17+riA2VLtZdcI4Re\nwmy3hoC7uzu++s1v+OG9JSVBcBhrMK6aaVI0cklgCSuXy4TvLG3Ts66zIgjGIyazBBWo73Yj+5sb\nchSWHFhypG06Xr96i+ta9ne3+HbAtwPNuCcZuOseMOLIoo71pnGcp4/c3t0RpoWhHSjimC9HxqED\n7nj8UAipjgnzRIyF29sH1hBpW8u42+N9y+n8iG8b5mUhi3BZJu7uHzi+XxjGPTGs6rxuLM43SrlI\ngSSsc6w6p0wukQysYdU8z0rnrJczv//xV169uucw7ricJgToGrUpscbgW0+MBuudplQUjetKKZJS\nZJlmxOj46dqWZbEs84pxltYa2r4nl0KftaMzhZW69qjexFgNx82blnLzF9JtRk4VzaqLShGHWgpb\nEE+gpRSDdV4pHuvV0uRP5Uj+/zhqwbDRRNs6t/1+sxGw3ugKn9XCYbNU2LrGnOWqyzGyyRr+8BI3\nofTWRbcVGaWghUTKGGerG7p+Rwzp6rFERWVz1CLGNUabBZ0iYWFRewOxG9VX/ZmSdgFuhaB1ptJf\npbqMayHWDbo5J+gNUC2yFh1Xq6ntXLbCrd6H/Emn5GZVkdMnjunGaBdvZelKzpWGfaFrw5Iq+mWu\n1gt2o1FrQe7qn7fCxgjaYCJSw8mrrkysUvG2UqV1/TabRi4WhTCvLZ01fq8WyFv3IPW688YmVrJU\nMwwrumhQw93N6sdsXamf/MxP3i0dM/r8Vcu4FeT/nSFZdc+GLUUdqlGRmjQtqUDMQEq0o8eWhM0D\nrJpfVsIMJZNSxBCvIj9j1CQTwGVTEY/AGmZCSvz2m2/odjt+/ukdaVatlRMhLYGcYV4jbV9IecVZ\nhfbJhSlUinDKnE8XBOH+7oE3D18gooHM+5tbdvs9p8uZ52XBNI7+5o7d7R1g+fHnnxnGnpgS8/TM\n4XCDM56huaVvemIMLPEZ4w03r94Spp7l+QMf548cbnfM0xnXDtzdf4GP0HQNbZfIEghlhS2s0xqw\nlt73IFbb/qXlMgXWdSZES9PtaEyDcx3LuuIP2o0k0TA9n8l2xojgG4eUxDSdaduW83TGpkC8nLCN\n4/R4xBhD44sWiL7hGCL9sGNeV273e1KJxFIQqQ0ATcvx+JEQJtbFYJxDGseaNVBJsmFZYWz2OBvx\nacLk7Y2pHLuIBuwi2jVjNVuyoI0DSaAUB8VSskc4kPDaQdmPaizpLIh2tryoGP68RwFKSjiomYB1\nV2Zakm1IBaT0IC2mjTRlhMuv5BQoccZQSCFS1oBvraK5W74GYLOtUHnUoihlvv3qG5pux88//0Ke\nE01jlGpZIzkVznHFHzIpLLSdRZxDEKb1jPOOEjOn5zNSDPe3D7y6f0Mp0HUj+9sbbh9ueDqeeV5m\nTO9ph1v6/S3Ge37/88+Mh5EFS8iJ3XigwTO0t4zdQFhX1vBE9pbdmy/pppH143vm4weGbiCkGdMO\nPLz5CrdmXNvRk4h5YU0LuIJtHEUMWSxdq2MiJSHRMs+BEGaW5Gj7HaV4rOvUq+5wyxIyJMPxw0yz\nU+8qq7M8l8uZ/b7j8jRh40y6nBBnmKcjJQv9IMwh0jYNj78u7G8PHD/O3N8cwDrVH4qOQdt0nC+P\nzMtMCmecdZTOEcQwZygrrCuMfocpEXc5YZ2mPJAKRgymMyy5YJPSS6ZrFF0uAsax5oJxDSRDTh6x\ne3LxFNdShh14S3K2Fg/mJbrpMzhyrAjFprHiZUNtrMoEUhWemyoIV71W5a6KUqi26pJqHUEljmrn\nXC26BEqErUjB1kIpbR5das2gU9EW87Mt0loRGq9hzgS1gdVA5GoxkLMWX5vmSLQhIceCaer4FHUg\nd436O25hyqV2RhorxFLIYhDHtfCKJdfvqELwrDowRCp/qOiMbCHRlUUopVo6KAeAALF2mca6WbNS\nkR1RdiDFQtvphkFDsrVA836zWQ91rKmha0zabJDr5kQRMPVsK7W7cit+UtDUBWuk+oCV6881Rq9L\n9VcvyFxOhabVkHS0plNE7Vog1eJy87rK1HdCrp5ZmyaNWt+JWKV7TTWt/e8OySqFsCatFivsWtgI\ncqDqCSienAVjehpTSG4hTkVbq0Qr3K1VtUj5pKFErrudnBMlR/qm4dXhgImF09NMDBNryGjgsaVp\nBhrfgzWEoIGtOSdySurU7Bz7/Z5+GOg7tWBouw7XeIwzrGFlHEek62iajh++/2fk97/n7uE1nXdc\nTkemy8Rvf/uXnC9HvDVMIdF4h4glxAhA1t5qMBbfdUhJ3N7d8f0//yPz5cLOd+R1Vp+U2sVyOp3J\nMbLfNyxzgNKSSibEC9a2WGDsPGvItL0npczlcqHZ36jdQ0i6MJEhZuXvQ2aeJ0pOTCEwLyt3d3ca\nIXQ84Z3ndDwRG6WicohY5yhxYfBeC9io1+IaQ4jaoVlKIa4rxRocYH1L4yxrtHhrcW2mLwbShKT5\nRZy6cfAieN+SiiMbwbquivV1l64WIA4pllIc2fb6uW3VsdlZxNmK/NjrzvbPfZRcWBfdPHS9Jy2x\ndk8ZRPSZkEULyQhISzfeEtaZvKJjoqgWC193pvkTah1zjQKBjEiibzyvbw844PnjRFgn1rUaCmZL\n144M40Axaii4hkRE45VIapS4H3VMtL5HJFczW4d16se2GwZwDU3b8fuf/wV5/zM396/pWsv5+YnL\neeK73/4ll8sRtzdMc6RtHGI88xqJWV3lUwbTeYa7HTlGejPw/T/9jnW+sPMtsY4J5w3GGi7nCylF\nDje3xBBxJlc/qAvGdYgUutazrJm2sUTJXOYLXXMDxiEmEsKKtYVwmrGtFufTslBy5OnXI9O08Orh\nnrSu1RvO8XQ6UrIhxgSp0tx5ZWgc3hnVZhbB1ciVpmkpBebLTPaWphPavoNkiEkpJy/QZYuUmbJq\nQ47iVIlSnRS7rickpW6wLeK9IhbiIEm1ajCU7MhGx0Q2raKlon5xyqGoGfTnMCb00MXet5Z1rv5K\nn2izNo1VyYVUtiy+rYOQbW+m12PKNceurhpV1/VSUl4dw82LVcQ1mLoiakpD6e81nJoqXM9XvZAK\n0YtueHixc9g62jarB+81aLlcqzxFgGKsweKbjUCFa+LG5FS7gcZbbcpIRsGJrFR0gdodp2iWbMq2\nUrskRalAIwWRQtxosXrPrwjOVpfUYmTLOwxLVNStZjSJFNa1oolWnd83jynZCtFUwJlqn6OFo3EV\naaNcf8ZWz2z301jt5kyxhk2jxqi5VF8tUeE78gneVBGvP/APu34oV2PZzQZo09dv9wjJL0V9/tPe\n2M+kyEKLrJw1UkLgqkKzTpsJipDE4ewmdgNv1ecnR9FdWUwvdGFKNVFhW40hl0QICzFF1mVGcuL+\nsON22DNNEx9+DXjXYU2m8S2lCGFNGg9jVODunccaDXftu4GmbblcLhxe3dK0nQoikzpux2nCVE+s\n2/1IjHB+/MibL7+EHCne8ctPP9D1A2Gdsc6xLAHvDcM4cnz+lcbqS5gQqJ13IgXvHIsYHp8fGXcj\nyzKRyXRdg3OZJUQul4k3b+6Ypkg/7JnmGdeo5cTNzYHp+cTz8zP97g4fIp2xLMtSO0oqXF0i82XG\n9B3LRf2RPnz4lcPdHSXpQjWHiOkGXBHismAsPB+PpJR48+YNiRmTE7vDLRmlRkAHp/dqQruukcs0\n0Q0jrtthXIsYSz8MdNkQLyumGEqO+nzVzEk3SiWTq80GTafFFUb/m43+KpaEkG2r75TxFGsQaxHr\nEHHVrPHzWExK0Yk1hkJKC96pI3KOBdt43fEhWOtx1kKGnIRu37KcIiUqXH/VXFijiFSlU7VZw2jD\nxzITwv/N3Jv8WJbl932fM93hjTFkRI5V1dVsNmk2RXZDNAVSpkjDC0O2IQJaaCtvrIXhvfUnaGvA\ngAEtDEve2AtbsGwYtgEBNGGJNqUWm2yXeqrqGjIrM2OOeNOdzuDF79wXWU2CrG43yXqFRGZFDvGG\ne+75nu/vO3gG36Fi4HA+ZVHN2O0arq4GnKvROlK4ghihawd8GOQ9jAFrDYW19O1A7SoZc/UdB+Uh\nRVWhrWEIAbxmCDu0LQkhMJ9MGQbYXF/z6OkTkvekwnJ+9iqviQ5jDE3jsU4xWcxZra6pnUElQ9sp\n+h76rqcsLGXpaNZwvbljfjinaXYoI6J8YwP9IOP9h6dP2DUDk4k5lGZ5AAAgAElEQVSEhdoK2s6z\nmM/YrRtW6zX18pDeB2pl6LpWFGxasrASkXbXUpQV3WbLZFJydXPFwdERWksRe9ts0LHGKcPQ9mir\nuTy7wg+B0j4gDomGyGS+JERNSkFqvlCoJFkL/eC5udiweLCgXC5ySK6imkwog8ZvewERPsipXMNY\nXum9lwOFK1GmFK2h0kTk5xAU2hiCkTWhjJFaJSumlaRMHv/+eKORP+/HGMw59BFbiIh/Pybbj4CQ\n6z1IbpYtrIyTMpga8460EtnvCLBI2aGWUq6iGVkMss7rzZFi/r+sJ90DqrxzpzCO//LmPVbIRMmJ\nkvGd/BCiUMCBD/fxDfvy5jcPflkPJCxcQhlDUtK8kbJGte+y+QdZ974Pe81XSilXyeXvnxASI+s3\nE6LfEmA0ji2zDMfqLMm4d0omsmNSrK+5KFsc4GjQFlA5jDWbLsbJn7aGvrsP+yQkidmJwsBaq4km\nShxDlNeiUDSrnqKWAPGU+4cEO2UDQWYixw5KAcfCkqFGTd8bNOYIskMaicj9B50HjvKZZt3XWGD9\neR9fCJAVQ6JpA2QKXlh4nUWGWdRHokTjtMYohSstWkecMyTfkqK4EskVLQwdRClaHvqWvusYhp6m\nXZOIDH2X07AVyjhqF3n6+JRXryUOoSxL+r7Dp4S1jt4HpmUp//7gGYaB4+MHKKV4cHJKVdUkpZhM\np7Rdz+16TT2ZsLu+FqeUq9DaMp3O+Ph771GUJbP5nLqes93cEn2Hq2usEx2T95EQNcV0jtIFUy0u\nvu1uR9/vKKqSaQo0NtINHV0YmJQVu03LdDrh1dUZrnAsl4e8fPWS00cPsc6xXne02y13dzdYVxPp\nODp9ynbXEW5XuGjpup5JWTEMO4gtUcHN3TXr9RprHcuDJc5Au12zudswtAPTeiI3qTKy222pygI/\nDHxyfcmD42Ps8UM64xh8pF4uaduOpm8py4rCGm6uroQtTNmCG3sUhsIWxEYxDIpK1YTs1olxDL7T\nFEVBKo9RtkaVU9lQkiFhSRGGnNOSFAxakaxFaUWtLNoUGFtglcFkOf0XYTQSYwavRizW3T4JWUGb\nSElDCgxJUTqpOCqnjmQiVilZE8ETvfRpagJJ5TUxDITUs77bEsLArlkh/YBdFnULeJsUkfrZQ16f\nL8W5N6nompYAOGPpY2BaV6jgSe1A0wwcvXNCTJqDAxGyhwjzekoXPJdXV0wWU1avLyWpvahRGJaL\nOR9/99vYsmRxcEBVlGy2N0TfUk5rtLaUFJmtsTg3gWSp55pi09J0Wza7HUVVcXSa2G2gD61kXcWC\nzUqqf15enqGNYTFb8uLlS04fPsS5grsbWROr9S3W1YTYcvzkKZtVQ7Ir7NzStR2ToiY0a0gdKSpu\n1zsuzu6YzEsOF1MKl2i3a9Y3WzY3HYvFFBXBzoVdrsqCvun44fUrTo6PmRRPCXVFs+2p5gf0oadt\neqq6oioNFy8vpDhdQ4qBtmspCidgt1f4QeF0TSgnJA0hh0wqo3FFQXJHYGv0ZEbCEELWIvqE97Jp\nJAWD0SRr0VpRaou2DusKtLIYNPYLNC5UOuFc1kB1PjNS4k4bWaMYyEBCmA0BDnmcRGaihnvh/AhJ\njBNAoiSAa88apXGTHXHOCMQYAzFHk0kGTPmRgjBbxoh2K0VxEMbMwBinCYO4guMQsiA964ayeHsP\nYjLYSkkiJeKecdGSqeglTCqN4m9G1lpR1lY0ZWSd2BD3rxGVCH3E7GV3eXga7hPOEyOjlohDDnbV\n8lxICpUilgw0jaXdBYrKYFLYj+SU0bRNxGY2yxqTDVDy93wnoKewhpg1X96LA9DkaiStEkPrcaVG\nW0GpQ5eT4DNFqTNCGp2aIX+Oerw2ooxZx89etGH3RopRm/dmQTi8weAl+b0fZzV8IUDWWMyqc69B\nnupKmquXED+FBIYRI8kk3MhCUOYaBNGfoDMMjglUwIcsGE5i8d/ttvkNCxTZXSf/vrjTFotDmmZL\nP7TZdWOwVtEHObX4ricqqKqavh8wNtG2LZNqhgJubm94+tbbzPyBuMKS4vrmhmU5IZFY3d7ICbLv\n6FtLUZYoEtbAbD7h+vaGrttRGEdRTug7cQeFEFDOsjhYsr6+4vbujjB0pOzy6pqB7d2aST3h+uqW\npunxIfD69UusjXi/4/puRVksOb+4YDmfcnhc7S3IVVVTuIKQEkVVUlcVoduyXe8kQyx6trsti+VS\ncpl8YLfeEIaEIhK6XoqnQxIxrjPMJzXWwG59K+LaspKTe3YAjnUXg/cSTmol9iGlhFGB5KWIWphB\ng7I6Z/ooVJKSbbTGFgXJVSRTiUtVOWISI4OcYgIpA7hgFMnKjcloizNOyqoj6KS+MGxWShD6RDIK\nXQqLGUKQEUMK2bEjN8EhRIyK2ABF4dAm5xqZgaQFZJGCpAEqT0hJQjKzGLrZ7XK5a8BF2cCiNuJ6\nC7Imdq+3NE0DJLSVOgx6iYQI3UAXYLaY0XcdRVXQ+16MKX3i8uqKd959h7qe4WPAHcDF5TUH9YwE\n3N3doNDEYaDdbIUtVhJPNakrru9u6L3FKodOJX0fs3A5ogrDbLFgc3PN7c0doZNe0abb0u46dmlF\nXU24vr6l6QesDZxdvMLaQAwNZ7evqCeHXF5fcHg4Z2YKiR9JkldnlAMlJdulK2l6x257h9KWEANt\nt6WoLP3g0SqyuVmhlMGYRBwGwjDQkxjajmlpOFpOJG5iu+LizHJSVMzmS/oU75kTLWxhPSuplcOn\nQPBR4rr6FmUNiSj5RlYOiSnb5I2xqJztl4qaoMrs3HZEpXMeVuTNNRGtFkG20hhlMdqhsRilsSh0\n+mKsCZAzrkoJbcQROWZdjSAH8nuYd0s/BKzL1E1mKWQkeD84H8eHIxOmM9NCHhntGbJxXBSijJci\nmUWTvSv4uHegKST6QLRUEeu0PHejcgxDwqjImETjCp3zs3LOncrsmlZ78fwoyJaQU9EVpRDxAZyR\nEd2+Iien+ysQx28QVml05I1uQ7RCOcn0SiFnguXqIKUk76vvPCRxV459l8ZpYlD7cuvxSYtWUUlQ\nqM06NB+xhd2DM5LIblIQoKm1hOf6PjJkECearcSbH1KIEVdpTAaZghlyGKrLuWM5Iy7X3Gf9FIAc\n3veAagTOkFPtE+mNq1yN73/+/sL6yTgz/2uf+5r9QoAsAKV1bueWK1twUsx6qCQiQRRR5/krWmhX\nVyHVOgGlZVyoUiRhIErfW9jt6IOn9z3eD/lDFXpWZ5p28IFAYLFYsrq7RhHBZQo2RLQK4ipK4ArJ\n0dE5XbwoSw6WS7TWNG1L6Du6XScgy2im0wkXF69ZrdeU1ZTDQ2HALi4vOThe8+jJU5rNFluXaCLn\nZ2c8OHyA007CQa2mKCsm1YTGDwzBE/zA1fUVxmgK52i7htAHiqJGKUWzS3g/EOMtZW3owkAIHYWb\nEeNAWRcobWgHz+AjRaFpu47Vasd8MYd+YLdd0/YNKYIxBScnJ2htuDg7Z7NaURcTlrMlQ+dxzlK6\nElMZdoDC0rUDyVrW65bV9gI3WbDreg5OTimLfNNPYzJzwMeAKSqMtQzJQxIAVuiCorJiUy/keccE\n1kkYrLWOqCuScShXo5QlJY2KFp0SMAg4zzU0GIvTRtxiSXJjjBYmaxw3fxEeUmkk75G2Oo8E5fMK\nWW/hgKSinPYwhGSwVU3yBpIDnctiYyR5hUoDMSmiahjI4/M4yEYaodBJNm8iPgZiCiwXC9arCSBj\nZKHzE1oHYtL0AYrJBFcWUlJNwjnHYrrALA3r1Zboe3zbMmRL+nwx5fz8Fev1lrKqOVgeo7Xm7NU5\nDx4/4PTxE7rdFjcpMCZxdv6Kk4NT8IakoCiEHZ5UEzrfsyKQho7rm2tAyeiwaaSvzNQordjtEsYM\nBH9DWRtCivi+pa6XRD9gtXSX9ikyBFkT/dCzen3BbDolmoFuu2YIbb4PON798inea85enrPdbpiV\nFceHh/h+IFhHXZdiRe8jWlm6zpOi427Vsmov0eWC9abj+MljSqyAWy32+L4Xdl6XwuZF5BDjo6fQ\njqKao03CFqXoqzIDqQBrHMHWAsBMJXVRWhGjFXYsDaBirhwBrSzWGGmxUCI0NkiO3xdkOQB5L0+y\nP4xarLFKZ/9Ex/oVJfR1inlzHDVVmQUSIiePAVVCOZPfo/vspeCzs04La7QHZ6MeKWu4ZFyYGRAl\ngbZYSyLl6IcobjykcNn3OVR7H3qZ9k7GpPIai2qvXXI2F08rSGbkqXKCeRSNptIS2yD5Vm/ojJTK\nBiBhL3MM1f6RYiLEPEodOwnljcW3XuqJ7P1EaQz9JGZYlceLWoPTiaJQDF2SgnKl9jVTCgGRRkuQ\nbPJygEwxA8M8yvODyG2MNfjBCzjVSvaKPT2VR4LZfHLPOr752tI9ezV+aKM0L91fLnnieA/GQMab\nY2+lUvtriTdYy8/7+EKALKUVtipytlGmX/OGF3cDu20vF6iyMtceFGhHH5WAnYIsTEv799FUB2jf\nouyadnVBEzrabkXT3mJsSVUv8VoG09EHQpQfJkQO6gPuVtcMscEVUyKGwjkSinI2pygKiqKgLifM\nZjO897z4+H1ub67RKRE6xG2oLevBM5nVJO+ZlFNm0yWFVbRdy+rmAuc0v//xh7z19tus7q44ffyI\nRenYXl9SVzWz6RyLxiRHZaY0fovFcXNzxXp9jbMF59sOowVsXN7d0LaeysnVFD2sVwOu8Vlj9imY\nxMXNFR0l88UxHz1/wYNHj2m2LUpVbM5umExqrm7O8GHN4eERy4nDd1s0hutPP6VPDa2q2NzdMqsX\nNDT0/Q7txBRw8uABhweHdE3D0eFD6vmMy/MzyTvREW0KJtM5yU6pyjldE1AGTFVii5JkJygMk8kS\nEwrJPdGKkDveFAqPaI5SUaK1JWktOiERbZGiwihF4cI+E8UYs/9Za40xJqekq3v3zRfgobRCO4ex\nBp3HIeQbZ+w8za6XLKilwziTC2QLfK8oqhJdImuiktetUej6ADW0qN2Gze0FXehouzua7Q3GiXBe\n1kSC0BPyutAhcTA54Pbmmi42FOWUkAzOFfgI5XxBUZZUhWNSTZhOJvTdwIuP3+fm+kbSpDs4PTxF\na8v1tuf40QztB2pbsFwspei7bbm7uWR2UPAvf++HvP32O9xdXnDy9DFzY7l58Yr5wYyqnKCCxeqC\nys7Y9lvSYLm9uWCzusIWNZfXPVqBs5ab7S27Tc+01CQMKcB2l+j7hhig95+SdOLy5ppO1cznR3z8\n0QtOnzxmu2kgVWxeXVFPJ5yfndENax4/O2VWGPphjU6G21cv8c4T25Ldes2kmNLstigX6IeEjpay\nrjg+PGJ1u+Ho6DHzwxkvLy6IKleJGEc9mRPMlNLNGAphEnVRYMuK5CwETTVdoHuX2X1NKCo5VAAh\nHwopSoxxRDTaONnAkiJ5cIUhbnrIgZSLyoqDzdn9mtAqC8rHAsAvxrLImUY5VuENkXkadUtRog72\nocR78KX2ZdDjQUpB3uAzEOlygnxK9zlJbnSpC0O1z1bSb+Zi5e8Tx5SBnDuWRuQybuSyUYco7kEZ\njkg1ztBH6lkuUc7uwoDK2iuJNoh99vx5ASGJSNcnXKWlLNoI06R0TlkPiSIzNNpmr2AmFbSRPCqt\n9Z6d0vnwGlNEj32Zo9PSC+OjcgRESglypqHvEl0XqKaWrhuDb4UR1NaiVSSEuGe47MzhezkoxiBg\ntW8D1okUKGIyEJZRYMqfR4pJ0urJjCbsw2OjT/tw1pGpHEHWCMBTGuM67hHSeGg0TuPb3IEYwRQZ\nbGdAta/0GfcH/fmv2S8GyFIqd9ndP3OdaVPtEsp4hqFjtempgiUVjjB4qrrAuooxzTYo8WtGQJsk\nYxXj9nkcIXhi8tIqryJJi7VdTnMy8ordgLGaoi7Y3K3QhQLlpCLEiEBVOQjDgKqgb3ti7Dk/ey4f\ncoS+SXRNx3S2oAuwWd/mupvIpz7QDB1Pnj5BpcTV5TlDDHz66gVPnz7j9acvePDgAV6JE7LrWnQp\nRVJts6MsCpYHh2hjca4i+UAYIJBYzCdsNhusidDrrFnKJxAjDrrNtsU66IdAMdnSXnQcPHjG3e0t\ndTWTrjktN93Nes1sYei7nk3coFFUhaJptsS4wesBNTVc3F7SdV7Ygs2Wn/nyu3z8yUd88MOeunQ8\nPD3FdVsOHxyz3a3p24a2X5FITA+mNF3DttlRzxcipkCTguRkxWRRtsJoS7SgVSG/n5Cbn06SbaWy\n5Vw7QGOSOGZSSujMfoKAK6HMxTUFIsYcAf6YefOX/VBK4YoiJz7LJmCSZggKUypoA4NvubzYcXBc\nY0vDdttQ1gXalGINB2JeE0mBjhFUJA4OW0jgp4wevYBNE8FY6YH0kjgeup7QDhijqaYFm+s7dDED\nVdD1O6rCEnuPKUriMICP9E1PSgNXFy/yzdPQrCPdpmE2X7DrIeot27st293Aiw8/oYsDjx8/RsXE\n2avXNK3n4xef8Nbbb3P28gUPTh7AzGJcIjBgUfRdoNlsqKqSg6MjPv6wwJYT4uDFlKEU87Jk2+0o\nXYJGglCtM/Stp5gUaKXYbBtsofHDQNHJWPTw5Bk3NzfU9ZzdusNoQ0pwd7dhuizYblpUnbBAVSi6\ndodvdwRbM5kccHlzjU9ivlndbPi5r/4Mz59/wg9/+AOqwnHy4AHbfsbh0QOafsv6akUfI4enidly\nwq5r2Kw31PPsblQGosEaR8KiJzVEQ3AapYucQ4doWFVEWSdrIgFZ9G6UJjnZrKy7r5sxJifRK71n\na8hlbeqN/75Ij73jL58JRLct6923gXJq0cR9PlLw92wHcK+5yiO2hGRSKZOBV27kGGt7RpH6OEFK\nuWha53Feivfvj7ZKtEtZKB796FCUUVfyMYOcuP/3xtgCbU120KZ956LSwqj5IaFyb2mKwqKZqbhn\n4xh5EBLCOEuRvB+TzWPKInSFb3Jau1ZSgq2EsfQ+YKzeZ0Vh7oGrVMDdp52PAZ4oiXgASXo3Vmfp\njYCnmLt9VJ51FqWMBUmKYpInVzHinN6PACX41dBuxDCinWiulMp6snwtjmBqHOcal2MaMngdX4as\nC+6ZwjdYKKUy0AopC+UR12kGuKSUTWA5fDb+KFv2Zz++MCDLWpsvjPv5t9aKooB6AiEENtsVfa9g\nOmE2qej7RNcnTA7Yo5CEb6UUXjlS7BkQy6yPkT74zP5J0bSUowrA8sMgFH8jmpJK1djGYXKgJkAK\nA1pryqIghEAYemLw3N5dk1Lg6vIKMHzl3X+LSb2QWARn6NsGb4AQ2Gxuubhccfn6isXhgtNnj5gs\nF8QY2G7XtE2DSpHTk0dcnF9QupK2dLl41FOUDq3muLKmjoHQSio6UcJDJ/WU9WYDgLEW76U4OQZh\nRZRqKYqCfhjwvsG5CTG0DK1GJ02hJ3gf8P3A0eIIUwys12vqowqtDevtTk4greFys8HTsTg+ZbF8\nSF1PWB4lTp88oyws2+2aprnjvfc/5PHjZ0xmBxSuptnuKOqa9eaOan6CthpXVfgo49sQYYiRsipl\nAykneBTKajQFkE+NUejnsNcDCFOhUFLts9dYqP01NZ5ktDb5GnsTWI0//vIfCoXLzIIiMhbjKq3w\nfaKuCsIwcHe9IYQedTyndgW0EWvFHq61QpUKqZsClCMNPQFD8IlhCLTDgFbkJPNIMuIYTSESvCf6\ngTQMOFtQFBWuKjDWonWuWkkerTRlWYjOIga6tuX27hoTA1dn52hX8KV3fp75bM522zCbGrTqST5Q\nlbC6ueXiZs3VxTXzxYwn7zxmcbCg94HV9S1t26KirImzl+dMFzOMMuA9VSkgYTZfYFxN4Twx9KRS\nhOBaW+pimt1+EWXzTT5oord5U2mwytJ5j/ct1lak0NE3BhU1Tk9IKeL7nidPjrFV5OLVNfPqBJJm\nvd2RtCLsNFfNlsG3HJ48ZL44pioqDo4UJw+fUhaWplnTdCve+8GHPH3rmTh7VYH3PZPZhM1mRT19\ngCs19aSSnsFSspL6fqBczMV5W04YguhprCmFuQ0QkZwhn8cr0uVq5eBtjNSvxIRysv2MeUXOSr2X\nVlkbi8o//xhH9r+Ax32LgTxEV6gy0zFOd0Q4XVZZ15MF35mSkE1fycYKwjzpzP7odH+vEDLqXlA/\n6nCE4VP7gFKdAc54+5D70AgG0l64no904lwcQtYz5dGTklFY3wZMZaVrMsZ9LIIyUEwsYRCRuCKL\n0qMkyrvaMvTixCunNkevSLZUGouoE1Jrg1wrKLXvfkWLPozxeaY88ty3Rej9pCjDzD3IracatKHb\n9hitCVGuK2NyN6IRMGesdPzEXKETfSR4Ja7aUQiXCZPoA0VlM3OWZJJhRfPlhzweTimXP5MF9mnP\nXO5jPfYGgfv7+h5svwmUhJHIoErva5b23yfruJL+8QAWfGFAls59gPcCdRFAO+qpEScDsG12bJsB\nlTze96KB6pU4boqCqaqwriDGyBA1wQ+0vaUbYAiarks4XYpFOiRSPsV32x3dbkfyAeccQTkO56fc\n3a0YusBiUbFqdsRh4PBogVYKWxTc3d3hvWc6m3K9Hnj7K7/Met3we3/wPu1uy2rT8+zLJ5wcn/Li\ng+fi9ho8fVvz6vWKyazlhx++5snbR0wWNc3mjtlszutPn3Nzfs6knuBNAZMCMylQaIKHrhs4ffQM\nnSAOBus0681KUtOHnrZt+N4fvochEbXm9OFbRKRX7ZMX/yaDDCsC9RC5OOvRbsKDo4fcNXdUxYTC\nafquoVldM5nOubneUJUzLs/vePmy5f0Ptnz39S2bCA0vxXEGFFpC4IzchyhLw+nDJ/y7/867vN68\n4vrVx/zMO8fMF1OevP2Epm3po0eVDlfPWcwPsNZhI5TVBFfMSG6KEVUvFpNPKnnxjTfFfP8UB7ss\nNFmUCuJnGVIYT7/2M8ArRfVjn1L+vB5KK8qiwFgJJZR6lECKjljnrB2l2O52bJoBLjpmMwGpzSDX\nZ+kKZqrCFkXOjdGEMNA0hn5QNK2i6xJFUQlXkYAga2JodzSrLUYlLBqP5Wh5yt1mje8j83lF37W0\nbc/D4yN0ShRlwc3tLb4fmM1nXN72fOkXvsHdquFffvsHhNhwddHw6K1Tnr3zhA8+eE5RQXPb0Lcz\nPnr/loOjLd/99gve/soDFiczmqMDFosl569ecPXqNdPZjKHrODysKZwhejlctE3Pk3fewcSEb+XU\n2YYdTlm897Rtw/e//R5aaaJSPHzrLUJSHB4d88nH/y8A1jliL6XXZ02PqWccH5zStWuqYoJRim67\n4+bymsXhksvzNdPpjKvLNS+eN7z/wy3vX9ywHmDHp3jkBmuxJDwWKB0UTnP68DG/qd7m9eolt+fP\neefZEfPFjEdPH7NbtngVSFVBWc5ZLg5wxqL7SFFWuHoGxRzlFaZyOCUblrJ67w7Ns0MBCnlMJlmk\n4qAdxy8oqIpxPAMGu9cAxqz+TunHkfn++T7SqL+Ce1CTNVpZFIVxAqC6JmByj+CY9j4ubsnPGzdc\nYYAUIhI3TudKl3vGDGSjHl2AwyDS6pEFy5Y/0dP5iNFAuh8/jc93CDKCTCSMg6KAoQnEoAWcqYR1\ncpBSURHagCsVze2AKS22kBytsUMv9MKYDV3AVRalEn6I+/GWLfUejAw+UdQG3wlLF1F7TZM8n3xd\ngExlEHmCJt27GUfN1hjAHhKEQCJSTzR9m0d8SkDo6OoTgOdBCWj0PhsW8giSGDE6QRIXteRgkYNS\nc2I9WYdm0hvj3kgcR9tZVmGcTMGif+O6zUGrb2qx5ELgHiCTsl9Ogm0T7JP/RTR/f9n9OGfxPxNk\nKaX+a+A/As5TSr+Yv3YE/PfAl4CPgL+TUrpRAhf/C+A/AHbAf5xS+tef/+nIY2SzJAZf8lyKwlGW\nE4wRfU3b+/2FUnopT60rR0BGK94ngleEoInJMHiwtoLQoSKSrKvktD50Pd57UowU1qJNjcawnC65\nvWuIg8emRB8DNpc5N00jYDBFdm1HUlM+en7J2asL2lbx5Z/9Co+fnBLNIbN6xvpacXN5QdeviLHg\n8PCIfthB7Gm3LX7Y4YeG9WzO0dEx5dEJV5eXPHv6jLu7W5xbQLKizUmR2XxJTIlpdYxSicn8UIJL\nga5rKGc/pB8Ck/mMw5NTlJYsqKPjR5AGOVG3K4bU4UrNYlax3dxi1Jy7u0sePTzh9ral2W7ZrhuU\nmnJ784rC1bz33kte3ChWSbMDBskXJ5BoR54YGTbEJvHyo+d8+6Pn/Kd/52/iG8vzj1/y5NlDZss5\nx88S0+mMPkbq+VJMBaaUsa41OSgvn6hVdjopce4YlU/qKFIK7AuWtJwYkwaRXd6DrPFEo7KL8E2Q\n9XkffzFrQu3n/5KiPHZ4iSPHDIayFAeq0pHoPU0nTFJQhqLUxMpQ1y7/M0pOukEToyZEQ9KaajIh\nrDpUgNB6opH+xyG7RX0MWOvQrkYrw6JesNq0kkYfIiHJ77uiYNfscvFwYrNr8XHCBx9fcHV1xW6X\n+Jmf/Rm+8SsPSPaISTXj6kXk+uacIYHHcvLolMiWwkSS9tycndHttqwXK05PH3B8+ICrq0ve+fKX\nuDi74Ph4iVE2i2YTdT1DG0V5eECKkaQ6qYUKibbtKMsf0nvPZD7j4MEJSjmS0hyfPCYlMXoMfs3A\ngNKG5bxis77BmQW31xc8Ojlmvbqg2W5ptg0xTvjk49cYXfGd77/m+UXiOmkalKwJldeEbBsoBdsI\nNJFPP/yUb3/0Kf/J3/73SVvDJx+95slbD5nMZzwqNFU1oe091WSB0Y7SlaRSwpJlc1FYbcSyHsEq\nxZDXxMjOBvz9JmPEap+0nETGUZg2GRzktcB+XDie9n90V/rLXBP361fiAvQbmhkg3afAS5K5bJQh\npBxwTQ6YHHU7I4slLzcmybLSVu2ByAhGVe5m01pGgaQMUFtua60AACAASURBVMgbsRkF4fehlWMu\n1ZixlkIkBNBaXIfBB4ZeAJ8xin7nUSi67YBxBu8jtjIYB25icJVlaAZSEpCmrcZWkqTuyvH3yG5H\nOYRJYrohRL8/PMr4MJKCzreZ9BmmbhSUi/NRugm11sIgqVyunJlAkbLKgTcMQN5/w+ioDIkwjNeQ\njE8F12XwpUUTJ9exfKajYz2l0bWYMONBIKT9+NVoMIWWEvSYP5McGfHZsNGMx7Xas5cqE6LpR/5H\nZ9OAhMSqeyA/ym7Gf/OnPC78b4D/EvjHb3zt7wP/LKX0D5RSfz///38O/E3gZ/OPvwb8V/nnP/Ux\nbgJC62lsnoMT5BmaCsrS0aeOXbPD94bQhyySF5jc9R27PlGkCmsLwiB6qb7taFYN3cYz7DwViqQj\n281KLP3B03U9SmmMcyhTUagCjeXo4C2sW7Ntt+hqRhoafNcyLaZ4Ol5fXNJuA8HXfHTe8vSr7/Dk\nF3+df/Q//nP+h2+9x67/I340HFbMbWuWCh5ExaNCcXO54eRxTdu1NNvA6vUF66cvidYyLR2zcsrq\ncktZWQKeEAcODhYyRw+RolowPTwi+Ui/a6iOCw7/w6e8eP4p5xfnzI8eUZbiOmzp8H5Nii16MPTt\ngI8dRXuLShqjIwfTGd9/75ucna+Zn54wdTW//zvf5fxm4Kbx3DKhTQ0nyxqs4exmzZ2yeG1wvsdn\nCp+EnAgSHDrL//JP/zd+62/8Mk301HXBq49/wJe++nPocorSNeXBRG4M2qI9JK2ymNMQkoZgATml\nKKPwvgckSVhFg82zeLI+QiOW4Zij/6V5fQRcaj+7Hys69gDsC7AmxucY8wh1zLVJAdAJXSXCpKQZ\nOnbtjhRKfBck0yhFtEr0oWPbQRES1lh8B8OuI/Q9zbalWw/4ZsAFRVCRbbsioPA+0LVd7i4sUKag\n1A6D5cHhM4pyw6bdoYopaWgY2pZpMcEmzerygqFN9E3Jhxctb/38l3j481/hv/0n/4J/8ofv0fQB\nP+7f4w1MdNosURx5xZNSsbpZcfK0pvUtTRtYn19w93QBRcHsdcFiOmdzs6OqLD4OJBU4XC4oCsvg\nE8YuSOJHJg0dLjke/K3HPH/xKWfnF8yPH0m1DopeDXi/QtPDeofvBiIdbXtLQtihg/mM73/nW5y9\nvmPx6JTK1Hzz977Lxe3AXRu48RXetDya10SleXW9Zq0dPmmK2BNI+NxFOWb4nJSO//V//j/4rd/8\nOlX0TCrH2Yc/4N2f/SqOEm2m1MdT0IpBFxD9vr9OG41PMvJMaLSSiJt210oitpMuWINsOMkDymCS\nkQmgFbZCmBkH5GDLPIZPOalb6TFt6YuxJvbswshgjThwrPfIDIvSCluqfWTBOOkS9yAknyDJsUyM\ngKJ/SinldHO1H0XFzPxJBIpctCoD0BGPqvFeMgZypXtxtoydEIBlM0sTRNSUEGYLZG+ISFhpjBGX\nmaW+EQY++oAtNYPPRskoRWDWauIQcJVh6CX7LPpcBD26p61GpcTQeLRRuEIcjirrNVMGPDIqvE89\nt+Y+YHQsmTc5J2wEniH3LoYAONGHaZOBltUyxg5JCBD5C1JgpiXigeyKRNssUr///uMHHNrAGAyr\nrTzPiABl4+R7wf3fGTGQdEqKLk2Nn41SJD6b9E8aA1ijVCW9MXaM4+c6Mp/j+/U5H38myEop/a5S\n6ks/8uXfBn4r//ofAb+DLJ7fBv5xElrg/1ZKHSilHqeUXv3p3+OzG+B4EgOFDgHrnIQtFgU+eIxS\nNEOL1oqqKkVXkSAFhVeSAaRCZMgga7fd0Xet9B/5SAySHTSyx8aMtmWHdRanJYhPGUsfPLtuJwtS\naYaQ8CnQ+Y6mTXz3OzdcX1/zzjf+Cn/w3jnf+9+/xcUuoiTGj4j/zGuNCpwHpS1dTFx3Impc+x1v\n9RNW7JhXGh8HDh8f4vsdbYoop3HFjKbbMZlOiFHRdR2z2QJXllLe6yOlK3DGUM0PMLai95HJdCI1\nG95zeHDA7V3HyckJ5/2O6BPXlx1tu2Jaz7BLSxsSMRgOl0t21yuuVmd8/LqhDZCsQccBRWJRw9NH\nh9Dt2Gw8ITp8GvNnBBjY3Cf5a3/16zxeFrz79inKv+atZ0/55MMN2jjqyZT5VDrsQoqYrJeKSbJj\nUhikDkTlTLN8shBdVaac31Q5/sisfQRRP3Jd/7GN4/OyWX8RawLkhqsRbYjOEfxJKUwaRxVQVwU+\nDOA0oZeeycI6CfFLijhAUIk4eOEbvadrOtpmR993meMTvZ9OUZoFSLjSoZTOjl6H0yVaGSbaMaTA\nrhPtoLDJMMRAO3TsGvjee9dcnke+/Ne+zr/6o9e8//IPuNhGVB6egf/sgVCD8bIOhwTn20jqIleb\nLW89qdjVLVMLPniWJwf0y4ZtjEQNZb1kt9swX8wIXrFud8yXB9iiQluHChFdllilqdUB2tW0Q6Ke\nTChcRfCeo8Mlt3cdDx484PV2jdGR28uOprllPl9iF44uJFLUHB4saW5WnN+d8fz1jjZAUBrSQEyR\nqU08eXiA8js+2AR8tLJJZ1SZ0BQqQIRf+aVf4umi5N23H6DCOW+/9ZTnH6xRyTCZTJnPDrB1QT/I\nqNfkxPcUIz70JFPshcNJQ0Lnzw1QSdyEmaVRkc+cwsdRTtKjgFuCMUfGbayNGculvyhrAqX2guY9\nuAEZB0aQlICsgTL3QZqjwHsUto/3kHHTjGMMQBJt1yh21rngUP7um3KCz2YqjWRI3sPBiNgeLdEo\nMebYiUITsqh+/CzSHlGMQ4CcTJ5k7UcFfgAdlRQsm0RRS4p9jIrUyVw4pawRK8y+jzCmROpzQbZi\nr61KYxwE3L+ZkRzqyr3LMgkgVXl85n1C52JzxvtuHuOJ2zBfX16YoBikf1CRsMU4dcjsYf7WKTON\nMqQZGagxWkNGgSEDpZREBhK8jDA1Ekkh2CpJv+T4xuZxp0lZHffmZazUHrSNrsE3HalJqT1bN4ro\n70fOn3+vgJ9ck/XwjQXxGniYf/0UeP7Gn3uRv/ZnbygRBPiIBkRn54C2BpU0Okn2justKkSclZob\npRLJe5Q1ImbNWUImDpgEDJ6u2eKHDqUyBZxy4FuMqKRx1qHQGG0oXYnTDqUM2kJVV9itxbhSTgwk\n1u2OnsD13cD5RWLbaX7nWx9wt2up5lMUO7RymJTw+21rpGIVlkSFIwGXUcaUvTKkj3YcTDRuYYHE\n8iCwWd2Q6go3KdjuggSwKoUrSsnSGTxuYiRpzoqr0hjDbHaIx3B4sqaYVqy3G1xRMJvNGIY1CgGW\nIirUrC8Sjd1ye9GzWC6ZLxdcXZxx8dEtqXAMpQFTsWk7MBEfwbct1q85cJEa6FJgGDsb8odqVOLJ\n6RGVCvzq13+Rjz54j7efHkhVSYpM5nOMKXC22J8qY5Tw1RATwYMr54QQcEUhpwkUxtwznnJGkvc2\nvfFej3P2N5mq+8Xxx0EX3I8jfoLHn8uaUAYGHzB67GhTImDO9RSFc7gMSgdrIQUJ7Q0eXVhUUKQe\niWKIAyokYudpm60IxIdAoQXQGiWnXpWk5UAryemqihKnHCBroowVWhnqSZGrLxSbrqVPgZu7gYvz\nyG6w/LPf/z6rtqOcTtGmhWCxYjchpSin2HyjdygmuhADCQo8TNG8eN5yMDMwtaSQODhMrG+v0AcT\n3Kxgs0XGRgrKSUXYQdsNzEqRCWgja8mVDlce4I3j4MGacjZhvd5QOEtdTuirGp0PWe2uQynD+hqa\n9Ybr85blcsliueDq6ozzj+6IhcWXhhgczTAQVWQAku+oWPFwmni5ijR4POKYBRnZuQQPT46YuMSv\nfuNrfPzD93j76ZKu3YFJzB8s0bbA2hKjNDEEbCHVYylJRYlxM4boKcpiH4yp3lgTMfoMvFQWQMc9\nGzGCDpx0HIAEP4+6kx/dPoz7icXvP/U1IeMoIH5200zjBm0y6CGLqX0Wru83X4SByhvsGHiZMuu+\nHweOY8nEfvwnBdsjkEr7A934ezEzS5Ihl5nxTAOmBKYwDEPIkSzSqymhpGqfzyWAK+2fv9bk6IbM\nzhtN0gJ2kpdDmLGaIQSs1Tgn//YYW6CtiNzDyNrk5PgYJYdPwIuWXCg7xlVESYHPVU3a5nwqre7B\nzP6eKteYrGW5f8Re2DKf09StlTegKBRtmxs90huTgwxSR2CbshZw/F5iBNeZ6FD7EaNxwgjqdK+b\nyj1A44fL2Fv85uQ7MY6PR3Yq/34W6Wf6cs9Mjpq8/UNx34X5OR7/v4XvKaWk9lzt538opf4e8PcA\nHj9+TEB0NmP+hs5zWmOtJH6nxLSSvKlBJ3EpRPBDK+nvFPimQ2lJWe6aK/zums3NK3bra3zbyAnA\niRI05JA6mUsrXOGo6ylVWWVgr/EmsbAL2r5l0++Yzo7YNjuaoQUMq21AuYJ1F3m+bYTqXa0xCuoC\n8JFaOUlIR+0zwB6VitOl4vy25awXVmLbBxQlw52lWXU87D0Jz8IoVqmjWtScPHrGfHGMUpau18wX\np/RxoFockTDU06kkHceIUhOOH814+Owdfvjh+6iyYjabsV3dsjQWowPDkDh7+Snd7gbjI0OAR48e\n0LQNwTd87Ze+zjc3r/jdP/ou7wOeLQqoUDQsmTUN9ZXnN/+93+BLVzf8n//i26wHuSHplJgUmr/6\n1Xd48vCYYXXL9//g/+HocE63WfO9717y8Mkps6MHBF+gkeA55ww+kYMRHV4bqrJkiIrBCwMgD0NK\nkiIn1Q96T2KN/VJjhsoY25Cv188AqfHXb/7+H99mfrzHT2tNRCJEyZahtPmGL+PDpOVGOq0n+G6Q\n67mOeA/90OG0CGlD1xGtJ/QDsbkk7G7Y3Lxie3uFbxsKm0hOA5LLQxwwGEIPtrSUxYRZXee7tKFX\nkfl0QXvQsml3FPMjmqGl8x1RGW43gWQrbrrAy64Fk1i1G0xKOB0EeCfJNJOTo7z/D3TgyVHk7Kbn\nfCfi2V0IKF/iby3NXc/jwfPSXjM1ifXtS6ZHNSeP3mY+PyImTdfDfHEidTrLQ5S2uLLGWiObaqg4\nnMz49Wfv8MH7PyAax3wxo9nckQqHMZHHQ+Tlx5/QNXeYIeKj4vGjByJTGLZ87Rf/Cu32nP/rj77D\n9yN4xORRoWjigqtdS30Z+I2//us8urjhn3/zPe56JcX2KlEZzTfefcazxyek/o7vfev3OTiY0a5W\n/GB1yenjE+Ynp/jB4pyl2QwUpZXEd2tJWKKzlLbCaS3AK4uDtZEYm2y6HY91n8kUinljsc6RMvAK\nmdUaWR2TR5JjJlT8gqyJ5XIpWU3kdTqyV4p98vuo85HInnvnX8pUkzDgaT8yGkmckbUIb94fFBJ9\nQ8Ig+xNJ7RPcU4rs55OMnbsw1tqMjMtoqAleQoO1AkM2X/ko/ZFDxFWGEOV5aaPxvWizRBguY7EY\nUv52AsIUcr/TSHyBsXnMq5IEnu67fuU5aQs+RIzLzRnZvSfFzHHP2khJtXwfrRWpDxmY5GBOjbz+\nEaBmIJIiAmitkoYC4kh6MTRy/3aFloww5L2KHmIfRPtVivYrJtlDxgR7EdyLY3HoJCcs+pgZRJVH\niPn15uiF8RoZ9VTjjEXO3mnvZtwDsHE0nsgGgCx2V9xr+Mbn/WOcxX9SkHU20rtKqcfAef76p8Bb\nb/y5Z/lrf+yRUvqHwD8E+NrXvpb24jUAxBWiNNjsriJJr6EzDqKnk3dCAG6K4jbEo5MhhZ5mc0lo\nrmh3FwztDpWiaFuyrVkZiwoaZUdnicb3HlVI0iwKkgFbGGbdjOa2RVtLVc7ogd22o6wMpw8n3Pkt\nupX58jijbzphsDQDTmtiDLikkCz6RF0GnIloIFpofGKnI30c0EiRa9MkdruOGDqUs9xcr3j69Csk\n7fAReh8xZYktKlofs+DZYrVGpxLvB0JMzA+OKeoZZVkwhIguSoySi3+z69mueyZF4uJyTdd0UpJN\nxQ++/zH/6jvPsaXht3/jVzm7ueXy4pqrV9cMQ8Oq62lf9Zhvfp+/8RvfYPOzF3z7+2eiE3CWo4MF\nX/3SQx49OObqdeDR6QmT0tGFNcVkxi//27/GEGSsEXwipAFrXb7xKVLKNQu6zyAroTPLaUzxmRMQ\nWRw/ulPV/lr6k9mp/SnzT7o2P8cC+BMeP9018QtfS8pIpUUYEtoEjBNdR1FZtI+St6MUzjh0inQh\noMa2+xAZhpYyaVKyxKGj3V7jt5e02wtC3wABayTyQmtN1BbtRZuiDQLSfEAlk+8pCucMrjDMhhnN\n0KKspWRCnxK7tqWeWk4fO24+WaOGmIGhvL4hRZSRTd0qi8JTJkdIiXquKKqINlG0KSrRGWhiEEAZ\nFRjH6magbXuGocNUlsuzO548/DIRi0+I+LuusEVN0wfKuhKGRxl0lNFqAGaLQ8rJjKJwRBKqKLFa\nNqO7Vctu65kUicubDe2uoXAVRtW8/8EL/vX3nmNKw9/6tV/lcn3H5cU1l59eMcSeu66ned1jvvk+\nv/HXv87m6pL3Pjgnkigqy2Iy4+fffcTp0QGbdeLh4TFVUTAMK+x0xi/96q/TdgGNy+adAeOctGoa\niRnwfiANLUFpuj6hkwjYS13lMZBshNoYUpLNNUpFwL342Shi1PcRBYyC6DFuIN2zNPEndhf+VNfE\nkydPknWyCYcoVWTKisnJjNU5eePPJPbeIalG6/0bbjEpS9aZObkXZI/Mhnz/zNSEmCvIZMNX5AiI\nJK7O/KcZt/KUR0p6L8TOuqOIiK9SntqUYuyJCnz+M+LsVFQTxxDSnpyJPu4zuKweGStD3/m9AD4l\nyZLS6g2GKI8Kk89ar1K6DIPPqAGF0okUwn4UqHR+X/Jcby/8Hl9pTDndQ+3Hy/vqGaP37682IvlQ\naTQaZSF8NiYokwj59UQfpfQ5f6/8cclrH4NG94xU2r+2mPVYyYvAYkx4F2IjjZeEXBcqH7RHQP7G\n0GM/Lk5vflHtr5s310D8CxgX/lPg7wL/IP/8P73x9f9MKfXfIULGu88zZ987W5A3MISAyRU7Pvfa\nESS7x1rpo7PGEAj5DZY3cgg7me0OA8Gv6btb+u6GFAPWKKlSyVeE0jbbS1POntKQFEPvCTFgC8dk\nOsWniLOOsqrlSgqWpCb4foUfNpw+fMDrux1lO74ag2TMyWaRVOJgOWV1s0KngAEeHFccLJecX15Q\naU0sC/rUsooBR6JSGlxBNdFcXaxRJMrpjJurO148f8Wzd95lNp1T1DXN0Ej4qnW4qs7zdItOZl/F\nMFseMQkBHwJLaeQk+R6tFY8Hz3a15ebTcxIwqQ+4vdry8uqKDz6+BKP5+tfe5ee/vCTpQ2bzX+Hy\nbMsffufb/P633sf7xHc+fI3d/S7TouQoJp6+dYyyhl/4xZ+jMD1XZx/zzttfYlFNOZxP+eR1y1d+\n7heYLA4FmEYBuhGxMicjAagoR4pS9UGUEEmVIxuEnYr7G0nKs/4fFbHDH9eU/OkjwZ/4xP5TXRMo\nuWn1XZSC2RAkQJJE13mpJQoeqyJGaZQG5yyoIInfKUI09P0aYw0hDAzdHb6/o2tviCHgrJI2AT2e\nUG0+CSbKnIhvnaXvBhEPK0M1meOJFM5R1BXaWtROUqJ9vyb4DScPjji70xRXKofqSpZZTJIerw3M\n6oJm0+OSOKKO5hW1maG8p0TRBUNUA1sV8UoqtTwly1nBxdkaiNTTGc3ujucfv+L/Y+49f2xLs/O+\n3xt2OKnirRv7dpzuGXZP4tAccggFjkhBFIcWAVEiQPuT4I/+I/wH8G8wIMOGbSgA/iQblk3QNmlK\n5DBJMxxO6HhzqlvhhL33G5Y/rHefqm5yoB6D5NwNNOp21alTZ4f1vms9z7Oedfu115gUfWKfe5II\nvm2o2xaSaiRxFu+Ult45vKJmq5IR70EyOWhM3Hot0K03HN99jGRh1u5xerLm/gdjTDi+/M5rvPXG\nAlfvM5t9hccPV/yH7/8Z//73v09Mme988JCq/x0mruIQOLyxTzOr+exbbzJtBs5PH/DSrdssJnN2\np1PuPd7wxmd/YhsTJLUTyJLI4shGCJteE2bxtJMKZ72OMSq8qxFNkFV7Yy52Fhk9jS4Ki3Gg8oWO\n6HL31AjJUGYA/v9Gsv5qYwJlg0KvHXNjNnWBWlHG7VxojmBMqC6oO3KxuzDa/WbHrrOSNIy/O873\nG+mrUVzta52x6rx2wo0UnCZymrjlJEr7lXuRcipUXxGap7RF03KMGF/p8OPaatPKJpGMoe8Stq7w\nWei7RDNxCkAAiH4mFcWPn12/L4zFJwXltGTJF+bGqBeVPiyK9I3gwmhDYUpHZLbqUTgiQVK4xy2i\nCAW8KGjSJbuE8nQVNA2cu/jMISZq58Brd6XaCmlDWyp+byTZPsZK6V3opih0ntpxmK3bvVKOY3L2\nceZCn3dTPv+YSV9cp5GK1p+P8TKWmLJ9+Y9yfBoLh/8JFS9eMcbcBf4bNGj+hTHmvwI+BH69vPzf\noG25P0Bbc//Zp/sYQpYBIWuGi1akNhicdYpSiXLmdePIZHJlScZjbYWExNAHwuoUCRvoz9g8fZdh\nfcZmc46XAOKJKeGzxxuwQ09wxek6OuWz65pqMqNyBu8dm2HNkDO28lT1LjmC2AGahisH1zg4eMjq\n/Blf+eIuz373GSc9nIkQTYHh8TQIcbnhq6/e4I2Xb3Dng/d49Y03+Xd//C3u95kzybBK5SooGnYm\nBn/a8dNXdpm2iSu3r7J7/SpIDdWETSdkAnWzw3QxJSWYzGrW3RpfVQxZqIvS1TnHfHeHGDNVVakJ\naRjoN2vquubw6AYHh0csT55z98OP6J8P7JsZ//GP/5AvfeYNFtcbfvDBHb71B/c5ODpkNptjZcLP\nffEqX3pjh+Wy5/XX3mLa7HL/3gM+9/bbfPvb3+T09BnEZxxdvcVTCTz56A4nuefpbMKv/MY/xUwn\n9F3GR4NxiWzXGOcRcZiYcbZRoz4jWFNjfE2SNZYKUEQQa3XUbQYjY3fJWJWX8UzGXvLGukjCKPqs\nXBK0LLYsCjqt/scdEwbohx5XZ4zLdOuMWME7A+IJw6AEqRGlWK0hGu3M9JVT3VUfSMsz8hgTx+/R\nL0/pNku8iWhBkAi9p/JQ54FOAs45KrF4a/GmoppqTFTe0sUVEcG3Dt/tglic7akb2N85Ym/3IevV\nc37qy7sc/85TTgbDqTGsXYbKkJPTWWZ54Gdfu87rN494cP8Ot26+xh9+97s8TYnlaNCYDEsSK4ET\n47HPO756uGB3WrF/44idaxoTpp7Q98LwtOfgypx6OgXrqLzjbLmiqiotsozavlhjWezvKgJiHPMY\nCENP33c0Tc3BwXUODo9YnRzz0XsfMZwFcAv+9E/+kC+/9RkWRw3ff/8jvvUH9zi4coX5fI7LDT/3\n9hW+9MqC5bLntZc/w6zd4f7dB3zui5/n29/5I46fPMbmZxzu3+LhZuDBe/c4NgPtpOVX/4tfw0wn\ndOtE04JvEsms8Y1q4UzMkGtNdq3gbI2xNTl1OKcxoRZyCsPErFGCKH0E2m2bCr9mnSt6E1f0PwZX\nOYZNUssUY8gGcjbknP6TG8vfzD4BYci4S4lIVTsqp/QTWRMESWnbDZaTdrTZqiQ3RbumuWdxRs+j\nRqsklwUBUwd2PpbAGKNIkYx0Y9EtYVQ7FIYCFqCJh87AK/5khdYsnQZKuZUZvEnUpsHFBENiOtWk\nazatSADZ0s6LGL1YUzgLYQBjhMqW7r4yvmdMnEOnovMUE65xxCHh0GTKj0mVQQszp3NBU7iUgI+U\nbNGxjTCdNWp0ilEafESxpHg5GlMS9JS2tKZkTYZHhKoqn0eRL+g3Wek9r8jfSF2KCDGBQws0Vxzg\ncxLdk0XNIUxBrXIuonbGZOwvPkdSfjYWFiIU24+SNAIUPdnQjW2ilxDS9FeIZInIb/yQH/3CX/Ja\nAf7rT/3Xy6G6RLsVJmfkgu8eYeui11KatYxBcQXaLDdCM9tE6Du6zYbQd+QQcZXXaidGuhgUcgyB\nXjoQYd7MaJsp7SRSNQ1i1SF7Mp2SQ09YbRAx+MqTY9QqxjleffVlvvOtc+IwsD81rAdhAnSiEhbI\n5JI0Hq82zE/Pafb2effJM+6vBs4/4e+Q0dljWWDdCR/dPeWX/9nXsY3jgwd32Du4ysH+AdPFnMXu\nAfOdHaQp1KexOCsMfWA6q0EMVVUrfJyFuq7x3qsDcHFTb/wCcuS119/k5Olj9vcO+Zf//F9x48pN\nbrx0wPPTZ9w5Hrj92g2uvn6Few/uUtc189mMuqk4PLjC48dPePLoLuv1e1jr+fZ//AN2d2sm7Q4H\n+3s0VU0aOu7cv8OiyTCrQTLdekU1nalfi83FtT6TQ9Sg9NWl50OfcGvtJU3Wj3DI2ElaUC1hSx9s\nUWMZq7L/dPD8TcQERtunpQzQtqVtmqzNDaOuIBe6x2LK9PqC+pZzzUDOiTD0dOsNYeiRpNc4hUww\nokOnnYF+YNlvSFHYnS2YL2a0k4RvGjKOZKGZTkmpY1hGpd1xOGcZBkWZX3n5Nn/+3SXdumPHCWdJ\naDB0KE1gHPhaaaqz2PN4taTe2ePO8pSH655lGCtgvRe6wWil2w2Ze4+W/Oov/12ytbx/7w6H12+y\nv39AO5uzs3/I7u4eqTJk43HFmLjfBNykBm8wOvW9FB2NboQZsk00dU3rF+QQeP2Nt3j++KHGxH/3\nr7l2eIsbNw94+uwpHz0N3H71OldfPeLe/Ts0Tc1sMqeuHAe3Dnn69BnHT+9zd/U+WSzf+bM/ZHfH\nU5sdjq7s0jQNaVjw4Xfu4FrBL2og03dr6sW86ECEmDImqGrZOqfJUmlvt5XFGkfI5oKPHekQuKjI\nR6ShFBNamxjGYcla2ulzRdHkbIVOpujmPin8/UuOv5GY4OJUc76g4i42fbYc2ejwrh2E6is1uq6P\n8T4K2kfkL289sTQJshZIQhoKUlap9QEOHTtVtG+UqwbC0QAAIABJREFUJC0Xofdo/XCRpCi6FUKm\n0BzgbRGUC96Cr4oTemNJRrsEm9YD2kGY4vZUi75Oin+VjgPi0h7oar/tivONFhWSRWciOrcFJlNW\nDZeO69E3N2g8uILCjXMZJcr2edhqwfTUt9q38XtbxFDMRSw7g1VqR1F5e+nxLIihr3T6gMHgPIWS\n1JE/ioSVe2jyxbXdIlxShPqW2MnHkdzLj69ccoA3F/TgVnBfXjuK3bdI73hu5b7av0nh+1/NYXDG\nAureKinqkMqSdMkluG+cMWetdhxicvH5SOQUGLo1od/oyJsQVPM0DGWGksNZHVWC87TUau3fD/Rl\nwGRIaoLZNDVTt6cVnvNYp8HhvKeuG87Ojmnalmu3bvDg7n1eurqDdYl7z1d0Sdtug2Rigk4y5zHx\n0bMz1usVHz1fMvqztcYVWFrKeTgQxyZE+iQkcZwcn3Dt8IjsGqbzGTu7u4j3mKZWT5y6ImXwvqLr\n1mzWGyZVS12rONManXnmjKOd1jhrQGr6teBsQ7SG/cNr1PWE/aMD7t67z42XdhlWhqfvPeHu/Wdc\nefUGi8U+dVNzdLjLfL7g/HzJ1cN9nj59yrOnTzk5PkWyYW8xJaeBj5xweHBIGCK3b+xy98N7HFzd\np+tXVLM5zo6LOqQYSDljrNJUVTUpdKDqCFKOmOrj8fJDn6Zt14oGWmHsdaEVDVZTkKsxrTLmctB8\nmr/y13sYwBtFHpRiyFtj0JTKiAr0HMf5aq6IyQ2COEPOOmJm6DfEYUMsMWGygCgtjjgQq/QjlmnT\nMpAZuoHzkJHdxBDVNqVpa6ZuV6H+vrR5JxVR1ylzenJM27Zcu36dB3fv8dqr+9SPIx89XdJnHTSS\nUiYPmQE4Pu9IdsX6fMX98xV9GK3xlAoyJWtI4sjZ0gN9SPSDYbk55eVb19kEx3Q2Z2dnF9vW5Eq9\ndqq6JiTBGg92YLlcsbczwzeqF3FGhy1b45jMarw1iGgcEWtS8hxcvU47nbG7d8CdO3e5cWOXOFj+\n/P0n3L33lKsv32R3sU/T1Fw70pg4O11yZW+XZ/mYJ0+ecvL8lAcPLTuLKbHruPs+GhN95NWX9vng\nBx9xcLRLP6zx8wXWZKVcDKQcddCvtdhsaWZTUoy6puVMzGG7udpPPL+m7HZjpf6xQbcl+S6v0GRd\nMhLY7pI5g2+UflED5L/2R/5THSMiAnpOScB4p/YTlza+C4sELdhHE+MRjRppvFFJIIVSHQ1EVaTu\nto7quVyToc9K6Y2NBSPtJIZunainZUstiayU8SzkjLVQzdR6YUSdxmJpnLgQNnHrtm8N6jEVtcu6\nuLhstfYSy8geEYia6OhcTr0WIlrQpKHo1LaeT8oIDeuIby4BFRhCGdkzXgdEXeOjlMaI4lOYhpLo\nOAr1CjJ2cpYsa7S8IKHNGQUJst6VdVe2WbOm9Xo+cUjbzsbxZ9bkItLfwmkax16LRcViSkJrZPwl\ntt1PbHMqvd7jHlESyPFeXvqC5LJfjFiPFBRNKBrHT3e8EEmWMVB5jytP/CYlzYKzIEardV8WEe18\naajrHkJQzUJMiIlIt8TGHunXmDBgQgDJSFDBVJJAsI5sDc44fKGSKmOxxuIRGmewNmPyQHe+IVgd\nWYBV0WNIkSSZ6XzOZn3G/uEBx0+es/CRV/dbpiRuOcf9Zyv6KMS6og+B49MVyy4oiiSGhYG5cUx0\nPDtBhCUwmERCjTWvHR3xW//H/4urhJsv7fETP/nTnJ6dI9WE/Rt7dDnR+JrYB2LSmXWtrzHGEgbh\npD9nOpvT1JWOgfA68NVVLSEMRGrl4icVrp4ivuHnf+kX+Paf/CmpC9y/+5xrt6/z6Nkx//Jf/S6f\ne/Mar71+jf/zj36bv/O3foYYB97/4ANu377JXmu59vp1utPIvTvPqH3F02fnhD3Lg4fPkZx55yev\n8/pPvMne9Sv0xYwv5Viqa20/TzkRUiT3vepNcGw2G6ybYAiqq3N2KzzUBOnCuX3skIERvmarHZCy\nmSBgjWCNDolWT66x8UJeiA3FGEPtPcV2mfMYMZTxGd4iSbQwcer8HYOjbmtyF5AcIQVMiQn6Dhk2\nmKHHDAMimZy6snAMiPV06wGPw2OoW68NJ0OiIapvnBUk9WxWPb1R3ZwAxhuGIZBIzPfmrM7O2NnZ\n41l9jHSRlw8aZi7xqnHcfbKiC0KyFYHE6XJgIytySNjs2asNMzE0IWAxBIQVMPhMEA8JDvau8Nu/\n9e9wNVy7tsM7/9lXOTs9BV9zsLvHJmQqVzHEAXFgTY0TS9U4Np2wXi+ZTWe0rVefHWfIA/h2Qtd1\nbDYeX6kJazWf0NqGv/eNX+A/fPNPyCHy4MEJRzeu8vj4mH/xr3+nxMR1/vdv/jY//3e/Ro4D737/\nPV559RY7lePqazc0Ju49ozKep6fnhCeWB49OSPEDvvBT13njnbfYuXpEn9WLL0rCmghGBzkPQyQm\nyMu1bvDOszpbY+yEbAcmjSaWF8UE2wLeVo4Uc2kONVsDWE2s9GuMqWjxEogthY4hDKnERH4RQmJ7\nOAdkUW/Q4u9lleODMqYlG7Z6q5RGM8lC73HRUXeB6LFNWI256OTTTkVFmLKF3BfboG1XI2U9MlQz\nB7lcy7LwWK8C7zyUmZIlyfMN6PxV1CgWUZrf2DIYGi3EnYrFncnb0WEYRYZEFIUC8GUnHzapzEPU\nJCgFTQ517JB6VWWjc0ttcUvf6rZs1vcxBokJU9aZYZM0oQ0X5qvW2aJRk3IecpHElDQlRcFWavsi\no9YqaTKby3tZKPeI4lCv90XXcrYU3didT06a5MXRWV4bzJwZOzn1fKt6RL/MeGMvGYraMg2gIHBj\nl8CFKFFd5Z0pa2ShkzGasJofrRHkxUiyGEVzurk46/5CWF8Wxiu65HA5YbJBrAAZIxHJgRwH0jBo\nt4RBRYaXKKOMcvrZaJt7mdiCMZksUY37SgRZWxUUSAq8qhtfCpmq1g6+W7ev83vf+y4mBybWkkLg\n1qLmbBlZpkwN9DljNh2VNex5cCK0NuFLVdkYmNeOLsP5kKiA1G+4+tqc6byhahuapmVn/5BmNiPG\nTEapy8lkBmmg73tijLTtpEDZrnDlI+zpiCmVK2qpJzP9l4mY5KgFJotdXn/zs/Srju999/9m79pV\nXn/7Tf7b//7f8IN3H7I8XTHxA3/6zW9x7cY+qQt879vfx3vL3ZMnEGvy0HDvwTOGPjOfCDuzOUNc\n8s6Xv8Sb77xNJ5mMoZ1MtCXbFLPNYgJnsKSsYxV0FEICUzoxRb3NtpWWuXh2xufkk0J3+cR/XPq6\nfc2lpE1+/EBWgaZ1ebHW4q2jLGnbOV1bEFu0Nds5j/dJtRUBvWYSMRLIoScPgy5SwlYcrw0DETE6\nNw2nDSA5aNu6tRlM0A8lQIz4ekJdVYSYyudx+CoTh0w9acgkbr98k9/9t9/BSo83BkfipYOa05PI\neRQCQp8ycrbGG8sVC3aITJ2hNioZmDjLvDL0xnLWJ2qA3HP12ozZYoL1FW3bsnNwSDWdE4J2laY0\nUPsWkcggHTEn6tSWrjCnGhsx5KgVfyz0qbGeZj7XhVgCJjvqmaGe7vDG5z5LHAa++/3/i/1rV3n9\ns2/wz//n/41333vI+emStgr88R9+m2tHe3SbyHe/9x5k4c6Hj2GosNLy6NkzYsxMK2FvsaALSz7/\n5S/xmZ/4CXpJpGyYTBql7XLGGo+tHJXVzVK0OlBn9qh+Y1lgGCJ1Y/XelcHEUgoX0MI056yoysii\nWKOeaVql6Bph2M7iG6kR6wx5NId6IY5iZmnG8Cgbp9NvlFzq4gQKimed0ngwitFRZ/NxEx8XBDO2\n6hf0g3FUiyBDxozU5PaSjBu3apO2hu8jhVi0Xc4p8pwHdS5PUbbu79kod5aSvl3OY1xSTGNLh+CY\nKOd8gUxaClVX9EzmE6hNpuxxovonq+8xus670ZF99IMqfh+6X2gWZAuVpqBHmWsZ1WTaeZ06YozZ\nNhSojKEkuwUsSdlS1071coXKrLx2+ivVm7ef7eLvl9ubc6E785aqU5MBTVwt8LFHNKFomFeN2TbP\nSlyyZNBrM17LsVtxlCSNz1YJDwpeWX7f/Ejh8EIkWRi0Q6qgVs5aJMbCi9uPIRUAZGialkxGxJGd\nUZ42dgybJf16icSAyVEfjGEoQWMUAh/bT53XQbrO4bxaN4g3eKtUZcIQs/qcdLGj64cy29AXc0eH\n9Y7Z7h5/6xe+xre++X0+ePcpr7y0y+On51RGmDsDjUecZTZpWS2X7FRQ1Y6TLuKmnvnODKLFnK1Z\nnvYsnOUrP/U2ef2Qw72Wq7du4ncOScaAdeQsTIr7czcEMBsQUwYIG/p1T9XW5Cz0/UAIoolrMiSr\n9W6IOp+tajyVrxTdw/D2F79CeKNj+fycm7fe5IOHH/Cbv/k/8F/+01/h93/vm9y795A3buzx6O4J\nj+4+YRhgd3dK1/U42zKZWu48eMr1wx32by/ouhPqVnjnnc/zc3/vF2n2ZixJ9N1ACkJte7xkTFM2\n9qrG154oNTkrbBxTwhCoq9HxPWMLrSgF9h/XVNX6fjo0KpdqTzeZi+5E5FP88l/3YQzeaoUsKeK9\nJQZNhrTS1ZXCUPKiKKr1yQliJDptX85DiYnVuU46SBmSYEKvVJQY3LSBXKgE56gnFVUy+Mbh64rs\nwJJ0QbVqYJijMOTAarWhbWt8VRGjNpJYb5ksdvjbv/A1vvVHP+DD955w++YOjx6fsRNh6ixYi5k5\nJpOGzXLF1ELbOM66hJs72skUCQbb9SzPembG8pWfeYe0esjR4YzDa9fxu4cMGRIWmzJT75Gc6UNU\nnUrWkR+CJQyBum4YuojLPWHIVLUHo13KkgxDGPDOUdUeRwOVxSTLF776VcL5mvXzM27e+AzvP/yA\n3/zN/5Hf+Mff4N//3h/w+PFjXrmyy4MPnvHg/Yfk7NhZTOiHDUYapjPHnY+ecW13weHhLl04xmTh\n7Z/8PF/7+i8yOZhznnSGqkShcj3SZ6oaUge+rml3PENsyZIgGVLOkAO+LSJgEazohipGMyZTfJB0\ns7i0c1E6sgz62pzVVgCHpIjgEKsb5NYg8wUICWCENbYWR4zzGG1pWTGo0/0WzdbtUZGnsZOQj51P\nLpTSx7yyigYylxEwzhksgvGGVKow1auh2WkafZV0XI2rRsqWEqtsTUrFlMQlCUMoXn9FgO+KvYM1\nlpiEyoEVbeAJQXR+YK2JkRp1ForMF5TIX5yfiKJ+mrDrcOjtM2BRrVYSQqdgRAxJjWcNiLrWopZY\n+jsx5/LzjG+9PjcI3ug5ZeOUIpUytzCoXEZEqGpPignrNAErHAIShJwN3hniSPGV6S9ZZJvgqLO4\nbD2sFA3UrkpB7X18pZ/TVyAFPNGkVRiBznHphFEob7bZ2eVHXHIu1hcF7SwxpDoyubi3n+J4MZIs\ntD3ciFZhFkFRXYM3vlQBCtPBmJCB844cLU4sNhh87jFhjc0dmRUiPSkNxLxSftp5bYfGY63HVrXe\nkbYB77acvtiEeEuuIElSgz8czlVbQaVznq4zJKkRE7HulM9/6RrDasnjux3NpGKxl0m7DUaEqhKG\n2OFnGeM8rrLsJcfmJLN5OmibvG04jZGrR3Nu3Wx49sSzt/8609kVpK6o2ppVf44MK8xkgrMVdWNZ\nnp2BsTirTtwKoKow2WbV01gs3lm61CtFIBlvDDEnKlvh3BzrMyEH0gRyHKiP5rw+/Qxf/ztvc+/d\n3+ed13apulMeP468vOsJyZCGxJM7K7J1ROmQuGZ3Ouf8uOfp/VNu3fa8+uout998CbeYYScz9uop\n52ZJjkLfrbZw9mS2wIvFJoPYjLOelAyZASMO0g5inSbWKYPJqB9QQorVc1YYUo08TXlkJJe1uZR2\njNWdLXlZVqNB1Bn9RxmZ8Nd3GIz1mJwQ47EieOsRNCYwFiFv9QLeW/qgMSHZUhlHN4BPPS6tcfSI\nrBHpwQZW3TkZoz5R4sgYMA7jKsRWuGmN9TrKSA0BA76tECdqfRATeI/39fYTV03D6fOBmCqwFl+f\n8qWvXCduljy509G0FXtHhrjTYA3UZiCYnmqeETzVxLEfYXOS6U4CoY8YW7OMjiuHc27daHj62LO7\n/yqz+RWCcfi6potLNss1djbFVTXtzHN+eqaouJuAWIKAuEHHD9lMzhEGQ9sYNkSMCEkS1liCZLA1\nVhy2tmxSIDctcWfAnE14vX2Tv/21z/Hgw2/yzqs7fL8/4+njyPVFRYhKoxyvVmRjGFKHebxht56x\nOhl4+uRDbr9S8fIre9x+6xZ+MYN6wv5kxtnJOTlB369Kcm2YTGuqBD5qTGAqjbvck6Lgq32ycdjs\nESOI0R3WGtFkScxIIGpbPEXqIql40AvWllZ+jK6DohtqKih75kWJCS4E/FCSkYI+YIrup2RhjC8p\nnkilGNPRO8UHzpQEywi+eNIJVm0OuEjSxo16FDtLzGV0j2p0ZCQHRFFDSUJOSjkaV0bCuDLBxI5/\nVx3bDerxlUvXo6SiySoUlXUGKypV0W7rMhwa2QrHtyAcqmfC6HpgYJt4qV8V2+QgF1RIRIXzxqjf\nVCgGpqO3FrBNXBGIvXYpjqOBnDeEPirVmTJVY4lDofNG9Mco+ua9RSTqM2dsGdejdKwmV+PfVPZi\nKwspUNSoRxs9q4xh61kGmsSmIWG8Wt2Mon1TYL0x+ZZtI1F5PjKFQblgQlwpRnKxppDy/uNMQ/n0\nund+hJf+9R0j7aMamU9AteaiIti24Jd/2yL0lZwgR1IaCMOGnAIiiZQCGK3yxq7FnHPJkMt7W4tx\nTpER53R0T1WpT5dh+z4569cYwhZta5qGuq5xriITaaaOz759m5Qj61Xg/Czw+O6Sp3dXnD3q6E4G\nJqZBouf0JLCYzen7rILfBN0Q8JVhiInv/Pl32TnY4cYrrzBZzLGVome+8kznc05OT7j38B5379wj\n50TfD+QsDDGSBULS752enbFerTk+ec7Z+Tk5C00zYTKZ4utazexCLJoNr7MHnaeZztg/vMJsMePX\n/smv8Lm3X2axN+GXvvHzDMOas9OOoVfHfCPqSm5TZuah26wgJ3wFrjZcuXGVl197hZASm64nxEjT\ntkymM9rJpFxr1VPlLKRU6JJRXSqlDbn8fKyulX/PRYeVtctn1F6Uf4/PzKfZJD7t6/4mjhG2Juuo\nqJE+GKkdU2gQtf0oFAZgnS52KUQkRGIYGLrSCJJ1ikAKSatpZ1TzKLIVclprSxXoMUbH0nhX0TSt\nzopEF8wsgWEz6PulWLztLO2kofKeqqoIYcA5eOut22QS/ZA5Ows8vLvi4QfnnD3qGc4Gpq6B5Hn+\nbGDazNishW4whAghZZyHISX+7LvfY7634MbLr9LMZlSTGirdpGa7c54dH/Ph3bu8+/4dQs6sNwMx\nlKYJo/MVY4qcnJ7Rp4GTzRnnmxU5Cd41NM0U3zYY40iSycZqVyUWfEU9nXNw7SqT+YRf//Vf4bOf\ne5nF3pRf+sbXiWnD8nyjG240mFjMFRFayQyx00S1tuBh/8oRL73yCkNKbLqBkCLNpKWdTmmaFkMR\n2BaqJA5RaXNM2cyFqrLEPFqOaAFR2ju2/xJRWsxaddA2l+Ihb3/30hpb5AUqEhdEEhcy+R//oQVZ\niY1Rh2ZGL6uLuBhpQjDbxqlx9M5IKeaSpThriEETbFeZ7a64BbWNKZYCxY/J2JIUuUvf1w06lpEy\nW/NTc3EtjVXBeByyUlfGFhG4IaNGs+paXu6X0Y7FmLS7MYt2BI6WB2Z77mylMK5yqmU12smbUyLE\nTBdVw5bShVZt7Ai0XhNT33psbbGVJnU5XHRbCtrRapzd6qGw2g04mo+Oiad2H2qi5mxJ+ArtZ8w4\nPDphK9WHiVd5iK77oDyo2eb9qqdSnZQUzYRBG9XI43xNnfzh6tGWwpREWi6eCQsXPHOhYLd/5OIa\nAkW7OI72KT8s+ryLb3y648VAskQIIZR/XtoYcybGqL4XI48K5BRVFBwTKQecdDjW9KsT4rBCUodI\nIOZBDRBL26q1TlEkV9G0M8y2j//CNE5EiKVDS580wUgmdhs2fUc7abdQsnE6jgdrcK1jvTllceTY\nvWZ5/DgQO4cDvK3oo2BsZnk8sHO0x0674MN3n7NcWiAgJrMzEeYm8+orU/7+P/o6V64fMt1ZgIU9\nazhbntGFgUggGsNkUvPw/mNEHN7X1JNd6rpliIGhC6xWK6yxPA+neFfRdR1XX7qpnRxODfWGEDDW\na5u+JKyriRmSFeqZo/GGnf0p3/gnv8KH776PDPCr//gr/MFvfYvFzFNXDRIHZm0NODbDGf/gG7/I\n4+fHTBZzvvAzX2KxO2V2dAO/2Mc2FX1QfQhZONg7YrPpihZKfa/IID5BGki9kPqEbSpynXClkpPt\nTCp1fLa2DDYtVUuxzSqBc/lhG+uKj+O946aT0otStQsxhLJIyIWgXzQm/NYIRjUZcdCYCDGS8oCj\nw9sNQzgj5g0iA84l1uu1+m3V6qxsUS2SsWq+O14/srasW1cMFzXVgFoXZGMESRu6oaeumm117mpL\n61r6bqCaebrunPlVqzHxMBDXFouhaWdsNgnTJ57cGzi8ecDOdI877z/jZOkwJgKZ/YmOlrr18pS/\n/59/nWu3Dmlnc0Dj9bw/pw89sQ/kCqazmoePjzFicVQ0zYLGNQw5MKwyq/Ua7yzPT0/xVU3fbbj2\n0k21lvCeISSGIWBcxWKhA6QNlmRAbM3kYJe2hv2DCb+8+w3e+/P3MMnyD//RV/jj/+fbtNZR+wZj\nE9OmwljP6uyYX/m1f8DDZ89o5zO+8LNfZL6YsvvSS9h2F/GOiJpokmF/foUQh5I2qU2DJIP1idx3\npCD0XY2rHK4t3VQ2ludc160kYKxuWorLFMuBwn6oXqgkVFaLW8vYEWYvtDlZiDFvk5gf92FL8gCM\n02y2+iPnx7Wh0HJbgRTb4lw1bVapIgwOXV+MU2uG8Zwx5sImYtxTS6whQkqmDPIqSEpBfuwIDJTZ\ngtgy8qVYphjPBcIjFL+lIrZvdKxOThAGHQFnMIX21ntmxqS5coRBM46qNirULonMmKAkA25S1jlv\nYdB5sB6KgzqkbLQgtaZ0dxfNG6IUndWkajx/59X9PseErcuz1Vodu1MuU0qj07vgKkNYl858o3uO\nDiNXHSlGC4lxbI2rIA/luowjPzEwlEkWpdgcn13nR4QJUiw2GmVW4lafO2qrin5tawd1KaGT/HF0\na2x0G4dgj3T7tiP1RwiHFyLJuvx5L+uvpNwAGWHYPCJQ2vIfh1Da0jskbIihY+hWyLBG4nCpglAD\nRGuV/hBjsfbjqBlAjGpG4lwR2jGUQM6k0JNTABqGod9+1iwqQMVVCJZgAtNdR3ysG2Qvhj5nYunS\nMUaIx2usgyFGrGh78KTxNFXijdcPeeWNW8x2p9SzFmpfHowErmJSTbDeYXMip8R8OidGHQrcDwNi\nPM1kQj8EmmZC5T39plPX8JwQMThfIQJVVWGczsQLIeiw35KdOOdJQTvRXNVwdOMWbTvl7nsf8Pbn\nX+PG/pyP3n+fz7/zE6zOz+lWKx4/fsIQJrz+1kt8Yf+LLIeB+dEh1aQm+wpT1yRj8E1FDpGh67fI\nVsqahFa1w1dG3d9jZugTaRB8NdV6rzz0WjXl7X1gdHS2SgWay/e2IAKKXI7J1ajx00XSe88wDOWZ\n+Kt+wn/0Q/OpUZhrLgLd6CI35ExVacWaivle6gNhiIQwkIeONKzJuWfoluRuTVpt0EVKwFzEhADG\n+21MbCtkEVKOhJBpPISQSfTEKOSQkDQgMWKrijD0WkG6MtPNCuJrcjZEG2nnjkDAW0PAsI6RLiZF\nqRDssxWusgwhYlGEejpTIf/LL+/xyhu3mO9diglTKIW6pq1bRRVSJPSZ1kzJRQcyRC0iJvMpuYtM\nmVDXNcuTNd57YsqF2qkQDFWlmstsDCFEvCtIRdZnJWftLrau5tqtWzS+5c57H/KFL7/OzYM5H737\nAV/64tuslkvW50sePXhM2Jvwxude4gt7X+B007G4dgXfVCTrcXWFWEXxc1CkvBty+TsAKk6uGosY\n7fYLIZMGoZ7MMJLAKi24jYlCk+tnHpEpbfYZybacyiw9p7FzoVMxJQnQBqSU0xYxfRGO7YiUcdfn\nYv8YaTm4hEgwisEvNlxXUWhDRZXGtUC2Qx4VNXL+kljeXmzAOg9Ri3d1zh8d3qGqdTMeaUz9LPq3\nTEkYcpaLTjtKElbmxcTE1hRTfPm7o6ZLRPWXIsRO6bqy91+qGU3pCszFtFQ1ZDlm2oJQmaSCEmON\nDqcuSE/o1a5ifE9dKwtCONJkFKSqrEcpaeGLKeOynCtDsrOO+omaHLmCmpP1Z+PA+2wukjxT2AkA\n6yhGsiW5vCQ4HylS68ZCc0yq1ag2l/fQZKq8ZLxOsF3bRmG/Jt/jmssWudtiXNt9Qi66Dn8EUdYL\nkWTBx5OdC9pmDG6jSUBVxhlgiCEShgApIGkghSWhX5Pjhpx6yFH57xEiNkY1CNZpCycf50pTSh8b\ncpkk0Wuk4Yy6zfrSrZAkF9626Lgk0U53qV2FpDVvvJ0x/pzvfe+MFCFKIqLOylbApYyEgLFaLHgD\n3kRefmVKPU3sHy2opzViwE8aus2G2AeMa6nrCc57Giucn52R04q6rRRqdh6cpRsClW+2ELOUpETI\nLFcrqrqmbhowhrppyDGRog4RdkYDwEguf19b2yfNnIOjltgF7r//PvgzvvLVt3j27BFXrl1hNr3C\nF9rP8u77H/Lo7ClXFxNyXeHnc6pJi/iWdQhlWrxX1+/iQYaxeFBBqRk7TqJW8ikQB/DNgBupkCzj\nSK1ymFLAX0K4ftgzVoKIHxYjL8Ze8rFDDBelW5mtJhn6rqeeVKSY8NaSotKDViIp90he0S3PSd2G\n2G0woosQWa9DFiAKxnucs6QiDNW6Qs0wrZiVMfXiAAAgAElEQVTtApRSopcB5yrtDEoZVxagGCMZ\n0dmiRhfU6WKX2nqMbPjMOwnXLPnBD87I0TCkRCwecRFIIgyrjVIMWSkcT+LWzZZqkjm6sUs7b0gi\nVE1D13fElIippvItla/wLnC+XmNkQ1VVSgHtVGRj2PSBup5c0KK11c6unDlframamrpWRK6uawQ1\nL85Jit1Hpmksq5NAM5myWnUspjOObrSkEPmDD97D+HN++ufe4tH9+1w5POSl127zhZ/6DO/94EPu\nP3nEUdsQncNO5/hJi1QtyyGQyRjncEUkXFc1MTmsiMaElIdAEgZLTgNxyAybnqZVvCtFUaqkoDDG\nGUwu3bjGbZMkrc7Z5ijjOjtuRGQQM7bqa9u8SaWX/kU4tjSOUbqofKxxRl5Oo86nFOxciJTHxCEN\napkuhdrC6VpkC+2XimbHGohFYX95k055pNXZokZKubGlJG1WXRJWlH7LF4mBZLWBsGb8jACWHJX2\nV2ZLRfQpjUaZqYy/gqT2aLh6LADyFn0Tbwm9rhXWqhWDrRxqHFzkNlbtDvyYK5RnxHqrFOO41BQ2\nwMiYaF7MbrRosecrT1gPSnuKqvxcpb8f+4h1rui2tKvSFcNRayEOUT0A86iyMx+7TiYLhSPV650u\npfqlcLZyidLDlKHRZstgjEALcAmlL29RoFD55IZRrstYeGzlS6VI/2Eu8j/seGGSrPEYNTY5q67g\nYu5Qph/U78pIZr3uyDmzen7M8tlHdCeP6DfniAxIDiCxUISC9w3OWLyv8bbC+6Zwx/qwpqST6713\n6oqOVgl91xFEO64ar6MbUo5byNNXamxqveF0Y/CmxVU1hzc3HN7Y5Utf9fz2//pdVh08O+l1cLKm\n+QDU1tL6in7oubnbkmXJS599k+m+JxLoQsfy6ROaZoKrpkzrXdpmStM2DGFNjgaTQJxnvrunmxbo\neCA/QbCsl+cAnK9XDEPP2SZycnbOdDbj2o3rNNYxhIH+/EQ7sBzEoWOzXnJ4eMBgPZPJLkk8jfdc\nv1XzxmsPOT829EPgbH3GOgbeePNtdvav8JMvv0EQmOzuYpuGyf4h1tcY3/B8uSTExKMnj4n9QFPV\nXLt2TT3SXFXE7IYQI0E6JAhDF5AoxL7HkxDRBeMiEdfANnk09CsCU1HkM1s+VoWP6NVW08BIFeoA\ncvH+BaELL46cVEeYyYpalgwzx8R6Ewq8n9msNmSE5fNjlk/vsDl+SNicY82AcxGTA0ZKY4mf4K2l\nrlvIHmNUVL8VSUtCirjdWUeI6nMz9D0hb4jZ0FSOYNR0NzvdsJxzOO/wteX504DjAF+tuXJjzdVb\ne3zl52r+7f/yZ/TiePR0TW0ss8aRosarNzCrFRm7uTvFuDW337pJNRE2fYfUnrPTY6qqpaqmTNsd\npu2UtqnJrKndcxoMMTvmu7ta3NQe4yqM1FRe2HQrFaevzxATOT0fOF0tmbRTbty6Tus8/aZnc35C\n6AcWE8PmfM35+ZKja1dYh4p2ukM0NdNJxc3bNW9/9hGnTy1dH1nFc8JZwh8cMNu/wpd/8TMMEdq9\nHXzbMt07xLoKXMO6XxFS4vnjxwzrnmmrMeFdpSPDzDh3LtJtNpAM/TqQQ03cdPjdiDcOVzbkbcqU\ni07GODW9tKWlSDSJUoxD/9+KAaNJtra2m23jiKU4br9AMbGVcpiRTWCbPEjIqvUZ0aTCfujGXqYn\nGINRz2dF/JCtVssYHfeSYplQMBbecgm8KEnHKCQfN/IUMrZRaUq2FuoLOwMVvI9jW0b6SQ02jTOE\nLlE1SgEaa2hmXgcpS7HuEEXVjFPdWI6ZsNH5Na6tEDvaR0hJjvXcmonX95BMGoAk5KJdSjFvLSUw\nQo6ZnEw5/6QdgqnQdEVvJYJ2MtcwhMywzhjvtjz01tRVRusQKTICRezCoElvri4N5h6TYinNAN5s\nE1gRHZg9onXqS6aCeyOX7lFJnrao3ni9y76wvW1oLOR4UUgUuKoU4IVG3DIeaCJL2Wk+lhR+uuPF\nSLLKhjlyqFu6MOmMrSyZkBKxjAtJIgTUMLRfPkFWx7A6wcopVgbEBN2Ms1HDUVeSLFep0zP6MDqs\nalIoIkCni4sxSvXVRsV/MQspe/LQk+ygA2WNGqiZMgm9nXR0myUxDGBnWm1N4e2fnXB23PH4A8uk\nqonrxMmTgPeOvZ0Zm80aM3Wk2LPY3aduFmQsq9WSua+wriUmSzWZ0kxnNJMZk3aC7SuycZi6Zr1e\nMoSAn06wviEZz/J8RYgDxnq6ruN8uWazWXNw2BCHntRUxCFoxt8NSJfIYeB4eU7OibapkIS6ww+R\nPHE8z2tyHWExxYUF9vSM69euErPwbHVKqBwLk9m7co0uRaQzNNkgMdPUhslkSpMyJ08ekbsVqV+y\n2psy9Quc8cVGAkxO2DQl9OekzRmOQ7xYRde2bdOjsjQW07oLjdLl/8SIIo9OF+I0Bq511FtY2JRq\nbfz64z/G59yZkviU6p2kwnR1/IYckgrdRRhSwsQSE8tj7OYUm05JYcDoxEFMhsY5qCZ4Y7C2whqv\ni4Zk7dSVS8lqEcUaCYhk6kJrYC3rYFVcbzpMW4O1xASkjGs8k1nH8vScrgtg5xgB38LnvzZledqx\neNeymE/oTgMnTwKusRweLFivVti5J6WO+WKPerLA1J4+bvAywZmGFA3NZELTTGlmMyZtS8w1QRzJ\nVKw2GzZDpHKAqYjiCOs1UQZt8DADq75ns15xeFCRQs8gljgMbIDcD5hB7TAe3Dkl9JHZ7oQYta3e\nxExwmafxHDfNDHWDme5g0znXjq4SJfN8c0Y6c8zI7F+5Th8j3aqj3VODzLo2NL6l9pnj4REyrEhp\nxWqYMZ0tlLIXoxV4CLg0Y+jOkO4MLwdqzKvQCQg6IPpyTFjtyh6tTjCF9DClgaQgWckW6bXVrlSs\nKKoTcomNH1cU/MVjRKhGNG78aNuZc/ZCM6NNAwAXY6m2fllRwNmt3Moa1AqCMTG7RC994gMYa9QM\ntHhHYWzRXam9jiKEeTuJIUfVVDlfivp+TBL1OXDmoisRwBi1gVCdI3hvtoCDMWyLUVe7oqErm/6o\nQcu5eHtlxDjtdowZxukiQSc9SBZNVsp5u9oVKlm7J1WWI9hakRul1fT7fZ+JAVxB0hHKYGzV21aN\nzsF0rvgfjklouT85Zcx2bF7p3CxWCxKyXl9TUPTx2RW1pdGLdHHPpYw8Els0YtsCuiRS4/9fyozM\nNh4ukFwpLzLb14z5yKX3+/SP6vZ4IZIs4UIzc/mwxhJjUl1IDIQUSCkTUiD0K0zsCN2K0KseK4SO\ncSBwLpuSLfQT1mKdVYM/Y7fOvyMEaK06HXtfRiYkNTYVhNAPVO2UdV4pLGosdV1TVy15UB3FdDoB\nI8RgEWlUpyWZK1evUPkzpjaxOR046SNXjrxy4Ww4OLQkSdTzmqOrB0jW7Ltua6xzzOYLfD2lnu3Q\nVDOFdW3FdKaIQcqRzXpF33dE4/EZxHrW50t0gTU8fnyPmAIxBc5ODX2/YrU+o520VHXDom0xFs6X\nS1Zn58znM5yv2XQDjbHUtSKsXRwgJZrJhE3pxpzO5pyen2GwrPqecHJKtBV7+1dwTauUk3U452mM\n6p4ePbxP2JwzrSzMWnLOzBaGyk8u2nOxxCEw9BvapqBUsE3IZcSyyxOk17v4aF0Kha1I8S8iwi8i\nM/iJo9C9I7wtuoikMmYopkhIgRgTMQVCv8akjmGzYug2xKEjxl41FNmCzaWkKBXpGBNZTXnVwkTj\nRQ0U9ar7yuFcQwqBtOmJSeiGHt9MgTXjkN2q9lS+RZJSz/OdGcbC+mxD1UzIOWHIHF27gjfPmb45\nY7MMDOcDR0dekV634vBQDULrecXR0T46vxFF25JhsZjTTqZUsx28m2OMw9iayaRGsKSU2Kw3bLo1\npvHkXrslV+dnGK+eRI8e3SWaRMwDZ2cQ0honNYu9Gc5VLJoGkzPL8zNOTpfMF3Osq1DjeUGcBW8Z\nhkhe97SzGZtTS7aOZjZnWJ2TomXZDQyck23N4dERxnn1YbLq5j5xjmwSDx7cJYYV08qSZy0pJeaL\nPbyf6vpY7kscIt1mzWRyoFRX2VSyiOqz9LHZxoiI+gGNG804JPnyw290BytjzC7FzMULXpjDjJqr\nLB/fNO0lRIKL86XQOzkXKwe5OE8NqC3OUWYPlkT0kp7zAvIuX6RohZwh54KkpZKciRRxuJREQn9f\nbacE5yy2dQzrQDWptomaMVow+cZrwrs9B9lKHCSXTuJLn2noc+kUhLoURIlL10LU78x6Rb8kC1Xr\ntqL+EdmjJNzWW7bSi1LcYUZhvWw79JIYTO0QybTzmjjEcq0c1gixjDm6WL/0M6r9ZbkgotYZuvfr\nxx1H8fjGsuk0WUwGTDZljF65EeNcxJJFjXYN5QZxCb/ShHl7L832tSNVfunWfiIu9O1He5/xmz9q\nqvVCJFnAx0XM4/cks9lsygyvoNVmH5C4YnP6CAkrNk/vMKyfk4clVjzb58CXobnWYrzDO4evG4xY\nRhcUdQK2+KounYI10+m0CN8TQzwlrjuG1SntbMpk0tJJYjqb6giAGPHeUzcN666j9nNy7EgS8Nbi\nvaP1lsX0EHNVWJ+vODs5BYmk0NGt1sRe50etNz07e3PqdoL3NXFIpCrT9wPGTqjdlM1yIKXM6myD\nMYnFzozJZMGTR/dZLc9I56eIdSw3HU8ePKLvNfE8O3/GZrOmrj11PWWx2MW5hg/ef4/JdMZsMmF3\n0RKGSOUaZtZTN3OqpqaaeKzxiFgWsz36bok/uIJJS9au5uz0lKPZHma+SzPfYf/wCtP5LrZqaGc7\n1LPd4iZumC2mNHHg4ZMH3P/w+9Qu88b6lNuvvsGkrhDX4KuKnCyyWSNxgzNqpGestkbZMgLpk4ds\no4iPURsjqHWx8ZSG96wmhn+ZfuuTyf6P60gxXtJs6JFNpt90JFFNYg4b+i4iYcn67AmS1nTHd+hX\nz8ndud47iu+NWKyonsRUDmcsla/0+2VhttbgnMX7BlNB3dSKnFpt8OjjKXHVMYSOdiK0TUtPpJ1N\nCRGGPtJUjulOy8nxCu+nSj+kgHMNda0I4mJygE2wOlly9eqpirpHM+HVgJ9UrLuB3f0F1rdY64kp\nkVJmiAEfMjMz4fx5TzaGM+mo6sTu3oy6WRDCPUJ/zvrxkuwdy9WGx/ce0XcdMfWcLY/Z9Gt87and\nhN29XSRWfPjR+8xmc6ZNzeHBjM35QDuf4xtPW0+pTIN1DoPHRMOk3iGYDe2NazizZvP0KafHx0ya\nOXlxwHR/j/3DQ2azXYyvmSz28O0CSkxMF1NCGHhy/JB7d3+Ad5k3V8955dXPMK0r8A3ONyCGuFpj\n2OB92fAkqT6mUIGl3NdnXsrIFcmKRIwlPWwTECvFRbvMiRNJyGg/wKXNRMwLExMUgbmhaArLqY2i\nctVdXkBc4/QGdTP//5h7jx/LtvTK77fNOefacBn50jyTr8gqsnxTFLqBbjQgNpuEIIkQeiQKGuk/\nEDTUjBr2P6G5IE1leqCBQMqQLNA0ySLL8Nl8acNec9x2Gnx7nxv5upqsEqR+eQpZLxEReePec7ZZ\ne33rW4uDntN+6SBG1iOGBPqOCeadjy17tDrofLJeqqwtJRxayC35evBRostQWKsYWvHBMo2dGCml\nxVtNW8nsjC4DKSMfzBAlwsaYCXSFrBXMAq7sBC+fO3ogR+KQg6SDE9H8bG4Id5gjYcbI3X0JYvHP\nKgAk4X3W9IaEtRrXR6q5gMHoE/QO/EHbFKM4sVeN6MyK3UIcJJvW6MNNDyFnEvp0WKwTjF0UY1ZN\nZvGKdRPTPZ9yErWaQCgFGJLeYCLLvxV/MAGThyH9JoounYZyoJfvfwmK/ULXWwOySpkw5NiXN0JM\nYySFiB8cbhiI3Zbx9gLlW3BSdgpji50QuZzXVWaxjNEYawVUKZM3GiMbds5g0yqLA5VBKYsyEWtr\njJaQ6a7dsjg6pm/3kMAHLyWuELJoXhOjiLp1JFsBgNENSTuSdmCgajQhWKKq0X7kaDVndIHYBapq\nhjUVpGy0mgShayVal9OzFa9fXeK84/PP/5bj4zXz1YKrq0uGvuV6u6GazbndbHn5xQuur6+wlWEY\nOlIKGGNZLCKul9iGdudYrY9YrZZsNhajLe+/+wHaVpi6Ft1I9k2KQUoIi8WKnb5ksVzj254TU8sK\ntzqhmi/ANNTzNaaqqWdzQJ5pSBDbDlsZ3nvvA8LQsb+9YHe7YXu74fSsZbY4h6jQGPzYE1yPSoG6\nthNNPWVR/VvGz9RFqA7TQhWxRT6hlclZtHXTaeZOqfqrvw4l9BAlZKrMiZQS0Utmp+ulS5N+i9te\ngG9Jwx7f70ihx1JEuxpd5TmBjHutTb6vYjUCWlgvLQ0eRhn5WW1zo0GisjXWegwwDDvm68OciClQ\nNTVxDLS7gK1L95WhsknmRNTYqhGLAh1IOlHPFC4Ykq5Rg+b0wTFt54l9wNgZVVNnRkZPmjGisGzv\nPDjl5csrRh/49PknnFwvaeZzXl9eEOPAq8trZusl19cbXj1/zdXFpYToulZYT2NZLmPW4EDXB46O\njjheLxiGW4Y9/PLJEaauZF4omxm/7FUUYFbPab1isTzGb1tOzqRjN63PqJdLkm6o5keShzibk5TK\nvnuJ1LZoa3nv0fuEoWO3uWJ/u2N7s+H0JM+JIM9icD0xDHlOmMkYUZVS8iRUQrQlIWY9y5ccqhVM\nIXrIplisUWKMqFjGCW94Cr4V153pf7ekV8qCd9kNyC37+WBFBj8JshZLCBUx9D2IrssQe+P1ubOp\nk6bmk7KpF8PLyToiv4DSSsxGXcA7CTROScCFLh11iHN7cEGMt1NOHImgjJT6TGXxJfcvZR1TKYdO\nIEMAhLXS2BWAlD2sUEnkLRXEMZfXEI0XWWCuNDnT7/C8dfGXUqKD0koTfcAk0Y7FEMTsWiHVI6UE\ncMWITwltzR1GT6KHCrNFlmuUBzJVgQtbFIq1kqash8BBd5XHaHmm04MqDy8jq/KcRbMlnZ2Fpbp7\nTa+h7oJMeY1pHhy++nNfbw3IunsV4XsJf48h4p1j6CXahnZH2N8Qhw3j7oboWlIa0ZiJyk1Tq7+W\nKBKlp4lSYg1QUsdVRb2InpzDSZo4tUAnbq+vWBytmc1mFC+Wuqkhm6gVC4CUHMYYmlkjDyNIidLF\nRDWTrMPG1PjRMZ/N6duNdGHYCmvEHFQ+g8H7wGKxxBpDu9vBXFEbxc1my+uXX7DbzbGzipubC/r9\nnuvbW3xSXF5dc/Xq9g7aVxgzIwID4IcRHwJuNHgvcTzXN56mafjGN77JfCEliqqpUFaLzYSPEuuS\noGpmKDejms2ZL5agDZ2qaRYrFutTXEh4AuOuw6ee0XlsXWGaBmMsT558gzA4XihLZRJ967i52nB8\nlqTzBhj7Pd4NEB2Vtei6lqNm/MUHORzW5uL+nNKX2VM1/eTbsqEcchiLAWskRhF/BifPox9G+n5E\n7ff47TXJbRnbW0K/R2kvJbaYT5Mpl13znNDaEJOUGWICi5yckylzIgNsZaZNJKa7c+KG+fqIumoA\nmafzeUMyjqH3VFVFStJFa7VhvpjJXfYKNTe4vqNazHB+ZF7NCD4wb2Z0uw2ji2hbY00tXb0xUleV\nsMehxqDp2hajKxoL+92WV88+5/aioV5UXN9e4vo9Fxe3hNcXXN/ecHWxleffQkoKbRpQMCgI44h3\nntFLykAKnssrT1XN+FXVUOtGMtOsdE+aqEkoYgoEF2maOeNYYaoFq+WakGCnambLFYvVqTTQuEB3\ns5cyYz/KnKgbjK342td+RQKok6U2iX7nuL7YcHxP5gSAG1qxyshzwsxqVGVIPou8mYgAWdtKl+Ck\nOyneUYcxfkfeJM81RmGKy27HWwayYPL7KiyWfDG362ezyakcmMuKWikB/FZN85/8I8JE5dcpPlH6\ny5+33Iv880pRxGpq2pTze0IdBONJom00Ei5cTC5L92IpZUmMS7YfUDm7tZhlai1ZtUG6YpWKUwm0\nqqTsNuwc1mi01ZOXV9Libu5cmOJ8Slh29NkTSyEO86HIMEDymcTotbCa5f+di+jG4nt5TZvNj1M2\nODSVBqsk/gdFdAFxOBLvNSEiDzpTYfsStjrYZZS7LSJzkDaBND0nNTFhd4Bafo9iOnpg9TKDkueE\n/N9UCJkmzOHZ/ZsgrfyzN8fDLzId3gqQlWJkHMeJiQDZAF2E/X6H63vcMLC9vmG/a9G7F6SrL1Bx\nT3SXRJx0PzidTwVGmCuVO2OMFpGjVpjK5jRzI0ALUCYnKWmLAK2KFMW7KcbE6ByXF69QdcXZu+/j\nUdS1kaw25HfE5LGVwtg6O8Q7tLHU1VJ8QZSlrpcsVifcbm5QOmKSRTnHfK04OT/FVDAMA9oYttst\ny6NTbm83aNNh7I5dtQHA+Zarm5dsnt5wublCe8fYj+y2jn3r6MbA/eMHKAwpGCq74mh5j+OjU2zt\n2bd79v2ese3Z+h1d19PM50DD1fWG9dERcQhQgU4zQlQsmznBJELyUynQomn3e/b7jjQ39C4QO8fx\nyRkhwdXNDbPlGqNzzIqtqOo5TX3CBx98m4fnT7i9fcVydcxsvsa3AYM4ykU/sN/cUBtFjqFDWY1y\ndzxO/q4x9TNUq0XAW9LsC9N5OKFy579f7RVjYhgHiZ+IYTpsjBHabo/rOsZ+YHd7zX7foW5fkq6+\nQNMShktSHFGVhpBNAY3BVJZSnkArKZlojaltjs3QYt8BOQYEdLbYQFekEKZOLucdF69fQmU5e/c9\nPIrZfMb+ZqC2irqyROWpKiV+VDEQoxNt3nxJdAGFwVZzmtUx+/2G2LfCGPUjR/csVbOkmiX6fmCx\nWrDbbFkdnbDv97TjiO0H2q4jegd0bG9f8MnNDZe7a1RwjPuR3d6x3zt65zk/eggYUjTMqyXH6zOO\n16ckRtqxo4stw75n5/d03cBstWSlFDe7HSenR7RDJOoEYUajEuv1iqgjox/QVgBVfQZju2Noe+Ki\noh0joXecnCxxHnbtFtssqUwDGbRVzYK6PuWDJ9/h4f0Publ6yXJ9wmy5xu3Fcz55jx96dtfXNLWm\nym4NcmAUXUthScjYQpzHZSOK2ZqhqIKF0dWHyJmsVSKXi5WW3FaAt8nxHZg2yakzEDV1tJXPp4yS\nJu7cMRmLx+JkSXIXOmT2pmzwxbIBeb1pfSju5xOiPaxB5Zxe9G5i1SBM0LAPGJPF7dP/5HcWmVHS\nhYnKr6k11kh5C61RMWAbseJQWqQ0xQ5BkagakcokpUlaGlIqK8/O6dxNSe4gNUZKcJmJC/lzVkr0\nZCkmXC8s6ARolGT5Yg2qVACKBQKiGURDNCbr5gIlT8CkhHYy3jz6UOaNAsCkm7EYoRYErCZSRCHA\nuqzZKQMugjD8ZM8t8qE0hQN2MlYyWSnWEDaXw3Mu5xvO/Alh7e5oYEu3psmge/Lg+gXG69sBslCE\nkJFj7pyKUeFSpA2GwVnCMJI2V9TtLam9Yhj3aCWGoyqIRmGw0uVQWYVVleT4RbCVgSRt/WR2yuTO\nHDkrSNK50RGFk0VJRQIeF3pS3KHdBbvLyDvvPgZlGYNoZoYUiSHQWCunjyTUb1M1GGvQMeGjn06I\nISVMEvsDVStCZWiaJcbOCaqintU08znj2FMNLfP5khgjfecYxxvcOHB9fUWdFLF3jD6wuxq4vLjB\n+YDKLrqsKyI1pJrF8UPuPXjIyfExH3/yMU5bHv3yr/Ly4hXGGEbfE1yE/cjV5RXn56cs5nNSypEu\nlWHTb+m7PSk5zo/XUJ2x6xN9rdHNGpVgsVwyWyy4vb4BZbFUKD8SSbhR01Q1Me1puxuc73FEVmcP\nmc0WLJcrgpbsRGMTKY0o38EYGOOAqTQqVNMpSEogd48k+W8pfQlg5dZ1ZIIWb5ryszGW3LZcLr5j\nwPfVXorglVgjKGmpjlFJXEzQDF7MYtldUW1vSd0V/bDHWmGOdADlI4MJsihVCqUrNJKTJidgcXxP\nQWZBZUq3Wj49pojRCZIjKU0gEJJj9B3Rb1HDBdvXgQfvPkLpiiFIGT0qCO3IYlYJg5OEaWnqRiKU\nYhKzWZJ0DxcrEh+IlSI2FbZZYJoFLlZUTU0zm9OPPVXfUVc9yiS6feT61RWu77m5vaQOkDrH0Dn2\nu4Gr1zeMPqCt6FLMaU0MFSrWzNf3OX34mJPjYz75/FPGWPH4g1/l5euXaGPoXU8cEjByfX3N/fNT\nUHPquTR8qMZwvd3Q7beA5/xoiZ6fczvAkAwsTqhSYrFeMV8t2W23eJ8bb6InxhE3KhpbkYY9bXeN\ncwOeyOreQ+bzJYs8JzwOOwf2Izp0pF2gG3vqI41OdQ6zj7kEJUw4WSOEkpJf0ZeUw7tGZBJKa7SK\nGGumphPvPNGDttXPOIR81VcGhypvpkpxtwemkNIxt9mn6RNzAJcFyHCX+aNU/uS3lH/2BlOSX7eU\nHCGbV+bvJaYOwbvROkor8WRzQRzNET3QJDrnwMKV42NCTRE68r6yvslmwJzfY8o+akVHpIzkC6qY\nxPfOgEpKdF6ZxSuuZ9Lnko1L1cH8U6oVNoPrfK8hC/Qz+5+BZkKAnark83ov0h6txZTY5OgcB4d1\nRZH10JndC/Fgw1CeVgG5hUktD7f8jFLoSmVdG5NHmsmNa5D1cVnDl/KB5I31XR98ONVEWeUxlQFa\nMSeNIWVjVf1GWfHnud4KkBVjZMhu20qJ8WiMkYBi2He0mz1+v8G0G/z+htjfkJIj4aSlP2mMNiTt\npZ09RqxlOl7cZSwOdVVpudVao42VhdNIllQkMriB0Tm8Hxj6DpU8+J4KUIgPS1CKylbopmEcR3wM\nKIXkAlphunzwk5YmeC+LX2VZn54wupZ6tgZTsTg64eyd+9SzOUoJY9T3Iy9fvmS1PMZHxUcff8bl\n5TUxKT766Atubrd8cX1Lv400lUJXic/p5A8AACAASURBVGZuMLVmWR9R1wseP3yf07N73Nxc8/FP\n/5KA5v333uX07ITv/9q3sVXFH/3gj+jaDWPf8vLlS+7dO6Nfe0yzYrky9ENg7PYCsoLHasNqvWZ5\neh/dtlxfXXB7c426vsYNI8+fvqRte/q+Z7VesF7PWZ0+5Bvf+hazWc3HH/0EW9U8fOcx7zx6BAmG\n3pGCQyH3cNxucdutlAX8iE4RnUUFpYx2MIkz+Qj5M0Z9+tlfPpTbCwiQuv/dyfZVXjFGBudQThYG\nN47ZtkHR7zrabUtoN5jdhtDdEvsbtHYyL5KUFpqqwpE7ZJ3HNlIeK11pKJNZgDu0iBIQoasqg1Ml\naQEpMgbHMDicGxnGHoVHMWKRhTzERDAKazXNbM0wOoZRDkJH65n4e6mIczJPE4nRB1KKYCyz1QnO\nd1R5TswXx5ycn9MsZE7UKTCOIy8uXnG8PiFpzY9/+ikXr29QSvHxp0+5vt3wYrNhexVYLCwQWKwt\nVsO6OsI2c9599C4n987Z3Fzx6U//gjEYnnzwHqenJ3z/e9+mqir+8Ad/yH5/yzj0vHj+nOPlEeuz\nY6hWLJSmj4p+t6UfW6IP1AaW6zWz0/uoRcf169fc3l6jbm8YBsfLpy/o2p5+6Fkslxyt5qxPHvD1\nb3+T+azm009+itY1Dx884sHjx6SY6DsvY18Lk9lvd4z7vax50Uk2ovegK2xtSSHfS6VQiKvkQbKb\nt4YyvCctElNHs1KH9v0cnIgiC6zfgjkBCCgohJw6TO4vlwpLtWcCOrlcaLKHVtHnmCyAVxyE0omi\neUpvrh+ZvSneW5Sfy4yKmjL85JemmKN7tGiUdKUlozAA2Yw0BNEuphJdlEFiyqjA5d9V5QpudOKZ\nV9z9E2KIlYwwbEaDU8JQT9PcJiqtGV0Uw1qXnf5DEHf4lMuv1shxNEa8iwLC8oAp0CS6OInsvRPQ\ngUKAEkoID6umg1Us98ZqcXHNoDXK2W1CqCmU7nFKlVq6H4v3lpGHnJCGDRB2KyIOAkkhXY9BbG9Q\nEulzVx9XNGsFaJXHmihzhmnglJBvUNkMVck9vqtv/DnPHW8FyAIRAgKkFBlHlwXwmth34Dq071E4\nlHKAR2mJWJluBAaVHZF1Nqt8o9cV3gRZSk32+Kp4eYCIUhHCS04LItglykl7c3XNbH1GVTdIKLf8\nPltVOZAyYmsxcERpPDCmUShZo2n3O4ahZ+hbbAW9C+w3O7ohYppTVkfHWKvwwaFtTfCe3X7L+uiY\nRw/eoe8cn33+gj//4VP2XaQPsKw00cPCCHsVXeJHP/ycurJcP7/m4aMHKAO316959vKap598zOn5\nPdbHR6zXR2zbLRCIfqRtO16+fM2qGzg9fyAB2Cj80FFVDdEYZoslytZst1f0XYe2NZtdS2Utfuj4\n+KMf471nGEaO1ku64yN8MOw2j7i+GlBEVqsVy/UKECdhazVhhLqyaJNgGEnDSLKl4w1UjBMFfdeF\nV2e/m1/ssJ09Z2IGZ6r0tae3xhcoZFFiTIHgnQRkB0Uae5TvUa6XlSqNkDyoIAtuLCGyokWUFu+c\nG2bNdEKHO7MjkU0a78wJZPFKmaJPovcG8pxIEAfPfrOhWR5T2YYYVDY8Fb0GtUGbhK0tNr+HaBM+\nBDk5a0XfDXRDzzB0VI2idYF2u6NzkWp5wlqfYKxi9A5janzv2cQNx8dHvPfgPkPn+Oyz5/zlT75g\n33raEZYzS9cnFvMaZWZ45/mbv/iUShtuXlzx4ME5plLcXrzk6asNr774mOOTe6zvHbOcr9l2W5SO\nBO8Yhp6rmyucCpw/esR80WBQjO2eqppBE5mvVnlOXDOMPbpu2OxbrNJ4N/Lxxz8VXekwslqu6I/X\nhKBp94+4uemJPrA8XrI8OsolIZkTyUn8FSmixpHUD+gK6pmhXuq8cUDwIR/0hQ2prBFPuKLBKrxO\nzM+xNIOUh5//nTGKlEJ2to7TIeRtmRNloyUx2TlAdgSADGwKN5Gk6WX6GZUF3kq8wNSXmgIyIJMG\ngMwOFd+tO0BDvMPSFHfzJuMlrIethDISs/ysrUyFSWPSfKnsjyUAQ2UGUmxG0hTknCtz+eftpLUT\newYFuAHQCe+Lt56skTrrwkKIVLUmKekyNAZSENuIVExoyZqxECfWX5i7Us5jcp2XUqKadF0pyj0p\n99JUWpjpyMTOoaWvP3rpPiw12TfWc/JzjcJCxViaBb7UXagKsyYPTRthtgCiD6j8HCaWMaZ8uCz7\nBgdQfbeB4c5hpBxMSlRTkRcVFvHnvd4akHU4bSRCEGdr/EgcWtKwI44bktuSYkdSIykN2Tg0G74F\nhbYGpVNeaKTl3JjqjkZO0L+cqAG0ZJ7lDqqkxU+rIN6UhIKPebPTKG4uLjmzCxb1nBSddADqyGzR\n4COk5KXLytaiz4o54yo71gciq6M1y6MlITrq1ZLHiwVHR2eMQWObmnHoGMNIlRTOJ/b7ln7oSbEi\nRri+2XG5jTggobFOJsS4c9BJvEno9jw4nZPGwG67QVeGYRz45LMXGKt553YjOrU8MZbLGffPT1nU\nFW3X8uDRY6y19G1HXVmG0eGco6krTNUQYuLo5B7HJ2fUleXs/D7b7Za//esfZlGmZ7WaS9twVbFa\nNIxDy9W1dEdaa1AKjDG4/NomRTmdGwvOo1PAO0/X71FuZD4Tz5KYV9nSfafvZOz8myxXof7VnbGW\nyyml8+bOKbZQ42/DFX2a5oRz0sWKj8ShJfZb0nBL8FtS6ohqJOURobIPXIoaYw3J5MOITSQVMSXD\nEwnVHXtPZUuZyYgXHFoijzLDS4wEL6XHMkcVYJTi8sVr7r87Y7ae00WP1hLbMZs3OA8xOvHIqmqs\nriWn0gWCGsT7jsTRyZoQF6JtnM15vF5ydHyKi4pq3uCGPd0wUFlFNIqu3xDSAL6CmLi62XJx7XEJ\nQtLYXp5iiI7dEHBjgKHl/ukCHSN9d0M0hr7t+OTz18wazf2zW9SzSgLHrWKxmHF2csxqbtnv95zf\nf0hdVwxdh0bjYsAFR60sJsdYnZ7fBxK1Mdw7P+f2+oZPfvIjjEq46Fit5liVmFnDatHQ93uub67w\n0VM3FkWSJpphxLkRmxJhHGW+BI9OHucC7X5HXPSsThRDSBKrYw9AIyaZEympSRSfigColKcyxNal\nbBITmBIInC0uD3vhW3FNpcG8yYrGMPMS00ZdaGoOkSlT+TSDmwJ84HBAywyH1ho/hAMoU2SWV9gy\nVQ5imfFQdxzxde46jF5kI2oyzyzvQ+VSZ5q0ZbEcijIcKQxOaTYhJWLOJy2rWLFc8IPsgbZROYcy\noULChxwqHzJIRE2A3GRheIxMJURFwhpwmeVDyf1SMRN4Rh+AbBCgLp8zYOeWGGUM6pzVk9zkDSCN\nK+UAS8r6P6bnVZjH0uEoHZNIp3kGuQV4Tc8+Ix1tD2NCBPiHUO9YzFbJ9zzvF5PPmTqwltP7KOBX\n3xkbFPBdbv4vRuu+FSArJSb2KoTAZrOh63rMuGfcXOL7DaG/Ro3PIHSkuCelXjpLkwEkI0Gl4quf\ncqJ4BBuxqhbrBq0lG0rn8mKB9MaANUSlSdoIOteSxxaCRytFbTWNNqTesbu8xpiG1dGa0Ts8kVfX\nl/i4ZxhbxjFQmYaULM51Uv70EuhstKFr9yglGWnr4yPSGIn7lncevUtSmvnMYnuJdlg0ltPje3gP\nP/ijH/C3Hz/no2e37NEEKlCJMY0y6UeZHwmNJcB2oHO3LHY1vXO0o8P3ohG7vH4h5VFjCM6xbBQ/\nNh/zz//5P+Rrv2SpF5bj8xXGJymF+oA2FcrUtE6y1hbzOUZnN+JqhqfFNGu+9Q9+nZcvnnL5+gXr\noxPeefiY4+M1zz77iMEN3H/0Xi6nOra7W4iiEamtIYaAa1turl+R/MByPWPvO3y/pVp7EvXhJJtL\nwDFyCDee9CNlAqdpgskP/OwxGKNj6hb6/2ug/wJXSki52gWUTdzebGj3HTZ0DLcXhH5D7K9R/hmE\nnkhLQqKbNHlOTCUj8RobXRC3d5uwWk+RK83MTIkIGA3WkpQGawhKugt1bWAccynfYZWiMYaZsajB\ns3l5DalhfbRiDCOexMX1FT62tLs9w+ip6hkoy9B3xOSJo8/2J4ah30OZEydHdC4St3sevPseKSmq\n2Yo5FcFHajSLo3fwHv7sT37ATz57wUdPb9lGTURstccg8gPdZfNQKirtid1I62+ZXxsGFdgPnrGF\n233g1fUrKZEqS0yORaWobOQ3f/Mf8cEHFfPjhtXxAuVkTiQitqrR2rJ3whLOVSObnU4oMyOoCl2v\n+dav/Xu8fPGUq4uXHK+Oefjuuxydrnn2+SeMvuf+O+9SVXlObK9FQ6MsTWMJY8D1HTfXr4h+ZLGa\nsR07xm5Hc+RJqQaTm4YKqIpgrBWNUN6QUix0jMyPmNmJCUil8kfYk6RCBmbxrZgT5UopSYktxDz3\nD4CpaLIowEj+wXSouFsWBOm2M7lDr1Q4gotZszhhK6CI55kKTcUXq5iJFlpGZ0PTmGOOJhXPpAnV\nhDEewoa1Fh+rHDUTfQbBBop9gTJif1C0ZtEVvwkBeGGMFGcES7ZmSFo8sEiythUwkp+x0kYkylZY\nrWEIYjCa76eLAvi8F410UmoChzGPK1NZwpjXV62kS7AweIgnX/S57Jy7BbNyP4PW/KgismRlYD+t\n4ZkcUbkJTSkla1TOgJqAchnnHDR6RTcWs4hNLJyyY0UuYEyAK4Pn6A9aRlCT/c/kr1ZcCn6BY8db\nAbIg4b2ftFijc4xuxI4D47DH9VsYW7RvSaGFOKJSyIPd5NdQqKTJTkKZrZIWa+mkKeXCgzYLZVBK\nHNxlYZEuw1IHDikRfCA4Ea4nHwiMjLe3jAm4vQYN1XxBtaoxeGwVWS0bwGJ0gwuDIG4l3hzirR2p\n6ooQxNZBUHKk7XqMlc5Ga4RRI8B+t5fOxMWa45OO2dVAZC+zUA8yYA4wG1Akrel8JO179n2PS9AF\naDhESZhkiEGaALwLjCN479FGs1zNIYcxy7PxmFq6BCXqSEnJJyq8G/EhslytOH/4kL/5q+c8ffaU\nn/7ox/yn/9HvMJsvMcYQo5wOm7pmNm/yKcIQoyfEgLE1xhp81vGo3OW0PFpiFzNQ8UC7T6egw2C/\n66dSulQh/72Y7d3ZLia6OEUptU0M2f+ng/v/5SUluaHvMbWSfMlxJI4dY7/HdRsY9uiwJ7oOwoDG\n54VFygIqyZyIJJKCqhKn5xA9Kcdti8FhdnxXioSWeBZtpDsqd956H/J9lGBXNzjCGFAmMIaeMcic\nUJuapBL1colZNmhVo3VkrSoilrqeiZ5LIS7OSjYko6KAAsA2dV4cA23XUVU1KXoBLxGwhn3XMmuW\nNPWS4/UJ88VIUi0pWVDDxF5KG7ucrn1U7HoP3tMpGJViPybqci9SojYyL0Xgmmg7hI3Wmvl8RpI+\nKrx3dPsBW9fYeYOpLDGCC4GYFENwOB9ZrtacP3okc+L5F/ztT37M7/zW71A3i+yt51BA0zTMFg0R\nMNqSlJO8yNqijMGHJCk5RljK9ckSezQjadHGlHqWyiugCkFiU4yZGKzy3lPedFPijr5IviP2IAFV\nIz8DqDLv3oJLaYgl0y+//7y3TuyFUky6qxIPM1kG3MFdKOkCjF58qVJe9ws4m1iMzOzoUhLM9zNm\n2whxeBfApzJoiz4eMvkoIEQfGBGdtUQIG1Ng7F3NEIls7XC3tpXZu5LkXoT2lZ66psPgybIsAd9B\nPlNhhEQLJu8huABaUVnQWLF5UAfXtZhyBmGSnkhdK5IPKC1mqsEnlM5gMQizNrGFxdeuiL7uVhUm\nsrEAVyYGrdwzyP5f5dGp3AwQIllGhdYF0B2YvkSOAyoFDqUm8B2zyL68jYMWS97vZAVSnj1yE4KP\n6FpeUOVx+PNebwnIglwEJziH8T116KHboPsNZtwS3QYdO4iOpPwBaSoDKTMaOmbWN0fnJA2jgpzP\nlH2tUSlJSS9ZdJA0cnQEHUg2wihlEI3DjcJEtRvLNjnOHtfMFytM3XDvvfepZjXVvMGrhA+OcRwm\nQ7emaej7DgV0fYu1FqMVjdGM/UDVaPpuIKWA846QdsyXK47Wx7T7ETmlBBl7FTRWYULgdLlAs5XP\nmwQcFKgpdyBIWQ0ISYk5HHK/WiKVqYgx0WZ0ttaw0hA1VLUmpoDRNb5LjF07gZq+b3FuwBjDcnnC\nzC6oKsOoBmyyvHjxgj/5wU/5sz/7S/bbWz748AkhOi4vL7i69VzfXBCSoq4XJJ9YrY6x/oa6WeKV\npnMjFZ6b188Zug1NVWOrI7SW+J8UK3Sx+EAWIMm3UnlySqeg+EnJz2X4IK23RhGncgGocsJBQbR5\n4XwDsX6ll0YWCteP2DAwSwOp32CGW/A7YtiiQy/gqhIWgyhzQmEyzV9KBDZrCgxpUCSr0LXGSG83\nwv4Gam3RCek9UxGUJ9mK2IsZbRh6hr4jxEDfWrabgfvvz5gfH6FmM44fPKJeNlSLGcFIoPrQ98Qg\nC+TyaM7udo+1mrbbU1XyvhqlGfoBbRRDNxBinhO7PYvlmvXqmK4ficmQVCDEiK5hPjPYFLi3XqLS\nBkEiMg50ApMUjpBNH2EE9lFyMKOStvSOSNM0pJi4cR6ANVCphG3kNJ90xJoat48M7V5K1ErRtnv6\nrgelWR+dMrML6trixgE9s7x8+VLmxJ/8FfvdjRjxJsflxWuuN57LzRXeQ10vSS6yWh4T+kAzX6Gs\npXcO40duX79g6LdUusbaI4ydU8/mBGew+dg0pRmAgDESMUrcSUzCdOjM8GikLpOUzIkUE8pqYu+F\n8S+t7OoNLuYrv0pXmnTmIa7oeVMUcXRmtpVCVfJvSrnsjSpP3nQVuVswIwp1FwzA1IpXNvvp6xng\nAQIstMqO7QHvxPNKWS3d5WPZwIs1iqKghBhyvI0XZkYXIX46lK+mLMUMJsp7LRYRAtzEGNRaPWlU\ni5cWFNxzKIsFF7CVyV2AiRK/JGthBjBW9tWxE582Xcnt0DYzb7mDMEUBLyZ/Nik3y3KkTb6fIB57\nuujRMgOYMtAiV0TInyXmR1tKhAW0ain/xVhYWI3KpF6x3ghjad4olYzDY0/lzZAORq7mDvuVn71g\nBGEES+m4MGOoNJUYf57rrQBZKSVcCoxRcgqDHxiGHXF7gd9dQupRqSeMHUYF6dYoR4IvUdmF8pX+\nGgmANsXdXWuM0lJSyd4aEiFi8XiC92w2t+iocV0nLfJa0czmLB4vwVSY2QrdzMBWhOAhKBhBzxqs\ntthZxRdPnxFCpG5qrq/2xOipG7i5vSAmx9FyyWK+YLFYUdUNJ8enJBRfPHvGOESeXr9k6APz+Zyq\n1hhT8Xr/mpPjE77x9QXRPqP64QvG0L9BZ8+bGe3QU84BArfuLo8ymMXYTVy7A2CrirPjI1q3wwfP\ne++/T11VbDYbfN+xXK54/vw5ysD9Bw9QCjx7Xl1fEkNks7nli88+4w/+4P/gT//wUz79+DN+8ze/\nyYdPPuSdB2fst3v6sePe2RlHp/f45je/T0oa7xKX1xeMbkdVN8Rui3Et/e0Fs7llvVhjTUNIGhcT\nNn1pYOtJzov3DoUSkfB0npHvTYfThLCKRdQ9lZcPPjqF4v+qr5QSg3d4AlEF3NDTtRvU9gK/vyRF\nmRNu7LEqTKXyQ+hqLvUUY9HMo5okvm7W2ty0oTBKUdYMlRexqqoY/UiKsNneYpVl6PYE70lJYah5\n9PhdqGp0vULZBowlEPEpwNBjlnNU0qyOjvj4J59DSvTtntev9iQizTxxs7kixJHj+YLlfMFisaSq\nGu4dn4LWfP70GUMXub58QfCRWT2jbiS/88UXr7h3/wxtFviPnlPxDKVHvBBuGJWwqcYxohHnHoXo\n+hIqn85zdSJEovdYwBMxVc16uSSoHT6MPHr4GKMM+3bD2Laslms+f/oCbeDBw3cwVuc5cUFKic3m\nhmdPP+cPfv//5E//70/45KPP+K3f/hYfPvmAe/eO6bqWwMi9szNWR/f43ne/Twwa1wcxUr1p0aYm\ntDuMa/H9NZU1rBcr6qrBR4UOkUbrvDHIppE0wuCR8NGhElRVnQ2F5dmRAt4rYmY3QwjZwgEBnxH8\nqNAVoDTDfuRtOXhIu3/WCfncGZz9wFIWWadc9pe0jMPGWRqQp0+SwdnEnBzEaxlcZXd1XTZ16SQ0\nOd9PV3oq7UlWYaCuQFVi8uuzq34BhqVb0YeQA5QFmEQfianYBeT3kZFeJlso1Iu8l8zgJcRDMEgm\naTKK4CNNrfEuCuNnsuN8EMkAMBmJFhsMrRChOUxAnXSwdLCV6EJTEnuPWSPNLcEJxWSa3FWowAc5\nfBgtnyPlFysyjpIZKMtVLi+GgA8SJm0bjRsz7MrsWAxyAJDJmyb2y9aGsYSYq1LVUFM6RSEHBECS\nGS1BrwedYX7WKRGDrAm2NsRRzLaSj3LESAiwbOTZDH34ucfs2wOycrmQFFAqe/QkhwsdKvWkOCJN\ngPkmpSTsl46HB5lfT8ZpEbzpSRw9dReqQkNGfHAwaqKWEt56sSKMAZzL5qQKpXMmoj50ISpEQFgZ\n6d5q91uGwdF1HTElFosFVVUze3jG1dVrPvnsh4yuYzareHj//hSVs1wcUVUN3gfOTs+5uLrm+fMX\ndK3nyZMPsdaCUXgXwHmM1Ryvl5wsLNetZygsMlKqKANnwhQcQBjIYmLy98swaQfH84sbzu/PmM0b\nSqddQsSbEDk7P0VhuHd2zny+RFWJqq4JzhNTYt+NfPTJSz797Dlf/+V3+N53vsuTJw/xbgd46sqi\nVNbCJYUbPV03sjo6R2mNUdC5PRcvXhHaDauTGm0NVV0Tk5buFW0IYWLz3xC5T8aE6U2frJRPHikD\nkNJnxd2fK3+/++crvlJK+BgYRofRAW1B64RKjhR7ku/xbqCukAUtZp1EjGCKqWF642SmM9gqHbZG\nS56ayfNBBNARHyM+WiKByhgqsyS4iMGijcVUBtvUeeGW06W8abBGUVkJm95vNwyjpx86tJb4maqu\nefz4Htc3F3zy9Ie40FNXlkf37qOVwlrDfLamrhtCjJzdO+fi8oqXr1/R7z1P3v8AW1lMLWXQfhhp\n1jUnZyuOas1mjIS8TqQEQacsR5l6nMiVEkqdqZx0FQmbx3zfj7weRx68U7Fcz2iWiqpBtJ4JlI7c\nf+eU4BTn5/eZz+aYGmorrvQQ+dFu4ONPXvL50xf80i+9w/e++12ePLmPooPRY5C4L5vb6Mfe0e4H\nZutzlpXFkNh3e16/fInvN5w8mGMqyVr1XmHGBDONz15AYsugp3lQsvqCjoeTd14bxyju59EHbJU7\nbTOAUSHhd44xRKpZlU1M/92N/b/zKmU9LZ5QTMSzAMvgxaZBBNQpSykOlgtw0HAdWKnEXXV/YV8o\n4Ctfxkr5XWuFGyL4zBJpiZxh2ugLe5QbCrS6k+uXJrZHfJhy6Svr4ibH8nDnhispR5YwkqkcZ7LR\nZl7kC9gMKWHnFjcGwhhzqe2wD+gMWGIGbirbRxa2TAHoHFMdIpWKOX80UFmRsZgq2x35mAGmgDFj\nwI8JVQvLNdlf5TJoDDIWtQHn8p3SiroxeB8JMWvTxjitywkkokdplBGmKiUIwWNnRtY9kJDuUp68\nc+8KUi1TPnuoyv0vf9cqp0xIbFARz4fsxJ9CwrUjw15hm+qNzta/73prQJb3ontSKUx/jHJY7SF6\nknLobPypp01VkaLLp3c9aRBKV0aJ85i+hppyiwDpTkSM4ipbYyorm1NuHQ257VPbipgSEZ3jGRx4\nxW57S9gGMDBbr1nM5hyv12w3e25uNrhxw9XVhhActZlx7/QU5wZikgBebWoCiW4Y6bqBy8trxnHk\n3tl9uvlI1/VcXr7i7N45RltmsxlVgHv3TnnndMWuvWEsN1FpRu/fuK9fHgZyahf3o0VtccGzD6Ij\nXK7naKt5+Pgxi+VCjFRRbPY7Li5e8+DRu6zWRyREu2Zyjls/dqTQ87/8T/873//ur/Hr3/r32e9e\ncX7vHuf3ztndeLr9DmU0y+WSqqrw3tP3Dq0NzWyJ1QnXt1gCq3nFdj+y2/ecrM+wVUUyIi5WWkTb\nYpp4ZzJlXYZoXIT3VXlhiimKCDmDapXLJNKiXGwcygE2HRbcr/hKScp3JAkrJwY0AcOIx5OURxlh\ndWMI6BjRKbdTpxGSROIQEsbkUmGQBcNqg82gN6XclVt+r8ot5EajVINKct8NUoKNKZdsbEVMkVQC\n14NDJc1uv8HvxEpitl6znC84Wa+4vd5xu9nib7e8fr0lRkejZ9w7OmF0gxgamgplGqJK9G5kvx+4\nvL5lHEfO791nXw30fc/V9QXnD+/nZ1lhkuZkfczD82PaZ9eM02NUBJWzUO/cW6WkbKFyjEdVVaRR\nBPUzE9iGRF3ByckSXcODx49pZnOUEm583+65vb3kweP3WCyPc1VNY0yNMZbeS8bgv/qff5/vffv7\n/Pqv/hqbzWtOj065f/4Ou81zunZLQjNr5sxmDTEGum5AW8tsscIQSaGnrhOnZzOunl1yc9Fz9P6p\ndH3aJgNeS9IiYhdcfVA3S3eVhA6nmDCVYdg7tIGQApUyGWxIu7020m1trcJZsD4xDLmr9aufEoAA\niZA3bcFWhSGSJyxlHQ5rw50yWblKCUpNf1d3SoKZHVPZe6kcSowipbym+DQBsegThTyGvCcV3KOY\nOg9TZlUUGUhNflsIwgqH10k+d7PfAVsqV15ikLKolBIhjUncyBVTB964D2gnv89Y2ReV1N5kvmeB\nvbC5hyWv/CksXd8F4hhpZonkg/weqwTMRARgRSCV6oiI222tZN0Nd6wa1GFOlpBvrYTF0xm4WauI\nUU33V2uJ8SlESQgRW2l0JSVRPwRcJ/FFSeVD1B0QWrRVKR/A5WtZgJ8fmTYa13tMZfLeBike2DZl\nFMoqrDainUsaN4Z/qy3jz7re3ioByQAAIABJREFUCpBFSjnJeyT6HjuONDFg6AipJaaeFAdSHAlh\nFEfZmIXt2qO0+AEZO88lQkGhRhmqDLAOWV0HnyxsqaPnBxATOHEBTykQYyCiMVU91YwDidl8DtZi\nDAx9ixs8z14/Y7U64uzsAacn9zlanxBC5MmHA1038hf/+kc8+/xWjEVP5uz3Hbcbx9m9yHq9oplX\nHJ8subwYaZYzqmpGXdfMF5ZxcGz2LYu5wVYV1ii+/eEDGqP5y89vxXVeMiV+pp+NVloGvXxKCIlF\nrfjgw3cZs7Hi888/4+zBOb/26/+As7MzYgy8fPWKRWNZLOdYa9jtdiQ089kS+sC23fLXf/Ujfu/3\n/iUvvrjiz//oh/wHv/Ed/vP/7F9QKbi8eMX28oqmntH2LcfvnbJYHdHue2azJYv5mphGdPT0+wsu\nnv8tJg5UdaI+WdC7njppVssTop3LxDCaqIRNmMwCp2GUeDOPsABpsTVIJHQkM5wqLw7i76JRKK3L\n/P/qr5SI+wH8SAg9ZhipY8TQ41NLZIDQk9KAdwM6RDQmAwudPWE0hhk6qklnY63MCeAg3ixzI49x\nKSFFbF3LYuzFoV1b0b1FNKauRcujRMvXNHOUNdQ2Me5bXHC8vHjGcnXM8dF97j94yPHpGSklPnzS\n0XYjP/yrn/Dys2tWq1PGdc0ujNxurzk5CRydrGkWNeu44PJyYDFrML5iNm+oG8v+pmPsA6u1gVhh\na/j2Nx4xrzX/+rMbBpUIQllOh66795ZYGkDEImGp4MFJw/tnZ/TNjI0zvHj2Ocf3zvjed7/DydEJ\nKQVeXrxk2VTMqjlKG7b7LSlp5idzaAPbfsdf/9Xf8N/+3r/k+dNr/vwPf8hv/MZ3+N3f/RdUJC5e\nvOT29SV1U9P7gYf3T1gtj9hue2aLJYvFEd71VDqwu33F1auP0KFntojUxwvG0NGgWa9OSPVimhNJ\ng8qCYNnR4qR9iXmeKKWoGs0YPPU8M53IpmesaLiIsrEbo3E+sDpuiMHzlsyKA2uRqzz6zgaOKhIA\n9QZ40qp0Hx7a9wsI0rn0lzK9oeAQUJzLRFPOX0y5RJi1v1phqi8R34U1SUVIL6aek31G3vW9S9jG\nEvNzMjn3xWjpHFRaSn7K6EMZL9s4xCjsmEoJxMJRvuYC2kC9MJKgknV2KuumkjZSkSHlw9gh81Lu\nbSHwFLEbmVuNXVjSviU2NWPQYsUXFWH0h5xELVYQKWSmbuKM75CEmRWMUTP9ltzIEp3on0CeRykJ\nx4TYySgRshutpXxXZZbMJgzFp4s3umQnhjrGw96fOJRic7k1lLiiCM1cMlLJJVnxDMxjIJvJhjEx\nW9tfaDq8FSBLatrCUiUfUF7+m+JIip4UXEbhcqpX+a7KfpoxqQaTpjGe6UHRZXEXYN0BWdoa7tLI\nKU+26GW0lYiKpHKqeUrMqwqU6Bw++vinbPcbjs+O+fAb3wCEVmz3LQrpwkuqAxLnZw/4/OPX/PH/\n9RFH5w3/6B9/iydPPuToaMU49ixXc55+cYkxhqqypBhpmorrmx0ky+XVFfb+Ebv9hhAUTW1598F9\nLsclH734/M5J6mc9/4MZIUBtQMXA9uaGi23PRRc4O6r45re+DgratgWg71pmdoG1DX3XY6sGW1lu\nbm5prGNzu+MHf/wHnK5rll8757d+65/xj//pd1jMa4a24+TkhDT2ROfwIfLi+QsW644nT34FpTRt\n2+LdhugGbi9ekJKcspXVhCSGpfP5TDyZ1J3Ojqm+cwBZd81Jv3yFlKaT1mGhLZP97jh8s9T4VV7T\nWAxBnJmDgEWUg+BIYUQhcyaGIOMc8a9CZz8aBSYylRmUyiah6Kl8oU2OTcmbUlXbPE8g78xyX3K5\nQivpUEyq5LBBpWXRqeuaH//wx2z3W84fnvDkG7+M0pahTdxeb7F1JekKukeRuH/2Dp/+5CU/+MM/\nZXU+4x/+k2/z/nsfcHK8pO86jo4WPP3iM6wyVNoSbMDair7tUdZweXuNsWsGt8VYi0nw+OE7vO6X\nfPT6qdzIfGKXOVDYDQVaYVKCZNApsKyhjiOxveXTT1/zhVfcP6r5+je+jmk03dihtKbremZWUVUz\n2n1H3cyoasvtdkttRm5vd/zxH/0+p8cNM3uf3/7tf8Y/+affZj6vGLuO09NjdBwY9wPbYc+LZy9Z\ndz0ffu1XUCj22x0h7IhDy/byBd6PNFoYep8iZ8sl8/lMrD2yJYPKACoV3UteEmNmbiXw+QBOlIKu\nD8wXVQZjmhh8Xu+AKEHFWpX2/cjbdB3KX1nrRAEh6QBCMtNTwBF31r+DX9IbxEd+cSgGl6XMVTys\nDowXosouLFn+2RINoxUEL3U3pQ/C8arOvoRGkwj40aNrkU8YrQ9dgMhb1VYLgAgCXFKIkn+YmDyj\nUpLv67kplM3ksl4vLMPeU1X6wCJxYPIKbVU+vtzTNL0Xq6EmYhvNdedxyuQ9VmEaWVSUytrGsg6H\ndChr5m7KmG900WOJ0XH+neJ4SlVp/Cgd/KCm55Iy42eyf+Vd+wiSMFjls5VO08n3raDadPhP0b2p\nw3CQe6AVbghUjYWURK9cTtzlZXLJM4Qv//u/+/p7GxGVUv+dUuqVUuov73zt95RSXyil/iz/+Y/v\nfO+/UUr9VCn1I6XUf/jzvAkFGN9jhi2V22LGC4y7IDhxIVdhRMcBHcDGhojFYYi6ARqI5kudZmUC\nyClbx4RF5Q48uXFJIUifokcRNkwZg7IVSku8iK0MMYzEMGKNGL4N/Z6Ll0+ZGcuTB4/5pccfEruE\n6yJuSOx3W9zY0be3jH5Eq0DTaM4fPMArhY4Lrl9GXn5xRfAj3js+/uRz7j94j8fvvY8xNYvZGqsb\nlrMVq8Was7Mz1ov7tBsYWpXFnz3feBI4a6BJIMdZJUZx+fM2wNxEiWVQmpmG83vHrO/d4+NXey67\nhEfx/nvv8L3vfJ/g4OLiiv2+5Z0HD2kWxyxWpwzes+9a+qHj+GRFCIH/8X/47/lX/+v/xnvvHvNf\n/1f/Jf/F7/4nnK7WJO/QeLrtFfiRZVPz5N33ODo+RSvL0y8+Y3N7QfBbXLehvXxK3DxjyR4bB5TR\nNEkTXURXNam2uJTQScvmrnKsURJmMelsnDedWKexCJRTJUL3l5N+3p1KeUyEkfl09fccU/6dzYnQ\nY0aZE6p/jepe4cdAcA4VHUaN4KBiJnMiaZI6zAn5fGrSEZaPFbQ001rpMQMOlHt04c5hRErDSut8\nChYdhrH/D3NvFmtLdt73/dZUw57OPtO93bfHS1IUwwkEI1lOgjhSjMRyFDjRi2NBgALkwXlIYAQJ\n/JwHw28ZgQABHAQI8pAJCWI5hgDDgq3oIbEUOopIiSYts0mqb/ftO5x5D1W1pjx8q2qfpmmxJUtU\nF9B97zl379q1V9Va6/v+///3/wzBD5A9Rkn2PXQ7nr33hFlT88k3XueTb7xN3CEeOgl2mztS6tnd\nXjH4gRw8Bjg9f8iQgDjj4r3IsyeX5BwIIfA7v/NdXnn1Dd548w00lvl8hasa2qplVs84OT5h2Z6z\nucpsb2IxHuz41NuJtclUOUuFMapsigaroCbT6sSsMaScaIGT9Zp6dcJvPR14FkSP8tZbD/n8F75A\n1obnF1fc3e04P3+Ful3TztYkldhuN+z3O45OFqSc+N/+1/+Zv/3Lv8Lrr6/5D/+Df5uf/7mf4Xi1\nJA0DOXr222tU9qyWDZ9863WOT48haX73O9/h5uolKW7wuxu6q/dJd09lTjCgrKZF2h+ZqiJVhiEm\nTNbFkV/ucVIQyGTDAWkYw0xVdEVaoZJi2EV8T+maIZ5KaFk/pMWYQmuhV35Q4v7DmBPIZd5DXkSD\nNW2eWtBo6Vc3bgDjq+V3o5ZmKpyCaW7kEdUZUZVRlxMOaEguvfLIefLIAlW8l2SsGE+thPoyTmNr\nM9F8umghVdEgpihFKilkYi+i01SCixyBLJIWgDCIWN6MwZcR/eP4egn4JOCIXgTuY4wZQvrwcJTg\nZES0M9KzMIzvS9D7zLaHmA2KJE7xKmMqQ1aKmAqKVD7TVoWKHCv3isZMm4J4mSI+V+X+FVROG411\nGmtFryXXL99Jl8TYTGuzmoxllRqbN+cJkVRj4sEY3JUbzGjpMSbpJd8aiwCyYuiCfG4Zs+lZKro6\nNVVHfvTjoyBZ/x3wXwH//ff8/j/POf8n93+hlPos8BeAzwGPgF9WSn06S239P/lIGb+7RUWxagjb\n9xj6LTp1ZHpS7CRzV0Z0OUoTUoSUqMYsI2V8FF2X0ZraNWgj/QOdM2L5LyqV0ttQQi6pMDSHh01B\nVOIq7n1Pt99hyFhn2e73LJYrVKXo+z2PHpyx7/e8eP4+7dEp9XxF5yN937PbbbHW0N/c0fc9s+aE\nz37ubd7+1Nv85f/if+dXnlzhFPzYj675V37yx/jS5z7BzeVLboPi6GhNGDJXF5ekkKgaw/r4hEq3\nfOLxj/LBsw/IlSXpRNx5PveZN3j6/IZ3nt5CrkjZYNhTa8V6XvPWm2/y3SdPeX5zx6fffoSzhrZx\nROW5uNnw5R//An/+Z/81qqZiuZrL5DeOFIV63W976qqmbmratuHJ736bd7/9O/y5n/lp/sxP/Sn6\nvuPi+TP+1i/9IrPFjIcP1gS/x6jMfFHhBw/Rcv7gFerZAucchszdzTVPvv1N1LChoWPeajGIVZam\nWWCsI6RAM2/plZGS2uI3JhsLjEHzCLzcPwSxOgQMqmQjKTHptMb3c5h3H+X4ocyJYXuLzhvicE3o\n32fot6jUgRqI/t6cUKpkYglSpHYiYFcx400ge2m1YasWlCEk0eNI8y+FxuB9wtWOUQCvSjVuHsd3\nnBPB4/0epzJZW/qhp2nn1JVoZc5XJ/Sh58XLZ9h6zcyuUCbR7zv653sUmuFuy9Dvad0xn/nCY97+\n9Nv85f/yr/Or713jFPz4b67503/qy3zps5/g5uIFWw8npycM+8TVxWXZXCzL5ZrKzvjRz3yG9588\nRZ06skrE3vLFz7/Bk/eveeeDW4xqSBiM6aiUZlVXvPHa67z3/Dn73S2fevtVVNIsjlrOVIarO37s\nxz7Lz/7r/yrz9ZzWNtiZxShLClI84bPHYFksG2azlvff/Tbf/dY/5N/8c3+Wn/7T/5Jox55/wN/6\npb9OO59zdrYi5z3WZKrKlWpYy9nJQ+r5kqap0Dlxe33N+9/+BrnbUNMxW4pRcgwGa+cYW+FjoF3O\nGLQjxITSFiWmUIKOjGaKBYDKMG1Ko6eWc+KXZJ1i6CLaaXGVz+lQEVPE4/oHpuI/pDlRvsxYqWed\nOmysIyXHGBwVgXmUN41zXVh0NSEvo7mn+p7xQpe2LEaNMdXkJi5VdwUVL2NrlSA2PoJ1muw9Kitc\nowldFHRMF0ue0kNR+VQ8GCEoUBZiGu2GxoBsBKjG9jKQfbFlGQ1oATBTNaDWpWo0iM4peqE7jRFd\nUxy1ekq+JymRU/G8UqCsBE/DPmEaQ65bdExYlQl9oGotYR9EapPFjR4lzu6hF5/FMYDJeWwWncv4\njsiyFKOMBQN+kFZORitykMDGmHvViVkow4z06EWVhDllTCUovujWdGnXxYQuxiEhYLuaUExGtL6c\nV2mwTn42Fvr9YcxGuwzuPRcfcU7IW37gM53zrwKXH/F8/wbwP+Wc+5zzt4F/BPyJH/wZCRX2JL8h\n+ju8v5U/w6a05AiIKiQRiaX0OoEaVVKlo12hTsQYLk2lqR/6LA6w5VRxVm4oJJTOpellZvAdJ+s1\nTdOQQmA5m9PtdvT7jpPjY6zToBIxDnS7W6Lv0EraMsSQuL6+xvvI6ckZq9WcqoajVcV6WYnpX1Z8\n83eu+eY3n/G1r36L3XbP2ekZy+WCfbdFG1itjwmh+OpcXXB7e4P3HucMzjkW8xWNS3zirWNaC4oB\ng6cGls5wMp+xqB0PT9YYYOYq4tDx4sVT1ivHl7/4Fv/Cn/widaNxLguy5n2hqhK+H0gxYbXCd3tu\nLl5yc3lBv9/g+x3r9YK2dhA9r736AKsT3X5DXVu0hd53RCKuqcWywjqiD2zvNuicaSvF1cUzdvsN\nxooYu7IO4yps5QoEHzBW4ZP4I33YbPT3PkaabMpE8z89LfhDmxN+T+xu8d0dwd8ShztC3BKTJ0VP\nzpGoIkmlAsmnSTeVkRRTpUhOcRozlbMIa8siI3B/0VQcVhKZFyMKYsqc0DD4jvXqiKZtyCEwdw3e\ni5XE8fGaqrEom+l2O7zfEIe9uAUmGPaB6+trhs5zsj5ldbSgmcHJSc3RvCIGaYD9zX94xT/47Q/4\n6le/Rdd1nJ+fs1gu6P0W62C1PCLHgdvbS66uXnJ9dc3gPc4anLW0bkHtEp/8hMyJmDp0FJ3nUWU4\nW7QsGseD9REaaJoGTODlzTMWM82XPv8GP/lTX2I+tyjvIQd8N5CGRPaJMHiij1TO4PuO64sXXL98\nwbDf0O93HB8vaCsLMfDqg3OsCgS/oa412oJPPYGAaxucnWFthd8PXL+4QaVMW2uuLp+z63ZYZyEr\naiftrJS2RWMWURpCTsSChPjeT5vs4fE+UGSC+OQpAIGRvrpPD5d3Tb5BxUPo+9DwP+w5IZ8j6MJ9\nsbvs5hSa9J64HBmLsbJyosUYEQyEXksjElb+sVgATIjFOCaMdFNBU8YT5qJ7U4KIJB9EoF2aGo+m\nymGIUx8+aUCcxLmdLFqggp5ofWitE8MBbovhXoPjkmSOAnFiRCtwriCahTIdK01jkAHSBlRxcZcx\nPFQflnhL2vFohZ5ZlNPSTitlqsZgrcbvgpjcJgrSVnyuUhYQZDzKGn2/obYqCNwUJJfy0IMHlRLf\nMSTYCp30P5R7pu7prkYbhoPZ6vhZhcEFkABTjT0Xx7HMMuZlTqTxGchyPimgk3Edx2Z83xiX/n72\nj38aTda/r5T6BeArwH+Uc74CXgP+3r3XPCm/+72PHAm7DwjhkhxuGPbPicNAjoEYe3FvjxURRYgZ\npaQ1DDnhgwywUprkS8scY4tAD1RWNFVdGk4rTIloBd0QihCVRb+gwJjM7e2GYehYLZZsb6+pjaFd\nLNj3A8pZ6llLJKG1OFhXQ8fl5ft0/Y7Z0Rmz5TmxFgd0H3f4kMn0zFqL0/CX/uznuLrq+MpvPeEf\nPb3l7/zyb/Jrvwo//2/9FEfLDZf7F8zmM+aLBrA8fPSIV17d8e4770kDUKO42d6hVcamW7qb91ks\nWr78qZbBa7pdoEotPnjC/op18wpmCfFBRdxf0jrD6fma04crHr16humueecbN+Qcee21R8zaJXq5\n5nj9gKeXz0nRs2sq9ttbtMps7q4J+w1f+433UClxtFrRVpbY3bGe1dxtrnnx9AZTOz7xqU9zdHRC\n42bs91tJZsIg1WphwKYNrz48Zl4Znr14zmJ5zGzZoLIRwfVuD/2OlB2kihDH6p/DYvmhR+leADWK\nGD/876l4vuR7NLGaNirgI8NZ3+f4w5sTKeI3T0npijhcM2yfk7wEVzF2ApFHR9aGPmUgEVMgpEEq\nThMorWm8VOIYLca7qnSpT64mIBRqVWw1xMBS0EtlSiCrpOvU9eUdQ9+xaGds725pnKFdLdjtB4H5\nXS3BmzE4WzOb1VxcvEfXbalnp6xOz4kpsYorfNjiAyjnmVUVTsFf+pnPcX3V8ZWvPeFbH9zyf/7K\nV/l//i/4+T//U8zbDZf9C5p5SzurUbri4cNHPLzb8u53nuJDwlrNzc0N2igau2XYvE9VVfzE51r6\nTrG7DVR5xRAGQn/D8eJVjFJ87s2GuLmgUorzkzkP3jzl/OQUf3HJt68uyTHyyuuvM58tWS2POFm3\nvP/8GSp5tk1F192hcmZ7d03qN3zt//01VIqsj1a0lSN0dxwvWi4vL3j+7A5tLZ9460c4Wp9Rm4YQ\nd/hth9rtsDoTB48Od7z68JhFa3jv/Wcsj05YrFppOp8yuduT91tStKhcEe61W5kMKMeNqEBaGaG6\nkhcd0Lh7pHyg3CSzN6WiWomlDvesDv645wRMTZNzEuRI3avsG/+ixvYsY2FMHjfmcV4cUA2tRyRM\nTZv5eL7p/OXcJZYThKmgghLw5BIcSRCWCrQeB0FvcswkrbHOCAqrNN4nrDOHgCDLvTBOdMAxjc2d\nS0CpVUmEytfKWYoUysUao4le5CoYCVC0FlE5WmMLXeeHSNUoUkDma9QCXGoNrmgsa0PYJ1L02ErT\nzh2+S3S7iEYsWmJUExWns0QpWkNETUihrK+ibcrxYCeTkUAyDCI6TymjvESY3kdcBcpk1BBwVpFV\nIiU9mZvGITE2py72VzKO4/0ryaM80zIvQshjdMTY+WMKumMSH67y7yP1OwbHY+9ilD4gu9/r2fh7\nHH/QIOu/Bv5KeRz/CvCfAv/O7+cESqm/CPxFgLP1ETluyWFDGDZE35OCNFrWytzLpAQ5yqpEyEqE\nvwqDyuCTxxixHkg6ioCdexuoKvCqUljtRBDKuNkqlM6CIGlF0zbsbxWr1YrQ9dy+uKHr9izaI1L0\nQrnoBShHVbX0+y27PnB0+lCuQRvpb5ZFiGhshe/F5+p8PefTjz/Bm4/f5Bf/9q/R1C2XF9f8zV/8\nu3z3nQf88//iT1AlB2ja2Rzvpcfb6uho6oa+udzy/pP3cCljesO+9yilqHNCMRCGnspoZrOKYX9D\nv71hXmfmTWZ5tEQbS+wCL548I/U9pqnkgT49YT9E9je39Js9wWRqZ1C55/LF+1xevuTh+QnJ90Tf\nY7Vmt7khOcFab29kg14sV0L1zZZgnNB7KohuAQkWwrBHpQFnJMNaH59yc3OLthWz+TmVtqUnY4/S\nElRL2XHJMu9FWLqshh8Kshgh/vLMIdqVEcH5JyNif6Bd5Y9kTqRwR/Rboh+KmaT0vyQi/lRTK6mS\nKZosmooiABmG0ozbKHF/j5GotSCCACqKFUNSWA4FEiMiog3sthuM1cyqln6rWB8tiIPn6uaWfbdn\n1SzQ2uFToDYtXimsrem3MifePnlFEMra0u06GeEslUbDzqMdnB/N+MwnHvPm4zf4G7/861RVy9XF\nNb/0f/xdfve7D/mT/9yP08wrYkq09ZIQI+jM6mhV2uAoNsOW9957lzpF9J3C4wkoKmOwTaS/vaUx\nBuUqfHfDsLuldYm5yxwdH2OdZdgNXPoX+E2PrQzzhSH3e/Yh0N1c099tiRZqpyH3XLx4yssXL3j1\nwSmh60m+K3PiluTE+uXu9pZMYj5fEnOkXaxQzgkakSORhHWRGAMx9+TQYxCa5eT0jKvLG7SpOJ2f\n4rASBIcBpQOKXDahTGXHqtlCykxim9E/DtHRZCkSkgdG0DVBEwqtkxMh3AtMPiZz4ujoiEmwPiVP\nI9qUp8BpioQO52A0sARBLSY6adTv3j/dBHiUMn41iqnlvHr0e9JFP0QhDvM4c2TNt+5gFGtKIqey\nrFujtYKppFpxRM7ymAAi91DQlIOfE7kENkZPnlM5HyoOTaGzJvStRCC5eOhZlfGdINeusYQhiYSm\nCNbHYMU60LWVICkkbKXpd1J4VtVaROHj94ai+8xTsC6BpZiUTkEuB2RIUDRF8uW+lPup0uGalTPy\nHqOJXSrjqMv4l/PqPBnGTu748s3JSZXq0Xy4p+OjoRivdgQQD/9ALgUVmbEIKKsxQLv3jH3E4w8U\nZOWcn41/V0r9N8DfLD++B7xx76Wvl999v3P8NeCvAXzy9VdzTl3RXvXkFItpW1kYYvEoUWrqvhVT\nICVfhIgS0RIC5ExAY3WUSiv4EErhvUY7K9SJMR9CnOUvopnY7XYcrVb4bs+uH+j2e9pZTYyebFQx\nKtXU9ZwYe7r9wKtvvsJms6GanWJthXOZkDQJRd97lFVcv/iAt958zO1ux3sX7/Jzv/DT+F3P5vKW\nv//3vsJut+e3f/u3+NKXv8TDV15js/UYU0nLE1fRp0Gg5yCU3n7TMWwVfZeKoFD455lTrI4W1G1L\nP2xpahmjxcwCnpwU3S5ys7njlfMz9nc7vM68++1vs14fY23F0eoIWzmMyVxcPEObRFNrNneXONew\nXi14+eI57dGaFL20W4mW9ekxTVOzOFqx23c07VJMXxFrDK2zVImqSE4eWyoqE4nVas12t+OBsjgl\nOoPkPbhYcnIJDkKI9zzPxBRTZVUQy3GBzIxFhErpkpX+44alfxjHH8Wc0HogpA7SgCLKplCWhBQh\nK00MlFZBZU7EIJS5LqXaAlehssbriEYoxZQikFERfAgF5pfxGnUQpZUnkKicpR/2rNdLwr5j0w30\n3Y75vCblQAgdyjoyBqMtVVWzvet449OP2Ow2uHaNsU6MNGMHWTF0HmXg+vkFb7/1mJvtlicXT/gL\nv/BnCPuBzcUNX/m//z6b2y1f//rX+dKXv8j5+SP2Q0Rr6bhQmYohSYIRokeR6bY9YQNDnwiAqQJa\nQ6tgfbZEm5pu2OHKZrA6rUjes98lMHC9u+PsC8d0+z0bn3gS35E5oS2r5QqlHMbCxctnKBWpqzIn\nTDXNidnxMSkO9F1PCJr16Ql1XbE8PmLX9dSzJYmI0kGSsEqRhkQaPCpL79K6dgwpsF4fc3t7x6NH\njspI5p+8B1uoJi0bUAgilNal9Lw0ESOURCIWXkSXbB2kJYkqcyoVH7UCxBxQm3vVYH+cc+LRo0dZ\n29EX6xAgyeY9IlPFAqD8nnFTlLNN8PeYdI/Bp0KSbLnY8kcJ5iYqNd8TPWcQzErLujsGOgXRUmmk\nlMo98BFtJbG1rRWqLWUJVgqSle8hc0LjFlsFdW+zz4gH2rjhJwmQbKULRZgPwYIaReYyGCrJ9cdi\nXRN8hJiwlS3vFXQukmlbQxwSwxAxzoiMRimpjEziLzleJ4Vi00bSWPGZKknt6AVWaFNSngxKjdWT\nxcLYkUPQulIparVYPJTCA6VyCfrks4KPVDMriNy95HCKmlRCZU0IYolxuL9q+lNa/Wi4N75jMHi4\np/fueYHK/sh7FyqlXs0ZcpzCAAAgAElEQVQ5Py0//iwwVpT8DeB/UEr9Z4ig8UeAX//BZxxI3TPU\n0MHQkZMn5B4dHMFHchah31i5kXIkBWmMqlIPaUvIURoeG0sMGpWXkAacbkSkpzXJiQ2EjYam0ugM\n2RfBaB9R1mCqBXVraOqK3Y3C94GQM8fnR+SYCCmjksJYI9qJ2xs2d3ecnix58fQ7OLeiqc5oV5pk\nMlpZovdkH7m8vOLs7Jyvv/M1Hr7yKp//3CfRuqddwtX1DT/xL38REvR9zzvfeocn7z7hjTfewJqa\nRbukPWm4vr6ljztq1fLG+WOu4iWdfZ/lSc1sLje/qh3KLNls9tzeDLz35JqU4Gi14ngxJ+wDr71x\nTtd1zF99jbpaUlUNMYrAvXKOppnxwbvvgt5zcrJm2G3RSnG8OmK7uSPsE8rCYr5is71D6UTT1BAi\npw+OWa5PWayOwTWyqdgKkyPWJBob6OKe3bAhRk1dVRDlIXeNo9GK3d01roLoetTmAxQK38xJQSZq\nTDJxrLVorfH00p8tJrwPhIJiWisB3LhYjplhjAmyBBYizCwVOjn9gZL2P/Q5kXvi/gPUsIehE5ow\n96hgRU+RIzmLeFmoE2nWPXQRnXtU2hJVRCdDMo4YNZolpBkutHjdYIwhukgiYbWGmZFAdZBU3/eS\niFTtCmcUs1lNtzHcdomQFcenK1SK+JgxGIyx1K1le3nD5eU1Dx6s+ODJO1KN505QS0OyGaUsKkXC\nruequ+bk5ISvf/frnJ2e87nPPsaqntRkLtUdf+KnvojKir7reeed7/Dk3fd5/fXXcKZi0a5ojmVO\neCytbXn99DHX+Ypu8x51pVieGJRVaGWwdsl217HfDDx7dgXKsJgtCJs5wxD4xONHDP2O5aPXqO2M\nylbENNDWNZW1tLMFT997gjIdJydrwn6LyZnT9Yrt3YY0ZIJOMifu7kBl6qbC2czZw2NWx2fMl2uo\nW/Z9L9RstjQ5MnOJXd/Rhy1RW2azSooSjNhqLKolV88vOH0lk9yA3zxDoQn1jBQETtlvBmxjcc7K\n/VNB/PFSwodI7yOkTNM6rLFCDyvQxTQy5URFRYwJrYVSzEkonI/FnIBDwFQ2RAXiF8UYG42MRfmd\nubfRIzmX+E6NNJP4TR1sDT70BUToLOAeSh20TtYeWs0ooxkl+yrncj25eNUBSjS6UoSlRPLhSgFP\nCczIQvlJ38NCXeqCViHJVYyUc+bJHBWEVkxhEi5NKN+I2EsFn1BffRcwtQQVfohYJV00rAbjSnDl\nM/ttJkeFq4rNB0JJJxBT7tLaTlzn5bqmYHcUhuc0VQoCEBOZkT2S76Ssnkw/UZB86T8bE0mb6dxK\nF/No8lQBa62l30WcG0tOVbnBRSCvFX4fMNXYx/PDtxZUcTY5UNCjcVgujaTLTT2YwpZnJ/1hmpEq\npf5H4CeBM6XUE+A/Bn5SKfUleTT4DvDvAuScf1sp9b8AXwcC8O99tIqRTI6RFPz0kEpyEMmj0L00\n5hJOOhDjQIg9KnpUTijEN2sYeyAph1VO+jZlD1ljskNhpkg55khVOfwwoIwsTk1dSWuAZCcRn7GO\nXAXC4LFWk5QmxMB+16GV5s033uD/++p3pjYlipJdGEsAtNZc312ynM0JIbBYLEkp4b1ne3NLTJHZ\nbI7KShzUC411enrGbrdnt7vC2WsW8zkaTW0sJwvJtPvZjseP30QbePnyOUZrLi92PL+4Yd9FUmRq\np3Jxc8f+m3c4Z+h3ib7bcbRasjieEdSANpFX0zm3tzecnz3EVQ5rM7v9nrqu8V7E1nVdc7fZQFR0\n3Q5jNclHqnlFu1qwPj7FVrWUvCJCyr7rWbYNOmdy9pMOylmHMaYESBGFpqrEfd+PnEXw6ODJMZCz\nmwSL95/xVNCpGGUxGwYxUExlga2qqoxrLpmh/p5HMJdgPv/A/eSHMicAUiQFoUnlwS9zIgvSmwt3\nkMhkFQmhJ6QekwPiEC9zIsaIjQavHAaH1ZaYAqiEjULJxijZqe89s/mMvhswlaOqLNY4NIlsnCyS\nWaG1xVSO0GVcrUlGEQls7vYYo/mRH32br/z6d7BaYVSGlAkhYW0RbifYdjvmTUNKmcV8IYJcH7i9\nvSPERNu2aDTdvpvmxMnZKftuz+X+GmtvmDdzVNZU2rJujtjnnrDsaOs3MEbx4vI5Omuur7e8vLhh\niJnQpTKvM1dxy/XVHZWzJB/xuzsePFxTLWf43KN04tV0xvXVDQ8ePMC1NUol9t0OZxzDMJCIzBYN\nN09vsFbRdx3GamIK1IuKdr5gvT7FuEqojZSl72mGua3R2pDiThZzsXoFDCEmYpICn6q21KYW1NEY\nsUkJnmSjJAhRKsGUKTYFWeZESuIG771n6EIRDysqlajnDSA+cjpnoaDvuYmnJGP+cZoTE0J1+B9y\nzglkEBDnQ5YuU0QlmN34Wj5M+4watslHK0ow5Aeh/sQSQTS8MRwcwXOUTX0M5lI+NBBWZqzug6q2\nxD4IQhWkGERQQ0HRpCWQ2BFpI4GDWAjFCWmR4E0dLlsBU2++8rskVJhitOcQ2j8N0pdPUMs8VWFq\nIz0Yh05QbldbNCXyysI6mMqK0/5oLXEfMCt6NtGAlSRVK4yTfWE0yFYTRVfGmxLYjEIzJRYj0RdA\npQRn2pbKaXPvHoOsX5U5UMH53nMA5JSwjZkQTQrrNQXqmUmPJxYaCeUMo6B+em0Jskdq9t4X+EjH\nDwyycs4/931+/d/+Hq//q8Bf/WgfP70JUhBn2hzFgTuJD1JOkVFTEELZXHJPiJLdEwN6hG6LWZlO\nhhh6oq0ISuP9IAaf2ZBSFCg3QVKJGCJGa4xSIpRGEYIY8ymlsHXFnBWbHEFLs2bjavFqcpbz9Sts\n93cFuk6kJPopNfjiJi/HWGb/7NkHnL3ygBACIXhxytaakBI3V9cYbXj06DXef/89lBLxqdJwffuS\nd3/3W2xutlw+36FDxdAlVOW4udmgyFxc3VFVsNtBl8AIYUTIuizcmV3nMV2g2z5HJ7h8tsEtwK01\nP/Kp1zg9PcMaTVM7jk+OeXH5PoII6WlzH4YOZ8BZi6prQhRKs6laVqsT2tkC4yppAtMP1HVNHAa0\nNrLxD9KqI6VE7UQJJF3czcTHo5AqSqPJvpdAS+VRljA+a9N/ZUkjhEjfe/q+RylDSuIr41x5rcr3\nepfl6TzTZjKtHr/X4/rDmBNJWtUgCYTKGZUSCSNUK7k0oY3S8DjJnMjZE2JAJYgqidi9ZJ05DaTY\nEbwiOA/ZiE9PitIXLMvnRh9L4+iRetHF4NSUDUFQnd0+lrJph7IV2jkGFK+evcJ2f1v8lTIgDWB1\nCOhkp41QFmjN06dPefDojNAP0o/M1NSNJeTE1YsrrLG8/sbrvPf+e5Bh8J5E5urmku9++x02t1tu\nLvfQVwxDQtc1l89vcJXi+fMbnAGfFF3IaNk+yFhSsMQQcShSCDx59xkmwd3VDlqojzWffPwaZ+fS\nV7FpK07Ojnn67In0Hm2EwM4Z+v0e5xRVVaFIhBgwpqKuWlZHJzSzBbaSZuf7TUfd1uTk5TwuE4dI\nCPJfVUniETpP1VpiKanKKTF0Hqc0Og2oKHMiloq3lJJoNhFR9VjgE2KiHwL90IOEy2hrqXOWAKCg\nDdPcKoFCjKlsph+TOcG9y7jP4Izc5vcgCykfigFG0wUQ2ml6BIslg/yToHlS6Va0mxTFQcolwKKI\n59WhUhBpzKyyIDOjNiimLOtuQb5ykTLootYefbUOtOKH6TeVs4i9laBfuthJxFIdPPp4yTWkEmyp\nqR0Q+l7AWKhJCRalsrCqJdFMXvoPivxA2BtnxWdvjKSkqvse02b05E2GpiA9MmBjFWAaPcXuWWZM\n71EUEbl8hzgkdKWLj1lx2C8x8EjDKiP6NePKfUIS+NLXClObe95icj0jeiUO8WOLo0Nl6GggK7F4\nCUwLvThpr8z38Yn7iCgWfEwc38kJk3pIA9kPqBjkPzTkUDYIycZiTKQkzXFTTOiI6FKKZ4ZWoNpM\nH3tUNlBrem5QzDE6o1SFVQ2+H3BVRdd1nB6tUdZhnRO3W6TfYbtcUbUtQ7/DNNLeRivxuMkZjk/P\nJBJ3c9arI16+3BH8nhT3eG9I+0Q7q/DeM5/NuLm+oWkabm9v0FZTV41kmMPA7XbD2ck589mcGAXZ\nurh4iULRLmY8eHjGat7Qn/Qcr+74B7/5Di8verKquL0dClJs6IP4H9U6YwtCNISAKVqz6KVazDnF\nclkxmzve/sxrvPL4EecnZ5yfnFI5x+buBhhYr9fs93t2uy05SxAbs8dUcLO5Yrk4YjVf8/DBq1R1\njZsvcO1KFhilWLaNiJSNlXuTZcJ679FaU1U1w7DH9x3WaClTt6Kbs0aTgyduN6hqi8YTqaYNRWt9\nT4MlaMx+37Hd7ri72xB8oqodr776CkoNxRNNF58TRd/3pUihLDYl0Po4HDlnTPbkMJC6HnJA+IJc\nLE0kcPLDMM0Jf29OkGTnSdJaE11nutSRgyLXGsUNTTunipD6hKtrum1HVVXstjvOT07IyoqnmZGN\nWWlDM1/gmoah31HviwdadvS9aARff3gmi5xbcrQ84sXLD+jjjpx7fLCkPtHUjhShrRquX1wwX7Tc\n3d2iK0PTtMQY6O46bncbTo5OWMwX05y4vLqEnGnnLQ8ennC0bNjveq6P7vjGV7/F9ZXHD4bd3sum\nkw0Yh86J2ibqpiLESLfv0SoJkt17nIGqUrRzx3JV8daPvsYrb73Cg9Nzzs/OqGvH3c0NOXacnhyz\n2+3YddvSVDkT8egaru5kTqybNY8evYYxlmqxxDXLaVM9PT+i6wdSsFLGHkU/GmNAZ03Tljnhe3wy\nuLpCG4WdV9hiadJf3lDpFWruybmaLBdEsJtIUTbxEBL73Z7dbsftZosfEs45Xnv0Crtdj1EKpwwh\niAltT491hlgQCWlA/NHsUn4Yh1ISFAnaNmEW3zcGnPQ5FGpKMQneBcQSxkTdQ+oUQksJ0iMbrnhj\nySYd41ixmUvCD0qJmS8w2WGkKLRYDBlXjUGsBA7BZ7QZKxfzFJTlnKWvX4jSJFkhlK5W0rmBMags\njugjLlSCqlH0rYqfVhxRLA1xiMVXLGFMFsoQSMXoVJeAO+dcqNAwAQMpq9J8WR0CI0ZkRxDQyRx1\nrG5NxSn/XgAcS/um5JPUsHGgEl0rJqh+KAHpPcpvtFTIWd4XwhicjU22ZUxCHw+0ZQk+R6+tybap\nIGdjwKhKpWBKWVr4RHkmtBFz2FGmpI009T7ovT76M/vxCLIoSFaKQv0l6TGXRsipcMKS0UdKkawI\nO8Po4yF0qlYwdBnTIItsQjL/HCHH0sNNKjtiCDhXo5QSUR9ys5yR5rdNO2MYOmIKVE1LLkJsq2ua\npoUk7RCMsdRuhiApnpw9zmSUGgWp0l/x6OgIYyx97KWnnpLWNf3gJ0PUvu+5vr6irhvOzs65vr7C\nast+2/H47U+w7/bsH3Rc3W559NiiUsVv/MY3GHpkHLJ4hlkFRglUW2nQOtHWA2ZmWR3NUTrz2uMH\nrI7mfPrzn6ae11hT4VwlaKLK7Pc7bFtjjOJuswdiQfgks1gcLTk5PWPWLqhnM2azBaadgxL3Xsme\nClJoKvFsinlaUBTSSDSlTPADCoetRuPQg1lcjhEtHUmZqqQK+jQGXONTnxIMg2e/29P3njY2xBiJ\ncTSfHe0bzPT+yQH443TkRA4eQkBnyZJ1hkwSxLegW6VGXH4GQZ9CGZM8ZpaZvs9C21kl54kBowQ5\nNrbClAXGDx7nanIWs8PxHmgtxSKz+YKu3xOTx8aGrDS+B1tVLJdzCBLIWmup7AxtDT4EchqwqiXH\niNKGrMQA8/TsGFtZuuQJRQ+3v9tJYmAEaRu6jtvNLcZWnJ2ecX1zjdOObtvx9ltvs+s7zs467rZb\nXo+GHCq+9lvfoN9lQkGIRjoj7gM5l9ZSKtFWPUeriuXRjJQSrz1+yPp4zqf+mU/RlDlhrRPKBqHY\nTV1jjGaz25JJgmgQyRqW6wWnJ6c09QJXN8xmC+xsjtIaVwkV0e16lBYtolGCPok/EQUlKeXwhS43\nxojhIwWRyRljM9lHjIpFBF028pik2baSOaGQeqCuG9jvdnR7T9O0Ba3XYMAUlsA1Fd12YLZsJp8m\nYaM+PvNjCka4VxUG08Z3H225/wKxfbm/O34Y6aCIyMU2oWg39SF5n3Re5eSjcH1ElMbkTJI/Nfku\nuUqab6MO9OVowDkyNKNo3JR9SVem0H/yHXOxQKAgRGMVokKKGaY1rJxW9GgSgtlRk1Y8n1IJNEYX\n+5yzaO4Y3fAPNg4ZeZ12hY4sHQFknPOBnhsrNcvoSuGFKmhTEZSXcU4xT0iW7LcSmPoulGsY79fh\nLuUExgmSJW00hV5NnkmsHnPG1QbfiVB/XNun56ZAnloLhTpq4UZaXJXPmR6RLL831jDsPNVMPBvv\na7M+6vGxCbJ0qaAQeDQXl9QCg04kuvw8Ga1lyTgkwdclahVum1pjsGhlMKbIHXNirEczyghUPzqI\nj3RRktLTlDPOCKJVNw2ZhKsaNpstla1p6hqVNSklrLYY7eQyM5ADxoAyEmQopXCuojKWoe8P3kwp\n4qqi06gs+/2OoR/Y7/cslytCCCyXK/p+QOPYdXtWqyXL9RGf/2e/QLfb091ec3m5IATF9i5xcbkl\nBphVAjHbCpZLQdNcpVHO8viTD8HAwzcfsDhacv7oDFc5dpuemJLYBaTEMPSk4ios5qc1kEuz6cR6\nfcLx6TFNs8CahmaxAFeXgFdQtJiiUKxGkYop5sEYNE/WCzElLFLJ1LStZEGFKq6t+LwMUirHwUN3\nXCgTo7GioDuezWZHCAFrHSEEqqqCkkl+L1V4H70a3YD/uA9ZTyV7JoEuiFQkC3VXFrhctFljxVXK\npcVHBLKmKqXIKUVyMtOcsEajVIQURfSeM0YbaW+hx9LzYvIr7Alj9ZY1hrpuwECTWy4vNiyXLbV1\nqCj3wyqHczWaUuWYgmxgSiwmFIrKOeparE5AYxR4H2iXLaobZE5s9+IW73vOH67w3rNYLBj2PUZZ\nttsdR+sVq+WKz6fPs73d0m/uuL5d4gfY3iUuL7cED/NK0XeZuoHlUcUwlDlh4PHjh8ScefDmA1bH\nS85fPcPVjt12IMQkrbVyYvBDaYWSsEbjqopRSaVV5mhxzPpUGqEbVTNbrsBV5AA5ipN2jIHKVpKx\n+74wO7IZSjCoiUPC91L1aaxm0cxL43uhbZrKQqXJJmFSJsXDBqlVoWoKXJCBvgvc3e2J3uOsI8SI\nkydNniOlJh1Pvx2YLet7z+LHY07A+AyW9eNehKXGPWJCl8Y1Ztw4BeGY9ErjDn8vcBrpwUzGmFHc\nrJh6pKpDaDe2asnAxLPmjHJSxZxTEg+oUOQpiEjcWDV99oj2TwELebrm0ud6Oq+tzUR1STs4ee0I\nGGTKOWK5GKXR5FKdl0thQ2bSbzHqUwuKYw4BC0oq98zYPLtQgRP1SAlMClU4FhWlKJ+Xy3oxJsqp\n+InZMfjRajKOnfoQMtKzo4O8PLhTix4g9knWNSOBra40oc+H82lBvqxTBF8Cu/He3IM1tYFYkN4S\nDwqaWVCzcb0bqVelNMPeU88c6Q9QaPuxCLLkvmqUMmjtpHdWlUhxLyFsguA93nfidp0zIWjwkEMi\nBzA6YZQlxEhdga0yVJ5U9VSuwRrJ6JUNZKNJ1qBNAxaCytL9PATaGPEMVLUDFdAmY7WmNjUpRGJO\nskj5iEGia0Jm2S5ZzY+5uLkg5o6YM0a16OypbA1Gy6Q1mpaWoS/UjjUMIZBjpp41OFfhnGO73ZBz\nxlVOaMV+4PLFFVcX12itefzWW1RVxe1mw6c/+wUwhl3XS/ZRxP8hiD5svT6mbVsAQj+Q0bT1DG1g\nGPaEzYA2matn77NYNPjBE0OicjOg42i5pK4foY1jfbxmNq9RDtFYKTGy9D4QSGQfsK6SCa1BZylx\nzsYQoyETCWPPKgVD3uKHWxoLM13TmBnWtGQHZEFXZvMFaEOVEslEYhQoNynxqUkqoVUkDOJfFlDc\n7Ts2mw7taoYQmRWqUKrRjYyRlcd/pB7hAMX/cR85gzJG0FIri5euHTnswNhSuh3I9EhXhIQPGomb\nJOgyKmK0w4eArRS2zuQqEG1PUzWlQXIm60iygag9Sjdkp4g6YbRh6D2rOjKkQDOrIAW0Qdry2Aql\nMrN9oJnX+EFcp3VlyX3Pspkzr47o+kti7gg+Yps5OXicrctGA9lY2pwIYSCGiM4WnSNpn6nbGtdU\nNGFgu91IBVzlROcXPFcX11xf3mCszAlrHJv9js984QuECN3QC4VRVv8YAylFjo6Omc3npJRIw0BM\nmlkjCK/3e4bNgB7g8oP3OFq39L0n+YTTLdl3LGdLZotHKOs4Plkzm8mcMMagsiYmRciJLkZUCFgn\ndHk2YLTFOlCVwUcLUar/Uk5gMn3e0O1umdnMTFWYrcXWFbnOpNIL0lUzdGXx+x7tAjGJRmZMF0JO\naCIxeiKR7AybfuDueguqYgiRudU4K3pUUxm8j5hSnRhSSXSV+tjMCYCxN60SqGHa9Ef0QZuDX9Jo\nTilsWgkoSiCZkNcrVaoLZbmS/USp0mFHTXTWiATlfLC6kGCsBD1KUEaiVBWqcXcvwc2h1VGeKtOU\nYqrEGxGeUeMl1zVW50GaGnkXBMaKfin7VAIBud7RPytzqMbXBc1GSbGRLgi1sWMirqdrM4USnahR\nU+C8cZALGmaqQsNlRQ5JKMU0Vk0Wm4YSrUgXilJcY7S0saFUYZZx07YEO/eCzxSFnlKlUjEVg1WS\nYriNVDMjCcUgSVtWYJwi9GGiLVWlpkArZ+55ahWNHaWSMWSpQjaH1xtTDGIbjdb2w1KS38eE+FgE\nWRTqKGuF0loc3hMY44hRkZWIoo2xQBJvrFzQi0KTKFWqZKzAnlkbrKuwVjQ8h/6E8icZrNVTZZtK\nolWIKWFdhc5lcih5xlQWsaAzTkTaxShzbOOjjZ7olb7vqKNHp1BM1iRzEvG4IYd4oAeHXqq/nBO6\nT5U+UgVZ00HTpw5nnHQcT5kQI0+ePGExX4CC2XxJ07Q07awI5TXOWrTRDMNA27Y4J9e9S9Ir6+b2\nkqYVavDi8gPOjk/J2ROTJiSPTwkXoZ3Nmc2PWK8fEmLCVS3GVqBiCfcN1jlS8iiMlPjeC1qsFWE7\nZeKITCBNqEjwnr73OEDPHMpoQoxYVQu8r1QJwBWJiEYsB1Iuvi0KqcIr9GGMUdoClQkhmquS1Y4Z\n3pg9wsdGg/WPHx+eE9aIgag2Dp005EjWGqUsWqXilZWQ5rBRdhEDIYpeRGtFNhZXV+LOjpKWLdPu\ncdA+WCMZpxgPOnyQtkg6a1LSE0qgciL4QOMcMQSMsoC4lpNFk1E1Br2VPqBNjigVBJFJSaoXjWXo\nIHYDxlhShL4fCDEU+5NQ5kKZE8g9HvqByrkp+/fBlzmxJJOZLY5YzGt6Pyt0vRK7D6Pxw0DbznCV\nVKruc0RFuLq5oC1z4sWLp7zyyjkpDfhBlYQlY3WmbhcsjtYcnzzEx4S1LdpUQCQnmRNaGawqFdG6\nYPBZNi2rJUhOPmG0IuY8bcpaK6IPDCHIZlhV2MbR95F61mJdxrTCqSSf0LOE1YmoMyFmjBLEQ40V\nqFkqGX3fE72c0zUW18jrUll7rbXo5IFDpan0pgPUD64u/GEdo13DSNoUQOTQ4y/D5PQuLxGkNx8q\n8sY2L+JLdQjaJLEpFXUForpPg43IsSpmmJOAe7ygEugcgoHDdYgXmpF+fU5PlB6lEGds8Gwqafic\nQxJX9hGpL0ij6K7UhFRO1FsBLsfN8L5Xqx5F5JnCEKTDecv1qjEoShIIyZ6lps+jBEnOGgglKBmh\nv7KfGlsSatRUdDANIOJvZXWeAt4puDVqol9F+0lBzQ50HlqoRLHLEGf8ECQQ0kZMR2NKpCGXJuiQ\nRpuLwlBNUOUITpZg1GgNlZZz+CJkK0UEjOhdEf7r+/f7Ix4fiyBLFXI0KxHXKi2T3GSLMRCz9CHU\n2pAxqCQ4oCq0onEFItdS8qorTVVXGFvJplQ2fGMM4i9kpo0iRo8rbuUCvSY0GpImpyCbcnakEMS8\nDVAIzZiiVGJ5L+70SoGzuojyB0gB4yp5T3kQtQaMEf49ZwYv1XcooceUVlhjUUj1nVaaylYYo8W7\nBtFq7Hc7rq+vWK2OiClJsBIDSsl5q0oQsa7raOqKbi9ox+31S+bzFdu7a4ZeDA+D33Nze4mxsO+3\n5KzQxqAqy/LolPX6jOXqTMS6OYGuyTmgi5mrbLy2PLDmQ/dWKvoEPheqQ2hIGaMglVKmVEI5QypB\nlVTCODSanJM4YIcOowcyRjKLQmHlUVihRlRUHfRaWfpYpjLRRJiqDh42H9NDSsllRVDaoIxFqYTN\nQo/nOMLrGmVkToxwvs7S+FcrMUHRzuBqTeWsmORWFSYX/YctlFKW8nFttOitshUDQiM1/RqNSpoc\ngyxA2crmPRTn66yk00KhDfZdXzozZConFb4xDCQfqNp6KnPPMZKjoGYZjZ5Z+kLJy0BIdShKLBYy\nCqMMlXEFmRxL0gO73Y7LyyuOT9difzCbs++G0qpEAv6qruiHjqaSOZHJ3Fy/YLE4Ynd3gx+ksjbT\ncXt7gbOZzu9IQQEGXTtWx6es16csVqdlTmRQRcuoNTkfdIVyL/WH2Dbp2iAtclTR08U8kLMHEtmD\nsUaEuFqTjEZbQZfqqhIRcoi4JhOGPdrOcc7SD1I5qVOxI2GkDSXILmXYZDL9dqCtWtl8tC6bnZkQ\nlnETKfLjjw2SNT7j6v5Fqqnaf0IsxpHPhzdO90B0RFnc0YteSRtF9HmibI0tdJI9vEloq6KtUiM8\noqZzSg5X6LdpwMqakxXRx+JvlUfgTRCzYqeQyvlTkB6ZSglijxZFcoapwjCX4HDUto6U5qQrQv4U\nrV8J7HyS9jtRWo8s43YAACAASURBVPTA+P3VhKrdH1c1moqVQ8ZCtMRaF1/BgnrpkiRMyB+HuLNI\n6ETnxuhJdf+z8iQBun9bjdNCR2bpQYgqPSBLciK5oUJZQcfyNP4SDxgntPs090pgl0qLHy3/Y2yV\n47s4IY6yrx2+y4FLLdf3R21G+od+pIzKCmUsIWe0sWQiJlucTUS/J2dBTlIpbVUxQxJ6wihwWpFn\nNZWVrH/mZthkqLJQC8aYku4wid/HJyilIEhYEh8slSRTEARVkJEUAlYZQswEH0gk4hDk72HUCiU0\nid3dFVW9kKyyWqOUxhgJfvTktisi7rpuUEYzeE8ozvRaGVztyBmqyokNQUFgAIxzzGczrq4uIWVu\nb665unzJ9e0Vs9mcFy9f8uD8XLJ157i7fiFonrXc3d4w9B1D39PUC7ROGAvogA89m25HVde0syPe\n/tSnqaoldT2jWZzQrCxdv0ephMmZmCIpxVLtoUvrCVnggUl7RnGUjj6QY8Aaxbxt8EMk9QZXtdKE\n2zmStdiqxtkGlEFZJz3U+g2uWDwo3eD1ioggdU4FAjD0nuB9sceIhODxQ/HkCgFMJYhIEEgfdb+L\nPYyT/WMBbiXRqyWtCdFLUJkiRlkMjqx6shZ7hbFiRqckWZ6WQg6rNW7WUln5eebm6CCaqmbRYLQh\noYvrc6naDAFlNSkHQWqzlwAfJdoKIEehZlMMGAwxZqL3aGKpEBLvulK6hTWJ7c0FTT0XW5GZGMjq\nLJuVcXoKlHLK1LZCW0NInq6XYg5rLW0tCUtly5xIWhAXBdY62naG7y8JHm79LS9fvuRud8NiteLd\n73zAa689YL4UVPfu6gUpK6rGcXN5ie87um1H0xyJ8Nwqso4E5dns9riqpm2PeOuTP0Jdr3D1jHp+\nSrMw9EMHRHRK0qIoSxWoLptCJuP7iLagE9hKo5BNNPoopf0RKlVhTcAHQ121NHWNaSvxK3IOaxpS\nNmBEYsCwoa4sudNo9/9T92ZNriTJke5nvkQEgNzOUktPN5uUy8tLGRmR+f//hhSS00stZ8sEEIu7\n230w80AWX1j9QKkzaKmuOktmAhHh7mpqaqoHcnigqrKVlaiVqsq6Fcq2UkrZjXrX60oeEub6H4z1\n8oy7EK2osdajFSnrvH41jK8EMyPucin7TWvzxWw2NR0MAfvkoHRF839uX4lNztWmxpT0c7R5ZI0z\nTIRXPlUdMHQw88rTqbMcKmIDXODmpyYN0aaouAB7U5vcLd4WE93dzXEQ06fwqB7aHA1kGHvXdh1T\nvyC78SfYwSje66nGAq2lmZdjSsznQh4ESbLjBmNDbZgspeDC95t5mqonQahf02AsT2+Xdv3UrnPy\nv2edHHEQ7J58q7NEm7UfOxDuwKwszu4mMUlQttZk9kxHG0SIVH0NbF1C0kzbDdCHHjpb2D3MFPf2\nalYYxtx9wbrFh3c8dlNS9oGQ1n79evgqQJZiD3wVj81RQZogPSU+RKRFR6L2wVMOtKXtFZaITVbF\nEEkhkAhkScSuVJNbZfmffZHEKVXp1HIrNzGhT3O1am2LUiutNKrawbIuhbWYv49NVQlSKut8gfuy\ng6ttswy56AstpWT9cTFLAxHhMB1v4nAMmrRqkTHRAUuv5FKMjMPIOA5WCbdEaUd+/vATb9/e8/nz\nR6ZppFa8lVYZZTQt2OHEOE7EmKilsS4LfbIxpcx4uOP+8QmJmel0soOzVVpV1lJtSqr5NIjzpxJ9\nMSG7x1gIYfccC2JUcBCjaWstCDBfZ8QFxCFnJCVCzuQ0mEuxeAuybkRdSVLAnY5qNQPT0hY2hOu8\nMM8L83VmWWZas+tloKtQkk9GqpsvvqYX/LmwFspvP7KuWCVVfFOWhgP0HmoeEaLz6fbecwqmdSuK\nRrX70IxdzEFIEhjjgGy+c3dLi33TMGDU95XoZoXmeLyZRkOsTRjUPOHMMLOiW6PQqKWwrBtFC029\n5SVCoHL98syUH/efWXyCMIZECw2RwZ+LyjZvSIL7+xPV1yPV1mQtlRR76K1XomK+XtM4MmbL/Uwx\nsLWVv/7lB775/olPn35mOn1PUNO4bKWipbGVQtkax7sTKSbMj2ohJ3Oaj2SGfOLu/pE0jgyHI6Uq\nWy0gytZMA7lP9HUGK4pnBwvH++w5asK2dM84f+aAtlVaK4BZpBCCG/pGaxmOIzlmiBGRCDFQy0aS\nlSJl91Sr1VtJdaEgLGXlep2ZLzPnlzMSMhKtIEkpkX1NiFNA3awTlG2xFiTytx0q/90vI0aUPrlm\nnaDuzdBPaW6UlhoIQ26apR4wbHuYWzW40WiIUDdbWt2vqdMyvSPheItudvyLd/eKMVPYW2oiuk8s\nuiTVPQMhDvYXe8i0I0P/jg4K10rKgTiETgA56dCBhL+FcGPLuri9i+u755ZWm+5tasNFu4jd24gd\nTIRsnYneIo3J3t8+fIaSh+BMk12r2CcjXwGUvt3urTZR8mRTlCaYfzWAJK/AmH99PiRjGYszc94m\nbA56U7b7acavAeorwNopNWxNht0bzWwrYk7Q1O052Bkv/4r9TQvW8txF/7/y9VWALLSxbYvpTyTs\n7t0o6FoJzQ/GVgkoCdfnZNvQoiRSHhjzRE7JKnkGhjCSglW/3ZI/OPIP3eQRm3qrtY9KK/N6tt9r\njYYxIvN6oRSlVau6y9a4XC9s28K8XFhrZZxODNvM9bKwbmeW9TNH/YYQAjGITdKJUIMSUzLDzGAC\n+jzYFFzXj8VoD3dKVnFGrzJTSvSpvGHMbOvCMJkNxWE88E//+P+RUuAvf/4T23JhON0zpkTTaBsq\nsmsYamss6xUJyWwjjkdO92/47n/8ge9+9wfycEdtGVLluq4cj3cccqSsLuwPAhr8gOkAxTMFJSIh\nMAzRaXBri5Ri4dWtVmoppHHi4fERSZGQj4zjkRgzOR28HBID37qBruQ2+2Y3QRioVJbnK3MtXNaV\nv/7wmY8/fOT5x09sUVjXCw/3R+7uj9zfnbi/v3PdUTIADAQJnm+JV/y//YGi2ti2uSsObYOpDdUA\nW0WqsblJi7XZRWhui6AqDMNIiplpHE1vAyQZyGTTZHnlTnWX6VrNQqUHrLdKbYFQKjE05nKm7rqo\nyrauLOXKttlkmwLb2pi3K8u2MF/ONsGWjgzTzNxmarjS0pna89D62HoQSoMUE9eLVfzTmCCYAz1q\nFX8cbm0/24ADeUoeIm9s1zgmyjIzHgbyOFDbge++e8cwRv7tXyuqK4FETtkLlcQXm4sHGqVU1vlK\nSpmff/7EME3cv3nDN9/9nu//7o+keKLWAW2F67JyurtnypGyXk0G5wMuBi4NoFR1qxA1vek0jZZJ\nR4XQaG21f2qhtULTzNObt6QxIvFAjhMpZlI+0PsU2s2B60pi9liSGYmDFUVfLizttiY+/fCRy4cv\nzCpczi+cjkdOdwceH+64u7sjRktFkFqtYhczSG6qlFqsJfqVvEQciHiLq2uQ7Jqax5F24qpraoJF\noakDjc76iBjz1W0Y1MGZiE3lhdTbRfs5vY/8m8rFf5C3ynrsTWfPmreiVD0yB7xVbll6IQUi3koM\nYZ9q69N3BEGLtRzzkK1AXVrfGu39qHtwue4oRoHi7EwK1M2ZGTF7iK02vAPPtkAcLErHbnFzg9Zu\nFXFT6UcHJ3a9DCzG2Ft1chtE0NuN2gGouuE6/pnArpfuGHSfFjU5h0Ky4QIEiwuLwdZVs/M3dM8m\n/D4H02Y1Lzo7E2kdC/Z25Ov9PURrKQI+FfpLYB2i7GCtY+3/XJz/V6+vAmTZ/TEjPqWhpbk5n6Jl\ntdDoOptRaSuEbkYnNmFGyhAPJrxLFtwsIRkDIo3Wut+P+WxJ3Ygk00PUho2yObsSNqvcaqG2jaKV\ndVvY2moodktULM/r+fpC08paN9PJMBLiCQ0rhJW1nveVaSAPr0AsSy0Q9+pJdlbBr4k/qdtmuhHF\nrCKst+2i8sFiPZZlIedMkMS2FNoWub97Y5qvpXB4PLGP36cIWmitcb6sXK4v5ME8fI7TgdPdI3d3\nbxinEyEfaWtGxDbZbt4ZJe2TGLU2HxBwdkRW1JkW9YpAOgffmcEUTPemiRoDpMwwHYnpQAgJNCIh\n0eMj+v83gaFupsUKF0pZ0ZZYroVlnTlfLnz5+QvL5xl9KZxl5Xx54ceffmZx006JkWFI5NwY6YA1\n0i0gSrmFif/Wr1oLomFvPbRW3eOloGWBeqVdr6AV8YwzDY0iQqmBPB4JQW1NNEEkosEKlNZch+Pe\nc6EJUQ1oQYOaIVZqK2z11ZrQQtXKUha2ZlOorSZKNff5T88vaLQMv+3aCGEkxCOSVlRWlvVln/oK\nrnMQoBUIOVoUVS02ROKDIq0ZXWFTV0otmxeYjejj3kEEDepeTzOX5yvDNBBD4vJlYQ2Rd+/e0VDW\neeP+dCAnz7ZMEaGgKpzPC5frhTRF8hg5TQfu7h95eHrHNB4hnmhrJogZIy/z7JODGUmBGLEqurab\n4DhsqIpZOCikfij7ti0OjkOIbEsgDBFSZJzugBGbsg2IZNPJBHNxb2qlS66bFU9y8SD2xHotzMuV\n8/XK84cvrM8L+lK4qq35nz9+YN1sX8DBZkUZow8vqBtFYdPK+rUwWdqZK2d9dopCbq0+j09pigcO\ne/tpqx5bY3vKL4gTP4xvFjM37zG4tbD2tqO/F++ivQJcmCYvmB7OWvAKUYg5UufNI3OU7iquDbRA\nGJyMw8XjzfRLsuu1dPeg6h+qa/96R0b9Au1u6+r79GoDY1KUMEa2pcACwzHvlhDNNZq7d5RgerBi\nDHfrYnCxP4vpNkC0s27eWu2DCH5BcMS7f77eF7Tr+0v2LyTdv6WZz3rMEHZvqrNo3ftOMUDYattB\nEr19ySsQBzt502OXOpPZrUHaflOlv+UuJvMpUnZB/I66/4vX1wGyVCllg161q7EsrQZaMx2PXUDd\n/wk7MyxEgeSjnkHUN8+uYWrQorm1iiKeal4bSL/BuI+Q066CGtOi1SjjqpRlQ0tgvRa2DdbS2K6Z\nrSpFMxoKaGTIEyFAKQvL/GxtNQmENO2frTMTEq0FpMHYq62YOL3rhPoDbA+YeXJZSy/tjFat1YX7\nt6k+RZmmA+fzmcPhyPnlzDhNLMtKksinDx9IOTNMkwnLmzJME8e7Ox4enxjHiVbgdH9HzsEmFmHX\nHcRgPfpWm1PQpo0BG06IOxtiWiz8ztpNMxNYrdUzuWwzn6YjSDbTSxUzQPSpQqFT3qYRUhFaWdFq\nB9e6Fl6+nPnw8TN//o+/sH5ZmJ8vXFNjpfDTjx9AhZwGpmlm2ywAfIjBDqrmh6Aq61r+k07rt3kp\ntzVh05VQvGVbazGg1atCz+/1bYgUXIhaG4yC0MiD6aDwapXmlHnXoahinSGfUER9YMD0hiKmqava\nrLpvNkXYirBeC+uirKVRromNQpOEkqFVxjwRFqG2zdaEFhPhZtt+VKyaVoDQvYMghcjcVlqpoM3z\n/uwZCiGQh8C6NpCVIIFQDb6UVrl7PJhfXrWImRCEHAZezmem8cg8X5lOR8tabMKHv/5MSplpGkjB\n4oSGaWI63vH45g3TOFILPDzckxNsq7Mi/mzG4NN6rXr70k5eO6cSqPs0adv1RBICG6YR3JYNEbNx\nUB8GGYYDqokQErWJa2xuulKvG9FYUAlo29AaaAW2Urlcrvz840f+9O9/oTwvXJ8vXGNjC40f//IT\n+l5JcWCcJtYlcDpODCdnAppNUzY1X7OvYU0AzrLZXtMHW+jAR7xl5gfs68y8EMyxu27NDIm91bhP\nnb06McVtAnbgojdWig6q+pfp7YDeAVowAC1y28Olt+tSHyLoDJxP4gXcSNaBQTRbDbi109qmu9wE\n2NeJoP6eHBhJI002hbe3tgTG+8G817ABMVB0LTsYiR4JVGtz02h8f2dnBTu4yTns04m7SecvitNX\n5bFfp04H9lamtRixtr+DluCJHN10drfkgN2aA3EHAW6AuLdFX2HuGyDC7Tx6O7R7iSH7BGjsE6Mu\nl1DvQ+/6LQdYfWK3PwO/5vVVgCxUqdu67/+qdkCXUqjbStk21nV2gbnTuCqEmAgpMqRIDAXViraE\nloQmmxjUEmhBKFKsLSQNIUBplLa60/XmIExgGAjVNud5vrKVwrqtnK9ni22ZldoGtpK4rBY50EIm\n3Y2EdkFi4P5wZNmeqetnzl9+ZDo8QksoplOSEGlSiSlSJZq4vhmQMZfrdNN1iLVu5uWyG5uWUnb2\nqtTqkx43h1tr12WLnPn8wvF44uXyyVin5cw8z3zz7XccxiPbVjk+HDg8HXj77ltOd98yHR9pGhni\nkTwIx+ORn3740VqxMXreoxBjQiS4ns1WYsN8iKr2Rdb2hWAbSqHWzafUKnf37zieHkn5YIey2iZU\nsKS8GBNJfCKwCZua8/yRkeWyoNvAly9nPv71Cz/99Sf+8i8/wLkyfznz5/NHlkGZxqOxLcWo9bu7\nI+Exsq59GtNc4ltrzPNC8efst3ypKmVZd52EYGLUdd5QKdSycX6+oFu5mQuq+bn0NlgMxUrkmlDN\nxviiaA3UEoBCqBawiipta5RWiCmScmGbV6u2UyI2RZpFtBi7u3K5XqhNuS5K2SKlJK410FSokoiH\nRyIDEgOHOLJuz7T1E/PygXF6QJoFTgcJaIWihTxk841DmZfVq+xgbFG0exWHQFk3LvOZXrC3anmV\naRxZ58KXl2dvARv7FVMgyEgpFWTmME58+fTBCpPthetl5v033zKOJ7I2ptPI9Djx/vvfcTx8wzA+\ngiaSTgyPEa3w0w8/IiESNVCK6WWMLbYCT7wHUimmW9N+GJgpsrHoQtWKhuLTzJW7u3ccT0+MpxO1\nRFqxw3hTIUchDdkyKSUgRVjLhThWDjpwfZ5BR758eeHjD1/48Jef+cu//gjnwvx84a8vH5kHGPLB\n14QdGnf3J3JMLNGKQm1KaZYxunwlawLYLRR6e6n7LsVs+822VgehbrXQfBpPlJh9T3Vg9Jp96jjA\nxvXtd9TZD8e1N8YIBxW+Nl/7k+2F8T5Bh7NP0IOVe7ept6lCEOIYb2JtByJ1s/+OUSgOLooDk1Yb\nkgyANHXWt5i+imYC8eCkgxKt9b6a8/y2NjP/DvbhuqatLDaMEcRmLUy33KcaA8EZzTxESmk7cEGt\nkOnWH7hDfeM1qITOO/YEgdgnHPWVwWzPyxSfgBQ8tcUL/Gxn936PvE0Ys1tRdI2Xg8PqrcMYb63H\nW4D67V70fMTOfL1mMjsXo+oWGH8DiwVfCchStVaE0awGGMx/aqNsplUIqmj1yqW8eqir54ZpQ1PY\nF1ArlSah21RZXzWGGxvmwbmt4YyBbTalzkixr7/MM8u6sm4ry1qoND68zIRwosnEggXjkiOkgNQG\ndUPU8+ICaFtBN9cQ2Fh+eEUvZ5/watpMiL5VPxy6WRqU6uCy+0CVsoNQBc7nM9E9bW7U8Wr+Wymx\nLOaDY87RT+Txwt3DA+N4omrj/t0bHt49cTrecbx7MpNWEtfrjAyBHBOnuxPLdWZdV8aUfbpG3Baj\n07uCkOi5Unj0i+Gttov6u6hSUUIcvIdubB0hGbuWzBKiKkQxPZtIoGqBWkhSyTSWAiomXq61QVXm\ny5UvHz9xvj6zHSI///yBp6dHTneHXSfjPLALsM13qVYDWV+FyFcVbRXLJb+tCW2Fdb2CNA6HwNxs\nGsw2on5AKIWCJL2NaquaBYLrPkxEqkjCWnGiaFFaMIfqUlasAlRKAynWbrhcF5ZtZSsry2J+ap+u\nC6JHGiOFAcWKnJ6JRrUJxViFGBSti4W7x9shFyLeFIfTw8i2GavTcqKshboZm53HZLqUViAEqhvu\nbg5I61JA4OV8sZYj8krsa3YLMSUCSs6JmAN3pyfiNHP39MgwnGhBeXz3xMP7J+4fH5iOb4GRVgOX\n8xWpkXHIHI9HlsvMUjaGlEw3KbjVyq0tAe602NdEa16F+yQiaiLkFavss2m26gZogGAGp5JMAlGK\n2cwEsRZUq4VaVnJsJCrLCo3GVjaKF4zXy5UvHz/zcn1hmyIfPnzg3bsH1s3WRJ8KVgTcp2+9Lmxb\nY1mXr0iTJVaIdxd2/NJ6S2k8RLbVlYw+lNPDr/eDUez//lOna+9q7UyT+tepwCughWAAp3+x2zn0\nvXfXZnXkpq90QJ1yBgNG7tVkrTTdW2T28dRA+NYYDq6bApdfuIC/GZDRWg1VqH8uEUrp4KczXN0L\nL9Cj0QyY2LMpry8ot6Eml0QjMThoxIgCN/G06+uhzl3D5YhlF5B3lk9veja7HL8cHJBX4BS5MWGd\nDWs9iLqfOe5HdgO53IKzvd1aS29/Knq7u/2n+893IsCvRZ8C3d+asLcVexv3/6p2Ieg+ao+a3qDW\nitaVui3QgaOaCM1mYs0tOgS70VUamclZk2CAzBdErSYu11ChmUjWRsANJteyOnPY7MHZKq0UlnWl\ntMayrXz49JkaIj+/NMbDkSYKw4E8TuRpQOWKakbaYBtjM3Z/Wy8cj4/YVJjrjKRTj+7W21d2ZW+7\nmeDdgFTZyj7x1inpnLP1p1Gm48EMOP3BtAk/a7nl0Q4SRMk5czgdqQJxGBhPJ6bpwPHhkelwR8oj\nKR8opXE8Tnx+PjOGww5cX09nisTbpqK6M0KIt7fwDQEXAGMaI2PjHAyC/Q1JexxMipEYMjLeaPHX\nnkO9nZhaYUCQOiOh3sCTqDN/C5fzmXnTPdMxBFtoItXEsa7B2rZijt6tsa0b3YLit30p67y6szQU\nb9uUeUZ19cPQHMC3tTIejA1qKCHa5GxtjUEmi4+KEW1e9Ubxwx03ATTdV2uVWAMqjbKtvk82mjR0\nq9StsqwbW63My8rHz18oKvx8bgzDCAk0T6RxYjiMlHq2yCkZTVAfzLpgnc+M4wM0G5Cws0Q9hNUq\n9BDMI6eW4utDmI6Z1mxSt5S657C1qoSU9s21oQzDSNPiBoeACNFz5IZDYhzNEyrnxHQ6sokQhoHh\ndOJ0d+Jwd88w3CE6IjJSqzLmkefLlSEdKVL8ObYJLXnFaiBejRNexX0EB7Pi+at9TWyUdfNWvOx7\nGzjzioG2FDNpTLb/0Q/77m+VrYWjhSkKV10JsVohFLomsrKuNmE4z41a/uDygv7nxYo/lFJt35ln\n04Nu23bzovuNXzcmy9tIDbT4wEez994226PGY3J3cfaWmb7qFHW2CaD7MQG73MaYjA7obnuf32lb\ng67AN29sp0YEc45vrwpK3xure2LF6LfaJpDwIT/7MY09m9C7VoAd8iKB5nsoQcxhXTwMWnAphX2j\nkNLeUhMxsXifdu/xMSHI7lnXtWLs+zp7ixBva1qnqZ8BOOC4mUaF2NuUXQ+nN4BFvw47zrVrKdws\nMByEdVC61yZ+X1p1kb/Sm5H0SDEVeXUG2fcKYpYOHcnd2r/9czqj1bRLEO2+9lsbbu9V/P29doX/\nNa+vAmS1pszX624G2oEFuhGxw9eiB11LUtQrFxO2q6P3KJkWsbZhSqQIURKqwiaNmBr5EAlFKbow\nrI6Ye3K9Nkq9ci4ra9mo18q6NF6eF/79Pz5wbQcWecPdY+L0+MD3v/snjg+PnO5HdP4T5eUj5dzQ\n4UCUhbVcqevKfL0yjJU0JoIvUFv4oF4lBY1UabRoG2rT6j5UzUw/PVI9pbQLJhGY8mDVRTcqreZd\nFaNZKeSUOJ6O2JoUJCc0RR7fv+Xt+99zuHsgpgNVA8M4kuJIq6ttrGo/f62VGMwyAqxV29rGum6k\n1M1efYKKsFs2KDavXMrmB5LZYxTXeKVhIA0TaTiAZIJkYhxIeUDSuBcK0TcDVKnB7n1rgdMxUENg\nvC68ef9II/Pl+crnpswvn9Fr4+Hpnj/+w+/549//nrfvnvjm2/cMOZFTopTCtlXWdeX5+dnsH74S\nJqtVZVmueyJBLZXr80wKhSF0qxMlpQZE5ufqpp1KVD8AMqwvmUIjhELLkZRM7D4UGzJJuZE1EaJS\nmpBXj5MIJiRvWqnlwvO6sNWNNivLtXJ+WfiPP33gWg8s8R2n+5HjwwP/45//mePDA8fTgKx/4fLD\nj9TzxhQniFdqa2zzyjIuSFRSEh8KsZ5LTLijsxCKlc01mG9cq2a6a7lqCS1KkEqOyar5IGirjFNC\nPL6Ghukrq00jBhGGwYqNEAzUhBg5hcDj+7e8/+7vyPnIeHfPtkGeRlIYqetCjZUQG2hlXYsFw08j\no8EpWtvY5pU8ZLcxMZZCWiCmSBzcYT0E1nWzNYqB/rKsBFGGMRPCQIwTaEbEff7ygOSR6G0wH2Ij\n+JqIqrQWuD8FKsJwnnl8emAric/PVzLK9eUZzo2nt/f88e9/z9/93e958+6Jb7//xli9EKnVPOaW\nZeX5/MK8+Jr4Spis3SzSAek2V3P4dtZJFPIASmS5VtIQ9sO2Aw6b7XC/J/GDunZugxuD4nu1tR/N\nOEb8JFZl94eydmJHSJ2FsRvUFLMNwM65PAa2a2ED0sHaztFF2xKDt7Ju7I76t6rVbRX8HLDt31ga\nMEDQfZ5crWea4xhAKxJhmPw7thvYaA07kzrr1rMQeyA19n23pZImMwTGyarq04vmWN/6pWQf1hWg\nO67vd1Bu/hXB9NT9LFNnfs3r7wa4QrAW535RvP3fv6jfsw6MpPaooZverZW2G5UCtzaxg9oOsPY/\n77igi93hl/q9G678L19fBchCQYu1/QSFalOE0nvd2h8Io9l70Yf4xfTIdF0rLQmqjcJKa0pKSqhx\nZ07auiIxEIPSVvsB4geZUpm3C1fduCxX6pfKNgufP1f+9H8qz/NCnC4cx++Y3t3z+Pie6eGB6TQh\nQ2NtjcvyiSV49R8ghYxg00K4KN0ej5snh9X33q9371zzC/IHASxypPVMquDVcXTq1yrldV1N4JtH\nsoOxMWUi4n1pC7uephPHuwemuyem+yfW1SYX8ziZaN2no7op2zBabmPA2nbazIU7xuGXFYpvYsED\nhmMQ5stGa3kGdQAAIABJREFUKRshNNZ5ZltmAGIeGIaB8XgkZgNYKgOSkm02dPDWW17NtFwi4KPY\nMQUSlZgWpuGJh/vM05sHYtloy1tehsr09p5vv3vL/cPRtFgSycPEkC2yRaTtgnDVZr4xv5IG/u9+\nSTNRvgjUxQBWir2Kw6orUaugo8VKDYNVzsnF01orKslaqnU1liePZjqYAqUAzaKYqkJbvfKMkVIb\nqiulXVjZOF8u1GdlnQOfPxf+z7/ZmkiHM8f/51sOb+95fHzH9PDA4W5CFmVU5cP80SNlzNtsyiNo\noIl49dlz8nr1KiQC1dsmUXr17eU6fSOO1NCoNEKIFOzZiylbSwNhuc6kFCwTdDT29ziNJuxVG+I4\nHCYOpzvuHh8ZT48cH59Y5uos8EgaMqXZQbetlfEYLIKruvu1WBBwCMI4ZiQEJOo+RSniaRKu59lK\nMQmA2CDLOs9IENJgthPT4UTMAyEMEEfU0ABBsoXibs0Dgyt1WXZlskarslOFmGam6Q2PD5nHhwfi\nVijXmUuqjG/v+Oa7t9zd25poRUiHiXFM1GVDpJFS9O5Bb2l+Ha+dbRDc48imsnFLD8EsE6rept9i\njsYAiks4eos6GeASlz7U6uagtSH++XursTnQssz6Sopm4mkFWbi1Jr1dZtomuYVYyw3UDafM8mwT\nofsUYurtt92VgE4i9ZfSdWKvml57r012T0XEwULoLvYwJPdkbwrFJ19hbxXGZEBGtH/W3kYLDg6j\nM2gGPEIO7vNmCQbRmURClyy8+gD72RBuLNbO5OJn023T3clGMTDTYGf0EbfbKHZfohdpdWuk0ZMV\nOtvl3+w1E9bBZLcAAW4gqv8dzA8rxM52GsAzAf6rm/MrX18FyDLqsbttO81KpxoxtFqxi9duF6Tt\nfh2m0yqyEqigkU1W0GIPhgv/Qg1os7iKrAM1OUBo6i3EyjzPtpCu8OHnjZe58enS+LfnxlIW3h0b\nHAbS3ZHp8Z7x/kRIgZGRcJiol8y1g6lgWqvaKhkfjQeM9bmBI8CighwlW/SPIfDgbVHB9E+IeWWl\noU8U1r2VlnP2rD7LLmytUbWxXDfGYSQPI9PxjpCMQZqOB9cxDMRolWzOA6rKPM+7wH4YBgvk3Tbb\nCOqt3RF8MrL/WsQjeWiUWnYrDqERJRJDZGkw5InD8cQ4HRiGA61FCNmiPYLQvH3UiyEQ6FoCt8BI\nEokBhhiRMbGuwv39PcwFfV/ZjgPpYeLbb9/z5s0bHh7MGyhnizUSjQbIyy1+Z9cM/MavHhek4vpB\ngRRNwxGjmY62Yv/UYoC2VmVdGjlb1b7NBQ3GlEiNMJhAu66VYYhIsnt3/jSTx0waMsmr4boq2jam\nY+DLpyuiQntWfv648rwony+N/7g05nW1NTEOpJOtieH+hKTAUAfi/cTDuxMffrCppRBMIMu6MXqb\nzXLQ2u4jl2L0tVA9oNZamWAbX5JoQmyv2uOQGKaRsE8r2kkRBA7HyVvZwjgMbGtlngvbsjEdD8ZE\nne6JMRPTyOF0QMTWhEgkBRtEGXLjWizk+nK+cn+fGPJALbbH2NCNT9sqpqGSW6tKglkHVDVWrTZz\n6Le1nFgXyGlkHE9Mh4NJEjShahpFovlW5RQtIqUfvz6ubv8zs+OUhCEmwmRr4uHxAVkr7V2lHjLp\n4cB3373n7bu3PDwcTPSezMNLkq2JbTNQWbbqwwdfx6vVW7sm+H7QVEkp7JNfrXS7AW8hbgaA9zF/\n8UlWF0r3NhRqkhERoczFshvdJ8DaSnY6H+8y89mYSCoeHyUOABxMe0ttZ2f6Qd8gDcJwP6ClG08b\ncNGihMEtGzZ4DbGsdemsWneiry5sV3dDby7gVgOaIQZnXMy6pVsQhBxd12hEV6t2r1VvAA8cR6i6\nhYSBSdVmwKeL3P1d1q0bf+pOaPRMxhvL5GLyvp/7Ner+YPuZkjqt5C1LPxpt0tCBrn0HZ6g8LLsP\nFvSe5P7uXk0odkazvwW94QlwwA2OP/pFuPlmdb6zg/1f8/pqQNY6z9TS0FpJyR8CnyLwtu6tn/76\naxtmK1pha5UQzH05uOi7UthcZC0hEH1KKS7J+76Nbb1Qt8Y6V14+Ns6flOdz5V9X+KnAs8KPTnAc\nHw9sb07I+wfyuyfywz1ZhPThMyU2QhZKK4zjHWtZWdeZKl9IhydUusWCsVF24FSvcr1yiI1E8H46\nhCqo+uHhXwfsdKhq2L9Hj7GxkfLkwcCRw/0T4zDy8PDI7//xn8y1XgNhsApeQvKKorFppYiy0Tgc\njxRtXM4XY69c22Ni9tcaDbkFMUv0xW6Tkg/3j8zLzHz5xHyZuV4XVCMxH0j5SD7eeaswgiRqq5Sg\nHIdbvmQ/fGmBJmbYmrGsu/tD4i4nzkNjPAhv373hYTjy7u6Rx3ohP458980jT48jp9PI6RA9yDQw\nd20DFqI8HYabNuE3fqkqtSysV2udj4fBkgZKZa51XwYKmPn+7SBsRSlqW+AmGyKBGCprKQxDpkhh\nm32zbDAeB5ZNONyNnF8a2grbfEabcvmyMZ+Fl58bz+fGvxT4aYMXhB+KtVNObw+sbw+E7x5Ibx8Y\nHh7ICLF8olw2JAtrWTndP3C5zpRypRFZlzMkmx5sDaI6GKERWkA1EKNCgqyWTtCIbFXIyQYu9CBW\nZTeFYJl/ZSusa0VjRNWYDlGQZh5pMUZOj08Mw8j9/RN/+Mf/1wZtCEieONzdsftz0WhRKdIoQTk9\nnNhK5Xq5cGnN9VLRYoRo7GSbBguRB7p+kRDIAof7R67XK8v8iev5yvW8oC0R85E8HEnHe5pkkIDg\nLKQohxgNYESgCXEYoIoNK4RAJtE0cHfIHGPkmpXpILx7+8RDnHh/euBNu5IfRr59/8DTw8DpbuI0\nBYukkcBc2Fv7IcHhOJDWr2NNgDEXdXMfsmyTrADraofDrlVzsCFiBOk+JQZEUTSB9jiWwA4MrA12\nE4znQzSNkdvVxBCYn1ezH9lDor1QdkPm3gpDDeg39WQSH1esqxUPTZWcbVo7IEj0yfk9yeD2ufv7\n88fICs5kBdjOUPmfq8iuUQuinlfY2F2SmllBiDRvC+5YnZtHYNeE3aws9lBshJhuwKqD2f2lfTLP\n2T/HPL1F2UOnQzKD0/7rjo1++b3865y9lmq/2fVj/RoFgVog5YCWTvXbtaADqQqabtdg99R69bP6\nv6w4ekVY9fe/jxr+2if2KwFZ0L1/HCdWxSJRXgEsfsnQdZa0u7uCXzufrrINzw8Myt6PjzWaZigE\nYhuAxvl8oRZlucJf/wLPFzhX4U9F+QBcgIVMYOPx/Tvy6UScJobDkWEcCdogVCoWJRLTCJ7PZHqa\nmVJnr7QHX3RKDwDeg4AlggdNBzE2LBLZI4BeiU9f2zX0z6+qu4dWdLuFmEdiHjmcTjy+e4+kIyFW\nUohMxxMqNr0oIYGaaH29XOwZCkLQQG11j4htHgXUo3O6M/3e349CzskOBxrL+dlCdEtjHAaC3rHM\nwVqNYTCRexywRn5EqunsEJ9YERdz982zV+4KqJAEhihc2ADbBCVn2jgybOs+IGAUsR2K0VutIXQR\nvgHMLhDt1/a3fVnuXK2VNERvb7nQtz/79pjvMoFekpkxrk84NUz87N7xZS2EoKxUiFbt1mtBJIFU\nZLGYlS+frtRN2Vbhpz8rn7/AWYU/NXxNNBYGAiuP374jn46EcWA8HC0iqSkqBWKjbAtpOKClkCKs\ntVFlobaFWjNRBttcu8C4hZ3ztc/cvGUeEZRaA+Y2ZcWTE5DGZlcrsvLALnqOEkhDIjnTG9NAHEYO\nd3c8vnlHyCeqri6CP4GY83+I2TJVPR7KRMjG1JZWSX5qtFqIYgAxRftz8KDaYK72KSZozdbE9Zll\nWdFmYno53LGtgRgzIY7EMCAx+/5h4cAhqF0atYJg20y3YhOHpjeJ3gHIAmMKXNoKmCs340BbC0PZ\nzLjY2Rl1zWd0cf7aCzW7+OzTdF8Jl9WMWDMPqVfiazsEO4vU7QlgRybq08yvvZawP9dyo3BUAmGw\nluEtZsb2vM2Z4xAshmVnaaLurIwTNEhQE7S7MakHGKJASpFtrYgEylaMoVYMGG0+saeYPgsDK7bB\ncmsF+nTl7pNZbwe/dHG7KlTdbX4MoLa9BWZsTtdjdXuJmwlqXW0t0Vt5cmv1dYYO6b5T7IWeOlrt\noET6F/tLwi+n/u09+83we4jfkn77/Mfa56+YqEbCXuxLsGxVX/DsiLnrv/ovOxMqr74vtz/f/90R\n32u2S1/9xf/b2oWgLsewvm1rlpTdgBZudKHpCuVVrhB2oxo7ou6gpWmg9oexk+uiSLU4im0pSBtQ\nlCKJRRsvm/LTufHzKpwF/gLMCCsmFs5JeP/td2ZOOB2YhoEUMlEKsy5sdWarKzEMbKU6ELkYQ1Rm\nQhkgBpJTuLZQeiZhN90Egm0AtX/AnaR8BQCkT9zpzmB1gLXrokJCQuJ4/0geRkIaMOuVxOF0hwZh\nLZtNJgUzQz1OB0prjOPI5XIxQOU6rOrxPtF/xusIoP4eQki7d4of9YzjSIjK8/UzQaLlJqaBlEdy\nGokxW0YaptGJfVm+LjJ86uo2Vms8ciAyRqvKzDk/7AMUvV0TiIhXkYFAFA8oDrdrqNr8n7+hRPlv\nfekuyAzhVpmrdc+4RYHgUY66bwbBGSrxylvUmdIQ0BBwQxCfRmwMMRKycv58ReodKo06jKw0nq+N\nH8+Fn2vwNdG4EliBKJUhC2/evOfN+3ccpiPTMBFlIMbKGgtbubJuCykMbDUikoEzqFLaTKojqsIw\nBiASk9DWbirp1bTt6JaXiJqJbwRtJsjthoH7/VSLDUlTwkcx7N8h7mvicPfIdDyYr1YDJPuaiMyr\nTW8ORJZtI48nlq1xmEaev5yJ2fVuZr+/m4fiIe62Jtz8VYQo8Xbe+7DLMIzEBuXlM1EiYZhc8D6Q\nwkAQmwwLIn572+3gaUrKkbY12tqQMTjGttzNQGDK0YBZB2AxugO5Mz4akeb6GrE1IRJMULz5mqCB\nmA72q8BY/cwUeWUG2YXmgOugxEHAq11zZyxuZ67/fuzgrB+mdhaJ3ATf+O/v7WhvC+8g4zXz4ukd\ndWuWr9vYt3BVy9jTXhUERfDWpS9eay0b+LC4KNOktrWHQuMTquwHvS2PsPvllU2tOAAX/LPnNeZs\n+2AtPukabu8P1CZ7xVkj8ZgfHJx0INoMyLVa95ZgiMGBqx/WgqtjdmRGn9pDX5mHwm1K1C7fzWGn\nLxrYQWM3J91pMX/ZmjAjU9yuqQPeDs56y/BmEYFbOcn+d/YWqV+3HmG3+6rJL9/Xr3l9FSBLG7tg\n0DyzAAKVhv+nWx/4FGHD8gyd/Ynioj6VPbOqKmylOFq/UZ+lWPJ8VWGVRMgjZxGWLJwn+FN65k+1\n8qFW5pi8j63cR+F//8//yR//8Ee+efctTw9vOObRDmsRPl8/Mc+fURZgZMgJ1ZVxaGzaUF3YyoWt\nFI7jyTZAVaK7oAsC0ZgkMB1Wp0pBGacJQSw/rvZ8QLvXMUTbIGO8TfvFjIZAyJnjwwPT8QQpI2li\nXWYuS7GpHK9w5m2hlsL8aSZEYa2Fz+cXQlMOhwOHcTIfINwEVqxNEroey5vZtVdF1QKE85DZtooE\n4eV8Yb2eefv2LdN0Ig0HhGiViRhjJ9Wui44O0bpZHn0vMHCqvvolNKYxcDjA83VhuTbaLGxVGMcJ\n9UiSuinbUilbddAuLNtmyQIKy7aZlcM8fxXu1tqwIGYxqr9XZkVBYwBpNGcYWrBiOqitATSSuFlk\nEMT8lZoiVN/nGhGgCHFsXH5e2EJmizbVeQ3CNgjPE/zZ18TPtbIMg+sxGo9D4H/90z/zD3//D7x/\n/IbH0xtOYUSIiFS+nD9yfvmEhA1hJEmgaCEmC5NubTEjzdQI5UAOjdqzL81zBUkQgkJzyxYRQjGT\nwRgz93ej7RPFmKUQBQ2R0Bz0p0TAhkDCOBiIH25rQoaBkCeWcuVSzMMqxkhDuGwrddu4/jQTh8Ba\nCy/bmTA3psOB4+j2GBJ8TST/b39GxTRDtZ8tKHUrPhlp4PDl5cx6OfPu3TsOxzvScDT3eIeHoIRq\nekEdlRpwwOQ61RxpImYuabnR1FI4HQPHs/Lp88oyQ1uESmDII5As4qdia2I1P7a+Jsx1HuZ5pVSz\nfvga1gTq4FrdOiB68dVZW5TdORJbG7/QQ+FFSD9gu+bHc9bpAcENhkFYrgVCgoBle2p1kOPfXzxM\nOXe7GTuwjS3peYCW8drbWh10BXc4baWB5+1Jn05UyKPZT2i7faYQDfQ4dkebGLAMtzi2unmmLLcP\nHQQLFteGaKMRnCV6PXUJrVkrNkZBu5uD5xWKh7qLf13bblE3KXfDHnYQ08FVF8rfMFO/dv5X5JaE\n0EFM2zVtctNQBW6FcgdtYiCo32eLEzJNV383u2VdtfdZNktYSKP9QUhCl0P/Qhi/A3jZiwzxQQID\n5r++6vgqQJYAlEDznvauLumDXj6VoaK0CKEJrRsQq6Ji4u+GWmp9jDQq2qqZmGJALApUDRQN1HRH\nlAGNA5UHNEZqmQnjM1ttrA1iNf3P0OD7t4/87u07Hg6P3B0fOB7vjSkJlaCVUArSVox+SBaUHCuh\nDKgsbMszGoQ0JKpGUkge29NAC0GSaUL8UayOpq2FkH38tBt6duH8LwvMEKJrDxrDNJAPE8PhADFQ\ng5JSZEiCaPLpQMtCXFczh4ySWMtGCJFhGIgxW7UlEXuyAhIjeRyJDmhVjCeUYGKOFkyC26ujZd1Y\nrwulvDDPF+q62Gh9SDQxx/vOypkVR3ilw3M9TQfRQFQLuW6+SG2TK5ZHGBRdlFIimo6MYi3j5Xkm\nC2hdWI8jISWQaDEwVVmrsmyN8/nK9Xr9KiwcBGjFFrgqrsGz9l+bG2GAHt/REqZhctq+Ne3T5ECF\nYGkDJKVqQWpDoi39HGAuMEukjg+kMKAaKXJvayUtyPhMUWuny7qRRBgFfvf0xPdPb3kYH7k/PXJ/\n92DPZGgEGjpvUFdfuwmJlRgqo47AlZCurJswDpmqppfSVtGwUVqxidMaCNp3QCtHgqR9TLwXHX1Q\nRL2tcnPXtoOIoMaejiPDdLBprggaAjmA5uT+RfY8lnmhto2UEud5QdLAkBMpZmOH1JIbbB1GYhyI\nBCTJvibwNWHsa2dYlG0189CX5Znr5ULz/ENioopZVki0AqgtFtRtWi/xGCxrSdp+ZzFKALWpx400\nJKwc70YOn+HzotQaIR0Zg4WDry8zSxBogWUeiX1N1MZWlKXYmrhcL8zL17Em4Bfkxa4RUkzLZBNq\nXnz3/3rNovjh2bpWqjRi8mit2ohBPGsVyurdj+jgQOTWIvRfh9AJAgdYDio6LdaDqG/Fsr1PhJ0V\nCsk7GMEIhumUmM+v4qMcyKhP4YHctFHO7NgzrztI6AChtwJVfXhm96LyqVj/2h4X1AeNWi90YS9m\n/TuC5xe2puTOpPvn7XIR/GfaQIvseYt70YfunZv+O7hQ3yKEHAD2GDD/XN3rrBXb91Cs6+Ptzw4u\nX+usdguGZEMPKQd/Gjpg9J//6ix9Dcx/8ez1tjS3v/trXl8FyFKFonWnPXdTMff9Aed6eispQI1O\n4zrfaTfbR0wlo22ANtnUmKzUZlVBrQ11EFZDII2ZkEakwjAdOT6845v1E3fbhsQDD3dPjHng73/3\nO755+J4wDLSYiIeJkDOtbbRt5fz8Ea0bOWYWWW2EvA0UXYkMfH7+THtZub8X8tPBHpLQKN4ubFKg\niWX67RtafwQEJfM61zDGSPelqu5EZ27rBpDyONh04VY4jBPaYFvd/wprQW0eZXS9Xs0I0inZu7s7\nWmu8/+a9bSxbIYiYrgTMKiImOwjwxRGsHFBVpFVaLaBm27CuC9t84fHhkTJnxmlkmkbS6eAVKLYB\n+JRJRZFarfW4lzzY4tObTQTY/Z+mA9O6keKVbbsS5R4JA6KJuiz88O9/4vJ0YnoYkXEgDomUBpq7\n58/nC5fnF84vZy6Xy1dRtSuwuWVHjMbstKpIFtM9u49NyMEYLIES2k7l9xMliunOWphYz4mUJ0JS\ntzhprE24XIQ4JiiFqyrD0daEFjXjzof3vCufOeUNkYn70xNDyvzh7fd8+/A9YcgWvXOcCGOmtZWy\nLVzPH6EVIhb1o6KEltnSyiAj//YvH0mHlXfvM2EaaHVEpaEpujygUZfKtpa9Dajg015ClExtlR6x\nIK4TFImWuRgECdkKgzwwHkZqa9RSTAvla2JdV6ytF6jVwtDn+bpPuUoUpjyhKG/fvrM2ayleBCW7\nvlJQrAAQP1w16M6YBKxAkqAslyvrslDLlaenR7ZLJueRwzgSj4c9dkRqby/BulWSCRbtfb0SPNvS\nMdAHQBCOdycuy0rOV9blSpIHogwEMuu88Nf/+DN3TycODwMMiTRmUhr2xIn5fOF6OXN+OXO9nnd/\npt/61RUgIYiLyr1NjB2i0K0ZrFi/LeXbRFkUO2Q1CsulkKZkgum9mBGW1cTdwVl5t1Tj1VGMIjfr\nAoyx2Yq1qn/hoyT+8/V2oLfazMOrWAcnBIUAH3/cGA+ZKFjSiRcOPbkBLAmgFd1b64qYqelr4BCd\nKesdHxTttgxOZLQOrPy46TmHvbDruX8x3sTvff+NSaxVH/B9397fro8LQhrDjeGzS2B3Ytc7OVEg\nUFbLSo0+EdnBa29nGmAzGstlwGyrW0e4VKIW+1nNZRYd2HUWMaVgbVhv2e84qgPTHTn1QbkbWYB9\nOwfHf1vB8VWALLAH2Jjf/gHEY3DarQrwRaTh9jGlm2mJ959FfKphNNTtAK41oziX1SJHwqFRByEV\nIXlSe84TeTjx9iFxljPj9MQ3778nxpHjwxN5PHG+LOTDyn2pXtEq23IB3UCb30R/CqQhTtN2VF7W\nhVoWWoteTZg2qPsFVbcSCK5otIJFbj47XW/V2R9wDZd5hcVkAl9FCdHE78vlSsiJYYgsiwl819U8\nk8Zx5HK9cDodsQUV9++9bStDTAzD4GPqurdHzbXeRsst+cMnqDqFEqBtFUEtR09H1vVs0UFuFmea\nNW73tN2AWg+/tpaPUbtmLudL1sGXaiXGzJAr0xRBVyRUUjRrg1YqTS12JW+JrRRrowbzZgpeibVS\noTW6XvY3fymoB5m32ggNFJsC27ZKHIzJMDd70HgrsUS8AOkVmQplbUxPT0a5F6WWz4SYWS8b8wpa\nC+nQKClQipAHbwWExJBPvLlLnLkwTo+8e/qWPE48fvOG8Xjisq6k68JptdxKLZXtegY1zyUvORFJ\ntKigEQIMYwIaZV1oY8GyK3XXUHUmQas588eu+xDYTQtCH8wIPtIve4qCEMwTzy1PjF3OmOB4QWIg\np4l5XhmHzLIsKMp0mDhfzpzuT/SWSkwBFWV5WUmSSHHA8hbUI5/kNvErdlB0VkxSgFLt0FDbMw7T\nwDYPbMuFPA6A0lCiyo1R0AbVJue2a2O6a1Sqr8/sp4exvDbN62uiKWhiHAvHY0LrArmSk+l16lao\n4mtijaxbQYMNFcQg1obEki+o1dbE39Ae+e98BbmxL9JhT/TDM92ARdduyq3eAHUQ4UVsq8r4YBPF\nJm8wrdu2de1aX1NmxbPbBPghvsf14Gs0CsMUb8aX9aaTNAG4uuZK6Kaf+z7WFFIgZ5wsCPYcGI3G\nDQm4LssZrbD3Ptm/zx6V1fr04401An9G9zdu+2qtzULaOypVugDu5r/VmWHUUxbMFqP652xNifH1\n97+d5Tvj5WdLb8O15iaqcPOk2vWyXkQ03cGNNqUi1NWe5ZT958grMb9/xtfsq3ag5rrN4hOevUOk\nrwgb+wI7y7qR7U6N/o0AC74SkKW4mNd/ZTofi/fYBYz+ENlfuXWALZ/IxM5BncXSTNPBLnpTWhgs\nb22G6wKlNZI0SHYhpZgQlCLcHZ6Q7UpdImO+5zA92dTbdKDqwHxpXI8rl+tC22Ybjb9+gVaMto+Z\nIJa7FoLQiOi2kWNiXZW6LEitLirJJkD1SUJVC7E2AOM0sIMqY562/b93tkVkbx3GaBWG0mx8PAR3\nzrdqbJ1nQjQWTWrlcDyybRuH6WCgphRUjakahsEdoI0piH6QpBitjYEfZN4/NwsGZ45b2xdrrZtX\nMUp201d7uINPS/md7GIFx2l7sj236qlfiz7gYC+zuxhy4v44Mg5Q1tlaKhxIwUb+LY7CmD0JicLK\nEMwqRJrSSjFX/a+lLQIQhRhtAwveqlWxVuDmlH6/Dj0Cwn6hzuZADolSE6SJuiXaZro3hpHzy8xy\nUZZiayJT0ZMwSSBUNZ2cRu7GR8I2s4XANDxwODwShwzDga0MzBclDSvneUF1JsbKZfE1IYFGJIZE\n083gUzAjzfu7zPXS2C5Xwl11tX6CFi3XDUWkeCRQ36DdxkSisbit7HYoTdUPEz94go10h9RNgINv\nnKbhCgpbWwhxY6sgi6+JdbU10ezvtQrLsjIeRgNO6iJktfZdwFqGvfnRuWfjHKFtCq0XTwLBhzSw\ndaWuqbH0BzEPLXHdkZigdwlQluoRWXavA4HWxEXPvibUhz9SZhgad4eBwyhs20xVCOFIjr4mPP+u\nrjZJWbD9pZUG1aYmW62/HDT6jV8ixlShQMWDf3nV5mIHSL3e6xyQilCLtbnK/8/cu/zIlmVpXr+1\nH+ccM3O/j3hHVCWdVd3No2kGPQIJGDGCSTPqGQKE1JNmgMQE8RcwQuoRUksMuiUkQAIJJJhAzxiA\nVCCkhqoGCqjKrMqMzHjduO5uZufsx2Kw1j7mN6u6MkqiKuNIHnGvX3czO4+997e/9a3vqx2Cde22\naigsRFt81btCb7mrum969zHWjVXp3dgUGvuc3buDVR+fYWicXAiuDoZupTXsvqHMBwNPzQGUEU+O\nEv02mC7s1lk/xPJgJeM0uiwHoLMrh4sax8XA1k9QNYDaPW09xHHtbk/0DpL2z+Mgc+DQFKwa4eBu\nvOWiqqoIAAAgAElEQVS4Z4YlB8AdDvfiANjjgbBz6v4xdRhih5tr/2DFYg7mEbgZuA1JvKTLO3YW\nA2DfiAHZGbtxDjtjdXvK/Bd/AZD6evw8Yu67HN8LkIWAJFM0dvX0915H1+sfcbAXwDwrfbdqPA6b\nHlASKhOtCKKZVirnFtnWzNPbzjffbEgOvJ4WUl9QZmKF2ANUIfWZ99Ir6vlLPjp9xnvpY6b7mW2G\n7Qmenh75/POv+Mkf/gF38TdJsrI9fEWSSnMb2WU+0biylU6MGZVGugqlFjorXDxLLwFLQnokSLux\nUjpy2cxUz0KBq/l+DXbHB30PxWjXEJDc6GLAJq1YQHBItK0i0jjd3TMdjy7sNS0WIrz59g0icDzc\nkXPejUjn+UDE/Ui8XNBVzRcMD+v2rlndyg6gequ0VsgiNqGXDW2NshVGSbe2igzxdXcNQO9ouIHK\nwdgBxlZIMuYMYRQvhqB7yjMfvM78hR8oP/79ryjbhVYql1IJRzNbFRXK45VQA2FZ0FzNELA0ljQR\nF2HJ8/dj1y4YqHKNXe+d2pqVBYsFCNhG2yeUxr7bTCE4wIg8PCbislBboq4QJNN74+GtUMvE0+OV\nr79ekSnyKs6keUKZCFWQJvQqhD7xanpJaZkPps94f/6I6TixRWF9gvP5LT/9gy/4/Cd/yJ38BlPe\nKE9fk8NYpCGFA10CVZVIsg3QprButA14qs4GQC8ByQligxAJSUhi3cJW7hNUKyK2sdHeXb9nV6Oy\nuddQRGOlo/Re0E2RaGNCi5myLqd75sPRNU6wlQ1V+PbhLSHCko/M88T1eqVslWU5kMRMKrUZU2vu\n3hD7YJHwRbFStkLIiV4KvRUT7qvQWzWw1yu4obDFaikWcGDMVq/Nnu9DIi3uJ6eWx1ZXM1oeC+5g\nSroHPE8h8f6r9/jhD+H3/58v2bYzrTUuWyEesjXM9EA7b6SeCHNAc4fW0K0zx4l4gKbfkzEBu8nn\n2HQ316o111kN9/ZbUce733yhz3NkPTfSYqVR8a47guVmBk8DGVLtsZk1wb0vuM5iBQGZxTzphmGn\nd0EPPRJYoHdMwcqYte/n0DYDajE5Q9/0pq3qg0wx4NCHeDyMLL7haI/PnTCyDIdtwvAAGxgNYNRE\nh9h9Z8q0O0vILVJnROI4I26bY2eEHCC1obvqz9oD8V/366XPHh0JYsDImT4RoW/Vr7FLgsZnxsGb\ns08CVAtKMOZtDruw3Vg02ZuEer0BPRP3G8s1dKvD22sArkEE7JXMwbbtgHEATf/zn+KZ/V6ALMUW\n0VEHFnGbhttGHUYBQW+/1H0QiESCBiQdUA20bkRyqxu1rlyvnbffXnh4KJw3Q/Th6cr9feMQk134\nFtAaSDoxycKL5Z6PP/qUF++9YjodeOhnCp1vv/iCx8tbro+Rz3994jhvhPrIfXJmKQBSEDXPKkPR\nyYSxCeiR2hoThohzzAaepJJiNPBQ/AFubdcc7FPGYLj8z4N+BYtgURoSogmHmzEgrTdiyqgI0zzv\nTu4qyuPjI6CUUtnSSs7TTZQpQgqRVsp+b3R4dqmJzo1C98nNg7FHyQes5Nd6Q7t1ejbXGVkN3Z0P\nFXD3a4Dmg+JZCwTqgssgw5dL9zEdxAa/TIn33r/n2zcP/OQPvqRcDqwqHO7viTkTYyDF4LYvt+aB\nGAMvX95TaqWUQgy/COv//A8Fylp9MvXScVOaCmmyCX4Y7wvctotBWLcGklivnXy630Ohexe2baWW\nla3Amy/PPDwU1mLsRdxW7qUjKZnQttuYmNJErDOn6Y5PPvyYV++/Js8L53hlLY3Pv3jL0/bA9fzI\n559l7g4F2R64T9a5GeZAaBUUsliZM5Is6mYCemSrjYyVe5Y8EXOyEOYUrcnBSzcSmp3PoAac3YKh\nxRhjwjchVJtgJVjnorJrr0LIKDAfD6zXjXVdIcLj0yPqmZ2BlWmebJEUK4+kEO05HkLz1n0mVepa\nrTwYgMmbS/Ax2oUw2eakqmnD6Gqmy4JrRuv+86115ikjUelqLvd5ir7Lh65CzoGYreNTnz084p1Z\nKUVevb7nzXsP/OGPvmBbj6xdOL6YSPNESoEotklFbS5FLUHg1cs7SqvUVqxU+z04Wu0Opp7JJcQ6\nx8DBSMfHw3geMA8lbEzF2eQUlm7Q94U0pOCs1k0Ubhl5zuAwOA6TMDSz8CcEixnrzZznW+3OJttn\n2jvshvAcNSZm+EvpmMthKCH2+W1so8INOHZPgBC3arnlOd5ICXv85dZBiexs0l4+dPbbP+XOVik2\nJ7ba/F/w+WYksZgMR1wXx8BXwmgStPcK9m9tBzZexPf5TBzQxezaOfFOP0b1gv39BzMHmIWLg93u\nCRjIM/1ZxMPmdS/j4+8lzhxqcKbQmTT7zLf33P03dQBRZS83+326YZM/+fhegCxg/8CGvnUY5u5f\nezeAQpNIT+PCJoLMqMxU7m1yDUJvK5WVlY2HR3jz0HlahRonqpgp4pIEcqa1aCZzHJg0WefE3YHD\np/fML+/oTTlcJyQ3phq5/vjM9Q83fv6p8snHyqs7Y2G6QOsbxIJ0iGrxJyFkQjy5y25gpRH6ynHO\nhCyE5OLF5L5vEjyKJiDd4IpofSZiNL5YCNCzCdDFaF97MDrEiSBOjfeCSmSVzlKV8/nCtq3Wll5W\nW3CiOW2b8Z49eNt6JaXFSzw+yYpQazUWSzFw+2yXKyLu8aJeDmzmX1KU62ZdSr2bxkhqobsb9tB7\njYzFomZPLOJMpQQgoJY3cSuXqhJoVJ8J7l8GPvgk8PnPvubp5yf04F2gctMnINWqtTohosSknO5m\nag20lt7pTvlVHnG2B753Y/yiL8S9QlUThY6P2iXQXeN2XRPz4USMC5ve7e35ra+00FkpvH0L37zt\nXKrQ0kSTyhyVQxZImd6SGcjOJ+rZNi3z/cLpozvml0dagblO9LkwaeTLH595YuPnHynxY+X1vfmO\nVYW6bsRUCd3axE1ImyGeiJMxjG2Gq64cUmQ6RdIkSA30qF6u8jJWD1gIuRCk2ThRrATZzZlcNO/g\nS7UxvHt6mIgaiJgBbwiBLSlb6Zy9QSMtka1s1FJIU0SimoFrBs1CrStpLBYx7te/1UJX6woOXREV\ndPWFpbs7ttrobd3sU1SU83bFLEk6UQVKoWok5ehEgp1HlEBxUxsJwXRTar5fva626dHBTlhwdncF\n9t2LwPsfBX76k284f1XQ+c7Bhe2OFEG10DqkDjF0plm5Cwu1V2rN3xsmK7l+50bNcGNfFHaXSxzk\nqPVsr7UzHRJx9i7tqg7ezRF9bBzHhhHG/x0gOFOmouQpUta6l/OkG+0k+kwHNEp6o0N+oBCxBbxt\n3QEcz7RZtx8DJU2R6gababKf7W2U+G6AUuX2OxZDdYOF4/kR2K1wRHRX3+zASscG3suR6gyfUUE+\nz9rzZWyz/XtIwXST/eaoL/s9eAaI7CLapfFMyaF5kigMB/bBfIUYrLw52DXFhPvBgPbOvzjQFhFP\niBGi57eO8xQ/B/Fz8nCGmxWHn99gBfcO0QFM8VLlKKPudcjv+Mz+sh8QkR8Afw/42K/c31HVvy0i\n7wH/GfBD4PeAv6Gq34iNxr8N/CuYWfq/oar/yy//KLcbM/4cfQJgTDZuU9lDQMIEEgmcQDNNEz2/\nwPRNgaIbRQ+sdeEtn3POjWuHp7ry6r0j8X4hZSFEtaidFrg+ddZiu8B5PhBULLw1BpgD1MqLlPha\nL3z99c/YvlHSq1csp4mmxZAyYpc1gEggqLmrT0337r3WOqUUnngiTgcyiZTCzhYF11dYw4iL/xsU\nNVq1NesAiimax4sE91jxnYz6ZKRwXTeO8x0Pbx+RPPHVV18SgrAsM4+P3zLFxNffvmU5LGhIaG6o\nBGulj4G1rc4WWnv7cJW3xaLtju+jhNlq9wW90zFu93q5wHplXVeW5QjA5XolB1iW425m2potICEE\npGXfVQfXtzlH/o84opju4XB34Nd/8Bmqwn//43/IEl+zzC+YpwM5B053J3flDvvgnKbZGTzT9owu\nyl/1mOjNJzgZnJ6as3gKxFG3cOsGzYEYzRdsPp3QnrleInJ8SVhMu1Mp1HJhlZm3/XPWQ2Nd4WG7\n8t57J8LxQMoGcGKPJM2c3xZqm9EmzPFAaMJ23kznFBRpyn3KzFz56uvPqd9Cev2ShYnSjSVN2WxD\nblmcnSSBeWoWlaNKKY0ghUu5ks8rcQ1Mk03gEk0Kn4i+4bJ8PbplAfbSqb24HjHSAy4g8NBrbOGI\nLkhfS+V4jDw8PBEPC199+QUhmmnu0+Nbcog8Pr1h6QuJiBy9BFEaqoFNrx7qG8jZ4rmiGitatsrh\ntDAm5jDEs8Fk8ltZERrr+QrtyrqtHOaFEIXreiWiHO/uCALLnG+u4k0QJiAhmLYx5rSzNuYXZIdi\nLD/O8J7uD/wgfQoK/91/839wOLzieHzJ4XAgT4H7l0dSDPuY0KLEuLDgZa6Yvj9jYrDmwXI8x6px\nM5T0xpk2GCkrC02Lld7r2klZSFEclA7ne7tyITkQbuaobwu+zRetmW9dvba93OVbYQb7qNUERdYh\nakA6wD63mynoYHo8GB0HKN1sFhwi7pYco/w1BPUEYWS4ioxSod/7kcHobNpgjQwkYWtp2zGEgypn\npMTpJQc2dm3t9XY3+1HO9NLe/oP+67iYfLjNo+7dNY3cWcwjLgRrlI1jw6AgVvLriFWbvEw5RPbq\ngewkB5Le9enPn90FB3x4pciutYHNLhavNdjCvQowtGhBbhFAvpI7vWP3An/tnf37bsd34YAr8O+q\n6l8B/jngb4nIXwH+PeDvq+pfBv6+/x3gXwb+sn/9TeA/+i4fZNSfzWPG0XnoSHQvqdDQUGmhmgs8\nE6oLTRe6HEBOkKAHE9H3GNCUaDFSLUWYGmA+RY6v7rh78ZLD8WQli5SIKZOnmYqVtEqtrNeN6+VK\n651r27iUjSqFGleme2BWelAzh9xFgX4eRBQzKLRIg0xKmeieV+NBLtVDl5/BYvGyxDu6JBe36tit\nyNh53FzKtYt/BcpWWNeNUkw4PM8Ly3RgcxuHbdt4evtIXQu0Ri/N/IiaWzao7toBcfaqlHdZpAG6\nYLSQC9M0MU2Tu89HWq9sdfWSQ2SarDyap2zRPxJIwbqwut78WUSi1/RtshoOwSYsbYyooefXDFXz\ny1oir967ZzlNSBRiMC2LbXRvsUrDJT/nbIarhwPzPH2XnLY/nzGBJx84Q2KTazfzztBRLZAaOjXI\ngd4nep9pfabWGZEjkt2aQ7AOxJzQnGgSICeKwnKXOL06cf/6FYflSAiJJObOnuJsBqiibK1Srhvb\neqW2zqqFtRdK36iyMr8QZO5oVP88tjkyucYYE9GtOQIpZ5bjzHxcGFvr3pRaN9Td3UekSAjii130\njYizqw6i4pxslxms23WwGbjbvWV8VvNt225jYko2JmopbGXj8e0jdStmpVKa5Skq9FrMm1vttU0k\nXVmv682rCJiWzGhYEZvECJJJMZOCdfs2rZS+0upGDIEpZ4RInjJ5yki3suooyY+3HR282vEvGyu2\ng7eN18jYG/J7AXKO746JZHYvjkYJxD25AYSUE9OUuX954u7+xDLn78+Y6OpGrK6f8eioYc6MNxeE\nZKHBXdW71tk9qqwsNfIEbfEccTvi13wQ9yN+qNVuz3F3zylcgO8sUXCqSByU4fqqKAZgdgNRtTGB\nDh3Q87OzdSHmQJqjP/v+JbyjHXrne17RdFz3DsC0l719gAGuxueO0eDEs5n0RhI+Q+367GdkNAI8\n+5mbvsstL4bAXm7dgzDKl2YKavFBupcGB1s6zru7I/fIN3z+bztICjdbikHVqXdk45qw54486kB8\nnMzzEmofHZkDXtnwZS/9ihAnM+/+06CsXzpyVPWnY4ehqg/A7wC/Bvx14O/6j/1d4F/1P/914O+p\nHf8j8EpEPv2l77M3lw3xqHeWCWg0MFNDpwZnWmSmy0LTiS4TEmdiMJo8hM40J2K2MOBpPjItR9KU\nOBwXcsoclhOH+cCcD8zLgTxP5GUmz5mucLmuXJ7OnB+f2NaVtWysWnjqj5R4Jt4VOChyjEbj1+aC\n744SsD7aSIiJQclLiAYsPPy5Y7lSxbt4Rs/kYLKG+M5AWvQBZdR2ytntH2yEjcF7+zKLhOPxRAyJ\naZpRVa7ratmGLhi+nM8cDgtBhLJuNkh6Z72utvBsm/tw2TFYreddjsNuYQ/PRLyGX1FtQHunMzKG\nSHaNVPSZJyj7wO2os5ZhZ7DsWjwDsl5GG4PU6G01A8kcuH91xwefvI/ETohKiDaQzcz1FuswGLrs\nuXYpJe9i+RWPCX/4hxWB7eiGbqRDUDRACZ1NzG+t6kwX64KVaWE6HRE6MdkOPaeMpEiaEtNyZHHB\n9/GwMOWJKR1Z8oE5LsyHA3nKzHcLaU7UrlzLxvlq/knb9crmY+LcHqjhTLrb0FkJp0jRhrg43CbW\n4F/RrTsC3bvjtIV9TKgopTWzXWlmk4KODba7uI+rEsLNAqU18jxZA4jc2G8D6cE3H8Zw7WNiXlDt\nXK4rKWfz8uqdy+XCcjh4sG5Ba6eVzvV8pazmq1Vdr9IrXM/Fd/aBaYrWpduNUh5jWswplbIWJCja\nG9tWCNHuRyCQQiIEMVa2d6Ja4DV+XQwYCai194eAs/EOZNWZhx1g2nPS9N0xYU3wJstAPTe22hwW\n/ZrGnExPpuaP970YE7AL2JXRKWbdfb1U63T2Eln3xbW7bhExUJSd0Qo748I7zIwIlmWILfo7oPPG\nAgVCtrWpe6lr1+gMamRoeexi3DRUqrs9x3OD+n5rrfdnytIphkxmBzJ7198N7L1zDwYAlPF3Y2h6\nfy7ovmEuWzeeGaz6e4351d709ntgoCO6+7u225c/BAgm+i/XZqCum+ZqNISkHHbAMkp3rbpFg9qO\nSQLuxK4+d/Qbm8btGg7ArGq6L/NtNPZurJPi93GQEvv9GYBUcWDo7zW6E8d7D2H8eO666/vevfR/\n4vGn0mSJyA+Bvwb8T8DHqvpT/6fPMZoYbGD9+Nmv/YF/76f8CYc673djMqDLTFdrI1eJNCYfZRFq\nRmQipMU6EBIs7QRkJGS6JOa8MS13xPfvrauhdTQG5uXAi9fvMy9HppxJLdByZ5vhXM5kWajlgd/+\nB/87rz54zfzyxLooSOftj/43tsvPeP1h5JMPfshp7kwiNDHGoLdO12AgRsRKXgEIDaL5X1lpwUBY\n6906mqQxp+wAw0S8qOwDRbV6TdqDUVNy/ckIojVn9BCslDcdjmQytVhnoobEmzdvef3xZxwXi9aJ\nIbBeriTN9jDkmadv33I6ncgpG6OV8s4gPfeuGl5eJtBtzPNMa41aOkKhlAvb+sC6nlm3M1o3jjHb\nxNKtg6mtnWXKZtoYzLG/+Yw4hcV3OMF2W3IT+O/PzM4eGmS1hxQkKtMh8lf/2j/F7/34a6Y5EpOJ\nWFuvxB68E++W++jP93cfDH78mY0Jwwb2NHgOowbhykRPkaYBpsxWsxsVRgLZNHphMa+mpBzrETQh\nIUNMrBSCHvn0kzsQ+MGnDY2RaT7w6vV7TJOxeYnEFitpU96en7gLL9h+9i2/89v/kPuXL5nuT9R7\n6K3y8Ae/Tbn8jNf3iU8+yiypkjoUXwya2iYpxuQ2C8GsslI3xrTbyUq0uJdSGpI2VCI5ZEs2Ebt3\nWnH9oBqAT5aKoNqRnMy4tY02cJtsg5juaz4eySTfPFQ6kW/fPvDex59xmGe2dXWJwEqarWlFJLPq\nA8t0MLf3UtGUnm2lFZHOthZiikSsvLZeK+luobdmOi0tlHpl3R7ZyoWtnOll4zjNtOpSglJBlCVn\nK3top9VAad120GrzQwzRFrsU9o40AwC3xZSxjRst6lHJ4mPiR18xHyIxG5PReqV1B276jKVQdr3S\n92JMgF3vXcvj64R2yMEtKuLe2SeMBb47kLmBEHUz1yB2zdZzMwCGEudwI0aEHZQRA80F9Opmoq00\nwhRpmxkBR98EhbGY752Ldg3tNQf4d3ae25q3C/qreapp9w5Hkd03y5gZ2R9B8/cKDNNNA1HOlu3i\n7udVghtbFUSQoLfPhd5E8/4zvfcdaGi3JrWU7TprV9MqOUAiGNgZmYYywq9joGxDFW/XyeY0cG2N\nBWpjALBVUAe5e+PPON9q8TnjWotgXe24rrf1m+2IA6rh7yXcSs7sY2V/bm9a8Gff31sf/D8jZeC7\nHt8ZZInIHfBfAP+Oqr59viCpqsqgGb776/1NjCbmfgaJrvNplXHRVRdUJ5BEqYqGGfVFF5IBlWhO\nxxqE2I6GkGW2Nm2dCMuRMB1AhKaNJpa9N88mDA4hIR0kVCQY67GWK9t25dvrI1/+5BvC15G62C41\nP37DLFfmcOA4Z2YLC7PJ1A3tRKztXtzacuy6R9eaw0mCBHLKxBRIbvI5iFlRF5j3QU0OU1ZxBqmx\nrlegMs0LtXZyMgNWBNbrSg9mIdF7o9RKPiyUbUPnaQ/i7LUhU6aUQlk3pmnmcr6QYuFwPNFaJadE\nb203V3T+mFYbWyk7o5ZzMudh7UxhYcpQ1jf7jqLUQsoT67ZZxtuUbeFUa0s3+4axgN4469EF+OzZ\n2cuDO9BqpmYcViBBAnd3E8dDpKl1DKYYoduEZxNX39k17XormXzHReXPdExMoGLDM+ZgrcsI2hdq\nzYRpYt06khZqFw+etzERJitLdVGiHrxskOlEpCeO88I8X1GF2qtpFWJiXu6IYTZ/rGJlAQnWGLA9\nXal14+3lkS+evoYp0k6RKQfmy7dMupIRjkvmuGS4Fl8kjI3SLphJql2jMMaEWHnPGIOOkEjJSspJ\nzCiYYP8WJVC0sa2dmIUBrBXZA2svTxckNOZlscUgJHvvANfzFU2ZmCZUO2spTMcD6/nKkrPthQS0\nN4JktlZorRLjxPVyJYXCcndnO+uudLVO3ta8GgPUrfH0dCGIMC+Rec7WBdoDKU6kwx3b5c3uM1fK\nRgyZqoXQAqEJfbIoHXUbh2n2zVfAmgSaklPan1PTugXUxey+EYfeMTNYs5yIBO7vM6djsjEh5oQ/\n8kG1dkq3YPsQA41Gzsl8C78HY+Lly5eea6ukyRshfHNuup1orfyu3zFrA2fWfaPWm1FX0cuD2pTm\naGqf2nbAAaMkhyp1G8yIPSimsxrhwQJyY4VIbjbqHa9xMoAWBzOE7vqevRyFvz/ORnUX5z/XXOHl\nSN+shhS8atBJLqQf3Xw7KzXSIQYb46BLZGzgXP8bQK25dbdXMP0beylSkN3+YGd3sHOsrll7zrIF\nzIao7uyPM6+tP/tsYF5kshOwiIGrPffwuTi9d2sMwbo0UTv/vWw/rmcYm3AYqnwRcTuOwfg+Y8XG\nd6I1q/jjYJ913B93oX8Own7Z8Z1AlohkbOD8J6r6X/q3fyYin6rqT53m/bl//w+BHzz79V/3771z\nqOrfAf4OwMd3QYufUicQdEE00Xvgsip5ni2/K2YIga6RFDNNgrVhS0Q10jKompg95YmZhGpgie+h\nolSULQA5Eo8HZsmkEGhUWi8UVmx3sdG48Hl/4KF9Q21nwlOkS+C9sPKb7ydefXhHl8a1VbJgupRu\nICtKp/eruafrTAyCpybsTsW9GyEXeiA1E/Tr5vR+r+5902leBjAn9oGpjRIPwbr3WivkNJnuSWGe\nZy6lwWQdg6VdjUWoF6YYqdeV7boaLV4VqYJujaJXTtPRdi7aCU1ROr1s3uZte67eIIQEvqvuvfN0\nfvLSrIVjJ8nUtZLTzP3dCzQlHt68pa5XdF05xYmUhKtWF6FCZAZ1c8dwY89sDruVJsHHpZcrLVbG\nFpnQG4GESOSUHnl1Er58U+kEtupsljTrDItiiboRYmbMPt9pl/JnPSY+ugta3Vx2K4r2iSAZ1cDl\nouSeKT1AnFCErpEpZQNMrreJBPoslAIhKCnNHA/WMNIFc5RHWQNIjsi8sMSJJELRRqOYbigHRFbW\neuEn9YEHfUO5PhHWREd4L638xQ8yrz++p9SNtc/EBNenKxLVPYUUrWNMTBDAnk6lqk3GrTeERKiB\nVCIqnR46IY+Jzj+zduoKOSfGPnPs8GOyhox9TNRCDDDlmUttSOxk6azl4mDywjJ9aGPiYmNCtw5Z\n6Gtja1cO6WhMWVfYOjKBSLUmBNQMYlXQbiL4eclA4+HhkfM5cLg7kGMgx4lyraQwcXe4pxO5ro88\nbhe4LJyOE6EHzq0yTdkcrdNCq8bW3aZ9ExOTovnX+SJlm8XgFhmgnk8iDpxEInfpgZdH+Opto28b\n19JJ+UD1+CVx3yaZfDHvthv7PoyJzz77TEN0Bk9NIG1eiXZ0L+HavXiXmR6CbcTb+8ttAY45msjd\n9W8DbAXxUlbE9VU3xXOIgY5Y1yg4uyHjQuzvr2IWHSlGa37YmoUTD7Sm6vP4AMwyUJ7lI+L4wOkV\nbTYGQvLNIQYKtBrQENeQDeZnB1Pq1aIB4sLYqBp7tQv5HXsEzyUcYGp0XfZxlgMwBa9qiOx2F+rX\nwDOwzdoiOxis3TYlyXXMfoJmx2Tzb5oi3cO1x3vt5+GffZiZ7saj3DIdd9Ck/JHn9rk1xI5C/T7s\n16kakOq+9oybPuxA5DYMv9PxXboLBfiPgd9R1f/w2T/918C/DvwH/v//6tn3/20R+U+Bfxb49hld\n/Mce2oSnL6EU7zbqV1QD21SYDveksiFxIWAdZ7FHJmZMvjljJP1NUGtuxzOq5lGTTkdfVKBnX2BS\nILl5YE+BXoRKh3mihCvnVinaKXTPkPOpS+Djj97n008/IOkKW0PFhNQppXd0Ql2VwOTMit3PVitb\nt4iQtV4opZNTIufEQSZb8FMmpUj2Tg/b9QaGDgmswzDGCD2T00TvQooTrXUeH8/cv/oIy/VbzEIi\nRIIk6rYiKXJ5eqSVjTxFruuZeZk5Hu8Qkb30t20rJPPnGSxWmjLLYSZgXZxzNhF7p+1BvU9PT0l7\nnGsAACAASURBVNYAUq6ICOfzmacvf0ZQ5e7+FS/u70nTjHU/DTrcds8x2r27XK77wHrnWRnAy3dg\n+7VGLWAcRcV2VKdXd3zQjvzej34XkYjExLK8NK+taE7x0TU9Kd/E8K31P/qQ/jmPCZqwfht4/PZq\nC0rv9Lax5sLhxQuaFiQv0BPESCKSMQF5ZiJKRIigiemYiNNE0AWwJIAwL6ibdx4nGxM9CFEDdau0\nEOgqbLWiKdPzlU0bW29sNDbtwIZipasP33+Pjz98nyVV6sNbVIX5aM+jboVbuK4S58VZLqUp1NYp\nvRKDUHSjXh5Yt8i8JJY4QVdjt6LH8UzOYXWb1EeJHTUzySCZKc+0BlPOlK3z9s0jLz/8BCEw55mU\nJivlE6nbCiFwOT/R60aeE9frE/Nx4bicTCeVF2qt1LqBRratkudsi3RKzMtsHZBHG2sxWD6qecnB\n+enR7FTKCkE4Xy48fflzoij396+4P94T0wRuT1FLRYI1yaQxJq7r7gsUJ8/1dBNMW59c7Ou22WNM\nBPHNqyjHF3d82E783o/+L88fTSwHGxMaXIvVAlzVdK3ePfy9GBNgtjPn5vmcZo2BQsw3OUFztmsX\nUj8rC5l+B+JsGtd6bc5+OBs2qBmc7RBAzR6AOJjOjmSrqKibYY7XuNFhrilSK1m2zbSJ+WAWQd27\nsAc7QzS2vo0OOr+3oLvmbhhuWvdkd2bJr3+wzznYvZ1hEgxoux2D4muRJ0YE72rv1R3on5WcB8B4\nR8rkc67hM6ENNs9BbEwWWabdQL8CefJkgeGXJbf7EYbvVGcHnq04uGq8YxY6QFR3i5RerYw6BO+j\nO3b/wEYusgc7CzZT+IWx3tDRhThkN7fP9otO8P25oP//T5AF/PPAvwb8AxH5X/17/z42aP5zEfm3\ngN8H/ob/23+LteX+Ltaa+2/+sjfoHd5+09hKpzSlNvNI0nvlkBpJKykrcwpIhyCZoJkggUjaoy32\nNn8XvIoIfXiXDFF1bWgQ79gy0XOwdFlCyqYZcXFwlEjUSGVPyeJ4zHzyyQe8//oe0UIvnSaRPbXy\n+aFgeQpKawIaiCEjfbQOV1QLvQu9RzMXDJEogXmafU/QTdPi5UP9BR1RkMi2NXKeKMXEkiEkm3wC\nPD5cON0lYois15W716+4Xq5cLmfmybLiLCDXrBIIZrQXUqR4G/A0TShQSvHyxQzSmZfFdChJoAsq\n1mrf5wnRRmmBdb3SqgltvT2HaZqQaGUW7Z2Y0u5wH7KL+YdVsUf4gI1DA7HPtCY+we2iTWyxGf2a\nOQmHJXJ1UX8pj949N7lYP/jrpNvurv/JC8qf15j4+ueV85OiSSi1IhJox07fKpnCJPNukimaCT3Z\n3zUhGsx8dfLOzcK+++1Y/MZu2FmbL9bCVjvzcYLSKaWS5ol+eTIbhRRIEskhUtvNdf90mvj00w/4\n4P0XaLfOQCXSyo3qH/S8tk7fTENYm1gZTYTS22jRAi2+i470DinYNirHyUG0a5hEaNjiZTqiMVMH\n00TlzOYxKTFm6mpjYlsv3N0npsVK1y9y5PJ05bqeyTmTgM1XGsUsJlIQpnmiFBsTh8NsaQOloKLe\nEBLI0RpbrLSn1vkmQs6TMdwpUMpKLd4QYDkgZiGSEqVCb80CzD1TLcRgOjQJSBLTi4k/592vqQMr\n9QWpqetdZJRGGh2zOclJOB4T120DlO36YGNimmgh09ut0aRIsYLK92BMIFCLzYUpDABiBqLDxmB4\nNImLs02fZF36AM+NO3vt+4IvDqbG2hlkMCZmuZOWxE0faRSNzWkKQ4P03Fw02uvtLEw0aqkVT+x4\nXh503eIoA4rTN673Nu3ZKCGKvaeVKs1a4BeP3dZgv26ylyZH1VeC2FBTY/7Q7u754xf9Oo6uywHo\nnF3qzvbw7DyC66/QGyMnzl75j9xKen4OlsxwA3H2PRz89L05Qfw89y5zBuAzxswMTW9lSonjIuh+\nLt01an5TXLd1A+fy7LzHtWd85rHeiDVT/Gl0ir8UZKnq//D8fv3C8S/9MT+vwN/6zp8AWLfOj7/s\nFBW2Djb0lbnAp+nEPB2hT9zlGendqVoDIF0b2sxcUj1DDGko1erwPdD6BXEWZjw4djcTPXRjz0pD\nS4cmIIHj6Y45RLrM1PpEw0wv//EffMpf+uHHvHrR2SioRiDRWt21QjbhwjsCRIEYEyEJRc1hXcTi\nPnoQINM2JYdIiJnz49nEgS5KNBFxZxh2+rXGqgXCeq2IJHKaQKGVQm2NeV64Xi6cH5+4e3HP1198\nQW+dp2+/Re7uuL+/t85FZ3ZKr0xxIcZEnG5M0eF45OXLlzQ13iBPE5KcqhZlOky7MPlwOEKvBDrb\nNFFb5entG5YYqctCDJiOToTeCyklaut07bRmnYjDHXgXEjigCiHuuV7gPknNOlliCLR2pWgnSiKE\nicMifPxR5uuvz6zlyuEQQAqtr3SylxYCpbi1gwSUP3lB+fMaE3/wlbJVoUqniHVGHjQg+YT2I6IT\nx7sFqR7L4i7k0yHStdJWtVJTcgAZqjVjaKRvK71BXiakdNchKEETSqFtDUqnXRtaha6B4/0d05vE\nXVrY2iPNoBR/8bOP+Mu/+TGvX3TO24aGiPaI4hosuZk0xmQt0MLoNEqglp241YZEZb02dBEmyWjF\nGB1NXC9XzynDN0m+uxzibPXvu55ivTZCSEx5spDpq3UFHo4L63blej1zPN3x1c++oNXG09tvOZ3u\nub+/J2UPdw6JFmyyTynvnVK9dw7HEy/uX1Kr+bulnImTZ9Whpgtrhb52jocjWk2nNk0TrTcev33D\n8TBRykaKauApYmMiJmroEIxFr3XzspXsBpcxj3JNtMUkmA9QF8tcRDxYXioqHekJ0cQyBT7+KPOV\nj4n7+whU1m2l92wLXAiUzZismOL3YkzgTEpMZow5AGReAnW1Z014tpB7vaj1m53BbnHh1geSbogk\nTnJjmJ6xGfva6+x5q83WkMY7iEa9YjE0TSGZg1YrnsPqGqqd9cLZoRiciXVbCAawuQGKUgyE5eBA\nwTvfopf1hjp7aLkG+LH528agE0X2ccXW2GGFsYOdvWzoiGd8zn4DG2C6N2OU3qUJ1Sm0EZiNetOA\n/5iIC/G9tDm8vwbA0aZoSva8YtdjAORR2Rj3ZIRuq9o1HgzbPh84uNTBBrbxO8b8DQ81bepNamPD\nDnnyrsXSzcdrB5l4h+UfQ6r8I47vheO7CpSQOJfOhrJhe1Ld4M03hfdfBaaQqWthmZNd4KD2e+UC\nYjltrZnLWqdT6hWRgkhkWP3HnBDvDIqejabS7SKXRiuVulV6rQQgqVgbtX/OAHz4+sQhB2AzHRCJ\nTua2r2cHW/7EE2Ig5wjYjtPq9TYqUnKa2F2D17UYg7A8b0HFF3/eKZ+J75BrsUiaVu2Byznb+zoh\n1LvZQ9SyIc06Gq20568ThClPzPNMKY11XTmdsoFC1z11VWqtEMxHx4zjjCtv2gnaTGgdoj+Ikbgs\nbNPM6XiinQ48ffOG0/2LfQD3Z7S0yI1ef+6ADNbGrv7+4Rd4WlWl1GoZi2JdeKErhIo2mwiPp8h1\nDcQ1IMFYOwmRMrxqsHuj2uj86bup/iwOFdgkcdbKplAwI6J+gVg23n99YpbE9e2V02kiToIkAzHX\n65mYzLOpbwZ8uzbWNaK6MRoygsB2WZmOk3tMRfLckV4J2umlUrdC3Qq9FFIUskKt7v7sr/T+iyNT\nx0BEDPQaEFOEAWP9d58sEbMOwEAxqTsT4a/WG4e7bF1MrsPa1AXo823XbPLpYIB9aGWCJQOElE37\nEhNlU5pAColkTbTGTzlSKWUjkdBq8U/D5VuixQlNeXablUKeJmJIBGd9NbDrJ1OMe6eUdjWg06qF\n0ceIhI5KIjBT8sRxWuinhW+++IbjcryxF86y2IbcmjSCd6mId1kpavdWlfWpEOUZABI7v3UrTClZ\n56FbNdhTBNLhcIwcfUy0ctlZuM2tJtBICB000ur3Y0wAuxVAb+ric/Uw6xvbUovZOkh0j6oYKGsz\nkDJZl5tX6kzr17Hr5P6Dqt6tp8Zo5Mnm6N7FF/NbxWhYMYwvv21oMY3hENxbU8e7wMUmdvv5IMED\nkV2EzjMgEWCa4y06aTBL+5uzM2Y70BoLx3M/rl1qgQMQSFOklebeVuFZ+fHG7oy5ebBco4vRrBxu\nz964HsroaLSxuZf1uOnLBis0Xi8EzJcumNlxyoFkBSa/Ds/8u5wFU8XH/+BMXARfRjfms8ssUJsL\n5bmRFM/PdRwiQrk2uxbjc/oJhl1n9kuZ3f34foAsjKlpIhQNbD45dzWA1JsxTcwmLG3aSNkocWtT\ntvDcFIpTr5YPJj0TQiJUu1CNhngt/ng6kqYJMAFld5+Ysm7UrVLXgvSO0NzR16wUP/7ofaYp0JoF\nTRubZAvQYH3e2c8575hSoHcLT+697cBhIPwQhFqL+7ekHWN0D52+UZk3ytd2PCaKLaWS00JKLpCV\nzpQySke1WpRDK2zXFYAppd3UM0QTrOecaW2Izc1aIqdkrBVDF9TJOTM6mZJHBdlmylpRujbPBxTr\nngyReVoo02wLZzfvHpV0C1bFd1ZqWrZxAXbdVX93Z2Kvbv/Wmwn1O2oDU4DW6VrR3jnMgfu7mRTt\nbmoXquL+X35Nuzrz4iKLX/GhQAuCetn2TCcAtQbS0cHtWkmL6bDWrZG6mpXAZMLQ+lSJkkAapVo8\nTE4L0zJTzp04RbbHJ+StEKfIvBzQZpYCccm02tDe2XxMtFKhdYRKInDF4n5+7bMPOZwStbwlzJGm\nZmsQRfxe4ou/l6G8rJdzhNJRKq1WQjLwrmVMyhYkHiV4M4Ozl/02JsYzMMwStYOoEEhsW2WaT+73\nBCrmn0dQerOSZI+Rx8fNGMCUaKU64xCtiSNN1OvqHWhKqd6VN01+ft3Zkcl8vZoxPzgDkVK0eKDS\niAEaQo6JnKMxaofF9Cql0fSKBrOpsRKoUM3LxRkX1xmpAQlQM60sbuEtBnxr6RYeXTrMQnzuNSQW\nTn+YA/fHiRSwpIcubA1Cb7usyBzNm7P1v/oxAc70uEbKSlYGRPMcUQdbMZvTvfo5tK2ahi2YCD24\nrQJN6VXJcyBNietmXWttbWzXaj5pXlbv1UqG0PdSlDEkAS2+cX62WI/P0GuzMr8OzZDfR//Z55E4\nO+hQF6JXL7d3WwdsLbyR+++0I4zytt4E3Pu3AfE5VLuBkRHHowx/KQNdY2M/5lwr13WeWzoMf6se\n9B09FqomrhfdReld1TvZbf6W8Ts7ILyVD+PwfvP0hN6UQN/PZ1SGRsnQGjO8FOkbdOvkjDfw5xUQ\n80xToJEnW3tvYdED0I7lWAnZ02VGmCIDzL1bSvwux/cCZIUQ2GplRXhyVHoksATh7qiEfKanBtPM\nVTtU2zb03swRuwMdMitFK5ftwvkM61nYLsLaTUwec+ajzz5gPibWsCK1sCwzYOXHHgVyQPMEC9wv\nE7ne0WvliQcOCT757AVbfyJpJ2uk9jO1V6RbLIs9SOYlQhdiMxo7kMgxQEocj5FOR8hu/dDodSVM\nSg+RRmerEWlicQId6I1pmU3UGIKVRWpHWMzoU7LpXOpGCLYLb90MUglmE7HVSm+FnLO5ZEeLspmn\nmct5JZzSbshZSuF0d6LUyuV65sWLF9RaERXOjw/EkGBuME8mvNZkbJPYTFC2C1E70gP3y0s4vc/j\nw5WYjqylkOdkVhzpQO3iOrObD5fIbM8G0ehaBLpFk+xB1d7xE8VLItqp7ivTyyjfKnezEOVAToFL\nga4BSmNrxSeShARrknAO9VcyDp4fIQTO141VhEsSWoWZwCJwPChhvqBTh7xw0U5dO4ccUW1czu4C\nXiMv7hqVyps3D1yvwuVRWJ+EGoSYMyFnPvnhh8wNFjbebIXD6QDn1SR0UyAcMr1Cr3A/Z6Z2Z+U1\n3nLI8NGn95zXR1LvTCEjXCmlkMSaUxDzsataaU2IZSKliUAy482YONwls0TQZKDDXP/oWc3zSxta\nI6EJ4mMi0InThLpGUYNSq4Iu9FjJU/KGk+IlmUT1sPIxJkor9FbJKVvOaAyUrbJME5enK3KMngqQ\n2NaN4/0dtVYu65lXp5du8SCc37xBQiacGiyT+di5F1J13dV2vZC0A4kXd6/RpzOFCyon1tbIyTpu\ne1iwZS2CNrbVbG1CmuyZD2Z5ElOgXqplsDky6q0TMLuZEPtu0WGLSkW0ICh3E8QXB6YpcinQurEt\n67k4wEsQon2KMKiaX/1RVwM5VupxtmGsgsG0TmMhbG2UhoRau+f+Kcd7A8FrKcQcaEXZVt+4by49\nOEzWYb25dUOMlIuxnxKGDYEa0+ifbXS/4Wt/3+wuhoT7WJkB7IiRkVFpaOqM20hHMMZHHcAM5jaM\nANP+rBsRF6G7JGWUxYC9fAb2mnEyI9YRUyMyxOPjBG6VEvXrtmugWrfQ8fE916+OslxIBnbV8auo\n3StFiBl7ngfzqF7mc7AmXt4L0e7TXhpNts6FobMbbG+z1w3pma/FuC8pWK7iAJCBvWQa0zDudUAb\ngzcy2POtw5dB2IGj6d4Go7djWW8S+G7H9wJkKRDSRK2VVa0WW92orA6OLtwKRTF4VIh2SBEaNFHa\nt4VC4VIKXz+cuVw7rUbeTI1UJqbrgf6HM+9/9JLwEiKFIMayaDV/mXScCYsQt4mP0me8efs15y/P\nHAu8nIUUOymBFFywbjchyq2WLxKdoredaKAZ1Si2y+3ble4xGONB7dppnlEoIkgXD5QW33ndnHJ7\n79RuO6TezVU9pWj6j94RMV+rUs30xMzhMmW7uB7Euu+WefbrGWi9U2u1XEIR/791TG7bhqoyzzPb\nttnnUjMh7apmLBpudHCvxgb0WjifzyYOBo6nO/JibFuImRATzbdv3XeM8zx79Mhg7Uat/dlMAFj3\nTnUz1gbSd41jNGqQwSnHGJmScFyg9EJXaE0IdDM/VTc6Unnm3vyrPRRIMXPunXNt1unsS2+tjRnr\nRLNzUaY52u6xKXlJTJKoVXn70zM1NC5b5euHM9erUnvi21SJ28SyHWn/d+aDT14ivxYJUqmhWuNF\nU/oK6TBxmCdymWnpMx4e3nD+4sKxwIskpNBZ5ki/BrNacXbYst6i64Gi7eLVxPWN6oAhma9RXb1k\nV11DggOtboG0GvbdcFRv3fd4EmsBV5N2SzBYU6t3wCpoR3ui1vGaQBSETF0vzPNE741AYDksCOZp\nV7vSaiUmY8JitFJhism7oDvzNFHWlWmK9C5W6j/Y69GtXNVrNwap2/mdn57QvhEjfPDhS+bTgRgS\nEjMhZJv8Q3CG1xivPGdKdTakKa2Y6bGxFzejSIvZ8vbz3h3oYeHcRpOgYpqSKRuzUilm16JCpFG7\nejSY1UbqL7Lzv8IjeBms1+42SAZCtOruZaSjEy8HAyaD4Ug2XrZzNeCPG3gGKzsPqkaidR0+T6UR\nwXI0xexmdHx/eEuxE1F76TJP0boyx7owbBEwoLWbhHbMD2svI/IM8DyzTHCwYWU5/7M//woeCXSz\nYXguTB/MkDbTU0m4AYmREaj6rIS2i7f8s6TA7jUFO/hjXAMHjePNpVtVwQy6IUxhl4UEUZ9ybd43\nQ1g7zxyEdDTPxLq2HdQNI1Yc+BigsvlusJmmJbvlGTI+Tgi7V9hQouzXfv/Z5x2Zw/RV92eu69h+\n+/W8qYN+6fG9AFlNlZaSTZS1kwK2c2idlDMS4+7/EoJ1A5a2gXTTLoRIaY1G49pWVl352eVL1g4V\n4eu+Mvcjd7zmrr5k7YV8f0+e4MWLF+Q8UzbTQs13CzpnOsLrp/e4/+KeIlcuP/mG9+8W0JVSrqTm\naNxDPuAXKVYf/GpuwzHchHIpBkqvmHAfZ7/MeTlI2h/0QYEigqhSyuadht135gG6UbCK+ww5k1aK\n5RaGaEanZpgYCQq1NUKOTHlic8bHROONlOyRyDnbApMt22/E6UzTxLZte+5Uq80c9/vov/TokxDR\naGCwtoakxOHuntPpnjwfwDME255N2InRd5/y7BpyG/j4O4zZKIRAr23fVSrmR7YDM6yzK4gFwk45\nof3ii2gnYF2I4/VUog+6X/2uvauiU6ZshaqNJQlBEltpNiaCNStYac7GxOV8IWaoV2u1al1pUTiX\nlRI2Pj9/RUFoCF+1K3M/cdLGsb3k2irvv3jBNMPpdM+yzJSyMZWJQz1Qo9levP70Pb75+c/ZuHL5\nydd89PpACBvX8yOTgvZ26zLtCmK6KhnWAhp2D5rwrOQRsZlPxVu9o2mESm0kgRQHTa+mx8SUdLXe\nxgQxum+Sszqq5iMFmEGwlSVVhRQi1f3egkLtjTRF5mliq9V81LS/A7Lmw7z/ffLwZpFAzpOVsIru\nZXSbxOw5DH7NY0poUapaeVBD5PjijuPpnjwfbUyIWWeomrFpiNk6GjH2TbUTc9xL4XsNx1v4Bdt4\n5WydZ71D3MeEL3LByqwpmmhe2wWaEEVJ0i2PVauxJjJKhb/6MQFDVmHsS8wjbmoAEWVfKf2rXtvu\nDN42K2PFGI21TEPzZq89mIyRvacO4szotrsex8XX3DpKh9B6MCIpeQdvqaabUt0XbzNN3leM/bz2\n8qHa5txAc991ZntpK3keYx/gyErEo8Rnc579R8clYWhzdQdWWv3ZSDYeWxllOXkGqF2wL/Js1vXP\n6+8XY/AUh9ulB/uMliAwQrHFGSx2cDaYInV6qHvmYso8k93ofrVQLNJGbqL0wViZ2auf27Nr2nf0\neGOfrGzoz0p4dmbjWnsn5qCthnSueyfjOPfvenwvQNbWlR+t513cO3co2igBZMnIlIxSxPQYijJi\nvGowWjXdL3zbn7hclfPa+UYKD7oZE1aFxplpWfgn/sW/yG/8pV/ng3/sjuPpxLIcmabZ3KdjIsXM\n1qzs+PR45fp04Z/56V/l//yt3yL1n0E90/tK14BKosUC0k0MHAIEIQ4qVfC4IDGFHvZAh9XF9BJY\ne7UHpnbyNPHHxbzUUnzDZiLzsQsTDHzZ4BiO8Gq5ak2IEiz8OhpTFQJsayNPZji5Xq9sa+H+xUvm\n2SbwnDOjQ3KAq3mevRRpW7bD4YCofc7qFgyD8kVt0enS6aIc7+44Pz0Q4gm9RvLpHhUziRU3lQVF\ne6M3q/NX7cTJ9Vm9795jVjuPvlkyvVCpGyIN6Uor1TzQ+jAIjOQYiXHwQJ0pNB4vTwZAu8WIEIJ5\nbEndd4+/6mNT5f+92pjo2KSYqMxZkFMmHPJtN9eV0gvpZKXmHgSVRJpmvu1PnM/K06XyNmw8tEJB\njf1FmQ8z/+S/8Bv8hd/4NT78jRccT0emdGBZZtJsfk+RxNY3tt44n1euj2f+6k/+aX73f/4tYv8C\nLWdE/7/2ziXGtiw5y1+stfbjPDLvrVffriqq2tVQ2L7QApcN2JLlIdDNoM3MIzxAYgISDBg08sRT\nkGCAhJBAWDII4QkgPEHiISRGGAxqt9tY3W6DhWk1rnJ1931knjx777WCQcTa59yiq+q6XHnPUbF/\nKetmnZOZJ/Yj9or1R8QfI0hkypmcRkzkpmqXQZyEGJ0dwtMfybqBVX1QbQGdBJViNWDYPRhD8kui\ntugHQUu2urqxWHdfjDYrMfiOWwIpqdeVqc1S1EBsbBBzjIFJlaAT+5vJfcLGTO33A9vtJf1qhWqh\nbRvb5OVsPqGZrjWl9HGyGqZutYI2zrUfMRnrNY0TIpG+a5luJiaJrDZbbgJIumSaBqTZIl1LmUAl\nmcxLUIor0oQA45BJvdWJ2CQInxUaTC1Qi80IRQtZJysTKApTJgt2FymggYS4OGRBJ/OJq2nPfjcY\ng54L0ibGkikhuP+c3idEYPKOvhBM70rVmJn6Pmp1WwHzi9jWCRCVZzq0/1vXH1avdHR4dapQLjov\nzHWtjtElmSd1dXOO9322WXYmKzYREdcYm0cByaGmx4Nefc/ngy304jP6dCoWCNX0J7U2TyuR56lH\nu0466lyvVpmo4kxfdM0qCwhtIxYluO6YHtgwo9IswFGtUlR2P6bgDBSHlKRHdKpig+iT1ZQVTEZJ\nB1eWjzANVgccxY7JxIo9BaxCkUAeLJVb7/EadEn06y+Qx2xroQCVEcONtEjIUrkikPxzk7ObUtOX\nWJeJHhisei1iY/Ig4scWozgrfQiKnwZnEWT5Ps10XIykJmERMsE0YiRFH38itUXB8r9NIoswJShj\ny3gzMlwHZOppsAU80fOpF+5x//597v/Y57hzueHFly6IDaS2IaWGUmyAbtetiEwUMg+2I8PNwHa7\n4vrddyhXAvquF8cKsUsgk6eqmjmdVzdUc6GvCNZNWFmVaFPI84RS5q6kGlCUUnxYrAkThtYWjlx5\nZRFnsowuLa4bNYuI7ves23XlcY0lCtEYMDEdrhisW0WwtF8tIK7Co1VYlSCM48h2uzXmKlfxPguC\n0qxxZXYLShIslZltOmtqGhNZDcE1toIJghJs/IuP/8j5IGgaSrLj0joIuj5c8J2e7dhznpBiAVfR\nMqs+R5diyNmcz2pL/EGRbRESsRSUIiSvGyjvfdqdCFnNJwgBlUIq+GzLYvpSBKuZ8fl8dhzF2rBT\nIhfYqzLdmPL+uItIXtFijRGRjk+/dI8f+MEf4P6PfY7Lyw0v3bskJhPXTClBCCRJtO2KO2I+8d3r\nkfHuOPuEXgvIdxn3k6Wb+4BJqGTI1uE1dyoBAe8qxNhOwR6YCWGUYnVDokjyUSHNIdBOsfHiWIGQ\nrIU+Zt/VBy9WtW1n9lFSq3VnZQi7gXW7sqJltY1ICJ7KFA8mY7TNii+IuUzOYERSk0iSrFkiCOMw\nst5cQGWQqyo9Mg91tm2R1WPpaBsQVRusGCQisbXh5G136K6s7WbUezxzczWYwGmrc/qzjiWZUzS+\nOS9ToRQLcksuTOM0L8JRhRgrwzeZfleEPBSGR3umku2eCmZzv7JCfVPiP71fzKRdtFpLGZTSGQAA\nFjZJREFUxLpJQclDnsUobYPlBd54us5rkeaETwheV3RYYI21OuhChXBIIc0ilHCoEZ3X8gPzXoOC\nmpoq04ENonia8GgjV5dqY650Ljmxy2wLe23PmdNrSZ4IrqhkzZFOF0d/V6SyOnYSo8tIHB51lj2o\nI4sO2lhmSxBL/YtLMViq0G6+yp6ZDcdMEcaU+uDm2ZbAHBTXbngb7+PBndSgCuqA5uh1azHWwO8w\ngLqmdGf2Ug6Bq23ePfj26RnWKKWWkq/XzoMriofgIkyjMg7+mXUgtWdblCNW7ilwFkEWQPYONRRa\ngS5G1qtEv+rp+pZE8DZpOdDxoSCdDVqeEFrdcpFaxhzp7fFARvj0869z/4/9Eb7/c2/y6mdeo+8b\nVikSuuyDKu2hmGJLahNdsN3KWB+uAV5+7VWu3n5EKe/YY/AQvlM7d2qRoMzvh7rFMAbOd1RN0zCO\nkf0wGv0YPB1arO27ztILyXaRNoSTww5IxNt3IUpiysaGlTLZgoTlsmshvi0e9nBWrWmMwjSOSIjs\nb3ZIbIxw8x1Nzh7cuphrDb5iCASxYdSlpi6PtLumcUKyUspALpmHjx4x7HekCNvt1gZO+wJynBKs\nTFlNS5baJ1yh5UDzKsTgGXIxVqOmCC1g9NNe154o1BmFfdcyTh37cfQgrdYzNF7eU85iQQEgNeSS\n0SyYGpuwuVixubOmaxticZ9QYzJNNV/RFAkayUHowxaJHfsS6NwnGoSXn3+dH/zcff7wH/1DvPL6\na6w3La0EYmeLVQyRECHQEtuG1tQ12YTIMCbaVvj0q6+we/cx0/53SeF4vuSBjjeFcusSJorNwfOB\naNmD8Og1gOMYmCwWcVbZGzyyBeF1UG8MB59A8J2lyXLY30s+YRbvIrSuwLDa+H2HpwDtbys2kqnk\nbN23krh+dOU1UibPkAVGhKZNiNq8u+qrQa0cIHaBYZ+9g8qeUzEF9lc2q3Mc9oQEDx49Yhz2tC2s\n11sr3lfbyZuoItamj80HDTES2kNN3qwrpMVGYzlLJfYQ8g2TB0YKu91E04qlU31zWvz5IiFwcWeF\npsLDx48ZxuznBKQkitjfOhdUJqaOPAnBn5NttHWhLqruE5bx8U4y5VC07sU5NSaqtTo18qiprLlV\nv77vMI0/faLTLyaTiohYZsK6TO2Xxc+7MUPFR/tgdV6zXMLhA2pNULZDMQTv4EafYM/m3/GXJMoc\nbByiOM+MeZAuIuTBBo/PUkGedakBVhVzrWmzeYRQ/Qx0XtPUf04kzGlTkjGm01B1Iy3oidGCmNgG\nkx/qIuOu+JpVi/GDXxOdg+GD/ATOSL2n47GyauhB6keg6ku67gsqwjCoSXP4z9g1tBmFqljX7tF1\nsNuoPmef/n6FMwqy0EIHXMTI63cvef7ikthHtm0/j9awE2ujNYpAbDoyF2TtLLB6viUXoWmv2KwL\nNzd7RIU/9ed+mNc/8wov3rvLC3c2FkmnQJusJkOLBVl939KvAiG0SICm3DDslWtaxs9+ipvu2zz+\nX18nNFV/JVKkzEM1ragvQUm+kCQ02GiRMg4+FsRu6qZbswoNu+HKis6zFd6KJCiFJjbmMdmE6sS9\nOSSrw5g1qUbbBUw5M+UJArRNRGNm0uyU9vREYFMYkWgdjlbT1RKjekB3TcmRadxzubqE2LC/2bO7\nfkgIkbbtrHU9BqOfoxXn55x96HOiSbDfjd6NaMFOyTAMhRgyNAMxTJRRiasLAJqutSn3OTMWE5gF\nvEAxuy6TgvriuR+s7T9PlElhmogl+y7eVuoSA0pHCY0Fm6lhszFJhKvHO/aDiYWUPKExU8Ra988k\nxEKnkbXARZt4eb3l+ctL2m3DJnX0sSVET7OlSGoadtcjTdczcUHSjqyN+wQ03WPWa1f3L4E/8fm3\n+Mz3vcJL7hMpAU2kjTakmdAQgtCExGoTCWEDorS6Z9grV99teeXNT7Prv8Pjb37dmkFacbYmHjYE\nRV2vKhLaxDBA6BpL9e729H1LCVbrkLoVvST247UxdoOxTSTf0eIdoCV6x5sxpiFZifuEMbZMgkyW\nVhtvCkSxdHiYKJIRrJbPFmQfOB8nJPo0xTISG5u/GCRQ8jUikRISTTSfGMeBYf8QstB0PXnwruQY\nnMmqo3ECbd8TE0yjpVqbICiFMsE0ZaY4IXFEmNhdZdLqElVo1ytCbx3I435EfTMovpkIldkV84k8\n+HSFkmFSQrFpGas0uk5TJBNJ2qGxISuktqWfAjchw3jNeDORg7FbJSpZCqltzsgnrOyBKNa9puKz\nIy1QiM5EVa2r/dU06ydRx5SpYnIXhUKg1IJ0L0avbEnVqJKaLvPUVH09hKONrwch0dmbkMTYe7F4\nf04NAjopbRNM4DoK05BtLFCw4CO1toG2zjdniAKHFKHUQnW1YLwGaUEOUgninXU1RvQ6LmpMHvB6\nscr84GyUsaXinZo1uKypTuFQO2VsX5hV5yVYt14tGM8ZawDjEARV4U+8WF0QppvJhls7Q1avoYmZ\nBt9kyUw81OtTJou4FCt9MELXpV0keFB3CKYF8Tq2Qt/4RkRA9aBBqdn06CwV6U0lQeYatyplIfHp\nt+JnE2S1wFaEy67lpbvPselWSC+0TUNypfTYJqcSratP6BE6gnT0bcf65TtoiXQXe5p3rkjOmqzX\nW9q2J8WGIKZ+rQglC1qstihGm30Yo7E0eBATpPhiE8kpklK0mic1Jq2ozzUsVrSr4gNF1bVyavE6\nVk9Wi8ztgmenRTN5GolN76kRZb8faNuG4OxRDJEsGQhGqeJpNTFBRAvCCuJpj6Kj72RsMKlg+fCS\nizE4NmcF8B2G7/pCMP2s/X5iv+9YbTq6rqPOziq5UJJ3LnmAdZgRZo44ut5X01iNWUoNis2fy6VQ\nhoGu7cBTlXUc0sy4cdjVHf/Xdqrq5/voS/2YJtf9CrZDDyHOGij2Z5SmSXRdR993PHx8TS6KSiSP\nJi4bPnx8yDNDH2ATAhd9y72XXmDd9O4TLcnv1RgjkoJ18MQe6AmhB+1IsWdz131ic0l655oYrb5o\nu93Sdb119wXvTPQARpGZzUrJGCWZt+yRKbiwY4iMTWS1adnvd5S9ElOLhoK6QKYCU3HtszrXw2l9\nEMYp04aIEGwIubXXUqaJMlmwoyWTx8CkNpTZH6VewFxm2lKyXf+IFYZLDNaG3yRiCPYa5hMpWVou\npsBwY5pqhQganRmrPqFIMqHjaZromo5+01l1LtbZqlNGeyuyF4m+mNaajwIhMIyjNZtsVjx+ADG1\nSLDuShW4frQzTbkUGMeJGF2l37X1VAKhygCIODtjArqoP3v8jGt9JulElsKUi29OfZ6lyOxXJRe6\nVUs/tmy2Pd95+K7r/wWGmz1Zw9w8cA4wyTNb4EIb7Xmgh6LteTF1psY2TYdABOqCz8wEmcp7Ha/l\nAVuYnzqIuOilp6aOU4dV3d+ugaeSxLS3crZ5vE+wj566qjVelR6rCzno3E1XStWsslKL2gRVC6Ss\n5uygKXWscVV/cU4JCvPxVTkFi/hqCpo5iAJrLjDNRo4Uz4+akWotmlT2yEtXjoTQ/eNmVHbwOPCT\nGLAxcNmaVo66CccbH5mVDsxcnS1rASakysSJyWZoro0A/pCp18qvKQGvlVSqmGstvK+/oq5Wr3ap\nrNnI16ba8BVmevHDcRZBlgB3UuJTdy64u+rZ9itWXQ99oG8b2pRIEpkwIdKiEaRDwgphTZKWttmw\nvXvJNAmSOoZR6FY9q75n1a+wGydTx6hY9G0PyeTjD8Zxop0STWMXJ6gVh0YfV9E2toOdxpGmSWie\nvNNJra5KDw8vFVO91mwiksWdyShgF2jDnToXNGdbRLrOBOwKCJEmttZ6XDJNaryuCqTYPLvj9Jp4\nDRdiwmGWBs1+c9tNEkKchyLrTClXzZOqFm9CnfthIKQ96/WWacrejXRoEY/y5I2mXpuludZwKJvN\nht1V7aK0HcM4jKTU0rYNY00BIuBjkarKPNjOMsiBmkZNTBGv/1I96g5UndOCwdNHVVl/DtdE6LuO\n9WpNnt5myookhdKYSrfms6jLEuAyJV7Ybnluu2bbd6zaHu0D67YlSSRJoASsI68I0vSEtEbihiQt\nUdZsLi7MJ0LLVCJt29N1HevVCoFZ7FazdaONavdPKIqGQokjbduQWjmk5bRYYXFW+rbhu9fX7Pc3\ndE3LNI2QbJE34qlS+lYAGz1gCV60j3c9WfDjTEKxtFcZJ6YSSeuVC86aTyQxlg31IMXECXwmY71+\n3gwSojFVHHxCNNsuOkR0KITQHS2yzGl2uxA2Tsd2vIWb/Z7YDqxWG4bBunHndLVYPWkptnjU57Bt\nCmq9YWZ7ecHu0UOcDvdpCqOJn646hrqAAaiYZpVryM36PdgCn/c611BpLrOd4kXAps3kGzUvM6jD\n5mvJQUiBvu9YdT2qE+ONWmDaN7Pd/0/6/kSokwBMRdVzg67oqd5nL6G+bPI1ZGYR05JtTIpvKYi+\n6B9rSlnJoNfz4KnA6F19owc3yfyhDi2uTJGIMW3TmG0QdYrkoaqHK/O8UFUfXlzsb2E2zVIFmFyH\n+cJho+4fQm2sqjVXs6TCUU1Zcb8TD5BqFs+OUbyGy4MLLICwo7XfeyJAmy8AM0Om2LNZswu0BjeP\nJwNUM7vK8BykHuqIIk1hFqWeqxnVmxL8vbn+0NeVYCSXbSisr2D2Xc3FpyPIfL4O/nRYCyrEj78e\nTx3EbRqcdSSS3y9d8K7ep79nzyLISiL88Pe/wWUXWTUdFxcvWJdNMgNrcXTJI/thYNSIhBaVNVJW\nDIOy6nou7l6iJXCzGmn7FU3TcufOBZMo+/3E9dXA9ZXJGjy4uuLBtx/x+OFjthdrLi/XbLYdz73Y\nsdps/IKOTDeF3YMdN48ew37P9e6KwB4to42XaXwMgl0h15dpQBMqgdYV0W3WmjLmaS7yK6Pt4gtK\n1IJOEzfTDd26M5X0piWESJksDVKLwosok0f+qU025dxvXqu3yPTdmimb0nvX9TYLbcrEsLUOsrZl\nN0ygwosv3COEltpdCF5kqcowZXa7HW3qCDEhYvUoVRulMkcxun3YAyQPA9M4uIZQCxJ8BxWRAI+u\ndqx9Z1NyoUnNXFNV1CbXVxmMrKbonnMmYd+rj8GJIZDHASQTPNUlYrujKK0FYmTf3QuERLdKbMaV\nqcR7ilXHvdefcHignRBJhB968w0uusiq7bnYPGcpvKg0QQhYnd9NHtndTEyhJcYOwhode4YMd++s\n2F5egEb2m4m2X7tPbBlV2Q+Z3dXA9ZXJcHznwWMevPuIq0dXbDZrLi5WbC97boaW1cXWx1SMTPvC\n7vGO8eoxZXfD1eNrUpoY99k2H8FKuI16j77YmU8UEdoUZymWrMqgE8llC5RCkuD6clYn9fjBNatt\nT9BAExpjPrVKI3hzhKcPgrNTKXW2kCW7A8wnVkw5u090pNSYH4UNm82Gpm25GUYg8OIL9xCMga0+\nIR4FDuPEjmuaaD6hIdrOuAHxuYqh+HHkjES87X5imkaGYU+3Mia3OLNGKDx8dG1FzqFDi5pA6mT6\ndVaCJr5AY6tcyWQtNGrKZCGodzMGH2SdQSwQtK7lRAodogVCYSpWzFxGaLvEZrMiSWGcRrIo0/WO\nMit6n94nwIMTL6I6IoKsyxrs/BTvxIt2HxJqAbqlE/Oo1vUd5khkTs1VtgpneyzwEN+cO1s0p5+c\nHarBkWsjatUc887f5B2OpdSg15uhkqUCldrBhm+6mYMZEfzvmFWVpymTWoBYa0rhEIwcZwFqYXw5\nXD9Lc1o09B5imRp0CW5LjWM5+nc+bmbWaW4WqGweR/HNEwEOc4ClVAkJmRsGfJjDvDHT4w3HgZ+y\nn8OFVytZVT8jHPSw6vfzH/VnfJ19e7T/noVha9q2nr8Y8IBUbTP79CSWWX0OziMi7wBXwO+e2pYj\nvMh52QPnZ9O52QMfj02fUdWXPg5jPioWn3hqnJtN52YPfHJ84hHwtVPa8D3wSb3eHyfOzR54hj5x\nFkEWgIj8sqr+yKntqDg3e+D8bDo3e+A8bfqoOLdjOTd74PxsOjd74Dxt+ig4x+NYbPpwnJs98Gxt\nCh/+IwsWLFiwYMGCBQt+r1iCrAULFixYsGDBglvAOQVZ/+DUBrwH52YPnJ9N52YPnKdNHxXndizn\nZg+cn03nZg+cp00fBed4HItNH45zsweeoU1nU5O1YMGCBQsWLFjwScI5MVkLFixYsGDBggWfGJw8\nyBKRPysiXxORb4jIl05ox2+JyK+KyJdF5Jf9tedF5N+KyG/4v8/dsg0/JyJvi8hXj177njaI4e/6\nefuKiLz1jOz5WRH5pp+nL4vIF47e+xtuz9dE5M/cgj2vich/EJH/LiK/JiJ/1V8/2Tm6DSw+MX/+\nWfnDB9i0+MQtY/GJ+fMXn/hwe87LJ+pg3VN8YSNefxP4LDZZ51eA+yey5beAF9/z2t8CvuTffwn4\nm7dsw08AbwFf/TAbgC8A/xqTUvtR4JeekT0/C/z17/Gz9/36dcAbfl3jx2zPy8Bb/v0F8HX/3JOd\no1s454tPfPD9d9JrvfjESe7DxSc++P5bfOLJzzgrnzg1k/UngW+o6v9Q1QH4BeCLJ7bpGF8Eft6/\n/3ngJ2/zw1T1PwLffkobvgj8YzX8J+CuiLz8DOx5P3wR+AVV3avq/wS+gV3fj9Oeb6nqf/PvHwG/\nDrzKCc/RLWDxCce5+cMH2PR+WHzi48HiE47FJ57KnrPyiVMHWa8Cv330///bXzsFFPg3IvJfReQv\n+Wv3VPVb/v3/Ae6dwK73s+GU5+6vOK36c0fU+DO1R0S+D/gh4Jc4z3P0UXFONp+jT5zrtV584vZw\nTjYvPvH0WHyC0wdZ54QfV9W3gM8Df1lEfuL4TTVe8aStmOdgA/D3gT8I/HHgW8DfftYGiMgW+OfA\nX1PVh8fvnck5+qTgrH3i1J9/hMUn/v/B4hNPh8UnHKcOsr4JvHb0/3/AX3vmUNVv+r9vA/8SozB/\np9KG/u/bJzDt/Ww4yblT1d9R1ayqBfiHHKjeZ2KPiDSY4/xTVf0X/vJZnaPfJ87G5jP1ibO71otP\n3DrOxubFJ54Oi08ccOog678Ab4rIGyLSAj8F/OKzNkJENiJyUb8H/jTwVbflp/3Hfhr4V8/atg+w\n4ReBv+CdET8KPDiiQm8N78lV/3nsPFV7fkpEOhF5A3gT+M8f82cL8I+AX1fVv3P01lmdo98nFp/4\nYJzdtV584tax+MQH4+yu9eITR/i9VMnfxhdW2f91rMvgZ05kw2exjodfAX6t2gG8APx74DeAfwc8\nf8t2/DOMWh2xvPBffD8bsE6Iv+fn7VeBH3lG9vwT/7yv+M358tHP/4zb8zXg87dgz49jFO9XgC/7\n1xdOeY5u6T5YfOL977+TXuvFJ07ztfjEB95/i088ac9Z+cSi+L5gwYIFCxYsWHALOHW6cMGCBQsW\nLFiw4BOJJchasGDBggULFiy4BSxB1oIFCxYsWLBgwS1gCbIWLFiwYMGCBQtuAUuQtWDBggULFixY\ncAtYgqwFCxYsWLBgwYJbwBJkLViwYMGCBQsW3AKWIGvBggULFixYsOAW8H8BuAm1sEUN65oAAAAA\nSUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10,5))\n", - "plt.subplot(1,3,1)\n", - "plt.imshow(unnorm(img_tensor.detach().numpy()).transpose(1,2,0))\n", - "plt.subplot(1,3,2)\n", - "plt.imshow(unnorm(img_var_fake.data.detach().numpy()[0]).transpose(1,2,0))\n", - "plt.subplot(1,3,3)\n", - "plt.imshow(unnorm(img_var_fake.data.detach().numpy()[0] - img_tensor.detach().numpy()).transpose(1,2,0))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.ipynb" "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.ipynb" new file mode 100644 index 0000000..64ccdf6 --- /dev/null +++ "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.ipynb" @@ -0,0 +1,628 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 8.1 FGSM 공격\n", + "\n", + "정상 이미지와 노이즈를 더해 머신러닝 모델을 헷갈리게 하는 이미지가\n", + "바로 적대적 예제(Adversarial Example) 입니다.\n", + "이 프로젝트에선 Fast Gradient Sign Method, 즉 줄여서 FGSM이라는 방식으로\n", + "적대적 예제를 생성해 미리 학습이 완료된 딥러닝 모델을 공격해보도록 하겠습니다.\n", + "\n", + "FGSM 학습이 필요 없지만 공격 목표를 정할 수 없는 Non-Targeted 방식의 공격입니다.\n", + "또, 공격하고자 하는 모델의 정보가 필요한 White Box 방식입니다." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "import torchvision.models as models\n", + "import torchvision.transforms as transforms\n", + "\n", + "import numpy as np\n", + "from PIL import Image\n", + "import json" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 학습된 모델 불러오기\n", + "\n", + "`torchvison`은 `AlexNet`, `VGG`, `ResNet`, `SqueezeNet`, `DenseNet`, `Inception`등 여러가지 학습된 모델들을 제공합니다.\n", + "대부분 ImageNet이라는 데이터셋으로 학습된 모델이며,\n", + "컬러 이미지를 다루는 컴퓨터 비전 분야의 대표적인 데이터셋입니다.\n", + "\n", + "간단하게 사용하고자 하는 모델을 고르고,\n", + "함수 내에 `pretrained=True`를 명시하면\n", + "학습된 모델을 가져옵니다.\n", + "이미 학습된 모델이므로 재학습을 시킬 필요 없이 우리가 원하는\n", + "이미지를 분류하게 할 수 있습니다.\n", + "\n", + "본 예제에선 `ResNet101`이라는 모델을 사용하고 있습니다.\n", + "너무 복잡하지도 않고, 너무 간단하지도 않은 적당한 모델이라 생각하여 채택하게 되었습니다.\n", + "ImageNet 테스트 데이터셋을 돌려보았을때\n", + "Top-1 error 성능은 22.63,\n", + "Top-5 error는 6.44로 성능도 좋게 나오는 편입니다.\n", + "모델을 바꾸고 싶다면 이름만 바꾸면 됩니다.\n", + "성능을 더 끌어올리고 싶다면 `DenseNet`이나 `Inception v3`같은 모델을 사용하고,\n", + "노트북 같은 컴퓨터를 사용해야된다면 `SqueezeNet`같이 가벼운 모델을 사용하면 됩니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ResNet(\n", + " (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", + " (layer1): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " )\n", + " (layer2): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " )\n", + " (layer3): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (3): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (4): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (5): Bottleneck(\n", + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " )\n", + " (layer4): Sequential(\n", + " (0): Bottleneck(\n", + " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " (downsample): Sequential(\n", + " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", + " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " (2): Bottleneck(\n", + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", + " (relu): ReLU(inplace)\n", + " )\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n", + " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", + ")\n" + ] + } + ], + "source": [ + "model = models.resnet50(pretrained=True)\n", + "model.eval()\n", + "print(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 데이터셋 불러오기\n", + "\n", + "방금 불러온 모델을 그대로 사용할 수 있지만,\n", + "실제 예측값을 보면 0부터 1000까지의 숫자를 내뱉을 뿐입니다.\n", + "이건 ImageNet 데이터셋의 클래스들의 지정 숫자(인덱스) 입니다.\n", + "사람이 각 클래스 숫자가 무엇을 의미하는지 알아보기 위해선\n", + "숫자와 클래스 이름을 이어주는 작업이 필요합니다.\n", + "\n", + "미리 준비해둔 `imagenet_classes.json`이라는 파일에 각 숫자가 어떤 클래스 제목을 의미하는지에 대한 정보가 담겨있습니다.\n", + "`json`파일을 파이썬 사용자들에게 좀더 친숙한\n", + "딕셔너리 자료형으로 만들어 언제든 사용할 수 있도록\n", + "인덱스에서 클래스로 매핑해주는 `idx2class`와\n", + "반대로 클래스 이름을 숫자로 변환해주는`class2idx`을 만들어보겠습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "CLASSES = json.load(open('./imagenet_samples/imagenet_classes.json'))\n", + "idx2class = [CLASSES[str(i)] for i in range(1000)]\n", + "class2idx = {v:i for i,v in enumerate(idx2class)}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 공격용 이미지 불러오기\n", + "\n", + "모델이 준비되었으니 공격하고자 하는 이미지를 불러오겠습니다.\n", + "실제 공격에 사용될 데이터는 학습용 데이터에 존재하지 않을 것이므로\n", + "우리도 데이터셋에 존재하지 않는 이미지를 새로 준비해야 합니다.\n", + "\n", + "인터넷에 존재하는 이미지는 다양한 사이즈가 있으므로\n", + "새로운 입력은 `torchvision`의 `transforms`를 이용하여\n", + "이미지넷과 같은 사이즈인 224 x 224로 바꿔주도록 하겠습니다.\n", + "그리고 파이토치 텐서로 변환하고, 노말라이즈를 하는 기능을 추가하여\n", + "`img_transforms`를 통과시키면 어떤 이미지던 입력으로 사용할 수 있도록 합니다." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "img_transforms = transforms.Compose(\n", + " [transforms.Resize((224, 224), Image.BICUBIC),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "이미지넷 데이터셋에는 치와와(Chihuahua)라는 클래스가 존재합니다.\n", + "그래서 약간 부담스럽지만 귀여운 치와와 사진을 준비해보았습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAEyCAYAAABwLfy/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvcmObEmSpveJDufY5MMd40ZETpWdtSC44KI5rLgkwB1XJEguuegVH4Dgo/SCOwLNF2iAz9BokATYjcqurqzMjIg7Xx9sPIOqChei55jfm5HZlWQlOypxFXC4uZmb2Tk6iP7yyy+ioqp8bp/b5/a5/Tk19+/7Aj63z+1z+9z+vttnw/a5fW6f259d+2zYPrfP7XP7s2ufDdvn9rl9bn927bNh+9w+t8/tz659Nmyf2+f2uf3ZtT+ZYROR/1JEfiki/1ZE/qc/1fd8bp/b5/a5fdrkT6FjExEP/BvgvwC+Bf4F8N+p6r/+e/+yz+1z+9w+t0/anwqx/afAv1XVX6nqAPwz4L/6E33X5/a5fW6f20ct/Ik+92vgmwd/fwv8Zw//QUT+CfBPABZN+Mc/fX6FiEyvAYqIe/A3qDz8AFCFlEZUlZwzh8OBkjPr9YpcEkM/4L3De/scJw7nPd55EIdzQogNIo4QAs55RIScM2kcybkwf6Uqhm4FtMAnQFc/ekJRBUHBbuV7/sc+6tM/dX6/2MsCqtYXiqJaAMF7h/Mt4gScs/uR+rh+Wu02RO29Mn+WULQgOFJK/PrX35LyeZf72Y+fs1i0aE52RTJ3gd2DFvu7PLh259BScN5zPBzY7fbcHXW+xSDwo6+fIALeTc/qx52gateJzPdp31NQLYhI7SO1y3Ly0XvqXdf/dfUjdf4aEZl/9MH3lrnX672IMHW+1Be0fpaWBzc9X3au73H2fSIIDq3fNc0rvMd5P3/eeb67+ftsfAK//OVfU4oNpxb4+uunXF9d1aus91sKRRUtGXO8Pp5v8qBrBTnPpfriOA6UXEhppOSRXDJ93+Ocq32sgAMRcsooULt8ng9TxzlPnfPUeTaNheK8J+VMmO4fcN4RfMCFQIyRRbu098x9OPX+x2vm//zlb96r6rPfGYRP2p/KsP07m6r+U+CfAvwHP3mq/+v//F/jp5t2Du893ntKKYR686ecEO8owO60J6XEy1ffst1u0VzY3W+5u7vj2N3y1VdfksvI6+++I5fE4+srnARSynzx/Gu8jwzDwH/0j/8TjqeRq+vHZHVcX19zudmwWrQcDgdyl7i9uSGlRHSePNSBHxI5ZygF54QkSimFUg0tALkgrj4uimqm+AcDJfZY5PxcKQUoeLeYn+vHniEn+8NpXSwOt3hO27asrq9ZXF7SrFa4dkXWQggNOdkijGFt/egFZcQ5Z9eaQcQjRL799jseX1zhNLH0I+m453IpdIetXZMPgGNIGZdP82YymX4nNpWGIeGcY71e8+q4JLjCctGQuj1BEq6MlHSCkvBOYdq8FFJKlFKQUvuyFNI42vfn43mhFsV5yDkjxTacUhKo0rpQ31sNkSpOAjlne+w8TdOQ6gZQBNQ7VGwJFcHmWDUCLp8325TSPLaes5H03tt3OY+ElqyQxbFYbojtks3FFT427MRxdfnIDKtz+BhAnVkFQDADeDw5nj59wnG/paSRGBXJAykNbFYtJWdOpwPNKPT9iWEYiME2alWlCQ4ocx/afTu7hzxw3O/JZeTb3/yaU3fgcDjQ7d6RtPDhw3v64UTX9ywWS4o6SoHdYcB7z3g4sdksyTlz6gZitPU6jtbnm01L3/f4YnNsudrgvedut2W5WlJK4R/95S949uwZ28Oeq6df8uLFV/zi5/8hJXtibClZETeti7qG1ObXo//8f/jN38W+/KkM23fAjx/8/aP63Pc2212FnAvee5qmnSfLtNuFEGmDp6Dcbbe8ev2KUgpXV1eEEHj35i2r1YqcMxfXC7p+YLVe8ZOf/SPu7+/JOXN58YiUErvDka+/eM5+v+fVt99QXAQnBN9ym0fevXnF1199SXCexWLJk6dPGYaB/e4edUKhEFYNURRyIaXEwgVSSiTnqr2ySWVm2FopZRofVPPZAD7clVwCPKIeFRvchV8SKXUB22+Vgg5HUh45kBjHnnBY4ldrMkK7uiCGBc45sjhc48hA8A6nEBtPGkYAQoj85MdfMZw6vCq571CBw6kjhBZNCXEB5wJOM07MyIovaJlQhqAqxCgsFgtCCKzDwGrZMgxHosvoOIKDpjGj7VGK1s8SwVWjlHMmqBmuGUcWKKUaPqfEGGAcbcMgUxKQC904EGMkZdtgQmhIOYFzFfVCN/aIi/UenC16hOIFBxQFycWQYKlIDyE6oZRpM7If5wRcxIeIeE8ujiZEmuWGxeaK0EQKnqzgnBnYGCPBebwPNpbz4GdEPJerhshI6Q9st3c8e3TJOJxwoty9u0dEKSmjLFAV2rgAKahmnArjmIGCF4eXQKYASsoDu/t73rz9jlISYzqR80DXHTj2AyklDoeOIQ14H8jJkYrSxAWPLtfE0PKu+xYRj/eOi01D3/cEH2kbT9/35CR419JGx35/MkN6GgjBExvH5fUj2kXg0O0pZZzRbkoDwsI2q78HhuxPZdj+BfCXIvIXmEH7b4H//vf984RApgUy7S7TTjMZABExdwsYR5u44zjiva8oRGnblpFCdA25QBMj64tLTocjoV3QLgN3d3eoKtELb968YXP5GO/v2VxckXMijSO3H94TY+THX/6MpmkYU0/JI0PwUAohOIRi1wEEF2akqapQzHB5pE66iiy81seh3leZd35zQRsAvG9skEVQzQw51feZMUIdDgUd0dEZAtKCr66Z5kJx9tlFKjLTDOJRKcRoiNWLYxx7xnFgtVrQH7d0w4lGhLZdMQ4dKgHRQFFBxaPTxBNBbeWzWK4B2G63jDnRDT2Rht3dFhFhERvUC945QvBoNgPmJJ9dMu/mKS3lPOaqiuYRVW8osSSc8zhXKGSkeJxAcYXQVLc4QVElzUhNcBOyKmckLaKgGRWpcA2cSEULipsQ5XQt9frc5GaKkAk4CYiLFAEXIuo8znlQf0a1ztXNWxEpuGleUwy5AUpGdOT2w5b1akGUDWhmPB1Zb5aod0Tnud3fENrWjIwTcimoTnNo8r3tWkMIdYxHTt2BcewZuiPb7T3D2JHLyNAnuq7jeOpp20gTG0P93chisSYnc0tVIWfbtGOM5FxYLAKr1QrnvM0p78hpIIQz2l0ul8QYERHe375HRFiv1zjnCGHaXL7HoMlESfwuBfCH2p/EsKlqEpH/EfjfAQ/8L6r6r/7Qe5bL5Ucc22TcQgjzAgetXJjj9vaWYRh4lK5q5wQKQoyR3ZB5+vgxr1694vZuRxsXrDePyEUIoSH4Bdu7W4Lz/Pa7b/lRbNhut3z9Y6UU8AK/unljRmEsOOdo25aLizVtjpy6Q3VDM67xrBZr8hG8D8R4dqNEbeGoKk5t0qY620o5uzVIeXDP9pyTxhCfc/gg3O92AMQYZ4PeFCFpYexP0EczHG0gZyGLLazgDOUGEUpFDZoT/ZgBGIaB9XrN0J1AEk0TGZsG74VuGIEGCULKhVIU5yLiGjPGFVVNRltV8S4gONarJUO3o1l661Ov5GIT2KyHI7iI94acPPJRv6WU8N4TnTckXMLs/qZhRJwisSGPiVISUgrBOST3qAohtrWf5zkJKudNNFdDJZBmslBQETNmvo5TyjYOYu5qjBXp1fnpvSeHq4okPevVGnxgUREb4unHZPyws/sSsXv13tfPcIizeZNTRnVEh467wy2bzQZJiWV0aN8TFaQUFs7Z2JZCzorDVf4r04Q437OqMnRHXr/+juNpz27/gTSc2O+37LZ3cz9vLq8oCJvNJevVhpQSw5A4HQYeXUVSHjh1B7yLbNaXDMNAKYX16gonDiHinXF/Qz/igKvrx+xPR7ImCsr+uGO7v+fLH33JZrOGurlMwMS41MqdVi6xjt4fYX2s/ck4NlX958A//7v8ryGdOBuzT39iDIAQgsOH8wTvuo6+X8xGsZTCYrGg3/Ucj0cWiwXffvOS9dL8/MePH1e4fWDf3bFcLtGUCQLr6wv22x2LxYJu7DjutngnbHc3tG0LklhrS7toiM0lu929LaAQ6i4Vpvs+8/eAVNLbJpmnKLYL+VDRZ+VCJnduIlxDIJeeogXvWpZtO7tpSgbnkcpHBYEynNDo0XGJd46h71iur/HicMEbyoGZF5zctOgbM5KLFtVCEWgWSyQn8EqhksY+IqpkBRCcGiLCmWs7ZrvPtl7nMAwEV/ujIh1Rc8dFAPEzma2qFCDUIA4wI9+sigQPOeCK4lwwY1gy4zgijaAaZgMktV9zqhtKECboct44Pc7Z6+IdopWLmv7HuTlQJeI/Mmbe140iBDNqOUMMkIp5BKs1zkdCXIB4JHgWsaWo4rWQnW0EopDHRNPGGSEqBTSTR0XILGIgDz1xAl+lBgqAZbtgLBPaNwwt4kljmr2YlMy9PHU73r57zem047C7o+u3HA4HVssFMUb6vqeJNu/W6zU5GQWw2x1Yry7oTgP39/c453j06BF3d3eVbmhmXrzrBvb7PU3TIHgWixVd11OKMo7Fvm+z5PLRJTFGCgWHO2+KZJxrcM643JxHi4nJtCn9ccbt31vw4NM2WW04T8CHbYLXOWdSSrRtOxuzlBKbzYY3u9d89913rK48Hz58QFX56Y9/Rt+PxnsVczeWyzVFD9ze3LBaX/Dyu29ZLFdIsB3wFz//CwYPeey4efuSEIIt2Nxxdf2IpmlolsYTaRGaEPEY2poXT10sIgIlz/eQxc/3NEctp0UmE5orlZCN1QAFyJVjU0N6XdcheQBvn9P3PafBJnJcbmhXkXLcoW2hBOaNwxXM7Sk6RwNFbMG6NJjBCQ3qHEU8mgYotpFMkUVyJKuiko3I14knLQ/uTdAsFklVmY0XKnNkVZ1APn+/vW5uqIibI2wATbuaeUlfFETxHwUaKv+WeotsJ537ceLprH8nzu7c576O1Vg9A/fQsHkBV6kCC+kSKtLLqrgmUkJgsYy0yzW+WRJ8xC8WqGsQ78EFHA5JCZFEziM5JyiZPA74MHGUmZKyxQJTBuxaktr1SjVsYGDHuWKRQy22ayjEGJDaT7vDjr7veXf7kjweEAbud2/Zb81I9Z0FHtJQ2K06+r6nOw2Ap22WrFcXdR6OPLq+JsbI/nBD0waapqkBvkiMLW/fvkWLcHlxTUqZoTvQj5lShOtHj1hfLFlfrvFBcME2wNVqxcXlmhBc3YRMuZCzzutFmMbpB+CK/rFtgvQPUVqpPsRDI2cT1aKlm83G/kdsUvZ9z3K5ZLPZcDy952c/+QtygpffvWXVrtjv99y8e89quWS1WqBF0TSy3d7hfMvpdOLFV1+y3R54//YN++1N5cp6ctJq2Hr291suHz1itb4AF8zNig2xsV2dGqErKjjxNuEqSSwl41x4gBzOAwg2SUsxvkVcIDYeh+A8ND5UlHpEc2ERLWLFOKIkGhFwShmOdH3HMCTW146sBZFEXKzO3+08IVTjNMfoFRFPCAH1xiPmkEijQ3OBNAClugytIbZS0GzOtZRK9EuemRItDUULpS66mSZXRZ1JZooace8wQ2aTuaKsalAcQnIZISAUpO7eTifDqpTKWfq0YJLs2MYyXY37aC49jHBKzogUoj/Px3Ngx50Nm3OId+CtX7UUJFrgYLFZE2PLUDKKI+WEDw2+cpwWSDJeEGLlXjNaEiXlqcPMeGcsSCEOKUpStXmggPqKzgSRGoAShYIhPilIyZxOJ169/pbj8cjLV3+DuEyIwjAcQRI+RN6/uSMl5dnTL7g93rPddvzoxQsOh46cM76i55IzMXqcg+PxwHK5tKDAMfHs2Re8f/+2ggszhO/evaYUePr0KT4K3gv397echp7NZsX1kwtibJDgP1oLKSXQgvfRggpuAmoTf/h3bz8IwwbYYhZX3WmZdUkP3euHVntCbIfjjnEcGfuBJkSurq64+/Yb7u/vWa8vSMPAzaEzuA/c399yPEYaPSAijENhfekQHzgej5SSOBx3dF1HTiNBRyM9NfPh5h39mHAx4MOCtgnEpsX5QB7y7ErPnIGqEfzTLWaHinswmDWwUI2ZIaJ5NOfPc+IQb5M4uEghzZwjQD+MFl3MEJuWvhR0HCipYxQheEdxHnUZFSVEX4MIs3LL+lz8jHCKFDzYwps1WoKouYNKwQGqdr1zAGTSjWGSB6QYghAQbAEXecif1L554Gqok2rmzoS9yqSOcajYdzsXUZcrmplc+KrTm/qPCSF/7A0ErW6QAJKRckbYxsFPXKdxuurM0CYtFXWan6TO42OwDUGAKrlgdrErokSJvq3fOVJUKSnhQ1VrVaNmBtDVqKvMWjCq2/bR8n7Qj6oZxIJH++Oe7dakT6fTiWHsGMYDzsHQnxjHvtIFpm00NA8xQrtqORy6eTxKtjHrug4RxXuZ5ULilJxHUkqEEFgsmwpIlKvLx6xXF5yGPbvdgbv7LV9uvsDHhuAb8Oe1EmM06qE40HOw8BxtV+SPs2s/IMPG+UbgPAEfTvgQAmM2DmGz2Rgf1h9JKXE8HjlUuchf/vzn/Ot/9UtCWPDjr35KKY6+7znu9uS24e271ySxHcw52O8PtMsFu1f3bDYbfnvzgdUiEL3j1csDv/jFVxRG/vZv/oavvv4Z2/s9T5+fuLx6xNPnXxIaz2phrumEuEoxUvahYSuuUMq00Kqbip9dWDeTc9UVExObarGFMiFVVeV0OlBcNTaukBOkMjKcjhTnCHHk/evX+LDgyVdf4IqZIqUlLhy9G/BNa4Ll6CmiCB4nvootlSSK1wZPQbNSii286IK5pz4hyQOFnBKuin7B0FBxvkb8PIVs6s56FVqNnKtTsBRwPBC0zrxxnQ94zI+e3lPIpSA66S5MmhF8rAbBW99UGcrUpnmVpmtURVQQCjGco/Hz4nLV2DsLLASUVMxlbWLEBY9bNPjoSaq0YWGRYxcYxpE8DoS4mDnDaTF7IuphTD1oppRcI7+ZJNGiwg7rpVHxrrr8arIdj7EGpoPRWe5x7E588803bLd3nA62eQ/DkTdvX1F0pG1c9T6UzaZFJHB/v+Vu3/H48Yrdbsc49mw2l/THkTSOtK1t7Iu2YX+Avj/Rti3Pnj3lsO94/PiarhsAOJ1OPHnyBNElNzd37A535DLyk5/+jPVVi4/eOMAUCetI05hbm1JCCAQf5oDPw/X/x6Z+/nAMW5UNzD9U4tmfFeSjV/CekYG//eZvWK+X/PSnP6ZZ/ISXr77l229/S9t6dtsDX/7kJ2gRDuNICAuSeLRdIap8/fPHvPvmVxTn6fodqDKcOi4uVuRTQgZBQsv1xWPeltf85u0N19ePwEfW6zW77R2//uX/wfPnz3H9W378k68Zmh/hQ0NypscrmFvnC0Qx1yfGBk1VaIuf3W0vZ/f0YX84Z4YPD6VMglJzV91ihaaO0ATKEEhDRPOA9wlyhv7IsiSkbOFmSWk62y1XazRlVDy+uSAXh5TGAIoXRhnRGhjIXsCb26nZ0EZJmbGYTkolgrPosIaAFqXkRNW04sXNWQOuTGp0V8W0HtUCaTRjUg2HIuRkQmypnJaI4OsmAJg0A3PzP53uxhtaRgVUg1iDJZOcIOdMCvZZpRSKEwpnEavWPp6yAJjQqDcuMEjlhIOnbVu65jGyXCJVYKyqpKFHSiEqBBIuF2QBjTcEN4x7SAN+TJAHghYL2FBwOpxvSOs1TWLqCXH6hjxYp/oYuNvtOJ0O3O9uebd7y/G0Z9TBIryauLq45ng80XeJYWwIsWH0MI6TLOkCTRuOp4Gskf3uSN/3PH36nKuLa8Yx1YDcT7m+vKBpI9vtDcE7hqEjpUTOe8po7nnX3RHjkmePHqOauX/3juvrL1kvW5rVBc1qg7KgiRtiXOKksQ2w6gZ9qBIPSdXV/uNM1Q/HsP0d2hSazjnz4e07bqNjuWx5+uyJEZEXFybuDIGLiwu0OF69fEcT17StY7XasNvtcM5xff208iye/tTRdSfaZo2WhJaRvhvZ7o+EEEj9SH/sEa0kuwRubkwLd7FZc3e7JV5sWSzXuBBrNMeiuK4oWmzRTAtnag81ep+2s7btYyT78LXQxDkamLNHNZKYhL9aJ0kxXk6KRdfyAh0TxSkNEL0gvkoqNMMDFb7CORtExPgsBMlmYJ2KcZUiaCXexTmcfqxJtFu0aJdqnqNhpSh5Sm4qOhsQ8fZ6RvEVbZWHkebfZSnOr2WYIs1gkVbEWLyzW2NBDUNPAdWEVKkKWIxpSsMrWo2pE7zzuBr9nlLzvDPUhptctPTRlU2uKChkVxG4BbwkZ0oZIWccxhWKMF+7adsmrtkhUtBq6MQpFI9UFHs6Hdjvd5ZFcDhyOhzoaiDldOrxPlTUmCuXCzlXiY6PLBaBEBqGYQB1+OBYrSLL5RrvPafjQMmw3qxZr9co9R6qcDylxGKxwKkzfs5HSlay1MAZ58BMjCbwLVOa3AMv7fsCh6j83nXy+9o/KMNGMfh9dXHNF198MUstXr16xZMnj/j6yx9xe3tLKDAOJrvYbC7pTh3HY8cXz79kvbrg9u4Dx6Njubzi2ZMnOCfc3d3x9s0rNpsVz7/4Ea9fvuRm2LN+5Mij8WMlK7/+61/z4sULhi5z+2HL68UrypgY/HtefP0VX7z4khAacKHKtQIlm6peiITwsfAUPobb8wA6nV3Tj56vf4dgkxPvcCETcmOLNsZqTAriLRqcS8fpONL3R1ZSWFw8powDuVuSvSeo8WulEra4ulAFZqlEMCJbvcOPD2QaSdCSEK16NJFK2Cte3BzF1Zwpmgw1JYxXdEqVsc1cGoBWTRdaI4/ikPJgws+T/3cXwfSMn7guVyUZGGJTICM4qap/EZp2CZz1bLMNFQEX5wXpgp8NvTrzLMaa3qVkLAW5upFaKKPl9ioJxXHaHaocopD6nvF0xIni1cy7mMdrAmPVjxQOthGUeeGXUijiCKHhzdvvePXqpWnNTjvevnlJKYnuuLe0wDHx/PkL0IblouFwGiEVnG+QKvd5dPGEGAM5KeKUNkQ2mxXjmLn5sGMcM2274HTsEYVxrJKqNjD0iXHMOJcoY2KzuWToR4JfMI4jSOHx48eMqeN4KhA9UYQQVrO8x8TaxXJj1Vzr84CW7xnpP9z+QRk2zaXqqKr7ptD4hnYR2d/vkWBq5mVsePXyLSLCT3/6F9zd7nj/7maWiXz91Y95k28Zh4HQrOi6I9dPnnA6nSxPruvYXF5wf3/P5fopt8MtmjxtuySNmXevb7h5u8d7WIYGitD5xJB2dL0ht83mmia2LOIVUhzOL8ipUOqAfZpRMf2eMiuK6SBmQn6KGE7v8SEgGVzNHQ0h0KaWrjPOMVeleSkF3wzkrEj2DMeaGuUj2h1RZ8p4cYHBDYh6HA1aLAoYgvFVUlOSBHA6cWVC8oImj1YknUtBvMfXe5FS0ZlL82N1DqeZUgL+QSb9ROaXnA0FPeib8uCxPnj8aZsEsFM6lsWi4vy+KeCq7vz5KhYYcBOaexCVz9XtxHt8jOTJ+NX0rFLFxDlnwsSRlmTRTcaztEUdURSnA5oLTkeCYLIPKgOjYq6nhW3M1a4GzrlJLTBRGYVBlLvtLd9891t22w+IKC+//Q23718TQuB0PHJzM4LA5cXI/d2efiiEZknRwmId8C6QEEq2ANNycUk/HOlOifu7d6xWK7x4ri6vDIVVPjIE5fLymvfvXtE0kcuLa5xzrK4XHA8ntFh+aM6jRfeD0mum7QNh2eLbhqa9pGkWBB9roOW8QX7cfr9n8/vaPyjDNhGvq8WyRkVN/Bl9YLGwRS3FRIZPnz6tCCkQQ0sIgeOxo+sGLi4uuLhcc3s7ENvAt9+9pW0bnr14xtvXL9nt96zWS8acaJs1Q/+Bow5o8QTnKN6iViGY5ubtm/f4K4/3QmxbLtJI05jsoAkDTlssZO0Q97H4GM6ux6eL9fv+fuiWng2dMwTilRgtWhxm2KFkMilZcv04dJT9PS60qATwlipVEHJIhKYliuBjM8schPNvoFYTqdVSiunkSJMbaJkFKg51ilLdH7XnxFU9lgrOZcgP0KjM33C+x3rPXt3sPtb/+N454pxxYlNylvdnY2QBBaU4w2+T65wxusD7asCdudaGHMREvyHgQvxoTCaheB7N/fRtS/QCLtANvUUqi6KVCwwOK5KQTa/mHOiDqirTXZ0R/FmX+ulcUFV2px33Nx+4v7/jdNwhmukHK1BQcmYYRvoeQrDiBCkVcy3jgpQV72J1cT2r1QaAw2FHShkvjs3mgrZt8RJYLtcInlPf1X71ON/SdZabO4vrcXz48AHvLIXq6dPHIImbu29ZBPBpMacehoqATUI0aQXLJ2Psa2Dke4f797YfjGH7ff51eRAiCRJM0lCjct+9fMkv/vJneAlozjTB0mjubrd439B3mb47sF5foirc3d2TUuL29o6h6xi159ffvmO5jqQ0crt9z+piST9AZmRzteLXv3nJsr2kaVtyUkKIbHdHkMipH7m73xs/dzSC93635dGjR5SixGbBsydK6y/Qkmjiag6GFNUzDxRC1eSZe2NEt38wmA+5tjOBPI2epeJYDmkJhcYtyNmEoUqm6+/xUkipMPYJxkzxHadcaJdrxpKITUNNB0RHx1gKLkfCMiACach4b4uwoLVyk2ngdDJa3kMyw6IIWcqcA6je4So6KWrcYylCzszGfrpHF8+aQPfpBjDzdh+76ueeUlIpMyLLgIRmJv8BolYecUJokwjUmUbNOUdTU/cGZZYjeO8Z+t4CWaNJNlLROSA0lqO57CK4kklpsHRAzRQRvMOqlaSMZEO8FrOZAiR+RoKTxOEcpS3z9XpvCecvv/01d3e3jMOevtsyjj05daDK3d2ekuHpE0cukdOpx0lgt91zeb3A+0jfD6RUiKHldLQAQNHCZn2NFzPaWjxF4Hgwvs6KRURyGTnsjzx+9JTYeMaxtwITd3sWixVNtIIUH27egWQWK89iYZv/8XgkqeP5Fz/BVy2oQOUXz7KpyfX+f5OY/dasAAAgAElEQVQU/4MxbA/dst8LOx/KQYpQxsR+dyTGyOXlhlN/ou/76jJ5YnSkmq0QQmSz2VgajgjLhed4FNuhtJA0cdof2GzWBN/Q9UfAocXTD4mmXRGCZ315Qbq3ROduPzJmZcgwbJXNZc+YR8Bx/XhLzncsmjUsTekfQwuEB6T6uVrHp618DyCZJaO1ntkklRDJmBK/8j9kZJyMgS3UrNm0wk7QPCKqjJ1xPG0wF8hJNAF7LjjJBLeYF5iXWvmimEDW0mAweYhzpDSS1aKLUwK7F1crSwhOTSsIBZdBfQEJ50TwOSIwITo9c2kiTHXB7Mc4vKnk0UOyPkuxiCrGzxVqDTFxePFzv06J/OLcLGPBeUOlziOxwXlvaVwxmtFzjhAr36ViBk0LJWc8ihZhzMm0XmKbgFJFtwopZXJKVs4K8M7PRmyWugBFPFXoMRuzychNGrLD4cBue8vxcI/oQCmW0RCCpaIE74gLq5LT9YVFu2KQgW1dL6mo0RPVbd/v94gIsbEqNQ9tyRQcUFVCbCmic2bHYrFgGDvbNEeruXZ1dcXx0M3Ceeczl82CxcLTLCzjILQrmrgwWmROgD8js4/XxJ+BYfs+Ldv024khkDY2fPnFC1IaeP/2LTfv3/Lo6SO++vpLNus17z/cWHRTPXe3W04nSzUahzyTv6fuRAiRp8++oO86UmpZtJc0TQOlVP+/YbN+xJs3b8iqnE4jsck8e/4lF1eXvH71DYfDlpJhPML9h4719RJP5ObmZuZ5vnz2Nev1JU3rUDHI/1DM+/D+5z5wHw/mQ8M/9UeuWjiHt1pr7pyak5xJBnLOLBYrpJwoTvFZyX3B+cI4HOhyj49K0Z7cr2DRQkqWTRFbXIl4KZblUBTJhsRKsbI4tXAWzaKlJIuwkSs/lTrj6jBNW8lTtG8qwaS4UFPToJYg0jnFxjI/JsFtrsnRIM6jpVDOiQznJlbFQ2oQQ6iGSTwypUMBZXJ9nMOlBKUgD1yj0QlJBAliekGxCLBvGihKqO523w9o31dNoaEzgnFkuZaVyuMwu1nTRhadXVMTPKITN1fIWqUvsxs68Ww21qfuwN3dHb/61a84dLfs91usxp7llw7DwG53pF0sURpu73dcXlxwc/uenJSLiwsryIqwvrhkvb7ASeC0PdE0DYtlS0oDDtOEUgXYaZxS1KxSiAhcXl5T8sDpZLq2GCP9oefmwx1NG+iHA6t1i6pVFXnUPOX6+pqnz15QZEGMRikB5DISfFNzeK18k835PzZsYO0HYdimXethm5Dbw/xRUSWnRGgaNpsNF+tLxCmbzYrFoiH3iVTTL4YxIWJ5lsulDdButzMDN458uLlnvV5zsb5EmwaRkeP+RE5akYsydkI/bFmsLiil0DaFD3d3/Pa7b1ktAlqM1D704Hu4edfhG8/lpVBS4ub2ljdv3rBqF4TouL1V1mvHcmlROAu1+4/c7bkf9GPD5qrLZK+d0Q0IRUqNGk79VWUl1SiQG/zCUcZEOnb4GKrQVhhyR3cUYmmRJiIlUEYhlcLQLWgJqCSrs+U94Mi+pgD5qsCvu/+0KZWaD+tDgzyIioq3a7O7yNX/eDAF1WQR6lw1jsZPWbTAzYvbck8/FjRPLUutp1uNkfgI3pu2Ts4Gs2BZLh5BY6Qy9BRv73POVTSXSNUweXF4aimq6j5nVRpxtYqtEpygKTOWgTQOkK0mn1NByARnBtcBWiztymGc4yxrUJN22BDbYxHT5r19+5a3b9+y3W45HT8wDB2Hfs9yGWsNvT3L9RIfF+TkuXr0jLHbslxa7ufl9SOO3YhlnpiqoO8OuDxVrs2zXCmlwa6ryKynyznTnwZMjDOQxo7TqSNnS7zfLFc2Nj7VbAZP0ZGmNSnJdrvFN3csN094+uQLvIugoGpR85LPBRAeroffFyz6fe0HYdjgd7Van/4N58q604QupbDf7xnHnl/84ucsFguOxyMSW3bbUy2XU7i9vaWJi5qDJrXSx1NL5JXAMFT+abA6a+2yJfWJlEbGbmC1WqGl0LQNPgSePn3O6XA7E9ulwLIxXU53Gui6gXZlCmu7vpFxHEnDlmGwtJNPyzT9u9pDDurT/plclYfkuqt5jV5tKTpxZITiBpwTchZDQCXR9x2ZQhkPtsnEiIRAHEZyzHVCT9eoMzKcr0cVP0d5PW6K5uVknFEl2edKs2oZE7h0DkjYjcwPizBnH0x82O+b7B/RF1Krjjzg51y0JHSTethrAZN7uHCeT1bhpOYsejNsLhnBj4L4YNVdK69o0bopu2GqqotVHhlGSjL3UChodWNnkn3SAGpG1QIuhr6tuu7H0mOZK6bc3d1xe3vL8XhkHDorgX86kpLxhn1fWC2D1Wcrgc3Fhtd3b1nWenk3NzeIbywqLrYhWS5yM3e4zSetGj8zbK6KyMdUS4kVJRdYLCyrouuOD9zkE7h+LqnUDx2pwOLCE1Kc3dgp2vmQU8vl7FX9f2k/DMM28wi/GwX8SJjaFaL39N2RzcWCF18/4a/++v+aZRxffvEVznlKf6J1AYkNy9iwaK2S6bubd2y3d9ztbtjvbnES8EQ260cUVZbrFTkroYmsVitDdq/fsz8d8UEooSO6QvQJt/bkrFxePWa5vWN7OyIC3Ul4+dt7Ahds/Atev/8r/ur//itefHnDz3/+U3anG0bteOq/YL26qqnvYrWsREm5N22PnqtSABXg1MhkPQ/Bi7mbWn0yrXwRGKfkfAtSWDTROJKQCX5JSoNZwTTQRI+MI4yF5rSlnE64ZoFvF2jypBGKCxSxyGAWR4vHB4/LDc6ZFGJMCSWT8jhHtoIPqBoidU0kumrY/DkBfagCzzwmck2gDyGQxrEmddfoI2rBifOkIYivlUVkDkAcS8HFyRX1hCaiPiB4UnWBEdDQIECsxiw6T2gq0ky5ohVFGHC17LhLZuXmyKlmgh9xx6NVStZMGUfjuigMecAVIQYrROnF1fHDOE3vUYRZwFESWoQYBxymn/Ti0QSvvvsN97dvuP/wDf3uhg+vX+Lr5jUcYHO9ZtGu6A/37O4HqzvYQNedCOGSrsscDjuaxYrl0lFywQcrrtA0C7ysjCvNQ014d6TcV6OsHHsLvOW+r0tWWbYN/dCRh55xOFHSSAiOw6HncukIznG473ANZDU1mgsNq9WGy/UjokSQhlwUihm36IWSpsioGDqm6gb/iPbDMGwP2h8KHthrH5fafvr06axd6nvjCZbLJceSGHPGB6vyWkrixYsXLBYNd7sbmrhgtdpwuD9ye3OP94HV4sLI9eI5HCxs/vz5c3LODGPH4XBPDIUPH+5pG6u6IRK4vHjM9YXnt799Sd8PHA4D//Jf/htevDAB4rt3N1Y6Cc/ls+cMqWdMiadPE+vVhbkw3iJG4kKtVAXm6E7Vas9VVqtvNruwk/5rkiyo6FmTpUoaysyVmEL+POzeW102q9M2klJHNw7QH+nSyIpE0y4ZxSOjw8fIGFqgrUU/AyJTZWCZ80xFYNSq0G8aHEI/DJbc7ixIYTrgmr7ECGKhhrEoxcUZwJWqjZvPRFBsA9M68dWMvsNkKlKDDd57mmh1w0SEIObteu8ZlSrvsBzMpmkMiZXp4Bhf0Vc0eqOMlJxworhSrDS7ZrwXgrfo7pgSuZa7LrXktfe+yioebNJ6zkA5I2+ZxaoUKCbAYRgT79++5Lff/DXH/Y5xOJCTMg6weLSpiPSeYUiU3HFxcUHZHhFRXMl0+471+sJ4VhH6MZNSRvBVctHQNA1tLdc+juaC5mT3Qd14yAVywYsVJ7WquzvGvjMENw6IKNfXj3l8XThsd/RD4uJiQbNs8EvLgHGh4XA4EZsTaSwsVhM9UM7UwkNP5o+UeUzth2HY5GNd1x8ybs45W/bljGhMR8P83pwzfRoZekMQ/WCk6hdffYELztxVtTy5YUjEsMS5SBpL5W9Ghs7kE+lk5ZByzqa0boxn6scRN1rYf71eoYyEAF1nVRL2e9jtjjx5eonqyO3tHZvNBWGzZrFYkPLA4bAHoG2WhkrUoL04U+dbe2DcPmofu2azar/ybtMJP0WU0LS4knDZQuklJvJYk8Cr4DPnjNOpGm62EjllIKeePLllNTm7jFalRPNIokZd00jWwjj25woQWmt0VMJevDtPVDEhrCBVfW/J/KL1HqoBsy4oZBJpMNfGe0/bLD7iX6eoYq6pOxMiMiNe5SiA81KFpqXOJYsi23dyln7U8KkSUB0syyMXsiZEzbAVzYwp4dODGmtSqKn/VmrIuQdcoGGQyfue3K9PW7E6ogxjR9cdubl9w/G043CwUt4WtRYOx76i1YaS4TSckCEz9lbdtmnMaC4WK1arlUmI5ETTCFqEVGz+2vZg6N97K0BQKv/rqGuxatWGrqekAS2pCsETTfC0bbST4nb35rL2iVwyrbNNczh1xKUdyhRjtOwcmCUdU6qkfiLxmTeA71kBf6j9MAzb37EpGSeBkgubzQaczi7jerMiNo5cBjQ4Iy6bgMuR++0tx76jvHnNOBrU/urFjxn6kf3dicvLK/ouk0erg2XkqasdXVCBpm25unpE0ZHhkOiPxlXZCToDWvpajXTEe/j6a0sn6U4Dd/cmalwtdyyu3+McPH4sfLgfuLl/z4sXP8JPlWGdlb9Z1YG3NpU1+tjIxeiBjzeB+ZEPxs1X42VT1JBIKZEmKtJZSD6NPWWwBes8hGJR0jQAu0zqI3G5wmtDGYUxr5BixtKKG5lLlNWqdqg4ijgyjdW/r0ZnKOcy6WB9TGOC4tgu8TNnWWZ5wWQUuq7DS0SS5QK7tp2jr1TEo0BbU9EKNVdV4tmAuoA4R2wa/IMyRWksptOrVVY8JtqlFBMvFzM2kgtOplOTMkKipCOn08k8CbGADFJoQ1M/v0ZaRYz7Y7rkMxc6IZZci4kGWTB0J16+/jWH3R2vXv+W7f0t2+2e7c0R7x1pBCs7X0i1nHhOSkkDMXii9ywbk1YMSbm7tdPGVhcXLFqjXLp+ZKrK3PcnADarNbEJ+OKITuwYyjLi1dfj8g50mhCUxsFy3dYj+wztFhdxoiyXS079YMLgPkFTePblEzZX12zWFyyXa5qmfcA5nvtCHvbRP2jE9qB9SpJ/+ppiJaEbbWpl22UtzS1AYRwHvK+nIMVAs1hwOWxo05LdYcsw9LgY5tN1RITjscNJIMamniXqUTVx5aIJVftm19Odetp2iWhdYM6qllImt2LkdILVytcFmuk7WK9hHKz67+l0oJRrClpz7vY0zYKmhazFZBHBksZ/t007/O9GBJWJl/TzmZbTewomhPXJdG92jkR1f2VBkwoBqxvWD3bGZBlPUMPvMXqbLaqQI5o8xfc1SdyRBq1RTyUXRZLg23bOW4UHeZazPZK5JHoI4YHrPJyLYNbWLte40KAp19QtO11rukc/nSPKaOiyIi47n6XW+ps9g6mcks6oSYriojsT+BV1iVLPq7BPz+OIEZ6G0sb+yMI5VA39WVK61JzHGhCYx+HTHINzPzyU/pAdOScOh33NBBgwKtOKVjq10k7744BY/IfVqiUGYXfXEbwJuUvKaC6knDAQPEVcreBl0zR18/BzP0yBHik2jnlMdgANRhuMOZF62xCnApSr5ZJh6ChFCTU3V0UYx5FcCllguYDlck3bLK0CddNY9pAL8zjPQcGp8ObDwNI/xMwDgXmnnkSID0+qgsng2dmFTdNYVdtmyePHj9nubnn79jWPri9xThhOSogrVOFwOLA97K2i6JtXLDdWZffVq1eslmuePHnC6TigRRnTiEWndO58xGC0c47V+mI2ZmlhrlAQK8vdDXuci1xfn92jvh/YbNa8eBG5vz+y3R5492pgv1uTU2JzccVisWK3vyWGlqtHTxkGK/KXY8QK2RpKm0Lw03F3qqmaKyYFqvWhOLMcyeGCRe2UwFSUUILDaUAlE7VWmtXEcr3BB7uXNgQaVYY0kjSTxyP7+xNuZ7xVJ/fEZsFqdUFoVtUIWAZ3aKLVhxWhjIaeRcQOXanGFMw+WgHLUJ9z8+lHuUYgUa0liqY6a96kJv1QNxtfk+6FjB3kI9g5okWm0xqwxVXKfHBMzplALV6oxVKdiqE2VatvNs2/nDpK7hFNlNQRSJQ8UrRHSiJKwYuQckK8INVq5wzO4qRMmSTT6pzm+PmQonqaWD3H4bQ98e13f8vrNy8Z04kPNx/Y3e85Hq3unm8d4iPrxjY/KwaRGMea2VFpGnGR42lAmobFYsl0tkgpZnTPByY1nE57BOj608xbIo4gVvLeIaQxUbqBpY9IkHrWbSENI3m0ApzH/QkVOOUEYmX4kw6UPHJzc8eQlMePC8FHKxBR1/dDobpwBjgPhdt/TPtBGLaHOrbJmD38DedwvwIhBrIqwzDQNA3r9ZoPN6949uyKEBx9MXcgxAW+Tzx+/NhcJafc3n5gf7qfk8UPerBUJ2dH+lE5owkB5DIy5ERb803v7y03rmQTD2TvKUSuLp6z32859XYY7TCMXFwsGceBpmlZrxtUhd3diUVc0O0OVgnhq5bj9obt/sDV9QV9Z1HB/XHParU2Ny1aLh0iiMfy6pDpnN0K2W1xy1SB1HvjTgSyzMW2a1ltE+hqTeXyKdk5AyGgviOloVZ9FZgej5kio3FHIZGHjm4cWW6qKJdz2Z6xnhAoC890skIupswvrsokipUnCr5FciH3Qz1CrrqAE9dVxz+Xky1CTPrmxFHG3jRv1dVEClkyxUPR6fzVM8eV5+KWDq0lfUpKnI42F2rGFUEgNE09mSqBy+Sxh9SjZaCknlIGiiby0KNhjbiMd4b6Sy3NZP3v63kYDq0BEKjVOcp0qI47yznub/jw5jXfvfwtr1+/rsit43Qq5GxAviCUMjD2CeeEsNzQhkh0kSePnyPiGYc8C2oXq818yEoRVxGz1MwN2yzbppnXGaMVMzgedizbBWQ7D6KUAimzXlkgIm+35GJBq+5gBn25iYzjyNAXS8+THgngG+Hq8pqrx4+qG7pAi+kAZyNQEZptBvXp86k6f5RN+UEYtoftU6P2fQI92/0y0yEhUwsVHTRNY9UKioWqLak3sFgsrFqn9sRohQ5PpwNoIEaMtK8GNNfzO+0A5wbnHN2Y5l1uSjafghUiyRKMgyOlgRDsiL5xHEkVWq/Xa8axpzt0xHio+XZblqsNh92W425L266RtiXjGQZLD3POzZE1sIoeJsI9900R00ZNeqhJZGpo4YHbWv/P1no0hytQF8ECyYoXj6hVxPWqiFiSt1XrndJrIOPJ8QQxIb4F1ApKYijE5WRnIoiY8SogxU8QHScej9pJXlYmg8J0wvws463v17rhiBW2zKk6jGcZjGDnKwRH7QtqStO062dKUUrxdv5qKfN5sVK/1/rXW3QTh+QBHTvS2NXDok047MUMjHgrzeTFULXWcyFkitQqc8bEmU+bSnL7M8+XEl1/ZLfbcX/3gd32nu3dPaXAqRsq2iqEEOegT1tzWClKu7Kk883lI8YEfegpNdCScqbvRmBEQiRW/lZEmAoDzHOpfFyBJtbqL1qDOadTT1PHIvWJIWW8t3t3zgbMDoa2szBSSiYuT7XIQE3Bm47V5GGVle/hIJm1mf8/IjYR+TWws9shqep/LCKPgf8N+Bnwa+C/UdXbP/hBqr+Dzr4PsTlnLsqQM+qto66urvhw85bXr18hmAbs0fOf8ejRF6h6xm2H9w273Zabm/d0/ZEPHz4gYyb45v/h7k16dEmzPK/fM5rZO7nfKW5EZGclWUXRqCXEjhULEBJbdmxZIPVXoNes+ivQOzYsetOCFQIhsWfBqlTVKmrqzIgbcQef3sHMnpHFecxev5mRWZlVRSsaC7ncr1+P6+9gduyc859wXmRaOSeMcohVTFrlP8sCu1ZBkJzr1gtPPRufx5ToOk/JF1JqiJu+Fr7aOsyN00yXmRwDfrCcnp7443/8jylp4q//6v+h72U8/vLLn7diw2qe+VwMrNYb2WJttKBsVS64irhK1KvUSq13vwq5oozCmILO17HIeUV1GWrGWE+Yz9QcmeeRnBO1FHpVpAusiTJP1JhQrjTfeishykDJR3Tj1cUsXaUw9iV0uRqDtoNQIqzYUOkiNyJqvepllQKVoNlih2lmnoUAatU1stEZS+pMy15dCJ8SAJRXMMFibWBrpVuax7F16oXSaEOJwnhpJowcSeOMygmVAqSZkrIEv7Q8B9dtMEY1ErIVmKaUFSSRC7aKAQGsq5bSyKjjKDKpDx+/5927dxzvf8nd3ROnY0ApQ8qmifDlfY5pFvK5iqQUKUWTq8ZZT8oG2rhZ0Kha8avJpHT9i9RPlCmLJlVQUV3FNooiodshhNbpNxdo7SRr12r6bsDoyBhmVJVkMIWscW5vPcpYUoloZ4jqzPl8Znu4wbQ82VrVet4978c+L2Gt4P1+Dds/SMf2n9daPz778z8D/o9a6z9XSv2z9uf/7rf9A8vi9HlX9qvVW2vNXJy4jdoCRTzSD/1LXu6+ZON21Jzpho7xMeKMZBLsbw588+57Pnz8wPly5O7ujt46khrIpdD1W2rSaOsIl4AxDquNEE2BzvkrqVKrFndXSVUuGrTckbWyaNfh6wuMu+YpoGdKHQnxwuPjiVOQO5v3B44PE9P8BPEv+OqrN6jpCOUJhsD7X2hev/lKAI2g0KrHdQ5lF3Y21Cx3Y1niOqSryiyWjYt3nWIP9QouADJ2tsJcVKFog1YJ7bvmSlGpzlJKR9YaZQ26IWipOUiUAml+gqpxWtLPvbWr9jHaI+rSY5zD+p6QlOSp+gGUIkaNnp8wfU+pViRaRlxXx1FuUra5XWgV5WZTpVM1iNDc2ErOIt8pOqBqj9VXM8iY28VTq4xeOlFS4TGOguDmSE4zqmSckouZGtFVKBX58QM1FSHT5oJqy3ex2TF4Y9GmoanOyo5NyShV0CjlmruxonBm6A/EBDmJ7bU2ibuHX/B0euT+6Y5vv/sF0/1MnDQfv4XNJrPbbOSWVitJS3FMFb78+j/gZn/g6emJGIR+MU8J7wURN230zizW4gqdtRh3tr2muCArlFlG0UxNiZojJZ4JubZNYcJqSAOEOTDnCYVGm0rnLHFO9M7gjJVVQknkeBGuJ/DlV1te7g5sTE9vOywVq5PYXanPcybQej1XFxjhOWXmdzn+vxhF/yvgP2tf/4/A/8nfUth+12MhMi53aKUU1lnRXlbNOI54b9nu9BqMvDnccnt7S60V38nTnc4n7h8fAU1ne9mHNCpCKYVU8nonGcdx/V2Lg6oxemW8L3uSxUpm6fAWxwhlMtYZOt2x30cuR7nbTvMFpRVdZ5imiePxSKkeo8TR1KhAjMLypmh8H8GArrK3yoDXHZLqE37FJeTz1v2HuuHPX9N2c2nBJSKnMaQ8UasnZwlcLlUMFXNdglBEDlRrldEtN7voBnAEW3ApYlxHXxTa9VALNcXmQGuYzidyjnRDT9HCrUpthC0UQhOre3/l7Im+se3cqm77qorKEswSVuBJ3p+YmnznOa9MR+lKFmscpUgpopUI3OHXgRttroJ1yfW0aGNYwmuur/319a9VHGll/BdtZskS2RhiIiZxoh0vF6ZGvxnHkTRnrDhANVKyUC+MLtjOsBs0u90O6x3DdoP3iRACtbBKm5ZJwWpZE1CVpJkVBWR0tRQELa1pah1tm0Las5EYQ+ngocpNXEu3V6r4vtXawPJUoMRG+O1IFbJOKCupcvM8r6acy4dS9rMm5h/q+PsWtgr8b0oG9P+h1vovgLe11nft778D3v7Q/6iU+qfAPwX4+vXh1y6433bIz11FuV3X0XUdx9M9XecYNnKBHT9+5PiLX6BtzziOPD09yS5jmpguZzlpdnusFtqB1mC1onOe2rILSrarvbU83avv/AKNL4z40+kkxnzGEOJIyhNKJ7oerBN6wqtXjpQK0/mCMRbvHafThRhH9oeep87x9PTE7RsJae6GDV1XmWdHKR12kL2KwhCyPC5lXCPQqnU5/dmb9AMnzvM74FV0bDBt3M85UZOiKiN8tVJYfO47bddld6gz5EKYA7VGGWFb911CZU4RpS44BboI6kyzD1JazBtr0qTUg5eingGrHTVWYos1PM4FY+T3zlO+WiNZ1QqboLumQAoB1fZX1khwybKcLlSoBZ1EYVBzwuYsez4q5EyJImAvpeDb+WaURhsrHZ28Utc1wBrxd11fGGMkJ1sVFFaaRaMFga8KInz69IFxeuTdd99wPp+5+/TEPE4YLE/nmZsbR0mFlAIxF1KF271ht9+wvRnIeebxURB/KfbTNcqu1pXndzweG53G4I1f0WHyouOtpHxujYII/amFMI+kcBHicc1tz7dQMyxOQ9KaaYrULCBCzBlrxDq8qMQUBOx5uH/ip7dv6AZR49jmd5erXHufaUafoaPrNf9vGRX9T2ut3yilvgD+d6XUnz3/y1prVUr94CNqRfBfAPxHf/hVvS5Vf3NxW4IynmdAWtNhjeOLL95y/Kv3hJC4v//EF19vePvlG25i4XQJWGv5sz/7M2KaidPMtrPEmJhOj0zVoarmdJzYdAMvbm7XbkwVswa7LlwrlNhIU6/CfArc3koiTyVjbEepClQk5VFUEKkQVcJaje80MSZySCgFKcsJdrlMxJiZ0y8wRrHdHnjxslA1DMOGosQZZNhuUMoiDqhaZDLqmVzqmTtIVc93c7/On3r+c7L4zqgiQniibe+X3P1VCFi3kQLmAlpfRCPYgmVSmOR9quCUEk5aKRxzWEEY44SmsPCdUslo39Htb9DeY2yHsZ5YCg55bXMVmU4p4hLsbNdAntqIwUIF0jmKdEtZYsnsdvv1otHatr2XhixWRWWeuYQLKmd0EYshcsAb0TpWdd2xAmuBWG4MukK1EkF4LXBLHW3aWLLsxuYR5zvCnPjw8SPv33/Dx0/vuH+QwGDkejoAACAASURBVOGP7++YLwkdd6QAG2/BQ62F42lm2EHXa0oNPDxcsE6S0FCZSsJ7Qy4zOl87NgCn+8b2SaSSIGsWvXEtAgwYlaWbjorYrM3jPJFToJQqcX9KQp8BUaDUKlZVCrBNgaLlPO42WpDPeaJq2c8VJV1dKuV6LVV+54bm9zn+XoWt1vpN+/xeKfWvgP8E+F4p9VWt9Z1S6ivg/e/4b/2tP/N8bJKF45KIY0SmlAphThgrSdjGefyw48WLLd4LobfWSqiThKFk1SxjmrSoJHJOpBzlhK2yDHVVxjSp0artl2T00xUwBtuyLmtdxhZFia0bwjRWucSKCcqpGqlYN13ewuUTtVjJkelykru/9Tjfk5xDRU0q4HyP7a7hzNTPeX8/9Lr96te/9j3j2uLfioZSK7l7A7QRxaAwMVGrxTrpELXWmKLIRnz+yXLBL5d5zYWaElMQBcZz51vlpQtTuSPXhBs2+N2BDNRc0S2ubg6RaZ5QSPbE8jzXkavJouIcGKdZJDqpEnyH91CrpaqrX92SFaKVWnWQtRRMFTqIocm0GtixriP01Sh04RXKKPrDF+fzdYXQQyrTHBinE3EeifNICs0vcE5tbynqleW1SmFms4XNVjcAQTqoECZqXgpEplJRJVNUkXyQxrsRFsHyNWB8A5Oe2Tg18ECp2mzRC0ZOq4bsXgGrdXppVllUCKGgtTQbMSe21jZJG2gHfrNhM0gWcN/34kgt9sm/cbf+/Ph9x9W/c2FTSm0BXWs9tq//S+C/B/4X4L8B/nn7/D//Lv/eynhWV5+t57s0QJbCSu5+y4KYqtn0W376kz/gT//0/yaFzBd/+GaVWj4+PtINe06n02prFEKinNodOAdqyVANQ9eT5pmpaTi11gzDjjnIPkecR2EYBsoSXKIUznhUgVLF681YqEUkV1DYbDbtuVU6LyNOnOb2O8APfRtpsxQOYwnTmW9++Tf4rm/RZp5SAzbsVu6PUrcs9BahDohR40IRWUnPtX72Wj5HnJ//WdxBFgtuQVSt7aUQqIauYslFkDKNxvm2S6SDIt1ojLJrrOexid0NtSRiEI88UiNkkimzWI3Hi0L5AeUc9viE7XaEXJrrsOaSIiXTsiSqIIOAU0J/wGjCPJEuJ9nzGdtQbLfqIfu+B3Rb8gvp1DmP9h01RlQSFNoqDSmiFcSMFHmjsdo1xFUcZKuqEtPXNLHL672cO0tcpPeOECdKitzff0JXzeX0wDg9UUtEqwwp4pXGaM1UhWuWksjcho3FbxTGgLOAsZzGjO80zmimaaKmhNWGEMUqSoGg1VVs7gXhVWgrRODFpVMpoaSIPK/d5JyG3OIuMWhz7VpVEkqUUqrRQOQ6GwZH13UcDrfknHma32GyYrPv2ey2YB3Wd4SU0VbskJQ1jSws5+2vkvKfl7Ly+9W1v1fH9hb4V63oWOB/qrX+r0qp/wv4l0qp/xb4G+C//nv8js+O657rGWLaPhuznHSyWzHOibeasiuJ94/+6I95+/bEn//rPyXcPVCr7EryEjdQrhe7VrJzK0nEvEuxKFUxTZOMI0qhmyzLWoPSIlVRuqWUK9qIVNbCNo7NO76KwmG5Y5pG3jyfIime2OwcqciyNUwX5iAGkcZ1crNMgWmW3FNjn8HmahmLmjxI2c9uFMvnH7oDfkaS5nl3t/ZeK5pWaxar7K5H10KKkzj0Fr+Sa/u9E1pGTszzgty2VCey7KlMbWCzIiJctnC5oFMlpMzQ75u9dcBoR0qBcbxgjG8XSCXXQk15dXlJpdJ72UPKvk5jln3euu7QTdUgXVg1FVXiurtbbrCGzzMXpDvUq/24gE3XYqatu/7/jTcY0swcAtN4opRMLZl5vlByFD5le+wUoYSEUEkZrBWFb0qROkvkouktzjv2e4dCzr3eeaaYKSlR0tXGu0Q5r7XKcp1oTUmsZgdKqYX1QeXZc9Ctm65C80AtN7y67rqWU0MBztrVPCDGWQwVNBh3VRA576F5IV5vxFft83Nw6x/i+DsXtlrrXwL/8Q98/xPwX/x9HtRvPEp7pde1nSQXlVJwxrPb7Ilx5v7+E/3uQMqVkDXzxwfmOfLtt98yTRMxZOIZSoHATGjgo3M0wbP4Smmj8O6acCRBEwZVHMablYiZo0Dt2lRSntBakfKMsYqUZowVvaT3npp66d5LILf2v+RM3/cc9rek6SMhZPokPLg4j8zhwjw9NYshQ0E4TUmVdpLIxSlo1TXlR2uD0tfQ4/b+yPP5lW5Yvink05Ubwq+PsaUUut1GLvIwQ205Bs5CSSTjMS01Ph1PaD9gtcZt2gWXxQdfZfE7K0piBrWxWGOoSrM93OD8IH53h1ucc4zzBUmPrxQ8zndio61EE4yubHYb5ssZM0t4bykVbdxVSiXyUEH27IBSFa2bSWaeyZeG2OYoI6c2+DZ+loZOyk3wioCWCoujsQTcNKpLClgnY+84nZnnkafHO0wzuCx5JseJzilx1W3cMYqsKzZaM3SyCJinSuc0/bZnf7PBd5aQA4ftazrb4Yzn6eFMnGa+/eV3HM9nUsjEuRU2G5smGFAVtwQna7BKobWiLrILbRrwUsmpASOqBWqnCjmuRd81p5sQg8Qm1ivNyXcaZRTn84WQIjctta3vxGnEeEcqCf1szF/XOz9E7fh33Y/ttx1a61bYRAoCwsjPWbPd7NltDxxPj8zzzMsvNgybLfvbt3zz7gMvX8oY+m/+zS+Y55lebUhVCpJKRagUSI6m1UYMGFVtlsdOLvoi+kttaPbPBWe1dCJKLJDlTYfOdozTkZSDaDWhkSoHQfCyAAzaAEWY4UYHnOsoZeZyjmx3sgt5//037HYbxlGY6cZ5Xr5+i7OKNEW5qIcdNYO1Xmgb9iqqzquoWI7nOyJ4VuyKEGOXU6g2Zn9tnZqMDCKDMUZhN4MUAgo5aqgi29FFLt6N24gBZa2kVEjThOk0w66dxEXhNha0wvQev9lirCWUynYrduzWOkop3JQ9IWZAoUwnlkhWum1x8xDULmx2dF0nhgNFEslTLA1Blv2o6wZylaV80mJcoJRD204UHBpKqihtsK1js0pRrROlQaOXLOPT4uIhZFL5+a4byCVQSiSEiXG8SOc9x1YAE/N85nScsM3mqSZwGI5jwnfwdDzjLWy2hmHwGKvJMVOsZej35DkwTonv777n04d7SoDz40SJQDHouY2QShDvQsZpKWQUJcoNTSPqNoQ0VlKN5FzJC0l9IVwXg0piRCHql4rSGaVkRNZWgwoobSSPo1SME7PP/X7PsN3hhw2lOecqJa6/QhOt7WvFD60rtfr/cWH79VH0OsotVT6lxNwoGCkljNWr+eSrV6+Zppk0B+LDxOKdD837vtZnS/yE0pVar4jXOvs34k4pdeUK1ZhRekFroZR5LSDPpTS1JUkZ41BKGO9d1630iWUsrSmLP5wuXI6Jh4c7/LBh2IjxY4mREEKTpkRJ1aqaGGMrbiIylsd6LWI/2KmtL3C+QuxVr0KlCq0dkb1U0UXGuOV1VwqKkwW2s9CS4ktOQshVknPaW7ciigVwzmMHoZRY71CdoyoDKWJdM79UhlpE8tP3PbVCrgarHRiNqcvuMzZQRmNdh/MCxIhsp6Cyk6LcsheckVwLXRKqCjJNNljl5X0UQtjnfhzPd5NarWLtBYlei3/7mOaRnGfmeWp5n1J8U5Fi770nzGKpbbWm85bzXHCeRj0C5/VKafHYRqWRYhrHictl4vHjE+MpUKIih0yJGl11i/OzxDqLT2kF2pSxOPgtWRkV2rkvXWnORfSe8r+gWqix4io7LEXsD0TQoFojIOaUcppXnLcrvWOhZV2dXD5fi/x2RsSv+9b9tuNHUdgqULUQT9XCb0Tg5RbNIfSBNiLltaQXtEnkGtHGU7kh58RuF8g5EUvkr7/5K6ZUeZweOY9nHh7ueXp4pO8U2IwuBTWBthVjm6Nst6BAWsKO221FG01JCW0tSkVJKkqRyzxja1MtWC9+9nh0EYPGWiNag3NK7K+1pWYjwnoj4bzOKmoemThJ/qXJhCmhq0ZHxeNfHzH2iPbfSkZj/oS7/ZLD4cA4d7DdU0rF9ntScihV2ZiXkttYE0bLTsO7ZvDX9izLobRC10btaC9vbtIgmhNFRqx9SLV1bYZIEeuZZquthy1xHtFaM8ZZsmBLxVaDrpWuG7DWEnNh2G6YLet+cDpfsMbgqiafZV9W8ySUEefZbDy5ZMI0sdlCiYXL+cx2u5WLxmvK9rCSQOUBeXyW7s1auxoaumVvWA0lGTSF8WzIMZKjJ3e5ARxh/bfEL05dlQ2tE06DkE83nWO8nIhhJM8n4nxPyYEwPRLDhfA4Mc8jIUxiy+2ynIfVcbi9JeUzcz7yqhONousUtjPkmnj91Rd0XSeAhzG8e/eOy19r7u+fOD+BNbKWqUn4czEmObdqwDjQvSD1ulaMFsqSkI3FTSWeG0UkZkppRaZYnGspUlnOW2VyQ5wTylpiKWz2PbhKqhnTO4oBbQq7w5a5RoorFJeputD3Hq86VHR0yhHquG5wBam9FriFmfB3OX4UhQ1Y7V4EcWnfU63GPeO31Vob4+IK94tbqOfm5kaIuOcHTNczxshw84KXN7d89+57pmnin/yT/5A0zZzfiXxVa+g3MuE6b1demtx1CzXP1wdZbSNe5rVTW0wRcypol2UFviy0awZbMb7gvUNjmphYzL93my1d76g5gyrEaDC+vSXzI6fHC2kWftbpdJSfjZHTBdzwntf6Fqs6rC+kWJvNs4RDxzlwKWcBVbwmN5LtwseT535l6MvreaVhyBsgb4JSau0UxHq8UQd0pRTb1M/tvaDim7ut7pxQPxCCa+8E4U1VPLceHh4wB6Fu+H4QS/fzmRKDZBBYjTUGbx2hVs7nM7VWnJPitDD1xY/PsNEbQojiGtJE1iHGdRe6IO+Lc4nWskbQDek0TTalK42hX4k5iOVSY+Nba1GlChFWiRuzLiN977Fa8+HDN6RxxBA4H48oZmqZmMezUJGMWXevzlqc0ZxPJ0rRKJ2oQNc5pijAgrGWzvkVeHn37ntqypxPE+ODJsyy4pjTQhwWAKnrRd5USiHkKGn1BbQ31GxAVQGjTE84nzkfp/YerhQ/tIZ5ThThLQsYpqHvwXhDZx2UyMPjheHGoCzEXIlTpOvg4fFIvx9wrls7VNd5lBKNaq6mObks1/u1sOnK1fnj73D8aArbDx2/2qL+UPVeTtRaxU3Xe098iszzLCxye0RpS0yBlIJ8n+fkVLXy2z6jRFQAg7Z6LWJi56OpVagEKweoFLzxYqlcMqkVO2OVjKi1khC7ZPGZ12htmKeJGCPDppPgYevQTeVgvIi5VUlUrVfENmc5uaYx8HB3h6qVw+2tjAU64rodqITRG4rOUBR2oSjkKxp2ZXqb699dl2ttn0Yb1eVjpYaoZglU5ORTz+Vc6vp+lSIFXGuNa7uyGKN4xtFuXEpBG+mHwQstBEm4orC6lJQUGpKWWUwra630XpLDnpNoWQKXEUSUhapQl82sUA2WJPZcS/s7g7ZtdC5iwljVBtP2hEthM7SuTRWcMviiKSkzXU6EaSTMF6wKUBK1JhQZZw1FizGjVh3JQEgzlYix4l7iTOXmAGWqbDYd+5ud6HgRVYszQjAuykAFox3OJeKcVzqEVouxpxL2fytQujUJKWWs05RcESm8RuOwjafY/AdowPEKuCwfSkEsQK7EXMRy3ea1q61GYhXlXGqkIGVx1mOclcxYJSqPWvOz6UxdMcHfUgt+1+NHUtgaO3v9kxyL5n/ZEy1fV65PtNa6FqY3b95wPp/59vtMmGecUtx/uiMnxZtXr9kPgT//s3/Nx++/p1cO7bQ4FWhxfp3G0CgegvQBlDhetYLtIglpXouE+MJDmhrE3lwkrFLC16qVeYrMp0h4mtluxejS7wQdJUmWgvcO1zncwmK/nDBegTKES2zGfpkQwHo4Pk2k+gGVE713K5XhYju08WyHHWmSpXZ1G0BGjU4L56uWIv5tsraVVUB5vmeEWira6mc3AXGqrc60Qp+wrSvQVr636AFjTnRbQU+nlAjTjEHG4Vhkz2WdvM7KwP2nD3BzC4D3ltPTyJzCmmWgvGXoB86XC+fzkS5JfOHSyWitOZ/PmL5fl95KazrXUEi9WAQJWhyzBMeYqsTEUitqkX1hrc2QE4MyFj3U1nVWvJUxv6QsSoLNjr5mHh8f+e77b8hlpJaZOZ5wKpJTYBqfsE6KawgTSonF1oePn3DOsd14dNVM5xNfvNpwuXjO5zOfHj+hFHSDZ99G7JIU0zRz9wHcVJjnTIpgm4ytltIQULGusk6zGaoI45Vinmee7iMSSD/i3IjRvsmrZLxHgzEiRI+lSH5uK0DOWkJMjLFwCmcOry3d0HOJE6qIU+7t7UEKi1PkWgixUJR0x8Y7IVM3XqR+popZAAJdufK42pe/b/f2IylsSO/Lr1RuwebbhfV5MWP9kbbriZFhGOj7nu2wod/u8JsNN96LVvRyYjxO/Pt/9HM8mr/+878Rm5tUSSm2hWbbg5dCTaIicAqcNlf9Y2mWRMvtv7b9A45xmpiloxf3W0XjBMlH0oVyPvP04cyw6/n5H/+c3c0BPWhiSpzGswjMtcLUQjf02K1hthN3Hy/YNvWlBDVpKGeeHiYul49sdweMd8zzmaoNJU90vaQTzfb1urDNbVysCxJVSmOmS3dUkWK8/JdC4LkqzhhD0bFdpAGtxWFEOEyZcZ7akl86aI0izjOUytPDoyzMw4T1jm7w3D3es9vtEHumSOccT09HCQypkk4lHWERaymteP3qlSRCNZAohMB2u6UglkYSFiLPdxFqX88n0FrRD44cIiEk4VdpEclTFTlmrBVKTckzOkOmkEpiClGQ7ihAzzxemB6+4XR+4ttf/gKrEqpkVL6gTcXowm4jr4fagNadeJXpzNdffy2h1UH0o48P96R0YZoj1lWGTrPZbDgcDsSgCJfIdJ4pWfPTr17yy7sTMcg5OE2ZCAwKzCD0DIXsda0G8Ti2WOupKWDaJZdmTaqVVARAscY0aovcAEsWw4WFDx9jxnYOTSGUTD9sCWUCJSaY4wT5/olOQ8hw88WBnd+gTbdK9lKNWC05vCZfeWwLq63AZ4zcyr/DqOgSca+UEBKX0ceYZ0+8LPDzdZQc+n79vjD0r38uKfPi1YFLiHRdx7e/+Ja7kLm7+8g8Z6q/JvEIcVAW3cYYLmMQKU4CP3Tr6BNSaB3Bc0WEJk6ZWhTGSMeTJIqS50SLpdBlwJiZj+8/oZ2l014u9N6RkCSfXHumy4i3hqIKS1h5AwrbglgyLEOaMA56teEyPtJ1PSnPbOyWXCZJk0pplZVd0SfV+Hmyx0spCFUihpU1v5CIdbMpL62gLQU+V0kAizHiun7dx5Ui1tym3ZjGaVx3oafLmc70hBB4vLtn0/UMwyBWOUZRckZrxdBvKTGBgcCSMSF5AMuNxiIX/7Ji2Gz34q/W6BghthG2nTO1NDuiKIXRe9+cN3QjopbmPDELWtlVjGqeekEkUNRCCjOawnR+4OnxE+M4YnUlTRO1RKyS1K5SS0NdFaXtMmNODA09Bk0Iicvl0lj4ogJQRnSvpUQulxOfvj8yXiqv9q+pWfPx+zumqRGSmz9VpwWpjlEIstYu18yVqK0rbLeOGCpzEE2vtRbbSLmp1tbHt3lJPF0pCenkmnyv1IRzipQyuVRSbTdxC9ZYUkl0w7Mci1JxXS8zsZY0MWvs6hEohGY5nq9LePa93+f4kRS2ChRQi29qa4W4PjnZ11xH0eWJi/e9FJnD4YC1lv5PBh7u7qkovv34kd3+Bmstx8cHcshoBV989ZJaqwirW5HQSpFLxmmLt6CqYr4II10KSyWEvJ44y0WstW5GiWX1wFJK6AYUKULrMy3iAluT4a/+4j3vvn/PzesNw2HLP/r5T9BKMU8XtpsbpikwzhJnZzv5t9boySKJUjmDUfD4cGQeJnZKYtuU89SapdjYGw6HA13fkRF001hDLc09VQtGWLRizpGqK7azGKOYR3ECNkUkQjFGbC9j1f3jeaU6bHf7dYemjOH29iVTmDG+w3UdVhvGy4l333/LdruVC9cpvLeM45nXr17x6f09zorjSZgulNJ81kqhc4aSxCDAdZ0swpUm5YSpht535AJeK1zvOZ1O8ridgyKIZqGSYiROo9BQtCYj6U5L0ZTQl0RNmVIU1ERV0rmP4yN1vlBzYjw9CP/wdGR+vCOFgM0BrTJZZVTOsoOqQrzVWpFKwhlHNYZQFDEqokrMsVCywvp2EzeW83hqfPTC8Tiz3+94++ZAOnvuPjxxvE9tBaNQKjXSt3Q7iw42JaHJTLOiIiNqKYrLJJw+34lcLSfIRq2ThSzYpCB6Y6i6rv9oVtKBFwWDN5ITAXSdpx88qQZ09UROzCnxcrNl0zhsw2aHdQOLOUAsCVfbKoFnK6hnNWz5+jdIcX/j8SMpbHKIJtGsFVu+97xq/+b/V/hKsnPpug4r4QHkUghxQusNOUbGy4VwnlFGOrvLJeGM6AO1uXLVlq4jRZhqpuT2ZsRKjG0hq6FaITymtEhJFta/SGJqlpNByKGK8zFgDPitwznwVnzcuFSOD49opwkp0puezvfkFFtugqIkKZa1COM9RRknXCe9l7VO4Hltybkyx0QlsvWGfhiEL0cl5SyAAopaakuSF9vvNSi3SgBwzBFVMymIfY5zDQRIidPpxO3tLf2wXXeQrusYhi273Y54Ei6hZCdEUstmvbk9cLmcGXZbbm5uGhDT3ChqpfduBRRKFXAoT6yF0zRrnmka0cauuzadG2hQ2y6wueJWpdYU+aVTU6Zcn0uMUESSp7QEmBQjxdtohVE0Q8rINB6pOREuJwEH0gQpUmOgxJmUZ3KODJ0XjleV3aXYYbdJAvGcK0oz+IGcFqG9aeO1nIPaSfcmqHvi+HAkjx1xioxnIKZnS/1FlJ+vBW5Z9ocKZMnLqJWYa+MGRhROTFOhpdsLFcg0qs9iFLkK5oXJhtHS6ZUoma9Va3KopFJQKuMGRdUKP/R0Tfi+PD+tLLXKSoBaGq3j1wEERb2CC79nLflxFLZaUTWjq4Ga0QiuLOLtitRyA+bXwYOFwuCcWwvbT7/+CedpxPU9uiaG7Z7D4cDT3T1PWnFKhcfjuMLXtREW5QQCnPhNGSplrjw9RryPK/oKV6pEMlLYJpXpPez2vqF4mXkOlAhxWqRaCl0cIUUe7ifMAJudxhrQtXA+PfDm7RtuD1uM8cQ5kENoQnlHmMX3KmdFSeLz5b1l8Fu2+x2282g/YLRju33Jzf4trhvot1v6wa/JQL7lNSyuILG5moR8EeZGFRPJnAIxTehaeDo+EkLgZn9Adb6NqmI5NE0T3nfYzvPq1StKKaKQsIYwThKnVhKvXr2iHzr2hwN39x8JYeL29iV3d3c8PDyw3Q3CedMa5wzeasZxFhlWjWw2PSkpKInSLhLbtJnjKDcWmkmoMUasjs5n6caaSWhq9A+iYIIlt9e4NNsio5u9ktCI5jmjqYzTmen0JO6yJTKHkRxmYhixOZFzoORAZ8RQUymFtl0DvdpI5mYpohWsGzjcvEGriutGSkyM48j59ES3he5iSFWsHOZLM2cMle9+eSSO0Hmo1ZCSEGpLKVAF5ay1UvO1KOSimLO4b9RaxakYQTWVmlHGECjtZlDlZF2oVkWmx1pBF0hEjJKdm8qF8RzxvSZOiZxF33ureuqust1tRQJYCtvdgWG7R9QGllqEL0du0ZANHa/LtcW1g/u7HD+OwtaOSuYaLrEUrxVJ+KxjW7q6xVhxGAamICf3brfj++++w3QdeEtqb/ynDx+5nM6UkDFOTmDnCvMpMGcRPtWCSEyKdG296xlP92SEamFMk0e18bIouRtGD8OAjKRAKrEJh+UayklkOp0yEogSEwHo58hwM9D3ns3Qc/fpAzln+v4lVksxjfMMVhbhQz9QCkwPI87t2W63DNsNP/npT1Fa8/7jA8YP7LavuLn9SmIEb24E4cpJ3ENaOK81FuOMtJcx4o0giKfxSE6h8cUipRZ2uw0xOqb5hGbLNE1Y62Q31lYCxjsOhwOXy8Q0TeheIgxDmblcJsxGVgZ39x/52c9+xnfv3zMMA2/fvuXh4Y5tczI5Pj409FFRkqwaHh8eePny5TqaOkejv2TG84WYC4fDgZyEY3c6ieVT1wt5lpRWOVTXddRSmKcJSXCPqFoIobkhWyXPuxRctxM5VVVY3/F0ekAhJgepCh+uI8v+1FlSzZSSKGiM7VDOUYucM8YVMTEAyPJezuNI12/RvWLodxjjmOZHttst5+lMjJGYxMqIZPj5H/wjrO75+O7It794T0p1ddioTSkiJak0iors4BTNHFNnsX1vyGOtEHMmGYSGUZs/pYbOsOY2aKT76xuHsBRIIeI6Q0kF2zuctSiV6PsNVZ949eqFdGrW8ObN20YrSmhnKWi8ttQa1rWS+r37st98/CgKW62KXERvKXIVLeOSdVc3TXW139FVRq+qFM42cmiV+DRjFMp1fPX1T0kpsdtt6Dc7rLW8ubnhuzkw5QypUkMijhmVFK5KTBoKQqloD1MaGRGvxUhCO0AL30cruwIaOWeGDC4OqHEjjzc6dEjM44hVCusUc4kUJlnARjAZwntQw4C2A113g7/NhBTR0TKfL2ityBUSFeU0pzhinad74TnVB3xnOdzcMpZC3+94+wevJOOz29LdiMni4+nIy5cv5XUqhbH5om22llKS8LxsZciWOYx4lZhLxJQsHYh2WGU5h4q2W3y3J5wjXbdhvsQmkzFMp8CDe5IlOZrL+cjNbi90gOlM0Ro3DOjs+Ku//Bt2ux2nxyMAnfGUlBl6z+PHmcELUinorgPTEVuXdT498fV2wzmeUdVTlcH7HnQlWk8tBT8od76/8wAAIABJREFUSTA3ihpnconc7HfkEnEFwuKEq0A5Q86pCcI18zg3obhC5Qvb7RaK4fEixGFVICjJEK0lMFsJt5kvhRDEKnuz26H7nVgyVbDOoXlJ7zuMUcQUuFzOlKzpOkctiTmN+P0bqntBHo/oeEe8PKL0iPca03tgJMSJ0dzRG/H0G7MTlQgFpaIkiwGidNVondsNG3L1jVxVoZl7KWSFZljyTuX7eVEDCVQOQAxGAmuMQulIzRntwNhIIbJ9YcnmSHE9T6Fyu91jrKdm8bqzyqyhObV+nnOS66JJva6i1s+/Z/v2oyhs8Jwwe/3zssBcjue7N9W4GStSmq96st3+BZvNhsfHe0KYmRu5cwriE+bsIEG7VZPGC6VqDJoUpA3zylBrImfWu5NS7Xcs/LZnLhqSD5A4nWfGKa37oVrruhRVSuGteFipRhA1umK94e7hnks+k4aZF1/tUFqJnU3nWn6mw5r2b3Suiekd3aEj50LX7Xnx6i37/YHt9iVFaWKT+3Rdh9t24kFXCp2XEBtrHSkstubt9c9h1baaxl9bEWYlrqd935Mw7HY7XDdgjBXHWm043IiRYAiJECMPn+54cbjh4eGBWgpPT08457gcj9zeCmft8fERrRWH/Z6Hu0+kHIjTiDOgkdcxRtg15HMeJ272W77//jsOhxvOc2hsfs3Dwx3D9gW5JGj5DKpKepZ1mtPpxKK8WByBF6JyzukzAvPSGc6XWbqVyrqKKDkzzzNhmohxZtCsHv7DMKzn5kJ61i0lyhtPVZBKxVjH7nAjziXnEzFqho1c6PuD4fHBEOeRfkjsNntUUUznyP2HE9MUmeam6aygVEa3JXxp59yzq4bUxotGllqZ/utPKPB+CbKu9AuIodQ6MC1dVVFJgmFKxXYi07LOUkrL5NAK7aDf7Hj79i2b7Z6bmxtubm7aiKmpWWhGuSR8fbZHX9Y8pumUn13rpf7qo/7tx4+isCkFRrU3RMl0vWQy1loa8rPM/HW1MDEocnsHdevglFLcHF6z2x64v//E/fED5/OJnAvjKI4C59NEjYJUkRROGchgishwxjnIQl4tcqBVNbQey0WxFOS5wjwXdNO7usaztRIzLntEBakIOueUJJSnVOmNjKfj5QSfJpSuvH31tZywGrRxaC9BIIftLdvNjs3ultsvXq9Ire92aD2Adnjv2B48l8uZlCKm68QcsxRKbnZGpQWwpEoM4nVmXSaGJMXQWx7v78SJ2IiuFSQp3voNL168EH3kboudHdMUVj+0YZCkK601cQ6oCi9evOD7b9/RDRuic2il1gAT1TrvECem84UUJ2oMxKHjeHpEa83u9itZxueIdxZqIoYZ76wE9l7OjT4gYEcukmdQERF5rXIDEsAgYVSVi0WBNQqjDGlxCTaSOatUpXOuEWMFxJjGQEwj42UmLeoIo1HG0m0EDEgpcR5nWd4bg3cWZy1FmZVyY7VaSc7adXROxOElJ0oE7UaK8qB7fO853j8SaqbaAiYz3MD0BHWGNGVU0ujWh121IgWquJU828OvNy9MG1dVJRu73gistZDl+a8DopIdXtVlHUsVkuT+dIzoYfGnjOy3HTevXvH2i6/ohp5Xr95grRfZoZbzT24oUEL57JoCVlfm32rY8LccP4rC9oOHes5lubpr/KpQdv1xpVBFClEuht3uIPym45F+sExzxsSCxeMc4psmb70gQLUhMqVQEiLkbS5JmgZHq89/H8ibIZyt9jCbfEVMB4XaoRvCVstVeF6VaYG9lR5EdqKVdJKCm8lzMtLdzSFRisa4nt3hJa/ffInpPV3fkxJ0w16kYzlBMgxbuzrzClorz6KU3JxM5Hdpa8hRQm211kzTRWgi/vNRW9dGrkyZkMpq8bw8r773pFJX3WYIgd1my/39PaUUbvZbNptN65hll+e959JSwMZxZEnIgmsHBLLncX4xZIyczzK+TtNE12+EYJoV+5sXrcNO1EVqpyXdqdYqoT1FLKquholq1ZUuF9TifgsNHW9FDaQDVro2q6pCjqVlexaM1sQignvnHEXrhjSKHE/bDTQtsl64fjFgm7ZW1AIGp2XftjvctjxZMRowLUsXXTFG7IzQmXmuoNK67F92Z8t0sTRetQjR2Cr17PrKbZ+dWdQ2utLSq2QMLeq6385Z0Fq93u0LXWcwm4ofWuFzmhBlpbL3tzJ+K904fUvRvSKgv4l4v7w/zye13/X40RS2xfak8YxbO//8iebPlotiy6YgLdmJ11E04fniy68Z45FPT99w8+KAOV34eHfPPE5YvWO76Ughc75LhDiJl1mRvYrXFpNFblVzXt7vtZXXWvaAIHeXlCtRS6eZCzhEDKxzImTYdnKxhMjabSrjmENCReApCWTuNdpbtIE4T6QsET+lKoq29JsN2/1LtoeX3L7+CrvZULKI38fLjN8NbeSeiI8J76U7CSHxcPeIUopNNzC3BKbeD/TeE6rsHB8uj/S953x5Il4mSo50veN4PKJqpe82pJR4uHvgfD5z8+IlQ78lpcRm25MnEXu71t15axlj5LDboSp4K5SKzlr+5E/+hK+//poUI10nY/GXX7zm0Ro+vHtHKAFnhHrhnBD2Prx/R0mZXWfpOod3ogEOc2RKia5zKNeL60atKARhn6aLFCRluYwnXr58iWo27pfLmct4FHmYFXK0qkUI49bS+Y6ohNhqfcd8PgPytbaGqCHNCaUMCdALncHS3DA0zhopcAoZC7PCqyZWH/Z0nbxeMUYsmjTObPbwhbE8Pt7z8PE9tt+gdGQ4VExveGkt0WUeHy6EEEizESYBCVVlz0cR1Fu7tlbRgmzWKiNyuzWLSeQz5U9pmbpaqXVwXSRV3VYABK0t85R5vCSGLbw57BluOuw28LOf/wFm94b9/oaXL1+z3e7Xm6vVYnu+kL3XUJl69QFUSqGV+uxzeVb0fpfjB6wq/+0fy4hZc5FRs31IQO3VHUIDtD2HQNrP6Bdt1Hgu8O66DmVEQ1hKYb/fsdsNoCSuTWtBMmOUjxAyOSQpaKlQ8jKayM3JW3np88KXaocUVRmRFYqiFMZ6CgprFakUke4AqsFMhdqUFsJHO51Ep5fGxHgKPDzeNVGyCJynUEB7bD8Qq6RaHU8jVWl2+xuU0cSYiSWjrSg4nk6PjPOE1TKCWSUd2zzPxBC4jCceH+/ZbrdM00UeXyM6g+y/np6eVj+74/FICIFXr16hteb4+IDzIme7v79f76q+s+y3Aw8PD5xOJ6bLuCoftBJr9devX7PpekqR/FfnDXd3H3n54gVvvnhFzpk5iMVPrZWcApQszhfThTAJX6wkAQicNrI+T5FpuqBUZTsMTdImr7nwGTXzPHP/6Y7L6bwaMmtE2K4qsuhWmpqF6yZOI4uvmF+R+1Vob6WAqVasUuvMFwvsy+UiyoKmQBBunxQUZTSpVNmVGSs8MStIvrGeftijjGfYHOg2W3wv57RxmqxmskotFAhSlhtWau4cxhhcc3peXZoq680VrlPIdey7dk8lF7QW9Y/18mEaeooWBcXCo3OdCNxfvX7NsN0wDFtq88oTfh3U1hXXWqVgwWev4/qYfqVz+3292OBH1LFJKyxYDiwCc4c2bWlZJFlIRs4iTqcLoW/Zsy3QtKnsbw685Wv2f/2Sp8sT2ipuby1hyJzOkXpuFtUWbm4taS5cHkRaVHP7XCs6t+rflpwGwApqW5YTkiadKnUdB6Ywo5G08uXk0aqJeZVinCMGQ9UdNc6QIE2G4sWdIQ6B5HoMGu0Hem/Q/QC2Q7meWCtv/9HXnE4nilF0251cPJdJCpGVvAFjFF0IhHmmlMIwDGw3HSEIKhemiZgmur4jhMKnTx/oh24tcO/efcOnT594+/otu/2Gy3kihQmrFZ/uH7l5ccJbTUgS9Hs4HESMbgxxDnz99df85V/+JfvdRgqYNmz6nuGN0DBe3NzivafURImBjx8/sOsHqBlveuYUKTnz+OkjKUyi3e0smoylMo4jBYXxHb1zTKlwsx8aFSQIudlJXmquihgjx+ORNJ/QWnM4HJjnQC6RXKog81x3O5fTCYVpppBzu1AHctlSc2JSijhFGS1bJ+SNp+/lsQu6rzHeUlKk5Ll1ICInWiyjSju/5CFouu2WOFt6bXnz5U95uP+eKUb8RpZZ59MDxSRMD9UUlNJ46ygxyfMAaHtC5erV4IArwbsCfLbuac4ny9gZYbPzKK05xgltDLEUtBUtdLdX2EPlxastRc9EwHdbTmNh6zJfvv2KzbClFvDOiFyrgipS4O2az/EPf/woCttSla93DL1+vXRgtVactqtOVCsBCxY7mueHspHBddT6ip98/Yfo9++YpolvP33LPM8SauxlHFSlCnkxweGwoaZKCEuKdoFaGo+pNr97IceK0wdrcVuDdVsPLN+vJIRSAA0x0nJGpVKpGKy2pBhQuvJ4l7nZbnh5+wXB3pNzBWt48/ott6++wPqeTaOunOaR49/8BS9evODx9IjCsL/d8/T0xHk6U1TH7auXciF/es8XX3yBcz2fHu742Dqmm9stsJVOUynKJFrOp6cHsUTXrKDD5XJiGAZubvfEUJrhwAZVi4zisXnU7fdcTjKu/eynf8D79+/5o5//ITVldsOmEUnlNn8+ndi/3EkH9fETu+3AeDqhct+kcpJHEMLM0O+IAXKcmKeC0RvGHFFVOgqtoGQpgl1zwggpEsO8JlU9J1dvt4N0k5OMckqpFkTSQnDazksXjbdQsuzNDl9+RQoz+TvpDKs2IhYvRWg6KJQTNv+yv0OLuYC3FdPQZUpmCUkRV2EF2qHb/oy+Y44JZTpst+PmtuK7gfF8R708kk6VagvKVr76yZd8+uXI8fGyjnYiR2wdUaxtZyYvfW6vv0bI5eVzGLVFUgq3+HKZUU7RbYROY73oj0NNYCsvXmqUGdkcdrihw/d7dvsX+KFfjVcpkuqlMW1MlgZANd7crx5KKczCHmgPLP/6j/3W40dR2IBfaUc/L2jwjA5Sr/DO6gQAn3VutWZibBId7TF6wDvNZrOlkpnDGZMVqojFs6xZKynOopuL9fPfLQ9AZCi6Fd9WXDUZnWlhFs9IxO1zaV8rZHkrmc+FipYRNmVBnkplPMLpNNH3G8xG0w9btPdUpfH9hm7o2e0ltckow/f3H4kx8LOf/Xs8PR7p8sBXP/ma+/tPPD3e0w9OMhyT4XyUwrTpOh4fH3j/4Xt2hwO+72TR3bof76+L9IyMYre3t8QpMk2N/zbsW+J44TLNjHNAW78ifsao1QTyeDzy9s0bxnFqfLDK6SzJ5ItJ5Dj+v9S9SYwlWbrn9TujmV27g48RGZFZw6uqxxvZoJZgg3hSr0AgWLXEikZIvYE9vWPbWyQkJBaI7g3DDhYskNiwYtVCKonWe7x6VZlVOUSEj3ew+ZzD4jtm7pFDVWb1oHwmudzD4/q9du3a+c43/IeWtm0pC7tc81npdm7Ml2VApyTTzrwoh3HEugJlZBAztyaGYVh0+gC8d+L0NH8meTMUg+dR+n9L8BOQtZ0VXbKP6MxJlieQfpH3Hm02xEqmv8fAgtweBjGIVlqjbS4HtcpTQWkJBDTeiQyS3G8CvYkqUthCwK2lCDoe84S87x/zRmQ4O9sylIZ3HwsAOoa0ONUnKTFkOKbguZjojJyIiOVi9tvi2R0r18TPbqTIoCRE4ih/p3Qm2ruIMop6W1OUa6wrsEZEDRZfDYUMreZJ5/xKMQp29F/C8TsDm1Lqvwf+feBtSunP8+8ugP8Z+DHwK+DvpZTulXzy/zXw7wEN8PdTSv/025yISsI6mOOzVVaCVZhQZP7ejFl7bjL4NdOSxEiKlqqq2W2v+OzTN2jtubi4oFp5bu8+Y2oDU4SiWrF9taXd99x0R7SOhGx8nPIsQ2dOiYqgjPQNxvgEDfDeMCXpoy3TLZ1YlDMyzFtrjYpi5mG1JUadJ1eiMLJaJQiWqU+0h4akHTYq6qjYHw9stWF3bvHOsV6v2VzvuLm54dPPP+WD69eEEPj001+zWq14+eoD3r75DGstW6S07NqGpCI/+9lP6MeBfXOibU+0fQKjlwUmjAzD6bgXGW3nGAYR6dztfkTfdqJmYS3el/iyojlJIPviiy948eLFMmn8gx/9iM8++4zdbsPhcc9qteLdu3f88MOP8Mby8PAgcI/sazln7gYldCiTdbxQwnUNAZWkXzb0E9o4GEZO/YmiqsQMpmvyRpj/1ph8rp4pyIYX+5YQJ/pBsHLWGWw+h3EamLIbU1X55blmqpa3lovzK1CRfmg4PEoQ1dYK0DgHVeeccJWHTgYRVSETTiSgKya6rsP5Fc4VeFdgvWNMDVPe/LQytP2IUoaQFEW5wjmDtYr287c8vLnjs88Co4iOYHOYAkQmCE2IQ14XkC3Cl8Bnk2R2Xwf67zuozwu0dwxKnNybdmCzKShXnmLVcn65wq8cly+u8NUG62uOh54xjby8+iBDSJDNc7GIzGY+IYL6amD7Mjj39zm+Tcb2PwD/DfBPnv3uHwL/Z0rpHyml/mH+938J/LvAH+avfxP4b/P3334kIXdrPUMhFFOa0MZkZM6ss/7clOR5yaowymKyaJTTkg044/jgxSVvPt/xcHhgaBNOb9itfkhwtwzDQHccaOM9wUGxDbSniNeG8RQYp5x4xbik5kJ0iDnfkvQeAoVSlF4vDjwhkEsTgOwUFET7LAE9E9aNeCVULl/Ayz/wrD+osAVsij+irEsxod3sqDdrnHUMbc8wjDweDhz3EihEkulXXFxc8OL6mvv7e+7efcHl5SXee/rDia7rF8mizz77grOzM0zSTMNIVQtFqj3cLLLhMUrWMI4jaVLU9WYp2c6urilKx+PjA+M45HJwxBpYlyvUNOGVGIsoY9iuNzhjOZ4eSWHgfFfjXWK/f8vZhQB4a29oHm+4Or8gjR06TjSnE5cfvOTx8ZEhJZROWBJpGghYnNZ0hwe6YaJY1RgmjgdhQviykBaC0jht6PNwaRgGUoysVmf0veDIDvs7mlPPbrfDiW0Y1jliiHT9EWvtovu2OzsjJC0UKqWJxmFNTVV6UvTvwYCGYWCKE/X6XDa1SZGSph8hJY8tCgovwgSusLRDjyVQVmvGfsKV2S3dgivWpMLSE3Aaphbuh8/onaM81/SnyBQViRLNSKBnUhPOgRlAe2mBRCayylGezEZsMgyIfExIiZRGue8dtFOPSj1tgknBYYDtxlNdWF6+3rLbXlHaDVZtaB+O/PwX/wfXH3iu/+DfAp2HO0pUc0zMwN8EJgn1cE4fBeqSw4FWRJWzzvx/4Tsmdr/z4Sml/wu4+9Kv/0PgH+ef/zHwHz37/T9JcvzfwJlS6tW3PZmUUr6wWQjxa3Atv+1vvwyaTSlRFAWXl5dcnp0vTjnr9TpPNmVCNYNL0QlrEfqKh0wLXUoYpd7fRQTAO/Po3t9dZmXd5bHzcyAE5OeTHqXBl2KdN/d35klkWZa4QjTv56/ZVk8ULvLUMIiHQNM0y3v/xS9+wZs3b94rC5RS1HXNOEpp2bYtp9OJrhOBSHHMkoDtvef164/w3rOq1ry4/oApKw6LG9bTvjiOUrQ459BaL8Deqqrw3mei/OwpoRbO5nq9wvts17daMQwdfd/hnRN9PMhT7Lh8zsMwCPA4m0yD4Mv6vmcc5SuMAyGIUskUpIcpAEVxo5/f62zw0nXdYgIzX3chw+snaSrzNA2d8X3OSbm/Wolf5gwZee5MNpfF8juVM1QHeRN80pl7wjk655bzqKrqvZ/n86o35+x257jCYmxEqwj0REaSiAFnHbrcl56hRs8A509r5gnXNt/v82Pm/pZOUJWRqoC6ctRVhYoGdMnbm0c+/uQtN3cD6DJrBT7J9v+u9fvbjpRfW3+Hp/h9e2wvU0qf55+/QFzhAT4Efv3scb/Jv/uc33bkK60yqx/9zOb+S723/Af5+xNwN6nAIpSaZV9Ex8vz+vVrzs93vLsTQUCAoRfZ7Kpa0YUJNASvRdVhAJdEAy30PgsrJgEujjLRMelJY19FRWBeeFHS/SxrFOdUH1CZo6ezRNJMlL+48lQrwzBFbEx4YwnIQi+qchHPDJnKE2Pk1DXESVgCp9NJAqBzPD4+EqMQwqdp4vPPP+eXf/XXfPjhh5RlydXLF0sj3RjDaiXc1j6KVPgwiKekVuI0Pg6Rs90lXdex3e745JNP2J1fsT88MEsN1XW9DBnu7u44P7/EGMP9/T1de6KuK+r1iso7ur7hdOq5uX2HtZa+bykLw93dI7vthvZ44nTYc7Hd4HxNiD06iVafQZRIpmnEe0fXtaLrrzQxBJrDkfXumr7vaZN8zqvVim5s8+0ivbWyLJaAqFHsdjvp2yWWoN3l+8QU5bLDzSX5HORiHg6VRcUwDDg7YY3LggDC0wSWIAcWnQQWZJwjZYHLMImN3Wolw5XT6UTpK7yXUrqu6yVblqAGV1dXbIwmXgWGwy+4+fxTxjHhdaQsQVmVZeqhKAu6YYK5CM2+BmO+HqhpgYdAxJc5GGooNwXKWUYlwzO9nfjg1YaL6w277TmPd4pPfvWG/+ef/iVNO/LBD+D+bqI4a4hTwOVNQYdvjkqLrcaXf/98tcfvFhj/uYcHKaWk1NfNNn77oZT6B8A/AHh1sSbLlb2Xbcl4+psC3PPgNvff8sg6iEsRRqATl+cXhLMt/9pPf8YXX3zB52/fcHF+LYTwY8tgjuJm5EBZQzSi/jqNUFpLQKhHgsXJMJBFmQpIgnlSJmvFpwRR+gk6qYzcVsuZJ5Ubt7mP1w4DrqqorGMKglkrV5qqzq7ZzqLdUxmutWa7Xsu7j3Hp9c1CkOv1mlO2pdtutwxdz36/J3SJ8OYNP/7xjwVou39cvEyLomBserwvCFPPMI5MU8K5EucKznZXdO3IH/z4Dzm2R3a7HcfjgdPpRFVVhBAoipKubRjHkdPpxMXlC+5vRZ7o8uosB7UD3jsKbzidTrx98xlnZ2fc3rzBIppvKo2EOJBCoM9WdWHoaZKwHIx0/plCYJxGrHHCrUUTpoEwDVROVEecUXRNK6YzSfTZQq/QzrFdb+iseH5enp0ze9Pa7AmhtUi2z1QxlSWNwjQtGaRFqOQxxiWDnbFqM55yyViMON7LoanqCmMcY34+ebwMC7TSy+t67/P1lc8mpcDZ2ZkQzR8eKbeWH/zRChUTzWOLNQUhgXGSlXKw/PrTzxZV52wRu+i1JS09bqO0TPGdzlS+hDKKpNKCZXNlwmlDewj88i9/yT/7f7+gaRNTFCmj3fmWP/mzP2Zz+ZqL3Zlc028ISgI3efr3DAJe+NXPHrvIu3/L4/cdSbyZS8z8/W3+/afAD5497qP8u68cKaX/LqX0d1JKf+d8U71XSn67tPX5Y97Hwsw3nU7PmtFaL5nFbJ9WFAW73S4Tui3dODHFAUzEODAe0AJITDl9f48zquITJ49clmZKjgS1JI9JZJqUMO/is1JUKbCuwBcVzpf0fc9hf1wyA+89dV0vzxlDYMppfgqRsR/w1tE1Lc3xxDSMDF1Pe2oonEfnpvvl5SU//elPUUrx5s0b8eF0XnwfhpH21HA8Hp99PirTeQzTGNntdkvpJTpl/VLKzRPDuWQKIXA4HOi6Rt7PcZ9LzVIWv4p5gqqxTlNWPlOoBK6xiHyGYUGsy4Tx6dJPkzTEp2EU56s4iUba2IvEeJzElaxtaJqjKAHn/wtxXKTEtdaZF5kVmfshE++lVO/7lq5r5PViICU5z3ESxZBEoBsnAgqMZUqQtEE7LwY52oCxKOtQxuBcgbUebUWRJObMWRrqcl8+B6XOZes8/Jj7pLLJaTa7Mz54/RJlJpqhpdp6TKkxXuErT1mX2MLmyeT7K0ipuVjShJBNwhVLeW28IzwrpWVxaY6Hkft3DW/fHDgeEiTZkJOC9abAlZZVlomfrQu1/vah5utW/3ctZ3/fjO1/A/4T4B/l7//rs9//F0qp/wkZGjw+K1l/+2G0uIvPX0gT0WSgrOTB6ulNJ4PAQma71flTk3J2hiwojfAQDVxlxPzDg+jUa62JeuL88ozNbs12d2AaBWiaoiirTo8JrxV2StKiGUAHMt1ALbuRtbILxlzioDK+KinaGPIOIqVoSOKErpXQxvpxomk6Xp+/5N/5t/8u55dntN3A/cMt725v4BaqqgCjKcty2QWV0QuSXmu9sAMEtjH3tTzXL19ISfrxr9hsNnz00Ufs93seHx8Blszu8e6BEAJnZxdLo31+rt/85jdobWmaTrTOCKxWlbiwTxN1nalVqxXjGDg/P+dw2KM0bOs1bXvi4e6Ic46+OTE4z/G0p65WTMPIZrOh6zqMhpUvGHuhVGEM49ChS0sYBUIxdD11VTNF4WC2fYd+94ayqrFKMqpmn3FrccIiU99p7DOOLqBsKeDenBUBS6C/uX2Lijnbmq95EgGAvu8Zg7xfpcQ8pnR1vt/EVDimiDGaqhRl4TlQG+eX/liIMOQNSvxaLSoHgKqqcvryRNuTCSt5M9Hs93uiVoKBLA0f/uFHtKcT7alDpRJnS+rVOTFG3jze0U8wJVAZcK7yQFJrlb1gs5sXUrUELQFmmEYiiaGV+7x7B2N/YpzEuAUc7TRydq55/aNzfvSHL3n9wwvOVi/Z1Gth8sQoPhaLNfLTsWRpeibbqyU7XgJ8XvT/QgObUup/BP4CuFJK/Qb4r5CA9r8opf4z4GPg7+WH/+8I1OOvEbjHf/qtzmJG5+ev7zbk/UrSyhzc5svgvc/aXIZ1LbLV+8db2ZmnicI5tJEUPAEFkkEoqzDBEZXs4KHLwTOAmnJKH8SM11rFGEOWYQZtn4Kw4B/ljJahiHyKBAQVPoXI/d0jD/d7bOH52c9+hv/c8vj4SNM0C0l8hhxorURC6FnJA7Ber5cGe9M0pJR4+/YtZ2dnbLdbbm9v+au/+it2u91CYu8i1RIdAAAgAElEQVRODe3xhNbSDxF4gizA9XpNVVXs93uOxyObTS1ZgzZL9gZ5nB+fALBlWdL1Qnsqii1FaRk6JUbEABmoKgq4iXW14nTcE5G+Ut+2xClS+iLj0zIhnojNzk4xRpROqGlWqZCrrGc4Qb4TtNYYbSicXza8hPCOhPguUuIzts6gFtPlqJ98Z0kspftz2ILg0uLy3p8PGt47Ml80pMg4hmegdAl+s4rKEEfCFDBGsre+aWUgYZ4mrlVV0Y4NY5Y+r7c7rC9o+7esipqyXKEx9H2k7RtGyQvIbyM/D4jDp4DQF4mqJMo64/zvKHL4IUA/IMKXE8iVMihGzi82vPzgilVdUdYlm1WNlqUiXiIhoPVXAxs8G7x9A7wj5Z7Nd6FW/c7AllL6j7/hv/7u1zw2Af/5t37153/L867Zk7vR03ueCbk5pVWR2Wv0q8EtPyR/z0NmYpatqcoSX0j6X628SBodWpq+IcaILwvGTno41ZlDl3A6BZSN6E68Bxg1REUa5XWmEMWmz0emuYeBbIveaEK2MZsSzC6qKYkETNNPFLXjg9evObUt93/zSz794nOury/FG7MoRIwwlwVhGBmjNMuNMaIcGwL92AqYdhzF1Fdp0hR4HA4cm4a6qnj9+jXExOPjo/SgtGFzdbX06lJKebqYp45mAhUpSsc49bTdSUoip6mqcmlqz8H1dGzR2lLXNeWq4O7mHbe377i4POPFyyspTQ9TzkLE70EoWI56tcEoxWF/Io2BpMH7ksNB5L27vqE9jazKisMxn79fYUpHUXia9ojDM44jZVliC0+KgbHrGGaEdL6XrHNLkPNW7oWmadBIBgvkABjFA8AYmAJmFjYN2a7OGsaMx/JlNa8DhmliyKogcwBX1iJ+FGKoU/giB+gnr48QGmzpsk2hbFpzlh7TlCeoZAD1iCsdlx+84OH2gQnL+QsRBQ1T5OHxkWmaePdwhzIipRUSEGRiH1VEZ1B5GAT8jIZT16NUIqSAL0UWSmuBMFkNzlmCsZx6RUeHVWBLxXpbcfnyFWdnr7GToWtaVN4wZuAwSJY2TzgXeExer0qp97isYcbcPdOV+zbH94Z5IIFLbgoFYOY+wpfTzy8FN35HcEtPAoHP6/TD4XHpbRhjsN5ycXVB13Wc2o796USMYFc9ujLoSWGSEVCjkxKFANGIXBKjAHSLosArQ9sP+fWy6UUcMInlYwopLWc8ixrGpLCuQCtHVZVZhDFrZ8VpOX+tNc4JdCWlRNMILcg5t0x95xJ1HEfcWiafx6x/drbdMQwDpRPvguPxyND3y902W7XFCGdnZ0uwM0ZxOBw4u7jg1Bxwzi7XsOs6VqtaMrVuoOs6hqnPm0chZWmaCGEUscmhoygKoV9NCZ31yhSK47FhU5W5v9UThomx6FExMU4T9bri1By4urricX+k6zvW6hyiaMutViv6zD5wOYABdE1LRLKdvu8z/lEvGZlZMGgCu7BaMIcq8V5GODMRQghoI6oaAtSWoDrLH7nsLSEBNGKtWvp38nl5ylpofEtfcZoNcJJshiEwTHI+IY4YLWXjer3GeclJ+y5g7ZqzaeKTX/2aoR2YwsShawjDyO58QwrilSDZvlAJgwoolYiIXDjIWjjsJ4wDW4ihdEiKVVVCBadDK1liDHl8lkhaKgVnK863HzGNG0zeLFJIXzs8mIPb82zty8Dc+Hw5G813iGvfD3WP33WoZ2/69zlmhYG5Cdr3knkMo1CEBEohDeVhkKZ0CNCPcGgODEMnWu0arJMJgjZPZYfOJjLp+QKYA2ZWhRAalJzP08cswbwsC66vXnJ9fc12u2W328njcmNZJHeeSp8ZLDo37TebDdaKEOXhcFggGHPpOmO05vP47LPPlvOcpom2aWQBDYOUWhm5lFJaPEbn3l1KYTnHthWv0Lqul+Ax95DmCW3f95K9leV7GD157RHnigUzNn/WT9CWcYG3yPVUyzWfaVPzZ2ozTanrugWyMX+W83sV/bMcOJ5tdjN+bd70QpAJ4dzIB5aSfz7HhWHybLOcG/1zhjVf0/lzXO6DGQKh9VcWM7CwPOa/mSeic5CeP3spg2eYBoCmLFc45/CFYBenFMVEpyyl9Myl8/PXfsKt2RxgZdAwB5J5MLReb7m6WlOvS7x3793Jm82GzWbDer2j8NJvfU9952uGB/Er6+Hrj98HA/e9ydjmvoj8jIzmY8LMbIQkuxOQwYSGRbcN6QOkTDwm5jmliLbRj2IBF7WhHSewhgnDw03Dx399w6sPf8iLD3+A3Y74bYc63nF+HJn2A80JlPWsVCWNVT/Q06BsNtEYFWGyFK20RodmAD0tzkHKgbYD9VY8BuxBcGdjhKASmzPNX/wHf8H5+Q5XGYFMjAOFb8VtPvVopdidrZfMaV6YPt/oN+/eUVYVm42wA4Yw0Y0DtvA4o3HWs91sluxsXdW0x4axGyTwGpd7UiqDZAe6IAj+CQhh4uzqEmstb9++5e5O8NphglNzxBiLMZbmIAKQc29vu6k53j9yuJcNYyhEWnwcZKHc399TWg0WprFFIxi1Lz7/Nf/6n/0pWkWqwuLtOmPvDN6vuL07YosNURWUK00yItG9Kj1hLEgoga0EKaOnocEYkVU3GrrTHbo/SVZlC7pWHJbKUvTsQh9IOuFcgU6GOCZMVn21KgN9lFl0zLQ5MEyRbiBLUWms9XhfZjcvAVUfT8MChDW2oB8GlJaNtxlFbcSvPC5eZDiG3O9OlQjbxYjJTcoBw4o59HF/j3cWy8SucoTTyMTExaai95rUDhSV6KYNMYPEtSaMPVqDL0SOSDJYw05XuTKITN0AGnoeWVUlr/54w6vkOe5H/r9/9jlv38GqhovdBVdX11hvCarHaCsK2EEUsOMoKieQA1r2EA4qr1klGodJqUXeKaZIRKYdMaSlz/ptju9HYHuW6YBMSOZ/fxvGwfNd7+syO4FJCNZrRm/f3Y4cDwNvb+A3n36CLj7hj/6NH7LZWT58eYVeB/p04njfcOz3OA3erUT1wgg+LaHpAigK+rHLzViy2ix5XC6wgmJVcHa5Y/1yy/G45+b+LcceiiryePiM9Rns1hcM8cAwdrgcpGfAZpuVZmdclNaa+/v7pVFf16JQ671nzBZ0MzzEGilXrbW8fPmS5nBcMrmmaeialvV6jbYyCX3x4gVJK25vbxftNKUUj4+PbDYbDoeDKF1st6xqAQaHYUDn0liclXpC36FjEopaiNx8/obz83P0pmaz2XA/StMmpUTXDmgSm7XAb8qy5Lg/cHM65AlkypLjkq1utjXGKnEzJ2KtztfqgHNSXho7q8VE4rO6Zhz7pQyKMRKmzBfN0JWuG6jrGms1KqgM8QgCeAUB7Si1BDbrLEpJGdx3cp1XK8upOxAjVJVkb864p4w2SHZstBEdOOPlXDPkQynN0PULA2S/fwCVJOtX0p8NQ1YGdoYYNAlDWZes+1W2HdRoXdCNJ8papIpMTHgbSFGh8jDMV6AsKBVQcSQM8j7HAGPGua1cwBYQdU9ZFLxYbZimSBfeyDo0Db6MrNaKpDu0rklTeA97+XWHEj0UUkyEZXAoyj3Pkbspxe+UuX0/Ats3HE/Tw/d//spj8rGAe7/0mLnMMBkL5L3n4vIlITyQ4i19hNDCz3/+CZdXHqc+oOhF4NE62eXGCCaMkGTniVk9JEaHCkooWvPrJbFsGYcBbQFDzow85abAV1t0EajaPVXtSWni7dvP6cY9Vy+vsU6hlQSsEAKn02lp0s9lh9aa6+vrRV9sLi9fvXpFVCzGK2hF4UvOdtJXu7u7w2kRPyyKQmAaw0jTNGzPdksZVKwqrq6uOGRs21zazecE0HbS1E+TSDw55zBao5WoTFgvGUbfdoRxIIVIe2ooC0eYJvquo6yk3LPW4q2USJvNJpdehuO+y+WdlKpzL2tmDswsCmttdn+fSe05YM5luDM5kwxLj0ymx1M28E2LIgmoTNuaGOKwTDjHGCirShgH2c5PVHal9Cx8oOv6pTwVapUV2fQpMmUKn1KKKYy5lJ6WaWzK5tAxPtG5QGBPs6y6VpFEYBx7kpLpZVUVaIQ5EaaBoapyGS56bFFNVCuD0RobJwgynLOlIyVxmcKIV0cKoF2GmoQgLl4WytrhVpaYRpHVd4aLF2f8uB94PBwxOTDCJA5Wk6zDZbD0LVpJz5OUb4wH3/L4fgQ29bR7gpSVz7Ovfx6eGeSeyDN05263Y3u+5dR2+BJCDwOw38PhONA3n/Nqo9hktP84CIZNOdhu1qg00Y4dMUjZ+/BwoMqfR4h5d1FaUNtayU0dEm3fUZuKzXpFubXs+opiVaJdwnmFNonbuzfSfE5PvShpRIsL0fOFPN8IZVlSZTL8ZrPBlYVozhmzyBH95jfCdDs7O2N//0BKiZsb8TCtVyu22y1jnuL98pe/xBaen/zkJ1ldt1umcykllBE4S9M0FDnL2azXhGkSsrPSWG0gRKwSxHoYe15cXbDf79mtNxAiP/zwQx6bI23bcrbdcHfzltE6NpsNbXvi/Pwc4pSzTb0E9Wma6Kdx4XVqY5bAuzs7Q5vINHUZzjNvCDbTxYJgAqPOATohKASVDWgsSknQjjHiq3K5F+fpqchVG5H9dp6+f/JH8F7ob23To3VAqTEHOJV9FgTuXxQFq9UK8ZAt3uvxDf1AO00UvsQ5gzEi8U4Sh6xpirT9ACZzMTNwmBz0y8rT9Y4pSj+uH1qKVYFzMHY9XRNQDlyRWQXeEGduaUioINLfpV1xdrnBlY6QRqYwcDzt8Q5WK8PFxTnr3Za2lwFFUYtCMvEJ8KyzpNQ3Baz52oY5G04pK1HLMc9S/1UBdP+lHs8j93cNanJBf/tj6rrm8mrNMHSs6s+IjzLfsZRMceLt2wFzgn6l2K6cYI6mhMVgtHglyDmK1M/QgiuAjOJOWqGNo207rJGsz3vPer3GeI8rCgwO5TVVVbA9W1OsPEpFxhhQ1kCM7wWUeQBSlqXg8dZrhm5cyNJd39M0wh6o1oLVs1aEOecJXtu23NzcMGXLuuvra1ISwUdjDEUprAHvPWjNmzdv+ODVK4wR+lNKie12y36/l+u8bERZhkcJ93CGmjzc39N1DZeXl6QgNLW+7SAmpjDKVLM55sGG53A4samFSH44HFivajF8aY7PPtu0sBHmSXDMuD1pikMII6gnQYRx7LFW54xoYhgUSbn8/2SyvCIGAVpPU1wyQmWFlgcKW8wDjqzVllVF56b+NErWqpVGqSdNuGkaZKMJT8q8Omvwlc6jk2x+MqCSaeo80RaQKgyDkPdVvr+kVJMb3RiDLgu8dUJHytngarWSAUTaoZNl7AKP9oj1MtlXCpLW+NIRTP4sJ0OKFqU92/MLrl9eURSO/emB/f6BqU8U3qCNxZcVDk9QJ5Q1aGXQyhPT+JVA9k1tpZmkv4Bwczn6RJD8/Y7vR2BLT5Zby68yIO+5CsGc2b33p2n2gdTLTT+LAyotZPOUcTFjBrdaa3nxqiLFkssXhv1xYt8kugkMa3RM7A8PDIfE0UVhOaRAV0es7iicgmRkphkizmYiQpgxhpp+GtHOEGKAAN0wst7seAgTU9NTVQXGlmjjSThSsJSbEpulpNvmYTnXoiiWxTxPF+/u7nBGCPrSg1KLosb9/T2n04nNZsMUA33fintXEDcpn2W6Hx7v8gRPFvfxGNjtdkI7s8I9vb29zdOuNW3bst/vBdIQRrZrGVZopegakQNXSfS3ZsepOcDWtch1//CHP+Rw3LNer3nz5g1hiqxraYJvNhtUkqk1MYrmWjZ3Viqx3z8sVLghTFRVwTj24jcww3CYclALyyTYe8s0ZQUXJTpnKLHYCyGSpJudm9wTJC19OK2J8ans1U7ki7pRoCrGekYCRVGhlENYo3qZuM4KIiGOtN0JpcplYwKWDHKeps4lbyQ9KdBEWezlqmI2OwrBYZwlpp4wTnTNkb4bmHQQAxxfUhYju/Mz+rajt444BbwLnF8K5W7KODtjDNoblHb0/QDWcnX1mnp9hitWoCLBWDAlxtdszWuUdVi3wZU1/ZjQtmB3ds2qPkdTESdHzCKlMRvrJJ5lXOopwCeV4UzIMIEEGJNhUAI5mrO1f6EA3X+Vx/OBwYyPei4P/l0iuDFGbuIkeCCd+zczavsHH7ymsiWf/uwd43TLp1907G86EpoJacQmknxwQoRCnQJ7P7CpLaVXxKgY+xFrxEVn0ZNSkJImxgnjFf2UOLUtGM2qrqUZnSZiiPTjgB4MSSemQ+7fxScy9dz7mcvAu7s7lFK8ePECbwuOR8l4qiybo5TKu6BapqdlWTJmXF3XdRz6nqqqhPg+jpS+oG1bun7i/v6en/70pwzTxMXFBR9/8gnjOHJxcYG1ls1mw6k5ioZatWLoGupqRdf3eKspfUHXNJRlyXq7YRx72l76d59++hs2G3EsqlYrbu7eUa3Pubm54eJ8x8XFBc3xQNceWdc14yAEdesEpNzk51VKoZN+goLEJ7u8opDFswCOp5BJ5DEb6WQf2BwwZ2XZObjJNVcLxGSc+mxC8766r1byGXkv9CWtxbVeVDIcZblCFmtYQLUol4cGT/ARrQ273U6mpsdG6FQIH9XaEpLCFQKE7scxMzYMJIslYrSlaVqUdmgrysreR9JGcdaPNK7B6oLT4V6u+9qhbEANkeYo4OApjNioKArPyw9/wMX1R4QITTfy8CB4z7pybLY1zRGKqqTebEhW8/hwx/HY8PoHH6GNJQQx8yYNX7u+5fvT75aeeM5A07MydBbGSM8+z297fD8Cm3qqtQUE+ZSVvYfz+ZZV6TdNRufnNUZTFVvWqyD9ruoB75dQhsKhmF2lwBkxnS2slCoxBmLUpEkRJgCD0hMqylCelIgxi2fOyO6Q5cdjn88HjBWp6LL0OG+B2WshYM37kjd3d3fSP8kBbr/fc3Vxvei2jdNE22bqjbPLNaiqSoJL2y6Yqv3DA5eXl0tjvbi65vLykmEU2SFr7YIxmhvtTdMsWmAvXrxAKbWUgiEEiBNdF/HqCWi6qj3jKFzdeXKbUuL6xSUPj3dL73AuZavNaslQjVGMPIkYHI6PhCjTVgBlDEol6roCrRb82jwciBnQLHi4J12wmVs8/6xmTXmlFkoYKKFq6Wcaf0aypRifNpyU8XbJSjCcPy+Rg9rSNEdinIOURau4kMJnee5ZonzmHVttMNbQtbn5n6lrISUcgIo471FGE3rxBN2sd4yuzRi9wDiIBWBRVFnV+QREUAGtI74ApRVlxqslo7AK6rpis6kRMyWYQo91Gq0Tw9iiVMJ7MeRWxjBNA2MccaWhWvnFi/ab1unXBTa52k/32kL3+hI2/7tiWb8fge1rLsTXwz2+3RubQZeomLExM7JfFkkIgVJfcLld8dEHP+Q3nz5yPLV8fhvkg0ojlxvHptRY31MUQoKe+k4ClUq0bSCNECaLmkqSOz1NbpNGKSHnDUEyuX6E/eORalOIYsdu/cS7VNLAVkpIx13X0B0lo5gBvmdnZ8uAJaW0TO2MMXz66adMuaSZe3zAAkkYx36hqG23W64uLhaRyRk2st1uef36NbvdbqEBzVZ7Mxh2HEdubm5Yb2rOz8959+YLfCaTr6uKMEowqUov5xgmMJpqXfOYZcbbtiWqyOPjIy9evOB0OmVxyyhUqjw4kizVE8YVh8MhZzLSL/Te5wloyAKharkWKvc5h0ECoPxeFlxRFDn4Sc9MqSSk9QhJSc90vsdmMG3gKVMwxhCiTNfFJyKDpgOZdiSy7YnIfr9nCl1+L0LVK4vtIio5D3dEvy1grfRPU1SEIEolKSmmkBjGiC9FGaUbWhhHhnEgDomYJlJIhEnRNjK1V1rwepv1Fu8KNC1arRgnTVcNnJoePUqgDJNwQrf1mt35hmplSTrgSke1O1uA5X23h5gwWoRP0ZqJyIfra1arNa9+8IJ1VeGsYmi7hdf6/Hg+5QXEm1eZHLBEIEJ+zsExJcGa5DL0b13GpgCXEmFWl8UQ81TNaS2k5CRjaJUzgpiBhjBPUednUsv0aJaJU0iW5YwogsQoU7Wqqnl19SE/OLsl7SP35h3HAVY7+MEfRurtCnOsGHtpht41Yo/mnaftBpzWJDVRbBua01PjHAxhigLqjJFUQLGGVh8xoYWpJO07muMDrihY1WUOQiHDGiJFVS9KrIfDgTG0S3+pKETw8DeffZz7cJ7Lq3OcsUsZf3g8LoMAe7FdYAan45Gb2xN933N99ZLVasWmrrl7uJeyWAlsYndxzvn5Bbuzs1zykQNc4v6hwRjDq9d/wP7hns22ojkd0RjCFHBZWid2A23Gz1k01hpcbelOPbvdBd5XdGPP9vyMMPQYrZgmBb3G+xX1pqYbetwUaJuRoigZQkdz6qgKCXTEiEqKYtY5GyZCSnSHvQhD9j2bTc00ThinmDLl6hgVQRi7GRQaQWuMdiLhQyDFgPJrkjGMygi7IWPIhtBngO8KbwS/14+BrpMhSkqKen2WAbCCv5uGIHpzSrBx3gvw1heelCJt12T1Ethsz+hDxBnRSENnhsVqJR4CxmNWA0PXiz+qNRRVydidENPkSFXBqvbEeI62AncZo2JlK47HPX5M9PTEFgZz5DA01MmzqV5IaWsUtnJ0/YnJ9NhSC2SprLPopgx91vUGh4Ng6NOA8QWEQa6VFbPpKSV0BtQvpi5K0ecMWpEwiJLH7GSlU0SFrH0X7KLS/G2O70Vg+7pDxbS4Ps1NRfUtM7avPJdSOd69T3dSad6ZFdZqikI02K5eSQknmV8gxOmZGupMdQLjDC7EpyGHRgJZDBJMU8jIcvCFEgeoKTIibkhFYZb+jljITEyTwBCmxazZvKfc+lyfjFi+J1e9qFMYs8gIAUu2NZdmz+lQt7e3rHKZeDgcuLy4Fq5l3/M3f/M3/Nmf/3l+XnnfRVHQdE80q5l+BLlsjDHb3fWImQ25ua44NicpfYsKox19N2Iyf7JpGtb1CpffbwwDx+ORJtO9nJEG86z4O2eU4ziidFxK4plvzJe+P6c9CWVrhgE99d0UNkNAREZoBkJb4yBlqpVx2W0q05ISTFE2Pu89QhyOqABWqwwJyabBs0ip1ouu2kwL09ou+nZTyjQ4FFZJZjhjIYuikNecorByYiJVoAsRR2gJtMeeMI2QwFhRaEnEnMk2TM2Qs8u8oaYOZ0BrQ8i9P2PI70ded7veYpwhjcVSRSgl8JbNZkNVyWf6ZSnwNK/hlObJ2peOr5Zr8rdPUvApJaYwMIWv9u2+6fieBLYk7tIzqV1FUpKpVUpSoyWlf8+wlutzrRZgqbUap4VUfHV1wctXLzk2J/7oj0fKesXZ9Rl3+3c8HB4Io+CGDAq3gkIXjKPggKyXRXg4NKgKCuuIgxJHdgJaCQykqGFVWSqv6HOGsV5vOdtdiKS2ghgn+eB0ROtE33SkKWCrirqseHl1/Z5KLgjxeA52+4dH7qbbXDroJTB3Xce+32ckvaVtW4FSrNds6hqjFMej0HnOzs4W+Mipa9FaylzBXIlib1VVoOV5Hu5uWOdp5ziOQhqPkbIUpLwtCjTiNjX/7WAEohImcWgqVxVGa5yVyWXM00tnTeboBpwzTO24lCNaa7pOJpNKvz8sCDmYO1uIoutuR9ueFo6lTI97jC2AhDUKbcV/IIQkyi1IHxYF2rhlw5ixhVprjBXoh9Ya1CSLVvOMBA9tPy1tgxgnukYgHDMI2ZhpIb+DBLumaXBlLbxcI3Ad44onjFsGAJ9OLfVKL6wJrQ3KRqwvCDEyhQnnHb4oUXqkmEqMtYQ0oYzFugKURXUN46gY25apG/mifUvfJFb1hqI8Ua7WoBWr1UaGMP4peHnv2e12y1ReOMYzWOPpiCoLiemnPvey0cyPVTA3HmcRgogkBzFFWSPfIQB8LwJbUoh8tgLyxdFGLSPfpEwWnvj9gLopCddvDmwi9BdwWqGqgrPzNWXleHNzx6o7UJ8VoKIssmyIHBVoD1MccKvZVEXjjCf5RNu1OB0xdcE0atJRGru+AlOCsxMhnHAZm1U4T9v29L0sdNmRjQAkk3kPxtK27UKKnvtRAF0vKq9xCgskJIwzoTuwqWvWqxLtAoeTOJo7Y1jV65yBiIx40zQLVWocRHZahhKW6xcv8q6pFlL7GJJY0F1cEAdZaOtVzdi13N7fcn625fLykth1Sya4Px4ySt/z+Zsv0Frz4Ycf0o0dKGkRzKTpsiw4HR+ySq4seufNkp1OYUAbzTB2rLNEetM0GO1Q9ilTGIYBPLIRPYPDaK2xSEYWlEHjQEW8KTAldN1AiBJoxn7KyhwW73Xmgio0JkvZa1z5DF9nEy4bKM/VQV3X0uPcSe/wudHJnH3P1KmUEmEUaSas+L0676nXGyndWsEgWmUJasCkwICSVaMM9WZNipccj3tO7YEJxWa9woUJEyPn1oJ2VOOWRInzHc531DqAigxDz2l/4LQ/YAvPBx/8EK09sdMURSJ4yfaqyrLZ7AREneaWkEiJxRgFxMz7VCqVq69l6vksM9PE5T8iIgEPAtGKMTLGkTH+LSxFZxZevi3fS2GVminA39UPWg4RD5yblHKomNBOIBnr9YrN2QZtZMcdx5HCCaD2oT2htWRsWinCEAmM2GyqoZSUpKXWjEPA6oAzikJ0DHFegltRarzXKO8XKpPRBdqapRyZpuymTsi9tGIpWWamwfzYEILAIXLAS0kmar7MUt0pLRJGNw83Swmb0uzPKT2zWVByv99zdXXFoERyyHiHMbDf75e/Exxcyf5wj1WaqhCUvTVayvVc5u3vHzg7O1vcr7bb7XIu8DThstbicOgE3licV5mQLgHbORHUDGHCKc3pdFyI/rOh8pyFLVJLQZSLQUpHa56oWDGfozFGJpEgoqFeoZBGfgwTqFmBw2K0XT6DJ7VmTUjSD9JaM4TZtzMtFjSO00UAACAASURBVJDvqYEkjbaKYegXVQ1RSlHL5xzCkwIJ2cPUFyUkyUSnrI8XgqgxxyjNi5iyTllKck8rhXUe6x19b9HOMoyj3KjKYKynKNc4HwlRU3biT2F6AUGnlMTlK8n5d22LYqIoHCo5otLUdblwrp+ubczDF0EApKQWCMdXsKfzxD3lgPaVIyc58WkqbZV4C3/b43sS2DRRO1SSiKyWiD2n6RGtZqefeVr6JMHy/Hh+EeeR/Cxjs9A3QkArxdhPWKu5uL7iR13LRz/8a97e3BBTEDFK79EI11GpRBwnoqwTKudkkDFB4S0mOMKxZww9RilWG0XTJFwFu7MS7TSrTcmoFSYrwCqkZ3P/+LAg1H0luvarwmK0ZsyQCpuluh8eH1FKPaPj5GlZ0xLCyPn5OSqFJQsb+4HCKDAZaGo0cQpcXl/hrJTVScH11Uvu7m94HLM8kVb8yZ/8KfvDAa01u925BDxjeHF5RVEU/PqTX3F1fs7tzQ1ndU0bJ87Pz/nlr37BT37yE1QY6foWoxIffvSKTz/9FGMUF2c7PvvsM/q2oaxkSjz0DQqFtYbHh0ehPanINBiGsSMmzfG4Z71eURQ+6771PDw8CI8yqqXUnntYc1ZUFivGqacsV3nhToL6LyvJpJABjPEFqQXrDCZrq5VV/SQdVK9FiywFnM/9TRRTEKxbczrhbbHINnmf8WfTsARW59xSRk9Z+Vd09+ziGbE/NJgYOXY92hp2ZxdL+8FmxkWcErYqMErjXUlhsoBl3zKMDcp5+jByvGs426xliITBa81qfcY4BlZ1i9g27jm9+Zy+b+n7I+vNGUoLpIYkhjZ9f6IqNWe7C16//mjh85L5r3JIf1J8JJ7AuIksgz+LWzxnGaivMoxkbc8wG9lk4mkkdhPf9vh+BDalUNqTokRwTUYZR4FWpPTkVvW7jt9FpF0eF2VnN85T15qrF9e8/uij7Niill26cJ4wDsJVLGXhTMNEHzqcdhjrGfqY4SQIXEhJf6DeKVbrQsw0dCKEEW1XMoAIE90woFT3TPCyoCx8LjmFGzrDDuZMcsZ+zSR3YwylL9iuN2gtCqcxCgRjVRWoVYk9yvUcw0RKirYfuLu5pV5vca6gqDJkY71mFk3cXZwvvTdRl9gv3Myu69jv9xRFwe3NDUUhAN9xGrFZH6zve2ycNd56lNV0XUtKkXqzpqwKbm7fsdnUWfcsECe1ZFLj1JNSXFRj0zQubk1AHhwM+fZR6HwNZzMZ+XpSBZ5LpBjFy6KwEnRiUmAL6eHG+KS1n5R8kYgojBPsWByFd6qdJSHA7DEkbJC+nrEWrRTlak3XNABcXFxkMYPDovEm2Vda8HezZ2xKSQymC09Qks/MOLZxHLFK7geyrqDWmjgloo6kKL3Jer3FZ2+EcRzpTo/ElPXsrEwzpxjQ1qCto6gG+sIzpYiylqiUpFMBYXEgPdvtZs2rV69Yr9e5fI5P6ddyZGqWUovDwW9dj3Gp0d77tUJ67LPyj1YWo93vXNfz8b0IbEpZUCvCJDeyViPOasLypsk3nHgjvgfazcdvC2gLvmx5vYw9SooxTRgn/aI//tM/od6s+fTTT/FGtLScVhiV0ESUDjgXKAvPOAZ0CqQ4MYUObz2WkSj+I7lE1ax3G6qtI6pItIZVpfHe4H0ujbV5UuywBpOVg7u2WShBzzE8M7UkpTwRMzCqkdPpQBjle0pBFHHJEjhpXKaL2pYcjidevPhAbpat4+LskpgSTXtktz3n3bt3fPzxx2w2W168fJnLUctqteLnP/85P/7RD/IIPiu+Dj3rVSnZj05cXVxKlmukb7Pf70FNnF9e0DQN+8dbfvzjj/j444/ZP8qw4PLynGPbLRZ9xkJROAKSlcZ2Yrtb8/B4R+ErUnpS4hjHEZNViFWSsnSMY96c9DIVDiEsnguPj3u6ruP86iX1+TVow4RC+4LIRNIOpa30ubTCFAVBaYq6xhazUKZQqErjcd5TKp2n+YG+7VjXW5qm4d27W7y3WCuyWZJtdtze3iyN97nyaNsW7yqSAltWpBi5v7/HOXnNslxhM2jXVTUqiuRTCCNJaY77RxQBRaQPkSGMdP1IQktWlyLVakXXdaDk/ppiTbMuUGpC9SuimYVTFbvzczHLfvEBu90Z9W7L7PEgUmD669edUos5kwyen0mRPV+LeWFqIKYEaNG6M+JSH4J4WyQZ037rmPK9CGzaWOr6mjZBmHpUSMQAWmfQpFKEFNHpeen5pemKev7zV/mkpPdZDIUpiUrEHrU2jDrx6tWHeF9ye3sPWArrYL3CWUFht90j63VF37aU3hIm6IYO5y3TKTL2orwbDGgLRWXQ3jIhU91hHAmPdxjjcMUJZyu8L0lJSm49aWIGhK6KkqouFxT/GMf3+kpWGy4uLkTpom+xWuPKMmO2+nw9AmPfc3i4xTth419ev8B6kd5puok3n3/B/f0jl5eXWC/mHLMk0rt3N6AEOLrdCp7t6uqKv/zLv+T6+pq6LCm8JU6K4/7ANA00xyPbdU2MiRCF2bCuPfvDLV1/YHt+xv3DDf1w5NWrVzzcHBjGifZ4IsQBnSLXl+fc78Ux6/HxUVgInQCWp0m4sVVZ07Y9McqQwBpRgJ2GnvV6jUI2iTkjmjNwneTnvtujjGa1WWO9F7MT70FpNAbrKpJS+FIAqSmlnN1IX+l0knK9LH0WG9UEwCiF1ZZV5TgdHhcyumijwe3tbS5TvXiDZnjOHNy22y3TKP4Ds/T4qqow1uXeYGIMI85pmmO7bHQ6gTWWkMTgMcZJJqrWMwYxvFFmoi4KjDeY6JhSBKNwpcVuPCoNxMaTosaYih//6Cd88OoFdV1RVg6lEmM3Ln3Cua2j5gzv2aGe9cOSVsvgAFgkjJRSWPXMHYuscRdmWJbQ4LRKdCsN5d+ywCZdNWlQxwhxHJcbQQLZE+D2mzKzb1uCzo8JIaGsIoXIMCRCFDDr9mxHvdow9D0h33TGKpR2pOBRKVDXFUOfoSNOM/QTVhcZ4ybVrDFihDyNgeRlMTljUaGVktHqjAfS2f8gCqJdW9Ggn2ZqUFzKr5gxYj4PIB4fH3MfaaL00jxvjgf6oUUpKUtnWWlrbS5HhFjfD0NG4lusFzjB3d0d/qVkE2MUefHZbKWqRMjy8fGR9XotUA3nOB47vH3SVJsHHCkluqFZyO1CdUp0XcN2u+ZwOEhmZswiEjkvmHHsxY3KFpkdIPLrMSZWq9UCXBZcmV0azOM4otUzzTpliQxM09PQaWErPLsXphiYpoRVCrTFF7IzhSQ0OJ3bE8bYrHXnsYW8R1d4Qsw4uCQKHcSJOI3ZFCbRnA7ZD6HncDgsmDfn3DL8mdkWKSWh6qlESD3JaJSxTGGeHsrGY1R4z/Rkxoltt1tSGBjGJvNTE7HbLpP1+XW1Bp/vmWFI+NLjeitkezz1asf1y9fUmxpfaDBiqzJf2+e9sRkn+tvW25dZRF/urc2UtFlcMiURJ9D6uS3g3zJKVVSKtnJMsSR0E+MUgEihNSkINca7ghTF7GMmJEtz8clZez50lBs3KUhTyk1QtZhyhABa92g0Jge3Ir+GTYqf/uQn/M0vfym7aZ42hTiixsDh/gGlhHxsosEnRZmBtq2Cco3c7DpQ1SXbqxXt2ICe0FpR1+doDePYEcaGfpIpEhN02lOvtljrmUjESRrG2sgkarbDAzJoNVEUjrZ55Hi6Zxo67u5ucNZSFhuGID4Mh2GkLERdt2kV15sdVWWIKIZpZL3eEmNkXe/o2o6xD8QJrl5dAdB1Hce7/5+6N4m1LUvzu36r2e3pbv+aiHgRkZERmZWVhaujJISFCsHQEqIZwISBEQYZxIQRTIxkeUYzQSDZAiEkGjFEliUk24BlVBhRlkuZlVmRERnNa++7/el3sxoG39r7vojMqoqyCylrS1fvvnO7c/bZ+1vf+v7dHar3HE5mHJaG6+trbi9eMKlLojHs1msinsPFAc61EiZyc8lqfcs58OTdx/h+T24nTOZHtNvIF59+wumDE5RRbHZL8lxItrv9BggsFjPwcHd9g7Yluc1AR4LKuFmuZBa4WLC6k3xUDFRZTrffYJUEy+W5ZbnfjoWzS+hs8BlFPqMop9iyBgw9FqIlL2aAIQOyLMckikddTaWLy3OMmuKCJ7c5rkiuMQrubq9xAWb1lM3tLdPpAToYoU9YzdnBydhl5WiUtkwSgblpGmLb4rWlKGva3uPbDm0iITnWYC3aFuTTKbrbQTLFXK2XhDyXBVJpfB/JtGRlnM3f4tKd03UN/b6hS3NQqyWpCiDEI/K8pqyWnJ4ec3i04OCkwrmGXePQKmKMolT1uAOCFOmXqBlvNha516nohdSNyrySAQBMIyUXknZXySwTIg5PVJqYK4yyaeb9CGu/ebn6Jrmi/y3wF4CLGOP302P/CfBvA5fp2/7jGOPfSl/7j4B/Cxk9/gcxxv/tj/sbWiuKvML0FR6PclOsFhZ7CIK0BCwhpakLRg+gx5P6JikwM+Yrvk5/yOuSnxrF0WpEno6Pj1mt15LetJPCKhfjvXXKejUUHdi1UClFVkLnAN1RLySE2FqLjRabCyDgXUvX+cS4d4mSUGCLnDqfoBN7OxDHAA8g0QPiSHUIIVAYy3K54/rqFfUkG9nwwcNms8GqiizLeeutt9IcKgOjWa3uUDYjzwqU0VxeXlLWlfikJZpC27b89Kc/5fj4mPl8Ttd1XF1dpa3Shul8TpYZnj59ymxac3J4yHa7ZbPZIBZDK0LvyYuKssx5/vwlFxfnHB4ecnh8SpYViG2QuMhKHsOaLDccHBzw2WefpvPu6TopAqvdjrcePZbXboXNv9uI0Dw4KVzZdMo+pbwroNm3YIS3qLQarYeEaCyW5RMlGk+dT2W43jOmrscEJAUFXdKl6mDIihwTxGOurKoRvR9yXaOXoOHb5R3bzYqqKKnrbHTpNcawS2HUry8uRvrLzc0NqqglPGV+IM8Bxq5OrNEl41UWtvtrpOs68iIbg17EuURSWQbjhNX2jidP3hae4mSG1Zo8j9SVMAW0VpydnDBNyWaZsdL6pzvJu5+lXH0jsE6lrebYtYkud7QlSzrd4fvQw/Y8gXhl/adb2ID/Dvgvgf/+a4//FzHG//TNB5RS3wP+deCXgcfA31ZKfRT/2BQGkZ5oawk+QxsLCnzsZACJONNC0sYyyKTekMrE+45NVob77/8Kfy3+4TBzZq1kK3JProwxjjZAIAPOkITtSoHONJWOZFjpMPctpNnL4MQxfISQAn7fkJsM7h0xRvoQ0b6XFrwwYxTboAoYXGJdcvLYujcpLAHXNaxWgmRaVUKRQ2L453mOyUTitN/twbTECWTkNN2ealITdbI1V/J+OOe4uLoErZhOp/TeSTJ48ILIWbn515sNJyfH5FVJcB3Nbs96veV4WrJai5XPvk0Fhigyrromz0v2+52QkBsxESiKmt1uk4isLWVZsl6vubu5TefTE3qPdym4OCvJjMVFNxblIcV+PPdBYXQmKGtayGxeiNuKc7ggXbnVGoUYMA40haAYrXSiApu2YsPjA9dKOrqaTkuBUUZxt94Qo+f46JCyLOk2a+ybigVIUjk75nGcnFhcCo6RMUhOH4JYrmuN0jKeCErj+/24GI/Xp4/jzw6FoO+WZJkhLzLam5b9viUqQ60MWhuM8YDHGM0sRSgaY/C9KCiUjqgRvHqDcPsNChowNhnDz4SRAqLHuVtI3yfnXKNU8lEcIhCV/src7o87vklg8t9TSr33DX/fvwT8zzHGFvhcKfUp8FvA7/xRP6S0pqymtDiUMSLN8B5cj8qkfe37QGa78QQYLf3YGLz6Rm/Wu3sS6IDCfP0t8ONMLq1qpGGmMZweiaXPlVE8X15JcG2ay+R5TsRTz1OkXwxoawhdQGtDzCNKW/JJJUhoL9mWJllbt7sVoGm9ZDmWZYXWVmZdJifLCkCjTBjnIm9qQAdbnMViwX65pKoLdgbWm2uUUhweHpPZXLZASpCtalqxXq/Z3d6irWF+cIRPtT+qyOxgQVEX9M4R+gZjNDbLqLIarTXbdidW6CEQt5HZtAIdaXcb3vv2h7TNjs1WCqrrPUVVcvrgDO33qGbHvu8pyzqZLSradofzbYoVlK5jvxWjSs0MbTXWKG6ur3nw4Iy22TMthb928fIFvpfIP7FScugorsgH8wM2zZ6syNnuBQWeTqfoRG5t25YsKnG1iAGblxRlLU6weY0uSlyIZMqQ5aJFDRhMCEQt1uC2yIUQm3iR2hqilmvHa+iCx4XA7fUVJ48fktuMIhO6TjUjvf42gSKiJDk8PSUEeb9Pjo6IJme326G0TW4tenQvsVkxzlnbTo8ZFZPJDGOE+Bs8I63FGIPJNNWk5sRqXl9fsFxvCWhmc8a/MSkVuq6pq/tw7uDTIheiNA4qyOfD3CzdM4z34M8eUUn+x9AcxDhkISQOYEKpIxZRWGt0XqASKq2tjAFCOR/ne9/k+CeZsf37Sql/E/h/gf8wxngLvAX83298z/P02M8cSqm/BPwlgLcfnRG1ES6bcaBLCYewXbJQVqBb0ZMCxIBXkgblkxpBE0ZgRg1WKDq1VV//2/G+UxuKH9wPQoui4Oz4hEwbmt0a7zr2GxGmYzRlUclKZjRRBTrv0EEcIepphckKJpNKVAV4ssIkX30nesgQMCbDJZJxZu9zHgcffuiJePLCJoF3jzbgvKPrpfNQvqfrRIvpXKAoMoIRcbLrA9bKNn82mzGdzWjbnvVuy9XNNUVRgZKiefrwYfrbYr0D0gGC5+hoIRFvKdTFGCsSM61QSRCeF4k71rW44On3Irh32y3HR6d0fcNyeYM2WTI28LRtJ883BBHAz4SCEKIjMwVVVXF3d0dI2+Nimkt35AN939J1GaF3lHNL17nREkkl5v9gDzQAGs55lNLkeZEkOlqQxiwX0ApJHjPG0oV7/7agEH5XkO69T9tmY/OxixoWn6Io2Hct3b7BFjmLg0O0SjkVTmyzmr1IqoqqZLFYJLTVoKImCzmd64nBEEVdiUtgzHBND2CSqEZsMshMnVBIKgB/74kHoIKAGoLi1vIavDjkBC8z7rqqkuGCgSDb0pioGtLFRuC+sHylcXhj1/PVG02wzuEQ52LZdsaoJYdEedLKAMoQ0KioidGgo6D0IFb75k95K/rzjv8a+KvIHfhXgf8M+It/kl8QY/zrwF8H+NXvfzeafCJvZlGibEHwPSZpzvABazsxNgmB6HtU8NKjeY0KHh/j2L0Zq/FBVpc3g23T30WpYWsiqxKpxdUxEEOkD45JXTKdPOboeMGLZw9Yrm65fn3O1dUF+/2WruuxuaGPslVUpQEXKWczymJKVUmI8Ga/RCeio3MdiiCGib1HK1ED1FWGQhOUZ5eyBSZTMXXsuk5W7/QahpQtpRR94rcZY5jmgnwdHJwIi95YJvVCBPLrLbtWqBfaZMwPDqVz6D3KWnb7PcvVhnq+YHF8MhI/8zzn/OoKYwxvvfX26Mt2dfOahZ5RVzWmKNlt12RlhcksRV2xWa6kk/CefR948OAtbpdLHjx6h8xEPvn0Y7yHtrul68TJ4td+7ddYrVZcX18zmQhpd3AZqesJ15eXMutrWzKTs99sE+ooHWyT6CDFbMJmJZ2hsYY2uZq0fZcUBhZrFD5m1LM56IyinLJte3IDysTR4gniiCL2fU/vHT4GNpsNk+mcg2TpVFQlAE+fPsUHsUyviwUO2G0kPrDd7ljdrTk6OmKRUqRa54gRXKL4+KAIzoFuRyv2rnPjvA8YicghEXRBHHubphHkPSsokmpioGIoA7bIyUPgwaOHdG1PPZtzcHQCSIThRMX0HKQTjcFjkCR3FYV2EvEjSgn3SOfw75v3WAiBqCJaD7kGgxZcSzeGQRkr8YYmZQRri1EZQWdEZYnaErNCfNtsnr7vmx3/WIUtxvh6+Fwp9TeAv5n++wJ4541vfTs99kcfSqFsISxjZ4i5RhEhiH9+CAF0T6bF7Qzv8P0eFSK4jhgcuJ6YaBE+Qd9KMWZB/syb8AbT+U0KjnBrpL2OITCbzfjOd74DwN3NDc+fPmO9XfHs5TMCni607Jot2iqsyqmmC8qypshruqalig5te5kNxR6tFVVRktkKY6W7cy7i8ejgCKoHRerC3Oi2MXSV6xRKXNe1+NtbK8EuXUeWBWbzQ4qiEmS1D7LSFTlZMaH3TrhfEbKiYDKXVbqoxDjSJ4S5ck6UBZMZ33nwaLxB5kcSMlLMK2IUBDT2Pdubax6eHEsxiYHpdJ5Qwnf58Q9/n2fPX3H24B1cv8e5ju//8q/y5Zc/5dHjM9xeOpCPf/SxZB4Exepmw2KxoFzUXF9fS7LWtuf1+SXT6ZQHjx5weXnJartDW+GZdb0jzwswmoPjA5pkraRTBzvNS/p+cHexWFNTTqZkkwV5PUUXkdaDc55BF+t9T86MZrtDWUOmNLutSNUym3NzdU1eFrx8/kKsfeZzjo/fSqlMke1qzWa7x7tIVU341kdi8BlBUqIyWbiCUihj0UYsbatySoiRyXTOPI0f2k7mqr7bj1rjgQmgVEzJWUNHF3AuQKLK9A7yosQQyIoaH+U5dK4nz0TSFppNAj0CWt0nRsnWUyfumR3u/6EQjFrQr8zblBodgn1CRgfEU2kl5GcM0WuiqsXeSmmizkAZMLmMpJQh2ELCncfp+jc7/rEKm1LqUYzxVfrvvwz8MH3+vwL/o1LqP0fAgw+B/+cb/EaiSqxWez+QDckwLyph2GPKhJg4TFBE5RLx1uDF3iDByXIjRhijwH720F9poWVWkKBplXg0UfSb3svGYFJPefudJ2w2G/rgabo916sbdN/jo8NYK4IwZeX3K51WOGGGd11H2DVEreiNwthIVkSMKQDwcdiGChoYgiMEcXrd73djMMkQfjGgXwDWZhRFyXq9Zbfr0DYfu7u8KPGxwyqN0o7ddk+lDNoEkQPlkdnigCZJfGbzKfVkNnLFijJRRXY7zh484nd/70sppq7nwckxy6VIdiZVSaYNl9tz6GGSQ1FXtG2LDxFtCqosw3VbynKK64V7NplMuL29pe883g3Is8yVVqsNDx48BjTlZIrOcozO6JKpY1UnQwJryUvJcCgGY0fnyGzO4E4irhOW4KGYFNg8p66mosAwgHMELz6AJIPD4cMGLVvfsqTdN/RGXFBWqxW73Y7Dw0PKomB5JyE8mTbc3a2E/PytE6qq4vbmcty2Dl2YTsJ6a+zI07JZMV6XIYLrfQrdEbsm0XfeUdfTdG2HccPXdY2Mb5Qa2f4uRmIv15Nzjt1+T+8C02k7Fn4dI3jZ5WBS8UoefEYJsRnCaB30FUDsTXBu/HywI5LWIkZPVAaDaHOjEtJ6VFnahiqp9tqC0nhlJYxJG5TWkgimf959/POPb0L3+J+A3wZOlFLPgb8C/LZS6lfTXfgF8O+kF/v7Sqn/BfgREtnz7/3xiCiAEGCxGpViebRSeNdjPKjoMXhCcs1VxqEzK3M10xKcw0QhY8op3aVzGwWBGVrkNyp+UNK1DfOD4UKQ13EPJiglcyoVFWVVUddzTs4Us8MjNvsdP/7kRwT1miZsKYspKhYyK1QZNldo42VY7hxd15AntwhjS6p6RlVN2DvZ4nX9TjhvwKI65uTkZEw+H5CqcfYTAjo49s2OtvfkecF0tmA+X+ACVNWEgNA2rm+WBBSHh4e8+/6HMt/znsXR0dgNxKCZHxzy3tERT58+pSySqWE6f2VZcnB0xvn5Ob/9L/yLdH3D6xevuLlb8uu/+RvcXF4Qnadr90ymc6b1hOfPP+Xk9AHr9Zbl7R1VZjl6eMryTvPd75zxO7/z96nzjL7zFPmE3U5sjubzQ7pWPMaWdxtiMKy3De+++y77tmG93VJWU6p6RlaVBJ0xnUogSre/YbPbElFkeS7FrhOajNKWspIcgHo6p6hqTJZzeX2DC4rFwZEgn1hiENcQSwpT8Y6+7TCZlQJA4NM/+BgXAx9++AHdvmG7Wo/2T7e3t7z16DGPHz4S77q7OzrnUTbDFNKFOBS2rISagxodWNj3LBaLr2THDohvnmRFSkTJgJhOenePCis9ZGVIwnpZTMWxI3hsVlCWHptnmEyIz871ZNEjfZUABYNz2sBKkF2NFgPv+FUPvOFeub9n0k8PrAUVCMlb2iOFMg5FLJYoZVHDzNZoepDOTWmCkkJnrP1DGpSff3wTVPTf+DkP/zd/xPf/NeCvfeNnID8lK4GSQWE0uQTuIsNFhcVoD2krYVQgt6VIR9otSjuC0mBy4T25VtjvSoapwxb1a8/zD3v+kGZzWmlcEOG4QuGjwhqLVuKQMDs8wqtIHwLLJiPParp9AG3RZvDM72liTIZ5DqUMeVai7cBpgn2iLmSFpq4rjFGYeG9n9OYbOjD7u65DdxKjdnB0wnSyoKhKbm/W9MGzWm3ovWxlf+l7v8J2I8TU3a7hnScPki1OTVbknE1mwquKmtV6x7c//O6I3t3PcQRV/JV/6tf4Rz/+HVSIvPvkbX7yo9/n8vqGqqhQRcBqw9PXF6zX4r9WFbUgvtqyXa24vLjlwdkxzW5DWU44Plzw6tUrPvroI1ardbLoCdzd3fEbv/EbXF7eEqOink548fKcuq65uV1y9uixCLzbnma55d3pnKYXu6OmaZjPDpA8hyVHh+JG0ra9yNkyNS4S2mTkmaLKc3rvUEo0yT4Gisziuh4XhoR2AQKapqFte45OjtFa8/mnP+Xs7Iyu6/nd3/1dHp494K1Hj9Ns1CSqghn5gAMfcbFYoJRKgdCykJRlSQga5z3WWGxanIaj73v6rpGw6nI6BvxMJ9XoRNzstuN7JvPkHFVqtDM0raDGQ/fX9j3W5lRRzCAHKpQeaFGJgzHO0MxX75VhkYX0c4m+ZJVEI0X5xjT+ARUjLs3OtTGoUMrYSFvhriWVZY3U+AAAIABJREFUidIKjEYnjewQqPxNj18M5QEkdwKPjpESj/KeLEmNYmIrNykNyJuMPmoIHluWsm3Qe6LuiN4RzZ6+le7NKMkXlW3pvbeT1gkxGjWk9ysOKpFHgiJPvKEIaNvjkwZPW7kBjYKjxQFNjLguktkcS47rInWRC6mz74l9h2t6Ggu4jkmRUeSGqHroG4L3EGtCF6inU/bdnmYloEFZloAUWa3E1+vy8orD+hClLPudQ+mGtguUk5qJMSglXC5tDS+vX3NweCz2PljW3qFsxqrtqE3O9e2W9z/4FrpvoOt4fnGB95HDw0O6IJSE6XxOf3vLctvx5OG3cH3LfuN59OA9VssljXHUdU1VH3D48D1evXrF43nB9fU1RoFSgYPDKVdXV7R9L8P66oBuo9BhQrcz7FYeZWET1hydHPLi4jlZrXj66jPqvMT3HbOjOZtXW9p+R4yKg0Ph9/WhlWDfjUFb2Yo+fPiQq6srfGjZNR3VdIGyGToXx9yoNLt2Rzmb4YOWUOekAil1jeoU+xT+a4x492VG44xnelRD2HJ1ec0H735A3/d8/PGP+KVf/h7T6ZTLi9fM53P6dk3XieuxLwI2z1BRYxXstrcE4PjkkECkLKR7K63F4Yh+j1cKbcC7gS9n0HnFLJ/Igh48MTS0nSxCTdvhFNi8oMPQe8cUj44Go0tyO0OFjOA6tBNljQk9SmUyLwMpajGKlhS5d3xUKKUpXCtNBMLpVBhiiPcE2yidVauT+jMWEAwx5GhVo4wlkhGUAZ3RZ6XQpbQiGlEZRGXu9ahe7s3eJhT1Gx6/EIUNhGArM/shX2AYFsrnUYlpYIxiYSIkV4XvO3RUWJOjtQIK+r5GkQkfrvdELauRMTIcDfGeGoJSaV2Jo3f/CFGnVjrEBESEQFRKKA1pFbeZYT6bso+R5e2Kdtfi1L3VtYrQti1d6zBGNHHOBbGnTgPSphE1gVaGtuvYbnZomyXypHzsdsIjG8Juz87OeHj4UJjnRS7221GPaUaPHr3F4fERXdexbBuWyyVN03B0/ID50Qk6y0FZIpqsqPjis8+pp5Xw46L4L11eXnJ8eERmtSCBKT4vKIW1OVmmaHzg0ePHxODZrpesVg3Tac0HH7zP7uILEfBHISU36bnf3NywWCx49OgRpnFMZlOyLOOdd59we3cNRs6ZyTTeB0nEevWao5MT7u7uODk5YzIT1DCzBavlBpvXhCABKSqDusz54osvWSwW7HYNPirathcjyrwgywuyomLbdWR1ApS0IjcZPva0yYI72DREzzKsEX88FeH68grnpOv67LPP6PueDz54n8vXF5yfn3N2djZmVbiuRSEo86ANLasJnRMUfLAFv7u5ZTqb452jyHP2jeSmlmUNiXSrM9DOsd3s6PqtcAcVFGU+aomjS7NBpDPtnEczZCsY4WIaRWZjAix6kt1NokjJPWe0TvhATFtQxNAhzd6kCGlICWhxiFpL1A0JATHp92mZBMb0GFZ+VqcmQplEn0qzwaRACGm3oiMy//uGxy9MYfNOtmvRR0hBJgoZZsZUxIiaGEJKChKajIRrCD+GKB1YruaEzEHw9HqPb/fDMiRAhBMeFrzZsfGGncq9GZ5WlqjvlQg+SFEcTnJdVuijY7K6Jkdz7VdYFVGhx9iMosjI85LeNaherKUzK0PrsixlptDJdtPmGcbIx5AFGmPE9aL1BDBKBON1LdtIHwO+EYvsPCvHTNGma7m6upLzmOfMZjOszdlt11zd3pIXFfODEyZpJuT7luXdnpvrSyaTCaenp8Sg2O22rNdL5vMDhnFpXU5SkRXnjOVyzWxa8eDBA7quYbtZCRk3y5gtDuj6ltXtDXVV8qB4wNXVBbvdjqurS2qVMZlMuLy65OGjMxmqF5b9PnJ29pCf/OQndN3BSMht25aqmnB1ecNkMqNtPZP6gGYvqWNGFxA9fSeLYgyG7WZPNZmNN1TXClVC2YwQ1GgY6VOehOs6nOtlEfRiC97se4y5n4MVuRVnE+8TQglffPEFH330EVpbmqbhxe3z0cnDOYdVReouPXq1EUAA2C7vmE6nBNfjWtm+jtvPKJkUeZ5L6I8S77a8yDBWci1824xGCSiVrIgiWmnhUgYw2hB8y77dMi8LAp7cRoxWYuWkxBJsiLsbFBtRC7vd6iyhrkmUHiPGZGiTSUFCHIaHaL0QJZ0qDiOlaAkqRymL1wIYGDL8YNuVGaKx4nmXtsWkWZ0QoQfQ7JsdvxCFbZgbhRClsAWfzPQUmIAZxOtIVqdSBpWKFDGmDBjhoMnKlguxLw3aYxBnCRV6cfY0ErmmI7KXH8DoVNhSYDgg9t5feZ6J5xOCG4yTxCkhs8wmFYMtu+t6fAomkS2ErFrGWIacy+AHzo/EA/Y+pPPAyKUapDaDg/DAL5vO71HLkbSpHbNaKBx5USTZUk60lvPLC2JUWJvRr7a4PnB7u2R+cMTZw4ecHh+x3W/ouo6bywtc2/HkyROadBIyo0YZU6+ycZ6S5+IGInMiLR20lqi91kfyUpxFNssVWlny2qattXRl82lJ0+wFafbHTGYzXr56jrV65NMN2/FlcsawNqd3sNnscL0oF9quJ7OBzolg2wfPbCoDeOcCEoasR/5i13XorEPntczQkoFj2/doa8iiSXMdhYpeOhplMErR7GWGVZYl3nvOz1+S5zlHBwe0e3Glnc8OhJ6k7o06JXA4x6aLatQBuz2ub2XBKytc1xOdzAMxCnxMAThil/+mbtR7T+j7gYqZSMcZyihB57WiJwhdJeb4rqQoclwPKkpeRnBOUMpEzQAYtIcxsQ6UFov+qOT8qajBWpRJCVxKLGKVUmNnJnNzi4ryXIKyMktTmYyHTE7UiqBldDJ0bHJPStc3+rXpP8T37Q85fkEKG/RdSB2bXITK+dEPXU5kuLcWNkoGnTFCDISosTrDKAUaPBUqBpSR0BFltBBj+x3a94Al9ELw1YokF1FEiXWX4JbUsQ0WPFKI/BhP1jnhpsUY6foOfORgNuNwdohVmu1WHCXOL75ku5Gos941qWMrsKaUQTWMq3OiPUpoMFCkwanrerpeCJhVVVFUJZvNhm0nJNWTlMxuTCas8uAJqKR7hX3fc3JyItud1Y533n6Lpu2oqgl3qw3tZksxN1ilKOoaHSO73ZZPP/l4tKuWxUbR947NzpFbsXNyMXB6esr56xfSIbqOui5R2tCFKFiYsex7URooJbbmLmlYzdEJn376KZNJNZJKz1+/5vDwkE8//ZTT0wdir0TE2nxMvCqKKhXTnN2uoekcbXNLPRPfsu12R1nWtK0nBtjvW3ZNYDIRiks0lmg6ZpMF+32LthEfIl3fMMlLnBPnk9wENncbQbJLOe/OOU5OxPnk/NU5Z48fjRKm4OQaOX/1Ap3ciGezGfSeJrTj4tR1HV98/jl5nnN6eopX0O22+GbLfHHMpKronLx/1aQeicaSmqVTgbejs7IP0m1GFJPZApPl4u1HROcTMT2wOYXRFBq0isSuQ0eNMhkxdEAkjGMgUDbRQEgUmBjxpkQnbh1GipV0UjaZTsisLYREKI5iSRbQeIxoP1NnZoy4BMek4hF7KGkAdNrejj68IQpR9xse3/w7//88hiLi0vAW6Vja3o+IiwtiwRzT3t0FcAGBjLVIMQSNzJI0Q1DMqExaJcwbX9dg5CMiMwUfQxqK6nFw6mIYbbgHudPwYZDtsqRE9Sjv8G2DiRKyUuSWqi6YzWaj136elYnJXoxSnKFwAkwmU6qqEmoHSjIWkt3OsEoP2sCDgwOm8znaWtbr9fj1octBqfG5EwPPnj7l6dOn3N1ccXt9w2a94vb2lklVcPH6FTE4ZlXJennLtC55cHLKbrNhsxJ7oPVmyd3tNVWZp62OH8/JZr9jPlvQtj2nDx+M9JTJdMqulS7P2oyoFZvtlj6Ixbi14j2HjkxmU26Xd/RebtCqqri5vhuT6e/u7iiKYix+w/ZutVpRliWPHj1KsX8rqqpOCwsjRSLGKIvBVsKiXX9/nQ2Gluv1euSLrbZrJEimT4YGEt5TFMOYYMvd3Q23t9e0+warxaIdoMoLTg6PODk6pipK7m5uUUhmxna1FsmVUswnE6ZVhe868J66KAh9z/nLFxAiZZ66yKYZO7ShkFWVkHTl+pJ80MFZZLfbfYXjOCDrLnjp3LKMTJsUcKRlx5AcNbSWe8snb8SITl6JkZiKUjQZ0WRoW2BsSdQlQVmiLlC2IqgMTEZUOQ6DiwaPwQVFFyIuQh81XYjj/ae1Rtv7eyOmLg4S2qrsfZH7BscvSMcWaVsRhYfgE8FQODM+aoiyZzdpvx6iTo5OkdZ7VACrZLBvkOyAaAw6BtAy9I3RoZ0EapgY7l0ZohcWZDIHBNBBUoxijOOFJCtyS9PtU+FIlju9SHlUiCKdMhodRPGgo2Yxm9KdngKBFy+eUVcWnQwgvfcJeSI5Usiw2NqM6WRC3wllJYZI33XUkwlVVeGC/OxicTjeiENM23Q+w8fAs6ci+JhMJswOFpSlWJ0XWU6zk7SnSMAqODuc8wc//MHYDWZK2Pnffu9dNrstV5fnPHzwmKIs2WzW+CC8trZvCTHSNT06BurJlDyrycs5PhpsXnP2IOf6+hKTCRG0cQ0mFfLFYsFys+bR229xfv6Ss7MztluRHSml+O53v8vtzQ2Hh4dcvbqk92vaViIAq3qKtZqua/n0px/z4Xe+S9NuEqWiZT6fc3NzxWazw5qMcjIV1URR8s67b3OzWoM22OkCNFJQE3pZJHcQW2tA1Avr3WakvPTB0zqZlc0OFthM07sW33mMUmx3e1wni3KVF2zWW9a3d0wOC7zryacTLl9fJNcVy+npKe16jeol18FpTdfsWK637Jo9Dx+/jY4y69s1Io0LROwbwc2bjSgH8uI+RNsag7aGfdfjvMGSrMtVKi4uyGNYQSSVktmzF+WOi4FBoyodlkEVs9SxWTCWqDLR576h98RHYrRp95WyguUuEXcSYwQ0MJpMi+pAReGKhjQ3H1LlVEQWecWfxa1oxPVBRAPCLhRtWtT37Wf0dL3YqwTcyKGxOqV5a01UHo+iyBRGiZWxNlHs24KY1wkB2IOX8AvZznqis2Q6k9FCcECbHFpVCrxNc6zUZYmbr8f5FLASFQYNqTiGEAUUMAIwLBaHXF1dSUgJfnRgCBGyrCDLLG0vKgdrLe1uL5bOSgz66rqmyHPm87kIz/MC1zvZxibPsK7rcEFY6u+99x67VorufrOl73v2+4bpYs5suqDdC11it96glGIxqeRmbSKhKkErdpuVdEATceYYEuY3rRCJ55MpxhiqquLVy5cspjO805SF6GQxBpNZ7tYbTFbQ9ZLcnuWGu/WS3ndUdSGpTZUU3tlCNK8XyaPMu8jlxTV971lv73DOcXUlluWr1R1N03BwOOP27jwtDpbLi1e8fvmKyaTi7OwhbdsDgSyX/FIfeurpDG0Ny+WSw7Oag4MDXl9d8vDRA9y+xbXSJd2tbsWdRYuy4+XLl2PnVNe1dJS9S91rz83VNX3bCQVo57ClwURx7jBHFdum5Q9+9GMO5zOmVcnN9TUmCphhVOTg4IDjx9/i7uaWh48fEdA0bjByvHcnLqpS5E8pCGY2myVakqIohSdZlGUa7LdpK6/JsXT7HV3rEhih0CrDjVs/RVBBVDPJvXeYpxpr8XmNMmZ03kBZ6a6CWD4JSiq0lOj8OOeGgRQPIfncKaOJPmKiKHSstWOavIjvFTYNvu2fYBsKvzCFjRHVUWlO9qYMBlJQhzIJDEhBX1HsogV2luHwYGsUBtR5kGopkXXoKFpAkWoZYnBpEGrwrpUJgTKCCAVBhEZfrwRyONfx9fMsgvsB+LC44Mgyg08i+UHe5EObClpIv1skUyAXadBOaCoImTFEEQ9Pp1NCSMEoWlEUJRniKTYEguz3e6ZzCdbNqxKTy3A6N0L+vL295ebmlvnsgBgjs9lcbt67Fc1+D0pcPdpmLzdqDCwWC9brNScnJ/RBnI2zzHB7e0tdSIDL3d2ddHtFQdO1uE5GCn3f03pBBTOT4ffQd82YurXf75nUkpCVZRmbnRTPphfh/8XFVQqW3o/bfqXEzaSsJZ5Pm0BVFSw3a6qqZLMdktK71Bn36fyKA6yYf8iCUZUTfMp1lWCShNBZS1bkFHlB1/doY3C+odYTXOjJioJ6WlOVMiv0ScLne9FzRh/4/PPPIShmk8mYxPTJJ59wdnbG6dExznUcHx3x8MEp88kU5zvOX75ivVrT8py33npHHFW0ZTY/YNd19z6Cw6xZqdHFYyTjWrEbV86TlxO0UoTk5qGDJ7PlyDLQJpM+guQwMlArdEzec7mMbFKknjKCekZtCGnbGpVJKgGTbLAygnICHGhFjFqIujESEunX82YgU3reSmOV3KdyD+p7S7I3VA3f9PiFKGwAVlsRGiQkUCmBoYc4NEWk3XfEILMCufUjRkUhgHqN1zK6LMvByM6ARvRwIbl1Bi/bTyMnW5PLINUHfCtIKTG56nY9odvTO493/cg6j1E6uQEVFXqIuH3eUxpJfl4ea7MkFTpg39yNN7ZKHeRQMOV9kyCOrunwkcRIL8fZ2XQ2E4KwNhzMZSsqYSEWidZLfLdkSOmcY1rVKekoY7FY8OzLz9Ha8oPf+z3yrGS6kOR25yTB6Ic//CFFUXB0fMLZwwe89fYjnj9/zunpKbfbLfOTA6bTmo8//jEfvP9tEcxnJSY27HZ7JlWNUhKU8vrVS84ePODu+jVZkdMvncw+o+hSz1+/JsZIlbZPL168SDM5AQomJzVnZ2f89Cc/ZbWCooiS6WBuRKFhNJ/+9BPQcHR8QN8VHB0uqCotThvzOauVbNOWyyW7XcPRyRkxdbi9M7y6+oL1dse733qfzz77jNiLWeZiPgUDWZnx5ZfPyMqCyXzGYn4o872toMivnz4HoMwLDhcH1PUUl2VkCYGd1LVYRzkxcby+vubB2QmXl6+ZlBWruxsmVc3z50/56aef8v3f/PMopXj9+jXKZFxd3/LwnbdkRGEyohK79klVj+ajfZLlaeOweUleFCNIoVUkdD2dD5SmQCuLtTKnNEZB9GTJMQYGwTkUeTnqM1UizXpVS/HXBmOSfBAFQdQVISJIqIKgPFFJhxmIqCA5DSZL+k9rKGI2Ip4hyP1rtMWiUqByoll9LSzmj60n//il6E/xUNDiMMqgVBKDxwTxJsg5qgxlHD4Egje4Lo5Ag7GKUCmy3JJlhqazqVuK9DGSZRq0oKQMSZFDtF+Moz+bzjpU9Khujw8GT0vrOnbREehp+hUh7lPLb1HaYHSBU5bcOjxROrEIIfYYMZVntZXtXlWU7K8Urd9jC4UykcpYvDOSw6gjeWnQGlpm0sYD2JzpZCZb9mRj887jt9FKUqxuL6+oq4y2bdivNxAV2/UOHS1lWXNbl9hMaCOPH53xne9+i9Vmx8N3HhKDxgWdCpIU3G9/6z1673n27BnbzZLri3OapuH108/5/ve/j9ts2V3dcDSpubt8RW4y7m6v2WYZk2rK3ksRPi4W5KFCdYZZccjl+XPW12uYZazubgh+z76T4f6zZ6/J8xT+nJKQVquGvN6x7XtcryiTNlwr2G8cvXcYo2hbODqdcXWxRrPEqp6gAjbL+PzFC5QpOSjmHJw+Qeucy+uGX/r1D7i4uOLVsxe8/fYT9jdr3M0aqzVt1+GaltuuZd+sWF7fcXZ8zPLihrcfvs1yuaQwGVkwvHh9I11MUPzkk8/5tV/5dfbrFXc3t5wcHLJer8mtyKlClTGfZ2x3kZcvlpycnLFve/bbHXem4f1v/Rbfev+fRleWLz5/ymRe8+F77/H6+oKbi1fYQkJWrLXUxtDtRQJ2fPSIm+trdKbRmSWva+FHBo/KLL0O5HVJYQt8sOjcYqJQq6KSBb8pJEvjTaeO/TC8x9w3Gwm5VErUAkQpIUEDKZDJ65h2SskwNhG0c3Xv4SZdmpFdi1KSIaJ0ojUFQnILvi+sf7KS8otR2GB0h33zxH7dDmXo5lwv7XcIEZM6OmMylAqjJg2tEmlQGNgq6U7HQaZJK4DsCNFJrkJAXDqMxWkHw++McZyzDURVoxSksIoQ761eXLKgVvIA0XlCjBQ2w+RCNYl0whNCjP5kQGuS7zwjEgqMDroDwleWJbvdDqM9mRFFxWq1FCH2ZiOETlPy4OSRFLamZbNaUVQVITjW6yk2K9hv9xidYWzJpKzIMz1y0rIs4/jwkKaTudjp6SnnF6+5vL7i7ffelaSuznF+fk5dlJRlNZ6fwUZJtJjC14peOrKqqug6+f3bfUOR5QmYAaX6UVgdY6QoBAnc7XbEGMmSDlEZ6fh8HxNSqWl3e7S1qNgLGTbTox4yLw3OdcymB0xmhzx79oLLy0tiUoUMKfKr1VpyKkwO7NDast1usUZs2o3SNM2O5XLJwWzOZrVO10FgtV1xcjJns12y32x5+60n7Ddb6mnJ40ePUCrSGbg4f8F0OiXLNe+/9w63t0tevGg4PT2h3e0oigJjFacnJ/z+j3/IixfP+Of++d/m9cUFfROJlcc5sTxyLpBrIQmrNJd2zqGdw+iMLM/QmaVrfJph5ehosSqXHQpOdhhp3gWMyKOYHwwGEgGiSdZIg/ZVoZJAPaR5GDDy3t60vB9mbF+/v990xB1AkJ/nFCL//hns2LTWKQru/sUNIuWBgBpjhKIgRkXvO6J2hBhpmr3MWjLIC4X2Gu16mkayNetJyejSQZZmY4E4FLZkARQBEwxECf2IXUdwXqgeGqITxNZHRwz3NIwYPZlOxVPJzG94u4KTbIBMC8oWeicyoajYNg1RGYpCUFwXFLHzhF62utPqaITpR+Z6KnBd1wnpc3uNcx23NzdyE9U103pGZoTfdHFxjtaW87s1MUYODxecv3zJarVkNpvjoyLPS7SyLJcrjk7nnJ2d8eyLz+m9Z7aYE7Xix3/w+/y5X/11Hj5+RFVV/OAHP+Cjjz6i3e85PTqm73sOFnM26614mGWGGDQq+vR8G7quYzabYWzk6ec/YTKpRNmw2ZJlGbsNqImnDbIln80mHCwW4kvXd1ijQVnatqPSYinujEdjKfKcpmuZ1xP6uOXyZiXvp2mJqsXmJTF0vHj5lAdnHW235tmXzzk6OsJqg+t7oo+46Lm7WbJYzHj+9AVlWZKXkt+6Xa05XBzx8uVL6rpmvV6SFznLlzesthccHx/z4vk5GTCfH7DZ3XFxdUVRFFwtL9lut9zc3PD+++/z8cc/5uzBCVeXryjLgswYXp9/xsHBAQBvPfmA1XbDdz/6kF274+/9H3+HX/lzv0bXOy6vXjOfiT42r+foqLnb3NH2HbnKUcbiiWh0KkKyZdQqB50RKYQCZQx5mQqNjmS6euOOvJ/hjRpVY9AmUUTMADQka64o822f5sUGsf36ulLg643K178+FMABrBj+leObUz3gF6Swwb2V8/Dih5V7ICLK6isWz+L5LsNp5zQhBtbrLUUvgm2lh5+BzsU0u9MCbUexvw7JNhmt0MNJSzw2fEevDN5kMnyNERf6xHnqscakNw6IEnjRh4iJCClWMw51fddDjIR9S6kM0/kM5zL6ZYsPkBcFIWYSM0bAp4si04IqWWMwKLq+x2a5ZHiGyPXFJav1K7quoyonoDyXl6/ZVXum0zmPHz+mLGucC7zzwQeSuNV17PdbJkWWOifH3d0dRMX1q+c8+1JmUsdnpxwdHnB9d8ejtx7z5MkTXl+e8/L8Be998C1ur6/4gx+JTrJvJfGp2W25ub7iyZMn3N3dgg8EpyD2OC+vaTKZkBeW7ckZd7eXZGVFVLKozedLqmrCZrMlptmitXYElQbu2jCicM5RZRW7tmG33XJ4eEDwhqbtCBEWCyH87hrHvlmT7y1dH7i5VcwmU5SGp59/wZMn71PYDN/1bPYbHj9+zGeffMakqFEo6sJwc3lDjJGjA/WVa/Tq6orbuztKa/ji48/JqinrbcOL1z/l8mbNP/PP/nmImn/wD/4B3/ve9/it7/wq2+2aJ/Uh7737Dl988Tnnz8+5vbqkrHIO11s++OBbYJKfX4z43lEVJdcXl5g8I6JYxojNMqZGbKU672hdT+McWVFR5zlRafreE13AhcFIoQCdEXSeeJ9vbA11MRYWsRoauGtya3ilCDGpAaKQcDEWgsJoncC81J1FTVRuJCPDV4vVmx3cIPF5c4sqH3r8V44/gx3b0KG9edEMqecDKgpDuxqxVpHl7h5G9mKwF4KFqNFW4GPQdK1oTnUyz5PfESBLfztogh7gaA1JPOyjJmLGLWiMghKGIPIUUXfFBFKkLaj4u4xF2Xc9MQRc2wliWQt6OejpQFBRYzKi0skaWnzj3rQLGvJERQy/Gy+SAQ0zVnF9dUPXOQ4OTmS7HoQe4/qep0nyE4IU2s1mQ9MIIHH5+koSqLo9RpXc3Szp0uyySFFueZ5T2ZqLq0uUigTfs7pbUhWyJX7nrbdZrVbc3l5zdnwypq+LVCxglU5SN4s2BfP5nNvba6zJaUOLSL3yZC3U0jZCRSBqMlugcLRekFoS0u19T1EXxKan7wPG5hDFiTb2PUMAr7Ukg8WO3JaiI+1b6toSohMvNCMSr0E9MEjg6roGmtF2PMsyDg4O2O9bPIrXV9dMJjO6zYajw4esdh0vXl7Thcijtz9A2zmHx0d8788FDg4OuLrd8dFHv5SkZy3vf/A9vlNYgutpuz1/9+/+Hc4vl3znuw0ffvsDbu82PHr4gLbv6FPGgS1y2nb/BoKphaOYOGOCXgpFo/fJDXjs3kQtkJU1MUCXxjbKKozK0/UY791vvR+NMIe/J7djcvIIP7ttBJKi56tGrsPW9OvHm13bH6UF/ZMgovALUthAfSUzcCAYDp3bcEKyvMDYQNN02CxDGyNe9kZDr3De4bzCK0PXiz3rLe1cAAAgAElEQVRziBCiR2tFnluMla1dcB3KCAt7+FvgEg+nx0VJArdRbHBi19F3jqKoCF66MOcCeabxvZPta0I3o1Kpm3TgPH3byZan61HWUOUV89kBd8sNfe+ZloWIsNu9kEC7Dm2LrySeA6MzRN/33Nzc0PYNT5484cWLl3z7u7/Mer3F99D0EE2OynI2my27bs/Li1eEEDg6OKCoK9abDa7tyCtD0264vml59aLl0duGvJjyD3/3BxydHDE5qEEr3nnvHcrCslutODk64vXrC25vrsjznLubK9brNXWZs7y7GV1xg4kQFLbMINpkptngfeT09AE+9ORHDyRVvuxomoaHD5/QNA11CojunEN1HXqm2Wy3NB0UwdP6wMwWlBXcrW9ZHJ6JxKrbYyw4L469u5VjOo10zY5OOzbbFQrDrFdJxN7Rdzsya7BGdKAPzsTxdr/fs1xfcXJ0TNd1fPnlMx4/eotm37NabVjMT3h9fonbTWg7x8efv2DVecrJnL//j35A638g8ycF1sAs17T7v4lz8Ju/+SGTacVnn37Cv/qv/StorfmLf/mvsG+2XF695G/973+bRVXy5dNXVKXh4HDOZrvj+OyUIs9HupH3nl3XYsocqxT1ZEFRiSg/dm4E4LTJyLKSaEocyZEjEWWV1uRJUH8/41RElYT1b0TuGfvVYibrjwTPoMQgVhg1w8ztq8Xsze3l0N0NjxPvOzZp0ERPDSSt6p8xuodSXx0kvukUO7Su0h4zbk2N9eD0eJKEX+bRuifXBtww1Ff4kHg+xhNIiVFKfNmUskhwbxK1R4UT63lciMTepSGqPKaMSe6lw4kWaxcVIjEEYgh4IDpRB/AGP2947tYa6qJniWwPlVJopID5IK4SJOa4ShdLZi1ayTC92e8xWvPBh99NXKeSfRtw3vDBhx+y3e55+uwFq9Wa29sbdl50pocHx2yanuuLcx6enWIyw3a7hxg4Pc3YrHqurzxF2XI4P+aTT6747vc0OtNsVkvKumazXpIZgfObZs+Lp88wKDKTM5/O6LoUGqMno0V379oErEgX5pOjSpFX1NkEH1aU1Qyb7chyCTEuSulQexeoJ4re7rhbbVEGdvsWk+fYvCQLmixbMl8csm868qKi7TpiNGRZTt9vx3OfPCiAgOsbMlNjFKyXd2w2DUTN6fExTdMS85z9djtugbvO4Z1jt+3oes9+16VsiYJXtzu22z3n1y1bB+31DVsHfRiG6aACtK0ASkrD7/3BF6w3PWfHNf/V3/gfqOqS//P/+of85b/873L6+H0ev/Ntdstrnr265HBWpVlvJCtXzOZzcqNHQnbf9wkS0/TeU2nZsQySMmuSntMMw3kDRom/mRatZki1JCjRe0bZ8/N11eWbbjhBkbIQ4j3HblQ8/2wR+nlg4ODe8fWv/ZMevxCFDRgL2Ndf5H03ldBLbTEmDSYNo04uhIhWkvbUdA7t0lutPVlu0NrTB0EQOwfT0uIiokKQJ4CLsmq4XtE7kODvjO2uxbeBzFa4fkue5QTnZZAaklGmkm2z61IqUtvi+l7CMIyWqDYU/x93bx5r6Xnf932e5V3Ofvc7+3BIDkWKiyiKmygpli3FdeVathG7QOo/4gJFUCRtEaB/NOi/DdoABQIEDRrAaIDacOrYSWzHaGw3TmJXi0lZIilxEffZ586duetZ3+1Z+sfzvueeGQ4ljQ0DdF9ieO8999yzvOd9fs9v+S6p7qKUh8TSiif4qsBkBUmrRTtNKMoylGhFQbvdnr+/hhN5cHCAMYaVlRUORxXTqcHYhFZnjetbFzh89W0uXLjA1lbF+gb0+202zj5MNs3prKxRTgumxYQ3376BwqO0QNigWHL8+H0Mx4fc3D4EBWdPLTMdz1he6XH90hXSVuBMjteGSCk5d+4Bdrdv4p3lytYlTp06RbfVRgnBeDgkjtrYylEU4fGTJCHPgpJHFGvavT6rg2OsHz9Np9OhLEtu3LjOsSRBqbAJ9GczPI6DmzeI9vbmSrgnTp0h0glrm11k0macFXSX1tjbnbA02KAyGWmSotU+3olAT/OhfRFFCZPJIVGkmGWHtNIBiIrpNMe6DeJE8eb3X+fMmTPMDqZcGl2s/V5jdncPGA1n3NzeZTrNmIxz3vogIytyhg6sVBTeUXqJbVpRItCCCgWlDT4de5OKbtriyrjCW0Uxzflg503+7bf+W1Lg577yBX7+p7/En339a3zn5dd46IETdLotjA1yQl0H3SXodXrotIWIgoQQaHQUFFVaaRvnHJl3qDiIAzgZdP+CFpqqMZGBahUwtXoeFaxZzLaa9VgLU0hfA2lr+mAd1Brqk3QLWdkd6/y2tc2HkRCL7ac/7/GxCWzAh6J583Veltb8UC8FOg4wAW1jLJ7ICYRytbR0HlgABBR1VYWMDS/R2qNkRFUZtNdILee2YMbkocdW9xEEUdDw8hpXO+ngJdYAJvTUrDCB4OwDo6Aqg3JvVWdilgDzCD0nh/Ia4RyxTlhZWiVWGdZRK/5aqiLHmJIkas3J941BSVEU89J5Z2eHqLeJ8wkOyWhqaPWW+frXXubcueP8nV/4Ihsb6xhvOJi1uHrpKtZ6qmJMty9ZXlJsri5RFBlb1y5z6dIlhNvDeUN/sIIxBQcHI4rS1gBOx95oRLcXMZwG9/bJaEwchz6bcI6L73/AI488gikrptMp/b5mNs3DdDFO565badpGKUGn02E0LTl+/Di39nYYDAasbp7CmBJjSryUtAdRYF2UGcdOHGc8HjMtKqKkRVVZrJA8+NBDTMY5SbuFVBYpHZPpEImj203DRFwuiBhUGd2VFrGGrWuXefyxp8C2mQzHvPHaKzx0/mHKbMbuzW1Gk0O8U5w4MWAyqnj3nbf44P1tnnv2OarykPff22LiO5REOCmYeSi8xSoVZu2BVgN4kk6bcjabX+Mj6zCVpdPtk08mRDqiMhUew2///td547U3eewTD3Brf8SxjRWkDB6qw/0hURQxGo3oeLBKBY1BY1karAVcnQdRO8rLqGEONL2vWu/MM/cOhUZCqzrK9LS+rQyFoP/hwjf1mqx9GmjWWwhwTU9tMYjddb3726ehd7tfeICjQcOPcnxMAtuHU9Q7v198w4sTlka5wRoQNTG9qm5/9AZGEsrJEOgqGh+EAPeYq2w0z1P3CMo6UDnnKIuKCF/rxtl6chNOt615p4tTvKZvGGgogeTbHFpHRDomigy+ClJFri5vpWwoZAtjdxsUMW7evMlsNmNlZYVbu3ssLy+jo5jvvvoaFy7s80u/9DOcf/g8VVXwzZde5NatbV58dYvtLQsOojAfYbkD3VSyub7K4cEOVQmz8Zg0FeR5hlTQ7sBoDEmas76RYG1QwxjPDhkMgn6/UmGBVWXJ9evXGQwG9DpdpAzSTdNJNlcZybKMqJancbU6yHA4DKY1VThfoWHvyLLpkbSRjOj3+xw/CfHeHl4cBBK1D59lt9tF6jAAyCbiyHqPI7MRpSLAghOUpWU0PpxfQ8PhkMFgmaWlATduZFy7fgUhPXkRcGXjUcbu7i5KtDl27ATff3Oba9eucbA/YlKAi0PbQiVJ8CgwQeJqwcEbgCKfQaTAWGQcYwqDjBOm0wkoWdtGSiIZgy25dG2fcjbhrz39CMZM58omjVZfuNarwDKI47qF4ubDt6ZXHXyVbs+CwnV1xyqc/92iefcPOMTtjxkYiEe3LQaquwUt7+/Nx+Bejo9JYDuKJ0AtCgggkPKo96YNWOFREqQOWDKfgKjVLewsI4oExsR4HNEc4KrAeaJII1VgBRgVRPVmVZCXDvIsCmcd+Synmk0xpiQqDPk4w1mHMBIpYgQGrSLA412FscGnMWQE9eRUKhAaHcnanVwhI0lE0HrHCSIt6fZaHIwPwXvSVpdqCsIY7HSbbDJhMFgiUgmzcoyxFYmQFEZwcGMGDHjxWy8zqeAX/9bf5Cd+Zon/45//Ftu//vtcu2WJ2wnZrKKU9cUm67Um4NIUxMwhDnZQc9qKY7mEVSPoKU05rjAS9nchTjTjcUGrvcJSTxIJwXhnh5m+yfaWYe3UCfqbbbwq0YTnkSaipT3VrOSw2mM03qfT6dDthcnoZDLi4UdOY21GqyPpL/XIigprodUeIBEk0YxUJbjVsww2FN1bu3QGuxjjWFoJYpsHozyIAwCDY6c52NtGdzTD0T7d5R6mLHCVoSqC36bwkuPHN+fX1a1bV5hODtAi4r6T61y8cJW33tzhzJkuojvg7In7uPjBJa5deI/xGEYj+N7kFpmBUneZmhyPIbKWM6sDhE65cmOXcbBPAB08FhJTYG3ATLo8B6FwZRHoTNJT5jlJLDmRxOyPYaMP5x88Q3u5g8lLZCLo9xJu3dyim3rWT56k3UqxIsWS0ummxL0w3TSAlxqnNcLOcCpgOb33tRqHwPqANwRqOTBoeLR4MNYiagB607zXPr4tQHkfRCag9hep/3l5e0k5n9g2v2+yuYXNfjEINscczEszUPjRjo9JYLsdoXw3EJ8QAq8Fsj5BkazxGkbOy7z5ThZbbJ22KSXRUqEihY7C/WKlUXiElZgKXN0XizRBlrwKsAhnKrJZ0PBSMjyvNSVC+rky7vy1hcH5PJtUtbKoFDp4Rta3xzIOlBQlIZIYZxlOg3O6W+B3VlZSWktpHEp7huNDirxi/2DGaFjy7puHXJ/dZHUl5Sd+6if5n/7X3wgXcwLTIuzPxcwH27O7pPfN6/VNOYIgNqCjmMo5Jk5RCE+JQRiYVGHiqnyOY4oGNlZa6MThtcRlhtJW3DLXaR3ToadkJnS7bSKVYMpg9tLutOoLXDHLKpS2dLs9jp88g3FBo0tIj7fQaofy1UvB0tJGrWXXodNd4u233wYp6PS6QTEkCZeyrQydToft7QCa9SblxvVrtNttsul+jYd0vPX6NaSEzY3jDPeHiLU2rVbwDF1a3uCFL2wSxzE3rm/z1vfeZP9gzM4hzCowst5MlcW5Aq8M1kGC49iSZmmpjywOubgbjH9GxoOOqShrKHjTlA/pflXmCKDfilkZDPg7/8Uv8r/8o/+dv/d3/2twFVcuvUWv1+X45gqnT52kmI65fv0q9z/5PGm7jUwGRO0uVnpUJIPbVu2j4BxIFXBtc+iSC793BPGI2zOro/XXtELCL+remrsjqH3Uivb+tlL0bvf/qIztbiWsF/fWd/tRfEVPA78GbBJi5q947/+xEGIF+E3gPoK36H/uvT8Q4RX9Y+ArwAz4Ze/9Kz/seRYD2+JJufPkHI2L60GDNXP6kZKBfq7CmBXZOEypQDnB1uNO5ZAiwnuBdCLowHkDFrytwBH07/MCV1VBDtzXl+J8x5E0W1XYeZrXX9uHNZO4RkSvnlRJIWt+nkSJ0LyNoiDVIqOIFsFGLffBB9N6h61coAtpR2kEs8yT56BbCWcf/hS/9bt/GBrVCsYFNS0/HDGaDPOR51yIYJzhCYyJiAYoLLEIcm8QFmIb/CZ2d6bEMSz3EnwV8d6FjKgF3eUCoYLqr7cFUZJCLLHOUFZhx24EN5XWDEcjVlfXGI1Gwew5rciNDwToWg/NC1WrTkjiVpt2u01pHXllArhXClQcMVhZZjQaEUUR7aiNM8X8mtjfC4q30kvKEqQM8liRaOGdZ7g/RasWN7d36XZLNjc3eeeddyhLQ9pus/3BISoVjEcgY8F05hEaUDI4V81yZBwuq9JAPjmkjDwt5UkABOT1ec6FPMpQ6i9SBK5yt52Qzwqe/YknsVXOQMPG2gpvvvE9TJmzvtQjiYJpdZZl8zaMUkFmWwjxoaATFJ5reSxsaHc4hZBRUIIWHhXF9etoEojFCb46Ckb167WLUvl3XE/hb5lnhneu3TuvvR903C3JuZfjR8nYDPDfe+9fEUL0gJeFEH8E/DLwH7z3/1AI8feBvw/8D8B/SnCAPw88B/zT+utHvwnCCfPNKNmBrbWmFMybv54A+ZD6yM8gkkd8ygYy4iJRNzE5mnraQJoOASYGFwDA1BQlnA8wEGeQzkFVYYqcKpvgqhKLx/uSbqLmpXKj8OldwPEI3+iN6vmIXUo9x6NJKdEiwsHctELU8tHNRZAkCc45kvg4zlbMyirYrCmFjFMOx3tc28ooHWxlghsvvkbmK7SMSeKUSFa1ooNidbDKwcFBjRRfON+iOet1C6AGWraAdu1VUDjLxBsgQuGRuSIFxmVBOwMzKsh3C44fixgsd7BTT9qJKGczbs5m4Bz9zQHGBHPe48dOYq3l1q1bLC2vIYSg21tGyOCKfjiZEiVtev0B02lG3O7gEOi0Q1UVKNUiSXq0O444abN98xbD4RAdJZSmYu9gnxMnTlBkM3pLAzaLE3TaKUU2QwlJVVV0+yW2sjhXsnUp+Kx2uyXWO/r9PuPxmKTd4pnnn2NYO7zracT+DHw0YW/qSE+uYazn0o2tIN9OyJBx0JcBqhRpycagw3Q6YmZhkllMNQotiCYc+CCyJbylJaGaFTx+7gR71y7zp1ff4b/65Z/n9e98i9lkyCfOn0WIgjhS7OzskFclzz33HL3lZRCKSCcoHRNHksoHJ3hHow4cHKYcIrRTREynHQC61iuEajJdWwe0D3M6FzmfAR71w5v9DVxrEelw14ztLnHrrhnbPTIPfqh6m/f+RpNxee/HwFvASeBngV+t7/arwM/V3/8s8Gs+HC8BS0KI4z/4SW57vvnXxSzuI9+AlGgR/imCgm7DB5WioXQ03glBIFJJ8NYFhU8TfBawDlsVmKqkzDPKIsOUM5ypcM4Ew+Na8C8IS8m5Ztv8NXq5ADhUNTRFzZ2nlDoKcIuwlrDz1kG55scaYzHWU1kHUtZULYGpIMuCDVqOY+oLpIyZOcM4nwV/RhHef9rSKO3nhc9cx/TOU1q//hRIEtA6AK8qLBWeSkqmrgweBipFyBbIJKg+yBbjccboYEw+C5Ph/qBLu51SVjlKSVRdBqVpiq9Nh1vtLuPxlNF0hooTWq1O2NyEJG116HT7pO0OOo5BanSSopOUpNVhsLxKu9sHJYlbKdOsQEUR/aUlhNKkaQsVJ8GdKYpJW12iKCaOklBCWkijwD7Mc0e/32U2Cwost25t861vvciVq5d45923eOgTT/LBtR1u7GbcnBS8f22L63uHVIRMOwdQHbxKMB5mBUynhpOnT3HixAprq13aumY6+oV/OCSOVCqcg34CrspYbqf82Oc+y3defJHNtVVOHj/Gze1tFAItJLNpxng8ZTLLalZBMLPB+QDZ8B8OSkqpOUUtiqLb5Ogbhei7LsuFNdgEqoYNtMjj/ss4fti6/2HHPfXYhBD3AZ8GvgVseu9v1L/aJpSqEILe1YU/u1bfdmPhNoQQfxv42wDHjx8PlmRzsK0BQfD/rKVNnD9qPgK32UcJEfT9m5IujkKKH37ng6Gy82glEASJb2GqehexYCqcrShdAa6gnO6TDXco8gkum9aS4R6tqadtTbAMr9choAqClc66IDzoStAxSTsJvqciGMvK2ojDC4hVjBfQbreDd0CR0Wq3EEJQlBJjSqyrsCbD2MZrU7O2kbK7LamKGQLIXRF6ataBE1gZDExu7V8Pck21U5IxBlFfoEqIWsOtmeR62hKWOp5pNkPFEld4ytpYWgIzUSGswNAhxqG8Y383w8uKtVbC/t6YTktxaf8CSkhWT61iisDmWN84RhwlHDtxkvEkJ5tVdPot1jeOMRxN2Thxgr5OGU8zrPMst7tEWpJ0OrTKIAWeVxVZaVjudPnk40+wurGJjiTdwTIHB3t4qYnbHSoEre4ynVaKE5LpcB90QpY7ks4SVuwyPZiwtJIgtebMmdOUppqrD3d6PQCe+cxn+J1/8RozpxlZQwZUCCxBD3BcVbQEzKo2UBEJxTAXOGn4RG+Vp58/S9Lp8Pt//CdcvbZLamQQZwCiSJEoQZFbnnrsHK1IkUhLfrjNv/yN1/jpr3yJ117+NseObdBqKXZv7dHupewOdzh28iRPP/8CZdrFe8ksz4nTLkVR4aVBxxInJd4rZN0aQAbHJ+8JzBvrcfaId2tq7rQQRy5YUh6VpbKelEqlbws6c1qjq2VyFtZqszbv1mu7G1j3Bx9/SVxRIUQX+NfA3/Pej+54oV6Ie1OC897/CvArAI8++qj3ToRE6I5eG94iZY2LUXZ+QpyosTjUbASpiHVUg2SPpIWwJoBQfYPTsVSVR9k6m/MSfIlzJbPhDsIbzOwWRb5LmU+xWcjaokiFFN9YpNYoFE7KGuwYniqUlGLhw/aUZYVSDkEg6CNC+zicv3C/fr+Pc47CHUmex3EaOKSmIrOOyWSP/d094iSi1ZYcP9Giu5VjrcNYKH0oMa21dWPYMcsD0l3hqWqZ8FYUk1cl0nsiW7M7vEPVr6bVEkTSU1UWUb8npGdWOCrviRNJVmQkdXasi5LBcsp4WrKy2qGV9iitw9mKfFZgbKDAfeLhFO8F08mM5aU1CmMoC0NuRqyurrJ9c4f+8gZRq0U37YKUVN7Taad4pVFJoAxFrZQsz/BKs7KxyWg0Ym19BS9j1tbW6C1P2Nu5RS9K0EIwEJpefwVblRwcTsmKjLjd58y5LuPxmEuXptx3n0JiKbOKg909nN2l1xtw4e3rvHN5GxvBsc0+v/TVr3A4m3H1+nXefvt9FILpcILPpxhviJVge1iwM4SLv/t1fv6nnuf8+RW+9OyzfLD6Pq+9cRkfxxyMStra8ugnH2Zvb5fU5zz7+KfRwnH18gV+/NlPIzy88NnnUAisKxjPRhhnOXf+YT71mac4nOYhu1YRRWbRylGUOToBEUV4woDLCUOkBMZaTOUpS4fzMd6BcQGkGwQej9Q0GtGJ26ibdfP+Ts7nnb20BmArFgLb4n0Xb2umrz9ivPjR7lgfP1JgE0JEhKD2z733v13ffFMIcdx7f6MuNW/Vt18HTi/8+an6th/2HPPvP0SlOrpT0D2r02vFEdZmEdsWRQpR239VUSg1QzCp+3hAZbJ5GWuqAmcNHgMux9sSb3PwBd6aoNIrg+668G7uO3r0AakgsyyOwImBzhMEE12N/5JSEsUBXxQlMU4F1Lav8kA0b7XCz75GcltwUoPXdNs9DuWQLJsgEHS6PdpaU/gSb+vergdn6osstCqD7JwMnFmtoNfvUO2VoTRyJigO16e314NBr0+kJqjSERNAnmhFVWah1LK2tlgDg6LyoSxOVERelHzwwWUSCWUBz95/hhs3b9Fqddjb3Wdj8zStdp8k7aCTmIuXrtDpdxhNxiwtrWFqjmJ/aUBZloFupoLp76zIgntXpIhIkVGErCpSa2l1u7SyjChNSQW0+nkw8nHhsygyiXGeY6dO463j+tZViskBOo5YW9dY6+l2lri1fRUpYj54/xqbm479/X2khHMPnOLBhx9kcznlxLEe58+u8/nPPEEct3nvrff5k5e+zeHhIeM8bBACSAV85zuv8Norr/L4Iw+x1htAVpDEglMrYTK+dfkDlpcH/NgLz9Jup3zw7pv0uim9Xo9et02vlZJGMYfDXdxUkGUF59ePoaMYGadhoCQjZG3qkugEJ8qw4ctGzy9Iezk01gSssNYa70ASHN6AOcyteaywlm5fe83avPPrndnXnWt48ee7rfcf6fhLmIoK4J8Bb3nv/9HCr34P+FvAP6y//puF2/8bIcS/IAwNhgsl692fgw83KpuT0gAOF8ng8g44SHP+tQgct7k6LnbeY/CNMgdQVQWRMMH9yQe0dYgiM6wpmE53mU73cCYP4ob29pMaXmuD/5HzHtURv1XWWVfwEA2mMOECqqoK37gMtWKkkrVoZi3RVA8SIh3hTAiikUq4fm2LIstxzrC2sUSVFXTjGGU9QgS3K4cEEdfS28HtywuPFwFkHKT/DWmdnnWTFGsMpjKsLS1z/7mYIjfkE1d/LhJFGnBXMgfrGRlQNfo8JwS/w0nG8uYKZTEmK0F3od2C1157i9WVVQb9AW++/jbDccHq+gYWxfr6OidOnGJ5fYW9vT0Gy6vE7S6TaYZxoOOUynqozXp7vS7WBjlxpRTegZA6oPYLCyKirAReagbLa1hjUEKgIk2UJiyvrQeVjKLkVBTzxpU/5fLlEbaE5cGE5599nPG+58bWDj5XvPnaHq3aqTHVGR+8+RLXL77IbFawcXyd5575a8TC8/CJZT733/0Mw+GIr734XXYOSvLcsHNjH1Up8mnGO3/2OmUGZ9YVabvDY088wSSf8cSTT9JqJ2xvX8eXM5Qv+fwLX6CTrnLp4gfsbd8im45ZW1tBCMm5Bx7kkcefoLCGyksmBwdIH9FJVphMJsH31eQob4Ium4qQ9XBG6rTGrLWI6lLU+kCtcs6h9BGOrVmHDYg6rL/wtXK3Z0++Xo++Wb+EGKk/ItgdrZ97O+41YxM/7A+EEJ8Hvg68zhF8+X8k9Nl+CzgDXCbAPfbrQPhPgJ8iwD3+S+/9d37Qczz26Cf9v/rN36gnj42w3RElQ9S7j/S3Z2bNzw0eJs/zoHaQFcxq7X9jLTL4R0EVBgCmqpBmEqZFxRSKEdKXFKNdvC3JJgdMJ4cARD6YgyRxHMpdER5L16k7LgwhqtgSa02DrEijwPFMWm0cIliWRZq21jgcxlUUIgQ4ESfMipK9wxFeRFjjcIUFEXoVs9mUyTjwM1979RUm05y1tT63DuDa1oitXchRzPDkCIzwOBkcixAKZUF5g0aQEGAIKy3Jj3/+WUbDA9556x0eeeR+kmiFP3vjDW6VJaPSMXGEle2pbdDqoCYAJJHSrCWetqh49oFljq+2mA1vICPPxvFN1h84y2Q84/BwxP3nHmJlZZ12q4sxgcVx6tQZbCcYzbTabWZFSZIkdHsDDqdjkiRBR1HIiF3TOgiljlIKY9zcjb0oKrrdLtYL8tkEcFRFialyqmIKPjimz2YzbmxdwxVTsizjjVdfY6mzTLfdpxgb/nljG7gAACAASURBVMMffZsYeOKTT3LpwiW+8JVn+d5b3+Pi5ZssrWuGU8NDD5+l015mNBrTSfs4XfLwww+TZQXf+farCKH44o99matXtvjSl/46f/AH/w97u/v84i/8TV761je4sb1Fr6PZ3dum1UpYGvTo9/scHowwxnGq1WF1JdDapFaIWPLQY59ksLqGjSMssLSywsz5WtwhQuraxFhqVBRMURpNs9x4VNwItya0W5vhShDB19X5AlFLfAshFuS4F3kE84CxGBvm39859NNSfej3/o6/FUKwgFCpfX3r+zeJQxMMXZhiHzt5/8ve+6d/UDyBHyFj895/g48maX3pLvf3wN/9YY97+9Fgvo6ytLs87vxl3HUcvHDS7pw63q2OL4oi9LuqClcUYHOKbAr+yEd0Xg43kuDWAZZIKUSNo1PN67AW60Gigv4YofyMjMEgiIRAuNCoj5KIJIqp8jHWGmbTafB+NAZdT0iFAuePKFqNe/ra5gbRwR4AG5treCGZZIdk08CkFQujjeZ9O29IdEyqFX0taQnH8WNrqCgmilNOnDrG6fvOMRo7CmvIiqBQspCMNp8CAdQbzDmUA2s9VsBoMub0sQH7h57NYwqlNEWWc/+5c+RZyc7uIWnaAR8waXErpXIWb8UcWN1ktYvmHlVl0Tq4GFlzlL2HibOd31epiDRNKY3DaF27Ux0pqkgiXP15bhzbZDbcI44TTp89w8H2AVtb1/n0o8+wsvI9zAzW1tbY3dlhd3eft9+6SdIKGeL588drVY+Q6QyHB3QHKVVecLi3z/KgR1kYimwaZJz297BlQawV73/wNoNeG8k6o8keRTYjTRRJEhPHEWU+Y319k0tvvcflSxfZ3b2FiiRf/fmfqz1NswC+lZLZbEa6tMzcKarOqByLVY9HyiMo0WIVhA/yWl44rLPBTOkvcPwg6Me9Ht57Gmer+ePf42N8LJgHzSRGeo8VR0HLNvuF9w3I7Y7afaHHNn+sI56cEMFTwNc+hYiAanfOEemaOyqCRZsrG/20kqrM8cbihSdK9EJQEzjvmBUF0oXdy1bBSbySQUo8jdIgN+QCydtbj4p0UHhIIhCesigQVtBttUFHlHv7eFfR6M1LKdGpxlTUblZirsN23333cbOV8O7b7+EpwEAiIZDCBB6H8eBr02bvAzjZuIpZafBVKCF33ruK8Y5+r0PUW+HtKze4tDPk+tQQ6PjMBQfDiQ2u3Q6H80GQwDhPVgbA681bhmx0ia98+ZM898IzGGP45ssv8ebB90mShBOnznL67FmUinA+mI6srW0S99LAgXTMYS/OOdIoxgkoqypMvHVM5UPPMo6DSKYQgrLWHIui4DpF43cJyESQJhHeJnhv8S6h7T1ra2uM9rpkWUa/0+fFgxfZvnCJ77qXefb5p/nut1/jT77x70l0xHt/fJ3PfuFJnnrmKa5sXeTK1hWuXbvGk596ijOnT3P1ynXSTkSrneCc4YUXPsvBwQEfvP8OJ06c4j/+yR9QVZadvR32d3so4RkP9zl+fJ0zJx4PptHDIa1E8+D9p+l1BwwvXqGqCn7si19glk9ZWu4RRYrKFCBEPekMXhBa69Brq9ktSImtQk85CCY4VD3JbNZOEIRQwX5SBK22Ztb251u/d598Lh53ZmzeN0T5hfsslMF3BrZ7PT4WgY2FHpvyYOvGvLce6498RZs6/6Mak00wE/XOPs/YhJgL4YVMwOBNhbUV5XRClc3AFJg8w5kKW1aomt1QZFnw93SunrqGNFtHYXgharUNZBtrDNI2/T2HLSqMzMlnltlkwvBAonUwuE17HZRL8DI/MsFNEixhQBLE3wRxklBV5dw+zxvL0tISx05sUo4mWKtp3b9Mb7fiYDhjt8goHEQOrAysikoJnAlZltUKkbTRznB1d4jfOWQ4CnLch9RgaB86iANdU5oEtYlu83kphK/5hrX+XNySaO3oD9b55p9+m3a7xYP3nQulYRECchTHtLs9UDFFZcidw5cBitNqBSaBMUHFNriBwzib4oxl6qbEcVDZ1TpAbWTtbalkRNwg6KNwn3w6Cw1nZ8kzj3eKVtpGytq6brBCf0kSRQnPvfBZHnjwQb7xH79ONNxBJ4InPv0QWVaw/b3LfPe1t3jng4s89/nnOHvfA7Q7PXZ3brK2usx9Z46xtLSEEIJsPOLapQ84f/48OzeuYcsxS72Yra0tsskOW1feYm9vDy0kX//jVzl9OsJbR1kGn4cTmwHuud5e4nuvXmb75jV6gx7tQZuol5J0umgdpthSeGRUSxER+sY+aBAF0G29nqSUyDiaY88auXXvQhvE196s4odDWn/wCl5Yj6IZ8i3cPv/vtmrLwSJXlMUe3O05mnX3lrN9TALb0RjZ11PPuamq50ORfjFja46jJuftJhDS+wBuxSGkrzkhDmNKcGY+5XS+UfcI0zRUGELomocaekx1eWQrpPNh8tRow1sbTCwIFJlIa+JYkyZxKFF1uACtKyjKjGJYktoeIooZDkeUzpO0O827nO9krgbmNhLhRZ7PJX+2L9ykMkEQwBcG4Q0dJdDSIyxYGQyknfMYQrAqjKU0M9pJRD6aBEHN+kx6Ge6jPUQIWkJghAjnCzA+BLfKh9xNBsYtHjg8dMRL0O0PyIoZw+Ehqxt9vAiZ5u7OHmsnWngh6A/6xFUo3RugZ2kN0muaT3VxaCSlvE2u2hg35wdLES7hUM4qUG4OV0DUi6ceMJUmXANSanr9AaasQGpW1teIoohPPPIJnAk9091be0wmE6yD0bhge6dgZeMCjz/5CM6KuUOXxDLo99nZ3eXE8U3G4zFXr1xi6/pVTp06hbOW48fW2Fhf5uDmDmdOnERKgZI3sKVBRRGRDJl/mVecOH6KtU6bZ589T6vbJitmdPs92r0ucZIg4jgoxYgFypQXc+6yUFG4CgXzEj+RMTI6Ku9Rt0Mt7gV2cbfjbsnG4nq98/s7s7s7j//fZGxCEHiePjifQ5iqFKYK9CaowYVHOk/AHA+2iItZ7KtYG2zvZKTAisCP88FXFBM8BaTwOFtgyxItwIlacco4rHNob8CHVmZVlPOJbFOeunmm6QKZ3NYLEoEpKwqRoaIIR1hwSRqMaX0UI+IUhCRJWlAajHHzbNW4YJxM/XhpuxVwdD5I0DjnyKbQG8DG+jppatk/HDMuQ5/u0vY+49IigXavR1EF+ETpPIkKQaHV7SKEYDYNXqmxc6RAX8U4W9KuCmKlKayl9KAjTeUdM+/JXUWkE6QxREKileOZZz7NlctXeelbr1JWMMuGPP3Mc/T6SzgpGQ6HTIsSI0Kz2wrJ0mCAMIbZLJ+vrVargxchi+i1u3jvyeoszhiLd8HxKizmkJWG6bfHWU9hSoQOCPtgJhwWSxLFOG+wLmxixgSoyHC/RGhFZ9Dn9e+9xk/+xJf52h9/jUc/9ShXfvcbLK2scvXCDq+9/j6VccSJ4oEHTrG3s80br7/DuRNnSKRmdX2JP3z5VdT5B/jyF79IkkS89NJLLC0t0V9dpu0TvvGNb/PpJx+jFy0zLTP2d/ZZ7i8TScHWxV0++P4urQTSDqxs9nng/P184tGHaQ/6VK7eAFD1ZlszAgRz2p4TIdA1mEZrHfFCGeicI8sy8BYdt3BYjC2JdWuhof/h6WXz91J8GMGwKG90t2B0J9Jh8efbMkXRxAMx39jna93dW5D7WAS22zIvjgKWQmB/SFPybruElBopw8UrZN1Ik4sfVAhuwSbMUhsjhGDVUKxqcrI15VGK7cEJERykZDCbbVx0lFRBNlmFoBYa4Q4tRRD4k6CUwNsq7LhOBycnGXpLCIXTIXBIKZlVed0YFojK1qR5WbMFLFES0+pCnsPly5fxrksxK/DWErcizhxb5vK1AyoHRTYjqek0uioxziGcwJcGRBhseCnRzqGBrhJ4K9A4kgCJIxYiBATn6UaayAb9MIlAS2ilIaN95dVXWF4JBsFxHHMwGpJWHVSSsL66joyTegEFkYKyLJFS0h8M6kBk6rIpcBybjA2Coqu1HqGD/JBzoHVtLOIhjhOMa+hzNRVIEPputdGL9AodgXBhfF0URSjRgwMJabvFzu4u71+4SFFZnn72aa7duMEDxztcvjHlzTcvcPbsBsfXV+h3lrAVvPHamzz11FP8uz/6Q77w+c/z27/9+2xv3eBzn/sc9505yyuvvBL6hvTxBv7fP36D+8+tcv3KHtZCOdtn0OuzurzOpeEOUTe0lE+ePsXps2dodXuB8K80kQ8be14WRLUlo4w0OtJIqfFSUBk3V8ZthgXyh5Sad8uiQtBcANPewxE60vVjc5QQLn4vCAnM/LhtIHj7893r838sApuAOojdntYqpYjqsvRuo+JFvXQWdoRG2QGoJYpDT8bJOtDhkNbihcPZElsVOJPjyhJvAyFeiVDCifqTkP7otXpXa2o1z+ehIkAQav8SGuaD9QbpatqV9SjpQ1/B1cYZyNqzlPnu1/RCXMNEiDSiEkitiIkpy5xer8czzz/B3u4+L37zGpox/W6fvCwY3Tqg8nBqqU1ZWA5LizEVxoayOyxpj8xDltRV4aLpRAS5IFEitAcPkS6DQS+eNI2IkoS8LJkVhqmpAIeyjljCjauXOH18jf5Kh4ODPZJOG+uCLPWxEyfRrQ7UuClbVVh/pNmliyIMFlyggIWMKlB94ihFyCCX7hxEUVKfp6Zk9+BrIHR9DkOpBkonRHE6fx7nKryUSOFRskVXCLy1RDrl2KmS3mCFRMacf+RRuq0237+4xVf/xs/z/Tff4ubv/HusE7z37i0uvHuL5587z6CT8u2X3uHGtRusra3x7lvv8vgnz7O2tsZv/Pq/5tixVarKcu3aCFEN+fKXv0iatvlXv/n7jApYSiFWLfBBYmi5H9Nf0fSXl/ixL32JpbVV9icTWoMe1nmkjknTDsu9HplrwNjiiMMp5DxAwEKAd0c0p2bSH9oct9/Pez8Hny/2zOZV0cIabP7uL3J8VFm6OGxoXtO9HB+LwAa17pprMFLMcQZCCKQLqrVCyw+dhLv9LISfBzZhAoYM4XGScMEHfSK8s9iywJQlrqoQ1gS0Oh7hAw3LVXVwWXz8mmMZcHR1hqkjtFZoGXBuSjX0FInX9fvQggjwUuGlrLE6IpDJlcBJiS1tMLz1isoEuaQo1thGvURolNckLsHKiDMPbpIkx/mDf/Ntdg5H3Hc84dTGAKE0W1v7uNzTlaEXJuIIKyC3QcyxncYB3e+C5dqShs4gobQVSOj2O/SXVhiNJgwPJ6RpG61jlmeO3aIkSRRZUdGKBZsrfXZu7tNrJVSF4+zpY3TXj9FfXkEoyeFoxFLcQipNHKfzLLWglqKuz63WGmNsDf/ReBfKSYSYy6K7+nrw3jOb5nNy9+HhITKJjq4nwDlLWdq5dZ0z9TBJeTAVKklZWlun2+mzsrRKmZXsbe/w8CNPcOPGDaIW/IP/+X/j2Wce5vkXnuGbX/s2Euj2FJNhRax7rA4sN66OSFTC4eFhaDnINg+cOcfFixfpdrs8/5nHmU1LXn31VTqdDl/96peYTjLefPNN9naHDEcZCOj3obKax5/8NBsnTxF3WlDOmFUVKk5ot1pYJAfjKXErrd9rkNFqrCFb7S5Sq1rdw+KEmvcsm4BlrUVYWw/JmAf+JlBCYCjYxeACc6rU4nr7iwS3xedtqs27laL3Srb/eAS2hdpaeo8T4kNvpAHhNvdbzNjubFyGRSHn2ZsEGp/JxXK06VE4b3DOLBi+hl6fdVVQg73LOPtOWpX3fj7g8Qv3c3Up5whDEWRI0oU7CpbhNXisCLLPxrvQlhdH2D4v75g64SkrS14MidOEXg/KQxgdFiTrYaELPKkGLzWVNXiC85UUmkoYBp0WlZaUeYEznlYEylusCxzTWTFFmwTdUgxEn8lkFl5DPgMDaSSQSczm2oBjGz1u2hEbG2ucPL2Bw5K0W2GqbRx6oT9qirq8F4oCOw9owHxCbK2dk7SFDzl3E9gWd3Ln/JyupnU8p6Q1LJCyrMLnoRyyvk1rjfACK4IsVhy3UEKjhSZWCXkn56lPP03xyYLO633+3deu8dJLb/OLv/BVzp07zfUrV6kKy7WrW/Q7MSv9hJ29ilOnDEVRMR5XvPPOe7WqRkyeGa5fu0mv32E6HXP58pBLH2zx2c8+zWee/jRXL18my6fcunWLOBGcPnuGlfU1gt+qJhIpjrAJHQ7HRFFEt9ujKILuXKwVoqZCBbn0CrUwgZRSYt0R9XAxO7tbNnS3QcBHJRR/0Yxt8XHvfI7Fz9n/1ZyKCpC6LvFCmixQYWJZ/15IiSB4JCrZ4NQWxseisVaDyMp5lqW0DgELh0aDs+hCQG3AW5gZ2hd4Sio7RgmHo6Ass7AIXYGt+ZeJjhEimHQ4UXNDRS1yGSXIKAJVX2R1M1epI2YEQuCiUBIYIXDaUToLkcIaR24s6BjpQLpyIetwRFHQaSuyCmMk1ocMUXhPXu7z43/9cS6+d50L399n/6ZDuBkb60tEsWPck5iyROJJY83NG2OOHetQUZKXZZh41lXJYLVDtjWk04Jq5rnx3h7ra6tcv7ZHJODY8T47donMj3GzGV/+0mP0ezH7e1ssrw/Y3s3ZPL5Et9tFpz3SbhICmnbsH+6E6XAkaNFGJ220qKEuOuLWzi1A0u32qMrw2UZRghCKzM2IiAnqER6TO9I4BQWz2tA4SRJQgmyWzYObkBIlFXkVaGchqDki2UIn4I2lwKKjFBknlHmOcn2KomA6NvxnP/Oz/F+/9nsI4Puv/h6/8NM/zeuvSl7+s8tMD0vsrM2ZfodzqzliEmNHilbS4tbVCbMcBv0WWVFx/cothIOl/gotUZCPM77zze+TZzMcECdw3znNQ584R++hhzn76Hmi5QE+TUjosdILr+lwf4hAkU8MqAaErIgiiOMU6z2RV4iKmksqMAKkjHFWYoXH2AInaiybidGqU2/GKnBJIwne4epeM7i50oevuaUNfMMJV0+f/fz2psqaT13r/wVg8EKCQni8eZCscavWHNn5NRudd+aesraPR2BbnJLU/xoZlbv21uY1/2LvbfF+EmvCRFRJiTVF3VMw839KiKBAkc+oqgLpTe3QHfo6Wuu5K3jzHBaPqrMJSfOB3K7lHprdRzCFBnsHNfBW29t6HloKZlmBMY0YoMe4gDM6QtWrefaZJMmRMCU+9M6coddKOXP2GJff3afIM6SIuLE1Q2iYRRDXXiZ42NxskQ9LSlPhBPSXeshI4wXcuHbAxnqL5aVVLr63xSx3VCa4PeVFztb2iMxBO9J88rEHyPIpB/vXwZfcd+4MTzz6GIPBgCzLqLQIDA/piURE0u7g64FBURns4RhjctK0Tb9f2xcaQ56VAbqBJMvzsHBbCaUx4BxaxTiXM5vMiOMYreO5/+fMFcF6rtU6yl4iPT//ELLCJAra/XErwpYVxpZAyPoGSyvgPHl/xrVLV/gn//Qf8MZ3X6YYT/j1X/23fP5zj/GFH3+aP/3my5T5hA/eP0RryVa+QxKneCuQTtFPNdk059B6OkA7VkzH+2GTjBRpSwe4joAogcHKMifPnGbl3DmiNKkHGwIRxUyn07ABtFKkDyKplQsBIJw3h6M8ymoFc/qT8wYhYwQCWwXxUOnrmEWoWIQ/CjDWhmAGR4HNe4kQLgxhmsyqbsfU3843cAHzyeqf5xBCzOEei+vvXo6PRWDz/GjYljt//kGDkqZn1wyij4QKXFB+8Ha+G8jm8X39IWLrZr4N4K76URbTdi9ACjUPZncG3TtxddDoXDU9heY5F95bPVBoJrRN8GuGIR/GAXmkrNUapKXdS9k8scz+zoR8JsJ1CXS0YDjyRAJaCQx3M/Ic0nYA1mIkWZbjI02nHbM0WGU2LfBO1uwPhXGOsgoBcr0/oMinvPH6B3gBnS584XMPce7+++ktL+G8J0oTfASz2QSkp5f2aHc6CK2wTpKXFbPZhMPDQzqdTs06iPHe1OwD6pJYhcVaB6XKWspiRpblc55oFDmmdhoGLpGiqixpErJ8KT2+HlI0m6VxDikrtFSARUiBs0GmR6ggke6EQaqIU6dOcbC7zebxY8h1y9/4xS+wt3PIZ5//LJcvX+XmjRHZyDBINEVREmnIsgneQhRppnnBsgiT71biGFuorCfShpu7I9oB8QMKWt0OaxubDNZWiZMWFa5uIUA7iuuNLQIv0dahF9zMpNSBdWAtQrm5wYoQAlQzWRb4MiAAFj0EbltLwiGEhjpELbIB4O79tGaj/qi1+hc9moB5L4/7sQhsUOuI3WWa86HpCIuNxMXU9OhNO2dIdITFYmZFcLgRHi0cgVhucLbElDlKWCwGXIUxVZBrFoK8DKWqkgJ86Oc18AspNUpGdX8jCQvvR3iP8wugzsLCBM8h616axOFthTUGqHtBUiKVwjS2fnU/znmPxaKkIGknTEcHxCrmU08/yMULW7z7xhamAm8EjD29BipiHKY0pFrjS4t1it3REOegjAX9QYfLF3e5fCWn14YkVuSVZ5yV6AjWTqwhy5LhoeHUqYRHn3yQ1dUlzj14hiiJiHstTA1s7qSK9qA1xxPuHuyTxC2SbhePI04jlpeXMcYwnWZEcVBGqaxB65hYa0rrmGQzbA6tVouqMsxmGVVeMBwO6XW6c2Vis7KCKS0OH2TgvSROk+CYbgxFLSMVPDYjdJKQzyYBZF1DjkHj68FPqoIXQxQHl669mzc4++BZPv30U7z31iW+/FMv8H/+s9/BA3lZorVgfzhjbaVFEsXs7Q351CfuY39/n1s7I9aOp3zykdPs7e1xMJkgxo64BY8/9TBnzp7g4cfPc/r0cVjeIE5TVBLUg60IwRnfeBs4ZJQEy74aIkMNWFZRvJBR1cMpEYZmwomaceNBREhlaxpfAC6LunEsGiuz+T81X2v15bvQYwsy/n5hg16cot5+NGCuxZ8/eq2E5wvTW28d1v4VLUXDt3cPEXdPS49G2He9f13vO19PQet/oga5emuwpsLXgE0ta1J3TaAG5lkXC9CS5vQKIUIdIcX88wqv8e6I65CBHeGrQpkaMkPhHM5ZnDUhwC4wMRZ3wyZ7S5KEkkClMbbEekNZGWIZk6QSnSrsLNBmKkB6hTACrROStB0I6N5QGUdRQJoKTh47zXQ2ZDadsdSB8RRiLRiPA+WqXSPhy4MZywNYWu6xtrbK0sqAbq+HiCReSdJOWp+3EHw9YEyFd2Ho0Uzr4jjmYO+QPM9pt7vkeY5znm5vgHECoQSJTgAY5znzpJoQ5La3t+l0erg6YM1mM2QaB5meBaHDhjsc3XYOg2oIUiOVwBnwzmC9C71dKRFSMBkf4mxF2mqxefwY+XTG/uEe6xvL3Lq1y0/+J0/z9f/7O2QFPPboKa5fvcZ4krF0skU3g6vXLvG5F55le3ubt9+9whf+2lna3cd4/a23KaxlfXOdk/edYrDcpzPo0+4PmElJZW2oCKRACkVlLdbZOfsl1o2XhqayDQpA3hbUXI38sN6hrMXVLY5AZjlCtjnB0eCMxUnl7TQo72FRo21xjSweHzUpvVcs2p1r6K9cj23xFNyp0Hm3k9dMvJrAFgLAQq9LOoytfUetRTpPZSpcmYHNcTajLKY4U5BnYyhzpLBBituUARria6lyHziJoe6XKKHnCG9FPThQel46NnzV5r00lCFgDq71SJwMWC4nAVuXv7aiyjOsMYhWgpAa5w150VgJqiOdeeGRsSKSMd4FwrjHoeWM9hIUPpQwsVYIo8gweG/RlcRXtg44oY+iFDgjGF+4QRQLqioAPFMt8S5kUEkSLEJu3cx55FzEYDDgE4+c5/jJDZZWBrQHXZJ2i8JUiKQerHiDKaCsPDppgwrnJ5vlVNaQpjDoDtA6Zng4RuqgHTadZkRJi/FkRrfbI+12KX04/3HSoiwMyysrDMfTcP7j0NCe5Rm+qtjY6KB0Y6QdaEZpO0YUwZNBKBmYGKailSQBNC1CNhw2uAhj6+GNkrTSLkJ4bJHyyBNtxsMRr7/yGivrA9bXBpxcGbC3t8effv27PPrEKe6//36WBj3efett/j/q3iTGsj2/8/r8hzPcOSIycnpjlV/NthrbbYPBagxCQiAmsUDAwgjRolmAEBIrvEJq9Q4asQK5xQYEQrRg0Wpagu5VY9nd2O52t10uvypXvXpD5svMmO54xv/A4vc/996Il/kqSzbWq79evIiMuPM55/f/Dd/h3Xff5Tf+n7/Lduv4V/61b3G9fooqHvKr//6/zUfPnjE9mTM+XYBW5OMRGx+IhRHuq7VELVaNZSFYvL7tiK2ncy2ulfOraRpUIrprp8mKEcYMkgrgQ090QXjDjcd5J1anJHaLljJca1IvV+7pfZ+uPX24ShPyNnLAuxllCDEcguBQxt5JRozR+wHf/sI/QkQMfzHmIE81UMWGzO111xcisMGhV3C8XlWKHt1ir36hNPsAEkPYu2a3bYvxLcH1xNATfE3frOjrnXh5OgHnajzBtTI1zTQhKIR+pfdB7ZChiVELJnkzvqT/F2NMXL2DWGYIEsBiDPRRbAGj0mij0A6R6NaAUahEbj4+qJajMlwpOieAVZNPmC9A4ai2K2wZ+MV/5m1++7c+Zrny6CyIxn2AmpqITkj0dMJF0CEw0uLqlGWargsoFTAKrFYYEyizwM9884R7Z5rxuOThm2dgnEx3Y49vFaP5FJ3J4MXVnm3VEtFMyhlFcuw6ySTAbzYbttUKFSJ5UVKOx6AM18slixOLsoZoNF2iU1mbJs2J8H52dgYMNJ9I37eEENlVFVlSCvFIz2xovA9QEp2UYbqmEsXZ6LFGyvXetbiuTSorOXUjA4lyNGMyP6McLfjq1xtMVDz96EPq9jlf/+bb/PwvfIWriwsuLy+5uLni5//pb6KU4lf/4r9F3/f83j/+fS5W16hxzrJdsweclwAAIABJREFUE0uFt4qQG7JiRLmYoUwGxVR4wT7geie+qYPTGTLEsum8MyajHE/251dg6Pdq9OBni+Azo3e0TU0UbWR836FyUNHuz6vB8OhuW+g4IB33w39Ub/x4DdzV2wPAzy7ZFG+DdEHz40DZvjCB7WXrFo4lxtupnfxlPy08bsLro+g/eB2oGFHRQ/DSX3MdwYsDFTEQoihBREIKasfBVKfmqgb0Zw6Mj3HPIT1usg5N2ePbx6gZ1HwDXqheA6hXKYy0UlAGRA45Sl/QgNJRen6knTJYTIiUdkyvNDG0TKeeqtqijeXLX7nPhz+84PpaWsDKgPGAtWnypZJ7d+rfpY0hpKHLxGayc0aPBc7mE84WY66unuBihy0Uo+mIyWSCyTIxpbaWqmlkGuoiSucYrQkYAR13gbrd7TXVINnExUb6RFGRl2OyUmAiAx+0KCdCfUMy4N4fhgFBa4rMJFUQYSgMsuw6AbWjgjyTYrTrOkIrG100BqVTNylAVB7Xtfvjn9mcXjtQ8h56B2hDkZe4tsV7z2Z3zQ8/avilX/olmnaEc1PyPOfq5gUPHz5mejKl6zr+qb/wy/zRH30XtGZd7zg5f0hA2AQ6y/FYVIC+kyzFDZNBBSokQG06z2xxcDbzqVrRyibxiDt2izHuh1YC4/Bo5fHBoYNNmd2gP8jnBq27GLcft7wc7rO/Hl7SnX7VY/9EDg/uRvBhYnnsT3hMhB2gFpDecDiK7r2n6do9eJO+w7cV9foa12xpqjV91+Bcj0q80Rg9WkPwnr5PZWVmsTrf99mszbFaxunaGIy2aaeUNH54LcM0s+97rNW3lUuGSWlM9mXeEbQRld0EEzExHh4wrcE39fik6HAyHKAAFfEemu6aYlzg+5Zv/Lk3ePNL5/z+b/+QDz8Sye0IRNfJMESQROjUu2ppKayB4BlncO/0hMsXF2jgzfM5ue64+OSGh1+b8ODRA5zqiCqw3FzzcPY2vfd8+umnBCWYshgtk9lJYhAYopUJ57RcoLXm+uYF08mcGBSdd5TFmKzIwQqkJUTonfTilFLJHVMu4BijmDIndzMXHXVd49tAVTU0vWM0GjGbzeQ4Wosxcr50LhC7SjIIonB2oyO3Bt/37HYb5tMZ1kLTR7JiIj25iGSfkwn3H3quXzzn/Pwh7777JjFGPv30Cd/5zvvkRcHp6RmP3niLYDJinpMXBbttw7tf/wY2yzh78JDae4rRCPIcU5SoPANlsLpg19Q0XYLKZBnXlxf0rdD9MmM4P7uHzbN9pjYqJzIrSMDvsK8YFD0dJlh88EKpCw7vHcF5lO4JuUclXObd1s+wsQ81o0mNzn3pGCNaDxmWfClEeuzuehl64CXZCnvHK9jr83l+QktR7w/2e8O6m7G9JLbvy7RwrJTnepkUpfv2XUtX1yyXS0K7o2kqfN8RfRoohADBJbs/RZ4LF1FAgqKIq5SgwK22+xNmkFB+2TpOo+/2B4d/932Pj4GgjZiWKINR4FXcY+huUV3SOj4xWufYbDbYoLBac3Z2Tt1eU47G9J1nOjP84s//DPPpD3FBcb3s+PT5khAiZoCrhJ4YIR9N6F2N0nB2ckL0DgfkwKiwEDuig/OHp7z5zmN63zFdzNjsdjx//ina5owmU6IW+lOezzE6J0bFZLwgy/KD/0R0zGcn+LyWvlvXJXiGZn5ywrZqUNowTlJOMUJZjsgyUeatqko+w7aRiWcCVPvoODs7EzBzQubPFvN9v9OlTUeyygYVIkWZoYnsNlvatpUGexzRt56QZWT5mOBB5MNkojqdLGgnFauLC775tW/y4Scf884771COpnz00Uf0XvHi4oa+92g7oixLismct995h9VqRRsCpiiYzBd4LLYQTivako9n4pfa1JKdupYsywQO5Px+o5RzNd8PtCSDVWm6yd4vNNgg2WXr6boGZcaJ0XLwF923ceKhdSLPYTheMQyVBzAEp6gHzFaa7qgUmOLRF5DECuQp5ffqJRFokOo6hkv1uJ/AjO0lY+K9vtQAjXCO4A8BJkSHjwrnB6mjQ1bUa0swIpVNaInthlDfMI41TbukdBW9XuOjx9PgVE/UEeVktB06hdU5WmnQhTAYlGQKISqsyW9NkKzVKfsRCeshBFmrMVYl6xOEThV6lNYUSuF6+WpcEG370Yi6qQGLDg43NGhNhg9Ssqp0QpV5QaYNNjTYWFNVFZ33tI0ihBGulcmvMgo//4STL++kkT6pGU9heQUnE4fyMLJT1ust2+WOGOCrP/Umu92Ojy9ueGMKTQeXl9dEBYszQ1GeUleRs/MJP/zoA5QyPHzzbSnPQkRFKw72ucYWBQpNzCxmNNoDnwkGXcxwKKzOyNqK3Ig6RQgOm2dEDF0QVY6Rytht5ULvnKMoJ1TVDkxO8IGrmw2z2QytA21bSyM8y5jPp6J1ljIbpRRN0xBrB11AW0W1EjHLpq3Ic4vVGb4L2KJAB3BbEbnUZclO9WxCTa8qzGmJWc+IXUUoS252O/q+4/zeGZdXV5SjOSrXPN9co3aGol6TzZInmC3ofWBTN6iswKoJfdT7qafJLLrRaKPJs4zdzYqY+sUxOLzpqe0ZwXhsNhKtPy2mygoFMWBVEFXlbor2O2Hb9DuymKFUQR4tRIOJwiwghkS5A0hKezGV+6laUsZK24YjCXcOZHq5ZxKIVSIDNqwhcdhv+NaQD8T8/f8OPbZ0J0k8+PHK3i9EYIvw0szk7tpzDZ3D+Y4QAp1zSaPsgHlx0dF3LUQPzQ6/W9Hu1vh6R9c2RNez2+32O4IxRsqRwWT5WDVkSMn1APtIt0/mIkPgHXTT5DEHcChirqGOSlAjr7Hv/D5we+9wPjAZjykyQ+skWzNWPEttnpMVgrCPqbdU1zVdaLBWc3JyilI69ZiOTDBSXyX6wDif0TQdJt5gT0vsly312rFdbfnB97bkBs7OpVS8XD2hzCxfe29M1AEfA3ZkKMclJ/fO9ubL3nsePHgkmWxq1muTMZ1K+UkxZjqVUjNG2RisETjGAPfYbAMx7ujWjmg8QSHMg6wkywuMtjjfU0dREZbJsyKEnu1uJQBgIMsVy9UFZV7iQ0vvRmht8Xju3buP7mToUBQJdzjKiTpyfXlJVe0IITCdjIhRkZcjnAs4V1NMRoxzgYbEGGmSSZAKkSIvmEwmfPLxJQ8fPuTDP/4Bs9GIiGSX2mRYJUMbrwKzrOT6+hq05d79B0wmE5xXe+ZEW9ecnJykY6dEVThG1psVV1cXXF9dUOiAVbBZ54xcz6gcM52dMp4sBIiLPmrLCO4yxkhT72jrnQwiLNzGgB4qjB8VPI7LwWPFkFctFTlwqO88vo6f/d2f1vpCBLa761Up5wB1iFHgGILSl68YIy6ZsDhf45sahUe5GvqG2Dd41+BdR/DdXvnWeUcMAaOOVHc5UKKGXpcxBmUNBnPr9Un5E8j2gUvwT0NjV4jQ0oszmRgtExWZdbjNjp5AjD0R6aOVZUmoAv2dtmrXdcSoyEyyU8tyJnZC3/fUVcOonFEUEvAGDNmw8vwElznG48B0dEK1qlndrNBZ4OGb55zdm9NULV2/o28a5meW2WzG5YsbERPOYLaYcnVzw+K8pO8nZFmG95HdbodzjrMHmfB7tVykPkbOzheMRzP6vme7aVi3W5RSzOfSXAdHDAptCubzE+rdimqzpQ+ecjqj7Rv67YosyxnZEoXDmkjT1lxcLHHO8eLFM6p6u1cVdqMJN0vPaDQCNE1zn83qhqwYMZstxJvUGIrQ0zQNzy9foJRo7NnsBKUN1uT70lVbS1QaFzy5LlnMTmj7hmojz1+MxowmU65vlrz1zrvghZI3mTk++Ohjtk3P43ff4fTsHnXbY7zCGk1Vdzw4vY8JkJclxWhCVpREZciLMm1ska7r2GxWLJfXbDZLOiv+sMQStb4C1+49aQWWZKTXFrUILyjB5wl+U+Ad2ojBuDEGjNkHxOPS71XX4XGLZf8ZvWZwG3pyt1tM6TavEdz+VDM2pdTbwP8IPESSq1+PMf63Sqn/EvgPgYt001+LMf6tdJ//AviLCLHjP40x/l+v+6I/r44+hj7E1EzcB7qEF/PeYwh0fQvBEbsd3W5NX29xXYtzHZqA1tKADi7e7hcgGZuMyg4H+dD0l38H9fLp0PHJEVKPbgh4xhgUKcj520azAzRFJJcUbS/lqc2s+B54tw+WA9bIh4RIR4Jw34oKQlRC9h4Cqo4OoyHqyGiU4xvHu+++g288VVXxweULurrj7HyCWRT0TYvzO4ox5KU8xrbaYguRYxps3YTOlHHshCQy3qkpHERF2PUe1/l9H6crMhQyvR4GIsGLO1jbttRdS1GW6FwTvad2jm2zwvkBiLtlu11TNzvqZkNdC4+y62v6NnFg4wKFYTyV4F8UbcoSJWicjm3Se+uwNqcPXo680ihjRDgUsDZPpd0A+yGdO0qgRiGQlyUPykfcXF0yzgueffqUR2885r2vfZ2r1ZrL1QadjwRfllmKRFaPypBlogBijCGzxSFbNwabqFDT6RTnHNvtlptmTWYN/ckUlXjDmkiWG7TK6ZPfB2bww1XEKMbYSkfyI+mvoJJwljoo5bzOutvvfdk1q4G7ghyvmrIePfLnPuefdinqgP88xvgPlFIz4HeVUn87/e2/iTH+V3dewLeAfwf4aeAN4O8opb4W43F3/7PrLqVquIhvLaMhBa+hFPW97EYhBLpajFFMv6StlqKv1u9Q/Y7YbYh9RexrQugSGZik9jBMX1Ppdjy1SU1MZQYcm/TQjJffEY/cdobbKg3aoAiJEiUYJGsytDIpoxHFDm0Dtmqo+prlzRWz0xOmkxHVUi5Em2f7EyKEIDI8MaLLEUGJqqrWjhBUwnrFffbqE4MhtxpjLE3foAPMT0/om5aOhqh7fuaf+Bq7XU3Xb+malsk8Z71aYgOUE4FPuA76Ht586x2W0TOdzjCZkQDrRY3FezG/8U4AmpO6pe9CKuvcXppouVzSNBXjcUk5FuDpbrejaRqyzKBUztX1hQRPpanqluXlku12S+9a6rqmLOWx1psVTVNRFAVKRVb5OqmgNHSdSyY4IzKbU44ncjsMJ4tMshxrMNbuKVc2L9G2lC1cJxyjNmilcG1PQALRbLbANTu0Ntx/+AaffPIR5WgGwfPVb3yTi4srRrMJb7614N2vTbHliNn8lBgjo8kMY3Pmp6fUTUcxmUtv2DnyvKCuW/KyELn5KPg7k2d0rqfvOvrOs1ld0bWOxdk9RuWMspiAsWTFhCzLZVNJQqX4jq7d0bctxmiC64Ee5T3R9CifYfUBOvV5UI6XDbFelYwM0/ag2HO1BRPH8I/DWOFHBK1j8djXWa/jK/op8Gn6eaOU+g7w5ufc5d8A/tcYYwt8oJT6Y+CfBH7rc55j/wEN6Pph8nic+g7Z2b6XhdqT3PFhfz/6mti2xNBhQkNwDSZ66rbChx7SBQ9pZxlSa5vkvVWSSdJ6XyIOWViWZaL/deSBiVboeMg+fIxYBpL8MCofsgHRilOqQ2tL1wpmyihN7xxt2zKbzeRxwoFZIe/9tqP8nuCfgt6+wZteZ13XErhzi3deVDGiSxSm8d4vdbVZ4vqepm2ZjEuuLl/gOsfiZIpW4haumi15Yej7wHg+lmOSlB4E2jHo70uJU5YjptMp4/GUEOD6asluJ/i16+trtts1WWY4Oz+jLEti9NJ/Qibcm90Ok2XYckRTVyyvr1Eqslmt2Gw2zGYTIp66qogxUPc1o9GIXbMVf9G6ow+RthZn9rKQ0rRrWvK8pM4CXSvslPtnpUxftdkfaykFszTMSGY9mZWSDaF0dTGwWa6xSvHw0RtcX7xgUpT4ruf+w8cErelCwGQFeVawXG959OgN8qLAxUhVt2SF2A+iZJNomobxbJ6gQgXWatp2wvn5OSp6nj/5kL6tUIU4iLm22zNeTFbK8fIQU6M+OGHUKAWZUUQnvFdtcpGIj5HMDoDtHx1gjqf6w7X5qlJ0T9CPYgQknh2Hc/T4uj++rpW63fPTqV+dZdlLn+dl68fqsSmlvgT8HOIC/8vAf6KU+veA30Gyuhsk6P29o7t9wksCoVLqLwF/CeDxo0evrOePS80Q1D69DU4yN98lG722pU2AybC6xtVrgmuI3ZrQbxPpfQdehg0ZR2WdGhyN0hQS4ecpFEEfsreojoKwAqLCDNgcZOq9B+tqKVuUMoKMVaKYG+LQcLDE0O0PbAiB9WZNIJAZzWKxoAuSsbW9Ty5Vlly4MITeSTmXeoFd19H3XVKgdWRZtm8+55Z9/xHj8SaXLdQaRuMxbVuzuHfGxGvq3Y5Hj9/G+57rqwtGZYHrPMYW3D9/iA8agyF4UHniYeqMru8Bw2QxYT47wRjDZrVCR7EbzK0mljm73Yabq+dstxuyzLDt1jK48T3OSzZW77Zsq1q8S31ktd2wulzvBxbGZDzfXu8/uyETdG2ffCtyuqai6zpGIyd6Z3nFYhHEms92LFdCr1osFpyd3SczAjMpi0JEMouRQFNsQAehk8UIrg/4riPLRR+wmExo62tMnlOOpkJQzws0itH8lLrrWbcd0Xpmp+dEndG5KP4LpqDpHMaK3Pv1akkMCrtaU47H3KxW0g/MDG+8+S7jYsxuuWYbDKPSgnfEoFler5lMt4wnimJkhR4lJzfKB1wnvWUdPGbwvsgzislI9JK0vjtL+BMvxe3CUt/J3IY/HrNylBoC68szxR/Vyzterx3YlFJT4H8H/rMY41op9d8BfxlJ2v8y8F8D/8HrPl6M8deBXwf46W99K96SCL4zeTlg1RL30rm9YkPoHUQxYKl3cjLPqw2hXuNdi29WBL+B6NGxFxUDFPTDBJR9yXmcgg+lp1Zadm0lGgdRIX+L6R9a71kH+/emhsYqqXcnmVuMChVVGnub5Jl62P26vqGpDM2oYHR6jutlAmyM3b++ruvkwClhMLgU4J0TnbmBYhZRVLUYwhg1xvlI9NKTixFCH+h9YDKZci+XYKmcohiXbG4uiSrw9rtvs7pZsqt7Ts7mFONMwL9KNNV8DNiyIc8D4/kpIUQhoquM4MEWPW3b0CUz6hACT558IgYsyvHtP/zHjE4lO603ay6ePWc6GTGfnbCrG7wL7OqeqqlZ3ez2wT14KIsFWotEkUb8AozJCG6HUTOssrhY4Ts5lvW2Q6kto5GnaRoW92ZkWU7wirZzjMZW2BIqYLxBa3BekWUJR6cSpEdFtEoKxTYjti356RkqRtqqZZQ2lCwrsOMpKM1N3dK5HpNP2NUNTdNgbI7ZJemlUKO15vTkngTe2O1Le2OEAD+bnmFUxk9/y7Je3XB9eUGWD7aMI1wfATHqFiUMAeD2fU/X7mi2GxSe6WiGjiIA4foebYx4LvwJAtvLkpJDv/plEFwJcAq5lmCAjhxBP17yeH/qcA+lVIYEtf85xvh/AMQYnx/9/a8BfzP98wnw9tHd30q/e/UaALhHvaRhHTMPhgHBsHPvXaVIv+vE7LjvGvq2JfqW6HuC71HREWMvBixKNMaGxzXmgA9L7+elX0fvl8NhSz25z7ypg4nM8f2HZr9kG4egdpCy7miqmvLkgO421ibJaykthsezxu5LVHFryhmcncQ5XtzSBRSbg46E4IhKkY3MXiXEWstuJ1itutqQl0KlapotnauJOPJCo3XAWkXddQKoTrr6g0s9iEBon4uShy0G4GdkPB5T1xXn5+c8e/4Jq9UNzjk++OD7UrpaQ9c1NEZRFh1d09J2PetNTd12RCeZmVYW7yK2zAgOQhf3mbGxJdOTKXmeeLxeo1TEB5cyLUewnrpqGM/GWCPN9qoSwcrz87ODRDmRGDx4j/YaFSLGWAwadJoEhiQtZYSx0PZ94qBWuLDB7mry8RhMTgyKZ89eMBqP0Sbj/PyBvMYoBs4+Cr6urmtirlAYimKUhBMUhIgiYzydEX1ku9phbUDbjDwv5XwLImmkQkTYg17oU4kLa5SiLMt9UPbDEIH4J7RL/vw1XBs6wssa7ceDN1mvplm97nqdqagC/gfgOzHGv3r0+8ep/wbwbwJ/kH7+G8D/opT6q8jw4KvA//t5zxE5UKjggIK+25gcgpqUXT14QZd3fUO13dFUlTTcd1u6eguhwapOyONJyUCyM/Z80KFHcBx8XhbM4DDlOQ5s+qgUhcNY++5jIbPYNGFzEA9N2r7vhb/YO1bNjrarKU7vYcsiZWUuje7NvscmGezAlMgTuT6SF7M9+X4ykWxDa31QVvUGT0vXOfK8pE9mNTbLWW1WuL4BX6FwQM9kWjJfTNGmYDadE2lRKqMoCqbTKW0nfqU6HzEajSFNfSOwqzZs1hIwp9M56/WSGCOz2QTvW5r2hPtv3+fJkyfsVkvmiynL6xueP39O10acj/gocjyz0QlFMaEsS9rG4Z0hBpjPTphNFzx8+AZnp+cEap49e8putyEaCDqSJT2z8WjKYr4gxsh2W9G2PScnJ2x3kjHVtQCAFZGiEBB23/fgFCZCbmVAEWMU9kBdobuORSY6KQ8fPuZ0NmW9XvMP/8E/ogNGkzmP3nmH8XzBg4ez1KMN9MFzc3lF3TacnZ2LZHoIGJOBgcwWqCSyEFIgWy9XhL5Bq4yHD9+g7jZYk3N6dh9blBid4VqXzIjE+Q00nZH3pkIQf4eswcQcUxqRD/8xMqGXXr+fk7HdXUNJOqxjk5lDCPzsfY977a+zXidj+2XgV4HfV0r9XvrdrwH/rlLqZ5G49EPgP0ov4NtKqf8N+ENkovof/6iJKCASydoQvdq/rBCOuaKKNka6EKm9pWszgnfQBGLTkW2vsdUN0TtCsxH8mvKgAi70qHSwo/dorejyIUsEjBHcVwAlYkQEL76mphDpIvmLYNDka3jlGoNGJSnvqCCzRrByWqOVS5yE5LducnzwNL7Gxz5lVQ34NcpdUtLTrx3076Az8cqs+ijMTqWp0uQXFTHhEPyHqfJer63M9oT5LBkkEyKtlz5UZuz+tq7r6b1jmpds2oZgLD6IebPJcrwyeK9QQXGaTyhMKRmiSWoT3uO6inVb44Ii1w9RSuF8jiHSNy3L9pLLyxdUVUVb7/Dec/H0Oc/dlpubJfWuwQRL33naVji2QUkLKNDhwxaV55AVtMHy4NEbKGXIs1LArI/nfPfj7/PixQsWiwVmOuHRT32Z+/fv8+3v/CEnqff4dNfRxxGZjaK3VrWUyw3Vbscbjx9CjIzGYzzSdzVo9KTAaFhWK+rVjtA78kwxnU6Zni2oqoa+b7neXnMTe6ye8gv/0r/Kdr2hrmvaVjKx6ayQiXfVsFvvyE3OaDaiWm3QCVIWM81unTMa90wnBTpzhK6i79dEVWMyRdv2BB05ffSOZO7FSDa3dC50vsUASns6OnxdU9JjCGSdbFreeGxm8cpAqw4MgFcGj8+auwyVxsuCmHcDtUrt/QskoInQw9ED7Z93X6nFQWxiSAzA2Ab1p8kVjTH+Bi8HmPytz7nPXwH+ymu/itv3vfXz3QGC7x19Kz2b6Byx7wh9S+h68B5issuLATg4HplkRhFSkDwQ0+8+d9wPEnzqqw3r7gF8WYnKUbYX02MGYto7UxCKB/wdsC+th8cQr2UxdFZKCQhZH6mJRgFe9kkgs+sOk7GyLNE6YlMW55xDDzZs6b5DAB5OJB9DMi4WeeqqlkHDaDyVskUZug4xaLFWsogwGBanflPacWOMQlmKEZ3ZPUuh6zryvMS5wMXFBb7rCdHgnSYGw2rpqNcCwZmMk6WcFvQ8KELvxZrQRoIPnMzmnJycCZey71nMpnyv2nFxccHbb7/NZDLhdLHgwYMHtK3AJ7bbLev1mouLC4zxyWhH+pIhqj1lS2lLMer3TBHvxVS77/uEXYuEYMSTwDmuk+Xe6ek9mdbGSNc11G0jmLognwlqi7W5KMsEL2rAnWe1vsGndsJ0NkYXJ7hO0+eDqowAtLuuI9N2n4EXozIBzdUR1zqKvp9We6pi9KLoMcCaZOBkkpCDmGUfTymPr70/y7Xvcb/kbz/O4AC+IMyDEOLeEXxYx5nIPpoHUEFhYqBuW2LfEZsa5Xo0jt41hL5DhZaIl0kWQt3xriMESfEBPGJM4b3Hq0FBN0vqEccNzdvgxX2ZevT6pbw1otOmlHA6U29LWysnUcqOmqNmv0sBbugXDnptOkJT1UxmpxTaUkePVhoX4570nNmEH1OHEl2puJfyQQXMIBjoPGiF9yEh/qWv47pufzKLhHZDXhbobMFup6jqihEWa+H84SO0shTjEdPxQgZpwYmIoXxabLcVq01FkQvpu9ouaV3PZr3jyZNPWa8qxtMJq+WWzWbHrq748MWV9JZ2kFnIjaauAk0ngX6cArHVmgf3JEs7feM+D8/OmE5mhBC4uHzBp598yPe/+23Wm4qu3bGYj/GuYbe54fHDe0wmE5r+lM1mg9GB1fqa6MTMp80Vxssxy/KStnPUVY8tcrQNUsZFDwF2u4osszRtRXfdcTKfcf7gIVYbQnDUadNtqi1V3RJ9QGnpw15dvuD5p89Yr9es1xXb7VZ8XZWiKDImkxHzxRQ12nLv3j2K8hSloK53PHnyMU3TcTo/YTZbcHp6SjEuMSajbzsxcwkBjZNMRw9m356+ruirhkjA5SO6ukLFnHImk2yUl3QxrZfh2IaffxyFjddZLwuk8qvb8v9/6j22P6v1sg8sxnhLQTNGaeLKGNsRXQ+hQ0WXeh+ip6aIKBXFJCOp7HrYZ2oiWte9+sPSERVf15z5qPGpb2dsA2A3pi+0JiTts2HKeTcrHbKztm7omxZjczSK3ntiiOiERh8yQhCHeI0nRjCZCFdGeVFoI7CV4bP0UbLerusEqoH0+FzwEozqDb1v6JyjaTpcTPpgKifPSuaLs5QxGGLUdE5eRdtKhiNUJjl2eZ7hXE9uRcBxs9ngPCzXO65ultxcb1i3Pb7TvgmBAAAgAElEQVSDrgXfQRsDRZGEUzTEIO5ZWVYSvaZpG6ajjounz7g2F0ynU3arJZ1zdG1NjIFnT57QJ6zearWkKArG08ke/qKJiW96KKUBqqZF20w4nnlHgWKxmCVZI8FNzhcLXN+lifKE6XyRjKwVbeuIXoY5H33ylBfPnrHdrgEStk6m9uvVlt16x2q1YjweU5QySe3bCdF3FCclbjYh9A4XPdv1EhVFut4WOVmZoffMEp0m8A68Q1mBIJm0kQEonzxVEeqgTVQqjeihBe9TGbs/s29lb8PmLgdW/p7KmpQV/sl6dJ9ZKqRy9LD+/+ix/ZksgSHcVveQbOYI7uGEctNtd8SuRvsOQkfoa3A1RjmUdkTVoY0HAgpkjJ9YBX0f0Vr01NI8DZMUcaVfIKYXou0e0dxGO78qY1P6EMyGABcQRyQbRGpbD8KB+lAKDxlb8D5ZmYmBTLPdcfXiglnnyCYLdBDjl8xaOcl82AMWQ/QJsa8gDRiKUtyMvI8EkpVfkD6ccz35ZEToHVVds16vGZcjljdLQvCcnE4pJ2MW986pqkoyuvGEPCv58JOPUWZEXli87/eT13sPHqJSr/LFixfEGHn0xmO0gcVizqicsdt5blZbvv1HH3CzctSdNGGt1uTWEtLx2taOaTbCao2LOb71XD675AffvSQEeOvRgvl0Qtd1vPeeWNUpIxAYoyN//L3v8cEPfsBkOuX8/Jy6awGYTCaMx2Muri6ZTksyazHKY7VGG3j27BnW5Dx8/JizBw9QRi4PUdX11E3DbrcjyzLGsxkxCiC5cxFjNCYriIn58fVvfouf/fk/T1s3fPLJR4QQaDZLPvzBB6z8DSjHdFZitcL1DVXoITqmZU61W7Pd5CikH/r02ROszSmKEYvFnOl0dkTBU+S2wFqHDwoVIbcWYxRd6GRC2nb4tkGriO8F96miSwYuMmRw4bOZ0XFj/8eFW7zuuj0gPJD3BwGH4bsE4ddfX5DApm6xCoYS9BjW0fe99IraDuUaYrOi62p0t5HSs1vh3ZYYPYoOH3pJaaOUpIrE/4uipy4SyOqAN+NoOqMFda61JjifAp++9dqMOmROQKLeCMzAR4FiKKPRNsNkmfwehM3gPVGrWyXoULp610smFaBabWibnsfvTMW1SEe6ZERpjMYHyTzyIpPNE+mVBR/QvWEymZErKZGapiErcjabDXXSMovpeU/unaGUYjQp6Z2oC5NQ8IuzB2RZxmQyS7ARIBtjFNTNLqHahTfpXSQEhYoR7xyfPnmadPE0de3ZbHbcrLbcrB1VB16LLFEfFF0XyUhZQoSrZS0+Dtc72RSc5AW5gbyY0LUeYywffvgxrevJi4LVdstqvaNpAiaD8XjDbtewq+vEC3W4IGDn8Sjn3r1T5tMx7aRhNp1QVRX3zse8+c5bnJ6eyvM7Txvb/TmojMVHCFGRZTlFOToEQJUnxWYvvUjv8Epz//Fb7HY7fu93fpfJqOT03n0ub96nzDJGkxFdW1OWpTAYHj6k0TlnJ3P6vqVpdzT1jqIUaEnXdbRty2Q8YzIRFZLdZiMtGqsgeHE5i4rYe3Glch3WKELwbKsNcbsm0wWqrjC5oijk9R+XoMc94OF3x9+PmQKfl0kJ6P1wn8/8PQwQrwMqIoTjWeMh4P4ECk3enq4cC90dY9diU4m5bd8SfIfyLc5VKN8QfU2MrexQyRk4xsDBUwoOSqBaSk0GaeIjmsf+trc1p/av9OiADvdJfG9x++FQlg4HKupDhnfcU+v7nnCkO6eVwocoU7dC43qP1z1923J6ckpQijLtaiF6tj7gouCzIj0heuEChkAfpYenoqLtWlw4cHEDEpytFp6kNobNZkNZZGy2W4qiYJSVSX5nLAE3im+C0RatRINrNBnTtzr1QT1BhQO9xxh8lMy373t2W5EG6vueuocOQNmkijucBVHAo6QKJx6UWHOduIcKXIRMGXl/IdI7j1MdOitwvsJ5mbJ71+DCSp43BTbvwVpHZjXVpqardsTzBUaLuXObKG62SPaKMdL1ch7e0uw3yXtBG1yaTlvkRSpsAtdabJaz21VUVUWWFaAN0/mC9957j/XNjZgVK1EmsUraJEVmya1ht5N2RFmWew+H4wHQgYlhCNERPRg18KwDvROJ9K6u9kODEAKta4ldg+0brDJkWZGc4IcAJNfKYSo5/E0x8KnVndL1s+vodq++8D8zLDxca3+yXt4XJLDtBzgJOyQX+3Ci9b1IzBSuIjpP327x9Qp8D92aEFuUr1A0ROXFtCWdMHeKRqRxczSkiAfkhvc+qTcIlEEZg3aIVdk+wB2wa/vvqX8mkkXieRa1CGJ6IqSTL8sycP1e6UMEM4MEGBReKbLMkueW0PbYrECjaeuG4BxYS54e0wcYlWVSj93S9Y2YkDhhZLgesuxKgLKZWNOFEGgqyV6m0ylNYmp477m8vMSaA/dzNBphrKWqO2yRM5vNKMuSk5MpfVRJXcQNwurS4LdSuI9Gk1S+adq65ubmho8+fJ9Pnq+42Ta45OfrAjKRS4FahHbk4oyQnLfkYu+DwyCZ28fPLimtbEuj8ZgQApvVmqZz2Cgery56XAfNTZ18AEQwwDlH6yLxoqLetOQ55JlhMZuzWCw4PVvQ+4am3VKMSnoX9gMsrUReGxQ+Knof2dXSl1NKoTJzgNEgSrZRibPWZAon9x5w7/wsTUwr8olQneq65uLqkm987Zt0zjNf5Fy8eMbVzZVMtfOMcpRTFuUej9j2HVVXCV5NWRSyaea5xXUtxihc21Fvd2JopESJJZuNoDCQGfl8lbh2EW5nbHcnpMP3uwM+eHV/fP8z+6TtM+u4zB0eO0Z/KEXTOpgFvt76QgS2u5COobF9nN1475Oct6Ott/TVBhUalN9BbCFsib6GGNBRFD+QMQLqMx+KRqeMzZNMXkhClukWAuaNqGj2G5LWev9Yt3oPKKIyCPJNJyaC8ClNZveGviIdF/bZWtt3xK6jqqrkqemklOhFcyuiIIhk9fvvv09UmtbJ1C3LLfn5Pay1TKY5eWEpSoNzNimJjFHKojDko5y6rtM7TzaAqbHcNA1WaXa7HfPZhCzP04Ta7nuBMnSQaetqs8bkUwaf1mEw4DoRiTSpXKrrmqI8oe88wcO9e/fZNpo2bNBmiQrSIECLTSDhkKl5uIUTBAVZiUgeBDZNh7OCc940HShD3Xv6CAVJdHToje6b3QLK7pP5tc01bevoO3j69DkPH97fyzBNpiNMJpp2wwY7ZGx98Hvf0uH2PkkFdao/ZMZBJKF0BGMVxajk9P4jPvnkI6pqw9XVDX/nb/+fBAf//K/8Bc7PzynKEaPJFAN0XYvWosJcFAVFljMejynLHJ0msFluiV6k7wtbkBcFhoC2GqNERty7HmMFg6kU5GVGNptixmOyUY42GSHBou6Wii/73XG18jKm0OG+RxnbMOU0nx+c5PGG59xfifJ//xNZih6i/jFWa98XSV+qa0hcEXSaekYf0IhLSbgjzvjjriGwRX0og026QI5Lz9sp86vXIDt0iy0QDiXusPsWRYGKjtB7mlowaXVX020bWh/o9JL7b79FURS88fZb5HnObD6lK8U/UmnHrr7G+566lv5OZnO8B6PtXrFiKAWHz3M6npDn+R6H1rQNfSpvtJZANZkkqR8jjurL5ZKSHGMVubW0rWSARlnRwzd6z6TICzEiKcsxk8mEyaQhGzK2GMFYoGfQhR6uIZUw0PvpGwqcwyVcoYsioWSAtkfwegw4xQE1KEsukXRmJApbZmVa6xyIl0rGfD7fl9B5koqSvm7cq5dUu2ZPIRsueqVkwmiVJrMZWZ4Mflwv9Ch1EGQ8OzujrndYq/Gu4SvvfRVUFD+EokhZr6VKDBrSNZAFt98QBSMokKLxdEyRFQLO9TFJQ6Xzyvf7c805h7FyXsv7y9F5js0zSD65/g6E/lV9s8P7Vp9727sZG7eOymdvdwiidwPb3b+/3vpiBLYYsQRxtFbJz9NHcA1ZaMm1J/Rb8maDdx2+XhOaG8nU/JZIj6HFKtnRoxHMEVHQ8uIYoaQETWWoN4cPz2ibMqyAVkpc071AJXTCpumYdr00nVFRDpSKMirPYwYuYHOTRP3AqUCgJ5hh+AClz2m8o6p3bG5eUFdbrl48FyUKW6D1CXhFMTvhZDqXSVtWQFYwmk4oxhPQik4rQujw6YRuW4NzkczeI/pI52QntaOc0BkKM5UemHJcXl6iNGzWl/R9y3w+Zzqdcm8y5eLigqZp9mDU96+u9odJKSmvJydr5rMT7t9/hNIZWaZSVufZ1S3lKCcrLSZPbI5dz/bmkm63ZWI0swxWHYD0AdOjo2PKzyJ7LGEX+0MvNGVzAYV7xcbSqQgxkGflETZQJNZRosPfRseDwmJGmj40TCYFTV8RVSArCro6MB1PCC6wXV8RowTooigwVtG5nvV6SQiB5fKas9PHjEYjxmVObkTfzykIrWxko9mMT59d8Nf++7/O3/ib/zdFBsHDN79l+XM//S1GkxJtYLVa0nUt2/o5m80G7yKdD0wnC55+8il5XnCyOGMymQnU4ySD6Yzx9JQuilxWX/VY3+GaHc8//B5tXZOFmny0IM+nKH1C04CxERNE1ZlYYAYzF8WAUZfPbjAs2ts+Hhg7Q2tm8M49XiYksdUopkjaWiIxEXcUJKFW5QUyIgIDAwk+QjT7bHDgQ//kBTYERR9Qe+MGn0T2vO8heNquxlcbCA7X13sfAaIihpQOKyeBMQiMQ0pMi/iFivptRHbC4bI4vjz0UXlplNoPAgZpoOFn6bd8dgw+6EaRsGZF4vt576U8axuaZUXf1LTNDmsto9GIs/P7uFYoWAYJgq06TGJtluFUTHirgFIa7xwhgX5tZuh7fatE6jq3BwXPpqd8+OGH3NzcsNmu6Htxovr44w+pqorxpGQ8LjmdzgWxf3qP8VQytfe++rU9Nq1pGp4+fSpltzJ8/NETQgClDPfv30+QmZamFgWS7XZJnibK7777LrZccnGzYfTkii44Nq5Nkim3z4WIZDG9d5CAuodBD/sg97JltCbEkPp1IQ2SAioNeBLCh5PTc9quot41FEXBcrnkwYMHjJLhTFXv6NoeDXuz4vVmQ+9aAjCfzwUfNx4zW8wJIXB18+ne6WoymTAqCurtlutPnklZqjWjHEKEsoS3Hr/BfDHjzTceMR6P2SxXSb47cHJywng0R2eWL3/pK2hTMB5PmE0XKGXYbHb88MP3+d4Hf0TnFV//+jeZTqfkQL1Zs76+xDU14yJDhZ6iKPaNLp0Ue6UySVnukRvVPlfSn83KjhkynwcBiTESVaJDQgpMCedJ3OM9jzOy4fvx8PDu1+uuL0xgCzESlErf2UfogZLkQyCL4sMpmLRImu+lYOURFom0m/cfwr7hmaSGOEijvKqYHDoBL0NF7z/kO7dRR9PT4YB3XZcyBSXN7L4XmefMkllF9C0dim3YSGA+fg4jvS0VFd50qFyoOF3XiWS4hr4RCECe50wnYwaJ7qqq2DbiRVDvKv74/Y9YrcQIZTobcX52Sl5YFrMpEU9Z5hirUZ69+gNISTng2LyLyZpOSeIbkRMVRWZzbq6XogvXt0ynY2wqU/sQsdokOz4xUynLnHXt5Cik8lDdPWe1As+e9fHjnNT7iy7exj/F4eki+7JzPi+4d/8ePsixmc1mh4tLQ7WpmM3Et+Hy8pKmrcRcJwmOdl3HqlrL+ypyRuN7AHzv/feJMbJYLPjggx/wB3/wB2y3NbsOMgVfeW/GN77xDaaz0R5gG4KjT+KXVVVhTYlFsdvtePDwBIDnzy/2JfB8ccZ8cU5ejnny5Ak//P4PeHRvztgGdPDgHL3vKUdJcCEOnGOR0hLsaLx1IcQ7n+PhH/LtVdzQzyyd+m8qNROG6WiIYFRS0/nsVPT455cFt9ddX4jAFom0rkdrsWYTbl4A5OTSTmAbmpaAI7gKFcSsJXihU1klabI8oGRkMYCKQfpyRGIcpITuzEoHqI1SSRHhdk/tdTK2EEWe23uDjuLs5PFkRc54MhGsV/C0y11qb0tgCESMFe9NFWIC2FocSXs/syitMdYSlaLIrLiAZ5rpdIz3ns1mw83NKsneiIvSfHbCYrEgyzLu3/vS3snr4uJTlqsrPnnygmfPnuBDz9nZCT/13pfJdUbbtlibM51O0NoyKidobaiqismkwJicXV2z3VZ8//sf8MEPPuL09JSf/dmf5/R0ymQykfIjgrUZ1XqTMH8WTWAyynnnjUcYe037dIm/c64GwGpRUW6Tttz+eERuZW0vE4uKMaJixITAoK8sR5/Uh5Wff/DRU4yBL3/lvpSLk5KmqdAGlstrFqfneJ+CvpES/NHjB3StwxY5jx8/3ttCdrHdT5JDCHRNw7379yGKhtu3v/NdfuM3/z7f/f0NX3/vPpvVNb/w53+ON954g9OTGUaL5JYiYjPFyI5o6k4ctYoy+TSANRnGSDbeNDsmixNpt2j4qXe/hP0SrC+e8OT7f0R0LfNC+oXBCm/XmhybF3ReEX1E+6RsYwwhnZTHyhvHG8oxj/OAN3t1Mz/uE5QIKhCjAOIP5atkbv7o9rzi55/cwBaHFFenvog7mmMGlI5oAir0oqKhAiZZ3CltZE8OWtx4kjjQ7cePHJ3eEO/e4vbaX0zxiC96J/W+O6IOw46Y5JACEZMfHKpijLi2uwX0HbwVBJcm6YSJotqrzeF2wXsxpokDQLinc46rq2fEKFnbeFxSliX37omo5WQ82+96GsOzp09ZLpd8+9v/iKvrC4yB8/unnJ+fM19M6TvHaFKm0lJKlKbuyGxJlmlGo4lI+1Qtq9VGfAtqkTF/4423sNay3Vbc3FyxWMwYjUYsV2tcU2O1YTZbcHKyIGt7zneetg88fbGkSmf2rYxNa3yMhCh811c2sl9SjwoIOwogFS2KEPKfqONF8Bq6dEp0Xceurji7/5g+eOq6ZjQaMy4LlusN0XWs13LctDUsFgtcEg0oioI8LxmPJnjv2e1qxuMpeaZ59HDEb/3W36fa7viVX/kX+Lmf+0X+p1//6/zmb/8h7709Zjqdcv/+fcrCQmzpmnoPds6z8siY+CCP3bbtfmI9Ho/RxlIUBW3d4PoOaxXnZ6d0qxOunj3l4sVzRqMR8wdne+xdjIlvnBV7KfsY1S3/z+Pr5rjySSf+51w5hyVoA9KGKqDt4aITkUlJMIbr/JBVy8YEe3BWerwfb31BAlsg9IEQxLkan1yo+g7lHb5vpdehPUp1oBwhdkTXE2OLUYHg24MbvDukyzHhiQDUfsIZCO7QDN8HqxAT9UmYA8eZmrzOgzrC8O/hxPOJbA+grWYymdAH4ZyGxKfUGJr+NlhSa5u09uUE0xjJKrRkc9E5QojUvsdkGTc3V6ACWZlRFplkSEnHqyzHKAzL5Yp/+Lu/y/X1NZkteO+nvoG1lrfffMjbb/6LLJc37HYbslwEIut6x7Q8ZbPbUhQjxtMTptMpq9WabV1RX7U8f/6cEIQfeXZ2xv379/nSu+9xcXGzfz/r9ZonT57gvfSq7t9/zPnpCXVd8+L5c/FwUJFpaTiZlYwz2AUt2DCl00QTeu+kv/YSKMFxlhaJ+yHDYOIbgoB5Y/CM84xci5Bo1bXc1CIaUBaWt04mFGXG9fKSN9+5x+M33+TRo4eUZYHRhvV6jYqR5XKZstXEC9WZmOH0nhASXAaZak7LkQxu2sinT5/ym3/3d/jOd77D7//e+4QA//q//M/ya//crzKZjClymE2mWKPITIGezqh3FZvVDYUZM5+fMBlPyUfj/bkyKAgbYyjyEaoo0UTmkxLX9HTVlovnHxO7hvOzOetY0/c9NzcXzCcn5HmOKUZ4nYmrPWItiFZoq1+aGQ0845dftwfXuGNMWwhB+mshHlzIoscqK4otKkiFwiErPDaROf75+Bp7rRI4rS9IYBPYxkBwj71DKzCpXxaUxhuDpkUrh6H//6h7s1/Jsuy877eHM8SJ6Y45VWVNXV3VA7ubZLPVpGUJIGXZsAHZD7IheYIgGNAf4H/AfvCDDD8Y8AAbhgVBth8IQ36wIdiyBIqGRkoyTbLJ7lYP1ZVVWZmVwx1jPMMe/LD2ORE3q6pZJVFC8QAXmTdu3Ihz45y99lrf+tb3oWJHVIKtERNQ7BOHqXOIHLcazDgAlEl8NWUBM3xQBmFRS7fzo+Xnx37tnb9cHI+xooi6G/9QA7YRopL59hQUu+RB0CX3JknbZXC5l5mJKLJyRFGUMnOaZ2RFJvZ6ecboYMZ6vebBgwc8+fA5VVXx9a/9PFmW8e1vf1tUY71HaU9di6HHarmh6zoWC3GGL8uS6fQO49EJJis4OjrCO8+Ddx/ywQcfcOv2CUdHR7z19psDUXW92rLdbhHZIk1VTVitNozHI956602atkYbxeJ6xfMnT3GuZVRKOWWMZlwVHLuKuydzrh5tiD3LXAnkH/d29t/v2C+X+qsivEdoOs9L908py5K6a/n63XvcvvsSeVXx//zff43rs2tOb8/48s98lddef0XGmqzFe4d38rrzg1nij5WMxhPqbctyuaSPt6OyYnV5zQotlBEM9WrNX/4f/zJ//f/8NZYrGI+gzOHv/v2/zb2X/xT37h5x784pZ2dP+f73fo/T4wPGo5KTowM2yxV5nnN4eIjRFpPnLBdrICfPS0ajEXkm5ynSUx6LZ7W8ZLW8YrO8wIStOFDpSFXl+HHOcr1CZxOOT0oox/h8DNoyYM46ScaHOGRl/Ua/nxjvY18/fU33WLQ0u4iCm6sghuLEiFIBohm6sPREhRCHoCdWj6LG84cusCmkRJAWc0TFgHMdquvAO+kAJj9QFTuI0jBQQTpeUmvEoZ43qKE7oEIk6l7Ars+8RHMLuImphV26LFTbnavO71fj2zzDBY81wglzzqGS8UqUqCUXbC/7G143dYdijJJVak1Uu/EdYwxlVYFW1F1D51ty7/jBez/m4uKCPC/55jd/jslkRp5VQDJYDhKgO78hz2Wn32wYTG+urlZYW2PNmKvLNeUs4733H9O0W/I859XXX2M+F2qBD47WiXLxarVmu90ynR6itbxXWeZJsTdwdi4A92KxgiA/K4oMH7RMG/g1isjJwRT7tMW3ni4Geh/XT8tGVPvXLv2K1tIEMYrkFCYuTEpnXF9dst1uWXcdl9cb8gzu37/PvXv3ODg4wFr5jOq6YblY03We+aQYPs+y2mFLMSqauuVgfsioyOk6Mb8py5Lnz874J9/7LiYB5zHA1QJ+5Ze/ztd+5quCjYaO+/fvM5uO+cF3v8u7T97DtS1lLgq7m82GIi8Z5QXT6RQQPlqekzrfgRA7lIrUzZrF9SVtvUbF3hRF5ohNnpGVJYUWZRPXeZljlidJLAnstFOV2pWd/wyHTI1EaXoPa2dv/Sk1fP+x11bdLMU/K0H1cxHYiBAT8zyEIBkbUYi4IRCDF3E/LzOiBAl4IUg2Ig5CgkOB2N6F2GMrSsZFdKrnlexMiptBLcabLexPwtSGx/bSY6WSPFBKuVVyZgovAJ9D2q4ZyJhd1w0YR1SiGttr6dt850h+69YtLq8v+M3v/C6L5TXHp0d87VvfTF4D8lrr5QpfSnnbNp4sK4R8S0PTrJE2VOD0+IQyr7h49g6/853v83euv4/WsHTwp//0N/nKV77EdDphsbwa+Gwnp+KJ+f777+NDx3gyIs9FZLJtOvl7g+PDJ49lQRkp5y7OnnF4OOfk9IDrqyVlWdG1MkFydDDnjddmXF9f8+jZE5oeSuiDv/r9s7bh5k+AtPOODBmWH+eWJx+ccXCwwJYl7z9d0HhJEnIDd+6e8PaX32I6n6CMHoxyRPU2OZ4F8RH1XvA3o2WzyrKM1XLN2dkFbX3O0dERhwcjPnj/Eb/1//0mL9894fHDJ5weweuv3ecXv/1t/qU//lWy1MX2bcfF2TnlKOett96S+8B11Nstq+2Sx48fM5seMpnP+Jmv/ixtF8jzAtcFVt2KECLeL9ExUq+vWS8vsAScr7EWMUYzYlflnOP0ZEZezGWSpPMioJGaOvt6g0P2u0fFuLFU98vUn5K5xUTX6u2KZI32a+lmM+LF4+NK0d05fbrjcxHYhKjnMNFBdLjtJUYHlN8Q2xW4Gttu6DqNdxrftejYoJUHJ+VRFjJcFJrCVm2IUbhWRhfD6DvBJXpI+tC1lEZRJdlvs+PpBAVKK2zKILMESmujIXkNRC3PCURMEKlphrlSgzFaxqyUAm0wWQJTgx+wjSzLWK0X4MGanKZphRoxEhqAj4Hl1Rm/8cG7VFXFG/deIoS7HMwP8YsmtRENdSMjZA2BthWVk8k40LVLNmFNVVWoEClKhWs8bbfk8NYxr7SR3/m9nxDUiLfuzlk8U7yj3ueNL7xM65aMT47Y1Ft+8KP3WVyvee31L3B0Al3dcXF+TWZKxtUEm8BtEwzHhxIE3a2C44MT5tMZ61XDdrnF6pLJeEJkwXJ9zkunF7x0qpiUnoePwDnoYqRTYmATTJ/K52njcpQKckQb0WSRzdbTAEpZDkyHd3B664j5fM73v/8uZxctmpYaS0ThveWrL2V86e23ePuLXyJ6hwqWq0vhqR0dHXHv3j2UUmy3HdVYpLdXqxXL9QJtDVVVMT+acnQ05+zxksXVgg8//JD/4i/+RR49WvG1n3mJP/VvfJtRWfLn//yfI4TA02dnMgfbOkqtaHXH+vIS13Z45yiznMPphKmuOJwdc3jrFnlW8oMf/YjVasXp6Skv3b2L1QAO12zpui31s/comisyFaiUx3mDiwadFzg0o6AILhJzhRlXUI2olUGHSGEUWbR0iVuGTlZ4McjkbqqCULJOTdi19fYxsRtrWSl0MIgEGEAULcL+//RQj0ky98h7q5slaYxBAjSK0FlivIm3/rTjcxHYIruMhj3FXBUcMY2TxO8sl78AACAASURBVL4fTU/6E1Z5D3aE4ACbyky12/XxIqWjEn7Hx2RQSuYH9zG1F9PnTzz3GD/lTrIbGes7mXmeY5ROw+k1ZSFmtkVeoozIBq2Twchrr71GjJHL66vB80DOMaDIUnYRaTufmiI6jd948nGezDwiVVkBUfh0ARbLGucCSnX85IMP+f5PHvPLf+KrdAS+9JX7VOMJF5dXPHr0kDfffIvXXr3PanFJLCOuiyyu1nStZzaZEGPk6OiIqhpJKVUURJNmU2M9EF378jrLMoKp8D4yHk85OmpYrTquNj2sACJaEBNlRzre/URvCFAVBT42NLXcDy5AnskomNaa4+Mxj8/XwwSpEHocBwennJyccHx8SIgdxijqeoPSMBnPBr0za0tiVDgXmEwmlGUJwKbeslqtqKqKr3z5y1xcXPDOOz/m9PRUcLA858tf/jLXV1ecn5/z1ltvicLw9SVd1xByRdOm+V2jhg0wBEcxGtH5mLrSBS+//DKLxYLLy0seP37M4XxKURSih5dUkL1zhNCRZ4qYqgdrLUpbdForPm3IWZkRYk4XkzyYCiLesH8/f4bS7+PoGZ/1936/47Nka/B5CWxBjElc2xB9i8bh3BbaFb5bEVxL59Zo5RCDFo93HoXoTSmlCBiUCtJAVn0qm7qYAh4kxnokhj29f+8xJIqF7r0jd904qz/6EfXlYUhdn37H2i9JlUoyllo6PmKf5/fS98Di6pq62RA6R1FkHB3OaZoO51vOH50P9IJ8VPDgwQPpSJ4corVmtV0RGhkVms1zqqKkC57lap2oAdJUKYoCbWA6rqjrmvfee0BTB0blhCKb8OYXXuH5+RX/4B8/4AyYjnL+t1//LpMx/Inrr+O2Z7xy/x5/7I/+Il1TM7I1T1Yrrq6uGFcz7t+/z3a7xTUtEHj48CEnyd1dZmTlGsxmMxH81NLQGY/HBBX48MLTNQ2ZrTg8rOjcJXrboqJHkRPRQn0gKa8kGkFmYT6fcHLrNk3neefdD3DysXL31gm5zbBG8fM/9w34zu9yvViyaQNdCEwnJf/qv/bL3Llzi6urC27fOcH7jtlsJpvJek2WFSIE4DyLS9lMxuMx5bhkMpmkuc8ti6tL/tF7P+HBgwc8e/KY/+Df/3dZrVbMJpUo7k7H/L//6B/ya3/zb/Bz3/x5JuMR3gWePn1GNcoJscNagy3zgUS2WKyYHRyRjSqx/NMZt2/d5fbt29A5lssl3/vRd7l76xATHavVgsx3jDIt44EmCTAYQ16UQtbV0uCKMWKNDAc6n/w4zF5Jv49r/dOs5Y8pZV8sa/9peGkycfOHjMdGjHT1lhgalG/wYU10W7xb4bulYGuuRsWGSAfKEXsFj8FxnQTISHtTXNtFlTbqJHqSbNhuiH34QEw1fa94obUmOk9aSR9zuj2+dvOxvpM6ZH7pd3saojGKprcARIJeURQUNiP6wHq5Yr2WDO3o4JSiKgSsXyx44/VXyYsCF7pkE9ewWTe4RLUop3NcYBjQzvOcGCTrWK1WvP/uA4wxvPrKKyiMOB2FjNF4zK/88h/he7/3gCe+5LJpqcqKZdvy1/7md/jlX/oS0/nLuE4xm0z4tb/x17l9/0vcvX0Ho3OaRrKdD58/pa5rDo+OKKtRmlpoWF4tyG3B6eltYox0bUfUsqAWiwV5NsXois4vKUea2WxMfPchT886QmwJXuAFi0MlzY6TgzGnhwdorajyjDIvyK3CNx2Fgjsnt7i8OgMCF+dPuHU85mCeEY2Mnb359lt88a3XmE7H1PWGcmQB8VadTCaJytExKivarh4ysNxmbOs1K+e5aHfztO/88HcJzvPS3TvcuXVC/vIdzp49Z71aMJuOUP6Qo4MZP/zB9xiPCubzKfODCdvNgtxa2rYhRj/Iq0/mt5hO51SzGZktaJ0ntzIpcV2fkWcZP/+Nn+WH3/vHXDx7xsh03L81E/EM74ZsLS8K8tzinSEvS2wh0ysmeLS1ZFlODJq6bVHJC2QIOJ8xm9qnbfRTNDcw6RfWSp84fJYA+s/FCf6f6xEjvmswtBA7fCdBzrsa72qib6Vp4DtC2Lkt7X/4IQaZb499aSuE37509UqGrGXX0ugQIQa86jlmkZD8EXQE91Mu7Iu8mn1u241mQ7rIMTL4HwgwKgYhXddhraXIC5bLJU3TMK3GqVwoaeotm7pmeiBS0M634txdWNY1aC2UGO+lU2yUpShzgo/JAbylbRvatmYymTEaCTt+u92SZQZtMly7pRqN+cVffJUf/92H2CJnu9lgEFLk+fmah+8/w7gV69U5VaE5PjyiKAraduc10RNOu04yTq01T54+Zb1e4zLP9fW1TJXEIOWcVmKi7LMkAy+/U+QZt06mLFcXdA4a1wEWSxDJJWQkiRjQyjLKc7Sx6ODJgEkhemSagHOtyGDjKHLNq6+/wsHREbfv3CKElsWyIcsyuq4d+IxKKbx3WCOqGZvFUiSVfECNhEsWk8u6VpGQPvtylBN9x2azwpoxJ8eHPH7/AcvlknlSDjk5OmC7XdM0W9raUFVlalJI1aEMVKNKaDQmQyuRq2+ahugN6/WawirKzPLs6VOODg9otwuunp7RHY4oJ5UMGSolGoIxjUAZsxdARKYrptK+55N9BKz/DIHt46YGPqn58E97fBqKyf7xaQyTS+BvA0V6/l+NMf4nSqnXgV8FjoHfBP7DGGOrlCqA/wn4JnAO/JkY44Of+iYxpkxtBaEhuhXeb/DtNd5tCE502r1rhBaSZqDinqSQjxHvhRsTB/zJCdv8hV3BhJAkcxI9IEKnJNuxSuOM4HpG7XaIQak0YXI6CUoOH3gU3bd98m7biKFI0zRkRY7SEmSlkxk4PT0ldC0/+uEPIUReuvMSm9WWGCKuazh79ozZwZzD+YzFVhRoTbbLCJt6CWiaeoU2GUVVkWVTnPJsNh0+BIqi5OjWEV0nyrC9Qm7XSUmvdOT4YMQf/6M/zxe//sf4r/+r/wU0tAmn/d53H/Kj7z7kmz/7El/72tt88UtfQoVAvd6gs5zvff+7vPzyy9x9+a5getvIZlFjjOHu3bu8+nKO7zzPnl3QuQaUYrVaEfBMJhW511xdbcFvaF0LHcwnBV+4X7HeOq4vW5rWoTuock1eZBQKnn/wIeNxTmkVh8dHmBCYj+D28Zzl5Rm12xKj540vvIKPHcZGXnvphOl0ilYNi8tnrFYr7t27w4Nnj6nrmrKcMJ8dcP/+67gusLy8Yjab0rU1MTiuL1eUucVaQ72+Yrlckuc5x/Mpbdsym1a8/+47oALjckSRW+IoY3F1xvHxMQfzCUsdcL7l4XvvcnrnlCy3dEFsIw8OjxiVYybjU0KE5eoaUod9vbxOVoqgc8uotKwurphUGYevvsRqec2TDx/xxS9+AddF6qamqCqpPKzFt55IRxk83tUoZfCxgZjB4Pfx0ezpRVrGi8/pN/l9KfF+897RO6SS2mVcce/x3Wvuf/+iNPlQjX3K49NkbA3wKzHGlVIqA/6uUur/Av5j4L+MMf6qUuq/B/4j4L9L/17GGN9USv1Z4D8H/sxPf4sohNvQEUNL8A1ER0S6pEQZEFbRy5C87xIWxkC+DVFJQEs4mihwRZlHiz1tIFECiOg+FY4CKSulEtaWAH4fCCoMfo279nQcTFT6Y/9iD/iEkgZBCGEYAF+v1zSdKAKPRiPq7ZrVasXRgXQRM2MZl6KkcbGW4evJeJQyO7EFVBiMkdcmCLm32awx+Qjrcy6ePcHmBWUxGjS+XNsNzHzvY/IhQMqrKmO5uuLwYMaj9x/x9TcP+J0fXWGRjM0ieNYHD59RZCX37r7M7WPLfD7l+fPnvP7KfVrv2NYb8jzn8rJmNpsxm824OF/QbttERk7wfQh0oRMqRys4D7GhazYo7bEmx3c1mQlMS0t2aHFdpF22zCYTsszQtTXjSlMWloPZmEmZczAxlNWIPNMEHyiznnwaKIuM0aggU+CaNVVV4tqOttmyXq3QSmZ/xS+go62Fo2eM4cmTxzTNVmgz0SfhAY0mEFzLulmzXkk2enV5TqZl8xvnOUZFRqOC8agUbEsbDg8PWW+WLJfXPH78mLv37qSGhMbYnLwshjUh95wnJJas0QqtgozUtU2iQUmXfzQqUMg1mR+cSCbathibY3o8Jch4XuYj3oYdbzMEwTL3ca9PpHHEj3y/H4SGMnMv/vWl6O5341C27j9nPyn4Zz0+jWFyBFbp2yx9ReBXgH8vPf5XgP8UCWz/Vvo/wF8F/hullIo/5WwVAfyG6NaEsMF31yLv3W1w7RaCOFQpQf2T4ZQWiaK+VYyUo0opIfGm2VAfnVxAECMXpAPlkPGtkIKWVeAS0O87N2AAZVkOH7rWeugeic6XGiS+b3SiVUQpea7zrfCWfCdjTFlGcThjcXkxLJjqsBCRydWW0MVkjLLl6PSEvChp6g1eifUaPtIFUCrj+Ggu2mp2xNnzDxmt13zlZ3+BGAx107LdChdL4bAqGxy5XYBRUdA1LbHzzCdz/tav/RpH+Yw/86//Mf6Vf7nj1//O3+dH7y7oEiD//Lxju3yH7/7OO/ybf+prnJyc8OZbX+D52VMRQ0zjXqe37mJtznq1pRqXtNuWvMi4c+cO221D23Ws6zWta3jy/Bm+2UqQbh02y8g6g2s6RokOU+SBFoeeZnTdiuAVzcZxfCodytw6NqszDqeiIJzjyCrN/OgY3XdeY4cJcP7hc0ajgjozmLEoqjxvGl5//VXyInJ0dEiMitXFGc1iRQiBldtilcKWmlGR8+TxB1xcnEEMZFZTljmu3pJZy2q9YBuke/rjH36fN15/Hde0hCDilA/ff5+iyGldI7hgbnn4/gd84YtvMZ8dMppMsXk5uIkRRH3YOeFw2kzj6i0hOlyzArdFK4eOUTbBacXiesXl5aU0H7KMEDyZsmRKi5yX64iuAWXRmRdp8BjxYcdG0FoLufgTMrj9IAbsmTUzfK/MzjOh/73deNzN3//ncXwqjE0pZZBy803gvwXeAa5ijD0H4wPgpfT/l4CHADFGp5S6RsrVsxde8y8AfwHg9GCOClsIW/Brgq+JvsF3NdF34tXoA1p5lDaAISQRPq1E9YIYByJApNvtJPhB4w2szBPEgEsZhDEGoxShx8jYm3cLvUP6jqKgjB5oC31gkyxtb8dLZF90pLBiRNx5R1FmdG1ks92Il2R2AlFKnjZ2xOjZ1lt85zi+dUC9XdE0W0aTKT5E8rxE2QzftpSjCWdPfoLR8ODhE175wqscHh3w4QePiMpQjWeiadaJRV7npN0flQTi88tr5tUUnSl+57d+h2/9/DcZ5WNciPzw8fd49Yu3+eq3vsLpyW1C53nvnQe4tuPJw0f8vb/3u5yeFhSVZTabAIGyzDk8fIX1pkmzlRPOz86IiKJv23iaZktAGhvaiqDo1dmldFCdJXSWVecgGpxvBQdS0gWNoSPXIm195/QIHwKjScH6+pyu66gK6NolZDI/a7Us1s22ZTqesL5e0i5WvP76q7itZ7W+pKpKLq+vyaKIdT774DExKqaTOffuvQxobKnJc8Nmfc3V2YbtZolRjmdPHrPZrnnl5ZfQNmO1vOKV+y/z5NFjnjx6xJfe/iLL66vEUZTudPBGusnjiqywTOczbt97ibrp2LYdmfNJ3r2lH9OTUUFQWrhlPjRCXNeREB1WC8cyIvL5R0dHXF8vOT8/J4B4VyibnqOxMRLqmhCtkNu1R/mQpl/kiFFEGYQGBT1VCRgmdvY7m/vNgOGxkKwsB0L7fqD8KOl9//d7xembR6/L8umOT9VmiDH6GOPPAi8DfwT40qd+h09+zf8hxvgLMcZfmI5HeN8lTSqfwM0UlPaiev8B9MqoRE0IMX3Jwu2D0r7Lev/Y/te+l8LwvP3H+vfYO/oL4/d+tn9R++9ffG5P+u3Z+b2x8Iutdd+J4a78LCbNMH2jHBanJD3wwDabFaMcjg4O00D7dih/95sc1sqUgNw0KunmS+COMXI4P2TdtoTM8PTiOcUo42e+8TaHR2PGU8ubb7zEV95+g9k45ytfEXny3/vO72KSw9V4PKbzjsvLSyaTCSp18fqOYlEUFEUxWMj152m1xXeergm020i7jRgKMVHeRrpGPHusglFuMAqqqiTLDb5rQAXywpLnGXmeSRaVZck70zMeVSIt1DhWqxXnzy+w2hKcZ7vZ0NYNy+sF11eXlHnBdFyJqQ1BqCUqopDyr2lrGeVTkYPDOVVVst6ILFOe59R1zagqGE9GokLsGqqiZDqdEpz4XORJXGEymWBtTjWaMB5Pk6x3Ttu4gUC+0yQJCKQb0VqhNUn624kfrZZ7q59kqSqRYnetSIAlmjjRh+EeI6QRvx7KCTvZ+n49vBi89rmf+1+x58MlWfkXf/Zpvvo181k6nz/t+Exd0RjjlVLq14FfAg6UUjZlbS8Dj9LTHgH3gQ+UUhaYI02ETzwULYRHqK5G+Q7TdTIb6oX17HUgqAbX5cOHuB9MVD817XfBRgVDDJHgNEQnc6Z0kHhQzjHw1rzOUDYnBINWOd5pDBnRBXztReXVaKLvBDvLMulCRoMyEaszjJYRsCwaTNQYBzbPWa7WFJMZEWi6ltlU/Dm3q6VMJ1gjXpUhEgzMTyYSfDq1K3tjIM8suVUEa7BZxmK94uwyEM2cb3zjHr/5279N18JXv/5NTOtxdYfOM3x0OC+ZJd6jUllfZRlXZ2fEGDk6OeLZ1TnRwo9/+AP+5K/8Es4FaJYczyastOHCO7qu4+1vf4HtasvJ7UPyPOc3fuMfce/ePb7z27+N1prXX3+dMgssl9dMihGhkGA8Giu2bs3yfEnXdSyXW9oN5BziOsf1+QJrHU0L85lOlB7QBsbjksnBIVmWUW8bimLEuDrg/PySzaKVTJYRJ/M5Jpcmi2saslKTBTFhmY5KimJOUVY0XSQ3BVopssxACBhtiamkm07nBA/n58+YzBTlfIJpa2jWuKYWbHI8oSpHrNdLmlVHVY3xtSc3JbdP7/Ds2ROqcQ7G0HQNxSSjMkLfGVUFeVlweHIba3PmJ3OazvH8/IIvfvFtNleX+BDAgSGQGUVZFAL6W2jqlnWzQLWiGKxUhne7AGXyjLIqWK1r2utr5qNjnDY4FXExkLU5Rrdgc7wOYDOM23X4e3zN7XWLISUW1gleqyBqmT3tA2FvOm6M2dlQDmu0/9+O5hFCILMlJBGKXqw1+H44fpc0hISRf9rj03RFT4EuBbUR8CeRhsCvA/820hn9c8D/nn7l/0jf/4P087/10/C1/ojs7QK9Vr33+Cj6bN571AsR/sVsbuiuIB2gELwArKk7GoOUqARHDAkzY2fcYXWGtx4wwwjJwLeJYn9nrBZ9tB7Xcxqv9SCJ1AtlGpNUUEsxQfEhUE3GEBpZ6KMRXdPSpG6n1noYe3KuI7clXdcSFGRGyK5d11EWJW3bcnl2zvHJIVor3n33XSaTnDwfcXV1RZZ1qHxCaUSvTpj/u93We5FYattWsJnJhMvLSz48e8I3vvGN5GilsVkmRstZxnK5ZLVa8eqrr3Ktrzk4OOD58+ecnp6yXq+TKGNJXdc8evSIu3fvChM+Fwdz7z2urTmYTZhPLAZDoQvqoub8/DlZBrfvzAGYTEqcLyU7MSRBR41RGd45nj654OpyQQiwWnqUWqCA6XRJNfWcnp7inWY2PmI6nfL8+TOqcSWqt62jmJbYopD7g47bt4+pW8ECu67jnXfeQSnDwfyIZ8+eSslnd53DXYYhPMT1lTjNT6djrq4uCFE+i/Ozc4xVHB8fAckJbCaSUJPplNlsBmkgfTweo23G8+fPmeSSfYnDhgQ2pfyQsffZlNEaa/e8AaIfVJSVUoNUfF3XFJMR2hhIWRvGEbqOqBsiDd7Zj2RQ+02z/pDZ5t36c86nbC2gtdxf1lpg5y8reGEcqoX90tb7nd/tfvXy4jr/rHjcp8nY7gJ/JeFsGvhfY4x/TSn1PeBXlVL/GfBbwF9Kz/9LwP+slPoxcAH82U9zIjoiuJcPw7TAC3g8ouPUy4HHvU6LtKR3qhCpHk8cK8HYBDOLUYTsVARSEOm9AXzUKOXBO6K19P6G+w5HL3ZA+3Pz3g83WX8DQsoKrUWl8tAlVdidRLPM5ylryK2ma1pCSAPy3hETc3+73VJNJ4AMaU8mE7Ajnj/9EB8cXdNiTE5lRG1XzuOm5tX++a9Wq+QgVQ6uUsfHx4mKIqVN23XCQ3OyUKtKFHun0ymbzYYPP/yQN954g9FoRFmWHB4e0jQNSikeP35MnokL1mQyIbcZRweH1HXLatlQFgUmWtxaBBvv3TtmOpsQgmMyqViurrHWiHlK23J9vaVtr1mvt6zXnm2S2M6sxhgZxH92vaRYQts8J0ZP8Bp/Grg8v6ZrOqbTKb7t8JOWxskG03YbbCFzrqv1ksl4KiVh21E3G7LcDN6r+0TU/u40xqBiYLtekRlNU9c41zGfTxM/06PRGKWZTGYcHB4yHk+TarJgUZKaClyx2Wyo7HSYaNnrjd14f+cc+R4ZPIa+VJTgppS6IfMuGmlJsDE4VHAiJLG3Lvp7+tMEEcHNFEKU38usQm+jGQUHTBnczdf9/V//xSD7Bx7YYozfAX7uYx7/CYK3vfh4Dfw7n+UkYox4V6dMyskHj4ClJv09mt2H9uJXf7H7Lx9qghO9M9c1SXI7pjnDXWcmxih6aNqgVUaXTHu9zdDBEjQ4lw+Br59RFCURk8YYJYBIllXsgFM0NpcMYDweEyEFO02elTTtVoi4xYhsW6MrTeidvYkEoyjGFUoZsIagxbf04uKCYlRyenKbxeYZzWzC9UJTFBqN8NJUulldF7Aqu0kaVgrvPU+ePOHVl+9L9nd5SVVVTGZTVqsVSikuLq7Ii4KyLPEJ/NZac3V1RVdLVvqtb32Luq558uQJh4eHnJ+f0/uQirrHJQ8fPhQRxmrK8npN6ALzySnr1ZbV9ZqYMKdbt+6wWFxRFAUfPj7j2fNLsgysVaxWkVUNw5y21uREmXXshPNXUjDSFhfWPHu+obCay7MPqZcNH354QQDGogNKVf2AlYnMDxS3b58yPRgnj4YGg+LVV1+TTraLnF1fDn97llm0Vom6srNonE/HXF9f02zXTEYjus6yWiwY5YUYftcddqQZz2dM5weMyjEmz8mygi5EtDFS0kXpqIoMVIk1krNpFfHO31jk4i2bkVkz3HMRcZ/vI6FOGROJsG2iRWea2DmiaaFwaCO+rlF9/Mb9YkDpZ62JavB86DoxK+o3U+8lodB6RIw+sQZuiobK2wR4oU/Q35+f1Jz4tMfnY/KAOOipCfMoQBA3KSkd+w84ZWw3rLgiMe51MmMEOkSRIJUOeFEZiBHfNyR8onCYHbaggsIrSa216jBK42KHzbOU7juUi4PvaH9eMQoPyvtdB7YshI9m0sSDT6NeyEaXmOYaHSPFqIQoZZ/3Mu5itcWnwfy8KPBpWH4+nzOdzkHJjbXvRxljn+0mRyvnUsa4+6R7JnvfvOgDWVmWQ0nci2AWRZE6wIa6a2UEKs9xjePevXuUZcnFxcXwGfTPv7y8lFLXbxhPhIf3wcP3eP7kjM3Sc+fkgrYNnD294PSl+1xfX5Pna9577yk2neumhtxClkVcJ07gAdkwgle0BFqgwopJsDI0QQJTJOJcwAGXl1fkmdAhVYQsE4VkbUQI4OTkhMlkQlVVZEan0gn5Pss4XzwW5n8MeC9356AAEwJ1s2EUi8Sp9BgjmZhqFWUpvhHyuRSUo7HIHqXGT9RGuv799dKGLNO4TuSThoyNm6B+f512MvM/fTxpP0D5zqGyDu2DuLgFwbFffN4nHVJp7F43hN15iUFMDyn1E0I7Cz2Nprfd6yut/ffbD2Afl6l9lqzt8xHYYkRFhyWIzn0MOO/RMRKDx/uAjoEQxQBCEYeL2afRg4dkjPjQCEUkRoJzwwyo6oN+CnJBeejAWpkp7fXTrK4xyuK1JkYDXcDogq7bS60T/hCcB2PJ8oztdotWKmnhi/hgUUkWp/RuFxV8JMPkBUq1jDNxQepNW0IIuFa06NAieVRvt0ynU2YHh1Kato1QXuqO3GYstmvBUGKH8w06Buq6xnnP7EBAa6UUm80GYwz37t3j7Okzttstt2/flpuzSx3lxEvTWnAhrQ3Pz0Q88tatW7z68qvD64BY0fWL4vHjx7RtK9MFKvDlL79NcJ7f+Pv/kOl0Qm4bOlfjXaDtPA/efcRm0zEaWYjgWukBjQuxiFtvtqQtDY3BxYBBk2EYKSsZLbK4MgyjshyULiqrca7DGlAZVGPFZDxiudzw9pfvcPfuXe7cucNsIh4NVqv0OUWuLs+oqoqjo0MhVjcNeW6HsrRuROK96zqaIGXjZrMhRNlMxH/iGGukIzwejynmByIaqRVaW3xQ5MUIrQ02ywlJN1ClwBajdEGNNrjuZoe9L1WttdTbBryTGzwGTK4wSTTTWosyORDwriVEhXEd7WbN9ECjc8Pa1YSQD+/ZBxfhX+7e78WJgF4QE2C7bYaAVdf10IWXLrjDGDV09wO71+w18PbxuP0K7GaW9wfYPPgXcsRIDK2UodGJxHeQwOZ8QCdKx4CxxZ0xSwh9jb+76CG5YMcgHRajtCjphrQrBUnvncjqU2Y2pc/xZoPCBwI1QefEaEmjqIQYyWI2zOL1NntaKQqbDdpt1lrhYMWIjgqdWQKCxYUQqKoKY6asF9eSvVlDWK+EFpDlGC2Z4nq95u7dl+TnaRcss5Lp5ACjLav1JcvVFd55mqYmyw0RhzEFWkXW6/WgtiEUC3GdCkGoJZKRRFwrY2NyXjt7uZgwxIODAzabDYtswXa7pa5rMTdxjgcPHlBVFYeHh8PjOk1xNF3L219+izIf8fjhY/7Jd39MOa0YbxStyxiNci4u1rKwgdwKwdjqDKtlYwixJTOKsBcYWQAAIABJREFUXMmC2dYbtA44LzLSZZnLItquiAGKQnhgxycVxooAwWRaMhqVfO1bX2Fyb8bh4SGFzahKkf6uyoKuazg/e4ZzLVoVexmEp2kEZ8tyw6g6BBBaSSf3nYsOnWnKomI6nVKWVfIeFQmlqDTKWJHkVgrXddggm5lNGX9/TZTazTY7528ElB19xwLJsT5KhdKPDzrn0KaXXN/RKExIUzfK0dVbNBm2LIkfw/z6uGxKvhjewzk5r9VqRUg6oVmWUZQZzlXDPQAaY/qAlV4zia/tB7JPDhF/8M2DfwFHTIFHOp+SPUkAkyZCSM42Uk7sj4318t394ze6OvLK9EaYwaeB9AA+BX8DOOcFu0HLWFZQSVJc3kgNYLFCxZs+CMCQufVGG/1NNAzGp3OVpoH8juxOGqO1GNNGi1IebY1gbF6Y9yFGsiIXx25Eg0zFpKLgRdBSxV6vHlFvsIVgG6LglNRPeocrj90Dl/d3ZW13s7dAcphvUEoPY2T9Dd627TAruVqtuH37NpPJhOVyyWKxAKSc6xsdB/fmnD+/4PjWMa/VnXgveMdsIjOmq/UarWG9hlGV4RaeiEOrjBgDhQGUQ2uR+zYKMhuHzzYzjrKwRC/6b7N5Rdu2HN2aU44EG5tOx+SF5e7Lt7EHOaNRQa7zwSS55y+CUB2apk7dcXmTrusI0d2YGYaATtCCzYWKk5cFo3FFlhVYm2OzDGMyyEsxmwa0Nhhzs8va3xcmlWgq9NjFR0uz4RwS5uW9yOVnew2sFzOcfg0FJ34IpGF4lXhzL3YnX3ysX3G9sER/DJxQt7f2kmirrEeVyme7W7gvvM+Lf99+EP+sQQ0+N4ENSMB9jHKj6FR0BkLaucCpxMTuu6LIB4iSLEq2kvR41KDEGQoPIYpOfIwpgHWeLNdorai3niyDzCrkN+RFY1RYK9pqqlcF0VqaDQnf0CiMsqls0INuvmRpe0oJexdHsLES750YnYwrfOfoNOhEzfA+ijyRc8znh0Mbvcgk+MQYGY+mFFnJefkIo5KcV0hyTrEjy7So/JrsRkmRZeIfKlmVHlzKXcIXZdoiQMoMvA8cHgoBuCgKNhsxhDk/P+eVV17hzp07hBBYr9cYY3jzzTdpGvENKEoJiNWkYjQeYYzl4OSIJx8+427riE0HTNB2zQcfPKeawGyaU5QB5wLLhWTDs7GiaQTT8a1jLPQnRoVc9hgDud3QZjAeR15+5Zi63nJwOqOajNAG7rx0l8lszHw+p5yO8J3DdQzEVqulA1uNCjbrKxaLK6qD2VByhxDITE/raRJZWiWahWY0nXB8fMpkMmFUTgXIB2w+YjQao4oyQSUBazQZxXA/9BBHVU3w7SZ1HdMg+YtTAQNXLNDP8q3Xa9qu5uT4lmSV1g74q6KnbQRU1ETvKIzGajl3l3C+/axsf+PeDz5q3zE+Baz1es1qublBRNd6OqjXSPNtH1fzL7zmrhHz0UB6MyH4tMfnJLAJwxulUEYRXAom7AyKg/p4GZQXJwmkwxqTUbIi+D2yrgcVDSpJ//RpvjEpAEYNcSftrZS6kakYRCpoH9Oz1krw0wqr9EfOrb8N+gvnYhQ58nRBrbX4xosxshE7t7AHEE8mEzKbJTpJPjDYlVK0jbhzeRfR2pJpL+a+RhOix9gof1LKAHoco67rIWPbbrcDEO1dOzic95jfdDrl6dNngzjkxcUFucnJ85w33nhjyNy0FvZ9jJGzM8GnqnKMj47Nphb5nqNDvPdU04qv3v4K223D5eOHXFxc8KWvvMLbX36N4DXvv/eI23dO2G5rHr7/IVpbTufz/lOlbjYcHMzx3nN4OCfiWa/XHBzM2NYOZRVvfelNXAwcHh+QVRk+SgduPK2wuaEoMshynj07E8WYqKjrhrZpsEbcu4rMsNpuh+tZjnJCCOR5TlUdARIURxPhKrouMJlMKYoRo3JMU4sHaFaUol7r+jElQwyKtm0S3rZzZ5frLDird5JBRr8z9tkPBsEHQnJmq6qKIsi92l+LokildEyeu2mWejQaYYuC1nscHaoMg41hf69+XMbWf9+vs55T13WddIUbkYE6ODga1mFfQmudsZP21vSeCC8yGj7p+KwTCZ+LwLYDh4HYW25ZQhSYMWorEwh+LR1FmyVzd8FeUIoQRIDSGGgdqCjE2+gjyMgh1qiUFXp0SFmWimJsoT3KeLSNRNPiDWAMWiWdLiQAOt9g84yQDFliBh01hoImtOS2AGPoguBVOkZM8BhlyEIkqIbM5GQ2UrfSBQ2xSTwGUAaKPMf7Lb4NMkxs5aZ3LgGtmcb7yCiPtG1glJUUdkTjGrSJYDqyQuOjRVNAaFGI+7dVOVu3ZTye0XSBQAZaY7KMKgqBNVdZUlyNtMuOUTZGecXybEmVVUQTB5C4v/H7RbTdbgepJqP0MGu7WdX47iJhThUH4zlu85yTu/ep5se0jZS9m6blrrnPtqk5sacUxzKGtdlsEvETTJ1x5/59QBoXPR0nRlFICSFw6+5LrJYbjk5PUVocmzabFWEbmE1nrJ7LGNji6TMO7r/E9eJa4AEi3mkyVeHagDU1oAhRUZgxMWUgB7NbKB3pfMf8YDbQHYoi4WPakqUNpQvdwHfTyRPDBYEdemFGWdgyHuWUwTuZ68VA17aoqPC98rNWMhYWV3jfYGJLbjTKjlAYSnKsKokhQwHeOJRReK/QymLKkqANVmuMkfLdGbGs7GdTJUHSiQaiBO5XkegbSRaUksmDANrm1C7QBYhB0zhF4xo8ns6LTl4Iu4YU0aN10uGLH/UM3Q+ow7/6D2XGxuDnGRNZSSm1+xdSKiqoWQzS4o7DDbHjt4XeQRshRnoSHuE8bStihXmOAPkh0HWePJP0WRmFNhb0TpPfe09RFDtl2qJAGWHlg9xoUm7JLhlCwNFiTZ4Y827wq2zbFjvO6QmTRlkweshKhQYiJhiNaZlMZLxKdsg06J92dq3DQAIejUYybtTVbDYbsqgYNQ0qd0QsRu/hGDEOc6T7AaHPPgUQdgPg3JemZVkO76MyoZpst9shu1gul0OmNx6PB4fy/mZummbA5PpMcTwe0zqZTjg9uc1isWA0GnO1XJBnBSazaC0by3J5zXg8xhjDarUaPA1ANpjxeMx6vabebFPWGXj5/j1WqxXT6RilInmR0bY177//gNvHt7heXBKCY9tsgUjTiCquMZYiH6GjxZqcyeSAzBbk+QgfJYufHcwFzzSGalIMI0UgLmkAzvRlnUkE8D1Xsz2Jnn3lZemgpwzOQPRpSDzx2IzsrnRdiw5SrjvvMNpilYznYXSiL0nJirEQhJJkbLYr7RK+GwbZbZkhFcMhjVJB+JokuhJSindtc6Mk7v/tuo66rhlXjhh3eofSnTV7Jf2u7O2l9PextY/rfvZl7qc9PheBbV/KfAhoWuS8NX2aCpmVrCCoJChJrzEG1mb40Hc2d9QNpRS+k0HvLNlVqQhN2mFtbtBWOjQhaV7ZvEDbXJyk2LXW+9LRJVmZEAI+9MKTarjI8kviRTkajYYyWZREhNYQHcRo0EpkhGQkxhEDOB8oihHB9Z1eTW6MSGoHZGKi7VJQSsC/ls5fV0eiqqnrDfmohWjQ2c7NHhXJkoWcMQql9kZpQhwG5V0yM+lb9j1WUtc1OugbC7K/SfNcStS+41rmxQ3spC9Vr66uuLq64vj4WHCrLMMea4qiYDod0zjxH9hsNrSJ+pBnljwT/PJgPqMfQ+o7ulpB8I7xpGS1WpHnJU2zxrma5Urky0NwhNjy3vs/4eRgzmp1xXRWsd2KhFGUwh6iYtsIZjQ7PqAYTSiLisnkgNV6g1KGgKEYzbDW4LqWGMWJVoxxAqNyDMYTVGpYxR2O9CIw/iLNQYe9n5MI4Yl03S/wPM9xK9lIutaR5RatInmeoY0RvNV74l7wj0o2636NaSWEWxU9Bk+MiawbBavW++TuVA73ogn9ubZtO2yw8jcw3EP7wXsfu+vvG2vtDXBp/3P5SIz4DFQP+JwENiAh34KjSeBKnJ4IghIplBJlC61T9qFu7oAxZUJAajhIGygEeT1jUwYYAh5ZDMakCQKlMImgubvRRF2jP/Zn54b3SaVEv3D6XVuUSXpzW2GqZ1nW97h3AVgpwfcSsTT4QNd68szg9y60XFgNybXLey/2dP1ipN8d04LoXb3SwuozH7kpo+CJSMdvd9PszGn6Tmp/A+47eGlk4+k70f1XcHIeRVGgbTaUjvuLdh8P7QPgeDxmeb1AackYu3pLncv/iWHYpPpF3eM7fTbY88kAjIq4tmY2nrBYrCgyy2q1IC8sWWYorCW3ms12Tds1jEaZqHb095ORnS+EiDKaoigpiwk2K8jyEXkLLgZikEkQpbMkqxRAmYFi0etyxKEKAWvsEBT6z3Y/E9ndW9IA0v16CAHvpNHknEPh0PQbf/pstYzmRaWSWbGWFlsifCstxGOlDCHGwQMEAkSRT1doQowYFZMQ+83zElf3m25uSu2ku/rnvZhd7WNo+yXmJ3VvP+5Qn06IaDg+N4FtOG2tUEFco1SQi0VE/o9Bdi4IPiYKx24X3GUHSXQyKlQ0YPQuQMaAtoILgNAhTGaxVjMeVUPjINMZWVaQc7PFLpMBZthpbb4DbKVrqIcbVnwB2mEBeu+woUx/Q8QPuIpGR4UPCtd66k2DnZZDCROdx4VUJoRA8MLJa1sRMexvNqMiwtgItE1N126wMQLF3jmkm9OoVNLLza21IrfFjaZILzMUFKlEE8Jn53YE0jzPh5t7/0Y3xkDKAPvstm9MjNIgv1Ga5XqJMYbf+q3f4vT0FJNZLi8vMcZQjEQFeLFYcHh4iNYH5Hmeurprrq7OODk5GTIHYwxXVxs2G8HPrhfnlGWJ8zWqy5KmnSWElouLZ8IXLGe0TnDAznuMtmg040lFnufMDm9zcnqLGBRZNmJ2eBvvA9fLa7oQMFi00vjQSUaUaCMS+BLhaJj1vJm97CYH4o3vvQ8JPw4kYG3YNKxRhKDwvqOwBTGDWASyIheA3mpCVGib9Gyckw5sKdcpoBNX02OiE+VpFzG2RmEIWvw+DZo2JLwNhiYFqXMcQqD1O6n7bbKJzPNyeKxvMuwHcq31ACGFED7S8f2k47OWon8w4kf/rEeMu+kApSRwKIaOUX/BM1tg08iKHD02YW/gLTJXykC6FQ0rNWQjA08olZa978HAuDY5xuw8MPM8H7Ak2CkS7O84/cLfLzVCCNhM37hxdQR86rIqTWbyHaPcS7Acj8fyt0XAC47iO+lAuU50r0ivN3RbXZveQ7Kwut6gQjK+TVmSLH49lJbGyvn30jT73V6zh3302Mj+ouzLiv4z6XfdPqj1pWqP2e0EOW+WM3ly6Do8FErLerkaGhPRy+xriI7gHA9+8hOW19csrq5YLRZsVivauqZrGlzbslmtePL0MQDL5TWLxRVN0wi2ac1QulprBbi3Cuc7MVTpiaIKlNGU1YjDo2PJ3LRlNJ7I5IsRE5yyHJHnBR5FCAycNVmr5qPSWi9kKvv39f7G4NIYXP95D7+joxC/lUo4cY5iNxFgsgJlDUpbVDIBl9fNhuunlEkk75juOSH2Wh1QsUPFDqOCqOfqnbS9cDQ1VjM0Sfav7f759/dGf4/1f9P+z/r7at9ntv97X/zq793fr2v64vH5yNjSYgdJqV2MSeYvkop+IStqQ5blaJ2z2ayShHe/4GS8NCTSoe25GV0gOEm9o0LGlowZuluZNRityIwi0xk6KlzdoDONVjnK7C3cPv3WH3djJgHA6AlBMkutwbmd+q7sVk44bUFMapUOAzAcoickTlPP2A4BGQ8j/QFB5JxcF2hacTjaBRMvO3qUHbZra4yx2KJMpfIuMPVl8jBP6yO9VFP/9w7KwT0ekm60IsuH5/SLpg/2RulhnE0ZRZHLc93wd2nGo9HwWFmWFEUhrHlj0Bpu3z7l8ZPHoofWTOjalh98+D1OTk5YJX8BmXiA58+f3Mgcfedo6hqrLUWWU2+2HB0dQIy09ZbxqEocryx1Sjc0rqPbBPK8ILMFo8mUajYjH48pijnbpqXtIuPpAT4aAkFmd7Uhywx5ytC99yhtpZRM6i2koCSL2Q+f235A6zfDAVIJDqWS8GhwZJnBd5oYYVyOcF5Tb9eYLtC5DpMJgTvEiFeglcYai81HO76lNqAMMarkf+EJbQsxooND60bIwzESEu0yINQORUD5QIgSUNerzW6j3oNn+vugtyV0zg24KuwCV9hr9n1cqHqRzyZff8AuVf+ijj7VJioxYvk42lpUeBfoOmlNW6tlRi5JG/fdniHQREXX9aNNHmF2hNRflUVoUGRKY5TBRLDKUtgSq3Os12DCjcUOu8wFpFJ2cQeeysUmnZ9NxMT/n7p3CbUlW/e8ft94RMSccz323pl5XrdOiaDcjg3Fhk2hQFARtGdL0E6haFPR6igINgQ7NkSojlqtQgoEEW2pIDYUrKIQQdBSiyrPvcc6mblz77XWnDNiPD4b3xgRMdfOk2dfuBfyBKzMvdaaaz4iYnzje/wfLRuqqcnLbDg1FYVq5PlcE6UR0IuzXb+Xn9oYB2mxBZSWhUUzZVlYlis+CMMQSbWQi92I18uT+Uu6xx0OqFLKLZjYPteCFFkno7CV3mv56kwzLuflJnvrj+27a8f++T7t1dsJ7ArNiAY1iYOnqpWYMXieX55483hPiK4p8h755Z//A56envhb/9f/wR/+4R+a5DaGI0OV63zmdDpxd/fAd999h3eBuzsbQBwOB56engDBOQvA1+sVo3tl4jDgfeB498B4OPL49h3DeKJUGA4Ty5xJaSHmhCuWeSzZwORSPV439diugWbTTW19LUPrdzmhrWfKGnj2jXW0VRDOWg7RB+aqLPOCMFuPuCSW85lSK/cPJ+IwoM6DBHyMOB8MGylCaPCdFU/kmqF3XdCieA/Rpbbmamv4QMpdIt96fqKVa1M/BkhVV/zay8uLlfbDZL9rUlj9Wge3G8Kx9aed/1QGvG+St9nb7+HwQHujXy1Dq21MqtKyrF2A64vH8G7c3CT9cEjzQejBBqQ6aEME58xoxYluWQnSAp+YfLO47Xm4zWT6jmPvXTcpl1fHugO3i2Ij+LJKzNTaL2Bpi2RP/DUp57V/2Dh5XdgvpUQmN8J3XQNH1owTOzd70PLtZ+j/fj2cuAVCrj2gndHH72r2/rbn6lllv2nXwL5ckRrW919raWyHxN3xRFfTGMcREWGeZzrP1ojpwxqoYoxEP/D+2+9wLjBNE8uS11bFMBjjwjuDg/T+pCrWh/XBMrbpxDAdb/qN2jJbCR6njkiDFnnz0OjBrDSechx8C2iwVxbcZ8Kv+0/7x7D7Xe72k8Vs+jqfuZ/DECP4gPM2+fTer+rLqDMMWGcMvHp9ajEJdK2Wmb3KJnpgsU22kHeKHD0z23+OPsgpxa/3X98At5J477H7/VnY6yyP31fmQc9MQKhya821PsoabzhnNz5YL23f9ym1EMTKrp69uVbRerHJZ4yR4jzBCcF5Bm80KS/O2AOVdgNYhfxJ4HxVhooIPuxYEi2Lmee57VIbpKJnO+sUzilLz9JqIrXGrERTqbCAL+u/U7JgtiwL5/xMKYkhutaY97hsmKPgHDUtlLTcBLeVv7rrEa4/l08nXiklXDCYQG8a9+C0z/h62dGxfP0c7CejK8D2Vb/NFCg2OZwQrOy6XM588cUXDMPAH//qj8g584uf/ZRjs6g7NnVi7z1jDE3qKq7AYedMY80Wn3A4nPj1r610vVwu5Jy5e7wj18I4HHj79i2nuwe+/OnPCH7gep1bgHCUJfH09MQXXx0BB04pxTalZbbhQ2xeC33I0uW17BRX9v3v/T2176mpWttkaVNe6zee16mv3fN2fjvXd5qO1HZeiwo+BrwzuSmhZ2g2iBMctV33igVJakYpUIWKCVBqA8mvG1o2cYpFaRpsiY8vZ5Zl4euvv15pebXSzLEN8PzwYKZCVBvGeO/NU6KV4R0PervOt6DWN9Oc0yeP+6HjRxHYVJQckmVhVQgiaBEjJKuNoK1hLmhJuFoMAa0LrjlZ+ZqQupHcnbY+UjScmwESD6iLZHcgemuI+hCp6khVcDHaIF0h+MoiBb2BFVhp6J1DSkLUeKUxSsN2zYgPaM14HxFpkuNBQbxJKImRlUstoGbhd81mbFI0UyhUKvXpbMhzHEUhp8JSMvNyRoHETK6FqnBNIO4OHzy6CCqZTMHFmeye1tKyZx+l+7JWj+ZMGCdyqWgNhDiwkNFivRALXAYRmaahlUy3t03vccHt9KqKebOCBbgwBmjk6DC2ktc7slbIdR3AiDi0eKbhjjLDdUn89Ktf8OHDB5w4nj8aDex0OnGcxm2YozZ5vr87cTqOzMszX3z5wNOLmQ3/33/7a+ZlNiXd83cM3nN390BSzEfh9NZs64YJnGf0nnmxDca1BXg+X7eeKR6qIOPWH5OmwJJr34i3QK5yRb0FFtENxyVr1tJgTtSNRE7CuWrGyqng6kB1Ga6R7LOpJU8HvDqcjxbQJGJ3vLmqBdeMg6QDYDeMHCIkB4e0gKuoZjQKF13I6WI9w5TRBHmp1JI4Pz+TFC5Picv7M/pUcB8SVZUlCt+5Jx6uI+N4MgB8k/CaDsNK9XLO+nWppA3TVreNsJQe3ISUMvP1U3OlHzp+FIENeim656n1bKKs/645oQ3IWlogW5vhpf+7DQpuQL/c9OssK9mIvtb4t96Yk21KYwKRdqxlGB2Ddju96Z9B645AfNOHMmlm6paa4xTRzXlL1SAdVjKHFfWtBear8VqXbEGmZKGqt9lKtQ1AxLByFTVLtZopJTcHdlssxni4zcz25cAN1og+LNFVR+51idC/zz27ZDchDVvmZy5MW+a6Dhtaxvcaz9Wfo9/M43jX+nttOpzNderNmzdrtvT8/Lw+vrtgueDXwUX/SimtWbeVbZ5xHJmmY2NlQGzS3aUG/A5vtp94r5l7YwRL40Ci/by2/qxaW2RfeoV2Pu3vfvfaeF2yOeeQuuMAO8tinQ9WAqtDGi4TZRU3rdLRoqyy8fYapYGIpQHFHSlVqNZKyTmTlkLOiZfnC0upfPx45vp8Ic8ZzSZNUSgkzbzUzNPT03rNLcBByUpyfeCllim281nL1o/dsxN6xfF7F9jsg6e17IJ2EeqGzi61UNXbRKd5I5SWQa1RTJ3Jd5dO0WIdKIAzbpwTggPnTZPdSbXy1HmC9wYNAUSLOQWJULOuwBhXrfVZxQJflSYl1AKfh3anVkrp4NJtUbg2PEi1Q0bM7VSLMreysdaKLtqAo8KyQCVQq6cmy1CWouRYEDXEOVpw/kCMlYoy14WULlwl48ML5f7OxvdaLZukS+9soOZ+rn1ocp7ZUdiMawCDXqyT6Nve0Q08obUDupCgqq7qH/tJWe/TdEgNWCnT0es9W356eja0fTbg809+8lO++eYbvvnmWw6HAx8/PpnApw8MPvDtb76252jGKL0vqwXSnJkebGL47ssvCMORlM23NSeFKTCNxv88HgdSE5cECO622W3KVlsQ/r6Sfw1oTWVFZMM6wqczsu0cKh2gawE9UbJJJ5WSDTzuPd5FxvFALqbg63ykK2/kbMbOTgwC4ntTXm57wFWTTUhFze+wCIM7kFKlpkJKZtjy3bcf+O6bj8wp8823H3j5+pmaCpcn84ytB89LmrmMziSnquN4nPA+NviIbTpdev10bHJcZQtizm0DrNJkza+XZb2XPuf4UQQ2oxjt5L7VkO291yUApZoCbimrVhstIBq3rYtQ9tS+WXpJB0luEI0NF05jCHjsyVuGRF3LCFm1sVhT+fVtq+L100UOWx/ESzFJJQB1a99Fqrb9zR6bU2KZ5zXzqUltkeFAfaOLiQ2BC5TiSA48Ar6BQaX3yYJJ8JRKLQulLixpBjGaTK0VcTvBv9cNXJE2gDD1VvuRGDSkYfH2DeP++9cZW2muYP2896DdcWylFMOrrVm60lVW99NCAK1CccYTXuYMaoKOz8/PlKw8P52NciebP+w0TQw+UNSYBFq10wEMOIzRuMbpxPk6G8dTfNO5M/5dv296ljhM8eazai74Vz0y+C2BzQWgf67t3Pezv/Xdbu8lO4dQq5BrWjm5MUSCH3Cu+xz0a+HbonLrs+37piq32ZoJpmbE2f3mRW2gUCtaMjXbJL0UpcxKnu3158vCcpkJBDQrSzav05f5zMmfmhdCJoTM+eXC4XBgHK1X5H385DO+vhdfVwe/dxkbXd9Dt+9XRVuxbKvWSsom+V01WzOxapsK5nYxLJjpjmvnMCswJ4HYCOdoNr0CtdJVEYroisEyZZE2wHhVchG2khPX6FRVKSmvUx+ggeoqVSA0ZQKVJveNBcl5tqFBap6deZmNrqNKTgvLDFWFUiPzYs7zqQi5Wnm+OJuADRLNeUscITRiPCNFzQHF6cz88hHRO8bRoSVQtVCqyR3Z4VCpVMq2GF3HGhVK2TVzKzcbRV/ofTH3G3BJZXWt2g8ZenM/xmh9mWUxKk8TDVBV/LJBSgxm8sB3H41E/3K58ke//v9Wc+DrkigKl3khnT+aWXFKHA8Hnp9feHx8pJRqmc3guL+753R/IAwD0/GBu7t3hHFhmO4YxwMv54QmIYYDeMfxcGBZFn7zm9/clNDrnbsGqb6Rdgqb3TO9x1bUgpGqkpZry2DKSlXaH3uqm1JaRVPba7uG/xs4ne7wwVgHZlc4NkaJCT045+w6C4hrVLhdu2TdhMh4BecqgcKA4+PzR1RPSFHyvPDycuH6fOXjt9/xfJ358M0T+SnhysLzdx+4zFeSF769PPPh/ExKmWk84l0kJWWZE4KjtGl0CIHjFFq2lvA+UiuUsqzKvD2Iv7xcV5jJ5xyf4ys6Af8DMLbH/zVV/XdE5D8F/nHgQ3vov6iqf1PsTP2HwD8NnNvP/8YPvYYDoh6PAAAgAElEQVRqj8qbXpOIZUuW3jdn+GrpspbSQKumsOvEGvZ9QdVkixwx2hBqeLEsC94XQnBNh80TxICtNQtFM+oCInXlbzoVytJNUWxnqo3P6rRBPQJ0TqaWDoBsfbSS6BC9WivMZc1M5jYNvS4z3ZsRQEU4L2cus3ES1Z1QHQ1bpOYVineEkxmw+MFDAqozty9MzWHyHnUFrQknGeqC5hEJjZImDaKg1kPru7gEu9knP5HKArT+GhWvHqtaOnp946muEI7d7toDQA9YPdDV2nxXm9LIx48fdxk1a+9oY3vY6728PLV7pUNZSitvAynNxGHg0KAgx9OJMI44Cdw/vuXp5bwqhLz9yZfNUvCR090jw1gQf2CII9frmZeXC+M4muRPez93d3eIskJLRAQtxuvd9yv7OXgN4XBiqH+A0Ch93t/Cmew859ZLNk9d2+CVLoHrnMNFZRiPOD+QszLEYFWOOiO+a+v9qfFfi1oAthlvz0a3PmspCyKOXK5MhxMqldFVLvMMpXO31SbFeK7n2eSO5kyZF54+PBmtKjpUCvM18fXX3/L4+IiIcLo7NE+Iwul0aIFtK8e7FL2td9nk6pOZD12vV67X6w+FkZvjczK2GfgLqvosIhH4H0Xkv2m/+zdU9a+9evw/BfyD7esfA/7j9v8fOExae0s1t5tCd2j57mVgmJq6pdNVqftUtdJuAnPF0dYr04IFIglI3HZIaWq7qmJgXxc2ifA+GjdcycqBvGmeV7vx9ilzp4jZjdrLrIRv8JTUPBp6iWOBbgsSl5Q5XxK4gThCppWi4kw/LQwWSHGUismDY3pbaKYPXMyPtVBqopaEG+0z0qAAgjEprNS0SabrDUWp23WQVqYA6dWgYF+OOudWw5N96dDPyx720YNXz8z39Jr+fDd3yS5zvsmadAMcTxFQx3m+Nou7CE3O5+7ujuPJPDsP071h4LxJIw1DJBXWQUSH6mgbbHRaGHWjihk/d9d/rJ+CuW8/TysRqSY22aoUwbeNUVum1oUTbjNjBNJiAb5rM6zDjI4vkzYNbSrPzjmSbBLqfRoqn7y3TcZea8ZV820910StgvObJPjaHtBNJn4+X5iXGSVwWS6Eo+flxehqPeu6bXlskk7mbtXpfFDrJjO+N4j+pGXyA8fn+Ioq8Ny+je3rh17hnwX+Svu7/0lE3ojIz1X1j3/gNchlWc0gnHOkdCtVXKsiZWmlUGt20y4E2Piy9OmqtKC0n7RCdY3fqInIiMOx+kDXpnogHlWoYg3XlVtoTY4Vd0VVVHZyLK73JAq1TTtF1JRTW7M9lcz12uzWKqvN3dJ4nC/PF14u5v70PnuWJAwRXC7gBXEBPx7Nnu94JE7J4nfJeMlQwDXQrsObP4PaZHmZX8zUBsilEMMIbceuugEo1yyZspbjldr8Im7Bkj1I9YWuvays2wJ43Tvp2Vr/WxVwwXP3cH9TevhgE9/u9eCCMUWkqZcM0y3P0HvHMMamjCzo+RkXA8PhSBwPDVP1xvxDrwvjdA84xuGEjwdqhXR5IXjT13v++j0iyuCPN3CZmstNQLDPZT0577to5L5XtC8pba+l+QbYphCQuh/QbIOIZVnIy8KyzAisUtshOC7nZ3seDYgbqAXzxi1KdHZfOx/wPkDYNlp79e8BUIehBTsHueAqBAEppW2OEXGVMBhkZ5gi8ZpZHGtJndJC1sTz+Zlwgnfv3q1DoHGMjNNACA5xBecDw3gra5TSttHnVNcM3ybgL3/6wwOx1f/XgX8A+I9U9X8WkX8F+PdE5N8G/lvg31LVGfgD4O/u/vz/bT/7rYENtgUhbCRqM1/d0MuUZvFl9AQLaJWtD9akj7SpI2gDUlpgq4YfQqlOSMmAvloWRCJOK9HRemIeT0WdyeZQGxnb282Q23BBiiJegYynyyY3YGXjB+aa15Kpm8ta7G2j9Vp5ej6bccqS+PD0Ee89H/VLVCOpDngdkWEk+In7kwFW7+4fidN7PML1+Qm9ZkARAoHBApdakJ6XMy665jp1ReREnhfccMA5sdK2+a0azQWUgMcyNdEtc1UKQrgZw6/uYHXTC9smoxt9pmdqPeA556jCphrSJM97NtbJ06pKSkZk78/dS8FOYVqFQWtinAbiYWIpmTfTxOPbt2gVHh7fUFAO9/fIcNc+z0Ba6tbzqxUfgznApyu+jOtG2t9nL5FFDPzdwbP9fNhCHr9vHa3yO5aBbeoXtCmoDa3svThGcgCpE+ePBl8Rb7zPGONKeF8FC5yJGTkXGifaNh0Vh/qWFYusoq6+A01UcaFlnICWjCMwes9xEliUZVZiFI53Jw7nF6qzIUs5J7yaBhsX84IYx0gYR06nA+/eveXtu0ceH++5vz8xTQPjZHJgXSLfkoONKfPyfFnX/PPzMx1u8qeasdnn1gL8wyLyBvgvROQfAv4S8GtgAP4y8G8C/+7nvrCI/EXgLwK8Pbgt82FbEPvAVkrBteZpd6ZSVTNm6dlAf7/0Ru5WvtjEtL+OwStM82q3qDXgXG3GvPa3IcqaJfYF12/qDteotTZHIdaGcX/domX9mfWhErluO1SuhfPZUPCXeeHDhxnv4aO+4PwBF+DkTwwacE1KKcSJOE6rTZumhVoTKpVcrOQJzpHxSO/1YVgly8zYynmRht3bdu9a61rau7BN9+z/jrzrq/VjLzbYP/vrsnLPAeyvI00eu/9Np171nt3687ANIMDYCTHGNbD1c+99ZNip/U7Hg7nZZyWMA17Nz+C82MLqATfGuGbQ0blGxzJWQ21ZhIkmxPV92dTYnMb6/dtL2e8tqW/KdrtORfNaHvbHdrGCbn/Ye0s2y7IJb1fO2FoB279NgbeT391KUezPv/ZS2b/HTtqvrZy1QBtCwBcTZVgzr3GkqJCmwnUYqD6t18ypYxwjw8GyZOtjHhucx3jBRoPDyu+6fvKb7H6r1EC1rtfmc48/0VRUVb8Tkf8e+CdV9T9oP55F5D8B/vX2/a+AX+7+7M+1n71+rr+MBUR++WZQikcKgFLyAk0xVNQmibqktgCaFrzl+y1ha2UrhskodQ9P6DdEo5S4gVoVXzLOD4i2LMN5incW9LygIVivIm/ZRylmsuy8J2tpst7CkhJTGwrIDnAq3hnmSG1yOy9XPtQrNWekCOWloNXx/F3iMisfnpW/9zXkClct1PrM23cDJ3/g8fELhsOBNw8/JUwDh/sHxvEdlMzw5g2z/oq5vrfgpjPqCsVZA9rnI8ENRJlQPBmIw4iLBhPoU+VepDhpeYXza7+tQ2lqEYTN4KZ0AYB6u5Cdc6tfhJXeO6s5ty3CGLdbcJrGdVMzCk0zDPaB4Mc1gHnvmYYR7297oEMcKFKI3vPmzRumw5F3P/m5GRMfR+LpHQW4ZkWimQrHccT7YP1Jb9lZmrdS3okQhsGcyRrmzyPEwTIyy+bMFjCEcQ1ctfdV9od4fLApPVVxXggxMl9eAFbakIh5R6TrM2W+spxf8M7ubdfOUQjBfEuHA1UdYTg0oHA1rw7vwQuFinDE+w1K4rxrclC2uas20QlvgwetxpEOMeB9wbtEXS5IyAz+K948KNM4GxB+vnA8CMvywOFt4Ls04w4jx6/u+fnPf86bt0dOp5HT3ZFxPJhXLoEhDgTvGozFBAJ6T7BvEAakhmUp5ra220h/1/E5U9GvgNSC2gH4J4B/v/fN2hT0nwP+t/Yn/yXwr4nIX8WGBh9+qL8GNEJ4Kx+71LX0EseyoQ69eP21+h2U2uA/PVPQtdfRsWh9RyhFQSuqs+HY6g4vpYqkRIxjy87WE4HPNo2sqHlwtt1evKPE9rcN/1aKucwbLaa0/lNCksDiSLnw8clAwB8v8HKt/ObDwh9/hJRhOlyIcaQMnvH+xHB35PBwx+HxHj9NDMcDLl8gOgY3IccDTs+8XF3reWwyOWuzvtkbCjTcnnFzt6Oyn5TBlpX1nbNnBjeDElWQim83Z28U770oetkoIqvqhKoSgl+5h52W1TO3/t6dc4SdPpxtYgYf6CyCu+OJEAZ89AzTgTA6/DCyLInTwzsOpztUHFMcKNVczIfBXL+yq8Rgmcj1erUF1LK06/XK/f09rpWHvWXSJ3iorplUWy9r4OmfZbeY1r4aFJzbEP1mVmTeA0MQ017zAynk9rpXy5gG80Adj4dVDFUlIETr84VNo61PGCq6qmis2aGlbWYiLmVt8VlCYBo40XtCFmJWondo9PhpYCoDLgil3sOcuYYXyldf8bAsnMoM48jwduQXv/gZX371Bff39zw83HE6HQjRtay2Zep5c76y+6zerEn72sRUP/f4nIzt58B/JmuXnf9cVf8rEfnvWtAT4G8C/3J7/H+NQT3+Fgb3+Jc+6420JrWqa1i1ltpvvWpzOVbaxKAPCdrCqtJoTp8+99rPqayuSd1Loff1rEyzMbjq7mSKNskXyKo4uvmJlcFVwVVHrr0p3sqsVnblhlGrxV6b2ZNzYc7Kdx+uzFl5f1Ve5sLXz5nnCrn9/RgKC5UkSh08bhiRYcDFgMSAI5qyhDY6WKOF3S4yZ23CuklyO1fWnXrNon4Xr+fVsZYtu9cp/Xw6w005F7cNg00tZI996++hB7AeKPv33y+GsAF5+yIOgxkVZxGGcUKdx69mxaY04WM00nU2895e9nr5nvdlH4xOwaLq2mOTur0+quu9sp4Xbie4/djT9fr/ex/RrbJPlSK7aXnWtXe3nqcYVqVaaSILHWfoQrRV2t+Hk7VH2j5SuyYbwFoIqGu9UbVszTWyfAdqh9ZbtpaA2HChiUkOQzOdjhHVAR0C8W7krvXUpmmwvlvcAlrvr+0Nu/eSWes561jJTk/7zONzpqL/K/CPfM/P/8JvebwC/+pnvwMA3RRgO+ezlGag7EzpIWcjSm+9s16TuzUz6/eRNWHX92Mmsf13zqzrFIVS8K3nZD221lR1ASornUhXuzEjL7vWw6gqeDJZhHzOxoDoI/EG2J0vmcvZAIfLnJm/hrlmLkX41ZMyV/gIXDJ8SJCdkFAea+btdILTAXd3ZHx4YHh7jz9OuCES7u+4TxEtmXK5sIigUvFDJF1sGjuOB3It5KWxG/KC5AvBR2oNiC5oaUKR2iWsFbdjG2yZrAGl7Ret32gjShsoSEDUNOechnUXXvtfrzBqfbPRRrTfwz76JG0f/FRtYi2tZOpB6DCMgMP5gTAeiePI2y9/wpIsYNw9vEPFUTGBS+ccYfDk1Ix4wFoYpclduaaG3DJMbfAVaUMC50zDb4Mj1RWa0Y9972ufaYgErKYyJL+0YBm7i1m4Ms8zrjZOdFsHhm90RoXzI94F4jAZG8U1IYemEI261h5ooFwgriKor2E1W8+qNPAPws5jVJiikdNfQrDsdoA4OHCWXbtUWeKEL0IuhVESMg34R8/bt/cWBH1FXGEcmxqM27x1KVY52LAgk1KD2TglVIeIZfnk9Keesf2ZHxa48ipdtN+h7PfasGO0ACW7QLZHN7bfv/r8+0XmnU3ftgqzOV5pwxeJ4Nw2aEipNuuxTjxuWYJJla7PW7OpYQg2vclpIV3VVAlmG7e6ErheM3N1XFRYtDALzOpZHFwpXKvRgk8OagjU4KhO0GAacuoEdabaoEtrMte6vvdteGHwEOn9xhtNMF3L49bYpFPIegkpcquVdVtRbVmHOMucnXNGaJZNEXavv4Vsph9Ft0mpGe3I+jc9K+nZ9PqaTQZehWZc3V3Wrfc2TEeOxzvi3T0Pj294OtsUMY4D1yUT29Q0lYxzsloQmkLsLoh3q0LvVhu7PSWscz335fr3Dgr4NMCtp1Ad2oJPjBFKvpnszs9WYqfZ+JHLnAjRN4xXbV4ZndEgFFV805JbclqXRJU+pLiFp2yZqaztAnHGgfbsPle7Rj44ghe8E1JzzBK3Eys9OMphtqGSi7jDiD8Ix2liGiPHceI4TgRnGohaFecamLvRGLeK41ZWy3nFVfDqbz7H7zp+FIHNEgWT8qnVTFi0WrZmStqbNPDr7GxdfPp68W3/th3P+HkGt9gHACtRDRTZiOk4qjQBPXdrl9Z9GPb0Ke89kiJIJueZXBaWxWSYrhfl/AzLDOczPF0dS1WeBX69wAvwTCEBmWBCfiiLz7z72U84PD4Q7w74cSBMB6bTHS4GwjDg8hlxkOdKkWyI9UaJCnFENaA1oR5SqSiJfH1Cou2C4n3j7LUGvGYQD9Ua3KoWQOxmMziNk7BzxbLzp63PVLVnA9xcKytPb8n2/eiLbJ8d9lG/iDSJG2sR+DYJ9D7iYzSYayOB3799y5svvsAdHlA/MB2MIypx4jQ6nA8s2XiWEvw6EVRn8KAYAufLhev1yhBjW6Qmo1VbVlaraaBpqWsJaUHR3wS6jX1hN+YKDdkFehPObCDUahTBlBLPz89MzjHFCRkLQ4iQbbLu40CIk/V+1ROdBxfs9RsEp8tMFbRNfdt7oDTTYesRCzSJ+9Zakd4ykFb2ebwKQWD0jinYcO3CghmT23UehoGimcPhwHW5kJ3ix0CcIt2oqDbIU39/+yC2d5brm7P3wrLkFfLTe3K9b/k5x48isNnwINtCUrsM1geT1rQGLVDdFrx0S7m252npmmjdPbstSjDJFJGGRasdrEuDamg7caYj2jusXT3WXkp2U8I+iLCLJ3mwpqs4lAjRsyyZcxE+zJXrpfL8rHytkHF8UwvvMSbUFUcFYoiQF0B58/YtX3z1E968ecPx7oHpcDJRwWFsQoKBOEDNykVmcr6ylCvzstiCJpASFBVgWXtitZZV7FJCbJ/LvE6d7/V6ZbPn61infh4dIh3a4czPszYK2y6D3k8rrYzckcHbU/ZSdB8U9q95u4HsoA3O1G4HF5lOJ1zw+DASxgMaRuZsfN9pGhkPRjvDu5VDGjQQovWHnp+fGaP1LVO71sfTiY8fP67vod9n3pspcC8h+1CjZ5r9ffdeXP8s68/DsGXP2uBGboM4eO9tUJGfSVSSc0Bc4SNxGC3ghAkfR0JwNmUURyq2+ftmwecVPGrtAt1n2VuS0K+xKjR/4/0lRCl4Mamj0TuydygJcZYouO4r0vqDHWcnQlOj9usXalxuh8cJhLZhVicoe+HW3nq4BUJb0PtTxrH9mR8tSNigoF2AXYbWKUzW8gSQRvG5bdZ2dY6OrKY9VsSYCP0mEvHEVzLFgPkRyFYSAY1KssfaCB1EadNYW9g522SwOuvZZK3MFc6l8pzhmoWPRXl2Jqz4AlwwKsyqaFozYH6SX3zxBYfTcXVOD96vC91L43U622lLMX26qqZimyikEhHviZgng2ix/iImIkCBUpJ1VqSXrt9/4/RScj1fLUBZxrIPSq816rZgti8x9pfndUm3/3fvvfVzbze/36AkwZvtnITmvgSG77Gyz4WI99H4rllvvByATbGjTWs7rm7zejDljhjNhPg1+PiHys495m597Po3vpWirOfJWiCRGIF6Mepv7htRteZ8U/KwbMfuA+8cVR1OtwDZezaqVrp6t71Gf8zrss6IdK9wYm3dudbXdtL7sLWtg22D7/93zU/BrlNor9M4rOvttfWK1ntlF7T291Dnyq7S5p95/CgCmwLameK4NvRsKOyOXBdPFvMK6H/DzbRnE+7jNYRIXcvU9jZz/Zevpy1ys1v4cMtPtJ+XpiSyCSYuYcB5R3aVrLDkRBki10F4Cco5KM+y8E1VZipnHItzrSiwjFFr4hQ8bx4e+eUv/zz3pztitB7FFAeiH5jCgHgj6FcSVWdSvpBKMo0uDM7SKTa1snIecTa9VTUTXSsPrjgZiC7YpNcVbAD+6eLtN+TWFN9+VmtZd13jiiam6bSxSNhUP3pge92j2k8le6nSgw6t7Kw447kG3/BtA+NhMo8CVZ4+njkejyzLlYplMiZ6kHG+U66UXCs5mYKvqvLhaSPhf3h+Ys7mlTk4z+FwMOOf1gPbwNjtvUpAMKDzWmI1ZkwPaNbBzVtm0n6Xc8/+pNnZFUbv0VIbtMSUPR7evOF4POKHsRlvu9XvGG2qzmINfKkGZzITcmPMWF+1lfxq95vs1xI9uKmxQaj06scA357ojZGhZzP4Sami2cFOiSeExq/Ndg8au8baQbUlAbaBm/pJ0W1avw9m/fsuccUaJD/v+FEENlFB0zZ1M49HqKWuYM5aoS6b5I94y1hKG1NXCh0jOslt3W6pv1tTWXFC9W1XEI94WYX3TOetmryQwFI9zruVMgUt1oaBqkL2AfGDSYOHO7I8MpfKNXpyUdJUyNN7KgvzJfO1Cjk3ddmqBBG82o0YC/zszT0//9lP+IM3P+H+9MjhdM/gDozxwBACqhnX+iWHOTLUynfzBakXoi8sSzUVVQ9emnnMPOGkqUWQ0PRC0YVwbzzDVAVCwOmI+MicZnww9QVtLQKRjqZ3lDYVrWw0InbBaRwnVEfC0MyDm6hBXnuYG2tjG9wY2BkUcX5F1tdsr5URvNp1cs54oS4OhONEds2fwinBVd69ueP9ezNAOR4fTSlC4DAZU+Pl5cXENMvC4M2noNa68lbneaYiTMcTaV6MmucDVYSq2yCkZ2aRNsGVnQELm/csjV63uLCS5msuSDErxuAMT5ZqoaZMlivfvXwgFZOyoiplKdTJHmfquJHUYEhdxEDUeoaUgNaKKwYyrg3P7lx7bJt6V5Quzha0tyXs+wImElMrtSYkzvi6EDxEKuma4BJJV2FZlOzuKJoYqkOWCnGknCtERTVRpFKiI9P6uxUEz7Xh99RFMkp1kSKBS5qbMETz2NCK6udnbT+KwAY9Pd7+bdMzxe36AOvvsX/vwO7sqqX2ff/mVvp63wex8tYswExar7THb8/1eoe1v3UspYDY+DrXao1ZVYoYits7b71DKah02zFw1aY8ms08Ay/t5xCd4zidOB2OK14pxsjhdCTEuJHxmwH0Cl5s5foWzG/HwuKtOSl4nJS19M3ZNPO7EW8nuotsihK5Ie331wnh5pzuz+vrXfV1qfJpGbQNGz45VNYMvapRoXwciNPIeDwajKNWkN6IhsPhsEl/tz6Xc47ot6lmrZXaFkwMpkhslJ2tr2fZVL55r59M7PpjO/+zBy1hHU5UdOdpcHu+RGQFp2vHGeYFrfNqX1dSwrOzrnNbP+r7zvdvO/Zl8ved6s/9W7sH7ZPtecCmQF6NzysmWmHA64hIRYLpDkpu16qtl6TbNekCCMD6fSfB+7bWPvf4kQS2NkHb8Sz3UapgJq4it1h5kS2NtoveewiyW+TSvtxaEtiTpjYNctRi4/dCU8qtQkFwqhSpeGc7mEd6ds+cbdLh3Ugq2coj71F1uGCyyEN0yFwIYbDG7vDC/UsmS6sUUHwR7sYj1MKbuxN/35e/4Bdf/pzxeGCcJoZpxIdAGAckRls0FWrOBJLBStKy3WRK81j1TUnCRvlFBUfB4ci1cLlc0UsmjifuH0ekJCO/S5vgiGVHlYKqQ8jQdbx2vZXb82z/3w9W9oT318HNgoO/eR4R0y2jyTDZ4xzjEDicjoa0b0G9K9f2Zn0IYVVNubu7Q3t25s2pqbMFQggmWtrez/l85uXlhYeHN+vi6dNYE0S47Z31+20tnfuEtd+/WGa0lXhtAlZNiMGMdFr55pQ0m+T3crlyubxAfkJEiD7gtTI0VsQwDLjRQNq+Cbnt5YgQq376hr/vda78W91A2b3E/76Nv1+TPY3Ne88wAlJACktKO425fj6a03zKfPz2DHXhcJjwC+v0NE4jpAXnwnotVe1vSspczxeu50tT6b223uhvt+r7vuNHEdgUmlnrdmN0b0x1PVtqN0x/LLKm0XY42N1ge39VEWkLpb2eqjmm9ymN94ZVy7UN/wRqaa3UauUHtiNpEYoWnIuo9HG0Zy6VcfTUhh+raqYyzntc8LiqhDgykIkYrSapEgncDROUyt1wZHQjvvZJUaNroSvMxPBb9p4cpvFmF94WeoVVvWH7ssGIBWVHafJPuSRwyehokpFozlqqtAFD12LbbycO9k7ea7DqpfwW9Lp92/5x6/Xg02FBNz2xl3K74OeIO0f5rBUXFYnWg4sxkhphfW8OoyIrsn0/OOjwi/58wNrPG8dx1eSPMVoQz1vTdg8SXfF6Ltzcv/Y6jZXQ71V2Wes6FW0tl9o3gLI2/0MIuEkoyQLhnrXhevbWDIK+b+ZTZcvb9+e/X6OeLW4/2wLddk32/U9vXyiiCdGElowPd1Azjkh3mcNo1Cwps1xnvHfENlF2MeBqBJwNvpatt9apdRuVauu/2Xn6MyLB/1keBvmxE51VCdJTejtUWEmw9VVGp4KRkdvnLrBeNFZ0wZYt9HFybYtIpBiROByB9tStQZzdeXUDyilbPwBHdWaOIVGoBeYm75PUHIjIypwK43jChYwUz+H0hndXg50UNbnrw2Tu5ZoLDw8PHIY7UMvwrvOCxMihWmO3utb3arvb9fzE+fk7Sr421H9v/FdL//E4p0gw/S9TQrEbJjgP6vFaqctMGI7kfKUU17h6btVj61mTndsCaXMN2sob3bBh7VwH2fVt2IJCz3Z6GWd/a39nmDBHx4bFVoJ3HJzBVIwEP4yTlXA5My/GqTzeDVwuZs8n3q+laa119Tz98OEDw2hlfvdcuLu7Y5omYoycz2cjxqvJxeO2wVQPAPvvqxRQmwj281Xb/dqDg4jg1DcokgkPoAXFbCZVDaxbS8H5ieV6xoeAo5KXruFXCd15yt1Cj/pAo9P/7FoZw0aromrTRdcGT9t12VHI6G2e1nJpAybLLM2YOQ6JOMAwCsoCkggRvIRWyhtlUJcFKcJyvdoAIh6Zr8l62tE2qUM8EsTZ/SKNVmkRDM3WbyxLouRMGH8Pp6IA5VUPLddbt3dkBzNojV7opNlXzyVbv27NWHr540yxQVPBR48ykIuYo44E6+ntFmsuV8tycqZkz7KAk8B5WfAx4AaHj8JFBJftRcuSEUzkr1bP6NbXPJkAACAASURBVA/4SXCSkGRE6vmqvHv4ii/efUXtE7dxIB6P+OMBNHKZFULl5Tpzt8zglGXxDMF8TV9e3pOXF0SzLRiFjk0KYaCUmVKtBIrDwJJmQ5dLQLxSZiPoL+cz0Q9WijNhfF0Yp9EI1M6yRlVD6XfJqD0qv3+/p0L18tCmffkTgGUpZRvz7wKBQmu4mxqGOEcqmcGbxphvEkM0nKP3xgvNl5lvl2/XSWpqkj8ppXUI1afYdo4C55frKuC4yhbFyPl8pdbKcTpwGMc16+sBLcZo95GqLcZ253a0vw2Mt2oDWPGVUg3TVUUoy2J0wpQZosd7U3o+Tgeuz8/22UaDCMV2Tn0IJGV1nIKt31xzaS0EhbJJtfc1cCu5tWVo5uNpLRtdy50ObzJEgeHmZg5TIC+Z4Cu1XAh+Mm9fZ4G55kKVgkfIcyZGpaa6bkyaC7jAPCfCfnMspnqS5qX1hFknvkHMSe5zjx9FYNsHJm09LNv1NhKuKpRWAtW+iMGC0Kvnczsi+L5Usoe37MJ1ZydDsqsEIFDUTrDr5Yob0FxIWSkLLMks+5ZU6aALj6KjNPFIXXsyNRfAHLmDOrITtF5BA96BEFE19L84Z4yAOFAlkhZFJZOCqYlav6ogbWpLXVjmF1Kaoen+46DkjMgOGOuMJ9k/ez9vwXmWVhLVps1mA4m2EBsjowtibs5dt/LX++xl35/pP9+LT/7uq9+ftw0wPLTxGTFsirmlGEvFOc8wtj5XMfZGJa7qIkVNgTXGiAq3KiJSV6WO7pY1DNPaRzscDlYOFdPc38jYbCWh3GY7YBhKwco8U4KSNu1lK9NlK+XX4N8UbrsenJfGaMGa7lMrPwvmtVF7a6Hf47trsF6X3Qzpdw0Z9tn0/m9eX+shBKYhkMeBaQikuZLTtfGxFZHIGANzbRP8HfG/ZuNQ51zB5Tbw2TLgfd/2RmCW23L6c44fRWAD6IoETqyHpa3Rb20XNaedZjLSS9J+k3/yVNt1thJBBLp7UA+DoSHSiYThSFVHybaYSxGkGNbnSqUWR1oCaVHmq+HrluJwBTyOQxypMlIJULOpl+JNoluE0U3mNh5gFEXzBS+eSU74Ek0jTgRhIFfhZU7E80CWCpr4MDwzTp50P3IKmewL1+f31HyFuuClULS0HTq0z1vRYFAN3ICScCEiaZc5qVLSgtRAXRaiP6CXjB8nawrPRqoXGsdP16hoi7tuk7FaOue0P7Wiy26osQP17g/1pSkf24aECM5HXBCcF3OT12r9ammB1RmuqmbDE1JNYfdwMixbKYXjsUmoh2BCja7rvGUTmrw8r4OEHqhWCSa2gYRDSNd568u1z9d7eCJihkCWXrSw1vBt7T7sSanN4Ls/R25WktosFO09DCHikoOGpdS6CQN0brLUYqq4rwc4qmugWIPFrk92m6nZ30nrZXaJI92Vsoplgtp+XhXGOPB4f88YCpcn5dd/9IwTxTtThs7JoFUVTHlkF7gEDNA+p0YL9FCWTWyyWAnqETQbHm9srl6+XfPPPX4UgU2w/oSKjew72VmrrmqtuXQt+XVoB9z0a9fD1YbZkY2f12vXHthydaCerI7SLkYuFVFTUch5oeRMFtPQz1l5eZl5eppBra8eBiGqMh4CtYhlYgJS7SYZ/EBO2IOTEghM+chyzUzjgQf3wJETp4cH8I48ABFKreQzvJSZ88vM33v/G2r+isfHAyNnBl8p14/UyzOQaZNzVAx86UWI48RSKjlfrVeSKiFALkZcLotRg0RN3trVajjBvpE4BW/qsGIn0wLMura1mRf3G7cDa3umZhlnn8btS8D9/5Xa95zV11JcATpSvVOy+qAGBFOuGMe49p98HLg7njhLZJqmFf6xdzbqlKhvv/2WeblYTy1sQOBuQmNBrSvzWlB5zVq4gXywZRzaqwWna9+3aLEJuDdfjW7yraoM0RNcZLlW0nxlWWZCySzzhbosqJY1e5RqZtjbubtt/iPSbCGtpJS+kcinGZu2IKhab7K015nRBprdzFeGYURQvvgCPryfeX4y71rB2gbzNXFVJY4BH9wKri1LWs9ZqEL1aaPxgZ2XqgwhMoRIdZ4h2LlX/ycLVT+KwKY0UG7fgdCWwmIXq/3c7Zq4jq1n8vqQV/QMYNWtt99bb8EUYg0iYKWWYc+0y5FX8wVd5sT1cuVyMa9PXIP9aqW6xDwnGLqmfDBEd7UdqpTS9NCs7IhURjfy9vSWx+MD4+HA3XSHBse5Xqxf48xlaj4vJBILZ94/BFQvPBwrY6iQz/g04xyEHsSx8kN3Y7Len+w9pv6zXnJpQ66XUkxFd2wCBBWii6Yk2xaGp7ksrfzIuv6uLwB7DQtwwoat66+9z9qs59lLqa0MtXvCjLEdt4KNtZrEkO6zDjGjl1orYQxM02R9vZahmfBm5Xo1WSBg/b8/xubROXI+X2/K6p6h7aeo+/tqP2Vfz3crEaXqOrgHdmwatbSlHV2ivTRDn2VZcDtanyo3maSqkrWa0Vh//V25tse4qdvMeG7v/d37XlucLWCvTJj+IBpgyn7jnaBekAB3J8fpeCAvyvnFpJacjCaljk38O0XNu0gIwuADMQSCD5Z1v2L+iMhKI+yfO6WEH22w87nHjyaw2VdZM7A+4u0fOXhs6te+L30I1L6XnrUoZBdwzc2oYooeiMOJeUw6GVF3ai9unqMmHV6gZuZyYa5nUp4hf8G3312ZZ+HDiyOOR67LQnEVKYrOC5oyUQsnH0AcvjqojjxXohzJc2ascAh35MOZU/RMX95x/MUjdw8P9AngWEdK4y7+mu8IT564BL77O19zzifksfKb5YXDIfF4NyP1ineeUoyjSi1kl3DRmrCmvBNQX6nFmvHBH8i1mpzW5QNxDJSiXMtMGCaoC/fHiZQKbvQMhwafaDe890JyLVNrZQI4UmpemNWwaYLD6wZwLWVzvRIaYV4FLU3Xyzkacq1lCO1vfQsCq4JGYZSJw2G0zJJMzoocJlIQXs5XDqd7Xi4XVNWgGwd7n998+zVgEuQhdKpXYUkW8CzT687viVLgYTihsnmo9n5ZrV3jZGPw7c2UVyd5XVmBCK5NQG2i6XwEsaFMKYU4Wu8vpjNzvqDFMHlxmNYAF4vCshB9NPB047BaDmBS432oo1FYckaibkVyO48mzNo8ahG8lDXQ7QOl9GBcK14gicAYGEdH0sS7nyp+Wvi7f+N/p+SAL18whLeksRKBwU1rz1vEeoRBC1WvLGnLZMdxxPlKEJgkEOLdDjhtbITfzx7bZxwd4d37F+vPm4LBOknBoBh9sDCME7bnjNBklOfazDCcifOJWulQSGQKWQfTx1+ufLy8ULKJEM5loXrFLokSveCngRi9qYM2Dl9pkbeUQhgHanVcWip+PB758ssveXx8ZJgm49FVw9CVWrlcr8bJmxP5nPjNH/0K587cv4lEH3l4FN5OB1NS0P7R941F1+g9bdIlvnFAO1rezlKMsfFn64rv6pnDXp+tnfy1xMTdNpZ7uaaqa79MxEPeJmH9tV83pLu6x35yt84Y+/M1b9gQgoF3aXi2mnEhIE2b7f3797jh0awMX17oEApR80LtWcDz8/NarnYYiG/v3ya426TuUi7r++0laf8s6/to0jr9+fbfw5bx7cs8RzYVZ6pR5ERb1bAZuZTdJLHWNqxqz5NSusHkud172p9f49du77n31YAGjt42nvWcf88wqB/OmZy3inI4HPjyq3eoKm/ePvDNb15YlitaLjAcELHBmH05k9sfPCFs0kV8z/Cg94BNrsiytMxmnv05x+9VYOv9McWtC20PzF27P07axbNFLZhmlRJAA6rO/o2ZBlvJ4KiabARPorJQiStFqjoDrmYtJuwYsWFG8NZP0U9PuuApuZVZKtSyyUs7ZxLoJSWqKqVsZUQpBSmViLkijc5R5it5rmgWJHt8dTjfebS6+avuX783mJ2Vor0kXYVwvWvNSmMZ3E4xd47ublM4uSm7doGtf7+FJdkaoWwLEl4BLdcJtol7bo8zlQgLdLcldH+OlAqDNxepy+Viah/RsjRgdbHKxRRwrVxtktspGw6sQS+Ca+od6+TSPkLRTdFjb9C8/9r/7FM4xUbLK7luwbsNQvpF8943w5vOz7y1MtwHSV65ivWg9rqkW/+vfUMxYco1GLp27f8EmdDa2mC7X6bDwPF45L27sKAcQiCJsW9Mgj1ayyQE41377w9sr9sVe3YH+nvIPLBj7Rjs/t/urlaofu9C6gofui0+K1tiW2gB1Yiqo6rJSKMe4tEa4s3KweABwfoRJmpKKleuciZHyA4uWZlLJgFvDiPHuwNuEGpwNlQyG227GDGC96SlmlkHSq4QnQ0jrpeFw32BbDAR8ZaZ+CmgGQbnOAwRrQtSF+bzmXE6QAkmAIj1p6ysKLsg38+Qa7HF5Lv7DeJdREJtTfK4Ys9q3QKOqcwargvfcWJ9yqbrour9NRErh4EVa6i6TUJff/UF671HQw8A2+8drm0W3Cw+rdY3KrWg1TaIaTxyXWaWZeFnX/453HjPx48fGYbNUu9yPa+Lpys1w7Ywr9crM4lpmuxO3GVbgqxBpmPc1ueBVfO/f669htzrnmYVXWl/1A5lqOSyUGrier2Qlitxp/vffUzBytJyueCHyDAeVm5q7yHu+81rABJp/bPtuvT1s/VJb4PiDx7VHu99IARhmkeOxwM/+8UHlqT8P//nB9QXvDMf3ODHphlX8S7igzAMxnBxXgxn2d5vn1Bv720TG1iS/n5mbL3Jug9rPa71HpxvN7+xevZBTlZYiP1oQMVh+mweS+IDigU8MGlt+2tpTIU22nYCLlC9UJwzJ/dgeKLimlBlATd6wjgQRkcYBytnzDyBrhlWq910JQklSyP1V1ztWmCVSsKFgHOe1CzbSmu6qyhZC+oyh7uJ6RQIEXs/3jfhvn7iHEZ0lSY4w/rfdYHh240sdDMT+72Z2bRv1p0x1YIrnWDeBxDbNfteGIF2ZZUtW9kHs9dlB3Qfiw0OYj2dW4zcPrg4dThxnI7HlWbmgkkK5V3W2fFs6Wq80GmaDFpRKhSTtw7iGiyjomuPLNxo+u37hK+J8HC7CD8ZPuyeI4QA63DEPDNEHDn38nOxMnbn29oDm7Nx8CeZWQ/C67lp02BhI+Xbe2xUKvr72jKgPsnun+WHS1HozoLeO8bDQEqJ0+nE27eP/J3wsQ0E/ModtY2w7u7BDXjfX3svPtDP5/5rGOT3M7CtU7F1N7GdoZaOg/I2NleIARN0rGBTAqglr5idSkAYMP39Aa3BfiYBLxHnB2rodl8ZUQfOoA2msFDIpZBrgmGgXhNuiCzPV5yHu4eB0/0dd/f3uOgZDxOH8UBsmmxBPTp7c5yfbVJHEOrzlVrguiwMlwuHyxUXPMPRAvN5ueCaHV32StIr1V/hWImPirtT8lBIITFLZdhZllmJUtcyQ10zDmk3sEmFK1LNZ8CF3rz2u91943YWVVwplOIQ73C6BbWtlNn8DfYlg10/C542FbaA69fHW2bnYyDrpuawz07W3pxuqha9RPYI42ED7IoId/ePPD098ZKfqbkQgkEkSjJdNS9W+nfaktbKcp2NWXCY1hINgVzTmoUtudxkEp1itA84e4K/fXYL5K+Nk8dxbMMCRYtSm91eSbZhilNyXoi6gXd7jymEAN4RDwckeBCTBvfet88bVjhJB7VXFPHOzMR0K+3WYcar4Nsz2N8W2OzesHNkw5VkmTyOt18+4OPA+28r3349g+tBt0O5XpeZ0joj22vsP+sWdHsV4n4/A9vn1M/iwXtYbJ2YagUVUTMBpjZJHz9SXTRkvwSqawRdN6AuoM4T2ixLW39N8PbnzuHcEajEOeJTxbuDvQH3ZIFoPBDHEYdn8CN34x3TcDReaDUxZBVI18L944n5CvNSSLlyaa7vyzXx/v17KsrDu0fCELhqpjal1xrhZXnP8vyEP1yJdxF3UIY7OL2ZcKMgVzWaTqloNZMNZduZrTfm6HM72z2NR7o1+S1DsYzJNdNcgTXAGQsj12Jyz55VUHET+vxUCqdDJfricc78RkVkXfCqeqM0a03xHkh6Nmm9UstGLMCcjidOx3skWM+o+32GYULEGCqHg/lvfnj/3gQSY+S79+8ZhoEv333RAhTM12uDKRhMRDAoSCeemzryVhquXNBqzIUefPrn6tPTcRy3HiVWds/z3DYRpaSZtJy5Xs+UfLaJdl7IZeZ6vdrQabCF3jeuEK3k1GxlnHPhRt2jr6HSmDkrcX6dKLrWutldI2Dv6vZ6Te6f1z7Hdq1VbYgWJ8/9mzvieOKnv0jM+RsuRQlRiYPD+dpGbaUNuoLdo+qMRcRtEH2dlbaf3uDtftfx2YFN7E77X4Bfqeo/IyJ/P/BXgS+Avw78C6q6iMgI/BXgHwW+Af55Vf3bv+v566vP0UvRm4oT+9C1VJRmuFptIVbB+gnSJHqqZ0O8NYdrXNvNFF/7IMICnTRddit4wRFxVKJX3MFuXBciIY62O8ZmouE9ntYglWA77zpWb25PklEtSBCGYQJsaoczQndKieKUa51ZasPQzYn58sz55VtCVEq9IG5gGM0UVxzfq/O1lm7oSpJuZ267llbU9+u6Bh709uap7MGZt81mm671m17Xn/e7XtVMjbWV94oYul2kcVLtMWFX8lmQ6+Xcq/5UhRC6Np6ds3RdCMNIiCM5VcQXQhhXlY+eOYUQ1my8pmzAZNmGAaWYkkv/u1K25vX34yS3c/C6NH1dTt0yGgwH2IPifL3y/7f3drG2bNl912/MOatqrbX3Pp/3dvva3Y4d2gnyQwhRFByFh8gSkjFReDHCIRJ+sOQXHoxACrGQEEjwkBecIFDAkhEIIYz4kGL5JQq285pAcAhOLJMOQsTG7k7fvueesz9WVc05Bw9jzKpa65zb9177dp/Tp/c82tprr7XOWjWrZo05xn/8x38cx1u0TAh5NYqbz2x43lLhUSulqlU7nHmJ23ASWOtWz4zEq5IMHzU+3uFoawNiF3jw+IqHH87E2RrqdJ29Zn0xtoknl6Svp5/fNo1FEmqZ12fcV3Qzfhr4DeCB//2XgJ9V1V8Qkf8c+Engr/rvD1T1SyLy4/6+f/XjPvxVbu/5KHpBKeK9DwJFo6kFIKjEhXGtKpTSsNNAij3a8hDe9jlV88KEBNojIXoPU2WsIzVGUjcT67QcW5/2S/ZwP1x5TeGBYbcjph37oUdLJWJaaCl1TCPILMQ+0KGEPjFNE1/5ylc43OwZDnsmMmFIlKSUaFnM2w/fh5sPuHv2PheHIzKPHOIVD3aBnVS64j0uJbjuvdfTlrJketsZrRssgxBQB+ZpVRkusRNq2yll3SSKFVWTjXTLprlwI69uDZvWDYZD5XS3X0H1NZVfFgNkCVhvRt1kmsSWaN9H6xDlXuKHH35I7Ab6nV3HeZ6ZSiYeAg8ePCAEkwMfup6b8cjtODKkztQ+polxmuj7wSgg2WpP725urI60QNGZwkzo+lXefIP3tXmomtxOGy3cyzkzDMMqaFqNSxg8yZRSgmFAQiFP1UncVu26De9PsuibEFFVoRiXrlarBq5aHY82knCrd7YNzpI+du5P77mPMhhbj23J+paMtcxr2V9IKTJn88avHl1y9XhkfDYS4kzqekQqvSt6qJbFUMcYvafI6qWdH8sJfvspxicybCLyBeBfAv4j4N8S+5YfBv41f8t/Dfz7mGH7l/0xwP8I/KciIvqNTL+D2dthuuinHkcpJjuT+oGiLminZtCqRsRvzBitls74W3HRdAshON1BSdkyYCqBKDsDNUMyNz52pMMBVeUmP19i/qJWETDXwtDvKFrZdTv2/Z6ZiLX6acfdLnxlGAwPur69YbwTjscjwzDw4sUL/smH7xO/ntAYyEnR3nf92+c87DLz8Zp0ED7/+BFXlwcu+sTFkOhUmX3hnmjGO+8LPDB9aXcOiJyqcpwD+iKyKLWGtDZVCcE17cOq3WWfIUt5VTNsIlD11NvZeoeqyvX1NbncEYMZHJGmWrt6ZttjMzXVStyvnpaqcnNzQ9pZJ/JcK7e3t+wHM0g55yVUzTlbQ243wuM4LrprpehSmZCi0ReApXJBxBopt6zoefaz/czzvCQZto8bMVlELfvddaS4Y7dP3F4X5unI8VgXb6Xx48A28eiGO+2w8ruilN5qQapWtFgIKiG4VPiGlrJpfLRmfD8ZXnV+29r1qX5vWUJjziMilrx58ODAfn/LfjL8MCYztV3n+Cpbuk8gz1YBsqV2NL7gNqHQGst80vFJPba/DPwF4Mr/fgo809ZqB34L+B5//D3AP/aTkkXkQ3//17YfKCI/BfwUwNUgjDGRQl0nIZE5CzEeDP9SIdIjAcY7JXR7KkIugkiywCo2OWsWPEZD8vIsA1xFPZTpfeerkEMhxmA4VRBEdkQHv6W7BAyLy2KdOwNKEfu+vBsYh4GuWI0pkYXEWuemjHrjhEpBwhHixIsw81W5YeqOlHhHlUwsQrgzEb6SZp5Pd+zjzMO+J+0Du8sejTBp4Rg6YmdaYLPmpYPXEo6UbOkrEaSLS91gcthNKyTxxh6lOJcLtGZSOhClI5LopLN60mLZyJgDWSZCjOQ8ggPYRTOlkUkLC/F1u9uuWFrzSLxONVZyOaIqpNgj0gQgMyn2S4h6e3uHAqmbCF1ApTLlO7o+UvWWoD19GNh3iTKaIUu+RmK1pI5k2HU7O3YEHWdiSCQiczGFkyggs9WMSlCik4hDipSSSdFKgabJDJ2UtIZO1frJllKY3TDtdjuGXUccDC+c52xbX4W+G9gNF3SxR0smzyOxGq3oNk/0ATpNlNkM7iCWQS+lMEqmdQmNkkip85AvOUyxKa/StfHQFvdrG2N737LZsSYTWm2rgEU2qqAF0Uwo1o0KicbxzF/n0eE5t3d7bm5uqF2PhISG6km6SJmFKsG1BZ0oH6P1MRGhlOr3Cq6mgokhfJbJAxH5M8BXVfXviMif/sSf/DFDVX8O+DmAz19GrWM1WR8tVA+najXuT8TA7lHvbGedlEPaEWJHKRUpBemSZWu0kvAaR1wh13G24F6Aaa41V9sybjFGUj8YOq4B9WxcJysVJaMUrwaKu95Y79EoIZeunZ/EAOfx7gjNA0mRKMCtvXcqmdvjHbfljrkcGecXSz1f9Fg5M5uxTvDOO0959PgB+/2OPI9ozexSRNxja+DyeTareWPmQTphWcFUdDPWMWj1vkotoIlMpordeIt3oq2bEkw1I16CU1kVaLcZr9Pvt3FeN2ry1mkl23a7k/eqmkRUCIE8FXbDYQXEQ2um4tlRtQbF6rSH29tb0yYrhXEcl25HqkbgXZIHLmsUw2k1wRJCRjHyb/N2GqVj46GF6F5c3OB0NXvzHeX27poX14XUmWdqNA7DZ29vb7m9/pBaMkFM8LKbJ/q+58Pnzy1B0Q12jcWrGjDPeGnwLVu6hxGW7dyc4n9bb/l8vFR5oGvLxI8b7RhiFPoe9vuB/X5YzrPUyvPjRJcG2/xDRMQwRcIGO1uOEWoVtrhalQW+/UTjk3hsfwr4syLyo8AOw9j+CvBIRJJ7bV8Aftvf/9vAF4HfEpEEPMSSCB85tEI92t5Tq3W9qXWiZCEsfRCEvLPsVZHEVLIp2xIpiHkWCLkWenrz0vCaPLw9mnpPRs+CtguybZCxJBz8hA773eK0x+CAbDIenLW0M4nu7DQR6SzcNeA8kKlItO+vUchqPUctS9SwqO3FczJyiFALKcGuT1zsd/QRUlCSKDqPiwjkFrA+X7SNMmE0DFssEIkxkGcBLeRcqDWTRUkRcp6ATMiZUnpiFFJN1NRKgyoarFjZiqztO5OqtwZsN8h6Q22Pa9tqzTxr1yWLvVMRhK6LboAL4zgTh0SKgy18CVxePlyMUylKDB2ddBxzocyZ/bBDk/KV3/kd2/W9yXHDxFIX6Tortm7HtxJdV8Be3PC2xEBqRjl1C90jOmRSdNM2MFmIi1SGfb9w69r3l0mhzqDm2aKJ25s7Pnj2Plw/5zjNHA6X1mwnJQ77AyH1dIO3I9Sw1EOrKjG1hAmIcxSjG9zG5zu/Dt9onKynLb7Iyhe1KKDYXRZMsbnfB/YXBx7OF7x4/oy72xekbgCEcaqkNJPiztf7TF260NUlodeM20lZ2qf02D7WJKvqz6jqF1T1+4AfB35FVf888KvAj/nbfgL4a/74F/1v/PVf+Yb4GoAKeRSmUf0H5kmYJ5imyjgLxwlmrSbDHwMFYS6F6kbKvAcnnn7UP7FCq6DbztPy0o62egWb33GVs2673rYOMgZTNvVzZlLeeBZXTYNLnPBbUMf93KBh/bFUac0CDUgXGAYTPUydsf+DKFEULfnESzthy288tvUyb3400NQcTl9bF3TzAIyvVE68whASKXS05tGiaz/NuDmXS2eltuvWeuK1NUPTbtSthxikhXf2nhi65e+1P6wXcmOhaq1GXUhRKHWmzCM3Ny+ASurMEBAV3AtsIo/bMOy0SfPmeHwerXtUU9v1/2g8yGboUrDEQZI1GvAKhS33rc1/myBo57jME3gfi5ROj+t8AzvBRn29ts873/A+qWH7qPcpjSK1/lRcYw6DPkIKdJ3NaRzvON7dcDzeWYVMMSKytTzMa/lYnRdcsfV+aK+1zWZV9v348fvhsf07wC+IyH8I/Brw8/78zwP/jYh8Gfg6Zgy/4ShVef7MJlaBKfuuWQAqhJlaoE/Go0GEocwUhavLK0Ly7lDq3heOC0mw31iR/BKeboyWXb9GZG38Essa1qIu9GfHqVFMX6tYo10R0ygzXGktt9EqDMPAzc0NIfVM+WhVBTGQdgN9LgylEOdI0eAlRLVBGQD0URgSPHl8xXuff4eHVwklQ80ml1Qz1Qmv57SD7bAdN6wem3++EWcNbEuxQ4Myz0eMz+ZqvSK2K9eW8bRGT7UoKAAAIABJREFUwITGfRO6vluSK2a81wxarmtI2Qi4qrpIbDeDBdZQFya6rkerMC8ek3keZVLzfkWZyNzeTIQQOFxe0PcDWpTn1y8YLg7sHw88e/bMwP5o3svgCQRVNX6Ye9VzaZpxhqGJCFLMsDfSyTAMi1eRPQNa/bMsO2wJAtt8vEWimCCmETzMsxTSYkw1z5TZ/t/x9kjxBs2qSqyFPkXD3MYj+/3e1C9ST8V6bFQBShM2iCehaOoGGgfPwj3Lerem2bUZQlYf/jwUXZJtnBpSRZd0++oFGl1Ga1t/lS5Vnjy64Pb6A8CMnupIyXkV6IymGK2K427+wdXUedgcQ/2EBrmNT2XYVPVvAn/TH//fwJ94xXuOwL/y6T4Xbm9Hw8xUuL4pFmeryRN5j1rKCH2n9Lue4jt1zpWOZDWMrJyd893qPG1ca6uRW/lOxQmoKXVm0IKYFv3eXWc3aFqqyUI7uBlEyH4DW1bQZKiNq7OSYxu7vYU9EWHoOsZi3kqIRlPBDUoEnj5+SIiKoEir61dFdS1V2lIKloWwKcbeLtDmZLT/13Z3Kxw/Te2LeEVBOA95LWvX9z2ip5p4W8+u1HXn33LCTo3vtijbDPWcXfQOa6LcEg2LakaXjMuVViB9miZSbF7CSJ5mqkt+X3qGuxmo6+trWtu/Fqp1aZ1fCLYxTdPEVPLChQvBBClhLXuz0jdLKSXZeH+NIkJZlGaoq5EIISApsdVmWz1D1wScM6GPbOhfi7G3j1yvb6mteqNzzHImpd4TO3q27tf/t00etPls75tqbvRy3Xzb9/Wxzmf1cs07vjgMPH9WiEmY54kgPbVOgCXZYoikTqihzd9LwcS97crp2uWTe5vwhlQezHPl+S02IUAxxdqsLNLECOzvQLUjpYGq3sKrREiJISTLalYjhRatllbfMNtLmZfvjGlAvOmLei2beNlGE4c0jbbKfHe0GzsEcsmgddlBihuTQIDZeD4igs4VGktcA1JN8rjvew4q3D5/YVLHCULGF4wPgVAz7z655HNPHvDock8XZ2tX1pjmIRHCy7wq4MSQt9fX81A9ZLP9egX8Ayn1J8XdYHib9UVVx55G9vuBLvZ0IS19A0Ijz7aSIcHDBz35jpev/Zp8KLmRVzN9v7O+oWrqJSka3qVquvm7/YUp4npDXULgcDiw3w188PX3kWp0Di2ZcTwisqPvDbjf7aw3qYRI8CYucy1U52TVYlBBGnp0XkPzvu85XJiOX9bVU94fLlevRqr3l1UkWZOg2K5R2VAutFLmyjyZR5bnyO3NB2Z0nz9DRIwCg3J3vKHfHyxrLY49bmCQEAJ5g1u2NXAesp4bt+062V4bgwZO1TYWyECs8qTpyBn3DhfSFKz1htKnzMUB9ntFqEzTNV2/J8ZI33cGyZQX4FU99vmGEQbZRBiN8rMxsJ9kvBGGDYHbjBFGQ+TFNAHGUM8+lyqgt8I0Vso08/jBBV03IFnINRMT9IN3qRbbVUSMs5ad+AgNR5GTgmaVYEqyzmoVUSPuktHj6gmloSe3chkpHrWq6aJJRbSguYJYIxet3jqt2O+WhUhe3xfcJQ1qvOFl73Zv/3OPL7m6GNjvIyEaPSFXAzY0dgjz6aJrp/Ns0SrFEyQ2PwNpjWFvqQrbBIIkiprAZ8tstgJmyxRaCFqKUh0TqWI1qp0k80oiQPU0/dnN8ooxtA5Qc128wmR38ILnrd4iTqOwazDNo9VNIqQQ6LrEeHtHdWN5e3tLSmZ8G0zQyrpiSqTYLY2RReJCtDW1EvNoD4fDkkhYPBhfKs3DMu9cbP21WlfNhEZlCMZdo6xZyaCgIXB5ecnzZ6Y+cnFxQfx6ZOg7nj+/RsJz9vsLuhAXsrWIizZsjNY2QbP13Jf3tCw1IEFILrNtybpi4fgZ1rwsRT1TZMEoMCLGn6OFsMExsApSMkVv6HfKowcDd13l+rYSo60tZCSKRTrF17Bts3W52c07FKi2rlrp1Scdb4hhE+slGiKVwIwVQhmTSZdQNM8CpTIFpRTbHUq2hVOD30y6MWpSPWRr2vx28kPoTP7aygiMYS5Nz7/15GwSOl4+E+zEFpTJj7ktmthbNrUANXs5SHVsqlYTsCzmCTaBzIDLWVOWDM5WPDMBVxcHdn1cVE1aNkqDFztvFvZ6KuUlQ2cKGqbcKuLdn4gL0x3i2Q1RlnCpGThYPcEVjxFiEpBXN9k4P65XjSDJMZf55MayG2pT/+iVFqAukGneXlCrcJhz4Xh3g7rG2pa9v01gbJ9r4aUZzrTQPHa7wa6Be63N223hmrTQsr0WotXQbrLTFYcMKI6dWkOSrWEjRgvJUqIKiyT2bu55IWpk4ro2UjYc04rlttfk/Nq351cv8vQabJNf55/xquu3fW9wD9r2LF0kz8Hw6IolCIiVGJSYICZT6O363iOhjBF8rTu8OYgN8bONhbbmxfDJTxOGwhti2Koq0gljyQamh565mu7Zki0UuNAONBGx5ima3fNKgdAHK41RpSarKzRLMy83a3H107lmkvtItWBeoQqQrOu7t8SrtYIXZTdMJfWu2ODJg5QSddfY5Va50EKDEJI1fa1KnmanLhh7vuYMtTJP4wLiLqpLCkOAL37Pd/P44Z4YlLFm68geEmi0piy60hDa4js3IOYxNIytLDd0DaabL0U8O5WZZ2G378m5oloxxkk1GR//jGnMmLjEahh0e0NVBS+laiVq9t0vd6gCVm+nN6pHzgYJdH2r+Wzy49k3JcsStiYtLbPWMqU5F8fQrONTdmHJnDOtN2jr+L7fHRYqRJtfM9qt/8AwDKYI4uF82WTpoJWJza6EZNSNU12xuvCz2ufnnEmOkY3jkcvLS/I8cf3ifYZhIN1ZQX4/7IjOdTs8MK8pV18DPs6x1Y/LgDbjvH1fCAEt+eS581B02SiKh9uWh7CieKo3rnFHomQ0BGJULi8GUjLe3lya8RW02nHMi1qWuQZm1MoijdTO87Z71icZb4RhExGkmpRLQbkhIykxqumX9VUYNDKEQtdB1x9NHmjYW6VA15FjpIqFApLbrmYu3DQ7DlA7K+nQRI4zlWKNMTRbP9GakNpR7zrmW+PRDTVRwpHUR+oA/UNFukpIZiR6UWoG7Qb6aIKLAetorTUjXcd8e2tE3jwTpYNQGFCuJHKQC7TOBAI3eoSoaKz84ffe4fJB5OLxwG35gE4DUaI56zKS6wvU3fTi/QGElUslUSglUyqkbO3sJIi1P/NGukkGJBnQPKQLNE7EKHSd19EqTK4+i87LzR12A9ZhXlEvmSnqSrfLzSQwV0JcaTVZVwmq1tlddHBMx6Wn6qb1nW9IYLhQN3iyQE1GPQTD3FJKqFhT5Wm8o5aRYWch5NB3jI4DTtNE1kqSnpJhmjKHwwWl6NJv1MrTZrrO2f3z0UrwUrKWgFiZVvQwu8zjSnfpBFXLdkqKy2bXwupZzRBbcF+QMrPrejRb5vrRxVOm5yNzuKAfDGtGBgi99R2VQogGt0wlI/EClUiumyy/Y8SWFfV1oS617SwBsVZay7XSUslYmGh6rSZNpGpeI0DnFQeFtS5WECTbozq3ZtJ31FoZUqHvrQH5vuvROpFKJFclV+PdHedC5/BCKQWJTYVk3YwbQFM+BYcN3hDDFkKAKBQHrgPBOGuWCtl02rbRGuBad/C1bKdhAYIQasv0GHXBEg2+Q3nLORGjO8xztROndgNNNxPHG9AceKGmaZVyR6yB0gX2h4Eq5nqXGMhFmOu4yYRlshuPipFxF6WL5Iq5qXU5z8SxEYlZvLb9oWMYOlQLeZrpuiVgNZe/gm6Io9uhqrBx308znR4WuYpFO/9BArFu6ho9pG//f8uZ2ypNaFm9AtvhN/yqYm3ymjfRbr4YTUFlW8pzwgncaLKtGdNtZte/n003J3nZe2nvN8Da1klww9koJy1Teu61xWi1j3NZexqYR7h2gwevUpC0PF7OwzYU1HYN7LuDQpknQsOuNvPs+56423F9c4M2IQDPKNt5Oa0m2J77xoPbElnbpnG+Pj5JaLfNdpb8CpWThn/X+tL6UA1WGePviRKoAToxSS9x8lUVE/y06EohVLeuq1yqfdm3oWGzax+spkwha2YsMNEOsJJCWIxZ3SzCbdq6ugRKkOByR2pZS9ftUvFSFC3IdUBCZdbCcZrJWrk73lAyHO+UPJuU0c1Q0FkIc0f4MHHx4cR+v+fh00t2hw7prMYwpkpWpyPEQIqunVUESYEoiT4KhUSdZ3ZcUK4LOc+k2hHniZ5gxmqGB1cdfQcpFmt3plaV0UpLctWFx7Q1Bu186MagVExXrTZOngTGeTKeVbI623m2etGaC3OZNoZQTn6DKWm0m0g2jWHAuVF+wzVy6pIJ7NKibLuGZ3ZD5GxedaM75Dyd4GT7/R6qUupE9jKweb4j9TvPqE5cl5noWnE1l6Vre5cSw7CW+ETHbxv36xRri4vBbU2Kx3FcCuCbAGUj6MZo9cdtU13wqw0vrNXkqRX0UapBElJmNBe0TuR5pE6TlbI5/pZST+x65uIQg1cUGC55qmO3NVQtIdJee1UyoI2Pwj6BxTNt4et2tD5BwCIDJSLEBj/USsGl0tXUi8UdiDIbjh0ihNzEK12AtIrZMw2YtWu44LdhKIpA7DuSGMie52KYFs5fwTC2itOBhIVsqLLkUs7A0cbh93UlijhXphYzCrWY9HYphTGbekKuylELWW13fM5opSLs6AiUAtfXdwyHAemMiyZBKTrTSW8UBXe9qig1KDQGeorseqXmjuGyZ7jekeeJ23LNXCdKGYG6VBwI2cKIoNY+DzfQOOt+41Fts6Dbc9HGupgtBLEbegXF2415jr1scbtGo1lFIF8tM7O8dgbat5Aj5wzNGJ94k6/+vC3YbSx1xy83WJGFtbJ0qd9SYPq+p4uJo2yoDa4W0bKk58B6O+bz728GY55XQ9xEAxvXqnlny/vdY6tFmQoL+TVg0IVi723NwdV5dF2/I6TecT7P3tLKuITq9b92bIbnNeXik6zo2Tp41Wa1WKk2EX9gn7k2mTEe5frWlgRZuIu+WfS9neMUIhoKQxcpapjuXO1eTEGYPeMnWv0+dcRZAA3URZnk2zB5kEvlw+MIoaeERI2FUjM1NJwhEqIpKwx9Z/VyMRDSSrIsKK0wGlVyLagWa/6R3bMJHVUqx5zpdzumaeJ2umNm5nq+5WvPn1Eq3AHVjeDXyx19GRh0z4FHyBy53F+SpVDCTNh37B7tidrz5MmTpfZwmrxEZK5L+BJCIPcGRCcJXD/7kLu7G3Ickd/9/8jv33LZ7+n6yLtPLkixME6TNUamB1wbDfGSqFXZdbmhaDfpJoPHmliwm2OVX25Cf33fI9mOdVzIxgpiFRwu+EWtxbh5YS2jaoaksd1X41C9osBuitbTQUSs1rZUgraicm90Iso4rd3bjcUfoJpmWp69CUqH11gWarZ2gcMwmPeAMGZrTxclrB5MVZMIb7icG7amgtu8t61Xlnrz0uZ5Xq5jSsm14exGno7zkiltyYfQpY2BXb3a2edmzapNEinrvBoFlDjs2IVIiB1dN/Dk6TvEbo/EYKB6dLmiumZCm6FtDWy2Wd9yZhO2Bm/ZSPQU04LWryMv3msuE3VdcksW37p76VLRY5xPbH7RqEWhF45TptRCna1qJAquZG3Z1IplCSWqYeQSFnv7Ta08+GaNKnCLUKaJSSs3rnVRsQYohUqVaBtjDGi0QvPWPq71OoANszoJWo01bxQrkw8XScQUef7sltrBUQtjrdzGmWNXmKpyM2cytJYBTOFolQGa4HBFvILPf/9TLh8fuHjacflkz9DtrE9oZ6GR6Xi14ufVe7gLBanKPGeunz+kTDOPnl7y3tc+x1d/6//l2de+5rWBBdTqHfsQDJBWRaPjSVKWKou2S5rn0eovtx3B7aZb9mbfFEOMhoPFwN3dSPTdP/mCKo6yNeBfgv3uPCTa0jNWA1eWYxINy3da6n695mtT3ub5NAHESginpGPVwjiu9apEE9ikFkLqFvJsmUdrd8iKZeWcqdlwykbnCAjihq1haa/y2tpPMxDAorG2rfnsolUj1E3YJ1tvuNkOL7szqk8hu6gks4kt5DyToiIMTKUSU09MHRUH/d2oNVn3LRyzFcPc3gt2XV6ubT7HTUMMnnhQ0lnUp973dMmo5uZZrmH3UsdaLDyPKKTkjdsyqMli5VAMCNBIybPRoxAEa4eowXQWVQqm0bzq+32a8WYYNoW7MpPVfJClENxdeq3VbuQU7SeEZeG0YRe1kSdbOKQetgJSqWq8rCCBuB8Mo9IOmSsq0X+q0UwElnYB1fpLKsr+0Z6rxxc8ee+x6bxfwdWjHX134OLqalPMzHrDsIL7t/WOWnFPIRpxVzMpBbqgZsTKvHTlCV5J0SxE824Mm3r5am+fOQ01eOl8bZ9vIHNgbbzRQlYRC3+3fLCT79yA70E2IZDqwvczb3IztB3PAiQsN11KYW0ivYRx63dFWbGwFOyWWAjXqqtIZlibGJ8X4J9XQWxD8m2lRtG6ZGm3vK/22KSXVnxpW7u7Yo3tHJxiU8uxpIi4p1sqtsYloSGYxmCydVRFDIMSV0VZwHX3pBUQr+cVWR5rOA1Jz/lrjYKxSMOrUYMMozZv0jY942E2n265xu2xe/jtMxOCOuapLurQx8SdKKVmL4RvYXxd1oiELdThi+VTjjfCsGVVnqmR1oVADbI0D1F1QFotxZ1KYqYyuBex63ov8ZAlrKo1o8EykVV06eoTJLiGWk8ce6b5juPdyN2ozLeROvWA0oll7bRApx0pdjy4vOJLX/pD/KF/6ks8fecxT58+4uJyz8XDHV1n3uMwbImddoP3fU+XhmWRP6jWzHfWwN1xopbC43cecHzxeb7+8JLL/Z48z+yH3zZzqDAfR1IYDO9w/E5DIdKf4GEnhmyDWclmZw/ebLe9X4Qla1jH2cJ3D4mK4x7FQV0VS4q8CrtZcCh1r6RlVjfZynY/GxDuhiS3w12NRSsUB/O45nkmqoVW2ubq39PCoDT03N2NUMX11ZyEK5vu7DRkfs3IttCxcc/O1VvwGtUWorZjXSgKYvm95rm0ELDhbYuXo+rZ0zVzuC08R8T6aESoc6E/2PEPu4Mng5pm1ub6hXhy3rafu/Wk2+Zw/tOGQQP2OIYOUfeOy9rCsF3HE8+P1SuseSV1qyolZ2JIINmJ6Fa5oirUeWYuziv1TT+ooiFa9jMGCNH5keIh6stZ2W803gjDhkAW8Hocy/gREIEOpZPALnVcXg1cXOy5uLjgsLMuQF1oYGpaTj6ecQG1hRJtQRQM/J6O18j0kK4KlymRr59TakdXA4IyUKzJSAjs9JLv/d4/wHd/4T3+8B/5Ab7w/d/NsOvY7Tq6FBi6aABpNzIMw7LbN9Z8Sj3J8RYR4SpEslZGrWgMXmD9lPlizxAUrYXb6xsOw/uoHhdw3QxD83Cax7ahViw75ymADyxqCgCtI3xRA9utXZvJqw/DsMjyNHqKBBfojBsCq6yGUqLduM07DbI2NAnI0hBmezwtPBMRWtxjc/TynTrT2gJWzZSaCfSLV9S+n1oITdHVicEhdIvEz1K0nwtjGZdw7e7mlrDbL6FoKxpv7996NCIm8d0wrGbcWuhlSYDT0PUcnG9F4+M0kjxbHWLL7M4cj0dqzRzv7oz0qmLS5DHR9zumXOm6VsIVUTHcLG7O59YYN8O2hqenhq2Nk0ynmtEXUVNZhtM5qFI9pFyMqRv4FFZ5KqmK5kLFCvirKjEEJlX6mFC1xtQpZ55NI9KSH1qt1WZw6pMEZzEY7SiE043048abYdjcPV9uPnc/LYxba/Ja78Rtpm3lXcmafg5hKfnQgAHVMdF7HwSJkWMGrYEh7RHuCFR2MjCpMjMTQiR2iXeGz/OF7/oi3/Xeezx6+ITLB1eIKBdXB1IUdMp0qafEfEJtaCz5VkbTLnwIlaiRTiI7MTD4Lhc0Ja4ePuThw4eWTZKEZmN0twW8DgvWz72mzcl75diGkc1Q1k350fbctvc3UHy7wHVjrLaYTghh9cR0DUu+0VgoKXWtb2yfu70Rt2Fky7aWUui7VcQxhECe8uo1qZX+WMVAOeniHrwSoYlltmPZcufacbTv32aNt/hiw4G2YdlKMF1HrXWpYKHJgMemTjJyfX0NVLoEF+GCIXUeGp5ek214f35tX73ZfbRRWN5TdTFsrZJk3Yh0yew2Q7RBR176fPUwq52TFb+0e6If0nrNXTSBqo6si2dFTMy0+DxD/HQg25th2ABCYi7ZyomAQ4zsVXm4H9ilxONHD5h0JojSEehJpihRMWA1mZoC7tW0G0BjRwg7qkaCDtQSON4aL46aGXOhzHvy2DHwCJi5YIAKD4eHfPcf+y6++L3v8fTdJ3zuyZ4n+0Sh0Mlszs8hEpMyhB0i0bJh7nnO88zQD3S9G7kohHCgo5IY6UqiVqXnEWW44Hn9XXZPI2XXc/n+gZv5OUHUqgY8Lg8pUV1fTnS7GXj3+aaKUCz8Biiy3rw4/01VSVGJQdB5RmrlWKDb7ektOcU8j0sDXtRImiklx4O8GoCO5Ox6VKyhDoEuJfJsYgYxRL82NjSsHlws3iinJVlUvRBfvIymECOmmd9jogblSAo9Isqcb2k1sCkK3SGZNHashCjs9z1TzkQvbUpdQEMmxdlKw2QkxaZPlyEkhEJyvTlCYJqyraoC01gdB2y9T5XSCNIbQx42sEDAMa/dQC0zMSWm0UK8aZosmRACQ2cJEJFEztB1ME+FlIxLBywZ2xgjJR7alxE9iSJLFYgdcNa6sAcAhDUEDtRlHwxSl+tCgVqNYyc5W5io1rJS80xnWxu5TITaOmMZ1lhQJCSq7Jiq1WXPCjHtbPMRIcWBWSwJNY12jBKTJZ40UqdM6Eyo1WTErab604w3xrBJKSQsGN0BPcKTB5dcdB1dijzYXzF3hS5E9r319gysNIMY4yZcMm5bFwc0JpDejI3uSLFDLiF1rZQn8fDhHcfjRJCBacocj0fmeeadd97hvffe43PvfheP33nA5eUFQ783OZrOdrKCLphH8O7rTXctxm7JurVsXzMwUay3ZxSYdWLKmS4mrq6uCAH6Fz3HMRrBd/EO3DhJ9SJ+/9u7cL00dPWkGg0ol2ILVkwlYvEmQ0TzppZUvA7T9cjyPFM1e3MTC8eCboB41RNPR1RWukEpSLXmK1tMyDy08pKXsWYly8bTDahmSvHXyIvnYnbDerqm5D0bqoHfTk8ml0xUa3QCtlHUWtnt9oSAZ65NMXie1TPTiZCGTSLDDVEIBIlGSzjzMLfe+fb5NofO+54GKUw1LwarGcsoan1YVa1XKmuX9613m2K/UCDa+m+PGy1lCTU35Fb5CJWMbViqWqBUU6DxsyjaknnlJJt6nqCyJBCuANI8fnNmrZt9pWi/0RE0loAG+04NQnSyt83H9oSGWX7S8cYYtujJgwj0QdilyMV+x+Uw0Hsn75DOJL1Zwd7gZ0BEmF1G2LQ5EkWtsXLFdtIgHXFnTY6Fjr1G6EaOdzNp1/HgsKfWytWjB+uikrT5ng0TWr30wwt724VVdcpBSItRak7TAuzCgjW1hR/xzk2+WJVI1ckNYTHD6aGg9SfCkyxtERtHRbemrq7ZSdiEH7x8461hw9lNW2YzpqFAXMuOaq1LG7vg3798HmFjpHS5PqJWSmNvP81aSvAQR04zmLJk9lbAPYQtIdn+traNlaoZalrOixlDxwfPDOwW5G9/t1B21+2XJEUI6QTwXwz5Wdi8zbC2seJVhufhRjClhM5h0WqLKTHXQpC0GCszVHauUuyttpUZCWkz/5dlh86xTYCTLXCbaW+GGXkJaljOn5aTa3U+3/PHp2VRpqcXxAriF1n2MBrroBRqVZDAPE+eLAhLAieec1A+ZrwRhk2AHmUQYd8lnl7s6ULkarfjctizc6WHsDcva4iJ3lPgYCdzqcdUJcQdaKCS6OKeLh4oGqjam3Z+GqyPQOrJM8Rhor/LyPNrYjDyZdPiury8XIQWpzFbWJKM9d1S8KgwZzMui4GKPYJ4JQXewciKuDUYhmbSSFY2tet68h2kEBn6HjD575InCwui54xjK6syb8TOXlxIE4FWi2d/AUutIzipcpNBrWA3mYhx2txYxLboS0Wr9ePM8wxaSLsDIKbEIV6TG62ULUpa5bG1oEWJEgmt1jWsgHQrS1oMgNj5KGp4ZWyeiDimSDu/CWU2Eqeu2V0RyE7MtflaHaJYFEqMa5+BdgM2A91CvIaljS5gGdJuadRsnlK3vM8+J6JNq2zjVZ0PVfXua/b5MaxKysH7I2gp5OlI1+/spo/GA5wdOiAHdg8v6KR3tRJd5t2SbWbwE1ujelI7qqdY5nJ8zrytYB6Ur69aK9StV92oJboY21MvNSyy8fZjxkrWTzep9qHn6uqS4+1IzkfyVCiIb04Qg1GvSrGM/LdlETzYLbhLkcvdwKOrK3Zdz0XX0XebAuZkzUJSdO14T+XbjW74jHllieqga5DeitzVFn8QoQvdQvANKnR9T1WhH81wpr7j4sKMWoiyXLCmGdV1w5IeL7VQirqel3V7MsOm9H2CeUbVsJ0YxWr81FCJNrY3FJiSQpW1EbJ4WNgUZNv/XDyDYF6QSDSjZulMmm6XsfGbRt1p2dJ2R65FHctzGgjCtHh3BaV46Y57OJ70aFSJZtRblqypuprH5ZUQaomdxWNqjmYU6kY6vc2veW5K9eOym2XVarN6wva36qu9F9hQYjgtlWoZxOa1tdeWMNqxNGDxUu04V89ou8luf29HrZW48dq39JYQoQwDWuZFrNLmZ3OYxgy0vgZ2XEr9SEO6XR95S5XYntutx3Y2D2oTKNhcj83nvpRAEaGV2r086uZ/r+d3K+9kxGvfbOcM4l3rBNu8PqWleiMMWxThnYsD715dcHU7JF+dAAAHT0lEQVTY8eiwZ9d3XPQH2328y7QGLzJHFpqHupEQESZXTp3VmlrEMID0pG4gauTuzlRtLy929Lu0tD0LMRO7RIgW26eUePTooWmTRXVZm0IpkXlSik7EztVTS7G+kyUuiq0xRg4XO+Y+MewStceFMc0AWUhkDWooynR3ZDqOhKLM42i9MKc70xzTiSAzsXX3JhjIG02Xa+FLYT5NULtxLS3sahrhlFzbvBb8/86u6hFTZHYDa+VFPSmP5NxUfoXoOFPO2crH/OYYus5VV1ZvrIsJ0qoCUvx7tKw8sKbcGlx4UFUpGhFRYr/Wg4YQl0L7PFuDa5HTjPM0ZmLcE9zrTrEnxd4VlC0DPE0TT999h64/LJnUVlK1DcXb+ZlyXXC1WpTUr57JQvoNa5XBefNhWNsNppSopQkIWPIg58ycR2f3G+WmBvfOQ7t+HbWzz7m7G/1YrRhplSjadnQqC+3oJX4jGyUVXfvSim9AdZ6c6yiUeaSLibnOJimFYWe4cbX5bUVBq3E2saQPYt6XChAE9X6+IRpRtx97+j4xjiBaKFmMASCB4tQSz4Jg5cWfPBx9IwybAI8u97z75BG7ThgEdimwP/RI7IEAkui7FbRuBMycVy0y8N0ENwAEtEaX/nYX18OR/d6wE60RrZEQvKM1lnm6uBwYhoEPj7eLIsV4FMZxJpGMQCxW/3Zzc+TFB7c8e/YMgNQFHjy4YrfruXq443BhctfHcWB3OKAUQiyLYRvHifk4Mo8j891I1ewL1LLAVSsi2byyYNhDCGFNva/xiOcLLDOJWqicNuVPy/vUfLBa1lZnUq2Fnf3UBb8TtcL8iMnPlLkax2iwG1xaFyy1TaeFwLWaNp2oK6qohbvq1jCFbjFWDY9RVfroxjpF73FqXvLC/vekwhb7NA8koKVn6Hfsdxe0DvKxAGpNRESE/e6K3f7qJImRUjohtjZDEGNmnlYqT87tpl49+VeNc/xp+5mqyjxNVJccz9NE1UwKgRS9Aka96xcBraZVVkvlOFk/2d1uZ70Z1IQWtLq4A7JkqI0D9pGHeDKCVoKudSBbmaBWjGev183rK03GoIe2yTgefPI58eT/iJiSc7dRHVZfMxrEIBBnfgDWm/dTGDb5NJmGb9YQkX8C3ABfe93H8i0e73A/5++EcT/nz278AVV99+Pe9EYYNgAR+d9U9Y+/7uP4Vo77OX9njPs5f+vHJ3BS78f9uB/349tr3Bu2+3E/7sdbN94kw/Zzr/sAXsO4n/N3xrif87d4vDEY2/24H/fjfnxW403y2O7H/bgf9+MzGfeG7X7cj/vx1o3XbthE5EdE5DdF5Msi8hdf9/F8VkNE/ksR+aqI/PrmuSci8jdE5B/678f+vIjIf+Ln4O+JyB97fUf+ex8i8kUR+VUR+Qci8vdF5Kf9+bd93jsR+dsi8n/4vP8Df/77ReRv+fz+exHp/fnB//6yv/59r/P4f69DRKKI/JqI/JL//cbM97UaNrHisv8M+BeBHwT+nIj84Os8ps9w/FfAj5w99xeBX1bVHwB+2f8Gm/8P+M9PAX/1W3SMn/XIwL+tqj8I/BDwb/j1fNvnPQI/rKr/DPBHgR8RkR8C/hLws6r6JeAD4Cf9/T8JfODP/6y/79tx/DTwG5u/35z5NrmV1/ED/Engr2/+/hngZ17nMX3G8/s+4Nc3f/8m8J4/fg/4TX/8XwB/7lXv+3b+Af4a8C98J80bOAD/O/DPYcz75M8vax3468Cf9MfJ3yev+9g/5Ty/gG1SPwz8ElYZ+cbM93WHot8D/OPN37/lz72t4/Oq+jv++HeBz/vjt+48eLjxzwJ/i++AeXtY9neBrwJ/A/hHwDPV1q7mZG7LvP31D4Gn39oj/n2Pvwz8Bdby0qe8QfN93YbtO3aobV9vJddGRC6B/wn4N1X1+fa1t3XeqlpU9Y9insyfAP7p13xI37QhIn8G+Kqq/p3XfSwfNV63Yftt4Iubv7/gz72t4ysi8h6A//6qP//WnAcR6TCj9t+q6v/sT7/1825DVZ8Bv4qFYo9EFiWx7dyWefvrD4H3v8WH+vsZfwr4syLy/wC/gIWjf4U3aL6v27D9r8APeDalB34c+MXXfEzfzPGLwE/445/AMKj2/L/uWcIfAj7chG7fNkNMV+bngd9Q1f9489LbPu93ReSRP95juOJvYAbux/xt5/Nu5+PHgF9xT/bbYqjqz6jqF1T1+7B79ldU9c/zJs33DQAhfxT4vzBM4t993cfzGc7rvwN+B5gxvOEnMVzhl4F/CPwvwBN/r2DZ4X8E/J/AH3/dx/97nPM/j4WZfw/4u/7zo98B8/4jwK/5vH8d+Pf8+T8I/G3gy8D/AAz+/M7//rK//gdf9xx+H3P/08AvvWnzvS+puh/34368deN1h6L3437cj/vxmY97w3Y/7sf9eOvGvWG7H/fjfrx1496w3Y/7cT/eunFv2O7H/bgfb924N2z3437cj7du3Bu2+3E/7sdbN/5/e0gP0KkxIooAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "img = Image.open('imagenet_samples/corgie.jpg')\n", + "img_tensor = img_transforms(img)\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "plt.imshow(np.asarray(img))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 공격 전 성능 확인하기\n", + "\n", + "공격을 하기 전에 우리가 준비한 학습용 데이터에 없는\n", + "이미지를 얼마나 잘 분류하나 확인하겠습니다.\n", + "분류하는 것은 매우 간단한데,\n", + "아까 준비한 모델에 이미지를 통과시키기만 하면 됩니다.\n", + "모델에서 나온 값에 `Softmax`를 씌우면\n", + "각각의 레이블에 대한 확률 예측값으로 환산됩니다.\n", + "\n", + "```python\n", + "out = model(img_tensor.unsqueeze(0))\n", + "probs = softmax(out)\n", + "```\n", + "\n", + "그리고 `argmax`를 이용하여 가장 큰 확률을 갖고 있는 인덱스,\n", + "즉, 모델이 가장 확신하는 예측값을 가져올 수 있습니다.\n", + "\n", + "우리가 준비한 ResNet101 모델은 정확하게 치와와라고 분류하는 것을 볼 수 있습니다.\n", + "신뢰도도 99.87%로 매우 치와와라고 확신하고 있네요.\n", + "\n", + "```\n", + "151:Chihuahua:18.289345:0.9987244\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "softmax = torch.nn.Softmax()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "263:Pembroke, Pembroke Welsh corgi:22.660688:0.9013328\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " This is separate from the ipykernel package so we can avoid doing imports until\n" + ] + } + ], + "source": [ + "img_tensor.requires_grad_(True)\n", + "out = model(img_tensor.unsqueeze(0))\n", + "probs = softmax(out)\n", + "cls_idx = np.argmax(out.data.numpy())\n", + "print(str(cls_idx) + \":\" + idx2class[cls_idx] + \":\" + str(out.data.numpy()[0][cls_idx]) + \":\" + str(probs.data.numpy()[0][cls_idx]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 이미지 변환하기\n", + "\n", + "\n", + "입력에 사용되는 이미지는 노말라이즈되어 있으므로,\n", + "다시 사람의 눈에 보이게 하기 위해서는 반대로 변환시켜주는 작업이 필요합니다.\n", + "`norm`함수는 Normalize를, `unnorm`함수는 다시 사람의 눈에 보이게\n", + "복원시켜주는 역활을 합니다." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def norm(x):\n", + " return 2.*(x/255.-0.5)\n", + "\n", + "def unnorm(x):\n", + " un_x = 255*(x*0.5+0.5)\n", + " un_x[un_x > 255] = 255\n", + " un_x[un_x < 0] = 0\n", + " un_x = un_x.astype(np.uint8)\n", + " return un_x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 적대적 예제 시각화 하기\n", + "\n", + "적대적 예제의 목적중에 하나가 바로 사람의 눈에는 다름이 없어야 함으로\n", + "시각화를 하여 결과물을 확인하는 것도 중요합니다." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def draw_result(img, noise, adv_img):\n", + " fig, ax = plt.subplots(1, 3, figsize=(15, 10))\n", + " orig_class, attack_class = get_class(img), get_class(adv_img)\n", + " ax[0].imshow(reverse_trans(img[0]))\n", + " ax[0].set_title('Original image: {}'.format(orig_class.split(',')[0]))\n", + " ax[1].imshow(noise[0].cpu().numpy().transpose(1, 2, 0))\n", + " ax[1].set_title('Attacking noise')\n", + " ax[2].imshow(reverse_trans(adv_img[0]))\n", + " ax[2].set_title('Adversarial example: {}'.format(attack_class))\n", + " for i in range(3):\n", + " ax[i].set_axis_off()\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 모델 정보 추출하기" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = F.cross_entropy\n", + "def fgsm_attack(model, x, y, eps):\n", + " x_adv = x.clone().requires_grad_()\n", + " h_adv = model(x_adv)\n", + " cost = F.cross_entropy(h_adv, y)\n", + " model.zero_grad()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "out[0,class2idx['wooden spoon']].backward()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:22: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "263:Pembroke, Pembroke Welsh corgi:0.83588314\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAEgCAYAAABsCt3QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvcmPHUm2p/fZ4OMdIjgkc2KSEYw5gmNWVlW/HiS1gAa001bSWuiNtNRCq94IWjSgv6ABaS2gl4Ia0EKbVvebsgZOMY8kM5mZzOQQcQcfzUwL8+sRrHrV9R5Qic5+uAdgJhlxrw9m5p8fP+d3jgvnHFOb2tSmNrWpTW1qU/vTm/yPfQBTm9rUpja1qU1tan9fbepoTW1qU5va1KY2tan9SDZ1tKY2talNbWpTm9rUfiSbOlpTm9rUpja1qU1taj+STR2tqU1talOb2tSmNrUfyaaO1tSmNrWpTW1qU5vaj2Q/mqMlhPivhBC7QogDIcT//GPtZ2pTm9rU/tQ25dfUpja1P5WJH6OPlhBCAXvAPwO+Ar4E/lvn3NaffGdTm9rUpvYntCm/pja1qf0p7ceKaP0COHDOHTnnSuD/BP7rH2lfU5va1Kb2p7Qpv6Y2tan9yUz/SNv9FHhx4d9fAb/8Qx/u9bru6pUrAFhrAFBKgRAIwDmHlBLnnP/TfE8K7ycaUyOlRAhBXfu/exNIKZFSYK3F4XC2+Y0Q/i/OIaQABEL4fXEhyGfbiJ/ft2j26bflNyak9NsR/hh/14QQzXfP92utbbdFc47+s82/rUPI8+1J/+X3tgkOa5vvNf9xzv9MCAHCf+/iITkcAhBCttt47/fOTrbWbtdd2I9sx0qAAyEF7sI3JnMk8PsXohn7Czvx42GRUrXH0G6TC8PffMdaez6nk88023T4teH3J9o5mYx3XRuUkiilf29u3IW59etrsnnx3u+NNQhojkFcGP/JPE5Gya9JY0wzTmCMbf9+vj9xcSqb8ZiMnW3nYLIPv4ZVuw+aMT7fiPPrRbx/bH7/pv2ZEKK9jiZrsl1fUr73PTi/ZmS7Tl37X4HAWoO11l+rnF+PNOMxuRYna6Edd2txwPHJ8x+ccx/w07O/E78AerMz7ursh8SADf0alLJClDEFBaGLqGRJ5CKcy3BR3HxGAjm10VRliRACrTVlWQIQI5BpihCCLLvIsPwCw6KWYXEMeZ79BxgWkQhJTk6Ew4ahPw5RXuBsyIUrGvC8cFlGIWKEKIiiGOcshSiByH/SOciLdlmGYYSUkqyBblK8v8aEgBx/DQEICogbhmW/yzC/jzgWOJc1P5cUxe8wLI5x2ZiLCy6OY/I8axmWpAmCAiESnMspy/cZFkWT60JQFJAkCdaOcZmDOG6O3TOsLCuESJpxKpq/T67UgjiK/DmOPQfi+Py4nHNkWYbDj1NM0fKy+QAkYGpNVSnSjgIHeQ5xnJ/PbQ4FDpmkREBBDsXfzLBEphQUfmU1h2JDSyIEeZ7jiJGJIDCWsuFWYCxCCgrAZRlxMwYIgcgvTKZzZC4njEKw1v++KPz6SlOklOSAyx1RwzsRX1ynGWVz3EmSkDu/st5jmBTtWj2/f03WaEpZFucbRBA2DCsvMCyOY7I8RyAIw4DxePw+w2KIRYxzjtFoRJqmzdb8seVFTmgtL9++5t274UVo/kH7sRytP2pCiH8O/HOAK5cv8S//139BURYYUwMgpcI5R5IkKKUwxjAYDN67Wc72ZwiCiHE2Jopi6rqmKM4BFEUxYRhirKEqCqq6BgRSSVRz4xYIlFaoBm5KSqx17cBba9AqIM9zwlCDkNR1RVmWF5wLicUC/gIxdU1VnTt8Sil0oKjKivE4Y3bmElEcU1Y5dTVZRFDXlrwYkSQpUmiC4Nw5mDhPkxvicDQA57DOfz8KE8qqxNoaUERRDM6itELr5lyF356SCmMqhFDNefozqeoK4b0nsjxDtj+vmenPNBMHeZYRRhGBDhAIRtmYsvIL3BrL1SuXqcqaqq5I05TReIypSnQDdSEkUtDMg3e2Xn3/LWEYtfMWaP931YxBWRQIKdA6mKwfRqMhVVWitUJKhbWWoNkGzmLqmiTuUJuq+RlUddmCQghBlvvthloR6oiiLC44RqB1QFFmFEVOmnZJkw6j8aid6zCMEA2khJAEOsBa094opZJ+3QCj0ahxmvx5X/C7qMoSYw3GWAQOpQPK0lOs2+mgdICzUFYlSvn5zLIxAP3+DFqFjEYDhHRg8etbqvbuEeiQqjZoLahrQ5omVGXJ/u4jAHq9WWYvf8js7GVonjWMMRhb0Uk7AJRlTTYakXYSyqIABVVZI5vj6aVdjLEoJcmyMTr0DsDZu1P/oAD4y0owGAz57/+H/+kZ/wnbRYZ9+OE1/uW//t8pnhYsLLzPsBcvXqCUYsEYBoOPcW4XlpcBePXtd2xsRIyz6zx7FlPXW9y8eYP9/X3AXwu3b9/GWMPmk4sMO0DJVX8cy4I1rTg8mjDsAGuXUOoQOGfYjfwGJ+FRy7C5skQ0x/E3MWyzqpEHfm7X1hRHx4fMz803DPueKL5LWeVsbW4349Ew7OanJMlXSLHuGba7C8CiXfo9hu05h11qGHaSUM6XWLsFe55hy0uWw6Nzhq2IddzSOcP2xSFrFxi2Wc8j9hysSLL8EXJPsLy8zGZdM/PthGF7f5Rh//DPLlOVt9jc2uT+/fuMHj70DLt9uzlXycE+SHXA2qpCiBX+3b//ty3D7ty5S6Aj9thjLVjHOcfThmHrLcP2+e1vh8zPz3F0dMiqXMPand9n2N0HbF1k2NZT7t69O1mDZI+fIFYFJ3rtnGEHfv24pYZhT99n2KfjT9m7wLCVFUH++DFCrHK8HrD4H2TYAfJAouTaBYbteYYtLrC9vYPAsaY3eFo+BuDzBw9ahj2tStaUZG8PsuwhAF988XO0Cvnt6NeIg4Zhq6sgD1luGXa7ZdjW1jb37ydU5Rz/9//1rwH42c9+wasfTt9j2IIxmMV5OunXADx9+gcYtnbOsAWziFKSR48eosM7iFXB2V9/yerKCgCHh3uA4F/8L/8bf1v7sRytr4HPLvz7evOz1pxz/wr4VwC35m+6LM+REuraLyit/Y0uz3OCIKAo/P+lVFRl3XwmZJyN8E/f3hGJovjc4waqqkJKgbMQBiFhFBGHEXXj0PnojmA4HmOtQQh/k5s8ESqlEcLRSWOEEIzzAikl/f4M2XjUnAsYC1oriqKk158h0CFZlgH+ic2YmjBMsNY/pYVh5KGoRHucWitS1W+hcjHq5ZwjCAOGgwFhFJImXRCuPYYgDFFaMRqPcNYisARRQFWVWOunOQoVVVU1jmJOGCY458cFfLQqG4/BgdKaPMvQWiNwvP7hO6B5GhTa3zidYzAaorUmaZ7Q67ri7OyUJOk0DkhBXRvGowF9PevPC0MYp+34IiVhmLSOqVaa2tRIpbBV1UQ3nXdCmvEIg4But0dRlIxGZ/R6CcPhoIn8QKADZCBQSmKcQEqFqUuiOGyfbKsqI9AhUmmybMTIjIjCmPHYOzi9ngdzEneJo9Q/gecZxpQXnqL8OcZx3EQDLNbadg1WVcmrV99x+dJl7/SbmrquqTFtxC4vcgKtkUoRhRFSCsqqIIr8vBRFjqhKwiBGa0WWZUgpWofQGouT/kmtNjVVXYCD4WDA5SZSXFclWmriKOEsf8uLZ98SRTGffrboz8PhIylFjnUCYw1S+jX4w5vv23npdnpYZ9FaUzuLDoL2waYsS7TWZFnG69ev6c/0qWtDt9ujap40h8NTrlz5EK1DfsL2R/kF7zNsfW3FZY89w7a2PMPWG4bdUDnHQcC4uEEQHCJlQiWPAdB6lnH2KQDW7rIiVnDPHF/0f97sZY9qawu5KlhavMnB4QlhdIc4/OU5w1J4sb9PWVxncdFweLSA0qpl2NraOlLAwf4+oQi4nt9ESsFJ/xmfad2cy/sM++bbGT7UIVnXM+zZsx2Wl1YRQmLtPog7hOEznj4doNQ6AFW1iV5XpK6P1rdZ9ieFWJ5EdyF49j7DUuHI5AWGvThkNJa4pUVEHHMSHrO4WKKP/HHq24cNw5YoyxwbWrZ24fbGBYblYxiD0qvkxSO2t7dYWVpi8/KEYR8h9o+QQrC8tMRw9Fv00Tr70R5wkWHn13d9a4GHv/lrvtjxTqVlmfU4heW19xi2eoFhW6ZmVS1RbW56hlU3WVi0bO8fAHB7Y4PPP4fiyVOqqibsnTAcziPlcz8eOkBueIYJJ5AHE4bdbhm2uZmh1xWrSpM9esxowXiGDRuGyRmWgYOWYcvk+RbGlNQtw/b51a9uEscSKQ9YcSsYa4mf++Oo5ucuMOwEY5apa0tNeYFhp55hQnDn9h0ODvbZrbZbhj158piV1VXCIGZdKx5lGXJOIHe987JjLBvSEcd3qddqquIJmB2GgxHqyp/5eWkY9vxZgq0r/t9nfaJnr1uGzcy84eq1iJPjc4ZtSlisa354cwmA8Wea7otvsEuLaGuo3Q7aBawIfxy6lAjNOcN+PqT+62263R7Hx0d+G+MRV6586K+xv6X9WI7Wl8CSEGIeD6j/Bvjv/tCHpVSYqiK3FTN9fzMu8oJev8toNMQa0DoiCBSmtvSb6EqWZzh8+DWoaqLIh4irqnHWggCwYBxBFKK1Jg4j71A1+x43kRsppXcqmpTK5Ak80AprHVVVURnT3FQE7969I2iiXjhHJ03JxmPiKMZaS1374wF/4UohieKYTqeDtYbBYEjYHAtAFEZkRYapSuKoQ9pJcdZR1+epsKosCYIQgaAqS+IkbtMCg7MBnW5KN+1grGnST4ATGOOa46gxxvjQfBN6raqqHS+wlFWOqQ3GGoIgIAh8RHHiEDrniOOIqja8HZ6SpgnWWsZjH12ZnZ1tPitQSpPlGXEU0+t+wtngFIA8G5LnI9KkR5ZZjINOt4dozqWsCqyxiFqgwxAhNFoHGGNawLx+84okSUmiDtGlK9SmptPtk42GAAjnCKKIUZY1DmtFN03Ii6JNcQnhI5umrkmTDmEUUjZOk1+XGmNqqqpABxqtQ8qqRAqFbC4yIaDb6TIYDAgj/6RaFhVpJ2m2Ibn2wccoJanqkiAIqKqKIAjaJ0bnYDg6JYoSdKIRUvh5nqQCA0EYRJSVTy30+l2CC46KMQaHnzOfPq+IkpQoTlDSX+Jx4td/UZVYa7h0+SphGKIC/3uBYDQaEYQe8AGa2lQ4QCt/XqaqOS3eoELvFJZlhbOGJPLnWriSPHfoQJMkCcaCVIo881Favz6u+qj1ZH3+NO3vxC8AWVa/x7D9vKDbf8mnI9cw7BlBEGFuLdKPfGYyfp6xyy6fZTcYj0fsRLvcyDOqqnEsgg3Asre5y/payJ27d3l+EmEXDWLH73ucZ8gsQ8oDTk5W0Woft7TEanPzONaKReuoqprKLICAPfa5fu061jTzsNsw7PqY589ikJ5hd1qGBRh9wrPnMXCFxcWEweATguAEa73TGIVdMpFhqor42df0H9zH7exS1006bSmlMhcYNleiXjzHug8BGHw0oNOF7l4Hk77AuUVgmb3dTVbkhGG3MGaLXWeYbxg2P18xGnuGlRSU8zkmbxhGTRAkvHiREJc+yrO0vMyLOxGVNfzw5g1puopdtHw8/gSAV69e8fXXguVlydraOo/yjLtRzIcffcJmy7C/Yj0PSZ/0yOw5w75qGDZXV9wylqoWHDlLIDTr6wFm22DdEgB/8Zf/jnv3UpKNDv9g/8+ozRad7rdkn84BII6OCWTE6NEjCmtZEdBNEx4XBXuuiWauSJRcZafeIb03YdhN4p/7aKaUml1TY+cL9LHn6Fy1iF0xbDT3r/39FbodzceDzziJjnm6+YS5m/OktonMHhxwbW0ddXhAdWuNIJBU4e8yLPYM29zkKEmQcpUgsBcYtk+3M8PT6gkrYoWfNQzb+6V3bo15xS7LmB2DWBbUWxV37t2njDfPGfbixD/g3ZrDDhb4pdKEH4UcHr8DoDvjGba0AkeH5wzbP5AsLvg1ulDdgmtXOXz0G8+wuXmc3WY3ahzoXYOzjvWNdZIkYcGCWFvjYG/3nGG/uMoCtyjySd70j9uP4mg552ohxP8I/D+AAv4P59zmj7GvqU1talP7U9qUX1Ob2tT+lPajabScc/8G+Dd/m89aa+h0uxRl/p54bzweEwQhaZT4yI0QEEqGgwEAQaCx1oeLvQjcEMdRmzeOGn3POBsT6ohQB5RFQVkVbZrKOYsREomPBGilSZO0jQiNx2OEktTWoLUmLzICHfgIUxO6DwJNbS1O+giRtT61Ekbn6aM4CAkDzelggBQCrQVFkTMz46NzdV0T2IA48vn5Ii/ROmhTqVJK0jSlI3ykSErBOBtz7YNrAIxGGWVV0Ot2KYoC60wjbj0Pb9pGc1RVJd1O32uagqAdizwb4SyknR5VVXgtVaMpmqR6pBSEYYgFgjBASUlxIQqUZWPC0Ed+QBBHMVprBsNTJjqKT68vUJYFZZGhgoBAKISDsNFwqSBgNDzj9PQNRZnx6fVb1LWhLLKJHJxLl67grKUscz/mWKIobqOIWTZiMDxj5tJlwjCmLDLKqiIKY4LgfNlPInHj8YjRaICUkqiZg7rKCMOQ2lQUZYZWmrdv3xBFEVeueA33aDwkSH1KezQakiQJYRS0wkkhJWdnZ8zM9HHWIdV50YZuomLOweXoA3BeVuWs9enf5onTGINRholAXgrVpJ1VuzYGg1PKbIwOk1ZronXEJH9UW8v3335LGAacnZ1y6fIHhGGMaZ5aHY4oijh9d+rPTQiCIICqbs8ljiIGg1PqoiDtdAm0pipqXr/+BoBud4Yk6QLOayZNTRhGnL570+5HCg1YkqTDT9n+LvwCz7AH3S5PypylBkDZoiEIrqOPjuhGCR23BCuCvf0DPvnYpwsDoXG72xyUgtWVJU5OTojjiN2GYXeDI5xz1FnNwf4+cRRTz89Tjgtk2TBsd4eFlVWkkOzsbKLX1knjhGcNw/KHD9lcO2fYZvGIDb1B5vJzhq1p6mOLOxDML1bs7OygtcZeZNhRyO1kndOPB2xWW3DkmJ9fYGbGp+S2tmqC44BYfgNS8uTxU9bXN6ibtLF09j2GHZzuEwQB1976iMTo04yyMvTudrlZ3GTHbeOcYHV1Dd9tA6zbQ+sNqEpefv0tK4sCF2wgpU/HLWWWRxOGbT5B6JDV1VUODw9ahp2Ez7gXdrAss3Oyg1pdpXhcUFU+Vba0tEgYhgxHQ/b29rkb3UWvaz7+5CM+ch8B8Pr1O74vC+aKzzgMDpFCsergpGHYi69eMvrkIz46fcPLTsA/vV5RlhVPx49ahv3yl3/G7s4OdZVTVb/GYrkT3SV65uctm7vB4HXJjPqBOIzZLzI2GoZtNAJtgIcThj0cMVoaIOVbomcNw+Ybhm1XFOYztPqSv3j7hjuDO7y+8raZ208I0mMO5IhiNCZJEk6eBQTaR0RXJgxbXMTVFQdKMvd7DAv4oWGYVr6Y6/cYZg2w8h7DFtSCXxtS8utff0mZjVkf3+NJVfDk0UO0juh0vcZvRQi+7/f5ZDDgV2en7F/+gAdh3KbId3cdCwsRX7475cryBywLgRAbVFXdymfiqMNgcEoxYdjREdVNx+u/OGfYvXufM2HYPo7bYcTo+oiF+BYAB7nm8d5DaAof/jb2H00Mf9GEEARhhBCKSXGA1lV7M8nzHKUVYRRjrfM3AMBYS5YVKAVRFJLEaavnAtBSU5kaHQTkjUi+rnKk1K3Wp5N2EEpx+vaMMNIoKb2uqXX4LNZUaBUwHA5JktTruKQkCP1x5EWOMf64LD69VVdlezPp9/sEWlLVhm63i2hEiNb69CdAEieEYbfRH9Q+3dhWT4Ivs5EEQdA4B9ZrA5qbYK/X492bijTtorXm9Zvv6fdmMcY2AvlJZZkiSQLCUPPu3TuqumSm51MdUkmuXfuI4XDoF2LabZysoBWh17Uhz4vG0Szp9foopQgnY5FnjZPqvE4L0ejBIrTyEBoOz3y62DpMVRDHCdZYanNetRZGCZ1uTU/NgpBEkSbLx/Q6aTO3yiurHURx7CvxsMhwojkxSKk4e/eWbq+P1gFRGFHXNWXZVB8lMVIK6tqSNpqyifMCEEdNtVwBgY4oy5yZmVmCIKSuTbONhLquiZOIMFI+xag0zjW6lNowMzODsTVK+6KOyfotikmFTFPooCRl2Ti4Srf6B2MMVVUiha+eDIIQa7Pfq1w0VcXM5WvMzM4yeHdKbUqs8+M1Hg1RSjIej/jg2kdo7R9IJnpH6wxxnNDp9HDOoZXyzpGjXYdCShxgcRR5TrfbJdABcafnz8LUGFOhg4AkTBiNhggpmb10BdtUDpWFr0objgb8fbJCCI7DZ8SiRksvMG8Z5hw38hts6y1uH95FsMxx4Bll7A5ZdrNl2P179wmCgDtPGoatNgzbesqNmzdI4oStcow80L7aGeikD+h2Dzl9+xFrSqHlAbJaZacRoRtrWSznORLHDIe/8QxbEaj8AsOe5BjpCIJj7MECIKirksOGYbrfZ0OvsllvY1+u0OEedPb49ttvCKObzfm+eI9ht27NN9II7ySxt8ZeJLkdBIyvj7m+N0Ipzd6EYd/0eHd1njR9x9e6Q/mXBf2f/YLQ7GB3moeKVYkQmntJQHg3ahg2YKbnnQKpxlx7d8bwq5eeYfe7SOmdrAnDbskJwx5z/foc3+zvoVRNGDZs0Yfs7grmb1Xcu/c5AsHTpzmICK1O/DYW5jk4OMRYx1x1s2HYLrcWfEqP/X22nr3g6/GAf7i2BqJDFB1gnKPXuQ/A0YEiCDZYXqo4PDpi2S3hsByEXgv06fMBcm6es3dvKXt91tc3iKKIxbqmLP0DuGfYPnW9RJocIzqCNbUGG37MD2TDMAWB/pqyXGJmZpdvgu+Q9VqzjT1u3Vpkd3evZdj6WtIybLs2rErPsEN9iDNLBBsNw548aa6AJVbEgXfCypuIFcf+/pFX4+MZtrlZIsUBh2HA7dt3fo9hKyuCh19WdLo9rv2T/4LBX39JbUoWl/x4DcYjlDE8nDDs6Bm7Ur7HMK3v8aCzSeQch4eKBbsL8wstw/YPDjg9fdsw7Abd7kuCrwPu/uMJw261DLt37945w76/wsmCd6xsUbDiIDCjP4SD37OfhKMlpeT09C297kyb0+0kXWTqb3xC4B2MosDU/qkMwFUV3U6HINAI5yjzEiUkcSPAq2tfUquVAikxpiaKUvyN7bwFRFmUhKHyT3DWMRwOm4gMzPb7RGGHqq5JkoQ0ihllQ5I0oWicpJn+DEpp8nxMGMYUZUEnvdTqiUajMVoJpFLUtaGqKrrdLlIKlJyI4Yu2BYFzjiiMvPar458o87yiKgtGwzPiOKEoKpSy7VhUVUl/drZxJEqSOKXb7cGF0vrJmh4OhxhrCcOQ2dlZwmYbWivOBgOsq+l1eyRxinVwevaWuNHhdNMutTEgJS531GWFkOqCgyKQQjbOhm0r96yzTQk6mKLGaYHFi9TLMgcnqRq9WhAEjfg/9jqAKifu9pnpz7ai6izLSLtd8vyUNE1xzkcVnPJjHkcJgQ7opB2CIEAp5aOGga8gBXj7Lkc3+zK29mtP0pYI10WODEP63T6iaclQmxIhHUJONEYSJTXWWYbDMUGg6fdmW+1dWWXEcUJdlYzGQ7rdPtLJNlI5mbskSTHGkGVjOp0eVbP+oKla1QECydnZKUp5hzsKe83ayOl2+97JVgFFURJGIUrr9/RoQawJogitI8bZgChKiJp5reqcutGOCeF8VFYFjEejdsxVENLt9qmqinw8oiwzAh1TF/5YlQQdhL6QQRjiNOWH198jgX7jzEdR3FQG//16+5dMUk5PP6DX/Y4D4fUxvPBaT5V0WVlJ6R532Sq2MbcW0PsNw8QKnz8QHB9rTo52Wbi17Bl25wSAul7k4ECg1Rph4DCm5k6UshfstmO4vCwpn9Sc1IesBwF2zzEc/4Y3FxjW7/YJgqBl2M72NusbG+cM++I71KHmcQ46jNkoN/g6fcnior9RPn78mN+oEatr89T1IzarebrdZeT+/jnD5gvUoWZpaYmtrS2ehc9YdkvnDBN7VCW8HRbEn92jmJtHHR6yuO7F9MYY7HFIffky5dMxSXyfz19+wx6zcNkPqXgF8A3D4ZDVNUkY3mZ2NiU88s6JvnmTT4afsOO26HV73Es9wz786IOWYS+il9wyC+wdHJDnx2ysryOk4viomTdWkOIAfahxG5bdXdD6mMWlRQ4PG+djawupA3YQCKmgfAxLq4jHvspuYyNgadexHcbEcdowbJ2ff1G115Pcz/iq+5LHj99w//59rDPs7GwjG5Y+jxLMV1/BpSs82NhAKcVWvYU6Vi3D6oUFdLCCcxULi7fY39nHrG9Tlt75PX3yGBmGfNHts49ArMTcMmscHh4g5E6zflbZ2z1ASsknn4wJjjX7ewcsNA9Hczevs/f8BTfznA+uf8LLbk3dMGyviZrOV08uMOwhHdFjfn6evT3POaXW0PoYwQZnZ1/yV3/152xsbPwOw77g6sc7nByfMH9zjp3fY9gBQbzK59EzEv0JDz/7mDtR0laob249bhi2gRD7WGs5UgFn5WPmm/EYDk9aht24XpGknxHo5xRPGoatOo6OQ24tvM+w03dv6O950X3Ec3bd+210/pj9JBwtHP4mWtXtwVdlSa/b9a1E4oQgiLDOMa5GqEacK3RAnPjUFE3bAr+NycRUBCokbATIUukmqlWgg/PIhTEVxjmojS+9V4oP+lcBUEqSj3McjjRNycdjhoMzev1+m5aTUjIaDSmrgpl+RKg0b9+9Jok77Qm+ezfgg2sfIKW/4ed5RhCGlM1Nqqxyer3ZprWEJs8Lut0U2QgB01RTVTVFkflUa9p9r1XBJOpRlpYg8NHBqvLi98lnyqpoe47VVUW/3wOkd5zwgvxLfUVVl/R6PcqypKxqjE0JmqfBKAnRxgtrZ2dmKYrcV1W2/c8kQRCimsij7/8z9k5KI7rv9fpkeU6kA159/x1SO2b6V9pIj9aauqrQ2ovRldRUlSEMQ6omLVYZQzYe+1JoobC25vTsrE37RZFPi4UeiN/mAAAgAElEQVRB3LQHqZFSUJR5G+62TduPJEmxzpHlGcrYVvQo4oQ8z5piBoWUklBGPgzepFzyvECgENKnSYWA73/41pcY451GYwxJklIb48emrTT1c9/p+LH2qce0iazJdh3HcUKR5wyGA3q9Hnk+pq5rwqApA0dgjV+7eZ5RVjXj4SkCwZVrXmicJgnjbEQcpRhToaTyFZmmbM+j1+tjjcU6i2p6d3W6PaT06e3RcNRU8SqiOKKqaoJQgPCwPT09o9PpEsVRcw0XxGGEuHCuZVUQRLEvQfv7ZDnM9F8xXxnEyjnDvnnpGRZHCXfvdBjnjvHIcthUHQq9SK8b8/kDDe7zCwzzzocQFYE+IQwcx0eeYSsrKywuLqCDSUHEPtsNw+racCAlN9fW+Ecdz58Jw0xdk6YpN8bX+XLwV5i64uDAOxf3HzxgNBqTVU/4+RcSU2nePnpNWd4AYHl5id/8+lco9Y+QMkTU+9zIVzk2NU+LpwDMVTf4xrzCGIdaWyfPC3T3CHngr+v0/jrB5hauyLA723SCmGptjedNdZsxBrs4x1xuOQ6esbJyi81nNQsL5kIV703Mds2u3KferOg/8AzbakT9a2HEpS8U/a0+vV6PTlpSVrcwdsxxw7Dei5DnC89ZW13lOAg4ahgmFhuGlZLg9m3CnV2OT54Rx4IsW2Bvd5elJR+tfPHihWfY+oRh15g5FC3Djo40NRXr6+tsb28BK2xsGE5OTvh09LE/lwXDZ8F19sYjEIdYe4vTszPu3LkDeIZtb28SBndRSrG9vYUUgqLK0esNw8o9qsKSvEg5dI6irCiKc4b1Zi5x48Zn1M8ijFDIA8fJcsTy0iq7e/5FB78Z/hoxUojVFWKRs6/g0x++Zadh2NLxMQvLguOjlI+fvWDj/gMODwVzc7C0tNQea1mWfDIa8uJFzdq+QC1ItPYp3bt371E8vsWvh39Br/cz8nzMo0eP+PkXv2jWcMMwIbhxI6MoC05PryHYx+Ejs18lCdezmufPQsSKZ9ihkrgLDAvCCGt2sM6xvCIJtGKz7nFZeolNFHfY23cNw4qGYSuw4tvcfPnlOzqdlyh5B/agqgueF8+4c/sOUk4YNuD4WQzRhL9/3H4SjlZtauqqbnRW/oLpNpBwzlDVFaNsRF1VpEnallXmuX8KT+OYvChabdSkyq6qi6YJoG8cGSUdtFJEYUxZ+0E7G5xS5gWzl656fVjTtM/U/kZaFj6C5pxjeHYGQvDRR5/4vkmTnjNVTRJFPoogNSgfDZikl4JQMzM746vNwoAkiSjKkqoq6fS6AMzoGa/hkbJJL2nCMKBoqjpwvhVCmnY5O31LJkdc+/BjssyHL+va98/q9bo+J+2s7/UlfCUGQBj6lKnWiiDQDAYDoiim8ZEIA4kTDidk09DNOwqX4sutY1EUBVqFJJGveJRKNhD0Y95Nu749Q11RW9ukf73z9e7UawKEgCCMCLTm6tUrOASzs5eac6CJTnn9mLUOZw2j8Yg0SVqdRZ4PkNI3q3XWNz+9cvlqG40qyxylvNPoe6s6pFBNA1G/fnQQEgSOqvL9iZRSxHHkGz7i4aGkoigKktg7QFprpFScnp01n0nodnpUtaU2FVr6nmyTiJZv1uodjTRN2/UdhlEbjTSmJgojtA4YDN/5NCKqXedvX3/PzOwlPvjgA4bDQXsck/L+QIc4XHsNGFPR619CSslZM+ZppwcOnp/soIOADz/2T3h5k2ZXSvp+S1qjtWQ0GuNCEMJdaBgokQqwjrIoSRqdlmnm5PLVqxR5TlVW6MS3ipBSoVXQzouUkrIqCeVPAj1/Mqt1TT1/C+d220q+bucBLAvcznbDsKtsbX7H/Xsp9+/5PkiPHz+mrgRp/LO/kWGbW08ahi1jzA537j3A7liitYsMu8yHHxS8unQV3C7LB45KHmC2mirYBYM+0iil+OTsjHrF8J+9/IT8QLMmffrIVDXJnYjuXs8z7HDnPYYdh5qZ2Z+zubnpGWYi3NwuVSVahn2gP+TNm3d8/fULQmMInOMkDLl5q2FYVbG2pqg2u/zq9C2rcsS17m3m5rwzV9c17MDXnZesKUWlJHNlibUXGbaHEJYNraFh2LNnz1lc8A6QMTVufxcnJJ/lN7AWgkBxKb7Mt9vesbi5cAvtQnSkWXWOQklO4phl/JwcfnXEL5Sm7n5OYHcoyzmUKgmCmMdP/A353t176DDi+OiIf/jpx+zuCWYvf8+tW/cAz7Dy6ROCKObOnfvs7mzz8OF10qTkSJ8A8En1MVLCzbmcslhEyl3+7PJVysD/vixLlpfXEKJka2vPM2xlDZM/RuLZsB7cRgSOer5mc2uLtbU1nscxxWN/nHeiGCMPKW4uwPOGYceaY3PIZ59dB+BZmND9ZY/52lKbO9y967n57d556tltwXVXEt2/z86OZVWC+gMMOzgUZCuCg6pGWa/Bevv6e74Lvm8YVrGyIlBq43cYtsuNmxW1WWTbVPS+uMSq/AecnfpK8ludHk93c159u4P+WvFP/vObPAPyJz6KeM4whdarjEYP2W0Ytr3tqwqLvPS9/OwS5ZOS5EGX4yNNnk8Y9oab+bJnmJgwTHJ8HDE3N2HYKnPz8F4X5j9iPwnaaR0w0+9zdnZGkjalwE0qqK4rqrpqOs9agjBom8JNbppVVTMcNu0StOH12x8AKKuKa1euNQLnGISgriqElNgGZEkU0+v0GyG2YDQcIaQXDwOMRyNmZvpNykbT6/XaRqptGwnty9m//e47VCqpjSWOU0ZNq4FOJ/WprjRFKkFZ+oiUT4v6yRqPxz6FZQxKqSZCoVohsrGGNA3J8zFxkqKU4uxsQNqE5f14+fYLdV0SRzHwvmAxz/1CCUMfVZukKicRLR1EWGcZjcb0e12cs4Q6RCmNao7TSJ/Df/P6DXEU0e11MObcQa7qiqoq6HV6VNbggDTtoJQkbRpf5nmGlIoiz+n3ZnHAaDA8j2iFAXEcE2ivQXv77g1xEvnmq82a6XY6SCVx1pBlTXrOGOyFtgGT5pnGWKq6IAx9M7/h4KwZh5gkSdsO1iCIgpC6ib58//1L+jOXkMJfrLWpKcbjxrnqN2MWkOVZE+Uy1NI7npO1MWmnoZRmPB4TxwllWeJc3kakkqSDUpqqqoiiBGvrpvmjh9Ds7CzOQpaPqaqKK1eucnb2rt1HEITgfEuUmZkZqqBEyRClJI7zeQnDkA+ufUqWj1HKFzm0BQjKRw+tMZydjkg7XuuX5aO2uEQHkrIo6HX7OCHAGmxVt6nnt2/fobXEYhiNDEpphqOM3kzY6Al9rySkYPDu7R/CwX+SpgPNTL/P4a8Eyb0Jww5wdoG6rvjtw9+wvLKCc5bjk2Nu3/ZRi42N8Jxhv/kNJ2GE1qu8fvvnwIRh/xgpD7hz5x95hqlNhFxlZ3ui4XuO1rdJBiFfkfDp/KcIsXfOsN96hn10dopVml6a4paWSKRkc7Nh2Inm3r3ER762NtkylvjufbZ++xsAZmZmyIxn2OraCo8ePeLrr7r87HPF/r5nw5PxE8+whYWGYdvIrxQCr58ydps07ZIbz7AXSvH8VwPuP7jAMAFLzpHfmvOFQck9al2jtY+85flNMHueYbduoYoC55baG7YOInacYzQaY3/mcMYS6hMODzW31yfa3oij4yOuXrnK8+gZnW86qAWHsD41NH+rInM36X39jDs2JF8+IdAbqMPX7DQMe5GkrErF/M054iSh39tjNBhjG8dUh8fEcczxs2eAoKxK4iRibX2N/T2vn+p+/TVybRVn7zUMg3rBYLf8vO0ZWF7eQal1FhYW2dx6Qmi2KJ4WDAvPsIe3f8u95D5h+Iw7t0NAEx2fUK/6Mf/+3Wv6u99zwB5JfI/a1Ny8PuZZtEi3GbPk+Jhsbo7idxi2vOy3UVUlu7u7rCnNw4cPzxn20BIGd5rx6LC25hl29coLvn91i1+sQJ34fUSDWd5FA7L8OvPzQ77/3jNsZWXCsBNwyxT5kJmZlDQoWZMhSh3g8A5hVVeEt0M+sP+ULB9zeCgJw4PfY9jOdsGNz/78nGGP/yaGpbwQAnYMUVATah9B/uDtO6y22C3DSHqGjUc36M0IDhuGbYQnIFfeu9f8MftJOFreOaiJoqgVCNe1IYpCr62xFmsdaZxQVTVnZ75KpSxLwihmNB5zefaKj1zVNZ3EP2FduZyA869K8N6ub3h5MZ1WFH7fRelvRLWrwZy/tiaOIpyzdLs9r+Eyhk6vR14UbYWbwN8Ur165Qln6PkUI16Ynx9mYNE6appk1UkiEFIzHo1b8r7Qm0CFnZ2dIJUg73eZG6w9EKR9ZCYKQNA2b9ML5a086nQ5ZXpLlOZPXn0RBgGgaYULzShABg8HAOzJBiLXnYvnRyKc0u70eUgniuNM4b5Y3b14D0Ov3EEbS6/cYDYfITDIYDJmZ8RocISRlVTDOc6QUCGsQTpLnZXtBhGFEEsVEYYhpXuGSxPF5TxZ8ny/nvHORJKl3XsoS1+jeup0e42xIGEQkUYeyLlFSEzX7yItx02xWeB2K801ru50ub5qIVRzHJKnXDEklkULy5s2bdt6uXPnQf1dKLz4VjjCIcdZSNE5OXvjGr+PxgCTtgLNN1C9o9pE20UCHVnHbNb42RbvWv/nma2YvXabfn8E5ePv2h8YJ9DfsLCvaSlfZVLb2+32vDcEL7qVQJKl/BUVZlXQ6IVEYtdWzxhpevfqOmZlZEiFxVpBnJbOzPi14dnZKXuTEcUwUJ37NCP/qo4nDNx5n9Ho9siIniZKm4EB4pwu4fPUy2WjYpDBzwjAkCgPq5o0LAIHWBGGMmv3bPw3+p2Auy6m3tojuRBSFjxbW9TZRtMva2hr1zg47O7stw/78z/8/AObKkpMoZjT+t/yDX/wZ6w3D8q2LDDvGOZ9O3tnZoRaSRWOIY59yK4oN31F+bokwLMmLLTCC3SZSvfI7DNvZ3qbT+xk3bhZtn6z95XOGqbJEWgP7u+cM++w66fOE1dXA65OEZGV1hYcPH7UMW1tfbxmmleDF111qU/tO+HiGPXlSsLAR8rPgNptVjdjfQzZp0k6nQxY8JbsxD1i2tmrubATs72pWm5uczA4QSjL4+GNi5wiOT1hmkWLHr9Hfupo8f3vOsOdfY61/4HjdMmwOYyy9fo9yOIfMnvPx60/Y+a5pTIZkbq7iYZ6zKlcQtkI4Q37jBpycAJ5h3zx7ztz8HMZa7ty+zcHBAc+e+ZcdLC2vsMMOysFnN65zo8iJ786wWT5FCj+mLzs9xruOYD1CRR3KrW9ZW9VE9333+fDJQ168WGdlRVDkj1heEgR2GfFA8Jd/8e8BiJ/HJA9inhSGZbXKgZAMr15FNxGc12FE95Zh8UBy3DDs5DgGdnjSRJmdXSBEMh4PePHV1+AsYmWF9YZhz59/1TwYOOK9AxbtAnn5iNoUPCl+BcDwmwFv317miy9+ztLSAm/+8t8zHN7lRVOZZ7KCQC/iXNYwbJMv+muIGe9Ab28JxLKmTFNelAVzVYnonBCdJLibTWrZLvD61XfMbMySbEmc3edGBq8ahn300SnZo0csxjEivsfB4QlB8LsM+4yf/axHVeU8P3mBcwusrp4zzNnLPPqtZ9iNGznhi5AoPKaeW2NNXGRYB63+9u7TT8LREtAOxqSSJk1DBoN3RFGCqX2llhQK6wyqqV5LkhBw9Lo97yRVNUmaEjYRGmMtxtbEUUxlavIs91VScdS+vmQ8Hvn0RhAyzsZN1VhApymfldKX1Jdl5SvbJs1MHaRNBdzZ2Rmu9u+nOz09I04i9Hvv9BK+itFUXigsFXmWMx5n7c1UYLDKMjs7S1Hm/tUygW5FjwJBkiYYa9CBIgzDprpy8lTrHa8kTgi0r9DzovwOdeOcRFGEwxGGEa+++4ZOJyUIwzafb63vLt7pdiibKs2qLgh0SK/vIzhKy7bbfn9mBmNqOt2khe2kqap1ljIvMU2TVNU0HAUPdN1o1aRSTN6xNhHUO+fQzWtqVNrxP3cWFYZtNahSmk76Aadnb9FKImXo3zXYbGM4PEWrkCiMMbVv5On/KK5fv9kuvDwfEwahf51P7fV9k4hpXVcE2ndqF1JQFhm5zeh2e4RNukxr5d+TJhWj4RlBENLpdNv0ZJZlXvPW7WKsYTgY0+2mGKNbIXoYxCB8VDOKIqIoJQzP224IJMPRiF6vg9Y+MmZM0H7fWstoNGh0jT26nRmss3z/w3c+gtR8ptfrE4UhKknJi5Ikjhk314Gxln6vz3BwRhCGuOZdZGVZtu/6StOUPBszGmcI56irAhUEiAlwrNeGVFXB7Ows1jn/cOJo30GplMTZunW6/76YwFfE1eUthPQ3uTS9x8eDd9jIegH88TGrKwonFtpXb+3t7aEahp2chNya9wx78OBzwM/L9vYWd+/cpTI1o/F1NhqGLSzMA95JPpDzvqo0u44OjtCHAT/vX2TYCk/LTZaXlhBbW+cMe+A/M392RlFbbs7N8ddf/ur3GLYiBNGSw5iK2lSsrq6RZ4+5fv2cYdYYdg530Epzc+4GVVWyvqHJc58a3N/bJ0kT9vYN9+4pHoQhxdoqTFJU+MRF8vwFgV5nRXiGhUGHPetTgzbaweFY+WaGVzPf0ClzgnCP5J6v9ot3donjSzz4/MEFht0EfUKv/wUAh0cH1NUizjm+mJlh+6XyDPMvQPAMOz5hUUjyGxmmqNne3mZtfaMViNdVxYumuvJAHbLiVlhdXW2jzM45Qq1ZW13DOMdhp8uylNwNb2PveIYdHh7RSd9yuv8Bel0iwxB9BHItbPexviaJwudsb4WsrKw0DDvk+n/5z9qFt5mPuR3c5re//Y1nGJKwyQzdqivEUcSBFgh50DDMvM+w9W7DsEM+/aQkCG7z9VHAgTzPhIyzjG9evsSJJYYfj3j5MmHBaPoXGLYsls8Zduf+H2TYN99osuyIx+Yx0fYFhg2+pCrn6HV7vOzMYHe/4dPhdwRn/jh37BN61hK9vYbqfUVeWKL4LuPsPMXZ7/UZfnxG0Eg2fpdh9+9fahl2s/iMen5Alp8zbG/nnGGvXs2yGDp6+nPsCwgWLzJs6+8khv/7VfoztalNbWpTm9rUpvYTsp9ERIvmpbzGWk4HPi3Y63TPXyDdNEc7Lc68RqupHjHG0Ol0mlfL1CRJymh0xmh8rsFRyr9/riqbyFZVcXr6rvVwkzThu2+/JQgjLl25ilYBpq4ZD72+SiqBUAHOWnq9nvdinUVJwatX/hEoCEPOBmeAQ0pNWVVY6+h1fRTINqJwrQMvlG0arF6+fLlNl9WmpBf1KYqyed/eiGxccumyf1ddWZbUdcV4NBFq+5cZ//DDGwA6Hd/3xGkaXZf0r2Oo6vadi1IpksS/U3D20mX/mhtxXirsnPfmizxv0rmGqizJxlmrncNK4jiirHLfz8uB0qIVO1d5QVXlXL58DRklRP3QV/dVptUOOuc4HZyRpmkr/M/zvE2l6SBAiaatgdKUZdWIsuu2NLosa/ozswTaa5FC5aNoE51X8vH1JvWYMzNzCdf8bqKFA3jz+ns6nZQqz70IPIjodlImzV2UnLTjKJFSkmW+6u5ib7Iqz9A6ppMmOBejm2ayVX3eniFNEi9wl5pLly9jqgorbNsLR6mAKAopytxHgQJNXdet7s23cggYjQYEQdRUgJ7PWxzFpGkH2enjgCwb+orBTo+8aPq0JYnvfVZV/p2KUcC703d00m6znmIvOJYSpX0xg9aq7WPnr6cQIRRxFKP0uY5uIqg3QlBWNUoqzs7OCCKve6yKohXNZtmIKIr/f/beJEayNE3Xev4zn2Nmbj5ERGbG4OHz7DFmZFZ1w21ohsuODUIs2CKxYQUrVizYICEQW5ZICOmukEBsEKLrqrq6qjJj9MncfI4xMyZ3t+HYmf7zs/h/Ox5R3bc7u3Uvt7pUZ5Op8AhzG4495zvf937vixA/PSfsH8UhBMmzhNm5gu+62sz2fm1A/rsM63ZwvZRjR28dlmVJ7e5dZooCyyoI/Ih+/3seDxl2HLC8vKQZtllwaz0g38r57rszojuaYYOXIVdGfuDc83n34SMrdoQUBU8Mw5ZswZ6doMppgjDk/tdfgypJEsEvf6lHUJph5wwZNpVP48w5RNFL8zxfkGVTHB4eUco5Wq0WZam4fftnnzEs8H3NsOPnzM3NMogl795rToZRxMzMNI8fPeHp4Cnr/jpCCH5lGHa3dhs1L1CHxwh2YGEa7+iYrJznxg19Hu8fpIRhyKF1SPyuz5ztIRbtSn+aZYlh2DN2d/Xm8yDbpIglbaG1UXa5wq3AJROaYenkFHvsMTdllqiSm3TyhPH3Z+yfvMD3PaJ6jf2Dg4ph+e4u+fQ07T2BUrPsuW2KYpabN/XzODw6whYLIHTu4XReUEjJjtwm3/xdhh1j28t4foA/X+Ie6XHu1a/+nHejMEhCHjw4ZHf3B8Mwl8VF/Vx//eEvDcPmLxh2907FsHHrgO1tyVqeYS1ZnJ1fI883GRmZqxjWevYIxwl4pULm5wMc+zXLS4sVw/J8gaOjAxzHYWnJYX9/HEs02BM5mFgj23Z56b/i5t4kLXcXKSVzs7NMTWmGHbkufu7SLzTDVrdX2cMmSfS49tZ6wLasYb36iHp3iRs3e1hTNzk6Ombypv7sb78YMkxybCvW/VXOvjijeKkF9ycnhwziPvPWEgeH2uj3dxm2vV0giwNmioIDP8B9Y7O6slIxzLI/Z1i67jGFYGtjg2LbMGw6w/cDYhX/nVgYHr8XhZb2MSqpRVGl43c91+ijoF4PkLJEljo7SZmNLsfxkKW+EAoEHz68IUlTLl3WmVW+6+I4DnmeVV5KjuuSfBxUY6xhduLo6Bglup3ueF7lGO45HkpYeIEeIcmy5IfXL0mTnJFxHVTp+w5NVQdbIEyT0HNccjMXrtrJlJyfneEHAVeufEWepxe6JTz6/T5pmlCv65lzrVavLBGyLNWO4UpnMSUDvVUXmQLIdQMC36syCksl9aal72Obi1yv19OjPCBJU8IgqMT3AEmSmY1Aj1KWdLtd6o0avhsaYTpkWV7l/cVxzNjoKJYQlfA2atZQpUJYgjzPSJVElqXODTTjEm2CapMkg098wPLqvRBoYbdj2biujee6uJ5LWZakpsUbRoL+YECzMUKWJaTJgCJLKwdy369h2Ta2I0yBcpEdOCzGRkcnCDwPy7LIi4JSKRq1uimaIU4TVKloNsZwHIdara5fU5oijbmq60VIqQ1aXdfV23qIyvG/LBVZnpKl+stZFCWeF1D367z/8M6cgzrRwPcCSlWQZwWe617oY/p9giAgCmvEg5g0TZCyZHxMW5D04z76AmkbSw3wfK2/015qGFuRHKV08HO32yEMw4txbal0IWWc/7Vu8WJTEPS4VpXgulDIHFlISqeg0+tUr7Ue1fSWZhjheC6FLMzSin6MNMu13UHw012V/zEcSinkXMmr6CWjbc2O52uXwTAseB3QqDd486ZEiBcslVpovO9byNYOW2mKQPBV76PWfw4ZFriEYY0838R1tZfSYXSE/PgBKfWGm5wpGck0w847PSwFztoac0+eAHDorGEJC+/WkGEt/vlfvCRNpvn6Z/r512srbD7bAFuwuLBEu93Ge+MyPTMML86Zn4d55vj12a8qhrXbbRYW9FjPw+PaNV9bvtSbtJ894dat2zQa+obz2cYzdra3mVeSqKVIeMaBvVwx7MgNCN54SH+FVdejtPV57vrHvG5oofrc3ByB79Nut0nSlIMg0PmBpT6Pi6JgcVEzbGVljkePHl4wrK7ZMbXqsbm1yYKAOJ7AH32LJdZwDMNeNj1Ua5ePlsNcPoWl9pFzc+zvH37CsCWcw4KkfIrjOCywwlaecWw0XLYQpElGWRiGra7iei53y/tshGZz8c4i/adP+bExwpRSFMmA3sOUnVLr99bX77KfDBn2FXnuIYR+/AuG/ZxbhmGN+ghz84qRWp3vDcOebPRRpaLRGOPwjUNRJkxP/7tsbGwgpb621O99zaxh2NHREdeuXUchK8f/spzn9RufLM04PjoCNWcY9pr3H/T4WhY7BIHPifecRTXPYEprZh1Xa7Dix32CW7cqhj1N9Gf7s2+1mL4fx9xs77Jv2bjuNntiinXfQy3MUTc2JpZ7YBimWHFW6H7VIXRClpfNTVtb0fI8nj9/fsGwqRRasLSk+XNycogqbVwXZmSOmJklTZKKYd2O4t6dGltbqdEGuxRym6WV1YphGw+/x1sFVPC3MuHT4/ei0EIZyHNh6+C4LifPDwj8SK+EZxmlVPiBX73gspQUpntk24JCKsbGLhGYbS6FIk0zLIuqi9Hrdqu7e4C8KGg0mghhE/d6+J6HcPR2IWDiZApcx+HN6xfaGbuE8cuXKh1Ot9NjpNEgKzK6va5OXfdLSuOsa9s23V4Xx3EZaTZxHL1qXZZ2dTeYmC7S2Ng4SZrQ68X68c0NsW3bSAFhGJEkA2zHppAXW4llWWC7EWk8oNvtmBBu7R82fK1hGJqtS3Bsm3jQo15rVNsTjlMjjmNGTPSPbdvkWYHvKNLkwijUC3zyomBi4rLxPrGJAv2ZFLLA810ttjaic9u2CTyPuNAXICFsClUao86QONaxPcOkd6X03W9phPI2QKlIkoSu+UJ4rsdos4lAUBR6uSGWGc2mLj4sW29/ZlnGyEiTQRUuTfWea/2Q1oN5ng+WxfsPH3BNgePYNraruztx3MePXMLIx/Odau1dd51yQCGlYnR0zNxB6dde5HrJA6XNd9MkxY9cikKbwoLWCQ7F+/1+j9HRcQI/qLpRvudVha4lRHUODBMQQBeT9XqDIPAg0N0pHZJuvmJlqV+Ppd3phQDPcyvH9jRLsUwyg2UiN4IgwBIW/bhr3g+H04/vtS7NaHzqUYRnQCjLEqVKLPvCw833fPx6vTLvDdYFzs8AACAASURBVILQhIP/Yflo+b5izfM4bl8wbCV6VTHsTTbC1NQUrZ1d/MBnz0TGqFJS5GXFsO1ZRaNxidoLzbB55g3DFlDzu7Rx6Hf7hLcvGDZdFNQNw65fu470jhFK0bh/H4C7Q4YdOvzizf/DPDBXQuNPL2FZ2mft4fePGGncZ2omo/uoy6STEK3PIUt9Ai0vKx4+eojjrFYMW15eZmtro7pp/ZsYlmXZBcOEjRQLhKEiSZ5hO8ukcvOvM+z6gF8/6bDypY+7ANPWNLvmpvVF+IKZPNdxYrbN9RtXef3qDeW8MV1uXTBsu9jCXrbJnYL1SNEyDIsHj7Esn52dgpWVU8akhSMOOTQMY+eCYTLZgYVlDvYPCD2f6zN6A27Ptii2NMNuhyHx9QHLnkcYaiG7Um0cZ4yyLDk4ONDFqGHY8KKeJAPeNptYCLa3NcOuz2b8rD5k2CvW5RxZlnH8w4/AgLk57cu1uam9yxzbprUoWLNWWVtbp72/z5dnf4Vyl83Pl1l2HYrikC+vX+Pk5REvXp7Q+PouxbbWEs65Pjk5tBWz8/MEQYBtH5Ak+j3f3trA930W5hc5PDzk5mTOy5cuRTHD/XtGZP7ExUqvY9uHdK89ZLT+M56fPCdJ9Xu6vrbG8aEDC5pht29HPHv2lDStm2/QHv1rPebr9/nhhzfw5geyfh8ch72hnlMJhG0zsA5wpcsNcQ3Pc2kZ4f/NqZvMCBux38azljTD8gBrzuLRQ709+803K3z88J7ekGH9DvUo4vjoGIDV1TnNsGWb6XKbdCA4OfaxndcVw65c/oLZxizB32Of5/ej0BKCsixJkoRoaEyXpdTrY0RhYO6QQxzX4fTjaSVWtm1bQ14IzjpnjI1dxjdCbMCItrVQGhRxHFMUOb7vfmK9UNemnEoXIsIIs09P9fp5s9msfJCyLCeMaly+fAnERfFWliWdXo8wCHAdl7zIUb5fbSUmqclWVArPD8jSlHjQpyi0gzvoi1sYhrx//x4/8Pjyyy8oS1mN01zfQ+Q55x3thK7HflZV7CVJghBdbMsmDOvVyEvKouoa2Y42EJWy0FuXqTIX5GG8TsbExGUKmSOEoNFomBGWrLYwPc+DUttQWJZeuRWuS9rTX7jGiL6oZlnGSKN58dwsqNeH3mi6C9iPdaHQaNT1WNB073TnR1+o47iPbdu4rsdgENMw3T7btoj7PYIgxPUcNM0dhPFnSrNUt+0dx4xdC0AQRSGpMYktyxLbcbRQ27LIkgG1Wg3PHcb46I1VndOV8+HDGVeufKUjmGyrei31Wr16z4SwdNdnuCUFnJ++ozEyxunZqfG4qqOKiy5Poz6CQuE6HmEQYju64BnGGlmWRSklvuvpn2FTr40wSHTh2u/3GBkZoywlL1+dcOXyVZrNpl42ML9DFpJ4MMD3PHzPI/A8BmlWmf826iFFkZGkA/Jcb4gGfkBR5FX3KcszonodIfR2qQkarewdhGVR5AWObSOEhUAXX6fvP1bdsXqtVq2H/yEdAsOwyYQ7gfZjyjNFvf6RKAw4OdEMa46NcPrxMmuGYQf2AZ67BmKPK1+esRj9Kb7r0VJ6pLI5nWHt7rO6qi/g1+OYrZmcdXuVx8Z64ZWvNxmXV1YIw5C9XYtlx+I3578B4EHzAWoe8lgzzIlqXP7TSyAu5Bmrnkd+tcdeO+DGikteTKMQFwzb+JRht8jSDZ48fUwxM1V1oj9n2DH/5J/8m5SlZGNDf/Z+4CFyhyedc6LoFqVsYX3CsMnJlBcvHmKrZW7frlMUO+T5LFL2yA+HDJPslUIvOZnN6WvX+jgmhmU7SS4YtidorGuGtUqJWX7EKz0WFuZJ8oyyPDAMW6U/ZJirL6pTWcbzRhNevkbMLyJeHPP69SsAIrXAev2Qx3EECwu8sfeROwULC1qU7/s2RbGNlJIvvpqiF/dxXY+nT59UDIuimmbYrdu4O1uwsAT9AcIYBKfZBgjJ4eEhMzMzbKQbbG/vEEUhN29OAdAqW9h7DrtLLRasJaYmBxzkNe65uoC5YNgCsuwzMTHGlStfsYfCXtbPdW+7hee6FEGOeKkZNj+3gGtrHnur25yfj+HaFleuXGaQ9LCdOmqmxCo/Zdgr3JX7vJDbnB8eG/uYVQBOQolih3V3DenYCA64NPEFh0fa0b/fTwmCb5mbk0Q1n7PTHs1mk/WiYN8wbHZGMkhu4HvHnBx7vPvxHTdu1lg2DDt4/ZaZmYykLA3Djgn8OxRFzq1buvub5RnR6zp7os2iWNJ3HJ/Y3ERRpBl2cIC3uI6gzezcHJ3Ob9kwI9/63buUZUFiJDk/5fi9KLQsIbAtS1sCVFEuCs91AWFCgAU//PgWS1gE5s4jSRI9/nC0H1UhC+J+l9DoToo8NRc/heN4eJ6HKrWrt185Def0+j3GRsfwPc+YoKY43rC7oouKUpVcu3ETpSxjFVFU8RWWsKjXG2RZykijqTe5LAfLHu4a6G2IvMh49+4N9doIju0Q97vYZl3PMt0MIYTJ1cv5NBR6EMek2QDPdZCF9vfwPL/qSAiGxY8NQpFlCa7rcHZ2Wq3w53mmt+hsW28Y+iEiUJUJaKfTNQGcOnYnCkPGxq5o36vh83RsLNum5mm7AUqdKWn7+nnmmTQmncp0fRS2I/S4c5jPFYXITHdVyrKk2z2jVJKa8aaKzwZYqsQ2MT2u6+A6NmPNUVLjcSVNlJHreeRZRmK2Ofu98+qzD6MIP6oRhB5+4JMmKR8/nlZfKt/z8HwfZdzyR5sN4kFSFYCeq31ZpNRbOs3RMRC6SzXMiCtlTpqm5IUeyXU6HcqiGN7EE4URQRBh2S4T45fx/YC8yLAtVUVH9OOe9hCSGZ6nvWiCIGBgbgbCsM4gK/jQfUdjpElptvuGBeNoc4IwDDn9+J7RxhhKSvr9Lr4XIYyxYb2mHfJ7/S55mlCr1VGlRBiX+qLQI9HAD5EyJy8L4sGANO1z+fJX5ispiAc9Op1zHZruup9t9ASBT5allFIQhR6W0IVXFEVVR64sjXlw8NPb7v8YDmGFOmD9WUJye8v86Tyeuwo4uO427fYe45cmGB2V7L/WHa00uUkYtrBXbERnkW25TfZ4QHjHMGxrAyEE28UGK47HsefhlFrr498yBV2+Te9RD0voc7pUijRPWakYtqvHa2qOf/vGv8eu2ueSY1GWbTae6WJ9btGi7r1Blikjb24RD2La7iHr67rAa9Pi6/tfs7Wd8e7dL6jXRlixV/h+4zdsmovYkmHY3p7g7l2fLNsyDDMh23FBmnUqhi3byxx7JxXD9tq7uN6aFl9UDNvl7GycYsYwbPcarnPCkm1DqbBOXiAW73FoGLa87FUM++LLU6Lebd69O/uMYfuOjXVyjFKK+XkfygUOLYd1w7C9qVnmWi3KecWMO0u7vYt9uIdaXiHZ1Kant6MD0kxLoVqtFteufUmrs8P2jv7sp6Zm2N9taYYt5ARHh9xav8W3D775jGHT09O8bO2QZ1Mk/R57+wfVhtrM9E3CaIt1v4ZovGQkGCG1NcN6V3Uoue8ts7YesCu3ObAs1pv3WV5O6JsoIM9dQcptpJzl9esGtvOOTucAmRe4pggqxRJpWjA9oxn2/fff8/aHNxXD7ty+w15Qsm8fsTC+yMnJcyzLwbYU/pBhMzOoXSg3Mqy1JfJ8myC4xaCvGxahVWcg5/mrX/8l979+QKuVc/t2xKNHFwy7fXuc3/z6VywszHJ5/Av61h4nxxHLC7o79/zkiBuTr+n1b3L1K8WrV6/Zbe2wYmt7kKJos7GRsr5+G7mTs1WWLD19+jnD5hd5Yj2i2/mK2OlzvONSyow7d/Ro2vVcNrMU5Cyu62AJjyK3eRlF1KMhw9pIuV45JPyU4/ei0FLoVfp6vV7NnrMsJQj8KrpDltp51vcv3Gh1p0XR78WUhaK0Sy5fvkIc6wIoSVLjxq3X+3VQ81B4b1zIS4EfBFrALvVoqR/3mZjQ7VvPcbQLuNDmgUmcENVq9PvdKpV+bOwSuSx0Fe04yCIzo0F9qhaFxLIUY6MTeK6HEBZpllKvjzLsq/f7fZrNhu4cCUWtFmlN1TC2pj6Cm7ooSmQh6XTO+fLLq3TN+CgrCnq9PuOXxrFti5GRmvG3GiMw69fS6JCqLocscT2d0QjQaES6EyEUo80JQNHr9ZEyN8UuRgg+vNCnWAjtXm9iWCxLa6kC31gWDGJqQUguC3rG3dl2HT6evsNzPRqNCepRRCFLlBi6ppeUUicC5OkAC5uy0Oanwy5OrdbAcTwduVAqnZvq2GTm52VZUGQZmbAAhRdEFLZNGA7F5MYQ1Iy6lNQdzzTNqg5fqUryPNcaNyFwHJdetwsWyMGF/s713AstlOnkDD2ufE8vQPQGA1RZkssMWUjqtQZC6M/edR1qkfYcsoWFLbV1R8PkA5altuSwLZ2p6Tg2spSfjVq73XMEMD7xBb1eBwXU63WyocYvz7GFReTX8DxtudBsBNUSg7B0oHWapjiW4NLEhOkGX648wQaDAb7vMz4+jiq1z1mRZ5UuMTU/z/OCopAIpLmz9KviVnfZ7M+yHv8wDkVRTFO/d8JzV1/AsixlbciwhQXk/j4nxyesr/usmHy/zc20Ylir2MU/8Lj8p/8Gcax1PEmSEt25Q1nusycE8jOG6UJclSl+ELC5tcXK0jJKlTyOH/PziT8BwFtxOP/+e9qihZcHJHFClt2l33/Itav68w98zbDp6YzWi4J+keHZ8jOGFcU2337zLY8fX60Ydu/eNwwZ9rjf50Gzgb8OiHlqtYhHjx4hzWfduPc1q2mComRnW9L98hy341QMm5qZIUtOeS/H2bUt3JG7fNV9RLM5RmfIMG+buXmFdWjRBqScw7VscvO9f9OIWBRL7IldiuYE8AJ1dYlZmXNkGDYrS8qyZUbwKRZtbmZzZIY/uXVELksCL4C9NnF6nbu3QqQs+N4wLFt1+PhxjNz1aLz/wPnlDn86/mfs7ulO5OvXrwiiO5phWwMsNyN+/JhdLhh29+59w7B1yjJB2JqNWaLHk63WFr4XsOZbtPuKteAOyXJGnqccHQ4Ztk07irCEjZpVPHkSc/NmhuPo4mTIsANnnzVxixNnlatfdcFqI9DXyTzPOTo+4nXdZ4EFvnnwDXvtdsWw8fFxmjstejckW+UmXAdZ9Km7DZxPGPZqtE4ht/GPLWxP3wjevz9qXssua2uzyOIBBweHrHne7zBsgYcPv0Og/Qs1wyzu3bvH5taWOc8lB3sW09Ov8LwV6m/ectQIOMr05xosrZE97JKmKYel4E9+/nPDsIOKYU8HFr6/zvh4QaNUeAqKfBPR1jctqXiK7zjkVsF2sYJo5+TT2uzaqxuGvZjBWbIvlvV+wvF7UWjpLLRc3xEaX59avY5l24jCYjBIyPOcsbHxytwU9OadlCUCaI7UjbdUWm1cRLU6YRCQpgPSVGuezrunOI5LLdQXxqzI6PVjwGJ8tEmaJqSDPnHPuM/7PoMkIQhC3r9/R268q/q9Ple/+hLQ3ahc6q3GNE30yKW8iHqxbRcpC/r9HvWoTq/Xp9ftmmBp/XfSLCOOE8bGxjSYSh0sHdb1iZrlevwVhhFJoU08T08/Vnl4tahGLQwYaTRIkgEfPugRaxBofRDoLcxS5QhgMDDBvllZjQeKIkMIRV5IbTBZAkLh+171nnuex8ePH2jU6yRKUagS33cvnL8tB4XirNPBcWxOTz9Ac5z6SIOaGR3qmBGfMIz4+PGUIAj0ZmaugRtFEY4bUCoYbUbUglB7i5US19PvR7/f1/CXkjzt4gjtYzaMRbLQcQz97rn+TMKIWr1JKazKi8sPAlBaK4El6PU61KORixBuy6Y+YsafaWK6NSW+519sWRYZhcw5Pf1ArVYnCiLtt2aeR2FGosKI5U/Pz6nVImxL8PGDMVAcbZIXmRHT940esaQw47UgrFX/lWVBr6czBceMSawuyC2a4+PYwqJeG6EoUvr9XrUIIQSUlDiuTZLEOI5Hgap+rr83EAY+tVCL9pUQZElCL9OaEsuycFzdcVOyJPB9fNevBPWW0MaoytJRVghBva5HN0M9mVJK51AOfrqr8j+OQxvJSisnHeiu6l3DsL3tfQbdTsWwQ1sxWzHsBDkrWEwWOPnhGK/hkaYbnzHsdhixkc6TpnuGYZdxnCNqoR5jTRUrPBo8ASys/T1dMA/6xL2HAMin6wyShPngNg/HO+SvnvHk8SN6vT7/1p/9LsNucfNmwuFhQDE3h2VpMfOy7SLLGfr9Hvfu3OPRo8c86j7k3ta96u/c/PJL4jih+W6M5zM5VmvIMJ1nl7U32e53uR1GLBKThdP4fsCVKzqHznWPqIWzTDUaPEsGfPirU7prFreCExZ29Tl24AV4Xo5YWiB9+gwhtlnIljg50QybmZlmW2yTb0uWl5ag3EWJXRzfoixmADj2jrn08RqN+rlh2By+71QMi/ZvU4t2Oet3cBKb09O/ov/kZ9S//pRhcxwePqQWRVy6cYPnT57zpHzC1PSQYXdwHJ/NzTbfPFilFlxnY/MZbilZXdPvx5Bh52c7mmFPNcMWFybMGTXHwdEJ/a++4OOvnvHb8JfcvfeAUljMzWuGHR1phk1O3oAipfdFh/39H1i09VhQLNnUnQfcRi8jqGwOeaXE95bZNKOwmzczbgyuk/wwoFvr8DJ4ydLiEsoUUYUsSPMU0Va4y6tcPj+nVrN5vb/H2YTOQ3wz2kQVm7iuy7Vr18iyjNbOU/qPdcE3f3uR7e1tvaxj2fSufklN1fn2gWbYo0ePmM0taj8bx97b53VZMjOzTr/fozQZlIsCWjslh0c2WfqElRWPmQOFWLlg2GBRm4x/803AdlFi7QlmpyfpGZZOWwn2ssPTZ1u0ZMmt9XVo38deHjLsDsvlDtvbhmHAvXqDolhho9BdQqV2OTm5B/z0rvwffbT+ePzx+OPxx+OPxx+PPx5/PP4VHb8XHa2yLLEsgWXZ1Ou6RVzdiSMYMboUIfRd43AdOE0T4jhhdHTUtNNT07kywknb0UL17hmNxghFnuPaNsISpNnwzqOOJWyCMMCxdf5eszlWCe7LEgI/BAQjjVHKWkk8iPEDn35fd9/yoqDeaJDJshL2O45TCe7jOKbZHEEIwSBNcDyPMAwJw6iKSLl+7Sr9fkya5vieR6dzShBGvPuoV2wdx8eybAaDBNt2CIzg+NOIHiklb9++xfd9Ji5dwkJro4qh51OeIoTFYBBr3Yyrsw6HLvmeF5jn3Wd0VG/06TFQXvnU2LbD6GgT2xKM1GuUpWSQpHS7+rU2G3Uj0rewLMGVK18S92Mj6jd5ibIgTbQlQxjqzMJarYaUQ4dpRZ5lZGmG67hIYJDmlKqoNphKpRCiRCZdZP9H5OAUZEFuQrYdJyD6YgqncZkwGCeXudbO2Rahp+9KXdslzzLifp+o3mB84gppkpIbLVlRFIS+h7Bs8jwnGcTUaw0sS1R3v7atw6iHzvZhGNLtnFfWHv24h+v5hEENhSAI9O9UUR3LjCjjXp9avaG9xoBmc5RBPKi2DktVoERJkvQZJAlpqr2Cht4vru/Rjbu8ffsj167dwHE9HMfFEqoKHhZCVPmhjqPjeVCKwmz/ea6rt2VNxI9l2bi2Qy2KKh82vbFYkpLhhz4ofbdrGZ2XZetuZnNkhL5ZPIn7PYIwqAT1vX6XQTLQzuR/QIdm2B5L1u1qxHDgONBus7iwSHuvrRm2uEiebfIiMrEiswXX40nevH1DcCvQDBt8wjDLodVq0bn0o2bYVo47fYCwbG5m2nE9jF4yUm9w6/YtnIMDSBIefMqwOXi+HbLAHl83FmmNXyEexKzfumDY1nbBvfsNNmWbci/HEgLHWeHx408Y9vyExUXBIBWsrK3x+PFDXoQvUUqfx36/x7u3b3Hd1/gHHp3uZYJwkXeXNMNWnOtAm0GpGfa8/RwhloBhRI/P7KzPL3/5S3x/nYk/uYTFZY5buxRCf59m85Ryx+Lp4AlRdIfV1SHDtJWFELdYcRy+S/uc+Ecssm4YtsWkYdirg5K3C016VgdVrzFXvjAMuwFANl1ne2+a61aKtWRxxVpm6/ET7mzcYYF5AHZ2tkmTSdJklxs3JllatgiDTxnmkW9qhimlXe9vpDnl/AybmxuAtjqZn5thdvIr8r4Fg9/ATsHDw9/q92vlFvLqFI7rMNrUDHvy9AnYFreDuwB6+cow7OXrN6wF69REs/Lo2360ze11D2EtMz09zbOnD9nfv8/67QuGHRwU2O4Bs9EsBwcHjH79DUXnnK1trUfrxz1W1zTD9tuC5zdd5rKM+QXB+bn+7K/3+rxaXNa+cVlCszlKENxmO9Uj8Gj3TsWwG5OTDAYDXrx4qScAaIYV17/i7dsnXFu+gW95PJd1LKGw9dPAXhQszkOrJVlZWcP3TmBp/nOGHR6xbwnm5mZYtGyObYeR5qcMO0DKOSws/NBnf8+iKLdZaZvFI8dBzVo8GPmax4dPKFRZMWwoqH/0+CGD5CmC4db33338XhRaCLPxh1W1ZtMsQylFkmrBu8491D4+udkw0YJwF6VKytIi8AM+5bdtipGJ8Ss4rsO7tz+iVIFME6OP0iPLOO7j+z5ZKXFcT8fgGIOzQTIgSVI838exLRxHLyNPjE8Qm0LKsW2yJGGQJoyNjmFZgm6vR5bq59lsNo1pZwGiJApreK7L61cvqRsbiWEhE4UR550zPp6+57LzxYVoWAlj3Alga3PRyKPbMan2rl+FEju2Qyl1Lt4giav3ZJAMcD0f29YGo71+l1pUMwHU4Lq+Ge1ok1HH9vB9nyLOqdUu4jy0f1mJ63rYyqHT6ZMOzCgtDIj7MZcuf0Ehtb/ZSLPJeee0WuN2XY/xiXHyrKBerzOIY6xI8P69Fk5mWYbjejTqDaSUekGhyDk/e0etpkXCjuMQn74k+fia+O1LikEfpSQyG5hTSjHy7pDR6Vs4Xy3hBzX8MCJO+hcaLVnQH8QIRxffP/7wGs8PqhxMV7g6i9GyK3NOXcy+wzNB3fWRER23YWJ03n94r6M/LP1aGyOjWMKqfMIsy6E0Y+RhdIlt2Ti2S1ZkRFENgSCO42qs7PuhyaBsEkU18kKSJDG5beKZhEWzMYKM6gySxBRVJa7jVhobS2hvM23Im9Pvd7VRaqAvxjp+SI8zBnHM+KVLnJ2egiUq/ZmU2k5lbKxJEg90qLdQ1Xp/6GuLltS06S3L0qP4TloZo46P6bFIHPf+JhL8oz0EEIa3EVi8MptpIstQ6LHz4uKiMU90eFKukWemuDhwOL55RKjCC4btXTzusreMWLSQUnHoOry78SPzuWYYdf0X8y2PONZ+SVk+y4q7yejoN6STnzJsQLm+jkOLlRXBw4cwMf7zTxim2Hy2rxn2zbcsDRk2qeOq6o06rdYOz54VLCyWRGGJ567y+tV77t3X54frerTbbe7cvkO39xDXF5yefoH/XH+fDuYFU5sSsQi0P2WYkSW465TlgHU/5NA+Zk6u4FiCJ8l1/W+AOBngeics7wr2sg1OzzJqLy8YpvM9l1hf73NSegjb4sQ/oR/Dck2br1pLFo5zjCwFruvh7jp0Jq6RDvR7kYcB8VmMs/oFMzJjFYFqPuC885sqILtwpxmfOGZ66gGv66+5EUusaJFf/eqXAExlv+Twdxi2XUxz/uEttVRrsFYch/j8hGe//ovPGDY7pRn2w+4G7/9yguSf/kfMz1kcnNRYv32HJ8ljjo614a2UM1y70aNUEmEtaoatf8Kw1pBhbYLAotEYQcoWv/xlF8/ouDTDVnjx/BDX9Rn/8J5umnBzaljIv2Z/b8gwhbXv0M63WV1dJQzNxp9l4xwcMTUzxWFUYxHB9esx+/vDLcwXTE4uEQUhhSzYKiT5mx/+GsN2oiuMJ5PEQqB2n7DquEjDsN2WYm5+kZVVi53tLfIsY3k5rRi2tb3N4uIC1+KYjx8+Mn7pElcun/L27QXDdnYkRb7Jt98+IHkyYN/eRwkbKbXpabgeImRJOpXBtj5X8kFO2tmg9vJzhvH3uFkUfx9B17+qY352Rv0P/91/a8wWh1tQhc4ILEuiKDKieMH5Wbe66BcyJwy1SFFLQgRpmlaOtwDN5ph2vEZfAGyhV/qHG279fl/7t1jaQRYjZh6KiGv1uv53tsBCh0H3en2z5ad/j5QK3/fxAp801RtjWZJgmwu6ZTskycD4F5W4rm+27TrVh5akqdl6jCmVXg64fOUyAyPsH4qJXc8xbukpsiwJ/Mi8UkG326m6f71eT296CchyUwTlGfXaCJ1uhzAIEZYi8H2SastOW2XYrodSkjRNGMQD/CCszqk8z3FdlyzPcWyPUmoHcYzfju1psXaeFaCkdhyPY/qDHra5Sw/DkLLUG5KNRp1ut4dAIM2dyejoKHlR4PlafxD3esiyQKmcrK/1Qr1XT0g/vOH8/SmDOAYEqtS/E8CxLXzXwQ18xmfucGnuG/BC8iJjpK6NZj+efsQNfDzPIUszikLiuR6WY6wbSird39COQAiBJag6orVajbzIkUVJqUrzOQndCgVyWTAyMkKWpvT7A1zPw3VcHMeqrBWGnVrX1YsEShbkRYaw3Oo8TtKEWhQYt3rt61aYAkcb+yqSrKDItbg6LzJknjIxoV3Kz887YEFeSPrdM8ZGL+H5AXG/a85hY9chFbawqTdH6J6eU6vXKg2W4ziVvxlKGxyWUlUO9gJFIUvyojAO1n08s8AyfP+0u7ygyDP+6X/4nzxUSn3NH8Axvzqj/s//7Z9x5B6xaL4s29sFi4uLtFotoihienqKdnvvM4bNzE7zInyB3NEMW1wUpBsprU8Y9uDBt/T7jwFIsyls0eLg8HcZNoNt2SzbNoh9xMLCZwzb2Myw7T2WFgzDHvXZ+5sYdmvdMOw5U8lkxbD9g0MmJ28gpWRvr4W7us5cWfLwFkMPTgAAIABJREFUYYefffsvZtjp2enfwrCbyLL11xj29dcPaJUteo96uCsO7EE2rQu+6Yph3xMGtw3DTnj25IJhC4uL2O6xYdgkTw3DFiuGbeG6Lpt5jmOvUe5ssbLyOcMOD5fJs4KFecnJyXOuXb9Of9DjYF/bEdy+fZuylOzvH3D/fp2H3R6CRWY/Y9g2nn+L9pBhrW3m56fJHmuGPXr1zyqG3bh+Hc2w7c8YdnKkGfaz/+A//oxhP7zWZseXLl/CDXyOvUOyjSlmDMP2P2XY2jE3K4YtIPYE+6JNajqid+/+dYa123sszOlNPM2wH8jSm/T7Tzk6vmDY8rJe/Njb0wxbXf0dhu0fVedxcnOSV58wbNVxKKT2wAr8ddTuLsnUDEWesru7y/SQYT/XDPvuuw4LSwvkheTxw9/y7Td/YhhmtIhy9nOG/ThC97Jh2IFm2KHjEN6JmCtbhmHzf51hOy22DMOuX7+G553g+z6bm58z7D//L/4r2vsHP6na+r3oaEkpyfKMXr/P2Oio+TMNgKKQyCKnVJIoajA+MVq9KaQX3kv6QiEIQ5+zs4svdpIM6HROaTSaOJaNsBwsx60uUlEUGaF3afydPL2SPLSZUArbvjAWLYq8WlsfCnyjKKp8lYbhxWBpdTB6M0tKycSlcdIk0ZtEYaSt/ocCzMimLCVRra7HcTH0ezGnZzqeYmJ8nDCMKHJJlmSMNOr0B0klUlcKhFJ0zj+CZRHVaqRxiut7hM7QF0rp4jTwEUKv5lpY1E1gtCpL0iRBpgMdo+H6uvAUVrV1WBQFg0Fixp5KeydJiecNhYGCvNDjpDSVZL0+Qihcx6VhfLWGgauDZMD5+RlhqJPQh9s4eZ5p/xdZooxpqcwTzt++InmvOwGDHw/J4pRed2A8rLS31lDormQJQtI/7TDY/g63fonRm6vaKsGM5LKiIHLqlFLhuh552geXaqsVpUjiHpbtVqar3W6HvCyxzfuB0M7PQmR6ZGwbM1rzuQRhQDYY4Lku4aVxskzy5s0bfE/H4OhzxsHzdayR5wa4tjZSHY58s0xvmr1+85rAD/F8V8cOmff89OxMC9GVjkcKQh/HcXn7wxvdRTXn6NBo1jOxRkVRVNYeIyMRUhZ4no9lW9hY+Je14e2w21qWJcLW42jP9YzIX9Afpij4PnmeMohjbMelVqvjux4ofREHOD8/JQxDgmB4cf3DOBzpkuUZp/0r7I6+BTTDtoucYipj1pomjnssAPbENxXDcithOp+Gss2OlOzsCFZvr5P/Vo+PPG+NJBnw/fen3L9vGLbvYbmfM2ymeEmbOfYU+P4a6kRRFJphy8uK5WWbzc2CJFugKLbY/x2G3bkTcXRksQBkQvB8T8ANi/a+7prNzcySZhkfLo1Tq9dJnrWIwjv4wTb2gRb/v0RRlrOIxTplucON+AbXrl7/nGEvXlLmklaSMXI/pD9YptjXYnqlYFEpOue/5qq1RHS3xsaTDc2wF7pLeBj3cBwHVfqIxV18Zx27/TnDWqVEpTdI0018164YdmQ8m27cWGQw2GYtjPQ4fWmJQrY+Y9j0TIG1J0h3JF+V11C7LdyZnAcPtJB9d3eXtZUVrMVFvvtui9u372qGPdMjzHx9HaXm2ZUtVKvEznPkbMH5D694dvR/ABcMu/rVDdIsZW+vjb1sMaf0eHJ3Z4/VFUmRd/h///f/lX//P73E25su9os1Zmb0cz3vdImc15Q74K567D56jO8GVWD0wvw8aXwVYbvYttQMyzuk5eS/kGGHBw7+2hpHZnS4vLpCNriB5x4QXhpnZGSWX/ziF/iezfffvdcPYRjWf5LgrWqGtXZ3KZTmz1SWY+23eX36kVvrtzn2j+h+yrDf/lYz7OlTngc+9ZEGl51V3v7wi4phd+7cqRg2NnqpYtjhoWd+PqEZdnyCZVscBB2y05wf3/5IclMX6q5bItI90nLeMGyTvfbnDJvOU67GMfaKix/MceIGmmHr2sX+/Lvf6Amc9dM7Wv/gQksIcQP4X4Av0MqZ/1kp9T8JIf4b4D8DTBY6/7VS6v/6W5+E6xCFoR7Bfdo5sHTRMrR8KKU0vkam+hSKNNGRJ1EY4Xk6fqRpirV+PKDT7RJFdX0RdF1cz2OQDChMl8d1XG1z4DpYlk2e5XS63eoE8H0Py9ZdLsu28VybXqdLvTFS+VOlaYqwbHNBtCiLglqtRi/WnbRer0uz2SQdJJUZpG3bREFQeW35vsf5+Rmu65Mk2tXbdWyaZustjgdIqQCl36e0wMLCMYWaAqwg4LRzhmVZSNdHlhJRFPRN18Ky9PPHtnVcj/EHG263JUkCSpm4IqdalZDyYg1X59TpzUUE1KIIEJUhpUBfYAolcFzdKWrURrS2J7twSy+9gFpUp590OT37gJJUnchmcxQ3COn2zlFliYWg9/FHOs83SD9oWKb9BFkKLMvCtwOU0h2y0qxoS1nQH2gT0TKO6b7Zp/7FTZz6KKW5Y6zVtTlpP+4T+D6WrXUL3Y6+40yzAaFfwxaFLsSKguboqN4KHHaClTIu6x4C/XyKIkcZMVkpS/wgwrIF/bhPnkuuX79Or9dFSv2+h1GojWGlxA5sEDZB4JIYs1rLd4jjHr4fEkYRoC02+j39uQZ+gMAy402bPE05/fiBwA8qo9kkHdDpd6lHdWzbJQod9MKq0c2VkiAIEcJClpI008alvh9UHlie56EQ+rX0+5yfn+L7PqOj49V5Emc54+MTZJleQ09NZNAwszM0ZrsXrvb/+o5/mQyTTsHL8AWRnZFtXtx0WbbFoli5YNjsLDvt1ESewN6e4ubNGDV5A+fFSzzP5fDwsGLYteuC77td7typU7ZKnBWHozCkSG5QTJssTMdlU7Zw3TaWtUyucjoPH+J5emW9KC4Ypk2eA4qsy737X+tuNJphS8ufM+zVq1fMTOvvZKfb4cfmj6wMIvJ8CnvtCPt4yDA9Hop8j/Pz3+KKdSaTSQ4OD/A8l5uGL3EQIq/2abcVK8vLvN7YxpqbY2VZW10o2pT5LU47Z+zvb3Lv7n1m5ySOO8Nj07VYspZ5Eb6Atk3wwkPKNuUizKgpAJ4lCeQ5q67Ltu2A1QauMyslL61hDMtzpqbWtcec2OXVSx9ocHNKX4wFbeTOFoVa/IRhDWS9JN3Um2c38hmePdugFt2h765wevaB3Z12xbAHyTOOgpCsN4m62sJCcPVDk4/PH9F9oS0gbl6bRJZ7FKXFycFz3JVVLMvmUOifz80LHj/NWVxcZHB9l4dv9vmzL/4dntOitasbDKUSnJ2GzBR9Akvw+HcY9v7D288YtrVd4I+OUvuEYe1dzTBheSwuCFx3n6KcZn5BF3wt2WIlcLHsNfpPHpNPP+bP//zPefToIVLqQjyM7jFTFEi5g21/bRgWVQwLfIcncY91w7Dl9jKtssXsjGGYrRn2PAi45SyzlWb85cd/ju8H2EpHPE2mA75//JB6VGfZdtl78YJFawHX1efPTmuHwL+FsB0dzZcNyPMpfP85q4Zhx56HYpF9G9LHjy8Y9o3OopI7O2xlOV+PT5AFGVtbG/omI33Gu/eFea13KGULVf7/Y+9QAP+lUuqREKIBPBRC/N/mZ/+jUuq//6kPVBpPHt8PqvBH3/cQAhxHEJhMvnfv3lOvN6r4jlotwvN8+rEe/8VxTpYlKGXy25TSgt1Ch08Pg6uLPMUdxoZIief5FEVBlhWAolarVaG3UahPFsdxcH0PC4vRMRfLseh19Eliuw5SSRQKpUriQUaS5ZXGZnR0HCFKPN8jME73hSyg6n5BmiQEvken18XzdD6aZbv4ntH61OumgySwhE2Wp9iWS2ZO5KzIaTQajIyMaqBiUboOvX638s3KixQn16Ltbj/FdTze/fgDzTF9obQsi14cM9JoEkURHz68Y6Q5ghAWeaF/jyxKHMcmHSRkRUYtiigyHVkBoAqtV8qljqWJogghIAq1tQRAFIQEfkSJwnNDLl+q0+/1CYx4t1AFvV4Xz+RTnr464Oz4KfnZa4rcFNmWzgJ0Le1nopTS7WpT8Mmy1CJYWWAJQffdC5qnb5DCwTV6jtD3GSSxtiRQeulBt84D8xiSxkgTy9aaKYQejZUXm78kyYCodhGOrVA4rkthzERt2yGXJaJUuJ5HmvawLItarX7RrrZK3r8/ZWLsEmVZUiLp9vsMi6As03ea+mZAkAxyojDgtKM1Ja7jMdKs685flpENUupRXevYjAjU8TxO355SZCmN+iiylMSdHuNmtAiCjx8+UqvXze+xqEV1HNepOnxpqr3tzk8/EgYRYa1BFPhV3JBSMDLSRAitJ4yiECdyCYvw4rUKCynzqnD/13z8y2OYUsyrBfb9fZLyE4bZB3jOIs+fP0dKydi7cVS9QesThr15c8K169eYm5uh1dplamqS3V3d5dnZ2gFZUCwvU1vTDJucnCTPE472DMMWJGsm201mKaBwa3fZE/oxovCOYdgKfuCxT8jomMtx4NH73jBs1aHc3WFWlqhFwfUbBfsHOVfROp7RUYcxMcqxf8xSaJGmSxRymwWxyJ4RlanJWYK2R+fJQ7xVnyXbwbNdWoZh3vtx1PwY9+oCKzpgKs842G2zaRaCpoqcRsNnJB3lfv1r7D2LcnaFR48fYi3pYi4vUqbzmxzMHfBVeVMz7OU/Jx7TuiesfXpP+uzcf0AU3TEMi3i+t195J2qGHZAOJsmKr7Dtc4qs4PhEj7nmCwcvCNiSx8A8i3cihL1A5Hq0HF3wrd5q8MB/QKut8NwXXL60zMvaG24NGWYPGdbGtpe5/OqA98e/Yeu3f8GMKZDL4gjH9XGtV/hhiAprqJ1t8kzDRU6XTE8XPHn6FGtxke67F8Snb7h27QZHJ3qZIvR9bkxeJy+2Ubttbq2HtNoXDHMcjzc//IhlL3L9+t/NsL19B5hnxRUVw5btFbbkLovlNu6ax8bDHt9+Y1Gr3fuMYb99f8rPv12n1WqxsKC48uUFw3rZFDOtFvaqw/7+HpPpJF7okjwxDBvx+KFZx7dtVLbN1GCAF9U5dBziHf1dOVzyuNrtEkyliPo3zLa2+b7zHT/7+Z/qF9Je5tGHX3/GsLtRHWf1VjX5kWlK8PzkM4bdubXO9pBhUxlf+03EniDLpllfe4Hj/EhYfEtzVIeS7+3tVzFmP/X4BxdaSqk3wBvz/10hxA5w7R/4aMYjKqwKD6W011OtVqPb61LKktHRMeNKbVzI85wsywiND5MyZpz1um4j68Bkfaff6/XNZpvE90Yq3clgMDA5iWC7OuPP8fxKV5B+/AiWoDHSIE1TGrUG/TTBKq3KGbbMc5JBBylTZJoSd86QeY7tmI2K2gSjly/j+yGDQYoQWlSuPyz9eoXtmBgdXQgppYOVhXFVdpWjx5hiqJdxwbKJzcU2CHxOP35AygzPDXUGoWN9ZvBKosejUipzwSv58uoNYJh16KCU9uyqRRGjjVGTF5lWjzE6OmryD/XoqCwVju9WHYqiKLFkSeh7WLaNJSykLOjFfTJzsjuO7qb1Bjr+x3H/P/be5DmSLl3z+p1zfAoPjwgNqRwlpeYhJeVY31d1q4puM3rLhiULWDYbFqz5H2AJZmDsYIMZvWiGBXC5fZvi1vjlpHnOVCqVs4YYfHY/LI4rMrOq6K5LFV3V175j9m2+lEIeHuE/P/6+z/s8Do2mpFtVaFzXY8Dx0GjO3r6g/fIZydkJCAt5mUPomNwrIRV5oSmzzGxeq0qSLkvyIidOU1zHJU9i8qiNpwVOpTsxE1dmmjSJY5MH6NqoShulFH33+jTJaDQCsiwjyzNUNWlX9+sUVQvOxP+Z7+ClW3pe5thKVrFECTXPJ4lCtND9QYhup8PAwCBZkRIlIZ7nIxBY1UY9rYjo2DZJFOLXfIJ6QFAZmmZ5SpKlZN0EW9pYtoVtOVWsj3kvSZqYKklptFVhFGFVmZbmWsqp+UaLF2cpllJEcYSH19fWWI5LkqbU6wFxkqKUxPVsyvBzFJU5rz2UkuiypNM+N+79VYs/CJq4rmdain/m9SdlmDYPa6qmvmZYGENdcuPmDbY2t8gGphm9/plhnpextjbGK+8FM2WJmAeZSVqtzwxbVJKj9gUnJwFSvq60KE38mtlIRTsR+7UVkjRjTuyzkWfc9+8zEZpzfvoLw7DlHzRYXV2l8eARvfwxci3/zLD1dcbHrhNvrrL5fyeMXj+nJSb52b6ZkDMMO6PxcoBo4jZC7LAnJFFRUK+U6mIfxidnSNaeo/YVWhmGTVUMe6U1bGuUpWAHLGsJIRVh+9cAWHdXOHv+c4piAmepRrlZINf3DMOqwZHDeItFvcR0MWtiVIoF2t0x2t1XANStOtqHdH2N+jffGobtaJL0a4a9Osopp94ymU1yduUcS9kkq4Zha3nJQlFW3Ywaxy8l09M5j58+6TNM7wgKq6ATPeGOtYRlOzz6wSMePzYbsRXrLt86iu2dbc6a72i/fMbqL/8FzN9hr2KUdHaZV4vs7u1jeZry4AX53BysmePY3lojGs+JJyZY0dBdfU5uD+PdjFl+aITZvWiUPNc0G9+yWjxndqvkjmujFi6Nv+t8+nhKWZasJRkNN2Ayy4jzjP3/V4Zts7ensCqPxrzMsZHszcwykSbcu7vH6rOQ2fnPDHv83XcMDJSsbzaZmrpGXvgI0i8YFgJzOLZHEj3Hv+fxsB6AvGTYBMnmOlk3IfmCYXNzs6xX7LidJuTffsGwsTHuSEm+Yf59Pdvgnl9DCSPXOVCKKH6Gl93FcV4A8MBZIJkq2SkD4tUJlNripXeIDC9j2QQ7OzA62kOJPba3bOL4HHt5g8nqONRiE3fL61/nf8j6k2i0hBATwAPgl8BPgP9ECPEfAb/BPDGe/Z7f+afAPwUYuXKFIAjI87x/g+p0zRh4s9lECpeUjE6nQ632WQ8l+z1SSZwkBEEdy3JIK6FymubVpFclIK42UlJ+blEak8iILM9otVq4jhF6X96AlBTmJpilUGo+fnqPsixzw6x2wUXcJmu/pffxhCyMcBybLOpxUYWH2vUhojdX6V0bxR0cwfEbgMSt2neXqywLkjim2TCbuiSL8CvApHlqjF1zM3rtujWSOOnfBAO/jhQCrV2EsIjiGCklzWaTbtdsxprNFp12F6WMZqHX61abOnODDMOQLMuoBwHdbpd6vU4Um4nMfih3r0un3abVHEApWbXoosoCA3zfVB+lUiRpihACz3HxagorrzRJ2ryPOAlp2C2EpsoTrGwokohCStLwgoujp2Sd9yjbbCyFMn9HKsuYk2pNSU6exmjoZx3atrGmsKRESUFRlvTO3tMaFf1K4+WwgJQC13OJwh5ZkoBzOYlXoHVoJrZKUxkV0rRrg0YVkZKa8G1lWeRZipRmOictzPnqdC7wPK//e2hNmqUgJRfn5vth2ts1kwWpBWmaYjvOZzNaFRDHMVmS4tjmO9PpdvsThc1W03R5LY1l2fi1Gkkcm8Ds6oGi1hwgTmK0LhBCcrPKVwwraw/btk3guBDGzb5yo7ek6puzOq6HY1tkSQFlietaXFx0cCu9leeYY7sMjXYdh6BeJ06S/oaPaqr1zz+C8/X6oxl24zonJyfoXOPf/8ywsWgM1VTs7b5kcfEOz6IO2dExi1XO3JcMe14x7JUVUEyY72Ca5qy9eIEnTXaeYdg6Uiom0qp1uLTE6mpElq/jtL7hgbNHmq2T55MA7Mttvv32R2RZytzMLKs//5nJRfQkF5WedfP5R1Z/vkbv4wmToxHbP7dJok1GbxpDU7s+xKu/Pad37d9lZPADznHMOAs4Kw5i1zBshx22ynG6ccxIo8Ht5Dar2ZM+w0TFsCjPkCLCdXeZiCfRjon5Cfw6snYPrbcQLy0iGSPlIt/+oMnjxybXsbnSYqu9hVJ3kGKBJ0+6NJtT6CobMhwNybJJ6icndB8/pl5/QFQ8+YphN2916bSv806/Z19JKKboRc/wpDnO+/cNwxYsw7Dd3V32913u3rvfv6nv6h3m8jniJETYfMEwY4q6vhoh5R4To9dwdn/Bk+9+hlpagr39PsMWFn/ILlso26Ocy5mKxinShM0+w1wm1RTPZcK+FFwpS56cvefmqOCeNJXGw4NVEODff8DK3RWePX0CSYJdmO/PeF4Qj48Sx6fMFHCSFwi5h7U4SePNCXDJsDmUdUCepSwsLLCxucHEtGkdXjJsN37G/r4FepbJyZQ8l1yc/waAkfMOx36NIHhNszH/uwzbD4jt56yvGrF+sbnJd/JzesoPvpnGWVyCtbWvGVaWWJWQ/f3SAPHqI7TeRIiXZsIUTV1cTr3abGQZthDYzhKi3DYM21OkZcWwFY1j32E+SXg2E+G+tLh2cYOXR2Yi9e6iQzFb0O0WRm8oTgzDthIO543wf0Ufcfj3rMj/0YalQogA+B+B/1Rr3Qb+K2AauI95WvzPf9/vaa3/a631D7TWP2g1G3/sYXy/vl/fr+/X/6f1J2HY4OC/seP9fn2/vl//dq0/qqIlhLAxgPrvtdb/DEBr/e6Lf/9vgP/5D3gdoigyWqIv7B2aVatGoMnyvPIr+rwLltJGiIQwDPF9M7mWJtEXo+Qm3T1JjBWCqio35unG/O2iNBOPQb3O+dkpynKwbJvGpb9VFFHkOVEvJM0SHNeEx8ZRD12ap5uz1zuE715TJDF5EmM5Nl7NpazEzuHpa0TaI7t4jRsEBCPj1G/MUloDOFU48WWb88qVK5VhpKDZbGCrS31MXLU9XfK8MBmEecHgkCm9np+f41cVkbLUOJ5LmWVkaVqZhQKVaNu2bIoyp173iePeFyHKNlevXiWOE7TURr9UaITIyXNz7qIorGIUjIVBURTYyuv3wJWySNOUOI5xHKevp7OkJL6cEM0LWq0WTmrKr+2LMxACz7nMZEyRAs5fbxF+PMZyfIRlLDEsx7RUSgBdoIsMnSZGxO/UUJb5ezoKcRy3b9SZZiXx+TvS6AJRndOLizPqzRbtzjlRFDE0dIU3r4/7E3FSSWy/ztDQlaoKaoK+bd/uCyEt2wY0Ua9Lu91m+MqVqkopq++gixSinzcppMTzayRJ1n/aawqB49hIIYjCiEIXKOtzBqXWmqGBQcqi+GztoAuypMoxrLRTeaGQ0mRP9uKQIs/7/kIaYcx0CxPya7s2YRj3jUS11kSFif8pipx6vUG320PVBJft2E8f39NsNE0IvFJYykLKz+3aPM/pdDrVhKHdH4NuerX+NYs2k6TtalDkz73+ZAxLKoYtLDBXGIZ9l7d5++YlQ4NDTE9P83xtjdmJSd7Z6jLlib29S4aN4vuvK4Ztklaj947jsbS0TL6RsVZmKG0zR8Yr95ij6pROC8HEZEpQv8/541PUnetYhzaNhvnsZbRIsZET3TQMW1xcMgx79oTtyjtqpA5PH29S3I7pfIy5GLLxXn3NsPjje7KLX/LzkxMe/mSc150QZ2uA5WUzjTW3CRv7e/z4xz9mYyNnT2qazUfYixXDVg3DLMclz6sc1fzZZ4b96gb+wzrou5Rb24Zhk7C+tvaZYekczottlu64bG5tUK9PE4/36IWm4OikNlevnhG/keiFWcZEyGahmbem+gxrX4TY9iFiL4CZbTMM9QXDtL5Dmq7y/HnM8jJMz0zz+uiYg709bmbmfMV5gfuNi/PdXcOwX5+xI3a5u2yE2UWecrAPv/qbf841b407yz67B+8pnQdYy4Zh+4DcrqNVxqy+TaZ72M4rHO+SYQrHcant7qI1TAQ+Q+fvGB27xvNnZrqxz7DvzvkwFuHc9QzDzu4DcF0lCL/O0McrnEvFHWsdrRX2sY8WpmJl2bvMzVk8692k/ZvfoCuul+xU38FxpBDcq91jx9lByCPevp/n9u0MIcx3rNkU+I7Nwvw8Ua9i2IHF8/hpdU41Pxr4Id8UBRv5BnXLYkkXrFcMW1tdNQxTij0pmE9TnsQh00++I7tk2LoDYoaymEVKie02CMOYI89oBO/O3iPqPWFzK6UonlGvN4i7PVStYKcymu383c9oNprMzc2zqBQvlRmCm5v7kmE3cN2XwBHLyz67Yp7mF9nFB3oRyh3sS/eDP2D9MVOHAvhvgU2t9X/xxf+/UWkfAP59YO1f91pSSvxajYt2u2+rEFTidTMBJ2m6DdO+E8LUaTEivjRNGRwcwlZ23yjRtitBYlEglTGL832fvCgIwwgpFbVaNcorjBVCXpbGLFIoM0VWTQlZSplNTqnxgyZ5mqKkIktiep/MyPG7g22ysIvvGmf1sNchy6J+OLGUirzIsDyXpP2J8PSE4PSExo05VMNIQqyah2XJqvVi9DxaF3jVWHzd8wljY2KpJCglEK5LVLUvHdcBKcmSjLLI0UKQ5ylau/2JJ6UkghJLCcDC943+za4cyZuNBlEU0Qu71H3jZF/qlDTNqNX8/nHYtk2WJ6Ta2CIooehWwDZu8yWWlIRxQp5nFEWO73l9jYRfDyi0RgpFnqWUusSr+Vzei8us5OLdS7pvX5jQVW8ALeyvbDcUBWUhSPIcoRyUY9IFKlOOajDB6KWSywm47ilp9wwnMIHhA4PDCEtRliUDAx6WkjQbrb5TvpmaSbnodHAd2whMhUbJzx5YUpogacuyaLUGTGtXSuxK+yK1TZrG9Lod/EYTNLS7HUS1WTGfizATtSXEaYRlKVzbp1ZtPKVtJhldz0WmkrIo8CwbuzoGM9hRkmYJvTDD9wMc1+W01yWsNmvXRq5X7Y2MOE77Pmaoz4MjtmNTu2zxgcmg1Lqf/Vir1Tg9O62Mgl16vR5B0OTNG6OPSdKUocER8jyj0Whi2Q5JnBC1u3h+NWBQed79Bdj3/f/DsNVVssXKCLJeJ85ydne3WVyUNBsN3r49QQjBzq65iU1m06ymKYPvhrAXr1QMS7BtY2OSFzNs7m8SxSbNIZ+e5ul3zwhkwL2KYcX+Hn6Wkc+v2Un+AAAgAElEQVTMcOzXES8VQu3g2+aaDVRJmoxTlJrjkyZ5usbyskM2NcWtt0bn9fLp/8CVwZv4yVX2rQOiJx0ml8dQygjE9/ZKpLKxPEHS/sT77YAPZ3/Loxv/HmdXzXCmNRoycyDZ3NxkenqGtbVVtJ7Ge/5bDFtQqHwRtSvYdffwxo0ju7MnYW+P7PYk5eRttNglX11DB4+wly6TKSRiYR5LCZS08P23dF50sG+Z722fYbe61OU+e7sCMT3H2hcMu+P52PYNWm9WWdvW2NYyal7RLUx70rYt9LZNoy4pig3yfJLrt67jex7FlvlcHj142GfYRpaS6S282n2zewK24i3GPr1CNh1EuYx99B7LtZmdHWBv/5Jhm5TKqhj2AuWMI6WLbS579NwsThjirnjcTlMyOyEZvMJa94yguii//eFfISzF1tYWAwOLXFVXudW48TntwzsmXpVcpAkryzaJ44GYRcmEYv+SYTlo/RXDFqTk8KAaosoOjRxnfgHfiLi4fvM70kywX70XlEAU0xRZ+ZlhSz4/FD80f+OSYbaLs+awXRQsWTb+lwybmyF93KEXrrPmBzjuClHv51z5gmFbv5dh5v5VFpscvrAJApu5uTnkniL3CjOoUhnebm7e4/TsO379m1/jOC7TRcbr49c0Gmbzaxh2QJ7PVAx7Sf58i2h0FO+4SnOoGBb/PRj2x1S0fgL8h8CqEOJp9f/+M+A/EELcxzzmvgD+43/dC5W6REiJbdvoqgJiWzaiJisNVRfHMf5KRVH0TfSCIDDO5VluXJErLUm9btzli2rHWbrGe8NUjIbNE39lYqo1xElG0KhRc2t9jc2lePfSaLTm18hSo2GxLJuySOl9Mj3utNelLHK6eQdlWXiua/aDl8J1twbaxAnZfoPeRcrZ8T7tt0dcmXkIQOv2CsptEoY9pFJ4notlS2T1ERVaQ1WVCIKGEXrHSd+fSCAIuyGWsijyAmVJGkELrTVl5UlmKY+0yEizHAT0wh5J8sVrCEESx7i2h+u6nJ+f4zgWrmMTVxUIP2hwdv6JILiM2lFIJftas6IozISe1pTafBa9XoeeLvrGhGbzVWBZFqUuqQceeZ4hqPRqyQXnL55TZhFeMIywPKRUCATisnpSQFGkfd2FsGyEUv1euF1qyrzom95maUQSRYRnrwiuGu1KVgpjamrZhL2Qnu4xPDxMI/vcyva8Gp1elySJUUphOzZo3fd2KfKcstC0OxdoSlqtQfI856war5ZCMDw0RJKkhN0ueZbi1eq4rleJ941LehylNBtNGo0B412VpKiq4pV0UxzXIg5DHNutzrXZSAOkSYxUFjW3hmO7xEmM67o0Gi3abeNh1L44xa83cF2PwYEhur0eQpggbfM9j6n5dYb8gE6nXXls2cY/rTrHlmXjebXq8zaGwnEc4Vb6vGbTxL5cXqeXprkmLqkygxTSPBT0azp/1vUnY5jjlMwvLNB78qRv7WEfHCJq5sEkirpMTMyRZcnXDHsd0HRfkk820VnFsJ0dHtw3EStFWYJts3rJMCkqhk3Qu1VVYLZ3iJOMk/09fP+SYTZZZr7n43FEMp0Yc+dKh3dwYNM+X+PN1i/NcZSGYY/zDurgBp7rsivA2jUMW7p7DzS8eLmL7Tco9S4jxymvm/8HV/6F0Su2bq+wX28yFvbY2FzD81zu2AF7FcOmtWaVXdhdIVhpkHs5s+Oz/YnlXXuX0e4YVqnZ3Nhk0ZI0HrZA71I+uwmAFXikacYaG8wJKMMeUZKw/7Ji2IogicdxbYXrNrg6es6L7R1cJYmTCQDKoMFZ9xNBAPNC8kLuIw8kxbRxBy+KgnB0lOtak6ZQrx/T693gyfYmd11TKcrzjM3NTaw7c5S65IH9iI2NdXYrhs0l1/jbF/8Lt2+e4QV/hVhqo/YUtnvEnTumupIXi6yvrqFnNeRzCKtgd9+l2ntguz52XrAklljdWmVq8jPDHs7/IwDW8xz38ADbsonD5/T09FcM29m54KcjhmGr+zErywrbqbGjvzCrnbpNFIacdi7QFS/yqSne/8bor6QQ/NWPfsTq6hqhnmFqcg1LGYYp9SXDfs16/gPufMGw/UuGPV7Dce8wk4fk9hRFscn6FwybSGJkFDOxUqPYesjz5Dmuu/01w66dMvO6YM89YnDAp9t7w/z8PE+fGob9/OeXDHvIatJm6sbvY9ghnldjYVGyuZkj5ucZVxZhdX9rvv2Ac7NGlh1SFMuVvrliWOV4qzYXcFynryf/Q9YfM3X4M34/Lf+VfjO/b0khjQjXdakGIZBK0T3rkSQxWptSZp6n1Lw6SbUJ6va66NLYMbTPL1C2heu6ffOxTrdDI2iYbDkBYZgx2GqRJml/2qbIc1rNgFrNJYqMq7a5yVRZi8KI1m3L5vTTKVdGRhAC8qjLRSUm1GWJZSsj1tbGGTsIGljVxkILTCVOSYRycWsNEt2mLAre75iJm6x3xsD0Q9zBEcpMYykbS8l+ZhVokjQlTmIyNzWtOy36H0CaZihlUavVsF2nyjUUFEXZr6zpUpNnKUiTi2gpRaMe9KtEZZHjWDadbpea76GUqHyUVPUmqMxLXS4u2mR5weDQUCV6/1xLyvMM36+b3LzUxK84rtvPfrSx+hOLcRxjKWUc2M9Mx+bsxWPC0ze4wQCW65tJPmWBUFDBQVSCezJAXm74FLq6cDUC5dT62ZNZlpImGcn5J9LKz0u5daRUdM7PKLWm5vuEUcjHT8ZwsllvEoU9wiSi2TBPepZlVd5Zl5NlEk3OQGuAElNxs2wbWfkgObZNHEUoZeFaHrllkeU5mcxIqvHps7MzrgyNANp4rFXDG+ryO1oUOMquJp6M4F1IyadPH6v3WtIaGIY0xnbcytvIQiC4Utk36MJYnVi2TRRHJGlCkRf9SKOaH6Asxfn5GY7jUPPN5GMYdfstTMd28bwaeZ7y8fyU4cERpFT9VmuaJhSFruxYjMu0BVi2iagCs3G9uGijrD9/nv2fkmEivWTYCqri7/LyEr/45a+qtv8Mm5sFabrGPe8ByWTFsFtdxstxXh8e0r56zTDMXvqaYePjTKRraDFH9t1jBlstniRrbG2bczg9lfPudUDwOwwzhpO7omDxpYW9vESn84uvGdYwDHv9yxJl7aPkIkJukU0tELx4w517j8y5ErCzu4ttKYRyefmqwe2l65TFJj8zxTl+eGuE0dMuLwZHWJicxfNeYR0eMlUxLENzO01pJxdk7RQxJqAU7O6YF0jTHLV4QK12j/sPH7K+nrC8+4KZqZL8jqmsvXixTD6ZMienSYoCS+3z5jAguGTY7hTOZPE7DFuyFon1ZdzLHrY9bhg2Nc3U0BCbm5vMf8GwjY11fP8BC1KQZQn1pYBHjW950quqXpsW2WRGmT4njmN+s69YXl7uM+xnv/rvCK80sJwxDl4eM8s8i9YLOFQwbf7O7uYmcnGRuTiklKlhmOV8ZtjOLvuTGYUwnZ3tnZTayjr/+Fyztmb8FZVbR/o+nasjZJmmduzw9NVThoYNf7o3b/BLKRlt1HDfvCfLMw4OtpnTmmLeOL/rUlKQ821rgK3WYJ9hl15uy0s2cbSKVBaudcxx7T6TeUG295LximGfzkY4HTpjbkfjPHDY39s3MofKlqNYWGTZs00s3eF2NXEqGf70fwLwca6klRawprGdFe57HnvK4hCBqBg2e6zZYQfHdhiLxwjTiCdPnnzFsMU7izzrneHsv+CN6yKYZ3Ssy/PKSPaSYXsi5ez8lL09hVpU5EcVw7KMhWi2z7AtXbIyN0eaJojYtPOP1AEXF93+5uwPWX8RzvAazadPxiOrG5rdqePU8H2/Dw1T6YGaXyesbjDKNpl78tLUVAosy6Jb3dDjJKbZaGLbNp3OBVprLNui0WwSVhUt23NwXYcsK/pxKwOVKSVQeQTpytndtJzCXoeoc46ufgYKkkzjOgpLWtiOZewOpJlMaFwZIUkytDYlR2k7SLuG17BJquM4e7VN1Dnj6vJPkP6w0ReVqt8e8us187sCXMdDSRPD49dM9S5N25TaaF/yLKVeM/qnoiy4uAx8bjZoX5zTaA6a2Jai5OL8vG962mw1EbagHtQpS11ZQyiUVKRVe7EkJkkTbNdlYMhMihZF0c/ty7KCVsu490dxRJamfPj0jqDe6Fc+4tiMWluWYGBgwExbhl3iC9OtSc/foSwL2/WRCgQKZbtoFJX8BZEn6LI0VTXlUJY5Aj5XuNDG/qF0QJisxFxaxBcX5JUVRb01TFZNCjqWRb3mc9a+IKiiTVyvRs11kZZVbTBBU5DEEfkXvlA1zzMeZ1pzevoJ17K57N7rmk8JSIxrfZalRGlKUZYEFSAGWjOEcYSlJBJNLw5xXddscAHwsG1lfJmkiZmSQjB8ZaQ6nzGObXyU4jg2+WpZhqVU/6nV9/1+tdG2LQZaTZIk6VtqBM2BqhIjKIUBjtCCOOxxdm5uxkEwgmVZ1OsNBnNTfXEd2a+IxnGMpiSK2oAkyXIEdfLis5bBBdwvbFz+oayYiE8//zvDsO8uGXaP+/59tvU2h4cvGRsbZW9/llf+az5tGIYtLy0bhs3PY3d7sLeLVbtHmv42w5bodC7YzlP+0dIdGts7fYZ5v8Ww27dvc3Jy8plh42Ps7O2jLhk2B6PRDXzdZfet+Zm5uWk2tMZ1wNq7g/3S4vbMOHlmNmtvTkdQTh2tp5idVZRFQhL2OHoziLIrhv31/0T07U8J85i0F+I8HDAMq2Ja/HoNfXHB3u4OK8d32a8Y1mgYhk1MtCnKkvbTJ2xkE9TveQhrniJZ7TNsYjLjl5/O0RXDtosFblztcHDJsHf7iMMZ6pOGYS9dF9dSqAXF2q9M3MsdFknSVcOw86tsfNyoGGZa4Nm6rhimeB4/Y3Ii5cO//GuCeoMZ1wQLb49rLHGAZQm+HfiWrQcFm08fc7NeeYJdbZGXOYcvfezaCAdIlL2CZp/p6iF+fn6WtUqraRi2gUCiZ03FS6QJYmsbkTkwHzN1Mcmr9QPiKxfkd8xNv361R1akLERGvvC6dsx4O4ZLhh0Zhp2MWSgxhG1vMTtXEEdj5LH53L5k2PzCIr/4xSdc67DPsCS5T8kms3OSg31Ntp4STaQUcfQVwzpxhFMxLB4fZcV1ObSqXupOweGSYsGd5/6D+6xeMmzSeGA9f/6ckTOHfD4n3nxO4+EjpjcLlNpns2LYse/jFgVhOMq2vc1Ky+Fh4n9m2A++NQzb2WVmxUbuZuzqdZ4/PWXkqjnOk+CMO6071OsBvxr4DWm6ilvcw12pGPbrWYryM8O6613WHiRMFVv9a13jG4bJP/xh8S9io5VlWVW1yjk/N3EOw8M2tu3SbreJoh6WpQiCAT5+fE+em5t+q9miKAvKsqQ1OECe50YUXvXigyAgjmIsS9FqDfajcrKqdQZU5T+NUoIszwijCNuxuDg/r/5GkzQzI+t5WXJxcYFrW2TR51Bcy/ZQaJSAUhd4fhPb8wh7lbdUary5sqigVBItXZzAQomCWtPcTPPQJjx9w4dnf8Pw7CO0f4dSW3337zzPsC2LTqdDkZUURWmE3tUxlJXw5fIGixD0wi6O43K12iB2Oh3qQQtLmfamUgoh5VftI4Gk02nj1WqISgBoX5ZfucyX9ChLTafTNsHVUUitZv7GRbuNbTs06w3cVo3Ts0+0WkME9QBdXbpKKjDmDEghQEB0+pazfVOqzuMubusq0vYACyGr/wCtL53wBUIKHNdkXZaloiwyymrgIS8KhLRRjqIMOyR5YVqE3TNEbj4X23HRqdmQZUVhvKiyjMHK6dxSihKz4ez1eqRZZuxGlEUSmc9FCIkQJa7rkyYJluVwUcUggRm8kAhsS9HrdvBqHvVmiyxOSasNn5IS13HI0pR21AMJSZb2W4uWsoznVZHTqb6XWZp9ob0zFh15nmE7LghBXhYkadzXpRRFbuwq0EipOD5+bd7r4Of3CsZuQAmJkoput0vQGKA1cGloa37m7OycT58+kaUhV6/d6GsmBwcHiaKIOE4JggaDQzXOzz5VQwnmfERxhJQCrf9hbbSyLGNbl9z/gmGfhje4az/g1vVRomc9im7O/W8GCENB861p7bx69YqinEbJkpY7QP7gAee/OiedMJ/bQhAQR8+xrEXevRvk5s1RDg8P+9cNwPGxD8yi1A6TU5N0Oj2SNObi6lUAWo5NOjtLURRMTWZcfLhGbKesR4/7x39weISLRs3PMTNb8O7DW96deozeMu20PP2E5bhMjglKJNvSZS44QNku975g2NPTv+VB66/YCK/T2rqN47zm1iXDNtaxrUVGwzHCLORqsWXsX+aM1iwvZkFvsZlm3FGKl7uCJ0mX5eUFzq+YG/arzhr1YI4DZXHfdQn2Fc1bkpmKYd74OLvkdNpfMGwsJk7SPsOKYuMrhiULY4xFIWrftKgubrUJDx2adQe3NYSyPtH65kcEr0/QvADgQX2RHVxmACn2kaJg7EqTv/tn/6V5L+NdVlo/Rdoec3MWUlrsH5oqs9yrGDYqEHuCF7yiKHJmShetM8rKqmKqGGd3XqF2FDN0+JQX5DOCsDvyBcNW0OlzdtU+M5slt32fiyxjsG4eWlccxc7cLG7pcit5Qrc7ydu3b5maPCCJbgCXDNvCde+TJgl3rBc8vjjrM6zcKpBzhmGjt27g1VxeHLXI3BbTSTUEJY2dy1aakn73BKQmmZ9nrDAbQmv+gFcHNlvT0KnipbJ0kltLXzBstiRPJrHtl7C7Sz5zmyS/hXx1XH1ulwzbZkHe5fj4X5JlGR8qhj2qGLawMI8SDmpBEXW7BK9KJiZMZW3qC4Z9/PDBMGxd9C19Bgc9Xr6IiMdvEQQNrv8717l6lnLoKOYrho3FEXtS4P49hKZ/ERutS/f2j5/e9ysjStmcnZ3SaATU68bXpNcLGRgY6IcTh1FoSnxlyfnFRT/+pR+UrQUXF22uDA/h130uLtq4roNl2biV/1QYhkhpEUUhp2cfGBu9TZ7l/XZIlpe0222arRa+X0NUYal5HHGp3k6SFK/m0mo2TKSOslC2j9+s9V/Dkpo0KxDKwq/VSbMIqVzKKgrIbbpASdq94OPm35FHHVoTd3E9A+Ra5SgfBA0EkjRJqnw8U5Y3nUkJlmmfxolxPC/you+Cb6bANAMDLZI0Iy8L0HzhDg69To8rI1fwPN88EQthyqbVRee7daI4pCzLysk/Igjq/TZYp9uh1RxAWNLokVyHMArpdDoM9HMsS+PnJAVpmtP++Iazl4+JzkzLzg0a2F6AqrRZUqp+G/Ty7uK4PsoqyNIErUuksEmKvJ/0Xgoz2WW2oub3kiwjjWPSapOEMCLMoqhav9oIwLOq1SFdQZREaA2246As27T0lOrrAE1skdG2aV3QbDZQX0wZFllKZamFX/fJ0pRe+wLPrVFU7+X07BzHNpu9PC8ZaDbQuiSr9IpSlLx9dwL6MpBc43m1/kbLdV1OTz8CEtuyKLKMKI5RUvR9skCTZWZS0bviMTxyFV0W9Kob1Pt3XZrNAdxaDYmoDIQvb4DmOKJOG9s2wxVjY2NYtqmY9bph9R2VVRXaCIqLPMNxPNI0/dy+1hqlnH9wFa2vGWaqHotqwDAsD6hfOWKzKLCevGDg229QPzEMO3nWwPOszwzrQTH9BcO2d7lotbkyvEu9fp+LizYrK8scHBx+zbCFNcaiUY6ODonCBD07x92qkriXb9H+zTWa3xiG7ep3FcPGoDQtleT2BF7tJa237/iwKFkYWeLFqzf4TWNbkR1/wFrQpL2CXXWA/+oeYtJmYcmlXK8Y9gOX++2StPtrPnoJue7Q6tztpwAYhm0RPFxgd2ePiduLv8WwLfb3JLZ1h5rrMpGEbJabbG643L1nzmnkhOwKzbcVw6ZmCpIQPn4yU4dzc2fMdHocjSxzt8+wu6ytrSLkZVSQVTFsC9d1mS4inJPXJNUoTafbYXr6Wz5+lOTZBJ57g/DZUzrIPsM2S9B6mp29XaYmc07/7g37uz8jGjH/vqLGKoYdIeUiUirmhaCYnmV722ykZl9OsnKvYH3NPCgdCBv9WwwrdwzDdnZKhod3SdYl6cOYuYphHbHDkr1MXMRYjX2YncN7/pxs7TPDboUhWsOB41C+OmZ+3jzsfs2wecOw7U3eNhu0hMCrzjlZSlFMw85rfH1Mlk7QKy+469bIvmDYrYphG1PjfNtssL29xeTMJcMsw7C3x9j2SsWwlxwdmWrnwMAgSfIR2MW2fIrJjCj6XYZNTk6zvroOP4bh8qdsl5tkfYad/A7D7tU8mJvrh1dHnR6Htou0JWP/5J9gHe4z/QXDGjXJtn8f/fIp9v1PTOeQOEYXWFwybFaz6Pz9GPbnF0p8v75f36/v1/fr+/X9+n79A11/ERUtZSmCoImUTTzPlPCiKKmyDI1PUa/XoyhKOp1ufyduntIzemEP3/exlSKo17Aqe4det0utCm7O8wLLEpRlhhAOcVw9hbmu8dkqSkZHJ6h5xmaiqJ4oldb4dZP51ut2UNIyNgxZ0p+SC3wPqZQRwdcHwHLJ8hLHM8epbEme50hlmQnJmqYetMiLEuVUlbO4i9sYRCmLPOnxYfc3JFHIjSXTwy69mimvIpBVTI8Uov9U6zoOaZqigbzIyfIc36+TJhFRZI7TnAObLDVVmaLMsR2rn9lkHN3B830EmigK+y75teq9JHFIlqc0m+ZYfb9yDq9e48a1mygliaOoikUSeK4JTb6c5EziGM/zSKOENAnpvdkiendEWVz6o1lGx6aMt5RUFpayyPOYS88maTkUeUyepmhMtJAuy75tgKjif3SWUJQFFCUlkGQZ3VMzjp4lKUWhqXm+CYLWJZ5XI6l8xXBtLOVQq9X4+OmdsdZQCse1cKuWnBCCNIpAmjDmsjA6GbeqNknHriZbzbRZXmRYlo3WoooAMqubxAwPDxNGMe32hfGqqrQccRbhup6pFgHnZ6ekCSSJEfW3OyWNoGl8xpREaxgeaNHrhf3PTVmSEjPwIDRYQtLpdftteBNbJei221Uwdt7XKp6fm2pBo9Ew7ebK984pnCryylRdLUsSRTFCGGF8lmdkWY5fq/f91BzHNfmc/8AqWpcMuyJ/wJH3EoBGNFAx7BDm7jB+fsHGxhbL3xnHcrO2mZy8Qy/scXx8jP1SEViLWG3DsB1dcv3IQ16VTE0VrCbzbG2t47r1PsNWVlyS5DZpkRKGKb53n2tZm0wbK4KpbYmun3B0+IleFDIvLfTsAq+zv/6CYUdIdYdsyibw3mNbDSan6lgVn9xawNR2TnrbIs+mmJ3TOO435EXJft38nUlxE/fNGiq0mE022FhPSEZDNqVh2P3mLGqxQLPL4uICa6sptr3L7JwJDX75IuCOlbLOPnkxR5Zv4Pl10mSMZ89Mm7PPsAcPvmLY/Lx5jWKzQI7H3K0Y9uySYZ3r1DzDn8dxyGSe0mzeY18dMHM8w1o5D2IPgOVrN1Eq4PhVRFluofUc3so98o0NsmqIYSzscXTkkabjPO+F9N78jWHYqLHr2ZMWvu1gKRspFXv7FpZ1wLge55Jhe9YLsu2YqYkJNCXb2zvomRlmq2GdUmmkWkRnqxRlwU4xgyr2WF1f5+ZdM3WYrdZJpjNeHR0zNWuu/SOvxu0vGbb/gle1GqOjt5BynzxfxHGPvmLY2rMI5B5FWeAXBcvLDjXbDCBIZw69DXFaMWw6Zc6y2T4UXPuCYY+T5wwPD7Nsj9NuX9DrdtlcMwybnBxjZfk2x8fHzM41+NUvf0GaWNy+bapRW9vvGI8rhi1dMuwdvV5IUA1kqAPJ0BCM/PTHhmELkvi7iKmKYScnb3n7dpDk9meGfTswwFq69hXDFtWiec9RhBNPUC5ITvZNa9q2JFNjGWvpHGkq6OUZ61mI/8plt2LY0tIKa6sJ0b+hUOk/2SrLkijq0Ww2P4c/5jnnF+cUWc6tsVGazRZpmpHnef9n3r17y43rN/A9rxrfFGjMTQBAWpJr169xdn5WRV0IwjDGtmuUldloLyzwazU8z2xUXrx7T6vZIAiMeC5NMmzXIQxDlKXwvBpht0OZF+iqpRI0A0AgbRtl2UjHJ4oviM4vRbEu9UYD16sRhj2iOMV2PISyyC7NVWstI/xWFloXpO1zzvefIqsb9pXZRwSNIXRR4PoNBII4iim1OQZBafyu6j55ZXiqlMS2LURVuIzzmLLU5G6N04+n+H4Nx7Jp9yorAilAKDrtHo5j43g1an6dNIn7Se9JliOEIqqy8rQ2Ld3LSBq0Jo4TbNtCKcn5+QVB0MCv+f2bum0bUTdSEH06pvd6jzyK+nYcQllVe0lWE4VWFfys+ZxlaIYLTByTuag0ZgMGIMoSXRqDzzRJK4NTTVFokq7R0GRxiJYWvTAnT834u9mcmhtYXhZYtuLjp3fGoFSaDUTgB1+8F5s0SRkaGiaqzG21gJMToytwHYeiyCnygppfx6sHuJ5HkaVGywUMD49Qr9dIs5RWq0GWOChL9ttHZUllU5Hjuh6OY/Ph3XuGrgwD0Gw0UVIhbJew18GvB0ZvVuT4Vc06DCNsxyaNY4KgQZolNBqNvh6tKEt6vQ5KGb8bz/OMH5jjcuvmaPXRluZBAbACF13kaF1SVtdBJ44p0ViOTZFlZjMujPYxqqYO0yQh7IUEzda/kgn/ti2ndIiiHqqpyHMTw7KZr3L14irF5CtulZpmc46HQUCeT5FPGYa13jbRZcHxkfE3Arti2DPAMOzi+jVerJ1R8zYgywijBNu+x8yM0br0wmn8msOR55AdpTjv/nfKkQbBScUwkWGvLDMWPUUeKI68GuHWNuXGJto3Gqyg+Ro4rhhWx3Z8nsUXTFUMGx8b4+WbN8y1PrAQ3iKKUw5fHDEzP89UFdViWxayOcKuspjQBTPtdVAp73YMwzqzjwh2PqKnS1zfxYjhYIMAACAASURBVHUFcTTB6nPzXj3PJZ3I8F777GeSUTmPUicVw0xbL54ap5QWGxtbXLl69XcZFgngM8OWvRr7x3XS4DPDbmc5VAyLrXFWdcStWyEnb8wUHtquNrEHKLXA4+4FD4M3+Pfuk+emBWXbDmJBQCoYOz7Gr0s+jY1RFGZ4QOxfR90UzM8/ALnHgrTZLo23n9bmfM3OlORpQpY8Z2fHPKtqdtizzGeiy5K5uYIsmuL8k0+302NvVlMcaVYfm2n1qb/6KUVhig297m1evdrCv/8A0TaMy18cYtmKoeF36LLJzh5MTycExxb5tHkvh4ca5C2Ghn7M2JhhWKE3OTmpNtnOe4pWTpEPGIa5NdwjDy1Sfv0Fw76p/4CtTPPuXZ3stkNroMls9V7LpmHYzMwUjm31GTY7Z875D75kWHQDv35Ckk2wvvmMltlnEYYRmxs2afwc6+Ej0izhUaOB9e2PADjbKund6qAw+Yeee4QcGmLJWeHFzUoXt73Fi+wQPTeHf/ISrXLYmWGmeuBIx8dZy/OKYes0m4/4qRBkA4M8i58Dxlw17IV/L4eav4iNlpSSoaFBoii91N/x7t0Jnuczcm2EMIyMaNLzKkNPA6mbN24aB9uqEtELu0hlIauNhVKSs+4prmem5969e4fv19GUvH//FoCRkWsIYXLxitK8TmtgsG/4FsXmhDq2TZaldDsdlCgp8oiyyuYriwKvUSfLMpIkxrN943JfCbOzNKXdblOvNwgGhkmiiG43pNFqUlTivLAX0Rwcwg1ssjjEciKKJOF894k5R44D4/eMZksIlGU8nUpdhXamGW/fvWd4eJAg8NEldNpt9GW2HlD3fVrNQdqdDkIaAWJR5Lhe5byrdeV+nuPYtnGpTo3p6GUFIgx7tFpDoAW2bVEWmoHBAWT1rSu1ptvt4HketVqNVqtlRsmLFF2JCaUQxGFI3D3ldPcJ0dk7yvJzwLbl1hGWjVSiP1kohEDKvL8xLYsCKSxsxyVLjeM0WqCU2WiVMqcsJMp2vppINU7xVbXSskDZCAStRoMsSzjYWyNoGWG/bRvPrCAIKqG7jZQ+5xcfcSyvOlZjhXB+fk6emwBrIWBwyGxg8sxMQyrLWFrEcUSne07NqzEwMFj9HQspBZZS5FlGWRY40thAACbMvNFESkFZQiNo0ag3iCvfOCUVcRxRqwWkaUov/EBzsGV0UdU5lVKQxJHxSfM8Ts9OybKUocHh6jORJqC95mHbNaMRyzJcx+tnZaZJxPCVEVOJtSxKJRESPnwwE3SNIMByHHM9eB5hr0eWpjQajT6TwjhiZORKX4fyD2WlUjI09EPWf4th17yrjFz8hKeftpgXMd7dJYo47jOs2+mydb5FqWfwvFf0wh4L6g57mO/54uICq6sJrneLO3csXr/+F/j+AxrNLQ72zWTZyEjB7u4u+dQU02VJ6tVovR8kygzDnsWj1NZT5udtsqkJbmrYF9coPv5zyhNjwlgWwWeGrcbooET29ti5bW6EIk1ZuH6donjTZ9jNm6MoqfoMe/rkGc3BH7HyMKf78X/D+k3E5u4u85Wm9heOw4/Ga7hFg53dXRbvTJEmNlvb5ppNJyZ5++49168NcnKyw3Z5i9nr19nefk6aTQBQn7Rpvf3A9bGQJNthfz9grpzBXagYtqRZW8sQIuf+PcOwLFs11fA+w67Qan1kR89z17bYqhg2NPglw75jbMzj1Sv4ptVCiBb55hq6urfIeUH89Clx9wq/ePKE8P3/xczMNFQB2x9XcoRls6d2mS1nEaKGFIK9vZiism9YTwsWhMXhCxeImZ6eJs8zdvf3quPI2S1mKG6/oH34hrOr13AOLMTSPLPVZCLWAQeHtjH/HL7C22aDg/91jfcVwx4Gc6D3KoY5eCsrvNlTyN42L55/Ztg932f1/JyPH1Nc5yWzAgZLc11vZFMIYPHOZ4Z999Ew7NtvDcOOjizkgmBZ7bO7Iym3JnE8iZ6qHtDjrxn26OE3sL1F7JlJT7XgEMdjvHp1wtU0pRcO0hw0wePs/jbDItY3MoavnLL+7g0/qu4Jk/MLPH6SUrvnsXSvxva2Jltfx12+y81Lhl0Z5tPpGfnBAYtLNltbkpfyiA8fjObtkW1x33HY2iy4e+cRT588IUtTHj16hKhsTMI44ic/+TG1KlXjD1l/IRstRZKklUDaXLSjY2O4rsfZ2QW2beM4NmWZ02w2+qaVYRQhlcL3AjqdDnme4wiJrKZLlGVhlwVFnnH89gTb8RgYGOTDx3d9q4Faze9XSixLEtRbRFHUN6T0PDOKLgQ4jm0m/85PkZbTd/YushK0xG+0aJ9dgOyhLIuiqqyVRYkloNtt4xUlUkrKUvD25H3f78QP6oS9No7j4g/fQkhJdPqerPLqeP/851jKY2TqAZ1um14vplH3ieLPXh6Tk+OkaUq3G2LZpn0VJ5+rXkWZI6Xgon1Oo9kkTiLqtRppdeEXhXFS16XxXOp228YbqSy5dOwaHBjCdT2yzIQTFyUInZEVnzcvjUZQuYqXnJ5+ol4PKLICp7IBSOMQXRZk7Q/0Ph6RxjF5kdNomc2J47cATZmnKGWSAUptNuSXm6Q8zXG9GkhBqeNqEyX7wdQChevXScgQyrRaPc/FFoWJo8G8HlLQbl+QphFlUXLl6mhf+K+Lgm6vazzRpEX7/IxGs8XJqz1u3pwAIGjerKptJQiN1iVxaM4/mAGEbrdD06uhqhH0LLNQ/w97b9IcR5am6z1+fAz3GIAACWIgQcwTQZDJHKqqu0tdvbhXCy2uaSMz/RLp78i00kobmVa3TX2ruyuzcuBMzCMJgiTmGDx8PkeL4wgyq6qvpUzd16rL8qyShkggfHr8O9/wvsLECdz+Z4oip91qMTDQ1CKfUpKUgZRXuR4GiemGIa7j6d3/tdmzY5fPgqWnGi0bYVl4js5ugk74ZllOtdZAyoKbt0a4uDjvP0tBKb7Xi3sEgY+SBkWRUUiToKrLj37gk2YpeZ4TtUJqtQHCMKReZn8dxyHLMi4uzimkJI60KXycRP2JRVMIsjzHq/x0sb9/D6vPsLkCY1+XIW7fuUPohviXxyza2pJoYyPH8z4yTKFYNE281To//DDB9HQC9gaL5f1jWha2XVBMZxy9PsZ2LAYGTjk9O8d1dabxzZsjYBG2cqzlRarua6JXf8CwBYPtbYB97OVl8qsLFi2HbsmwvZJhD2sNvo9bPBdPNMPKcslsIVkzwHzcxqs8ZnFxkY2NbW1dNfQVcM2w78mL+/hD42wPCBYuTsjKMtbJ86/53vw7bt4vUGNtTs++4d1bnzsTutxGlvAhi3n9+pA4votl71MN7mHbK0ils17FholoDtNqD1N7/55Y3cF8ID4ybF2xKASb1wx7/D1jJcO2+ww749BdZbnPsC2KfO4jw/b2qM0/0lldc4Nvvxvis8+OWU8KVu5ru6E07iGLjGzklPDsP5PGMc+ePePzL3V2xTkSzN9QbK9NIpbAXBIYm9cMK1X/X6YYqw9YWFzh+bPv2bP2KAzZ33AamNz335Ec2nxrCszdXbwHqz9i2NLiIlu7e3TaLV5+93tkMVsyTAdrm8UCE+MjVLfeYWUW7fYltfoH/uHNDr/5zX8EoHnZZV3u4ahJMBRzc7PEUQ/LPgBgZf+Ax90OlvWVZtiWHijQDfWaYZWKg9hZoz1yC8M4455lsS0lycuSYe5rigWTJ32GreJNTZO80MMYjx5phiXpBK8rkiXLZseyePTZR4blaxBnaxyVDLu8NcLq/j7GvA46A9/n0Wfw9PlTxGcPEcJkvchwNzLMJe3iMhfM8a7RIM/XuDgfZ2ZaMyyJ9D16eHDA1NQUF2df81/+4SPDnr94xuKidnzohV2yPNdVmZ+4/iwCLVkUmKaFUiDz66BAImWEaQqEKciyhFarzfCtW3RLTZW8kLiuw+mbNwwODuB5PoZBX6U8yzIcxybLCgaaTVy3Qhh2GWreJPL1bk9KRZbprI1hQK1aI04y7LL3ybYsQCGlJAi0o3h9oIlluvpFDaWyscKwHCr1AdqtkEpQY6CpswVR1MM0dO9RniUIYZKlGZ7rcXmpa8fNoSZ+UOPs5IxKxcKuVKGeYJRBUtpNOF37Bss2qY3eI0szzLpJo64DNdMSpcq7g5SSbrdLYds6ACkfyjDsYXDG+OhtemWw0+12uHlTTx12uiFRHOO6OvgKe10GB4fohb1+sAaGVv6WCpVKreavJIZRyirkKWmacnFxQb1e58bQDYoC3JpHVgYGYeeSImrTerOBynQvlxACr7RBMEwHlYMSCsu1KFROlhYYhn7ZA2S2RZHpIFpKcN0KcdztT4JatofjehSJofu8DD2tbAhFluqHSnGdGTO0zpQsuLi4oCjvwYF6g0q1SifsolAMDd/CMgQLi5+Tlh5wJx/eU6s3cFyXXq+HLLR4aVgGyEWhAEGSRiips4bXdg+9UpTSsiyEIbQbgqEDc9d2qTgffQq1sKtFvRpg2Q5CWP1zHnY7eI6L6+qALMsyWq1L4qSHVWbekCXkkRS5pFarUa/W+mW/XqSV7yteBct0SPOE8/NTHLdCXh6r53k4totlOXhegFI6a1yU0226D8LANG0qFYehwSFsx9b+mI5GTa1eL3fF8X+VCf/elrRDTHMPtZMj564ZNovc3cU0FxGmTZYlDLXaDP/6U4bdIXMd/vnv/75k2BLGtkUxq8tHWRYhzH0yNcnJWZP798cJn7xg6MFNIl+z4/JSlFmbjBfP4caNv6Ijn2Je929ah8zbc8jFRd6+fUOyvUVdgTTvI0QZ7B8eMT84h2E1qNRfMXJrnEpQ4+C1zji8uXMbb3sLYdtMT90lz1LSdBLP3f+EYbP4gce3v/8dDx4sc+/BKFnna4yWzpqpxwmneQXrzc0+w5aWTHZ39bSxaekWANddQcrnjI116fUes7hgEb/QDIvD21TnqzTqZ/QGl7E21nn8OOWv/1r3gf1gPeFOPIHlVkjXUsLeGKeD59wOeyyWDNtiAZGlrEvFYrrBPdtGmdaPGdbrcfHNN/TqdW4MGTj2Kl81X/NqX/ctDd8YYGJ0iG82/3fUVIR8oRn2+p2ulNSGJ9lcA8Qm29ZDhMrJJgsWDBBCq8tnL1+yvrWhbcjkPO7hIRMTY+To8uOO7eHc9yjaBuLEQCzMI3bAEJu8inU5dvE3/yMzMwVRbwH/wwcK+UYzbFrfPwPvC94cH3N7fBzFc4beN7AMn4XF/xk3KBm2IUjrH3DcQ27fvkmcrHHyoc74bc3SYmaO+ehpn2Gb8Saff37NMB3sz8o9rTVo2SwszCPX1li+55Jl5bU3/pBhFRaFRb6q+aQZ1uP+/TrrxQxFlnGz9XveJD329j5l2CIr8zbreZtaVON9tcbsdVWoZNiD1QdYpsPc7Dxff32C4/6O/B/0sQ6tDnDHdtnbA28+YFNtcde8w8yMzty+ePGMJ0+uNMMeOPzK+RX7B/ulx++nDHvV97v9KevPItDCMOiFIY1GTevDAO1OiFSSotCWEY16jTwvUFL1VduFZZTwD7Ftm6KQJEnaN2p2HAepJN1ej5Gbw0Rx2WgszL5EhGmCEA5+1UcWBWdnZ2WGWX+Ps14PUNy6dYteT1ubZGmKaTv9cogwDCpBFWWYuJ6JrwykFP3snOu5FGmOlFr41PZd/FpNj7jKMnAoCkwp8YOAsHVOxdbq9GbZ2I+ZkYUh719+i+sPMTaxWAaJaXm+esRZgl/xkbkOgIQwtbJ7eT5sxyHwq9o02wo4enuE53p0u9cvfJvLqw8MNLRKf61a1+dcqb54puPa2JaLUoqz8xMGGgOkacbZmVZEHhxsYggDhSQIqmRZofu4Oh+tfoKgytmHfaKLI0zTwrLAqXg4vn54izzHtitakDYvSGWG51VwbO9jwCcEWdrR0hNlxhFlIEp1Z6PMfiklde9XWW4V0A8Mer2QXqQFPh1H+0YOD48gy5IdSpHLQguqpqnOfpomhZJ9+Y++qh+KIKjiOjZRN+yLwCq0s4Bf8Tk7PWNwcJA01WXI6+EAANd1MEudNEph02vD5yTNiOOEwUEPA62pJUybt2UfmCwktlUhvTzXO/RCa9oYyH4ptVqtUUhJksT4tSooRdjtYpXwQBk6syYVURQRBAE3b42V0g76IC3TxrYdVKm0LwyjtFj6aH7tODaWZWNZumm+3e4QRSFeWZ42TbNv0/MXtRKD3vgfMsxAzs1SvEgwFgwa7z8ybG9Pn/fZ+e2SYTb37t0rGTaJo31yccwDZpWi9fQpI3/9N5phIy1EsoS5oz+0vDyPlFuYts/G+jXDbsO8/vnZ0x7v3r/l17/+Nbdvx7jufbI05f+++M9cleWQSmBQCY5RRpP73ipP3idIKfAqJcNeuxTGErOz2nh3/+iQL3/1ALkxqJsIgY1iHXN2FT/8jKedcx78SYY9of7yK+767zmfWGTkE4aNjN4uGfYEmc+i1AY7OyYPHnjYtWuGvSc4rmKdV6jNvWVktM3rwz9g2HCLiQ8Gm67L3KM674wBVPwc29IZCeeNjW0dopQiHBrl5MMJyctXNJu6b/C0KJA729yel3w2+oi1vNB9UKO3MA71oEMQHHP24UWfYcvL8zgVjw/tMrOW59j2A0z7oM+wVe8Njr36kWGrq8y2O6W9meLwENjcRizoc75gf8Kw2VnodDGtXRbnlzm60uf86dMn9KKYz6t3WfnlfaI4wrL22VjTPVrz94dZ25hFbnRJJieYmjrD2jUp5iT7B5ofcXAbMT8PhwcEQZXDg5tkWcjerr5H5+Z3NMPevOVssMmD1Qe8fLnB8rJNlr3Sx3LHxj10MPcsOtMduH2bV4/3+gybmNQMu1cybM86xDPv8fZYlyflusRe1gwbNS4J10uGpZJV55phn7MuJULE1K4ZNjbGq7XyO5QMy/Kc+TlFEHzGX/96jLX1FtcMC4IP2LaDfc9hKwPHMHgbvCUMr/tQFSuOjVq+90cM+6HzAwBLJcOU+m9gKv2vuQwDBgYbGEoRhrrc1otiBgcbWMIq/QYzqtUqQph9n8JK2bjsuG7ZFK2Dq2o5lXjd4zJYHyRNUkwhGB4e0RNT18GHbevpOHT91zAMrbZ+bQUkLNJCN/MODTZRSjfcq1KcFKBQWjTVq7hESYLruaRJ0RekxJDa9ibX2ZNuq02WpAS1KlapMWPZFqZpI6WiMdSELEKmXUTf5NdAKohblxy/+h1OUEWJoC8WGdRr1M1Bol6PAt2cnaYJYRjSaHzUrypySTvrkuUxt26NkKQpsvwdvbDFjWYTQ5iYlsBAEEU9hoeH+1omcRShXK2tVKs1aLda1BuD3LkzqY/Dsmi1LxkeHiVJEqKoR61aRRo64waQdC/pnR4gVEEhhBYe9XwMUeqUAAhKkUuDwA8AqVO2aTksUeS6aV3piS953ct1beZs2yhASYOsKLBtgWVCEqU0yiDJrwQ0B2+QFTlJnNC6bOEHVYzyAbJtE6TO/rhZQRh2aTQaxHHEm0Odmm/eHMWyJGmWkiUJHZnjOG45xadLP7LIEMJk+NYIjmPT7bZRSv9egHa7VZqnW9i2hW1ZhN2u1jkrz+ng4CBCKD580AHt8PAIdhlExdlHnTPHcUo3hQwh7H5wq5TUAqaeR6/Xw3EcLNPsbxYKKWl3OgjbhELSbrdoNAawHJezM71Ld20bP6hjGHpzoacP434GeWBgENvWgyOXl+e4rsfAQIN6vdrv8xKGQZqm/5/sK/49rIoHA4NfYqjNTxj2nMHBBn5lhrj4hGF7JtO5Pn7XWSF98QrHddnd3aEoZikch0d9hi0DW58wbIerqxHe1QocofuBnP19ZmetjwxbMHhYCcDQk43PHyWk6xnPnj/nV79ootQOioQ5A35/nX0LZtjYuMQLDonm7uJuXTNMC07OL+SgTPK8YGd7m8nJaR5/2yKoHbNcMuwzu4bp+jy/r2isNznIniFTm8mxkmHzmmHPW7/HfvWB9G2V7uJn3L2j+VOpHVPftXn21mJycouz5hCVhyXDVkqGPZOs55LprEvWmuDWrZyT0xRp6HLc6PhtzG0bwzZZsgSGLcif9Rj+1TC9SJePJu7c4fAw0Qx7lyA6bd43BrkTTepzPiBLhv0tSfKCbtRj57jKrJzj7txdAOLu1zw9PWBRFbwSgm2xzWfeIEZXl0Hn5uc5CLZYsFbZZJvgyMOcX6T35PEnDJvmZZIgp7dYshaZnZW8fCGY/QOGbUqDqaJgw97RfrVpyj1Pn497lQDvF3/FqyLn6PkLLi8vefjZIybvaoZtbkqQkne1GpP1gjA8oLHwJXG3y56hv8cvJxOsTMJYl277O5oDOc7wfY6P9XP/7n3JMMdkutXGiSIWFkCpWWo1zcF2u4UtS4ZVNMO0yLe+v/YsC2twkPNPGDY9XLC/WzJMJtz/hGGbnmJ6OkPIexy+LnvJSoa9ee0RXTNsxsTQA6cU65L26Chi3+TFyw3uThzz4cMJlnOfs7PfAvBD2+Zh8AWTxhbCgAPDIHoWU2R6MGDgq1/QsB16vadcXg6VDKtT/+LRHzBsqz+89VPWn0WgBQaddhfXtfsNvp7nkMQpl5cnpGmOLHfLUZT0M1pxFJUmy1U9cee5pConijXo9Mi/QggDwxRlWTGn0agh5XWaWO+68rygXtfK863OFUNl2c/3faw0JYpD0jQljhO9A/UD7NLLEAVRt6uDKQk5pp7IK19jWZqWO3k96m+Y2ufv/OS8n66uNur4tRqVag1T1Ig6F0ijwFD6YUh7EWGrS17kJK93CAaHaU49Ql3fnOX0m5QF1cCnKHI9NWbb/YxWmgrd75TmuJZTqsvT9zo0hUXg+6Sf2Le4rs/p6QmOq292wxDEcYJp6RemV/HLxl59TaJIGx9fB0C1eo325RVVPyDP9HVpHW/TO93Xc0QKbNfB8YOPzfC2h+XoEpWB9hpLkxiZS7JY7xiFaWIoo+yTU8jSW0+VwZowTPI0Jo40UD3HRqBtY/xBHQQ5XgVh2VRcF5ln2JZJo17tj813Oi1M0yLutKlWawwNNul2upilzAOAqQRxL2LoxhC542IJg7wouLzQ0zjVWq0MPiLCXojr2Noz0bT7wxS6T1ASxzHCgMs40gFTpF9AflAFFL1eRLM5xNXVFZeX53ildINleTQGmoRhByUlpmVjICkK7UupP6MzXcfHxzSbTVzXptuNiXr6WGvVOg7lVKcpyE2BUpKr1gVmmc38cHLE2OgEXsUnihKiOMK2rH7AqC2AOiildGbTECRpim19zCBjgCGL/lTvX8wyPDrtxz9i2KrnsBOnnAy8Iz3Lka0/wbBnEVtG8QnDbFK1xrNY950oBXOzk4idbQxzB8NYZHa24LXnId1rhs1g7u6RTxfUvxjg7Hc5LfUtQ7/UDHvoz/PSTYniu7x8ec5EnOCtejj+Z9hu6aWttrgz9oA39Q8UeUY+bWJt28zNf2TY7u4uIFh2HlJUMqTa5Pwk4eQThh29eEbFDzB/MU/0w2fMLrRZf64zAfZpRHhLM+zs9Q7J6TAz04LNHc2w5sgIk1Mp8kXB8Vsf833OohI8n7BpHOjnenxpkaXdfbI053DvgKXlZRYWckQ5nr8b7REEAWk2xT3TZH3rmmGKg0M9mThb7DAhJbt/wLANtJBoEeWs3LvPlgL2TD5fqNEuruCoIH+he8Va7ja3T212gHkFuCs4/hULC9cMe82yU8WyHFZYYS3LePL4B2bzWV71GZZrhu2abBlbzM/NMTuXoHZKWQXXZC2dIG46HBVHeM49Fud3aLVecHTzfwAgWK2wbNk8cF2ku8LX1u/4UK8yUTKsG2qGTXTa7GQ1KpUmrhWxu7OLeaIDT/PGOHEv4vzCJ8+vGfaGsbZuED/+hGGXt8c1w+IPWOaLjwx746MMSRw/RfTmuYyfMZU7WGUQ7YsqAsXzP2DY/VXNsPXc48bAL/sMW17eo8glRWH9Vxi2T1eOcqenDcdrS+8pij2Yn2OLRcw4RqlZrm5dYF7pbOaHf/oHkr8VeJWHRNFTbsUG9qzFka8ZNp0X/PD8B+aUYnD5DMNY5O5kBRtFVDJsa3uL2Vn6XrQ/Zf0sWPrz+nn9vH5eP6+f18/r5/VvtP4sMlpa90mUPUU6lfju3TGjo+PkRc7AYEPrJClVmh2X6cZIR+1RFOF5HpdXV1rf5Np42BCkWUrga+FTrelU1Y33ZSQe9XoYQmDbeorQth0qlaA/sdPr9Qj8gHqtgZSKSsXHFCbCcn80FZbFMV61pr33Mt2L5brXGQeHKIpJkwjDMHE9l2q1orNEfa0kCQKisIMwwLE9sATS1rFwEvYIO12yKMMRBh+2HuMGNbybk/r/L7S+mGmZFKqg4lR0CanICUO9M0nSlKrv4rguV60LqrUqUilkP5VdkGYJeS7LUqGiUW8Sxwbt1mV5tbSBt+MGCEOX7JIkwTR1v5Fl26RpRtrtUq1WMQDXdgg7V2RdnTJuv1mniHqkuZ6wcSs+lm1/NOk0FEWekyUZwjQRpqX1yUSOMOzyuwqMokApA1nk6Fqv6GfntPdfQp6nGIbCEII8y3Bsm0pN92KYlo1hGMRRD0MpfF9PuFz7AwrLLKUKXJTSQqt5kVPxK9QG9ACBBJpDQ1hlqjyTEmFaOKUFj13KHSRJjCl0hmeg0SDLCor8ekghpFqrcePmTaJuSJomRL0ejVL+QUnFZeecihuU1kcOgwNNslyf8yzPOb84o1qt0mm1yNKErEhoNIa41h1rl+K9IyMjOK6LZVk4TgXbLvvAkoh2u90XKU0SLUJrmhZm2VA/NjqJV3ExhU215pJmOVma9EvC7dYVrufhui5pmuI4Dr1Q22RdXOoMX61W0/Y8xU9Pu/97WN2s+0cMO313jOiMkzdKhn1YQ6mlkmEHgGaYZJ4osvA8j5vDV+zvT2IY17Y0O8TpJG+Fwf2De1wNtzg+83EYjQAAIABJREFUPub+/fuscc2wp3QXF7ELB2U62PZ3nFSavH+lf377dhvLvGbYGZUHD9nd2WVv75C7JcNeVyCLY+aqs5iuy7NXikKuY9u6/GhZDoWcI01SkoUU13L54pdfcXD4mtFrraRZibGzxZ3xDqLb4eDeaw43U1Y/18/bd7/tEe6MkYXPUKsGDR4TntSYnZkEoDmSE8fTLC1vIcQMx0fHOHOK5Wc5W2iGvUiHeLSwiMM2t1s3UEg2Njf7vZIzMzN4r13yPKcV9eiySaPexNhuMXJH9+F0MbD39zHdANtYQs5K7uZ5v/3E2t8nzTJajx/z6FGVIgN33yGc+JZXj8teVFmwHj2lyCXKWOCw4uLv2yyuaJufLeMdS/k0r148/hHD9sQu9w2ts1YUgmxGM2xjQ/fwbm3tsFBOnG4qSZ6/IF87xrhqYNg75LM5B7bN4udfArBk3cMwDJ5HTzHSOXz/IfmrjMqKZtiXvzCR6+tIL6cxN8imnGDt+XMePHxA53EplbO1xVn9+rksmCoZlpQMu7ei5Q40w3ZI0hkGGnWybIaiZFAYPue4VqN68ybRa59bI4Lodo+G+DHD5t0AU0peuA43B37ZZ9jKjxj2XcmwuzQaBvPzmmFPn2uG/XcjIxy4h1iWg3Pwhvqcrh0miVsyTL/rkiRh/DbsGnss3VvW12VzktdvXJYW96nW6rx8lTM1eZck0b13l61zJicTdg5dptNJDpwNwifjrK5+ZFiWZQixzE9vhf8zCbQs28YyTYSh8Etl+OGbw9i2xa3hMUzLIi8yhCFIkqzfhOZVKqX6uCJJIl2qSJIflTJMYeLaJnmea3HJNAO0jhPoUc2RkXFOTt/juB5BUKXTafUDrVqtTpwkWJb2o7KE4Oz0BEybdlmzbbcvuXFjmCSKqNcGqAU+nVYLWRrn+n6doN6k2w3pdUMoVadMy8IvXda1l19KkcegFEnUxRIWpqchVbuZc3F6hjQMXT6MQo7XvmbyC32sUWuATBX41SqOY9NutXVTsql9vQAc2yGXBb0oxg90wNlqtfvaVH4QkBc6yDIM3fysS1QelXL8P/CrvH59gGkJKhWfblf3LV3LTCRhjG05WLaWKCiSmCKNyMNz2u91Pb/74YgsTZGF1Kr7bgVhuhhlalYpXSq1XE+Le+a6IV0WWV/eQSkDVSiUKjBtkzyTehKvhCXCwBACqQoc08QSAllIHD/A83WQ1G23yPMEz3WI0xQ/qHJ2fqplIyj9DU2TMIpwLC3tYWBQ5AVeWUoVpkmSJngVj875KWDg+0G/XBsnEWG3zcBAE9O0QUk6nTZRr1camkMQBMiiIAxDTNui3mhimlosVx+rYqA+iGEI8iLD9VwuLy/oht3++WrUa0S9EFMIhFeh5uohhfNz3WxarTcIQ23OnuQFQcXX7gLXwa0quHP7NpQ6Y/o8S3y/ytmZ/h2upxXeZflWK9IUz/X616RRH9Ben4YO/JM4olarEscpprh+FnwUkrQsI/+lLP2s/THD4gmLW+kY5p5FHvgIo/JHDFuRLptKkSTP2DYkM3dnqL3Tz/VaTp9ha3nO3ZJhSZIyPqaf6/fvutSCGien72m7HsFnj+j88B1TU/qFXnnzhjjNsJaXUNYUhpI0B2tYps16VyuuD7SnWL+RU4me8UXtb/n8qyN++M5mY1M31D/0P+evft3k8eMnmPY41wxbWl7+EcNqJydU6zGoY2aiGSyxDZ4OCmo3v+bidJ3ZBYO1IseJQqy18z7Dnn03wNRczNGxxcqKx8itEaKezZ7YYWpCH+uedcDahsXtOxP4gYNp7jE+Ns6rly8BmDQmyWckT58+ZWFhngVzkfX1dSLPY/pIN38HfpXXt4aZGDpj580O7acjJcO0ZuH0dM7+5gbWvWWkPNAMiyPyJ+eM1DXDzjdDwpcRckayGexQdQdZXGp+ZNjmPC/lMyzX4763WjIsZb14iSpNo5UyUcVdlJphydpmbXMLISx2PmHYgljk9+oNK0u7OJZgI9MMWy0Z9vj77zTD7jvEvU6fYd9clkGS42DOzxE+foyTr7FoLfMUg/W1dWbvrwKws7uLShO8yiqjQ+8It7Y1w1Y+MuzmcJs5muye2MyrMzrWOFHvAt8vz+lnAbOqYHdvHNPe4/2HJktLP2bYScmw6U8Y9jh8XJ4v+PKLz4l6T9gVgjnvATXX1Qz7WvNnqd7gVfiEV5bJbL7I28oRpmlyULJ2UhXcud2D7YhfKsWmUox22vT8UXbO9H384MFnmmHSZIsdijTl9aEHZbDWqMPObhPT1D1cyXPNsPX1lJFbmmEPHz5EIftJkp+y/iwCLQMto6D7Vz6Ka173QykUvl8jiRIykfd3w2mq7XhcxyXs9fB9rVXklFMKYdglSVKiRGc59IimQ6Xi4VY0DN+969LtdcmylKBaI44j2q0WY6UattBjiSRJimGgzXsVBI0bOOULuXfVpXN1gZQFlutRHfapNgaJy6bYJOlh5GY5eaWDvF6YkOfQ6+qGecsSuvkaibAEnl8DmZGVQZJXHeTm+Aj7GztIaaGUQefykg9b3wMwZrng1okMA0WA6+kJsjAOCctae1CrIZOUTvsK0RggT3V/2/XYquO4pcGoHnG+zlAEwVBfbb/b7XDnzl2yLC0VxF2yLOv3V1U8nyiOcF0bx7Fot7rEV8f0zt9wtvsCAJlmutfKEFhOBcvxABPDLJ3cLQ/HdfC8CkoqpKGnfrI4JS+vvRA2SKmnC6V+0QnLRF7vSl2fIo1QWYznuDi2SavXpjI4il/TYn6WKTCFR15IcilRhaJerfeFVR3XpShy6kGVsNSvajQGSNKkHzgUWUqWpKhqjRtDN0nSFKRuJgeo1wbw/Sp5lutMqmHorIfn9XXFUDpj0A3bFEVGvd7EcV1suzR1znKurlo4FReUwrFsXM+hUsLWq/i0Li85PXnPyOgYRaGI4x5IuHFDH6thGORpUmZlXeIowjTNfrN8nqdgKIQwsYS2Nkkz6Ha7ffucKOphGIJ63Scp+8iyItfHDAReBUMI0iwmzTJ8PyCKIvIiZ2R0FNC7waKUc/lLWp5RMuzAJpu+ZthDpuJEZ0SXFL77uWZYnFNsf8qwbQLHYfz2Avu2w4lpcXV1AIAIDfI8JUruAi+JottMTU1imqLPsLGxsT7D7lVryDji/NYtBsuMqDi/YEUIkkJyUDJsa3OLmcYNnPKF/PTqBcFVgNxo0Pv176kOj/Poy0GeP9HP/Yukh/HcZNVbJa4mP2LY08efMqxLGs8iLMHroz3mV1yyWI82rj4apNcaQUrBrLQ43NyjM3/JP/5f+kU6tuxSxG3uhFVevMwwxQGFVMRJRKdk2GStxkYvpdO6QHw4IV9YoFq1Gb71NwCcnR0yMTHBwwcPWVt7ycitW8zMTPWHoAC6L14QqSqOfZ/pacnG+gZZZvYZ9ua1TzZ9h/uWgeMs0279lucXx9w+f8OZqTOAG2lGNpFC/mOGbe/q/irLfYRzv86q90AzLC9YjzKm4kmSdR1o7QibGbmBIeZRswtY2zssLpvI3ZJh9x8SXv2WOX8CoXoc2CZZybCjdzq74larmIur5MXGjxm2rwNCd7Vk2GdVwich7sM9Go0B7k7ehWsdKJmXDJOaYZ83YGOD9vefMCyvkhs5mBabhkFvZ5d8eooHrtYVY3MLy3JI4qcUxRT1+hkH7n3m7FL3MMu5+raF88AlUZtg2Ry+PuCm0Axb/Q8PaV3+ntOTDyyP/qbPsC0JX3zCMCOlz7CJKMI0lzja1++NneglK849xKKFJUzuyZw0K+hubvQZ9uzZUxYMQf2LL5mJp9lxBFmRc7fsm1NeBUPskE5NkiYprveAO1HEWpHT7uh7cOjigvWiIDF++uT0nwXtiqLQFgKRQVw2svu+j2VbdLpdbFs3btuWxUCjQaujmxqDIMD3PN2UW2pGCSF4//4dAFJJmoNNrbatdObLtrWuz3V90fMDbNsmqDZod7qYQjB2+w69crLRMAxMy8a2TFzH0d6ChqDXucD2dWnQizooFFma0D47Rbg+Xu1Gv+E1iXpIKcmLNrbtYwqDKOzSubr6RLhR4jg2nu/p6cCiwHFM/Mr1JJ5BtXmL+uAH2hdtDKMAFO92NcRkUdC4PYfduIVUoygl8MrA03I0kG3bLkuwOUHg6/KVKjBKSYT9/R1u3Lylp9wGBhi+MUK316Uoir6/ZC/qUcicLE/odlvUqg0sy6F0MNAlhrxNJsBQBmnngouDl3RPjgivrgCt8KvQkhGmpQMsZRj93aDluTiOi2XaKCFJog55EqMKhSitOLT9i1aDV1Lpl45pYpeZJikL4vYFliqAgjRJyLMcrzaMWzY+ClMgpUIo8D0fy3JQpiynHXUmodW6RKAlKaTUDetXrRbNId1oHPgBUiq6nTatbgfHcWjUGn2GdTqXVCpVbR3V7Whh1mod06z273XbdnRJ0vOxbYurdgsRmv2BDQNFszlUWjYlZKVa/3Ww0osuSOKYGzduljY6Fr0opOJW+Dg+W0p9WLaWkhBCl2PLezRNs1JUNEWaplZgznKkLHCdj9m7LEu4ujrB9QKEaemSa0XfG1GvgyUErudjBRa1qnZhUDF9yyIQKFX05S/+Upa8ZtiwQXymr+u4/0Iz7HGMfW/lxwxb0BODgWXhv37N5MQdvfHY20OIRd6faobNzs1SrdaQxas/ZlipmO2dvcW+O/kjhnV7UX9S2Bjvsrtng2Wy6jhsHRxQH2xy2LnA9nVp0Iveo9ghSxO+PzvlK/ehZtiyfpkkz3pIucHVzBz2K5/dYps742N0rq7oXB6VZ2EWxznneS+kmJllpt6kdWXiV3TwoVig2gw5LJ4zcjGi/TDThFp5L/jJb+m8n2P/4hYP52ZQahTPr7ChJHtPPgpbLi3l/P6bNcbHJ5iyHdY313HdBwDYttDDJnsWf33jb9gudjg9Pef8/Ca2rZu/B2dnmAne8uLFC8bGbqFUwfLyCmvF9ZSvQ/Ht78icexjLBi9/0AzzTo4Ih/VLPxHbzDHHvnWAaZksmDab2wZWRR/L8qqLc+BhLf8phunGbFVssLlZML8o2ZSb3F95qBn2oFTrl5K4fcGeess8M0wmBZ2sSrf2K9yHmmGLtpb52VAC3zvCsioocxbD0AGQKUy+++53COY1wzY3mZ6Ouby8+IRhnyFll26nzX/57Q+sOA6Nz79k59uv9fcsGTaT54Td0ZJhBebJIJvxs/K8r5AXa1Q8n3v2EN+29xDfXPDNbMmwrZJhxxbe5ANm0hfkyUeGXXzzjWbYyo8ZJn/EsN0+w964LqnwWLKOPmHYFGtCMp+WDHse8SJbKxmms3fCNNnOXjDz7T/hrgbML62wlit8cc2wH7gTClyxz1YwR632lgM6LE1M8vr1tQ6bQKkZMLyfggZ9T/3kT/4bLiEMvEoFA9Wvk2d5TpHn5IX2Vgu71+Uu0e/2N00LKQuyNMXzqxSFIuy2S19DGBy4SRR26fW61BsD1Gp1pIROp41V9vKMjt6iVqsThm+xLJPBgSZpGmOVHoMoiMM2jYEmSkrCXg/LNvGCGrUbetqhd3KE4/pahR2TuNulUh3ELWvcUuo0o5Fm9HptTEOLsPruR189mUpkpohCrXZvmjYUBap82To2mIbN4PAIUbdHL+whbNEXk4y21mmcnzM8s4iSYPoDuL5Hnhd9c+Ju2KXRGKDeGCDqhUhlIA3VL6Papo1Aa5FEcVLqPVkURd6fsms2m8iiIM8tbMvDcz18P6Dd0bufVusKlMSQBWnUJWmfEF2dIvMcP9BwSJOYMO6SF5IgTVFSYToVHF9PopmWhZKSNOnRa5/S64RkUYEwHSjvD6NUii+U1FOllqUzYkr/POycU6RakTzqhQhD9/fVbo71ZTlkVtBuX1EUBcowGBkdI4oj8lSnu23LQimFMLXFjRAG3W6XwK9QCz5OzVUqEsc2ca5dBIRBUNUl3zxPtXVEkuFVfPygSpamdLtdKpWP1kdJklANqlimTS2oY9r2J4GYTafT0dpkfo0sywl73X4AZNsON28Ok2aJvm+l1vlyXU8Ho2irF8dyMYQgy1JkocjyiLK6TRT1UEri+z5n5xdUPBfPcwl7IRW/0v9MHHcwLYc4jrDLANW/7mlDIXPts1kUBUmcagsUkdLt6s1RvT6AlCZJ8pclWJoaFVYrDzBQvNzVuj5rec6CylkrcsxXL5m6O8FRUMXc3WG2tFAxTQs5O0PW7fL66BgpIex+jyilG87Pzzh6XaHXG6beOKFWq7OxAaOjbfZC/Uw2Rm8xPzjAkyf/D4WUDA40mZ7KkOqaYctMjHf4sL/HpoLx27exbBPHmeL/fPyPgJ7GdlyLOImZjUzix495M3KH+0srADxzN0A9wLYznvbamMZddnbXMS2L6XwSAJmm7GWTRGHB4kWXl+Y+jmNgu5o/K/degWHzi+ERjrsWt29PEL96xVqpyG6/tGgMaYY9+RqWHn7F4dFrpqemWS8Z9jjs8mXjK+qNH7jTC3n58gXSUEz0zgGI39mISwPH1Qwbnhymu9dlZibHcbQo5ebWJicflllaiuiFIav3V/GPAoySYbfGr7hSkm25zlw0w92REyqdQbJjh6O3WkZCJBbx7ZSoiAlepmzeVDjVCisPH+nrau2xOWtA8vQThs3wfPeAeVP3cWUqLRlWgFBsW3ssmDYo3U8Udv6ZIr2D2HnPi95zhKHodsf5T78eY2JTP9drxiva7StmZmZQNzTDnj2LyFN9D3bbyyg1hzBFybCEbneMt0cuSXwMgOPMa4bdM3Hyv2HAMDDE9keGTaeIHYO1JGP1gYPjVHmV+nSff/cJwza5WzJszzwoGTZA/KYMxOo2nc4BilkMarx6pRl2f0UHQPv7B9RuDjPpJ1h2rc+wUddj80RLL4yP9pjbu8+hcEuGzRLnkjH9qHB89Hvm1CqG4XP29QVvvEM8z2X89jiDAx8Z9uRJhw3LwXgeYbsvebj68BOGVZHLGWLHYK7Y4ND1sEwLIWBsbASA9+8HmJ3Ncf+9CZYqhVaNtUycsowVxzFpkmgvuzzTvoCFbmqmLB+FoX6BmqZJXPqHSSWp1/UL3TIFXkWXHrVCfKmrNdggKoMLnbXQukZB4GtjWNPELbNAQmhRxm6nhSkMbMskLxS2EzB8Vz8w53tr2stOxkRRm3oaUuQxZmlwLEyLPC2olC/JLEn7GmDXhs9uoJXmTaFlEbI0JopS0lyfj8K1cUyFaXvU6zVarQ5R72Ofi+04JPFbojjmLoKBsQWi0KfiV2jUSyFQKcnTVIuWOjZ5rvWfrvt0BptDKCmRStFqXxIE2gjadd1SuBLalxf41Sq25dIcCijylKvWZV/brFFvIKlwdXGKiNrYpNwcG6fIIoS6NgxPaJ1fcXHWotO6wqvWqDRH+zuTLI5RRULUOScN20SdmEJWMF3ZlxqwHaeUr7CwHBPTEORSkiX6hZ71zlFFgrAsXNehyBJsp8LgrTv419ICBgjbwnO1DVMSx8RhD6eEh+XY2J5LlmS4jpYA8f2AoFrv23UkaYQtTFqtFh9O3jM5OUO3HRL2dP+U57r9IBUUFxdnmKagXhvoW+ikRaGzWnlWOhQIuJZaABzbJbVS8lwShl0cx6bTSRm6ocvbaZJyevqBwWaTopA4joPn+RwfvybLdEDj1wYJfJs0TfvZRKQiuQ4qbZ1FvGpdUit9H3tRgutWdPCMFnh1HZugUifLU+r1BrJQXLb1oITKCwYaddI0pZAGRZFzeXmpe7euhWRL5wbLuj4nfxnLBeLnMXuWyUrZePv9D495WjJsKp/i3Ye3zBdz7FmCrS3dM5KmqWbY0hJqYoJifQ2pJF+UfUv7+xeaYfMK563dL4GcnjawLJ3lWRKf02q1mVOSSuBTRCGwxOHBAaAZJoTJxMQddncM9ve2mZ6dwz5422fY0NuXvN5zyBYmiKI13qchX01P9ANxzTDBm6N32PZNpu6mvDn6jDR5gTGv+XG472ILgSm28C2Txclpsixld38PgOiZzeSSIuutUq+/ofXdDzxLU0oZJOwVh/2dt9yZmKD9bptNQ7AyMIJtWfzyF78AYH1jA1WVfPawiuXc40G+wctXKfai5vXg0RCbUjKrFN+1Lwl2j5idWcCyDsgLHWjdbDY5On6FbS1phq2lXE1dMlrVDKsdN3hUb/DtxSlJ65+xmeTm2AXFzYjOpi6BF3lCa+hbFs4snFtXXI7XqIyPIix9rK/i7E8wbAQzinlp6RaKa4bt7x/iOhVMW7CBJMt0O0ivdU58dYqwLO7fX2H9VYLtbHDausPif38PAH97C2FbhFHG3NwcSRwzEfZwHuismeXYPHqkGXZ4YDE9vUyeZ9QbdbJCl+3upj3sRZPHJcOYnCH8vvWRYeMu5uQSrK/D1ibfdDsfGTapdcXSra0+w+6UDLPmFc+fa4at3LvP4yc/kOdbPAkXWFm5x9df/5ahsixYq9W5urpAiCbr689wHIfV1YccH7/muPTjHB4dJFjZJ301/WOGvfiEYSsu3373e6q1GnNTM6ytr+G6Xp9hT58++SOG7exaRPE1w6b46sv3pIspRW4ws6sZ5uaSnbJx//7qAFFU9Ifufsr6/x1oGYZxAHTQxaNcKfWFYRhN4P8AJoED4H9SSl3+S79DCN1Y3Yui/i6+2Rzg/PwCDLSBbhxrr0HbIcv0A9HrhQiUnnTyPKI4JUuzvi1Nq9UiDNvcGLqJ7/m08w5XVxfcGh7Bu/bdS9PSkqRBp6NvIN8P+iKMaZoShiFBoA17PdfFdz1A4VX13zGcGsLK8U2DVqtN5/Kc5thk37vvJHxLkkTkeYpXCTAwtC6UlHi+fqlXKg7VagACemGMX3XJ86zfTJhlMbawEJaLaTm4FZfzdgevbAT0fY8bzSZhlBB+OMQzTdxqE8tuoMoXdpzEVCoevbb2MFTCRKGolKW0y7MPVCoBhhAElQq27dBNepjCwO0LvDqgFKaQ9Fqn5HmGUwn6wa0sMizLwTYE3ZMDhuombu2Gzp6V2bc8i3ErAcJy6Vy0icIOftTtZ+/yJCSOushIBz5JIrG8ACFMVHHdDK8wTG2sbZoCVIGhDGSpMi2TCMu2EbaDUcQUaULQaGB6Pmn5wJim6A9TKCUxBAw0m+Sl4a/tOGRpTi/qIQwfz69ALHQWomxmVlLSiXokacLg0BBnZ++5cWMUv7yuURRj2zZhGBJ2O1imSRDUyHI9ZQTgV6ukcYyUurk/zVLyToH5iT8gSuE6bt/2ZnT0bn+z4HkVsizl8uKcarXG6ekJzWaTIKjiecP6GTNNDEMhLFMru+e53riUGcBCFti2TTWoax2iVAdlrvvRo7FSCSiyjCRLkaqgKDcu17ZZ3TDEMPT3tWytDl/kcNW66u98haHNyI/fHf5LOPhvuv41+AXadPlN5YipO3f44bHexTebAwwN3WBre4d3wTviOGXb2cKzK0yVDGvfHkegOHz5UjMs0wzb2zvQP2+3CcN/5Ia8ycNHn/P94x9otTTDVq9994yUIt2g9vmXdDo/YO4Kjg5f94cU0slJxsMQy3bIZlJWXQfH/cDWB6PPsJ7zDmHZ+JU3bHynqNbO2dnaon5rEoCZ2VnisMfubpfVB5O8eLZNkU8zOzvDwaH+rp9/sUL1+C2IJr3xCXwT8rVX3L+vWZtlMbayENYhpvUat+LSa3eQK2XQ4A/wt785I4wKxhsu5x922K42eWQfoMpyW5zE7L8+oNeOWFjsosRdpFK8OdKln5GzD9ytBKyVDLt3b4XHj5+y6qxwWMrtt9sdbOceu9sb9LotpvMMZzOgXopDbxRHLC+vcO+bc7r/dMDQF0scvrtAqgWGf/MJw67+jqZ1VjKshh91ebFRMuzun2LYDouLD/tN1PveAcabkmFLAoySYc/135i9GyHH77Gztc2+ZTE/lyAqX5YM0xmrGSlI5CwV9Ra1ucF2liKai+QH+tlccQ40w0ZuMTXlc1ipkMQC/1OGzUo64VMm0pjJoUWys/fw6BG+1FZAd6KYfdsllIon3Q7LS5ph6zJH5pvltatiTMRIpVCbmmFr3/wOU5TXLQ6Zn5tjd9dEObC7Kxgd/Q88Kxm26lV49eol9+7dY3l5ia/PvyYM2wRvjxkZ0aK5J+9NBj8oFq1dlJxlI895VShm+wybYX9/n0fBFwSfBaRpwur9hz9i2NDQMEU2RTIlkWqdmfo0W1vryFJAuDs+Tqs9gil22NvXLUPvcxCfMGxn22ByyupPTP6U9a+lo/V3SqmHSqkvyn//r8DfK6XmgL8v//3z+nn9vH5ef47rZ379vH5eP69/s/VvVTr8T8Bvyv/+34B/AP6Xf+nDWZby/v0xlu0y2NCZEe0MXtWaVcIA1yFOUkzT7u/UHMejGlTI84wkiUjiiMHBoX5WrN3uMDjQoFatcXZ+Shh2GGwOg6IfnfaimE6nQ5pneJ6PbbuYwsAsSx0nVxfkeUat1sC2PbxKBSEEV1eXqLIkNDA2wcXBK+7cHsYwBL0w4vLdEXap3N0YHMS0bNoX54g8L2UHFLJIyZNyoktmyDyj1mgwfGsYQ5ikWdIvD7bP39NrX2EZBUpoL8J6EDA2rjMWI6PD2lZIWPR6ETK+Ij7dxQuqCKPsFcslaZyRJimWbWEobZ9yeVGauhoGhu2QSUi7l8joAiVzkiJBlWU/wzBoRV0soTAMgXCrpE6A5ei/IRyXWIEThwwN+DQb/v/L3pv01rWlaXrPXrvf+7RsJVKUKImdSPXSbSMqs6LSMCrLhicGPPHAAwP1QzzyzEPD+QMM2JNCuQCj4ERWVTgjbhO3UUeJjSiRIimKPU9/drf28mBtHkmRUZGRlZGuQCLW4N4L8erwnN08Z+3ve7/31S7oMkMW3mV5nuE4dnGOfU4OTjjb28L1das1SzOE5ZH0+qSJRKEHBKJub6DPczwX27ahVZMTAAAgAElEQVQKHZIiVxkqjckj3ToUSmI5NkrqsPA46TM6NUupNjxov1iWSalUotloECcJ1WqVbqdLs6XLzPX6MJVyFZVLkiSh7DjESaonvAptXZZnlMtlTMukFFZptU45Ot4n9HV78rxVV6nWOD09oVIpk2UZMle6OkjhYp9ldDsdwtDHcwMyOx941GjfFhOl9GSoYSi67fbAd0zKjMnJKfpRhGUK6vU6sogkkkV1LkkScnIMYZIlCaVyCWGBUQwXJEkPA0M74Udam2cYkna7hVPoFZUh8ApPuk6nw/HRO1zXHwwPVCta9C9lRpIk+L5LfaiKYYpBiPL+/gHlSplabeQ/hoM/hPV34hdAx9QMGxoe5u4dHRq8u7tDGJZ4WCqzIQzmXIenv8awra1tSqHP0tISz18s/0aGffbpJwwPDXN8csTZ6RGfDY3hzs5hWfq4P+5HjLcvkmQHeNtg++cM09WEw/YRyTnDNrfx7t1BiA0mLp4xXNfn/y/jy0wmz5kaHuOsJng8YJgWy8f9t3QuTjA9fYU46g0YtrqyPNC79rtd8rEx3h0c8KDZ4KUwmR4dp3/8AcMmC4ZtGLi3XB5O3KPT1ffb/HwJx/kJ6xuvebP1krv3P2Pn6BVZVEIYha4yy5m+nNL7IUFmL3i5liGlZHRkSp+Idy95aVe5OjNH0jnj7OUp028zmte/pVpUYA93DZr9/5VFMcuwIZBuicTZwHK0oD53XKKzXbaiM4xawGy9ztjIl+QrGSv7HzBs0uZMmHTCHZIDi9G9Mm8KC5tsJ2Nh0WO51ydNrqPYRsqcp93HA4bd8x4SLO2xHXzMsJnLmmFJTzPsxo1Znv7wLc/OhvjJn89y69MT8lXNjteOiVUqMT42TpwsIw4+Ztijeo+H5SqqtEeSTGNvOcQTHzPs0UjGg/JdXr1+xv17LVqtEdTxPqGvZQdJkjBNgv/Jp3zzzdeEoWbYtVyxuVkwzDPJXmR0JzqE0sdz7+LZq8hMO/Y/fy4Q4gaGUTDMKhj2Qh+vFf8OP/vZn/Ekilg0BfX6Z6ys5mAsYMlzsXtOd8Cwx1jl+wgLtguGzU33OD40eGVazP0NhumBjJmZBVzXLRh2m+Ojd7RbjfcM2y8hr2VIOc2lSfB9VzsOfMSwv2byUhnLzH4bEj5av4+NlgL+H8MwFPC/KaX+AhhXSr0rfr4PjP/6XzIM418C/xJgZLhOuRxSqw+TFiJZKXPSNEOZCgylg4qVJMuSQb91qD5M4Pt0upJ2u8HIyAUs0x5kEo2OjWrfq9MTmq0zTCGwTZMkiYmLycw0S8lkRhiGeJ6nW0l5Xvht6fy2czBGUQ+DgCTqI9OEsTEtho+vzrG3/oxuN6ZS1V+wSqZ0GnoD49cu4HoBYUXSOj3CQM9RpHFKt989PyB022e4VsrU1WvUxi9iuQFOYX7ol8ogE+LGIVEUMzx2gbmFmcGmYXxiijiJUQpKpZgozujsvSDPIsxAixrTqEvWayMMQa4Skn4Ty3IJQt0+qEzeYHRkjBiL7eO39HZXcR2HXCn8UL8PxwsIAxfTEgghyKRE5G2I9efIewlKJriOR6lWQQiTNItReYJZxOMYwsb3K+TDOaiUqOfR67TpNPVJKVWHyGWkJyQNLYxP41hPuTmF1qf4p1H4PgnDRKBQaTFpZeTkModcIvMcqQRDl27hh1XiRIP/YH8PgaBarRDWh0jSBNuxcM5F5patM74Mg1K5zN7OFomUlCu1gSWGhcAxLZzAJk0ims0WwyMjnCuQ+v0etaCKzBWjY2OkSYJSOcIwBkMbucqxTItSKcT3feI4wTQMRGFTItS5WNkB9KRlkiSE54L8XNFsNUnTBLPIBhXCJAyDgQ5MSh007pgWwoY4zgrNVXFebZso7mOaFmenx9TqOrew1YwKQ1gYHRmn1+/Qap1SqdRJ0hgpc0ZGx4rfkZHEKaYp6Pcjjs+OmbhwEZEbAxuJIAzo97pUCtPYP4D1n8Qv+JhhF8bHePDgHrX6CekzbWp53bL54fkLFk2T6XnNsNnHEidLOBvXx+xufZi9t7tsbGxw8WKDkZE/wTKdAcPmF25gCcFXpyc0v/+WGwsL2GOTJMkz4kSrm5Is5YXM8MOQ2/fukK+uFgzT3lK1wwWapk2jsUaaprzEII2maD8/YOgLzbA/ufpf8+N6zKNHR9z+5D53v/uRHZky0fgFADu1C7jbu7zttLkwUieNL2EguXrlKklf37cnB2d0fzjjjZVy4WqJzniD3A1wbmlB/c73Xaa2p4nHDokuv2M4/BMQe9SH9QPppSt/RpzEPDweY7X0DMtUTJQyvvm/v+XGXW2JMGpN8h/+jx9YmF8gX1kmfNLkteXSe/MpAEOTJj/98qfE6xbb2Vse767iHjvkR4o7BcPuegFGcItX1gYLYoEXUiLyi3BF20yYMuHlaYInjynVKpivXNIsZi1PMIX+wjaEwt+Jmbk0RlP5fNXb5lnnMmlFXzalgyFePIvIrmQow/yYYVuaDi8/B5957hgBq2r1NzJsdeU5czMSmc9wfbbxnmELBcO+2kNQodeucPP255T2lllxXnPzpj6vtYMlcmkjXi5Tulnm6ZMtki3Jg4c1NjcKhr0RbN2xKAUlni9H7B98zxdffomJnkp88uRbvvhil5VVGP3pT1lbXiZLc+bmfgPD9kL8uz5xvIr50mDhpj73G2vrSLmCc+sO7xm2zL17enjAsjTDJtOEjrC4GPXZuGRyLwzIMs2wlZWcl7bNTdNC2Dd/C8MkJ8cfMOy7iFVbb8R/8mWJXr/D999/Q6VS593+Lqaw+fIn2h5kRb5g+cceN24I+v3LHJ8dMzN7HSEsXrzQrdQgDMiyLsIMfxMWfuP6fWy0fqqUemsYxhjwl4ZhrH74Q6WUKiDGr/35XwB/ATA/N6sqlTpv3+5RrRY5dK6D79lESYpra0G85/m0W83BF4ztOHS7PQwElyZnCEoBrcbpwJk58FztpO24hEEZ27KI4wjX8wfiblPklCtVsjRBGAI/DAFFlBShr66LaSr6/Z4WVUtJp9PWm4BC++SWa/ilMqcnDaYuD1OplXGCCkExtWEKk0azTZrEOI5PmsTINAUF3a6+qbqdDnES4VoJQi6Tdk4ZuTKHKgT1KldYtkWEQRCWqNQCglI4CAU2bYtSECClIu61MK0Y0xR091YYdIgNgTJyvDDEd0NK1TKWZWMW2oTA9bDdEq4XUhm5QLTvIdO+dggXumJVrdZxXEubgwqbXCZFtUu/kyyLiROd5RhHXci1MNIwDBKp4XDukWk7Hm7gUxsukyQpna4Gthv3UcrAcqoIw0MoG2GeZzaq4qMUG73CukMYiqh7Si71TWkYpq64mToc26/U8IcuoDDwC/+z4fqwzqD0PFqtDlHcp1qtMjqibyApU5qtBp7jYds2rh9gK4VjO4NhiXbrjIPGLkG5Asrg0sQl+nGfrNCbSamfuLvdLmGpTBzF2oE5l3pEHzCTBJXnxEmfHAj8gKODd2R54Q6uDLrNU4bHJxkaGiFNU+r1oYH9Q65ypMxIkxQ7sPH9gFarhTAMKjV9P6WJTg1I0hjH1qmGw0PDg2rVu/09AmGQppLhkTEs0yCKE4ZHR0iT8wSGnp7KTDOyNKVWG9G2Fel55S0BQ+sFA98np4ZSinanMbB3qFbqWJZDkvzuHjT/wOs/iV/Fzz5i2P7+Ed1ehYNUb5LKrsOd20tEy89xX3/AsAvjhFv6+tlsOlybvgSs43r/4rcw7A1hUKa8VyWuRrjbDpnU1QIzu0p5psq1AcPKzKNoFgx7465h3lhiqtdj03aQcoVO55Qsy5hFTz/+8t1fsbP3DhV1ME1F5dMy93YrBPc1wxYdk0bzImkyxNqLFHjG9atXSeMPGPZjh2fJU1xrmrdymbHOBM+vNJktHp5n81le2C066y+ZuX6f/cNdPnn4gJfr2qLmnGErlTWWLt1h9cUzoiij2xrn+71fATA3v0DS2IZkGN/NKFXLNCwb09IboMC9qRlWfUvl5QXEpofMNMNeFQwbqh5x012kIS5yLGxGZIKazaAYUMiymCvTV8mXbmLkGU/yrzFeCubn58mknjwTYp31ddjc2ubimM+nw2V+kbx6z7ArU8wqg9evDxDz7xCqijBtlpwluKt1TdtigwXxgCxNuaauIgzFo+5fs1owTBnaUPi1LZifE0R5jZ3jFteZHDDsi8+GefVqBMfz6Pc7RJOTuAcHjI7oZwNZT2k+buA5M9i2za07AatKsWVv4d3RGr/292cc/HyXoDwOsy/5Zzcu8eTZGrMzHzLsOt3OI8I0Jb58Bdt+jcolU1MFw8yE7Jxhfc2wxtk7TopA+qGhAx59d8rw1CXNsKspn81+zuqqvt1mZmdYkRnx8nPu3r2L7wdcabXoGwb7h5phrqsZtlwwzOJjhkXxnnYhSJ8xfHoHq/meYZXp9wx78vTJRwy7du3agGHT6RXS+RV2dz1QR+RzCqWg3WlwcUIf02qlPkiq+V3X33ujpZR6W/z70DCMfwV8ChwYhnFRKfXOMIyLwOFvew0DbYGgK0r6z+IowTQtDDJMyyaKY6Jen3KpjOPpUcxer4cwtEjYtmxajQbtdhdRjAOkTooCXMfBMCoIwyCOYoQpyJKiLBpHYJiUwpA4SXFcj36/R6+I96lUqiRpgsxzLLTtRLU6RJKkpEXVy/FDalNXOVh5TJoYVMdGyTBxipFRy/apmRbNM4gyRZb1sW0LJRVWscmJ45R2t09DpkS9BKH2SHstyheLkjiCuHVSuMlblCslDNPCOrfDSFNcS1dVLNOm222T9juAxCqML23fp1qvYdk2rhvS73dRucT2zv1AFJ5fwq3WqY9MsW/Y9Fs72F6AovjCziIwtJDSFDaW5eC64SCOwA1DnDghifs6eqZ7BuQYQk+kgJ6CMoqxZr9cRQhBs9mhLPUGWmY5luNiWhY5JrnUYaJmbg7MeG3XGdhAGCiSqEvc7xZeUBTO+wZKxrpSVbmIX67TbjcRgxtEoZRDHsUEgY9lmyRxgipGrVzXoVSqYhiKOI7w/AADgVKKXiHitCyban0Yxw3I80zbRSiJUWw8h4dH9Xsupu2EMOj2uliWM3gaROUkaawjoCwdWJ0rRaWiDSdr9WH6vYtkSYJSIAyhY24KOPS7Osh5bGwMIQRK6QpSmia0C5M923ZIIx0W7jg2eQ5JGtNsauPDfr9Lt9PA9cpkMsdzLOIkRsr30zWGbeI4Hr4XkEuJY5mUSwHdor1dLldI06QYXHEohSXSNEGpcHBesjQhjvrIvwOk/iHX74NfAB6aYdvb24OWcBwliI3XGHMGZrBE1P2RqDdFOQzYqmjvqainK8auszRg2A8/PBow7MGDByjglnOT5H46YNiGucClaX0NXokiyN4zbEvpB8PxKc2wW+NVltMVVlZz3FtwNcvYqg6RPEx5XtgAfMiw58sGn/z0J2THr9ja0QxbXPKpme/47ts2istkWY61+Rp1+SrWa73JeRbXaHenaMiIf9db5rJa55NL9+ke7+iDNLnBldYw+egirgsPLt/XDCsqEs+fP+fWnbukScTrV5tcvTJN9LhDMpdhFcd0c+cdF6eucDZ+kVvuDP1KF2t1hSVP2wS8ReLu7MGDuxyd/RUzhk18YYfN7YDZgmGVa5dJ7IhLHzDszVaIuqlbvu7mS8r7RyRX+uTyOrPdGV7OwrphcPmFPl5iYZ7rM4IXaysDhrnfdSi3C4aFORtbLku3Fsl5QyYFa1IOhm8Aln4Tw558wLA5MG/Oo1aekZQ1w7xynXZ7/COGXctW2IgsdncXmb5q4ns7xM+e6s/i3mSvVMUw1piNZ/H8XcJ1gVKCXqqnVq3FGaobwzi3AvI8oNUa4/LlFZYTfQ1+8cUoa8qAec2wBWEQ9SbJrK3fwrAb5GqPSuUIgFr9zzltPCbbDlBHIKTgzV0Xc1FP6D7r/oBS0/z0pz9FCMHa2kviOOIwnWY6fc+wPEp5PWDYOkl6lWbzGwBeb15g5noVd/sdLfkIz1kkno6RjsTQDhG8XHrFzZu3MYVgdWWFm9YN3JrLo8d6gMX3fK5evcdm9FQzbPc+b9JlojhmoRD2v9hZJr48RU92/zYsDNbfa6NlGEYICKVUu/jv/xL4n4D/C/gfgP+5+Pe//m2vk6ucqN/Hd71BvIfr2RwfnSBlTqVcphT4hL6H53k02+/NRF3PRQiT07NjHNfBsiwqRQTP6dkpI6OjJElMp9vFtmySOMZybCrFZGJDnunKgigRxT0M0cN1XcbH/OJ3UPSVbWSWYVqCRrONISxKhYmnQDBz53MOtzY4PmlRGRmlMjIymCoTQuB6PqWaSRod6c2VAV7o4XT1hk+YJnmuyLKck3aG41g4jo11pi9UN/CJ+11s12NoZIxydQTL9gZ+RGm/Q+fsDCUl3W6LPE+RWUapOkxYOESjcp0FKQS9XqvYAFgIszD5NAyk0p5S9QuTDF+9S0tkmCp+rwfKJSLXFao47pBJhyTtaqd2wC+8skzTJktTDMtBZjEy7Q+qb1EUo1CYtoXnV7HtkMlpi+aZ9sJpnnaR0iSXipycNIoQQpDmErt4khOGSZbEqFwhswSZdVEqxbT84rMqLMeg22hycnLGWHVKW1ek2eAaAwPXs5C5jh3q9TqEQXkAj37UJcsy4n6EYZxr7UziOBlEqEDO0fGx7vvbLvuHu9TrY4N2W8kvEScxruPRbJzR7XW5cHGSwPcHG88syyi5rm4tGII0Sbg4MTXw6Ts7PSFNU8ZGR0mShCiN8ZQ/yHWs10f0xjpNsSxtY9JuN0nimFbhqD08Oky5VKVc1vYLSRLT7fdIY71Jujo9jVIgpcKydHxSSAnTNAcxPlkqcT0Py7ZRlkWSJLSPjwbnPosTWu0zPD8kDEv0ej0Mw0AIMYgsasUxzeYZfuk/f+vw98UvgP6AYbc/YJjPr45OkCer/MmfbFAK7hD6a2xve7r6x8cM++bbr3Dcm1jWIpUHugX13dl3A4a1u11sa4npOCaJbfb39f6vMXrGVP8S62KPZtzGv3Qb980bxhsFw1pgpHPcvJmxmq3Bb2DYwtwCM1cv89W/Fuyst1D5KJXPv6Sk9CZqY0MwM68ZdvWyybMnNszP4QmLLe/c0PYVed4gyxKGL86wf7LLk37Mg7Nf6uMR+MR9D9v1OD5tEEuwljxuVrR1w/MnHX789oxZOUF3skW/12Ele8Hd6heENW3NcNJeZcm+ycsNQe9qi7W1deYMC2EWJp/GJVaVZAH47MLP+DdXV2m9uczd+zFG+T3DNlYFhvGSa1cvk0mHixOPED09/biTSdYB+crmSrTKy6tTyBcx12f75IUZxdOnzwYMc9xPsG3J5PRXA4aNl0usWCarUjGznpNejsiF4PnqkwHDPhu9Qbb8DJXPspIlyOwRSqXcWNRasXW1huVs0r1ymZOXr2kc9Plv/4v/njzNWP2AYfcWLWZWc7J+j++//5F7dx8gFvRn7a906WQZcb/OyfExn3w2x43FTeI4YeVF8RpKM+zWsYtjX+Dnv/grPvtsjMsFw175JWTyHNe5zXjjjIMBwyq8ePGeYeKGS/osxl4SGMvLXJyYolzRx+vbb77WDPtJmWS5YNiaj5g9Z9iXdLttnj9//p5hF8eZjhscnjPsbJhy6YBa+aHWjSUJ3f4jng8YlpBdm+PKlRms16/JZ8qaYa9MTlLNsOhxn5e3DW7aNrbr8iJZpf9V5yOG/eKv/0PBsPv0ej3m56+zupbj3Sq+J7+fpdl89/9r1uE48K+K6AIL+N+VUv/WMIzvgP/TMIz/EXgD/He/7UVyKen1ewwP1QfalyiKBiHPvV6XONaGpZ1Oh25HH3jPD0jTlDB0aLYa+L5PpVIfjOdnecb+/jsM9PipY1uUSgGW7XBa5Lclqa6c9bo9RobrCNOk027T7+sNTLvdIiyFZFnO0NAwjeYJjmNTrVaQWWED4HqUa3UuXl/izaO/pt1oURoapVTWG5xeHOMFFaxE4pVKWJaNlJIs1karoPO3+j3tHZbnkpNGTOCag81JlsRYtku5ov2OTFMUn0tvbLoypt1pkiUJMs+wbBevVMX2SoNNgWEIZC7J4h55rr2aytUhvLL2UxmanKU0NIpXqeKXKly7/Tm7IiE+2cA09TsxhY2UOQqJZblaaB53sW395BsXrvtKaSsBMgvTNjGUIsoag3NuWg6uV9ahxgbUR933miTrlG4rJokFaZzhuDYq101Do3jaS1OJkAqV5yhS8jzFNM3BxW+aFkae0W4n1IdHESJHZjHlao1GQ0/qj1+cIM0knXaLcqlErVZHKWie6fdpWaIoRcdap5ak9Po96tVh4iIayRAGQ8OjGEo/cU1fmSVKYsJiEEIIQR71SaMEy7YZqo8Q9yP297YZHdE6HT8ocXS8z9jYBDKTZFmKlBl+4bhuCgvL00HMWaZd1Q+PDqjXhopjEdNsNnR2oiEQwiDPJSNj49TrQ4NjniQx7XYLzw8wbRMrNRkd1aPTtmXRbre1/41lFm1NA4QYpBcIwyA8jyNybYRwyfNs4MXleQHj4WTxGhZgIAyDdrfJ8bHWLVUqNS5PX+fvRKl/uPV74RdofcilqUucHL/GtvVTumbYK5Zsj8ePu8Tx9wRhiZnrHUpFpXF7Z400XfiAYW0ePqwjpM4pPMwPBwy7G9xna9Pi2AkIwi1Oh7SGZjoqIUxzwLAFc48fr0R8++Q9w+7dr9Fs5CwN3eRX333NTWeJ2qfDA4ZlrhwwbLn11/zwq+/5039+nVIRV5VmMbb9kMUbET989yNhucabnXdcuzLN7cKks3naHDBsJZP4Y1cIGn06hcQtS7Z5bfepVDyG5Jhm2DoENzTDFm/G/PDNd/SSaVZWX7C4dJOw9gVbu3ssVvXGfG5+gZVXK2RxzPNlzTD/k8/Z3tfHc2Tyv2LhgW7vHY0JzbCFfXa/3sA81gy7E9hIVlFIXr1+w/z8HHE8iW0XLvj9S2C8RCnFhmUy9/I167bCsmeJZjUb5p6DWLyJ679n2GejP+M7Rz8Y14dP8T3NMHk9w9mwMWd+jWHPV9gQCpUvM0vKap5y48YN1opr6pxhF9sJ2fAZF47GBwxLfvWtvoD/9J9iZDV+7J5RLr3m09pnqM0PGLYomFmVPE5jcrVGknxJrz/O0cEJjl0w7M02Q8Mpe2+1w/v0lVnebMfcu60HIRpigzyaIn36hNdKcWNhsWCYYmpSa8F2ghJHX2mGXV+XrMjnSJmxsa6P+Q2xiOHB7soqWXblPcOuFgx7HtM8bRAEGXOGwBDznOXHHDbGkan+f/YCuDrt0d76Hs+/yyvbpJea/NOCYVuWRfvZMnJ+gdcoJp9ohq2LDebv6Ba5bwSE4T4vupO4lokQLjMz13i2rCuV5wybn19gc/M1ILGsea4k37H77/V1PPewxt3gOv+L9d60+m9bf6+NllLqNXDnN/z5CfBnv/vrQLfTp1ypYrvn4joD1/OLyBAX1/Pp9Xu6l2qc64EyHMchzxUTE5eI4xjHdWg19RdpGIR6YrBUJku1KaR2Cu9hFhM7gR3Q6fQJSx6ZzOi2GkXWX9GW6UcMj4zgeT6e5xHHPmEQopQauMfnClQOY1OXebcWcnR4TKVeoVrXGxgMj26/h2W7VOp1WscnIHMMxxm4xw+PjYMysG2Hfq9LFPfpR5I405skM8kQlo1h2vSjBMOMMEVM1NOA0R5UWmZvgHYpt10o2l6gfZBMYSM8VwcUpzGGMDGLiUG3VMewtHGq7VhURiaoX7zOWXxCHjeKz6oDh+OkT+CLopVl6QMA+ilPmOSGQigbK1fkRck8Ly4323MxhI0QNv1eC1BgvC+p245FWDER/RzLESRJThbLokpU6AbSBMN6H2CcpTGWbQ2qQLnK2NnawQnLXLk+Q7eoroAxqGae51caGDSbTZI0wnW9gT9KLgWmJaiUK4SlMv04wjZtWq0GncKk07Ydmi29ealXa9i2Ta/TJSza261WE8OAUrlMP4oALdwfHb0wGGTo9buEQYht2aRJUkzA5CRFe9vzPYShs9hsWwddy0wOIlbOJwuDYtOeZSljYxO6vXnearVtHWtk2+QqJ45jquXq4OfnQeKZzCBW2kxXCMJyeTD96DlaL+S4LkkSI2VGp6MzRgFa7YbOc1QSzw3w/ZBGMbVYKzzlwrBEt9clKJ7q/3Ou3xe/QN8X3U6f6WszvA0LhnUN3LU7BIs2ofsGV96h139MFH/MMOADhu2x9aZJa7xg2G5Idi2lXHrA5nOJ42whxA36vR43xjVfDDug03nCrVIFS2actca4qoaJrunW4TfffMv29g63vTt4lzxue3cIg5C1NYUoxN3J9FWWCobdXAvZ2dzk0bcVJq7p3xF4Hk+ePEaYtz5i2KazxZSv5Q1f/PSfcHJwSLPVpN/r8jR+Qv+px7MvdUvubnINZe0wby7hXX5LEEa82oj55hd/CcDszAxzc/Nky8mAYcJ5A4bJs6IVdscPubF4C2WI9wzbeIU5pI0zl+7XebtziF8KGPNLjD18wOTmKmf3P2DYG8WMUsTTU+zuvCV7sYKYvfZrDFsoGLaGlSsWrl9ndXWVfjEhuXD73t9g2Hq8ilL6ntzcahMms4ipnNAJSJZyiK+Ty1Xm0NW5lXQHyxLMzet7OEtjXlmvBxNwM2qWf7/1V9wMy8RyidNyjxsvX8LwhQHDrsQJyoD5OQMpxzl8vs8bd5vp7Kr+rM8EprXBwweLhKV/xpNnT0FBPjND53t9jS0tfciwZ2zaS/S+PuYcDq3WOIaRU3rwgP7Tp5ivXyLmFzg7a3FyUlyDomDYok3+eBnDWOBDhm37HgvzJsbGArYtMW+YyI6k90S3LzXDrhAE99linSx7idWwydLDwXmxl2xCsYB/xydfW9VO9OXqIBD6UpawurLCi5UMy4xZjp8NGLaxofV33tPAhe4AACAASURBVM1bzOQmK25OMp1yXWY0v3uMPWDYGKZp8e2vvhow7Ffff6d1YFVdnOnuRUxemhwUQX6X9QfhDG9ZJhMTF0mzlF5Xf/m0Wy1ypSiFJdrtthY1G1AqhQMjx1anW5g8Qtzv43gO/SJcFSBJFJVymbPTUyYmLtFqN+n2eoyMjA3GXy3LYXi4jus6HB0dkiUJ5WoNr9gA1Yfq2LbefHQ6TWSa4bl6c9crQkptR0eSVEYmGZ2e4fDVGvu77xga0y7CQfUCvTih3+1hWjZ+KaQV9cjzDNfTVRzDKJNnEsMw9PuP+7R7GcOZPp1JKqmVK3ilGralJyeTfpeo/f5zKPSmw3Z9Mpnj+zaKHLvYSCkgTiI8v6rNA12XLEsGGi07DDFdF5nnCMDxPW34afpkmb7IDDNBGQJhWGQyQwjIs5jsXMAJGAhMR28K3aBM1O+g4pigUmw8c6kn1NL+wEjOcb1BVSzwq8RpQjmVNE66ZKcd8jwFTFSx8SRXICVSxaRJH6UEwnXIc33u9/cOODw4ZenhdZSwUJmEPCeTGV6RUWmZFifHh6RFdE3Zr1IKQ4o5CXq9DqXCLLcf9clVzsG7dzqvrl4vzpvgwoUSnucWcUqKC2NjRMXotGXplvDp6SlCCCzbIpUpjuMMBOJDQ3X6/R5nZ8e0Wk1GR8c5OjrCLXQpth8QhmXEuaFrBp7r4XhFuTvN8Bwd7p2mCWdnJ7iuz8jw6EDrgzCKrEbdtq2VK0S9Ppk6N7PtFzpJF0wLzw9QKifuR4O0hr29XYIwIAgqKAX9XkS5XCnC0KFUKpEmGccn+5TLZYRpUKmUaDRO8c91lf0+SZIMQrn/sSxpWXQmLiI/ZNj335PPzvIs3iNpX0OYLQzjGnul3fdmtG+6rOaKuwquTE3heA7P0+ekvWkAkilFxXvH2ek3TJQv0WpfpnvpiJHT2zx5ooXGluXw4MGHDDsqGKZd3//8X/xzNjff4AiHH3/8jstpxLb7E6xc0evrTZJtCp4+fUKa9BidnmFNSvZ33/H5T/8U0Aw7bT/i6dPHmIs2dy7f4/vjI3KZ8cbTovxpIyHPxjAMg+fpMsRztHuvGc70l9xyusDYuwrbySFLi7dJkpzx0S5Pf9B/v9dooObmyLMXLLp3yFZWsUoVZudmBq2dtVcbqOWnA4Yt3VziRZYwfLvQmXoupjuGzFs0iIgOPHY2tzh97RO3NMOWbiWolzOIl8+5Zt9AifWPGDYdw0sEprP5nmGvXzOrFBuVn+hf40tWVjLS7AmmMJljjtt3PkGet9L8lGfpMuWJ6+x+HdI6/ZGZSylqbo61HS0A9/MArktW0v8Yw/5fagenHDy8zv2yRfdXmmEvZIZ3Rz8fbJsWJ1/9gji5wqJtU65U+Tz8HHldH47e4w6l8Euiraf0Z7TB7MG7n2MfV8jvaYZtGYIbA4bVOGfY8/Q9w2ZyxePTb1i4LJD2Is/jGGd+nqzg3NBxnf5Uj9GzY355tM9PfjLLLz9k2E7Ai7yMuJbDOmQv4Pasx9bDB/p4pRneclIwbJLR0RNcdwfUKAvz5wybJ89zLkcxa7HisFzBuzTFi0ePAM2wmZkZvO0Mx5wnv5Oj1lbJpy6ztXnOsH9HI7zL3aBCrubo9n6k/KCCt6n1V/fvWzxPMo6/jnlQfsCWufM3GHZpaoo4jgaGr7/L+n0Zlv5x/XH9cf1x/XH9cf1x/XH9cf3a+oOoaEmZI1VGq3lGpcjlq9WGEabAFCat9h5D9SFAoWROVBjPWZaF43p0ux36vTaOUyfq9wctPdeyQUGpXCGKIs4aZ9Trw0gpB/qXUqmEbQniOMb3A6TlINC6MYA0k5imRat5xuHhPpOTU2R5ztnpKUnhxzQ6OkGe5wRhjYnZWxy9ec1po8XROx3aORlUCD2bOOrRb/VAGfilkG6rPdCTnbf+0kwSRRFxmmFZgiwvJuCCkFazhReESFsgkxgZ9znvlcX9Ppbr4IUVhGXhhSFpJoEcyyn8UuwAmadQiPOjfgdhKlTxGrYb4HoOqhDxKxROWMaw/IGVQNxvYjo+pmWQ59rHynYD3g+R6Yw7IzMwhdYV5bnE+SAvMYr75IXVQy5BqRwpEyxbj7wrw6BUGUJmKd1un3I9wC/5xN18kA1pGQZSJqRZTJ4rHM/DMARnx7ocfnLSpVKrIuMedi3E8TzSOML3w8Exl5mk2+lSH6phOTZ5ntNutel29LCFbducxTGe75PE2tx1dGyMMCzTKKb1hDIoBSVkLkEIDCF0wf2Dgk2tVsfzXA4PD3TcVOBzdnYyaKd1O11SmZBlCeWyvv7Hxi7gF9qoXtyn1WwS9dvUanUcuziWhVlXv6cDoRuNJpVyhbGxC7SaZ5iWORhbTiI9EGJaJnEUaUNLy0QUx8JzvcF0YZLEOuLIoKjC6fvJcTySJCIIKpjCpFwuYTs2ZwNNmwWGolKtA4JOW9ugNBrHUNZ6ojAsUy1XBhl6/1iWlBKpMr7/dYaNjHFDXORde4/jo2OYm0Wt5EQzWoNlWes4QfABw4643J9iY1NXeVzLhgVB6V2FyL7M6Ng+vB1GOh8zbMcbJn72jHg6QL52WKrCqtSjVlczycxMSOOHr9k93EdNThHmOWcjHzCMCWZmZnjzZpv9ExfDsjkdu8Av3/0HAH4W/DeEns383CXiVkKsuvilt3S/b5Nd1/f1Wp5zEYPnmSSKLhOnPaw0J1stGPblWy6U5xm72CaKYlaSGPmsz1xxszzr91lclXjhQ4RlsR1Wmbl2nbXVVW4Vmsclp4ScuYq96bPhrZE8e0pmuswyPzgXrtenXqnoYCXgICwzv5jx+CvNsGdPmtxwfExrhnwmxzBnsU3rI4Zdly+wMhtTLLIit7iSS5xbt3TeHxDFl7hypY9OaYLltUfc6C1hzRYMkwb3vSFkVmP/dp/lJ3c5GlNc6eYs3tCVxp2dnb/BsHlDcFwwbO+kS6X2CZ0PGPY8jvhTP+TFhwybmKR+vEfZWWI1XyVuxUweTAJgR5t8G8PtO3dIoj4rUrI0Nkb4NuZtYb4qlMFOtYRUK2RSYluLqHlguTgc2TqHDz9lyBti+RcH3L6da4Z9e0Ltk4JhE13SJGE5W/6YYcXUai/4gGFRHcd+Q5xeJzln2OMeSq3SaIxTKVdoNC5wYdzlhtUhy3UbNIm6/PjoEaZlcuVyxPGxgbDMgV2Q53qEQcD6AsiVZ6jninkDNgyFv1Qw7OQ2yfJT1j8dY14YlMv3sR2bblfbh3S7i0wbiqRahznBRNwme3GNrcY6cw++AGCDdW6WnUGL93dZfxAbrVwpXNshCLyBsaGUKXkuMGzF0NAIQeCSpZI8VwRFy+To+AjHcXFsG7emM+ps20YWmwLTMklTnSmXJCkXLui+6v7B/mAE2/d9Ou0W7XaTWn2IsFyi02rjuOeh0tro0bIdRkbHCcKQXr9HFEeE50L0bhvbcTEMg5HJWSbnb3L8apWoMPKLez1MN6Re8+gKxdlJD5lrQ9Z+4UGTRjGdVgPXEoSBT5qluPb7IOxSpcLIxSEMwySNIuJeFyOXuKG+kL3QIJcK0/XwAp9c5jiunkw715tpab22DyDPsG0HJXSeH0CWRJhmndxQSJWDENheiOmH5MVFlfU7mFlKWBsiS2Mcp4Rpe+Tnv8OyyUU2yA9M4gjL8oiiLlkBddO0yTOBUilRr43p2AhhITN9vBy/jGU7KJVRHSoT9xNkpmjmEXlqFNdHRhz1SWWCaQls20TKjFZTexhNTtQJQhfbjJFJFwPwXRdhaOE3wPHxCcIUdDod/DDAsi36UZ/6UNEWFCaNszMOD94xVB/GFCaO62NZFqVQw8QyBVEcadd1w0CYLr1ej6gwoj2fPMVQeJ6P4zhEUQ/H8TkqpvmGh0YIvBApfchzSqUK7XZnMDE4NDqE7wZEfV97oSmFaQqi/vuJ1VJYhcJ6otvt4bo6//DcPqTbOAV0AHsmJUqBMnTbSb9Pye7uG2zHwbYdKuUqhqH1k2l6Lnb3sN0KWZbRbJ5h2ja1WpWguAYt00RhcHS8j2s7GIZFP4oYHp7ALTbRwjQQpqD3QSD6P4bl5GiG7Xq49wqGXb9K/vw5+dIiQ0Mj9C5Nkj1fIRcWwe5bAI76PW4qxQvbxjg8Zu+d5Nq1zYF2zrRM0pVr5PkaSfKI+RsPabc0w5aW9Lk7PPTpnLVoVyvUGCJ8sEPSushCwbBUpNj2wUcMuzTV410jItzV042TQRnTcZmfN8jkLD/zTY5frTLR1/fTs95jzDchmNtMXpji268fc31mhvhqxJO21tmk0RV+bH2La0nCYIj0xXNu3bnJheEimWI/Ir4YE5TukD59Stw8w8ivY4daw3UvNMjlGqb7AC/wmZUgXJ/bdx/yorBVcJgnX1/htneH+RyypZssCJc0eVGcifvUKz6NdkRNeSDQDFtNPmJYcs4wGbO1VcKyt5kpdE2v7E1mhI1Ss7p9Hl/GWjSJIp1fCPDq1SvSuMfs7FWiXpurV6dYW1tDnCdX+GUWbQ+VvKTavUhlKOH6sOK7/Ckz5wy7Loh7HzNsVWY4BcO6E3VUeIZnzrGyfMQ0c/iuy8bLdWxD65KGhk6omwJzYoI4jFGbiqnLU1T39fCJ8cknXDs74xd//XOG6l/gYPLGu8Ntb5v793Tr+fUrweUrPqtcwXhpIMxXXIou8XSyYNjqJfj+V8zNz3Lh9gW2tra4ml2h6/gcff0VAMNDXxLcDJErn4CzSqlUIf/hR1pFD3NodAj/bJfLUxOsN34Dw26YlMLPoNlErSm63ce47gLp1RGsIqj70a8OOWfYixXJ6AisvVzHsrQpap6v8O7dW4YcB3vyIvvvDnhlAOsG6WLBsO1t7NoI2YuMr8bPuGGfUat9MmBYEPgoDDrdNr1HP2LML/Ikeszw8ARBwfwF8wBhLtDv/+4M+4PYaFmmWQT8KqJIH/harc7xySHRWZ8wKOM4VnHR90kz/eWRxBFR1CdNYpJYe3hUKtWBd1Cn26VcrmAIE9e2OTx4h+N4VKvVgT4mTTMymTM6OoYwBP1uBwy0sBoNOiGMwmlcWybYlkWtWicp7OUNYWAL7SKeZxm18SscvV7joLjYw0qV+pgFKQS+QxKmNFsRWaaIe4WfVxSTZ5muyAmTwHWphA7VwmneskzarS5pHCPTBLv4wkqK6TfTsvGDAHJJHGlDt1wm5MrGdgtNkm2hZCHClSmGYSJzMCz9WBH1O3oK07IxCtd1YTs4Xhk30JsPmUWkcR+ZpZiWCSpHqZxMFp5irodpmkVlLsOyPaI4Ior7ZIl+r4FfwjQFStm4XkCucrIs0caCaMNAN6hjOQ6uFyBzCEs+Mjkjiwrrha4Wgdq2heOBYwukcLg4qXVg1SEPIXK6zRPi9ilSGmw//SXN00P8Ua1L8QIf2/RJs4zQD1CGLkTFxTUo85z6UJ1qtYYhoHF2okX9WVZM1UG318O2LGzb4eTwiE6nQ7VWp+boCo7tWhwdHBbappBypUKz3STPGUyceq7LyekRnuuSy4xWS08cySJAu9Nsad2cIchlhmXZHB8fDDznKpUq3W6ParVCnquiipjT6/WRsojzSFI8zyX0A+qVOo1mE1tRaN80YMbHJ8gy7YPV6/V0yDlqULEKAp9et0sQhIyMjJAkGWdnjcGxcB0HUwiGaiOYpiDL9IOPEELHQwGtVoNez8D4R6bRsqyUG6bgm1wRPS0Y9mmd436Hg1/8nLdBmXKl8gHDtJVAEu8QRX36SUzSOOPGDRPfq6Lke4Y9eOBiiHu82dzk9KsD2s421epNnK2CYfavM2wCDMVrW39BqdcKz/NozefkvRRZy7Cx+LR6RLJd7OjW1tn0S8zMSWauZRzaV/jlv/03OrAdyPbfM2zXdwhDmzW1xqXs8gcMiwqGTWFtPCsY9oaDwoT6Ty/9hFfua04Oj1g5OcE251m4Acn6e4btBDbz5wxbmidfWSZfWGLplp6A29x8jZIW66xz7Zxhq+u87GnzzTO1zNDkFUZqZU7bfYYMH2E7bHnvuFUwrHctIn3WZyV7zsLrebBWUcoju148LO6a2OaNAcPmlzTDnj57UpjLQrBTYs18zqtXm1xLL5PPaoZdv1Zo3rZ2ic8Zdjtg8TG8OdyhdOgSXNbX/mw3ITbg5a8xrF0w7OKQhxAzBcNGyK6f4UUOm88O8Ud1t6TZ9CFXXL12jbc7uzhLNzGOjnh2zrAff+D+gwdcnLiMId7SOBsmz3MeZxMsFl//k5ciMGDJdjgZPcK0tdfipwXDNi9YHB0IhDDZ3X1LfWiYN+23ePkcXvBPgIJhzSNuX3XJZZ9Wq4kQBlLqGcqJ8SVWVjusc86wBb755gOGPazSffSYT+7dIa+sIa8/HDBsZUVbZpwz7N6du2xtuoyNN9nc2mRmRuvEdnftjxh26dIl9vbeAuuMnunpyF2luDQ5SRCEbAiDsGDY5CV9DUZxPGDYvinIdrapVqosLCx8wLAJer2zDyx+/vb1B7HROn9yLpUrg+qKZTsMDY3Qabf1BgIDyzKxLHtQskuTGFMYdOIY1/XwPRcps4EPksx11aJcrpDECVIpgrBEr98fPOlLKSmVQmzb5vTkFN+zcT1/8GQihMXbt3skcZsgCLFsh1arVWQlnhtbeuQypdk4IwhDPD+k049Ji41YaX8fLyhjeT5C5oSBRZaZ9Lr5wJ9K5YogCJEyo9vr4TkOQeBQKhWZjJ0uduZjCD1tkyswlMJx/cHniBMtrldS0u6dIiyB7Qb4vq68oQSu5+E4Nu1WTJYmGJY5mPYzi1Yr6POhlMK0PUy/hFEI1XMJhqlvOtM0MW0f1wsHkyEoSSoVSZYTlupkMqXRbEGeYQl9uTWO3pLLWLupYxTVL4kohPEYCiVjLOGRWzaWCYYh8UsWqXXuhi4wLAfLNjGFBKUQhsL39aZRxhH9qEecZPilAAODN69WketrXLimS/cj1+eoDE8wfmGSOIlQSlGrDw02ja5h0Ot16LbbeH6A7bi4rsfJ8cFgmqY+NI5pmdrJ+NoMh/t79LtdfE9XE5ot7fLt2h69fo9ut63b370esmil7nfaWI6FlBmB6xHHMUKkgycmx9ETg0G5QprqmKUwrAweKCzLxvM8lDJI05ROp0OlUsV1XbJMX1+mYeJ4Lr1+RK8XFVWl7vtJT9vCMm0812e4Pky70ybNMlqNNn7w3tDWtm1s2yo2dBn1Wm3QZnccT9tZ5JJMZsgsI/ADFIqomHwFePdum1r9Dzrr8O++YlhbW6dUTt8zbPMLPv/8SzrtNuO7u7z8iGE64+2cYVfimDeux96eS/j2GkKcb/bX+OqrrymXHyIWupQrJYLjEr2+5HXhhp7LnPslm81Nm9OTEXzPJrjps3DOsCWL/f0Sm8eKIJhg0Z6g1foef8eDYsr7jeuh5NUBw7Z3fk6nH/PL02kArk7vc3viAZbns5HEhMEiWfAEuqsfMGytYNgm3euS29wkCJz/j733+LEsy+/8Pteb58O7DO8yI9KVnyK7QWKGRgBnCEkbAVoK+ge01EIbbbTSQtBWgISBJIxmIYmYaVIcTrPZrroqu9JneO/di2evd1qcGy+rukdUS8AAzUadZdariBf3nvu55/zO9/f9slAUfl9u12EynmZjZxtJkplfkEizDD1v1llPEtRwlk1TYjFZp/PMQ36wzP6bl3z0SZ6ClK1gmAfo+grSyC1r794iqRbVTLTvLz5Y6XV0ZhmcZ833DFsRbEh/Khi2vHyf3b1ddK2AYRZ6pxyLC3O8W18jjFOefvApcRLx1bM2pNF7htVOGUwsTs4v2GCNhY2MeWkRKV+YsrRAdlBAlS9J9/ZR7w+ztDvHq+JLzDPRdZiOvkNSdZ5qCrs7CSgZ8sIClpV34gU+nt8kCNewlDLS7hL/xvwL5pIlyrr4Pde3gmGNRpNkfo6FOGbz+oYVU1R55CWJly+f43Q6PLJsxle7mMYjvri55IenYo592jeMsreLZRcIlBWuTn4EHPD4kVi83lzfYjzUOdw/IkkSxp0OQ8k8nvuc9TlRsbrodnjgqThJjG1IBG/eMCnLvMoZ1n3eIdFnsY9MopWAbDNn2GjOsL399wybmaXbbvcYtpqncCRLCrr5ENd7TbMF7a5MEPi8yruvy1HE3u4+6oMHGNeCYXE6y0izg+aJTceipiLv77Nv2yzNL+D2GCbmoK4XkOUdVld11tYFw548fkJGxuu883Xa9zm/OO7JaX6T8Vuy0JKQZYXA7/aODj3XodMVbbOmYdJoNvE8lziK6cv9YwzDRFNVyuUyp2en2JZFX62vpwVKopSibeN6LsODwxQLRdqdFqZp5q32YqmkqhaO083tAWQajUbvnFlWUuI4YHhoDEVV8Twv7xhL39sApFGvupWlKYqmoFsWJ6fCU8WPIYklBsdG0Q2NYrFIqaQTxwZ+nmmmqjKB56IqUCqZKCSUSzqVAVH10E2LbqdL6AdYlkUcBnTbDkru/WJaOlGS4noBxXIJq1BE1jQkWUGSxIQol4u5z5KKZpikGVjFGuQLHEkRRpVSkhAlCbIiI2s6RmUAlHxBFyeYlimCZCWFQqmPJPJ7sL24vqDV8hgeGSEIfXzfQVMUkjSkk5uvpnGEkQepKqpGHArvMDlf/JJFuP4Vod/GKvRjWUUC30NRFNRi3q2lQeQDKPiOQ5wGxEGXwBP6higMSVMZ1TCFG7sT4HoOSRRydSh2WbIcoekq6fAoxVIVz3OQJAldEnOwUb9B0zSsQgnfcyhXapSKQpfk5jquDGHz0Wg0qZQrVCpVPMfF94N8jlrYloXnuvi+y3W9jZG/WO4sDlrNJuW+fmr9/WRx2jMMLefeQVEUY1sWnU6bRvOGSrkPyyr0uifvOgvTJMktIFQ8ryu82vJjP8MwkZCIYpFoYJomrvs+mNq/cqnV+mm2mlRKRbJM/DxdV3tHz0HgUywURVB2JpIcVEXtHcn4vkeWZVh5x6KmiYzQ26boggQolWv0Dwz23Pd/V0YoSSzLCu3JMQ4PDwHw3Bd81RxhkQzz4SMmml/heRM5w8Qu/fbWZH9vj3Bmhpv+a+zjxyx8CvELoQWam5nn+OQI13vJ9+zvIRUkTuwi5qHJvUlx1LXNFqpqMe50GdFG2JdkvvyywYcfTgMgK3uCYc0xlO4eXrHGwYHOwkJKFImf4e3A9FSb9QSsjQ3uawpfW485uRFGoJNxhf14h0a3g26sUCyeUTrXqQ0+RHn+BQDq+LcZdskB06VVLm/vGFZnrDBGODXBY8siDt8Iht3mTvqWTpQs43oB78oRjwtF5LNLVgyT7e2cYR8XYdtElg/RjEFkVedx8VMOFPEiRfoIgHrLIUoSRpUqLFQZGShzuSaOuZI44cg64sPdYZZkhWqpj2RmkiDPa724vmBv/4Dvff/7vHn7Gt8fR1MU5tJ5vv5SZD/OxxHGk0csLCywu3fAZjjF/HzEzrpY/MryMllyxYNJi+NTl4XjM4L5eyhv73NcFJFD030rRH7E1tYuWeoQz08ROzcEnjhWjsKQdOOEBw9NirJEx3mDu+ngztz2GNaOBMPmv/cYw7R59eoFq/oqSKLTs+H2oSoPsAprBN44FwfXVEpnjIRTPYbJtxlqSePLRpNKOeTjjz/5NYY9KVh4kxO43kvOnDaGXgcWMfP3davZ5KKvn0/7+8nWOqj9KhtpynDOsLOoQtU6ptPZpfGzPirlPh4/LpBJOcNGRtnd2SFN1tneTpmcvIfndVlfT4ijPA5vx2R1dZtoLWJieoajI5OJiQZSIBZaVMtcX9cZqt9w2S2SLUAaJxy82WNhVmwog2SSs9Mz9DDk3buA+/cFwza2xbtnetpjM+vy2HpClr1B01bY3NxkYKifJBFz8LxcQx8YRNP+5/9XLtyN34qFVppmuG4XVVN6+pn6bR1JFkeI9foNF5cXTE1NYZoWcZTnplWq6LrYYRdsW5TOZZlCvks3DAtNNyjGosrV6XRwXRdNU1HkXPCdSkiSjKLIqKpGt9OhcVtneEiY3kmKIl5SkowIMb4ziOxQqwkvk1qthuu6veNLVdW5/+gR5ZKoBKyvHfGTn7/ko6cug8N9BF2H/tFRan0VOi0xSdx2V1QJ0pRiwWB0pIBZ0Huu7pIsY0QRSRTn8TYpmaSRZOIl53oJhiEhSxmu46HpOoYhoah6zwQ2SVIMy8hfoiJuyChWMXKX7jQTv5/8Ba0oCiChaRZyvjhAFvmBsgyKZgASQej27DL2Di4gy9ANjaurS0olG12WSAKvZwOgFUySKCKOQnzPFWGqskSStxMnEkikEMkkSYSiCt+vNE3RclNTw5KFXUOUIckZWRKRJh5Z7k2VZZCmYiGdhBGtVpssTrFMmzh3Eu5eXqAXLXSzwNj0fTzXAUkiyBfNUf4dC8UyGSlB4NPOMjzXxc4XObppkCQptm1z27hBkRUsw0LLbTtOjg4pFoo4nkOpXKGvfwhd1TFNo3dEOb+wyN7+Jk63zeDgKJqmoagqYfxe8CoW/yXCsJRnR4LrdPN5buCGEWHgY9k2YRDSbF4ThgHjY9P5Z0S1iSzFsixM00DTB3uLKEPTUTWdKIp6QnVZlpBVmSS31BgcHKTb7XJ8dIhpmoyOjQNZr6SuKKKpBEQEkabpZKTUqv0kqfhbgsCn3fZR1bvY7d+NkaYZL90ui9oYKznDvritszTUz9nVNTvbu5QrZaamShyZxzTfic/0GHZyzNOiTeP3h9FlmadP8jgYw2JsYoLoVxmW7rG7I+7d0vw3GXbIRGeU+m0d+/iOYY8xLk5zZ3QJSdoiikK++GKUTz8V/Pj0sxovX77EDgLur6zgtuvcP9+hLNYN+F7A//A//m989HSRwe8NEhxe5gy75IOPBBuuTrqEaUacphydCoaN3hvkop5HwMsyh0cGSicmXPDYWI+ZDjWSXBw+IUkYhqhMqwcesa5zaEjcZ7K0wwAAIABJREFUf7DKSu5gf7C+gfH4MQsZPPvyJ6w+fIRRq2L2Cx+tne0dCtV+FKVGHMG50mQUB02r9hi2Jcs8ub/MzvkWimZTQGIidGm1hSD6r/76iMWFBb788guimVk+7G9wsCOxHrzqMezs6SPmcj44nSHkpZDNjW0Wl4R2Cslje2uDtXcGT0qfIz0wkIKA+fmU/QNhaHt4nDI1niItZUjuAlnika6/IvNzhkUwf8ew6RmeXTXJFAvL0Fl7IxhWrQmGXZy8Z5i75BC8yY1mLwLuEVIoPsRb9JjKJjk6OMRzv+wx7OwbDBsYvKHT/TbDri4P+fnPiozfcyiVFfrqQxyoOqbZxbwWOtP5lVX29jf5YbfN701PC6ug7e0ew+biddYakWDYdAlpfwdJ0nGdsXyeHzI6OsMX9ddYgc3bN2/fM+wP/hiAh5aFLO8Ihh0fY1kGN/X4Wwx7+PAh3W6XTIJFCRJZInyw3GNYo3FNks5hmVccHf2MHW0ceXmZ1VVxlJ8kCcobmS19PWfYodCdXtUxDFElDIJ12m2fJPnNl0+/FQutJInznMOUm/p1/m8pg0ODZKkQv42PjaPKKrf12x7YDcPA8/xcAyICpjVVQc7LuxkSYRRycX5OFAYMDY9Qq1aFaD6vnmiqhqYqJIpOx+niBwGTk1PEuTC73WiT5cHAYRiiGwZpKnLd7iZqt+Ogqgqu52Eawi1d0zXmZsVucahvgOfP3nC4d0LBNgm8EN20GBi9x8iEKIlHXofzo1skoFgwsAs6iqHhd8VCLAxToiBCVmRUWcFzRf6iZeVZiX5Apx2iKhLlPo1mu4PccXE8Fz0XIi/fX0FWJRH1k8YYmglpiJ7HoyCLaJ27PK40TVEUBVlVe1WvLE1IYoiTFFmDJAnxvC7NtnjpN1ouGRLHZ+tocsTjh/ex+8pkuoaSQyqNQ9IkwrAKeXabRxhFSHmkjGlZJHGEWaigG+LYOElcZEXtGbTKUkYcRYReQJYGpInIsNTyykmWRQRhgJJI3NbbHB3fiHBpM8MLxIPZuK1jlEzqho1pl0lRMC2rtzANAh8r7zjMkkRoNvJgZdMS18x3HZJMIowC0jSlWC1h2wXq12IeDw4OEgQh9yYmiWOR25llIoZIyb2BfD9gZHgCRVFotuoihDlKKOeu7gXLIkk1EThdKBJHUT7fc72a5wkHeKmE43RRNJWx8WlR2s6ru+1OSzi8ZxLlYok4TbB1g/rd8xZFKEpArTZAEHgEQUAUJxi6SaF2Z77aRlNV+voGUFSl5293F68TRiESEmEYUioUieIoP5IVIbMAmZzS6TR6Fa7flaFqKqZpcrB/wMCAqLjPXl1ydXXNwvwCYRiytbXF3s4eI50Oeg72w8PDHsOuD3Qe2C6+qiDLub6Kh4Tv3vLjnGG//73vU6teEZ/Po6ni+PHU1jBUhckew94wOfkpaznDRnKGzSUJyfQ9ZOmQ+flFtrYkTk4EwzTVYVla5hfeL4iiCEmCFV3j0Z/+CQBff9VhYmSfw70Tnj5x2R0aZHVwCMv0aLuCYbX+bzDs6UPskSKaoTHZFbqmMNwgmupje0dG1xWybJn1dI3HOc+D12/4Ok54oEiUP/uQpqJQkxT+8gc/6DHsn/35f8hx5PN2Y5M4nRUxVGnIaj4HjZFRoMkFTbKLmNF0AKiys/eGk938mqbrJPF94rl55KMz5uZCmo0uX/3yPcNu2z4vnq+jvXiN8h//OZ8/KPPurcb9FeG3lMYh75II4/gUXZshWPMIZ0Z544ljP/PYYm52hkJ1gINzm8VdiWRUMGxyQjBsZ3uTtXcR4b0pstQVDLsvsxILj6zQj3DcgN31U8LZnGFbMju1jOk8jUEbqDNSNfnihyf84Z+VCYIAaVvqMexN4PPYsngbvCZen2VmNmFoeBDP9xjJiwlb2SZz2RJhFIg4sOo5tv2U+rWIThoczAiCCp7r02kXuG9pqH8Pw75q1VG6TeLjwx7DrMePsTfWSYEnhSJrEjnDROXtlZdQq5UZkH6P8UKXtbWNnGHzLMrvGXZ0HDCVSZQ/KCFv3DEs1w9HWzjPv6ZWG8C+f483b94wMzuDoZuc1kS2qHPooKl73NyElHI9t/z8a7yHIiszjEJm45h0OqRU+IB38RpT4SSbm1vYlpg/C8tL/OSnPyJN3d8EDcB3Plrfje/Gd+O78d34bnw3vhv/3sZvRUUL4Oj4iIJdoFQSx1hJEuO5HoZhYJri2OPk5Jjz0xNWcldccbQTU66WURyFYrEEpMS5JcLV5SWmadBXq1Gv1ymXSkiSRLfbRs+Fj7qus721SZokaIYhjlUME8cVuxvf8xgYGOD2to6q6siqiq7rIvgyL1k2WzeMjd6jUqmSpQlSZmPYZdQ41z5JKsvL0yKPzPUoFIp4Thu/06KYd54NDA/jdh3cTotqXwndtoWwP2+/N5SULIuJw4yuE+XWERKh+14bVq2VsUoWcRiye3hB2/exDasXoWKZGlMzsyiajqoaxHEsXOhzjY+siKBg3TSR81T5JMtQdBPVFJq1VNbx3BaaYSKrBp1Og9vbNqcnQvDqdLvcdH2Oz+tM9Ztcnp+hpAGlYhHdzCNiFJ80iQgDD7NQRlJ10jjsNTnopkngubSur+g2GpT7B9FUA8/vEnSFtiUjQ9OKxJErukJlGSmVetltkiwRxnBweMX1bYeOE1Iu2ihSRhjcdUgmdG+blGst3OYNI1OLxHl3H8BAXz+SLBGFkdAmRTFhFBCEIc085ikKPEZGp5AVRXSPuQ4SEnYuIA/8ANMwubg4R1ZAlTXR+gxEufag11EYxXnKgEt/3wh2oZhf0xbtVhu7UEDXdSrVGkEY9Jo+wigmzRLazRZnxycMj42hKiph5KPn88e2bVrtFoZu5PYO4ij0LkXh9vaGarVG12lRLvehqiqqqpLE7/WHuqajaipWoZRr4GIURcmjjSAIAmzLFmkNgG4YyKpCvX6F64rux1q1n6nJORp53uTvygh8H9MyOT05ZSbnz3qpROYK3Zppmjx5YnNyYrHd/pKVHVEJiJC/zbCzEiym5G4G3N5e8ujREJ9NTvLFF19wUTqnID2lK/0SfUVUeXR9le2tLTJdRTtv9Rh2L2dYx/O4HRhg67aO+lbn0ZM5dF3GtjVmvsmw1XtU/E842FhnZsoVDCsIC4ByzWX5n/0xyznDHhWKvHLaDHYmKD4RFYfri2Euuw4T32AY6zGyegCAoehkusxCusnzr2fxvbcsIhG+vGPYPJ/USoJhSshf/psf0/YnsY0hklhckMP9LYIoRtF0HjwwiNdi3hXe0ueJ560wFKHqJro5hKzCSXpLcBT8GsNeuV3Khok8O0OnI/OLX/y0x7Dx7hh/8+OfYZX6CW5MLv/uRzS+949Ymp9n/1A8k7Oxj+K+I0xmMQs2knrAfGkaSRJO5wf2Ecr+Ea2JlMpRg1f9DaQ9A6/bZWIk737s9KNpZ8xGLjs5w5ZSiSAWVhXb8iK3a3B2e8X1C4WO8zZnmEk1EKcl+tcJ3fMm2dw87lc/55OpP/sWwz7PGWaGFh88HSWM1nj7LmBqOqTZElrCWnAPfVRjZ3cX3/fQVIUnT1xsW1R5lqQ38PCIr541kBX4Ul75BsPEfUniN8jS8q8w7PMew169ftZj2MbGBpVqjWQzQB4R/mezkU89Z1h8fEIcRTy4rxJGr8iknGEnMqOdFtJqzrD5lGDTZ2bmjmFFulfXdJ1hym2fB+p9MCWSOGI6mAZgQ0tRtb3/R4a9Cd5gyzazLJABq4ZBrJ5yb3KczY1cN5nM8Ef/ZI7/+r/5B+ajBcJ0r1wuk+S2C3ddf1mWEYahWHQoCtPzy1i5eV0U+BSLBQJfAD5OYiQJ6rfi3NgyLWzbIooTSqUSWQb12yvq9UuGBoWhm+s6KIrC2NgEhYItBPdJjJcLAWu1mtCaZFAslrAKd2HBSi+rztFMwihEliBOUzTDRNUNVEkAVykpDI0O0jcwTJbJNG5uicKQKPB7WWeFgkH/QIm+iiw67tQSVqmIogiANOvX+F2XJEryQGgJz3PJMgHbctlG1xWkNIUUbuod9i/b2JbBQFUc21zf3FIpm5T7RonikDiKkBSVLBPfwTBNMkSOHrKCqimkSYZkF7Gr4njAKI/QOT4lqfThBRG+2+bi/JLrGwGpneNrwlQmThKiMOL2+hI1C3Esg0pVtC0XKyXKtWEcp4PrtNF1E1XTeto7r9sizbMk0zTm9vIUzTBJ4rhnpiqrGn63iURKEgkROBm9aJcgSHB9H12G4b4Sw1UJRZVRZLnXJadpEoHbJXBcpDjBc1zMgtWbg+12h3KpjGEaOE6XMAxRDZ1yuUKpKADSaTXIUuEXliYxrW6H0A8olUWn511nSqlUJo5Dbm4usAtFwijCzV+EcZqSxBGD/cMM1EZJkhjDNGm1ciNQRaGvr0a36yAj4QcB1zdXhLnGKwpDfN9FUzRqfX159mBGHMeUCuJ7dJ0O5VIFy7JxHIc4CdFULd+ciLDnwBf+cJpmkKYJrttBldXeNS+Xy9w2W6hahGlo3DYaaJpOIX8malXxrIR5+LamCcuR4eGx3uan3W6DpPSEpb8rwzQFwyrVCuTzZ1leZostNrOM+TAkSbrISlEwrF/YFchvfIpFncCPsS2PtWQNaQPqA/mRi6txcmIxMysYtpAtcnt7xWbxkCHnDwFw3QaKouCOTfBUVr7BsDcA1GpPGdV0LjK4LpY4Py+wuAi2rXCcM6xPM3nbY9g8mrElGKaJ+/bkQ4XubZW+2xbZh2W+/PkNxnRIFAwQ52HxdwxzKzIkb1D3PqdYLaIoYpEtGPaSxEmYT7cIewwTzpjlj56gX+wizT+AEG7qo+xf1nny2GBoaBqA65tfMB+PCYaFLrEbMa10aOUMm502gSFOrxog11CH+kjP68wtLzBYPgZgwPw+neOvuckZ9mXOsFrOsE3rHVVjGccLiMJ3DFwXubo4xzk2GPlEMEy+PKdcG2bcKfNmvI1+kLK3v99j2HwSsJZlSPv7zC/Mcrt+x7BZso3cKFTdZ7J7jw0S0midpW2JdO49w6IgFQxbXmQ4heGNARRV5r4s4ybi/aitSLw57fIH4y5S/JBXzkseFR7/GsMemg958aLL9PQIC4sHmGaF8zPBsNHhQTY3UsKpSdK1iFbXo3lbp1QWHmtpmkIGH374EWt3DHNyhk2IezvbmSeJf0ajf5jPazWSZBZjxuTZM6F7+3cx7Kc3V0znEowoDDnNGeb13fDJ/KcIhr3oMex50GH1w/cMc5IQbXaFs1yTLV9UOTbH8AOfPu2QNE2YeNFFlR+Q3Refsa0LbpsuqhbxyND4ec6wtUQsbmtXNbSizol9yuS3GNalfiMi9Zz2a4ie3jXo/0bjt2KhlWUZgwOD+J6PmefuNZq36KpOEARouk7XcQjDkMHBkd4OOwhENSZNU5FF6DjEUcTEuNAEpGnK7W0TRVOpVCtEUYBlF5mp9OUBxdDtdjFNC0VVqDcaaIrQexULd/5VKlmWMTIqXhZpKrqpoijsOYgbuk4cR8RhSJplpHEA3AmDIfIdSmWbgaFBTLtGudSiVb8kSZOeIWkQ+Og6JJJM/+AwSZLgtjokqdj5d27bRGGEhEyaxkShj1Ww6OsT39O2dcIg4uKqztlNi0Y3IAJank/bz41C5ZSSqZJJOnESoyi5W7x3998VojQjTRNURUFCQpZzIf6dxkaS6ba76HYLo5QRei6u08LNvXSCMCZMUmqWyuT4IFNT4xRLGrIkYxVEtTLORe/VvlE6LYVu/RTDKmLmBrCZZBP6HmmS4La76JqJqlsgBShqbnfR7uB3O6iKqDgpik6UBD13Zz8IqFRKFAtp3m2XkGUZsixRKeq9ewvQvj6nUNymWBtCsi3M3HFbkmQat3WsYoEsk2i1hNVB6HucHIvz+r7+YapmAVVTCXzxYGq63rNNiKIQyypgGAaqqlAq14TjffO2N9etvGGhYBeQyGg2GlQqZeTcMsNzPErFCtVylTQTVhYDtb73InRVw3FcfM+jWq3QbDZotxoMD431vF6yjJ4O0jAM+qw+wigASXzPOE5QFBndsERodRJxW78RGZB5lVn1fXRdp+s6yJJFtdJHGAakyV34bAfD0HFchyRJsK0CqqridLq94OtSuUy72+5pIH9XRpYZNG4bZHMLmIaYX43mLfPqHO9euqzrB4yNjROGrxhsTBKeib/f/xbDpPcM03MTxlrKwECTJM0Z9u4N1nzKn1T+vMew590upnmMorrUB132d2V0fYuZwgfANxnWZSBqoqarKLsacRwyPubkf4HO7FrEWviWNMt47QbEizJz3TuGjVMq73KrzvIoqlH+kxbP6pck6SFRJKwVguD1txk2KvPydYckFc/16EBGFF4iZTLp/CzRq1eCYZ+J72nbOuHJLD/+20vBsLGA6BKeeT5LrwWjdneu+U+WHpBJdeKvKij3Ye/cZbRnHjkEQJImqAqMACej/ewDtznDdiSZi1926Rt5hlH6iNB1cZ1htlxx32TpnDDxubZUVu4YNjbCjrPDSElYM8S2ycz+PvZno9jPdul2bnn4+AMOcgPYY8lmZfIeG+vr+L7P0uIyR+cVFpcCtjZFJ2fYnsYbazIXSEThGPHkAdHrgNypgskgwP+4RDFOWUIiqj19z7B886OqKkP90P7ZOYWZbeZrg0j2FqYlNIDb0g7J7Tus4lPCTOLZs6+xbJMHqkdiCf65XgFJOeWBFvBits0KS2gHOtlD8UWimRccqwUMo8TAnkIprpEoEeNDtxzlXYfnaoUV7ftM26dILNBs3HBZKbOc8yfIGSZ99AlplrC9u8dA7TPCQHRb3H+gcc+ZwPdecVWdZK25xkhrkOGhT8kykQ25sLCIaV71GDZk9RFGZ+8ZpicoSoxuJCiKyVwyw2n9iD3tC0pvPwagWPRZ1XW6E+OEJ8fvGbYufsZI1OHQ0BlvjtNNqjnDTnA6XUZb783Df/my02P8bzJ+KxZaqqrSaDQxTZNmvov3fZ/qcI1Wu41lCmv9OIqQpAz1rntNK4KUkSYpSBK6ppImaa8alqZp3qEl43seURwhKyqq+t49XpJVqjXRjh6GIXrBRjdMklQsHFRFI4pDut0utl3Ab7fwgwDDNOnknXbVah+KrGIUDVRVBBWnsombu74H7Sv8RkjidyhXR5CVEoap4rl+zzAyiT2kLCZLMiRJRdUUwjDqHQ16nodp2uiGTrftYNkWtVqBYknAw+l2aDSatNs+5zdNTuoeGSqGpXLdagGgyxJT/SXsUgNkBZkMSWrgdsXf4XU6yJaNqotuwjgR1y9LEqR8UpXKVc4klU6ziWLoRHEMaYyUd5UtjlVJsozR4UFGxiaI44iDK4+L24BaRVzzkbKBzS1V38UoFFENgziOMPNKbCYrKKpOHLnYxSqh7+O1O0iKRJa/XKLAJ4ljkiAiQ+a20cAwNO7yGDJk0jgjCGKSNCFLhZeTYQp3dfGZGFVRiIOAm5Nd4jiiMDLD0JzoChLu+OR2C2DZFmEUEscSo+PTANh2AVlWIIJCqULBtknihG6n1fvvcRxzenqNLEu0220Gh4ZQVb3njl4sKSiSThiEdDt1QCIKw294XOmkWUan3cS0TaQkxbTMXrXMaTaRFRXLtonjRLjgmxaKIhPmnk6KquI4Yg4XCgXiSFQHVS33pEsjOt1OL3YnjmPuTQlB/V0ncBTHWHYBu2gJsb8kYRlWL25IlsXmwtANdN0kinw6nRa2WaTriOtxfXVJ38AApv67JYaPY2F8+OjeJF/lu/h79ya4al3D0giPS4/EdY3+EGlHZk8TF614x7C5FKT76K9e5QwTQvf5+ZhGY4RtaYfVe/dx1iJ23u3x+PEmSR5NsiSrWLVP2c62ePs25IOCTcF4hJcK3x9VWc0Zdpsz7BmvgykePnpfNb26umF19SFP1Q9RVZUvbq5I5We8vGPYL3+KSsinn41yZV4iB99kmKhIfZNhS5IK2gEvl8cJu4Jhr+oe5tEqq8UDutvbOcOeclbOGfZcMGxkxOfrjSYnm4JhD1H5aesZABNyhXp/m5NSB+SXLD9fwC29Z9g+Qng8NTLAWb3D6U2JiQHYOzxDOhcLh9LFTzmTVEaHhrhq+USzMWgx0tkdwz4hyTImWg1Gpv+MeFYw7OfrDZKikC60LwxsLvnk6ogHDx7w/Ksb4jhCFg2UZDuCYfPz4nfeMWztrUSWiNOUmSmX0I1J3rxjE5nh0UkO3X14I57JqWmZJM6YCmKcX2HY1nYus1DXeHD/PvFUwM9P/pJqPMnTkT9h6D8Q1fLpbAa/Ncieuocyv8hj9zFv373ldSyh5fyYy27pV1Q84GmpQuGkzbrdoPtSPLOWVSCZjTk9PUE+3mZkZIRhp0k8nDDhim7Ps1LCrnTAcnCf7tc/YQuJQsH+NYZ9/ewrHj15xPT0NObxPtv5d2h/1US+3+X4xOZ+McEBQtNiV5EJQ/GZKXUPxxFMPT3NGTb7nmEz8zO0Oi2k7S1OZJm1eI3VP1rFSSfR9sTGeCZOsJ48xZa3+GLb/XWGLctMpVMoivKeYV+3sB99QHcxZ9jrNxQ+n0PJm+F+k/FbsdC6s+MPw4A7x8wwijg7O6O/f0D4ASWJ0DfZFkl+83RdJ00yXM9BVXTSJEFVpd4LqJO3eRYKBZIoRALSOEZTFLptcdEazRblqSkURaZWU9A0ja7j9BZrSRJhGiaXl5domk6SiM6zYqnI+NhdN02ELMlcXJxRLVdRVQ1f1khNUf6/3lkn9Tp0G7dU+64pV0coV8ZRFJ04FKXXLMkd3w0VZIkslQn9iJN94amiKGCZBlkWY5cMTFNFV1X8vMVfV1UGBwfpG5CIJI2bzim3jk9/VSfKy7MjAyVkOSPwXIqVKkEQEUXC6RzAd1qYmoFkyN8wY5OADC3v6hFZfWWyNMRrt9Atk/5arXc05LoB/UOjmHaRo4sOX21e8MWrTTzPR8u7CiuFIgsTNb63WmF1qo/qYD+O0yXNjUIBUhI0QyfyfTRdx+10cV0XL6+cddodDEVGlSHLJNodj7TtUijltgu6SRxEQEaSZqiKgq4bRHGElndQel6I5/oUChZJktJq3mIcH5Lkf0vfzAIj4+M4XZdWu8HY+Di+F1Ao2Fxeip1rvVFnZHgCVVFJ0lQ4xWtqryoWRQEgiSpRGtPf30+aJNiWJSwsALfTptNsUKn10263mJ6eJcsyOvliTcTmRNgFC0VV8+NWNc/HFF2anucDKd2OI+ajLHHbuCHwc+f3ko1tFciyhIODLXTDolbtx3XE9VRUBcMwiMIQyHCcLo3biHK5TH46TZLENP1bZEnC9z0RUyW9zwX1vA6u08EuVJAk4dkVxzFFW6KS5zrGSZ0gCLGt3xxS/xCGkWXcV2TCt29YzBnWumNYME1yf504WRQMSy1m7hi2qpMmmzx3O4Jhc3OoWcp83q3VarfJpA2eFj4miUK2F2Ehm0VTanTbIm/zjmEPlUe8rb3D1jS6zot/B8PG0bQaSRLje23294tYDwXDVgaGkbd3uKidc1WuoqrJtxhWqyZsvPqaf9v4AZ98VuHiaoSPPv5DXitv/36GvX7Hyfad/ccWj/trZJmWM+wBBw9Ukl9h2MysxB9LGv/LXwiGFQ2dSs6w73/+IfJoxlRzosewmZl53FhkR/qvX2E+EhreNE2ZGARoAhkrD8XPqG4vYz45J9sIuWe2OFByhvWL46OiOUV/s8NR3wBmucP/8bML/qd/KRj2d6//NQCXhSIL7jWbRyX+oz/q48mTp4Jh6znDlEU2tt6xmC4QTfrsH+iEQRfXfdljGOujGPdl9tyALJP45dce6cJwj2HbOxqzU+9IthLWY3HKMDs7K7TB6R3DJrm6qlM4tRgzBkmaLrvHPyKZec+w9rgDXZnhdouB8XE+K3/O6ekJl5ei0vhF4zXf/94EqqeyvpGSZYJhj/JnNI4CtjYllI5Cks1Trx/Svwj2kcW2JypSUThFJzkjrAXctltMT/8pWZbxtvMsv/cKas6w/X2NifE2B0n8nmGPLbxXPqmS0mqNE4YVduQtpEbWY9i90hNs65Qsm+Pg4O/QDYtPZ/tZyxkmqcKJIFpcguMTHKfL5fklU+UyB3cxc3MxzcYvkKUlfN/MGXbGfM4w1+vgOj/BLnzM9va2kNjEMZ/J7xm2trLKwyDE+v+QbvFbs9A6Oz+lv3+AWk0IBT3Pp6/WhyqrnJwdIskak/dmyLLom3m9xEksWn8lGVOx0DQNIz+SaZ0cU6v1E/ou9UaDgX7hG+T7vqhWAAMDA2SZhOf5hKGPR4pplWh3xA4pS9I8gFeI4MNYvB5dt8vRoQh+nZ1ZIk6EOD2TpLy6UKRYvp9/S4n9Z39Do+liF206nWsyJBTNJs/rxXFcVEXGMA1koN25pX51/T7rsFjCMDVUzSSKQzRVxXc6PUNKN9G46gS4sYxp1RgaDrncOaZkGwyWxZtypM+m2l8hQyaKRXUQKUPNGwOSVFxbTZVJM4ksE0JtTddR76I4Ig/LMnA6PrKsEIYBkizTVxMPpakryKSsH1zyNy/OOTg97/ljhXnV67oZcN2s82Lb4J9+OM6f/6FOqWbj5otfWTNBVgh9H9/p5D5mEkmc4OVVIFlWCZOUruOhICHLGVGU9qw9JEkhDMWCWVMkPM/DD2IkVcWLxS5d02Q00yBDBCnHSYLnuex8+dcALOk6siKCsVVFpd3soKgqzWazl/+nKRpet4skS6iK2rM9qJZK+Z1PhbGupnF5fYVhmoRhSNfpUq0IHzbXcbBsG03TMcdsWs0GmfTeNkHTFCRJRlUVgiCg1brBdR3M3PFf1zTCKMR1HMqlEpWBCkHgCwfyWn7f4tyiJIgol/tQFJWb+jWVsjgWbLYblEtVDMNAlpW89bndMzQFIag/PTmlUqlg2yV83yGKIwqTKNZ+AAAgAElEQVT5zs5x2pQrFVwvRo9CNE3DtgrEcUKW6xXvjkuD8L1T/O/CuGNY/RsMq2g6n3/+OXs7Kmdnx0hyWTCsHLG9JUwrF1kiTmZZ1TZAktlWjnOGicVH60Ti+lpHxqV/sIFaH2R7NuLhNxh2O3CLn4VE3hShO06bjV9hWPM9w1Zzhv0iZ9i/EgyLZpZIs2kGKJNtX7G8qBLZRXZzhl0iMeOtsLvxmrdvbR4+rtFq/YhZ7QlvtTxY2KmjKhmGabGzdUW7JRg2MyOO82q1xxh9JdT9O4bt4b/oMDsjKnMvhzSqXwe82JcxH90x7N9SOunnz/7gUyBnWP2S7H4fUSFie2OTR1IFdeUfA5CMzzCT3xNt8M6rTWZ2apwkl1CsRR71Y4PxeR/5TGE6DIhkmShnWN/VCbJeEgx756KfnuM6b2BxkTB6z7AaMv/d//4WzRQMO7+2cUeFlnVZ67K1E4t8xHaHJBQMm4sTWhMipidNtwjXU5r+NxiWfpNhu4RhiJzJaMoSnveGbtdje08lnc0Ztr+DdvSATWULOZSYnZvDy1x+8M//ewD+6X/2XzDgJ9Tm5knW12kXyuzu7ZGmMTMz+eZ5W+PV8y5Ly0uoyg6KqjA6OopxnjNsMaB4eISm3VCpVbm6NJHkkO74GKU7hr1wePzk+6JytZHxqtlgQdph6uEdw+4Lhu0pvAne0GodcnVp9RjmuiuE02+5eeEQTk1SuL2kGBR48OCbDLNJkjnCwBMMu69yU6+x8CsMOzw8ZEVfxf/Ip9Nps72zw0r+ojXsJ5ye/C2VCthPSkz6DienEUdPhGayXr9Cq+wy4cXMRNPsa/s8efz0Wwx7lDPsH1zWIZKEZVlUytWea3ZfXz9ZkqDoMpZVQFUtwjDEMDW6XeFD0mp2KBZtisVCb0FyfX2B2szP2mUFKcuEaaldxDQMunFMoWD3BLxdx8HzHKIoIAxDICHL5F6FRlV1FFVGjhLCKKRUKqFrojvv3r3cVdlzaTZuRWagJKNrKpqq9AT1k8tPcVt1Ltd+JtzKVQvH6ZAkbQJH/C1ZJpFJGZpaRtWEYDtN0m8YO2aQyXhOB9MyScKI85suX+0KH6T10ybNtovjxZTLJZ4szVAo12i7KROTYjLbpo5umURhiOcGGKbQlt1VrxRNJ5MkwigSXWeKCP+M4oT66YG4ValEJqvEYYjjyOiWjqLr6OQRPRkcX3X40csrTq8a+SJLBVJ6+T6yBmmEFwT8q69PmR6p8vGjsd7upttskWQKhqn1ukPCMMEPYhptMbktU0eTZTIkfF+I1C3LRMmPuWRZxrLM/GEQuY2mpZFmEOWaIkWRSbMMx/WwDA3DMNANo+dB09h7gaarjMzcxypVCMMISc5IkqjXtSrLMt1OizQUodKKqgpPtRzqWZYRdbv4fsDY6DhJLP7fNBXzEsCIE3Hc2K1jmjaKqlKpVHodgUEQQAZOnKAoCvfuLSIr8ns9mudDEDDQP4gsi+5H1+0S+PH7Z0wGu2ChqQaqZoq4ItOi2brtfSTOneVlWcG2LNJEaAjvvken26J/cECkAgBB4JEk73WGllUUhsEFoTlLE6GPC9Kgp9HyPA/H6fQSIH5nRs6wj8tVjldFReXG6XCdJJgPZKzrp6jqMWHoYJgaTg7ps7OfUCw+oVhcFddxa4vaUJm//eoAEBquTz76mIODQ85OulSrLmM4FAqfcHoqqt2ao+HNjhNFDqEX8mpxgkdmkbXXoinogaqiqDvsRD7n70p8WCrx/e8Jhu3u3jHsJc3GAFfXu/T3D3FwoJKlCvOT4mjooWyxQR3SeSbSEfb2LObmLZLkxwzkDOvPJDa3M1Y+G8RaKXFzOUfJLNPt3OnAMrY2d5iZmeLo2EQJI0p9Y/zr5z8EYP10iK/aL3FexXx08iFPJMGwX7opD67E3zo78Qg9eUREiPcyIDP5FYYdAKJbjibiHLFcBi744m+/FLcq3SaT94jflnCMHfR1HUVWWH0oGOb7OcP+usrp5S/w3TaLiw/4FsN29mF+Bm8q4L/9X/+WcKTKx+Z7hj3/qkWSDbNhpiinJebSkFfhOq+DmHKPYXNoizssvJaI/Wn2DInHxyb2oODPnixjHT/Cm/dItzZZWlpic3sLTYUZaRqAA0VmM9skcqd5/FDj8GCf1YcPGagL0f6Xf/Uv+P3l/5QRq4g1MUlYrlAo2iRJxM21ePaXP/scvdPizetXLC0tsbu3h7qn4C7lDFvPGEvH8CcDqtfXtHSDYmGVjY1NVhtic+w/dEniBbrP6xyZJ9x/sESl8um3GLa1uZVrQRXu3fszpqZlNjOx4VA8DYIFBvpPkY9OmZyZxHWfc3UZg/gIW/IFT54+Zn/vEE23kPcyrHvHNFtJ7zGMk4QkSdmSt1i2lkiThCRJeJl/j+SLn/HBBwOoyhHWFkhDgyRzSa9T2LWKLMtP0Qo6+509jMREkRSCNGD9jmGvPBzn616H+28yvvPR+m58N74b343vxnfju/Hd+Pc0fjsqWgjxLpLUO5IhyyiVigRBiK4Lfyvbtul0WtzWhSCx0/YpFGyiKCJJEpotUSK/0yYMDQwQRRGtdouCbeXdgTFJEtPNMwavr68plSqkWYJhWhiGTuD7vfy4/r4anudhmQVkWeLkaB/dsKhU+zAtUX3zPYdqrYaqGRQKNkHg02m3KRSFb0sQ+EysfEyWxZzvvCKMJHTTIPQ8wtzpXNV0NNMgTWMCz+Hi5IJGw0HPS57FcgWzVMJIDELf5fnGKX/xbJ+LRufXruVto86XbyKKxSJBSWNySOzChvsMQj8QZuGJj991GJksk+YdLFEYYcsysiTCXqUsIwoj0iwDWc8/EyIrKo7jIccZcZQgawppInYMB+cuX27fclrvEgZCnwQpjz/6A8yi2GV99bO/AllFSiOiNGX3pMXsSAE7D9COoxBJ1gmDFN20SJHJJJkMhTAV96V+1aW/YhIHIVIUk8kSlUKhV41yuq5wSUYiyVvYS3YBWZXp5N2icZKImBlFIk4StDTFMGysvONUJqG5/wrn8oDS0CR6aZDCwDCe2+bm4gyAVJKYmpolDCN0TSMIfBHOnc9BBeG6XiwVybIUSZa4urjENE1auQbL1A0RfB6GeZ6n0Elpd1UfScJx2wwNivbiVquJ+o0jckWWsEwL13W4ujzFtEsMjYxSLEIz96uq1qq0201UWcfpNikWS8LyJN+B3zWJqIoQwodxjK7r1Go1Ts9yV+Vuh4JVwPFFhI6maoSBTxTe5SkaJEmCpong95SUm+tL0jRlsF9EgigFRbjES79bWYcYJpZpsSVJPHgnrsebYJNSwSaYmkbXDY6PLQoFm9HRFgP9gmHNhs/p6RamuZoz7IZms46eO1UPnZ6xvb3FxL1J4pMQQ9cxjZj19bX3DKvV+ND32bhj2KXOpu8jS8KjSDBM5zPzKTvyNj88Oma18pjKVR9Pi8LywL/3kMD32dsfzBk2yehIC10XXktBEOUM+4JzuUn9RqLTPfw2w1Z0tPn3DPvxD18zODjeY9hZuULR9yhWyqSHLs/TQzb+rzN+/KUQ/i8u7tACSHKGFSLObhymPlxhbDK3u9AN3tbfkLyDxWSW4W4DVfmIcENk/0XufQ6fXjHFEMPVYn5zbtk7ymBZdHJG+y++wTCPtShheeU+qZ8z7O++5p9v31LoVwnNKRaTkK2tjW8xTNq/YHvvGDmdIVJSlJMW9fIptnvHsABJXmV6KuXAtEhjmezVMhltwlScQnzx0+f8ox7D1ojkFcxCAW1fCLcnJu7x8s0rpE2JufmEJLlj2DKWLRi2sLjI9vYOy/cFw+bn5zk8POFxSXRyLjNAc/9f4lxWKA39E3RVwnN97k2M9Bj2lz/4P/mjP/pTHqyscLC/TzY/x66qsHjHMBWS6B3Fc5VNRWFJlri8vsIZ7/CzDcGwRyMPKZ3bhPJbPC+m/awBH2dohpg/SHOM3xv9NYbFpqgK7e5sk8Qxnu9xdXlKsWQzNFITDNsTDOuvVXn39h2WWRAM++BDSto+WSoqkbKisre333vPv37ts7ys8/tDv8fpmaiavuh2yJKnOH7E1JRCHMVMB5P88q3QkhkPHxIlCfv7++i6QUrK5fUlGxsbDPZ/Lq7HU4UnG8PYhd88Ruz/90JLkqQl4F98459mgf8KqAL/OXCd//t/mWXZD/6+nyXLMrZdIE0S/LzEp6oqnh8IMenAAFmWcn11zvnFOZX8XHhopB8k0Zoe+B6yJDE4OCw64RD6IlVVsUyTSqWSH9eluG7M5dVV/rslfD+gUDD/b/beK8ay/L7z+5ycbg6Vu7u6Yucww0mMIwparmR412v7wQs4wH7QQoYBPxh68PO+GTbsNwNrLGCvbRj2AitssIIhkRI55Aw5w+lQ3V2pK3R1dYWuqls3nHty8MP/9O0eipaoJXfFNfh/GXTV1A3n/M/n/M4vfL8Ymo6UC9+wIBQ9JIE/RNcMgjDEHfRwBwMuNsexTHMkWklOYaQroasqJy/PidOUenGjlFUZRdWYvf11DE1heLiJkqrkaYJa6GQFvk+S5mi6SxCmnJ736Pc9JsfEhZ1lCZE/JEsTOp0+31nZ+0KQVa7WcQeD4sYpMRz2GQ49Oh0Fpxjn0zWFKQppAxKkLCZwhySF5kqSpGS5+HtNUZBk0Qifxil6ETRa1UncznNyhEhjmmUE/ZSXRTr849WXPN7rkeWQp5HoUJRkzvtDSq+6qvOUPImZnpmiXa3w2fYzxqsK1+fEzdi0TTJJIs8kvL5LUvRIIUGO2NxumNA/HjJRVqiVHGRFwnIsXiVpZVn4AWbFHlBVyPKMLM5GhsZxnJLEIWka49im6GmS5dEEiqKqpFFA4HbxOi8ojV2m3x+Sa8qoN8EqVQgLWY8gipAVmV73FM0QF3+j3iTKMnRNE82yWYZl2RiGOdJhi+IIz/NQNY1qrY6syISBj1bYjuRKQpraxLGYREzTFMMwGRQ9bVEQYBo2umEwOX2JcrkGUo7nDpiYEmCLoxh/6NLtHJLmOa5bo9EYwyoEc2VVRdNUPHdIEHjYtk0YhqiqhmOLc68qGgeHz5iYmOGsIyyNavW6ODeApmli4CCOCcMQWZZRVRXHcei7r8tHhqGPpDX+OtcvlmHRiGEPY2HDMmLYd77DhdaXWZQXePDSIwhcqlXR+zQ2sYe2A9vJqmDYskS7O85lW5TK8oVFnkoSVvyE6js1hsMBq2kGMwnVI7EHT6QNHj40cRyTmzdvs7n5RYY99Ido2nUuXgpp/LjK00HCwUGFfmmPsWLqkLE21vN9rinXOFQd6rXnRG8y7JaM8qRgWPJ9jg8TFGOeRd8jT0SQE/g+22nOg93XDFONMpNjgpPZ2inR7ZusPHhAp9PjO/sm0vmPoLAHPKzWkQYD8qUMULh3r8/SUo21Z9/FMT8EYHdH4cO2kFh4yCOWs8sE7pC5UuF/O5dSKoZMTvFoYQM5cxdTGidiH5+/8w2+/0fPWWeFuWAJL9M5/bg/Ytj/snrA470eC4tVFtKIDWkbZI3z/pC3Fm8CsLQ4z/qTkF/75hTt6hXBsLsTzI+/ZtjapsT6mkSauNwfMWyDHPH/uJfm+KN1iYnyFu+WHG4qRsGwK8We8pGkJbJsXTBse5eFq1fZ2EhYXxfWNRcvXcIb+gQPAl7Ye7xdqrBceRckUW/bUm0WonkCN8DrfEypdZlyfY7zs/MRw77+4a+z8ugRC/kiARFXFJnPfvQDPEP4bTbqZ0SZgq5pXBy6+NkC1niC+cwmM+cBeLIacVO/j6ppfPDue8iKzErgo2vieOVKwoU3GLa6usqdO3eZ7Iuetkedh19gWBAk7D0z8dwBdz/8BgDNKOZgf5cw/DGr6znud/vMvv9VLFvs0aeqimGaeO40Fy967O9vEUWXUC/t4IwJs/Fq6POnh8/4+k8wzLYFr7W9PY6LqftL4SVkWaarnlOv1+m798S59xbJFheRMP8CInxx/UvTLs/zdeAOgCRJCvAC+D3gPwX++zzP/9uf/cWgVK6SJjGeJ54GVVUiTWMmJibQNB136JLlGdMzM+iFsbBtGQRBiGUK/aFqrYbjlEdPeqJHx8N2bIIgQJJkdF3jrHPC+Li4Adm2RZblqJpKt3NaiJ7KKEVvVJ4XN22g2Ryj1R4DZM67XWynyGgFQSGFAHv7e5CDY5dQihuQUBd3aTabsPwOu70OqX+O7/lkhdllEAaYeU73vM/JucvZ+YC+HzA+JnzTNMMgSTIiP6Lb8+i4AqJ2RVy0Excus7u5Shz6WKUWv/07v8s/+of/A+edfR7tFPcLSWIQ5BgylC2JsbJOnqajWrNmmMhFM3+Wg5Tn4jjICJ88IFd0NN1CVWR65wPCdMjpIOTJoTjmm4dDJEmBLAYUJFVHllX2nq2P2hs00yZ2Xchz3rlxh3+yt8P3146xVQHLVqNCqeqQpim6biFLivCPVFWiIijsuCGmrpHLBnbJoVItYdglsuL3nheAJJOT4QfhSBvMsm1qlUJsdACJpiLLJrIs4XlD4jiiIYvgNkmESbisyCiqStA7pl5tMTP/LmEsjr+um0I+Ioc4idFVFV0zRpOxeZ4xGLrEnQjTNHFKZUxbonN2ilncxHRNJ/A9lCKjFCexaM4vzkueiwZjd+iiyDK+L7SWkIqpRW+IphlEfoSu64SBi6yoSLKE54mm2SzLmLl4iTzLkRSFOIwpV6pCQBQgjfHjEN8fkmVZIRKcct7tvkrOYVkmtXqTJE2pVqtUKw1UTR8FjHEUMXQHxEnE6elLTMOk0RQg1XRxLSiKwnDoYvHX36P1C2UYBqW330F78piZgmFGwbBsYgJbs3GHLguLGds7HpfnxJScbU0SlELKey9YXlrEMPcoXX6DYc+PUC54HDsVoi8wrM7CuGgCju05Mn+da5pKN/KZ9hI232DYYg6mLPNgA/TmGAsjho1xyRE9WMHTgCdKhiSt0rPHWErhxX6JqUEx0ZVLxFnBsJfvENo74J9z3/PJiuGSEcPafU5+6NJsT/Lx5/e4NncRgJkLBcNmZununNFx/ylN/r8Z9l/+7u/yj/7hf067dWnEMD3ZZDJ4D0OGY2uSxXLG+mrKhbvieGrGLcDkGJB6cFKFNk1gn73nIjNbUnSu37hN6eljzs7vUUuX+MPByohh0uE0kuSysb7G4twcy+oN5OvbpOQ8WfkYgJ29faAGeU5Vt/mTlTVq1ib72+K7tBoVSu/cJV0tGLassLwFffUa//TJnwHQedHC1DUWr1zDbpWpHB9g2AlrBcNON9uwLJOvSjx4eIksW0W9f5/b9h2eVUTGytlzuXvnFvLTDRqyjjczTbzz0YhhbhISXh0KhpkqQe97nBx3mLn2LqcdEWTrbkCpXKGcH2MkFo5T5stf/jqr6yKArufqa4bduoVz8IK9Ywl3OIVpCAbd+CkMm41C5IJh63nOrmlxYeiy9fQpvj+k3+uCJDSyPG/I9es3Wc1X0Xe/yLD79wuGLWTcvniJPLtIyhZxGHN62mRiQjBsIY1Z84ZcuDAkTTNmZ2eF7Ep3DFkOiuvJpDY848n5JCxVqR6dEicdnEK4+fLsrMjSJxF//IMtTGOP92e/Biyh6eK77FkK00P3r0VH69eBrTzPn0n/EiUBRVFQVZVBrysE/BAq5bqmM3BdJElMZo21x8ilnOFQPHk83z+kVHLQVA3bEdNNvV6HtGh29n0Px7ZxBy6WZaEbFoNBD3foUq2KAMYdDIqsWIKuaxiGydDzqJQExJAk+oM+Q9elXKmSF1N4WZ4RFA2tcRJjGCaHhwfk5DRqLUqOw6vIQmgiSSRxQrUxTnlykY1P/oDIj0afNYxiDD8nzX26A5eDjoupa1QKhfE8y0mLYE6SUmxdg1YV1RBBw+bqI8hSkBTCyOdf/N+/x7CwPXELLZyVrWOiMKZpadQdhTwyaY2PYVcFHDTTFt8lz0ECqUjtyLI0sgKKoqAozUp4foQbw1Ev4vmZaPwP4wxVVrk0u8zO9hq5JIINKY2QFHFzjYddQCLNczJJpV6rkibn7B2LDI3jOOSui2GYuMMBeSaELnXTolocj2j7hCBMKJkqVSem1pAplUvExQCCYegEQYCuKVSrJbIsLfTUwlHw8dp6QRiXa6qGZVoMXXHcJFnCNBxkRSFLclQ95Pz5CjlQmhRNxGrdEIG6qiLLMmenJ9TrDaziYaDX62KYJoosJgblwMcwLWRZHpXJa7UatmWTI5PEMWdnJ+I9isnFwaDP6ckBtlNBkVUURcFyrFFWSFbUYoBBxnUHnHlDWmOTSJI0Uv0nz5ElG9XQOD5+wfO9LWYuzlMp10Z7VFEUKpUaeZ6RJMK4Ok2T0RQU5Pj+EFWNaDbGcYcDet3uqAqoqBpR6JNliWjqVxT6gz6Vcnlk4h7HMYZucnb6ugn/l2T9XAyL44Tt7W1mpqdfM6x2jC7d4KLrkjyPuD8c8tX6GPVG/c8xbG4uQt56QTK3RO/TJ6TzBcNaHrJk4w6msKznBcPGcYcHqAXDpgY/Bg8+SRJuDMZ5Zu+Rex6VksgmvGJY9wsM22Uhnx0x7HESUzKuCoa9DLBqLd4qOYCYoIyjgHzxMYmTcJyMc/h8m43OmWDYqshWhrOXMfxnzOc+lZrL/ukz5uav86W3hS5dueywmq4iSbNIyyl3zq7jtfbp/STDNhVWrvtMbf4e0zMTREEf957IEjr2bf5J+BFN6zrv3VX43qnJ9fEx9guGeXv7XFlaID8fMl53OAFenHYJhjPIapEB9jpvMGyWz+NHVHqzPD8TFYJOHHHtyjIXZi7zR3/4z1i8ppKvy2ymD0YMy+KLQMxqnvM3l69R/8G3SZNzzLZ4Dz90WHQ/59mCyVQ6z7oLa/kRs7eWeachbHqebP8hQbjIx5+rzI3HfHP6CqXyGLcLRf+PDJ2LGwFPtatUqxYLC++xuSmDv8KMJzJJKFtI6gLICsrVq2ibYJVK3CsYtnxlmcDz32DYJO39FZ4DpUlhGK7WO2RZzpaqYsgyn3zyCe/V3+etkvicvfEuxsw0SlRkqi9eINt7zpUrMpsbwoLHqtWwrcZPMGxjxLDJwTgrJ3/KufMllAsXUdZXC4YJIdFy9R5RHLOsLrHirnyBYYuL4nraSHKeSjbXDI32WYM/2fsDvnlxHHnyNcPIFzmq6OTrgmGyrDM//5phV6/mfPd7Q1TV5QNrnHBaKxgmpm9Pz17waMUnW5jj1i0bRblOf9AnXyyjFTIll5OYXDdHD8I/y/pFBVr/AfB/vPHv/0KSpP8Y+Az4r/I8/wuNzbIs5fjokMGgh2WLLFEY+FTKZWrVKkEYUKlUkBWVOI4oOUWaT1UAmTTLMC2bfv8Mw9DxfXHh246DrMgEQYgkSewfblEulalXW0i8IaSWZaSkKLKKaVrEifA/ApFNqJTLqKqOqihkWYaum2Q5RS8NZGmCNxwgyzJZliIXquqvfh9FkVBal4RgZeviEoqmsfJnv8/BrigRJLmEZWVEWcpR12XvbMiFVmX0OQNvSFpM1wyDBEszGRufYn1X9FiQhiBrwqMwjdha+xSyGNMsERU9NEMvZOOgy+W2jSaZ9A0JxW6RFttAUTXyPCeJY3SzkHxIM7I0Gwm8yopOikyU5nT7AX4usX82xA8LWxtVQ1VUri9e48XzHYLYx640GfZC8tQtzngOsoZl2gyjhFazwWVDJiom9Y7PBkzrVaKoR47M1IXLWCWH/b2DkbVEydZ5eT5k4MXEaYpVriGpGr1CW6jb76MXk4RpLI7bK1HaV56KcRwJ+QdNIctjVEUll9JRv1meSgQoyJKKhIxm6sSBR2fnPlZZlCG6soyqKNi2g+/7qIqCNxySDcUeVFUZVTUwdGFVc/DiBaVSCct8nXbudrukSUSl1iTPRL+eKHmLfa7IMqlTEaK8hi6mb3ULvVAgl5GI44SzU6HkbjtldF0nCIPRdKRlWaRpSq/TI0lTLl1aJsvS1y4LUUCt3mA4dEUgV/RMSpKMVvTYnJ+fMj42w8DtkZMjIVGvN0gLDRpJkmm2x1BAZIjPe0RRwtHRMa2WCAo8z0NWZIZDl1+y9fMxTEupVsqcdU55vi+uyTu371Ipq9SOqwR5wJe+9BcxbIE9/YCG52PkEg8eiP1z5+5d5K09gvYKkmSyf6hQLg3+HMPW5AypYNgt8w4/Tj5DUcTNYz3PscoGVTXkmtIeMSzId3kSz4rPnyZ40wPkqky2toqs9JCwSC6LG3oURGxvydy5LTE5McHE+RJXr19n5c9+n2/XRGYk+eF9LMvkqGCY2RjitzLGN0RmRFUk5udi1jKf4cOE55pJeXyK4U8y7Po18jTiD9b+d1iLuWXeJZKF0vlwJqRUGuPo/B6ud4vJaQnlTov5pcLlAbFXk3rMS0DCY7pVY7MF6X3BML1g2KM0J+8HDPKQs+aQC7LYx4N1DU1T0XKVG9dvEsQP2LebLI5fguLBZWMjBlnjdsGwLzcbXL4o8ygQ0g2tZpknSZWFKOQe95nyv8XtD+b49h//KeWKyDa9decGH/3wNcOel2ucqhr1CSFoOrb5ETuGxp2bN0njmLXVNfJ8iSiaRZKKnrQ4Rk5TNHlZMEzeJpcMFubFeU3iiIcbW8iSyu3bt9nZ22WRjNbOfabfFuU0qdJGVbbY3xcMu6Zc5f7wHgtDUdNVJ2W2t5+xlC/iLAqGub0u1sULI6mD7liXNJml8vKM9UcJQaBzTbWx3nrFsBO+4nzIhiRxw9CJ7rz1BYa9fbdEHO9zdnrK0sJ1FEXmZf2UYEXI1AC8XTDs7BPBsN/4jX+btbVVjBURM1yavYimnTLtTbEVvWaYuv0U7forhjUY/+o3GXz+KesbY8TRJtKyxHwqAj5Jkpmcsbl68TXDHkUJk0fHdOIvMuy11uRfvn7uQEuSJB34W8B/XfzofwT+PiKd8/eB/w74z37K3/028NsAY8OMn7QAACAASURBVO0WmqbSaDZHT766rpNmmcg+5EL2fmPtIbVqjWbRUKcoCkmSkmYSg0FfZChkhVZLbORer4vnDTEMEX02anVc1yfME+FJhsjahFGEsMrL6XRO6Zx3uHRxFgBZkkYSAYqiYBgavV4fSZZGFjuSDAPXwzZtGs0GOcJvLC10o6rVKnEUkWaxEIZ0DIaDGqpVJipMXZNcIvYyzr2Q436AG2ScDQKGvngPTZMYusLDrO8GRFmOrmkovDrZGWQJWQJkCYrpkAYp9VqN3kDc1MI4IowT/DAlS1Na9QaliWWsciEmGQZImi6yI5oKUjFY8MYTfoYEepnm9GXU7UM6HY8sTykXdg7DWMYPIp4f7NFqjbH/4ilev1NsB7k4XqKsMdaaRDZKOFrMV96aZeWxaJyMo4TTkx6VisXU7AxmuYRmGLhewGmnyNJ5kehpU2Rsx0YxLPrDlJMz8fskU5AzFa/bJ08zHMsqmuKlUcrXNHWQIE3T4mKWSdNsVPLNMlCLnq0gcFF1FUmWiYMB3RcCdI6s4UsarYa4CCXLptM5HxmONxpNZBl8z0dWVMYmJjEMg8DzMMxC3sGy6Xc7DAbnlEs1xsen2N/fK/rl4LxzSqs1ThyFdHvH1OuiHHe4vyv+3nAwTJNypSqUvwOfNM1EkFVkt33PJ8tFn4hlWtTrDV4cvODkhRAcHJuYFGbYlo0X+GTkDAd9LNseGa46dglNMzGaJv1+lyiOmZyYptsthDM7JyDlhGEAyCRJxNTkBRTlteejrutYlk2l0L75ZVi/CIZNT00WDDuj1xPfzd63WZXWmJmZgRwODo4ge8jL43f54Cs/ybBNBgNot8e+wLA4imi2zpjSb7GR5DRqj3DdPcJ1CfXXPxSfA4MrV2dZeeiRL+V07v+A6nmHSxf/BgDy8ibBii+0+5Qtnhky4+MDJHmZsPDLHDFsz6Zx4Tew2RIMKzJex8fHXL9+nTTbQFG3eFYp8fLFc9Tnh8wmIrv7JNkknikYpge03Izujx8y/KpoQte0ZT7peSRpn/5UwOxWzkC7ztWijPzpxifAHAtXEsiesGU6pKTUay9fM2w3IpQWCZvzrK2ucvPf+ialvjRiWKvRYA3QiVFxmUACurDzOrDPkNjQy3zwa9/if9v+n+l0fGwn5fC5uO51TWblUQRX9uh0utjOZWYmhK3WxoZo3F+Wr7ClbtHttJCNA5zrMe23Zmn9XsGwg0VOt3tEFYsPZ7/Ji+oBmnmTKe8if/TkewBsH7SZS3Nmr8rcXrJJJYv+cJUkFJ8jWbhKsrvLecGwLF1iPkuJliRyhOK8qQo+pYspqqLB0lVSVUYp2LG2toGumyAt8fChS6kSkly5Qpyl/Og7/xyAu7/+7/Jgs8+3/sYHeEGAhMSlT2bxEhHsN7bPuKZew/ceIK+rdLOM95pfJpA9ntmijys72WCiqzNYaLNcyjk6cnlgB9wciM/xw09OaX054XI0y0effo/33vsasMHhvmjIf8Www6Mqtn0uzK0rN9Cvb/w5hm0r26RmzHvt94kfJyOGRfMXqS1J7K/ZpNlrhnEn/wLDjJ09jObX6Pd/JBh2Ms32mDjm7c4JgZfzyQ8fIhg2y9TkBV6egSyL77K7q3P79v5fSaLmF5HR+k3g8zzPjwFe/RdAkqT/CfgXP+2P8jz/B8A/AFiYv5yHYZFdKAItz/OE8GO9jqZq7O3tEMcREsqo2f3p0zWazRat5jiKonB4+BTdsEfZgiSNsa0SmqoiSRLlcpmSE4IkE4YCILpmYug6qiKyTUEUUW+0hKccMPQ8hkOPyckp4iTl+OVL0iSh3R4vlOxB03UmJmeIglBMW+UZcRqPJhfdwUCUTAwdXdeFjpBTZv7ue+zvigvzvHMupvskCVVRkKUI09AJCkXbwTAkDCJUVcYLErI85ez8nGZdpE17vQ6QitQ7ElmhSJ7lOXmxU2VJxlBBJmNussrY5CRmpY3+KrsiicyIbr4qUwqV/SSJiYvvWmm2ydKAahIwPz/FqfuUlq0xWRWbbuvUIwwy7j/5XNzoJVVYUeUZyMqrt8G2HXrDHn/8nX/Gv/feOKapcf3qVHHufXRLx3bK1NttJEUmDBMqlRJ2SdzUL0zUWHl6RBiFyKqKJCvESUQuFyalaUIepkRBiixDGKdkmRDtfBVoKapGlqbourDYkYrA8lU5N8sSkjgARdg4ecMBum6g6Tr++REAZrnG9NUPGLo+3X4Px7GpN+poRalVkiW63fOiB0BCllXiKKQ/6NLUhZBjLkmUK3WCQCjQB6GPZdk4RdYjSWKGnkut2qRabZBlKXEc4ZTro895dn5CqzmO5w9FVjLwaDWbhMUkVbd3jqIqOLaDoTtEcUy7PU65mLDMpJzjl/uQZeRIDF3xMKHpOsWlQJblBL6PqhUTiqpo8H9VAh0M+jRb40iAomgkiU6320XTdIxCfDXPM4ZDF/mvoKr8r2H9whj29GnCnTsi+3L/yX0mJyeRFQVN3WFv7wWTvYjlLys8LhgmjximcdO4yv/z/d8XDLsljlc1LGNbJjvb29xYXuZZuUnJuQT9p6ysPAAEw2RZx3EkfK9PMDvLiSTjFyfOH04wPe4xOekSJynVzkuGw4R22+LKGwxrTM4QTYSoqkyaZ8TuZeRCxMidvILrujwzZtF2d5nxBvScMlN332P/sSjrpUnCQpLTliSaisKpFHHrps7FWdE/9fjx54RHs6iqzEwt4Xvrq9wqn5DU5984qimspcACC1d3yZeWWeuN0+dzAOaWr2CoEB+vMTc5ydjkJFTa7O4J/0DtrEmSg361zUhd6bjDXBIznBXf1e20uZUGeEnAb/7mh/yv//j3ae5rLI29ybA1vGSBertO6A+RcthYz1guPHY2pQ1KduULDLtlXmfhbxfiq68Y9qLMWfuc28oNVh4/oVIpcack9sfliYiVp0esPFrhruqxsHiFfrLAkS7YEqcJYZiy8nCVK/ISobFKtDBHmqSI9kLY2tZYyAqGLSwjSRJPn8rMz79iWFowTPT3zUxPEofBFxi2+qNv82t/+z/h3ucP6PZ73L1rU3//Jtr2K4b5/Ki7wp233oaNTUqyCpHMZ4MuzewVw+CwUufinkdv5pzaSZmzKzaHBcPKXxIM26+Wmfj6t9hZW2V+fg6n/Eq89Qln5yfcuj3Ow2CaxTwnDzxazdt/jmGKegVD3yZ6HPOV9td46Igm9WxHpzpps/HyO+QsM5zqs9yQSJI58nS7eJ+cixcusL3z5A2GTRHHIqgcDPpoag8Jk6tXr/PkyWO63UOua8sYN99k2AxZ/q9XsPTv8kbKXZKkyTzPD4t//h3g0V/2AnmWYZomhqGPSna9fo8MkVHKc+Eefv3GW8UmE5Hlq+nDPM8JQ58sy0mzjLAolVUqDiWnRJIIM+hut0utVitMXAv/tiim2+2R5znu0OXCxcuEQcjhodiESRIyNjbBwHUxDBtJljFNS6jcFp/VtksEvoem6iiqQr9TGAYXn/Ps9JRavYasKDx//gzDMJiYmMC2rvL2178OwIPvf5fdww7HvRAvSoQqe5qSFhNyaZYRRQmen3LQcanZGltHh9QLq456o0Wvez5qTCbPkWSZvusWQqzCwme8rLE4bjE7N4dWboCskKRFVixO0JwyUvG90jQlCERDOIUyvFGq4UQRg5d7NCcv0tw5wDJS5EJ8MyPFCxIGoSiZyqqwaZFypSiTgKEbmIbB5uY6S1Ml5sccMiTqbfFdqpmQCDDLDdJcBTlHVjMkKedVtrZk6dTLovdJknNyRadUr9LICrXj02OG52eomoEkQ7fvoesKtUoJy9JH59b3AtGfpSkoqkIcxZhF+TpNE0LfJ/B8NN0gjkWfl2nbhXQF9A+fkqU59vgVkKVC3sBkWHj7aZqO45QAiSwTE4JIOZZTxiuyBXmaUms00Uy9mJaUsZ0SUfEwIMkK9VqF07MTHNvB8weAPOojVBWNRr2NomjoWg5SRpIkdDodtFHpUEz8DHp98RkNE9MyR8Kq5UqFIPDpnb9EUTSmZuZRNQVZUkZlPl3Tycg5OnhBqVRBkhQMLUUrzK0npy6i6UUWTRJTiEEQUnLK5Lya9IwL8dK//qnDN9bPzTBD19nb26NcLo2GdaZnpknSNWTpfdbzBchfoN14i0ZrjJN10QRcHjFskZVLD8i2c9JsgfCReEp3viQYdu1awtraJjMzHrUacPMGa2viNeIoZmzshPU8xx4IhtWqdT76qGDY8xD5qxMcuBVuGvtI8hVMU2FzU8Z1xTXplEvY+/fRrt1A2d7is06fm7dmIRf9VWOnp+ycvETVdCzHxq1VeLff55F1lbebr6ZSYfeww/c+XWEmSsgTSE9TVk0xIZdmC0RRgOev8ulal5qt8eKoTP1EWN+812jR6yqvGba+iLQEffdzZmdnxXHe3aZX1vhbX3uLybqFVm5w+cpVpi6LScTt508Ew7jw+uSMN1DGGzAQWcJnpXu40ThHL/eYmrzIB1+6w/2VVb5RMGyBGR5fvMIgzIiiR8iqDJtLLF9/zbDSbplbN2/yyfkPkcwS6ZjDGpvcbou+uMm1VbS569xaarC6riLJOVfUZfal/dcMu61Tr5pctK4iySH5VZ3S5jGNpuC1fNpmfkFmc/0JW/IzpvszPHy0yruVu1i3PwCgfroiGHb1KjtPt1BUhSy7PGLY7bsW4QOfh949rusGvn8VafMpe9XqSEWzf/iU549+wMT4Fbq9c9J0Hk0zuecJyYNXDJM2ZdZyiTQIWJfWsJxJZvZfMWySlw2DQ1NnuiQj3XhK2an+FIZ9H8e+i9coUz8/e4Nh12nUJba2DG7MRj/BsF0ALGuROI6YHO+TpnW6xqeY1i28e+I93q7schjscXz8EkU54kP9N1E1haebW8xMi3KsvrNKRo7drDJWarO5uYWhBVwvGBZPXaRULhOHEUhwvWCYfdcaMezx45ipqSeMvMl+hvVz0U6SJAf4DeDvvfHj/0aSpDsI3O7+xO9+tX61frV+tX5p1q8Y9qv1q/Wr9a96/VyBVp7nQ6D5Ez/7j/6qryMrSjGyfEZeiGfatoOqapim8IianJzi5OQEXdMoFaOYF2Yu4wcuORlBEFCrtzAtE6koDQWBj4ywWSmVRFP4wHVJ4ng0MVCp1DBMhzSJMA0LCbAsncuXZwGIwkh4+hWm1I16HUPX6fcHyEXmJ45CojCgXKkzGHTxhi5h4KMX5ZJu9xzHsel2O7TabXRNJy9KNE5NZHFqrSb6yTmSBIoioaMQxSlq8ZRlWzr98+ec9XzyLOXW7CSng32OChsFRZFQdSFmCjl5loAkE4TRSJRyul3lQkVh8UKdUrXJ1K2vY5YbyIXIZ5KBOpo1ZFQ+jNMUVS/KsWFIhoxRHWPQO2FqskEWR4RR0aRu1WjXW5x5GSd9n5fdPmGS4ocpuSSO1zCI8IOIS22L9xcbZEmMpFqUG4WsQhzhD85BVrDMCnESkGYJpmWMrJFOzj0qtkHJVLFsm1JtDNkoo9qi5yTNUmQkvP4ZYeCKMmgucXLawyr6yRxHJ0cupg9hWIzUZ0UWMcuywuswIui7mJaFFmt47gC1aOJUNA2/85zaxDxOcwpJEpOZr8ppQRDgOCVUVSVPUyQ5J0lTKpU6SlFKzbKEMPRJ4oh+r0+1WiEMPA6ORf/CzOQ0MhKlchkph+FwwOTEBYxiYMEbekJcL8uKSUmTNE3Y299n9tJs8Z0y4iimVC7jeh66rmLoGoOBOJ6h7zM+NkO7PU2lWsbzPCG8OzjHNIVdlaIqSHlGuSyeQh3bJkmTkSejLCmQQxj5hHFAsz4+MpcOi2nQNM+oVKr8FSaj/5WuXxTDIlnILjRbTY6PReVxf/8FqlrDc00MSWJy8kPq9S6fuwNKkihBXZjR8AOXddYIHgbU3vsy5vM9pFwwbuXhCrdv3SbLc27oB7jqK4Z1aDYEOyqVGlEccz2J8J89RwpirOVFvvWtWQAerUTI+4Jhm1eWkE/WMfQbXAoHpAXD1ChkGE5QTlMGnSbe8Bmf/eiHI4a92N9jenqasbEWlWqd3Z1dxq9eYTF6yJ/8M/E5XnbO2N1+yvLyEkGyip4qRPb8GwyrFQwbspilMDvJtx9vEU4Ldiidn8KwdZlAiUiLrPuwXeVbX7pK7p9Qmp0hMCfYOzxlZkmUhuYWrrNnqUiHZ6Bp7MYJ8WSDeHOH2Ysi87EcXuPTje9iHI+xvicYNtGpvmbY7RrnDzo05zNO+l/n5Y8+Y8Xawd+a5+oVcbymL87yw+5nP8Gw2xyeipkJp/o+/uoPofENbt+t8PhJwKUsYc8yeBKLDN7JxzMspAalW9tY9jyll2M8HZtn6D4E4PB0m+lWiyvXNFYevmbY908/5fYPRKbRuTtHHmcoisKVK0vcv/8ACHlwX2QRFxYWkK9KpJ/f58d9F/PxIxzb4dbU5Ihh1sEBDz75E77x78zzwQdfRpLg0aOHX2DYXectUDMW08vkcs6TdJUvVeps1cXAhWDYPnPxLD2rT7Wa/RSGLVMqP0DKnzIc2lQmLvBs7xXD7qPrBoqisfl0HtMwmZ8XDIsuCfHehTwTgqWWydTMjGDY7s6oFzr0fcbnZvitpWkq1be5fyAYNhu20XSRIVauX2NzfY2ZwyosgWPfIUmfYBriPWRJYWN9A9ftcenyRc40nbmCYSsPxTTofL6AU3lnJIz+s6xfivx9miTs7OzSajVHDcJJnOC6fbIsIctSKpWqOPF5RqcjUqu2U6bXP8eybHr9AZVqDUVR6ZwKMdKzs2MajXGarRYDd0CaJMiKimmaows3yzI0VUFVDKGkHvjESYb96ibmBxi6ju/7OI5Mlgk1+TAMRn0nqirEPc9Oj7EsG90wUVV11MM1v7hIlufsPNumUqmTZSnD0McbnON54uZulypMtmsEcZd+lND3I9IsJXkVJE1OIMsS2sExjXrCWMPhwzuX+T+/Ky5ao9RGUWR0s0TguyRRjKRo6LqKKhXK8FWb6aZOyXFIUPC9IfWpS2RFDlmzS6QZBGFMXjSNpzkkaTYKgJMkQTdsNLOMJEk0GmP47jlZKkplS7Nj2OUmB2c+x6fnuL5JFKfsHPYIo0LKIo5xTI2352pMVDS8MGBhbA6jUNrPkTFLdTGcqCiQquS5jGGYjLdFT9GLox6KomAaKvVqnUq5gmraSIUg69TlBaKxBkfbOadHPlGYkIYpiiy/6q2kP/DRNSGXYFoasqzguu5oalVWFGyjhKZrJGlC4L+e4nOKVDNZTpaEnD1/gFFpEEQJSZrSbhc6NsMhx8eHdM5fMjl+gUq1Rp6lUAiPgvAM7Pf7OI5NqVQSvVDD4Sjk3Xu2x+TEBJIkEYYBl2eX0DS9MDIXZb/hcEi3d0aj3h5JnFyenUdV5eKYZli2JSYkTWFyHUcRtULeIQhDNE0jjELOTk7xgwDLNkmTbLSPs1w02FfKwodR1w38nj8yV62UqyRJgmFYJFnK0BsiIRTj/UAcU80wxbCF8rOrKv+bsNLhkJ0dncFgZ8SwxcUFwjBkf7/PwkJK5ajKURwTrWd0EOfu3r1XDPMEw5QtlKu3XzPs4+/h+wHNL3+ZxB0w/yThqaKiqXsjhinKEZIEi3nGQbvNceATD+5zxxRN6N6FNxi28ZQMwTD7pzHsB8dYt230VZNrqko0K3S2TMtgYXGR9bXHHB2doKoKQ2+I9+NTPE+UMO1ShW+032Wn1KUf3aTvPyoYJsp605PjXJElDg4MovoTuo27fHhH495RwTCrjaKcoZuhYNjsZTa3drihX0d9Lq7a8pLNdKuMf+6RcJULM9NMLVxjbUP4Ol6/e8A8MtqkilzEz2vPjkjmM9ZD8RrDJOHGzTt0x/c4siSGH3XxHec1w6Jz7vyHv8WffvyATDrn5r//Vb4Wp/zRn31KePaaYcu3LP7uXI3hiGEtjEIfLX+wglmqs5FvcGvrfZYklYf5UwxjjPF2oYFVecH61hZfeWZR/6DOUfmImjmBhJgGnPrWFcJ7n1DvNLh27QLevRVmw5wtWWa96J1b+HGKfv0aypaCeVujVCrhuhv4vuh7i5MI+9nBiGEXLwQcHek8fPiQu4VUDndLLDwP+fhP/jEf/p2/x8NHTwqGfQV4zbBPzj/iG+O/TuWdGvkTwbD5efE+4YonNPkcmdJBibXyItEwQkJU4AXDZlmWlgnDgDuzdTRNR5ZFVf7tSoV7BcPer88TjHfo9XLi2Xm0bcGwXdZeM2xvD+26weM3GJZfuoS2c0C4dImzRz+gFQRY9i3CuYwoEvs4yyNkSabydpXHcYR5w8D/9DKf/FD4YFbefoe8YJiiaAy9IY8AY3NzxLDcWCeKbxD85VgYrV+KQItiTLxUKo0ald2Bi+M4hGFAEIRkWY7nedSq1ZGDepLEVMpV0iynXK1SchziKB71bpVKZcqVCttb20CGaRk4dglVUUhSEa2nWYqqKkK7KYM8j1BkiIqMV7lSJvACKuUakpTz4uCAUrlEpVIbWaR43pCzs1NazTZZnhFFAYri4PtCrylHWLvMz1/Bsi3SJKHklPE9l8nLxZNJuUmz3aa194wfrzylPwzJZYluX2i7XL40hWFatFsNoigiTiIutMu8NS+aET/fPkNRdWQJsjRFUmQmmjaNisNUTWQkFiZskQVqjhFmGUgyim6SFnIHcg5kGZKUoWUiuPL9EDKJV21coucqQNFLJJmEYjlULZO0CMQkSaLRdMiJsSSVKCoz9GPmWjavuqqDMKJaMig7JuedHpNT00JhvrhhW04dpTqG6/bxfU80Exs2qj7ELszAcykXk6RVG9tSUYggM6hWxO81FU79LoqikudiolQ3NXRFGQUOqiaj6Wqxt4RAp6braIYIcHTDJAgChM6WjGqoKIXRdl7ITKRJDJlK7J7ivtylPLEEpASvJEZMk8nJGdIswy6VSZOMwxcvkGUFp1xYhGS5UGKPYvJE2AI1Gk3qTXGjeLG3h6JppGHA+PgE3fNzymWZJBafIc9jMY6uil6KkaSDoY/Uwf0gRJIp+l/Esev1exhFP1G5UqXXK45XltFsNMUxU3TSotfQ9wPyQjOs3+8TxzFOqfR66MMVzgR2qYyiqASBh2nYdDpno+9qGRauO8AwXtmj/P9lvWJYyOKimAjrdru8cF5wKbzIYBCSdXO87ftI1SqzsbghO0nMVrlKmlV4+51VDh2HOEp5p2DY6m8sUD6qsP3t7wAZvZ/CsPmFedTtLSzHQckgz2dR5IxHBcPerhwSeAG7ZQPp6jWcgwOGnvIFht1/g2FL64Jh+dW7PPjsRwCYlkkcxczPy9j7FuncHNr2Nr6i8Y2CYf3yB3zW3qG694yn20/Zqy9y7ekmY7dEoHVFnaJ/y6IdNXgUvcvcXIRaehvp/xIZsc/7H/9UhmWVE1oFw37r63c52n/Ge1/5BoqVsbEpc+GaSbosMoSraLC+x7XlDJ1TIOfCBcGwVREPIvvPYGqcrd0Dnq1tklgOV61bpAsi+7J5sM+vNR0mP1CxPlGZnShz78FjfufmN2BxFYCHBcMkxyTujAuGra0RXBc9WrfvvoOiGnz++Wc88O9zRbnK9Zt36H58wkHBsEGUkyRzNN7pYVsq80RICykbTwuGHUFDvsKxsl0wbBHd1LitKDyKRHZlU5Oxd7c5Ng24D/Pz82RZxsamuCaPjvcIkpglFomUR2w/v4Zl7hcME0FS+mQfnIJhH+1iTdgsLc2zsfmaYYPJGapZC/stwbCy4/D82Q4vDsUxI8u5ad8mjGLWkxT5iUTjvSb1phgOEAzbYSMMqI03MM4NDg+fjhj26E2G3S2hRzobGxvYrkeQFAy7eAnpKWTZJhvkLCdzjI2/ZphzcEBvYgzlcfwGw/bRS3NfYNilSyGP44h+v8/lOGburRJPN8VgkftgSJ5NY5cO2dpSicI3GSYC5CPDYioeYP4V9PZ+KQItRZFpt5u8ePECpyQ2mWVbeP4QUzepjddxhx7NVptyqYTniwOfpClJGFIuVxj6AWmakiQRIw8VJDqdl1iWKUqHcUwYxyiKNnoarJRLZHmG5/tkacbQdWm1WySFYnuaJHie8J87OzsRqfQczrtno6AwSWOq1TqVam3UWF+rChsUgP29Z9h2mdnLc4SRUCk/OT2mUW/jFcJypdYkqiEj6xovjk7x4oi+G9Ltic2eZTmyrOKUK8jDAZ7vE3oeHyyJMXHX9Vk96EKeomkql8eqXJ2u4pRLjNXFk8tYWcX1E8zaOJNLd7EqLXJJHZUFyTOy7NU0rUwupaiaQhikJEUaSDFtlCRGsxzqU8t4p88I/XMqbRHw9U9ekmYZrfEaWRzS7fZoN8tCSNUTT4zVkk4UJZyd9ynZFs1GTQC2mNTLspzIH2JapUIHzccP/KLELG4MtaqDN4zIpKLU2DvFKGfkajFtkwtdoSyLURSJatUhJ0XJJRRFvE+ORBQmkGVChd7QUDR9lBLOs5wwjIAMy7TFe0sZURiS5SL7puk6kqwiI9E7XEevzRCn4r0BEjPFDyPG2mMEQUgapzTbYwyHbuEygJhmNEzyYY7uOOR5PgrwAKamp0SAYzvEYYiiyOzs7uAUwG422iiqTBInnJ69pFqpEXg+Q6+PXEhVhEFIt3vK8tJ1giAgimM0XR9lEd3BOWkSo+sG1UaDoTtEUVVcrz/a54Zhj/avZTlESUjmeyNngTQJSZKUTveUarVBszkudO0CF98T+3j/+Ra6apDnk38xFP4NW7Zt026f4Th1/OCVGOlzgsBnR9/B6ZU4kI6g9RXeLZXwLhQMW00Jw5By+YinmwqmkZKEj0iXlotXXqbV8imXbnFwcPAFhs3PC0bZz/dZUzXmL/hMpwvccwe07A5JIgKc1WSOntdHj1XOzna4YZgs/QTDzt9gWNb9lDzPeXn8kkq1kKowDc5OTohih0txSJYmfP/oBY16Ms6EAAAAIABJREFUm5mpCQBKjx/xvpHyIz3DqdT4w4MIeSkbMWyttc7M0xmctyvcujfg/tMHLC1dwS8YhmsTjRh2jbh3wLuX3uVuuUS3LjIjF1olTl4sY9Z6TC79TZ4fdVjfVLn7JZFh3sxFlWIdsJHJSAlkhUtpytyi0IXa3Fhna2//Cwzb9MvExfU4BFbX1vjyjXf5qHzM9tantJtlWst1Qk+8z9dKN3gUJZydh5Rsk+bpS65WSmxt74rvqr0kSVNMq8SVq1cEw+4/QFZcdF0EJy+PX3DjxizZJiQ3C4YFPeZmxTl5+PgVwy6jKIdUqy8Khi1z+6rIVq5vbBKFCUsLC8X9L2FrZxdFFYHn4sIi/cGAnIznWzaOfsjS8jJRGJFVxf7RGjrSM5UrSHx6+M/5yru/w+f3fCREUDln3uZBGPHV9lcJQsGws/Muw2mXb3xFNJnfvzfAummxfi+ndNchz9cJAgs2xLUwdWOKPFtEtSEOQVECNH2HWv0uAGen5yOG/eDjj3jnS+8S+F9k2CXfo+ucIlESfJQkdnZ3uX37ttg+k23SKEJXnlF9v83QHbK1rTLm9VkvVO4N4w7R5UtoWYhlOTxKVlAf6G8w7GXBMI93qj1qH3wN49kuLy5Osbkpphv3nx/xbNcYCV//LOuXItCSZZkoikZP0wBIMr3uOeb4BM/3n6HpBqVymZx8dCN0dI0gyIVHojdElUXQoxQqsPVmG2/o0myYI72kJEkY9AeYlggudF3HGw5IswxFVqg3GnheQJ6/shWJhaq8rjGuTSHLMp43pN5ojfQ9Tk4OgZzN9Se02uO0xybonJ/RORPp7Hq9zfT0DO7QBXKSOMIbutSqjZEKVqM9hu84mKbNpRfH7B2fIsu50HpC3NANOx9NXCZJiut5Iz+895cnMdScJM1pl3WmiuBqdqyMYQg4ZBnUJ2epTM5Rqk9QrreQFJVCzYAkjFBkBTlJhZhlFBFFMVmWk7zqW4pjVNOk0myhGhbB2AX6x3t09sWouax06Lw8Y2yygW0rZKlDlGR4bp/zTqEGnsPAjZCknImlCpIioagaUlHCzPNciMKSEfghfuAJfz+rjFlMDDarJpaqMTc3jWXbJP8ve+/VXFmWnuk9a/u9jwdw4F3CJ4B0Zbqqq8lussmhYm4UoZAudDEX+gO61s9Q6Fr/QJrQTIRCJjgjcsjuZnX59JmwCZPwwPFne6OLtXEyi2xqmqGb6o5al4UsnINtnvWtz7xvnGClMarIJ5aSgCwJKdeqGLqK12+TxCGKUPPgSfagaZqBKsAwUjklF0aE+TMYRTFZmmJaFgKFJEmIIh/LsgaTZVEU5QrsOkraxrs5wq7fgeydhZNpGqiKQrlconF9Q6PRRtONQcZTUZQ8sGKgxh6E4eBFVhSpxdbr9akNDVHQdSZy4UuQPVvVWg1VkxZDiqJiWhZ9N7odfGVoaARNUWk0Gni+S6VSpdVokFTkxFjoe3mfV8LV9SVh4GMYFppm0M+DpJGRAo2biF6vycTkDEIpEQQhLU/2pUyMTclJU0UBMhQhOD87Q9dNCk5+gLIcCk5xAM8/lhVFIWEYUi5X2MqnAe/eXedXv/pPWGPj2G9NykaZ01JGtpKhPJPP+on9Bs2fyRk2haacECcRW/lUYu2ndU76Paxri48+/glJkvDy5Uu6nS7GgWTYQclgaapLHKfs7e5Q03XcQkiWj5//Y4YNKwrucZ/aUAMyGXysXp1xSsbO1r+nnjNspDmMMizhYNtF+n0X13VJyIifPWO6P8lkZZbH23ID+rg+ivfoET9vnfP4V3/H+sU1LWX5eww7dI5ZPl2CR7D5lUHvRcjqhmTYRP8XfLd+SpxkNM8O+LPaJ7ACYVDi03sy6/X69S3DHlGsjVONDVbfY5gfgJokKFnCohgiAvwEXr3eI5yXDFsKF9i3XvHR8AjuvQf43QZfXxzR+Jv/FQDlrUajes52kuA4e6RJgfmFJR5/+/WAYSvLNxR6Iae3DIsS1HWd1bw6sLefsbl5n5SMp0+e4Pkud5JFzAca96/lvmB8bOH2C8STJseOQzVOsF6/RDWleOZKEtBIQsq1S4zeNE8qZyRxyJp4S3B46wmsommbvNFh9eA1b3SdJI4JU8mTdkcy7PDoCEVR5SS552FZFgcHB/J3nJlsbgoyfYM7+7t4N0dsbNyBLRnMZRncu5czbL/Eb69v6PaGWZ+Y4Ikn/xZFUXj61IcV2DQMkuQuQejxONc/U76AysdZzrBrTvRlvL0pGg1pi5Sl6fcYtru7N2DY8u2U5lADTRljR1GY8V12d3cYHRmh15NVn3cMW+Q3//BywLBer0OYZ5BHPvvHDPuM4PT572RYdWUZZWeHv7+5Zu3uKpWPPpHvwvOAgnM6UEj4fdYPgnZpmnJxcUahUBr0pbSaTQpOkZubG0rlIrZVBAH9XpduT25A1UqZJI657nUZGR4myyAMA7x80/LfHpAJQcEpEUYhpVKJm+srVFUlyuv1b1vX9PpdpqcXuLm5Jo5Dur1ePpIP83OLZFlGGIYYhkWn26LRbDAyMkopF10cHZum3W7iFIqUymVc1+Xq4oKhEWkLYVs2URQShQFZlmLbBaYm5zEMHTUPGnvdLpqukwqdnttDV1RKtkXBNgfXSNVV4kgaAKuaRga02vIhs2yL6bJFGMdYpkEYxxQtnSDwKRWllkkYpZjlOiMTdyhWhkjJUIWG50f5nciISNFUHQUwNFlW6wUe2a1Zs26RxiFmuYJm+2imgVkqkyryerYujuncNDBUQXW4gOuGlA2TXqtBXl0k8BMsS2e4VqI2VMKwLRTN5rZDOhMKQtVJIxfD1ElwcBtXWI5GdUiWVNbXFyjX6owMD5FGUg5DCIg8CcI0zBgeGUMRGe2bczzXk8FzJrjNeFq2iW1ZqEIqxkdRhKYw0NGyLBNVUYjDiJSUOInxPJdKpQJ5iGwaJrdmgJqq4DWOcUbu0GpLwBSKBVAEMTFGZlCqVKlWh7hpNDg7ka4A0zMzqCjoKrSaDSzLplAsUcrV558//Qpd1xFC4PZ7hFGEUyhSqcprkSYxiqJQqVQJfJ+DwzeMj01SqdQGQx+qqlAql3D9AMcpogiF2tDQoJ/IcRzCIERTVHl5hI1pGGQp5JPiJHEiZUqUKlEU02xeUa0OMz46mj8/CWHkkyHQVQ3dUHG9HsPD9YHMhLzu9sDI/I9lpWlKpVLi4ODNoJTaajZ59LDIs+c3hOUA2yqyLqqSYU2pPRUOGDbEyPAFy5mGOx/w/EXOsL85IFtdpdA94/PPr/mwVGJ4qMZos8GLnGEzrWuO0glcN6YxMiQZ9iaiUJB9XvNzSc6weYwDi8fdLxlp3uQMk89ga8wnahdwCh9QKnd547pcVS4YupTv07ElLbHuzM8RZinHxwWW/izDMHQ+jKVVS89z0Xb3eN285NvH3w4YdnIstQI/q/6XvNJfwx0F5YmGqq2T8TWtr2TQYD24z/SpZNjCyCahEVPUdLodn4M3ckNeEinV8kMa3Yjk4pplZZUdsc+iL02675CxHUSsp4vsqVcsUuf1/luSJCXbzhm2YbEUb2C8tdDqIZpp8LNSmYucYQdf/Y9sP3Uxft18x7C3JmkcDBj25Okr1tfX+LNaiei6hPHzDEV7wHaeOVlVc4a9cNm8t4EXRHz52yssRWP6058AsN4SlK9GaAwPkUYLKBkIcfY9ht2MjFEXH9O++d+ZcWfIsgQvE4BsdpcMO+VuaYlw02DhRQQKBIu3WoEme7u7iDRliSXi5CV9t/89ht3bvAeKFGLdVxXWc4Z9mTPsUbEAkSDmJQeRQakC1aqCoRcpncgDlLvmoaYaG8CXzd9y37IpFB8w9qdSvuj5v/0K/fFjxDK4fZ3wxZe/N8OOc4YZewpxdMaaP0eWnrK2adDt/Q6Gre2hbWkgHnBv02Dr9TbOA/k9k5cJ1bX3GPbFFdXqMj8fPQBAkPBtzrCXL1+ysXkP928OME2LjZxh0SacndnvjY3959cPItASQlCp1BADFXaYm58jjhNM2ySNpUK8ZZq02+133f5C4PkejuNgWzaNptzMbwVLG41L6qOTaJoMOLqdNpVKBcMw6HRkBBvHKePjM+i6kXsuOpimw0geJDWbNximha5reF4XTVWp1WrS2iV/ADRVoVgsUHCK+L5LGPi4rsto7kXX7XXodNrESUQURgih0G7fUKuNSNVewHNdSuUyQ2NTrH7wM9rtFrt7b+nkpq4IhSxJ0TSNRDcwLAs7iXDzaa6bmw6ZUOj5IW6YMF2voGoC2za5FW6xynWGZldRTYsgCLBKFVA0srxMGsUhfhihAo6h4ccx7W4f1/UHm74QGUJTZEykaBh2CcMuMLEkFYI7N1ecPvlrOs0rbFswVq/SuLqmYJuDab6jziVmZuDYBrplomgmUeQPrHGULM1LfjKbEicCp1gjCPxBwDc9v0htaIQ4isi0kCSKydLotlpLsVghSjI0Xac+MYngLVEY0ev0BieROIoJhI9t6giRkWWgaTpm/j1Mu0AY+ISh1BJThaBcLuXGy/Le24Uymq6hqApRGCLUDiLyqNfl8+P5Lq1OgywFXTNRNRXLNKnXxwbTsyDQVIUwCimWyrRbDc7evqFak79jfeMRcRJJcVZFI0t9BJk0ZQXCKKbXbuI4BQqFIqOjdWzbJAwCrq7kBNzQyIj0MiyWSJOMMA7zbN4tAlJSVUUoCtViBddzKTgWApV2R5Z837zZZ2xikiwVCAFBKMuYvdxuCDKSOMYplOl2mxRFxtDQCJcXZ4OSb7lcpdfr/9AES/9/LyFsKhdXVPUNPE9md9thwNT0L5i9Ixn2+PFjTkyHsddf/ROGPXzocHPl8rTZYCFbwb4vp+gajSr103O0zU2Cbzp80/mK+/MPMIaG0MYlw/q9JcavrrEfPOIfri/eMSzPvjSbnZxh4M100bbuclWLmDJP/xHDTig4RaLZgHlvlr/5j0fML8jnw88ZdlZ2iMKIIX+X3/zm+wy7ubmiVC7z6dgUw//tz/jyb3e+x7BtobCcrCA0QbJhYHxrcZzYDOcM+/zzr/HCiHp3EnctwW1eUHTWmfiFyYoly6DKSZOhv1zlquMzNzeHUjLhjcbWq9ySJmeY56bEpTpPto7eY5icPNvdW2R11WJrGbLXGnFwxsrK0nsM+zfMdv+a87e/4cGDP0Fky2S1ax7V79F1ZVB49PaSKEp5e3zA9Nwsa9o9oshnYVH2JCWKyuunX6OqBjOPZ4gXBQ8/qPHs2VOyWVkqnQ4Xqd0ZYSqK2NKOMaKYLJWTvQDFDyporzL2dZ2piT9DrLwlev6C3vgkqppXNvZj5lZnybIMIZbZyl6yvr6Bmcqy3+FxAUVZIww7ZHdjVLHK+f4utcsLZkzZT/b69Ws00+Du3V3uzC/w6unXjEUfDxgmZl2+/Pq3ZClsrN9jb1/FMg9pNtvMzEzL5weFnT3By+g5Rb3Md60Gnea/5yeffAbA+n/1iPhVRKA/Q9nVWF7yKZYy4lge0sIo5tuvbhnW+2cY9hmqqnJetEmTMvNiHk3z3mPYa1I1RCg61UqF6ZkCBceiWqnSPpTB/pu3R4zN/hnLqWBHQDAfoHYVvn2PYYsLMW9PJMPiyGdo6DN+/au/Y9OQ1+u8fIlpWoPq0u+zfv/5xB/Xj+vH9eP6cf24flw/rh/Xv2j9IDJaWZZJR3nTHIzF67pJt3tDkiaoioqqquzs7DA+MYGSq5S3Wi3G6qOEUUAvN8M1TJvbw/LY2JRsMs5SaeY8UieKIhzHoVKRNf96fQLfD/D8PqVSBdOUhr63PoZyDD6g220TJyGOVSCKE3QtIBa5zkjgEccJ7VabMAyYmZlj7o468MxTVZVytSpLmllK4+aKSm0Yyy7KqTVk/4JhmKRJyp21e5TKZeaefs3pgTzZhpGUuVCEyHWfFBSh5ClgCIIWkeeTCQUzz6Qpik7RKQymNGtDk1hOGYGKqunYtlS4vy3ZpYlAFQqOaaIgjWQDP0AgsHPNFdPUcH1fZh6TCJHr5TplObUxvvQQ9/IA7+I1nWaDLCkPfv9tw1C5aKIqgmq1jFko4XuulNmwZI3KsoroprSsEVFE6PfRdItCaZjbsp9TqGIaDgVb4PXbxIqK57YReX+ebqQIFDTDJo4CLNsiDKR+lypuf4eNbjhYjkUYgKoZREGAPsh4hbiei1MsYllWPu0Zo6hg5d81yzKSOEIRWv7fAk63f4s+KksZul0gCmJsx8G2Cnh+X04X0hv0I8ZJitvrQZpSH5+gVCqjKsog4+X6Lq1mF8NUgYDm1VuaDQ0jn9wbGh4jzlPvlmURJwm9Xh/PczHyqTJN0zk/OyEIAsqlsswWWzbabda11ZFq7kZCnMakSUqzcUOaZFSqMps5P79Ao9kEAbVaFcuXJq+OLUvTURyiaxpXV2d4nptnvHSK5TJWntGSyvdikL38Y1lZlpEtLaGbGvUjORbvblh4jRtepQl3Bwz7P+hOTDCdM2y01cKsGxj6BZNTgnZH5e3bE0whr9efLvU58G2yPYXx8Q6Nhkn04gVOpcLFhWSYYSQcWQ7+0+8oibuY9wzWNY1nV1cAbLzRiRfmePrN58TJPM79AtHLhBfrcwghS0Z+4LEQLxLHMefnGp5XZe7OHqoq7WJU9bFk2NkVLC8xkkkXjvsPPuDVyxcA6JsGm+cm6eISd9JFzs7/A0GUUTTkMxZGMS/TV6wlqznDdlkTa4QfyzKy9usvJcNWFcz9fdxaAUV5wwfOPM9f5Orxf/VIMqwTDRh2b2OVZ89lT1u6uIr6/CVvDw8p2Cbzs7O0ui5puk29ccswcDWY9WK2gxeI3KTs7bm8Xp3UoTqxgqmkfP3FbymVP4LLDLrbMDULQPnURF0TrD34iOHJEk+fPCZNUzYs2Zh9ZJ1iWCVWVlZ5/OQbpqIpybAPf4rRlZnGt4WY8c2HFFTBve++eo9hcqJQ3/qM1RWFr7+xeRk9wz/uMp5leP5zVCGHJZLkGN0wsByL5wE4hYcIAvS9nGEiZHrG5ejwlIsrK+8/0thVoWRJM297ucqidocs1Tg6OkIRCaf8lo2CZNh37gl35hZyhp2wuNhH0zY4ODgkjuV9iZMlbq6/ZWVpiWany4cffoT73becnstsVHR8zGh9AsObhUnB1flbmo0Mw8yzVcNjLCzGXF78U4Zt3pPvwmVNMmwuCKjWylxfXWBaNvv7co+caHVgdQXd0Gl39qn7wzQbNxweHlKpSsmMv/qrdRrNJr6A+7UqLd/mopXg2DKbGcXPsax1rq4+x/NcPv/ic+7e3cDzywNrJEXRcu/EP7DSYRzH3DTkaPHtnnx9fUGv5yKEyvT0DI3GDZZl0W63cfMm4rnZWXRDRyhwfX2DYZrESUA536DCKMT3pL7H4uIiqqpKEUpFJQhk/TlJ5Gdouo7venS7Xer1kYEJZd91URQoFcsUigW5+Qw2SBnAZFlGvV4nCkMyBFZeVrztQ7Esm16/i0DJ9YwcNFVFUzWpqQTomorr9tBUgyiOqAxPMD0zjxLJUmqaZTjFMl6vi+e5cgpRaCSxTGUbuoqha9hJhqoIOr0+5aItfQrzniO9UMYoVUmEguk4WLpBwbRIbPkd0sRCUVTptagojFdK1ApSusGx322UhpqRJQlhrEIaIbJkoNdUG5/DGp7Dv96n0+pSKBTwPZ80jCjmjexZrFOtllFESq9xDYqCppsDAdhEj8kUDT/wabW6xJGLpkcINDRdBjhCkSGeplsYukccBWi6gaLmgYWSIgSYukZteJTL0CeKgrw8La+ZEALD1LFNDU030E2VOIqI8sBU14Xso9NU+r2OHBQQKmTZwCYkimIKdpFyrUKWprjtS9TaBMXacH5NY0zDJAwDRCby/18hDCO0fLNVFAXTLhCHIVmWYZkWmqoObH6iKCTLUlRV+iyOTsziuR0KhXfCofrkHJDRaDWpVqvouoZlDb0bnogS6vVRms3bknmIGmsYunxXhoaHSNKUZrMBCjh2gW63S6/Xp5zr7QgEtu3Ig4gfYVm2lIloy9LiyMgICMHw0AhxEqNqBn7gkQF23gwfBiGapv3R9WjFcczNb3OG5RJrJ3/7K7ZyhinTf8FIY5hz64yxdpv2ewxzDZ3DQxgauuHOgokQc5yfyik7sRMyuzjN151L/ryfsDL0CWn6GkVRid9j2KpQiXWdp+4zuv8QkvzsM1ZXJcMaTRclfp4zbI6muCFdumVYrvuUhTTrw0Thc5YRnJ4cksQ28ULez7jzgF4/ZHVFYev1K44Dn4cPP0BTNZQ1+RxvuHdxp0GLYqL4xYBhRS0XAq1kOIWPJMOe5Axb1Ujcdwzb3NBw/QPUuwodZYryeIM4fvE9hh2UqoiLJofOWz7W65yo8NmHcsqODHYn6ywtz8ABHF9cEMURi+kwYl3a8pycXDN1EpKNu6xtWJDeYSdL2NiUopWzM3P8u//5O0ZVg/FWl4lHCV99+ZTZ8A7FY8morcIbftL9aMCwfkvafb1SpS6UpZdZXlvnybOntFpdhmo99t+8wCl8grb0jmFb2zs8uH8fY2OT+PE3/5RhKtzb0HgS/AmX4X8kujOH+KqF58nPmXFM/Kc+xx9raG8MNh6q9NoRL/L3632GTU2OoyoqmdhjZydjaUnKOxhRBc02KF9doJsm02NVVN3k9OpG3tdFDd8weR4+w8wsVsVdyBTmwztsbclAfe2uZJiqH7KcfYJmqmgffYz1TAaN4Z2QXvf7DHvyuMOjnGEn3lvm5xfo9TIarZ0Bw+7fHyLLZNn4NHpFvbnESb1JmfcZJuVFroe3SC4vqddHWFhYwDo6pnt1SbfX56OPcvmhAcP2CZ6ecJSlqGqRsbFbhm2wvbPD8NAIC4sLOcOesL55j1LOsOfPQjTt7UCP8fdZP4hAS9M0xscnSJKMVltuBDdXpxSLNSYnJ9B1FalTI7NCw0MyeyIQdNo9VE1lYmKCOIlJ04xOrj1lmJoMGMYnCIKQZrPByMgI/X6TZkueKkaGx+j3OzgFOblm2zZpmg0a6h3HQdM1BAr9voSD4ziYlsXpqTwRTE7MyAm1LMO0bKI0RSgKaSYB0u10mJqcptVqYZo21UoVIRR830XNN9typUoYRlKkUxEDSYPbrEeapmi6gVANVD0izv0LzXx6UrZMKdw0+kShj6ao1EeGiOMI1ZTXqzQ6jaabaJqJrmiomfTzu41uVSHQhQqp7MXSVAGaJqUS8g1bIDBVQdE2afRchKqhCAOE/HmhMsTMvc9ov31F2NzFc/uUayUMM0DJldBHx6tkSYxdKOAHIXGcoJvSwBjALtZQNZOw28VzeygipVgeJs2yQTYTlEFvSBBG6HoBwygNVIJRBKHvoamgmzq1oWFi30VkCq08SAqDiMAPCZwY2zZIY+lzqOZTib4foOSek6qmYxsGYRRJD8pcNTlWPURWlEr/aQpokEaDHpzAj4giH8cp4fkhod9F1zU0Qx8I3pVLZdxehzTNaLZkX50iFBC3mbUESBkZGabf71OrTuJ5VbI8G3p68pZMKDiWCUL2ivm+h2Ga7525pPfl+PgEqlBRVYVOt83lpRw1t+0iumFSKBZxHCc/PIximu3BZGy33yXLpGuD7/vouo6iSJADdLtdbLuAbpjEXkLoe1iGieu5g6Z8wzDpdtuk6b8EUz/8pWkx4+NdkqTDl20p2fKOYb9gY0Pl/FzwydtbhskJpp2VfYJgElXbo3s6QTwas5SeMD6eSyKYGmJnl3HLJliIaX7xt4x8JhlW0d4xrJUzbOG7hAPbJk23Bgx76zho+jp313dJXj3m5trF2dj43Qzbyji0bFBSVtfWCHIdtu5Yh37PRey0uH//AUeHh5ydnaO/OWDlbj4MMmDYNoqyyeKSh/H8SxqO3GZev075yaeSYXt6xFy4wvb2U+J8I/3gw4c8fvKU4ZE+UTjLuqJijgwRx3e4a8psU2l0mhndRLv3gIpyzt7WPrqusbssM01i5xBD0YFTmBfMMMHxwTlHWcpcfq8EIxypZ/SOTUYmp9nZ20IRCts5w5aXlviL//q/43/7n/4H5hcW8dzv+OiTD3n6OGAtZ9i/Hv9LtpKX9C8+YHYuJI4X2bhXGDh9FKsTkmFhxIzbI4lfct8eYzvL2N2TwUm5VMQw7rMNjD+P0PVHGIbyfYa99NAWYOOeThT8lFrxmJ3yI1rp1wCkQUTZf07txUc8eGCQxi+w3sL9+7KfyPcDOcGq3mVvf4sHm5uE0QorSzGvojwTqRaobtX5sFpieWkJr9tiO434yZoMXj23z4sX3/Lw4Yd4fsjXT1vo+j7rmzqTyKlVsm2mJzv4fkZztMWxa7ImFFjNGdZfBJ4y0piVDCvV+GzUZyuWe/XNyTWFYpGp3iHbQuHOfIjneUSxiUBmzdjOEOou4+ObjOcM+/qbrxgZkc/o8fEEunH4jmF3y9RZ4afmVwOGffNdlyzb5qNyFV/4GLqOorzBMKRMxTffdLHthI3Nezx58pjFhQUs4x6PnzzGcWTm3jB0ut3eO0/O32P9IAKt27HT84uzga7L3fUHmJZNGsf4vsfQUA3IUDUNKy+HhGGEbqgYhkGz1SCOYrJUDLRfkiQelNniOKZSkZMGYRgxMjIGgFAUKbsg5JSZoir0et13ZRuvT7/bw3Vd6vVRxicmZfpVVQa/I00zbq6vqNZkw/bV5Tlvj47ZuC/TyJZlcXp6ShQl1GoVulEoM1SWM9Dzurg8Jk0TRuvj+IFLt3VD5PcH2ZUokpNDQlEI/VCqtcNAsV36+ArKBQtfhcmRKkXbpOe5lCcmATCdCoZmoBkGhqZhKIIkDEnzIEpVNJLcxFvTdaI0A6SkRJyrmAs1Ic5SNCXD0lXCOEE3tEFGKwkjqmNT1Fc/4fiLQ1rtLpOVCoYjuFU9NW0bwzLQdR0tTHBdH0XTMCxZClM0kyiOiaKYpWjOAAAgAElEQVQYJb/fQigUS5XBlKamKQhFJcsyCuVRFEXQ67ybbEyiAIEMWp1CkST0URUN2zKgKp+Pbt/F9QP0rotChiJAtyxEflZJkpgk1eR1V2V5QQ5MqLeDhpBJ5fQoNCGDLBXEgU8cype/UCxhOwU0VceyE4LQx7ZtkiTGzWUTOt02pmmDyKQ7vaqhCHWgxxSnKcVCGak1Kri5PiMMQwqOLOkVyyXiOJUZpigiCmNs2yEI/HcjyHmq+/r6hjiKmJiYQNcMSrmpa7lcpe+6aIZGq9lC1VR03aBcrnKrY+ImCYWiFOI1DZMkTXKTaPlsFAo2WZYRRxFCSHHUVuuKoeFx+n0JVLfv4nk9KpXa/wcR/vCWoqi8+mcYtrRg5Ay7giETNdY4OswPSNkyuiFlPeqjDeJGzJfvMUy8ilHvqogDybCLj6tUcoY1GpI/9dE1ev0zEKdY9020vVuGyWnA7Ml39Od6XLrn1MUoP//FJM/DCxR17Z8yLF0mCPa4ujyncXE+KOfHccjc7Dxt06b2IqZLl6XlZRTLIUlk2e7i1/8P6VJCqznOtPeYbn2YaHaK6O/+FoCoUiHbGmWn7xL6N7xMfDJgeSnXjXomGXZ+YjE7a9FrXDJ8XOe595ryrAwcNp0KhnaAZtzD0NYxlCMW52dJ5dmIvTghWZ1jPz5A03RmOSWbz5jjXeNyFEKcTaApcKTD6uoqBwdvWNdkdu/Vmx0mcoalX/wvtA5SJmf32XQW2c4Z9vCBzUfWT9F1nedhgmH57O5rfPxZzrD9Q14kcOfOAt2hMpZ5iFhd48NSBVWR8g37+wpiTWU5y0jLo+wqO0x2RgYMexU9Y4kMRclwCivcu+9zdqDxwDJ48h7Dpv2AyoTLsycZa6sL6BtHiEg2/ifJDKq2SZZtIVSFre1tlpaWvsewlSzFmZ8jqp7Di5dk030WghFe5gwzTs/4ZPhP0U51jhYTqj/1eWD3SV7FuNOSL5JhD0Bk7O3vYVkWe+IuM7NyOCBOXU5PykzXgGyVm+snhGHIgiNLekE5wD4+xrILrEcR0fMYe/OWYbKEubyyg6oKOtc3nEQR3YkJdG2TUlFydKh2Sd9d4+BAYXKixd6+yoZuUP7oJ9wybHU14e1JSTJs8x7Lr1/xOopIXkmGmTnDXr54weoqhIFk2AcflL7HMMOYHAil/j7rBxFoQUa/16dYrFDIo0aBwvHREZAxOjqKEIIwkj0yTp7C0zQZeLmuy/nZGeMTk1QrVbodeaI0TBNd16VtjGGSJLKcNzw8SrMp9T+cgsPk1DRxHNPrtGk2m5TLJapVuREYuoGmalQqFdI0pdNu4Xk+xWJh0KcjFMHk1CSu5xLFIaZpsfngPrUhWT5qt5vouoGhG7KfRclotTsIVR30royNTtBqN6S0g6bhtq/pt64GGRzDMGVWQIBhOxiWmQuX5urzmQy1quUSFAtUqzaJouMMz1CZyFWocyXo28ySH4ZkUYqiyryHbgoMQyXNhMxUmPKaJUk6KJNGUUQmbu1p9LzfJsPM/RKDJMUulJle/wn9q32Sqxe0blrYBXuQ5em1Ozipg1quYNo2pWoVRbVRbXnNkwzCKCIFiuUqWZICgl63ja7J7IntmGRkCKEgREav08D3XTQ9r9vkE46aptDrNOl32lLvSkC3JwOYbqdPJgS2bcmSsqYCGVY+tZqlKZ4fEgSRHNlPZdBZLr+TIYnJKFcrGIaJ60rfTSUL8XJrpSBOKDhFrq+krMjQ8DBZlhKF4cDBoN/vUyqVCIOIKI6IwlBmI/I+pmptGFPT8udY/n2qqiPyZsQkSOl1mgRBD8cu0mn1KBSLqKrKVW7l4jgFRkbqjIzUURWFm5tLNE2WTEFaimiahhAgFKmE3+20idOIcj5xahomnusCgiSVvY6ZULAK8lDS73XR1AxNlZOVKoKbmwt0szOYBM6yjOGROv1c++aPZ/1uhtmWxcnpSc4wJWfYwkBH7B3DfM7PSnS6PeofV5nIGXagSoYtLMTs7JiIJCZZkAzb3c01jHa26QmV0bEivc4Yx1aTMa9FtSo/w9ANNMehW/kF7bGUtJ3mDPPeMWx3h0lWcIVLFM9z794otnPM1bVk2NhYnfRVyoF+QFQJqCk19lSN+6qKZcgD5difPKPVHuHtyS57mkaxfc13X/6GSJWZkY83R3h5esKKWOGp/YRNy8SbmhgwbHk549lTybDxkWGuU5dE0Xn407/gJr213qrS6Jooyh5F20ZXFEI/QVGl3IGyamKoJ6SoKAiuMDGIOSFlKr9Tc3LvZ3cfnEMw5wXKasbhkZSQuLu4TPAs4Zfr/4atmkbym3/HlzctHhResqzIv+Xbr77GKTk8+uhjzGOb0mSVNdVGPZGZt1eozN+J6HShWL4ke2WCvsO3iAHDHjgmN9s/BxR2RMZUZ+R3MGwFbV/wbafJ6HUb0RRsvcewifEpukJw/PIVQ5WHbAsVnWV0S/Yteekha2vzPAsilB3BytKydFQ5P8MkF6peWaZcrXBw0GJ6cZLs2ROUB8+ZceVzvNt7AA8F17+9otPYY2j4p+xkgpkwpFKRfPnuO5tS6YIwiFhZUdjbDZnxvyAI5fWqXg0zVm3zMo5ZNd4ANnuqzt2cYYtBSrfT5FnQ46FdpDPao+AWUdW77zFsMmeYQFUUPv/81znDZB/hXBSxre2zKlbo3DJsvE18/X2GzbjTpCuSYW8di4JQuCzISlrYO0JTVdbvqmiayR5HODcmujmOfSSj+Ww246ZxJz+8/n7rBxFohWFIHMeMT0wS5Kf4k5NjnEKBoaFhdF0jSVLaV9cEQUya3Jr+hgRhgKGb3L27QRTFeK47MMPUdINOr0MSx/T7PQzdZGJikla7xemZfKkWF5ZBxCgCyuUypVIJx3Ho5QbDWZbR6/eplMqoqoKiKjiOjapqmHlmTWgqXi7mVx+pUymVCZOEKJTfw9RNjIJOmqb4oU+336NYKAAZF5fn+efIniLHsnD7HXy3Q6/TQqDnP5fXCUVglwokuS6XkqvkB2FEEqdYJR2RxZjFMvbQBEq5TmVUIsYyHVShSE2jTBBEMbpQsG4tWwwT3dAgL5cRJ6RxhqKqmFYuwJkLM2ZCYBgGiqYThBFpftLTNI0oihmbmsV/+EuOv+mgBE3iOCTN+yyGxupUhkbRNHNg6KxoJiIPAIMwptnpYuoGhiaV+DMSdN1EV/X8c6RwrGnYuL0mfr+NqumkeXblVjTT9frEieyLS0I/zyLl/SlpihskRKc3xGHExMSI7JPS8gyfoWMkGb7noeg6qqqiKBppmhDl1hGKauC5LkkSoyggdJWwe4nhS+mF8sgEcRRiWga6bhCEXj6KreK5weCaHb7Zp99uM1QfpTJUxTQNskwGWm6/RzeJiMJAyiSkGXGc4BQkCAtOgYLtEMUhcRLTd/t0ui1sx2Ysv/eKIri5uaHTaVEpV3AsqfIexvJ9a19eMDQ0hGlYGIZFt9NEVTWSKB6MVxeKFQxdDm0cHx1gmiaj41OyzAlYhoWmqTRb14SBj6ZrDI+M02w2UfKyTBBIVXGrUP692PCHssIwZGHAMNkLdHNyjTGqc319gzczw2Ki5QzrUK9Lhr3+OmRuPmBYn6F5t0nxRQnvsUs0I9mRLhmM9zp04pjTM8mwYnGSVnuUYklqcWULy2QiZncLyM6ZzTJ6a1N81/sWgOWFZb7tdn83w/Kx91Xbxutv8aU7TP2zOh1RZiipc6coTYOTl4cYZZ17S5tEcUy338M7NNgWW4wMy16era2UVXHDPaeAOzXO6f/5lF6nxSpB/nPYMOfZVnZ48OEjybB2m92cYdfPX7C4sES9doHI9rj3wWccD3VxyvMsLMiMVndqgbu6wZuDQ8gEc9ECmYCjN5JhzoaJnm9rCQmQMM4YZweXnGtyw/ajUebnIU0PMQyDk7cZd+cX2U+OANjfP2JGmaU9Ncvc2C85fvU160GTeCHk9SvZc/Tpn/6Mi+sWx6ct7IJk2L5msqrId3IhXOC608HUNQztA3gE2XaCrR+yMWDYGq7b50XOsGrOsNcDhq2hrGS4T/osJCmvHIfJ0Ed1+6ysyHJrs9XDffaKwuY61Vqb7naDWCyRrc8DoBo7HCRvWPYWeaO8YW9vj7U1wetUGzDsdbzFxeMWm/c2ESJjR1eZ715iPJUM++iXVV6+eM7sfY8H+gN29zyyzEes3sVz8wPt+jaHf7/P1NgY3dYo2colh1sG2ZsD+YymCYuLd6iGAU3DhNdb9OKEqCCDl8LDRxSyjOGXz3OGTdHpRtjOJe2cYZ1dgdi54evOl3xc/hjLekAQPsMLcoYVHbzra14ZW9wx5ul1m+zuanhBzEIkGXZSvMDQN9ncNzl2Djg8PGR0/M9R8qGQW4Z1e5JhnTcaMxs2zaaJMicPBIE/x2S3hRL+gZlKG6bJ7Owc7U6bqwvZBGpZNuNjY4RRRBjGXF5fMjk+jqIotHL9oF7PwzQNhofr+H6AYeg0ej2Gc484z/XI0owoipidmSPLpD9iv99jbnYekBtyHMd4bo8kTRkertPrdRF5f0wQeFimiWEYZGRoqkYYhtJJPc/xRq4HGUxMTNFs3NBo3qDrOiPDcoLSDzyiSHru6bpBsVBE+s1FlPISpabrqJpOs3GBquqYhRJC1XFzcdYw8LAKtsy8CIUkE3LTz9PMpmFSHrYYqtYQmo5iFokSwVB1nEpNfg9VM9A0HduRE3hpmuKY+iAFGseyqV3VNNIsw49i6TmWCNQ09/+71YzKkFYzqoZhCKLcP/A2w6UoKqNzq6TRf4F/8ZTUvaBQlJtrrT5FsTJCHPqkSchtWreTn9JuWr28FirV2BUhy3YyWIvy+2bj2AVUTScMbdSwj6GZgwxNkkQoIkFTVbw0JvBdet0unhsOFOh1XccSKkmcEsUpzWaboVqRNM/eCVVF1zVs2x5MoRqGtG8a9BxpJlkaoeuyrykTKcKLiZsS2unEMrp+mxlMuGnc4Psuqyub78qxAkzToqd08AKftNnCME20/LTXuLqgUKpSr4+SJQnn5yfouoFt5w33aUochlLUVNWZn19AIIVBb/sVFUVQKZZxLIeLS1neKhUriFx4bKQ6DAKiOMmzTQoTEzN0e91B+bHX71AsFgiDmKmpeZIsIY4j/HyjVFSF4aFh6iPjeJ6H5/UoFcsIBGdn8nqUy2WCIMayC/88EP4AV7lcZvYv/xXtr7/i6uI/ATnD2nNcrywzH8acXZeZHAdFmR0wzHWfoO0Z3Pzs54RPz9k0NrjqXVGpynt78PgJW0lGEET85V+8z7Bv32PYGktxzJPJb0lep/x0uM6Tb7us5v0xT589x1IUNj/4kK3vMWyHNJXvi58z7BcTfb74xqJRv6Gg64wMy+fe9z2iO+tkrouuG5wWirCSsZDcYeuV3Cw//XTjHcMyMB+VWFU23jGs/wS1MMTq0iqK2CXJAnZ3J0llMgHTuEena6GpMULTGas0uJNsclIdR1zJf/ThnGTYg4ebPA9ikjjB0d5jWJagCQUVjZQMn5jDrWPmVmc4ye+VARwdwYo+RzoHO4cXHBycsbh42+cFgdhCUWB0apX0v/nvefqrf8tS/YI/vyNLXbX6FCuP3mfYFmzD1znDrltfsTyywvbOLiqLKCJjeQUWlHmCPBOye/SKmv0z7q7r9Lo2T779jk3tPvc35N/y6lXE/l6Cq6pMpDFzvkuz22XGDemUbxn2BssySNJtXrwsUiqafPpJxu6AYUvob7Y5do9JkoSVlRW2t9+gqikLuQG2IQpcple8ebNPlmWo+jqCBi9zhn366iUbG/fw/e9IkoSrq8/xfZeC8wELi5Jh98R9Lu/Vubn+NU+Cc8wvLAzz3nsM+xVTvS71n/0JWfKK84kxFnSD447sEVzKliTDVO17DDs6PiZ9LTXSlPU1LrbP+bk1yUW1w9RZxlnxEWcnkmH3NoZZDCOiOKEVPAN8Jibm6PYmmL4r34Vqf5iz0wLbQczK1DzjvRl24gjfkyV0RVUY/nSYurKO5z3h+LjH2WmZyclrzs5K+bseE8zFYP7+faY/iEBLAJ7n4vZ7TM3Ih71YKBJFMgvi+S6aquL2XRqtm4HtzNzcHEEQYJqyB8JzXSbGx+nm2SjLcSjpBtdXl2iaQavVQlUFpWJpkI0yDJNW6xTP7VMbHqXRbCCAeu57ZdsmcZygahpaXqZMszQPtOQpPcsyNF2jcXNNs9WkXKpQKBbe65/KiJMYy7TJMvB8H8PQCPwAM2/o9n2PNOvl6vNtkiTGspwBpALPk1ZFXgBZhmFZBKqPnTfD245NuVygXB1CMasEmU5qFCjWxrAsecrSDA2nWMgzKwlRkoCi4uZBhGPL8l6UJFx2fPZPTsgSOUk5VJap+8l6jfJQBUPRaHb7hFGMaRgoSm7SnSTy2iQJdqFEcXiC1G8gtHfyDYZdRgCZUFF0S478KypmIl+G6LKFqmnS3T1LSJIQVTMwDGPQP2VaBTTNJIoCAr8rM0qGgut18u8RoWk6WZai6xah7qIbGsWyNWg2FWrKdcOTthRBxPCQfOZulb0N08S0bMIwwHWlfIKm6URRMLj3lVqVUrmEosrJ0CSR6sJB80Det/YVRrmOruvoOoyNTXDwZp+jwx0mpmQNo3FzhWHpLK3dJQwCXNen4BRQb5vha/Iad9othoZHmLuzzNvjNzSbskyhKCpJnFAqV9ANQzaqazq9nixlAmi6SRyFpFlMtVpD03Qgo9uVgVgzaVF0iiCkoXWapvhBAGSksXw+KuUqqqKSpkJewwiZ2cz9EnVVodvrUilXiWP5/GZZhq6bLCzIcfS93adMTy8ObLL+aFYQ4HmPJcP+4i8BKBZOefEiZCnJcAcMm6bROkTXZSbpX83NEczNMW0afLW0xJPXjymNf8hpPlF4/+FDdN3gH37zazRtky+//BJVFcRxicaAYUdcVIp47gSfPBilEfj429sUTyXDPqm9Y5ilabiPH5Omi4h7q6RLMmOVJRn7+xrdm2uao4KPBgyTDffZSsbLVy+xzAcsL8OM73NwsE8wO8fqqtz0fd/j9da3KEJhfGKMV69iro4cGtcy8/bJpz9FmZkh7Htsb/kYloWi7mPb0ivxwUOb83KB8qVAMascXeosbc5JhuUBzL6hUSiesKEushyqhEnC9u4e6oqcoHPEKXXk73sWHKKdFNjafU5P2WeoLE2Be80rltcWOL+GOhBEMfeWpniBDCySNGFhdZWlV6/YPjnjangC4+NfYvePBgw7OD7nXmUkZ9gRilJAPLjLvZ7sF/rr//A3bGVQ0g2U7IAkmUfdNzCMA8RKHhjcf8T5mcnLKKCdM2zX2MX3pAho4r1A0zYGDHuuu3QMjemPLJJWzrA9k+sVjyRImJ27w1S3xov3GXZoYlom8/MBX3fkwJZk2Nygmfvi6pJyrcyaCq+zjMVFeNZNWKznbQVjNQ5evmBVbKADY2O/4ODN/83R4Q53Fm4Z9hsMS2Fp7S5+EOAWZimcv8+wn/LWOODwqxZDwyaKkqFq6YBh33zTYPE9hj195qNrss/sHcPeEK8skkYvqEZXaCOj8OYdw/7+Ny2KTp8VIRi6HmZsLMUP5oBnpC/l31q594ChqkoQCpLXMWTbLItVtmwZ8OnqGt1eF8pV4ngBy9olyzLevDFZX5cM+792n/LL6cV/Uenwj0vM5sf14/px/bh+XD+uH9eP6we0fhDHygxpddO4blCtyfFYz/fpdbtkCDzfpVYdyiNXhcqtEW5uvCuEIEkS0iTG8wPUXITR0AwyISiXy7kxcUoUZzKbFLwrdVmWzdDwKI3GDWHgo6gKR7k/l2lY2JZFv9+jWChJTSMy3FZjcGqQJUEdXTcYqg1RKBSxbWtgXRKFUsKg1+9j6Ca6bpAlsk8nvtXkiiNpMadrGIZJFMX4vkuUj1enWYpAkCQxNxeX2MUiTrGAmQ8G6JqKVbDRnCqZXsaxK+hOmVKlipo3V+qaDhn4XkCj0yeIYq46XTxXfoaqakyOjeL7ESc3N5yfn+QegYKCIzNnU+OjrCzMUh8bQdcNur02uqYNykuKIqcWwyhGNzR0p4xqlTHVUSz91oRT0On1EIpA01TSJEXTFZQ8u+eUqxQcC9M0pVitgCSWWlK3PVjdXosoSmT5NhNUaqMkUUSclzCTTEp9KKqBXSigGkWc0jBx0MXvyaxXr9PENq84Pe8QhjHdrodeK6Dmjf1xkmJpCnZBZmbSVJYvFUXBsvM+C0PKX6giQ1d04sSX5dNInmy7Jy+x1Qf0+22SOKZen2Z+7g7dXoduR5aPFFXFdV3CMEJRBKViBU19J5lRLBQ5OtonTUPSNGR0bJZarSY1rwDDsBBZQqtxgVWQWScvkr1gt4K2aZJyePiGcrlEuTSMU3A4OTke3Lc0zbCLNkmcSFPafPAEMna3nsp7P30HzTBxnAKB72HbDqZpcXIq+x01VSAUKaSbJAlBEOEHIX3Pp1ws5J+j4vsho+WR/zwY/pCWafLFF5Jh/zoflPD8WVqtb+j2vsXzp6lVr/nmmy537sxTqcgSVDj8Brf/GCEesZgkvI5jvNkAFdnMbGgPyYTgo48+kgxbXCLa2mJzc31Q4j6yLKzH3/HpoxKNhk8Y+MzfmefolbRhGTDsy98y+6jEszsh2XaM++VvWcsZ1l2GXkcy7NPaNScnPg/G79PuLAMQhV8zPb1Imv0D3W/v8eb/Ze+9gixJ0/O8J705vnxVV3V5X9Vm7O7OGoALAsTSgAopEMErSSGJN5KueCHe6Za3ilCEInihoKiQREpgIABhCSzMLtaPad9dXb66qsu74/Okz9TFn3WmZ7ErDAQsBCL2j+jpnjM1p0/myf/JLz/zvto+S4uLhNE6LzfENTQ5EZLGCZKmsr9/QBi+xLsdEB6LKsXG5gZDrkc81KRcKHN4ciIYdk8U9fLqomDYvSnSV2fYVonLAYfKeRnlPVHmEgyb5pkP5abD8zAiOTlnTBbZvY6ist/YwLs9Se5a43vf+xZjo2P8X+vb5I7EdfrLX/0yD55s0j84z6ujK26P3SIBlD1xHAsLt3mxvsvEzCzK/h7Ldp66WeRgt46p3XjL2jx49Ij5BQl1TyFJE9TltMuwe++UOT6qsvrOO59l2OYKya74XloTH3Pd9zZJI4XNbUrvZwxriD6weCoikQNkWedw+5h3VkJevlDw/FlSOcvcT18xdnTJSXGI4MVLHvbk+cLGfbRlwbDtOOHO0gKh/4K305SNjX2keWGW/DrTBPviV7+GefQaaT5lWVrGbbeZlyTitYxhly8Z/ZW7/ODxa+LoJf39o/zq3/01Hj56QKuZZdXfYNiYLJHPn6AtrnYZFod5/viPj0iSPWaSr1Ef9Li8vOT2bSG6oe+/hjcYlsgbuJMJs2nK+WcY9i1qxQLF017u3T+lp9eif+BThg0N3xUM29jCDwPC6DGQ8js3DGs2WHqDYYeWzapxwvCJYPGe8hHSE5nW/XeI12NGo1t444JhtXo9+3sUnnlBt4rzedbfiEBLQqJc6cGwbKRsys51XTzfx/d9+vv76bgOtm2hqgV8XxxgGIq+l47bIQwCisUSkiR3p8ZqtSpIEmmSIssymiazv3/A+Ph4V5A0CAJcz0WSFMJAiCk6jsPwiJBEIBXvIyH8CDVdF1pbcYKk3ii/iwk9RVZIM22qs9NT9nZFbdmwLG6NjpOmiegHCjzQdEDGD0RKXJFldE3PJCtMipUhrvVt3CwV7Tod0U8WRwShBx2JYrlEikjvSpKEWSgjGzkiVQdFJlcoIataN/BEknBcj6bjc34lJhwbjQZnJ6JJ1DAM4jQmDANa7SZJBJ7vZX1h4i3WTYuDo1kWl+YZHrpFzrKAtNsrliZJNpGXkMQRupknQRL6OlmQFEQxcZoQJQlJkpIqGqapoqhiwxQr/Zimjduu0mheUMzl8QNPSAlk2lFWrkgiySDF6IZNvXpJGDjdm49m5FC1AigmsqKR0CD0Y+IoJM6CW003GRnpxzJ1zi4aBEFIFCfEkQg8TVMnjSM0XUPRVWI3zJr9Q9SsJyRNQZYgCUOi2CONPaIgIMmEZhWvipSKQz8+fM3g0DiyLJHPlzg5Fqlx27apVPrwfQ+nXSfwQ0rlclc9XdM0bo/PZM34EmkSUyr2UCmJPh5ZVqjVLriuXiGlKTk715UY8G4M1j2XyalZLs7PkSUZVVFRFZ2ezKRbUVXSWPQQdpwOtXqdNE0ZHRtnfkmUXDpOi6ODTXKFEgODtzk5O2JyYoZKZgxbvb6kf2AI07RwnA6mZVMqyURxjOeJ63h+YRXfFeKxf5uWJEm89/4XePrsGduZTpI/5nF7fJxm06fWX+bgqYFtH9Db28vz50LDSJYlJsOYJ9oTJoMAq1hiXpYxzfvADcO2SZNZZFlmWZP5w5MjdG2R2VmxKSeCF7Ruu7gdhTAofMqwLwqfOcGwD5G2wP1hh7GVFQ4RN670TYatrqLIuygvhGjw9757iqrcMCzPrdHXpJsG68kGUiAeDre2IJwWzf/bOzvohsnExCTsbNOsDHH96Pu4I+I6HhseZUeWqa5HVAoeY6O3GBxps/ZS7KVtaY/3v9yPakwRrayg6DkuTh3k/CsUNTMu397GiROat8Z5/qMPBcMGBzn+5CEAB8YBcTpN+Lu/w/DIEBsvt2i32yTJBg/FYCJxFJKSsrjUy/CQw+3RPrb2z7oMEzPOnzJs//UJZ9vbLE5Msp99t8HUNPHmBo12QlLNGOYkbzDsAwaGj3DbCZ88+AHFXJ7xwGPtTYYFRVbvCIbtG/feYJh4yL9h2JxiIt8pEXgNZtOYF59h2B3aIx5x9RPObJXFICSKN4hd0Syfxvuk8VsZw5ZI0zXU3T3C6QTV+gmGrYVE0y021z289guSUJQwde9D7qd3M4aZfOWri8iyxFtvvcuffudbANy7Z1OpfInn/i2Qq3cAACAASURBVDOcR3Xm50POLx53Gba8vNxl2LlcY2VmhVd7e0SBOOkzoxNdhm2nKQX7PunxJoU5OPgzDCshS1X2dlWOj/c/w7DBehNNVXgSRRnDZvk7Xx/vurR0nBbfPtjkfsawfNGGiRkq2ZT45A3Dcjkc5QmmpVMaWCCKY549ewzAvJ3HPzzGcz+/1+HfiEArTROCICSJU+SsmqnICqZpYts2kiRjmTZJIgKrmxF3VVXRVDHmnsRCqLRQyNPORsfDKMDQDa7rwqyyXCkzPT2Jrht43o3Fjoosl4njiFKpSBAEVHp6ug2+iqKgqArn58f09Q6iGzpRLMbsy5k43fHxIcgS7WYHO2djWQUkSWL4lojWDcPImoB9Op02hmFjGibtdhsny66M3RoThsFSR4zf9gxQGZ3h/FgMB1ycnTI0NoZt2eTzRcIw4vT4hFKPiPYrfX0oqoWsakKQ1MiBrH7GJCAIferNDhfXdXb29qjVrri6rHNyKp4oi4U8ruvRcV0CzyUIQ1RNww+8bp+XoWtcX18BMaqqoQ8PomomSCKIiqOEwPeJ45AkkUnTmChOcBwPXU2731u13iJKs+Z5RafUo1IoiGOR0xSnXcd3RNYnyibYPM8nnzXU2/keojAkCn3arRZS1EGWJeRsdBokVKsHxerBa1/gtusEvkcUJ90gyc7n8dtNSGKSOKVWbwuLpqwPA2Q67Q52sUAul8fvXNPpuGKCMLMVsWwdWZGQJE1MTSYRiqoB4gk7ca+JOjUqPcMUihXiKMIPQzzPo1IWWZ1OpyUmE3UTrdyH67RxO51uH2GjfoWmaRSKZSzVpu00hcF4Bg9JEvYmA4NjRHEIssTF6SlRHDOSPTCEYQCpTE9PL6QJnusxPDTcfeCAFDd06bgOqqIyPDKC23HxXdH8DFAolllcfo/r6gW5XBHLznF2eto1YAeJi7MjCqUe2u0GgddhYHiMOE66vYgSEvl8gUaWzfvbslzXzRg2i4yYcFqUFYLXr7EXZOrbDSwzJZmZZX09RtfFSPrSkkocxazKEq77jKH1FhvJOklb3Cg7L1+wurLKdb36Eww7RFEEXzRtFVleYz2eYraUCoZdXeEFIpi7Ydj3rwXD8gf7pGnKypsMe3yI97ZLu3nB8ITN0nmBxrxEx32DYWcX+KaP1GmzunqP1wevSZOYWxnD3EKBhYUlHj19QiTBO18YoF6e4fyj7wPwgzOJO6UytmVzkj8jDCM2jmcpZRNhNwzb2XvFzFIOzXiXuQWfw6NPz3MQ+tSHRrn43vfYUVVqz59w9e06+YLImJ6dnuCO/ZhRd4wfnHybYC3k6ZMHjE/c5rUp3sjYUKjXmsA0S0t3Wdt8jWWazE2L3q6X66+YGB8nisTD3ezsNEcbH/Lg8TNWlkSGb+/JE/oGhjk+20K6lJAWdUqPn3CaMWxhZprHj+qMO/sMN+tY/m18bY+O5/NWXmQzz/KDpKlgWF9/i5qfMWwvY9iihGpdcXDYw+22hHtVJxj3mAo2YDNTdc8Y1k7e4jp+SG1ghPDsCHtvH4C5pRuGzXGc22J2NiGKxjAUHVsXTD882mdJU5Dml9le30BVR1HUZcgklRM3z8snNSo9LQrFAnEU8XxtDe+2x/vv/XSG6eoIbmeny7Af/fC7aJrG28X3sFSbR48fMBvPdBlWkyAITxgYHOMqY1i5cMbJacxKxjAnDMinMlM912xXUry9zzJsLmPYk88w7Irnbj/LyyviWJKYd0s9gmH3i1hpKBi2IqZaOf0OFxtHFMY6tPsGCbwnDLi3iOMEPesNv2HYTZ/u51mfK9CSJOl/Bv4BcJGm6Ur2Wg/wb4EJYB/4zTRNa5I46v8B+AbQAf6zNE0f/b+9fxgKJe2eSll4qQHtTov+3n46jkO9XqdYKkIqbBpupAS8KCRJQizLIggCGo0GsgxW5r2mKCqNehWn2aBQKOA4bRRZod1y2d0XTw2ry4ukaYKhG1xdXQq7EMt+oxQmSiEz0wuoqoqu6TSbDRqNGu2WuFmomoGu6Vh22lWPTdK0O36vyAphENFuNfH9AMvM0WjU8DyPkSHx1KApGh3fRZGFLpEjKQxNLRNkchevnj+genHBwOAgpmkhSUJmQckkEXLFIp2OgxSCZivIeo4kiojjKCsBgd9xOTu/4tnaBgcH+1xcXNNstXBdEZge7HtIpLiuB3GMJMuYtoXneV3PPIBa9RpJTvE7TXJf/SX0wcFuGTVOEuJYNF3GcYSi6fhRSqPVwDLE5ZbKKo4fEccy1XoDx3GZmIZyj5iOLBcqtBpXuO2GyMJ1hOK477mkSabIHvtZ472Mrir4noPn1NGszP9vaIlEMoi9NqqRozSyROC26FRfk0RiwCAKOvhhiKzrDIz0ksubtFsuUXSTElZRVQXP9bBzQruMICRXyHefkOI4QlOTTPMmJckeD5XMKihOIpLQw+20aNSvKBRKhIFPpdKPnG3cIAx5fbBJb+8wlZ5+JEVDVWS07IFCQqFU7sV3XeIgRpIlDMPoalHlcnkUWUVTFQxLp3p1hSTLOM1mV3rB9zyCMIA0Fe/bcUEGI/OwvLg4pqcySKPRoLdP7Ls0SdFMA0m+8RZ1IBXaZaqiUG+0GBoa5Mbza3ximovzY85PTyhVKhQHKqiqga7LJJHYs9dXl2Kw5EYr6K9h/bz5BaJ0siPv0FOx6esXXLj8MGPYc4fK2ABn52fwcp2V5RVuJEaeeSEzNwx7IRjmPIa71hYAzxWVxscf8rjWYOjWKAuLC4STESPeGM9/+3cBWP2PfoM0ncHQNdoZww7jhHj3U4aNjMh8Y3qBPVVl5WcwbOXVPk/HrJ/KsN2dXZY1nfZwE/f5BDvbEmNj/ZRKBep1EWiZus7zF89QZJk799/G6XT46tQUE5ncxbee/+9UyxOCYY9bSOMTgmELQpDy/sQ4nc5TnCa89BZZ0V+SRH0Zw4Q6uN8KKUoX7Lseawd/SNnp5eX6Bu6Y2AsT/m12//0mL9ynzE1PkyuavD46pJCzuDoQUjrf4Yx79+7x0Uf/K37nAf/Vf/lPqffl2dkTLgk3DNvc3CSZmWV3Z4fxqVk+2X9MuyMa+/tHVNpOxPp6Qt9AA+d3XSZ+fa5737isjrByR6dxdQSNS5yXD7GsHOOey8PkxwDcnX6Ljz5cR5q/YViZ204dbURk73qsJRSpl/T2JvJujvORJSaaLTp9Jsld8TmiF6M8D9eI9UmkkV5Gm1Xa8/NEu2LIYeulypK6hbe6jHwsow8YbAWvKJ4WugwrVIpISzOQRMzNTbP2zPsMw6ZnIg7DZ4yN9tH4+Irm2AiDgz1cHtXYzxg2MjTJ64NNGtctKl/oR2praKqGlj1QSHzEu+Uv4rtPiYNFZmQxbOSMZAw7Fgx7pS6Ss3apXtUolwTDdjKG9WQM27ph2NBnGbZzkePK7dBoNPjil/rZ2BAMW9ZUtjOGDXz8+DMM+/iTFoWCxNCQCLLHJ36dC+s7nH/3hFLFpWjfYs89QF5YgFnRDH/94GMWVfXnYsHzr4D/EfjXb7z2z4E/SdP0X0iS9M+zf//vgF8HZrNf7wP/U/b7z1ySJJGmQobh5uZSUsokKVi5HIZpo6oKYRhSrV5gZgripVKZJJVxXZdyWWgPWZbZHb1PIlFWWly5Tcdx6LguVtHGc31ujQwDZLoyOo16g3yxRKlYouO0sfPi70iSBNM0kSShAeR5Hq1Wi1wuT5jdkA3TpFarUSqV0DQF1xWeejdBkGmaJClUevozn8KEfKGIphvdjVmt14gSMeYfRh6+F5GkEoVecQH03xrj6uSYUrmComsocQxhlqkA4iSl3mghyT45TDAirKx8dKPn1ajX2X99wI8//BGX56eEUSw0sZKbbJSYrLsJZNM4IXY6JHH86TmNEzqtFh9dXVE9P2JxYYGengqFDMieS9dPMkkiZEnGKvTSkIVKPYCiQSqpnFXrfOu7nzAz2sfi8kpXR8vxOkiqAbqNqpv4gY/riczKjXCq63Yo9w6h6znatWNQdMoDk5h5ASnD7iVBRTFyyJpGmsTEgU+aRPgdsbk1Xaf/1gSR7xB47ewzpziOyHbKGkiqSpqkRJGPqqtISERhiJoJzYZhgpFZPSmKjKIqhEFIlH0vyCa6qaMXSyJo8zyQZeqNa7QMZKphMDG5gKIoWLbN5eUxMgmqPtTdH77bQdV0vI6bmUcbFDNRXdsyicKYVquJpAg5ikKxSH/fQNc7tFgq0mw0SVMJ28zTdto0qldMTogn9OGhcTzPY3RsDMvKcXx0hB94aLpGEH56nedyBTzXFW4KWVB+I0QrSSH9g8PYuSJpKoR8nczsPWeL/VQoleAvhKi/kvWv+DnyC0CWfNLNlHBlEi0QT+DnhQ16Z+c43N4iubxidWWVtbW1jGHipm6clzFmp3nqutx97z0M9wnjh58ybCaKiVfv8Rt9VTqOwxN3jWKxRPp0Aydj2O7uDguLcwzVG+jFc0rFEleXEvZbnzKsD5PtGqS+j+fd5mHrR9z9KQwzkhKv7ircHvOR/G2UHXGLME2T7RQWej6gVBYMOzk9Y3x8nOHhrJen1U+UwMHBa564Ht6zl3heh8GMYR/c+jo/epNh6i6EY0x+hmHD1Ad0ch2XFwcRpb4UOw/hC/E5BwcG+O3f+32+9Ud/QqVU4EFUJzg/Ii2IDM/jlw+QFxZI1jeINzbYTGFhaZEwCBm9JfSYNtY3+NH3v8/y4iLfLtks/uB7/KN/9A1Osx7S22PTPO08RZYVZoAdSeb16TVzC6tvMOyAze09zqpNfrzWIOlU+W9fHzPx678GwN7uEyR1GvZt1IaJn/xZhj19+oT3vvhVdP2YR7VjUPa5GMhh5sU9cMSuktBEMSrIBY3VJKbTZZj47l/Ju3xw61d56TtMeEUey49pHL/mVsbwmeU5JMNgc2OT1btLvHixjhFIRGqIqosszuTkISkyOzs7LCzK3Hlrmocfrr3BsFVW7qygF8dQ+x7xbHOL6ThkgLkuwxTvFRPLy8TJLnfte/zxD7/JAjOUVsTneFSTeO4+YWl5Be/J04xhMmcXosfLLraYCt/BaT3IGOZQrfUzPzvAdoaLs/MiQ4NDzKQSl+YlbafNYPWKMGNYqzlOmnqMjp3R03Mf3/s2fuARhCGtNZHdHTNNjnMFbo+5PLph2NjtN3q2Q/oHv8bRxGPcjGEdp43y5PFnGGaTIls3lY8/f32uQCtN0+9JkjTxEy//BvBL2Z//F+BPEaD6DeBfp6JJ5ENJksqSJA2naXr6s95fUVVc18U0TJQsM3J4/Irb4zM0Gy00TUPXdXzfQ9MN1Cw4URQJOVWQTBPSBNuyiOK4q1FjGibDw6O0Wg3Oz8/o7e0HUuycRSkrH4WBT+O6ThTFopcnTYXBtHejDSSMqP3AxzQMVE30EhVLpa7XXrNZp7+/H0mSuL6+4PzsnIH+IYpFUebyfY9q7QJdt+mp9ON6bUiF5EO9LjJ4tVoN3bCw7Ryu6yHJErpuYZVE4NA7NkMcBDSbTXoG+ug4MUmaYuXEl91xfRotF1WLiKQqud5b4n6WSvie2DCnZ6d8+9t/zM7GBrIkEUYRSZp2bW3iKEbVVHRdF1kHXRf2PElKmJlXJ1ECaUIYhezs7LKx9oLpiUmUgtAY0TUNF5GiVRSZOElQNBM0+zN6XY1mnR8/3WTv4JxbQ73oltUNCgLfp1Y9w+80UFJAUtAN4f9n6jdq/ApOq0YrOCGNAjTdQDNMtKxHQrdMzNIIsqbjtuq4zTqR1yTK9KwA5DiCVHw+U1HQdGGYrGZP6F4nIPB9TNMgTSRR7g0aJLFEGGTj1XJIWhDXQeh1Mq9KGTXrfYmSCK92gpMIo+hiqUKcxKiyQjMrnwW+i+91cJpNypU+FFlGklSiLMAJ/IB2s0Eun6e3tx9VVWnUqjfi9zi6KTKIUUT/wLBQw281SeK463enaCp+4NHb0w9pQm9PH4auCxFcIEpi9vf3GOjvo7d/GN0w0XQNz/e6dlSyLBOFIYqqcHl1TRwnlEo9FDNl+FrtinqjRqVSwWl3sG2LnJ3v7l0QVjNJkqKon380+i+7ft78ApE9d12XO5JMkDHs+PgVi0uLDA4M8urVK168eMH4+G3SNGEvyzYVSxJ7isKdLsPuEk2vU6+/wbDBDq2Wz/l5kZXeaV7zmqPcXQb0fUAw7PLiImNYTLKZoi5/lmFrG4JhdwwDVTsQDHv3XfT9jGFDH9Nv9TMgSXz04wuiYomB/oBiZvMU+h7VWpnBwStsq4Z7ewT2UqL4JfW62Li1mopuWCiKgrv2gvmFedZfbnB4Lo6lMTZDJQhoPnhAz5e/RKfWINl8jvU10Uv25OlzjnLnqNqyYNiCARUgL+Hv3DDsuxwdvWZnYx1ZkpicmmLjloPyXJgsx1PTqC/XWVkRDCvs61g5m62NzS7DlpeX2drcYO3lGitySnLrBeGv/hpTY5m8DMAWzMxNs729zczMHDlD4XjzRxzsi3M+FekMNus8dzfZO9jiK+8vZQwTmciJ8ZiLiyOeNxsspnMgPUJfXUWWdrifKelLssLj1kckgfsGw+6g7YngY//dTxk2djiA27zipbfB0IlJPJI9HMcRpBssarOkisJ7+gc8UmuU6sIL0UvpmtPfMGxkQlQgtNciSxg8N0n7dpibn2PNewapjywvoKoZ47YintX/lLg0xdLiIsWTEmfJOkvyAM2hjGHbLv7DT7CHhrg4+y6KLCPP60SZn+KEP8GLpstI65re3vtdhvXNi9K1sW9Sna1y+/I2tYFWl2GBH1N/ljFsWcVvelz31FBThS/29NHWdbQbhk3H/Ptv/gED/X1MTk6zYphs6hre82fYGcPMhQWmki1SFAaurlkfSijFG7zOzK1rtSuCTwLef/99nHaHo6ND7tt59n+CYbvJLFLw+ftM/zI9WoNvwOcMGMz+fAs4fOPnjrLXfiaokjjGdX1yuQA96wfp7xsS02iqShRHyLGE03Eolyrks5u6rChiQiqIkEjJ5SzCKKa3R9SNLStPtXpBvVYlSRIsWwh+GoYhFLYBz+2wtb3BzPQ8fb19OE4bSaJbbgtdl1wuT6lYwXGatDttBgdvEUUhV5k1QJKm9PT00Gg2ODx8TblUIZezIavhnhwf0fE7TE8OcHFxRsdtE0cJA4ND3UBJUTXR1B8GmWdeKkpEtjhWq3KL8rBL+/KIOIrQDEM0OGY9SUmcohkml9U6ZdkWTeakpGmKm2VwNjfW2d7a6mbRJFkmjaNujVvTNUrFsrhppyLrpps50iTEc8VTa7vRxO84RGGAIks8e/yMX/+1v99tzpQlmSSJkaQEWVYxTR3TzmGVRkhjUQZ16lU2Xp1RrzmMjA4zODyMJCv4gXiPjtOg1W5hqRppHKAZQt8rTVL8rLdOUWWkNCWJIgzDJJcvZHYMmbWJbpGkKW6jgVM7I3ZryDLkcgUMJZuEiT3xORUdSVJQVR05808E8L0qSSx6zpIowjDNzPJH6toWWbaOnAqPTVIZSECme31F7TapVyU3vMTx4RG9SYKqGzi+j2lkPnJJjGXZdFptIMG2CriuT6MmplZHRkZE+SQM8H0PzxOuB0kqYBvFMYauY5gGaRrjOB4SEtV6jXLWqJ7L5ejr6cVzfVJJZATdjotS+DRjMTE5xfrac9rtNrKkEQNjY7e7k54XZ6foukYun2dwYARJSgmjhNMToT9k54S5dhgEWJZJHIuMqW2bXF+K6yeXT0GS6HSCn4WDv671V8YvgDjRGBvzebH2Aj0Lsj/40ldJ4oS9vT3iJGYhnufBkwe89+775ItiXy8sKsTRFk9fBEik3L9/lzCao/dKNF1bVp4PX10w0F8lSSY5PLJIk1kMQ2Vl5Q4A9XqVf/Nv/ze+MT1P369M8vh1m/kYXrzJsPk87xrv4zhNHr14xlcGf5koDfnR1Q8ASCopv3TDMOs1Lft9wtwU11fiuz05PmLUh5w9QFSO0c+/R2zMsLPtYWU9jZ5fZ3Qsz+TkBH64xub6JtLCPEbm12p9/GPKwyEj6iKnL1+iBRHL77yFkuklJXER7cDksq/Fe7LNTLJCiSpHbzDsT/9gnW/+3jdZXFxka2uLbVlmNp7llSSmNJd1jfNSBcsUDHvr7XfYf33MF7/8lc8wbHZ6mhcvnhFHMb/1+BnTLzfoGxStC753RJLEbG5uoCgqpmlg2jkOz9uouexnBvrYaP4W9ZpDe3SYxvAw0sIifiAGVDrOx7QebbO4tEi6FvDKsFiSVdJknufPxFThDcNmxqc4MPYzhu2hLosEqqq7gmGfNHhY22Da7WdBniO8X+PgmfCX1PVFtqVj5hc1pG2FPVWnKO9STMX15csSyXpCoPg8c1yMiZDtFzsszM8jL2YMK+nIhxFpHEO6wBwJzxdA3xMM22o/Ytkb5nB4iR/94Pv0fukD1H2fT/yPuONlDFNUwTBJMPDe3QLu0z0aE2Kfjwzfpx5HnIQB+S7D9kkUkYmMptcx1BWMtwyqh/U3GNaPYYr77P3ifbQejdbT54JhUx3cJ28wbNVkYvLvsb7272i3v8mCpFGcA2PsNsmuYNjZn36H/RWN+/m3GByYYUhKWXu5QaFXXOeDuTxPk4QweIFlLTE9PY3/ImDJLnN+KQLgXN5maz7s+hR/nvVXoqOVPf39heoBkiT9U0mSHkiS9KDR+tvme/aL9Yv1i/Ufyvr/wi/4LMNqtb9dzf2/WL9Yv1h/desvk9E6v0mpS5I0DFxkrx8DY2/83Gj22mdWmqb/EviXADNTE2kSx10bEYBcvkgYiQlDz0/QVJ2eSi9xnOBnqcLrak145SFh22ameB52JwotO08YxwRhQG/fAI16HcvOCe2fo30ANM3g3p23yeVyuK5DGAbk7Hy3PJmYphipR5S8atUq5VIPjUa9Wx6S0pSr62ssy2J15T6e72KYBq4rMjhDQyMomkoURlimhaLIXF5eZZ6Cgu+O06ZQFA2KcQpRGpGiIMmZErpdxOobJ4pDksjBtEw67TZRJCJ13+lQKFR4fVajzypg5WyRXYrjrg3L3u4OSRyiqgZRnBIGHnEcEmXxtmGYhHFIo3aNYZqUe/solEu06lX0LPui6R6u0ySOI6RUY29vm8vzM4pFMfUTJ2nWx5SgKLKY0CiVsfNlalXxRHl+VePZ+j5X1RaO02G9VORrH8jZNCPUq6ckoYfdX8GwLeKsidv3HApZ75yhK4BEoMioiiyU4zUbzRKlDtUqIOsWul1EMy2c6gle7Zgw6OC7YpRXVWV818HK6eSL/UhpQrtdI5+V7DpOh+vLukiDm0KrTVU04iRGN0XmVdE0EiRUTSXFR5YVLEXrlvVotYi8NrqcMju/RKNepXZxiqabXfslOdUglRkYHhEN72mKbmhdDSzH6ZAkEaZlYpg2rWYdRZKJswZzRRN9defnR/T3DaOq4v+dKORFaQFotZqcn5wwM7tMmMTIStrVnwMIghBdN1hdvY/TadPT08fF5SWtVoNy9jlUReX87Jg0hd7+IUzDJElT0huHhCRBVTUuLi+xTRtVE+l2WQLTFk/HrXZL6H799fdp/eT6S/ELPsuw5cWJNImnmZooYeXEXlhbW2NyapqVlWWePX+OtqTzhfSLrK9vYJjifJz/oMZuxrB79/4sww7tPJPT09Sui1xXa0ThRcaw+3wnY9iyZvCb/8k/4fj4GPepYJim5rHfYNhCxrCXLwXDKKU0PvmYBXVJHIu8mTHsLv/xygqe72KZBt5tcSrGbt9mV9tjY22DqckIZbfIZeUlpKPEseiRcZwqJ/ljFhWdONWQFiJS1E8Zdu8drI9CXl/toKQpd+7eyRgmshqjjsHttwv89jf/gL3JhNXiEXI1z4wR88M3GDYzPcnurjieMHhGFE8yNib6r+L4JWFc4sc/vmb1zh3KvSqFcglJltEPMoYNfMqw7c0NRr7yZS7Pz3jnHdG4HSVQrV4STc6gmK+RkDgpXXDvrff46MPviO/tRx/xW3+QMezWKOslm81+mTQRDBvos0gGG9hyyoF9iBqusLWT4nUeU8gLuRRD3wUkDuwcS4qBreocaDaaJZr21cNR5BUL/YtFlh/fxek7wat9h7BucHtM9AHuqRuMSwtIW1uclHoppgntdp78pFBs75yecD1RJ9gJkTc2iFcN1EWNNJHeYNgyyZzE3t4eUjjOrryLNQOzq3MANK9meWme0Sun/P1/+I/5pF6lv1xA0/t5lWXd41RDSWVmh9v4riQYtrpMKZtWd847dJKIO5aJccem9aCOIs0Rv8wmY5fVLsMaA8Oo6itK5yWCIKTwtuDk44ePKOXzLC8bhEnMxnpKS5Iwp8X1o7xYY0VPUVfv43RG8HuqlPOXtFqDMJsxrK+P0tkJv7/5f/PFD77K64PXzMymuJ2MYRuCYT/44SW22UDV9vF9j7xkgS3uk6PtUcZ9k26vy+dYf5lA63eB/xT4F9nvv/PG6/+NJEn/BtFE2vjz+hs0TaNcKZEvFrqAEX0uEEcpuqYThuJGUCqWqVaFiamEhKaqOG2HKIqQFRWn08HKmtQajZrww+uXKReKnJ6fggTX11ddLS7LLqBrGkEQ4HTaIMmizGh+atHTaDVRZA/PE273teo1iip1pf8rlUpmGqwSxzFpIm5cN/pVuVwO1/Pwg4Cenh5h91PpBSkljtLuOUjSFCebtANh/nxTxoo1jVyxQhKP41zsIScBkixzdS7uD3quREHPY9k27Y6DYZlImY9jkPUTnZ+fZRITLoHriQBGEk3hAJ3Qx+u0IIlp1a9xHQfjdYEkidGyY0mSBLfTIU0TkCTaTpNa9RrPEQ2viiEaz6MoQk8TojiikC9Q6h2knYnbNdse1UaTTkeMM1uGwtXlMVIsvvvL01MsQ6NTr9LbU8TUVUzTYnDoFnIm6KXKMlHoYZo5NF1HliU0s4yaE6l7ozyAolqiodNz5XULzgAAIABJREFUUfQ8smZCEhJnpYygk6BbBrHu4Tp1ZEkijULirCRn50Up2m17JHEsmvxVcVNMohtTaQVJFjZMEjK+00HRNOwsOGnKEqHvIScRIMRxFV0nDCMuTgVQ+4aHaTTF+L7vuhiWSaNRx9FEQFguV/C8ACuXE+ezUCDOLFUArs7PsOwctp3PvD0DoihElpVuD5ahW0RJQq1xRRyL9Ledt4W+GWLysVQsksgJcSrKzrlcjmq1Rpidr96eHgaGB+g4rpikDQPajkO5J/NcjCGfF2KAV5dXOE6HmZkpojDqlpbLJdHAf7OH/39cf2X8AkiSP8uwBXmBWE26DFtbW2NlZZWeyheoVsXkmTQ3j3awj9N2aDankBVXMGxF3PQb6+t0OrcYH5dJotmMYWV6e68wWuK7U99g2CedNkgLPHykc/eOYNj+/gHt4SaK3MTzngqG9f0YpS7Ragn9qYp2w7C9jGEuwQsFZV5MWuVyORa8BVoTbUqVK9y3HCpaL1vbKXEkBKq05SGSNKXZHgRJYhqZV692SSeF2Oi0phEUKzyMx7l1scfGxjq+5zPSFkHDfu6cwuYId+17vO5c/EyG7b3OEccugXvOdGGC59uPugybReJSbkEyzY++d0yu4LBqF9ifqaIdiv2ycbDB6EiD6ekZzk5PeeQ84J/1/TM8R5zP3YNXzM5M4wcBRxnD3s6/zUnvK5aXhEzAQ389Y9go8s4Wd9+ep+fyO2xnDNt8WuDuah9P6r+fMayOaVp8pfzLXYbt7ZSIJm9jKq8o6V9FlrdZNsvox2I/HfUPsHhmEU1O8ET5CE+vMqaZkLwgDkXvbueJR3Q3Zj300J06C/PzhH6Z9sNPxHu0mwzWR1hYXGRvZ6vLsG22sSMRwLyj7LItw8LsPJsvX+I7LovRMmZJPDA8kLeZ8pcZWYyAbe6YHS71M8Jw5s8w7GWUo+O6rFomjcY1jiYGdstyhYnbo0iVHC/XI9S3C0xHMbvr4l7dc13Esh9xZM9gJylhOEEUlZFlhYnn4pxu6RJRsk2t0UMcbzEza5Mm97oMS9wx9otnrCzM8NT3mLWu6XRyVKtPqYRiP51dXWHaNlMz/5Cry12WtSXaoUP5SpyLDXWLcn4V237B1WWA4wzwjW8Ihq1viHJtu+Qwd30L8y9gwfN55R3+D0TjaJ8kSUfAf48A1P8pSdJ/ARwAv5n9+L9HjEbvIMaj//M/7/3FRvKQpGK3XygMIxqNGqWS8E3TdeFnmKZx12LINHV0XUPXy7iuRxj4FAoFahnEDd0QjcVIdDxX1FTTFNd1GRwSm1s3DNrNBqZhUiyU2NlZp1Ask8RZI3sQkiQJ1UwMslAsi/cKI26NiKeo6+oVrisjyzJXV6esrLxNtXrJ6Yngs2EYDI/cYnBwKBNhDXBdD9u2uxmFnkoFx/fRDYtcLkfgB0Rx2tUMUxQ5m4rLzH9b52hSizQb8a9en5IqFsQxrtNGVTRAIoqirkBemqQ47RaxH0Dm9wfg30yXZCJ9YqW0a5e0GzVxvm8ESRGZEFlVCUwNy65g5wqk3Ew4CgV33dCzY5MwdJ18uRcp679rNDtMzcyhKBqWnvLB23MYckogTgWjE+N0mk3cVoPL8yv6estomuhhMzP9qpgUyy6hGRaqDJKeQ831YvWKJ3DdrpAkMUkQQJKQkiApGppuoxsi0xgkHl6rgUyMokhodgUlp6Mb4inMtfMo2iVX8TVxECHJkvCCDHzCG8f4apViKY8sgZxKIMmkkoSiimO1in1UL85oXb/C1nKEUYSqmvT1Vd7QYRFBTZoklCoVojiit7ePRtd4uE2lpw/NMGk2auiqiqIIDTmAvoFBwlBIBKSkuJ0OrWYLRVWQMwFgVdUYG5ug2W5RKhYJMjFgKQvke/sGiJMY1++gKRrtVgs/CBkaGuoG+7pp0W63cdsOiirjei6lYqk75NDpuARB0PUSTbLv/+LqEjUbUrAMk2Kx3JWM+OtYP29+AUSRQhB4bG+fcdsT2lNhFPHJhzXefbfM1NQU+/v7PHv2lNXVFfr7RbZAUVUMQzDs1as99ONlDLNAf59g2HQ4yb78ku2tKTTNZXo6oXyRUnuDYfsHBu3mJ5jGHYqFlJ2d36FQfA/HEQxrtdvUNhIGBs4ZGx2hcHZBx3eJmxFOxrCDJ1dIkmBYT0/GsK1LvvtHfwQIhn3tl345Y1gF36/juhtMTd5jPVOg77ms4Izb7BsJueNjgvEJFhbmSLP0bqzIyPfucb/9EKc5x3zrnPjpQ6ptIYradz3GpVKjJ84z5oygKsuAzMtovcuw2ZlZ/GiT9ecvmJuZIol8ktDvMixA4vbcDNBia0sw7HqwhvQD2Moa1VNSrs8kZPUZxXcLWEcVjo5Pu9p4qUTGsH3ieJ4NNrD2Taq1WpdhnzQ7/L1v/IOMYe/wwdtgHKfMxeJ7NSZ0Do8fMDM8Decx1esLtNIyT+wnXYbNz6VYZgHNqLC3c4yk97OU68X64OsArBxdspHEjKcwN5Pw9GHCdkNjrMfuyu0sLs7z7OEn2G+/xWKpzK6yD8eQ9H0NgC/YLRraD7myrpmbX+BAPkCWFwgDl9AXfUmNah+TpRPC7ecksxJz4QKb29sUvyCGFKzilwgvznh4/Qr7VY7xccGwatXhSwNfFhtgTmYj2RAMu6ywNx0x19tHo5EJhXZeU7nqQRs2GevU2H+mki6+wbB6g7BiUDq8Ip2rCIYNCYZFmUjsnKoRjk3y4NFDSsUi4aSP7zufMqxUJ0nSNxg2nDFstcuwVtthpD2CO+Kwu9emcbvB+fE5RiZyPjs6ze5uQCH/NsZqwEwcs7UlkS9cMjiU+R8bJtLZVqYy9vnW5506/Cc/4z99/af8bAr813+Bz0CSJBwfHSFLCrnMqsMwdIrFCpZlUSwU8H0f27a6mS0QWa8wjNBUhUIhTxTFhEGAeWNerOu0220KhQJBGKDrGlEUYVlWN4Bx2i1kWSGMfA4PX9PT049t57GyE++4LqViEV3TiKMYPwwoFSsEvksnG/WN45hczkKSJIrFXmq1a9qOw9CwGMGVJRnbztFutUTjdq6AoshEcUC1KqYONV0niYUIaJKkJKmUlQWzACaKSAFVN9DNPCkSar6XkiqCgrR6haTr2DkJzbSFYagkEScxSTZtM9DXRxo+h+TzNiLHWZDy2cg9RSaWUuIopFzuA0UjyiQifD8Q1jeykOyQZYkoTkjTGD8UgUW17XN5WaNdv2JsdICcrqIpCor8qfZUsVTGbzcxczbIMoZhIitCH0xcHxaSrBDFEapRQivdwioPoWdTUingB4EIrmWFOAiJwwBFM7qZIElRSJME3/WxiqAZeRQFfE8Er7plYfgGpZ4irZoDiRBb9SWQVBEo5PI5UmQkSdgkGfkSim6CKq7RVFJQdBv36pjCwJwQHi0V8LwOcXbOFFVD000kRRGyESG82t2mf0BcP21HlNtUzyNJYuqNNrqmd4VEJUkY4SZJShQF2HaeKIzwOg6VzNJKSIloWLk8cRRimjam6X8qGFivYVs2nU6HVrNGudyLZdlEUdQdnqhVr5BlGSsTEZYVlXKpgptpvZ2cHlMpV9A0jTArv0qSRKWnFzV7ivc9D9/3KGUTuX8d6+fNL4AkcfnOt4/4+tg4W3mxZxVjn2Jxosuw87MzbNtid3e3q2EkywvE8WzGsB2iaI8wSHj9WmSBVkwdp32LQmGfiXAC/4Zhhxb77YxhTosFeREp8vkT64Zhl+Rscf1MTUWUiu/gei7xy3WepymrZxVe5F20jGHT09PkcidIkkS73Uvto2vatxyG0p/NsF3lfabiFwxmTeTV2joz8Tg7qkaSzJKkEVG0DlsZw6YiUtKMYSekOKj9E5SW7olzX71i/rTC49way+Y9kmQdJJXpZJrClLheNjf6SNf+HSQTQAJbIniaY+7Nb+PmZSBmayNhDolZRDltiy1m52RQU87eYNjUDcPGJ4iTDXZ2VObmNtnf0YmWZkgbVV48EVn5attn74cf0a738PW/M0BOH0RbVFA2xRzF7MwUr3bLyNI2Zk6n2m9i9JnI+4vIupD2MAt32d7ZZW52CrRztNItjspDrNgi65vOVRj3nhL7G2zJCtMTIc+bAbtPDNwh0fx/W3GZnZlh7+lzksFBlr/wdZS74D8TDAvuWhgfG5SuirT6DcGwvT38W8NI6gIAxyfHnJ4rqDLMMoOWtzHf/iLsCa3JtFJmV7fRr3IU1ABNW6ZQijHNgKcbQi1dea6hrWQMW1mF8DmHv/+H9H9ZBHxtp42ut1E/eUaSRNQHx3jY0lkeFTqS0fYW8UbMzN2Ul0HGsLUIL3RQK5mFnG6gHB4xODgsGHZqY4bnXYb1DzawrXs0mjXsZo3opzCsv3pFKFexjpZZNWzC4wLlnoCxTOtt53SHdjtj2POQNUDXtrm8SllaENld3/Pwx2+Ty+zvPs/6G6EMrygKS0urWJaB74sgwOk4KIqWlWUSwtCn3eqgqFp3NLxWrzIycpsUuDi/oFQq4nTamX0C3RORJGJyrFavU8yXMUyDTkfcHERgkxD4Abl8kXKpwunFKXYmfNnf10u9Xsf1XGw7R87Ok7NzBKaeaQmBncth53I06nX6+wdRVbUbQYN4avV8lzASPolhFKPIcHZ20h3B7untx3HaFEsVyDTF0vSNMnAqQZoQxzGyoqBbOeLIRzHE5zRzMafnF8iyynCxgpSVQNOErnzD1MQY39dkvCgFPk/aU8p+/WSvcIqUSERxTBBGpJIkPAdBfOA0IfQ9DMsiSSHouCRxSiebhpVkDTuf4+LkkEa9htvxkEIJzxPQd5w2hXyOXKGApgo9slbbpVTR0cysr8koIMkympHDKA2Qqwx0JzBvlmGaBElChEwUuoR+ndhr4WWBAWmKZggLId91abcu0TSDm6xe4DvoholuuMRxSBBGyKoo6d5ofiVpDKmKohnIikwu34NVGRKBLlC7ugJJwncatC/3MQdmqFerdDqdTFMKklTCMGVuMpCqZjA6Nol1c/2mCYoqIysyfidAN20M3aDZEEF6HEf09/URhgG6bhKGIWEYUm80STOxP5mUYrFCmsaZ7pUkJipjsd80TSNNU8plMTEbBBFRHKJJCpYlPoeqyEjZ9RwnKXESc3D0utvPeGtkFN0QJXRFlWk2G5ycHDI4OEzPoLhhU0jxfI+20/wc199/OMu2c/zjpVUOLQPVF1IDTucWi4uwvbPF4vw84aRP++FPMuyPGBn5lTcY9g63RttIW2IvvLKPmaOf42SGwHcEwzplDkwDLWPYkqqRzAiG3XfOqHq9nF6c8uHHHwPwwZe++CnDkoScnefczlH6KQz75OM6pdIgrbzKcC5lPsPE3g3DXr5gU9WYnJrGk+Ho7BDPEz+UJCmPnTbF8wqoKeFaSJqknzJsU2IrSrjtxewECtMzOWLdZ/dABB63hgY5LV0wcjmM+Y7xBsO22N0RGb4ocNnXFiBy2draZg4+E2Jtdf9xswTDtkiZmxMfZI6Era0UaUHibhwTTAqGbWQMCzdT4iRheuY2snxIMnvDsE1GffHm87JG8a37/OHv/S6Nj4u4v/yrgmFXGcMOXjGQz7HfFAzTFhcFw2Z1lnveBkA+OEUyy+jlcYzxEvcrX0ZRNLa2Pz2A2dTkRSdBGpSJwjFC//9h701+LEvPM7/fmcc7xI15yphvTDlnZZFFiqLYEilZVstaeIABo22gvbAX9j9iwIu2vbB3XtkGetOCGlJLsppUkVWsKccYMsaMyMiYpzuf+RwvvhM3s0g1xAbcAkXUt6lCVlbcuOfe8zvv937P+zzrzNxq0mqIz34zy0j3D5iflwiOPZ589TM07Q43DBt/ecOwcZLkEj/ykCcX0NhAkoWPVpolVOeWODD32VOOcI4qVHqGSEvinu2XAr6UJCbadc4nI7YklfOrCzrPOjx6LBi2syNhyDJsSsTSGqqaM6wnlxXYDoq6jayoBJ1J9DcGhm7QGswZVq/R39fH6g3DVt8x7ErKM2GrGcWTHoKcYdXqfO71Ja5XFC+TbWxQXpzn8NCm0vt3MOzhI6TNG4bdYT19xrA9xFVB5MaOWmNEkc7yskq6IfNl4wuOjnr43veGKRbFBPcNw26mvn+V9WtRaEmShNMN7hVfkFrtmiSJ6esfwDSFTkpXdAxD62qwHLdAxwtwTItKpQ/bNnFdl9e7otWYJjGW5YhImDim4Lg4joXjFDg5Fcd6pZIwV7QsC8uyMAyD/v5BOnn2kef5ZLwb19c0ARwJiPOzYcMyuby8wLYc0jSlVrsiiqNuWHOxWETPPYt0TcfQNKIoYKB/EDXvSqiajpLbLQRxlPsxqd22e5pJqKpo4UuSBKGH1w4o9IqboTRwC0nfpVW/QFdk0kQIUSHr5v/19fbSU6lwfHj0i5/Ae/98f2T15njnF8dYxfGh326jaKDJGUEeWRSGIUgZiqoKk1evTbsjHNhXVsQRw+7ODqVyiYnJCUaHitSbLVJTheTG7yXD8wM0TUbXTQynB6dnGNOyIfcuy7QCbk8vVrGMrGjEsdDGybm9Q5bEREGM17ji+u0GzaOnpN4xaSoj5UCVFRkyiTgIScIARVbFTiq58chSCDoNFLWBoipdXVYcJ6Std0HchZ4Cqu6gagqSapAkKcU8NLnQM8zl2Qm6ptG5PKAwOEVPpUIcxxQKuUdRGOJ1WoCEZVkEfkQch5wci92zabo0G01M22JgYCDXhSk4+WBA/fqSKE7QNI04DqjV6zi2g6ppXW1UnAjvMkPXOD+/QFYUeis9GFoe5G1byPK74700TfF8D1XVaXc63fupUCiiKCqx71MslpBlWViZII4OSTOuL2u4xQKaqjExMSXa+G2xw1ZkGT/wOTjY4zdphaHEoWMjzWXMdkR8zvHJEWdnMa3WMC9XX1LvHUJX9n6JYWPjIYdvDqhUvoNtm9RrR2gtwbByYqFaQ4TBS9Zjn1lnFueBRenwHcPSUpFsYxNLWcSqfpexUYP42SydjtDHfI1h1Sra0dE7hk0KhimKwqeXF9h6zrCBPnqCEs+vRRhvsfgBEhIrYYibMyxbDahlgywt57E0r/dYlGXsJOZVvApZlW1ZZu6GYXMSagpGdIflcIUoHMebuKagCAa2Uo2R0Sla7gW6sk06MyAYFs8x+zPxQC/2mvxpZZvjwx9TreYl1uYm7zOsWs15tQmb5MdO1Rk2b9pcVaCaIW1J+PNt7mtVlhcyykVxT6+svABpjq3NTQzbYnJilHbnM4Joik9WBAP+4s93ePzhY374ox/SbpxQ/+oXGDab4e0FzGky7u277Ds9OOdNzOmQzT2hq1X0MoVv9VIqVunpMmyTNBMMm5uJCYKYzpdXXK9uoLttxr2QF2kvySshuldkGRYlXr0MueNMsLgwhltwidcFw1blHYKORUPdoaz2Mh9LHLCZM0x8tsrYQ3bUPWzd7TJs5j2GHRqviM5W2NaW0S4tHg3O8LwyS3z7pxQKIk5IW1phvDPC5piEdWAR+Blx/IKT4z0AzPl5mmvrmLZFbaBGr7KIJCs02znDCm85m55B0zSm44DPB+s4bw9Z0jokaW4hEQmGTdxe5vz8E94cOIJhwh0E2zhg2zJhb58PXIn0LMW7Nc7u7h6T0zc2SDEFPWfYLZ8P9BKtVplDR8Qzuc9OqMoS1596HBUfdRlWcN5j2PY2/sQtmuGvblHza1FoAZycnpImCfXcwLNQLFIoFnALBS4uLlAVlWKpiKzI+LkBZ6lYRFVU4jji+vqCNC3h+z6Fomi9appCqdTDxcUphmlhWibtdpu4Uevm6iWp0G1FmSgedKBcqqDnGpt6vUar3aJQLKLpGnEcYegGHc/rHv14nkdvpVeISDNxhGNbNnYeBVQoFIljIRCPkwQJEXlBluLlWh9H1bAtV+TxxQmG7aCoGnE+WYYskyQScga6IoujUNNBz18jDCL6R8Yp9gjtTxSFYhIuy7rdNcu0GB4Y+jsKrZstp+h03HSxJFlCVjSSJO6GSqepMCxNkwTdtnj84CGlgoOXP4w9rw2ycPRPmhFRnGAYBm+PDqnl8UpyBjtbmzSvL4mDSebGBrB7i0SRuBlkLURRFexCicHRKdzKCJmio+g2bkkcU+iWjiILvUUcx6iqRibJ3SnMKIho1S5pnO0Td65QFBXFKgltWg7+LE2RJJ3I1POpxhrIdN2Os0wozzTDRDUMoihBUXXSPMIBII6EflC3CkiKglEaJggDLq5EkaSaDqpmEgUdvNYBqv6EntkPGBweoZZrCX2/Q5am9A+N0WzUMS0bTTdwpZuOV0q9Vse0LBq1GpXevnxoQvwOrlskTSLiOMbzOtSuL8RUX5Ki51O8XhShKgqSLFMu9xDHMWlKV1t3cnxEkiTCZDeTKJfLqIqKF3jYuSOy12nn0Uppbtab4Tgufv4dBlHQqZpCvV7HNE2SJCXLIi4uRZ6dbTuUSxXm5pb5TVsnp6ekR+ukA+I7WigWOT45pvxhlcpFTD2Oc4Yt4PuiwCkVixTdmLckOcNO8X2fuaLwUtK0HUqPe5i8mEDXzS7D6o3PKRQEo5K0ILrIWczWusT9+/Dh4wqd9reB9xl2wus9C0WWBcPGPWZaYmLL8zx6L3pJ9IQsmyF91eHtHZveXvEzHj0qsra2ThzHTM/MsJ6Izmt1Tu8ybG4uw/dcwuAFfpxg2NssLt0hjoWImExGTubZ3ohIM5ORoR10c5zb98TR4crLVa5bHkGY0XjrMnN7ElWz2dhYpZKJboJ11+L7A0M8ORRF1rviKWfY5nsMq2bMy/PIymuSRGNhUXzn0vQVmxspKQm7usX/8MDl9NjBUAXDRoZHQW5gORMosszzTgfNMNj58U/5/LPPAFjI4M//9Z8x3N9LNjvJShjxu+8zrBCiPFB4WyoxPLrE2EWL7Ld6WdTvczQtOKgf6CyWqmRkrMVrqKrG/HsM819EtAZ6qRSaFMeuSJoOO1YJI42pPhSh44JhGdHjmM2NDfQXLnfugzaTMyyZY85r8uJ5HXV/n2hkEWX3mHQqQ9rKGWasoY9NcPvRI7aUHe48zhmWiOfo7qqD+tokmnjJeGuaT/f+b3r+8AO+N/w7fJ4PdfgvOtRnz7g9NEZnqIVp2cjyHdxV4RmWzhWotwZ5YzVQBgao9Eq0O3XYEoWw6xZJdZ14bY3n46MMXF9w3mmxmaR8cMOwdIpd5S1Lsky5/C3W1tY4PzvnriE6c397/AkzMzOcnJxwNTdPuXyGGqmMB+Ps7ws92vjYaM6wV+j6ApvMM+ek+LmpK9Uq8UaKupxQX6ljmjIzSUoYR1x8KjI7bfsB5bk3GMb/z2L4/9ArSRJKpRLXV1fdo8Mhx8U0LY4Oj9A0g97eQcLAF67auT6m47VptlrIskSn06beaOA6Lm6u8yoUSnQ6LVRV7WpGQGTD3YjuT0+P8518SsEtcn19gWFYpLntgiRJjIyMYpomvu8RRcKdvV6/JMk7I6MjYyRJQqvVZHBwCF3Tubi8xHZEt+C6dkWWZvSUy+i6IVrpkkQchVyc56anccb19QW6YdLTOwCSQpoXOwBZkgGymMIJxMRhT2WQONdfhVIsLBhy5XqaJGSqKEJuYo1s2+Lxw4esb27jtev88vFh9rV/ZmlKJok4HSUXPBuaht9q4ZZLfPtbj/nW4w9p1utdB3LD0ITmzfNpRQmmY9Nut/nkJz/hs0/FTWkXCoyMjLHTalMsuLiui6Tq9PWKHZRbKIGsUC4PUCj3YRbLSJJGEL4T8N8cVcqSjG4YqKoOWUKQHwtmSUoShaShR+zVkCQRMp1FbZJA2ExIcj65ahrEoY/fqqGpJkoe8ZRlCoblEscRhWIZkpQ4Cgg8n2JFaJ9UUyNDxnR7COMUdBfNKFE73QOgfnYgnPWjhCiI2PzyY+YlifLUI5RcIF4sVwCJ0A+xLIsojtA0GScP0HaLJSzT5fT4kEpvLyenbyETcT0AfsdDUWXarRa9fYO4hTLNRoPDk9cYeedExEhJKLKKacooii30a/l90NPTS+D7+H4HVVVJ0oQsy7g4O6K3T3h5yrJCs1kHVCRJwswL1JvNUbncA8gYhoFbkMmyjHrtCt/rdPVmkFGv176WnfmbsFQt4fHjEtdXVX56KorKicMjbMfGPTwi0ww+6h1k5eiUmdmErfwB0/Ekrq5HaLWbdMYMBmOLvqt+FFf890LhQzrPWqiTKqurEZq2SZImFNx3g0ON08+RZYVNvqDgfsBnn33CnTv3folhb94kqIrH1FRIpzOEfJTyWfpzAEZbY2iazshIk8HBQ1bDKS4uP8WWBMM++zwhSzO+9WGZPd3GyoA7Ekq0yMW50Aul8SDXn/1bdOMuD3oH2JQUMjbeY9gcsIEkR8QT02y98HHuuUznDKvOz6MqO4Qr4qgvTdbJ1IdfZ9hbi8cPXdY3i3h8gSioqu8dF2a5PmuDalW4oW9saVTnd9jZEwxbWv6QeeUJ7oclKj2P6Xn8XzHsFGg0RIfH2PeQFxaJvBc8iWYwD23aySgXxz/rMuz+o0f8zu1l/vzPNvjPHrg8fPgA6fyYq5xhD5USzC9yvzzA8dkV5vDvMT8oGFZFFOK76WvWX22wML/AbcNmd1fn9WzSNXbeSFKGugwbYEt6xpK1SBa1WX/5tPt+JSCTZeYXq6yvfU4a/naXYQuZQnrgsqTdp1H8kk3LJJuaIPBeULybM+yNRlaVeeOeI8UP2dxrMiuVqJWE9cJZ8QBm54g6T1h5uUqjVmdektB+v4qymzPswwolJEJ/EstSiOKY1683MG8Y1p5gZNRl5/jfUtlIOJl5SzVTOIiEFtHvrKIEPu3BAXpPLkgyBU0zcU40gnvieph7b5hXFJTtXcy5WR4//oD19VcwL6Zev5V+xMsXPkGoiizcdIYsS/jk7Md89J0bP+IRvmp+QRUVqVEnfKOzOpcxWBNkm6PYAAAgAElEQVSfyc7ZNtWlKoZi8NFHMllWpv75Ff7POlwPiJ/Rj0O9LqNn/8CGpd+sb9Y365v1zfpmfbO+Wd+sX16/Fh0tRVbodDqYtsXd+yIHKo4i2u02aZJRqLhYloUsSzSb15jGu3R5QzeIk5ix8XGyNEOWle5Or91usbG+QqFYYmx8EsuyCSOfOIlpNoTRWpzEFE3RRdB1Hd1QaTYauK5oVeuGga5rhGFAFIbCx6hYwLQsCrkxoSRJtDsdXLeIH4gInXK5DJLYUaZpQJLFRFGMLCskSYamaUiSQm+vEAs2m00mJ2cxLJMgivB8odPKfrFqzkR2omXbSICcT1yYhkWaJqiqiu95dNotiooB+SQjQCDB9PQUP/onP+DP/81fEoYdvt7V+mUtVprkHiWxaK1G+d9fXlrk93/3hyiSTKfTxss1WlEkjqekTMa0hah6f3+HzVevcCyxO768rHGWXFKdr/Lo/iIDQ0M4jtU16DTsIlkqY7g9SIZNminohkXBMQhzwbyqCIsDCWGlIEmIrmV+vRqXx1webpF6l+iGQxYlxH6NNO5AKt6TLCukCMPZNM1QVYN285IozLtzbo/oAqmGEP4HgTj21VXU3OyvMDBBKmtkmoNu23RCEY9kFcUocO1sj8DvkIQhUiZ0fY3DVSzXRtPE7lfTiziFEu1WE8PQMZIYRVa4uhYCzYvzE3r7hhgaG6fVqKEqKrKmdS0SVFXBdhzSJMX323Q6PuVSmYnpea7zI0zLtLBtF9+v02zVKZd6sW2nO4xhWhaqquI4/ciysBKJpYT+/kHKZbHbOz074vLyjImJWXw/4NX6JjIZo+OTgPCOCwKPwYEhgjCg1WzS1zdEs1nDzLV1YRShaRpePu32m7IUWebZs2fML8x/jWGj7ac0GqcUKt/BsizMe/eImtfI82LiazbLiKJV5ucXOLAOCF9l1AamGZQEn9rtJ2yshxTMEqY5iWUVmZy6xebmVpdhThJTvGuhrN0wzOWF9xTX/RCAqmGwp2vEkwFT/iRxvNZlWHoo7mfJ/TrDZrKM6fKH0COsF168uGHYNLG8RpLMsaxppO8z7KuvCCf/kPl7Ji9XI/AjNpknycTRYcwmVSCeg0bzBQf37yMB2zt5LmhkMZsqqEsq055Hpz1CUYmozswQrIl7NpA2mZ7+fX703/Xw5//LKlTHRDcrl2tVSXNtVgZU86PFiFdr1e7x4vMvxPHfP1MX+U//+x/iSds8eybipgBWWzvMP/kSaW4B5e0O4eIi+/s7/Nl7DPv55edMJzNU/yk8uq8Jhs1E3Ooy7AOydJv9IwnDeUSaKSi6RcHZ7zJsaVFDUZbY2txCW64iz0KUpFTnRIfv05/8v2gv/pZ0/BLdWECO7rD24nPBsFlxPRbkRTY2QZrbJg02WFoyaH/1KatGPp3tfgtJkphYMoiPZ5g8P2OLTdQ9FbX1jmGz2jJX2hS6bTPmXJPsG1gngmGZrBP4uyQrIdJclfhnn9BwIoLzdbRU8EPTP6BSKPH0yVfcuXOb/STGNk2urgXjLs43aH5niCFlnJHGCrtbKuqShiSLzra6pGA7Lun6K3xlIWdYhj89QTP3XzxoHXA/Z9hXx28pl3q5X53vSonMgx2WlibY3+/n7HSb3t46a1sh/f2DVHq+C8Dp2Y85Pj7j9g//kBd+wEGyifynG7THfyTu46Upms0G9VqDicmJdwwbrjF2JKZWV6KICU0jTfW/hwrv1q9FoZWk4iFmuzbNpphGCoMbl/iUer2OpmmcHB/S6jQZGxU+NXGciAehpAhwZ+JhWy6Llmi71UQ3TAYHhnEcl2argecJs00lF/46tiMmrVyX6+sr0hRKpV7CSBQWSZIiSRDHEc1WC8uyuLy8pFgsEd+4akchfhBiGBK+7xNGIaViWeQWIoSmtVqNSk+Fs7OTfLTeIAN6yvlxmSu8her1mjjuyW7a/uIa3Wit/E4bSzdRkEnJuq8hSzJJkqAoah7i2yGMbEDpFkskKVKW8uGDu8hpwl//5GOarRr/7gnEmz9PeXesKLGwuMz3v/M9As+nXq9hGTZq/tAPvABkGV3X8bw2l9fnfPxv/5IsSSkWRDtbNy0a7TYP7i0xPztJT6VCuW8UNT9OUhUVWZIw3TKG7VIslkmzjCAKu0V0EAS4BQ1N1bumhnEc07zRPbXqFEoVEsskal+Qej5k4vrcaNYkIEkikIV/UBonIAkTUhDarCgMkGUJu+ASBgGR54GUYuQTgardR5zKNIKM/p4KsReQkXQF5EkSk8QJcZTgdTwc10GSJNLmEbojjkLbUUgWeTg9gzTqNWzTpNVq0d8nCpzXr7c5OTng1sQ0hjaA53dwC8Vu6LTficQEpabRbrfxvBaGrpNlKXJe7L892GNmdgHbtri6uqRWu8ZxHAxDwCJLImzHQZLg5PSEUqmHIPDptJtdD6NioYSmGZimhWna2M5toiDAsm+OJy1OT05IM2HzIUky7U6LMArp5Ee6EhKWZVNwf/XR6H8Mq9PpEAYBO8o2NIU4fDIIkbR5Nje/QNPrvNZeUzx2OOk0iduCLyvxDJIEWbrDzFwMtyCKPoMbhl0Oo+9+zGDtR5xVjmi2Wrl0oR9FFqx07j+gXO7lRz9y+eyzn+cM+6jLsJUkxZBgOp6i3qpjWfN8+umnFIulro3N5NQkvh+ytr7P9JRPGP3872QYbFI+6+eN+RW+eedrDDsaHkVZkPmiXsPIcoZtbiLNiiooyza+xrBFZF5tvs+wbdaTBHlHJQp14BmPP/wOm5s7jCd5YZ6kSHOv+DC8y/YPf5f9n3xMkxrVTTF6f3OC+M7uYZ5qVYLNlM3Nje6f/fF/ssz3/3iZwPMZrA9w4L9ld3v73bXY3kZPEzxvlMuDHT7+3/9X5qwSrRuG1S1Ko0f88N5/LRh2ccHZwjxjuV5oV1FZkGr0e2WM+yWKBZdXmzsEUzNMS+L9BkHC0fEWuqEj7b4hjm8xPRHTeI9hx6UKyYVJNPqazHOozs0gkZDl9+TW5iZpElFNF8jkV4Jh6fsMe0MUBmxvj9NsHDFQuWTRu83mUorRygu++98RDHu5wXd/+3fpeIWvM8zKGTY1g9ds4bgO81sS6cgReiAmAtuf/Q1PHn6E47g8ffoM++5dWiMj9CviGP31a5niyQH+3Tv0JhvY/hhHhSK3XfE+XnQ6sJGhLS8Lhj1rcUcfYyOL2N4SDDsvi03oPdsiWompaZ+xNTrWnYzN5lJsw2FpGU4+PqPjfYvRUZ9nT7/i8kLokk+OSwwNCYaV37zFVnSm/uCP/m6GvQzZira5fcck9Fd45ovPfr46z2vd7pp4/yrr16LQStOUco/wzGq3hX5G1w2uLi/QdIVGvUEYhiiKxGD/SFefo6oa9dolSRLjFEoYhk4Qeu+mA1SV27fviQdbmhLHEYqsUCj05FoTOLs8p1QscXj4Ft/r8HZ/g1LvQFeXYlkuURRycX6OaVuYpkVPuZeO1+6ORme5kJ4sQ1JkTNlAUSRyQ23CIESWJK5rl7huEVlS0HWDMIy62jFFVUizFN/zkWRVGF+m7zpMkiTh+y2iOESSddIoJkUizBPEVUUR7vgyJHFEnES0W3UMs9AttGRZjOfLpNxfnocs5ceffsq7nLZfjBS4KbQU1FyQuFCd596dZeLAI7MM4iCg4ftdn5I4iTAsGy+OiGOfv/6Lv+BnH39CT08PaV4kGbbFH/3gP+bu4hQFU8Up9qAYNnLeeZNUDdstoig6iqITBEH3Opn5g0GSJJI4RZYzFAnSJCLyO3QaV/l7lQjaTTK/RtQ5Q4o7ZLFPlkXdQktRNAzTIk4T4jQQmi1JJo4EYIJ2Dd0sgGZgGAG269JKIpI0RjaE9kBSDFTTptXqoFzXMHNbEEXJBZwtnyROUXSNkd4ymiYT+G3SJEXLxHtyDYVEVvE7bWzbxuu00XSdOO/ODQ2P0Wo1OXq7T2+ljzSOebO3xUBumaBpirDRiGOKxTKOI3znVE2j3DuQ/54qQeijagrT07Ocnp5yenpMlncxkyhkdHQKWYFisUyQm//alsXFhUig0XSTIPA5Oj7EcRyKboFi3wBh3gFM4hjHdYjjEEM3OD87xfc6zFSrmPkOu1a/4Lp+QdH9h/PR+odYaZry4be+hWVZPG0L/czRnkRfb4Xl24s06l/ihnfZUuB+/wg7TaFrUtXX1AcGSZKYzc1T7tzOGfY0Z9h0f86wM05Siek4IpUVesrnNJuiuPjppz9jbmqWkZERri4vBMNM+R3DDo6IslnOe84x7QNM80N+9wc/5Nnzp12GBS9fIlXnqc7NkWSveLNtYNsSt3KN8OTkJNdXV1x/fon7MGJJ0gTDViJWVfE9Xlxa4FWW4j/3kR6ogEz26h1TJGke3/+KaC1Euq2TRj5TU1I3KF5VJgnDmO3tza8xLEkjXuUMm1qQ2VqBOHzF/eV5qnOz/B//56dsdhkmiilh81AFpLyrJbGUD7nI1Xs8urdMHAyzcVDmvCdgbq6PnZ0dADrtL9mPbXj2lOnpW/w//+JfdBk2mzvl77+1qFYHePy4QMEc5HBKxjTus72bG0wvadjub6H06uzs7LG0tMhYe5TNlVXMO3fy6yExM52i6ZPs7EA6k7HaekZfQ/yeCwvzvGxfkb2oET1bQ5qssxF7kEVkG19n2M7uLtOTc0jyBtKCzLQmGGbYA+yZBVhbwTB03rourWQX0hj5zh+L36PLsNdcXdcwLcHynb+LYZdnaLeG2PI3uFhvcOfRR+L7b4+QyCrK2Cjq1CTPn7XR1D3iPGFlaPgWB2++IlIUgkqHaG2NWv2SW98TPluatkM6d5ewHVM8KeP0F8iClyxpi2zcMKymEizrRI7DH9wu8PHHx5yeHnOSM2zGmqTdfsnCYlUwbOUlx65L33d+iyefCIb1fGuCiY7H0fEhg41+Ttxjeq8GCPOJ0/W1mPFbDienJ+zr+1yfXbH/epekWsTJT7DC+AXl+kh3GO5XWb8WhZamad3d+M1ofegFSLJCqVhkZHiMeqORT9PFGJr4InTaHoVikdPTY9xMuHaXS71c18TDttmq47oummbSaFyhaRqKbnJ1dYGRd0+mJ2Z4e3REwXUYGBzCcYUf1mU+JVXplbi6usCxHGRJRpYlPN8jTVP0XCB+cXHRfR+lUg+OU6DeuCTKhf1JCpVKL2EYYtsWoIqumiJ3PZ0M08K0bcqVCmmSkmSiMIrzhHAlyUiSBN0wSeOQOIry4lFcL1mxSOKQOEuJQw+ylE6rJsza8u6dlKW5z5VEEIYM9PbwvW9/yNbrPQCuaw1qjRZhEJImMZqqoRsajlOgWBD+VROjQ8hAu1HDsSzazQZpHHU9rGRZIk0j4jDgqydP2d7YolwscXF5iZbfdLfv3+Xhvdv0VkoYhiN8wUwTOb+xJUUhTlLSLCLNUpJExXEckWv5XuyBqooCNwoD0jgmjkSRB+A1fSKvTezVSb06auKTRD6S9G5iMFPE0bClKISBQRwnBF6bLL/mURiQphDFAYHfxms3SLMEp2cI1REdhyRLMOwyitWDrGn4foTXvCLs5P4wcYxmGgwMDaJpMnEQgSSj6DZZLG7uLLgilFxO9vcZGhkV7u+2SUkWr1Ep9+A6DsfHb9nd2UTRdFRVpVGvd39PTdMZGZ8i9APSJCZNY9JM7nq/XF9dIisKtXoNxykwMDiE73vdrpjrFshy/zZd18gyhTAKCYKAoSHRMldkiVK5h1arKXIzh0YJghBZEZ9JGPgUS2Xa7Q6lQomF+UVOzk44PT1mcEC4mHteG8MwSdNffWLnH8MqFApomsbT9lOmc4atjAZcr/Tz+IMiI8N/xBdfNniYM0x1xD051vbYOylyWrph2AJnp1v0BznDvviUo9EJlrW71BqfMappKJbN1VUFw8j98XKG1Rt1fut7v83Thw+of17jcuuGYW36+g7Y3T1EN0xKpS1mZ6vMzs7ClihMLi4uoPmlYNhpDx+UCtQbvUIKASRRxLcrH7ESrnDfvgebu2SIxIpbtwTD1mLBsA+/XeFVkjKTwasllTgRnSIlmWM9SZi/Y5KuhaxFL5idnf0lhk1O3Ooy7NmTz7ltuigLiwDE4WqXYRNhyGXvFf/8n33Iv/43ewD014YEwyZyhu1q7BkPeOAcU8wz8+ZnGmxvbnJsHzAw8X3ahw2efB6hqKJYW3kmsWROsRa+5Kc/+QvknGGV3kuaeRLHXNXk4b3b1Bsl/CDizshH7Jsm8p2vM+zVxiqKssjLly954Di4yl329oQfQRXYzXTm52BqEtI45tlqxH5bdLTGh/uY8tqsjdVJvUHU8JQk8pmXMrbSnGGLVW67LjuKwuHLFeLYZWL8HcNWw5corwzBsFujjF99TpQl2D1DFLoMW2f/7Thu7w9yhk3h9VwxnM+r7L0+fMewNGI6iPAlmcLt+19j2MrWESfHp19j2OMF8RoXp6e4zhDHOyrqNewfv0VVl/iyy7AymnbCiDdFuByQvrhh2AaPcob99ZWKvKPw+USNHzjH/Nb3fhvff95l2NGRMOmOohh9SSaLFMKdkAnfQ80ZtmhJaOUenjz5itqBzPDQKJ8HP2ehIQroeuAz9+aMyXCKUqHEw3/6gL/96d/SOh1i8JbYlDyvtVk23kAW/P1gyNevRaElSXlUTJpg51NSSRxT7iuT5ZE5pmng+QFuwe2aQRZLZbxOE0mWRNaVJCbl5PwYq1QU/38YdAjCgCRNcGwVy7Ix8yMTRZEZHh5CQiKMQmynQLHci5w/0JuNOsODoxSKBS4uzjk5PcE0LYrFIqenIufJcVzSJMN2bK4uzklTMaGjG2b3PQaBj2VZ+GGEoUnd/MAbLw5ZFuZ8aSYM/lRNF3qgXIPV8TuYlnDGT1MFCHNbgxvfqIQkiZDIyLJE5OvFClkGUZ5tY5smceQTRxEKYOg6PW6R+QmhTTiyLyg4LYIwIgwjSoUCrmMiSYipPsDrtLhMYtqWTRAEGKpCX28JJY96sSybViPi4599ws+/esrE+DiGqROnCSP94ijs0aNHuK6D7ZTQDDvXwPndAGRD01BkBVVV0XS9W9BC15lBBGbHcd7RS0iSGFVTSfO/G8gKVqFMLIX4UZ0kbBMEEZoioag3U5UxXlskAximjSSrwu4gfw3NcIUxqSJCmxW5QaKZJFoRzR3Kfx+DwA+wnBKGKXY8uq5y6dXy10hwigX6B4chEz4uYdRDEsfUL8XEqVw00QoGt6ZmSeKYUk8Ft1hCkcVnW280cd0CQyPjDI9M0mzUSdO0O13b6TS5urrk6uIcXRMu/bph4Dh2t5tZqfRSKlfwvQ612hWyomIaFm5ZPHziOCIMxXfjzZvX1K8v6BsYwrILXT2Vrun09vZScAtMTc6ALON5zW7cEIjoLEVRSLOENBXWJmmacHgkxqtN08Y07O6xxG/K+rsYpsQx5e/083ojI0k87poGz/2X6AW9K4c8KZXJOhvMyyXqOcPm5mZpfPUlIBg2lmWsBM+YCCfwU5XDzYx792zM/XcMq37/t5E2t1iJQu47BXZ/9I5hw/n3pZrJfJIzrFav80GxyGlFbBKd8Yc5w95yFZ2TXiRkaYW9nGHVg02C6WnMA4MXK6sYms5sGguGrQiGRaZMupQSZBnhxiZbmo40V2UpZ8OX/jNM6x7bUUS8EMLL56ytrb1LapBkvE6beebIonWi4BYTi2MEhk10LaYjbfMu01MvWFuJ2AEG93R6GidfY9i40yIYyRk2W8A8NPGlhPg8Z9hwi96eGPPMxgr+kh11kb5GCWVRPNDvWTafr3zM6fkn/Pz/+kWGiQ3Uf/Ff/o/4XrvLsKNimbnQh2QNAEO7h7K9g6YusXxbR9+z2AQWgc2cL1uSTBbHvFzdoFqdIUliljSVlZxh29s7TN8a4p60gh9ZvApnCIKnJIpENvuOYc+ffoUsL2LcVZA2VPasjKokjk514xRJV2BRJu1Y7MgLTGqbJFqR10fi6Hlu/iOCWwrW4T6GKWwj9vZ2ucxDlLM04UGxwORgEwYG3zFsbZcvLsU1k4tv0Ibu8Hu//4cka2u86qnw8IPH7zHsJQ8fPmJuPkHaDJkY/X3S2ZSjo5xhYznDKufogWDYnmHw4MF90g1xIPztSp3TcoZf61CzG8jKFznDhAHs0dEq4eQtAv8Fb/76mHp/hb5agyeXl93nU//AbXove3nkPqIx2WBTlrnlDeOromCcBVajmBlFIZ3LGfboA9L6NYdH4vlkmhLmvk367zF1+GtRaKVpiud53YgdEP4ymqaRJKnwQFKEN0ocx92dvG05hFGE4xRQVQVFUXKn63yHHYacnp6gKsLcsVaroUgyXhBgGuKhH8fCgV1RVFqtFk5uK9HIc+aSVIzAHx4d0VMuU8h9hm7E8QB6j46q6aRJSv/gEOenb1FVlVJPLiZMU2RNot6oiwd3mmHZNmH0Li5IVVXCUOTP9VR6abQaGFahGwosyzJkGTFALt4OwxA5v15ZlhHHAVImbA2SOBZHmSacnubmdopEpVQkDj0C38fzhGmhoYmty8hAP6MDgyDJnF9dk2UpAwNlLMvA64jXaeVB2u12C7JEWB4ELazcKNQwbJ6+WOX51jaubdNpt5EUlZ6eHr7zXZGdNT05jevaSLJG4Hn4Xgfd0Lu6gjAISFWVNBNeN0kihggURekW0SAebjfHtpKsICtqt1slkdG6Psa7ekPUPENGdPOSwEfJj0FtWUXWFLI0o9Nqohk2hul2jxZ9v57rkzLiWBicKrqDpNuk+cCubheJ4hjPa6HphrgmZO8MKQsu5WJuBpolKKqJrOo06le0O+KzTbMWbrGNaUkYho6mFwjjiExcDuIo4ujtPhniWE9VVVRV7eoZW+0mpZ4+0VVUFMhujpLT7oaifn3N1eU5tm0jKypyJuxEkjzTU9dFwZgkERMT0zA+iaqr6JrFxYUQo3qdDudRjGEKc19V11HVUvc7IYT4bSQk6qpCT7lMEARYltUNfhVFtExfb+XfhYN/lKuTdnj+/Dm2bbE6I97r4+IHgmHLKekrlR1li3vcJY5jvsj5YluHTEZTrB2u8uHjbwuGra9AVeyww5WXnJZOuNxR8F2fWq1GWSrTejrBm4pg2FwckSUpO8zTelIjfOCivrFoDIrXWE9T2NpieHiI+2Nj7OzuQCYRTU4QnYoCWD/fQ12+zat1iaWlIc55i7p7xVKXYQrbr18zOjbK1rYCsya7b3WiKCR5n2ErL3kWBHyr0suXrQZ3yFjpMmwBsnViJr7GsIUp0W3Isoy1tYB4zmN9NSCK11hcW2TL3eTgjWDY4uIhldIU06HHc/8Fzz2PKarcWRZdtepaP1sDg+jSNj0jw2xkr7glf4h17xbeszw0Wm6yzH6XYeXkY07OHKxzwbBPDJv2LzDs1uISUTrOd777B4Bg2NHRW8Gw8XH8+hekxm22FTHkIL18ibqksvR6hZcrCkuLy3jbCs+VCHlBFIVVYGtriyzL2NzcEsH1isp8PijRuirz2U/+jPE+k6j5YzqbgmEv4vcY5mwgmwZZusFYK0WLbXbfuOzNiaOyCX+U9aFVqu051tZeIg8OoeiPkPQWsxPidV7bReS1NbwkFpvdbB3BMGHi+aDgcnZyQJz0UJ1LUNS7yGrKl+nPGR0Tn+2rgxHc4ihJHGHcWeYD3cwZJoqkOIr48d8Ihn1QHERVd9l9q9JuC/nDSKNJct6Hcq2BqoC8iarorMUpd5eWAKj/1V+h9Z5TqtmkTRVZybger7C+LhIQbt82aDUDwmSCiR/egzRld2+XUc3i4kJ4gnnPOvxMi7ljWlj3LPS9PY7UhJE8Lu/FizbSWImLzUsWPt6h58MyfhBgWQtfZ9iCjKq6vxIb4Nek0AKxKxM5eaL7ksQxmqYRRmL6TtNUPM8Tk3X5A/nq+oJmq8mtW1Noqia6VknCwMBA92eEYQhphiTL+IYvnK3VDq2OeDi4rkvRLdBut3HdAoVikdD3ubgQ3YZMktBUDcPQabaawj/IsGg0al0F09HbA2xHZC0ODw8zOjpFmqVdvZksywSBTxiG9PRUMHSTKPTJ0rSrscoQR3RhGNJs1EhTIfiGXNSoqERJKgYZ01SYrsURKTd+UhJpFJJlCXEYkqUpKRlx6DMwIB5q/+rP/oq+vl6qkyOoqYKcZqRx1HUPl1Ih7L+qN6m1mpycnbG1q1IqFbo78NAPSLMUyzCJQo8szSjoFsU826+6OMfp1TVpllIqlGi12yi6xL379/nBP/kd8V6z/PgESbR9JRkMs9u5kmUZRZXzYQjhmZXlBUya3RRSEhmZeN9ZioLwzvLzTkkcxxhuL4Zl07kqENSPiDs15AzSvK0eeB5IGbKioGoGqmEKg1JV7OINwyWMfPywQxjWkWWhm2t3Air5cWwcBxhmiSSO6XTamLqGpqrI+S69PHgLQwqpXZ1BGlMs9aFqJqpq0qyL74dTmsMPIsLwGsd1kKOAQqFMkGuf2p0GiqRgOQ4SIs/wunaB44gbvVQqc31Vo1gq0ukEGIbF1fUVpVIJJfcwGhwapla77hartlOg2WxwcSa6sqZt4roVZNni5OSInnIFXTeRJejvF/fT+cWJMGjNMpqtJr19AyiKhmmJezbNUuIkZqh/UOgoJVBkFT/wGRwQHUBh85bl3+3frKUsLhAgkeYJCJ2FZ2jaMiurEdU5GH89Tttr/QLDKhgjR9z3XTT1NUE4wXqS4NZEkTTz28OE4SSD/RmSvM319S2ur2scqYfEHVEkbbkuj0ol5ufbJIlg2Jt9n4tP3mdYg/3wFupuk7pUxzQs6vUaN2kva9EB9vU1cTyDsjDMndFl0tar9xi2wK3gBV64gm1VMA7uEkU+2WxK+PJ9hj0iDD/tMuzlLzFMQso2IfWYm5vjyVdfEuei/RuGxVHC1OQE2auUlDWmJ+8zcUsUY//T//y/0dfXyx9N/sj6reEAACAASURBVA6zacZXNwx79Y5hk1HIVb2HS+WatZ9usbWk8fhJgc3cNzV88pJXWco9wySafMew9V3BsD9anOMvrq5xbxg2OoqSJFi2zejY74hrvv0KXTNZQhK/vzTN5v425r274r3cvcuiKqPd1VgE0nSDmRkJRZGRElHgJEhEcYQsSczOzbKzuUmWzPLi2U8B8Ft9GO5HnLWfM1abYeHOEWvPfplh1fkMeSdn2J27ZJvkUWJwauzirvahTh6SzsYstGX8NKXdmeBiW2jSFpZd9kyXZHqaTucppq6xuKjy9OqGYT71RomBvjNqlzHFUoKq3UVdustX//JfAvDg1n/ObhDx5Rc5w7SXPHr0IS9XRHHS7gyhSPJ7DJukZ6DB2Ljg0/b2GY0afPC4yEoUYBjT9DUalAKf1e08WWBomIG31+woCgvyAm+dE0pxTKUsNotXVyauayDLB5ycdOgpX7BAkT0Jvvsew6anYjYOMpInTT7qW2RL2ebNgZCc6EZKLMcMDda5Snu52gZlYukXGNZAz+a+pqH++9Y3PlrfrG/WN+ub9c36Zn2zvln/gdavRUcrCAJ8z6dQdHl7KPK7esoVkiRBUmTanTaO7eD5PpIsdb2lFEWmr6+fIPBRZJl6rYbvB91jG0mSKJWKtJotVE1naHgE27IIo6h7BBWFEZ7vd4+n4ijmqnZNnHfW4lTEktRrNZEtlyVcXBxiGI7QhQH9A4PYtkOWgSxDSkqapl3NURgmxLEQz7uuS5bCq7Vn6LqGmrfde0q9tNKmmNgyCuiqRpRk3c5IEqeiG6EoZLIIcc6SmDi+6QxkeJ0OiiwJS4E0FZErZJQqYvx6cmKMZysbNBoNRis9yEHI9v5bjvNjjGZHHCU2fR9ZEVEQWRZxcXVFdlOTpymyJGNoCoYsuiOJElHuFccYrin8mDRVQZIl4iSjt1zih7/3ffT8eFHRDHQ9P27QxHSSbujdzyRNU7IoJQoikCQ0XRMdAEnqRgGJaJeMTII0SQhCn6jTRs47fJbtoCsZoSdDoYKaRXSymKjdQM+vqazIKLIswssl4WRuWQ5ZfmYXRSFJGqHrFr7sEcZNjq4jGkmG0yOuWblfRY46WFaJJIlIkhhNVtDtXGgatPGudggbVxiGxeXJAabroholZFPoG1LVIQ4DLMdCUlRM06LVquM4YqdWLPaS3WjQsoyzkzf09w93W9mqqjE4OIgXdLAsBzXPQby4OOfiXAii5+eXsJwCzcYVF2dHDI2MU+ntQ7uZLAo6dLwWxUKJcrlClCS0O20yTBRZ/J1KpQ9JkgjDEFXVkCSJVqve7crKioKl61zVr3EtlzCKaLYbeJ02Sp7mQCZh2abImfwNWlIAtzyf45Mj7Ir4XF+uXKAqL5hfXKDVfooz5eC1Wkjb80zlDFtTZK6u+hlcVFECmy8+/zm3bk0wfkscL0kSlEr7tJojqNodhoYlpqcTLq+mut3/ra1tvBc+yWTM9raCYcT01a7Zu2HYbELx8h712udsuy7zcynN5iHSVu09hn2P+/cdNjJYuGHY7CzJk68ACCefC4bt6Dz83kM2Xm3yKm6gH2ioQ+8xbOcr4jhEvVPA2tWItraQ1dtAzrCZX2bY6stn+VUUDAu8eZIkZj18xZKyiOS1Ob0QwwE/mhjjWbjBl/6fMlrpofE65F/tP6NQFx2LZuc5ElXBsJcyA9NNsoufsnOlIhuik/RGKyJLMpeagvHZGQsLgmHyXM6wuxZLuyrHNwxb36D3+9/jn/+3/w0tT0yLKpqLrlvsAbP2ASBz+869rs3Nq/QVa6sitxVJYvn2Mrs7OyxpEvKCaCOur2dkc3PMSZBEMWOjI6w++/w9hh2iKyNMjj9g5anHZHGK5XvHRO0Ge3vi95AVmZ1tGUXVmN+Sye5kWHcd5roMm2Y1fc7enoV87bFyHWFfr9KYeYBuCr6sra2i37nPPdNiPTGZzRl2O2eYF7QZH1bwGrC/f8DMtMUb91gw7K7wanvVOkQOK1gPLKRDFfPuPVpP6uiO6Kx98EEvG+sxS8s5w47e0O8Ms7Ii3OcFw+qwdYy1uNxl2CcX51w8EdE38/N/guVMEzSuOChvMzQwjuMU0XbEcMHzy2smJ/c4OS4xMVEhWj/lqdbGxmRdFtq56rerSJLEeSVE3dXYkrZotYYIw6fd63nPWiTZ03GtI8Io4qsvPxMM++5viZ+RDRPb8b9XV/7XotDSNZ3+/n7OLk4p5RMG5VKZRqMOpISBn4vVA1yn0J08UySJKEmxTJ1Op0OSpgyPjHR1OkLfJJFlophTFIUr3+P84hQ7H8OP44Q0SzFNkzgWD2KyjNkZISb0A592qwWyRBInnJ0dYjk2hVKZNM8hLJd7iJOEJE64uroiSUW+3/GxKBr7+wewbQvXdcjSjHqjzsDwCENDo1xdCYCYlkWn0yYIAjTdwFBUHMcmjAQsM1lCkhR0XSeKI1Q1yItOcVPGoU8ShqQSubZJGHGGCP0RwIP7Sxwdn1Nv1rnV148URlxc1rjO7TCiNO1e2zTJ/z1TAAktj4tJEkkkiUkKiqJiyjLzfcN8sCxMGpdn7+DFEn9+/TeESYxmKPzJn/xHjI6NEOetVk0WE21pkpAlCbKqkWYZSi7813QxhXrzQM74/9h7095K0vRM73pjjzj7OdzJTC7JnbnW1kt1TWsbjQYjAYZnAQzMB9sfBv4Fhg37H/izAUMG7IEHhmHAAw/GBiRbsjS9VXfXlht3JjOTTCZ38uwnTqyvP7zBU1mSPOrxaDSS0FEoVBVZySVOnCueeJ77uW+ZZXrd5Jip7UZl25GoEXG/T7/bgiQL+kxCuteHdC8PaJ2+JOw00Q2NQqmMkd1cDEMgESRJggboMiVK5MBbyLAsgnobISVuTonCjy9P2HlzSL2liuj7998jV84zMWlTLOQQQieOA5VlCfR7LWK/i23bahszCvByE5ydnmN46lqPMdDTlDQFy7Jo1K/QNY2cp4TqpXKFbrfF5ekJtuMxVBsj6AfkMk+fq8tL4iikXK3S6/kkMqFYLONm1xTA2+MjHNelVCwRRhHdbpt8oYSRabhyhsb19SUyTTFMEyklpqlsSDrZ+EiidJG+36PVvqZYqOC6eapZIR/HidpkTJVxZiol46MT9Pwe/UCNdDWhEwbRwDvpb8phmhb1ep1Wu8X4uNqwjIKYVmuUra2YsWYfYQvCYJrjnDl4n9lLgtmtFOvVa3ozMyRpSvtPMSxE7uzyfGEBfX+f5E5M+TLh6I3yBorjhMfyKxz9PnGiGFZdkMw3Mob1n9GVu6AtkcSHnJy8xc095KTU44M5FYBdrSqGLcYJP/vZz0jm73DPtvnBDcPiEe7ZLvlaDpnuMDrW5Px5TzGsol5/x3Xpzc8x3WwSRkUWFjxs12N9Q41SpZay9FLn+YxFFM/y0mh/g2FzYZ/nYUgUBNm2ccKW3MRYXyGXVxqaR/8o4vj3Lmh+2eT23/kYLXxK9WqE88mMYdszCBHBImzvpiwIwe6OztKywDSyUVkyr7SpQueNbvBmX2N5aJyPv/8PAfho3sb/bcHv/bM/Yj2Jmbm3wurqHSZ7HTalKtZMLU84C2myReAnvHhpohtPWFlReqI71h3MJZPDg0M0XeP1a0tpSZeWYVdtYWqaYMkw2E63mIn7hP0J/G6LxTsz6qJKQh7/7A/4yaZimH45im5onJTKOHdV8Wq83GNhUSDEHbb39zF3tjHuvYf5DsPSNGZpYYGtrQjff8PxZYOd7hZzM8rvbXRshrf/6ocwOU2xkCO3lDHsVcYwq0XsWxwcHCDTO2xuPGNk6rcUwyYVw+Ymptl/uc18+ojKXYt2/YrwtgaX6rUtlS9Yuz/Gpz9UDLPMMU5PAnIFNbK7YdhxtYrc3iERSxQflfm+6/J7ufcAxbAr1+XDD0q8fJkx7KTES+drhnU6VUZH37K5NYGUdyiYx1iWzUTGsJ7vc/TmLX5rmLFxxbCp3j5H7zBM29snTm/z2rK4LSXf/+RXvsGwVOisP98YLF79IsdfiUJLN3S63S5JkuBkXY/z81PiOKbZqmcWDxNcXl3iOA5utsIfxSHX13UMw6RYKqNrarXz9OQNAKZhkC9WiaJQOc/bDt1el0K+ONADOY6rMt0uLsnnVe6eZVg0M42EaSm/mFKhTBgGzMwsghC0WtcMD6k3f6NxTRhGWLZNq9VmdHQEwzQG6fKplJydnnF6esr4+Hgmeo9oNVtfbxX2evj9LhNT07Sadfx+j3qzgZ254NuO2rZUxpwRUay0a1/bHUiEJpUQ2jSz7UtVjNz41FSHy3z4/ip/+EefMl4ZIwzrDOdKNAdmkonKV9R1lZ8llBdYmuVpARiahi408rpFzXa4PzXLB6sfMZ25KrumybcW1vjBk5+Qypj/8D/4Te7du0cQRhQzIJNqg+wyTdNU18o0cbINpziJs48rA1rDNDFMC5kmRDJbBc8MWtMkVlYZhoHjesS+emNHkdLABd02QtPQdImUKb1uCy0rGjXNRdMkhqnj5MukKaRJiO93suvSwnEKtBpnRFFKEEiuGz0urxqcnCoB5tHpBWEMs7OzzM7dolYr4RiArxY2tO4JBVMiNJ00SbEcVxWUQgz84CYmJ3A9lyRNlXmhEOrJPnOQDsM+xWKFXKGI73dxXBtbdwY5maZlYZoWzXoD07KRpJiGgaFrjI9PZte5g64ZJGnKyupDms1rhNAGmzM9v4OuGZyfnw22Ga8uThkZGcfOuq6eV0DTNEzTplIeJk2VmW+j0cx+Dp2clyefL2ZboCbdXke53F+olfVW/ZrqyAj5/C8uJP3rcMRxTLfb5c6dO4OuRvm8yHH8Jc1WnU7xA/729+f59Kef4jmjA4bN1kKuV3+O4eUo5kaYnp4msix+9IOMYasG7xVn2IjW6X3xOc49h8n6JId5B/eBej/dd1x2diSXP7lh2DHFwhy2pRj26nXC3bv3CMOQMHR54+aYET7um2HeHCnB84sXu4RhxN2MYZ/k8ophv60YNn/DML9I+8s2t6cDpqdnuTivYqiXn17cw+8/pjP8qxyf/Jz5xUXqzQbd7EHPdvJspwnxZszcVIQfR/hykU2hMgZZXEA8f8bu7g7Lq6usraygaXu80ASBrhj29o1DqbDK5+mn/GalRe3BR/wz8xkHP30KwIyWkC4uIHb3ubuyiBQG2jLs7EruqhoIQ9PY33tBwbAZue/xD6ZmKa7+4wHDLkyTb8mQH9y7YFGkLP693+Dvf/83CLZ2eFRRhSfzGi/MNeARx5rGw/cEr1694uJCLY7M3ZlDe6GBDlE0i2Husbp2VzFsTuX7zQuN9fV1xbD5lP2XL7nvPmRzX3VXZm+PszA/z8/tdUR5mRfdn4Fcwnj8BdqHKnRcm9fY2ZGs3d3nQeEjttNd0q11ni6rQmzFsLh//31an/0I/4ZhI1Ncvv6Uk1O1QXl0esH6JszOdvg7v3WL/voZjgG7GcOWuwUKawFieYX5jQjNeUBtxeDsbI90W9lutP/+BNMLCdW0jnXQRQQB/tQU07enAPjs5y/44IM5HhVOeep3cdwitg6X2T3BHB1h7fAtcX2EV3+KYapIUgyTOM4EuuFxcPCGVrXPmlT38id+h3yuwfl5g9boBItAGGhULs7Yzhj20PHQtGXW1jpsp8OcbW/zwPUYGblh2ApHh8cs5RuUE4lcW6P75Ct0Tednb5Qmcqw+xOVIA0v6fz4YsuOvRKElpSQlxe/20HLqll4slbFsi+HRUYQQtDotCvk8vu/TjtRJ6YcRnufi5VwMQ+P66po4SdQ2CZDEAddX5+iGhWm5lMrKiFHTdNKsu6ICqQMcx6HTaeO6LicnxwNjzIpTo9PpUiwWcBybq8tLytUq46OTA08VELSadcqVIUqlsjKbjCK0zO/L933yhTzFUgmJpFwuIzDodFrZNqXaTKyUhwnDkG6vSz5fxLVtgqyjZZipso9JlSBeExpC15BBJsgTGrquE8eJcojXtEEHKM0iZzqtBksLc3SbPp6w8f2QkVyBVnZDbwU9+klEnCYIBCmSVNMQUmJna7qWpuHoJrcLZb6z/JD7q4/w3Dyea968mkxWhni0tMLtpTG+871PSNAQmiTOHFxtN4epq6d6wzIxTHOwQah+lWxEKCWGYaBnInQhtGyrT22LJpES/cdhQK/dxO+1CdtqVBb3GhgyIl8dJXAMeomPoenoho52s5moaRiWTZSEiMDHcUpIEuTNQkYUYZou5coo5+en7L25Yuf1OX6Q0suia758+pxCIcfei22EZqCJlOGSRS2nzsevPpzCGM5TLFXI+ozK0sItEmZQDntN4jgiTSMMy6RYGiIIo4EJrJSq+PTyBTRdQwidvt8liW9sTjxsxyFoNrg6PsHLlQZ2HJZlD/4ZBCGGaeI6NlcXZ7QalxjZEkOn18K2PWpDwxQLZa6uz8nlizQadQrFTOyequURQ9cJ02RgN3Izyu+0e+hC5+rqHMuyGRoaUyv7fZ9a5nJfLJXxvByG+TdrdCilZJ55Lh6foeVUyG2xVORv2RNsjX6CEIIvvrphWMR4xrBGI+LoyCWXczGMFwzX68TVBvuTGcOuAv7w6pyV4hHDQw8Yccf5ImxivdgnXVabiZomCIJ3GZZ8g2GapuP7PsVigUPngLHLEV5UL3FHu9yaUIX47u4eY806ccawV69fMzcbsWCq66jn3yJf6FIstRgbX+TNm0OWFqcoHH/NsDBNccvD7ITrdHuT7Gs6qW0zO3sHAPfoBCkXeZo+ReyA5mvs6S9YmFZdtTgO0fUV4njrGwxbZI+9VP2undYISwtmxrB7PPUP+V6uwNijDwD44vkTbr/cJ15eQiDYBvQXGmLpHYa9eE3VdvmN9z+itvyQv7ua48id+Zphu5JuZYic0PmN3/lVaiOjpGiIZY3Yyxhm5bD2XyGWlljNGPbgwQOkVL5kSSp4IXYRUsNYfcmKvsLO9rYyKZ2/k/2+EXF4m4X5lNB/Trve5KpncdFWo7CTV49ZXZjlveonBM4VT5IHimEPHqJloeTiocvq3XtsbK1jOU9xnA9ZWEzYyRi2FUWsmS7nlVHk+SnizRU7V4Knz2Om+qqA+V8+/+cUCo8Q2ja/+98bvNjb5uOSRe3RGgDnXo+p/nt88GGFTbZZQmDaS9x1P+D3bxj2pMnc3TE62xsYd02KZ98lMFrs72cejgjiJOYoXyB3w7BbkyTZxnLx7AjbfUDQ/IzicQUvV6KTRQTdvasMXg8PD5menkE3DAr5ArVKCduxaL48AKA+NcaUdYvaUEp0co42VOZt/hTLmmGqqJZ+vvrqS/L5PC/1WcgYthFFJDuKYTMzbYLA54+vyty9m2dobx8hNJ6+w7CpD2dZ9HLo/+3/+AuQQR1/JQqtNE1wbAe/16dSUXNhXVf5h0mSZK7wOq1WC8e0uaqrVV/bcSkVC/g9n16vQ5JKbMthdu7rTlIaRQhdvWHPzs+oVmrouo6ePXUKoWVxOCkFs0ir3aRSrRGFNxE8CcViibOzE0zLYur2bXzfJ4riwY3O9XLM3lnKtCgGFxenWJY1cAcv5Av0/B6aJtA1HZkKun4L07IH/h5SKANSTVMFk67rlMsVgswDK0pUlpxhKA3PzTj1JqNHEwKhm2qDD9CFjhAqWkaKbEMlDGi323z0/gPOvjxEhhGWMBgrqPavoWm0Qp8oSZCQFT4RsUzJZxuARdNipjLMRyvvMXfrDuVSGU0TmI76vEwlURqycGeW7/3mr2K6RTo9NUrLGjhoqMJBAmEckct5FApFZX0BmJn5aRgG9IM+cRwBN6PCNLtmJGosnAKqoyVgsAkSRQF+55I0bGOIBN20SOIQw/AG50zKGImDZXmZPUYXw3AwLC/7XVIMyyDoSRA6jUabZrtPkKR47s2GZEwYBBiGRhQFXLd8hMyxOK7O6chwAcPQ6LabGKaJ5+UJgi61ao2epro6iWFj2zZRCG8PduCWJJcvDzRtQRRlY2NBHBhqtGzZCKHOl6EbyDShWqth6DqXV1fk+r6yYMj0aJeXFyoaqlQijkKqtRFa7RZaevMelJRLVfqBj8y+pqHrSCmz6BUYH88TBH0OXu8R+B1GJ6YplapUKup37XS6BFFAsVii5/fw/W5msmtxs3dTqlQIw5C+f/OQ8jfjMAcMe0alokaHNwybutNjfT1EX9EZi6qMmzE/+nnGsNYbRkc+we9t0JuaIJ/PY2v7zM49BL5m2C19GSFecPbjn5Cv1NBdFz3riu2JFzhOgsSnsLZEa8Pm9m2bjXXFMC+XcHp6xtOnPdbujjF2e4yaP4yIBN1NVdDdfXgP1/Xwn3QpGAaVyg/pPrHQV9R78SR/RM/XWNYE+y9eYqyu8dVjxbCVjGE7YoPldJmlZY16/YpjXad8fkF1RhUWUbFMuL6BYRgcOi5j033ElwKEKkxf7M1g6CaINV6+3GVFrCCWTDRNY1mosZ+cWSZfaPOP/6N/qBi2vsHr0WvGCqpg/PaD9/hi/SnRq0MWFuGhvMcTfYM5/R2G3b/LB5U6ZX2YuaX7lEs1qprg4DBjmCWZnZ9n4WiWWzPzrD34gK+eBBhr3yazr+LF7gFycQ65ucETGDBsaVmNuUwDrso1ZmamBwxLkjsIIdjeumHYDovMqa7yrmLYHrsszKvCs9++4MvPfqwYtnRHMWxzHeNBgcUl1Ul6LV8i2cO6+xC5t0McP2Zv18FcUz+HTFNeWgbxwgKLlQp/+KNNPv/yNUGS4mYMc7QVwuA5+v4yG1FAszXGpczBqepsP/rWCquGRvfLz7ljmlheniB4TO3bDxkbMOwA8+AhkW7y9g8ku7cuyEXn3LNUG/F5pCH29rEskzgwWLt7j73dXZaaKr3g0BnNGPYdjJWGYtgzH9d9g5HxujoyzNX1BWdnZ6yurCF3dhTDsvtFur3D+Se/Tj/wMVAMM/dNXs6+YrqhYvuWlqZ4aRgc/P6/JPAnGP2VaT4sVSlkI/Kv3hZI0jcUiyVS2eOpr7rU1qsXLC6qsbGyq1nH/+vmo5XECe12i5Gx0cETeJLE9Pt94kjlGQ4PK3F8HMWMWmpk53quWrfvdOj6XaqVIaIw5OxUVa/V2hBhFBH1InRDV61HXcXQNBqqbapsGZQQvuf3cB2Hvt8bGGM2m9fEcUy/H2SdKPUXMAhrTuKYNE1xXJfA9/E8j3r9GjsTfAskURzT63YpFEuUSjZSprTbDUol5e+haTpRpPIdy+UKrptTjslfhx1iGAZJorQLhmnieHnSmw5PAKkM0VEFiCb0r7tE2ZOcrumE/YBe3CG4rNPttNQiQfb7lBwPQ2i0oz5BHCGERqKnGFKjkkF9dfw2Hy4+ZGxkAtOxidMEWzfxG+rG6XguOpLmeZ1EGriWieyGmJYzGHP63S5oGrl8EU0TxHHC5eUVlpVptEwL3TBVBhwyK6rkN5zhDcMAw4DUxE9TkrRDFIaEQf/mqkKz80RBRK95jkkfx3XRDQPTyS57TZnZpklKmkRYroeXU+cPIJUCESnDPt3QybkWo9UC150+XV/dxAp51dUxDYOc52IYNn7fp1RS50sXKvev1/YZGqmi6Rq9dh3bjShlBW43u45yhQKG6XL4epup6RVc52bl2EbTVIrA1eUZ5XKNcqVGqaR+zigKM9+shHyhTLk6TJAVTDcPFOVyjTiJyOdy9Pwe15fnVKrDyMyhvVAq0W7W0TQN23GwbYd2q06xUqFYVNeoYRogBZOT0/S7bSq1EXq9LifHma9dvoBlWZi6Erz6vS5RHOPmPLrZk+tVGjM8OoEQfyXQ8xd2KIZ98acY9qzfJ37yTDGs+j2GMoZ9ksUnvfFiZAqTExM87nZ5c3FNFMb4/g8B+PZ3vquWCnoRujGJ4zRZWVEM+2LAsFvEvc2MYT6u4fDs6bsMGyKON+n3A94ejTE+Ns7ermCRdxi2uUmaew/HdZm/5eMHHvX2NfYTxbCJh5KNOOaq28XvlyjtawOGyYxhy9oKG9E65vYaS0sV2m9yxLHHbuYhMRsphi0l8zxNnvDylc/9h+/R66rrRzefMi9nSBYlu7s6L8Q+S9pyxjBVaOnaK8K+Ti/+iuef7iuGlW+jo7wbSs4s3773iHbU5/nmBkuLOrauc6hrzA0YFvMhn9Aa+RXMI5v4PME2X3Erk1Acei56OsdoeZhEGrx8/QopJzFfH+JkETy3b91i9/kzcvkPWF4W7LLL5dYVrc+UseoNw6J4A8kcaSqZTyX7us5SFs4n9lbZNXbhMMHXzYxhM4SB8sBidytj2Cy9z36MSQfngYv+0uCVo7peS8uLhIHGZNIkHa5huUd4byWvNtT4MZVLLN2D59tb6GNj5B7c5ROtxs++6vM0Y9j7eZeNSOAYL/no4RpfPT7gaf8W/8WH6nytLEGwua4Y9r1vo12U6LV1bLf5DsNmAMgV3uel+b8TvE6Zml7hiaNGundtmxeaRnDb5+r4jH5vjnv3HIJAyR+WoxDj5Ypi2EmZslnnuXvIIoL9jGHz5Rrx1gb9YhnxQnBdr1CpMmDYeKlE+8vP0DSNe+8VePLVIb2pCYr5C4aLyprBMA3Y2WNycprbk+NfMyyvftektZkxzMNxJLemJnn8uMOD3Byf/eyn6v/JGEb/r5kYXtM1DMPEMBhE0sRJjG7omaC3R7fbxTJMFTacxeekSYKUUBseoZKkdDotrq7PmJpSnitB4BOEIWEYMVQbQjhK0NtqNwdfo+f7XJyf4Xou4+OTXF1cEIQ+hYJKYbdsl3zRRG+1kRL6/T5B0McwrEHsTJKEXF9f0O/3GR0ZR490SFPevlUtzcXFVXRdp1gqcX5yzNXFMUOjo1Srw5BVxZapownJ+eUFgoTR0SnSVNLLksmVW7yDEBLHsVX0TBRhmmo8IDOzOU3qICSJlIisQBE33lMCLMdB9mKCdkdFHKQpSVaskUg80yKRamtSnWiK/gAAIABJREFU1zRMXUdoGg+nFWDuTS8zUst+bpkgZErY6yGzDqBVLpL0Q8KOz1Wzg+EUSFOIoxg3830y7ASZiV1lIsiXillenzoXYT8izELCb8RhmqYNzGzVIRFIdE3Hclw0AY7t0M+WKbrta1qXx6TtBoauYekmAoFuaIOYHicToyepT9jvkSQp/X5vMAqL4gRNK6su0VmLk4suza6PaRjcmqipazCVdHuC2xPjLC8v049jfu/3/4go63ZGYUqv08W2TKIoIPR7aIZFkuTQyDxm6qc4hRq2Y7O89gFR4NPrB/R99V4wTJPzkyNGRkaxHVWwmqZOGKjHa9OyqV+fUyyW6fV7hK2AYqlMmiRcXqpRaq5QJkljLq/7VEplxsYmqdfrg6LAlDqNxhVxGFAdGqNQKuH7HQzNGoSnplJi6DpFr0wulyeKYkzL4uRU6XykEFTKt5BpSqlQRNN0wjCi0WowlPnY1BvX+L3u4Ab/N+X4Mxl2J2bFWOH16wPFsMddtldNFoXAuZcxbPcOckFSMxtMbaV00oTaUImpKdXReh74BOshMzMZw957P2NYC9tWfOn5MRe5M1zvAeNnZ9TGKjxff/oOw9bIF6vfYNh00Cf5BsPucH19wbN+n09mM4bNp7y9yhgmVlnRdUSpxLMnx1xV/gVDi59QfTvM/s0WuKljizXOL39C7fIOMzMZw56pblMgdzHM++yJDRzHZkks8eX+50z76vO6YSITDU3oLGuCREq2tlNgB5FpWVdXF7EO3yKn3mXY9p/BsG1MTefg5UuKloN4o/Hw7/4OAHag0Rj6GE1usyjvIhZS1jd7yFB1Pb790QhJ/zHrXz3lw9V5Ru8XuLraZS7yBksuxsEWumGQJAlJJHhQesSrb+ukO6rgC2/PEm7FPHm8y+JSCLu7yossinj+XP2oi4uSYLc3YNjy0iJR36ffVVx6fNFGXB4zPy7Y6Sxj7T9F7Ar03NcMO62o8V+S+sz0eyTJEv3bGjOZ3nVj8zOS6CNWV1b4P//lH/CDn+/Q1kuYxktuTagFptNU4vTuMjvRZvlXPmFs5Dv83u//d2zEqrP2fpjypKUYVtp4znrhPbRNC9vLsawrhp3WT3lWuKLkVFhe+4DZ6Vv0+gFb6+q9kK6ZnLeP+J75CWdOlb29Pb47PEw4oQT55usX1EeuOT0t0+8/YWZsmqWzkPTOHap1pe8MooBkLqSa3MY+O6A1lmAPT2K9VtcocoWRkZdsrj+n9dkYD0olrs1XFLUqpqG2NFOps7yyinNwwFajTbEyzKvXr3EO1ecnv/0xva6PTF9xVkjRXqwwVNtgo/WK72Zbh/XGNa8tezCa/0WOP7fQEkL8D8BvA+dSyrvZx/4b4HeAENgH/hMpZUMIMQNscZPsCT+TUv5nf973SNOU4+O3eJ436EgMD49ydX2NofdwXEeNdhIVW3OznSaE2gq8vDjn8uKIJIoYn5zBddUJeP1yh3yhTG14mHa7Ta1W5fpadaia2WpmFIUMDY+Q87ysdVlFf8dhPIwCWs0GUgpcx6WbjTPTtP+1KD9KMQwD3+/RbjcxDJNSpUYY34ROSnK5HO12m3yxRKVSxcsX6HY7aqMRIBN093odbNNCExoXV2cYNzdC0wKZYlkGQugI3SBOIpI4i78ItExXlSJTmXXdRLY5mGbfQqouWS9ApAlRHJOmySCqA0BIsDUd2/bIux7FQgEBvLeg5vVDpYrqNMmENExARGipxMguusjvkbQauLaDphlEkRLwG6Y52DTzcrlsrBRhOh7dbhddCPRMpC5RI9YbMTypJJUxQtcGcR2gRjOGYaAJges4xJ5HLiu0LC+PbtjEQZcw7KAZBjrKIkHTbzoOKRAjNA2h6cgwIEkgvbGh0E3anRa6JtAMjfNmh5xnEYaQ89RrXyx75HM5RofHqQ2NYrsez58+Ieip6/j0/JxS3qVUG8LxSoShj63l0a0ctqu2CmWjQa9ZJ5fLYRomUijzXpFp1urXl1iWRbvVZHh0Aimhfn09GAs6OQ8vV6R+fUWhVKbV8tGEIOflqJSHsnOaUr+u43k5Gs1rKqUqSZoQhEqf12zVVYcRgdCUGL9QLJPz8uzvq9XoUrlCsVQljkOiMOb05Jix8VEePlTC3JPTI/pZwLhMU/pddWMXGjRbqmvR6XSANk723vnLOP5SGGZmDHvoEQZKVD1sK4aNDA1z+OaQhQXJfpKw99LAWM26twb0t5/x6VibqvR4Y0niiysWFtRo6OT3/w/yhTJXtY+xv8GwTZpBVsxnDHvkNdGaAmpVfm1qmr0Bw17Tao4iZYsHzgO6fo+tOGH5TzDspWHg+09of+lhrC5TqswRxqrjwG6L3IMc7S8Vw741VeUo36Rr5eh+lTFsIWXFMHh9OMFmlDAuNH7y0x+xaimNjbm2APuKYUtLKzxb3+BB4tGJs+7M9DJhv0e6mbIjUxYXl1hEsre3BFKNF3e2dzBth9XeNCJ9NmDYiz3FsCDZZXFRYms637nnkXcfUiwU2NvdJS8Vw777cYW9vV2lDZ7Zguguy8kdXmad7g2/R/JFxrDlP8GwjXVAMUzzuyTJBvuvPLU1vbTEypR67WWa8mJZh70VpZGNE1K5jtCXBwzb11VQ++rqKtreHlrpgtgLyGWayG99cpvWT20u7HWWQpfDe++j725irK2i5dQDVJLMw26M0HbYC3Si/gZLi5Caauyn6yZfvsOw8ugE6ZMNdKGR89QDUrH8kPce5Ritt6mNjfL3oiOeP60SPFEM++HFjwcM8x6WmAktDg7zrNzNYdww7KhB72WdR7lHuKs5Njc3aTSaLC2oQurn15vcte7y5Refk/ughNco8vPra1bHVKfJuX+fo88bjI9ecXKm0/d9tLFRcjs7XGSyg/PzS8qVYTwvptEcYqV0ydk7DDtr/YC1tTUq1RGEJnja67EalsmNvTdg2Nn5BR+UQjZFm9mZmFf/1z7BuE81Y5hlWQzVhtnf31cG2O3PFMOWF2m2Pgeg02lyjfw3CpX+RRSp/xT4rT/xsT8A7kop76OC0v/Ldz63L6V8mP395wLql8cvj18evzz+HR//lF8y7JfHL49fHv+ejj+3oyWl/GH2lPfux/7vd/7zZ8A/+Lf5ITRNZ2R4FNOyMIwbga8yw2y328oUM47p+C3arTql7Ck9n8vT7XXRdJ1yZYw48kmlpFFX4t2JqRl6vS7tdod8Lqc8aaRkeGgk62ZAr9dlZGSEVrs9CGnu932aWZ5ir9fF9TyGh1SVDGLgT9Rsq+8TBqHSaDkOQRAiJSRpwspK5nVimIShD1JQLJQJgj7XFxdIUhxHdVeCoI9pOoyOjOE5KrB5aGiE64by2YqjEMOw0DRT5f4ZqQqezubXEokQWWcmUaM5mUo03Rhsr5GZe0Zdn36/q7IRhRxotEwh0IRGyXIYLhQYGx2lVq5y3W5SsLI2aSqVr5WUpEIS9PtYhoGWpcmrBGqN8eER8lmeo2madDvtQa5jJAQ5r0AQhnQ6Xbyci24aAxF8FCfESYKua8r8VNORMiUVYmBqKoTqhKZJTBRHpFFMGPYJsm3A0O+QJgluaQSCNoTnOF4Ow7YzO0AAtXyQykSJ9aOIJAlpt7ONr1TDNB3iVOIHKZZjYsYC1zUGW4czlTEW7iwxNDqG6RbotVRcztCwWuqo3r6D67o4w2NMzD1AiBRN6CRxSK+unkpNq8+rwwNs16PdbmM7Dvl8biD873Xa9DodEILrg1fcnp7junE90F8Nm5baSNQEzcZ1ZuuRZUZm3UzH8cjnCuiaTpyEdLpdTNMaRMFYpquijDQViyRlTBgmJE7C6Jga7XQ6baIoJE5iyqUKC4tLXF6d4WcjTtO08XsqYsZ2PI6Pj7AdR3X6Mr3i2PgkrVaDwWbEX8Lxl8GwSNcZ+XiUV68tjCygNjhSHb7x8XFlihnHjPotvjTrlC4yhnWPmZzqMqGvEFZCStFT0k6ORl3Zh/zKr/0mT548pt3ukMvlCNfXYXyc4aHvcZmoMVWvN8lIo4HIt4nn5ni5u8dsNEOxqZ7An/S6uN5lxrA92J3CdV2SXpfPM4bNBCFjacq4c58gWEdGd9naThgdVQwb/l7GsPdCPhZaxrB1JCWc+18z7NWrjGHtI4Lnz/nud7/HzzLd0srGCsYDC23fYF830A0dY81C1JXIWLauEXsae5oOyRI7Oyky3WF5ZRXdyDIEX+yz/ycYtiQkW4sZw7YFBy807q861E8KfOv+MrVyFaPbp2Cp9XzSMjJJWZALpNsHBEIxbD5j2OGeYtj3P/4eee8h6xsvFMMmxr9mmGXxyHZ4vr7+DsP2eXXDsE21/b2ysgwYvHIcFuQ8qRAYmtoYXDIX2UaSJptE/Yj0i5j1dxg240+wnRzTOxvhVnmfxbDM8fslDDuHZDG78lKWlzVSuYjc2WY9ipDMkEkiGRnReNXfIN6W+NPzWEf/G6Zl8eEDg1iq72PoRUx9ieW1FmYY0Htgs/J8hcKiYti35z/Edd9QGR6jEz9A5FMmazqF6Rl6dWUmalolcp7NF/VrxI++5J7jMPfeI7a31TUqJpZ40ungzQQMHZjcXprjj//4D/nptVoK+di0ePhegWdPBOMtSEZS9vZ2WdVWubWgGHZ4eEQ+V2D/xT5xEnJv0sPcqPMyY0vRdLFtF8d1eRFFIGPWw4TS9hb+LcWw+LjIRrROnMTk8t9CLmoEV2f4vrKhqNa+wu/FjI0mHEQex3mPe47Dle1w/lqdj/veJK2xEXT9f/oFyKCOvwiN1n8K/K/v/PesEOIx0AL+aynlj/6sPySE+CfAPwEYHlJC3U6jg5ON/arlCqZpYjsOUqaUyxUMXaPVaA5GJp1Om5OTNwwNjeK4eSzbJud5BJleKI1TXMejH/TptNvkC0Vqw8ME/WBww+52O7x+1VYGeanEc2xy+dJAu6LpGp7n0e60SZOUfD6PEIJCQVk1ANm4U3Bdv8TJKeNT0/zazKzTaaNrGq7rouk6mi7odFp4nkchn4X6msqc8/j4kjRRppG9wMex1UXk97qkdqzMPW9MtpNkUGjppoWUKVqikcRJFpYdIfn6nqajbDT0JEXXNTShYWkM3Od1zcEzbcpukfGhCkO1IVWYhCEia5PKSOm60jgiFj4REhxnILh3HZMojBgZHyUVyuTVNE1M2yG52dKIYyDEcRxs2yUMfDqt1mAkbDvuoJDSNJ1UQJyk3wiUNgyTOAmV1QWCKIkJgz5RoG76SRzjd1tEQQ87VyGJr4j6PSxbXVMAYb9HEKtNTl0XWG4OSQG/q8Ka+50uzXobO1+i3okYG6nS6J6yvLxAsaz0Zq5r4+byBGFEGDWpX18yUi1y597HAAzdmqNUqTA0PEY+l8O2HYTQ0Qyb+rlq3TeD58yYLs1mneGxSY4OXzM2PjmwodB0jcpQjX4/UAHY3Q6VcvWdXNAEKQWW7VIuV/H9HqZlKzF6pmvzvBy5QoEoCHlzeMDYxDjlcnWglUplytujA4J+j2ptiF7Pp1KuqEI3u5ZrtVGkTDM/pgBDN6lVRwgzI78kjrFNiyDp41gu83dWSGVCvdkYuCgHoa+K9H+DnLC/hOMvgGGjbCaz3B55jvNGXV+XGcMODg+REr5dvcBoN5FHOYzvqWt9YmKc47f/D0NDt3HcPJ5dJlfwEPo7DLvv0Q9SOl+2yRcWqA27BP0Aoambbbd7xmtTx7gokqQXjI0OoeV1rK4a2eW3NgYMu0jmOc4LDLFHobDChxnD1oNnwBJDNwxLt1lbW+XyUgnZO1/10Zc1XHctY9ge053bHB29pFBU7uDWtIPmvOA4nyM9niA2X9HrNLl/T2mBnj55zMP0fRaXFth9ob7uzlbC+IQqPHRzDHk3xdjSuDOXsLkZISXs7EK2kMzKygKpbsDb9jcY9uiGYQ/v45kHnLsfsCQuSBpdhm7NUbn3AHGulgdkFHNneobNzScsiiUiGt9g2NJ9k6efzzIyrpMKwZ25hFev1nhtOyxkGixWDOAu9+/dZwfBTOCz0XqGvv//zbAoSXmhvUDPsh8Nw2R5ZQmxs6sYdmeOmV6H9WdKQL4Vb3JrcozQd9nfvObOqMZsf4q3B9vYmZ1F2H/C082I1VUDfUFg7eY4PL7i1uQNwyap1i+wb3+IPO3SaVRpLBVZ1kyKH6nNxDdvDnjwKE9g1Qj39qlbVRrVIg+/wbCLbzJsT+eFtBme+UcAfP78nxMmi7TbdT7+W2scvX3DWKdNcEvxeBkNb6hGv5+nlz7myeOGYli+kP2uCctScNd22ShX8d/0sKz7PO89ZranNNfa8hJvhUBfXcV9uc+zZ23K5SrFdxjWaTcpl/KKYb7PxfnFNxn2nVGkHCbsdVhff46hr2UMU+kEW5sZw8I+5Q9d5u8s0pUJfrPB9LjSmTbtA9Ktq4GG9hc5/q0KLSHEfwXEwP+cfegEuC2lvBJCvA/8CyHEmpSy9Sf/rJTyd4HfBZibuS3z+QKarpPz1Gy5kRVUmoAUtXHVbLUpVasUi0rk2e/3mZlbxLEdbMsmjCKCsE8n87dqteqMjExSLJbQBFw3GkiZ0u11qddVp4g0oVSqUiwUOT87xjDyKg5G/1q31O12MQyD2sgQnU5HRVHYOpcXarsx9HuUq6Nq5V6D0dFRwjDgbWZwpukCx3UZqo3Q6baxHZdb09P4XR8/E86mSYqWatSqQwgNOt0OqYRqWVXRlmkSBAHSSEBo6g1smDiDuCGIQoeo7yOlj5YZlkrJQNydJBJdKEsEXRMULZtU07AzO4Oc7VHwXAo5D9c2kUmMEA6W0JUan0ybFSuHc6TaqvPjCKOgCsao1wU/oHx7lCSV5AtFolCFhesDk1IdNIjiGF3XcBxXhSgHmd4sCgijAA2ZFdq6svkIgswpG0BiGjoySYmjkDAIiMM+MvMMC3odQr9B1L6kffWGvAeaZSC0m/6dgiF9SRT5JLFOHIe4udJAtK/pGmnSIYxTLDfPyKhJeWSKQrFEuaauQcfNoWk6puWR8wpcnp/iFTzytYnsa1jK8iLo09c1gr7yO3JzNmO3lH7hzdEb+qdvqdRqpFIyNDyCY9uDYNjj4zeUSmUM3WRkZJxOu0UYfh3AfnJ6wvDIKENDY/Q6TQqFAvV6g0KxPFjIaDQa3Lo9TWj2uTO/gERwdXU+0ItcX15RG6qRxBGa0GjU60RByMSkNdgQlEjiJMJ1HdottVBimDbtjur+jo5MkM8VODjY5+3Ja8bGbtHtdsl5eaLsdfN73Wzb9K9GofUXx7BFmc8XONIf8iintsZevMOw+cVl+m8O+bzVplT1+aCoXvuvGab48X70Ps/jZ+8w7IhkJFUWMyVIGg1kVzHMzBjWzRhWLhQ5P/tXGEaF13aZOV3doCqVyoBh7ZEJxESHOTkPNnz6E7XdqBiWcGDd4v7yIqMXV4ThMf6Z6rrWdYHz2GXoO/t0uuPYzhq3pnWuh0bwN1VhkG7Oo2kRtctrhHPNs67PfBQNGPbhhx/x/Plz1u4/ZGF+niBYp++bBMGD7LXw2QgPWbvnE/ZvsbycsrtrIeWLG/ywtbXEyqpgZ2ebFU0wcveGYWp54O2Bh+3NMhN5uLkuC3fmEEJg7e2z+IHS4ezIhGRzgziaZlM+ZUUs8jTe4P2CKl42njxm0W8Sn3/C1vYOuVyR5WUdkSZfmx3rOrsvdtE1g5WVZXTH5duFv8XzY6XhumFYv9fj4PAQTddJ7iT0N/0Bw378ox+y9i7DTo6Jwz4z89kyV6+D3zojal/SONpk5xru3136BsPuOQ8IVp+wseGjCZ14bgY3V+LNrpIYBv0TRq8tQraxJlcYGZ3iXMJU8UPKfcUwbsPR20PW7nrkvjvMp5sB3olH/kox7EX4mnz+IaXTCs+8I5YWp3FuO/D2guroLQCMXJn+6RMqtQ/Z3pHMRSMchgfkTMXSVr6ZMewVjcY8UmYMywLJT+o/oDcyyneHxog6ZxQKLsP1EU6KZfzM57HxWYNf/w3FsF4q2fEK1GrlbzDM8zzFsD2NRq5OuVRiYtJnFyV2l7sLxHMR7ptD2t1JnHttjFcHf5phtk7uJGRsbItud5Lw6JiX2es2M3ublZXTwb33Fzn+fxdaQoj/GCUw/XWZOU1KKQMgyP79SyHEPrAIfPGv/2JkeYMJ13X11FGr1jg8PKRYKJBKNUYqVyvkcjn8ripOZBZ14/s+3W6XOInJ5wt4rirWKpUacZIgpSSME1zXod64xnU9lpdUS/zVq23OLt5yy7YZHh7F8zyO3r6hVlVbZVKCbdvYtkuapgRBH4Sk0bociMidXIFytYrf6SKFis3Y39+mWFBrz8O1ERKZcnl5ydXVOUkSMjZ2C8MwB10ay3KU1YKuESUxuVyBZrNJq6X4nqYpqZSIKEQXOqZpomnGoLtn2S7dTktdZJpA13WSRJImMZCJ4aVUnmJpjGuaDBeUseXNBaMbBrZl4dgWCIlMVfRNmiTEoWozJ2GoxnWBj5SgawLLMAmyt76FRCQpaaSE93ESY7kecRyjZ0+MUkpMTSMdWDZoRFGMnW2Cuq5FKnP0uqojk4ah6joZBmb2fZIoIApCtMxbS2iqEOhmoute8y3N4xeEV2+xTPDMAtK06Hc7g6cb1/WI4xApbJIkRdMt+n43GxGrbDbbdRFmieFahXwsMEyPNAno9dTrksuVsB03M8GVBEGEaXuYN5uxUp1HAN9X3meGYRLFAXqiCs/J2wv0ex3q9UvytoujOxRLJeJE/bliqUKzUcdxPYLrC7xcAQmD82WYBmmiOl2WZROEEW7O4+L8lPEx1RJvt1tcXV8ShRFJktDvqYLfzLyFRsbGSNKEUmWIfL7A6lqNbqdFmqbE2cKFaZrEcUKhkKfTbnNxec7U1CzjY0oAHAR9oihkcmKKRrOBbTscHL6mkM8NNuB0IwcSgkHB/O/v+AtlmAP+s2fcmZvlZ+8yzDmkeFLgedDn4UzIRwsV3r5VYmGAKAxYs238W4phm8kmeb3A0RvFsHv3UyaTu+zvSGaShMR1+Pln17gPPIYyhtmvtjn7yR8T/dpvMTz8CUdHR+Q6LptV9dAhZyJs7R72gUuabhM8v2ZdSHp+d8Cw+4/epzU+hf9VF9P8sxm2JVO4vOSnV5vcSWYYG7tFbJhoy2qsZ720CAK+wbDtrZTDA3Xq5ufnSdKEzY119LsPWDDXVDJDNmp9feBidzy08QhN22N/PwaWSJOYxcUbhgWkUmM+jYnX1hhe3+ClYZG4qpgbKhncu5sxbG/xGwzbzBi2FIZs93tEQQcpJ+hrXWaNWwSLWYzPSRfuzLMd7TAX/xpvkxNevzlibm4OffmGYQuY2mtSJPv7ytRyYX6Je/dUF1HTJNs721i2M2DY9vY2urHK2mJmJrrxnI0gZDlj2J4GIZLuF2rk+y7D7ppwYRbY2dlCN9YwN1VG4KsHHrdig9W7NltbimG3/S5iWhVA8cYWG65LaJaI+gH+whJLpsdYMsmTnnpdhnNT3Lt/w7AFpoOvOLznYd5sxr5SDNsF8Ps8ffqUQqHI/UcFXuxn23q3F7g9NaEYVnTRdv8shv0c543H8PwFQaAYdu+eWl7q9b5HugW97gl3LZs4jJC5IyrlGldXw9k5b3F1/SlROEvi9xjqjaNNagOGNVpjXDUSNDFEr3CCobtc1xuMjZvMZAx7labMxQkntkOnnXLx6Y//TIb96uwCjeZnHBzUQFzQbtcHDHPf5NjVwPf/HftoCSF+C/jPge9LKXvvfHwYuJZSJkKIOWABslLyX/dD6Aae5yLIcZ2tcvZ6bYaGqmr7LMvBk6nk/OyMWk218HRNdXYMXafeaRDHqvC60aV02m2CMCBNU3JejjCKqFRqFAqFbPsJSuUao2NT5Lw8SRJzenpKv+fTz90E5RqIGOKkRzNu4touPb+LaZgU8urEm5bNydsDojBifPI2fd/HMu3BjTBOE66urri8VBEZum4quwPHo9lWhYGUHcKwT78f4Lg5cp6LbVskiXpT2o6NZphEEQg0dN1A1+XApsL3gywn0SINdNIkAQSIG+NRlH5LmZNTyeexDJM4BZFdqFGaAJIoVjdj05QYkUUUhvSEOl+WZZOEIXEYKnsJXUe3JInIvka/jyUEMggRQifo+ziuh+TrotCxHMIwRNMFvt/HsiwMwxhsj6RpjGmYWLaFbhiDJ8AkSQYaPlN3kInSQURRRBIn2I5DnI0FG6dtDFMnMm1k3IU0RuguuiEGRVKcJOS8HCIxsKQqDJMkIQrUynQYhMSxRMvniBOBrluZGWebfvaUJaXMfNPqpHHK5fkVhWIVL6da4kHfxzAtKtUq15d1/CDEy6scyRunfNNykJpJvljENA38Xo9GszloTdeGRul1msoAMwhonR4zPT030Jq1To+pVIaQMuX47VvK1RqmaVAsVwZeSnEckcvlCfQAv9cDIXC93MCrCwTnF0fYlseL3XXKlRrFck1tJt6MBhOTXq+L77eZnJwmiuL/l703eZIkPc/8fr5HeOwZuVXu+1pbd1dvQAMCCXLEmeHooJvOuui/kJn+A+mukw6ykUQzySQOZVxAYAig0d21V+WeWZlVmVm5RGbs4fvnrsPnGVUNgkPIjKIAWn+Xtu5sy4j05eefv+/zPg+tZgM7l0uPRczJyRssy2CgMiwjtcwMO5tbVKrygT2/sES73eoHv///tf6pGZbXde7fv8ce+yjLsqU3YZlMMMZB8wCyJ7zSdBbjhHKphIjk2dPUFfbibcKDA4ZGqoxHt7iarRNvpgx71OFF8BVxHOPe/4BgY4NK5QGFoQLddNrv4+kqb/70v2QwZVitdkVLGaR6Kn0EVG0NJYmINIdWVCFrdXHcHutr632GHZoWtdPXhJUQ/XCKGe/vM+zq+prt7ZRhi5Jh6+8xbGe4S/CyztTUNG+OT/ngfpZg44hdkb5MWkfc//BDwhAOdvdangeaAAAgAElEQVR5pekkJP0WuZ318X2LwyMT/9YqynLAUhQhxG9g2PISlXOXo+FhvoiX2EsZNrsg2N1NWNVCxLzA2EjQc0fMzsxw+PQxABumxfzMDFEQsLER4msa2u0EEaS/w5uCOGExmEEoGtNTk1zUrtFe6ehpjs+bozckiYKqLTPpCo5Mk739HebnZbzOdhyxPjsDisKdu/cIgpf9ae2DVBd59+5dybCtLcIwZD6aR7+r8uRr+Qxsnm+/Y9hcj6XBOU4uztDWFBxVTutFj095fT9HIHTu3VtkM9pEF/PvMcxnNkpQ8h/wRLxmVbtN6UEV51mHFU/yeKDPsCG2N5+8Y9hpyrB4Ad0w+fSzAeq/XOS5H2LnqyjK5TuG3c6w9TIgumHYrEMm02IqZVi5Ak73DgfaEc7GNN6Ux7QfcZhaMxy/OaRSGWR9cZ2f/uRv+GTgc4x1neJ2zJUu28xRVE0ZdoK7sgpPviF7UiWbkdXMQn6vzzAVm8vzKsXyZMow6Ss2NeXQ6/a4vDxjfNwknF2QDGvfMGwB225wWTtnoFKkcC7425NjXu3v9hnGQkK7Pdb30/xt1m9j7/A/Az8CBhVFOQH+W+SEjgX8VWogeTMC/UPgv1MUJUSWUf6bJEnqv80XabfbaJrWb4c0mg2mJqYIwkhm1gUB+UKBXk9aKAD9nWwkInLZAienb/BdB/1mh9uocWtsmsGhYTqdDqVikVyuwJs3R1xfSxFeoVBielIGBgPcGh1ldHS0/+++H2BlpXeRYlkIIcjl8uRzuf5m7eT4FUKEDI+M0241CUKX2dklumkUUKvVotG4ZnxiHAWFdqfZb50JIS9Ux+mRyxXIFSvkczliIfAbdeJY/jwIVAxFOtwrikqCgpJuNEFWc0zDwlMUEuUmxkYDDRTFvDmXJIoqzTctC0PTieIEL624iCgiSTdaIPPbVE0jTqDbkTduNhsT+R5JKBBxjJ5R0BQVTb0J+lYhSUj8EFWTLvdBEEjhfro1iJOYbCqUN02FKArxfbefPxkGEb2ug6IqmIaZVoUEgev2DVoVBSzTxNANbNum6fXoXF9BmoU4NrVMr1WmLmL8WodYRKgo6FYOI7VvCIKIdrdNxjKIFZVMNoeIQrjR3gUCIWLMTAnnqk2uYHN2csDcwu3+Rsrpdaidn5HJ2pzXLzh7e8xnX/y4r4sLwgDbtslmbJL4Gs9xSVJfs5shBVXRCUOfKArRFA07myNO0uopEIsIx+niXjmMT8zQaXdot1tEqf4qZ+dkDmasUKoO4HQ7DAwMoWpJ/0FZKpU5f3uKYVnoqkaxOMDl2TGDI7Lilc1kKRQqGKbFqDpFq3kl46C6bdw0dLw6OIzvezTr5+RzObJ2EUVR3mXZWRl0w6DRapLLF9ETi6GRUYZHRvrta8/zKBaL/VbQP8f652CYh0e7/ZDugUbsSUuExvQUUxNTrK2vsxNvMx0EmIUCT57scfvOTUU9AhaIxAtOj8+wcxnO3Des1SXD3gzVWAmnGfj+FzzqdPj4wQNyuQJ/89d/yfW1rOIUiyVuu2e48zGwxK0f/pAfAs+eSYZNTwe8fpNBWVZYxmJrCz744MPfwLANvhj5A4J8k/bGELOzhd/IsOWlZdqdr0GtE0b3+wwbc3qcrt/hOmszEgpOTgVDi4PMxzf30xHG3hbKosry8j1QNfZUhTgVTCcsYhptppYVnnW+zbC9vSMAlm8YdjnKac3CNm9jxwnLsWyVudEMc3MJz3c3YHOJ5aWI/bcurZ1LZmdlSy6bzeL0eiShIPS32cmYPNj7EC0rGXZg77O6s0gyFrKv7bOmrTIzM8P+4T7Grrx319fvcHh4RBAeYN5eINrcYHp6ju3tG/+8iOaMZNjR4VGfYTOTjxhNpFP+QwWsI5P1tSXsBJr1Go++/CVLi3Kztrrw7+h983f8SsTs7nQo1zZ58NlnvH6dwzDk3j+Yn2e0CxnrkO29Xe6uf4CINoA0J1XTJMPulpi4mkEr6Jyd/AVzldvYuRnghmEFMlmVwXqF/+2n//5bDJsJXzJv/8m3GbaoAkusrEid6aP2rzHs+JR4EV68kAwbHY2oXz/GnZhgXC3SCTqMjo6yuSErczk7x0I8TxRHfFwd4Gn3EQP7QyTGYj8Dt1S65PxtO2UYFIufcXn2E+oj8otmM/f4qNDDMC2edbtMT7uUKgHfNNu4Pbl5/XxwG98f4uzE4MMPBjhOiih7DxnPSYa9tg7RD4do3GqSy3vocxZD4W9i2Pk7M/HfYv02U4f/1W/4z//jP/D//hnwZ7/1p7+3Cvk8oOC56QM9k8UwLVqdNrGI6fV6GKaO5zk3KTOoqorjpJUFEVOtDjE+MUk3nRobGh7FNCz8wJeu4JpOvV7DtnNUB2Q5UqbEx1xenmKZNqVyBc/3+yJi33O4uj5nYnwGVZchudlsKrBPHzCFQol8vkSzWUfEAtd1OHy9359szOeLDI+kEytJQpES+Vwezw/7m8LpmYU05BfarWuiMCQMfLJZ2eOOYqmrcro9dDNBMzOQaO+1Hg3cnoKq6miGhYgiFE1BQ++7qSdx6v2hqzKyR1FQFYUwSAXkIkLEstWqqKqcZHRk5afdz3VMSKJICvEVNc3hC4nC9HcEKppuyABl0yRjSQ80VVH6lSlDNwijEE3T04pWWg1Lj7mSKNjpUIPnuUTp52lK0v9bwsCn12kifB/DsNA12U5tXUndXPt8H7d+TuS0EF6PYskmEQEqYFnymObyJlEU4fTqhFGIr/rk7Ex/Ek/TVHQrh4gixiZn8LwA3zQ4OHjC2IQ0cI2jCF0zEFGApigsLa9It+R0J5HN2iSKRpD+baeH++QLOUIvIGdLXVu73SQMPAxDxzANLi/OqVSrFFJH9iiKGBufo9G4RgjB8MgIV1c1SqlnmKbrUi+nGuRyBnEUcXn5llJpgE5LTpWVygOMjIzheR6e7wJJ6v0mz2u328ayMpAohIFHeWAI1+kR+B6VNNl+cGiUkdEJDl+Z7O9tMTYxSz5X6l/DPadHoVQiXyiRtbM0rpvY+VwaCC7vBUUJCILgn7V1+M/FsLP8h9j39vDqcsLpeP8AMZcw0KkwIRwe9npUU4bd+DEJKyMZtrREsrXN5NQkmYk87TTYfDEexfzMwg9ekDnW0NZvS4bdz1HNSK+t1k7MlqZz8fO/xTKHKJUrPHyPYU+fOjjuOX+4JBnm+W7fg/Dx40cAfLSmkc//63cMcxwOLZ2tV28BybAvfvCfcXJywuvXr5mevmGYQDekD9b0zPcIbhg2GhFtbFAuFTg+lr9jbiFGW1F4+riHbj5l9fZdRKL125fmbYPJxjKd9iCrRoeXm5so8wsc7L7q63D24oS5hXl26y4/WFbQNYWtbYWRmRkAtjY3EbFgcXGRvf0NXoaLWM4tItH8FsN2NjffY9gS0XxIZEmGzR9Pgb5NLB6gmyaZkxzJYsLK8jJbW/KY7u5ss7SymuZIehjGOgcHGyykOYZ723vY9iovXr4gCkOiKGJxXkiPQyV1yg98Xl67vH0zzeHhO4Y5D2URoF3cxw2/4tZFi62pHg9u3Wdn6yV26fM+wz4YGJYMewJutEHn0UNy9++ia/L6OtBUPOsDks0IszDD1dBLRs11DsIeY4spwx5+jY7K1mZAXdnjT//df8Hs3Dq3ptIX4/g+yS2NYGMDKEqG/SrHr+yX5O5LXVu7bRIGh5JhR4dcDtT4lCo7KcPm5iIymTka9WvEumAYybCbF67VtTXY3UVT75H74EPufPM1vcu3lD6ewvdl1fUimGWkZeJNeXgvnoG2ir62xuSJrEZtdf+OUSsDiwrhU4/Lqwav35wSOD0+fXDDsB8yMqpzdHjEf9jb4kcTs/imhb4uPdbGnz/nTSlmsQtZ+z6NL7+GfI619dvs3DDsyWNmggAz7hfC/9H1LyvZ9bv13fpufbe+W9+t79Z363do/U5E8CRIl24RRam2SIY9N5p1oiikXq9jWRa9nkMQBnQuZOswRqFULJHL5Un0hJJt0243+9NaIohoNOs4jkscC0aGbyFETCRCauk0zejYBK7rUCiUURUd3/dSrY4sh+uGQSUzhKpqtDst3p4cMzMzL/OR0uiRoaEhOp02YSgYn5hIW0IxvbTsPlgdQoiYJBG4nkujeY3rOJimSbkiRfe2neP87IxyqYjruhiGhWaY/Te50PMRoUDTdVRVOg+rqtZvxwkRoWo6pmkTBgGK6qMmEUmS9PUNSRJL8biuEokIXVFRVQ09rYD2fI9ISNMKqe1RSBIFLwhxA1lptHydKIpQkgRLNRBRRKgpxIbcs4skIIwEilFB1zU0XZNC90yGXkdWMeI4JkkSMtkcZiaH5/WwNI0gnToUSYQfBOmwgE6CRxAGOE6HG4cHQzfIZrKEqk67cY3frmFqCoWc1BwZQyMcX51wdXmGnbHwXZ84yhKFMqgaoGjZ2LaMNapfnxGHEe3A7WvJwkCg5/Ngl4kjQaUywMBABdd1SNIWZrFcIfB8FAWarS7tVotu6xI3jdHwvC75nM1QdYBCscDZ6RsGBkqMTCwSdOX3ePwf/4qG12FqZZmsqjBya4woCvqtQ9MwuK6fY5m2dNM3M9wam0wHHWQF2/c8YhFiW3kCM0NkhfScjqxSIa+XdrtNtVpF1zV83yebK/WribqR4fLiLdXBIUTaM6gOjhCFfpo1KUPJdU0wPbNAdXCYMAx4e/aGgYp8W4wiQafbYmhgGJIE33e5urpgoDrUP6a9Xpfq4CD5fO4/DYXfsyUZto2I5lgQUgx/kCQ0moMUo+fU63Xi9xj2819n2OEhyZ3bDNg2hXbAoZ6Ojs9Ihj196hIvzLPo+2yJbaKtkNqQrCSNRg6Tk9NMTH7C/t4rfP+YKJpjPr0+dn+NYacnx6yv3f4WwyIxRDjzN8yG84xPTHCQP2DpeIHlZTkdOe3FiLNLVlUN13P51dfX3L3tYJqNbzGsdXbGJ6UiP3Vd1pdXicQGq2tSQ/P8+Qvu3p1ndW2Lg1eQxNso++soqry+5kXEU03HNU8YD4ZRVB11X0VRFBYT+T12kpj9PVhbU9l8HXE3ZdirNE8xShm28WKDRFliyQsxphTcYIqvH0k/r3KuxNzcHHs7kmHzcxFhpBAfSpsJYd9jI/KYW9dY01fRdI2N3YhC4Q2LC1IbdXISI0REJnuKmVllOdtjbzeDdpAGUyu8Y9jKGonvsf3sCVMT7zHslcG9u/fYeLlBt3PN9GgFM5cl35PnxGi0ON6OuCqfMR1Ihi3MzfGm6OOdSPH2vqqj2xnc/A4L1Xk2t3dY/vor9DWpJQuDp5Jh98vEO4JKbYBASZgK1ki0lGGffNpn2HBrjGPrDY+/+TkT11Jr6Hld/mDijxn6z+cp9HzOTv/6HcN+Ltvkj//jX9GY6jC1opBd+YAfoBJFAVEoGZYkBtXBc8bGbLa3NjHMDB1N5+7N1Lxp8SKex9wKuW+/JTDvEt3pfJthCzEPXzzk87Mqei6P76scn5YwLXnMS8YADy/e8nkyxPzCIscnJ1QHR5ibnWZ7W7aWS5UX6Ae6ZFh3lGwmIF/I0KjL1mI0OkptP4GBJveTBH96kjedNt36r9BfyWPa641xPFh/50/5W6zfiY2Wokixru95DA7LNO92qyPNNQOfhbklXM/B83wmJ6f7G5hSqUwQBNQbDSzTpHZZI5fP9eNzwiBM88dCcrkSxWKBKLToOQ7qQOpRpICm6lQGBkgSaLdamIZJtydhmc3kyWZtGs06ipIwOjpGvpDH8zTm5uTNr2kaTk/2hlvNBr4fMDg0iGnIi+iydk63XSdJEsoDw9h2ASEEqmbQc2Q5W9FU8oUcqq5QqVRRVY1a7aK/4bMyFl7gYdtFokigEJMgCMO09pogI2wUUFQZVZMkgkS822hJPVdMbGi4oY8mYhRD52YqkTghFiEiUUgUBRSFxPNJiPFSH6Se7snWdByjKip6GGFqIFLBq4hUVMNEK+UJRUxOl3FGTq9HpSrbta7TJWvnZcxLoUg+X8Jz2hhGGsGTxCQk8hip0v7Bsgw0TaXXlufFC7rEoUuhPMDg4AB10eV8/wmHlzKFvVjKUxkoEjlVAsdBMw00M4OiGf2bv9m4JJOVJnfVwXFq52+IwgAnPRyBH6BrHZR8QKfjUiiXcF2PTDaDSLVzsZDat4uzc9xej7enpxRyFpUReR0bhs7Rqx2GBocplctML8xTO3vN0Mg4+6k25dGXP2fte5/S67XwPQdd18jnckThzcY0kjYdcUS71UY3HIZHx2mn147j9Cjki/S6HaIgwLQyFItlmq16/6UjSZBeSp12v1yfy+X7nnNhEGCZFt1OG1VRcHpdHKeLaVjkUq83XdMIQo+eIyiXiv37x0hB2Ot2qV/XUBINtdlg/NYYV7VLLi/OqKZZhz2nh9ZQyaf+Of9SluJDtBniT7nUm2lIsmYQiy02Ap+RuSW+503geT7FHxfpPZHC7Iv3Gba7yy+6PXL5HLdvSw2X/9xHT7bR9ZAPKgMUiwXKG0V6GQf1Smq01KyDtv+Kyuef8aBcpd36BsUw+dUNw+7myZ7afPX1r1j+NYb9yZ/82/S7ajx98oSh201aX+eY9Cc5HSoQXkqGZf1ndEfrJDs3DPuIHUWQPThhde2GYS0+7DPsmqK6yi9+Ichm5YTlncwdnr98zv37D1hcFOzuvmJZF2zfZJgmu2h6AMoSitpmdW2NaOMFS2KpP+C0sBCzuxsTH2pMCp+Nre1vMWxpYZEgCtna2WNxWbC5tYemrhCxzdS0zDIs5IoEcYQvtlGVO2xsROQyuxRtea/kohcYhsnBxVuWvxdzev4KU1nA6fWoXctjupAskjnO8cx3+OgjePs2h6aqHKYMW1lUEVv7iCRhRQEyWXbKZU7PVMZHU4Y5XeLrn6FrAwwOfkY294bz/X/P4c/fY9hnRTZPqpw5Dl3zkJb5OaZmMDcrGaamDHu9ts61ECwsCPyNlzx9KK+vwJ9BX+2gRAGdpstHnyzx7JnLm+wR4s07hkVhyNBQkVOvx0//11OWl+beY9g4f/nq/+TjR/81H5cv+eN/869xm39FHPbeMex6i7XlT+n1ykx7Neqvrnn7HsO24znCJOJOfER7pM2a4dBsj+PfMKx+hapKhrWDQUzL6DPs0JCC+fVkHf3+fTqbGySJjHOQDJNDH2Ggcse0ePyojbp8i8XxMXb3oN168m2GzXqMbAiWSwm7V9BpdZiakvq9XrfLreEaxVKVk9NTxm+N4dd+zuXFGp/PSFZ+880TtMZHuP8vhKa/ExutOI4JwgBFVWm35ERYvXFFLlcgnytQu3yL5weUygPk83nyqc9Rp9vB8zxZXTEtEjum1+2i5OXPHbdHt9slDEOSOCGbydLtdlA1lWzq19XtdBkcHOLi7IyBapVCsUitdkE+J/vCSZLQ6XSw7RxRFJLN2ERhiO/7fZdgwzCxrCyO0yVOBJXqAELE+Ok4cc7O4XZbOE4PEflUB2/h+R5JnOB5slKkKAZhFBFFIVEkqFbldKSaOvUFQYiKIt2Z0VAUDSLR31QqqsxfNg2DyDQQkZxYVJIQJXkn2otjUEwd39bJBdIGgjh1CFYVQqR7fITc/IVCSOF+2p/2Ag9d11DiBCdOEGGAJgwyWpL+rVkpYs2YGLqGkm4AwzDoC9kzWZskTsjlizjppitJ6OvNVFUhDGWFU1Fk/pSuGVSqQ/0BiG6rgSCmfvaGoNdC06AyOIQeyZuhcf6K88MOWcvEzuXQTQPNMDAzWZL0ePheF89NndiLQwyNTtBq1mg3U8skRSGKXCw1YXB4GM9zaTeb5PP5vv9ZNpvBMjMUS2W6nR5n51eMjlb6ru3Ts0sc7G5w3ahhZEzW73/AV3/7l7i9Lkn6QlScnUGzcxQLRQwjg+d0URSVXE7CwTAzJEqAH4QMDg/RajXlBjTNqQvCUPqzmRlqVxeMj08RRYJSsdzfIBu6juu6hIFPoVik3mhRKhb7mjff8/A8D9MyKZQr9LptcvmCdJdPz32jWUdBJU5i2h1wHBfTNIjS4YmsnUVcSuH+wuIiSQLzS6skcdQPpi4VS3iui679TqDnn2zFRkwwG6Ak+4yOyBcw09TJ9c54mytQuczzS//nfFweIJ//AfkvfgjAyeNHTE1NMTQ4SKFQ5PnzZ/S6XTZeSo1N1+3S7Y4Rhm95/KjL0PezdOt1VjSVN32G9Xg7+H02fvYzBqqfs/rgAb+oXfDhrGTYzs4OnWgR2/6Aw2iDwj/AsE8/+x6O85g42aJSLVETA32Gndo5BvZbONM9RMNnYHAQ7/w5ia7z/Hmqq733lNlojigKud68Jv5c8NFHH7G/fyCP0UyMurXMy8BlCWmHshVtoSynDAMUljCNHkdHh0xOjLOl6sTJHguLMuCYCBYWIN5/hb93SaKqaNoqSwvyO/Rcn43dXWKxIHkaC2bnQ3b3BWEsNwVecJdXusby/Bya4mHtBVyIHndX5XmrVCocHR2hZkxMXWN5cYmd/T1mZ+e5rMnN7ZusAvEOuXyRp0+fSIYtLrGSMi4IltmIXzI/N0cY+BwdHbG+uo6qqXTbUjfZvfMV4kVMvf2GoPeCCw0WgiH0z+SGsHH+ivOXHWatKY5zWXSzjGYcYmY+5dWOzH70vTFE9Ig7d++SLw6hjE7Qylgspgzb2Ngk2rSxxnf43hcP8LxnjA4Pk387wTNP+p/du3eX10dvOL+45OKyIhn2wwraijwvf7ywxF/shlw3foGTGWfdzvE/NWBhvEuiyKpXMXT7DCsdvsFTVJaXV9hLE0NvGPbiZcj3Pvw+rdbXqKrKm5Rh7cMj5udmeW1mqDVThr0UXGiXRH6qi7ubED57Rhj4fFQs0m10KT0oomxIhk1PTdHrdliwTC7Oiux12+TzBWamlzi25Z6g0XQlw/xt2h04Txm2mdplqKpKxtT7DNtJdplnlSQIqZRkF2zqx9NMPcuiKP+EodL/LCuBbMbm6rqGnR6QUrFMpTJAEIY0mle0Wg1GRm4R+gH1uhwCkmJejygSxCSouoamav2xy2KxhOd52FkbO5vHdV10w2ByYrofcntVu+b6ukaxVEJRVbrdNmHoMzSUGrHpBpe1SxQSdF2j53QolysMDg7RacvdeK/XwzSMfgUtDHycXhdNk5sC08owM7+K43RIEgXHcVAAx+1SLMgWk6JoqKpGNpslDENc1yGfz+N5qc2Eqsi2Z+ijaBa6lvpipX+rooBuaCRJhjB0CXUToUfEIuxXtFRNQ9cNWQsrZuHSRUnivuu7EkdpfE9CnCSIOA1cThRu/FuTJCZJVGIRkSgRCgo+ISL1hCJJiEWMZRqYpmx9RkKQyWT6YnjTMInjiDBw0TSVwHcQIsJLoycyGQtN0xFCyIpekuD5Hrqu9qtiA9VBri/OsO0civBpXp/Q6TYxLTm5WCoVQAR4jks2l0XXdSKREEUCM41syBUG6TQvaNUvcZ0udq5AsTiIqssbqH55SaRKrzP55hRQHRrkzeERpZI8byoqvV4HVdcplcsoqkKj7RCmbT/P7aEbinSp9wbJZm3GZ5Z5+fQxl2nlo1itohsqiqpIjy/bxrQsPOed87C0wDBQFBU7axN4LjcSy+rgEKfHr6mUq5AOOei6RqlUkSHiQL1eQ1E0zs5OSJJRAt+l0RTvKksKFIoFOf1pWISmhaIoeK7TDz5XdV3GXvV6ZDIWsYjQ1AxK+j001WB55XYajRRjWCZaJMgVSnQd+SBM4oR8Lsfe/t4/AoXfr5UhQ/aNzUC1ArY8HqXiJZXKEBcbIV+9uWJkxOJNy2Kg8pJ6XbZbZzyfruuxubnFx5+WWVlbxe0+xbblDbd3UMKb0rEPP5YMe/YM3Vhn+g+nKacM+8nfTKcMe4Ci7vO4O04Y+lwNyetn5Ac/kgzTE/TdVXpOgKppDNbfMexJ1OP2ukEYzKLrG4SBz0jvSw5WpUjYrN8lmC8xM9Eh2VHIOk/ZW1rCefb4HcMONKxFi2w2Sz6f59mzp3z44Yfv+KMqwDbRRoJYvcPS0hI7e3v9F0FFgTXjgI2dgNn1dZzeUzTdYGE+7NthqAcHvFJUYl1j/UGWpctJDl9vs7ctr9Ge67EoBMFizEacMD87QxRHiHnBgdT9Yxrb6LqOmJsjUTZRIgUfDSFuKmsJ8XzMndvrHB0dcfdOlqXFJXZ3d1jR5PPpyDgijhcJZ3S03R3JsK1NnCnZ0stkLO7fv58yTFb0bhhWS32hFBapDpzx+f0PUITP19cnbF6+Zb4nn28XF2eMDF7jOZOQO0bXB4nEA6Joi9urqcnr/gGPmirf/OrnmBmb+x98xPl5na4jj8fq6hqbhsHK+Aqnp2+ZnlmjOgR//fgv+fiGYbv7jM9O0+46KcP2aDwcJ/xUMuy520M/VJj8bJRwwpcMM5Z5+bTLZVOa8xavq+grKsuqwqFhMnv/PqZlMb8gN3NZ7rNrmqzdt/sMq1y6bL/HsI2NkC++X8XZU1CcPXR9gU9KnxPNvWPYXpJwdnZCOxllxj/l1de3+fBD6ePmeS5n52f4vsvQ0BihOYqi7PH8Wb0/mFZPGXarN86bzBXx/BxaLo+yJ9vGqysGR0c6nucTixjNWkVbfknOLrH9VDJscSHhMHeK7/89D+N/cP1ObLQURSFOpLeQl04RlsplLms1yuUS5cooExNzoCh0ut30hoWeKzcs+UJeGngqCvmRfD/uIwwiCvkC1eoQnu+TJDG6rnN9Xeu7kE9MTKSVJsHxxTFXVzWWlldpNORBtLMZdEPn6Gif4eExNF0nFoLdvb10UhIKuQJRFKIoCuVyhW63RxzHZHOpAaedp9tp8vbtKWPjU7i9NioKGSv7nuFohkgITNOk3W6TyWZQVI1eT57cfD5HFKl0ey2ytoKuZyCJiW+qQKgoqo6iCjTDwrRigsCXU4iWLJ3EcUIs5OReksvgRW1M613enVSy28MAACAASURBVIbU8sRxQqLILVycCJREQU8/JxaRHPtNEoIoBE3BV1T8NPomDD0SJaKUz6OoGpppoiUJge/3/XJuWoJRFGGaBp7noigaUdombbc87FwOIWIZ32MYKIpC4Ac0m7Lsbts5hkfHcNpNGrUT8oUquqpzsScndjzPoTxQxEkn3gLfR3M9jKyNmm6AM0aGYmWEwO/htK5JREQQSTd3AMMyUPQsYSArRpqm0W21sLM2rZaEYbE8TxQL3K7UbSkKnLy9onkt337KAwOIULrau65L4EecnZ7zs5/9hG5aVv9X/+bfMjU1SaNRJ3AcygNVFJI++CMRYZkmgetg5XKomkxKsG35NpgIQaFQpFY7o1odwbZznL09oddpkk1L5nJS1mV6epqztycMj47R7XSx0zfKOBZoqkwNcN0e7VaNXGGA0VuT/Slfz/W4rteolKv4nk8YhQRB2N+s+b5PHAtURaXRaKIoCaaVpdm6ZiCd8vVCn3qjzvjE+G9Bht+f5SuwsLhAo1Hn+VMZ51Eql9nYvGFYG8P4CJQjOt0x1H35Bt2bnkZJJMMOjXXmlYj8yBf4vmyHLIiIyfwZ1z/6fsqwO+i6zpfXNaZThv3hH07w9OkTRJTn+CLLVXdHMuyrLQDsez30w19j2Jbg/zr9cz7KyxiW27/OsLEe8cOY22/SZIHhOVk5++kp3fEpOr1R1OdPU4ZJ7Yp5J4MlBKZ5xMrKCkevj77FMF3XWF5e4ZvH3xCJQDIsFsQ78gLbUVQWltZQ1BdohsWRlWF5ZZrIdzl4LUsjsWGwJCSfJMNCFJbQNflAX2WJ1sILtre3SRSFPWQmq7K0jK7KdtrC/By6Kn0ZX24GmJpCXlF58UL+juGhYdZur3GUf8vy5B9wcPQWkjcoioqaVt/mlXn2VTkRbKoq3tQkyt4Bm+mmKm7NYZ+eMj+/gGEY3P9gnT1FIXgR0OvdMGyW4R8u47SbfPWLn5APeqyNT/F37zHscqCIY1ygxksE/gWa+5z17ACRJlmZWTV4EP+Aq/NXvHjykCftr1gf+ZTWgXyOHr4+xFh7IBk23iGOIx5/841k2Ijc7Bd9QXTwipkpF29IoChLnLz9Jc1reW18MnBFfrZF4J/jujMELyLOHp7zs+1ndDduGLbIH03dpdGoM1K/4Ig5Vle/zbBV08R1p7Fye6jaCt5UjH4i9WiLQjB6wzDrhmHf8KSTcG9YTjZmszZLywusKPOcvf0Jw6NjxJ1N7OM/AGC7t4VlWZJhk+OMNs45LUwwmsmxnMZVPXefc12voZcNQi9gNgo5ebnRZ9jLwEefEqh7KrXaFTkloWaN0vxmo8+wzS2f0XadYuG3lz/8Tmy04jjm8uKC8kCVgbIsdzfqDWzblu7jmkacJBwfv6ZSGaB+JR9yhmUyOnaLjJVFiIhup0Or1SKXPoAuLi4olYscHu5j29IzZqBapVgo9nVehmFQLg/QaFyh6xpjY+N0u23y6SZKiIgkillauoOqyRxBFGQOYOrH1GhcUxmQLvQXFxfkcnlm5hZx0wqNEBGt5jW9bpe3p8dMTk5LDyRF6mtAemqBgu/70rqg10lzsm5ExC6O00NVFaIwINIDSBSUtNQkUNB0HdOyUl8qD8PMyFiG9GJXo4gkFsRxRGyb+GqMbppk+27rIYEQhF6IEseQxFLzpenSHwtIM32I0+BqESeEgr7ZqOv2yNiDUKmgKCpRIC0s4jgm3VNimmb/+MdxRIKK6zpkU7PRVrOJ4zgYhonn+SiKImN6itm+OWan3abb65KQUBwY5upkH99pY2flh7i6RhTF5Aq2HBRQNTRD7wvxAeIkAkXl1uQyV+evicIA1bDx07ZgFAoi4WOgEIaCOIYkUTEMjZGS9J+qXdXStlhMLpdnamqSX3z1lOcvJXCnZpcIXJcgk8NzXLZePOTP//c/I4g8CmUpItZ1DU3TKRaKPP3mG4ZH69wam8VOW0NhFOEJWVFtNK5lbmGu0N+kNxpXWKZFS8ScHO9TKg+RENPrNimmn1EoFCnEeZqtBqXKIJ12h6yd7WsEW41r6QCvaGQtHxELRHzTyk7f9FEYrA7TbjeJ4xg7VyBryXYlQM7OS68ZJZH5npqUAijE/RxLwzApFov9jeq/lGU60kz58uqaiUl5bQzVh9ixd99j2A7Hx+eMjd3iV2fymK0PDjHa7fDxx58iRESz84hvWgEfvM8wv8jh6H/Atj+g+7jLwOeSYU9Sndcnn3zKJ+XP+Op9hj1++I5hW5sk0ex7DNuC5SLf877XZ9hXjWs+PawSTQkuLkrkxsaZmavjTkmGXR9t0mpes9vtkjs9ZnJSJQrzKcOkGWTYs3iBwpKvEAYVGvVrLi/OWFq6yWSUDFtRFDY3XnL33gPm5+bYO5CifoEC7HL7joXTe8OSv4xveuzvHaCkVWY1ilAW5om3N9k+Mbmnxui3Te4FUnDffdji5ZHOCiEb8QIkMUvLsM9en2EHu3soyyoLYp5kMUbsJ8yKJa6CY0AyLNQNqHzK3t4+62vr6IaB5z5lLxXd3759h+lel93dXWJdlwybdLhn3gUkw/QJhzjexvMS9pToHcM+eMewx73HJLshxc++YOBknyeNn2IfH8nvoWvMRQscFl4hxBGq+iHa4Tnb5RgrkRtPK8mylDLMMDIpw06YnpGaoxfdS+Z8H4U9wjDPxvZWn2GtNDXizaOHrL/PsD+a5BdfXfcZ9keza99i2P/x5UP+fPPPCKIpCnbKsDUNTXtFseDxvyj7DFuDzHvvM2yT50JD02GiMY5t73B6mmc91ZB+1bjCNH0ut84J/EffYtjhK3l9fPRRkUIsaOqSYY/at8jaWZ44slTZGrpmLppht3xBttNCxIL5OKIyF+JG8uVncVdh+fMvePjwa+I45uT0jGw2S2VA3o+nIk+yE7O0vEj9us7BwT5ROIfCANqq3CAbhybnxSJC9H4rNsDvyEZLUWBwaJgwDDk6lC2FweoogZCGkbGIiEKFcqWCYZhUh+RO3DB1IhHh9Lp0uh3y+TyjI6N909NiuUycJFhWhqxlUSqWCUVEo9GkVJZl01KpRKPRoNvrkrWz6JoBihSkA7RbTbJZG5IY3/fRNY2rmgzYDCP5OYVSmTCQPysWi5hWhnq93o966bTO0Q2dldWbtorg/OItJEpfI5EkHTLZDEEUIsKI0dFxruvXaNpNWV1hcHAQx3OkriYRgEqSirITRQWk8FzTNanViiKSOEFPARMlCsSxjMLRDdycQaNWI5/uzA1NxdI0skaMGicEUVrRAjLpDUEcEycxiZIghCIfomm7CsDpdSncuYNSKKFr8o1PNwzZUk1Fr6aZQdN0wjAgDAWKIkhERKshH/qZrI3jOv12mef5CBGTyWT6Ici2bRMFHm7Px+3KNzWEi5cGQuu6gWFmEMKnUCyjajp2aQARRn23/SiK0DVdtg2LgyRaHjU7RBDJt/gwuAAzI/eWQlZDDdPE7XWo2Gn5X5U5jJqa5/LinNn5WXb2j/j6odTYrC4vMVAuoZIQhD5Pnz1kcn6apbUlblp/pVKBdrtNoVBgcXWN2uUZ7XaD0VsShK7noSQRx2dHVAdvgaJKobopHz6VyhAJCdVqRP0qRtVUcvkK2Wz+nQHw9RVZO0vezhOJmDAM0DSt/zvmFpbpdjsoigA0VHUM1+3KN/b0OhZxTLNVx/c87FyeYrFEImTVGEDTTDzPwbIsRkZuYRgGcSxQEqk1AqmBUBQVP30J+RezMlBvDJPEFcxDWZEwqjpLYpl9sU8sIuZml/EDn8PDIz6/YVj9ik1NQ33ymE63w4cf5vmjkR8Sx7IaVVyVDPveUIasVWXzR+8Y9vEnMsy5VCrRiL+ie9KUDMutQ+5DKhU5SSUZdpJOgs6ia/Nc1c6pZ7/NsI3AR9E0RLGIeZJhb0plPZTn/qr2mLX1NT79bJjt7ZgFIfjpRR6SvXcM+1IyrDkXIsISn37yGV/+6kvW12XFa29vjzt37uLk89zdU9jd2QJUlpalH1iiqLD7mj1VxZvSmEwZtrK61tcJRmHA5sYLlnQdRTdwX71iKIjZOZMC8pnVCaynGsdGjBUfEESCvR3Byto6Yj2dwoxj4p1tjpJ91ueX2VO2OFCg/B7DDrsdGVF2ecHm5iaZbJa5WaNverq7u4fnuSwsxOwpAmVzg8SP+GZKTjbezdo4ro9pmrx6ZRBFLxDGOpm7GdaQDBO2TRTc4Vn8ELf7iHKcY0lM0h6X90br4jVv7DOWxAp20WZfe4VdGkUk32bYrrZD5HgkxWUWU4a97DMsIDFjdhKNJRFzpOgY5m3c8Q6fppsg7+NPEVtbaMU8l3/3hFkxy871O4YdLC8xcBmgfj/hZTjNU/dLfjz/x7C2BLv76TX4HsO0NWphIhnWkdePO+oR7kiGdQZH+aioMhF38dKN6aeVZXbY+XsMu5fNY6XeZI3rrfcYtoASNtA0jdu3JcPe5iXDxpUfARqOOkbV7RJFc5iH6WZei/n64Vd9hj14IBnmupJh65qJNzuBqmiMjHSYmPhDtmPBcgKPXfliowrJMNf9PRPDR5EgjgUZyyRKNVoiiTFNHbfX4+r6koXFFTKZLJeX5/1+a8bOEIuYZruVZulJDVKQTlIlSdLXOFmWRb6QJ45jtLKGkrbLalc1VFWhWCxRyOfpdDuyPamlFZxY4AcRcRzTbtdRVZ1SqYqm65RK0ozt4uItV7W3jI7NkERSYG5lLJzuux2vrpv4vk+v16bRqHHr1gyZbJYoBZ1pmpimTrvThjjB8TyiROCkjuwZK0OUCKIoxrazBEGAoujv6R8MhIiIQkEsBIqmSaf1JCEKJGA0XYd0wjMWMUyO0Hy7CenxMrM2Gd1EUVQygBtGMl9R13CdtAoEoCSouo5qqEShj6kmfddcP/TJzk0SiRANVVa9ohDDeLfR8jxpoeB5LpapE4QhcRxjmHIz5zgOqqriOlKnZlomoR/S7F5jpRosTdfxvB4iDBGxIAwCROgTePKB7rSbFMoVfM8nWyijmxk0zSSTKSBE2lr2HSIlJgFU1UQvjWLkh1Fb0vQ0jlwUs0iSJGiqSq/XpVQcwHddWs16/9pt1s8oV4YpVwYYGXGYnbzF62NZEv+L//uv+NEPPsX1XRTLZmn9LjnbYHpugmZdamxydp5ECJxul+rQEEMjo3SaDeLkZsDAxnEcElSpn4uFbN2G8u+IREguX6BYHpBGtyJA11RKA1WCtD0pdPnS0nMcLMMkl8tj2/n+xlVEQpqv6ipRIgjDCCEScjmTMEjPm++hqDqDQ7eIRUS33U4zN1OHe1VupHL5Ap12G9u2CcOEdrvTj9Yq5GxujU0yMTn9n0LC790SPcFCLDi0TLLvMezIfEXYc7m6LpMrFPjiix9yeXlOeMOw4hlLYoGHDx8SRRHPnmp89OBJn2E7rYSpqWkIK7y2IH/2ljheQFs54EyTbNi42pAMe/CxZNjjDp1eF1WTb+AszOMD8fY27fYF6orObLFKq6NTKtUAuLjIc1V5yw/1GTZVhdVVjUhYPH2PYa9eHbGiGgz32hw2agzc+ldksh7R3HsMO9I5zY2yFO/geFXmknm+eSSv87t3Jul5PTY3Bffv3yN++RJF0dnelnxS1UPQdJJQsCDmCTTvPYbJ6oqmz7FmWkRzs8Rb2+xMjrDS6NJNXfJ3nV3urt3mxdYmGZb6DCtkNJ49lVUgQwiWlpdRNdjf3eb+6iqvtYTktTwn07PTKH/yY+ZEyOv5eZKdbeYjWZm/mfKemprk1atXbG253Lm9xsu5DeJwAWNXVrye+g4rK5JhJHlM67Zk2C+/5NGvMWx+dhbfafPo5V/jD5k03mfYZoUX3gs++eIHrJn3Ka/WOTR+E8OWWFEFWqnNYT6D+o3caMUZlx0TjJ0E1VLpBV1KxRz+/jNaaSZwtLnF1/UzPpkYpvzpACO9E8mwrGTYf/8/SIYNnOhMWB3+dP0uOfuQ6TmN5i1pd3HDsKfdLtXvD/F9dZVHzQbNUXn9xFs2KBMkSxmS6x224yJLSUIQyhZ5JFSW8gWUTz6j/osLNkTA2uoguaz9HsNkJm2v62AZU3zwwQ3DZL7kfKTyJHrImq6wmWwxGyaEYpZc7oiNVKs6Ne2xfGuNt6dnxCLi8cM26+vfZtj+vkq5UqDTDvn4Y4OVMKHdfkT1hmGj9+l0JzHM4j8OhnR9Z1j63fpufbe+W9+t79Z367v1/9H6nahoqZqKZWWwMlb/Lb7RbOC7Xdxum+HRSaIwpN7tYugmlYp8Y2y32mmWXBbLyuD5PlEU4KQ5heWyzG5zXQfD0AnCgMCXgk83Fd1nbZtcPs/19TXtTofa5SW2nSe5CeZOVAYGqtQbV0xMyBKm43ZxHYfrmqx8qKpOvlildnWJCCNKlQp21mZk+BYAxyeHdDoOpWIVy7LJ5YpYqR7p5p8kMccnbygVSqllQ0Lj+ro/Bq/rBn6vKz2nXB/Hcchk7H4elaoLIjdC1810sECVkzWRQGjyj9EwIIFYFSAi4nyGZH6U9oYsq1Z0E8vKYKiWDB32A4RIiHUFPxW0ijgka1uoSoyGSqxEkMTpFBwU5+bJLc4h4pgojtF1ldD3MHSjb9/guVJ/JYX/TYrFcmpUexNbk5WmrbpOHIl0itGS9hNpVUzTNEig2WigE2Flc4RtHbsoNX5uu4HvucQipn5xxtjMnJzANDKoeja97nRE4GCatpyMtKuouonTrqXnRKBpKlqqD8lkbOJY4PkOen+6sUzt4oTzt6+5NbmApsKP//jHfPnLLwH4+S8fcnFV56pR46xWZ/TWHGEY0Wl2GUwnKH3fA0Wj5/TIJ0Vql+cYuoGTHnNVUxkZvYWma7iuQ6fTBBJKxbS93b5CiIBCoZpO4QYYgxpJEhOmgukoiTHNLJ1Om7O3xwyPjFKpVPtTiZ1ulzAIiISGruuoioplmlhmBlWR16Dnu4ggIM6EGIZFs9kga9v9nEtd18gXCigo9HpdfN/FztkUS4V3FhAZS8aWOL+9vuH3Yd0w7F7mNb1kDICvmg18N4s7FjIs6mxubDAzPY2hm9RqkmGmYfJy4wn37SzWnbs8f/GCaDPAGZdtY+tujbO4iPvMoZDXCZKAYNpF6Y3jOlJ3krVtPsh/yJdffknbWKN2+XNs+0OSWGqjSBIGBq6pr2hM5OdZ2oWntceQLHFdk+dOXfHJJ5JhV7VNut1PsbM2P0gZ9jcvn9PpOGwWqyxZNqe5It+/m2Fvb4k7mZuJ423+o/2GUtxiT1FZIqFx/SXTq7J1GAmDF08e8+GHH+O5Pt1Oj7t37xMn6WS1PkUURbzSj9ja2mRhYYFXr14xPTWN0ORkmcYOu6pOuL/PytICcZywc/RTVj35HWoXEZb1/7D3Hk+apHme18e1++uvDq0yQ0eGSFmVpVuNst5lbIcFDnsBDMO4YVw4wYk/ADMOcMYWOIAtBoYBO8zsztDd1d2lMqtSh1aZEZGhXq1cu3N4PN7M6t7pKWxnx3rG+rlkWUTU+7q/r/vn+flPfL869+7dBUnC7TNshxsLgt9BGPDq1QHyUoylq9i6grq1yXRqCK2NNjEWQohjZuMYdRGCxOVgW8NxRaks8D00TWdtbY2Hra94N/8eTzeewg1xnBYQOw7a/j6xERFHQqduRb5FEIhBiJcpw7768ktWFmcxbtsEP98iMyj6hZyVFTxVJY5ivvj5z/jhH/2YOJphQcuxre6k190Vw7IQRbw6LrG6pvMvrhhmzPUZtg3cunWHg33BsCTlbeH+ewT/9//O2U8Fw5ZvwOrK7/M/XDHsi4ecl2tU/vkvyb0nGPbiRUi5/OsMc1OG/fLiUzR1lcmUYbuBzMhoG6USMHVjiSTe4OvtNwxrtyrcjXxyUcIT56lgmPqHKcNECTNM5gXDxl7zs5/+M4Yro/ze7/0RYSiyne3OJNf9adwoYFFdBGmHl/oh+cMiN28KhjVbKcOiGTTtJY1GHT+402fY/v4h2dwp0uIA3Z+N84tffMqdu3d+hWFZur093vKi/2vXb0egJck06lVkRUFKN2NVUSiPX0PTDXRNp1mvohkGhXyhn0o0LZNOr4NlWvR6PXzfJ44NRkZEOvPi/JzBoREM3aDeqGLoJkEQEicRmZxImxqGSa1aIYoiMhmL0bGxVKdLfPBxHFNv1IjCQJTmwpDA8zFNK21gB1mOkWWderXK0vIKjusgSzJKWn4slQap1atIioyqqIyNTonzlN7UeOuNOpmMjR/4QjTVtHh9/IrFJQEpWVEplsqEYYDb9fA9H9PM9H0twzCAJP037ZmSZNFkLacTKuKUEsLIIyFB1hSkuXH8C5ESbV9WyeRLWNkckqZgyTK+F+K4zhu5At8lk9GEjEYSIskSgeOBKQKPsT/8IYluoMQScSy8vcIgwFO9/nRjs9dDVX2GhoepVSo0mw3KA4PUUqNvTVFRVTWdYJOIE1G2UhS5H6z1nB6WZWJlslwc75ORusShT5iWijP5PJpuEvgOURRTvTxH1TUk1ew3aPpBhG4WSeIAzSijGlk6rUpfJFZRLSRJptuqkSgamWyR6uUphmH2hfgkSWZ2dpla7RKv16M0MESzVuHjjz8SryHF1CtnFIeG0FSd0VGhzG6aGpVzEaiPjI5C6gXpdLsEvkshXyRKry/H6XF5fgGKKCOapoWf9lgBlIrDqcdmBzuXw85kqNcbYigkvcQs0yKKI6Ymr4n/TkJarQZh2uuhKLKQVpGEWIOiqVQuL/B9r685p2s6vuqL+0+SKBRLRGHQl+XwfR8/CHB7HgODZQ5fHlAsFimVSn0FelnRabdbZOzvrkHzd2H5kk+j/nnKMNFSsKIo5Mevoa0ZHB4cMjI0gKrrnJ8VkKQ3DJue8ZFzt+n1elybcnCNmzQHxD3ZPG/w0ZAJ968YNkPgh8TJBkenKcNumtSqnzE3N8fpqZYybIw+w7Ix9a92iGYComidZ17KsFsKQT1lWBgj7+rUX1f5wZ/8iCfuE2zpLvdShr3//kfU6p9jHcmoygpjowYH+zLqSoKUlsu+rNfJLL9h2Ig5yk+PX/HHd8X0mqyofDgwRKhIPH30rO8EceX9F4YLkMBsOMN2vIMk7bAkKwR7+8jTQjYBaRlFXf8Ww27M/RD/QpSg2tsST58+5va9d36FYTO8ePYLQDDsgw/fQ5X3kJZCNtd3CP3rRKnYaPv691jTb7ITS8zHEclmQjgzw/Xrdp8/n1crqPv7HB0dMWPN0Gw2uHvvHl98/hkAq8srRKrKZhxxT5LYTLZxry+wuSezkAZjk8FzrCOT+p17XBz/GdNSl6ezPuEvBMPuTA+i6SYvfIfIvMnnv/w5IxOTZPIlMnd+lWESB0aZuzO2YNhcyrBeoc+wheVVonCdfK5EvaYRBs/Tz/8TfvzjP6H2xSXPetssh0M0Bzf5OO0jVP6jewxVzriYX0RTdVqtKt8fHca03jCsOTrKoiRxy/fZ604Q+McUzk5QZ8X+dX3qMdrBBZcK2JljTPMTzgrPUfbEZ/7+Wwy7+847nHyLYVem0W8YNju7SJTM8rDVIIyEsOqyEqUM20FmEUW7zfjlBYeVAyYm7wKga+M83/9G6DFKBoXi++ztBlxLhz7Gx8cFw/b2uHOnzL/4l6+ZdHqU3i9xeCgYtrqqMzbW6mtYfpf1WxFoRVFE5eKcXL7I8KgIki4vL1BVDcfpICU2SAq5fAHHdThIrRJGRyYp5AuoqkqSgJkzCeOwH6lblkUUhnQ6bVrtNpYZoikadtbGsgToPc9jYGCAeq3Bq5evmJgYJwoj/FT4slAokxDTbHicHB+RsW1yuTzNRuONxpUkMXltAlmW6XQ6GKZJJpPBTbM8rVaDJIFOW9gDXVycUh4YSpuPBQxzuRwZO0uteomdL5AkcGNlBTsrMjRxLPpoTo5eEvgRhWIJw9TxA3FDhV6ApCjizPuKtRKKrGKkjexhOkUGEqphksQJcSIh3xZPvu3PHxPUzvEDF82ykSSVKIhI4gglrWG3Wi1kOcG2dBQSQtchsQ2m//E/AkAZnyBwXKyMaMR2PB9JgtjpYadCs2EY4nkOObdAvlCkenFBVzfJ5UTNu91uATGeFxDFYshBmBIrb8yI44h2q4WqGtjZAq+ffYGpJv3gRFV0FN1A1nRkWSGKI6qXDWRF6HuJTwdct46m59HtYWQ9g+85bwYMEjEJiiThOQ75wgCKYhC4DnpO718/zUaD4eERMQChqmSzeZ48FdmGe+/cRdMUFNUiXxjAc3qouSxRlPTd33s9h6ydZWRknF63jaaJQYGrJ6hK5RxF0ZicvEbgB1yeX2CaJqEsfq+ZJvVahVwuj5XJEIRCzy1O6F9fvu9yenrEyPAkumHSaF5imZl+b4JlWSRJQhCEyJqKrumMjIwQBD7dNPurKAr5XIEwitDUVHIjjvrTbdVaFV0zsCyRFZubmyeRJCLfZ2hQKMNrmsHW9jrxefgbiPB3b10x7DRfZHhUmCiXSkXUkQMcp8fM9F16PYdcvoCuv2FY4E9SyN9nf3+fwA9ZWckTxgoLCPHMMWv0DcO+Fgw7SBlmZ1KGrXsMrA1Qr+m8evkX/OhHP+T4aIPplGHn1gckd27TbHwlGNa+Kxj2oIE7+RbDBiZoyLt0vvkG1TTJvHuM604D0Gp91WfYgfY13YtxwbCzNufn4nxzuRyZQpbBaomtvML+lmDYaWp3Nh9DpK1wcnTAZalAIZjm5atD/EBsWL63mTJMYnFxUQgLL26z90Jl7kD0HIXzIQuLC/iew/bONkmcMD83hyxkpRh7rPCqVuDBl5es3hYM23ixwXQ4jSIvp+fyMxr1OrY1isIWU6MOia0ykTKsvHqTF46LdfwaZqZ54vlIW1vcuHGjz7DZMCSaGGN0bJIX/nMGLi7o6h/yzjtCiuDrdotFYlzPpxm3WbiXZXMzBnWPZ8/FvrA4Lxi232wzutd3NQAAIABJREFUUr7PT5/9t5jqAtFsmmyQEvZ0A+PgELmoMDf/DusvEmSljr6eMmzhimFz6CcN5OkhnnsOCynDtlKGLS4t4ToO+cIyivIlM9dcZOmKYc948FWDTz75iL0vNA7VQ6ayeSRZ3Pf33rmLdrDHpGqJXmNnku3ca7SNBGdC8OWdnoOcMizXzfBCGyI4n+Z52oNVqJyjFDXW3mKYZ14jnBBitqF5SzDMc7GOM8zEAYGvEa9uI0nC/Fow7C8ZGf491m7eovHgkqJ6TCyLe6XPsBcx8qrcZ1ilUsJ1rxi2lzJsDk09QJJ28GOHbFb0eVW/+Bx99SZHR3uMjA4zNzdPWZKIIp+PP7piWJ2t7cu+Gfp3Wb8VgZaqqtxYvUmSSP0m0KydxXMdXM9DkVTa7SaKqhBHUb+BN0liivkCYRTjB22iOBKSAI6ITnu9Lq/PzjAMg4xlI0kSsiwRRzFn6Xi1Yei0W13iJGF2dhZVVQjDoH8cl5dnXF5eUCyWGR0do+f08DyXjJ1BTZ/Se90OR68O0A2h5WVlbGqNOmenrwChX1UsDVCpNRkZnWRkeJwwnQbT0hKUpCi0W20kScayLFRVo9XuJyQAqF5eEgYhg0MjZHN5HNfrNyrHcYIUJ2mTv0SUxMIPEfmN96MXkcQxqqqRJBBEImhR82LiQvrwNuGzXVrH5yitBpKqiykxWUG5MkRUFVpOFy/ukc3mKK6tMPNHP0IfESWGTquNoQlZDkmS8f0AVVWI47gfOGQsi3rDodNpU8gXSCQJx+lhZkRJL5OxUFWFWq1OrVYlDHwhKIuEmXpjNaoXhGGIoRtIQG7oOrWDr/teh6omoWdy4tpwHSzbJk4Sut0e+aLIOEiSjKIYJCjo+XFMO0fkd4icVIgujpAlVUgpmAmVyzMKpSG8npjiAygNJAwOldnf3WJkdIpa/QLf9ZhfEDf/4MgQvuMSxaAoEoahp8HPm3PpdTtUzl5TKJUolgbQNZvAD3FSOExOToMkpmxdx2FoaJiLi/P+NKAXiqyTYZq0200GB0eJwhYJSX/yNQh8xkavocgyqq4R+DkOD/eZmhKZAk3X6Xa67OxsMDI2ysjwGJ7vo6ka2pXOmqqIkuHlmSjVOx6SFJEbFZpYoyNjNJtNxsYGqVQuqF6cYWWymLZNL5WRgB5LS8s4zndPu/9dWNmsyo1//O8iJTv4z99m2EXKsGe023UU9YNvMWxra5NiocBN3aQ984ZhT58IhrWaj2i02hiGEAKVJAlNVpiPTNq5lGE1nUplgs2tDX784x+jqgpzcYCTMqz0y09Zv7zgvWKZrD3GY3Uf7/oNMjMZ1BdXDPsGK9zl3NB4IUnk79yl1ghZPxXTj/NxmYvLKuWRJiutSczhDutxE7abrN4Sm5RlZVh/uE49rJK5fYeVdzUefm33GbYNjF7+kvV2g8GPvse92TxPnmaZmRZc2NzcYml+QQRb8RZRskASBywuysjyrzNsWV7lRfSc7e1tbiy/A8DOhw+Jn50wmolonDeQ9nW6coV1eYjlFcGw05rCwyddbt7skc3GFNf+bYLpCaopJ41Wm1ktw+sEdnZ2mZ6eYX9/j/X1de7eFZmR46MjhoYH6XTa3Mrf4lg64smTx7z/4YcAZI6POFMVlpdlao0qYX2axcWEg32JW7dFVNio/oL1nmDYzvY27wz9IV8cfE3OFk3oLw8krEyO2Tt5fNfhlXXG3fsLJLHN2ESqQ7ezTTRzk53tPfSpDwXDnnfYkK8YJjx8T+wcnpmw88tPuf/+x3i9FvWqkEUoDSzw0ccyf/an/xff+/7v80W9QrF1nfkFwY5as850aYhoHqyXEpvGIUtLN8U+kk7HXjHs/LJEsdTDlm1mzGOc/bSszDQsLaLpBq7Tpj6Uw7k4Z02bBqATNrGOTzDsYdrdNwzb2l5gbU28xovAR25dY3JcFQy7nePwsMnUlDiGg8My3fGUYZ063/vkB3i+z/KyxpPHIqBbXlFYWzP4xeVDDONWn2FXD9+j3xvjwYM9Jn7v+zz77ILqxQHDmXuYUza93lXzu8KStNxvc/ou67ci0EqSBN/30TSNdltMqLiOSz5fECrYoU8ma4tpK0licFCkCg1Dp96o4XkehmmhaTrVSq3/GuMTUxSARr2JjJiM8P0ATdNR1StDSBmn18XOZmg2W4SRT6/X7U8U5rIFbDsHkiRESC0LJc2QXBk+J4mYINF1jVr1EtcREgyGKTZ9XbfI5opk7DytRp3AdwniiPLgEL1UdfvV/gExPuWBYYIgxA998oVSPyMRSwmlwUF0yyaOQ9qdNt1OFyn9soMows7mUSSZOI6IooA4SdB1sz8RSKqeL0kqgR8IbSNZ7pfBME2U+2vEMxNEpxXiRhfFNNHLRUbmxIY8kbFRVQM/8jFzNuWpayRxQrclbuwkFjpKge+jqAqKoqSK+W+EC3U9DTaSmCgS2i09p9tXjo+CiCCIsLM5wiik3W4jpZOhV0uWVTqtCr4iI0U+frdGHCVE6Rh4Pj9IGMcYpk0YhMTIaJZJp16hXhcTg9l8AUk20HITWIUhXKeH122ipB6VJDpxHNBp1cgPXSNjF1BkCDyduUXhRdeoX6LICqWBQTRDY3ziGr7rEqTnogAZO49pWdQrF0RhRCaXI/Acui3x3bueR71Sodmo4bg9dMNioDyEnk5hxnFMLleg221jmAaGaTE6Pt7v4Wo2qthlcX/omsX56wOyuRyeC7WKSO2HYcDwyASabhFFEbqZYXpmNs0UQrvVRNN0hoZHSaKETrtFLldAlhXidHz/6NUO07MrRGFArGkMDJS5OD/rX1+madLraZyenTEwMIhp2ZydvCJK4r56vCTLOG4H0/z7VTqM44Tn/nM0TWNsLPVrbbU4y0esfothG7AjcaUiZlom9eFBKp6HkbTQDnQ+r35Buy1eY3ziLgUe/RrD4l9jmIuqKG8Ydnz0awzbliTuzMdYsoWye0w0P8fybcGw3uMse6pK8a9gWEG3mLw2TxxHPPzqS+S3GHblTvEX+39OfOzzwYefsPOwxfmsz+raGjs7op8olhIuBwcZsGzi7W3aS0s0G12crmDYeGeEzc0QRdkljmOiuad9hi1tpQybXkBWPXZ29pmRZlCUFZA3iUOx2S7eusWOaSJX6kSnFTaLJZZvvY9eLmKlDPv3/8m/xf6+YJicO0Gdusby/AKPUoZtbWzy4SfDzExPs7e/x56yx+z0DKqq8OiR0Ay7Ytj21ib37t3v+4Y+T62Topk5gm2ws7OEUZ32118j3c8zO3efjY1UrLalMj5a4VC5gVS2eX74kDjaIorF/fbuu4OEmzGK/TbDbDr1Cl9+KWQk7qUMU3+VYeUrhuUFwx5+QX7oD8iMTHL06iWtkSYfL/47AHz15S959933eP/DIQ5eHvDD5T/Ad92+DZRqqGTu5jGPLOrBBdOzc2i6TvDsCY/eYthQuYxl7pHL9Tg0LOLKEH7KsPl4nlxRMOzlq5fkcvcZDccxJ95imL76bYa9k+N6AJ++fsOwT+ZnkVWFaCNCD47xk5DdXcGWxcUmmrJG45Mhku2tbzHs5i0R3P7lX/xz/ujHVwzbYGDgXS7OPyXZSqWFbploq6uCYYVBbt3+B3z6k79A+WaVe/euGLaLk196a1/969dvRaCFJJHECa1Op/8Efnb+WkgRRBG5fB5VVrBzNp1um3pdjC0bpkmz0cAwdIrlMsTCp+pKGT6OIrKZLJaRwTRNPM/jsnKJaZrohrgAPM+jUBKeb5Zi0GpH6LrZ99RLiMkV8kRhSAJ02m1UVQQPVzbsiqrSqFfxej0UTSUKfAYGhxkYGE5PTyaIfCHWWCgQeB69Rp2D3Z2+npBlmnTabTTdoFwawfN8GrUqnicuxHx2gErlnEy+iKELfz1sGccRv1ckUGSFwPdIkoQkiUCS8dzum1qyJKEbBkEUIStCIiAIgr5ie0JClCTIYyPIY8MokoKiGWgZEyvVSjINC8/zUTwHdBPPdUnimHZHBLe5bBFZknGdDqaVQVUlIl/Y9lyp8QvRUAmQ8TyPYrmMc9LDTbMcmir883RZeBxatoXT6+F0e5RKYvMwLItiaYDjrccoYQcpDoiR6PXEdz9q2SgkBL6HnsmgqQaZrI3v9uh10zSyamJmB7CHF5B1E6d2iW5YuJrYXEKvhaJomHZB9CY0K8iKhue5+KkHnGFYtFoNCoUicZzQ63ZJ4qh/Ex6/2mdiag5FttFUA4WAZuWMbL5EriA+0+ulOWpDl+i6xunpCbIiIH7V45ckpPpUJoHvUatdiuA/3eCCIKRaqWBmLLJ2Ad3M4roRpmXhp5mT6uUZlpXB8z2CIKCQLxInEu22AIyqK0iyRKlYEmKloU8UBfi+31dNnpyaw/c8rl+fFRpkqsa169N90csojigWC/i+RbNZQ5EV2s0Wg6Nj/aAx8F3aXafvafr3ZXm+RLKZ0Ao6tGJxblZGZ1Rqcv42w05tOkmbwaG3GHa+T89Y46JisXhjkdJ6hOeJzWU+itDu3OvryHneM376s0s2TBP5pfhMr895nL/Ms6qvsv96l9F2G33NRMunDDNicnGeuXCWBI321x3UFYXgwQM6VwxbURl+IBjmaitED75k4KNP+gw7k3Y5ijJoms679+8TeM+oN+r0HIlXh2KYZslMaHbatNsPWFn5Ht2uYFg+K44zn63y2WdvGPby8Ajb9tjZSwdt1AhbzhP4oWDYRgRLN/CexjyTRKl1EdBfvgRFYVfZRU4igmCO3R0RrCXRBvMLS8iahjyWYEkKR5qBdsfkzlsMk0d8lj0HTb+NncvxzH1CuyMkInLLSp9hURig7i+x03uKnNqJwVsMW7zBM8/jdrmMhPSGYdsQhi/Y3lpjoqth3bVwHvd4kvzsDcNu36bYmaG29c9QwnGk+AUxS0z2xH1tWKDcFQw7PM5gqAavs2cMlvNMpsMSTqGCuXOMPfcfIq8N45wdod+0cC+EgGvoPWRZ+QjJLnCiHtJqNrixvMrlo3P87wmG3bx5u8+w09NzHj969C2GZcx9NjfmyOVtRlSDvX2NYPuMbF4mVxCZxOulBrXBEnO6yempzaxyyagkEaZDDGES8/Rpj5UVk4X5ecKNX3Ji5wAR/P4rGfY0wrxtoaVZserpGe0fpgwbDCicLSIlG4yNCYa5nsKO/IJSUSF6t0AcbhBFOZ77yRuG/f4cz/sMmxUM86YxzDcMe69Y4Plzi2a7hu+lDPu+/hbDItqPvu4PZn2X9dsRaAF+4OO5Hr4nLtSJ8SmyuTymYdJoNtA1jfPzcwKvi26KE1ZVhUKxKDaNKMZzPS4uLvuNt6ZlIkky7W6NBCHUOT42jiwrNFJjT1lRsCyZXq+HoshkswWiKOrXdMMoEinCBNAkXNfFsjIomt4Pxhy3h+eJIEuSoOc4eK9PyNjiqUI3TLJ2jvOTl+SKZTrtJnEUi6bjVPm9NDjIyMQkbk9oNCVIKKrM61SPabu9QS6fZ2RiCllWODk6otlokiuILI/vB8iShqKqJMSARBLHhJEn+oEA3cig6wZJ7IKiQCxKS3Gq6RMmCQoJURCQSCCpMlIYkkQxcdr71HUbeJ6H5/YoDo7gOqLJ3U+NP40BA0WR6HaEF5+VsYS3YhhyVQh1uj3xGp6LoqpEUUg+X6DVFMGanBOZMOETJpr8DcPAc1xqVTFNYxomiqpi5QpUdjeRE5HV7KUBH5JMMV/k4vx1f8o0Y5tpf53IJ8QxmMVxzNRAXNMNVEVFvtKW6sUoWg4/iJF74iFAM0yyuUJfCDQIPHL5EqTekFbGRlVkdnaEge345AzZnNDismybJI44ObpANzMMDo+nh6pSLA3gug6joxMomk6708FL74VScYBWq0WvU2dgcDT1jwz7pceFpTWqlXMSElqtKkND4zg9ITZaKInMSK4wgOv1RHP7lX5O+GbSM4lB0yzCwCNj2ciyMM4O/KBvBt7tOnTaLUrlEoqiYtsKrucS9cR3n88XqNWqwoO01wVJ5vr8Ip7n9UuF9WqFXC6HmSqf/31ZpgHTMz6O6/H8mTjX+fks2dwPMI1XbxhWOCd41UXvpgzTFQqzRc7z40g78OSJQ/HilyzrwmPwlWUiHcgMDV8xTOKHP/g2w/xwGVnexZnsMbknY2YLRIU3DFvfEAx7vhCypkm47lNuR3eQVtfQNBEkOe4kz65fouyqSEvQ86fwXv+EO28x7LW9x/nJMZPFD+i0h4mjKjKwJ+8D8L3BUUb+0SRPHzvs7XxBsriEosrofYa1GSgXUK1cn2Ejw03Gx++L8/ADLi8r32bY5hXDRGCxubnF2tpNVp4/ZV1ZZjEO2dQ2iCNhOh0mN9jbS5ibD9iSQFVlJDlkIYrZXBfTaUkY4V2/Tjtl2FPnGeqewnRJZJrGB34PRdnh0TcjmJaLlVH7DFtcFPdLFPToOs+47r3HsbrPRnSLd9+9z8MHDwC4kdtkR1lOGfYCkkWMm7ssOi5JIhj2qllnW1Wxcvep/On/hLxwnZtmyONvxGuEym3uvZsybGkJxwvJ1Cuc5s4YaYhG9TiGV8VxBr7FsBVkVXwnUS9mWztlZqbElNWByTU0w2T4+z9ic1NkAaevTfYZtrC4hCRJ7O/t9hmmrM2Qy+dJWODo+Qsy8SknR3vot77P4LA4DkkZp7jxnF1XY252AuUgoB128DzxQFEqDtButfjJX9b58KNRlJu3mN3ZYf9IqPFblk2hWOgzrD7UYao3njIsfYi/f4eDZ48JAh/LuouhQzg7x3YqUq3E+xS024TBMzJHNoUbgmHX/AA9ZdijrkOnPUqpfImiOIJh112aGynDdgrUBqu411Wcr7p880jm+vwf42keT64Y9vkFuVyuPxjxXdbvdLR+t363frd+t363frd+t363/g2t346MVpIAMYau06yLaD+TzdJzHKq1KhnTRNMylMplEkpUa2L02ZA1SqUy1eolQRAQhSHZrM3AsEh3VyuX1OvCCiebydHpdjAMnTjw+9MjiiwT+D71Wk00++pdfM/FSNOEhWKJBKhWK0iSxOjIKFEU03O7aOnHl8vmKRbKtNtNkeGQZOxsASmVbwijkErlknyhiK6bWMNZWu0GpjHc9yE8O3tNJpMVdj+SmPDyXBdNF0+U41Nl7FyRTrtLo3qB5/lUKpdE8dXoq0kURriOI/orEhnN0FAUGTUtkyqKTBLHaKoBsizMvEOZEBHty3FE5HsksejliqMIWVJIwogwLcc63S6SLDI5uiGmOnuu0y/5CuXejkirSo54T0QztmWIvpye2yHwA7rdLpZl47ouiqb2GxI7nTa2LYYXFFXFdVxiSRKls7SfzHVd2tVTCHooikIuX0bXdV5tizRyrVZD0XVGRic5e/0KVVepVusUi0XMrNBu0QtjZIfmQdGIw4DA6aHob0ynZauAWRyFUEoNk0N000KS6PeTgYTjOKiqgh8EojyUybN0Q2QkKtVq2g+nYOg6yBJjk9MkCbSbIiOh6Rpur0e320EzdAzdoNcTpUIQGjV2Nke9ekqr08QwMkhI/R6t0A9ISHAch5PjlxTzJTIZmyiKcFzxN4ahE4UBGctG0wx6PfHZ2+mkZ7XyGt/3iMKQ4ZFR4lhCVVVUSyFOSwhxHAutuzghDFws00LXTPy0TzAMQiwzI4ZPMjmRGQV0TROOB8DU9DSu41HIf3dV5b8Ly3XfMGxqUjAskbL0nCdUv+iRuXWLg4NToqhMMlZi4IphN1Yp2Tni6iVBMWBjfZ3JezYDwyKDc/iZYNiro0N+8L1xOt3uv4JhNsfT09QvLtir7wmGvXYxdNGkXihekgADrSZVaYePPvp+yrBHaNviGjtV88woZdrlBwSvr6cMiylPiaGOMFqnXLnEKYiynzWc5eHXJ5iGy2Q0BcDnn18x7A4stVD29vCuuZzoolR2O2XY4eErhgcumByf5vRMJorFfXBkvqIQlnEdh2tTk0iJzMHLr1GUG28x7EafYSs3dKJAYiVc7TtsrAcR0XOPrUgwbD6K2JcUknCD0BOvMTUxgRS4uIHH4csj4jBkcmaKIBDZlyja5NE3BkFQBmkKRXlGAszMTKPKVwx7kDLsEQvWJ+w8dVGWVXRd9G5+03mGfTdG2tlBUVdwn3/DpiSxumry4krp3HVpV3/GYjBJXVHIlSsM6mvwSDSp12qDOO4ozZaM9HqblYVF1qt1inPvYWZF9k0vTHDvnXmM7AFJOMfDJ49ZHsnwZeofKV8TDDtYlwhnPOL4CffND5CkbfzpaXHxbkY4yw77+3tMBzOoNxRu3rzFjWUxpVmpVsn7efaUDYw1nUV5ifmFiCQxkVKGHegabvWSiYlx2o++Thk2iWEINrzNsIffNLl5M4PkB7RShs1Oz+BVXJ44DvbxS9bevYNumEQbG1xL22te7iRE4Qx3bmc4ODCY7HWxtBPWT8XnWS038P3/lygM+WR6lF7vDcM2+wybxzADwbAXT7Heex9du8WeLAzFjSBk5tUx927eJP5hjo0XgmFrWY2HbzNs6jpqev99l/XXBlqSJP33wB8DF0mSrKU/+6+A/wRIVdH4L5Mk+dP0d/8F8B8DEfCfJUny53/de4RhSK1eIZ8bYHziSi8FwjDBdR0UWUFxXNrtNp1um3JZbJRRHNHtdTEM4Z3nOQ7ZXL6v6+O4DkPDo2StDGEY0e20CQMT3TBpNsWh25kMqqozPDxKFIV0ex3KpQGu+l/CIAJZIpu1sU0bSGg2K4yMTfU1rDzXJwh84jgijmNMO0OzUSObE19EJpMBBgmjAM91kWQZ13VpNkVdHCBj2XRTk+Q4SQg9l267zciYmC6RZZkoDmjWLjk9PSOXy6dWNqIhNop86tVzEkBRVLqtDqapUxgo9y1BwjAgJkJTdSJkYllGVkG5aqj3E1BkpCQiCgNkVRNWOqFKtykCLVVT6XbbmJkcvuvQ63WIoohsKkPRbjXF+8kSvW4HTVFJpIQwDEjSwEE3dNrtNr4i43kOlmULC6VUx0aJFXzfxzRFL1onbhOREIRdjDSgk1QVYp/G8RNiv0uUGWb4+izN6gUAlfOTtLcuIl8oUa1ciu+9UccqCJG9/NgiWiaPohkkkoeq6yQJRHE6gCAbBL6PYeXJ5Qt0Oh2cXlcEw2m5VdN1dE3IitQuLjAMA0j6gxKFfJFer4tpmrSaTQYHh5ARJumaoaXXWEDGtonimCjy6Xbb5PKDfdmEWvWMXK6AZWchEVemJEG9JqbOCrM38HyXrJ3l9u0PCHyXTreLpqp9Qdxuu0U+W8RxXTQ9Sf0nVVqtdDDALtJq17AzRUAhmxXSD5qm0k1T5qNjRRr1CzRVo1qt4Lg9RobH+9p3nufRqDVxvQ6SJKbQBgbHSJKkP2Xn+x6Gqf//mtj5111/awz7skL+nW8zbD1MqLsO9vMXZKwMY2NjdB59zcuUYYubEd3lNwxTFVUw7Klg2NQ1h5XVUbLWLGEY8eibT7l5UzDswQNx6HfvdJlV11CHRxmo1uj2OmTfH2B7W/j/hYH0hmGvhthubjE4eMnI2O+zUxUaVrg7zMzM0evN8eLFc0w7S7PRZX1dPAjeuXOb7e1nSFGAN/MUSb6B616j2Xz6hmG3bbqPx0l4RJyEhNcjJlpjLI+JoHJXniKKAyYGS7x+7ZLLreO6mTcM2/AZWiywtb1NHLfptqbottoUBva4nRG+juvhCza3llhVbxDJQcqwbZREiI0u+Ambyi7STiQmr1dWCaMXbIQW8ciVlMWkYNjxKfXSIJOT43Q6TV5nxTWqtUZwJrIgJ/TWv0FbLrIgLeC6LlsvxSS55+oMlAXDnnkOFjbr628zbBn/+XNM8xaGvsU3ccLS4gI9J+JGyrAtNWYxnuar4/+ZeLLLXDjM8PVJCgPi2qgUTnCdPGNjTXrdEtH6OrphMtKooxTEA3i+LRi2d2CwMKugrukkFzA3LyQRnq6/IBj0MW7myb1MGWZ0CS2fxSuGaYfoxi2WJJmfXfwCo2lQKL2PsiIYJp2Jez40Q1rNJruDO0wipu4OXoqAbnZmhkPbxrQyRAvzdNfXyeUv32LYBmHufp9hO9vbLC0tMXQmSoeaofMsccnar7l1+wOCJGVYGPKyz7AO+WyRKHRBStjXNKz9FXoTgvlZucfoX8GwVUc8uGhjFo36BQeqQXWqgvPpTxj55IdIqbbZ9c2YWu0B7p/tIElQszJ8+NEYUZSwkppbq6rMgan37e++y/ouGa1/Cvx3wP/4Kz//b5Ik+a/f/oEkSSvAPwFWgXHgLyRJWkyStED6VyxN07g2NUun2+H16xMAdMNgcGiY0dFxms0GfhCQsSyq1Ys+pKUETs+OGRufIps10VTRQ7OVTnXESUQuX6DebGAaGWEwbZqUikXiWETBQ0OjqVZQF88XIpC2beOnsgmyLIMkoakyQRRQsPNIskIYR4RX3n3dHkHkMTgwSLvdodVsosgKlYoAYbE0gOe5uE4HRRY6MaqqoGm5flN1Nl9EMwxcx009AA2KA+W+r+PW5iZ2xsRzRXbE811s20ZL+9HazTpJHGGYFpVKlVa9w8TUBIqm9psaJUkiSc2NoygSyvFxTJQ+DcqqShIlJGGIJCviQkoigsDjKvCUQgkpScSEU+2SKI5QVf2NyWkgNJwSSSKKIjzPET0XSdL/m0SSUFTRg9Xr9TB1E0lK+s2FhmHgOA5hGBLHEZZt4bseoevSSfuWNEXcQLpdxIt8NMNE0SyGU/X+xtMKzXoTO2eTL5RJ4hin08QuDWMPCSib+UGUKy+1IMLMFvF6g+hZsTEkEbSaHWQ3JpvLYlk2jXoFTYuwUyPubqdNgoSsqAyOjpKxTC4vKvRS7anp2VksMkhAaWCQ87MTCsVBXr8+ZCKVVkiSmG6vS7fdJCHh4uKMmdkMcSw+D9930bVhiqVhLs9PaTaajI2P93utDF3npNVAVTRhEi1JvD45NRGfAAAgAElEQVQ9JvQ9SkXRQ2GYGpeVU3rdDqXyEKquU62dp031YpptdGwS3w/xfBfXdYljH1UxaHXEk5wki6EV284yMDBAtVrl4vyMsfGJKwJQKAGNmNPTV5TLA7SaNeETmTa/GxmTKIrRVf03IeFvev1T/k0zLKfh/v4slUcd8rkrht1EHWr0GTYdBChHR1SvTRGnHqZbyRalkyJj41O8zppk37nPwcsTtvb+HwDi3Tkmr50zc336LYbdolQscueOEOAcGvr+G4ZNeyiJYNiqJq6f3ZRhR6+OiKKI+3aeU1khjDeYunbFsEnana+oVQexrAytZpNlWeFZyrCH7QG8iTGuOd/w+LFCwsM+w6ZThpn59/Ded3CdDL1eB0M3UAb2+z2iW//n/4F9x0R3Z9jb22NZVbAnh9DSZvrJyQk6nSZh6PPzn1cZHVK4PhMwNqWSWKJfSNqUSNjiebBIFEQsqypRrBKFqVK66rG0vEzseWzt7LKVbCElSwTBAVcM21jfwPO62PkSYe2SwXIeVT1kLhK9Ys8CFztl2Nz0NDkvR6yGbCUJmTnBl4UwoFn/kiiKmOw9phJ9gLSUEDwRe49haDhOyGy4ThBH3L57G9/1WHddoj7D9tC0CvpJEW9UMGxPO2J48h8A0Hj6Jc2hJie5CfIrZZLXxzhRwMtsgXfqIktoTgyiHOqwmLDuRpjZ9zh8/C+p5gTDbr7zfb558AL5Zkx2Iotl3uV5/TNsLdtn2KMgYOWFh7y8xEezMxwfmVxefEbvJyI4mZ7VODo+RkamtPYR52c/xb3wyFh63+x7a2uTMIp49PUDFki4KOaZcXtvMewauvaSYimkdH6K1/CQbkgcHYkHPUk2abZkVGWUWI/Y3pF4dXRM6CeUiuIh3jDXuaxc5+XLDqVyHVXXGRi8xrU+wz5BH9Px/fU+wzY3fVaWDVqdq/cRDFuzDfyBD/mcKhc//5Sx8R+J97gpUXDvw1df8rPTV3xQ/lAwbHeXRynDbmZMXPcppCLe32X9tYFWkiSfSpI0/R1f70+A/yVJEg84kCRpF3gP+Pw3vgdwcXFJxs4QhVdSA5ZQBO926fZ6yFmFi0oFPwjo9sRIaRhEmFZG2Jc4Lp7jcny8Ty6VASiVxCbjxR6tTgPDNEXDtNPra0v1el1kWSYMQgzTwrJMHMftyyogQatZR5Y1NF3n/OKMs9MTNl88Z2hYNBoHocP07BJBkNDtdui026L0mE5fO06PKAy5PD9H01U03WJsfJIgCPrGwE63jec6dLs9Xh8fI8syE9emaKZfrqpq1GpNTFNsVFEcMTQygpeKova6DpqqUKke0271GBu/hm6YeF6Ablw9uehCLDRwkSVR0pMQ+kgAWqyJTJYig6QShQFIClEUol6VBmOfJInxXJc4CtAMA1XT02AMVEXD9YWKexhEeJ6ODiiS3FfST5IYWRb6ab1eDy0Nbq+OIwwDLEuo/WuqjCzJRGGIYRhcnApxRDtjE3oOmpGjODeM32sQRDHZopgcsnI5atUqGdvm4uwM1bQIeyGaPURuSBga54pDIkgMXKEar6n4ntPX+9KygxRsBVlR6HS6IEmUBsT/46WNxrpp0ahVKA8OiwATmaHhYVxHfC9ur0fGtqnV65QMgzAM0HSFkdGxvriqoghdM900GRgYYnhkgsuzs/403/nZS+I4plAYwLQMZFkiimJKZVEir9QqlAplZEWm3WlhZ2wmJ65Rr1aop0aoE5OTRGGPQrFM5fKC0YlJBgdG8DxxnGdnp6kIZlaMPisK3U4zDawE1HtOG13X8T0PSVIYGByk2+32bXxIA05N11lZvUvgBzSbAnD5dGgjk7WpVqs0k+ZfyYO/6fW3wrAEiheXjC9mODlK38rcJd4axPW6dHuTrGdPqVUqTDoTdAcFw2aDCGVsnO2dPcLI5/rUNeqxRy4vprkEw7aJ4y1aneA7MOw2lmXyxHnGUpqZnZfgYcqw1TWd8xdnnPVsNl8cUW+I72Fmtsf07C2C4ISJboeH7TbumkGipAMsKcN++fMrht3mBz8UDHv8RASNNx59zbNfZdgfTDHSFCLUqqox+EWT6FZMGIb48Rz1Zo0LX3xew906B/t7NFoNxkYnKZRLHL6MKA8H6Knh8+qqzno4i+e7yNu7JCsrv8awjfVtiGZQlleI1l+wuAzbGyErq6Kstz0fkfge140T4miGvd0dNMNm6YZgmKIc4Po3UPZ2eRFE3L33DjqwLMnspg31W0nE+Cjs76vM06Ode4C9YbO8Isptmxsb3L59m8ePH6OpMguSzMb6OjeXl7g4/SkAduYu68+O0Iwc7819gt/7imAj5l5RaPQd5U6pfW6y8Ac2z87OqJkWSS9EO6lzOivU9q+9J3gkBy7q4QFSIsRcwyPBsIN75xSGRpBLCp1vunC7x/sDH3+LYWvmbb6qfcYHu5+wH2usrsosLn7SZ9iOJJGxT6jVhyhJ28yGM7T0SUZaPaQlcY3t7e2TJLB2y6RaHWJtdk4w7OCKYYc04inu3x/Db9UEwzbeZliZ9+/LyHuCYUsZm/mJa3xZ/Yx6XbzHxKSwlCsUK1QuBxj90SS103Nyr0UbwtnIKSevT7ibyRK5AZvKMt3xOtUvtjixRVwxOTXG4eEhpmGxJCkMMEjXOurb+KyvS8wvzKOtrbFS/pCBacGw7U67z7DSvbvE1Spa9Bufvb61/nV6tP5TSZL+A+Ah8J8nSVIHJoAv3vqb4/Rnv3H5vo/TE9FvoSQ2ykJxkMuL15ydnjI4NMKrwwMydoaMbdNqiFp6xsojpWKYlUoNVZXJ5Qb69jqQUK1WKBSKIohI9aVA5jxVK87n80yMX6PRqJNIYNtZFCUkSLM8vu9xenZCrlAiacWi1pwrkMnmyOfSclmnQavRpCM1uahWRP03ChkaHk2PI0YxTCam58naWXzf5+T0BFWRyOZF2t3ptPBcH0mSGRqdwDR1VE3tTyV22m1en51wa+0OL49eYttZqpcX1KtiIysNDqPpKkODgxRLMRk7j+t76L7/JsWZ0C9P+J4PYdhX0xUrhDhBVrTUhiZJ7Xzoe0H1HBdV1UniOO3VCbCyCnH0Jo0qph1D4Z1nmWiSgaoqwg8L8VQhyTISifA7bDcJfJ/ygAiMa81LimXRc+V2O+i6iWkaNKrn6KnkQfPsAFVVsOws+WKZKJvHcRyKaaCVzQ9RPT+h02pjZfO4rkd2eI7s6CLZori5dd3E91ykJEHRNFrVC5qNU2RTPCEhq8goqIpMLpdHlmVc1yFri4AMYGhoDEVR6XVaFIpFWs0WZsbqS2o4TgdN05BJ6HW6FIuDXJ6dUyyX+lMrhp6h57QpFEoEQYiqqIyMT/QDvlJpgGdPHqBOK6K8CbiuEHwF0HQTO19IM0UicxgnMblikZExISSbRAl2No8f+FzLFYmThCihP4GpqjoXFxeUiiG6ronJ2vwQSRz2ZTkq5+eUBwe4OD9DVmRMw6JQKPePU9U0arUq5WIJ3w8wTZNBfQTXc0S5VVxRqWbd316g9RvW3xjD5EDiSa/HzTigUBJlm/MiDCZZzn72mIWP63z1ZY2MfYeMrdBqCAHFbSuPurtH/t0S5ctBHM/lNDeA3RFZMRYHqH5+yexsEW1TY2VVMGwbmdy54E8+/xUT439Ao/ElibTKiZ1lWVkmmE8Ztr7eZ1jls5hnnovZzpAk83z48bcZVim+JozKTOTzdB2dzLAoP7IdoywpTPzRPyR7ksX3n3Ny+hpVkVhZE6Ub5xu3z7CPR3+EeUtnX1NRZNHH02m3+cnZCf/ehx8x1KzzzH6OdrlCvfpnALRaw9xa04GPCKKY45MzwjDC96fZSkTwsXbFsD0VPwjxXRfLWk5dHGB7+xnECTeWBcPixYU+w/Z2Rdbr+tR4yrB54nidMFC4nVWIEWXURVaFvtz0NC+ePyfcCDiwX6Kqar83c+nGEp7jILHHoa4zMzaCZRxhqIcATI13UOQd1tbWeProG4jh1q2bNKo/7zPswdmfozoKln2PfLFC9Poa5djBfO8DALJ7W2yeb1FslVCvGNaIyE6tcO+9TwA4PLzoM2x5VaNVbRA2coyMvpNemDbcUFCVXaJcnt3DVzydmSZ7otJuib6kjz/+AR8++T6POw+5X3yPVvshr44tohlx/Uw545xpPjJbTHZuIhVB2T1HK18iH4pzuXPbpueMIUkyZ3nYkxWSzgTh+4INNxjgf/tfH6BKCiv6AgkvcF2HoY7g04EeYr4qEMm/yrD3GBlLp6vnEiRFxg+G2ZMV5pOElwk0G+J23e/oNNttvnovRD/UsKyXLOf/P/beo1mS7EzTe1yGe3joq7WWmXkzswqVVdDVQCtr0myMqo3ccjFccMN/wMXYLMntmE0bNzTa0IzG1ZBsNpqDaQJooKoyq7JSX631DS1du3Nx/EZmAehpTBt6ugmrs8rKjLo3wuP449/5xPuGbOdKBO4sAJXrYxy7x831FWdKCiN1+qsMqycMmxUHm5reJJPLcd8UkhkxO1gZm0j/zbPyf9dA618A/wzBzX8G/A/Af/3v8wMkSfqnwD8FGCgVyBfyBFHYL9mdn5/g2F0KxQFOT0/JZjJYVg5JUchkRXCiazr1Wo396zLZXJYYiXyx0B8l910P2+4hAb4fMjY+RrfbRU+Z5JK+glQqxfX1BbZtM5IrEvoBnV6nb0ydMizm51ex7R4xMDw6LrJBktAEAiGeWS7foKd0XNtBTxkMD498pbm7fH2MkclDLAKWjCXKAI4tTratZosoiEXJjpjKTYVsLkO5LABTKBZJWxa2YzNQKlFvNhifW8SyRFApqxqB73FyeMLU3Dz1ugj4TFNY7YCQskBS0IhxejaSLLJMt9m7OL7tLYohTF4fI/SUkmBMlTWMlEkQhISh0OsKfB9ZuRVvjdBTBp12C9fukLYyRFEksnfJCUnVNZAkgsDHsNI43Q7X9Wq/580wTFqtluhVkSRsp4eiysSRj+/1kt8T4jkOudIgKDopTcfvtfuWRIXBIVr1G9rtJpIioecnyAyvURqeRjfENfN9jzDwxdBCGBH4PnpmmHbrVkJCDCTYdki+UCIIQmRZaH95yXBAvXZDHMfC1xHRNxgFYd9OKI6jpC9Kx/c8zLRJJpuj1xWZrtvXqKrQztJUjTiOsR37rWBpHHL/G9+kfHOFEkdYVhpZUWleiQPH7NwIiiQLL07fZbA4yvXNNcQRcdLf0LN7mGkLw0gRx7F4gDm9vi5QNm9RGBhARsb1XDzXIQhDOs0aQ4l36PjkDJIkytOSrGCkUsiy2s9o1epVWu062UwWXdexbRvLSuO2vH5jfxzFid/n3xq7/H2v3z7DbvKoiyGeJzaydW7Qsp9QKA7w4x+f8n4mw9DDHNL+PqWsuKa6pjM0OEhrtwO5kG12GSoPYidldL/bw56a5PMnZ/h+yPfT36fb/ZIwdb/PsOPjJqpywXN7ipFcBtkPePqsw6QtbKCODYs/nl/lud3jApga/bjPsIMjwbCRhkp58Iah1DAdu8PR8QmTk5OkemIPdmbbFE9SnGRq0BEBS8ZKs7W9zeKiKMW3RtJMvdlmV1bYZpvuzVjCMOH/9+jDD3n16hX2C5tqqYTdbPDxHw3T6/0QeMuwf/Ojv2Tqj+YZHxpna2tbaAMmDNvbV1CkI+7cnaH9eIF4axv/3l0kSbynpaUlgtcvQd5jZ/N2YEX0t3qxaOw/2NvFSPp25+ZilpZCgkufvV3BMFnaQk8ZjI+1mJ4aZ6v2GjPKMzc3h5No8IW+z87uLiwsYFxfs/n6NRPjLRJt1kSbyieT1VheWeG502NN3SPe8vE7CcM6IV7okPvIYmd/lHVz5ysMe/Stb/Nv/q/XfPHFE3KFAvoHv0dm/fcpTQUcGUkgPrdE6LlI0jahHxH4rzm6aDB2y7CHj3BfODyP2nzw6CPiNyHy3htmVtfptERm/7NP/5qlpSUWgwXiCoTRAlFwSvZSMMwYTTPlTLOv7/Hae8X9M5NMNqDXdUk/vGXYIqrqI0kSD1SN7TjGXrDRD8X+kZc2+S++McDPb7bZju9wN2HYkyvR+P+Hf/QnKLtfZdjPEoYtbSQM675l2HrCsNnpSeqX4t/NfE0wrCAzs+6ys+PgeiGDA4PUR8RrOl/OYJqTpIwdJLnFxr1h5D2VNwnDBocGaDRrXGYuuavfEYNOlorb8oiSylAchRzsr/fben6T9XcKtOI4vr79syRJfwb8n8l/ngNT77x0Mvm7X/cz/iXwLwEW52fjSuWKgcERjESJOIoicrkizUaNkZERSqUSYQwxMlpSUjk/PaRQHGZypoTr2GRyWRrNJn7yENQ0jZGRCWzHRktJ1OuNpNk5ppFMN5pmhmKxxMzwMPV6HV1LkbFy/X4hKRYN91Y6QxD4NBt1HNsmCP1+b1Pge4yMjdPp9SgZBoVCEdd1CJK2jnqrjut7lNJZEUSVrwh8B1mR8BP9qfPTU6JIwg98ZmcXsLIWx8cnOEkWKJvL0e10GBwaxrZ7jI1N0Gw2+lmilG5wcnKEppu4To9GvUyt3kRVVcxE2du2hdearCgYpkng+0SB34eYRIyiqKIMKIknUOR7RFGEnGTWbqfOwjBEkkQJK/BdNPmtKKokSUSJBpbnOSiOTsow+9pTcSghxYimfy9AURSiOKBSFiKNo2OTOLaDoqgoqorvuRDHxHFEmEzsqKqGnErjuQHm2ABOp4qipQiSza8aGcxcgTgMkI0SRnEWqzCMljL7auhRkrXzbz+jppEpDBPeTqjEMdl8HkXVaLdbyInqftq0yIyL/irH7lCtXBH6EZoubFJkSSJKvMauLo+ZnFxA04U9UxhEKKqGqarcOmWFQUijXkeSwLKySJIIvm7Leq7jkMlmkeIYTUvheg6mmWFuYTm5V6Bnd8SpXpbo2V0yGYuUpvezXmEY4Do2spRCklVMM83N9RVDiZZXHAU06zWGhsdI6QaNZpUoCkhnchzuiZN+Lj8gfB9dm9HxSTrtNrlspv8+LTNN4AeEoU+71SKXy9PutOk0O7TqIqsxMFii06kDt9Yc/zDrt82wu+uCYfHyCEsJw7aiLe7mJnlyLBg2WfqI8GiHbUV7h2Ea3a6BYVaon9Yp5oo0xpr4LwXD7nge+sgE9nUlYZjwHJyKetQTho2MDHN4fMxMPk/dtfsM0+bE5OuKsk93u4uZzhAEczQbn+HYUwShz0KiqP7E9/hO6mM6+R6lkxOC6alfYdiZrzOWzhJTolS8olYtM9qsUq/kks9ySmSmUN74hLMh1qVFqn5C2xVBZTan0O2MYwyZrNprHI2d8OTJY2ZmxL10fHTSZ9iM06Nc/zlHR03U9XV+OCmCAlXXyeaukaQ9TkybwJfhzWviRRFEhTubRIrKXPSWYYtzs2xFEau62McpYwOQef36Nbu7EotxRPDQZelYMGxfkpCkFaKwxubm53xQHMKcvgvJgQpge3OXlaVltjZDgrRg2FYcoBcFwzZDla5tYykZYnWRyHvJ5nZMJ46YTBi2vq4hK2mOXwaYfzhA+HQZRXtFsCn60dTpMe5/o8D2Zo7VjY/IFGepFxpoqaF3GPYaCPFfe7yMIjxH473CMM2EYVu7e+h5jQH1uzx/8XmfYalUqs+wQrFE9RcJwwZSmNOmsKp7h2G9Xoipm6zOrBDOSyiygslbQ/FwLaTx2WeCYQ/fZ1qCre0INxZs6HzeIpPNshLHZLRjXM/h1Mwwt/Afi3tpR0yj/zqGuY5g2ObmG+7cuYu8mzDsbsKw7wiGDUbDfNl9ytDhGFcrBtFCla0oYDmT4+mfi9v7XYZ9b3ySztM2V+8w7Pw0zchowGg4Rq1VJZfLM9YZI9VMcVYXgxADgxNUyhd994/fZP2dAi1JksbiOE5yyvwnwKvkz/8a+FeSJP2PiEbSJeDx3/bz4jgmnx8gfucBdXF6TGlgSEjy6xp6Sufi4kJkBxIj3F6nw8j4NL7vE4UhvhdiZSy6t7Z8kgySaBauVmsMDg1RKV9jGAZpU0xD5PJ5dE3n/PyUOIpwFA2kiF5PXHhZkQkCn163SRiGeLZPYaDE/v6pGNdHZGBqtSqWZdFp9yj7ZSEcp4oAxjAt0ukcrVaTOApptWoYhkGz3iKdjIjGcURxYBTDFBYpN5dXmGmzL87aajWpNWrUGlVy2Tyml+bTTx/z4IFIZ7baIjM2PTuH022jaxr5QgFZVqk3xEMuDELSaYt0JoOmajh2B6fX7fdOhYFQZFZkBYlY9MvFIZqmIqsCQrKs4nkuvu+iyLIIqHyvH3SmzDRK4BNFonToOb3kWqh9OHiu6IGTJQW71xK9cUamL0VQqd6QNjN0O01UVROBRxShaTpmOpfswRhZVvC8ANu2SVklfKdDt500PaJg5AaIUdAyY1jFMSEYGov+NoDAc4kin5iIKIgIPQ89pUMSVPbadVxXQ9NFsCrKGMlodiiuWdrKIqsqiqRwcrRHsTSAJMn9gC+TKQiJizhGQubs7Jjh4VEMw6CWjPjLkkKukKdWreC5rjChVlRuq7FyIkFCHKJqGplMltPjfbSx2+DXJIwiGvUazUab+aVl4cnp2EwmE3C1Wo2UkaLRajI5NoXn+4lptPgcjh9wcX6I53bIZEqYZpr6dQUrk2NyWmQsgiDANNNcnB3RalTR9BRnp8fki2JKynVdspmMuOeMFO1OU/iRloTootjHdUbHJvruDv9Q67fNMDtOkf/glxj242Omv/ltoqiIrh+ip464uKiQdaY5vGXYeIsRHHw/ZDEMMWdDDjSLbuJQdHBwwMb9+0R371L9pMbpWZ1S8RrDcPoMu7q+xkiZWNYp6U4KRdFgOOLZM1EaWl2TCcbmKO7tshme4Nk+jwZgX9mhc5SUPwyTT2uf8NB9SKfnUJwrcnh0jLqeMCx6SDqtCIbdbHIgV9kwNmhW6pzZ4rB4cXbMo4++h/GHJnEYcnNzxtHxKQvJfd/KZKk1auwMV8mN5Bk/HeV//vR/4U//9E8BKA5UODHg95fneNFtU9c0PnhUYEQ+oN4QJc7NYJM/Ti+SzmSwMrcMm+jLvoS+y9LSErIko8hvCOdnIQi4o6nsHQiG3b0rGDaXMCy8ZdiE4ML8aZrj4DXR1hBz3iyvnDLWq5dsPHjI9tZtFsMh9F2keJ+pySWOT04xTzLY0wnDPkkYRhNVfYEUwdJShGfreN2vMiyIdrGfT6A/LPH6RQY7YdhKLBi28eE4WsblvNxmYOW7xNsnhHLCMNclWvSJo4jF+UW8XkeIvd6IForJL+ooMxqa3ub46N/BsFGVfWmfzaOf8aH7TVzXJVgQn3W8NYw7UyeWYyRPMKzRaGEYBkN1ce/LlRty2QyfViusfPoLNE3BUVTCWBwGY3kZ3ztOGHaHTMbgy+N9tDGR3ds3TMZ/iWGjdo+XznOWV34fgGVpldRJisftJj/4vmBYszlCqXTLsDdc/NUh3rc6ZGoJw35WYSsT9hk2Pz+fMOwvaV0IhqXNFO2OCNZc9yWXFxrLK8sJw54Qx4u/wrDvfHcC6V+YfwsV3q7fRN7hfwU+BgYlSToD/nvgY0mSHiAODEfAfwMQx/FrSZL+N+ANEAD/7d82rfP1+np9vb5ef5/ra4Z9vb5eX69/yPWbTB3+V7/mr/+nf8fr/znwz/993kQURTRqNfIDJa4vxSEzk80RSzG5XJ5qtUq1tgOxhGVl+rVRRTOwe11iYlzXwQ8C2s3GrQUhVkacHGrVKvnCAJqmE8chsiSTTSYSPc+lWb6hcnOBH3iMj83QaFz3ZRNSqTSVmysc28V1fbK5HMWhAWRZojQomqpVRaXdahFHEMURoedydXXRb4j2ejal4SGkGLqdFoqi0qg2KA4OoCZZsaGRCSwrT71Rxe4J011NT2E7ooRgpdOkjTT5gSKarPD82Yukz0mcTmqVG5aWV+l1WuxsvcF2HKam51AkqFZvMycytutSUFRURSMMw2TyMRnBdXvIioKkphB5dwlFN5JSYJKqDnw8p4cki0yfJMX4roOcnNCdOCaOYkLfJfB97F4XSZZREwFUEBNCnueRtGrh2D0UTUNyk+vlOkJw0/eIQh9VUfF9D0XVyRSEBlYshfTabSRdp1JrMDwyClqGWBPXq9e6Rk7lMHJjWPlRcvkCqqKgqm/NEHqeh2v38H0bKQoJ3Q7Z0hBq0qxqmmZ/OqfrNklbOeI4opw0hYOwgZIlBSQYn5oRvpHR2ymowHf7zbie7zM4NELKTJPL5frm54qqIssShUIJu2djWqK8qSZaXJ7nkTJ0dCNNFIV0u200LUWjKbJCmt1jbGxKCOcWWzTrdVKGQTYZ3wYolQbwPGEf5fkegS80f0wz6V3odBgdnaHVqqCn0sIoXdLwXK+fORkeGSSOQnLFUj+DoKgqUZLNNKwMUeihqTqlYgnbdoQXZhyzsCBKO9XqNSAxO7PwN9Dgt7/+gzCs16NRq/HBwEdcXgrLmcz7CcO+kaf6ic1uDViawLJMVpL76flzA3tEyHo8dx3UJwFjI8OcFgS7rEyOF7bNYLVKPl2lreX7DLssi8yHH8JI8YbLiwx+cMT42AyPH/+MOwnDovABlb/+KY7toszMMTxaQgqDrzBsWFFpj44SX8FWHBF7LjVDQzq8ZdjmW4aVcihhiUa1QblQxOgz7PcoFPJ89riK3XuKIiukUil2E4YZZxekjQxjEwnDjgTD3rwRycRS8YZJVnnWacFWwJFzxML0HIq0TLUqhj5Hd2XsKcGwexsaz74MmZvTed67Zdgkm6GHqqZgeYVl32NHP2FFkvoDO1tvXtPrdZBkmcXAZ1eKWXv5DsO0JZwozab/lHG/hd17iCRfEngOiwtir+8fyHiez+JiCNEWji0Jhu2K6zW75nBTtliYm2V3dxdVUXn1ymNt5S4Z0VrH9u4mvXabFf0uu7XH+JvfY1l7j2ea+Kxd204Y9iecX7f4IOH4ckgAACAASURBVP8IU1E4fodhk7MebnsSf9Cm06iy+fIp2dK3ubkS3pAz5iTqmc5L5xmLYUj6YY4vnn6VYQcH+/jSPCsry8wvzLG3u8eD+++hqGJgo+Wfsixl2duFV53XhAsL3J8JyOe+wfnZ/5NcD5WH1kMeFSKe92zuWyZ3owhVFewQDLuLbjSIopAvu1+gaSMMJww7tHukxqbwMjncYosnCcPez2YhGVIofbTCq1cOpnmG548Io+1oH9O8FYkNBcN6Fe6m0mgxlFc0vINXPLgvBgwKxWLCsI94ffEKHRhVVRbnbxl2n63QQ1XVhGGDuM4V29sxGxtCAPiWYbr+29XR+ntfURTiuD1ML9MXWMzmizh2F9t1CMMATVUpDYygqBrVsphyyWYydNstWu22aFQBAj/q1/yRZVxXgN72unhVl263jaKo6EkfV6fTgSgUgVhKw7IyRFKIRJLubjYxDZPS0BhxHCFJMa1mFccWSt4gTJBlWeH8/JxUKkW9XuH84oyJpGyjaAZxCJXKDSnDYHhshLPTY+yujVu7LXVJdNotNN0kCiNMw2R3b78fVC4tLosSVBjjhT7DY6Os373DzaXoCbh3/z1azSY/+elPCIKI4aFBioUCpqlTTkQ8TTNLq9mgNDBAOm2haJooeyWRqURMlLjEh2GIqmhiqjP0+71RPdchCIWhcOB7aKpKEEYoffkHG6IIt9cFYgLfo9uq92U4IBFOjSKiOBI/x/OESbFyG5wEuI6DqqkESX+WqqpEUYCWPPSj0EPRA6TkO+z2ekRRjJoYQkdaDsO0KA7PCNG8OBZ9Sq4kDMGBTqvFzfUZke+A2yKfNckUB/A9UTaOggAjk8HQdRqNBnEcMTAwRPXmGqcnSgRWOo3ve3Q6bcZGx/E8jyAK+q4AkiSuZaPeplQS4qWyFFOv1/qipqlUil5PTOZpqRS9bpux8am+QW2328ZxVEzTwrZ75PN5MtkCzZYI1DzXpdmsEUcR+XwRVVVxXQ8JpW+wrusati1+R7PVQlMVIi8kjEQzq2GY+KrG8vgUUhzjuR6dThdJkuglcio9u8dAaSAp58qYpkkqlaLVEv9erVzhOzZTMwvIioKqqpRbbXK53O3tSaEwRK/XI2u9DQJ/F1akaTgve3jfekXKEI3+xethDuxDlpaXKSzME29vURodQTlw+aTPsDW67dN3GLbM5VmHmT/4NQyb7VLed5Fos7//nFyikTY+Pk4YBOQLQZ9hueIg6WXh/9d68oRTw+T+0BjbUchgs0Zrwcc5/SrD9vb2aTSbgmE/ueQ88zcw7OSE4YkJtk6PebDxEPelKFFWueZnP/XQ9PtEYcT9DZPdPQUjGYRYWlymXL56y7B2i29966O3DPv4v6TVbPJnf/VnBMEiw3WZ4kYB0zyiXE2MupeytJ40KM0PkH5gsXbnDt3OExRZTK9JxESv3xDduUsYhijKIeuqRhT6LM7Niu8qinizWWVd1cSBQVV5E0as3TJs0WZGi3CeTeAvjzCveSjKEK/cFyxLQr5hfn6OINgk2tY40DQW5meToZBtQDBsZtpBkhXmfZ+DOGZ9XSWKJA5PRQlK1dIoesABR0x1Zvmy94zFaImVhGGdhGHlhstH3/xmn2EzM7P4ntDraj9ucZP/S6LXDjtui3z2Pu99GHF+ItoMt4LX5DIF8nqB3UaDjXiRbw6cUt3f48XZbc/Rt5mb6/Lpp1/w/e99zJqi8mZnB00Tz4XWqEwqDGlX25Q+KjDZk5ClJcGwA8Gwe32GraOlXvGs2+b7H//wLcOetHnhqKyYFs/tZ+TzH5DJ6hwlDJtzXfLNT4mjRS76DHuFhIrriv48XQ+x7eeY5gOan3+Opq7RjdvYiUC5YZj4psby6hQjccyrlx5L+S4Hv8KwKqo6gq5vYJqn1BsjHJ+If3emBcPuzSwg7++jTq9Tbl2ysvKWYTeFIVK9Hjj/Pwu0JFlmfHKWeqPWP4W7dofL8zPyxRKarmF3uvi+S7Vy3Vd+Hx4ZoddzGJ+axO051KpVqrUaQyMi6+H7Hoqs0GzUSYc+qqZRHBhGimIuTkTEPzw+g90NxCYh5rJ1Jgygb0RmzXd9YeFTkPEcG9dx6HRaqIrKzZWApePYZPM5dD3F5dUFc/NzFEolel3xwG63OtQqV2RyBfSUQfn6CkVWCIKgP+ZuZXLoKYPzi0ucXo+JiTHSVrqfFYuJ6Ha6WJkMmqaxMDdPu93GSIsHZa1apVyt4fk+77/3kPsbD+h225RvKsjSba+YTq18STZrIY2MISuymIZLAKMoGkHk4Xk9JElCUrUkmxW8Y6LsC6HTwEdCAAVZuvUmJpbERI7vuyiJYXUYeDh2l1Qy7RcjNLR830c3DBRN70/u3a4wDJETgdVer0OpNIgf0NeWCiQw0jkhAqvIBGEg+g8SQ3XTKqGpmjCfVqTkJolxul06iZVC+eqUXrtO7DZQnCpq/g5hEPZ7yeI45Hh/F8fpkLbySPIQesogl8tRLov9IfrXUgwNDFKt3GCYaVrtVt9iJp8v4Lou4+MT+EGApoWkjBS9Wr0/cGF3uwwOjWI7XRRZQZbFtWknjexRHKOqCmnLQlYVVEXDMs1+EBWHIWEUClseW6iMB0GUuCuIADkIfPRUSgjMahpRFBBFMZkk4Gk0ajhOh05bRlN1FEXG9z08L0BP7E80PcXe/g6l0gDdThNZVuh2u5ztiHtpamkOophGo0GtXiMKfKxMDtcTSs5iDxqkolRf0PV3ZZmyzPgP/pAXjz/FSou9MTPjcHF+ht2bQNM1nvsBj/wZqlePmZi+ZZjOs2cSH//wB7g9h0+rVao/qTH0Qpz0fX8WRd6nOThEOmzR7WgUGaakxDQMcd0NY47n3TdM9MYwifnJ5/+W9x6+z/VPRQ//a7fJHU1HebRK9OJLetPTdG4+R91XuZlLGPbCppwwLHt1wcYf38O2Szz7CsN+Khh2L0958wpldY0gCHiSMOzhe99A01T+6v+9ZHqygOO0SVsNJEmobsds0e0csrP9Xe7c0Vj4oz+m0W5jNEWQ9Oknn1Cu1pj158hmDO5/87+jUPxCMGw32T9FnU/jSy6zFt96MYa8uoum66xpRwA8U+oEUcys12N3d5dd3WJlXSLaDIjm3jJsbXWVMNpCimE+ngd5lzBJFMXeS0J/Fd9/iaLcTRj2Cuf5KPFGMtADqAcqr0MfyzDYPzxiftYlilaSHeEThhn2djcJiZmbHEfTaviBinpnHRA9jxueh/O8Q1fpEIQBr4JXLM+JvqZT/Zg76ghGSmJ/XyKKdlhdXU0YJnqwfn7xJZPxENu1BorzJesfbLD5ZpOlxYSTwQKNWg3H7zA2OsjLl6/I5nLM53K0y+Le17Q6nYkU3/7mt/jkF3/NhplmpN3i+pcZ9vEEc8E8jvaMlGEIhs0lDHvVpTakv8OwdV77Po2nYqowiH3eVz8gbVk8XH8fQ9M4t0zcxy/Fe1joEp4YSOzQsxVSqbsEgcqOBGtvBMPe8Bo9dY+FaJMdTWNpMSKKlvoM43GE43QYb6/iqDorqzInJykmJ95g21+K36PfY28fSqU3jLeb5OQBvux+/pZh4Ry4Lo38ADVdIzo75vziSlj3pEQQbZgGx47bF2v9TdY/ikBLlhUC3yWfy3N5cQzA9eUVmpYibaY5PT4hm8sRhQGKLKEkpZ1Wo0muWOJ4b49Ws0G+UGRsfLBv99FqtwiDkGarSblyw8TUFIZhcHp0SKEgRBjbrTqXl2c06g3m5hfptNq4jkszEfIrFErk8wVa9Rq1SoW0ZeK6Iacn58wlKsETk1N4nouRttBTOo5t06jWUVRxkoviiOGJKdJmhlazhpU2kWWZWrWOlRabpNft0nMcisUiUS6LrmlUaxU6CegK+Tzjk5NcX14yPjlJt9NhaGAANwk6T89P2bh7n8FSiaGhIdrtLuXyDeVKhVtF5Fb7ENNIgxShaiq5XBFF1dCSqUTNdYijgDBpkA4CD1WWkGW5H/ApitKXg5AkiSgKkWI50ScDkJBkBVkWDd1RECErGk6v05eASKWsxLYlJgojYcERa8IqBJDkCEWWieOIOIqS5nsPWZLpJCrl2UyeOAqRJBlFFn6IZtpESj5r2jSRYol2o4ZnmqiahmPbNGs3OMkUi9Ou4tSviN0GGdPEyA3T63X6E5bptEE2W+TwYA/iCF3X8DwX07IoxiPJZzFAlokQzaVSDKVCqT/t59Ajmx8gjmMc2yaKIxr1BrqmEyXXzMzn0TSdg4NtJidnSFtZms1Gf29ouk6jXiGOIxRZwXZsLi5O+8rwqq4jyyJAsh2HTDqDq3r0ejZBIIIxz7Mx0xZWOossK6RMk3arTa0q5EM0TWQ22502uWwez4/o2l0GBoYSL1Lh6Rn6gbDXMTLEcUQ2n2N4UjSS6kYaRUsRRQH5XIFOu4mmKHScdwSAEaDqJFmw35Xl+T7B65eCYRnBMG8rx+Ghyx/Mn3GaMpCVdbY232DLEtOKCD5aj5/w4MOPOP7zP6fVbDD36EOkjwdRq2KAZXTMYfNNiyP9iNmKi2NP8SZh2KPBDwH44vPPyGbTHNR38YOITmuMTz75BbWGCKIKhRKFDx7x+WefUqtUGB4cxH0ZcmpYzKUShv3JEFOvXmI8sOh07uLYz2lUhwh/iWEPEoad3zFZDXU+rdZ5+EBoNvW6XZ45LygWH9FsXTLnpfhkq8J4V5SXbu5tJAz7BXt7kywuLAqGGYJh5nmagbsDlKpV6kNDjI11ub4u8PNKwPJ4olC/fcj9jQccH+6wfkfl6lWRpRUNzbgPwJ17n/HquVBxl5aWCPaPiCOJPVnG3xUP04WF+b4chCRJbEVbrPwKw0L2VtdQ9w9YDCLk1TtM9455/VoEBqmUhaQoKO8w7OBQY37uQPwE2WN/z2JlZZnNzdd4r17if3MIWZLodD4HIHvxAaoXIq3IKM8PmJ5axUyb7O6I92alLY7iQyRlHc9ssX5nmnq1SvPTv+aFI4LT6bEsL6pHxNUGmfvzgmFXBxSyolKSTqtkswqHBxY7ccS37t5B2tvj2LIoJqLB9+7NfIVhuzGsPfoIPWGY1Iy5zFeJ45gXCcNmf4lhp/k8GU1HPYjpTbqkH36VYXd0nUa9Kxi2q/A8eE69VuL+fcEORdWR5UM0VWfWcSg9OOKLpyq9ySm+eCPehzeb5/5Zk+10hCwrnJyaLIy+ZZiyuspa53PaT7/gKptncXExYVgOtgXDLvNXDA8NCoZtZIj1iOzhW4bd3XggNLwShj1tN7EUhY7jsSLNAqCjc2KeoP0H0NH6ra4oDGm1xAn5Nuuxdvch5yeHtJo1DEPHtNJUy2VarTqFZMrptk/ItW0yVgZVVeh2O/10d6lQpNVuUSiWMNNpTMOk3W4SxgFyUraJ4ghdN5BlidPT46QfJWIk0fmxHQdkBUkSAnlx18X1PGIpJpNMDHa7Haq1Cq5j43mJZIAb0O0lAMnlGB4e4frqnIGBAWzb5qZ8A8R9P8Sz3TPGJybpdTukUhr1RoPZmVmaTbHJ0laak5MTZFWlXCkTeB6dTofNbTEK3HMcxkdvSFsZzi/OsdImqqIQEzE5LlKvXiB8FsvlMlK8xeTUPIXBAfTkWsRWBqKAKI7xPZcIn8AT5nqyfBtcqf2HZhiGQnyUmDgJcFRNI44ARUFWVCQpRFbkJFt1+/8FSLEsAuI4Trz7pL4vVrPZJIpCNE3vWxR5vk9K06nfllwsC+IYTdOAtNCiUlRyiStA2srSqjdot2q0WhIgEUURdreKZ4uyX+i0iL0OqiyRG5zAyA3TuDrFNN9Ok1SrFcYmpnCcHp1WkyAGTVWRk8/SbDaRZZlsNouVyRPHMYZh9JXyLy9PMdMWxBqyIiPHcHZ12tfjApidW6XerDI5NUuxMIhtd5DTZl9XrNtp43kejVoFp+cyu7hM2srQTtLukiRkKOS0QjFfENkrTUWyLDpdETS3Kw0y2TxBGBDaDoY5wODwII2aeKDHXohlpqk369h2l0wmx8L8MrYjPBNBOAsUSyVa7RaqogiR4ThkYFQEnc1Gi3r5hnwxB5k8hmHhuK64x7TE1zHwqVRafUPk35X1FYbVEoY9fMjV1Q2tkUEMx+P+wzSPPxEMu83K6ykT843PsW2jWRkGVIWJ7lMwRNajclPm3r27OI6HmU5zenLaZ9jegXiop4wUun6CLF9jnq5TNT2WmebOqJB3eJdhs3MB3e5LXGeW7dMbUkbCn7OnVGsVZjanePXqL4AYf2aHiZ5gaSt3xXBjluuBcwaqgmFnxQsmiVHfYdjGxAbhRIfj4wXqwx6zts1IwrCph2lO/s0JxfV19g8ULi8usR522HzzrwGYdBze/9590nYG78LicaPK0qJCvBMx8fEPABgadpD29thpNPiL/2OLH/xwns3XA6wsi2sRW++hpx4THRziezNEyhyBpxJFIMsiI6GqKpK0xs7OJuFCiCSvILHzDsPusB3toChryGvr7G9tIh8dsLy8zHJ+MPkZOtLeHur6HWRZRlEV3rx5w8WFuBYjIyMsLopy7MLCAi9fPud9f46Uts3Qz5Ms4mzAThzjHWrMmQ+IjyIOUirFD0U/0YNbhrVrbO9I/OR6l8XFCHt0gO5zIdL56rrJ0liBg3cYNtl7SarPsGU++eQX4pDlTNIxm7yp1xlWVVaTz/vkyZM+wx5m8rC0lDBMBJWXlybBmQ+qxuqcDLHC0dUp8t5bhilzqww1q+hTdwXDlA5R2mRPFtm5bsflldem12eYTNrK8PTpLcO2yebzPEgrFD94xJvAR9dCpPMtxlXxmptWmn3lGjXUWLCnKZv71BoqjZroM5RXQizzAfX5OvbJGYeaRjS/zPGLL7nznrifBk/OeFOpMKp5CcMmGR0O+4fJ589f9Bn2zcFRNubn8Wdm8HyPo0thFRUEAdOlt17Hv8n6RxFohWFIOp1GN0xaycOj22nS67XJFnLC4ysKGR6bwMrmsbKiht3rdnn55VNMI0UqZXBxfsny6hrlGyGR43kurWaLbC6Plc1id3sUS0PEsdS/qWRVQ1YUSsVSknERHn23el6eFxBHEeXyNedn52w8eJ+j4x0GB4f7m8x1e1hpC13V6Ha7eIHH5Mx0v3Q4OT3LF59/xtXVOcuLK+i6juuHFAsFTk9E4+zRySmyopDPF5AliWw2h5bSePVKBFLT01MU8jmev3jB/MIS09MznJ9fMDEpQFip3BBBv/Sazea4ublibHScVEp8zbqR4XBvjyiGM+cUTdXwfJfBYbFRU4ZB4KcJo5A4joiCkDB0UTUNKcnyKIpCFEYIXXcglpAkpd9/paVSwtNQkpAlCTVlICXaLbf7MooiiIKkOV34JKqy0i8dZnMWnuuhqjKqotD2XKIoFEKaiWBprVLGtDIik6NpaIlJ8m05rtmo0mpWaTaqKIpGFITY3SZutw6J/1bGSoOkksrkGV7+CC8Qvo+NjtiDxWIJRVFw7A6qpqOpt6rsjrBYAixTotGoE4UBmpHCTJnU67W+Qv3khGh0D4NA9NhFogHZNNLClxColG8oDQzQaTexey1iSebm8gIrCTyjOGJsYoLTIx/TslA1BS1KMTwiTrX1WlkoXccx7U4bWZKoVs6ZmV9FT4yr8/miCFqjmECCbqdDFIVkk/JAs9EQRt4pgziO8XwPiNFUFTdpZtbUFNVqWZTKMzl8z6XTaVKvimzD9OwidrdJGAbYdgtdz5DOZAnbLZxEXV7VFLKZAnH0uzXId8uwuxv3+fzzJ8Bbhmm6zsnxGdn8Nd/5/u/R7XQ4Txrme92JhGGz3EtdcXF+CfIo837CsFmXalklm7vGyn6HmdnZvhTI3p5oVhYMW6NUnEP+UKW081WGvfLe8H5UoFjMc3z4GRvp9znqtX6JYS0eph/y+sLDSN3DC14xOTPNZMKwgen7tD//jFevLIgu0HUdM5P9JYb9GFmZJZ9/xNysxEUmRzb7Hj9+9a8A+PbuFM18Dvv4RyyxRHf6e5w7F/zeD77KsMtsljHy2NkcYZQw7FgEUvrKMj+6uGBxaZn9/QN+9hON4qBLtCAYtmYY3Nl4gPPsC17Fh0RByGtvifVFjd090V91cLRPFEasKiqhAjvxPvu7+jsMO0VZuJswbBf1noG0K4ue1eT7jqII5mc52N7i7j2DMFxgfXWN3UR9/vLqnNmZWdR1GdVW8GZnfoVhg5Uyp7/EMGNdZe4dhn1+y7DmIYvBAn998gS3+xiiOQAyVpWdXZWH7+WJKeEFW4TzCzx+/BSADz+UWFtbI4oCDg4PME5lrHQax3FQ74rm7odhwOPHnxGFAS+NFPeVPer1aQo34tA62esir0lsbwXsKzJL0RqlwQbmZJqjI8GwVrlAZqBKp/0Mu/eIeEfmJntBuyX60Zw44vsT3+f0yEexLKpaEy06ZnhEfCf1moqq3rAdLxE/bSNLu1QrFjPzFqV74sCQD0M8z2Fna5t4BSZS42xtbZLNJdfrdYPe0hJG6oQ4lpj1XwFLsL7+lmHBAgMDV7RbBpcXV8zMuHSePuE4KQNOzy4y1W1yEAY8t1vou3usayphu8X0arJ/Dve5vLjpH5Z+k/WPItDSNGGGW69W8BMp/Ewmy+DwGKXSMGEQcnl5zuXFJem0hZY4pF+cnWJZJpqmY2VzVGsVJKR+OU3VNEoDgwRBSLfVSpp7Y1qNKgNDQkTPcx2MVIpau4Np6lSqZbLZLLYtvpjA96lWqiiqRmloiHLlGs+PGR0r0k0aohv1GoqiIssyuq4xNTGOqmg0E/2qy/MTer0OS0urTEyM4XkulXqDVrPF5FSikK0oDA8Po0oStuNQrlbxPb8/3VWv1imXb1hbXWPtzl1ePH9Gt9fhwXvi9HOwv8Xi0hqVpHfo4vyUbq+HYRq4SXP30f4B1Xqdhfl57t67w+HBEa7roOu3JT2R2dP1lLDRQeiTEYv+HABklVjykSJFZHViURq8zRBqhoEWv9Xk0o00SMLIU0sCixiJOA5RdV3oa8UxiqL0TadNw0KRRX+YrKhJcBfi+Q63WTE/CFB9H8MwRVbTtQGDRjJh2W3VCENPTM/JCp7To1UVSsNpU7zX0O2RHRhmeHoDJZXB6XbRdJ0wSLIvfsDoyDjNltBQsx2bQj7JCiX7tF5vMDk1Rafd5ubmgsmpWXq9Dr2u2BvDwyP4vkfKEE3zsiKRzRZEsJqUwDO5LK12k5vLQ9rtPJPTSwR+RCaxeKrXqlxdXGJlcsRRyM3lJbliiUZDfFYzneHm6oKhkXEyVg7DSHF2skOrWUNWxGe59VX0fZ9SaYjT00Mk4r6YbaFYpNvpUSlfIisScSQEU+2ew20DnpWxmJya4fL8lEatytDYJCkjjZ1kCD3PZXJqFs91yGXzdG1b6MMViv37ulopk83m+hOVvytL0zLo+gafffKL/mc9OT1lcHiMSmmYTHaA7tNzLkf3ODs759GHj8Rrjg95+NBEO0wYJov742XCsHXlDpXqHlfXq+gnLcbHu+xK2ww0rlHWvgeAtydxcuwzWBIM+0X157yfff/XMqxSH6Lcy+P5j/lg7A952RO9K8NDg5SVCq29Pe7evcPg6CyqonGeMCx7fsJ1r8PSUpbJie/jeS77h6d8/uRzvv890ROL8p8zPNxA3a1jOw7FsVF8/ZcYVixQnP0npDWdvec/ZWJ0lDuZDQAOelssLv0TfvHzS3YIaJ+fsrvbwzBPqM+K3qejLz7n4OiQlVWJ//Q/2+BHf3GEO+OgPxb76VnqC1ZWQNdT3FmMCF7PsbW3yc7qat9pAdlgSfKJFhXkQGI1jpDvvGXY4YmBZmUShq1z10izsyGh/wrDNlnXLVR1nTj2Ufb3WVpK+qtOzzg1LValdRylx9r+PlG+iPe6x7sM8/3XbBj3+wybDwx+/kniT9r6lHLosbS0zH63w5fOJ4wO5Nm5OiVtCqHZcGaN7E2JVrzBo1QPx+ui6TnW1kVwErx+Q8vK0Gw1WVd0bMfGyucJwnk234h9OjTU4OPf+2GfYRKz9J79gl7iYjL8nRFev/ZIbTxIGLZL9rJAtPDLDDtIGFYTDHud4r1pYdT9ywwrXG5xVSzRaIgJSzOd5uaqwNCImzDsG5ydfE6rOYfniX0cBm/Y2UkYVqlxeqoxQo3RpGx8WDzi8OiEUnGI9tguL55FzLif8Pwdhv1g+g8Ew/7qxww3GmRS90kNjvGeLZ7Dmdks1vodhl2Hq0vBsO1Y4k5Bwz8TAwit5gjZ7BWJxOVvtOS//SVfr6/X1+vr9fX6en29vl5fr7/L+kdxrAzDgHL5klTK7CulB77P0NCo0PtRVTRNRZIidD3F5qsXAFhWmsGhUSwrB4rE4vIah4d75BKjZtd1OTs7ZmRknDiSMUyDdquJjGjEBiCCdrNFEIa023XGxsfxAh9ZSUyUu12GR8fwqxWGh4ZRVJVWu43v+31T6XQ6Tb1W5fz8nOWVFaIwZv9gu6/AOzY+ybRrk0ql6XUdZFkil03j2E5fld3QU5Rvbgh9n9GxMVRVZ6A02C/9lG+umZlfQJVlWo0GtWqFkdEJzk5F3fjm6oLhwSFq1TLF4gB+6HFxcYZhpHGSE2WzUWdmZobpmRlubm6o1SqMjYxQSyYsVV1D13TMtEUqpSMBkSx6m25PLrKSlMLCgIAYWZZRdaOvHK/qOjLC6DvwfdErIMkokoSWjHmHYUQUqhDFRHGErChiAjLp45FlmXTaEqc8B0xD6Eopsky+KE7PqqpjWRlc1yEKPMrnx0jI/Vp74LtJs35Au1nGd3qEYZC8X5HFMQdHGJxYxioMAjGyIqOqKun0rYSEn+iaCV9C0zCEDIWq4gZJ/10y2JDJ5ghCH03XGRwaZndblBBcz0PXFKLQo1gcoVGvkysWuLy8xEykTPKFPK7rMTm9TBhElMs3DI+N4ji3gxBFzLRQfw/DGFXTcR0bTRP/v6Ko/JNeoQAAIABJREFUDAyOEscRfuDitz0KpWE810VRRErcDz0URSeM48TeIouiyEiJdpDveRQLJSRi6o0qvu/SrDfIF4u0k8b1MIxot9sUioNEMaiKjJ7N9DXnzKQ3LYoj/CBMfCBF4+ptdi6XzeL5DrXa71YzfBh2KZd/Qipl8uDhe4Bg2IkhbImUNZXDisqgFHH3borNV/87AJb1gMGhFpaXAyXLoufxl4d7fCNhWPfpU7bOjvnuyADbkUynZSCrTYZmZdjZTn67RHtkkIIjGPb98XG84ARZEZOLvW6X3HUBf0AwrKJWOWorjM355M7E9zLe7VEfHOD6OscHhTOiIetvZNizL18gyytU62kkFnn9RmRgRoYThp0lDDvQGfjGIP/R0h8D8OVNh5nMPGpZpvXApFatoGkp/m1dlOrTuQyNyjW1gTLF8gD+gsfFj87Y2Miw93//CIAnjRp/MDPD9MwfcHPzksHBCnfM77J3Lu639bsajarOaWixdqwj3TlE21RZ3IVj6y3DjmSJ8DBgfm4JWZY50A1kVTTL3924y97OvmDY3Bwp85SUtMr57i537m0k3/cWUXgPFhWi7S3kGPYUmbXknl5dXWVfUdACH9fZEQzb2koY9m1AMOyh9R4vXYfFwOPn58dI5zLLfYY5IElEb3yGR3K8fnHA4NUZi6syN2XBsPuDUzRNwbAdVGb3X3DQVYmCt20HQWMAu2ciP7Qwo5hgf/+rDDs7RXZdMtESwbCPdnT0VYadeQwOrrH14z+n+OF3uannyIU3XP7kknzyeZ3C1K9hWB5nOmHYQhHz7LTPsAOt+BWGrSnrRIMRu/EWfmDit6U+w16/FO0zcwse86FOsLTEs7NzZjI2ytojJEuU0OfiBc7PrqgPDbDa0Dj0D2jWG5i/jmEffovo01+grsno6ntoieWVeXYiLNkWFt5h2BY38hqZ90Wvc86N8eZ0/ED5zeDAP5JAS1FUpqfm0FMG7aQ/puHY+J7H1eUlQyPD9DotFBkM02TljrCdadYrNFt1TNMkDGM818VIGciJLlSn00JTVdKWxenJKaZrMTY+iq5r9BJjz+urS1zHYXX9DhdX56i6jmGm6XXEF1OrV0GW6LTamOk0ge8zPjZBLl8iZYipg26nhecFdLpdHNum1WzTaraICZPfcYHjuCiKRkrX8XyXSrlCu9vBTnpXLFNIOQyPjpHJZsjl8th2l6GBJLBQNFRFplGv02o26XV7nJwdcXAgAq3vfOu7VMplBgZGhL1PY5cgjCmUigSJUN/DjQ0UTaVareN7HpZlIStyX49JV4UHXuAL2yPDMAil/4+993qOJMvy9D7X7qEjEIEAAlojkYkUpataVfX07Oz0yF2KIV9I4wuN/wzf+Eyj0XZJLne4u5zZEbs907pkVqWqzEQioXUgEFq5R7jiw3VEVjWbNv1AW+tp6/tUlgXLdLjf+91zzz3n9wuRQmV0BSXLoojd9YYoqoYkhWiG6Oq7/paSpArD6uGQWFzUiYQILScg8laU8DzRRYokApxrGQFZErVZrqvgugPMmImmaLTb7VENWhgEBL6PJivU220IhIzEdYXicDAgCK4DK50wDNAIiKWyJLKinsNMpBkOPWRVRtUUfF8RtkEDcRXmDgb4vtD86vdFHU48kcRQDAaOmB/xeJbzsxMsK0bMilO/uiKRSjI9Mz16Ttcd0qg1cAfnOP0epmVRKk2N6gYcx4lMqCV0U0Y3DZKJJJ2ow7LX64kaoHgc3x0wGDhIsoQRXWPEYnGQhGejbdtkM3mhN+v7OJGRd6/XIztm0e92SKdShLpOrXqFGTWf+J5Hy2sgKQqlqTl6vQ5mLIaiqBSiWrBWq42uafS6DWKWKYRl1eQoYBw4AwzDwDI0Ot02Q9emWW9QLE7T6YgrqMrlOWNjBTLpsX8YDP+IRiwe53szvycYdiLW02eNx+iaSfkiyTe+Nc5hqc2eB+9Zd1i7Kd5769MqrYMuVvEVw24bJrIsuhK73c+5qaqcxs+oH1sRwwxOzzV8XzAsnUqSPD+nrWokUnFUXefYiqFGtiL1xjN+Lv+U0u4kM3dn8FyX4dAll2swWRJXmL1um6c/OKbbe4hj36D94w7taptw9esM21M07q3fYuh+yfZLjc5UFzsu6hEbL16wuLTO+LdzJFIJUpISMUwEfGmliaqs0Cw0aF+06E9Nc3x0MOoS/+Z732L3ww95991vYJZM/vz/2sHzt8nkpnkeCav+9/+5YNjHH3+OOxyy6MaRb8kUI8mWTmsDy4rRaR3zSNe4rd7mhvqMF+EBuiLYsb5+A1lWcL0hYRiyI4UYRyeomghOzBunbJr32JF3cc/KnN57nRgvCa0YR8eCUWFgsrp6iuctshcxTFNVzJgIgGRJ5vaewjNXods1Wct9lWG56O8ICJZ8bgYKn1TbcCIYthUxbG4wYCZY5Lk8xD88RDVuc8wL7o6/zfSaeB/H55dYxiuG7fk3cIc/Zn4grsLcuQl8v82LF4JhW1s+8cQShqIwNysYdnJm4cYtLKtOzIrzSdbjtVSS6emZ6Dlf8OzZEXa/h1s+5/jRQ75ZmqFU+mDEsFnHQU2mYFVC35PRb2+STKa/zrBOidP4GYMRw9bYjA69sdgZL6UQwzVHDFuVsmz7Po4t7HMedr4gq1h0njymMF5E13VqjQbmsZijW95z1tbXaEkS3d4cd1/LEQQe04qKeSz2oVbrc3TvJr3up8Tu3GY4cDjdv0CKLK/mnAFHhsFGrEypCyfuY5r1BnJRZaUjdOkU5Zx+ryCkjX7F8WsRaIHYxBqN2ivxTElG1TUmSyU836PT7YgAJJ2h2RAnqML4JAUk6rUKsqLg2D1hNhz9HWP5Aql0hlQmx6TnjdoxJUmm2RCdH54rshCOY5NKprG7Pa4qlZGPoWEZ7O1v49gOm7fuIUtSpEgbcHlxAsD+/g5Hx+fMzc6RSKa4LF8wO7c40jBqNZucnl+g6Rq3btxka/sFl9Ua7771Dkok0tlut8imUqKAvykkDaq1GpmMONk+evKIYqGAbTsUC3kUTcEbDFlbE4rbs3OznB4dcXh0wPRUCV0zePvtdxkMB6JFHzg93kfTNGrVCmurawwGPZrNuhATBTRdo2v3uDw4oJAvMj01iaxIGFFBO4hAStFUJEVG0TRAbPhhBAddNwhDUR8XWD6qoiArCmEQjlTwwyCI5BYcFE0j8D10XR/5OhKEaLqGHrOQFEglkqIrMZmifC60gZKpOCf7eximgd1pghSi6Qa9KFB3hw6apgsA6iZmLIGqaWhWnDAqevXdIVa+QDqTRSJg6AxoNq5whwJA2cw4Q1fC7vdIZxM4tiM6/YIQpGv1+DiGaTIcCmNq27bp2z3G8uKd54uTdDodihPTHB/uEYY+V5VLXM+lFAVj+VyBdruNbfcxDWHoKiGhqeJ9DSQh2huG0Ol2cIdDMpncSFMsCAN810VVNTKZGM7AZjBwkGHUQdnptlEUCUPXuTg/YWJyhnajiRF9+1gsQeiJJgbPdcV6SItaRbsv1pvnDfGGMo7To9sOmVtYQZYljqJC5Vgshhf4ZFJZ7H6XXG6CiYlFLsvHmFEwdnPzDcIwoN1q/8NQ+Mc0HNjyt3Aazohha9I6lh5HKj0Hxul0O7yWTFC+rNBsiPqY2+OTFFbXqH/8c3YVhZkRw0R25Zph6bdyLHoVtFtz7KttpB2ZZkEwLN410XSdXr9Pt9flEshWKjRuifVkVAyU/ZAj+2/ZfPPP2N3ZYXXtBkGQ/xrD+s45b731NgngZ+UL3vzdVwy732wSO09yoO9w84bO1nbAceKcd9e+wrDzBNls4v/NsLb41v0nj/iyEMee+QrD5ubRzkUxvTNwQIL/+IMDvvtBiVs3DfrOu9TrA/7ZRsSw9j7agWDYH40Y9gnm5jXDTLp2j63tLQr5b7G+PkQGNjdNpEhSQ1FU9jSVJUVm70DDQsKIt0cMs2IG26ZFTHuNwNpCPTpGvhEnvL3yimEvYpxdaMzOxNCtBIG/yK1bOvqxkPZgOUQzNeKxddaUNyOG7ZB4/Y1XDCvHOfnB33B0zbC1ZbQdg6mIYcPhDJomsSrJ7Oq3Me+qbGhTaCcNwpw4/AiGnZPOaKytLtNqDNgLs9x/KubG26uCYb7/kLPzb6DrT+i0bVaX32AwvGbYPQpNn2HlKcHqKjO2TcXuUauLd/7eex9wlviCbxnT/N1/3CO0zIhhf0VpRnSD5nMF2hNH2I/7HG/eQQ7hzV9g2NaSR+JilU73Q9zhkLfeiqMeCHYEocKC66KqN9nPHEQMe4LHKpYl5mgnXEFRmhHDLMJJ4NPPMN5/H4DF03OePh3CmoTXcbH7Nqn0BbY9x+O6qAXzvCHrD9s4sxN0P/+IwcIKhmFgHAmWPok1UAMfSX4bu/9DcrkJvj3xT7lMHaPI180SKYodm/D6VuxXGL8WgZYkS2iagRWL0WmJk6+qKAwcG1mWkGUYG5tgYrKELCsEkRnm1eUpruuRyRYIQp/x4gSDgUsoiesSTTEwDItmo0ZmLIdj90kk4vT6XXHNBExMlsTVpGFgt5ooiky9ViedFTpb/X6f8fwkmWyWZqNJ9arCjRsbNBtVnj5+JJ6jXqdQyLO6skKv2yU3NkbgCYFRgPHxSdHBIsvYjs1EcZLlpRXKF2e4UQE4oUSv22FicopkIk6r1WRhYYFKRXR0Lc4vIskS4+NFdE0hnRtD101SUYbH6faE7IMvnNlvb27y+ef3yY9PUrkUV4MXZ+ek0xl816dyeYVpqeiawfU1arPVwrFtXN8lkIQRMbLMxEQR4zpjpQnfHE3V0DQ9sq2QUKJTqWlZDAcDLEsEZxKIzdv3MI3otKcqQgYCKQq0fFRVRo8gJksKkiIRi8eJxeIYqoZtCymB62etV64IfY9es0cYDPD9IZIRp9W8VtoPo8J+DVXRhT2GJBF4Hn4o5o9uWqQyOVRVxzIt7J6NacbRomvSvm2TzY5RKZfJ54ukU1kCP6DVbIwCKaSQ4cAh9EN0yyKdzZBMpkbF57X6Faqi4th9JkszhPj4nkej2aAfnfYCzyeeSOF7Lul0Bsfpc3l5QSYnsj6WFcfzhuIqUQooTc/i2I6w+wEGA4duRxhwxxMJPD9AliUuL88pjousRjyZAkmmODlFrVZFkmQKk1NMTJZG81yRNTTVwHVdJFmm3e6iaRqDqNi93bqia/vkx8aEkGyvi2GapNPihK7rOkN3iB96+GHI5dkxucI44xMzCM0PIe8QhuHoMPSbMkTn2CZWTGEyYljvRp8vtx+zvi428HfHJmh3ulFzh5gfH6ZjLJwekDHvooZbjH/r2wwGz77CsE2Ojk6wnBqZd9/Bsfu8lrjHw7UuUmQc3O6UUVSVzTu3+fz+Z9xQZHbH8lw+Ee3509PTJBYtKlcq9++3qF4dcOfOnf9vhvV65NwhUhjQ64rMyPj4HSo7P+U7M9/Cds6YaDn8d2+/Q/nijGdbojCbUKJyufGKYfebLNxeoBKVgyw2m0hymdjA4vAyRfrGGPrhMal/fg+A2eEUvU6bZPoBR0cLxGMGw4FDe2aOnx+I6yFjXzBsyfWpXGYxrQa6YiC8v+Gz1n0cewbXXyCQ4JNP6qyuN5gIvzVi2J6mIe1IHMgHGIZg2OqqiqKKAvLjkxNu3FCIxU12dpKsrcJLScLzDzANcZsiJ99A1Q4wTk4w7twh2NpCM9Y5jBi2bilIt9Z4/SyOfzdi2OObvNj+hMyFYHbd+ZDQ95ga7xHm5/CdDofBGfebItu59hWGacohin4TWbpB4O2PymfuvfE2y9IGV2qN8/Ms2Uub4+M4MUusr0ePH/P22+/SaXfI5+VfyrB8PsR54hD6PvrhIZfTXZIXKQxdBI0ff7IrGLZ6zbAlFj2PRvNT+pEmWODFic++wZb2gOxlBWd2OmJY1LBjDVn1huzP3oL6MqXpEvLek1FJymAwS7fTYl+tE0/08PyAXVkinf4Jxeb7AExduJzGJyhOpqiNVZFOz8l/Z4qJScGn/qXG7XUTTTV4prucnO4ys9NHuwlzUdPZ5/ev+IH9A96b+jrDmmmxZuN6iuHCPFvbz7kMQ/pnx7iFWWKrM6xGDCtXqqyEISa/ur7Dr0Wg5bkuiixTq1VpR10upalp/CCg3+/RbDaZmZujVqviRwrXANWrPmEQEouJlvpmo0GxVKLdFKnqoexydHSIRCRgKcFe+ZJWq8l41HXY7/cxDAPbcTjcP2RqqgjI7O2KSLtQzJPKjGHoGl4QMDO/iGoYqJ6PH4hNP5tKsbZyg4Ht0Go1yWazNBsNctFGWS6f02q3SSbiXFyc8s7b3+b4eJ/Ts1PGxoUGUa/bY35uAVmSxHVeq83TL5+NTsfvvvMe55enWPFEpLwr0+t2qUSdj5lMmlgsztHJKV8+e87s9DTOYEA8YfHiueiW0HWNkICZmWl0wyAWE6KV1zIUXuDR7rTwhh6aqrB/dEQ6nSKbzRFPRfIOqo4ky8iKGqX8Q4IgxIw880zLFGJw8Thh5Hsoywqh3UeNrg5100BRNMIgRJLVSCjQG9VoKYqGoqrouoGiWwyHDs6gT6tWpx1lM+1+B3fgMuj3cfpNut0WViyGHAViqqKIbKXmESLjEemBBT5GTEga5AsTGIaFqqoiU6cIb7ZAvdYMk6NOUp1GvUoymSabzeHEYkIbCxhEXoCNei3SM9IZDl0GA1H/YNt90ql01FUZoBs6mqZTUDX60bdDkuj3OqJ9XJJJJdM0qmVAzJ9ev4ckgWHGUCQVx7bptBt0e0KfKJXKEk+mqVTOkFUFwzBJxDP0en30KLi1HQdFVnA9l+LEJM1mE8s0uYqC8HgiycVZmXw+TyqVwWl2USTwvSH5ogjGUukcrueRSIiNIh6L0e11iUfKzCEhV1fnDOw+lpng4mSf8sUe0zNL5CfmxXdRNYYD52taZb8Jw3U7KPIutdoYB83PAHh/87tkMln21Smazc/ID8Zpd1osLboUi6K1/vz0iGdByFzsBLcx5Cc//gnfKpVoj4tN8Olul1zO5+oqw+nJJ0gSNItFiq0m6xHDXk5Ps2kc0Wx8hirr9EtFOPsZiizmj+d7lCs1LGMTL7jgd/6JYNj+8y22Xog6r5XlpYhhT2i1anhulnq9QC4nariels9pNZoMBwMuLkLe+e4cx8ctfvijH44YNlXqkUimRwy73/qck395ghJdg/63/82NEcPuypeCYXMOLy7FJjif8QXD/r5N7u3ntC76qKpCPGERRDWz+5pCbDUgk/kul0cGsdgYky869JeEDdBisMgnX3yEN/S4uTHHj350xFizRnbpGfGCeE51YxNJk1m/cZv9fQ3YRpJWOD4RljSmZWGYBifxOJt3TMJgBWN3j3Cmz0bEsMO7R9xQ7vDk0SOs4zOWTAtUZcSwwyMNRT3l9p3bKFg8feowPuhTrNW5aghvxxHDmn2cRz+nWypyenqKHAWNO8oeN907aDc9VtRFXrpDnkkguwM2v8Kwo45FSlVRlH2UG3GM468yLMnu7i63dJ1YvkryogTZkOxYHus0YtjckFMrQaE+j3E7yS3fY2d+j8GXX2fYy5cKEKBvHmJKqxSejfMoYtiqtEa/10GR1RHDnlfLvBetj2uGKcf7KFIbZybLF+08pYcRw96wiZtpWpUz5KyNcSQYljjvo78dMez+ExT5rYhhHcbNJYbONFeXkR/wSomf/OjHgmFvZHCaQxTv6wz77vdyPHvu0+snYRoysRilqRJ7e6IEJyQk26xyfFX5CsM+ZrqxhDchsrsbG5q4MYj96ofFX4tAS9U0FE2FMMCKanqIVMcVRRWbm21j921iMZNeZMabSGQJggBN05AlmWxujIuT09GmX283aLXadNoNep02U9NzPP7yEffuvcbsgrj3rVUvkSWZTq/D3PwM7WaXq6saU9MiNbuwvIQEhH7A+o1bhGHAwd42V5UKM3PiDjs/ViSRTNKoXZFMphm4Poqmc/9zEe2PF4vMzM6SSqUoTkzT7XVxvQGFQoFyRQQO3/zGe9SrdUxdp91o4fRtisVxzGhDGroDEvEkASGNehXHdgj8kOJkBNu9XS4uyszMzDE1VSKRiHPD0njy6AnZrDj5SrJMo9FkfGKSyuU56VQaTdcZ2GIC7R7sEzN1xgtFEokkqmaQTmfx/RAv0nbRzDiSLHzsVEWYQyuqNspoqZpBEAg1c8/zCQgFeOVXQqeEQtLDjTTMZDnE90OUKM2sGyYEAaEf4Axt2s0a9WqV8vkRp4dR8f/VJe5wSDqZxh30abaaxOJ9xsdEJlLWNKEF5vv4kodEiKQo6EaM3JgAbjyRinS8hMaV63n0e92R84DQygqZmZ3D9XzxzJ6LYRh4UQt/GHqomkY6kyUIxRWoJMujQvZuu43nOGTyOQI/wBkoDIcD0uk0uhFdTxsWw8FQWFClMnh+iOf7tCL5BlnWcBybTFqmWCxRq18Ri6dJR153vW6LMAiYLM3R73fY2d5iYWGZfL6AGxUz9zpNnF6LWDxJKi1OtbVqhb4jQLmcWmNicpIwCDg9O0ZVVQxdFT6jUX2eHtdQNA0/8Gm3mji2MHSPRUEnKBTyE1xVKvR7fW7cfp1arYquSDRq4vCTSCaESn2k8fSbMvyIYasrAa4nfreXOzssL/s8c1Wy2Xdwzp9h921U1aTXEVpbicQa94KATrfL+to6qq7zkw8/xKwKtetWu83eXpvJiQK9zuf0+nM8/sHf8md/9l+NGHb20c84lG7S6XVQ1vfpN4d8eFXjg2lhtusGPpZlsrIk8fpbtwjDDQ72/pK9vVcMS7zxNrWLCwpjyySTi5yeb7N3cMjf/K0oQh8vFvmd730vYlifbq+E6/19xDAR0K3+wRphNcTUD2k3ZpidnhE1Z3fEWhi6cyTiRcGwTz4VDFsKMSZFJunf7/01FxcpZt4v8eaUTyLxDo8ednjy538+EvE07yRoNMYZb1tUKue8+UYeqdRl0BPz/K8P/ppYT2e88K2IYUdcpidYWFrheS3KEO/vI6kK+wcqqqowP7+Mou6jqOLAsHFzk6dffkkilUBe3CBgG1mSWZc3RgxbDVc5ODjgxsZNdvf2OJBDlmTlawxbXV4m9AOePBUM269WiX2VYdk0z54+5U39TZ7V9mnu7xOL32H8XZE5kY/W2Q4Dbvs+W9cM21PQ4zFy775iWM8+xPdVlBsyz44Fw27cuGbYGodHOvasS7tSpWa2WF5cRlVVnnviAL4YLrChHfA0M+BCukDW19FlDWclYliljXc4SyZfFQxrK1wNL0mvLHEr0p86MizGqk8pjDdwnAzelod34HP/WLzzNbmNM2tzY13GMt+nVr9i7+yS3pRgS2VnB1XT+Y6u86gSsHO0xe/93veJLy7gDkVg2pscJyUfcRpP8kazgO/7v5xhywGxM5OUOo+iq2xtPSeTETVt0uoq+fw38YOtEcNyYxXCFZFV5eUejXqb2ZlZghcBxu3/mlrtI3SlTKMmvv3jR4JhA8f8FenwaxJoEYorlna7STLqtmm3O8TjMSxLw/M9Li4uKIyP02zUSSRfOduHoWg0CxF+gNl8bqSXEgQhhcI4EHKwt8vYWIHFhUWyuTxhZBqtGwbl8wvMmEkylQApZG5+lkxG/BvdZgtnaJNOiSud2lWFk+N9YokM2azY6JrtFpIiUb4sc3JyymDoI6sKxbzY9BcXlzB0g7PzE2y7iyIrhMiomsk3viE6UPrdLsfHh+iaWPy5fI5KpSKeCVA0mfpli739fTZvbaDrOmEos7snOkPOLy9ZWVyhNDmJ3evy4vkzwiAknU0xPSNgenZ+jhd4lMsXuEOHTHaRVquBEp0WZ0rTQMDU9CyO02fgdBgO0pTLZ6P76Jn0WGSxIxMEQVTkboyU4xVFxrAMZEVGCUNRmx4EhGGIJL9SlA9DIYYpyTKhIqGhoUQWPaZhYffaXJUr9Hpdes0GR0e7PH74BZcXQsix2qgzVSyQtEwqlQrTM9PYjk0t6mCanRJejmHgEwYKSDJGzMKMJTEi6xpFUQhDn8CXkWVFXL1FDgMA/X4bwxSBo27ouEOXMJQAH9d1ou/WRgpDdNMiCEIURcbUTRDTB28w5PzsiFDySSazWJZFq9kQwWSUinacAYZp4l4NaLfrqLpBMj0G0RxFkoVSs+cRV2Q63S7pVGaUNdN0g2b9ilQ6g93vC49Cd0AsiNNoiA07lojT7bTxXJfz0zM0zWCyNDXKig2HQxEU+uIKvt3qEIun6XRaOParzFv7qkMymSIeT3ByskvoS1z5whR4aXWdmJUjk85ydnFGGMgUClOoijIydfU9l5Pjo1ER7W/MMGAsn+WzTz7i9YhhEyuTyPIp1skJ3tIiF9UchW+u4zbqJJJis40npkYMq1yWBcPee+cVwz6uUyicACGZ9PcYG2syWVrkqlr/OsMSVcz+MclymnLnjLnhLPV65KDBDs5whuHskHtOn9rVz/n7v9vn7mtv0Z+KPBfbLa76XbaeD7CsUwZPt9hVFb71nrD5Wb9xc8Swx48PubF+EjHsNt/4hgj4+g8ecMwDdO37qKpHNZ9j+GKIdhAxrCTzyc/us7ev8p/diqPrt9i+2uW0f80wg5VFh/cn38fu9Xjx7/4F4fIK6bffYHpGbPrx8zVqwRXl7AXu8RMy2Q1aLW/EsN8pfRdKAbNzgmFzziRTgz7ln55R/HbEME9hJ2LY8vIyrudxeGigm+Lv2NvbZfPOJoZ5hO/tIkkKq9IydmiPBEnX1tYJw5CD/X1U5Qah8gLTinEjYtiZYbH9wqdZf8Uww9jl42qFn30hxERzhTxTxQIvnn9JJpNBN3RmZlWIGOYoHWRlg+0XPsqGwqokc2ycYN59F8MSiYA9ReG1lSV07YCctEpSPeUyfs75+SuGJRLpiGG3WBi6+H4I+CP9u1ajitSqE962CPyVX86wfJWwdkWkoe2zAAAgAElEQVQy+TaWFsduXnJ4dDxiWBhCVzGJWwMm2nX29Qck35xj9asM801cb3HEsDAMmJsTYrU7Oy8Zz1/hpt/C7n6BK/8yhq3/UoY9iLJiT4dDSmNZvKpPrjjG560veDueBUl9xbAnj2h3Orz++hsceR4nJ7tUP5QI/L8BBMPu3nkHWQo5S5xRsGTW5Yhh04JhW88XODn+S1y38yuAQYxfi0BLkiXGC0Xy+fGR0GO/18c0rag9XCKVjFOtXAi7AyXy5lM1Wq0GsiIzNj6GZcZo1OojR3rTEjIFzXqNRDKFrKisrGxQKE7QbIhanrPTE8IwJJlOsb+3j6EbDIYOubF5ALrdLpIkbHbMRIJGo4YVS7C4uMbWM3FPrhkGYeDj+wFTpSk8zyWXH2NySqQrh47DwcEunV6PhblFjo/3mJqeJ5VKiq5G4PHjL1lcWMA0DS4vLzk4Psb3g1H32uf3H9AfOBQnximXy9SqDSanp0ilowyOqjI5OYEswdaLLVLJDPF4nMXFBc7PRPHl7v4+iUSc2tUVK2trhKHPYDCkGRWrjo3lGUQCrtVKBULo9nsEfkChIBb2tRWIhBDcM3RDeFVGNUlBKK4RRcZHBDqu40SWOpF4ZhAgRYbRigIhCoTBKBALQ59et83ZyQHl8jmN6hUPH9ynclkZObX7fkAiZuB7Qw7Py6THUnQ7LXQtFs0pgFCYY0ugGSaJVFZ0i0aZJMsyUVUFwzTxPQ/LijEYOkTJKhrVMgPHxh16GJZB4LrEEhkU3SQMxNKJJxLYgwHxZIYgsLFtmzBkJLKXTKdYjm9QrVbI5UvUq2X6/R6aZhKLOpQkCXzPJ5FK4Xo+qbRFx/NQVSN65w6madFuiULQ4vgk3W6b6HVxeXnMZGkRRVVJKaq4sg4lAgImJsW1TK/XY3ZmiatKmWRKI55M4PsB6eib1KsVstkckqJCCIlEXHR1ajpKJOTo+z5SKLKbYRiSSo+hayZ2XwDn/GyfdKqAZSXQdQ3d0Oh1u6TSaewow6epGksry6OOyd+UYUkW44Ui3//DDR49FAybVvY4Ps6gaQHrmkY9YlhellEUYQkiGPZpxLCbWGaMo49/kWEmzXqNq16XwvhrhCublIoT3P/0mmHHrKyskL95i5/+5CeCYfOzvHNDZLK7DzS8NYtnD7v430rQaIxhxRJ4ixJ7z0TgYBom9VoN32/SK62xON7kbv7dEcOePnlCzIrRedijODfNo0d7fPDdedb+EOqfiuycbX+J5y5gmkdcXqbpHx9jxZNYd8Wa/Pxf/h9og1mKEwV+WvaoVf+a70x/QLsr2vflqR7fmfyngmF/8X+Tej1DPF4l4SU5/1j8Lj/Z+gteey3O2BWsfPuPCMMEg0GVz64ZVoszN+dgHhlUTwTDHvSnCPzP+X3/jwBwZhdYjcXQVBnXdTH0I+R1E08WAWNQvsS0jvG8RWCX7WCJhVmHwHvFMEmWWJPWGDJAVWAbEbhJ60JYNTw+iRj2H0YM6z24TyVdIVkRDHtycc7an3yf6WKef/Gv/y13Nldptj5C10QdmCKvAiFraxJ7Oy85uJPgzTfGv86wk2P2b9/mjnkb39/GOmkwNz9LFHdSu4JYIoU79Dg6+ZgHrsvd4C0U3USN5mA8McS2zrmpvcUgeMwz2yUMra8x7Ptxn2pVYbjYpV7d5fDRBen0u9y9G5UASLD94iXn5RSZDZ+7Yxadzh77ETtmnWDEsKPDQ4IAFhcXCIPnAKQSx1zlFsmrJ7yxl0W9NQZhImLYBwD0HvaYfXeJxs9/SkMRDGvrXdIZEczVuxWy2Qw7eyrNZodEEOdF2eempqNviOfY2hIMe+663JidpdVuoN80memL/e3Zs0dMdSaxrHN0e4LD2AFTMyVS6UvsDwXDVjYkVteW+Td/dZ3J/4fHb1ZF6m/Hb8dvx2/Hb8dvx2/Hb8ev0fi1yGiFQUg8nsBxbHxfRKe5sTE0VSMIQzrtJqcnh8TjCcIwGGklWbE4QRCQTKWwHYd2q0W1UhlZKUxOTdBqVkXhXzwOkoysSKiKhBtF6xKi/kDXNVRZpnJZFsW9UaG777mcX5yzefcejuMwMTHFcGCjKhJTJXHa00yT/f1d1lbXCf0QRRVWPEHUUShJMul0hsmJUvS8GQLfw/fFNQpA3+5zdHzMxHiRlZUVJEXFC3yOIh+xqempSC/MQ1U1dE1DVyVOTsS1zZ07tzF1k/2Dl6QzGTbWN3C9AUdHh6OTyXRpkjAMGC+OMzu3wM72U8IwxI30QIbuEFlRGAxd4vEE3X6H8mUZd+iPRDzNRBLDmEYx9ZGv4HDoYMbEqTXwfVxnSBjV2IVRQ4OsyCMTzjAIgHDk/6caGqHv4UfCqj13yMXZKY8f3Ofs7JirSoXyZRlNUTEj30bXh4PTC/LpNkiws3vMWDZFO6rfc4ZDYfotgaKqmLE4sXgSzdRHV4OqoqDKsngHnodpxUhl8lTORSNEcWIO2+6hxQxUVWVnb49Eos78yvpo7mqagarLVC7PSSbTSEiEYSi80BD6St1OB9OK0eu2UFQVKQzRNHWkH9TtdlBVlUK+SLvdpVqtYRja6PpIQqJn9+h1OwSBRyqVE+bV0TeZnl0VPmoDmyDwyWRKDAcOg0GfTDoT/a4GfhCgaTqe79Pv9XC94chSJJXJomo6umYIIUldJZFI0at2sSIJCFlRGcvnURSNeqNGt9OhOJHEN16daju9Nn4Q4Dg21UqNXqvO+uZdJifEiTEIAxr1Kp73m+V1aIc28XiCJ47K0pLQ24nH4xSLB7zYDtl6vsXpyafcy7/GIAxAEpkkKzbBixfLvPlWBdvZpt3yyGWS5PPXDGtz/7PhiGHn5ST3bkikFImfjBi2SqvVxJ6ZRpXXqVx+zL3SFC+jQvdixLCJD+7hOw7tiR7TH8yyoazRLolrmd5xj8tKirXVDOHMLMH+kHarRTEyDF9bk2m3Mkz+fokXLwKSqRqB77Hkuzw2BcNOP+nz+mvH7O8VicVDPNdjcXmJo2ORwZn67gdYJxZbX2HYoSqRtsQd1bcXvzli2GXmLd69ucGz519SvjhkOBRikdOl75BOvmLYX/3lvyEMV3DrEcPGnrK7t8b0xCuGpS7LuPNJLsois28mkhwd9Ynds3BcG/2lQYjD7bsi72AuLeE6KqEEQbBE8CLgUfMh6zfWWVsTFjuu6/GSbWYW+yjGLdQjFUWR2Xr2dPRNLs7+PfaD+zw4OyZbqVBOp9ACf8Qw/RcYJu2aDMfGRwx7MzHkPJ7g5Q7c2twgFqsRO0ty0DrEskTWK/P2DVRZZnt7mw1F49iKkdJ/kWEP0WIymzdv81d/8W9p1uv8k5U/Hs1dwbA7VH72Y5Kv/3KGbXc6TFkxCt0WLXUDKTzn5s2vM2xpaZFEIkG73eWjj55hbGrEIoadINF73KPd+II7d+9QLlcJt0OO4yIrFASrrMkRwxZ8MskSw4HJl1/2KRQiAfLUEVcvaiOGTU9N8ezB01cMq2TZb+hYtzdfMSyV5dlHP+MNVTDs5q0NdthGUdJ82ajRnehQ1F7n0Igy7nqML3ptYkEbx0nTqxgEj3eQN2NsTnxHPOtYQKMuE4b/yLwOPc/jqlpFIqTdEkWzRqQi3ut28DyP5fUNdM3ANOIEkXJur9+lUJyk1WrQbra5LJfxfZfFZdG1MXD6eMMhyXSWZqOGJEnYTh9C6HREel9SNCRJ5eBgH88P2Lh1FwIfKwocmq06C0vLtFttUfviOLhD4aEXi36m1mgyNTVLLB6j02zhD6Df745qjkCmMD5Ovyva5ZvNOjHLot+3yUedMGNjBSQkMtksrVaTmekpqtUKUxMimJMIuTg/I5ZI0Ol1OCtfUsznmJoW/9+Kxbm6rBCLpVlcnMQe9Ol12sSsOEpUzHxVPeXOnU1S6SSX56fMLaxxdnwwkl1IJ5Kcnp3iDX1KpSLNVpNCvkCj0aXTFddD/W6LIJgciY667pAgDIlFBsj9bpd4IiFqmaL6rEajRiabw466G4MwxNBdgtBHCmFoO+imLgRHgVajSbVyxcHePju72/TtPrlshk7XJpUUz9qud/CGHomYgRQG+L7H2WWNZktcuRTGstzaEPUGsqzge0Mcu08slhz57Pm+L+qqJBlVUQllhfzYFPWKCG5V3UBybAYDm2RqkqX1DTrNOnavS6UizFKTyTQTpVl81yOMrkd1TRuJsyqK6PRLpzPXovWUZmbptNsMokJ1CajXqhjmPKl0gm6vFwmduqM1kknnmCxOYvf7nJ2dkEikvraGarVLsmNFevUaTrxDIpGiVi0zjHwuc7lx5FBDkiF0A6RIb65ZFxutqqrIkkwmN4aqKjTqdey+jSSFo+dQFQXP99ANk3yhSLfbpdNpYcWS0RxMMHBs0V2kahQnJ3leKXNydMjc4hIApmngukPOyuVfxMA/6uF1PT786CPWVkOqLbHJGcZ3AJd26xXD5hZXBMO2xQbTk0oUisfYTxza49cMWxgx7MsnOyzOz5MtFPnpj06QpB6ffNQnN/ZVhh2wtvYNTg/2ceYD/vQ7/yUEPtmqkIb5SauO4S8zaLV56A4ZPinhDp/SvdvmbsSwj1tNpj4wiY3n6TQ9/MGQfr/Lg8+/AGB1dZ1CM0M/ds2wPC9e9Lh5y+a9iGHbmwV8V+Ktt9/m/v0mM9NDLk6PeSMVNeNUrrioxVlMJHj8FYYF4VcY9rMKp4tpbv7JJE8GfaaKE7SbXRRFrLdsLsaCa5CanOTyxz/kdxfWODM1Pr0vtJbeTHyT07NTjoc+pVKLZtGhoBX49PgB7QlxvVjsTrK8LHMWhKwisbMwTxCG7O4K7bLFhUXOzs8JQ4lVaZWV4AUnjRr+1haPoxrRIAxJJlME4RLSNsyHDju7uyx5Yp63CjVamSz/KmLY9DXDSh6pW8Kbz/7kCx48sPn2uMFauIy/5HH2sxqftUQNV+O1K/75n/4BB5rMrqxw05vnyUydXC2Jqoo55vuZrzHspqxQybxi2P7hEd22zNzcDMlUgt//4z/li88+4XHvwYhhreabfPv9WXzDJAx8bmo3MTSTl4dibivKHm5mgXQ6Thi+BF7y/u98jy8+bxNyHVgK55GZuXlu3txA37zFShBw6IpOTl5C5s13mDw+opAvMhwMeXHuk4zWz+oqXF2lyY61vsKwE7qdA4ZD0SzxzjsLqMoB3S48/TIYdYV/jWFrMpmh83WG+R7uM8Gw/Rvb+Fset+4pbDdadA9kOvFXDLvz1jcYPHmMtHaDwZcDTiYneVIpM3ZUQV4UB3Rz3yAen6fd/tXrTH8tAi1FUbD7fUBoEgF0Oy2a9Tqu55PNj5FO5QgDH8KAq8gyRtd1HD+IutokZAn0WJxOpBKsShJWLEGrWaN8esD88g3iySz16iXxqD7GdV2ursrY/R5WLMHF2SmDoRNpNgmbhHarSRgGQgpCtyiXyxTGC0yWxCm9ZJgkUkn8wGPoDnFdF03TuCwL0bhEMkkqnabRbHFVrRCEEvFEksOjY/q2UHdeWVwkny/gByGqqtNs1bEHLkpUq5HP5ZgsTeAMPB4+esx4Mc/i8spIZoAw4OrqEkVVyeWymLqOmkpzcXHBWfQcxWKBXE4sTN20aNav6HS7o0LSWMwiEU/iDAfEYibZTJbZ2SmS8S6VK1EPUruqM1HqoSoyQ3eALAlNrGtDaJAYOANkSULVdDrtJna/QzqVxI4KouPJFJ47hKhY3h0M0TQVpy+Cgkr5glr5HLvXxTQ0gsCk0+kCMqlIk8dQVFRVxvcDMpkUsiRTrXcwotNi3IrR7/TQTQ9ZVlE8FXdo47oOqiLq2iRZLFT12ng58NBNk1j8OogJkWQZRVWFAKpqMDE1h2lakX6YyFYOHAfDMAkCH9d1CRHZDIBGvU69WkFRVKam5wlDUZhvxeMEXjB6Z7KsCD2srksimaTdbGLbYi0Yho4kyXiKQiKZxIrFkaRwVPfUatbRVB1FFgX/9Uadq0pFrI+emF+O1UdVzcixAAzTAh/SKdG+3+62iSXiqKqGGhcSEVfVS46P91ldFaALPA85knxwBkNicYvQD/EjTSiJAMMQgZRpxZFkmFteot9tIknXGWKPMAhJRIH5b8qIxePY/T79fsgwaot/kLkvGLa4RLZeI53KcXx0zGoocZURYNeHDk6vz64kMSFLyNIqeuyQL76IpAikNienHrKmUj79D8x//0+4p2f5pHrJvXERXHx2X+LDqzLj/R7qaYKf7P+QuflZXkT1jKp6i3axSfj51xm21F1isiQCrfe/LRi2FXjMu095Zi9EDPsEgKneDKlSmsZn93lRrRCEy8QTSX58YdK3RWH/ypuL5PPfYCsIUTcOad5vYQ9cHn6FYbOlCZzBc148+pTx4nssLq9w55phumDYREFlGDEsnUrTn+4Sv2bY+DeoqjKZnd0Rw74ol18x7K5FonnBk+Ehy7E/JHv6VziLMWbjU2Rs0bz08dUnTJT+C+aUC4buHAs7T9nXNPwo+wsSc7NzyJIEB+GIYZepJJvTr3TpDvYPeLm9zV3rLu5gnhXtlPZ0xLAjwbCZqRInJ/uYy7f5Yus5bMt89zti7pcKWVS1wgu/zPpb64Jh3iuG3btzl0dfPEQ3N5ETKi/uqNwZzpBbmKDREgdfaXcX+fYdNm7cBFnG959x+Nkxp2eCYZqWQ5K/QNnfx728Qltd59sf/C6madH4+EMAdqQKXz4ZR9k0WQ58nrku6suXrxiWr5MvD/jp3j5T0/OoizfY29nlzr1ZAk/IlLx8uTNi2Keffsprr7/O5599xvKyWPdHszqS+4zFBRPj+EIwbC1kRhONWpVKnQN1n7fkdzmKPUCOGCav3cJ5Jhj25HGfjY0B7VYb22GkxZdOCePqdvdzYtY1w/YwjEXBsN2AtT8U32284bE7+ZJOq04uc0ElbhEGrxj2/GXAhrGJKw0xrTPW5FV6v4Rh2y+2kZX/Hy14JEn6n4E/BCphGN6K/uxfAWvRj2SAZhiGdyVJmge2gGsTrk/CMPwf/qF/Q9M0CgXRin6dJWo2GhiWSSYWxzRNDF3nqnqJYzsjHS3HttE1YT2STqdFhiKEbCQ26tg2vudzfnrEwsoN/CDk9GiXs/PzkdXhxOQ0E1PTFItFup2O8KtzNVptoeeVSKQ5PTtjdWWRdrtFfqzA/r5NYXx8JFfmOH129/YxLBNCj3qtRn8wYGl+4fotcnJ8yPMXL2m2uvzpH/8+jUaDgdNneUkUYGqqxnDo0eu3OT07Yv/ghHbX4Y17wlvLsky63Q77Byf0+jZLS8sUJ0pcnImTy97eHofHZ9y7t8l4qcjW06dMlaYxYzGsmHhfi8vLwk6m10UzLWq1ChflClZkJdQfLzA1VeLBF58ThhJTkyWGjssgOiGAuPZrVasM7R62MyCXnyD2leyKJEGrUSeVTiOrqthYfV9kEyPNlXQ2K4rjVQ0JUeytKgrnp+L0s/XoIeWLYy7K54Qy5DIJLio1CrkUJ5Gqsiqr5LLCI7DR6TEzMQZSgBF5Q+qaCigEvk+/32HoDvG8ADXycgQYj4sAzfOGIEsQiivsa0/G85M9ctk8VjKDYVrUqld4/kD4lUVNCIBIsUsSl+UrxsbyDCNbJTEHHRTVYDDo0+m2SSTTmDELv+HhBuLn+n371TvRVHzfR1VVzOg5AgIkhDZRr9tHVTVazQrFCdGxk82N4dgOTr9HzIxhjSUZDvrY/T6JRJR1vbogmx9nanqBy8uzUcb4WrHdMON0ui3qtSqJeIJMNouiKiQTGfRofjQbdVqNGvFUCt2I4Q4GnJ+cUZwUB45Ou85YfpzS1BznZyIIGCvk6fftkTyIquhIkjISY/1PMf5TMCzwfQqFApn0PLHviu8a+/RTvDu3OYnFMQeOYFguzZXtoEdF1Y5tMz8/h/vsKUb6TXy/ThA2GQxFZn925h5bz7f48Q9/wO/9wZ+w9WKb01SSnR//GGlFXGOtrq7Q7HQI5Zvksh08P0ki5ZKOOqfPExKxnTOIe7TbZfJj73+FYWLDdpw+f723j3FyzbCziGEiKNhhB+/4Kf9uxLA1CoUC4cUFrh8xTLv5FYa9QO2c0O7OQiiyc5ZVp9X9gv2DE6b6NrNLAcWJEg8jhin/+m84NA3uXW4ijxXxh08xStPcjt3lPPYTABaXA/R96E910Y4tPv5Fhj1+zNQH7/Oz//1/GzFsx3GZm3d42BOip2PBe9z/6COsuIXtHJHLT/D6a2+MnClebr+kNDEhGBbu4y96hCdfZ9hl9oqV5RVUVWPn4CV5ZxxVGbxi2P/5kJ9e/B19p8vQ86hWzllcWqJRveLvf/wjANT1Dd7JphkMnnJ2+TEz7Xd5KQVsboqDzSuGbdHvbzBsD/nCC8geHFKcFAHKN++lMKRdnj/XfoFh4uB7bu2R68ukkhmOTIvao4domxu8Lu+OGPbGKrwIDNhRaaSyKGN7DAeLwKGYg3GHh/tVBsMBndIECc3g9htv0GrURwyzHZs3334bRRHC3NcMSyUjRwiWOeCIXUVmvttHPT+nNZ5B+wrDTuwznH6Pu+ZdrLELhoM+ib7GYVbMj9rVFkN3nKnp32P/4EcYhomumdy+LQ6Lz9zv0Onejxg2JJNNo+wrJDcyxBPid2k26jQaNdqpFrohsTA/x/nhIa2IYZNanWZ+nO7lgMRkEWiR0+tM9y26UZeheuMWUrmMqvzqeapf5Sf/F+B/Av7X6z8Iw/DPrv9bkqT/EWh95ef3wjC8+ys/ASIN6zh9JEka2eQkkgl6UedhIp6k1+sStxKosjrSlnKMGO12G8M0UVQ12qiMkTXJoDnAcz1kFKx4gpPDAwrj4xhWjPufClHBO/fewjR0zmsVCoUJer0OGV3n8FDUHWRzRaamJjk+PsUwDBRFoVDI49gOw6joqFKt0u11OD0/I5dNj7rIgkBM9k63jSxLjBfGmJoqkUqm6Ha6LMwvjNSKz8/PmZqexXN9crlxHn25zb07d0aCpZWK6LhrNNts3NognclxfnzEybFY2Du7+0yVxllZW6dZF/phiWSXdDpNMilgqSkqjVoVWQ4ZDl1CJHRNJ5cTqf3jo0MmJ6fQDQPf9SD0abX6pDJpdFMsqIuzc8LAZ+gOmJydZzadiqQmROQ6dGw8TwQjsiQWnGkY+J6He12XEyC64nwXT5EYODZOt8f5qQiitp4/odm6ou/YVFt9irkUyViMWqNNKsqEOM6Abq8vRFlNg0azhet6DD3xHIEfiFowSRP1Bp6PJMvi6jDKYNn9HoQBnq+gaQaaphMikUyKICCVquP6Hkkj8/+w9549smR5ft4TNiO9L+/dvXWrru/b3dM7s5ztmVnDpRNJUVwIEAgIIKTvIECAPgYBAXxFCiJXFEmR3CV3e7t72pvrXXlfWZXeRWb40IsTN/v27FDb1K5GS6LPm+6bVZWZEXHiiXP+5vfD9zwkfPL5cfq9/jeLoDDAtm0K+QKyLHO4v0N5YmoU4VNUhanpWRHpdCzMfhfPc4UYaxQVG5pDEokEIb6Yr5IQSX0VsWq1mkxNzVKrVcikSxQKRdqty5HkRhiGJBIJJFkmmc6g60ZkEzUkFheRk+m5HK5j4zgWhUJJ1MtJISeRKXmxNEYikWJo9jnc32d5dYXADygVS5xVBOjK5RJLiyuYZj+q94oxP7880gyrqjKV82N0PU4ikSSVSYlORSScaKFlWS3s4ZDYK7ulX834x/wKGDY3N0MQvkDTxXVN3b2DaQ64YZyQup3hwYM+t+Mp7NcY9vgoQXeii24YrO/vE1xU0Dauo26Ih+CTjz/BW1xCPtrn5OyccqNONfBZWl6h0RBR5pvJHPNGjPcbn1Mu/zqm+TWdtj6q8dMK44xNT9L4pMHVmEJvXaF8/ophoqv5o08+ot/scdpJUsjXkaQGvjcgCMRmcbLf5fErhv3Gj8kkk2iqhussEosdiuP94H2m353DcofM1Md47/4WyZsxlKsRw57niFnHI4Ypube/xbDnuyq/MVUkvCPTbrYIXnQ5f7fPZjZLOv274liUvGBYucjT7m7EsE0KBZE++qOjQ/6K46LHrvPCfY4d+kyMz5DMwlvHgmE/f/w+4cT4iGE/vfcGh/ohq6FYuNrWDM+fP6BcnkDVDYr+Msb1Kp2ax7OnIlX2k8nfZmtrG1leRdU97Lkh1vMq70fi0DXvEO1Q4mH1EYXxGer1C/r9IeZwnkxKnFNr5wn9DRXLnidpxPj8+Etc1+O+KRamRf8lb6/cQzM0dpXXGHbrLtcKQtB2ODhneytA0f4jDEs0cS9yxK6XWPaf06z75PNFrF4MY1mc98ALmLEfUr9eQD6R0fd3MB0T338lUq3w49/4yYhh2/0u95+7KEqM5SidJkUM2tp+ged66LrxLYZ93qowNbVMrdbDDptcKxRZDZ+zhfi5Hy6TOE1wJJ9x524GXU/iuR4vX+5w7y0hMaIoCq7zBMd5zNuFEtLONmtXVkcMc5ttEvIdhtN99H2V3uqXBAsB76Tv8ScfCIWAwtslbrgrdLt9llfe4uDgiOLYr5M0heBtrtCkcm5hOxJj5WucX5yzBpyxw4IrzunLLz7Hjjxkv+v4MxdaYRh+GO3y/tSQhHrb3wPe/U/61D/9PnieEGgciwxsVVUjbsSFWrcRo1q7IAh8BoPB6O8SqTTpbBrPcfF8j9m5BTzPGxXUpzMZapdVJmfmqJyeI8sq3W4X0xzy5ptCszYMAjqtFtlMjn6vy2DQx08kRoXu9tDEc21c12V9/RpnpyfMzs5QazQZHxciaH4QMD4+wczsLNlMlm63xWoiSTNSuQ+AhYUVUsk0nVadwXCIHo/x1ZdfU4psELKZTCSaafPV/Ud0e30ymQxGFKGJGQa7O9v85N0fk88XePLka05PDtFU8cCfnxVm1PVag8rZCWEAlxdVbt28zsPIZuPx42fcvnVdpPbkEN8L6DgzFRIAACAASURBVPV7lMfEBDo5qzA7P8fm9Q2G1oCDvR0KhQnSyTTOUByLrsWwhhbNTpe778yh6TGGgyHBKz2VSGTW81wkRYHAJ2bERJpRfn26hQyGQzTPo9tpc7C9TS/Sj9k7PMQcdEmn4hiaix+EGDENWZLIJMUDqt01Gdo++WycbCpJtdEiHo/hdsX8aLWaGDGNXDxHGIQoMR09ZuA6DpYlfkfWFGKGji7H0FQNRVLwA+8bD8HAx/NErYoiKwwGJr7riRs+WjjEYwaBKuqpSsUSx4dHJFN9VE1sGPL5PM3mhdDpUnRMs4fZ65DMZCGKiVr2gHSYZmgOiMXjQIjneaMGBMdx6bTr9NpNFDWGZCmMT8yNJBIsa4iqapiDPkHok0xmCYIA23bwo8WtqqjR73nEYobQ8+q2SEapWN/z0OMxxienUFSNwA+EmK1j026LupREIo7rNPA8m2Qqh20PgW8WTJPTc+TyRTqdFhAjDMCxXUqlMu3IliabyZJKp3+l8g6/CobFDcGwL9uXjHUEwxYWDogbDopynZiRZ3rwH3hkPWRmMDP6u8TtNOn9Cl6+QML3GM4t0Gu1uBJF/Ow33qB2WUWJGLZyVaW7IxiWiwRrw2CFTmtINtNjarLLw4eT+IkEiwtR48jQ5OtnT6i7LW6s36TUrLP2k3f5+NPP+NGPfgjA8kqAdjTBzKxGNrPBxESLxGsM6/fhp0srpJJ36bTqHBkx6o8f8uDRtxk2tyfjtm3+yf1HJHp9JjMZjJpIycVmDZAG/OR31sjXCjx58q/48kT/FsNy6RT1WpHK2SHDALQPq0zejI1KLP75P/8XgmHP55HlVZa9+7zof015TFzeeDLNvq5EDHvKwd4O5XKPytksxVXBaz03jnV6TLMzwd1/IBg2O5jlYfhAnM+FZdbDa1xcXCKtr7Ndr7JoXMdxD0YM297eZm1tFevJIzRvg/OdMw7oUsyIKOJnH/97zOQEN2I69YMDSrdv0Lg846pkcDli2BLdvkTt8oRsKonnrxKP77MYsbTcKvEwNiB3UgVWUeI6esHAnXB4/Ficj0R6ljfeyGIYCWIxg73dfZZXlshmRET57N8Jhj182Gf96iIzMzFmXA9HUXBdseA7iRnMqTaLroHXeMZxr8/A/IZhpyd52p0PRwybNqfY4UuSmSxPnn7DMMKAYX9ALH4T1lQ8y+I0Jr5H0kl/w7DZBb6SFNblPnMRBx4/3uXaxibmoM9XXx1y+/Y9gqDM/HyDF8+FxdP16zEsaxZV1YitHHNyEidvWySTotasWtXZvKlwetanPhhww9/8hmFjIuqVsOZZLKlUq+fs7e2zuLjA0dEz1sQaG0Wdo1ozsZ0ynucQBvDUdlktlfniNYbduXuXePx/+zOo8M3489Zo/Qi4DMNw57XXFiVJegB0gf8pDMOf/1lv4rouqWQSz7VGtS+qArIhMxiaVC9twlDULk1N5qg3xO6lGIthuy5nJwf4fkhpYoowDDk8ECvc4dBkbX2DodnHz6Tp9/t0ux1c20XNiV2W73skU1m2Xj4jkTAoT0yi6TrNmqgJaLUanBwfsbJ2hW6vRxAGpNJZ7j98NNIyMWIxymNlTo9PqV5cMFYeI5nMcHwShcQ1UWPTaXc4ODggk0njuC4xTWUpUne2XYdK5Zznz1+SiMf5r/7GX0NRFAqRIfRlpUK7IwrsT44OqF6eMTOzwPiU0Enq93t02m183yOVTJBMJlhZWeP87JTnL7cBYbPh+wF+GLKzvcPAHLK2uoyiRkbeSORzeTRNwxrYqJqB7Tg8evQAaygK/xKJBIqlkEqlyeQy1GsXtGoNwmjRMD49PVqUJCUhIivLQq9Gj3b65sBE1zSGgwEty2Jve4tnjx9QuxQF0kHoEjd0jJjO0myKWrOFosoMeg4xQ0xZVZMJPGi1B7S7AwLfJxWJEAJ88ugl76biFPM5QknBSGaIxRORObaIBCmyFOlehXi+Q8JIoUgSRiRoKssyge/T7/fIZLJkckVs2yIMw5GRroiSJbEjI+f1a2IxPhEt1I1YnHy2RKtdJ5lNkUpnRE2iNRjN9Vy+zHA4QJKF+bbrOJhml1Q60kiTJTQ9ztnxEGtvh/GpKYx4nGFU+E8oc1kRi2THdZAl0dU4MzuN2Rc7L1VV8DyXavUcWVJIJpNMT8+PjHQd2xYdga0mibgQU9U0DVlRSUW7Y9Ps4TpCeXrtSp4wDDFNk36kYZTJ5TCMBK7rUTnZwYjHyeVzDIcWk4Z4uMSj2sjgu/ux/n89/kIY1vNcUskzbru3SU+KInTPBflY5uHwIbKkYI0YNsUnjU8AmDyawg5Czk40jv193pmYwl9d5Q/+3R8AMDs7zdr6BrlCnn73K/r9PjPT4zi2S6sj6rhe+B43Uln0QKfd+ox7b01ycNhjMHjFsCLbL7dYWRPK2Z32Z5xXljk5OaEdLaSOj2L82g/LnB4nePjwPuPlH5JM9jg+EalnRTtE2pHpLAiGXWQqOBcRw37rtwGwnzl8UPni2wxbVyg2xGdcptO83O6jKG9zcvRpxLBpxqeEaHO/32Or3WbiTzHsPU7OPwTgjewyzmsMM839bzHMsryIYWfMDULiGwZPnjr0+g+YmxWdi/OJU06tLKlUhTdy/y312gWf1z4l3H7FMIctWUFTZW47Fl/zkt1dF9dfQddFFMgcmHiey3Bmhtbjn7O37QqGZQXDXm65rIWHGLdvsnRwSG07QCnKPOw55COGXduQefkcfH/A2MQM03GbVCrEssSx/ON/9q9499duU5z9KaEkYyQviN2c/1MMe/RoiHEjRHvhkDAc9nZ2aHXFPTti2FSPLbI41Qatdo/VMERZXwfgiiwjJZI8efLoNYbFmZgSfMnnbmI/GfJ5+xOS2RTjd6eYUmYZWgN2d0U6Npcv8+jRQyRZYXUlBMehZ3YZj1KHn8o7aPq1bzHMiy8w7IgI4dyczOnxEcN5i7XVVXZ3tlhZXmFmdnrkbKKqKTyvwkcfvT9i2MryPOGO2Nhkb83zcivAcUok4pPsygE3fpFhD77m0wWPQUowbMsO8U2TRi1iWDXHjRu36PW6VE52sD2ZXD6HMWsx+VKw6+Yt0czgRtqR32X8eRdavwf809f+XQHmwjBsSJJ0F/g/JUnaCMOw+4t/KEnSPwT+IUCxkP/FH38/vh/fj+/Hr2L8xTBs/HuGfT++H9+PXz7+Xy+0JElSgb8N3H31WhiGNmBH//+1JEl7wBrw1S/+fRiG/wj4RwCL87NhGIakMrlRTldCrMZjsRi+H5BOpXFdj3q9/o2VS+BzfLRPKp2lWBqn1+8xGPTRo5CnFzBSlpdkGVlVmV5YwrGGxGPJ0Xs8ffQ1C4uLaDEdy7Ko1y+xow64ZquK7dpUG1XGJmap1Wp89NEHFPNFum2R6ur22gwGJq7tcn3zOkNrINTho6L83b0dctksqUQayx5Q2TlndmaOK1evomkiqvH85S7VapPVtVUmx8v4gYei6qNU6enpCcVigcB3sewBm5t30XSNSuX81flE13TymSxj5SJBKM5f3+wxNy2iXomEQSZXoFGv4bouU9OTLK2ucP++CJnHjBgxPYY5MLmoXOAHIYenJ6STSeqRgj3NBqW8w5vvvI09HHJ2eMju1i4btyJXe1nG7LZRFAVFkvBcj6E1RJEVfFmk2/q9NmEo02636TQbPHn8NXt72wyj6Es2m8JzXIIQOj2TmK4TeCESMpVqO/ochasLE5xcNGm0TXLpmJBLiKJEHdMUpt+STKpQJp0rkkhlyeXzIqUJyIomNFk8lyDwkCUVWVKIG2JuZPJjeH6FwHFwXQdNVel22zSbzVHDhZcOkEQNapSatJlfWqLbEc9lSZYBiWy2gKZpDIcWvu8hIaJpAEOzx2BgMj45g+M4pFNpNF1HiyQiUqkMjcYFA7NHp+ti+zaZdIqJSVFI6ro2uUJ+pEovSzKdTptEOoEe7Z5txyaRzNBuN5mYmMJy7G9F5s5ODiiUyiQSKUI/pD806Xba5ItjqNHvjJcnaHVaBGFArXop3se2yeQK0X3Qwm1UyeeLLKysj1L4uqYxiLofB40B2WyOdmT8/v/n+Atl2JXVMAxXSWVejtwLJEC+cpXrvnCNUOQ9nr1i2G7EsPIrht2h+M5fZ+f+13Qf9tncED6FD588JZQVFuZm2ZGvMr3/kOmMx1PbIpsV53058Pk/Hn3Nb/7WIgdHNpncHOlUh25HpMqarQ+YX5wnV8xhnJxTM5b5qCoY9tUrhtUu+Q//3mRxfpHrm9e5uExTKJWo10TkTVbOyZHlfNvlxYtHtNptfvLuT3nzzXukD8T8+Gd7//ZbDNOCJZTDIwZKxLBO+xuGzc+weV1HO9T4oPJhdD5X2dR0/IhhKyHEZBnMSSQzYljR4EbubT6t11h0XcrTk1xbXeF+XxSp12t1rusxHgxMLtIX+F7I4WmcdLLJJ59/Gl04eOetBXKlwohhj//1Azb+nmDY1XmZh18JhlmDAZ67xHDwkPWrz9Fjosvu5LzCp59+ylh7jC+bh7QeX7C3t82jiGH37t3Ge+rycmub+flFYlMQnIRcYZdHkTJ8trDO6nyXeOZ6xLAjbGeF7UhmYnzaYnllFRYihhWucSuVJZevIY2LaOZpQkM70PGeu6xc9Tg5sSKGiXrXN94ao1mv8PKpg3vHYePaNfr9LkeffUY+avjy7r6FJIFtO2xev4Hr2NhL+9idBTGPZRnWdshuFdjY2GA4tHjx4jlBEDBni0zHo9cY9uLlC+6m7nLgHTKYE6lUwbCvGJjKiGHtdIpfnxTPate1qdZrqO1reKu+8B/udCOGCSmLJ08lXNfj6tV1JiameOzYbG2NoURSF/LJAbYVMWw5pD8wqUYMu6aIyFvnh9OUOy2+2grI5y+ZmFjnsRYbMeyrvRbu+TFv5Ys4K+uEfgD5Grq3geuJEpxPGw3uZXMjLn6X8eeJaP0UeBmG4emrFyRJKgPNMAx9SZKWgFVg/896I13X6fdNVFVFCl/18gV0u12KhRKWbWFZA4rFMXzffdUwyNCyGZ+YIqbH6PZ6OI5FPJ5gbkHkYzvdDu5wiOu6TExN0Wo28cIQI2Ew7IsHoSwpXN3cRFV1FFnCsVvEdYNOBCBFjbN5fYl0Okc+V+DoYBdNU1lbXeUiSnVlMmkhA6ConFfOqDfqnFcqo0L2udl5Go0aiiRTKo1zbeMGYeCRLxRHaU5VVvjZT36M4zgMLZN6XbiH61FzgOM6LCwt4ro2c/MLaIrG6dkxqbQ41rFykUrlnF6vg9d2SaTSnDSOiRsJVleFtksQhrSbdcxej/X1dSanpmh3O5xEKc6b1zfY2t6mUqlQrdfJZTLkMhkWFhaFtAawtLiM4/vISki70eTZ44eMzy1Siro26pfn9FotJEnGtS2CwKPb7YpuUuGLg9zpICs6Z0fHnJ4dcHJ6jGlaFLPipjQMjTCm0esP6PYGTI0X0VSJct6g1hLfI5tK4gchshSKOq1knHa/T7UhgBuPaTi2RyKTozA+QTyRQdNiSJI8EuDUNB1d04jpCWRFjeQeVF4JXhXLU/S6bayoGzaRTKFqOrbtcBwZw2YyDabnlkjE4/iBz+nxKYV8kSAUi8rhcMBg0Me2LcbHJvE9h8vGJcXSBKlIRqLdqmE7A0yzRyqRRtNiVKtVmpGxcHlsnPHxOdRYApmQeCJOp9kiGWm/tNsOjjuAMI6iqFjDIV7g0Ww2MaKi81gsTiKRJpcrcnFZYXp6BsdzkKPrWiyNYZp9SqVxzL7JcDgglUqhG8bIAFrVNNLpHI7jYDs21dolzUaN6SgloygK/aHJhdlndmGVREbU80GIFQH5aO8lS6tXkKW/FMoyf2EMS2taxDD3Fxj2FcXCO1i2xeOIYaf+KTduiPSDqulMz8xwdHhE9+sEjjNHPC5jOeK+nvwrOdww5JkjGFY/PiYThtxIGDyOGPY8Ylgqq5NI1JElibhu8OUXwhpnZhhn80d3SKdz1HomgfkFG5pKanWVi6R4IGd+4ydIu7tMDQY8GuSpN/4NH/w8zbosHvpzs/M0qDEryeTfGWds/AZhMCMY9lTcC9fkdf7rn2zgLAiGVepnnBzn2NQPAXDicRY8F/eZzdy9BbS9VU57f8SdEcN8PqjEudvr8LztMhUx7MRIsL76O+KMvsaw2yOGfcnJe+I4bv6dDbZeBHQqX1EtRAx7w2XBWWZ1RXDQc32G7oC319/ii8Zn/PzxH/OjHy1yc1IIUtYvPyGbarEjXaV2eUE38OhWq/SnErAjFp7pjQ129w4xY22sR19xchpgmhZvvWLYsUaY1libWuPjT7/kxz/6ARuqDHmDm2XxPS7Pz8imE+zubOEFIU4/ydiURHlMLCplZZan9nPeytzm7fEJThIZjrUj8lKCeFxM2Q3tOocbGrHDBBeVfTY3N9jd3R8xrF6/QNfjhDgkThNUb6foHxxymUzx9SuGNQXDbt28iR/4vHd8SqE2yctQpPVyuTwPHwqGEQh5l0rl+FsMs1s15p0BRXOS80QFTTuilWvRPBILmPLYNcbHN1Fj9RHDxpstkgnRYdluf4rjDCB8xvaWSjKZeo1hE2L+OCcRwzJcXFa4PT1gfymHLAv+DO73mJnuY9njmDsms4UB+ohhYhFtag3S6TcxjI948sxGVi45PNhhcelnAKyvm3zZrPHh6wx7FOfZ2lPm5sXnHO08p7N6BaS/QB0tSZL+KfBjoCRJ0inwP4dh+L8Cf59vh9wBfh34XyRJchE14P9DGIbNP+szgiAQXnCFMmGkXzUY9InHk9iOTRiEpNN5bNfBsl2yWXFjyrJEGKjIskwqlcQ0JVxnOPIPrF/WWF27Qt/sMRgM6HU76EZc+HypkRikFDI+s0i7XqdRPaPd7lAolPEjVdx4Isni4hK27bC3+xLfc7l2dZNWuzXS3ggCGcu2cB2LXs/kst5keXFpJMBpxAyqjRqUykxNjGMOxYKwXquTiB5ia6urZDJparUa2WwOWVYw9ARuZLy3uLCEETN4+eIZKysr9Ho9zipnLC6Km7bZqBM3EliuR+2yiuOe0mq1eOPOG1SropjZiBu02x1mZ2YIfA+z3wPfY25KTORiIc/xySlLS0uoiko6k2F1dZXqZWWkGWY5Nqqicn5yytnRKSiwfu0al1Fbc+XkGLPbw3U9qsUCmi5xXqmQy+SEkTIwtB00TWd7Z4vT8yOKhTz5XJrZSKOm22oxsG0yqaQQnuv28XyfhekiRkycUz2m0eqaeGGIJIVomkIuk+RVY2Oj1ccLQtLFAvFEOtKO0tENfeRXZugx4smEkFIwDBRFwQ/CUT1aPJ6iVa+gqSqu72HZFoZhsLKyOtrNeH5AtXLO1MwcsViM6ZkZapcXjEXnq92ukc+V6XZbDIYmiqLRbrUYmhaLK6ICs1SaoNfTURWNTqeN4zpRIbyYgyIy5DM5Pkm328UwdLSyRrMlaoGKxXFsa8jQMoVvYxCQzeY4PT2hHdUzbly/Hel9xen3ulTOT5ibWx61qxtxg0atGpmvhpRL4/hhiGkOR3WC1doFiXiKXK6I7zt4njgnZvTADwIfJIgnEoSS6AwN/RBFhrGyeA/PdUgk0iRT390n7M87fjUMG/LJJx9RKJRHG5vB4D4nJ0nOz58Q+AHp63nm3QXO7HOMrHhQyvIVwkDl6tWrvHgZCIYtDCn1BMO23/+Y3/1rf537Zo/BwwG97ji+cUI8cQdV/TI6wJAfvftbfPHJJ7QaNQ72dnn77V/DD4RC/Ulij4LrUamck72o4JddVHmT1lgL/2HEMOk5c/MW1acW572diGE3mfJENMq4bvDRpzUWS79Gppsim7WIn+jUX/wShoWCYbuyQnmQILEkHraLto1xkRYMu7JC77jHn1QMfmtR3LSfNerEjTbW4irpyyr/8tl7lCOGfVQVzH+dYQe+R2aqB60lrCnxHo16HsM6xVtaYiomGPbDiGGvmC5J6+zv7fP+H79HuLLGmrLG+rXf/YZhf/ySB90ervtSMGxTIjVI8+KpIoyUgVnb5uDgkO2dLRLnRzQKeZZzy7+UYZPjBVpf3cdbXsYxG5ReSdDENMoT0yRyRXa2t9jYWOfZi+fUW+KebJSnKL9cJb1U5yRUWV27IH2c5jChc+OGWKAc60ckzxJcu3WN4+MsyVSGm7du8fSJ4GQ83ueT9/8lG9euURr3OHrymBs3bnBwJ4n6h99mmLN+jaOjGNODAfkplXZfNDG0v/iY22+W+eDDFg8fPUCS5BHDtNcYlp/cRNU1Oo/btBYXuEWL7W2heek3WkDIZDzBxMQEhnGIX156jWG/xr3sI4aWyWnEsMvLKolEfMSwVDKNbc1xdPQEZe8FlZ000pzOcG5uNDesQZW5BRPf32KbNerhFofmOXeLd8Sx1nyexz1yuSLLywsjhj24/4phL2BqPGLYNpa1RrgYsu6vkCiLxqHnz55yeppGVb+7FuB36Tr8vf/I6//gl7z2+8Dvf+dPj0YQBMiySqfTHql2p9MZ8dDwA9RIuqHf7xHTdXpR8a2qqniBi6KqqIqK45i0m01sR9x0+UKOMAwoFku0202CwKdRr5LLB3iBAEw2k6PVqHK0t4uma+SLBWrVC7Toe1xdX+fk6AjbtSkWxwh8l1a7weHBIYWiKLBzXZul5asMB32KBY9kIsHVq1c5PRUdFxeVCjev36TX7/Pk2WPm5hYZDPo8ffyYbF4AZHlpmYuLCxEV6PfJZQucnZ3RaIqC1lJpjLgxRqFQRNVi1BoHDCyLw2hXMjczR6Pd4OjoKJIWkFBVhV6vQyGqgWs1WxwdHaKpKom4gR9I5AvZUbGhYztMjI2hqRr33riL4wRcVi6oN+qoUYpzZe0aD778ilarTTab5sadOxxsPaMSSTNc1i6pt1q02wNy2SxqTEKSJHLpDnpk19DpdTEHJiEQN2KsLS/TaNSYmRU7uXMJko5DuVSi0WpRffiMQi6SqZDE97Bsl95gSCymoioKiiqhqhpRwyDppE4+nyKZzlIojOG4Fo7jEI/HiUc6bLl8jkTSIB5PoigqrutiO85ImiEWMyiPz+I6A9qtFkbMQNM0oa8TSUQUcimQJHzfp9vpkEylkFQVK1rAEHiEMiSTKer1OuPjE6ytXmPr5TO6HfEwzeZKZKQizUadwHcpFEsMh/aoPV/XDNrdOroeQ5YkhqaJbVkkIkFB27ZEl+HQIpvN43k+hmFQHivjuQKWw+GATCpNsVSg3a5yerBHPjcmtN8Q3beTUzO4rofreQwGQ6zhgFy+SPjqcywbVVaJGQb9fh9d1ZmdXaDXE/oymWySw/1jyiWNdCbFwBwQBD5D2ybKIpJJZ6nVGjRb7e9Ahr+Y8SthWPgNwx4+FK3id+++QfKOge+/RJWvEQRb9PodYoc6X7uvGPZAMOzaNdQFFcc0aX/WJLMg5uBbhRzh1kt+cDPOF3uliGE5qvnuiGH33niTVuMjDvd22djc4Ipywscff8jGNbEDl5VrxGMxZBkqmSzjGZd0usHhC51+XxQ8u67Nm29dZZjp85svPWqJBMpVmURCtNZfVD7g5uZNev1dnjzbZXzytwTDrNcY5i3z4cWHKDWFxaVF3swW+JPmGexGDHtnjPiNMQqX3zBsxrI41MVCbWVmmc+/6vDV//4Af9mHbI5CsUFvskPBWwCg1fyco6MtNPWvkogb9PsS+eS3GeaMjZFSTW7fucvTpwE/r1xQ+BbDurx3rAuGHf4BmTt/n4OtZ3zwntC3esWwsbEZnm1vc61/harUolr5El0VC5wHj54zPWPSaNYpGtf5a8uxiGHiXJxLNcGwtXcotRr8k4fPePsizXDKphCdr9PTU3qDIUdH+xg3YiiqxM3rG3z4iZAeSp8dkl/+9RHD0pU5nAUH6TLLydFrDMsb6LE4K6t54Axw2NgU177/lcHO+CzJdJZ2q0Wn1aLb+YLF7D2MdfF8Oq+kWLtyhRe+z9J4h+R5jHN1n7kZcV28Zx5bu3A7mcIsFOh0uqytXiMMXCbGxTPwstrk4qJIqVjHdWaJxxMMh7AZMewoYtimHmMg7TA0HZ48/pJbt28DEcNWAuzOHBsTPTxvmcr5Ba12i6VF0R2ZOE1xkUpSLE3iRQyTc2PE9iKNR/klk1NruK7HM89mMPiCueEM1XyRrTMhi5dIGCzIKkdrIf3OK4b9Jr2ecEDIZG9z+NH/Rfmdd7ibucNDc0Dw0ueRY7MpLj1v3L3HZ60GrvONXuKfNf5SxO+DwGd+fp5Ou02rK1J2tu2gxwwGgwG+5wltjliMeCpJsyk2mJ5tETNixONxAj9ElhRkRWZ2XqxwJUloOXm+T4BEPJFEVhSsYV/oRAENy+L07JhspkDfNIVIYzpDJlIabraa9PpdbNfh+PCEjY1rtFpNrt+4xcnJofj+YYA5MElnMkihT98c4DgO/ahOZ6w8RjxhMLQGLC6tYvb7eK5NPGGMbFk8P+Ds9IRQksllM3Q7HU7Pzxgvi2hTr9sjsRKnWCzSbDWZnJhibXkZK1LSf/DwCZqmMjU5iRHTiRtxwhCmZ2Z49FBYOtTrLW7cuIGqakIGIJ3AsYaUSq86VBTa7SbNZpPldJpWq06706HfHXLnTVHGEovF6A8G9AcDSsUC5ydnnJ2ecNkQNTemNcSyHXRNoz8cMJEtks8kaLb69KIgYrmcpVBIY5oWU5NjhIFPKpkYpScHpkgjh3KAqshcXV5gbn6Gw4MjOl3xUNd1nWIhSbkUp9v1ubm5gq5oDCxxXc8q5+RzSdLJHOXxMWQ5pNlokkymyETh/UTSQI46FXVdx3GcqKZPXBRVkzASKTx3iD3sEY8nkGSFIAxHWkmN6gVTMwv0zT6appBOJymVSrQaIorY73XRjCSyopIv5Ol2OxSLJTau36JaE6nni7Nj4WWXMNjd3iWTKwpLiGhy9PodMpk8kiyRAlWNwAAAIABJREFUzqRpNZqRWr041l6vTzaXJZ3OYpp9EokUFxfnJJPJkThro3HBcGgyPjHJxMQciXgaPRYjlUxH57yPqgoPw1jMoFAocnkx5OxkfxRlLhQKtNtNPN9FURT0mI4sq5TKohbIiBn4bsDQsmjW6sQTCWJGjHa7iS2LeZrJ5InFdGr1xndiw38uIwh8fvazn/HlF1+MGPbkyVPSmQyD/gDf+wJv0WM61ufWndt89plQXBcMu0785ITAX0XuvWKYOF87zix9SWb5hc8KO7QTZSqKgjvs4y+KjUmjesF7f/IV9954m/sPHpC99wZ3Z+fZ2RONlGuyRD0MsV0H8+uvOYkYVirlCAKxEA9ChwcPTe5mMkj3fPrvD+g7CwSueI92a4zFJYNZa8CVpVVM6zHe2DwnnxyTqYq6Je83A5IncbZ2ZDqdBywtLWEkzkjN/2mGffb5Z2gTKrnlFJYteP30Xzyhqu0zNfk2hv+KYSrTM+9SrwuGmbEYf/fG30VVNV6GPslKAscf8s4rhl1V+OKLz2g2B+zspCmX68jNcdrd4xHDjmIx+g8f0i+3eac4Q+rkjK/fO8FsiAfnjnXM3PwCPh794QDDMKhdnDIYDphcFNdWVi4ZDkJ+8NabgmE726Ru3yKMrv23GLZ+las9kzd+dp3DgyMaLfH8Wg0D5MIZMjm6mWVuba5wqBzwP1777wDBsIX5JHdvv8nccoi8O6SZLzEzk6JWEOxYj6UAhXrtglLMgL4DToC0IBYWrxgmSRL2sMeVq1eRZJ2X4RbNiGFTuQuONAPXnGJfU3jn7m1KjflvGFbsMj01AVOT5NV94vE5Go0m3tIiziuGJQ3ylsdJwqCS3uXRsEj8NMGaIhg2OdVhZe0tJGWXtPyKYdd49vQ5AJZtce/Ne6TTLzAfBCRu7ZHJjAuLr9NXDPuQy2Ga8YlJzIk51m6mMeLXqaRF1GzGFNZfzVYDP7ZMoV5h72KHbqdDOBOlF2dOkdsw7U+ytbfFzRs3uXlT5excRKFvXF/AX/yrDK3HfFbrcDNxC/VGjMuLJr2e0OLKZN7ieuyQvml+JzbAX5KFlqYJg+Jmq0U+ir4k4klq9UtR26MoeJ5HKp0hIKAYCWzqmo5lDXF9j/OzM2K6ztT0PFKkdaLKGrVGDWSJbkuk+tqtDqenR6xEIU9N18nmc7i2SyFfJJ6M8+D+V8zOips/CEJa7SZD02J2bk58frkUPfTEziSXz4OsYvY6+F5AqVSi1+swjHzm4qkkfuAThgEJI4HZ7ZLN5Xm5tTOKNvl+wMHRMbKik00LraGb12/gvTJ89jxc38XzPJ4/f0YqmeTm9eso0bGura4yHA6QFYXBcEgmnSGdSaMqCnqk/n3nzl2SyTiO47K9u83ZeYVYzGB+RgD7cG+Xubk5TMumb3ap1apMz8wwMVkehW9bjYBSMcPiwhyZTJ7Do0Pi8Ti6JnbG42NFDF1neXmR45MT5mZn0DWd45NjMlEtRiqVRI8ZNBsNVFVG01SyM5McHYiwfCFfxLJNXNejEFkPqarG7Nws05Ov0lhVllZmQQ6pXnaZm1tFRqLVEaB79nKHIBSSFZquoekqWS8gkUiMjFCHw2Hk8SeJ/8oytmMjy68siRIkUxkuz44ojs0Si+m06lVUVSGby0fftYRlWeiaKixvHAsjFmdqdkFcN8elb/ZIp3OEgS/cB1wPRVeZmhJzrFmvYts2uh5nfGIBP/Ax+12KxVI0NzyajSpD06RQLCPJYLZb5EuiIDaXLFAqlGi1WgyGfVzbJp1J0241yaSjmpFYHEmSaLdaxBNxUukMYRgiRfIOrusRi8VIplJUz8/pdJrMzCygqCqtlrj2nQ4U8mNks3marSbpTBZVN7iMBE2NuIHjuEhySLNZo0CJfL5AqVSmEc2fbrdNLpcf+Tz+lzJeMaxULhNKgi2J+Nm3GLYkvWKYxA/efhuAwwMda26I+3KZ87M/JqZvMjU9z1Fkw5IwDqg1agyuSnSrLZbrNerlIqenR7AjPufA0Ln3Vg7XfiYYVrlgt9/FioryB0FIazsUDPvpj8lkM+zv7yPJEnffEPdkNZ+H3X0e9DostwXDKr0Ox0bklSmJovv2asSwqmBYvVHmSeEJALMv5jn49I8w1jdZXVknfnbMzesGnhtFm14xbMnD+9rl+OiQm9f/DooctcmvhkwMx7mqHPNwOCsY9sbbgmGRqOmdsR+PGJbd3eb3zytcf51h/+bfYszNMT03z3i5wR/+QZXpd3Xk3so3KajGimBYco4FL89ht0M8HudQE4u53x6bwdi4iu+73N68gjUc8Lu//TscnxxzEXkd/tbP3kWPGXz26aecHA3YSCbIei5Hl+IzCvkf8Nh+QM59TqFwk/Vrq2SzGcGwntiUVrNJlhKzcCfko8sSlrXKj9fW+PxLkRL+4ssHWHPz/BUkNF1FS6iiJCCRIKYKzr30h1xVVOyyBKhcDmTajs2VSG4nfivB7aMM+/0BjbFZ+rFDWvUqOfUHZHNCWmgur/DYstjU/G8zbCjuUSdQuP8y4O7dHGGwSb/3KUtumb2DfabWrgJg1KuEKRv9MM7kxALpwGdnaoLjolhUTpsezcZHDM1p6o0WQbiGOVEl34wkbpJvUy6VaLV0Biv3cW2bykWFbreNnxalHL/IsPNKhjDcG2kBumWPWEwmmUrRfP+cjh5jZmYWRa3QaomMS+dijYV8gstsnnVlj/TFJermDR4/EVHoTz+vs1BwCeSQ55/VeFR4QD7/NrZdptgQm47ulTa53N1RI9F3GX8pFloAjuty5coaZtSdFIYhlmWRzxfIZvP0ul0URaLVbKMqokBczagMhgP8IGBhcYnTkxP6vT5apG9lmkNcx0bVdIIgoHZ5ge06jE9MUoxqRmzbYnJqhlajSb1RYzm/wvLyGrkovNvr9shlC6RSAUZMZ293B8MwUFWV6oW46XQjxsrqVUrlcdqNFpcXl+QKongeIJvLUTmvkM1mSKaSVKshrWaL9fVryJGMv+u5bG5uYhgx8rk8rVYLRZI4PROr9Ww+z8X5KR9/9jk3b95mfn4Os9uiVhPfoV5vocc0tFicZCrF1MwMlfNzNFVncVGs5jU1xtHhEUEQ4DgOY+VxhpbF4ZFQwT8+rTI+Po7nuFxe1IXoqASW5YxqxVLJFPFEmmariaIpTE6O0Ww0+dE7b4hzoccwjBhBEDI1OYahi3Ofy6aZmhA7W1lRqVxeYtsWqWQRJ4oW9qJoVTwRp9HosJIvkUgmefH8JelMhjDwWL8q6k7KxSzl8XH0VJZr6zKaGsPsmywtR2a8z57S7faxbBPCEN9xcBwbTdVRlcibTwbkANd2sNUhQ9vhslIlF9UAJlNJUqk0RiJBLBbDcWwh9NluoWoiJD4xPkHg+/R6JpZlMhxaTE/P024LwCiqSkw3kGWZRquO53mcVY4o5MsjwUkjHkdSFRq15sh/sd0UVjggUuTJZAprOGQwFJFTP/A52BUPuKXl6/RNk3gigWUNcVybk5N9CvnS6Lo5jkcuclgICXEsm9rlJeuborstlUoytC0c2yFfLKGoKoPBgHQ2O6qtazVqkeipimHE6Xe7BHRG5ukD00TVVDw/IJFIYpo9dE0IxTrRwkrTNAaD3ijV/F/OMEYMG8xEDNsKsebmeGtyimy2Rq87gaLItD77dMSwlcxdvng0YDkI0Bd/+xuGWeLn0/kMp2cxXrg6rSBNNXvOvCUik477OsPepdVoYrtNfD+g66/xw/FXDPuaXDbHeeolqxHDjo8Fw3ptUeyuGzGCUKZUHkfXW/z84pJcweatnKg5qnoBH5xXuDf9BslUlmp1j1bzc/7m39TY3RN2MIJhf1swbDxPS99Hca9weiY6oy/zNfbe36LWbHHzZpL5+V/D7L4gnxebgRcvTtFjGo9icZKpc6beTZI+l3m8f8jSoihWfp1hTyOGqa8x7I9Oq9wbH8d7+oxLRWXJc3F2YM52cEYMM4gn7tJsdTA3ykzu7dO8XeK/70YM27zO8fERQRCjPFbk/PQcwoDqZYV3f/xjQDDsg5//nPn5ORr1Bv7iAsf3e68xzKLeGEfXlkkkk2xv7VGp5Fld8Vj/zZ8C0Pr6S6zxcTbDLOqUjKbmQfk2wyZGDLuLv7CF032Cq6ZRFaHpJMmwKweokgMMGZ9w2NqqMj8T1bSdRwzzlYhhC8Tjk3S++BxVE5FI/UcTbP4iw0yb9piIVCv7KrFNmd2IYYveEn9SeUohX2ZvV2xaez3BsGKniVTaRZbv0WkKKxyAfVXFSaZoPJK5fmOadOaAy3ODr3fFImrpd2z6psnJ6SnlkoLjzqMpZ0hhyLPous05S8SStf8Hht0WDHvylLeKa+ypKoPBLunsPTavi8/5vPExjx9XSKXSzNyI0/cnCOqX32bYuIrnX+VWYp8XZg9du48eM3gaMWwjeM5gcGPU7PZdxnf/ze/H9+P78f34fnw/vh/fj+/Hf9L4SxHRkiRRuO35Ia9sSdodYQGhaTrtdkt0R0kSMV0nHvmEeb6HJEvUK5f0ul10XQMpYKSaq0h4SJhmH9sekCsUsF0XVVFIZkRtgu66OLbJZeWS/qDP0DQZDvsjn0JZVigW8xRLJWrVKmPlsVHa8FVB9OraFcxel/OzMxRZJp3NIssKWlSZrckKbctiv9Gg1mjjOUPmFxcp53M4rlglNxpNSuUxNF2nUa/T73UJJYnLuohYXTZq3Ll+gx+89Q7T0zMcHm3z8sUORqS1tLV/gh5TuXv7FrOzszSbLe7ff8Dd23cwh2KX1e12GVrCh/D2jeuARK/f4+BYpH6KxTyeF+A5LqEq1MWfP3tKeWyKbEZEVzrtDtlMioODHXK5DB4+upYYdYJ2ux0sa8Dk5DStVpN4PEGt0SCeTI4aHfr9IYO+KSJa6QQHBxckk2kCX1y307MKmXQCx3GwhgrxeJKNzQ38wCUTfY/J6WnOjo9YX1zGsSxUVcMwvjHQXlhcZuvFFq1GjW5HzI1ut4uEPEqXGfGY8EEMRHdd3xzw5OETNq5dieaPQrfTjVJ+HTRNo1AYwxyaaNEOyPdFp50sq6JLr9/n5PgQSRbV39lskbgRp3J+Qiqd5vjwgLHxSTxfWGMAJBJpmq06ExMTKJrKcGjhui5DU6Rj4+kMqXQGzw/wXAdV0Vha2eT0RGjDnJ8fEm+l0fQYk9MzhH5IGIRUzk9YvyZkBOIxH0lRiCcS2LaFLMnEDQMvmn++H9Dvm7iOTSaTIyQkCHzqlxdkIluRqel5PM/j6PCQsbFxUuk0+P6r/gRisQyNxiW2NSQ7NkWtVuX4eJdEIkkyJe434X8ZsHp17bug4T+bIfENw9Yihn3eaZNo+hxYDgsLDsNBAnYkjnSdm3FxXTzf44os8WHl58S6cXR941sM21MkpDWJabNPxh7g1AvkXBd1XWHKEuf0mfuM/QMTx7ToD/qsX73GyfHHfBYITl6NGPa3Sn+d2mGVdq/NvXtXqFxkyVUjhv2GYFi318N2Kty9l0XT1nloCo29nJynbVn8wR/84YhhP1tcpPzDN7kVFzIAjcYXNCOGBXWffq9MKH3Mz+siernWuIp8XaX4osSqP8Ph2TbvvdjB2IwYRhx9e4/f+29u4QeCYTv3d0gnU1wOxbH8MoaN93v84fF7wC9n2ODZU/o/nCKrC3Z82e6QfeOcg0cPcJ2/ijc7j+6GXGbFOZ9wbcbaLSYnpzkNJeLxBA8fP/kWw+7ff/Qthn355WfcTqYJfFEH9t7rDHu09xrDnpGJSl+W/8bf4uyP/gPtxd8hETGsWEowMycsmoa2xb/+l1vkch8z44TousZXzS7ZN34Jw6SQfYZMDWd48vDfsrIgGFYeKnzV6ZJOSIJhBwe8fe9tHrz5NtqeOJYXL3wWXZD7+/i+y4NcjuDkDOlUqJpksz/gZizOB+8Lhn2wfcDYj67hpTN4l7/IsC6Ks8jQSLDounRMEREVDNPw8l+gqguoygZLwQmHZRH9PX//kFY8jbYZYyWXJfTrbL3sk89nUa4J/uQ9n/p+UzBs3kLelonfMPDmXzHMp3//QcQwjVVCtgKf+uWfMDMlopVT5jzeDY/Yqc6g3yGVVsB/gaKI83U9ptPwf45tDcgmp5jP53DsPqenByOGHR/LLC+/8pz/buMvxULL9wPOzo9JJjIjc+J+v0cikaDeqNKuN8kXi6QzWVHYHrUwtVotQt+nVB5DURVUVRW1I1HKzho62LZFNpcjHosRT2WRFIletz1y3h4M+rSbLXw/YKw8wfHRKeagjRpJAKxf3eTwcJfA92k2G0zPzQMy+7vbzM2JlFz14hzCkK/vf00ilUJFEvUu8aj9MwxRFJkXL7aZmZ7k/2bvPZvkyLI0vcd1hIcWGRGpdSKBhAZKi+7qUcvZ5uyurdHINdL2X/Afkbs0o9murc3sqO6prq4u1YUS0CoTqUVkhlYuwhU/XEcCNYLT/ECznra+n2CWCcDDw/25557znveUpxZZWl7l+HAfPS5zWpZFKp2hfnzA4yfPyaaS1Kan+MlHfyD+j9M6rU6L+blFHjz8lq0XewxHPjeuijRzdzBEUhWmJ2vUj47YOzg8F/Zbltiwu50ec/OLaKrC8XGdcrnE7v4h1aoo6em6QrPeZDS0sBybt99+g+OTI2zbIZMRdgWtdgfd0Ll58xZJw4w/m0ozFjfruk6pVMJ2LE5OjnBcF8/3KRbyDOIOp53tbfL5ImPfwRnbLC0t0Ww0CeIUsaYqzC3M0O/1UKSI1dVVVFUjndTPA+BMtsDkrEzgg24YeGMxg/ClwWuxUESWxFR5yxrR67m02y10TUOLy35mKikGHo9dgjDCsgZ4zpDWmRB4GoaBY1ukzLQYZRGKVuDhsE8u1uft7DzHNFN4nkc+X2JiooplDSmWhH5KUTX2D3ZFB1++RDZbQNcMsrk8ti3ElKYpbCzGnoupqkiSRLk6ydZzMeNrZn4Bz/OYnV8m8H1c16E/6DC/IIKVs+YpnuuQTmcIghBrNCKTywnPoViz1u91SGcyJM0UiqximilK5SJ2PEPO0E0mShPUz47odJqUJ2oQRcxMz3JaF6WfTrvDzNw880uLjF1h4ur7Y1qx35eqaZQmKniJJL7vMTU9SxSFWJZFv/uyw7JEo1GnWpv8zeDwL2SFYfCKYc8EhGvDAYcxw+RnbQqlHifZHBeDjR8w7FkQUJ54n4uqgnpJpf3rNiVTMOzrmGGn+TzjPYO5xVPWlMsMal22D8RG6FkulXaHn23vcev2bfb3Dinkc6g7gmG5dZ1dvUV4GvBV+0s++sM/AmT6/edM1mKGfXoMq68Yts0mxt72K4YVX2fYjyhPdQiWV+n17qAHrxh2I32L+vEB//ev/iu3b1yjNq2dMyx/mmXQ6TP/pseDnW/ZurtHY+Rzo/KSYTtIk28ymnyb7tdfs9c+ZE6dJZO5jWSJZ/B1hrkxw57tH1KtfgjA5csv+OLTJqmXDPuP/yvHv/wF9iOHzB/HFjVtF91Y5mZapt8dsBZFKBdVvr4jtFO12iSld97HDj1OHtynUGwzMHzeLrx5zrDt7U3ezBf5dnuLj37yYyQJlNcYtqEqSAszPHx4h2tGImbYDulrN86bfm5lC4SziywvgaIYPHr4GGlT424kpA3NRhNZeo7tLGLNjLjzyKVdbqHbGhsxw85eY9hyGDGwvv0hw2YN5hyLsd3D3JIJZZn7D+4z7E+8xrC/IGfewFuc5CxfYsK2kFMpmi1Rmq5c0vj53/09hu0YZKs/ZNglVZT8TPWIzc1N7NkRO89Fd/E5w95+m+I/ybAuN7O3CIIprNH3ZHI5qpUucsywo16H7kSL5GHMsHSK0koR2xaBqba7+xrDvqA9UUOLxPP3kmHJhMaMGiIveYzdSzx6NMb3bVpNEag3NY2SX2Fx/hp+c4vhyCaKJFKZIv3Kawz7tI5x7uj5z6/fikDL9z0qE1PIsoSiiGqmqoh5egC5TA5FUTESBoEf0G4LsEdRiB+EhJKPOxqgqRrVyiT+S78UGfL5PJEkkckVqJ8cIakSjutwFFsvEIacHJ0gSRLJZJKl1RXs4YhOW9zUTqdJEAiH8WTKZNDvUyyUWFlZOR/62+/3yeVyFHIFEgkdI5FksjbJ2HPj689weHDAzVvXWV1dpdPqYA8HjEYjGg3hI5LJ5iEMUBWFZCLB+pXLEAb48fBiYfvQw7KGbG7tcnLapVTIx05LUCgVmShVePzoMf3BgCvXrhH6HpEkBOAAa2trGIkEx8d1kskUsqKRy2Z59lzMQsxkUmiyQiqTYn5pHiTodAZUJsq044HPiwsLwiul3+Nv/u7nXLuygRRBNdZfGUYC27YIAh9NU1EUmWKxSi6dZnNTbEC+J0Sx9dMW1UqNzqjL8eExq2sCuNl8hkK+QK/bI1soUCyXUA0VTYnIxAZ5ppkhYZjIshDTj1/aMkji4c9m06yvX8CxbcxkknqvQ/1gj8gfU5scx89PQBAEYkhpMkkikaBYztGoiw1s7HYZDPtMVKqoihbbKAQosoxtx9kmM4VppnEcC2s4pFQux8FgPENw7JJIJMjl8yBDoVSi32sxPnRJJgUsH9+7Q3lymonqJJ4/5vRon8npOWqxo3/j7IRUKstoMCAiwvM8wjBgZImu1mKhhGOPCKMId+yCLIEk4Y0DcjnxjCqlErZt0+92KU5UGI4GDAY++YI4pbmeS8rMMDuzjD12kaWIsesgKQpaQmykmq5xfLhHvjiBqmp0Ok0y2QK1qdn4PRANJ74fEIU+Z6e7lMolJsoVdFX8G0bCoFAsY9m/ecfOv4Tl+b5g2NYmL+J7OqkoWOkMa8DTTI7CxUv09w3SfkC7HDOsHeIHTwmlS3w9GrBxZ4dqpYL/VLxvF6oTbObzRJubZHIJ6icntNQszqHDVE1s2GfHKeyjPhcuXCB5kMSfCVmJbtGpvWTYE4L2BJS2uJa6zrff/CMM+3mf3PErhhUTJSa11xh2K4N5cMDNpeusRu/TKXWwX8hsPnvCjPUaw1YC1JxCcieBbFwmnw/IeGJDv6N8jTnUsawVwbBsB83NEwr8UOgWmXhnVTAsjLiysiIYVgo5HPy/M6wTM2w3c8T8ooKuppifmIdN6HQm6U60yZ0zTEbVa/QOD/ibv/s59SsbXMivceu2EIfv7e2zZ+wRBD77Ozu0O0U+eOMDcunjHzJseZHs/sf446dMlBc5GDmsmiKDk82fUMk32K1AdrKANIgZtrNH+cZLhl2iWpnk+OiEjY1LZDJ5jCDg2gXBwcrEBNWJMo1mDzOZxJ7pUP/ve0Q/GuPHDCu8xrDxP8qwCoPhIROVD7h1S+PBg/uE4TKKPHiNYTcwzWOcvRksdUipXSZResWwhw9fMWxNhplSiW/+CYa9FzMsd7SPvDZHbVrs4S8ZNj0YYMcMe+r7XJ8RDFtafof79ggpeoY7lnm+JZFMSjx6GJDLiUaIxeUFErZJVHlK06gwnB4w+NwnXxD3wvVXSV3PMPsswb2xyxVplYfufSRFZWd/VzxkYYQsT5NvdthWnzEadMlkC3z4Y3EY+KbfIUgd4TsBz+bGVHs6pXKJTrmL3n/JsCs0imPC8OXu+8+v34pAS9M04QqPRC8ezTEee6QzWSxrFAdcEbZlY9sWrbZ4sY1EkonaNJquC9PESELVDNqNl9Frkk6njW4YsRBwTFI1SaXS9OJhqlZ/xESthoSEaSZxHZsoCs8d2QMp4uKVywS+jzU0CaOQg/19qrUa9bo4NYyGIxzH5uL6BUwzRS6XxXE9xnHX4Wg4YGFpkUw2y/FRnbHrkM1mGY9dpqbFKatWm8Ib+wRhwJUrl5CiCCQJPd7k5B6UcmXGrsNbb9zmwaNnFHJpVpcEHGzHY+/wAMu12di4RDGfo9Pp8GJri2xOdMhJEjjdLoE/JperEkURaysrqLGoL4xCKhMTjEYjKtUK3XYb0zRJZ7L0ei99jyLO6se4nku+kOPuvYeAzEpc5qpOVBm7Y/zAjUu/Ko7jYKgqmbgDrlAs0e32uLKxTqNxRrPZ5vrVq5TK4jp7W122d7aZmZ6mXK2haBIyEYqsnW8MRAGyTByca+i6zMgaoMflWt/3MHSDxukJvW6bpJmhfnxIOmXSiy0PgghOTk6YrE4yOz+PHA+Ivvsr4amytn6BQE2yt7NNqVShWCrRap6RTmfo9oTYPWEkKeZLBFERx7bo9wckkiajYTe+WxKt5hlT07Pouo4syfS7LTrNM2pXhIdMqVIlnUpj6CnCMGRqZgGQmJoW322+UEZGwnFsDDNJFIUYeuJ8xI1tDUkkkwwHQxRVwnUdDE0lkdTxfef838ikQ7rtJrY1YjQaEngOUSgC+ShScGwHSZIIEVYp6VSKwUC8VwC6nsBMFXBdm6E9YGKiSgSx+zsUCmWCMOC026BarbA8IQyIB4MuqbT43sIwJJFI4DjBP4eFf1FLU7W4k0+lWhGZACdfhE4Ha2Ya9fgESZawLZs7tkV+SzBsL3HARG2aDX2a0VQfoipqMsVXn38CQMKdw+600Y3gnGHXVIXNVJonYcyw2gh/ucYFJEw/SdFpEkRP2dVFMBtICd7+95cJHj/m7rBDOlohmdgnCGrUP/17DMtdwLyUonxaxlE9xguvGHZp6U8wsnXSRw0O7zpks3UWxvNUpsV11GpTeLLyA4ZJkoSe2AVg/Q6MBmUeDhwKuduYhyfcnk+TeJ1hjx5g5U7Y2PgpxXyZTufXvNj6S7KuYMMjCZa7i/+AYduxg32nUeD992KG9Sp0rXuYZgM/8yGPH4vrrFa6nJWPma+WyRfe4O69r7Fs/4cMawqGFa+nMFOXuO/cJ7edplsRJajZ+R2ePnlKLr9O4/M8zeYLrl9NUCqL/au3FbCtqcwMJ2n3a+i6xPraKrs7GoeH4ndyuYD19TW2thReKBq6fpVw5lt0VUgCHj/eot3oQnyyAAAgAElEQVRoM5q2udNtc83M8GX6kHT/Or1D8YwF2QKZkxM61TbSH80jb8lcN1N88eAlw4YEapKf/c1f8847Fa4l3+HLv8ewq0aS4pvvEETPOL1n0R8ZjCwT2/rHGLaLLPmsVRJ8981rDHu/SrqeZk9PsRLKTM38Mc+lTaamRXYuX1hHRsJ1bPbMJPNRyJXLVwkCESDb1ncYySRPBgEXXzJsQ+Vq7TIvtkS339lZk8AP6ZYN1q1pwbCKQ70uGsa+idroX17jwoUCM8+fYUnfc/XGDb799hvWVkVpUN/ZQ61YuLmQ4cMB7733ARHPzxn2VqFNEF7mqHuE0UsQpANOT09w99zz7sZwRSaRuIpL4jeDA78lgZYkSURhwMi26cZGhr4foCgqmq7iui6j0Qh7JDquymWRPZGQyGbzDIY9HMfGTKYwDINqRQQvkqpgJEyGgw6jYY90Oo2iKHi+SzrebJv1BtOzcxwdHjI1M4Usq5ydHBNGYhMLgwhrKMYPWCObfLFAoVCg1+3QjrNepplmbmGBF5svcByXbCZD47ROoykgNjFRxdCTdFodvvn2DsV8gbX1C0iKgh6ngHu9Dru7e0xPTeHYNns7u7zx9tucHAr9VK/TZWSPWCtfJJXKIPEUkGi2xDWcNRpEEbz95psYusZoZAnIGQbluMOyXq/TarW4unEVP/DxPJEFerkxuO6Ys7MGlWqZne0dNFVBVWXCwCOfF6dSd+zRardRdYM3b90SpqwRVCuiVBYEIalUiomJIoeHR2iaxtHRIYXsBZyx2NSTqk61VsWyRoRBwOryAolkgrMzccpXFI1SMUG5XERXFVx7xMzMHIqs4bri9NLtdsjmshh64txsNJkwCWOz0enpeWRZp/30Oc8efs/U/BLWcIiRSJIviG6/bC5Hp9Vm0O9BFOFYNpKiUo4/y2g4Ymp5jmbzDNe16HQgYSZxbJtXjb0S/dGAhGGAJDQ3STOLFgfqqqbhhyEja4iRTAIyk9PzDLMD3Hiu5+TMEq5j02qeoqgqmWxO3PvYumPsOPieSxhFjKwehpHhYG/zPEg3Uylc10WSZbzxmLE94rjbJpJV0rHZqN9skM0WYv8tj8naNEdHe+fGobZtoSoK0zMLREJ0RhRFeL53PgHBjUKQwUgmsEcWXuxt97J8IEkymqYwNz+HrunIUoQka4wsm51tccJOpZIYCZOz45N/Hgz/gtZYllgNl7lr38P4tSjZ+f4TOsWiMFo2Enz11a+xR9NksnXKZVEymWCSidvTgmFf38O8dgPDMPjgfTEOZlNVML43GQ6OmJ6qcnJ8yK6ige+Sjv2Fmqpg2N2PD/nTtSGynOXsJM1KPAbqSfBMMKxaoX98jzeLO1iNEb39vVcMu36TubFg2P2vXBb+aJXC4SGfb4rS8sTEMnu7B4xGQ542nlHMF/BDCU3R0ePutTu9LXb/23/hox//mLnZWX6281+5lf6PnByKTayXzzMyGiTXLpI6yvAJEW+uXaAYM+yzc4b9bxj6DqPR0TnD3o0Z9mm9TuMfYdgHlfcAeOA+fMWw718ybJ0weEQ+/3Lup0yp3eb+OcO6sBoyVxGZ2SB4ytGRwcREEdPMoWkHNI+yFNYlnHrMsEj6AcOi5TGJ5JucnYl3QVE2KDUV2rNX0NUkrn2PYqFAp6XhukJ322g0qJ/WuXL5KkcvVLzQI5m4fs6wj6YX+aX8S9pjwbDB6wxTBMNuv5HjxWab4xeH8CzivmeTvHiJ8ugDAL7/bocfL89xUT3jwQOLRLJFwkwyN2szEE3LPEdibzQgYSyC5OEHvX+UYdMzQ7yWx0uG/Sg7IJkUDAt3lnB1m1LzlL46QSYboaryOcMWHIfH3gMeRhGetcC0keHvfvbfzxl2/UYK94GLtBQzbHZE+rBNR04zN78AwPb2Dtnbb6F81+Wx94hiqUwqtUd5QmRdbXuG7Rd/xerqHxOtrPB8a5sbUYTnLxI8ETpld30WggOMg6sE3lc8euSjGwqlovjeNjdtNjYC5ubn2NVCZGkVSZYZ3fnmnGE3chkGqyae4v1GbIDfkkArDEMiJBRZYW5hAQDXdclls5yenYrRJ8kkmqYiSzJeDH4R0Byhqjre2ENJq9jOCN8XP/dGHrIkMxyMSCQTlCdK9LoDhgOLOI7i0uUrpDJZFFUjDCPO6vs0m21q8QiVw70jUqkZVNUAyWHsuozHLqqmko8zRQ8fPcTzxkiKgqoqbG1v0Wicig0LGA1tnnWfMR6PmZ2Zxkgk0HWDarXKwZEQitrWiOmpKVzbZn9/j/JkDcsanV/n0vIKrucR+j7dTodGo8X0zMy5H5FlO1y+dIkI6A/6+F5APp/H9cZYsQ7n8GCHRruLDORyBSZKRRzbPtfxjP2Aw5MjSuUCge8zHPSF7UC7xaAvHsTeYEQhZ+LaLqN8nmw6S7FYxIjd1iVZwnEc9vfj0mwksbCwzM7eNrsHItM4MzWJIokPpmkSEhKDQf9cFzdZqxIRkMlmUVWNZDJBqVgmiuC0Llymc9k8jmOhqQanZ2JMTrFQpj8QgYOu62SzKW7dvsX+1hbD4QBZluh2W9TG8/GTJzM3P8fB7j7jsctgMGLQa1OcFM9gqVSi0xUGnolkCsvuYzvCSqLZENdRKlfpdhrMzCxg6AaKKtNqnlKtiRKC4zik0zlse4jn+wwGfbK5HLl8gbMT0ZKeK5RRdR3Z93FdG3ko0e82kWNB/diTaJzVuXr9Nmdnx8iyw+Tk1LkjexRBNpdH00Q5fXJyFttxGHsebuylFIYRnU6LXD5PWlYwzRSLiyvn9g+EMBj0cWxHONNbFqcnJ+SLOZR4RqWkyLiOgyxHyLIs9F2SRCo2PU2nM3RaZwyHfaqTMzj2CF0zUFX13B9vOOyTK5Zw3N8tH63QsojWJC4+uEhiQTz77vxPUOt1cvkcsqKws7OLpuVYv1D4AcM+/9UvUFWd7tij+GIb+eI6/mPx88VFj61gi+FgRBiGlN97h97X3zIcNIliZ/hLl29x4yTLtws7PA0VmvV9is0ytR/Husqftdl8vokfrMCFC4zNJOPvvkfdUMnfjxn2F3+Ot7jIpnKRrKqw9ddbNAqnRM9jhr1p8yyKWFA1bGtEcSVgauonfDf+ljB23X5iTTM9VeDBvXsYCYN3J2tYd78nigc+L71bxn2k8jQIzhmWytR5EHspnTPs+XP6ri0Y9kaeeW+MVRYMM3s77B9+/08yrLo05Gc/P+J/+vdvEfj1mGF9SuWNHzBMUyVG9gNG839Itnubotvk7Ey805JcQtMd9hMH8BQMXWJBD9D2EjyLG1B+EjMsZSZQes+5wFv/CMOe0M+qXLq0QRi+RavZJpeD07pwOs9lTQxD5+nTCMsWDNs3yvQHwhle0WWy2RT/YeU/8POtLYbDezHDvuRDLZ6z97zK3Nhh0w8Yj10mByMOxtY5w1YvZ+h83cK4kuCqmeLuvQG2I/N0tEezITIypXKV7kmDn8wssKPvcfFSEfv7Vwy77zjcTOewE0O8pSUGg2/Ihh65/DXOTn4GwMJCGUXVsKwZ3Af3kIfX2f/b5+cMe+ZJNPIvGebxaEswbDKekTsapllfz/Ps2VO2xiGTqVm6cw4LXgvXEXvkysolnnVa5G7c4KascHR0jOetsPiSYQrYk3/E/Xv3efudd1kNl/nVL39JvvgGxy8ZdrzF/FyIHDyLGXYXpNQ5wzKZIfe+/46pqRrOpIVzr8nljT2mVZXxS4Y9esjVDyYxwn9hGq0oiuJRO9q5RiuXzTGyLHK5HIah43khqirjeQFBDBjPc9nd2cY0k/hBhCwrSFJIv/9S1DiHrCikMxmiMMQe2UiKxOT0DFbciZdOZ/E8D01TiaKQSIIgDM87GxeX5lAUjdPDfdqtBpcuXcEbewSBx9GxAOqtWzc5Oj5ifX2Dzc0tTDPJ1NQs33z7DQDtdhtJVkkkDGamppiZnaZ+cspgMECKzTETZoqpqWmODg9IpkwurV9kMBigF8WpQtE1EqqGYw3Y3HqBMw7wPJ/AExvppfVLpNMZfN/jrH5CbXKKwbBHq3XGkydPATAMjUvra+SyZcauhef7vNh5ztSkOMllEklUReH09IwgEPPyWt0Wc7MzROFxfJ0mw36PtQvrNJpNarUyruuwsyNS96lUlkqlguOMsawBU1MzpNJpBoMhG+sifZvLp2k1RaC4u/MCSYFCsXiuJ0qaCbrdPrKiYxgJiKDVauE4lgh4gUTSJJvLoyiiCaJePwJkEnGpdWQNSSQSJJJpDvdUDvb30DWdg91tSrGTeYRMPp9jNGzTajUY9nu0GoeUy+L0HBJgJBK4jotlDei0TymWJkmlMswtioxEq1UnmUrjuMIHxkymiMLofLTJi60nVGpTwkldUclnsoRhRBB4aLGR7MnxPrMzS2RzeTw3ie/5lMpTr+nNimTzRUaWRbU6y+HBHrmcwtKi0HJ0eq24SzDEdYXZoG07mGaSKD4da4bKsD/E9zxsb4gRn1Ztyz5/3/KFMp1OS2QKfB8v8GmcNjjcFye5a7ffwglD7FEXPZkgDAMMTceTBOj8wEOSZQql8vlpuH64T65YJFcUJ3A9YWBZFrm4YeV3ZUVRxJMnT7lwaQ1l/xXDBNM22dvTuX7tOtvbWxweBSzHDHvk7/0Dhl1oN/jm8NcABP4fsn7xIjMz0zx7+hR/aQlJkfjRRz/BuifKQ+mJNt7Z6TnDVi+s8dnZFywmRUnuT5bmeKFonB42aNMgeekK3uXLBMGjVwz7D/8Lv/jkF6yvz7G5+Zdcv36NjcQs/+mX/wmA8vZlDFmlkzC4du06M7Mj6idnFPJ5npzGs1Svp/jxpTc4Ojzgy19/SXXyLXR9Er0Yd4HrCRLXQL77LZs7W8wtLPPokY/MK4bdTGfwlzz+7ucn1H70YwbD73jcOiP/3wTD9gyN6voag6xDyX2B59d5sbPNMGbYpfRNLl084PT0M8GwN2KG1arnDNs/POToYJef/o9/xudffMGHH75L4Jl88okQRN+4kWVu9n0+O/ucmfIkU8MZTtMNvrnzNf/uQ5FpzOXTfPnFl0zPzKBcWEc6fcmwWLZiLtLtmgyVJoYhsv7pIwVnboa88Phk/8Dk8uU8g0kF1Vapf/oL1n5dYuaq8IUa2d8xezVBItlE3tvm4OfH6BuCYZ/nBMPefZ1hpQJDTaa19+wfMgyXu3cHdNoSxdIkN1K3eLwo3tuXDLv/4IFw89/fJ0oOGQ6F1COSn/BtbQolVMgoKssnWcLMS4ZdBeDkuI1t+SjGGYtvvI3/SDBsTRKMqmebZM+KTFszSL0TDgchuTeWWKoJIXun1yJ6HrESrjCa/57TepJZ28Ewr/HsiTAT1Ywd/NoUS57H0BviLy7A8+fcixn2RjbHm4Uyv+4kePzkMTO+xeLyEoQNDnuvGPbdN98QBIJhKyvLFAtlHj0W90LVFrmwXkTVVKzdOlxL8dnHaXLF5jnDFmKGKar/G7EBfksCLRBBk6qo+PFU4GbzCG/sk8lmkGWZdruLREQ6kz0PtA4P9kllstRqk5hmCpBQZIlMRohRjw73qVSnUFWV0XCE543pDzoYSfPcLT0MI5LJJKPhkEG/RyqVYf1S9XzW4Wmnh221OTzYY2l5jX5snCpJGqtrInB4qSfTFIXJahXP83i+9YzVVWGuWZ6YoFoT2SpZkvn440+I8EFSmJ6sxHcgxLZsRpZFNpOn2WgyGPYx41l0kqywv7tDqVTm6KTOxsUlpmtVpHhcTKGQYzx26Q96+CHsbO8KA1NVo1YVD8jy8kW8sU2xUOb+w/vIMiwurGDE86jOzuqsra4REZHPFQmCMbl8lnwmi1+KW2glmZSZRNc0JkpFSsUSL7ZevNIL2RYnJ2e02y0uXrqIZQ2xhgNkZLa2Ra397TffoFopc3iwi23bLC6tMDkzTSZufhgNe+TzRRxnhJkwMBImljVC1zRSafHyZ7NZBoMeYw+SSZPFBfFCv7TLyGUL2KMBljVi49oNKpPTuK7Np5/8/HxGZRCALM/T67U43t8iaWaQZem8S1NVVRJGgkw6w0n9mKSZJYiDpDAeS2OmsqiKShB4+IGHpmUxjCRurM+rTU7TajZi4a5CQk+Qy+bZ232BEj9jsqJy1qiTyeUZDrrkciXMVPq8lVzTNHRNR9M1FFXlwsUNet02h0e74u9LMoV8iV6/g21ZpFIpzFSSs/rp+eQBTTPQdY/x2MX3x3ieTxSGmPF7YI2GKKqG5zmoLiQSBsVSmf3dHcK4E3jvxTNqU7N4YxfTNBiPbRzXJoq7b8b+GM0wONzZYfXCRdLpDINBHz/wUWIxvKZqaLJCNR5k/ru0Fj2X8GmAr4tn44tPf8HiwhInWZuUJ9NutynkC6RPsjwOxeiRc4Z9+CNMM8VazLCPPnrFMN+bYntbZbzg4bku/XaDb75poydEJuhqGHGQTMJwislaF0VV+bN/++/QVLG5/GpkY8+UMZPPuTy5xjf9PhcVCUnaYPWncXl6HJG+dZuNOYWp2gd4j37IsJuZDL2YYfPzizHDPuW5dJFp6eUdeMo9y+PA2id7K0+xUOSLncY5w26MFfb/9m9YeOddPv7kMz768YcEXoAki3f3rbdKjMcP6H8TM+yv/1YwzNXoxwy7/RrDvn14n5wMt/74TzF0kR0+O7vD2upPefb8GfnVItXJMbmzLPmTOn48aaFSqZAyBU/ee0cw7K/+8gVBID6rbeucnJxRaBeZU5e4631Hanid9bX1VwzLv0G18i5mss5gMGTxnRUm56c5SYso6njYI3jSxHVGSBjs7ZvMLI7Q5R2OjsV3Wy4v4Xl3mPXWSCZNkn/8rynynLG3C8QMUya5e/cR/+7a/0xj8uycYftpcR1BAJPrf0Tvsx8y7G48du129k0SV1Qymsajx8ckzYcEYY1g2SN8KrqazdQ86p7KMot4wUM0rRwzTDyjtdEMmtbgIJlCfqHwXF/jVjbP3u5foWzHDJuZ4qxgkjnN02rVOZVa3ErlUC8J/rR2elze0NH0FMqlS1xIJ6iaP2RYw2jR63eoWDMsBR02j5Lks6eoqnjONc1A393joXqI748pFT9gdWWBLXHG5+7IQ1EfvGLYVYPmkUtC184Z9rMXf05tYxZv5GJmDKQx3HdtouAfMiySFNLHJwwm+/hmHqUvmBWpO2jyRVQt889DIV6/Nyz9/fr9+v36/fr9+v36/fr9+v9p/XZktCTORfDlsjh1hGFEpVpBVVWGwyHJhM5gMCSRMNjdOYz/msTS0jJEEqPhkH5/QDqVwnLjen46xXDYx3XHJJIGqUwed+ygKRq+K1KFnuQSBh5HB7vU64dUqzNkcvnz7IrjugwGfW6/8TbZfJHjwz0C30dRVNFKj7j29fWLOK7FWVOk01eWlxnZIqtxfHiEmUiiKip3798nDENmZ6dot3rUKrGwX5Zot5uEYSQyHVGIFs/fAzjY32Z/f49MJsPS/Ay5XI5UKkW7LXQFh4c2+4cHbO/uUcwXWJyfI5vNEHQCEoY4EfjeWPjASJBMmFQmKgz6fe7euwvAxsYlzk7rLC+vQhTR7fawhsKc86wpuqQsy6FcmqBWq+B7Aadnp7TiYc0A1VqFzc0tarUqmiYLg0HLpVAqYKZFi3YimUKTQ4bDBFOTs0xNTRMGAf24CyaKQmq1aYaDHhPlSSRFwQ98VEVjPI6Ftb12/GdhYut5gfBRiweOVybKZHJ5+seHSJJCtVbFdR2W1y6y80IcgTRVxvcsBp0unmNzYeMKU9Nz5227mqrSajbRdY2pqRmiEGRZZm9/h25LlAjm5ldotfrUj49IpROcnR5jGGnc+DpnZueJkPB8H0XRcFyHNBK5Qul8aHTKzHB4dMBwOKJSreL7HtubDynFA8Vz+SKqKhon/MBj7LpkswWSSfGM9vsdOu0miqJg6EmODg4olkuUJ8oc7sXzI8tFTDNNv9cjJGA47FMoCL8zcc8jRpaFridQFIXA9+h1O6TMFDduvwlAp93CD0LKlRq+79PpDlFUnWScsdANnTCMSGWyDIcDAmB1fYPT+hFBbM4ahsLnqxS/578zS0rEDPuCdvzZVsJVStUSQ3XIcGbIAYJhk4k9CprIzKYOJIKlZUimGA2H/LI/IJ06wnogvpcg8Dg8OhYMG18hdcXANZJoFzX8pzHDxvM49hZHBz2+vXNItWpx6408mbQwz3Tmdxh0+8y9UWR8FiLvajzxfZSLKu5DUV5st3/N+vq/wQssPvvis5hhAd/bYov45PCIP01cY1vZ5v/6z9/Q7jxldnaK66UEyjXxnF6QL/Bd+1vCMOKieonn0VM0dY719ZhhP99mf3/3nGHddovahx/R/kow7OOPbRLmkL/++ce8nX+L1fmQ/O1bdDpdXrwQ2ih/cYHB4A5k4NpVk5np92OGiVKrYNinZNOvMaw0QuuqfPY0Hlpv3adcei9m2I85/exXtFovuHHjJvCSYX9JrfY+O70tarUamtohCAqYx4Jh+5NHZOUV0qkEw8FrDLsTM2w15MMPPuC7b+9QrUzSn7zI7ue/QlU0wlCwoVpt4zgjnj+/SzabZ3FxmUBd5quvPgfg/ffeJSM9Z951efDwAdeuXsV177O8ptA6Fff0LKXg7z5hMFHh5HBfMGw0R78gSnLGJZUvv/iCy5c3+PGPZ3j21EJen+J0f4etZ2JI8ty8Ras14tFxiqOdfTb0v88wg6jdJbNUJH1RI/AdIiRyjRLP04JhUXvAMJVkmBoRHFRZX8/y11/UKXU/BeCNN9/m3r08hrFHGCwyvuhS1wosJkVTTL8/wcSBSV/pYOwmOao5WO0WYRBwHI/revvdIubCTfp37vA0ZphulPACsX+tri7jPpphqA9RFIUnjz3CqENpwTs3KB/ngx8w7PuvvyObLZJMihKofkXHCCOOMnVuZ7McHMOqrHGq6+cMc1fmsXqdc9PY32T9VgRaY3eMaSZpNFrMzApoZ/NZOq0Oruvi+z65Qo7KZJVGs3kuMk+lMkRRSL/f5+TkhGplCj1hIMU6r3QmR6fdJIoCer0OqiJTyOcxU5lXwscIup0O5Uo1dtYWg37H8QYEIeWJCqlUmm67SblSZdDtEkXR+VDJfL5Au93m4PiIyWqFlGkiydDfFzqwWq3C8dERg36fKApYWpxhPPbJ5XNxyRMGwwH94YDJ2iSFQk7M/huOqMWlRdtyefOtd3Adh+2dfS6ur9FsnJ6XyoqlEuXSBPWzBpcuXkDXVWzbFk71adExeHJyTL5QwLFtsrkkjutw7+EDEnH5aDgY4PvCB0nVYefFLkEQERGel7kgwnYsmq0WCSPB44cPKZTyKIr4ThRZplIuoyoyp6d1yqUiuqEz7I8ovRwYnjBw3RHrG1eIfAhDn1FvRCot7sXExASO45DLTaDpBpY1IpkwRYNE7uUQbh9NMxj0B/S6O0xNzZJIJKjE2oQgCEhn00yUq2ia8MBSNZ0rV29wfLADQPP0FNdxyRcnyOSz2M6QsWPTbojux3yxTDqT4ejwEEVR0Q0DRZZYW7nAY1cIa5tnR6SyZa5euy6mFDQb9Ps9ZuNOGcdx0I0ECVMlisTG2e93kSTpvJEhDHxyubyw0khnsG2bpGnS74vDhyTLqKqGfz630CMIovMgXBi2uoReSD6fI5NOcXR8QHmiRjnuKBWlQ5XFxWVsx6Y/6DEcDmi1xHvguxbTc4uAgm2P0HXR4RkEAb2uEBorioY1HKAndFzHwer3Y1+zl55hY+rHJ0yUKmgJNQ5YJVE2d8ShxDASeOMxo8Hvlo/W2B1zaCYpFEpclYV+T8/rdKwOTbfJku+TK7xgbzJB48sOUwPhH5S6cYveoE//m19zksnEDLvCBfMRAOnMG3TKTe7e7dPr/Rr1S8Gw65UeZ3HvqxQJz6VWK2DjssHkyIESjJ2n8dWFlDtdUnqFyqDJQiXNt90u0e4qivmSYf+Kdvsr7j084kfV90ldN5G2INj/OQAfxgzz+i6rUUBj8SeMx4/J5XOEppBy+MOA2nDAjdqPKBRysBswKHxJELwPgD3jkq++w7bjoO7sM/dnP+X48x8yrNCcwDSvnzPs3j2bxQWZWzffAOCrX34iGLZqk81dw3Hvc+/htyRirdBw0MP3l1heDtjefcWwZ8MQRV0GYI1Vjpy7NL+skrgiGGaW8rx4IZ7j4VCmUn4XVZHJnWbJZrLoxi7D/ojWpCiB1xJV5udD8q0rSJPw9KnPaHJEyosZ1pjAyTu8ETNswXIZXr2O+8AllxOatk3pBSuawdzsgAcPdlhe8kkkbp0z7MmTp9y8nWbi3SpT2gYPHjh4vo6RuAHrLxl2ds6wibMs9+5/x9iZpd34AoDJyrvcvHWTX3z8MR9++CMWFud58eg+Ruo26fRLho1JZedJXGuwIl8k1WzQ71eZjR3XzxlWPyNaPSMI5uj3u2xKEgsxw54GPrnhgOvmddJvvM4wcdDr97tE0Q6+r8HaS4Y9I9qKGTbew4tcFr01UvljMkMfikXKnT5OzDBj7wr6NZXFP/kfqDk233wrGJbPiQPnL3/xt0zPLWJiYtvT6PqOYNiTgOpKbNwsbWANbfREKWbYMzKpLGtrcdA0HvPxJ79k4p332d/fJloL4ZlEtT+FK4k2zX3jGpPj8Xl36G+yfisCLVVV8TyfTCaLHWeBOp0OuVwORdMIgpDQD7GGI7q9LsvL4oVxXZuTo0OQoJDPoxuxu3Zsaum6Fr7nksvkKZWqWLZFGIZIkowZt727nouZTtM4rVMolvE9H01XsSwRzRu6geu5HB0cICsyuXwe13VxHQcpbl1NpTLY1hnrF1aQZYl2qw2RRKkgBL+tVgvXCVlaWsU0k+wfHHDx0kW63da5M/fXd77FTCeRJIWzszO6nT627TA7JwK/SrXK2HFotVr4QUA2k6bX6zG38FJXMMT3XP7NT/81g36PMCsQO4wAACAASURBVIpQZIVBMGBv/0V8pyV0VePF7guy2RxTkzUMw2B2RhhjntRPIIRnz5+gazq242IkNKLIZ3JSdKBEYcTc/ALeeAxRRKlSYmpqmuexG3a5XKY2WSGdyrB3sEehkMVxXEwzQSo2Tn325CG6bjCzsIhrO2SzGTRNOzeoVeOBxqNRnyjyxGk+YRJF0fnkgDAMSSbTmGaWZqNOt9dFltXzh//Z5mOWli7guq7I0ATCOb4yUWFyUpzA+70uJ4eHFCeqZPI5EdClNLK+yGil0lkymRwTE0J/1TvrMLJGzM/MMzMnnkFdN3Acm0QiKbJOhsnUjOjwA7BHFulMBsNI0Ov3GLsOZsokDEPkuBHCGjkUiiV0w6DX6xH6AbXpJerHInOra4bIEHkjFEWhUJ5GllXGcSOEa9vIskTCTOH5PkkjwdraBVzP4+hAiJ0rE1U0zWDsOyQSJoPRkKOTA3JZEbimMznqJ0cUihMMBh0kSSZfED87O23H320F3/dRJJl0Ko2VStHrtjFT4nv1/YDGWRNrOCKbzyLLMlEYkUgmRVMDwkFaUYW32u/SUlX/FcOaQrzb6cxxaucwF29yFIRk/GfMDEeo1QpuWegE+50mzVwejk0Ks9o5w5JxdsX1LPyuyxu38qj6n77GsD0OjwTD5hefYaZXmLM/xWxm8FUdTVKx7sYMmzKYX3IhPGCYlsnN5nF/4eI6fST5pe1GmdmZaW7cuoa8JfHV919BJPHOOcNKuM5Dlpb+4JxhS//2Ct1ui+e2eF/+j//zP2PeTFKVzlg/++w1honvvtKrosoyzVKL+vIy2UyaZ5M9/jBm2L173/HYO+V//+mfMej3eBpFpGQFRRmwt/9XAAwmJfSGxov/8gLj9kHMsCtiRBtw1ixA6PLsL7YFw/Iuxr7GamWJatzh9kkYMT//xzwaj9lwIkrvv4MxnOb5sz8HoFxepj8wuJnKsKcZFAp1HOcCpulzO2bYwZO/4ViRmHl/kcv3HOrZDBtFjWNHMOzSJRXr7l2+VzWuf+fxYD4vGKZHRJHQpIWhRzJ5iGlmUZQ63Ttd5LdslpdF4Prnmz6L7Qque4qiPCUIZlCUi1TeSzGpvsawjw8pKjrdGiiWTvJGluydtwE4Oq5z6/Ys7733AY+DR0yfTfFClZnvtF5j2B6OUyKRsFBVhSnj+j/BsEN64x5j9z5m6m2iKDpn2NxojkaxRco4odcPefr4CR9+9AGffrILwK5mYE1PC4Z16hTKI2RZ43EQZ83OGXaI54cxwyTcR9fpxwx7MbHJjZ2bjC8KhknrMcPqglP58iT1TIq3ihPc6bWQNpvkCwV04KwfN+OU9/Afj1A6HdLr61g3UvSetnkea259P6CRbzKzt0M2n0NubBHlI/aTNYw9cSgxzRR5VUX6/zBU+rci0FJUFU0zSKf1V07oskIQBNjDAUgyuUKBMAzJZrLnXkrNRoNut01tcgpDN2m3Tkln8rSb4pQuywq1ySk8z2M4sPD9gEw6RSqVotEQp4p0NsPQclBVnTAKcWyLTmOAH4u7JUnCtR1O6ydcu3ELa2QRBgGu43N8tguAqshMVCbQEwbdVpswiEgkDFJx4JA006iqRrvZoF4/QdV1wtBHkSQ6cYv+zMwkhWKJk8NjkqbOlauX2dnZYjAQkXihUKTZPOX7+w/I53IkEknSmTRO7GG0s7NDuVykcXaGoiiYqRTPnm9xdFTn+pUNAPL5LEEQsLy4xJPnz6lWKlxYWWVnT3yOXLZAwtBJJAxs28UwEqTTJqqmCnd8oDZVw/PHPH/2hGZrxNLSLI5jkc1m4vsFzWYL13FpNtvkcllkOUSWI1Jx6XB+aYnRcMDu5lMKxTK6bpDPFRjGp/x8rkCpNMHWphBrplMZ9IQhvseh+J0gEM7FmUyGqek5bNuiGX/v4n4ukEolMU0T3x8TBCHlUgnbslAiIf6fmp5H03SRET06RJJCNE0lFQfhQTDGtkYYhkEUhlSXJzk8OGLvYI9iSWxAZjIjZtz5HrKs0O22YlsKcfKVFIfDgx3m5lfQVAUShujoG7tUqsKvS9c0bGuIaYqZkYHn02icUo7Fu8cnx2SzGWQpKcqDRhLbtpEl8fo6rkMUhjiOQxQFGNVpev0+UQSFvNjQ9USCkTVEVVSMgkkul6eQy2PFG5TtOCBJmEmTbCaHbmgMBgOi0GMcv29np2dUJ6t0mm1KExNM1GawrOG5nUqxNMHy2hqP793HD3zCyENXdcIgRzvOnLmuzdT0HNboZcb4d2MpqsrGxhX29nY5iZt1VtcVAjPA/kYwzHjrWsywr8meiizzF40G3SikdvU1hp2c8VUc7K+vX/wnGJZlblYwLGXeEgy7pPN0N2TFtuj8YsDjmGEXJIneawy7+71FuLzM/MDm+ExsFhMTZdLpFHrC4OvBV+cMy98U5ceDBw9Q1TWs5pB6/YRtfZeFcIEXmxL97iuGvbX0DieHx4zNea5cXWXnb/7yFcPSRb5ontI8ekA+d0oiUeOjzEUcW8xT1DSNq4mrfH72GYpyETOVImKLuw/qXL8iAovV/G2eLD5h+cISzedQrawgrRxQ/9lpfA1zJIxdEu4U9qyL8SjB8aJJbqNIsPOSYX0W/TF/8ewJn38hGFYs3uX2bfFZO50uzWaL1tw8ze8PyOUWkOVAMOxmzLBL/4rvv/tWMGymzFzeIGUW2N4SneaJxEeU/uCPePDf/xsWkEwcou8beBemGHoxw0YB957PksmccFGZw37rJcPEO/uTmSRHRwesRgX8zJjl5aeUK+9xz7JQIpE1nZrOoS3+klqtxl37LtJxiHa3R+qGmKUZRAvcu/s9y8sBV8Kr5JcL6AdHdKI9mjHDrh9Ms61u4vsK8rpC94svOclmmVFFJ6ekOBwmd5hzV9jZfsSiZ/Co/hhv7FL8QPh16f0+Sctgu91lOXfK7WyWRuNXlN95F4DjX35C9vat1xgWYt97xbD7McMUx2H1JcO+6ROt2hQGLxk2z/fWkEuWYNgbuTxbuTzHA/H8hE7ImiRxmDzkDzIb7AYSk5MDHo499G3BsPxpHiklCYZFm7xX+wlWdkgiZlizNMHy2k9p3/t/2HuvH8myO8/vc70Jm+EyM9JFZpbJ8qarunuaZLNJjuU4YSVxJCwESVhgXyRAAvSghf6CfdKDXgSMtFhIWGGF3eVqtWY4Q86Qw3bs7qou11WVWSYrvYkM7+N6PZxb0dUczkwvNJwdDHiAQhaism5E3Hvu557zM9/vA/zgMRsxw1LrfZqOiM457404941fnpR+fJnxN2KhFYUhqqZQLBWQXmpPDUfoukateshw5IiaFmBubn7ycJifW6JQmMEwdPr9LsXSHMXiDEfHIhLQ7/XodLuMR0M0VSebyWIYOo1Gk5NYTbZaPWZuqUIylUIzdHzPZ9DtMB3raB0e7NFst9BNi3arRRSG+L6LlTBotcVOv9VpYxg61eMqmaksw+GYo+MTNFVoquwf7QMhC7MLjJ0hCSnNZw/ukUjYyHFUzLZT5KeyuKMh5fl5up0ug96I0rRYFIxGAzRNZ252hoX5eZKZNM16g08+vgWI9NHCfDnWs4p4srHOrdsPSCQMzISQqhgMBrQ7Lba2dvHjSEMimURRX67ULTKpNEhCMf38+Qu028LcO50ROe7N58/Y390lnU2j6mParTa+N8S2xULLMHSSqRIbGxssV1bodbusnFqk2+pMdgCqqnLqzBqaruM6I6IgIJlIMRVfY8d16HXbyLKMqurIioIiK6SSKRRFPKCCIEBTNVrtFrqmY1gmU7n8JJ3ruB6yojDoD5AkiXwuR7PeIAgCZmdExNN3PZAkCoUSnW6H6vEOrX6LVFaEqmuNOvPzy2iqjm1bjAYjZmamSaYSKLJ4H1mWOa4eM10qcnS0jx8EWLY1ic6FUQSRxNgZxZpgNpqmUq8eM4wX2dPlMs1Wk3arzcxcmSiMsAxz0hlbLJWQJBnTMHFd4bXY7XYnOm7ZbA5JBk01eLLxgMAPUDSdna1nlEoiWqlqKr7vEiohvu9hGSaNRm1SE/n06QaKLCNJMrXGCfl8kV6vTyqZ5My5M/G9cIjv+8iqEBGOiBj1B5MO3eFoyMJCBdtKEAaxto0UIUvC2B2EVU3tpDpZnP1tGa8y7GzcjTwY3ueafoHvjwTDXj5AB4N5arK4LvNzBm8tLbETM+wrpTlaF17j6F0hNeB5Dp3bt3kwGnJB1cleTWAYF2k0CpzEzhTvVZ8x57jMl1O8duMivudz90c/4mvvCCmCw4M/odkuopsl2q0i+WxIxhmjJAxa7Y8AaN0qYZR0qvkqa8p5Phh+yNHxyeS+PqnXePp0g4XZb7HoDPElj+/+iy8y7OrV12hMZWmMhrwTM+xub4Ff24kZdnbAhWmdP/jeDG9m0iQzN2jWf/IKwy6xYJcxjEtARLSxzq3GAxKJHXYPhEXK1tZdStNFGlsf44cRu1aSG8nrmOcF4/Zti5tHb8CVpxz9oWBYpt3C3k+Qfksw7JM/aPHAvMfFS2ne/3BMu/UJvqdTjqP2ly7paNtfZePgZzAsbnFTK0t8+7d+B21bxz0cER2tk3z7m3zrl38N+BkM21RQLimk1o9QzgkOBusBWmpAq12if0HHeLHLVKWBsinY8plbI5W6xoP+gLPBM/K5HB/Vf0KwHjD79jtAzLCzEgWtxM3uG7w3/wNad1qkYjPnWuND5r/5azjONra9yWhwQZQ2LFaovGSYLpPNCBHu1NE+DxYDpuoWyaR4Roanu9AvM9ZHSC8k9qyrWNoL6tU0238gzkenXGZ35yNk1hgOF4jCJ5w2TC7GDPNKJSQrIRj28AH9PX4mwy7EDFuPGWZ89w7tmGHnLwiGPXy4QS7/FhfOm5QbNZq5N+O7cINN+Smzzxb5oP3+hGF6MgnnxKLIPNBpFFeQ3Yc4zhKfMaZ/5y7pWJA7kUqwkHFp5PKEQZozAEGE/LVpBneFKK7nP6Z2Up1kV77M+Jux0IoispkMRHxByLA/GDC/dIrhYEAyncT3fMIgxI41rmonNVzfJZPJEgQhnj+i3W7ixQrkkiSj6wYJO0G306FeP0FRNUxDJxO3+BdnyuxubQpRSlnm6PiISBbhUhCpoZWVFbrdLqWZEusP10mlU0RRwLUrVwFIJdNUq1VmZ2ZQVI3joyrV2slEcT1pW3R6bYbjPhcvXmZvZ5e5uXlSmQxSbG+ytfWCdluo15umwdjRufn665zEUZqR41AoFHjj5usMhkPRDls7YXVFiN8lU0lAYmd7G9OwiKKI82sr5HIZZuLIyb27dzip1bly5TKWncB3XVzPxYntBzRVI5lKUa/VsW0hqVCvV+n1u6w/FNEl09ZJZdJcu/4a1eMjRqMxpmmSjIvhVU1jMOhSLBbRdZUg1Ol1B4xdn6U4QtPvdET61k5iWQkOdraw7SSp+KZTFJlGq40kyyTsBI7roKlqfGNm4msr0ev18FwXwzBot1tEYcBUVhxjNBwy6PdJpzP4gcf+/h7TM2VGoxGduPZpOBwRhiEdv0smm2V2rsKgn5vsVGZUE6IISZbxgxDfHzN2xgRhgG6LiFWn1SKTTjEaD0ml04CMpumTon13PEIiQlU1PE981jCEpcoKtROxCz8+OGRpaZkojHB9kfufmipM/DZ7nTqZqSKRZuIHPs1mA0mS8ePiTEVVURQNSZZZrpwmQggAiyixiM7ZCRvPU3Edl2F/gKw46Jo+gcXMbJluR9Qe5qbyQEQqnWY8Gk5q+LLZHL1uh+lymeFggG1Z1KqH2L49Oefj4R6GaTAeebTqR2Sm0phWilKsl1M/OWQ46DOOa7b+tgzDMDjJZDA7HR48eAjAagh97y7fXLK4N3A5PD5kZfmnGdYiO1Wlknmd+8EGD/yQVHub5Yq4r13XRb94iV968YLbnQ5zH2ZRzlcxDZ1qrKh++u13MLc2WV/vkLgus//uj4lkuH9XFAkPhgZh6NPtdrly1YoZ9hpRFJC48h0AZpJp3nvvPWblt5m+rJH+uMponKXbFdGopG0RrC4zLPRR9cvIO8fMzc3z2s2bPIsZtr71h6Q+2SG5dnbCsL/7KsPuORTeEgyrDocsSTK1WvYVhgG7zzC20+wae8ydLnO+uEK9nniFYX0erb/L7/7OZSz7Go8fujy0Hk4yIdqLLQ5LJer3l2hfTeG22yTrVT7t/ymtfyy+y+WrF1kP08xef42r/SNGIw/TNJmeFlGzF1sjhsMe43GRMK2y8CrD4ghN/1aHZ53n3Mi8jmUdcLDTYv92e8KwtTWZxseCYQd2ArfioAUxwza+yLDlSgZJNmiXWkT9gKmzb4jz9XGbQb9KOp3h8XpAt73H194uc//iqwy7T7gR8oH/AZnXX2d2UGEwl4NILJJm1G9CFPHs+RoXtC0enx5zujeL/9hn294GhCuJNrpARIKj44ApZC5cvDipnXM7tz5n2HIFI6lwKjqDLCloWcGwtPOSYWPclZAwWCGTLdBq/gSAZq1OZsXjtHaT+6srFJoN6vUa/op4j3OqyuamhrQms7z4m1TY4MlTiUh7SOzexf5ByPJyhTNnzrC7M+DTnsMZTef0acGwXr+MfWufqdcjpOd5nsUM27r/OcNOhnXG3U2m3ykzP5DYsyxq48ErDLvHeChx6bLBoL9Mq35EtXaMubFOaUasGeonOvfu3mEQfPk6078RCy0AJCGeGMU5X6SIfrfDeDgmlU4S+j7OeEyzeUIQh9UN08RxXFRVJZ3OoGkao9GYZHxloijCNHS6nTbNZg1JVpADj16vRTL23dNVFV3TOT7aw/c8okCjvDCLaYoTPxh0GfS6JBM2g/4A07LIFafpdeoszguF8cPDIw72d9E0Dd8LUDWVN16/TiolbqhOp83Gk0cU8yWePXmCnUyi6Qau43L7k1h0MGVj6DqSFOG6HpKs0O60KeREeFdVDVzf4+T4mPF4jOOMmV+Yx4lrvEYjB9fxcJwxyyurjIZDyrMRs7OzEwXxRrPJtatXSSZStNsNGo0G6XSGUbzQiqKQRqOGoioUS9N4vkvCTpOdyqKpYqJ2ux0kWUKSFPb39zBNCztho+kieqepOq7jUcyX8NwxZ8+u0u8NmJ2Zm1gjTRdnCYKAiIgg8FlYOkXCtvDiG/uweogsKxSKwgNQVRQSdoJerzMxFJ+bWxDefrJCNpNF1TQkSZrU3imajue5eJ5HOpVm0O/gusKvqtUWxxgOR5RKMzjOGNcdizoiScKIbZHGoyHV6j6e6wsz6G4LO5EkO5VnMBDh/16vjWFYZPN5ut0unVaH5ZWVySKp02kKXSu7xHDYx/NErZhpJSZ6XuPRkFazxdz8IoozolE/odNpIU+aOrJIkhCcNe0cyWQK1/NQ4gjheOwQhi5yIBFFEZlsDlmVKZZmaLfEdzUMi0QyRcJOMhgOGA5FpO9lNFNRVCIkXM8RdWfDMZqh0+v2GfTFHDMsA1mR6fe6uI7HaDhiaeUU1Tg6PBo5pNIpjo9qzM1X0FTY23mOabV5WTBv2ykSieSkS/Vvy4gY/wyGnabf/ZAHwzGv3Uhi2T737y/SbL5PsCLup0tnT9Pv30VVX3AjZtj90ZjDlwx7EtHrbTPT71Jo1ngoN1lz1r7AsIuqyq62TTqV4PG/+m7MsK9jmiKyLxg2QzKxwt07O5xULabf6dDr1KnMi0iREzPswoUGB/sBqnaeqWwXw4g3FJ0hxpbGV86W6HafIKsK2sVLuI7LB//knwKQfO0qhtNEGj/Add9Bkjdpd1Yp5MQcVNVLuFsetZpg2HvvjrGvzeOM4jT8yOGhs0V6acysUmZQHnJh9hyzs9/k008FJ/OFJt/4xndIJlJ80m7QqDdIp6eRJBFZOXdujRcvNlHUgmBYrsZBO81bb7xOpyOOcfu2jITE2RsKPXuPer3P1VcZdv4ildoRjfpPM2xAJ06Tnvn2GpX10zzhCavBeUZL58jYeywvC/7s//Ehz+VNCsVprl+7zoPxiMR+gp70p19gWHm2TOD7McNufoFhXy3pPJow7AaD/p/wMGZYsS0e8sPhHKUbMzjOAza+wDBhi7S4MOS9936Ip9lI+TyzvTZhJBimDcTj/72ehmHcIZvPM9Mtc6t1C03TyGbT8bXPkjj4DPtr30K7dwdPPkd0TuHylQSDvuDceDTEtBwG84sozgGNepZOp8VzZS2eGy6StIVhaEzZdcaHHl+bmUWxBMMePHCQJBfPfcmwN8n90nOe52dYHIr5Md1q88zb5LyisLg0x7A+oPFTDHuCxHXPYfu0geOMeSZ/kWGXroh6Pqu3z9hpUBie5vSvf5v33v0xAAsjh9SN13j3qMXc/BEjdZaTz+5iXmlDJ2bY1RTXpOtk/tE//ZJ0+BI6WpIkLUiS9CNJkh5LkvRIkqT/Ln49J0nSDyRJehb/nIpflyRJ+l8kSXouSdIDSZKuf+lP84vxi/GL8YvxVzx+wbBfjF+MX4z/kOPLRLR84H+IouiOJEkp4FNJkn4A/FfAn0RR9A8lSfoHwD8A/kfgN4DT8Z83gP81/vnnDtG9oNAfDrDiro7hoEd/MGB6RnSkjQZDXN8nDCLyOREJODw6JJcvIEkSw+EIVfEwDJ3tLdFJk8pkaXcaHB/tUCgsMBwNyCRy5PMldmLLmJODAxLpFDPlhYl21sH+PsdHh/HnGOD5Hrl8ntFwjCzDoN/F94OJZtPu3j75wgy6amKZKrouOvmqsTXFcNBH1wyWK6dod5qks1M8f/4UmQjdEJdgbm4OTVVoNls06w1kRabd6k7MnLe2X9Bpt0imUpRmplEUmWajycmJiCaUy3OYpsnF4mUURaFRq5HKZHDcMY2m0MBSFJnxeEjSTuF5LtnsFMVCkXZcawYBQRBycHDI8uoqg04fTdNptVv0uqLGptvpUigW2Vh/jCzLFAo5bNOahGYhRJYU7ITNSIEgVJnKF5mZmWcQe56pioKu6SBHtJo15ueXqB7vMx6JdJLreKyeqqBrJoPhAKKIbq9HhEwuJ9KxnU6XZDKJrCggi25Kz/fotEVIHUkmDD0kScJ1XLLZHINhn1anieeJDpOF+UXCwMc0LRqNGrZlMfRcGrFfoqFZpFJTTGWnaDTrOM4I13MwTZtkLJmhLejs7+ww6PUJfB/TNAiCkFxs15BIJImI6Pd6tJrHeH6IaSWQZRnT+lxXzHUdoWkVCe0tz3Pp98Q594MA07LoD3p0Om1M0yKdySLFiuypdIrBYESr2SCRtOh0O1imxfRMeVI/Mx4P0Q0dTVXRNA1VVWg2m5NopmnZJFMZ9ne2mZmdQdcM0W2UTuHGLdy9TgfLtgiCEMdxOD44JJFKMjMraih8P8C2E3jumPFoRBhBoVQmCDx6cRNDwk5imiadbu8vQsJf9fi5M4woYk1WuLPkcOUlw+7e485gwNdmUmjaBUYDD7fykLAW8UuvMKyezzJ4JjGcf8mwi2z/Ucywm1naQYLhvTrNgsXKaMDe7gFXEwnclrhvnz1+RCJ9jplyxOkzKk+Bg/0Bx13BuOHUHF5qQG4xz+heBXmtFjNsdcKwj/Z+SP6tt2OGvUDXx4yGi1TjVP3wo3107ZjlymnaHQ/DOsPzDz/gQyL0Sy8ZNkBzbJrjFh99+BNkRaZUrHEiiYiDsf2CTqnF2Enx1bcFwz56hWFBeY7E9cvoewco5xQaP6rxIrNFLj9FviBSch/f+ogzp09xaKdY9lxWXxcMe/JUfI+nT9c5e/Ysx8d7eJsBc4UyWxe2+fiTj5mNvfumSx2arRYb6xbPn8uUy29iX05h7gqGKYTIaQU7sc9ImWc9fIGZ11FmlhnFDHv06CEXL1zkgnyOk+q7ZOd/hepxj+SJqJt76DziN759Gl27zN3hAJ5EdKUeEWvkcuK50Ol0mZ9fQFYUnsoSbsywlZcMW5TxNh4hSRKVpQuMRjkGD/q0nCa7nlDC/9Y3fzlm2BUWGjUa8hpD7xb53nti4vcsXku9MWHYZyd3kGSZty9/i6Qlru28ss3+jsOg12fdf8xl06C0eoonT4Q8iOMs0ru5wP6nn8YMO6DZTPC1r818zrA9kR7NxQyzRg5H3VmkWcGwlSAgaZ3nzt1PJwzTMq9PnE1S6RevMMyn0+2waC7Sm5ll+VWGVavsqCphNUt/TjDs6L7QAzOvXCX52k1++IPvMzP7NvoFg9Fdh+vp+c8ZduuWYNiaguM4vHvwfX43dXHCsJwfYGfzWA/HjBsdTq3CqFRmdd/jqRwz7NF15Mty3JD15cZfutCKougIOIr/3pMkaR2YA34XeCf+tf8D+FMEpH4X+D8jUfzxkSRJWUmSZuPj/Oz3ALHAaNUnHk29Xld01Y1H6KrOeDyk02nT6XQZDsRkn1tYxDBMHMfBtsXDst+TUGJjTyTQdItiaYlkIilsVKwkXtej0xF+iLvbO5y/fJV8sSD8i2SZRw8eUG+IG/fqtSskZIt6rY5liQ48WZKYW1iiE4eAu90OlaUKdsIkmU6xt7PP1vYOYWwcG0UR5dh7sN/v4fsOe/u75LI5dEV81unZaU6Oq8zOTZPL5wnDgGKxMPHMKxYKFItFTNNAUVU63Q7zS/OT9lrLMlEUjSAIGA77uI6Dqig8+OwzNME5HGfMaDRG01Ty+Wm63TaPHj+i1X5pxGzRbNQxLZtMKk2zXiOZFJpjrZY4X0tLS3i+RxgELCwsks8VsBMJwkh8V2fkkEikUTWdhWKOdKaAqqlIyIBI+W7vbLO4UMG2E+TyRVrtFulMnlJJpOzCMMI0TEajEb1+V9wkYQSShBMv6CRJwg98dEVh0O9jmRbdXg899tgbjoZ0ey1SqTRTWRt36DCVzeE4Y6rHAnR7uzvYdoJSaZrAD6nVqmSzOZKxzc94NMJzPWRVdHHKskLgu3S7LXRD1NgYusHswjz9fo9UnMrxPAfb/rxmzfM8IkZksjkSiQye79Lt5JHXCgAAIABJREFUdhgOhJTJVDYLRHiuh6qpuK6L57rMTM9O5tfe7i7lcplEMoXn+XieN6mhUGQFRVGFblmQI5PJiX93xwSx8WmrVcf3XAxdR1E1LDuJ0m5N2uLrtRMK0yWS6RTHx8co8bycLc8wFaev6zUFZzTEc0ek0hm8YpEojDg8ELd2MplgPBzSOKmSPpVlNB4jSTLF0iKjuDtWkYWBuhQf/69j/PUwzKTZbJFuJem9ZFhnTzBscQHdfcR4PE+rc0Kn0WV/X7Sszy0s4hoBjuFgq1dihtW+yLDtPYpfXcI7OKRzfEjlynU6z599zrD79zh/+Tvkv9JkOKywKstsP/g+dxqiG+vqtVMk5D3qH9hYV2zUB+eRL9vMLbToNEXtZfd2h8qvJNk/2OV6eoo94y9g2J0eTdPBsgXDckPR1ZzspciuVrmUnKZu5gnDVVYqPoO4VkwuzNOKWvzqr1Z+imHCTsba2+XcuQvIq6t81ruPu+Sgzp7jX3z3uxOGLS0tcv/+A379V38DJz/N7dtt3n///5kwbK48xx/94Q8wLZvf+73f44/+6Hvk3syTrWT58ZFIDy05v8K589NsrK+zsFDgl96cxU4k2GgJy5lo5JBILOJ4KywUD0lnypzXVPQza9y5I+q8tnf+mDAMuHr1Grn8Vzhof8yNzGXMklgAzS/89hcZVhAMO5OTqNXFhvIlw7YVheAVhknbgmH3RvcmDNN0jdVTp7BME8cZ8967YiH1J3/8A65evUa73RE1k1NVsp5NMXkDgPHoPp77HFl9EztxwLW1mwS+y+3bH/PWV8TUv3TxEqthwJ2YYTXOMPXIQbcFj1UtxbLhMb6whudUYoY9/CLDgiw8jfAqgmGViov38CH1TlzX1O0w6AsLukQyxXLMsIf3RD3j5wxLUwg6VDM59EePqFQWubshpIOKxRz53BSGrrP54g7WfoJzSYvtWJ6ovrvNW9Ml2jdeI907ZvNQgzpc+ALDsoJhfcGwX4oZlkyIW3uYTPCgXqNx8h43vv3b9Pq3OSvJTH31l0neFwzblJ9y/5777yVR8+9VoyVJUgW4BnwMTL8CnmNgOv77HLD3yn/bj1/7AqQkSfr7wN8HyOemCEKffC5P/SRevPTaTE3lCMOIfm/IXLmM5zvopkkifoj1en0cxyEIfBqNEzRNI2ElPzfUjCIM00JGAiKSiRT9fg8zYREhiidLMyWWlldot5o4oxGtegvP8/jq26LDIJFM8OLZc3K5AmEQUDupsrhYYdBtc+eOyPn7QUQ6k8W0E1SPTxiPxiRTNonYJHlrq8VUrohh2UwpEt1uj+XKIi82d5mZEQWYw8GARNImk01jGCbNRpPaSXUiWlnIl/CDAMMoiUkpSWxtbrIR7zpWllfJpDMT5fLBcES736PVbHPj2nkAEfHpNnmxHTE3u0i32yGfy5GI60G6nTbpTJZarcbDh59RLBR4+uQpS0uLLC7OvbxyFErT1E5qSIBt2yiKjG2KaKCpW3huHUUhNjkeEYUGgR9ALLC4snIaCag3qkiSTCadRZKUiShqMHY4OjoinU4T+B6eM8J3PRzXQ4mJa5gmtpkgDH1cz6Hb6WAlEpMiUcMQqvNhGIg/gU+r1SaXK1BZFruwbreDqmpUTw4pFAv0B12iKJrIGei6jqONcMYjfM+jXquSyxeRFY12S0QJSwWxqxsO+7TqDVRd4eTkkErsvZhOZ3FDn8D3SCQzsdCtjKzItJriQRkFkC9lSSaStDster0OmfQU47GAmCzLaLrC2B0TRgiF9257Ev3tdrvYpkWhUMC2bGRFwfVdFE1FiUR1wKnTazTrDRrNFulMmk6nQ7/fZ6YsOrEkWaJ6uE8ylSGVTiNLMo16E89z6XXEOVVkFTuRptrbRx2plGZK2HYCxxEPjmKpxMnREbJqoqo6c3OLeK5Hf/C5GG2302L9/iekM3n+Q4yfF8Nmpkt/hmG3T0544403abdu0e9pzJXPYvsW+rRJN45WHvfuoDtazLB/FzPsOm+9JRi2EUUY6Sn29/aR5bMcJg5I3vkU85pF9OJVhvl84q3QG92iVW/xyHv0CsM6qM9mqV9NEK4H1LJVFqkw6Ja4c+ePAPCXT3Mjk+WgP0f1uMaD0nOSmk3i5isMqxcx9mym3jzL5u1P8SqLNDZNZmbih9RAZlC2uZlNM1u+zEc/+YjDP/2cYc38kJXVVZ48iTAMhelpia3vfY8wEgzrLf8Go/6dmGEag2GC9p1/GzPsPwJAt/bwg4A/3H7OXG+RmZkOlaU3efBQPLC7nTY3Mq/zQe0D/uXD7/KVK2/xx//mT/iVX/ll3lgUi48zlCiUphkOFyYM21TkSaewqV9B0+oo554SHtgsLY3wtgzWH9wHRBRj5dd/Ewn48CfvIZ2VuZnO8kzaxHohNoLueIN2u0P6xo0Jw1Zcj/ZDb1LYv2PuIknyn2HYre4nwEuGfYtTpwI2NtaZm5udMOxXf010N96+fYtkMkFEQDU9hTHoEp0+zcMNwbDz+kU+025xML7PorfMh7VDco0Wqq7zyceCYV8tzGBaV1kbvs+n9Tzn9TabJ4dUKmKTdpyWeLLhM7/wiEQySRSlURSZ55sy04WYYXnIt7Mkp5K0b7XoDTtkbrzBYtxx+ljusbWt8Fp6kY3oKbad5Hb3FpYtGsq63TtcvXyFTrfNvmVjbG5SOR2ibL5Aj714w2iN588bzHRbLN5c5LMHDvJsB70ci48/d6gGLnIqw1E6TVKSyS828UYuvemYYfnz2DylevxTDPssZtjXSjz58WPBsBfbzCUW8aaX6T/8nGGV6Qrr//yfIPNz6DqUJCkJfBf476Mo6r4qPx9FUSRJ0pd/V/F/fh/4fYDTq8vR7PTsxEQXoDRdRJFVoSsUBvT6Peq1BpZl8fKtZURKUbcMZmcXhKBlGJKN5fY7vR6e5+G5Lp7vMjs7y/HxEbIkkc+LBY6mmzjjMa1Gg9rJCd1Om0tXr1KcEYrsnWaTQrFE9biKqii0210Go3UyqTSzc6KTSpFVoeg9HDAcO0SKgmFajMdufO4UJCQ0VaXdHLCzu8dgMGBhfo6r168BsLu3i2EYvNjcIZUUD9zxeDxZVMqyihyGjIZjDMNgNBrR7bRYXBCfYblS4fmzF3Q6bRaXFrh99z79oYNt2zzbEvof2bRNp9snkUjSaFY5PNjn4sVLLCyJY/z4T98lk8mytnYG3w+xE0mmZ6ZJJBOomrg2B/sHhJHE0cE+qVSKQjGPJMmTtJ+MzPLqCqquYKgmkiSjaSqjscNLfbcoDJEVhWwmT7vd5PjoiKXKyqRIVFV0pnJTWKZNKpUiDAO8IEBXNfYPxfMvmUjSbLbRNAWIMCwD1x1jxaFsSZIwTROJiGajges72HaaXq+LGUe9UskMYRSgyFk0XSMtZwBJpCuBlJUiCAPuf/ohqm5QWTlLGEDgefihAK7n+4xGQ6ZyRaJIQlUVwjCgG2sHJZMZRsMRkiRMwWfnhUp6t9NhtixSGf3ugOFwhKeKSGE+X2Qw6FON2/dTqSSZbIYoEgu7o6M9ep02mVhyI5VK4cZRXV0XemOGaVI7qZKLU1SqoooiW1lECzVVY9DvTQrqJd0gkUhh2TZRJK7R6qlV+v0eg9jSqlQqsb9/yPTsLL4foMgKnu+RzohIXuAHFGfKuL7Hwf4ui5VlXM8T9kPx4jWbyXH6wnUe3P7JX8iHn8f4+TLsXNTrzKKeV2k8fQrAqVOnabc6ZG6exQ0DHvQfCIYtWJwVdeo8f6oxWh6iW5eYnTVihu2RTYvutnO9T4mWod+p4D3uEc3OIh2nkJ8dfJFhi4u09veovX9Id7rNpavfodiNGbbdpDu8z1QQ8aKzSfvhHoPRKGbYNwHBsMNkivHCgHv7DqeVczQvn7AYM2z7mcLZNyS2xipT/bvsmBaDrQ2+Of917KSQ/+jM7mK8MPjDzA6pwwbtTotn4zHXXmWYJH2RYdMtVE3w57TrIjeK3Op8wuLSt+jevY+SnaJbnuPZllCof8mwd975FsHOe3zvk+f8nb/zH/Obv/nrAPxvv/+/s53ZEgzLnmI/ccj0zDQHyQNMTdz37/3wXYqlWVIHNqnXUjx7nhdlFaFobpLPRCxPrRDpp7nU20XS1tC0F3hjh7U18V21MGRzc5PszTyldpN3XzKsEDcvbW4z9eYUlpkidXREeCqiEpxlW9li41AsLIuJEp/cuoV24RyfM+wBliUWH2fPSmQyJs+ePmHQ6+G6Ofb3j9na2sbULwKCYYZhoMhZWrpG+nnMsFAwzLqS4urgOv/8n37Ihv6UyspZTqlzrHsefihSbp7fZDSaZypX5Hp0jKqeixkmbodTyYhPhveRnir8cXWL2fklnPGQ7nSHqzOvMGx+hDf4nGF3H45pN18yrEMm20U6neGr+bcFwz7Z5mZGXJNHqdcIwi8yTFUvU5t6j7D+kmEvsBNl0msRuzsmyeQWz54d8c5QzOFQ3+DewRFXk7M8iZ4ShadYtVe5433KUldc21KpxA9/2Ob1NwTDNp8ryKqHFDMs/1gwrLKyzMFjj8XKEq7nfJFh1RynL/xn9P/Z9/9ySMTjSy20JEnSEID6v6Io+pfxy9WX4XRJkmaBl2qRB8DCK/99Pn7tzx0RQuNJ1/XJ7nh2ZhaQGI9HdLuiYywIAqIomsg3TE8XcV2XIAyQJQlFVeMdgkhRqYqMpCg0Gw1kRUKSZdrNFolEguK0mCBBENBp1Wm3mriOg+t7zJYXGPTFSr3f66OpKlNTWT6+dY92p8XrN64T+CL0CbCwXGF78zmKqtBqd3A9n9XKIocH4mv7gU8uP0WnU8cwDc6cWcX3PEzDoh93BEZhSLFQwrJMfNcllbIZDQeTNJbre8hyivFozM7OFooqc/rMGooiLqHnuTSaDUJEl+PS4iL9Xpex52OaYiWuajqlYoLRcEgimaBUKmGaFk+fiNC9JCtMZafITmVoNttYls3UVI7t7RcUVQEQWZGpVo84dfoUg34fWVIwTXOSAz+pVhmO+mgKnD1/mVarRVJOIslwsC/C6unMFFNTU0hIWFaC8XBMr9ejHXfqScisnDpDu9PGskzCIMTzfSQTzNhXz3UdCoU8/X4PRZGRJInA91HjmrcIYTlEFDBTmqU/HKAoMsOhRzeO0JRKJWzbJgwjgjCk2+1gGNZEA+q4eogiK8wvraLrGrpmoCdNwjCkFXtMBoFPwrYJowhVU8lO5QijiChO2bmeSyqdxdANBv0umqKSKmRJWAmI077ZfAZN1ahVTzipHXF27RyappOJ62OOjw5IZTIoqkatfoyma5RmZ3m5Lmi3mqiqgmmZeJ7PYDTAthOMhg6OLa6L7/mk0xkG/S47L55QLE2TyU0RTj6nRzaX4/joiHQ6Q65QpN/vYidsUrEYbX84IJfLYJgWjXqdMIhIphOTOUwE6WyWdDrJ041HyIpCKh0LDE+Ul33MRJqFlTXgX/9FWPgrHT9vhhmGqFHavv85w77+9tcBiUfjhzHDlgiCbU5HIsUCkO0UcU9cglM6snQWRd38Mwx7tqkgRz9B7p9lKA8Jm49JJOYpfk0wbH09YKP1Ie2PD3Adh4q/TKa8wCAdM8zoo72QqE2d4EcK+0dVXv/GN77AsG8tV/jh956jnFdoFTpUm4/5u5Xv8KcHPwLAX/Wp56fwH9fpdg1+60yA7/0uuzt7nDodd4E3T7HwlkN/YPK475J6zWZ0b45RzLCrKx7Pn28RhAcYRgk/kPnNM7+Dooh6tMeey507tzjFGVq3PsH1I8qzM5jeY9qmqHn8AsMuXuSrM11Mc49/+2+EHtgXGLatY715lalfN9ne/kO+ogq9pSPliGr1iGunf427h31mvq5g7ptUKp8z7Mf3+1w4B7tXLlNstUiuriKtP/4Cw/zAR1qX2FtJwHBMrzdLKV5YPKtV+XX9t/i008ZyxoTjUzx4/ADLNLl8RdgF7WzvUCjkKSsKmxOGraBKYqH+9KnE/Pwch4f7zJRm2d875Nz58/R6fe7fE1O1VHIxdEMwbGODbreIYexxalVM35/FsPR1k8zGBsWmiLoHwSwJWyWMzqBqbbJTDcIoR3QqZsOOYFjh4iWu7XyPfEFl15rm2uCnGPbiiwy7cEHHfSAY9u5Rn1Qmw/gzj9rFY7a2tyjNfp1nkkgLtlsnPJw9h7lnEviPmVsYoDzf5P4Lh7feqojfabdJpzM8We9ycvyEr3x1lsXKIhs74hiV5WWyhwd8dNQgnV4hV8jzMGZYoRhLCw3vkstlsKwr/OTDDzmvCoYNeqJM4+MI0tkTjo8bcOIhn1NIddI4zkOIxOLW9x+zm1DQjZd1yX/5+EsXWpLY9v0jYD2Kov/5lX/618B/CfzD+Of/+8rr/60kSf83ooC08xfVNgAEvs/B4S6Gbk7SWINhn8APUVSFw8MDMpkM5YV56ic1YtkW6s0qYQCFXAHT1Gk2W/R6vYndRxAG9HtdVEUmCEJ0VSNXKKCqGmEckeh22qi6ztJyhW6ny2g4wjQN1h+JyInveyiKwq3b95FlSKcSRCCk/ePIiKqKqEBvMKBUKNDvD+h1OxO1dMMwaTRbOOMhleUKrutw7959Ot0B5WmxWl9bO4+mamiKSiA5IlpUyPEyDBRGIpolSTK6oTNbnkG3DNw4Tzzsd1lcXECWIpKpJNPlOeq1BomEzSBOUyQsm0cb67TaHd64+RrtZhPP9ZmOa4EqS8vs7e4wHA2xEwlUVeHgYBfD0Ali8Nu2xdmzlwGJVHqEbhiAgmmISBJRRLlcplE74eG9T1lcPQVShKnrk9RgFAa0W01kGRKJDKXpGdrtJpVVYcWx/XyTw8MDZElCkiKGoxHFQola/YheWyzGpqcXwARZUvA9UfSu6zr94Ut1+RypVJLBYEAkSfh+yNgZkk6nJ76Mo9GITqfJoN8hmcrS7XWYyqnEXxVV1TANi0KhSKfTRlEU6vUqhmFNivI9z2E4HBBFERIRo8EAy7Jp1EUdmGWaeK5D7eSIXL6AZdhxmltH8mOPwMhlzJjZchk/dKmdnDC3sIjnxOazM9OYVlL4YbY7mKZFv19Dj1vvs5m4PT6RotNuUcgXkWSJUqmIEx/j+fN1ZsvzlKbL9Hsd6vU65bkFXtbNDQZdMukMzrDHzskxiiLjhyGqnZjUAXqug66bmKaFlbBxHRff9Yni89VqCQ274vQ0l6+9TvX4gCgKCQMfVRbz4/hoj3rtmMrK2T8PB3/l46+FYYFgWDJpMj0j+POSYa5a4fDwD8hk+pQX5nl0UuN8zLBcIcNG8JSCts1l8yIfNUf0ej3eM8RmIAgD+lqXcH2N1WCDi2qBZqGAel5j41WGDWKGTc+wMBwx3N1hPY6q+r6H0ulw6x/fR5bP/EyGvVBlzpyBe3fvUrr5OuX+a3za7ZA+Fgy7tHSZcfMhn50Ihm1vO7Tb/4pOd44gEPekYNgCmqJy9qzDYTJFYXFhwrBWJ8S+luTs0CMIfHr9LkurAQ/HIpWWjRnmS0O+rs8wXZ7jw1qDX3rr700YdmDZeBvrHBy9xxs3/3M++UhmtuszPS3EWStLJnu7P4gZNoP6YpOD6hHG2sUvMOy3f/s/ASRmHo7QTcGw3R0RZjQNlXfeKfOT2glL9z5FWQ1BuvJnGFYqxgwjw1ZnhvbOLdLfFCUW0ZOIw8MD5iSJw/GI+W6blm1Tyx2hnYi6t3B5BY6Of4ph25TnxQL6pFrn6OiQtXPnaTXbrKycYjAYcnx8TDIlmD0aHfHjox8y15+m02owM6sylVvG98R7vHixxeVLV1hcbNHp5FCUTeofNhkYFmdzYiHleTnuDQdE0RMiIi4OBljWkMZ9sUjam9rFrwTs729TzxcYGvsUGjkea23Ovsqw7iKz5fP44fcFwwyTR5K4ttMz01yOGXb7kw6mWaHfP0I3xG31+k2xCLZfS9H5BMxGEUkVDPO8OFvyPKBVrvPV6TIvZjt8+OGHlOcWJg0/d+92Kc+qP4Nh0oRhjx46XLx4GdO0uJKweei4XKms8OSB4GSr9RHLlddoSTKnrp2i+vSAKCV0wdT4fY6PLB7W3kWOfYq/zPgyEa2vAP8F8JkkSffi1/4nBJz+mSRJfw/YAb4T/9sfAN8GngND4L/+Sz+EppHJTtHrdujFAnlCRVxiNHQplkrUTk4IIyiX5xnHDw/HdZnKZqieHOH7vhBd7HcJYguMRDLFeDxCNnRc10NRVYqlEtXqMboe3zBRiKqY7O9tQyiRzecZDvrCrxDIF3Lcf/SI0nSOyHMwrQSnTp8mDAO2n4udWPX4mGQ6zZm1NZr1OoVCHjthcxJ3HTrumM0XW2Qzafb3DlhaWiSVsIl8uHxZpA4LxQK+5+A4YxKJDI4zYqY8hxuLUg76fYLAZXm5gq6bKKqCGzj04s4jXTc4f+k8vU6LZCbLaDhE11UGvR7WS3HE+gnPNjdZqSyJAsBUCs3QIM41HxzuMxz1qTVaXL5ykcPDA1KpFFEUYZniGOXyPLomvCBLM7OMxgOSdpJRXBRpmCaWbZOZytPvtiCEw4N9pqfLTJcEQEajPpaVjCNhDp7ncPr06qRA+tTaOWRJYev5E57sbzO/tEq706TdbhD54uFycLDP3EKFfq9PFHmMxz1OnbmIG+/QW+0m6dQUIHN0fEgmlcEwdGzbxI1TYaqiMRoP6HRb6IaJnUgJHZs41WGaJqqqclw9oN1uIcsSkqyihQFBXCQ8HjsM+kOmZ2bYWP8M3/U4tXZukko9HO1SKJYplmZo1E4IgxDTtBgMepPzHgaiY0/TNWQU/NCj1WxM5k8qlSSMQFc11HSWIBDRKd2MbX6A6skJyeSIdDpNOp2m3+8iK9JEq8txkkRhiOOMmZtfRlFkut3O512Hpo0ky+RLs9j2gF6vR683QJYkpuJjpJJJeoMeilYikUojy30URY2FWsW3eVkfaWgWYRCKNLEscxj7Nvq+x3jUF3Pjr2/83BnmawHVkxq9bodza+cAkOQm8IyDYYVi6avUTt4njOCd8jd54Ii0zZIr80b2DT58/32+5+/x9tff4YP++6yGK4Bg2E/GHyDbe2y5OqWXDOum6W8L/kRRyPlzl/nh3vfhTopqvoGiqDR/IqI8+bfe5P76esywA0yrxLdPn2bjVYa9+y7JG2mu/qffofnhh7iXDd5MNHk/nuef3X/Ac3WL1+fS2JZwRggSV4n8IaYp/Fj7gwKPHzlMz4w5OMjguiNmltsThs2Vy3TaLnPLFba3dykUSuzuOjipP8uwOT3LaH6I3lG5++mnE4Y16nVqrU9YcZeINp6QTKXYMi6gThj2Q+ZHfQaNIuaVXQ4PO4Jhxi7WrngwrqycYXvrFYZZA5JTSUYDwZ+d3R0uXblMptZgf6bIYjjL4cEPcd0yi4siBSUYdmPCsOXliHJ5CkkRjQHqms7CYkUwbP0z5ubnaU83KdXy+C8Z9qMf8o1v/Sr9Xp/hS4YxhTYlapKKpQLHRzWePpXx/UPm5wbs7CgkkjbukqhVVZVLjDpNbnV3+UplEVnVkaRn7O+LY+SmChwfV6nVTyiVImQ5xeN6jSunVgniGs/xgzGd/j2mZ2YIA4eNh58Rrp2jOhImyoxWeWu5z067y6zU4SAIGZgDFgdDRq8yrNd9hWHLtAopDtdFRDSVus7wNGw/3yKdjgiCFdLpKhcvC7NwCXjv5H2uJ1McWz/FsEbMsGKSbrjBZ06CM6dh7Fz+AsMuX7ZpNBzypR62PTdh2Jqk05gRG5drV68Lhm21SaRucFm+g/LiBa/dEHpft2/nmO71mV5T0LYSbAQhN06FyI9kDg+FW4PveywulNHDL+9u8WW6Dt/npdrgnx3f+hm/HwH/zZf+BPHQNYN0OjsRMhyOBuiaQTYdMXaHJFNJiqUZdFNHjncVluVTPToimUpSr9WQJAlZVnhZeyHLCulMljAMMAwfXdcZjUYkkym6fXHiLdNCkWVGoxGFYoHxaIjrOBixeF0mnSKVsJibmWZvd5/l5RV0VaPRaMfRHEhlUyiKhqpo+H5A1jTptNtsboqUnG3bZNIpzp45g66p9Hs9EqkMU/lpirNx/W0Ilq2ztbuNadvMLVRQNZ2jIxGq7nX7WIkkQRjgug6t4zqGqVM9FhkNSZJYqCyTyU6RTCUZ9rq0Gk0Sr6y69w52KE/nOX1qGcu2yfo5er0eU7F5cCqZpNXuUO90GQ6GBH6AbZukM5lJ8bIUgW7qRAhfw2QiSSadQY2tb65euYoXhCzMTxGEM3Q6PQzDFp9p4m8nU68ds1RZJZFIUTs5pNls48UAMi0b27SZW1hGMwxc18GyTGamFycLvjAMkBWFXi/CcccoioJl2SRiuyE7NHA9Lxb6NHFcj3Taot/rTnalYSiaGAqFAlEoo6gqURRO0imjUZ9er4+qyJxbO8/6xmOSCYt0Mj1p7U1nM9RqNeq1GoEfYFgWUSRNdlml0gySrJCwEvQME5DwXI9MeopeX2wqNE1jJiu8POu+R3Yqi2nbTMUp8uGwi2UlUBSFdvuYYqlM7aQ2mX+hFCHJEe1Wm2w2Q6/XERISioLrigWfIsuEQchoOGQ47GMaBoqiTWQ5FFVFVWQsy6bb6SJFYkEYhuFEtFLRNCzLotWsk0imkZAZ9HsTgWBVVRgOe6RSGSEW63uMR2OiMMKOoZ5KTzEzV4boyxuy/v8dfx0MMyO4qBk8SmcpdUS0YbgwQNfeZDYdsegOGaWuUyzNsW3qXFWFNNeTvcc4wyHWlSvUP/gASZJYkxUkSbBDlm9yI5Nl49oqxuPHbMcMWzw8YjG+tpZpoTx/zkI4onDDJvAtHn72OcNuplO8+GmGvdCYy7dJxnNop5BD2dNQnS18f5Xsbo5bvdtsPo4ZdtUm46eQzvwWC5rKcDjiR0+foesmxVnhd3cmhC17k2Zb59SZPp1OhfPaRf7kSBxDV474/9h7rybj+23rAAAgAElEQVTJsTRN74EGHIDLiPDQWmSkzizdcqZ7x2Z2xpY02i6XNCN/IC94Qe7SZsx2trenq6tLV2oZkRGZoZWHawccmhcH6VXVPbvTvFhaz1idqzCLsIA7cPDgwyfe9+DomMnJORbDgFaxyt5+kbNB/nK9vc3c4hLvrXzAsX/MyXPBsDu373CQT2keHBksL31EZhhYt29T/rpHr/cNlQ+E+sY7s3fZP/w1jU++5sOZf89YdYzpmUlOz87ozwqGFbJ1dFNnbR2OT8E5ciiVSqiK2Mf//n/+9zx9/oJf/mKeJF3kq6++odcr8Itf3v0ewz69+Ji/WPzX32HYBE+ffSz2g1WAbIuZuSWmZ/cIwwDF2qTb2ca6KXwIFyMJw9Bzhj1iU1nl6vXbfPaZmCgUdm8pkrSFYZg8fiIYNj01yVtxlO8ybDyV2dndJcuKbCqCHfHcNL1v+siKhCKrJGnMLcui6BZ5njNML58xW5nh5PiUUtFmz7KY/Q7DfvKTGSRZ4c6tIqdnv2GdDZ6FEWfFA6a+y7BZjzSdphEvCYa5ovUEwPMeQfYRm5ubfPbZx4xPXOeiPM9WXp6Stl+yUV2j3UqR5eB7DHuec3BNlkmTVXxP4fKyz2TdYDA9jbklSof2kUPd7nDfKjDZSZDWUkAwbC/38711+7Zg2OERthMicYX7/fvczbPDV9VNHniveUcp8TR6QhRngmHh7zFsbRFF/T//aTCMdssP64f1w/ph/bB+WD+sH9YP67/L+pOw4EnTFM8b4A0GSHktNUOi7/WxC7borxmGdHtt9EAfjd8rMlycX1KuVCiXK/R7fWRZoVoT0za+55GkKYqsopk63U6XdqeFaRkjfz85lbjoNdjcvEG312Hv6DWmadDKS4fzC3OMVWvEccjC0hK+P6TVvKTTbjO3IFLmSDKqonB8dMD5xRkXl2dUK9XRVNjq6jrn52fIMvQHPZqtNsWiS7VSGxlPG6bB8eEbJusTNC8uqVTGxCht3v9Sq41jWDZWXpobDge0WxfU8u+apjFJHOKWqnTaoldN1zVqY2P0eqJvSZYlpqanKRQcwsDHtgv0Bz3Oc8+9OI5pd3uoikzBMijYBSRFZI+iULzJOW4JCYlarSYmzhw3zwCKN+MoGpKlQncnzYSZ8draGkmSIDtvzasLUJ/KPQUlgjCgcXlB0RXnK0sSjo/2cd0iKyvr7LzeRtcNpFQaZWjCKETVdHRDZ2J8GchoNi9G2iZpkuEPQzRdIw5DJEmi3W4QBMPR/mh3m8JCyDQJk5jhcEiSRKOp1iAYUsr9KKMwwTQLZJmE5w8Y5A3gpXKF9bV1Op0uE/VJDMPELliExVL+PyLS2CPwhxRsG0M3CMNQSDao4pwpikwQhHR7XVzXJUliWpeXWPkQg+s6nJ9dUq7IeP0Obc1ganqKNN8cmqaTZXB2csLx0QHFUoVhGGFZJpcN0T+jqgqFQgHLEMfvdtrUxsZH59O2hTCpbhrUpyZHgyXNZgM/t3myHRvPGxDHKd7Ao1wuM8hFVMXeKNK8bFF0K6iqTMFyQJaoVCskuUhskqbYdnE02fkvZaVZijc7Q/3+fTxZfLdsS6If3YOCTdybZn4ipJwzrJUzrNft8OThU/7m3/w1j95/y7BNqjVxTn3vOc9zhl27eZt7975hojNOZO3xOGfYrVTiYqrBpneDrnHI3x+9xhx+yzBlZ4exao3leBF5SRsx7KudL/nlX/wrcZxwKBhmW5xXTqlkZ8zNzXF0JN7i/3pznU/Oz5BfbdGfn/tHGXZsGlwenrGxcYXmhUFCxI6zy5povWRvb5xKJRQMKxd5dHhAt1OhJovvulr+gMP4EOe0SL2esPUiRddb1MbGRv2Ij4KH9C6nqVQCwsDnzp0Cvz1fp5wz7Jtnz9DMKdTNcQrWHgV7k20F7O8w7O47GvK2xNFljSsbEcWTE6JgH/m6sK15+nRIlsZkLzPSdGvEMF3TeXW8I6736gp/Vf83OcO2CcJdGpc6WSoYtraScHxk4p54OcMkKuU9JO0Gi/k998T3ePT4MWEYMvfuMjOs/B7D1vCHT0YM25Ak1HaVVquJfCkYNtFusm8ecPudu4RJzPz8PM+fPyXeENORgmFnOFmRKEwoOAWytQ08f0Dzm7cMG+DYLoXbt5kY9JibX6RcueCLLwTDHj9+ShpHbKoaBdPGuO5QeBIiy1d5PdPP99grDq8t0u01UesnuNIxX1xG3LopGKZpDp/89h7lD4o5wy6Zujo1kvbQHJdabUJUqGyL07ML5sMI69ZNfvsboX/WubpJ4bCAdcMgvBAMC8fGCQcig/zcfsat0OK6aRBOdVEGKts5w94avcuyxIMH94njFG3gUS4PSQYpnY6Q1DjWizQv20h8gKpuUbhlsPVK4v2xC5IlkZ1LXqQcHZ3+f/Jr/ZMItGRZouDYmJYBqXjKeb6PpmsC+LJEpVKhVCpzenaCnCsNl4olDEsnSRIKBYf9gz10w8TOvaKsQgEpgH5/wND3UBQxzTMYDPA90VOURCm2Y9NsNWhdXHJ4cIhhGKPptjhJxASZCu1mg+npeQzDELIDiXjQJVnCsydPaDQadLo93n3nXeqTk6OH2OnJKcNgiGPbyLLK2voGvu9hWzav8rTn0tISEiI4BIlWq4XtFqmOTeZnKaNWHUeWIAhjFFVmvD5FqZyX9Eg4Pj4hS2HQ6zI5OYksa6SJhGmKWvLmxjUM08K2Hc7PTxgOfVRFYW5tBYCh53F+3sCxoFgqU6tVabUbhGGELImb0rYdTk5PWFxaoXHZQFMULhvnLCyKnpLD/Td0Oh0Wl1eRJOi0mzi2SxjG6Hkpw/c9sixD10zSJKboljg7PcDriaBAt4o4dpHh0OPk7BgyiecPH3Ll2g2UXGbCyH0ATdMgIyOMAnqdFmmeo+11B0xOTGLbNm/2d0iTFNdxUFSNJJ8qVBQFWZY4O7/EsR0kSUgUDDwBj6kpoSgcxyFJEo/0XHRdoxu/bSL3cN0iVqFAwS6gqrLw/MvFS2VF6Fy1WpfYdhG5JGHoBq12kzgW16Xf95FkBddxaTYbGIYInNRcMyyKY1bXVknTFNt22N3dRpIlrLeiqKqGrhtUa2O56nqHiXIJWVGo1cbzv1GRFZkkjqlUqoS2g6ZrGLnwahiFNBoNSqUiqq6TpRlB4FMqlTnaF/IgUiZxdHKMqipMTk3R7fYoVyr080AeSUJWVTx/QL8/IE1TSm4JRVFHfSlBEOENhzhO4b+FhH92S5YswbCxD9nKGTbr+2j6Jop6zLa8zfpFxlkUUSy5I4Zdv36L09NznicJhcJdPj7YQzf2+aktynFW4RDzMfT7j2nOzbKyukyn8xWDrZS5nGH9KMV27tC0X9A6ueTwVznD8um2eGWF7PUbttSXeM0hf/Zn8xhne99jWLQUEb8MSQ4O2O32+DBnmHNXMOzj33zMMBhy98c/AgkyNhif8Llj3eG332PYOg8fPGBhPmZ8/MfMzgf4+YBKo9nhow9/Jhi2nLLZkJHrU5TKYppLWk+wj8/JjuH+iGE+b97sMzMj+js3NzSM/QXu3HH45PyE7JGPGiis/EIwbGamx1df3cex1jk9K1OrBdwo27z4DsOyNOE3R78RDPu0jFb3BMNuiECr5L7hq69esvRXf40kbTHeHmNufp77Ax89E5N6/sM+D9YyrmsmL5Ih/kmJUvGAoiMY9g8nRRy7zdWhwsmZDtkszx/6XLn2HEUT/UA3bppsATezGxiYPI4Cel99QSqLIKnXvWRywsa2bfT9HTorq7jHATu7Go7zfYb99pPPuHvn7ohhX331FQA///kvCO0SybMn3zJsawvdvDbyDJ6ZmaXb7WIdHjK+Aaraw/cXeOcd8XtZge7XgmFHdpF3n4UY1w3G202e5U33/U4bqflpzrAOwZ7O6trvMexvVllNUx6vO+zufs3GZyWsgiihHzsn6G/2qPb7mDdv8ma/wFG5zRVtl48+Enpwqqryqi2zksU8r1QJ7WOu6TO8ct8yrECjMaRUOs0ZtkawEFBaWab3XYYdHnP16ibd3hTd7i7vf/AB/d7XAKxvbND+8ms8/z7l8gymP+DMPmNHsVjYFnvscfCYleH8qEXpj1l/EoHW0B8SBRHlUpk3e68BoTItSTKDfj8PkDIum5dMjE+i5pIG3W4H2y6IB7ch6sSWaY5+f3pySKvVptdrU6mNMVaboHF+jm5aLC6LG6bVbmHoGucnpxRLJYaBT32yjlUQgZZVMLloXOIHQ0xdY3nVIEkTXLc4asLTDY3Lyybtbo96fZyZmRmiKKRSFr1PBwdCIbo6JlTSu70OO9u7XNm8MgoKj4+PqFTKgMTs/DRT07PEUUgUCpj2um3CwhCzUMApumSSaDQeaY9lYLsGh2/2qU9PEAUxg77Pi2fPqeaquG6pyMuXrzBMHUlKKBeLVKoVlDyL2O0IIK6tr2HbNp1uUwSEhSJrGwJCvV6bMBpyfnEqVOLDENt1eNsCU6nW0A2TMBziOEWyTCJJEpI4Yv9I9Fn0uxcUKzU03UbTNXzfY2Zuhca5+L2mqMICxu/TuzhjemGZflkE2X5+PqanZtA0HUWWOT07QlFkLs4ajE+IwKJSrlIpVxh4fcaqE/T7HeI4ZDgY0M4HCCrVMeIkQdNUwjgkDAOKRaGtBUKWIwxDgsCn1WwJ2xzTwDJtZufFzd1stkiSBFWV6fX7WIZJmiScn4neuZm5BVRVoTY2jt/vQprQ6TWFllVRBJ79voYiy4RRgFWwCIZDypUqzUshKDg7twhkqIqKZrssL6/SuGhweSF+n8QBpfIY9alJev0+Bdvm9OSYiYkpPP9t479MsVxGlnXaF+dM1Oucn55zeZHLVMQRS2trDAYDbEn0c0RBRKVSYX5xEYAgCLl16w5bL5/TbrapVGu0Wi2k/NrrusH0dB1N1YliIfDavrzALRUp5CP+aRpjF1z6//9a8Px3X8OhTxREnNtlLnOGLTg2kvSKQT9FUWS204yoWSNNq1zd/D2GPXxAduM22uvXWLfvsJszrHZS4LUS0nv1glarwY8++gmN84A3kkU5Z1ip3WJvf5+y2+X0rMRwwace1Lm1JBq3rcI+lZxhLV3DLBgkqwmuWuShL5ryBcNatLs9fpIz7GkUUjnPGdbvcveduyOG7R99xc72Ltf+R5070+I4z+IjKn4ZuMUKfaaumcTRFZ4+EU35vjdBOHzLsHfIPviKLD1DNfI+1Zdb2G2DQ2OfsfYE0WbMTN/nPzxLMPO9frV0g799+be82dPZkBLOi0Uq1Q/YeSX2oHv0lmEZYSAY5rgmqiLzN//m3wLQ+0YwrHxRZP4v5oie1LHdWb7LsPGJn/LkyZC7znWy8hlJkrDyLOJ3Z78CcoY1anyu21y7rvHQ81C1FaplwbBrisrJa4PHQZ+pSolNtcRJuYx6tsvugRhAmP75n7OWM+zj3/4aZfMKF6UKPxbJKnZfN6iU68x4fYIPfzJi2ORgwIucYYPqGFeTFVLtJU+ePWFxMeDGrfd4+OAe8C3DfN9nfGycNE4wr6pYjs3sS/FZd3aO+fDDD2Fri57fx9ozeRE+p1oV9+zM3ALqVY9a9pLCvS6kz6n35tENk0pR7PW+W0Rxc4YdWjyNhpTdKs9zhv1ibpHLnGGO7bK8/NdsXXzKbEX8vnPRQCuPUf/5JL2+yu07Nve+iVldmcLzxTVVFRlZOef1G+hdnDPx059y7/Scy51PAEjiJTa/xzCIHkd88LMKXs6wx4+f5AxL2Nxsc1HNaLW++B7D+tN1Fo50orpO4+IMQ5VxbYNHdcHS9NkCR4UD9LfuDX/E+pMItDRNo1wqEycxE3Wxyzx/iGVZJEmMomr0ul10XXi1tZoi1SxJMDO7gKqo+J7H1NQsSRKPpBsURWNufoE0myeOYuI4Aklkxwa5jY8kSWRpRhonXFw0MAs25Up5JNApKzqeH1Itl7l67YoQwjQswihCzseW93bfsLq8QhBGGKYh1LR7PZK8qbrv+xyfXTI9M4+qKkRBwORUHUM3KOTN6oahoygyrXaLMAxIkxhJyujm1jeNiwss3RLlJ00nMQsMw1B4/QGnR4cMBh0mJscJhiGWVaB12WJxcYFKriFSLLlUxkvsbO+zsrKAYegE/nDkfr6wPIdVMHDdCrZro4cq5XKVJE7RcvDbtsudu+8TBEMCb8gwGGIUTC4vxZtcpVxC1XQkSUKRZVZW1ugP+qRZgpEHr+OT13MtqlMsq0q5XBF6YVk2uibD4YBOt02v1cItlZmYrCMhMQzyTGQa43X7xFFMrTZOkqSo0xoz00L80M/3z8Dz0HWDpYVVBr4nAru8bHVyeozjiEb+XrdFpVKl3+uOmuFlZYAiS2J4otOhPjlJHMckSTLSDavWxpBlmVazAWQgFZAUmWpNnPN2s0m33WZyZo6L3iWGadAfBATDS5aWRBawVCoTx2K8O0s8JEmm3+/g5fZLIDEYDIiiiHKpgq5bzM0tjd4WHz78BtNw8AY+qiqj6zqVSo00yyjm4r2HBzvIisz4eB3TtMR3lDJmcsHbxkWDZuOS2lgtl4iYIAwDOt3uaI9GcUy/32d5dZWD/X0kKcMwDQxdXNfhcIhtF/A8H8u0WN/Y5M3uFu1WI8/UQr/fZm5hdSQs+y9laZrO+dk5cXLMRF0EHviPOLAcjBHDJtF1CU3dpd0SnJMk+PNf/AW7O7vMGSYvfz7LSuKymzNsR9H45fwCL+aGLEcxcfw0Z9gHDAYPAdje2EDbUUifHXERNLhZsJFulznS8oznznUe+B9TLZd559oVtrclCpbFytISz2VhO2Ps6qwur/A4fMrQXCCKnjDVm+J5rvfV3/L5f/727/mzn/+Uwu0bREHAz37+U4w3XQ5VITQ8c+M6SvB9hm1vf5dh8M3XB9Snprh95y6JeZvhkye80kU57vTslJmZOu1CkcUwxDILnF4OWVxcJWiJ+8lITvjfPrrDjmSykgQYhs5jv4iiiv+x8Fe/xDq9wcnJBWMTd7i+GKAoCt2O9y3D7rjcKf/vTC8Ihj0aPOJG4SaXn33LsPfKOttvGZasce9ZnzhLuHFbZAmLxTNevBAM21WqvP9+hePjIs3xbxk2r8/Qbn9Bp6XhLpaZWKojbU3yKBDXrfPiGUEwTxw9o/bRj0mep6hDjeBdcU9+OD5JqXRG43KWNy9fUHLfZabuoemvmfHEHvvN6TGRU0JVYKrbomBVuffN1yOGed59FHmDu3ffEdPfk13iWCV5/pz5cBGA9Y82efXqFa1Om/X6HzLsy8+bdNtfMjkzx3Hvko9Mg3v3HhAMff7yLwXDtt77DsOkP2TYFhKLgwHNKCJJ3jLsL7l6TVy3+GGNwBvife6jXp1E13U++OD7DPsvv/o7fvTjn9JqCYmb6OlTaDaZ+aUQLG387lM+b1Spjd1gpn2PsZpEGD6m8/V7FG4LhsmKzPT0NPGKwav//J95v/Y+sqlg6CLj9Wj4iDtrBbzIx1IOWN/Y5D/tbtFrNTDeMmy/zS8X0tEz4I9ZfxKBlqIo9AddwiAefXinVBTTZJKC3++jqxpuuUQwHNLPJx1qtTFkSWbgeQTBkHp9Sgh3Xop6veO6Qq9Ikhj0e8RxRppmDPp9tFxrq1ytcHx4yN7+HkPfY2xiCkWROdwX0X63P6BWdXEdh2AYocgyjX6D2lh1JEXR7/fQDQPXscmkjCzLaFw0RqKVBcthYX6R2liV46NDBv0BY+PjOK6DnKcfsyzD93xq1QmmZoW+UeuiiW0LHRvHKbKwuES70yJqt0nTlIItsh8Afn9ImohjFQoSRsFCUhSyFAzLyI+REgYRGxurdNodSkUbXVNGopWaqiNNSrilKv6gRxCENC87rG+sfzvtl6Wcnh4xPT3Hee8ITTOQsm9TqGEkAt1SqcKg3+fi4gxFVdB1k3ouEpumKbIk43sDiq7IOrVal8JoGlFalGSFYrmMpn6rWC5JEkoeWJJl+AMPTdWwC44IAnrCQgcgDENOT08pFouEYcjAG2AYhjh/ebp7YWGJ07MzBgMPwzRJM/F/jXwSK0szhmFIpeKwuLSMpul0OwIeZn4+4jBEkmVs2+X8/AS3WIFY2DIBIMmEQUAUhyyt3iIMQ/qDc5I44uRESB74gwFzC0u4bplyqUIUi3PoutX8nA45PzvF83r4XpfaxAy9zuVIA6k+OUW73WC8Pk2/18dxHRGs+kN0XbwMTE7N0+m0KZdDdF04KoyNjY+mDnXD4vXONr1+m9W1KxiWQbFcxjCNXIoCFEUllTJ0TWN1bY03r3cwLYs4FOdT1RSyzMbzfGq1CkEwZG5+CUVdQ8+Dsdevt0mzjCT549Pu/xxWFEX0B10Wg2XCUJwvs2T9Iww7Ixgu0b8nTOtrtTHkOzIzsx5+MKTUqeAulfByht3NGXZHusOg/w3PnmW4zhqD/j00Qzz0y22HY/+/0Db3MLJZxmo/ZkKp8uu3DHtwP2fYXYJhRzBsukGmpnhfi5eOl/vPqNbGcG/bZNs7vGxV0LUGYzkb3Ft3abWagmFftBj0B5RKRZyVVey3DHuZ4fs+H1XbTM2uwZuUfrfDnTvvACL4WAiX+LLzBZ0vv+RFmnLLtkhyhs1NzxPHAQXLoVyQMA4P2B7OMp0OMWoi85FlMuHCEhvWEZ22x1nfxtWOSFORcS86gmGppDA34zMchnz+2Vf/KMOuyHOcn/8aWTOQsm1YF8FJaN8hDRKcswrP+30WLs4If59hL7rcuX2FTz/9mHffMmz8El0W9+Sc77H9aoeV1ffRVJ+joxNuFW4j2dvY+XTjerbGF4PP0VSNOwWH6FbM7867ZC/FOX/SDVlZKVI8PUC7eo3BywGGsUe7PkEUiWBtwSjz9Owpi4OIPdPk7CWQZdzIGfbyRUa8/JgPKh99h2Ff8aDfxzRFkLMebrAUhizaLuf3Xdwpj/V4nSARZeN16RWNIGAqDrmxeotwcRHp00++x7DdnGHvuO+j/EwaMeyBK16Mw+i1YNiDHtVql9pEzIPOFF9/LZImnu/h9LuM16e59+gxjuuwsbHBo4ePuJ73zk3+/F9x/6svmZmZRtev4Q+eMDb2Y8yWYMv1X/yS1zvbvKSNqlWYsQzeLZcxzH0G90WQdEVRiSWJ69prbqz9DW/u7bBvHSBLIhRSr22SZRU87xtqlxWC4ClzGWze/oA3b0Qwpk2fk2bKSK/zj1l/EoFWmmUkUUoUDXk7CGnqGp4vHgqXlxdkGUiKyD69VUMPo5C420EzDILhQKRWk4QwHwdV1QRZTjg53CcIQkrVClEYE4YRxbJ4iKVpwsnhAXEcc/P2LbIMdMvg6FCUfmRV5e7dO5ydn2PZFlKWkWQJzVZz9KCbnRN9W71ej/6gJ8ZBM2FhA7A8PYVVMOl0migymAWhWYQEhdxfK0tTrIKLVRANxwXTotvtjsp6y6sbJGlMp9OiXKoiyzLNi8ao3OeWXBx3mjCIKVer+IHH+Ng4kiTRzx3nsyzGyRvsbbuAWywhSRLNPBsVRiG6bnBxfkrBNKlWajhOiTTN6OZ9OJqu56WxE4JgSK/bpl6fHencZFmGrht43gDbtonjkCxNhHBnrsljaDqKrGDbRcJINKEPA58ob6qtVMbxvAESCuP1sggGMnLfy7cPfYVqVVjViD0hPBPPcu0pXdcxTZNG45xKpUaSZlw2G2RI34rVdttUK1UMw2DgDUiSmP6gh+OKa6LKGoWCTafTFFIhbolCocDp6RFB+FZDJaPVbDJRr5NEIUkSEYXBKBALwoDVzesMBj1838c0TVy3yER9kihXEJeQaF42KFdAVUXWtj/ojTKAWZoxN7dAHMf0Bh0hQRKFJG+b4XWDUrGKjESaxHj9PlEc4bgOWS5I2u93KZdLnJ6cUqqURdCUpKNMpGGYvPP+Bxwd7BGHMb7vM/AHaLo+8oBLkgRVSfE8D7dYZHFpjccPHxDl5Umv12Tj1i00Q3gp2rYtBlfkFDmPj6en5xj6ojT6L2npmc5KtMow8mBdMGy/pSG9ZVjtgixrIl12ydLHKIoolz2JniB/raIZBpMT9+n3x7n/4B5hntmPc4b95nCfhcBmddXjcP8ZYejy7vsiK7j1KsEtWAy6MeZti97LNgvLc9g5w076fe7+r/8LZ598gnVnQjDMT2i2xtCvi4zD7No8hnFDMKz5DfNz8/i+z+GRCAh/9mc/5+Bwn3p9jDPXw3wiGLYlgXOcM8xOsQonlAs1wbCbt+ju/C1xJBqRl1c3SIip/5cWfIdhbl30oZqWxvFJH3l7h2q1ir8h8ePXbxmWC4Fmz+g6DlkqYdu3keR+zjChpv7k6TpZtke3N8XMZEK1csm/+ot5dH2Nr/M+HO2NTprscX62SxAMGeu2yeqzWAfinn0pvWQd8NZ07AObnZxht0yTpy/yDKCms/nmjWDY02WGU18yeOyzdFUw7KwyjioPUGWDVud8JPeQpjCdM8xX/Jxh098y7LRMaUEwrNUSDPu0cU4lWSGRMy7HqmTJiz9gWGAYuN6AlZVlmpefkuYMu6Jp7O7adOTPeZUzbKNwm/rkNvv7Yn90vvqKVrNJu16nHhk8T5bwQ4/rbxl2/TqrH9QY3O/hz/mY2mtc911+Ui8QlYXW1m0ktj9r8PCD+1xVr/8jDNvAnzNYmcoZtveWYSLI1nSD0rsfIlsW6ZdfMNvv0241uXrtCi+3RMN8f2KC999/j2++/oZSZT5n2AsuL/N2kumbvPN+hckDg703Vs6wGbTrFZy8QpU8f45q7uF5i7iyTLiUUfGrI4Y9+OYLklu3uLZ3hc7GFvaRzUoQkrx4wRVb3G/+9BzDuXk07f/4I+nwJxJokWUkSUQYxhhvMwVRTK/bQy7KqHkDsyzJ+MGAcllMQ/jDIaqqY5kWfVmm025iFpxRWcJ1HeLcZsIsWKiaSpzE+QM7b9C8OKPb6bK8ug5Vf+UAACAASURBVEocJ3TbXVRdQc7LMrXaOKqiUq1UGfT79Hs9ZmfnODjYHzU8F0slIaiapGiqRrVWRVXUUeN2seTS73bZffWagm2RJCmrK+uYBWs0vdZpXjC/vE67fYFtF0l1DcO0OD4SbwzVsQkc10HXDQzTJIpCVFUe9SSVy1WazQuCcMD5mcfk5CxplkEmatsAna4YCECRKZWK+dSENMrwOG4RiYx26xJVE0HfhFOk2+tymdvj1KpjzM7NE8cxg75Bt9sWTfWqnl/MlCwTzgwDr0ezeU6xWOb84pSxMfFw8X2fLI0hS9E1TQRvaYKWZ7R00yDNUtI0RVIUvIEo4ZmmgT8UDwbDsNF0naJSJo5jIbY5Nj4qUZ2fn5GRYlmWCAjzLNT4xBivd8WbXEZCEERoms6g30WSJarVcbI8gNF1jcGgTxjGBMMuh3uvqY7VWF7d4PhYQGp8fIJypUqjcYpVKJBECe3Wxeh8VKoTyJJEv9vBMk00TWEYDLAdBzvvW/L8AZqqEgQBkiQTRyEDzxtZlsZxTGqlGIaBVXDzbgJ5tM9lScJwdFqtNqZhYRUsJFmi1+tQqYhhidPjY1Tl28lDMrhonFLJvRB1QycMQ6yCg+s4eJ7IwAyHQwxD3G/dTg9ZlugPeqRZhozEtes3aHdEaWh/Z4tO65JiRaFg2WSZ0OciY5R5VVUFVVdptxv/FBX+Wa3MgGQlInwQY+zkDHO/w7ALjWRlC1n6MX5wn/OcYclwb8Qw+ZVMfaPJfuEuVq5x9JZhS1GEXrBQtavEic7qapl7eeBQlc846ejEq6vwLGFyYpLL8wtevRb7vDY2wVVll6hSZaY/zb1ej9nZaznDRLD/buk9fnf+ye8xbJc4FfdssXRCIM3xd//Pa27fsXjeHVCfmCI4PGDQFzuyPnbBMNb4MmeY8+IZN27e4h9+LYQeG802d99x0K8bGBcmV5YW8Qc9xnOh4vPzBlkKCznDutIsqSwY5imvxDEmZ1GyFJSrnJUOgQy2vsuwQyRsJsZDVO0Eq/AT2sennJ7u42diSvyjxTE2NtaI45j79+4xOTnB0Cqw64hrIm2/5MUayGQMZns0tXOKp2U+uTjlR2NCjDbyn9AbMew12hsdXUt4nb98V/cNUivl4OAAOWfYMGfYw5xhN4xnXNN/wgsl5dmzmI0rMh+NjfPwQmjqzgxK+MO3DHtErz/N3JzF+MT0iGFLSyu8SLe5pukc3uvyTesS1x3n4kIw7MYNjbm5PkGwzMTQp7/X5mRsn3hVYr0gAuDxVmvEsJ2ChxNNM9G6oPnptwx7ZUq4kx2soWDY/MKAV7VjrirCqNvzT7h9W+VlIPNcilmLQu4/eDDSnoqXl0mteV4Ze4QFl43NdbjvjRh2RZIwyiVaX3zJzRsWVuEWkrxNr6dRuCV0x07/7u946LoUCrexDIP17BqX1XPiqkisvNl7w1VbxSpc8t77d/Ee9HmjvkZ+dMB77wlh1G7fQw426N/v8sJ5yRU2sG7bI4a92tmi88UlTyo73N62yaw/ZNiuqjCvqwwGb1s7/un1g47WD+uH9cP6Yf2wflg/rB/Wf6f1J5HRSpJEaEYhjco2URTmit4BruuQAZXqOK5Twh8O8r9JSJOEcDjEcUuoqoqu67TaIjod9EWztO8NsFybMAxxS47ox0m/Hc8fn5rCKTpYpkUYhLTal6O6cK/bo9fvo2s642MThGGI53k0m5d4vkhZDocBkiQaWy+bl0zPzKIbOlmekzg5OsA0LEzTIIlT5hbn0UyD87OTt1ZzjE/OkiGhqRpev8vR3i5GwWbzmrB0qFXHaLaatNtNYWKcgqaamLZIzaZpjOOWcYtlNFUmSSEa+njegMuWyB4oskyxWETTLXRdp926ENIY+VtFmiTEccTC4jqOU8SyCsRxiOM4xPkosK6pKIrCMAhwHAdVFRY+7aY4xvj4BM1WgzgOhOaUJ3wTXbdM4+Kt/5/F3t5LSqUK4+OzpGkkMih5H0+v00GSoNfrgSLR7w3wfY/x2hhq/vZbKpVpt1tMTNTp9bokSUwUhqPrWigUmJqaYmfnFUEQYlk2pydnFCwL1xUlXX8YUCzanJ6e4roupmUSBuFobDeKIgoFG8dRCIKAcrnEoN/PJStE1mLv9S71yWnGxibzTFhGuVrD0MU57Xa7DAYeiqIShEPwZMqlGnEUM8hLurKsUrAdkiRlMOgKw3HTZDgU2bmx8QnCMCJJEkzdQFEUfM/nJJ/iLJUqZLaDpuvYhQJv3uwyNjGJ65ZJ816o9bUr9Ac9wjDg9OyYgmVTrU2IDCdi+s1xHNyiy/npMYZpUrAdZFke9RpKksicum6RdqfJeeOC+flFJsZF1qNSrRKFAdsvn1GujJFkGZZRICPFH4rey4Ilsn5vJyr/pSxvkGAfO2QFCccV/m2HUTxi2DuuQ3YOYz8aJw7/bMSwB/evkSbbgmHvvIeq7uLqDq0vBcPuK32Wl2L8B/exfvoTwichbusYoz7JaioEqn410NiY2iEtFrFqFvuWSav92YhhU90evf40svSGVnMC3fkuw0QW55NHnyBJsLG6zsfNj1GUXXTjOldkId1wcnTAklHl2DR4/uzFiGHlkkvZFW/2leos+4c2mjrAm46wLxt43oDN/0kw7KPqj/j8i885OWkyM32b9NlzspVVzCPR+3L1yiZxsoQkbfF6V0ZOIRrO4Xn3qY0LvsRhhWLxlNf6Le7oXdqtCs/95yOGrSYJ8fISjnPG8fESadpCurKBkyTEbVHF+D7D7tJoBEDGVF0coyUrjHWrPHv2MWtrG+iex9hKzrDeW4bN8/d//x8plSqE47OkqxGz7T66Lxh22ukgbazT++Yb1jc36PcGvHroMV475+p3GTbRwmzX6fW+5v6DmOtXbzCbimb4dDphamoKz/PyabkZPv7Nb/mr5UVOhkIWwR8GFO0inWIRq5D8Vxh2h+OcYWm5RKXfp/Nlk8kN0ey+1+9R94c0xyYpZymgUq7W2MsZpnW71GZqJLErWia8AuWSQymq8VXusBLLKu/YDmbygsGgx9dRxM2bN3ny5AkAY5VzwnCJJFnB1DUOFYUrGz5ffSUY5pUq2I8eE+s6d0oF/tN/+hU/+snPcF2DUs6wq3/zP9C//w1PQjg9+wcmb92hqk8wrojSszfpEYYOJ8U9Hn58gmHu/yHDNgTDTiZPSToxp41/YPh8kVu3hBXere8w7KuLJk6WcevGbbKtFzzMGXb71m28gU8cK38cHPgTCbQUWeay0cBxisR5M3wQBpRKJXzfI4piTMvE9/r0+wOyvD49VquRpClJmqEh0e11RCD0nZSeaxeZXVhEkhX23+wxPTPNcOiPeo4mJiZQdY1Ot483uKA/6FN0Szh5f5WmaRSLZY6Pj8Sx4oQXz58xMzv3dkiO87Mzbt68QbfXozY2JnwIg2Bk0yJJMrbj0LxsEcUxWRrTa7cplcqjcpltuyRJysXZMZZlMVafwrZt1NwAOY6FEevMzDwFq4DneQw8j/6gmx8DpqbnSZMURVFptYUlkeO6lKtiaiPwh6iaKMtdXjaQJYX6xMQo7a7pOnEidI6iMKTX7VEquaiKQhKJ6+L5HnEvEoHDMKDb6VB0XXrdfBKUjOrYOJeNU8JwyPr6NbI0o9Vu0M0D4J4skyYxvV6bsbFpAj9iamqB7a2ngNArq0/N0G5dkGUpC8tXODk54fzsnKvXrwIgyzq97iFB4BMOfRRVoVAojeQyZEmh2+1h2w5pNkBWYLxexRv6dHNpAcsyiZOI8fFxkiRDVTU6nQ5p3siuqgqWZaEoCqZp0O0FzC0s8eb17iglXrBsXMdFliUyoN1pIkkyWT4gMPR9YVGjapTLY0RxjOsIwc63gdRwOGQ49CgUbFRN+HKq6rejw4osA9lIA+787JzllSWG+cN6GHgUCgV0w0Q3TepT06Kfq9/FNAv5dRG2SW6xSBgFtDutfF+KFxtv4BEMhxTsAgXbJU3TkXBiORfe1Q2dbq+FZRawTIvx+iTN5iWlsghuwzCkUqmyun6V09NTFFnm/PwMTVGZzK2m+oM+hmExO7/0X+XBP8elyCGX1QbOfJF4ZxGAhfAxpznDnkYxN62bf8CwH31UI0krJKkQ7+325pgO+xwN7uX/eZ1Xr06JFhaZK7jsn/49/ZlpTndf0Z3KGdZWmLo+yWG3z2ztAqW5TXJSwikKhjU0jWKnizf0WUm/xjTH+c3//X/x57+YI8sEKz95eMa/+3f/lm7vm+8zbFa8TErJFY4cB0X5gijOfo9hbwA4shMUJ6Wym2L5FnZ9iqOjIzRfBPNxMSJZWWZG3qBgHTLrXeH+4z79WOyv3178hp9Pz5Mmou2i1a4gbUTcNV12NfE3s34fVathZiZffNbkykaTn/5kiigS02+v37whbraxnDWiRYveo8eU5mdRlR1WIiFl4vlF4t4SOzu7xEnCZL3O6cm3DKtWSpyfC5HLIHjE+voqWTrOF+1PRwy7Il8RDJtqky1NE7Qjpqb+YsQw04B64HMxXqF1cSoYtv0bzktdruqCYa9knUK3hWU9RJHmUFSF/qD/jzJM0w1e7WwxXv+QB8PXTE4Khh0cCIa1Wi00zcgZVmc1Z9hgoGBZIZGyw03zOl9/8xh/vM5kvUMUis96eBCy+ue/wHm1TQZM1GOeRjLabs6wOR9HdthSNcrnY0SVZ5SOywxmZ5jPGfZoOOR3wwffY9iuqnH9utBIq8gNfDK2X6QM4vuUz86prPzlaPBoPvCo3i6gaCb6vslPfz5NHKc5w0T7jMR1snVw908Jo+u0Oy22pVcjhs0OZnk8HFI4alG4M8VqqrAl5cLkcm4DlTNsNV0hMucI6iEPm/fp5wM/U0+eUKlUWVtX+fg0RblyhfPzM15ftkYMGwz67O0djCzQ/pj1JxFoxUkMkphK6Xbfih8K0+ggV1/1Bj7BMBTCi/lDKAhDZEWm3bokzTJUTce27fzBJMyc0yxGVVWarRZpkpDECXGSjLS2CgWbxuUFB6/fIMkp5XKVguXw+o3QB1E1g6mpWeIoRpaEC3m326FYLI4+2+TUJBeNBkmWMl6b4NX2NkW3SC032J2q17k4v6BYLqIqYnqlNiGap99OLg66Xcq1cWrjE8iyiuMWsQs23Y7QS5FlD1VVRG/UoIckySiyjJQHauP1CeIoRJU1er02miaEXgf9PpIkbjrf72NaLsNhgOO4QrspDGnlmixpkuIUXdI4odHtk2VCZiGOAhz7W+Ng3/OJk4TpmRnSOCGKIpZXhabPm9evcYolbKdEECVcXl4wMz1HFDssLIiHa7fTJwgGtNoX7B/sMjExRalYZG1VCPmdnZ2QITE5PUfBsjGtAhMTE3hOgbey7QXbwrJskKA6Vmd35zlJnODmGVHd0Gk1LrEKFqZh0m6Ln/vdYyElASiKzs7OFpVyFbsgRFzL5TJhFufnyxM+mbm5tGVaZFlGuVKhkgvFvp1mTOKYKEkwDBPHdhnmGmtxHJOmwj+xcX5OsVTm7PwMyzJHDa2yJPZhlglBUsMw6HU7o966ly/usbh8DUM3iaKI6ZkZ/GFAKR/okMiI4whZ0fAGA3rdNmkaUS6PE0Vijzb7fSrVKoqmYhgW7Wab+cVFlO8EdMeHB0zIU9TGxkiSmDAIiZOEfl9AKIpjLs6OcXKhS8t2RBCaD0LEcUK/N0A3VCzLwjItLqILXjzbIkxEoG4YBlkmNLn+JS1VUwXDtrfpTgulaqQFgrOznBPreDM+Qfe/wbCXOcPes/nwg48AePxEMOyqepXPv/qCVpIwFScsJwnhW4bdEQyzXuucyQ7l8jy3bzvsH/5nACz7BpZpEUcxTyW4O1nnjuN8j2E/+7lg2POXPj/+6Ce82j7g9OSzEcM++tEA9Vyn8z2GdUiiC775WuyP9XSS8kfj+ONdXr3axRkI4d63DPN9D3VXIU5iZmamQMrY9GTSTDCs1ZnlWRRydcSwcTZ0wbBuzrAv/T43LZfm8DMcx8V1ZcInIV+0PgVgNVnluHjCiycRw+E9wbDffsxyFKDeEf1EL7eO6XcfsryyQn8w4PjIYWUl4uJCHKM/GBCGYc4wLWeYifPMYeEjwbDJzjTteo/xdoX9gyETEwZnp6dkuWKyU3LJkOj2fW5bNubRMRMTEzzoF9iqCYY5toVl6mxtK9yy6uwqz3n+7DnTM0K6QTd0xqs1rILFzRs3+fLLz7h126ffNVDy87GpvGF3R+ai3MAuOJTPXa6/rxHmwzoPfQ/jxXNu3DR5ob7g1s1bHB+fcH5RofK+YFhtXEwzypI8YtgHtsujTcGwZ796RrH4rmBY9gnFhfcplSO6yTNepOJ/CIbdYS1Lcewiz42E3tdfwaZg+n/8D/dYXA4wTZMoMnKGPR4xrPwdhj0YDGh2J1hNW4JhT3OGLXxOpVFF0QXDngZfMh8usjkrMqZfbn1Oo3DAxNwUNdNET65D8CRnmLgno/gZv/vtr7jrvjNi2KaiYOaDEM9khc2pAbr6LcOePv0dO9s64Yr4m7MHD7h96/ZIcPqPWX8SgZYkyxQKNkma4ORlnSiOkZAwrQLnZ8cUCm5uGA1vfWmiOCIJYjJA0zXSOMXr9YnyE5CQIZHR73awHZswjAnjCLtUQc/f1kUzd0C5UqZcrRLHEVsvtkZGywXX5qIh0sXlSoXBwGN1dQ1v4I3Ss6ZpcHR8yuzsNK7j0O916Q/6FAriwkShTRQOKVcqaJrO0B8SBEPiKByBTJEVfN9HVlQW5peQZUWIgwbic9bGJnh0/x7l2hjlagXbtEizbKS2LksyBVNIILQ7AZpmkKUZbrGILOWTnFYB3/NxXSGXMOgPRGCSZ1+CMIAMoihgZXWNoe/TaJxSdCfp9cSbXBjHDL0hq2ureL6HW3Q4Oz3h8lI0JFarY1TKVdI0wzAKeH6Po+M9VEWjkYly0dDzKJVrLC3VODo+5PzijGAYUsoFXheXVjk6OUKSZHTDZDgUWaEoCkdZluODPWbmljg6OaRSqTE9PU+aJgR5YNFonNPrioBzcmqOmdk5mpcNyOSRxgzegOmpeYpFl51XL4Tsh6KxuCwUgC8uzlBVlXAY0Iu66KZJs9WELKPZEsMBXj4g4RaLZFnK5fkpGeC44rs4rku5XKHZbNBsnDPwBsiKRrcrjaZWz89OUVUDVVNpNZtISERxiGmKgHCiPke/18ao1TFNE0VR2Xn9inLp7cRqRrFURVNU/GBImkEcpzSb5xiaKGUkSUbj4gLT1EmzlKXlVTRNpft2ilOSWVhcHpXGfW8gjmkVsKzJ/D5NcnkNmYLj4jgOnjfgOJ9uM02Tas1FUxU0TSdOEhYWFhgbq3GWC6NOjI+haQaW5fxTWPhntSRJpnB4RIKEc/KWYc+QDBPTuk357B+Io3f+gGFPnz1lJVkmG8Jr/TWry2vfY9jKaobEGp1eBzsSDFtcjjCd7zPs0aOAYNjm/Q8//A7D8qyre0rBKrAOTFQqDB4/YfWvv8+wfdPAPv6cO7f/jBPnmH6vi1M8Zm72W4Y9DR9RdnKGzQ1zDaiQj8bEPt2Rd3DjsmDYwl8iX1GY6rVpXYrJRfvoGGPnHuXaj5B2KhyZB/QG/RHDbt28hSqrSNvbLHYCXmvbZOkabrHIuznDQus2vvdQMMwukDwfcOK6VDLR2H28GLBOkUeP7vOvV/+G4ZxPo/ExduFnI4Z1OxPMzxYZ+j6LC/PsxAqPgxOuXYqHvqbusVmfJC03MYxZvIc9fr21h7p5jWpDlLq+9vZyhsn8+rjJ1kWT99xFsg3xOcKDQ7ToGSupjn7DZPhEMOzaUoiui+vWvNijUV3CHw7Zr+zTbw0xLYuFnGG9apnzi9/kDPslM7NzkG1BVv+WYbMzTM8rXCle4+/+9j/w/7b3JrFx5Xme3+f/logX+87gKlGiSKaWlFJLKjNVmdVVU91d1e0xuj3AwOOL52DAFxuwDz60MZe52oDnYMAwYMMDjMfGzMUeuDHT465u15aZJSkXpXaRlESJ+xaMCMby9sWH/1OkspZxVrtUTLHjCwiiQpT4/73l8/7vty73Fnn/8/EBw57v7aClMwT3HcbmR3loBIS1JnPVWZ7clAn1Zq/H5uYY5rFtosWQ6x/9jNk5OJGTg7prly/T2HvBsAr9n/6YHVVHUeZJnJPXz+7ONtryCo/OaoTNGcTSYzzfRYu9nSP1KcbHRqjs11GNZdTTZ3j6l3/BTMywB2HElc0y+mmN2dlj7Dcb+H7IjRu7JHV5vIKHEXPze4wY52g2PL4/YJgsHlCFwh9M/wDXdXlu3uYTc4Le5xskU2nENWmrUOY5rRb4KsPO85P1HwOSYam0ZNhZPUE6CBDHj3Pt2viAYdaVHGk9TSbz9bdP34yNFoKEnqTVaskMf6BYLGBZFqqmoekJKpUKjuPh+z7FgryxLcum2+1RKhXZ2d6kNjKGomiD3KhuuwvIvlmGkaQ+OiLzfbodSnG39FZzF11XqdaPk0imeLq0SMpIcmpW3jDJTIpPPr7O+to6iqbgWBZCqGQzWcZiV+Li4yWMdBrfD9jZ3UHXDVKZNKm4f9XKynNZedbVyGRycjMZyc1VoyFPXrVaAyGo1+v0+z16/R6Vao1cQa7TjsNjY2PjZLM52Uyy1UIo0tZCvki5VKXb75I0Uuh6Mq6EywzCXJquEwQ9QseW1WdGUvbjike5ZPMFLFvmVNm2Fc+4UzFSSYol+ZYlvRZddnd3SSQTJJMG1doI2bippWlZ+L6PZZvsbG8yfWKG7a110rk0ezsyd8XzPZJGBsvqkdB1xupTKIoymJdouza5XJ5MJottW0SAFkayw3z8xtjtttnaXMWyLDY2VuWbkuuTcCSAUum0bDyrJXBdW4bdzC6FcmXQaNayLZQoRAio1EY4Nn2C0I8GnqZEIomqauSyeSy7T2Nvn2KxiKIqNOO8t4NmEyOZJpPJsLe/Q7fVolavkomPuW33sUyTXL6IECq5fA7TlG0eXsz19DwP13Oo1KqoisKzZ0+oj44TL5N8vspBp8ve3i6GkaJarVLMFzmI1xBFEbbrMToyKtuBRCGlUkm+1cbx7WqtSq/XlRW4qbSsbvT9wQiW5n6Lcq2M7wW4jmxxoagavu8P8l8ikui6hm3LsLhQ5Kiog9gjms5mMVIphBDkc3k0XaPf6zE+Oo6ixH1qtASmZQ5CmkdFwnFeYpjscVS8+jbuHQtVW4wZtv8Sw6R3ZS6a45PuJ5RKRerbTYyUETNM5kZ12yO8YBhhSH10BFWNGdaQbLi5Ihl27YM/ILESM6y5wqmizDtJzqT45ON91heWUDSFe5bF/Mcq2YtfMuyzx0tU0ml8/xE7H4Vs5fJcyFwllZKhxZWV5xwTgmxXYyNzmUu5NEsRRE+eYlkyhF2tfguET71e59HDW4xvj5Os1sgV3gXA3ldRtTsDhu24Oxy0aog4D6zz6SeU37lGd2KMZKdFUn+TXm+btXWLt956wbBnPAoChGOTJs2akUQJQ9JpuZnLVk+zftfk3ffex05Y3Ll9m4m+ivFekuJevIEZDWi2xnBdl5G6y6lTBkE0Qt+RLwymlaNy8iSWKRnmlhLM5tbZWV/n+s42EDPs2xlu3ulxbkZnuT5FVskzEjPswfQxOve7ZMpZMrbFYghv/gqGFTYNpiYnMAyD/f0ZTkz7eFn5M9aerPPmm9MsawkW7j8ikTjPF7efceWKhvIkZtixqQHD3vvW+2xsbLDnRxyLGXYukUQ9fYbVlRWmMilaH1+nWCyinlaojUh+fLrcpPPxCL//hzN8vPchY7UaK8+bFEsyZFeplpiaNDlxssitz5+Sy/8+pnkHwzhAlOVz0vM83GiRSvGaZFjnUz749ndQFNl24913r8UM+4hVI8U1EbGbv4qIc+8OFiM+cjf5thhFDR6ztLdD7vIlLlzwWVqUuVDV2jUyG5/jeYucv3ABId7Af7jAQu9Lhi1EC9ieI/ug5TZQrlbxH77EsKUc+sQvM6zRks6UdDaLaV5AiMds5/KcWV3lmG1z0OnRPZD3guEkuW3fHrz0fx19IzZaAIgIPZEchLl6vR6qpuH7HmavJ0eLpNKoqkIj7v2TSaepVqu02vu0Oy3GJ46h68nBjV8sFshkMzT2mliWRdKQpf6KUEjo8obQNJ1cPknSSHPQ3KOxs00+XxyU1lv9HpZpcunyZerjo7Qau1i2Q8pIY7nyQLuuy0h1hPXtbd6YnyGbSYMiBh4ay3KwLJNsrkAunyOXy9Hv9lEVdfCg296UI4ACP0RRFMJQXrwvuuJubq7LExsGtFtNQkJG6nWacRL6QadD0jBQVRUhBJ7nkM5kicJwMBRYoGAYaVzHxvdkW4Nmq0Wl9GLTuYeqqahaAt/3yeflnLrmfnNQpJDNZigWS3ieg6rp6LqO73msr8s3PcexCANBKpXE9wM8NyCbK9LpdnHjPK9croCqabi2y35jk/HxE2QyucGQ5Ewqjaa4eK4DQqBrGpqu47rOIKY/efwUnusyMjqBbdvx+dXiMUay1FcIhWq1zMbaOlpCI5crUKuNDJLQQdBut3Di8+d5PoESDXLWctkcQih4vsNeY5e9vR1y2TSJRGYwEHr6xClC3yObydGzTcbHJzGSxiAkU6uOxl4sWYhg2Sa6rqNrOkEof04+l5c3fHMPRShMTE7huR7Npgwr6/UEmqpiFPNEoWB3d0eGGI0XDWAjTLMvk12jgGxW5lg1dndJx/keqt6h3WqSNFIxTDr0zT56/GAYnRij1WyiJ5L4ro/nOWQzWVzPHZy3MPRJZ3KYpi0HXzebTE5OMDk5BcDu7jaWKUPcRCFJo4DveywsLXByJh551Wpy0O7gZbyvQ4XXS/MReu/NrzBsbl5jcfEFw8ZjhkX8/Pp1AC6+9RbX9Gvc/OQ6i50Wf6o/Q9ff5M6dF9MtdshkM1SqI6QzOYqlAj//+XXext6E3wAAH9NJREFUmFdInJXJ7trGGpdfMKy2R+PDbfL5zJcM+6KHdfs2l/4jybBCY5c7tkNqNc3Wbsywxy7Va++zvv0z3nnvj3hw9x6TE2MUipIvLzMsn99hr5HjuJ5EnT7J3ftyY7md3cb0drjmX0NR3mAh/IyrXvFLhrXXse1jMcNuMM4pJj8Q3LghH6SfdhZ4/84tVEXlsaZz0nPwMlnZnNiSCeKCJ5w30tx3juF7m+j6OZqtm7z3jtzMtZt7PHWfEkbn8H2fK/kCX6gaYr9JtiMflEr2IsWiguc5bG8/Q9d1Lpw4wVYcgXj6dImNtXUuXHgT/+EjvOMzZLeKiH6XTHwvbOUKqMtncIPbXP+5ZNjmxV9gmJHCcx2WHgt0PWbYfYdkLmZYdIoHaxvkC0W63SbMTZFUNEqlqwCMjDxnd1dhulpmI7XOcuKH5C4WaNVG6K/F+Zmr67TbLarfqnGp+halQoMgjPDUmGHLOcR6hlNRwHrjI3ZLO1w+kZbjvDR5/fzh9zMsPHzA5kaOVOYy8+cKrK6s/kqGXblyBeuuiXpWx0ie5VHMsCu5PI+Vq5JhjxW++3e+h3f/ATfakmEffOCx/FRFK+ZJhIKPPvqQi5lLLHQkw2r1RSbN0zjH84RRwKUpkyiM2N7dxTTluVf1z1hpNXnTSJFWVczbHb4wd77KsFtNzp5L4ronWfNWyG5kmX5rGteTzoTQuUc6c3HAsJvNG5Qmi5yd/PsA7O7+LGaYjeuGqEaBh77HGCHvvifD+a3WDW7e6AxysL+OvhEbLdkVXSb0vpjT2Ov1EUqAbVsYqRSaJodnplMZGvvy5ndcF13TsW2Hen2clJHGtMxBp3PXtbAsl4SRoNvvEIYhVt+kNjbO1pbcGLiOQzZfwDAybJnP0XSFSq2KHvfA2tttkE6nyKRTrD9fiWchjqIIhQcPZLM2z/fJ5rL46wG9Tg/HtsnlcxC7u23Lwkgm0fUEYQhRJFA1heb+PsfivCWz36dUKuJ6LqqqUCmXePZ0EVWV4aWDTovqyAiNxj6VSgXbtFBUhWpVNjYMo5AgDFHVBI3GFr7vUSxW2dveHDzQK9U6uXwB0+zj+wFC+FQqZcx4HNHW5iqpdIpctkRzt0E6n2OkPko6kyablQ9s23FIJQ1836fdbnFwcECpWB70Q5mYGGdnZ49EUqdQLKHpGu12n1w2y9iojJO327KnlKoo1OvH0bUErusQhC+Sqk12t9bQE2lypQr7O9uUixXShiyIAMjnS6RSGaJ4RENCTxBGEV48vFjXVUqFEmbfIgh8DMWgUqngui77L0LBxTJGIknkRzi2SxRFKJpCGN9APhGt5j6FUpH6yBgJPYHn+bjtDtm4504ul0GPB7tmjDSqokMkBtegUASu6+AHAalUikQiRSaTo9dto8Qera3NTVLpDK5tMzY+Shh4KApkc/KYdzoH7O/tUhutk0gYdHs9EBFmX26gFUWhZ/bQdZ39xg7jk9PoqkrSSA422elMlnq9juXIxPtnTx9TKpdpNmQ4t1wdkZ5Sz6NSrbK/u4vvedTqdZy4saoiVKIgxDCSNBs9svk8nheQi6+Nen2UXq9P96DJQadNNltk+vgJrL45uMYy6QyKorC9tfE16fB6SDJsknQ6xePH8i1+fHwCoQRMTZm47RTLy085/+Z50qkMVlyxfOOTT9C1s9j2cer1MGaYw6k45/Hhw/tYlkun26NSabCwUMbqm6Rz32Hrp3Lunus46FfexjAy/PT2D9nQV/net36AXpPJ3XsfxQxbT7F+f4W7xy3qnVGUcwpezLBJ8yWGfXaLUdsmChdByNQG27JYXUnijidIhDAbCZyYYS/6401mc+zvObgFF89/QqVRYvXmEk/V5wDUOzWq74/w8+XrVCoV+qbDG67CtWuSYQuLTR6FIQn1HI3GOvmTOxSpUt7Os52VvN5v2ly+8ja+2cQ/GTCv+8wn3v0KwyrlPFavKxm2nUOt26Q30mzm5XV6zHFYSxr4/kPa7S71ep3m/v6AYSd/MEPhwz0S2QyF8UnWdA3rFxg20q6zbRicfuMSjnOG1ZVV3PsOwSnJsGnX5KO1x5w99xZbe/vs72xz4hcYtp0vkb+QIVqMGba9w8bsLKWYYc+ePeWdt98ZMOyMcobJis3i/V/BsIcR9865zEYzKNqTLxnmR7SaP2GnVCRoj/HdiXN4nvpLDKvW6jHD1nmqVNEjQRjKaxAB9+87+MEjUqkUs+dmyWTeodf9hCieMflT7Rmp9EXJsGSH8NE8yhtw6UHMsM8OWN/7iG+NfkAiYXCz9wlfiM+Z7MtNlKJUaU3uozsvGPYmuqqysrrCdFwgV7n4Pun1s1jHbey7Jn/59N/wTvldvmjIwpFydYRLly5z33vApWoTdqd4drBMLnfuS4aFEAULGMY4zUYPNa9x4sQMuazcZN+7P4qeSNA9qKM/+4TlS1e5+vY7/PQnP2Z0VG4KM+mLVK7dIfgnr1mOVhRFWLZNNp8fJMN3Oh0mpiaxbQs9kYzb3QsOOgeDIcl+GOLaNrXqCIqi4DgOyaSO68rNyfrGGrVanSiU3gzPDylVqrQau+ztyjCWqqkEQSBbQTgeU1MnKFcqqJrcJHmOS320jmWbaJqCcBVA8ODBffQ4zDkzcwrPcxiplmk2W8zNzyKEYD9+iI2Mjsr2D4rg1qe3mJ2dYXxygrHxcYpF+ba3sbKKZZpMTk2hKhr7+3u02138OBafzWeo1UZRVQVV1zAiGfZ7kdTf6/fY3tqUndl1jXQ+RyqdYmRikhevtrlsNt6YyCHQq2urlIrFQS5ZpTpKPl8klUrRarZwbZd8Lhfv3OMEznQWISAKItmEzzbZ2rI5d16+HfV7FslkCk3XSRkJPNehUCjiOBbr69IVrekqKS8lm6lqOqVSiUajMZhjmM3lqYxMsLOzheh2SKcytNr7mGYfLc45UtSu/LeFEq3mPp7v4bruwOOVzebQE0kqqQylcomtrQ1azSZJwxhsgIMwpFypIIRCEASsr69TLBUYG5VdqHd3t3B9l1azyWh9nMxkHt/36HW7g9BgNp3Ftm2CIEBBEHgeuqoOZmUGQUg6naFzcCCrRfsWve4Bz5afcHxabrLro6Nsbm7SajSpjlTIZ/LoepKN9XjkQzJJZbSOYaRpNpuk0ylURRt4Zfv9DuNjk6QzWcIwxHFsAk0lnUkNwsYgQ+0b6xvURqocmz5Jc3+HpBE3iU0aaLpGhGxYWR2p0ev1pMc0vn5UXceyTTLpDKqmkc3lSOoJHFueN8d1iIhI54pkcnlcx5NVhqkkz57LzcfIyAS6rjE9ferfDYXXTFYUYd212RzZHgzylgwzse05niWWqL7EsHfL0gPjnwq5f/cutWoW5Y33cBydZFLh/v3nAGzvFGKGrbC1VQBeYtiavD4mzpzmoNWkf0sy7Hvf+z7lyj7qssx9+iWGPVagLvAeuOiarICbmZ/Ge3CPdrvMDavG3/33I8RjwfXHkmGp1ChX350jlc5y7/Z9Nkbq9J6vIgTU4vYercZ11tMp5oRAVXT290ustlfwPRkK6+fH+EFtlE6nh6prnJ+VDFt+KocsTx+fjhm2yPQxDSMtGdaeMEEeUirVGs+ePSNv9QHBavavKRWvDjzqndEOV/JvsLa2hlhWcd9wuZK4TBAElJARBpFW0MQSURAxOTHB57c+Y272jQHDkj0D780ey8/WSKVSv5phZ3OcKKaIQsmwd955h583GhyLN9BqLs9770/w4Yd3SWdypFMXabW/wDT7LMcMy5weQ/viWcywCp6/jXvjOjeTch3ZbA79+Qr7qgbzCk+2HrPRzJCcMmBLMmzm1ClWV1clw5aW+NHaGsVSgd/7dsywjmRYrdlktP4dHpvL+P4k493P2Ygr669cvkwUCYLgkWTYAw/dmEXT5UZiaSkknd5g9GCWyoXqgGF/+X8/4fj09wGom1NshpvUGk08QyN50UDX3+bHpizI0JOLVEY/YNVI02zeeIlhK/La6HcY7/4e6XCThVaL/dooWsyw3ZhhFcCasvnxX/+Y2kiV35/+wVcYdu7N82i6xllUdO0szREXdX1NMmxR8kc9exYLwcb6MuUzFS7VcyT1dZy78jnruA6LS4uEYYSYOEbVSA0Y9pc//NcAvP/+d5nVTw0aOX8dDRuWDjXUUEMNNdRQQ70ifSM8WqqqYiRTNPdbvHh9LlfK9Lo9hFDI5TI8enSXY8dO4vsBhYLcSfqOA4SomoLjuCiqSrPVotOWLvOEniCdNlBQ2NndRNE0ytURHNdg8rjsu5LNF9lae06rsUulMkKIdJO34twnI2Vg9k1czyMiikMEffb395k+Kf+PKIKdnR1OnjxFGASyVJ+IzY0XY1pGSWfTqJrKmXNz1EfH8D05c/EgXuuxk8dlI1U/wLK6CCFIJAxE7H05e+4tWq0WrmuTy5ewLZMo8DiIR+NEQlAfHaPf7wMhIpKViKlUCjeOtYdBiB/4GEYaTdOYmpyi0+kMBnmXyiVcx0XTcrxx+izN5j47u7vUayMk4wo503YQQlCuVIiIGB+fxLJsLEv+DMsyaTUbKIrsQRYGgoODNuVqBTVu1GfbFkII/FAmzXd6HTnzMY4bN1t7VEo1RutTNJu79LttRsemGKlPYJrxkFLXIQgiHNcliMf3GEZq4J2LohDfl40/e10TgRzlpKk6TlzJmUgkKRVLtDsdNEXF9z2azRbJpPw/NF1D8xJUKmUc10HVQzzHRU8kZIUmEJFF0zTCMCKVSiGE9KxmsvItrBXnKOQKBYIgIJUyCKKAbC5PsynPfbGUZ3Zujs3MGrbjopk2oW+hxAO0u+0WlWqdpGGQSCawLRNVUSjGlbGdgyaddpOUkZaNcVMGqgLbG5v04oaCJ07NE4QRhWIWTVcRisrE1Al2t+OKsPjtNmWk2Gvskcnk0HRN9geLPVqapuM6LqqmEoUBa8+ekkho5Aql+JgLFEXg2i6qCoaRIiIklyuQjcdV9XsmqqIiBhlER0OqqrKaXMPb9wEZcmnsJ9nZ3eXkySr5fI7gkU1voiuLZjQZ+jkWHYe5U6g7uzgPXMLzKs3WTSpled5SqWm6PQMFlcLuJk80jXevjdDprDL5Bz8AXjDsh7Qae1x9b4RwaQ17Q6E1FTPsgoH5RcywuYhZOyKf7/MvPv+caV8ybKri8uHODidP/nHMsB2iC7P0/+IvAKjVvk3rIE1nQkVLwORxE9+bwXUfUMjL0J+i/gGzxiqhHzBldfFFm3xiG09ID82lvycZ1mpVyOX3uH3bJAoe4B6X/Ml3MxyMjjExYNgSTx5XuZBKcX/AsFP4wUMM4y00bRnTnKKQX8R15aPsnfI7McM0Zk/P0qzus/P4lxmGgHKlQqVSZn7uT5mauot1R4ZRrV6PVrXBTm4O/ZnOqZkki59+Qvnae6h92fbHvnuHx2NTnDhxkju2SbHX4a1sjttC9msabdWolAxGP/ge1eYujtNgt1slUZ+g/IJhjxUCZnHcTYLw0YBhb6Xj+2m2gO/7aJtbjDuT5MmR1bZJqjo/iRl2z3EYNVK/xLAbNyXD5nQN7cQ5ybDQwdOnOeE4RJzjeHxjR0ScOXOGhYVFLqRSPBbJrzCs1j4gBKK3v2TYo8VHkmHVlxiWnCObWSNppDBv24T+nQHDxtot9qsab543uH79lxn22UGTlXaTD86f4rzjDBj2b9rdAcPevJDi0YJk2JmYYf0pD237RS/KTWCOlPE2H//8Yy5evIx/9gzKE8FiHOnQnq8wfXwaVTtNFG6x9kwl8fwxWzHDZiOBosxzx3ZR1SWM1RTRmQUuX36bxSVZtLG4sMiFC+eB1ywZXgD5Ql4OB23KElxNU+n3unS7BxBFOJbJfvwACOIYdhhCIV8i8H1UVSEMAzzPp9+XB6BUKpNMJLFMEz2hY1s2uWyGKIxotqRLXFXlA7hSraPFM/dy+SLai7l7CY0w3MFIJdGTBp1Wm1qtzJW3rwySBXvdzqDTcq06gud6RAJZjguEUSCr3zyH/UaTfKGIArSb+1hxbsH86dPYjkUkQvb2dqiUR7hw8Ty+J20N/IBSocx+c49sOo0gwOqHNBtyozUzP4+WSJIv5Nne2kFVNMx+FyHUQdLeXmeXQr5AIASWZZFIJEin04OEfN+P6Juyi3m5VCaVTstyf9vGjsNDfhBiWyaFQpFUSraTKJVSg0o+Beh0mhRLRWzLJVvJo6cSJPQE42PyeGxvb7G3t021WsP3ZF8zx+nS3N8eXBF37twmn8/JsKzvs7G+wYmZGYJA5jc4jk29PiarMVVBpVJBAHtxCW6+UCAKwbZNFEWjUq3S2GvgGT61EdmuwLZstrY2KRZLNBo7nJw5SbdnDo6XIuR8q0w6g+t57DZ28WybWm0MLQ4b72zvYKR02TOn02WkVsc0+y9NL/BRVBXXlRtUy7JQFUGhmCWhy/yFdquJpZn4fojb6ZDP5/FCh2JRdm62+iabm5tUXZdMNoOaK+I4zqApan1sgr4py+R397bw/SyJRILqSI1sXhYxGEaafl922E8aBolECtty0BOp+F4K4j5zIFSVTueAQjEvi0HiUFgqkyOXlVWTE5NT9Ps99ne2B/kxRiqD54fousrBQRtBl/HJScIwHFwfmqoRBRHduGHwUdFXGSZLyTUtycT4BK1mg153HGPqCdfjB8ALhi0sLFFIGQRBgKo+YWFB46DjUy7KuXylUpFpN4llejQTOp5lk8teZHHhFs2a5M+3VAVtOWZY8hwLZwNy20X62zJ35dw5jfBCgVWWOPsywwpfMuxWdxTTfEqzeT1m2Bmixw9fYtgjtDPv4T6QDLOsqyh4tJv73PniJ4Bk2LHjM0Qi5OO9H1Epj3DtPzyP78lWA4EfsLdTRju9R7b1FmKui9VXqa5LhpXn92k/79FVFfK5LxnmCBV/wLCPeDv/Nup8wP37Xc4lEtxLp1HmZSja9xfpm3JaxPOSTj2dxj3tYqZt7CXJsIfBAsemJtnZ2WVtbR3tzDwl7R2UipynqNyCznKTd94pczft0tjeZuzb75PQE/TinNrt7S3svW1mo4CTtVGKQUDf6bJ/Xaak7LNNoVAmn19hfOYUDx4+ZGd7h+/P/BE3g5sAOM5d6vXfw7afo6qC9957DwF8/PFHAFwRb7MYgm6bPHmyzOxcSGOvw4PVlxi2JNgKs1y9OkWj8SGnz/yAbs/k6RNpy6KAkZcYVm3s0rRtWq0uZ868YJjPauoZs1OC3c4YUWsR02wzdWxO/oythzxRVVyzh3j8mKmpKdrNBm9fvTRg2Cc3b2BpCsboOG6nw7ayjRP6XI0ZtjVhsnnvJ7g/r5LJZjh9+Sr37t0jmo0Z5kwwMamRSOh89PFPyaSznDt37qsMW01DJBkWGAaJcxr2w5cZNkMY3Cfw55g/fZrPPvuUt69e4Y59a8CwCxcvs55O401aqFsW/YlxKorCpBEPv05t8GDxEfrZOQ4+HeMGHzOuTzIfhog5WWGp3blHFCyi6+HXYgN8QzZaURThei4JVR80GzVNiygKKRZLuLbDselTlEtV1jdWSNjSM5JMysTaCAVFqHi+i55McvzENCAfUM1mi431FXL5PMVyCce2abcbtOM+SBNTx4CQTD5HriBzxLK5HOurzwHodXuMTYyzu7NNOoo9bX2TcqnMJzc/BuRgzwvn36J90KLdbqNqKo5jMz4h4+TZXI5u54Aw8Jk+eYJatUY6lSJpGHHmE3Q7HbqdLlPTU8zNyrwJFYVUnKTn2A5hFMn8NAG72zuEYcDc2fMApFMGrVaLRDKBaZqYUYhl99FVnckpCe2O57G4tECpWKE6UsF1HWzLwo4flMVKlYNmC1WRlX4ikonWge+zsS0BktATIASJZJKDdhtN1ymVy4SBjOdrWoJqbZRkIkG5nOLg4ABNS8bjiyTUx8YmaLdbaFpCNpPdb1Eul3jhzex22pRKRYrFYjyWpk8URWxvbX/ZZ811eP78CeVKldAPsC2LMAgHrRnCMETVBCsraxy0+pw9d5p6fZS+aQ48Wrl8liAIcF2LXreFkU6zu7vHyRMn42OaJpvLYlom7XaLeq1Or9fDDwJZ7IB8GzzotlEEcgyQ5xFGIQext6pWG8H1fFRVpVSs0O0eyAa9UUQQxk084wrNSqVKo7H35ZDu+OKoj42zsrLMzs4GtXBUlv9HgkRC3r6u6+I5Huvrz1lcfMzMqRkq1RE219cZi69B17PRFIWRkTHCKCJlGBAxGFkUhCGOZeIHAelslp22TNY34zYjIIe4t1ptCEM81yWVzTF+7CRGDKn19RVq1RHCKCKTzbK2+hyzb9JoNAZjj4xUikhElCrlfycTXjclBgw7i6p8DoBpThFFFsViiY21e8zNv0k60+TO3S8oxLmZyeRFFGWF2ZcYdi+ZxImr2549W+a4e4KNddjKe1wtl3Dsu4yMlFmOve6JqWMwF7KxkSN3UMPodMhezbH+r+Qx/rf/+ha/993vML4zgRNlKO8r9LIm775T5n/75y8YNv8Vht28eRPHsfnOd78LQHZriy86B4TjPtPhCWrVFunUBZKGQd+U+S/dTofmXhNr2uLv/nt/CrxgmPQmOHfvoSizvFsu87QNuz/7kFOnZjB1uc6tLYNjk5Jha2uTmFGIkfqCnzzV+Tsxw/a9Eywu/Tml3Qrz71dwIwfbtDjWly1GFishmWaLfn8MXeswWo8Z9vDhgGH7cbsgy7Y4aLc5U61wr9Hg1Iy877UzOk3Ppb++zbiR4iCUm+ZWs83srPRWzs+/QfuTm2hnEmgtjeb+TcrlEnNzkmGfd9pMr55k19vFdX0m+n3S0SzbWz9D/wrD/uIlht0hDE4NGLawEKJGj0mmMhy0+iwtqqjqKGd0k4cxwy7nN3kUBNy/v0p2o8Vq/RaFnT0ufF96O9dTaSZ9B9O6HTPsA27dusX8/GnW0nGn/KUNemMm1i8wrHlDHtNWzWDuxEmCwGPv3W9R6B5gpNIk9BRBKEfsvHnhTR4+fMT+fpNyuYR9zEJbPsfSvHx+nQp85txlHj2UDPu88ymRLXjoS4ZNT09j9vv86EfPWVxcZObUDOESX2HY/ZcYthxFXFldJZfJEsajqIKFBRzTxJ/5nHT2EpbZp9vp0ul0ee/atwDJsFrMsGSlgrWcoKee5PycZNiP1p/yrSvvE0YRCxNZ1lZ9zC/a/FXjr8hdlmOPjPAE3sIymvr1R/CIKDp8F74QYg/oA43DXssrVpWjbeNRtw+Ovo2/S/uOR1FU+x39rFcqIUQX4uZXR1fDa//119DG356+Nr++ERstACHEZ1EUXTnsdbxKHXUbj7p9cPRtPOr2vSr9bThuR93Go24fDG08LA2rDocaaqihhhpqqKFekYYbraGGGmqooYYaaqhXpG/SRut/OuwF/A501G086vbB0bfxqNv3qvS34bgddRuPun0wtPFQ9I3J0RpqqKGGGmqooYY6avomebSGGmqooYYaaqihjpQOfaMlhPiBEGJRCPFECPFnh72e35aEEM+FEPeEELeFEJ/Fn5WFEH8lhHgc/1467HX+JhJC/FMhxK4Q4v5Ln/1Km4TUfx+f17tCiEuHt/Kvp19j3z8WQmzE5/G2EOKPX/q7/zq2b1EI8f3DWfVvJiHElBDix0KIh0KIB0KI/yL+/Micx9+1jiLDhvx6Pa/7o86w15ZfURQd2i9ABZ4CJ4EEcAc4c5hr+i3a9hyo/sJn/y3wZ/HXfwb8N4e9zt/Qpm8Dl4D7/182AX8M/Ftk2813gZuHvf6/oX3/GPivfsX3nomv1yRwIr6O1cO24WvYOAZcir/OAUuxLUfmPP6Oj+eRZNiQX6/ndX/UGfa68uuwPVpXgSdRFC1HUeQC/xL4k0Ne06vUnwD/LP76nwF/eohr+Y0VRdHPgOYvfPzrbPoT4H+NpG4ARSHE2O9mpX8z/Rr7fp3+BPiXURQ5URQ9A54gr+dvtKIo2oqi6Fb8dRd4BExwhM7j71h/mxg25Nc3XEedYa8rvw57ozUBrL305/X4s6OgCPihEOJzIcR/Gn9Wj6JoK/56G6gfztJ+q/p1Nh2lc/ufx27nf/pSuOS1t08IMQ1cBG7yt+M8vgod1eMz5NfROq9HjmGvE78Oe6N1lPV+FEWXgD8C/jMhxLdf/stI+jWPVMnnUbQJ+B+BGeAtYAv47w53Ob8dCSGywP8B/JdRFH1lwvMRPY9D/WYa8uvo6Mgx7HXj12FvtDaAqZf+PBl/9toriqKN+Pdd4F8hXbI7L9yW8e+7h7fC35p+nU1H4txGUbQTRVEQRVEI/M986Vp/be0TQuhISP3vURT9n/HHR/o8vkIdyeMz5NfROa9HjWGvI78Oe6P1KTArhDghhEgA/wD480Ne0/9vCSEyQojci6+BPwTuI237h/G3/UPg/zqcFf5W9ets+nPgP46rPt4FDl5y7b42+oV4/n+API8g7fsHQoikEOIEMAt88rte328qIYQA/hfgURRF/+SlvzrS5/EV6sgxbMivwedH4ro/Sgx7bfl1GBn4L/9CVgUsISse/tFhr+e3ZNNJZDXHHeDBC7uACvD/AI+BvwbKh73W39Cuf4F0PXvIWPd/8utsQlZ5/A/xeb0HXDns9f8N7fvn8frvIm/asZe+/x/F9i0Cf3TY6/+aNr6PdKvfBW7Hv/74KJ3HQzimR4phQ369vtf9UWfY68qvYWf4oYYaaqihhhpqqFekww4dDjXUUEMNNdRQQx1ZDTdaQw011FBDDTXUUK9Iw43WUEMNNdRQQw011CvScKM11FBDDTXUUEMN9Yo03GgNNdRQQw011FBDvSINN1pDDTXUUEMNNdRQr0jDjdZQQw011FBDDTXUK9JwozXUUEMNNdRQQw31ivT/Akf03ZoqwWNHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "img_grad = img_tensor.grad\n", + "img_tensor = img_tensor.detach()\n", + "\n", + "grad_sign = np.sign(img_grad.numpy()).astype(np.uint8)\n", + "epsilon = 0.05\n", + "new_img_array = np.asarray(unnorm(img_tensor.numpy()))+epsilon*grad_sign\n", + "new_img_array[new_img_array>255] = 255\n", + "new_img_array[new_img_array<0] = 0\n", + "new_img_array = new_img_array.astype(np.uint8)\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "plt.subplot(1,2,1)\n", + "plt.imshow(unnorm(img_tensor.numpy()).transpose(1,2,0))\n", + "plt.subplot(1,2,2)\n", + "plt.imshow(new_img_array.transpose(1,2,0))\n", + "\n", + "new_img_array = norm(new_img_array)\n", + "new_img_var = torch.FloatTensor(new_img_array)\n", + "new_img_var.requires_grad_(True)\n", + "new_out = model(new_img_var.unsqueeze(0))\n", + "new_out_np = new_out.data.numpy()\n", + "new_probs = softmax(new_out)\n", + "new_cls_idx = np.argmax(new_out_np)\n", + "print(str(new_cls_idx) + \":\" + idx2class[new_cls_idx] + \":\" + str(new_probs.data.numpy()[0][new_cls_idx]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/08-Hacking-Deep-Learning/01-fgsm-attack.py "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.py" similarity index 100% rename from 08-Hacking-Deep-Learning/01-fgsm-attack.py rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/01-fgsm-attack.py" diff --git "a/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.ipynb" "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.ipynb" new file mode 100644 index 0000000..fa6a924 --- /dev/null +++ "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.ipynb" @@ -0,0 +1,329 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 8.2 목표를 정해 공격하기\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import torch.nn.functional as F\n", + "import torchvision.models as models\n", + "import torchvision.transforms as transforms\n", + "\n", + "import numpy as np\n", + "from PIL import Image\n", + "import json" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "torch.manual_seed(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "CLASSES = json.load(open('./imagenet_samples/imagenet_classes.json'))\n", + "idx2class = [CLASSES[str(i)] for i in range(1000)]\n", + "class2idx = {v:i for i,v in enumerate(idx2class)}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VGG(\n", + " (features): Sequential(\n", + " (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (1): ReLU(inplace)\n", + " (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (3): ReLU(inplace)\n", + " (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (6): ReLU(inplace)\n", + " (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (8): ReLU(inplace)\n", + " (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (11): ReLU(inplace)\n", + " (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (13): ReLU(inplace)\n", + " (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (15): ReLU(inplace)\n", + " (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (18): ReLU(inplace)\n", + " (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (20): ReLU(inplace)\n", + " (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (22): ReLU(inplace)\n", + " (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (25): ReLU(inplace)\n", + " (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (27): ReLU(inplace)\n", + " (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (29): ReLU(inplace)\n", + " (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n", + " (classifier): Sequential(\n", + " (0): Linear(in_features=25088, out_features=4096, bias=True)\n", + " (1): ReLU(inplace)\n", + " (2): Dropout(p=0.5)\n", + " (3): Linear(in_features=4096, out_features=4096, bias=True)\n", + " (4): ReLU(inplace)\n", + " (5): Dropout(p=0.5)\n", + " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", + " )\n", + ")\n" + ] + } + ], + "source": [ + "vgg16 = models.vgg16(pretrained=True)\n", + "vgg16.eval()\n", + "print(vgg16)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "softmax = torch.nn.Softmax()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/torchvision/transforms/transforms.py:207: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.\n", + " warnings.warn(\"The use of the transforms.Scale transform is deprecated, \" +\n" + ] + } + ], + "source": [ + "img_transforms = transforms.Compose([transforms.Scale((224, 224), Image.BICUBIC),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])\n", + "def norm(x):\n", + " return 2.*(x/255.-0.5)\n", + "\n", + "def unnorm(x):\n", + " un_x = 255*(x*0.5+0.5)\n", + " un_x[un_x > 255] = 255\n", + " un_x[un_x < 0] = 0\n", + " un_x = un_x.astype(np.uint8)\n", + " return un_x" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAEzCAYAAACv5LH7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvGusZWl63/Vb99te+3459zpVpy5d3e0Ze3rsEYnjSFgQA3EsrIBiFIUggZEQEogvQYDRECRIELKi2CAwEp8BCSEFicgwMiYhju2xZ6Z7uqu67nWu+5x9X3uttdd9LT68+6wekCJPhBjP4Ho+1dl19tnvft93PZf///88UlVVvLN39s7e2Z9Uk/+4F/DO3tk7e2d/nPbOCb6zd/bO/kTbOyf4zt7ZO/sTbe+c4Dt7Z+/sT7S9c4Lv7J29sz/R9s4JvrN39s7+RNsP3AlKkvRzkiQ9kyTppSRJ/+4P+vPf2Tt7Z+/se036QeoEJUlSgOfAPwVcAN8Efqmqqic/sEW8s3f2zt7Z99gPOhP8KeBlVVWvq6pKgf8O+IUf8Bre2Tt7Z++sth+0E9wHzr/n54vta+/snb2zd/bHYuof9wL+nyZJ0i8DvwxgGMZHo2EfRVHIiwIJxL/zHEVRqKqKCtA1jbIsASjKEkWWkZAoyxJJlsiLAl3TQYIkidE1g6qqyPMMTdORZIkiz1FVlSzLxToASZYpyxJZlpAkGVmWqaqKsiiQt/9XVhVFUaAoClBRVSBLMnlRYJoGAHEco2kaRVGgaRp5nlGWFaqqUn3P+6uqEp+nyFRlhaLI9f+DhKIoFEWBJElIkkRZFui6QRxHyLLYF13Xt+ssKUsBdciyjCSJ92dZioSEJIv4l+WZ+B1JRpYliqIEtmsD0iRFVmQkQFVVZFmsoShyFEW9PTPKshTnUVWoqkJRlCiKTJ4XAGi6xibc0Gg0SNMUVVGRZJmiyJEkCYCqKpEkmaIoUFWVNE3FezWNzWaDbduUZYGiqPVnybJMnufIioIsSVTbsxPnJm//brW9KxWK/MU+V4CiyPX3v93bqqqQZImyKCmKnKIoMAyz/q7Cqu3vibsmzlCuz0GS2N6RirwoxJ2UoBJvrf9WfY/KLz67LCskCTRNJ8vS7d2CbHvvb//I7fe6vVtfnLW8PR+FqoKyzMiLEgkJVdMoiwJV1YCq/nyAoiioqqr+PPHzF3ukbs87LwrKsqAsxfvrPZRlQNxLsTYwDGO7tgpJ+uKzAMqyQJYVkMT+i+8uzjfLUvI8R9M0NE2jKiuQoCzKrQ/IKLdrlWX5i/8vxZqrquLt6fmsqqrBH+VzftBO8BI4/J6fD7av1VZV1W8AvwFwdLhf/Vf/xa+yWCzqB7+qKnzfp9vt1pc8SRI8zwPANE1kWcbSLVRVZbqYcnhwB5C5vr7CcRzW6zVFUXD37l02mw3eeolpmhiGwWq5Bqmk0Whwcz2l0Wig6QqDwYDA37DZbKiqik6nw2azQVagLABkXrx4wePHj7bOJmO1WpEXKaZh4zgunuehqjKu6xJFEVfjC5rNJmEY4tguw1EXz/MpypIsyWk2m2RZRqPRIE42TG5m9Pt9NpsNvX4H3/fo9QZUpUSWFeRlQpaUmKZJkiQ4jkOe52RZwvj6kqOjI8IwRJZlNNXAcRzOzy9xHIesyDFNHdd18dcrTNNk5YXs7u4ym9xg2/b2hGRUVSbLCrIsY7MJ2N3dZR2EaJpGlqQkSUIUhSiKxtHREZIk8cknn3B4uI+ui/ORK1iuPTx/ze7uLookHl7HNFksFrR7XTabDVBSVCWe59Htdlkt52iaRq/XQ1EUNNUgTVOyImW1XGI7DoqicX11w97BPoYhApHv++R5imEYSJJCWZbM51M6nQ5lWbJazvE8j3snjyiKguVyydHREb7vIyMjKdvAUJScn5/TbDbZ3d8hCWOev35Do9VAKnL2dg/IsowgCJAkCU1XMI0Gsgxrf0We53TaPcqyxHaazKbXmKaJadqoqkpR5aRpiqaoyLJKEKxJ05yqquj2xH2oqoqbmxuyLGMwEM94q9Vis9kQRylZlqFqMmmakqYxiiLTao9YLib0ej08z6PXHaCqKi9fvqTX7+A4jtj3dhsAXTMxTXO75pRGo0kWJxRFhuk0WK9XaKqFqurISkme51iWVa/vG7/5P/H48ftkOaiay4OHJySbBEXTmE6nHB8fczMZ03CaaJrGs6efcXx8jGEYbDYb8irn5uaGsixotmyadgeQ6Xa7BEEgApPlIMsyp29eoevi7qZpTJYV6LrOX/qX//XT78cp/aDL4W8CDyRJuitJkg78JeDv/KN+WdcNwiBiNpvh+z6vX7/ANE10Xefs7KyO6GUpooNlWbWjNE0d1VAZDnaI45gkSdB0RVyAXo/9/X2iKMLzPGyrQZmVLGdLNE1jtVxjWw0O9vYYDQYoKLx5fYrv+2R5gqrJXFxcbKOyjKIoNBs2X/nxL2GbOkUhIpRhGIyGu5i6jq6oFEWGZRvkRUpFwZ2juwz6u/R7QxRF4fWrMxRZY9gfkWUZWZbR6w2QJIWqlNjb20OSJPr9PnFS4DZ6BP6G1WrFxcUZhmYiy2AYGmkaby9vA00z+fKXPqLIJSzTJQwSZAVW3oySjJICRQLbMri6uCRNU5bLJS23SeivcRwHSZJIkgRZlknTnHa7TaPRwHJs4dSQiKIIwzDIsowHDx5QSSWSAhdX5xzfu4OiaPWZLdcelmWxO9phsZjh+x5RvGYynxBnMZ63JEkSpvMFL558QqvZIPAj2u0hjt1itVyTpQWbOKGk4u//vb+H2+hQFTKhH7G/v48kSUynUyaTCbPZZJutiqzVNi0ODo7QNLHe/mDEg4fvkacJl5eXjEYDPvn4m2TphmbToSgKvOUagN29Ea1Om9DfkBQph4f7tN02zVaHKA6pqoosy5DkCkO3to5IQVMtqqoiiiKyPCHa+ORFSprFhBuPLEt48/oliiTz7NkzPG/J1dUVjYZNs9kgjjecn59SliUHBwfcuXOHKBLPRxylpEnOZrNhE62xLIv5fI6EhqpqTCcX6LrK558/YdjrMptf8+z5Uz788EPhdDKRoX3jG79JFIUiMKxW+CuRXHz8rT8kz3PG4xtWqxVJkpEXKb7vEQYRpiWSi8V0QpVn/OzP/nn2d445ufceDx6eEEcpsqqSJAndbpfJZIIkSRRlxuXlJY8ff4DjtiiKgrIsiaKEwWDE/fuP6HZ2se0GlmUBsFwuxfq8BVmesLO/R7vd5PTsJWVV0Gq1yPP8+3ZKP1AnWFVVDvybwG8CT4H/oaqqz/5Rvy8rMr1eD03TUFWVg4M7eJ5HlmUcHh4iSRJBsAZKDg8Pabe6OLZLt9NHkhTC0Gd8fVlnimma0my20TSD2WxWlyNBEKCqKo7j0Ov1+PEvfQlFkuqsybZtDMNAURSGwyGdToe9vT02mw3X19dEUcR4PCbPc3w/JE1FNmRZFrquY1kGs/mELMtoNVw0WUFRFGzbptlsIssyum5y585dlksPz/MZDEZ1adLpdMnzkjwvURSNPM9Zr0WEluQKWYHHjx/j+z5FUZEkGbpusvIWXFxcICsFT58+pd1p8Pf/z/+d3b0BeSZhW20ajTabTUDDtSnLnIoCwzAwTbMui6Io4urqCl3XCUOR8Z2enuK6Lo2GzR9+65tURUaz4XBx+RY/mHN1dUW+CfjDf/gPiDyPIooIQ3+bRWYoisJisSDNM7rNFoZh4Ps+lmVhWSLD6HQ6uK7L4w8/otMZsfKmeOsZRVHQ7w8BuY78H331p5gvZ2R5hOvaBJuQ1WqFLIvMezgcous64/F4myGlLBYLVEWj1eqQ5zllWRIEAUdHR6xWa95/7yNUxeLm5oaiKGh12hRVSRj65FmFJFdcXZ6TZ8m2LFSQZVEW7u3tEYahyMpUlfl8jqbp9HtDut0+DadJRUGapozHY1T1i1LTcmx2d3fRNI39/X02mw1RFFEWKpZlEYYhEgqvXr1AURRc1+Xy6pw0i0HKOTq8R5ZltNtthsMhbqMjgl8YcnBwwM3NDe12m8ePHzMej2m1WqRZzO7uiJ//+b+A47h15t/udQGZO3fuslgsuHv3LmVZ4jgOpqbTbDRwLIs8S2hYJnES8eln36WSJV5dnpGmMc+fPiFPY4IgEM9I4NFwbRqNBrPZjKvrN2RZxunpKWEYYpomvV6PZrPJeHxJmsb4voemacznc87O3qIoElHgc3l2iqFqgMqPf/kjLNOm0Wj+YznBH6hE5h/XTu7drf7GX/8Vlus59+/f580bsUnHx8c1PndxfsXOzg7eeonbaNFqtUiShMVyhmmabDYbJBROTk74/PPnzGYThsMhOzs7hGFIUWZYlkXDadbOUAbW6zX37h3z8affxTZs3FYHz1syGAwIw5AgCGi323TbTRaLFb1ej29+85uMdndRVRXDMIiiiMlkQr/bJoqSuvR68+YN9x7cYz6f0+sOSNOUVqvDdHqDbTdoNpukabrN6HKCIKCqqu1rolywLJHBvH79mkePHtFqtfA8vy6hy7JkvV5hmjabzYZOp8NyuUSWZZIkAbnCWy1ot7rkRYqiqgz6fQI/JgjWdLtd2O5DVVW0Wi1kWd5CCQKLsm2b66szWt0Wvh8SxzH9foc0qeh2u5i2Q1UV+OsVEgr37t3n9ds3PHnyhJ/86KvIssz5+Tmu6zIYDCjLHMtyWK1WfPbZZ3z44YcYhoFlGWw2MbIMeV7hrSdUpcJyuWQdhNy/fx/HcaiKkvH4kk6nIwKIpmJZjsg8l0u63S66rhNtYp49+5ivfPQ1gnWIbdtEyYY8zymKiixLoKxQdQ3P83DdFoqisFotGA37SCisVis6nQ5xsiFLC2y7gSRJzJcLer0eaZyQphmHh3tMp3MURSIvUizLwtAdwjAkSSJUVRcQT7Bkf+8Qz/PEHpcZrVaLy4sx7z1+yPX1NYP+qIZakjSiKAq63S5xHNfnsVoGrLwJi8WcwWCHy8tLjo+PGQwGzOdzADrtHlGUoGrCYb9584r33nufyWSC67o19JTnojRXFIXFbExeCoc7ncx5+PAhilSxWCw4efiA3/+Hv0uz00SSFPZ3dlmuRcW1Wq2wbVvcyQJc1yVONqzXa5EdaxpJnDHodVgsFrhtl8Viha7rpGlMt9VFllXieMNkOqbT6aDIOkmS0Op2iKKIKPDp94dbLLYiiWI0Q+cX/sW/+odVVX31j/IzP9RO8N7do+rrv/LXtrV+WkcCTdNQVBVDUUUUS2OKSpSfy+WS6+trhsMhvu9TVrkoMYc7NJsNViuxwYpUYVkWq3VAUWb0O33KvCAII1RNEAmbzYY0TWn32iyXS4HZ5BX9brfODK+urmh3u0xnN9hWg6qqCMIVrZY4oDTJxUORxUgoZEWO53mc3DnmyZMntLotirxC1WRMw6bMSkzHFBey6SChoOuixG42m6zXa/r9Pq9evcB1Xbz1Ek212N/fZbFYMZ3e4Lotms0mhmEQxzGmadYPncjwNF68eMb+/j6yrBJFIbIiQGxF1kjTgiyLyfOSVqtFGPqsViv29vZI0xTbbpAkCbquMplec3M95c6dO8wXU0ajEVkKbtMkSwuiKKLb7VKW5daRyeimgaqqzGYzDE3HcSzG43G9p2mekMYF+/v73NxMSNKALC3YPzzCsRvomszNZEyz1aGqJKqiRNdVbNtmHYQoioK/XnB9eU0QL/nooz9DGIaEoY/neRwd7lLkIhOP4w1lWeKtl6zXa/b2D9E0gzBYcH15xU/+Ez9NkmTEcYxl6IyvL6GSa+xMkiQuLy8Jw5BOp8P5xSmPHj1iPp8zHA6RJIm1F7C3t0eSJJxfnNLvd/E8j+vrMTs7+xwcHDAej+n3++iazXw+JS9ENdHpdHBsl6IoyPOcFy9e8P777zO+Pufg4ADP85EkCdd10TSthml2RiITleSCIhU43SaJt0RFta2iAnq9HpIkbe+Ij6aJs1kt1yy9a+7sH3MxFs+TTMFq6bO/v08QenT7I25uxsiVTFklTCYzhqND+v0+RZmhaQpZVhD4omJ68OABALohSK8sLSiKArfpsF6vCIIAXbMZDHtEUUTgrQgDnzQLODh4CECe5ziOSxj6LBYzmp0u8cYnSwWxuVjOGQwG9LpD/rlf/Je+Lyf4Q902J0ky7VYXVdHxVr7Y3C3DelsGrNdrgX1snZau6/R6vS2oLiJPr9erGdper7fNhjKqSuBcqqpydX1NJcFkesFqtRLOrd3GNE1azQ5ZWqFrJtX3MLkXFxdUVcV6vd4+UDGbzQZFNpAllX6ny/npKbquc319zdXVFY5l07AdXr15Q384ZHx2hq0bmEYDt+kwGPbI85zj42P6vR0MUwOg3W4zmUzQdR1VVTk8PCRNU7qdIWka43kejuNwcvJARNs4ptVqYZomFxdnZFnC3t4BpmnT7XZ5dP8RWSyA9Z2dHbH+KMX3Qz7+5A/Y2dlhvV6TJAm7u/s0GsKphmHIk6ef1MydJEm89957vHjxAlmW8dchuiERbTI0zcB1W8Rxynod1BnGZHKNqqqYponrujUg32g0UFWVwWCXe/fuUZYVrVaDo8Nj7t49EcxyJjCwspD57LPPUFWVsiyZTGas10Fd6iZpzsPHDzk6ekgQBMIx+j6NRoM8zzFNk6LIttmDRK87YH/vEF3VMDQdSZK4/94HvH71gs0mwPOWXFxcYBhGfdaGIRzG3t4eH330Ee12mx//8lfodvrcu/uQVrNHq9mp7+P4+pL9vWN8P0RVdT784CdQFZ08ExhfVVVsNgGyAru7u7z//vsCNyuK+t5/9NFHyAo8fPA+eSaIwNsKYzabEUWRIDmWMxRVQlV1NkmKrOl0u30Mw8I0TRzHod1u15i64zhsNhuSJKHRaIjsOIp4/tl3uXv3LqqqkmcVl5fntHtdmq0BQRBs74RPp7fDweGJCPhpSlEUXF1dEcdxXXrfwitBEOB53raisSiKgs1mw+vXrzk7f8V4PMY0TQFNnDzCcofc3IzJsgRFkUhTgXW7rothGHR6QyzLwrZtdkaHuI0m6/Xq+/czP8yZ4MP7J9V/8O/9O2w2G07uPRDYiSxz7949qqpiMplgmgKnirMUy3RESbBaCeZWlnEaFhTioP11hKohWGE/IcrjGpfpdrsig+wN2WyElEPIaHIaTVEqr1cL7IYoN03T5NmzZ+zsDhluiY3JZIKiabi2C1KJ5/sCdO+2KahYLjza7Tbz+Zx+v4+3XjIa7jKZTGi1WgThmk6nI8rVSiaKEjbRmn5vSJIkzJeCIPrShz9Blgn2tygKZrMZjulQVjkC3paxLIs8T0mSjKurC46Ojri+vqbb7fL06VN6vQF37tzZEkkFy9Uc0zTpdoZ1QLnFBsfjMZat0Wr3ef36Oa7TJNk+bG/Pzrhz5w6KKnF1eY1t2/UDlBcpEgqO6dRl04sXL2h3W+iqwABd1wVK8jQliiJUXSfYhMgoJEnCaDRgtpjTbLYp84zZbIbbalMUBQ3bQVVV4lgQD44rHFwUiVIxSUKGg30kuUSWRfYRRRG+txKsqiwRBitUxazxzqqqaDQaGKZCmuZQiTzhC6kHZFmG67pMJhPshoOiKITBWuDHTosgWCNJEsvlkkcP7xNtEjZxhGWYSJLCer3C931sRwSBLMsoigLTsMnzHNsx+fZ3vsPu7i5N12U03GW5mtfSoTjeMF9c49htNpsY13VJkgTbtgkCwban28zo7ekLup0BgtVXWSwWTKdTer0eg/6I1WpFu9PgzZs3PH78gZD9SNK2HE2pqgoqGU3T0HWTq/EZrutSFvDy1XM++OADbm5u6PeGAvtc3AAyji0y04Zrs5gLh3Qr07qFqfI05vz8lOOTe/h+uHWSJQ3LRjV0DNVgHWzE62XOJtmQpgmD7hBZlrmeiqTAUBVM067L9yBYo+s6f+Vf+7f+/5AJSnX25nkeR0dHzOdzlstlTUSUJaxWaxzbrfEUVZY52NsDqcRt3FLrfVRV5d69+2w2MevYY9Ad0LAajPojGlaD5hYXHI0GBMGa6+vr2mmlaYqs6jSbTVGGeh6PHz9G1/X6wriui+M4RHGIrqt461nN0kVRRLPZ5NXrF6z9Vc2kXl5eMhgMUBSN+WzJfDJns9ng+z5R7GPoAghXVZVRb8jR3iErbwbAZrPh7du3RFHE69evBXi/hQeiKOSTTz5hsVhgmjbz+ZJ2u02n0+Gjjz7i0aMHZFlCEAS8fv2aqpRouu2tpEbgUVVVcHb2FsvWmNwsuLx4S8NuoesiU2q1Whzu7zOfTplMxrhNiwcnJ1CW7O3tsV6vOT8/p91p0nBtXrx4wWg0QlNUoiQmzTNkVSHNM87HVzS7HcoSLMuh1WrR7/eZTqdoiorrNNA0rSY5WnaD3/u93+PJ0+/grSeUVLzdKgbSNEWWZXZ2h7x6/ZLpdFrrBi3L2rKbCVUlIUs6pqWTZjG9foebyZgkjZAlC9d1mc/nNUY7n8/RdR1vvWSxnOE0LIIgII5jok1ClhZoKiiSzHC4w97eAbPpgsVyxne/+zEVhVAIWBaDwWBLnvhUlSh1VVUlzQQmWyQpZZphGKLE9X2f5XJOEKzRVIvAzxgMRhwdHeE4DlBycyNIn+l0SlEUfPrpp7SafVGZyALfNQyD+ycP6bRFdrpcLvmd3/kdwjDkW9/6Jg3L5u2r17x9+5Ysy6AosSyLly9fsvYXpJs1uq5us9URb968ot1us16vSdOUg4MDbFvIfW6x3Vt8UVElNpHIylVVpdXt8OC9R6jb56rf79Pv7fDk6Wc8/ewTJEXDW86RKfG8JZblcHh4RFkKSc7Ozg43NzeMx2Om0xskqaqrtFuN6fflZ36YM8GTe3erX//Vv0mwLXMVRSEKQxaLBfv7+3ieR783RFc1Krnk9PSUXk/gCa7r4rqCEbvFE6uqIo6Es0rSaCtDSdA0jZubG1qdHkWWsbOzA5TIqs7V1RXecs7+0SF5VtbCXV3XUWWZRqNR45DdbpfRaMTZ2RkHBwd8+9vf5Gtf+9N8+umnHB4eEqcpWZ7QcJpEYUi73WS2XFDkFUglti2i5mg0otvtMp1OSdMUP/A4Pj7mxfNXqKpKu92tMbX333+foiiI403NSvd6PRaLFc2WzXq9Zrnw2N3dJ8sShsMhUZSwXovPqSqJt2/fsr+/z2q1qi/P3t4enrf8v5X6o9EIb70kTbZYoe9RSQqmJjRaqqqyXIkgNdrdZTqdEscpH3z4iNl0garqrFYiC7u5GXNwcMDV1RWu69ZC5ShKiOOYg4ODLX6r4vv+Vto0oCgKsiJHVzXyMiOKQvb3D1ksVliWRVmWQp5SC4+FfCpJEnZHO/i+z9uzN7iui6JIOE4LVVZQFAnDMEiShPF4zNpfYRgag8EI22pgGELaFEcptmOiqir+llS5zUBkWaWkwjAMPG8psjvTpOU2mc5ucOztHi2XNWbreT6WLTMeX9NstpElFcMyybJMfMcixjTtbWYpMmIRQFXyTMJpGNzmMvP5HFmWGQ52eP7iCXt7e/jBCtNwMU2dOI4RjHrKJopwbJM8zxmNRrx9KzL6JEnQVANFFfu3Wq3Isoxms0mSJDz5+Lv8k//0nyNKUpJoQ1nlRJsE1zEoUZkvpuzu7orKZT6n0Wjg2C7T6ZSGKwiSw4M7LJdLVp6AQUzDZrGc1YmEqsrEcYzrtjg7O8NxHFRJJssSJEna3n+Z09NTVFUw5o4jIKA4izk4OCJPYn7uF37pR58YOTzYq/6jf/+vUUkSd+/e5ebmhm67TRzHdTRQVZWlv0aTYH+0T5TENNsigs/nS+7fv18zqmEYoqmGKG3KhLMzQeEPh0MsyyFOc5IootfrUZY5k/mMMAzJ4w2t9gDLcWqFvaqqBOs17Xabm5sbDg4OhP4ry9hsNhwcHLD2AuJkg+M46LpgAeMsRpE1iixDliErKizLqS9cu93k7OxMOCiKunQQqnhJ4DhVTpoITK4sS66urmi1WjUD3O12Wa8DVqsVjx8/5uln38YwHAajEaenp+RFTBJXHB0diW4LWUZWFdbrNbujHTabDaqqkiQRq9VKiJm30ftqfEG/NyRNc+bTG3qdLou1V2OVruMIXMp1CYINuq6i6QrTyZzd4a4QpPtrFEXo9W7x3SgQ5XVZlhiGwcJbbVnPgl5vIBxqEnB4cJfV2sOxbDZ+gGwoGIbAg6bTKU23xWQyoeE6qIoIWG6zwaeffsrR8TGSJNFsNDg7O9sSbAW+t8bQHZrNJpqsia4LVcJxHCbTa3RNOL2izFh7gehE2pIRtyVqFIdQybX4+1YEH0UJtmlsdYFJzb6CwPNUVeX88iU7o31Apiwg2IRUVYFtWcRxTKPR2DK7oqwPw5Cjw2MROORClO0Ipnc+n9BouDi20NzlRUQUh5yfXTEaDTFNi5dPn/H+l3+MqhKVlhB2C/3i4eEdlguPLE9qxrnhCMlJnudIiszk5gK5yjAbPbKsYuNf860/+Ad89JM/jd3obXHkXXzfR9M0TENIzJAEbjmdzDk5OSHc+OJ+hzF5IXC+QbfH8+efYzqiweCWDc+ymDiMGI1GRFGCpgl1gNAOCplblm9odwdkWYEqwb/wl3/5+3KCyte//vX/77zY/0v7b37jN77+F//5v4Aiyzx/9ow7R0four6VgOQslwusho0klVimgapZ9PsDFosVttXAbTQBiauryzrjgIzp7JrX528ZDEfYZmPLdqYcHhwgSQJ4dZwGRVZgGQaP3nuMpqlYpkWv2+Xs9JTBqI+q6sxnsxrUPj8/J89zWq3Wtvx1kbfZ4mYjnGGcpHz++ed02m08P8C2Gzx/8YQ8zzk4EJqw/f1DOp02RZlzeTHm6OgOSSIA/52dHT777AmbjRBJd7tdZMB2XKJIvNZsNoEKRYU3b15x5/iEVrvNy5evuX//AYPBkMFgyGw2o9VycSwT0zRoNcV+aZpoSxoMRsiygqIItvzm5oYiF900jtPAbbZI82zr+GMODg7xVkvsRpMoird/22KxFFmnpChMZzNGgx6VVKKpei3nUXWdLE8p8oJevwWS0BH2+wMURakzhqIQziEMQ5xGg7W3Rtc0Li8u2N/bI4yPtWArAAAgAElEQVRCmq2mEM8bBkVV8OrVCw4O9kmTlJ3RqL47e3u7GJpOnhd0ux2KvCQtM2bzG0zT4M2bl/S6Q0DggGmWYNkmvcEIRSvRdR3bdrbBWMM0TZquK7L54QB/7fP55x+T5Am93og8TyjKnDwryIsUz1uhaooopbN8SyjkGIZO4PtC1G3bddBNkhhdF9IrVVNYrZY0Gi55nlIUJZswptcbomkWpmngeR6GYQMSu7t7aJqOpuncf/SINCmQJLi+vkaSJDodQZLc3FzT7rRrWct6vUbVFHx/TRKntJpNdM2k1R4QBD6moYGk8bWf+hlkVduSWS1OT0/p9/uYpokfrLm6uuTy7JThaMjBwRFxHJNlQvJVbctdBZmCCsOySDYb/LXHoDdgMZ+zmHtUVbEVogtsV1EUptM5zU4bCbCtBqZtU1UV48tL/u7/9tvjr3/967/xR/mZH+pM8P69u9Xf+I//w22EOhSqfW+JLKtIUoUsq/gbnzAMaVgNVEUnin0kuaQsFCSpQDMNhr0dHNvl/OKUOI65d+8ei8UM22qy9kWLmKYpxHFMGEb0+33G40ts06KQZJrNJkGwwXUdgRklCa1mh5cvX3Jy55goipBVCVlWa51ep9OhuMUmypLxeMzxNhO5JVxWqwXd/pA0TbkaX7Az2tvq0YQM5uXL59y/f3+rXyuwHRPf91EVHaSSJM5wmw6GbuF5Pooi1aTO9fU1jx49rkvcIAgYDvssljNazQ6yrDK+uUbThASn0+qiIKGoEn4osrInT55sGVuZVqvFfC7kB7pu8vHH3+bu3bsEwYazs7ccHBzg+z73Hxxv92fAdHpDGIYcHu2TJjkgE8cbQZKcnPDs2TM++OADXrx4Rb/fZz6fsrOzw2rlc7i3TxD4KIpKGG9wXZebmxsGgwGu7eAFPr7v1+1St1ifbdv4vk+aC1xzMpngOA5JkiBJFWUJSSRK+2995w95/73HmJpJuJUSSZLAWosi20o31rjNLv56QeALNtMwDCS54tvf/jZf/tJHuK5gY1croRcF8NchAM12iyLf4omayc7ODvPFDY7jomnKdl0Km42PY7epKHj9+jV7+4dCTqQpbEJR+Vi2UfdLJ0lCt9MnikOePXtGp9NE03TSOMJ1Hbq9fZAEZn5+8RIJnePje+Iu5QImCDc+Fxei6mi1WnV5nmUZve4Ay3JYrKbYuoGkaERpQKvRJdz4TCYT9vb2eP78uSBBFAnDFnrb5XLJaDQCQJIrnjx5UpfakiRgB9d1RZtfHDMeX3Kwu0deQaPRQFd0VF1oActKVCpZljG7uabX69XND4PBgNPTUwaDAaYp7mkYhrhuiyxL+MVf+ld+9Mvh+yf3ql//1b9Z939eX19z7949JpMr4jjFshyCYL3tkS0ZjQZsNjGLxQzLcghDnzCO6La6NJwmiioA2jAMkSWVioKdnR0WiwV5LnDD246PVsvFsBwuTl9S5CW7u/skRYkkVwRBgGnYDAYDXr14wcOHD5lMrtnZ2aPcOrxut8s6CGg0Gijf0/MsQGyoJIk0i2k2m1xcXDCdTjm594A4jul0OjWe8vbtW3Z2dnjx4gUnJyf1Q+8HHromejsN3aKxlQX4vo8sy/T7ffJCPHwffvDjLJdLwtCnP+iyCWOqSuJmOmFvZ3fLME9oNgT2FaeCHBkOh6KrQlVr0bdt21yOx1RVxcOHD/m93/smX/nKj5Pnea3TFI5TxzCErnM46vPJx59iGFYdbJotIYeRJRXDsHj9+jXtdhPDsMiyhCS67bbQaXf79QNkWRZSWWE6dk2O7e/vE4Yhvu/XXTa6rotSeOsggyAgTWMGA9GSKPrOS549f0q31UU1VIIgYNAfbVuyZkho7OzsbNvyfovjO/eRZaERTJKEdruNpmmMry9FdtRqcXr2RhABmcBNp/MJ/e6gxiYNw6DZbNbdMWm24fT0nLt37+D7IZpuiw6j6ZjRaMhkMsdttATRsF4ymUwYDYfiHC4vMU3hWKuqYLMRMrA3b15x/+Q9Ts9ecefOXXRdJcuKmhxKYvH9G67NZHK91aEWW5G5VEtWLs6vGAx7aLIEikq4iem0m2RpIcrdwGO1WnFzM+bk+IQoTahK8f7hqE9VVcxmE+4e3RXysKZbKwJM0+Tt27eMRiMajQYUOS/fvMW2TRQU4kToLiVFJwgCALEOvpgPUBRFjf9OZ9fomkW/39/eM42f/Wd/8UffCZ7cO67+1n/2n9Ts6CYJ2B3u8/b0GSf33sMPI5F1tFqcvX3L/tE+4Vr8rqqqNSB+yzKaho1lG8TxBsdxa53YrXzgVrBrWWK4gGjgzun3hwRBgGYaxFHK0dERs8mkbueTVAlNNcjznHizYTab8ejRIzzPQ5ZUvEBoonZ2dpjObphNF1iWw507h9zc3ABCB2gYBq9evSKKIh4+uk8YCKlHs9ncTjIxmEwm7B/sYlsNptMpR0dHPHv2TMhr2j3R2yypGI5NEsXs7OxwNb4Q2i+rQZJkfP7sU3Z29zEMC1VWaoewWns0bAdF00mCDVEqHvRKAkNWefr8KQ8fPhQyFbfF9fX1FsjWkOWKm8mYu8cnFEXBxcUFnU5PNNdnZS1yNU0x5WYymVCUmSjtVJVuq73FP2NM2ybLChxH9IqOxzdbtroSJWezySeffMLR0VHdnmgYBkEQ1EMjGrZJkhW1Fk3IaCRAZnx9zp2jE2RZJt4ErNdrTk5OBKtaSSiKhOs4FJUIeCKbFERKs9lkNhOsf7fb5dnzz3DdFlIperqjJOHi8gzTcnAcC0WW0TVbQA9tZ6v5y7i4fINluvT7Qlye5SKDn82XKIrCaDAULWS2xdqbE25iHt5/xPXNVd3SGG5imq7D9fU1nueJFrtQBNY4EVmW7YiBGHt7e4LZ9jwURWHtBRzdORB9uptEdFbJIsscDAZcXp7jeZ4ga2QZRdZEYInWRFFSE4KA6OLYagBBDHOQEK2ht4TQcjUlz0s2mw2PHj3aDrTIawy47TZ58uxz7t69SxylqLLQE7Z73VqxYBsmblPAA3GUoBpCf9tpdraOO0CSlFri8/N/8S//6GOCv/a3//bX/8yf+lqt0Tq7OKXZEG1xRVHSHwxZLWa8fPGcbn9AEuf0e4JV3dkRTOBtC5VlWZTV7UZV217FN/T7A2xbZGe3Gr3ZbIqqqtvhA4Lx+j9+67e4/+gR3motNIOeRxiGrFdzsrTgZjIhTVMG/T6qrrPyPPz1iqIsmM3nNXAvKxKWadPv9/j82RN2d/bE9JUsI0kSFEVhb++Aq8urulPmFmCez4V8xtBN5vN5LQDe2dlh7fniYVRkFE0ljQU757ouumaQ56J745NPvsv+3j6ObZOlee08dN2g4TZRFQ1yASPc9k6XaU6lyhi6SZKkRJEYzqDrGq9fv9qC4GvarR6SJEZuiQCh0Wq5SJLKcDjCsgziZEOeFSgoFHnOcGdIpz3g7ZtXaJogOYIwoqoq2u3WFpx3WC6Xtaj76dOndDpChFxVBa1Wk+l0VvcD53nO+OoSt9nCcRw+++wzRqMRl5cXdDpdHNNitVwwHO0wndygaZoQywMXZ6/YHR0QhD7L1RpZVuj1uhRFiSRRazPzPOf8/Jw4DDi5d0KWpSwWc+yGzXzmcXR4SL/fRVMNiiLHskzKoqLhuJhmA1nSOdg/wvMW3EzeMptPcRuC9cyzFLfZwA/WUJW4boM8L5jcTFitROujaZpkeUGaZPS6fQaDPr7vE0eJyAxLUBWNLBM/x3HMer2m1+sxm824c+eYyeRKjFyrClGS7t8hzRKyLMOybDqdLkVebYPBinDj0+uOSJIU23bQNBXXdamqirOzMw4PD8nznOVySbxl+W3L4bd/+7fZ2R1iGGJS03w+rycd3WbHURLTdpucX17gNpqURUmn0yUKQygr2p0OoR/grwOurq5Y+x7rbdVz9voNUbwh3ARYponnrTAMnf/+f/w7P/qY4KMH96v/9K//CrIs02m1ubi6xHWFhuzzzz/n8eMPRCqfVximJoSwvk+7LXCJ5dKrpR3r9YLLyzeM9o5oNYcYmgDbbxveNxvRf6kZBlmS4PteLTdZbltx0lQIoLvtL/R0AJKifNEHGYWUyCznU3xvxWjnCNUUWEW49tk/OhTDEyxBlmSJYAxvpmKs09nZGXsH+5yfnrH2V9y7ex/HcZEkMTdOsIN+jSsVucRmEzAYDHAch5cvX3J8fMzr16/p9Tvomil6fLeax9shEkGwxjRNqqrCcVwWixnz+bKeTCImeUS0221USWbhe1yeX/BjP/ZjWykGNXN9m2m1Wh3Oz09ZLFb1ZBXbtsWghDQVmFGjwWw2QVMUut0uv/mN3+Tk3iPee/BQjDXzPIbDIWt/Jc4iy/B9URppmrbV9xUiM9cMhsMh19fXAHVboRilZtRlU1rkJEnC3t4e3/3ud9nf3yVJMoqqpN1skSQRaRbjrXyKLGGxWDDaPWS5nHN0dMT4+hxFNtA00b3TaDTqbEPTNLzlEsMwtiPJBKNfZBlpkhPEa54+fcpPfvVrpJFgQPOqRJKqWuUAYDumaCXbCrFFoC/q8VSaptXa0tvzqUqFKAqFLCwWk19evXnJV37iq4S+yARNSyfwN7TbbfzA23bnNLe42ReDLIbDvhDFWyIhuF2XkIOpRFHC/v5+nQUXRYFlOmiaxtPPP6tlXa9ePWdv7xBZUmtIQpJF0mHbdt3Rc3v30jStx2nJlGwS8RxKKKgyJEnEZD7Dths0LJvTs9fcP3kkZihSbNnjAlMTQvDZbMbh4SFJkvBLf/Xf+NEXS+fbmv+2cb/T6dBqdfjmN3+PTeTz/Pnn+L7P06dP+d3f/V3G43E9F01RFAzLYrS7i2nYrFZrTk4+YNTfocxT4jhmOp3WGr/bqDSfTutLd4uFuW6LqpJ48eJFTWoIzZUYPHkr7ZBlmfH4ElkRMw5LFGQd8qxk7QWc3HtUf86tiNRxLDHH7t69WgD65MkTdnd3OT4+rsv6zUYQClfjMy4uLuj1BjTdNoap8PbtGUmS1OWpLMsMh0OqqsLzPD757neI4lAwfarKp59+wnBnRJpnrP0Vr169oNFobOUHAmK4HZyQZRkrT2Cmqirz9vQ5ti2mfNx2CIgBARrLpZja8vjxYyRJqjsU4jhmMBggyzKz2Yzd3X0c22U2XfCnv/YzvPfwHkkasYkCdnZ2RGkTxrUEaH9nlygI8TyPPBcDJcQDa/HkyZNtH7Ney300TSOvyvoMTU3HUMUcO13X+fz5U+I0+p4BtGIgxHA4pChTvvITP8XOsM+XvvQlVqsVjx5+wMHBEaPRiMPDQyHzWa22bW4C5vjCQUuUJbx+9ZZwI0iGr371q7XEKEkSylIIh1ttF9sxMS29Jr9uz/H07Tm6ZtZ3f7lc1h0vt8LkMAxrJ3nr8L/04ZcZX11QVjlJGnFzc1OPoLqdiBR4a6q8QFdUAm+NJIn5hAKj1em0ByRJxMXlq3o/9/b2mE6noqNlK4YW7LjN/ZOHdZ/94eERlukwnY1Z+wtW3qIeTBKGYrLP559/jqIoeN6S6fSGioJgveDv/i//M1ByevqGy6tzyjKvP3s4HJJlCR+8/yGr1UpoOZcrsjhh0O1RbKVmDx48Is/L7xl++0fbD3UmeHLvuPov/9Z/znw+ZzQYAiVpniEpGraps1yKGWyiP7GLrqssFiuRSWxFvp7n0Wg2OTt/y+7OIS3XIY7jevTRLUB7SwKs1yv29g5YrcSDf3DnmDhKMTSNVqfD+ekphmHQaDS4vBQTSyRJYr1eIykKk5tzLNOm0xnguC1MU+f169diCgtQ3DLD3gLLsug0WyRJRqPZ5urqgtXa4+TufaIo2pbtBYeHQjpTlkKecsvMvXr1ClWT2ds9EENQt6OjFEVjPp+y2ur3mg23lujkuWghbHc76Oo2im7fK9T2X4DNmmESrP1aM7izs0cQrvj4O59xeLhfd/B0u10xQWW+xLKEqHgxXXB0eIymaazX6xr72SQxtm2L6TK+T7bNeI6PjwlDobWzbRtN07i8vKxZUV3X67Yy3dIJ65K5yWQy2U6YLmsSTdd14lhoQ3d391mvRQdQHG94/PiD7aRqkzQtCAIfwxBtYZQ5sqSxDr269L0lZM7OzgiCgA8++ADD1JhO5vXwAX+5YjAa8ubNGzFBZzv38lawfeukF4sFQTxnNDjGskWmm+c5eSZE3oYp9qvdbovOHJQ6k8riTMAQps1qvSRJfNqtAYZhsF6vaTaFNOj3f//3+drXvsbZ6QU7u8O68+p2VJggLGYc7R+IQGHohIEY8ivgg094770P+Pa3/5Cf+sk/xWo9pukOaDabNbF4Cx1dXF6yu7NT930nm4i8KrGtBmG4HWYRePUE7NtBsLfwUBSEOE0XKpnFbMJob5fz83NaDRcUmU6zJSbO6FodRDRZqScjlWXJq1cvSLOEk5MT5C0muFwt+Cv/6r/9o0+M3Du+U/23//Wvi5awLGc0GqAZOq/fntFpuRwcHImBBYqyHVWUMLle03AtHMfZlkwaz1++5P6De6xma8pKRDLHceq0/LakUlWV8/NTBoMRURTS7XZx3BZPnjzBdRzWQcD+7i69Xo+Liwvm83ktjI3jGHk7Er4sJTRNpdvt4vseruvyySefkCQJRwcHPHr0iPPtAy5JCkWZoGs2eS7WczMZi06ETMwQ7Pe7nJ2d1Thnq9UijmPROXOwS5YWzOdL9g9Et0rTbeOtl0iFQqfbQtFEn+7e3g7T6ZxXr5/RarfZBAm9Xof9/X2KQlzSb3zjf+XP/tk/y2KxICtyQj/g4cP3WCxmHB7e4Tsf/wEPHz4k3lTohsRkMtkGkBXtdoflaoKuOShSSbvVFZKebTZbliWNVpMoCrm5uWF3dxdv4Qm2NBDwQxJn9RzGWzFxVmbCiWw7f5Is4/nz54xGo1qwHEVRPYbs7OwMSZIYDvvb/leJbre71eEJTaMY6JnQdLtsNgGGqVHkIkBJcoVlOsSJKPXLgrr74xaj3UQBgb+p74+l6WziqCbldF0niqKa5dc0TYzDGgxQNIPJZIphyrWj3YSxKKdzMXT0/PycVqvF2gtIIkH2IausZqfsHZygW6JH+xb3vZVFUQk5SbPVQJbEvleIDDMIRDW1WIiunY0fCGfSGxBFEZZtMOiPGF9fYpkuVVXw4sULLq+f8TM//XMURVGPkRsOh6iSyuV4jCRXJJuQhw8fEoYR19MJWVrUsqlW2wUgDH1evHiB2+hQlAm9dgdJMzENDcMw+Ozpp3z0E19lsVjgmBavT9/y+OEjwjDEdhtMxldIksLu7i6yLBNFEYvFAk1TeP75MzEVZ9jjwYMHyJLyfY/S+qEmRn79137t63/+n/lzYmZaEiPJMnmecefoDnkuRqAXxf/F3Xv9yLam93nPyqFW5dRV1Wl373z2nDmTKcqkaMmSRVMiRQGWDAO+kW8MGL7zHzBXtgEZsEgq2HCAgyAbpiFBzoEwRUtmOpw5acfOqaq7unLVqlq1si++1TUyfDOGZWBG+3rmNLqr6qv1ve/v9zwhaQrvPhwRrEOaW4Ir9hBJERgr4RKZz8ds7+7hByL0eXz8gVKpyHg8QoSENTRNpZjPUyg65HI2b16/prHVIAgD9nfFvCyKIu4GdzhOgd1sGJymKZcXZ7S325iG6J1Op2OSNGJ0f89Wo00unyNOEt68fct2u81gOMR1F5RLFRaLOZdX54RBxHK5wvfXrFbLzMkRgRTjLVeYVg5FkXGXc6IwppAvM5lM0TRRK6xVm6iqgqoqaIbKXf8ez1vhOHkkSYSed3f3URWVfN6hWCwzm805OTnC99d8/PEn/PY/+C2q1QrLpUunI4Ktum7Q74s5ZKVSYTobZzMs4av4UWc3oVSqYVo298MBpm0RJwm6YbAOfIIgYDqd4Vg5fM/Hsg1yjo2q6JnPQqHT6WBZFt56SaGQR5Fl3PmSRJLQdGPz+1arNRRF5uT0iFqtjqbpfPnll+RzFnN3LHqqqoJlWnS7N5TyRdyli21brFYe49GUUqnExcU549GEYL2iVK7gzmZcnR0T+T4oCrIsYVoGgR/S7/fp9/tIyOx0OlSq1axLnTIcjjLohE4QiJlgs71FFPqUyyVmsymmncM0xbKk2dwiimJyOWfTuAkjcc3d3d3l+vqa4WjAVrtFpVrHsU3anX0kRSeJU8IwwsnlCcMAUhlV1bLYVZ40EddBTRdNoHw+j4JM6Pu0t9p0e3dcX58wGg2xbJvRcEylUuUP/uAP0DQdEHi31WLBNz/5LrPJmIvrUxwnT6e9S7FYQiIhZ1tESYwqy6zXgWjWhBGPDw9YeyvGkymz2VTEahpNck6earVBPm+Ty5Wo1cr46xDfX5MmMScnR1xeXtDe3qHXu8HJifmraRm4qyXLlUeQVQoNw8jecxKNZpPtnR3y+dJmNPGbf++//+lfjDx/+iT9a3/138K2heRGV8UWKU1TLi7O2N3dZT6fZv3BfHaFlAiCNbVajXy+mLUcUs4vTnn69OlmmXFzc0OtViNJEhqN2gYL5LpuFridbYbvTrEg+r3AbfeaV69e8g/+0f/JH//ez2KaOgCut9oMdCejAeXiFl7oosoyi8WC3Z19ojTipnvFTnuHwUDQhG1HLA/6/QEAxaLYtqXZk8d4OqXbu+bZ01eYprHpnUZRIILXxAJHNZoyGo1QJZWtjijmd7tdHj16xHQ2Jk4SZBSKRQFAPT85pdHaws7pFItFbNvm88++JEkSms2Hp9uVmF0VBc6+Uqng+yHT2TAL+oosofjbyNmAvSGWMtUqtqkyd1fk80V+//d/l5//+V/A95ZMZguADPl0x/7eU+66glxdrlVJ05TRaEC9WiZnF+kP+6SpoLIIZt8Je7uPSZIkI3OraJrCbC76uoaeA1nCW60J/DWGqqFqMrOFeLofDoc0GiKCki86pDH43gKQiQmJQoiDBaTialWrVul2u2zv7BElgqoyXwwJY4k462Pf3NxQq26x9lcUCs4GQfZHP/whzWYzk3iJ955lWaSpRBgKVYNgLa7QNA1Dt34EvpUSTE1nupijaRpFR7w3BuMRay/AtHRBWPY89ncOSNOY8WyavcYL5vM5zUaLtS+IQA+fdXex2lxpH+I2vu+z8lx0RadSqTCeTnnz9iv2d7bxPNGnPzs74qOX38ALRSbTyRXw1kvCtQA9PNxQbNtmPBwJD0/oC7KPu0TTFCxLLFPCJEZOwdBzqBpc3lxnM/8iN5eie//VV19RrQpk18H+HsOxgMJqmmjn9Pv9bLGXQ5bJMrYC5TWZLfhX/sq/9tP/JPjrv/5r3/9Tv/DzHB19wDRNBvd9KhkbsFAoMp3OsuH/nE5n+0fbKEmmXK4wGo3o9/usvCW7u9vouobvByQZ5eSBODGZjDd5PHc5I4wCFvMlxWIFz3N5++49hiGuPaapsJh7NOpl1muPer2RLVcGWJbNu/dveP/+SwrFIqPxGEPXs5mZDDLc3fUp5PMUi2Ucp8BoPBZxhzDKmG4iJOzkciLBP59zcHDIdDrGti0WizknJ6eEYSCQSWufcrGMJMuUy2Vq1ZqID8znPH78GEmSuDy/wDQFtl7MMSvs7nQoV8qQSgzuh+RyDsulx6NH+4RhlMmsqlimiBZJyNze3rJYuMiSjGXlMS1dHAhzN2u6TFnOF9imRS7vYOgqQRiRzxdQVYUoipFI8dYCkZWmCfl8kfl8QbvVwnEcXr99Qy6XYzIZM7jvQypj2ibT6YxarYZt27S2toki0dHudruEYUSvd5sBGFZYZk7EoTyPWrVM3skLc58UoygSuibmwOPxmMD3ubk6R1MiQt9jNp6iaRJuRlwJw4D5fMJkMmYxn1OtV5EljelsSKu1iyLLpCkcHBziLmfolsH7o3e0t7aZjGc0thoCvhBFOI4jetoKRKGIJ3lrkQ986J0rCgwGfVRNJWfnSeKIpbcSc253gZrNxraaLYIgRFFMOtsiIvXu3VtK5bIQjA0Golgw6AsgrGVxdX5BpVwmSQWctFAoCEqPrhAEHoZuY2T+nvFoxNdefUShUKRSES2Y6+tLOp0tur1b9vb2SNIY153TbG3hr1dIEsxmghgdJBEJ6WYDLaWQy9kkidiKr9Yeo8GQhTvB89YkGZfz/v4eQxP5v29+85vIsojQOHnxRPiwkJpMBBVpe3ubi4sLajUBTnl4n7vuhL/79/+nH+tJ8Cf6EPyN3/iN7/+5X/zTlMui5qXICitvtZH+OI7Dcrmi1WpviBK2bVOvV1ks5tzcdKlWq5RKJaIoZjabslotMQyduzsRwM3n89x0z6hWa7jLOSQpw9GQ3d1tLNOiXt+iWi5TyDvkbAt35qIqCuVKFVXVuLi4olgsoWSzoGajze7eY8aTKYZlIGUNhi++/Jxq1qW0bJsP71+LAK+mkM8XuLi4ZDQaiAyYpRMnEqqmo+sGr19/xZMnT4iihDgJ2N3ZZTgcs14H5Jw8kpJy27tHNxQ+HL+nVm2Sy9kZ8t5n79EOmq4S+Al2TsU0LeR/7Ns/CH0s06ZQyJO380RJQhT5SBKYps1kMsH3w0wpKbG1tUUYBvi+mNEZhs7NzTWPDnaxLUP8veMIRdW4ueltWiJbjTpxlNJuNVl7HqQpC9fF99dZRlDHyYtFR7lcAknGXQoqs6oqBIFgI759+4Z6vZllGy103eTgYJ/Vai1sdorKydExhXwB287hrpb4QUgSRaxWAhc/XwypVZsoiowqJ6ymPUo6yMEYf9pD8lwSJFTbplis0G53qFQq3NzcIukgyyayLKHKGrKkcHLygeFwTHOrxVZzG003WLgu67VH9/qadqvJcCQ25YvFnPFwhGlZGIb44r66usK2bUxTXNUlSWKr2SHwfbo3XXFAL2YkSYppiIVfvpBjtZptAMH1RhNFSqiWq/Ru+6zXPmmasL3dZjZ1yRfzXN1cUy6XGI2H3B2DDowAACAASURBVN72eP/2DU4+n3WQQxGRkSS22k2+ev0lz548yw5bhXK5ynA4plVvCKtckggFpixzdnaKadoUnBxRGJDECXnHQZFlkjjF9wOury9pNhssFi61SpVisUgu5+A4Do6dw9BNxsMx7tylVC5xeXlJa7uNksLCXWz0ErmcaIPl8w4XF5c8erRHmipEUcDb4zeYuoWqaPzXf/fHywn+RB+Cv/Zrf+37n3ztZfZkMOXR/j4pKbVaLZMKxZumxUObQtM0hsMB19fXVKu1THRkZTRaMRfzPPHILob1EcLpq3F5cUU+n8OyLYHmT0BRVG5uxJA6DGMUVWW+WNBoNInjhFKplA3Zk+xnVtA0lfF4xOHjx1TLZYbDoVBEyjKSLDBBOdumXm9i2iaLuUscJxQKYsBdLJSYzcdUKhVWK6G9PD09xXUXVKuNjS+50WiwXnscHb3HcUQtcLlcosgai8UczxMxnsV8QblcYTYfc3x0SSlfJF8QpB3R9hAhZZAYjwessw2u4zhcX98gyQm2JcQ7D7Ki+WKKppqoqoZhmKzXnoAIGCYSCoPhgKOjI3w/oF6vbX7n29s7nHyOJIYkTvmDT/+Ib3/7W8wzFuR0Ns/+plCpVGg0GhwfH2eb7RDdUGlttbm6usa2bd68fk+jUScIPSpl8fe66XWpVipsbW1xd3e3uR5O52MMNQVJQ7VMwsWI5bTHuv8Br3vC4OoD4XTIrHeJN74lmvUolvLEaCTI3A/vabbalColZFnNqOQys/mUm5trvv71T1h5HoNhD1mW6N/fig95LodtW2i6oFJLmT9X03UxW5NkWq0tcSjYeSzTRtN0otjn4uyM9k4LJZuBypK6gZPm8w739/3sdlFE0zQm4zGqYoovYEnCskwK+TJ/+OnvC61ro0mpXMzGBhYfvfwIVdXJ5cTBKqcpeSfH8ckRz55+xNs3X3J3P6RcqZBm1T/TMPCyhEWhUECSJBwnhywrDAdDbDtHvpBnOp2Sy+UwDB3D0KnVhGp0Pp1TLBQxchbrwGc0GFIsFhlnegbLNECSqFaruKul0LFm/WEgKwg06ff7jCf33HSvs9aQxfbWNpIsE4Qev/l3/ymYCR4e7Kd/+z/591FVwUJzXXeTixLO3GuePn3KeDxEVXXc2ZLZYs7ObiejVAg2XKvVESTnmTBWBcGa5XJJkvyoh2iaYvYiE3Nzc8V2Z48wTDOMvHgkr1RE/c4wjMyfICgbum5i5XIsVwv8lc/WVo3VOmLlutlGd8btbZ9yucxitaBWbWyWNl989hmWZdHe3sWyrM0Wdb1eUa1W6XZv8X2P4V2fx8+fsV6tiFOJZ4+fcHZ5JrDyizGPHu1RLNSzbJUgiFRrYpYnZPUaTt6EVN1IgyqVGlJm1VssFrRaLUCoFoeje/r9Hu3WHpZlYZo23e41uiHT6eyQhJGo3SliJjoYjzh8vMNqtaZ/N6Cz1eFucEetXsFb+ZtOr/CeBKiSkCw9+Jt1S6dWqxF4Ab1ej8dPDri7vWcwHrC3v0Pgi3jJQ45Q08QXn5KpPu8Gd5u+8wPwolqtcnJyImaa0zF+sKTd3GK5cJmOLmB+izfuEyzXhGthjAsDnyQWGHdVkkFN2Xn5MxQefRPNcLDzJW5vr8kVHCytQBCuSYBCUcwBv/r8C548ecJN727zZX14eLjZWD8oGxRF4fT0lNlkxHwx4Vvf+RmxkQ9DyiWxbLm4uGB3b5vVwiWR2GzCHzKCOVtQqTudjiA+O+UNePb2VkiJFovFRvTlPuDkMi1CsZTf9LBn0wV+4FErV7KNq4Zt25ycXdBp1UkSGI762FYezRRPY6uFS7GY5+L6imatjrde0b+949nzj/B9nyAzzHV2d/jw4QNvP3vNn/gzfwoFicvzKwxLaCJM3SKVxKx0PB5n/exCJu4SVPXQX5NKMoZhcHNzk1n3Fui6mSlh06zJIzrbd70uv/ov/6s//RGZJ48P03/z3/jXKRQdkiShWq1uSvKO42yozsIwVuX85IIXH73kpnu1oTzPZrMNIr5cLmeDdLJqXZswDMWBGIsPcr1apFKpEUUB06k4QCoVgRnK5xx00+L6+nrjG640SiQx4s2lK0iJRPfmlvZOm/l0nLVRBB7r9PSUZy+fsXS9DfHEzAKxumUyn88zF/KERrNGkkQYekFUpVSFvGkzXS5o1hvc310hKSKvuFgsqderxHHM/f19Zm5LyDkWS9ejXCmydD1K5QKj4Qzbtjk6ek+jsUW1LpZDR+8/sLe3x83NFS8+eoWqylxdXFOtVrm4PIFUznJZUKtV6F330HRlAytIJYWjoyMKhQI5R/ii2+0dlks3+5ISVbq3b9/yJ//kP4emSGIcIIvsmOVYm3C3oijIIJ5oV0KWJUvqBt3fv7/F0K2NT+MhvFwolIBE1CWrNcI4pmjaG34hScB4NERadukffYYWi/dBnIRIKBlhZS2uUxpIEpTzRRbLGcXtVzRffIdcbZvxeEh7e5/paErv9oaDx4+5vDqnVquhKnqGpOpzeHi4kVwBm7Dzg5j98PCQ5dLDyZvc3d3R6XQ4OztDkTWuri94/vw5ve4dH714hhf49Ho9qtWq2Jx7HqqiZzeWRPxsVScMRe5SUZRNxnE6HqNpEvfDKXt7exmirEYY+WJppKpMp2Oq1abA/ts2qip6FCdnFzw+2BVk8lqdQe+KKAqo17aYzhdiCdlscHvT5ez8lJ/53s+BAm+/es3BwT7j4QhNMyg3KpRKFebzOYvphEqpSpwmm1loviR4mHIqWioPQJOVKwDJ3e41ZD33NE3pdDqcnh5TKIjFop81r360mBnwy3/5nwLb3E6nnf5n/9HfwnXnTKdznjx5wnB4nxGAQ/r9WxzHyYjJ7Ww+ZWCbGovFgvuh2CYOBgMUReHjj18xHgsXr+/7HB4+4cOHd8gytNvb9O9GSHJKMduakVGKVVXl6uqKZ8+eAPIGVe66q03LotXp8Du/8zvs7+9v5E9PHz/OSBeigaEqJvuPtzk7vWFnR5jejt69J1cQFGxLN+gPBzQa4hovXCQNPHfJxbUg/z4Ejx82ZGkaM5vNiOMUw9L57Aef873vfUe4FwyDL774gq9/7Wui/RHHWX+0ThyEnF+cUmvWNs4IWRZ+3FzeIY0jgnAtiCD1LUHOyWpiy+USp1AQdOXZjNlsloWT1zQbLWE5UyXG4ylPnhyyWCyyTvaYJ0+e0Ov1SNOYL774glevPiZN0wwE8Y5ms0mv1yOOY/b2HuH7XqYNKBMEWdA6SpE0IbpqtVqQqkhJynB6x96u+HmGYRHGAbEf4K7WGAqsFxOWo0vW/a9YL9aslytWawEkjWLRiJEk8YSvSKDICDl7lIAs8fyP/SL61mNqtQazxXLjsul0OpsKXD6fZ71aUcgLr0yceNiGzWDQRzcdAJyMRn109B7P86g2hORpuVwSxcJ389CwUFUVTVbwAh9VkrOg/BaGYSBrOvf9IRcXF7S3asiKRJqIL+f5cs7u7j5pImFn0iJJUbgf3BFFoka4WMyoVESW8uXL59lTs/i87LQ7oi7nxwShaPw8tJ26V2I8pOuqaFPJEuHaZzqdbvKNpVJhY64Lso56kkSYugiIx2nCbDbj/v4eVVV58eIFw+GQKIo2h3y1WhZADdPMuvWizZTL5TcPQkmU5TcjH1lW+eFnn7K3u8/jx0/5+Ds/99N/CD55fJD+2l/9t5nPpzhOYaNIFETZHL7vsbu7TxQJtPlsNuPLL7/k1ddfoSgKl2eXaJq22Sr6/o/oxa/fvWVne4/FbMKjR4eZTDyHZeUIsl7ww5v1IfoRBGtyuTyTyYhu9xbTsOlsizhJlBm73r59y7Mnj1itVtzfj2m1WhSLea6urkhimULFZjxyM4duQqNawwt8+v0+kR/w7OULZrPJRgyv6yZpEJFk+PeH9sZwOM6CsGF2ULVZrZeEfrT5PWVZoNR32sJMFybiDZMkCauFi6rJIMvMZkIAdXx8yosXL1gHPhdnp1iWg2GogCzCy7oq5rCVCnF2oC5mswyHZHN3K9wnkiTRH/bRNINms44sq5vGy0PgOEkSWq3WxnCm6wJUkcRs7GxREFCvNRmMR4SRh5MrcHFxwUfPP0I1VNa+y+s3n5F3ashpgh/FdDotbKuEoqn0ri7JF4soKKzcEb3jz1nfvsGQQhbuiiRWWGVElCgOkKQUCUGWjuIgG/5LKHKCrRvUnj6n8fwXKNVbpJJCGAmvSLVa5c1XX/H48WPW4Yru1TW7uwfc9vsg+wSrkMePn3NydsbOzg6TkYiPqKq4JaDI6JrQrJYrAvrgr0V1EykhCSOmizm5bPMZpZHg+OXybDWFBlVKJPJFlenco1gsbkLhumYKPp+qMpnPyOWs7LU+5uz8iG9841vc3NwQBGt2dnZIEvH6+asljUabIIrQdEVkI7PmSd7OZXrPK/xgRaXWRJON/9utCZKsQWRlty8R+8lZNm/fvqXeFIY4VRUzTi8Q44hyoUi3281uSia5XH7zhX52doJpmpRKpWyclRCHEcuVS7FcotnYYjgaYBoW5WKF7/z8n/7pPwQPD/bTX/93/x2AzYd3NptshvYPqHvHEbasB+xPEKw3cFFZU4kyKnMQBFSrVcIwJogi7u/vibLS+t7e3kZtOJ6Ja2ylWKJeF7juo6MjgkBgtJZL4V49OTnj1atXm15vsViklFnrlosFrZZg011fd2m1mqzDAFnSGY+HNGo1YUWTxLVDzMs0Vu5SaATLZfr9fvYkK1oBti2cIWHoIytQyJe4vLzOepWhQEDl84SRj2k43PVv6LR3WGe9zocr5cxdUMg5xFmTYD6f02q0GI/H2Pk8q9Vio8d8qEo9VPKKxTIXZ0cUy1Xm8zmDgcg3vnz5KoOXelxdXbG7u7t53YCN4a5SLHF7f8t2u42q6OQKOdHpza6RURptmIqnp6fs7+yLKxAxt/0+e9t7LJdLStUS3a7Y/iuKxnopFKvj+ZBR9lo0qzWCIKJ/8Y5p74RgfISSqqxXHkmUsg4jcjkne1oJBFElzhy9aw8pM975vo8iy7RadT7603+JsZdgO2VyhaKQkyMRJjHNZpPIFwrP6XwuqpRyShKLhVKr3WQ6mZMi+uamISjI4/GY5Uo0ax7tH3J0/IZKRbQ4HMdBkxVBO88XSZKEq2sBsb2/v6dcqm4wVuPxmFq9wvv3b1mv13z7G99lsRSAhZvuFdPplGYj83+M+zSbLW5vb3n69KkAubbbfPnZ5zSbQuD0oKnN50QFbh14TKdzHj16xPHxMU6xQL9/Sz5nE/iCMZimEienb9jfO0TRDeIgZDQa8OrVx9mDwT3t9ja2LZ7ugiDg6OiIr33ydT7//Id47pKXL19hmoJ1+ECp3tnZ+X9U/4rFoogcySLF8CDQyuUEYPdX/6W/8tN/CD7a203/1q//1eypzxfuiGwWKDJcYv4xGo2yJkOJL7/8kq997WvYts3NzQ13d3esVitevnzJauXie2s6O7tEkUCWPzDrul0hvw6CYFO+liSJ3/3d3+Xly+cCTKAKq9xqtaJQKHB2dsa3PvkW4/EYP/I3tNy8nRcZrKEgKyPLSGmM5y3RTIvVSoRSx5MBkpTih9Da2sG2TeLQo1RrsXKX+L6PYWgZIHYphDPZB/Yf/qPf5vnz5xi6oOpYusGHDx94+uIpqgy3t7fIskqtVuPi4oJischqLSpfkNBsNikUSgTeWpCAt+q8+eo1j58/E3oC2+R//d/+Rz75+rep15vMZjOKRQHDjKJESOnLDoEfZSX9nFhaZQsGP/I3MItCocD+/j6L6WJznQ9igbSfTEabxU2j0WAxnQmgQJiQL4in9jCOM9yXDjGksrTJinV2tjNs2IDxeMy3vvUdptNpRk6eEC2W3H74Pdaja0iETjIJI2RJQtY18UE3DNJEwl+vSOOANI7wwyh77VRWa4+8aVOvFmm/+i5a6xW27dBqtbi4utksJ5bLJboqxFAoUK81Of7wjsdPn4uDVE3xPF+QndOIpetRb1SzPqzoe1dqjY3UabNMUjWh+1QEELVYEosPRVEoORVWnoudFx6P5XyJu1hRrOazXOg1cSThrZfU6xUGwz6j4XwjXY+iiHqljGGIqmKcCqqMqgkqj6EqjEYTATuVdJAlTFPl7u6OJIFCuUASJownA3TN4Hf+0T9kf2eXTz75hMl8hqEKv0+1WkXRxUJmcNdntVrRarUyc+OCfLlAHEXIcUoQhSxWSxzbEFf91h6et9wAaS8vz9nd3ScOA9brAEVT6fdvsW2hXG21Wuiqwnd+/p//sQ5B9f/XU+z/4z/xqKxs+sGPHj3i/dHRplz+sHQoFosUi2XG4zGvXn3M3d3t5v//rW99axOnabU62KZB767P9vYu/X4fWRaYq/VazL8eNmMAtVqNV69eUa9XhfWqkCfvFDcD+Y8//ph379/QbrfRJFEdU2WZ6WyMrLAhSU+nY0J/jZyuCb070tWKMIkpRgGj0YTFaACjA/KlJq2DZ0z6fSJSIf7Jak8PgAMBBGjxx3/2T2TsthGFgsOb9++QJIkwDOlmXxZq1q8sl6oCXFmpcXl5ye52m6vLGy7OTri9u6JcbDMaD9je3iYMQ2HtWq/4lV/5VSSUzGYn3sDX19ebRsloNKBaqRMEwWZeWSqVhAWwVhNPmK0Ws9mCd+8+oMmCpPIwB1uvxVVYlmVarRZ/+Id/yKsXL8WWcDVFQiHwg+zQEwefk3MYz6b0ej1arZaADmR+5Hq9znQ8JAxDSqUS68WYwdXnrO5PMFQDyTTEPNU2WS9XWJaJomnEqUQaCadwkiSQuXZN02S1DlBlBUlVCIOYxXRAraXg2FZ2OIiolWVZTCYTzCySlcoi/Nve2SZJI5ASptMFlxfXvHjxAlkRCDgR/C9gqAaOY7NYikWBaRkMh0OxpJBEPMSdu1QqIuWwtbXFbDxj4U749NNP+blf+BMARGmAbqtEDzedKNls8Ik0Os1dSkWB5MqZ1kZ0vl774vANA9I0xnGKvHnzhnDt8+zZC1arNc16iePTE0xTF7DeXo/lcsmwf585rBV+9Zd/lSQSDyaut8JQDer1Ojc3NyzXHi9fvqRcLrO9vY2iKJsvIUmSOD8/Jwkj8TdLElQVOu1tCoUi6/WPtBEP0JIPR+/RdZ1SsUyw9jnYP2QyE3NaL01+/HPmn+CZ9U/+n/SjORiITZ6qyQTrFVqlgu8nYsYyW/CDH/yA7e1tkabf2tosD9brNffDMcVSnuvrbhawdjk/P+fs7IxvfvObm1iKbprk8zlWqzU3NzcAm5Do9XWXYf+e7dY2hqZxfX2Nn/ELDw4OCBcLxsOhwEZt1bm9v6VSrmVDaA9bTZj3b0kWA/rdW4rFIoqmEvseehoyOfsB8laHL09/QKm1S761xyLxUA1x4O/sdLBtZ7NB9TyBljo8PGQ+n7Oz2yKJYTQeYOd0omDNVV/oCFbeHCSH6XTKwd4+K8+lWMqzs7/DS/9jAQjtdZmvPPZrVSzDYJrhm8ajqdjuZcQOMc8TfpTVcs1qdYnrupnxroysqQRxtDEBCqK0xfnFDc+fvWI4HNLcqhMlorXgLueYhsNsNmNnZ4dUlkiQGWQVqSRJ0EyTYrFEmkaZX2LCTkfQU5bTOVrmvRVPvSc06tv0b2+YXPwA9+4sk/mopEmEqueIEhXdtkgUkEiQoxQ/noklVvCjw1BVdDQlREETB7ghEcwnKMlasP0sm9ATgXPLNqhUS3grn/vRHY7l4BQLJDEMh0PqlSrT6ZSPXr3YUMhLJaHPjKOU0WKC74sK3u3tLWls06zVSSQYDsYC4RasWc7FNvjd1ZsNreaXfumXOL+83szYVqsVpiXqlOVSlcl0RF7Os/BmxG4sGIm3t3S7XVazxQZVf3F9Rb1SF9gzVebxowNiUpIowbYdlp5LvV7Ftm0uLy/Z3xUGyJ2dPXq9Ow4PDxkOx9TrZcpSlVRWKOUdbm9vabfbYjkSC2iIquosF3Pu7+9obDXxFi6VYgXLEh317R2xYJu7Hn4kfpeTk5PN7zedTvnaq49FXGi95NnWS0bjIbKsIpPiFAs/9jHzE80TTFMRNZjNZhnt1trg9O8zkvN0OsV1XXZ3d9nd7kASMx5PkSQxJ3n37h2VUom8naPdbtPpdDZznlevXm0iDA9WL9FWKPPtb39bCHUkiV6vR6VSoVot8/rtW65ubphOp+zv77O1tcXNzQ2maeJ53uZw0DWT6XjIdDxENzSu3v2A+9P3jO77BKsly9mY+941SpqQSOJFdicDDDnBH1zQ/+x/Z/H+94jGl/juhPncxfcFNuxB4fmAhG82m2IjK0kUsyfV5XLJk4Mn3N7csr29S/fmlslksnGgzOfzTYzC87ysa51nPB6LK2MWjH369Cm1WgXbfgCw5gQUYjTakFE+/vhjsfGLY96/f4vj2Bvf82Kx4O7unjQVFj+x9R5sZNpOrsTBwX72hNnk6OiI+VwAX+M4FiQfS2e9WvBHf/RHOI7DwcFjVkGKF0bEScjZ+QmGYRHHKVtb2xSKDt60jze6IU0iZM3BzJWQdRtZzWHaeVTdIoo1dN0GSbAg8/k8hVIVw3KwbTvLIwolqJg1S8TRmsDtE6cJlqHz4eh1xiOMOTp6n/W8P2Iyn+EYFkfH7zeip8ODJ2iqsckJzufzDevv4Xp6dXFGGocbm5pAftkUCgXG47GIxhg6T188p1Kv4RQLuJ6g2RgZhHY6nW40syvX3eQzH1wrw+GQcrnM4e4+ja0mpmlSq1XY2emQy1ms16vNzxee65IAecQRbz+8ZzAY0Gg06N3d0tgSc+96vc5isaCz22I4FjeATqezecoPgoC3b8WsMggCTk5OcF2XcrmM67p4SxdT1zbLvDSRcXJFdneFbD1NRQ6w2Wyyv38grsNxLF43p5ApSUFXNTRDVP9+3H8/0Y2Rv/k3/+b3/9wv/hlqtRqv375lZ3sbyzCYz10KhQJ2Jo92cg75fI7pbEq1VsXz1vR6PRQFDg+fYpsWN9ddoliYvPb29ukPBrTabUhT7u7u2NvbQ9N1Prz/QK/XE8gjRcFxHPwwJAhDbCuHIstsNZs42XyuVCplmSqJwI/Y6rSJgoBCPi/0iMsF9xfvWNyeMxkOkaKUXM4mimJ8f4W/9lBkJQt3i4NEs2xkKWY+uGd0d4oUxeRLJSb3S3zPJ5UFi0/kqRKGw5GYfXoumqLx5PFTTk6OSZKUra0tzs/PsyaLznK9xFA1dh/tc3JyRjFfEOgoO4dlGZyeHKHqhnjKsAyGwxErVyT8NV0XHLl1gO3kWLou252djS/ENMxNy+bdu7e8ePFCXE3zRbYaLXRNx197xCkUnSJRGLIOPAqFAtWqaHsU8w6yBGt/zWq9wrAMNEVnOBrwyTe+xXA8ZrVasvbW1GtVJuMxfhiytdXCdefMJ2MWszFu7z2JO0M1LVQ9j6xaKJqwpimygqJKyLLCzJ2j6RpxHCEhk8gSmqGjKDKKJKGq2uZ1UVQJKQ7QcgWc6hOGowF7h4eZYGpKpyPUq4apk0YxH46O2OlsEwQx48lUjFEci/7dvbgqd7ZwF4K5h5RgmTb1WpXFYomiqCSS4P6VCnlsy6RcLrFeezTqNby1+CJfLpdcXFxgWSYnp8fkHJv9/T2IIfRDptMhOcvCsR1GwzHVcjX7jHjoWbBakiTOT0+pFEtMZ2JeuPY80jRGVmV+7w9+n3anjZMrkCQxk+mIKI5oNJsE0ZrAD7Asg8ViTprAbDohScAyDFx3uckrtlqi6ihJcqaf9SgUi4RhgKwofDj6QLO5JWa/JCRJzMX5Bbe3l8wXcx7t7zMY3G8ES6Zls/LWvH39lu0dEZEbT8abKM9/9d/8/Z/+xsjjw4P07/yn/6GAQI7H6KqKYQgjXBQF1GoVLi+v2d3dZzi8o98f8fLly83G+Pj4mL29HXTV2Gz8hItVPOEVi0VAXLNlWcbzfQxNwzR1lsslp6enNJtN1oH475WLOZJI+Eo8f505hvO8efMVBwePWSxEfm54f8/29rbIfYUus8vXfPo7v41j64TLiFLFwF8nqBob/lwYJeiWiZzKOJUKaeTjzicYssp6HRJFPo//2K9S7RyylgQ592HTpuuCJnJxecazwxf0ej2cvAgWe54nZO+xuObFxKRhRCwnmIbNYrogigOKhbKQNKnqRmwvazKGbnHbvabR2ML1XKIoYpYBE2SEWaxarZIv5Fh7AaVShbOzM5I0IAxi2u02UiJtguv5Qg5klfVSLJdm7oxischsJlQIlmFwfn7Ok2fPxBLKcynlCyzmHrKW9Z5lCSSZKA4pFfKMpxMM24JUIfDmjD78PtObE2QZdMshlS0UzSIKVuimTRL4hJG/4QeShAT+EtIUJRu9RP4SKYo3m0jP80CKKOZNnHqbg5/5Cxj5OpKq4LouSQw7OzsMR/cC5JHpOdM0xrRFm0SSU25vu0ho7O3tEcUB3soX2Pm1y/39kN3dffr9LnsHj3j/1Qd2DnbpXl1uAv8ff/wxw+GQGBE2bzQa5Ow8skKW11T54Q9/iKFaYk6nSpimjuuu2KpvcXZ2RqVeychLoqFRr1Q5Ozmm0+kgKWqWwSuwWrmESfyPIasgDMSs+r/9H/4Oh7svKBbLWROmIEY8ipC5h2HIu3dvUFWVRkNchUWqw2Q4nGaBbgGrjaIAWVM5Pz+ns9XJwt+Vja/kQUtq2zaWZdHr9TI9qnj/yUiYtoEsy5sIXBim/LN/9pd/+ikyf/03fv37f/Ev/Hmur69Zui4kIdVKg+FoiGkarFZeVktzhZg5TihXSvT79xvAwng8QVEVlpkFTiDtRRaw2+uhZQh9RdOEWS0RVrRut8fHH3+dNIUoDKiUhfEtRWLhLjL3hSCtyLJKGEbCbbBeb66TYRgy619w8fqHJJ6Ppsr4yRo/jAgCn0qljm5YmKbDYrVE1w1SWSLwdf1pOgAAIABJREFUfWRFx7RMxqOhCC77PtPBKbrsEsk1wiRBkpMsuiKQWqVihd5dj0qtwvsPHxiM7slZOSQJ/GDNwp2jKgrFUombyx6KLDwrEjIX1xfkbBtNNSiXS4zHYxzbQdc07ocjFFXFsmzSBErFEqVimVzOplapQJpydnJBtVYX9TQ/4ODRAXs7O1xfXVHf2qJ/f4dtm9zc3BDFCZ6/RjcMul1BM1YUhW63y87uLk4+v7kKKoqKnXMYjoaUSkWGQyEbatRrnBwfC9hqGLIcT4kXN8yv3nF3/hZCn1JzF0UtIEkxcRoDCookEScpYZBCKiToSRyQpAmSrCJrGpIEcZSydJeYhiEOXUBKwfN85CigsvsRd/f3oKjZEkqie3PN6fEJ7e0OTt4hiALK5RrufI6Ty9G/H7C7s7+56gd+uKlKhoHwj8RxhCTBZ198zte/+Q2GwyGGabHVbtOsiwhKqVRClRVyts1kMmC9DhmNxoRhxOXlOa1Wh+fPnmcC9RiQMQyT05MTtra2CPyAxWzGaHCPqeskSYph2kiyyvHRaxzH4OrqmjDykYHJdEYQBHS7PWzbwl0u+NqrT5AlZZPZKzgF/CDk5OQEXdfp929xXZfDwydUKmUcJ7eBbti2tYFzBIFPFIUsZi55J8dN9wpVTbi7vWcymbFYiEhOFMVIksLJ6Xss02G9FvGhfM7htn9Hq9kkiRNm0xmWaVLI5/gP/uP//KcfoPA3/sbf+P6f/xf+LOVyWXyL5B0uMtbYfL7A9wOiKGY4HBJGK168EH5dEVVxSVNotZq8e/MOCQFeVGQNTVf58vUXbHd2mIzH5PN5SGOury4xDAvbcZgvFvS63Q3JuV5v4DgWIG+6l6WSCIYOh0P298WM4uTkhK12G1WRWC5d7GjBejggTvxMsCOjKxqlQoXxZESaBOiGTbGxxeXlNZ2dA8JQpOKDKKJWqRClEYZpQhgxur0lpyyRnCKqXSZvWVh2npyZYzwcY+gahVKeXK5AtVQWh/V8SblUwbJsSuUi9/0h9a0mxXKJ1dpD03VIYrGJVDQ8f0290WA0HBKGHnEUUCqLWp6qqhQcm9HwHokUVRUqxlzewbLEeOLg4JFY3izXREma0T9MypUy3d6dIDFbVibQbrBcroB0MyPTdZ0w8kliiWKxQJpKGIZ4Oq/WylSrtU34enw/IF9yMFQLfzFkdP4lcuiRqhqKYZISE0cx+UKZMEqRFBWSEFUSX2iWZeIHEbKiISsyCgphsIYkQJJkZFXDXS6QgDBai8iSriMXqjz9xs8iSSKbWcgXWa89LMuiXq1x1+/T6/Xo9i6pVSvc9buMJ0OiKCCOYxaLOY5lESURmqbi+xFxkmLlLJBk6vUG8/mU7VaHVbDCUBXmrstiuUCWNZx8gdOTY3TLRDd0ZDkVNchylfnCZTIbo2oq9WoFTVUwDZ1SqYjvrwnDiFKpiKYo1Ko1ZvMpriv+9tvbe1xd9djd3UPCQNN0dFNFQaZWKaMqOnknRxrHGIZ4vWu1Gscnx6RpTKu1haqKZeL29g7rIME0FD777HMxKkpiDM0kCEI+/+JTCnkDRTGxLINqtUq93mY4WfD40TNUTaZWq3N31xczyP4th/vPs5D5ElkTEbdiscTx+RnVSpXlakWhWGIynfFf/Je/+WMdgj/RixFI+fTTP+DDhw+iZnT8jlartcHmx3HM5aVohay9kDDyKRbznJ6cU6nUMv7dgt3dXer1Ol988QW2bW9Q9ZZl8ejRo02pfH9/n0qlRLBeY2ga29ttDg722d3dxfM8zs+v8Txv0+EMw5DT02OePn3MdDplPB6zv7+/eSwP1x6j4QDXdZlMJoShvxEyzedTNE0hlmSury+JfJ9vfOu7ICuCh5ekBMEaL0wI/BjJtNByojFw+e5zhu/+ENWfMp0OWa3Elbbd2aJaraJrNp633Ii5H64+i8ViM+x+8OkOBgNev35NpVLJtKQRvV6Pfr+fxZB0PE8M29M4xjZNbnsD7m6HlEsi0Htzc8PKdSkXi0RRxOXl5eb3vL+/p1gUzt4PHz6ws7OTtWFA05TNcmY2m/HkyZONcc40bPr3Xf7n/+W/Yzy55e7ujkKhwPVVdyNUMk2T5y9fYOkG4+EZ6+El4XJCKkvYTl5sCiUB8kxTCdu2hYNFM0glZYOLfwiGp2m6cc9IkoRqmCSSjJ0rsVgthaEuSpElA9lfcNe92/xvx+Mh/XuxQFuvBfi3Uqnwve/+M2hqjkq5yeHBc2rV9gaHD9DtdpnP50RxsFnQ6Lq+8fK67hw1VTi/6HF1dbUJMN/e3nJwcMBkIhSchmqxcufkchaHjx9tam4PBraHOdqDL1mWZcrVGp4f0Gg0NjrTm5srnj59LFINwYL5fMx4PN5UVc/PjzfVyQeNwPn5+Sam9OBM+fDhHefnp1iWAB48ffqUbrcLsHFNd5pNbm+PefvuM25uehkSLKRadOh2j0ki8b5oNoU2olqqcn7+mtdvfoBhiC1yFEWbqNvDQujm5ub/lWjpJzoi8xAZqFbrmQBaJ4oC8vk811ddppM5hiHqO9/97s8wGg04Ozvh5cuPURRpY6OXLRnXdfne977Hp59+yrNnzzbbMpFpq9DvCwjlgwgmTlPm0/HGriXLcHCwz9LzqQKqKjMaDeh0OpsoiGVZuKsV68kEx3FIFQiWYv5Rrze5Hw/IGaLkXimXkVWNfKXAwl3R792SapaYc0QppqpgmCVyhRyGZeIuJkimjWSA7Hms7885/T8G7Hz95whWJq6kMhiNiP0AJ19kt7PLZD6hd3qBaZr89m//Np988omQc5dL3N50hVVPVXm0u8ckm9fNJjOeHB6iyBqT6Yj5fE6xUKaQL5BzBJJsb38HxZD49A9/l49efUK7tc3Z+cmm4dLtdjPyj7vxQUynU3Z2drI3u8f29i5X1xfsbe+xvd3m8uqcwWBAtVQV10JSvFXIr/zyXyKMPJ49q7BcLjk43Mcyc1zddsVAXVXxvRWKO+Hyw6foioKdc5BknVRSAQlkHUlWIDvkgjAmToXdTZJ1NFUmWHvoeg4/WJGmCX4Yo6gaumERSWK5cze4R9FguZyRn/TY/24d3RIHlqLqtLf3WPlrnGIBfaXTbDaZTSbImoymCOT7bC5iIS9fvmIymWRVtQR/HTIeD0XKYCX0oL/1W79FvVIFVqhmlVajjmnaeOslUbBiuZR5dPCY0XCIrqjZIdZDM0Rc5/bqhrGisre/gx+FRGmCnIIU/0hVOZ1OmU5FMLrfv6FUKuK6K3Z2dri8PBfg3+mExWpJqVRizzwUdcJUARI8b4lumTza3qV72+P8/AO+71MolGg0tkT1sd7k7u6OVkvM+xaugJrY+TLVRnuTRIiiiNPTS6bTKRIxX/94i5O3x+zs7KCqMp635Nnzr5G+f0+tVqNcLjNfTFBVmbIhAAxIcfbZHP3Y58xP9HX4r//Gr3//k6+9pF6v8fbdl2IYik4YBigqNLeEa7fT6XB/P6DT2c62tRrv3r2l09kWesIoYr5YcN/vb+IwYRjium4W9VAxDJPj42Msy0LTNCzbxlst0XU9m024HB19YDwa8vzZUzzPZ7FwMyLziqOjIyqVCpquY2RcN0vT6L3/Es9dcD8QAe1SMS8yYuUykqYRJwpm5omwbAfdsHDdBUkKhWKJwXDIYDykUdsiCAN0zUBSJaQ4IVotWA2uMQwLs1DANnMkaUqtUWE0HrD2A9oZKefRo0fEpMyy/F+1XNlEVh4k5leXF6zXQvRzeXGFaRnZF1EVRZW47d+z1WrRv70nZ9vsHh4wHU2YzWbs7u6IVorn4Xkeu7t7meO4QBQJ9NlN94oojHj06BG3t3e8/Og5SZxwcXnJ8ckxhmnRbDZwVy79/h07u23m8ymLuYe7WKHIipjxKgq6puHYOe57XWb9cwbvfofI87ByJlquiaQaqJqJLMkkqdhYh2FMmgo6jGmY2PkCaRa/0LIOa5JERKEPSIRhtOlqr+ZTgoySLEsxiqRSe/INLMfJtKQTkiSi0WgSRYLMvV6vkZF59/4dtm1TqVSyoX+dwI+QZEFMCcOQMApotzvMZjNAIoqFRrPT3qLZ3gNS3PmcMIywcjaVcklcR+OYSrEEkHmyxVXcsSyOzk559OiAwPOQkUgRtKNKuczd3R3uciqaP6UiURRnBOyQarXG8fEHrq+vMU2DcrHM0nVJJej1ehyffqB3d0cYhyBLIg3w5j3lSoVqo86jg0PKxQJnZ6es/SWlSpVytYKMvOEgPlQxHcdhvV5xfz/IvNoyT548od1pg5ySyznM5wss64Fvec3BwQGAsBKqBouFu+knL+ZzHEfAPf72j3kd/ok+BH/tr/173//L/+JfpFAoUa83ePr0GXEcC0F5u7VR+J2dnRHHogZXqVQzVFCVOBZYpVZnC9vOYagK2zsdWq32BtC4dD32H+2SJMI7O5kMUFWd216PRqOJ5wl5u+/77Oxs0+rsMJ0Ir8n27i5JKg6WrVaLy6sr8rlctjUuslpO6b3+AZYt2gBxFDIej2g2m8SKgqyZRElMqVxF0x2SBNarFWEYsfZFqr9YLNCoNwnjBD9MWCyXbG3VkSWJFBldV1jP+gTBmlRz0CyT5dJD03RkRWM8nWBmmbEoDFnM5tiWRbUqkOlBHP1f1L3Xj2Vrfp73rLxzTlW7YldV53z6zJzJHFLkcEgZAgjBF76wZAjgjWEBhi5s+Mp/gm3AMEzf2IRhCwYMWZJNSDOkGCacmRM7h8o57JxWTr74Vm/SBmQemDYwLKDRdXZXV9ep2vtb3/p+7/s8ZDMZxuMRhUKRfD4LiDM4Q08ThgGpVBpV1ag3awSBS+CLnGChUKSQz6GqCulcmiiCwPNQZBnHddjb26VSqaIgs727zc0bt8jlCuKcSdd5/eo1C4tL2LbDUrvNUrtNv98nnU6TzeaZTqdMp0IS1G4vcnh4KJoSwyFREDAc9HDNMe75c6xBD01VQJJRUjmqjSWiZCIuySqqpqEoMr7voaoaSApxEDIe9omjkFgC3/OI4pAoDFE1nUhSUGUZVYHZbIJnOxBFaJrObDqmsfUARRdHF9lMjnyuSCaT/ku4xMQUOspCDlXR0TUD2xY982qtIqAUkkoun2M0GRN6PkQhlmNzdLTPxsYmvaR2WMoXqNXqxLGERIxl2UynYzq9K3ELu3UL0xTNKs91KZWKXN/aYntnl0I+x3A4JJNO47sevd4AWZbIpNO0WosMBkNms1nirJbwfY9+v8/Nm3fnGb1CoUDguawsL5FJZbm2tkGpWERRNYIgYHVlGVmWyKYzvHvzlv39PSoVsVsb9Hr4nk8mk2YyEUqMTCaDruucn58zmYyxLHvOWhSGQg3LcshkskiShGFozGai2ZXP53m3/RpVVbm8vCCXy88TDbWayCteXV3wv/3Lf/W3/0xQUVTSqTyvX7+ep9TfKwy73S7TqUBub21tcfv2bd68eYPnecxmM05PT+cVuIPdPbwEdWTbNmdnZ8gylEoF7t67ydHRyTxoqmkatm3TaAiYY6VSmYuvVUPn6uoKECHsd+/eEfo+acPAcRwePHjA9va28J4Oh8iy2GFGrkvg2IR+wMKCQGghG8hKKnEueMLVms8RyxKu6+G5AZ7niYC0FxBLCuV6g/pCm7EZgJERcIggwjFndF79gvHuZ8ShRalUIJ/P0qhVkGLhTnlftbp27RrFfGFeE3wvRJ8meKxCvpKcXQbsHr5lNB0lL+AUpyfniSDIp9le5HB/HxCQhPOzDvlCGtMxMR2T07Njtra2kCSJ5y8+Y2YO6fU7fPHFZ5imiWmNefLka/QGfRzPpVyuQrJTCIIAz3NwHI9GvYUUSYwHYwLP42BvD2QZNaUhxyHqrMP04gjHtHBnFoqmkcnl8b2QIAJZ1ecQh/c+ZaQYx7VFtjGB6r6n9oRhmMSpnLkreDaeoErCJeI4Ll7gI2sqzmw6f/G9Z11OR2O237ydq1jfvXszf9H7vk+n05mHp9/L4K+uriiVSlxdXdFqiXPdjY1NiAXE4+Bgj5OTI44O9lFlicBzyaQMfD+mVl/kG9/8tXk4PQxDdF3niy++YDKZ0E6OI8oJ4VxVBQkol8vRai3yvkd+crzH86fP+PTTT0mlUqytrc2Pi1xXyJLy+XwCS/USeIFKJp2j2WwmF8UChmFw7949vv3t79JsLpDJFGi3V4migJcvn4syQdL4eF953Nq6Md/d+b4/pw29V5aKGI0wOjabTdEYWlqh1VqiXl/AMDR6vR5xHPOTn/yY6XhEvd786uvMr/ZO8L/4z+vVPA8fPkjABgr97iXjyQzXtqnWquTzRSxLMOc2NjYAGAx6EMXksmlq1TLlitgVSrJCqVROrjQKwpAmbq80TSGKQjzPJwhCMVV+85L9w2MWWi0KhQwpI8XhwWHigtBZai/y7t02S0tLNOp1fvyjH7G0tIiqG2QzGcxhh8vtZ1jmjHKtQiqTIohjSpUKkgTZvLiNOTw4IWUYTMZjKtUahVIFVdc4OTunWqsTRTF6KkUcg2ta1FptkAxkReLk+JBcJovkh4SeyXg6xnRDMvkKezu7LC+vzs9cptMpL168QFYldEPDC0OWFltYlkkmnSafRDQK+TJhGLO6vI41s+cmPlXXhdlN0XAsh3RGJYhgPJklw5ccvhfSWmhTLdcIwwDXdVhaXmVtbYsoREyok6n68fEJcRTSajZIp8WhfKlUEiRh36fbTaTqYYBlW6ysrpNKp5BkASIwz7fp7D5F9m2ChFFnZHMY+RpBDJomNJ5yUov0fR9JBqIYQ9eJwoA4wYtpyY7G81w0PTU/543jEM+2cFybqWkSEZPP5gGZxfUtspU6M8vkqnNFrVZhMhpz/9FDRv0RkQRb18WFwHYs3rx5SaVSplFf4Pj4gGazJc4ddU2g9kslNC1NGEa4to2ha8iaSvfqgnKpjOe6pNMiLyhJCtlcFsNIYVpTDE1jZ+ctmUyGcrnExsZGEr+ROT8/ncdUHMdO0hUT0mmDTveKcrlOIZ+nXq9x995dkQt0XBzbhGSI5boeKAqHx4eUK1Wm4zHdbgffcwmTiuT75sxkIm7pISYIfLa3xUAzm80mhscYXdep1RoYRgrbNJEliVw2Ryabx0hnCJIJtqIoybHVgMXlJVRNY393l2q1Tr/fQ1dlJFmhXq8yHA5o1tvMZia1ep3//n/8p3/7d4KyIvOtb32L2czCdUIkKeb05JBHDx7y6IOHyJrM5aWY0Nm2zf7+Pm/fvmVzc5P19XVqjQU6PRGZEZW4SybJZNlOer8AxWIR13XZ2dmhWq0KYfv2Nvt726wuLyQwx5A4lmg2FlBkjXq9nlTY0vzylx/T6/V49PADVlfX6ff74uoZeqgS1BtVRuMB5VpZ4LLs2XxXYtt2IhJSk+bBEOKQcr3FB08+Yjiazqdew+GQKFTodfsoeopYLbCytoasaKRKJQLfxDx5RzYX0Ot0abVaCc7eSdzBOu12m8CPePXqFT//2S/nt0EvXrxIcpQxn3z6c/qDK4LQwUgpVCoVLi4u2NnZmQdhUSBfFNNhXdfnxxSqqnJxccFw2E+8Ljm6vXM6XbEzD4JA4PRlhUKpSC6XI5VKsX94gGbojMdjut0uxWKRjz76iFKpJA7AJ5O5kGjUHzA4fk1v/w3htIcfBvNFzvYjAmQ0QxfZ0ThAVfU5JQWYQ0WDiPl0t9/vJ4MiA1XRyWRz6EYKI50llUrNa2nvA/aqqhLLgiqUz+dJp7P4XkihVOP88IKnn/0xw6sj3r59Kxo1Ycjjx48F0s13WF5ax3VdoshjMBgB4kxvf3+fy8tLHMdiPB4yGAxYXVlLJtyxUHEqYLsWs9mMy6sTnr/4HMtyWF5eJZvNJv3yIe/evcFz3PlFR9zuynzxxRciL+gFVMpNZlMLWdYplSocHh4yHA7nBQIR+I55/vx54hLJMZvNyOVyrKysJJ8T4jhmNBpxenbCF19+Pod+vN/VAYxGIxzHYTjqoSga4+GIy/MLdvfezL/u989TRZeQVEEMOjk/o1StMBqNCIKA2/fuI6sC4tDv95PXvzjjz+XTLC0vsLPz7iuvM7/SjZGbN67H//F/+PsUi0UqlVICdVSIY4l+X0zWbNsmiiLSaQNFM/Bd0XlUFI3j40MWFhaIIuFnCBJqSyYj2GPFfAFkwXO7OD+hXKqhaDp6Wufy7JR6vUmhUGAymQHQaNTY29tjeVlI2C3LmoueFEWaW/DCMCT0PUa9U/qvPqV/fiq0ioFHfXWJzukl4/GQa9dvE0oys6nFdCSw5iS4eiQFWVaJooC0kWE47LO5dQ3LsZIITlp8XbJEMLlg2u8RTC3SKZVAlShtfIPy8i0qjRpT06bZXMCcTPEDwQ8Uwdxw3uVUNINqqZyIgCQm0wHj8ZiFBUFN/tnHH/PkyRPG4zHlYpFCWVjhZlOH1dVlnj9/yZ07d5BlGIz6pI0MjmsRBqK6NxqNAJliMY/r+oktLE+pUOD5y9esra0ItL4q8pdnZ2eCCnTnPidHR6gpg3wuQ+A6yEhMjt9w9PmP8G0ridiMaCyssHLnISHie6frOkEkI8laEqkSnVzPdYmDmFyhgGubEIsoiqYZBIFHEARMZmMajRamYxJMewx6XRxLvEANRTwPlz/6e6zeeoCWSvPs+XPWl1fI5HO4lk0uVxCILE1BlkliIjfFQnF6zMLCAheX57x5/hf87r/zD0HT5kQk27bRVDGUGg06dPo9rq1ew7JmXLt2jW63jyzLqKrKYDAgnxeUlfed8iiK+OKLz2i1Wuh6imYiunI8l16vx627d7CmFhcXgsz+7NkzlpdXWVxszWktiqKxs/uaG9dvM5uJ9svMtogjKckIGmQyKc7Pz/8vxy1BHIkjHHNGuVjCdYWTeP/wQDRSkiJBNpvl/fGHOPaxAZmLizOGowH37z1iOBxSr9cTVqdYwE9OTrAdQXR/++Ydm5ub6IaC78FCs8HLVy/Y3NhCT6X55vd/+LefJ7i5sR7/d//1fynqZ8k5UaPREOTiqysymYzg9+WzfPbZF3zve9/H8xyChKITeF6C+xZX6iiK5v6Fcrmc7Epm7O/vc/36dYpFEe+o1QT9BQJSKUFfOT4+5vz8lO985zvkcgWmpg1EKAm+KpXSOT095d69Owx6Q6rVKhenB7z7N/8rXjKR1rMGkZ4hk81hzqZcXQ4oVcroqQyO56LKEtlUFtt2iGUJTTXmRF6hQgyYzaY0mi1M0yWOPIrFApPhJYQ29uACe+KQ1rN4Usi1r/827Vtf4932Lpbpc+/+TQAc10KWRNPh8uqcVqslhOQ1kaWMJchkUkQSZFNpFNlgc3OTd7s7rCy06Y86VCo1IQs6OEi+l9Ec3JAvpKmUGyiKIhBk2TS5fIbhYIyRTlEqVAgCN/GhNHkvd7JtO8GjOagaAlGmpjFti3w+z9XZMYoc40/62Huf0D15R+BLuIGPpskUmiuUGisoRpY4DlE0ITJXNZ3xWHAU0+k0vucK0opmADG97hW5fFFgy8Z9cbHVM8hGmsidMu4dY06mmFOxC241i4xHEz74wT+iefMhmqYxGg/Y2dnhu9/9LiAcvUdHR6y0V5haJu12m9FowMXFBQ8fPhYdcVlhZlvouo4mK/QGI4olgY5/9uwLCsUc9XKLKArwfQFzODreFxgqWZ3z83RdkKN7PRGx0ZLq587ODktLK0SBn0xhk12WpiZ1QAldV4mCkHS2gGVZpNMaL15+QejDzRu3cDx/jiaLoohO94LW4rKAOcxMarUaw2F/XmMrFEpzJSbI8xrme9CH4zgEjsfhyS43bt7h8uqCW7ducXl5iYSO54nGVb3epN/vCjydqjIeD8nlCuIM3LFo1htohp4AIwbzDKiglOuEYczv/t6/95UWwV/p22GhgBxQKomzs2q5QrcrwseyLLO/v4/neaRSKVZWVuaEZxFred85lKjX60LavbAwxxe9/xyqoVOp18hms1xeXjKdChFREASEoUS/3yWVSvHgwQO+/3d+g0qlxnQ6pHN5jDWbzZ90QRBw/fp1trd3UXWNqTkTA41ImrPmvDBK0OMgKyrt5SUkRccPYlZXruF5ocCtI263XN/Ddh3S2Qy26yDJKkEY4bg2+VKa0dhk7902hgK6qpDKFckVCni+ixpFHH3+Jxy++ITlxQUePr41/15lMhncwGU0HVGv1+l2u1iWxU9+8hOq1SrXr18X8FQ/YjazWFpaYjQaUS7mefrqGaqqI0sqs6mFrqfY2dmb+2BXV5fp9YT69LPPfwFSgKrJqIpOLlegWCxzdLyL43hUKjX6gyt+8cufksvlxHCgc0FrocbGtS1cx2c07lHM53BtAebUdZ1p75RB/wRJUuZemWyxTLZYng8HImRQZWRdZTwZkU4bFItlVFWnUquSzeeAeF62z+XEgmLoaRRZEIw1XSUIfeREk/o+pB2FsbDqdU7odM95+eo5ChLf+/Z3kgD9HoqisbV1g1QqNW/IFItlstk8V1dXhGE4r89dXl7y6tWreYi53++zsrxBo96ecxJN06RUrLG5cYNGvYmiaIkuVlCr3w8R4kRivre3R6PR4M2bN0RRxLt37+a2OtHAEfSaKIowTXOuz9Q0jc2NO9y4Ib72SqUCCGr169cv0XWVVy8/Ia1rNJtNNE1jOhsJNJZpJxP9KXv7u+zsvCOOY+GkyeWYJEL7QikvFsBuDy8IefNuG1XRyGRS8wVdVVWKxeL8dZ3NZkmlxBHHe3Nfr9fDNE0sy0LTNOHxSVBbYhPz1d5+pcPSALlcjkIujUJZVJtUDUmKmUxGbGxsUMjlAWHbei9/effmDR98+CGh789FSaqq8vr1a0qlErVaBV0X5xSD7gBFUojDiEatPJfnXF1dUSyKJ41AgQtN5Os3z1hb3WJttcT+wVt2d7dpryyTzaaJZ1Ky4yRRdYooiD3pU6qNPf5oAAAgAElEQVSWxNCgVZmLg656XcJQwtB1rjrnlKtlAi/AtCyCqYNruSyvXyOQQgwlhaoYNNsr9DqXpNI5lpcX8J0CV+cHFBNbm20LCIKiqgRhyOW7z8hXGiCLHevl2YxCpUAURUKy41hcdbs8uPuA9fV1ATFIuHQVz0NTDSamGIzYM5db129xfH7IaDIRgdyLMzY2NudTyZ2dHcqlOm/evOGDBx+i6QpycmjuOA5nJ8dsbd7g7PyIbmdIq9XiO9/+PoeHh2Rz6Xl0wnVd+v0+165d4/L8XEzrAxfPmiLZU0IvJJXNYU3GgIyezkCsoqoSsiSUnK7t4kY22Yw4d4yISanCrxuFEpbrQiAkQJ7vIMViUZAkhSBBN4VBhKYbRBIomkq9VkJNKCilSoOV9hK1co1Kvcb29jbLS6sC+omS4OMtlhpLHB8f0h3051DUlZUlLNehVBK2tHa7zXQ6nkdA3ntCBt0Buq5y/fpNzq/OKeayTKcm3W6X9sIiqgq+75JKpVhdXeXVq1fcvHmdWq1Gr9ejVhOwhFK5yHQ2oViqijTAdMri4iKua5POCv+OaZq823lKxlAwjDLt9jKn52csLrS5urpifX2dfC5L4IvdWSolwMarK9dQFKHoLBaLTCYTHj74ANtzifyAII4IPZ9CVmQqhzOLSqWCYRgC4ZbJEiEThjHNZpHAs/F9d95MASE2E2kLgw8//IBCMc94OpoPKUejUXKRTJFKBWxvv/7Ka8yv9CL4nuV2cnZO4PmMpzPRg60UKZXK9HodXNvCSOmoWgrLmjGZzFhfX2c0GrG/u8vCwgLT6ZTZbMa3v/1NdncOyeUKmKaJ7/vcu3M3OSMTT4T19XXiOObWrVt4nqgovf81m824c/s+pmnieg6t1iLr61tEgCzLdHsXLDQW0DQDXdd5e3XOyJySURSxrdflJG0f47gi4GnObBRVYM7tQGQE35/3qHmds5NTdFWw7sIUuI7F8uo6kiThWDO8KGRl/SbD3hlBJKFoMpP+GEVVadTrdLqnDI++BOVDJNUgn8nOiTLv/Q4rSdWvP+gnqPw0N27c4NmzZ1TKNU4vzimVSlSrZfr9PvmckAG9dyO/d70EQcDjx48xTRPbdilUyzx9+gW+67G2tiYcF80mtu3i+yGPHn2Abdu4rs/i4iKOa3H71l1UVeXdu3cQRcRhmPxbDsPeJSmvizs+mYfaTUkSwXM1RSzJxMhEsiKQWbFKxjDEuZPvMh2LxdPzvLkKQFOV+WTT8zxAHPIbyWLsKArDgYlju+QzBpHvYfq+aEoYBSzLIY4lPv30UxYWFjg+3MfzAnIFEUNaWVqcV/Pu37/PaDTh1q1bXF2JCe/OmxdMzR6txRvz87zDw0NUCbq9DhvXNmk2FxiNBjSbdTRFJvDj+ZGNJMVcXV3RbguZ1pMnT7Btcw4y9X0XQ9OZziZzVt/7xcdxHN68fUk2UyAMYzY2Nnh4/xukdIPheICmp1leEvbEYrFMHMe8fPmS6zduEkXirub8/DwhBIm4UKFQYDqdcnC4S7FcYzoaU6yUk6MrUR9ttRaFOTCd4/j4ACKPamWRYinH6zfbLC8uo+pioOe6rtCD+j61Wg2AH//4X/PgwQOazQWi2MdzwZzOMKczSpUyvh+ytbX1ldeZX+nb4TgWLyzXdgRK3QupN8QPw5qZ+K7H6fkFspIildJ5/vw5FxdnpFIpBr0eGxsb1Go1JEkRg4GpiHJcXV3MO5j/5s/+FNt1OD49YTASxOZ0WkvOYfy5K/by8hJNExPan/3sJ0xMMVUVTzKNi7MTyoUivV6P4+PDedxDSaWIZIVYjiCMcO0ZkgSOYxEjzjC05Jwml8uRL5TI5UroRpZ0Nkc2m0bWDU7OLjg7OaHXvaLfvWI6G9NqL9JaWmMwGZPKZKjUquTKRUrlMq7j0O12ifyAy+03dI5fI4VwdraHaqjUKiWeP/2CcrVKs15nNBb04npdkIVnlkWjUcNIabRbCxBGOJZFLp9Jbu2KjEdTivk8tjklk9UxjBRXnQv294/Y2Nhgb2eb1eU1Go0WqqoL8ZUCjjuDWMZxLC4uzigUxJDGtlxs22Z7e5u1a6vUW3X29nYgirGmfdI6vPrln+I7DkQxnuMKtWYco2gqcRySzZeQFYUgCpPgd4RpTRh2eqiqQhwLBaosQ9pIocjCpuc5YucRxzGxIvYGk9EYWYI4jNANAc1IGSJao2oKejmFqqfQDIMPHn9Ie3FZwH1XllhuL7C6vEwqm+Hk5Ih0tsiLp8/wbIe9vT0K2RxH+wcUq01UNcdSa0VY6tpLrK2tcfPOXT76+rdYWGhzcXHG7vYOhDKOLViSP/3pX3B0dMBkMmM8EZm7q855YkccsbGxzief/AJVVjg5PU6eqz7HR/uEoc/JyQnn56esr13ngw8+pFIRecRer8Pewa5YYCJRD11eXiabzZJJ5VlaWiKbzVOt1ucirlwux+npMblchn6/Sz6fFTDcVJpbt26Rz6SJfI/JZJIUEvpMp1O6vQs2rt3k6HiXekPkca9v3aI76HJycsTJ6T7FYlF06G173oP+wQ9+QBSBZTmYM6Hk3Lx+g1t37s5FS2H41Wcdv9KLoGmayJJGpSIqXpVqjv39XSqVEq9fvyRfyNFqNTDN8fxs4z063DRN4jjm4uKCTCZDPp/ny2dPMVJicpjJZPA8j83Nzfm43/M86vU6QSCMZ5IkmG2Hh4c0m82kR1vl13/9t8jninhewO7u7txJUiwWKZerFItlqtU6uVyBXK6A74dIKFgzEWgVzZbKfLgj3BlFXCfg8vKS0WBI4PkM+iMq9QbFepUPv/UNrj98RKFcoVSpcXJ4wPHBPid7exQKJUrVRSQ1RzpfIIgjFtvt+S1o4FicP/spUtTHUA1AXFxu375NuVri9OJ07vrI5XIcnBzSu7xIZE1iF9pqtZA1GdVQ527gQkHgxQqFArOpg+MIzmO7vZjEQmJ2dt/geQ6//OXHczK4Ihtz9cFoNOHV62dzerHtmCy2W4yHAhzQqDSYTQe4kwF25x26b+LbVrLbtFF1jRiSjFo8//+IooDxaIhjW8iKSqFcFjt6HVET85mLjN7vAN//zN8/pqpg2w6TyYgwsdD5vg9RTKVURkInCCKCIOLy6pz+oDtPB7yXgAd+xPLyOpqusLW1RRgKX+7h4SFrayuUKkUKpSrD0RWbm5sMJ2MC12PY6zIyx3hBRKFc4vbdOyhKzGQyYDTu8+GHX0fTNAqFHLdu3mZ7e5tmo8W7d2+o1RqcX3X4zq99f05vHg6HYoepqmSzWYLQTWAKNX7+8U8ol8t87Wtfo9qo8+DxI5GYuDwmnctysL9DGLi8fvsppVKJ3d3dOc9SVVUcx+H+/fvzn2EYhuiaCFq/e/eOFy9eUKvVxFltFHFwuE+jUaPf73HVOeV73/ldUkaafm9AuVymvbhCKlOiUlsgjuPE2HiUuJKFrGsymeC6Jmfnx0RRxOnpKa9fvyaXE+2YyWT0ldeZv9EiKEnSoSRJLyRJeipJ0mfJYxVJkn4sSdJO8ns5eVySJOm/kiRpV5Kk55IkPf7rPn86lSbwnYTyolCv13ny5GuUy2W+/xu/haplWFhYxnVDnj17wQ9+8ENxLrPcnmf/0uk0e3s7vHr1glu37nB2dkG5LA7Qm80mhqGRTQsc95s37xgOx1iWRyqVQYrBdx3WVtYZDfr0+10m0wFHRweUCjl++tO/4P79h3Q6HUBmPDYZDvsU8zkyKYOZOSZfqjOZDDg7OadUKkDi30BRSaVzeIHQXsqKgZHJsryySa5YQdXSrK6uY85mjHpdMU1UU9y6+5h8scTy2jr5fJ7m8jLDYZ8w8ik2FnBDldpSk5dvXhPF4jbdCz0C1+bgkz/BtzsEUwdnZokmg5qiXqrgOj6W6dLrDrixsYmkqGxsbFGr1XADn+OzU4qFMp4b8PHHH7P99i1hGPLyzUt6wx5xLA74LdOj0+kQRQHdbpf1tQ0RhSmVePHyGZ4bYVkzLi4uBLppucXS0gqv37wUmUEjg+dGqMkwwnNmSJGNKlkcfPkJpjnFdX1s28G1HCzHpVyrYxgpMpkcfuBCEDK86hJEIdl8Dk1REcFdb47Mfz/kCDxPmNQUjSCIiFHRDB0jnWI0mhDHEalMimqpjKIIFqGsq+Tqy5TKNXQ1QiagkM3gOzZ6OpW0fmx6vQ7DUZ9IihKdKCwsLaBKckLg1th9s8Pdu/fJ5stzi16+VOTnn/yM0A/odC8B6A0Hc41De1GcJxpGmk6nw2g04uL8BMe2WFxcQpJilhfbeLaDrGrYllCYrq6ssdBa5OzklEZrgUZjEVmGhw8+IJ3Lc3nZwRzN+KN/+b/z9u1rCvki09GYRr2Jpurcvv0Y3cgQhj4vXz7HdFymli2E877HaDoTrxtJmbdHcrkMH330EXEssby8imGkefz4MYZh8N1vfYeUZszhqQ8ePGJ7e1uAOIrZBB4Bmmawurwm2JcJ7UdTBG2nvbjEcDhm+91rFltNjEyadruNpn/1k77/L3aC34/j+OFfGUX/p8CfxHG8BfxJ8t8APwS2kl+/D/w3f+0XJ8vzq64qa2SMFK5t0e/2UGWJQi6PYWjcvHmd65tbbG+/JZfLJYgdYc2KooBcLsfi4uLcWREEAeVymc8++wzf9zk9PyOTyfDkyRMcR2S1HMdhMOjx8c9/xnA84PMvv0gK8i3S6Sy/+PgvePL4A0xzShB41JtNXr99y+LiIi9fPufk5AjPcck11pHCAGsypN+9wptO8e0Zs8mQ9c0ttHSWVCY7Rziphko6m8PIZvGJKBTLVBoLeKaL57nMZjNKhXJC4SigaDLN5WVkxcCeTVnd2KLcWOL67esoho7tBkQRAupweYEyOsadjDHHEwa9K0zbwgtC2ktNSuUs1UYV0zQxDI0gijg4OmI2GSHFPuPBmKvLQ27fvs29h0Jr+lu/+TtUK3XC5Ozu6HCbWqXE5uYm166tcXZ2Rqlc4M6dO6yurvL02WcJbHNDBH8BSYrZ2rxBr9/BSGlEsScWu9mA2egUs3PC5c7nuJMhcigjRWBNLTAMsnmhrIxinaltk06XGE1smksrrCyv4joe9mzIbHBF6DrEXkTg+xQLGaJEqhSEYsecTYLbxBKxpNJaWUWVI9K6jKpIVIolPNfFnQ3JNdbpXF4xnbgcnxyQzeZBkXn+/KkgtUgSvi8oSO/vFA529/iTH/0YTTOSyprMhx99nWfPnhF4FieHB+KFH0b84Lf+LqVShWazia7olPIFdF3n8GiPKAJNVijXyoRhyC9/+Uu++71fI0YiDH2iKEhgICIWttBewUhlyRWKTE0LTTM4PTrF9kz2j/Z59uwZb1+9JAg8IkJ+53f+Lg/vP6BarHKwu8tkZtLp9YljCVWWWG6v8ODBA8qFPAoxp2cnpPU0GUNnMpkwHo+ZzSakUvq8mBBFEYHnUshlSacyDIdjBoMRiiond20Ss9mMWr1MoVCi1+uxv7/PxJwxGI9IZ3Nsb+8ynY3w/ZBaAqpIpQ0UFZ58+DWy+RzZVFrkhrNfXbT0/8dg5O8Bv5a8/z8Afwb8J8njfxiLYOIvJEkqSZK0EMfxxb/tE0mSRKGUJ4wjTNvCdQVNVpKU+WG8bdvzq/vS0hLlcpmjoyMkSWK5vSRYb6Nh0tCI57cDljVjY2OdbFaEqN9v8ev1OmEoPrZQKtNaWKRSqfDgwSP29vYYDrvEsc/de09Ip4WURtM0+v0+GxsbiaVO5u3bbba2NlB0Bcux2bpxnX6/TxiGzCyLxfUtQt+hWqkzGwuhuh+42OMxtVqDOJRxTZuzjmjE1JoN7H6P8XhMqZilWq9xdX7B0eEJjx4/IJADFMVgOBwTBCHVxRbHh5+yurbKYNCfq0WPd/dYz1VRsk3S+QrmZIiVyH8cxyGTy/Hu3Y7wwrbbwtc8m/Hl0wNu3riLosbMZjOxy1tf5/mLz2jUF4njmHK5zG/8+m8DEV9++SXXrl2j0WhwcHAgQK71Jl/78Jtksjpv32yzurqK7/scHojwcEw41x+4xNiTS9xhB2dySXfnLbEsIcuqyCLm81QqFfSsIWAIhKRTBbzEfSFJ4kWVyWTQDY0ok8OaTROW4yTxJwtn7fvJdjqdJgQiSaZQqDAanjEbdgmDkJQmMmxB4BOiUl9cp756DceZcef2Q+HUSGf54IMPcUyHVEpnd/dLtFQ6CdxPePToEVEU0e8PE9l7SBCLYwkrAUVYlkW32xUSpVyO2XjC6+033L1zD98PuX3rAbu72ywvLyPH8rwl8l4Da5om9bow8f3kp39Ms1knm0uhyCJ6UqvVcCybRquJH4Vcu7aJa9lz/FS9Xmd7e5v19XV+9tM/p9lsUiwWqdVqHBzu8u7tSBwrGGoSCdumkC+SSqUExCOGdruNrutIksSbN69QFIVMJkelUmE2m6FoIjvoOBbCcCouRrquY848fN+eH0uNphPRasqk2dy8huvadHuXtNvtOWq/VCzPRWnj8ZhOpyP6+V/x7W+6CMbAjyRJioH/No7jPwCaf2VhuwTeN5nbwMlf+bunyWP/1kXQNGfMZhaz2SSpFB3y6IOHDEYTjORMaWFhAVUWwExJkRkOhxwfH/P1D7+G41g8e/aMlbV1wjBGVQN0VePFixcArK+vY5szbNvm5s2b2LZNOp1lOp0mQAWTCGmeoM9m83zxxRdsbm4mkNA3bG5u4jgOqizj+RYLzRbLy21c18fzAva3Dyg0Ftk/PGbz2hqD8QjP9el2LnGRqC2sMrMt0pFG4LmoisrF5QmGnkdGprXYZDQa0T8/J5UvsLF+jcl0hG065HIZlpeWOD264Oz8iAcP79Ko17g8PUHPVLlz7zp/+uOfsrK0gCvF+IFLf9hj9Gc/onXzJpXFTQrVNrGsEvoBlVKRmWvTXl4mDGOW200moxEff/IzvvPNbzGZjsjnykztIZVSicO9Q0zbxFjJ4DgOpVIFe2bi+8FceyouFGIIdW1jhadPP2c2m7G42CaKA16+fMnf+Y3fxnVtLs6OKBRymBOL8eAKphPM3gGjTodIlgl8j0iWiCQhUTdNE9nIoKZSxKjoRhY1bYAUk0qlQZZwbItpv0vg2QReBJJCxkjh2S5xHCFrirhrkBRCSRH941SGmTVGjz0MWcWTPBRZWPk8z0NRdZxQS6qOWcLQ53D/gIX2Iv1+H1XR8SOfm3duoys6hwfHDMeXnJ8c8+DBA0ql3Dy61e8PxQ5T1alWm8lz3eb58y+5c+cORjrD1uZN/vTPfsS3vvU9hsM+S0srDAZ9kLoQKywtrWBZAhqysrJGt9vn7PyYJ0++hhQpnJwfoWsGFxcXYjJcLdFqrqJKErPxTHAM0xrD4YjhcEwchyIAnc5QyBd59epTctkKg1Gfe3cfUy4XCUOJ3YNDZE3g+T3bwnIdNM1INJg2liU8yW7gcnl5LhZGYsyuRW/Q5/79+3Q6HfL5IpEUsbPzAscyWdu6g2ronJyfsdBYYG15jWdPf0m7vUwYMAcXAxRKJYYDIXYqFovkcgWy2fz8z7/K2990Efx2HMdnkiQ1gB9LkvT2r/5hHMdxskB+5TdJkn4fcbtMvVZNgqbGPOnuhR7X19aY2ibHx8fousrRwT65XIFGSwwvNjY2uLi4oFIp0Ww2mc1mrK9vsL29TSatcuPGFnEsYVkW0/FAxAYSNLyupxiPxwKTXm/w6FEOVZUxzSkHe/vcuHFjLh5fWFigNxix/eoZa9fWWWoJxP50aHF5eUq12uTm7Q85+OIT8llxUCxJksjxhTGeaTMbDqnWyvieoJfoWorpzCIMJgz6iTgqCCk16/Q7XS5ch1QqQ+SGvH72glypTKVS4/bNO8wmM3wvwLc9NF1m5sl8/RtfZ9Dr0x8MUHUFczqhVq5w9PwV7tRk2upTX77LwA2J5GUMwyAMbaIITMcmlc5w/fpNTk7OkGWZ9fUNgTJrLqIbYPhppDiiUqnQ7/exrBmarszrd7Zto2kaH3zwATEhK8sb2LbN+uoyruvzwx/+kKurK3rdAbmMjjWdEQYeecOgO77g4vSMRq1O6DpJQLaDbdnEAVQLOXQ5RtYMFCONkc0SxaGIG1kmcuzQvTxHRcWzQma2QzaXJwqcOWD1/a4/k80iaxpyBHEsEQYew845kSTIJuNRn0I+S+gH6KUW2VIJx7Egirk4u6TTueTi6pytmzfIFEQEK4oibM8kJkSRde49EhKws7MzFhcX+fM//3O+/vVv4Pt+ko30KRarBEHA+sYNXFc0W9KpLI+ffIuUkebK6nF8csTjRx/g+OIs8vLyUgwOKxUKhQJHR0e0F5cgFr3opfYqmmZQbwmyzWQ4otu/nFNcSqUSnU6PVquV5ETzpNMpHj58TL/f5daNx4Shj25k5kHkVEpn1O/RbDaRJIWpNUNXRWA5m82ipQx6vQ6Dbo/2yjKNRoPt7V1uXt+iWqkRREJi1Wq1kCSJbueK9fVb2M6McW+Aquqsrq5SLojs7uraFhIhV5cXuK7AbiFLSJIsMqSehZFSsS0viX69/WtWmr98+xudCcZxfJb83gH+GfA14EqSpIVkQVsAOsmHnwHLf+WvLyWP/d8/5x/EcfwkjuMnpWKR8/NzTs/PGIyG6KpCNpXni6dfUswX6HR6nJ6esrF1nXqzNS/zp1IZwhhOzk4pVytYlsW7d29QVRndSM1RQkHgkSsUKVWqLCwsoCgiQlEo5JCkGGs2xrUdBgNR6drY2mRjY52nT5/+ZQMgbfCNb3+X9WtbfP75p6RSOsV8hulUdIEzuSLXH31IOptHUgyBeAodRqMeqhQgywGKIjSP6Wye4XBMqdYkl8uxsbHB5UWHemuBOCS5ygY4gc/23i5rG9fYuLZCuZThYO8dZ2dn2JaJmkozHI5I5/JYjmCwDcZjVC2FKquMLBPLMdl+8YzB8T6jzgE6HrZpYk7HtBoNyuUipWIF2zSRIolOp8fy2irj6ZTNjZtMLZOllWvcunWL0PdxHIeTkyOyOeG2vbzooes6mUwGx5phWlN2d/bxfZ9iscjbnbfYrsvPf/5zpEggkoI44uz8GCIIzD6lUombd++RyqfR8xrVVpkPvn6far2KrKpMhiOuLs+RFYgjiRAxlQ39AHPSpXOyg+RZTLpXDPrdefMjigRRSFIUND1NFCvznGAQevjuFCkwsUZDANFyyOXn0+GF1RtkioJwoqYNNm7e5O7DD3j85CNcJ+Ti/Irjg0MBVdVUlpeXaTRapFKZREaf52c/+5hvfvPbjCYzrASlFkUBpmlzdn7Ki+efoacMyoUiL559joJIOjSbdUrFMoPBgMgP6PWvBJBC1zEMg73DPSJJ3N53u1eEcZAMhHys6YRBQubJ5QqkE/GVLMusLq/wh3/4BzQaLS4vz5NdapdKpcb55RnpbIbNzetMp2M+/fTPefb85xiZFEEsTIzjmYmsKrTbC0hSnPi7q2QyOaqlKledc4rFPLEEpxeHlEoCMDuZTHj+4hl7+2+YTcb4XkSpUhZgBkllMpshqRIQ0ag3WVxsUa5WuOpdocoKg84lRDGypOE6Hvv7+5ycnLC8vPqV17H/14ugJElZSZLy798Hfgt4CfwL4B8kH/YPgH+evP8vgH8/mRJ/BIz/n84D378JekeaWq1Bp9PBNKfcu3eHt2/f8vDhwzkMQUi/c6iqyqef/pLDw30qpTKu7VCpVKjX60J8cya8BCcnJ3S7XUzTZDAYMBoNcByL7Z1Xc47ge5zSeDye91r/53/6h9y+fRNN0+auEcMwODs74969e3R6XTzP48aNOxQKBS4vL8kWF+l0x6QyWTGF9CNiQqRQPEFzxRamaXN6ei5CnoGPnhYC83Q6jZ8QjZutFuVmnXqjzNaNa5QqeSzHJVfIsnXrJpV6g15PVJGMVIZUKoOhpykUclSrFU7PL3E8H9M0yWZFn/rs8JhgcI53uQ9BQCqVwXXdObnF8zxWVpb44Q9/wP7+vmDBjQesbdz4y5hKcs567do1wjCk1WrhhwGTyQRd19H1FAf7R9QadYrlxE6WLXB2uj+vRAaehSYrXL91n9nFPpHbx0hDa6HG+tZNltY2qS8uYvs+a5sbhLJwVXiOjTWbohk63tTCnQ0I7B7T3imB7eJMTTzbQVMzSMgJ9l/cngeRcNvm8hlkKUaRRWPEdV2Gl0fEEhhp8fzTdCXp5Kao1hfJZFKgyARBwNu3b9F1PWmCrMzbGJVKZc4MlCThWLFtMU19+PAh6XSalZWVec1NVVVhi2stousqgTtiMhnx0Uff5Ec/+mMmkxmHh8dJFKtMr3/BeGTRaDQAEgl6k8WFVXQ9RaFQQtcF6abf72MYaQYDkSkcDAbkskXu3n0oRPCzIf/4H/9nuK4r+IInJ4zGXZ49+5KLiwuePn1KoZDj7t37PHz4TbY2n1ApN5OkhTO//ex0Onz22WfIsczh3iG5XI7p1GQ6FXj+6XRKvy/ACJKkYJo2N2/c4tGDbyY53D4Xl+d0OsLNfH5+zs7ODmcXA66urpKfj0+tWk/iZG6C5BIa3Q+/9licNQezr7yW/U1uh5vAP0uEJirwP8Vx/K8kSfoU+F8kSfpHwBHw7yYf/0fA7wC7gAX8B3/tvyDBxcUZXhAmGcA1qrUSmqpTrlaIomDeq7x16xamaaMoEgsLbY6OjhgMBnOk+Xg8Tqpswlt8dnbCYNCjVqny+PETUqkM1swmnythmxYX3in1ep18sUToB0RBiO/FtBevoespptMxt27dYHt7m5OTIxqNBmFQJgjgqjtga2srwcvn6J7tkC5XcF2bbM5AVkIs02XY71HWUnTOj7l+/TqHqsYvfvFzWs0msS2j6eKwdzYeERGzmG9xftFBqVVYWFlEkiTay0U01eDnH/8F6ZTB2vomp0e7rLZbjEZDVD1Nsaxx2eli2y7FfJZsusCjRzeQZJXd/WMCZ8uwEmwAACAASURBVIauyPjDC5Rqg9FkQoRo7Ji2jTab8tM//zNuPXiAJms4juC72cMuuiyj6mkcT8SR9FSaMIjJKDFy6NE5PkRSNKrZFMG4jx5l8Ad7eOgomsHywhLD8QhD0wn9gP13b0hHPvm0ji7LaJqELKmECaknXyzj2cI5HQaSwKE5NqPOMVlDw7NnjEwHQ9UJXBfPDXEDIHLJpQw828fzXcJ8mJwjS8SRhKwoxKGHGsm4rokcxWgpAbCIVQnZl5lOTNLZFEq5ztnZxfxWcmlpCVmBaq3M/sEuTz58TD/BYy0tLRFHEgutNsNUH01WQJGJJYWTsysqlRJhUns7OT8TRxBehq0bd5GkOBHRmzx58njemBDP3wtcJ+D65jpeEKIo2vyiDTbD/iUpI8/F5TlxBDsH29TKNUJffO8URUp2ehUymSyapuE5NqfHR1y/eQvXtSnXllhdEX3e4+Nj/tW//j/IZDIsLrSxrBmqKnO0f8ni8hKZTAbDMJA1nTv3H5DLFihXqyhSiON4LC+tATL5fI6tzdscHh5Sr9cpl8tJ9EfcNWzeuInr2uQzRdGzjwKq5WUc36E36AtvkKaDIgYwa2vX+PL552TTGXLpArt7O9RrDXq9wVdeyH6lKTLra8vxP/mP/iEPH35TIIOyGXzf5ezsgnv37jGdTnE9gVLq9Uesr2/Q73cxTZtCoUAhlxYBXM/m9evXXFvfmmN/LMtCllWqZaF03D/Y4eh4h2984zfxXU80NWQYTaaEvjColSpVyuUyi4uLmNNRMum12dvbodVqsbDQZnd3n4cP74tbk709ZFmQWC4O3/D0j/85i80SxVKei7MevV6PhcU16itLFFur2B6Y0zGjywskRUVKiMfZdA45Fl3aYrFILEt0zzssrq0kQxsJPZtFz2Q5eLNNXvPxHYuL031qjTrnh0fiVi4IaLdrtBbaQIQXRuTzRa6urtD0NH4oUbv+TeqrohY1GAuNgDMbUyrmGQyHSIEHkUtgz9AyJVRZYuv2Y7HLnAzovPkZiqKQzujEYYQseUzsgJTii6m+qhFGKrlKBW9mIalptHQKWZWQYpkoDojsPuViiXy+TBj6hL4LiNBs4NsQuXhewGh4xel+B8eyydWq2NYEYpVirYI38/BchyjUCGOVSNIZjUQ9MpXNUKqU0dIpsvlcEsgNiQlFE8mZgj8jUiJ8x8X3TULbZjodUqwt8ujv/xNq5SbjmZhki11QxB/90R/xe7/39zFNk08++QTPtvj13/wtfE+kFwadK9AEn5FY5tXrp6wsb3BxdoKkKqyurhKGfrKrUfj8889JGSHmNCCdzlKplFhYWJiL11OazmjQp1AS9KN2u00sic6yTEC3MyabV1GkDIohkdJSEIX0hz3abUE4Pzk5SVwzKsV8Qeyug5Dl5WXGU/P/5O7NYi1L0zOtZ83z2vN05hMnhhNDRY6VVa4qN26wZQPdAks0rRYCBNdcICFxneICAaLb2ODG3UJCtFoNhu6WQLZkZNk12eXKyjEiIzNjPifOuM+eh7XXPHCxdkaLu7qsct6ElBehiKPY//7/73vf5yEO/XXsJseyKuuDNkZWBKKwfCWphk4cx8zGI7Z299A0jcW8lNZHwZL9/QMuLi74OqTfbLZJkmQ9jxWQpLIeq2kak8kE3/cIA69Mh1Saa3NeQpqGyLLMdDyj3W0xHg3ptLvMFktUS8Mxq3zx+afcv3+f4XDIv/Xb/8HPRZH5he4OCwgYurNGrfs4lo6q6sRpxsuXx2xtbTFd1708b8FweMXx8Us6nU1c20IzVJ48e0oY+Ny+dYimOzx6+Dl5nnPnjbtICGuZjI5pW+zu7rOcz9a47iWSotLr9fjJT37C9773vfXzOeDs7IRWo4nnlaXtUvI+Yz5f0uv1iMOE2WRK6Jed0XZ7g0w20XWL6aSEEWi6zPXr15FVA28+R3NLuVKj3kYoRKbDPiIQ+SvSKMbUdAIvJQ89LgZnyGJCHo7obO3R2tzCX3ocv3jO4d07TIdXnFxcohsW08EQ06nTateoVXQm4zGa4WBaOpKscnx8TK/XYbFckawCTj75Y5aTPlkeYusKo/4pUegzVFSK2EeWMkTNQVFtXE2mvXWfTnuTxSpGFmGpCmiKiKqW5Xe75lKpSUiShiyLr5clkGC4Kq5rlZv0sFRMyoqKXe+gqmV0xVuMQUhRFYcsS5FklbyAQf+KyFvh1EwgJ5hP8VZLupt7FHGKt1qWiwFyiiIlz6BacVAUmTwrzYBRVpJGoqis32UZaIpAtFyS5wkSoMgipDKyprFaqezd/w1UqYxGjUYDLk7PME2bmzdv8lu/8VtrzH3Id77zHTzPYz5bUm9USaMYp+JiOjaxv+Cf/V9/yN/6t/8dJLlkUG51tyBLScKENEqZz6d48xkbt+9w83oZEr64KGd1/bMLTMdm7s9RdY0nT75id3e/JN/oCt4qgCxld69XaiiCMdE4KscVFBiGxXBYwkjJBTY3eyRRzLNnz9jZ2aPpVhmPh/SHV0iIr2Gsvr/4/6lJZ7MZe3t7jEYTGjUXb+6hyBqj4YRifXAmScxoNMJxLKaT0l64t7eH7/uMh3Mu+xe8cf9tJEXk0eef0e5sIIoyG1vbjMdjTNPk6OgI17XxPJ/lcs63vvlt/uqDn3LZP+Hf+LXfXNf2zhA6OdeuXeP09HSdw/z5/vuFxuv/w9///ff/0//oP6ag4OTVBTt7OwhCxv7+DqPJCFmRURSVxWKJouhIQsHVYEiz2UJWVOIwwtBNREGh1eriBz6uYzCZTGg3W4RBgK5pyJLEy+dHtBotsizHNC0kpcQpNRoNsqzA91cokoxhmsiyQpzESKrOl198ybVrB+sPbYqm6QiyzGIx59XJU1ynRpzECKJIMDljOBiRJwmtps0qCOls7yPIMgkSWS5y/PIMTREJVgGSpLLySldwGidcXl4QJxmyKDKYDCmylGh+jinlFIJMq93CC2MW4wl5vMTUVFbLJZs7HT777CPu3L4HgkC91UQxbTzfp9lucXV5SrVeQZGUcit8+QwpXuBNhlCkKJqE47jYroPpVKi6VSRNwzQsdKdOksvohoO3WuBNTkmDoKyrFRlxGuO6bSxLxbAsdMNAkk0sy0IQC3TNQBAKDMsEUUJRdPxgSeSPkYuMvChQNZko8hCEjDQNKCghuYoMopAiqiLePCTLU8gzvJWHqpooqoMoW8yDDFFR6fR6SIqKrOlUHIdCFJBECVkWURSJJPLwvQFCGoIokyGgqhKFUKAIMl7g4x68g9NoEccZm70O1Wqdvb09wiTGsm1++IMf02o1QBCJkwJVkfn04cekWUqr2cJbLpE1A9+PUFUF16nRaDXKuMpiyJNnX2G5FhWnzvXrN/DDFacnZwyGfVRNxXEdAKqVOovFHFlWUBQZVVXIi7SUeY3mtNtNPv7kZ+zsX2drY4tHjz4nDBdc9i95/uQx08tXZEWKIItsdHpMp1M2Nrbo9y+AAk3XaDV7XF2VtdMgiLAsm4cPH7yeg3/NGHRdhzTNyrxfkWE7FUxDp9frkOc5qmqwXM6p1epUKi6yXFrlFFWl0WwiCiWI13YcLtZMzrPLS4IwotvuMh4O0E0NSZTRDZkwjLhx4zqaplFruLx4+YTJes4oiuL61RPxT//3f/HLb5v7nX/w37//d/+9f5cvv/oKTdc4OLjG8dERWZZjmAbzeTl4H41GXF1eIkki77z7Lqqq0e/3EdfA00ajSRRFnJweI6/L8YZhvIasRlHE1tYW3W6n/L0NgyiOODk+4umTJ+ztH7BcLpAlCU0vQZ1JEvODH/6Ie3fvkqYp5+cXhGGEW61yfHzMzvYWrt2gWq3TareYzaaYjsHTTz+mXq1Sq1SptjcYDC/o7t0kCSM67Q6CDMulT5bl+CsfSSoFQJPxGEXSmS/GLBY+fpCQFSJpBlqeMO6foklg2RVmwwvqjkG01iheXZ3wrW99G0EsGM9GBEGMbppIksh87lGrNfEWU/I0Yjkfo6oKkmphWCY3bx8iigWWbVOt1stbk66hqxKyXqXe3sNu7CJqCpZhMh/1GZ9+gSILKIpaio8sfQ3HFIjjEF3TEQQJQ7cxrQqGYREXGdq6QuW6DnkKSeSX3eBCJQgWaypxhijJCLJEFMeYVgXbsBmOJoiSgoCALGuIkoSomgiKilOpgQAFBQigSDKmayGsPzBplpInMXHkM58OyrlmVrqJNVUiS3L81ZIgF9m++10kVaPZbDCfTWk2S8XA1WCAbdvcunXIcjkny3JcxyVJEja3tvBXPlmRM1+Wbg/TNOj1NpmMpwiljoM0zbl7922CMEJee1EQoNNq0Ww0aTVbzGdzXh49W6O2ciS53IxfXvY5OTnBNMy1nU1le/uAi7MTVFVjOp0QRj7vfvNvcP3wkJu375MXIrJYWtwURUYUJXZ3d1itVoynQ/xVCYMtcXJl++SNN+7z4sUL+v0+jUaDfr/P0dERURRx9+5dJElBkAoUSWM0GvHDH/0ZjmuSJAKappGnGcNROQqK45gvv/wSz/cwdLN0WxsWj796zPbWFvVaDUWViOKURqOFJAn4fklCbzQamLpNHMbYTo1ms1FK77Oceq3OZDrlD//F//PLfwj+oz/4g/f/xq9+l8ObhywXC+IootVuYJkW/csBN67fYLH02Njo8c7bb5Zg1KsBk8m0bDxs9GAtpJlMy6Hq+dk5165d4+Gjz9nY3ERWFAbDIbV6k1enZ5y+uiAtMmy3wu7uDp1ul5cvX6wx3kaJntrZYTabs7O9jeu61Go1as0atmvz+YOHfOvdd+hf9qk1GnzyyQN0VUGgQDMbHD/8AFU3icIQt1Gj0t5gtQqp1loUos7Z+RmO4/Lq1TmSAKooUMgqrmWjqBpxmDCdzUnShCCMGU1X5EJGzVaJgpCUgE6rwfnxS/IsZWtrm42dLZZ+hGVXsa0KSBKTwRDXthlfnpKEHr63Iot9ZEnFqjaptdtUa1UGwxGaZqCtO6NFUVCpNklzCc2oopguSCaSIiPKKg8/+Yg8WqHLCYKoUm3UibMU3TAAAUVVGQyPKSiIohBByAmjiFqzTRYn2I5NHEcIokASlSOCJA5wXIc4SsjSnDAKoYjw/BjD0FkFCyQRHNti6flomgmijIRMHKasFh6yICAWBWJREGUpmmmSZSlZnGHoKv7KQyIgSWMUzUSWRGRVQ5ZywtWCi4shTn2TzZtvs1r55FnCZDrm008/ptvdwLDKbb4g5gwGV/R6GwwGQ2RFZD5fsre7A1mKa9sMx1//TDWyPOXk6CWKomJa5WZeEmAyGZPjc3Ha59nzLxElGU0xMA2TTncDEJjPp3z15DGHt+8QxSGdXhdD12l2Whi6jm5ItDsdlssVnU4XWTUoyJkMB4RJhKrIuBWHvMjI8hzTMJnMFqiaQcWtkqYZhqFTFAKKotBqNfBWS5beEsu2cFyHdrvD7s4NZElk5fssFh6eF3B8/JS8yHj3nffY3Ngpv9jyHMM0qVZraJrO7u4O29vbOI6NopQRHwTY3dst2z6WAYVAmgsMr84hh41eD8u2iIKQ8XiEY9scnx5RdZsgSDz85Gd89cVDGt0u//xf/tEv/yH4O//g77//d//Ob/P0yRPu3LlNEKxAgC+++JIg8IECSYL5bEyRg66ppXzZqVCvl1dvQRB58OBT2u0mhmHSqJf8O3W9Ui+HvhkvXhxxeHiIZenlkysvUFWdx4+fsFp5a3pvCbxcLBYAJd0mDAj8FS9fvkQooNFokqUZXz3+nCzPOTg4QNc0zs/P2N7dxao6PH/4EZ1OWW1STRtNs8pnkipx+849BldDrt865PLsnHd/5TukQUSSl8STweCq7OkIJQXFsgxWfkIax1iGhqWpvHjxDMuwiJOC3f0eiBLdjTaWXcestHjx+BEVS2UyGgMFy+UC0zKw3QqSbqJoDooukcQJumFgmg6iWDAajVDVctEwmXrodhfVrqI6VUy3iqxqdHo7SIYLyZTFykOSZdT18uDrWzeUNTdZKW9ii+WcxI/QLYX5fEESRyRJTKu3TRzGUBQEoU+SJqxWpfA+E3SazW0sp4GmOyCpyJqMH0YIkoJQyIRhDIKMLJeCJUEoPTC1RhtV1xGKDKEoGI2u1l7b0VrJKSIJEpquEIcez5++KgG5uoXZ7LG7fwNNU6lWaxzevs90PqW2ptSkaUmMdt0Ki/kSQchZLKdYps3gqs+HH37IW++8TZ6Xi55mo40iy9RbdU7PT3nx7BmmZSCgEMVLrh/codXs4tg2F+dnLBZzwihgNpvy/MUzNrpbiIJAp90iz7ISSRaFjIZDPC/k7OyMKAoxDB1DM6jXajx+/BVRHFNfKyZevXqFqqq4jku14iKJIsPRFfP5DEEQqFSqPHv2jPl8QUFKs9bCsRyuBldMJ1MGwwsMwyItcoLVEkkR2drYotvtlTDeIGQ2m702HmpaSREajcaAwINPP6PT7aEoKtPphOVySb1e50/+3z/h5s0bPPryS9649w2OXj1FUTSWno9lWhiWRRKn1Ot16nWX5WpOrdFid/8AQ9P5p//HX4Pn8P/4e7/7/nvrG54kCVRrDqPhhE6nw2y2YGNjs8xxySXaXUDg+YsjavUqoihwcnLG/v42mmbSvzrFdWuMJ2Ms2+Li8pRKpcYHH/yU27dvoykqjm0xGPTZ2t6n0Wjy4NOP2N7ZodFoMRoN2ez1SLOUSqXKfDoh8Ff0r8YksU+90WaxKO11YeTTaNZxndrrp7Ws6KXmU7F48vFfsPJXNKtVDEMFRcO2XRZegG07xEHCbLGg1+tycnSCZTkIooRpWPhegEBBGEYMR0OEQiDPchzbQSZAKCQsQ8cwDep1k0wICcOMTqvLdDIijX1Mx6biOlxdXiLLIgU5pl0jR8Ryq4ShB7mAbhilN8SbQFEeirKmsL15QIHC1s03aPT2seoddNNE0TQQBRRZZHxxQsU10DUNVdOpVmtMJqX3VlU1REEkiROKoqTjmJZJEqdr7LxR1uLmczJAkssDq0CkKASCKKbR6BBFYanNLHKgoBBSJEEgJ0WgnCHlsA5Tl2Y5ZIUkTxEFyNKvHbcqeZ6AmCAAiqoTxTGaLBAGIZpp41Yc0iKjvn2HjY0tgshnMV/ghwG1Wg3fL+1vrVYDUZQZDAb0ry6RBYksScqnc6uBLMmIosZHH/+EerWNIgmkaYy3WtFud0pYiKQiCNBsdBFkgSIrCIKQbq+HqumYpkEuwGZv63VE5w//8J9Q5HDjxiHTyRhNV6nXS6z/auWtfdxLkiSl1equWz5NZFlhe7us4b04ekar1SFJYyzLIklj6vUG88WUjY0NRFFiPp9RrTaYTSfUKjVq1fIz1etuIKsK1XqdYX9ApV5HUTUW8xnTaalxqFQcwjBgOp2QZTmW6yBIcOP6dQRBXCtCZTY2esznc9568y0WiyVpElOt1Wi1uqiaRr1eI8tzRFFEFESiJOSvfvKX5FlOtdYgTkJM3eR/+2f/5y+/clNRVIIg4vyyTxDFLLwVhmUzWyzLYXQYIiKRCyJXwxF+EOH5pVt3MpnQ67U4P78ijkM6rbJvuLGxwWw248b1Q07PjvnmN79JURQcHR0hSRLXr99kNhvx8OEn3L9/v5S4j2fcvHlIToFlOTx//phWq1UuTpoVHj16RLVaZW9vj93dXRqNFoZe9mm/bkhMJhP8VYxhW+zcvkGaRDx8+Ij5ZIhrmRi6RrfT4urqCllV6G1uEGVQq5aB6zzPuRoM6G1vISAhSyK99ibb2zskSTn4F0WDKElJ06xETWUCkuwiiTJPnz1BlApG40smV6csFh6VSm2NKVNQVRGrVmPpeXRbbQpYz+dqtLsHSKpBu7dDsAo4OT8lFTTyNCcVSrT51wqDeqONYrXR3Cb19jZCUW5g+/0+pmmxWM7WMAuRJIkQkNG0slAfxzGVeg1ZlzBMmygr0E0H3bSYLZYlLVrRqDc2WMxnpImPv5rh+1OyPCQIIoqiwHVr2K6Faqh0eu3XYeUkDMmiEAmB+aSEGJRbT58oWpIGMZJURkzSNKZ/NeKrxy/YOrxHpdmiXq9RCKXJMPBTKpVSaN5qtQj8iCTO+PDDD7m4fEWWxcRRiiAIJWoqDEt95u4+ogS3D0uC9unpKZ89/IBaxWUyGvLxZ58wno1fsyzPXp2Uc8s05fLyHCgd0qqq0u9fEEYrPv74Y37zN/827U6XFy9eMF+MoBBYehMmkwmWZXFwcIAfrKhWXWxbp9fbfk1cH41G3Lx5k/2963z00c84Oz/l80efUeSQJBm1ah1F0Wi32+zt3uD4uHRvf/3n2N7eXs/rPObzCXfu3EMWZMjKskO32+Xy8pLlfEEUhK+BFbIs8/z589fk7eFwyGAw4OHDh6/l9F8T4H/24Qd8+NHPOD07ea05DYKAn3z0M2RJ4e23vsmtm4coikSz0cL3w5/7nPmFzgnevX1Y/P3/+r/CMDTmywWtZo2HDz/DdaukScbGxlap60tiVFmi1+vh+z6FIPLgwQP29w9wXZfL8zNarQZhnOD7HuPxmMlkwre//W0mozF5nrO3dw1RFPnok4/Z3t5mc7PHn/3Z99nd3WdzcxPf94njkOFVSXWx3QpJUrYvGo1G6Z1NEkxTZzIaYlkVVFVkPJ6SZDmbmx0WC5/hZIia+Tz60R8jpjmGItPZarJ1/U1kXWcwXpQ8PdXAdau8/OoLHNsq81iaXkpnFIOXz1+wWq14dXKEJIlkScDNvR2a9XJLePv+HWbeis3NHt6yBFAEywWhNytvm0lWtlUsE0ExiJOESr1BtVbjxYuXmKZBd6PHeDTANOuvQaWqJlPkCoLeZuvut3G7+2i6hSALr81i/eMTLr/6PtFiyHLwmGqjSxgl6IbKfDrDdZ1ySJ5FTKajtWejju+v0AwdWTKQVKWswiUB08mQaq1NlmWkSYkTUxRxbfnTkVWVJIqRZem1BiGMfLIkZzoopVpJlCKJGnFSLr5kTUWRAFJECVbzOVa1jNsgZ2iyzvd/8FfU6hXe+9f+Jkm4YH7VZ/e7/z5b2zucXJ7TaW8iiAWjq0Gp5kxTOp0euq6UUvEgIEkysiyhUqkxHY2BHM20+PjjD8mTFFESuHP7LopeOo2TMCGOQySpzBP2+306nc4ab6axXC4ZjUZ4XqlnePLkCZIksb29y2RS5v8UpXwZffXVF9TqVUyjVCqcn50yny3Yu3GDeq2JrqpkWfkznE3KJ73nr7AMs7T1SRLHJ6fYts35+SmKorCxsUW9WiMMQyTlXyXs+v0+lUoF17ZKGK+ssAoDXj57Sq/X4/qNg9cU6K9ziYqi4fseH3/0IZ1em4NrhwTBCk0zXiO5Op0OrVaJd1stfT759ANuHt5CkhQoBO7eu8OzF8e4VumOybKC09NXtJoN/t5/8p/98ucEPc8jigJOz4+5d/sO/X6f/b3rpX6SctZyeTbErVZYrn28oigSpwVvv/0mnheu1YIZJ6evqFXr69vedRazOaqskGYJilKu7B89eoTjWIiCynA45Tvf+Q5xnBKHAbpaNiWazeZrOxeAKMpkWfGalvLw4UO2NnqkaUqa5oCIqUv4XsBysaLl1vAiGb1S5fLpcyRFoNFrEYc+KWAaGqPhFbIYspiMaXS7xN58TTqBPBdZrLy1VClYE5qD0ow3m+JYDaIo5NNPPufevTssJiMm8xJrnoYrrEYTCpHl8oqtvWtMroa4joxTq+IvPXxNo9aooGsV5rOQNOO186SMCvnkmUivdQO3VkfVbARVQCjKm2OaZ7Q6HS4eS2h2m2B8TBD4yGrJljMMA0ESSdIVgb9kb+cW09lgHWxO0JQK8/kEu1pHkW3CYEynvUUYBwRxQJ7GyEpGmpUsOU2CKAqQFJW8yPD9UonQ7OwwODujIMWtWExHs/Ut0S1BFaqKLBZkeUIUByi2ToKEIoksxlMG/XNMS6Ved0njuPS5FBGTy1eYVskdnM1mNJo1nj17xnd+9TtrGrVK4EcYhszZ2QWCUGotK5UadsVFkgTiOOZ73/su4SogCL0S7RWZkBSIskSWJcznS1arAFWVGY/HXFxcYJr2+lBoYVkWP/jBD/jt3/5toiji6mrIzZs3180RlaPjx7hulel0jKbqGIbBwbXr2LbL54+/ZH/vgOOXT8nylGv7N9B1nYeff8rtO3d5+vQxQeizv79fzs9Vlffeew9RlJnP50RRVP6a/Ct7YaVeI1z5KJJIo9Fg4S1ptRps9r6HrlnEcVheSC4vmc1ma3lZQqvV487tu3R7LZ4/f063t4WiKNimQbfdwg8jnjx5gijKVKtV3vvW97AsA2+1ZDpZ8PCzJzx99iNcd4NapY1uWty4cQNd1X7uc+YX+hCUFZlas1JSiwd9qpUaT58+Z3d3l3q9iRqm1Fo51WoVRRJZJw3QBJGTkzMajRaqqr7uVkqSRJLlLBZzbLv0CVuGRbVSou4VTS27rELK1dUYQSgDl+WTLscybPqDK3RdZ7X02NnZ4cd/+Rd0u28zHF7xyScfUa/XqdZrjMdz6vUqn3/+gPtvvlHOi9o1ZrMJzfom4Zv/Ot5kQtW0uTi7otGqU3Vc/PmCa9d6nB6dkyc5s8EAPwiouOW3b1ZE5eZwPeNKkgRZUcmEBFEpn30H925jWiqFKKIYDlaUcPr8ObIoYLsOWRaiKOWyQKs0YY1Irza72JbLJw9+xDvvfI/5IqEQC1S9VAA4psnyohxsT0dX1BZLmlVQFZkip3zmiCLT+Riz2iEYPKPaazO/OqcgJhRynIpF//KS7b0DJLVCkqXYTp2syJFkGc9b0mx18YKQOFqgyCbT+YQ4CtAMjSgu+8KaIhLEPh4Ftu0g5AKqapJKOValQZYE2FULcR05OrhzwGzgMRnNaTSa5S0tT1BUASFfU29kYQ0EzbGqDlZuYOoqYrSgUquR5yVJRTNM6lWbJCrp1IZhMbKTnAAAIABJREFUMBmOKEThtZXt6Og5w6sL3nzjLb744gtGg7IiZxgGy2X5JVprtNHNCjkSVcfl7OwC2zYRZImMDFEpZeOtbod6vU6z2SSOY4bDUgPbaDT4/POPKXKBhbdClg+o15vMZpNy+aOq7O/vsloFa+9wyU98++23yTMwTJ2jl8dsbe6S5gV3771FFAVUqi5v3vgm88mYOEnxPI/ZbEYUhKiqTKe3QavVIk4jXr16xdXgYi1jqmBZ11h5S+bzOdcaDR4/fsxoPKRaKaEIsiyvD1de930fPHiJbhoomk4UlT35wWjMdL5gb28HWd4hjkPyHF68fIrnLfjGvbeJogBRjHj7m7+BJiosl8vXUqbBaPhznzO/0DPBOEoYXU0Igjm7G7vM5mO+/a1vcvLqiAcPPyIKl9RqNWxDI0kSoiRY3xLh2ZPHiCIEQUlz6ff7nJ2dYZkaIhKCJHJ2cU6j3eFPv/9nCJLIjYObJQprWQaUfd9nPp9zdnHJx59+wocffsDO1ibddotOr4sgifR6HWq10r72a7/267hulTyHbrcEPly7fgtNMfFWc0zdwnFqeKsFrUabrcP7zOZjkjjHXxWEy3Ibl8chGxtN3KqFbliIYjk7EdKcJ198iaEovHjyJWKecX13n4rrYMkKuiRwNRyRZwEV16Ber+DNJ5AXJTFZLP0qkq6jWS6LhUcU+ziui1upM1tMObt8xdbOLebLFY5bIY5jkiRZe11nVCoNJMVi49oBReqTZUF5ABY5xRo7peo6VrWFWmkS+wmmbpSRhv6gZBK6KkIaUiQR88UISYYsLZBVFVXVKCi3yFmekBZQiAJ+NENAptFsYxgOsqbieR5CkZQLEgSWyysESSLJYgRJYbGaoVoanV4LpAwv9FB1jaIo52rJ2lnh+z5pEiGSI+YFEiobLZOd6y7NpkUcLwi8OfFqgS6kJFFIOBpjqBovnj3mjTe+8Rq6YVkWbrXM8F3bv4Wk6RzeeZNOb4u93QO2NvdpdzfZ2d7F0g1a9RaBFzCaTnAci1a3w9FRSZgWC7h+8w6WobNYTvGCkPPzSwRB4OpqyDvvvMPb7/4N7r/9LnfufaNUKgg59Vb9NQPziy++Wjc3Ek5Pj157eWVFxLGrvPHGW6RpymI15ez8CN/3KBA4fvESUSzHG5VKheVySW9zgyRPsCyDOI1ey97fevNtvvXur9CstUuKuWasxwIm9+7dQzVUUhJMS0PTyuD02dkZjx8/ZbHwuHXrdunvlsuDfTIpYSbVqstnnz9EUiVkRcKydQ4ODrhz5x7z+Zw4jjk7u+Dy/LxMStgmhqmjaCo3Dq7/3OfML/R2+B//4z94/2/91q+T5wIp2VqAU4ZYFUVBliRMy2Y4uMJxXMLQ5/j4FFlRqNeq1OoNViuPH//oR9TrdQzDIstL3Pyrk1fs7e2RZTl3796l4tj86Id/znQyYf/aAUVR0Ol0y8ODgv39Pa4f3GA6nTAYDBgMR+UMxC3/wSuKgqxA/+IS3TBpNBo8efIE23a4OD/FMm1UVaNRr+Kvyl5kHPqcP3tKUcSs/BWaJiPKGuQFkiih6zKT8Ywsy3HsCsEqQJEUzs8uqFUrAAxnE7I4xjJVOk2XWq2CYeucnw/wFx6D/mXZjc1KZJcfLCiSFM3QEEXQNZOV77Nai+SjMETRLM7PL5BkiVajTOFXq1VGwytM02YwHGBUO2SSiuHWMSwbRVXJsgwBWC6XBPMxhlhQpAsW3orFbIph6kiqhGVWyfICWdGQRIUsTzFNhzRLUFWdwWiOKMsokrbGOgnEUYyqiIRBhG2byJJKlsa4bpUgTEiSANKU5XzIauGRCwKWWUGWZC76l2xs7BL6C1zbJk1zRFEly8vD3XZkRCmnVmswm09pdmxQZFTFIAwWpPGKPI5J44SXT79iPjhHMg0WfsL+tT10Tef09JSsyEuazGJBFIbMpiNC30fVZSzLpkAizWNOz45YLQMcx2I2L5FhSZri2g7empr9wU9/WupfBZAEhXarQyHkvDo+Ynt7m3q9weXlBa1Ou0T6izI7O7vIsoIgiKxWHufnF9SqDvPZrOxGFxJJEjKfTRkOrlBVDdM0OT8/pdlu8fTp5yRxTqfTwTBMBoMBtm1RFHDr1i0mkwmddnedghAoCojjhMVijmmYtNttRuMRlmUxHo/XcvmcWqXGztYOhm5yfn72Wmu7ubmBKApcXJwjSqXgShBKnuPGxibz+YJqrcpwOKTiVPC8FdPJlG63h++vqFQq3LhxE9tykEQBw9BLoZdl8vjxF/zRn/z5L39E5n/4nd95/xu3b9HrdVEVBV0zMU0TQ9dL6U8aIYsKqmFQqTgEfkS93sCybQb9MxRFp395wbvvfQvDLDewOaAqCkmaEUUxp6endFpdHnz5CFlTePed99bftFfEcTlfqlYrhGFElmd88vFH3Lhxg2qtZLrpukm/f8ViMef05Dmbm1tousXV1YDNzQ2yLKXd6bG1vQ0FfPnl5zQaTebLGVW3zpcf/hhB11lMpmiKhltvIMoCYRBjaDJ5kZPlCUkKq8WcJE4RBYHFusFS5KUzo1F3uX//FpPROXKhkOUFbq2KKAjkZGiaQZGnVBtNClSiKKbZKhdJqq4xHQ4gS9AMFT8IuH7tFpVKg+Vyia4bzOczijxFVQTq1TaZ6mBYTSrtDQzLIk4SskJAFAuSBPI0ZuktmPXP8RZD8jSk2e6gqgaGaSPLBrrpkCYpaRqhaxrLpc9suUDXTXZ29ll6Ey4uTghCn92dXYaXpxTxCt+fYbk23nJGEPhUai55GiFrJkmeous2ju1g2tXy/0sFSRyDkK5dLgIUObIqUkjlBlOSRModYY6uG3iLIUoes5yv0HQTQdFLzFgs8ur4BdFoTOhPEVUFz0/Z29vFclwcy0ASBFTdwnUsNre3SdIyr/fi2SM2N7ZZLFfs7u3y6uSEh599QKfbLnvcr16toyQ1Dg/vkeYZL58/YXdnF0mGhw8+5fbtu4hIFHmB5RicnZxxeOsWJ6+OGQ+HJHHEZDzk5KzUnvqez+7uLqIocnx8TBxHHB4erkVjXSRJQhQFKGT2dq+zWCyx7bIrbJomUG63j46OXvu3v8aDRYHP5sYGSZqz9HzCqJxRHx+/JAhCLMtiNpsRxwmGYRIFAbZlU1D2tQf9IV7oYxoGFbdCpVJBEASWywXj8QTD0KhXa0iiyHK5wnUryLICFGiaxvOnz3CdCqqm4Ic+nU6PV8fP+clP/pyDG4f8y//7T375D8F/+Pv/0/v/5X/xnxMEIWdn57RaLabTKZqm8uLlEzY2NpEkhcVywYNPH/Ls2VN2d/fI8gJJgGazjW1bPH/xjCDwicKQdqfDV19+iYDAVb/PzRsHRHlKt9XFNGz6/Ussy8G2ndfPiFqtShzHJZqrVqPRaBBGUenn9UqmnmVr2EaViusyX3jrZYtErVZnuZwTxxHTSbny13UDy7YYXZ3jjS95ddZnNFtgO1WElQ+qjiJKrFblRljTZKazMYZmMhmPkUQBgQyhyMtngqERBUsqrsrhvVu0t5qs/ID5aIxbryGLMoosMbwaE0YJUBAnEScnp2UvOc+4cXjIYrmkUi+jIJqqgyAxGg1od3rIioKiygwGl9QaXcx6D9Wo4dSb5AXkecHKD6hWHE5PLxAlkSILuDx5wWpyiWlZ1GpVBFHCW3nodh1L08jyGE3VOD0/IckETNNAUTQ8zyeOA5IkYqPT4qvPPoYsRpAlrgbnZEmG5VZxXIfldIZbaxCuAmzDZrnoI5IShgHVWmPtovFR5RLHJasiqiYQRT61RoU8LYjCJZCzWgxIgyFpuGIxmyPLKlmRgygRBSmXgwGimBGHIXlSkIRzUkmmvbGNompEUYJumBiGhmYafPDTDxAEEc9bce+Nt3Bth/naJ9JsNnnr3fdIwpTZfE6322U4HDIeT6jV6qRZwrW9a8zncx49esg33/0VZEVkMZtj2xYff/IBsqySpOXP0DAMnjx5gmEavPHGu1iWhabq635xeVO/fv2AOC477rqu8+rkJbqhE4VB2bSRBGqNOj/76Qd0u911bzh4Pb+r1WqEoc9kMqbZaDIajRhPJkgS5LlAnickaUy31ymdQJZFGEYlvFVgDbQtwSWGrtPudRAF8TWUIQiC15XAXq/LbDZbS+OTtRcmRRDKJdzuzi6WZdMfXFLksFoFXL9xyLvvfpdatcX/8r/+k1/+Q/D3fvd33//b/+avlzMcWSCOIk5eHXHRv+DatQOSOCeOQ372wU958+03aTVbyLJCEkcoqoJh6CwWC1beiixL2NvbJ01SHKfCzs4OmqahmzbT8ZSKYzOdzEAoKIqcKPLxfZ92s8l0NsMwDOI4xLJd+pcXXJyfUa1UyYsCy7J4+vQJvW6PHMqesGmQZTHf//4PuXnzBkVRoKk67XYLz1siIJGnEYYuECzGzKZLnjw/Z2tjk/HgCFEWIMtwKxWyNMG0DE5OrmjUavjLCFHMybMMyzbY2nTRDbBdA8WxmM2nFGTkKSyXM1bekjCMqNXaHJ28RBQV3EqFarW0lTVqDaazKaquYpgWRS4QRSGKamDaJpqulz7ZtJy12ZUeouWgWzUU00WSFUzDxPc9RLFsg6RxjCKJJP6SWf8FluWgKBmG4SAIEnkuE4Ue5BmXowFXgwlRFGMYKktvRhgusWydNAooQh9ZLNjYLsVZjl3BrlY4Pz2hSLM1MTrAsE381RLDsAiDJZZTJYzS9Q1PWLeAVARJIkdEKDLiMEYSRAoyyHySeEWalE9fw3AJg4BavQpFwdllnzTOSeMMSSrxWbqqIeoFaVZgu43ySVekOK7LxdmAVrtBxTHL206lzunZKfV6E9Nw6F+c8tWjJ4iihGEaa5l5icsaDC6JopCXL57T3dxEWheMkzjh4aMHuBWXnb0SHWcaVhn7kWV6vU1c1+Xi7CXebIWxzvNFUUKr2yaKMmbTCZIk8eDBA5rNNggFo+EEWZbY7G2wXCsqfN/nL3/8I/b29/G8BaPRkJ/85Z9y7doBrUYXELAch16vw4MHD9YidofFYka30+MnP/lLbt28hapqBMEKRVUxLYvVKuDg4Bovj1/w9PFTut0u1VqFTz/+lEajzsrzqFQrr6HFoihiWSZpmmCaZXxG0wxGwwGSJNJsdtje2aQoBB4+/IzT0xOKIvvr0R3+vd/73ff/5q9+h6IQMAyHk1dHuG6Fvb19vJXHcuGRFym3Dm8hSzKapiFJMvPFBMOwWcynNJsNsjyjWmkgyiIUAt5qTrVaL+ECg2G54nddshQuLs/WdrA5+3s7hFFKu91isVhQq1Xp96/KXqks0+l0WXoejuNgGAa1apXh6Ipqtawj/eyDT/nVX/0eaZqQpilRnIAAhmmRpBlJuCBLQrqdBrdvXSNYjnl5NufFV1/xjW/c5Oz4AlEs0Awbx60iqyqaKjPo9ynyjDzLmS8GvPPGDTRbw600UFWTqtPh8qwkwBiGjiKXsvn5wqfWaCIICpGfEQTlBz5ct2CuBgMcx+b09ISd3W3cSpMoDoECRZE5OX2KplVKt6zVJhNk6q0eWV6Kj5I0AcrliGUYTEYDZlenFOEEURZQZNB1myjJaLe7+P4czRC46E948vyIVqPOi+evuBr0WUzntDp1NEVCM02qjRrz+ZQ4iRGForxlmCaiKJWh+SLn/OwUQ5WZz4YYhosXhpimjUBJAZKk9VJAFsizjHRNRPZXPiIpcVRCGhRZQkDCD0qRulutEYY5Cz9mNvNQZKFEhXkeMgJpHiKIMrXOFkkS8/DBp4iSzMnpUal0PTnDdWvkZEwmY/78+3+KYWgs5lO2t7bpdNrraExGluXMZjN8f0VRFNy9c4/haIRtmvzFj3+Et1zS7fVIkoQwimjWWxiGTVFk69ykQRD4fPLZB7Tb28xmE0yzpJPPFiXJJY5KD7HruiiKwqMvPufmzUPCMGQ6HVOtVvjgg59hWRa3Dm9ycX5KEmVsbG5Tqdb56sunVCoOhmHirTxOTl7x3nvfXse2Vmxt7jCfL7h//z7j8RhFUcu/49p4mGUpP/3gr7i2Xy45JEkkjksKzWQyIc9z8rwojXNZQpomr2+Lk8lk7TN2UBW5VHpGPsuFx+MnjxAEiYODA07PTvjjvw4zwf/uv/1v3v8P/97foVJxOT5+ied7JElKp9PBX/lsb2+RZzlRFJOmKZ9++BH1doNKpXS0Lpcetu0wnU6Yz5cs5jOOj4/Y3b3GaDLlajBEUSREck5OTkmSgFuHt2k0WuRFwvHLE/b3dpAVtTRwjWckRcpVf8DdO7c5PT2BIuf41RMuLy5x3TqBv8KtVPF9n8PDQwBcp0YQBtimQf/qiul0iq7KGLrKajogWM6wLZN2s0WnopPlAp8//JxvffdbvDo6ZqPXw601UXWN+dWQiqsxnUxwKzYNWyUvEpDL8PBqPmPurdbzz2QtFJLxlhFpmlOrVpmMh4zGA6bTGVf9IffvH/L4+TNsq8Z4OOLycsRkPKVec7FsnTwtWHkeeQ6WVUOScgqzQa3RY+6HaIZRzvYo0JSyCbBceogUGIaKsBpSJEvqjQ5JmuLYDgUyWRrx9MUz4kDij/7kh9SabfqTFcdHL3nrjdsookAUrgiWS+IkJ4liJLEgzwJyWUOWRMJVCU/IswTDtImzjFqtzmQ6Zv/gLmGUls9BVSdJE/Iso4hXZHlBFASE3gJBCDA0mSgsD8oCAU3V8ZY+YVpyLY/PBjx/NcILcxxNIstz8hyCcEWzUUNWBKaTGdVGh05vg4uLC7a3d0oHdp5iWAaz8ZSbN67zxptvc3Z2RhiHqJqOrmt4ywWO5YJQ0O9fvhYQ5eSQldDXg4PriFI5YqnXa4jIa1VqwGrloev2upUz5d23v4euG5iWRgZ88eghYZTQ6bTRFJnVyuP49JTd/T0kQaJara5nozKXlxfcv/8WqqogyxKL+ZzL8QDHssmynG/cv4cAjCYjGu0muqrx8vlLDF1n/9o1AEajAV9+9QWB75GkrHmNCf1+n52dPSRRxnFsDEPn1atXVCoufhBwePsbLBZLOp025+fn1Gp1ZtMZR8cv0VStdBPXG6iKQppn5IXAeDLCNiw67S62bfL06VdcO7j+1wOl9Y/+4H9+v16z8f0Vuq5x7+43yLLy2+Jra72ha0Shz5MXz5hPBtiVCq5dYTIe02o2iZMEWSp/4L3NLW7fuc3gqo8AnLx6xY3rB0iKjL/yuX37Dv4q5OTo5bqTuU0QhDx7+pijly/p94d0W032dndQVZ0cCHyfZqPD9eu3ODk5QtM0/CCk0+kQx+XNKAwDTs+e4rg1Nje3USSJSq3GZDKjyBMkcpxKBVFVSEMfy1F46503ubo8Y//mTebjElKZFQWG7TAZjRAEyGKPg29cx2k30CSZMMnpbm4Rxx4rb4Glm4RBxmK6YjKdk8YxeVbg2DbVusXu/i6H9w4J44yL8znHVyMWQcbdG4ccnVySBBM0uXzexklMsQYfRFHMxu23iOMc3aqCIKDpGrKiIYhS2edFwNRNvPkIb35FsBixmA9RVIdVFDCdecThipPTCcP+GWFWMF0u+PK0jyErCPGSPI+o2iZOxSbNyjzifLZEUXUMVcFyG8ja/8fdmzxZlp73ec+Zzz3DnafMm2NlVlZVz40GuhsNkCApyEFagGSLki2bEQrvvPDC/wK2dliULHpQ2KFw2DKDJsNBikGKEEgBDYBAN8DuRnfXXJXzdOf53jPdM3lxkiWHV1iCzl1FRVRknrr5nu9739/7PDkk3cDzPey8RaFUx3EiRBKe3f8JOVUmJkBVNMbdNoYOg+45CTG2aeMHM9JUzJgUN32p+XSMqurESAwWHj95cMjI8el0BxRLeURADAUWvoeRy+HMF+RyEmGQsrazRy6fp1QsoagGa/UGtWqdJEqo12vUK7XM71utomo5ZCXl4eeP6fauEBBprW2AKHJxcY4fONTLDWazGZVqieOjYzY3N3ny9CH93hGWVSNNAkRJwg9XaLrCdecKWdFJkxWOs2Tr1hYffPhj3vvKL7G5mflMVr5PtVqlmC8yn82y9IAAk+mYu3fu8ujxAxxnzir0uDy75uzwiPe+/B4pZDlKZ04YQalUotPtkaYRa+st4iQjR/u+iySLHB4+w3FdKhWbs9MnrK9vI8syhUKRxWKGbVp4rke1UkHX9BdX5VKpiOMsaTQaSJJCGEYYhkGxWCZNQZIVRElCkkSSJCYMI0QZ7EKWhWysNVku5/z+//0nP1cR/IUOS8dxTKVSYaO1SRRFPHnyhLW1NWzbfiFcBxhPJ2ysbbB36y6brQ2WyymNRoMgCFBU9Ub07BNFET/84Q8RUphMJrz77rvEccpgMEJV1RupeI/x7ALNyKCqf73D2Ww22d29zWrlIkkSFxcXmLaFpmUN6eVyiSiKVKt1ytUa4/H4BTmlVquQJAdIksRsNsF1l2iKimlZrBYCqqoSRRFpmpKKKw5eehVdz1GpNmhfXdNsruMHIVIUkiZQLJnoegqxyPS6g2gorG20aBbKzGaLLMSbikxGU5I4u0bUajWGwyEXV1fcOdjFXTo0Gg3iIGA6HDEYDLicx3hehwePHrFRX+Olu+u4yzFRIqDoOZzl+GZ9DpaDMYXWDqquI8oZ+05SFOI4vgEKdNByOkrOBr1GsnpIkobMblzS5XKR84tTXMdj5vt0x1M0wyav5kjTEFEQOH1+hpaCqg2oVDdQdZX17U1IRZxFj1H/AlIFWVXY2NhgNJzhzS/xvRDVyLF791Xc+YzZ9QTTXpKzVJbjMbXaJpP5gtlogIhClPhEwQoEiVXgv0DmzxYe/sJhp1FlFSXsN5rEcUwYeaQICKsUkZg4ChFigXy5SuCHjI/OaKyvIWkJJ8cnmKaJYWRY/9FkzOXlZWbhC1dsb+3x9a/f5uLylLxdYDQaoKoypp6tn71//l2+9rVffbGe2W63ee3VtwgDnz/4v3+Xd959j8baFt5iwdOH9zl46WXGkz6BZ7C7c4vDZxd88QtfoZCvcHl1zmg0QkjiG9G7Q6fT4c033+LJ82cIQsrHH3/McDjMxO/OlHK5jCTtZv+XWiagf/F8JtlLsrW+xWw2o91uo6iwdyubPv/tr/863W4fRYW7lUwmBiKPHt9H13KMRiPW1tYQRZGrdgdBzkLjUbSi073CDxxGown7+/tUq2WCIKRYLJKmMVdXF4iiyNraGqVSCdM08T2fxcLBsixIpZ+7zvxCF8EwjLi1u4NyQ3ne29vj9PQUVZGJ4uzP7W6H4WhMrVqhWi3Tbl/dJMllKpUS6k0RTNNs5au1tkGzWcdxHJ4/P6LV2qRWqVOqFFnMpjQ3W9zau8MqdBkPB0wmE3x/Ratl8/T5M+7d2efk5IRarcbx8SkvvXSXxcKjVquRCpltSzdMTNNkPs/WgyajKcv5DMdbZm8/L/P6moaCYdkkqc9sPsHUNO7dexnVKGHmC4hCRve9urzEyCnMFlmWT9dVlosVsgBvfuVLLJdLep0+lYrKctJHjAUmozHEZD9/GhF4HqZpUKkW0QwJTS8SrUKmswXPj68RZJ3R4pq8abNwQyTd5PnhkLK54IvvrnN0csTmzhaz0RDNKLCY9imt7yCrWeETBIEoirJCv3CQZRE/ihEFmV73Enc8xM5ZVBo5JEnCX2bP4vGzM+a+j2naXHYHlAoFqkWdWq1G9d4dBCnJdkxXMflijiha0Whu0ZV1imLI4PoUIU6IwwSrVMBbCJhFCUGQ6HXaEPvoRp4wTgj9FXreJgglDF2m0+2gmwaKQIZnMk2EJEXRcpxdXIEgU6nlsQ0T13WJoxRFMbCs2o3EK4d4s4J3fnTCViJRKFbRqxt4vstaZYs793SWszmiIrOYTVFkHVlWubpq86V3v4QQB/ze7/0Br7z6KjmjSHcwpFIp8ejxZ+zt3UZWs5xmv9+n2Vi7wb/FCJLIP/pH/wVJkr0819ZbFIolZE1FEMRsuySO2Nvd5tP7n6NqMpVigVLeJlwFCKlItdxgMZvfXDtL1CtlPM+jUilRrWcir6PnT9nY2sTzPNrXVzQaDURBQpIkPFkiny8yHA5fZEmr5RqGnl194zgmSUMMo8R0MuPWrX0cZ0HeNvjwxx+wf/eA7/7w+9zZv4Ou6+RMkydPnnH37j77e3dYLBaUStDrDqnXs4OLIAg8P3zC7s5B5k3WVdyFS7dzhWkUWTozHHdOLpf7uevML/R1+H/9X/7Ft77x67/OeDyi2WwymWYTxLW1NWRJolAo4Hke21vbrK+tE4UhlmncZJmGFG8mTMVikUKhgKrpXF5cYFnmC87ZKlpRqVaYzWY4ywVGTqfb7QEp+UKRnGFSKVeI4wgEODo8xDTNm/iNQZJAt3t900uCQr5ASsJymTkzzs7OyNsmxWIF0zLRVIV6vY6iaTx58DlazsAZ9xGTCHfWzyIacYipmkQRePM5uZxMHK8QRYn5bIppanQ7l3gLF900iOOY2XSKKGa+Cm/pZoOb9XVUXWM0HGbKAHlFs1lFFER8d8np8Tnzpc/pYE535iGLeubDiCNOuh3SVMQSBFRNZjDoEq4COtdXrK81SKQihl1BsQrZiVvJsolJkmQDKlFgtQrwFmOIHOadQ4RUJIpXqKbJ+fERpYLN08NTypaNokjokshru1WqtTL5YpE08ciXLHTNJkhCZEUnDhdcXx2i52xEIcVzHbzFmFq9ydJ10XMmYRQxGY6QJBlBlHEWCwRRRZFFIt9nFSwZ96Zoqkyy8hAlicALWcwXiCIkcYKi5pCVLCZ0dXGFZdnZZsV8ju/7bG1tYRgaUZS9AAp5C1XTiXwPLeP+4/g+nu/z4P6nHD5+zP7BAa7jcXV1haqquO6M6dTlG9/4u5iWTRjHN6csgXsvvYYoiWysreM4LsHKZ7nMtJW+H5DL6YThio8++ojNzU3e//6fc3J6hmFaL9DfU6qyAAAgAElEQVT3vu/jOi7z6YTZdEKn02Fra4u/+ulPqd+EnoPAY3tnh+loTESMKmdumMV8nrWNBIFGo0632+X58ydsbe5gGJlXezyZUq9XkST5ZjJsISASRSFhFGb79Sloqnaz4hnhug6WbWWHBuDlOy/heg6WZYMgsL29Tq/bQ1XVbBWvWEBTddI0W4/97LPPePfdr2YeoFGfSrnKaDhCkkXCOANWALiOxx//mz//m98T/Gf/9Le/9YXXXqJcrjIYjInSEF3V6fX7TOcLjo6PqFerCIJAv99H1TVWUUgYBLzxhTe4vrxi//ZtLq+vOD065/nzJ7z+5uv0e32qlQqpIDCfLykWS/Q617iuS6fbZ2tjA9uyGY5GDAdTdENDFqFabzCdzdjc2uLi8oJgtaJSrlIqlAlWPvc//5QkSTENnfb1FcNRpt7sdbsUCjakZGtdqwBJVihXqoiiTOAuWQ6vCZw5k8EIKXYZ9s6IQx9NNwnCgMVkziqKyOd1xuMBK9/l5ddeo97YYjSesFwsWUyntC8HTCcjbNtmFa4Y9AaYpoluCBSLBVRNJvQzRLmVz+P5Hn4c0e7PGAyHnJxf8fKdPa66A8Q0pVXMoRsylWoBXbMQBCmL29S3kHNlzHw5Y/bJ6o28PpsU+56LECcsRn2C+QxvNkRKQ0RVYzzsoMgK08mIheMiElMvFtloltjevsXO/j38IOV4GPO//5uf8ac/PuLHn50zmYl4Sxk9dll5M4ycib9aIskSJ2dn7O7vMZlMiKIEK59HkUQsO2v4h65LsVBgMp6iaTphEBJ4DmmcIIsSnf6IMJZBFIkRiKIU11shALIsM10sUG+ydjEpF5dtxuMZcRQCQtanXgXEqxXOuEP/usf2S69i2EUqtRKvvv4mYRSTM3MUywV29m8xHE4plgucX5zT6/cxjByqqnB1dUm5XMJ1fUqVCqQRi3kGzfB9n3ze5vDoOUdHh/i+x2Kx5Pb+HSRZIm/m6HW6FKw8kqRxfn7C9vYuIGTA3ziiWqvheg5JGtFcazIcjrjudWi1Nri6uKBer2eqiHyeYjFjc4qiyFpzjX5/kEXLdB3TNmh3rqhUqrTbHQQhRdcyMIJtmcyms4xYbSr4wYp+r4dpmiznS4rFLLURJ1nh98OAvGnS63WZzcZct9toqkYcZwcKy7IIPJ9iqUgQ+KiqiqIqTKYTysUyxVKJbqfP2toGjXqdSqnKv/w/fvdvfhH8H/+H3/nWf/YP/z6NRp1PfvZXyIqCJIqcnBzz0p2X2GhlafX5ckmcpBiaxsnRMZZt0+10CMOQ07Mz1psNdMsknze5brfZ39vj2eFzrrtd6rVsdG/kNMrlMhvr62h6jtPT0wwqWakQBgH5G3BmrVZDlmUsy6JUKnF5dYbrLsnnCyiKTLO5hnQToZnNp9RqVXTNIAgiTNPg5PiMs4tnHOwcMByPiMIISbdY+SGDy1NcN0ISUgwjx9Kbo2sqqmhgFvIsFgOc+RxRSFEVHVkVWSyneK5DFCTkTYveVY/NzSaKLOGtXDZ3tpDliGKpRBAsWTkuhXwRw7AwLB3TMkmiHM9PrxANg9fv7aMTMl+4/PJr21i2TKXw74cfq1WALKesbb5MqqgoORPTKoEovLgWy7KM72WbKCvHIQnHrJZDZoMuQRKQhiGGZSKQslat4SwdFkuHl155lfFiysnxGX/5aMLv/vH36Q1mTCZjRuMF958f84NPn/KnPz3jTsti2T2nXCmi6jaTQRddsyiWSyRpwKDbR9U0ZtMROcNGUhQ++/hThoMhruOzdF2SKGEymSIrGlGUECeQIuJ4PvVaA88P8DwPwzDI2zbVag3XdckZFo1mFdvIkQgC4/GMvG3TbDbodTNB+GLY5urJE1Bz1NZaTCbZXvj3vvc91hstVkHM/u098vkCzWaDdueKanmNMArJ520sy+Lp02ecnh5jmyVMM8d0NqHZbJHLGTfxFpm15jqulwFZW60NpvMZBwd3OTx8wvrGGu3rNrVaHdu2s4jRavWCAxgEAU+fPqVSsdjb2+bp42dsbm5m19gkpdPpoEgil1eXjMdjqtUa4+mINIl4cP8xpmnSam0jCNmUfDobcnRyyPr6JstFdiV1XJcoSqlVazeuEoN2p0N/MMCysjZDt9unXCzS63TRdB1BENjY2EBRVNI0vXETH3F8+oQklSiViohSRn0qlUqQgCBmBPHnh4+wrezv/7d/9Xt/84vgP/unv/2tl+/uMRoN2dneZb25zvs/eJ+//fW/zWw6Zzabc3zyCFGQWV/bZLXy2djcxPd9arXai6DoKkowTZs0Sdne2Mk8C5MxG+sbxGFIqVjg8dOn7N7aQUBiuVzSbrcRJZnVKqBRbxLFMWHgUa3UePDgE+x8mcFNWHMVrIjjiASBNMmKsue7GakkWvGXP/hz3n77q/i+RxAGmDkLWddQNQ3XcajV6xTXNpFVneHlU5JYpNEoMB73MU2T2WLK0pmSzxdYLKYokkQahpTrVRTZwnOXnBwe4bsh48mYaqUIEtSaa8xHM1RNhSQhDDzG4yFBovPxs3Menk24GMdU1+rUKwUenXTIaSr39lvUijateoF6tU4QBig3fdj0JnKz8/LbRLEAqoluZABTw8zdWMdSBFFCCH1kSeDBxx9QVgOiMCRwHXZ2Dzi7OEHP5VmtHAr5HJIAwSrksjPlX/zrTxk4IZ47u/kkCP+vT0UKpPzoUZ/LkcdOUaFYtanVKgSey3AwJJczKBSKTHo9RCHGczMniG0XmM+XaKpCp9snp+ukgojn+qRpml1hHZdavYbvh4zHY2Q5y59eXl7hui7PDo+R1RyiqN5g2hJkSSElO/1GUchoOGAVxchyRORHyMUyoiDQH4x454tfpNPvY+RMur0OJyeHJGlEvVJnPp0gCiKVcoWnzzMOXxhGNOtVXNdle3uH1SrA9wOeHR1hmQZra00a9Sbf+fN/m1Ggp1OSOGZz6xZRlGSk6dGA2XzOxcUlb7zxZobaz+WQJIXt7S3CIOUHP/gOjhdQrzeYTCbZcxYSnjx7QqNW42D/gNlshG3mKRQKrDWb5AwDz3dw5ks63WtefulNyqUqn9//GZZlo+kGF5dnbKxv0Rt0sCyTJE7wPA/Pc6nVGiiKSrWaAR9GN3L16WTOcNBHEEQsy8KyLPq9IXfuvkrgR1iWxWK+YG9vPxNrSRlD03UdLNNGliW63Q5/+Md/9je/CP6L//l/+tbXf/WXKBXL2HYh+0A015lN5hQKJqZlUG+sE0YilmkgygKz+fzmGJ35FmQ5WxnL2xbnF6ecnj7HMC0ePX7E+nqLeq2WoccXC27t7vH544fUKlW2traIk5RCocjJ8TGFYpHHDz+nYBc5OX3M9vYBuq7xJ3/2p7zyyms4ywWtjU3Ozs/Y3NxE1zUqpTKj0ZCvffXrXLcvuTg/4+T4Gc317WxfE2g2GnS7XTx/RWvrNpfHjwkWY2RZpFFfR5BkVkGQUYhPnqNJMo6zyN6GikYUB8gyOAufJIYoXiFLAjkzx8XxMTnDwDQNVBmuLnssPYk/vN/hzz58xMOTIQ+OLnl4MadSyqPkdI7OrylrEqWCTpqEVCplJBk6nezNDSDLIrLVJF9rkitU8VYRipZdFXOqipHTmc7mxKlA9+mnKGEGu7w+PSZn6MznC1rrawhSBv9czBc4S5epn/L+cxdNV+h2B1nGUcp2Rf+/XzIx/UVMw9Y4WC9khr5oRZJAuIKVs8AsWiCoSKKAs1ixClYMh1M8L0LWVaycge97+F4mAo+TFF3PIckSkiij6QpRFDKZTNne3mY+nxGnCfVqlfb1FVGS9aAEQWQ4HCKJGd6sVqsiSyJGzkLCQ0hiNu6+ya2dTeauz1qziaKolCsFTNNic2MPXdVYhT6mYRAEPqViiZUfsLG5zmoVMBwOEMSUi4sugpCwvbvNyg3JGTkuL695++232d7eZWtzm48++oQkCRmNeiSJiCRCo9nENHOcnp4wHo+zELOk0L6+Il/MU6yucbB/myhKkCQZSImikN2tXZJEwLRyPHj4CVtbu7z/3e9x7+49nh89R1VFtnZ2KBVrjMdDlssFtWoNb+VzePyYWzv7RGGIqpqswuznkiSJarXKYrEkCAIOD59nGlhNzYyOms50OqZeb1AsFnEch+ZaE8/zkGWRfL5ErVbn6eOntNZbBCv3xalR0zLLXRRF/Os//c7f/CL42//kv/vWr/zSl9H1HAkiiiyhSAKynIU7r9sdoihio7WO7wdUymV+8uGH9HojhoMZek6hUqkwmUxu8kYBhbyNnjM4uH0bRZbxPJduv0+lXCIIfHRVzyabvke9Vuf+559x9+4dTk8O2drfZ76Yo+kmvjfnyePHvPuld8jpBoKYUipWSeII31/iuz5JkrC9c4tVFFJv1EjTlN29fWy7wHK5IJfLcXF+jm0XKBTLrFYezTtfxBkccfz0GN9PqFabBGHAbDgmXgUUCkWWixmu5xHFMdV6ndiLefLkmPncwbZsNm/tops2pqWTM3TG/QEPjkf87vef8J2HHXr9v2atJUCC58xoj1xUzUBMBAxVoWqJWDmdNF0hiAKT/oxapcJ4OGRzZ4vmzmuEsYCsWqxt7pAmMVESE8eQJjGL+YLAmaFqFsf3f4rIipU75+z4DFHX8B2P2XyGImVAAycyeNYZ8eRkythNCL0ZmZBJwCpWQG0QEyPoClIqkCQRCAK1coGaLmDbOnGcid091yVJYxQlR0LKYrHE8wPCCHTd5OOHJ+g5ibxh0hsM0TSFMAiRb1YtVU0lDDPN5Gg0plAocHl5QalUplqpEIUrJFmh2Wy+2G5w3AXFUgmRbGOmUmtimDaCKLIc9/FG15w/e0Jz6zazyYzuqEOhXKJzecGzhw9YuDNMw6bX61EslhmPhywWGcdwMJxwcOcenh+wvblBr9ejVK4iCCnzxYS/+qsPCcOYubPg+bOnbG5tc+fOHUDk+PiQXE5DVzUm0ynNZhPbLlGrlwlWAZVqHU1TGQ76tFqbpKJAHGWuFtd1EJAYT6+YzVw03aDZ3ECRZb7//e9z++AAEDg9OaNQyFMsVm8SEUbmD37pdc4vLtja3qPdOccybVzXpVgsEgQBpmkwnU7o9dtsrG8SeBkSPwh8mutNlvM5Dx/fR9U0up0eQbBC03SGwwGiKFGuFDk5PebJk6esrzUxcjmOnh9RKpaYLWb86be/+zffMaJpOvXaGo67RFclXHfJKgwJVitOTk6ZTiYvTPOSJHB88pyvfe1r3L69S39wjW0XOD+/pFat8uzpYxzHobW1w8PHj5jOF3z00UccH58SrWLW19eZz+dUKiUEQeD09JRPP/0EhJijoxO2dzb44Ac/oFap0qg1KVearK23KFdKnJ0eY+RsFjcB0wcffcjF+TnlchXPWbJa+Tx48Cgb6Ss6VxfntFprDIZdDNvAsGz6/S6GZTMedjn46m/y5n/wm1TXqqzE9AUunlTk9PgMTTHY3rqF7y04PTzk008/p9fr4QcutqmzdOYIJNSrNZzFktFsye+9f5/O3IU0C3D/+xumCIjMpgMenpxxOpjwtDdl5EOMgCLrtLsuaxtrDHp9SAR61206123my8wf4jgOcSpgaDoICbIsEUURZqGC67r4cYhk2OiGhiBL6LKC563w/JC55/PTx+d8ej7i2x9cMVo6eNN+9n0JAoIkIQgtzttHCMiwyn5JW+vbWKbJ8/MJl+Mp83ly05jPJpWyajAdLojciChY4S0dZrMZo8mEX/3a29w/63DY66OqKqIgZ7ABLfNo5G2TKIoYDgbkdP0FK7C13sC2clh2DtOQMyfGcMB0viCOUk6Oz1AUBV3PkaYCC2cJgJm3Cd0F/vCEz//sX/L5X/wr8BXu/9VHdC4vOTx6wtPnRxydHVJfW2c4GaMZOfxwxWTUJ5+3ePDgcxRRQpZl9vb2II4olUokscT62ibb29v4jkur1aJSqXB4eIyIxO7uHgvPIyElZxaQVYPBsM0HH/yQfr+PLIs3Hp0hnc41s8mQybgHgCxpDMcDKpUt1tc3KJSqLNwFsiLxjb/7TV599XXSmyFIvFrxnX/7+yiygLNcsL2zS7ff48233mE0GiAgvyB6P3nyhHw+TxCEQJal7XTOmU2mKKqMZed4eP8B88WS11/7IqKgsL+/n6lNc7kbcMkSWVb58Qc/4hvf/DtouonjBlTqFexCnkq5/nPXmV/onGCSZkapZqP1guCbeTwMcqZBbzjA910++eQTZtMJX/7Ke/zRH/0R7733Hm+//UWOjw+p1+tMp1no887du8znc959+x1cP+A3fuM3bhrDNfr9/o0OEiRJYX//4Ib2YdK+6hGFAt/85jcZDEYsl0uK5QJn56eEqwBRFF+EqjVV59d+/ZukSGhaFqK+vL7gzp17mDeMto2NDXKaju96N/vOEpVKFtPZ3d1DVVUkAX702Y/g4pJiPo+YJIiSzNbWFhcXF7i+x9JxSAWVy86AsevyytY2aZoS+z4Xx8fYtp01vy8mTMN//1xFzSSJQoiTTC8pSaSiTupNCFE4vliy0aygKCEXvWsqtsnMTZAEBY0YIQUpjciXii+eWYaoklAFNZsO2jbefIlu5FDtFqoUvZDmjEYjUkGkP5rjtUd8fjJi4CmkioyMSEwCyJkmTpSIwg63mhuoekrgxkCEbWr8V//4v+a/+Z3/lj/43hn/+G+p5PWE/Tv7zJ0lcRxj2wVEMftlNswESU0wTInf/8Pvsb1bot2PwYxwWNJar4MIQegTBDGj0YhcLkc+n2c8HqOqKscn5ziOQz6fxzQtFNnAtgqsQh/LajGbzZgvpmxv7bJcTBBkiXJ5naUzo9/tUyjkEUWRctFk2XvC/utfptKsc3V+RmtzD8ed8P3vv0+xWMSybN544w0++egnGLbFzs4t+p02V1dXbG9v0+l0yBk6CNEL1p9hGIRhmIFivQVhGFOvV1nbaHF2csgqCFFl0DWTe3ffuMnPCsRJ9m9MZ3OKxSKLdI5hGMRxSrVeucH8qxiRzqg/IG/Z6LrBw4cPiUgY9rvMnT5ffPuXGA7HNwqMHN1un3bngjjMBmaPHj3ivffeQ5KkDHBs2rRaGfBhPOmxs7fGbOpyenrMwcEBes5gMB6xsbHBbDyh1drk7OwEy8ozmQ6p16v8p//Jf077ukMQhORyOVRFYxUGtDaaP3ed+YUuguEqpFAqMx4OcJZzBFGmVqsxm44plkpsbWyiGyYvv/patm0RJ/zWb/1WlpXzlxiGQemGmBwnCaPRiFZrk2fPnr0wYNVqNYQb1PfBwV0cZ0G7d4Usq6iSjojEWquJmbdpn59TLBVYLKdMRmMObt/D913K1RKSJKCkIomiMpqM8b0AWc2S9S+//DLtdpvRaMJbb73J0dERP/zRD/jVr/0ao8kYRVEoFApMp2NOT0/Z290hl6/z6i//R8we/yV+GKAgMZtO6fUPSUnY3tnF8a+YOz4z18O0ijx9+phf/ep7VNdqqPM57sxBQiIIM31kEIvUt7ZxlzHuYnijmZRJRY3J/JRq+R0i7whSiR//7Anhq/sUlJh+f0przSONPO5t1AnDkNl4RvNeDlHLQKlpmuKvMmmRqCgIgoekicihSr5YYjE6ySC0poW/WjFaRKSizNxPaY9DZn5IpVKj07nMYKuSAqqOmIqESdbrSxIxa/gh4scJiqSjyxKrMOGwO+feep6PP/qU9Y117ILF9VWbKIool6vk7QLLpctyJVKrFzm5nuIvY3a/sEU1b1CuFtCtDCjQ0FQEJKbTGZqm0xuMUVQJXVFvNmYSer3ezdpWiiQpDJY97LxJodLi6OjoRlZe4+I8+7kNPdOXZkSXAAuRxbDNKgqpVMtcXZ8wm834jd/4BovFAlmW6Xb7tDZvUamUGAwGVBt1FosF7c41nudlxThfA+DTTz/ljTfe4Pj4mEqlQqPexPMCVFli1B9Qr60RRSuGwwx6Kssyz54/RBbvsN5c4/DwEN/3efzkAcQRmp5jOBwSJxFrrS0e3v8pd196izhZIcoSl1dnVMp1EjRu7x0Q+Csmsym3tg8oV0p88slH3L2zj+cHyKZMktgcHx8ynU5RbhSznc41CCnNxhqaliMKRRxnwbvvvocsKTiOR8HK5FPFYplw5dHrXTKd2kwH53ib27jLJaIsYVkWF5enlMtl/EX2ovp5v36hi2D2NspQSfV6nfFkxmQy4c7BbU7PzrIPlO9wdPiUeq2BZZtMJhNOzi7J4Jj6i9U1XddRFIXvvf8dXrr3Ku12G89z2NnZ4bp9RaVcZTaboes6s9mCSrmKaZpcXFygaQo/+9nHbLY2kCWF9bUWQRCQCiLVcomElKdPn77o+c0mDufnl7z2xusAHB8fo2kae3t7PHv2jMViweuvv8lkMsOy8uRyGtfX10wmo8xp64XIMlRbt3n+0XcZXV4iqxq6kuP8ekqtXuGHH36KH6XU62VGc5/JYszf//qXKZfLBK6Hu1hiWSaT0QDL1MnpKjvb+1wOxrjzMYIgZoOHFJLYZXPrLVQmhGmMgEASizw6HbLVzLNhG5xe9SlZOZ5fDPjym+tUNnaRDYuIlPFgSLFczSasgvDiZPzXYE4tl0OQwEcgb9pcn5zhxxKLVOKzwx6DuY8kKYzHY/7ON/4h3/6TPyKOvIz+7M4QJRE1lydw52R+YYHRIAv3urHCl+416PQvmY+u+FvvvYWuKZkqslxkNpvR6/WoVEpUmg0mp212Npq0xyHFasJgGaDJOZyzc1567VUURUEQhBfirOVywcv3Dqg3ylxfd9jZ2WG5cG/yiNHN7STKdl2bNQI/pNlsUq1U6Pf7DIddwjDCMvMEfgixi6JLOMuUo599m7U7X6W59g5RlCAIUnbCy+VerKYlScJwOMb3V5ycZDvt+7v7+L7PJ598xPatPSzL4tatWxwdHbG7u0uxWCSfL/Lv/t33qL/zRR49/Jxiscit/T0Gwz75wh7D7gnFfIkwjjg6OqJcrZCmKdVmk0alwsXlFVtbW1y3r0jTlOFwiO9lPuowDCmXy6yCTLq1TD1WUcgHP/ouiiSyu3dApZa1l/ScgecFJEnCO++8A4CiiuQLJsXCHeIIxtMRq9WKp8/uoyl5Tk8uEASB6/YFnuPy0ksvMVvMCTyXYOWRy5XI5asvzIILZ8mdOy8jiTJ5u3RDmD/7uevML3QRjKKQ0aB7Mz11adSbuI5Dp5PtYoqCwNJx2LuV9QsWiwWFQpFXXzaZz+eYps1iMcuOyarOo0ePeO3Vt/jwJz/inbffw/dzRFGCkTOp1+v8+MOfYOcNFFEjiTIsULPZJIoivvLlbXq9DmGYEgQB7W6HWzu7L8xzBwcHqHqO6XhCsZjtOaqqzmIxo15tYBg6z54/pVCs4DjdG9dtiG2bhIHPeDxE0zQMQ0dTZHq9AaQxv/ab/yXPPv8xn3733zIdOyg5i+PTSyRFRtU0/uTffUxrb4vlMHNlOM6COAyQSXGXcxBlJlOH/VYLu1KiPZ5Bkmb8PAQSEUgFnHkPVhGQwQTSNGE2m/BgOqVXULizUaWmaPTHI2LtFWYLl7UUBFFC07QX/R6EhDiOcRwPIU2I/YAklYgQCKOYB48eIBoVJEXm9GTA3AvJaToJAooisVlaJ0my700kob59QOf8Gf5yAiSZc1lWsAt5XDfg13/9P2RPHvLTaZd6Ps+z5xd87Ze/yHX7giAIEBDZu/MSKCmjyQJdUgiikIIZ4vgCCydirsx59c4OSs5C01V6V91MGymCrlmIEjx/dgJCwunpKYEf4nl+dpp69pxGowGktNttgiDAtk0ury9YrXwKlkkY+czmMbpmEEUJcipBApIQMTv9KeeVAjmreqPmtLm+cWYIgkCtXEEzzJsNk8x22B10yeVymJZB+/KCtbU1arUam5ubKLrGZx//FVu39tnb26XdHZAzTKr1Gu3rHi/de5k0Tblz5y0ePn6Eoedorm2QpjGqqmMYmSrUXTrYezlsw2a9VuPYLBAnKZVqDYQUYrDs7Ho/HA7p9bu88+VfIfD8m91xn4WzxM4XcF0XTdOoVqu02212NneYzmekqYBh6JSKBUzLYDTSmc0mlMtFjo4P2d+7zdXVFZqeoyxraC0N7a/xWV4D1/XxghWrVYQgZPCLi8tTzs7OcJfOz11nfqEHI2maYts2hUIha0y3Wuzt7d0gyAsvoAi2bfPhhz8mXPmcnR4zGo1e9HIyZmCXJImQZRnPj/nqV79KGAbkDJVnh0/p9Pp8+9vfZjTuktMtut0ulmXdKA7XkGUZx3FulskFViufdvsKWRYxDZ3Ad4Fsb1hRFMrlMuVymTDMzFmn52dM5zM+v/8Az/PY2NigUChQKpWQJIV+f0i5XObu3bskUbZz6boudrHCYDJGNSrky2UkTWI4HqDlVGJBpD1Zkm/YnHem5Ct1LrpZGHaVpEyXDpPFEncVEosKqxByOZPFqA9phEAMgghxlF1/VJM4zVYDv/jWF7Mco5pD1jXiVCQIYtr9Afd2NknVBnalxWw8eeGR9X3/xY52GIbZCpWQ2dvGkz6qZdLYfYWd2/e4uOzQny0ZzxcZm09WXjiL250LXnvlCwgIhN6UfufsxedBEAQEQcDM21iGRc5u8qMf/CW3N3K8cbuMpCqsEoGffPSQQT97qdx57TU0y2CVSETRiu/98BO6gyntno+m5dB1nfX1dRIpRdENRuMl3d6EOFFJMYhJcZwFlm2gawakWRDeNE1eeeUV6vUaipK1aTRNw8zbIInUarVsH9Yyyefz2LaNJGl0emcYOYs4TolXIYvZEr9/zWzS58mjz174hNfX12k0GqRpyo8/+D6Hh4fcvp3BeeuVKj/94EPsQpnt7W3W1tZ4/Phxxqx0PUaDIZ6/xPM8SqUSb7z2ZQB2d7d5+uwJ08mY6/4FuqkSpRGuN7uZcifMJlNEBN5++7IU8JYAACAASURBVG36vQnHx8e4rssX3/rKi5Pvw4cPb07JS05PT3EcBytnMRhcsrGxwePHj3ny7DNUTaHduSZNBaazCZ99/gmalrUFHMfBMDVEKVPHuk7IRmubN17/ElEUUSzmUZQcb7zxBtVqlULBJghCRsMx49GC0WjEYjllb+82v/SV914QqXd39nn7S1/m7//mP/i568wvdETmd/75P//Wr33tKxSLRQSy61UURZyenhLHMavVivX1LbzA56cf/AWnh8esb25TLpe5/+BTFFlhMpmwvrZBmoqcnBxi5HTyts1oPOT05Jy3vvAFlosF5XKZl++9QhB4VJubnBwdMp9PszUf18HzfUgSxpMhuq7hBwGbGxt4XoBlG0zGE/Zu7RGGIUdHz9F1jdl0RrPR4Oj4kFu7Oxwc3EMSRBr1Go3mOrIs8/n9z9FzOvV6nclkwnQyRZSg1mgym4xoNhooOYOV63D5/IQ4AT9KSGQJL44ZDF2WQUi08nhld4sgcFnFCZ63wvVWzOdLTvpzZkFMIV9EkBQmkwFZGBZIEyBF1nSSG0pNtVKh0+0Qp9lKWdnS2WhUaeUF9g9eZvcLXyNXqFFpNLKdakTiNHN1hKuM3+evvGwaLkvMJmN0WWK5XFAq5WiW8lxddVBNG0mWiVYBjrvC95YcX5+yu7PD5eUpoqBAkpAK2QBHkBRUw8SZTXnvjbd4fHaMu5rz3r4KQoqpK+hSQt6ysPM2W7s7xJKIpmtoSuYDljQBXdWIkoTR3EWXVqzV8mxsbqPpOqORx2Q6RFNzzJ0ASVJYLn1ARiCz9iVJmgmh+j00XUFRZDrdNuVymTQGIRWZL2Yoikq/M7wRZEk8P3pKa30DSJAkgchboedU0tBBkAxu3XmTZrPG/c8/5/zigmq1TqlcYqu1g2lbgJCxMvUcpXKFW7duIUo6hXyB45PnqIpOpV6n1lxHRuT54VN2d3ZJCel0Onz22X1+9Vd+hW6/Ta3aZD6d47keJ6fP2ds7QBCg17smXyhw3b5mOB5wcHAHSVa5bl9kyk5JZnOjRd7OZzTtgo0kiNhWno2NTWbzOdVaDSERmCz6lAoNPGdJtVxHUGRSsljPeNxH10x8P2I5X5DEIZ7r4Qc+8g1gdmd7h6urS372s5/hLkc4josfuIxGA0gFSsUKYRhxdHaCrimIkoCu6xwdHWJZFv/n//X/A57g7/zz//5bf+8b3+DBo/tUazVkUUIzdY6PT2itr1MoFFgu5/zrP/59/t7f+0cc3LlHFIZIssj73/9zWq1NJFGhWi3zs599zN7+DpdXbc7Pznn55Xs0G1kA07IsZFm+kSqVaNTK5MwcupbtLpp6jkq5yKeff8Lm1i3sfIFiuYauybjegn5/QJQkFPM2/eGYNA0ZjibUamU83+Xunbv4QUgqSMznC2RFY7GYkc/bKLqMaZmIacrJ8RGI0KitkcQJj54+5PTsknqjRpRKnB49wlYEUEQgpT+JsCyN8dRBUxLu3dqmYBv0+z1WqxQjpzFaBPirmEmUUC5XSeOAXj+LoAhkBRAEopWPIOVIkwDfX5GKArKswsqlYMmUdZFGQaNcrSDaDRrr28iqiiSrRCLkdANZll/0YKMgRCAh8B3SJCZnlEklkVHvgvPjZ8RAdzChlVepl/I4wRKr1MAPQi6uL5AVjRiBNFkhyzIQQ5KgiDJ2scznjz7n4vKM3/raJq2qjSKpqIpIuWqwu7+BaWkYRQsSgVRI8dyA1Sqg2+7jez47G3Wue3M0WaJg6ZTKZRIhY9WlWEynM2QBFFkgSlKWzpwEhTgV8ZwZi+UEVdUoFku4nkO1WkYQsim5mtMwc0bmwdjbIfAdcoZGY61JGK4IVzGT8YSEFCNvEcURSbTEtmwWXszWxi3svIHvubhewNV1h0o1I6Hfv/+AVqtFnEC/20ck5fGzx6wCjzdef5P33/8LRESKlQrNtRbvf+87tNvXbO3s3HAwVdScwccf/YTtnT32b+/RqO8wn07xA598oYwkyCy9JVGY0uv1iaKIfN5GMzSKlo0oiwSrFbP5iMmkx8nJGetrTRZLB103CMOInVu7yLKGaRl89tkPcBcTnOmYMEy4fXDAchGwublFEovk8zZe4OEHHpVKlUKhzHS6YD4bYRg2m5tbHJ+c8foXvkClVKFRb1CpVMjldOI4xszpWFYRTdWIbm5SSZLwB3/48/EEf6GL4G//k3/yrX/wH3+Tg/09LMNEEEWurq9YzBdsbmwyn2fCmmajRbVaRQBqtRrz+YKXXnqV1WqFaViMRkNkWaZ93eG111/n/OyMq+tLSqUySZJg2za6rtPtdlksFjdElIRSsUQQrDg+fUaaSvR6bba3b2VDkSji6fNDnj59wvpai1UQcN3tUKs1cAKXVrOJrtvoukmv1yFnGCRJQGuthbNcUCwUefrkKbVKjYJd4Mcf/CXvfvldTNMiiSOePXvKYr7g3XfeJklickaOUjFPp3vFcDDl8GqEH6Vcd+fZNcxQiQOH1loD38/2NYPA47Q9ZuoHHGxu8Bc//pj+ZMHBwR1Gw9HNU86KIEikSUjOMHFXAWkUI5Cw1axwu1HmG7/8Gpv790gUg9LaLpVmCzWXI0xAVrQs1nMjgxdFkelkgmVb+K6LaVpMpkPSICJyetj5IsNej4qloWkyMQlLZ8H1cHGDisquvtKNrCpBIF8qQSrQXGsy6HZI05jbW0Xeu7dOugpIxZDWRhPdsPHdJUa+TKW2i2lZhFGIbVsM+gNK5TKOGzEYjnDcFaWCTTkvUaoWqLfuEaZCdgIUJdzFEoEMpb9YLG5Ulg6qqrJ/+za2pTGeDLMhE1kbIKdpaKrCeDzJOJOug0DKdDpl4TgIgoCzdDBNg3K58v9w957PkuX3fd5zcuqc0833zr2TN2EXYYlAQwAIEhQl2aUXsot+pX/Bfie8ty1RyapSuVgkVZQo02W6ygxFAjACscDOzu7s7O7Mzs7cCTffzrn75HP84jS2WHJZRFl+IbCrpqbnVM+5oU9/zy98P8+DAARhgLecE7hLRNng6PKSvd0rdDtdwlCgXMnz0UcfcHBwFXWlNl0sllimiWMnsct8oUS316PX6fLGG5+n1+8RhiHVcoPtrW0WiyRM8PjJI2bzOVf3r/Lo0cf89O2fsLZe5/DpfVJWHtte4nsu5XIFK2WwtraBKivMZ0mO/fDp01Xm18bQkzibpZs8/Ogjdnf3ePjxAyaTMUt7gSQJSKICsczC9hjN+rzy8uuMxkOKpTyddo8nhw+J4xDLyqEbEh89+ADfd3Fdj62NTc7OT7EsEytlYlopPrh/n14vgYIkm4zzlbpTZD6f0uu3KRXLpNNpfvf3/9df/CL4L/75P/32N7/2yziOw927d5EkCSKRXDZHtVrB9zxG4zGdTgfDMOh0kiZPSVIQRRlBhCiMyWTSjMZDPvfZX8Jx5qytrZHJZMmk0zx79ox6vc75+SXpdIbxeEQcxxy9eIHruhSLJQQU6vUaYRgl9i5JwLR0Crk8N2/cRBAkCoUyuVyaOIxJpSx0TaPbbaMoCn4Y4jgOs+mITLbCaDzg+bNDprMxQeAR+CGCKHDvnbfZ3dml12uj6QbNtRZhEEKUiMlFMSJaOoyHHVw3wgsCICCIw2TxOG/xxquv0rm8oN1uM536jOY21UKO12/s8KMPj4jjkMF4hCjLSKJMFAlAyM/SI3EsIAgSYRTylTc/Q1aDjOyyWa8QqCl23vgGmmZiZrIsbJcYCWXlMflZEQyCCE1N3B8IwqcuDsd1GQ67ZDMW9qSDqYloYkQ1azKfe6zVKliazM2dbUTdYDqZIMoSiCLL6RxF05jObCBiv2nx2l6FrWqWOPLJFvJEkkrKSuMuF9ihT75QpdNpI6savrdEEEVOjy95691PCH2HXC6PJkms13MU6xuYqRKialEoVVFVEVlW6XQuKOZz+L63KnbJaPHyPIEApFM6USiueiNNRuOE1ByEDqaRgzhEUlWG4zFhECMgoijK6nflYehJqkVVNUQifD9g/6UvMhoNqFQqpLMZfN+jWCzS6bRJfL+J33k8HoGQKDFlSYVYYGf3Cgt7TqWU5/LinJPjI9LpFGutBu+8l0BIru1fZTIak8vn2N7bxXUcnjx9wJXdG1RrFebLOYqsMJ/NiaIYzVColqsUimls22OxmFLIF/EDl1w2x87ONl4QMJ1NqVWqrK+tsVguAIHQCyiVa4DErduv4HoeKSvD8dEJ+VyKanWdfKHAYNiBWEzSIe025XKVIIwwDJ18vojvBQS+S73WZLboks2XuXZwlcvLBJV3eZ4MNMx0GiFOUjv/9t//738TiuA/+3a9XEBRFCzLYmdnB0lKIm0/awxV1J85LWY4js3FxQWykjTsPnz4AVcPrnLv3j0m0wnZXIFqpcp3vvvn9AdnDMdDRCFZ1BYEmM2mpLM5VCVh/gmCgGWlmM9n6HpyTkWRsW2XwXBCytRZLJcYlsXZ2RHj0YTLywu2treJo5jFMpEwnZ+dEUdJlvnhgwfsbG/Saq0nyJ9iJdk5KxepNZrYS5v379/h6tWb2Csn8HwxYzYaMh+cM+n1GQ/aBHGEH0oU8xlEQSQKI3Y36pTyWVqNOpZlksulsUydeiGDmUoRhg7dmY1uZpNWB9chKX4CICArBoIkEYcBqiLTKqTJ6xI5S2F9c5vDZ89pbl7DLBRA1EjlCqiWhSCISKJEHEMUhciyQhTH9LoddF3DWy6JwwBECSH06J4fIccBAjGj4Yh8IcO1/QNa1RRb69s0q1Vm/RcUSgbrZZPp3GazVWM8G5HN6GyU07yyYXHQKtLtDNnerbO2sUEsJn1mALoqIxkZMtk8MQKL5YI4hI8+/BCEiOksJoqTqF+znmNr9yrpXBbdVLFdsF2btY0WohAxGQzwfY8gCJMdZ0FA11QkScBxAzTNRFMlLMugXC5xdnaJpmo4jgeSRBxBq7mGJAv4gcdoNF4pWUUcx8HKpFdLMTkkwQfJJBBk0uk0P3n7bba3dxKLX0wSkQuWFPJler0OW1vbzGYzDN2k2Vy1bsURP/jhD2mtrbO3s0sQBHS7XSq1KpeXl5yenNJsNOj2u4iSSrdzSamwRj5fwLaT0aplJgma45MXDIdDJEnkvXt3SKeLibExk0KSpMTjk84iCKwo0QLtThtREFAVhWwui2HpSJJA+7LDfDanP+ixvbPNkyePkGQJhAQRls/lKRSK1Gt1QGC5XDKZjMnm0qSsNJpm4PsuQeiSz1d5587bn8qc+v0OC3vM+UWb5ir99Yd/9Me/+EXwt/7JP/72V7/8JdbX1xDEZJTy4OFHOI5Np3NBGEVsrm9gOw7n5+dsrG8wXywJwwBBEGm11hiOJ6TSGYrFMpIgIUrJLtjB/m3WWpsUiwWePHmKYWpksxl63Q72ctWIalmYpkUUJcRk0zQ/1TsW8lmGoxGISQGxjAxhGHPrpZv85Mc/xQ9DiGOy2TyZXI56o8lsPiOTThGGIZ88+pjJfMLZ2RmnZ8/wXJdMJoemG0SxSKfbodlocnx8xFprndPTQyRRww9j6pUaugSx5zIcT5g7Dqlcnl6/z/W9FqqhE7ge4/EIQ1OJ4wDXXfD69T1++MEhQSgQSVBvbSGKKvEKJCqqGposYakxu2s1bu2UqaQVMrpOv3PJm1/7DWLVIF9pIAoCimEhiAqz2TwBioYBsqQwHo9Z2C6WYSBGMbazJPRchEhgMh+x6DwHIgRRJJM2mE7mKLrE+kaD0Jvz8KP7bFYsMjLUswZv7K9TMuHmepndapqi5nF1o4goyIwnfTa2W4REZNM5rFSBXHmddLaA7bi0O20kRUDTDZylTTptMZ3NcPyYdCpNLW/QrGYplaqk8lV8PyKfLRCEAYamEPou7mK66hBIYLVxHK7UnknvqWmpaIpKPp9lPJsyGiRdCUHooZsa48mY0WiI4yS0Gsd2KRRzSJLMfD6nVq5gL200VSCKQybDIVtXX4M4aVVKWxaiIGI7Di+99DL37r2DqppUKlUi3+Pk+BlRJHJxecLRi0OK+QqKplIslmhftNE0FcfxKJYrySzn2XPS2Qy6piOKMZsbW+i6tgJkCDi2g+PaPH78CY8fP+QrX/4ajuuwnLvcvnULWZKYTWYUSgUEUYAoZD6fMZ1MSFlpppMpcZyQ4aezGVYmw2gwIfBdspkskiRj2wnQwtAsZEVGEhXCMOD09JQXL17QbLaYz+ccHFzl/ocfMJvOOD15QS6XJ52pcu+9H/OlL36F733vezSbTTTLpNnaRFwR5CuVyt+M6fD/9D/+D9/+r/7u38Z1HUQhQVypusnu3hXmsznDwRhFkT+VQl9eXHDlyhU+/PAB29ubdLtdFkubMAxpNpssFzbT6QzTTNHrtykUckRhxIMHDzk7OyEIAra3t7GsFACPn3zCYj7Hdh1UTUVTVU5POhiGzmQ2QzcMGo06g8GQKAyo12u0Ly+IomTntVatMp3OCMKkiD599oRSuYpppRiMBqyvrZG2spQrDQRRIPRd3v7pO9y4eZNSqYyu6Ti2jaJoRKJIJl9CS+UoVPLopozgB7T7PRaOixBG5DMZXrqyxXy5QELA8wJMSwMEREkiFlUaZszHx12iQGIy7OLaU0LfQzMsXrlSZqtmcXNvk4NmiWZWwXOWXHv1Na598RuMp30yuRaoOma2iKiouK638lUssSwTAUilUixthzCOiYIQM5VauZ8DokBg0HmBblqJWkAUMVQFWZO4ces6d+/eJZ/VONjd5uKyTRT6iEJI7M/YqOWpFC1axRSSpHNxecbmZotCqUAqnaLT7qHpJpphJQkjIZH6gIgkymRzGUbDIY4X0xmMkASJQk5hY61FJp+CKCaMAQJ834M45vzkiPl4SL/fR9FVdFOnkMviuUlvWhQl7mtVkRj0p/QGAzY31pE1Hcf1SKXSyLKMLMufuoHzhRzZbDop/qupcTqfxg9iQMTQwPEjXMFiuZhRKOaTPkxN5+TkhHQ6S6VSxTRNzk7OmM2WfPzh+9Rba5SLZdJpkygmUTyMJxSLBXw/QFJkUimLVquFH4WUCkVsx2a5tHn7zk8xLRPX9RBFEUVVKJVKpKw82ZxJGETIq4GAosrIikyvl9C7J+MxETGSLPH0+VNyhRyqrlKtVZElnfsfvcP25g6ObVOtVCkUiwhCAkQRBAnbsclk0kRxSLlcQVEUJtMRrmuzdFxef/kV+sM29eoa8+UMRVNwHQ9ZUrl+/QZ33nkLy9TxPY/FbIKiSKiq/jdnd/g3/8Hfp9PpcHR0RKvVwrZnPHn8iL3dPba2NtF0nePjcwCu7B/g+wHlagVBFBGA3Z1tlrZNu9elUS1jmBq+55HJ5BmNBvQHXW7feplUysQ00pycnUIsYhgmkqyQXRm5At8njCOyOYsg8MhmMiiyQhSG2MsF0+mMdNrivXfvcGV/n1KxjOe5nJw+J44izk6e8crLn2E2t8lksuRyOY5ePKdSqaEqEufnJ9x77wO++tX/AllJ0OKiAPVGhT//iz+j1dji4uwEy7KIEajWy8nUL4pYLB1SlsXxRZfPvnqDTDrRDgiyTOAmu6tRGHF6esTe7g4aAiejCUEsghgjCSG319NcXcuRkmUIQrbqGTRdoNsZ0BvNEK0Sr3zxV4kkA1HRMNMZEJLYWBiGmFaKKIxQFZnBaIiqqzjzhCHoBz6ipBKFHtVqhSASkSOYzeeohg6Bz+Enj0ES+czrL7GczTk7b7O7s0XaspIc92SQuIHtgIXjEgkCvu+yvd0ik88xGs0pV+sIgsJ8NkGUdRRNQVbk5P2ZTOj0OoiRiK4pnJ73E9Cnb1MtpzE0A103cF0b0yzixQqeO0ARYDkbIgkiqiKyXE7JZzPIIoiShKGn6XX7SceRIKBrMrZt4/kBlmURhiGddo/FIlka8dwATdNZLGyW9pQ4CMnlC2imCSTnFASR5XJCtXmD/mSE77oUi0W6/T6u61KplDk+PkIQRDLZLGvr6+wdXE2iYmLMs+fPqdXqCW2mVEzgsIsl660m3U4H0zQ/bSaWJJnxeMwv/dKbfPjhhyiKTLFQXiVVBhSKOQ4Pn9JsNOl2esiKyHg6Yjgak8sW+P73/4SvffXXMA0DQzcoFIpcXrapViu4vs87b/0JL7/0BS4vL9k/OGAynnL49JCtrW3u33+bvb09qrU6b731Fkt7ST5XJJfL8/CTj7l2/Qa+73H4/Cm+53PRPqfTuaTf63Lr5itEAgiSSOC7rK9v8sEH7+E5C3Z2D0CQ+Df/7g//ZhTBX//m17BtG1EUKRaL6FqSQWy11pjNFtx99w6SFGGlUhQLJU5PT7FMnXTKWuU7JdKpNLqmoaoyd+/eZWd7h83t7UR2ZKQJwxjdsJAVgfWNNTRF591336VSrSTDd1Egk07jeC6GbiEKAnEsICsC8xUTrVgsMZmMuXr9Foqs8/z5ITt7VxiPF+xs7TObDZhMlvj+nI8+ep9avUallEi077zzFmEAN2+/RD6Xp9fvks/nSJkWsiTj+R63bt/kk8eP2buyx3zhYaSKKIpIaC85v+zi+C6yJPLGy9exXScpTGkdTUnukEmiw2K5dChlLQpaSMaUKOnw8kaem3vr2KMFshBw4+oGs9kUTVSpru1y9XO/gh8LpDJlJE1EVAxkRQFBwLYT+9hsPk9aFgIfPwiYz5dIkkJMjOPaK/S+TxgFiFoWq7CBla0SeksgAHuJbKpIIpi6jKEpzIcTZF1jMunjOw7T2ZzJZMFHD58hxQGNcpFsKY1uJr7eIAiQRG1ldrOYz5Kbl+clmdliuYEqS7Tb53hOyGw45PbtderVCpKkEoSQstIEokDkO8xHXfqdSzQjQ2OtjufaEPioms5iNkc3DMLQo9GsYBkWQbhEkpIRn+N5n1oONU1HViRkSUXXjU+b6G1nwd7OHq7n44UBEgKykjg+8imNqe1w/fZnGA7HyLKC6znkcllEUaRarZJOp3j//fc4OTmm1VpjuVwCMZVKhU8+eczm5iaGaSIQ4SyTKFkul8PzPCqVCg8fPmRjYwMrk+Xy/Jyd7R1y+RwffvQ+Vw+uMZ/PKRaTNXl7aVOr1igUcly2L6jX1lgu51w7eCn5XN27S6fbQbdMnj76BMuyEjdynGI0SZrqF8s5R0dPKBQLnJ9fsLNzlefPj0mlTSqlCt1uh3vv/gW3X3mDXD5JXSmKSiplkUnl2NrcZHv7gOpKOOU6S54dHmJZBmenbfZ2r7CzvY/jeeiqzu/8/h/84hfBf/U//8tv37q+T6d7QT5XQiDm9OSI9bU1Op027cszfu1b30KWVOzlElkSKRRLPD86Ip1Kocoaw3GXWrXG8ckxWxtbKIpMvz9gOpnR7bTJ5xNC9Nn5MdVqlc5lh2fPntJo1Ak8l9Gox7Pnj7Adj1w2x3Q2xvM9Li7O+KM/+iPeeP0Nstk8vu8jCIlU5vT8mG63zfvv3UPTdUrlEjEK+UKBbrvN2toGgiDj+Q6uvaDRWKNer+O5DoZh0m5fkE1nE0z7fM75WRvLTLG5sZF87/MpuUya5WzM448+YDieoasarjNls1knSHpMCMMQ23YJAg9Zkpgv5tiulzTe+hFRGJIzdUqFAsPxhGxKp16v022fUavWEnveeEFlbZeD1z5HFIvEggSiju0F2I6Lbhi4rkfKtNDVZNoXxRECAl6QuJJFUcF3XUwrh5oqoBsaiAGiIQMm3fNHpHQBb7Kk3x9RKRcZTYaMJzblYprHHx8iiDJxLDAajalW89SKWZprJYqVMpphoes54hhiMUaUTRbzMbIsoqg6imYynQwol8p4QUToz8jkUty4eZXt7T10I0MsyUiyhGbqRM6Y5WKOlc6TLVRoXxwy6vZxHBtNV5Nrp98nlUqsgrKkQJxk3DVNA6CQzxEFAVGcbLgVsjlkSSRlGcyXCXk8DCMyuSyyIhHFIqVyBc9zEUQxAYyGS0ZBisXC5vT4FM8PyaRzZLIZ2ueXmKkUtVqNYrFMp3PJi2eH3Lx+g8Uq0ich8PjJIwzVIJ8vYJoWqqrw1g//jEy+hChKLJZzivkSj588BEnFSqWp1euEgZ+sEcYChUKZP/nT/5NCoYTv+9RrDeI4IptNpGIvjl5w9fo1quUqy9kiaQcDBAFUXWEyHqOpGuPpkI2NbUCgP+iTMlK4/pJsOsN0vuTW7etsrF/DCzwuLy7QVZVCrkDgeUlAwfG46Jwz6PfQNB1BluleXrCxsUM+nyWfL7JYzhMwrCzze7//73/xi+C//Bf//Nt/51vfXPX9JLtRa2trNOoNdNOgWqvhLJNNkVo1kVQ/e/6CQrFApVzie9//DvlChWI+T71aYzwd89GDhyzmczJpiyjyESSFlGVRLOZx7AWmmaJcTu6yd9/9CZ88esxLL32WjbVdJAmOjo4Tqu2jJ/zqN7/Jcrnk7OwUx/OoVGucnx6TzxWJifjMG59jPp9jWTrT6Zhms06pVENVVfL5NP1+j5/+5CdUKgnGKfB9ls6MRrPKB/fv8eDhA65du0UQ2lRrDTRVR1El3r17l2w2jyAbjId9eifPSadNur05X37z8yBJzKaT5KLXVFzXp1DIEwlJBOzktIusGyxsB9fz6Y0X3L62j+85eJ5Do1lOYoKVOtntl8m1NtB1EzcIUXQLSVKQZY0wCBKzmB8RRyG6luygL12H+dyl2xmQsjKJZFxXECUFURSIBYEwClk4LrlSgWrjgKNnj1kMeuSzOhEee7sHFPMG56enVMolJFlmMrexI9hqrSGEHrmihReHyKqOu/JBg0LWUpFUDXvh0O23CaMIhKRQLeZjGs0W6xvbWKkUoqwS+AkOzDJMFE0jFgQiUSWOZdzlFDNlIEkqnm8T+AH5QgFDN2g2Wzx58ph0xkLXFKLQQxAkPC/AdZ0EHGqkyeazjEcDJpMp0+kYwhCBmFQ6ReSH2O6cbLbA0k3QarIs47lz5tMJm9e+z+1YJAAAIABJREFUQr3WYO4uaTRryLLAdDpOOglsG0WRkSSZQr7M5uYO9z/8AIB02iQmwjCspH1JFXFsG1kQKZTqmKZCtdpAklSWS4eNzXVMKw1hhKqpqLJK++wCRZWx3SW6rn8KKK5VqpycPsNKpYnjiJSVQoolPNen0WoxnU3Z2dlhPBwTRxGZTIZ8sYgkyqy11jg/P+Pg4ABV0VjYc1zH4dEnH5LPlzg6OiWOIhRFJJPO4vhJTl9VZKbTIfVqE9XQ8D0HRZKJhRjPtxFEkdlsRiaTQ5Ik5vMpf/CH/8cvfhH8rX/yj7/969/8euKpdZzVm67Q7/XI5XOkVgvuhmmymM8JgoByuYLruTx/9ow3P/8Fur0u6VSKfr9PTMz2zg6NeoPjs1O2d64kxBBd5/79+xAnysrJZEq1WqFcqvCZz7zBbL5g6Yy4uGgTBAHFYpHNzS00TQWSjHOlXOL05IROt836xhrz2YJ8Lkc+lyMKRRRZ48OPPsB1XHzf5cdvvUWz1cIPfF599TWWywXVSpU4Frls97h6cIO11iYPHn7AoH9JFIpks1k++PA+uzt7VJrJlGDjyg02t+r84LvfRVJknMWccqVEJp36VB4viRKKLDGeJM6O+dwFSURWVLqDIYQ+uiKhKAm5u1lrErg+1d1XsYpNSqU6nhshqxqqbqLIGq7nE8cRgR/geREp00CVkvhcrz9mPB5TLiXtP4IY4rreaqo3J44CREFCFCUMw2S+mLOcLRGXx1yeXSKLAuNxF1GUkrYUJ2A8mdNqNWhftImDgKu3tmltbKLqWeJIRDc0lksb312wsGdksxVM00BWJRTFQJZVcoUGMTGDQY9KdZuUlTiQMyttgCIruPMhkRugprJJ750kUc7XGPXOEUUBXdO4uGgThwLj8YhMJoOqKtRqLXzfIYpifD+gUMh/CkFQNBV7scBIpSiWigR+iJFKcXFxzqDfoVprkMrmEIWYwA/QNAVZ1snlCgS+DbKOpGtk0jl8PwFDPvr4Cbqh8d3v/gWfee1zxHHMYDBIjIKqiqkZaIrGaDJGEEV+9J0/JpvLE8syzWaTs7MOxyfPmM9nFPN5/vL7f0yhVOXw8ccM+kNiIu7c+R66niGVStNoNBMOZBzT7/eIwgjPD5LPpKrgOS6iKHBydkypVMX3PezlksViiec4iIJIs9Wi1+uRzxeSnWHdwAuSxvQrV26wWCwolYpEcUin00XTTGbTCZKQ9AanUhl6vQQBZy/mRHGM6wScnB4l2DM1uQYURSGXy/Pbv/dvf/GL4D/9rd/69tZ6g82NDWRZRtdNNE3l5PSUyWSK54WUyiW63S5//qd/xv7Vq8lFGHjs7+8xHk9wXZt8vkB30McyLPrjMZZq0Ov1yWZS5LJZ7tx5m62tLcrlMpIkkctlMU0T1/NASEafp6dnFEpFNjc2cV0XXddYLBacnJzQaK3x7NkTcrkyfuRBCJ1ul0ajwfn5Ob7vsrRnhEHAlf0D3n3nDo16iyt7u5imxdHREbIko5s65+cXWGaK09MTHj26z3K+4LXXPk+pVMa2bRrNOoahc3p0hqFrSLKIomfZv3GdN65ucf/999nc2yAMBTLpDMt5Qjd2HRfX9RmPZ5TLJZ4dHSMrKrPFDEu3UBUBWZKolwt4RMlOZarIxt5N7DACQSKVzZBOpdBUCVFWSOlG0t+WTZO3DFRZQRIFFFEmEgRURSNlqGQtg3wmzWixQJSSG4cf2KiyjCBIWOkssqjSbbfRhYBACFirVZkvl6TMJMKWzlpcXFwiSyKqBLVqicF4BEKE6ySZUzOdIV+sESsZ/CDgydNDZnMbZzEGWSadyiIICqqqIckShVyeVCZPGHhIYoztuCCIxDKIoornx/iey3TaxV5MkRWZ9foaZ+dnSS+q5640pgqSDIHvYWUy+IFPv5t0EcRxzGg8Yr5ccGX/2moEo5DP5gjjmEzaQtV0JFFF182k20GK0VSNWPBxpmPOFwKiIOCHAcfPn5Er5Gk2NphNZ9y8eZP5bMFoMubi4pR2u43r2vT7Hd764ff56lf/Fovlgny5RqXcJJdJ8/DjB2xtblOv17i4HFAoZnn68CM0Q2Znd49isUalUqFaW2dzc4sg9Dk7PaPX75LN5oiFkFptA1VV6PcHfPThe0RRRLtziaGbTEZjrFQaRU78MAvbJZNJc9E+Q9U07tx5myAMuPf+fa7s75FN53jw8CM0XV1dn0WiMMb3PQqFZNouSSIxEY4z55137qIbZsKxRGRtfYPN9Q2azSZRFBPHMZ7n8ft/8L/9XEXwP2uUVhIXU/ngg/vsbF/B8x1mM5fNjRb3P3iAomj4vk9/0OPv/Jd/j7fv3EEQBL7xjW8k6y+pFJlsmk67y5UrVzh6/gInCBK6yP4+5+en5PP5FX8t86k4PAxjut0+vu+iqipnZ2dsb28zmU15+PARqqrSajUwTZNarcHZ2Qm5XIZms05zs4UznRKsUiKGYTAajZAVib3dKwyGXXZ2dqg3Wiuoa/XTJtAPPviAcqmCaWlUKtd4+ZWXEAWJJ0+ekMkkC9qZrMV3v/sXvPmFr/D06RMyuQTYKQTQ7vbY2toiky0S+TCfDJlOpyiKwmwyQVIUNC0p3sVCjjCK0WSDQj7NdDH7lLm4nE0RFAMjlcMRJQI/Jp3NYJopREEmrWlk1IggCsk3yqv3CqIwwFBl0jmLUtZCVURcz0eWBbzApZq26IxnIIiIkoEoiUhCjCRAqbWJYOWIJzGTwZQLGfSUydHRCZlUhpOzUyrlMlZGw1CTxX4xCPCWCxYLG1nXsB0XIZIo1rZp9y4QZQ0p9kils0RRyLOnnxBFSVOvbc9YLEwsKUm6CKrKYJhQkx0HBCJSpoIQy2h6icVsij2fcPfdt1bTrTmB59NudzBNA8syUNVkOaBSqRB6Pv3+kGo1aWUxDIOz0xdEfgKIXSxmqKqGJmsJ+cfzMAHd1NDMNL32OZYmE0hpcvkSmVyBwbDNwcENjs9e0GiILOdzogiOjp7TWt+g2VhbIbaS3sur12/RHQxZzuaUC0VG4w5n50v29/e5//6HvPTSLRRVQFY1vvX3/hs63QuiUETTJIbDMaIoc35+TiaTYWt7k3KllCRF/JDLlad7c3OTK/t7OKsR2Pvvv4dtu+i6jixJ6LpOVTe4vDinWClCLPClL36ZR48eIQgCpVKJy7NLGo0Wz54dsr29y6Cf6Ek1TeP+/XuYpsnGxgaGYREG8M1f+VVs28ZKFzk9e8p8PkeTFQ4PD4nj5JxhGP7cdeY/a5RWGIa8+vJnEm6ZLHHRvuDkxRF3777HfLqgUa9g2zbj0QSIadRrfOPrX8N1bPq9EZ3OgPfvPaBSqTCbTNEMnau7V3B9jygKKJVKPH/+nK2tLUDk4cNHFItFRGlFuhj1CEOBdjshFPc6XUqlAo1GjTBc8eN8h2aziZXKI4oihx9/zPHJCXGc5EWz2SxHx8/Y3NhhvrQJ3CDx3AoxqmURRCHD8YgoigCoVuuEQYTvu3huon2sVGr0eh1UVYZY4qWXX6PTuaRYLCIJCfhB1jWOj49ptJqcHp9gO0smswXICoqmkskkaLB8MUe1XqJRKVArFSkVs7i2TS5bQBUglUl6/rb2blFsbiFJCqqaFMfA85HjCD8IEsm97xOGMZ7toYgSiqIQBUECwkVgaTtIkoSIsIIgRGQsg0hg1bcoIUgKsSDiiQqvf/3vg1ZN+ukUA01RaW3UMdMqV/a3qDaKyEKyAWFYGulsijgWMCxztUFQRFR1IhFSVgZNkel1ugz6XVQ9i2aYVGuNFfMvi5VJf5ramE7nVMub6HpuxZ9UCXwbWQHfXWBZFulMjr1rB2iqTMoyMC0dx06SJLPZgqXroOsq0/GATD7DzZduM5nM8GwHwghdN9GtFPV6HcuyMFQlwY4ZOoGTrGmqis501KdcLAEigTejWq7R7p3TqDZ5/ORDmrUm0+mcwWiEJMS0GjUkMeD5i6dEUcTx8xcMB5f87v/y21xeXpIvFRFkiZ3tA27dvM3pyRmlUoFer8dao4k9X4BsIIgKumbwzp23OTs/xnbmvHh+yGAwSJq//ZC3fvJjnhw+YjqbUCwWmc2nn6ZogiDg5Zdf5erVfTzfpj/sMhgN6XQuMVMWgR+SSiVhgfX1dRRFYjgYMZwM0XSZra0tLMtCFEVKpRKmafLGG2/QarUYDAb4vp/YJicT7t27x7B/gSLKlPIF4ligUEgskZKUrJv+vI+/tggKgvDbgiB0BUF48FeOFQRB+I4gCIerv/Or44IgCP9MEISngiB8KAjCK3/l//zm6vWHgiD85s/zzZmWxYMHyTDZcWf4vs/rn/08v/atX+frX/86cRwznU34zOuvYVkWBwcHq42KM1RVpdGocPv2dXRdR1VVBt0ef/qnf0qr1eL8/BJV1UmlkhHOfD5lc3Od0WiE53gokoKiWgxGXSaTCb4fJ9BKJbGMjcZ98vki1XIFEQGBkA/uv8f29jY3b79EuVqj3mwhqxovv/Q60+kcKU7ubvl8nhdPnmBPp/yb3/ltlrMJs/mUG9dv0+v16HUnuK7P3Xff4fmLZ+grIXUYhhweHvKTt75Lf9AjikMW8wnt9gnHTz/BMAyGwyGZTIZisUiuWEQWZJbzBaqhMx6P8TyP2WwGyMiyhCaJpHNp1Chke6OC4zgoepanlz0Uw0SVFHK5XLLzKYnosoQYBhCECGGEGCeMTdd2iPwAUZAhFgk8BzGKCRwX13XxfZ94hZAy1ESPqCgKqm4gyiq6KhOpOvmdN5g7Sczr6eERatrAI6Jer6NbOo3NLdJFi3Q+T6lWJwgCptMpo8mUbK5GKIgM+h2WS5s49Nnbv0ImX2E06rG7d4Bh6Z9GIkVBZjGdJdqB5j6hpCIqMqIiM5kOE1I2oMoSpVqTVFonjgQsy8AwZUzTIJ3NEEQhg/4Iz0s8KrquEwQJlDadNtB1E1FM+vEEQWA6na4y1skNQ1EUWhvruK7LbDombZk4jpO00sQy3e4FG+tbxKLAjVuvomgGqmZw66XbCb2oWMA0MghCzEcP38XzAnwv4h/8t/81juOwXDosFjbPjp7x3v17mJbBj3/8NpKkYNtJATs9ekwuV6DfH/L5z30By7KIQolr126QzqS4vGgD0Gq1WGuts7W5/Sl9aT5b8P69+2iqjmO7KEqiD91Y3yabTjzF5XKZ8XhMu91mMBgQBAFf/vIv43kBYRAR+CGyrCYBh8WC2WyB6/o4joOqqiiKlvTOiiKz+ZS19RZBmMwCASzLYLmc8+Mf/ZB7935CLp/9/68IAr8DfOM/OPbfA9+L43gP+N7q3wC/Auyt/vxD4F9BUjSBfwS8AbwO/KOfFc7/2EMANjc3OTk+5Z133kEURUajKc+ePePRk4fM5wvSqQyiIPHg44ecXZziBT4HBwdkshbDYaJLfPvOT7nzzg/47Oe+wG/8xq9z585PqderjMfDlXdhiKrqrK9vIkkKhWKZfKFEyjSolMpcu3GdiIRfGMUhP/rLHyYIH8vg4uKC05MTREFie2eX4XDIZDQm8Hzm0wmL2RRRhN6gS66QZT6bYVkGqbTFdDLmc5/7PLXmGsVSFT/06PV6eL6DYWh87o3PsrW5y9nFKfliBVGU2d/f5wuf/yobG4lUSTN0ltMJuuCzsb2B7/tJI+5yiarICHJCYXHsZMFdiEVEUWY2n6OrOqVCnryZYn93HT8UOD45p9LcYPv6a6iahaYaBEGwQuYnLpEES+UlyCzfRVElJFkgXoFrBVlCXpnRgiAgCAI8x4UwxlQVFDHGMk2i0EdVRXRdRVZ1Mlaa6tWbFK68TrXWJJ1K0Tm5QEHm5OwYz/ZYTGcYpoVlpRkMBqzvbLCzf4XW2jqxpGIYFrpmEsYRupVnOJ6yWNjk80WOnz8l9pNYlW3biQzLyFDIl1nOJ0S+zXg8JooiLDNHFIEiyWiGyXzSZ9Sf0rvsEscCcSTR6U6QJIX+YJ5AyWKB+WSK5/rEcZhsumQyQACSSMZKQRh9+ruTZLhy5YDBYMDjx4+IhZhKtU6MjOv6CEKCActaFj/47neI45jJeJZM/6Tk5pbN5z7tObx+/SbXrt6mUC5QqlZ4662fMhgMECWJ9WaLfL5IKpWl2drmzTc/T63WYHMrMdWdnZ3w9PBj6s0GnV6X4+NjiD2m8xmSINLvdZEVielkRq/X4y9//H99mo3PZDJ86UtfQjc0Xpy8IAgC8tkKum4myP5CEUNLencH/Q61WovOZZv+oJPoTv2k2FUbVSRJYmdnC993cdyE2t5ud9GNxNlyeXnJ7s5+EvVTTFJWUsiPjo7QNI3W1gYbawfomvFzlLbk8deuCcZx/CNBEDb/g8N/G/jy6vnvAj8A/rvV8d+Lk1vo24Ig5ARBqK9e+504jocAgiB8h6Sw/rv/2Nf2fZ979+7xq7/6LRYLm+l0jCwJHD59SrVeo1DKEQYgyzKtVosnnxyzvbVPGCYYdCuV4r333uPWzduMhzNOTs4IA5v25QUbGxsoioKiJGuAjrOk0+lweXlOpdxiMu1x2T5Dlg+w0ikURUOIDc7Pz6nXGuQLOY6OjtjZ3mY8S+CUgiCgKAqLRTJq7XQ6SUHO5TEzeTRNQ9NUDp8+4cr+AUfPX1BvNlAkFUES6XQuuX7zGrlshn5vxOlFm0zBolyu4vtJ/G8+n7NcLjk6OWRzY3flcU0zGEWcPH5OuPrgzWazRHJdq7BYLPDcGUosIykyguNhmiaj0YhqsYjrOGimimWapBo7+GIKzcwjySqxKKEq0upaCJnaHrHvI0qQTqexVlEwz/OYz+dIYhKn9gFFUZI1yRV+X5ZWKk5DwwliRDEiDiMUSWJBjB+IrK3vMN99g94nQ9KlJA0gKDGeDbPZDNPUkRY9+qMx9VqTKPJIp/NEokkQSziOzWKxxDAMjk4fs7m+RzadStbwggBRiggCH1lOOg4C38e2FyhiiGvPmM5m5PP55AOeygHJ150Oe1i6jNpscnZ6jChBo1Hh/OIUTU8UA9PplGYtWSO1dCPBZk1nZHMZFrZHv9PG8yI2NtbwfZ9sJstgkGhjfT8kZSVek4Q8tETXU8j+jOHwgoODG0ynUwzdwl4s6E9n2L5Ha32N4aDH7u4uxWKR4+MXiWFPlnnj9YQoPbcn3L17h1hKYCEvXrygXq/jOA4PHj6i2Whx69ZnSaV1jo+PKZeL/PKXfpk77/yAQrHCbCYmcOH5lFq9upqZXOfhw4fkcwVKpQqu7SHLIo1GDVM3+PiTx2RyWS7al0RxyHA4ZGt7D1mVmE76vDj6mJB9TFPFsiwWjs1Pf/Rj9vavcXJ6zHK5pF5rgKiyvrlNLp9hNh6RTlt02ue8OHrM9uZNppMlkjwGIabbu0yWyZot7r77zl9X2j59/H/dGKnGcXy5et4GqqvnTeD0r7zubHXs/+34/+MhCMI/JBlFUi4lmPpnzw4BOD56QRRFbG5uYqXSeG5CZpnNZsxnC26/dJ179+6xs7vJZDZiPB1zZW8fy7LodrtYio7vxdy6dRvX9ZnNJvSGPY5fPKdWqyEKCm+++UX8wOHo5BHtdpc3v/AlbNtGlaVVZKmSyINWjtp2p8NsNsN1XTY2NvA9D90wME2T7e1t5vMl5+fnCeU4jAjimO2tHUI/oFgurZDr52TTOdJWiouzc+xVUD+KImQU0mmLy8tLhv0B9nKBIMvcuPYyg2GfMPQZXV5y+OhjFNkiDAKiIESURCKSbGvg+WiyiWTKtC8u6XT7eJ5PpVBA11bOjlKVSNLwRRPJKlOoFFEVAyEKUSUNJBlBEPFcB+KYmpVDFmVCz0ckQhElMlaKOAgSmkwIvpOoD4yUyWg8JvR9/DhGNy0sQ8FxRDwvyaoamk4cLlEVgSuvfo7I79M7vEvkJlqDydimsb5BLIlUG1dx7FkyGtd1IiFOfm7BQVVlHM8giGB3+zbDYRvTSCEpKpmchm5aFHMbLO05w9GAer0BhMxnHRAkWq31VbpGB2A8HqIZJrlyndBZsuicU61WefToMWEoYXvw0ccd9vd85DhEU02qtRzeMunhy+Rz2HMbIYpJpZKp4c9+5tl8DLFAFKnoWoZeu4OenhPHMZvr65ydvEAVJaTBJxSvfg3FSjMZD9EtHcOykBWSa1NN7HinJ+dIkkIYhvz0+98lFmN2dq5iZFJs7mxzenqOKCTC6bPLM9oXp1QqFY6PktHbdDLj+s0byWjfttneup6M4kMPWVV45+2fsntlh35/zNbmNl/+0lf46MGHnJ49T6AFpTI721fodrvs713h8MljTN2g3miSSucYDTs8f35Is7HGyy99HjNtEvoRg2Gfa1evk89k8X2fZ4dPuH37ZURJ4NHH95Nd38DBNFMcPn3C5sZW4uL2FrTWNzg77VDIm2hWlsDzSaezXLv+8s9dzP6Td4fjOI4FQYj/U8/zV873r4F/DXD14ErcWltnOEy4e6ZpUqlUyGazuK6N48QUCzkeXJ7x8vWbOG7A3pXtZMjeHfLVr34NgEePHrO1tUEQRDjukEKxyP3373Hr5ss8eXrIr3zj15EkidFoxIsXzxAEgZdfeo3dnX2ePn1Ks9nEXi7wA5vRaITtLLm8vOTWzVe5vLwknU5Tr9dRVRXD1Dk5OqFeW+Mv//Itrl07IFcs8OTJEzbX1rGsNEEU8uTxJ6v1uxQ721ewUjqPHz/GshJjXqFQWkmePD755BNkWaZcrlIo5Jg7PkHkMpvN2N3Zo395yitvfJaf/ODHpNNpQABRwNINlssliqJgGAYTe0gURcl0qZBDVmJM3SKIZWLZpNubIKU1dq9sY5h5ZC0BeKqGDkLSgKqICpomEMsCfgyR76HpFl4QIosSoQie4yYbJr6DpRu4SxvD1JKssh/g+iFiLKJoOn4YrHrfRCAiCISkUG1cJ50uIcyfMB6esHn1GrlijWyhgec75DOpBB7rhSiaihoGPD06BUldOYfTBLjs7Gwx7PfQNIPheETguSuVlEipWE0gpQLEkUzk28kOZBgiij6+nxSY8WhA7C3xPZsoiDg5OaFYqiZSrWyaL7+ZwfNjRCFmMOgT+RGlcprl0kZeKQuKxSKz2ez/5u5NYyRbz/u+31nrbLWvXV1d3T29zMydO3fufsl7SSoiJTGW5FiWDSMBAhiJkQ9B8tlA8sEhEiRwAiQOzQD2hwBJbMOxZcmMI4mWRFIiqSsud587+/Q6vVXXvp46+zn5cJoTBZEtwl9C5gCDwhQK6Eb36fc87/v8n9+P6XTKcrnEMAxeeOEGR0dHzOdz/Cgmm8+Ry+ooss54PKVYLLGYDgjGZzjzOYKiISsKuqnxgx/8gM+9/Xm++0ffYnN7i25Hw8rlnntG7rz1Fr6X8OzkgJ1ihb29A1qtFt/6xm+zs7VOdzznl//CX0JRFMbDAZ3eOTs7OwxHYyRJQtd1EmKyOSulGnW7/Nt/4VcBWGt5KIrCaDBkpdpAbrSJSbj38C6Zzhk3dl7g5PyYO7dfYjyZslzYaKpC30+4fevVNGUgS3Q65xRyRW5cv8liPqPVXKXb73Hn5dfQNIN8wWD3xi0eP37ISj3Esiwq5Tog8tnP/jzT2QRVyXDt2gaSJPDDH36PX/mVv8y3vvU77O6+/BOvOf+m3eHu1TaXq9fe1fvnwNqf+lzr6r1/1fv/+itJ0PWUqGwaOjduvkC9XkeWZYbDCcNhn6PjY+rlCt3LAePJgLuffMrG+jpf+uIXmc+nBIFHvV7n6OgILaOwu7uL53ls7+yiGSbvvPNzPHmSxl6m0+nz5oJt2ziOk/qJLy74jX/yD5jNXNbW1ri4uKBULJPJSLxw6yaKmm4HZ7MZpmGRL+ZJhJhXX7uT+nOjmKxhptYtRebep3eplFM72JtvvINt24xGI4rFIqZpsrOzQ7PZZLlMt3Uvv/wyl5eXz7mJ/e45spAKfx4/eUSxmOf4+ARRTKvHs+NDFFllMpngLZaUimVEQXouRdcV+XlDKF9pUm/tEkomK7u3qK9vX2UytSuseu65hlIQZYIoQbgKOoeRj6qmLl4AJ4YPHp/y/XuPuHfyjI/2jjgZDFl6LiICpmWgaSqSIj8/F0t/zcmfiieljYJCqUkIxGoR0yogyRrIekqlMQzshU8Sp40V1wuQ9RyFYpnhcMxisWQ+d1BElVF/ihfE+EFCpbqCIKrM5g6SnCGT0YkTAYkY150hynJ6JHJ5wsIe4noOcRJhGSbZQhVRUrFyFtvb1+h1T5jbc5aLMcOxzenpOfYVHKNcMUgIEYQ4nV3PWciyiOPYqFejhdlslrOzMxwndbFUaw1yhQJxBGHkoqiwXNpEgU8YeSy7jwg8m3q1gaXn+cI7P48oivzCl3+Vi5MO9nKELMt4boC9nJEkInHi89JLL6WGt40NRFHk81/6JTZvvsTbn/s8vd4FBwdPkBSZtVab9957j1q1RBi4DEcD7t//lGwuT6VSolDIpeeEpJQgTdNQdZVsPksQe0QEvHT7DrKkcH5xwkq9wdHpMz765GPmc5vxeMrOzg6u6yIIAvP5nGazSbVWSp3hMbiujyjKiKLMdDrm448+JYoitre3kSWFTz75BMNINQ7dbhdDNykWy+kZrmVwbXOb73zn/+Cdd778/J78Sa5/00rw/wT+OvC3r17/xZ96/z8VBOGfkDZBpkmSdARB+H3gv/lTzZBfAv6zP++LJKTl/r2PPqG51uDyEtprawRBSK2+Qq/fwQtCmC6prVTodAbcunWLhW1fTX6kbXyAWq3BbDbD82NG4yHNlTWWbvq5ra2t9ABYUmg0V7i8HOB6znPUfhCG/Pwv/EUEQaDf71OvV8lkdD76+EPq9TpaRmc2n9JqtZjNZiQxeJ7DZDq8imNkUZUMoe/xaG+PjY0NHj9+zGc+8za2s8DKZZFEAcdLdYX3H9zFMvO4fkSSRDj2krXVNuedS5bOlPl0hix8YhIpAAAgAElEQVRK1OoNBsM+wWyG57iUy3l6vQEbGxvIsoyhm7z38ffZDQJERcbIWmimBnEeUQRkmTgRiWSFbKWCGySsrm0SIRHHEZaVQxBSz2wUi4xmSxIB5o7ESX/ExcUFL958iWosMJotsYOEvWdHBP6SIEjIWjku+xMqlRK3d1bJRgkZ3SQmwl56aFfbYO8KsLC4CnbHcUyuVGKgmYhKTN5SkIUYSVQJoojZcJGeDUoSnpOivPwwIlsskp/MyFmpolJUTTx7xk7rOv3uOUEQUCilLpDxqEsYxCzsGb63wMrmyFplAs8n8BMuuqk4CQQEKe14V1e2ebb/kEQUuPXybSQEXMfm/v19ZCn9Y7aXPl6YEIY+OdNAUlSWnouuC+Tz+edeYd93KRQKaTRKEq/OKkMUFTJqyrIkEoi9BXEi4Q73EPObnHfP0NUMy+WS1WYbXc9y/YWbuEubbq9DGEVcXpxxzTBT8VMisLO7haoYPN17yPr6OnHg8/FHPyLCIW9mU7tbucL16zu89/73KRRKrLe3aNTLXJyfsXSdFAemSPzxu9/j9osvUa1W8b2Au48+RRBcNjdu8OTgMVvbO+wf7jOfz7m8vGRr+xqt9Sa2bRNHPoNhH8MyuX//Pgk+g4tD/tKv/3Wm0ylP95+g6zqe77Kxvkk2m2c2m3Fw+JBms41uqERRgCAoeJ7Hs5NjLGtAlIiEScjRsxNkOaHbuaBSq/7Ei9mfuwgKgvC/kzY2KoIgnJF2ef828BuCIPwN4Bnw164+/g3gl4F9YAn8BwBJkowEQfivgPevPvdf/rhJ8uddx8fHxFJMdW2D6WjI3bt3+dznPsfvfuMb3L59m9F4yNaNa5wen+K5PkN/jG3byLKc+oodh+FwSKPRwDQMavVVZCUhClMZiyzLaeB6NCaXNfjj732XjfUdms0qcZTQbDYZjDqUy2sMBj0eP37KaqvB8fEJr7322tWBv0K/1yUOI0bDIUEYkcvl0qfXw7v8wi9+iX5vQBiGXL9+E9u2efPNt4GY8XDM+fk5l5fHvPb62+zv72NaOt3uJZqmoso1fN+nWq2imxorKy/z+OE91tbWePj4EbVag44949rOdT76k+/hOy7VahXXddHUzNUf5pyl69JcbV9tWwXCJGB19QW8WEaxCgiSSi5rIikqqmqiZAySRCAMY0RJ4vjknOFkSraQT30ZsyUZXeO9+/dIkoSTkxNaa03GoymyKDMaD3nw4AHbmxv0+10yhknOcskVXYyMjipJBJEP4dVon5Q2FzzHwXVdZFlAKTYZPf0ey8RhpVpmbi8wDIPpfIEfpt1X2wvJihlURcUNYlob18lnSyQEyIQcTQeMBh2m4zErzTqDQY8g8ChXaniBj6xk0DSNjCQwmfbw7DmqopDL5RCFDLGYwdB1HMcFWaJxbRtnNiJwp8xHE5IkYqVWZE3KcHTeZ7GY0esm5AsWk8mMXNagvbWZ3oeDEZV6jWFviK5nGY/HuK5LtVEnCgWyRQ0JCPwF3emAOAgRRBCJ8JZdFG9AY/UaF6dnDLuHFCo1KpUarl+gXKrz4P4HlEsNbr74Cs5ySbfb5w+//dt87vNfJooC2u0N7t27x507d7h27QXyxSoSHrl8iePjE+r1Ju31bYIgYjoecNnt0O32WV3bJpfN0qjnIJGunNkel5eX3L59m87lCblsnq1r25RKJT78aIJhGLQ31ul0OpiaecX0XKNWXeH42RG7u9uIisrjIOKjT36EEHlUKhUyqoVpFDk9O2Sl0WZlZQXPX7K60uT+w3sklYR3332Xt956i+l0mhYxO1tcdJ7x+mtvsZiPWFlZYW4vfrIVEBB+nIX6abx2t68lv/EP/2dOTk4wDAtBjNEyOh999BGrq2touoKWyTKdDZBFCU03mE6nrK2tXeH2XdrtNhcXF+RyObzAZz6dpQtH55zpbIKuGcxmM6rVOvl8lk6nQ6PRwLIser0epWKR07OzNOiqqSRxjGWZhFHMYDDANE2m0ym1epXf/5ffYGPjGrfvvESv12Ol0eTy8pL19U0Oj/ZYXV2FRODBgwdsXNvk7OSU9fV1/uTd77KcL7n54i22tneYzRaEoY9lWXS7fVqtJrbtMBj30DWL+TQdoJ/P5/i+y9Je0D+8z/G9j/GWIVYxy+6t27iegzOdMp0t0nxitYokw3Q6Z2PrBhldw4tFfBTkjEm1uUmMgJEvkjXTjrjrBcwWDl4U8fHde6w0q+zv73P+rMNgMKBYKaIoCpqm8fjhfWRVQxAkcoU8jp1mNi1D5c5Lr7G63uCFm3dot9vkTJVMJnN1rucBIkmSEAUOURSiKCpHhwf43YeI3pQoXKBpKf4fUWA8TRsjmp5FMwxyhQoQ4y5sBCFhaS9YTHvoikixUMXzbWazBaZpEkYJhXwVJWPgOTM8b04SLAm9GUki4DgO9ZU1VL3AbBGh58tIScjx4x9B5F6FmmE+85GEEF3T6HfPicMMh88uIInI5U2EOGJlpU4UhyiKhKioxHHMYjInSdIkgR84mNkcRi5PNmcQej6GqeLYS8Q4YTYdsZzOsYomSu11qKyTCDJ/9K0/4pf/4q9iahkWi0XKd4xCfvSj7/JLv/hXGU6GCGJEuVxl2BvSG16Sy6WTUb7vps0oXWexWJA1shiGhojAxcUFjUbjCqmvYGYtHCdlD7pLh9F4SKVaQ5IkOhfnFPJFUCSc2YLd3V0cx0sfTvacfD7PcDikVCkTRRHn5+cp7kySWCxc7ty5fVX9x+Qtiw8+/CEv3H6JOJJ49PQRrVYLb+mgaRoPH3zKrRfvYJrZ9PfrR0TeEk3PEIXQ659jmXlKhSLj8ZjxZMTf+E/+5odJkrz+560zP9Wzw1/7u1/9yvbmWsois5cUi1Wm0zGNRgNVzbBcLigUyoyu/Ki2beO6LqPRiHK5jOu6HB8fc3Jyhq4bV2TbKgcH+zRWVnBch6yVxbzyZKiqgqqmN2oYpgf2kigiyTKlco7hcIim6Tzdf0q7vcajx4/IWlk8z2M8HhEnDi/ceIUoCVPZThjgei6ZjEmv1+Xi4hTDMHj86IjNa23KpTIZRUNSZe68+jrL5YIwCJEkkU/vv0+jsYosSSiyzL1P7yPKCevrG5h6uhgUCgXCMEDLZJCtAvZozGw4wHUXrLbXUVSV5XxOLl8gDEM+/uQTclmLUr1GLmcyHE4orm7iOpAtlghiGUkW0VQNSU2BscPRhIXtcHZxwdKe8eD+xxztX3B+cUIQ+tSqJT784CP2nzxFTBLmiylh4NM5P2UyHmKZOrlcaslLQgVdF8nm8ihSip0KAp+MquItXaIwJIp8ojhAEmU812Uxu2DaP2c6WyArEpe9Lv3hHPFqkmU4HpHRCkxmE+r1FsV8HgSJ2HewTIvJqE8QBCwW9vOphnqzxXAyJQyXLJdTZEnC1FUa1RViJJIr8ZQXZshWtonigCScYpplBDFCUU0uTp7SbLWRNY1+5xxZVCmVc3Q7F4iKjGVZqIoMCCzmcyRZRr7y4fiuh+umja1sVkczdPLFAhCR0TIYZo6l7SIJIp7noOgKoiDhO0Ny7ZdJkNjd3kLJyERBiKqqPPj0PpVGja3165x39slkLKbTMbPZHEVIz10tw2A0GHDy7JCsZSLJKpqmQQKnZ0cEXoyqKjiOw2UvvVf9EBbLOa21NWRJ5OnTx1y/eQPDNMjl8pTKFYqlMtVSCdu20XXjSrsaoygqqqrgB/5VdS9TLBaJooQbN3Y4OT5O/x4PDzGzJqVylW9965vs7t6kkMuxv/+Y7e1d4jjm4uKM4/1PWThLIgSefvxNlp5DEEtXsjJQFJVSsUwUxZxfnPH73/7ezz5A4e/8D//9V/7j/+g/ZGnbrLVW+fT+J+zt72EaJrmsyfHRM8aTAY1Gg0F/kN7MhoGa0bHtJUHg02q1WFlpYNtL9vf3KBTLWFYWRZFT9t/hU1zHo1guPbfYLxZL9p/u44QClWI6U5ya2RLsxYLZdEa7vY58NXd6cXEBCbzyypvMFlNqlSpxFDMcDDh5dsxl94Ratc5au40oqeSLORQpDRM/3XtKuVTGMHUEBARB4OTkhK2tXe7fe8CtW7e4/+Ae6+vrbG3uMpvOUVWF4Go7n8loZDI6y6VLtlKnVsrRu+zgeS6WbiKrMotFGg4uF0vIkky11cSezfBj8OY2UZgQJhH5Yok4ibHyBaIwYjpfMFvYPDvv8P57HzIaj7j70RNcz8ULHXrdS54+fcJsNiGOQ5a2zXw6Q1PT3ON8MmU4nTAdjXCWS268eINup8NiMmSj1UIQBRRZSX0UYUjgu0iSSByJaY4vjLnYe0gcTslmddwgxMwVmC884ljm6KTDYDDj8rLL6voagiCTyRgkgshk1EdRBKaTPmGQenOjKIQ4RBJjgsDBWUxSMIHnEfgui8EZJ8eP8IOQUv06tZUdhqNLhBi0bDUVN5XXSEIPOaOxXMyQxYjRYIjr+8iahJXNUisXGQ36uK6HrutkMhqqmjpyi8UCnu/jeyFW3qRYKiOJEkgiqiwQBi6+5yKK4Pke7nKJoui4gU8iqAiFayRRRKdzRKdzSSGfo9/v01prs39wTKVWw/dGjIZ9RqMxG5vXmNsuzZUVcsUcUSKgSAqFYh3L0PjDb3+bnZ1dAj+gsdLg+PiQ9lob30toNJpYlka1VuPe3U+YTCcYmpU2bKKYg/09er0TXNdjOh8ztxf0ul0eP7lPfWWVr/+L/5V33vkC5+enV/RxMw1SF9OzUIE0S7qwbfae7lEsFmg1W1iGyXA0ZmNjndl0lorYN6/RWF2n3+kiAa+8+SWWTsTm+iamYaFIMhfnp5xfnJKICa3W2v8/bHNf+7tf/cqt67sYhs69+/dZba1SzBcx8hZxmEIda9UagR+QJAJxlHB52aFWq0ISIysKspy6ECzLolqtYOVUZEllbrtkjRxuENHe2OTi/JTFfM5au83e3lOaq02y2bTKK5ULzOcz8oU8+WKZjfVNJuPR87EhSZG5trmZuhmktPN5dHTI5sY2+UKJ4WhErV7j2fEJztLm2uZmelAc8xzH5Hsp0y6MI1bq66gZkcDzUbQM9doKYRwjCgKTyYT+aMSjR08olcr4UcBsZiOLKmHsc3nZIfZdeuenZDQDI5djNpuQNS06vR45U6e2voYbpPRnUVLRcxVkRcMwswiSTCKkExGT6YTJdMbdew94/713OTo6JCGgP7hkNhoShwHEP3bVpbPeCCKu57FYzEmAcrHIaDTCdz2e3LvHyeEhohhTqTeoVCqYegZFUlg6Dr7nIsvpk10QJBRFpTcasZyPcUOfyXCCohu4bowfBHzzRw/pDUa8sL1Ke+sGURSQXFUhUQIJEe5iShIG2MsFSSSgaRrzxRxdM9m+eQfFqBMGC5azMYEgU127SXvnVWQ5TxgkIGbIaDpRkmDmsgzOu4yGx+DPSGIfzcxTbrRZbTZx3SWyJBOH6bSHIpuEhORKBabjCUmc4Hg2YRSh6TqaonDWPUUQJYrFGrqhE4UBiZAe7cgZgfiK1aioGmEItZ07VOpN6qtrhFHA0kkhuceH99hobeAGPrKiU6+uYGbzlAt5LqcT9j79E3LFFQDOL0+wLJPZYs5LL7/ERx98QGu1yWQ+p1gsUCyWiJKQ+dxm0L0kmy1AktBur1Eql9EzJpZpUWtUGQ/HlArp6+bGFnPXxp4Naa22abe2UTMaUeyRLxTI5wqcnp6zf/AU08hSqVY4Oj5B0zK8cPsloiAmQcDzIyD1M+u6xnQ6JZ9PA+yNZhNZ0Z8H53u9LtPZmJWVVeqNFeIkplFvIIkC/+Af/2QUmZ9qgIKqqohSgqqqfOELX6BWqXJ58QzXTnNKFxcXOE7auYpin9G4n4pgrnJxkiQhCAK5nMVsNkGSJGYTj/sP7vEn3/sWQeJdbZuX+L7P6mqLbrfLzZs3qVarqKqMZRkcHx/T6XR4/PgxBwcHLBaLtIvleSRJklKhfZ/xeMxgmErN6/U6v/X1f4QowubGNWRJYX09xf2knTaBp3uP2Nraol6vIwipYjCOfGbzAZ4bstpqISQQhinwIYoCHj16wNHRAXfu3LmS/PjPZ1wFMtSam6xe26HWXE3hBaJ4td0XiOOYta1N7IXLxWWXpROwDFwuTvdBlHH98Hn41vM8FosZ9+9/yh9++w+YTxd4jstkNCbwAgRBuorKiOnif6VFdd2066kqGURJoj8YUKlUEAQhteBFER9/fJfpuM9yvkBTMwjwPJbz42YVxNjTBZqsISchiRewurbBdGrzyad3+Xu/9U0+eP9Tjk97aFYeZxlgGjkyisrZyQECMbPxBCtbJkpAM0yqK1VqK2uU6w0aq20O9+7TP7lHsJxgZXPUVlbImga+sySIXfRqkdb1W9S3X6S9c+tqixegyuCH0dUkzhLHnjK155j5HGYxT3PzGpV6hUT2AZHZcIxmGoRhOlaYz+dxHJvxZES92kBEYjKZsFgssHIFJCGByMNfus8ftKIoomoZEmfB/U8/pt/rsLG+w8rKKoIg89Znvowgy3jekjCM6V52mAwHdAdDQnsOMpyePkOSBA4fHhG7HpIAi+mc3d0buF5ItVi8OjpY0L3s4QcOvV4PQRCo1WoEbsSwPyCTURgMehzsH/Po8T1qtQqvvPoy/X6XjbU2fpDOuauqyoMHDzh7do4iqSwWC3Z2dri+e4Moivjjd79HpVpkc3OT2XiCLMv0+h329u/TuTxm/+AJ+XyRtbV1PvjwRyzmNpVylXq9imWl2+5isci1zS2ePHmE5zmsrKTKCsdzf+J15qe6EvzqV//Hr2y12+ke//yMJIm5uNinXGowHo8xTZN8weL+wyc8efyI1155E3s5xw+CVI8pCGi6SRxHqKrG+dkp88Wc7a1tbr14m4xqkLPS8v709JTt7R1msxmapuE4DtVKFcPU+OSjD5mMJ/zcz30RLaOnlem9T1FUNQUSzGbouo5lWeTzeeI4wPMC7tx5g0IhjySLDIYDSpUKqiqyt7fHwcFDLCNLFEYs7fSJ9/77P2T/8CnFQgVJEjk82uPi8pT22iazxZTzs3PeeOMtBFEkm83husuUmhwliJIAkkRG1xFQiAOb6XSC56c3jr1YUl+p4/gucSwgSQYXl5eoWgY1k0XRs+QKRcIwISNrLJczTs87/ON/+ps49gJRTBc827YRruCiP/5/qVhGllNOX7aQww1CVlpNoiBM4yjjMVkrnSZxXRdEgYJpsLG5RbFaJqOouI6D484JgwDlqoJXTQMISWJIZBnfTxWO1XoL3TIxrSyt1gqb6w1q9RqqILBYOkwmPZzFlHG/i+/bCAg4zhLfCxmPujiOy7PjAwwtQxgtUUQZ07SIwgDbmVO0sshGjUg0EOOIZwf36Rw/ISMmyHI6ey1JAiIxsghWvgyigkDMeDyBOKZYLmNoMoupjbNcEJMQBQGWkcWeLzBMk/lsln4PSerISSKPOErpPHGc5iVn4zFa1kSRJILQR1Is6tdu8fDux+zv7bOyUsdzlziuTblc4Zt/+Afs7uxyenJAvdZgMhnRbLSwrCr5XJ7pZMobb71JEKaLVHrOnUEWVc7PT7jonNEdjKmWy1SrDU5OT6jXGywWNnEU8PjJI8Ik4qJzwc2bO+zuvsjp6QmXlxdIkkIYRWxsbKLpBhktQzabpXfZ4d69T6hWayQxKLKMIErU6yvkcwUO9vYwTB1ZTueDDT0LAlzffYHJbMF0PmV9bYN79+/Sbq+zt7dHpVIjCFJplR+4EIOzdHjw8DGGoeP7Hr/59d/92d8Of/Wrf+crP/fOW7z5xutkLRNFUVlZ3SKIAirlMkEQ8IMf/ohf/OIXiZOYpWPTaq1jGOkMZrfbZTyd4ns+1WKe1Vbryh9rkyQC/f4lp2f77O/t8fbb79Dt9p4HQSVJIopizs5POTg84NVX3yBJIJ8zeO+9H/H6G29cNT/CK+VnmaUd4Ho2+0f77F6/SRhEPHnymKyVpXPZYa21lp475gokSJTKZZorTZIk4ZNPPmF9vU2l2mBnZ5dPP/2UarXOarPNvfufUqvVqVXTrvZsPkNRJEAily/gOT6CIBJEEaIkpc6RjIVEjCqLaGaKQR8MBhTLRVQzx9b2Lt3BhMd7R9SbLUyrhGZYhGGIYehcdi/5+JOP2D84QJJkZFkhDEN0XcdxbURBIpvNkiQJL7/8Cmfnp/ieTyLAa6+/QaFUQdcNhuMha6urzGczlvaMKA7JZbN0Oxf82l/+KxRyWYIwHX9cOgu0TAZBFEkSEKII3/eIgwhEiZPTcw6OT/hf/uk3uPfpHhcXfZAF3nz1BWTRwPEDptM+gZ9qSo2MgSSBphuUKxVEJKqVlXSqRoioVRuQJDi2zWg6JZcvkSQKVr4KSgZFN/GikKxRwFuMiX2X0F0wm1xiz3qYpo6syCRhkAJiRZFsvoSRyZIxNBznaozPC5EQiaIQTUtBq7azxNAMpIyMoCjUalXCwKVaTTWtmm4SJwmiohAEPn7gIyYCS2fCgjz5Qo7d69cRhLSrfnh4SC6b4/ZLr1IslqjV15jPpuQKBXQtw3g84tmzk+cNQ8uymE4nNBoNzs7OGI2H5PMF8vk848mIrJVlYU9Ya7dRZJVHjx6x0lih0WggywqVcoVhf5RGb9Y2WW1tkJAACb3OJbPpGEnT0bUM+WKJw8MDnj55SC6bo9vt0esPyOUsfN9jf38PhIBu9xzf88jnc+SyWXqXfToXx5wfP8HxA8qlCrl8FkEUuLy8RNMyHB0dks1aDAdjqtUKppVFEOD8/ILf+9Z3f/YXwb//9//eVz7z+hsMh31Gw0l6hnB4QBjEVCpl7j+4x8svvcxsPqdcrjCbLLCXcxzPZTxZkMvmsMxURuOFHsulgySLXFx02Lh2jQSRxWJBsVKGGDqdDoZp4vs+iqLwB7/3m7z80mfY3d3F0HWsrEWv38M0LQzNJJtNt5nlUoknT59gWAYZRcH3PWQx9WkcPzuiXqujKir9UR/LNMloGaqVGo+fPKZYSCMm1XqNtbUNlEyGXreHKMrk8hblSiVtchgWl5dd4jghl8+hqlpKN1ksQIQgjBElhThOt35hDIKm4s8HzOdppVksFHD9dME8PDrDKhT4xh98ky99+VfJlQpoGR1FUQnCkIvukO98+1s47pIEEd/3EGWZ6WSM56Y5MVVV0odM6HNyuEcigGmlc7oZTWM+n6TTAGGM6zhXjQ8Jy9AZDUe8+eqb5AsWoghxEuO6Pp7rp04MWUq7277HcjKk3z+nXG1guw6HRyluSVVVhlOPz3/mVRr1GpYuc//ux+RzBnpGIZNJz3vK5TKXl10ce8lw1CeKA7KWThQmyJKMlcuz1mojiiK5bIlEUsjW1yk1Wmh6lkTJYBYqZPQs89kIVRFx7T5JFKEqaYA7ihMq9Ta6YZFIMcN+j2KhhCBEeAsHx/GvpnBShJaVy6KpGfLFlDA9HI1QMyqyoqSsxdhHlCCKEnQ99Qjb8wWCmkHON2hfu8FsMmfv0w+Jo4jFdIJVKOBdHWkEoU9MxOnxM5SMiaxKWKZ11ZEPyOfzQMLCcdnY3GY46LGxsYFlWMznM2rVBt3OOU8e30WRNa5tbiJJIlYui2EYRHFIpVLl5OSIjKQQkaS4tCROwa7ZLNPJ9KoCd9lYv8bujRfIFwqstdfTylEWsXQzJVAnIZ2LC5aLJVs7u3z44QdYlsXaxjrrGzfJZFTy+TyDwZDRcETghamuYTnH1A1ULYOSkTk8OEJVM5QKBf7Z13/nZ38R/J++9rWv/Ht/7deolMv4kcfoaq5xY/Na2vna2HhO3RgOh7RWmpTKJS7OL7m+u4NlpRmnVI60wtGzYxbzGbu715lMhmQtkyROCMOISr5AqVAgm09T6ilsdRcnCJhNJ1QqFZylTa/fpVKtcnpyRkZLzzl836dcqTDodTl6dkQul2c4SsU6javOdD6fR1NVEhJs22a5TLepmq7RHwwAmM3mzBepO+GFWy+Ss7JEcYye0VlpNsioGoPBAMM0kGSB+WKGH/gkSfx8ZC6NOCyRFQUBhcAPUcWIjCIxmkxYzhdIokzGzFFfaXNyfkHGUNnevYkoKSQxBJFDEMj85m/9QxBlwquKbNzpICQhke8jSgLOckEU+HiOTRJHeJ7LcjbFcz2ePH7A6fHJVbc4gz2bYS/nVxJxldD3efXVV1ltNonjCFmW8D2XJIlBSJAVmfnSppgrYLsB7nLEeDjjf/tHX6fb7QMJiSRy6/oq3c4R17fW2H9wl4ef3mNrs83x4TGLqY2mqgRB2qWt1ZrUGw0q1Qa6lsVZLlFVI9VtxjGJoqNla+iFOmpxhSiWiQFvuWQ86GLoGcTIo3P6EMkPmc7n+I6PkdEQ4gTXnTMedcmaJkkU4rkOgRcQJR5RLCIKEEUhnudhmCaIAvPFnEKpRKFcorm6gn01NeMsbMKlSxBGlGoVZFVhPhwCMa+88+uMp1PyuTyn/SGttU0UXeb+J/dprDYZj0cMhyN2d29gz6bohsqHH/yAWr3O4yePaLfTiaV2e40oThDEmHwuR6/XI2PqeMsFTx895Nr2jau0Q4ODgwNqjTpCAlEcE4QBcQij+ZRKuUycwIMHD2ivt5hOJukDbOng+x6tZitlBfa7RFGE7wdksxZPHx/T615QKBRorK5QqzdZbbXpdS9Td4uiEhOytB2SBERRwLIsdnZ2uPvJXVZbTe68fJuclcfzfQzdolqtsrKywtHhAb/z+9/+2V8Ev/a1r37ls2++QkbLUK818P3UOfD+Bz+kXqshyzLf//73uXnzJoIgcHh0kA6Ej0fA1TB7HLO62uKDD97n2uYGaibDYjFHQHw+m7u0lxTKRe49fEC5XGI2m2MYBqVSFVEQyOcszp6doGkW5WKVb37zd8nm83iuS71eZza3yWgKF50zJqMR49GE5mqTXD7HfDqn3mhwcLiPaVn4Xk+G84IAACAASURBVMB8NuHg4Akvv/wG3W4n5dvZS6IwRJJkVlttgiBIw8Kez2g0QlUz9Ps9dnd3iGLwwghRlKhUKui6DogoaurvUFUVSVLSICkSKDJJFBCGPlHg0xtcYpo5ut0RkSiCADdu3CFOIIkTPC/EDQI++vB9lkHAYjLBnc9ASBH6CJBEEcQxSRwT+x5RGEAcEUchi8mIJAqIfIc4cJkMurjOAkgQRAlJBEkU+fVf/3cplnIoiowfBoRhgKKqV1vvCEVSyWQUFEUj9JcsFjOWDmy+uMPW7g3e/szrvP3KTV7YauMs5jiex6tvvMp0voDAp91uMxz2icIQx3FZOgvyhTzT8SVhGFEq1tGzJTRdQ8nkyOgVJCuLZJTRjTKSqqZAAtdFFmI0VWE+HiKLEdPBGYZuIgoxi/kERBAkAU3V2ds7RFEVrGyO6XQCokilUsD3A4jTRp+sKml2L2tAArPZjNl0kjalHAdDNxBlBSGJCQQBVdFx3ZAkifASFy+Wueh0aVRrXJyfUautsLG5SRhFVCoV4jiiVCriuR5uEHHjxguUSg1MI4MgCKyuNhFkhcCPCH2XTEZnOp2Rs3Lk82m1Nl9MkUSVYqmYamOvWIiHR4fUa3Vcz6VariFIIra9YGdnG2fpUCgW+eD991hf28DKZgmjkJPTEyqlMqVikYOjfVzH5/btm5iWxdb2Lp1elyRK6Hd75HJ5kiTG8RwatQbVeuUKLpIlm80xHk9SpJeqMx6NefT0EYHrIwqpH9z3AhIh4Z/989/+2e8Oh0HA/tMnvPvuu9i2w3SaptA31neIYzAMi9u3b5PNZlO2nWmSyWQoFAopUn82Zb29hqwIbGyu4Qcp4bjf7z8flxuNRty8eZPz83PiOCYK00H+UimVTk8mEyRJZmtrm3qtwL/85j/n9Tdfo91aY3vzGg8ePmS2mBOFMWutDba2drl58wa5bJFOZ0x9pQ6xQDGfw7Zt+oMezeYapWKdx08e0OmcM59PMU2TXC5Hu92m3+8jimJKsB6PWVtL3RGHRwdMZxNs20YSFUhE4giSWHgulxHF9IxI0zQQZNSMjqDmkAstrMoaczdmubA5PN3DCXySKLzyXsRX25kE8BATqFWraUXie0AMSfR/vyYJcRRBHBHFQfr+888kRJ5LEgZEvkccR8RxhJAkJLGHokgYhgmJdAVrFUjCCFlIb8cfh5qlK/6gFwSIkgSiytu//PM06xssZn0e3r/P0ckRlXoF0zQpl8tEUUKxWkPRMhwfH5K1iqyutajWa2SzJqPRAFnSyOcqhEnMwp2k2UFJxklE9Gwd1aiSSCK97gDbdlBkGdW8AmBkMmhGmfrGdcyckXqNkZFi8JcO2VyJ7VtvsLl7B7NYpbV5nfWdHcLER5BEBDlzxZVMmwYnh6d4bsqE1DQNSRYQhIQoioiSmBgRWdWQFZVQFBBQuDx4hKlnuXHjBmbWYHWtSaVSoVBI+YfHx8eIoshwOMSLQ3KGyXvf/0Muzw8J45ij40MKhQrD4ZDJJL2fwtC/0kZEHB0dMZnP0nnsbJbZfIwoisQxjEYTtna36Q565IoFgjhKBVfF4vP578FgwI3rNwmC6CoKFlOv1/nud79LEATIksLq6hr9/pjl0ufw8JDDg1Py+Tzdyw6di3NOz8+olSoIiBwdHjMc9bi4OGM0GmDlcwRxhCQJyLLGW2++TZwELJ0U+Opfie9/0uunWrQkSRKmmeNLn/kMURRSLOQYjfvkcimuPI581lqr+J6LlsnQXl9H0zRMy+Ly8pIXbr1E57LL/fv32dnZYT4bp9IbzSCXSxclz/Oeqzyr1TKu5zyPvtTrJrVaBc/3EQSBe4/vcXPnVRQhy2Wvw9nZObdeeAHHcZhNJ6nysFhiNJsQxQKb6yv4S4dHzx6hKArXd28wn885OT3FymbZWN/k+BlUq1UUSXmuxIxCj+l4RBgnbO3sMh2PiJMI33f54IP3eOdzP8/x6TG1WgM/cBEFmTBKf+k/RrZDyHQ6RVVVsmKeMAyJZZmV669TGJ4xmS94vPcYw8g+D/KKpDGaJFYY9o+5uX2D/eMjpss/aw7zX3eTxSRXaCwgJWEAYQiiIGOaJvPJgkQVCWOQ45jwqjkS+gGBKJIvFlguU+JIFHgcHJ7z7vc/4t1332M2GiCQoGgJv/KFf5/e8TPCKGG1tcLDhw9pNptX4fYYxISzk3N0PYMfeKys72Ja+RQF5ngYRha9ukmsqpT0SrpNlcD3QjJGBuKQ2EtwFg7TQZ/EnRC7UwYXh8iyihDFyKqC7/vkazUW9gzdEOmenafk70yGs7N9SoUiUkmiczbEdj1s28YqZNm+uYtVzEIiEUUJohCjagKCBKqco7W+jRcJTIdHBF6IJELgLHFHB/R6PTa2dlEkmSD0+f4PvsPSDnnhxdtsXbvOaDRiNr5kpbHGZz//ZSRRYTTu4bouZ2fHDHvdFFZRLGGaWWzb4fLynPl8nlKDBIFKs8l8njpWPC9iPBsyeTDm9u07nBwdU6+vMOimTSLH8TDNLHEcXlGgu8wGM+I4JI5jvviln2P/4Anlygrn58/Y3EwdNrY9Z321wWwy5dXX3kRWM9j2FCSJJ08fUinXuXZtm9XVVToXPTpnp2mBMp+Qs7Ls7z/lxVuvpEDj5YzAD2m32z/xOvNTXQmKositW7fQdR3X9a4qn1SpZ5gZjk+eMZqMOT0/4+HDh3z4wQc8fvSIQfcCVdOZzidoeoZms5lSVQyD1mqDfq/DcuEgiSK6lsGeL3l2dEytUufuR/eeZ/nCMKbb7TOfz+n2epQKFcqVIp6/pFKpUKlVcF2HQiGPbS/J5fLpmeXaBteubaDpJppp0G61yecK+IFHqVim1WrRbLZSz2q5yuNHT1g6DoaRzjEXCrnnJq44DplMx3zjG9/g1q3bvPb6W0wmI0b9AaqUYpnG43EakUl/aoCYztVqKq7n4YUhURwgxAIXZ6fkmtdQzBwSEo1Gnes3b6CICpBWYZIso+sZtrZXsbLpFlv4Mxe9f8XtI0j8mYtkkiAhMhpPmSzmuEubyE/R6mEYkIgxxBGKKrNcLoGY+cxBSGB79wa//Gv/Dn/rv/5bvPlvpfAJSYT9Zx10s0QYhrz3w/cJw5DRsAdCQrFSZGFPCH2HSNRYWd/ByChECCRaA7W4TqA38BUL1apj6jpz2yZOUjGUldVQMmnzy9AyuPaE+fABwfIUzUgl6Yqi4AYhmmlgz8dkVIn5rIeqWeQKFaLYJVesY1o5BDEd/wrDdNTNMrN4jsdHP/qI0XCA7SyZ2z65QpWMkafVarIMQwIhIZEygIggQDZnsbw8AkHi7icfMJnM+L1v/C6vv/Y2n33ncwiCwIcffx9V1Vlp1rk4P2Y+mTLoXaDIOi++dAfP81jbWGdja5tms8mz03Myuo6VL1AoF2m1WlhZnfPzDlHsc9ntcHp2SLlUQVQkLvs9nu49QRRhvpjw+MkjFEViubBxlx6d80vCwKXRaFAslllbW0fXrPSfnkGUBHw/xg1cFCXDymoLRAlJFRgMemSzeRaLBdP5gkK5QKO+gp5JdRCKolAo5kmSiCd7T7HnCwJi5vYMy8ynbMMHH/zk68xP/Mn/D64kSbAsi/F4nOJ+CgUeP7rPH3/vj+h0Utta4C+ZjCbs7GzTbq+xvt7GyldQZYVOp08SqdRqDdbW1rEsi35vgiQp3H/w8RXc0kTNSKyttXFdj5VmjSiIyZo5Dg72aLdb5HI5KpUK5+fnGIZOpVKlWmny8OF9XM/no48/AUGgvb4OpNj5Tqfz/PtOkphqrcLR0dHVYLrEZDzk7PSEg8N94iTl6h0dHaGqKk+fHGCYOg/vP6BUKFIqlvkrv/5XKRWrCIL0/GvYts1iOsO4EjH9mPv3Yyq1rpvkcgV0w0KQFM7OzrjzxlsUqi22t2/z+pufRRUFlpMJYeQSRclzuXeSJOTzZfJGAQTpqrL7f14Cwv/rPeAq7PxnXTFJEjPq9djcWEPX5HRMzA0J/RjXTofvAQxdYzYfE8ZzRvMJX//t3+W/+Jv/OV/97/5bPvzh+yClhPG3Xr/D/UcPkeQ0FK/KCrYTYugmRFAs1ym2rpGtb1BffwmzcQsvtggiiWy1Sa29i5UvPyej/Lgi8jyP82ddlCgg9mz6hx/i9++jejMid0HsxmQUiSSJyGQU5uMRBALu0mGltUOlUgNERClPrbqG5wUUy2Va7bW0Y56kDbJnh0e0WyluXxAENNMiiBMyGZPxzMNzfPSMwUrzBtlShfl8jojI0p7SKsKtF18mo6u0220EQaDX69KoVBgOxiB41MolRFGk2Wzy/R/8MY8evM/5ySmGpnOw95TI9xCTmEIxRxQHaBmDlZUmvh+yXLpcu5YG/RfzNA/quEuy2QKapvLSy6/R6aXbz3yuwHe+8z0uumeUqgUymQyO4xCGPvP5lPk83eU0m01KhTIv3nwR13XpdDr8X9y9WYwl+XWn98UeNyJu3H3Jfa3q2qu6qjdSZJNNiiKpjdrhkTSybAMje4yBH+zXAegHGzY0gDEcSTMawRhZ8lCCdlESLYlkkyK71U022d3VVV1bVmVV7nff7409wg9xK0e2Z2A+UrpPhcxCApl58x/nf875fV+n22Q47FOtVomjBEXRUjeKKHLxwiU0VcdxPLqdHrdv38G288RRgq4bvPD8iywsLOE4U46ODzk+Pubo6Ah38g9kWfpXf/VXPvvC9askcUyr3QYitrbOsLm5RRRHc8pKk5WVDcIwwMwatNtdNjbWcZwZOdvCtDQeP36cOowzGTrdNltbZwGBpeXl1E53tM/6+jbNZoPNrU2GoyHD0YBabYHpdHJKnV5YXMSysgAkgsDK8gqBnyL39/af0O60WVtdI5q7jf3Ap9fvIc7zxefPnydrmggCTKZTMobB4uISlUq6HL2wsJj2PYs23W4fVUmrs4xpcf/ePWIhIpcrIAhiGh/M6EymE6JEQNcyRHGcSqpFEVlViJIUgyWIIpIoz61xElEYctQ4Zm1jk2q9znjmUq7WkeQUvRXFMePRkFG/j+f7PNnf+497XAURARHmpOanATpV00mehukS5h9PUrBBFKEYGX7yJ36SDzz/Qkp2jgL6g8489gZJEjOdTnAdH03LMBgNuXPrFnk7x97jJwRBSBwExFFENmuyWMxTqdeZODPStY8pppFBNTLceOlH0M0ikagh6RaF0hr5+ip2tY5p2UTzBW7DMEiAOE7SPHEQIsQRR0/ucvxkB9vM4M3GCIoIQoJuaMQJCEKMntEx7Ryu7yKJCTNnwsxJ991kWcKZjpiMhwR+QK8/xPcCLNtGVRViQWQyHiFIIoEfsrK+BUgkso5ilsnm8rQ6aRa82+0QzEYErosoKuzdvUmxvopmFZBUjccPd9ja2uSv/uKPWVvdxA8D3n33HV586SUe7Dzg+RsvIIgSupGh1Tzm6rVrPNx5gmVZFHJFRGL80MOybLKmwfHxEdlslsGwy6333sbO5lBUBUWSyZgWoefSbjUpl8rousH29jaWZfPkyT7FUp5er8tg0Kdeq2Nns9y9e59CIY8kienfS7vDxXNXiaIQ13UYDifouoHv+5TLqRTKcZzTz+fyeUrlIvv7ezROUmTW4eEB5UqVr3/9qwhChJXNUilXWFs/w//+m//n33/5uu/5p8auW7dv897Nm3zq058+ZQTu7OxgZfMkAuw+fEC1toiiKOzt7aGqapr+mJfeR8eHvPP2ezx7/QqqKrOyktJpPC9gUVWZzWbYts3u7i7nz11gMBiQyWg4bio2qlQqNE5OULV0WKLpJov1GjsP7lOpVLly+SqKonBwcIBAgiRJdLtdDo92sbKpZOnpx8bjMWefOZc6Yvf2QEiwbYt8vkirfcLy8iIZXWNxYSld/+kP0HWdYb9HRs2wt7dHtVZi99EeZy9eRNMtkihGitOGehylvb2nB9dTavNThL2uiKxvbZPRVBxXwLQLqKqKP2f7eV4qz1blIh97+SN889vv0Gm153SVv/NKEvg71aCAQDLfF4vCEEXRUfPpKshsrpusLi1QLZV48bnnmYzGhHFEksRoaiblCfouXhgxms6oVqtMplO++qUv86X/6y8J44QXX3qBr33l1dPB0eriEmLk4MUx5foCpmEzGHfY3r5EHEo4SYi9sEZZMZjNZhw1TtJ9vThA11UymoFhGJhWHtdNDzHXdYn8gH6/iyiqCHJCr3kfVZNJxBy6WMQZtxGE+FS4HgsRuqnjTCfosYee14liAd8Psewivu/iuVOsbA5Ly6TggMkEQ9EQLQM38KjVSyCqSLqI57qsrJ/h8aNdCuUl7t38JrmMRmKaTIYTEtFl2Onx6JtfZOvFHySXKcHiIkdHR3z8Uz+M54Y82nlIkqT8vfX1DdSMTn1xhTBKqFSqfO3Vr3Lx4kXiJKDbbWIYBnu7jzl37gIHjWN6vR6VcpXFpS1KxTphEnLnvXcJ/YAXP/xRbt68yebm5vy9reC6Lo4zpTDXXWqaxsULlzg+OeIbr79KsVBl/+Axa6ub8wHclLt33mV1fYPhqMfiwgqDwej0Z3p0vM9kPMW0VFaWN+l0OqhqimBbXCoynY5pd1qMx12evXadXr+LOd/z/U/fRv6/r+/pQ1BVFTK6zmzq8tGXX2E6G6VZSkkka1ksLy7j+T7FfIFgZRNdS3s0vf6Ax48fc/78eXYePKRcLp/6CQqFHK7rMxz2uXf3Ns/fuMGt925z4eIlVFVla3ObJJGw7TzDYZ+3336byxcv84U//SMsy05ZcpqAIsLJ8TGXr1xlMBjgOA5xFKFrGmbW5NGjR5w5cxZFU3nhuefp9XpMJhNW19Mrs+emKsrt7W3CKGA6nTKdzE6HJ5IoMxpNaLVarKysYNt5ylqJP/+LP+TyxRep1Zewc2UkRSMIIvwonL+xxLlNTUaWVPzAxfMcYiWdSMZxmhyxLIv2qJvi3iWJRqNBsbwIUYgoJJhmlsm0RxjEfPoHPsFvf/53IBHm09+nV+P46czj//HvKPSQRIUwcEmGAbEkIEQRWtZkuV7lF//xL6JKMqqmcPLkhIyhI0hgRAZRmH4V07AYjWdMJyP2Ht3D8xwiQeHWnR2QFDY3VtjcXEZIBLLFPBlVwTB0dKtIzi6hGzWypTyaptNqtUgEjVy+gJ7JsLi4lGZ5PS+tKuOYiIQkjkgEAUNXIQzI6xpPnryFnZEQslU8Z8Bs0EASAzRVIg4i4gSC0CWXrxKEHrqiphn1YY/xuItqVBAEgXyxymQ0oHHSRYxh1OuQy5fo9/uUigsUcqk0XM1YmIUaxycNDg/2sPJFwthDy1i0Go8QvNSREs2NgTe/+RpbZ9aR6tfZuXeLay++TLPVIZ/Pc+36DXRT58mjXaqlMt/65reRZLh89SquE/HpH/kM7998hzCKMY0MJydNyrV0Fa3d7qa7eqoKQowfhUR+wAe/76Ps7e9ycrTP2bNn54eNyN7eY9zAY2VxmWKxzOH+AfWVVfYODhkNO3z8Y5/Ec0NKpQKdXhfTyrG9vU0Uwru33qbbPsTMGIDEo0c7hJ7DM2c2WNjaZv/wgDCMWVis43vBfGKvIgkiF89dpj9oISQily9c5fU3XkPXdRT1uz/avqevw//qc5/77Mdf/jC3776LZRsocsr66/f7jMcTms0meiZDsVii3++yf7DDme1z+EHE2to67XYHWVawsgYPHtwnjiJkWWZxcYnBoI+uqXzpy1/lJ37qx5lOXErFOu12g739h0SJx/HxEeVSFV3XOX/uMpcvX8IwDAaDEVtbW4zHExzXTSuzapUgCCgWCwxHI5aXl+l0O+i6jq5lODg4JAgDTo4bKTNQ0eh0u1imycnJMYZhMBlPaDRPyGZtoiiiWCwhSSnJV9fTxMez114kjsG0bHzfOfV1xEl6lQMBQZROVwQe7T5kY2MT1/EhiYiiENO0APA8F9M0kMQ0EZK1cgShRxjFRFFMPJshIWJZJkurK9y7t0MUxfB3jr7/1CtlOsTESUQSRSTE5AtFfvZnfp7ATynCg8EA0zAJw4A4CfA8lzhiXpWGTCZD/va1Vxn2Z/SaLZ69fpXDkxaKEvPDn/4oFzc3sPMZNjfOU6pvUKoto9mVdGlcU4mihFxpiVJpkcWVOn4IhVKRfreDM5sRRTFJkqTxPwF812U2m+J7LpPOCZ3DHTJWliiSU8YhAZKmIokykTsFRCTFRDd0fNfBdaYM+j0kScR3XDRFxSoVMQ2D6XTMdDJBlmSc2QQzYzKeTbGyWfSsQba4iS9IjGYRmllENfOMh1MyVpZBNx2WjbuHhK5D6HoQJwwGQ4REYXW9QjgbYBkZVLtC1jKZzDymsxGO4zLopyGDtbV1NE3h9b95lUK5SL/fTyOVsUM+X2E4GVIul4jDkJWVVYqlAqPRmJ0H99EUBdtOgwRxInH//dsUiwUUSWM8GRFFDuVSZU5sTzAMBQSVXu+EM1sXyedsXv3qXwMiqmGg6Qr3776PZVrk8yXKhSqqpqKqBoZhIigC33nnbWzLpFZbIoxC3nj9tXSPMZ/j+OSIrJnHdWc02g1kUcYwMpTKJc6ePYsoCvz2PwSKTOD7DIY9yqUaqysbiLLEvXuph2BpuYqiiGSzWe7fv0uv2+L4pM3+4QEQ43kOtWqZaqXEbOpw48YNnn32WfqDDnt7e5SKBZrNNj/2Y59hOvLQNI3+qIVpmlQrSxRydWrVVZCgWq1Sq9XQNI379+9TLFW5/f4DHu+lZrozZ84QRRGarnPz1ntkLZvDgyNMw8I0LPYP9zEsA1XRWFvbIIoiPHfMaNg7paY8pbxomkahUGDmTPnyl/8aWRZBCPD8GUEQ0e12WVlbptNp0W6nxJogSNmCCTFPxX9RFOG7M5bqNWbjCaosEpGAJKJpCpIkUCikypcwDICIXrcJ8B8IzyQEcYAowpmVBf7xT36GbLbwH/tV/b9ef2c9BkCQMC2bn/+Zn0FXZKaTCcNhHwmBwHMJPZ/QjyCRSZL0OtprH/Pud17n3//Wb2NnTYI4Svc/SzYry+vp7qShY2eLZHIFgkRi5kVEnke+UMLM1SnW19B0HcQY3wuxrQzebIam66iqSqVaRNf19Bo38xAlmdB3mQ0G9Ho98rUlDNNOv5dgxqjfoHv4EF1KiIT0WpZEM8bDHl4YIGsqpXIVd463UgwdUVDxgxhRVLHzeexigdLCAtpcYKUYOrqVxxckNHsZWdHpTjz0TA4zX6dQyGHlLPb3HmIYFu7Mw/EDWq0OlUqJM2dXCT2fg8d30JMp4+4Bf/OF/4OiZVAq1rEsm42NDQzD4P33b2GZWTQjy7CfVnq6prG5dpbeqM3S0gqTyYQ4iTg+PuT4KB3uXb16g1K5SBB4hKHPndvfYnltgYeP7hHFPrVajfPnn2U6mbG7+4RG4xjXCxn3OxRyeTq9JnsH+3zggx/BzhdonTTwHAdV1TlpPCAKfERFplKtoSgS1WqZC89c5BMf+zQb2+eYOhNcd8bFS89SKFUxzSxJmCAraWrqypVrlKs1giieX6MPydu57/qc+Z6uBH/5l//Xz/7gpz7G+tr6HO005fLly3zlq1+hUMjiuRFvvvEmhXyeXCHP5UtXabWa6LqJrmf429e+TKfdolZfZOa6PH68i2nksG2L3ccPuXjxCmEUEYQhhaJNv9vn5OSEhcUaURTx9b95lUQSWawvcPfOXUbjIcG0zxuv/xmmleHM+hXUjIqqqvT6bXqdLmfPnKXROGFtbR1JUoiTkNFohCAIWJZJnERMxhNk3aKQSyu++uIy49GErG3SbDYZjfqYpsHG+ibtdpusZSMKIqPRGEGMgRRflcvl8FwfPwpQ5z4RSZQIYoEkdHB8F0FIiImJAh9JFGk2ThDEJB1oxAnDYR9ZBMd1iSKfjGEShWkUL45Sj4fvzhABTZVZXaxy1OownTkIJIA0nxI/rQ5FBIS0ak8SVE1ne2OdD730Uhq5ilwKdg4zY9DrtnDdGUkc4vsukiwShj6T0YB+t8u//rXfYHlhmVs3byJpac/pMz/+Y7z88oco23nUjEqlssDMjwkRKNUWQc5g5Su4nocky6dEY+C0otY0jckkbT/YhTxaRicOPGajIdPJEDlymIwHuO6AaDolDNq4bo/EHZMkAYQeSeQThmlOt1iupmmd+TqTpmuEYYAoK3izIaqsI0gynutDFDMZDQijEN+f0Z+65IqrmGaRQMkwnrqMOgPUjIZpZFE1g367TezN6B89wXFdLCvDyvoKxUoBSRQ5apyw+cwFEknHIMLefB5RFmk3G1RKJe4/fICp5zFsnRiRWqXCcDjm3Xdeo2TlsQtFXGfKW9/6GlevXOHk5ARRlqktrOG4M0qFEuPRmHa7QxgGrG6cIWPaVCs1Wu0G/d6Afr9HLpc+IPuDLrZt0h/06HSG5PMFPH9KEMwIg4jJdIBl5snaFqCndPGMxt6TPe7t3EdTFYb9PpaVxQlcxv0phbxNdbGOGHu0Wl0ajSa9bpe9vYfUFxfI5fIMBmMsy+Dg4BBNU/mtz//+3//Y3K//+r/+7D/7p/+E4+PU0NVqtQjm7g1F1imVSly/fn2u3DM5Ojxie3uLXq9Hu93i4qUrDEZdlpfWaByfcPbseSRJoD/o8Wj3AdVqHUEQse0cr7/+DSqVKmtra8ymM/7m61/jJ3/8p6mWq9x7cI9qrcziwiKSkuX8pesUijW+8cYXkWWNbrfNyckJrWabvb09XnjhBVzPw/cDms0Trl27RhAEeJ7HrVu32FjfIJe10TIZHG/G4ZNdPD9kMh1zbk6fWVlZotcdUypViONwvnIww7YLZObMxMPDQ1ZX13BdjyAMEUUR3w+QRYG9w8MUDzUPtYdzVUCjcYKuGyRJjO+nCRrfmyKmqmKSZF4JhkGaFEliolBAQGD30UMM02RjfR03DinmiwSRl8rWk3QSLImpMEnTbvXvIgAAIABJREFUFbJ2nmK+wNrKIoIAhVyBKAzQ9QyKKOFMp2mKQhAIAw9BSJiORggk/PK/+Bd87COvsLOzg6DIVGs1kiThxvPPUy7mKZRsVC2HrGZAFMnaeaZTB9u2T+OQmqadvm+KxSKaps1XlhLy+Ty6rqUxQdel1WiRz+XodpopKWc6RRUDDh+9Q7v1gHjSJWvl0RXpdPCVAIZhYGVtRFFEklVkRUUUVRRRYtBsgiji+CHEHtPJAM+bEAVpFE+VVdbOXccJQ5BEpEwJK1dBsTLIisZwMuHxzj1yWYPDvQfE3phKuYQky2RzFqIk44zHZLMmw0lARtdwZ008Mcf+/j4ZTWPqzNi5fZv6Yg3Hn1EpV5AlCd/3WV+/wBe++Dsc7e8jaSqV8gI7Ow/T9Z4oRJYTNrfO0G23yeWyZDIG+XwO1/cpFovz78dL6U1LK1hWFlFMVbBhEPHo0WO+7/s+RKvVYHl5HVk2SJKI4XDI0tIS3U6XfL7IdDyhUCpQr9UxDJVvffNNLpy/yHQ6S9tZtk6v00NWZWaTGeVyhWq1SrlaZmFxhYcPH0AiEYRT7u/cJolFFmoL/Lvf/t2//4fgr3zuc5/9xCsfwXEc/MDDsi3u3LpN1rK4cCGFXDabDUajIY7rkJujxuM44tlnr9FsNTlpHlGpLKWeCGJcx6VQyKNKGtPJDMs06fW6mJZJ1s5ydHhEKuYuUl+o43ku1WoZZ+biBwFR4mMYJt3+kM2NZ6hWFpgO+ywtr7OyukrWsmh1mrz11lvUF2pks1kePXqULnnHCaZhktE13nrjDaoLCyiyyvHJMZsbWzx+vIOuZQiCgP5gjCCCriiMJ2PsbApTePObr1Gv1UmQkCSRwaCPKKXDDVFIfShemIqqkyRBkCTiKCSaH5K2badIfjXVFkJEGKfROc938VyHyWBM1soQR+kBEcUuYgyWYeC6Hr7no0kR3swlny2AlBJzoiBiYWGBUrGAoapsbK2T+BF21sQ0DAQhxvMjNFVmNp2gaxKeMyUKAiRBIA58Wo0T/uWvfY6MaXN0sEepUubw5IQ4jllYqPHBD71M1tLJWAWsbAHLzmHnciRJQqFQBEFAFFKopyQrKIqCZZl4nncqhJLm3gvbytLt9igWC0TBjGiOaBsNh0ShRy6Xx8yViGMdWQyJpgMUESRJPb3wp++pGWHgECOhqmkP2PEdFpbX6I9n1OobzFwH1cwRBz4kCdPpGMkoMvE18rV1HCfET0Q03cCyimQyVjpJtgw8Z4I77tI+fEgQ+py7cIl2p8fq6gYT18G0i2QyKrIIrheydOUj+B689KEPEgYBE8dh6+wzyJLMbDZNc81WgWwuw7PPfpTl5XV6nR5nts+xsrqCoijcuvUdzIzF0ckJZiaD7/vcvPkui4uLiICZMdnZ2aW+uEyhWEESBVzXoVipICsqhXyBc+fO4zhTFmqLNBpHPH5yh8cPd1lbW+fWnTvoWoZSOY8gpPHPKA5QZRVF1sgXS/T6XSzL5O6dO9j5POurGzx+8oTc/Krr+R6TiUujcYyqKURRzPr6FqZlMnE9fvf3/vjv/yH4a7/6K5/90R/6JACiJKIrOrVa2p87ODhEVVVs22Zra5uZMzslNBsZk9nUxTRN7t2/Q722QD6fpVyqcv/+fQQBBqMux8fHjIYDzpzZIkHgyZMnvPLKxxDEhNEwdQ7ff/CAhISslSUIAlrtFoZhUipX0DWNyXiEnS9gGAbHx8dIkohhmpw98wye51MsluYDljKFUhltPigp16sc7T9mMumzsrJBFIWEQYSqKVhZC89PK8kkillYXEAQhHTZ+eoNTk6OmUyGSKKMIMqouoLn+ciyguO6KKqWwk+FNFMcR0F6YU0SHMdhOBgwHg+JopA4TAcmgeel11hVw85ZPHncwM4aKXQhAs+Z4jgzgihdorXNLIoqUyjkKeWyFGwby86iiALbm2sUihZZUyMIQwRiWq0mgiClvU0/YHfnHr43Q1ESBGLc6Yh779/nNz//O4ymPrqi8NyN6wyGQ/w5APS//Cf/NYVCDk1VUdQMcSwQxekOmSiKOI6LrCjEcYzneakvxTIRxRSW8bQaFwWB2WQ6j0uqzGZTgjBEVlRmkzFR4FPMF2kcPQSni8aEYbuFH4ZEiCSBR6vRQJZEDCtL4AcIiMRBkAb4gwDDtOkPemiaQhB7CGKClKQPkDhKCIIQ1a4xjcAqLpCrruK7AYIEsqwgzodbkiQT+VPax3tk5ISlpSVsO08+X0BRNURZRFF04ijg6PAQWdFQcyuUylWGgyFRBJVKiVa7Q626RBILjAd9crbFo4c71KoVJpMxlpVDVSWOj5vkcgWsXIGMmT5IG602qq6zvrHJYDRCU1O3zuHhAavrqzSPjxlPRrRaTXzPpd1qoCoKggDT6ZS33nqTem2Bjc1nSISA11/7Kh/+8EfThfTjg7lbJ8GZOkRRTKVSY/fxLpmMnloeNZnhYEi318X3PRJigjBdg6nWSpRLFY6OD9jdfYSRsZlOZpiGzue/y0Pwe3owEsdxWgX6PtVKjSiOTzH0hmEwnTipXq/fZzwc0Wo0aTVOaDXTyE6jecRHP/L9TKdTnJnPdDrlzNltJFFmffUM3/fBl2m1OjQabcbDEcV8jm99803+7M/+lFK5iuO6rK2tkcQwnTrz6W8qZJIFODw4wA99VFXlpNlgPJ2wsLhErzcfeCgSj3d30BSV46N9hv0ercYJg0GP8XDE0fEeObvAbDaj0+lQKqXT4KODQ0hiMppKNmcTRDGPnuyxurrOe7feYWlpiXptgV6vg21leO/tbyMr4inkNfRSvBNRTOSnk8QgCBj1B4jEaLKCrsqIpDG1wPVSxJPrEAU+oR9w5+573LxzDz+IcMYj/GBGHKZfXxJEvCBESEQyioyh6WyvbVDMpysVUQyFQgHTNFlfXcHUMxRzeTKZDN1un1G/R0YziKKE1n6Th7fucbh7zPsPHnH+8hVevH6NJEp3KPf39ynkbP7Zf/dPWV6oE7gecZQKepLIZzaeYBgWcSKgZ1KY7ng6Sg98d0qn0zkFUti2Pe8PCmSzT8Xy/jz+puFOZ8hqSt9ptw452ntAs9nEnYyZDXtIooiiasRhgKpnECQVZzZFkqS016gbdLtdXC8F7ZbKC7iuD6FLEjjMpsO58iBBkXWCBHJZG0GUmU5HLKxtMZ25+L6b7rA6MzxnTBiGrC7XyZWKZMtlptMxceIy6LcxrSKQ5o6HQ5d+36Hd6REFIQ937jFzxszcgFKpwswZMpkOyOZzvPb1r7Cxvslf/tWfoqo6o1GqAQ8Cjy99+Yv87TdeI/R8FheXUVUVRZFoHB2zvLBI4IepWgGBe7feZzhsYmRM1lbX0VSDQi6PqqocHO6iaRk+/JGX8SOfZuuYhdoqP/CJz2DqJlsb21x45tqpyqHX79JsNjk82qNaLVMqVchkMsiqxrlzZ+l1OxSLRUQBrKyJoWe4ffM2b7z5GlcuXmNrY5vtzQ2uXr5EoVD6rs+Z7+k9QUlKn4ZPI2L9QY9ysYQsyyQCvPnNb/ADn/h+Wq0WcRyzu/uQF154iYODPV5//RsIksgHP/ghbNtmNBqduojPXziXYvHHY37hF36BVqvNcDhEUWSWl1eQFJn9g8fouk42m6VarZMQcnhwxPaZLURBYjIe4XkuDx7eY2Ul3f1bXKhz/8E9BEHAdV1a7SaKlFYhBwd7NJttqrU6k8mE55+7weLiMgIxvX6fTCZDv98HIUmBl6LA4uIimYzJo917rK8tcnLc5MyZLTRNY3d3l9G4z/6+SLWywGg4QVH0eXROOo1mybKMG6RN/OlsTJxoCIKEnCSEvk8SxyRhhCQkaLpKHIWMx0N++qd/is/9m9/k1a+/wUc+cJ16IU8cxISei6YoBG6qJBVFOD5pcnu0w86TXXJ2gbuPHhEGHsV8aU6n8ZhMJ6zUF+k0W4iKiGEYSLFIVbPQVJkXX36Rx/t7DKcTFAHK5SoHBwfk8wVeeeXjbG2dSZMdpj7PWA8IPZ/xeJoqLrPZ0z3IpaUlrJzNbDxJUVHzVIggpIvdrptGqkQprY5ngwm5bHpIkwQkgogsq+Rra9TKFYJgSJKpcrTzNtPhEaaW4uH9mUMggZUTmIzTSlzRTArlOuPxkNidUK0uUyhX2N9/giJpzEY9oiAGISCJYw6P2mwW19AzMqPRkNX1lHU5Gg2QFRFNNiFwCDQbvbBE6DkEsxHD/oxyuUbkO4iyjJ0rE87eR66f5datW4RhyJXLN/j2O3/LytoWfjClVKyDEHPn5rtUF5bRdYPnn3+R4bCLLKuMJwMWV1J1Qb1S59/+xq/yoz/ykywslhEFhSdPdomiAE1X2d7e5swz51LRmCTR7bZpNpusr29y/977hH7AeNDnme2LNBpNZFlhMh4QRRGK+LRad+h0ehRKRZIkYWm5wJ3b7+MHHiurGwiCxGDQQ9ey7B0cYuVz1Ks1xuMxnXYX301XraycheN4bG1uoygKnU6HifPdy9e/pw/BdrvN0WEqKH9wf5dqvQakzoogCimWCtx6/zZnts8ynk44f/ESj/eeQBzxyiuvgCgQBBGinFrGJuMRBwdHFAoFqtVq6sM9OWEymWBaWVzX5ejoiFqlhiRIZG2b4XBInA3ptFsYhsHBwQGLCyu0Om1EWaJUqWJYJgvVBf7wj/6AT33y0yiyRKd7TK1a5M0332T7zHle/ugrJDFkszmiKGA8nqRwynlmdDqbUCwVOD46IUkS1lbXOT4+JpPJ8J3X/oYoFti+fIFWx0NXG5QqZdbMDcIgIkpAkJRUxJMkhEGCIAiIokgQJ4iyhCCkMqTAc1FVlck0vR4qUoqt8uehftuyUumSM8abDrAsi/Es5MH9b/PchYsc3X/McbfHyXDAcJLSnV3fQ5BVVEXH87xTc54XptfP0A8QRYV2f4CdzyEnAnEYIWlp9Vou58nICoPpmGIuzzPPnKHfHTAaT1FVmY989AMkUYhpmmStHI4fkNVU5IKMaafT3yhKG+79fh/XdUkOT0hIM9ZBEKTiLVmYY7piojBBElXiKEJTdKbTcQqEnU4wNQXdMFld3CCJI3rtYyRBJF9ZhjCL6DsE7gTDMhFFEEWZMAJZmbuQuy1qtTpJLNHt9um2T5iOe1x//nluv3OT/rjL1Ak5avdRMzZSQirMikc4kkIum00l7ZMRWl5DMvO4kzG6ZtA/2EGMglRqNZnQ7e4h6irrm1eJYoHmwOVnf/YXODo64J13v4Vu2BQKRcbjEZPJiEKhwurmWTxnRBB4dNs9NNOg2XzM1foH+Nabb3Ljxg0Afv7n/nMUXUMRJXq9HvZ8rUcS4At/8vs899wH6Q2G6KbBq69+kcXFZYoFm/XtbSrFCoV+lcf7j7lz5zYvf/jj9PpdimaWd999l+eu3yCTyRDHMcVClTAMURSFpZVlNC1DkiQoCnS6beKoRalUIp5O2T/aJ44SquUKD3cfcdQ6YdBpc/255zlujJBk2NzcRta++6Pte/o6bFkWVy7fIBFAmgutZVlmd3cXTdM4f/48tUqV6WTCw4cPTinTqiwjJAn37t1jOBzS7ba5e+8OQeBx47lr6LpOs9nGMtODL5vNnmKnCoUCg9GA48Yxg0F6COwfHiDKEoNhn3K5yGg0oNVqcO3qs5zZPIOpm/zZn/8JVlbHcSe8/fa3+bO/+AOMbJ6rz36QMEh33Lz54ZD6jW1a7SbHJ0e88+7bjMdjXn/9dZaWllhfT1eCarUae/u7vPDh7+eTP/Lj1Ktr1CqrbG1t0Wo2eLL7KE2GyDKWYSDNeXxPV0JsO51aJjHEcYCmpUBNZzaeX5UDBoPB6cQ0CNKo2HjYZzTs8z/89/8tVsYkihKOu13WV1ZREBk4DjPPR5LVlLii6qfGuzAMAZCkhPFolE5N51CEKI4ZjccEQUAQhZR1i5VCiY9ceo7Ly5f58PUXUBSJ8XhIEIUYuQz/42f/OYIk4PoOiqZxeHKMqqpMR2PGgyFEMXEQ4joOnutSLpcJw/CUL5jL5TCtDOF8pSVJklML31N51Hg8xndc4jAijlw67SOO9h9y8Ph92gfvMzp5n5O7X6P78C0mR7v4zhhVNxAkCSWjE7ge01GbyWDIaJD6r4NIQMtYrK5v4HlpBHD30T6FWgXDNtDMLO/e2+G1N9/iD37/jxn0o9QP7c4IAg9ZlrHzFYIwTn0yksD+o/sIQYRpZvB9F3cyxDB0SsU6D+/dRistoNllXv/Ga7zz1rcolMoUi0WEJOTBvdsoisJ4PCZjGKyuPcPrX/9aOtkWNJaX1jk5OeKFF17g7t27vPqVv0aWVQzD4t69B8QxZPMFFpZXiBORam2JZqvB3XvvQhSTt3PsPHifZuOYrJlW6qoqI4kya2trCILAQn2V27dv89JLL6VisqxJf9Di9vu3GAwGuK6L67rMnDHjyYBbt99lcWGN5eVl+v3hqVlyPBwRBgFnt89w7fKznHnmHP1+FzuXpdnoMJ24DOdYuu/m9T09GPmNf/vrn/2Bj30IRVWo16t4jkej0aBeryPJEl//+l+zvLxIvbaUSm4sm3KpjGZkcDyPwI/I5/JUKgs8/9wLIAjpCoeio2saqqYynkyYTqZUqmV6/R7tVovDoyO2NrcZjSYUiyUyukYYRlhWFllSiKKIZ84+w8HBAaIsIssKF85fRlNNWs0Wlpnl6pUPcHJ0yHDYwrJyLNbrJECv18cPXO7f30HVVMrlMhsbG2iqzqVLl2k0Gvh+cJr9DUKfQrGIIKbk7FKxyINH9ygVyzzzzCUsK4thWkxmMyRJhATCKAQSXNcjjCM8x0FAwHUmiIIESToRdmbTU1mSIstIYvq9OI6TovYFia3tNe7dv0/g+1xY2Saa+PSHYyZeCq4URCE9fOdDGEmW51dxAUESERFODx5FEDEVHUNVqYoiz29c4mMf+gR5o4ilGWxvrPOld97AyBp4jst/9V/8I2qLy+nARjOIwwTLMNH0DAgiWiZDDCk0tVRJjXeaimVZqJqWMhJFEUlU0LUMkiQT+OkAKq1CIhxvhqrIzCZTJCmhVCpSKdUJA5dBYwfJa/L4/VtYeopim87SwzaTURFEBcu0mMym5MpVzHwRSdFJkhQiOxkPSRCI4gjfnzHsn6ArOrHnMvNFDvs+D3ePmEwmdDtNfvO3fpdzF64xmEwxMhq+7zHoDxCiCEOK8WZtyuUiM2eCYegEcYLvT1laOU+33cKZeBTWnmFlbZ3NM2cY9IdUalU812EwGGJns5wcH5HJZNB1Hd9zWNvc4it/9YdcuvwcC4t1micn6IZO47iBZRnMplMWFxdwXYdqpYqdzeI4M+4/uI9l2Vy6eI2HDx/w8e//NKVSnYuXrxBEqdzq4aMdqtUKhwdPmEzHvHfzTZ576YN8/WtfolSq4IcBC4tLGJkcxWKRw8MDXM+h3TpARKFWqaeulDimVquztLRMoVDCn/M+B6MxgpCQs2wkUabTTCtwx5uQzdrfdWJEePoE/158PXN2O/l3/+Z/48033yQOI5Ik4fzFC4zn1cTq6uppYLrTalOplRGQGU9GKLKK6zkIgoBpmgwHIwwzQ6FU5At/+O8RQzh/5Tp2sYSiKPzu736eX/ql/4a3v/MOW1tbTKdTlpeW0ivWYEQURYzHQ5ZXV1Jj3bzHWCpXCMOQBw8e8Pzzz+N7Lvcf3GJ17Qx+GFCpVOg0OyiqzN1b73L1+otMJhOSREBR0p06z/PI2TZmzuDO7btzsINHPm+Ts4s4symiKGFlcxwe7iMpMoVCidFohOdP6PdG+IHHbDajUEqzm1EUneKhPH+G73o403GKvI8j/GCWejH8kGw2Szyv4OI4bXobGQstY1Eo5fm93/8Ch8cdfvr7foDxSZO7j3Z4a/8BUZIQRCGJLBI/dR8LAhEJYZQQJAkZWSYJI4gTaoUSeVFkycjz4tUXWVjaoKCb6KaKIgkkKvzzz/8Ko2DGL/5nP8TGM1cR5QxB4FMs1UkkmUzGREzAmi+ajycTcrnc3F3hMxqn1buhZ3BcHyCNYQlCyixMEhJSnWUcpsvihqYzGI/QZYnxqIsezQiDhDCYUbJkep19TvYfEA2PEAUVTZWJkwBRMZBVBVURiOOATDaHpuUQFJ3QG0CSQZJVdNMg8j2a7X18JySKFb78nYe88e0H9CYhpbLN2PG48exzfOUrX2VpqcaZs+cYjVoUdYcrF84R9zssVbKUCzoJMpPpgIysY1dz1OuXeLh7CyewqG5cpj9Lwbr5fB5lzj28c+cOIjGXL19lNnUoVqo0mycYhkHgehQrZabjEU92HzMcjXnhhZcYjfuQSPS7Pex8lkqlhu/7aeLJ86hWyxwfN4CYbrfP4uLiKWuz2eghyTFHJw3MjM5w2Ofa9ef5y7/4E3QlQ0YVWVrf4ujoiKXlDarVatrPFmNMI0+v1yJJ0r740dER337763zy4z/KZDJhOp2yurqJpMi02kc0Gx267Q6DYZcoCjh75jxG1uCnf+6XvpMkyXP/f+fM93RPUJYlXHfG9vY27WaLK1euMJ6mb3pBEPB9n52dnVQqvrzKyVETz3Op1Krs7e2xubnJ8fExtVqaAOn3UhqLnVvkyrPXuHvzLVx3Qq/X41Of+kHa7TZbW1u899572LaNcSpwTzAMPRW8t9un1ztBEOZxpPdZW1vj8PCQra0tKuVlWs0uZ89sEnopDePSxWe5dOXa6eFkGAZ2Lku320WWZRqtBlJbolRMUfFPCdF37tzh0qVr7Dy8jaJo9Hodzl+4TLudiuanU4fNzbMpOTqOmboBoiie9lieToxFMa0u/4OoXUIU02ur67rIpxL1dKHY9WYEcUwiwM/9/E9x9G4Dp9VjNhyjiTKLuRJeEjGcTRh7Dpn5VTuOY0ISPN9FFWVsNUMiBmQzBqYgcHF5g+fOPkt9YQ0tI5O1LILII04EJFHgwsY2Z57d4syZDVBNEkQypgKChOu6+H7IyuISR0dH6aRQFOfsxLS/lLML2Ladkv7n3Z4kSbPQT/+vJKoMByNCL0W/D2ZTAnfM7fdvk0Q+K+UMQuKixAF3d7voiowqxTSHM2xbJkridFdwLv+OBDF1QEcJiioiyRLuTMT1HXKWfLrlsLS8Sbt5zMNHDb757gOa/RlKJkNvNGQ2TXjnne9QKqUw0Xe+8y4Td0bJ0nj06A0ubeTYWs0znY0pFqoYmQrjyRDfDzHsApqeJ0JGkCUKpTwZXeGb3/oGm5ub1Ba3ME2blcUFGo0Ga6vr9Ho9qtUqjUYDkSiN4RXTxMfy8jIzZ4xpWNx6920m0xEL0SrFYpmbN2+yvLxMEATpwzOOMQyLra08sqzy5T/6Ii+99BJhBLv372MaeQRDoVZdJHJDrt14CUPXiBHY331IsVhkZWWFTqdDJpPBtkwe3H8PVc9AInBykvDkyS7PXf8Q06nD8ckBuXyWRvMAUVKpVsvs7e1x/bln55FLP1WKZrXv+pz5nr4O/y//8//02Y+//CEG/SEiMQkCWTv9wQ+HfYaDMVbWYjwec9I4oWjnaHabvPXWt9jcXEeZLxGPR2O63QZRBFubm5RKRRzPw/Mirt94AcsuoKoK7733HqsrqyRJQmYujhYl6dRFUq8voKgKo9GEfKFAGEU82n3I5ctXcF2XTrdNGITUajVyOZujo+O5dcsll7OJYoFKpYzv+xQKJV577WuUynlmsxmylLIBS6USzVaDMPQQhNRH+/jJQxbqS5TLNQRZRJJUcrksnU6XIPQ5OjoEUuqOYVo4btp7fJpFjuMYz3URiEnmvg8JEVmWIEnI6DpxxPyqHyNIMrKiIggiruuQUfT0Ktke0+10QBKRdTX1AQO5XI4wSAcrsiChywoj1yGb0VCEBEtVOVdd4uLSBh+4+hJZy8bMGmkV7zroRiYl8Bg6f/7al/iJf/QZSovbyKpCECZoho2qa4Sej2UY9Eej08pP0WQWlxaQZYXBYEhGM1A1FT8IcF0nXRmaL4qHYXjaL9U0DVU3UgugrlIsVshXKly4dIWMkaXVbDAbdeh1TrBzZuqwMVRm4wGKkkGQZSQ5IQp9hCRBV3ViIcHzfJLII4gcatVtECRUVSYhIQwD2p0uk7HH628/wIlAUSRK+Sy5rI7rBUgy5LMGw+kE343wwpArmzV+6ed/iOngiEp5gclowGw6RjdtrIxJGAX4AYQkjIQ0q54vFqktLHPn5jeQpQxnz10go2t0Om2iJCGfq6CqCsNeDwGZUrGY+oQrVcbjCXY25WYWyiUWFlZ4771b1Gp1FEVheTldm3n11S8jyxLDUY84DsjlitTrC+wfHbO6skbOLlIs5bGzFXK5LIkkoSsK73znm6ysrOJ7LqVSifsPHrK5tcbh4T5/9Zd/ROTOWFpeI45iCoUixWKR2WxGLCbIkoqds9F1gyiIGA76FEoFptMZpmVQLlXo9Tq4zozf+6N/APL1f/W5f/nZH/rkx1E0lSBIn/aD4SCd5hpZHMfDMHQuXbrE5sYWURyztLjEmbPPUKlUMQ2TJ0+e0Owcs7i4ip21efL4MY8ePaKQTxl/jZNjXN+l3W6jKAqz6YyNjQ28+RTVcdIrtW3bTCYTHty/z/b29lx6NKRQKDAa9SFOMDImWdum3+9TKBTwPO+UsCtJEo7joplZ8naWbrfD+sYGk8mEvb0DtjY36XTaaBmNfr+P57mUS1VkWUJTNTKGTrPZJJ9Pr8GSJKKqGqIgsLV1BgDTNJnOXEBMEUjAZDJJPbemgappBEHaTxGS9I9SmS8XK7Kako11HcQUyfVUdJSEAtIwZO/mXYaTAaPZ7LTfZqk6AGEUpTBS309pPYqKrijkVZ161ubG9mU2FjbI5vLolokgSRBGIII3GJErFZkNR3xn531e+eFPkiAxGk0IgoRavc54PKZSKrO/v08MbG1tARCFEaPhmMP9Q8LQw87ZhFGC66aGNIUpAAAgAElEQVS/N0mSUJS0j/u0ggfmFb5AHIUcHuwz6PcZd9vs3rtL8+AuAkNqi5uUimXu377P3XfeAt8lXymBpGCaWVRdnKsgJZrNBkIcMhr0WFpehyTBcycMB4N5ckXG9aaIksBo6PL4/+buTWPsSu87vefs2z13v7eqbt26tbDI4s5mL1paS6tbkm3JduQMJhNlkARIggQTJPmefGsEyIYE8MzIcjKDKHDG8QSeZGyPl7ZkyVJr6Sa7m+wmi2txqX27dfft3LOffDglxgECxB/ywTKBAoFLsoogb73nff/v7/c8OyfYpRJx6NMbTpmfK9Nud5gt5tncPWFlocZg7BAEMVnFJ3T6nFmqMuiPaB61ME2LfNFGUUwcZ4AkCwzHLqJVRZYkZk4lXY7jIDFkOPZoHp8wOzuDrMgIiIwnI+5+8gmVcp7d3QMqlQrPnz+nVqvR6aTsPkVWqFZn0XUDWRY5c2aF6dQljmMuXbpMEIQ0GkvouoWmy/zFX/wZX/z8W5yctJmZmWU8SvmAw1EXBJlup82gN0Q3FYqlKlEk0FicJwxSatK1q68w6A1ZWj5LHAc8evQI284QhhHdXhdD03EnLsfHR6dZxF3y+QLDQZ8Pbt4gFEJy+RKqLPJ7v//XC0v/jT4OQxpjGE/6lMplMpZJOAhOTVWpg3UydhiPxxzuHxCG4Ysb0SgIyeZzrJ49RxRFyLLK+t1bJALU5lOjm+d5ICT4XsD169cpFovs7Ozw4OF9MqaFpMgcN9uMhwOePn3A2uWXuHzlJT7+5BOWFus0WyeossLMTIVEEGk2m7TbKT7LcRyiOKTXS3uSURzSap/Afsh0OqE2v4LnD/nwgxvM1xZ4772f8eZbX+Zn7/2UN954gw9vfkA87/N//NG/4Jt//99LacSZDKHvoesqW9ubDAcjVs+s4HlTQKTfHxIDiqKRJBGu65LNZlOW4WSK77tEiYQoK8RCgkhCHIenUZp0VxdOT3uskkgQBFimjaJptO49QxATINVshiSEfkAYRxiqgq/pONMpiiSjyQr4LgoiV1fOMZupMleew7YyJGGAoWWJwjSnKIlJClZIYibjPldXVtl6fkhjdYUwEtB1jf2dXSqzcxydtChVU8VAt5OqC4rlEpZlUp2fYdjp0TzNjEqiiGGaL26Cfz5n9TwPUUyPyaoiQRRTm6vT7pyQz9WpzdchCRGSgKPDPabumPmlGpE7YvlcjU6rhWFn8SOPQr5MHMuIUsysaRJHHokks727Q+C7zM7U0XWIgjHlcp1B74Rhd8oP3/0Qu1TgaKdFNmeejigSwiTGNE3+zq++RaFQ4O/9mw3+y//6H2EVbM5fWGbieKnzww9IYp/W0TGVORnEBAEpvTTRJA72mszNzTE3N0uxWCSJfFTdZNgbMHVcjo9PmJ2rUCxUuPbSVbypQ71eQ5ZFXCdtGg0HfYLQT7mOwyGWZXLYPAZJpnV8hJ2xGI4duoMuM7WZNPY1dPja177Bw4f3CcMY01LQNIvtnac4wzFmNsPquQsMhl2Oj45otXqsrV6geXySdvYdB1O3efUzn2U0nqCbFpVKiY8/fp+r117n8tpFJs6YXq/HytIyoiRjmhmmnkOpPMNbX67jBj4Qo+n2X3uV+Ru9E/ztb//W26+9eoWpO2F2boa7dz6hVKry/vs3OXNmBdPSESWBzc0tDN2g0WgQhiHj035kFMZ4XkAcRwxHfWpz88QEZCwby9R4vHGfi5eusFBfeLFjGwwGKKrC0eERpXIJL3Bon3T4wue+TGNpnigKTj2sFaxMnnKpRGNpkcePH2PbNp6XDuPjOGZvf49isYzru3i+TwL0e30kWWY0HCDLMtevvczEGeJOXcrVEpOJQyaf42h/j1anwxtvvEkYgmWZjIajdNgtSWRzOUQpYWPjIefPX0ovV3JZ2t02spQK003DQBBAENIFTVUVTCM9ekaRTxzFkKTIq4Q0Q6cqCpKSPhsVVQVBQLd0hOYItzdhEnnECIRCki4okkhCSgE3DANNVTFUjaxqULYyfHrtOmfmG2QsC1mRCQKfOIjQVAUhDCGKUHUtzSt2uzzrHmMvz5PNlfB9H9/3mZur0zw5olqdSeksokSpUiEIA4bDIYPBACkScIOQ2dlZTNPCtKwXu/gwDP8fGsYgSKGziQSqopMIAvliGUVWyeRyuJ7P8XEHVc8iJj7eZIgaO4xGfTKaimZl8IPgtL4VoKoqoiwjkKCrGpIkoygyghQjijLD4Yhut0OtVqPXHbCx2+XgeEh/4jFTyVOfn8XQDVYas5w/f4mF+gKl8iw/ePf7zBUzqLKOrfq0T465fPkCs/NzqZ9ZM5hMJsiKjpXJY2ZKJILEzMwsQSQgnSpjy6UCE8fn8aOH2LZNLpfn4GCPem0OO1/AsvNMJxMAyqUyqqZj50p8+MFPuHr1NTRdpt/ro+k64/GEmeoM21tbNBoLTJ0xcQJ37z3g0toaewe7VCspYFZAxPVGRCRIosji0hKD4Yj5uXmK+TLl0jyPN26xUF+g0+syOzfLUfMI13PY2dxD12Qydp5zqxc5aR/gej6lUplsJstoOKLX75PJ2PSHXVRFoT/ocffObQLfI4oj/uUfvfOLX5vzfZ+T4yaddp+D/eN0Fpa1uXjhPP/qD/+Ijz5ITVuzs7OcnJywsfEo9ZyGMZVSmY0nj3n/5o+4/+AD1j/+MU837jPsjSjk8/zlX/4lhm4hSdJp3ukhw+GQ1kmTnZ0dLly6yNHREUcHx3z5y19m52CHrWdbqZdY1dnfO2A6GbO/v8+7776LJEkEfki9XqdUqhBFEdVqlXanSaVcQBRiRv0usiJwcLhDuVwmieHh40fkchU+/8U3kCWNa9eucbS3z0vXX+X6Sy9j6BlEBJ5sPEYURZ48e0B/MODu+i163SEXL1xlNBjjOC43btxAVXQUSTrFVkXoup46JMqllPjhOIShTxLzYkcURRFJFBCH6aIT+i7+dMr0VAo/bHfxe0N0I9UQTKZjkiB88XUMRcMQRUqyxqykcq2xyGfOXeTs3AKz+dKpHD6dwxGlbL3QdYniEEESSQSBYDokjnzKuQJXzl4kCL00iO26hElErZYO47O5AkmS8GTjMSQx1WqFrG2zd7hPFAanowSPwPeI4/QyJJ+x0U7nwynSLM2bSon0AgA2Hg3wgzRfphomuUKJiAhJyyJZM4i5GfRsFcFKd9b5cpF8qU7GyuN5LsQhsqwydX0GnX3cUY/YTx+I2Vwe287w+PEjTDtDfzLALph87tNrPN88QlE0llbnuXLtEpqWkCma+NGU//Qf/IPTpkuS4q0ElefPdnEDUErnifUZrMIiVm4ZQVKRFIXWSY8f/+C73L7xY5onhxSLBTaePiebzZDL5VA1hbt3bvOlL3wJQZTY2d1kPB5jZEyaR8d0ey1297aQJIlPv/4mtz56H4A/e+dPyWVsxv0uoghLK2lz6fDwkNgL8KYddva3sDNZDMOgUqnQ7XZxJmlUbaFxFlGUKWRzdLonJGJCq31AGAk8evyArF1gdzf1neRzJS5dusSTZ/fQdZNMNkccSWTtAp1Oh26/R66Ux8wo7O48Y3Z2Nm0m+SFf/uqvIIoyGetvCU/wn/6T/+nt//g//PepVMtYlomhqyiKSi6X4+LFi6ysrHB0fMjJSZNabYaHj+8QBmnpPJWRh3zh81+mXKlTm6tTKJcpFso8ffKcL77xBtv7uzSPmrz62st4no8iK8zP15hMplimxerqGoqiYdtZZEUliSMqlQqqqnLSatLptKnX5/nRj/6Sz3z6dRRFQ9c1HGdKqVRkZ3eHpaUlmp0OQgT1pUVOjrtcvnSVyWRCFEXYdoZ8vsB06mMYGTRNRkBlOp1QLBZ5/PgxUehTLpWpVMs8enSPSxdepTZfx7YzFAtFBAFyeRvLynLU3EdTdERJRtNMHCfdDZmWhTNxiKMI33OIwlSSLv4VCGscx5AIKJqOqutpZTGTBUXA3+1wfHREokpM3CmSqCBKErIs4bkulWyOip3nfH2Rxbl55splTM0go5iokgxBiB9HCIDrBbjuBMvKIAoCsqJQqs6QhDFdd4R9bomYBMdJ0Vj9bpckjvBPheyGaZG1s+i6wd72Nl4Y8Oqrr6azT9s+HXP83+8j+VRIL6sKcZK8WPzd6ZQkidAVhSROd8XjwZBep0sUOow6fUzDJJLAHQww9QhJjKg3zpHL5Tg53CGIIuxMHklO7XGKLGPnCim81sxwfNRkMBjhugF+CK2WQ2865eZH25xdXUAQY4auR6M2Q8bMsrDQYK6xRiabxQ2nvP/+h1xYrvClN3+VUuMCyxdfQZ09w/zaF6idu8bC5dfIzl/E1ysMO108L2D18lUESWKm3GAwbNPrD9A0jSiOKVfKJFHA9773JyRITF2PvJ3DC3w8d8Jo6FCpzGLZBrqWZbExz8cff8JnPv2ZVCERR+n71Z3gOC6GqaNbFrlMJVV37uxRLlfY293l0qUraJrO2BngTh1GQ4dnz58QBOmOzvcjPv2pzwIhUSRgGCog4PsBumGyu7eLrpsMhwN6/S5LjQU++eQGa+cu0G6dcO/j2yytnmc8GlMolMjnCwiyzGg0Ip/N8r/973+9nODf6EXw27/1rbdr1SI7u7vkcrkUfpovvBAUjSZjzq2eY262hud6BL7I9ZdfJYpdHj68z83336WQy7C5tYmVsU9x+FMq1TLDvoOmSGSzOZ4/28QZj1FkhYydluxnZ2s8f/6Ug/1dZEnk+9//Y+rzDW7cfJed7R2uX38VRVZYX7/HV776VcIw4OGDByCktrIkSTAME1XRMXWTQb+D78VEsc9J65hsNo/v+y+0lbad4fj4EEVREYSEarWK46RNg6NmejSPo4R8LhXEf3z7Fpubz6nV5nH9VOY9cibMlGeRpBR3KogikqoSRD7TqZvi3dWUJaeqMiQJoqwAIlGcEIQBiOmgP52jSni+RxwmGJ30SD9wxiQJZAwTRRAwZYWCalDSbJYqVRbnF7AsGwVwBn0sM4PnToGEJAiIAw8xjghdBzGJwfPxxmMUTaF7fMBY8MleXEsjLklCHMdkcvn07xcEDAej9EhPgiwbiLIIScJ4PGQ8ntA+aSNKEuXTna8sy4wdBz8MXkRpNE3DNE2iOECRZbRTsU8YBsiShG0ZDHpDSsUCg84B+zub1OtLtPa3UPBw3ZQ6UyzO4/tjxsMuSRQjJKkTWJZVwlBkPB6hKQJJrNDv9NDMDO1RDLJAIrvsH5zwa7/+G5w/t4hlapQrFQ6bLQJ/yvHeDv1Om6f37/GlN7+OVqlQrZ8lPzOPka2RtTMoioLvx4iygmlXKMw16LRPmK0t8NHNd+kOTrhy5WWePXmI73tUy1Uylk7zpE1jaYmXXnqJQq7A+zfe5erl60iSjOtPT5UDRUajAY47JZ/N0+6coCoqhWKRn/7sXZYbqwgizFRnGI9GPHv6mG63dbq4eemsbjrlzJllfvyDH2BZJoVCkSROmDhjFhtnyGRMnj9/hq5bGIZOEIY8e/aMSqXMcDSgsXCGublZTN1ANww8N6BYqGBZGXwfGovLWKbJ1J3Sap1gmgb9bgdVUSiXy3znd37vF38R/O/+2//m7f/sP/mPXtxgNhoNDo8OydgZZmeqHOwfksnaxEnM1uYW7W6H1dUzNE/aXDh/mYuXr6FoOitLKxialeafJg5h7HLjxrtcunyNTMamWEyv9ieTKaIErdYJ6+sf0+l3yGZtSsUSC/VlNN3ANExyhSJxkoJcs7ks0+mUjY0NXnn1Fdxp6q617SztbhfD1Hny7BN8p8dCY5Xj5iHjscNMdYYzZ85iGCnefX9vmyROYaqCINHtdTB0g0RMmJudYzQco6oqzzaf40zGrK2tYdtZhuMRzWYTQRDQVAPLMk6NcyFhEiFrGmEQEEUxlp1hMByg6yphnGKzZDmd0yVJjKoqyLKK7/svdkuapiEgYnRC+v0eUpKgyQqqrDBXnGXGzlHJFqjmcxQKWcajIaZuIes6w04PM2OnFy2JQBT5OONRSm0RBULfR1AUZEmC2EcKIqxaDi+XQ1UUgiDGti1c38WyLTKZLJqugSCkHhLfpZjNoRoWsmwQhglB6BEEPr7nkbFsVEXFD/wXWLFms0m71WI0GiDGCXEQ4rkOJDGB5zMedtna3eJo5zmD7j5R6CK4A+htEURjTE3ByhUQFA2RAEGWMC0DxxkjyRJTx2HY65HLFQmlECEWTgnXPhEiR+0RtpHn4qWrnLRbXLxwBtPUKVdmcByHUrmMbWfJ58vkCyWePX2Eh8CnX3/rVAPgpP9ekoDreCgyKJKBqmvYdolYCtl+dI/OoMWFi6+wfv8+V69ePU0sVHj//fdQJBFR0bBMkzAUWFhYodU6ptfroSjpKcfzHNypw9LyCoP+Ibpu4boe3W6fK9dfYn39Nq7rUp2pIwoC9YUlNM0gIqbTOmRhYZFnW8/Z29vi8pWX+N73/pxXX32ZRw8fIEsSUegzMzeLgEKhUKDdOWYyGXP27DnW73zCyuIKo3Gfp88fExMzU52lUCwgCAkf3X6PQrFErpCj1+szmUxYaqT1xFanRRwnbG9v8873fviLvwh++9vfevvrX30L1/OIoghV0cjaWR4+eMh4NKU6U+Evvv996vU6g+GQS5cu0e/3qZSKTJ0pmp62Me6tr+M4E0bjIYaRMtI++9kvpvGMaUqi2NndRhAiwjCiVCoxO1PD0i3W73xAp9cml8/SHwxxp1MuXb7MeDzG8zwqlQqDwYByOc3/1WrzOM6EublZfC+VNc1Ua+wdHjE722B2ZpZqdQ5IyGZzTMZ91tfvsLCwSL2+wPbOXqr01FSebTxC11NPsaamNbBcPo9lZmi10hs1TdfSPqhh4XkO02k615qeOhyiODkNQatEYUqVkWQZTddwXYc4DImj6JTplu5KRWJMQ2cwHKTuFFXEeXaIGKeNkoxhMlMqU7BtdE1DEVM4g6LI6ddSdWRN5XhvBzuXQwSkJGHY7yEkEXEU47kOAglCGKEIIuppZEbIGbi5PIIQM1dfoNXuUqlWcd20+2sYBiICcZLu6qIkpn3SplQqnwZ3zdSV2x/QbB7julOGpx1mWVGQZfmUOK3jTVOyTBSF9Hq9F9+clqKSzefQRY/27hPGzS1Goy6GIgEpPcc0DXTdIhES+r0u5VLplHJjMRxOcb0xhmIQhAmB76PoBoKWpdI4g5zNctDssXb+IqahICsykmpiWhlMM4Nt5xgOBgyGPbypz6XLr2HnsnjuFMsyieKEbC5HFEQosoYgCoRx+hBLEpVOr83cTJ3HGxssLi1jGgalUhnHc1k7f569vT1yGQtdt/n4zk+xzByOM0HXdWq1GradYWtzG9vOoaoWruNwfNxkcXGR8WRIEsZk7RzHR8fkizmSxE/bS56LMxpj2VlG4wGzc3V67RaxILB65hyqpnP23BqXLl9mMBwRRwlPn26kYrE4/d6zbZvN58/Z2nrCxYsvYdtFHj9+iigKL27RVUVjOBpRKpZ558//hF/52tdQFI3N7ee88sor7O7uIakyf/Jn3//FXwR/+7e//fabb7yOIqvMzszy/o33WFlYZGd/l8uXL1Kr1VheWmI0HDI7lx4bC4Uy49GYmZkZOu0OhXyeykyZza3nnDmT6i37/S6j4ZjWSYtOt82z589oLCwyPz9Pr9djOhkz31hKe7mZLJcvX2OhvnTKoJPY3dtlb2ebN7/0Bk+ePKNSrSAKCvlciduf3EIURJonxxw3D0kXuzySaLCwMM/t2zcQRJFMNs+Tjcc8e/4QURKx7RwHBwfU6ws4kwk729somkCzeYQ7DVhcbLDx9Cm2nUPTNUxd49atWyRAo77ISatJr9/FMCyKlSKmmSVJ0q60dJoBTEVMApqaRkeiMMRxpigiL7rKURQS+GmURBBF4jghCmLk1ghL0VBFgWqpSsa0CEMfUQBNU1EUOfWSxAlJFCMrCifHh+Ty2bQY77lAlIbXR0PydpbJeIyKBHGMpijpvDIOYGGehAQ/irEzNv1Bn3w+n9YVByOy+SzHx01sOwcIzNfn2d0/QEh8SGJEUaBULiNJMpZloWl6ykv0PDKZDLpm4PkuxAkJ0Ov16fQ6p1IrePb4LgdPb6LEU+7eeI9auYiiSFi2ipnNIooJ7nCIYuhYRg5BSPDCADOTZ2trE9NKF7LAnzLst/GDGFVRic08vcGE8swS59euoFsKxUIBWZEwrTyWlSGfzzMZj3CnHvfurqMqKgurZ8jnigwHPcrlGZaXl3DHDpOJyzTwMDMWCCIgYBgmW9u7KTEoGBMlMffv3qZen+f4sEmpUKRcnUWSRPYP9lhePIum6ZRnKkiKyshxKBQK5LM5dMsi9B0SEirVeW5+eIOr166xv7PLy596FVVWkGSZ3b09BCSGoz6PHn7C2XMXmYwdclmbmZk5DNPg/fffo1QuEbg+g+EQ00jfg3Y2w3Q6Oa2pLrDx5BFr5y+wtHyWZuuYfL7I1Ssvk81Z3LzxM8qn2cL5Wh3X87CzNo/X77C+fpc33vgiW9vbzNcWqM3N8J3f+ee/+LfDUZSy4JzphP6gx8rKEncefsxX3nqT+/fv43kpUKFYLOL7IcuLS5h6iqdvNtMnl6KkQIDJZMJ4PObg4IC52Tq9bosoTMPMtm3T7rS4d+8upWKVM2trtFvH3Lp9g6ydo9ft4zgunU4qd758+TLzCw3+4I/+1QtU03DYp9U+ZHV1lVwux2AwODV9ncE0bGq1Gs+ePcRxHERRTOtLi4ucX7vKFz7/JtlslkajwcaTx2w8fUSCwOXLrzIYjjl/+vRWFZmPb9/k+Gifn733I8rlMvl8mZPWEcvLy1y7+jL5fP5FFEQUJWRZRRIV4gh0XSeXyyHLMnEEJOlNaXh64SDLckpWkWUkRcEwLAzDRNEMpDhmtlhmvlzF0jVEUUTTNIIg7eNOJpMX3L4gCF5Y9EajEXEc4/s+0+mUTqeTuo97XSzdQBAEZFnG9zyEOEFLxBfmvtgPUE6BCKlESqQ0U2U0HFMuV+n1OiiKxEcffUAxZ6KaJr6f1qYGgz6O49Dr9VKDWpzmG/u9HoNhFxBf9M5d12W2OoNpGGTtIqvnX+L6678Kmo1aLJOZqdFrHWOpOoHnY2WyZMolev0Ojx7fI58vEEUQRT5z8w2WV5fxwgAElVwhjyDLDEYjfDHtM5cKZT7++Gfomk0QSkzdgEePHtDttnEch93dXYb9Pr7rMZ64XLxwhaOjQ7a3t9N2zumOeDKZksvliePkxf+fO/XJ54qMxl0qs8uUilU+//lfQlIMDo8OGAz7qR8lSWg06gxHA3707ne5d+cuqiRjGgbNwyMePnoApDXLn777U3a2n/DVt74MUczy2hrNwyY//dlPyOoG9fllqtVZRsMxf//f/g+I4pTmJIoqzeMjtra2+OIXv8ju1jNuvv99FFXm4HA/hSqs32E6nSBIEjdv/BBd19MHtZbS0VsnR6yvf8je/i4XL17mydNHeP4YTVM4ONhD1yx294+RZY1ms0kuW+T7P/gupvG3JCf4P377t97+9a9/Nb0RNAy2t7doLCzT63ZZPnOG/YODlOIxHhMnMcPhiH6/x+LSEo83HpOxM2zvbKNICgf7h0ynI4LpmDCKGA3bWJkMS0srFPLF09tSkdFoSLfd5c7djwmCiG63w9kzZ+i025TKZba3t9E0neppI2Vvb4/xeMK5c+fQNROS9I1Tn2/g+z7jkYOuqzx8eJskFqnPL1KqzDIa9nj8ZJ3Fxlla7Q6u5+I4UxDSkrsf+AyGPZzpmIWFJbK5HAeHBxQKebrdHp/+/JcwrCyikO40P/jgJqVyjv39o5TsIkskSUiSSOkuQRRIEHBdL60C+iFJHOAHDlHoE8XpMTVdlFRkWQFIF1AiipMI0QuRFBkhTIhJWyKe7xHE6XHaj0IEBBxnjKpqDEfpz87ESQO+foAgioSej6ooiIKAIkvomoql6yliK/bxzjYwFI12r42u6ciKiqqkHVyBlE6jKOmxtt8fYhh6mkH0PGQxzbT1B300TSOXy5MkCbqmIQuwvbVJpVQmCj0Cz8PQNc6ePUeSxMjEHO8+Y9DaJW8brK6sYuk6zZ0NDEUkiIO0lyxKuEHE4sIind6AsTNGlQWiMETVdAQUDE1NbXSOi5BALOnkZ8/R7g7I2FkWG8sM+010q4AgCuiyjK6Z5HM5iBNkWeKnP36fr/3ar9Pu96nNzVHI5yiVymQyNrphsHH/AcVShShOkBUFy8rQ741I4pAHDz+msVDn0YP7nFlu8OzZc5YXG3Q7PRbqdTrtI7Y3t7l44TyNxgrtTpOsneWT27dZXV2lWqnSbrWQNZWLV65yfHjIdOqli30c0O13efW11xgNh2xvbSIrAoahs7N9wPrtn4FooKoSiqqytHyGIAxYbJxh5exZRMAPQlRZYjTqU8gXObu6xvNnjxn0W6dSLZBEmfmFeSqVOXK5AodHB6iaRi5XYDSeUK8vYBgG585foHFm6UUE7PXPvs7BwT7//Pf/4Bf/OPyP/9E/fPurb30BgMFgQDZncXh4yLWr12m1W6dQhFQsnXLYfERRoF5foNlsMplM0vnPqWZxfqHB2fOXUGSVheUV8nYOZzrlo9s3KBWrFItFojBA0zUq5RmuXHkJTU2xW83mIVk7Q6U6Q6vVwvWmIJAetRKXfrdPJmMRRgkTZwRAdaaCM5ngTCdcWLsGgkQsS3RP9snlSkRxwGDYISFg4rhIskSlMke/32V2dpbDwwM+9errdDqdVCAlBChKlnKlgiSLRFFCuZil2TxClgRkSaVUqiBKYiqkb7dISO1fCAlJkl50iKJI4IeMR31IBMQkxg98SFJx5s+BrOkROiKMY7TWCFsxiJMERVYYuy5eEKTqyCBAjCEdKSYYZhrHECWZVruFLMlpbjEOiYkRRQlVVukGGccAACAASURBVBASEIQIhTSzrSoqQRKQe+0lVFXHzGeYDidk83lOTprprt6Zks1lyZg2+3v71BfmaDZbGIbOcDjEztioqkrGziCQsLW1SRSFEIWn9J7UNOdMJ7jOmHG/y8nhEd1Om07zGDuTQTE0Bs0tPvnJd2luPUSOAtrtE0qVCgghIFCt1hBFiVy+TLUyg+9O8b3UEXJ8+nlOTk4oFUuERFjZOr3xiLnGOSZTj2xW58YP/wK7YmDqJdzI5WhvB9U0uPvJLUrFIr4bcPXap5FFESuXphusjI2mpvCGH33ve2imga5piDG4kylh5HOwt4UfOKiKyuLSCrdv3+Ly1Wv0HRdDVZFlGbswQ75YSkVKpsmli5f43vfe4Y033qTVar0Ily80lnjw4AEz1Qp7+1tcvXKFychFlmE0GGNm8uSyWWRJodftY2UzhL5LrT7HwcEhnU6bBBEhFFi/9z7Z/Cz7e5s40wmPHjxg7fxZDCOHJIhUZxY42D2gc7KPZprksgU0XWNz6ymuO6VcnWM4mrCyskgUhhwfNykWixwdHVCdnUORJA4PD+l0Ouzs7PEXf/njX/xF8Le+9Y/f/sqbnyebySIic3f9Q1577XWGo9Tju7e/hR8E+IGHbeeYTh3u3r3LeDzi8PAATdPTo7DjsLS4iDN18DwHTTNwJhO2tjfx/YCDgyMQOH2TWUwmE/zARZFknKmDaujs7e5gWTa6buB6U2zbZn9/n/39HVbPnEfVdRRVx/V81j+5xUJjkUQQuHXrQ9bvfoQgJmi6zuHuLs7UAwREUWLt7EXef+/HXLt2HU21IIkxLQNJlBkO+0ydCZOpQ7FUwtQzXDh/jokzhSjB0FQ2nm0wMzOHlclhmhkMw2JvZxdVVojg9FgiEUUCyilvLwy803gOxElMfApUheTF4vfzGSGAIsgwcrBC6cXNpAC47hTPnSIkKZwgjEKCICQKY6I4pj8aMZj00TWNMA4J4ghv6iKfxoJkSUQWBGRZQNMVEiEGTYOVGrlCDgGJMIqoVKvEcYSmaSiqymg0QjWyZPN5msdHlMslRDHdCYVRSKudOkVMy0SSZAr5AoHv4ntTRsMege+Ss23KlQquM+Fgd59HD28xaLX53Be+wMjxebJ+k9h36beOiOKQrGUShzGlYhZVU/BC0IzUbx1FcfowCH286RgZDVUVURURWdLS2XTjMoJqU67OEoUxgqjw0qc+SxzJOM4Q2y6QLxQpZPP0+0NcL2Qw6DOdDChVKpxbO8/zJw9ZPbdGHKU8xHf++I9YXaylcndJZdwbsHH3Y9753X9GabHByvJZptMRuXyeyWSMJqVO6FyugGlIdFodsnYOZzpmOPa5+tIrp1TwNDuaz+fpDQbYZno5p6sG43F6AbLxZINr166ztfmU2dm5FN6bRGiGSjFfYTQaIkkGZ8+d4aS5x1ytxtLSKkLiYednsDMZGo0V+v0xmq6mAjJdY3lplTOrFygUC+zt7XFwsMNifZXN7edksgae41OwbRbm6zzeeEi+VECWZJ5ubAC8IPvMzc3yu38bvMO/9a1vvf13/rVf5eBglzCa8MU3vsLe3i7lcokf/egdrl25zmy1hiRKPHz0iHqtjihIzNXmuX795dMbS4Varcbd9XXOnTvH4417eF76jVoslslmLWZnasRxxPnza5QKRdrdJmGY8ODBQyzLQhLF1K3aWERIYvZ296hW61SqJSwrgyAmFAtF9vd2OTzYo1arY9t2OrjN2NTmF6jM1Gg1j9BNk5evv8LO7jbbO/vUarPUaw3a7Q6t9iHFQpX9w6cMRwFB4PHRrduoYkK+WGLqTnC9AdlclcGwy5nVM5SKFUBgf/+QjSd3manOkc2X6fY7ZKx86hEmJXMnxIRBRBD4RALIiow3neL5LqHvnaLipRczRU67xZKYIE5FkmYHRZZSNFUS4/oBQRiQCAmyKDH1fBRFSWeDzhRBgGnooSkqMQle4BElMfop+CFJYgxNBkKEJEZSRHrAdLZEPp9jOO6TyeQQhZhsYYbD/W0sI0O+UGDqTMjnMmTzZZxJ6t71/fRm/OdumOl0iijKRHGIqIh4foAmJEiyxKDXoX24T231PKpucu3iJVqH9/nT3/0W6z9+h5evXUGzVXRVxOkPcaZTsoUcmmkg6yk2TJElnMkYWZEQRRkzk6XbPsEZdxBEmaPDA7xIwBt0kOw5ssV5fvD9P2dldZUzZ1ZoHrdw3Qlzc3NEYcj8/DylQpHBYMBP3n2XZzub2JpEr9cjk8/jDFv4fkDGtImjiDPn1mjubDEZ95lbXGTQOmH9p++iZw3mFhvsHeygaTqSrjLo9jg+OiBJEkajEXuHe+RPo0iyqnDSPGRzc4esnaHbO2GxscKHH908HVVYBGGQLlSGTpzEXLp4Gc/zieOEwWDAzEyF/f19quUKm1tbjJ0Jly9fwTIzhEHIoN+nkM8y7PeJAp+9zScIiopmZpibqaekbG/CweExpXIp1dMaGW5++CG5XI5sJkMShmiazge3PkQQBAzT4qP33wNAVAwUTabZPMIyLKauy7/4l3/8i78I/uZv/g9vf+PXvkqpVOXwsM2HH92k0VgijhMqpTlKpSqallJX5uvzVGeqVGeqVCqVF9k5309tYvPz87zzzjucX7vMfH2eiTNBFAU2Nh5z0mwhSemg/PjoGN3U6A/anD27RpKkBfvl5SWOjg5RFI0LFy9yeLjP+r0POTk5ZHFhlZ3tHQzDpFAs4PsBtVqN/rCPM5kwX6uj6SamkaFULHJwuEsUeiwuLtHv94nCiISEQX/EzvN77O3s0VicR9M0vvTGVzDzRTTVZLY6hyJnmLpTgsBLLXuj8eluT2Butka73SGOAgb9DoVCCc9zEUSJ+LQfJggicRwhCCLj0ZAkik5vjUVEQYQkflE3C4PUmhbFICki8mEfWUuPYp4fkJz2cqMw3QHGQCIKBFGIqmmIkkR3lGLOgygEAeIoZuq6SKKAKUsIQoymSmiqjqqpROU8+YtrTCZD5ucXkSSJzc0tsoUstbka5coMo4lDEokEoYskq6iKlAadZRnHmaZtjpMTZElEU1XsbIYkgXy+QH84SBUD7pRq2eL5+seMOvuouoqdr/KpV67heRGP7v4MbzBgtlLBm6YoNDOjUZ0pESYympqhM+gQBR6+76LIIqZpk83PEIQu7jQNiMuqSRIGCIaKlLFZWV6jNxgwHA5xxgPmajVu3rzJzEyV0WjIrY9u0Wq1+MLnv8Af/8l3WVqoomomn/ncmxwcHHF4uE+tXkdRFfKlEn/+p/8nhayJKmd59OgT/vhP/pi1lz+NbimIskCn00UIYjLZLBnL4uqVazRPjimWZqiUS7TbHZ48eoRhGly8dJXxaIhhanz88W1evv4ajx4/5OTkkFKpwnSahs9VVeHhg4c0GoucnJyk4wXHo1qdZTjss7q6iiRKPH32iNsf36aQL7zoVydxgh8nlGbm0DUN3bDYfPYEhITxyDm9ZAo5aZ2QsW0ydoalpWWCwOXRw3VIJOr1RTKWjWkZZLIFnOkEU9co5gs833zK2dWzaLrJP/u93//FXwR/61vfevva5XM8efyI2bkS5fIc7777PYTTytaTJ/fY3nzC5vMtNN0kn80iiSK9bpdHjx+zUG+wufmUpcYSe7u7LC8tocgynutRLOX5wz/8A9bWLjAa9alWZimXKzSWGvjTkFJpDllWabf7BOGUne1d4ig133U6HbZ3n3Jh7WWWGivousZJu82ZlVV0TaNUquC6UzRFQ1M1XNfFMC12tjcxTRNd1ymVZwjCkFwmSxwn5PI5FEVl5exZ1i5cQtNMRpMRhmXw8ME9DFXiyfOHjCcOreYJUZwAAnfu3KHRaKQzq+Icg2GP2lyDIPBSpJUqE0WAIJ4eWVLIaHIKThARicK04ypKMgkBcRif7gZTT7Gm6SBLxNsnZDM2pp1Ju8XTCVESI4hSeiQUTvvIgoAfBBiWyeFJatyDBDFJ22yCKOA5E0xVgShAleUXqHxpoUJSLKLJKXiz3TohV8gynaRNhl6vh2mYqKqaLtaSyGA4OgVBpMP5lKidBsBFUWDUHxAFAaZlUSpXU8G9P4U4bZbois57P/ozbD1GIOZo9zH1mSp7O7u0m4eAQCwkzMzP4TojjGyJJAmwMnnc6QRVUXCcMbsHu0iizNr5NYIoSkcNYUIYBEhWnkjI4scxtp1FkiR+8uMfsry8xtHBHnYmw3ytTkTC3NwC9+7e4f69h7z2yhWyuRKSarKyvEzouUREqKqJosksLF7iZz/5S379G38XNww4f+UyY89lrjaDplmcXb3AnXu3OLOSurX39w7IFQsYhs6du+ssLS+zdm6Nk06bBCiUioQRaLrO++/9iK9/7Ru4vkttrobrehSLJZzJlMFgiK6rKdJNlokin4xt8/jpY2RBQtVU3CDks5/+LLs7O+zsPmduboHDg32ePX1ELpun12kjSiaFvM2jR485f/48qibTap2QJBHZbJEHDz7BNDJUZ2dQVYtbH3/A669/ljAKOGm2qdXqZC2b+kIDx5lyce0CYRBiGBrf+V//f4rICILwvwiCcCIIwv2/8trbgiAcCIJw5/Tj63/l1/4LQRCeCYKwIQjCL/+V13/l9LVngiD853+dRTCKQj712me5/koaFclm8/zGN/4ey8vLVMpVrl55jVzO4vz5c1x/6SVEUaRUKvHJJ7eplKv0+30aC8ts7e1Qnq0SJamUO0WEJ/zyL38Nz5ty9cp1MpkMrVaLGzdukMlkkCSJ4bDPw4f3X1B0K7Nz7O5toekq+VwRRVHoj4bsHR2wsrxE6+SA+w/u8fDRXfb39ymWCvT6qa+2fdJKBUGTCffv3+fhg3WODvdSF+x4wNHREefPn2c88Tk8PGbquHhOgCYbXLt8DTObZXXlAvPzC6yurmLbNvV6nbfeeou9vT0WF5fxA4erV69yeJTmxMbj8Qs5zc+hooIgIAqpnMkwjNNdZKqY9LzgRVUtDEMkWaFYKgMpsFOtlvBG4xS3RDqTVCWZJEpvxH9OzRYEAYSEwPcgTmNOqbtWOSW6uMiqxHCSGs+sjIEsSsRhSLFUYmZ2Ft1Kc2T1eh1dM9E0Hd/3kSQJxxnj+VMkSWA6GaIpIp7n0W63X+xi19bWsLNZEATypSKypjIc9ul22+SKJRZXL9EZOlj5KrJp8/V/498hY89w88ZHzM+fYTweU67kyeVyL/rik+EII5PqIVNRE5Rry6iahjPqEk7HTMct7t7+CG8S0lg8i25p5PIVokTAtHSWFldfcA2/+pVf5eZ7P6ZebyDLOs2TA9bX10mShNnZGtmcwWHPIZPN4Yx6DIYdBsM2oe8ThwFCLOD5Y65e+yz/8L//r/if/+k/4Sc3b7K4MHeaUU3f7y9de5kgCNnd3UFRUkdyGIZ87nNfwHFc7q7fIW/nmK2UaTabVCoVLMuiWCyn74lY5P79+5ROA+GlUoXLl69ydJTi+e/du8fHH79PEoU4wwHdXofuoM+5Myl3s1qtpr6cIGJlZZU33/olXN9PHzh7j9nd3aU2V+XkuMl3v/tdqtUqC/MNuu0Wb37pV1AUha3NbXRD45d/6et0Oz36vQHZjEW33cIwDDY2NhiPxwwGKZ3pO9/5zl9niQH+ejnB3wF+5f/l9d9MkuSl0493AARBuAh8E7h0+md+WxAESRAECfg28DXgIvBvnf7e/88fG08eEwQBh4eHnDQPmXouT548YXPrKc82n1GdOcPVl15m7IzZ2Njgzp07XLv+Mn6Qtkx2djcxNB1dlsnlcoiqzDTwEESF1kmbjJWjXK4iyzKCIHHxwiW2dneIQp8kSfjmN79J4Ifs7G4jkrD1fJO7d++Sz5W4s36XjGmThAmO73H71vucPXsW08xQLJfY3trh4LBJf9gnm7GxLIsg9Ll8+TLlcpVCvszEcRk7E9bOX2IwGpOxdDY3N9FNg8WVRd678UPu3V/n4f0HjEYjGvV5ZFU5bTpEPHv2jIsXLxLEESedNu+99x7VaplCoYRmagwGXfzAIw7itKsrxKe3vmKKtNdUNMtGN410F5ek/L2fPwiiKCFOJDKZPEFRJ9LTOasgiYSuT+x7p73bEEWUUFUFz01F9UEYUi2XkKR0LDGZTAijiDiM8LwpIRFxHNLv9pg4A8LQZWZxBVtOXc2FcimNM41GaJqKaVoAzM7OAjG5XLp73tvbJwxjGo0F2q0Wtm1z//79FxxBRVXJ2FnKpRk8L810xnHMK69+CtPM0mw2UZKEg1aPb3zz36XdPqHTPubMagMra9HtdjE1lSj0OdzbJ46mOH6EF4TEQYhm5dCtPKoc4TupJjSWIroDnyiYEiQxiqJxfHjEoyfreN6UBw/ukcQ+5dIsvf4JmWyWRFDI21l832Nnb5tBr8/tW+v40zGRN8HO5ChXa2i6QhSl/mTLzNLrddh4uoHrTZidqVAoF6nPN8jncwRej1KphCAInFlefvGQKxRKfP9776BKMvX5RRQ1za5mLRNFFMhlCkydIUcHuywsLPCpT32K6XTCwd4ThsMuh0c7LxiAn339M1xau8zG0/tcufYSOzs7VEtVhqMBC/UG8wt1Ll66hqJIPHp8l/W7H3HmzDlq9WU+87kvcuXKFTJZmzAJ+dd/4+9y69YtDMvkk/XbDId9bDtHHMeosoLrTPnBD37Io8cPScQEu5j/v7h70xjJ1vO+73fWOnVO7XtVV+/d0z1zZ79z5/JekpcUSVmSSck27CCBEQNeYgdJnCAG8iEfgoQIkAUBEsv0CmeBY8S2LFmUxEWiSF7efZm7zT490/teXfte59RZ8+E0xzISy4SDAJYP0B/mTKEaXV391vs+z/P//fjxGz+gVCqhaRrNdosnTzf46td+/mdZXoCfYREMguBtoPMzPt+fAH4tCIJpEAR7wDZw+/xrOwiC3SAIbODXzh/7h16u6z4HYb58+wuksxnq9RAYmUwmSSQSDMcjjo5r1Gq15wXxex9/ihGPsbyyxLWrtygWSvi+wLNnzxh0eqRiCV7/0Y+xTBNZErl370N0I8oPf/xdmq0G+UKORCKO53l0Oh0WF5dZWV5FkiSuXbtBMpGiPwkXpNFoQKlcpN1o8eWv/AkQZObnVkIiMz5zc1XKpQp7+9uoqnpO2jggFtPpdNusrK6TKxQxTRPTNGk266STKQ4P9jnYP2b9wjVevv0qL936HMPRgDfe/An1ev35zqdcLvPmm29ysLeNdi5f39rao16vP38NPW+K65nPBTnTc1tXKM5WQubdaISqRfCRiUR1BCn8UBAE6XwRs5ALKcbjMaqmkYwnMLQohh4losrIYojVClwPMQgTKK7jhGAKQUTwfDzXhSB4nl7x/Cm2P8W0Q3GWZVnUPJv9dvN5c8a27edDzT89Am9vb9Hv9zg5OUaSFGKxBJqmcXZ2di4CbxOJRJ4LuSaTSTggLIjMzs2jRQwePXrAYNhja2+XF27eZv/ojKVqma2Hd7lx8zKVSoWHD55i2y7ZQppWt4c1tlCiUUzTxDCMcPfrhs+fKS+RLSwS4GMPBqhKjOG4gefKTM0xgecQy2RQJBXX9fnyl7/CcDBGkiPkC3PIikgul2Fvd5NkPE6lUiWVynDWaPPGe++dD3XbbD15yOlJHcsa06m3+L3f+m1+89f/EWpExrF9EvEUnuef29uO+fDtOxwfbeM5Fq1Wi7W1NR49esjp6TGvfO4LPNt8gCAEjEYT0ukshmEwGAyonR6QzlXCSQnb4vGTR7gIHB1s0+u3kUSVWCxBJpNjMBoy9WUy6Rz3P73LyoVVRBEMI8rdz97iYGcH37apn50wHPQxzQmPn9wDYDAYsH+wh4BKoVDg2eYjbt68yYMH9/jqV/4YrVaLza3HuJ7DweEJ8VScfCHFzRsv8unHH1E7PgLP5vHjh1jWhGQyGTqKnzf3/tXX/5fEyF8VBOHB+XE5fX5vBjj6A485Pr/3L7v/h166rlOr1Qh8kXQujiwFzM/OIYoi7XaXeCzBTHkG37O5c+eD5/7gaDSKIsmcntUwrRHHJ0c8efqEl19+OdyaBz4vv3Kb1YsXyOZzxIwUw/6AL776ZWq1GuPBmM/u3mOmWiKbzZ5P5ie589GHjMYh2SUiycTjcWRZ5cnjZyTjiXN7nEIkKlMph3jzhYUFBqMhrV6HIBBwnCnVmVma7Q4v3noJ05wSUXVisRiN+indXpOr165jmmOqlTLpTIIf/uj7fP93v0OlPEM2k+P4aB9RhFQqwc72M772ta9gTx2m9oiZmRmuX7+KpmlIkkQsFkdEOtdiBoiBT4CH53n/An4+dS7WjkQiCFL4JaoRBOmfv0XcRAzwOD08QtXDulxUkcF1kEQfES/M9boesijhOS4xLUZE0VAkGVWWEAkhBwCyKOE6HoEvMJ1Oabouw0DCEPRwbMf2sG0HQRDPgQk2mhZ+X0WVsG2H/qiPZmi4jkUykUDXdbqdDul0imhUx3U9ut3eebIlxIXJaoSrV26QiKcol2fY2txgbn4ZJV2k3dihfrhPKp1n/fIL6Eac/cMDZuerRFMJ5paWGU9ccJ1wt3teBhh22/RHJoXqOmpuiSBSxPHjdLtdJFHBHts4E4tMJkc2m2V3d5d4MsbC4uxz6rXrSHz9V/4MR0dH7O5uo2oRErrO5uYhp8c1Rr02jmXiOy4Hezu8/8FbfO93fp1ssUAqP8ON27cIcM4FZNtcvnyFS9eu8OzRFrWjEwr5Iqf1Mxbm5qiWq+ztb4If7vIDH1qtFq4LgiCBIHPrxks823zC/U8+JJWI0+t2+ZU//eeo1+ssLMxxdLiHKPikkymi0QiJZIa1Fy4+9+Roms788jXi6SRSRGF5ZY3LV25z9dpt5quzTKehuyeq6UiSEOpmrSmDwYBCaYa9vT3m5mdpNuuIgkKlUsKcWMxWF7Btm2vXXyQej/O1r30jTGkNes8TZJNJ72deyP51F8G/CywD14Ea8D//az7P/+MSBOGvCILwiSAIn/QHA4qFEvligR/+3u/y9hs/4fT0lHg8zrVr19jc3OS9999Ejyb5whdew/U9jk6OufmF20wdC03TOD09JZPJnGcyQ8tbt9slkYyjRaKY1pTFpWVKpRKqqrK+dpHHjx9z5coVamdtVE3h+HQL34fLly+zuLgIwOzcIhPLwZqOWVqeJ5stsn+wQ71xxt7OLn/nb/91MpkUzVaDZCbN1esvMjGH7O7usr+/z6VLlzg6OgojXILH3c/uoMoKheIsSkTn5ou3mU6nPHnyhEqlyo3rNzk7O2Nvb4/r126wsrrIyekhg0GP/f1jVlYuMB5NAJ8f/vCHJJPJ8A0Wjf5zLH7goagyQeA9p6o4jhPmhM/ja6IsIUlyKFmyp0iKgqxGQJQwe2O8xSLdbpt2o4kAeJ5DTNMwIiqSCIokoMWjz213kiQh+SD5oMoyccPA0CKosoKI8Fweb7lTLn/1KxiqgaIbGIYRiptkmVQqg+OEdOifxqkikQiFfJXJcIRjTRl0O0yGA3RdJ51O02w2w6HgeLijD4KAwWAQRvYaTc5OT0MAb2CRz5fQ4lE27/wec0vL1DtHHOxvM3VsqvNzzK8souoGqhLFmnpkcnkGgzDP7DkWgS/geQ6ZbIpuv4eSnKE8f4lkphySc8w+lmszO7dIr93i/v37XLhwAVGUsW0rLBWMLO4/+BBJkonFYnzxi1/kT/7JP8nSYhF7POV//z/+IT/8/d8OSeWTPq9+6RepLq3y9T/9Z/iFP/HLfO2XXmVxvsKtl25QrzfJZrO0220CSeTm518iVypwfLJHIpFA01QGgwE7O49pNU84OtpDViQymRTHx4eMxyYLCwvous5XvvqLXLpym0anS6lUYjyyuXb1FqPRhFw2H3qcz2N8n3zyCWdnZxiGwc0bL+F7AaV8id3dfS5cWKHWOMNIxIjHUuzu7lIul9F1PRSuTyYcn+wyO7+ALIVR19XVVSZjk1JxnsXFRRqNxnkkE2RZJZ/PU6vV2NndZjQakUqlmJ0NgxIxPf2HrDL/4vWvtQgGQVAPgsALwhbj/0p43AU4AWb/wEOr5/f+Zff/35777wdBcCsIgluKopBKJzH0CDdffJkv/fwvUCiFPoMHn31MNmUQ1WMoEZlSsYznOaytrfHJBx/jOT5T06JYLNJoNNje3mb/YA9JkVEUhaODQ3qdLo8ePQpdpuaEeDIM+3/pS18KaczJBAd7+yTjOfZ2tzEnFqY1YXtni9//4e+iRSVmqwsosga4RCIKw36PqTvlz/77/yGpdI6F+UUkX2TcG+C5FotLq+RyOR7cfYBhxJlaNgkjxauvfoFKdYZnG0843D9gb3eH9z/4EWpERFZUyjMVvACu33wRPWZgmR7pVI6v/NzP02zWebr1FD1usPH0CY7vMJwMnx+pTNMMkx+uy3g8RJVkPNdmPBrguTaiCIgSkqJiGMZz2kpMTyDLKl4Q4Po+uqERVEtEUkkGzTO8wCWiGiiIxDWdQjxBxjCIiQrpiIomBDCdIosi0YhCVBEJHJNszCCuSMiCD4JHb9DF8l0iL17CcgYMR10kERpnJ4zHI3w/tMTFYjEOD/cpFIq0Gk0QQvq0JApEY3G6gyGn54ubIstIQcDwXIYVBAHDbg9rNCLwbLLZzPkbTmbY6/Lo/iekiqtMLRdnbCEFPp2zMwadJv1ai7nZJbKFIpPxkIgaJZWfw/fd891ZAzUiMBgMyBbmUeOL1HsmgmpQyGexrT6JdInj410Ojo+Yn5/n2bNnuI7Amz/6Lm+98SPqjVMissCnH7/JaNTDCwQq5VnW1y+xulYhk0vx7nv3SKZifPd73+af/OP/LVzUkVhdXSKVKrG4vE6n3WdpaQFVlkjEDFKpNO40QIvEeeGFa3zwwQcUCiW63TZXrrzE2vpl4vE4iiLRH/QIAo9cLkWn36bd7Z/XhgUaJ4cIgcvGV/qKrAAAIABJREFUxkNEAobDPrKqIMoKTzaecnZa54WLl5mbm8MyHfb390kkUoDP0twCo4GJEATY5pTDoz0uXbpMEHhMxiYBPr4Pc9U1ZCkcedt59ozDk2Ns20bXNXZ2thgOh5i2g6JIPH78kFarRaGYZ3Zunlg8wgfvv03t9IjKTJl0+v/nRVAQhPIf+OefAn7aOf4O8O8JghARBGERWAU+Aj4GVgVBWBQEQSVsnnznX/V9FFkGWWL/cI9oQmfYHzG1Hfb3dqhWKyiyzpUrV+h22tROj5hOHQqlIpevXqHb7XJWqzMY9Jibm2N9fZ25pSV6nS7tbofFxUVc3+OVV15BlITn9aafgha2t7c5OT4CUSCVSrGwuMjW1haH+wc8fviIdCLNeGBy7/6neJ6DJCmUijPMVJdZWVynUQ9x708ePebJoztENBk9GmN36xnmdEAylcCeTlBlJazTWTZ3733MxbV1FuYrlCuzXFh9kZnyApVKlV6vR6FQYDgc0mjW+f0ffBcRidPaCUtLK8iCzbg/wPZsbt26xVn9iHhcR5ZFphOT2mk9FCPZHm7gMTVHiHiA/1xDCeB4HoIs4p8TZ8IQRxRFChsxlj3G+NINGuMu3VEH15kSjUZRIwpRVUWPqOTicUq5PKVikYii4k4nyFKAFpHRFBEh8JACD0UUEF0fXxIQK1UEMcA+x+I7jocigCKEnd9er8ezp4+JG4lziRVsbW5imRPUiEa32yWZSiOIIsI5C7HT6ZIw4mH32vPJFfP0hgPS6QyWNWU8GtHv9tje2mJhdoFAAHM8YPXKDYxkCklSwiNbv8dH771Nq9VCVWVERUGUJUYTh0xlHs1IYxglFCXG2BxRLuUIXIva9h16/REJ3UCVAjxPolSqEFGjHB8fU52vcvNzn+fzX/oqCT1Ju23y4N59irksgecxHIU136//8p9CkWQGkylHpydUKlV2Nu6iyiKtVhN8gWePNpg6FqPRENd1aDQajEYjNE3DHPcZjbu0ml3mqjPU6nUqs1UKpVn6YxPPd9nb28PzHErFAt1Om27nlGG/TafTYzDoYTseljklm82i6zox3UAURfb2DshkMmw8uc/HH7/De++9E36QyiL9fp+IptLud3m2uUUqmaZWq5HN5PA8B8uyyeVKzM7OcnS4gyi4aJrGwsIK8wurFLI5FEVB13WiUYPV9TViUZ1kMk25XCbww59Ti0YY9KfcuvUFFhZXGI9CB/TPev0sIzL/BPgAWBME4VgQhL8E/E+CIDwUBOEB8HPAXwMIguAx8OvAE+AHwH9yvmN0gb8K/D6wAfz6+WP/0EuWZdyJRTqZwRqGBBJ3avLKq68xDSRETUOLGOiGiigrLM4vICKQjie5cu0qiiqzvLxKt9ul3++zvb2NkYxzaf0i3/72t89xQw5nZ2fh/xkG7Xab4WhAq93ESMaZn51jd2+H+w/u8eKLL/LS7Zf5C3/xL7GysoKiKCwtLpNIpPjo4w+Y2haTSXjkyufznByfkssVyOYqOJ7FaGyRSmU42D8inkyQTKeoVqskEgn6/T7l4hyFUpl7Dx/juw7Xrl1hMBgBYJomtm0Ti8Votzq8/Mqr+HjU6zXOzk4ZDE22Nh5w7cpt2u0283MXmE5dup0hvV6HfCEcb1AUJVxEvNBGFxa+7efHYeU83SFIEoIoIp4zAoMgwAtCMOtAckisLYPj0e93saYTFElGiUZQVBnPc3CsKeNuF1EIcF0b13XwPI9YLIYois9JJtPAg1iM2//xn8dxxOdCb00LR2LC5phFoZAnEonSatcZDoesr6/TPx86bjabrF5YY9gNqcKFfJ7RaEQ6naLdbhGLxbDtkHlXrVbp9brEYuGOV5QVSuUZDna3mK8WscYDWrUGggR60kA1IqxfeQFBkWk2GsR0ncPDAzRND+vFwyE+BqNxl0hEJ5aYQY3qf+BncPGlCBPLQpUFzOGATrfF5z53mx///u8w6PRwJj2yuQzLy4v8B3/5P0fVIuhRg0JlFlUVma0U+It/+c9Tyem8//677B4cIEc0ksk4X/rSF+l2e1RmymxtbDBTLlMqFNB1PdwpOi7tdpeZmVn0c/sevs90YuI4FpPJmFQqxZVrN4gn07Q6ocMjEStRLpdxXRs9rvPF177Ks2fPSKVStNttRFHEtl1mZorkcjl+4Re/zvLKOjdv3gzVoqLI5tZjCASymRzV6hztdptcLoeiRbjzwYfnjwuNkeuXXiAQRI5q+5w1T4hGFTqdHo8ePQohJeM+nU6bk5Mj+v0uDx7e53vf+10sc8rJyQmebzE/P8twOA5jtKnoz7wICiGo8N/Ma352Jvh3v/Earhfw+S99GUEQODw+4fOvfoH6WdgNjmp6+IbPpRn1R7z19k946aWXKeSLPNt8SiQSOffuxukPemRyWeLxOKPBkKhuIAQiuhHh0ZPHFItF+p0+CAGaprG6usq9z+6ysLCIJIl8/3d/j6geNhxu3biNokkYegxEgZOjY/qDHpqmYU1M5hcWURQlrGO4Fme1E77w2s/TarTpDxrIihYCQI0Yvg+ua7N/sEd/bLK6sMTDh/eRZJFUKsX6xUu0mg2saYijymQyaJrGeDJAlCP0ej0moyHgUyiFheS52SWebt7Hn3oIyEiKSmW2gh9IiCIMh2MESX5OkBZFMcRNBQKeHY4XjcwxEUVhMprg+85z5JYkCDhTi/4bH5Ic2+ixZNhQEVUkUWbq2AQeTF2TseXwaPMp1ZkSqWQcWQSRgG6vgyyALcH1v/afkirPIYoy2VyOVreDrkbodDoIQoAshzOGuWyend1NUqlU6JZVNU4P98lms0zP87SddgvPc5ifX2Rzc5NsNvu89lkul3n8+DGrS8scnhxSyOawJlMOdp/i9fZoHT1ipjLH4eZdYrqKqEZIZ3Ic7O+SLZYIXA/b9sgUciQSCYTz+Uvb7CHIBgEyqZmrOFIK2evTPrhLv/YMnwBfrzAixuHhIT/31W/wdHMTLQL53AxRI0SFvfvW23zt579KLBZja3ObAJdMusxvfvsf8/Wv/xI/+O7v8Eu//A0UWSeqx7l3/y4rFy4QiUSIRDTOTk/C5paqMTM3i2XZ7O9sI0rCc1VDLBbjnbd/QiqRZ/nCMgIiAgG2bZNOp3n27BlR3SCTyXD30w9ZXF4nn89jWdZ5eiesZw+H4VH57r1PuHHtJp1uL4SeCh5rFy7x4MEDcrnc+fs1fL1c12Yysc4bmF16/S6BD45rceHCOm+9+TavvvoqAI1Gi3a7yUy1giwpnNVPEIVIOAFiJBBUUFWVSCTK3Y/vsLpygUKhxOnZCRtPHjO/OMef+0t/7dMgCG79q9aZf7MTI3/rW9/8b/7r/4p4Os1MeZZer8fJ8QmZVIZur40gQKfTY3P7MflMGVEMu6+FQpGD/QOqlQqObZNIJkgmU6RSSUbjIe12i/FowsQ06fQaaJqOa9ucHIfQhWp1lkw6w3gyJp1K02g28TyR5eVF1lZXma1WCQi489EHKIpCs9XE0HWKhQr2dMrKyjLPNsM/Vtd1iScSuI7LaDxGFGQ63Sa5XCHM2Jom7U4T05wgyyKRaJQHn37E57/0c8T0OPZ0ihaNsrW1SaESIsan1pTJxEaWRXL5Ir4f4HsO8VgaI66ztnKR3Z0tdrc2kVWV9fV1SjMV+r0hjjtlMpoQ1fQQHyaGMIOwc+3i+z4RNRJCFwIPz3URAEmSCbPEPgQBfhCgLVVxByOEdo/ReIg1tfADn0DwsadTJFlAkCRGExPHnmJPJwjCFNucIgQSk7jKH//v/ltOah0EOVzkbMcJj+Q+yOfQTsuyzp3LDkeHB9TOzshkcmF3uNthOp1i2TaZTAYBKJWKbG1tU6/XMc1Q1hQEwXljzGA4HmJEIgwGA2RZQhYlWoMRmj/i2f2PKFdnGPT7ZIoVHD9AFBWiRox4MoXjCsiKiKoY+IQLrywKuO6UeP4Sem4JXdexJz2ONz9DDiYEgkR+/hrTQOPylRvcufMmaxcukogn2Hj0Hnu7W8iSyMraRX7wu7/NxQtXaXdbFApZRsMWdx8+YnVtFVlRmZ2d58nGBsl0BkPXCQg7/FPHpt/v0+/1iKgRjKiOa7tcvLhOJpNmNDTRtQj1szp+EIJoC4UCOzu7yJLM4dEhruti6DF6gy7lcgkpEo5CCYJAPp/HNE0WF5eIRBQ8L2A4HLC0dIFet8v8wjyCIPDJR3dIp+Oh4F2QuH79OqqscufOu+zu7RCPJ+j1usQTOpOxRaFQYmamGio9I1E6nfb58L5CJpNGkiUkUQp/V5JEoZDHmpq8/85PKGYLmPaUxYVFEvE4oighiALxWIzjkxN+9JN3/+jH5v723/yb37z94lXSyTSiKDIaj867RHVy2QKiJKHrUbLZPKPxkHy+RH/Qx7IslleWceyQ/9br90Dw2dnZJZXIokejYaE9EePdd99jZXmFTqfL6uo6D+7fZzDsIyCwt7dPo9lka2uLtYvrSKJArXaKYRh0eh2uXbtOzIjTbDT5vR98n9UL6wjAaaNGvVGnlC+CIKCoKo1Wm6PDA/SYxvHxPp12F9MyMU0LSYL62RHD0QTTNEklM+zu7JDL5RkMexQqZUxzQqlQYuPJY2JGAgSXbrdNvdZEVUQGozGpdI5kKsn9e58SBKBFo6ytXUI+VyOOJyNkIWy02PYUn4CAc2y55+G7Lvg+giAjigKea+NM7XPpkkw0qmNZJuL5URnPw8nFiRay1J9uEw1gPBqeU2mm6JpGu9/HiYWh+55pMhEEclcv84X/8j9j9atfxQ2CcBg5GsUNAoxoHHtqE0/EsUyTeCLOYDBAVVWMmEFvMGBxcQF7apPL5Zg6DvVajWK5jKZp1OtntNsdNE0LC++TMbZpMjbDY581DRfUne1tBHws2yId1+mf7eO7JglNIp5OMjM3T6c7IJsvMTc7z9ONxyiqSrpQ4OhgD2dqU6yU6Pf7jK0JsWiSIDpDtjgHYsDOgzdwRw08zyKQImzu7DP1ADnC+oUXSGXyjCZjVleuI8oaU3tMMpFg/eJlvvPd3+DCxYskYym63R6vff7L5Ip58oUiu9v7xBJJEok4zdoxyCKBH6AqCoHnkUwmufvJh0xHPYyoTr3dYjoN67bJVIp+f0AhXyCfL1Gr1SgWiySSCebm5xEE2Hi6wdVrVzk+OsGaTrnywlW2d55SLM6gKDKWZXJyUmM8GZAv5JEjGr7jIUrhh+mlF67y7nvvsbiwTKffY2raNJunTKwp+XwB6VyYDhKRiMrB4R6N4z20aJxCpcgPvv/bobrUNKmUSxwdHpBIZshmMuzvH6JFVUqlIlFdh8DlcH+fp88e8fDxfdLpLOVyGcdxmZ9f4B/8Xz9bdvjf6OPw+tpK8H/+/V+l0QjjUO12G0mUSafT6NEojx8/Ip5Ohj5VWUGLRDk5OSGTyXF8shdGsXyfcnmGTCZLr9/n4YMHHB8f8Et//JeZulNEBGJGnDffep1vfONXuHf3PisrF2g0a8xUqkiSxN27D1ldW+Lup/eYnavQ6XSYmZmhVqtRnZkPxe3WCNcTkcXw9Uyn08iqwnAyplE7Q1EUNCNGPG7gWB7JRJRGs4emSpycHaFrBrl8BT2uE/gSk0FYzN7a3iCfK5PI5DCMKO/+5A2MeIx0zsCI5ikU0zx7tkU2nyeRSHJ21mDtwkWmtkm71aXdCTl84/GYuZkqk9GY9mCAqmgk0xkc2wXAc8PInKyoSJKCLIuMxkPM8QQjHmMymeBMw92nIEiM+z0QAyCsF/q2SzyqMd7dx/Vs0sUZtHIJUgkcxyOVzDEejRj026yuraDn8pi1LolsnPt3HxDLZIjHk0SjUWKxDBNzgBCITCYj0pkUe3t7vPTSS3S7XTY2HrO4uIxz7oM52tvDSCZRFIWYboQjUKkQb59Op/ne73yH2YUw3XDjxg08z6N+2sC1h3ROj6jOr7D14A0Mr8fBzja5Yg5XcLl68TKNQZez4xZz1RIntSbFSpmp2cfs9Vm+dBGfAEWK46gG2bkXSWYr3Hv/DTrHHzPtnZJMJBBEB0tIst80ee0r38A0JwzHA3zHZDR2mV+YJXADdnd3Wb90CUkIkNUo0/EQRIlut4kqR+gN+mixODPlCpIkcbC7STSWRpJEnKnJ8eERsizTH45YXVzmzTd+j6//yr9DIIAonJOnrXB0TFHCLmypVKJ2dkjCyCBGJNypzTvvvE5E1vj5X/xaCC6Ol9l+9hGt5h43b/0Sm5sP8D2ZpeU5JDks68hS2OBrdrrcuHGVD99/l2QmTjk/hx84SIrG3s42U2vAzRdfYTgcIiCiqDJvv/VdXnn5FxFUmZOjfUqVWTRFpXZ6EnanFZlEIsHB/iG27WIkDOKxNGcn+wS+Tb4yx7DXp1wus/nsKdlcHNNy+fN/5b/4o38c/tbf+NVvLs/NcNask0mnCQIPz5+ex+Z2EESJyswMg14/FDADrusQEIbUdUPH93wSqRSD/gDTsrh+4wbJZBrDiFOvh50q13O4eeM2/d6Are1nGOeOXkmVkCWZQiHH040NXn75NjMzVaZTi9FwzNUr10EMGA2H+PhEIjKaqtFo1jk42EWRFU6PD5mfX6Tb7RI3DO5+8gGlXJZGq8Fw1KaQLxFPJBkMxqRSSRqNUxBD8Gen1WZxYYXJ1OTpxhN67Q43b9zkzp13cRyXWDxKzAiPRbISYevZBpl0itFgyEcfvgeiiKpGmK0uEDMSOC4EYhDOdekaAjLmZIzvewSBRxD4uL6HZY4I4HxRlBFlGcd1kSQR3/NxXRtJEhEJdyEEEEunGdsOQiaNXqliyhIYGolEgpgRgkB73bC7OjYd8AIGgz4oIo2zE+KxDJKqoAigqhqTyZCILDDo91FVDUVRqdVOcRyHXC5PPJFkMhqzMD9PrdEIc8oCCAgh8JaA0WjM9vYWq2sXmE6n6BGNfrcHgoARN2g12oy7ZwhmB8+18FyTTqOO53tcvnqNqSBytH/AzNwsrWabmdlZFpeWODuro2gq3W4X1xWxXI9IaolIMkev2aDfrpFKKOQyeQa9M1zHY+KLyNE8C4srbD17RDIeR48mefL4PvlckU8++Yi1tQvUa4dENI2tzWfs7O5gTSYYhoZl2TRbh0SjKXK5HLu7uwh+wGd33qFSDet/s3NVZmeXUBSJuYVZllYu8IMffI9UKoMeDcEdJycnlMtlxuMRlUqZTqfN1tYGs3MLBL5Pv98nk84yHPQ5PTsjHk8R03Vsx+fFF79Ip9tlZmYe13FonR2jqiqb2zv4gY9lmSzMzbO/t48W0TjaP8QLfHq9PoEXkmxKpQr1ep3hYHSeXVcpFGfp9fv4rsdMpYrrOIhimG2PxZMoSriZURUNWRZxbYeTkz3W1tf5+L336A/6zM4uMhz1yecLnByekkql+We//f0/+sfhb33rb3zzP/orfwHbcbBMi0w6h6pEWVt7gWQ6y8uv3GY8HiOJIkdHRwxHdX74O7/GSy9/kdOTEwr5EoEkkkommVohBuizzz47L+IHXFhdo9PpcXC4ix7VqdVOKRZL7OzscePGTU6OjukMh2QyaR49fkSlUuLw4JBUMsfFi2s8fnKf3Z1dFleXiRtpNM1AU0KsfDabo1SaZaZSpdFsMTs7x49//F1Wl1/g448+ZHnlEs1mg8eP7qFFFVLpNKNRh3gsQ7dzxmAwYTTq4gc2H73/MZLo49o+Fy+/QL5cYW52kd2DQ3a2njJXneef/tN/yMuvfIGTgx02Hj9mbqaELypcvXqVdrvD4eEhh4cHyIrAZDxFlAQsy0HTIkiShG1Pw+FmUSTAo9vrYRgxotEoAYTpCNvGdVw0LSRHu66D74WGsMG4j+c7qJKI7wbEEgkiUe3ctRLnYGeLbD7L0dEhi4srHB4fkU2nGU1G9DsdcvkyuUKByWiIICqoqowsQafTQdN1ZCX8o/A8j0ePHoVyK1Fgak9JpbKYoyG6oeM6LhEtcp6PTTM4R2fl83kCz8OxbXzfQRIFUqkMrVaXT3/ym4j+EFEAWQiQFBVBUikWSxTyRQQCIlqEdqvHxBqyvrbO4cHeOaxBIlecJ5GeRU8m8RApF6v0G8dEZJdBr40gBRQXrzKzcIkP33+bQqGCJClEojoxI0q5PINpTpipzNHv9Ukk0wQBzM3Nk8tn+db/8i1e+7nX6HYGrKyuYZomkiSRjCVxsDnZ2yBfWcS0pvguoX93OEKL6ty4fhPDiBLVYhyfHDI7W6XVbKGqKvXGGYocoVKusH9wgGmaFAoFFN2gVCpRLpWxplPcwKdYKtEfDpEAzYgjSxIzMws4XmiAGwwGLC0t0Ww0GY1GFPJ5PM9FUaLk8tlwt2pb6JE4xUoZWYmEDRnHpH7WJJFIkMlkGI/H3L17l9nZKp/d/ZREIsVZ/QjTnGJZFo3mCXrEwPNNesM+1669iKxEyBWLbD5+SLN9SmWmymjc5zvff/3fgkXwV//6N//4L3yVWNSgOrPMj3/4WxipFKNxP4SYHh8RkRRmKjNkshl8T+SV1/4YW7s7JNNpSuUK1sSidnaG47o4dghFyOZzxBNxjo+PUCIynXaXpcUlHMchGo2yvnYB13NJpjMkYgayKFEsFPno449YXVtjYo7Z2t5lfm6RdLaAKAm8/fZPGA0HnDVrpDNp1IhGq12n3W3gug57+7tcunQNLRYG8msnx1y5foVsroRhJChXivS6I8zRkAtrKwwGI1Q5iu0IvHT7Fssra0Q0DdOa8OzJY7LZMqVCkerMHFNnyurqOs+ePGFvb4fZuSr90Zil1RcQPJ+7n32EFlHY290lny1iTkK6djgb6WLbUwRfwJ7aKBEFc2IhKwqKoiIKEq7tIIoCoiwTixnYUwdFiSCIEookMh4PUUQFSQzzuZKi0O12EESJufl5zo6Pz+VHbXx3ysQNWJ5fot8foIgSuh5DVVU832MyGVLMFxmOhiSSadrdLoZhMBqNiKoRet0u6UwGfFA1/TwO55NMpjjY3UOQhFCs7nlMJiFOXwzAmpjk8nlS6TSdVouIqnLnvXcIXJNsOktMU1hYvcBgNKZVO+Xy9atMHYd8foaTkyOCIPSnSIIQOlpcH0lRSWUq5FZuI2hx0ukcw3YDe9DEmXY4Pj7ANfuI8Vnys5d56/UfEdUMTmvHLK1coNlscOPmSzzZ2CCXzRKLGSQzWYaDNplcgdrZGfFYnFc+/3larQ7l2Sqj0ZjhcEgikeSkdsrUmlKszCOrAuVylYim0mo2SMQS9Htd7t27F7Ijx0PeffdNbtx4kY2Np8zOznO4/wxrOmQ4MlleWkZWJOr1M/B9yuUyewc75PMFHj74EDEQiekG29vbrK9dRFWjuJ5HVFcwTYvlpRVUNcJwNCCVSmIYCSaTLqVyiZ2tLZYWVtD0cD7S9zz2d3eJaCqWNaXf69No1nn6dANFVWi3WywuLJNJ52m1zyiXqohCSDyfnZ0jkUkzsRwWqgv0+n2KxSJvvfUTPvfqq5jjKfVmk5Xli/yjX/tnf/QXwb/xq3/9m19+7RabO0+o1RqkszkQAtbWLnJ4cMjm5mNKpQqu54azS7LA66+/jizLzFbnaLfD3clP0Ue7u9tcunwJTTNwXZeT2gnNRgsjamAYcbZ3NkmnMzze2OH47JBKqciTJw9xHI9arR4OU49MPvvsExzH5PT0iE6rzfzsAroRQ1WjzFYqpNIZCMJxgP3DIy5feoHFxRUymSzNVpd0XGd1bRXXFYlGwnm1SCQcvckX8zTbPRzbJpsrMnUnfPLpewyHIT05nU5hmRaC6PN06zGH+wdMLQtZkVEliau3vgiCwuraFRq1Iz77+ENKpTJO4LO7vUuhkMd1AlRVxnZsus0zLGvKqD9CVRSmP10go6EJznEdIBwFclybAMICuWmG5QnPxfPDBcL3HCBE9iuKSkw3GPUHOPYUPRln0G1Tnb/A6to6W1sboXyJgEgkQu20QTaTxjQtpu4UCRFBDHeoghBQLldo1Ou0221kUWJimWiRCEbMOIe8TsnlcwyHod8lEokgSTKuGzZ8LMti6nrg+ySSKUajIVt336OYjuJOmkwmA6KxKMXSLAlDYmtzh1g2zrg/oFCqcOfdNylXqwxGFv1+l3y+iKIXiFWuYSRyEMj4go9je7hOiPwaj8eY5pjS0iXanR63bn8OzYiTSiYZT0yuX75CvX7G/t4mL99+jbt3P6LTbocTB40akqAgiAHRqIYei7Ozuc3UsqjOzlI/OiZfyFMszzAejUgkczy49xn5bJ69/R1OTg5wXZu1tVU2d7bJZtKoSgzwMXQRNWpgmmPKuTyPNp4xNzePocf5B//g73P52nU6rTaqEr6+nqugazoCEqsXQhPjyekR41GfdLJIu33GTHWep083KBZL2FMb17NIJXN8+P5bFItZWs0GpmWTiCd4+vQpFy9eJBYz0KMGSyvrNBo1VleXyaQLiCIMJn10Q0dTddrtFlFdIxrVmUxMeu02uXSW/mCAICv0Oh3m5ueYTCY8fvKYX/hjv8jmsw2+94N/C3aC/+P/8N9/8/aL1ygVq4hILC0tkC8UufvZParVKq7nE4loWNaUw4MDnj19ysu3P4fvB9TOTimXS6iqRjye4ODgkIvr6/i+QLvdpNGscfmFq2HesDqLaVqkMyneeutNfu61L9E4O2P/YJ8XLl1hNBpx8eIldN1gdXUVx7W5fu02c7Mhmsg0p6iaxHAQdpWntoPn2qQzWVYurOLaDrXaGRtPH7G+uoimx3n69CnxZAwBn+Gox3gyYTIZY459THuAOTFpNRpUZ6oU8jMk4gnyuQKBD5vbW6yuXCSqGxiGjihJ7O/ukc3lGY5HaDLc+fANFDn0bhyf1kgnUhyfnKCqKnPzc9TPDkgmUrRbLbSojjN1zhsKCWLZDOK5iD30FKtAgOuFOVFBFJEEAd/3cD0PRBB8H1EkPOaIIp7n4vsBphmP0DzJAAAgAElEQVQqRseDYcgylCU6zRa6HmN3+zGJZBZVVRkN+mE5IaoxsUwkUcK0pkztKdGoRqvVZjQZY04tzMkEWZXQolECP0A6H434qfYzGo0SiUSYTqcYhsHhwX6o7fQ8Bv0uU2uK77qUqzPs3/99DE1E1VQSyQxLFy6yu7tN6/SA9YvX6PTbqKrGhfXL7O1soqgR0qk0w2GXQElSXrrM2LJJZrOoiszje58SUWQmvTOGrRqCIkEgksrPMDEtiqUyG082WFpe4ZM77xA1DG7depkHDz4mly1RqlSwplM+/fgO2UwG1wuYm5sFQaTeaDA7N8doMGA0GVOtVgkIWZWxqEYmX8B1bWJGgmg0hq7HkSWoHZ9y86WXMS2TUnmG4aCDqujEE0m6ww7VygKeF/DZ3Y8xoiqrqxcJAoHtnU3yuQKzs3PIksjO7haOZ1PIFSmWKhzs74b+GNel2++QTKYwrQnRaIyoFmdne5PVlYsEuNhTiVQ6Q6NR5+LFi+eE6ijb21uoWoR8NsvJyQkEAQcHu2RSaeypjYBIv99jbm6e3/yNbyOKPvWzEz688zYXX7gS4tryeWwnJMhfv36VRqNBIpHin/zGb//RXwT/3t/7u9/8C3/uz6LrOq12k8cPH9Bst4kn4iwvL4WdVtfFsqasLC6HIyCqih6NEYvqfPDB+2hRHUVRSCRidLpDUtk0H3/4Ad1Wl4E54ax2iqIq2I7Pu+++zte//qcZjwfkCzlkWSSVypFKJen3e/zOd36LsTnhpRdfot/v4ro2o9GQSFQlrscIfB/HtVlZXg53TJpOvd6gPxiiqQora8u0mm00LcLC3DInx0dMJhMC38OybGQ5RJKnU+nzdIfMg40HHB4dkcvnGAy69Ac9iuVZzMkQLRIJIaHJFCurK5ycnRHXdZ48fULcSDAej4nH4oiSyMPHDyjk8+RLJRx7yv7+HtGIRiAG536TDul8jlQqgeuFkqWfSpemjo05GeO5LpFzL6zneXi+jyKr+IGL73ogq9hOSIoWRBFBAFWNIMsK1mREOpMhl83TbtYIENCjEbRYgtFwSDyRQBAC7KlNq9kiEgkzwQQ+x6dnqKKEEYtx5fJVBMHF88OEi65FiWoao/EI27ZJJpPU6/VzSk5Ap9Nmdn4upAqdnjK1hsRjBgnDoN3YpVSapddu4XouucoCrufjuDIHO5tYU5t4PMFZ7ZBkNku70URTRPR4iki8RGJmHS2WoVKt0u/00KIRkuks6XQW14OJ1UfVs/QGU3Q9wdHJMRFVIZPLM5mM6XbaRGMZOr0mqUSKk9NThqMwIbRyYZ18KY9tu7zzxjvEUmEO+Pj4mEhU5YXL19nf2yJwXQqVMm+//Tp+AO1WGCNrdxqcHZ+wu79LIhmn1TwjV6hwfLCJqkbCxtJ4yng8Zm9nm3K5QKlcpnZywvLqKno0yv17H6OqxnmuuE8kGqHTarL5dANNVVE1CQKJg6MtFFlicWGJ13/yOvl8kvF4RDIVEp9lWcPzfQTRRzd0jGic4bjLYDDE9hzwHc7OTokZCWbnKlTKs4xHY9595x0WFhcoFEqhsqJaxDDiDIcDur0OF9cvc3p8jCxLnBwesbe3R73RfP6B9+vf/t4f/UXwb/3Nb33z6gtrBAjE4nE6jROypRkQRIr5AoPBgP5wSGVmhg/fe49Ot006k8F1HGq1UzLpLJlMETWqMTYnRCMRPn73dW597lWKpTKz1TkIBAIfur0mldIsoiQS+B6KIpPN5PF9j6OjI/L5PC9ceoF8IQ8BNJtNAGKxUIHpng+rFkoV2u0G3W6bN3/8I2JRjY0nj2k2jlhcXEVVDAb9Hjs7zzg6OkbXdRKJOGeNOr7vMled4+Roj8ZZjV6jwfrlq6wurdDr9kI8fDbHw/ufkM/m2HjyhP3dHQ5297HtKalUkocPHvK5z73KaDii2+1gT21My8L1XJRIlOWVCwy7fepndXr9DvVGHdf1sW2X8swMnuOj6VEkSUKLGPi+jzm1EAUhnL0DptMpsiShqmq4qwpcZEHER0BTVTwn9BO7rosohqiuqTUGQaTd6aKIAVosim2FLpJet0M6naHdbpPJpJEV6dw1EUIfep0uuVKRmBFnb3+b/b1donoMx3GwLQvTNPF8n2g0BMNmMiH9WZJCQXy/38ccT4jH45zVjhgP2yCKCK7J2ckp6WIRUYsiiSJGPM7c3DyBM8Y0LZKpJLF4kpODfa7d+hynhzsoRhY9u0iqNEckmkZRNSQBRuMh6VSaQa/HoFPH6p3giQqlhWVa7QaZ/P/N3Zv+WJbf93nP2c9dzt332rfu6n2ZnhnO9AyHMxxSQ1GSbVmWjbywJVkBggAOkPwF8yIIEmuhbCVIEFhBAsgRSFmmKVIkZ997unt6r+qt9vVW3br7veduZ82LU2zkpYAkiKgC+k0DXSgUqr/1+/2+n8/zZPnok4/J5bPU6zWe+9qr4HnU60dkckXu3rrO6TPnmJ2dpVwuEw5FGQ6HXLh8ifXVFRBEMpkMlcoRhUKe8v4eguQSMRJ0Wh2+9tJLJBNJWq02s7OzOAgszC9SmpihsndAr9/Fc2w21x4xcF3SyQyyIjA5Nc3SgyVKY+MkYmkcPB4tP+Qf/Po/wnE9+v3eMTYu0EV02h16vS6+L4IQUMWNaJwbN6/x6quvkUzkiEbD3Lt3Hx+feDyBLCvYjoVlWZQPa5R3nxBPZJiemWV3Z4dIJEyxUKLTMbFtl8Gwz/kL53HdQJvgOA6eB/2BydjYBIuL56keVZ6xI2OGQaFYJBwKEiFRI8b/+YMf/vIPwX/9P/z3b7945SKqKlGpVJg7eSqom2ka6xsr/PQnP+Hc2Qt88fmHvHz1VaJGHEH0aTXqpDMFND3ExOwsn37yCVNT03TaLbKFApXDGvPzC3z++ecAxOMG8ViS3b1d5uZmsTyPkB7moLLPwcEh83MnOTo6otmqEomlUVWFdCKN7bgkk2k+/ewd4skEO/v7tFsNBmaXar1CvlSicljmhRdfptFqkM8WCId0NjZWMPsDooaBqkhEY3Ey6SCR7/sC+bEJSuOTTM+eQFZkPv7kY6anxqk3W9TqdaKhMIcHwRZuenqeWCLOzNwc5fIB46UJbnx1g3qjTi5TRNc1rt/6ipmpGcxWm43VFWqtNouLJ1lbXeXS5UucPnWKcDSQEwmSGMRihIAS7fs+Pj6SKDIcDhFEkWQ8TqffQ/ACY5zg+Tiuh+e6DPsDZFlkMAoIL6Io0WrXAmH6cf2t1x/iWBZIMolkCkkUyecL2HbQLzaiBu12i94oEMXroXAgURr0cd1A7TlRnKbZaeF6Dvge+WIRVVVZffKYdCpNtVajWavhH59WdV1jf3eduROL7Dy6hegLOIM+6VSSZDaF5ekIQo9B36NYLPHB++9QyGU5PDggFosSNTKsPHlEcXoWPT1NKDVOLJUlFIrieQ62NULVFERJRBR9Npc/JRSJIupxwpEYmh4GfE6eOI0gSNj2gFgkhq5FGPZNSqUJxiem+PKLz2i0Gly+cIlmoxFIpFyftdXHnFo8Tcww6HY6aKqMqoQo7+4gIDI2NoYsCVgjh0K+wBfXrlHMFxElAdsaISs62VyGXG6cVruH2akTkhUS2QLrDx8wu3iGjfV1jJhBo9nEiBq4jovjBp4WANsZEQ4bSIpMcXyMRCyJQNBaQhDJZkvBUApFWVt7ynOXLlKv1anWqmQyGWJGjJgRQ9U1JidnEASBp4+f8ujhEkYsQiwW5/vf/3My2TRfXvuMqak5Dg5+oVQVWNvcZOZYThYK6RhGgljcwHU9YvE4UcMIojqjAe12mx//9P3/dxwj/39+2I5NIpFAECQy6SyNeoWB2eXOrS8Z9ky+/urrfPrJxzxeXuHx00cgCViDPolkjMmZSVwcHty6xcmTJ3n8+DFaOEQqmaVUKjAc9snlMqyuPkWWVZYf3ufCxbPHNA2X7e1t3n/3PXKZLNVamZHVZ3k58I3U63V6A5Nmu8HKxjr9kUc2UyBqhIMfyMl5csVJxkqzXHrhFQZ2n7MXLrL0YJkf/OVfkEwm0fWAfBKJRNje3qbTMdFUnVQ2w97eHp1Oh3K5zJMnTzh9+jRHR0dkMhkEIdBr5gpFZuamCceSpPNFtre3icfj/PWPf8TVl19BlhSi0SibWxuMj48zMTGBFtIZjDosLi7SbDa5evUqvgdffnmDbC6JoqgYRkBM/gXEVFE0VFXD92A0GOLaNp1OB13Xn3lLRqNjSKoso4VUEBR0Xcd2RiiKFMRsfJ/RaHTsmggGZCgUcAdlWQ6iMLrOUeWAfq9Lu918RsHu9XrP/CytVotSaZJbt66RSMYIazr7e3vs7+xitjtks3kazSMKhcIzF0utVkOSgrDw7pNlUoUSst3Ctjocdbs0ml1m5mbR1XQQyt3e5q3v/DqdTgcAsz2g262THRtn4KdI5meIp7K4noiqKQzM7vFJxaNWO6JW3kPUogihLB4ut+/eIqwqyALYoyEAszMnuf/gDs16hQ/e/xt6vS5bW5vMLSwyliuws7ODaQZX/GgkQak0ieM4XLt2jWKxSLNhIooi8VSSYX9Ar9djdXUVx7XpdNtBvzoeJxqJUywWiUajVGoV9IjGhYuXeOP177Kxt4M3cIkde4NnZ2fptlucPnmGbDbL4eEhU5Njx7ItjVQqxcbmKr1+h3Aowvb27rHve0Aql0TWJEqlceKJCFurD6nVW5imSSqV4ubNm9TqVWr1Kjs7W9RrDVzHY37+BN9569d4snQXRVH45je/yWAw4Pf+5X+OoqvHtPXg33n+iEazTrE4wa3bXzEYDIKEgx8YEytHhzhOQKKZnJj6W8+Zv9MnwT/7d//u7ReeO4+PTdRI4vjBFjBixLl0+SW2NtaQZInX33gdTQvjCwrReBpJ0ll6cAc8kagRo9/rkstmGFoj+uaAZrNJr9fHMGL0e20K+TydTg9NDREKhREEmYgR4fSpMzi+QDaVwXYsxkoT4HkMBwNCkQi3bt8knUoyMz0fbKCR0HWNarVCqVCkXq+iqDKdZpvDvQOOjg649MLL7O9sUZqYIJVOEzPi6CEdLRzC9TyuvfdjoqkC09MzdE0TRRIQBZ9MJsNRpUy7WScei/PBhz/nwtnLmGab7Y0N5ufmMHsmru0hiAKKooAgMDc3Ryikcf36DV555esk4ykcx0LWZB49fMTe/i5vvPkWH3/wHs1GDU0PEdI13OPYiet6QVh6NEJVFSw7cAvjOXhugNtSVAXHdY+V6kFjxnUcBv0utusg+iKGkURVA18v+MiKSCyRpNvt4PsE3WlFx3Nc7GEfs9vCiKVotdvEYgaKKKIpgbJRBBRZZGxykk6rjaoI7O1ugSAGAeB6E0XT6A16tBrNIIRePcSIhul1jpAEl2argyAKRIwkUSPFcDAkn00x6A+IRg3yxTzl8h6ONWBg9TFiKaRIntTYacKJNNKxSdCyhsdCehj0+1hDCyMaxRx4bG8/YnJyAce1sV0/yP8df49GoxGKKpNI5BgrjXOwv8Xi/Bz37twklsoyGA4ZWRaD/oBEPEahkMcajkgkkoysEbu72+i6RjQSRxBFwuFAjNRqtrBth3whj6yI7O7soushGs0aC3OnKe+XicUMWu02sqwhSCMqu1uMT0zRbDZYXVsjmUoCAtFomIPqEbvba5TGxhn0LSYnpigWChxVKgyHfSrVI8bGxvBcG1XWkGWJ7Y0Nrrz4KoLoE08k0DSN06dO4zoukihhWX3iySQPrr+PYsRwPJ/FU+epHFWYGJ/FSCRo1Ov0uj0mJyfRdJVyucz+7jaJeJq5ubljgnSaXq9Hvzek1+uSzeQwzTa6qqHqGn/+F3/19+EkaOF6I0qlaeqtGgkjysH2FpOlEn/xv/+vFMYKJNMpOl2TUCjC0yePkCWBpTtfUcwXKIyPIWth0tkivqoSMxK0OibFsQlyuQKGEefcxReJGimmp2cx+xam2QlwVZUDbt38hBvXPuHo6JDJiRkcQaDaqpIr5OkNRkxPzDI5OcutWzexfBtJEjCiISbGx/joww8YuUOqlQN63Q6qJnL+4iU81yIST2DbHmFdZ+nxAzK5QKZ+WNnl4itvkclkuHv3Ltuba0RiITY21tjc3KTT6NBudfE9Bz1k8B9/+JcIgsTU7BTv/Pxd3n//fc5dDqx7Dx8t0ze7tOoNOu0uC3PzfPrRe6zvbDIY9ul3unRabS5deYnlB3fI5lJs7W7y+MlDjo5qaIpKeWcHfAtFkXDxUVQNVVUZ9EwEHzzPwRlZiKKMKsuBvF2RERXodVsoioYkKoF+0vMYDHrYdhBa7/eGtBo1whENSZaxRgNcZwiChx7ScH0fSQRcL3joPu4jz8/NkEwkiMeT2P0hngeSohKPRRkN+9RqtaBdcXiAoigoukarWaeQyzLomcTjSfBlZD3E7MJ5hmaP8YlZxqfnQdZxBZFaq8nj1Q0Grks4nsbIjOOHskQy80iRCB6Bo/oXyDDLDsjI4XAYWZWoNmokk0nG5s9yWG0xPTWLYRjE43Ecx8W2bVRVpd3qguCQzKTJFiYY+T7nLn+Nyt42sXCIWDxKPJZg1O+z9GiJv/rhnwcqhESC5567xO7OHpbdOyZv2zx5/IhELM7U1BRfffUVayurJOIxrNGQWNTg/oNbqJrE3TtfMRyYFAtZXEtibOoMm7s7SILMd976DYxogn5/yJOn95kulZibng/oz6Me5YNdOq0OHsFt4cL5c9RrVeyRheCLaFoIUZYYDvu4jsf29jZ2r8tRo4mIRDKeQpIk9rd3OPe1b1PZ2cd3AjHX4UGFW7c+BV/mq5u30LXg+WR3Z5VYLMbE+AlS6SSffvpxANRwLI6qFSRJoFnpUd5/QjyWotWusrGy9reeM3+nT4L/9t/8ydu//zu/w+fXPmF+4SRHR4cc7O+TzmSZmT/JvVs3mZ6dxfc9KkdlatUqmiqzs73ChQuX2S8fYHa7dFtHpFOBRjASCfN05TGNeo14PIamKjy4d4/VtVXOnD3Lxvo6zmjE+OQExcIUp8+ew4jFWFvfoHq0zfTkKRr1Q4ajLpWjCtXaAZlMkn6ngxZSaTbrlMuHnDhxAmvkcOPLa9QbVVxHIBwJEw6FUGSZ8u4OnhAsVmq1BroeIRox6JkdBoMhxWKRJw+XiEaiLC89oNVsMzkzzWGtylfXr/Ha67+GIPhMTU3y1VfXmZqcYmt7E2swwrYdFhbmuX33Kx4+XObMmXOsPH3K3XtPeOXq16jXW4HcxhcYWR7JWAxRDnJ54XCEhflFHj9+TEjTcVyXaCxBNpvDd/3j62sAOrVtG891cD0X3/PwPBc8H8eyUBUFRVVQNBVdC07YrVbz2fV30OuhKAqdTgfX87Btm3Q6g2VZHJSDqISqac9+2G1rRKPRoFwuI0kiIV2hVjtClEVKxXH29/dAhFa7RSFfYDgcYo1GDPp9PNcBfERJxBr28AWRcDRAoHk+GIkYB4dVHA/CUQMRj3A4zMhyA5rJ2BxDTyWRGUMLhYIbRL+PpmlYowGWNcTDY9jvIyJg1urosSj1yiGRiEw6lWFpaQlB9JFlBd8PfB4TExPPFKX5fJGNjQ3GxyfwJZ+HSw+IaDqu77O+s8G5U+cpFccplcap12tomo7vOzx69JBUMovr2ezvBVfoTrcT9KwbdRqNJptbq7ieTSyepNvtMjs3RzgSZW9zE8d3SSQT+K7PqNek0+3h+0EywIglaDYb/OD7P+DylSuIkkTPNOn2TIywgSBJ9PsDfMEnk84QMwwqR0dEo2Fsy6ZQKDAcDbl962MkQaA/NMmkc/gC3L37JWPjk4yVxvB96ZmPu1beAyk40Zf396jXq6SyRdKpFLlcmtFohBEz8DyXg8MDbHvEyROLPF65y9TUAv1Bi0JhBiSXv/pPP//lX4z84R/867evXDjDzMwsDx8/pdeok8nnqDQquI7N1PQcW9tbIIpIiEzPTNDvufTNLnv7ZaZn56jVq1iOSy6d5vqX13BGA5qNGlPTUzhOYF/b3dnm7NlL+Ai0WkeEI1F6AwtJUUEQuXnjOsV8nq3Np9QaNWRFplqpkM+nSKeyuJ7D08eP6LQ6rK9v8fGHH3HxuUs4jg2Cz3NXXiQciVCvHqGoMtWjJp1uk5gR49HDJfZ2dxn2Ophmh0a9ztTYJE8e3SceT7K7s8Ps1CyXXrxCtdZA10OcOHU+IDSLsL+7yxeff8E3v/UmxbEJopEYjmXxcHmZF154iVyxRKNWZWn5ES2zRTwapVo/pF5r8tyVK4i+z/Ubn6EoAo2jJm+88S02tzYCTFWnQ9QwiMUTaGoI27VRNA3btgIO3CjgDCIKOK6HEYsz7HURBQFRDYHvMxpYyKLCaNjHdSwkWcH1bDw8ZFlh1O9iROM4TkDn7rSqtFpNwroeCOKFwE6nKCrDYaBL6PV6HB1VA4mUJLG+vkY6k8G1bSRZxPZcIpEQzXqVRNxAUVQGgyHhiI4oBnU1OaTTa3eQQzHu3r3HwsJJLNtl5IJtW3TNJuAihhOEYuMooQS5fA5N0ZEUkUgkjGe7jIYWfbOH4Dk4josuifTMOql8kXajiiCI7OxuMTY2Tu3oAN/zGPSGhCIau1s7PH70iAsXL1Kv19B1/VgXoCBrChcuXyYRSxCPJphfmKNRr9NodpAkn9HQppAfo9npMr9wAjyfcDQEgs/09Az37t0jk8lhNmtMzc4xNT2H4zjE4waO5RCLG1TrR3ieTyJhYETj3F++x9zsPEdHFbLZgMqjayEmpido1BpsbWxQOH5f1DQdVdURRQEjZrCxs4mqhGjWa7iOQ9QwcBwHs2ty4eIVVtcf0Wg0sCwbfI9SYYpmq4aux0imYghIqJoIskQ8HufoqEo8kSSTTJFJlFA1mWarjut6SJJEJpPBMAwMI8a9O/f45ptfR1cNrl//iJnZ0yRiSf6Pf/+DX/4h+Md/9Idvn5guYPb72K4TwABmZvFdH8OIUq3WEfDY3FznxIkzlCtHFEvjdDotTp85y9baOmanw6BvcvPLLymVSliWw4ULF3Bch06nS7fbRhRkJmYnabTq+I5L12wSSySRRJnV1VXyuSzNZhU9HCYaiZHL5XmwdAvHcSiWxllfWeHipefpOyPy+QIvXH0RwfdpNY/Y2twkEUuyt7vHuXPnAYVev0MhW6TVrLO1vUUkEmV8fIpOu8vM9Ay12iE3v7rOS19/hVyhxBeffUxpfIraYYVuu41rDzk8OmBtdQMBmJ6e5vGTx3z62edIgkA2k0HTNcoHB0xNT/PgwX3mTpzk1IkFJqbGGR+b5tSpRZaXl7n/cImt7QMOyhWGo1HQKPGc48BpDD2kY8RixxGJACJqOxb2aIRjj/DswAaHD57rIksKgiAhyjKaLCIgYNs2nXYLPaSCKGAPB6jHrRNZ1hhaAZnacz2G/R7WyCIcDh9HlRQi0RiCIDIYDMjn8/T7fUKhEJ7nkUomiBlRfATarSayJJNKpYGAjKMoCqPREFVVqB0ekszm6fX7yMhY9gizPySdTaOoGr1+n/n5BWxPoN6oEY7EEdQU8UyJqYkpBsM+lmWj6iqmaWKPbKzRAEWS2Vh/ysHOOttr94iFNeLZIquPl8lls0RjUZKJFPVag6nJGTRdJRSKMjkxQTKZpGuaCIKIZVkcVvaRZJFiYYzNzS0Oy4dkcxmePn3M1uYOp8+epFqto+kK9+/d4JWrr3Hn9lfkcnkSiRjJZJKDg0OKxSKe55PKFlG1YMkVixqMhgN6PRNJVpFElWqtRtc0iRoG8wuLbG/vMTk5jTUcBgj80ZDi+ASu66AqCoIokkqmcV0f17Molw+IhCN4eEiCQjabot83GQz7uK5ArVZHljXGx2Y5uXAWWdaOs6sCCAKSKFCrVYjH0nS7bZaWlhgfnwxweHNzyKrKzVtfMBwFStpsNodhGITDYbqtLtbIolQqUanUSCTSJOIpfMFH8ODf/+A//vIPwe9974/e/tW3vk3USNJsVul0TRbmTnDjxhcMrBFGLNBcRsMR+paNILpYA4t2p0WxWGJkDymMjZFKpjixuMj7H3xINpdFUQML2s7OdrA5nZygY3bodk0cZ0SxMIZt2fiejY/I3u4OY+MTxFNJeoMuIiLTc4tEIxFuXr/BzPQEjgeKrKCGVJpHNQwjTHl/l1g8QW8Q1Nr293bZ3tvl8aNHbGxtMDM7iySJ4HkMhja2M6JysE+v3+X8+SsclMuEoyEatQajwZDdnQ0EH/b293nzW2+SyRR48niZb3zjde7fu8fszCxHRzWmJifZ2FgnGouSy2S5eOEirUYLy7J57533yWRTlA/2qddbrKyu8J233uSVq1e5ePESmVQSWRJ5uvqExXNncY5NdOIxhTrw3w4RBHBtC89zg+um72JZfXQ9BH7gKja7HXzfIxTSGA4HqIqCY1nHsRUloIVIErKo4PoOruOBZ2NbIxQ9jISP41qEI9Hg3VGR8DyX6jEAYHxyglq9TrvVoXp0SCaTYTgc0ukeb05jCUajIY1Gg3y+CJKP74uIiko8GaPZ6lIaH2d7Z4fywT7zcwts727T7/WJRJMMbY9CYYqYEcf1bERRDCqDoxGu5TLom/TaHe7fu4aiyshOl6jqMz17CttX8N0hhUKWn/3kJ5w8Mc9w2MdxXGq1GlEjjiQKvPvTn3L58nkc2yZqxGg1W6STKaKRCLKoMnKCTKZhxIhEI1SrNYqFEqIgsTB/kv7ABHwEwWdlZYVmvUGtWieZyeALMBz0+Ozj95ieWSAaNWi2a+TyeR4/fsLYWInx8XF6vT6lQpF+r4fne5i9Dv3BgP7AJBFPIIoCkhhElBRZDUL0YqAazWaywfPG0KZnduh2O4TDEc6ePR8wKV0Hw4hiGFEazXpwErYGNGoNlpbukE6k0cNhXNdBlgPZlyqJOK5HOptl6c495udO0O7UaVWD75sLNGoNZEVBkkqN7A0AACAASURBVBWGowGO4xKLx7BdB8GHkTXiL3/49yAs/T/96Z++/eYbryErHlOTc2iaSrN2wOrKU8JqiMmZmQAF5brEjBgrDx+ys7dBqVDENE2MRBpZlY5pFRZT05NIkoLrOvTMLooss7a6xsrTp3geJGJJ9EiE3f0dhl2T6sE+6XyJSDhCp9ugclBhemaGpdu38H2PWzevUciX2FpfI1+c4vHjh9QqFSJhlYODPT75+FPOn7/M5toG0XCEXD5LKpMhpOskUinSmQytZoPJuXmWHyxz+fJF7t97wKnTF3BliXatRrPZIGbEmZqcptcfUBzLMxy6/PRnf0OnbVKrNpAVgROLi9y6e5d/8o//MR988B7tVoeXvvYCa2trSLKM5/mMjY3x/Mtf4+b1G1x87jK5XImtrS0SsRgvvniVXq/Dzt425b0ygiBQKo2zs/EUWQlMbwS/vJGP0Vq+5+G7QTTE8108zwmGjCAf94n9ZxEaSZKeiaxUVX32d/g+AkJwqnQdbHuEosgY8RTddgtBFPB9EEUpoHQbQS5MURT6gz4RwwiWBckE/UGf4WBANpfHd73g6/JcHDsY5IYRYzA0A/Cm5aGHQowGAxzbJpVOIgoSg+EAz/UwDAPf8QmHoyiqhiAEFcJ+v8+o32PUH1De28Tqt8Czsbo1hvU1QpJEYuIk7U6bQbfPxtZTTp06x09+9EPW1h7i2EOmpudpNOvEYzGiqTiqEgwWy3YQRYF0KsWDpVvBadcHSRRpNpuoaiAoN4zAEf3g/n0Gw+D2YXaDzvdw2Ofihcs0G3VEwcJ2fCZnF+j1uoTCGu22Sbm8z/nzF/B9n3A4TKPRQFZkNF3D90RCoTAxI3YMoQ08wBMTkxwdHeD7EulMkv39XQRBpNlsISsSsXCEVqfF2Pg4R9UjQqHAGT43P8u1a5+gKhrD4YjZmVkkRUKSoFgskIyniCeSHFQ2OSjXOHvqJPt7O2SyBR4sL7OzsoXd2keOZ7lw8TmWHi4R0hU2Np4QjYaJRqJsbKwzvzDPYeUwsMz5Pg+XH/HRZ9d/+Yfg//inf/r2eDHJ+Fjwfnfjy494cOcuYxMTXHnxJbbX1hgMRriuRzqVQpA8pqZnefTwIYlUCsGHz95/j63NTUaDAaIoMbJMEols4Bnp9XjlG99gc2udTrvB/sEOhVye3c1tVteecOHyCwwGLW7dukaj02R8bIJ+36FRr5MvFbBGQ06dPUssEafbaqGpEpWDCoIgoOtRfGRu377Da6+/iYdAJpMlky0R0jUcJ8DMh0Nhus0ui6dOs7r2mKtvfJOtpyt8deM63/6VbzMY9BEQuX37FmdOn2VpaZnlR8ucWFjk9de/wYPlexTyOcyuyf2Hyzx5ssI3XnudXD7PvTv3aHVa5HJF+maX6alJDvf3uX3/DtNjE1QrB7z5zTeJRg0sy+azTz5mYX6BO8uP6HRbSKJIf2Az7HeRFRFFVtBVHV8ARVGCzJ81QjhuDUiSHOgAdA3Xc8H3nkmaZFkO/CTHg+8XKF/HcRCEwCzoe0FQ2/Y8dCVQfQaDyURWVAwjhuP6zyp90jFgod/v47s+8rEv2bHtYFDbweZ20B9gGMGV/qC8TzRiIArBm+Te3i6qqjIcDLFtGyMaDWxqUYNkPIXZ7QSfYzDEsW1cx6XTrGJ2KtjDDmb9gFFzB6dfQ/AFHAlmzr9Bs1FF0RQ0JQQIjE9Oc/L0RdZXn3D+wmVsx8HzfVQtRK1WJ5XO0O/3jsPkfXzXpVScxOx0KZRKfPnFJ5xYOIXjC+iayv7+/jHhO6hcGkaMg4Ntzl+8HCQPwmFqtSNCIQNRkAiHQvT6wUlu8eQprn3xMZ1uj1ajTrFUome2WLp3F9/3GA4ten0TUQRdC/Nw+SGT4xN4XoDp6pkjNF1FkV3MfptUIofjOhhRg1Q6RbvdRpVlsrks+zv7pPMFRFkibsQ4qh7x5OkTRtaImJHh8eOHzC3M0W70aLcbaKEwiqLhODYzc7PEs0miuSKFXJZer48oQTSWZGpqhpAWw3VHzM3Ns7+3R61aRVFVYvE4rWaLdz789Jd/CH7vj//g7atfew7XGXH37h1+5bv/kLmzz7P99DFGOEy718YXZdyRTafbolmtICDRNU1a7Q75qXEkgv9gCwsLmD2T3qDLwvwZdve2MIwYH773c6bHFyiNjTM5OcP2ziatVpWzZ84xHI2QJYV4KoOhRXn05BEeLvu7Zba3NpmdnUdSg8pO1EjQH1iEQiEkQQyk7tOz7OxsMzE5gazAJ59+TL2+y+rTVQ7KZTKpDA8fPeTh8iNu37/LxOQ0Xn+AIwvMzMwwGg54552fc1ipMDM7SzQcpWt2yWZznD17lr39bS5evMT9e3fJF0q8eOVFwnqIZCrGnTu3WFhYZOHkCe7du0272WZ/f593332X8alpHty9z+LiKTxR4OnKCoN+lxee/xq3b99idmaG2ckZMrkU6XSSjtnl8fJDNEEiGk+gHXP9JFFAleXg2ns81ob9PoocYLd8z3smcJJlGd/3n0nfFUVB0zRsO7hm6noYWQ7yhpKsBB1kXTtmA7rEE2n6/QGdTvcZJCEcDiMA8UQc8bjPPBqN8H3/GNgpMxj20UMhFEVDloMniUg4hBbSMLs9isUC3nHlThACDJemaYQjBiFNY29vD3yXTrcbDNyeeVx1O8SzbUbDJsKwiyRKFAtpSrOX8HWDTquB5zqEdI3x8XFu3rxJMp4kEkuytb4WsPP6fVRFJaSpdM0evV6PTCZNLpfD7A3x8UklklQODwhrMkO7j6Lo+Mfd7kTS4HB/H991WF1dpttpg6AQjYZZ23zK7MwCsqQiiB6i6KMqOrl8lu2NLcJ6GDyXg51tIhGDesfk4qXL7G3vcVQrs7BwkvJBkMsrFMYxzRaSFDi7JUlgY3OF1afLzEyfpjfosru9xfTUNNVajXQ6TavZolqrMjM9TaNeRpUUnq48IhFPMTk5g+t6WPaQSEShVm+RK2QwYnHq9SqFfJ57d+5g2z6KIhHRYrSadTaerCBLASvA8wRMs008HuOrr25x4sQJCoUC7Uadh0tL5Io5/vpv/naNkb/TQ/BPvvdHb7/+9ZfQ9BBGLM2T5fuInsN+eYtYKsb25janF08hqyJj49M0Wx1Onj6N67mcOHGS7//5n+PaDlNTU3zwwUd0TZPnX3wZSRAZ9rvs7OyQyxaQNRVZVzk8rJLN58nkxvn4o4947oUX8QUB0+ywtbVCKpXhwsVLZLMpTp06g6worK2ssr6+TbtT552f/4zttU1+67f/OZtbK9z86gauIGKEIiiKQj6Xw7EDgRD4iIrI2PgEK0+e8l/8l/8KAZmf/fSvefzoIe7IYX11k9/+7X/K6uYGqqTx9OljOv0+lcND9vf32d7epd1sUiyWyBfzbG2vc+f2QyJxncnxSd5552esr66TTCb4lbd+hfWNLVLZAl988Tlnzp9GD6lMTUyysvKYr7/6DVZWn/L8Cy9y+9YNmt0ucwtzNCs1Ou02AGsbG4RUFVHkWQMjCAeCLEmMhkN8QBREXMdBVmRcx0ULBaSboER/DFbQNKxjgrAWCnBilm0FnV5JJBKOIEsyqqIiCD6hsIEsK6iKjKoqiKIEgOu6KLLC/v4usZhB1AiuhLqmI0kKw36PXr+HLAfLAdexqJS3EI8/d/0YXfULTaptO1iWTTKZoNmoYXbrtFpHuPaA0bDHsNukvPOEYaeO5I0oliZwXB+73yFcWmT2wms0qkcMBz1818ZxLHwf9vd3SaWTjJWKKHoYXZJQQyEcy2JtbY1wSCcei/Kzn/yUyckxBElA03QePXpIOpsjEc+ia2Esq4/j/ML7oqBrOq1Og+evvML4xCwffvABC/PzRCIRVCmEJMtMT03x/nvvks1nuH3nOtlcjngyCSJMTI7THfQo5ou0Wk1OnbvA7S8/Q9FVItE04VCElZXHnD5zhg/e+SELJ88zGPaYmJgil5smFo+g6+Hjr6PJcGAxHA3J5XNEIhFu3PicVDyH2euSzxXRdB2z10HTtWO4sUI+U2R/b4+dnTXOnb+MD1jWCMtusfzgDul0nLmFkywt3ea5F76G57uUSlMYhsFw6OALHpIkc1A5IGrEEWWNVCLx9+NN8N/8yffe/v3f+51Axu30ODg6YnZujna7xcT4NFNTJxhZIzbXt7FdG1WR2d7ZplQap9dpkk5lMHstTp0+T6W8S7Va5fTiGR49WsZ1A9/pYDTEti2ikSjra+sU83n0sI4RkXmyssr4eImpqVkajRoLs4v85Ec/wjS7hMMRBoMR4XCIEwtzVCo18pkMPcchrPu888Gn/It//i/IZIpsbqzgui4+MifmZ2h3TY6qVb728lX6gyEnT55k5ckSvY6J67m0zS7/4Nd/nUTSoFqt0miZpBIxbHfEYaVGo9nirW9/mxdeeIGHjx4iCBKD/oDt7V2isThXLjzHe+++TyIR5Tu/+l0mpmZ4/OgBw8GQy1deotWq89prr3Pu3BUqhxVSyRSiKAZCnewET9bv8+rVVxm0u5QrB4xGfSzL4zd+49dY31zBs12yhSKKojDomYiChOe6SIKIomlguwiShOu5aHrQ5LEdB/k4cjQaDREAQZJRVB1RlnEC1xOapuM6LtGogaCoqHoI1/ERZQXH9VE1Hdd1CIcjz7bV/X6fVCqNafaQJRVF1hCEwG2sKBL9Xg9ZkjDNLq5tY1kj0rkSqqISDkeRJPEY9iCi6xq9bofd7TUO9rcYDfsosowoKQy7XcxmBavXIxzWkUSfTq2CLPkkJxYpzD2H73lYQwvPtzHNPj2zixGNkcvnSaQy1Cs1Gs06mVyOymGZUCSKLEkUcnnMXo/z5y9yWNln0O0jCCL68RKvWMxjjSxy+TyyqiMJIv1BHwSRcNhAAAajAScXT3JYOcCI6rzzs+/jeS6qGmJyfJLNzS1OLJ7h3u3bpJIJ2m2T/nBAZf+IyckxhkOb5aVbXLz8MrZjocjgCyKaoqLrOo7tUT7cIp8bw3Vc9svbDG0LHJdktoDt+Dj2CNe2WH7wkGQ6TiyWZ319mfHxSY6qB0xMTLO+toLvCrRadVbXVhEkgZOLi+TyJX74H77PoGsyc/I0OxsHPPfcCxwcVlBUjfMXLmONXEKhKIIAa2trGLEIPbOPkYizvf2URCIQqbm+y1/9p5/+8jdGfB+2t9b5/LOP6LZMzpw6i4jP4smzAXQgnwoE0e6Av/nRjxiNbMZLEyzdu02n0+H02XMkknnCsQTT8yf5rX/yz1hafkA+n8dzfTQ9AH9mUmlUWULEp16vsre5iizpnDp1hmq1xsOle7SbHXZ2N5ldmKU4VqJWr2LbI37y1z/m4OCAwtg4e+UDfvM3f4tCvsQ/+6f/GX/wh/8dyVScUnGMRDzJ++/9lOXlR7z77vtMT08H3eGQzl/+4PuEIzEKpTy+5/K7v/t73L/3AF8QiSeSfPdX32J3ZxtFUfjOd77Db//WP8K2Rrz/3ru8+e3v0DY73Lp1i5WVFTzb5M/+t/+F02dP4XlQb9To97ssLS0hyzK6HmaiVCSTTFGt7PLFtfeJGiGWHtxma2OTRvOQ8n6d1ZU1/uc/+zMODw9JJFK8/sbXGQ6HrK2tMRj1qR7ssLu5giL5OFYQ+NU0DUWSkXUN3/fRFBVJkgJZzvFiRBTF4OSnaviCBKKIHg4RikTI5nJoIR1FC6I0gTHOP86laYii+Awy4XgulmNjWRaj0QhRFEkmk8TjwZ9fnO4ajUbQzmi30TSNTCZDNJ5GlQP5VLvdRJYlGrUKfbNNZb9Mq1rH6vUQEfAcl2a9xtHOOtgD2o0GtVodfJFOp4Okhxg79TXykxdQZPmZm9l1XSYnJ0kkEs861manTTgeJZZIMLQsksk02Wz2mQ85qDhGUBSNUChEJBIhGjPA87l7+w6Oa1OpHBAJ6XiuQyIWRxAE0uk05XKZaDR6vLkXGPRtXnz5DR49XqHRaeMKPtOzM+C4fOtX3kJWNRZOzOO5At/45pvcf3AXWVaPl15DRr2AsBOLxZBlmWazSTqboXF0RDIRx/dcEokEiXgaEFl5/IjJsRK7u5sUS3leeukljo6OyOVSvHT1DXb3tmnUqmxvbbK5usLIGdHrmmTjSSYmJqjVapimyfkLzyFpKmanyanzpxBlicnpKfb29hAFhU63ie969LomsaiB57hcOH+OwaDPC1deexbG393d/lvPmb/TJ8F/+2++9/bXr76AHgpz4uQi/X6fVruOiMLB3j72yKJp9hmZHSZnJzh35nn+8A/+W8YKReKJBJ2OSShsMOr1MJIJDvf36ZodpiZnWF17wo3rn+G54HgOn35yg+nJKbL5DLbjoKuhIL8UiSOLEqIokUilePjwHldeuMpR7YDx0hTxRJx0OoVju8QTSQZ9E0Sfne1tZFkhEjKo1Wvkx8Y4efIEh0cVvvWtb+F7PrWjKrfv3MYwVEQlzEF5n0a9ju8EfoxsOsudO19xsL/PiYWTaCGdB/fus7Gxzer6NgnDCILHjse3vvUdrl69yuKpU8RiKbLZHI5tk0yk6bRaPFl5ypvf/C63bn7Eysoa42NFGrUGzWYHTYuyf7BHKBzh/r0lpqYn6Q0GTJQyWJbHxYsXsEY29+7dY2dnlyuXnwPPQ5Yldnd3UGUV13NQNCXo9ooiokDgMNaDTrSiKCiKEkRedA0XH12PoEUiyKqMLCsoqoqPiKaHAlK2FgJBZDiySKZSSJIYRG60EK5rI0sSru+jaur/bYOqEAoFlO5wSGM0GiLLgaEQQA+FCYWitNudoJ3hu8SiUWqHZeqH+1iDHqLgYbs2nuOia3rgYzF7tJt1RAHc4850YWqO0tw5HFdG1nViCQMfD0WRsa0hw0EPWVFJJgOhUiQapWd2iUbCSLJCrVolGglh2xaFYoFOpwt4pLM5hsMACCvLCoeVQ67fuM7MzBS2bfPhu/+BEycvMOgNODqq4LgOluvyyYcf8Mqrr7Kxsc74xCRRI8H87AKbm6vMz89zeHDE/sEusqAQjUSfXVs1LYRtu/T6bc6ff/7Y8KYyMTlLt9tAD4UwzR6KprJ4+syx97qPj08oHGN9/SknTixSLpc5MX8C1/PwPIjFYgx7A2zHYTRymJqZ5d79W1y89ByVw0PyhSKTU7O4tsvhUZnRyCKRyJDOpBEFF98TicWjtFsmly9dotNuYZotUsk8zVaVjfXHtFt1VlcfBQ4Zz2dnaxVRAsfyeOeDz375r8Pf++M/fvs3vvsrgEA2k0PVRQZ9Gz2kU6tWGRsbwzS7HOxtUW/W8TyXF69+k8LEJJsb65TL+xQKRTRVQ5BEep0OmhbmqFrBiMaZm5thZm6edDaD51jE0gZHR1VmZqYxOyaKorO8fB/TbHPp0vN89Mk7XP36t7BGA06fOsfB/h73792lM+iSTiW5d+8OkqSytbFFOKxz9dVvooc1pqZn+ezj97Edh4PqEWFFZzgYsPRgiedffJ4vPv+EK889z6hncnJxEUEQKZfLxOLBO9it23f4+NMPqdYb/MPf/E0USeKgvMfX33ideCLJzOw8O5srdM0GzXobs9clHA4xHPbIpDNYjs3K+hqdXoOlR0/47nd/nbWna3TNNs+/8DKOY7G7tc3W/h7ffestOt0Oly+9iBGJ8MKLL7Cytk6z3WFmOniHCekhDqqH7O3uous64XAE23KxhseyJknC8QKWoBaO4vsC4vEvEs/1UHQdVVUCWEPYwLFtVDWEpoaDk6EevGWFw+FgiaKq6OGAIm0YBpKqIkCwxFA1IuEIoiyRzqRJJBPYjkNIDzEcWUAAdo3FgijKYDBkbGwMTdNQJRHX8dncWMWIRnDtAGzreS7DwRBJ8BkNB7i2jeu5RCIGggDxXI50YRJfjiIIEpZlk8nlQPDRdZ2e2WM46FGrl7GHQzaePmBsfIaRFZxYe70etuMyVirRaXbZP3hCRE9z/fpn2CMLx7FYX11nc2OTmdkZDMPg9OnTSJJMo9Fkdm6eeq3G1uZTstkisixTyBcx4jHW19dZWDjB2tpaQLbxPQqFAkdHNWamZzisHJBIJFhaXmJh4SSDwZBabZ/795eJxw0UWWE4tEilkjx6/IB8roRpBv3keCzGcDSivL+PYRj0zC6DQZ9cOnk89Axs1+Kjd95hcmYOQQxsgb1+j2g0giLrhPQwyAKzU9Pslcuk0mlW1lZQZA1JgtGow0F5n0Q8hesKjKwBuWyeL7+8RjweJ5XIoygSXbOJ70ss37/Da699F02P8PjJXXpmn0QihSJr/Pjnf7vFiPz/6RT7f/ghKzLpdJJer8vS8j0mJqZw7AHlepOrr7zK/fv3KRTzNM12ACSdn6eyt83+bptSaZzJqXke3L/JyVOnuX/7LooiBe94kSilsSLr66tMTqexbZv+YEAmlSabydGoN/FFn2uff8SLz7/Cxx9/zOLiaVxXwLUGxIw47/zkJ/i+z8svv8z1m1/y4fb7qIrE/OwcppllafkBufwRjmMxMVlCkn22trYYH5visHrIleeep9lqsLG+ze///n/F2uojdsuHfHztBulEnGQyyc7ODn/9kx/jIfD7v/sv8QWFcrnMxNQciqKxfP8BeIGec3d/j3Q6i6wI/Oz9n3F6fpHHT57y/JXniMWifPvNN+l0WrTqDebmZjAiOjeu3eD27Ru88Y3Xeefnf8N/86/+a+rNNifUwNa2u79HrpBnfXWF5y5fIRzRiCeiWPaAXCZLbH6eRqNGrVmj0WiQSecRBAlZAkVTkRUd1w1ER0pIYzgc8n9x915Pkp3nneZzTh6T3mdWZVWW6fJd1dXewTRBAKRIkKIcrdxoNbsKKWLdhXavlxt7MTGhHc3s7tXExmgnNLOaGUoaUgJJAAQINEAC3Y321dVd3mSl9z5PmmP24rRwzb2j5j84mXHOG9/7ve/veVSXG6fbg9OpMhjYSHSny/tZCyjrCi6PG8vQARFJUuh22/h9YTpiy973c7tpNdrIipOe1sHSwe31IkkSpmHv80luN/TahCJhJhMTtFotdN3EIcqIosVYIs7P3n2bYDTGSOvQ6DexBAHLtOh0G4iWiIGIJTiQZAmHLCMpKqovYOsIRBGPUwFM3AG/7b/BpN1qABbdbh2MPsHwGNFo1B4iNeqo3gAf3XyfcDhMqZDhheufp1zNMDJMXn75tecT4ihOxYVTUXn88AFDfcRXv/o1DB203hCv10uzdUypUMIXjJHNZul2Na7feIG1tTXKpQqBQACHQ2A4HJJOp7h86dpzWrlKpVIiGg2jaTa4IH2SJTkxiVN2o4+GeLwBtG6P6Umb3Tc9Pcvh0R6BUZBatUQyOc1wOCSVSrF6Zg3RIXPr1s+Ix6OcPXsVSVI4PtpnfmHZDjgsLrLx5DHT09O02k3OzKzSanWew3lFLMvAIVpgGSiSSiwcJxIdYzQakc2dsL+7x+RUklKlzPiYxNPNPeLxKImJGea+ucjG5n1CoRAzM8sEgn76/T57e3u/cJ35pT4J/qt/+effffmFq4yPTRAMhRAEi4nxJOMT49z88F1cbvvD8nsjvPDCq4xHY2xtP+H8+SucpI5pNatEw3GOj48J+4MsnT6Nx+NFUkUcDieBQBTLsqeBq+fXaTQbqLIDX9jNxOQ0k+Mz1OoVVk6vYJkioXiQbrtPPpsnm80QDAZxeTz02l0EAV565TU6zTYPH9xjdmYaWVJ4/Oghu9vPODg+sVcfWl0mEuNUazUajTqvvHKDd37yJtVKk7X1NcqlIsGgj9/8zW/ybPsJv/27v8+l8xfInKS5/+A2Tzc3cVgWd+9/TCQ8xpXLl2i1Wly5eoV4fIyjw0Ny6Rwry8tcvHiBmakkuXwOSZZpNjS+9rWvsfHwEY1qje29XZaWlpidmWVsLM7W1g53737C5csv8XTzHvpzQGe93qBarRPw+UifZCgUijTbNYaG/hmE4NnWFqrTxVg0Rq1aYaCPcDndqE43DkXGBFz/kI2VbM2nqroY6SbBcBhRsK+nZVnG5XZh6DqK08lIH+EQFRTVhdfrfX66dNNpt/H4fbQ7XZwuN6FQEMMwGOo6iqqAJBENhfF4vJiGQC5XIBYLY1km2fQJ5lCnUS0x6HURRBN9pGGZBi6nh+PUIb1uB5fLaSdaZAHJoWIJAoqiYiAgCTIjfUR/aHBqfgmHQyAxPoUoQKvV5HB/B0WSSaUOiI1PMRwZvPWjN3n5lc+TmJgkMTHJ3vYekjREUrxMTU3RaNZt21qtCgjE4kFkxcXCwiIPHjxAViQCAR/dTo+xsQlmFxaIRCM4JIctwXouHAsEYpiWjqZ1CPjDrCydZmd3A58vBAKMjY+DOKKQr6DrOlevXqfb6xIfG8M0TMKRMHc//YhIOEIqnUHrd5mcmKantRj0++jGAEwHumngkBVUycH585dA0DEMB/1Bn4WlJQRJIZtJ4/V5iEbGME2TTqdLtVrl6GiPqakZspksaFVGlr37GAz66Pa6gIWARLVe5tKF62gDDU2zn3FgDhn2ezgVGR2TxYUVxmIJ6o06oijQbDbx+wL84Ifv/ONvh//Vv/rz737h1RvkC3nq9TrpVApRkhgMBiwsLGHohk2eqFYRBAuvL4BL9aDrGj96869YWjyDPxCyNYuNCtPTMxRKJVxuN4YxIhgI2vnhehNDH3Gwf8CwP6Lb6fPhBz8lX8gzMztPT+tRrpTBFMmmT1hdXyYUjDIyDL7//R9gWDq/9VvfplGpcufTjxmN4MyZderNOoFgkP39Q2KxMLlsnl/7tV9DkRUGwyGnTs1RKVcIBaOcu3CRR482cKoqr7/6K2xtPWZp6TRBT5Qf/N33OE6luPG5G0iKysryCovLa2jdDt6gn0ajwcMH97l77zamCW986cscHh/ywgsvMTJMEETWz16i22mw8eQxU5NTPN54zOUrV9je3ubuvbsszi9z//5tSqUGF86fEcFYQQAAIABJREFU5e7dTwgGQty7d4/V06tsb21xen2NcDRKKBCkVKzg9XgZ9AdUymUcgm0iy6ROqHdbCJY9qHC6XDgkGRERUZJwSPa+niwrjEYjvF4fkizj9Xlt10jAj+py2bgp2Yn83IrnEB34ggEM0yTgDyNLDpxuDyAQCHgBUBQFVXXidLqeDxa8VKo1vB4v/oCX/Z09Dnb3yedO8DhdaL0uw16ffqeNORww1HrIikSzVsXjdtmCeUEAwYEkyaiqYkMxMNGNEYLgIBIdIzo+jlN1osgqpgmmoSOJEAgEGBubQFFVsukTO9oXieAQHIwGA5KzMzgcKoFAgL7Wx+12cbi/R8DvIzYWxzAMuh0N0zIZDoc8efIEl+qk2+vSaDRRZJnhYMT09Cy9Xo/kxCSCKJHNHTE2liCZmKbeqON0ecAwMXSTUCSAQ3SxtbXJ6ZU1VFXlgw/eYmFhlb7WZW9vm/5gwNLqOv3RiOzJLpHouO3vkWSmZ2Z57733uHDhEsVigWAgwNh4AssSiETG7fY4PoYoiOiGTiQUfu7zHkOWVYqlNFevv8TU5DS1WpWJyUmajQ6SInP+/EVGhgO3x080GkE3RhimxcHBAadPn0HraggCuFQvRwdH7OzcZaj1EGUng8EQj8d+HwzTwOV28de/oGPkl3o63Nc0VFXG4/FQyKf47d/9Pebn52k0GvR6PR492qDRaHHhwgXufnKHt976PkdHW/R7A1544cs2HXk0wBgOuXvnHn3NAIdIJpOxJ7s//Hve+vGblBsFbv70XcL+MKmTQ374o+/zxS98mUg0wYN7d5mbmyORSJDP52nUK2xt7PLuBzd59GSDb/32t7h49Sr1agVt0OfVL3yVb/7+HyCoLrrtDseHR4wnYgz7Ov/d//g/0W412draYjAYkcmmsUQL0zL48OZPicZCFItFjtP7ZPM52j2Ng/QO4xMJSrUqP37rAx4/3sQbCFLM5Dg1O0PEH+L+3XvcuHGDfKaMYIGiuBkfj/OX/+7fEAh6KRayNCpFjo8OmZtZIBIP8crrrzM0dHb2jkjOzJLKZxkZOv/kD75Nv9tCtCQsdLR+h+n5eb781S+z8fAu9VIVwxhx/cUX6Gp9FKcTTdM4NTuFz+3BECGTySGIOv2hjig5MBFwqG4ckoKq2q22ZVmoTufz04SMYQmMdBPF6bQBCR4foijicftwOT0IkgMwbZIwJpJqT479vgDBYBDdGCJKMm6vxz6dGoAlE49E7fWfrSeosoBo9YiEfNx7dJuTTJpCuU693WFze4f7z57R6XSQMMEw0UcmlgGYJqOBRqfVxDAMFEnGpXhITp8iGI6jOBTA9l84HDLp7AnmSKfX1ahWq/R7XU7NznH+0kUqtSrBUBjd6uFUFCLhOIZu0tF6mDg4e+4yokOx/x9VtsnVAx1dH3L96hWb1ByLMze7TjAYRpQdZLIpFucXsCwbpnvh/FV2dp5y+/Zt4vFxsHR297bJpp+B4CWXP0JRnKRSKYL+AG986TcQRZH7D+8xPXuKVrNM7uSEYrFAeCxBbGyMXq+F2+miVq1z9epVnE4vqmKhyhKtVovj1AH1RoVipcSo3+fOnZ8xGvQQRJNOq027Vcfvc6OPRqiiwqO777Jwyp6eT0wtMJmcQVZcSLKFojpod7rkiwWS0zOcOjVPJpMhXzhkZ3uT3a0ntLsdVGeQarNMJfMEr9uDYEG318KlOhH+f9z0/VLfCQaCIfyBKM3mEZMTM/zN33zPjsu4XDidTi5duoQsy9y7d49f/9Zv0dcG7O3uUG82SEza90Cr6ytkTlJ869vfIZ07YuvhBstnVjF1C4/LzQsvvEAue0KpWqQ36JBKpYiEw3hDARZX5llYnKFcKuLzenj9C5/jaD+NYVjIh4e4VBmP08ep2UXee/tHXLl2lXK5QCwUZOvRXVLpDN1ul29+69scHuyzublJwKsyPTtDrdbg8eMnXHvxBTY3nlAtVwiFI7z22hcYH0siS24S0Wl+evNNxiIRfu0rX+XdDz7kd37nOxSyGVKpFGfPrfHRRx/h8/nYfPqMK9cuc2Z1nVz+iMuXrnHp4oscHG5zem2Vj299giKrjI1H+eu//QHlchlFUfjf/tf/hU6nRavbZnXxFO/f/JAHdx/wR3/8J+TzRaZn7FPI5uYmoXAUA4NOR8Pl8rC3vYNuGbxy4wblYon1sxGy2TxrK2skxhOIQK1SZWxyCtOyidKCIHyWHZYVBY/PjyAICIJAOBzG7XbjcDgYDnUcoshoNMLv9zMyDQCGwyE+n4OhYH/wogj1epN2q4vbHQJLxDIFRMmi1czjVFR2tp/iECW2th7TKFfZ3XlGvdnA7/Wxvr5OpVQnEorz9JOPWV1cxhDtVREL21j3D4kX8XnaxbRAkVVEh2xPwkXRTgo5HLicbur1OsmYn1bLxtL7/X47qudYYDQyyOWzlMsNLFPB4WiTz2cRBAvBMnHFx5FkB+12m3rdzkojDpidnaNaLCM5LNJHeySTTarVNnPzNvGlWq9gWRax2Ji9W1prcPH8BYZDG/g6mZymVM7iEHSy2TwXLlzAeH6a7WgdiqUcM9NLeD0hpi/Oog27yA4J3YBqrUS9VqPb6ZBIzDAWn+DTuz/D7/Vx586HeNx+YmMxLCOCLIjkCnkKhQI3PhfAISpcOH8RhyRy5+6njHTYOdxh9fznsCyVeqVCIGif2J1ON6ORQbvVo691bPjqwT6Tp2YQhRBBv49ut8vm08esnzuL1x+gXmvjVCQkSeL4+Jil00v8/OZNbrzy+V+4zvxSt8P/8s//xXdff/VF9naeImJw5uw5Np9sk0xOMHhON2m2Gza+SXJg9PpYgs5EcorExISt5+t1yGUzHKWOWFpaIjY+TrPdxO8N2HcskTD1ep1wOMjcqWWcDolwbAyfP0i7aUNAj49TDPQRezv7TE6NgWAxP7eCIJhsPd1EFEzSmRThYIzJmWnSqWO6Wsv+KNxeHA6ZWqtOOBji2dNNjo+PSB2foPU09o6O8bgVIuEwF65dYdjTePj4Ifn8AU+fPiIQ8HDp8ou8+9Of8Pu//18z0jWymSzHmQwhf4BwJIQv6EfXDR48eEAkGmFscoK9nX2+//c/4DiVYvX0CgFfEEmVePPNH7GwPAvGiH/ye3/I7du3SadP2Hj0mNu37+EPePjmN77F0fEhhWKaSrmCPhyiyjJHx8esnznLaDgC0QJEPv+5V2m32ywurpDNnVAuFRHEIe12F8MYMRwMiI4lEB2y3V6KIl6vl06ng+p02+tIqoqiOhmZfVSnQr3ewO12MRiOcIjQ7djRN7AYjXTcHi+m8Q+EZtn2C/t8eNxeFEVlMOyxt7WDpg0Y9PtUiwVarToffPA+qcMjKs02zU6TmeQ0DsFkd3cX3TL52le/wsbmU1xOFVWWnsMbTCzDpP8c0BoMRZGdXiYmp9BNAVmRcDpVNE3D5fQgCpDP5VBEi2A4wlHqEJdq07OPj1N4/X5Gwz4T0zMc7O2xtLhMYixO6mifTrtFNB7D5XKys7OLaZosLS1hGga1ShULg0z6GEV24PPHCIRC5E4yaFofp9PNZDJJPp+lp2kkk1NsP3nMwuIK1XqVo+OUzUwcaoTDEVskVirhlGQCwRCHhwecP3+OTOaEZrNCR+tz862/JhydIF/IMxjYE95EYopC4YRapYFDFohPTOH3BojFJvno5odIDom5hQXWz5xhc2uH8fEY77//HpIsMDk5QywWp9NuEY+NkckcMxoNEQUJSRKp16uEQraHut9vEgnHeOvNHzK3NE+7reH1eFFVBUVy4HBIaL0BquIgFouTyxc4NT/L2z/8Md1ei2AoxPff/C/gTvD/+j//j+/+7re/TiQWJz45zd7OLuFQiFgsjqIq+P1+G/UjGDSrdUSHiNcbolatITkkTk4OwTSIxGJMJJNIokS/p9HXNA4OD1k5vUapWGDY01BVDw5JYPn0GRITk8iKk+ODA2SHzPbOLpNTSfTRkFsf32JqcpoHDx9y5epF/P4A4WgYl9OmceimyQfvv0en06LT1rh+7RU+vfsx3d6AeDyM2+Xi4OCAbrfL7OwMczPTvPjiS6hOJ/VykUazyf7RMdevvkgwEGTr2RbRaIJAwI0ii/zso4/odntcWD9LoVzg6dNn/OyTTxhoQ77xjW9SrhS59bPb/OzOx8iSg9de+wLlfIVb9+/hdHo5c2aFBw83mZ6aIhqJMRhoFEsF2q0ugYCP1177FXLZLM1Wk8cb25hYVEolTMPg29/5Nk+fbpDOZBAcKifpE/qDIZZg4XN7aTXanKTTrK6dJpXOEAlF8fuD6KaE1+cHbCBmu93G7/ejKCryPxQxr49QKEC73cYh2rAFDAuta+/ajXQdj8fNaKTj8XjpdtsoioxhmfQ0jXA4/HwFR8c0RrhVma2tx5TLOY4Od/nhj95k0NPodLtUqjVMU+fCmVWGfY37jzfB4cDttDg4TuN0qYTDQcBer5ElBVlRCYajSKqTaCyBy+UhEovh8/sQBIFAIIDkkMGycDoVyqUMR3u7yNaIcDRMIZ+jXCzh93tJxGOMBhpOlweHQyGbPWEsMU6hWGb9zHlazS7zC3PIskyj0eDw8JD5uXlkVWVx/jSf3rvD8so5RNHB1tYm2mDA9PQMuXwOsIjF4uzv7xOOhTk8OmZ5eRnLsuh0uui6YS8+R6J4XC5MwSCbyTE9PUOjWWdh4TQ//9nfkhifIxyfIBgeIxQNcWp2kWKhTCIxgW6YTE1PUy5XWV9Zx7QsHKIDxaUyMz+HJDqQJAW/x8WTjSdcvnKdVrtDPG6zIJuNGomxJIVigURiAklysLm5STgcxjDtzkMQJdrtLi/duMHe7h6qamHoMBzqaIMuC0tLFEsFQCCXyzLSB+zu7HHt+jWWVxYJhyL85V/9zX8ZRfD1z7+MKIjIDttfG41GqFQruJxuGs0G1XKJ93/yNooi8eTJXXTDoNttYAkS+UyG5dU1ms06Ab8PTRvwyYcfkpyewkQmGg0wHh+nUCogOhycmpvDEKBcLODzemm3m0wkJvB63MSiURRJ4uhgn62dbSzTIOAPYBgjHj54SKVc5YXPvcyg1+f06mkuX7rC9NQM9+7eptft8sYbX+L48Ai3S+bixZeZnUkymZxA63fRBn0CoSCRcIybH9zkG7/5dcqlEtl0mivXr9PttFldW2Nz4wm3b3+K4nLidrqYGJ9gYXEBAXjltdd4990fkTpOc/HSBV658TkCfg8el5u79+7y2o2X8QZ93Hzvfb70xpdwCA6cLoWt7SfsH6b45te/juQQURSFQi5Hs9Xk3MULLC8vUioVeP31LxCKjrO/u8mpmVm0wYCxsTFqtSrHx8eoqpPpmVOMxcNsbe/Q6XYZDUZ4vR5M02AwMvF6bb1Aq9XC5fSg9fsImCwsL9NqtbEsCywBl8te3o2FQ2iaRr1ZZzI5yXA4fF6UHLbbRHKgG4aN1xoN0fqarS7IpNl+9oRyMc325jbp9AnpdIpKvYo5GCKpdvvabrdxu1yobpX9owzTE2OYiPS1EYmJCJLDgWmCLNtF0O0P4A2GCYejqG63TcMWJbweDw7Jga4bz7PRDtKpA4b9Nk5XAKfipTdoc3Z9HVGAu3dvcby9SyKZpNwoMxZL0O9rRKNxtL7G8dG+3RrqA/r9AT6fj739feZPzZLL58GyF5Hb7RYnR0fIkkUwFCUSjqD1+jTqdbxeP6FwhPRJhqnpqc8yzPrIYH39DLt726QOj6jWirz40g32d/aYmp4mn88yPbOGQxbx+nxUKnlKxQJTUzNYFkiygGlaxGNjNgFblsEyqdVrRCIxLNPkJJ3C5fUiSvZ9vmmYrKyscZI6QtM6JCamaLYbdHtdWq0+hqEzf2qe4WBINpel2WogoJNI2IY9r89HvVajVi8xkUjyeOMRTtXFUBsS8Kh4giHisRjzc4tk8xkO9g8A+MEP3/3HXwT/+T/7Z9/9xtd/nWgkwv7+PoqsEgqFEQTRppFgUG80iE3GmZiaY231IlMzi0Si4zQ7LZaWVuj3emw82qSYL1GtVjizvk63r3Hx4jVqlRK9bo/TZy9gjEaUinVkh0m9bhMzhv0BqVQaRVHpdLv89L13+KM//u9JTiTxej3E43EkyUGz2eSFl15iqINpmeijIScnKfKFPLMzc1y+dImfvPsuO4dHjEfH8AZcFPNFxscnERBwyAL93oBsJsWVy1exMJBlheUz5/jLf/sXfOfb3yGTTlOv13n1tdfY3dnhK298xXZ0NFtYpkU0PE44GGZ+YZFQKMj29jbZbJkz66fpdzV2j49xSg50TGZnZ3G7PHx65w4Bf4hf+fIbZE5OGAz6HBwdkJw8xUnmkJmpGVqNNoZlMDUzyZOHn+INRMEa8cmtx1x/4Ro+n5dut0soGCEWHeOT2x+ysLxIsVCiq2n0NA23U2Jqdg6X281wOHx+32YSDAVpt9uoLje1UoFQIES92abVaiPLMk5FplAo4PP7UJ1OhsMhouh4jvAaIjhE+oM+gUCA4WBAu95iONRIpzKM+j3e/cnblAs5qvUKoVCYkNdLvljkzNoqjzcO0Uc9qo0yx5kiLpeM2+Unmy9QKTfY2ztkZXkRWZYQEPH5/YxGBoIoMRiMMIFgKITP58UwdARRRFXsYY3T6bS3Dpo1hqMekiLRrDZRFBeypDIY6cRiIfqDHrrRp9NuMtRGRMfHGQ2HFPI5lpZWcbttJanX68Xr9TLQRrQ7TWKxGKIoUalUePH11wh4fAwGIwRB4ODggFazTnJqir42Ynp6ikcPH9kRt6Afn9ePadrPuLi4xOypRdKZFMfH+wSCIVTVabuia2WGgwG9bg+f34fkkPH7gwz6A9KZIywsJFnC5w0CBoFAgHq9wUk6xfLyInu7O5i6RcDnQRQl2u0OTlWxoaseL/2+7adOjI/T7XZ5+vQJY+NjBIMhEokkB7sHuNwyFgKK4sKhKJxeucDR8QFOVQEEdna3+PDdd57jwyxy+RRLi6v0tCaypPzCRfCXejrskBw823rK4cERExMT1JslBqMhuXyWfC5LLlfA7wshIBP0+5BVhWqtQD6XYnlhEcsSyORSLC0vMnxOGN7e3WJ6eponDz4hc7RHtpAlm85w75N3icdC9Loa2kinXq0w1C1Or51BNy1ajTrlcpmTkxPS6TQOh4zX66fZtEENobEkmw8e0Gk2MHWD/b0DVMVJq11nY2ODN778Jf7bP/4TxqbHkSWFq1evcpI+olYvEwiEyGWyeD0BJpKTDPpDTk5O2N56jMvj5uHjR4x0A7fHT3/Q5Y033qBYLGJY4PH5uXLtOo8f38IX8PLowUN8Hi+hYIC5uWn29/fJlkooigMEkcsXLjExMUE4HKTf73P69Bqdpu0iXls/w8R4gnDYj1P10W63sSyD69df4HDvkEqlxfLSOvsHB3z7O7/F7tYzRMOikM2xvfcMQRyhKm4Odg+4dOE8ywuLz6NeFp1mg+FzkKphGLTbbfK5HC6Pm3aziWmK9LQBIZ/f5g8KIg/u36HXbYJpIFgWsmjL4NuNJr3RgKDXh64NELEwEZBUhXarS7tV43Bni36/TyZXIltqIgkiGztHTM+e4uDgAK/LJuHoA4OIz03A4yWXzdBo9TEcAnNzp2g1OxjGCFlWGQ6H6KMhDknA43UjWtDv98nni1QqNSRRRnYodpRP1xkfmyAajTI5OcPcwjLjyXH29jfR9SHJyRlGpozHF2Vqco3NJxt0tKb9G2UZl8vD06f3KRXTOESJfr+PaZrols5oNGI4slvG8fFxeo0G1XqNcqVAo1lnefU0ALlMmlqzhugQmF9asJWthTKDYZ98Lks2kyOXL9BuNdG0AenUCX5fgJ7Wpd6okM2cIDkEYokJSsU8hXyOYilHOBwmfWzncjvtLt1uk3w+y8bGIzqdDmurZ+h0egR8QUrFnL3tcHxMp9NCkVUSiUn2959hGTqP7n9Ko93B7XJy8eJF5k7N4/V6kWUHs0vz1GoNHA4HlXoZBxJPNu7jcatMTc8TCsc4f+EyS2cucvO9t+wuMTKGqsrs7++zufHkF64zv9RFUJZlYpEohefoqGq5RLGQR5Ulnm48wSHbFJGF+WXarT69zgC36qZRa6GP+jRqVTAkYrEY8Xic+VNzrK+d5ecffcjs/CIr566RmJhjc/MWczPziE7wBmPIpsHW9jM8Liff+4//AbdTptOp8NWvfpWfvvMO/X6Pvf1n9LQmquJGdFj81f/zr7ly7SzPtp7icMgoipPd3X0K+SIvvnwDWQKPO8D4eJz4WIz333+fUChEr9fn9q07PHjw4DOowr2H9/AGvNy5+4D/6p/+Ebqu88EHH3L79qeMRgbHh0dIkoJpQqfTYePJQ+qNNmOJKUKhwGfT18WlBUrFKr1eh4sXLzG/tIAoK/R6PXb3dgiGAuzsbJHLZahXa/Q6XXK5HKag0+n1CYVChMJ+PB43l65c5dSpU2TTW0RD4/zt337vOczA4ty5c3akTDSZmLCR7Vgj+prOxuNnVIpV4rHoZ3JyTbPp0gAejwdN0/B4PJTLZTtjLDro9XpoWg/D0HGqMoVcFkkW8fk8FAoFAoHA84Lhot/vg2kR8Po4PNqnVatSLlbQB0OSkxGmYmFarRaJeJioV2UqkSQa9pCIR5mYSDI5OYksO1hdXaNZqyMwYmoygeyw9/nq9epzYbyE1mmjaV0GAw2n02n/R6GQXVB1HeE519Dj8dHr93E53WxtbxAKxonHJun3+yzOzeLyOFlcXCQY8XHlykucXb9MJpPB7XazvLzM0sIahu5gOBw+F85PkM0co480nj27z2io0e21ODo8JhAIEY+P41RddFttpqbnCUeCeL0e9vf36XQ6GIZBJpOh0+ng9/tZXl7+DIfm8Xi4+sLLFAt5BqMR6dQJgXAERJunOLswTzAc4snjDd57921+5Y1fJXd0wOzsLLt7W0QjY0QiEcbGxiiWCvT7PWZnZ1lYWCAajzE1NfN84OEkGokRDSf4+OOPCYfDxONRWq0WB3u7/PjH/5lOu4GhD/B5PCytLD+PxnZwOhVOzS4wlZy13Sf9HpKq8Mqrn2f5zGmKxRSmobO9s4XX42csMfEL15lf6iKoOp1MTU1xZn2NlZUVVtbOEwmFcTrdXL/xAsbQwCGJDPoapjWgWivQH2gkp5P2hyFYDEcapmmycmaVw+Mjfn7nPq98/nV63Q6lXJrtzTucXjpDcnEVfSTw9PEnHGdOODk54ejogPMXLyAoCmvr1xkODL7wpdfwB3ycPXeR+/cf4nI7GekWbo+fcrmM3+sjHA6iaV0Wlha5dOkSR4d7mJbA5pP7/OiH73Hv7n16WhtVVXn7w/dZO7PKa6+/yqNHjyiWCtSqbf7vv/gea8uLZFNHaN0eFy+d4/r1yyiSzOrqKoYgcpLeYXP3AXcfPuT+42f8+7/6dzjdLg4OjhiMhuRzBR5sPOXyxQsszs3j9YQ4Pjjm1s8/5u13PgRgfmGOz3/xNR5u3Ker9Thzdp1Ob4DTJZHKZGm3ejzdeEClUqFWL+Pzh3nw6DHn1teZTI4TCAe4cuUK+zvbmIZAcmqSbruDoVuMjA6SCJPTE9z5+Of06jWGnQa9eoPR0KA/GKFpg+frJQLtZpVOp4VuDPF4fDgVhWG/T63epFQqYZo6mmY/m1d10e50AKiWqowGGpuPH9HO5znY2+YovUen28SwJExjyFE6z4W1VbZSaQ5Txxg4GBkmzXaL41yR5PQMn356C3/Yi2BZYFqIgoSAhEOCXrdNvVKgWa4wHHTQem2wDHuAA/R7XbRhB8PSEQQLSRI5e+4qd+58SHI8QSQURpZlFNXN9u4e+3s7PN58TL1cYXJyinQ6zWRiAr/Xx9HREUfH+7jdTkzLYDi07X7Hx8eEogkmE1NYgojPG2bp9CqDkc5goGGYQ3paF4dDoNsbUi0XOX36NC6XC1VVee211zBGOi6Pm3KxQr1RQ3LIHB+lcIgKe3tPcClOIrEoyeQ07VaToM9FvVRDcXo4e36diclxjJHO9PwSW8/uI4kDgtExvL4grVaLU7MLuF0+avUGXl+QWrVNoZjlJHVILp+m19cYGkO+8fVvMzW1SDZ9TLFYJDk9RdDvQ3DYCLtYLMbWsw3+899+j+nxSbaePuDh49t0erbYqtNusb+9zcjQyZzUcHsCKKottLpw4QIrp1d/4TrzS10ER8MR2XyObrfN4cER9WqNvYN9mu0W6XSWtfWzBAP25fmgrzMzM4WmaUhOJ7lskVazzdmz56nXGhRKJdxuJ5euXGRo2GTihaVlZEGl09MwTJ3s0SELC6tcvXKNSCSEaZr2WoE2ZGvzMddffIlAMII/ECYYDONxe4mOTTM+PoHH7yZzUqRSq6INdOaX5qlVC2SyaXKZLE82nvH4yQajvsa9ew9QVZWbN2+yvrKKZdhkY0WVGQ6HzM3NMjcdZWVlhVAwjM/vZXFumUg4RKlU4tant4hFIvjcIW5ce53RaMjcqSlee+Vl9g92OEod4/cF+Mt//9dcPH+OxNQUxUqVdqOMqQ/Y3T9hcSFJKBJBcrs52N+l0WjZPl6XBxGD04uLXL10FYB2u81I6zI2lqDaqIIoITlUgsEw9+/f5dbHnxAJhzANnYDPi9ejks7kmZmfIxgJsvn4KZqmcbC7w8lRllQug6wqzM7O4nDYd6r25Fig1awzOz2Dx++h17Nl6k5VxTQM+r0Bg56GLLlwSALVWhlRFtnZ2sWlutl4dI87D+6QyZyg9Xs0+gMePzukWK1y6ewym7s7RP0+lpcWKZYadHsazXYLDJ3NjSe4PX463QGFahe36kTApqGYpo30t3QDQbRwiE4CoSCyKNNs1NBHA7R+GwydgdbH6/XacipBZnpmHsOEw9Q+c6cWmUpOUipmeeVzr7I0v8TR0RGSJBEIBen1u+i6ztKOTZszAAAgAElEQVTSEjs7O7gkJ/vb20QCIU5Sx5w/d5F4ZILxySTBoB/dGHBydEiv1yMUjOIQFdrNFpFIjMTkJIFAANM0GfT6nBynqDdsFe3u7jaBkJ92u87IHLE4v8TMzAydZo18IYeqqoRCIQrFEqrTy9SpeRTZiVP1IVgKpmHRH+iMT5zi1NwlKqWCjVGTZRoNuwUvVwp4PU5kWSYcDuJ2O3lw5y6WaXMni8UiC4vzeJwB1tbWCPjDnLvwMg5RYSw+jqq4uXLlBr/+G1/n/KWLSLKLRq1KuVigWMoxPz/Piy+/RL/f4dRcEkmSEBjh93l5/PARnXbjF64zv9RFUBQFQv4Q+/uH+AMeEokEoVDoMwrwP9jPCoUCHq+bo6MjVlZWcEkKgkNkYmoCj9dHYnKCSDDMxOQ042NjuFUnm9u77O1s8/DJU3w+H41qA1ES+PnHH+L2uHCICjMz8/bFvSySnJlF6/Z495232dl6xqPHdzEMC1Mf8tGH7+FyudjZ2eF3f+f3OEntUy1XWFxeodnqsnZunWavQzqdZmo6ydraaa5fe4nz589z5vQaH39yi7v37+HxecFyMDk5yZ/+6Z/S6fbIl/I83njCX/zbf8Ph0TGGaXHl8lUOD3eJxPx8/++/T7XSYTQacXrlLMnkBC++eJ1Ot83//Kf/AxfPn8frCvFs8yG7u9tksmn0YYd4NIbX7WZqYorDvUM+/8qrvP32TxiNDLRun2a3y5tv/h1Ol8rnbnyeQqGELCnoI9NOQfT77O7u8vDxJucunmNpeYVcvsA777zD8fExg8GAoD+I12UH2huNBtv72/z8zm1efPkGTqeTer2OS7UBoel0GlVVCQaD5PN5ep0W8Xicqakp2u0mgmDj+51OJ9FYmM7zUyAGqIrI3VsfwVBmpPXJFvI4HA5E3UQURJaWlhiNRkiigKJKdHptEvEQw9EAp+ri6oU1nE4nHp/C/GyCoM9Jv9t7Xpz5bJlbUpz4Avb712g0KJeLGIZhp0gUJwIOnIpKo1b/TGIUj4+TzZywvfWUUqlEs9mk061TKpXotNoEAgFarRYhfwhjZPMWAb72q7/Fs60N/P4g3W4XTdMIhSKks7sMtCHVco1s+oRqOYc+6OAP+Oh027TaNQrFLPpwiNtpxw8FEWTZQbfX4vTqEl63j2qliNZq0Gl3OUodk0qlmFs8i98XwOvxUalUuHTpEsFgkGazgdfn/swXo+s6wWAQrTfk5OQQl0ul2+0yNjb2WYttWRaf3r3NcKSRnJzBtESu3XiZn//sYxYXF5mdnaVSqfDx7R9Rr9fJF3L0eh2GozaDwYD79+9Sq1WQZZnj42NeePEGXn8AA4NgKIppiZTLZVTFNhF+8skn7O3tsbe3h9PppN3q/cJ15pd6Ovwv/vc/++5v/NqXKZdy5DLHzM4ski9kicfGMc0R3W4HWbazxPa0a4EHD+6jqioLC4t43B5Sh/uUSzlEycayV8s1fD4/LqeMpLp4/Ve+CLrBcDRAMCX7ZS1WSCaTON0u6uUKsuJCdAg8enifleUlHIpEwB9idmaaYinP3NwsRwcHTEyME43G+eijn3L+wlUmJsb50dvvsDA/y+VLl/H4/Zxbv4Cp6zx5uoksSYRCYXua2NUYTyQ4d+4Shinw6Z3bXL18GURYW11jY2ODeHyC4XCIwyFy5+M7WKLA3v4RU8lxvvjFL7C79RR/KEKtWqWraSiyE5/HS7WaZ3t7k2arjSA4+NrXfp3NrW20fo92s8dJ6pBHDx7x6udfZX5umVx+n+2dFMFwEJcik83mcLvdJJMJyqU6xUKWL3z1Kzx59JBisc6LN64RCgYZDQYcHh5w8eIlFFlFMAX2dveZnZ1hanKaZqNDcnKa6cV5RNGk0+zSrNUIR4K0211M6/lysmnQ13oMB30bijCyRUKmJSCpKoJp0mi3MA2DYb/Lwd42j+7dR1VE3nz7HbTRgIDXzVQ8QrnWoK91mJ2eoVJvcGoqiW6M2DnI0ej0ARNNG1CtNWk2u4QCfrqdHs1Om95IYzIeB4fIqD/AFwzj8noxTZNEfBLZqSArEoZhIAi2kF2WJXxeP8N+n3q9Rq1Zwam6EMwR44kEmtYjFptEECASiVKtVnG5VARERNF2NGcyJyiKg6fP9qiWCzg9LhRFJeAP0h90qFfLWBasr5/D7fbi8fg4PDpgaWkZnz/IzvYmC/NL1Co1nG7bz1wulUgkkuzv7+N0uUhMjJM63GfQHZKYmaFeKxIIxOhpHfx+Hx/89H1Or56mUCgQCcXIpk/I5wucmpslnUmj6zput4typcTewVOioTEEwSIcDiBJTjrdDmfOXKSndTF0g1gsRrfXIZlMoCouCqUioVAUXRfAgrHEuK0lGGjMzi4iCFCpVOi22nS1Jqrq5tzFS4y0IeXCMc1WB5/fTzQWRZJl1lbWiMfHiI+PEw5HiY8n+Mv/9z/941+R+bM/++ff/b3vfAOPx8fq+nky6SzD4ZDkZJJHjx4Qi8Xp93sYuoDP78XlcrOx8YQLFy4gywr1Ro1SMcdYfBKPN4TH7cEyR3zvP/1H9ne2eenG65QLWQxDp68NEEULSVLo9/ucO3cO1eOh1Wzi9/t47623SExOojrdnLtwhXarxeHhHp1ei1u3fsbO9h7Xrl1DNyCVOmB5eY33f/oe1UqNublT/PhHbyE4LKyRxc2PbnL18jU+vHmTmdkFYrEY9WaDwaBPtVSmXKnR7bSo1Yq8885PkSWRXDbLH/7hP6XdbnJ8fEyv36PWbCOLDn71K1/hOJVi/ewlvB4/+/vPKJZqnDt7jmqlysNHt4hEEly9/hLnL5yn2WqQzxefe2cnOLu+zuKinaYplTI8292nXKozeyqJOTJYXlmhVC7zw7d+QrVUxOVxcfTsCZu7h8QjEc6ur2NZFn2tz/lzl7l58wMOj48xTJ2pmQk++eRjRkMTrT/ki298AVGRqFerdDtNPr19i1B0zG5nBLsIRiIRW8/ZaSMIAvVGg0AgiKZpqM81mdnsCf1ej6O9fTY371OpVjk42CMU8eKSHARDQWSni5DXiW5ZjAYDe9orQKlYRHKoLM2M41JFjjINJsYDtLUBgmVRKNXp6Ra1So7z6+uIJrgDYdyBEP2hxdz8EhYW3V6PcCSCpvXxeNxUqxWGw8Fn3pPRaIiqquzvPCQUijMajRgMBiiKSr1RpNvV0I0BbrcHQzcxTINer8doNESSFM6fX6fRaBGO2JBccBCNxHE5Xfh8QU4yJ4ADSzCZmEhgWdDudvH7PIx0HSSVRr1GIBDA7XIxNAwmJmYpFTK0Wg1m5hZ5829/yKVrZ9l69gSXSyIciaKqCgICB7v7zC3Mc3y8j8frZXZ2jl6vy/LyMr1eD9M0WV1dp9mo0m63yBcylCtVIqEIqup+7pseEI6EyOayuGQV1f0PzxSi39fY3nnG+pl1nu48I5NO4fb4mJ2awTAN+8RdrxMMRej3h5TzBQwLdMNg2GuRSE5jGPbydzadpdls4vF6qddqiA6R//DXP/jHvyLjVJ1k0xmGwyEbGxvIikQkEmGkD7l69Sq1WsWu+jGbjXZwdEgo6EUfGRQLWSqlIisrZ/H6/LTbTfb2txFFkT/6b/6Ei9dusLP7FI/Hg8PhYOPpBp1em5VzF3jli19kY/MpbsVLcnqK+/fu8J3vfJvl0ysMhj3SqQPuP7iNYRgU8wXiYwn8QR8Dc0it0eL69dd476fv0OtqfOXLXyJzksbn9TDqDfnoo5t86Yu/gmGZxBJxvF4n7XabhbkZMicp+vqIcNBehdnYfEq712YqOc2Vq9fY3d0mn8+junxsPtvnd3/3t/nOb3+Tk3QKw9Dp9Xo8ePgphVKd9dU1nE6Frtaip41YW1unXMxx79YdDvf3uXThLMZQR+vYmsdmp42uD0kkxrh8/hy9TgPD0Fk/dxYTicODfU4lk6yurvLlr3yF3/mDPyIcCZJMJj9rk/7uB39PNnNCvlzGF7RJzrfufMrYeJzhqM+rr79IoVRkqGlkUydkjk7QOl1E0d4EqBZz5NInpFIpnLJEo9Wiq2n4PT6M4Qgsi2zqhHyxgNYdUioWufnhuzx99oyDgwMURcStOkmMj+Fxe9ndS9Ef6CiKQrVSw+12k8tkKFf7eAJBPC4Zh+S0LXW6A6+i0NH6nDu7RL3RYzw5hWUaSE4PourC6XQzlpigPxji9HpJTs/Q6w0IPG+RvV4vlmVhmQL94RBRUgj4w3iD4zSbTe7c/oROp8dg1GfYHeJ1221nLp+hVi9jCdBo1LAsO6N8cpziwpULNBoten2NaPT/4+5Ng2Q7z/u+3+l935fp6ellZnr2e+/cO/fi7hvuBgIEAYIESZAUxch0ZJWoxCknrjguu6wk5VTiqrhiRYossyxZEkFKTkiJEAgQywXuvi+z79PTM9P7vu/dJx96xKI/0EKq/EHxqTp1ut853adnavo57/s8/+f/s5DNpShXK5jMRlwuFza7mXa7SalYJR6PopbL6LTbJOMJdGoV3W4XRAGLzY5WpUGQiJitNtwDXq7/7F36+h38q3/5v1Oq1em0W5iMVlRqGQcOTDJxcIpMKo1MpkCn0+G0Owjv7BKLRzFbetZloVCQeqOF2WpjdGwKk8lCpVJBqZSTSMZZX3pOMp3GZDQjlcuwmJ3cvnWD9bVVpIKEo0dfwGqxMeQdwesbplGrs7i0gFSQMDE2TgcBUZBTrhRIpePUqiX6Bzx0BAUKhYJ2u43Namd4dPjnOsmBAS/NRv0zx5m/1TPB3/3d//O3X3v1JRQKBXaLlc2tLXw+D48fP0KvMyGX9+zTl5efY7O5e+aXgoRCuYxUJkeh0KDRqXhw/wEOp5N8MsrR46cIbm9hd9qQdbtkszlCwSBXX34ZqUSGVq9nLxxibDTAk8f3sJp7fm1KfQ/qLEqkmPR6FDIpK+trSKQCHt8IZqMFn38Eh8PF1tYyweAml1+8giAIqNUqzp8/T6VSYXR0hEg0gkoupdVosRXa5PnzR7TbPe3XTnibIf8QnY7IqdPneenqVcqVEiarhb2dXYrFIkaDjsuXz1MtN1laXkCpVBKNRFCr5ORzOQrFMgempphfeMqRwzNYrTbMZhuJyC4z516kz+Egn0uTSqcZ9Pm4e+cWgdFR4vEY6VQSqVzF4LCfId8wmxtrJONRFEoNgZFhLFYrBpOJ7/3bP+TggSk8nn6Wl1ZIJBPsJWI0aw2qzTpjw6OYLUZi8RiHD0yTymfR69VYrFYa9SazDx9y/8kTvvObfx9BEEklo1TLZaQSKY1qHVHoEt0LI3a6aLS97qB2p4PVaiWZSCEXu9y48TGZTJpCIU++VGPI20+hWMDV5yCTyRBN5VFrNQQGvVjNRjx9RjKlBlqFFKdVS5/TwcbmHiMBD6lkipmZMXb24kRjBQx6JclIkmPTB1HqDdj73ciV6l5eUKtDqVJRqfSkPZ1OB51ajUIuR2cwIpH2VhRyuZxqpYagkON1u9Ao1Qx43Ij0ujFS6QwLs48R2x3ypTyBwBi1aoXBwSGyuTgba0H83kG21hcZCYzTardYXl5heDgAokC302F5+TkmowVXfx+tJuj1GlqtOjuhIAaDEbvDQafTJZFMUMhnkUoldDsinY6A2eHEMziMy2ri6PGzBNe3GB4JkEplCW4tk83ksNns5As9gXaxUMAz6GVnZ2ef/aLFaDBjs9kplvIkEnHGx8d6PJVqkT5nP+l0ErlKjVajxaA3ML/YY6UcO34CqVTB5toiTmf/Plqhi9s1QCqdwGZz8JN3fszY+Dj1ZgODXkej3BOgV6st3B4P3f3ZooCAKCjYWH7K9s4Gzr5+EIXPTJv7Wz0T7JG7akSjUeqNXqJ3fnYOv38IrU6DTC7FZLQyNfUCoqTXZC5Xq9GqNWi1WiSI6NQ6Zo4dxefzMT1zhk8++YRsNkspXyCVSuHx+RGFXvK7Ua3y+MFdjBojhVKViYkpRLqcvnCZQqGAVCqQS0T5/ve/z8TkEc6fu0ClXEcqlTIxMUWj2qBWyaGQybny4jWKpQJr66u0223u3LnDytoqS0sLqJRqbty+z6O5RbodAYVMjU6t4+qll9DINSjlMmqVMu1mlTt3bpHNZlHKlEyOT2E1OwgEAhgNJsKRbSbGJ1laWuDa1ZfZWN/E1efl6PQLaDQ6VpbXuX79OgqFgscP7rAXiyETGwQ31/B5h9AZzLQ7EE9kaTdahHf2KBWr2MwWFmbnmZ19RqvdIZ3J4nI6sDts6PV6dkNbKKUSJIi4+710um3UKg1DHh9dRI4dPoSr30EqleLi+fOsrq9x9uxZdkK70G6xvrRCoZLjH//Tf0KzUWNtaZFEJEZoI0giHGEvuEkhnSURCbG2NM/S8+dsLK6wtbHOwuxTluaecfPOp2xtrdGhg06nQ62UMOQfxGaxMje/Qq1Wo89mYcBlY3FhjaWNIKFwFOiCtMvgsJ/daAqZUkKr1UBvUFEt1tCpFNisBuRyKSIgyBWYbTZ0ejNSaU+UL5NLYZ+zrFNrsFgsIJPDPjdZo9Wj0iiRyATUOjWdSoX33/kzItEdOkLPKECj0+NyufjWr30Hi92BWqXnR29/H7vdyd7eHlqNmWPHX+Djn73L6ORBllbnkculzMzM8Hz2MYViloWFBRQKFT/60Q/Z2tpCJpOQyeVRKFScvXCJfL7I7LOnyBUyNGo9TqeLxfk5FEo5DkcfBycP0Ko3GBwd7VVxHTY+/OhdjAYTHu8Yo6OjdMQ2w4NDFPMFVlbWqNfr3LtzG61aRa1ap1arsbKyglFvIhrZIRQK0kWkUCihVilRKNXIBbBYzWSzeVwON29+5etEIzHy+SznLlxjZW2113ffEmm2W6i1vep6vpBlJ7iJ3WKmWi0TzWVJp7O9dINcTiadRa/Rs7mxTqWUwDs4zrmz15DKZVjtts8cZ/5WzwT/r9/73d8263vuvnt7YWx2G1OTE8gVCtbW1uh0OrjdLkKhIBqNDrVMzub6DiNjwzx59oRWo4VMJmNza5OhoWGezd7DZNBhsNjIplJ4vT7MFhtej5tcMYsUKba+fjrtNtp9k8/RsTFagpR0IkW9UuLg9GH8Xi/vvPuXvP/B+3znO3+HwMgI8ViUTqfF7u4uzWaNQ4dmyGRSrKys4PP5yOfzfO6lL1IpZ1haXOTlz32O5eVFzpy/wIDbzb17dyjk8xhNJtQqNePj4/z5n7/NmfOXkUmlZDIpnj9/zOHDh1heWUGuUjI0PEwilWJi8gCe/kEazSrLy4sMDLhQKKXML8zjcDqwmM08XHhGs9ullMsTj8bQ6TXE4nEWlxdptpt8eusOSCRkUkkymQyBQACf30uxVKRebzE+PsrNmx8zMXYQjVrJyZMnuXvnFh5PH61GG5/Pv2+B1eTK5ZfZ3t7EarUSj8fp9wxg1um59elt1CoFINISOxit/WQTUYJrK0QiOxQKWYKhXQq1KuVSlocLz8lmc4iCSKvTIRaNsLS4yObmOq12Dwzkc/Vz7PARYskw04cP8cknH3HpylkK2QJfePkSdx4+RqVVkkgVuHTmOEKnzdjYAer1Ao+fLNOViEilGuLRBKdOHiCdSYNUQrFQw2gycPrEMWweLyqFBrW6550oCAIarRaL2Y5cJkWhUmI2mVApldjMFpRyBcJ+r3ulXEOhlFOtVHF7vNSrBVQyFXqtnmKpQLPR0wE6BvoZnTyAVq3BbreTSqVwOp2sr60xOnWUVHwHjUZHJBKl3aqxEwpxaPoIRpOVTDxGn8tNLp9gwBsgnYlQLBSxWuwMuL0Uy2ka9RY6vZ5Cqcho4CDLa4+o1ZpEo2EqpTI6o46ZI0d7v5O8hykIbq+gValpdXv5z9HJSVrNBkODwygUcgwGC4IgMjw4hCiV8PTRPQKBYRxWF+lUimQ8waHDU5SKPZ1np9PEYDQyvzCH3x9ge3sXl8tBoVBALu8tubVaHaViEZ1Bw+jYYYLBdVRyJRubq4x6PT0e9uQYKqWcTkdEAErFEv7AKKVimWQyisvlQa3T8Ed//MP/DAoj/+J/++2vf/VNhgcHiYTDeH1eNtbXcDid9Pf37LRy2TxarYGFhTlsTifdbptIOMLpk6exOW3EE3GmpiZJJZIoFHJikRjtZgedUY9CpUDsdqjUKhTyBRKJGNvBNbKZLJ4BL3fvfoLZ3EcyEuThvVtodXru3LuN3W7H3T+A0WjC7fFw+8ZtInt7yJUyhofGqFWrJFNxcrkMjUYdnU7PwsIcMqmE8QMzdGkxPz+H09nLXfn9PnZ3djl79jxDg35kMgU/+PO3+dVf/Q6i2GRvJ8j66gaBkVGazQZit0c0u33zNtVqDz24uDjH3PwsXUEglc4zNXEAr9uNRKlGozMSGBjk1PHjBLeCeLxe1jY2CQQCjI6OUynlOH7iOJVyCY1aw6Hpg6Qzae7cvMPs/Cyuvj52d/dwu72IUglqtYrNjU0uXLjIyvIKOp2eZrPGpUsXKZcqLC8tsba+hkIqp9KocPnS53ny5CGpTI50JkexWubsqVNsrc6TjIbJ5fPkajXWQzukcwXy+Sr1ep1CLktgeJhUMkM4HEUmk1KplpDIJKhUCmxWCxNjo6xtruO0Ouh22pQKNVqNLn19NvR6M6lkimQyzysvXaDVarETieNyWrn3YBaHw4Z3wIZGLcfvddFs1LGYTeRyOYwGJV6XgeMnztLX78fV50IUe9IYvV7fM6DQKHG5+1Cpeho5s9mCRColl88j2fdClEhALlWSz8cpl6vEonvIFSqKpQImkwmVVgZdKTqlhkazQbvTJp1KIpEIKBRyyuUyx47PMP/0FjqjBa3O0HO1kSuoVmvIJOALjBINb6NS6SgU8jj6BjBbbCzMPmXu+X1Gxg716IbpNCBgsZhJpzN4BvwcO3qCfreLTqPD7VvXcfW5WV1ZRW/UUS6UGfB4yRey6LRGLCYTnXaHXD6HyWxkeXmJ0UCARrtJpZjHYNTz+O59iqUq45OT9LlclIplsukcUwcOUKu3QYBMOsNOcJN+Tz8yiYxGs8WdOx/j8fjodBusrq6zubZJYGgQqUyO1Wbb7z03cPuTWwwFhtHrDdTqNWQyKTs7IWLhKHqdFoejnzt37xDeiXDz7oP/NMthQRA8giB8KgjCsiAIS4Ig/P39cYsgCB8JgrCxfzTvjwuCIPyOIAibgiDMC4Iw8wvv9e398zcEQfj233TtdqeDz+cjk81x4cIFIpEIdoeLSqWy32IlpZDPUC5lOXnyJN1uF4VKSf+Am2Bom2g4gtvtplqtotXq2dnZod/txTs8jMXspM/poViu02pLMBos2KxO+vv9nDpzmlgsgt3mol4rsjA3z6lz51AoFIyPTRDei7C310N+FosFZl6YIZnLEInF+OHbPwCJlK3tICvL63zupc9z+/ZNpqYOshbcpFpt0O12GRubYHBwkJHxMZZn5/D5fESjYZKZJANuB//wH/xDMqkkC3Oz2KwuipUi8wtz2OwOBtwePvnkE7yDQ0gQuHnjOol0iiNHjjDs81EqZOh0GngH/SzMPuWTD9+nkM9SyGc4c/oUy8urPLj7iPnnsxRyaY4cPY5EFLCabBw7dhKNSklwc4tmu8VXv/I1rl37XE8ypFailEtoVGq4+u3cu3cPh91Fs1nnybOn7Ozs8fjJI0Sxg3/Qx9Z2iFeuvc5WaJV6tUaHDp1WE7VMxtzCGrNzy6yFwjycWyASiVCrlvH77HTbdfpcdk6fOEY+m6JaK1Mu1XA7+jl74gQHxidwuwboc9hRKxXIpRIuXjpHs9nk0MFJvJ4BUpk0rW6TYzNHuHrpDB73APFEinK5SCwRpdNq43KZcLuM5PJljhwe5eKFUxx/4QhvvfklpqYmemCgYhG9xohUIcPr9zM6OorFZsc/PITFYqHZbNJqtXoc5FZrn52ipN6oIJGKNBo1RImIWmXAandgNVtQa3WoNFra3Q7VSh0kHR4/vYNCIkEu7QmJbTYbKnUPcZmMJcnl65RLdTqtNuubGyjVGqxWM1K5ApPByPTMCbR6A7HdTaRCh0oph2vAR7GUptWoY7HbGB0dx2a3UioVCAQCLC3Pk8nGCe2FKJZLjE4coNao9nS3Wi1ylYZcoUgxl0cqlRNP7FEs5XrdNBIZjXqhJ0yv1pGpNDgcXl55/U36B9zI5fKfV269fh/Xr1+n0SxSLlbw+Qd7zQU7QR49fYDRaObUyXNo1RrisRSHj0xz4tRJytUa/f1eNBoNWpWWVDLBy6+/RCIWJxGLotf24FoXLlzA7RlAFKDdbXHl0ouEo5+dO/xZcoJt4L8VRXESOAl8VxCESeAfAddFURwBru8/B3gZGNnffx34/f0AaAH+GXACOA78s78OnL9s02o0dLtdarUaGxsbWK1WstksmUyvl1MiyPEPDZPJ5UkmUhhNBgIjwwz6/Bw+NI1arSaXy7GyssKt29fp7x/A5R2gXCiiUqmIRqOo1Aq6Ypv7925TKhbI57L83u/+H3z6yUeMjo+xvRPixKmThKNRWq0W0zNHGBkbJVtIotZqWHw+z09/8hOmxkZIRmN841tfpdGs8toXXuc7v/4dDGYDr7z6BbqihJHABOVSkkQsic/rp9Pu8uTBPQr1Cg8fP2Lq4AHsNge3b99mbq4XGGu1GqPjI9QaDeQyBdVqnbd/+AOCW2H+6p2fYrP3ce2lVxj2D+Jy9lFvNPnWt75FsVikXq/jdDrJlYvsRsLs7oZptzpMHz7AN7/5NdY31pBKZPzFX/y450hTytDXZyOVSYNE4Lvf/a8olgq0Wg0SyTgLS8vcvf+A+8/mMBjNiAjcunuDqYOH0OqNSOUgkfSEz+fOneHE8SPcv3eTaGiHcGQPb7+DsYlRGt0uz2cf8/nPv0yzWmHAZWfQ04/NpOetN9/k8sUTyIQ2fQ4nL164yOiQn4OTg6i0HZLJHilNIe1Sq5QRRYHh4WGi0QWl01wAACAASURBVDidTs8dRa1W8tprr7G1uYPZYkShlJAvpHG5XHz9K19jcmSME6cOc+DACG7fAEaDCrlST4/QqSKWSFKtVul0OqjVapLJJHK5HOhxTBRSGfVKdd/8s06pVIJuF4kg0mw2kcvliCKIIpjNZtRqNevr68R2QmiMvT72VquFQiJDFAV0OgPXrr2GIJX9HMIu2we5l8tlpAop5y+/jMVmRaaQc+jQYVx9Pef0RCJBq9Wi1WpgNJjwDU6ilKuot9rIBSkmkw+NTks8HCYY3ESrMSDS6+FORCLsBoMopSryhQzlbBK5VMELp05SKpU4evQowa1tRsYnkMtELGYnnU6HdquHGhhwD9LtCKQzKeRyGQgiaxvrSGRSKpUKsVjs5zeIocAwbpeXdDqMUiXj4NQxMtk8p0+f5tat9ygUeuiCiYmp/dWdHrPZSrvd5vGTe8RiEeq1FsVikZGREQDi8TiNRoNwOEw+l8ZiNpBMJnuO8pOfvW3ub7TXF0UxBsT2H5cEQVgB3MDrwMX90/4YuAH89/vjfyKKogg8EATBJAiCa//cj0RRzAIIgvAR8Dngh7/0w8llRKJhZHIpQ/4hgtu7jI6O9pr/TQZKpRJutxu71c7g8GCvpS5fJTDko9Vt9azQu12mp6epN1sszz5HIlWwvb1FuVzE5XKztrqEb2gMg06PzqCn2W7xpS+9hVQigESKd8CDUq3B6XSSjid6lbF2h9e+8GUi0V2a7Q6rC0usrW8TGJ8kk0qzOL/A5voGqVQCrVbfkykAX/3aNzBajOh1Jubn58nmMvj9frrZHEePzfDprZsYtVr6+l30ubw9F5S9GEsLyxyYOEirIyKRC7z66qv4fD7u3LnDyMgwxXyvADM22JMJtMUu+UyGZ/NPeXD/Mb/xG7+JQaujWEizFw6xvLTGgG+Aq1evkiuWeoWdA1Oo1WrS6TRWu5PT504TTcSRS2X86z/4fc6ePUu5WmNycpIHjx6yML/O/cezXH3xLI8fPsBiNJNMZnG73Xi9XmKxBJlclkg4zuUrFwmMT3L9ww84ND2IQqFgwOnk//nxX/L1r75BKBTC4XAgih3i0RgOuw3ENgqZnLm55zidTgYP93KO0XiCZrNJOBym0+4SCIBKpeHTT6/3wEdWK7lcjlt3bvO5ay9Ta9S5c/sBFouNarVMv8uJzWohFtvB7fQhU2v54heHMBrNxGIx4tEIp06e4y/+6s959myW8aljnAr4EQQBuj3WB6IUuVyJ0BUROx1UCgWNap1uq4Nap6VYKpFJ52i3Wvh8PjqdCtNHjpJKhlEr1KysLBEYHuPmjfcZHB5HKVchiD17OJ/fg8GoI5WKo5BrcLlcFDI5MukkGo2ORKIH/wLQ6TXIZDJW1xZRyDUM+oeYnJpgY2MDhUrJ2t42p8+e6+noIntMTk6STMYxm80oFL3WPyQCtXoVs9mITOxw4/q/59KVryPTqImnkng8PhKxOBablbu3P2ZsYpI+l4dYcpdSvsqBgzPE15ZxOfuI7IUZHgrw8N4dLr/0Enarjd29Hax2O+l0midPntDf349CriaZiXL85CnC4ShjYxOsr2ygNxhRqVTo9XqqlSKtZhtRAK9nhFa7JxEqV3Mkk3EMBgPhSIgTx0+SKxRptRoUi0X6+1xUayW21rY/cxD8/1QdFgTBDxwBHgLO/QAJEAec+4/dwN4vvCy8P/bLxn/pJnZ7JptWuw2pTI1MJiO4vUG1WmVvL0K/y01oZ7uX64vF6Ha7OPtM+y1GZiq1KtlkGqkgIbyziyAI2Gw2Tpw4gUqtJJNJMTQ4QqNZQa3uEcree+9dNGoF7U4Xs8XG4ydPKZbLiK02hUIBlUSKq7+P5ZUFMuk82WwWh8PByZPHOXv2NHqjgePHj3Pu3DmOnzzF5StXaTabfOUbvwpIePJ4FoNBh8FkRBRgbGIcg8mIzWLl0oWLzM/Pk8/nWVhY4OPrH3H02AxPZx8SGPZitxr58P0PWFxcJJXKYLM5mJ2dZW1tjbGxMf7qg/f55OYN/uRP30auUBLcCPKP/rt/Qr+zj9D2Og8fPubpk3nylQr37j/l2WzP/uiNN94gl87w6fVPmJubw2lzUCpkoF0nlohjstiZPniAgN+LQgKvXbvG8vIy7XYbv3+IbhcGfX6y6Qy7uyEWF+f56U9/itFopL+/n+dP5mg3a2h1Gp48ecS9+7cZGhqlWKhRKOSQSEAqFUim4nQ6Hfx+PwuLz2m2W7Q6bfx+P5lMhpWVNawWG48ePcLv9/P666/z9OlT1tbWePXVV/F6vdjsDoqlMpcvX8XlcnL945scnj7KsWMzfPFLbxCORvCPDTF97CTZTAy9Xo9Wq0WtVtLX52B84iC1Zhm/b5h8uUqn1WZxaZZKpU4mnSe0vderTGYyVCqVHk8YEEWBdrtLt9trfXv04DEKqYJsNotMqiKZiu/zgpPY7XYAzpy+hk6nQ6lUUq1W0Wg07GyHiEWiWMwO5heekUjEyOUyGE16TCYT42NTNBtV1laXSKeTvPvuu1gsln2nbgXhvQjVahmlUsnU1BSOPidOp4vJyQO9/1+VCovFhkFvxGi2UKpUe+oDhQ5HfwCkOnaCK4jdFo8e3MVo0tDf30+xUOHMuSvcv32TSrXAQP8wly5dod6oMDI2SjC0TWB0BLlMSr1aplYpU69VcTqdPHz4iD6nC//gKM12i2q1yu7uLlIBBLGLxzPCK194g3A4yONHj1DKFezu7vagWt0uGo0Gm9VFOLLXS1PZnZRKFdRqLX/69vfYWH7Wu/m324QjO6SSWV778uc/c1z7zEFQEAQd8CPgvxFFsfgfBKverE/8zFf9j1/n1wVBeCIIwpNcvkCxnCEa3vu5NkmhUKHT6RgcHiKeiCCX9iArmXQWrd6E3eogkYxTLVcw6nWYzWZmnz1naHgQJAK5fJJYPIxMJqFcLFFvNgiur6M3GlhZ3eCf/o//HLPFjsFsQqXS8F/83b9HsVikXC6TzxV4/PQJ6USWtdVFctkEI0NjaA1qMukEe6E1rn/8M1QaNZFYlNOnT1Ms5PmN3/otGvUqtWqBfCHFH/zh94hEEkilUuaezbET2kWpUDH7/BkXL57nwcNnrK6u8nx2ia2tDb78pW8Q2t5jcMjLsWPH6Xe7MJrtrG2u9r50UoGluTm+/NZX+fzLn+PQ5AQGo54vf+mr5AtJllefsLK6QbZQ5eL5o1RLRbpim1KlwpUXLyJFwW4kjN5iIh5PkskXePhojkyhRKVWw+/3UiyWaTab+PzDPJt9zquvfZHXvvASP/voZ8QScW7fvs3HH11nauogrVYLlUqB2WCn3+UgmUkS3NxicNCH2aLjK2++xcNHdxgf8aPXG8lkclitdvpdPfrYxsYa166+si8+FkhnM+iNBkKhEOv7AX9tY5VsPsEXPv9KTyxcKBOLxHhw7zGvvHKFhw8fItLi2NFp/H4/JpMFV7+N4ydOUK00aLe7VGstrBYLHo+HjY11+l3+fQaKganJaZwOD612g2azSTGXpSt2QOiQL+RQKKWUyz2fP6VChVwupVwuk06nSSZi7Gxtsre1jlrRs8ivFEvEozE0Kj2dVptsJsny8iLtVqNnCtusk04nMRjNVGs9fo5OZyAa2WMvvI1KoaRcLTG38ITnzx7R7/IglcpRqTR0uhJc7n6SqQRSuQKLxUY0HEGQSqg12nTaUKiUSUTCpJIxqrUSsXgYj8+Pz+tndGSMfCFHq13nytUvIVGoWZh/Bu0ujx48JFfqAeHD4TCXrr7C3PNZxG6Hvd0wG2urFPJFDhw4QDqdRiqR8davfLvn9i12icfjOO02lpdnSad3UavVdLvg8fjI5XKUygXu3rlJpVJi5ugJvF4P8VjPt1CjVbO3t0Uhn+mBuGxWpiaPkMtlQJDg949itrgYGjnEoUOH8Li99Lt7kq14LPGZY85nCoKCIMjpBcC3RVH88f5wYn+Zy/4xuT8eATy/8PKB/bFfNv4fbKIo/htRFI+JonhMrVKi0xqoVqtkcynkCgnxeJS+PgfZbJq98A7lfAEkAlNTUySTMYrFIjOHj7AwN0+1XKPP7ebkmTNolBo8Hh8Op48+1yCIchrNOql0nJHAKIdmZpg4eAiJVE5ob5dWp02zUeN3fudfYNRrefZ4lqmpKUZHxhgaCjAamCIcDpNKRui0urj6vLSaAg6HA7VayYDbx3s/fZ9SOYdEhFIhTbFQ4vQLJ5EjxWwzMr+4QheRdkfK7u4uU1NT5HIFGo0GSrmM//q7v8GX3/wmiUQMk9nIdjDMnTu3yKSz1OsNVFL46PpNdveilCt1EukkUwdmyOSz3HpwB6vVzM7ODvfuz1KqtMnmqqwFw1gdTox6DWdPn+Fn77/L+vozPvzwYxQKFVeuXGJ9aYmTx45SyhfwurxcuXCZu/fusxuOENraIpks8+jJTfrdTq5euszI0BiDg8NYLDZmZma4ePEiJ08eJxIN0e0IvHjxCul0EqvFwbUrL7O1tcVL117B47NRLlXQatUk4knUKg3Ly4uEdja5c+ceyXSCI0emaTWalApFoIvf78HlcpFLZZibX0SmUmDQ6dndCzIxMcrAQB/FQplAYIgf/+gdbNa+HpUsX6BWqSGRNDGZjLj7fbz2xluE96Lk872bXCodQyaXcP/+XaKRPaanJikUcvucZDlKpZxsNk273ZOW/PUssF6vk0wmkclkdDoirVaHIzPTmPRKtoNBEtEd/MNDTExM4PF4fj7783g8pFIJzGYj0WiQTrtJs1GhXisRDkcZHRlHQMr4xDStVo+u53EPMeD2o1DKkcuUnDt3DrvdTjqVI5/Pk01HyOTjuN29mZNSDpHdECMjI+jMeiqVDMV8jlq13LMIq9YxmXvL0GBwk3angds3zGBggumjRzl++gwajZpPb3yCxqAmnkzxwgtncPZ5eO9nf4Hb3YPG74R26XO6KFXKPZen8A6IUvpdbrQaAzqNmWQii1qlo1AosLu7i16vp1wuo9UoSKVSZDIZlFo1FoeNQqFAtdJAJpGyuRZkaekR5XIRuVxKq9W7GfU5nIwMB4jGY/y7P/wj7t29TjFfIJOOojfoPmsM/JtzgoIgCMC/BVZEUfyXv/Cjd4BvA//r/vEnvzD+W4Ig/Bm9IkhBFMWYIAgfAP/LLxRDrgH/w3/s2pVKFY3WgE5rJF/I4Ha7kUrlaDQ6JIISm9lBt9tFq9WyF97l0tnzbG9vce/BXUbGRllcXEShVvPwwV0AnI5++qUSSoUiW1sbnDp1iu2tIFK5gq31bXaC6+i0SjLZKCqVkof373Dm+GnCuxGMZgNzc3N8/dvfJpVPYzabuXL5ZVZW56lWqwz5B8nlS5QqRUKhECajnZmjRxC7TYrFIisra5w6c4YfvfOXHDhwgHKhyBuvfQGXy0WtXuTs2fN8/49/gE6r4tKli1QqNbLFHPcfPOglj29+gijA+OgYp86fZy8YJDA2idPlxTvoJxLdpZEvIaoFDk1OsLCw0HNzadZZ3wojk6qYmvAxc+Qg9x89x2lx4LQ4eProMaIo8PWvf41apYheb8bmrCCTypHJNVRrBZ4tzdIWRM6/eIVyNsurr13m3/y7PyG0lySbjvG1r3wNhUTCcMDP1vYm1XKFuw+ec/TwBHMLPVdto9GMxWrmT9/+ExaWN9DpFOzuhBGQMjYxyW5oh2QqwfT0Ef7yL3/MG2+8QTSeoN3u9oDjlQrNZpvd3TChvT20RiOXX7zEytIqkVicbrvF9CvT1JsNrFYrBoOBZCrO0OgQ6XSWmReO0mqWcPd5qVWbaHT1nv/d4HBvhusbYnLiEMlkHLvdTrfdwe/3sra8htBu43K5iERiVAs5kuEwCpWcRr1EodCk2+1SLpdxu2XIVXLMZiNlh42VuY9RG5wIXQG9SY9cb6VQKCCTySgWM0xMTJDLJVhanmXAM4RapcXrG+TZ08eUiwVcTgcqrRKlUo5ULmNlaZm+vj50Bj1SuYRsvoDdamF1ZY5WU2TywBQPb11HqzWgURtot9tIJDLi0RBKpRyffxSlUsnc/FOGh0fo1toEhgbJFXPo9Xri8ThKZRadzoBWo0Mmpffd2Nri0qVLdDsirol+PvrgQzQaDVeufp6bN2/iHfDQabWRq5SYzEb2dkIYTXqUGjkLCwsMDQ7jHxph+uhJtkOr+Ac96PVaypUSAx4fuzvbCN0uqUQGQdrjv5gtemRyAd/gJG5PvSc5ate5fv1TLr14mbff/iHBjRBj46OMjowhl8ro63NQKJUxmIxEo7ufLQLy2WaCZ4BvAZcEQZjd31/ZD35XBUHYAK7sPwd4DwgCm8D3gN8E2C+I/M/A4/39f/rrIskv24wmI06bjXgyQaPeZn11jXIp1/NIa1apN2qYLSayuQxOu4ONYJB0LkGzVWF3d5fjp8+i0xk4cHAGr38QZ5+XdlekWqvw6qtf5MMPP6TVadNq13E67YyMT5LPFOl3DaI3GqnVasjlclqiwOlTL3Lo6BFCW+tE9kJUq73lSzKd4fWv/QqRdAKTw0TAN84LJ07hdNr54L2PKNdarK4sYjVZiYZ20SnVmE1GhoeHaTdbxGIpPAMBuu0Wap2SsxfP4/MP4Hb3NFaDg4PEEklabZFvfvObjE9PIOnKabQbyKUyatUKwfV19kJ7NDptHDYTsWiaocEROu0Wdrudf/aP/wGjwwN4+t3s7UY4cewEY4fGePeDn1KrV/k7v/YrNKtVtjd32Aqu8pOf/ASn08ni0hy5XAEFAhqFDBkC9x/cw2KycvLQId567VUunz9Ds1plaWWRialJjHoD1UqJjljkwNQ0Y+MBut02LqeD+w9u4HF5sNv13Lr7hLnFDR49X2A3tE2lXGV3Z4/vfe8P8A96SabiPJ19yvBQgHa7p8/zegc4fPgIiF2++dZXWFxe4dObNxjyD/L662+g0+nY2FxjdnaeZ8+f8LkrF9EYTKhVMuLRMLFIHEEigtBBInRQquTEYhGMBhMataHncLy1BR2BcHiX1aVVwuEw9XKZ+bk5dCYjCwtzlEt5mm3Y29shnojx+NFDVDIZtVoFmSChmM8x0D/A++98BLUiYrdNaCdGq1GnkMujUikYHhrlyeOHTExME4+n0KoM6DR6KqUao+MHOXb8BPFkgj7nAOlEmPBOCI1aSbnUa2GrVGqoVAo2g1skYnFyqSTdLgwMTbG4PI9Al9HhSdKpHJPTLzDgG6bVbON2jzEyegCzyUoHCR989A7heJxup8Hw4BDNZq8iLdIlFk+xvb3N2OgkpUqFSiNPrVpidNRPs1MFUeDC+UsMj41Bq0O33SKRSJDJJojs7RLa3EQqSGh2G5SKGaKRDZq1FsVCCZVKhdjpUq0UMBr1CEpVz0dQrWZrYxO5QkOt3qDeKBENR9BqtajkGgSphODOOt/41le5cPE8JpOJaGQXnUXTc50pF0DsQlf4TxcERVG8I4qiIIriIVEUD+/v74mimBFF8bIoiiOiKF7564Am9rbviqI4LIriQVEUn/zCe/2hKIqB/f2P/sZrd7uk02kCw0PodVq6XYFsusb62gaxWAyj0cjiwhIyqZxcLsfzZ0/xe8fQaa00m026HWg0asjlUhKJGM1WFaNRj9fjI5lJ8qWvfBWj0Ui71aFYzJNIxEilYpSLBVQKBRMTYzx+/JC+PgfXP/0rssk4Ht8QVnsfdrsVk9mI2+1md3MRhVSBxWghHI1QqVS4ceMGgcAQuVSSJ0+e0Gw2mX7hGAcOThEJR2m32/T19bEb2uLp40f8+//7z/jcS58nFo5RrTR49913CYVCtFotPB43LpeTu7fu0qk0EakzPz9Ps9lkcnKS7e1tjr9wglqtzrOnT1Cp5dy4eR2D3siAZ5hyufzzBHM+n2dzc5PZZ8/5e3/3v+Tb3/426+vrCILAwYMHmZub48DUQcrlKpcvXUPsSmg0O1y+eJVWq8XAwACFQoGpqSkSiQTdjoR8Po/HPcC9O3e5e/c+I4EJOm0ZO7shHI4+ZHIVo2OTPH0yz4FjMxycPMiR6QOcO3uM8ZEh1Go1fS4nE5Pj/OZ3fwPv/qzI7/Hy9vf/mHa7g8ViI5ZMY7SaekWvap2F53MM+QZoiw0k0i4PHzzl4IFphoa9fOMbb5ErVKmXixQKuZ7NmdVBsVAmGAySSqUQuwJ6vZ5Wq8Xg4CA7Ozv4/X4qlQqB0TG0eiNDgVGu37hOdHeTdCJMrdT7WyoUCrRaPXK5nHPnzpHNZmk2m5RKPUhUJJHk0isvs7a0iFKl4tDhaW7d/uTnq5liqcCAZ5BavcrIyAjLawvEkzFqjRqtZoMHDx5QrVYxGAwM+EYx2+zIFSpy+SI/eecv0Ok0eD2DHJ05yaWrrzA4MkqpVMLj8TE1fRSpoGJ+/hmtdh2FQkWjWcVksgBt/F4PrWYdrUqGWi6g12rZ3YkSi0XQ67WMjY38HBOgVCrZ2Q5Ct82Nd98hU8xTrtRYW9ug2aijVatoVGtkinkyqTR2mwNRFBCkEvaiISLRINGdPRQqJQ8fPkShUKBUKmm1WuQKebQ6A81mG4NOidag/bk0qCc073GqO912j/HSaXDpxcv4vONoNb1CkNFoJFcoEt7aZSu4iUajwWw2s7MV/MxB8G91x8i//v3f/+3jRw9TqVZQqdWYzCbK5VKv6uV0sL29jUQqRSpTkC/kGB8dYzO4icloxu8fZGwsQDweJ5fLMTV5CLlcTjqXpVQo0Wk3qdeq2CxWHj140ONvSCWYTGaGhkZYXp6nVm7Q7sDpM6dBUHPi9Cmi0T3y6RQrq0vMHD/O/LMl2nWB6SMHSKUSOPv6ELtdfB4Pfa4+opE4hw8f5sMPP2JsJMDS8hqxaJSLFy6yvb1DOpPkyJHDHD1ykmI+SzQaJZfN4R/yMTv7nK5EILS9zfjEGENDwywsLhLc3MLltFPIFymWSmyGQrz+2mt8+P77GAw6hgOjuDw+BLpYrXYW55+ws5dAKgGrzUw8niIeizA1McHC4hwGvQGJRIpEKmFq6iD2PicarY7f+/1/RTqX4+KFM/zgB39Gu91i+tA028Eg8/MLzLwwTa3eRKfXotPr2NvdAVFCvVWmWm9z8vhRNjc2efdnH7Ab3KDV6lDOlxgdGaXZrEIXxsYCOOxOxicnkUoEctk8W1ub9PX14XV7qZTLmM1Gns3PEY6msJp0bG8HaTZqOJwW3O4BdkN7DHj8bIe2MOj0TIxP8uDRfY6fOMHm5ho+3yB0BZxOF4lEHM+An3K5RDoTw2S0kctlSWWS9NldOOwOcrkseoORXCFLYHSIZrOLWgq1eoXHj5/gdXtw9jtQqLT0u9wYzUY+/NmHjE9MoFQpKBXrxKMhZDI51j4P9XaTRDTCyVNnicT26LQ7xJMhBv2jZBN7ZGIxDhw8iiCRkoiH8Xj9DAwMIEparK0sodHokcokdLoiHq8Pm82BUqFmbn6WWHIHnd6M0WInl+r5ZmoNejqdDkaTnlw2gVatZ21tFrVSxebGOoVClmh4G2efj93YHvVKBf/gMFaLhb29ENFYlFKpgs/vo1KpsLyyyMXzLyJT68mmcoR2dhgeHKbWqNOli8vVj0gHg9GIRCKn1WwxMXkQrc7IzMxxIpEdBBGmp49SKuaRSqS0Wk0cThtymRSL3cXe9gY6g4lMNgvNBhKpDKlcisFgAAEG3AN0BYG1+aeYrVYi4W2qtRrNeh2rzYZUJkMQuxTKZcrlCuV8ilsP5/7zaJv7xltvkkr0+nxbrTZ6fU93t7ra68ntij2XabPZgE5vQBRAIgisrq6wsjTHaGCMfCFPcHMLjVaNWq1gb28Lnc5IJpNBozWg0ShJJBMMDw8TDG6xE97jyMwLtFp1BoeHyGazeDz9hELblHIZLDYLt2/dxWp3YDTpqFTzpLI5PF4/P3v/PU6fPcve3h6ffPoJY2PjfPjB+5w6fZr33nuPX/n2t5DJpNQbLe7cu4Grv5+nz57x5Olj5ueW8A/52dje5vDBg2yHtnnzK2/iGfCwtrbK/UeP2N3b49LlCyjlCkQRFpcW+fav/Rr1Wo3A8DDugSGyuRSdLtz69AYWq5mVjQ2Cu3G+9uYbbIe2GBwMMDw8TKfVYfrIYZaX5zEZTWg1epZXF1ldX0GrNWAzGdncCqKQKel2we/34XTa0ei1SJCwsLCA3mTjvfffZyQwTLlUZnZ2kWvXrjK3sITRoGY7uEO3I5LN55mZOYLT2Ucmn0WplKNWa9DrTDx79pRmq0UqmQQkyGRyVldXGAqMYHPY+eCjD7h69RoKuQqLxYBSqWTA6yWeiKNSqhgbHUcig8mJKQShjc1uxmK196DoBgvFQgmv10+5XO4Fv1SGkbEhlAoNICCRSNjaWEFvMIBUitFspFIpopCAIJUQCIxy/9YN7j14xOT4OBqdlnKxiMZgRuyKCBKBp48fc/LUSSKRGKVSgVRyF6lMhkKhpFarUSmXSKXSmIxWavUyer2BTLpArd3BNzRMLLZDIh5BrdbQ6QjE4hHkciW5bJqx8UM8enCHQ9NHiEajbG6sYDIaGRwMYLfZKRV7Dtj5bIJqtcJAv59Ou0M6k8HnG6LVaZFK5lhZesTLr7yKQq1jY3MTqVTCxMRBlHIFjx88xOsfRi5VIiJiMBh7XSNyORaLGYPeSDyexGDsSXUy6QwGo4H+/n52QiEMRhMCEjQaLVqNmnKlAoAUOd2OSCQapdlq4nTYWV1dJZvtmc12Wm1S6TQGo5V2s4ndZkdrNKDVaKjWquxu73J4+jDReIRyPsPg0DAKlRYAo9nCo7s3qTWb+AMjNFtNNBoNo6NjbAV3uXn30f//XWSkMimlQpGR0QDLy8uYLSa8Xi/pdJZAINA7qSuyuLiISqUhuLWN2WShXC4yPj5KeC/KwuJzcrkcr776KrlcjqePe1WmWrXCzMwMu7shovEYeo2eWrnG6MgYg4N+tra2BWxImwAAIABJREFUSGUydLvgdDpZWVnp0e/cA8zPLzI4PITZbMJmsXLq1BkGnP2U81n8fj+72zskoglOnTrFxvoKExNTDAwM0JV2eHT/MadPn+bGJ5/yxS98Cb/Hz/zcFjKZDNeAnVqzwdmzp6nVG7z2xS/y6UcfUizkEUQ4efwFnE4n5XIVk8WKWvv/cvdeT5Kl95nek3lOnjwn86T33pSv6qr2fgaDAWZgCAIgCZALktIuQyGFIjb0R8yVFBuS6MDlhZYhXWzsEqCB4wwH4013T/uu7jJd3qf33htd5ASv93LBfyAzb/J3zu/73vd5DPz2975LrVwhlUqx+uw52cwZs/NLyIrCm7/1TYr5Apl0mW+9+QaCpCOXK9DrdTCZTMRn4nz22WcIWh02h5N8McW3vvUtEicJPnz/XVafr3N+eYkbt77KpUuXiEajHB+d8U+//AXrmy+4dfM1cqkEK+fO8f6v30Oj0fDHf/yHPHn8EJPBiN/rYyoW5Xd+53s0Gg2u3bhOMp3j+OiEq9dukEqlKJUK3Lv3BalEkqmpKcbjScdVNRmQZQOtxmS97LY76PVD2p0md+7cweN2wmhMuVIgnc1gsdqp1iYVrXanj8ViodXs4PcHMZlM7Oxu8ut3f4lBVjCqBowGC1qtFovFQigU4vYrX0X58jxqPIRBf4RkUHG7AiTTKXSKStDvR4uGn/3D31EpZslmEiSSZ2g1AnabkXTqkFazgaDpUCqmcTsd6OWJLmFqeparV68jCBrufPIeR4d7DEc9XA4ner2edreNUbUi6pR/oVW7HG6crgDVapXBoMfTx3dp1IvEp6ZwOb0kk0f0umP6/T56rQ6700en0+LZk3vI0mTlHA2GJE4SXLp0iW/99o+oNboMByPmF5YIRcKMRiMEnYTb5+LevQ/xBfwT57Ms0+33yefz1OtN0pks+XyeRrVBPB5HKwq0282J+kDQYlKM1KolFL2EBi3t1uTGXCPACA2BYAiLxcKTZ6ucW75ArdGkVqnyzi9+is/rZzwasrn2mP39l+zv76MYZXwuD/GZOLlyAYfDgcPpptZssbvzkv5wYjb0+bzE4hFymfSX7uMye/u7/2Iz/G+aM/89vwn+1Y//8q0rF5ax221k0hlU1cja+mNSqUkdJ5/PEw6H2d8/YDQc4na5qdVrdDttHj16xPVbt7Ha3BiMBvqDIbKscOHiVUCkUCzQ7bSx2uzY7VZ2d3ZRFIWnTx9RyCeZnVtEUWTMZiutVnPy9MvnyKaTxKammZ1bZDAc47Ta2Nx8ye7eDlvbG9y69RUGwz6SpMNkVqlVG0RiUcaAVhQ4v7RMKnlGfCpOPp9hZ38Hp8fO7//whwSDAcKRKT7/9OPJKlKr87d//y57B7vk8lWMBonZqRipVB6Px8Xnn3/OyvIKDpuD9z94nxvXr/Pk2QNMFjuP736GTpBY3djAbFZx243k0lkuXb7K4tIsu3t7WCwmJFFE1MmkkilOjs747PPPuXjhEuVygT/5t/8rzVYNj9uJoB3x4OEjfD4nV6/cwGazkUwlkGUJVTXjdDswGm2YLSbGDLh+5QrNVoPBYEi2kCcUCuLzuDk7TXDr1nUq1SrRSBSDQSGdTnHjxk3+6sd/jU6v49bt27TbTewOG+1WC+1Y4O6je0RCIaamprh8aYXPP/4MtBquXLnBwtIinX6PpYWVye8xmtnYfEEkEuLk9JhYdJpcNseF85dot3vMzs1OFJnD7gSA2ukgaHUYFCMet5tatYrD6aKaz9DpdWh02nzj698mGIuiVxSGmg77+0mmY2E0ogarxUHy7JR8+hRR0qEXJcqVIv3BhCzd6XQpl8sIIhwd7zMzu4zF5sZituJwmqhW63TaE4+wLOtxOCaKUINipljMIgoarl6/wRiBUr4wOQ4Jetnd2WFmZg5Jp2d3Z4PBYEwmm8YXCFKt1AiGAvzqZz/hK6+/wXA0pNvpkslkcDmc7O3uYLZYJgkMxYjVZsfvi5BKHJFNZ4nHZqnXy+j18gRKkjwjGAqhyDKba+tcvXyFsUZDLltC0us4PTkgPjVLPpdHkiTMqpFep42kk5BlmePjfTxuF1bLBHwwMzPD4cERWp3I1vOHuH0hotFZrFY7U1PTPHn4EJNtkhk1WUwkE0l0ksi4P0Qvirj8fkbDIW//4mfoZRmH3U29VsdmtqLoZRxeNz/9+1/+5q/Df/Hnf/bW7RuXSSaTOBwTIgwIzM7OEghMyiY6nQ6jYgQNoJ1cpiTPzrh67TparchoNCYYDFCrVclns+QLOYajLrLRyOHBNgcHR5hNZgSdllA4SiQeo1Kpk0wkiEYiJFNJXC4XB3u7pJInZDJJuq0OHp+PSrEI2jGPHz7m/PkVrHYHqsWGIkuIgkixkCcUCqPIMvfu3ONb3/w2aPsMRyN+/d57RMIRBLRYzCrPn29ysH9ApVzilZu3+eC9D1h9sc7rr93k9o3rpFJpbl6/zu7uLt///nf5f//mPzE1NcPB0REul4Ner0tv2KeQz5JJHbO7e8Qbb7xOt9thOhbBbvNgtlo5PNqhVm3yfPU5pUqVB0+e0Ot0SaWT3Lh5GbvVhs8XYDjsE4xE+PyzT3A47Gxu7jA9PUOv22Vt7QVb2ztk0kkWFha4c+czvv2t71ApldErEtlMnsePHuFxe9na2UbWK9QqNSwWCxazmXqjjmo08tlnn/Hi+Tr/0//8v/Dw8UPmFxbottuUSwVmZ+Z48vgxhUKJVrPO9as3aDabuN0euq0aiioh6RTsNjcms4FapUEqeYhGM0YrCLhcbqwWFx7XBNjZ7TUZDqFaqyLptZRKBaxWK3pJj07S0m53SSTO0EkS2VwOjWbMzPwiZ8kE4xEUiwUMiky32yEUCjMc9hkNuuh0Y4qlPGbVQLNSodPr4g0EcHu8yLJMvzvE6XRwdnaGx+PF5w0wHI6JRWPs7e2w9uIlJyfbRKIx2u0B//U//2dOjo8ZDBucJXdwOoMkEmf0+l1arTYjRgQCIY5PElRqReKxOWq1KoFgmEAgiM1qR9bLvPPO2zCGW698hXq9zfvv/gLFIONxu9FJejw+J6ORhv5whKwXGQ4m4nfVZMNmt/PgwR2isSlajSZGgxGDohCOhNFJekaMef7sKXqdDqfTxOrTdURRg6RXqNUrE4lWYxKwbrd7nKVOObd0Dph8R6U6qcRlMilu377N3LkLPF99jtlqRidNsGOHx3ssLq7QaXdwu9zIsgxagVa7zdraKpKkMBwNOXduBYvFQrs90Rq02m1OTk9xOOz89B9+9Zs/BP/D//5/vPX1r96mWW8yGsL09DR2u43Dw0MU2UCpVEYURDxeJ/liEcbCxH4lK4g6EVlRaLdafPzhR4yGY2amF/H4JvECzRj0epVXXnmVeqNMu93i2ep9yrki8wsTaUvy7Ix4LM7hwT6SVst4DOHpWZaWL7K/v4fH5SaVTnF6fMrCwjy1eg2T2UwhlycUCH35hiHy9NlTpmemaTVaPF59TqFY5Y2vv06302F6cYpsoYDJqHD9xhUmjscxxdIkOBoN+Dk+TTC3OEs4EEFVVQ4O9rHb7KARmJqK0Gk3yGULTE9Pk8vl6HY0/PCHv8fm5ktWV5/TaXe5cHGF05NDBv0BsdgUL3d2OTg8ojMcYFJk5uZmaDU6iKIOg6xiVq2TfKUgsbe7yZtvfptOt4rPE6RSKaKVBKbjsxgUw5dne2banQbFUon1Fxt84xvfZG1jDY2gZdDv0Wq1mJmZQhBFzCYb9+7doVarMb84zZOnj1haWKTX7VCvN4jF4iROT7E57YQjEerNOmfHZ3z19a8CcHK8j9MZQINAu92h129zerCHLxDB6fLRaDRwurzkc1kGwyGgIRgIcHJyysrKCt1OH5PJQqWW5v7dRzTqFUxmG9FolH6/j8PhoNfpMRqPcTqdqIoRm9NBpVzBYrEg642UixWePnqEQSfBeMTJaYKhZky9UcbrC1KtFCjkSjRbVbQaAbfbzf3797+EJwwoFovMzMxit/tpFBMc7axic/i5fPkykjSJ0BwdpNEwQjYqCDoFr8dFq9VENprxuDyYbWZazSYms4lqo04qk6Zea+Byu5mbnWF2dhajxUomm6ZRzBKNBDk7OcFksZEvVRC1Im6Pj9FgNLEMtjt0Oi1Uk5FqrYp2pGE0HuLxeLFaLezubrG3s8vly1eR9TJWh5NnLx7w+mtvYrXYUAwynXafwWBMsZDm9HSbufkljKpKJp2mWCxgNBpJp1KEQ+GJ0KpWY9Dvo9fr8Pm9VCplhkMNvV4Ll9uFIiu0vmQ47r3cQTUY8QQCqKqRUqVKs9HAqOpJnJ0iCiJniVPm5+do1Fr84u33fvOH4I9//BdvfePrX6HT6RKOhshmc6gmFbfbTaFYpFqrUiwVGfSHOB0OCpUiM3PzhMJBGs06oz7YbFb0sg63xwOaMaPRGEEQCYcjiFoN7777K6wWC7l8gan4EkaTAY/bQ63WQFEUGo0Gsekp8oUCOkmHVivR7/UIhSP0Bz1q5QqvvPoKNqeP4WjAe++8gy8UxGgw8GL9BcFAgEq1xrXr18mk05QKeS5fXOHRwwfodCK5ZIbEcQJFkbFZXPzyl++w+XKN7/zWd7FaVHZ2jvjed7/Hxvo6sl7P22+/TSKZxmy14Pd7AA3NZpdKpc3BwR7L5y+wcn6F56tPiYZjPH32jKvXrnF2egyAQTFhMpuZjkTodzv8zne+g8Nqxe8PUqkWSJyleLL6hFQ6SSKd4ttvvMnDR4/pdpt89OkX+N0O1je30GrGLC7Ms7WzxWA4xGwxs7uzg6yT2T064uhwH7fHweL8IqMRpNNJHA4H4zGUynkOj49ZXjnH3s4ekXCMcrlCLBbFZFJRFJlAwMNY08NqMeNz+Tg8PMDrddNoVDHb7ERnprGoKk6fHY/bg8PtxeF0Mh4OaTaKBPxhdrb3OXduAbPJTC6Xx2azkUgkmJ+fp91uYzE78XvDBII+PvnkXSKR6YnofDiiVM5hsdpJJJK02u0vj1rKGAwKxWKZi5cu4g97afe6ZNJprt18hfjMLB5vkGq1TLfbYWvrBd12j0h8GpvVRr/fQ1YkFFmh16tjMEgI4pDuQMfChau0Wi1cbg+jkQZ/IIDH52MsCiiyHofdRiGXJxyJ0+/1SOeytKpNjOoE71+vVDHIEhrG7O/tYbJY6XR7aIDxoM/Fq69ymkwTjcXRCMLE36wDrUZAqxkhyRIWs5VGszY5oxsOMFtMuDxe9vf2aTZbaEUdgqSn1ayRySZp1OtcPH+dVOaE2ZkFypUqp4kTut0moUgUrzvGw0efYDZZGQ3BqOo5Pt7HZnN+Cajt0myWcDjcbK5v4nS70eslTs/26DWa7G1tEpueodPt0W232N56iSCIhEIB0IDVbKPVbiFqJUwmC4rRxPkLFygUi8gGmb//2X8bXv+/8yH4l2/9zne+TbVa5/T0FL0ssb93QCQS5uDwgJWlZRSTCY/biU4vcfezz5mdWSCZPEUSZTaePSZbTDE3uzxZhwsZ0Grx+r2cHB+h0WpYWFhC0ssEgyEkWSXg91IoFNDpRNqtOmOdwMHhAbVCmUarRSQUppTLk8knGQ1H3L3zBQ6XmcTpKR+8+2v+6N/9W2RZZjjoc3ZyjMfjZWFlmScPH9JoNrDZbDh8bqwmK/5gEL/XT6fXJhaL8eGH7/OjP/xDrDYVWbLyxRdf8OY338Dp9WK3mhFEgW6/T9TvZ3P3CA2wt7dDLpcH7QC7w04+l2M0hFQ6QbFU4OAkhU6jYXZuBq1Wy7WrN6nWavzi5z/nD370I7SClmQyRbPdwqiqyIoBQQPnFpbIZlLMLyzQ73WwO5w4XR7ikRjVaoXFpQVerL2gUChQKhXZ2twkEolRqVQZ9Yd89fVXGY2GuN0eHjy8xw9+9Pu0Gi3sNjMHRyd857e+gRYt7XabxcUFFGWCNnPaHeRzOR49es655Tk+/uguFouRV155hbff/hWKXuTpo6d4fB4kSY/L5mZja41LFy7y6M5nrFy4RDgc559++SsisSC1WpV6rYkv4Gc4GGK329ncXMdqtVAsltBoQdYb8biDjBkyGgyoVMocHe9hMlkQBPFLyrOLk+NTREnC4bTTqNexOz3MTM2jGAx0+20sJjPlSploNIxGqyUUjuP3+5BEPcPhkGQygaqasFgsJFI5Nta30YuwfO4i2y+3MZvUL9fNHlqNSCqdYmZ6Go1mxMbGFrFwmEJxUhyoVCtcvXqJl9s7yHo98ZlpZFWl2Wii1YDH60YxqrRbLUwGlWwhS6FQ4N13fkWz0eTcuWU+fO/vONnboz9oYbV5qdWqjIYjjk+OSJydIcsyuWyOerWC2+PBKCtYrCqD8QCz6iAUDKMRtOQKSex2L9lsDlk2YDGb+fijj5idmyYUm+PJwzt4fQHMJhtmswVFMaLTSay92KDVqeEyu1BtKltrz5mZXcBssnHz1a8gq2aajTpOhxOrzQFjDR988Gti8TgHB7ukTg9o1zocHR/icrphDN1OB1Gr4/GT59x7+ORfwRD8iz9/6/zSPNPTUzhdDjQaDXNz8xweHqAqBmrlPNlMjhFa2q0W55fPIyt6dKLEnTsfs7B0nsXF85RLFaq1PKIAPleIZ0+eIOll2u0O4XCIer3O3t4ROr2GfDaH0+lEo9GQzWUQtSIeb4DBeEwhnwNBwOl04nU4aNWbSHod8dgUjx8/pt1q02w2iUWjZNJpPG4fT5+scvf+58RCMfwBP/6gh8O9MxgO2dzcZGNzg9/9vT9AEGUi0QjpdJq93V00GshmM1y4eJn1tee06g26/QFPn7/g+q3r7O7vcevWNU5PTvj+975PNpvBarXS7XZZWV6mUMzwYmOXgMfFcNgnFIyQSic5PUnw//zNf+YPf/R77B/uk8tkmZ2fQ5ZlfvqTfySbr5I4PSMSj+B2uQiHIxwdHWJUVT78+COi4RAajYZ6vcnOzh4/+L0fYDFbuXXrJoPBkMGgj9/vplAocOPGq3z0yYf86A//iKP9Q9577z2SiTO2ds548WyVufkY5XKZg8N9rFbbhKbSbpMvFKjV68zPztDtNikWS8iywszMNLOLy6AZcbi7RavdpNVqE4vPoBNlvEE/wUAEjUaL2aRisdqoVKqsrJzn5PSUTDpDtVplenpSlRsOJ5XLeq1OLB6mXm+iFTQUigUW5s8TDHkZDoYEAkEEQUuv18Pj9TDsDyboNdVEt9uj1WmiyAZqtQZ7e1vUahXWXjzF6/YhCGN6vQHJZILZ2Xn29ycPcaOqsrK8Qr1e5eXOSwRRIpfPYjQa8HmD1Ot1CsUCdruVZ89WuXH9Fi82VjnY3eHajVuYLCrv/NPbLK+cx6Sq7G69xO/zoqomDvb3CAYCHB+fYLFYkGQ9z5485cL581y9dpNk8gy73YHTE+fG7dvEZ1ao12u0220MBgOCoMVqsdDr9chmM/j8DjQaHelcinKxhGYosLH2nFw+j8frIZediJECAT86nUQw6Gdubm7ijG61MZosmIxOXm49JxyeYMlGoxGBgA+73cXLjQ2u3bxFLBrnLJFAr9fzcvMlwUCAQiGP2Wyi3mzgD0epFCqMRkMSZwkkxYjH5+LixUvsHWzycmudc8sXGAMup4V/+MW7v/lD8D/+1V+9tXRuFotpQpA1GGQK+TJOpxODQSGZTtDp9FlYXCKbzVGulLHb7STPEiwuLCMbVHr9DpJeR6/fZ2X5KlpBSzAUpFTMMxqPqNVqpFNJ3nzj64z6I1xuJ73egNXVZ9z56CMUg8LC+QuUsnkMqoExAhotpM6STC8u4PE4+fCDjyhXJ+dFHq+XUnESQzk4PORrX/sqDx49wGg04vV52dvZJX2Wwe62M+gNyGVL9Lot/u6nP2X/9IjTk2POnzs/ke2oMq1Gi7OzE04SJ7icLhInp1y+dJmAx83JyQnf/f73ePLsCWcnCbxeH7Ki0Go1kCSZZPKEcChIIBgmPjuNqBF58OAhHrcVv9+H1+Pl/MULrL9Y49nqU/YPT2l3BsSnHBMBzuY61XodQavliy8eYTKpLMwvMBwM8LrdnCXPMJuMaLUarFYra2vrLC8v4/E6efZ0laWlZUxmM/1un7t37yFJOgRRRywWodvtIOkFrly+yXDUZzQaMz0T5b333+U7v/V91tfXCUZcLCyscLi3w+1XbiMIOu7fv8t3v/sDnD4PHp+PwWCIz+1DNZmQ9QZWV1fZ392h0Sqj6E2cnJ5iNBpxOZ24nS4Cfj/lSpXhcITH5SadSjDoDxjDl1RoGZ1OIpVKotWKCIJILpfD7fZgNZs5PT2l3+9jMpsplyuYVBOD4RBVnQSUnS4XxUwCk37MQJBYX1tjNB7T7w/QajW43S46nR6jweRCRa9aCPpDBAIBJEkPjDGbTTx4eAebxYEoaPF6Azx/scrX3/wWz1+sYzDIlIsFLly4jNEgc3Cwj04UyWdytNstdHqZZ0/us7u1z+zSHA/vfcGb3/wm7VYbQS8x6HWx2d04HVYqlSrPnj3AaDRTyOew2yyMBmPa3Q6KQWFp6QJ3732CyBjVYkUUoVpKY1BNLCwsMRx2yWbyGAwG+r0+Xp+fJ48foaoqrVaLB3c/IBydpt4o0eo0sTtcDMZjPvvoE+JT8cl/upxjb3sPvVFBFARcLhcWq43Hj+6xuLjM9s4moXAUSdSjV2RmpqfRywpOtwuby0OzUcekOojG4xzvHyDp9VgsVv7LT3/+mz8E/6//8z+89Qe/+11sFivNRgOLxQVaEEQtpUqNcDSKTpIxmg1o0DIzM0+jUSMUDPH222+j0wuoRguyXk8qnaZWr1Kt1Gi1mvS7fYyqGUUxEAmFOTg6xqiaePfdd4lGJ9GNcDxGeGaB7bVVDo4OuHnzFlqthtTpCTPzMyROTsnnCgh6PVPxOM1Gkxu3rrH69DmyLOPxuNjaekk8Hmd+dp5ev4/HFSAW96OqVna292h3u6QzKb76+mucHG8jSXoODvb4oz/+H+h223TaXaJTMS5evo5OqyMQCPP++7/m3PI5Do+PGA77+HxeVpbPEwwG+eiT9xEFHd1ul4sXLpE8S7J04TzdRosnTx+j1+uZnplAOQuFAvfvPUASdaSzGQRRg8dlwu8PIOokcrkc27t7aNFw/sI5ZqZn6LbbOBwOTo6P2dnb5U/+3Z/QaDTZ3tpFrwgIWh3FYp5MNk2rVeWD9z6bRFHGI772xtcJBIPoJR1mi4zF7OLho3tcvnQVjXbMwcE+4XAYk8lKp9Ni6dwCu9uHaEWRaHyaSrmE0+Wg2eygl1XsdidatGytr+JweYEJydnpcDAY9mg1e0RjsS9VDJMmg81mw2qzcXZ2hmpUefHiOQsLi5QrJXQ6kZOjI/SSDoNRpVAokM/nCQQCbGxs8Pz5Yy5fvo5eL30ZzwrxcnMLu91GKpVibm6OYqmExe7EG4jR7bRxe/yIoshUfJp6vc5wOESrnfRah8MBg14fq93G5sY6Pp93kmutFLl67RVK5QJOlwer1UKzWUcDmFUjkWiUvb1dTCYLjUYTq9WGy+1Bo9FSyOVYWjqHz+fn6rWr7O7v4XP78Hi87O7v4rSYqZQy6CU9meyEfJPLp+j1h1QrJdxuL6nMKX5/EElnwGDU4XYHKJcqBEJh1tdesLR4CaPZismk4nZ50WhgEjoXaDSbdDotZFlGlmUWz19i0O+hyCqiVsLpcKATBJZWlnn44CFWqwWdqKDVDvH5Q8h6PdVqFa0gsPZiFavNwezsNOVSDUknoNVCt9uj0WhQzifRSwKybECnl3HZXbQ7VdLpDIVcgQ8+vfebPwR//OO/eOsbX/sKBkVBUQzkq2W0mjGJs1MYjwkGgkj6ye2cIOh49vQ+gjDhz62cX2Fne7JWjsdjpqamsdsdmM0WWq0mdoed6ekpLBYr2zs7dNoN1tee4fH76HZqJFJpxmhw2Ky02i0O9/cpFzPotXpanSGMB5jMzkkH02igmM/h9/vo9vqkUkle+9o3efr4EbOzMywsniOTzXJ8eIAkCagmK9tb21jtTiQdrCwvEY1McXJ0AEx+69bmNqVyEbfbi8frZzge8fGHn9BsN2g2mgQDftrNBhcuXWZ7d4+PPn6fQCBAr9vj8qVrRONT9PoDcrkMfk+Ag8MdLBYr165cotVuo8gG8oU86XSKqzeuEA1HUQ1GXvvKa8wtLpE6PePeF/e4dvUSs9NzE9eGamRt7QVOp2OiQFUUxuMhrVYTvSzT6/bw+r0UCyUatRZvvvkN6vUamUwWm83O4dERkUiUVOoMQZQxGBV8Pi+dbhunw0sqdUYkFOXDD9/njTdeJZlIEAoGyeXzXLh4BaPRhGq04HS6mPzvtCiyjCjq8QeCHBzsodGOePJ4FbvTTjQcx+f1kU6lJokBScfe3hadVptwKMK9e/e4efPWl9QSO7lcnvmFRaKxOJIkYTKZKJfL/wJ67XTa+Hw+Op0eZrOFL+7fodls4XA4MJmMHB4e4XA66HSaDIZjRJ0eQStRLGTodlqM0TI1NUO9PsF2zc8voygSL148ZTzq02o28fmCmMx29nd3aNYaSLKMqNVw9+7H+P0+jo8PMBrsNFuT1omsV7DZbTSbTbq9LiZVYXNjDZvNiajT4/f5yCQTAHi8ToxGMxqtiE7SYTTYkBURnzeEx+slEAwiaAXMVhtHR0cE/BOEv6DRMje/gEarJRqJ8t57/0TiaAdZNtIfgqTTsb+/SzgSYevlJjabjen4FGMgmUyRK2QxKAaCoSCbm5u4XC6OT05wOZ24XE7MNiuZVBJJ0lEul7BabTSbDYKRMBaziY8+/ACLxYLZYmTr5daX2ggvonbMkCGj4QC9rNJoNun3+0QiMQwGlX/45Tu/+UPwz//sT9/6oz/4AZVqBaNRpdosY7VYqVXLeHx+SuUSBoOBcqmKwWCgWCjgcnpIp1KUiiV00kTj53A46Pf7dDqKrBnPAAAgAElEQVQ9yuUytVqVRmMCCX3w4BOcTgu1apNGo87czHmyuQzLy5fp91qsPX8JmjFOhxl/KIZFNdLudtg/OGDh3AKbm+skT05xezzMz89zdjoRhqczCS5du0GrUUbWGymVyjx8/ACjQWU0HLO5u8vG81V+/4e/T6XSoNXqkM1kUE0mrl55BZfLg9Fk5tzyBT784B2MOi2bWzvY7Bamp+O0O01yuSLtVhub1YZeUinm83zl1a/w4P49jo4OaDcbPHv+gl6/z7mVRVwuDzu7uySTZxM8vAZu3ryJopjZ2FhDECYZzPt3PyUWnebw6JCpqTiqQYXxmN39LRaXFhiPIZFIksvlGH9ZWxQliVQ6iU4nUC4XWVg6x8nJIYV8gVAozN7eHj/44Q/I5XLsbL9kzACNZozXHcTpdKPRjNnYfMHU1Byzs3M0Ww3C4SjpTJrvffcHZLJpPG4PhcIEYybJeu7f/4il+YsM6SFLehhrKWSS3Lh5C52kYDFb6HQ6FItFYrEYtVoDk6qSzWYxGIwYDAYMBiNarYCiGBiNxnR7XY6Ojuh2uxiNCrValfnZeRJnZ7i9LrZ3dykW8lSrFXyBAIpswOv1MhyOODk5wucPsLe3QzAYIl8qYrfbCPi8nJ6e4nS4yeXSDIZtypUketlCp9vC4wkwGo1JHidpt1v4I17KhTLpVIrLl6+QTmWx29y8WHvK17/2TfYP9wkGfRNE2/YGp6cJLly4QLfbxWZ30mp38fv8kxeHXB6P10d/qCWROCObTaCXBLLJk8kDv9em3elhNBpJpVLYrBZG4yEuj49COUe9XKE/6NDt9mnVm4zQYre5mV+6hk6vQ1ZE2s3uRANQrdLttnn06CHD0Yj+cIDb5abRrNNqthgMBlgsFjKZDFPT03zy4cccHhxSq9Uwm4yYzBbazQ4m1cTW+gYrl85TLFUIhULUG20QdLTqJV776utoNBokReVoa51er0GxXEIn6nC5PGQyKTxuL//lpz/7zR+CP/7Lv3hrfjpGOByh0WqiEww8ffyQSqXK3MIcjXodSZQYj4cIokC5WCQcDiHqdHh9fsLhCak4mUrgsDso5LMoepl2u0W708EXDPH82SNkvYrXF6DZrjEajVGNJtqtNg/ufc78XIxCvsjU7BwajZZQdAqdTsvzZ6tk05l/ETx5/QHe/fWvsZjN6AwKL7e28TrsZFMZCqUiT1ZXuXn9NrPTM9TqVa5euYbL6cTusNHtNkmnjrHZbBwdTxoO7XYdnSiwu7NFIpli6dwS+XyFSDjMzvYuFosdUQfLKysU8nk++uh95uZmMZmNrK1tEgoFQaNhbmGOqakpTk9PuX/vDsVSjldeeZX5hRj1ehtB0FCplOm02rhdHhxuJ4eHuySSxwiCSCwaRhSNVOoZJJ1CNlPAZDIjSSJer4f4VJRPP/0MUdChmsy4HE7y2Tznzi2RTud48XydVrtFr9ejUi6Ry6VZWFhgZXkFg2wik0nj9bs5PT7G4fDwYvU5125colJtEw5HkCQ9BqOJ4XDE3bufEI/NUCrlsVltWK02ZKNCuVShVMqxtfUSm82FwWCg1+1RrpZxupzkcxna7Q61Rg2L1YrH7eXp08eTz5clhqMhoiAgSTqSiSQ2qxVRJ1IqlanViygGE7IiTwgokoTP70TWG2g2GoTDEZ49e4LNZsdgMHK8t82l67fYXH9Gp13BZnVQKlXR6xX8gQAaQYNJtWGxuMlmjgiFZ2g2m1gtNmRFjyTrEQQdZpMZn9/HCJD0EsNxn1duf53j04mP5fhoj0ajht8fYmFhkVZroimV9QpGo0qlVmEw6KOX9SgGhWq1wMWLlxiPNIzQ4nAFGI/GdDt90slTRv0hPo+PRDJFNBan1Wjxxb17+H0B/IEAui+lUo1GnXavweLiEp9+8gHuL6NhdrsdURQJhEJoNRrmF5bI5YqMRkMsVivHR0fAiF6vj9lsZjgYEp+b5eKVa+y+3CA2NUU6mUKnyFQqFQq5PM1OB0VRGAxHdHtdPC4fvU6HeqvJxtpTRK1EfGYZf2gGk8lOJpMkFIwgCDqOTo759Qef/uYPwT//sz99ayoeYmpmiuPjPYaDAVarFdUkox1pSSYS2GxOGo0KGxtrRGNxPv70A9CIeDw+BEGkWCzhcjoZDoe83N4g4AuSzuYxGg243C48rjDNRh1JUrj3xV3MZiOq2YTJakDRwbMXa4h6FZfLhSCCXpE53j9gfX2ddDaDL+Lm4sUVjo8O0Wj0eLw2GtUGsiRx49XX0ekEZFHiJHGGXi9itBg5PTpCFAUymSzZbIkHDx6gE/UUSnlmZhfQaseoFhOqUWE8GnKaPEZAR6vVZXn5HIvLs+gNGhwOF93BAEXVc+vGbQKBAE+fPuPbv/VNJJ2M2+0hGPTx9MlTrE4rC4vnENDQ6fTQKyrpTJpqpYLT6aBeq2GQJT668ynFXIXZeJS797/A4XRid1oRNBLRyCwGo8SHn37KyVmSVqvF3s4+er2MajRxYeUCnU6LTDqD2+ObSIFiQS5dvsrKygLhaJxms45er0cUJFqtFhcuXiGdTuAPhmk2mnzlta8yHA+Znp6lUmugmk0oOhlBK1CpFJiJh6nW2gyGHUyqjX6/gyKryIqeW7cnwXqz2YqqqqQzxyh6A598OolrPH34CI83gGoy0B/0sZgtaLQa+v0+tWqNfL5AoVQgFA5QLlfIZBPUanU8Hh+yLFMqFbFYLAyHWur1BvVGha2tTWS9EUmnR9SJRKdn2Hm+yvTsOfyBKJ1WG0VRkEQdzWaNrZeTrFurVmbv8BhRp0fWKxQKeQLhCRr+7PQYu8PHyck+mtGQ+bklBoMBe/vbBAJByuUibrcbu92DqhrJZNJ0ux363T4Om4tU9hCdTkYv6qnVKzgd7omVrtNHVU3YrXZ+/vN/xGxWMVlM+INheqMxdrsDjaChVCpRLVW4eeNVPvjgnzncP2YM+MNB6tUy45GGSqmMIOmoVOqU0imcnslbulYnkzg5oNls0e92GI27CDo9LoeNs2QCRlp2dvbJ53I4nFYkDchmC6VqiVF/hKDREo9P0x11mZ2epVqpYDE5sNrMNOoVXqw+4vyFy5PIjdXIz3/+E+LTU+zvveTK5esUy3ky6RNcLi//+Mt//tcxBH//d7+HqBOxmKysPnvOyckhVqsDUSdylkiQz5e5du0Ko3Gfar1GLDb7pSDbTCJxiqoaWV9bZWPzOdFYHJ0o4fZ4GQyGlKtVjAaFeq1Mp9thfn6Bfm9Ib9BH1Amsrz7i3PJVlpZXgDGNaoVKvkav2+f05ASn286VKzd58XSNer3O669/jYA/yNtvv00sFmPQaZM4PeHO/S9QZB1ej5/Y1CKVcoletwtjCEcCnFuZp5DPI+nlCU59eZleq0Mmm8Woqvg9PkrVBpl0ArfHydraBjpRQRA0uBxuVIOJcqnEz372s8mlRDrPzu42VpuZfm+EbJCplyucHh+zvrlGtVKj3+tw5fJltra2ePbsGXuHB1y4eJG33/kARS/icloRdBKiILC7u0OjXmdudpknTx8S8Lj5zm9/h2I+h8VixW63ky/k2d7Zxuv1UcgXOTk9wWazYrGYJzkzrw+TauH+F19w/foNXC4X4/EYWdHRabeR9QrpZIqDg11MJgPVcg2jUcFoUGm2mjSaTdweP3aXG1HQkUqdYFLNSHodkiSTTRcQBT21aoVyuUKxWMTpcKMoCs1aA7NqJptMICoinU4XSZKwWmx0um00GiYthnAEp8vJgwf3GY9hfm4J1Wim223R6bRRVZWXL18SCATRaDREI1EkSU8oFOToeCIAU00mmp0GgUBoYkoUBGw2B0+efMH8wgpOl51yqUij1cDl8uFwe+h3asRi02i0GkajIflcln6nQzgW4/GjuygGBQ0ajAYTg0Ebi8VOtVrF6/VRLBYmAIZ2m353zOlpgosXLyPpJTRjDXpF4u7dT3E6PEQiYZqtJpVKkfhUBNVq5rM7d9GOtYQCUd7+p58xOzc3OSrq9mg0q8TjMaamp5FkiXKphMmsIisKJpMZi8U8MTbu7uD2eOh2u3TbLfZ2t7l45SrFYhGLxUYhn+bg4Ji5+Xk0ozHRWJRMJs3UzBTddod6vU0sHKHRaJJMHjMcDTEaDChGI35/kGw+jdlsRhQEioUaok6H2+2hXmuysnSF/eNDwqEIWkHL43sf0m/W6Lb7vP/Z/X8NQ/DP3voff/RDJJ2EKOoQRLhx/TaVShWb1cZUfIr4dIzT0zOOj07wuLwMh12cTienJ2ecX1mh0WxgsVk5t7RCuVxlPBrhcrpptjpoBRGb1UK5XKLbaTE7N8fm+jq+kI9mtUGj2aBWbeJ0uygV8jTrTbLpNM+eT0gwTq+LXKHAuNfj/NXL/PWf/yecLhter5e//ft/RNBqyGRzfP2N12E8QRLFp2c5OthjanYWjSiwv7dPwB+k3eqgKCperxdRK9DrdWm2WvzkJ39PrlxhOhLkG9/6LmNxiN3qQNLruHvnASbVQLlaZn1jHZfbhcvh5vbt1zg52afT7rO4tEC1UuL4+BhBEOj1Wvz7/+3fkzpL0mr1ebH2gt/93d+hUCzw5PkW169dAlFDwBNkMOphUq2TDuqtV/jJ3/1/JJMpQuEQBrNMNBLh2dPnTE1N4Xa7OTs74cqVqwxHQxgNMVmMk3WwnMdidiAIWu7cu8N0fELuPj46JhKfIZlM4XZ5EHUCF2/cYtBpMj21SKvTxO10UyyWGI9H+Dxe9vd3GPYGjMZjtILIP//8Z5xlsly/cYm1tTW8Pj+KwUAwEEQQRDQaLTa7A61Ox7UbtzjYP8JgVDCZLNQbdfr9HrlcDofTTSabRqOZ9NEjkShGo4rZYkISJdbWnqERNMzNLTIajTg8PMTtdKMVNAiCgNVsx+/zAhr0so5GvUXiLInX62HEiJWVFf7xv/4N47EGUS8Ric7RrNfQaCGfzTBG4PDgENVkJhKNk8qkKBQKeDw+xuMxVquLZr3O3u5LnC4vn37yISbVSiafIpvJ02hUefXV13jv3Xcwm1SS6RR+n48xIxTZhFGVqdcarK6u4nI56fVH7O1scevGawSDAdKJY9xuB81mm4A/QCwaY2d/F8YacrkMw9EYv9/PoDsknUrTH/bwef2k0xni0xEUg4xqmrSGep0+CwsLdLtt/P4Ae9u7vPmtbzEa9ag3G+ilyZYyHAw5PjrG5/OQLxRRZJlAOEij3gC0oIExY3K5HAF/kE5/RLFUwKAYKJUKRCJRDk8OUY1GwqEIiiSzsHiBPgLbG894+GL3N38I/vVf/8e33vz669SqVXQ6HaVyEYvZis/nw2q1MhqNyGaT5PNZGrUaoiixubXGucWLiDoNsqyQSCYYj8GgGOh0u1gtFiwWK81WE4NqoNFqsr2xwdK5ZXK5AsPhgLPjY2bn5jCa7axcuEAuk6ZSKlLMFzk42CMQDBCZXmDU7xH0B9je3sLtDRAJO/j4kzts7e7jdTuIRiJUKhWyuQw+b4BSMc97v/5n5udm+ezz+yTOUnzzG29QLBbI5fIcHh8SCYdotWusra1x9dJlLl26wPzsDKPxGEEUGWsG7O8e4rBbMZuM5PM5xozQAg67jWqtwuHRHueWLnLp0kWOT44ZDPq43W7KlSLx2AzJRIb+oMfu/iEGRWZnZ5uXOweYVDN7e9vU621S2Qx2qwmtRqRer2O3O5AVPYFAGL/fx2g45MnTVTrtyaF4OBzE7fKh1WoIBAKYTFZU1YSkF7DbHfz07/6WTDrJH/3xv6HZaFIsl7l96zZrq08Y9AcsLi6hqkaePrzH8vmrSDqJ3b0dbFY7lVqF3ZcvKRQL+LxB7C4XJqOKJCmcnB5z6+ar1Gp1/vlXv2BqagqX00GhVEIv6bFarZTLZRrNBsPBALPZzPHpITMzM3S7ParVCiaTCY/HOzlD00kU8gVi8SnS6RSFQo52u0EoGENRFOr1GqlUmlwuB2MwqkYsFguNZpNypYxWq6FUrKKqKvH4RBXqcrv45OOP6A1HhCMRFEXF7fEiShIej5ed7S2mpmfxeDx0e11arRZ2u22iAjUYqdcadPsdXm5vIxtUZqbnKRazOOx27E4n8egUVpudZOqM5fMrGE0GBI1ALpOl2aqhmlR6vQGxaIyjoyM6rRY6nYg/GKZQycMY2t0uwXAIi9kKwBf37hEOB9HLIvOz5ygUi/S6PXq9DqPRGI/PQ7lUJhAIcnZ6TL1aRhJ02B12olNTGBUj2ezE+GZz2kkn00h6GbfLi8Vm5ix5xv7eHlcuX6E3HFCtVRFFAY1WQJEnPmVRJ5JMnmEyTW5+ZUXG5bSxs/0Cl9NFp9OhVC6i1+kplHKsrT1HMRg4ODymkM/zbGPvN38I/umf/t9vXVyeQzVObvREnQ63x81oNCaVTnKW+P+5e+9eyfL7Tu+pcELlnNPNOfTt6TSheziUSEVql1qs18YCXhu238f8s7Cxa1ikBGkNCLZhWLtYSStRJIfkkBNITmj2dO6b860cbuV4qupUnfIf1av3MHoDty5QVd9Tv+/v83meDFcXF7g9bu6+9RbNZgNZkpHMMhPg5OScne0d+v0ufo8DbaKn1WljtVk53N9HMor0lQ6lYp5uTyEei9BoNLFabdO+cizG8cEBXp+bvtJnbnGB8/Mzmu0Wa2tbFHMpfvPwIX5fiFg0ws8/+oRyvUtf6WLQGVlaWsBqsfH2O+9glET6XYXnu3v8zre/zd7uLvNzs+gnGiNVRRkozM3M4fP52N19SXwmzvziIocH+/ztD/4BbTTC53Vx8OqQB/e/wRiNUDiCJBlZX9uikE8xP7fI/Nw8/qAHUZT52U9/xqCvkitcsby0yvYbtzGKIvFYCNkkc10qE49HmJtN8K1v/zayYKTfV/if/83/SNAfYGFxHq8nwKtXuzRadZYWl8lk0jjtDlLpHPFYFL/Xj9PhJJVO4vJ68Hl9qKpKOpPk4uKcyWTayojHZvjW7/wekcgc+XwOq82OJJtYWt0gFAjyyccf0mzU0UZD3G4nzU4bm82C1+Onp3SZoKJNRljMVhwOE+fn+4iixNraBnuvXjI7N0so7Gfv5SsCwQgerwdBNNBotugPFOLROLLJTCp1zvLyOrJootubUmmy2Qz1eo1ELM5oNKKvdgEDR0cHCILAaDRmLj7L8ekp7XaHUGi6I9zYXCeXyWLQGyhe57FZnXS6TSxmC6dnB1wmT9A0aNSbzM8tEI/PMhqPmZ1ZBG3IsD+mWrmm1W7i8/ool6/xejykUhcMhyo+X4BGo4nByLRvK8msLK+QSl4wv7jMeDSehrB1ekyShNJTUPo91MGIWq3G9o1tfvbhj5mJz+JwujjY32dzc53rSpHtrRtcJZNYrXa6nQbz84sc7u/z/MUTzGYrsknE7fJhFCV++sEHmMwmQuEwo9GYYqGELIsIghGDXo/D6cJudfDi+ecU81mGqkY2lyMaidHtTwfuxfEhkXCMkaan02mDbsT2jR0qlQr5Qp5QKITL7cZqsbG/v0cmk2FmdoZhf4jdZp9237Ux2mSC3xdiMBiyf7DL+voGojS1UgZDIQq5Ina7ldXNLf7LD/4JRGT+9Pvfe397fZF67ZqJpjEBUqkrisUi3W6XRCLBdamIxWrhulRCEKZvzGDYo9ttI5tMDPrTfdPh8TmBoI+jgwPsNhu5fI58Pk27VWfnjdsoioLX40cySRweHXHrzh0OD17i8/oZqiPcAT/ZZBqP28fG1iayyYSmjvnk01/y3m894DKVJpkusL4YpXh9zT/7oz8kFo8hyya67S75XIFcNksgFJhi/V1uPG4X3oAPUZbotDtcXV5xeHKIy+Hh+rqCy+UkeXWJ3Wojly9NseTakGg4jjro0Wm1yOWzjMcq4fAMK2tLmJ0O+kMVs9WMz+tndW2dO3feJhaP0et3GaoDOs0OkiAwUBTsdhMTDITjEcbjMe+++w2arWvK5Qo2k4VXB3tcpHL8d//yX9FqNykWi2xt3EIdKYSCcYaDHs+fPwOdnuWVRa5LZVKpFL1el2q1ztb2BpPJhGgkxnCo8eXDz9i5dQu3z0u/06NSqnJ0uMe9e2/idHpZXFvn2W8eYjDoiMUWKBTSBH0+PvzwI9598B5Gg0Qmk2duZhFRMiOJJtbXVslkM0RiM8zPzdPuNTk/OWOoDkml0ty4sU2306VQypDJnFHKpvEF/Oj0RnKZLFaLGZPZzHAwoN/v43RNyck3btzEbLZweHxIKBxBEAQ8Hg/JZJL5+XmePHmM2+1kMBhSuU4zUhXKlTKC0cDS4iYetw+r1YbL5WE4VAkE/Lx89QKL2UI2l8TlcqP029y5/TYXF+fo9XosFhsOuwOTSSJ1lcTr86B0OpyfHRIMhkmlkoTDYdKpDKJoxOV0cXl1hCDI05NRscj84iKT1xJ4l9tJNpvB7fHg8UyJ2Y16G00Ds8XCi6fP6LR7PPzyC5YW5/EHAoxHE2w2KxNtGkz2uJ3Mz6+QK2SxWi1EIiFEQeLHP/wBFquAbLbQHwyZm19hfmEVo1F4nXS4wCRLWB1uquUyX3zyKf6ACZ3RyKAPrVaDSDhMwO/l8y++xGQyIYgCslUmkZhBG45QRyrd7rQeOd3xWvD4vBRL1yTiUcbahLOTEwb9Dn6vj48+/FtK+SwTnYFPfv3o6z8E/+Iv/vz9f/3f/jfodHoGwyGqqiIIIsFgkK8ePQcmLC4v8NVvHrGysoEkm3G6naTTWZYWNzGJMv1+n77SQZCN2OwOuu0O48mIxMwc4UiU0XBEu9fCarFitphptztYTRbarSZOl5PSdZGlxRU++vlP6NQbuAM+nG439XqVX//ql/zu7/wuz1885qvn+9zeXubx46dsrG3w1lvvoI5H5HN5zs5OqFUr+AI+7j94gMPmQoeOfCGLJJmoVSrodDqCoSAn55cIogG9TsfiwiKBwDRjZrfauHv3TRYXVxAEPfVmBa/P/xrb1CQxO8t1rUqn2WJ/9zn9bgtRNhMOhTg7P8HpdNJRulydnRJPRLA57WRzOba2trE67fS7Pa7SaWKhML/65Wd8+9vf5svffMWLF7sM+j0cDiuNRoOtrS2GqsLp2TEer5Off/wx0XCEg6NzHHYL+XyOVCrJvXtvoShd6rUG7733bcrlEgsLi1TLVRJzM1yenaL0+ywtLbw+StZY21zj6OAAZdBnc2uHdDpJf6DQ6ij8we//AVfJcyLhAA6Hi+J1nmqliqoOMBp1eL0BRElkOBoR9AeIRGb58rMP2Ll5m6PjMw4O9+kpbe7eeRO7w8cnH3869aVcXeFyubm43MUXCBKNJri6vCKZuoTJtC9st1mndTSDgVazSTQWQxAMdDsttm/cpFKtoqGxf3jIvXvfQBBkZFmgVKwgCAILCwuMx2P2D15N5UGGCY1Gg/5gSsCu1+q4vR4++cUnLK8sUyiV+NE//B39Vo9gOMRkomc06tNTukgmMz5/kHKljCjqkWQLkiyTzWQoXl/idgU4OT7C6/XRU1rsvdznzq17PHv+GKNB5NWLl9x/8C7KoIvVbCOZTPLuN97j5s2bFEslTGYLfp+X3d1d9AYd1UoVi9WCOhowNzsl2FwmL5BkmfXNTeKxWbweD/VGA7vdQSqVRFEUBoMBJosFl8uL0umgTeDbv//7PH+xh93h5vNff4bf76Or9KjXm9y+8waCIOJ0+xgOhgz6fQA8Pi9DdYg/EJg+qF4L1NwuD3t7T7Fa7ESjUXZ3XyCZrPT7Gi63jdmZRX7wwS++/kPwz77//fcfvH2XXqfHzZtv0O51kEWZiTbhzTfv0unVUQYDFhcXkWU7A62H1eqhr/Q5PdtFVQf0lBaiYGZ2fpZ2u0O33UEdqbg9Xo6Pj1laWkSbaIiChCAI6PUGRLOJy+QVF+dnU4/JWEcyecn1dZ7tnTc42N3j/PwU/QSCwSAet5Oz0wNub+8wnujZ2tpgqGoo/R6lYgmv14cv4MJmc1Crt9DGEwaDLj6vH51eTzaT4dGjR9MBMxpza2eHtZVVPvjJT7DZbEiizP3779Ls1JFkketimUh0nh/+8K9JzM0hSSacbh+dXoOzkz18/jAmhx3dRE80EmUyHqMDzFYzqYsLJtqYfldlbmmFRrWG1WFhoPSw21z87d/8Db/3e7/HkydPaLWreH0e3r53G5dr6vLVxjo+/PCn/NF3vst4POHG+jr1TouD4wu+9d57tBotHtx/h2QqyRu3b2EyWen1+vQVhVLpGrPJzGgyJuD3EQyGMJnN/9hEuEqm2FzbRDBJWG122p0mN2/eIRqNsr+3h9vt5YsvfoU2guWVRZwOF+NBD18gQCqV4uLyHIvFimCQabVaxOILHBy+IjEzi9fnxh8Io59Mj7era0v0un1UVaXdbtNuVgmFohiMIharTDgcxO3ykctNLzckSaLVnOYCh6pKs9nA7XbR6yn0ej1mZhax291omoYkSeh0eswWGYfDyVdf/YZisYDX52F5eZnd3WlFbnF+iXa7g9frp1qrsrQ8z68//YzFxUWKuQyLa2vMLSwiGiUEo8z84iyjkR7dZMLgNQ17PB6SSmbwen34/T6GwxGxWAybzY5OP+H85Iyl1VX8AR+yZMGgN1BvVnA4fRgNRgwGA7JJZDjWSJ5f4vF5yOfy2OwW6o0ak4mO2dk5BEGkWq2i9PoYBQNer4/9vQN8Xh+FXIZur8fTJ09YXV3FYDCgNxjpD4eYZIFQMEy32+Xpoy/xuQP4vG6MRploPIbOYGDCBINeR6l0TaVaxWq1Y9AZubq8wCSbcDldVKpl9Ho9oiigaUO0yYhKuYSgF0mnUswvzKMoCiub22iTCWaTnb//0T8BgML3v/8n76+vLKBpY0qlIkbBiNPpYu9gF00bMxOfp1FvUK/XkMwSRoORfD7D4uI8gkHk8vyKu3fe4erylFA4RrVSwWp3YbU5GI81Go06drtr+qFxpSIAACAASURBVOWUzbSaLRqNOmcnJ9y7dxel28XpcJPLZgiFoiytrJLPFej3eiwszHPwap9v/NY32d3bI+APkUplWd3aopDLYzJJdFotNE3lG998D3U8IR6L0Wu1GalDnjx5jGySOT4+Yjgc4vf7CQQCmGWJSuUavUFHoZBnc3ub89NzbA4HVuu0JhVLRFD6bdwuL81ak9u37zDR6RgNhoxHKhsb2+gmutdfiiGhcJivvvqMTrNOsZhnbXWDTP4Sj8eFbLWgdHqkMym00VTL6Xa70el0pDNplF6PaCyCIEj0um0cTheCqGd39yVXyQu+/OorLtNZJEHgrXs3yRcLzC0uoChdgqEohWKO1bVVPF4vXp+X+cV5JFHEarYiiSK5bI7trS3M8nRw5PJ57DYb2mSM0+5kPNJoNesYDHpcLjcOh5NoNEG72UTT9LQ7DYrX14yGI5YXV6ZuDKXH6ckxW1vbRKJxdndfEYnEuS6UKBQKOJ12dDqoNZqg0zEzO0swEGMwUFFHQ549f0rIHyGby9PpdDAaDQiChMPpoNNtcXF+8hoGIdJut6fa1uEQn9eDNoHRaITNZqHfH7K3/5T19S0GgwE2sw11oOJwuth9+YquMsDlmka5atU6rVabudl5up0Oa+sbHB4cMDc3S6VyjToa43I6+PCDH3H37j1q9SputwdF6WO323G5XJhNNk5PT9jY2OL6+hqbzYHX66VSLTPRJjx++pSZmQTLK8v85IOfMRqNKJbS1Ms5NG3C5vYWomjEbLEwmehhogdtzOMnj4lGY0x0IJkkbFYHX3z+KbFolFwhjdU6fZ2To0P8Pu/0wZ5Nsby4wNHhCRaHHYNgxOcLIFlNuDweIrEw+UIWbTTA5fKQTF4Ri8X56Bc/x2o24/N7WFld5YMPfoDPF6A/GJJJ5oiGp59Fh8PFy+fP2br5Bn5/AJfbS6VSRRIlJFlCNpv4m7/78dd/CH7ve3/y/r/6l/8Mg1HP0uIi7WaHi/MrlleXCASCqKMR19clwuEIXo+Xx8+e4Xa6uDq/ZHZ2hhcvdvEHPMzMzHN5ccnDh18yMzuHJBtxOKZ9T0EW6fUHOJw2JiOVgTomMZOgWMyzt/cSbQwmk0Q4HqdSKnJdLPHo0SNmZ2Z48eoF4WiAX/3qc+6/c4/ydRmX3cb19bTon0lnUdUBo/GIfm/AxfkpvV6Po/NTXrx4xfaNLRYXVykWstzcuYXdbuPxV09498F9GvU6C6trmK0yXk8AWTC8RsLbSV5d8uLFU8wmC9fFMqn0JXanA9lkYqgqdLsDrFYb6XSG0WhEOBRjPOjgCURYWJ46Ww4OTpibW8LhtDNQOrhdXuwOCza7G6vVzmQyYW4uSqvZIxqZeU19EbA7HbjtLmw2K5tv3GF1YR49Row68Pl8hCNB0KZwgN98+ZCw30kkPsPB3h7zs4vsHxyRSl+ijgZcXZzS6XTpdjtcnR9z8+Yd9AY9Op2eamUq1+n3B7hcbiw2G/3egEqtRMAfRoeevtKjWCjx1VcPkUWRbD6FIEq8ePoYi9WK3e0glytSr1XJp5PMzi0QDAZxujwcHO0RiyZwuqxIwn+tzHUQRQGn20uv10NVR4zHKrOJOU7ODphoI0KREGaLjCCZMaDn6OSQxEycXL7EYDjEaXcgidM+e7GYw253I4oyPp+fTrdDu9NhMtGxsX0DQdARC0d49uQ5JrOZlZUVBFHEbLHg9TsRBAm9AVYW1ynVqoxHGvGZWX72sx+ztbWNbJYZjweIgky326Ver6NNVCRZ5sXz51itNg6PDnnnwdvkC0UCPh8mi5VCvsDtW28CGisr61ymUhh1Mk6Xm2q9gdXmQBZl0tkkToeH+/fvc3x8jGyS6HS6VColDDoJh9PDzq1bDPsDVFVlZW2D09NT3F4PLpePQiGLPxChXq0gCSJzC/NIosxIVanXarQ7XUyiBdlk5cOf/QSjUWRtcxWP20M+V8Dr9XB0dITL6cTj9VGu1LE5zOSyOSaTCfl8DofdRq+nkMmkuHf3LS6vLpkAgiTxX/5JQFX/9Hvvb68vo9PrcdinubJgyE8ymUKWZb56/JB7d+/hdDo5ODrE6XJRKhVZXFhkd2+XeCLIeDxh9Bpn3um06Q8VzCYbbs+UNtztdMhlkzTrTYyiRLfT5OL8DE3T4/YFmJmbZTga0+s0OdrdY2v7Bo8ePaJYvMZkMrO0vIIgGDAYBXL5HCazGUma7oR8fi8ejw9BkAhGQvziF7/gulqlkMuxtrrGyso6Ot0Eh91BLpdn/2CfxaVFer0+mgYOp5XrYhm304YyHFK+vp56WJng9XkQBJHl1Q02tndgYiQQmAJag4EggiAwO7OAxSozmkzIpK8wCOI/ZiNlWSSVuuJ49wh0EzKZNKsrm/zkg58Qi8bodbuM1AmtdodQKIAoGbkulkAdks5mWFhb4/DlE8bjCZ99/iXz8zNoGmxvbdNoVkgmr3DYXezcehO3y0s6nZwepzWNhYU53I4A2XyaW7fu4vF4aTSaPHz0EL1eh9FoQB1qFIt5FhYWOTo6Yqj0MRhHMNF4+eIlXq8PUTTSbNW5f/8BH3/yD8RCDsY6gZ2tG8gmM7XrEtoEvH4v50fHU+fFaEClUnxdrzLSbrVpNGqIopF2s02xWOYyeU691uD2G7eRJRG93kCpnOflixfs7Nzi459/gjYZEfAHGaojzCYLe3v7JBIJeopCpVqlp3S5vLp4rQHV0263SSavSCQS5DIZCoU8sWgMdBOcLjeNRgNRnL7W3t4e45GO1fUl2i2Fz375c5xuD3abdYqoN5swmy3oMJDPlpidS5BMprhx4wa1Wg1JnjaNwuEQSr/L5fExyysbHJ8c4Ha7yedyuN0OAoEgiqKwtbVFvXnN/u4L0OlQhz0kyYzNbiUQDJLNZRmNRxwfH3H37j0CgSCNRpXEbIJqrc7JyTGSKDDWNIKhEGcnpyzOL3B+dsTC/BIvX73E7/fT7XV58eIlMzMJzGYzDqeDy8szZhOzCIJAIOTjkw9/gcliYTAYYrVZCYcj9Lo9/AE/2WwKv9+PKIhT7JlgRJZkLFYbVruVx0+es7g0T6PepN9X+MmHn379h+D/+m//7fs3bqzx4O1vcHFxQraQx+10k0jE8AcC6PR6DHoDn3/+Of6Al4AnQCKeAPR0u11EUaLf75NIxJEkkcTsDLIg47DbePH8OQ9/82tSVxd4PW5C0RhGo8B1qYherycYChMNR1D6fSYTjeTFFesbW+j1Oj7/8gv++F/8czZvrJMtFhgqPf7uh59iMUvsHx6wsbnB3Owc47GGx+vj5PQQm9lKu9Xmq0dP+e6/+GMGA4WVlRVq9SoTbYJRFJmdiaPXGVlYXgCdDlGctht+/rNf8Fvf/CYGg4H9/X0ajamprd/vo9Pr8bq9qOMBSrdNIZ/n9PiISDTKZKIjVyhgs9lwur3Ti6DRGFkSKRSSRGfiTDSNnTd20DQdpyenBHw+fvnxR4RjMWx2K81mgw9+8iHFQoFoPEowHMbt9mIUoNvsI5kk6vUWOzvbrKwso01G9LpNJhq89fa7iMK0m5tOnpPLFzDodZhkC4LBQOk6Rzw6h6apuJwuQuEopVIRu8PKaKQhCCIWiwmYsLe7x9nRPq1Kie27dzk/PwedDnQTFGXAu+/+IQN1zMrCGuXrGk6Xh7/6f/6S2/fuMBiOWVpaZf9gH5vNxtHxPuFQgvPLY8KhGK1Wk2Ipj9Pt5LpY4hsPvoHZZMVms2Eymak3a4SDMdwuD5o2wOVxMB5BqZR/DVw1YLHKmE1WqvUKkiwSCkdxON0M+gp6veF11EalkMvj8QZwOd2IopFcJockS1Os/2TC7EwMu8tJNBrmcO8YwWjg/GyPhcVV0OuQZBOCZETp9BH1A4yyiKL0MZlkRFlkok2QRAGjoCcUiiKbTYzGE0CHP+AldZXi7XfeZTxWUdUhkwlUqzVCwSiiaEGUJbqdFk6HA1m2EgqHSKdyRCIR2q2p9KpWbeJw2qmXK/j9Afz+6X7xulTCZrdRqVTJpNN8+dmvEESJW7dvkc9nkSXpdaKjTLFYwOmys7i0yFgbYTJZcbpc01/+TifLyyt8/vlnrwHHesxmE1arFb8vQKNZR5toPHv2lE6jisvjIBiKcXSwj1m24Pa4UbpdfvLzX379h+D/+R/+4v3/5X/47+n3B3S6LfyB4OsYjEijWUWvm37BDEYjo9EQSZRfM+AqeL0eguEoDqeL0VBlMoFut89w0EcQBPrqgAf3f4tYPMHa+ha5XJF4PEa9VsXl8mAymcnn80jy1DDGGNKZFE+fPMVmtzM/O8/BwQFLy2tUKlXq9SbLiXnuf/MOl5cpvK/JNWazBf1Ez8MvPmNhcYkH9+/z/Plz/vi732V/bx+vz0u302VhYZ6//fsPODg6xWYxEQpF6LQa5LJ5/H4P83PLHJ0c8879+6ytrVNvNugpChaLFZvNzlgbk81kKBXz9HsKPp+fXq/H6toq+UwWv887ldqMRrQbdXZ3v8Lvi9JTFM5OT3C7Pa/R7HpWN9bx+v1YrCYSs5GpEMjlYWV1mV6vh8fjwun0Mh71sdmtREJ+RMnEZDLBKBiBaYG+05lipgbDAd5ghFtv3Mbr82PQ6dDQpsrG6yKiKHNxfsZorOH1+rBarOgwMDc7x9n5OaPRmGq1xNr2G2zs3CafLyIbeijKhHgihqqOMBj0GAx6Go0WDqeDg6PneFw+HLZp2Ngf9KPX6XC5XShKl+XlFQbDHplskkgkRiw6gySaEIwGLBYLijJ1M4/HY/qDIUqvSzQap1ptEIvNYjAYWVtb4wc/+AGyLBMKRtndfYndbkIwiLx88QLBaASY2vBarWm9r5Tnzbfe5OzsBIfDQa1axeV243C5MQoi5WqNo/2XiNI0SmKymDBZLISCEX7+wQcszC/Q6ymMJkNK2XPcvgT7+3s4HA70Bj02u5NGs4mmjbDbnezvvkRVR9TqJdA0et0usfgM6VSSWq2G3x9AeS0yUnoK9+69TfIqSbNex2ZzkMvkEGU9tVoNr9fP+vo2kiRhs9s5PHqJWTJhMEw9ybIs0+31yOcLzM7GePP+A54+foLT5SIUCvLo0SNCoTA6vQ7BKGKxWhkOVQaDPufnl4iSSGJujquLS6w2KwaDDo/HO/0xM+hjNE6hFoIgIssmbu68gaqNaTSrZNNJ+t02fbVFPDaH0+nkP/3NP3z9h+Cf/dmfvn/31ialUpGAP0S5fI0/EEJRenRabaxmG7uvXjEzkwAMGAWBbDbFzs5N0pkUo5GGoijU6lXCkQgWixWX08Vo3MfhdCJJEiazTPIqjcNmRTJJVMrVad+02yMSiWAUBHTaBL0evvjsc3rKkM3NbTLZC3LZPC6nnQ8//Ig/+v1vcZm9wml3Y7VYODk+JRKJTsGogz7pTAqDwYjb5ebi4gyn20UoHGLQG/Ds2XMMBj3VSp2dzVXeuHeHSrlEq15nYXEei836j8h4daiSy2VwOhwYDAKbN3YYqirRUAgmGtF4HIvVzsLi4lQ+I0nUag1MZnn6oev36bQ7NGs1avUGa6sbOJxugpEIOgNYbE5UbYTVbsXldnGwd4jL5cbpcjAZT4jG/FyXrsnl0ni8fhKJOOVKhXtvvk2v32KijWm2elycXbC0svL6Nl/j4GAXr8fLYDCkXisQDMdRegqybMJkmhJWJpNpNSufKzIY9nj8+DE3b96gVquzvLJGPBbj6PCQoD9Iu9NlcWGV/mCATqej3qjg8wRp95rIJjMzs7OooxGVWp2337lPsVgkFA4xHA4xSxbU4RClO71U0KPHKAhcXp7TV/pEIhEEQSSVSk0F7XY7itJnPFaRZROySSKXT9PvDdne2WDQHzEajXj+/AXv3H/A3mvCtsvlwuXy8NVXXyFJJiKRCD5/kHZ7uoPNplP4A16ui9fYbFbU4QCb3UEsnODk7JBwKIpgFBgOVerNBq1Wk0dffMbcwhLhUIz1rdvs7r4kEPRx8OoFidkZjvdeIQhG4jPzrzvSMsFwGEm24Hb7CITCXCUvmGgThoMu9VoZm81OIBim3+/QajdwOz08ffYQb8CP3mAgnc4QCoVQVZVmq4nSU6hVG9y5c59k+mqKcjOJtJptbFYrM3MzuN0+Wt0uOzduTKX3ZivvvvseJss0j2mxmGl3OjSbTQRBxCCKMJkgSxLzC/O0WzX0r9mGe7vPCEfjVMt1xuMRXq8XURLo9bpTA2R8DpcnRDiW4Phon/nFFV692OfTzx9+/Yfg97/3J++vLa2Qz2Wo1aoYDBIej4PBoIfBYEQQ9UiyAb8vgkHQY7W6CAYCVKplREHC7fHSbDZptuqIkoiqTihXC+j0emrVJjqdEVmQMBohm05jMOgolys0m3VsdjuyJDOeaPz6lx9zsHdIPB7nzbs76CWBpfUNdp+/pFJpsrA0h1Gvx+ZwEI4EMckSC4uL7O/vYTTqqVSqZLMZvvvdP2Zvb59gMEC71abX7XJ0fMS3vvXbPH70ijtv7uD1BFDVDs16A7fHQyqTZmfnDWq1Ki6XmwnTY/JIG7O0vEWjWcPpdHJ8cECtUsHt8uAP+BFFkRcvn9HuNInGojz+6hmTkcr+3h7Ly4u43R6WVzcZj6YpfA2NwaCPz+MhEApiNpunt6JGIwcHhwCEIxGMRnF6UWGx0Gw2GA6HyLJMplBEVdrYHU4UpUs8EWdlZY1ep4fZYiaeiPHJL37B2toaZ2enjNQ+TqcbSZIA6PV6xONxnj59zO3btzk6OqR4nUQUzMzPLyCKIqqqYjKZCAaC1BpVxiMY9gecnR3Q7fWQRAmfN8jTJ485PjllcXEJq9VGoVDC5/PTbLTx+wI8f/6U9fV1yuUySq+Pqo7xBwIYDPp/zKfp9QbMZpnRSKVebzA3N8dg0KdauyaVzkx3eXYXnV4bs8mKIIl4fT4Ggz4up5Mnjx/SbjdpNFvE4zOoI4Vms85oNMQkTxmG8/OzDIZ94vEEH/z4A/Q6PZFQhNPLc+xWG5JoolItYLXaMBiNBGNR3rz3LiaHhWwyQ6PZwGq1MDMzj8sb4uxwn/jcEienu2yubXN4cEgwFEQ/gWK+wGA0wOP3ThWXokQsMoPL6aVaL3N+dkGpmKNarrK4tkYylWJ9bQvZJNOsN3A5nSj9HjodxONx0qkUZ2cnvPnmPT780QcEYmHOzy/QxmOqtdpUBWqzoih97tx9wFhTOD+/RJtoOF1O0pk0Kysr2O12LBYLV8kUDrudUqk0je2Ybfzqo48w6gWyyRSjQRtvKDw99alDVHWAYBSnN/EOO6qq4nDa8XhCKJ0+G1ub/L9/9Z+//kPwz//sT9//7XffZH5xbmqEi0RoNhtUqxX8vqkVThtrPH/5GLNsIZ264NXuS0KhMOVKGYvJjCTLiEaBTquCIMro9QaUnsJkohGPR+l2Wzx++CV6o4goW9BGY3Z3j1ldX0YvSNSrJTxOF8ORysbNLQ73TzDopya66+sS5WqdG1ubOF0uCvkCeoOBjz/6BdFohPjMDJ12F3U4YnltFR0QCPj56KOPCIUCtFpt3nv3Af/5r/+a3/2Db+H1+ymVcmSSeRwOG7lcDp8/wHg8RmcwYpJlXF4v87MzmG0O9p49QpBF7DY3g4GC2+Xms1//iptvvEG312KkaqiqimSyMhkNSSevCAVDhEIRekqP4+NX2K1uvH4vNosNSRQxGkUqxRInx6cM1CFej5NAKILP40IQjGSyKaLRONl0lu3tmxgFCavFxPnpMbOzi0TDc1itdsKhKKdnx9SrDRSlj9FgRDZJ6PU6xtoEh9NCqVSm3x+gaRqVyjUm2UYsFmc4GGK1mFla2ECvg739PcLh6S/FUCDIZKwjnUqzMD9Ps90inpjBqBMZqgojVWN7+wZzs/Mcn5wQDkcwyyaqlTK+gJ/rcpHRaIjS67OxtY0oSOj1emRJQh2N8Li905bI4SGSNB28itKj2Wwx1k1bFi6nG5PJxOXlKXa7i0qljNViwevxUK1UaLfbrG9s0ekqBINBYrE4ALJsoVi4ZtgfYJJlTs9PabV7pNIZNm9sTQf6xRmNeoFBr4vT4yKbvMTtDmIwGGnV6yQSCV4+f4nNaiMUilCrFZnoJjABl8eHLIu8fPaUMXpC4RCCIDIYDrHZbciSTF/pUy1XWV1dI18oIIgCI21Ms9UinpgFvZ7dFy/5wz/4DsdHR1TKZRKJBB6PB53OSKNRwfY6klPI5+l1O/RVldu3br8GPbgwyzLl6rQAMFUDdLCYrVgtNpxOB+fnx6hDcLkcNBoNzs/P2VjboNNqIEoygiAgGARuvnGHyUTlybOHmDFSb2RYWn2DcqmE3x/kulxGlk00Gm08bifqUEWbTJigEQoF+cv/+//7+g/B73/vT95/594t0pksve4Ar9eDyWwil8tSrlyzsryGIAjIsszC/BImk4XNzW0azQY6nQ6L2YLX56PVqjPsDzGZLQiCwHA4xO120+l00DFlowWiAcbaGJtNplq95s6dt0heHvDy6S6VSpV2u0sskUA26CkWC/T7fXKFPJFohFgsSF8ZAjBSB6ysrNFqtTk7P2dvd494PEG+mOf05ISri0tWllfQGfWsrK5xeHjAH3znO+h0OsqVColYmM9+/YhAIMCrV0fMzMUJReK4PC6ymSSnB/tUalMpd2J+CavFjTKok0llUHUa7XqD2bklSqUSy8vL1Oo1vG4PLp8Ll8vF7Pw8bo+HRr3GxuYmL189pVUrEE8skclmEQSBgTIkGPYiiBK5bBq3z41gkBiPwe32kEymQBtxdnHOaKzR7UwR7JVKEVGWCAYSNJo1er0BMGYmMYs6UglHowyGQzRtyHWxytr6Gul0Bq/Xi9Eo0O40mEzG6HTTXOjl1T61WoPllSWq5QaySaZYKPDV018jCmYkScJqM2MymXj+4hFrqzewOx1cl69Jp1LMzM5QKpU4Oz2m22vj9/p4/PgRq6vL9Psj0OmQRBFZllFVFb1BjySKrx0XGvMLc5SK1wBo2oRhX+Hs5JxINITH7efqMok/MMV1FQoFkskkvW4bURSo1RvMziwQjoS4uDxmOBiRy6fpdtt8+fmnGI0jtm/cxul202g2SSRmUJQ+b9y+jWiQiM8sIBlNGAR4+eIL3G4fPq+fSrnCdSVLt1EmEp8llUoiy2YsFivj8Rinw83q8jIjTaNcLuPxeCmXy0wmE3q9HoPhkMWFBR4+fMhMYpbz8wviiQRLi8ucnh3jcDhZXFikUCgQCATodrtEIzEG/QGyWQJtgt1mp9lo4XK5SCavWF/f4OT4BJfThcli4vPPP2ZpeYVoNEK328OgF0AHHq8dNANut5dwNEC/P4CJjnarPX0QySKnZ9P6YLddJ53J4vb7uXP3m/TULvGZOY4O9zGZTVitdkRRZPxacjUY9lFHKpo2xmDQk0pd8uOffvL1H4L/+7//d+//T//mXzN6vXQ1CgYuLi5YWFjE6XRgNBq5vDzH4/GhM0gIRiOqOmQ4GNJsNHG5XIzUMep4hNPlJhqNoqoqQ3WAYDRi0Ak8e/qIvtJHtlgQjCITdLjdXvr96X5mPNHwhULcuHmDcqmEL+ChWm1wenbE7/zOH2KzWMikczidU/rGTGKBy9QlRoMBSZQYDAZUKmUsZjO3b99mMBrgdjr54stHvP3W2/gDPvZevUIbj8llU0iiCZ0eHHYHRlFg59Yb1GoVzo4PQdMxMzPP+vYtus0OOm3E1cUJzXIZ9DpubN/A5rDjsDuACb959AWVchGXywtjDT0CrVaH5MU5wXAEEHA4vMzNraH0FWZmZ3j6+Akev3vK5CuXWFvZpFat4vNGSCYv6fYa2G0WBFHC7wvS73fptBVu3rqLxxPG6ZzSZpReh1AgTH8wJOD3o9frGKkqr16+ZGNja3qzi4508gqTLGHQ6+l2OsRikSkgNzFPMnXF3XvvMJnoyWWvMMkWyuUSx0fP2di8gSBI1GpFatUykmjCZrNwcnRMIh6nWq/TqJQwyhKaptEfDClfl4lF4xweHrJ1Y4dCMYMsm6k3amiTKfX4/Owcm81GLlvAYXfhD4f44rPP2NzexucPcHhwRDwWJ5VKcmNng7PzKyRJRJIkqrUyOzu3EWQJj9uD3W7l5cuXSJKJxcVFEok5YtEEN2/eYTjU+M3DR/T7Pe7cvsUHP/whJrMZs8mE3mDA63VTKOZpthps7zzAoNPz9PlTOt0udpuDSCxKo1mnWLwm8TpiUq/XyWYzWGw2PB4PgiDQbDYoFwoEwyFqlQrRaARRljFbLAhGI263A7ttekEzk5ghmTzj+rqCz+unUW8xUPvE4xHOzk85ODjG7w/icLjo9vpYLZZpjzmdxO3xcXT8bIoUi8xhMIi02g0qlSoerxuH08GL5y/o9dvoDPp/3Ne7XW4URZk2o2QTkixxdXWGQRCJhILo0GM2iTRbbRbmV9nbe4ksWSiWisQTcUyyjVarjsFowGg0EgwGqVXrXF6e8usvn339h+B/+Is/f39rbYFeV2F+bpZGvYEoiNgdDvp9haurJGazBV/AD+Mx7XaLQqHAxvo6siQxAa7LebyeAPValdJ1mfJ1kb6ikC/msNpsGA0Cb77zFqORRrfbJegPUm22sFpFlK5CNByduiZqTaw2B18+/JiAL87m5gbo9Bj0enLZPItLSzSbDZrNOo16lUa9xdVVkgcP3kan07O/d8DsXAIDBhR1yFgdEAhEGI+GnJ+fEw5HSczMYbLaODx4RaOu4A86EA0CDpsVXzCKzWrFZLNMn66CzBef/5ybt+8iWpzYbU6ajSqNepN4LMZVMonb7WVtbRMMetTxGBgzHgy4ODvBHwxxdXWJHjAaDXSVNqlkBlmWsNosxKMJHHY3glEkEIny4tVz/D4fNrODvjLAH/Ch9PoEQiFiszN89sVnLM3PcXJ8gl43xZjJokSjUafVblGr1cjnCuzc2OHyKJpM5AAAIABJREFU8oLLy0ui0SiNapnxaEA0NstEP+bo8IDU+R7x2Aqzs4vksnlKuTz12jXPnz1mdmYGQRAwmW1YrVby+Txnp0li8TiPHn4GkyF9tY86GHFx8opYNIbV7gZ0NOpN1lfWpjfZGlxeHVJrNOjUqxj0IwyigDbRYTDqMVumFbNep41eb6RWr6HX61leWyKTyZKYnePTTz/lvW++TbXaQBAE/L7Q9Cgn6CkVr/niiy/4zne+QyadpFqrT0XulQLVapVoLDol6Rh0VKs1/H4/S4tLqEOVbmcaqnY6XRQKeew2O8lUiplEFLfLTW/QJxpL0FdUopE4BqOBSqXCaDRk2O9TKBb56U9/isPhwGq3oTcYMJvN0zB0uYpRFNDGA2Zm5tjfn2YH/9Nf/UdW16asxNOzIwxGHS6Xm7m5JUTZSKPRIxjyMlB6VGsV9Do9m5vTvardPr2Z9rgCNJsNBoqCySqhaVOj4Wg4mHINTTYsFjudbpdarYJOp8doFBiqCr1eh1a7CXojwUAQl8vN2ekpZquFSqXK/MI83U6XufkF8oUsoighmUycnZ8QDkQwm2WcDgfpfBqd3ojd5uYfPvjw6z8E//2/+9/ef/vuTTxeP5VqBYfdjiybEARxCkIYDfEHgnR7XbSRxnCkEgqHyefyeDwerFY7jWYDu81GoZgnHp/BarNOn7QeL8+fPcPr8dJoNshk0lQKRdxeL7IgMBoMpn9X02g0a2SzaTRtqku0251TzeTpIb3egO/80R8xmUz44vPP2dnZAd2Yra1NHj16xLe/9bvT4LDDyezcDFfpNBaTmW63R7vbwGqxYNCL/xiFKJfLWE1mtm9sMRoMic/MYbbZMQBDdUAhnZ5KgqwmnHYng/6QTCbFxsYW49EQTZvQ7rTpKl0EUaDb7eByOqnXakRCYZS+gs3jwSRNqSM2q4OFxRm0CXQ6TXz+AIJBIJ26IJU9JeCPksunMZvMKIqCYDQSCgUplgrkcwU67TZMJnicLkqlEv3+gHa7zWg05PjwCR53gEg0RrPZxG638PLVC5aXV7CaLSSvkrxx6w6BYIi/+/u/QRRNmGULD977Fk+e/YbV1Q1UVcXls7Czc4fZuWW0ifaaNN2g1+sxmcDdu28iSjJziYWph3p1m3qryq3bb+PxBrHZ7TSbTTa3Nvnk05+xur7JcKgyGo0IBsKYrU6cTg8ff/Qh6+trSKIZr8+H2WRCliWi0Ri5fA7dRKNSvabRqNFtVPF4/HS6A548fYjRaGQ8GjMcqgwHU3GR1WrlRz/6EcVigZWVVSqVMnOz81SrVcbjMX5/AL3egNPtoXRdxB8I4HQ4GQwGdLrTz14iMUuv00USRTLZFJFwlMP9A4b9AXabFaMo0GjUprxHWSKfy3Pr9m0WFufwB3y02h08bg/l8vQW+OT0JeXrLKvrN0klk69XEUZkk4nE7AytZguj0YjH48bpcFMsXjMaqaQzV1RKeZaWN9A0DaNRR6PeQFVVrHYbALVqjXKphNM7peaIgkRP6aBDT0/pk8tlCYdDtNtNXE4vne5//d9KhIJRkpdHRMNxXr14jNvj5/DggDt375JOZ9DGGoOBSqvVIhIJYbXamIzG6NHxf/3lf8Ril1D6Cgd7B3hcbiaM+eE/BYDC9/7k/3j/3bfvIEoyg8GQTDaDNtHo9xW8/iD1xjW5TJZet8/MzAz/f3vnFSTZdd733+l0u2/nHCfnmQ3YBbHkAiBAkxKTSFEqv+jFZsmu8oussh/8IJde8GpXiSJpq+Qql+UiLZO0JIoSJQESlmAACSzS7mBmJ+fcaTqn27dv8EM3WRBLFEnY1AbMr+pWnzl9H86/z6lvTvq+z263cXJ8zNDwED1NQ1UVqtUqXU1ld28Pu8WK7HIR8AconBeYm5/FIsApydSadbqagVNy0AN8wRACK91ul6XFtwn6g2SzBzidPpxOB2urGwQDQd5+e4l0Okqz2UGSbNglCbfs5fT0DKfT2TceSod4PEalUqXb7ZFKxkklh9nb2+atu4tYbQ5Gh4cwTZP9ne1BJjhBvlBkeHyMXq9HV+kQCUfJnxdRuyp6T+O8XOLy5WsMD41gmgKPRyYYCCG5JHJnWdxuPx6fB0ydgDdIo1Hn+PiQ0dEx0qkEpg7RaIS19VUcDidWAZLTQbPeptFsEQxFKJfOkRwu6rU6kWgEXdMYn5ykUW+QSCR48/arfPCZZ9nd22ZyehaLsCBJEk6XnZm56/j8fro9hVdefoUrl68yNDzE6ekZ01PTrK7eo9dT2VxfZW7uCqFgmNHRMSrlGtFYkmqlitUqaDUV3G43mqZitbnx+/xMTM5wXjrH0HvIbheb61uYAsYnJjnNnnHv3j3SmWF0TUc3DFwuF0dHB1y7foPDgx3sNgcBf5j9wx1SqRSddoc7b75GOjOM5JQJhQL84X/9ItmzY6q1OvMLl3BITsKBEO12C4/sQA6EaTYaBAMRMplhYrEoZ6dH7GztEAmHGR+bZGp6Cq/PD4AkSbz++uskk0msVit2h4V8oUQgEMA0QQhBu9Mml8v3f6ezPUwD6o0GJiY7W9vMLVyi2WhgmBqVYpHD4zMSiQQHB3sUi0UMo0u5VKdQOMcwwCU76Wk9PLKLUjlHKJDA7rBTzBeIROP94KVWO8FQkDt338Qtu3E4HQxnxpGcTkKBAIqqkMtlabXqeDwujg93adZaNJotmo0W6XSCN15/nbGJCeLxBHabnWQyTaXazwy4cm8ZhMDn7Qc03t3ZwOV0UquXqVTK6LqOYTGxYsEwwOsNEI3FkJwSiUQSpafidss4JRcjI8PkCwVCwSgOqX996IkPPEbP6CG7nMzNzSPLbhr1Ft98/hEwgv/li59/7pf/2TOASaVc5vKVy4RCIcrlMsFQANMQlEvng1OyMprWGwwok53dXex2C3abhMMhiEcTBPwBNK3vQmez2SmVy9x9623qzRILl66wv3fA8MgQiWQKRVE4OznGIdnpaRpTc7PYnTKj0/N0WnUODnd4//tvMrcwRySZ4s+++ifEE2mEBU6Oj5mYmMBisbC7s8vc/Bx2u52d3T2azSY+rwe7w065XMImOXnq5uM06g3sDhtar0cynSQSjWARVo4PjnB53LRbTbx+P/MLVwaBGQzc7v7hgKJ0ACjkz6jXGsTjCZ7/xte5cv06Q8OjWLBhsZi02h3GJyfY29klEolitzup12scHx8STySpVSsE/H4i0Rger4doNIKu6QyPjlIoFpiYmMBmtdLtquh6f9YzM3+JlZV+2CW/P4hbdhMOh8nmTjk8OiYaCfHirVv89m/9Nl/5yld44sb7yGbPMAGvz8vkxDRunxeP20ssFqdUOsfhcGC1Wdnf3yCdSdNVFU7PTlhZXiRfyHH9+uMcHh0SDsUwdIFhaMzOzHN62vdsMDGZm5snl8sRjURotRuYhiAQ8NFud7AInfOzY5xuH2AhHAmAsHHjxpODE84wf/6Nr3Pj5hMkU8N4PK7BPrFCZZBGc3LmMnde+z4jY5ODvMTDrK7dQ3I6yQwNs3JvlZGRIZRul06ng9VqxWq1MjU1RX1wad3r9fCDV15G13vkjg9R2h263R4dpc74xAS7u0dYaSO5fNhsNmSXk1g8geSwUywWuHztOolkkp2dLfz+ILFYHIfkxGKDq1evYZomudMzCvlTItEEoVAUm92O1xtA03vMz/WvK9ntdiKRCDu7O5TLRc7PTmkqLVyym25Xod6oMjw8SiAQIhSKsby0xq/9+meQJOfAqeCEUCiE1WYj4Atht/dDji0t3mN+fp5oPEqn1SEaD7O5tUE8FqVRbxJPJJmZvoQsu/C6ZCSXRLenDSYN/SRSt2+/RrVYwuPz4vP66fVUWu0WnbZCV1UYygzh8/g4OTsjmUhimjqtVovxsQn+55e/8vAbwS9+4QvPfewjH6JQ6F+lAEGz2cLr8XJ0eEQw5MdqszGUGUbXdUyTfhpBtctQegiATqfN8fExjUadYCCCYZgIi0m1WsHldA3ukvmwCivxZAy318v68j3i8RgTE1Nsba4hMOl2FJxOifzpKSdHh4SDYVxuH9FknKU7b1KvtigUczz1wac5OTggm8tTqzZZuDQHwF/9zV8zPTXN/Pw8O7u7pJIp1tbWaTVbXL92jd3dXawWK3v7O5wdn1Eq1AiEPTz97EfoNJvMzMzyxhs/wGG1EU8kODjc5+mnnwYTzs7O0EydkbFJLBZBu6sSi0dxSTJ2qxW7Q2J3b5e3F++yvrrMU08/zfHxCV1FwbSYyG43kiSDgEq1hmH0sNttHB2dYLPaWF5axOP2YBEWrFZBR1GQnW4Q4PX6yAwNMTwyhmEYnJ2eYLEIVlbW+fCzH6J0Xubq5assLi4iyzKmYfxoBmKaYBECtdtFll20Wg00rcf6xgqNRoVLC49zeLjDcHoENJ1ur8XcpWsUC0U8HicnJweEwzHS6WFyuf5pZqPVpFjMM5QZ4eTkuJ8lLZUeeJPUCIUCVKoVjo4PKeTPEFYb2dwZ5fI5J2fHFApFnA47wmLB7XEzOTnDxsYGQkClUkZR2/h8QQxDx+X2sb+/S7PZz6CXy+WZnJygVm8wMzNNR+mQzeYJBIJEIlG8Xh+K0qGjtDg+yBEMehkeGaHb7TI5OcHZ6TGTU3ME/EEODvexW624fR48sh9D1xAWk+zpGSNj43g9AWr1IoV8Cbvdgc/nQdc1Jiam+G9/8If4gn7mZ+bwBn101S5Kt4Pb4yWbPcbr9aMoPVZW7uF0OkmnU1Sr/ejWmfQIu3tHjE9OUSxmScbTeNweFu++RT57QiQWQel0qNZrBAMhSuUSkuTEYrPR7XbRej0yQxlK5QrBUGiwJ1zDIwcoFgrcuHETm92BLHvI5fPIcj/sWSAcodlWsFmtCCGw2u0oXZWd7XXskpNMJoPFamKz2XA5ZZrNFulUireXFgn4A7jdMrpmIISVO3fvkEmn+eOv/tnDbwS/8Pnff+6XPvQk0ViCrqpis/Y3rOv1OqFQCMPUOdzdQ9jsWCwgSU40TaNYzBFPJGg2m/37TLkjIuEEsVgCj8dDpVLC4/EwMjJCs1nj8OCUmdkpOp0eB4cHtBtNumoX0wRdU/EEQsSTaZrtDvmjHU7PzllYuITX5+3/V2rV2ds55bO/+S+oNhvIDgeTU1O0Wh0azTrJdAqbw0E0GMa0Wnn9jdd56ub7sdttPPuhp3D7vVRLNQKBIF5fkGc+9Cy6qXL1at/zZWNlDcnhQDMMdrf30TUNYbHgcEhomkE+X2Bmdo5Op0m3o3Lv7iobG3eJp9LYJTsbGxvIbhcf+/jHCYfjvHb7VSSnjNUuiMeSNBp1nC6JYjGLy9W/fiBJTjqdDo16g7nZBer1Ck6nRCQc5+6dO1gtVsYnxnnl9ndQ1R6dTn/rYWJ8AiEspNNpzs6yxOJxeoaGxWbF7XLidvsoV8q4XC4sFguY8J3vvojH7ePu3SXS6Qx7u3t8+MMf5Sybwx8I8crrtzk+OSYajiK53EgOiXa9zd7BIpLTg8MuUavVMAyDUDDApYWrvHn3NlNTM4PMg14kSULTNFwuJwIbHn+AeCrN/OwlbDYHPl+AUDBCOBwinerfMz08PGFsbIRQIMjx0RGBgJteVyczNIKua7RbCpmhNMViEUXtMjU9hcNmwy17qNebBIMhfD5fP7xXt4vFAq+/cZv1jWWmp6cIBv3k86W+AYqlKBRzTIyOUGu3qdYqTE3OY7dJyLKT/f0jJifn8Hg91Ot16vUGFosVp1MiGo2haT2cTif1eoN0Ksnw6AjfuvU8DmHH6ZI5OTnF0A2ioQSartHtqly5ukCvp/Laa68zNDTcd+Or1Lh+/XFUVWNz6x7jo1PUGjWisQgz81do1FqcnZ7gdDnpqj1y+RwL8wv84JVXmJ6eRu12aHcaZHNZHA4nyWQKQ9dodNoszM1xfLJPuVzG6XIhSRKyy4tp6mhGP3/J+to6sViMXDZLLBplbmaWVCLD7v42ifgIkuRgZXWJhYV5lI5CIhHn+b/9a65eeZx2p0mlWgLTgtfr5f98/Zs/kxG0/FMYs3eLpmnY7XYa9Rqjo+OkM/3ZXSweZX1jhWq1il2ScDklJIeTaCSCYRiUK+e8+tpteqrG0eExLpcbj9uLLDtR1C4CCz1VY3/vALVnMDs/x/N/+wKS08bqW4uMTk8TjIQ5Oz2gpxq0GlWsNifFQhZfOIiwarS7CqZpYmganXaPT336o5wen7B6d4lKrc7i4iKJVJxoJMYLf/M8f/nnf8Ho6CiFbAHDgLOTU1ZXNjg5zpE7LeD3e9nb3UR2Cgr5IrFokmKlQiAQIDOU5lu3bmEaFsYnx0hl0ty4cYNGo4GJxrPPfpDVxbuUTk9ZuvsWwt7lox/7NBurG+TP8gQCAW7ffoXs6RkIkyuPXWN8fJxbt17CNK2cne6zu7NBJjWCXTj4wYsv8P2X/g6nw47NZqPdaaEoKuFwlFL5nGeeeQaX7OD5F75Ju5YnFPQSDQZxGCZv373D6ekxnU6HsfFRCsU8bpdMr6sOcmaUkOw22q0a9WqFs7Msn/zErxKLR8gMxQkG/fzqZz6FoigkknE67TqXZuf51K/8KuFoklAgiN/vQ5IdzM3epNPuYbPZSKVS+IMBvD43X/rSF2iVCuiawXe/+20ODnfY2ljH5/HSUxVsNgsBX5BSsUy5UiSTyTA5Ocnm5jqy7OHo5JRUKsUvf+TDNGp11jZX6XU7DGXGuPLYNYrFIgeHe2Sz++SzBZwOiWa1iaZo7Gwf0Gr0/atzuTMMzWB7a41wMEC9XmdsdIJf+fhnaLVa3L2zjK6bDA+PIoTg5gc+yOLSKmZPR9dN2q06tXoDySUjrILieY56vdof9w4bYCEQjBHwB5EkCZ/PRyF/TCFfoZQv4rA6icRiLFyaYWJyBL/PA1addqvB5uoy3U4bryeIEIJMJsPu3jqbm0t8+7svsL+/jsPuxO6wsbW6iK6brK+uIrv6d/NWV5ZxSQ4WFmb41rdv8fiNx+l2O2xsrpDN5VA7TXbX7mGzWzk9zRIOBqg06nQ7GqfHJ2CYyLJM8TzX3x+12AkFI4RCAZrNZj/qTKvF6VkRp9x3OcwWjzg63kfrtnn5ey+xurxMq95iYe4SmmZg6CaJRIrLVy7x8ssv/sx25oGeCf7+537vuetXFjAw8fm9fPnLX8LhkHDKMpFoGLWjYLHZScSTtDstumoXi9VCMBhlfGwSrdcjFo9iaIJwuJ+3I5GIUqlU2dhcJ5FMsrm5iccr45S9tDpdItEomeQIjWqOxTuLWAQYeg/TYmV/cx2fJ0goEGZsappKrYLDYscjy5iYrK+vMTE2RjqVIhD0Ua3VeOml53nqA09x8+mb3Fu+h9brUi5VMHWd973/Bl21i0d2YRgGminAauDxBfnTr/0F3VYTVekxOzfL7Pws42Nj1GoNTnZ3cQyWMYZhodWu0etpvPHGHTJDUY5Pz7h8+To+v5ex8QlK5SJBX//ApKuoRCNJVlfvYLXYKRXyBPxBXB4PuqFhACOTU7hkL4ZhYrX23ccajTqS5GR3dxchBIVCnqnJOVRNoHQ0xsYnWFlfpdVsc2nhErLbTbPZRNcMOh2FTDpDp9Nm6e7bDI9luLv4Jusbq9x88oPUm1XWV7c5OjzB6wugqypKV8XtkdF6Okq3TU/VaLfb+HwBstkznM7+LHh2ehKX5GJtfR1D76FqBteuv597a/eIxcLEkglSyWF2dtZQui2+//2Xsdr6uWhisSiys+/p8dadN7hx4wYbG5soikKtVsXhlPG4vViEIBSOcHfxLbK5HF6vB0xBsVgknkxx6fJCP1CHrhMMBNje3uwv0TwerBYrm1vLGKYFYVoIBsLIHi9Ol5tEMsV5oUg4FCaV7CcPymT6UWnOTk4Hp9dxQDA6OobL5URVe9QqVWLRKJJTIhoNsr66wuuvvozVYWcoPUqlXmR3cx+f1wcCNrY2SURT1BtNlHab4YlpLE4HjUaHvb1NJicnOD3OARbSqSH2dnYZn5gkMzSKy+Omq+oYhoHdbkXXezgcdp595iPoponTIeFyypSLJSxWGxZhpdms4HS5ufT4NTY3trh+/XFMTNwuLz6/l5HRMRAmpyeHeFxO3P4gzUYZm9WO1oPzUp700Eg/mIUsU62UqdWa/Yx3PZ1YPAn0Ezx5/R5ME7Z2lrDZJNxuN8XCOTMzCz/zTPCBNoJf/MLnn/vgzSdotxU8bg8zM9MYukEwFOJ4/5DxyUlMU+f8vEAmPZh1uN3YHXb8fi87O+ukk8NgERimgT8QpForIEkSOzu72Ox2Hrt6hU6rQ09VEMJE6+nU21Vuv/p9PvxLH6fRahMOR9hcu8fVK1dIDQ+hGTpWIXC5JKqVCkeH+1SqNbrdLi2lTblUQ7cIDNWkWmvQbLcIBX6YMDvB4++7TiQUpqMopDNplpeWOD8v84lPfJJSqUogGOTJJ59gbn6OpeUlZmZm6HTaNBpN1tbWCUfCpNJD1Gs1NKOHqvb42le+RiKWJF8s8ulP/xrr62vohka32+Fg/5CrVy9xcnxMt9uhUinSVhQymWEq1cqPQhN1Ov2ABvV6nVq1yszMDNlslrGxcSKRKH6/H0mSBobRxeTUKFarhUqlQiScwGF3oCgdzs7OCAQDJOMJvF4vPU3DNE1CoSDRcIRCscjC/GO4ZT+tdotatcGlhUskk0kikTiGrhCORfne397CMA1kj8wbb7xJpVboh1Ry+7BYbDSbTSxWC121RygUJpfL09N6YPZ9cFdW19lZW8ElS3h9IarVOuFwFE0z8Hi83Llzl1A4jKbrVCr9i71+v590Oo3DYcdhF/R6/RSTbrebZrPB9Mwsfr+fRqPB3u4Wly4/hs1mJZ8vYLFY2Nneptls9KOFxxOcFwuMT0zTbDbRtDYOu4N4IgGA3+8nX8hjdzgGWeYO6XQ6OBwOotH+7221WhEWQal0ztHREel0mnKljNvTd0PTTaMfkCHgJxpLUK/VSabSJJP9PCTpdJpIJEpP1fuJ12sFdjfWUTtdYvEk8/OzfP/l2/iDTmw2K6VSkVDQR6Nex+WSaLU6WBD4fT68Pi9qp0OnpXByskcgGKHRadLrdikU8vgDfuKJJOFInK3NO8SjkwSDPiwWk93dHRSlhWHo7OzskkjEB4dUVkwhKJcqyLKMYXax253kskeEIjGUTputrW2GhlOMjY5QyBfweDwoikIwGKJYLJBKpXE4JGw2O/v7+8Rj/XQIX/2TbzwaRvCf//qncDldNJp1HHYJq81Cs9Hk5OSYcCyMaZgsL77K0MgYNpudrqKiqjp7u7sMpUfoqgrtVgtTNxFWk52NrX5w1kQatasiyy52d/c4PjqiWakRTcQIhaNUSnWmp2ewShJKu43P48Yl+9na3MBmseP1eVm5t0Q4HCEWT5DJpIjHEwiblaXFu0yMjaCqLdbWNnjyyaco5ArU6zV2d/aYHJ8kEAjidDlpNBu4ZDearnFweMDIyAg2h5X1lRVi8TiXryywt7fH8vIy6VSKq1evMjkzytb2DrrZ4+hwb3By5+fqtSv4Al7i0RgWLKyt3ePJJ5/BarWwf3BALBJiaWmZcDDE5PQMpmkwOjZGOj1MwOdHdrkIByN0u21GhseoNRrMTU2wdO8esiyzs7OD3W5nfX0dXTfQdZNGs004FMLr82IVAtnjZn5hAYDVtTW8Hg9YGARKVSlXqwwNDQ2CiNoJBgIkE0ly+RO+8+JfEfC7ODrepa3qyB4XpUqJUDjK2OgEszOXWVtfZmpyjmazhs1mxy7ZOT3Lkk73/cDrjQLCtFCrtpmdnWVyep58oYCm9hgZHScWi6NpKgidqYlZgsEQq+tL2Gw2xsbGsdlsg9y60O0o+H0BQqEQ9UYVnxxge2OL81KZVDKNieC8UCCZSLK8dI9UMoXDYWN8cgK3x8fi4iKTk2MUC3muXHoMm1UaRP5usbW9iizJpJIpQsEg9WaD2ZkpGo1WP2NiT8XplLFaLYT8Hnq6gcfj4fBwn6tXnsDQNW6/9iqJRISOorK2vk4kEqNYzJFJZVDULhbT4I07d5iYmODtxbtcfew62Ww/ofvo+DhWi6DdUQj4fUxPzXN0eMLM9BzxeIqDgz3SqTRBf4zT08P+P0Gfj3ZH4S++8ZcMD6eZnp6jVqlTrZXw+31ouka92mB0YpydnX2SyQS6ZqD0NDKJYSSnxOFBlvd/4An2DvfBMLHZBAgrkXD/LqPb7UWWZdZW73Gyt0e1csyNpz7Ewf4BlUqZQrZIrVrlmWefJpfPMjSaoat0CAWjGIZJLBJDUdqYusmffuMRiSz9kQ89jdvtwe/3cXBw3E+qLrkon2cpnVeRHHZ29/bweAKUzqu0lSqRSIJuV8Hr8dBsNXE6nei6gdfvpdNRaLU6mKbJzZs3aTTqxOMJ3F43hUKBqelpTNOK1usHqnT7PDQqFRRFRTMMfH4v/kAAp8fL0MgYkmTH4/XynZdeRFW6hGMxnA4H4XAIyeniytVrlM7zaGqXeCJBPBFHll1UyhU8Xi+9nvqj6CiBQABfINjPeCe7uXXrJTKZDHarjXKphKIo+Hx+7r29RjQexGq1Mz83Q6+n45bdSJKE2+WjWCgQjycJhYK4ZDftZpPLly7xwgsvEfR4mb98mWar+aNIz4cHhzgliXK5RCQSotVUaLWbLN55k0AwjM3eT8ijKAqhUIjh4WGKxSKpVAoTk9OTY9rtDn6fH7fHw+npKfV6natXHkPtdhBY2N7a6uvz9Z3mXS4Xfr8fVVVxuVyoXQ1hc5LMDKOoAqvFgiy7UXsa29vbXL/2OJ12l0Ixi6HrAOzvHxCNxjExee3VH3ByvE06Pcb+3gGb2/eYn18ATGx2O3feeovZuXlUVaVYLCA5HYRCYdbXVwj4g4yPj/eDa7TabG1ukkjG8fuCvPbabUZGh1A6Om6vzPDoMJubW0RecfrHAAAIS0lEQVQiESSnRCyaZGNzlbHRMSTJQamcJ5XKsLu7x/Xr1zk8OMTnC/LSS7dIp1MEgxHanTaNZo252QVOTk4ZHh7mO9/5HrV6CQOVUrmGqipYrVYwTfLnRRr1CqqqYbNZUXtdNrdXSafSZM8KaJ0GyUwC04Bi4ZxCMUcwGOD1Nxe5ND+PS5aJRqL4/AEKhQL7O+u8+OK36Kk9MpkMQghUtUev199f3dzcJBINIbtlhLCws7uGwEa9XgPgscev4PUFUXo9ukoXm82gVm3h8XrRjf61nFA4DKYF3VBR2g3KlQKqDiNjac6L5yiqArpBu9lk/+CQ4eFhJKkfzMJm64cCkyQXyeQ4q6vLDA0NEwhFmJqeJBKN8MZrrxHw+6mUa2g9g3w+3/fWsdnw+4IUimd881HwHf785z733M0b17ELC+12h3A0xMnxGbqhoRnGwEuix9jELKMjo3TVFs1WA58vQKfTIZNO02g3iUXiqKpKrVEDq4V0OkWxkMNik1heepvzUoH9/T2uXr+O2uni8bgoFrI02y3C4QhnJ0fEEknGpyZAWAiGQuhaj4OtLTbW1hmfmMQTCOJze+mpKkPDSXLZIrFYlHwuz6uvfJfZ+cu4ZQ/tdoOdnV0CgTArK8vYLVZ8Ph9+fwif30sumwXdwB8MMLuwQMjvp9frkR7KEAkHf+QIL4QVn99HsVjBZrEBJvFojHa7RSgc5vy8iOSU6HVVKvUKhWwOX0AimRnBI/swDZ3zwjnCItA1ne9977tILond3S28Xh+VSoVgIMRbb73BUHoMgU5P02g263QUlZU7bzI7t0C9WqNYKJBMJdENnWg4yunJCeFImGarxcvf+y4jI2MIq0AgODnp50leXV/HarPicjpptRpEIlE0o0epeI7VYmV2ZpbTszPGxsaZm5xnfXOd4eFRwtEostOL3W4hlUrTajbpKl0CoRB2i4V89pjZy5dwSW7GRqfJ589YW9340bsdpcPQyAh/98Jf0+11mZqaptmoYbPa2d76Ye5fGYfkIhz2cXRyxPrqNt9+6WWmpyex2ezopobX58cwdBS1RTI5RC53gixJbGys4pL9bG9vsrDQP931et3EYjF8AT9bO+sMpYZwOd2cZnM0mk0S8Rj+QACfL0C70yKZTCKElZHhUaq1Mvl8HmEK4olE/1qRBcLBMF6fn56uEAzFCYfilMsFHn/fE5yXz/F6Q4yMjOCWZQzTQDf6S/5UJsns3GWmZyfodpu0W23a7RaS5MJhl1CUFuPjEywt3sXp9HJ2us8rP1gkFvPg8YXoaT2W37pDemwUl8NGu9UhFI6RSKYolcp4ZDdD6Qyyx4NLdvXzV3u8P7qTms/lOc8V8QWDyE6JRCJNNBYld5qjXm+Qz+XoaV38gSDNRotEsh/1aH19hXQyTbersre3y5NPPc3i3UUSyQRdtUuxWGB4OM3ewT61RpXpmVm+9Md/8jMZQWGa5i/emr1LhBBFoAWc3++2/IKI8Ohqgwt9DzOPgrYR0zSjP+2lB9oIAggh3jJN8333ux2/CB5lbXCh72HmUdb24zzQ9wQvuOCCC37RXBjBCy644D3Nw2AEf+rG5kPMo6wNLvQ9zDzK2v4eD/ye4AUXXHDBL5KHYSZ4wQUXXPAL44E1gkKIjwshNoUQO0KI37nf7Xm3CCEOhBD3hBBvCyHeGtSFhBC3hBDbg8/goF4IIb440LwshLh+f1v/9xFC/JEQoiCEWHlH3c+tRQjx2cH720KIz94PLf8QP0Hfc0KI00H/vS2E+OQ7vvuPA32bQoiPvaP+gRu7QoghIcR3hBBrQohVIcS/G9Q/Mv33rjFN84F7ACuwC4wDDmAJmL/f7XqXWg6AyI/V/Wfgdwbl3wH+06D8SeAFQAAfAF6/3+3/sXY/A1wHVt6tFiAE7A0+g4Ny8H5r+0f0PQf8h3/g3fnBuJSAscF4tT6oYxdIAtcHZS+wNdDwyPTfu30e1JngDWDHNM090zRV4GvAZ+5zm/5/8hngS4Pyl4Bfe0f9l80+rwEBIUTyfjTwH8I0zZeB8o9V/7xaPgbcMk2zbJpmBbgFfPwX3/qfzk/Q95P4DPA10zS7pmnuAzv0x+0DOXZN08yapnl3UG4A60CaR6j/3i0PqhFMA8fv+PtkUPcwYgIvCiHuCCH+zaAubppmdlDOAfFB+WHU/fNqeRg1/tvBkvCPfrhc5CHWJ4QYBa4Br/Pe6L9/lAfVCD5KPG2a5nXgE8BvCSGeeeeXZn+N8Ugc0T9KWt7BHwITwGNAFvi9+9uc/zeEEB7g68C/N02z/s7vHtH++6k8qEbwFBh6x9+ZQd1Dh2map4PPAvAN+sul/A+XuYPPwuD1h1H3z6vlodJommbeNE3dNE0D+O/0+w8eQn1CCDt9A/i/TdP880H1I91/PwsPqhF8E5gSQowJIRzAbwDfvM9t+rkRQriFEN4floGPAiv0tfzwVO2zwF8Oyt8E/uXgZO4DQO0dS5UHlZ9Xy98BHxVCBAdLy48O6h5IfmxP9tfp9x/09f2GEEISQowBU8AbPKBjVwghgP8BrJum+bl3fPVI99/PxP0+mflJD/3TqS36J22/e7/b8y41jNM/HVwCVn+oAwgDLwHbwLeA0KBeAH8w0HwPeN/91vBjer5Kf0nYo78X9K/fjRbgX9E/SNgBfvN+6/op+v7XoP3L9A1D8h3v/+5A3ybwiQd57AJP01/qLgNvD55PPkr9926fC4+RCy644D3Ng7ocvuCCCy74J+HCCF5wwQXvaS6M4AUXXPCe5sIIXnDBBe9pLozgBRdc8J7mwghecMEF72kujOAFF1zwnubCCF5wwQXvaf4vze637+qkk/8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "img = Image.open('imagenet_samples/corgie.jpg')\n", + "img_tensor = img_transforms(img)\n", + "\n", + "plt.figure(figsize=(10,5))\n", + "plt.imshow(np.asarray(img))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "263:Pembroke, Pembroke Welsh corgi:22.998934:0.8829355\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " This is separate from the ipykernel package so we can avoid doing imports until\n" + ] + } + ], + "source": [ + "img_tensor.requires_grad_(True)\n", + "out = vgg16(img_tensor.unsqueeze(0))\n", + "probs = softmax(out)\n", + "cls_idx = np.argmax(out.data.numpy())\n", + "print(str(cls_idx) + \":\" + idx2class[cls_idx] + \":\" + str(out.data.numpy()[0][cls_idx]) + \":\" + str(probs.data.numpy()[0][cls_idx]))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fake generated in 17 iterations\n", + "919:street sign:26.3378:0.58350843\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:16: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.\n", + " app.launch_new_instance()\n" + ] + } + ], + "source": [ + "learning_rate = 1\n", + "img = Image.open('imagenet_samples/corgie.jpg')\n", + "fake_img_tensor = img_transforms(img)\n", + "img_var_fake = torch.autograd.Variable(fake_img_tensor.unsqueeze(0), requires_grad=True)\n", + "fake_class_idx = class2idx['street sign']\n", + "for i in range(100):\n", + " out_fake = vgg16(img_var_fake)\n", + " _, out_idx = out_fake.data.max(dim=1)\n", + " if out_idx.numpy() == fake_class_idx:\n", + " print('Fake generated in ' + str(i) + ' iterations')\n", + " break\n", + " out_fake[0,fake_class_idx].backward()\n", + " img_var_fake_grad = img_var_fake.grad.data\n", + " img_var_fake.data += learning_rate*img_var_fake_grad/img_var_fake_grad.norm()\n", + " img_var_fake.grad.data.zero_()\n", + "probs_fake = softmax(out_fake)\n", + "print(str(fake_class_idx) + \":\" + idx2class[fake_class_idx] + \":\" + str(out_fake.data.numpy()[0][fake_class_idx]) + \":\" + str(probs_fake.data.numpy()[0][fake_class_idx]))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAADHCAYAAAAqC0ZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvcuuJdmWpvXNm13XZV/cPTzinDwnszIrX6Ak3gCJHl1oUo2UkKADlARCguegVKJNm0ZJPEO1QVCUEEmeS1zcfe91s8u80hhzre0nMpM6R8qoiCT3kDxi77XXMrM1zYbNf/7jH7+pUgqv8Rqv8Rqv8Rqv8Rqv8Xcb+sc+gNd4jdd4jdd4jdd4jf8/xivIeo3XeI3XeI3XeI3X+AHiFWS9xmu8xmu8xmu8xmv8APEKsl7jNV7jNV7jNV7jNX6AeAVZr/Ear/Ear/Ear/EaP0C8gqzXeI3XeI3XeI3XeI0fIH4wkKWU+g+UUv+HUurfKKX+6x9qP6/xGn9f4jUnXuM1XuI1H17jH0KoH8InSyllgH8N/PvAr4B/BfzHpZT/7e98Z6/xGn8P4jUnXuM1XuI1H17jH0r8UEzWvwf8m1LK/1VK8cD/BPyHP9C+XuM1/j7Ea068xmu8xGs+vMY/iPihQNbPgL/67Pdf1dde4zX+ocZrTrzGa7zEaz68xj+IsD/WjpVSfwH8BUDbtv/ky/fvKKWglLr+/fZ7zgVrLTnn3/m7RCHnglJgtKEg5c+cM6WAUtf31s8BuWSU0pScKch7cs5obbiWT0splFLQSqGNIadErsdz2zX1GLWi5PLZMcnnZZvqs2PWn73+gm9zzrfPyHsLIJ/TWsv3RtXvVtBaUwrkUsgpYYxBa33bT4zxZfsK+WwpFApaG9lXzqAgp3R77fr5UjIoRckyTvK+jFaKXArGmNtxXsfp9n6tb/tTShFjwBhz+37yfcvtvKi6zevIXY8hlwJFjlep+tlSSDljrVy2WmtSTOScUPX7yjVAHUP53OevXY9VyR+JMcr30fXcpMTHT88cT6eXk/nvKP56Trytx6tRBbnOilwbORcaZ0gpo4yBz3KH2zn5LCfq9XIdF3Ud8XoeUs4YrYkhofTLudXGUHL9XCmkBNpqrDWkGOv5V6jr5VzVB1rLMSq5AD8795/lRN1+zoWcU71m5fVc9/k35ZwxpubMy3GamhMFOYe65kQdV2KKaCXvkUta3fLfGLk+Ss3DVHPqmjsypN/LCZDrrub0NSdKHeOXe5e8/yWtFSEG7N+SE3JtXvPn+o1lDHPNWaM/++znOVFAG8mJVHNCKYX+3skpFIwyt5+vx3DdT/AB68zL/eonkhPOuX/y5s0j8P3DqOcoF7SBkgGt6tctn22r/lB+53/UG8z3d1xzCnIqNSduxyTnp/6ea25e71OK6+auJ/1v383vfIXy+XGqWw5zTduX9Jb75+9s/W/fgbzvs3fXbb1cr3/9GP7axq/7v+7jr+38e/v8/qF8b+z/bfH/NVZ/03Ffx/yz28Tf/PnP7pG3w/rdl/7m/eU66J99gefnZ6Zp+rfmxA8Fsn4N/NFnv/+8vnaLUso/B/45wJ/96T8q/+y//E/Z7+5YlxWlwehGQIFStG2P9wvTPOFsQ9t2xBiwzgEJaxqstTQViE3LjFL6BjwU4KzczKdlQSnFsiy4OjkBGGdBa5xtiTGQYqLtWnJOzLPHWoPRmuPpwDiODONA8IlSCsF7YoqkmOj6jufnZ8bNgAJiCjjXEGOicQ0xRnxY6buRECKQmZczKSa00Qz9FmMM3i/0/YbD8cQw9FCgaRqMEcB4vlzo2g7nDN9++2usa+jakVSg73uCX8hJQGk/bsg5kVLifD7Q9wN9OxJzJJdCXFdc2xJCpJTMZuhZ1pWc5ZhTyvTjgF9WmZCKTDB9PzDNFwF61mC05XQ60bQOvwaGscdoizGaED0pJZxznE8XzpcDbdszjuMNPLdNhw8rSim6rgNkwosx3n72PrDb7ujbhjV4zqcjXT9gnEUhk5o1DVBYw0pOibR6TGPRxrAuC33bk4tMpPM0o63DqELfD+Rc+K/+m//+x8+JP/tH5b/4z/+Cx7ePrOtKSWBdS8oJ4yxWd4R1Yl5mXNPStB2UmhMpYY3DWouT1QenacJYAR45FUwB5wRcnJcVrWBdFgxaFiK5oI0la0U3DOQYSCFg215yYvE4Y7AGTucjw7ihazv8EjAGYgj4KNdc33ccTge6rkMDMQfatsXPkaZt8WsklZWh7wm5kFePjxN+jRSj6bsdzmhy8Tg3cjqfGYeekgr90KCVoijN5XSmbXu00Xz89Fu0tgzdSCpybr1fyWS01TSuQyu5po6HA103MAwbol8pBdZlpdsO+MWTS2Y3Dix+JcWIs46cMt3YE1aPtZaSCoVE0/Vc5jOlFKyWnLhcTrjGEXykb1u0azBakYrcZ6yxnM4T5/OBrusZ+oFcF3iNa/HRo5WiHzrQipQSYV0F9+bEGiKbzY6uafEpcHo+MIwDqgIvlEIXi1aZEGtOLB60xjSOdV0Y+pFMwlrDdJpQxuF0oRtGYiz8s//2v/t3ng/fz4mf/exn5Z/+J/8U11ZQHAXcpFzQVhNjQWcBw8ooSgFjBWypfAW+UGJGOyOfMxoopFhQ18WtUZS6rKVASQU05AxkAf6mMWhZsZOKloWMBlVAU26TeU6FkjLWKtBKAGBd82utSOk62ReU0eQgoDxlsLaiK6MpPmGMJuZMRrajKViniXUcBGhkmSNKoSglCBDZj3aS+1qBqogko2XRYSH5uuBEkWI9Lq0oMaMUpAymqYuuUuqCulDyy6IOrotnKvpUpFIoSsgBksA9WTBWLJwypS5ytVGoUse64mStrgu274VSKH0dawUp1bEEtCJnOQS552WMkd/l3mbkPogs+mQVCimVl/NvZI9aQ45CcWhBp6Rc+Bf/4n/4vS70H6pc+K+Af6yU+hOlVAP8R8D//Le9OedE3/WUUkg54VzDZugZ+55+GJmmS2V1VGWCZIJsnSWGKDcj65imC96vsuoEYgyUnGmbhmVZCSlirSVEL+AoRTCKohUhBNZ5JudICJ7GGuZlIYSItYphGDDWst1u0VqzLl62XzLDMPBw/8gXX3yBc47tdkeMia7rMcbW1Y0iF7DWsRl3KKVwzslqOsMwbrG2QWsBh03T0jQN9w/3sm9jmOcJ7wPny5mu7bDWcjof+dnP/5T7+3cY5+jaDlWgHzag4HD4RIwB7wPzdOH+/pG2afF+YZ4vUDKrX/j08Tu5wCn4EGibjt12XxkFePr0kXmZCNGTcyKmwPl84OOHb5mmMyF4tFFobQSctQ6F4ng8CquYr8xWxDWOh4e3jMOmJmllEHLiyuB5L6BMa83p+SPzNLHOE0bJTfG3X3/N+XTieDzQNF0lWgqH54NcVEphtMEYS1aZdV2FUSiFjx9/S/ArCkXbdigKl+nC+XJkWebPlrw/Xk6kmBg2G0LIpJxouoahaxnaHmcaFn8BY7CtMLI5BEoCp4wwmUrjlGWZJ/y6kGMi+UzwHnLBNQ3T4llTwhpDiCspJkKMJAq60eQSiOsMJEIKNM6y+kXOodP0fYexlrEb0AgDUkokp0w/jNzfPfLlV19irGPsN5SS6YcBa53c9LUmZYVrW7bjDopGYzBaJrdhs6VpWgHwjcWYhsY13N/f0dcFxuV0Zl085/PptuiYlzPvv/wTdru3YB1t22O05LDScDh/IhJZVs/lfOLh4ZGubQl+YfYL6EKMK08fvsFahQbmaaVrOvb7/W2S/PThI/Mys64LlEQInvN05NPzB87nEyF5tAWljZzDxqKV4nx5yQmtFDFEuq7h8fEtfTcKEEgJKGTSjaEM0eOXQMkwnZ6YpplpWlAIA//1N19zPh45nw9Y5SAKA354PsgkrpQwWMWQLcQS0cagSuHDd7/BLwtkBAxrOBzOnA5H5mn6HZb+x8gHqCyRMYRQwVBlSymFuEaZRI1GOw25UFIhrYmSKvBS6sZKFSAniD5VphZyUWSglCsNcr03FXIsWKswRmG0EuZca4oCrQtaCxi4LtpzTPWeJ0Av5yKLU0BbQ8m1OqAFbHE9tsq26isTVyAHAU439l/Xf9aQch2XkilZqg0l5QqEgCLgyzhNjln+FWG2BCQJO1o0YGWOksU5N+ZKGY3S8t1VEZAGihTS7TwIWFXkVI85VlCUCxiFNsKWK6MoCooS4FWQMdL1+70Q7OX22pXBfaH6uLHKWilyLOQoi6dSFBkBWAVurLzWkEKiRGG9hQmU71lyIYUCxmAaA1oWmlfweL1mlFakIL//vowc/EBMViklKqX+M+B/AQzwP5ZS/te/7f3GGIZ+i1KKxrY4a1EKWuc4XSZhZkJgt92jSiFF2Gx7Ysx0XUfOkWm+0DQNSmmatmNZZtq2JefC1999y91uR9u0nKeJ/bhnjSvrMtP3AyF4rHWsfsVaR4yJogrOGkIIbDYbvBcGzForJSat6fuGZQmEGEg5sa7C9DSNYxxHtNZ4v3J///hSogKmeWJdFsZxoO8alNbkEtltduQC58uRN/dviSnh/YqzFuuclCfgVmrIOdF1A4fnT2jrSDECHoqmocU1HXcPbwnRs93s8E1DWD3DZsMyf2IzjOScuNvfk1IEFN12V0tomuPpJPsNgb4XkOn9SqjHGnzg4fERY7SAyQzD2DPPZ8ZhR0qJ/d2WdZm5TGd2uztiDITg6fuBlCThU85SrjIWoy3ny4Gua+naLcuycP/mC6xxzNMZYy2g6MeeUuDLr36JDx5nW0JcuLt7ADIKjV8Xgl/Z7PaEEJjOJ3a7O6zrMBpSyTRNQ6NblmWibYY6rvlHzwlrDWO/xTQazYBBbjhdY5jCwtgL89g0G1Qp5AD7uwFfcyKWKGWktkNlGPuG1S9YYynAd5++4X6/xxnLaZq4G+9Y7My6zmy2I4sPNE3HOs2opLHKUMh0GoL3bDYb5rCitMZ17W2xM2x6lsUTUkCnyOm8YrShbRyjGTDOsC4z949vMVoATMpwWWbiMrPZjMS1JRaLMZ7R9WRlmJYzD5s3hBCJcUW1DcY1uLpCtvXGG0OmaXoOT5IThcwSI37VtG1Da3v2gyUugbHf0rqGuCz0my2H509s+g0xRu7u78k5QlH0fS/lRq15/nSgbR3kzGa/xWjDui4s2bPdSU68uX+s5UoDWTF0LZdloh93pJjYbTcsy8Llcma72ZOy5Pk4bigkmSBUkVK7dWhluExH2tSy3W5Z14Xdw3uccUyXk5QvM3RtC0rz/otfkoi0fc+yztzv9mgtEoUlrfi40nc7Uo5M5zPb7Q7rOpxTxJxomxZTCss84UxTwczfbU78oflwDa1AOyOTZk4YI+xD21VZhVFkLzOsptSJVybzrBS6MaSQKT7JRKsVOeYKIkqdvKVCgdG3Mrx1inSdWHMm+4hxsmjTyP4KiqQURSm0NbXsLUwItZyogRxSnaSv+xYmTGmNVgVdmaesNChhtkJl2pwpJB/AWFnQBnldIUCnAKrmOBlQhVSBaLmWNY0WcJoVZIVWkJcCRQnjYzWaTCmKkhJFaVICY+r6M1PZrcrWhSQLbEA3+lYqL1pApwYoYCtbpQAZTE2uf1NJgHNJL+XZHF/AzVWWcy1bijRFCXup61jmCqqq3EDGQBhCslSrtNGklCG/MFjKKozTRC/VJFWu0hy5BGTtL6BdO00KCf0H0FM/mCarlPIvgX/5+71ZaHulFMF77Lih73qcazmfzxjjUNaxGTdQNTYxZZQKDJ0AMG0sKXqsEwCSSoEoTMjbxzcYo1mmhWEYWKaJXESLpLVmXmb2u5bGCIiAwvPziTdv3xBjZFlmYkj4sDCOe4yxLMtK13cMgyUEYb/GYUOInqZpCMHjfca5jhAizjl8WEkpEkNkt9sCGmUs9ztDiF5KKCGS8kDbN9hU6PqedV3IOWOMxrkGkwtN0zDPE0rBdrtjXhY+Pj+hbWG/exQwGMJNyxZComkajsvMPE24piWXwuF4ZLfbk3KkcR0pRbRWrH5BKwjrSt8PXOYJkzJ9P7AuEzEGYdx0W8uQJxQGpRXWWL778DV3dw+ULKWamBJN4wBomhbvPZfLmc1mizFaKPIYOZ1PbLdb5vlC41pAoZViWWYOh2cUisd3XxBjpGsHUgoYa0jJsywr4+DIRfRF42aL1nsulzNaG9qulbu0yhwORx4eHwEIfqVtWjlnYf27T4brZf4H5kQpibAm/Lyw224ZhwGtHOs6oazDakfXbtBKSlM+ZXT2jE3HGhPGGZbzLJOvVuQo1L02msc7yYl1XthuN0ynC6VktDJopZjnif32nsZaYg5kVTifLrx7uCeFIAxZkpLsZtyjtcF7z7DpGDcO7yPRL2z6EZ9qeTCs+CXSdAMhJnTj8OtCTJHgJSdK1rjOYjAUPK22zD7SqQHrHMY5ejWwrDOogjUKax2qGPqu5Xy5oJ0WwJM8Hw9PaAu77h6tDDlGrDGkokmpYE3DEifK+ULbNCiVeH565uHtA5lE4zpKSWgF8zxjNPhpYbMZOcwzCs24GQhhJnqPVprGtsSYmZYzJI1WYJXluw/fsN/eoYqi7wZSTrStw3totnL9nc/nyvAqwBB95HQ5CaidJ9q2pRSFUTBPFw5PnwDF/dv3xJRpu46UA8ZqQlhZloWxG8lkjDH0w5Zhs+NykpxomlYYGTLH44n9/h4oxOgxyhFTJEb/4+dDDa2EaUlrFv1VUXXyq+UqDUWrysq/yLI+I2Zq6UjVe4FCa5lQU3rROmmrKUmAT8kF/XmdD1BW15KSkVm4aghFL/SyX11LTkpzK/FddZZSXtS1dKi5FsReAEUFPrmCjlTIaNCmli4RkFFLniVlAQlKDiDngtHCzqlapbBWoxrRzeaQSXOFExoB67oyN1Urq7VCq6p7doai6qFbKcHllKUMmkoFvPkFWHLVrqn6c/2e+QpKSy0FctN0KqWE4Sovr5U6oLkIu6S0HMSVCb5q1G5jdy0LV1B51cyJrip/JiuTsbuCUF21V5UnvelfCwmKsF8x5qrT/v1R1o8mfP88YopcBeGbcZTJJQYu84WhHzDWsCwLjbVVK5RRSIljnj0pZdp+pG86fPQcTweGfvsiDI0RvyastZyPR1BK2DIyKUSZ6LUFk1kXj2ss+7s9Siv6vmX1nnG7YW/3Uq9OCecsIQYpmRvL89OJWV9498WXnE4HwMjkNc947/He0zQWpTR933M6nWjbTtC9KhQlKzHnHPfdA+u6YE0tHxpN13UYbbDGEmNgWpYb6FqqLufNm0cKiru7e0KIt+2lGLlMF9G8hCCrwBTpmp7HhzdcphPGCNBzTlbOKWWsa3CuEMKKMZqua1mWGasN67rSdwPWyooq5cBm3BJihpIx1lYdWCYEzzAMpJRompYQBNRY6zhfDlIisoau7Xj79i3n8wnn5AbvbHM759vdPVprjocnrHX8P//3/451jl/88Z+zrDIe1hqs1VwuMiHdRMy54FfPZrMj2YaHN29ET9Nb/LrgXIf36+80JPyYEWMU2l/BdrMl58TqAzFPtLbDNA2rnzFF9G6xRJS2xOQJqyeEjOt7uqYjJs/pfKbrdpScyAlCyfjV03WW8+FA0RrjHCRFWCO7ux26GJrOcVoCTdewvduTtabp+5oTIzvzkhNt6wgpyQ1XW+b5zKomHt+853Q5gTJstwPzsuCXlRhWGmOgKIa+k/NuOxpnwUBKmpDBtR2dGfFxxWqHbSwOh1EWVQaapiX1kfkyYbSi7TrWsNI0jrvNHSkqtv0dqWTmKdN3LWFZuZyk7L6GSFGK4gPbvufL9285Xk4Ya1nzKmyzUsQ1Mmx6SkiSB0bTuFYYHys5MQ6jMLuqUAgM25FcCilmXGuhZGIskhN9TyHTtDUnXIPd33M+H1BZo52lcY53X7zjdDzirJXFUNMyz7Lw2t09oK3hdHrGWMevfvN/Yq3l51/9Kes8Y63GOYuximkSdr+kjHOGHAver+wfhE1ru4acPCUb1nnCNT05h1tjzE8hStUCXTU3SoF1hugzmKonjBnQN92RNgojqxZhfm4Ts3BAAoiKgJwC1taJXSsyWgiAUoFFzOhGk66MSkV2pZaepERXXpTYIiqqZc0KurQipu+VPLOwbZhaNuSq01IV/AlwFGwlTRk5FUwj15R2lTkLWb6jMSKvqeVOrQ3aSFdAXBIlIaUzq4lJwJjUHmsThhPQV3LB6EzjFLGWXaFgnTBzKRZcZyghk1MCWwFfQVikUjVN+QWiljoOtZdExqSeD4oc0+9o1SqAyvnl3JmquSNnKQ/X8bgiLl2BX0GhnBGotAp7qbWcn1JeroOKgF+OyWlKlG1aKw1BpVSNViVy/rpI7G+OnwTIMsYydB0heAFTjeUyX2oHVcP5fMR7z+F05OHuEaVgWS50fY+zDcPQk3PG+0DjWrbjltVHmqZhWWe0tqgsq5dxHEWo3TRYbW4iPO99rf1mYowMXX+74DabLes6A5Z5WrDO0HcjMQauXXZv370nhMi6rux2e+bFM80z1hjazoE2zPN86zjquoGcM6fLxLLMbLZb2n7kysobI8DjdDxUMf0T+/0903ymawcaaxj7Hb5qv/q2Y16XW6ehMH4dxlhW4N27dwTved+/Z5rPOLsh5YzWtgrqrTQEzAvONRWcJYZxgHWhUZrz6Yx1Bh+kdBLiSikOKKSUmJeV0+lA3/dCsRsHJgGy6pnmCzGtTOeZu/sHdrs95zPYxtH3PVoZVj+TUuT+/l60LLEyjkrhmpa+7Wnbht9+/Rve/+xPKoCOPD684Xg8sKwzagXXNHUVHmnbhhASDw/vUGS6vhMdU4wcj3K8qxfWr++HnwTQMtbSdT0xrqzrgnOOaZ1JKeM2G06nI96vHNSZu+0DWhUu84m26TFdw37XgoJ5WWlMy6YprOtK07XM64xrG3JMrEHTdhtKSRjnRF+lpEvN+5UYE6hCDIGh7UW/UGDc7QhhJufMMgs47dqBkpKs9HTh4e1X+DUwr579bse8BqZpwVkpqaMNyzJL52RKtLYnl8LpdCIXz9CPtMNITqCtQmfpAj0cn2nbluP5mf3+nsPpiXEcMdZyvxtYfWTTNuz3G47HC0aLmDeWgHO9LAxUZrffSCPFw4Z5OWPVlhgSGUvXN7cS+Pk803Ut477Dz4GuG0lAawzH85mmdazeA4rFrzjboMhEH1l0uAnapWTi0DqB0sQgTToxrcznmbv7e3a7PaVA07f0XQcY0YrWnNDWkmJE1Zxo2o5xGHDW8Zvf/IZ3j38kmsmQuN89crocucwzWiuarq3l+poTJfHm7TsAxu1ADIlwCVxOz3TdwJoixlr64aeREwClaFS+1u3q5JoLSmgtSoKmt9J1i6IUKSlhVNXtCJNdipS8rlqtohS200Sf8VVXpLWo4vRVCF2ZIUUm3wBVlnKkFgpMKVCVbUmJmy5LAxgpOda1fxVEV0BVJ/AcXzrqFVCivE+VTNMIyAu1aqZr2S8XYbHIBW0VpghQA4gobGMoOZNipu0s2ac6fAWlwRol7Fft2tMIENS1NBgionF1VaNUXzNa0wxKAAhKFmpKoU0V8Sd5b1bqJv7OSc4FqjJkV1B6A7tcxVQCOqvGrRSFshWtlZcSL1VAfxVJFep50EpE9rlQ1li1c8K03cCVEU3dFVyKkL7q4XjRsZWUMUBSBdtUMPv7Iix+IiBL0K2sUIahwXsR4TrnahdYQ983dEiZLIbIOApIaBpHSJFlXthWSn2aLjRtzzRPWGfZb3e3tnG/+hv9OIwDx+OREguHw5Gub+V4KlWac0RrwzIvdXGSuLu7Y/ULIUhHoULRDz3WGpqmYV0XUoooBX3XE6Nn9SttN8gqksJ333zNOA64pqHrerquY9yMKAohyk3aVD3Ybr8npci4kW0515BLrvtJGOsIIQhgvCaJ1sJ61f8340bYpaZBacM4vOVwfKJrGgpwuQSsaWib7taRqJRh2A0sy0TjGp4Pz6J3a1pSlHp28AtLntlstozDpuaGlI3GcYPWhvPpzHazIWUBgylZukZE+dM00bYDTePQWnM+X9huR6y1LMtC2wp4Ph0PbDdbSoHvPnyDaxq22x1t02D6AaU00zyJtit4XNNQClK+Ggb8unCZZlQpsuI09laTv7u7E1rcWEotyf4AIt8/OBRIGcRYxqZlXT0pRmzjpFRrHP3Y1jKyI8fIMGzIudB1lpQi82Vht98yXS7M64RtegH+zrDfbbG1U3U6e5ZLxNjCuB04Ho6UUDg+PzOOLVrJDT+lVEtnwtrkVLAms9/tWdaFGAOZBEXhmh7rJCf8OpNSAAp915OSx/uVpu1pmhalC58+fE3XSTm0aweUEhZOK82SFvqmwzUav0b293tSjAyql+10LSlnfFzJl4R1FnRmWbwwAE5jtCXOCWc0zjoMFq0LqlGgDA/bN5ynA33XUjSsZ2FRXdfJpJiheMVmt2VZZpqmEfZIG2F/tUUBMa4sy8R2s2es1ywY1rXmBIrLdGEzbsgl0XcdKRn6ZkRbJfcuJ+OiteZ0mthtB1xjmeeZtulJOXE6HNjudpQMX3/9Nc46tpstfdtgrEVZw+xnUkqkEGjahhxlIToMA36ZOV9mmUh1AW0q6NDs9g8UDaZO3s6Zn0ROAC+i8DqZXifHlKplhRZd3ksJqZa8jICfkmspsHa+5VyRUUU+rpEJPQUIPuGcutk33JiTmzYp38pLQmjJdsUe5HtEx+1Y5Z9WSsTq5Xvlrmo/oYzCGikHplgbJHwhrgnVSNeo0rKNmxBeq1v349WSRmvRWQG41pBiplCwzlQQJCBSaQGY+qppivIZY7R02dVhQoGunYs5StNWUQJ2VAU7qjJoWovmSlUgrJW6DXWuGrHr0IissHzGBuYbC5liPZ/5ZSyvrgGlvAj1C9ftK9HdXY+njq3S+qYP43r+SrVMqd9bvg+oAqU2YuWiXkBePcBbY8LvET+N5YlShBh5OjwxL/PttRgj87Le2B+xE4j0/cDh8BG/zpSSCWugazsOh2dhI4aew+GJfujpu4HpfGa6nJnmha7v2e52GK349tvvSLnwfHxGaY0Pge1mV8GRdEmJ35b44MQUpSzSdCIi1RASAAAgAElEQVQYv7unHwY5znkmJmG25nkmeF8tGkSIfzmfRRivDXf3DxjToJRYNZhqLRBjInjP8XiArOm6nmmaWBePQuGXmePzB4yCu4dHhs0oPkalcDgdq64NlmWRLrGUQCFi4SQl2KdPH1lWj7MNXdvRNg1ffflz7u/uUUqx3e64v3+gaRwfP3wLJROWhb4fefPmkXEc2W63NE1DypkQAimJDUWMkXHo2YwbjFbEKCUR6Qy1aGVQymCMY+jHKiiVRgLvPW3juFxOtaNRSsRGG+7v32BcS/Ar47glZ+nojClRKDwfnokh0badtKVbe/PnWpYFpaQUaaxjt9nhtL4Jk4/HI6tfmacLMQaenz/9IML3PzgUhBR5Pj4z+5WrcDWmxBqDtPLHROMcSmeGzcjx+JEQZGINPtIPA0/PT1hnGcaO0/lA17Z0zcDx2wOnTwcup5mx77l/uMMZxYcPH0gFPh2PJOW4LJFx2NK5lpzE4qOQq1WGlZwoma7rK9vyIOfGB+bLhZTk2p2nhXWRnFBF0bYtl/OZeV5q1+4dqkg53ScR1PvoCVHYyKdPz5Ck1H45X1gm6Q71YeH56QMauLt/YBgHtDbEmPj09Fw98QrrMlFUJoZIoeBjIuRMLInLcmDxHo2lbVrapuHdw5dshztyKOx2e+7vHrDW8vHpA7lkYvD0w4bHN490Tq75pi6AUpYuzWk+E1NkHHuGfkRrRcxBWC0FShl0li5YjaFvBzQK5ywpBIL3dK3lfD6SQkYpw7IuaG24u3+LdS1hXWUBQmGzEe0VWnIihShWKEZjnK06SsM8L4DkhDaO3o3YIjoTbSyH04klBKbTmZQiT08ffxI5cVNEKXUTpZfrZFxLRteJ27iqy9JXPVS1NDD61k0IMonnKCxQmKOI5mMWHZ3VL+WsOomnoglJymjX8tWL75scZZE2wJt3381jK2fRC5Ubb3MreYpA/DNfrtrEce1ku1pVKGu4ApkrW3ftasxZ5AXKKPJVul2uYiYBTunm+SWUkXFiyVCuaEhplDG0g5OFVcxVyF6Iq2jhUqjqsQIlCSOUa6nzyiylkOs1U9C6/E6HJfUc3n6uujHq8QpAu9pfXJk+Od6rZu76fa9Cu/I54KnCe13ZK7kOrkjr5d/NF5KrDQW3eqZ0nVIX5lCUAKyrJuzqYPD7xE+CySo5sxkGtuOIdY5vvvkt2+0O74W5EVsDWFbRBn3z7W94/+5nFAqp2jJIV19bheqer778OafzGdNoxs1GVtQh8s3Xv6IAw7ijaRvWZeFuv+d0Plf/GzEdnRcRDCsF9/ePXC4nQhDbhWVdOJ8ntDI3Y8RlmfF+RSmDs5btbsc0nQhemKWugg2/rsQYCXFl02zpupZ5ntjt9kzTBWst++0dl/MFrTV9L+VNq+Wm6KyjZMV8uaCNoWvamvAiWD+dTjSVIbuK3se+ARTTMtN2LU3boGiJ0TNNInZNWVYDIQSufjJv3nxRvXocRRuOz084Z9Da0rc9w9jddE/eB0IQtqJtuwpwZum+8p62evbkkjmdDqw+YYzFOQF7yypMU9s4pnliWRfapucyTShV2O22xCj0/Xa7FR1QlGaJ/X5HTpl5vlSNmOZ4PDL0A9N0JqeMtYZlnUlhuHUzWqOxtkEV0bFd7Sp+Cmv2kgvbvmfTD7iu4evf/Jr7+ztW7zHaYayh6MQSPDpH/vKv/opf/uIXlJQJMaCrJ5ZrekLKTHPgqy9/xvOnA1Zrdo97urZlnjxf/9VfYgeHtiNaO9Zl5uFux+FwErF4EtPOJa40xqG14vHxkdPhQAlgjWVdZs6nC8Y6jNaEmFijZwkBisFZx5t3d1xOB8JaUDHfcmK5zPiYKGqltSPKtUznif1uxxomWmN43D1wOkxYpRi7kVIyqmjaXUvz8JaSFdPxjGksrWuFZXMR48RGxBpL1w3YVnJi27egFEtYSFrKgzl2ZDzLcub+/p5lkQ6ydV5p2wZrFW8f3kEBZxzaWQ6fPtG0FoWmb3vGTS9gqy5ArjKEfpBy+LLMovXyK9ZYVCtdrufzgXWdMNZiXUtfOwOJicZtuZzP+LjStgOXy4TShe04EgykktjutmIme76gtK5NBIV5PmONwWjF8/HIOG6YprN4N2nNuk5sxpGUEykXrFbSAJCRruNcaJvxp5ET9b/Ri1aJVDBOjuzqb3Stw+Vc8CHTtebG7gDCXlxLhNdSVBWs21YkE8kndE40vWPxGXzBaAFGpYIgXVkzbSoYqDqhHIX9KBTpwsvlBmJypnovSRedUtKNR3oxoxZrBdHwid5MtlmufIgSK4mSpeRcopIePV3qwqvUUt+NMpKyWAURSsk45VIZr5jkbTHLHrJ026XaMRhjtVbQYDthwihiE2GcsGXkgr5uw1RzXmdlZHMh5ys44QbOcqpl2CujpV80dMqI3s6YCkVrvfXFLPsF5KGuIn1hn1L1QLtaQ1wbF1BXE3IBmKqOSxZVvJRLZeOU676VoC5dXsaMAjmUP2iS+MkwWcuyoEoheNE0ee/p+555nurELwaVl3ni/v4tuWS892gtHWvTNEkH4TIzjhvWEOj7HqM1T09PLMsi+h0fsLZhHDd0XYdrGhRSQggxiG9SNTJt2o4Y080eYhgGnp6eyDnx/v0XKA2uFSPUtutqZ5ZmWVbOpxOqiGtyCJ4QVnFhVvI9nGu4XC4sy8Lj4xuUhu12KyXSLJ2AVPAUoieVSONeymDjsEFVp+2ha9luNgBstxus1cK8xUgIgfN0YQ2eeZ4YhpHpcq6WDQWwrF4sKK72FDEm+r6/mYSWnPHLzDiObMYNXduiNXz8+J1odhB/l00dU2PEB8YZy+HpO5zRPD8/YerKcLvZMQwjm3FL2zYoDU3jKEDjGrbbLW8ev8A6SwgroPjVr/+S/X5P27YYY5jmiaZxUvIsYIxju7mrk5t0eGqtxNxxs6Hte/p+AK1v59JaR9O2ONfw4cN3/PbrX3M6Pd9uvj92LN4L8PUrd/d3rOvKMPTVryyQM3Rdy2U688X7L8QKYF1RiDHrPE9Yq5mmiaHfMC+eYRTPtY/ffeJ8msgpEXKiZM12t2XcDGJ6GgVI5BJv1gCSEz0pJS7nM23b0veSEykn3n/1XlgF29zGliydTN6vnJ4P5CCdpCGKlUCqXVuNa9HKcZkuLMvMu/dvZYHUjxgttipN21CyNG2E6MlISS8XWBfPZqw5oWAcOrbDCEVywlgjLvW55sTlwuo98zIzDCM+zGLFEjOlWKZpIZV8s06ZL+KTFdZEyXLTXy4Tm+2Gsd/Q97Ig+/hJcqI6ALHZbMQYFENB0TSO56fvaKzhcHyWnAB22x2b3YbNdkc/tEDBOYuymqZt2N/veXz4AusMKQm7/9vvfsV+v6PrJecu04W2dXSNqx1ejt3unpwyfl3lnqLEkqIfR1zbVT89EfC3TYdzDlebUr77+B2//eY3nC/PLyDlRw4piwGU2ySt1GcMx9UfCtEwXSfxq8BZ5mnRLAnwybfXU8yk6xMPjCHWVn1jZbJPUTZ09RP8XCx/LYldy0k3VuRqipmvmidEP0W5GXGm+L1JW9X9pbrP+kdtFdpK+Synatj58pCE6+6opE9ld+T4Sh278n18oCrTdkMtV8f6Ipqka+kwXxsKBKAqrYmrNLmkkEm5asRSrk9WKDdQ9Nmmb6VVbdSNCbweFzdG8KWOaCobqSvIKUXGgWpFQS0RitdY1UxV4HWrPd5+rONYWccrs3ZtcoBSjWcrSK6g7ar7u5YHS2XPft/4STBZWilW76X7AemEcE78kEJMdJ1mWRY22w3XR2SUUohhxRiFtY2Ur5Kn7TrRKFlXTUgXbNNQioizf/ZHvxTxpMqsy4xWmpQzu+2eaZ5qa2Zmt93xzbe/YTPusEY60HQVhzvb4n2l3qeJ1c9YI0LZpmmJ4WqkKeVAV6n6UP2cNIau7VFdYZrW2gkI03rg/v5dXe1KN4jOcoFbbQk+3cqXMUZJ/lxEDFv/djo9k0vCuRVdMsYqmnbAWcP9/o5lXQkh4JqGeZI27vl8oB8G2mHE2B3rsvLp0xPbzYambSkpcrffMs0Ll2kRj6mUeP/Fz0FRPZI067oSomeaJnKMFGDsB7RxPD68rVqxwuyXWkv3aCPmh/PlDMrx8fQd292etu1YV8/d/pFlvnC3vedyOdE2MmFtxg3ny4mwLmjrUEbKk13bk1Ig5MjpfODt2y+ZpgvH4wFrLVYbhmEQcHL2DH2DVpphGHDW1nbiH3/tobVmWla0sxSSGKs6Sy6KEBJtK91i+8ftjSEtKRPXpT4VoMGYBr96GldzwlkaK5pHV3MixshXv/wlZC1gYp7qDQvu7vfCDjqNWjNDu+G7D1+zG7c1J2Z0fcRR4zp8iJWlWVjDLIxbtQlYZnFLN6bB+wVrNBl5moIzLUpbrOlpm47LEgghkSKEcGYzPOCjPOrFGItKEdYFg5WyRBJxvtiPIBOhNuQiXZqHw5FMYZ6Wm8PzOIw0TmP1lnn1hBLRWGKUTsHlfKRpB7phpLnfcTlMfPr0xGa3pRs7yJHxXqxTztOM1VKWf//Fz6Ws6wOmLrhiClwuEznJkwu6bkBpyQljNTnDskpOGC2mvq5pK1ttOR2/Zbe/wzUD3nv2uwdWP7Pf3DMtF1r3khOX5Uw8L6g69ikFhn4glUhIK5fLgXfvvmS6nDkcn7Ftgyli1CpdmTNd02KtZQwDbePEGV3//pPKDxlX5/KrdfqVIRIrBxGOm0ZVtqWaO92E6LVEV66oQ0qJ11L8zWogl2p58PLoJZTCNLJfdRNRSUnP6JfHPhX4HZZMXfVK1bi0fMaWX92Ybp9VlXW6lghVdWpXwrYZJ6yMsYawXL2airil1/JlrnhBlevjn+rjsaCWJGWMqCwPOVUdUxEmLotBq3RqyoEZJ67wJVXHeuTxRQI0pSxrtCw8SqmArQLYmy5KX4FguY3R1YT1CkqvLhm3Majn+zpgpVRGq6IdpeWc38a0giNV9WHX8yydjOUFjBUZZ6WuhvgVKKPElBUpg15R4bUD1Fw7Pz8Hgr9H/CRAFkDftUS/Mm42pFy4XBZCOHF3d09Kic1mZDpPbIdRBOZexL8xRuS5Z4bz5cjYS7v7p6cLD3d71tpxV0ridDnz6fBEqC37X335Hm0s0zQxT2ectYCmFI33gT/7kz/nfL7w8eMHdrs9T88H/ujnPydVjyirHT54The5HH0IIsRtWiiJYRCdmFKKvt9IabEEllncx43R9L2jlCw+UnbgfD5jrSaXzIdvv2McxYpCW03nOtEgHY98+/Fr7vcPIsRdV07nE1opxnEnehmnsVZsCXbjVsT6OTEvs3j4TAvFX6ptJ/hFMZ9PKK0ZN3vU0IuAOAtj+On5I5thV8XM0iAwzxM5Zdq+5XQ6SulnmXn7+E5uXErq5jFGKSmtC5thlFJXKTjneHp6Yl1WeQyMaxnHr0g5EpPn/bt34hvUtxhtWf0sQkrBwew2O/w607Y9SgvIKxS245ZYtQR+XcVfSmtKynRtLx2YGRrriCHW8zMiz67MPw0mS8E4dsR1ZjMM+Azz6jmcLtztdhQyu/sNyzSz60faTkp/2jT4NWJMRhsx8RyaAaUSHz+deby/I8QVazSoxHk583T+RF5nmn7g3du3aNcyXyam05HGGDKO4DWlRP78j/8xp/OFT58+sNvseHo68Itf/KI+XkZTgia3idMkN79YEtN8ko47VRj6lvP5iKKhbQdsY0hZmN6cFRrFtnekNZBKxtAxLzOm3nh/+/XXbHZ7OUdNojcNOMvz4cg3H75mv39gu3Os68o0nyHBpt/Jo1CckscRRc9+u2NdF6Ykus+cEyrP6HxmSWAbjZ9m5uMJpRW7/R3GjDStI68Rnzwfnz8y9jtcY2lcQzfAdLlITnQtp8sRtGaZZ754+06cqRHdTAwRZwzLtLIZxpsQ2VrL8+GZZZrEhNg2vHlTcyIH3r17x+VyYdz0GGVZ1qneH2Ri2HQbUlxpXAeVRc86M9qRvunRGtZ5ZRzHWymldV01FNak0pBKJntP1w6srFhV/pA55QcNZVS1BqjlLitPDSAntKlarGogqUwV8/PZ5FjZEaH6qj3ClRUpVWCtkXK0gqZRhJBFb1SKmHBSyNYSg2iHrmAD9RnwqD5bWoslimmsiKkpdXHM7bE+uUjDgaJ2F17BgdOU+HLceU3CZAWxOXh5duWL4SaVmbnqrrK6CuvFrEI7BUFYPKWFiRNGSYCUUbXZrogZqC5S9oxBwFZJ0leXUsZYI/OHKsSY0FbfwBSqusNXxuqFVRLgllHV6LOyUzfQRtU7CZQq9T9SMRQ9G+nKxpXabIAA2Tr2Jcp+blK4alVBLeFe2dBUS6VXE1dqWRQFRb8wZFmpG1C76fn+gDXHTwJkXR/OvNn04q/kPbvd/qZrGAYx5NzutmitZHUYPMZYDseP8hibEG4mmsOwYRhGbBWUN00rpZW2F43TmAlh5XKZCDHKc9+quP5yOTNNE/v9jnkVFqzve5rG8fOffcW6Btqm4Xh8IqaAtS26dvZ1xtzAU0qJb7/9lsc3b9DIQ2FDEHDVth3O2cquycNdL5cL93d31dE6YIzl7m4vz9nLYo/gWW6lzHfv3jNdJgEWRZ471/cD2mjGcSR4Ec761ZO2MK+BXGJ94G4mLSfCh38NKVJCYvjij7Hbt4BimicwmsFsCN4zXS48vHnHuqzy6JSUUNpwPp/YjHJOjDE3+4i+7zkdD4QY8THQdyMFMZotw4bpfGHcbAkhsd/fMU8zyzpjVGZZLszLwjiOLOuCaxt+++u/4mc/+yO6Tow3ffSkIo731ooVR8xVBK5U9QIzbHc75nmGoljxtL1o9rRRaGPZ73ZcpukmCO66nvPl9JPQn4hhoqFr5DFORiXu7nbSYu4949iz+oXNOKJR4iWW5NmFT5++k0c3pYAqmeClcWH3iw2qaD59EEAVQqZtexrb8f9S9ybNknVZetazm9N7d5uI+LrMLKnUlKiSZMAAzMAMmPBDGPCfYKYBc2H6AYAoUGUVIJNUZGU1qlJmfl/0ce91P/05u2Gw9vEbxaRSAywDN0vLzyJuXHc/7vvstdf7rue1uyOLmxj6kXHtqMpCTo0ZdH3HMPXcvzgxLdI5LMuKrMj47vAt07BgteVyfmJdZspdI2A/bSgwqEyLhEDg46eP3N7eojws3gkPzloyW5AZCQP3MWKNYWrPHI83Ajb1K8oa7l7cUBUV3jumdWbxEzpalNa8ePWVRE+5iehhWSZyU6K0Zl81MrUcHOu8ModIO6+4IEZ+YyN+6Jg//Cl4jwPy2x9jdvcYIn3fE42lMTtmNzGNPbd3L5jGhWVewTvAXAG72ihM8opqBG9xnp5YnWMNjiqvpWuwroSoGPqeqtrhnOd0OjKNI9M0oqNnHGfmdaaqd8zLjMlyPn74nq9efktT7//6mohBDiza4oLkIsYQcUG6jPvDgb7t0VZLl7OwLE5y8bTRHMs9QxriyTOLouTSd1/EmoCEVfCy2SkrXt1tUvDaFfIJSAmEJCmRwJk6FQpGkYphmwzhPoVri68oOI/OTarFElk8yZI218yJXWUzmfDzLkh3ZOuzuChTfUajtUwKehdQqXgBrjKmTkVf8CHxEpEOpwtXE/f23rWC8Bm2QBAMhi2YXFvpRgmsU6outRUw6b34TeqMG3NK4mi8tHWSDCdwUay6sq6uyIQrBDRuKuCzjLsVIakDtBnFFRBEZ3vudCHFltqG9pKHTWsx7svxXz5bleCmYnhPxvatgEvPY3JNSBmPz6HnJP5VuD63WA5k+lGl599ieTZo7PZ+rub31PU0yHfh32cO5IsosuTLmhHV1jaP1LXE3fTdSGZ90rU93iP5g+uM9yun4z0As1so8oqmOdD3vZw2jKGqG9Z1pdntYJFQW6UVfefT74jYRjN7TVaUeOc5nW6ZppEQVrJMiii3errukRhckiEkbkdkTaiqMt3EA2VR07YXvvrqWy4JIui8UOF3zYF1XVndIt6mVKnf3d1LgTGMFKWMpmdZRjdMsnlaQ1QaYw1Fnksb33ku7Zlds+dw2HE8Hmnbjr7rpCB1mv3xwNB2yNfZM/zi95k/veH88ZFxGInBYXWkyH5KVhb8vf/6v4W8YHULj48PZGXB/uZIe7mQZzl5kZHZnHmeKYoK5z2hHynynNWtxBB5PD+yafen04llnum6nrpucG7hcLwRyTLL8OuC0bBrDkzzRFPX7Hd7FDJJV2aWF6++YRgHIeavM3d3LxjGntV5+vaJV6++Y+hbGVePEaMMu+OBx4dHjJFiKy9yiOE6MSp5hQNZliUPV8myLNzd3n8R8EWlFDbPCF48eCp4ToeGyU10s6MoIt6LXAFgTc6MZFTe3L2QLp5bKauaqtwzjQPuPGKyjN1hz7ws7PZ7xmFKkSQQ8EzrjF8i5bFiIkfZEr1Gbm7vZXPWDqMtMWqcC3TdA8E5sBrnVpq6higU9qYpWeaFZfXUTUN7ufDq1becn87kucUrj2elNAWr87joxf+1yGZ0c/uCaR6Y5pGiKBnnRWRKPxGchLZrK+u5yMQe4J1jmHpKU1OXO/bNjr4fGKY+3VM85WlH3w14H/DrzPBX/xz39JZPb88s4yBDJEZR5pa8zPnt/+q/Ia+F4/fx4wN5U1I1By5PF/EyFTKVuGFH1sXjVkeeZawJXfF4ebhKOafDgXWe6Xvxg4Wwsj/c4NZV0iKWGW0UTXNkmkbqsmFXC4bGeU+RW+7uv2ZIuYnBr9ze3NHPHav3dOcHXn31I4auJYRAMAprDGXZ8PDxE8ZYjocjeZZD9OJNQTb0cZokYmxeyOsK1MJXh5dfDieLzdej0M6TKYXykVWJud/7ePXePHdDUqGxFQKK5+zMyYtR3EpmoM30NVrGzR5dWJGdQsTmimgMLoUFKyNRLDYTmSoE+XdboWFLK+KYF4lfpe5NjCRjd2JBsbG+xEyvLEQnfEG1dVnSe/aJjr5JjD4IdHPDLJA6dpvvSyVPmC0Mfg64JV7jamSyMspA0WZkJ+LX9J5cQlEkw7p3SSY0Cr8EbK7E8B62a5FI+jy/PpHW1NXTF31CTmx/n/4X/fOkZiSR4WNko76H8EzP3wKj3fL5pGSSQXUKCjcpCUABaovZeY62M5lJiSY+FVrP2ZYoErZGyVcpdUZjlE6fzTcP26/3+CKKLO89j09P3JxOEjvjPN6thOi5vRMzM7MjhJi8TtKtyFNHab8/YrVB2xznvYyQu4UYoShyIX5HwTBMiwQ7B+clfb6WvDqVJk7Q6uqp2u12TNNMXdWEEKlrkZNC8IwDfHr4xN3tLVVVM/QDh/2OfpxY1xUVI5fzA/VuzzzMVFUjHhi/olSksAUajSks8zTh5xEdjbSNlbCaxnGiLEUKc95jbM6aOjFt16NUJLMZWZaTW8v5/ERVNVhjWdcl+RSkI+LXifP7H7j86s9YhpmuHSV+w2hWH0F5+scL57d/yeknv0tV7fg0PlLb3TVJnkwK3Gno0CajqSra9sIaAjY/JJ6ObITGSITJMo7kWUZ1f8svfvE9RS4do7woJKaoFCK2C+Knef3mtXQc64I8L3l8eiIitPkXNze8f/uGdXVCtXeO3FiGvsPanMNBTN3aaAyaPg5M00w2j8QEtvXe0w8DeSGylbEZTbNDRSiKgvP58Xnc9zf42BAEp8NRui3LyuXpCe89t7e3SF9dp+xHjyGkSKeCtn9i18iaQGUpUkkQCyioikyYNQTy0jLNC34RXMKypu+7g7ACJmJzzTpICPJu1zCMM01TQ5TIpBgjPorf6LF95OZ4oswb2ssg3TcnwebESNs9sDvsmIeFqqwZCQQlnqrclFLgWs2yLLjZocKzWVchHduirITBE4TEvfkTL10vkhGWPCuwxtJPHXklHfJ5dgQXyRuR1qwKPLz+nu6XfyoHlqcB9Epepiiq4Ok+nLn94a+4/zu/S1nt6KYztZYudPQBlUOWWca+ReuMpixp2wsRyPIdeW5xbkn3J4NfHfM4UeQZL17e8e/+8pfk1lDtavKyZBkn6XI58GFFEXnzVtZEuZM18XR5Ai2HrVd3N7x78+aat7g4h0Uzjj1ZUVCVdeJ4KVRU9PPIsi6C10g5lxJn1VPVJe35LGtit8fPAWvztCa+jCJLFCF13TCfPTLSddhsAWqbSIubHPhMXQ+pEPNJitMI+8kHJMzYJphzLlKe1kiHycerR8vmCjeHq39xM2arJDlGtq6Y5CUGHyAonHsuxOI2Tfc5XiAVDNpqnFPJU6Txq5PPQHFtgaVyRixFIVwLhQ07QPpRYWWlBlIEU1ox+V+9bEGo5ounqK2Q0ZPXd02/V3IagahwizQ9vEOKVyXeKJ08YGpzXsXN+pY8Yfq5iNnehrzGpNGmCT8V0toyG65V6mafZGIVksE/XbPN40XyvBmbijqdfncU5IJKXbkYeOaJKfkebab94JMUmzxu2oj8qNPvXxepP7T99dfDF1Fk2cxSV9JJUEo4MVkmU4PLMgsPREU51VUCr7SZpR/GBGCUKSDnVtw6k9ksYR8M67IyzStFkcvmawx5JlEep9OReZ6TiV0T0mRd17Ucj0fWZUk0dAMqUBQ5wzAyTQm1cDgyDGPKQBNQokY4Tbosebw8UawOHzzD0yNay3OXpWz2IQaGboDkT9pmPSWipESpNU1K1YBKnTeHi4pIYN8c8D7QDy0hL7GZ5fHpE9HLRFVWVrTdGRUi3cM7Lr/8N/SPF3xQ6fpkco3WhX4Uxlf75i/YvfoJdnei2TXkmaUfepE/jKW9XNBKY5QMHxxPJ5ZluermeZ5LtqRbiUSKskYbATB+9913dF1LUeaJQ+ZBGcoyY5pnplE6AVVdE4Kj71pheZVi3P/w/i1lIXDIj58+sqt3GJNdhyR8kNgeH7xEzhjBaUTk1CbTnAOn020qVu5YFvEDXZ4euLm9oy0i9WAAACAASURBVKrrv8bR+U09styy30kkjjEKVeaYLMMEyZXzLqBsZBhGdru0JnJDN0xU1U5kaG1xq8PHJXneJMh7mWamxZEDtrAYaykyQ/Bg7YlpnMXEbhREz9IvdF3L7e2JcZgpqpwst3jvqYqCfpiYhwGjLU25Z5xmvJMx8nle0UoLWqMoeOqfKPMS71f6swxeZEbTVKWw3FJkTYwx4TikyFoXWRMaWRNVUaFNoqHHgEPG2ve7o6yJvsWaAlMa2vEJ7yJ12ZBlJe1wQXnP2L7n6S//FetjSzAWbTV5WZJZyzyOjPMKRtN/+Lfc/Pi3yMpC7j/W0vWdkO0xtG2LRsmaWCP7/YlllUOeVpE8FxP66lbQUGY1Jtd0fcd3P/oRXdtS1kVizjkoDEVmWRbNtI6S6FBVeOcZXUdRlBRFRWYN7968pshKIoqPHz5QV3uMyckz8dn46MlVeU0/0CmaC62xuRZ+3zKyb05EAnd3d2JtWEa6ceBwuKUoqi/DpwhoC0qwVqio8cSrfKW2jRWumy96k+ZUkqNIdHUZ0d/qlmsocTKWx1Qw4cVHtRmnI2KA9ouX4izBMo3VYtsKUnhs2mWIwCJSVFTpOZI3a8vHU6lzspmw5fmeJ+18CpEGrigE8ZmF656xdYN0iuHZuj4xSu0SXUiFqBR3tjAi1y3JlWs0W/8+eokOSm5wCanXSn6HUWS5kc5cKuqu05GbRIt4rDaUVEzPe23l8vlgQHrPmyy6DRWo538LSbK7eru4Snkx+b5gQ1Sk65KKJ+LWWEyetc+KsaukGePVxyZzECIlOh+eO3lJps5zg3Mh+cx+ve/sF1FkCVyyYRgGrM1Sjt5M8IF5FlmgLEt2jU0TUCtFUVGXFU1T0yWmlI3SQRnHkQj4qK7RN9M4gVbkRU5T7xnHgXGaIHjG7gN+nhkuTxAzsuYOV1UUVS0ekWSsX1fHMPbp9A7er9ze3ECMWCvBxMoY5mkQJAVBJoSs+KTGqU9RJSsbPb1pGrquZ5wXdkXFfteIlLNrWBc59SolfolpBqNzqkJG5GWUfWW/P5DbnGld+PrrW4KXMXWjDKas+bP/6X9gfHgNylLsjihjUNqwTAtuHtK1mJmWheP3f07z8jvCN79HNJa269nv90zDgLaK4/GISpEHMUTWdWVeV+pyC5fOiSqSFwVWadbgU5i3Zp0lMikmQVtpxbQMuFVO+s4LzHSZR17cvwRtWd3COHR4nXFzuCUizymfs4RID8NA3TTM84xWGhdDYgMZjqcj0+pE5gXu7m8Zh+VqyFcK8izD7PcMQ89ud/giJqmCD+SmYpxG8ipDBcO0zuCDsLKUoilqDgdDDI5pWMiriqYoqeuay1OHsYYsdRXndcZ5gXBGE1HGMPYjahKswOHmxNNjKyR35xiHj6zDyDpeCLNCNy9Y64pit5NIIu/RUbHMjn7saZod6+IxYeFQNnKiNIJe0JllngbmaUSFwJA8QU29Y5o63LrQLyvaGLKsoKnlfa9uoSkbdk2TvucNbvXMo/DXjDVMaLS2lFlGti9Y3YoLK7v9nrwoWeeZ3VEI8cvqCAsUVc3P//k/Ic4fiEFDeSSvMu5uLUs/4eYRFwLteeR8Hjns/y2Xtz/C+X+AKnKGsWff7JjGEWU1++IgG1UK5l3XFY+nMBILZbOcqIJklSrNEjyrkyy0dZnJiizxlURCWtwoawIta6IqmeeR+5evUFoyU4ehYyXj/uZeoMCLeK6WdSC3chis6oZlmtFogopyzbShrioW74h+JSi4ubthGhbc4lHKgVLkJiOrd6zLQJHv5CT/BTz8JBu9NvoqDerUBdmi87apu002jCCdozUVK2kzN/aZer5lABIiIQFrs9ywLjJE5KNEqcQQUEahgxcSuFfXsGStFXiJ2NlCqsPiMQrY6Ohb9yp1aRSpGIk8+7kShkRo7qlIIT4XTqgk3enNsnSllKt0oNzQFZtcuPGhdK7RMRLGNRUfinWNZEYJj7HUlIecZZSOjclENlUobKFxU2AaPfVRMD3BiZdNaUVYpXSMiLwGqVOkRGK8TnhurenItVC5BmunQikmf9fWkUSp69CDdAHT1dL6uSNG8mYZdS3wlFLY7Rqqz/88XqcR4XNZ9Fm+FQZaIEttsxClY5hlinUJW+Ptb3x8EUXWVtHXdU3btRz2B7QqWFipKiumzHSineaZ3a5hmSeWxUmQsHv+fwGYZnR9J1ylPONyuWC0ACeHvufjp/fsdgfmacRPF85/+S9Zh5E8z3j88IasuWV885IXv/Mfktd7QMzqIHLFYb+XDV0rFrekaQtHUVTM08x+M/7GgmmWnD+ikKPbS4cxlr7vhPc0TFfPmC1yxqmnKAq6vqO9XDjtRULtx5Fdc0wGTcO0zJR5QVkZoUO7NS1M6YSt84jXmmU4s7bvJfxXG0y+RyX/RUjFaJYVrKvDasFZ9I/vOX6nUNZKK1xL52ydZ8gLnJukq1gfUFpjjYRES96iRLqs68riJVx6+5llmUFr2q6nrqv0OQpOQikt/qh5Ic9y2q4jhMjheCBL3KUYAyGZonfVnhg9Sml2uz3DOCTGWKDIM0KIWG2u057rLGCZ87mlKGvKPOd8PhOCp8hzWTw2ez46/YYfKpk9m31NP3bsyj2ZlbBybYX/Ji1yzThJMPE0Tiyzw2a5xFGlTdo5iRpq+47d/oBSmUilWnFzumHoet6+eUPTHBmGC+tw4fLLf4XrB1SAqXtPLE7M77/ixX/wH5HVe7y3FFlOxDNeBnbVDsWWabngXcQaR1HWTMPE4dCkU2LBODlMyprb7450bU+eZQxjT41mXFaWWWRLnQrtIi/o+46ua9nXp8S66tjtj2JcR0LB67rCFtKtc1F4VUYrnAr4MAv/aHnATZ9QUUNUVLe3KCNeFR96OR3rDKNnMiORLf3je47f/h7RZMJOSlgLN0+o4rM1UR0wmcE4SRTQ2pDlciBaloU1cl0Hxmasy4TShvNjS91U7A87CanPchRyKJQ0hIK264ghcjgdyUwu2aCIwdoaw745EIMjRs39/Z5xGslyoXHn1uKDgGNXJ4gb552siccLWV5R1iXd5UwgYqs8DeVkfCH1FYBIPkqyMWMCVG7RNir5eZSWquOKdyDBQ6+FTfIwbbmEXuFX98y/QrpdfgkJh5C6TVaJlD06qkqxulQnRK5EcKWl0HazJ2g5HKstK3EzgSuVeEzPjZsQP8NApFuQVqC0xjuPyY0ExqcJN63VdZNXKr3P1F2J6jP5a/UoozFW4VyapFscykjETFQam0Fea+ae633S5hplwIfUAVMR71PHJ02bXp8nkmTNraP0XAySpEuzgT/53F8Vn4vEreJKnSaduorXR2KCqXRhtgKS6zVIJvvtv6+dLfmRrfEkimbqZm2/Ph2qxavL9UOQTqG+/ltikleVQm1msV/j8WUUWUqlCBh1BWgqIqtz1GUhVaXOaNtzmhq0dEtLnpfMs5jNTQySDRil89TUNU+PDxgrcMtpHMUUO3TkRcU09sSw8vjDn9G+e4ebp2Q0XhgefkAtPZ/+7zO7Fz+m+frvYuoG7z339/dpek2RZ+U1QxBt6boe7zzeLdS7BqIiqJWwrszzDElO01rRNDXT1LOunpcvXzJNM+M0CLlYOdq2EwlRiQ8tMyUxAVinaboa7q3W9NPE8XhkWmYu58drq1QrePrh59i8RlnJudP5DqInevHIZHklJt28QCnFsgamp3cs45mp0zSHI5dWvF5vfviesqzZ7/fc3t5fMQlZnSVjbGTsO7Jc5FDQaKUoqwqAsiqZ5xWlJSBYpnYWjLVM08DN8UTwXjpMRrHOstnqlCjfjwPeuRQHYhN5OeK8xLrEGOnaVrIem316DRG/zGglE5AkzstWmENGnudJohTB3n8JESJKsa4OHTTrtLLqBR23adsy5ZlldN2ZqmowKTOyKGUS1wePdlpgr0pf41264QmlLIfjnmmQCJ5h6MjzinnscfPM07s/5/zDa1R0KZB4xc/v0X7h0x9faF7+hObrv0dZvoTg+PqbFxLOXihyLQbw4D1BKbpLh1sdxJUymeKDcoRlZZwnqEqyXOC2VVkxLwMuBO5u7lmWmWkeUjzHSt932CxnCzGzSoKY52Vm8gEtY1QYrVjWhUNTMc+Op08PkOSa3AQ+/dXPyKodwWnJb9Q1crdfCS5gbAEuUDapYHOR6fKOdb7QXnp2+wPL/MR+V/PDDz9QVQ37Q1oTq2xKZVHJxhgiQ9+SF7L+pPOiKCqJ1qmrI/O8cjhp8szK9JdfUdoyDCM3pxvckiaOc8MyLizjJNYHq7j0PcF7ikwgvRvixIdIUQpQeOg7gtvyXhNTzEkskQx5SBGxJiyOtZqiKmgOO+m+BP9FrAlA+EWJsi5fg+S/SpKT7Ntpc/98A049lm0a7apM6YgttEybyU/LBuw3dpZExOhCZKIs12RVhk8eHynmpAIIQX6p1pGs0El6VAmtEK8buEhVz1OD8bOOTvDPxWJMEtk2pedcIs9vxRjx2nwAiQHyq0xQKiU/G9NEYIikycOASh01pRVRbx04mYT0kyPLTJqEjM/eQw3OK0xmqArxJqsEAA2rBifX15r0XjbfVVBpij5eCzF5+5sfKn52AbZrkjpV28RoJBHfScWWTmtpkyU/kx75DBmRXr9kV6aO12fS4OdFHork/4ybSpqk3XgNqFcmfW9Sd+7/V3IhKoHLgufmeEIbTd93lEXJMA4Ym1GUhqZuRCYaRvHVhMA8CQcLYFklRDdGsLnl/l6mYtZVujxte6EoZMNf54H3f/ZHvP75vyH6FWMtJYE8LylqoYhHt/D25z/F/+v/lVe/859w/Mk/xGuBhAp9XVHksqkdDyecd0zTfPVuWWMhOqqyIgyOIs/FAKxAG0NY4Hg4cH56EjnSefJcgmZvb+9kOghFUVRyEohBgnZjxJiCT08fsdZQN3vGecKHQNU0OLeyXN7yiz/+febuker0LUobFHIDX+eIC2DrA9oYmizH9q3INt0T9oPn6Vf/mru//18kkr2mbS/85Lf+Fm6V7LW275AgYOn+zFNP8JFLe+FwFPxGe3nixd2dbOZRTsVFUTKMHV0rHUtjMmKI1EXNtEwE54T+jSYaT3ArWSF+nSwFXD+cP3F3cy/vvarph4Gu7ZimiW+//TFte6FtL1RVBUTmSTYlH2Qyrruck+dNkWU507ywXDqaXU30/ouZpIKIWxdOpxuyTNFdLtRVydj1KJtLNmclqJJpGLm9vZNsw1nyAHWmWYPDrat8VkXG3fFeii7n0EDXnrG2RBnFMgx8+qv/k+//5I/RwUmGWVlhdUleFXiviOvC25//Ecu/+n2++d3/lNOPfpclavLSQrT4PKOsGkIYOR0k3HyaFvIiZxhHya80nrquCL1M4M2rgwRiZIX9bs+lOydytCBO0Iqbu3u6S4uyhkxn2MbgvcN7R/QSg/LQfiTPLWXZMA4TkUh13LOsK3F4w/f/1++zjGds/TVFlWEiLMPMPCwsgycrd+RNQTY39E8X8myl7x7R7wOHH/41p9/+L8mLAq00T23Ldz/527hloa4r2qGXXMZK0hrGvieESNu37KMmRE/fXri9uWXqBzwRayxFURJCx8Njy/FwQGuLd5GqqBmXkeC8rImosbnFB5+6z5IMsa6eh8eP3N/LZ7s/7OguHcOlY15mvvr6x3TdhUvbUpUVEFiddJh9cGht6YeWPJODVmZzxnEh9j1FXkIMydT8m39oc+01obOYoJHCAxBY5SYfKZRKnR3SFq4S6+kzTxAowhrYyrDNDuS8TBpGn2JafMQaYVShFWFNTZetVWKSxGQFnRCcxN8EJ/6gzUy/8ao257bUAiL9SYcq0cU3b1nqooUgcTcxRona8RCiTl2aZx6VzrdsRp0kRvldWqc4GK1Rm7EbkVchEJ0gI7I6Q8dA9DJ5GBP13haWgMavkZgmDGXaTqKF5HNQ+CTZkQqZzee0FTkuxQVtk3wKrryszwsfiM/eNnj2dSGdSG3SdY/S7Yso1NZS2z7f+Ayh1bmGVSKPrtd4GxqQCQDpZF5/rQBkdfKwbQWazZVMJH5W3P6N39l/72/5/wcPrTRFUdDUYuBt2zSO7z1lURJCoOs7bJbRXlqRtIaBDx8/SAverbRtxzIvV8rzrhY68jiOyXujKYqKtm0pyhI3dpzfvCaGgCkKlJaQ6qzao2yBykuUKSiqPSbLeP9nf8THn/1z8jJHo7FG2u2rX5lTqPM4DhJBswjnqqrEnKuUjLTHIJvmPC9EH9g3O/EE2YxxGDBGURSlTBQqTZYVnJ/OOO8ZxgnpwKzkRQpLrnfs9ycpnNaZrr1wOT/h1pX3P/9Dhoc32Ly8Mnt0kiB0Kkq1zdE2J6IweYXNCyKGZV6Znz7JzUEb2vMTRZ4zjAOv3/3A48NHLpfHK7Lh80V9Op7QxlAUBceTEOa1MdRljU9dysfHx2Tmj9c8xizLJBcPABln/vTpIx8/vZf8weDl56zl/u4FRLA2Y5xG+r6nrnfc3N5LfE/CNqxukVDkskQreHx6SDysOqUCiCTiQ8BmhmWaMMaKIf83/NBaU+Q5u6bBaMvjw4V58SyrJysqfAi0XU9WirTqY6Afez4+fsCti1DGhw7nVlCCV6iLkmVemaYR72VaKbclfS9m6nXoeHr9mug8psiJIQq48nDAmkwSD8jIc8nFfPvzP+T9z/4XmlNJnpmEH1hZnKyJp/OZrh8IIQo8WAvqQGnBLmRZRoyREBbmaYUQ2VUNxEhhM6ahx2jIbUFuSwgS9fP06RHnVsZxRCkZBLA2Y5kXqqJhtzsRlHS4zk9nHh+E3/XhZz9leHqLyUox7s/gnHSPssKiNBT7Gp2XxKBEVq5LAmmA5vFT8nwY+v5MlkkM0LtPr3l4/MSlfcKFVbrZq5fIHB24ORzR1lAUJcebE0vyFDZFlYZtHA8PsiZijImjl0vEjc7SVJdskA+Pn/j09IFh7Ah4rMnIjOHFixeoKP7CYRjoE3frdHPP+fKItYbD8cDiZrqppchLNHC+PKGVIbcV67JitE35reI5WcZR2E7hN78mQDwxSgmCwa0g2c6KkKSmTS4UVMNG+X42Lyujrl0J4EoW33hJSnHN1YPn2BXJy4tE5/FrIMu0wDG9Q4UgLyQ+U9ezQmNyQTYkgJk8X4QQVOqryUYd3LNpOzkApIiRF/bsVbpeAykSgktT35sumqbvBNop4NSNfxUiqBST4316DTGir3l+SjJHe8c6ptxEK0WSrW2q0oTsbhPu4tqJ8/LzJtvYWfEa2J30O5Eunceaz4j02/tLPjJpYj1XLnHjakGqnbaOJdf0pBi3z1Q+762DtcmG10I4TZxevWrpOm+/ekN4xJjo/IEUI8QzDkOBX5J86n79zu4XUWRtjJFz+0Q/DAI6zAqGoaeqG7xzAkRTKo0j6yQlTGRZxjwOeLewPxxEnirz6ykPRKJTSVS9uxeu1tg+EZeFND6C1ZaiyHGroz7cYPJG7mtZjs4qTJbz+Ks/ZfjwK5ZlJIRAZjKOhyNlJRNxTb1PEpS0GS9DL1MvSnFuO5Z15XJ+oiwKjNKcn54w2mAzS7NrKIoCa8WcOs8T0zLz4uVLIPmsErzTGMM4jbx++ys+fnzHNAnk9HQ6UTc1fp1Ynt5hrCUramwyFFtbiJ4eUuSCugZJiBne5GlC0zOdpThZ1wWtNU1VS7RRc2C/P7Br9mSZIeKZJslGzPIcZQwPD59on56Efg1EZHGPswAWf/tv/R2yQphb0yTFZZYZsixjfzhSNzVaK+7uX7DbHVOw7oRfV6yW8eeiKGTAIUZ2u5q+b1PxqAhK6PvT0PP48IPwm5o9N6cXAiAsRIIexwvzPND1Hc4H1qu34ze/LCIyYnzpznRtR1HVZEUpvKddQwzyvVVRSUC6NazrzLxMqeAYccsiiQE+UhY56xrI8jyRxeV7GhXcvUhr4vJIXBZCdPg1UJYFTVPiF0+1O6GzBozCFjl5CiB/+uEv6F7/ku7cMfcC6j2dTpRVRbNvrrFUROkVjG68GnQfHy6sztH1F/nua8P5fL4iQJpmR2YKjNbYNAyz+IX7+xeAHKaW2XPY35DlObObefPxNe8/vGPoRjSKm5sT+0ONNY758S1ZlqFUQVVZml1FURYYEwjrSsTglcZoTW4Uyhh8lEOH39ZE3TDPCwpFU9U4v9DUe477A7t6h80MkcA090wpL1AZw9PTJy7nR4ZhSHddiVnZ1sTf/q2/Q5bnZJlI50aTSPLPa8Joxd3tHbtqn9bELGsiZYUWRUnfCwH+cGjoh5YrSVxFlmVhnkc+ffz+uiaOhztCWk/BR6b5wjj1XNqWZQ2sKHz8MtYEkLwwCeipFNfcPaWum2YIMUW0yN8p/SxPkYqT4DZpUTbWEOKVhQRyzeLWVEHqGLdKNp41Ch3FVxW2Td6IVKaSPBXWyDIEltGnAk+KNq1VgmPGazFgc+nYwnNW3mZy35hSSUUDkp8rpLdnNkTD50VcqsmNRlmTWFvShVNBjsPaREGVpM/WzZ4sV+SlRluFMZGYVCEfNUobMYCn17j5n7YDcYipqxgTXT114K4XcCu2PqsWN3TF1vEi/r/im1L3Kn5Wz2zeqOf6TT5T+ZI+F6abprrJrs/P9xkSJqae1We+MkiID/0sQW+TjD5R+pXR/PuI51+EXLguK+/evxbYZV4niUBT1xXrunBzumUYB1bvBXeP+Dd2zR7vVr755lvO5wsK4WI5t3K5nHl4/MCPvvsJ0zSh0w38xauXjP3I+PgBQsQHzYvTUSY1jMUUO8ZhxuYli1+p61vIKnRY0Rp++N/+KVlZcvqtf8iL3/nPWBeD1QJmHGbxXvjgMGKMkG7aNPLVy1eM48Dt3T1lKfE4MjVoGYeess7R2hIj9OMgN73opZicRvLc8ubda46HE7e3tzTeJZKuTtOOMi13+fiGxz//fdzcUt//BFudMDZHmwzvA1nRoK3HLDN+XZiXkSWAUgada2YXCNGRfXxDVhTYIJvx4h3GGKzOaIc+3YAE7JnlBVPXJtOo4vb2jr7tqKuKdVnICok1qvKcsij5+PETeWYYvWdXNwTv6daFaeghBrKsuJ7k7+52PDw8yFDE0GO04CfavmedV17c37P6VaKUPr7j7sVXaMTbt9ufaPZH3Oroup6qLFE60ncDd3d3CZAqAw1t22FtJrT7L+CxLitv3r6mKHKOh5IYPJnR6KrGO5lq7fqB1TuCEt9HUdR8XR1w68Krl99wfrrIn+c5ITra4cLD0we++/rHTLPkB14uF27vXzIOI2v/IHlv2nJ3f4M2hogmz2vhjVUVa1ypD3eoYqByKyEE3vzv/xST5Ry/+z1e/d5/ztwbDCqhFC4UVYlP067eR5xfmMaRH/34a4Z+4PZ0S1mWhBjZB0GFTMNMtStR3oBSTMtEnhV4t+LCwjCOZNby7tMb9vsbXr66Y5kcsQSiZtdUBC/yevvhDZ/+/Pdx80B1+yPy+gRLhioKYgwU+xM6X8mbBe+kEOm6GV1k5HWFj5HzZYHwhn9UWjKrmDViHPeK3JZcui4Bk8FrT1aWjOcWhWwCp8MNw9BTFpV0o0tD8J4qLyjL5zUxRU9TCTuuGwemaYQQyLMMqzOsybg53vF0eaQuK7qhwySDdTd0LNNK3YhHLoTA0+N7bm5eyutQgaba0zT/AO8d3ThIlzeDvu158UrWhPgbYRg6VFQsbv5NL4frI6TNPc9V8uoBPEeoxPgsF0nzIxUg4VneuZK8TZK6UIJMSH+vjWyooMhyYVvpTCo4kcMCIa5CALdSLOuNOh7AL54sS0AELbpfcNJ+UVa+D5uXKiljbOgBuVdK0SC/k6vpGxKIc4sC2oo1NplSXvfWaTK5YRk8GDngCMg9yWQh4iYvkvHkJRpn9CK3KlC5QutAnrTW6D3rIHgRk2mUD/jZS9fOpvHI1CEK63PodkjxRVtHMXp1Na5vbK8rZT+SqPTps07V1F9DO8RnqRIk0DluANHtz7dKbMNbbAWTT4WfknsTSPh3cF6ew8hnTpJtxWiviJhr4WqM+NXM9vn+Go8v4nhirOH+7iUvX74CIM+zdKKbaNtO+DJE2vYiOIci53A4iFfAaJzz0tpUErljUkHx3Xe/RVXWrN4LpLTZ0XettP3WGYVnV5ciE5Y1WbXH5jVFtRP9OI3yNrsjWXNDUBnl/kgMjg9//n/glyEFR5qU/WXQSrFvdsL4MYbVOcqyZhxFuolRDNhKyUk1pMytsq4Zx4Hz+Ym2vdC1F6ZRkBbCAlN8/eob9jsZHY9RXXP4xqGHGJn6C/2bnzO++yVaizyok8xjjSXGgLY5ApRb8CGkkWTxmRH8NX5iXlfWWWScqqwhQllWeOewJuewPyYchcMoJRyfxPkJXrqIRZaxbxrWZWaeZlAS3xC8p+t6dnXD5XKm7zr8slLkJTc39zS7faLEX/jw8R1lWWCN5u50JDOWXbXn9vaOFy/vUQqmccQ5z253oLtc6LqWLtGuHx8ernE/4zgSPOx2e6yVgNBlmemHjqKQLl9RFF8EJ8sYw4u7l7y8f0VwkaLIyDPLNE60l/Y6HNK1lyt77Xg8ivxtDN7LmtBaMc8LWlm883z79U9kow+B1XmKomboW7SGdRzQRHZ1xbI68rIS+Tyryas9UcHqA8saqJpbdHlCZyXl4YDS8OEv/yUhztLtyoVxZXOR4w7NDpOm7ZZF1kTfd8zLiluksNo6miE4FII8GKeBy+UpfU8uzNMkmIdmD0Zzd/qKMqvo2xGlNXVVY1BMfYcKnrFraX/4OcO77yFqTJajjZX/RQ0hsC4Gt4BfV5zzqODT2LvGTzNhkUGXYVhw80qIAmEFqHdN8kyVsiZWgbrqqKjKknUUth0xUuQFhc2o85p1niXUG67m8r6XNXF+OtO3HX51lFnBzfGWpt6x+JVhbnl4ek+R51hjuD0d7E6k4AAAIABJREFUsdayb/bc3d3x4sVdMtuPrKtntzsyDC3T0tP1LSh4ePiEsRIBNo4j0UXpwlkpCNZ1Zhw7cltgM0Wepm+/iEfab/3Vw/PszSFeRTg2uPS2315bH9t/fmaUJzzzkGSqTAo5rVIUzrPTPHVhwUWIKnWltGJZIyHqK/U9KqQwMxqdaXSmxFMVZNJxu8Mk//aVARVCug1vVPnkzVJRpM3rxJ0isbskyHqbRtZWsS6edQ7PZPftZ9nM7CKxRkQaVUlWBSmmFJGl9/glIV99wBDwq0yjhkU8kCYz4vNSkBUmIRDEZE66xtfLHp87g8GFKyR2ezOSXPH8WrdOmDQjt27WZy094WGgrHjMtNHXqJtnT17qZiVLy3YI2goyk8keoFMRer0I6fdvU6sEgalqNkSE/muy5t/0+CKKrJA2Bucc3jl+9YtfEQIcDkeBgjnHu3dvqcvyWomP44i2mnlZCMEBcrIJYaUfBg4Hyd37d7/4Bbu6wihNVZZoYyiriuA8MVHdi7LG2Iwsrzk/XZjGUQzfWcE4CTnd+UheHcn2N5i8JKwr7/7sD2nP71GkG2hRSIzIMrEsM2VVCGvE6Cugc1kW3r37yNDPxKAkZBlFe+nJy4rj8cR+t8cFh0oymZysOymkJjlVdl2LUrKpZFmO0orx0/f0P/wFbhxRxmKMTJZpLWbZGCPBr8ToMCa1xAFjBPzqnLCkfJoGWadBoJFDTwyBqhCDtM00Hz+9A6RI0SbBY7Xh9vZevv8KXr/+nnfvXvPw8T3LPFE1O6IKWGs4Hg8yAbbfczwdaJpKuhnBkWeWTx8/AHDYHyiKimkcpfDzTqannDDErM3Y7/d89eobmbIzGu9XyrIgywu+/eY7cpthjaXe7YFI8J627WWaNEQOhxuKIgelWNIU6G/6sa2JdRVj969++T0+wPF4ktOnd3z48JY6L67y79APGKuZl5kY5ZS6febDMHLY73Drwi+//xX7psIga4KUpxm8mFybpibPK/Hq5BVd17IsI1kmHr55deLzUJCVe0x9A5lE2nz/b/6Ax/dvUTGSm4Lc5szjnKC/M1VVyrSP1ijMNW7q7Q8i8REV8yxB4F03kNcVx5sbds0+DbAYpn5gXQbGsUdpmFcZJun7FiLUpcj7aIXrXtP+8Bcs44jJRJo31qCzDHRqE0SHtTJdFl0gash2JYHIMjuch9nJ9HP38cw6zcyLSNVlUaCMwhjF46PcC9Z5RhlLXuSSt3j/QjZSFfnh9fd8+PSGx4f3LNNI3eyva2JDwxz3e46HPU1ZUuY5MUqY9MOj+CR39Z4irxiHgcV71lVo++vsmMeZLM853hz55utvqKpawqfDKp7GouDbr78lNxlGGVkTkeR7HbC5hRg5Hm4oKxkAmvqJL2JRIPL4VYraCqy0kz9n4MkmqYBnszRXX9a261//XimZAmSb6uNK/FYkA3wqcqIXOc9YjTHPBYPRaXLPpE5XkODmqGCZA+ssN8UQYhrySm/oqp7JBi5+7FQcOJ/wEcJsYpvI29AVbH4hec8KCb9WRkv3KsmpMUShqIvKiC0M4pySQlKrZPpOJHOFFB42Exp8cJGoFLqysj94ifTyXlhjS+fSVK4mJubnprd+PkQktsJUKGn1WU0jzy85lIHNp7V9PjFJozE1Bbaih7DFCSV+Wbqen3PCNoisUkqKXfMcXK0UV+r/9sFvkFLS829/J7JtvBbnW/7kr/P4IoosazOWZZGpmdxwOJ2YppkQAsfjgaYu+frrrymrmnV1nC9POOcgKqxWvH39A5fzhU8PHzifz9SVcJ+Uhm+++YphGInJNC6eHkfEo1RknVaq/Y72fGFM+Xd916XTXoHJai6XMY2Ha0x1R/P136V5+R0f/vhf8PN/9t/z+k9+Stu3PDydMdbQ9R1VXbLME8bkRC8TRtoo7u/uyAth/6C245MExU7jwOPjJy5dS5EXHA6H5CfTAmL08pqtFS9UiI5h6FmXkaE986t/8T/y9OYXdH1HffONcK7iKp4dk2GtZewmtC7Jyz0ySVRisoJyf0u+azCZZbdryDNNlufkRc6U4KqXyxNaK7rzmePuwDIO1GXFz/74D8iznMPxwDD2hOCYh5794YixGfcvv6Judgxti1sdh8Meaw3TKPKfQjIrxWvnePP2Hd/+6CeJSq+Z5zGNrGecjnd4L6gGm+XMy8RTe0kn7wQ03UmxpVW6lWjwwdFdHpimWbqTTc3l6ZFLe+Gv/vIvJKA6ef3MF5BdKF7DCVSgaDKa3ZFpWogKDscTZVXz4sXXVLsGtzqeHh/wbkUBmYG3b77ncrnw7v07Hh6fKMtcgoxj5OuXL8W7o8AFR2alixlCwC2OeVipDnvOjxfG7sIyrZw/nvn08ZNkeZqCrh+xxhC0wVR35Mffon7xNY9//lN+/s/+O17/yU+5jC0PXUtWZYzrIFmG44A10hnphhajIi9f3FHvJA9TZRBQ6NwyDzPLMHB++EQ3tGRZKYyoooRoqPIKlEfh8bOE/CoV8HFiWSb6vuXf/s//lPOn1/RjT3X7Lboo8OtKfShRJsOWOWM/EUJOVu/FJB0yiqaiOt5S3uwodzmHY0O91zR3DXld0F56pmXi0j6ibaTvzuzrHW7qKcuSP/nTPyLLco63R/qhkynLcZDXn1lu715RNTuGvmVdHLtmR7Z5FLVsftMyYqxhnldev33Ht6++RUeVvqcjWW5QGE439wRgGDtsXjDPE4/nJ6apo7BySK2qWjyUIQiUUUEg0F4eGUY5uFVlRXs+c2kv/OIXf8E0DhhjWNxyHZb5TT62jVYbJRFFqdujrSGgCUHjPSLJbVIVW82ySUWysfrkpyIZxMMaPiti1BVaGiIsk09cqy06J+LXwDr61AGLohKYBAJNG/M6OgiRLBd98totsQadacnP26CbqdoS07pE+Ww5iptnyOQ2oRWkHDSKFLAslWOMwucyyRu29AvBCSeuqPV1OGCZAiqz1wJFGYNfIa8lp1FZGWJyPoqEpiN+8ZhCCg1tNXkhxZ4pId9JQPu6bJOD0vITL1zAaLkPq9zI55XQ+AGk2DKJeO/lu7l5q6RbqeXPeO5qXdEKEZkY9EG6eUiRuXUfJQfymXkhcmEqjuKGpkiAVKV4xkboq6dv+9xhg5wmOfpaIf7Njy/CkyUnaENwwmPZEuHXdRavQSvG5A8fPnFzc6Is62QElxzA061EP2htGGuR8KZpQikZB8/yQGYtEKmqgnmasKZAa01eZDIOfzhxOfec7l4yjgNGgVvnz6J5Bm7vbrmcO6rKklU78qpk6WY+/OwPuPnxP5LpnIPh9vY2BSjnXC4f8VmGQtH3A4qPZLl4bLqupaxqxhQse748cHNzx9APgLrmD8oUVmBZZpZl4eHhgW+++RrvodiXfHj7K/x4Ia5iyBfwXk50ELXkyq2LRymo9zV+lWzIvKiYpk5G9IsSP0u7VqZxYmone7RSVE3Fw8MD3nnuX7yg7TvuXr7CKs3f/53/mPfv3rI/HCUTsL1wOp7ohx7QcuoPItOB3Py00mQ2wUOzgiovmaYJayyHXSPdORXou5b94UbyLT99YJoHrC0F8UDAu8DxdCSkCcyqrLAmZ3EzHz9+xPmFw/6ItTll2aSR/5CmEDOqKufu5g7nV4myORwInzstf0MP7z3aZrjV44LHWo0tDOsySkfl0uKc5+PHj5yOsiZC8IyTyIinmxvyNLDR1R0hRqZZ1sSu3pHnhch3VlGUMq1aVBVjbsjLDJ3l7G5OXB46bl59RX/uMCbiph6dFSzTzOPUc7q749K2lLklyxtsVuDHhQ8/+yl3f/sfCyPLK5riyDTNNLua89u3lFWJVtLJ/fjxA0XKEL20LUVRMU4TZVHSto/c3t3Td33abBxTP1PWFd6trOvCtK5c2jNff/Ut67CwP+x5+/ZX6Dii4iwZh0qhTIlfhJa9rovkZRpD0dT4xRHWWfhZc49RGaicmJvrxBQGvE9erAh1U/Lw8EBwnrvbe7q0JlTQ/N3f/se8e/OG4+lIURS0XcvpcKTvOxSaNUzEoGh2e/GueDm7Zyk5IjcZdVEmFEzGYb8ny8RD1n2+Jh4+MC4SKo8Xr0nwgcPhCNEzjDO5LTE6Z/ULT0+fWN3McX/E2oIyb4jR4Xygf3rC2Jy6yLg93eLcSpZZDkmG/k0/YuryhAjRxWdP1GcQSaUTNiF1HzZe5SbJxSj/Bpnml24PCUSp1BXDEIJ0p4j6aiZXpE5MCKjMXCcPcR6bSQEEYjiXDpFhXaXrYTMjcTeZFEN+8awC1ycrrdgwMgH0qvR8USkw2/Ora2Gl5IWzGcV1pll6h8mEXxWRPzO5gaBw8wJBipestKxrJKpkVE/X04WIdttErBI5MRnDUTr5oBJVP9O4EPBRpLOYunPBSyGitHRvrh6opBP61aMThPX/Ye5deiRL0zyv33s7d7v6PSIqb1XVVa0eigF6WtMSC9iwZTfbWYw0X4H5CHwFZscGCYQYAWKEQAg0CFiMGgqmu7q6qiszKzMyMvxqt2Pn+l5YvMfcsyR6qprqVqUtItzD3c0t7Nhj5znP8////qdVYJj+v6fA6ucploCYOfiyITwd3zh9jCyw8Py6gLilmKZNU1N94p3F1880HxNgx8j+khK0etH6Pe+jT79fvPDMvH9p1P86+bbfikmWkIIyTyEImqYnTRLGvqPIs+epwmw2o6oqsixFKcmsqiiKAqNTUhPXiE3TYLQhzzMWyyVaKx4fH6N2pa552m0JAUySI5OEEBwBT54WJGnG6vIsWvtNdNoF52iP8Wru/OqGJC9ZrKOTiSAxeQVK0ddHPv/f/ytmyUBbHxjsiE5Smrbn6uqasqo4O7tgvTojzypGN5IXBWle0PYNSkYNzXp1Rtc2XFxcTOsijVSS/W4zTbMWaKO5uLxis9kSvKWpD6gwsv3Fn6BMgkkMy/PLiK3QEpPkKGnIsiReXQ0xG27oe0LwCBQqTSfoWoySSCfwHgGKNGM+X7Db7JlVS1aLFcFayrJgu90w+hirooxmGGPGHd7RtA2z2YKLizOWixWz2eI5e3G328Zw5zRDacVut8UFT54XpJlhf9gjJTTHPcdjzWbzSN93GG0o8xmL2YysiMgPPeXMWTvS9R3N0LPdbdlsNyxWZ/ENR5nnoovxSCOLxZL5fE7bHmm7ljzPaZqGoe9x1v6OKyLWxKxKAWibjiJL6Q4NRZZN01jPvKqYzWbkRYoykrKcUeQlWuekJkZCtU1NmhqKKmd5tsJoxWbzSHCeY13z+PBIsAGjMzw6BtGKQJGXJHnO+tUlCIfJFDrPGS1s7g/oNKFaXqOSgtliRZLoCeOQI5TENTWf/Yv/kkp19MMx5icmhn3TcXl1Q5pXrFcXrJZnlLM57TBgTI6RhmE4kgoQwXG2vuC4r7m6vo6ru1EgjWG33ZFkGcv1BYyC8/UFT/cPKOHYH47oceD+x/8HRipyozhbn9E3PTKRlKsZrhMoC2F0ECzOHnFDh9QBZWKTaVIJoyfNEvJcY8eIZshMwvn1mt3Tnnm5ZDlbEZynmldsNhuscDR9E8Pfx4H94UAInmPXMVusWJ+fs1ydU1VR1+isZbvbMo4jaZqijGZ32GG9pyhLsiLhUO+RKtD0B5r+yHb3yDBEd3WVVcyKkrxIKaYw7KFvGe1I27V0rme/37B9emBWLqaVh8a6ODFRSmHHkcV8wXw2Mba6jjTJ4qR87KKu7FtwEzqeccWUO2iH00qNZ1vdiap+aiBe9oniOXJHqtP6MJ50pYyBx4Qo3GYiqNsh4Mdp5SQFqDg5MxMRXaUah6JrLChJ1wWcPa0aA4kRCO+QArTy0frvAipRkWElwgR6jUR2PzWC0sTP3ehxvUULj8JNTYzAj26SE3j6zhGUxAeJSU2k+bcORk8YXZRQIJHWM+wHpHco71HB4Ya4Bk8Kzdg4xnogWIcxAaM8SgS0kUg9OVgzhfSR6xWp8x43xjVeWuhIAThJpohNog8viIZwWu/FozhNVSfRu4zf+7JKnSZ8Ia5d41pw2jaeHIkCUOIlCWCadjE14qfmLMCE7YgPTuk4PSP4OKWT0ZxwcmmeQKti4kU4G6n97rSK/k0zdfiWNFkg6IchRsVkCXd3X/Pw8MB2d+Dx8RGI4uaqqhiGCDBsu5ZxjIJ4MU2+FosZaTrRxkNgPo+RNForiqKgSHOGYeBw2JMUJSaNgu6uraNrycag6eAjHyqK4HN8gLuvvmK/2ZBXM2arc3RekpYlJksZh5GHL/6S+5//GD+0JMbgxgHv3ZTnJzGJidosLUknPlO8UNGUZRFFpwTStOD+/g4hJF3XMwwdWV7gnKVtGxKTQoDZfMZ+twPn2L37Oc39ZxCIaISiRJsMnaToJGEce471gaFrCdYiJvG9dz6mzIsYzdO1fSSxE2IcTZYjtSEvSoxWLOYVSZoyjJbtZsPZak13nHLkgqRrWsqiYLU6I81yNk9PhCBpmpbN9om2a+n7/tkN2bYNd3e3jDauSiEGHq/XZ2w2j6RZSVUtyPMirsF0DLc1JiXRhnfv3sU3R2851DGmSANaSZSSbHdPcd3S1UD8fd5bZrMZ1kay/Gq1piwrIKCkRkyw2d/9TdB2A03XkSSG9+/fcX97x/Zxx/3tPfhYE7N5xWg9iTZ0p5oIU77aqSaShHGwBBeoZgu8cCityPOCYoq92W12ZLOKrIzNWdfsscPI0Eemk5CSJEsw+Ywkz/FS8Ph4S9MdyIuSanEOOiefV0iT0DUDj7/8lMef/5jQNWRpQszFc9F9qyQ6TaerVoEJ+plBJdDkZTR74Bypznn39h0q07S2x9NjlGE4tnTtkSyNDK35cs6hrQnecfj65wz7twgZA9vToiQtC3SaEYQCZRlciw89wTm00ujEYDuL7UeUThi7gcPmGNdygUjULwuyKseoDC0181msia4beXrccLY+o6tbZFCooOibLtbE5KDcbjZA1M9tdpvYBHU9eRZromlb7h/vIn9vqom2bTk7P2O7fSTPCsp8Tj7xxBId8RZJEnlz72/fx+bDWfaH6Dw0ApSMxpzdYYPSgn44EoKfiPqWalYx2pipuD4/Y7aIU2elYoD4twXQe9LonITMTDopN/ppUsE0tTxBS3mepJw+fP6nKUcvTE0DfCNk2L5MZpQWz6J43IQwCB6lBTpRCKWeT+Iq16hcPU9QYrhznJ46e0IoANN6USUSqaNeDxknNNYGvCW63iYheZQiSYYhwBSvMwwOlSmCCuhE4geL68aXiRvEnEczPT4iDy5G7kzifhN309Z6dKYwhUalatKpyefJoJviebyLEpuTezMQp1wmM/E9JpyeYzGhNE6ap6lB+pWDGadY8htohdM3nETnp+MltXzR3Ame15GnpipMq8YXz9KLmF9MEzKedVrx8cVpIC8mCBnBrt+Eok7bwWe9GtOP/nUUJd+KyrHjiJSKNE24v7/FOstytYhCbB9I0wTvHG3borVms91OifWRvJokhuOxQSmNQNI2Dc5FobcxCeNoozNRKbyPziCpU/qhjxwn70nSCEk0JiUvKpwP9P2A0gnz9ZKbDz+inC9pjweaOupDstmCpCiiw8Q5bn/2f3K8+zl+SrxXOgIakyTheDzE3DkhadqGgJ/AcI5hjC69+lhPHB9BXR8YxwGjI+vrFMszjGOc/IyO1CQcD1v2X/45bgKhJmmKPsXxWEt7jKsipQ06UREoOb1S/QkiGjzW9lg7IKTAjmMMTdbxsXRtQ1EU2HGMJ+ayZLlc0Xcd1llMYvDA+uwMrTWj91H4m+d4PxHIpWQ+m2NMwvF4BCE5v7iIrr+mQUrFZvc4PS7PxfklWZaTZBnaGLquY7N9fC4ApTXX19cxCDjJmc+WDENPCND3A33fo4QgNRlZHqd51WyOdZ6+79k8PcbsyWEgBE/fjzxtnqYm5Te/SvnbutkxAm2zLOXx6Y7RWs4vVxEAGyBJE7z3tMcm8qX2u+eakEo+14QQsSb6rsF7RwigdYp1jro5oLVCKEE5K5EqitTHwRFGF6cq2iBlSl7O8Hj6sUclCYuzJVdvPqBcrGj3B/q2JssKkqzCZDmq0Phh5PbP/oTm9ucRFEyEviod9YH74x4rAsEJet8hkoCXAY+nsz1OWA59jc4TVKJo+xobRoKLJ0SLZRxGXLDsdhvsaFFCY4dYE+PxiB0cSZKSZgalPLbraesDQQnEVAtCTBFNAKMljIGhHenrNhoIBNi+J1GKrMgYWkuzP5IlEe5alCXlrIo10cYs0sRovIfVao1SGhc8UmmSKUh96FuMlixmc0wSQ6eFlFxcnKNkPF5KKZ4291F47D3n60uyJCdJ0xhF1fdsd0/PGhcpFFdXV8wXc9IsZ7FYMYwD3gu6fqQb4vuskXkk+WtDWc0ZnaProwxBymj+CNYxjCPbzRN2HPndV0S8vWim4lpHTaL0Uw8Y4KVxmhqN52FWvINnMfxpPYXgmRd1csYpE80MEBEBvvfPInmpZJx6TdOOqK2dVlnuhccVp4SRpB5CQGc6OhmtR3iBG2OjJsTEEnUBB8jUYJ2P065EgBJTLBRRs6ggTK5FZaKjcOhGggjoTDH2wySUj5M9az1JGv+vLsRm76QxUgqwLmrdzGQes5NwfxoECOdgtNjOYfsoXRAhILxHeIdOJf1xwI9R7+ZdeJ42cTITuIAMRFW8JyIzRFyBPtPZReBkGOXkDhW8NEtTc+VdiIYDYjMmTpOzEF6gs9PhDj68IBmmY3RybJ6maAiJd+JFmM9LNmM8P55eU/6Ez5oUYL/Z7VuhyTLGkKcJWsHHH37E1JuSpAmbzS42W8GxrOYcm4ayLMnzaAH33tK2MdvLWot1I3e378mLnOXqLOIVpGSxWDBYS9939G1Dub6hs46nLz/HjgOLq9csLl9zPPRIKakWGdZC1zS0x54QNFpLkiRFaonRmjEsuPh4hko0X/78c0TT8Bf/2z8nn59DOkfnFb0xOB94eniknM3Y1weMjgG2yhjOzs7pug5re+r9nnEYuLy8JoRAWVYMY4f3MVrEO8c49mS54bi5o9u+o3n8kt2Xn9F3PavLG7LZEqkKpMqQylCUOePQM/QdY9fjg4orEhldhSbNkEWFsx1uOFLlBbvNHfPLD+mOh7iH9x5jDEPf0w9jDMCVCik0y0VOP/SkaYyrOTuPjRPe0XcNcsIipFnGsY4Yi/ksIi6eHu9Zrc9JJmxC//iIw+Osg7ZGyjiB/NlPf8L1zSsQM8Z+IM/zqNGRkTMG0REnZSDLcrRUOG/ph5GmOdJ3lvm8pO9alNYcu5b5YokP8XWTJAld3/L69atpOvqbF9Df1u1XauKDjyZhJrE5ORzweLwIlFVF0zYUxTdqwo20ncX56Ez0WO7vpppYrFFItJTMyhlj8IxdR//4SLm6oR0tm6dbwDE7e0VxdkN9HNBGT5FUnvpwpN60lKXCNQGtEpIiY+xAVmvOyiXi/We8PXwBXcef/c//nL+bnyHLBbqoSBaaoXc03RYVEo7Gxiaq7ZBSs1ydMdie0bbsDjVtP3J5ec24DZRFxdgeQAaMNtjRYl1HmmuOh0dsd8vhy19w98UvcWFkfXlNebFCJhVBFQhhmC8Kuq4l2J6uH/BTELALILKccqYJSYmQPcdDxzwp2W3uyZdvaA57gvU4H0gSjbUDh51FGUkiJValrFZ51GQmmv3+wMXlBXIcCN7S90eUjPWU5TmHQ40PY9QhasPj/T2L2Zo0zwguRMq8CtFF7WKwdjUr+dlP/5zL6xuCmNH3I1kpYtySUkitCR6KPAPnyPKC9UoxThd/x8MB241Uq/L5wrXtW1arBS64uMonpRs7bl69iiaib0FNACdPYHw0csIQEPMghZaI6eJR/BUueyEgSPHMtRIQy33S25ziXeJJOzpOBRNgU0TmlrUR5iS1JAxhElpL3OBJNPjW4S2IVNMeLaZQeAt9HyN6sBCGgBDfQCAkselKck136ONkihdxPlN+Hs7jhQI9bUc7CFIiZWRdCeIWRygRNblGYVLJ2AzYIDDTulRN0y0/xtWmVJKhiZmx3nmCHdGpic2fjgkNYgzTNia6+aSUDJ1DJVGnFbkVPGvbYq80rU6n5iWiI+LzH0dKkxh9cmWesgvFc0FO60Pn4/eEaaJFmNyGwOSOjGaH6dgxNULTSvF5wnaagJ6a4jDF+viTyzLmJp6malLFuKXJ1BifHw/fGJn92tu3oslyzvG03cUU+yI6CI2JK7XlYsHusKcsS4ahx5h4Ffz+/df44JlXM3yIVwpt24AQZEVJWc2ex+XRdSRQ2pAlaYyIqbeYoiRrD4xDz/7hHpkW6GRO38ZQWiFzlBS0x5qxHwDPfDmLUSzOsVxkBATV+gprf44QMZD47b/6FyzefB+zuML512RFjKwxxmCtjZDO0eGC47PP/pLziyu01nzvuz+gbuoYKeTjWmW7fWBWReG2EApn94wShsMTT5//KfXdW/pxIBDttEIZghDoLCVJUrQydOMe23fTCDsQgiPmDqagFAJPt39CB8fQD9jRks0uY76ij1cgWicEFd9MdocNEsizkq7r2O523Fxf433kNrVDFNbG13d0N9n6QJ4XKFXhnMM6S54VUWtyVHjvWa/XCKUZh562qVFK07RPnJ9fTJPAnjzNgRg/ZLSJ6+EEpNYM05W6V4q+a2n7njTJpufxjjQrEUJR5CVtc6AsKnSpmVXl1OjGUOtvw/nEOcfTbqqJPMc6i9YJPngW8zmHpqZKS4ZhwGiDUrEmAp4qrwgyXnk3bQtAmpcU5YzDsUGdsgu1QhlDmiQUecJx90QyKwl9zTD01LsHRFqQlQvapmEcWqTOSXNDe9gjvGVoRy6vl+w3OzZ3HR/9cI5rR4rqHOc/ZRhHhPe8+3/+V5YffR+zvgL5OgaSO4nWGucDeVlEzZMd+eyLX/DqzSvS1PC9j75LO3YIGcClaFRfAAAgAElEQVRbcCPH5pEqm6NNDih8d8AHgT0+sXn7p9z+7FMsFjlpyayTBC+o8pQkzZBBEdyAHVq8jVfPwTqsE2SLuE4Mo6U/bNDB0TUdbd1z9vE1ghhCLYnQXB88Qkr2uycUgSSb0fct292Wm6sbOB6pDzsG2zMrZvFK3RGdwcdD5HqpEud81GpONRHjiDxnZ2eRyD32NIc9yiQ0j0+cnU010cX1O0GQJllszvMUmwS01gzbEal6gtAMQ09bNxiTQRjZPt2iTUGQmiIv6boDeV6hKsViUTL0p5oQ34qaON1OcMp4kgzPuYDymezOy55HnlAAv8q7Oq3LTtOLEF4arOnuo7tvaqCYJhtKR8aVNDEAmsCk4Y2/WxmJHRz5wkQH4uAoz1KGxjKOAZlrEBGVQhAx5HoSiyMFrhsJFpwQeCmQkyZJaIlJFbYLBGdR08bDT/gOmYioQZq2FFIEMJIg4xpssGD05A5UgnHwz/R5pSR+8Ez56kQYuEJ4hxtAmNi0B+tBx+bM+bgKVYmOpogQG58p8jlOokLUtp1GUQLxMqmajpd3gVPI9gm1IIJ4aWLiaDLqt056qUmEP1kWno/rS1MdfnUiFSJ0NDoX4+Dx5PRUWky6zOjsxMcmk6lxf86YJE4+hZ9Wu3+N22/VZAkhPgcORK+GDSH8oRBiDfznwEfA58A/CCFs/nX3I6UgnwTto7VYZwnAse7w8/mkJ9D07ZGsqGLgoxSslhc83r9nvlgym83Z7eJK8Obmit0urkJWyzVd30bt1XFPqtccm4ainDE7f0Vz95au7/Aourpm/foqWn9DYLvdo4ScgKfxinczbpBKoZThqHsSA0oYTKJpjg3SSD7/2Z+zeHzk8rs/RGZL0iJDaU19rFkslrTNMeZtiYBRBkkE/m3323jScZb1eo13DqMzsjSjKEq+fv8+6m28o9/f0W7v8XYKeO1qxmGIupYkil+D9wx9w/7hlrF1SJXE6Y+UU4q8RihDfdjghjaKwvsB7wOzi1fYcWS/3+Kc4+rVa9quxQ4jMXhUxelbXVMWOUmSkueexChSV0QzQ7UgeBevtPMirkTrmrIs6fueqqyYyTnKRD3R4XAg4CmLGfWxnk4aCWlRoI2hLOekaRYNC9N4fxwHButiREnbkOcZD49P5FlKIJAXOQ8P71A6oetaFosziryI0RJS4Jyj7wakhLreM58vCf9fl8C/g5pItUFkgtEOuOAIDpqmY1bNkQgkim44kpfVRE0WzOcXPD28ZzZfUuQz9vsI8H396prt7oBWiuV8RTe5FNvDDjNfc2hasnxOuXrF4e1b0B3OK3Rx4Pz8Omo2lODxYQM+phn09ZGx87z/6o4kz3EeDvseLTxJnpMWmvrpgJSCL372Zxy2D5x/7wcxhUBoNJKhb6hmC8a6xo0B6x2ZTqH3aGXYHbZIZRDWcXF5xthbsqQgT3PKYsbbL95NlHpBe/eO+t07jPJYLzgce5bNiE4DOs+QUuFGi3M99eaWvh4RwqCJb+yjlOQmIThJ125wtsNaGWN1gmB28Yqh7emGmJ+azbII/ewHECE2ry7WRFUWpFmKCx4lJanLo7s3n4MbGe2ISQuctxyPHWVRMvQDVVkx1xNaomnY7XdIGaiqGc3QYIJHq4Q0y5FaU+bzCaDrntlAdhxo2hFlIv6kLDOeNk9kSYKQnqrKeLh9QKcZw9gzm88oi4L95OweekvfjwAcDnvmi29HTUA80QdBbLrh2eUVHM+iZcIkDnfhGSB5YsaFUyN1mpYwMZVO60Uxic9PmqIQdT7eReq7O3GUwot+y1k/Ed0dbgpK7nqPSQwyiVMsIWNkTZwUAT6giBewcTIiCTZOVBMdoaaSGFDtnUcZHQnrLiCFiAYVqSZieUBLgYvvzAh8vKAWgjBYgnUkqcANHjcGkky9RAKJ0+oMlJp0ahP01HuPDwqdClwfOVhCSIbeTeL1aQVpPUmmp0mgf9E+nZ7bb6z7Ys8Sntejp+kSPuYdugmrcFozTj+JkFEfxsQgU3JqoNWL+/ObO+3TcY49apTFxOdRIuSkR5u4XBH1E6eEp/Pj1NtNOZZyos/HiKlT0/Wb3v4mJln/fgjh4Ruf/xPgfwoh/MdCiH8yff4f/evuQAhJ0w0427NaLXl82pJlMe4kSaPD5f7+jjxLkUPHsWk4W5+z3+9ZrdbMqriGuzhfMw4DzjqqasbhcKCu9xRFiXMjSEUzOclMkvPBH/x9nt5+Sa46drsd4jbwwR/8PZqmpWsaZvNlFJ9aSNKU/Cyhmpc0xw6loDk2dG1HkWpW6zO6YeDd7QM31xeoYPniX/0JmTIk6o9YXV/TtC3aaMZeIqVCEMgSA84xdh1pllDXDVmSUO/2mMSQaUE9OYnKPEHrit3THats4Prf/jfxQTB0e/bbLZ/95NOYRZfPONx+RtfW+LZj91Sjs3OSQmBSg0pTiixBEXB2pN+8jSuMas7Y7lheXHP+4Q9Ii5y5kuRZGQX4aYbVUeOz3+84Pz9DqoSiKDkc68jn2XY4O3B+foOSU4CrDxynBiZCXg2JS2OW2tBiDw4lVcQKKMM4Dlxd3kSga5Zzf/+eqpoRQuB4PETtT2qwPmoJxtHGca/SWOu4vr5iGHoKUdEPA2W+xAaPD3Gi+fj0QH08sprP0MZMLryOPM9QUuDs+K2oia4fcbZjebbk8WlDmqUED0mWcjzUbDeb+Hz2HcfmyNnqnP3+wHK5ZlZW7I81Z+s13o2RxVRUHOoD9TFOFZ23CKVpuo48zUnznA9/9Mc8vfuKXPbs9zukCHz0oz9m93ikHxrm5TLyk9K4SFldp6zWJU/vd6zWKXXdMR6PLOYJ83JFU7fcbTfcrNaA48uf/JhUJ6iP/oiLD1+z39bRreuH6NqSAmWj/sQxkBSKpuvJZELf1wQr0B6aekM/9pSFQYqCenfHzdLy5t/5EWOQdIcd9WHLZ3/2KePoOM/nHG4/ZRyOuGPDYVsj0gtMIQjKkM5K5mWGCg4pPMP2LdINzOYVw3jg7DuvOfvgBxTzAtFIimKGHVqyNEOrSLLfbjZcLBaoqSb2hwNd39GPA3bouLh4hdIC6xWjhdHVzGaLOF1LU4z1dH3PMHa4vUUio/5Kavq252x1zTiOZEXO/d3XVFVFEIH6eCBLS7LM4EWgbW1sJr1Eas1oHefrS4axpyhnNN1AXp5jCfiJZfD49EA3tpQugpm99fG9rcgm8vnvvibgOaXmeXUnRJxonE7wQkbG08mF5p1/7iTihdnUfCkxIQxOK8MX0bSQ8tldeAJ/CqEmHZGfTs4SP8T3HxFAITC5wVmHMhJtoD+05FXCaMEPIa4Ehxi0bQoNo48sKHWaQkXswok3pSUxMssYSHSkrKuotVXaEFxsmIbGYvu48vPjGHleNqB0wOQKO2m9hIhC+9gQxv+zkKf/TwyWdjJO8oMViESjVbygOoFJgx0xSjAIiUpkDJPXEttbkCpO0KYWJEgIlpeVLC+EezE9/88ROSJgPYhpeyI4HSumqaUn2Bccg3MBcXIiTtqtuBYMz5PIMGmxhJRTdA7EVWTUhJ0o8+pEi1ea2NCJZ8irSXTUqPpJFD85GU+4jt/k9rexLvwPgX9v+vg/Bf4Xfk3xjONA0zSsFjOUVMyrWbyqSKNoPYQQ3TNG0/ctfRdDVff7A5fn5zw83nM8Hri+ek2eZzRtx/39LVlWTE40xd32CWtHimJOlufs9zuCUixffUBp72Ojd2xpd/csViuUNtTbLafwS9u3tH6kLAsury4RMqIH9o/vafZbghSkacq8LPnBDz4hSQxIje+2dPe/wJ1f4K1n6MYp8LqLLsixQ5iE0cPhy59E3YbrAceurTFKINOKISlJqiVdgKQ7sl6t0MrgnWXMU5LE0B6OPN4+snn3OUpLpM4YmpZAinOe7tiQpEuM0aRphvMjYeyRwaETQ3Aj/dBy8Z3vUy3PEEJQVRW77ZZs0kHt9ls+/OATgncxlHcYqZuatj0ym81QWuFdxv3De8q8IhCYL5Y8PT1Gor8PZCLS/Y91zXK5xBofQZqT7ihJUpp6/0w2n82XaCVpuy5qH5ylG+KVnB0GiqpCoBiGaH7ouj5ql/Y7EmPIioIkMdR1zWG/RQjJYl4xjAPDMJDnKcv1ivpQ8/59DNb+NtRE2x5ZLWcYrVkt5vELIeqQIMR1sNYxf3Lo6PqW/eHA1dVLTVxdvMYkKe3Qc/9wR5bmaJ2QGMXdwybqERcz8jLWhEOyfvMhaXMLCMa+pXm6ZbVeMdiM+mGLDEQHnrQ025HlquTNh6+xXmGKhodPjxzuHwkyctnmY88nH39Mmhi8UEhb43af0e/WSOcY6xY/DijpGXCoLDAcoruo3/wlQgb6ccD1A25oMCIg0wqVVKh8AUpSiJZZtUCgAccgDZlWjB8euXv3yO79LzGlRJAwHDscWbRm1w16tkAZTZpkeBv1i0YHZJJgh4FxaFmtv0e1OAMhWJwt2Tw+UeQ5dX1kv9/w8cef4O3JfTtSH2vaLtaE7jXOJDw8vqdIS5hqYrN9wlo3XZkrXHC0zZF5NcNqxzgMnMjeaZpS76easIbqVBNti5AKHyzH44hKDN2xo5xVKJPQtTVK6ggUlZr6sEcJTVYWJElCfayp6x0CQabje4JtR/CGxXLJsT6y3919K2oCTqJj4h8qNkyBqP0Rk94ohOguFNNq9vnn5Cnwd+JhnVAP4RtU8dPkI5wcZOI5q84OcYqkTAyLFoIovLcBN1rCIJAaxtEjkshgHK1HGh3Xc0DQMYIGYOinlaUNZEUk7Y/NiNYyYmRCDCt3KqAywfHBoiQxnkdEgXdzGGIjhHieonkX15lmasD8NOWOAQcenciYwShBmClse1r2Tbu8CboKIkTMp3d+It9H7pfUIMILuV6lerofOS33ol7fim88r9Nx4DS9CicBeXjOM3w5xuJ52iSUjFiNSST/zcikIL7hSpx+PkZinSKVXjAQp2YsPpbYlDoXgeCnGWCYfua04hzaEZWoF70esXn8lSDrX3P7bSsnAP+DiNCI/ySE8E+BqxDC19PX3wNXv8kd3dxcMfYdzsWg42jRFFg7sNttWa/OAM/hsOX8/Jqu7bi4vODh6ZHdfvNM6+4HGO1IWZZTTIun7weWyxVKGer6iKDAjQOXl6/oP/493v/4LfNFBUC9vSNfXpNmBZvh/fPLbve4ByG4/fwv+M7Hn7C8uiFJc/JqBm5gd9dzdnnN7/3we1xcv5qiTaA5Hqnf/QSRpIzdEdscAMvQ7tA65c3v/TEX55f0aH76f/13U5hvYHG2pCxSTKKxziH9Ab/dENxAmmQotWS0PcEPKGnI8znVPKdrMpr6QFpWeNdhrSUExdjH+Jvn7bgQSKEiYVjEkTTe4YJk/ebfIC8XvHv3JRLJYjHHOYdJNEmS4d2IFIJ3X37O4Byz+ZIsTUiUJikMX779krPz8wgLlnHEfnF5SXusY8Bp8GgVyfLee5QQkVtmLUmaAI5hGCJawcfplZJ6+rciRvlIRaI00sBuuyNNEhJj8N6xeXpguYruR+8iLmC/f2I+X7Hdbji/uHyGkrZtx8PmgTevvkOaphRlgZK/VVn8zdbE2OOsZ+gtQk/ZZGPP/rBjuVgTgM3ugfP1FX3bc3FxzsPjA4fDJkZe9B2eSHYvioIszXCjYxhG1udrJIr9tkaEEjsOXJzfMH70Pd7+yy+YLyvaRtDU92SLK7TOaI81RsQ32MfNHpTi609/ykcffMj5B28wSUm1mDMeHYfD1yzXF3z45kNu3nzA6HrsGGjrmvbupwy9ILgO1x7wdsA1O0SZc/MHf8xy9RqvNT/9v/9b8jRj7D3z1ZKkiBBTT0BR43ZPeEZ0liOLBWPfIEXM1yyLBbNVwTh2PN3vEMkMPzpG5wnCYIchgnuNAimnE67CjzbS720kyVsnWL/6O+T5jPe3b5EixkKNzmFSTZrlBDdijOLrt58zOB9X20mCERqTGd6+izUhA+hEYR3PNaFUXFtLZMwAPa2N0gSCmxzGjn4Y4/TKe5q2RgpF3w1UZc4wdCip0FKTpCmbzY68iLpFj2O/eWS+XNMeW0ySoLViv39isVixe3rk7PwC5yx9Z2NNPLW8efUdkiShKPPfNgXhb6wmQmDSP4m4XlMvUThxAvGyQjy53E67n5PjzbqTnue0SpomICrS9IP30YE35fvhwwRjnVZUMmp8JDE3N4weLSA4F3lUUtDVFuki7X10Dj3FxggjIwy3d2htUAqsCwydIy8UnQuTAFvFaVRwECTDviOMHqHD1L3EbMHgBEGKZzK8lAIZHJJIfweeHXfSx9ZFyihe77oRwoRzUDESh6mxCualOwouEu6FnEKo7cu69pvauFPw9kkHJ4R/dn8KwTPW4tTIvORHhueA6FMDLQTPmA7xvPKLPyMneGhURj4D2Sezw/SYT9q80+EXEzTVvUy7pCayuey0Kg5MYFSYRlfxPcHF8ZucHK0R7Pqbr89/2ybr3w0hfCWEuAT+RyHET7/5xRBCEH8FtUsI8Y+BfwxwdXnB4+MTxiRkAXzw5HnJ8VijhODm5g1N05CnKR9/+Pu03RHBgJGSvJqRpdl0haFp2gY7jlRlRT+MlNWM97d3XF9dMoxDjInpe4pizjAMzC5f8+PbRz54c8XrTz4hP7tBm5J+HDHJjK45YLSg70fubu/Y7je8++qeD65K3vzw9wGJq5+4vDlnsZyjlMETqBZLuq4j6Y/4YaD55Y8xec7ZaklZXdC2BcE7ijRltrzmfLHip8mM/eOnmKyg+OAGYzRCKLROSNMcYQRjPzD0Lc3+Pr5QVEI3bBBSsry6Jq9K3n7+BfX2iE5SkmwBpny2/Sd5hkkSxn5g7A/Uu1uUSqIA0PXMb77P+sPfZ3/YM69maJ0gtY4CXyTz2QLnA8poFutzBPHqxo49XdeSpAXzqqJrj/HqOC1oJnt/23VRQF/v6YceKQXL5RnvvvqSajaLGYVdS54XXF/fTBOBA6vlCikjN2wcB6yzKGKQbVmWSB1Dsg+HPcZkpGmJs55iYj45HyjyiqHrePXqhmPTkmc5Q9+zWi2oytcc6sOkSeux7rdajfyN1cTTZhP1N2k8saRpzmFfY7Tg6uo1zTFG1Xzv4x/SdEfGYcBoRZHOSVSKNpH51bQNbhioqhnDMFCUFXePj1ysz7FhJM0z+rGnmi1wWLLlDQ+bDa/0GVdvPqJYnpHkBce2J5svOGy3pInmKCR3727ZNQe+fPtjfvjVz/nO7/8A0TvGwwNXb87I8oqsyPGJZ1Et2T/W0Dr6wwE3/gSjElbrJauPvsvdX75DF4IqzTi/vMGkJX+Rrdk8fIaQGVcfvCExGqMVSZaR6Aw0sSbGjuP9VygZkEXJsdlickOxfIU0FUP4kt2miTWQzRltAV6QFQlZkZHohHbXMg4Hmu3XaClJ0wRretbJ91m/+QH7/Z5ZXsZYH6UjZFIqqnLO4AJCaxZnFwgf3dFD39F2LUlaUs3mtEOH8IGcgmMTV7ZN06Bkird7+qFDKUFZrXh/9xXVfE6S5bRNTyZy3nznFV3bUx9r1oslQkha0zHamN8aJxkdVVUipKIfGg71gaTtMCpnPFqKLEcqcN5T5hVD13Lz6oZj05BlOcM4slyvmM2+w2F/iKDSPiJmftc1sVgsXojfTPgGF5sAOU21TtMPIDYj3xA/u2HKADytCL8p6J+mJ+Pg0Eo+C9GFFCipYlOU6Al+KsA7pImGHZ3Hr0ulsamO+iKtGQ4DWguSKTLGOY9QCXb0JJV5ftziaJEhMB4saZnAEDWn2VXF/t2eREVkQpoIQj8ishwfBCMhNmnjKUtRTdE0kjigEXg7oABlDCMCmSr6IUyTHI0dYvNECITBR6emiqLvEIhfF9OadoisLKmjYNz1U7B27GxfRObixMiKz/VJFzcxlJ+1bM/ZilNThCcK9U+rualZkyJEuryRE3YhNjveR5L+abV3OpQn8LSQAje+EOWfv0FLhA+4LgJGxTRJA54dq2H6OBoepsmhEFHvR/jGb/v1t9+KkxVC+Gr6+w74Z8AfAbdCiBuA6e+7v+Jn/2kI4Q9DCH84n8/I0wwpIc0MzfGIUZKqyFkuF4xjHJtLrXnaPOC8Y7lcRjaQG6mPR9quZ+gH5vMl2qQgFV0/0jQNV5cXz7wNZy14S9t38T6RiLzi4XHPKa1bSkma5RFuqQ2IyLeJYm/P42Hg/aan3dzj+z19e2R9vmZ5ds3q4jXOOurNhrGuaZsaay1nr26YLyMnqmn2kVkkNF6IKGoWgrOP/y7VxQcU1WxyF3r6vqbraw71Q0QbENELQie4EBjHCDNsmoYknVMtr3n90Sfkswqpswke1+HHgbGNGYx26OMapD8SwhhzDRPD0HcgomDejxZrHUprvPfs99v4gpGC+rjn4T4GOCutcD7C+e4f7nh4+Jqvb79kHC1d1+LGkTTJ2G035EXJYjFHaU01m2N0wjgM3Lz6DrP5ksNhz2w+wweHD/FqbrU6n/hPnsNhx3635e79LWmSslyuCUFwPB7pu5aPP/qI66srLs7PKKsZi8Uy2s+FQJsYjvvwcE/f9Rx2u8mtmtA0DVJKsjR7Ji7/zmtiNotOyhBIjea4O5AoxbzKWSwWuGAjCFFrHh7uJ7frkv1+y+BH6rah6fpnur1OUhCStosU8MvzsxcKc7CEceRwOCKExCiNLCp2dUNwbjIDCcr5DOGI08wg0dow9hCc5enY88Vdy+HuluCO+DCwWC5Znd8wW14TnGN7+4BtGvqhoe1Glq9fkVUlKk15/OprZCIhzXAh1kRSpVx+8iNm56+pFnOEnlYkx5rD7sDh8BQFwIBAkSxLnBCRk2d7DocjJptRrW949fEn5LMSnRbENWiHdyPdsUOgJ/ftiBANUluUyXBe0jctQzdtD5xjHB1CRu3f7mkzAS0F+8PuuSakVngR36rv7m95fPya24e32HGkbVvsMDzXRFlVrNZzVKKpFovI9XOWq6s3VLMl+92ealYBHus9OjWcX1xgxxHvPE2zo6m3PNzdkiYZy9UZPgjarmHoWj768ENurq+5vDxnvpyzOl9hfRTzKqMxWcb9VBPHek/ftxhtIiJFSLI0x04Zgb/rmiiKAgQTNyyu2WAKBCYgtUCaaYrlT07q6Y7Ey4RLTLCj0+oIT2wqpvd+RIzUCc5j+9jwSBUF0yaVE77gZY3oBjetnlyUhLQOiUeqwDBMIE8j0ZmZ6PHRgShlwA6RFC+NYrAxdH0YHUFCu20wqUYkikl3TVIalPAI71FKoBOJNgJvYegCYlp6yUmPlpQJQUnsGNAqrgafJztxZIOawMVBxIbC+inOJoBWApNGMClKMUzi+6G1z1mNnqiN8hMY1vtpajVNoU6CKaEm53bsbCKSYvr8ecLFFICtXnhoYTpmzkYt1Wki9uIunR5ffMVE/peciO6nE3+YtHZiOt6nBtrICDpVIiIinl948Q+pp6Y+hOe/IWYn/qa3/99NlhCiFELMTh8D/wHwp8B/A/zD6dv+IfBf/7r78s6Rppp5VdB3PVkWxe6Hw566rjnWe07ByLv9lro+YJ3Fesvm6YnEGNJEU5QlTw8PdF1Lc2w4P1sxm1Vsnp74/LPP2G23GJOw3e9YLOZAwKQZN9/9A3b7HYftnqqqGG1ERWRVRTlbkuYzsqKiLCqCDzjreNz21Jsdx+0WbdJJtB0TzHVi6LsjzXGPMinl8owQk0Rx3jEOdgJ7zjl//X2q9QXlYsEnP/r7nH/8I4rFCiUNznmUThFC0PdH+rZhHGOQNkKjTIE2JQBKJxiTk2QVq4vXrC7X5GWG1JokVTHcEhhHx9iPk4sw0ryl0ggfOBwGpPQ421MUOauzM4SKgdfL5QptoqbD25Fx7BmGmBlX5DGWaH12QVXO+ejD75NmGednV/jg6bsWPQUef/qLv0ArzePD7eQ4HCNPC0Ge5dO62HF3f4uzlq47Tvwzh/eO88srPvzwQ4ah53CIGhWtFa/efIAxadS5EXEeddOS5QWz2RxrHVor0jTDB49JY5OmtUZpQz90vP3qcxBhyrn8HdeEdySpZj4r6Icek6Qcj0f2uz11feSw3UVSuVRstxvqw4HRjlhveXp6IkkT0kRRzioeHx5om5a2aaeamLF52vDll79ku9lOLr4dZ+crCI68yrj65PfZtwf2h5pqPme00ZiRlHPK+YKsWFCVFVWW07cjHsdjbWkOB+r9DqlTZEiQCLAB6aFva7rhgJ6VFBcXsaYzjZAjbT1yPHRkxYqLD36PtFxhihkffP8PuXjzd5gvFyRKYbuB+cWMpDK0fU17bGibjrG3DFaRLNZRq2UkISgSk5EmOav1DauLNWmWQNBkmSZLphw8PEz6RO8GTKJBKNJMYgnoJGBdTzEruPzgGp1rjvWe9dkZJk3Y7+JFk7UxW3S338VYoizj/PySspjx4ZvvkpiUi7OrePHUtVEz1cSaUELFRmnK1+z7DuEhTzK8d/jguHv/HtsPdM0B62KmZcBzdn7Fdz74iMHGNAuIU43rVx+QmIxhjOrjdmip2560KJkvl4zWoY0iyzKCCJgkYzFbx2gWk9D3LV/88lMC346aENMu6YRZeHEBAsSplp/I7yfNz6nLCtPJ/nTCPk1CToJp4nk4nlTDC6ncJHGKpM2k4zKSMCV4CyKJPEz2OSkkWoBwnnGw04lbxlWciDwvO0zOP+txnY2ieS0QmSJMPCqTSrTx2N7T944g4r8PnWUcArZxMLopaideEBerFFPqyNaaRN1uhH4MqDzDS4FOItldCh+nTxOqwNu4AlRSYnR8brQWaA1KxosFOXGsklxRzCM1HgnIqfEzccIjpYzr/NPacBKje8ILQmGi58eIIf/cd70Mh+LB8JPLMfyKuzA8B2pLSWzqrH+eZp2kMHGqJp61Vc9r4emYu5PLdHIpRnK9fH6dxCb85FwM00rVM94AACAASURBVO8HfASuxvv+zWrgt1kXXgH/bGJUaOA/CyH890KIfwn8F0KIfwT8EvgHv+6OlFK03cBoRw776AZs2x6pVMzqOz9nXx9xLnC2OiPJEna7bQTQAevViv1hh/eeYezROmF9tuL+/g47DCxWa2bzCmNSuu6IUQYlBL21mCThe//WH2P7Pb/8xV/w0Q9+wHpxzdOhppxV+Dxn/3DPfLUgK3IEkvuHO+p6z7ELOHou35xhvWS32zG0R2zbRG2fsyTZnKSY4YNASYG1DpPmmMTgvKO6eoMu5wTg/Duf0O7vebINQ/9AEBLlx+nF5Oj7IwKJSgzl8pyurbF9z2z1anpjboDoyLx+/RH95YAdHV/8/Jau6QlB4foeocCFnqEfycqCd2+/5Ouvb/mDP/x7CNchQsA6RyYUh90jdhxou5aqLFmu10ghyPIO6wYebm/ZPT6yWp+hlCbNUrxzzIuSru8JREq9lHHnf3l5g1KaxXxNfdiRphn393ekJmF5foVzDq01i9kSbRR2DBiTMo4DUhoSnSJNhifQ93FFWSYZTX3kqW+j4YCYUeicwxjN4+MtRTGn70eE0MyqKBj/+uu3/L/MvVmPbNl5pvesaU8xR+RwxjqsYpHiIJkSLMNqNCzbMGRfdMM20D/C8D/yjW8N33WjAcOw3Gi0L9qUrIkUKVHFoeZzTo4xx57W5Iu1M0+1YcBUwwJr35xCVkZm5I5Ysb71fu/3vKuzM7KsxNqexWIFQ/vz67Am6taiNRwHxtipbtNYuFRcXl6wOxwJIXK+OsMUGfvdFjlMWq3mc46nHX1j8d6S5RnL5SJFtnSW2WzBZJqCotv6mNrCkRRbleV8+IN/RHfY8sVnH/Fbv/U+l6vn3O4PTC8WSCJv/+5TVmczyvJbVL+S3N7fczjs2R8D3ncsz+cIndG0B7rmgD0cEVqmwGsyyukCqzW+93Stx1Ql06rASMdo+QJTzrAdPPut79If7th+0dI2d0ij2d+lQ5doT9jhtdaZpphfcNjvMPOC/nbJbAHOHgGBNjlPnryid4le/tnP31DXPdZJguvpe5+QDcGR5yXXN19ys77hw+/9HiMcMgRicIQedjd3KBzH/YnV0wXLizOUhEadiNFxf3vNbrNO3DckVVXinWdaVnR9i5CkcHspCTJyfp7WxHQy53jYkpmc27sbcpMzW12k07pMa8LkGttGlMpwticGgzEleSbI8oB1Pda1jIuSpq5Zr2syrYf4GUHEkWWau7trytGUtvUIDOMqJ8s0b69es5Ar8qzEecvy7DxtNF+DNfFontZJkRAP6AUl8c4nY/YDl2DwFz3s4ClUOXm4bOuT+fxxA31neI4PAMwYkuF7mDJ8cG13p7QmVRzahTagigxtBKe7mqKQyEqA9EQhB4UnoBD43qEzg1DpXgYXETo9h+7oEEYRjKJrLMpC1JDnmlxHTk36TLBdpJxn+NamaUAHutB0uzYpR94l3pUcvGvS0DY95Txjf9VQjROXTjAobz5ZjHSm8D6FRnufVB3XeKIfhjKsxxhQOXTHHq3VI0ndt+kAnGtB20RMkcKwk40kEeGFHCY9Sa+LUEMr7nEA4VE8Ijy82EIMBdXgwXqYIgx8ZSoxqYzBDcHYqZMLcogSEmGIhHpQqR4KsFSgRQb+FUAUKaNx8H8RhnZultTLh/dV8hU/Sm//n9e/d5EVY/wY+MH/y9fvgf/i7/OzvA/sdxum0ynz+QpjDPvDG5aLJdEHWuvQWnM6HWnqA1m2QBuTOEJSDZErm2REL0dJjeoTpM/rFMljnUcpzZdffM7z5y+5X9/T9w3n58+oRnOefet3uP3sY27fvuF5NWVUGN6+2UIUlOMRu8024QKcp21bOutwQZBXoyTpzyb4vsN3Da5r0HlGMZpSTWdY58mzHG0qfEjts7Y5IlXE5BV5kaUwUufIRhOELum2O1RWJpaVEClnEYH3DuEEXodB7cg5Hg8E3wz3P+B9j5CG8XSJd5bJ4kA5LulOAS0E3vdJrcsLhJDc35+Yzmf4rqYaV9iupSwTy+p0PLFYzpFacdgfOB1PZFmiVXdNw/nFBaPRhP12w7ga44MfxqgBAfP5gqLIubm5ZrFcstncQ5RY3+NcT54XXFw8oSwrbm7vaJsD8/kCKTUoaOqazWbDdDJFEFA6hdmuNw+5hC3nZ+dI7yjyAiEY4nUSnVgbQ79rqaopSirykWGzSTyy6WwBSI6HA9vtHUxWjEYTHqGFv+E1sduumU4mzOdnGK3Y798wqpaIGGnaZHQ+Ho6cjgcWZokyhsIYpFJ0Xcv9esOTy4osK5lMxnRtS5FXGGmJwdH3ASUVX3z+Oc9fvsftsCYuzp8xXix5/tu/y/rqU9Y3V6zKJWWes32TUEZnr864eXtDjBHbWfbrPTY6HBJVjjl2NctgabZHXFfj6hpd5BSjKZOLM46HHt9HRvMVx92BcVXRNA0qN+TViPnFhPq+pe0s2XhGVCVdvUdXFVJIslyj9IQYJM72KBXo+5Rk4KzA0eOOdcpUG+j3CMl8dYbrLNPVgWoeOe1cUtmcJQSLNgUR2B4aRuMZ/ammnI2xdU12XiRFsO9YrRY4J1jfb9mvDxTjjFGViv3VcsV0Pme7XjOfLAhfWRNCChaLlGN4c3PFfLlkvb6DKHEhrYksK7i4fEpVVVxf39K2SUmWQiF7qJua+/s18+kMQUAqhe0t6+0abVJe4vn5OcI5iqwAYmKt+YgxCQDb7xvKcoISkmJScX97T5YbptM5MgqO+wO7zS1xGqmq8ddiTQCPmXbqK5ts9OGx3RcH93T0cVCbHkzYDAff5O0J7itG7cftl8dK7kGdiiISpUSIwRMk0y6vRKR1w4N8oPOB0aqgbWwizweL7RxZkYEQuCiQhUEZiW0sQQA+xaohBVmV0TWB7mTJRjnNviE3ChcEAYlUgmKUUW87+i6ghGSAVzx6sVWpid3QJg0BrQLOx+RZPfaoXOFsQBcG14XU1u4DxqhH87tUSdkNHjwCZd7xwkyWpvG8AzkEEQYXCUKiMp384Dom0LYLqAxUNqAfAu8KmMGozuDNSq/NQ8TOu//9oKD9O9XMoIbFr37Xw4NCfJw2FMPEKMO6eyieU++X4eAiH1//GOMAKU2XHDAY8YEO/6CKxuF3/z3OHF8L4ruUkqLIiTFSFDlfvv6MUTUhyzOa+oRUht32nqJItO/D4ZBMn75lOltgjCHTmq5riTGmEX4FuTG03pHlOSZLGYjL5ZI8z5FSIYXidDxQlCXLy/f5/h/+Ez7503+FMiWLi6dcno/Ybk7s9g2b63v6tiPaltl4jFGSqiqYLxeoXLO9u8MMvWBTlpRVhVAGokBrhTQlyhikl0lZyEpc1Bx3d2TjUcoJdIp8sqBcPGF3/de02ztm52comSN1htFJpbHO0/cO5wXH024wRmpsXxNiSCA72aNMhs4zlk8X5KZkc7PhcJ8wDUIERnOD9/D7//F3kDJw2t3jTx23H/05/WnH4tW3mUxS9MZ8uWC33VJVJeVolKTcmGTavm0TULRvUUazXa+ZzRcYnXNzc0U1qlguzwgiMp2fUeQFp/Xp0QOllGC/3zMalUzGI0JwbLf3hA1MpzNevXpFCBFrHbvdDu8tSkmm4wnZ4oxTUxNCpKpK9vstbduilGE0qri5uSXPy3QylYKbuzVaJ7lbK41SEjJ4+uQb5FmW4KvB/2YXBGlNlLlBEMm04ermcybjMUVhUrKBNOx3a/KsQAjB4bBHKkkTOybj+XAI0bRdCwLarkcrQZ5ltMGRFQVmWG/L8xVFkaOMStmaxx3FeMzlsw+If/hP+eWf/DFOjpmfPeXpWcV6fWB/d2JztcaGjq5uWMwneN8ymRQsL1eA4vrza4pc4m0gn48pqgohUktjvMrR1QTQjJYz2ts943lB7+Husy+JQVFNx6gesumC8uw5m9d/Tbu+Yz6fEU6BkFWM5gVFNWe/baj3HutBmDZNDFLQnJoEbMSjtMd1HVIalhcz8rxke7/l9srhRERESZlpQoj89n/wASqT1IcNfe25+/lf0NdbVt/6HovlhNOxZr6a0aw3TKYFRZmsBNanAqA9tegip/UdSptUcM3miGC4ub2mHFUsFudEEZkvzsmzjM3mSJHlA15AstnsGVUl49GYEB37/T27PUwnc77xjffTmugdu+0OHxK/aFyOWM1W1G2T1kRZcDjtUmSRyDDZoBznOWkUT3Bze5dYX0qiVCoEDIJn732AEobjaUf4GqwJSJunGDZ3PUyuPahXySwtHwus9ID0j38IJ34oFh/8WfqdgiK/6r0f2kFiUMLkoHJpLQg++ZaESL9LqCEjsHXD74h0fURpgZIDIiAqXB9w1ieDeu/RxeCDCpEoAsVUJ+q79eTTAntfU81ybG/pti29EuRlRniYylOK6Dx4gXQe1zm8EGQjTV4VNMeetpEIESgnGTZ4fATfQWY0Qgq0irjOpQm7LLmHjJa0nUDmOT56QmtTYdNYpNGokcJ3oEQqbkyWWm2u96gs8bkIgyo2hDHLB2yGHhhkkQEPEVMeYqGH7u47RtYDYTT5upIaFQae1yMfS37ldZVDASTiYwGewqPf9SLfKWGSh4lE4pD6ECPywcBPYrClWlAM7dKE7HDDVOuve30tiiwhYDyZYnuHNhnTyZyySsqN1gYhJLbvEEKS5wVlkdM0DT5A27T0XY+PcfDdGLz3lGXF+n5NWZjUJ5aa16/foFVAm+zx7JLnBev7G6rRiKIccbveMb66oqgmZGXFqNI4p4bx1YjJTJrEyTLG43RyNa5EiGEENSZIWtc78iLjsFsjtWQ1WkKU5EVB1x5wtkfoFJb7UBWnWIYCVY4JPr0R0odeSV6MCLbG+kjvAnmh2O72EBzb9R3Bd1STGQ+xOVLlRN+hZYFWIISnHGv6xiN0hjZqeHNFfNfStDVd78jKEZ/96u/wP/+I3/6j/5rp6hmXT57Tdg3zxRLnLXV95HQ4UI7G5HnB/d01o/EMpVWamDqeaE4nyiInzzNyU1A3ddrs65qrN1+is0S2L7MSKZMheDweU02mw9TglMPhgNaGGAX2MUQ8x7nkOamblrpO01UpDFwzHs1YLVYcjgfW99s0xm4MxqTNczGfE7wnG074zju8cxRlmQoSSMT/3/AlgNlihu1TAPd0PE+0ew8SBVHQ9x0gyMvycU1ESEDLvsczqKN5jneeshpxd3NHVWZIIVE6rQklA1qnqdhqUlJWJdevr4eA7jFv7veUoyvybEw2CkxGGt+n7DbRQ16VnDYdmcrJTM5he8RkJUIprI8IrVLx4wOZVqxf3wCBF98ZYW0kH4/oTMOp6dCVoVyUVIucrJDsNz3RGYKsiEIijUbmJVGWlJMpprLcrWtsG6kmmuP1DtlaXLfHNTVVOcVa8L2lmJQEb8mLCnGMSAJlLqkKQV0HqnFBXoSEvKg7jrsG6x1ZOebTjz8ifvwLvm8M07NnXF48p+lqppMlbdPR1gdOx2MKyDYF68014/kCnWWUo4p6/7AmhjgoXXDqT4gQaeqau3qbTNTekemIVI62SS366SxFio1GU47HA3qAJlprkVpRlGlNSClp2o6m67G2QwC5UYzKGav5GfvDnt12S5mnaDJBwlasVgu8dWSDJzKQPGBVVnI8pOD5r8OagORfguSpiTEOsSyDejNstOL/4TSOIsXJ8FW1RD1kFw7gyYHT9FXkA8Nmq3KFkoK+C8TWp/czYgg8TkWUECm0GJPUIKkVIVmnBvr4gAMQKZIPrXHBIU3a7PujJ7qWYmFwbUDkGUEpehdQUpNNDXp4Hse1RZD2Ga2TXylgcARkJjFjw37bghdkRaqlXdNhihzfOQgR2yaVyGSDIqaTSqVFao2pKLDHjjwX6EKCiIQ+McCUlkSlEHiUksnfFDwikjxhjqEYSv4o7+MwyPROAXrAsMBwrx75DcO9D2DMA21/eE1E4pQRB6XpsX/Moyr2jqM1/KTw7r4/6F8PX3/4JqVESo0YkBxSS9RQsAklcQM9X6hIjGGIAPr17exfkyJL0LUdeZ7T1CectxR5wWa75bDfs1yuyPOCyXTK6zevqcoU4+JtwIWay/PLAdnQJWAlcDod0SaNI/Vdj1QB5zrOVk9omgYQ2KFFAKQ3llFc3+1oHXgneP7+e4zHYyaTLE1yaIlWMJkUKDyzszFZUXI8HFHC4PqO4/7EaDrG+kDddJxfniONQYjAdDoGIQnREiKU4wVCpek94dOEijQZ+ewM7zxFWSCEYjRZ4m3L1e0Vu13D5ZMnOL/HKIUPPbZryatiGMntUntCSOr2hr7dU47Pk9FWKSZLg20BFO1pi+uOHHfXhCDReZEmFZsT3vasP/kbTKYJl0/RJkMIQSZygvOUowlZljEZj1PheTyiTWrFzWZzmlNN23ZMp1OauqZta3qb7nVwnulyxWK1QpEiJKazGUYbDoc9m+0d52fPKKpRWoxD9mTTpFxHZy2TyQzrLLa3WNsgpKS9Sblss8k4ISsyjXM2BXL3PTEG8rwkCEnbNhRFUriMMaw39+R5yWS6wJjsN7UUHi8hJfWpJTPJ8G5dmpzd7Xcc9ntmswVZljOdTXnz9g1lUZKZHGcDznsuzi6YjMZ0tqNpO2KInI4HTGaGQYoepQPOtqwun9B2DYEU0lzvW1wfCCrlgl3d7un7L8DBk1evmM4nTMYZWS5xXSDLBMvVGOl65mcTTFHRHA+EoHDBc9odGU0zglY0J8t8NKMYG4xxzBcLmk4wWk7o6po8n+Ex1Iceb6Fa5EQzoejOkqdGKDyK2fk5Wls+/eRzNtuOy7MnbO/WVGVGcI5m3yCCZrQcs7/Z4Z1FK4HvdvSnLZOzJ/RtgxSa5XmkagpS4bLFdXv2mxt6Z8hyQ3OqOZ6OxOC4//inKbVh+YR8VOJtYGxy6v2OOJpg8pzZbEJRGU6nOq2J9ZbFckFzPNF1LZPJhPp0pOtq+r4HBK73TKdLZvMVSmhi9DCfoZXheNyz3t5xcfaUvBihhMA7h5RpTTiXCO/TyRQXLNY6bFcjZEKb6KxMayJEjFZDxqfBqx6hIpkpiUpQD4MirusxxnB3f0dmSsaj+cDq+s1eybAc3gX8xmHDHYZ6vP/KpvuAehi4SXLYgB9atjEMrcKH4gce6qrhvwevlpD0dfIuJQrAO8VMEFCKoYBIxYZWEte7lOihBbiQnufA7HI+ILVm4BQkA3kUCO/ISo1WHlko6s6SjQ34OJjlGT7LJMUkKfFdn2KQbGsJSiJLRVYomtoijQEBtukpRnrwnQV855ksK067LvnFrB84VAFTyFQouUSbl+adJypGn5KUpSSSnk94UP6Gf0KImFKnv18JFMP0n/qK4jQIEQ/q1kN/MLWB32EbHurXEAcV8rGQil+ZZ0iPf/Br8RU21gM1nuHbHlt+D499bH+nFnMYfqgceGZxaAs+xPN4F5KKGdJn82OE069xfS2KLGstVVWyXt/jfeDs7IztdoMAiqLAuZ6zs3NCCCzm88SNynJMlnN19ZZPP/kVF5dPQESKTGO0IUY4nI6sNweeXl6yP+zJtKZtWrI8p2l7ptMJtrc0Mhm0jcn4Z//sv+KwPfCXf/YTpAgorTl/8owPv/cNvvjFLznuHE8uxlw+GaN0TlM7gpMo7bE24KLhcEzRPloJRLZDCsXbt3d857s55XhEbxuKakxeVYRB5g7W4kNI5vFyQiRVzdrkeG/Z7m74ix9/TETwo5/+kt//wYecLaeE6BL8sT1h24Qy8NZSjsd412OKCq00TUjaqBQWISx9cyS4A9CjVE7bdQgt+JuPPkYgWS1KvvjZ32DrLYe7L3n67T+gKMshvDogiRwOe3bbNU3b8OT8ktOxxtoOFwpmqyX3t7es12vm8zlKa6QyOGeZTReE4GhPJ46nA856poslRRbIy4pz83Ron2wIwbNYLtKEos6QMmCkxvp0Irs8vwApuL+/RQpYnT2h6xps11FWFaNRRX06cTqeEpzTpgLeB8fxuGcyGmOjo8hLqrLC2sTi+k1f1vYUVcnd/R3EyOX5OfvDNq2JssRHx/n5Bd57ZtM5Zgg/N3nB9fVbPv/0Y1arC6SGPNNk2hCA3h25W+949uQpu/0OYwxd1yYDfNdxcbmg3tVY2yIVjMc5/+0//S/p2pq/+vOfgBLcvlFcPHnKBx9+gy9+8XPq44HzScnZconJcrrO4b1ESZtaFEGwrwX99kRRCKpZwe7mwM39Wz78QJLN57hYU05GjBdjTGUS1Tp6TluL1Jo8GyGCQxtDNRvjmpa316/56599Rmc9f/OLX/B7H7zifDkj2I7JfEy72XG4u6Nva2LfE90UqR2jWQVR0rYOU+XYzZ7QWbx39N0BVCCvRnSHjoji7371KbGPrGYVX/zkb+i3Gw5Xr3n2/T8grwoiMZG9ZWS333A4rDkdjlw+eUZ9aui7lt5kjOdzttt71ps1i8UckxvA4KNjOl0Q8LT1idPpSAiByWxBkUeyokoFVp6z3mzwPq2JxPAzCRT61TVxdk6Igu32DiVhsbiktw1d21OUFWWZeHRt1yAQtNJSliVROI7HLZPJFGsdo9GITOf0XYd1v/k1EWMKTo4iGa4RDwbotMk+oBxi4LGoScUSPLCxwpABDw9fJxndB/I3cVAp1LsJw7JS2MYSYyoWtJE0p4jODVGlWJ1k0ZB4G5GDgbpvPaEPFJVKmANSq0uqkKYgZUZ7Am0ik/OC075F9x7XWbTOEAP/1Rg5xPgkm0R78uRVes5CBoyRhFzTnXqOR8t4kdFbj64EwsdUSImIzAUqizSnNmEgANsnpUoLsDYVLEVl6OsWb2MC53YgM43JBdJHYpBInaKCYgAR0lCFkBLfp/uncpnapyIVcFJIgvWgNVLKAX6dChWVqeG+D8pXSIWzG+6/SFb49JoPNPcwFFxiYFiFoehK3Pr4mEcovvLeSdaU9Ny9H9qORAKCEMXQLicpkgMcTIrElJNaEUlTpq5/MOP9etfXosgC2Gw2TCYzvHeDN6tASsnf/OSHfP8HP0iF2KhCnRTj8QRne26ur1kuFtzf3zOdTDidDmQmI8syPvq7n2HynLIsaZqatmk4O0vZblJrqqrCOst2d5e8EcEjYkUxmiKE5jvf+QZtl6jjzWnP4uIZZ5eX3L19w3w5IasqEIpcBWJ0HHcNbZNOpSJG5osp5aTko198zr5tyZWmLAyv3v8ArXOcc2liTiWVJSuKRBqOEZUVBJnR1DucsxwOG9brPafjkbtjyxdv73l5UaFCl5SkvCJ4S1ZUCJ0RXE9eVnRNze72Bik1Ruc07ZH6cI8xY5yt02kspDHW3sGnn93w+dWG6bhK/XYEx/WW6WLHfDZLfB0hKYsC21um0wW97ej6ntvbNzx5+gqp0ulZIKiqgk4Irq7eIhXMp6tho++GRefobcdq+YRqNObt6y+oRiOyLMPHxKLprWO72fDmiy959cE36W1LpjMOhx15luO8x9t0L9frO5r2xHSa0AzeOfquT7mTo8kQUxIHJacjMzmRlEu52d1T13sW8xXy7yEF/0Ne95td4h7Z1A7NsxyQ/Pgvf8j3f/cH9G3PaDbmVKf4Fu8s11dXLJYL1ut75vMpx/pInmVobfjFL/8ObXKqqqRpU0E8ny2pmwNKa6qqpK0bjqc1y9U5QgRsa5mfzan3mu9+9xX7bcPyfEFz3PHs6Qsunlxyc3XF8uKc6WqU8tSkJ2I5rnv63gESf7Kcn4148nLKX/3oV2zqjulIkumcl/oDVCxSELP3dE2E2JGdj7F7x+HqRN9k9N4Q2yPeW077A9vDnv31mqt9w32342mhMKJnMh4hsjFRNaiioswL+lODlgVRtGyvr1hcSkaTEYftnq7bgCrT8IhQhM4SB97Rp69veLPeMVI5MkSMUmlNrDbMZzN66/DOM19O2N0euDx7Ste35GbMzc1bnj59jyIr6JpT8tkV6ee8ff0GaQST8QqUwPoOQYItdrbnbPUkhcK/eU01GiUwakzRJi5adrsNV29e8+Ll+1jbYmRGfdyTZTnWB5y3uNCz3tzRtAcmkxXKGJx3WOcxRUGppnRNh9Zps2xOzRDAnlhou90drTowKmZ/r/bIP+QVkCgDYgjBiwPX7gFQikzTZo/GaSkeQ4eFEI+Fy0Nhlcb2k1cobcIK23uMImXvxaQkKaMGNhMQHXmRPl+UVPSdS207kjIlPNjeI5UimxiicxATyJPheSmTFDKjAtPS0Jw6hFAIJZDaA4FoHQFJJiWnfYsSKWTah8DmugUp0XOJzhim9zzSCPypJ/ohtzBGpE7+okCK3pGaBFbtPN56pE4RQkqJNL1qLSoT+BiRmcD2ENqAHBQoEUFXGhcivk/8LTfITUJIvAt4a8kKRb3tUIVJeYxRIIbg6YeWX1Ks0iRnDO9M6Y8xRyG9RmHgbj32dB/RDMN0oHgXlRQeMg7jkAvJu9dcyOSVe5wgF/IdaHRAT8SYphSjT9aBB+QHCLyLw4Tvr+9R/NoUWbP5DO98cvzHmDwl3vGND79DWYywXUvXdlRlhfOO+/Vd4iqFwGQyIUZ4/eYzLs6fU9cnXrx8xWhU0TQ1292exSK1gcbjCeVohJSKEDwnkwJQXQiYvMCbDDVRXDw9Z7F6yuZuje17mv2W0SjnxYtF8jrpCcV4wfb+lvZYExyAoGlqLi4WZJlChMDd/YFPrve893TB7d2a2bSgnK5w1iKUJi8KImoYQTZpyqMak0+fcPjiNU1naes9V2+v+eUXb+mDxHnP+vYaHXtOZc7zVx8wXVyyvntNlhVoY2iOO0KMaGNYX79Of5tzSGloj1sEqbdMTH32um3JJHz4/CzRg4fcwK4+0p1qmlNNMUqj6NEL8iJlqek8YzqdgbfEEOi7luNhT992A1g0DJyqnhADvbXsj3u8s5yvLnn69BV5UaTopOWC4/GERLDd7+jbFtv3R4kSTgAAIABJREFUVGXJYrlM8D7nmIwmCCkT1uB0QojIeDxJ7bTdGmPyxC2yLk1thog2liI37PZ7RqMRi/mCGAV1U2OM4fLyGc469vv932dw5B/0WixmBOuQIkWBxGCJwfP+t77DqBrhXEvXNIyqEh89t7e3CRcQAqPRmBjgyy8/5eL8BUJGnj19SVVWdF3DoT4xn81TS5pIMRqhjcEHR9M2ieUjIybLCZlGTCdIznn1wTm79RopHMebOyajnPe/saA5HGBaMDtfsb69pj3VhJDozKdTw8XZjMuLAn9o2R5afv7llldPZ8yu1qn1OHqGi5GiHTGejLBdpN73rF6OmF3mdF3HFz95zuGzv2CzOdF1e9bHO15vbtidIl0I3F/fkkvHaZLx/Jvf5fzFS66//JxyXFHMK043G6QRaK05XH+OVxV97xFK4+MRFOgsojPDbtdQdx1GwPP5AiMlWiqIDh9qvGs5bA6MZyN83xO8ZzwfJ89UZlicLZEicYC6puFUn+h6y2SWVOrJdIZ1PUJB17Uc6z3OWs7PnvDs2SuKsmS72bBczjkeaxSC9XaLsy3OWcq8YD6bI1UyXE9GE5RRlNWIw/6IlCnlYDKacjhskRhc7/G45HGsPVp2lKXhcNxTFCPms2VquzcpA/Ti/DnBO+7v1g/9md/4pUTy9olBgUCkIZEQk68qZTu/I797904hiYNy8qCCIERSLQIEBcoowhDwHLxPbbwhvxAp8W3CEQBIGR+9XomdmLxbvnWYTGC0oD32OCUxZSrgkDFVbghCEJgsMptm9Kc0pOR7j+slzjlS1JkmakUUaXjKdY62ccyeZkhR4AL4xuEj9CeLKhUigxJoa4/vvjJpp0AoyEY5tkuwUz3SjxiDGCNGeLo2xUjJLBVSkQQjNVoScTgbE+y29ogwQEwl6DKxpvoudXAe7FK60MknJ8SAPhj6fnFgTQ3tQWSEkIocqQfgq2B47NDSHZSsh7YhPBRkAtSDyT29T746DfvgCxMipQIEnw7wrvfEKFCFTGqWj6l4F2IozuPDMCIMRWAEvI3vcBS/xvW1KLJSHECk7VqapqYsR0wnE6QsKAoPwaNNRgiJQN40De+9fA/nHPtjTZ5nbHdrvvH+d3DO0rY9uRK8vb5mPKqYTmfkJntsA+23G6IQHPbbRyBlURTc392wWW/o9tdoevKLc549e453HZvNhq49oZTg/OlLEJGbLz9je7+hKCpCTKeZ9967QAjP/c01u33LTz69IaL5k48+4cubNf2x5uU3WySRvuvoTzWyrJLy4pOc6frIeLbk9d+2lLs7uralPtzz6myMj5Gnl+9xdnHJtm741XWHzWoqrrl88ZTj9ooYYLS8wHY9XVMTo8O2CY532u3p6yN4y/bQk+eGzkXGozFGW5xztF1LnpdkpkIrxfrLT/nkh/8royfvc/HN77HZ3zOZplP8sa6RYsdsPkNKjQ6O5y9eJur9YZfgr9vtYFQE53yakstLpFRs7u8ZjSpEDAiZpROOllxeXCJioKkbdJajpGRzf8PZYvVYgIfgWS6XdE2LNil2J8tTgWVtjykyjNaMTI6QcH97S1lUhBBThqVIJ/a+bxExTWq2bTdwVX6zl1KKYGPyVJ1OFOWI6WiMkDllVSDwmCzHWYeUmrZreO/Vq1QoHmpyk7HZrHn//e9ibT94sBQ3d7eMRxXjYkxmMtpTizSS/XYLWnI87phOUs5nXmRs76/YvLkltPfgLU9W58wn72Fty2G3oTsdIQRefvMlUsLVZx+zPxwxKqfrIbrIB++dkSvHxz/9nL0T/F8//RJZVPzxn/6Kz94sCU3Hy28rvIXQ9bw41RTzMUprDrctIQjqkyUrlqw3Lbq4pWlbjm/vWaqC5Uzw/Pk558+ecV83/Oqmo2PHvLzi4nxF221wHSzff5n8Zm1Dd+pxriMbGWI8IJst/aHlzW1kNCqI0VNQIkxA43A+FSQmG6MCXP3iY7L8f0dPXvDit3+HzW5LbkYgJfvtnuZ4ohrPkFKig+XZ2XsE7znutxTGsF5vk4lbisfWXJGXKKnZ3N0zGleIEJE6Sy0QI3g6v0T4QH2qyYo0VbrZ3HI2X6VUBGcJ3rFcLenqlryQtE2LUhlRpgk2ozK01IwnE4iB9d398PkVaZoT+EBWVGnQCEld7/AxMQu/FldIqAFCgo6KGPHRozPJY/jdw/4XGICSw4TZYGh/iIxhUDCEHh7We4jgg0dnaoCVDmZ1lyJYvE+xMXSW3BhcHykKTYgR5xNvKsY4cKWSchKdR+Uabz3WKoL3VKXE6MjuukVUBe7QocuM7bpnPMlRwiJzjbUCV3s8kM8y8IH6vicIhfcCbVIks7CBYAXRRo42DAzJQJZnDAN+hJMlKzVCWIzJcQjyRUnfeoQUdE2bhscKw2gCKlq62nFqM4KWZDpim4iQSSHTSoAGFyXReqJ3mNLQnyymVKTRkkBRZPgu+bTiIEZEEROolWSKVySOlpBpoCAKHu//Q2A3YTCjPzDQGOJ+YgQ7IDne2bMe/2Uww6eKKXWa/DCQI5V4NH8pKVPbUIohrlCgVBw8wYnUn6j4YMpfv3T6WhRZSbnqgEhvLYt5kQzOQ6SHj3FIjD+hVeJehRA4HI+MRhO87RGQpPz9js12x+KD91ksFMaYNIk4mOl3+z3ee/Ky4PmzF/S95erqDfPpPE1YFUtuf/kzQnNAC890/oTp7Dmub4i+w+R6MFVKvvzkNUpBWeRUk5yi0AP4T3B+fs7yTFB9dMP61DIrC56cTZAymU+7zmJtoD3tKEyOyOUwwZMqfSklZTWl2e/IyoLVYsF+d2J18ZSiGvMv/u2n/PDHH9E0LWfTGd96seC//ycd8/MVp8GkG/CYPEuBsocjdV1zc3VLriRawv7QEvY1i9UK19n0e5VKLQdn8c7R1C2jUclnf/cj8i8+w1vHt//gH3M61pxdntM2HaNRxWeff8KTyxdopTnVNcZoinI0MIwUPrjhw6Vkv1tz2G6YLVYsl0tijBwOO4QQKYxWa4J3xBAoypK+7zgeTgRgvbmjay1nF+fE6Pn0059zefmC+tSitOLBNnk6HSnykpiT1DEhHnMRg/c0zQGG6SrrLGVeMpstcf7+35sJ9P/nFWPE2hZBoO8TKDUET4weFdIHUFbk1F2DUYbgPHFYE5PpJKkr0WGU4nRo2G53LObfYDabk2WG5pjWRDUq2R8PaU0UGU8vn9PVPTe3b5lP5yAyWr3i9ouPiH2NwjFePmWyeEl9PGFdBzrDCY1SiqvX1yBgNlXMzwsmkzE5ArsPLM8uWJUZ5Y8/Z3M8cTYZczYeI1BkUnPoEgi3226QKNREpQ9REZE4irFhPJvi7ZEiy3h6tkhRWrMzpos5//Mf/5IfffIpbVOzmk751ss5/90fvWD25Al9aNE5yMwjrEJNphxudtx+vqFurygEGCVorKc+WFbLM3zdIZSgzDJsL+mtw7nIaX9kMi75+Kd/hSk+QeWSD/6jf0TTdKnVLnPmiwmffPIJT5+/RHUtdX1CKU1RjvFdmzZjPK63lGXFfr/msN0xna9YrZYIAbvtFiFIa8Kk9hQxUo4S1LRuToQYWW/u6DvL6uycGByfffpzLi+ec9rXaK0eVZzD4UCZ5cSi5LC/JzMS2zdpGMQG2mafArOVonfpeY3Hc9x+/bVYEzAoGPFh3P7dWP4DMPRhExZfUd6SqjXQ3oe20sOmG+NjJ+jRg6XUwy6e6Omp8ooD3Z3ErrICgkcohRj8X1JJ+i7R9aNIrV+jBVqHAfQZMUUayBEu0B1jan8SIURcm0LGXRuQpUZGgXCerFL4NuCdS+HUKvmDBJ6syonOYbTG2tQJUpPEhlOZpt535JM83Y8sgUgRgs4GhDHkZYpR6xuPKAp87embiMwCIkSE0JhSp1DmKJA66YTZACNNCc3p3kktU4SQTlN51gZ0nhEC2D5ghgJUqqGAHUzrUkli8AlKOmRQphv6ENCdiqkHdekxFXrwYj208x698F99w/w7I6PpPsfhTRNCQjeI+KB2BbROqS3Opko9DC3g1EZ8aEeGNBnwa15fnyLL9iwWC5qmxSjNl28+Q0jDyxcvHi1mmUn5a4UqU4vpyy/QSnG/2XC2OqdtW3xMxvmmaen7loZA7zzRB5QUjEZTeieo6yOff/YrPnj/t0iVtUAqzeX73wUEn/zZv6LvLYfDbZJMDZxOdfKKAfvDGmsd4/GEvDBEITFa054O7Fu4OXTUTnJxec71L7/gB88WPFlWzFdpKi7J1REfbCoQtcQHgQ8Bk2U421CWOSE6+r5DSMlyXiEJ/OzTa/7Nn/0UbzsAbrf33G7veTEN/Df/ecZkUdEejyAVfdsSnU1vIueRUtP7wPHUIGVqFQqh6PvkGWmblrZzCK1RImCK5Fvq2oamqfnln/4xZx9+F+8Dtk/K4na7xShDczwipKAoCg6HA/PJhCLPMMZwfXuDkJLj6UhRjCirCmMydtsNUaTcQGMMWiu6ruPu9i1FOSEzhu12w3QyocjzhPRYSPq+p+8s0+mSu/tbZtMZ2/0mwRSlYjKd4WwKtd3v9sxmM6pqgnWWUTXidNpjnSOzaZLKOU8ULkWMfA1aI5FI17acnS85HRK1+4svP0HpjOfPXmBMOo3nWQ5RkOUlRVGw//xzFJK79YYnTy/p+7QmVqsz6rpJcUhdpGvtgL2QFEVqt++3ez7ffsz7r76d4m60wCjF09/6PipTfPbn/5r61OHFLUEoxkvDerNjUlUArG9v6TtHVYzI85wYwCDZXm9phObNXcP2GHjv/afc/+xzfvfbZ7x8NuXyxQprO7QgwRlNUiZG84LmZBE6Mjsf054OVGWBtxbb90ipWS1LEPDjj97ww7/9CG8blIDr2zuub+94fxH4T34nY/pkyd2nt5TTAucaXLQU84xTV6NCyX7fIrCpjR4lQii8twiR8gsPhx5d5gg6ilFJlIK6rtGh46M/+WMWH36PvrG4pkdIyW67JS9yToc9EqhGFZvNjrPFjGg02hhu7m4xUnE4HimKcVoTOmO7SWuiLAry3KTN2/bc3b+lfFwTa2aTCUWVJ8aekNi+x9pkol/v7plUY7bHLdP5EpCMmRJ6i7ee4/HAYjGjKMfDIaPiVEPbOJS2ZEWG6yyBiNF5shb8pi+R+FhKp8lAYcRAJH8wQgMPduc4hAwPqtXDpqky9S7WBR5VjgeOkxjM9MEHiMPGmykCAZOrZN6OIHI1/HzwvQelEAKKiU61R4CuC7RNYDQSuDZNj2N9ytU9ekxpCK2nP3RUc4PrA9kkCQNCRmydFKnUikyoh6zQ9K1HyUgxz+hah1bpgC5iSi5ExpSF2DmyKoPokUS63qKkJC81m7VD5CrBdkcGXahBLTP0XUCaQHsMZLkmeo/UiZCvVEIVqRjpe4/KUxdKG0WIqZjMSo3zIFSaNNQqBUoj4oAp8cm/pgXePvjJhpd4KJSJ76YRETwWOQ/KYhzufUQ8DCgO3xqHaUnx+Po/lENCS6Lzgzcvff0hj9APfwMPgxOAH9Qt59KE4UMxCMn39eteX4siCyGYzRZpnHqxREiYzZaU5Yi27bm7u+Gwb/nmh+/hvWO721I3J55cXLLbHzhbLplNJsns6TJub28YjceYLCfPC9p2z/n5RSJKK8Xu5g3nl885O3tC25yYzRaMxiO6riV4xeX732X54gN+9C/+B1ZLRdPecby/QZuM8tkzvGt489lrtDaMp1OK8ZTutOVP/uqX/Ms/+4SrzeHxTxuNpozHY4qiYjWdgBDs73d473lSTQlRIJTCOYfSmr5zOOtwrUWYgpsvPyfPMqRRXO0Cf/qLT/jpZ3u87QHJD37/P+Ovf/wXEC3//M++wDvBH/3+M6QRCJkNRkpDZyNNF/n4zY7VrMB1lkwKFvM5bdsOzJnkXzhfzZFastntEQKarmVclszmK8rRmC9/+C8x1YzVN/9DRmeXdG3LZn3L9NWEvre4U0eeZTTWEq1Fac3TJ0+5evsmFamDWrbbbmnbmulsjlCC9eaWi/On5HnBdLZKfjXnqcqKN68/570Pvo33ke39HVJBWSR+0MX5BfvdjjxLk5TOJR/TarXk9ZsvWS4X9NaidTLlt01LnlfM5+Wg2jlurq84X50NHJbffJFFFCxXS4TQnJ2dIRUslysyU9E2aU3sdy0ffvsVITh2uw1te+Ly8pLt9sDF+ZLpeIx1PbnNuLm5YTodYUyOkhmRnovLS46HE1IpdvdXrFZPubx8ivUNpZ6Q5yN8sERvufzwe8xefMBP/pf/kYkzHLob7OYtWmpW33qPKGrub68gJt/jaDqj2e/51//HL/jf/vZz1u0Rd3IooFgsKUxBIXMmPsdve7Z9jXOB2dMzLJIoNe2hw+56aheIePzJ4mPG9dU1hclAKz67cfzbv/0lv7ir8b6BAL/zj/+QH/3pX4K0/E//5jPak+I//b0OYyLHe4XUEpeVNKeW1gt+9LMNT88LdGjJvGA0niU+1AMGwEmeXp6hcsn9ZkeMns57cpOxmi8oRhPe/J//HF3NUO/9gPHlE9qm4f72mg+//SG7+yPRdUzKnLZr8Z1DGc3l5TOu33xJWZZIKclMxnazS0y6+bAmtndcnD0h1zmL+Sq1w3vHqKx48/oLXr7/LYKL7A73SAlFVmJdx9nqnP1uR5aN0FLhvCMzkmq04O3tW5bLOdZZtFQ0tqa1PXk5Yj4rU5qDs7x9e8Xl2Qr1NTG9E99xstRAApdDQRQRyZsTI1F+1Rv9MCk2aNwxPpiyeAgXTtGVIYEypSBYT5QiKTJEwtA+7OoE5TRGAy5Fz/iAHBn61iNdRNYOEQKi0qmVl6eJQzwoDT5oTjtHNjKJP+U9hdE4KYkyQO+xR4dU8XFiTpUlfRsQLhVr7X1D1JqujmRViseRpALLe0FoE3U9H2kIDV3rkhfLpSDk5hQYjw29D2mq8NiBlDipwFuEMey3DpMbpEj5ivaUlC+hFPhIcIkZmVqu/zd1bxKrW7red/3eZvVfu7/dnq7qVN1bdTvutX1jJ8aOHSWEENkwYYJgRhAChISExIQRElOQQGKAhCIEE9qEEHmCQDhx4uTGwcK3sW9fdbo65+zua1e/3obBu/auCgOwB9atrMk5+vbR2Xt/33rWetbz/P+/f0gfkbHEOh8e6r1ASBWyIE2IVRMivF9RomgPBj2YoPUaJ0R3DVNY6YZG+v5KPEo4glMxfLjeOOTYcH/agIn7y3cQuN9NKMG54ID0HsQ4HbsL644SNTaq47eLJfe2RTFiG5wfH8D4f43L/r+Pz0X1BEunpW1rlFK8+uQTojjGe8fHH/8UKRWn5yuMsbRNgxSCPC+wzpGlKfP5nKo+UNcNl1dXoRC0JolihBe0XUvbVMRRxM3NJeXhQJam7HYbuq5Hq7Dm2+82xElCnCak2YQHX/4FjDMhT0+ltE1HU5Zcv7nmZrMbx4iGvqm4vd3z2999wdvNgel8iZAakFTVnsvLK777YsvL6wO7g6PtDKbvacsKY2wQbfLpmNoOlmx+gdRJ0GO1LTe3e377O6/5xz+8pGoaEBpkxGZfgbd4M/C1D77E//XRNd/58SVK6nDCOUF9qIMzREDZGT6+rBhG8XpWZGMBgPOOJIlx3mEGwzBY6qqhbdowQRpTzG3fcrh6zub5d3nz0UdsbjecP3hM1/dYH9wgu+0NdVWilCKOItqmJsty0jQYF+o6MIQuHj5Ga00UJaRpzjD09H2HkorDfsd6fUOcJFw8fCegF+zA+YMLmqrkzeufcHX1gqqqyfIJWTGh6waqqkIpRdf1FPmM12+eo7Xkdn1DkmbkeU6aBi5S13XgPcvlkn1ZUdXNZxgqP7vjLo+ta2uUlLx8+QqlYpxzfPz8I4RUnJ4dYYwNYcJCkOUTnHfkRcZytaSsD9RVzdXVFUKAFhotIqRQ1FVDdSiJdMTuED6rLE3Z7zfUhwYtFbHW3F5fkxYp6SQlKwoef/3n0LnACUM2yRj6lvJ2x+uPrri9PYSLkIKhbbi+Lvl7P/yEq0PFfLbCAgroqg37wzV/8PyWV+s9jVVEhUIKw+2zK0zv6VqLHRxn780plhpjB/KjC2ScUJcNh0PN9c2ev/uHb/jOmw1l3yHHR8ZtVYPpkHbg5776Nf7xTy75o4+uUN6TJJJYC0zXECmBwOITeLHtMFGKkylpPkEJibAGN/SkeYz1Njgfu57BDrRNg45jZKKRkcA0NfXtc9bf/z2e/ePvsX5xyeNHjzC2R2cStGJ9e01VVggRGqqmKu/PResGmqZGR5oHjx6jlSKKYpI4o+s6etMjvGC/3bLdrYnjUBNZlmOt4ezsnLYuuXr7U26un1MearJsQlpMaeqew64kUsE5lkQFb94+RyvB7SYkIqRxQqwTEFDXNUrC0XLOoaqom89HTdwfdyuh0ZZ/HwT8qQlsdJWFDYWQYaUko3ENOF4LhRBgR8v+yD6yg8N7gU5CKDOMq6TBhqmXh6E3wZEXhZBkpSGdRhB54jxQ3m1vg37JiRBDE+uRrwQ6UuhIIrygLwc0jkg68lyGWDLtSXLN5CgmiaG6LfFOYXqPGRwn70zIlzGIkTwuGQOhLd47UJBM49AoygCXlVJAa9HjNCkw0wQYQ5II0siTxAKpQ00UUx3QCklK20mcGzVvxiBMyEd0+DEH16ETzR1bTOjwXntnkcpD1dLd1riqJ5YOpTxJpvBidA36u6xq8Rm+lR91UIzTxiDKumuUvQv6LW/C53m/4r1bHxKmY5KxmYKwKnQCRGiYrBnXvKMI/m4lPkrqsYMNgwfCOaL0iPjA3/V8f6zj8zHJ8hBFEXU9oLXg/PycKIopq5KHjx4RxzF5liDQCDzzxQKQZFmK8yFLUAjJoVxzdnZBnmdIpdiubzDWoHSw30opWa1OOT45ZbPdkhcZbdvivOXFqxfjODSA24a+5OLDX+TZbo1tNtR1Tdu1yM2e603J7eZAdpERJQnGOLa7mnUZiOHnj7/Asx9/n6Fr+Pf+g/+E//av/2d87+NrEIJD6zkuBKfTGG8tUZIix1Wl8x6lVdhxq5gozqgOFZ2tuDl0/PjNASEUuAGhY6TUvHj+Q6I0ZyhLfvFrP8fffPExv/uDS56cFsH5ZC1RlCPGxnNddqRxhJcJp+enJPmEur4JVlYcVV2jlQqMqTTBRBopU+q6Yhh6juQJ3hukkrS7S5bzYx69/0t4EQSj4frliaME6z2H/Y5h3ZOmKdP5gvXtDXmWBQeTjrBmoO+7kUyeUlYlalxbIhx1XSG1Jo7jIMYd1zSPnrwTnlCUIk1y9vs92IGmqUJQeN/TdiVSwmK5wljLfD5nuTwOwvi+p6r23NxckSYpq+Mzojjoirz/HKxGPMRxTNPWICUX5+coHXSJDx89IopiiixCqpiqgvlygXeCySRjMIa2DQykst5xdn5OMWb+bW6uaTuHjjXeQxRrVskps+KI/X5LVmRU+xoiePn25b0VPcgFO07e/Xma9Q3K7Vm/2eHswLAteXvTcLPeczKJSLIU0w80+4q6rrH9wOn5e6zfHmh9w7/71/5j/vv/7r/gR5cb4ixi3wlOJ54nJwWJlsRxQj6NSecF202NEJJsHiPiBKVSmq6hrGtu2p4fvNqDihC+R6Yah+TZt/8InU2wzYZvfunr/C8/+Sn/8HuXvJ9JipMp1hnEfDnKAGKqocW2kibJ+cJXH1HkBa8/vgwGCOmp2xKtI2ISJmmYfKa55rA94DHMFisy3aFTjU4q8tXAww9/AevAYMjmGts7Yp1gPJTVjt0YBD1dLlnfXAfUTF2jVIQZevqhw1oTfr6mQklxXxNVVYMI79Mw9AgtqbuWBw+fgL/TVRajU3agqmuctdR1R9O0CCWYLVYMzjObL1lMjzDeMQwDTX3g6u1b8jxjdRJqQnjx+agJxl5PinvGEvBPROhIzYhr4J7qHsTNAP4ewyDuJlyM/37EP3hPaDS8xzQGFYUX7eBQaagZ04UVnRnCCtD0BqUFaa5pDi1JpELUjQrZeEPnyCYarCUREqkc/cGhCoWIFK31mHVDlGqiPAbnqRuHag1pGmGtZPCOdBIjlWe3aRBak03jsFYcPCqWaOFBCVrjQY1oAy0QOqLaWZJY4HsLMgILwoLu/ejM9LgsItDrBVHiMHtL2xFo8xBWngR6vZeBh+WGoJsemgEhBcZ4dKTDezNiHSanBV1v8UZgBo+3A1GsMDYo3AOGAYT04c/wUd27HhmnWmGCNeYM3jXAY7zNZ7EP4bUwbgpMR8FnsVZu1JJ5H37e0JjJsUEPzTnGBRL8qPHzgwvO0/H7WfNPmbtQCHj58jlZngGe6WRC27XhaS7NUErSNB1KGRbLI25ubjGmZzAFbdOSZSmv3nzCagzS7drunug9TzPqpuYuWdtaG5LTtaYqK4zp2LY9zllWqzPMEKjxWim8znj6Z3+DzZuP+Yf/zX+F8QKVHHi7LXlxc+Df+PA9mrLEmoG661gVU95978v8/rd/H2SEjFP+8//0PwQ3IGXMt777gu99fM2vfeGI3TLh7OlXSCdz+qFH9T1JFmPtmINlHV5qXl/uabzge68rnFckseYv/epv8rf/t/+ZtJhS7dYM3Q5kzGGAL77/lKfJlmevtzz0Huc6Lh6vyCYF6/I1sVK8vTngnefPfPOIrCh4/uwVcRKRJAlDl+A91HUTIgakJNIKlQqSJOGwu0FFOVJoVjri6sf/iNuP/4BHv/ovo5UiHwOzldI4YDafc+fn3W83FHketHN2oJjO2O12aK3JspymqlBCEccxaZoTJzHdrObtm7f0UUQSJ/TDQBzFeC8oq4q2rdFSkyQZXd8SxTFKKbI0Ixl1Xm3bcCh3TCYz9rsAcxRCMp3OWR6t2G52vHnzluPjFYf9nr772YMXAV68fE6WZWSZYz6dht9PK1SUhZtu2yG1Yz5fcn15g7U9XVvQDUE39OLcTiZRAAAgAElEQVSTlxzPVkQqBGk3TUOSF8zSwI6zxoX8O2MwnQGlqbsKrwfevN0jsJyeXGDswGB7pJDIKOfxz/9V6vIVv/M7/yVdB1HS8HZT8nbf8K/9+lOaQ4U1PXVdczqdcHb+Pt/5zu/htEbGU/76f/0fYfH0Lfz+D1/w42nBP/tkyX5T8cu/8kUWR3P6vifpOuI0otk1mMbSVwalJevqwL40/OBNjTAC2cNv/nO/wf/6d/8HTt8/5eqn15imIYpT9o3kS+99wFO55vXbhqlP0IXhdKnJipzDvqerBbuuRVTwzckMXEJretJIExcFaT+E98l2eG/QwhOriGSmSSJN19zgowzVaFwPXfktNh//Aee/+q8QKUksctrqEGCVSKazRQBLSsFhuyZPw3puGAby6ZzDLgSYJ1lG21QoIYmimDQriOOIdtZw+eYNQ98Txwn90BNHESLSHA5loLyrMcS97UgSjVIxeV4QJylJGtHWNdvtlslszv6wZTAWRMgDXXwwZ7fd88mL15ychmzQz0tNeBidgnfxKXdrJEah1vh3RwCMIhisQ4xCZce4KlLBlefuBdZj9I4bxe4mCOutCyHHcRLR1Q4lIUk1XhCMA2NK9NB70thDnFAPDoVEE/RiWiqElzhAu9CQ2b7H5AkilzghmWQCKzXNtmeyiCAJjXnXWpz1pIkOzCvvSdLgCDdtAOBq4UkmElP1KCtQJpDesxxM4lg+SChvHLaNiGOJaQXKC0TviWXCvodkppB9F0w1KqYqHVER4Zxh6C31wVJMI7yx43pO4LwjGg1bdxOoSBKkKKlEBUU8u7VhOpUYJXBaIfEMxqNHVAMi8LtcZ1FyXM354P6zwyhO/4zhgbtw8LFhHjn+91R5Z9z94FUqOX6mn2IgpCCQNMapl2OM1nEurHblHfV9bOTdOElz95vmMBn8Yx6fi3UhwNFqxWw6J89zyqrCDJZiMmW7vgQYHWqOw2GPUorj4xOGvieKI4wxHC2WHA5VCMZNklEU51mvb4i0Jo3je01WliVYM9B1Hc5DnuY8efwOeV5QNw2z2YwoilBaUcwmxJMFvRnozcCb9Z6325qydVRNR911rHcl+7Kld544igifhsEZg4pTQJJmGSqO6YbgsjteHjE5/xDTtQGaOQyBQhsWxWEwGk/RSrLeNzhviSNN1/e8fP0C3EC9XwMeIYNgXCYTimjgV37hXYbecHO9wwyCdDohSlPKuqWse4z1REqikox9ZTFOYZxms93jbMAsgCBNY+JEj+tMhbWBSK+lREro2w7TW9ryQF+GCKQ8TZnN53R9T11XaK0ZhsByWa6OkVIxXx6ho5jDYcPZ2QOapmV/2OHwdH3L1dVLAN68ekZVVkxnc1arE6x1xFHAPLRti1aaLM0YrOHVJx8jFORZjnUu5GKNfJUkzjhendF3HcvlCq01+90t680tV1fX1E0ZQoedI45jkjT9GVXBZw4Bx6cr5vM5kyKnLEu6xpAWs/uakCLkjZWHPUpKVqsTzNATJxHOGo4XwZEaJUmoCcA7y3YdBNdppKmbEL+S5AleBHhr01hm0wlPnz4lK3LaviWLc5SK0EoyW06Bgn6wWGF5fbvneluzPwwMpqPrO64vN+zKGqsk86MJylsYOnzb40WK6QURKcIpOjNgesNUTZmdfki73dOXNfW+5rAfiPOEfJniBAg9RUvJrhkYup4iixBy4PL6BcrA9uMraAGRE0lNpJfMvOUv/cIHNL1htykpd45iNkfqhMb37JuBqjZoQEYJRkmMk3SDYrc/hIu0tbjBkqcxWa7x0qHjaFxHRfghXKQDU6+n7yrq/Zrb2x1FXpAlE4yzNO0BGWmM9AxSslidoCPNbLYgThOqahtqom05lDusc3Rdy/XVK/Dw5pPnoSbmC1arE7wPAeLCQ9M0aKVJ04zeGl6+eobAkSU5xjrsOLEQUhBFGScn5wx9x3SyJIo01WHNze0t1ze3NG3JchGyUCP9OakJws1N3t3kfFj5uHvtjvgUWHln+79vxvy9TsvfTS4IX/efuYnes7QcOAEqClOxtrHoSI6aMI+SMLQG7wRyxBl01QCIsXkI38sNligChcO2Q5isxZJ0liK9R/QGjMMMYDqH6zy2tQgczkB3GJAWTNPj2h7TGOpqQCcR2TIJ17jxd1VaYwZHpAVpKogUxF7TrwfoBIoIaQXKaqJekcoY4wlJKLVF3V3jU4lB0PUu8PKcp5hrwpAi3KOkGKnqgxkp9qHh0bFE6YBCGDqHG0IEUd+FXEVrPUPvEUIFB6Qecx8FECucVgEOKmUIrZbiPozZ300xrb8PCvejbs1ztyb8NFrn3nV6d27crQPdqMvzn2mkGHt0GZo1a9y4Yfrs63edneBPYo76XEyyjDGkSYpSiuub6wDZk5IXzz/m4YNHeOe4un7L2ekDrB24vPyEQzljNitIkxTnHNZa3nn3EW680A1Dz2a75vGTp7x88RxjOk5Pz7Ee1jc3HC1WOGsopiEzT0eKzXpNksS8evGcxXLB1VVIqz9/9IQ//xu/ybd/93f44Q/eUPcGgafqLMOhpi5bfvJ6yyzTfOf7f8Ty6JjddoNzHa4PXJGu78jShLNpxF/8lZ8nXZySLs4DfTkJ+/qhD0HJeMfJO1+knM75pV/9Ef4ffIvjqeVNZfnDVz3f/cEfIKMi6Aq8YzLqOv7vf/g3+Gt/+UPiNObXf/0rRFFEOj3CihAnM58XfPnpKT94doUxBqKMJM5IZqdUm1uE11zeHohjxWJWEEWepm7Jspgojhn6gTTPqcsDbd/Tdg15XjCdz9l8/+8wOX2fNyomLnJOzy6oqh1KRUymwcZrTc/gLP3hwOrkHC88292G0/ML+q4B79kf9hTFEZdXb5hNFiglieKUoe8xtsc5RxTF9H2HHYJebrpYoJQizyd877vfQqmIB4/epyimrPe36Cji5vaSyWTGZn2DUJLJdBGceQKgCNMxBMMQsh9/1oc1hjTOEF5yfXPN0WwGkeT1q485XV3gBsv1zSUnxw9wznB1/ZqynjGd5KRRgsdhVc97H7yDcw5jDG7oggv1yXu8evYRzrYcnz/EioLL9Q3niyWu7VisjpFWgBXs9xsiFfHs1TNOHxxzefWWPE85f/yYv/BX/wrf/Qd/jx+9vKQdDAJHO/Q01yXVoeGHbwK24Pe/+33iZImxJV70dJ1BKRC5Q5JwnCX8+W9+HZ0fk5xc0MeKKE/xkcYrydUnO9JUcPGVL3NYH/Fzrz+i/d3fY/k443Xr+KOXht//9newfoJAoGJLrjNWywnf/j//J/79v/QlVlLwK3/2ffIsQj08p0UwOEOaRfwzXz7lhx/dMhhPOp0iTExUnNJubxE24mZTkqSKk5MZwg+U+4HF2QTfgZAOleTUux2D6eiHlk4VpF1O/b3/HT17jxdGMDmeMy2OSdJDAJtOphgjcM7QeYfdHlitzu5r4uTsAX1bI4DD4UCRL3n79jWz6QKlBVGUMnQ9xg9479A6pm8a3GCwzjJbLtFCkqUFf/jdb6FUPNbEhJvtDToJ+tTZfMGu3CCkoJjOQ54nHlxBEiVYJ0Ld2Z99TQCjDmu09I8WNKFDhAsiiJ3vsu6CtZ/QSNmgT5LjzdwT5CPS2nt9s/SOWI4B4SrGepBDoF9GSmK7HitCZM7QObCeOBuF2+PNWI5OvkGocGkRHiUcylqyyNO5FFOHaUnXWqJZBFoytA6lLMlJRNuBqD2i8wEVEAl8FiO9xxqLyhKqbU/Se5JJhMfTlx6cQKgUJwQCQ987LAkqGqc3w4CKNa5yTIBIO65tR6x7xCym9x6RRfT9QJRLMOF3SzKJ7C3GSpQOrsregFCSOBYMncVaTz6P6cqeOFGjxkoSKYdIJUMvaa878lzSdEHXFmURTWWIE4nEBijFmEACASwqxDiFkp82SFKKcd3Hva3w04ZqXA2KMUDahqlWMJTKEVZ613h/ukYO+qzQjAfAavjdBSBiOX6/oEHzjs/Q+///j89FkyWV4nZ9i3eePC9IR9DexcUDyvLAZDLl8aOndH1D27YslsdkaULbNuAFk8mEvh/YrNcYY5jNFmG8nmQI4OnTd0NItAx74KNlyMKTSjH0IeLlcNhSVyXeT9huNxRFzvHJSbj5OkexOGJxvEKINygliFHoOCHPYvabl3hn+fq7F9wcXnHbdug4CZlpzoCQWCt4eDLn8Uwxma948PVfI50eYRzoke5kR3ffYC1CBn2Jjyc8uDjCDT2z0nGyPOa2dvzhi0s6Y2k6S9X2NG3Pb379Ic4MCJ1RzI9oDhuQCq0TrDOkWcLb2z2zPGGSaiaLU2QyZXq9RSKo94ER5bzg+mbH8XGOR6KUoipLgNENqbG2px96oiGiLg+oJKJZv2Rx/j6ToqDv2xDPoDRaBxuwdZbZbInA03UNZujBQ9fWvL58zZOLR0ymU4SH2XRGksbUVY3SMUIK8jjlxatXvPtO+Dwn0yllXZPEEYeDoWsavvDBzzObT6nrmsN+Q5oWSBVWg+FkC7gIKRRdV9MNLavlGYMZ6NpujPP52YMXlVJcXd7gnWc6n5DmGQLBxdk5ZVmSZxMePXxKbzvasmV5fBJqoqnxjWA2m9LJgfXNGjMYlkcLpI5JkhyE4L0Pv0BX1ggd0TvL6WrB0NZIIemaEBS8P6zpugqZL9hut0xnExaLFdN5jlKSdHrEdL5CyEuUFiRS4dOCNE3YbJ9jy5pvfuM99v1rPjl0qCgI2J0iWN5jyflyxvsnCbOTIx598y+TThYMFrQItOi+GZgd5wzNAdMJjJE4WfDkbIk3A3npWRZHbGvDd56/QeWKzbqlNwM3t1v+yp99l51tSbIl8dGKZn9F4hQqS7BDRaQ1b17fMNeC40VClh2j9YRstkd5Qb27Ramwznj18RXvvjdHCYESgrKrAyup83gi+qFD2RarFNLDMKSo/g2T7APSomDA0BuDF/2odbIY61jMlrjc0fUN3hmEdwxdxZur1zw+v6sJwXw2J04i6qoOOZ5aMokzXr5+xeNH74SUheWcw6Ek0ZrSG4au5f0PfoHZYkZdVhyqDWk2QWnJbLYAwtQgSxM6FG1T03QNZ2cPcH1HU7Z4zeeiJhAEDQ3c7WxQo/tPRmHy4cbcO+4da4RsQfupzz+oaYJWy3oxXn0FIhJhXRR2TiglUKO9H+uCPkuEVZJUmr4yDL0D4UiiCB1Lhs6Em/7YAEoBBoX1EEmHK1vSWQyRwI3rNInHa4mVEGUhwDtOQkh4kqeBGejDZF6lmr4xTFcp3lr6ZtQcG4cmhFZ3ToIPvCfnHFke0fYDWofIGzmN2JeGWCsGleBc4L8RhcbBDAblDdIL0iKmry3eBNhqgHmCkj4AxPcD05mmqcPES2mFHVzAWHiBAvAON4RrmpCCrJAY68P6M1afAY+CFD787KOFTzCu/Pyn4d5Br3WXW/gpyf9OuC7uYnZsaGbFiOcIDRqjwH4cd/mgMRNCjryvT92IQoyr6bHB0pFCOodx/k8ErP5cNFnWGCIdkaTJfbSJc5bZbE7fd6zXPXkxpR9advsDs/mC7XbD7e0lX/zgqxzKQ3jyT9Mxpd2RJAmTyYSubYi0pm5akjge33DY77ckSYrWitubS7IsJ05ShqHj/S9+Eec9dghU8aprqOuSfDLjdJqy7w37psc4x8OL81DMUnF6VPAXfu4pv/Xta5SSxOmEcrdBqIg8UZzNcx6uYgwBJbB88A5RPsE6aLuBOI6wPiS1ByF4jhCCo6NTmnLD0XFKPl3x+rbhfOHpB8vHb3bsq54ijTifRdRdyxdO30OohHSyDE9yQuO9JElCPpxSijTRzKYzdJrz4OkX6E+PePuR57DbYjuLkpL9oSGOghh8MplQliVNUzGZzYniiLpqwvoOmDqPMx23L7+NT2cYazk5OeHjZz9lvbni4uwxRTEB72m7hv1+T1EEMGhbhazDrusIuYItpydnGNsznc24vHzN0fKE3W7H03ffR2tJlmdBA5aGKddiuqDtAtD29vqGpm2RAvq+I88LZtP5Pfm8aRpm0zlJkmGcpaor0iShaSuiJL2bQf9MD2MMOopJ0xhnDdvtHu9DTRg3sN1vKIop3dCy2+6ZTmds1ms2u2vee+/L7A8lZjBkWY5RFtNb4jSjmM5o6wbvNFXXEyORsUR42G3XJGmg7++218RxhpYJZmj58GtfwliHigV9b6jtQN3WZMWUs1nCwTr2dUfdW84eXYQLnZM8Ps35tegJf+t7a+p9jfQxjhYvIhKtOS4yjvMYEUesr295dPQAZEbfwbarOX48o9zU1IcuPP2q8LkfL48pNzd85Qsr0smC1zcVD04l1hu+/+Nb6l3PfJJxNodKtiyfntCpCIdl6ANvSCJJdYo5DGgh0QNM4gnpZMo7H36Abda8+fEPKMsN1gVY6/XljjhKEE6RxBPKsqLvWorJHCcNQ1cRawOixwwC27fcvvg2q6MTnPBMJktevfwpm+0lD88fk+dznHV0fUdZlkyKAucc9b4EJ+jasSb6jpP5KdYNzBZzLi8/Ybk8Zb/f8e7j95BKkOYZOtLkRY4ZBuaTOb0dgmzi9paqqlHC07iG2XI2BkEHN+/toWQxX6DSFOstdVWSx3Fosl3Cn8iz/qd1jKuhsCbyoxg6fElqcf+1u3WhHYLT+d7K7++mEOFPZ32Aho5bIBvGW0BYeQHIPvwfxo6MJzNG6ESeKJFYN0bV9EOgrEsZNEGS+1zEfgAhFSDIc08ceRobGIP7dYXUkM3z4FwcfIjQagxFqqgObcjuM2FK17eG+WlGV/UMzYBUCi88WkqUDRFLusiDXMILkvjOSQfSOoTWCGkQGdhMoogYKoc1gkiHJkc6EEN4Q4w3uB6UluhYoORd4xEcfZHWdPWAQOINDD0IoXAirG5bJ0h0kG+EAQJjLi5EWYTUgmbfoVUwH6iAA8Oa0Mjch3g7z10Q+P3oajwPhPz05fvh1rgODKbFO73WuBqO5GiaCpOtkAjg0Im83zJL4UNDOoZE+yD+4n5jOfxTll2olKJpGqSS9ziHopiw2x1YHh1TNy3dMDDJJyA0aRKjhGAymbG+vWUymTAYi5SGwQzMpiEkte06qrJksTwizzN22z2H/YY4Ca7Eqi7ZHTa8++4X2W53dF1DXhT85Ec/IM+nXDx8iHOW/WHPow9+gbOnX+Pk4QP+0d//Fh+9vuLZy7e88/iCLJ/y+NEZddNwWigepi3ff70Fb/ng4YovP1zw9MkFp1NN2RjOvvrLZLNjZDIJ+iHnQEiUcwzG0FtBNFnikEzPv4TSGUmz4fb5D7l4krE6K0jcmjjJ+KUvPWRo9vS9QUvBF7/4HkhNks1QcUEUZ/RDhxeaOEuZL3LqqmexyOl3rxHuiNm0YNPcIoRnNs/xWJQPAaHeu5CdpiVxlpNKSVlWgGO1WoEIeYVSCgQSW94S6kJwe33JZDJntTqmbbswbdxsmM9nrI5X1FVNlIasxTzPiXQ4HYs046cf/ZiiKFgdnTCdzGnamiwtKMstUmku337Chx98FSFCzmGWZXg/4JziaLWiKisO5ZZh6NgfLJHWCKFDlIOXbHc3lOWB+fyIophyc/MGIQWXb5+HMfPP+FBK0Xc1cSxQ4xNoMZmxKysW8xVlFWqiyCd4ryjyBC0VRT5js76lmEwx1mL6nr7vydI5g7V0XUdVVsTZijSbsL7d0nTb+2Dg9lCCPnBx8ZRDWdKbjlma8+ynf0SkCx48eYLzUJYlj77wc5y/+zVOHj/hd3/393jx9poXn1zy+OE5Kp2yujhjX7eczhLO4pYf0UAi+PBswdefTDk5OWWZh9ywxRd+mXh+RnJ0hFSBf6O0ZH/oGbzHpjHpYkW3WxOffQlLQjFfsbt8xur0hG98+YTE71Ai4pfefcz0ckPVeA6x4OKdJ2wqmBxNmD2e4Ia7CBHJ7GjO8cmU6jBQOI2q3mBVz7Qo2JTBqp4VGVI4IushClb1pqrwQlEsChax4rCpiDSkyTE69gg/IOPwcOPrG9y+gVhSmWtmyxXLxSldXTP0HetyzbSYc3xyzH5zIM1TZBSR5SEY2jtPnuV89OwnFEXB0eKYSbGgaWtimbHfbZBac339mg+++FUQks3tmjwPNSFRHB0tSJKY/X6D8wOb6zVpnoDQWC9QccR2f0u5PzCZHpFMJlzfvkEKweXVy+DI+hwcSo7TCREApHYEiXrjRtFO+Dk9oCKJNR7TB6H7qK9A+KBgvltBfeoylDgnMMYRqTBFcVLjbAgF7lqL0jKI5p0LFHTrsO34X8ugy0OFHD9jZbguChcap4DFwrQOkWgGJ0hPFqhEI01LrAxV4zAa4lTR1R6ZxESxwvY9OhVoJ6gqg5QKnXuEA28cnQ/AKKEkGoftLJGWOBR9a8iihKPWMLSC7VzQWIMvDVEK6SKhrTps4yEWJFkMxoTIp01HNo8xIgRQGxuApMaG/EZswDeEUGVHFIcRkNYCb8LEqO09OlMkiWAYgr5RCk+/r4lyTZpLvBNBk2YdUfwpWV1pxdCbEdEwrnWVvA8GF3erwTueFWCHMaya0AgGhpbEezvy0sJ6Fx8wELgw/TKtHWORAhJDaXU/BXWjyD5YKcT9OfPHOT4XTZaUEqX06DSQIDwvXz0nihMm0wIpJUUchalHXaEleO9Yrk5COLEIpOjNekOapcRxTHtoUFKxPDqibRuGfiDLsoB3kBLjArn3+voNP/7hH3F8csbJ6TnPP/4py+UJDx8+oqwOmKGnrkriRcLRySkMX+KdTy55cXlDmgatUpJ7rDUYYynrmj/34QWJDk8k33iyBOBoEuEcLC/eZbI8Z7o8RihN2/UoqZDG0uPpRydT1xt0mnL2/jdoTx+zv3zB5tVPWV/dcnoRGqPeOOpyz+b2lkPZ89UPHyGUQOkoCGLjFIcLTjJrSbIpq3lKpiPee+8hxlhSZ8B1eNszWy6wfYk1fWAp1S1axygBcaxo+4HeOZy1JGmIPhqGljRNGYZAlfc+orl9QXbyFLxCaIWSktlsyvNnz9FRHMjybcBdaK1GkXzNcjmnLCuWR0dcXDxkGHqq6kCcxGR5jvCCqh7wDo6Pzliv1zRtzWF/wM5n9G3DdBZxfXNFP+YvVnVFGkeU5YaLB4/pB8+22XBx9pDVkQGCiyiKkiBQTnPU5yCnLTxBKbwLoEWB49XLZ0Q6ZpIXCCGY5BnOhJqIJHjhWCxPmE5mCCWwqWW725IkCVGk6YYGJRRHywX77YG27pnOp8zneSBnxxLbO968ec3zj3/EcnnMyck5z378I+bzEx4+esxuf8B5y2F/YLVYcLQ8Qfkv896bK169uSLNIuarnKYAFQ+0G89uW/Pn3jlFdq8RKfy5948YmoZlooljTXZ0Qba8IC2OAIUZBrwVOOlpB+iHBjE42kOHIuLBh9+guXjE7tUzNrcvuL29Rasls1nKoCTltuFwtWa9bnl68ZQkj0nyBCkFSkVY09PbFjsYoiTndJFxIOJLHz7ECheyUmWP1obpYoa1e7w1YMK0VccarQSuFzRlT+UMdjAkcYJD0g8dszxkpQofYQZBd/Mx+cUXkF6Fa52VzBZzXr56jtIJQkiqsg71qxR93dH1DXGsOBwqjo5XnJ8/wDpD3ZREcUSeTBFIyjLUxNH8lNvrW+qmpjoc8N7SdzXFVHN9e03XhFipQ1mSRhn7/ZqLh08wDvb7DafHD1gduXuLfJymFGlONpl+LmoCPtXk+NHNJjz4kcjtrEdF4n7K5eyn2XcumADDMTr8nf/0Joz3DHUQPEdZhLAOaxxxqsE5utoSZRpnwgRjMBalFTpWWHvXoI3RO2NUDBacNQghyCcahMVbjfShCRLGM5QWUfRkM0VfD/hBkhWhYXJe0vdBHK6kgN7iLAwKJA6Nx/eAscgkPEC63mKFwynoB4NOFXqmsUYzOMvQW4SLQqah8yFgfBSx6UjgncUbS6RChE0cgYgDmV3Hwc1pjSXKRBiI9GOzKgVeSoYm8MQMDiXD9UuoCKklgvA1LyR2GFDe4bqgYfNOhcmkklgI4nL8vcPdE9aTanx//bgW9uP0yxGmk4jx9fFB2duwZnRj4PQ/IYYfzw01RvnIz0T6REkg+JsRYSNG7ZbUYUKn/gTuws9FkxVcXRECwXazwTrDdDYhSydU5YFDWbOYz9jtdxyvVnhPsO+/ekZezOiHnul0irUDQ+d5tb1hsTzh9vYGY3qch3ffeT8Un4f9YXsfvXJ69oj17RXT2Yy6rpkvlsGxNvT0XUuWFTx88C5SQnk44EREWZdEUlFkCc45VKSQWqO0xgNxpHg0S+lN0GBM0og4iugHRzI7YTI/wuFRIuRNDTi0ioi1DuHFXYOMUpzpmZ1coJOYZDrjo9//Lfa3a2IVHBezOKHcrmlaS5pGLI+mxFmK1BleSISKcENNnObU62vSXPOVr7zHbHnC8eoI25vggOlLVsdnSOF5/fGPQ8fvBWmWkKUpSjiqKjS31nomkwLTD3S2p2lq5vN5EJGPe+pm/ZL8+CnbXUkxm2AwxD7m8aMn3K7XSKlQSCIFQz9QTKZMpzO226AJq6sSHSfMFwucNUgp6dqWfrDM58uR6A5125HnE/S4as7zPBSDAERGpGPyDGazGVIuGAaD8ILz01PA0nQNkdJEsRpxD2H1KfjjF9Cf1hGclBE4WG83gGE6LUiTKfvdjt2u5vh4xr7cszpegYftvuHyzXPyfEY/dEwmU4ZhQArPq9drFvNjbjc32KHFCcmTx+8FncvgONQ7lFHMZgvOHz1hfXPJdDanaRsWZ6fkacYwdNihJc0mnK0ek+UhnqofNPt9SRRFzIqErmqwg6PrNcYpHHByGvHBVmNjxe5mz+o4JU4FUSqIixUxGWmuw5SpG8inYaXtI0giTdsastUUJQxxPyE/zkiPZvzkO79Fub8lSwTWeaaLlPXbHYfbkvOLGWcnC/I8A7jRsegAACAASURBVBnjpMDLCFRHPOIRpNV84xtPybIVp/MljRUoBNiK+eyYoel4/aIJYnAriGRMJGOKQrM1FXEiMYNAi5ShM+yrlq7as/jiQybTgs64oC0rX6P2TzDaEGUji0cmPHzylNvrW5RSKKnABuPOZDplIads9xukEDRjTSyKBc4FBEnftfSDYbFchjgi62n6nkLNiJI41G8e1lCBMVSgVEQaFxwdL8Avg3wgUqzmxyA8ddughSRJQz1IqYkjca93+TwcflwdfVYW48xdYxWe06X6zLTBB+7VZwyHMAKY7fjeSO+JE4GPVWBGja4421sQAhWp+wYLKZBJPDZnboz18QydJUmDZsv0btQQSZQE03Q46zFC4oRHC1gsJdWhR6cJzbYmLhTeGZJY0Teebt8wOZpgegvWkk8UkQ4P83FM0LqmAq1TmqonyiOG2jOYIejHxvzAOI/pB09Z1pycTjEq5A52o17YMcJDrUWKwP/KEhkevDJNZ4J+TEnP0BnsYNH5yM5Tkq73eGtJColKxmYJGBqLc4JuEMjKMJ8KdKroeouaJtD11LueSZwxmDBgcWNGIaPo/a7xuVvTCR90yyOVNEwbx6/fNc9+/IyECA24lCHY+W7U5Ufr59057cYsWB0Fd2VgsAUSPCLgJO5Aq250Wyr++A8dn4smCyDLQvba6dk5ZXVAyYC5b1uHjjTb3Y7lYo61gby8mAfLfRSHGJ1IR5yenmKtZXV8yna3YbE4IklirLWU5R5jDGW9J08LtFLBJdc1gODli+c8fvwOAqibKhDOheT1Jy+YL1fkWY4xhsXxA/6Ff/Xf4s+8fs7v/O3/kd6ESIEkzRj6nsJZXn1yS+88h85wNJfBmTcYjt79ec4//CbGOmbzFUIoDmVD2xumScJ2e2B7KHEOHj08o25bmnKPziZEWcFX/vl/k4/+wd/i+s0PePzOOU3dUGRJWClJmKyO6QdLu7liujhB+RSlc8rdW9LJgjie8MFXV0GLpQSHzS1NvaWYnGOdJC1mHJ+t2G/33FxvAEiSmDxPx4tIR6Qj9nVNmqTEMqABur4J0Q4jMsG317z5w98mOv0yN9cVWZ6T2RDxkuUFbddRlyU4x2K1YrO5YTKZUpYtcaIYjOHw5mPiZMLR6oyha1kuj2hsx/X1HnC0bUPXdcymsyCMR1HudkRJhI41Skh22x3zxYybmxsQsFwuwPuRDdWz321ompq8KEI4uDVIqf9E9tw/rUMISPOcLM84OTunqvZhsiXB4smmEdvDnsV8jh0s1hjm0xnWOLTWXN9coXXM2dkJ1lhWxydsthvmiyPSJJyPZbnHesuh2pHpnCTSVPsdg+jx3vP8+TPeefdd8D5gImaLUBOvnjFbrIh9jldw9OAh/9K//m/zix/9lG/9H38Th6CuBuYnU/auJ257Prnc00pNWQ6cLSbUpcLpgeTkK1x8/RfRhWC2mmKtoqwNz36y5enDBSLrePvJLTotODk55+a2QvoSqVPSIuLr/+K/ww//zt/g5Zuf8OGHp5RdyWyuaN7NGGxHXkzp9geGvKYQc2Kl8F3Ebr8jKo5RUcGTxYqjsxWxVlw9/4SmvEYXFwilSaZzpvMl++2B/WFHHqUoNEJGZElMU4WA9HpoyYuERRFjhph+qKhKE3LkvMerG25+8vdJLr5GUx2I0hzTFRhvSZOcru9omxK8Y7Y8Zr25ZTabUh4aolhjyoGy/IgonrA8OsWYnvn8iL5rKA97vHe0bY2xPXk6QUUp3kkOuwNRHBElGungUG2ZL2ZcXV7iBSyPjjCtQSSSfhjYb9c01YF8OkVFCS7x4bz7HNQEBOa3HAU4bnSYSR00N3c3s3tu6n18Dng3xuaM+qu7B248eAVOysDVEmPTpUNcj5QBHaSTgB5wgHKCMKbyoygsWB61HteUqUaJ0OyZ1hKlCouiqgeykwhfD/SdwdUSoohh8AxO024H4pWnqhpUEpPONSqxOCmQKuP6bUmWObJC0d72yKKg66GuO/JC4kwQyEdJND68C4oJGAZkLHAPM+qhxbUR3vXoIsJ1LTpSdI1D/j/MvdmvZet63vX7utHOds252ur33mc3p3GIjUw6iLGQaIQUuOGaKyQuuCZ/ArdISNwhyA0BZJKQOCAwDo1kWcSOnWMfn3N8dlftqtXOfrRfw8U3qo7JhX1CCGcPqVRVs9aao7TG+OZ4v/d9nt8zuHk9nqbqMXmCyCR+0yAlNJUYCiFJ08SAajPkR/o+0LUu6pVsQCSabKZxvaPIQCIJjaNpBsq7dWgV+WN9EzAGrLfYFrxWiOE6ixAZVjFKchjrDpiGGEodO0uRqxWDnHGRhO/fuQNliJmTQg3YDvFe3E6I76GlwHn33ploWzu4DQfd11C9B6EQKsYH/azHN6LIstbSdx0hwO3tFYdDy8OHj7i/v6PvLVVd8eTxY7TW3N7ekaTR1df1HTfX13z44YdDO1vQtnuci5EtTVWz2+04OppzqCqkhIcPnrC6v4vnHVwby8WCgCBLU9qmJcty9oeYP5gXBVqp91BO20fd13RxzsMH5/gQKEYT7q/fDqnemsQoEqPJXWC7PzAZ5fTOY8oJyXhGWhRkJqFMM8aJifP1YSc7LzOcD7H7pQJtm0XCe3DMz56QLZ7Q3H4ZR6d1g+96pqVhNpuwv78FKdEmxY1tzH9rm7gLNj0CTZ6VBATaZCAc2iRoGW2uqdEoY+j7KLatq4YkNeSpJitybN/T95YkiQwx18WxIiHQ95YyHzGZTzms3qLm54zmC6r9LgZcB4HSaXTOJIo0L7FdR5ZmaKXo2pYQPEqlMSC7G1GWU8qioNOG+/WKIi/IsiNC8DgX9V3x/ulJzJijxRG3d7cgochLLi/fMpmMyfMCrTVt0yOlYLPZsFwuWRwth0SAhLqtyYuSru2+CRJfemtxrqdtBav7t+x2DRfnj2Inylmq/Y4njx6jk4Sb61sSk1KUCcF33N3e8OGHHyClikkIzQ7nK4w2dH3Dfrvl6OiIdVWhEsGDiyds1vc4N1iUbeB4uSQISSINPQ1ZmrHZbABBlhcRiioVwoGtWjrbMzu54OHFCSoVzM+Oub95jbSO0qQkxqCVxgjPtq6ZnUwJeUuyLMjPJyShIFEKLQrGx3A6mVBk4Hct46ePcEFwfFIwKiWXdx58jQiK2cljJhcfUK9e4Kxjt2mp9i1pmTIVku31G3rnkfMx49EI5wWt73GhJTSWXEj0JKfvA1JpVCmRLsFoT+cs41mJzlPa23s6C0a09NYgQkGaZDjv6LvISxJGU93UJLmJa8JbJvMRR4spq6++RM/PGS9PqLf3WGeBGqUy+s6SJoIsL7G2j2tiJuOaID7otUnI3JiymFIWJb1NuV/dMxqVjEYFPnjaumR/2KCEwHYd6XiMWRxxe3OLUII8Lbi5v2I0HpMXZVwTVYfWgvvVLcvjYxbLJX4+QyUphyqOF9um/Xkvh/eHVGIY+0RNlnfRxSYlvANmCSkHvhMx1gXiOGsQv8vBRTaAApCDQ00MbkSIX6dMdMppM+TdEcdEvo8GEE94HxQshweyEJF3hfX4AZBJcJhMkwSJbyxmEI33xALFDckVSenQo5pegS4Mrgo45yNTrgykRxlGe9pthc5zXIDxVGOyCASFqDnyPmASTbCBgMD2At/5WKTULUJ4nLUEI9AmGs+UlujC4G2cbiit6HuHx6MLTd/G2BnnA0mZ0LYWZ8H3kCVRj6u1wjYWkyoCnraO3cB+1UcMhI+asSSNnx3dpgbkYBaIeZ7xirwzJPj3Wjfho54usg8DzjHIKMRPYaQhKt1jGDUQBK6LBZeSEuv8T/lo8J6zJZX4fxDcQ4hjyXddsZjDGGPq4lySfypz1DeiyNJaI6RivVlxd/OGTz75BYyJRVOaJiyO5oP7zHJ+fo51lu16R5Jqzs7OaduO1eqePM9Yre9ZLk7fz3PzPKduGoqiQBvN4VDhfSDNMt68ecnF+SOcs7ET5f2gN9ny4OIhVV0xm8bde993TKYzujY+qJumJgyidW0SlEmwXaQij8YFUkvu7g8I33O8PEKlY8YnD9EmxUiNCuCcRQmBiUFQaA3oCP8UBFIVbxahNFIklFPDo+/9JTavfkhd3TKZj0nSltOHi6gZEREkalJBPprHomYXnZejyWIQdEuSJIIFjSlJkjEOT9fUaAXzowW2qRBBcn+7oW062sKSEsiKHDW485xz5Fk2QFQdtqsRYRR1deiBci/p+4aiGFM3HaGu0YkhMROq/TaORqs9MlpxAM9yueBwOLA8eUywPW9exwBdhKRpapIBqimk5OzsHCUUh2rH9fUb8nxEORpRFAUhBBaLo8i8sT1FUdI0DcZoksSw2+0YT6aRJN7UBOeiozNJvxGcLKM1Umnu7+5Z3b3mk2//C2htCD7CA5cPHiIRtHXPxfkF1ll2my3aaE7PzmjqntvbS0bjnNXqnpOTMwgO28eua9U1ZEVBWhiqpsYFyMuCt5cvOTu+IOBIk2ggsd6x22158PARTVuR6CO0gqa15Pkk2t29oKkrfGOpVy35aMS0SOn7mtVdy2w+wmi46h1qLLm4mOGdZHb2CCVTjEwxQuBDj+gM0gpoYpamVDrS6Q81ufD0naUoswhJNAnnH/8yt1/9EZuba3JTkC8TstkJat/Q2Dj+MZkgnx0hdEHoWw7bhsXxKS4IQlBomcRuSDFirMeoJOAONXjPg8fHyNByLQV9HTcNVd2RmQhmrbYH7K4GJZjOcmxXIUJH3+yRchQ/M7IcoaMdzglLYsY0bYvqGlCaVI7Z71agJbv9DoFECE0QnpOzJftDRVHGNfH27RuyPEMQf+ZJmkKAJDOcTS5QSA77Lbc3r8nLCaPpmLIoCMEzm83fr4nRaETl6thNsD3b3Y5xOaHqLK6uCb2jazuM+WasCYjFVXR9DVb92ERiGMDGztTQwYrwSHjXsgqI2GXR74Tuf2KMOFRfURcMQkeUTRAS60SMVNFDB2x4L6REqSF2xUV9k3dROJ9q3rvf6AJt32HbwGyuUcLTbHpMkeCtw/YWM8nw0tNXHVImeAtCqyiyFwHXxV8+BLRO8DJqvlzVIhF0XSAbKZx1MRKojdFn7cHTdZZ8nOK0pGNEaBy61AQZEEbEKCIUbRX5dSAi0d06RCIJiUQERZoIehdAeIpRzFLsO0eWK+reRjq7lphM0bc9AmKmoeyRvkdLT+Pia10fdWTBx2JZG03vYnfJyKEB4gKeOKp913kMIoo5pBE/vbQDVgPeZRwSTRABdDLk9LzvdIYh+D1+/7tx5LuSKer9hiJ+KN7euQ/fdUIjGuJn175/I4jvUkr2hz2jcsS3v/3nub27oe87lssFaZZRlKOhU+X54Q9/wG63Q2uB1ho3tHRnsznj8ZzxaDpUoRLvHZeXb5iMJxito01TyfgQ9p6HD5+iTCxq9octN28vmR8tmM5mbHdbRsUIbTS7wx5jIl5id4jQwavnP8J5jxAxdBWhScsxaZ4NbUrJ4/Nj/txnz8jLEaff+SscnT2hLMdRe2V7mu0h8ldEbL1qpTEyJjRWhwNt03I0ysgSQ5oq0izj/IPP+PP/7n9E3Xq2mz0q0fRdT1LkLM7OePTBU04uHhNUyqGuaXtLOVkiBjheCJHkF9AEIamair7rEAiSRGO7dojkSGi6nqubNferXQzJNorJdIxJ4odD1/fDB/cUcGRFhmCwDDdbdutb5osz6jqK+49Pz8iyjK7vOD49Y360xDvPbr9nVx148OARXWtJTELbVLgQ4nixq97HHNi+5+r6LUmS8u5Ot9Yynx9Tjibvg7/ruqLtGgQ+cr4Oe5SCJMsYz44QSmH7jjxLSU0E+kUn6fobgXCQUrJebZhMJ3z66S9y9fYKaxvOThckaUZejhBKE0Tghz/6I3a7HVIKdGLiSMMoTs6iC208mSG1xEuFdY7LqzdMRmO00vSNxSjBeFwglOfBw8dk45TeB/bNnuurS47mS0ajKZv1hnE5QSeG2nYI4rlWmw0u9Ny9/DE+eFSSIHTg+lIQRieoxZx235Ao+OTZKd979IRUTpg/+TdYHn0HeZihgqLdNVRv7/HrNTkNxlhEWZBkBltbNoeKqm55cFSge4E9BPI84+Gzz/gL/85/iMskvWxBQrVr8ZOS0+884fTTZxw9/oDDXtJ0LX2w6HQO2uDwNJ1FGoP3ir6GzWbH/n6LPfQkUlCv9ygPJ2cld7ctt/d7bq839I3DNoHJZEKeGPpthfMdCEFezAnOUZY5SmtUptG6Yr+7oRid0DmLyRJmp2fko5zOW2bLc8ryiOADh6bi0By4ePCEpnUkSUpbxVzONMmpmwNSBkJw2Lbj6uotWqcEr6L43jqm02OKYkyRZaxu7zjsDjR1i/BxBLjf7TFGkGQ549kCgSLYlvEoxajYjfDOcmi23wjHLYDrousrwo0DghDHdANHKf4vxXuRu/exeBI6BpeneYRpCvFucjiUZ0Nbww8YBfAoHWP+EJ4kU7gQC6v4tbGjFVzM8Asirj1ro0bXWpBaogdtmNCKpDBcv7E0osDmOX3VYZSjyBX+4Ai1pt+NkP2Y5lriOrC1x9UtbrfD0KC0x2UJMjU0dY8NMRYmSyT2YKlWDolAE0iCI50q8rmJE5jO0WqJXmS0RmKNploPxisjaDoLSuDwtJ1H6mFKcfDY1tHsWuy+g97RH3qwlsnEUO2GfFPrCD20OwchqpZc1aJVvAZtG4ubSHGX6DIhGWuE8jStQ6USmUrsUOQyuBi7Nhb4Ug1O0vcltUA4H8fxQ+fyXWH7juoePHgfC2Y3YDqiaUJErpoNeAcECf5dgcVwF8VOoxJhwIC8u8cGAf7PuCS+EZ2srus4Xh7TNjWvX7/k4aPHGBMLqNX9Fu8E3sdx4meffYe+t2w3a7RJ2B/WHA57EhNFnm8uX/HhB99Ciih4Ho/HHA57QgjsDweOZjOkim7GNE0RWnF/d8vx8pjpeELf9aQmJSkNTdewO0R2zdX1W0LwlGVJddjSVFu6piWE+P/PxyWu7+i7lrbrcdaTjQ3paEJ+dM705AFZWqCEhCBoe4sRkiJJMUkc5gfrYpSAUmij6bqOJMuR2tAOWWd9bzl98JifHD1Ctius7Zgtl0yPTkjTGAQtdUpjLavtjtQkJGlGwGFMitYJVXUgTXIO+w1KmwGsFqjqqJ9yXUNVHbDeU7WO/s0dx4sptusIOgqym7pGqSiM9d7hvaKuKpyzaKPodtckzZoQFqRZgjFJLHqEQinB86++5LDZ8OyTj6NNPUhu72/ou5YkSbGdpSgLyqIkMRrrLJeXr8iLnNOTB9zd3bHdrplOprH1bGs211ecn12QJBm77QrnLDc3V8znxyRJyssXX/PoyQdIIcmSjN1+Rdc2aKPZ7xuk8JHV9U8Tsf7PcU2cnp7Qdw2vXr/kybMnmFTTd5bNZosQEtu1IATf/s536Nqezeoek6as92vqeo9R0ZX5+vVLPvzgI5SSzKZTJgPzLBA4VAcSPQUponZHxaiYpqk4OT5hko9o65bxKMcYzX53oLZNzDxr7mJHUyfs7nYc1lsO+xadC1A9y49O0Kqj3u1oOkuiBeORIk0NZnTK2dOPGE/n1JtAlkWLvJeK2XKC1nFT0LaOeteSJxqfQjcw8PKjkvvbA0mqaKqexdljVHGOcht827F8cMb06ARNgtIABj0xXK82GKGYH8+Q0pJPJigvubvbMJmPubtdkSYJaZnhK8t2XZGJBFnmvHp1oEdSdz1hu+b0dEbXtGgjMKlBdg22C6TGIENPXwfuLjfk05Ju6/D3r5mOP0RMltEm7xW97yK7yHpevPySrtnz+Om3yIwGFDd3N9iuwxgD1pGlGWU5IrGGru+4vb8k0RnHiwtub+7YbNbM5lOUlLR9zf7umpPlBWmWsd9v6JqOq0NcEzrVvPj6ax4+/gCpJJlJ2e7u6boGITWHQ8t0Oqbt+m8GjBSQGhh6DErHEV3caPN+nCVEFDv7EBBx3sMQkYcbcu3ePYiVeieGBhj+TqSNe+8H16Cn6yOSA6JgOjhHksYOi+0cJtHU256k0O+F1N3BolVE4XQ2aotGZyNkFqANQ7EgSYSl63pskGSjnCQ1NLuWrBC4DhyefKyjTMLH8WJ3aEiNRAzTDxE8o2mG2HYoDW0fswVDHUGtWkGSSkQIdFWPVvHnVixyfAj43pPmMuJ7EoVrAk1l43OwdWghyXJJ1zpsG5DOYjLD/rYDlSCUJ080XeNxLjLE7DAWbWpLogRaeOrWUq1B54bdusUYEcexJha+feNRqUQQogNTCUyqca1/z6nywxwvhIDW6v2oL4jYZUoyieuH4mnIo2QIjRbEsbDrBxL8EGothnGy4F03a+iGwvD6T4s4+Q4Z8TMe34giK0lT6rri5uqSLIsh0V1nub695oNnj1lv1uz3NQ8fPqZpWpLEMJ3NqKuavu95/OgJIcDl2zc8efwUKSW77RrnPYvFMU3T0rY1WZrGAkbpeGP5QF/VnJ8/YHUfs+zOzy5o2pq+12idMCpHQGA8GqONYbu9RylDWo6p6oqurcnKHAAXBFJq0iRlssg4ms1R5ZzeCabzY5RO0MPu2XtPkRqsdWgtY2B1HeMrhBMkuUYqSWU9QmmSRGD7bvgAUTz4hX+d5ur7+OqKi2efMZou6eot7/Zyr1/dDANlSQiWANFpaTRFXqK0QRlNolOEFEjh0ErRNhX73Y66ih/smYg38Wq14Wg+wjuLMZo8z4fxmomODKkJvseYAi8dorbY1QvMw2/jXIy/efvmJZ98/N0Idkwz9nLLarUmSVO0jODF4+MTgnPcVTfk+SKOY5VGKMNHH35CludstzumowlFVnB1fcnF+UOECCxnC3rnOOx3gOR4eR4pwyLQtZYHD55ibU9TN0glOV6eUdc1db3naF5wefmCyWTy81kE/8SRJAlNdeDq8g3luIwah6bn6uaKD549ZrPdsG0aHj9+QlU1ZFnCfD6jqhts3/Hk0ROs9VzdvOHp06cIJNV2i3OexfI4Cq2biswkCC9JVBI1JTLQth0XZw+4vb1jvbnj7OQca2saL9FJRpnleBeYTsf0daBrYnySyse0WPZVRTEv6PYdQcSg5fJoikaSlBPMZArasDg6JnSCRCU466krz3yc07YBJ0TUhUiHygUIhxQapaFuLHSefJzjXYfznmRUcPLRv0bY/gC3fsWjx59S5DOq6oBMBdYHvvjiCqU1JtMoEfM0+7ZiMi4YTSakpSGfGIokx7ueNFe4oGmxrK+37O47siyhagJNGzi0Byajkq5tSPIUVTUELeh9IHQOMxrR19EpOF6WtIcWV71G68/wwdFbz5vnX/Ld7/w5Ktkymo64aw+s79dkeYoSsdhenpwR+p6721tm0zkhuPg5UyQ8m3xCmuTstjtmkwllkXNzf8XJ8hwhAsdHC6wNtM0egeD84gHaaLzz9L3j4uEzrO9pDg1KSZbLC9qu4bDfkiUlby5fMppMYwf8m3CECIJUJhZ9fuhK8E6ZI0UUJtvo+nvfewjx35wLDOa6AQXwvm3xU6Gzjx0OISUiiV0MLyJ13LsIv8QPaIjeIaUieIfSUTDfbjryVGE7h3MCWRr6tUMl0OwaRA9GC3ySsNn3JE6gVMQGeAF91SMRBAdtGzCDi90SCy2dSbQxaBy2iyxDGRxda9G5QQiB9Z6sTGl2LQkC2XdoFXBdD14TdHTcVXuHMnGEqQckQnCOPAfrFDoJJC4Kw/u+R5rIjsq0oa09fQ/ZBPre470gKTS9DfS9Qyaaru4wuYkkfBcwZUq775HSU0zTqBLBYyuHtXEc6HzAGIlQEacR3mntQhj4ZnJAPEScVyyko85OmejQDwwF+eAolRpcF+IU0YehKxa/RyeRMO8G5Ee8H+LPQgznGUYpg9Qrjjh/VvHuN6LIAnj59dd8+PHHKKXYbHbUTcV8dsSLly9ZLhecn59HREPf0zY1aZ4zmcxIs4zeWqpDw3Q6f2/5n86X3N/fcXn5hkAgTbJoiQ9wqA60XRsFjwH6vACI0RR9GzUXNkZXGJOgVYxFaPZb0rSgbiqapqFvm0huXx7z/Cefk49GFKOSp8+eUIxyiukpYvIIU0wox1PyIidJUy5vN7S95Y3b0bWWi9MTmqbnd3/wfeqqJgTBxx885uMPHjNbLrhfbRiPRygl0VrTNS3zR5+wxpL2S5J8zG6/j2O8ANokmKymLDLSNCVRCme76ECq95F15AOjyRGu71mv3yKlQcokxuIcnXHe7jh585w3r25483ZL21ratscYzXg2QhnFfnsgunw8x+dLsiJDa0fbOqTwdNc/YLv5JQ6HDc5anjz6gJubtwgpsd6yODlhMp5hTArCc331I1arS06Oz5nOplxevoqsL1uTlTMaBNvdjul0ypdf/jGTyZjTk3Nu765RSuF94Pj4mOlkStfn9LbjRz/4Pk8++JSiKKnrmtnsiM1mE92Vuy3OObwP3K3vmR+dcnv9Olrpf+6H4PnXz/n4048RQrDd7KiqA7PZghevXrM4mnNxcY5tW/q2o29rTJYxns5JkpTe9hyqlulsgbMWnShmyYLb61vevn6NDXFNlKMcISR1X1NXLUmiqA8WWxQI73n25ClV11NVPcF7VNeSmOi8tVLihUWpHOv27LYHbL0n5FtGk3N+/PmPSJIRk9mIJxeKydmUbHSCXHzIfqMYj+YUSQI64e2rFY13NLpj9fItp8tjdvcVf/T6j6kPFYjA08eP+fTpY46Wc25u7jh5sMTVPWWm2W8aFk8+ZfvKkpQThBqxa/Yk4xzbteSznNlijCalKFPy1NB0HUoH+m7L/e0KbgLL+RF9Z9nvLpFpjk4zytOPeTK94PTZhturl7x6c8fl9Yb1/QEjBIlWFNMxswCHXYUXATFKmRzNmB+VyK7F1i2p8LS3P+Ru9D16uyXg+ODJR7z++hVpmdDXLbPpVCxN6AAAIABJREFUgulkhtYJQgbuXv6YzRdvWc5POTqd8/byJUanCNGisxmNkgS/ZzIa8eL1F4xHI5azU9brW3Squb93LBcnFPkEk+bYruNH3/+HPP7gU8pRSdM2jMsZu90GgmC3XuOCx/vA7WbF0ckZd7dvUOqb8agIIWYHBucGKCWDI2ygeIsIJhWDyP29Iy3E15QegoJDZE1JiNojId9lBkf8gYz6Ig/oRNMferQE4X1kYwWF8wGZKuj7SA53gbYOmLGhqyzBgbOOPAukaSAfxQKl7wJoiWxbJkcJzmqESVhf7pmfSUToMc5jNx4lJdPjjP2mHYKiLcqYWHAIgZdD8RHFQhil8YeWdIj9kQJ8Zwk+6qekEiSZwNsGU0ik0bQHizCglaD3UQwvVMA1ntAHslQRvEDrAAasl/S9QCaSVEanIFLhCFSHFq1A+AA+iUT63uORmGlJ2/SMjwy26pH9IPlBYOuoJdZGRg30wZHmBtvYeI3lu+gdgdKxuolh1gZfO4ILmETSWxeL4xDdoSaNjkPfebSOBbjtIiOzd7FrJf5ExSRE7GrZPnb0BFELN9gSQcSxs5by/Uj6zzr+zJUjhPgvgH8buA4hfHd47Qj4b4CnwNfAvxdCWIlYBv6nwL8FVMC/H0L4R3/mORCcP3qIUJK6rtluNxwfH1PVBxaLBW0bXW2BQN91TCZT8rxgtbof3CISY96RXQVd1+EG3ozWmsl0CgFWq3t2uy0mSeJZtY47CGMIgxD9B9//PdI858HDJ8McuwGT0DkbHQrWYZKMyfyMen+gPlRIKen6BirBZDbFuUA2niHTkqAk5XiK0tGdcKgbrm7v2Vd7NpsNq7sNLjj6vmOz3tK0Dd57Xnz9Bc9ffYtf/dVfpcxjd897P+zaPEk2wiPouihYdcHT7R1BGbJMM5kfk2UF9f6e0EZ9Ut/3JGked2XCsb6/oe8OKJ2izRhUhhZVDPy0PSbJuLg4Js8Sbm73WOdxtmE0LjCJGdq1UZMWBjez73uCq7Fdh+9rRIiU49cvX3Bx8YzRaMp6dcV8vqRtG+7vb5nOorng8ZOPUEohpaDMCubTBVIqPv/ijxAhMBqNAWiahmcffIvrqyukkGiVcHQ0Q2mNlIrqULFar3nw8DGffPsX+fzHv0c5nnJy+jiiHGYz7u9uKMuSw6EiywvK0YSmOfDJp98jhL/5818TQvDg6SPQkuoQ18TiaElV7TmazWnrnr6PcL++bRlPpuRlyWp1BzYyXxItsC5u8zrbg/N4Ypt/Pp5hG8t2HTlMSZaCicG3SsrYcbXQ1B3f/4PfI81yHj18grMtnW0xStMNPBkpBcloxOLiEX/8f24os5LDbYV1NYnSFItj9isHcoQVBYkOnDxa0jcBpyXNoeG+2mFlw1ffX3NzvaNtGppDxbaq6doDLji++OpL3tx8i1/9q/8qRTmm2rWoEOM5xKEmK8esfQDh2B0OtM7jDw3GCKxKmUyPUaqgPtyj5I6qauibKOzOMo2RjvubG3pbkQQFfYEuJ/TVFoFFSc94WvLQQ64V99stQXjazpE3PUYbfG/RSRz3lOOo+5DB4qoD9XaDlz1Hnyk228DbNy84v3gWQ5o3V8xmC5q6ZrW+YTqbI5A8evIREoXrPLPpjKPJHBEkn//kD0kIlPkIgLbrePr0I64u36LHCq0S5uMZjCQ6MVRVxWa34eLsER9/+xf5/I9/n9F4wvHJYxCCyWjKdndHcRRHydP5nNFkStdXLL713cHQ8vNdExC1OlEb81NWEgwQSYauBXGU5F0sZhjYSu91WH5wFQ4spfebKg9961BSoN45z6SkbyLJ9F2si+08/l2GXhge1AzxLjIGJieJwosIR5V9Syphd30gLRPysUEmkmrjcAdHEJIstZQzQ723GB21S0mRkJYxq1BJTbDDM6j2SGEJAkSq0QpwEYpa7XqMlphE0R9iwwFnYwRQEPRWokQgkQIdJNYPIn9ix070AdsG+sFtqZWIYzcZCH3A9Q6ZKmwf8Q3SKFQiaBqHtx6dxMlckArb+1jsBIdA0NcW7yS9DGgdwalt00CqyUqFCA4hIhxVytixfDfGlUKAjoL8d9fbtSGeL40bbFzUow0Nr+gkHLII32UN+t5HdpaRKKJ5ItjwflRIGLqYxJGiTqKUxjmPyRTBheF9f/bO7s+yPfkvgf8M+Bt/4rW/DvyvIYT/RAjx14e//8fAvwl8a/j1LwH/+fD7n3p0XctsMuV+tWJf7SiLgtvbWybTCd55tFL4IMhSTVO3fP31cx49eogPnjcvXnD24CFSSWzn+eLr53zvO5+RGMFhP7R0nR8KMcN0OiUxCS9fPkcpEXEHHsqyRGvFhx9/hpIKYxJudlccHS0icHMyI0sS9k0dIX0PnvHpX/yrfPUHv8Pzz3/CcnlK23Zcv3nLp7/056iqmr6qKScp3kdL/v7+jjdvb/m7f/9/4vr6ju1ux2Z9gyBQ1w0iRAdf0zQkacpv/db/Tlut+Kv/yq9wcnpK11m6psL7HqkVh9axeXtFlmfsDy03dzsOh5qnHz7jL/zyX2K3ueWw37G9e0Wel9RVxXQ+43DYRLFmfUdzWHP67JeR6YJAIMlnYMaE8IIyOA4CFieKPE/Z72qUUuy3FTo1mDQmtk9mE5JUomT8MJJKoZLouOw2l2TFkuXJGZdvnjOfHyOE4cvP/4DF4jzmB3Y9aR7HlnV1iFyeYexXliMePHiKNIrL169Zr9d88vEn3N3fobWiaveYRNP1Hdevv0LJjMXymOl0ircdZVny5Nl3aNqa6WSO89FpOB5P+aM//H2m83kMJc9LEp1xf3uL+7MX0P8va2JUTlhv1hzqHWWSc3tzy3Q2wXcOoxVBSIzRVIeGr1885+LiAdZ73r56yfmDB3HX1nu+eP6C7337M9IUtj4QDDjXk5SGjIwiGZGlKS9efEmaG4RI2CtJORqhgE++9QlKKbQy3HdrpsWcpmmYD/mP+7ZBoUmefcC3/vKvcvnl73Fz85x5OaPzgcvnb/j4F77N7nZL4EBiwYVAXXvW6ztWqzv+9t/6e9xer7jfbKndBickh/qA3+x4/Mkx18/vCJMxv/kPcrr+jr/8L/7LzCen9AgOqx24jqRI6BPN7fUaJQz7Xc3N3Ya22vH08TP+4l/4FXb1isYe+PKLr1geL3j7YsvF4wU2vEW0AdmvCHaHOf1FSI7xPpCcLDnc3mLr55jcUwbIC01xq6jrFm0S6rrGpJriqMB2PfN8QlnKGLSbqCgYQZOkBfXNC/LpCccn51y9fc50EtfEV1/9AYvFBVrm9E1PPspwvYhGH6PZrDfsN1um0zEPHz4DJXlzeclqveHjjz7m9uYOJRWHeodAUVcNq80lUmQcLZZMx5O4JkZjnn74HdourokgLKPRmMlkxo9+9PtM50f093HMqXzKzdUN/s8eF/5zXxMQA6KVFggVZQzvHoxiGAcioxYnCDEwmzxCCZDxnosOtOHNhhge2zt0pvHOkpQ6Zp7WDukDoe/QiQbho9tPDOJ7oqbH+4DMYrC0VBLpBvjlwG4yicQ6Q14I0J521+ETjxYpRgtc3WHyBFdbglC4PnZailTSt300V/hAMk5wqcGnArfdc/pwxObqQOuhbjzjuY6uwhqUMHSVRwmimFwmkMghk9ZFfVHw9AePkAadKRCC3a6nGOds15ZyrMgyR2gdqZakqeIQAiIonIWQpVSHDkmPIXLYhHe0bYfQEqSI14kQmxlA3/moIfMBVKS+B+eH8W3ESEgRmY9u0EEJ9a7gicWNVALbDbmCOj7z8T6eS8afvx/chMEPLDU/jAlt7EhFxMTgQh1QEO+8D0LEjZFSsePp+qgRU0DfOJSKGr3ws7ax+BmKrBDC/yGEePpPvPzXgF8Z/vxfAf8bcfH8NeBvhEiu+20hxEwIcR5CuPzTziFEnPeaxDBVM0xiSLPifXhzlo2YTmfUdcVsFjO4vHd46/jsu9+jOhyo6hqC4MHFOUpJtrsNo8mU6WSKdxbvfXS2dS1N01CWI3rbD2RjgzHxA1NJRZZl+ADT2RzvPaPxBKUU9+sVymT0tqFtLOPFGccPHnH75jXTowXKOejB+cB6s0PIFjO35CHQdz2b9ZqvXzznH//+79JbR9d12K4d8hp97KYdKryL1ulqt+M3f+N/4bNPP+XoaB57WD66KQmQjxdsZErTWYLQ/N1/8A/56OGSz77zXQ5NhdApJAXBB+qmwpgk/gwXZyRJyfrtjtnJM7JyiUej0jLqGbqW4GM+1vGDp9j2wEpd4X3gcGgRWhN8QCcagRj4WZ401UgpyUYlfddj+44kS0gmU7RWHA471ps78tGMp88+RSnF7e3bGBGRnGG7Cm0SmqomLzImszlFnrG6XyGUZnl8zPHyJI4BnCcEQZGNeP36a549/RbnZ09iBE9e8vrVqzha7XuOlic0dc3+sAeG4FHR8/jph++1GlV1oCxGjKfTAXb4818Tto/j2ameYZQiy+OauHn7lrwomS+O2FcV8/mcPEuifdk5Pv32dzns93Rdg1aCxxenaAGr1YYkHXF8cYzrWrwNlOkcR0/rO2aLGYddjUKhpEYKyX5bo7Umy1KsC4ynR9jekxdjpDSsdmuUTvChoa1a8qMLivUtV28u+fBbZ7j9nmpf0fewq2oSqShlwLuerqnoXcXrq5d8/w9/Hxs81lt2VUuQBu9bktSz6yuatsI3HVuv+fXf+HU+/OgTytGCLNEIDSaNVGtjpnifYEWPl4r/+bf/ER9czPnOn/8lVk2FzgtEkVPklr5fMx7nbO52PPrwISSGZlWj1ZgkXRKSDGly5CgjuJZ2ExBeM18+xrfbuJvd7Dk0HakxeOdBqZgld7Bk40CqYxTJ7MECdynYb2oeHI/RoyOk1LSuYre/x6QTHj36FIlktbmN3ZDsHB9asnFGW1U4l1GOZ2RFwWF9CyiWy2OWi3drwgGCPC15c/eCx48+5PT0ScwGzUouL1+jhKazFYvjM+pDxb6uYihvEAgpePzsW7EDISLNf1SOmB99M9YERJzB0FAaHnOxG+VdbCuJwfknBp6DVD/99xBAqZh/GEGmHmeHh7+J72U7j+0cKpGx2yEFbdXTNx5TigEhETCZ4p0/8d2Y0dqAFDJG6viY4ye8w3rJvgHQqLEhOBs1r1JFPVSikbnD7h3eecpxMmAMYsZeojW19YO70ZOWCpeACz3KgJOaOsRi0HcgjEBJhUJgHfjeRR2ZioVFmklCUIhE09YeoxUCRzHyGNmR54q+dmSpouvjKHV32yISiUgkkoDOFEomuKaP3b3WoYJDK4kXsagNgZjA0RORDUHEisPHZ2Q2zehaR1PbODZ1Htt5VKoRwg96MwZMkn4PmRVaoZWMXa/eEXzUTRkxFN2EeA/wTpb8joMWCyQ/uEjxoFQYInMEQkVBuxjyd96hHIIQ+D4a0hAhIhn+KbxR/29tVKd/YkG8BU6HPz8AXv6Jr3s1vPanHkprhJAoIXj9+is26w1NU9N1HSZJI6hTCbIsg+Ap8pz1Zk0g0DQtV1dvSUxCUeacnCywNmbhWevwIdA0Dda5KNyTkjRNmUynnJ8/RElFmqbc3V3z5Zd/TFEU9H3Hzc0rirzk3XB/vV5xe3uLUoq27xBSkE9PWDz6iPnyGJ1onI/nq+qWza5mX1UxfT1A23Rcvr3kN3/zN9itN+zWa+rDgb7tYxaUMYxnU/KyoByNMMaglOLzz7/gRz/4Q/qmiZoyGNx8HmUyMAWIhM32wJfPr6htIMlzurbl+voVu+09CEWSZiijyYoRh92Ku8ufIITCpBlJnjE7e8z05Bzb7LDNFusszlkI8Tyz5TGLkwXT+YiujXDCLM0I2PjAbPuYVA7YNhaOWmua1RtW9zfYvmMyWzA/OqFra7a7Da9efI2SEqmSiGa4vGR9f0dZlmxW99zf33Jzc0vTNIzKMa63dG3Der2i7RrG4xEEz8nJRSxYnePtm1dst1uSNKNpIx/N9j1KK9abO6zzZHkZqf6Dg1NJyWQ8xdoeY8xPg2N/zmtCvlsTb75ifbfmsDvQ1i1plsURRwgUeYbAUxQ5q/WK4ANN23F9c40xCXmRs1wc4V3HvqrQeXTtNm1PZy1eOpJcoqWmHE15+OQp5SRjVKas76958eJzsjSnbVtubl6SyDwKQlUM5r69u0cKSd11ICTl9JjjRx9y+vgUbxQueJTydPTsu567qzVGCopUkOaSy7dv+Du/9neo/YGm39N2Bwg9RtQspprjD07xZcrRkxkqsZBIfvLFj/nBH/4jCC3SS3zd4/cHhIRsVKBUhreSXdXw1Ysb6l7StQonLZd3r1hXt1B6klSRjwLFqOD++obVzRcEpVBlSZKmlJNzJssz2s2adnOPdw7veqQKJEXBdHnMZDqjKArausbbQGJSdCYQrsN2FkL8UG7XG4qJYXY6YvvqBTeXVwTvSJM508kxfddyaHdcXr1AKYFUBmd73g5rIssKdvs16/2K2/tbmr6jnEyHDVnLer2i61vGkxFSBE7PH2CHh/n1zSWb7RZtUtq2ZlQWdE2HUJLN9p62syRJTt1WSCFp6w6tFJPplN52GKO/EWsCBvkVDA/B6Ir7aUZhjNcRYohgYehWeN61KSAMDKhB3+OBbJy+R9v4ENCJQqcMSQpxM5mVCVrF0aA2w6bYh0GzE0Xf0kQaOIP7zPt4ajk8mE2u6IYK0ZiAygUq1bS7DkMgT2FylAKB7eqAGWtMaVAaEiPITM+k8GSLlAOebKnxssZq8PRY32ESgWs8vu4IdYvSApMIlA+Evo/PWiR4yW7donKFUwJnHCLvCaInSTuk9LS1RWhJUOB0HJX1VU/wAddZbGcRg4BFaYFMYoeobz196yNH0nm8hyQ3SAISAT5qxVzTkI0146Oc7mBxbYhO8drjemI3LIn5kEBcSyJ2KYMYEB5aoRIZKxmt3oeHRw3VUGwL4ihXx+vXt9FxGQbXaYzMiZo6Hy9YHEfaGCDt+3itf8rGitf9Zz3+mb3qw27kZz/jcAgh/gMhxO8IIX5ntVpTHfaYJOXp048pihznI2HWmAyTpdzc3bPbHbAuAkbLYszy+IzXr58zP1rQdS1FUXJ385a6qjg/O6cscnbbTXxwCoExmqZp+er5l6zXm/dEee89s+mCJ0+fUVcHvPMsFmfsthuqQ8Xnn39OlpXkA9BPq1jsZKMZswefcf69X6Hve8azKeWoYL89cLQ85+X1ljTPEULw9u0b/sdf/7v8+Ic/ACmxtqPvKqQSlKMR1WHHdHbEs4+/zfLsnHI0wtkO3/f87V/7Na5ev4nhnT7CGPMsY3n+gMWDb/Pi5sB/+/d/mxAU93sH0vDDH/0hb17Hbk4+mUasQ9uRKEGeppgkZTpfUuQTsukJMsmQOkVIjVKRWm+0oGt2aG04Pn/K8aOnXDx6RNu07Ld72rrB6BSEYjQth5tVoYyJJoDZjH79gvkoZT5fcPPqa27fvibPR4xHc04vHpJmI5IkJ9EJR4tjprM5yiRok0AQWO9Yb25Zr24pyxGT2Yzl8ZKubiiLCdJkNHVDb2PnbTI5Yr26I89SurbDW8uP/uj3+NEPfh8lNc72vHn1NQJ4/fo1Xduy31cchtil29tbnP1nAy/+f7Umuu5AmiQ8ffAho0lBkA5pBFKnmDzjfrNiu9ljraMoCkbFhOXxOZfXL5nNFzRNM2gXb9nsKi4ePCQ1CXUVcwZNqkhSRX3o+Oqrr7m92bA9bGl6DzIwmy54+vQpbVvhesfy+IKq3lFVNT/5yReokJDIBERA6QwboBjNmJx+yuKDv4LQDlFOyZdHrN/cM5udcLna4LuUZu/4yfd/wv/w3/0dLlcv6XYO27qIKhGKyWxCVW9QTcrjk8/Q+hwjT5BNQNfw9/7rv8X9y+doWpS0eOGRTrJYPmA8/pi7Xc3f/O9/i24nuLt3yKzkd/+vP+DH//grQmPQ6SkqG+NsR5EJRqMMZRIm4yMmowmj8wek0wkqKZCdI+kcJZ6yUFi75/9m7s1+bEvT9K7fN61xzzsiTpx5yMyqrKoeqrrc6kbIBtxuYYQsEGCmG0BGcAHcwSVwAUL8BSBZgouWLDAXSAziwhIyxm5D2+5ud3VVV1dVZmVWniFOzHta8zdw8a04WbKNld3q7qolheLEdGLH3vvd613v+zy/B6k5evCChx+84NmLJ/TdQOt69psO1xuCMSzvT0mzKLYVRUY2naKTEpozjtcTynLB5uoVV29fU+Qls2LJvdNHZNkErVMUmsV0wWK5IMmSqMtxnt717LoNm+0102nJ+njJ/ftHdE1Dls1BZTRVgw+OJDFM8gX7/S15lkaHsR343nd/i+9/57eRSHywvD3/FPC8fvmSoavZbXcc9juGwXH+9qejJuq6RhmJCJ5go4hb6nECQdz+KS24y9sR8q4FAGlU3BT4eNEstaK3IJRi6G3UzDKGIMsAThKCYBhApUnM7tNybPLGlaALCCGRWsWGLQj6eogxRSoGJls/MsltYKgcSSY5DBCyDLvvI+TUeOqtoz1Y9hc1Q+2ZnU7ptgPBSRwGgkQbgRCB6qzGbWFzKRmqgsQaEqdRnUB7i1EDWnl0KmirnmBh2FvKXOEaS39w+F6g0pRqH9hfDQwHQd9lSG0wErSJBgDvIQweowO6MJgsie6+tkfVPaa30QmoJdYFvJCYXEW9lpToIqXvoanjGDEpJFkhCXiCVgQEXR2ZcSo19L0f15djMz3yruJq1mNtwPcDUvjoHvQuoirwyEzHxkxBkgiMjiNGP7KycDGCSY8k/zuq+x0WBGJDjPOgBdKADy5q+kIMzo4DMIEd/vgRDud3410hxH3gYvz8a+Dxj33fo/Fz/9ARQvjLwF8G+MqXPwiT2ZS27cZVjiQxCcMwsF5Fl6BA0LVtDAdWGpMYtttbjo7vsZjOODs/4/r6iq4byIspfd9T1QcQkjQxJEnKdr+jbRuyLEfpqHVYLpcjk8tFO6fRlGVJ07bMl4voHlyuo/DNGHaH7djOSrROcMZQzpbszzKk7xFSUu13TJMJeVGQ5hlCxjT18/O3dF1Hc7jFDT0IcMNAW+/BO374+98m/WyK9w4lJU1dM52UHKodtzfXPHn+mOAjmdw6y3QyZb6+x+7QcrPdISXkqeLq8jVXr35EnhrqzQ0PT1dkWc6904ckWmGHliwrSbMUky1IFyconWOHHpVMkCZG+dS7aE13SUvb7Al2wAXHbDmlOUSBvrzLmVIqXg2EQFc1KGMo5nNurjdIH7VaasxwFAK2uxuKosQ7y3a7oTIHkiQlL0uss6RphtKaq/O3FOWE4APWRl5P3/dY77ndXuEcFJOCvh/oh4FpOcGNVOaqahgGy9d+7uvUVYOSitvNLYvVGu/g3skpV5dXVFXNs6dPcN6zmC8/p9H9BGviwy99ELK8jJM2o/B4EpNgreX45Iib61gTbdVgBxvRJIlhf9iynB8xL2ecX73l7O0N+0PP8b05QxtxFUEo9FyhtKHuDhy2VXTfZhGAWuazeJKxFu8COjFMJhm97Vmu5iRbyfHxEbbztIPiZrNDpQqTKUSQJN4wKWd0mxST9jgM2/MDCzklz3OMSXCDQGjJ609fctg3tH2P9wNOSLxvIWmotjsO24/ZbHZcv96xfFRity3MDG11YL+9pata7BCRD1kGE1kwX93jzd/acbOvUIlCesH15RtuXn/KfD3lo2/f8uTpiuKk4PjoFEWCw2JmxyRZgk4XJLN7DH2K9z0inyNnM2jg6vWOfFUiVUfb7BBuQCQRitr2DmkcMk3wg8Q7hVcxLNgPA72DfLbg9uPPWPUdMpkgEoV1HqUDtzcXzNdLGDybwy1132DQlL7AeUtRZHRWc3NzzmRSMLSOYbCoAH3TEWRgX1/Tt56yzBmGAds7FosZiFgTddOONfHz1PsarTU3+1uWRyucg/unp1xdXFJXNevnT/HAar3mC1up/hhr4sGDB8EN/p1gPY414mpTGXGngY86qfjTxDVQ1CPdNV6djV8zmSH0A0ZCGIYYCG0DOlUMB4tEohOJHzciQ+vfxe8IGUbkCSgRIDikFHEy5AJ2EKgU0lzjmz4Kub3DiDjBDVrhnATn0CbihFwPWWFoDz3DQZJMs4haCBG4nBUZ1X4HOsOQcGgHZqsCd7BgFZqAVoL24EBqhFHoROAHCx72mx50OpLge0RqSITHzDOafRczOTOBdT2SzxvUd/dnkFGrpgVIhczjhKk5dKjcxJGN83ECn0iqrUU4QHqU1jgXoAclJM55hFF0XZyW9Y1FmkjP98EjTbxvvHWYLI1OTjM6+npPsCC0JGaqx6/Z3mKHEJEM8C5iJ2q6RhG9i1ITZeQ748Id+d/jR+dENJcJGUaDBO+mk8EHhJIo9cXnU3/YJut/Bf4t4L8e3/8vP/b5/1AI8T8ShYzbL7Jnt/YujFGMJ2ExMpgSdvsNQkCWJZhpSdO0DH03AjUj96pum7jPtQ33Th+QpCm265hN53z00XfR8gldP+C9p6kPTGcL9rs9Dx885Prmiq5rubo642d+5pt859vfIk1T7j94iPORGdQ0LWmaslou2dYNZRkz7gYLSkmkVJT3XjDszzFiz9uXnxBUHgtIGUDgbByzVoc9rqnf/e39MHDXRVMdOGxv38HyhBCkqSIvlhTldMx39CRpgneeNEmYLNZsdzUv3v8Sk1zzT37zS6Qy8OjZU+rdjma/palbjDHUTU1IFHkxx6Q5JivR5ZqkWMUVZN8T8AhlMEmBUre0+y0SRzldocqEJC3ou4Yrdx35WlIy9B3bmxtm80l8fo4EZKUThq5hf/0JhSnROuPoaIknUJYlwXu0MazXR2y3G5arFSbN2G1vydMMow1HJ/di2jyB/W6P0gqpJI8fP2N32DOfzTgcDogQWB+dcKh2GGU47Pecnp5GCO2hoTlUKC2ZlCVpklDXDdPJkjQNKoFoAAAgAElEQVRN8c5xcXWJ1oo8zf6QJfFHWxPODqM2IEYlSSVw3pKa9B2V3piE4qig63qs7TlUsSa0UvSuIeCpm5b7Dx5STHPsbk82nfHd3/8uSj9HmhTnHV1TMZvOqTZ77t9/yPXmmuuLmuvL13z9m7/E7/7e75Jqw+npA7yBatdQNx1JmnB074jbfcNiNaVvOobgkDpmce7TByBv8KHlzeEVppigjSQ1CbpIaEJDlik2H12ONSCiG8wGtlUA1wOWq00kyl9+PwEG/PQeJimRqowNtZBopRAhINAU0zVV2/P8xQuOVzm/9LX3KIVn+d5TDvs9dVvRHlq6iUJi43MtW4LMSWYzVL7C5Etc6KN2LTic0Ig0RxrJ/voGJRx5NiMrM0xScvq44e3ZDUZAsBbouTq7ZH06ww4W7cHWjulcMwwtm8sfMnlQIkXOfDnDB8FkOsV2A7YPHB0ds9tvWa3XpHnGZnNDkRckOmG9OkEReUCb2x1SKYyRPH7ynNvNlsVsxn53QAKr9TFVvcPohKo6cHLvFO881aGlqWpUIpkUJVolDLZhOl+SFxnOOi4vL1FakzftH7LH+qOtibsjnhgjush/Ls6Ka6wAn+8LRy+2+/xEKYTADdFVFmN3PBIRKe/pXY5eQMmoqxJj/p1SEoYY9q1M5FmJIMAGMDLCMnHv0haciy47b+/+MSISNi0mMwjv8YlGETApuN6RTjW60AgfaLctocwR0qG0QvTQbgZCF+O2Qj2QSUG/9Qzbgen9lKHp4orLJIDED1HA7V0czphEM1iLyhLSLCIojALf9TCASMB2FnxAq8BgPdZGobjzIwZDeKQQOMCGQFDxtX7oI5yVUXtl+0CSa5yPEyHX96RJZIeRRdyDdoGhc1HbK6MbVI63t+8d2ggQcdI4tB6T66gtk3eP453mLmqm/OgSdDZE5/v4tXDHTLujuY/gUcYGKhIcPn8eMZ5/vb+LYIqmBkJcKQYX8OKPcJIlhPgfiOLFIyHEK+A/JxbN/ySE+EvAj4B/dfz2/4Noy/2IaM39d77IjRAiBjhqpei6lulsxnRSUlUHmmZAacHl1TmPHj6hrmuMmRFGS38/9FRVRVVXHB/dw45J5G1Tc6gOvHj+Jbb7PbPZjO12x3yxJk0zZrMZh+pAmmXYwfLee19lGAbuP3iA1gapYvOgTEIi4dNPf8iLFx9gdAT5db3FOeIELASyco7JJzjbsXIpZ5cXSKnHB8shvOWX/9Q3+N7vf2csxbvjx/8twA+fA/QQdF1LUS4IOqGuarx3uGFAm4T9vsJZy23tqZqe67NP+dM//4KhdlxfXzCdlExnM5TW9EMgl5ri+IPowkhLls9+BqXNO9iakJqu2tEeLvAuTuW0Senbnq5vIs9KCqbLOUJ4zj49p5iUmCQhLzNcUCRpyvT4iHx5Gidy6Y/Y/Oj3ECLBseDly09ZrI6YTGcw4jOaquLe6SPatmYYepq6QSnDbhvDkJeLJUmS0fYtm8sN88WCxWzBYj5HSsl0RDscqjgNG4YuXnkOLdNpJNUXR0c4H7i4fIuua/I8TgeEhOpwoCxLTu/dH/f+//gzyp9ITUiJUTEKZ9+0LFZzJkUZMR/1QJJKLq/Oefz4KfVui0mijXk2nzN0LXVTRQTK6pQQLO2hom9qdoeK5+9/hards5pN2e975qsVxaRgfrygqg8kaULfW5598LPUneX05D5KanSi6ZsObVLSQvHDs5c8TV6QCBiagfrQEzx01qJzic7mFIsF3b7iwTPD+Zu3aCFwVmC9pbo98Mv/xDf5zre/Q48DHNoaLBFcCJBrj9MSGcAGQejBHjrmD+eopKCum3di1eBgMBaTw/Umcoo+/vZH/FMfPMWEgTdvLlguZxxNZ+QyIfQKOZmiFh8gjCQrJ0xPv0qapwThY66blbj+wNDdjAHjgbJI6LsWqzzBxhPz7GhGNg189p3XaFkgk4TEJKAUs6OU2WRFNr+P6y1J9iM2P/hdpNeIdMX17SuKyZoimyCcYL4wVPsdJ+v79K7DVkOEMGcZ+80NQ2+ZFQsSk9IMNVW3p8ymzCdLVoslWgum0ylCCPaHA2mejXE/0HcN5WSG6wfS1RovBJfXZygZa6LrInOoqg+U5YT7pw8IoxbmJ10T8ffE996O+iwlGXqPVDHUOLoJR8HyHZRSyZErBRBQRkYB/ai5cSEG2ykxTlGkxIoo7g53ETzW4cdwYe8ESvh3xPiozRonIonGDg7pPb6PDaEae7G8UHTVQBY89qYiL3KEdYjO4b3EEmg3LdootB0nSM6RAm3vCLUjCJgvBF4rdCawpMgAqieKvbWOdYKIfK/Oks0y7NDTdwNFkTFUEeGQ4elbMDqQBDAeNBqvJU1HjCEqBLaJIdmEmM8oBBgtsU5he4/Ek5i4spV5ih0cyBjOnZWSofJ0xDOa7QPpVFEmxGZOK4Lz+CCwbWxIVSpIJop+GBlmLtLqg7UEKRFGxy2KimYNLWNj5sf05kAgKSRD4whOoHV8vO2I/ojeQPFuIurfoSLiYymFGKG2AnzA2vi3x43yqPn6A2y+v4i78N/4//nSr/wjvjcA/8EX/u3jEadYUfm/2dwipCDL4npvWs6iBmsyRQTJanVEUWRcXrzFO0tRTHDWMi0nzGdz3p6fMZ/Hn8nznDRN2VU7mqYdh8dgjCZ4P6IDMqRQ4+++YbeLDVmSJEghSI1hGDpevPgAbRKGpqazAwSQ0uCDQGswaQ59Q1N1PHj/ZxHJDzlsr/DOEoj24KP1muVqxdnrNz/210s+b7TuRpB3HwfaqkIZMDLQNu2of9F0TUVV13TDwA8//pj5Ys6DF0/Z7g/4TI+Owg5jJNlsTbm8T5YXBLNgslyTzxZYG1ekQsLQWZrdDdtXv4lvzvA+hp8SBLbrUVJTFBOss/RtjtK7d3Rcax1t3TJdRs2J0CnOeWazI4ahJzGG+volyw9eYK3FaEVTHwCBTzOs7Xl7donROVmRc3JygjIJ5WTC9vYabQzWxjLVxuC8Z7vbkCaGy8srjo+PSE1GUeRIGadR3nsG66jqmrIoUEpj25b5bEFZxpPz7fWGyWyK0YYyn3Co9igp6fvuH/t8/ZOqCYjk6u1mg9KSvMw4tBVlMqEsCoqnE0KQLOcriiLj4vKC8wtHkRS0dUeZlsyKCVc35zFz0mSsVwV5mbHZ3VBXLXbwJJmJNRFiTWiTkuY6ittvr6kPe8rJjDSPEVBlmeFCz9P7z1Be4RioDzVuABlUDLjtLWk5ReuW6rZj/eCreJ9huxh3pFSKEIHFfMXi3ikXl2+RKILvMSLBhp5MJ2B7nLWMwU9kCJr9jrQ0aBEiEy8AViJNz3azpzm0vPnsM+aLOV/7uffZ7ffITKGEw9sGoTLK5T3K4wdIWSCKFeVsSTZdEKTADQOWeDVdbW/Yvv1d2v1busqSphrve7y3+F7FqXbfoUVB023JlECqgBWW3rUEucST0fYpfjuwXh/T9z1Zbui2r1l+8B6X11dIoanreiz9BKk9lxefImRBVhQcH52gpCZb5ey2NzFqJPT4EInjznv21Y400VxdXXK0XpMmOdN5iZQKETJC5hkGS9M1lHmBVJq2aVnOFuR5Tt12bDdbJrMpSiWU+YTNdkeSarq+/4nXRPzhz6f8Y/JJ1A5ZTxCx2YqOtB/DOjDqcqyPnC1nEePqyUYlA1IJhi6u3a2L7sG7sGjutPNaRIC1G6N5RuG8MpGMLoSI8EzrkYmKExUfb7TUir5xCBMn8VJC11iUEKgsIbQ2NgxCYYeA1wkqk2gUYejj2rEdmEwKwqZiECrG0fQVk0TiQgxetkNc53kHQztg8gTrHcFCqhWhH2JSwqGNgnXpSDV0Aygp8FbSD6OGzTpcByqJ6HTnA2jFYD1GpzFoPAxkSTS4REaYR/hAsBaTG7rakSlB0C7ef2lc7w0efBcQ1kcuGCI6NsfHznUe7yUIRSDgg4/TNxcYRgJ88AF6PwrSx8mljpnFzkLECY2Q2RDF6lG3J98ZJ2AUxY8fizFWSRA9b0IIvBZxojnuo4P37xIHvsjx04HxBc7OzthubpnOZiwWC66urtBKkxcZbdszn81o2obb2yu8nzOdLTFG0Q8daZaT5Rnb3YbpdI7zHu/j2jEBFrMV2+2GQ3Xg5N49rB1wzuO8o2kaZtMZIUTy93q9YjqdYa3DOocAtElp2opSG/quw1pHWpQE4szaOUGSx+DjJCvxAY4fPGa2XDIMfbSfhkCe5dw/Of0Hmizx7k3I0VU0uvoIHp2k/OI3foH5tOT25gok5GWJ7wJpmvLqzWtkgI9/8H2q9ZQPHp1QrGdIGVBaUUznPHr/mwSVoJKC1enDaNkmxvMEIaOQfXPN7uJHKKVR+Ry8HYWdCUOW0LUbkGBMHu2yaQZKjfb9gB3iejfJp6Tz+3R9x9XNJdpkDF1Nc3jJ8VcF9+4/4O2blwTvOT59hHMWk6RMxJzrq8sYm7PZkOYpCMlkMqPvGpqmpu97cDE7URKnPYvFMoozCbw9e0NZlhAEi8WCpmsoigkhRJhckkRcR9s1AGij2G63Ee1hB66uzymKkjTL/6Sf/v/I4+3FOTcXVyxWC2azObfbG4xSTOYFddWxWs2p6obrq0vCasFsMsekmrZuSZOCfJJzqHeU5Yyhd9GqrALOBdbrE3a7DZvbHQ+fPKBve4IMWO/o65rFckFwPQTP6mhFUUxx3tPUbdRd6ATnOnSS0Bx6BgdFkaO1QQlJ30Ixy9nftJisRCrH0cNH1IcZgx/AKZCByWLGw4f3ubk5j+sNNAFPKhVoSa4SJmnKECI0stntSecTfv5nvkEmc9rugPNgnaT3A2mW8vryM0yA7//Odzk8WvO4nHG0XpJJSEqNSWY8eO9P4UzBYJOYK5orfHCocR1x2DbsNtdU159ha4cSObMl0LcgDA7Y316RpBKTJNS1Q2clvZcYqZHKR5dkoilWS9LsIYebQ3R9ljltU+NvzlgbxcmDR7w5f40QMJ+e4IMbG/8pV5tbsrJgc3NDmqUorSmnc7qupekafOhx/YA0JUbFhmI+X0QNCZ63b6Ko3g2wOlrS9g3FZBqdX8GTmJSgNN0QEzBMqtjttqRJxuAHLq/OKctyjDv7yR9CjewiJaNeUMaLVG2izkfJuNbxLk467jIK7xAOuNgURYbSXSQPhFFfKoXA9nGy5Aei1ou7vQLg/djwj3DSEBuLECLIUydxtea8iE5V6UkMuBH9oI1gaKMuVSkPXnCoHYlWceORyLgOdAIjIyhTSY0TjrQ0oAP5MiVXkqA0UmraQ41KNHVj6epAeaTxFvpthzQKKeL0SQnBUFv6MBAGcEaBhmAkwsZpkneKvncIEd23UY/lkQLazkUZiBL0+xaPIs00eIv3IIOkrwcms8jlsoNDJvH/64coRtc6rvJMphl8YGh7tACZC5yPtzEMHkHUdUmp6Ko+srScj3BfrUcn6ShWvxuzjq5Dk2lcH+GoJhlBtTI20ndNbxgDxqOTl3crwjtirbNxLUykZkSkmh9lgHeP/Rc8fjqarABZkXN6/xQ7DLz67DVHx0dMp3Ours7I0oKqrmjahtU6ptTPZjO6ruX66opHj5+hVUKaBfa7LU3bkKcZi8WSYWgJQTKbLzg6PqY67Gn7Dqk0J8cnCCFoux6lNbPZnIBju9vinI3YABeinqnecfbmFS/e+4BuGGjagcH6ccwoqaoDxWSCmszouh7vHdoYDrsts5kmLwq87/jX/pV/mW9/57v0fU1srty7OyF4/w+AMAX/1X/xX/L4wUPOz95gXRRntlVHOp3yve9/j7/6V/4Kby+usA7+mT/9S7x48YSyzDm5/5jgJdPlEZPlCUlWokxKcANSRr5VmiUMfcv24jXXr3+Ab64xSYZvW3ywSBnGhirBtg19U5GkJdl0RUCi5Eva+gBScPr053HSkC4fUZNhpmtss6OrK2zbEjx89n//Gve+/Iscn3yVcjqnOuzJUoOSipu64vHT9/DBc9ht8IIxKPqAcw6TpJTlnLbruLo4Z706pusq9octD+4/oe06VkcnKCKlOQAiOFKT8Hvf/fs8ffo+bdvx+rOPefj4GUoblsslXd9x2O+xwvP4wVP6YYhN7k/4CAGSLOXDn/kqrh948/I16/WayWrB1c0ZRV6yPxxompajkyOCdUynM7quYbO55uHjZ6RpShCw225p2prCpMwXK/quQQjFbDZnvT6ma/cRb6ITjlfHSCVpu8jdmagZQsO+2mH7gUkxZQiBIjG0u4rrzRnvf/lDmq6naTva3tMO4HzC7eaW+XROdrym2ld4BNk057DfszxKSJMcHWr+zX/9L/Kf/NbvIugJRhCso/WQWEllh6gZQZHhCDrhP/uP/1MePn7Kze4KN7RRiGo0BMGnv/Vt/rf/+a/yyWeXCGX4M3/6l3jx9DFZmvDiF345vhasjiinx2gT13pSekSQ5DpBIQlYtpev2Fx8jK+vmZQJrhJ0TUMwHqcUwQmE7rl88yl5VjBdrVGtwgWJNgNCwtGTn2O3FayePOXQK9J7S3A19X4PvqerPK//n19j+fQbPH70c2TFnH11wA8apRSDr3n06CkuQNVtkF4ivKCt9zjvybMUk8zp8o7NzQVyssZ3DYdmy72jx9GosD5Bh4AoVZz8ENAYvvf9v8/Dh+/R9T3nZz/k/v2nSBVhzV3aUdcHhs7x+P4TumHA2p98TQCfr4a9j9DKITq+YhxKjNYJIZ5Q3zVRIqD1aLoXIwX8TrsVRnGGBynjSlEZiSIyqgIi4nJGLhMi6nIYV03BxhSOu9Wht5AYjVARBwEweLAegtcE70hkDEh2nSUYSZqN+qlE4QZH3zrSac7utmNSKnwaEIOl7QVGaOqbNmqhlCEdbmExpd0NoDWmENhDBxKSeULbB0JryVNFOwyYzOAkoFTMF8w0lRfITOGtx/VRiK90FPwbLXGtRaR6vMiO91lqANfTdxanA05rfOcxkyhmVzJgTLxjBy9IZwlKBUID+6uOyXGJtwOmUMhE4/oBnQj6xpGkkq4ZyLXGW0eaCvpW4KTAaAjeEkLctAgdm6MQBIKxyXaRKI8RuM4hVZxWOQtSS4IDOWJo/Cjwc3bUmlkfcVJGRnTD3ShTxKnou2Bo9yeIcPijOJyPJNX9fsd2uwU82+2Wtq15e34WV1R9jxKKpqlp2ziJqA577p3cpywnVPWB7fYWIQRlUfLs2YtxggHOW/q+YxgG9oe4pgKwzlE1dXx/OHC7uYm/Ryn2+wMXF2+pqj1tW7FcHHH//kO2201kqtzt6kPszPMkQyHjvldErZZSmq6r6YcG72KsiQief/5Xf4XpZME/vNe9Ez54wPPhV75C17Rst5uoi2o62qbDecfrlx/zN//6XyM4z/17R8znE778/nPWR8ecPv4yxeyY6fKIbLJguT6J+AkcXdfF/Ko0wTqPtZb2sGU6XzFZPSTYFkK87QKBdxbnbRRw+ghkC8Srh3w2R5kEpRW6OCIkS3ZdQCXT6O6ra5x12MFx2B/i6HX/hvr2FYeb6BoUSA6HA8dHx7x9+5IsS1mvT1gslyRjdI8xhrZpaZo6copEwDlLUeQMfbwqTNOE4Aa00VxcXVA3DdvtluurN5yePibLchaLJc9efInZfM56vcYHIqFYSPqhHw0UDv1TkNPmvYt0/cM+OlpxsSb6mouLM6yNbDKJoq4r2q5FCGiaiuP1KdPJhP1hz3YTa2I6mfLs+XvxRIHEDj126GOc03aPd9EF53zgUNXYwXLY7bm+vo5XykKw2+w5f3NGtd9RVQfm0zUPHzzi+vIG2w9jtEl8jkOgTDO0UAQZ4mqqdxSrMpLcQ4cSPZn2+K7mL/z5fxZNwTA4RIBEgLcDd8N7jyMoxYsPv0o/dGxub+nrAY/FBkvvHdc3n/B3/97/CXievHjIdD7hwy8/Z3G85uH7X6VYnzI9PiUtFkyKFVmeoRMiGkMJ8AInweJp24rZ/Ihy+YjgGqQeyBfpOIlosbZDMpAkMew3CIFJBcVqTt8EpBOksxNUccT1bUtWTpDSU9UHWhuDea/f7tCZwh3esD/7hN2bz5jNZyhtODQNi+URF1evSRPDenWP+WyJUYbgiWDhuqHaH7BtRxgn83mZM1gLxLrxtifPDRcj2ma72XBzc8bpgyeUswmL1Yqnz7/MZDLn6PgYj6DrhsgrGnraPr4eGP2Tr4m7ob+UUU9z9/IpRHSlxR3S+M5//nkp4zpRIGKDxOg7HDU9UkQDEz8WEOxcnPja7i6qJYyB0jHeLDr2xo/Hi23nIhtKCOLKb/Ax0zCM66dRjy9FDCRGKQYH2Ty655SSGA15FvBDR1Ik1LuWoRkQocNoT2gbhNZ4NZ5rFhPaANLENSZeoHOFyvSoAxPkU4XQAl1m+BG66UQErpIo0HGy1zc2QlSNIsk1YtRaCqPASITSgCQEGTEWOpBMJSoR+GGI2Ynak+QCSZx6SR3v52bf4rs4XTRGM9RdZIVJCCIwIOl66GqPTERkWHU9ru0xOq79hJIMNoy16t49zsHFJ4cYm2ZvA26Ib0gxwlHFCCGNTbXWjD8Y3q2fEZF1dieM955Rnxvf5OhCVHKcfn3B46egcngX2WGdBSk4OjqKQMrdjqP1aYzMaTtuby9Zr+6R5SnXN5fsqy1Hx6fc3FzG/EEfR3xFMeGzlz9iuVhSVXvenr9itT7l7O0rlov1CBy19EPP1dXVGLezZLFcc3V5hvNwtD5Ca8Udona/341rySJG/ejY+WsRuK1uCW6gbQ4xX1AburaJGpeuom8r8mKOEjHa4SsfPOdkNefs6oq/89vfYrM70Hc9SgiS1FCWU37x6z/LarWmqw5s8dzaAZMk6Mxg+47/7r//Nbq253pzy5/5c3+WX/1zv8KD+w+QSkVYZZKhlQSp2O12lGVJnqQUafZu1Gm7hma/RYjA4fottrlC1je4oUGIgE4ypvMFSinqqqFrKob2gFAJg+0Qozi4WDzAS02+eowPgrbzNPtb+vqA1IbHHzzCGMnh9ibqYdjS2jmffeu3KMqCpMjQmeH50/c4O3vF9dUFaV4wm80Z+o6nL75MmhVsbq/RScLjZx9wdfmWw9WeFy/ep2lb7DAwmUw5VBWr1YphGCgmUyaTOVmecjjs+eHHH/HixZew1nJzfYnSCcv5EikFH33yfSaTObebyy8Sq/PHftzVhMcTrOX45IS8KNlXe47Wpyit6OqWzeaSxfKUrMi4ub1if9jx/NmXubm9QiuDCNGFmpqcl68/YzaZ07YVb9++YrW6x2bzMtbbtKTvPX3fcn11iUkTZrMlj+6dcP7qJQ7J0UmE7oagkTJQt3uSJKcoc7y1pEoACts5qmaL8z1VF7CVQ5UF+31LPzQ0u4ZPP/6E6XKBcwLpPV/+4DGL9b/Etr7hN//ub3BoO2zX40NGkaZkSc5XXnzAoyenVEOFaQWH3UuCSEjzhOAH/tv/5tdo6oGLixt+9V/4s/z5f+5XOD05RSYGiUHIEqPjC2bnKqZ5iesgVTm+H9CJxGlLfbsheMdh+5Zud07W3WJdHbPMSJhPpqS5odnuEa4msR19nSBDh1ED5n6GkgucVsyePCAIw74KtJtb2t0tJjM8eO8h4kNH1+8gzSnUgbqf863/628xXcxIViVtULx4/j5v37zk+uKcNJ8wnc4Z+p4nz75EluRsNjdobXj86H0ur865vDzw/MmXqOoW23ZMJ1Nubw8cHR3TDgNpOWVSRH1d3Rz40acf8eTRB7hgub46x6Qp68UKIQUf/+gHFOWczf4K537yNXEHmGScUt1l9Io75xggRvhrPH2Ku2EVQiuEGF2GIU6m7Bgm7GxcJyHjREmKyFMScnQQhoAkRAgmMSvTd1HMJRQEPS4dpUSOk68YPBwbuxjV4tAaHAG0pusDMsvom57qtsf6hKqO62Vrh0ilZyBMU0QZBeY6Megcep9Grax1vN135KUmGFCZQAVH34dRTyzpDj66C3tPOgkR6eBd1G+1llDHFbkInqzUSBHo6xbfKMLgUEaiC4OzIwBbxmbOG0YOmI3rPRcipLV15InAGMvBgQmgJOTrjHbfIxOBzqNUxVqBsA5XD6ipRkmB8ALnA8GImLE7eIabhjRRBK2xSiJEzBEcraSgIuYihECIAHpEiBPNIGMjHWxszu+a76H3CPW5BkyEEIGyOkSK/uhcDMGPzsIY1yS0xI5f+6LHT0WTJYTAeUeR5zhrx/iXhixLMUmM0JnNF2y2VzHcWcSrk/lsQd/VdH2c7uR5QZYmKCWZTmf0Q09RTvnww6+z3225f+8hXd/y9vwtJyf3OD9/S1lOyLKcm6tLvHcko4W/61qsT0hNfFL2fR9dJy46EbRJ0EpTtzVZntPUHuix1qKFxLkBQaDvGqRV9J2jyDLs0KKANElYTmY8eXDKtDzQ9QN5mjEpsziRqA9cO4tWklQrjtZzJpMJh93A3/z1vx2nN1kUNX7zm99kMinJyhlJYuj7FiUlSqoII80/11NEi3Kc7Dln0SaGKufTBVb01FtH1w0YJVDa0lR7pFSYtIyuRwE6yUBJlJQ4k+HMDJmu6dqOvJzHHMBEc91sKGdTju/djyvhPJoU9lWLmaY8ef4+w9Aymc1RUiOU5vTBY+4/eMZ2c8tkUlLXe26uLkmMiRTussC7gXunD2mbOlrbiymTxRRrB7q25bPPPmF7e8XjZx/QNBFMO51Mef7sPZpmj9IJAImKOhzvochLXr/5jCwr/kDhn39cR6wJy6QsGJoOrRParo0oE5MwdAPldMn2cPN5TQjJrJzRtwfapkWInqIoMdoghWQ6nWKdZTKd8NX11znsd5G91DVcXF9wtD7h7dk5eVqSTUpurq4IwZEUJQCD63BDQEtw1jG0LcLfIVhiTUihsa4lUQmNcHjfUVctqQdnO5Q2tNWeMAhsN5Anhq7ryHLJepkThownT2cw3vkAACAASURBVB5yc3OgOQxASWoyykWCmXZsd2/46HuOREkeP1qwPFqwvbrlr/+N30DnCetFwr674Ru/8E2MSpGihEEitEMJIg7EgSKhayxpYlCJpsfTeos79BAkWipkOUXT0Ly1tK1F6UBaeIKvsJ2gWM6wvcL3DjAILaLpIwSCXoBeEYJDioS8mJGnhqthx2xesj46Betpuhlu6NhvK8y9nGdf+ZC+bShXC2SS4KxktX7EydFTdrst0+mU/X7P5fklRhnSLKUscry33H/wiPpQcXN9TZZMmE+WID390PHq5aecnV3w3te+QlvXnB7fo8xKnjx8TtfvUSqJF6lSEoLFOyjygrPLV2Rp8UWyC/+Ejiho99YTlHhnN5QyaoBEIFr/3ZhRGBinSwIvGC+Q43oIHx10alwlvhNPh5jtp3QUWhNG+rdS0Y1ofVxNCuI6MsTJl/QBoeIEBOQ70X0YOVOut6AUPkQiunRxFKPTlPbQo72P4pEQsQJJLlFaMbQtJpEMg6cboqHJDoJ8njA7jivIZhsAS5YJklLhOuhagcwMeQq+t3S9p22i63boB/LC4Ebn09BHEbkQ0fEnlCIoQZBRQxb82Lj4uEa1gUjOdx6jJUoRdYjCEPB0vcL1DpdIvDEMQyD4CDdNMk3f9OA10ii0CdHt6UNsYvqAEnFCiJSoLLoJvYviedtHTZWScQ2IiHouxpxCbeS7FfIdvV0QJ5NCxsmbHle8bRswZZzkBefwVhDGoO87jhYhNmFhVOaJRPIHkGT9dDRZ3ser7WEYmM9mSKmiAFsJqrpmt91S5CVlOUVrhVJRqdb3PdftFeVkwmaziZOm9HiEVmoOh2hD7rsuTieEiOHAs1nkXPU9yTIBBMf3Trk8f8X6+EEUQRpB3TbgA3lRkGU5Wmv2+x3L1ZrdYYdQRUz3DvHR8D66nYa+x9oOETzOxmiNq5s9SglW8xld29A0DQJ4cHLMw5N7ICQX19ecnCzI85TL8xsAtpsbcB7bHVhMZvz2t77D7/zgI2ZlgVCa5XLJi2cvmExitEfb1NGC33V4raMluanH+1SNsNfY9QupkEojCBxuz2huPsNVTXxR6VpMkkSXiQ84a0mzKCKvdufcsUNUUiKSAlPMGKylaQ4YE90oeZ5jjo7HrEVHlk/ZbW/Ybg9MZhVZLpjNlvR2ICi4enVGAGazGFWy3+84VHsWyyNQCi0V1nqyNOGTj79HUUSH1O3tFc7NSJKUvu94+vQFPH5GUU65urrk8u05aRbdppPpnMM+roCbumarFctFdFf1/UBqDPqnYDXivSdLUrrR9CGFAq9ItKTqG3b7HWVeUpRTTKLf6dAGZ7m+uaIoJ+x2W6xzrFcnWG9R0nDY75hMJrRNjCESAspywkRO6ZoOZ3uy+QIpJcen97m6eMVidZ/gHEmasNtVMVA7SbEyQUpNVe9ZLpYcmi1Oz1BaxfVy8JFf5wZkZxGhwXYdgR6pFNe7PVmuKdIJ+4s9dd8gHJwcP2BVevras3M9i/mESWHYHa6w3lG1W1oEn72saOqG3/g73+M3v/MJ8yyhLDVFUvL8xXNmswJHP+pnoklGpQKZCHrVI4KMhpd9TzpJ8D1IrVBWkWjP9vac+vIT7L7GC493HWRpnFI4R5ABlU4JwtG2l/SdR080rkvxugQ1jQG30uL6aCKYz0v0doVrIotIM8EFz9XbPdOioVwk5IsjejzSeS6vXhGCYFbOKMsJtzcb9nXFer0etSMJXR9fPz/+6PtkSYYyht3hFhcGymlBUzc8e/4eD5++RzmdcH52zu3VBUmakaYZRTGnrvZ0TUXbNmykZLlcUk4LLAFhxU9FTcBo9hsJ4MHF1Y/Sd8k5UTf1Tm/F52vBu02iNFHMPQL9Yu7dGKviXQARmzipYlAzEF3WCoLkbnQWJ3sBTBohmHebDdv7ce0U11BIgZdqpNR7hPL4ECGaxowncW+RJqASgUoCJkloG09fW5IsgBU4Y+h7x3AYSBcFovd4a3E20u9NZpBaRZaihX7Q2EFCOxAywA6QanQaX5vNxMRMwwAylSOeYGyiZIzGSYoIP5ZBjGaMiL/w7m4NClpLRACcRUkPmWHoYoOTFALnAipTMfoqgG/jyjAvM5qdx9lAlkv6qsf6qKVyLpDkhq7poltQx8ZUGRnbHMNobggxn3HwgHxndEDdReGMiAYfL0C1AWsjj8/ZgNSSJFejvCdgjBiRS2Mc0rhKftdsIeIES0n6+otrFH8qKqfrOrx3vH7ziuVihUkMVVVRFiVVXREIbHc3pFmBc5ab6yuOT+6Nu+/IjFosVjRNQz+0CBGfNLPZnDTN+OEnP8B6x/H6mK6zEBx9P5AkSRTxJQlSwv2HT9lttzjnsNZz/8EpwcO3v/X3KGYzlvM1zg00dSRkO6FIEIy55vGE0jU429LUNUoK+iHmgL14/pBf/39/h//9r/0NvvHBc2TX89GPXvH9szMEsG/buC8OsUEM4xNjliZIKSmU4V/81V/hehebtbrpuHd/wV/6d/9tymmBSeLVLEiSNBubqThx6IcYs4DwOCffsV/6pmKoK0ySsj59Tj8/5nD2HertGYO1DH2PUhEqqpI0IiCCiloAqbm6vOX19Y7dmWPx6GskacFkcszQxylkNjthd/l7nH36+6Rpjsky0nSOL4457A8470iLjL5vKcsZk8kMbTQ+BJrmgLWWSTnD2o4QDM5aNrc3XF2e8+HXvs5+d8PV2Uve++BrGBVhq9PZ/F1WpUkMq+UKoWJDLpSi6zoCgayYAIFJPqFrY77b0fEJhD+Yc+SP6+i6Nmrvzl6xXq7QJtbEpCzZHyqE8Oz31yRpgfcDN9dbTu6f4m3A9h1JnjOfr2jbBuui+SNYy3Q6J88zPnn5MdZbVtMV+zYKtdu6R4oEYRRZmhJ84PTeY/bVHtsN9J3j8bOH+MHx/e/+JuliRqmO6V3PYbeNUUapgsEj05TWHqJuzNV01tLsDnTbgPc1ziree/yQX/+Nb/HtH77iw/V92m3Hx2ev+cH5G5bHORdvrrkzh6RpSt85tFBMUo3JJMYr/uJf+KfZ2y3LdSC4nnw54T/69/59JrMcQYIwHoFCoZFGExRYMSCNYjh4VJoQgvz/qHuzH9vS87zv9w1r3GPtmqtO9zndPD2zSUoUKcay4ygB7FgwbCtBggABgvxtuQhgKLnIjeEBcQYkjq2EkUKRkiiR7O4z1bznNX5TLr5Vh3RuIl0E7CygcYBCVdeuvffa613P+zy/h90qdvnZZoczTazYmb9Lmh6yMj/B1DdgPdtNz3gqEFmKEilJViCylD4IsjThqz/9KavGUoUbTj9okH1KWsxwwZHlBV4cg5Lc3X+BlillliHlAeH4hMq02D2oUUbft0xHU3I9HvyGgf12TwiOw4Mp1rZonVFtanb1lps3V3z82bep9ivevPoF3/jgUxKVsltvKadzdlWDcbHE/fT0GITHOIOWinrfDRe2MQHBOB/RVh3L3Q3zxQkkX49zAqJ6Ioak2PCF+O8weAmGi+oAmZTqUbUKyERF0jhxcHLD9z5yJVUaBwZnopInpcQ5hj7DJF7YTfQbqkTgbcA0EabpnSVLBU4qjBWx6sVaMh15VdZGjpfSEHCoRICUJApsbcm1ResI1TTWkxYlvu2oVh4SwFkOjnIq7+h2DWWu4oBXg5IJjoBUJpY36x5KQVkKnJfYvkdlEuEDpneoLMptzjjQ8bGSOEgU7cYwSuLjNI0ZvEwelSmssfjW4b3A9AKZSDSB3oTBWqPAhJgS1AnGeFIF+1VPmWuyMgJeXWPpcGidRjyDA5EokiRyzlIZMI1AlAVSCawPiEQwhATjc65kLJoGtBYoDdbElKlp49/obQDnUTqul52Pq2DX24hksIGAR0tBksbaJaFA+ujn8m4oix64Y3iPDBH1of4anqyvhfE9TVK2uy2z6Zz5bI5zsQi4rmsSnZClOVmakSYpdV3jfEwA9L0lhDikGRPjxk3Tst3uBt6JZV9tef6ND3n27ntDNNNxdfWayWzOdDpnPj8AYLlccn9/x9XVFSHEOHrwgc12zcn5BYuDY4rRiK7r6E1PeDTASYHWCq3TKLNKgelaXN9jug7nHM5a6v2O3/jOp5wcLlBSI3vB/cM6prJ6AwxGTaJKJwdpWilNoTQfHZ3z/ee/yW99+C20kiSZ4h/9o7/H5ZOLWDVjerqmxRhDU9c4F9vTy3JEmqZvWWSPxc1CCPq2pam2tNWO9e1X3H3xf/Lyx/+a9dVLpBDoNCEgcC6qEsaFmD70sRQ6ywve3K/54Y/+jK9+/oY3b65p2pbReEYggky7piLNMrw3lKMpq/tbLHrAbMB69UDfRvUsyTMe7m6p9xVd21GOSna7DePRZEiUziO9fDTm/u6KPMvpTSSj6yxlNBqz2aywzsQ1V5rRdA0hCJqm5vWbL5BSsVgcMRnPCD6Qpilaa87OLrHWvC3f/nUfaZKx222ZTWZMRlOctfRtQ13XpElClhYkOiNN4zkRcSOSvjeAiM0IxnJ/f0NbN+x2O1Sisd6yr7d849lz3j17ihxYXK9fvGR6uGAyPWA2OwABy9WS++UDr1++JgjBaDoC79lu1xyenjObHFOORjRNRSigJyB8IMk0CgFWI138cDJNjWsbgu/x0tPj2KzWfPtbn3BQjinyhFwo1tUem8F6uxueCT+cETCZJmSFJ88UuZB8cHjGd9//Lt+8/BRbe5zx/Ee//3e5fHqOUgqPhRD/6/sGJwJ4Qa4KlNUkKokcICkJNiI9mqplu1zTtRX7zSuWVz/i1Zf/F3fXr9FZgk40rgczFMj2PYiQDHiLhsliyqu7Nf/6f/8xX/zFa67ubrHSMZtN0VoMw2JFohNECpPpjPs3b2gaQVcbvIOq22BNG31uRc5ufYNr99i2ZVQUbFZrptMZBDhYLDg7u6Acj1neX1GWBb0xqESR5CnleMJmu8RjcN6QJBnbbYVzknpf8ebNFyitODw+ZjKdQ/DkZYZOE46PL7HBYr8m5wQQJyIfn/u3nKPBexVVixDVrF/5kbeK0jBgyWjEiWiDAdkBkQzuTPzcjGrHgIH41cj+AKr0NhrchYqpNkn0YjsbTe4+ONJJih0Sa49pPdO6SIc3njjBudi3mAi8BmMjSsi0PWkSwxQ616STlLbtECFQKI/08da+nCiS3JMkYcByBKwXtLWj2VranYkDgYzDoU4kaRa7BbUCoaKy5zuPaxyJ1Jguep36xiC1Gh7PUBuUaVSeIEYZRghUqofC6IAPCucEOBEriIKI5eOlxnswTazpklqSFBqto5orh+fRO4/K4wbL9ybWRrXR4J6UCXLAOMghZZjruFaM7wfelnMrLf8tQOzjQC7lkDwAED7yxAbvVt87nHssDo/vCaHE27CFUvE9Zm1cOf51zoavhZIVd9+OPNHc3l7zsLxjNp1ycX7BvtpTFCXG9nRtz3Q2R0nByxdfkGhNVoyp65o8y5mMI0Q0zwvu7u4Yj8eMx2M26zXJ0F/Y9z3Pnn3Idrvi+Oic9XoJQrLd7jg9PeFwcYgPgZvrmziI9B1dZyiLCXVdc/HkKdvNiqatCfRk+RjvHdYazAAphRArGwIkSiGloGs7FsdzvvfdT5FbQd+vOB7NuKv2URlSCoQg1kwFEilRQnKSlXzryXv81qff5yAZ89sffMb/9Mf/K7/39/99Pv/8c7rekBWKJE2QRQkiUtS1jiuk6MgU6CSNBdN4nHN4F0tR86KkabcE7+mqHVJFP0JdbSknY6QM6EQhpca7nqbZk+cTtusbui6wXNfcP6z5J//8n9FbeO+99/it732TXAPNhpmMa0nvPEppEILzywuKshgM5oGmrunamtn8kNFkStNUjMdT7u9uSdKUzWpNkmYkWqOV5Pz8klE5xnnPJ59+J4Jsg6du9tze3jAeRw+REoIsL5BSkiQZB/NjhID1OhLSF4uTwZeWYE3P8u6B7Wr5tbhrV0rFvjKdcfdwx3J5y2wy4fz0nF21pyxH9Kanbzum8wNOhODFV78g1ZokG1PXDUWeM5tMyRLNPC+5e7hjPBnHYXQoTtdJinKGZ+9/xGaz5GB6yurhASElu+2Os7MTFh/MQQmur27QImBMR133LMoZ1W7HO8/ep2431HVNaC3lZI7MJEH6mNwjYhmUgmBtrKoIRCL/0SG/+ZufkK0Fu+qey/GY1XqHayyjUUqWKvbbnt4GXNdTZAnTJOOb777P97/9A+ZyxN/48FP+1Q//Ff/g93+X3/reN9m2Dak4YDIf4/voJ5FagUhJZHwPuc6TSIUMAYcnSE9dNyRFDmFMt9piWku33aJLQd8IHu5WXL5zgfeeEBRKJQjZ44JkvDjk5ssXGCe539TcP6z4p//9P6feW77x0XO++53PKDKJq1csUsBFn4wUEiXhw28+i4lf62LVkW0wXcNicYw3E8y+oiynPNzeILKM1XKNkhlJEv+ei7NzxuWYoOCzz78T30Q6UO93LDd3lH2JdXB3K0mzMlLFlWY+O0ImgvVmg1IynhPekZYZbduyfHhgt1nB18WT5UNcDSo5eK7CMADG4YfHlR7xX28dSgy9cyKa0OMK6P/BWAIQMta7DKskZz1xmxcICgY6ZcQ4eIYC6kHxGIYpmUZLg0yiZ8uHgAgWkSQkhR6I4j5Ws9iBueU8dkBSSDn8ruHQMnbo+RBwrSErNVkq6etYltzuO9JC0tuA1wKVa4IzKAEyeNIskGWBxjiCg7zMsU0PLhBstCWoRKK1wnSRpaeH4uSkSOLflMSWE+8CGAcKZBa3QE1jIiTUDBU8KXGdl0iCTqhXgVypCIAVvAVfK6Fj/+CglMlcIHpPMCbiOUSgmKfxBt8HbNUNqVJQuUK4OGTqIUxmfexMfKxQioPuQAEI0TMWQkRTWBtiQ4b1Q99uNPQLHQftIIeBjThMD2IWIo1Km5TxhuyvenwthiznLMu7JReXFxwsDsmKgr7vubm7QSF5/folWV6wOFjwcH+D84GT04s4hXpHnufc3N4MVGSJUorxZIxAsFovBzNkQpKk0fMzi8PYfrelKEcQAk/eeYe7u2uKYsRkPIlRaqVibDqp0EmCB4zpabuW8XhKmo0wLt49FVmBaVukUkipyNIc6x1KqHhnJDwP9zdcnB3Tb3a82lQ8GR9Q9y3bvsG4WEJaC4kNnqfjKc8OjvnP/s5/wsHiME7vmeY8W/Cf/t7v8bu//w/Z1x15ksVk5XC3NSoLJpMpaRoN/H3f0bQ1djB/WmsILipR9W5DtV2xfvUT7P4eHyzFZIa3PVkxAeFR6TiaIINBixylI/XbE/gn//J/4A//5AWd86x2f0oIgl988VP+8R/8AceLEX/jk3P+we88o/dheP4C55fv8aJvhzqMDikC4/GcNNE4H5gvFqS7NA7EpYlrxyJnu15zf39HURSU5Yibu2tmsxlaJayWSxKdsK83kZmmE7abJftqz8PygXfe0bz46i/pmj0ffvIbzOdT9vuK3XYZV4zjGcjA+ZN3eP+DDxH/1R/8Ws8HiNiRzXJJeX7BYrogKwq6tuXq9oYEweuXL8iKksXhIfd3NzgXOD1/Eg2i1lKUBTd3N5wcn6AHRXQ0GgGC5Wo4J5QmyzOqds/B8Zy8ydlvd4zGI5zxXFy+w/3DNWVRMp1MmE4mqCRhUpSoZIfWmsx5un3DfrtjOj0gyyeYEO8Q8zTD9QkqU+heIYldiVqnCBFQiWG5u+fy4ojq1ZbaGJ5ODvB0rLIGGzxoiThQ9MbxXjnnPDngv/j9/5ysnIGIBvX3jxL+y//47/Hb//Dvs6oaJgdjlNF0tUWIwGQ6JhU5icyQWuIxdL6GtkUVms578DGCvlsuaaoNm5c/IVRL+rqjDClZ0jM9muGDZTSPvtG27cl0hsoScplyfHHJP/2v/wV/8tOXtI3lxz/+Mc4KvvjqL/jv/tv/hoPZmO99dsF/+DefkiDwncAsNCfnz3hoa1zTI4WlbR3FZE6uNG3jKMaHCFGgpCYrLXmRUkxKNusNd3d3lGXBZDbh5uYNs4MFOklZPiwpuozNesX52VN0krLdLtntd3T3D6g05cWXP6er93zw2W8wncW+w2p1z75umCwWBBE4Pb7k2bMPEOIf/7pPCSAqCpFVFNlIkf0lkOGxJkfiH6eswC9RD49JRAFeEv14g6L16N+CAbeggBDeUr11JpEyYM3wPxWDckYcfoQcgKUyruQk4DoXFSwRa5ceH0OIDziWLDP4ywJInYO3qBRCovB9oKkC5SzFe4MCfJLGG0ohUaMI38pThdk78klK07hYgYOiSOMKrXGeTeVI8wTvA00Vy6qlltjW4TuDMBKfygF+auMKM2iSwYcWk3gS4R1SaUxjoWtIZSAbxXMzKRQeaNs4IEkBwkZzfb/tGU00ATfwqCTBOspU0ztASjoHWZLSVwYhE1yInubQ9ORZNPI7orJohMeEWMUXBmVLDuJG9GXFl1SlMprZISYQjY2VSy4M3jkZ2V0+xCnKAyFytIKIaAkA6TzeCUjiBsj1/lffMv+vx9djyLKOk7NT0jTDOUtTtwghOD5e0LUdp+k5RVmwvH+gaioWB0fcXF+zODyiqvYorcjzHAGs16u3/KW6qSnynLZr2GyWWGuZzQ54pPxqHX0+o/GYrmkoy5K6qhEEjLXD92eE4GN/l4z1O/P5AUUxojPR/ae1jnylJCEvx/TtHh/6CLQTKhrNRUz79W1Hd7+i2m/pupZZXqKFZGdaemtxyqOD5PN33ud7H36HrCyw3pGpBKxDEdjcruIqr+pJ0py2rkFKJtMZ1jru7x8YjUqUTt5K6BAiFkDrCAnxCbv1A6bvAYfMxpjO4LuWvChQOsLn+q6OiZw0oRwNkVlRELxjVKScLiYs923sejSGRGsOF3OatmE2i+XF9a7h6GRBvVuRFYYkOwdgNJnw0x//IU+efkKRl0wPStq24eH+hmfvfchsJjCmx1rHeDLHeRuNrjLWK41HI+qmZjqdErxgMptR7TZkeTT0CgXT6QEguLx8SlvtMH3H1ZsN5XjCqCij/6uu0FlKtdvx4IeejV/z4azj6PiUJMlw1lBXbQxOHCywpucsSylHJQ/3D1RNzXy64OrNFUcnx+y2e5I8IcsyRAislivKcowIgmpXkRcFnWnZbJa44JhO53HlEiBJkphcHE/o2zZWEFU1SgR6Y7HGcHB4ACHe5atEE4JjOj1gMp9T7R3VpiWfpKhUkKQJShZIvY+Kko/9ZqYzGKeQNqF3PdtfXLFp1uyqhsykjNrAzrbUXYccS6QRfOuz53z36eckWUpwnrxMkNaRBMvy5S0yzQmVRYUUEyyIwCgt8cKx2a0YlwXY6JpVpcYrgZMR8CmQaO0ROip1SnpCPkLUPX11QzEuEErGyhzf4oPGWYXv4nkfCeEth0cjFqOSlWuQWrPbtuR5iRIpddsyKQuCgIfrNU8uj9jvHijHE2SIF9xsOuEvfvpvePbJ59BnlEmJ8Yb1+pZn732ITBVt1dA1hvF4NpTGx8+mw6MTirykNS2zSTwnzs+fUu825GVBnmWQZ0wmBwQPl++8R1fvMKbn6s0rynJMPhrjJLTNHnRCXe9Zrm74OpwT8GhO55dGdhXXcGIoYY7SULzKxiLf+D3Bhl8ao31ULyAiGvywXHysVxGP3/f4dYZ11MDdCsNgB7yt2ZEqTnGPbCiCwtlIcLc99HVHMU1JcoW3FlNbVKYjkwlQqaLrHN4r8AIVBN22IU0EdlDDgov+ROM9xTTFOUE5UoiRwFmHZFChrEc7hzMerxNA4lqPytP4vHR9rALKBSIovI2Mr2Sc4bWMXjVD5DpqEQ3nIT5/Eo9OJTYQkRchKj0ykYgkQeKx+4aiHAYSa8nH8TNFxnQCfe9JypR+MKF7H8jKDFd1lOOEvnJkoxTXG4IH6+MLnpYp3jls79BppPMLHa/JrvdgiQBZF83vhOh78y6gRAwq2M4Nr6MYQhLh7TUynkcyDuSDOhqH52Golh4zAE3/Osru18KTJZUkyzLatmG/3zOZjpFKUFUVUgjyLMM7x+HxCU8un+K9Y3F4RNc1NG1LnhVMxhM2uw1ZllE3DfcPt8xmM3bbLQJBlhXMFwtCgLZtYwWDTvDB8fr1S5SO5PHXr7+KqR2luLt+wy9+9qcELEpKiizl/uGO+/tr+r6jqiq6riYEHxWXPKbdlE4ISiJFbBt33r99MdM8p9vto6/Je3CBMkkpdUqmNdM0Z1GM+O4Hv8HJ4QkEhwievq5J04TEe/p9Q9tGT5M1Fp3lKK1xxlGUIw4W83jX0tTUVY218Xe1bUvbNnRt/NpkdsDx+RMmp58g8iO8EKRpgiDutacHl0wOzhkvFgQhaNuavtvjTItWiqu7ik3VkGjFdFyQZynvvXPB7/3dv02epRjr2GyraDI2Hc5Gg221uqZtaoQQfPrN76OTlLZpuL16RZ6kZHlOkigEgSTNIATqpo6KGoH7+xt623O/fCBLM+qqwjkDwXN7/YrtekUxGqFlSqI1UkXi/+HJOUmaslzdU1X7yEebTDk+PsH0hqPjk4jw+Ovcpvx/dAgpydKMrmuoqj3jcYlUgrqpwUeVyPaWxeEJlxfvvj0n2nY4J9Kc2XTKarMhSXOqruPu/o7ZfM5+t0MKSZYVTGcHeBeoqjoSoKXGWcvrVy9iIjVIbm5fglAIobm7ueLnP/szHHH9kKUZq/2S5eaWrmvZ7/YY2xK8Q6mErJwSREwhBh33BV3V8FgbRecIvUDQY71BJrHwdVKmLOY586MRI12Q9jmfPfkOs+kptrUoAr5rmE0TciymaWm6QAiP9GZFlqXY1pLnJePROL6H+4be9TSdobOBquqjh9I2gKMczzg6vWR8+gmyOCKIwLiMnW+JVkyKU3J1SJ6NCQKqpqF3DdbUFHnKVy82rLctCsViXjKeFrz33iW/++/9bYTXtJ1lva1B2c1H7QAAIABJREFUaup9Tdf1NL1n/3BDW9cEBN/9wb9Dmqe0Tc3D8g1ZqkmSBKUFKoF0VCCAqq7QqQYRuL25prM9D6slmiTW9vio5N3evma3XVFORsiQoFBIAdPZnMXpBWmRs1w/0DQ1SifMp1OODxbYruP45ASt06/LjPV2wHl78xgCUj6amMXb1FtMGMYhKfzKsCRFHGZ9iO/FeN0XUW0SA4TS+V9W8fjwFg0AIV7AfUCnj/U9EIQcGFrxcXgfVZRHJSwa8eOF2ZoAUmO9GmjjcaVo6i7WyxAInaPbdeSTqP7rTJNogUoC2VhRzlOcF+zWlraDthe4HiQCrQRFFlBy6Gkc5DshFKGzsXTexr/LdrEvUWgRje0eTJBYJ5EiGsr1YBr3fli9AQJPogK+N9EK0FrMtsdVsd/SeUk0gkVifF87cJFHprVAZwqUpO0EXetwLq5yvRPRh+UFvYtKJSGuh/OxRur4WqosqpDe+8gk0yJyzYb1sVRxJRzcL1fCzsRB+PG1frs6lpHSH1zsXGTAFDEMzdGTFy8JwTgEEXPh7F99yPpaKFkQTdnlaIRWiru7u+hPMIY3r75kNj9iPBrTbLf0XY81DZPJAiEl6cDRklJyMF8MkfGK09NzTN/Hdcr9HcvlA0VZcnnxhP2+xtoOFxx91xOC5/7+jjRN+e0f/C20Tuj7hvEoVveYvqdpa7quZTIeU+Ylpjd0XY2SiiRJGI8n6CzGxXfr21g6LT1Yg/eBRMdG977r6OotTVsRgiMRAikk89Gcz58/53C+YLnbcH54GE/K1kK3I9Ua0za4asv7T96lqhuEEHRd5ExlWc5ms0VUe9I03r2EEEnGiVQRqpYksfPLxwqBYC1CJWTljNmxJslHdK9qRqUmyaKqKCWARALWtLRti9zHuO2665jPx2il+fDjp3zwjY84Oj3DmMCf/uhPmIxKJu98k4PjMy7e/zZKCpztufrxj/jLn/wx73/wCfl4QpblKKXYPNxzdy9o246f/+JnKCk5HtbCTb3DuR4tNXle4I2NdTzLO6SKseSmbji/fIo1hrraMp0saJo9xhm2uzXz2QHb3ZqPPvoWVb1nubwjy0tevfySiydPEUJxcfnur/VMeDyEiOGHPBmRpZq76xt0mmLajuv710xnx7HpYLvF2h5vagiHCCkoiixWVmjN0eKQ3nlsXXF6cYHpDYdHhzzc3bJe1eRlydnZJVXdYroGHxym65HCR8hvmvP93/53kWisbRmPJhjf01UtRrZsVivycsxoUtI3BkeD1KCTnHE6xuuA6aH58g4dJE55JA5EhBT5EOLXsj3deovQkGQKHRLGoeTvfPs556eHvH51z/HkEBkCpraIekWqFXspME3Fs48+pnc9UkAfDLN8TJGVPLSxUkgSCD5DqAQXBNrED+0kV2gR73wFgUylIC35ZEZAQT6h/cWe08sMWaSoROJ6h20MmamxyrJ6tUenY4zxtFgWszFaKj7+6Cnvf/ARo4MznBP8+c/+jNHBhGz+AYeHZ5xdfkY2Sen7nlc//CNev/gThPyEYjohK0pCkVHtl6x2ApsYfvHiF+ACZxdPMCbQdXuCN8igKMsyrjGQrLcPgywDbd1wfvYu3lmq3ZbJaIFxNW2zpa5WzGYH7LZLPv7wc6r9nrv7O4rxiJcvvuDJO+8gHDx9+h5flylLKhlBpAI0PnKNAD1UgPnBNiGjiBHBli6GlHhUnFQcrgIBoR5N0uGt5SqIODwhZWRsEf3SSgT8YJL3Pg5VKhVY44CINtBSYE0gREc9wYPOBF7GocVaj8oimw1r4+AX/xikFjgT11Sy1BRJXNXJhCEuKehMQGdQlIAF0xPXfD4ggoupOC3xSqPLFO18LL5ONco4Qm/QuUZoQVJofFAIJbAOQhMRDUqFqOToyBFMShl7bK3A2ABaE0zPeBavcXKS0LdxUMzSbmgxqGKy00WeozcueuZMDAE0jUFqiUzTiD7axsLqvrXoUYJ10PaeMlUIBj+YjzKiHoYspSWuF0MpdlTwpI6KphsM9oEhDKFVHLrkoEF6T5BxiJM69lm6bvDIDWqVH9Rl74lgVIbQhPGkQ6/hX+X4WgxZQkTvVF7kLOYHZHlOCHEtd3N1hdaa/T7K2nkxJs2ymEawscZgv9sxnkwj00PGHsH9foPzgTLPSNMMqSRlWb41xBfFjECg71qWqwfyUf62n2u/36GkpBxF9WC/33KwuCBNcq5vruLJlCTkWUFTV/jM4gdNMDiHStI41DgZT/IQGSGKgCfShqWQpBJGeUaZZMyLKd84uURnGaHvCSaqT8bVGALkOWISh7uT81OcdSRJQpI9Pu6e2fyAvmvYb7eUo8lwt+fxSmGdH5KFCdb1Mao8pDidtTTVFtNFnpZpa9IswdmOzhq01qTFiMCEptpyd3NHNp5xdrJgXV3z8ccfcHp+SDEa0/WG9WrFyWLKNz7/HS6+9V2Ojs8Yj0bk+QipM66u73mWFGw2K+6XD5ydXyKF5ODokLbtCD5wMF8MbeqONCuYzxdY52jqCmMMh8cnmK7n5Yuv+PjTz9A6wQfPL372ZywOj6jrhsWBJhl8DH3f0/cdh4sT+q4e+GWCPC14/o1PeFg/0HUdXd/8Mhb+azyEEKw2S7I8J83mZEWOc57F4YL7u2t0oqnqPX3fkedjRJrFqLINeO+o64rRaIIIBqUVTbWj2q6xPjAqcpRKKUfDOXF7R1mOmU3nBDx917JaLSmKHOscINhstqSZJi9LtJFsl2uOT47QuuDm4Q34uI5OVEFd7+g7S7lIaKoG03WoJI8eKyOj4uAN3oLAIZOYuRdSkWeSTKZkaE4OD3gyOSNzCUdlCc7R1iau9YRDeY1nRtM5xtmcdtWRFwmjMqfZG0zfMpsuYvOA6JEoUDpeAAXRLEvsmvM4gvPstx1919LUlmq/w/Q1Wii69ZoyPQRt2G1rkjxDuYSymLJvVlx9dcP89IjL4xnr9RUfffoxh0XBZDzGisBqu+T0aMIn3/kBH/zgexwcnlPKnFQVOBGVpHIxYnm/wt3ecXx0isoy5tM5dW9wfeBocYBtDaYxpDpjNj3AhcBuvcMHy+LoBNP3fPXlCz7++BOSLMMaw89++mccn55Q7RtmE4V0CUKCNRVt03I4O8a0dbyp0pIsL3n+/BPWm3tM12FMw+Pq7Nd9RFyReLsZiFVfw6ouDImwQeGKG61f8Wdp+bZMXshfft9AFY2GdzWoP4Romh8YW0KIOJh5YChcdv6xL5G3aTakQD5efYfH6W0gOIE1MSXnrMcaS6qjkdqHgMgk3oE3AW9BZcPDQyAShek9tndkpaZtDLaJTKkQ4iCWZholIjbCKo0Pgm7ZIaVEJZAo6KqY+FOpxDSOPFc0VVTWkBLhbbwuhIB0w414CLR7h9ISzOBHA5QH3xpCqpCD7UZqjd01sT/RRt9TPkqGsrkAStKtarLDgjTTuCBQMqClJykkzktcE83n3kE5TRDDKlD2Dtf3iDSJ6reMCI7gA8LHFWGsPooKVXh8D4TH1P6wIlQSZ6MKLwXgB3isGFKoYfhZ99h7GVeh0fIlhgUihKHW569yfC2GLOccZVkyKkes1xuUjKHYtm2YLRZMB/ZRkiRkaUY/4Bq22xVP332OFLBcr1FKslotwTsunjzj9uYNWo8pRjFtVlUV5+cX7Pd7EHB/d03f1BSjKULC6ekpr16+QCpBXhTYAVPwztOnbDdbvPMcLo4QEvbVnqOjU9IkEqvDW+kyoRxPMX2OaRtMbyLOP/gIZhMCJQXTNMNLyWJyxKQsmIzKIYGRkwoVIYnWYPsOJaCxBjMZQdMxf/eUfDLF9EMRdZpGU2Vw5HnBZDJnv9/Rmy4WYY5GOOfou47tZh1VNeep9zts39JWW/pmjdndo12PTDVCKrK8gDZgTBPrEkYzitGYPK/prefk9AnzkydMpjPOBpREkpY83N1RTkrGhxcEHzBdS6skAkExytCjOe31aw4OD/EhroOTJENpiVYJJyfnLB/u8d5xdX3FJ59+m3q/oW07JtM5r19/xXQypU9avvH8Ax4eblFas7x/IE0j3Xy9WnF8dIoQGus6iiJnt90QxoHdfsPpyQUP97e8vvqSs7N3GJXjqFjW1ddiXehcXP2ORiNWqy1pEg29Tdsxnh0ymcxpupb5wQGJiiDfu4cbNpsV777zHK0ED6s1SgnW6yXCW87OnnJ3f02ix+TlGCHiyundp5dsNnsIjoeHa0zbkuZThBKcHZ/y8osvkFqSFwVpkpPqjHfeeUpTb/HWczBegAp0tuXk/IJ2ktFWDc2+o952ZEVGVo4pZxN2D1tct41358JjOw8iJhDHMkWohKPJIdPRiCLL0DreseZaUpTQCUe9bvAayCyuq0j6juPLQyZnc0zf0m4bisk01u10HdrFqqrGGJyIyA/TCxCB3huafUOSaGxn2ZsO37Xs93s8Dd3ujlliEUHR7x1FnlAUCUHWCNGSJjnjwxnj3tK6wPHhJd8dnzE9XHB+sKCYZAidc/uqZVSWFKNT+m3H3m3wpaOQlrRUSF3Qdg2z0yMyJSlkik5zUqURScrh4oLV8h4lPC+/+hmffv4dVqs91b5lMp1zff0iljs3De+//5yHuxt0mvBwd49SCXjJ8m7FyckZoDC+J0kzqv0WKWC73XByesnd3Q37esv5+TsU2WjwA/6y7/XXfQR4W9SrVezQC4/EbxFVDDkoUHFjGNdOgUcbzTCgDWqXH0juEDECj9dNnQwDmbFDSjv+DvGYLrQOPXi3pBS43iFFrIiCWMsSAJ0pZKEQNuCdo6sstnckSVxr5+OUpjKoge2lC4lpBzP9sLp0nUcR0IWKP5tqhLNIGSiKaBPpm0jA12mCDCBDQKhAUsahqKt6dKbRWUK/b7Gdo7eCNM3RucILSb3uwf9ysHhMWqo8QxHoTCAvNba3pHn0I3atIR3HtWKSgRJqSEdqnFA4otHcmYBIAzKJadokOGwfbRG2twQXMGboH+wjJNV3FpGlOCXI8gjNRvjoVzORSymEiK9VP6AwVOyNhGHoFsMc7f1AbY/eNeuJa8IgYtWQ83gRFTv9lvYeV4fBuSH9H0umleSvdc/xtRiytNaMR5OoKGUpcohWPzIxpNJkaUrXddzeXWFtNOsmOuXu/pbRUPtxdnbOeDyl6xpm0xnj0Yjr62tc2COVRgrFzd0NRVawWt1zMD8iOcl48+pLFofHbDcb8jxjNJ7w8PDA8mFFCJaD+VGcxUNgu92QFyNGZcFqtSLLM7KywHso8kiGL4oxq/UdjRT0TYW1FudahIh14BcHBzw7PsF6sCpKYEoJ+i7WjnRNw367xPU9TVWRKEWZ5tRJQioEbt9RVTtmB4dY5xmX40GpMaSpQDiD0jDNxyAiM0kMu/myKAjO4UIsIU7zjFd//hPM/p7m4YaTuYR8gukqhFSMRlN6l+OMwTqH6aIMXCye8GwxYTY/pG5i0mxxeMRqteL1y2sWx0+YLY5QKuFgsWB5v0KqhMT1PHv++VANUWFNjwc22zVFnpOkKTc3bzg9vSAAdVNT7bfc391zfHpK13ecnT+h7Vq6rqPtOkbjCUVecjA/YrNZcn31iqPDQ4w1tE0VK5FUNL/f391xcfEuTV2TJJrTkwuEkvxv/8v/zMHhAd94/uHXQsnSWjPKR6xXS7I0RSAjkRiPToZVYprSNS23u9d45xmND0iSjPuHx3MicHb+hPFQP3WwWAwptGt8s0NIjUDy+vUVeZpTmz3z+RFJmvP69VcsimM26w1lnjEaj7l/eGDVP0CwzKfHeAIuBNbrLWlSMJ0ULK/u0SoqXp2FyWSED57Z8QE3L19TTiy238fyXWGj6TVTnE4XfOPiAoegqSJpOwxNByIEjGnZ3t1ijGG5rClKzcTnTKoNoreYfc/6Yc3i4IC+skzzMV3bYYKlmBSDauXIfDTMbkwXpQIRKMvpoNhBMDXCSW5/+kOU3NLXD6giMDmYgPK0LiIq6qZFpB1N5zGmQaSa9PApZ7OSjw4O6d2eNJEsjo+4e/PA/c0VBwcnHJ4eo4Pi/PyEbVPjg0Flhvff/yb7qsOFFhMcOk+oXYPaCMpxzsPNS07O3yEAu/2ezWrLm5e3nJ6fYVzP2eW7NE1D17T0Xct4MqEoRhzMDlmtlty8ecHx8RFdG0HJlliKfXH6hNX9A+eX79I2DVmmOZudI1D8mz/6Q2YHc55/8OHXAmsCg3dGR89QCCD0I7NhMDEz8JZUHIicYwBKDk55wluzeRACmQ7rQhEIQ7cdYUifhWgkj9aeQbUKIQYlpHiUtZAJA5tJ4EUYVpYMBPhA4h2ud3FFSIi1P96TzzO6vUEP6z7vBEFpgrBkpabfO/JxClLEHk8bq2W0cjgfSDOFb228+CNj5UwKWgnM3hAQ2NYhif2h6SzBNvGzMJ/GFV6wDrPuIwMLCP3gSSrSWJ3jHdJD3xh8YwgqIy00TSdRRRGrgVS0v7W1RyFRQRCkJCiJI/qhQipJUpBZhpUC13iyoVhaa4lwliLXqDKjX1cgAtJ7+rpDJIrOK8gTVCZpVh1JKhHBEVBxGJZRPfN9QKjIxnocxkX4ZRpQDO8VJWNJDiI+PkIk3wskzsRBLBDRHAqBHz4fVBph2UL81c+Hr8WQBbCvdnjvWK1XnJ3Gapuu7yEIdrvI9LHOMiomvHr9AmcN69Udn33zt9jtdsymU168+JKHh3smkxllEQev87Mz6iYaTLMiR4oI1zw9OWe/3/Pq5S84PDphu1nTm4bpZMFms2G1euD8/JLtbg0yUoDruuLwJK6+vHM0Dw/0vSQRMiZYGEx19KRJRiseW94VSVK8TRmOsoxEaawPrAYCubEmRpGVwgdo6gbbtdjOoHOBEpGbRQiEzqCVpu97dJLig6coS7q+jf19XYNAUO3rCOrUCcE7+qYh4MjSlGT42u7hnot3P6LazFk6j3c30UCZRfVru9+SZwl5Ee9qIeD2hjSfoTrJ1auf8/7zb/KwuuXu+oq8KLl685If/M3/AB+gLEuKvCT4B0IY9tpCY0yHtYZRES/CXdcSvKW5r7l88ixWwhjDqBxhvWX2CHFVgSzLuH7zmiTL0FJxe/WSo9MnFHnBaDLlTL7LZn2PWweaaodKEtbLa8ajEUIIqv2OLMu5ul4zGk/RIeMHv/O3CCGGA74OShZAVe/xwbHerjg/vcAaR9N0CBHPicd0bJmMeXP/kr63rJe3fPb599hstkzHU168/JLl6oHJeMo4H+FD4Pz0nLqrhyaACKr1znI0O2e3r7h5/QVHRydU1YamrpnOFqy3W5bLB87OLtnuNwQJtjdUTc3i8JiD+RQpA/e3d1ip8F28NfdCIhKN6TtUSJACkkQS+oASeeQCWUEWUmQXL3Iejx3Mx9I6hNQgJKtNi+s7fG8QGdA5MNFLo4JDpwlt2zOaFxG8mWax4BeLsT2OJMJpo8mC4B3e9yw3S5K8iDYFb+m6HR9++1vU+xve/LnBt/dIC1IX9J3BmC1aKLJyjOl6HALDjiSZIq3i9csv+PjTz7hfXnH1+g2ZLrl9eM33v/+7+ADT+YRcp9xt7tHjOVGGVngZMS6ZKDDG0ZoWaQKblze88+x9qmpL23SUxQgXHPOjo8i/C45EJVy/eUOWpygEN29ecXT+hDIrmC7mJHnC8uGO3Taw325JRgXr5RWjvCR4qOs9aZKz3GwYT+coB9//7d8BCc0QUvk6HHJYVz2urZx7TE5HTtVjfD+YwX8j5ZAkFMOcFeI67+3g9WiOH4zQOqoVEG1tdlC/HreOjyZ7/1YxC3gT3iYPY2VPtGkkmUbrYS2Zaox9/HVxrWl7HxWYJLIUnff4XhK8xJmAaT3exHV9ksQUnUCRpCIGoqSga4nF1GLo52stDJwrlcbPW28sxSQd7BdRTUoSQZAK5xUiUbEXsI/Jap0qXNXilB6gvoFklFPmEqSg3bZIqQgyhgP8r/DHRBCYPiDSIdsSn73YDRjA+agqeQFZInDDSlInCmscbtcxwDZw3kfwqZIRIxECKlWx6s1alFagxVvl6pFzJh+HVuOi2f3RWxcegxMxzfmoTEFcTzIono99h0rJGE6AASYbK4zEQJv//5UnKxoXFd4a8ixnt9+wXC7JsgznHN1dg0dwcX5JEPDBhx8DguOTc16/eY33jizL0VqTpzmHh8c0TYUUmq5radoWCDjvQAjevHrBxeUTXr36iuPjY66vrrl88gS7s9zcvubpu8+ZzRbUzT4iJaqKk9Nznj57TltXvLl+Q5JkFEVJ23Yk2uN8DTJF6iRW0aiEPJ9SqTVgo1HSx0SV9w4hFVopumqPHTq4ghB0/UCA9y7CKEVsHm9kRd+laKEIcsZoOsUYS1EUeGdpvWM0WdC2FYJAU9UordFax7qhpqKtd2Rpgjcd295w99WfkyqBCTte/dkPuXnxM95794LRqMZnKUdn7w0/v2N59wYhosKSz84hHXO2WHB+cUnT1IzHE/q2wzvH2dk5yvc0+y3bPKFpGibTCX/5ox9y+uQD/vh//Bes2h3vfvwRKkkItqcoSnSimc6O6PuOrBijlB7k3sBifsj11atYxZPlFMWYw8NDmqbGzA4J3tIbg3OGtm2YL45JkxQ/XzAajdEffMp+v+X65iu8j4rb5fk7FEXB9dU1SZqhtaaqauTX5IKSBmh6Q54WbDdrVpt1/Ju8o+8anIfzsyd4pXj/o8+QEk7Ozri+fY3pTOyOlJJCZxxMD9ntK5TUtG1LM6y4tY7rs9evXnB5+YRXb15wfHzC1etrLi8vaZue27vXPHv2nOl8QVVv8cFQNxUnJ+c8nc5p64YXP/+S6eEMnZb0zpEGB67G2IREZQTnKCY5nin79YqskLSdwweL6x1BOGSIqVa/3+JqS9cHqiZBpz1d39J2Hp0KEiMwXaAm0DUbcpngpULJEUEE8mKEcQ6RWEbFHNNWSCmpa4vz8Zzwdkdb7+n3ewqg6w2bhyX3r/+CTICVW776iz/m6suf8fzZGcruSVTCdPKUJNG03Z6Hq9eoNPasjqbnOJHy7Nkp7skZdVuTJBOkstjGcrQ4x/c91X7LepMyP+jJ0zE/+dEf8c77H/B//Mt/xrqp+cbHH5HOIjQ5USViphhPD+nrGplOydI83tCFwMnxIa9evcLjyfKcIh9xeLigaWsm7ghnLa2y+M5QNzUHh8dooTlYHFKOxujnH7Pbbbi5fYHDYe2Sy7Mn5GnO1dU1SV6QpIr9vv63oZ2/xkN4R+w+EUOh9QAa9fGiGHxMGXoVL21SMnQRDgmzRz+Xj6s4Bt9NdEi/jSVGEvyjn2dYEUb/zvA9cvBuvfU/DxlGGX8wSTSm6kkmGb2LnYl4hwKsG+p+jCUp1KB6OXSuhiLlqMjIoU9Qiqh+qe7/Zu5Nemy70jO9Z3W7O330EfdeXnZJllipUpUEKcuSjVLJEATYBdTUAw0Mo/wjPPMPEFAwYHtoGJ544IE9qJk9syzBpZJKTUpJKplMkreJPk63+70aD9aOIGHAUGpgkBsIEIx749wT5+x11re+732f1zIMgbbVsYPTWAYrSXOF81FnFD8wxw6chXZvSbKoQ3SAzATYgaH2BOfpZRTogyLLYsQNY5JPcFHiIkKEiTod8FIjtEHKGH8TtKDrYqdIjU49k6pRTxZw/UBWGOwQWVPDEMgKhbOWQfLUaRTjmNJ2HqslqRZYJcALEgdaxvHt0Ad8ovFtIHWOofcEPeIcIs8b+4hwYBwbj4VVeDJNyDGGaRz9uihJCKN7MgBBCdxYhMdD6Fiej3vD36ex+70osoSAtm04Ojllt90z9A0fvv8RTVuTpClVVbJYLLm6viZNEm5vblkdrBj6KMqeTBbM5zNCcMiD2EqeHxwSAuy2W9puT55NyfOCstzGGIqi4P33f4BSisnEst2s6bqe1fKYm9sryt0Di9UxRTHDOUdV7xFKkiSG1eoQKRVluSPNUtq+JUkmROJKFMQpHVef0pEjFNwjmdjTDB3KeYTRkWDsBtxji7XtCHjqrnu6cfVgSRQ42yFNglpMx2gcSV1VpGlCXkzRUjCdLmjr3dhZC5Gkn+WkaXQWlusb/NAwWx6QT3KuPv/3yG7P6mCOrQ9RiUElGUIZNusbsjwnTXO899ihp/bgtUBMe6SCpmnJ8oxhsAghuL684u2bN8wmKavTU/a7O46PTlgsl9xefsXx6TP+9I//kE9+80dU1RZnO6aTCXbo42vlLbvtjov5il29p64rEpNg+575fMlm+xAL3Cxnv98RQgw47vqOoe+p6z1SCOqqxCYpk+mcfmipasdyMef89ByTZlRlyd39PXKz5tn5BZ9++hMOj0+o6urp9PLdrglB0zYcHh6z3VcMQ8N7Lz6kaWpMltG0FavVksvLa9I04eb6hqPjFX07IIJiMZ8xncY0AqniiXo6PQQh2K7XdLakSCfkeUFVbjk7e0YxmfDuOx+QpIZpYdntNrRtx2p1xPXtFfvd/dOasM5RlvE+M8Zw9uIcKSX7pkYh6V2P8QZlJASLJLbwlZFIY3Cuf2LvBDsQdE8IDpFkIAXODwSlsBK8HxDa0bSWwqTIAN3gkCEgfR9xEUXO4qBAmoB1DQiNETlSQJJMsd0eLePoIPjIl9MHCbVQ2M1bBrcmnx+QFwm3n/0pDBWrgwW2OUJrTQgalSSUzR2mT0nTnCACve2wbYs1AjU/j9q0piGfZLihIUkkN/cPvL18zXRqOBnO+eyvrjk+PGU6mbK5/ZqT4zP+8k//hB/8o19lfflAs+so5lO8jJZ3Hzxl03J6eMbDwz3ldkcxLbBdx2q+YLN/IDUJWZKx28U1UWQFvR0Yum48eEG1L0lMwmQ6w9qOsipZzOecn8U1Ue733D88sN6sef7sGX/zk085Oj2hKquRtffdr4kQIv8K4ujHj92rIORIBBeIJ06W5xEy6XzsVggxit5He75zI+up2zfmAAAgAElEQVTKxw4PY8H2WHwJxigXHau12EV7/ApPGzgQdTw+Slw8nnRicMGjtGIYBrRS+M6OgFQfR1cjhXxwcdwFUQ9G8GRZHFVKraI+ClCpIhg1Tj0lAoVK9ag5c3gbyAwwOKwVTBcJOnKp6eqYmiCkYBhcNGB5hxDRaWdD1Eh5G0hTgTCSwYHtHSo4nFWQMgakh4gPmhgMMUzbByK0VMnoThQhareI3T0hgdYhnCDLJEMIKB0zELtNT1okaAJCS/rWkkwzbGnpW0vQiqAEaWrADXgpECqJmYUu4IaYr+hdNJiNtXI0NDzeu6P8aOxbjlqt8V7x0Y3o3ViUqW+6jo8FuBoLL/H4c7/gkvhecLK8j6Te3XbHw/qWophxe/OWu9sbptMppydnDMOACIE0SSmKPG6oTcV2u6Hcl1RVRT/05MWEsqy4vrzEDj2z+ZzpZBE3gP0eY1JmswVd12FMQprmcVEEx+rwgK5vmRQTlFQ428Wcu1F4X5U1b99ecX9/H/VMSRoXIGLMvAsRQDfShRNjUCaJ2pexAvYeukITZBwN6tFS6p3Dekc7ap/avmVwA3XfUjYlbRUF2UIKZJbEEclosc3yguADdV3G6JwQF0IsjAYi18SwOjzGpAXapDxcfs1Qb1gdHbO9fc3PfvxXDE2LTgzKGJIsZxhaNg83bNbXHJ89p5jNCCFgbYOUgbZt2G02NFWNHTrSJGG+WHJ5dcd2tx7p+5r79S11W+MCNFXJ/L13UcWE+WweichCMpnM0Sah6weOTo6RUpLlBdpEjd7t3TXWOhbzJdYONE1DXVVjMClPOAvvPZPZ/Fuvt6euGrquZbff4YnU+7zIqeuSs7NTQoCX777HarHgnRcvvxejETeKLXe7/bgmpqwfLllvblgczDk9OaNre3CeRCdMipy+i2tiV26o6oq6jiPBLC+om5rrt29xQ8d8PmdazBFCUpYlSZYxmy1iBzHLSNJ8dN9ZDk8OafuGSVagULi+42AZsx+7rmO/rXj96pKrN9c46xFOPp3y7EjTttZGgjISnSToPEUlGpNGkKQfPLUSkV2EQkvJMES9l3MxrqrrHPtty25d0Q4tVV1iu9hhsb1HT3OGxtLuLO2uY1IUGCPobRMJqKmOLnhv8aEfx0aa1ekZISsQyrC9eUVwO1anx2xv3/D5j39Mvaki+DDNCSJl6Fr2+1u2u2uOnz8nn07HsUOLEPFe2zysabsekwWElySi4PLqnl25RQBGa+7ub7C+Q6hAoGfx4gWzowUnZ0uKiSZNFJlKSZQiSM/88AhrA3kxwSQZQmiub69x3rGcL8fPw4aqqUkK87TzD0OPs45iMo/FiRQECft9Rdc17PZbrA/0Q0cxLSjrkotnZwgRePnuuyynM9595/uxJh4zCJGx2IK4SWsdxc9C8MS3Yoy6eayCxBjJwmOhNo77xNNmGb4BkIpv+EiI6Eh7dKoFQsQEhPC00QYvRpZWLFKciw7BoXPgI5ZAjEyuEGIXi/Gf9ULghRhZT6Pg3jlwHtdZgg04F9dObwNhLGCUjMDQoQk0uwi+xsdDecyltSgt6ZuB+qGnKx1SBkyq4hhRS2SqiNY8j9RRS+acByPpiIWp1mDSsbMHgKDvLIFAkIquC+O4TyIVCB3H/UJFj2XwIb4e3kcd6Sxl6BzNdszrVXHve4wXMqnEqEA2SZDOU0wU6USR5QqjBa7tx7ggTe88/YiGECN7I4SxMyZ4es+QAmlUXBLjn4fAGG0Unt5j/5gWLsIYnRXG2B/GsWM0TMRC+he/b78fnSwiZFEEwfnZ80jVFZrDwzkP9w84O9B0XSSRG00mckIITJlzdnpB23U475lOZnRdz9HRMW3b8Pr1G+7ubnn/g4+YFBmd7WjrGh882+2O2dQym8ywg+Xo6ISyrFBasVgdxa4KgvuHWySC5fKAJM1YLJfsdjuEFJRlyXQ6oW0t3dCQSRMdgirFpCkIKCbzKL7Do7TGu4A9X9H+9Ia50Whv8cOA84HBgxcB4SJPSnhNP/RYJRBOMvQHBAaODlYkRRFbmYgndIUxhnK/RghFXVUUkwlOa4oi6sH6ruf0+bsUaUK923D/5jPaakuaKpaLY+p9i3eOsmwQSc58eY73A3dXX1DvN5hixezgjF0zxGJSRJHlfrvj8OSUpq2wdkAqwV99+jUffvgVR2cXbB9uKbIJ0iz47/6bP+A3f/d3ef+Dl6zXDywXS5RSlPs9i8mKxnmUVOw2DxRFwcHqgMu3rzg7e05V7hAE8ukcaweSRPHlF59RTOacnT8bbd0+jkmaHcfHHyMk3N/fsFoe0jYtQkjyLAZ9X5w/5/rqBiEitf/g4Jih7Z5o0N/pmhCCsqkRUvLs2YtYhAfF0dERDzd32K6j7XuyIkMZRS7yGBFh55ycPKPvO9xoimj7gYODY+p9yas3r7m/v+Pdlz+gmOS0fUvf1vSdZb/bMZ/PmE5m9N3A0dEpZV2htWZ5eDyuCbh/uEGgWC6i0H6+XLHb7QlGsvtyw/zsgM5bvOmxQ8QFCJmilUFKmE5mrDuH1gI1NwTr6E8C1WdXTGVCGBxt73GJQGk3fggLjOwInefhumJ1mNBKSVMfoKRkdboiW04wRlGXNeW2JSkMaZ5Qt1FT1Pd7jC5AGbIsj1wi71i9/JD5JKO+v+Pqi5/QJlMOpoLztKAZHEIEHvYNZ0crJuoMHwYebr+kq3eofEUxO8GWEbuiVUxluLu84/z5GVWzRyQCJQQ//uuveP/Fzzk7OaHa3bKbT/HDhP/+X/8Bv/6bv8N7L19QVRvmYYJQksYPGAq8GAhBsa83ZGnG4cURl59/yfOLd9iXW0TwFPM5zlmKVPHlTz+lKBacXzxjV+4IeFxwdLbibPUMCKw3txTpnKZu0UaR6Zyu63n27DlvX11hdKT554fHVHX7vVgTiJjrGhly4PtRL6PiITe48GTwiSBSgZLRbRakfMI2CKLj0PkQ6Q1jd8vbcTQUAuAJDrzwTxutfzy8PuqqBCPA8lvjo6e/KAhG4aTE71vENIUEdKEZxqILwogxieM22wVUIiJgNgRsG/kCj6iIwStCkKQmgPdoAy6JhWFzPzBZJgjNU4ai0JEcb9I4rmsrF92OI3zUEzDa0regLLHqkwKhoUdhjMIOQ3Q7KsVUOoLrERND7wRdHygmKf22HQtZiTSj9mrw4DxKx4LVDp62HkhSAVKSTHQsaofYKTTajSkjEtv06ExhK4fKFFmhaNcDQgn01NCWHWoisT5qq5zzqFwSaos2o6MxxFxCxTcFlRhDDX2UucVCU4EUsTBXiYyTACnR42gxjOijR5yHFAKe7pFf7PredLIm0znPXzzHDsMI0Yygwqapubq8pq5qFosVWkWNkbOW6+trfv7zz9luHnj75nUUNVfluMFYtFZcXDxDa4FzlmA9B4fHTCdzjg6PmEynrDcxDPf6+hqA6WyBc5bt5p63b16xXBxQFFPquqKqSvb7GM2yfrgHoKoa9vsSO/RY18dZcwy5IklTkCKePHWGlAYhFL5I6KRHJwl5mpAnOuaajicYQXQ0xErc47xlcD1NUzFoA6sVth+A2K1KkoSuizT3MMYJWWup6zp2s6xFKc1svsD7QFmVOALWOrp6h9Yx1HQyKyLl2+jI14oJnpy/+JgQBNIUdP2A7ToEseUcgsSYhNu7W9q2BzzvvPOCr76+5C9//Df0TUPf9rR1w//6v/zP7KoSraOOZT6b8/qrn9K3HUUxoW06tFas1/dMJjOMSSn3O5zzvH71OS44tvuYU3h8eIzShsXqiCzPqOo92/U9u92Oar/FjaHdTV1zdHhCVe1p24Y8z7m9u8Y5Sze0lOWeuq5Z39+x3a7x3sZQ0u/48t4zWy15590XDENPTCHQDDbQNBU3Nzc0dcV8usRITV1VDN3A5dUVX379BdvdmsurNygJdbmja1tciPbvi4sLTCJxdkAEODw+ZrFccnJyzGwx4/7+FqkUV5dXCAST6bfWxNvXrFaHFMWUrq9p2pLdbo93PeX2njyBbr+jfNgylA1+6PDWxhBmIZHKgBQkeY6XBlAIqUgOEpKlYLHKKJSh0Ao6S2gGfOfxAxip0AqypUEknq5vabo9LjP4+YKhbGn3HbYfyGcpTd3QNw3eQVnVET7cN3gXNWBplpImEwhQ1juGEC3duAYhFM4pcCkERb7MGQaL1B4XJMfvfMLgJSqf0rsBbztEgL6xBCtIlGGzW2OtIwTHi2fP+frVNX/5159R7zv264bNTcm/+Tf/Gw+bimKSEnpIXMbbzz9lKFtSYWLYL4Ht7oE8mWBMRt2UiGB58/NPsc6y2d6jdcLB8hClNYvlIVmesi+37Db3bHY7qmqHCw47DDRVw2p+RNfXtF1Dlhasywc8Dutb6npPWVU83N2x262B78eaeJRhPGmVlIzFkgVBeIR0xw01AG4MYvZEjY4YXWePD/ZYVKhxfDh2P9ToTFNajPpaOQY7i2/GS4+jpFHXI1QsuqQiogSIxV+iA3kCytsoLO8t0sWxo1TRbe7GMSEydrC9iwDUPIfZXDEpJGL8nXzn8L2PHa4hatKUluQHKSYXT90YqUTM7Rs8za7FDy6iCryPEU42Aj6FkigTdWrKxI7g0AwRW4EneIHSKnITnUBIQ7m1eEeMufE+FjZO4ITCBhndnzIWV4TYoQo+IH0gMSryvbyP5kwpEFLhrKRrPG3p0GnOMECSGYbG0mwGpPVI63H1QJpKwuAi3HoYw8GVjFBhayNo1AOPhXR4/GJ0kkb981P14+N944ZoQhDEOtlkOrouFSOGKd434vFe+QWv70cnS8RZ9pc//ylHh2dY5/HOYgeBMQmHx0eYRFNXJftyz3Q6jYG1yyXrhzV5mrKYL1mvNyyWSxaLBV9+9XPyIkerqKHabTfkeUHXNWilyPOMwTpmiyV4z3w+J0kz7GDZbyPs8bGDcHX9liwtCGGPNAo32Oiy2m8RQnB0dETTNUTloSQEB0TNVGIM1lq0TbFBgPeIIqeZGNa3tyRakSpFbqLd1weHADIdXYNCidgFG3VGs1/+ZcRsER/TGLQ2QAwAHgaHEI7gLFmWUTc1SZLQtrGrkWUZRVFg+5am6vDegmvQ2mCSDOc6VJpRLA5wQ8xu1ErT1CWzk4+Q+TG9/YrgmyfIm0kSmmrPcnWMcw4lp7z3wXt89vmX/Nt/92N+60e/jiSOI1588JKPPvmIxWLGbrdjNpvRD4Hdbs3Z+XN22x2vLr/k8Og8up2SjNXqGKUUD3ee+eKQPI86o65rmRZTrPM425MkGe9/+DFVtQEUUl5gh4HEJNyv7+jaNop9tWI2naFUdGWdnp7HgG3nKJvyyTH0XV+x3e358su/5WBxFp1T3jF0oJOEg6MjtFH0Q8NmvWE6nbJcLSjmKx4e1hRZynw6Z73dsFgtmc/mfPX65xRFjpaGg4NDdrsNRZLTtTEaKctSrPMsVocIPPPZjDTPsYPjdn+NNoZnz47GNfGGSVFEvYM2hKHnnRfv8NDeIY3ieHFE75ooLpYS5ywmy2LklJVxJG09nmi5H1TKbefh6wgfnhcJoQlYDb0HpEQ7hZaBQUTruQyBrt4z/egTQjqlt5blckKo40FFm8j0kRKEHZAhpR9alMno+gGRtjAo8rTAdtC2Nd4P4GqcTlFJCqqj6zSrfIXrLSEd0NLQVnuKgx+QzE6pd18gqMdcPUk6yairkmlyQlcPFNOcd99/l89+9iV/8qd/zT/7D3+DbGZwsufs+TM++OgjlgcT6q4iTyf0CHbVmvPjlzTllp//7eccnj+n6yp8yJkmS7JzuLm8ZLE8pJjMRnDxwHQyZRjcKGeIa6KsNsTQlROss2RZws39DcPQUxQTBJJJOkEIgwiOo+NzsiLF9Zay3pNlo2nnO75E1DIDI8X7cfRj4y75OO3TiRxdeZHULRT4IWbsIUYx/Ch8l0p8s95lnKrEHwyRGO9iASekHONZwpOz7FEZ9o12fvyOjCkeMgQEEoxCmojkFErE0ZgUMX5HR/dbV3Wo8bAtx3FX3wWarsdkhiAESaJiRq4WBKIQ3DaeJIlFkutjgakV2MHjxtSPbJpGKr2P+jM5dnmsF3RtQD9q06REpQr6QLABaz2+j7pAQqAXMo5htabeWbKFJkhIZCxMQ2AMxY6Q1URFwThSRt4pgqGxuN6jRoxGzECVmGmCVBLbWYbexkDm3Ed6fOcIWhCkiIWgCvS1BaNGVhkM9YBJIzMMYtEbhBidhj52MMfn89ToHOOFGIvqMBa/YnyfnfSj23nsdBkV3aze/73G59+LIsuHwOpgRZIYHjZrNrdvOTl7QZpFQfViuWC33eGkYz6f03Ydb68uWS5XBALKaKRWzKSkqWoIkGUFWmtub24QMqrYFosp/RDzleq6pK52SKmpmho3WBarFceHp+y2D7RtjZQp+/2a84sXaBM9qU1dIQpJ0zbc3NwwmU3ZllvybEpdb8iyApSlqfdoHd2GRTEGeMrYwemaPeGXXrL+8i1Hr/csJlNmM8GqH+L8WgveXl2RFylGKPzQRlfi4ZKj3/tnUf+kZfygn8zYrO8xJqEqd8znS2AMOA3QNQ1ZlqOEpB2zINu25v72BqUixqGtS2wf8xxXJ+cIBMXsgEAcu5mkYHLyD5FJzu2rv0IqiVQpznmSNGO7uUcrxZc/+wnO9lycn/Gv/ovf54//6I/5s7/4C5T6M2bLUz75R7/C6ekRxTjqfLi/4/j0HKMNZVlyen6OMoqmqdntH1jMD3lYX3J29h773Z48NczHwGIXJFeXb7h8+4pf/bV/irWWzWYdOTI6JrbP5wuGweKt5+DgKHbGqjqe/hRk2ZzLyzdorVgdHDD0Fi0V2nz3y8L7MLLgNJvNhvXNJccnz5hMCgYfmC8X7HZ7hqZhtlww9B1vL98yX6wQMmASjSbeb21Ts2dLlhRINDc3txCpOMxnK3qbjo7Ukmq/RUhD09X0rWUpBacnp3z95T1NXSNkyn73wLOXL8FKRPB0fYNIC7a7PZebe7LZFF+VpDql6/ZkxQQhesrNA8pkqCQl9XEk4noNUuHaDfLXPuDuZ285v+tIKTiczJGFp2sG8qOMv93+nFwb8uWc8m7HZCqp8zm/9C9/F288dIHtw4bZasFud4vSCbuy4mB58KTF8M7TNhUzNUX2ga6r6X3A+Y71+hbQ9O1AOzQEBoZu4OCdc0Tn0HrK4MANO7QpKC5+SAiGtv8LvNBImWOdQJucvn1AG8MXb36C61ueX5zzr/7z3+f//MM/5o//5M9J0j+nmBzyy7/6K5yeHjItJnjr2OzuWZ2fk01SynIfD51e0nY1+3LNbC4p21sOps/J5iVFokhmC+qmwzrJ1c0bLl99xT/+tf9gXBMP2DEdQojAbDrHDhbhYTU/xJiUrm9HDSmkxZzLN69JGsnq4JBhsPFeMua7XRDEIsoP8eCpxrHNY2cCEY0+SIF18e98020YY3VELKKCiJDzWGjxxEMSjyp2EYX0kYc0np0RiNGRFkT8/Igk94DQcYSotIoxaCFG4XgPvXeEVOHHqsx2FqUfURIe2/ioyRoF5ypTWPc4QvSo3GB9IDGGcjfgUZhcM/SW6SqhbxqsdehFwm7bMZlp2sZiioRECbrS0o2YCCGGCIcOGqUk+HEUNhbQwnqCiLGD3kX9lid2znwQMQZHAoMnzRR0A4P1yIlGGWJzQUqGdkCamIXog0QSY90IIJI4rnw0CBBisdsGgTZRf6aNQOuAHztQwkRTgEoeCfcQlI5vlRAEEciLlLbsSTNN6OxTt8r7WNwxjgThsakTEDKmAETX/zgKdt+YD4Idu1+CiHUYtVg+8PeaAX4vxoVSSG5vrmna2GX6+Ie/xun5c4a+5/DwECEEWZ4hhaKua9qm4fT0jO3mMY9uR98PtF1LMZuQFXk8ORvD2fk581l0Wq03D3FM1LUoqRhs5Oes7+85f/YstoiVZLU6Is0mGGM4P3uB0QYBbDZr+qHn9vaa7W5LlmVIpTk8PGboOvouFnDWDnGmboeRn6KQSqK0GnUtAWkU8oML9tt72raOAdR5RmIMoYsQzcdZvZAC23ec/+5vE5IUNXZbbD/QdR11XVNVJUM/sN1umEyn0RKsNX7E/7ddiycGLadZRl5M6as13vYU8zmT5QH5bML97TVN3TDYgSAkSRaLNp1OqfdrnIt6gmr3gLOWq8uv0cYghOT993+Jw6MLVofHEDy/9Vu/yfruCuvB6ISzsxPyPKUYO2pZljH0LUUxQSvN7fUNAZgUBfPFCqUVq+UJTVMymc1YrzdUVTUKVB0vnr/D++9/xG63YbffRpRHVmB0QpbnMUh6aJFa0Q89g+1RUtK2HWVZ8sXPfkZRFLy9fBtdjIlBqmTUS3y3l5SS+7sbmrZFIvn4h7/K+cVznBs4OjocCewpWimauqJuGk7OztluNhwslux2W/rexrDooiDJMlxwpHnCxfML5rMZs+mM9eYhjpDqyL4ZQqB3A7vNmvOL89gaR7CYH5LlE4zSnJ2+wCiDMZLdfsNgB+4frtlXO7I8QUnFanWAD300I4SA7xsSAypxKCNJchM1FrlicVBEK3xuSP/xu+y3NyTTWCwbmaIwuKojiKiXC4MlMYKhbnj+L3+PkBVxI/AxEqTaR2xLVZWA4/7hnsl0irUBYVJEEvUWdV0TBDSjQ7eYzrDNGikH5qs58+NDRDqhqh+oq5ogPV4q8sUhQUl0NqWtt/ioeKZtNri+5/byK9JEQ4AP3v8lDg7OmS+OcNbxH/32b/KwvqHpHVmRc/H8lGKSkWpDMZmiVILzPZPphDQ13N7e4hBkSUGRzdFCUaglXV+RT2fc3T7QNGNMFJYXL17y/ocfsy+37KsdPniydEKiDGmacX9/Ezl6UjLYuCYkEYRclnu++PxzJtMJb6+vaOqSLDNok3wvhO8QdT+EqJ96Gt2oKMx+dI6N/3nSSYlHtta4YUZkQiC46HhTWqJ0LJ6eGlk+jAXYGB5N3JAJUfzsbdy05WM8z4h2iI8VHe4qpjghiN2P4FyMyyGKp4WzJClkE4lUApPGg4/Qgck8iYJ7LUimKQjL/CBDiMDQB5yNjrp0ouNz7SxaQrABlacIKekbGxlWWmP7qC2D2OlzNiZpByFwQiIzE3NEbfydxGP3R0RxukmiwUBpFcnv06jPNKkaoa465jqKmMEoRnOCNhK8Q+LjOM/F1EjvA96OKSgm8reG0SGodOxEOesICAbrx44f4/sUu4jOgm0dwkG372J3zEc9WMzjHiGkI7FfSsbXYHyTR63WY7EePQ+PAvrxdxfjWHnsdsHYDfx7zAu/+92EOIduqnpsdQ8x1LfvQCiatuHzzz+LXQaj0cown80JBPI8Z7vdsNvvKauSyWTCpChwdiDRCV9/9TXBe5q2IstziiLnzetX7Pc7ttsY09I2Lc+ev6QsS7Q20TG32xACVNWeV6+/pKz2XF+/JU0jo2gyX6BNwmyxIDEpzjpub68xRpFmSbQOi5EqPHpJU5OijCIQ0GmGlJogNPuJYvtwzXZ9S9d22D5a0ne7HZv1mq6uaHZ7hkSjLp4xNC1KKZqux46aNWstVbVnvljSlBXVvmRwFu8tbdcTRHgC8nnn2O92aJ1y+cVf0ewe0CqJ3YXJgmwy4/52Q1uVCKBt13gkMinou4bgI7AOIdBKoVTK0DZ0Xcf9wwPHJ6ckWjOdzvnp5z/ln/3O7/Cr/+Q3+OSTHwLRaVLXDRLJ6elFLFCHnn7ouLm5JFEGb6GrW9qqxjpH37VkWTrmE8YTyutXX7Df70lGPlpiEqaTWTwhKRn/fzqlbRvmswXGpBhtcN4xnU5p2jayubTmgw8+xDvP8dEJx0fH9F33XS4HIK6Jal/HQOZhiHmAfQcidqZ++umnDG1EmGiVPK2JoijYbDbsy5KqLinygiIrcM6SJgmvX7/CDZamr8mnOZNJxps3r9mXezabLU3b0rUdpycvontTGZq2YV/uAGjGNbHdbrm+eUvytCaWSJUwXy7J0hRnLbcP1yRTQz5Lo5OKURAbAnbwpKlhskhoyx7MBB8S2iawzRW3l6/o7Jpu6PChx7UtVjY4VWG7ir5rqKQi/eBdyrsdwmmscDjv6NrIEKvrMiZA1DVVuadpYgyV9Q47uPiZkmqCs+weNmidcnv5NzTVmqHRNJUkn60o5lM22z1tXeEby/7+hqEPSJMz9A3eDhDih7A2GpVkdHVN33U8bB84fX5Olmrm8xk/+/xv+Z1//tv86Nd/xC//yg9x3UBTDnS2RwAXL56zOjyi73raquH66i2ZMTgbsH1H31T44BmGDoXGZBmDjc6w16++YLvZYtIcrRRGGabFjBDimkiTlNliRtu3zOdLlEzQyjBYy3Q2jYfUPB543n3nA6wNHB2ecrg8fjpAftdX+Ha3KURqdxBEhpX1MDIHeRTAP/0gT8DMRzDmo1s7it7jhvy4eYpvdcri48lYqDw6Fsfi61t1WdRWfWtsGWDERoyPK0IcSSYyxtboqBlygx8NTDE4PS80XTXgvMI6SdsMOA9d15HNNKg4nvOdJV9opkcRZaBSTW89Ojd05UAYBEmqR72aQMooYQl+lKHIyKUCEWGgvccNDp3ELpG38cnrTBO0oCkD1XpAChULyCQWL7a2DNUQu4xjZetHSGzMyRZPXeTHolilYuw2BiSRBWZMdFna3tHXAzqJab8qUWNuZMD37lsOwcgSiwV2NDb0nUVohX0cBQLO+SfawtN7P94iiMfxbHwXH3EP4Ymj9RgoHbV/IX58PWFEfpHru5+LEEXuF8+fc39/F+fkQrGv9kDkMJ2dPSdNkxgxkuVIafj0r/+Gi2cvuL6+pihyjDLYwXJXxqyuABweHlFWJcYkSGF4WN9xcnL6VJHOFnPquiEvch7ubxFC8HB/S5LkLFeHbB7uKPKCfbkjy3JeffU1y8MlAqHNlk4AACAASURBVE9ve9LsILYhQ+Dg+CRyoq6usNYymc5RKqEfukhxTnJcb8duWYLHIYUk/PMfEYDybo39yVeoPCM5OORH/+K/ROsUWRgOXrxD8IHtekOaRKu+cxHPoLViPp9zd3eDMfE0vtmuWcwXBCDNCl59/RXzxZz5fEHf9zzcXZEoSVrM2F5+wYv3XmC9RyU5XV0xzTLW6zvy2Rxp5qjZOyAV9foN2AEnE4IbEFJzfBzjiPqu4vT0mIeHO+aLFVpJfvTrv4HJC7I8Z313Q5JOGbqG69t71nd35Jnh2bvvc3hwTN/3nHxyTlXtCcYznU+pq4qHuysOj0/p2h4lB9p2oCq3nJxckGYpIYQ47hAjUmK/RxCYTqcsFgdRMK4Nb15/RZYXNFXNs+fPefflS95eXpJmGX3fsd0+RGyClJjkux+NSCm5ePaMu4eY4SiEYlOVUZhdt5xfvCBPDeuHe0xWoGTCT378N1xcvODq6oYiz1ForLXc3t6ik5TgA8vpAXW5R5kE6RWb7T0nR0cRqmkU82HBflOR5jnr9T0oyXp9S5LmrJZH3N/cUBQT9mVJmmV8/eYty9mMNElomhaTrOIpMsDR4RlCCN5++ZYkWLJiRhApIh2NIT7l4csNIVUkaYrvB5Ca7rd/A5Uq2rsN7V98gUgTsoMVH//Hv09RJOhlyvzsBSEI1m83HM4PcN2Al47BDWgl0b6gaiu0yphM53FNrA7oh0BaaF7/9Occnx1SrYni8YcrNBJdzNhcf8Wz917ivEXplHpdcnA64eH2mmKxIPhlXBNe0m7eIu0AaYoQjt5KVidnEW3SlJycHrPe3DOfL0lSxT/9jR+RZDlaJez2D+hkRnADX35xzfr+jklhuHjxPkeHx3Si45NfvqDcb0lzRZrPaOqa+4drjo5O6AZLkjrqeqAut5wcXpBlGT5A2zUIGWiahu1uh1IwnU2Zzw6YTmMKxN3dNXlRUO9rFst3eO+9d3nz5pI0SRnswM36lkDAe/G9WBPwzQYnxgYSSIIDPToEpYhdJc9jbp14Ej3HLDHxVAjFUWDsqEgRN1j3LZ2W1BJlFHaIm7uEp70D4uaOEAQ7ugkZMxR1FGYbE51vwQNqpNWPAca2cyRaIAIMQyCdEREKjWf95Y5kXqCTUW8WPE5KklzFDkvnYypCB9urDmMCeowHUsYwND4ytEJAPHZzFFQbF+NojETicSGQTjSD9VFLJQVJbmh2bYzuGotMr+LvabKYP4vzVOvoVPTOodOYXhJGnZOSI8ZljLepG4fJNMEoxOg4FCO0VeqItjAh4DqLCJqhcxij6ftYzEo5dq5GTIbUUdusNOOYOHYonQ8jp2ssmsf3XIjYkYwIkPHD6REHIsaCUMQOmZDhm/vmUWs3sjfUyJ4UMqYL/KLX96LIQgh2ZSyGrq7fYr1jNp+jpSJIN2YEZrRNzfLgADwkSYZ3jvOzc7Iso+s6nHMkaRor/iwnVym7fdQjBDyzxZwQoNzv4xxWSpTWvPr5FyijcUPP0ck5QkgG1zNfLBi6jnqz5ubqijzL2O+3HKxO6bqeq7dfMZ8ecnd3zerojDTJYCIpq10cR/ajuFxIuq4GIeJm4mM5PAwDEhlTz89PyS/OUSbFFBmzwxO6rocQ6No20rmVQgpJ25QkaYrrPSFI2rYlBEHXdSwPDmje1EAcWyYyIZ/kNHVNU9UcHh2zXB3y+rM/R/gBjyDNJygCQ9+RZhOK6YS+rWnqjmx6yOTkBzTljiTNaU1BUIZssqAuN0hlogh9esxut2GxWMaRnneE4PFuQMkJRqds766Yzld8/PEnPBzfkiSGsor2eqUkbVuTpll83UYa8zBY9vsd08mCtnVkeU6vDfvdOgJIh4HZdMZ+v0cnitVyhfMOZ3vatmE6nbHbbXn58v2IujiSaKNx3nGwOmC7fUBJhdYJSZIy9C3DMHy364H4IbQrS5Ik5frmks5FHZaRCucsm/WaLM9o64bzg0PwRECmd1ycn5MXOW3bxhFqntH1HWmSkWcpZe0xSYoXgcl8RhCSfVniuyEKzI3hzddfoBNDCD0HR6cIqehtz2K1ous6qs2aq6srsjSlbvcYeYgbAq/ffs1qeczt1SWHRyekRc7qWFPuNog0Y+gtVFEDVDYNKktI5yntvozCV+/RQTLUFnV0xOpfnCGThHQ+pTAH1LsGIST1ffM0TtDaYEODQIO1eB8/DKWUtHXHdLqkaStk8DTbmiyZk2cZ1XaLc1sOjk+YTla8/vQvUHgGJ0iLIo4Hh4bpYko+ndFUMQfTTA5YvvMxzW5HolNanRO0RsgCO+yxXtN0HdODQ8pmx3yxoNyWBBv5QrZtSWcZIhjK8p7pZMk/+KVPWK9vSY2mrGq0ETgvGWxDmmY0ro9rIoAdBspyT5bOqOvIybN9S7l9oOsLusHGNbHbYVLF4WqFDw5rO7q2Zr5YsNluefnu+1jnODqSpHmCc5bDgxW73UPMGU0SdJLSNt+PNQHjpjeOfB4J3UJ+Y8v34TGdTsTWqeSp+/QYt4KAmPA1srFE7OpEyGTUUj2CkIYmZuyoxw7XCNV03yr0nrhL43P0NpAaNeIAFG4cZQYvwAaEBjMxsQBTAhnAjvwnWwdklqDzeC9LQWRsBYFtBoRSpIUEoZBa0ewdQ2sBiauHyHdKIE0k0oiov9MxQioZWVbBRVG7TmU001QDicqwLuB7i1GxyIjOvZjpFx2c8WVRY8HoiTFxysTooqgrszFQWUqCEPTNQDqOIsNoy5NmLFJCwA7EUZ6P4Nj4vMyYWyyfDEDIWLA5S/z5LrpL/VPnMhas7pF7JeWTw/TbHc1YCj/eSKML9REJEp7+UnQcqngPieDHUfJYjBGL+F/0+jvHhUKI/0EIcSOE+PG3vvdfCyHeCCH+fPz6T771Z/+VEOJzIcRnQojf+0WfSNd27Pdbnl284IP3PyQxCVmWsbm/JUkUWitOTy/wztM0DUpJsjyjbmua9nGj1mx3O3prI6yyaZhOF3RdT1VXNE2LtZa2bVEmIctyrB1QJsa31E3Den1LWW0xStH1Lbv9JgaOSs3q6IjZdMV288Aw9Lx99Zp/92//kPu7a7I84+2bV3zx+U/ZbvY0TTO6TaLILzqXAkYnKKVGrlVCkDJmJA1D1K5YS3Cearuh2q7x3tE2Hc560jRFKUHbNCil8QQGa2mqmq7r8MHjnGU+X8TcJxXdKARI0xRCoNyuQQjy2YK63JJmOQjJcnFI8NDUNQTHbDbHe8iWF2STRYydURqpDZgZ/eAxJmqfTs6eMQwds/kKKTV5MWG+WHJzd8N0NieEQD6ZUJY7+r5DSM1ydYhUhvliyb4s2WzX7Pd73rz6GVrr6ILKc37w8Q9JkpTd7j7mV1rLYnWKSXP6vhvfQweEsZUbKPIJi8UBbRvfv+vrKzbbNU3b0HYt2+0aIQRt19DUFWVVok1C09Tc3tyM9uXvfk0MbUe53/Li+Tt89IMPyYxhUmRs7u9IUo02mpOzZwTn6ZoGKQRpllF3DXVTxba8Vmz3O/ohxg01fcNkMqfrO+q2pm47us5S7WtMllJMCqztUSaG2VZVzXpzR1lt0VLR9w373Ro/eIzSHB4dUeQLqmaHY+D167f8yZ/9EXcPNyRZztdffcXffvoZd/clZd0xBJBJShgcXlrMPMU7hTZq7DomBKVQUmHLlnLd0m566vuW6uGBZr8dc/0cvQtMpgkmi9gSicL5gA2etqnp+g7rYrE/L+aoYFkd5OB6vBcQDFJLyvU9IsB0tWJ7fU+qUrwNTNMFvg+0dY1tB4p8hu09yewcEQqkSpHSgNbIbM7gHFlumOQZ5xcXDLYjS2cQJHk+YTJdcHN/y+xgBUqSTye0/R7rO7QxLBdx/SxWS/Z1yXq7ZrvZcfn6C7QxT/FhH/7ghyRpSlk+oITGDpb58jR2oruOLMviuhdxTUBgkhcjK65hu33g+uotu/2auq1o+467u3tA0HUNdV3FQ4sxNG3N7d33Z00IQiT9j3R3KSK64WnnHDf/J5t9+KaQeoRLPl6PY0U5RtEFeKLBu0eK+CNFXvgnwXRkLj3KQYgdo/EBH/9dZx0m1XEkOIYlBxEF8s7GcfngwAaB9SATAzaQFIZsmdG17inea5SlI4IkdJ5mE+Gi9XZA2FiM2NH15yXoJFLTvRh1ZR6kVE/FpPcjENV5EuGZzROU8Pgg6VqP0OopAk4pSV85GKIW0nVDxAyF2I3zQwRwBxvoqj4at4jZJxF9AEpFkX+EwQaGLjLNQohdJCEFQkuEiWBpnY5wVsXoDBw7TOPPBzvqy8ZxL56oH3saS4ZRkxdi4RS+Nbp8dIAKnvTOhDAeYPzTGFKMkOPwiOl4gs+OlZh6vOf+7usX6WT9j8B/C/xP/6/v/+sQwh98+xtCiE+A/wz4h8AF8H8IIT4KkWnw/3nZYcBozaQ4BAE/+/nnTIopUkiawZHPcgKCeiySuqZhdXTE26u3nJ+cY63j+vqK2XxJ1zaR9qzjyezu7prpZAY+OjiUkBwdHWHSDCFAj6L2Yeg5PD5FCkFRFNRNBx5m8yisP1tcUFflmNIQ8M7y/OWHSClxfuD//r/+kNlszus3r3n58iV3128JQFsNZFnCs/ffx9qYrZdkGVYNBO8Z+j52u7zH2QEvPbJV1H1PVe/JJzO261ucc0wnC7puACkotzu8CLRti1Gapqxom/rJPdM0daSmZxl924/sjxi1cPvqMzZf/Snz+YyXH3zMv/+j/533PvolismMvrtnX9YMXcuLf/Kfsjh+B5VmhPU90hQEkaCKA9J8Tj9Y2qYmz8GYFDxY73i4vWGxWvHe+z9gt91FnERV8ez5B3gfWK9vSJKE/X5P19XM5kcslkcMfUPbanb7LXk+4c2rL3j3/X+AkorDw3OapsJoTcAxySY0KJIk6kqaJmrI9rsNUkqKouD09HQMMD7AaMP9/R2npxfEkOiK2+srhIA8L1jMl5TVntOLc5T6O5fF/+9rYhgGjDYUeYFQ/w9zb/Ij6Zamef3O8E02D24+e4z33sxbOd1SNwXNqoVANMkCsWTDEhaw4w9g1UvYIjViC4glYsOOrELUlJld2UVm3TluhM+DuY3f/J1zWJzPPG5LrcrMaroyTQqFu4e5mXvYd+y8532f5/fAm2++pJP0kEJQOksnTGgaKKqCpm4othnjvT1u7m/Ynx547MLdDUnUp0xTut0uOvSWp4f5HZ24hzMCJRVJIOnsT4mSBBAoHSCEoG4axnGCVpJuv8t2W+IMDIcT1usV48kBaZpihKA2BiktH7x66XUxouEv/+xPGI5HXL075+TwlLvUF35mnRNHIZPXH/k3bClARYhAopxB2ppmJ251BlMVPpC6KKkoEXlCKtaIUOKyHtmbyjvO2CK0j+hSQlHVJWVdIoSiMYqqztBxhHaCsioJQoX3tWvmV5+x+OpnJFGXD77/Mf/iT/9PXn/8PWTYQ9RLisZz6M7+6D9mfPis7fAskd0BpF0a06M/HPkIEJESdxxhGIEBIy33D7dM9ya8ePUBq+WaJI4ps5Tj/ZeAY/Fw066JNWW5pT/cZzKdUeU5hQpYLVZ0Oj0ur9/w4vV3UUKxNz2iqLwxwmJJkj4UOWEcoUXwFDG1WS8Rckqn2+Hw+IhtmjEejQl1yPzxgYO9I6TWpOsNtw+3gCDSmn5nwGa75vj4EKXU73xNgBcmezNcO9ZrY3Z2XQdrbBvl1G6KQrYdEL85hoHXIbmd5sqfg9mJBq3wXZpA06Ia2jsI6Ynuu1GU8GMx43zcjRCgsR7PIARWSBrr2VOJNZ5UriRWtUkdxmIKCy2Hi9R3o0ojULUlCKXnELaaLh06jAC0wDWCxnoMg3WCsBuSPhYEXU0yiHDOUmxrJOJJhL8TsMtQI9qIoaYRuEggI01VVCDdU0QPWiNVK/CvDDqWSOWp7UVpiWJBsKPbi7Y7p33HDeGjdYpNThBIbGkIFFhrqNsRpFQSYx0qlp6jhfDaLCl8aHaLVFDSF7a05HulZRvmzHuqv9zpptrCWsq2eJNY6VoEhweICrej17dQWSGeCiuML8SUwEd1wRPLywl/DYnGel21lu9bl7/m9mt3E+fcHwshXvxmD8d/AvyvzrkSeCOE+BL4I+BP/7ZvCoIAHSiuri4Jo4jDw2NWqyVVXVMWefufA0Irer2YQIe8+eorHykTJcRRx+uixiOsrZjNDlmuFpRVhVKKIAj8SUwI6rpk2B1QWg/mK9KM8XjEZrNlvVrRNDWj8ZSyLKjLvB1HKKqqoDcYsVouKIqcKPQX82effkq3E6Pazle32yXL/LgsihOurq45OTvBOS+adDhM3aC1xliL1NpX9U3TYhcMdV2iVYBwjtXjPcYatPbAUa09M0Wr1qnYtmGV9s7LOPQOlCiKyPOcpmlIuglV4TPWqqYkCDRhd+QjFoKEpnGsFiu6/a43CmxXdMf7xIM9VBiCc8S9EWW2R9ibM19tkYVlOjtguXggCIyHyyGQSnNwfMT93QNZlnF8eooAxtM96rLi6uobDo+OSLOUdLPi9u6al686WFsz7A8Zjfe5v72m0+mSJF2iMOT25powjLm6vqCpSsajPYS0ZOmW8WSGxdLt9ul2eoD0YcJFQVWWrFvBdrfrA6Xvbm84Oj4BBHHc4fr6HZPJlDhKSFdrok7Mr1s9fx9rIgwClJZc31wSdyIO949YrJZUdfO0JgAE0gdgy4BvvvoSYxtCFREEMQbBdDpBKMNsdsR8saCqKpRUBEHoo0ikpCpz+p0+Rd3Q1A1V6YXRaZ6yWa+xpsGAv55aCn0YKJq6oDcYslqvKMucJIqwzvLFF5/R6ydIpWlMRa/XpaxynHAEYcTVzS1HR0fMlGv3tqZ1A3t9BnXgOxK1eVoTja2RDoSyZOUCQkdQh5SyIJASrKCoArRV/lRd1lSbhjzZEA8CtLCIICTLMnSvQ7eftGPpijwrEGhUNCLpKaJul6YyrB4XJIMBZdZQqRWjo2PC3gRjJNpB0hmS6REyGJNXNdVmw2hyQLqdEzhfIFpT4RrF0ekJ8/mcdJtxdnqCFILRxAvcb27esbd3yCbN2KZb7m4veKa6OAz9ZMBgsMfD3Q2dTpco6hCFITeXa/b2Ii4v32GamuFgglCOdLNhYmdY5xMwep2ep8eXBUVZ+onBdgVAL+wxGU+4u73m8PgEpCIKEq5vL5jOZhRVRlGkOBH/2ov872NN+Od5LyR/irVhNxHadaq+JX53Flf7kaE1Dhd6J5tuY5x8c6JtSbQQT9E+kf3W4ystvV5rJ5ZvxffCq5SecAJCeDG+FJ495QXS3mHuWveb1AJnfGafkBLjfKycazEFQvj3Uv8cLa8LYIeV2D2X8uHYCE+SV7Ef2wkcQrU/+66QtFBvSurcIzlw3oXp6ey1xzXUFkyD1JqmaE0FBoJQoSIBpVd+61hT5d40EnUDirzE1r5zh/GdLaudD4Q3xgvGlfQCfOE7d3VtUYFqC6R2fxfiScMmtC+UdnmIOOO1c9J34Hbj2acCqb0ePIbjfQ6hbHlkftrnn8v52vtJlrXjY3nn6a5b1b5utEWeFOhYefL7b+m0/dfRZP3XQoj/HPgp8N845xbACfBn37rPRfu1v/VWVhXbzZpev8dwtMcv/vnP2JsdsFy8ozfoc311TicZMNk75O35FVpLDk9OCbUX9tZNRbffZ5NmPD4uaRq/GFQQMBrNyNIU05S8Pf+CXm/I23dviOKYQX/IZrskS9fczR+w1nF6+sxbnIViONmnqiquby4ZjccsF/dk29znJSHZbhYUecHXb75iOBzT7fYItKYoG+JQU5UFZ6+e0zTG68UC77Iq87UvfpLEd9yqCh1G3lEpA6xtyOrcF1Z5htKKeDBEoMiLzL9xYEm6PcIwoKorlJY0Tc3l1TuSKAEco8mEsqqRThJoRVpmrK8/90DOyRGDYZf1NmV28oqH20vv/ggiegfPGZ/9gOn+GVVZIJyhakrub78GHTM+2PfUXud/hk63Txx5+Gm2XVMVkvF0wmAwRAlP4W/qhu16xenZmWeK5RvigyMOj85weP3YX/zpT3j+4hVRHJKmKQjF9c0Nk/EeZVFwfHyKtZZO23GpRm3BEMXM7y7J0xSpAsIwQHd71FWJFIqi2PLlF7dIJTnYP6EocnQQMJ5M6fYGLbh1y8HJMcC/jv7k/781UZZk2YbeoMdgtMfPf/4zprNDVstz+v0eN5fv6HQHTGdHvDm/Iggks6NTIqUAg3U1SdxhuU55nD9SlwYdSJTUjEb7ZHlOnZe8efM5/eGQN/nXRL2EfnfI8vGR4WDAzf0drjE8O3tOWWRgJcPpPlVZcXFxznR/j+3jA/k2o64MooFNllHkJV+9ecNoMKKbeRRKaSyB1hgazr77kqoyWCxh7MfYxeMa0QuJB12quqZaVeggxpYp1mpsXeNUBSbAUqAKiYy7UENJ5lElEgbDPmGgqGRNV2rquuDq5hsiFeKUZjSbUtYNAkmgFMv5hs3D1yitGBweMdnvs9ykTA8/4ObtOUfPgThGdw8J937I0fOXpJsMIQ1llbNJLxBhTDfsowLPHAqiHnHco68Dsqog267JNppBb0Qv6uMax6bVVa6XKw4PT4nDLnmxIZkdcHhw7K3rpuEv/+wnnD1/RRAGpFmK1Iqr6ysmU38QPD48wTSGbt+T6yeTCcIJok6X+6t3lPkWqTVBEBIGPap2TZTVlq++ukEqxf7+KXlREmjNdDql3/eu6azYcnB49HuzJoAn7Yz/8y2tTevsk22XwguUpXccOtDSR9aY2npMQTtKDHS7sfPelr+DlKJ8cYCDsjJEsfYBwrQBw9YXYr7b4oOKVeDF6VIYpPP5gk+wS+uQDuqs8U5H/T4aBmdB7zRfntllqpKgF0KgMFXrQhQChXfMCSGJI0VdNj4mp3KYwqACj11xfmaG0hLXGOKBz7RsauM7QMbQGI1wAiuhbcPRZA0qCPxvqRw68gUjRkFpifqOKtGUuaEsDfFQU5cSJ/1oNu6HNKWhzEz7GNA0DikdzjQ+01a3KI7C8CSfE75T6Kwfp+4QErQojV33axePZC0o4Z4K7Ccyg7G4pn0NnSUMxBPd/gm7gfNaqVa/7njvAPUieeX1XG2usrBeyuMvtt/m8v+7Ixz+B+A18AlwDfx3v+0DCCH+CyHET4UQP82yDB1GWCe4vHzHaDzl/PwcEHS6vrgajEZ89cXnYI0Xj9Y1aZqxXi1ZPC7odroY6xgMR0RxQp7ndJMepm5YrOaUpuHVq+/S6w85e/6Kg6NTdBggpWaxWlLmBQJBFIbUVc3lu6/ZblOqqqbX7VDkW9artW/h4ni4e+D+/oHReMwHrz9iOpmQFxmz2T79gT89nr+7YLF4YLV6bFukCqVDH+thvZ7KOYfS2hOFlWrFe54qHbfFkmvjMJzzETpVVXkNl7XUdY2paxCCINCYuub25oI4Tliv1wStrsI4i7M1zhmqIiVIukRJHyE0o70ZQRiw2awI+zN6+x8z2X/WhsvWPqKmrgl7+5SNpSoLNpuNPwlISVmWLB7vKLIN1nobvW28risvCoIwpK4rev2B5w05i9ahJ80HAcY0hGHEj/7hP6K2HjcRxRHpdsNoOAQsTV1SlhV1VflZu3Ue6xAoqsKjHpJul9FohNK+wH2c39HpxiRJwmz/gL3ZIVEc44DHxZy6aQjDkDzPKcsKa63XUgTh735N5DkqCLEIrq7PGY6nXFyeIxEk7YFjMBzxxeefwS6c3BjSomDx+Mj8/pFep4sBBuMJOoxJ04x+f4BpDPOHe4q65vXr79JJBpw9e83+7JgwViT9iPuHOVXm10QYhNRlzc3lG9Lci7+Hwx5FmbLZbD1hHLi/n7NYzpnOJnz4+kNm+1PyMufg4IBev4cIFe/envPw6APEbW0wmcU1Pny1rixFVVPnDUoFXlgsdBu8a1BSE4gI4QzO1SAMKhAEWvs1UZQ0RU2VFlRZRb614Dx1crG4Jg4iVosVioDGlH4EWZXgLHWWEuiEUHYxhWM4OyTSAaure1QyZfTs+xy+fkVd1RSbnLpsqBuDCideMOxKyiptT9eSsijYrO5JF0tMbTC2QVjj81XriiAMqcqSfn9IlmUI6YjiCCl8l7Gpa6Ig5Ef/1r9Lgx/1hFHIdrthNB4Dtn3OisbUfk0YR6j9VKDIUhpriTtdhqMxWmvKVnOadGJCnTCZHDCdHhCoCBys1u2a0AFFlv3+rYks8x1cP5HiX8IytJ1dL8FpP27HhTudjms8YkAoAcqPuky7+QrBkxhbCOG7OlbgjIeCxh1FU+1C73ZarDaQeceH2sXz7ITw7UhS7cKTaYOG23GatbtOTCu2FwKMpdrWmKLN4Wv8z9gUjf95rKNxXnemglaEXXkVlMCiA0EQyidCvzN+3GdrQ1M5io2hrh06VN4t2AJVbe1HYD5nsB2RWge1xZYOkzc4JNKC2ZS+oxNJor7nwdV54wtKvFZLCkEQCsL4WxWJa0eslWkRCS0k1u4KnJbk33aQpPKFqGuj5nbGD9F2E30R1U4d2gLJM7r89zpvK/SjYscTlsFa18rfd6+vv3KaxmHq1vzQeGm7kt/qZrVP5cSTfP43uv2dOlnOudvdx0KI/xH4P9pPL4Gzb931tP3av+ox/hnwzwA+ePXCKSmJ4w7WWvIs4+DggMlkQuMkQaC5PH/D6fMXlEVOb9Bn8eCF0DqMCSLBYrFEac1ycU+S9Hjx8hWLxYKw5SMJZ0izlCiMWC0XbLdrTGNo6orOYMQkjhmNxmRlxmK9oKwrX0zd39DUBaZpuDw/p6waXrx4Tbff5ermiv5gQLrd0u31ODo6YbVagoN3774hCBOWi3seFytevnhNnuf0B0PiJKGpa2xT+xaq0tR16fVetX9jSzo9f8G1LdSmLr1+THjWVVUVqCIkihMfSu2gqZo289GPX4q88AJ507QC8YLMhAAAIABJREFUUIvWATLqUJUNxoIKIrTrkQxGPo5n/ILuaJ8gSjBNDTjqukIGAb3RPsZZzwLSAel2i7WGTtLFKMH84QZTW/YODr37xDZEQUgQBr7NLjSJ1pjGsFwsEAJ6Pc/xKcvcU6md8/ou4OXrj7AW6joDKeh1ukSB32h8qzdCSM12u2W2f4yzPmooCmOWqzmd3oA3X37OYLRHWeYcHp+CM5RlTjfpYEzdhiJ799d6sWS6N6Gufnsm0L+JNSHbNdE0BmcKjvYPGI+GNPgssYu3X3P2/CVV6Zlfq/UKrTQ66REKx/xhgQoD1ut7At3lgw9fsVgsCXRIEGika9isK5I4ZjWfk5ktTVVhjCHpjtEqYP9wRlpmLFaPVHWJs46Hh2vqqqBxjos37yirmlcvX9Mb9rn68opev0+63dDrDzg8PGaxXOKs493lOUEQMb+5ZbHe8NEHr8iaLcPphM5wQLotEI1B2vejdaEAV3vxeK9LnRkwjrqx1DInjgJUGCKk87mEdUwQRoQCUAFOCkwpQDmwDbapyNOUuqqJE41KNHoTIKIIVxlMZegPumycJRmNCWPH4PQ1/ekMJTX5OiOIvOsyTCK6w30fkVI5dKApmgLnDEHU9by39S11adg7OEJJiZCWUIV+DUmJEIog1BhjWCwXCASdTg+w1HWBFD5LTakQgeDlyw+xCBqT4aSg12/XRLppN6YQFYSsVwtmByc41yB1SE/7ZIZOt8+bL7+gP9qjKnOOTk6gMRR5Thx0cM7wMF95jeLDls1mzXgy/r1YE8fHx263ydrGW+px7mmjFN8StwuBj28Jld9UhfRy7HaEtCuCduOmnTQLt0M6eGDtLu/P2VYEXtSESdBCNVtKuPO6H/AdF2MswsmnkaKp264KLeTUOaTdjT4FGEdTO6SCKBbYBmTgA55NaQiEaMXfph1beiin1BIhNaqpsY0PtBbW4ayHqyIlrvI/t5WSMA5oYkdtBGXZkCQaKQ0ykD7JwPq8QE2LNW8sWoBrDEmsKAoHShB0IkQkaWqDqWqsEQRx4JEKth2RKkGVefGUir2Jxlmfh6gD7d2GrYDdU9f9GE9qXxjtxnk4kKHCGT+C9ZBSz31zbVdrV/DKXVRPex3A+84YWmIr24Jr/ZhYtDNl1/4t2uzLnb7LtteDDCXWmPb19M7F3Zj2N7n9nYosIcSRc+66/fQ/BXaOkv8d+J+FEP89XtD4IfAXv+7xjDHUTcPt9TlKKcaTKfP5nLfvvqHb6WOM9Q6ozAfdlmVJulnS7Q0oVyXD0ZThaMxqMefo5BVVVfLTv/xT6qbi+Og5afZIFHW4u71htdzSHwxwNBwcntDpdAHh4Y1pymKxoMpyJvszPv/VL3wMTlEyOz5ib/+Iqm54mN+hpGI4GmMaQ1EU9Po9fvrnf8FyveFwf8KHH30XYyy/+Kufc/bsJV9+9RVSSL7zve9xfHxKlvpYn3Trw3i1jrC1RQUBuvUGZ9mq1Rs4iu2apm6oq4q6TCmyNXVVMBhNMMa13a0SJwS9/pirK98RXC/vCXRAWVTESY/Os4/INhuMU4h4AsB6+Ss6s5fEgyOOnn2XpNNBKdisNpR5Rl3n2HxFfzIj3XpDQZYuiOMum+2a+9tbTs5OOTh67rsPxudkWetQ2lOM69oQRgHDwZCbm0sGw75fpNbrubTWSOlDtaWSrB7npJsNQRgxneyx2a7ZbjYUgWI4GFNVJWVd0+/GzGYzwjDk/v6By4uvGY33CHRMUeQ8e/Ehw+GAm9trVss5RZ7TSXroICIIJGdnU/K8YLa/RxxHzOe3RPGv16D8fawJ4yzX774hCDTDwYjlasH55VuSZOCBlMay3ayoqoIiz0k3S5K4T2NrhsMp3f6INF1wcOzXxJ//+Z/hXM3x4Rlp8UhYJ9xc3bJabBiOhlhl2J8d+0gJ4yhsxZs352y3C4o0Y//kkM8/+2vvvM1ypsfH7B8eUtYN9w+3KKUZjyfUlSEvSno9y89/+jOW65T9vTGvP/gQKwV//fOfcXzyjM+/+AKB4nX8Q05OT5HhlnS1oGGLNQKtYmzWEHQiHJIyb9iu19QttwaTYqUg6Vg2iwyBpUxL9o73sc7SNBVSFeAkgRpxe3fFeG9KurwnGXTYbjPi/pBOkpAtVzQoXGcPEyqaxT3R3nPi2RlHzz4m1BEa2KZbH8Zd51CnxN0RdRxSmJw8XRD3h6w3K+aPd+zvHbN3kPgNzzTY6n0GGjiqwhd6/e6Am/srut0eddVQNw1gicMQ4SAKQ4JQsZzPybZrlI7Yn81Yp2sffK4lo+GEsiipTU2UdDg8OiDQAfcPD1xefs14tEegIsqy4OzZB4wnQ64uLlnMHyjLkm7ShcR3tE5Pzyirkv3DGXEcsVjcEUW/+zUBIFvRuFQC1/j0ANuWOF5zLZ/AokoLz3ZofLHljTmg2+mc1JLG+M+FcBC2YyMncc5n+jm83s/WFkdDlGjKyo+gmvY+OOFHYdZhsSjpvM5rt9F/C/EgdiiJthVna4PQqs3+84+hIoWxEmt9UVGlDVFXYyrvFrSlRcWaKncIbTAGTO3Hp4FWLTwasnWD0gpTWMJEe02ZBGkdQirK1BG0gcgOh+5EVFWDCBSu8uN3b/QSWCHoxJZsY2gaSRQ6H1ptBBrvpjSN83quyhdlNqTNl/TdRRkoqsKPaqWWSPBZkLIV2jmexO6m8f9vpoWa7hBXUoo2E9K955nt6O5tIesk7zuSxj11vFTQ6rPgqaDC7UbE/nUxjW1HueJJ+1aXbUH9pNez7ev+m62DX1tkCSH+F+AfA3tCiAvgvwX+sRDiE/zTfAP8lwDOuV8KIf434FdAA/xXv4ljxFpDVVVEcUx/OCbPUy+E1ZrheMr8/o5+r8fN1VXbV4WT41OQkiIvyKuUal5i64qw9JEpw9GUIArodns4UbNerUjihPEHBwjhOP/ma9J0S6ADFosVURSxWDyAkKggxrWV/f7RARfnb3m4uWmde36RJ3HC1599yYcffORPOHXN/tEhf/D979Ht9livVvzkj3/CZDxhPBrxuFqSJH3WqyWnZ89QQYDUnsZr6waL9CMSrbDGwwUb48eJgdY0rW4AaymzFKQkXS+Ikw4+LNQilKKpKpqmwdQNZVH4kNymbiN2GnTQQYUNAkgzj5WwwYA46TLef45Sso0eEmzXa+5uL7B1wTCs6Y2n1FVOp9slDkOKsmQ6nTG/u0UKQV1XbLcbppM9GtsghB9hLRcbJpMRjbEsFo9EUeQhsEmHzdpnQxZ5RlFUJEmXPM84On3Oar2iKkuyLGU4HPP4OEegKMuSosjb7o0HLRrbJY4TPvruHyKc88TssiDLtiRJ0nYBJf3+gPV6y/zhhsOD47bA9SRka2E0mr1vQf8O14QxhqqsiMKY/mjs8yWbmiAIGI4mPNzd0o073N5cYxvffn/x4hnGQJPXpPmWvCzA1eiiIt2mjCZ7aCmJ4g5WVKyWK6Ig5sWHh0hhefv2DdtkSxKFzB+XJN2Yx+UcUzt02ME2vqU+29/nMvuGh+tr/yYlPfw3ikM+++IrPvzwQ3QgqY1hdnDAx9/bo9vrsVou+eM//hP2hiMODqbcze/pDjwS5ezFc1QUoJMQVg3CCBA1OkyQWmOaygckC4MzBi38tV7mmSdXNwVBpCjqDem6gwg0TVUz2OtSbDKqbY2jJttmhHFIlZfEcUS2LXz4u24zTdOUeu1QvQlRHDI+eo4MJE3d4Cys54/czm+wpmYUVfRHI0yV+e5gPKCua6bDKYvFA0pr8rJgsdpwtDelqEqE9Hbx9WrF3nRE3VgWqwVxFPkIpChhvV5ycnpGmWfkRUkce4ju0bPnbNZLqqokTbcM+iPmj3OEa9dE3q6J5QqtIIy7JEnCR/t/CI2lKkqKqqQst5R5TBCFSKMYDodsN1sWj7fMZsdIrVBG+2504xj0p/y6HeXvY0203/veUbjrWIh2nOPnb35TN75jFIQSKwDa7DnlOzzW7goAgam91kYGbSyLbYGaeHed36Bb0bmCMJaYNqbG4X878wTKck+CbNraQcinf3pyR7ZNEayUT1oypZU/GGjlN30hcEqghNcHyTaqxijdhj9bgsCjGagswvMKMNahtUKGCh0KhJE0Ze07QtYT4W3hi0+DQOhW79QYtJIUmQ9Vt0ZgW0RGmTcEwwBRWVBghXgyXzpjEErjlD88BIEPxzaNg8agW1W50w7RhkYaK1DKgzMEog103rHMeGopeXaoH895HlqbpuJozWS+WN2hGNqy9uk/XAjxNCZ0rYtB7Ao663yHUPvRoy/I5JP4fRfV5Is5WnaWL8h+m7z038Rd+J/9K778P/0t9/+nwD/9zX8Ef/ooioJ+v0+Zb8mzjCAMyLcpdzcXFEXB/sEBx4NTyqzgcT4nK3LqumK9XNMxNToI6He6XL37kv3j5zzcLUhwXK8vyNI1dVl78Wdc+uJDae5u7iiKnOlsxvXNFS9fvWT+8MhmveXx4Ybjs+fc396gpGK19J2zu/s7iizj5OSIwXCAw/oNbDzm9ctXbDYbHudz7uePVHXNj3/8Y9J0w3K9IE5CHu+vyYsPkEoShCFKBTS2oqoy4qjXVt8NdV15B6IxNHXj3ROVd4LUdYnSsQdu5ilh3PWdIKVQQYhzXrNmjGkDobdMJnvUDUgdEncGFPmWxjQ0jSHpesRBHMVP7pwiTbm9ekO2WeDKJdPjQ89DsZa3X31BUWw5PPmAMIoZDAasVwukjphN9yirivVmzXAwQAjB8fEJddOgAkv2uCDbbtibHXpApNTUdc1muyFJOnS6XaRWdBPP/HHG4IAsTz1aQUDTVB7Gag06CDBNRa/bZ7l8ZLtZtSwySZZuCKOIL79aMJlMSbcr8jzm4vMvOfvwJcvlksfFI7apSTo9EI44iZ8CU3+Xa0IqSZbndHs9qjIlLzJ0GJJvttxeX1Cbkl5/n+PhCUVWMp8/sNmm1E3NarGmN+yjtKbX7XF9+RUHx8+5u13QjQLuH67IsjVFXhOEMaYqyMsCLTV3V3cURcb+0T7X11c8e/ac+/sl69WG5fyG02fPmN/fIoVitVrS6Q+5u7km32acnB7T6w38yD/NGA8nvHz2ku12w/zhwa+JsuLHP/4xWb7hYflAoDWL+Q1lsSHQ3skrRICTNWWdoej4kYGy5FWF1srrQ2TLgTI1VZnRNAVCJ1hhaEyBcBFhEOKMIwxDZGLJ68af1KWkyFNme1MCB3ESoPSIqs5AOn+KF33CKCAJIkzlUA7yzYa762/IipSmXDI7PcA0lnxVsMquSJePHJ58RKAjBv0+29UjMoiYTfxobp2tGQVDbG05OT71BxFl2W4W5NmGvf1DsjwlCENMU7PerP2a6OzWRIciL9q4E0eeb1HKO4zrqiSMIxprkDrEmIpep89q9ch2vSLUoadvZ747PH/zJZPpHulmSZ7FXH35Jc8+eslq5deEKSt6gx5OW6LfkzUBPLHw1K5r0W6szuGvjVZLI9oOU9O0kovaeDZUK5gWO63NbjNVXp7s8J1GW3vz1JOup3bIoN2cG9sGBoM07j02oEU7IFsKuW2LKrPLABS4NpoF4fEN4DtCO12Zk4qm9i46KTzj0DqHgSeBvR+9WYJQ+Y6ZlP7g0eYvauWLFtFyuVQg0WiqsiFskQpSgAoFVnkAqAKckWhh0I1BdRSEAqmVD5K2kGe1H7EaiylEq1kzrUZOYlxLtRf4sOZegC383M04h3a2DWvmqWu307HVlddX+te0LZ7djtoPWrf9Nts2n9wu9sYzzeTO8cn7MePOiUrrIpXSF6Zeq+fHfo7Werhrlb2/QH1haFoHohJPgGx4H7/zm9x+P4jvzrdR1+sV3e6ApnqkLCoG4wnv3nzJaDxls95wd31FEARESUyv16fIMzYqBQSBCvjiq0+ZzY5YreZ8882XSKXpJD329sY4CkbjCV99/hlBEHJ+ecEPf/AJ1hmurs6pqoa/+eUvWS62JIMBH7x8DViq0nJ3/8D+bMavfvkrDg4PGfT3PB/IGHSg0FHI/PGR25sbut0+P/vFX/EPfvQjfvxP/iPOz31+4nAwoSq9/f3nf/onnJ69YrQ3ZTCZkW+WFEVGVabIxhcSURS1Ij3vJBTOPcUcBGGCVBKpArLtijDqgnDYxhBohSD0uoC2kq+q0uvRgpBACZyShGFEVZUkcczh0SnrxZKrd18+dcXydE6+uMJs7tDCMPqjf5+bm3O63T7FoGR2eEq6WXObZ+zPZqTrHFn758fB8eExm80KpbQPZ65rvvn6U6SUHB2/ZJttCIOQbqdHVZf0en0e5w9cX7ylyEqK01M26xVCOLq9Pt2kS6UK6sayTVcopdA6wFQN+8cH3N/fIgVtBFKHXm/AaLLnHVNas96s6XR8PtvH//APWS3X2DJjunf4lP0YhSHbzcYH/v6ubw6kc6Tpmm6nT10WFEXNYDzm6uJrBv0R6XbL7WeXBFFI2InpDQcUWUZW5jgHCs3XX3/K3uSQ1eMdX3/9BVooet0es9kE5wpGozFff/4ZOoz45ptzfvSjTxAYzi8uqJqGz//mUx7u13SGQz548RIcPiR9Pmc63uNXv/wbDk+O6B/OSNOUpm58pIcMmC8eMdUNnaTHP//rv+KT7/+QH/8H/yFv353jnGXUn1IWKVJrfvonP+Hs5QcMJ1MG033Sx0eMybEixdWaKAmIao1u38Qb0yCVJgwFdV4RyBCb13SnMfl6wezkGemyJIgjdBCgQk1xVyJbqGTpah6XKaEM6ASKtGmwIqC0NXHcYTo+ZrN65Or8K4RQ2Lom3z5gijvS21t0BIN/+9/j/u6c/mRI1liOzvapiy3zZcF4NCVPN6igJAxGGCc4Ojhhu3okSmKK0qcVvH37BUJKjo9esNn4azCJI6qqoN/rM3944Or8Lfm2oHj+jM1mhRSWbv+MbqeLkAXWWrJ8jTQ1SgaYumF2uM/D/A6BY5ttiaOEXrdPvz8lDAIm43ZNdPvkecF3/sEfsl5vMFnGdHZIHddk+YZ+P2Sbpb8fawK8uNkHEOKQvsgQoENvr/danRbf2brlnPNC76a2WOMIAp7YTBaBdLvuSRvh4hxat+PH+n3enmlox5AKV7dWfuMwUvoMPtUWddZ3vJ7Apy2KAOuF1EqLtlpqv47A4DkNPkPPi9ht0xZ/EoQT1KVBKImOdsWTF5lr6bzjsLHIUKECaEoPKq0yQ28U4qyh1w/YznOCfoRDoBJNtUkRKgC8bqksHBZFIgW1cVhncVq22mA/VhXSvzdhLU5CmGiy3CADhcXjI5Twj0UjiEL/e9SVRViDcB5BZNqkZ2EMYeTzBo3DuzHbbpTPOxQtRV7sfKOAJ+sL/V4079rOpB8htnR713ayaPV6qtVgyV23qzU57JD/bYtxZ0YQO04XvudmLU+JA7+pJuv3JiB6MBqhg4B0uyIIQ4bDEc4ajk5esHdwgA6UF2BLxdXlNfd3t8znD0gh6Pb7lFXFZHqAQyB1wGQ8YTKeEMcRcdxBSY2zlsuLSwbDic/+Kku2mzX93oC41QKdPTvjkx/+iM8++5TryyvSbUpZG87fXfDNu3OqqqauGvr9AefnlwghGA0HOATPnj2nKArGoxEW6Pf7TCZ7GGuJIk2v1+Pu6oqLi3Nur8+5u74iimOCuONjTqylrkrf0g29qFsqhWpdiUGUoMIQpTVRFBMGMVoFrQPId76ssWip6A+6HmKnJVVVYq2hrEoeH+4xpkFKz1eK44TVcs5qdcfi8YbV/Ia7iy94uPgKYRsQmqg3oWq8y2i5XKCUosi3xEmHbqdDURS+85RnrJYLpJIsFo/0esN2zt2glGSyt8/R8TPWqwW9jo/uccDd9RWb9ZKjkxOfkTebEIQR+wdHngvmHJvthpvrt/T6XSaTPd+dwL8RPj7M6fa89T+OYpxzVHVFoL2ebj6/Z7Ne0tQ1q8Wct19/zmDQw5iGPF+zyzcsyoqn49Dv+ObXhCeAp5sVURQyGg3BGg6PnrG379dEWVWA5PLtJfe3tz5vsHH0BgNq0zCe7PvNQwfsTSZMp1PiJPZrQiicsZyfX9IfTJgdHFBVJev1muFoSCeJAcGz52d88oMf8ulnn3F1cUm6Tikqw8W7C969O/dMqtLHG11eXSOkZDQaAIKzs2fkec5kPAYh6HV7TPdmGGMIpGA0GjC/uubq4pKb8wuu3l4ShjFCxSgZAg5rG+qywhJSlsK/CSsNIiBMOigpCUNJ0k3QBIh2lKiVRUlFldXUuWE4GYJzBBJq09DYBqcM95fXVHmNqRyxitEiYDW/ZTW/YfFww/LhhtvLr5jffINUFqQiCIcUhTeYrNZLP3aiJOz26Pa6lFXFoNuhTDMeru8RSjN/fGQ4mbYuKovSisl0xsnxGZvNgn6v60PYEdzdXLHZtGsiTtg73iMIQ/YPDtFB6LNMV2vu7859TudgipYBbQOHx4c5SZJQNTVhGNE01ksywoCiXRPbjV8Tm8Wcd199Tr/bxZqaolgjhD/ENKZpT/C/HzeBHxX6sY93qAlog+38faz1m+EupNiPwuyTY+1J6MyuC/WtNd9SvXdBwDuy+C7LcBd0LHcjq9aF51yr82p3e9cWbm7XNZOi5Wjx9Pit+bAV44Nw1oM/tUAhUHjwpqn8/U3jR3BCCbT2Lr26tpS5P4g7fOEhlQBjUMqhtB+HGmOxdUMYBx43URmybe07odajCtAeahsmClM1mNpSFwZTGJqi9kKpxnemrPNdM6F92LXXl1ls3U592+IkTAKs8LR7odTTOLDOfcXqABV6IfzOpembA76x9FSo7t6XvSjKP0Uonz5ue4LeENEe9G0NrmnHkf4OfvzrX4Knj4WS3xqGi3+J4P/UsdqlCogWiNqY31iT9XtRZAVBwGL+QJFnxEnCZLJPrz8k3aak2w1VUXJ1cU4Ux3T7A6SEsvDOOSEk6XrNerVivZx7fVRZ+LEAkvn8gTwvaeqa+cOcyWzG/cMtw9GYNEt5eJizXvu2+9nzF9R1yfXlO7Jsy8npMcNRH2ssp2cn/OCHP2R/NiMII+7nc+q6YjFfcHtzxyeffML17Q1ptuXs9JQPPvyYvMi5ujxntVqxWD3yVz/7KV9/84bv/+B73N3fcnP5jmy7QUpBGEYoHfj4AwcqiBE6QCr/RwURQZIQd3vePRV3COKEMO7671O6FY/7PMY48jBPKbV3HBpDkWfUTUNd12gdUJY5TVPzzee/4v76nDLLSFdzlreX5JstpszoT/c5/PAf0VS1H2/qgMODY7rdIVVd0+100Frx+Ljg+OSMJO4ggCzbcnV5jjWWMPKbdb8/QkpNb9BnvVlxc/0GKQVNben1h9xcXdPtDYjCBOccy+WcpOPZPlEUk2cp69UjVVWC8+yeyWSP1fKRpqo9y2y5YLNZUGQpN1dXLB4fOD17TrfTZfk4Z7p3RK8/oqpKJpMZ0/E+UgrGozFJJ2G9Wv2ulwMAOtA83t97nU2vw3gyY9AfkG62bFdrqrLi/Jt3RElCtz9ESEGReb6bkIp0tWKzWrJZPiKlpCoKnxv4tCZ8Ht3D4yOjvRl3D7eMxiOyImM+n7Nab1FKcfrsOU1T+W5KnvHsxSmjyQDbOM6enfCDT37I4cE+YbsmGluzWi55eHjghz/6hMubW9I84/johFcffExZFVycv2W9XrHaLvnFX/2cN2/f8KMffJ+H+1sebi7YPC6JOyFJrwtOIYzDpA1JL8HiR+KyLQJUGPqRWhIRdXrouIcMe1ihUVFAHAeoQKKCkO5wRK/fR1qBbB1pi4cVWeOonSPsxBhXUeYFV+8+4/HhkrrKWc3vWdxdUmQpVV4wOjri6Dv/ji/S0AilOT4+IUn6lFVNICKkUszXK46fPafb7YB1pNstb795h60NYeAPCcPBEK003U6XzXbFzdXXLSDW0h+MuLm+ptcdEAUxzlpWyzlJ0qOsSuIoIdtu2awfvfvPQVXVjEdTVos5tmkYDUdsVguy7YKyyLi6vOLxoV0TSYf1Ys5075D+cEzdVIwne0yn+ygNg+6AOArZtkDf34ebs+5J4O5HRl6bsysEbStcfq+7oe1kAE89kFYov/uqdxex02I6ITC8HzfJb+Uf+p/hvZgb6RENO32Wv/+OKt4+p5JPI0lr2zqu1YU5u/u6/12U8skkwvnNWTqBlpKm8iHLOlQeyVAZmrwmiLyWSkg808l5zZ+wBi3Zwad8Dqbx+iMf0Cz84TL2yA8aC5UXyudZQ+00TmtkoAhCiWlhoyqQSC08cFQIhJI0TqJC7Qte7TtWO/2atRbrBFVhfcGipS/MVFsIW0dd2/Z1al2iOKRoXaNPlYx4ep3ErmJyHj76dC5u/32nwRLi/UjZR+3sNF+2pcu3Y1rr+V6ivTLkzmXYarJ215kQ3qjgC9jf/DD++zEuBF68eM1mu2K5WHB3fcfsYJ+6zBhODrBO0u8PPePHOc6evyTPchbLR4bDMZ9/+jVJp8vR8T7ZNuX25pqXr15zdXPJ2YsXlHnOxcU7JtM9+r0+TV3T74/Ym+0zGo/545/8X/zBxx9zfX7N/cMVR0dn7O/NKPOKqq6oiow3b8/pJh2qxjCejJlO99jfm7FYLnn9wQd88TefcvHuHSoKGAzHfPE3/y+T6YyH+QP3D3MOj0/4wQ9/hAo0X375FU1d0esd8fXnvyRJOoRhzGDQx5ga6yAMfbZiVZcI4QiiDlGcIIRnagWBf+kcEGjNrpYPoxCtNXGc0Fc96rrh6PiUQAWs12t6Xd/hwlruz99gm8bnHtqmDdTdooOAzmDM+OxDkiihPzsCZ3BrvwguLt54ob1UlFVJJ+kwmUy4ub70YvZVzng8oap8kO352y/QKmYwmhAlCVVVEYYxp8//gKLIef3hh2y2a3rdHp1ul7Io2GZber0RnU6XuilZb5acvvgOzhjybUoQR+R5Rq8uWls0ZNuM/cMT4jghEKdfAAAgAElEQVQhTTfsHx0Sxx2WixVCKvYPD4niLoNBn7Io6SQ9FssFi+UtUdDFCcv93dVTe/h3eRPAq1evWadrFo+P3F7eMp3NqOucwWgfg2Q4HtHt9LECXrx6RbbNWD3cMuiP+frLr+h0exwe7ZMVOTfXV7x8+Zqr6wvOnr+gLArenZ8z2dtjMBzQlBX9/phwEtDvDfm//58/4Q8+/i43lzfc3l1zsH/C/myPIi0pm4qiyPjm/MJ3JKua8WTMZLLHbG/Gar3k5YtXfPnZZ5yfn6Mjn1H55ae/YjzZ43G+4P7hnr3ZMR9/50eoP9D8zadvEKJhMky4vv6cUAYEOqE/HeCaiqZyhJ2Qg2GP1UMKsmZ4MKLTDzGBQIUhuhNSpA1iKIiSiMAa4iJD6oCgq4k7Md1OB1PW1A50GBJ1AvpJ7DfNxnDx+ZcIDFVRIJQjTDR5k2EI6PYnhJPXdJKY2dkZRhqaWrF+MFxfvsFUNUEnomxKkk6P0WTK7f0FnTBmvXhkdjilLGu22Zb5my8IdcRouocOYuq6Jgwizp5/l6JI+eA7H/k10fFroioLsiaj1x8Rhx0aW7Perjg5/RBnLEWxRUcRRZlT16V3nAFVlrM3OybpJGzWGw5Pj/yaWK5Bambtmui7PlVV0e10eVwueFzcEEV9nLRc313+VhqUf5M3IfzIzWu8PfPoyc4v2hBh897B9sSLcs679Vpkw66jtaONtzu4zzB0ohWZ+9/ZGJ5cbLvN1xiPbvDRK+3o0eGd4ZIW8eBLhJ1myBkLSrYUeN9Lo+3siPZvYySu3BWIkiCSCFcTRtrnBlqBDXyoNFaAcnT2EoplTV00dMcaZw3WSZSUxF1Fkdb+MCsVoTXEeU6JQsQaITRWClQYUKQVVguSYQjW+ELHQlEYdBx4t3gg0bGiUYoq9Rggm9UoaYm7AY0SBEKSryt0oDwJPtYY47wUBV98aeGoakMQqyeyfvuisuOU7fTBAotFvhe3twYCrEOFniXmjHsqwFxj24/ba0aJ1gghnlAfT25C412PbYPRi+kRT524XafT4f8WcYDBYX4L5fvvRScLYLGYt7wTydGxJ29vthsGwxHW1Mz2j8iyjLryYm8pJdO9GYPRhKPjI2b7ewghWS4efFxOkTPoD8m3KYv5nCiJ+OrrzwiCgDAMsdZye33Ov/jFTxmNxvT6A+q6/P+oe7MfS64rX+/bMUecOc/J4eRYI1kskiJFUa1Wt3q4fS+6G/CFDf+JhgEDfrANP9jAtWG32+3bak2kSElksVhVWUOOZx5iHvb2w46TWfKTGvaF6AAKlcMZImPnyr1ird/6fhwcnLBerTh99Zq8KPj6mye8vrjgYP8Aw9Stt9VipXEQqxW//vLX/OY3X+hpItukzHKOT45BwMtXpzi2y49+9GPef/wBq9WKcLVmuLfLzs4Wi8UMx/cIk4ivv/maPM/1lJbrYZoWlmMTtNr4zS6NRhs/aOF6PkGjiet6+EED3wtwvYBGq43jN7FsB8f1sGwb23NpdFrsDw/Z2d1j/+AQ0xKcv3rBZHwJtc1JkWtzYYRBqzegu3NAo7dNVeT4rSadbg+BYDEfs1yMsGxHE+wdl/VqSRxF+H6D7Z09HNcjSRJG11eYpkG3N+DR+5/ieD7j0TWnz79lMNiuIaYJm4mbjdekUnrdA6+B6zpIJbFMm253iyxLKcsC3/cxTQ2Ovbx4w2q+YL6YUUrdEgnXK5I4pihK5rMpcbQijlZMJxNc1+Xy8py01sclccjW1h55kWEaJu9/+CmK78aGMptNoCgxEAwPDhCGwToM6fZ6qKpgMNgjyVLKQseEaRoMBtu0O1vsHxww2NYxMZ+OKfOCNIlpN3VMzCZT3MDl+elTLMvGcXW7enR9xm9/9zmdTodGo0WRpxweHhNFa168fEOa5nz19RPeXFwy3DtAIcizjPVizXh0xWKx5Isvv+C3v/mS8bVGnVR5zuHhEcKAV69OcUyLP/3Rn/LxJx+xXK2I1isO9nfY2W6zXM5RyiSrMr76+rdkRUGaSmzbRVUmUlgMTrZp7w8Iuh38oIXl+HiNBoHr0GoFtFo+tu3S6HYRrR7C8TCtgKoQOL6H321z9927HN3f5/B4H5mXXLx4wejiHNPWesiyTOu2hUmn02Nn/4BGd0DQM+kd9Gi0WpQZXF1cslpPEaajbbKwyYuILItxnYD+YIhpeRRFytX5BUJBd2ub9z78IU4QcH11zauXzxkMBrriWKT1ZiIwsdFDd4J1tMazfBzL1h5zlk23t0VRaRip7/sagWLZXF29Yb1YsFjOKStJXuSE6zVJFJOnBfPpRA+BxCsm4zGu63J1dU6WxwjTJF6HbPX2yPMMUxl873uf8gf3Rv5THzcJUV1d2FSQauGz3IipbyoQt+LpzSYNGyDl26/HTdyLG7lO3b4SNQ5C3TwUw9CcLqU0LFTfmOnXlRW1VqzuL1XqJoGo8kqTzKk1RZuH1Ymh5Zo372kYCqEqDEOQJQW2qxMoJQRZWmlBfK4rQf6Wh922UbZug1ZKv60pKkwLLKfWoVmC3LKpDJOqEmSxbttVBjgdG69pYJgVRVxowXpRaUip8Vb1DjCkxLYBKWlve5ryXlYUqSKNKwzL1BOXhqAsKtxAc7RkpTuTZQWWhZ6MrjatwjpJUnUL76aIJW5slG6J7XWyVKobXtbNRGItptfDB7ff3yRYelJx85gN5LSujMENaX6zfLo6xo0RNVLxryhkfTcqWcIQ9HpbrJcLrBqmaRjQ7+9hGiayKhlfn9Fo9pCqYmd3jzTPsE2XJI7p9rdIkxiEtpncG+5juy7JcqGnzNKMOI7ZGQxZLpdMxiPuGCa//eLXjGcz/u5v/44oDNnq95lNZ+zsDEEIkjRhb3fIg/sPef36FJTg6PiEVrPBcrkgWWXcu3MPYQja7SadrT6O45GGEePJmLKq+PGf/Cm//OUv2Ds45PL8gk6nSxKneL6FY7sslkvSJKGoCmazGRgGe3u72sxXCBzX1y1EBJ4fkGcZvu9hCO3FWFYlQaOFZdskaYqsdFB4XoAwBUGjgaUESRIjVcVsNEZVJdEioizWCLdRJ60Cx7GxnVpwX5Yo36Td3cKyHBzHw/Ma2KZBq9VldHXFcHiMrCTLxZxWu0OepahK0el1a7J4iZTaRHq4f8T2TsZ8MWc6GdNotqlqJMH19SXdWquSpgkIiWFaGMIgy1LSJKbRbGIYguvrC3Z39rFMm93hAdPpBNdrsTfcr70bXYqiQBjaZihLIi6urhj0+ygURVHQ6WzhOA6VKqmU4vr8NYd33wUlKcuCP1jR+J/wEIZBr3sbE2WRYzsW/a1dDMOkLEqW83Oa7S2UKtnZ2SPNUmzTeysmIi1CNfSNi+t7pPM6JvKcOI7ZHeyxXCyZTkYgTH775ZeMp1P+/u//jvVqTW+rz2w2YzgcYliCtEjZH+7x4P4Dzi5eoqTg+KiOiZUkTVLuH9/BsATNRoPBTh/P9ynimPF4hFSSP/30R/zil79ke/+Ii/NLtrc6JGFMo2ljOw5hEpGsQ9K8ZDrVWJVGN8B2LH1nmSkano+Q4PkeZZERNH0sKXEckwqJbTXxGy4rkWAWFYZj0GoHKENhmh6ea5GEa9IoY7WYUxU5WRySFyHCCYjDCIGB6yt8z6dIM0yjZLUo2B60MHCxDQfPbYJr4TltJtdXDPeOWIYLFpMpreMWWZEiDFVXHduUVUVZFsi8ZP/gmKyfsgyXTKdTgmaLstJT0FeXF/T6fcoK0izRolys+uYkJctSfC/AMAWj0RXbA61f3NnbZzafYpsNdnf2SbLkJiaUEpRlQRpHXFxesT3oa8ZeUdDubOF6LqUqqVCMLs84OHoISGTx3YgJ4LatI3QVwrJNqjqBqfOc+oEAmym1zea6EZart9p51JqsWyGz2LyPuG1RVZvqV3ULHjVMvWErJerilW6XvQXF0hgM0O0pgRaxCzBMRSXR7a5ahK2AstTn7lo6wVGavYvl2ORpqcXnSmG5psbtlApDSrJVjIlAFRIszYwyTJB5iW0aNcRTgWGSCm2vY6KwPYNKVWR5hS004kFK6oROQz8l1HZCQlPuiwrL0LZPtmOxnqV6IMsSWhtWi/vzRGLbuoIni+r39FHCMrVVTS2lk5vqnpaTaSjp73kwi5s1Eagb4brcGMxD7f9Y6cnKeq02noaGWVcclf6eXmTtNXlTRVM6kZT19OHvHaKGmG6mV/8V5anvRJIFMJ2MKMqS3lafOI6RUrK9s8NyMabIU0zTpdNpMxmPSUVOFIYsVxecvXml74QPTzAsg/c/+D7TyTWT8TWmYTGfLEmShHsPHiCAVrvL/Xce8fOf/hP7R4d87+MfkNS8qChO+fbbb9nZXbG7t4fr+Ph+g+vrN1xcjfnJn/8ZtjAIV2uuL68Jmg3u371HmqXMFzPSZI2sFLksuBqNODo6ISky7j64y5tX5zTbHWbzOb2tNp7XQQFfff2EwHPY2d7l9cUV+8M94jinuxMgDBPPdbWpr2XTbHfIs4xmu0melZhCkKYpnu/j+QGW7SKrgqoqaHa6ICWWaTIbaR3G2avnfPaLf6HIczqtDuPRBUHD53h/jyLXlZwcLVD0Gx1O7r5Do9HRd4hKUZUFpuVgGIL7Dx5SyZJmq0W31yNNY9rtHnmWgdAgmCiOCRdzuoMtZCrJi5J+v6+p35MJq9WKfn+b8fU5ywVkecnuTpNO+5jFcqnv7LOUoNUmitfYhs2dOw8p8pzx5RlRo0W702M2mfDbLy958PBdsjRmvphjWRaWCcP9E45OHlDJitVyQRStawCtyfnr10gp2T+5y3J2SZ4Lmq0mpvEdKPAqmE1G5FWlDctzraka7Owwn48o8gTLdOi0WsxmE7I0Z70MWa0vuLh8TRiu2R8eYVkG773/faaTEePRNYaymC+XJGnM3fsPMAS0Oh2UfMTPfvpP7B/s89FH3ydah0ipiNOUF8+fsVyu2B3u4boBvtdgPDvn/GJUx4TJerXm8uyKRrPBvbsPCKOYdTRjvQ5RQhCnOddjHRNhlnHy8B7nr89ot5uMJjO2Bh3sysayDJ5+8w2OaTHc2+P50wtO7h6wnCScPPIBk2bDI1zFOKaD5/dApQRBQJFXWApMW+K5PoZy6bZtyrzQ/p5eG9sF2zaZnJ8zmYw4e3XK5z/9j8iqpNvucXl5SacbcDLcIVmucByTcKkIOjau43L/8WN6W1u6ymUoBAUGFrZr8ODxI5RUNJpNms02hcpod7YoshRVFAgDsjRhPprR2+5RFIosL9nq9XBcj8lkwnK1ore1TV6esVxCnhXsbO+xt33Ecr1A4VAWGX7QIk7WOMLm5Og+eVYwvj4jXDVpt3tM4wm/+fWveOfRI7IkZjafYxkmjg0HhyccndynkpLVakEcr2kEARgWV69fUpWS/cNj1osrsgwa7dZ3IyaokyShK0aWbdz4DtY51U2CZNab62Zc3zT1QIDc4BIqXbm65Sipmx1dsSmE1VBRNJpg0+bbtKLUZiBA6DaYZWvtklFXSISqEy8BCoMsV1j2pkJioISuoGym1oQhsEw9AVlWCmEb5IXEtg3N6RImtm8TznNsz6DIKmzPAFnhugZFUmJIg7LQiV6R6SqYrCROy8IoJckyxw0sDXQvJIUSWJ6B0zCRpUQKAywN5dxYBqlST28KBdkqo7IcklDiNfUNuW3rxLfKCiyhNV+q0qBYXBOj0uegpMIOrFvAaFHpKUBLkBfqJtfVXKpbmJhexwrD2iA46ufr7BWdNItawlJzrip1q7WTiqpQiBojv1lqVb+OaeiETrc0N/gLxcYHwBC1Zqy8bVXfmIr/Acd3I8lSsFotaLW7rFZrWq0mZVVyeXmJbVs0W20azfZN1quQdHo9pFR8/5NPOX3+jH5/G0ydSTuuS5zEtNqafRQ0PMLFkjRPsB2H6XiEYVn0egMWqyXr5Zw3b87I8orh3oB79+7jOi7Pnn+NaZgoDP78z/+cOAzrSpHJ1mCLqioxbYPZ9ZIgaOA4DkoZ/PyzX/Dw3kP2h0N++fOfo6Ti8fsfcH5xQSlLsiyl27vHcjnnaP8QkBwcHvPNN1+RZ5qIfnjvHYRh1ggHtDDeNHB9PQVp1vwSXa6u9NixaaJMgY32PUyiFeOrEaPzM169esYXn/+K3331NQe727R8j52dHZI0wTTNWtegoZZu4OMFLUzTRKkKWRlYlga7ao5RLVpUZf3LVrGcTxBK4Xg+hjDwHA/a8PrFtyhR0Wr1SOIYx/WI4wTX8yjGGesopNXpAxJhWBRlScPUPJMsS3U7M41J4hjlegSywXw+0dNhRcHF2TnD/QPCaE2e5yzmc3Z291gt1yA0D2k1Dmm12jQaTV6/fM64uuL+O494+PBdzi/PUdKgv31EHIdUZfH/xgz3/7NDAav1ikazTbha6+TPMjl/foXjmLTabRoNPcGnlERR0ev3QMDO9g84PX3OVm9Ql921Vi9JE1rtJoYNQeoSrZakRYLl2Mwm4zom+swWC9arOefn52SFZG+nz/0HD3Bth2cvnujKqtAxkYZrwkpimiZb2zomDEswX61otZqYpgPC4Jvnv+L+nfvs7u7xq89+AcDj9x5zfnGOMrRNVP/4Dqv1gkFniKoq+u09JudPEKLg8uqc43cfoZRBUVZgGLiBh2UKHNdBGCaubyCUJEoLclHheQLLMHEDk0C6+I0GcbxicnXN+M1rXp8959e//oyn3zxhOBjQdD32tvtIo8KQ4Fk1xNF2ceyAfG1RZYIyKzFsEwOLVrOFgURYkBdVjQYwkKUiXk3I4xLP87FNEwuHZtDkdPEUYVa0Wz3SNMHxPOI0xW8EjEd6eKbV3gKlK7plVd6MqWd5imW7lFlMEsUo172NibLEKQouz3VMrFdL8jRlsVgw2NllvY6QQBJHrOOQRtAi8Jucv3nGqCh58OgxD995xJuzMwQmW/1DolhbZ+XfgZgA9KZbT+PJt4CkYlOIUurmdx7eaiNWtZK81vQo9ZZmZ9N23DynFkPrZErV+qi3IKN1ArZ5Af2fqHEDt0UQPUGoP1Gq1nQJvZkLWdXJxG1yIExuqi6bn2vTpswiqZM8WWAaAtezSMK8bk8qhFFXryztybjptVm2oUn2lTbGFpa2+3EDQwvStY4bkIhKYli6Omc5erKRShspW5ZNFadYQnslmraBkLCeJDgtB9PWF0JXFzXQy7TqZEmpmqMlMaWkzLTuyRJaJG9B3ZnRrUTDhA1640ZDtxFNcbtWmpdm3LRxb4YTNhXNt9qNN1r5DUH1poVcg7yFrr5V2gno9vHG7XpudHMobujyf8jx3UiygPcef4/ZbE6j0cA0LdarBavFmCAIkLJBs9XBtgVbgy3KomQ8GrN/eEIcrbl7/yEIg26nw+XFBePRiIPDA16fvmQ6nfLJJ5+yXGkj6cHOHq7r8c7DR8wmY4LAp9NucbB/hGkZ2K5NVVbMZhP2946YzCY0G02++epLzi6u+Hd//TcEjYBnL06J4oiylLSaDYQQzKZTHNfhr//iL/EcjxenT/noo48pyozXr16SFxVBEPDDH/2Eb7/5rU6MXLvWDRi4rsuz0+cUecXR3XfY2TukVBLXcSnLgrLUFPwiL6nKinWNS4DmzfSD7bqoqiRczTh99pSf//M/8uvPf8nV9RW2qUdlx7MZqspYhin9XpvdnR5N10EYglavT2+wh99s0Wo2cB0by3HxPJ/JdZPRxQsc20UIg9Nn39BsNrnz8BHdXh8lDOazKY1GCykVWZZy/+EjojjG9RqMrq8Igqbmi1kVd+89ZDaf47o2QdBmsZxzef6GxXyC5zVoNJoaPVHpKcZWe4ssi7n/4B2KomK9XNCoKtI8xW+0MAScnNxnNp0QBJ4W2Hs+A9fFNG1m8yn7hyekacJ4fIXr+FRlyfXlBUfHx3S7XaTSCcMf+xDAu48/YD5f0GwECMMiXC1Yr0YEfgCyQbueKuxtbVGWJdPxmIPDY+Io5N79h2AYtBptrq8vmIxHDIcHnL16yXiiY2IVLVhOFvQHu3iez6NHj5hPRrTaHt2tY46OjrFsA9O2kKVktpgy3D1iupjQDBp887vfcH5xyd9sYuL5KWEcUeYl3W4ToRSz9QrHdfjLP/8LXMfjxem3fPzRR2RFytnZK/KswHM8vv/Jjzl98RWGAZZng7IxPRu/4/H0xTOypOD47CGD4QlRXOAHHnmaUJSFHktHkq5S8mKF4VgEQYBp6b+IhmkjLMV6POLZ02/4/LP/i999+UsuL68wDAdpGIwnc6okI4oy+lsdtgKf7W5AleW4nQa7e0Ma7Q69bgPXNrA9F9cJmE7OGV8+x3MdDCV4+bvf0Wi1OXr8IbbZQwmT5WJGu9tG2VDJgnv339VtPC/g6uoKxwn0hFxRcv/egzomLBqtHvP5jMuLNyyCCa7boNVua9CwyGk0fNrtPnmuh0fKQrJazGkpSVpmBN0OJnBy5z7zxZRG0yNLMlzfx3ZsTNNhuZoxPLhDksSMx1d4jkdZllxfXXK0f8ygt0UlS6zvQEwAN6yj203091s7G5bgpkpliP9Hu9AQyIobw2Yp1Q0LSdXJljAFKr/lMm025A2TS9xMum0+Vr+3Ad/42onbxA2lNOqgkmwcWW5ew9jQzOuptVrXJaVmYd1woAydNCml25dWPVkohUma6eRGFCXKFBiuQCiDLM7xGhYYYNtQCIUEylJXhlRWUFV6wMMyBKpUVEohbe09pCqJiaCMS12lbRgUSUZZGQjTojOwySUIagK+EhSF9qk1JVpTllU6cbNtVK5BsgI9mOBYAtMxyKLbib1KA/hrcr/EuMmb6utci9xN++2hgboauen81gmXEOqWn1WXKGt8LaZZV6XQWrCqtmPSAxO60mmoG7nWjRbMfIud9Ycc34kacFmWhGHIajmnLCtWyzlFUfDg0WMePf6EkzvvgDBI0pTVYsXp8xf0B32yNMYLAtIkJksiVusV6xqudnr6gjQvePzBx/iB/iN29/4DojAkCkPC9YogCFgtVwSNAClL8iwnXK1J4pTtnR1s22axmCFlxWB7l48+/JBur0eSJBwdHnDvzj163R7z6ZT5csb51bUWgQcNJtMpQdAhzTNWyxW+32S5XHP37j2uL844ufsutuXSabZYLRa8fv2axXLBdr+P7wXE4RIptei1KHLyPCMOQ8qypMxLVFUxn09v7FfKvEAoyJMUYRhMx1MmozGnz1/w8tUrAt8nzUuSJCMME9JCM37Or6e8fKXtxXSPPydNYoTUrCYpNVjOthwG/QMsy0EILVq//+gxQbNJEoXMZxM818N1PWzbwrFtWq0WRVnQ6XQRQrB/dEyep1RVxej6St95u5r5UxQF3c4W7z56zPZgV/sf1odpOyRRTOD7hOsV5+ev6rsj3Wc3DIPFbMJqudB3+pbJfDaryfk6OTUtk8H2Luv1Est26XS3NYPMstkdDnnz6iVFUWBblkZE/JEPDUiNWK/mFGXFarUgywsevvuYx+9/wp2776AwSJKU9WrNi+enbPX7pGmMGwQkaaKreKGOCQybly9fkOQF73/4MV4j0GiSw7skUUS4WhGulpqbtlwT+AFVWZDFGdEqJI4TBoNtbMdisZhTVRWDvV0++uhDut0eaZJwfHTAg7v36G9tMZ9OWKxmXFyPCKMYP2gwHk/w3RZJlrJarbAtn/k85OT4LpOrS/aHD5GZSb/TJFovuLx8w3K9pNfpaF1UscKwKixbYNgVUmbMLsbkaUE4SwlaEKdjlCwIp5H2tjMgDRPSsGQxm7OYTXn5/JSXp6/xLI8sLwjDhPUqIa8qyqrkzeWEJ6cTcstHOC6KingVYtXxIQRYpoFr22wPDjFtB1FBnka8++GHBEGDNA5ZTif4rofveZiGiYmFYwVUVDpBNgUHd04oqoxKVlxf6ZiwHU2qL7KMdrPHg/vvMejvIauq3ky0c0OaJHiux3q95Pz89U1M6M3aYLWcsVgsSPMUA4P5bIZS2ie2rFs1/cEuYbTCdjzarb7WQpoO2ztDXp++IktzHMv+TsQE1FoYcTvYr+p9Vech6raQIcRNYqRtWTbPE28lTepWw2UA6E27TLUrwMa0WFY190opbYC8SaI2CdXmRNAVDmEZN/mfod9RYx3qhFBtzoMNS6sWXQsNM5VVTZM3DYpUkkcllqWwTG1YLUylsQ0CbMfAcgSWA45vYNqKbJWgCkUaFjQ7Fq5XYSDJwhzTMDAtaqcC/blt1bypmsUlqK1jKlW3QnWVLpU2ueVRmbb2RCwllqOTMZ0IKgyxmbrTU36inkjc4BOE0pUxo64uloUGppq2eYPM2GiqNiJ0nZDWurVKJ6BVcWtto6Squ4bqpgr5e2u7yWhFzbhSgBL1z8ctiwud2G6eq1uQ+hooVTv6SZClTq7/0OM7kWSZpkkcx+RZSrhecnF+QVFVdOqS+Xh0QZmnGPWUgSFgvV6RRiuWiylXZ6e4rstiNqMR+BhCkMQRlmlyeX7GdDrBshxWywWz6Zii0Emd3wjY39vDcWzyIidOIq6vRkRRhJSKJ0+fIJWg0WwxGk/odrq1L5TDarUkikI812W4v8eTr7+l3Wpw78FDHMdmPL5mtV7iOQ6ddofXZ2fs7m6ztdXF8XwWszHrMCQINIk5LzJ63R7HxwccHx4wHc/I04g8TyjyvF5SQZZmlHnGerUgideoqsCytDBaCCjyHFVJRleXTK8uSKKw/kMcglLsb/cY7nSRlaTZCKhKScMPiNeR1qaVOUWeUBQ6WTMMA8u0qWSJ43kEjTaiZnHZlsvewQn97T2azS5ZmuK6ehw9zVJM02Q2GXF18QbLNDFNG7/RwHU9DMMky1Jc1yXLMpYLDUYsC63zEkKRpAmj0RWmYeAGPqcvnmEIkzSKSVOdvCZpAmjeUCWrm7bm7u6Qb589IY5DovWS9XLGZHSJkoqqKimLDMVHyvcAACAASURBVCEEnt9AGALDrBBCUZUlxnfgrn0TE2ma1JvoOSWSbkfHxGR8SZVltZBU7xrL1ZpkvWI5n3D5Wlccl4vfjwkDwcWbN0wnE0zTIVqvmM/HlGXBeh3iBQ2Gu0Nc16GoCuIkYjQaEUcxVaX45uk3SAlBo8noekKn3dXCXNtlvV6xXq2xTYe9vV2ePHlGs9ng/jvvYNs249GIdbjCMW1aQYvzywv29gZs72xhOS7r9ZQwjgl8j3ajSRQltJpdDg+OGG7vcX0+JYtC8jwhnMdkmaCz00DYEiVKxi8vSSZzZJTiujZlllPlupXqOILJ/JLl4hIpEmzTYRXGCOBwb4vhsEdZVTRbzZvYWI0X5HGEbVeUWUISRbiBS5lJHNNBygLLtGm1uliuhWE7SOGyd/c+g+E+7Xoi1rYdyrKgkAWmZTEdX3N59gbLtDANq/YC9TCESVFk+IFPlmYs53OkrJBKEjSamCa64jS6wjIMHM/j9PQZQhmkSUySpqzXa7IiQ5aSdqOFFBLbcWi2WuxsD3n69AnRek0crQjDOePxJUVeIVVJWeSAoNHQ9l6mUyFMKMqyHr75bhxKvZVMbZIXpatY+gEAGw7TDV+03kA3mqj6A6UBnxv4qMY7aIL7hqaljw1MtNZobabZ9LcAnXBt2ljUKIdNlUWWUrffuD3v2+RKC7hvdVC6yqJqRIHOSHRLq8wkZamBq0UuNZOqUqAEWVyRZgbtnQZu28Z0TNJZgkoqVFZpOYmEMpPYjoXjm5iewPQN3ECjEKgHqnSio/0bN5U2Q+gE1AIc30RIKLMK17MpUu30YKAnBg1D68gQgqwEZVtgCl3N27RvhdDJVa2xkzV1X22QDvXFMgxt2Kw2U6WWbotKuWnr1eu0GVTg7aoV9RCAqNdA1hwzcaPX2rSDNz6FwI1RdP0LpztG9bSkMvUwwx96fCfahaZl0W636HS7JHHE0ckJzUaLKAqJk4idnV3SVLN5tvp9iiJne3eP6XjC1dlrHn/8Q968PMWwbP7lpz/lb/7d32M7Btvbe0TRmvOLS46O76DiECkl3W6HPM+Jw5jRZMSL01ds9TqgKnZ2dlmtl4TfrjBMix9++n0uLi54/9G7XFxcoBTkZc7//o//xI9+8Amnr1YkacrJvbu89+g94tWS/+5//g8c7O/wl3/2N/ziX37KweExH3/0gRakjicIQ7COIqbThTZDHh4wn0959M4DxlczGp0Wr56fIcuC/nDIex98hOv6ZFnMch6xvb1HnmW4lqU1YoY2ra5kyXIxZzGZ8t//N/8Vi+WYy9EI07TwXZcoyZgvV9i2RZpleI7WQFmGUWsDFKvZlEpCu9OnSFMsIVjLgiBo0Wi02BoccHH2lO3BkNn0ilZ7n/VqiR8EZFlGp93ht19+zvbePkmccHTyQI+QRytcLyDwG0xGI4YHByj0nXlQP1dKyXR2Tbs1YLGYsDs8ptvbQinY3tknTzPWqyX97V1kVbK9M0QIQZYnjEdX9Ac7LGZTRlfX3H/4gL/6i7/l/PKMk5P7RFGI60t8PyBNE0bXF3heA8tS+I0mwvD0wEWlsMw/fliYlkWr1aLT6xFHa46PT2i12kTrNVEc0R/skKYFSRzR2+qTZRk7e0Om4zGXZ6/54Ac/5NXzFxi2zS9+/jP+6t/8LZZtsLMzJI7XXFxecnig2+1FUTHo93S1NEoYja95+fLNDWF+Z0ezr9bhEsO0+PQHH3N5ecnjdx5yPbpCSUFRZvzDP/1H/uSTj3l59ookTzm8e4dH77xHsl7yP/xP/4H9gx1+9JM/47PPfsbuzgEfffA+nW6P+XxCKQVREjFbLsm/fspwb8gqXHB8dJ+rixntXouz569RsqS7t897H3yE7wWkixVRMmVrZ4+i5WGVLSohEGibDsMsmE4mGMD/+N/+14wuLxmNxyhsAt8lyXNG4zm+75KXOY6KyauCwJY4jkEhJfPLEaavaPWHpMuQdqfBcnKN3+7RbLbododcnD9ja+uA6fiK1qDHcrnECRqURUq33ea3v/gl20dHREbEnbsPSdOUMFzh+A08t8F0cc3hyRFKlSgp8ZsNsjRDKsVkekWnNWCxnLCzd0Sn10MBO7sHZEmqY2Jnl6osGWwP9c1WmTK6vmJra4fFdMLo4oqHjx7y13/5t5xdnHFyck/fJKLwHJ+8SLm61DFhCElv0GY6comiCFVJLOuPHxOgkwtjo61is8nqTXWjS9e+eNzoo26xC7XBcE1fv7HSsain1upqhVJUlWAzun+7kdevzW3FZ/NPSd0JUFLrmqS2l9TvW4M3laDmcNWtKIGuaimNbqgKueEu3BoWG5uEUm/ytmNSpLWJtWli1l58G3iqYRrIuEQKgW2b2O0OUpWQS0opMZRASEmRaxcOwxDkcYlKKyqpJxIRijLT1X/TMZGZvj6OVeI6BmWskGlFlhs4tonIChpNhzzOUaapc8JSogxDr42hkJZGppcILFNLW1RWIGxTDxqY4rbgZBj1UIGm7L+9gDcJbHUrlOctPR1Qtw3Frf4OharqVqvUQ1xCcDPZWevfbx6LIW71ffXvgKx01U7T8W9P6Q85vhORI4RgMr6+sVEBgeu5jMZXhFEIQNBs4fseZVVydHyHLMtptdsMD4+5PLvQ9iNhxJ/8yZ+hvQK7hOuVJrfv75MlEWWRce/efc7P3lAp2N3doZKSDz54n067w2o1J80LJHDnzgOqPCNOEhzf5dmLl3TabYoy45effcFqHdLtdXE9j2ffPuUHH3/Kb37zK87evOTkaEiz1WQynqIkXF+NgIovv/wd3//4Q4q8oCol63DNdJ5zdHLMBx++zzdf/ZatrT1ajRaO7ZImKfuHx9iOSxInVJW2QSjLQk+UeC55sSnjK5I4ZrVccPr0Kc9fviSKV7SaPmle4bk2hhAsw5gkq+h1fLIsx/dd5vMZnmvT9buYNWeryHOyPMH1HBzDxRSm1mbYFkWeEschcRxRFSWmaeKYNtKSFEXBchnSaIZYtkOarjEME8t0mI2vaLQ7pFlMS7VIoljzhsqSIGiymI9ZL2aYlsvu3jGu45GmCWmaIFWFY3lkWU5VVmRZgmWVuK5HlqU0Gk2qsmR3uI9p2chKkuUZi8W1BtCWGY1mt0Y0wPDgmKvLM8BFSRgMtlksF3TaHU2T/iMfQggmkxG7e0NsywEEruswHkeEYQgIgmaLIPAoZcXJ3btkWU6700HKI85PzzAwCVcRn3zypyip6La7hOslSRJxMNwnSyOKIuPevQecn7+hkorh3i5SSj744D3a7Q6r9YI4zVFCcHLnAVWR65jwXJ6fvqLTaVNUGb/6/AuWq5B2p4vX8Hn27Fs+qWPi4vw1R4dDWp0m48kUWcH15QghS37zm6/49IcfUSUZRVqxXocslgv2Dw549533ePr0G9rNPp12h5HtUmQ5R3dOsD2POEtwLIMiVySrlNUiocwNhMjZO/GJw4JKZqTFihdPnvDq9UsWsyUOJoUp8H0HyzJYxDHrMKHT8giXBY2Wx3Q8xbdNet0uXq9NhUda5GRVRpx6mIaHZZiUstAm7ElC6sZESURZFFosLCyU6RDnJdNFhN9eY3oeaR5iCAPbcpmNLmm0O+RVgpItonVE0GpRFLcxsZrNsF2Pnd1jXMclrRLSNKWSFY7lk2WFjok0QToVbv33ohFoTePe/gGmaVOVkjTPWCyvac1blEVKs92jLHOUVOwfHHM9vsAxbcpc0u8PWCwXdNvd27v6P/Yhak3NjdCdWxHzW2JmUXfAtDZLt5ko9U6qc6tNb2CTDNWaLOoWo3GrnBYCXfGoq1O6zadqIf3thqtqkZWsbs9N1n1Fw6zbhFKixC33SWcktybXN4wm09BJX6lfU6CZUIVU2LZJWVQI00SVCtPUJ1ludGWuSzrPEcIgWVcIJXEaFn7PJY0KXM/EsDSN3TJAWQZpWGD5zk1vy7INBJKygDIX2J6BKEvyqkIgcFouYZFjobAMgzRTFKWFY2l9lqpKpNTTwpWsMBXISjtOSFNoMKwUiEr/rBsiez0mUGMu3p4Q3VxncbPmG2Ds2wVMdbOqvG1FCOjEj7oaKYy6erl54I3eblPp3CyIrr4JQ3sD3zQK/xXh8MffTdD2KI1Go96MbdI0ZnR9hVKK/eE+eZHjuy7nb065ePMaqRQvT0958fwZvu/TbrewLIsiy+ux3pKXpy9ZzGd0en3iOGI0uuTpk29Y1QbAb968YbFY4Lku4Srk26ffoCoI1yFmrTs6PT3l4vyc0dWIe3fv0Wy3+dWvfk3gefyX//m/Z6u/Q7iKWCxD3rw6ZXR9zuHhHfaPjlHo8xhs9/nBD77PV0+e0u60qSrJN0+/5cWzF7zz8D4CbekSBA0s2yPLc7744nOyIiRLC9rdNpPxFa9Pn1FUFQqDOI5QaC1SURS1AL9gdH3N86ff8JsvP0OqAt9z8FwHgcS0DOL6+piGYL6IieKMslT88xdPmIcrTAVeo43rBwihH5ckCUkSUZY5Zt1ek1VFGK5pd/tkWYqstIYhCBoURc57jx8Trtd4nkuvM0BWFY1mk+HBMbZt0+1tkyQxwjAp8pyo1oS4vs9qlfDq+beUVc5iOSFNE5qNhr6Lsy0Ojw6QleZZXVy84tXLZ/R7A7Z3hgRBk/l8RuB7GszoujRbfabTMZcXFxhCEEUR09quJghajC5fkWUJXuAz3B3S7/e/E8L3oii0ATAGpmGR5gmTyTVKSfb39ymKjMB1OXt9yvmrV1Sl5PT5C148/5ZGs0G318a2LYq8wHZMpCw5ffGSxWxGu7NFFEVMJlc8e/Ytq/WaSknOzs6Zz+d4rsu6jglZKKIwwrQcECanp6dcnp9zfXXNvXv3aTTbfP7ZFwSez3/x7/8ztga7hMuQ+XzN2euXjMaX7O+fsH90qP3OZEl/q8unn37Ck2fP6PQ65EnBt98+58W3pzy8fxdVKgb9Pr7bxBA2pSr4zVdfkuYxRVYSBA1mkytePXvKYpEhlUVFjtcx6ew2KFTFarlCiJLLi0t+99nv+OKzX5ElOY7r0Oq3sB09/RSlOX5gYSjJbBaTFxkKxc+ePGUZrQk8i6p0aA16mI6JZRpESU6YZChKLAOCRoOqqFjOV3o4I4kxKKlyhW3o9vnj733IKoxw65hQUtJoNtjbP8IyTdqdAXEcwyYmwiW24+E1AtZhwqvnzyjynMV8QhonNANtX+W4FofHB6g6Js7PXvLq9BmDrQHbu0N9rWYzgsBHGOD6Lq1On+l4xOX5BQaCNEuYzyakaYxjNbi+eEWep/itBgeHB/R3+pjfkUrWTVZTT+7dQCbfToiUqsGVt36Ghilu2kS1/fCNpQp15QvFjfD9Zrve2OOJ26+9vbHDWxuzejsZgJspxPqZqu5v3U7HUevotH7JEJoPZRgGZSFvz6/+WcyNLU9ZYVoC09KTdQI98WoCqpJE6xKFgRNY+F2L5raPsIQGizoGZVWRRgWqVHVVTOA0HEy7TnEU2I5ur6E0dsK0qJMNcD2TcJHhBC6GrYe2JCalMPU51cJzKRVVIevKotRsraQiTyp9YTetwk13UAjUZv2U1oTdFIzeqhyJ+oLra4rGcWzWr9ZS3SRK4ra9fAs83VStxM3Xb0CrdaZm1NVEAZS51NWuGjdh2HoS9A89vhOR49g2rtsgTVJAV6HSLKWSBXEc4/sBYRxzfOcB6zAiz1IePHzIcrWkzHOGh4fMZzM6gy3SMMIQgncfP8Y0hLbpGY+Ik5iHj95nODzm+uqKH//Jj7i6vsJ1HBqNJr7vcD2+4vr6muOjE54//4Zmq8VgZxclS5bLBVdX1/zkJz8hSSMm40uKLOP1mzd88MH79LpdDg7+nrPz12zv7ICssARs7+7y4uUL/u1f/yVSKaSUPHjwgOH+PovVkg9Ng5cvX3F5eUme57Tbbe7cuYssK/Kq4vrsnH/6h/+N3eO7WI7Fej5HCIOtfo/VSov31+sQw3T42T//I0+/fcJ8tuBgZwulJOswZqvTwUSw0wvIC+i0Aq7GMxq+xyIMycuKJCkIOlvsnzzAtl38IMD1GnptHBupKgzTotvt4zd7pOGS7e0dwjDk+uqC1y+fc3B8j8D3uTg/p7+1TZJEbFgztmnz8tW39Ad7LObXxPGa/mDIoLNDGEZcX75hsD1k/+4dDBTL+YL9gyMWiynr1QrTtJhnM8qqxPNc+oMhIFgsZ2RFhmGYpIluo0VhxHg65qjZptVoETRaTKcjzs5fk0QRB0cnRHHIcjLi3sPv4QUuRZ6zjiJ+++UvqcryjxwRdUx4DeI4xTAUnWaHJE2wTJMkifH8gHUccXLnAetIa/cePHzIcr2kygv2jo7wZjPa2wPSMMQ0BO9+8D6WAYvZnPFYC9IfvPOY4fCI0fUVP/7hD7m8vsJ1XYJmC89zuR6PGI2uOTo85vmzJzQaTQa7uyhZsVwtuL4a8eMf/5is0C3YIk958+aMDz94n263y+HB3/H61St2h3uossIWsL2zx4uXL/g3f/UX2tsMyb279xgeHrBYLzFMg+cvXjCZj0nClHZLx4RSkrwsmU2u+D//4X9heOcBrmuznCyQleDBO7tcvbyiu7/Ft18v8YKAf/k//ldOT58ynqzY2d1BVSWrdUjLbSNKwU7LIy0F2/tbTOdzmo2A6TIiw2CZCkp3i3uPHlFKh/ZWF4RPt+tDKahUgXJMev0B3f4W0WjG3t0Tsizi/OVrivwF23t38AKfs5ev2d7eJo1DlCmolMC2XU5Pn7C9vcdyMSKKVgy29+n2dgnDiFEdEwd3TjAULKZzDo+Pmc0nLBcrLMNkGk+pqPBcl8H2PsIwmM+nZGWGaVqkScRge4dwHTKejDhqtmk3W/iDJrPpmDdvXpMlEftHJ4RhyHI84t6DDwlaPlmSsgwjvvz1L74TMbE55GbDVNRtJXFTEbphOdSbrUIhajPjm6/VBtObaUKg3nUFVQ23FAqtqdpUqur3Q922ATdPg98nlgtUbdRs3E68KQ0mVejnV1Xd2qskWp0gaotncaMb0tOFug5SFZJKaRuastCCcpXpdlqlwPK1AN1xTGQmkUKQJSVbfYdoGuJ1fdKswnMtVKawHINCmpTSAEOipKTMNuepkRGVEtiWQFhQlArTtSkzSZZKnMAkSQuEaVPmJbZrUpWVzoVMgaEUnm1QJiWWa2LZgjItaQUGWS619U2pb3QkgGXeGG+jKt0S3rR0N+07WV/8SkNNN207UVe8QEGp19UwbnNjwVtIjw0kq06axSYBq9vFG27aBmK6eUuk1oJVZc3H+/8bjFRKSZ4XKFURxyGdrp7saLV6jMdjOp2OvgsRgmazQRQJJtMxk+sxwwNN+l6vlnS2timtAoTSwMvROYvFkkpK/KDB3bv3eP7sCVVZMF/MqaoSKQ1mswnrdcT1ZMadowM812M0HfPgzl2iJNUGtF7AOw8fIpWk0+liGCamYXP3zj0tLF8tWa/XnF+eY5qG1osUJc9Pv2Y+n3N8eITneywWSw6Ge0ThGqqS/laP12/OuHfvHvP5gocPHzK6vkQqgWVafPXl52DCe48f89XnnxGt1hRFyc6wz8XlJd12lwoD23b4+S9+Sn+rR6/bwrUt4iyj3WxwMZpSVhV3DvpgKOariFLpsnO33eB6ElJKRau/hQLdIvQcPMfFbwRYlkWj0aCSijTJmE8usS2LNEvxPI8HDx7y7NkzRpcX7B8ec3B4yPj6ip39oRYYr+bEScRiPieJUg6P77BeO1imzXw+IQiagETKguHukNVqRbvVZjYf0+/vslhMcD0Px3E5O3vDYjqhGbRxXT1tKNDsH8/3SJMIUGwPdomihK3+NmEY0u32qaqcZ7MpUbhCykpPnQpI0wxDKXa2tymL/DuhP5FSkuUFSpakSYjR2wKpaDZ7TKZjWu2OBkQqaDQC3V6cjphcT9g72CeOElZLHRNVXoCQOI7D7Pqc5XJJVVb4jYA7d+7y/NkTyiJnvlxQyQpZKNbTCet1wvV4yt2TTUxMeHjvHmGc4PsBvuvz4P59JJJ2twvCxLZs7t2/V1fD9HDIm4tzbMck8AOSvOT56RPmszkHw32Chs9yuWS4NyRcraAsGNQxcbR/zGKx4p13HnJ9dYUUAss0+eqLz8A0ePjwMd98/jnRek0lJdn6kpdPX7N9uEuYKlq9Bj/7+c/pd7t4ThPbMojzinazyfloRlVV3N/fggrCOKVSEt+36cmA8SykqhTtXg+EIgj+b+beo9mSNb3Oe9Lb7d1xdWz5utXXdAMNgAyKJMiJSEnBv0ApgqGBIjTjjEPpN1B/QqGQCUWIMAQIsIHuvt19TdUtf7zb3qXP/DT4cu9TDQ3QGEB9M+LeitqnTu40+93fyvWudy0TTVOo+hae7yByhYrvkeWCJE4ZX19gqTpBEOK4DvcfP+HDdy/pX16ysX/A7uEu/ctLNve2UAyHyXDIYrmQE7FBxNbuAaZpomkmo2Ef1/FQFLGuiel0RqVSZTTp02z1mEwH2I6DaVicX5wxHfTx7QqmbrOYyZoIlgss22I5l5KLdrvHYhFSb7RZzufUak28POHd2wHL+Yw8z/EqPkKBYBmiq9Db6JLlCbrx26+J1bYCMuUyyap/tMY+ZY6hBEmrHqBcfFc/U1ZIqezrrVijVbA0q7+vJ8/uFmNRiLVPkoxeUtbs1Uqz9XHMy9pbq2RbVq7vq6NftcmktkvcWTaUi/uKfQEpNF8J8FdTk0IIlFJflqUCVVHRDDBsjXAakYUFqpFJc1JAFSpxgjRHtVftOMnSyOk/eZAKAkVIQ+s8E5DKKb5iNamnKhRJimmAqhToaoHIyouqqpAVGLpKkhcUmgaaRpFmEiCp8hhFUaBrkCPWbdOVxcVqenBlk1F2icu7wZoxKz8U69gkZX1dy+lN5WOWs9x3XsjhgpJNXDOOqw+RKNYToKouvcyKXLZ9JRP2m0vfvxeVUxQF0+kEXdepVKpyok3XKYocyzSZz2bouo5QpSg5SZaEyyWNZl3qBkqbhcV8RlZk1Kp13r1+jWEaNFpNlmHA4ydPODs5oVKtUeQp3718UYroYzY3d2g1M+nFVKtzfXXFp88/5etvf8nu7gFBsODs7ISjwyMAuWjXmnz19S9ot7s4dpcQ6A8/EEQRRQHDyZCTkxPyvJDmpc0G49GYk5NjahWfvFBoNGtMRkM2ul0M3aBRa3Fzdc1gOODxs+f84qc/oyhyfvDFF3x49S2vXn3LYDxmMglod6VOol6RjvbLYIljWzw8OmI47OM5Dl6S0Gm3Ob64plmvUan49Icz5kGIZelouoKuG1Q8k0bDx6vUqFRkUKzjONQbdVzPxnE86XuVJOR5Tqd3jzQJmI7HGIZBtVaj2WqBopDnOZZloeg6UbBEr0mmcDAY8PDBU1599y2mZVFVWoyGAzrdDcIwxjQtgnCJaVqoisJ8NpVh0XFEHEbUag1s26bT7ZCldXzPo9VuMpncMp/NsRwbURSkuSDNMoIgxLYdRBmua9k2i8WCe/f2mc/nVGsew5k0rA2W0uw0L6BaqZEkv33jxaIomEzGGIZO1fNRFQXNNinyHMO0WC4XqIqGoEDXdKJ4QbhcUq9XaTfbMgtUFMynE3Iha+L929fomk6t0WC2CHj89ClnxyfUGnWKIuPFyxe0mi2SNGFra1vWhGNTrde5urjis08/5atvfsne3gFhuODs/JSjg0MoYD6d06g3+dWvvqTd7tJudRACBsMBURpRoDAaDzk9PUUU0ous1WoyHo44OT6hUqlSCIV6vcZiPmLn3gaaqtPtdunf3nB91efppz/gy5//DFVNefbp5xy/esnrNy8ZToZMhiG9dh2ygmUasYxjgjdyivDo8AG3/T7Vmkul4tFqtfhw8Z9o1Wu4nkc4XRAEAZ5rSNawalF1DWoVG69Sx6/ViZIEy1JoNOqYhoHjeCiaKPVQGRvbu8TzOcv5lDQxcf0KrU6bXNHk95jtkKs6cbDEabp4nk//dsjDB0/57sW3MiC+Imui3e0RhTGGYZY1YaNpqqwJ3yWOQ+IwolFvYFuyJvK8QaXi0XZaTGZ9ZlNZExQFaSHI8pxgGeB4LkLItr5Zfo529w+YTedUqi7D64C9BxWC5UomIKj6NZI4+W2XBPCR9ioXpTM3d4JpTVtPphVCsh2qWuqxpD9mKSgv2S/lzvEdlHWA8CpAWgZQswZpdwu6PIZi5ea+Hlm80/8IcQfaRF6Ukp8VCCjF+wqgivU5UbqIF/lHWXuU7vamyipKSFWBApJ4NQFXgp9cQUGVIA4hI2YUDdMGpSiwLA0FlTTNJUmgr1gZdd2eUxDldZLMkK7J9zfN0l4ikwp+oapoTqkWy3PSMGM1sakiA5tVQ6OIc9lqFnfgTFUVckWR1hAFGMis65IUlKzjR8rydRvvo5btShilFB+rsFZt3PI6l2yT/Iys7jNr7dUKxKmlIamq3X0WJDNaXscSXK32VeTF3Y3+DbbvBcjSNI08z6nWqliWyzKYS+FyHFNvtaAQmIbJPJhzeXGBZZrcf/gYXTXojwdMxhNM0+KXv/gp9+8/ZFYUUihtVjAtm2q1yvnZOReXZ7RbXaq1Kj/4/HPGoxH1xj0pGBUK93Z3efP2DZ1uF9M2ePb0B/Rvb/AqPlEUEycZP/nrn/H86ROKomB/d58kk/lN/88f/Tm+5/E7n33BaDxBFYKjgwMqvk+lWuH45JiN7hb//J/d45sX35L1+1jXNiKL2d3d5WY4IJgv2N7ZYcfdZnh7he3obG8/4OW3L8jTlFwUbHY7/MPfPwDkNTk9O+XJwwNMy2Y2lYvy1vNnXJ5egshJ8oR/9V/9c3TdYDSSNgk//OIhqILD3UeoKPxv/+f/Ra3mUfUaPHj8iOVsgeu6KKr0r9K1GN2wiOIQVVNodbd4/+pruhsbjAe3GKaJ53pEUUSh5BiWxs72PRQNRuMRpm4Q+QAAIABJREFUlWoDz6+iovKDL37EeDBAKFCrN1gs5yioeF6d+XzC2cl7mq0OUTDHcV1QFFrtDebzOUVRsJhPqVaq3A5uME2LnXsHxFGM5/lMxmNUXaV/fYVm6hRFymh0Q7vVxbFtwtCit7mDcnWO7djY/pK3r17SbLbxXI/hcICiaHwfAqI1TYM8w6tXsB2XZSCZlSSJqTdbiKyQAd3LGZeXlziOyf1HT9AVg8F0yHQyRdMMvvrqSw4PH1CkBTkFtulgmA7VWo3zszMuzs/oxD0q1QqfffYZk8mYWr1OFIYIFO7t7fL23Vu6vQ6Gpa9rwq/6REFMEmf85Gdf8snTxxTFgIO9fZI8Rzd1/vOf/gWu6/HFJ58zGo9RheD+0T6+V8H3ZU1sdrf4w3v3ePn6O25u+9KHTciQ9eubG+Llku17O+ztbzEdXlJxNbrdQ158/YYkjMlVwVZvg9/77J60+jBsTs9PeLD1EMsymMzGaKrG51885ez4kkLLiZKYf/Uv/hmGbjAajkniU374T34IZBzsP0HXFP7X/+P/ptWtUKs3ePT8McPrCb7jUGiQi5yiSEBYBEGA4ehUmhsM+iPatSaj/g2qruG4PlEUopBhuA73DvfRdRiMRlRrdXxXLnbPf/gjxrcDUKFWqxMEcxRVw/XrLJYTTk/e02i1icI5ru+iqCrtVo/ZdEbmF8znM2p+hcHoFsO02NmRg0Ge6zOdflQTlk5epAz713Q6PWzbZhladLrbIC5wXJuFt+Tdq5e0mm0c22E0HqEo6vegIuSmrliJj3LtJPskwYyigFBLI9LS2BNVKeNlxBrArDyPNKNkhFaMF5RUx2rf5XutBECrFbpsq620PetfXQnX5f/WMT6rlIzVpKEEb1IWr+p3k47y3OS56Fp5GDkUCIQiyqk9+W80TRpjgiBNBGgGWZpj2hqKAlmaIxQNxTBQyqgzUbq6F1le6pelWF4UoJb0kFAERZpjGKrUVKmlvQGgWGUbU1dIgxxVFGDoaKXgPUtlS063dZJYoGq6dFHPpcN9XgIgTc0pVHlx0xKIaopktgpF+QiQsmYGJcCRVh3FCpGpq/sv1m3cNewqkHFKogTad6SXFNuvBhWyFXIvf18IirRkrdTVpKi8r3lWDjH8HcYLvxfCd4BHjx7iuR4gsCybjc1tms020+mEZRBSCBk+u39wKNtWUcBN/5o8TSmKgv7NNb2NTVqdDrppUKlWGIz6mKZJt9fD8zzqtSa2ZfLu7RvOTk94//Yt33z9Fa1OD9O0ubm+oVFvUqvXubq8wvM9BILxaMzm1j3SLOWLz5/T7XXI0ozzi0viJOX68pyHDx/z+3/wDxAi5+L8nMViThjFbO3ssFgsOTjYo1rzOT8/J0kS2s0WuqZxen5LHMdkSUqWpSgKxHGCZdk4boVlOGNzs4vrOXzx6XO++PwHVHwf2zRBFNRrFZqNBvP5DNtyyHPB6fEZYRwxGE4xDYfXr95xdnbJYj7j2eMH7G7vcf/Bp1RqDdAMGo0as9mCKF6SJ9L4NE0yqXcoCtI4IYxCbq5uCRcRvl/Bdt014zWdjDFNC9MwSJOI89NTVE1lOplgmbY0C52Oubg6YTGbYzsOru8znc5QVZXpZEAcyQlBRVUJwiV5kfPh7dfkcYzjuqiKxod3r1CEIM1SLMsmCJYEQcDphw+AwPc9kjih0WrTaLSp1GpUazK6ZLmcY9sOo8ENmqYTLJeopVh/uZQTkEmSUBQZ6feAyQJ4+PAhvusjhMAwbHrdLZqNNpPRmOVSTlzGccT+4QG5EITBYl0TWZ5ze3NDt9uj2e5g2ibVSoXRuI9pGnQ3evgVn2arhW0YvH/zjrPTU969fcc3X39Dq93FMCxurm9oNhrUGnWuL69wPRehCEbDEZtbO6RFyueffyLZlCzn4vKKMIy5ujjn/v1H/N6P/wBEzuXFJfPZnGVQ1sRyycH+LtWax8XlOUkc0Wk1sAyN86tb4iQmTTOycmELgwhdt3ArFSbzOd1Wm2rV5YvPf8Cnzz+h0WxiqgaIgkajQrvXYh4tsGyXQsDJ+1OWy5jbmzGW4fDm9TvOzy8JogXPnxyxs3WPo8efUWtUUUydWqXCeDQnyQLi2YI0jsnTgiItpOlvnBHECZfnA+ajkGqlguO7pCLD8V0m4xGG62DYFmkacX78Ad1QGQ3HWIaNoqjMFhMubk7kkIjn4FZ85osZiqIwHQ+IwqhspSuSVcoz3r/5miyKcDwPTdV4/+4VohDEWYZhWCwX0u/u/PgDUOB7ZU20ZU3UGnVqzRbBMmC5XOA6DpNJH83QWSyW6KaO47jMptKuI0kTcpGTJt8PJmsl9JZMUel9tWIpVi2lj0XqJejhI8ZrNaWmKOq63bditRRVejCtrJfu3vPXyJV1m/H/s5WAas2urcBWIShKgb0oSoNSJAgU+d94rBPFOjtRTtlJoIcqGR9KAXyeC5mNqKkkqUKWFOiaKiNsCoFmGiVrJ1kd1dTAUGU+oSrjuIpMGnuuTlRRZJSPqpQZgaqCpuSoumyXFZkEXGmUyuuiqnf+VoqGUDSKQiVLyhghFRRTlfYLCNA1xNqstUDTJGu/Jqu0shVaXkdFYe0Ztrp364EB5J+rn62F7isxfal9WzGF64EDYJVLqKCUPlrqXXahqsjYoJLlXH0e8mz1WVL+TkzW9wJkKYpClsuTnkwnGIbJZDJmsZhhmSa+75DlGYObGy7OzjBNA5CGbcvlgjgOqDebNBoNvGqdSr3FzdUN08mYcLlkNByR5wWtVgPDNOh2umxsbrGxvcOPf/8fcnlxQZxEVGo1DEPHUDXiKOI//NGf8urVa3IhcB2T6WSC51dluPFkzM3ghtdvX6OqOg+OHnB5ccJf/fXPefH6PS9ev0PXdUajMV9++Qturm958eJbBqMhn//gOdubPXqdJq1WgywryJIUw9B58e03LOYB08mUWtUnTWKiMMY0XNI0ZjKR0UOO4xJEscxjW4YEiyV+xWU6HWHbNldX/XW4tON4PPvkGU8+ecrR46fM5wu6nTaOY9Nqd9g/OOL2dsh42CcIpBt3EKxE67LYZtM5X//ya0b9PrPprMw5zGk2u9TqTfI8L6lgneViwdnpMYvFBMdyuL48wzJNFEUny3NcV9o3bGxsYNkuaZoSLhf4lSq1RgtdNzi8/wmtzg6Xl8dcnB1Tq9fodrfo92/wvSqqppXeXBGObZOlspUZBEs03UAA15cX5FmCZbucHB8TLOay7aYp+H6VOArxvApxnHJ58QHP97FtB9u2fssVIWsiTaW/y3Q6xTBMpjNZE7ZtUqm65HnG4FbWhK7p8ulale3sKJI10Ww18as1qo0Wl6dXTEYToiBgNJA10Ww2MG2TXq/DxuYmvc1tfvf3/qAcxIioVKtomoahakRRxB//yZ/x+vUbcqROaVLWxGg4ZDqWNfH2gzSNvX/4gIuzE37281/y8tV7vnv7AV3TGQ3H/OLLX3J7c8PL714wnIz4wfNP2NzcoNtrlYHjGVlWoKgaL757wTKKmUxmuI6PquUUIqberJCnCctAmgJXfZuUCLfuMxnOWMwWVOsOs8UIx7E5P73B0E3iJMU0PR4/e8aDJ0948PwZy+WCrY02vmdTr7XYP3zA7e2I4eU14SKWdjBxIEXNeU6WCYJgybdff8t4OGS+nINWkKcpzUaXWq1JmqaSddB0wuWC85P3zGYjXMfh+uocyzYBnTTLcZ0K4WLJRm8Dy/JI05QkDqjWazTaLQzD4Oj+JzTb21xcntzVRGeLQf+Gil+VgfKOQ5LE2JZFniZkeUYQLNENAxS4urwgTWJs3+fk5JhguZALvqJQqdaIgwDXrRLGGZcXH3AcD8u0sW37t10SAGvPoo9ZCVgt6ArruX1W8Tp3C7NsDylrd3hFkQBj3db7CFWpEhes31OI0oC0BF/rthJ/Y71dTcit9lR+h670+JTHo2rq2m6CNRMm23WqCop2Z6KKIn2x8kygaJpkhjQVVdcoUEkzsFwdywavoqMqCoYh4+FMtcCwAF0hjpJSVC9QtdJhPhGITCKcvIzySXPp0i5NUaVFRJasApYV8iRHFaXLvqqgKatpToFuaKiqBCiqrqAYcnKyPL31OiGU0ueqEGW00QpY8RFLtLp/qzZfCX5KhmnVDvw18Fve7DtQVRKQcKfVW+/ujt2S7UL113ZTFKxF9WL9PpKd/DtIsr4f7cI4jlksZtIcTVHIswwFQaVSLYHKgCiOqTaaxHEIAmzbI44T6vU63e4G11cXxHnM8fs3UBQUhWBv94Bas8lysaDIE0ajMY5nY7sOjm3x5PFjTk9P+PDhBNs2sWyHVqsJiszd+8N/+l8wHo7RNJXXb17LAOvxkDdvP/D8s+fsH91nOp1wcvaev/jJT7i6mdBq1Hn8+IhOq8uwf0O9Xuf5J88wDRnabNk2l9cjup0m48kMzVC57fcxdYP79x/w7bff4dgm7bZk5P7Tf/4Jnz5/hq5DtdYgjiJGoyHT2ZRarUHN9/nFl19SazZYLJY06k3OTk559OiAbrfL8fExP/7930O3dAxN0NvYpdPZRlVVhFmQ5zn7e7towHg84vTkAx/efEdvcxNd/7zMGTSwPYeKr/HdV3+Jauh0uz3yLCeKA8JgwWw2xnN90izh4cMnDId9XK/Cbf8a1/PRDZM0jZjP4d3LX9He3MayLfrX1+zt32cwuGL0bkBvYwfD0BmN+7S7G2zfO5SeXGFIpV4njjPp9r6YIvKCZqcrRYpKQYFgb+8+YRKjKgLbthkOr7m5PqPV7aDoGkmaYBgmo9Etvl9nuViSJjlHj58wm02xbIu8yP/Wz+z/HzURhPP16HmeZShCyEBiTWcyGRDHMZVakySVsSmO5ZMmY2rVOu3OBhfn5+RKzOnJO4py8md//4Bau8UiWJJndzVhuTa2bfHk0SNOz045fn+CY5sYlk2z3aQA0izhD//pP2I0GKHpKq/fvMWvVJgMBrx9f8Lzzz7h4P4Rk8mE84tjfvLTn3J9M6FZq/Ho8RHtVofRuE+j2eSTp09kzVkutmNzfTOi02kyHE3QNIXhcIhlmhwc3ufFqzd4FZtmpYlmmfzJn/7v/PBHz6HIsTUHoWTMRtcsxmP8egvPrPDLr3+JV6szmy6pVVucHJ/xyWdHbGz1ePvmPX/wD3+MZuvomqDV3aXib6BpJoUmsM2C/d1dSAXD4YTjD8e8+e47th7sYeifyIVKM7Ftk6qn8fJXP8EwVdqdLmmRE8YLknhOEI4wDY8kTXj46BmDYR/X9bm5ucb3fXTdJE8jFnPBh9df09nYwnJs+lfX7O4eMRheMxrd0uvtoOs64+kt3Y0NLPtIRoOFEbVGnSRJpSnpckaR5rR6PdkqUuXCt7tzSJTEKIrg3u4Bg+EN15entDodUDWSNMMwTPq3NzhujTAJyYuCg8OnTEZjLMf+XtQESPCx8jSSEh8htVMrtkJZBQqvV2ypVypjavIygmVl9qlIhLnWWxXllOEKhN1RTGU7svzbyg9e1ctpxY826fxeaqU+ml5cgTRVVaReqtRCrcX1JStVrITwqsxgXKX4aAqgCIoVQ6QpMtFASGsE3dYIk4x8kWK6OjopalGQBXlpryB1VbqmUKCSFQqGK0OWszSXU47loWQCsqhAtzWEInMNi5VdAgpFLn25dNtEy1LpwC4URJ4iw4Q0RJ4j0rxsuckpSlWFNJWpGiswqhlla2818beSZGkqSmnXoSJbfkK901+JEuitXpPXSS3vm1hfc9lGVshy1s7xyso3QhHl5OmdZmvdbizbgyDQTJVClfsRH7vB/wbb94LJMgwDTdWZTqZEUUwQBuiGDCyeTicMR32yPGVja5t2RzIns9kYx3akqLRkbDzPJy8y5rM53Y0NPN8jjkJM08SwbZ48/4RWs4Pv++S54Pr6muViyZPHj3j29BN++PnnNBuyvbR/eMDtbZ9lsAAFtrY3efDgiLzIef78KYoQmLaJCrRqbX78Oz/i6OAeB3ubPH/6CXEaE8QhzXoNTdMI45Q0y5lOJtRqsgX08P59Oo0GD+8f0em0iIIQ13XxK1VAcHt9Sb1R45e/+oZffPWCQb/PcDBkMLiVru1RRBRF3NvbpcgL+v1b3rx9x+MnTyiKnPcf3rO1tSlDRhFoqsFqPFZVFUzTphDSX8cyLfo3VzhuhevLc5azKYNhnxcvv6V/e4OqKriux+uvf06axJx8eC/d08NQtg8th2a9Ra+3w2w2lzqixYTh4BaEwDRNEDAe3NLq9vA9H8v02NrZR1E0trYP2djYJo5CFFXBMm3yvCAMFnI0uBAUWYbtmGRZRLezWZouLplORoyHfWaTMeNxn2A5JVguicIQhEKnu0ORFyzmc0zLJI4jGo0248kUy7E5un/EfD7B8z35FMZvXkB/X9uqJuazmQRcQYBuWghFYTabMBoNyPKUza1t2u0u1WqTxXKK57gUeYZlyVBxz/XI8pTFdEa318P1XKIgxDRMLMfm6SfPaDXbuJ5PIeDm9oblYsnTJw959uwZP/ric1pN+XCzd3DAzfUtQbhEURW2t3s8fHifXOT84NOnaIqsCU1RaFXb/O4Pv+DB4T2ODrf45OlTkiIhiKSliKppBHFKkuZMxhMqVVmTD+/fZ6Pb5MmjI7rtBmkUUnFtPNtD12EyuqLZrPNXP/0VX37ziqvbIbfDIf1RH8XQiNKYXKTc291BiILri1vevH3P08ePSdOU16/esrOzhWrKJ3BDN1EpMC3p8WPoFrkoEFqBY1mM+9f4XoVB/5xwNmY4GfD1t99wcXyGoYPj2rz81ZfEScbxm3dUKr6MxnEq2LZHp9Nlo7fDdDrDNGyWiynD/i0iFximQVHAqH9Lo9XFtTws3WNrex9V0djeOaS3sUMUhyiagmU55IUgWM7JyxzDLMtxPJusSOh0NrFtSz70zCeMx0Mm4zGT6ZAgmJUZryGqAr2Ne4iiYLmUQ0VJEtDtdZmUDxpHR4dMxiM835dRL3+HReXvdRN3+pzSW2HNKtwtrqx1VZqm3mmquAv5vQtulv8Vpa2DZLnkDotCSFC3Ys3WcSzla8pd9uBKu8Vqsg3ZdlOU9Yza+r1UVYZFF0KK9z9uYYkSPBRlB2F1XJqhyv0hwZYKFGmOriuYljyuOE4RikqKRq5IcXqKAE3FtMr8QEXmBa6AZJEVUgivlSwgEgipCuimiqqULuko6JaGgkBXFDRVoOugiBw0yPOCeJmU1gkFWQ6F0CgyaWyq6aps3aGg6dJkSkacSS+zVcfkY+ZJ5NzZbZT39+4WlyBaXWPptX5LfHwS3IFYRVNKa4ZVK/IjnzWlHKQof00Cs3LgYJVQXUhzWEX56DPwG2zfCyZLCEEYBlRrdeI4JopCpjPZIpGeUD2qlSrRcsl8NqPZbFOvSzo+iWLmypj9gz3ev/uAZ3t02xsUAnRdY3B7hW5bXJ9c4Fg2s/kc13UIg4AkSvjw4T2KppJlGbf9G277t7TqbQaDMVmeYNk29WaTm9sBx8cn3Nva4vV3L2n1NoiCkHa7jWk7pHHKoD9gZ2ebb19+yydPn3Kwd4/ZdEKj0WAehLz45lf0RxM+ffacTksybJpu8OWvfsmnzz/h5MMJiq7R719zfnFLo+by7PET2YJoNqVFQRQxm06xTBvDNDk5OyHLBZoi+9sPjw5Is4Sd7R0EORubm6iqxt7uAULAcrEgigN8v0YYhjQbbUzDoF4fIAqVn//lHxEFS8IooNlsU/F9zo5PcT2fxWLGw09/jKqBYVpcXB6jKPLLIkti3rx9wc7OPkIpmM/m9Da2sNwqYSiZqM7mFju7R8SRbOmNJ0M0VWE2GaCqBRcXN/zgsx9xc3WG70lRvO/7VKpVkiRFQQdFIwgj4qRPrV5HUzXarTZplkIBw2GfZqtNGAQYpo5je8RxgGHaxGEk0+fL6VVDKzAMyQrZjrduUX8fwnAFgiAM8fw6RhITxyGz+RTTNFFRaTS71Oo1gvmC+XxKo9GhWm+QJilZmjCfjjg83L2rift3NTG8vcIwTc6Oz3EMi2WwwHFdlvMZcZBw/OE9mqGS5hm3wxtubm5pNWVNFCSYhkWt0eD6ps+HD6fsbm3x6tsXtLo9onlAu9nCNG2SKKXf77O5tcmLVy/55MkjDve2mU7HNBoNwiTm669+xe1gzOfPn9NpNgjmcxTF4Mtf/IpnT55yenaOUFVurq/pD4fUfJvnnz8CJaNeqWPYHlkWMx9PsCwHTdF5d3pClBQSBFUVHnf2SOKQ3d0dhJrT7W1iGho7G/ugQBiGBFGAr9URYkGj2sQydGquhyo0vvzrPyWJQ+bDCbXPa7j3bW6uzrm+uCYRS57/3u9SpAWq5XD69g2qYZDFOaqIeXP7Dds7+whylvMlnc4mpl25q4neBnt7h4RhgKYbjCYjdE1hNh2gqoLz8ys+/eJ3uLk6w3PqBNFS1oRfIUlSciEQhcIyjojjW2o1WRPNRockjVFQGQ1uabTbRGEoayJzCYMllm2TRiEIGa2lomAaAl3XmU6H2LbPfDphMZuQxL/9moCSQcpLjZGm3LEVhWR0FE1FJPl6gS3K9pBWAgG1bCXCql0kV0tFEZAXZQsPFB3gzokcAehSW6WWE3cKUpiuGaoECIXEKYJSnF1qneRhSm3hSgskymk2CumJJTtR0oi0EDLnUCsjZUQuZQOiBIOKoZYifjCM0o7AAcvUyNMUzdFAkxopTIM8zVELyIVs4Zm2QpEUFFmBYkgzsFwIdFUhTwuUApTSxqZQwLQU8jL3T9elCbbQdFQEaZCi6fKcvJpGGmWYroFAkIXSJT1fFiiGBoWCUpSh2hIfy4nJVJpls7o1RVFO/AmEopa2FqwHDEQJThGCPCs1ax+xV8DdIMEdkShBZVKUwLZ8uxJsihLoSaso2SJVFUGeSsZRtiBLQCaAj4xu/7bte8FkCSHQdQNNU6lVa9RqNdqtJq7j4no+vi+fDi8vTphNp0wmYy7O36MqCn6lgqZqhMuQze0dmp0WrU4bw9ABOTnhOA4Hh7uYpsXN9QWO7aAocHF5xg9/+AW793bpD4bkecHV1TVv3r/m5PwMx3HZ3b3HoH+LoirYric9tzyXp4+f0Gg20EwD23F5/+E9UZKTphlPHz/F9ytYpoVfqTBfTPn5z35KIQRPHz9E1zXSLOPVm5dUfB9d07i5kV+QaZqwsdGj1+uQJBnz+ZJqvUocR5yenIKAKEpQVAXP95nPF+zubmE7DijSibbRbLK1s4HnV1A1E8f2GA6HXF6eYTsu3e4WlUqV6XTMaDwiCANs26bRanJ2egLA2fF7Bv0+iqKyXIwYDa4Y9s9la8m2AYXx8AYEeF6FKAlxPJ8ojnEdD9txWSwWzGdjRFFgajoUgjxPubo8RSkE1VodVdFptbdotLY5eviUZRDQ692jKDIODx5gmKb0jIojwjDCMk1MwyBLE7I0ZbGYgoAwKBlLU0YvpVlG/6bPi69/gSgKwuUE07GwDBNd18nylEarjWGa2I5HGCzwa1Wa7Q7a9yC7UBQCQzfQVJVqRdZEq9HAMR0cz8erVIjiiOvrU2azKdPZmIuz96jl50JFJViEbG1v01rVhK7Lbx8VXM/l8P4+pmVxdX6BpVtousrF1Tmff/E593Z2uR0MyQvB1eU1747fcn59jm057O7tMhz2UVQVx/PIRY7rezx7+pRao4FSXtP3x+8J45wkSnn68DEVv4JtWni+zyKY8bOf/RSB4NmTh2X8RsbrN6/wHA9FUen3+1QqVbIsZWNzg3anRVoULOcBvisnfo/fn5FlCsswRRQCz/MZT+bc29lE14xSL1PQbDfZ2dvEr1bRdBNLdxlPR/RHV5iGTae5iWf7DG9HDAcjgkDWRLPX5vj9MUWhcHF+yvD2FqWA6fCWyfia/tU5tmVh2w66rjIdyJqoVCosQlkTSZLguj6O57MMlsymY/mdp+goQJZnXF6cQiGoNuqoqk67u029uSVrYrGk170HFBzsP0BTDYSQkoYolGHYlmmQJrImZrMpqkL5MxPdsBAilzVx3efbr34BQhDMJ+i2JYX4aOQip95so2v6uibcapVGp4um/vZrAlb6p9KpmzJXrjSNBMpW7h3TsGaJihVDpPzaYiy3cgJQUyQiUhREJlkkVS/jcJQ7LyX5RqLUoEoPpZUeGuWjEOlVBiHlerxmYsTf0PWIXzPAhBIslgs7SAZFFKXOaM3ESNG5qipoSGZLlNckyyAvVPlaAWkuJTRpnEtQUU5iqtqK3ZNTdoqmYjgGRVogSqF7lhSInLXnmKqrZFlRtmA11KKALCeLUylkz1eMjwSKailoUtRV++1Ox7YKZS5KdXr+0ZTlunm3Mnotr4+yuv7izlohz9f94vX+VxmXlNe8zL4udVnFOqcRWF/TIr8DaFk5SViIktVcgTEkS/ibbt+PygGKIifLcgaDC2zbQVVVRqMJlUqFvMg4Pztla3sX1/UAhWq1ysX5Kc1WR+pq0oQ4m2HatkTKCOazKZ5XwXE8bsZTwmDExuYOs9kMXTd48PARSZJiaBqbvR5pmvLgwX3anQ69jS3SKOaP//hPEWRsb20CBcsgoFqpM+gPyPMERdU4Pf7AxdU1z54csr3Ro9GokSQxs/mU68sbTMtgo9fm6OgJaRJyfnGJqsLB/n2mkzEPHzxEIKj4PrV6lXqlStzN8FyHWrVKq9ni3dt3hGHA1dUto9EQ13OkkBsVQ9fpddu8efuWg8P7bO5so1JQrzeJoiWNWoMgWGIaBtVqlfl8SpLCwf4DAJI0JlzOCYIlX/zod4jjkD/70//AzdUpqrrHdDqkWhrCBsGCZqNNxa8QRQspyMxTXK+KrunkeYrjuDLQOgkZDwc4joeqaXTaG5wcv0PVdG7711TKp27X89F1nTwfYpgGmq7juC7nF8cy2V1VCYOATrfH7fUNzWYDISyVcY1aAAAgAElEQVSSJCbLEpI4wbVtguWCNI3QY7Bti8V8TiFEGS8T47rShkIgSLKEq5NTHjx6gu9XOD95j6abGLqBYRi/zVKQmyIXX3KV0fQS27RQVJ/xZIJfqZAVKefnp+xs3ZM1oahUqlUuzk5otTsk5ZRoEsR3NaFICwzP9bEdj/FgQpxEdHvbzGZzFF3n/sOHJEmKrsuayLOMh4/u0+x06fY2yeOYP/7j/whKzubmBnmWEwQBVb/K7XWfokhRFZWz02Nubm94+uSQ7e0NGs06aRIxmU24vR1g2ibdTpv795+QxAFXV5fohsLBwRHT2YxHDx+CUuC5Hq1WjWqlRhynOJZDvSG9wN69fUeeLOlfK/SHQ3zbIlzMMA0V1zfZNLqcnr1l794hW/d20DRBs9ZkNp3R3GoQRAGGplOt1JjPZ+SJYH/7CFVTyEiIlgsm0wVf/O7vEIYRf/5nf8TtzTlFoTCejuhsdkAIFtMp7U6PZtMnihZkaUFRZDhuFdMySJKUerVCmuUkSSRrwvNRdJ1us8fxh7dopk5/WNYEKrZTQ1c1hCjQDR1D13E9V7LHyEiVMAxp93rcXl3TbDUwTYskTUjzhDiOcW2bxWJOQUKSqFimyaIMFNY1jSQU+BWHMAwkcxpkXJ6e8fDhYzzP5+z9exQMLMvAMH/7NaEorMGUVrbZlFKPI1aCc4W1tmZlErpqNWn6Cpx9pLspXxDIF4tClPE18vWVl5LgI08ukHqqQjJUa9H82gZcrMHUxwansiWFZNzKtqPCaoLtDtyhlqagqrrS8Jesndy3KApUQwUNslTuU4INtZSFFAhVW4dUKwh0XUFRJThSEKXB5kfWE2kBurTxzJJfZ2mKpMxH1EDRNJK0WAM82XKTbu+KpmA6JnEoAZqiq2imRhZk8hzLzEJVkRotvXSvVzXppC4oz6OcGlVVCW4VIcr3ohwaWIm2SlsHUcbiFKyzJYFfu/erX14J61fMWVEg7RlQSr2Z9A0rcnmOYh1IXrKXYgXkf+NuIcrfxe/h72u7t70p/sf//l/z6PFDTMvk+vKaLMuoNWoslyGL+QzTMHE8l6urK3rdLQxTx6/UuDh/z3wxR9dUut1tbm9vMQyD8XTEdDJhc3uXJAq4OD/HNGxs18b1fWbjMUWeY5oWL1+/ZrPXxXNdTs9PadTrzKZzxuMRjUaDJMk4PDhkvpijaSqNRo3T4zO8isfl5RX7Bwf8yZ/8GU8eP8T3PPxqhf5gyDcvX/B7v/MFURhhWx6j8Yh6o4GmCUzD4mc//zmH+3vMZjOOjh7y1a++Is8Fm1ttObXl+Tx+/IT//Bd/QaNVZ3v7HqPhCMPQcVwb0zJZzJbs7d0jjpfUai1UXWM5X7J/sE8hBJ5bRVEgSeQXr+97FKVurdVq4XoVguUSv+oznUwpCvnEG4YRX/3sJ1SqNWqNDt2tDkkUMuoP2N474OL8nN29fTRVwfeqfPPVT/CqbWrVBsPRgNlsyr29fZIkRdV0hJAOwSDd2ZMkxXVdNE1nMRuQ5QWtdq8MCAdF0VFVlTgJSWPpg3V6+oF2Z4Miz6hWK1T8OmEUkiQJw+EtWRywvXufMFximgbz2ZK8yEjiiHq7RRxFaKi4fkVS5HGOYesIVBSRE0cxlu3wb//d/8zxydlvVYRyb2tT/A//5l/z5MkDbNvk8vKaLM+o1WssgpDlcoZtmVimy83NFb32FrpV1sTZe2aLBYYua+L6+gbDMJgtRoyHYzZ39kiTQHrOWQ6mbWE7HvPJGEUp0FSTF29es9Xt4nsepxen1Ct1ptM5k/GYRkMOINw/OmQ+lwMr9UaN0+Nz/IrL1eU1ewcH/Mmf/EceP3mE53rSUmU45JsXL/jx735BHMc4tst4MqZaraFQYJk2X375Cw7295jN5hwd3ufbb74iSQp6vTaT6RTP93j85Al/9ZO/pFGvsbmxw3A0otJwEamC69mEQUCruQVaTKNWw7AN5pMlewermqihaoIkSgjCmGarRhIlLIKAhl/D8Suk0VImCgQLEBlZURBGEV/+5Z/T2GjR7Pbw3DoKGVdnN+zef8DZ6QlH+/toCnhulW+/+Su8Wptatcnt7Q3z5Zz9wwPCIEbVjRWpiKop8gEhkyBS1wxm0yFZXtDu9jAM+W81XdZEFAUkcYJfqXB+9p5ms4cQOX6lQsWvEcURcRzTv70hzyJ2do8IgiWWYzMfzRBkxKH0IFy3EF0fEKRhhukYCKGgkhNHCbbj8G//3f/Eh9Pz32pNbG1uif/2v/s3aErxkU9WaZegyPaOzAEsI2xWS9tqTYb1YrtikVYWAmsGqpxSFHnZ1lIk6Mo/ErfLNVtZt71Wi79g1Rpcvcga0a2H2kQptC6XaJVyuk5TWTnRK6pkgvK8WAMtoZR/FgWaJqT1wqrVVUbQSJNS2UZEAds3CKYJuq6iarBc5FiOjkouNVIlu7cCqSvfryIXmJZOmpaxPXEGKOg6ZFGGaupoarEev8zTDM3V0A2V5STDtHTiOEczDESeo680TWI1RViyc2mOoqsSfJVB2AIBhSinL2XEUZGJMjVJLUGWvA+ikA4D0udLOrSr5TVcTyyWpOWqnZgXoGgqqijPXVMReY5WMoTSM01OV8p9lkBMovcy+1Le/3//v/x7Li4v/9aa+F4wWSun9zAMGY/HuL5Pnsue8WQ64ejoiDgOGdze0qjXMS0N2/WJ44BapU6r1SMIAxRFlS7haUwUhjSabbI0IwgiLNMiTmOyeUqtXmc+m6GoOp5X4fGj+6iqwmg4otVoMhwOiaOCzz79gtOzM548fcJk1Oevf/pzDg72uL29ZTKe8aT5hG6vRxJFZHlOteIzncrMtCyN+W/+5b9gOp1IP5v37wAFUzfojwZsbW5gWRa3gz4U8Or1S8IoxrINhMjwfZ/dvX2iKKTVbbG1tU2WZmxsdvG9CmkWEkUxrmvz6uU3mKZFp7dJtVrBMAx0XScIApbLGZqmYdtuKS4scBwf160yGFyjqjqvXn/L4eEj4jhG1xU0TaPb6fL7/+gfc3V+TrPTk+ySZ1DNCiqVOp1OSv/2mmWwZG9nj/uPPiOKpMu65Xhs7QjG4yGaqmFZNtPZFNdxKIqCKIpoNFuYlsVkOGJj+5Dry3OC5ZI8XUo38O4+SRoRhyGu75NmGQ8fPiJOUy7Ozmi12iRZhG27fDh5R63awK/UiOOQ+VzmO3peldubEa7noSkqvudzfXGO67lkWc7pyQnVukwYsCwby7JxXU9OJv2WN83QqVUrJHHIZDzCrfjkWUGeSSf4+/ePiJOIwU2fer2JaelYrk+ahNSqdZrNHmEUoigqvu8TZzHBIqDZ7pBnGcuFFL9HJUj1SzZH1XXaTZ+njx+gKjAajmjWGgz7I6Iw57NPP+P45Iynz54wGd3y059+ycHRHrf9W6azBY3WY9rdHsEiIBeCasVnNp3hOA55nvBf/8v/ksl4gqaofDh+j6IoaIXKcDJks9fDtExuBn3I4dWrl0SxzOATSka16nFvf584jWh1G2z2tomCnI2NHtVqhTST7TPbtji/eo2mamxudWg0aqjoGIbBchGwEDN0XcWxXMxckIaJtEWxfUaja3RD59V337B/7wGxyLA0qVHpbGzwD/7JH3L+/gRHVDEsE001qTfq+K5Pb2OT29sbgmDJ3tY97j/6rGw7umzf20fRFcbDPpqqr2vCs511O7zZamKYNpP+kO3dQy7Pz1gGS/Jkia5otDf2yIqYKAjw6zWyLOXhw0eEUcLlxTnNj2ri/Ye3VCsNTKtOHIcsFhOCUMM2fYb9EV7FR9NUKpUKl+dnbO3YpHnO6ekp9VYdBXAdB0O3JOv2d2iP/L1tJZBaabCk91L5I1GsF0gUtXQNL1a/tgY4q7+vhDJ5UawnEUU5WSgyCboEK8PRv+EkjlzUWb0fq6idu4w8OUhYuqmXYCbPBZqhrDXTRSGgDCGW/lMCNEqAV5QL/8pdvChz9O6E9WvhNkigJRXk5IWKqgqSZYaua4C8Nl7NlIyTIsX3WSZQVU36dwlpeLo6uizO5NRhkpZByQLy1WCAkGyTANVUUXOVdJYRJDmGryOKTLYIs2ztMbVmzISc6qRszyqKsnaRX8cgqSUbuZoOVVeAirWX1WoTRSGB4MpYtljfYQluUUC5i2CSZrYfHRCiFPaXbdOSBc3SfN2qXdlBUKioqgShQvkoxulv2b4XIEvTdWq1KlmaSn3VYg6KSq3RoFqpEscJg34f27axTJfR8AY7CFFVjUajzmIekGU57VZL+ihVK+i6WRqYBoTLJYqiEIcRG5tbBMuAOMq4vD1G11SanSaT4YgiF7TabRzXR9cN3r9/j26aFEXGbD5nZ2eT+XSO45o8/8EnJdPVZDC4wXVtbNvBr/i8ev2WdrtJ//aWSrXKq9dv6bQ3qNer5HnOyzev6HW7PLr/gOF4jG2Z2LZFxV/g+y66oWNaJmmW8Jd/8TMOD+8RRQGGbjIYDImjGM3QUFXpebJ3eMhyMScKFpimRb3WwLZdWq0Ob9+8pNfbwbQt0jRluVwACpVKhUajzWBwy87OPp7n4Louk8mIdqtFGARsbe9hGCaz2YzlZIphyAzDMFhiWRbd3gPOzy44OTthZ2cPXdfIspTpbEalWkXXTc5O3rK7dx+j1KGlSUyz2ZR6D9elWq3S79/QbrVZLOeoioOmyf2oisxHTJIYIXKKoo4Q0Ki3WAYLdE3Harg8OHpEECwJowjX96lWapiWwXA4IokTOt0e48GIVqdDpd4gyzKarQ6//NkvyfKMQqS0Gh1Gw1viOOT7wO7qmk6jXqVIUwxVI5zP+X+Ze5MeSbY0Pe85Npv5PHvMETneIWu+XdUTJTbVJNUDRK20E8QVF5IWArQQfwJXArgS0IIWJCBAWkiAtBAgEOyFwG5WVVcVa7pj3ozMmAef3W2ejhbHPDJFqVnVQKurDEhkhIeHu7l5HLfP3u/9nheh02y3aTebpEnGbDLBdlwc02M2vcXxQjSh0+l18NchRVHS7zeZTO+oVciAsiiIEgWsBI04jNnd2yVNIrIo4/L2DeZznXa/x3I6o8yh2+9jmXVs2+LVq1cYlk0pCza+z97BLuvlBtezefHhB5XS1WMyvVPQWa9Go9Hg5RcvabXa3F7d0u60+fj0FYPesFoTOS9ff8GwP+D5oydMl0sc28JzLdZrX2Uzmiam0MmzlH/93R/w6NE+URhiWA5BukIuEzUWTonQ4ejoiM1qQxSoIqfb6+LYLu1mj1evPmO8s4/tOmR5znqxAqDRbNHtDZje3bO3d0yzUyeXGht/SbPVJgoDDh49wnFtZndz/MU9jmtSr3sEfoBp2hw/fc715RXnNxfsDA+wbJOiyFhvVtSbLXTd5Oz1K44fP8PQNAoKFZHT7REGPh3bo9lqMZncMhz0WW42CNNV7b0kRdN10jxlOZ9S5gV52kIC3e6AINhg6CZOx+P50/cIAp84Tah5NZqNNpZtMJsviKOU4bDB4n5GbzigM+xRyIJet8dPfvBj8iIDcoaDITP/liT99VgTALpQKlX5rlIFbye+Kr9WWT7Ysh78Tlsw6NbEXFbyk9yOr1XKhyhB6JXxPC8ppWIoVWLM1javPFvatrATD08oUDEtiiy/xTEI9Krg2sI1dQ3ytFAqv674fQ+ecCEeCrutD2jrMyplZQhHMasMS7UJBQq9oJkCr2aQxxmyVB5tAIpCZRxqGiUCzahM9Xmp0PFClViaLiijAmGh8lE1VfghS3TLoACEoVOkBXlSYDsGtllFGMkCjQo7U6rWn6ap4kSTkqJqD8qqRbeVAFXykQKkbknzD69dVkgOWapj9g6jShU8imK/7eUWFbJBMzRl7n+nVbjtHG7TkpBKrSsL+TYMHDBsXdHni6pA2waHayrK56+yHn5hkSWEOAD+OTBSL4E/kVL+UyFEF/ifgWPgDfCfSCkXQpV//xT4QyAE/qGU8kf/rucoi4LBoK9ywMpCjXcHAfVmsyKGQxw0cWseURTSaHWRpWqBCaEhZaECbhcLkiyladq4nketXuPy7Ixmq0UQ+rS7HSzb5NOff0q72+T46BDbsYj8AK9W5+Off87p6RtKmbPaLPk7f/v3uTg7Zz6bMh7vEkUxo8GA4XjEcrXCME2msyn9wYjvNNo0220+/eRjhv0+tmNze3PD1dUlge/zGx99ix//mx9xP5nynW9/mzxNMW2LVrPJcDhkOpkyGPS4vr7AdlyiULFqPvroBVEUIyXU6jWEVhDHERYmjUaDqIhpNdvs7h3QaLa4OnuNa7sITXBx8QbdUABQW6qqfzgYEYVKFdQMHcuyKIqS+/spzWZLtfLiFmmScX72uqLxChUq668rA3qEZbssFwtqNQ/H3SeOQkzLRFLiuh5CaFiWSbc7JC9yhROoNam5HlcX5+zs7ZLGMXESMR6NWcxnKoja6xElPnd313Q7XbrdnpoMDANKJF989nMODo5waz3SJGW9XKJpGp1OB8PfAIKiLIiTkrIsePbec+5ubxnt7RIGAfPpPb3+gNlsynd+5zcJ/IjF9IbeoE+j1WN6f02e57/6NVEWDMdDoiipRr11oiCg1W7hWA6GKYiDJl6tTrDxaTQ7lFKtCaSmyPVZwny2IAwTGp0eXt2jVq9zeX5Os90mCHw6/S6mZfLJTz+lO2hxcnKIaZjEfoDn1fnkp59x+voNpczwgxX//r/3+5ydnjGfThgNVRD18KDLaHfMYrXCMA3uJ3eMdkY0Wm1cp87nX3zKcDRAw2C+mHJ9fYsfhnzzo4/48Y9+xHQ64Vvf+jZFlmG6Ns2yyXAwYnI3YTAccn52hltzicIEWRZ86xsv2KwjslQwGLdYLXKCKMKr2bhuDd+PaTdb7O8fUKurNTEcOWgNjaurcwzdpEhyNL1EZjmj/V3iKGI6uadIJJQ6uW5wcbek2agT5RH6JkaKgi+/PCUvSzLTpDkYkUZL0iQmWcbYbo35NKPedPC8faJ1rAK3yfFqNQQCy7LoD0dkWYqUObp0aDXbXF2pNZFnCVESMhqNWSzm2LaF5/aIYp+7yQ39fo9Wq4PteoRrH02XfPbxz9k/OqHd6ZCmKZvlCqFrdLpdgtCnzAFRECcFZZHz/IPn3N/eMT7cJ9j43N/eMRgOmC/n/Nbf+k3Wy5DF9IZWp8ve0VPms9tfizUBQMW6QtceiighVYtMGNUkmlDnFFDTcQ/tvMo2JaU6aWqaUk22E4YP8kaVDSgrE72QyhD9bptKaGCYqugpSu2BOL8tCpQOJh46hmVRYpgapRAqqNlQSAYyMG2DLCm3MlFVtFX7Wz2/Mu0rYKhh6gqeqYFm6pWypODFZSlwGjrxJkNoAsNQhVuRSywLRPV9WajbDKOirkoQFRNKaALh6ErdQZJucqQQ2A2HNJOq2HF10jDDcQ3SXJ0jStNEt3LQS0gFZSTRikK1nh0NVZ1Vfje2EUNvv6Ys0HVBHufVsXjnfoXim8mqYGNLea/Ap0WuCq3ineDnYjssoG/VTPHgzyqrlvK2Mtt6tbZU+CIrH5AOovLWvW1pvv1b+GW2X0bJyoH/Wkr5IyFEA/ihEOJfAP8Q+JdSyn8ihPjHwD8G/hvgD4Cn1b/vAP9d9f+/c4vCCFkd2OV8QaNZp8xzbu8uKfIS23EwDINms4VpmoRhiJSSwF8zn08Qmk4YKWq4ZRjc3lyQZxmyMBmOdgmCNcFmjV5RkTVN43D/iOvrG4LAJ88KDNPg/fefs1ot+ezzj3n5+ed49TqmZfNn/+rPqTc8nMrIKjSdfreLYdikecbN1Q1JErN/sM9yviBNMpIk5ujohN0dSRSEzOZzvvH1r5MlEbPZjGazhWEYzGYTdEMnyzNqXpN2p81FeInQBJeXFziOi1fzMA2LNMkY9IaMd7v4m4Cd8R77+0cURUFeZBwcPaHmuVyev0HTdPqDEZ7jUfNqbDaqZedvfHRNp9FsIYTAMAyyLCXLMnRDJ02rLMDlBcPhmCSJMSwThMA2bc7efEGW5uiGwKvVaXd6nL78FNt2afd6XJxdcPLoEYv5jLxI8LwhYegjZYnj1mh32izmC/b2D1muFipfTVcRF7Zt4nhdLNtB1zTiOIE0RkpJt99jMByzXEzp9obUPDWtpcbfdXTdIE1iLMsmDmM2a5/AD9F0DX+zJk0yjh494e5WRb8sZc7e/jGmAfe3F4DA8xq/DN36b2RNhEFIUV1hb+YLGnUPWeTc3FxQlBLXc9F1jWZLKXdhFIKAMNqwWE0BnSj2aXVaak1cX5DnuVoTw11Cf03gb9CFhlPzkELj6OiIm+sb1rM5eVpg2Bbvv/eU5XLBF19+yheffoHreZimzb/+s+2aMEjSDKHr9Ho9DN0mLTJmk2tiL+LwaJ/5ZEFZlMRxwqMnjyjKgtAPmK/mfP0bXyePI2azBc16HcOxmM/v0E2dJE1oNpr0+h3O3lxQ6hpXN9eYmkOj1UCXOmVe0m0NODjqsVkH7Iz32ds7oMgKpFZwcPQE27S5vngDpU5/MMZzleq8Dtc0GjXCMEAgaHebGLaJbppkRU6epei5hmYU2GaN2WxJfzAmDENsA4xaF802uJidUhQlqWfgCYdOs8f95We4rker1+Py/IKj4xMWsxm5TGk7A5I0AErcuku722a1WrK7e8ByuWS9XlTj5GCbJrbdwTQcNE2Qpil5onhX7XaXwWiHxXxCtzvAc22Fh4hjNF0HqZEXKaZmEUcxvh8Q+KqNvFquSNOMkydv18QiS9k/PMF2Ne5vzxGaRq3x67MmVLEhEWVlRC8lml4Z1PPywRDPtsUjtq27ygdUyofiqiyraBve8e0gH3IO0dS021ZBKjKFeDBM5ReilBTV7257RwLVilOG+bfTgdu8RCmV6VzToEgleQa6BXbNoCwlRf7W97N93C3u4d+eoNR1VQiqF6khtBLT0JBpqT7Tk1wpNlIVU0VeKGXJqtpiW5VNCJBC8aCqaUmtGhIo8wLdFOimTlkUirhe+ZNc16gyAbUqj7FU6pjQKfISQ9eVcd2sQqkrz9MDKJa3GAzEdmCzKmwqrIWoJgS3a2HbRpSVrCilIM/Lh8LrAa9RFUtbFQuqYrvctmYrzxfbVqB67LJ6fE2vSmRBhQzRKqVum2n4i/5S326/8K5SypvtFYaUcgN8CuwB/wD4Z9Xd/hnwH1df/wPgn0u1fRdoCyF2fsFzECUJQqgpMtu1ME2TKAhVC6/bY71aIYQgDCMCP+T68hLfDzh9/Qm24yow484Bm8Wcl598zHj3gPc//BoffPUD3rz+kulkih8EZKkCpuV5wXw+5/ziEstwaDRa7O/vkcQxYeBjmTZHRyc8fvyM6XSCZRvs7e0Rxynz6YwkDNF0nddvTvnk5z9lOFbB0+vVGss2qdUdXrz4KmGgIi1m8wm6rkyrWZbSbncYDUdAQVFkXFxcEAQ+hmmwWC5YLVfYpo2mafT7XTzHVcRcoePVPIrSoNMbcHh8QpalGLrOerWg3W4xn9+TJhl7ewc0aqpFud5skGisVmvq9TqdXg/LMEFK4jghy1JE9aEdxSE3d5fs7u2jaajxdE2jyFJm8zsajQ7j8ZgkiVguZyRxpIKao4Rg4+M4dhXZ0qfZ6uJvNswmN0wm9wRBQLs7oNsfEMUh+wdHNJpNhFDsKj/YcHlx/oAvaDQbLOYLCpkThzGj8S4nTz7Esi1sx6bdaqtYnihGSsHlxaWK1tF01Ta21LRgUQWOp2mmcjH7A1zXJY4iSgmup3LjsixR0Q+/Bmti7cdKwQojLMvEtC3CIEAKGI6GrFfLauIzJPBDri4uCYKQV6cf4zgueZGqNbGa8/LTTxjvHfL8/a/x/osPefPqJbPJFH+zqYprQV4UzOYzzi8usKs1sbe/o9TLOMAwHQ4Pj3ny9D2mk3tMy2Bvf5ckzVgu5qRhiGEanJ695mc//SmDQZ9Wu8FmvcJ0DNqDOi++/hU2qzVC6szn9+iaRugHJFlGq9ViZ2cHgWrhXt1c4Qc+mmEwnU7ZbNZYpk2ZS0bjDu22B1mKITQaNY8s0uh1BxweHlMUGbrQ2KzntNtNVst74ihj/+CIutcmT0uWc9WCXcwW1NwazUYXz3NBlMRJTFYkSFnScBuksc/d7SWH+/vopaTueRjCJlwmLJYTml6LvdGQLAvZhEviNObw5DFJnBD6fpUkUNLt9WnUO/jrNdP7G2aze8LAp90e0Gn3iIKA3Z0D6l4DIRW40Y98rq+vFCNNaNTqdWbTBVIvSeKE0c4uj5++wDBNLMum1eyQZSlxHAMaF2cXRFGArhs0mg01rWiZ5GVJnKQkScZotEu3P8CreURxhBRQqzdYLZfEQfRrsSYABdKsPFdl+c7J2BDolv52mkyqls62lbedOFcduKqiqibRyopBJcvygSwuBO8oS/BuwbR9zG0kDttpwcoztcUNaO/CMIWgKFUkkyYkCEmJxPQMhK58SapFVvmqcll5zBRQVRV/1RQiqoAoq4KsRHmIdB1MG4o4RaN6LWmhXmYpH9hTqsapgo5L+fA6ZKnYXpqofGl5SZFIdEuvJjRUL7UoSso0R6+ewxCgFSWGEFCaxAHoQkMrC/SyRNMV1BNNZQS+rbG2jVdR5eRStRfFw3GQucJHlHmlJEn5Foehb/MFqXxvyjD/MLlZtWu3E6IPLUOh3uuH2Urx9j196ClK9XcgZVVhi6rlXBnx8/SXz9X5K3myhBDHwDeA7wEjKeVN9aNblEwMamFdvPNrl9VtN/wlm8ppS7h9dcN6s6TV6mAYJnu7u+iGTl4U1Bst1usVs5maHhzt7FJKydHR+2iaYLPZMF1MWK7uSeKcwc4Om/WKxXSBV/MYjAacvvySIs9ZLGY8ffqM73//e+SF5MMPXzCbTgj8gPqoRxRFHB8/wbQM7m6vMQzodrs0mnX2DsZ4Xp35bM6nn/6cfm+IZQ1pt9qsVguyPCEIM0CQpt0r/e8AACAASURBVBmnZ6fU600eH+3Sata4vbvmg+df4/LqjCLPuZ/c47o1lssVO+Mx5+cXHB0d8tFvfJP+cMT0fkKv11VKjaaTxjm2Y9Fud7BMmzhO1PRLmWNaysjc7gzpdUcsFyuaTcn93RV5mpGkGbtHh+oKV0gWyxVurVZxfDzKsqhiizR2x4dsNgsMw2TjV+Z528UyHaLIJ8tTojCm2xvgBz7jwZiTZ8+Yz+4xDI3PPv03HB8/xbIs8jxkd/+Esszxgw3BOqI3bGOZNtc3l7SaHdqtNufnr2k0W9iux2w2xfU8/I1PUeTkaUGgBdWkT0kY+KzXK5qtJlEYULQ7LBdTmq0mQRgSiRjHtfFchzyX3N1eUq/X8VyP+XzOcDTi6vyMbneIV/NYLCxc12W9WpAk8a/FmiiKlFdf3LDZLOm228xnFjs7uximqabLmm3W/orJ3S2WbTHa2aXIS46P3kfTYL3ZMF1NWSzUmuiPxgT+muV0jldz6Y8GvDk9JU8zlss5j06e8L2/+D5IyfvvvWA+mxL4EfVRl9BPOD58jGmqNWE7Gp1uh1qjwXh3rPhUizk///nP6LQHjMYj2u0uQbiokAIZlIIiS3n1xUsazTZPHu/S9DzuJrd88OyrXF6fc3l9w2x+h2N7rBYLBt0Bl9fXPD454Ovf2mUwGnN7cctg2Me0TUQpSKXA9Gxa/T6mYREnqRo5FwWaaeH7Ia3OiF5vh+ViRaMmmV5dUOY5UZnRO9ijbpiUecZktcKyHfIso+46SFGQJAllBns7h6w3KygNwmiD7hp0Wk3yzCWOY9I8JfED2p0hvu+zO9jh5L1nTCd3CE3jk09+wvHxUxzLpMgz9vYfIWWKH2wQy5DesI1pOlzdXNJutum0O5xdndGotzBNh+VqilPz2EymKhw8zCiLAMvSyVP1/dVqRaPZIAo3FO02i8WUZqdJGEeIMMJ2bGquS5qV3M+uqbkenuOyWswZjEZcvjnjSW+I66kpR9f1mE/nJPGvfk0AD1lyyBKjAlSWRRVH86ACbaUl1WrL08oHtDXiiLfm61K+jb6RpTJWa9u2I8rjpM6/ihGgwKHb+yuF5MHHY2gK2ql2D61qP5WFVBE0hip9hKFkG11X6pKGoIxL1T7UlXqmlBaQQuX66sb2+UryvCq89C1XShUNJYI8E2AYpDlIXSDQ3/K+ZIFuKS9a8c4EpiYkSIGWlwpfIKXySGmCUpZIw6z2Uyq1EKX8FA/FpURIgSYFCA3L0ZBFDrZBkeboRfmQG4lW0fSVRI+UlQ9MgNTVeyPfGTAQQvC2HNrS1itVMlctWN3UqoJaoSG2yhdF+YDtKLfq5kNhVWEfCpAV06uUFYlfpY5Xw5OlQkQIVJyOruKZ8vz/hyJLCFEH/hfgv5JSrt+NWZBSSiHEX8kZKYT4R8A/Ahj0e+yMdwEYjgZ0Oz2KsmDjb0iiqLroUO2qnZ0DpJS0m21Wmw1huiHLU3Z2dlj5a3q9MablsJjNmNzfs14t+fAbX2c1n9MfDJlNpiyXa16/fs3O3j66ZhBHEWGcIHVdgT6FjkAQ+AFn5xcEQcAf//Efcn5xzumrMxr1OsvVAteto2mGgrEhiaKI9WrB+++/4MuXp6xWS1brAD9MKMucdtNjtfaZze+4vrrkxYuv4Ps+rVab9957hlerMxqPqNVr3N3dUkqBv17RH/QUl6SQnDx+hGHp2KaDaRpEcYJmGcr0W0pub244On5E4Pt0uh1cx6NWe0pWFFiGSZIlzOdLTFPHdm3SNEbXTRzHQSDZbJZ4XpPNZk2j3qKUBbrWfrjaCULlX/vJD/+cJ+99VfX2s6zCPoR0ugN0fUFZFqw3Kzy3jhCKJdbtK0Wy7rUIw4jMyOj1BgSBz93tLe1OCylh2B/z+ac/o9Vq02g0iCMNy7LRDZPJ/R3dbg+vVgNN4tgOQmjomoaw7IcrT1mW5FlBkISkac5oZ4c8L8jyjGarSZEXePU6V5fnSg3Mc/Qkpd3qkmfpr8Wa2N/fRROS3d0BvU6PNMvZhD5xGFYfbAaYGuOdA4QQdNtd5osVUeRTlDnDwRg/9hn0VS7fajFncnvHerXkg699jc16Rbc/YDGZspyvOC1P2dvbw9AM0jQmyjJKTRmuVWNFqWZvzi+JAp8/+uM/4OzsjDfnMxr1Oou5mlozLJOiTIGSzTpkPlvw4sULPvv4S8J4w2IV4EcppV7QbHgsVz6z2R03l1d88MGHnAU+jUaLZ0+fUqs3GWUZjuNxe3MLaKRliG5VIbRC8vjZYyzXwMLGNAzSil8nhLrP/f0tJyePCPyQdreNa9fwvKcUlaE2KhJW6xWWpSmFJ09xPAvPcxClVLE/rTZ+sKHm1pGyoOa1wFRtkbRIqTkuP/7u/8WTr36dNBMUZUmc58RxSK8/YLVcUpYlq/WSVqOBEAZvTk8ZjLps1ms8u0kYxRhZQa8/JAp97s7u6fRb6nNxuMsnP/sJ+402tVqD1AixTAvNMLm/u6Pb6eF6NUpN4WGE0NGFwLZs5cMpJGWmQrcDf01WFAyHQ7IsJ80z6q0mRVnieMqzd3h8TFbkaHFMf9gnz3/1a6LVaqHrompzKbmhrLhSW8d4mUtVxFQn4wdjOtWFS67ibjRNnaS3E2WSqjAytbeB0RVpXdcrRaoyh0tZ5SHKqtVWqVj5VgErFQJAcbcUzVwvxYPlK0+VK1/fFn6okrAoeYjOeThI2xbhg99LGfJlWVIUVYFiaDgNiywpkFJimEJ50XQNmSkMgW5AXqjyU9d1tLJQRVYVSyQ1KHTlNcqKUrX5NA27ZlAUatLOtAUyVTuRZcrvpVXmfV0TGKZSfYosV0VMUaKXBZQ6shRgbPlTqlimAq+q16QUxbIaCFDFqToAQrwbHi0eWnyaqT28/6UETZcPx2s70alBNa34NopJIBSvrKw4ZtX7p0CqikaqBgve7oeo1EwNReQ3rb9mGKkQwkQtnP9RSvm/VjffCSF2pJQ3lcx7X91+BRy88+v71W3/j01K+SfAnwA8eXwioygiSRJ2xjvEccR6vaqmyiRZmjEaDYjiCE0IdMOgLEsMXWM+m1U9UkWWHYx2KYqCi7Mz0iQhzTOSMMTf+JiGwSefv2K5WjCq4KMHJ8fcXF+yWK5IsxzX1MmLnG6vQ1HkPHv2WJHFNxtkWXJ0fECepjQanlKW8gxNa3B29hrd0Hj67D2yLGU2n1ECR4eH+Js1jlPDMC2GgxqmZTEcDnEcF6HpdNod2p0WoNPpdHnz5hRN1xT/aDBAEzqO43B5cUEY+Zg6DHcOqGt1hAbziuflujXlRdpsWEzvefTkGcvVEtuyyPIc4UCaJvT7PXx/U33o5Oi6yc3NNciCer2JrmuEYUaWbRUuyWq1wLZdyiIjShP2jx5jmTZW3aEsS4oip+Z5lFLS7vbUh0Ip8bw6tmUT+Gv6/RE1t4ZuGpiGyeTunk6vjWlatFot/CpmaDK9ZbizgxCS5WJOvVEjy3Is2yEKExIvZTAYEfhrzk4/pz/epywlaZbhb9Y0my26/QFxFNBoNoijCNtxmU2neDUPf7MBCc1mnS8++xhN17FsB2RBnqvn+XVYE0EQEycJ+/1dojhmuViSlTllAWmSsbs/Iqi8RLqmU2Y5piZYzufqhKDriFLQ6++S5zlX5+dkSUxWZmRJjL/x0TSNjz95xXI1ZzQekhcZh/tH3FxfM1+sSdOMmt6lKHJ61Zp4/vSEosgIQx9EyeHhPlmcUnNdDFMnKXJ00eD8/A2GqfHe+++RZwnzxRxhaDx6+ojVYolt1zFNg+FgiOlYDEdDXNdFM016gx51T13E9PtPefPmFFMX3F1fsXswRhc6lm5ydXXBfLbErWmM9g5xDBdpSNarGe12F9NwEYSKezebcHz8jNlshuta5EWBZVrkZUav0yHJ/aq1VFBmBdcXV2iioNHpq4uuVaBwM/UacRIzvZ9jGjYlGbGfcXDyFMt0sU2LHCjynFqtRlkUdLpdylxRt2v1Orbl4PtrOu0hrl1DNwwsw+D+bkKn38G0VHTRcr7GckyK4obh7i5CF6w2K+o1lywvqNkOYZhQr2f0+kP8aMPr0y8Y7u0jUcDSKPap15r0+gPiJKzyFSNM22G+mIIo8YMAuZa0Og2++PTnaIaO43kUWkGS/Hqsid3dXflQaDwUKBU8svrasJT5GU2pJKoNtZ0CRHmLKj/S2zag8hVtfTZbYzyo/D4heQvDLN9Om20VFSHfGsa3o2uK6K5aUEU18v+gzmwJ5g84CNAdQ1HWt075bdsRlMpUKVdZWqBRqlBlQBSoIOZSKOUtV73PLC9V1qAmyLJSAbx0oKyUPaEUQUmVj1iqAksKlQ2kGxplXmA6GrJQ6k2RFohqys5wDIqsJEvKt2R7AXmUUxbV+5AVGJoGUlQEeVUQPnjpqNq5UnHJtjrTNrhbKVrVsaimQyXbGB5VikpNVEMQFaRV274uVcgpbIaaOlbHU+2XLlSu4nYqVTHrthgNQZHz0OIVulYVaep9LAtJUf41KlnVFMj/AHwqpfxv3/nR/w78Z8A/qf7/3965/b8UQvxPKCPj6h25+C97Ds7OT9E1nYvLc6Iwo9nymE6nPH7yjDiJmcwm5GlCnueMd3a5vrmgVm9Qb9RI0wzXcbm7vyPLU/K8wHYsbMvm0dOnfP+736PX7/Ldjz+mVTcZDU548vwZb7485ezNK97/4AWd6RTbsfH9DYPBgO//4AccHx5ydHTIj374Axr1FifHj5jPJ9TrTdI0Yudgn8D3WS3n/O7f+j1lGi8S5vd3/Id/9PfZrBbopkUUxuhCYzad8mff+z5/+Pf+HnmWgRAc7O9xfX3Oyy8zjo4OaDQaNJtNDo8OqXl1vEaDKA6oe3Um9/c8fvKEzXqDrmlcX18wGu2ia4IszdE0QafbYWfcp9vrogmdxewe26thWSZX16fIXLB3cEzoR0TRnCfPXnB1fUGz0SEMw8rUCOPxEH+94fLqnLvbc0Y7RxhljuOomKPbuytm83uEZuA6LrqmE/gho/GYn//gRzx5733ubm+qiBoVERMGG4Jgo+TzvKDb63F3e0u90eD+7o7haIyuKQNoHIZK/Wu1CMKIZrOJoGS8M1QtjNk9rXaXVqtLEGyIKtN3vV4nWK8Jw4DAD+n0eiBKuoMRwjDI4ph6vcl6vaZeb/Od3/o9Tl99BrLk/vaWPM9+4aL5m1oT5xev0DWds8sz4iCj1fS4v77j2XvPSfOUyeSONEnIi5zxeJfr63PqnTb1mkuaFXi2w+3yjrxIyNIcx7FwrB4nz57zg+9/j3a3y49/9jHdjsnOziMePX7K2evXnJ2d8v57H9KZTbEsm8DfMNA1vv/DH3J8cMDxyRE/+P5fUPdanBw9Zja7o91ukmYxw919fD9gMZnwu7/7e+i6TlomrBcT/ug/2mG9mKNbLnEYoWkwX8z48+9/nz/4u3+fMlcTUbvDHa7OzwjigqODXVrtFq12k53RHp1OB6fRIIzWNOsNJnd3PH/xnPVqg5CCm/srdnb20XWNJM6wDJ1mu8twNKDdbqMbBsvVPUFex3Vtzs9eITLBzt4hYRQRxguePP2Qi/Mzut0eYRRVU2Y6u7tDoijg9PUbprMrdnaPgBzPa9AY17m6umQxu0EKE8etkWUmt1c+u7u7/Pgvvsd7X/uQ29sbbNdEyhLLMIhjnyDaqCiULKfT7XN3c0uj0eDu9o7hzhjLNFRhnYYURUrbq+FHCQ2vgSxKxjsjXM9jvZnSbLSpP20SJQH+ZoMmBI5XJ4xDossz/HVAt9dDMyR7vRFoBlkUUbPr+GFAu9nkt3/rb3N6+jlFmrNcT5Hk70grv7o1oZ5HyRMSCZrEAPI0xzA15W3a8go0EFUxpVsGMi8qDlNZKRmVOgIPCtNWtZCFxKyKmLxSux4iXbYeLU28bT3xti34MKQoFWV9W2QJoMhkpcRVv2PqGKaio0uqKTpZPnCppBQKK6BJlYMoJIahUgC22LI0KbFsgzJXx8S0BVksMRyDbeiyCqMGHfX4uq4ruGopQObKPqJDIapAbamOnSypnldQpApnYBgGUlQqoJAP3q4sKdBMQ5HoUfR30zAoCokhCyxDUFZeqSKvqPppgeFUrDOh/FcP3cBKhaTcdiZkNTjwTlYhGpqQlHmOMsRVBHmtagUiMCxBWRSI8i2lXtM18hLl4SsKVeAJpXYhoMxUq7esPF6apr4WQpBnSml7yFr8JbZf5p6/A/ynwN8RQvy4+veHqEXzd4UQL4Hfr74H+D+AU+BL4L8H/vNfZkeazTbD0Q61ep2d8Qhd16k36liOrSbYWk1c1yWJY7YJ2loVydJoNLAsi3q9QZwmmJZJFEXUmh5xFGJbJq1mg0bNRUpNtQ42GyzbptvvYuimSrN3HF69eslyOafVbHCwv4u/2VBrtBjsjBCazny5pKRk7+BYmbnvbtANkzRNuL48Z7NYcHN9gWFotNodZJGzmM0BuLg6Y3fUw/U82q0um82GRr1OVsB0tVYtLM9hZ3eM5zawHBshoF6r02q1+PrXvo5pOhzsH6LrOrbtUW/UAY3p5JZarUEY+sznSzWVJ2Hv4IQ0TdB1nfHokOOTx9i2hUSi6zqu69Fuqnw4ISBJM0zTwt+sKaXKF/zwxTcZDnZoVCrX9fWl8hGUEtd1aTaaNNstwihgOplgu66aItEMxdZya1i2Q5ZmtJodbMdhf38fx7ZptdvUGg06nS5ItU/r9ZQwjNUVEKpdo2kC2/Go1+sURUZZlERhyGx2ryZGHYdarY7remRFQZZlGKaFbSuv1WI+xdANAn+DLAsMQ0fXNTVVmWfkFYF+b/8Y3fiFESJ/I2uiUWsyHI3xag2GwxFC12h26jh1F8tyaVZTX0kUKZq+roPQ8VpN6s0GpmFS8+rESYxlGYRxRL1bJ45DLMuiWa/TqLmUUufw4JjA32CaFt1et4pIKnFdh9M3r1ivFjRqdfZ2d9is1tSbTQY7QxAai/WaXErGu0fM57dM7q6wPIcsT7k8e0O0WXP5+gzT0On0esgyY7NZoBka51fnDPtdbNOh1ewSRL5aE7ng9m4BssSxLHqdAY1mB03XKbOCmlun1Wrz0Xc+wnY8Do+OsGwTz6vR6tQpUphN7vDcOnG0YTZdKCZaVjIaHpDnCbqhszM+5vjkMY5jI4VEExq25dIfdNT9S0mW59imRbBaUpaS3rDLi69+k9Foh3a3g6ZJrs7O0EpJUQpsp0bda9JqNonjgNlsguO5FKWgyDU0NGpuHcdV3q9mvY1lOeyM97FNm1a7RbPbotvrIpDohsFifsdmHSLQkBoslyt0S8N2XBqNGmWZUeQlcRyy2qjJ0lrdo9aoU/NclWtYpJiWhe1YOI7DYj7BsiySJFAn8CrEN0kSsiIDCmr1GoPBIbrxC6/H/0bWxLaIkijjewlohiqa8rSsqN2quBKaypiTqIgXSdVVfFCxqkfSt9k8vJ1IE1TFkfqck9tRv6qI2k6Ybc31byN+Kpq8Jijl20BpUMdX07SqZak4UyCq51egUs3UKVFtTQXpfBsBI6QgiwsMTRU/aVSimwZ5VpBnuXptQsNwdDXBqAvVGq0YXEVaIqQaq1QKmtqnMivIk/yhcHsw8VdFkTKPl5iWYiGUhUSvlCUhFV/KtHU0TR0D3VKMKWVaV0yvQooH47oS8lSBJkvIk5Iie9vSFZXKVpaQ5/KBHaabWpU3SFWsFWoaU1BNLKLe5217mMqLpVXTkVWBJYRUPrRyO4TA2+JZqmSS7XETQhXHsiL+G6YGukb612l8l1L+Kx5q/f/X9h/8f9xfAv/FL70H6rfQDY04ioijBKfrUcQS161xcXGGJnRazRZCaOzuHvDly5ccHB5hWRbrzZo4ikjShOVqwXq1JjRDRuMdFpMZX3zxspIeodfukqWJqtCLgr39XQop+Zd/+n+yWm/46Fsfsbe3D1IjTmLCKKLT7+HUXM5OTzk5OaHVqDOfzAGdXn9MpyvpdQdkWU6WR2iaxm9857e5vr6hVm9SFjnPnj9jsw748P0X2I7LZqMCYk1Dp9Nt8+r0DcNOk2999A0WyylxHNPva9xeXVNrNtgZjbh4c0qRF6xWK44fPWGzXnFweEya5jSbTRqNBlmSYNsOp68+xau3qNeaGLqOYZi8+vQz3vvwKxRSUcObrQZCNHn18jNWfsB4OKbdanP6+iVxvEHTjYqEbjNbBzTqddI0IQh9er0heZ7S3NJxC8Uoe/78OUmSMd5RfKe9vQP8YM3tzRW1WpN+b8BiOScMfKIoolFvEAY+ge/TandoNduUZYltW0xn90igVqvT6/fIshzNSNAMHRINx3OqdkwdRWbWSZIEx7bYOzxQi1SWXJ2fswkCDENnvLNDs9VS7VvXI4oifD/AsT36ozFJkhCFycMU0a98TdgGURQTRwmNtkOegePVOHv9Gk3otNstELCzs88XX3zB/sERhm6QpjlJHJEVKbPFTI30GxbD8S7z+ymvTl+p6aUdGPS6ZGlKKRUIcP9wjxLJv/jTP2W5WPHt73yL8XgXgY6TJURJRHfQo96pcfHmNcdHx3TaDWb3c6TU6feGdJsDOu0+pZDkZQyF5KPv/BY3d3d4jQZZlnJy8pjFQq0Jx3EJgyWaJtGFoN3t8PLLM8ajLh9++PUqYibDaxpcvbmm1m7y6GSP8y9fkmUFq+WK4ydP2awX7B+eEEcZ3V6LVrdFGifYpsPrN5/jeS0VUu0YWIbJq59+wvP3v0KeS4Smopq0TpPT15+z8UNGgxGdTofT0y9J4gBN0ylC8DwbfxXg2i5ZkRHGPr3+mDKPlVEakCLj/nauUgqSnMFgQBgl7B8esV4tub68otlu0+/1WCznRP6aOAyo1xrEcchmHdAddGk1mhRFyc7uIbPllFKC59Tod9qURUZhapWvRsN2HIo0wzY8CkBH+elMw+Dw+ICyKEgLye3VBetNgGUZDPojuv0Ovr+p3oeIIPBxLZd2Z0iapQR+8mAO/9WuCZQ3tPJFFRJ1Bisk5EphUGiGisi9LYAKZWLWBKBDlpRv21hSGaQ1XXubn2cof9TWk1MJKxSlwoUYhgJegngAayLUCbhMt8brbQtTKWMaarJQtzRMR2X9PUzKVa2uPFWgTcPSEbqBVhnti0J5hMpcolkGcZyjCYFh6JiuII1VJI7jGcSbtPJuVZiBqnAqS4luVeSGCnkmdI0sF2g62G5Fpq9ahw8eprLyKgkqZaxS/KRQhZalkaUq6kfT1LHdktwLXaEQ8lwiBRiGCl0W28EDQycvVQFcVkZyw4DKP48oywrPoTiBaVKqKcWyfCjYhKErn5dytamCVKC4WbqOeAfNIKvpSk0ooqluVYZ5oRSrUqq/ryJTqArN2BZ7pfrbkVKR4DXtIRrol9l+DbISVFp8o9ZiNp+h64LA95VsqWkMB2PGo51qTD8kTVMVG6Mb3N5ccvrlZ0SxojprwuD40VPcRoP1ck2z1SJOIo5OjnA9h8l0xmK1wvHsKsYnBlmyXG8Yjgbs7e3RaXfw/TWOYzEcj4nikFcvT6nValxfX+G6Lo+fPeeDD7+KYZhEYUgax9SbDVqdHvVGC13XqTVsLs/O0XWTMIiYTSYYps3nn3/JZDolzzM63Q7r1RqAp8+eslrPiaIQQ9cwTIM0izk8ULaFWqNOp9tjMByRpgpXUBQFRZ7x5uXHLGZ3BFFAEIbsHTzG1A0s0yZJYhqtFvV2m9u7mwefm65prFZz7u4mdNpdOm019u25Lnmesl6vkBLyosA0DTbBBtt1cV2XNE2JoogyL7AMA9epVRJ0gWFoZGlOWRTcXL/BMHR6/QGySFht5ji2Q73RpNlokOUJWZZRbzSYzyaAxNAN6rUGlILZZMJqOWW0M0YzDW5vrsnTnDBS7CvTstj4G/xNwOtXX3J++oogCFQrVkKjXufw+Jivfe0bmIbJcr5ksViQ5yWWZVOr1bAdC9/3ubk6I45DyjJ5ABn+Krc4jKl7ak1Ytk4cR4pRY+gMhmNG413iKCNNY4Vg0AwMTbGw3px+ThgGmIaDaZhqTdQabJaKxB+GIY+eHOF5NvfTGbPlEq/uUK83CYIQZMlstmIw6LO/t0ev12WzWWFbJsOdHcIw5NOffUHN87i9vcIxbU4ePeX997+CYZpEUUBRZNRqdVrtDs1OB8PS8ZoWl2cXaLpJFCes5hMs3eSLz77g7vaOPE1ptzqsFys0CY+OHhHGK6LQx6wmgcIo4uj4iGCRYNse3cGQ/mhElsVINIQOpSz48rOPmU3uibKYIAzZP3iEZRq4rksYxXhek3qnzWR2R5onlKg1sVhMmdzf02l1aDdbpFGM5zoUZcpqs0IzdfKyRNcNgiREMx10YRNFMVEYkScZtmViGi66aaiBCkOQpBmIkvv7N7iexWA8Ik8ilps5tu1Qa7ZoNhrkZUqaZzQ6TSaTe6W6ajrNZhNKmE8nbDZzxvu7CEPn9uaKIs+JkhChCSzHqlqFAV9+8ZLXr14RJeriVRZqTRwcHvO1r34DQzNYzRZqejBMsU2LZqeJ4zmsNz43kwvCNKQQaVVU/Oo3WRWxhqFXJ1QBukBqIIWgKCqVaXsirzw921y+IlfTg7CljldtsYq3pdSVrSFaoRO20TlFqvxdQlSYAfn2Z7JUuY9QcbsKpUTJdz5KdFOd5GWlngkDoFTtN5Qx3NBBlAWaLCmL8qHwEaXa1zIpMCxDtUJlSRbnFLkqQoJFQp6q4mWbZyiEUpaEplEUKqBZNxVJU70OtV9FoYohJXiICtKq9lXRzrcKYVlN8CnzfilAtxQVvpTKc5XnkiwpquOvPF8qnFqqlq4sK0yXamVqhkI8aLpiXqn3WFSFcgUq1dRjF1uvGxWvqhpeEZpWva+VRPnAQlPvl25WOYtl9byGIM+Lt0HgUgVRy4r8TqmybQVgWIZSJgFMnbLybf2llxT/1vZrJo2eOQAAIABJREFUEatjmiZ5kTMcDQmjGNtWk2Sb9RrTMFjMlwgB47GK0tjZ2acsC3Td5L0PvkqeKaJ4p9MhqCJ0yrxgMpnieDVq9TqabhFGKb/7O99WVXbFDTk7fcNXP/wKtmOTZSlpmuJHEdd3M548fUqWJIx3RrQ7XWzbYr1RhvyyyFkvFkwnE1zLpT8cUTgecZpyf3dNEKwYjgfousFituDo8QnNVoPOoAWlwLYtFafRa+J6No1Gh0ajQbvdpchLarUG3/jmt4l8nziJsT2HhqfM80IIdnf28QOfUhacPHuhzOe54m/V600EEMcBq/UShGA4HiEQZEVKuPbJs5x2u4exa9Jtd3BdlyAMOTl6QlDR209PX1KvtzB0Hc918Ddrsiyj0TCp1xsUbk6e5xRFQbfXR9M0FvMptVoToWt0e30mt7eM9w6YbGZYBSTxjJNHT6r2pCAUIb6/IvR9giAgyzLarQ4HBycYps5PfvJDTLOGYWh0OspQ32y28TdrBoMRjuMSxxF7B/tMJ1Ns22a1XNDvDVmt13hejc16w6MnT7g4P8d2bGzLIY5jZClxHZdnz9/nZz/+LlEY4vuKIP+r3kzLJMsyBoMhcRxj2Sa66RKWPqZpsJwtKHLJ7v4B/jpkf/8QKLBsi+fvf5UszShlQavdJvDVmpB5zuR+iuW4uK6HbtpEccbv/vZvKJ9Cofwab1695pvfeIHtWORFSpqk+GHMzd2cJ8+ekmcpu/tjmp0ujmOxWq0oZAayYL1cMru7xzY9uv0hruMRJymz+TWLxZzBTl+d3BcLHj9/RK1ep91rIYSObVvEQUR/1KZWd7CMBo1Gg1atqYjTdp2Pvv2bZLFi5dU6NVzbw3QsBDAe7hHEIUKTPP3gq4p0nSS0Wm2ajRa6EETxhuVygRCC0c5IGYFFxjrYkCYZ3W4fQ7doNzvUG3WiJObxyVPW6w3jsc2b8y9pd7pIKbFtmygJKJT7GMeuYVkOaOrqt9vvo2k689mEWq2JlIJ2u8fd+RV7j46ZxgsKIZjFUx49eUYaJ5Bq6GlMGK4I1hviOCCJUtqdHkdHj9B1jZ/85P9u781iZFuzO6/f9+15iDkiI8cz3XPHumW7yi23DaYfgfaL4a2f6AcEEgYJHvqhUKOWn0AgwQMSQjLQUoMQ/QIIg2iJQSCw2+2hyreqbtWdzr1nyjkz5ogde/w+Hr4deU5Zrqrr6jr3pIr4S6mTJ3KIlXvHir32Wv/1/38b1wuxbUG32wcpaERNVkuTE54XUImMw3tHXJ9fGY/Q2ZThzo7ZkAxjptcz7hzd5/z8GNt2cW2f5XxNGRhi/tvvvcd3vvNPCMIVy+XsdngXUm/0VZpKVTU3St9s20E9ApOGcyQsWetWcaOtZElRd1Zq4jjUhYCRMpDihYGxEBvCuxn3OV59Vd1sJNYX4xtNLGHkEURddG3GfFromgyvbkZxYMjbeaEQwjKk843MQ2XGbMKy6q5ObVlTGT0sM9+qO1FFZSzWLFNEOr5FUVZmtAc1yd1sOIpKGOugihsR1w3pezNKA/PatVwjZaCVqjcta4K+I+tCU1JmFVhmhOe4NmlSGhqKY92It1alOT6W9cLeR9QWRRstKmrNL9uzzfGhbiPWmlSSmpSPRuWmk7gZ30nrZSPw+hMBlqhFVV+S57A2W7ZKg206wNLsE2CKaI2qSlxHUhY1IV8pY2JtW6brtVmiqMfLXwbiNnhSvfHgnv73/s7voLWkP+ihlOLs7BStodPpMp/NCKMQL4iYT0d0ewPG4xFhGDO6PCfLclrdDrPpjP7OEKTmH/3+/8x7X3sXreGP/vAfI22bb37zGzcKuKvErEAbgUqjVRMGEUJY7O7vEYQ+88mINC9oNBrcvfsArRR+EKOFJvQDjp9+zoOHb6NRLBdLAFbLBXm+Jm40yLMSL/JxHYfVKkHrkvl8Tp7mHB7tI4RgdD1Ca8V8sWA42CUvSlzXYzjc4+T4KVpX5Hlq/AddD6DeuDR+fu12DykllrRYLJcsFlPSbM1wsE+SrKiUot3p3CyszGcTY8WyWtLr91mvjHK+7/u17pQxCjYWBArfj/A8j/lixnh0TdxoGJ5LmtBudRFC8MUXn+H7IZNaf8pYoCS4XoDjuKxWCyxpU5YFQRhydXGKEMaqJ/BD5vMZXujjWg5lWbJYzdDabJHatoPnuEynEzSauGEkIVRVsZgvaHXaSCTrdI3n+ayWMzw3wAs8pGU4YUVuNiUbzSbf/fMPKNYJyWLM+7/2z2EJiKKISimiKGSdpHzr7/37fPboiy/fD34FeOP+Xf33vvU7VJVgZ6fPutRcjM0GaMdtk8zmxM0IEbRYzkZ0On2m4yuCqMH48oKiyonbbaYzs9UJiv/19/8Xvvb+uyDgT/7oD0HY/Mo3fsX4wFVGgNOxbYosJ80LVsmCwIuQUrK7v08Y+0yvrs3Kfxxz5+4bqLIyZsVFie/4nF084e7dN1GqIk1WgDDj4TwhbjbI1yVhM8SWNsv5AtsTjK8mVFXJ/sE+qtLMZxPKPGeRrOjv7FHkBZ7rsTvY5dmzpyhHoquMnd4ejmXXb8Bmc1arklajazZGXZfZdMZiNSMrMnqtXdIsoapKsxBRk3uXyylBFJGsV7RbXdI0RSiN55vXfRw1WS7nIM0FxRY+YRywTOZcXV/TaDSIo5j1akmrtvx6/PgRYRgyHo8YDHcJ4oA0SXBdH8fyWCVLpLApi5wgChmNzpESWs0enhcYo/kowHPdFzmhQFo2lnSIIp/R9QghFFGjgZRGk2gxX9JqtxBI1vka3/dZruZ4to/rezjCMuK8ZU6hCoK4yQcffJciXZOspnzz134TUVWEQUShNK1WxHKe8K3f/Q9ee07s7+/rf+N3/jWzUi8FuQLpgaBCLzWOMIVCrq0bE2mp6w00zEZiqcz/RaVv5BOoR4lSGE0kVVdkWumbkdHLqvF13Wa4WdJszm3Ghoq6WHJtVFEZ4rdnGfcB02RiQwKqFQwMOb/2z1Olwg0ciqwyGk/KdHccV1DlpRlr1t5AAtN1UZVGuw62JaCq0JUhnnMTr+GoaSHqrUHDYzJyCy95CW54NZqaOG429FRtMSN13UkUdVG6OXaWKbgs2zJyIfVxtaS+2fSr6jGhZXFznDbFq7GtMcdkU3whDDle1Bww8zOmuDPctxdLB5tOpONZlGV107UUUqLLzUGuNw4FRlS17mSiQNaSHVKCllCquhit+WGOAFVUoDRKiBs9tN/7L3+Pk5PTn5oTt+P2RGvy3Gw5lEVJnmXYtoOUkGcp7XaLqqoIfGOHM5uOCYKwXkUu8MMA2zFbacvFnCePHvHg4UPKsmIymiAdM7IyxOcl5+fnzGczsiyj2WpRlRWO7dDtddndH9JsNcjWayaTOcv5iuHOHqvlgrPjJ0ynV5R5jlIll1fXTKcTqqrC832kJbFtydHRA7SCLF8R+aEZ5ViSJEmwLEl/0CdNM9brDD8ICcMIVeYEYcThwRG+b0jih0d3aDY7uK7p1mitjPEomvH4kqqquLw6Z71es1hMcR0Hx3VxHRfX9/Dr8V6yWpGuEwQVRWlES5vNdm2IPWC1WrFOE0MQn0yxbY/9/X2KImc2MyO2xXxGtzvAsV3W6xVZVvDDDz/g7OwZDx6+zWA45P4bD1mnK6qiYjq5Ynx9jhRG6ytPV6TZCiklrucThpHhQK0TVklCmqSsayuQIGwAkiAI8VyXJEnwvYBer0+eZYSBKeLCMCTwPK6uz3FcY6odhDGtdgtVlaRpipSGqzVfzJnNZnzt/a9z7623iNtd8mz1I4THLE2xbYvqp/i0fRXQQJpXaGlTKk2a5KBt06XVOd1uE6VMTiAl8+XULDG0G2RZju34WI4DElarGc8ef84bbz6kUhXT0Rhsm97OANtySNYrrkaXtWxKTqPVRJUlju3Q6RlfwkYrJkvWzGcmJ3aH+6xWS87PnjEeXVAVBVhwdnpZj5orgsCvu/aaO0cPoISyWBF5AUJJPM8mWa1wPYtOs8NilpCVJW4QEDUboHM8N2Bv9xA/NAr2b7x5j3ajjS091qukfgfTCBTX15dUWnM9vSZNM2azKa7t4jgujnQImyF+GBDGEavlkjxLEVTkWYHjeMRRGxTGrHyxZL02r7vZfI4lXfZ298nSjPl8wehqzGw6p9sa4EiH1WJJui74wXf/nLOz5zx4812TEw/eJElWqEIxm40YX18gBKwWU8o8IcvXWLaN1A6BZ4SB1+maJEvJsowkMRY4QdBAa0kYRQShz2q5IvBDOp0BRZYTeD5JsiYIQkLf5/Li3FAGXJcwjmn32qiyIC8ypJQkScpkOmcymfH+++9z7+FDmt0Oq9WcsoCyMoKYy+kSP3BuRU4AVAhjgWdZVJWgLEAriePJF8RzUY92akK5tOouUGkaClZNWt90cm6U3MWLEZC0RL0px42+0o90Lm6I8i8plFMTt6WsJR4w4+XCcL5kTdDemDILqOUlMOKepdHX0krVRPWKIjc8Lo0Zc0obQxOplOnUSY3rG4NoXb0YzRkbGsNbM6M0GyGMJtamracrsBzb3FDXnUpRS13omvR/o37/8sKA3uiPqZsRrBCWIevXXTKhjIaZVhtJBnFjdWM2EMyBlZaFrrUzpNjY5wiklJRZbdBcC+sLy3oRXz123Swc3OibYaQ9Njpnmy6mEALqwlroF4r8Wtcbn5hFh6penBCY9p6wzCZ8mZulFmlJ8nVhPB+/ZH/qVowLq6oiDEPimhSb5RmNRowG2s0e63RFUVSG+9Qwfn+rZMVquWSdrAga5s3J841m02qV0O51CPyAPMt5//2vs5gvWCyXDPo75HnO2ekJyXpNmmYIAaPxqLaREZydPMf3AqpScXTvDo7vMb+YMtg9RAhIlnNOnn7Bu1/7Gr1un/FkbFZJFTi2j1IlcaNNo9lGSkmRrrm8vMCSkmazSRQ1mU6uag6TQ1kW3L33Ft3ugLLMieMYW9pmwzKOsW0HMG3w8eSassxIkoQwimg02uRZytOnn/Dw4ddRyugXLWYzhIDFYsEySVivEwa9Pt1en+l0ws7OkOl0TFGrve/t7fH554+Q0uH87IIwCBDCptmMOD8/Z7AzIM9yhBCEYUQcWwS+eyNhcXV5yXB3n35/13TYuj08N2Q0GmFZNlme0unuUBYlUtqEUUxVKWbTMb7vm403r0NVVfiuR5qsOTt5bsxw/YAoDFkmCY1GG1UJGo0meZ5xfnFKt7eDZUnm8xm9Xo/L81M83yeKm2ilabe7NBpNprMxVVWwMxjS6Xb54ff/nHanT6WNqOk6zQmD8Kea4X4VUFWF64VGGiHPKMuMTtQAoei3eqSrFTaCqjSSFLbjsF7MWM7nrNOEsN2gyHMsHFRVsVontDptAjegyHLee/d9lssly2RFv9MnTzNOjk+NWn6SIoTRX9vdO0BKOD89xncCykJx9OAuju8yu7xisHuIhSZdzTl+9piv/dLX6XX6jKcjbK2oSoHrBlRVSaPdod3tmrVwXXB5dYnEjLoa7Q6z+ZUxfa8kSlccHr5Jf2eHssiJZIQfuCCgFYe4tg0oRCWYLsYUVcY6TQmzgkbcJktSHj/+hHfe/SW0KklWC6ZXphu6Wi1I0oQsXdNr9+n2+8znU3rdAfO5yYkojtgZ7vLF40dYtsNock0Uhwhh0+rEnJ+d09/poaoSrYwtU9SwCGOf5XzBfDpidHVJf2ePnZ09lKpoNLr4rnEckNImzde0WwOqokAKB9+LUCgWyQw/8EiSFa1mh6oo8RyH1DLvTc2GeW8Lg4DFyuREVQgasXmtnF2c0hvsIKVkvpjR6fe5vDzFdTyaUZOyVLS7fWLdYTwZURUFO90dev0uH334XaKwi7Y1nhdRphmOa38paZOvAlVlZAZUqbAFCGXkBszF1Gx+WZjR3MaWppZQN9WSwHSJpCmOjDWerrcJeeGRV6nax68eIVJbskhzMd6M7LTaeNzVXZnNKE+rWjLLdGTMhmPd5dkUdTcSAVBmZuMZTKGka30nqx5NVZnhSpWFvrnAK6VwXUPG32hOSWm4RpY2f++ND6M2quwbg+lafhWVV2YEa5kiZ0Py3wj5qqouAk01+ULAVZqNwrJQpuMjNxpXCtupC8n6WFjWC00uIV5sXG4U9sEUn7WsmCly6htfVZm4Lc+mKuvxJeZrutQ3hbApqIzkhdKmkEKpuvv4ogC+sVmqj5W0JArqolVgbgnNlqpQGlGr4FeyQlrm5gNhpEK+7AzwVnSytFa4jsv4+prFfI6qjCdXnhXM5hPKsqTRaLBazUlWS9PZcD3KquDeGw8pi4qLk3OE0ORZyv37D/ji00f88MPvUqmSq6srSqW5/+Aho9EV/X6ft956h+FgaF4wluSdt9/j8eMvyLOS/YMjKqXZGfZxbBvX9QjCgDRZoVSJ7Tjcf/NtVFmwWMwMWbI+aUWRI20zk3YsQwLWQjPo9Ql8F8syXJtms0un3SNPc8IwpshzPn/0iNOTY06eP2G1Tjg9PkFaNnmWs07WPHnyBWEYE8dter0d9nfvoFWF54XcvfsWT589QiB55+2vMx5dsc5S/MDnrTff5t69B0YCoNWiLHJOT5/z+aOPODt7RtSIefr4CY24wXI5o9EKePz4Y1zX55NPPzKF5+kpVVWSJGsmkzHL1QLH9Ti8cw8pJUd37tHv9WnGDSzbptvZwZI2AmXWaLUkSdaArvWyVqzXK1qdLmVZ4NZzfLcej/hBwM5wD9/3cBwjHLlcjCjLglUyw/U82r0ucdzCsS0cx0VrxfnZGZ3eAM8PmM/nJMmSTz7+Hufnz0mWC2azKaUqWS1XvPPeL+G4HnEY8f/+33/IaDQyF37rr2Cx/oqglML3fEPenk0QqqLMS/JUM53MKLOC2I+ZjyeslwuWswWuG5AVJQ/eeouyqLg8vcB1LYos42j/Ho8/+5wPv/9ditLkRFFp7j14yGR0zaDb4+2332Z3sItlW2gpeeftd3n27DF5VrG/f0ipFP2aZ2g7Pq7jk8yXICqTE2+8CUXBfDrFckw3QVpQljmOa5s3ztImr1IUml67T+C5OLZFpQo8p0Gr0aEoc7wgYp3mfPbJp5ycPOfk5AnL5ZLT5ydGjy5NWc0Tnh0/Jgximo0OvVaPg51DqEp81+fu/Td5cvwIaVm8/fB9ZrNLKlKiRsCbD9/m6M59cCVxM6bI11xcHfPo8cecXT4lbIY8f/aERqPJfDbD8z0eP/8M1/f5+NMfICzNxeicdZ6xSBJGo2uWyxm2ZXNwcAcpjR7doN+nFcU4rsOgN0QK21zgHImQFus8M+rwxcrwr7IVUdQmzwts18F2BEHgoXVJEAQMBrsEgW9kZ/KS5WpMnhck6zm+59Hp9YhbHaSU2J5HqTQXZ2c0ox6OHTBfzkmLNR89+gHHFyekWcJsPqPSFcl8zbvvvk/Y8An8gD/4gz9gshxxdnGBlK8/JzYjILTCYlMoWYCDriwjzFmYwkFoqIrKyCEoUfvcmTGT6xhHjzI3F1zToRG1XMOm8wGiUi/MjKVV6zQJrNryZjNaU0LWRG5TBG3sfUzHRhmtq0qbrg3ihnAuLTMiLDJTUCmtUWozutMIC/J1URsvQ1VvVKpKobS6kToAMOYz+sYWCOoRZ6FqtjemnSc1upZa0JXCso3foWWbErFSuiaMV2htzKG1FGgLNBXSho2MQ5YptG3XozWFEhrpC/JSmViVqnlMZgJjzuFG+qEe0UoBWtwQ6IU0nK1Km+6UZQmsughVWqCE0UOzrFqxRlPz6TYK/WbWqXTNldt0Ki1JVW8YVtr8XJVWZktRmOdSjkUpjYyGELURthIIFLYnqHSFcDTSFZR/BTHSW1FkCSmpVEXciPF8Hz8Imc+nlEVR3yAoirJAYwjBui7CKqWZzWZEcUTUbBK1OsTNthHV67S5e/8hUaNBGIS0O02uri9odzpkWU5ZlAgh8H2PKAxpxDHLxZx1sqTIM4o8pdFskqUpWZbS6w/Y2d1DWjZ37943HbEsJYpinn7+BcKyicIIN/CRQhL6IZ7n3pAgm80One4O6JoDVCnCqEHcaII23o2HhwdYlqDb3WU+m5KsEvIspdGMybI13W6/3gTs47gOJ6dPWSdr5rMRvh/Rave5vLrg6dPH3Lv/kKIoqZQmTdfEcYzjuHz60ffpdvus05T9/Tv4QcDpyTGXV2ecnj7j4PCofvOQrJMV+3t3GA73mIyuWC1WHBwcEoYRVV4ak+3JmKqqmIyuOT09IUnXjC7POTt9TlGWtNsdbEsym46YTidcXJxzeXFOus6oKs1iPqcoc2zHZbmYAoYfdj26oqpys/Ho+2itKUtlzK/TlOurK6ajEVVVmC5UkmAJiWVZJEnCdDJhtZojpIVlWYAkjFu4ns/p8Ql5luF7/k0B99d/41fJ8oxWs1F//+uFlBJNSSOOcGyXMIyYT8dUeWEuHEjWZVVrwNgIIM9zykozuZoQ+QFhEBM12oRhm9V6TbPV5v6DhzSaDUI/otU2OdFqd8iznCovQQujORdFREHMfDJnXRurb4Rc8yylKDIGwx12Dw/Qwubw6B67u3skizVh2OCLjx+B5RDFDWw/AGERhhF+6NWeaZpGq0Nvdxc7cIgaEWWpiBpN4kaz9k3LuXP3CNuRdHt7TKdzVquULE2J44g8S+h1erRbHVpRF8dxOLt4xnqdslhNCPyIZqvP+eU5z0+ecO/+GxRFaYyR8zVxI8LzXB598n26vT5JmrK3fwc/ijg5Oebi+oyz82cc3rlT371KknXCweFddg8PGF1fsE4SDg8PCMKQqiipKsV4OqHSivF4xPPnJyzXKePROWcXzylVRbvdwQLm02vmiwlX1xdcXZyxTlLK0tyEVCrHsR1Wy01OBFxfX6GqgmydEXgBGm3O9+yKPMsYja6Zjq7R6kVOOFJiCWlcNGYzkmRuCjBLQAVh2MTxAk6Pz0hWKYEfYgsHpRS/9te/QVUVtNsN7J+uk/XKYa6VNQ9pM26rFEKZ4qOUFiWy3hZTptjYmB8XCgptNBIqfaP2vRktbWgDdS/nhnclNGbMtFEhV8b3T2zEmvRGQ8lc0I0+lTR1jcJ47+YKtKAqa5V4Kepiylz7RL09J+oWjeVYOGFdvGyKJUwXTdr1KHMj7KlMeWVU07XpoNUirFXxks6W3GhE3dSGtdm0unls06kTRm5vsxVgSN6bYrOOX9RGzEYCAbDM9p857uJGPV/Uh+lG/0qIesNPIDbfVy8Fqrr6sWzTPRNmRonGkNY3Mgqb8eXGgMgsur0wjkZSi83WY9DNSLf+eYnACMBLRD3GFUIjtXl9iMoUg0Zd/sXoUQpZ+yGan/myuB1FFsYncLVaEwYhxn/JpdfrmTfeKAZt1LxnkzF+4GPbFsnSjAxRiuHuDuvFnEYjpipzDu7epdPfYT5f8vDNt7n/xps8ffyM69GI6WSMENL4Hc4XlGXFxeUFjuMTBB5Pnz4hTdfGhLdhnvv6+pJKlQyHQ1arJWfnJzRaXbNab1sMejvYjstsMmE+mwIY2QM/YLmco4XGdhzjAwUEvodSil5/hzCO6fZ2jGo5Fn7gsbu7R3/QJ89zlNL0BzvEjQZlWbJKFnQ7PbRShGHIdDoyG2iOw97wiDhukuYpjUaTbrdv7iiUpqoqFospZ6fPjKmyqsjzkiAMObp7j8M7D8y4NVnQ6vYoVUlVmUL33fe/bqxBVIXjePT6AybjMUKb9v3l5SmjqwtUVTGbTPBciygMWScJjWab3mCPdrvNzs6QwXCPvMhotdvM51OazQ6WbeG4AVdXl0ynE+NNOZkwm06olPHGMtZBMdKyiCJj9+P7ZrynKsV4NKEsKpbzBUEQYVkuYRCye3CIFwSmGJxMuL66YDwZMV8saDaa+L7P/u4+e8N9bNt9rbmwgUCQJQnpOiUMIjTg+R6DTgtVVUStJpUWBGHAcjUhagU4ts1qtiRZLZBas7s7ZD2b0Wq3qMqc/SOTE7Ppkjcevs2Dh2/x/MkzrscjJpMxAsnecJfFYnmTE7btEcUez54/JcvX5GlGFEZopWsOVMlwd0iSrDg5eU671yfLVvihERC1HYflfMJ8OgE0i6UxYF4uZyA10nbJ84p8VdBshuiqpN3sE4YxnfaAbJ1gIYljn+FgyGCnz3qVobRgMBwSBA3jx7de0e31QUIQBkwn1+RFhuvYDAeHRM0WyTolippGw0sZnaKyLJkvZpwcP2e1WFJWJWla4AcmJ47uPEBRkasV3X6XssqpVIkqFe+99z79fg9VVfiuT7+/Y6gDUmAJwcXFKdPZCKUVi/kUxxJEYUC+XhGFLTrdPRphk53BkP5gl7zIaDTbLBYzmlEbx7KwLZ+ry0tm0wmtRse8v0wnVKrEdiw67Ta+GwICv74ZcS0P4ZgL0OhyTJVXrOYLgiBE4uI7Aft7B0auJS2YTqZcnp0xm4yYjGc0IuOkMWwP2enu4br+lx6NvGpYQtTb86YiMArlRlRSWJJqU2C50ljiYDo2pk6oL8sKo7enNzIO1AJSIHnR/dB1sbWRgIC6ENPmIn5jo0MtK7A5SPXIEWGKQavuLNmOdSMrsbmP0zWxS6sbqhQKKEvIV4XpAFMXTMrwqIR5CmzbcL8kZmOSuqgwel816UyaEeoNf8wyFVVVmVZSVXFjq7MRCKWWpVDKjFDrWsds5fGCPO4E8maUaNTQK4TSZltP3dS3dVz1YoDSSMe6eUzV4z8pQZcKVRpxUhOvGTlW1cZLUhnyffWioNLK/D2irpI3sg6mkNZUlVGmr/ISx7eNkbhSRkRVcGOZpAqNVApLgCrNQTb6ZlDltYelLakyZb73r7Bt+/pvTzAHs9VuIwTMZnPKKkdVFet0Tb/b5fHTJ0jLoioLvCCg2WhxcXmB57k0WoeMRtd0XY8gajC6vkRVilZ7wONHP2A6vuT+/QecHz9HoLGFTWnZtNotvvMSxmgIAAAXEklEQVTn36YoS6bzFfeO9hnuDGh1ekzGUxzPIW62aDabZGlCtzNgOV9h2w6WJem0Ozx78pjZfEKn22cxm7JKVrQ7HVzPZb6a4zo+JyePabf7PP7sE3r9Ie12h3Sd4jjm9/zww28ThAGNuEOaZuwMd+uVfY9Wq8319QXXV5d02l36/S4XF5e4noPvh1iWg9aawc4BcRyzWCh8zzN33apgcnXMchZSoei2e9hS8ODh17Bs+0UbV2um02tcu8NsMSFJVty5cx+tIU0SFosFaZLhODaOL8nSjNVihm23cVyLdJ2gteDrv/yrOJaFlDbv/dKv4tg26/UaLQTrNCVuNgmDmOViymqxJAgjnjz6nIM7e2ityLOSy7MzBrtmhFtWBZbtmEWH+ZTR9QV3777B6PoZeZ5zdOcuhSrJi4zLy1NWiyXd/g7Ssmk12owuL9k/PGCVLAjDGKU04+sRw+EuD994iyw3nK/ZfEoct/Ecl/7OENu2yfPsdacEGo3vNJC25Gq6JNMVVBXrYs3+oMtnT56A6wAFrusRexHn00uC2CduNpnPx3R9DyeIuLo+R1qaVnvAF59+n/niinvuA04fP4VKYUuHyvFod9t88N3vkJcV4+mSe0cH7OwMaLS6jMZTPN8jbrdotVsUWUKnM2A5W+FIG8uWdDs9Pv/8MUk2o9XssJ6b11O700VYNrP5FDcIODv+glajx/HnH9NqD2k2WigKtLKgknz6yQcEUUCz3WM+XrG7v896tcaRDnHQZJJecnpyRa/Xo9vtcn5e54QOEBjbkf7uAVEjQi8Nx08IQVXljC+PmdkB2JpOp4cUkjfe/jqWZRvicFGgY8lsfo1nO0zmY9ZlwuH+EaoER9ssFgtKLzcq6EKSpTlpMsN2BY5nG1pBJfjlX/oGrmMjsAje+gauZbFKErAkWW6K58CLWK/nJIslQRTx7PPP2TvaQ6uKoqi4vjpnMNipqf2GqiBdi9lsxnh0zt37bzAZP2e9Sjk6ukMpNIXOOf7ijDRZMdwdIipJ3OtwfXnJ4cEBabrEDyMqBbN8wt6gz9sPHrLOEs7PT5iMxzSaXeLAodMeoApxK3ICIE8qhGWhlDR8P1shLY0toNSlkQ+wHarUjNlMx8QIZjr1xb1SygjfuqYgqZTGcSWqMFtkllMXT5YZa23qjpe577rmgWFLdFndqLrr6sX3i7rSqpTA9pzaM2/DEhJGgLPuugjMhd+xjSyD1uAHNlm2sbMxauu2J8nXJZa0brovVV5vItb6T0LWnKs6DsMf0uiN0TV1d0W9ILpXWmPZALI2WxY39joqV0hHIuy6gBMgHYxivdIIZagBjm2htKIsTFFqZBv0j5DVJSBVZdTc003Rq8xNgRR1MakQjnXDvZLS+A2iasK6ZYpLpUyhKKAuaOtunqQu4EwFperuYpaZhQLHMZufm+1GU/SaolJY4Pg2Ki0QjunMISWiMiKuQWij8oq8+PK3Hbeik6W1xnFtknXCfG7EOR3Xw/N8ZvMZ3W6XuNFg0N+h0+qRZRme53J+cYFWmkajRVEqJteXnDx/xmq14OLkKWVWcHR0H8uWFFnOcHeIbUuEkPzgBx/i2DbvvP0OO/0u4/GEg6NDRtdX7Ozu0u52+c6ffoeTZ89xXZ92u83keoQlLCzpMBpdcXF+jm3bDAa7WK6NH3jYtlFZPn72jM8ffYIfRgRhwN7hPXr9AY7jIKXg2fNnjEcjev1ddnfv0h8MydOcZqNBp90mDmNs22xfpWnC2dkpq1WK5wU4TkCRG/2fqipJs4SiyLFth06nU5s+u/R2Dlhn5s18Mh0xGl+yXC1YrZZ4jlHLH49HxHEDx/Xo9fpISzAZG1HUSim6vR5+4HN8fMx8NiOOYvIyZzIec3h4n8FwjzCKiMP4hUBqUYDW2I5NGEagNGEQslzMePzFI4a7uyyXCy7OL/A8n0ajxTpZ0dsd4vsh0+kUS9ZiqqkZc3W6A9I8JYwC2u0263XKybMT0rUZXXm+i+v5OI6FYzv0dwaMx9eslgsmkxGOZWPZNmEYkqVrsjQjbLTZP7iD7xvJh8dPPmU2n+F9CTPcVw2tNV7DY5WvWWUrtCqxbBs/DLi8mtFo9fH9mFbUoxn1yIqCoOFzcX2BdASNVot1WjJbjDm9PGGRLLg6e0ZZKPZ372I5FmWes7u/h2Mbjsn3vvd9LGnx9ptvsdPvMRqNObxzyHh8xWB3SLPb5c+//R1Ojo9xXZ9ms81kNMKSFpZ0uR5dMRpdILWg39nBch1cz0MARVFwfPKcR48+wYti/ChisHuX/s4Oru+iNDw7fc5sMaHb2WU4vEe3MwBL02zGtFtt4qjOiWzNOl9zfHrCYpniegG27ZPnGc12G01FViQUeYZtOSZPihJh+XR3DslUThjFTKZjrseXzBYL5vMlru2xWCeMxmOCIMZ2fDrdAVJKri5GrNcpldbs7O4QhD4n56cskjmNVpNVkTOeTDg4uEd/d48wjmhGsdlqqyryNK/XzF08LwQgDENW6ZKnx4/ZOdhntlxycnqJHwY02y3SPKE92MF1fWbzKVJYOI5PkqY0Ox26/R2S9RovDGn1+yTrlNOTMyMUXGX4voOFg+MZ2Yb+zoDr60uWqyWT6QQpbIS08dyIZLkyEiuNNocP7uOHAdgOj48/Y5Eub0VOAAjPRkmwPAulSipdgSXIcigrQ8TO16Ux+JUSWYtc2p6FsKCsFNK3Ea5Vc5MkiFoosyZ0C7kpmAwJXZlags3mobgR6jTE9s24D/GCRM+mE0btn1caSyeobWpKVY/lBEoYSQOE4XRJKZGWpKjFO41NTV00VRo3dKFetNqQy4VtgbXhhpnfp7QhmyPMuO1GaJW6SKw7RQphRqvCkOx1PbpTlUbpH7X6Me4CAHVBVM85bcdCSA22RDggHGmkEIS8Efzc6H1tCG1mOUEbQ+aaC4bQCNdCuhbakpQYn0GzIWlGnFVlfvYFn64WczUkL6oSKiRYNkqYIlsbWh0CTZmX3Ex7N78DcSNmqxRUpZHOkLZlRquuBZYgzxXalkjX2uwv/FTcik6WZVmMR2ac0O11jUp5I+Kjj77H/v5dWq0WZZZh2ZIsy5GWxej6AtdxsaXFxeUp0rZxfZ/Duw+Im21++MGf0uvtoIDL8zP8wCdZJRRVidaa0WjEvQcP0BoODw5QVUUYRpydnjIY7BLGIa7rMtzdoyxKZtMpdx7cRWvFer0w+hmux9fe/xUmkwkaTFenKsjyguHunhFG1SCFxJJGZK6sSuK4wdHhEfP5nE7X8GFsu0Fv0Ofi8pLhYMfcAQhBv7/D/v6hUZReJ0zG13UH2GU2m9Lt96iU4Zet04T5ck4YNzi/eE6vM2B3eMTZ2RN2947YGR4wnU6pKk2W5ziOi+8HBIFHWRb4vo9AYtsOtuWwSOZ02h2m8zllWTAeT/C8ANty6fW6FGVOkRk/NI0xD1VK47oeWZYRxSFJktBoGQkOPwyIG01sx+LNt97iNHpOkqSoco20LBxp4/k+rudSVSXtTof5bIyuFL4XEEU+5yenLJdT7jx4i1Y7xnYsDo7uc3l+ShTF2JbF1fUVUdTA9bybNwzLttCq4tmTz2i0OmgtyNMCywLfD4iikLjRZLVMeHG/+vpgWRbX4ykCRafTZl0ktLsNPn78fQbRPaLYR6oS6UjKoqAqba6vLvBcF0daXF6cYDkujueyv3+PKGry0QffptfdQaO5PD8ljI0URlkZperRZMy9e/dBwN27BxR5SRRFXF2d0e8N8cIQ9z2b4e4+RZaxmE04vHOIRpOsFyCNKezX3vtlptMJ0jH6ZarIyKgY7u2xXC0RuvZxs2zKSlEUJUEQc/fuXdbpkk7YIcsKbNGg1+8xnl7Tb/fBMho1/cEOw+E+eZ6TrFeMJ2ND4JUOs/mEfp0TrZZgtUxwFg5B1ODk8oRBb4fh4IiLq6cMdw7odfZYJAvj+5fnuJ6H43pEoU+ZFwRBgBAWfhSCdijKFZ7rM5nPyYuC2XKGNzZSKe1mi7zIKfIC23VNd6Dmy/nCCAGHjZjFYkncbFHWORFGDSxb8uY7b3Pees5ilqDLFVpLLGwc18fxPKqypNlsG804VeF5AWHgcfH4klUy4+DoDZrtGCkER0d3GY8uiMII27G4vr4iajSxXc+MR5Q2nR1dcXz2hZkkSGG61p7ECwJ826PRbrGuF1ZuAww3SRjagqexPMuMgzJRSyCYrollWzdbbEKArguMzYhtYwS9Gett+FXSMjccUmysZDCCoKLeDqwwPCchKZUZbwkpzCbaxoS4tmW5OWJ1lWZZG6NphfGrkS8kDagLrk3nTJmFMMuzsF2LvKzlEyoQdk3EzpXxO6zJ3KqWI1CVrosLgSUUmwU7IUStDffiXOpadwpttuioDFFeOFatMYUpZkojQ0F9XQKJ5bmUWYXjWLWSvTnOliOpCqMPpvKqLkbrGMwZNLpbQt+MXKu6s3TDiVMbCx9TYJWFodkIqzZr1rWIaD3uEzWnTevN7zQjSKWkKaDKCguB7UrKtO6eSVlbBNVdtprrJgDhWkYBZDPGrNtRlTLPLW3xpTPiVhRZaE2v02G+WJDnOVpVjK9GDIf7LBZT463kRUY00/Mpioz+zi7rVcLHH/+ARrNJFIUk6zXj8TWD4ZA7Dx7SaDWZz+esTpYsF0v2DvZZLhfsDkPu37/Hn/zxH9JpxiwWJcavMOPe/QfEjZjVakWj2SKOYsLAcIVc6RM1IoSOAbh7dJcszeh1uiAFV+enKFXx1tvvMplM6Pf7PH/2jMvLC+7fe4PT0xNGo2vefOst09oVxr389PiENF2bzaqqZLFcMh6NQBh+gO04dLpdhI5xPRfPdUmznKDRYFjf6U6nE9CCy8trut0O46tzVosV7XabTneH87NzwigmTQ3vRFqaOGzUdxOmJfvJJ59weHDHWBslCY1mg/lyjtAlO7s7XFwYQ9koCkz30bLIVIUQFsvlktliihQQR21WqwUnp89ptbtUVUGn3WMyHTEYDFina9brlFarS55n2LZLu9Pn8RefUj0vGAx2yZWk8HI6vQGXlyd88sln/Nqv/wZ5nnH3/kMsIWk0WiitzRip0aEoC6aTEVEcc3F2ihDQ6w/IsozL80uCIKTZ6uD7PsfHT+n1BiileP7sCSBpNGL8ILjRzXmt0JpeGLNIVuTrHInm4skVnXif1XqK7YFjm1h9z6coCwaDPdbLFR/98EOarSZhFLBMTE58/Zd3uHP/DVqdJvPpzOTEcsHB4QGLxZydnSF3797jz/7sj+h1GsxnFVoJ8jznzuF94kaD5WpFs9GiEUbEgz5XV5d4tk8YBsQiQmu4e3SHPM3o9bpoITg/PUGrijfffofZbMqg3eP4+JiLsw+5d/cNTk5OuL665p1330RpKFNFrivOz0/JsoRG3KHUFbNFwmQ0Mho6QmO7Lp1uh9APCXwX1/VI04wgihnuDHEsj9l8ikBydT2m3+8wHZ2zXi5pt1u04j7npxeEQURWrijLEtuGOIjrbShD5P344084OjjCss1NTBxHzJYLtCrYGwy4uLzCsxyaUUhVKDNu1hlSWCzXCdP5FKEVzYbJiePTY1rtDmmypt8fMBqNGPQHRk5mPabd6pClGZ7n0W70+OLxZ6gyZzjcIyslnp/T6fa4uDzh448+4zf+2X+GPE25c3gf17WwZRtVKTzbI4rbFKpkNh4TxjEX52egNf3+gMV8Tbq+wA88Wvv7eLbL8clTI5lRVpycPAMFURwTRuHtyAmArDSK4fXNa7k0F0DLFriWKb6EkC9tItbdpXrFf7MZt3lvNRZj3HQzRN2xulkeqzswm0rB1GOGxC43vCJtLrfSMiKh2OIldXej2yVqRXa1aYlJCZV57qrUtZG1gdbGFNmyjJhmXpY3cehKUaX1xV/X485a70AKUKXGEmYst7GfMd0uw3/a8MW0BqQwYq11YbcZoUkhTA+uVqHX9d+64V4pBSKrEBIzZq1lDrTSyA2/q5bQ2BxrYdXHAFGT3M3oro4O2zYejY5n1Po3hS51P1Bpbo6n+X2yluioFwM2Rd6Gd6Z0ze2uC1kpb2LXtbSFpuaXWeZvrgplTktuzC7LwmxsSst0z2R9k3dTpH7JKutWKL4LIa6AFXD9umN5CX1uVzxw+2K6bfHAzyemu1rrwc8jmJ8V25z40rhtMd22eOAXJycWwCevM4a/BL+o5/vnidsWD3yFOXEriiwAIcSfaa3/2uuOY4PbFg/cvphuWzxwO2P6WXHb/pbbFg/cvphuWzxwO2P6WXAb/45tTD8dty0e+GpjuhXE9y222GKLLbbYYotfNGyLrC222GKLLbbYYotXgNtUZP3e6w7gL+C2xQO3L6bbFg/czph+Vty2v+W2xQO3L6bbFg/czph+FtzGv2Mb00/HbYsHvsKYbg0na4sttthiiy222OIXCbepk7XFFltsscUWW2zxC4PXXmQJIf5FIcQnQohHQohvvcY4ngghvi+E+EAI8Wf1Y10hxP8uhPis/rfzimP4+0KISyHEhy899pfGIAz+0/q4fU8I8c2vKJ7fFUKc1MfpAyHEb730tX+3jucTIcS/8AriORJC/F9CiB8KIX4ghPi368df2zF6FdjmxM3z36p8+AkxbXPiFWObEzfPv82Jnx7P7coJrfVr+wAs4HPgAeAC3wXee02xPAH6f+Gx/wj4Vv35t4D/8BXH8DeAbwIf/rQYgN8C/hFGH+/XgT/+iuL5XeDv/CXf+159/jzgfn1erZ9zPHvAN+vPG8Cn9fO+tmP0Co75Nid+8uvvtZ7rbU68ltfhNid+8utvmxM/+hy3Kidedyfr14BHWusvtNY58A+B337NMb2M3wb+Qf35PwD+pVf5ZFrr/wcYf8kYfhv4r7XBPwHaQoi9ryCeH4ffBv6h1jrTWj8GHmHO788znjOt9XfqzxfAR8ABr/EYvQJsc6LGbcuHnxDTj8M2J34+2OZEjW1OfKl4blVOvO4i6wB4/tL/j+vHXgc08L8JIb4thPjX68eGWuuz+vNzYPga4vpxMbzOY/dv1W3Vv/9Sa/wrjUcIcQ/4BvDH3M5j9LPiNsV8G3Pitp7rbU68OtymmLc58eWxzQlef5F1m/CbWutvAn8T+DeFEH/j5S9q01d8rauYtyEG4D8H3gB+BTgD/uOvOgAhRAz898C/o7Wev/y1W3KMflFwq3PidT//S9jmxP9/sM2JL4dtTtR43UXWCXD00v8P68e+cmitT+p/L4H/EdPCvNi0Det/L19DaD8uhtdy7LTWF1rrSmutgP+CF63eryQeIYSDSZz/Vmv9P9QP36pj9E+JWxPzLc2JW3eutznxynFrYt7mxJfDNide4HUXWX8KvCmEuC+EcIG/Bfz+Vx2EECISQjQ2nwP/PPBhHcvfrr/tbwP/01cd20+I4feBf6XejPh1YPZSK/SV4S/Mqv9lzHHaxPO3hBCeEOI+8CbwJz/n5xbAfwV8pLX+T1760q06Rv+U2ObET8atO9fbnHjl2ObET8atO9fbnHgJfxWW/Kv4wDD7P8VsGfzd1xTDA8zGw3eBH2ziAHrA/wl8BvwfQPcVx/HfYVqrBWYu/K/+uBgwmxD/WX3cvg/8ta8onv+mfr7v1S/OvZe+/+/W8XwC/M1XEM9vYlq83wM+qD9+63Ueo1f0OtjmxI9//b3Wc73Nidfzsc2Jn/j62+bEj8Zzq3Jiq/i+xRZbbLHFFlts8QrwuseFW2yxxRZbbLHFFr+Q2BZZW2yxxRZbbLHFFq8A2yJriy222GKLLbbY4hVgW2RtscUWW2yxxRZbvAJsi6wttthiiy222GKLV4BtkbXFFltsscUWW2zxCrAtsrbYYosttthiiy1eAbZF1hZbbLHFFltsscUrwP8HFljgC2Th50sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "plt.subplot(1,3,1)\n", + "plt.imshow(unnorm(img_tensor.detach().numpy()).transpose(1,2,0))\n", + "plt.subplot(1,3,2)\n", + "plt.imshow(unnorm(img_var_fake.data.detach().numpy()[0]).transpose(1,2,0))\n", + "plt.subplot(1,3,3)\n", + "plt.imshow(unnorm(img_var_fake.data.detach().numpy()[0] - img_tensor.detach().numpy()).transpose(1,2,0))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/08-Hacking-Deep-Learning/02-iterative-target-attack.py "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.py" similarity index 100% rename from 08-Hacking-Deep-Learning/02-iterative-target-attack.py rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/02-iterative-target-attack.py" diff --git a/08-Hacking-Deep-Learning/README.md "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/README.md" similarity index 100% rename from 08-Hacking-Deep-Learning/README.md rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/README.md" diff --git a/08-Hacking-Deep-Learning/imagenet_samples/chihuahua.jpg "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/chihuahua.jpg" similarity index 100% rename from 08-Hacking-Deep-Learning/imagenet_samples/chihuahua.jpg rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/chihuahua.jpg" diff --git "a/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/corgie.jpg" "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/corgie.jpg" new file mode 100644 index 0000000000000000000000000000000000000000..40d6cf5e5538a7079cc7e67147885152e44cbf54 GIT binary patch literal 1234922 zcmb@t1z1#Fv^Rcc1{k_Khwkp~?k?%>?nXemQvm@;fZJK)dKqq?u zP*!FEkO2U|gdah;KLiY5!Qo##iv|E#ATR)h%iG}{8;;>3;3d4{f*`;3?`=pyh`;e` zI41jxXW^LXuMQZFx#6~i@Nos+dEgiyK7N6BTrdQOV(09ab1O2NwqqA0HpTpfImcuy+u^ z!^JHu!o@Gb%LU`%7U2>S;SmBDfXC5)qMwC_QS=wDz%fnypJ?u*WBiLp?|0In06YkQ zi-(5`lKv-?Ew~)vFa8S0po~8{p!mWUkrm|#J@UB zaE$a9bHOn*^PhN7{$gx+9H@VFgy1^qnSaif6dY&##fos8`4?-zF;Mb1er_%O<24hE>r~J{eRqDKEl=ieqj{kjk0fGNqyIEOz!l-zU|3@;ojlqhzLmVV>CGT*Wdm7 zKNap>!#(41(@1OMTiv|_&>?UKIPm!-fu6Bk(iL8u+A11PxrdrHMXF{@+J3(bFs<7# zON{#*zKuotSqA%>-cDIZA43A)@_?jzjHx!kf#@#|Q*9<2y%eBgZ? z2wg*t7YT7tH0gcQo8}Q(mPwFU`_ZFq2Q9Y%KDUlB0{*^I2TiLu2=TcN&0N^@a`?*G zxccF{*SqEK>6AzvqYl?kW`2B_Db=f1APaWf0*k(x)UvM23y#_h&zH+6o-8l=#<6^s z5W`lQKnD6mM|FONmVYLQIN?CV%;C*Ve@Jsl#h6QL$b0!!II(JHrA6+C(c?YO($2*? zK6@z)1q6aDG;LxKLYQsMK-tBGZ+=`3ZBwte<($9Etwa3P>0KaV=O#x@ z7I)Ym>ThI&c$jUd=?Y+4?tZOl6aPL?v>Jb_p|s(WOF`aRq5mw)jLNVoSL`~V@wqZ= zQ}@RV=JiiBLhk!A(Or1U$BIR=jV2YB^;rN9{5iNTxqdVka zE+0UPj%O;Vd+lC5i9Yq8QY00d{FD(boVEDND9;Y1M}_zTC@#7KQg)gyGn*)J(u4Au zNE(Up+CRAv>{fBTV;g39!60`ULG0zn@L-X9hRm?6wUct}$Ij7EXPjZ;kdLuFI&?>Y zvRpj=_N=guR}luovyUom8ZOwM@f6lgw#!aq!V-ouYLukyry5NK{%p`*3bej`N>cd} zmpw{iqmc$#TfWs}`iK93kU}^n_wcjnU3w&8#3yUYpIA$WU#L|Bxt}^(WV`MFkqpjqRp6(78B`7MS0&9Z^Jcs!-aRxbVa;R|4#QwRBIfM%=4u82}f^_DhX8^H`Jb_^Zk_QlwxrrY|Z((g(9x0S?EpE z;f`z_WUxtj^;w6^at~r zM7^Fz#8Z5bplgX$G`eF}7wp)A=eM?h@k_|0_DL`czgq~V-m}eLr!_1lHo3c%$%8x> zf{(nrVr$|aV{8OloC?KllSeQ<5w54a4r;!B{gN7u&=|CqF)Zs&CWlcH`pbr}CXI1Vr{>!L{?V3Hep#=IFT~$ph4Ga(yyK_#4`Gua++Mh{*5=u_ zFWPl+eenZX9O`_Mf;H^z5IBRE#!P9zFQu=gH4VO^=fp-*HczZW22%P6;P6KAhQXkiBhE*?Q0Xa70)koQgb= z);oshvBw?2SWo??R-^1`LK--QHRp)+R>hosINkG_Y$B0|dHD`F5WzE&@Rz>>T(RRe z-tG!6w6o#9L2_VQ4gG9c^AfRR-FH+oxv<_?6|F#f*u$SSceu#^B+-HAuwiv!x#b66 z1IP}Ke(MY6)7WBORy@m3-paRe49QKA(AH>$IY1W4om{r3)n) zp=mxzW7`?3hXVfV+>j1Ysx{IpCm}Pn&;?zOrdMu^+MG=#E*%j^v6;v6_!O7x78;%8 zb#%amjwDXM=2XO6@m#{#LJRx3Ci3o+B$Zfu+$a`^!QOYVU&7mR<8!5``!CGGZMSio zbmfgdA`tWdVJ`hgse<{qE269vQ)Jhd10cQ}27RhWH3E`-VrI#fD=!961#f${aoU;| zrA-$szp(a)a_DRIS>qC0Xt^8)%HrJ!E$aw1y6EB^9b5Xg{6P0pauc}#<)>|cr>LH~ z=eyS_yyPijL8>54@_9GqGw9nx;A}Y-vh;~+-xWecZHZRHUH!Gb#C7TW^>NH&j9Oh@ zoI@73G@p|+JQ^*qKv?Uiu(2u36}jZk5%$LNZil5|jU#e_4Y5k6f<&*6(j*Za^rY^9 zj}}+OpC#M5JH@PWc0vubzXGp}h7B;SH)(8}fqFiLlgZ3IBdVYf7fG4$|o}WAE#lEn$7@S-V_7 z*XEG4Yr{vfQlj_{P!{u+5G{0lWy-Mnpx%_DDP3W(zB*uR=0U)am?ZDcf%dZu>huM+ z5N6sJ7i2zT%TKK-Nz#VRNhXrZ5rVpvO(9B>5-W$JLg#v4O_nQ2%+-9%iZ9{GJQut1 zOxWJBMw*n%$X_M!e>VSf%I1SP=Z-t?h|u`7&uVfD1uZ+FA(uAK2SXN$pv^u>>G0WJ zzCMQSbLl4-qhgIS6NU*=^YKW(-O!XGay?IHMr8SR=WdGC%sTASl)0? z#Jbc%eNr4A*_}6f5__LTDntSNSM8e^LW~cyVyhwaYyZx;BrCnI8tWe=Ea2=&_E zx3y@SK1Cm6-;*y)RkHI^cw+$DY&uLy8>D1~-^c>bg)8;)4H8h-#4#1a!>`_yydmZl zPA=h~WKR^dNR~Lg3heCW5>cgy7guD{By=7#mCnQ8E#mc`lrsjM-wv?F)tmpiBISy4 z?>TNH!#Y1*qa88jPmfcuS4PdThb&aPy7~=2vh}LNT^t~Fe_4BU2N=Cm*LlbN*y%9Q ziDX0TVfm#?{c_-CV@v{F=XKo2e&~lSnpy10Xv z;$okEwA(6Q@)Xub0us8V`MEiumy(mHm%$NV|n}i--hBPEOow=eeQbx zq85lHA>c=#mNjm933=^v`y=aN)A>?D%A4B8MNJ9Y%VF#Ba-{j^h|jpmQf+6iS8N(! zs#0j2w9DGN`VMO#YH!mVeYBd?3UoGXRDPMDNa z2(Gw?q~;%iZQmN@y?pJWPtdXaV+%6DAC44L;VMlSQvAexr7G;%pwP`D?3hQ1BqR=K z;pszdA#?jl70e8Rw$=eUYv;eNT#6%Av;2zinGq;tpDtA5r5?#XIk!BE>}(6<0_b+kkn7>Og3*dhJet z@{&zq>Dp#jvQ2|%REQ|0GdbuXS7K1{gWj0W2O~vkZF8fyPDcAnhZZ#NRo*$QSlC5) z7;_R`6?0;qnUi}9*R2_7zb-kRQU1PWlMvCm(y1VuIQFW=m`mf)1y#C;FyR&PHQ7(` z-M|jQ8||&t{m05Yg*<+fnsmud1OWhL`Qy^Gk~?5AFY!DxkR*`OgtuVlfr=JwEb~)M zU9*JJB;Jv|)Vf*%1Ch_F!y|za*xSM!?750J?RNaKR5Z}r>XSY?tAdMj#k^<%zHCi- zs%3&Zpk)T?Rp3o7A(+6UHJBqmYg8S10AX4lsN7Ju{ud+=dmkQJVqux{2H#%l2hWRS4@tDkf?v>`FUhq}bx3*fRP=W40bs1#cB|W_ zhLNg;im+$AS&~ofzP=G>8O#r#lYcDAwfXY=dT6-Jw1=leEWXqf)Fm46mV~bX`=YEp zTq+$p!$!tgkZN^^=E?@FJ?SY~`NTw6QywQ%in2#iM``hZKBJPw$caThM}X|5$Lp=c z^i@*hb#Inj^@|k`^I=q@Ir18L_R1Mpi1Dw@VnB3X>9f8Hw+m_FDlEj(6+w>8YD;uRhA|p!Ub@G?j*r;r_9u^W7>fOoIsW~4~P`j&WRYrJ0 zW*&z>EM4&U*Q3fXUIOJ$L*8|a0Y0?t9i#@A;Iyt6uMcO=$1vI-u*iMHbTOR%u>~Y? zT_`Ez3vSnTyS0m7e&k;D>-ARH*8(tY+q*-Cp zsj}_#oO8SqA4rlHjV~y4YRzwKXm2bh&y>)Eg5p%;!N$wesVfQ*D73ltmbd1DX=Jvv zZBwsM9B$>lzB1hDBgvTb;_Tbco+#Cq@vSrFd=c#HGK+AfdyQ+PJmOxQyDd=sB&?(wOVg0XL&Ewi*5OB0ts; zY`3?}GiWvFBx`NIFnM)6{swxKc#?MOg%usDo6$#p{k52oqp19Y!6?a z-_Epiuu$$YSkNmcEV4RTy4DZ;c-gNelo78~M+6-2ks?rb+%{3UebqlK@o1MXB`-pT4JCLl4J3&V6IPrIu!RwV%hk ziM?8P@ysb@=+WMw`uU4~j!v~u6~U5oju#@W8FEpZ?&ia5VCiPRWDnA4)JWG=M)e4a zA2wYzVAkfS>En1Ri%*GIqYr7c`g;aZWP5yn?*g>3S7- z)PqAo`>7SEB>*lc_kQI|nO*o)!fWLq-{YAVlq)5H{V{J?*0l?u4APUSA2x9sz1klM zBFI;^XRq55@L-22q&$9q;$C#-KmCT#;gRfPS2#6@nyo+lo1bW7S}|eWXirz z&3AJ$5xGSjrvhzxpC$W)P@6+6jQCE?N9V=_K8!i2(YHx>S8015B&imBmbOdO6v&sO zNwlN6fqOCIMlZDcvIT!~+lwQ;k>A;90e~M)Lh#=;jyW zm1b@P4v;l#$$rE>n??uT%?J-I*1MFx5OTx)*P1-a`Pz5D>w-L$%NNxl*y=m=_D594 zOgn9Yt4UiVzE5dzp26&Fctke0OWUZz8ac=pBouHeUmL)R4xV}}5Mfefj(es8tHKp& zC#xd@#NQ73Aq4AnjtONvY#4RNHoq<=S=9#5qhrNth{R&$mI9Mx9b4FtEN6 zV##^LcGmhh{^I}vZCl6}?pYmCbdn5uHWJ}cN@ZEA%W_fbLohqt zqhc(1mFtYqk&Y}q`XeTw=kZcTt*twYNwk$qMo2iN^9KZ~h-6xHPm4QGo;>5SDd=sf z3P~@L&GDxY9H=Ntu9PuU;ntBNjrBP0m=+@`xAR^6W#bG8*-?NtD*@`Oc9m}`F}y|! zJ|O|$Me!2%+$iyb%vCVO?d9m4pqBWUrV;3lBnJk88^+0Rqz?E3$P;KkD$(q_ntHOGTtrD$d9#!qTabiTk+6Mx^$acC-W z%tSFgV<44D46Iv4shj*w4}S>eHzP>8Wx}J!lcOuOTx74qkG-hOW zy+$OjZ-8KY{Q1Tv(yl~ar0@y#>qX^-$;4-094#U8TelJt?AdADXqn0DGm^4##HAO6@w_(bPdLzaEO(P^SV9qSK0LMYdi;wx&8)s>_Gg zSeL}z{AEN}~O4~xb3-3YvO6X43Rw}iC#i*DFE{u^B)R`Hzv10muN|>TiN(u;Pjh^Hh%gxJ|O%y zxx*J?^z|_X)&e@xsBwzKYh@dz`ADPP>$g{D5iAz$h7+i4y^%{<k#WP?g^q|NdYsh*VQ;MutLw*EbE!u z)K`(47o&pQ!s@J!N?EpZ8t?KW`(AzTF9g#T>t~oiC+$|#e%YoFr}KSfXia&|xOo(7 zXA@vKD@?6#gpEdKrI6$bP;PM6BNm{~tMPJ6@i^%Sp^uPSBSuL*ro01$Xzb`iU-Z_e zFnAloEcEny5>C6FmphwtJS^ykB&mAIFwvJ%GGQpBQLa_-H`< zy-?xCi9Uc(INHl#YVX6;zQa_I3{kPV2VVH@dG{T_iSqQ(Ztwo2Y#xq1nZKv9A-|!l zwe#qfh+H0i(sMb|0)E%v(1!*to4C(imFcj!>~IMz*vt3AXjUNl<~yT>o?O5b@m#Gv zs%o%%ln#{pXVbXU1f2>FMw&VWWA(nDemfC4r3nf_jvpD@qkP7veYlXO#`E&PcbeM# zhu(lT2w!kB_}|RJM*P7nd;1#0NMHOCYqFtCnien1dV1vEX8U(=GfA7 z+y=*)D3Ur&ydt@di7ukC`}5J0<6BQ%JU*KD$|MKGy@M`czl8k;#L6?0?Rlgn`c=Kj z%#N3Vc@(lqVnuv zRQEH=$B4KqI&-HE<5-@#gWAm+NP`-6OvZ+~N~@wIhiv)NP*i#S?C$PYSQ3U|M=t}0 z08&4()I`?#R_7V&&@u7rlSkY`$1I1AOQ6R2BumiypFNgfF$|cgs$`Y6Gtop<|4~ek z+Lwxi*`UU6WJEW;Cs-|>h+aI?XpzdZWqqti@dpgZ#s&F7ng%1@jMkd&`3MBmEQ`Aj z+$#sE8>$&SgN{#9h3KH%tb1kOug3cS80xHdmP%g>4RXAS-MC0h|>nXy?>F&c}W$R&W$6@2) z#u;ek$q6TUZ~|hIfu2@2E_S{!YdZ%gcX67No_-pbldU+7A-_78x~Ht2qmxpwx1DaV zhMrBZi;b`?jidxjEKnrS&C|`!*9sQs=IZVv5-3jd+qnoF--|hEV82y-UBqdO)U{x; z9^Q5^ehz*PE*iMCx2?U1j-0|@Tlk*%e*_s25Wo?@%i-bez{xEvEX>Kp!^y+L4%cA! z33B(f3S@Wpq5TgJa&|s8-cFvrP9E;CdyiJu9)7;!G&G#>894t=aS#79RtXpk_D{Zc z?(if7;Mv^mpj|1;%35gYXeubH$^Rz%pdH*lF23guxVig!>nO^=jEqfS&{g;&T{3_G zpaZC^Y>!3Q`>p1*N$JNix3C?s0 zy_dV$S^2)-faw!U^YaDS-la5=iapB;QI)cbXL6ySSr zi*}zszKy5%J&u86K^sRaxDHw`9JBq2AC3Tk%IAIomE~mxxP=7-*m>BwVb-qjiw@>v zW9549^?$qFpQ}GU=}O={EO>0~Gd6zS{(oc$_X8q;3ShyhR3rc;KnpMd>;MlS2#5kw zfIOfAXaahGF<=hZ0FHng;0*)-p+FQ62P6UMKo0O2cnXvQH9$Sk40Hg!z##Anm;h#h zC14HM0(OBT;1sw7Zs42)C zqzqCI>4uC!79d-Y&yZ^bBm_JJ7y>(jD1s7#K7tK`7eY8fGQwkoYJ_%#5rhSVZG=;V zUx*lpZn89tdPnGIPYSu@!?axggyxej><`7`oK@^2KB6p9p{6a^H+6rU*x zDWxc#DYGg2C=aRds3fSIsIsa0sXoC7VA3#GSUzk7c1lf7twildT}nMoeM7@YqfZk} z(?GL9i%Kg*Yfqa^J4Aa*M@6Sj7fM%4_l_QgUWne2K97Ek{yPIBgCWBsh7N`UMq)-~ z#$d);#&sqPCP^kQrZT2QW+Y}IW*6on=2;dn3qOk^%M+FvRxqmos}pMx>l_;*n=qR@ zTN&FjJ36~GyFYs^`!)w5hZ;vTM+e6jPC8B#&J4~m&R<;oT&`T@Tx;C8+$!AB+}+&g zJS;pmJWqHQc`Zh6f6{6 z7Qz?O5=s_&EsQ8EBOD>zD|{^?AmS_1EOH{sF6tusT=YPUQOr)PTWDrYGLePG&LU2V0LWoVsP$+e1ROoh?bXaLPDBL=H zD1tU3CSo^IF|s-eHOeJwDw-=gGy3a8!-w556fu!8A7T|_YvVBEyyKQ1i9UK7j}Y$^ zKb^pvP>}E|(Kc~Bi7P2L={DIWc|3(XB|qgZ)joAPO(3l}9Vy*C{cVP1Ms+4mW^m?* zEcLARY*=<;_SYPXoHx0Axli*@^ZfF*^40P?3+M{c3vM4fK3;kv^Q57WyfC5gdy#F? ze6dt<{ZopkNl$;2IF+oFDwejFF_h&#Lwe@_Y_Hs)e5^vKqNb9xGO6-sm3!4zwNCX& zjbKg9bMohDwcuL6+QYgBb+a$zUUb&8*OxXBHYCBn2>CUBYO-v4+pO9=)FRYU-%8(F z*oN1Z*bZtBYCr98?AYow?wspV=^E-5?QZMg=&9U4L-@w*k+A z&w~zwABHT3)`pFS7e};5rbksrU%yg#H9RIg*8f`kb?+OIH(ldG;~f(M6YZ1ylWkM{ zQ*F}%)9o{YGo7=-v)yxIbA9uY^Mea=3$GTH7bli9mge5-zg<~=u)MWmyK=DVx_b7` z|J}`6*zOedYT)^iAvA z`%AaWo9~HNBv;kfLf2zI41et31l&Sz^M5k`?EaGu^o&Zc3;H&DIosWw*S;A)&&625eops@BWd&r_uT| z)t|cUH~v?B`Cq~S|6>P%lf@yt@anbvADKrPoZHJya)8}i%IfIB{T2^9$m6$1nQ{(o-2d9Wx6C<*_a2Yb&%{TC4y z5eb3-1%r@*dmgM7_C0eI3I?M<5I_iUdNctD3@5Ns!>O{ka3ZXg7flot4^D%HlVDF} zw$Jcsb*u@H33^+Scgaf9AaN|lNXj|dYc<~_O%OKH4H4#{6{8ygr+mEYw%m`1h zA?6}MQnh9^(MEcoHiD&m65lARWaW1251w>#jd?vtF!7o6s#NPY+VK@{TFuP-QQh+O zn8G60DvzI+p|U%z^Y$p*t=U8w+#nM%GO*@0kAh0yf|0gW2h^}Q>LgM4i=?d#6HNHU z6vuX+SVD>H=rho^3k3Z_;c4$e&cqH0VyVR?w~C_TZBehuY$go6#j?6ZvjU{6L|+n z4VQ7)CX4i)T9>V2I2Wm|bhbKu)(!m`i5*if(WJEzGPIsYieQ=+H<9=3W_01#YF&PU zVY2gXTrHdsa@0<+7-^-DFLg$?a9X?M`ICQ7brT>T$W#xwkwS0ACa?MVLNdR2dgj`Q z#M^$na0z`-^VNPl3ti#l^wbKZXH+&ZKh9`QO-G*DaO(_Wx1*`g6fGkqG4AUz4f|9- zGHHysjv;-!W@Ir!90sd^i94gSFuS{*I@AWfe_je30e3fMclcZT z(Ii7PV|XW?7SKaq-vZ(ouyiDi*Ja4m9d4%arXw8*(!SLKZHt!_G*?YEENqKwUTeK5 zt=r_ECiOHG%Yw1$So`JrA9)oA+xf3AbVU;$t$>~1EH@aTF(MVX>nI1;hz7}<+70q+ zd<8^hKS)~o&t+PcGPH``d|2x{G11rErVVp}a3Ex7KhzQ7k{l7O{Ni~VD#`cglKeqO z5XTZEzeC(H*9V*V;u!Mf&Cwac0gK2lzo_Mn)~AjxI@G!*y$zl^-)JrQAX)g?IZTg) zbv6Azi;Vb(^wQIZxEA*+wu=tG?a^g&pe{woOR41tn8696x$E(ybsQCQgI57>*;HF< znCad&P$kzaC`KncDsFCLV*8ctm_RCoAD6v2i_YY*ZtX&9^>5fpynMzN=u7j+{|Ip| z9K=S?I3gwBKShvSZR3)wnj_o%Tty?c{2TG{JtqW*tbp z6_)9psp(BK8tu$elR5Hr^TMd#s)IUmoMN@(OT(H{#~pxNIMXo!=RgHpeV2dxvHE#* zL4;trrb~DFXL$>A$^1+GLPT7ADbm!ygHw?Uok}j%W{t;&S-@gq7h3LlSctsSFVysF zjg+duV)b@!Kaw=vvs8Mc+(rxC)0-jEZz_l+u|ecclxADl{+7XDg*oftfC}17zjuss z9m*K$@o~YrZRUs4Bm*3drbAd*3m=F$YuB4~azylX)(6p=_tnPPg(D?L)Ht$L4Gb10 zrMuJlRx%aZHY5XkB!<#66ufqch+v{14eK~q$47Mwjsa&)C7$SS&2nwHkl7Hmr4u9$ zG-usyofKxX56PnbG>+&$9#bX#q}ga6$Yx%d>)xfZftHkp&<71g`X0|cTYMqQWD%34 z0jzG%yCvgyVr+l+zkLrjVe3k?7!eMZcl4vVK~_vLO@}h?Kl?1;-bB#u+QjyPK4Dh0 zBb+7<)+N&m!>>{s&PQ|`I#Tg2$-xy|=t^jRWXM6yU_}~9{xw+EZC%TU)!!1uK9;o# ztp>uq)XoPz+DBqr4$|TnDjeiPG zz`J*rA7A$>ZumNpuxC!?68E!n-Ul5@1asn;YzI3BU5HBc`Fi`AB1Y`A8NSw%NTlXf zaT!*+pb1B-+IV*?qg!`SeBKZ5Y1zv})O_%Hb-F45ow|CcQ%L?up>+TIL(jYN<0_X ztim`_0@pIO`xA>LGI>6uOC#bVQWwp>IWq(#)CHSf%4jrZwGt4AMT&J>pOm+80_pbz z&Y(wHc}mnbib^kao_%iib#Fv4@}Atv^JZeLKEhF>6;Pipr$8`nSBC%84`Du?VJ7ZY z+UgDEtmq|YodnE}(2ohgA2|6Q`KddSjxbSCl;yJWl`;WB2_~_)HG-6?x-UemZ}nk zesI!|r$cW;6{R#u#mWlBxZ$70b%vx|Msx({ch?I2q>2-N;=oc`dT0?U#@O+)NLWWU zR#a4n!+7=$6^CU0^V(&W`7GUM{7z#y*7|!NGo*?%Ev8|^iVhtF^p=@-K)Jk=06#NZ zKZo_t@`@IanF#WhsVvdrEWjVT5@cP0DD{p_qq_xa&w%*+6j`{l6iLz|a0z)Fw+bP! zR_oNnWm$h=r^XuUc^iJFvgw*1+rzccc_1-IpL>R?VT&`HWxm;qRuFD)7{3_Qfq|yv zJx1@&K!AZE=~!#itAk(m98*!eGiHs0lfhmeSN8k+#@QYfWlMjB{!H&nj7>mAW5Ie9WBt+i)OYu9P)?Fa<+s10To@x4kW zbdyl)p8-EcaQE!;c?lzY289Dchw8>Xk%~e_+E-n{IoUqy5+`_xCLB7lod!j;Pg>9r z%9nq3*}&_Ko%i^URCT>fM&AfjAnemJxjVfjj~dETfXh&DwerQ8c;TRUXDZb? zpShYMEJmAg@V%$zDNL@DRa7>{QuuIrgqQuEj1{Wl%xtzpzm_dxxIzBTOPv@CZ*GjN z*o3K;pv;n%Ihg0GHNSWo_LTiqdkvGeY)!|9%P4A$&370poRJD9UTc{_ z*cyY6=x29TakS(kF2zK(ypRAA!OZCB;wlYMS^iva24~1w%ZTB(scl4b(xPpX3!RTO z^zwu2u7MY^QKl5eRSb^WFG87=IkMvx4@5AwPq0kFY@3RP;x~1K4lG00&RA6Rlze`e zJex*YdBJyDj@Mv5#6qIrm!q?fo#qgZh5u2ExWy<_wYnEuy$cP&)(%g%=hr($JT^Nz zR~Wr1#^47}Bh;qofTEjEGqtX(vF7D|hj_4EZ=q+OtvGQ__nH%Rj!lN~w|!NVeX>Qh zD0Wi1O&4?bz*cH14AdK`Y0F-_c$)$rcdebjtbdC!=@K}|P!KpU>1u0pLlo)Qg^Ck;$75BZSZ~7d+u8_S_Aa zJl(A_+}O50dzt7ETxnnsI;=6`0}LW;A3C9kUR(sS2OEPwJ~c2l6QDA}@ttOwyb0nu zM*3((tgV*gbs1-?+JmK$w}VIiQr21En23Ipp4G1+TiSkk^3-y-{w+?=vTP^W2+@lz zR9X0fWwWRd6`fbaWHUiZ5f22a%&q)Cj4MNsLf|zj0+6%WLpjt9c^=h%2iRV76pC=4^_gt zC(px-uo~VIaqd_?KO^P+2&9+lu&m4N_{)PyTE(s0kA`^Zg}qf%>!_QU~jIa*HA7n)UPY_V2~9jQ3<_ddGpEi^^}axtXtx`eK{7R%=hL8jx{Q)gFAP z>@GskZdMmgSYN2dwmxknM8KUg-w33w(=w53#{b3#O+6hlrC222!~EfUglD3q!>r>t zXDxro#_Jp|_G^~otS=K;6i@adocgm`5_5j#nbz4z08Cs^M6o?&j)i)l{tn2-8DGTi zKpfWk3Cl$w?4qZm>{Bc^&EayX!l)|L8tHgmz(#&H@bMIL;H`Mm+Mtq;S$9@PHZ-ZP zlj#iQYJ9#%S7#dBM*i)Q3twao&%v3_Mb{j+gODdM9x-;|XiH+>5)I<_q*?D#kosz) z0smDT(FrzK3gS#zNc@bQdDEf_jPrGGCNP%yRl<*-B8N~;H0g0f__Bw59k;AfEW47#j@;@)E>?F9c-NIJ=t6%u`7e(F?kNp)4Y#Oxbs!Md?= zsMkUTe>|H&^XIY|Da>+1^D^``54{OmZWQs_U6Rq=RFz{CDJ6g~qLuKW?V40}BMLS2 zy{7qw<<}=ht7-(jY&%by6q#9UGY5*wMl-*>e(G4$@v}_2%^%j<-uivOH1|LS--t`( z;@XJHeq@ok+D1Jf>aFQdrGo4noVPCsniP)aWt^JGMhx~$P#=JO8D($A1bV!Y5oW(7 zsx&?FRK@6uVlg18fiQ>pB~-mX$}Eq`g{J?ystq#ROU}HFx9zDYl@cOph2|R(&|6Sn z2=w~QIO?^p<%-*AMJxFrd5D5z=JHk}@Z1n9%?@tZoh+X{`Grc2k9=4JcQ3NMXJ0pW1dQEzHG?mH; z9nWXDD`%5S2AXO`Zao}Zk@A`J?86cBsPB<*R* z9YlDE$dF9&D?{PI?7(9PcKv)#%D}=2!HJ86f)r&#E3o-X}+ z>4f2ACQ{?d2wH-@S?5vy$tpGOIdorxBawFdw6-P*d+LOG6=`Q1w0w_m<( z6+$;2Gb)W8Etxd;{@_-9S~DI*sD~|^TmK|zfa=DQsT08Y(Mh3sf|NKVwXl!2dlVLfKIe+nZn7BSkH+rZnlq)?b$9ny&+5(Zv z8FCUncRcsuuDX#c;J6<2LErx1C8OWuR`TwPOb&Rvla!d7VcZAz%Qp&Gc7l_bZhoNr zgxg-zwp6gA;$DWb0m?|M&J(Iu-UNW9oa?sSN90mU3sED28M*bTbCVhiCR5?{N&S7W~5$UHaqn}|r zTF*Ys^YMFiNVcN4zn7k8ab6_9K*HwFyx^Jp*=1Wo@s;d4#j1G6X^Q|>`S@gi_Us*s z@s~>}be>xK@1r%+lI2_&Eqv_6h_1~q=wjxJac)LU32L0tD{vc@8jmpv*OWsJvSt65ZwgRYM3!(2HIbSmgxYs(8S9%89ij`*R-6AvM3Et4jpyD z$kdxZ{h`OWW<+J#3btd*z2{?XXH=~=BNy?8~G zVAZI_hjZ--up5FhoeOFyov2vTUY$Mqft0-Yhc6Ge%g_w$}4qBBl%y>x78>pT1sXGjIf8Fg*D zN3t&>-VozPKQj{BF4C=Pqq)=bymL7Ew2*aeN9U2^0IO@g@+~7yoc_^%-7#5nC7zvJ z4n$=>k+B@vN#NdqwIR|-%R=;XyGCE-lI2&$rCivQ6%mzzrzJhR z*ItlWOJIInf%Rz2F5gNLKvN*T>m0|c$I~Vk0ECSmp7_#ppGA!i)FDh=l%eqJ_KGu7 zQbKeUb#K}!+&1E{6h(dy%o?=F3Kj3?6+^2G7F3dt0 z)V8z`$0EoH`&I#plC7+u`f2<@@DfIYkIt|j_PabLtU2N!x#TK@f?G<_zsUUuHQErx zOjmW4B!sv~@o-Eg$-d@G0Rh97DGyiC_~JDi4X9`FZK3=A(65eV%TlGO0mxNZ!9M6g za?NU5QXYU+k2}GOs?e2&Dq>9!F95F_-Aa@^4pKnMXzAPn9h5a5)AWHh8x++!PG=fE z+t=Zz!WHF#pbHjSRGr7x0op4t0nABo+9s%Ys@k@#z=9}1CCFy4Sgq4qwE$CLApd1)4X|}Np z%wQ{{XK8Zm^(SUF@J6R?)v`@BUtA2jljL>~@5P0Qk*YfOkAT&##nT{;YHG ziY!fk*yM*HAJW&%yoUv|O_aRs+$%eSqEw zNbf7u5a9#FTAGfrBNE${9xOsn~pX+B?0kL^6F) za47qBPvb=r8;WwhW>udMNPj=iI6rH9M+R^9Px-?X=%T&zEQ>$cz=m6~k zZ<4jCAt70GJ5!juapE+}O67-1eRX&x4)Uo*lHfZ&kXB`vDFB_e+9}As5}@N!T#lbZ zq<1>=)R9fUXs8}uhbRh7R8FVzv0iPcgc1g0@rfngE|*XsZPE9RuIn)gex$$razUd1#nJgr_Lwd?4*dFo`tl!9a|(dbduza|CBhNI@z~zfZ=BR=aS{kQ2LmxsEX< z?xIqJrN_YZ?+n~pElD6zhhK-3FJHKaBG812E{--=?*!(d!1xcCi;^s7@r@{g(VYi&MsZN)7 z4Md%_)+?_GlrJ;0Yy}T~@ZD*%Wl+mNUD`h-L5U=GJG27>EcQ&stw!v_Xp-8XlbIr# zH(mUr^|Jj+8H1822HoSiQ}ZMcmh*n_%)W_i>QE=50VMDkYW*VZ?|CRo1pxm5u<6Gj zjrfBWn;;of#BzB&56VPV>%k!=iF2qs{`(e&RRZq>8ClYx`;Mbpz~oJERkaN$NDw-F zkjw^D>y!>+@WX{@a#%GQjyUtvqy!;ozY~x!rsw^7b&GaFR-D7bN`20zu(xBnRF?qh z=HJGUdhU`?H?2#blt2Sr>{BqHii)ZDIsx-@2JG`_Y1_^!&%@}>6y^8odh-_7Y)jKE zHtP&2&z@6M0P!8#CN5*GBmz7BJX^Nj=zmsIRSjUA+t^D&YV_CXCIK=<#apu^=4(0IZF*J@|?3 z@=AiTkPBCGIspNy-iwrw!H(a*cm}(qE})dQ(M(Atd0Ac^2(3EBj6o|Zb4yVQ0Bgh& znBVkaGK#huQoUecUfZY|eY(Y|n5ip~Qp#q_@FoD@+&?kRN|=&0WTfm5_j+7rVOD$Ah$1|=>o0NXz%+Du-9+8h)FG-L{YgLLS)OiL0&RO&Bty;76A#YP(#pF z_9iLHX4pis?Nlgg4q}zM#8jyG? zpc0Xu65oY|tWn>f@o!jRGZrmIZER_;e-cQHYE~;us_S=@!#p_k9tpPd> zfYidsA}lR-0Qsum_=N&bUU=@&M(VKuX1lTWUvl;AdhZvKtdwHg$Ei!6`+jc*m<@vT zRI;R~7JrA*8l>7n(n}tj0?}6Txm2-4&{zKeX#Hcn(pfc21~i5p*ld||DYf}R%$xRL zwS=WZB8?wzL8LKW6Lb#FSho=ks|?Fh!oUet7>(Ok(0Aq@0h?Xkm8cYt5Y+5pV$m?> z%9jDyww-GXatT0id`FD{ADTp~m?kg)4qJY(U<9|z^&J3AgX==g<94NJa2-dVpLh_jMB!-!Ew$`> zzQ0H{ccEcbY`<9N5aKf~TC&uqL9sji{GjTB{EQO0ML;OjZ=)aa;tXNzCoLI@fi5Zu zsqNEvyL93N+EPdar~o=>DNPxmem1|oN>ZZdvCs}-bP!muyrii_0jB!v%o>wtO2Z|H zZ`DKE1K~_XF3^IcRka>}H-eXCp{8Y8a=!+Rx11?}y@+tgId{sZp<)kh#0S4EhC)FD zHibY_Q^1E?%H~#LWw}W^bGVOeSa}Ib)}(@>2<5!A_d>FQ#EZdGMqrST0~FP|5nXz; zN||MeLuNE%#8$Q2RV)3Fqp;E@u}IEFUv`cl%ucRd_T_*<3`IPkwcfnorAN8nv{7A} zU<8q+LFvDnL7Ry|NHZuw@~7S%rcs@AdYOQVg*Y7c>jy5nr1)}yr!Tv~3AWUcP#ANo za})s?d@4Qv06s9S35~7NNYqllIOh)D3z$r`nwq5a{h~=KEHeP-&InzTQYr%|XnE!k zLt?s$N|~SZlc7Ao`_&3Z_?5r4v+D3-)omm15UC?7o~5Z5O(oZOOi+1(yAz=tw$a7w zWfKxcY8t<2uXWzU22!ZrU7iHrH>gVl`zq!2-JtpdH!@|(NdScfYu~7daTTZ5l!(^8Y)@|MvAH5aC*g=SGbv=uH3vwePOUF6vt9N@WO?k zGwM$|MgIWk8Pqq}^nlm3I^7Mv+KspZUM0QCIU8Wkm^v8f5ECcWS3 z9hG{CPEKn4cpU_1x3(Zs<|o=nDjeng#_>HsdAY3!SP7^8+{ZVr6+o=Kulk4~kM9($ z(j}!kjKYn#LBRXPn+1y_l@g~Eg(Bxir-B-;{;&9~x|xf3*Mv!7EzOw4^8l)whL9#}G?aRmy5= z-y`=9}~d(jG3T-wBz z`$)@_0NOt07EzHC4H^DjPW>7g)re)VV3$1By#z3)XR{?K@T34-ntXpXgp5ISl_+Hj z%A)UDAGAHqNn4bV3p+bMLAQ}@Bk~gT<5%4M`b5&r1-kCzCo3tPne=_(saC|e0a=L< zCiNM}(2-C5UsgOGAO(i*n3<(YQv!TEFx$K;XC+>03|Y2;>9r&}rXLy6_ZxOGaVkfx9q-G$XhuydG-Y)+D$>m83alzZqh!KZmloE7p3myx#kFKcBL_D9pbgob`M#Yh9ab&%Jzz?v=t3&&pdme#g=O%X`Ay{1XRSB zaWhz*P+UJ>q2r`cRuhtvk`gm>ySBy-n@~A}w}uz27V=I)JAW|BspA_7GLMOf_IvFT z;h9I(hdv{(NS_p8*^^KJSD(;x+(Lb>=d?&kBgCDnq)mY7X1b7-W}$9(Jjb`}v@lza zGPa#T-To0r2*^=ED{@VHMAxPt%#s13f!AZxv;Y>+qcuY*1gBd2BX00w)q0s}1#HgG z^@ZDB7*wK_B~CXFujOI0`V>t^jCn$bS0yPbOTMGtJM9UW+WyKxmiq=2(|;&su}nfd zFX3vZUysA#7NxFI$U#W%KEK2}G(yFn8Uc_tV@En`zmzpgTa3ZT-^aO*m*1Hpa9qY;w5MP)8uaPhYRAkt!KzIB$c9 zrE%RL9IJDeL()CDuQdB4<~145$_=htG53g{bW|VFAR1^};SyRVq>-Atb!emgQj|tQ zHEP60cmL81giIL$@g?>AtW!ct zOQ|7~xYUw&fcSdmSFQD{G&C*GBdjypNPb7>z5;r?TGVu4L`nTKF){6y)w$bZHR3pz zh|Xqa+`~8I+f)?J!){MVU%o*T3l;})sejF(tu|z>V39x`zc-K8iAgKWz?}ivwsm`;lVVnugqN*>0)AN3bZ{;H%p!y!ZUE&dBFy2$X*{Li;w#^R#x0bQ z=J7qY(tsQzjRkz7rJ6u@NM&+$uXsVk>@0;6qHDP1^^a9{CR%~jfbAat09?d_{PO)^ zqEwSmMpp9>0L(#qrz%273|)a^*ocSz=}9RBRQ`T60KYKjtxzc?I{2EU;03zPXq2#! zGo)y)I+3hRwi8QQlAu`ow0QktvV{YfxezMK>q=5aQfs9TXf~^~r5+lnhGX;Z581r5 zVYy``$D4|touEOo_&g+llF!3@;1ugUqFSA5{@c@Ej5J;L=}Jj+{{Y8Fg`q;*X?9Q= zM3y^HP%lF4#*GkIr;OwZ4kL@|(vVWY>-pyZ60}-y{s|DtPV{{Vn$auGkkvI9GEc&u=nS+gL33W@g-!~Emhvg-;{t0;#I95WGCZPZm z_(U3B6D;UZ54QeL;euXRgrzL*+wLMOs?|1P7N;H>(zK_}49LQW$U=bJl65C{`F%DX zS?rRfp-Ps{s$~X`xj)2DU^2+l5<#h}4Sb*l%z-XpLdglK0gj}*d`udZFeJ8$Rek+o ziBnJxT!5&hoQG%Lx)?^OV6vdPkY2BsuN`8YzTGvzQ1H8eHEzCo0RgRwT!m#%h!a!B z{6VWNy;GQxmoMg!3jJ%xV0cnIV`ks?f)XvNv?D11C~6h2PcE^=*@u!=SCA4}$=tzN zw~7!z3{}3(6$m;_*iaRegm`p2>!AFkD_xfPre}=MJ20#>+iXdkNh&FA8+ct*`H3V1 zyJ(@P?*KDMycCuNPW5A~RlV^ngt&2-2P3Y}0z`?cP!%Na{v*mGSEEnv0=2n+XjAiu zR)SUEil$o?tPocDj-0l_I-h}T;ASYOAw-Uw2KbUsMyy496_Axn z8Hfxw?evL|52jHF3N)=E3D%;pLY;>H0K|JD@iv5{6y#y!?f?usolD0{yHb=9U3{ZJ z4Tx@!?VnfQ?oScUAF?PTGH6sN=T5cJ+7H>J79rdLUcKVAirfhx25No?N1#`w?6e@O zjZUxp!tK?0Pnbfo_%k_%`PQoCB8PbL@vsk8uT@1We%&B;f7`xG&$&(VPb25aM@87I5AG@c`Qk2KS`fKMGr%PO> zP<01#L{!5z8PZggtb#cjm~pl!8Ds{of$IH!Fv!1Vzf(0;6&)ar<9s97c22wkTjS+O zA9vx*q^Kwd{MIdA7*{<>8Zak84h&Q?(xj;Acz3Iox_oP$0?<|W5BqSeZy0+f~1TDc}vIe@6C{GYnu2$Ys_6?#K`AYuC-XxCFYH3905a;stWD!DXE|akqtVQ{K`2tQHk9zc9a-U$ z?Ze45VB=Z>2-+!F%*lufr4ysqzex7vzVcB{0Y1ys>%3f&6&G3cVW`gZg41n|fUZO@ zf6bz4AtWsBM&J7eq1rBG1QF9{sY?WHH<1Ydcz_$~^x`VrR>DCG4aZa3Dhu5y3{7?$ zA2_LK#Ti4SKT}8K0>@2s+88j~Qk4Kod|G?Ac%){8fta^g7k1xjH7>@YE86bG%p?3= z{{TJ^X)amp<1kSrLEeylW$uu2q@_oVU{uSkK>#7D;CF>9vdXzDC0f3m@`3|@`Z#UV3rhu zN5=E51gWrn2Hee`tbs%mCPci z%TwhDDthwlYt{(ZW|!f$CytPVi?8L#m{I{JQ|HndFs#{=k`%4SW*uQ@Hd-%)=3&J; z#}aLhTlQhr7B4xhwhqHn$>|ebn1{l^5F5Mqhoyoy&BTI3dq#xto=-6aw&Zl>6mO4S z(MJhLT8fDz?_I|oA&&J0m;yHK4h#TP6yb4IQ!^e)&;TXnlzQ31C3 ze-HxEJcR^nrFHTq3*1u`F=Q%(m)1PIt`HqUg1Q~VQAF0usS}W8u%HEZ+1HuhVFEUFMPr0hAM_gWmuI#QD~x9HS`qNY}4VF40#5 z%wnw0%;od~FIn#eWgxXno(S{ui0l_y*PAT^==$|g<6*CqFR-zDTP2XePOV4OJPNsO z%2Ko$N4yaQ?`#OnLck|dG#|tlv0Y&Z2^n}KGn4sPp^7#OY{#n(r|KYG>3FRrMJ`Fy zkCR81yEOF^l!6_OV#1zP_;-SK3js*0l6OByKrZOCt%*|;)`z4{oHDf%wUMUUf!Zgw zOK%YxG3p}h+xIa@O$X}ahNNGkbtQRGmCLu0X7@sE>4@1`Qk4{vz@16sw^(n#77~{Q z$qkXw%y@c7wlJo%IgeB0l004-UMDqmQ)l_LF5_}%jpFbW-2vNBlLkl z<~hAA<4OuOdhyyMi8CiDQ&JM-xD+fr`orzE&ZkOQ^aPC|O2K4Ql|2dAkwd%mH2J~V z7|BIpH3|bWgr5`Ag_CqO=`L_pf|n%A9mUjwZF5Lr?)*G3R-8% zn5RIX*c!Owr^*v%T8dVr0k4zlS^h#SSmh~+PPue;%r_3ky21h$dk|F2vo?4_C zgp`&q`0%wgp-#ne)P^3=u2Zo6_JD%em5`DvsCZD7hHVnaR(;=^aDI?QB4dS(d$BO& z7U=BzLUUCt-sbBaOSdSp0H^8m<|KZr!Jkw^rP8R}jv6}n$n z-1OoG&c4ckK?LUT_3s21V{`yspQwGH4y^a6%Er8XeB!LTuQIa%N70zlCcEwp^(RgM z<|3VWC=)~BEaRt04;JkhP!=^R)N~zA(c1117^=F0PZ3_%jWQ)aHz^Lv z+*Oat2&KzC+bAo-fcnKd_VWOxAk>#U0T*OW%anl16wG&jq%GpYR6t;BP!7Cl42&w3 zFDOy&;uk01k2qy;0Rt-?e$aUrda_qxLHS4-X0seLXuyzN`Te3(d4-Dje5&vSHmTC(qddY#Z9{G60j@joD+?~5=SQ!U zNqwa&1RAG8Aasm7DV-UqsDF!d2n|cR){hoXHcUEzUCFM{$#&iel$@pNcGfCflCr*jY1_9D zPI9Fc4oIyTfZTVdcwniEFICF%pgANvXa^^#(fh=gY_mBz%9)483SJ3G1t(|o5V?kI zr6pmGQ>AJTZ5j|Zpb!HWDH_0$h#f!*H?^Bq-MJ7~{x2dyQk!6x{HzYLUC1R*M;;!Z z%o>q3VkEyIwb(^VOz=;5kXRCr2pZJ!7VOtHYO$%K=}tdrtOzYPG7ZvNY|r>5k?p#_b8x5Nv9PM&bYnMhJuk|_#ULRyfrDiE<( z>+*($SqfP}i2XeI!KaFHZsHoRUojSJ$w*iQ^PM?vyhMw%)!Vu2+7~VNsZF6O2ibrc zFKdA$9h-Ag-Qg~EhG3#CWTEKm#_Wf)s?SW4>mAm2An; zzOYJ6w5+$||K(+$d9r3(tk8$fmyW_^yEv=Fpe z<*7j_S?|;D6roimhPrXb))y@+1yw+WxAOxPb4-?}&Q963@`nVe z1U|%*)uJnPl#~v&>^|_%3bw2`W`bsc&huwv_4fy$<@A>I^mt*lwrK;Ev#y$1*P zf?*r%xPYZ8Nv&vOnfR$7BUMRH1#KvO7&^MSY2fRGfBHPQ@SXe$7c0Hiz) zQZfJ(#J9dCl%y#I>8_h}iW99tYElYxs6U^Tj;CC-2?W-xH9a8!d!p1yDN;)XQ0zv= z3S$d0mn>vUwJ6RwKX~rnIWo(3bNB5XNw>RYGzZ1l{s^z&FWmQ>^p;SfM~n9R!D(}X zh-w1$g0`uwlR)iG+dtAhxzL3HnLgq2g(e3Vt&b>4Ng$C>bbwcAAz6;>4{nfh+jXn- zs5Y5T5kVGaQym-m_eBJDt8h%fpf%E(w^%87-ucG*RrWt9$$&xUeHsbF^Vg*}j*`vkK< zN#XUZU7oX*hl#i1EXuhO7Va3(Q%;d=*o8x#J~3b---m?cGLkt2{?H+QiDl)?m8chL z7Vz|hX(~BjvP?%3W zA-aUbiArx4hgNtSbYWD<4M%#C&+mp>^;aQXD0qFm;6>SovP>_>FYbplqyd=wzWhad zO66t_Se;1YfcxzNiub+o>Q(^&g4N@=gA;8Y5T^roeRw7keInr*($*w^m}12<;MCCItkA778ul)m=I^ksQV3 zP|EL7<;UI%Vm6B~dTJXeA6S4}QuH60PGvLvpUAG|Z2tBu1m6Vi*I)>g7XI@r`YR{B` z`iQP(;CrC_tbP)#iUpEcv~l0_ShFJ&C1j<=G|~Dn+lLVwC}()ibjhg`5S3;f2tIV7 z9b=n@O{Ga1xb}&9^e^s>CPko=m9^K8%^;z&geIT{)rPMV{wZ$h{F#m2JxQ6BX+A9t zbsDkz!=@d+feUbW>ImYS#P*w~I-Y^_ZKI2k9;ZHWm_Owq$&|Dj=*5IBMCb{j_YL5b z?0ABb3Tmnjk#6t9GD@=)xltvXn)!J|7W^wLmdferMm$A@dp-RvL7Y?c@!l>>y%2=E z6VPb_Ew~8@AfekaJO_!T%t;nthtC;V_NOoq%mE$+_}WFI&^wB?*@g1 z*)u6kp{XC5L8~3!$gckY285~j@JgGI0Is~e7rOCboLK^n)#s!Wl%<1`PC%~z0D>gE z5(NpVNG-uI8u&99jtj+k)(L~eOVR15=z7JFn(PHxK`b>fPSu0L+_?m5ALAA5chZz- zNFaMHxQe%aE}_ie)yCBF_(Ide4UWPB3Qoa;Gx^4Ue_!(?g&e9WN!O4|2xY_fvexTo zLXMlT`8*f2+0!v6It51hr-)p;g#xfex7MVRPb8gtL5bEd6#6N?5kgC$BPu{(Ys^-& zS{V3=If<#MbF=;8c-%8hj@MC{h#E(C%&S8FkMz=RS5%lAvRJ}7#1h9`9Vl7@3?}zWYdSJBTpmr>jl$f14?Zf_2+&W zM=y!oxMM&&a~3YFd6|K9q@1Po@B6~l9oKk~sc<8+I99sUK)gYE%1V3$Da$zB{?NCF z>{GMlsRV+R5I!&Z0pLZbrkLIhn1`-4BfiI+H63qx}dm6FlXo2d6T@OuSYhYlqQ1cy^GeGD9(l}-acNS0v@qf<_>CQZFE)B`J z_2*$p1KJDZ5&$2X{lJdyn*l{stiq1nt3UGNU#A4H*jP9a0p=2B|gX{q27 zMh{wbf^zSY5;G;-Gas*Bzq||o0J)^4Or!RGyg?dGP*rlbm*D!smKtjZh_C>DYZuUj zg%qlr7pd}rljal<5DT3)^MTj3_-f&n!&q{ehHS(-U5l36%Aa^2cpxEr04kztNhW}P z24>zD>^7pcB(+BSLCfzkOQd+e$nymynai(scWSEp#HYQ_l)$X{yh z6Y?{HkU$4epu})vl9ODzgw$+f^_KLOLj^cc2QOcz?;J{4&6i#O0BEg*19v4#CB;X= zAiXe(mZ#1-gY=8orC>|XEkG2PDRwFwk9LpJC`!iC)Dp*`<@)@hc0<7#IAM}2prgka zd1*l*ei!&2e>sC!RkJ!lNbtU#^H_rNvmuFUY1E&z9S}v^X;GZ6HB)XjJ^F}Zy>8sV z)t~JF?xiF-2E2_s9+7s-h(e1f7vZ3k6XfA#=TObn`bGO4o@ABLM4+`D&+!K@>BJ{G zMFlAd0{&4o6&im$7y-ilv~HpUjUp=~g(|LcfljA?v;w=YEa@R$COhrZv@=V-<@&IP z5Ayud5K*>bbf65und#OpT{p@mq$!)1)I!bUgO;_01q`Q0t8@d7@k;2qZ4&1AL!)}T z^1>OOji5iW4_1l@u;!{uq|;x7Tf8q(M7E)eZ_+E+5XUH>RY!P0PR(Uzpgg{VtZ`_w z4aaU;7wWHp$Yu#KJ{*{N5s; zc_AU!?2UH@CWRZ&Dr0PrT>fm_#o0J&S!DsRh%ENBtQ?2Jc-|(Hd*o!+qy__MKpy?W z>dXo#ohh$UOkKKg(gKEc6+YisDT^j8GE}4oYKEzRI7bzF(8VmFQu?$2Qf!n39I0X` z{Qi9+JO2O=rg9m8EvTe%ithzW11emrjyA8(J-aPS^?o39rdK-c<&vGegL7K91k2Wz~7(pJeDJjZ9avFz%L>QlUEovl_lxef;410IhgS)=-dMg1?MJ6-FPFiD?de9G{FcQMcZznnFW_oq0cK zhS7#pkM1Ow6v+M(I5awIv>&h(jR2_EqV;M4S8CMEgrNfPEu;3bw9K{D)c19E~UEU}PO`Hn>P$*(KNN1JpA#BvH;cAeiY195DKsNd&v$?zwb=o5xGE0Ej-#F8#hO}DmnFaz zFoEd`^jZ`G2ZVy>e<)tK=h|~Jfy$unT=s7J#&@1v#Yoqzcd8WXNa#EAU`{5y)R975 zinr&!1Kd)|a}_AL{X0SF62iT(^xKHPWT%HOpihjtr~{9TFv}U7HGVKU#e(I!SD5k} zW7Z8VVIqJ#msd!v2z^P)dQv8{-fWzwQMrp!7LoxpA1~%A8@(%bcGyD06R`U)sXJ}u z5Zi5m0mwZM5Dw3Jda0hTHG1h5?`v9=8&Y4lcnYdZ#wk(C{Ra_kQqZ)Q+v6CG7-aET6@(`@WB7?)g zfp>+Z5|&MKd6IhchpQUKK}Rj({QE@|SD$VGk8lxEejG&EqGEt_?e`H*)n`_3^?0}c z05MkbEvx}7+agj+2H-#o^9dP%s2ZIb87wlw$xGF>J9ml}n^M!^O?m0()&K>CZaI=d zo~qmc!MXhA8vg*J1UNMT-~h$LHd3G)pOJygnf$6I}Q5UTDV-u!b19a9d8`(0z06UiL_|e3$r(!9v*}6wI z`?>!A07yX%vi;pI!{-C6NmSLkg*pA;joW4bu{nng6IyKqx>7XIKmoCC8bs`&z*0pN z&N~>baAE%dQlMUd=rrJ$UTPDgSJJ0 z0~S)7H*R8;@q8yT5?rw2uimaV){wo6FNGwJRbLOr4Kw_^p+469^ZdZ;W#$EH06H2s zZeVT+z2{9&i6jtc;K5th3My{2<&Ka!VKkL#9o54+55|%BvfmS<8NTX}!BEO;KvgA>6{>X60ehfus zxfDii0AfMa`g~)H&k>ZZAs~d30^45wj-GJMVH%yNSnK#8B?ZsQNgA-|{{XySv|mmu zuETg+#MZSYU`T5FT?a@LGGftJFQ_MR#6`GmCg-*q=J3!o2ES9By$xH)L>E>nGXZg3 zH1>ORi*i7&bx=j_gx69AP8gRRJN#m43QFinBlNcY;AQWKkd)*>0a}1~(SwGrZngG5T*YBZB73GC4coQ`#?(* z?`6zit4MdD1N=EZ4)DV&>?q0!Q7phex;wh885X4g0Va`teW8>I4qAdPLROP6C{R#* z-0VjXGS0ckO0uWIr>?`N@dej;x{{IwbZ2qiDqpvu%aP8tVL`W;FkuDZD>{y8h1#HT zL$ph7y#%A;B<3WJ2QT!3S5>e}Kyd9^`#lG5tWSH~!fF8k4OE~s>^^M>%2sOOLTjd%w(32!BUJ{{E@({#NX0?f_H2}7+@_^Swl_xMI>Oif0 zyYCCKttt)>mo)(K(hXW-U4%UG*wv63Cw5e&j` z&BC<;xx~=DPv*QsO_J+O#dro$mZTPLr}Kzfw@g>7EJ^32O^1mN3X3Q?52xnPfK}yq ztuq*q^#DB!aCFVMijwE3tSII$t!N|L?tHxGQg-Y1iSEl72`V{&P@o$guu>GAc9p0% zvKZIn7MFcWNg*twzwN|Xve|}TYOSZ{@G{SZ1El_^aPZ-*+}E;$sY#)Fc6Kaxi!v{K z#fbNYZr$OEN|KzYm;>tV7gctpWRS&!nm3dHy)YplFn2m^B5OWEv6U=H)+^rA5|xCz z1#C4D9k#%*w5cVWYBn8vz!Te5MP)6Q=L4?GZJ}#QRF{@2RO|`M z>f3J!42lM+(Yx~o8{6i}g$+Dg(u~~m3zOB9WMkiUFiO{Xmr9x2+d>M}i2e8w zsV-cTJz5BN8-uCs1}qB-H5EMUIE7pK*O38e>>ucNiLmAKodrNuBse;^FbPbTlG2b} zsjor%#S5hp<{txQ&>aZ=Vx{9bDnJC6Dx(7KcKq4^+AzfFYZ*>prrnsn-v~KdJt`P) z8wi%QEURtyZG(JF54BzyzzQx2(kHcC6Ig>)3NzF5tX7wY){qG!o}spYmZe#P5Jh(5 zv`PN}5QKX==-S1pSAvwE2+Vp=yh51(5dPMzG!Vk&j>j;JpQl)Yf(yB8yC<)CXmIV$^Z#9S*JjGipseXJ)-@;9v5yYbG>URMEtdbm%3*K z5_CI_hsp~AG+C1L*tk4F>C159udG+Pu9irdF}V$^a(Rl%#Q+?sW_EBk{op@CcYUiw zflUE4Zhg=}awWFKs!r#m2(%|V1dx(=KL{Un*~*qsR7egDeo%}$*_B1qkZYrRTtRE1 zVpHKh5bn)DIQ}42t>kF`zti9!R**q>`ZQ9=z=X z6*Ofaq@;)JdhrHeSGLV+vx<^<`^Q&Z!&&t2n8z|^g3x#}k%% zp}tW<@wrUJ6)8-YC7HlKoqh1A8ocf4N(rKlqwF~mM-3-9D^V^^pCBPe)Rd^9)NA2) zEzgnK8!VStmJ&nqeD;7Km|9|qa0Y{u*Y=9?tt?$7wI6eV<;i(T6T$C&or%+vxuQ zU*Z&(Rnyz<>ROOo8i%g2Qw>O0s>(yQ<_ycc)jPsV4iC$`5LJjv08x&Wq+OqA37>S# zQ3s7oSe19FAh~g?yk4+gUJwZxfi>8Oux^)5XLkmiLe)64%L-4E9{j>}y5cEOR_{=2 z1?<;~g0idG(w`_OEl4LwaEsPU5)`l$02Qv8e&EEoishmdfk*TH3>LhsiB$s)pRVy@ zMat<8r)^)3kgr4uK1$S_pf?qT`?6Z)ytR8;xU1Ce(BU#+3a63gJG0C}L0Y}1XX(s1 z0<0I2mXn<$6z+seNi0G`Y<>|&vv*j`vzbNf zrl3Uk<;o`@lz30Mx{mQEywDO!ApUO={{Y@dRS?zNPkbr>u8SPe{>@7LOkJBer$tk7 zv>Tl;1gTWekk#>R@r0YcYUZmUOA}Hwr`{1HRHr$SU5NbJC9z2f%vLg#j|ut+B$-SN z0Hao&wTjo3-NVPSgC2Yl_^R~l$}rQv{t)rxrquH za|5INecd6R;JeSOASR^245f2kXqZfjg+FRR8{*(7aEB-&qpw2|%(@JT#bp_k0b(_N zKQxIhTzFM8)JzOkC_a$zgsfALWRa}EC`Q^+IJI7^fD&DMC7!LPZ**C*TnR$drB^Vc zX%Wb}(v|welC2yzkj*`?C;-JkI=_HQa*)rxcdrmZS84W?80Z^*@g?JZZ z6cR{aXm%!>_K2?gh!qeIv!`h8$%s-JE2svK5L$1vxhSUOY}|XG=!KJXgg@#fnfCL6 z*Txb=#wzg&JBp9m2qzN-rP9Wl4bKtnqTiVyuu0yufSKp?3A3$^ysfdYLcSkw}Q0tu}Kr}J1l=-SqlpcT=;V+$3F7^>vXmvZk$)6NFr`-wsGEU?rV zY{a*zLb4}zAhYWfBDUcbiwR4e->=v_XF$1OKZ;MfnXoMoC!u9RIsIj zNiIuO_=~t>5(6ye)ao}K;>p5nB54Hd?m6!sS?)k)4_8n18WYwT(UGVFx4sr9S{X#7 zkah#|u&@lO$bVNAFdF)pq*hzy`F-J{-D*;hl@MHj@2xj5w|rhm^?6Alivjh13`ln- z`$$SjDRVoUe{#Uz27U3Mek2GDu8Afy72 z;p^_w23|H*ttnBcC76u|x)>xV1OiFq_JB8*GEQc$o)AaMDui~N5{ax7r5-jT?E>WB zMah`%^7anx-WhO>>6t_=L&fZm-Y!~+mZFsheK;dfU&Ber#YotF$R( zyVj#nR6f60vwGo~vuCF%DNDGmAXXr=+N`S~04*(=n)R;Gs2w-fL6Cw=xN5{g@|a5i zL+bj#E2{cb(&`yof8V4z*wPl{5%(eqe!z9%C1)!d0_+Syi$caT+dzRFnkv(8to>Iz-Xm^KzTGoM- zEEXIH=pd;IyFeb$72tCa zSwM2!)&Uj7+=h-@ed257K~l>WUfp}aD?HF@!>u+Scndnp>Luv<4I5$HK~zz?t&FBo zE;)LB-#Bo!r#J)`;QZs8UCe@9q!OJE)5*trn!+iBlB^ z1XP^?<_F(+wFxOn{Y8>CgYzwE%95IZYwm+(DiXW1)q)A%;mO!O&9q*+F3gTaLDBUC zr$g|9mWy1l#MLcVF%s>GV*Q{I;0s*GlG)#mQ zb}2z_&fCMJ&l+mg6?5{18x7{fgI}aUX2hj)LJ4H(HUR#6;oc+bY&u#jEZ0h;4+kfy{utjlpw(UdtPJomnN_DixX!gB&h1o zrtmsV))V;gdSswORgDOSl6|8XgW(`I!TE(0VP(u&^=oRnnDbpYjSyjUIUoXrLV$SC<8g_8xGj9`vmpRlF$FlGG0rEt6Cfz*C-)a?2neX1wwv+fAISZk=O7 z3bWXNB~H(w9PoN`0&jdcR0%-HtcPYCDgt9!ddCDn`AGR8){?U9>TBU5F#uG(Rq}GufrO&owDrJHN&V*f5F~ePh%b*Kr4BjzhklTE!`IfK#KIjyl5VA`{Z36p&a^^oWIs1qFF_ z^7_Tw!f*;=&VDgs%Vq?zs2lGD7!xAxN}QCrBB(y;WB{{Y(tjDI#FKVmtnNl8KQ ziWm!XV<(uju7T*GO8xriVSR!>S6Ho81(6K^ySodIOjcKP!H@fF%8CB~q* zBU2gG`H76VlHCLh%xhBH@Z3S@duuj~ODvqFL4{cD=hh;(-wAK=CrA}wu*NhBi~NR) zJ$pe(_bq5>VO0g+CdU3x;z z@pxoOQXFhD*Wb)Cd3gFhD_&rxNvHv;I_lm`dc;%k?9`uVw!?rT+VOD+2?HtHcaALA z>ZT?46flgnh^|ShDN_;wG!%d03*7j5Y*o`kv@uw$DrX`0XpCFROCMl30v-`c*XZtL zNM$*71E>dw1^E!iWV+@d0U(k>LonNe!K4zEe7O{EgI46l)LO`?I>X2a>Aj~F6p^NY z(D{Af(vTJkR+`f{KK}r$8dS9A%)qFI?GRe#jR&88A9jU-PUo?q1hRIk{2PwqBfakx zCu5iVN6f|b78E+`5_*>v@n)rAm_^-tg%CI3$5#9;Dq`~#1J2coca^}(ba+5&K8Kfr z7U|2&lsl*~Bc5QB_5<#l2ujqUMsPYn98)6H4}r9Fs2z@=@!AaAuH}ZS)~86C-yuxo zlcjp`5roa=Tz0vDf|uM4&v-Y2Fz6ZmaAT%ccj372)5a>dYJ~@_=`X=zuIY z8pU3p1No#Ku+2khP&ePSPiC~Z@Ud;V{kVaX{i=rQB0~B`Y8GRt=>TV3veHinUeR<& zZ8z%>-WO;E)k8)*MQ=b3&2xbNrD8FZv65lQ$Y}=_}Waeiy13?9>sqngnlqY9^Dq8FysmQ6)CzWO- zmSInPdp#g9eQN_PcdF&6D<~;;HPeV-O4n!2Q>!z^cRLTyMDVl+1n6Jk#AtSV%q;8& z2kFdOooUJm*n7kQLPM=At#?10#CL_tm7t`SqXW!Ca^HzrRaieCUz{70Xh?BFugxI; z0H7BQU4;osS+#F2v1FW#x6YP8B)4zM!ssBotuu0v zE3ke)9s^FZEfWg>Gc+*Bwj}}deaZO5^KD2hr_6MKC?eL8mo-DRV!*r*mju!1(dFr2 z1XF*9=P(>x1!+F8fX|c)4$t`J0Pe>r3R;vq4m%ILL1?*_m3qm0He{2r)+^n14_7gQ z=mwvg!Fx)U*@v=qJHQvesY^QoUkMG10 zRkWy6O+!J@RFfkx8Mhnl%fNik4gH3JTN^4LNSHPU61Myul^PToBrM z!LSM6S1>CX3#1C24^Q3$S!SwQz$Aca_+W&fr>oaUw4?%AL{m*6g|t`+a#K&!%vnvG z0tTGK7JEX22W_>27F)KiRQ$mJJ?C!@z)%{P_FVL~Wa#_B8_MoMZ_*C^d4TqdlPJ~0 zyF#EwQY)|pjd+jJXAoQlI}`axr(~9*YebD3m@jL!giBE@s&A-${+@8aO|&j(WdP6N zvo z_kAJGboD99RHr(R&BOtp=!B%DX;~y{^aqbI?&%Jf1;|Mmv>LYO?-Apiru>?7_~%H! z;96dF48#h(Om}c!NSMgV4O_PWL0R{TO0uyH;jJ@r2Ruc2Hw!5~sVMdkZews(h)DrK|IeQTciTTsq@>k9kt?2r8%`$j~-Z8nPo^0NMZ{X zg+Uhik!&l>K@4c2xbAq;G#i#;vY|^ZS<7yB5mOQ0MJQqqhfqyCp(5awxD_ujQ57_9Aet}Sz$Fx;2$5F8fa*ze^o1lEj@xmk zA=(Svw#1o3FX;{C$41s9lPoC!ox}dZIlAtYp$-YDaw5|Fure2~L-UW)6{Q2P6l#u0 z*!fpeSBNi(Ysh_B2Q@l@%XEdCJejimL@9=(RmaetAy6}Ey%ZEmLvs6$p9m#)+DSnt zQsvuN11j<>GzYO1_rcHkaGZ%Cxufy-fD|z{7EI*$Mp=VG+P=mH$+k_9($zp(v7;_} zMK^M3`J@8BZa?Y@NTU#a-y_}_AF@jDq>xDfcJq(c#JDb7fIhJ`+aQGH*|pTFBg_E~ zJHP{M_T?dxK`B<8^n>P73PYN=mzP+hI#ASU6t5{KVt&Jc&v-%AzQUxCQLj5RQIS1v zLH=UZtqawefNHTZYRhHHLdgKP=bSTCuv$P+01*3>kYCOww9RFcMK*(AV8n!>W!|7` z^@>)Mrmh_GuW;Iq#YfT{y^*5qQ)D- zo~BV&X9SYnPN^J$)+8?2?L@CC3nl3KM_7*iSRz_nf0DU8LVbe4I8AVT6(g?{*ob2O zolYL4Rk!m$D01nE*lnv?SwPVH`uRk&q)TC(F&vGe)t>Po02I^@%{Pj6>%6RmXa~gg zg+xVp+%|l`2a|G!9uFbLnUFtoN zxsPSo$yWl9BHMWhT96byo~QF@HFqn(7E3q;b><#~*PVbV3P50`Xs#h*;jt8%h*qHL zD^0!d&oX$`_>QdVO;l4;L)&O{1=;QaF+!m&@rkXr6(q1aYTC3bF8WlN=B|=y{-f;; zc6;+V4W~Sgu%S}z?`Bz2PELX%wIQY;EI83Z9BnqB>CyRZAa$zi3s5>8xj)P=h}U*& ztpPOtKJWtYxJf6(Mr}HEg5qL_hhXjo=aOJ&^(ys*{+58(uABgXQl+WLV&nO(idqsV0B$X z`=FyzD^~j&Q?ykor7HgbT*BxVoc4kcWx9D#BqRVwgnhp@f)`xz>Zn}&yN{@gmnDbRAR#~oJ{^k^3auks>MKYWnU!B4E(hAL=BPvn_ekK>Jw#k-McB$apP zarY1ecU9V);SJPs{d>b5{bo{vL7*G`BAtV7hVFk0_lNGlHjJ z&XN8`249i`W+yQeu8pN(hR2BzWTa3K81&>0kcJec-Dq6E2eeMTcZMrX!X(tX(raA- z|-PzZM^2fy)H_WuCDVQ5m)L${x3 zt%MS!QF`sb5kVjPDN>W2Oh|L(_k$LzFi;F=HtP`EtSin5szpKQVp;O2?8A{0hM+Gu zIcgdxU)Xcj0ADD27uU)B{G-t&)u{mQ^@c^+!I%DR`m5y++%IK$b`ptUB;Lf+3yk%nQ3g_{t!C@u^%Vt3qZY*Xmgc;8*daXx2OvM4-wRnMu;w(0+6ywcISW3 zq#w0m^em-$s?IiUUKkF<7nVt7yhMfsYBj~?Pmr^% zXwUS7L6T*XRG~)FE!;MliYiRUVk`F$I(_4jO;QP<*fz0#!+g4uQa7vqd!WInFZnYh zhbD?ADH;^;cJhv_H!PtnDT|tx9R6t+@6?r?x{Z2%(fZjnB3KDEeH&;9n~Sf(BQLAW zN%L;!Xbpq0B*o1luKv|VulZc>t+k#+~?JqE; zDcBh9-F~8232+o1tnme&-Rl5i2s)Fah+u(#`aJcDNGC;RG}L$AGz%1jgdsUXK;MXt z)Ut}7g-d>I9a|FU1XO-j5jj=r9LoWS{aZ&euLR{GU>)vt}R+PFb!-wmn zFgJ)W%^eD3q3hM6JDUxt3g}Op?+Pi$%3QTf0FshNQbxiI*)hb~$V()-3|McaTTZaF z4`0%gEiR*7hR`PuPZN}A`C`rSb4*mS54O}Ah_8e!CQ=r)CzJfin-3n4l)_hD@?$8F`cCATLlIOzAO(~&hdC)W5^1|~Hz$cAKJP5NUYSJi4 z>9B4iD8jhPXRK0G3Pa@JsP;QXm1MS-)OdAxSS$>-UcpCA=;M9ht>tkoK`RQ%HvoX- z#5SuqP%a%`F40oeXqXa&l1mzJ@Ic{7QScQPO-b4KA5#)ptuu54k;A|X@J(6+uV*?F{x?8e22?w_V^Aw<57&k$h6%aaQu zAWpQY>kC)z8OWoN*z6!wjC83=WYmM=dVo58;lge#MnI(}+NeAChdF7cMXd;y3Ymax zr*j-i#1hm(l7=JkpcXT=sVEs!nJTMs)-A}gw6v*+&3H(JV=thC-Opvv1wILx7`;FoGv5G8WSv z+d}(pC}E=x;f#qH>Y>((`+Lk)zHY@80+C)u&7^j*Ie>EG;RYI>Ay5k+q&-7x1uQmn z6r8Enj@9lXrCR|=Dq^Jb*Xb5;O7r@|L6oyXpsp}1;hQYnyXn5sQp<;}PIIW`BT#== zN(bbUdT$yu%S$*@b^W3l7n(}K6j&V}o(EWc5H;IpC`XJ5fvMA)Y0pxMT_oPc7){00<;Uzr?hp2aB6Jgo+G=5K3@p2 zX_P_D!PDmO@4#+B_9t=F1m%x7X+o%H*}k}bkm$iHh) z+;V=AT1Cv2_^CqUn*FwmG+2)gred=x13<)U{O<-Vc0~HRfT9Bj_P;+n*RkGjGNpoP zUD_qQFO;ESh%kb^l6rE~0kM7JYd#Z_pbAm}R-|vk{?SJBypXZsZlhv;h9kqcl{x)W z(|~F^G%W}(E43&rl~8IA#yq<0XhO*;1du8s-TQMDC=sL75wAfA*vAry3t;)q+X16{ z+7D#X?Kh;d6bK@O0!2w~DNfr)b8oYvVaP*%P<#7B1)A_Gl$nO4>(fZ_7&#;b4Nr&; zr}Ic(!o;=(0dX zfY-;Pk6BPcRmt18cqwuP66CRZIiUmV7caZcjFV9bOw#?h=gDPdbf%e;qjdbN9GQsF zq)W`EDHR7_I4x_uXOI#S=~3}N8jPcU`t7^{wO~J6wos#~p$hE*VC~^~%Lo$^pdWvr z>-<1DH=N0-DnJD;MrBmcvH2Q698Yn2gynqAw$#+UV)vs9Owz2Y2i2yj2TJPn1nB;8 zpUW-&B~yVRYoG6;g;>XvUr+=&}|3rTpwqd;v}U)sUuQ)^W_z93t5)QH4MNe zzlJPfdh)hpQ~N&^=|^9O0>J@grSnPlN$x&3{WW z>Omknxe+cNy|V(OH~{JSw-CE@TmYaDd_(lMy$lezEHh;i6oZvSvD%-F1O|J;!dozM z<9J@ewuyk0sScMkG$*gu${q#a6p#%bloZk^&ao>qr;5ett66MFQrSSc_CV3c&LO?7 zETj}L>$&Cs05pzqH02~EVwq}4-?V#m-vV;(?q{UfU$B0`UZ zhibtaRf?>jcl74vZ|ejUI$I#jWZ&^kfM{TZO-vl(_~1fC#&rOaZUA>dK5e$(Od%ruN%-QkP`WW z67BBm1sbO^-7Gl=LGOtzwq#5RAk*Ur*X@wX+_5#)hYn%e3=uL=Z)qWq*g?_gUAqQJ znnI=;jRzfj#Qy;CiI#>6C%%oeSzVYis9bxa^_ec3*Q6{J=ln=oN5DrC?8E|-zsI~2 zvLTWhC7or=G^X)DGUuA4f}d%$8%4RdatI`icIUC=N0vl@Fki?_c{orY@QT{3|O&kdK39blJ1_R zBP_~?Vs&=u6|Vb`x`JCP(`ad^?(4xxSL*Rm^!LH5%HNeNPPA@$Ftv>BtCcB4G1E|bj|@OwscoVNholJh}P1)Vw_9t+66Qfi}3DNqChzp&zn1tbL~t~covF1wOq z=~TbZry?{fP6lu#!T9`q;3S*rez8a+Q%=!p?7B)d+iqfou^A?X8oq;J0SH>GD-P#g zHXYzS>t@W5g;uN#A6(+M0MVR%pd#jwSz8fLv?>Oy79x~{pTQOH+gVCn3Ll49?)tZQ zT@^m&fwy`WF)DT>Xf|)Sg}rnJY`5|fkj-Cv@A!F(=(gr<9q2RzhU9MWnP#zv$V+uQ zL#ddQ1o&J4!S(Ow1k(z{7BWy$p{dkY&M91XYLP-|1}9pAjY-R>A3xe8w1ngZ2E3gj zfp-1OJVLFad4hKp& z)CpkV*F#+!sE0c}^z0Q!8f*{7oIa79-%47Zy|t#1R^_rB*@ZRNP&)MQ(ml0V)Pnkh zSb}ZnpH!w*eqB35&>?(b^&b>mI1Rk+o%2-PV zaOderS_}$ohcF5Xt84Y4g?mOBPGF##ZU^Va7;eiMH7%5F)-6nykU~kyesNj$10~o} zkO(`oAJ2?HaMXpUXFxUci7(5zl^msjpaYnxcP!>(LXV6nN$)iYN&y>x_q{l1CM^^i zm#O^PEm|z;Y`~^hh_o8$zYMLR>&0KYJ=h^-1Du2Mf! zZg}#G_H0W)0#48SMY}E{1XLdTdGv}`rO}+Y@clfX(p-|Tyv6m{oeXy_?v~8%bf%93 zEU8SS5V8yYqx6s0CG{kdkbFfh0pHJ0yd4*6SF-;A`%q0rhjKgd2Bcj@DHYTQjx6@z zg}DR$PU0iP6Q(T(FP6;)C|CaB2xPc+pfJ5^yoe?0?m^Nz!dP*`%{hzG3SSqzscaOG zz%^+8P;I4(Hc15_OfFAqM>fmSV)UTXNN2I$a?Gsm0#Y1){{Xy2WkOVvu4*`Kq2UyN z?nTH`%>}3d0Gf4!R?I~uKuiQT8W;TDC%!I}&z7lbX99CJF-eZQn5k5X+i5fa0s+^&3BpcDazP9bvBbWamhs$|pw`d{Wh zJ0LY|vb$CKo+FcH+cUi@q;iWg8eFQB6w@rbGrdHBFO_JwAU@fl{ zFd2arZ7T#M--uwW)ZMmvz(PGCgcvfaoQ?+A^XLw8iWkFW?hNJHAM(@OBa)Pq5g90AC`*yC| z#Ecxf5>%4s#}{nYQc0yZPS4PL;d;e>Wqjhh< z67?rgdcixcW_0bvdEmf11*t>AvrPaocI=!`%t3NtXhV8Q$_he2U`W_MctW}_`Js6V zRjG1ak~@)6$L$*R;IN`Mr9>#=xeK8Hcx&8r<`*tHVOE?nq$n)Z7R(*{Q-v{zLn!W~TcX z;}BR%(h7Ch6G7(;AVOv=W-6jVE=>n7^p7lZ!jo4iJev7&5ZG<1LKFxkfu_gyfmco@ zCA>5)&C^&~7qNZbwWNBgs103>BfK4d&B`TAL35#3#P>C%dn(+&7E$3cM9&g~fvDTx_kwmytsc+-KN~{Lx*l3@ zIfyTrka^Z1n~9tdp+mpsk!uiKxqt-J9R}m9R-a`F%8~=N(ESC4O_f1LQ1?V8>rp-$ zqMB{_uet-@7b@1?tyx>&25u=+5*WB(#FMN5B;k3enxYP5DEaq4hAdgGr6FS?T$59= zhBIka^>G%_Vwi!P7ZhwNjjlAxfVs)yIlzc4EXUlx?5QkDtumfSGkzvn>)XuD=jpqh0)9^XhiXdV*JrxBA| zv6Z1I@g-gpPYEBLpw<}lnx!&kdm^No7C$D1zeLb3*{K7>S~|Y$$RHPViqn4May`*C zky6%-!*F-{Lb5Muh;+7OcBtYk@XIz-wI-S{cA@hdd?UGbY^=n;JGRa~k)7Rlx{UIY zSRP)l*KPzkS=O?Bq6niq)2|NzO?lhW7!v1TXisRG$81Pok)>VgPZ2`fV9r5ZTSks< zi?b@pBeU=PKrqEV!h$oey*KiRg{d;gE*oxqp+_BFb3)TDT|+shoj*8*^;zbq2T`W~ z0GvY&4)nj}sZ8!eZ&(d{SXDHI%Ucxd$@&-&aQZ;Z<=B-uuYSfMvtv{tEC3_oIf%Tw z?Bvrm&7B~Hj-d12J+fL=o5legbJWF~HX}-%xXcR?LU|i?1a#H_UpK;~r~sx8-0?6}e@~Q2+z+Bfk-D?!7|WH-v$=)(A2-n=v z`x0BdN(Nv`U)tyG9NFz|OYCYyTeRAdIAm9i1DY0!AbB^>tr<{51}(UFvogY<94Nbc zJ9L4|xzQ;k$uCow9UE`Wpyh^sWTdH!3iJ8IOgEQplR`-ce*GYYu2~?1rmQq4lli{BKrpe>Hg*RSsk zS3Q+d&^WAt-hSUP3Gx!6e^m zLk95!SKF9inRpDLMT57WUpV&v0K@2>p9>{KxjUb+?-}+j6VSs{q-)6=nm58Hmr&zS zl(1Nh{t@h{sj6JR9Pt@l!;EJngfp5{hN0JJ(=0MmMHg+pu3>SyJu6zRp)4C+;u(02 z02d|2De(Q{oIzy-f||D)4q|0tloTapwe1(96s;DivkeIV5KfgI<4)Cr7Kw)|jdp?8 z&MFd4K%B`8!*4CmShaOxIcqK&l~CfE2%R^Uj3gD}StgGE0Jjh_VVmJY7D!;)5yUjh zwv4%kh1sj+5!dtYs@%EIY~2Xf z0!w1XXi#E6Axt?Zh&g1NnN=(Z*XbFc^mjU5RxTe>9MPfn>9eRy@wR@Nbco}s8c$(|eLmP~+$Mq$`19?zuoEAPobaPXp@({{Z892o9^{r9y$&IM{US1b^fY zcQ2%Qb4?%?_DL>2<^?O?7pny31)hU=is_R! zWY9~AU{{!$-!Ql(H5zJvXti-)&PdRW8iTO?-~%GlEh-5BKOA@Y#k+c0fo~IO?D@j& z;b}-wU+Nk*hr9~5Vtq>zb!Vhjp5emZb&Q#*!06ldg{DJg9b@$SvT}2p^g9nIWV)>4T1ioQRPGmyKVWbS+e1Tm8oSpK+!)|k8zE-$^k>)Q}T%}%uWoqF5^Nq zJqR%LmoEFQmh=HS4bN!3doN7I-kSU&GVjESRL!;W0vgw2GXN}TTv7v9m2FCCl(x}% zHpJ^gN)8%1mv9o~f*4W-*kt8ev$lbaJ;#QCE?IBsiy2BhApZan1)}lFYMSU`^_uvU zo*CK3(dDAbg&f+7yKf9B$i38PQUKWWj_sC%m5K1`!&rqjcO|Nkr&ykC&=jPpOK_3BfdRaMo?7y0q}{gdr?wB%au;x9mGzAmzFhKrdSMA&-R9EQOcCC z2eGUmUU(jK#b*m@<^XHi;Jwb7vX(QXkZD~2-}izFFa3MeKe{g1t>m!)0{iVA-?!RQ z!d_CRtu~GjmZB zX+nRx$t=h7>k6Bj%4q;Q3bXG3Z1=&;MO&^oH3s(xfDVRSNPUCllUMW)M;0CsXupkuA$^DPV^> zGl~vkWz(^K(_t<%Zfn=96->k=h8hjNvBm9Sb}3ODxTrrP(8XjBk_Mpeb?+3D9lZdd zB|4wV!Y$~vB}xv%h-(s(4~0$+-qKF|m2n=nVUtxItSY@kf=lcuI9 zSZ@5O2_9#!+9^vj3i72bRxhyW0-==_K`d*jch;N_gjBTNfEH>U`kkUV@|H^|f(2>y zfELTds&Y~(qxFE%;@PP1sEycp^Tc08-;p4rQZzaa8W`>PQ4Bp{1v=>UfEJrmkc5Ux zbcRXn7A1rX;mJDb1ueF;NkA&oy&}EkXi-2)S5eJj7WA{tnm{U`cT3Rqgea7YdL}HN z)3b=XYr4`CloE68(!Y%m;ru`A6OehR?byM^U4mMWnyY8t7-iQ+7F@eVV3HD|Gda{h zz}5VtYPMZIwopO>Nljh4Zh8ITcNkhi2ZvFkjrfZ9J~bvua8RtZ9G#&_fC_z|)y+;} z;RdWZ`UrHitPxjl)BJG&rP+$n>lWdQG2iy<1TgL5g}706_IiHYLk}iiz_@y~c7dq1 zET5_*xY#RJ*+%32OC~nIu5$T59&qV`*>77iJOC!8yF5>6w@XD30CTRy!u`d7=1f>6 zITNT^-0|h0(i-oaHk6=)Q~G+IVMs}(VzN9e8MWc!fBAGE5JsT0ZvyTcl}w*mPI~e1 ziSZrI$_0Q;13x@N?1?v(*7FlIB-KIQjyiUY3|)yExL`-_KJneQ=t`23m*5^7T6`gH z^}J?gWqT>nwP*~{VzMl|j}I|+@JeMPH~~k46mae;@F~(%)C@V~MOl+oFoda-$$%?O zx21Cg+}kxvfa zQ`MU|WhYZwaqs$V1?*OJEhR+wNoLfO+A7VptwGS2&B$l#6|Tk22Oy~%JL?G5@igJ= zOZL0b`HDmdKqVxVYNB-{^Y$8agBELvVR@#F_SxZz^1;Y=A-HM~dh#KHZP9~JqGu?& zRa~Zk@;gHfw&*Jf%8(K?NYpmX)(soDAsKWWan=M(lw}Ohy?bpAWGCxQm0J_He;Kzc*ca*Q37ez8oT%oC+Xr1R0fF>-yGN+X99 z(S%j9-wMo-vz4?w^XCMYY0Owr_lY%I_WH_liYAUm=aKJ-EY^fAi@wj>tX9M~Q;xfK z-`^js7FS41GJaoup%BWiRDeQ2RU5Cm16nRT$tzV0&_(|M>AhPNu~+3xRkmB^s4_uu z<{$Tqh81{O<;y6_!Bj4EbI6PLrTm14;5jCT$aVWbUs5Jdmz^v^oQ<4s40yK&`ot~E z9z_^_Zp{;vg7E$-^~8pt6;VFmKJaRK{4ST(yXn8yF-Nsi@l?dpr}D(y&6;b>$?I@2M59ews&^V&<8hL>5Wd(y(I7cbuU<*Fmj!foZ)A zl3WEMuA`{@(j7`%MTN}6{{WDNttbiVOGv0~8={p5_QRU2XT{N^rL z?*g=yB#f-*mN2#g<@rDPVE@2piyi5fd$kFw9OT_qj7L@|DP#9yCb^=_F5{K~|+idv* zod?b&mnB#bgoNk-0f^Uw6~&~5fSRX=-)O&VmW7~ZP}5L;6x>1`uJ4&HVoGxwzO)0A z4wHlMr=U9;9LB}9S;m)YXi^vP3^QZ+GBlbcyeT)hoL z?0QGG3$&>vPARse!uBDMC{hZG{xliGSNH=egB{5mK~5}*rMS!G?mNU2W-V=$m(8~k za@e#?pe)=#YbEX_Od(YOdB4&YpP{Qp976Ji)lct&_FJ-8WB?P;4k2oOH$iqit5Q$e z2i-V^VwYO5^6c^3h64U`l^&U8Z7p2+Z3LufKH3mJlTg2sprWt=o+L1i`NYp}W zrFRg5o!c!6(S=)z$2YyuGmZLj-a4?#2T;$n5Sweuu&>3T!lik`)rU%1%o(xb^r-

|OvDFA^lW z2zEa>H)O(66P07zJM`Pb`bcx8uo~Bfl6{fAPcUx9WKc^VWK*m03KFfJ%_?bBxvb#0 zZ)^7EIlVBrLXc(EI)^X(G*O*$tuwPEI5csn?+iAJBL)idc#z@Gz9G1- zRLdC>`oG+ChAXc1&EQd^Fn#0M79{%5n1_dfH}XMC8b7`Q%8}~)TBPbYhI{JcatPZ< zt^WXT63`5FVage*&a;Jh;d^!Qo4FtMD_FFL-xfSv~W5ffq^^b35GO{L>_jiI;d$D;4 zBUT{A5Pjic6D6qx`$4#bd?1hL{c;vkP)!)SgTUlgqKz6luEdI$aZ|%^I>M#lf(+I8 zGyt0XTG z`o&}{LbQTJfylHyH;b}Vz=7BksO0&_R=hAl%$gsxew8KY%&lK&u#U%gupqmQ;C;S9 zQDzOOJH`9DQBf(-jbqDr$*AoH1V7W15XH~JBDL6(rp-gMM;0mhmK^v-qx`sND{r%A zWgKJKz&*)*?+K=W~-WV2S_}smpqp19NMgCU$i;{`K%Z)Cd-YAP(Vw&f(ES- zj7n!AS#?2XBBDF9+z3jD6$kUmEu!Z_K_S6A0aN+RPhm?7;tyC9GdW3Pu>?VxlF6w~ zyY70J7iYLcr)DJ8O8v*>V#TWbWR(7)?C}KXE+$|Udg{<#$7xD~(gE3Qp4h$BjI1uy$(mYmwtLjYyp$xwPE@HK^oAZ~;t(?-*;G31Lfj+G-<(V{t4ok=g- zSiNSy(BTdTCIC>su$q>(Dj7)xa0cK(tD6W*mO;>f+C`CIrKCcIJV_ax{6`9-Uy>rxQ(8Gs;PE)BP zzTR-oBr}Ghz2muxfU#w=x*15I)*!K6$Wa6(n?PS~yBKW}QeDG_)9V5zNMh*}>G?wx zRqdu)NMa3oN9z^ZfSM(^>(s~OTTOEx7SSb!@(MK+(Vyc7LIz$pC?%6e_MhnsHtZ&p zEGQjKdKiDU*ugu~NDKWEma6ISiLk`1QoULdqCx7~bb?X>TrIZSa3EE(+E5A^=qb1D z6WDJw`yhbB%<~KdU)Eg9rkeJ6F=UX*OMn2Q#b4`^qH>VKUcKT4+ehj?9fT+Z?HAHz zms2+*UXUVIB9}3Fb2+JPhn!0;@RUwcGd%Cfh{{($_sa`pqfM{JrX+8u_Uo!}&kx^gIM z1!fij!*dD;YqQbCOGR6X>;*&=fkH=ky<$ZPdU3>lvd$=VboWCFmP-i=%2Lcpe(+Hj zZcsriH9epj@e0a|2jjeRVzx|BAzSSVSORa^j=Zu{m^EG7$nIjAC6ZDnP#>%^-Ir2^ zW~y7xJiV?jS(i72fleC$^gs*0?*>r)K1`%bE6&#SsF=c_kSkiD^^KB5-MERx{jTro5uK<7$wK~ z2YU95mgKhDq$#~w8I4q`mik7eaLEipii%4whvv}BX2PaU zT!q_InvZ-q+NI@7h9jTOBE5=oRF_phH|Yiwi#5KCytSuj9eQGUa#RyXG=K5x{b7F+ zE@EbnR^=zoziuKM-w#bvePaSfpnh!%+6)#u=_MpBDN!eJLN+now-3pfh9D(McVGu+ zJ$8ZjZO@e{Qk|LG?-ngshE{ac0l4e;?*@|Y9J8iZgsH&Wfz}II&>#M~>60lq-1h{dofVXej2gsI`P9f;7Y1l_n@ehnL znNHwr+m5u_vCbg0rFGFmaq)mJURH7eDJ*#Uz>8Jok(`wk95bl{Fd0_V6p20Qx7N=XFt?O4lfIC^Tzf>Ns1u0DS#({O5Mp$QXN zi;oi$M=Bc~n0Kau$e{@g!8FyXd;K8I_9eom3BnB|rAmE>s~_SE-FGr1f*sDItV4NU zB3K}MTDH~R0A07(E>x%Mz=gbE?wTb_1ir`J=N#MaL@h3$2o-avXt8u(5&{WH3VM<` z;wjC=$XXPDJVo2D+AG;;UG@S}Q~>}DK+tnYDRjCh>WXd_zGN1A^ zN#yhprFeQk0SQ1U%sDRfHAx1WDfBU&=Q#U08V$0@ornOPKJjXq7&DE(c*L$uXEJ=^ z6j?8>j?}59wex7xEEmFZgo6B@Iz;jEN_Jw!mdd3ZsjXh6fgNFj&vfLgYq#5^4ZBEJ zuw1vkCAH!uOJvLiBmA}3^U5_yjH1q2#+A|FP3J5G<^y&-H{J`|i4xtzbTu%wciGeu zLW#;rEO!O~?nSRLWQH()Ku|~uB#!R_q#-F#Pz>R^JQ=j9v@|+>V1YFGV=1npf+<|~ z&{AJ+MN4#vN>m$geCrnESVBvv!wQxgcqAnui9eqR_H2e$P$W- zBDN;IfC|bzko_V|M#U`UB!C-dil)xq_GC4X78~u!`au701ewypgnny7i$X2RC1DAN)Ds< zgK}(PNoJ@m)DiU7E8Z6(RvMs=Arsprohi{?Wb4<6Au}Sw5aa6#xTgtCN)jcUz*k>C zC>e51oc<>b$@%x%CY~CXU_uK7k0GZuf-1vv_H-%Ga9<&4Ons@CC7w@ZqQ?ih9sWb}j z`MeFeFaqS26%t0zsOmfRjV@%gq?57JqzIjU65!V_#v`aTR_>qb<+so49^KZrSBZ$& zedEb?KUyj&(`c}}DrM!&Tl`hQ;KMPM-EXsR(kWUjES$$ji_-6rmD^@NaRRTI3tD^! zefWn$jkg%emH`TP-*FLH@c|w+49M2B*GQp14J9NMvE7=V%on!G3PC^*zXA|VFBAec zkc-)F`27bJ5Uiy{vt~T;O@vX4-go@8Ad&i9ovF#-LWUx}=F91YVmICwWeZ$01ln_ zkJpXBfS(Z=h|^=%n~0|-@5+}>py|_?yjcCJ+=PP6cBaN6u-H_!Ioxlj?EPwZ&FTFhWm32 zMe70+n3WMvd&MkYViQ0IPJcdeQp<;yR0$+i$$h%TyTb5Cu>K^`n`75_0Zz|_LP$|t zm*YS*4Y!`L75@My)({dH00C_e+8PkKU?~k<&h_Fsu}nf(2kb_jVr&JIg30j&Giyrs zZXvS{-C-ld68sYv&V5OzI-fovcM>T{QgVP?W>cS&L4e6?kR}jV0G_(Q_1p+j-!l)3 z@!BD~?*TCm>}m)bMPKO31E|zg4q=7-Rd=FNbAWb!{U8ON{z{o3WifW&Xqh^Os0Gj8 z$^r?=M8ZN{$B}M2zz5KUCaiGsN7}g;ew#05^(O&ln{_nzs z16~u>zi8Kq~)>4&A2UjPMV11hlzJxQrQ}TzK6|*F;j%a^2Xal=FvRtG9fHM(ZUwEr=TYO|I zOo?h6}-{CEQ0+@w#BN2m^r^Y&SAcoPc;qsp}A4 zcQ#__KF-{>!}jYGZvOz{W&|c!tBMXE?+VGnb0sdc>BH)N&|?o@Gl5c(GedKZRI`7oC7f*Osu{Ad+> zVqCx=4OO6|FwU*^>4-q}iF(qTa|ST2<^4kwK#d<^zu|)xyQ*Z*X^7MR09YS(VP8_= z2QFh$d4=gXyE0))ilqXrm_SRy`%s*pS>Z_)N!;=wy2W<-loP7fOE%D#i>&$7gE7fT z8h7ad(_EX}un82~fLrkTN1l~; z1|I&2>BQNQD9dsQsc#cE1_@o3FIrTkf->kn!>n7n5NeT3jaUBwFF0Ya-pUS_f21;hPL>6OolPJ1g#wk1%B3eLPl!7q{`|Bp`l*u+Vp)p-HEoPNBW(NCC~VXxWAlOco$OSgC9VG0eiH_`QpBuND}s=|e+DCtV@M@~Oz4{O7o zJn2?sg$jW2A$rYWA@eKQa{R$L6PY7JsV9Dsdedu`nQu-D>N>PhoVjLzrO4Ij2gr}B zLj}8K`Ic*hy$LV+j@e*%#w(gsMRL&UJBH+YppGKDjT9@FPNE1{u0$$92}>zXPcH{% zU$k6awor9ABCIk?U%+CH= z`=Q`XWyWeoWikH%AL1D-)(L8rn_S?y)~E2o1=(|(PEev!$7&LJJn;@|yM10%Xq8ZX zpPEAj={O|{B_y~tZ5yXi5zfQOk`7gpqfDo6(BEmg)RGb_xmQjj$+v8!F`-tSh>4Ih zTc-<6mpG|^_|_lKv%_W=w;xzi0m?;2gWn8t5?QHEW5H!YTqjaAPUb8uuPYpk{{SD4 z)&>6n$|;&)3=Ie#;rUL`2`ibIS-c}a9s=SE?q*Pgr`aWr#Px~vQk)IgiJKP(QAc?8 zZV^eUOLA4bQ}lg$mC7Yxcxm6XTocww8Hoo@ognsaCETEb#faEbPoavJb%{&NcTZg) zg|1T4G^vFfyB?}s&s0#sN@X37pD@Vbb6DN|We&`13HXl<%oAQx)UWa{PJ^KwhVzXI z(^k0tuA^)77?*5g%tvoISgDsSTAR_Nk}46L#tk1DPH)LAb_fF`}zCgu+ho3 z1gNBhk_&58pR3p55?XNji>om48V%tN^q#5HhpKQ~Ipjn9#Vyc~PqNL|n0~{ns}BH4 z%u9RTC$~vMk(V-uh=yk;PcMWIlX@;zU|g5fLZ%$XYnf<3SS@UD@V^X|EuBlEzvyvZp`E94)JVMLg0R>YJNTDo!!EljhV#Hg0v?G|j8Vt^xn zbb%8sD)op-B!R!bSbAa?iW|i22j{*o*)1p_DJpZnBcx9{z=a@!N$}Kl<`rz#5|w~G zonK1!g4`kDeJHNF9UqQ^ZhWDQQprHeuMiwq*-2FkYBhror!j8*yfUDFmixGi4)0D=$&#W%1~NJs^gJX^5ZEM7P0mzPpm`i^{{nl4#RXbo%M zn1=hqp-tXu7*U>PdIs?HTqW!qZTf%bbI#6oxDrcr42T zW4NO>kbu0Kzye0&c8(lOa7Rk*+B>`~MYEvLd!MgpuW~EG`OUj24$I2uI~1Yxn5 z7a>1rAc>h)&TFReT4nvyS~uq~Q5S6j(^4B>i1LIaM{1HyeEWBR^8iRIBTs!HuunqJ zQ@D4G_VB%wR8n?7jqtB{1?g5+BT~t)gwUm(fYaRr)rM7^u2~=!amP?t8u`P`&37WM z8NfZyNVO_KN!ax16Mz+Wv!m6mB$jIF-Z&Uw1ce~wQfeDU;K8eHi7QZgHxbmtl;|7~ z&Gm$&I1os~W`Jsthf$9v7q;i^^0+8_N2w!3GqS?;z| z@3D?0-XKv<`Zy3q&ujz5t70DN9$eHnN=({`$fyX@mjzcNF;mw;FXH( zI;c6>_AyBfvtiV;630{4I=?X5RFO~!=~D%eQVX5;I~bulesidy)P89Qz%5u&hHSvK zT-VAC*>MUCwr^&Y(fNW&v4R=g#ams*3Jay0l+pgJ4iKIhw3UEJ=-W3)g7LMC0lomM>2zp)UDBB)Hb2SVrR#9H6LFfb7*hVOrzFt7mtucmrxfP3vbXE|pWL{HI7? z7%i0QQv<-(x^)I7%k)EOzS5!&PmFjEHG)v|sr=$OpJx(0XsZf6L-dQcW%j9v zWdWSNTKzszTl*z^F<>fUqv9KJ%o=bM!jGfr`#|d@hyn;Kpi9@|1f|%C1fITqPY{&p zc8Ylbb-$ON$mGx;{&a6(IK#HmOLTMc#Jpn@jWgDfp9N6XKMSHE!4 zno>gmU7t`)Te@utlmw*^;4^d74dG$x>g_>Q2D*O{`gQb>0X`-ye||(&n52_UIEbxw zH$fC)VS!sM>J|tAh<19r?b;xkS<0xLz|t43_O;3xr40if4_({dA#E7#YfzS?7bTyN zck+X9kCy4u+4_iy4uauHTj2-^~ZKH!@3VQb)2M3rEixPceiEx%66rDML<{2iD zj*_M1tM;dJ1gvvbOX}vYN_6?aYp({0YBLg|Uaob6Ho0r2US68OYxaxOB(jZ8kE=&P z0HhLVcH6ux;w7md6*v0#>j+5nlR0FkCX}Hh7Uby@dEjd|e6Y%4MAoK+bM}EZg49$3 zYVa!TzKNHuckc~XP46oxEX}DpzesY*6|9mLlkAV@>j$R*1pucy#ak8qD61;9KFwHaNq&kZt+VHpp*vH%l3W>BJ1PTZ+j^=T6Y{JF#0x zNE?Bt-Z{h;mX`F^ut-^`>>wrUYH(7MQC8>nFv|t*doWTe0R(&^yz4BaFbD*bu8kC~ z%k3cn=zd)yl&QJaR0$yQ)AF%8W@(`$DJo!1E4LMab~!{VPzHmD9cr?yvuVHP@x`LV zxo+MhkmFZ`4OflY6agXC$P^>#6iwKN1QsK1L`891R8iu0CY6pa8D}^w2rcE_90;w~ zc&P-Et|%ZDAhNA22Zc1uLD!)B!xiIhU>s4lffxQINS5c{sfFkQT5lQDN)iKU*nWA# zCKk8NSZRO&e>8>LlJ-jcX{dH{50`y`z*sH2K|28WipZ?02s#hOjPVx|vXZ2!_EWpR zBazOLq+a-e30oAGEF5hGRb@y=L#~j4FAL%o6clB2q-D%ch!OB(--x+&U5fD)g6Br~ z7`t=bNX)FMAd2^b5-&$vXaL_s4gg_xscO={m5%0EN)itBevrb6plloE5r0GL935)h zLj()L{{T@?^=ttk66O2(@!AgBFEvmx27{8LAEjVKg*hOXcN>2YR?~JN(la?5yFW-U z-TwegpaE@bPpnX0Hpr}p+Ts{(GYV7T9xaB$sXw0xS+?AHyh{~#ak1lWVNzT(ePMTQ z8<>w0Tr*f@CBWLW`oyw`ND3TkIzfw~_bU#>MFOOpCz&Zy{iZZ0ZlkWk2H)5*Xh;%( zE*!SN?e~opa-X^Uc&9Sd0c9WEqH+d9bKUdOteIF7qtjo`@bx~<19%EmK!0wKZBr4L zDvtDOp3S^Vd0$9K%%BQ}kH0;L+8Ae8uLIAtDT=?g&Zqb`-uUwE^cg6z3o3n7+8(_- zL$SmuSbaa#Y9HwySZ$e24JzIEKWLlAQ`TL5dLGEPLdZ+ko`eCkAG)qz>6<#UKEFc} z-dF0o zM8h?n>@I1<&dDa0sRQ2dP zM4er+-4ehG2^{I6JH@pSgzElUi2RTf_WQ+o*1*3A0I~MAi%M%%v<#$yq1uPfk;D#= zP_^vMUV1S2lhOrW_O%5GV0d*Wjo?r^LjA?6Q!ODWL@LHuu1b zP2>|TKx_`2@#pZ5$eha5W!#-x~h&|SiKx?wpASxGvPQa1ej4hXhq zG;&U@tMS?bT4kjw0RX=v=1dm45s}FDx$guxt9V=1l2QvertliuAwUw(Mt$Lm(;}dq zc>2ZL6@;E4;3MIS-LA@mdB8^DmTq2h7?8x4#tULt8x2QxX>UZg{1+jvVx zy0~IBC$C7iYCg0O*6d&_487A&XdW{=pi!oO0SM1B`Lqw8dMP=8PjWXunwXB_z7i6|P}i$*^^Q&M9KAu% zkFQ=~q&j8Ptm#=x5*+Z~wOc@Wi}G&O0z3WX`N@J8(8h&5zRa34-L?b<(1IZlCx z75PDip?qPpF(B%(yb7^dCN@wAYBAlohg&`4nS%ggWXavDsprZb5gOHNRJ9ECC*}KZ z1pff;)bR%E#H=Z3B`rqS{&ODNu^Q%g{_L=$&Un3ZNIIZYh>L9H}~70(F|LgESDx5iZFDF&K0k)E7V zCY*_)f!>Zj(5=8Ta$XPoxe7Z*TRWPl`TM%?2)%q9$@JU%l*URcIn^F0>eeo za3yJTwM+5LTC`nB4UkaobZ);YRHB(`3v2><|J+Te}hdnRy_ zsk14u)~(m4meAQ`xRSiN$2~r9W=E+?T7c_ae_;`s`PY!!Mhx5SeLH zC=x1tk+;4VEi$IdP<7@E--Bpswq42uo&J7(BDK+W1+B}I?t>Fv+}4SSL0ae@glGgZ zT^H$ROBW5vZ@~pc*p%lvtSvyTh(?_{Mf>XQ zbQU{y_w|mj<%Ef3Ok$?umC^!SvrR~LBB9S6AQj~_ftx$(X}3s<@Ug8VlR>mnMbx>3 zBpPc6p{cCNn>md@8}$9+J6zSvn3Sva5W{je9DW#VxaH(dLPL#DC$tN^ZSsoP7b*6M z8aBcan6W(RXdnPXfs|@U>({kD5km8wogo?*cl`OpQ||2KEFCLTp#0E9Yx?;>1yv*r zya3wjHi<1wW4Wb-DQhp3y)^TP6=JwEGac%9@7wJL?%S^^GSfus&v^9PB+5BToy~S=DZf}O zl7_Xb0!JId)*{4$N|thk0ql|1319e{Q?#-aTT!5eBRMma*-4{UM~S!eKkM6r8BLoo zW*JerIze0S6d)@rX61p?_lgoQl*ABA00WSn0fJI)vDYNl4C- zLr^;I@I+d@WmGj0%$tmY1smnw0^6c&%}?g;4>?wk%%vZb*kxi1CmHiXLz+V2;v z*0VI_OKVdM!*K=JlpwJgn?h;WMH`CipjyFU?54W)A9yK$+(fM|LWt3whjxQWQw9OZ z*RN<5p_aTjfC`jZ#+)CdeikWy6cMc)3b#EXTh8sAvFjF~5GWEj8=kyCYm(Tk^bQ3a z@w5^7g zq@=T`(Ef7_;&@5`NDesIm`Jc)iCU$tw{iCG4;Je;s~NS40avy3!18_ZLg|+=Np)|# z)-O(yNLqtA6n;8ITpK?+NIIoWtTG%$m;{Go#XmHK>)Of`q_SM3=-c!6heKn`92zIz z){qj{;RNX0^?=@6C2vHT=_k&2Od(10QL3Ajc zf6M;>Q}Nmj;p{m!R#mBGdbr)T_eYkyp-NCvl~GYj4)8|szjCAmijQmW=h754^Lmpo zhuOMC*>-U=!d{z>AYIL4RKe>OLP4iqjnWvEZAF~`C<0bk9o)qQDcL2dlU|>5#}PfQ zU?7CCQ+_;Aw_4D_y`t`S9XRV1Q)~$y4gKVwuV^$XU3X4UvZo3zdqwOwd7uIoprZ6l zTaoO7L%-pHw}ufyf4T|Qf)NN?Z^W_i_97`=_T;NY2kS_Rb(6wLrj&$CSB9snDx{VK zkV_V515C5x6Pxs$yw@}fyf388T2^I%qu~ukujY^=3SkN91#>ELhU_{)F?K0R1W|}S z=r9h;xfE*T9uD2(*+D?%9QcTemMm2;&GlqCKJ(PYiI>u4sD%o@lsFWzC809XqySW< zRH*6DH%Nm8;uM4_&`H_GpSMW2W0EIK%Eu`WnC<8Cg5U6|M}z>wQ}yfT1Tq?Lnbwu6 zT2+t}uwnzl&4T0ga`JL;lH0X7=^aYFN*yT< z!(KbZ3nmgX7FMECMu2-Y?G&ziZK7Popv%oIMV$Q(Q2!Vi?N6Z8}GN$41iE70VB!b1XlaOIWnrWG#ZWs55aTPqC$^^J${~1C8Ed{$1g9} zv`t{R8J8@uI;836*Jyo(`&H64*u`5`8A?kHyz%m;%*q#U!}Ih1Lj-X?8Y#Bq z_1+6vYzgrk$HY7*taL32@e=Ag=>*W3MGlkV0c*$>pfu|SUEM~bkJ=h)TW$<9Dy8eg>C6(Hh7tx$z>tu_kLG?*M#3_L zsYTpr$D9qk=732K$KTovJXX7`84}t#KIj{2zNV!3Qt29#p&yMA+wS>`8IrcGPXmtd z$9&2nMJic_j!674v_+c=!hj^RfL~$xqll6tX3waeKNSfe-PqZ`5 zwV!3&XdsGEv)EJvl{*cq75@O`!odS!snz&zd=|RY0!mL>h>BH_D0*sW`o$4S?ZeX( zFidX=*Mrgw{{T!9NdP$qO2oJ2^g_K@s5%j#<~_SuI6AkK1PN}slC*4+Nn&|{w^ksV zC15N%NXib~_}UqTh$w;jL%0!M{{X_tngBu5XVk*LtBP$|(iAq-jl0K}MeL=@AQu9U zyei+gx756;iDK2~-@haIg8qoC=vtIPB|3m~eg1I=gBB$x!mS7_dUgB6IHu}M#U)B4 z4TIOY`f&xZ4U$`skVb{L?0A85@cPt>DAz-~L)|2I9vB3=4pGn3ym5}O{Mi6alQ8&l zmNl;R{Vk~1Mx(fw3C~()4bhla>7<{_N9s!>jGNDOs<%J26h zKMPD%r#?c2j}c%%CXMxrXh4xY_ER^1+B7BF3j@*p`@u*O#fLJisa_yOPRFA~8(t1b zniiC>A&A*Mp^njMaZOI0;yJgVNb!~ijz`uHqfceA1kjwpyGM4*u8cTw*UliBEG+>@ zP^+qnYx(YuCQnIpxN)d<_eJ|X>*L5s z+JmV0!=8aEWr}>V!6i+;-cYZI?)jx&$pw0J9e9mq`M=D!1UMp!8+kMcmpKKAru7X7 z1K`VC=}0J;lA-!kG;R-3q!~rxg%Sp*ZQ%8m@s_k@3|nYXU7sbS@ORku5JDNV1g52j zL%-T3w@g4Hfkf@Z3%{%-N${$pKzE2PD=uV!rwRvNVyFVem>1TNv=W88g%6WMHO!MO zDD{;o8lB93TBZ(YKT#=%Ct!!gsEWA z)ra%MX&050N=*d`bHnuQ98H_y!+k)FEw zMLXX3N<+7ZQ1?GLsA|&I61FG1z`Neg6hkP24LC7o^SV_ypp8hW&^K7IXSi|@4~~!9 zq&iCWD>8%liFhYI?sTM*Yju!yN@r6+T-gNuKT?#Njt-uAFi8F(2s-{m*Jv!h;0A_*Lnv0q;+@M zGMA~Q<|vh~i@2|V+iqa3*JPs+r97Z5?L3m=g}aEC4`LHE6etv_wHkZ+zzha(NTG_R z&zaR%6&-pWB7&}&p(S3^Y6U>+*Sva+Pb>loh|8;2`4AZWl_|_Kjg7PLLhj82S1Oe={=3%HF=%acqA@YDWAV+p&kaG`bV0ZF?R+~SFtex~6 zLJ!lgaV;W^vuwwn@j7M8NX(EzRMa(YgQQ7&*wUniE;aLS&XH2}vXshBT8F6LyTDFL z&{W~Rk#245Wu>)ea&=?*@QRjPHJB$awXdIE(Pmx1v*9N*?qQ4qw&DSpC_YsRkxzK~ zn58CaRWO!0LlMk2*|5?QNF%}zlkQ*X7v^2^k~}F6c7U)h_LvZWunTZCk8JDC%Nvb1 z^NUuS7G&ijhi)T_mg`iqz=b)~@%Myy6M0P`RB%A@h-~(ymM3FKJ$>EzrY3=geGyO_mK4sQh@anFA@PcK7sv6zAcAG#^;X zV?f#u&%qt0!kHjsY@>KPb=sNvb|CHdc%^*ZYRGb=Rp?CzEfYou+HGhl1uRbLiB0AL z0Mws{cn5Xh<$;)}0CcYXVAYQgf03!wh;p1&MedaA?~Z3*iBTWoKTk2;{f4tJNp3%Q zhRuXB2X`l3nDX0*HjstRq&uM@Ikn(K7qqaIhTmSjqBN(~2NfLk?G~<(W|twj=pfLo z{Yd>)JAU!SgA>at$|wgLKrI%0xUuJP>xprUlxj$kc{<(Mao{t?&fN<+2pVRX>dJZ<-jz!P}e0%eCMP5Bx^ zgp7I$v^xU+&zCUsYq1HE^5}j;di8~5`XvfhWXw8fS%Yu*chV=6qAt$2rC@}l6?60v z#f^Cjtt=X(#}aNMAco9c{LC7eWE0R*OC3VEJar$NLkMJB(zhuT6nc!6R)v;#<1umIy#Y6z<=T2JY+G)Dp}z z>ld#%K|Uk<{_tRXCW+`ciWbY@GdvQ#B%FgOXB%h-SP3%VDQxUcypT5jAzES6CKa5m z$GfL7a?^zXWgxdTj^$a-p~LA)h#`8X!Cezqe-Y|>Kjk364w=9tlCKcfCA43qtE0FB zNJ0MqkX+3E1DV)W!LHkB2P~kFl#;}4yM06;C3xP+Q-uN?ZKMFXB!Z)$4qIp?d0fOK zEy?6`iLTq33>D@&Lm^XRC<8MW(DaF{2@@6uqQ404*&wI@?&6y>!u^uKxo5;nY;|Zo z5cRfF7=;#3z7%lPsY;rl$1mwo3`j4iI#IsCqU`*|c~0l8eh_sxaYwMu+|%C=3>Nae z0wxdv@cyoQc8hj<#bi*L{JO=fRhbk~ZoNM7Vp;~EFgh4P8YKbx{*uG1I&m#Fy?>Bxv*`D~Ru?_+3aU$0B!lK zOe{bhb=8_WvrXE*P%8Vp$Wte=eYkFW!wVO!xFkE84k~zv6x`D!R& zK_RMk5gpNU8I3R+J2uDc(2Gp-WdN3_dXG4QMb4d;;Oah+*Zexk9wFOd`^0kY*@M{> z9_H!R04I6g0#vtP={0UPf6d@+n;S~X3YZdf-YZ+KbxcV>EL>|{bbf*mP6D)g!jKDt zR;m@)!<~kSZ@ZB+W_-!p?9mm9%OoVH)qq-osr!Cu7w)tKCn}pTsrz|z5nmUKuxYC} z;Qr%?nqW4pF1auA^E1F>igh_Gati6}}K>zGoyk0*lh zJzB#SwJu6lrFe*|X#HTqCnH({H|L(;C=+trW>m0}Kw(}Cb#1yr<){PV)HQsm74%E0 zzJX+g4{KAac8L)oAKW{sB`@EPya~B5f`HCT?8i~e7qnS{0s9UihE;i7_LSylRcXU> z-}888!xlBA0G9;q$5L{`hKY4EsG4MXc%{&~d*wi|dJ0xR_8;yKuxBK85d z&^KO846>k^l@ww7_Wk0nG`j!=v@Aptff0;TIoUZHp6&X)4^`_eB>K$EeU=Vi`K#># zaP66rqflQ+V6xaHt%~(Y^CRT|u_7^WA(-hy_v-;Kd|^0@nKd+5U!*xoxg{(dstf>r zL;h_Of7()u>S)~w+uh6(Q>yrNE}D%J0qMzus7OdGJOFkh%dW68Rlrab5?Gp-`9kH( ze6KQ-G^q&z!_+B>tNekf_rvs1!+Bl+0zun-hVKKvp)*qaY0yABedrw2vbFoR-JzEZ zUVuyXd@4Q>yYuJ7Er#;vSPErOjR+L?#&zjG7Og5NLJ8Owp#$nZFz0z=IcQc=lH`%0 zW6{Qq1niO}Oi0X>*Zj8gfHMp^c#MFkl#{6HVfx}o0F>3LUtY}~+VE_J9g;sb`o)28 zrbBIz8q;6_S*GL6OtDREvohV0l3s}*Suc1RAuW&+kv;fEvD%!A#U96 z{{U#BUc<6TNOD0M9=sT{JqZdc+$E2GS}M&!K&4Z+F97G_1p*3c2Cw;8GzHtH8EZ2e z!b9d7f;k(15q53hEl6>-0-&e-vL=j+NCfD@hrC(4E|kbi1b_`obM%SI3HVybuUw>X zntt73$#$SO1D^i?j}$GpLV}ezC}ukWw!_L1&EYuOG$jrxwKXtP#)PXHT(czrZcB~6k?i8E*^$FIJHsWp7Gk2x+*6?I7OdA8Kv4uS+vNi+Ubclq7TLE-?C(QHfToXuC_E84RZk{s|hfM}2=5>qzRySjUiP_F zH7QMBQAU3_Te|S{^sInX0OmA=+QLq>{Hynm((Q$OQ&?DOWJ<_}DHRpxXaR1-vXHh6 z^rv6EPk3T6m?VPxkE#2AAx{+H)UD=&txHg!E_r`{1S)K~uMb#QdGzDR#I~E;)tsg4 z?~0y}WsxkE7cH*jf42(J`*jRD{I`WoN}Ji+j_~)Rg2NZ31cigu_Tnx|yh4UxSREb# zTauNKr2+Tv65i4pSqU{E{JKQ#JRP#z^EhgXS3)`O9@;H{HjeCm?E@~0Sjd+IH4i@c zr-&@aHgQp*eYl4R%Q0-+d2)LmQC8Ep?FKH%B}f$^g?~AMwi~ph5PLsJQohkSB&8Gp(2vyG^sdbB5}`}pb+Qy}1E(t6gZ&5%xE?bWATwBdp5_Tcuxhq+rQ67Id2og~Mu#Laf{ zgBFA)au@){jx`WK11A)*I}QH;ZjiwySx|669X_34C;tFP=B#VZ&~DC91?dF3LxYQ*pEi&i^!Ld28bXoC?+3PCc{nf>qfir$PwScJn? zP~Un*ulr(8_`sYmD4_-YqxjxXL)RbjgcNM|F-YJ5+UwRUUUslqA+u4=jov%9-fAPU zKg?1n8y@u6&McPgOU%L9+OWAN2dquZ7V^^SbE%7Vdub{pI|>dQMfujHaC)9gQwf097jcMGHO#m+J!5TmlGAj6tFI z>l0?v8NY8dr!2FsqlWMIfwy(7D+)=`h%LWC`Lq$f@c2>ni&0^xxKRFlIT#0#t zd`i=&SBip@u3OvHt0I9)c~+;&9IuR1w!v*6xdQ?%{^O$~)17B9O zCpU${g--^WeWLCbv-mSLe@|Fmv)V+}5lwXCm~~CNDgr>#gOl12Ln3)%r3P(3f0vv9 zH>v#qg>1rt5294X5t%HL)-Fl2GqOh%hGBOM)qqy5PLA&$+O29@naBg&@nv^{b7fU2 z;veJK=NddvHEfud@TD%N2)wDmn5t?#}9~T`Va`nY&NIR%d zfvE>~<|@#oePSbW)lBMp=(y(1Ii=OXU zeDox}O?gPNkU4d8jxsp z@8`ja)~VGky$4RPCfkL{02L6H)YQ3vE?hW~0%o*3YQtk4;yVnP#j^)hAFL=^E>mWh zf}=&SCty2uhWkCxkaKF_7aMl(2$5aBkI^V9u1KlX{paNZq)PQu3XqrK^nQcN8YY8i zQWGqY+Y-gc=AS4Bd`(Q16eyAasT>_?sD(@}@brd;DPUFKU(O*qUOggrteoKq3@boC zH-i^`3YMZ~5W&iTF6O@>w={&TcYqgYm<+XLK`hPjJ-CV5b3WT19kz+!t!iSF0+AQyKu8n<3LK%eOX-6W899d>W5Fe@hOO67$U-|PEDySC9JD=G^xa{mCD zz}u4PP)dT8Q%z_D3A9+hqzam)X9SvSU5DnBfXvcw`EE$4(w!j1*=bDG6{Rdv81Wdj z%ZMDQNd$se0s46zpO|~OZPUUO2Zbv4!k13NRqKdlhe>R_a$q(cx5`q8Nv{K1eIahu zhSW!iTAd$LAF$>aRHc<9(=NP2NzT=Ept`^WnsxU;%g(`>1w84}3Ehe)9@D*Fp@J6s zJAhOC^?>~X+!sjzX3%K*!R$(>miqA#O9v_Ch!8NS4{dphMF!9fTDtDiQ(8SMukjVE z7<@OUz4*&fV+bz3|Ono7u0z`K$vp%NN}@Q8-CxOvS+JF1O2rC{%;2{ zUCfDcvm|Or0OUX$zir7n`=dO=mlV~k5`q)S=y&T5k@nSy{Yn#<6%qa=^7ZXUZGJJG zSg(UJ(z=xe9L`)g`h20Q70pzH7f4!EC|bRLh%JV$Ick&^pJ<2E;P60D#CI~iVitvv z0U3j^EwSyVSZ|Yh_&^R7&pjf1Lx)xBz+spYOMC<^-S>RTsGSG1)(b*={{RuGUacxg zK+FWg0uZ+V zzZCDI$9KvmO~^u@F1`8k<=~XtNiL9@CHzBf@dea@F1g$q5&75U0C{G^1z9~|P)H!D zPR`8`Vyh5L#1v@Z!|AJhAm%2-$Xtx6_QvB!+81mobf+@BO;~pgZrx`qs#H?`$?MBU zFEj*|c!E!h$_h)6LPz;+6vWAuaKY=>tOVxQeI{WEEE1(u@du>L3PO_kP=;f=k7x&O z!KFkf6R|DK6Thwgs#ajZg-2iB04x6hBAlTayhH%p@kmm>ud^*A0pbL|PW_^Q1j|g) zT&+xvOLaSf4#T`(zV813?3Fnrk(izN?+D)D3p#Td>QGbBAiuS}Ub_KGGeaHYh9yr> zcRbag4hxWytXpp{YCX)A#ciuD`74tE2(nzX+G^-vRgMp@y zy^7^YPzwnT?0fb4!+pzU1qp3H0F8%k{KAkcs&cZnhwBpBr<9}xGqe8y5Jgu=FI=yu zNTWW+lF3nZ4f=9n;c82^YJx#g8MY0!(L&OqR!W~wgax(EoK(mZNn)aQ>B;6V-xplz ziPQx!4*vi@v;*1;>e1m~rze8V#1Xo$;F(!e!9*JG-}j92=$s1GEP_^(Q`e_>cK-l@ zOv!Cfp-@Jxx<`HC8hf^E$)m)k$Z6N^Ak4csCoKrww1F3Wu`-fUM{Y-N&)!SE+LGid zyN%$$luwj}kk4IC(G9lLlqgJ6vZRfF%Yo7*v{*uhmFIVbJXLheT0k#PWEiMo7qoz* znp&u>KtA`Zb$8fRDK#o%rqGFXT(*=pP)K(@zJ@g$74C_H)y?*p5z~Rgm|3I`X1vr~ zg!1a%kpzq6PE{1dQAeoy!zseS0ECu$is<#M2VNNnIhbnXjS1!|3=z84r6i!1&K%oxNepS$gu~Pz_5AO#>LhRRSl0hU?R1F6nabDkSm>8O*ZWmr(#U0CayMrzWv}HgE3wom1$V@i2=Sn zUXfya1Z_Qw>j~M#YvGA!Q#oweYAxp;ydd#XMKk0M7ZjpB3l4bt@ZAQIx_`*IL z#)=d5^`0gt{71>eX!e^Bm_osC+ke^|riCbV5H{QA3KzwiV&)V*I6DKthAVi=yvQu< z4_4F9?-pd;MqqNyd`ansD%%tX^ zdYF({#L|~BMM)W3zle1s>iwduyG-RWihYepCHfyI)-5+$R2T{$gbtO5LQ=%*@`ntz zoI+L`+E!N}@u$GVwi$|W6eu)peB$Mj;zWhJJJ4=m^6bQ*s3c})>j&8ZPO&Oqj#<&% zH4E}S(NaXUtzNJKbPRt>YQhcKW-l!OpkncU!z=`ozU>u;7i~&|9Hgg15+aGvJQ1_s z-~+`(0!^_=Qnx|;a5jZ#O>p8|>QYGwP}8hIZc>AtH!aWB5vE@vU9g1{>ej>^f$P#V zD?$XuDNxGQZCvpS&;hYt1x}S08o_Hd&;n?x7bDID%(`-@4IJydUYU2QU2~GhUYtR2 z@HJ8YHeqq|pWlY4CDcsYvS-LKyq5aR&6q-caUMErj0F1+8?0QFX zG2J|LR{V5sksdq2D{{1+!*kjzVeBR*%4JqyCB~jW^4s@`vzOA1mwo1$^2!PG8j&5{ zHcWxE)w+It;+4~eO_+j}I!#DBbO-M7a?>oAB9EkLKc!uZ1g6aHT)FzZ5xb_QU@1Nz zDErfoo4{1v8HTM&!AvbBDFnT0A<{v5h9w{a_KECv08-2yw1_VWfip8`2ekY}gs-c``YEa)1#7kQTefLLxciZ>;M zlbJv_QxxyH#!|$@pDj!Qdhol{k_|{F&M#he0Eu)YII51IorDLo!yo?LQ1! zoqq9m7G8wN%m}4byK&{ogR)AgXVo}9E_NV5xid`Dl(lv399=kv)=Jkwpwuhv1MZ8s zrA29SrJ9#_>E*;TG~M@5NUd8ycKgRRYr!Ox9X>SL7j2i)(m;0_o&!f0t>~nvEk!Cx z0Gzt{@OC`2)!;0r`BGSB*l`u@x6^w*aEog6h*pvk4@|nhUSX=^l8}H+NfmvfeJi(< zZxTqRy8R4GEh+`n%nzTGbcCRX)PwGew$%cL9!HMxM5Jv&Pn5fJtM!U@OWjE>u+7KQ z$^+duBGELGsu}?e^6q4p1&MEuFaVX`($=C9d|UNDoJ3(0U8zt&JaGaiVU-D)lJzDT z?%6W}MsI7ROboR+hIF}#NjXYQUvaVM4$w};kBL~#?3QuYa{NO*?T0f=%(RTWZvA4_ zw*g651t|$Xuh$bU7G(RW@ zd%8jKxzZ13=*N6n0?-W~mW8XzVV06~Ko#Bmpp5&$Ua1NGWA&27ohk|x>t85%K=?&V zP%0vaN8EIaQ>2iu3%2l5&v^-9fM6)!pGX^dT1fE$;XG*s4osPgEk*-gB5S>nq5vZmK1Kkn@3l)^vy@CmTRX*5Nh3brfM>LPM%PXY>JQyQgiAk zGY?9K15FBg_7-d|~`b9caK#OIt%b3IxlEt(?f*cAFDJ4oe@4xW?FFE37 zQV1d|Ne%0Dp;E~d%}_`m9-A~rX|arfA#A``=pe0v?{LLi=wd}(NkdWG)2Dcx1vys5 zWI42`PdWF2ok${GJx^9s-jz<|qY2Q`4tto?J9D`^*fWvK%(kHs? zS&~XfuN%O8C3g6fYDo-1G;U&?`}%d6N*Mr_<0|U?Qa1Pl*ONhxMb%TXwX9Aoxs{Yq z?n$8h;ur56bdbwtBn@KS-F7f?;ur}zXkq6A8$0J za{OM&FGvSq!-!jk@Qpcw6&ra|q_7W0Jf!!5H%*l?sPyCWc;?M;OhF+E@V!BbH>Hwd zR2Ew(F5JOD{Dhp~Y7dlHpD{^#7Tc%h@DAB*RTea7rFG^l$;5#|t_T%jPbdvqT-68a zUET~?EeZqKCsO>L@HWJftv)f`vlS%-OAnct!%C#|EovttQ{&7k-j`hBunUBp8$-*( z-HO!I6enIH)uzH!XaS~>VU=zhopRDiryDdCu_W%sj$+OrQB1E1rsH@EaNb}zcO}>! zH~t|SYvlz&)B1ifV-C+!z@eoT(gR$@OPH`W{V%6sqeE@NvNJG!AHP^+8;UJO3Cryk zEJaOpq%7SwS?NJtM&NA?ma7=gnOeJs)3jW*vC*64VPS^ZaSD`#p6+&Wube}AS(dQQ zbO&9&kbZrP1TtGk==;E13xY@aYIuTD#akv71xXZrTh(bd`odqiQuD%fJik2sqS+*+l%QNy{_sO8VXR7oeg=Gcj1hcpg1Z;uhssM8$#5J%QA~pJv(#|LS@=pMjUTg4P>7!4o1eCd6-+hy(VQ+f=`GR%c&&j z!+q-&^1y1gVGvoE9%IWz%IVp|U(g5Qj{{ZF3$>2QctDTuE z1O(6?Na76Ln7J8(R6)#j0GwjBxS)M1 z#u%qPDwNFSiQghKP&0Uzm3tix#SW&?DKnhkX5JB;% zzgoc*NeT`~Zn{Am=FS${cY$}V8U-E&7bd0H4$zElY?*0GI4W(Ly${&d0}zEM7Iv+4 zc!vw!DV9iDiiyzl>(&^gT}dav07x2jfEO_}m2*G{QA2!q5f#sg)h#Akia`RUS`JIl zG#$LGOP~Ue_yjE9mrik%hB}iBjFRyPT@nE#Q2AH4oO@-nq&XqU3_%nfVM_{GCP`9? z!BR=~kHC)F7-|;0$1r{mP&e-k7gr%knYm&z@ZBN0)o5@@@PIyB$5Pl;oQj8lShnU| z^dDBNiqW)qFf7czrK~Ve2aU*%Bq1m|wrx4ABjM};Jqme*_-M}JyhG)NvlJ}QyVkt`?F`qA)JP@IarTNAW(UjSQk_qj9s%2~um!t)m&CxhEC#@L{Hze4 zeM^uMmZ_;6b^W4C9IWn=S+wuo1Y#S2l?_X8tH2g7dk?MgpbWrMuTHSBD#tJaW&$}K z2OqRC%)K%I1BC#%7?E&UnG96rP0L00dJVTFsb!(sM z(iGlXp27v)cajXkR!Vwn2JJUuRr3$Q`obW|*pR5DsQm5u)(_0RB#<46XMV5-ZN=kf zYJ2|C-J1*~RmS1D<)K-oyC)gRNFdbr+B!xcOvj*Ow@7Q9 zC<gFlcPKW0a%e5*%P)KvL{%s8=0e29R zRZ!X=ltX8>Ayq?+yAF4Rn^mrS@JS`A%yPF{K-+?J)U1lB!z;^yLEVHJtZ7!e*C43_ zdYwJdR_?{Xf)wRPN2CIkXIb`v(@mgV>n&2UsX(iOAheB^dvRGiaQs08DUC@T{*a@0 z;*_pn2@Jpz4H_+C8*0G{2gBa4&~6~pFv`5yL>JM=Sf~F0FnBRm=e%==0Jl4ydwn5; z*Q5M?A}iQ?YqX^xfr*_@~Ut3Y6OI45-EY3@Z{4i$7(+~xG6z}(d0a$Lr31RJfM}~>- zJ4$7!EY&$$yG6^&%;`0t*cN{Ai(`A~WqCY7JDq9e6UyWV>)u(l%t8X%P-1IW4Nu>v zSB9)WQi(}HA(KGbpU$7oUFhO#D3vJX{RdsP5XU<4Gv=iTsCIL|E!rO&vuPc!pp?qa zDAaA=p^8Yp#LYnf0uOPaJjYk9*ieQCYS&m$v0tM;RHa1d!}76E%@;mZ9~PUF@*N}f z_=J@uEZmU`7R&1*$jV6oQV8Lz&`(my6h@kWIqwJ)BqL4)aXhH4wh}26UY3&imNUd$Z=Hz*4%%h@D=Dz5&DF{Jh;_KI} zOX@~&l&Cv7uAjUz()Gh{nCeWxT#6k-_39si2Q3m4BxgvjU3Ujqu$z=APSq8qGe0Aq zVvZ`kKeD8&dT`_JAkKj%@btD=B`NVcD65Cx>>ypg7l2Y!5&ag&7+^=%ATjP-U?9g9KnMD){HuD3|331pj7Lq;K%DW z8%&T0EPqJh^l=iV#W6|+T4+GnbJgRbdhD_K?ZZg~%r)!VR*P2aT2um3M$ge%Q@sH^h?+!@%;wzrm;1i=|ZLuYIQDK-2&|v+^t-ydhzdz zj8dd5R2@f7ASjmBk5)(o`PKyg0L7VrXLfceI(PHtFWP43QP>?DZjo-oAw@#88VG7p zxNtb)gX{TFV-hS+Ju9cntS$(i&8?pSVJGw2G9~^B0^=T66(||ZqOE0pn*y@ zkQWqLCQDXqq#$k$AM&vciyS3ON(z$dXLkJCSY1Oio69OH9KwD3er0tiGCFJDc)f@% zEVQPe9XN%1a)>1bC1~CY{1B;cyc0b_T%5&5xz3%0I^pamH3-O7rz}EvF<%TQA#90k zt*M}gIg=Gd4Sy*Pb?jOjWW&C!RJzScBjE(?x1xqh&@en7!?_%(cnfRnlglf zNhRN5-|Yq@(Ti-wa-0`tBdGl2c#6w=Bq1j&9l+INlHgbKxI8;&n!(iRGz6FM?G1Lz zu|B1b1+%$*6ynbz-s!Xj7VTw_z6(e9Ou~AeM4A@_@JWoXG<=P^$EY*U_ubz0j&Atmc}I zf;zBR5TTt^DRls86WmuMxkxh&NCu~K$mO-;HGq>Ns5tQg^58tdY+2zcg;h3zcH6&HK53lbB4jhz`;YcCe zy& zMrRFE^!h`AW^JKaTYciR%bXPd0C73Sz#9I0qWY}q3Jyd5QU{r(YGm@y*W}Su(A{=~ zut^CCbEtFf*uf(yCZ)0p*GKIEuL&pzPZDZK=bqnIfu`K0B;`>9hNMrRF?ZgnnK1gW z$(OjGKXKMAUl)QD!z&-uN6HcIYeJ-{Oe(E4W8MXeeB(Wo;XNqdO2P|P)fKHlH3`$B z==?*4(}jE}RL^kNyibuK11J^g^DtV;KQzAys1@>pLJGZYB_JgMld;|d-&oHuOr(zx z)b2aH6tvpH#)K$n2j-EOUZ!Z8NS0Jd*cL6;E7)kZNfOkYxqG;y^9(n9#33Od?O(Jd zVY|fSbq^C&BuBQ3IZ+Hq^MnmJhW7s1DJlzoxsXPVG^YijHs6RRAe1Z;N#dSIzsX}sG7V+0!?Z;>>WyJ`Va+<6BNoE|9d8InR8=lZYQkFl@Fqw-k4C^E$ zW+m8tKWK0sr_Pr-Ag9_V%yfV^ox_oN!>|r|^Y?%kAFq(0RtQh&JHJr{SA0%dln7y< z^Y}MtG#U|opw2L3BY zDDEmp=CSO_;sLK@UWqhI(_hXYjg%f z08zN_6er?rr!qwkv^sQc2-*~&cG7%Bs&r^sz2;2J0W>=eyr9L;EhqcAskl0W)0nYm zQV9g=^gJIps1ad%8i+0eYeUj5-j-H1Skv*M$F4|n`ik|6a;BzWBXB+t7>(H>3KcXO z#Wh`_WU~e&0Tm=#2%RHJLVrbuD>byqJA7hKUX3OcZNp@lp8-noTAh)FF<{s^Ii z?GvTAO;F{>*YlWG;55%d4H~1R4>gLm+woR)0;HUZtAOk~3X$3iUCT`FpM{XQz118Dn26GvD3~NWmpmgO*Iv$=+Twm*p6xmReKkw<9;+7 zxGz<$E${6$D$ z7K}$b*Qh3`0*oorCBE-v6gX2%ZxTkv2>$>;WP+rr-I>S7ia_aB6qSW2x{Ve0iG($C z;w3IfVlxdv`oSe$>;`I*Dbu$|18TTTvz}Y_8@yhXcNM5T0BCEe=U4xZp( zAUneg%UaYH0GI_25Vwb|GbGGq1uY=ao`L=^uSkBnY@gH;zmAYWa?p?x0Hqv?!GR=| ziRcBHx6t-@=HG>qwB#hX9M-WCTxe+(%GRoaN1a3%Wqc!Jw8)yNMCOv`DwS5?cl_uW z<=-Yu##jXe)Nk&CmUIOl6-q<9>UoM+?j1^ncQiYL_J!-B#MhPgB|+cF>E#u!$*Bb8 z;opaW_S`T~0V)bR4nH|DEy;IH&L~OILy@rum^9Zfd%(BMa}n6@Bg6)r%44& zpeaM;^Wp$s7+g#q6=gkkh92J+*p*6EpK`}XiDk`78D#hE%q80H3CNhA)|GR}hIzJd zuqB#1W;?eKyAH2Q#WPzjoArt8cRHz+RBa>0VZ_NHK)#{2Kbvo?dt$VyD*oMHSKFX~ zmFM0j&b;ddU;|JIp!}sG#p`~ibgu)P!hq}hACwlg*>fc3-i*&!TDjzzd61yx=vz_r z>kRP*8^VQdNypYAgyA4q;QRSW~x@ zG6fdoqHa=ausn1z4dshdn<*|GqNVwUl{5mCc*f)NNLHPMrllm1Ne4o79FFlc9>4Aq zKmsB|zG55$yi&pUF>mey8*i(_1?;qN^py5E`;@Ybc3irO9SA?+rIy*d-+()YbdNYrfRP5NJhUr0Ib` z0b0BLA%L6L4<%$2^IoDny)c+mqL3;E(b>K7uO|NhKG4HxnU-6M@YR44E^kL-SO;@o zJ>dPGdQ?hTh^KzBImIG?r11S?@Uozs;Y|E*)3Ag!P+X-ZiePjcb&JTcWg3&#JfCJH zxH_~*m&lh^71eCvB8~20u8_t0Q>MAvb3}tqSsu^?wt*ijXj8cV))$}Ll5zoZH zcuP}4H;nC9eDIdaM+9s-!8;|>G_q7YAUpF4Qqeo(4k~i9g#qOB=zg$H?zs?!B-E;o zNvFCj-PR=}2R(eai^#CK1owv%>BZ!*Lu=LtTIb~gg^v7mf_A$*Gam>rF4uY@iOdT) zXM(LoYD&w8akTj&Nn-^?H<@}e54w)y?-kO?Q_^>V9d=E2(^CUeDcF+sv7D( z@U>>Umts;#C261|QC<6v(7}6OA!RbqNF;*7rTgs;R%@Vov7MAfPfpPtThfaH^D_^G z)u0|KvrZX6N|s6XMSS1y4@t)82)>sO~SxSzS7dbm>EEPN86-% zVZ?}0DbTjOm?M7Klb5h~P`Ivvn4K!%>f#Vr#0GI$Ata3f9b=oa@|c6_<|U4~O+$U* z@Y)hMKS-r-l!Xwj#)cGtxi=80Bru^mH3V6)E^^hIU}`oZ3e3n(fT`GkG!bG-LTKzb z=cF(ldrk!>FsA)H;=R#)CTen}oivN~+fo!vvNa!-g~?b`)Do#=m#H6{Kts8Vx|06@ zD3)EmT8I>X&0sy6_Cm7f1dwPp9ZVKCDhPB@^?=acw^21f9ryjBYZxd4FmBv+fLDz9 zvb~p3C5WvDFwkwP^&#|I5*x+AV#JRl0l=$kW=Tq%Q1^OQydA|DnEIe4xGEmc54>5puDqxrK_nh^^WrPn?MPaxA0-0@uMX92?GQxC zO0-NuLbDbuNjpZHa9tu?pfZO#lNN1vgruWDkOtK+$%*VX#Hk>@p}IvtuOI-YQvu1^ zFHMjaL7?M!5s3pMfc00%0riM*)!-#0l1bb?!YIWNB%%KR$NYN5TQZ&8Q*YioooZ6k zm{4qgH;-<2J%;=Bq)nu)AY=sU`ttxK%UPIIN1sk1zD>juR9(R@Q>Twqu*~a5vIK7AL$xyN2bP?m2cg)<7Rd@_5m3+sGVG%x0OLrrXRv_J zMxh%;3_PNcc<%zQtNi6!Kni`h;J+}4PT4IWvxa(g{H#ZO-N{;L82~IBLAyXg5^mN* z20dYZ{liEsqwR0UzhWVl-D=8!K@_V9T$g?cyNtf-#r+al76FwieQEo_#Y_ZH>G6t| z6pV*+? z9M!EvNs%zVA*z-@N?iDqTTMq+hr5dWN2^lFOXl#9TRZ3m^z$7JpJ-5%Vk@yWh9#Xf2XO}O>!2hj#7O`+8h-Fj%XWYogEIm5c(-M_%21;2 zp`hpTkw7si)M`5I1MGKFiit@n021|~*!Cyg7Sy#dEJ^o#bcn1Ng+bg9+zr04jJJK^ zm64fBDN#O8%l>tO*9H{O75NmGyjhgtQhc9JNROr}KDY1F@CWoTVuQDA1Hqha~+s z;)Wr@-ioBkQJA5bY&=I%ro9hNkV4CAW%!Gh=UDc3APb^imGTA`KtCNwMr53Un!mSA z;w&+Gp=6~56;sQkRm7IFJxK}Df}05Q4dH+3R_36+cCS64BMr3yD*@acnk2t&%*hD= zW@5*Oj_$CBDpH*~0<8zzqrrPsu?bFc&CgC_OeS}6`a4{rO37AZsH^tTz0VeIo0y?Q zEz24{&S+rmrx>SHp9_Z@`9gjs#B&!tB2dapJBOhCAm}^BcF1Nc?#4w=!|C25yRM1z z5=xX(o<2?a^oiu&OAM8y_SfCW;tp7CgokY^-?T8VFAkL;B}8ed*P}oTH-ptCX&{BA z$R}ofy7FP(>LE!#j(_ZyYFA5bt>HI$e)u40!2*#9q1#; zR^*y_Ry~tvJT*^W&!kR^y#-Yb+88fl`^i}u6;NO)K^1QMxp@MLs&*PfMd5X%g#gc_ zF5eTqLQ-6m=%cvp^ƃ`5MV6(11OaCL~W75HS!WH=z|D-qpTiFpc{(nh=;yu8O~ z{fGi*%E$vKv2mmzT(EjeTZE_wIvtNk<_~NXPqkL!7jFCpQQ}$59l#W5Y+cps5CVKE z1MouQq_;NGN(Y1&pm9g$A)PrAg-e!t{Lk&6fp(kNpac-@@H@p6%=MwlO*StV@&ii6 z$WsyK4I<2$g;k(xhCfJ6zpl?3Jz7XQsk8&-4Fy0YAW>fv(fD@K4bxX$-p|;;PVUR`KnGL38=j|#=6)nokUSvMLf;q&i?MR%IRu4QpsW3&-YUe%PlG88 z#o88uYn5sWcLny^3$E6se4!Ra>OznLsI5lh&uD+Mq!hN`LzLCjgoKkv6)(4F^(&V` za=Qcjw$P7=t+OReQCI~HK=1GG2)A|ZHq$r26q<)^2zZ;wGBbF+1Tm$J(ebsrvLYo_QabgrT3M)7O@KQ#>j zaNPd@F(*q`mL`-8yr#O-Zv7v4V!S8KTQi3N$fvpoOTaSHq>u+wu!d{8@X>jaZ`fPk_9eGcu^MBdFM zqVCE@hw1x4TMe5xvcinbq56nivs!a0BlL=w+`)3MGX$K5$X`pL93_r(434l^v--eb8RdXHpOgW~Q6@ z@I))wErkmy2@VL`o%_RGu&kpvqFB?OPkxa^1%28x1Sn9FL2s821ujb}z|2%Kox5|^ z6y;u7DOCVn+ua70Y)Vk?MR=-rJ3w$+e8eb*P;>F^)+Vu76ai&^aTV;>OpuJtwrt&c z7@E<0grJ0Q-C;vRDrQ8hH9_ZN!~wM7xoaLhPaJX53EJ&$f)wC^3exY@Fhje1eEEur zrwfw~%g9bs;TckT56wofI>}@bl&OID^g!dOJ!7k<5zHef3`GYG^`pe|?20*>sT+@o z@`VjSH;lp^LZrD5r}G69l2a%mq-r(zZ2=I1rGx-WYIqRWXS)yvu6HL`Fb4}Lno6>d z2-Us*e>kae*o3txA;3|qxgGjLMUh?|fOhW`?Fn@NkSSBK0u2R8_u4G$R?hm=`9XWK zcqk_^AlAKh@`Vg{Vrj@UVrjV@VaE<#$siJ3Xkqe)&P$7 zkdlnshj!zh@n+|gnUcU~2S?Pv>9>YiYIh++%g=}pciZL!fEW#r^AcwpHW^9?A)EY0 z(e3d(OIi{D?m30a-q$%PN`Yg&3x5z|L3r-<$z5{@h}DT-Z-A1 z1G}(lXyPndQVXTPB8~QlEmj6d15cmfhDa?|!coxuAa)tBqG2mOf4AN)-wY+1^X7kO z8-!+nk_`^rRuu-zvh6`rrBxI>e;=DbEAIaQm=vTWWgn<)cw@1Pmq{T-s6MbJboQ7k z<@G;URMezfW)%l#qr5OK?Lw0Jw#S(E^|7Q3)P9?Y>hHNqz*JF5GLa%Id$^!y2 zjkt@pYk4#ZbizI5Y*G}Y7a`xj@w5}WZ*?RB0IPXJ5OPJlOr7eOf{MR>ycpv0kY(m( zcX$md_w{p0R}M(2uAWfEWw9BlDp{jY@8Avr0)hNi3js?W6{zi4mAI9gGXl_X^$sx@ujq(NnEg;E^S2jUE5ppurOjiNzd z-fEU*OCPG9P}rM#l!BFeBTm1#jPm%Mn5JNGQeC@4m6a**hy zU4<*mT^Hig2`bWuhy2_}H+jt@r9qd+Cu;p-#kbM=jHLywiA%GJ6Qy7n4`{uSFeyp) z^idTMA$EMg_=qw3?82*%l@=-_@8tx4p-K_!2x2t{L)sP)LU8op%R{TFp#8)$*^s%x zC|9%vTjCE$W4rIv%tL?!(1xJWF5zjYLY7oOaYyHfCkZ=VfqzesG{P7Fb)f!t208w< z63`Tcf|t-UX4tpSv{AkDPExXhQWQse);Ruvr@|BBKkj=H}D!N zU6{1`$!S_lvh1wYbJM(OwtIzHXeugSQ3)8z;Th1X6$Jw9{$IQz!!P_|R&@YBvI~4- z?bx|#N|LuafTPbHqOxp2fJcQPHR`UBM)STx01GS)0Q$kvpb1K5xg;b9ro&+e?6|C! z38))s0IxPVQ~+vMau4Ih+qsafHDL|`t71|?S)m$Nn5S`C{jC7dcjh^~uC=HV2ox>2 z9pFXBFV%upy-tUINiR-~))n?*mP;8*h#oxDD%cn+V7e16Z9+)fkH(0sl&VM|)&AeS zQ(W_ysa(<+RGTHIk_KQZ$4Dh>!{Tz1bO41CY1?kQ#aZ*hriBO7;|!J?X(2?>wG^yL z2Vy%+scA^eA4VTI4I>da$`lCQzVYStbxW8OrZla3!rl?G5isTy6&hE|eW8J?5y-Q) zZg_?peU@Spl_e=-r%@DdTN0+LH2`2f{keh(m_kyLqM!p;>DCkoZX1NHN7iKk)P169 zcY0BnZuEMN(FMNw^(oKg0xvsitq9F2!qRr#x$h79Vz-T*ZQ^&lyT|hA#98*Y+7Vf%dP4R`X8Wz`&bT8oTqh85CEU{7pbbwcd?2QR_6a!P` z9$Bmf{Awy{sGfWA@`{pfsbrkQIpbFR`ay>Mg|T2+QV7zd5X=sq{$ljfUqTZ4om-?^ zvfYwaGNHj01X26;{MIO1EhX5!3w{Ww98a(#{VhfHCWEJbf*yz)AWlMZDT;=b+o_3Wl5&Cw zCqWkl$gJg0O@r?Puf$9=NhE=%KWJ3UOS{38QUfT09fQKH(O_BvgD@NNI>9U!OJcED$^#UreLi(j;_hc znrf822YwuMi)q19<*2Ap%a-S~9RjWq#nWZaGSmwnWd8t{=h7Ijd;CjYRf0WWaG+`D z7bao!mnjUPq5a@aBfE;jOb)?^=Y1QzD=>tvyCN2h`CK{FJN|74Y*LVsM1uV)Auj}C zB}*QrY7SDs9$4?NBjfJ@!uD6IA+#+~R)_Rx@k$7m;4|oVgLr)YxV zz-dCY0aY~I_l8w|<9R5`TDpCVFJ3a0F<`l67I8oiXgH*1@U6>f$^7OPZ&fN>zzdEG zP>(7&)2sK1v)$j+M>QDq*`KN4Ar08&Pc5>Cv9TfV>!kV-}BCMKkV!4Lxc%iYjl zUQW?1&w0zDNbzm=ixcit7F8JS%y5h-kf%ZF&j1sXc&9OXx4J#IqFK{beEY>^%VAoc zBE7CcfC?T>6ZU!sY{4Xx;vj0|YZffHWk^G28q>E}Xq$PbAl&Xa?;S|8<_@X@p^DM~ zx+E+rqg^BP@%_gE+hg^DcBKk|R^k$`Ytc!V6bTJZ$mR|EfxuCs84r^ZMN~5Ayv)J(Pn()BYHwG z)u$;0Y1yJ{E#&S1r!h5xcv(|1OGVK(S`bv=00|?8>jVlS!jeTR$rTYNh!myC52r{e zaM~rzNLU5-;;{|wcnNJlb_7Eu3w4ppS6vRCQ7RCbU_Ot$K&w?V67SB@R`3g$7!ABU z`=Obe{!JNO>G?qm)=S+AnyG1ZKjTFkro}mgvd5RBo{%bPeMHC6K-IqSApUINA>Etf z{6tq}rHYamgP}Tgfpafas1FX+tvsU5j_ptxfz(iK)))ar@N=mJgAxLm=>e>l;^j>W zKF(t2h-}*2HjV&RK+Bns2gaotMy@F1UNK)AU*43A$g^~qw};7RqhIyhAIqc z^@-dud2(|n-wAgP4*v3#r9QO#7x_cP-wI1?DFN)#N=~j#efvdP7pGnT(0-kI0Ti!f z=0T|p35ybrT~n{dD_=7*p~VN~B4sj;9l54eW~J%$_e0%|*1Ui$*LK^a2)Pz=?FLe@ zx5gZj4MAQwowxij!(o^O2-kn41HJId3WUtMA2AAro7&x(EE)Of z6>QRSBpuBh{9^o@trREoyiaUzWvTarLX?%bap(1pEpmNe%$*afbHhXzt{u$5D>+q0 z4jZfe=^b3R8M7p(HfJx(_v_Bb;1L$Dn`)&T>D1JnqMgx+)}`oFRj&U4#64Orgv?63 zI)YT)eo<2j;q*xhDC9`@}(6x6zR-$c^rqrNE^TcEJadQK@8_!c!rwgCn%Hit_!wJBb-cYTlT6Weckl0%<|lmHs#xysUgX{$H~K-wj_>-+`GeISWvBa$>> zSL5-agknUJb@QZ6Dq<#f(e(%K04Lz=XiS`ws8jI${vRO!0Ee&C6czxxKRqEA6yV(D z<+yElF)kasl_0w638QTEe<+DLZ)AC$H^kk)3{5gaF*-o2b*n-ckMia#-j~wPfH*8G zx0Em=KJ5Y2G$p{`#Z;kHu8=~*X*obOrC*qY%6{5E&H(c0vpdtgM`!~vf78;Ppk112 zMA9=dN1yWsCEEa3h)~zR+8A)VZ-mpXkwRtYl~YFy0Ok%_mW8Xrz!5-Vy_(@dNngvS z1`!~$p^_<45?N-o4(6Yp`0m|n2~VtgZxrO)5~7toDM$?^y2c4`q6b*It2?JFzTILh zL3~R}XwT9pUDu-k<%y^!7(;ns)whI@!{6LAQoAssinA_&XxpB@yc4x!#JfL!@zBJm z$X!9}P0UEe>&nM1Zh~|a1Iu_BcFanAB!blP>kHOPEFP~{jOO#T%_?)45?@oV zm&zlTKabL+*3)UZP#$1`vr0-zoxq{kh#QG8;?@8PV*2dd_3au< zu{I#QFEoLbCov~St8M$jwUTN?;F4GpGgg|^#mgt7$%|0T;i>BrN^wRk-%cR3k4B*i zbrPWNlhAX#O_xE^&0<0rgW=@$(6_~+3w+d#R7oYl-TICrxfXP-8BU-$`~9F%yHbUW z$|?t+&SHo~a??6d8H!XiP}yHmw`g9n-ScI!S2b--F~bkXetL*+t2ri?3a?u zl3o4604r-MGS!ee+Od+(zUPJHQBY+yeqEzoxo-)ihTMo?5 zjH{vl04>Pv)2^{w72QMtP)KTxE7Z3C^!mXAIFWQum`325zJuWf zt}G}~H^iO2u14N`(i@~t2^xOgVmn2!xEq)-AhydxgPEIS^f4+eETEH2)dQzksd-3o zx{n9x6W!-FRUd15Xxew9hyujr033=9VvC`E5l<#D`uV*)OoGFR>gkkFl2uaWPI!f; z4~i~fECnGoBD_2ZyYY&^3CPSeW`BG#UN_KH5dIp4Zu{yqiLU#BCDx!b9~1NE$l+#12ivnOT;@g8MI{--s)R?~eviROn8X8$~;9nPz5ZAtAD#m@r6DUREDM29+PHp1;IVw$4)JEg*Q3 z^#^mIZU->Q>Pn~@y=&NZj^tcPPK1*B{UWI{>z@wKW0;ovKug~GT2!PGc&oQ~+h^Hk zC)!ADQbvcN;kYobYQjmGFsy)IQO`(=$2|gO8N&(omV8?fXvdKq;+(QF7bdk~R{KVm zXTs9;DPlGTl!&iv87^ZIhi9RxPto+GSI3}PxN$I;0LXNpI)P2#-L7bsl6l?OkJ=)& z+T=?P7^qN$>Pu*QX$e@aT-nL>fzSrWMv3Lr2D=s{Py{5g+_$<5Tm&Q>-X#-WJcMPq z2GmzP$qUptCq*!?K&`;x<5!ts2>?BJJrC9=h1hGdE~$B)DFyW(Xc2f^nP(++0W|}k z+6mYv8D}uzgYEZ<_IqmPOe#77U-1L+qd?;KwyA5S0<~?TYXzN2ch^_rh_WqdO2SB~ zs5<#aca4mynV20%$^fN0^CiMK*MrP1p%cByG5-0#!|c~U`HAe0Bx4ksR_;D zuKIl*F5QyQJ(gG_U$iihR&Y-d4e4M61t^e59|*fLO*0bBv{s)rDjpM<25>7_2)}t= z3k-z<2E^*!BK6L)92$Zs`Vrrlw|rcsc?wcWhP8^e6e%QyAk#Hi^97T0nV=Mn zHR{}rp*tI5gC{OfNKgg1f1D6bGfkRWW`f~<(A<8|{SeIQVKiG)emX!a?4oDs?s?(^ zOvOfWiiJ_EU$ff~MpL{Sr|C7_a7zIsidVcATFNL7gtrOCBXba3SB$!+eMy1%j#-y21w{V388k3R#%2{ttc0JRINR)jmM@SGH&PO4{PQ2QT^AQh@xYdB`8+Vlo>nPQy*K>QAzjca zTc_^_vWr%G0x|(gYES0S7WkYA%3Y40Uw9b1%!L$!OK2eF*pR&l6w_Ytdl(xg=qgDA z!U272`u86>Idb&R77`b+g`%2I0e zB91ohBe@=u*Hr|b3EN#EZ9Hpo8G?0V?|q_;;djXdW;H)3Si+dNtf*yf`WUhjPBQl0lxE#endJqaiU7nnn)ZSQd?sVoXkSpF7rC9=so~cT`-duHw z?@P*T#!3*NkSakGQGK-|Z!raKOfG0mTzH#D>)H`4pasb(a0Z}u{G>x*o`A^?NU0_- zOT*r=UapBi-;)*X7f6&(>evWo{dLa@SxHMLlc!-5+U`jyB}F06z;e(rHjfYi(n)PT zPd;wMl3j@fTkv}D@L?Bxw18WZpVP6$sm!K zkN*G*a(W+xG_77T*EoU@?A7}AgV#-m)g%=XRQf#!cr|o{iD?=JJ7^E*#wf~`4!Ts+ z>)rz>W9uU3F;BEkgYUF4SaA}QAt7?vNeo{@!S5F=_JoBJzzwPMc&%t(tZ+tDpu1={ zuTfeH+( ze}1t~4qLn@!WrA$yl0j(IH_r4Lg!sP;f_usG85uKZNou{G+OT|U=T|ZDM|=Wy;D6$ zDgj~{_9OA5%NbPlI#6=FYPfb<7)y6kJz9b%l+%P8J{6dWK}%B_KTtM?OR_*vb|7iz z_+$0(g{?#ip$@=qdXI!qMkWD1te}N6KE(FejroRH=Mmi{Daw^mm3FJ1t~{kSR~JFSAQ~SPp0Z045Ll#21xv^96a{O?^9#6w-89W)g5Xe!egPFPYvy8QxHTIdcQF)J zjJp_0d`zZI4$cS87ykh7qK5&9ufL>T!gt)cvTCmrd&^Wp6{!I#PynzlJoWcQOQCYj zHe}VgNNqvmzkVaU(*l{O;o#-XEBj6u9ozFrBZKWo3MGCsS{(rI&k)inWxLaqXG;|Z zf0S7_niDLZDBF|JKwL+P0a8*umuKC#r%J_%o~3>uuL$-@-=ELqvjekP#&WG3f&*#Z z4%+WjX){AZ^ntd^kxL)iQ*ZmcSG<&zNXayKwLj!fJv)4$3)U-4r%*`>%oq{!JV48m z=0Pe0^uN5oe@FM!qE;BW+>Hm`8BL9e%b}}{Oc0jr*kxe8YBt+N97A@_^=H-il|mfQ zjs6hDc3YG|N`}l1(Hx0{x>&ez0fXH3^1P{6v>Q%F(Jm~sqb@>No%cx z{13cYyfCSlN{Y^|)M3^g2243;3zi8}fljBX;w@TCw3@Ia(Z4WZc<-LT&CIh3XNb#2KJ6b@MNGK(b)=7)%p zHUubtv7)&0glS7uwTUppth1fEe=x^#q2+?1lySpA zdw5*{)1I*fqFlg*5?nE$inNq*k@c=*l9H3{4FMaG#@ocWFA}Y8sipm2hbVs$=Cy7< zw1w|S*Vvmea?($O+UMO47JH&vGb|dCuS`m?I<(p{QV&L z#tBHvs6ANuLY?nzTGq$}kzN1;uezUTdMTFdv7%BvSW}T!I+u2SNP9t?PUQC6Jco#S80LdKNC#%an(3&Rq2sFq?Yf`D>gCTrp(-0JIlP ztg2p81CVRn=#kTS5B~tsf_y78E3na_P-?s{uqCiQJ4ii){CXhHY1JkVIY@6j+RDNa(}5HxL?GpqJ|!LcpKBs_fq zF6lr?%7nNSr{y2y`jK)~853nE^nkX|aycfdLNerD_S=@{wlTpb_fQTPVHI?15`KG1llahltP0N&)9JU2IY{MY^Tku{%&`GR%`q% zWH*H(yuQ$C!8FX46l<7Q&+8Li_!?W4Roi{x>@bT};+cpkP_Bd?nh_FV`F^5N2u(@X zQb*DY+b*;wy6n&nULhpp3>o~y8!#-1X`GC!Na)lsD%XIes1WB)YW+KH0au9EB5Iv4 zFHkDyuSj&b?Rmga1ZEl?p-U(Nx-RueBrQQe=z1{rxGzH83@=))kcsM2>V;@Ppoa^6 z+M=R$tvHTVYL?8R0ZyU50G(l2K^7Gk$`ZkyxfQE(7c95zv?Qg9R0D*X6?7U0;1>Bo zYr6B4`9o*fT{!wjw(Eg29V<(|t;WYT+JHVG8%&6PY4lnXNCld@^ZC*T z+t4NxD?4-ZA1DWPTGUjc3peTJIk(AN!aZ27>d?dJD$JCr3(5!~Wr5^z-aNi6QzWUz zV3k*-9lJ2h#gUuz>6pHecJ#iI4q2IKSPs;KaD!2YrOuK9>Q6lN-ZTFINmx}fr4`F0 zDI1MxP~2$`7wzbjhflI92R&eY&3z_tQ>QQ+oeTY-&4EMFmLOc&4?3s)g&(h0`NM^h z{6fK&QMRL6Y4{?&!Db6VN>T-P4Wv`M?THg|`zJ@=cv*o$&uj^pP@o%*r)arky8*h3T%(%rIY8)TNR@as%?Jd%e+9&OOJW?!qoV!296SDcjU&p_~K2Evy*mZB#T z6qBL)9--le`?X~uA=v0n-Qwczmmx`2bv#FwpcJAO92OMO;(%$LlB7QE`Sgmm>sguX z_)Am`2|nW%t=2O6K%vxd2Er>|7eY^k^5z?D#b6A2$#z=Jpp>cQq?a#4)5~+eybZqM zv1gVFi7l^w(O&7h5)=`XXyd-*^Bv!|K$Q@QuKMf)Q?{{>9utit45{cLlU{?T)&x(w z-N+>@=9-9#Rm`*}I#rmngz|YjKqTUYER-q2x9`B`tZHJ`OInEta<9$eYb=0?kN#V0 z{AmGRy?ien$ob-)aN{>hlnPJ<36#e4erg~T5K5#D4G?0}i*)=1Gh|W~c6tGf9Gv(i>N5%Oo93J8~gtMR#4^r~g2Qm#lHJH+4y#w#gCaZ(wc zjT6`}6wH_Y#BIz|Sj-6alH2PGw}gWvB}gTSuSlo|ZkdYCr0t|J+N}x*bO+dj@r1c{ zp_vLo+`ouuM+c~>?dBn}(P>gpr)?eJAPYsfq`429R_UON23i)KncTnEv`|(eKuH0V zrr%E}qcZ)Lzhvc7wHte(Y$59=9G3ae)%QT__UD*L$XJTFsP{q3v}HzJ;!BEQ3uPK? zb)+2`9~a#dy-=C{3_%*W+>fEw1Kqd6rprjEQneb_cIbY+<6ph3ei98qcN;VXy6|kV zP?8CVyfk4#<+4pdW>sh_O8ubivgTewm-d4Z)*DfFQ?{SXaV;R0J8#5P;~-=g4fQ@m z&sL`(pLqSL`J<)mN|01bSJ~K+x!}QT!sJ0(W;Tb7OmT?rtmpwF#G+le<{c;#bK8QD z>smu?N_B%4JIxH~Q2zkiv?ELOX)u;jj`iobk8dmyGD?6#i4648zsyHxru$YeLH0;W zw;I={c(-J;pGv$zV>VL9LDzD496=kp_q3(5rR$^oj48_ggHW=mKFLja z`$Y3CNlD1y@09CUM8B`8fF((x1V0D76tvhCF(P1W#Apm?4C|N(@YT0(%_EB);DQuM z9CdhDuwvAJWvmdfLBuQKd8FQmv~#YX zo#EiFuca#@fOi6&JmGTBikX6wP{5vlczV31wHvQ^323;bk(ojM5LjBRcw&?kzTjv! z>S25SRZ~(%`oj>pkdUIoyg_HX!-KpCHuEQ7B8$kxyFp1r{H{}$rxT~C`#sd0d0Nt>(QZU zA+T7{H7X6eR+?`ePr<4m_}0U4bUmTH7g7)i&Hbvy?%02wS84_M#O1OV?G7hoWR+B-QJD!o+hzhQ!^qwJ>*=kBf z2nS$3umLJTB}D+Ks7|A==P*N9n>om8Hk@{XvQWSpc7?mb^Z;e!Q^%YVvfl$EYSkTh zg-y-*ZBm^n3`V9FuKPU1tHz}sog=$=oT;vs2_R+<@ep#!G1LA>LCgMD94s%}Z3@v@O%>$O?V*KfE$aP)ZVJ zGmy-8?Fm@k*ivOEP!(z`Uca`Q?H2E;>LDsM@Ux1KFUrExNqftdwK)N|0uS9uNC~3? z7=CR4F8c^jPin!-EUJJZ!9*ol5@-oMOnGaRkwVOA-YiKP=@sY6Nn)XyvZSf$(kWhc{Gf!m?E^6V*rGuyG;%@N;06_>ijOG$GEvLbT8;7?F&Y3Wxj#j52P5Mc!115m;p-@UGvc~B_x!% z%-nK6Xg7P?X3Lh4mry6JU=P#I4@x=3Mx4c`K@5IeLLe*3>RO}_km0isA#TrXP?SMQ z3fS%Z#*cT}5|Kh{@_`olsZnMOYXD_4Z?ypRQyROoh%&28>8Q;uF52{s3PsT+NNj+% z&8$$n?{pxPB{_CzQenn%HsPMVK^?V&*B_(B6uQhtHRCx(9*E0_zEVcq!L_(DqFjsh=u#I z$`ErA=gcss^hjnPJpdhH>8o9q5vkNdweM_7X9TFx{GXU+wBErk%unipV$PY0CnzUx z&S752brzJAf0K<4glz&*l?OIjZZ;jDwT8qJ8ADHjj%Qe?cYwjMB9SeW&zM!T@`S67 z?wK}tSS*Ir?d1-0ED9>A&^STo_}V{Qvq@5@2TE-Si@2Weo|%dDPD54n4bOOrd9?+l zN_9I?s0STE>#RAhaZqMp`tRBe3wjckPy{!b^V%3IS#LecPh+5erw|JjS|+7Hq$mP< z!(GvTp;HP}0e@#l2kM%8;PtLZC}1k}akoe_PYPBG)a4~k?NPDf3)wBATQ4iP_D9F> z5!%q4=}%!6FKZsmYW`0^U z8!FfWclkj}G{g~^OcTb#f<#4%FG#Z`Y48oIbReCfQeF8u6BR54C|98O`9sy`d7%mL zfvpSBb^c?^Es|SjahYD%UIRtKtjhGoD?)~){io1#{6UL7`7ND90NecFh9S6pX#s#s z&~xViZx2ROO$LL0k)4-L9j-gxQsw@dXu*SZ(!Jm``|re1R2kfLf0JzxVB9REq=gVm zzn9!WtJ?@5)DIVZdY+@*6$mcuzW`NEYO;TRAm!zG1gA4=#8$hk=t#<>f(GC*e!Y2% zNJvwH#U_pW#Sw1b=>n-`Q*`}e<);2h5*Owhuja5a*MKAnf^!2-JmRJzz_S@D3psWJ zevWj27?W-+7F~#bX~#$`o5U?7B(XbmZ8|{Pu4nc_N^+1J&!6Hwv)NH+mZcIMM=&Sv z^f2fmUe;qSW2&T=U>|)UqSGVRBPmPfqJy))$d2MFVas|g3R0cOaa~`eHB7T5AQGwu zXXYc?y%g@u1|=^%w6Po4js8b?CP7-5mK%;6gU1h8aZJ&YpO3HMjN0?Lrh3(7Q)bhr z^SRrkO_@3i>b?P*iD6#OyJ%u$r=C$ zPP|qum&KSdtBpGmtPEY!f_-8bo!@rnm=7ZHn!T!{!&9$VHz^?rZN*jI5~8A0l(|UM zvuWBEFN@eEUI9Y>N`?tmlA~HDZt>iUj!MZ_wa<7nO9+-5Vx_9JCt5zgXlT1_MQF@j z(pYUyoV;I?Vwau2S86v{yLsKkB8^XkDGgrLeE=Mxz}gjUm*LC^l)%#|2lBAQX0Z>` zT_J&T(yXMU5%TX32eS4ky2QjJ(Wq1#KsMu6c#`X~%R*Ay7s_=H{{Z6f`bCUOX-EMf zJ|}QSjn*hxZsMkJ&NUk}AgPNjN&$ePsz}->VR;^`5~VQKpH9ChYLj#df}%m#h(x|H z{NPSU$xsR3r`{`5hU+#hLYC<)0A+`*G(LYAvYbMND51mhe<>N=&4*_pDo_HnHK-c= zbf-wSh44JWvo&hUE8%*cr|dt18P^ibN)wTWZC{Xj!m@B=sf$Y8j;*mUF%}8)CMhaD z5IiNd;rL-lZm?Yx4qqtRjN8PD;(f%4lRRnm1$Zzg8Q`?dNy$QJ+W<5P8*cFFHp-A4 zE=vvmFL!#um6zlj9ZZtQNOPGRu_a9JY}qftx;$ zPd<=NGI|ar5OV-Ml3B*lSr(uHJPJkIder(27?JgerroJZDp;D=XrnIK<_!6iC^tTI zFtvPJWhQ8vgtk)7euwD~w{@8_5}-!(ew(~4VlPJCurO0Pw)w=+r+8wiQ%K#a5mqF9 zo$L0BbG;&<4^{?RKbhyhCr5^xkI`U45>%i{bx{@k<|^L4i{#8!V4xbW&m*)h!^}5% zXGt|7L(8-Xw&Em9nUg4D)onh;9F=fnNC-rEnTHD^c(B)H1N>O7b4q^-@lPYA~ z%&N1#+c1X9D}vzdPW@mki$>s zl{NZ7nbW{RKo3fY4lCTHl5@Vh>^X{e{h6wf`M16~pF#@!Ddp(>VszigV9Z{H_}Y;7 z=mN>T<}3&P8<^=fai7E})r+$2z9%RE4LLneJtOdx776$Ci3lxNMoiWvEOjQ7>LLqn z8I)NGNNxWB*!>I0#`Dbt4is&Ua-X}NzVC2KUVO_ z0@$gj8Fm|iJvzlpHZT&_nM_n#ojb!c)~gvpNOwItzzb^a zDj9MsAUhiQ!+nr~Nl^vOPLOI<;s7ac359^EXtvIkXDq-L41J*#q~idIY0Xo+>)b)h z$)sX9Rma3G6qNAgI;4R^YrVOb`EYHx0 zD`&b@Edj+i*pmgOH*}c@3IP-W#Xb+#2Hnw2AQ7&F*13gN5{o|}bX+Z-qcG&Die7S|} zD|#l;Bn5kVHvmQ3y2iTvNI&`^ZPAcvQnUsCna|$-wzG5ea2i239nL)`X zM%&#S+(8IRvL%k?qts8GH9^wIG}ZK=qkGH;6|mjxsVe~01TbyCZ;p{)A6sRT4-J@y zF8m&lcHe|bUSX*N*?k%_>_dJM47|D;=GV)odi-L3wMR>?>XL+l12_sKey7}@gfd-o z5K?*HfI59+A+cVwN;04ll<0nsxQn=E`I}tNLTdVQI*3z|W;EOCVv>(pEU-;WjfVZ> z^o&I4E6cHEZ`}9R1z53+wOLjaGODAHYQSyf`^7tw@Cuevq_$uF`}1g^sb;@PSz4;w z@;dPo*l%SlmPu+?N9-YF<3%3o$?Y=3fOSm_3IRE z*12KK#WU%l4HmJ5$R?$LsL{Bu8;H!W{1rZPOG?=wRrfqU=J2kAed;AmmQyJ}ofLmd zL$%h4Xq1E|r6RoPq+}Qa53WqZElLKDtsi*NC0+TSAt7B(r>D?C#@shI?foer=Q&2| zBVWy+ZNYjaNN}P<_yHS!{b4fy07)})Oa!`{#reMw{ba+*NC_1r21wh^8AZ9a5V{&4 zhm<#6)VcqU%q4kEUKfY=8;bEv!y;UsHr^n z5k~#BElC0BLxao&6N2pNOv5-)N}xJxMli*CW>T^xF5$wyV4tK_!dF^K8AI89I{l)K zFuo>8C{(fvdWZM_01$c+1p9?qfNsY|=>{cX(vw9J8&14HkNc?;(BzacuPP&WFLUC2 z$m$6X@}w?}%%wA={9v@79HJBh55ZVbwcbi9)S9-M#p{~*nv%7;g?At>j*;imG zIj9mmJ^I3?B3!_RN}Tk14o=;n#@RIr0Onvd53f%s0qT;8fRgDVo^KQjcryE#wW>;- zH|i$66gnE|4YmtWN|cv+c^Go3--I&B-9Y0?uKPs z1j%F&LV%$=zQDfSn7>HQFSX1~7BYv|bNs=DQKJvenLMc~Av(MKJmX8cXXOs0=r`m- zq|9?FOtgfM?W=08I>a}9<2HFEFHx?;$`t5@E%>@&nx9q)0O-#PIHLJnrTWDM5A*0B zjv=bxDne8WScC01i23d~6>XX>sWQp&q@2Nv)ChVRb=QlL>sXd@<7m=l${UW z1mZtNQYJja0v0Pm!P=UAV(gm>S(1gai)uB8K&`NcO?A}8+s5xsS4ehC2#*L^5M_{9 zw#q&zE9(M{DAex@45e^eRuWL8w+iQ@ayj4M1(STt1R*IUz3ugjR?t#&CA9eNAcfCr z{@R#$wmo=-g9}%s;H9_;CZ5*AxcES;y5UhH!=+sF#2ve>>_{oA)H}COV)?zAh{{SqMzT}E<r%x}l((Pl65B7N$(R5IYEwRAPUq+%g^_8MG%yK6?YZE^{84bKdldLq zDwojz031UJaSg*Vi`(QukHpQRDtfx(~drK;bcrCqG=hDNGG44 z&KvTjfFKt;hw_I*=1F&LrgXq0=E`3)k~BL<(0D%%DH29!DrX^EAI@Qj*$@Q~kU0UH zn7w40oU}QHg|>;+Qq|9BO-5HQsUHvGFU!59qcNp*;B#1%sTqoZ6yRtgn(k>+2~tav zDh{8_EF{(|;lWx>1y4@>;Ug5@>6o_(qrEi|<&sp{OPHBz{@S^y@BBP1-V*0an&dpP zYFmC{q$ASs@@7j54^4}(9Yk8f_G>)6+;De0?ph9Ea14-6gg1Csw_J)!{{Y123tNkHZ3z&ZpsHfGf3I{<#AFGkm zNMc2i1)a(Hp0PsDe+8dqgE%dqi&mc!2~7)7eSG+Z2nz7GD>0OkQ=8lep2h=S)=Bnt zq{~yJkXxqw>$M_WGiG1)04>h`Jy`4Ut96E~MRI1E0!z?-c|(9E_`Rns0E9IMmw&WR zX};EF02?sWYz$kOaLorQi-SIw^0#Eve_H>D@ zmjt|ofXd|U6(B`&+q0uG+&24nF$CK}R;myi=lj5mzV|391ZD=AdHY4HUB+E1NFW;a z=@cKWn2*)6vgj(?Kzsi3^@z+V$hgfK4Sz0|1*1H?dP z+*5I{oGzwd69#cteJKR4xe7wuFag5@LOK2*g}THh0Mt@lPrE=9U(&NAGC zMuC6GDVFK21vBPyHhE*1t6tzL=v3_gi0SHXDXK|Di_1p9D<2|+@OP&_BvwoMabMzm9qUg2| zRE~G=^@O|o158}OFcMG=Nr~i56B1v6a?_EG0*lc3@cPy~x$jx46$F7mKX_TY?zOc=9&sXXWAI=8ZZYf}RKnfqIbmy2WHq?@e zP?{6D>-<5)mo4&*3Ru3R7ZK#ufRI`CugCTgn_DqLWKJNHm8q+K4LsnTzZ@k=bXSkO zR;LaU!V4vWpJLialB|-!Qd{=v2saYdsjrrc^;N`+fcDdu3cQC9G}5_oTg zBZSzCIHpleqVTkh7qIulH=NYu6=&m!RY8*EOIUUePm6dos{(R>0O~d)^WO_{F6D

hb#AzjfK(74o$K_c!Uo~1@FO;J%MOup*@zTa5kpSV zN@de6b=ZhuV%vz4qV%kBCiY5BXVY5!Aa%P1Wnz=zKZYu+4}ioH+C%n6yGA9JraN&I zt+;_SeLj)IyPYiDRmSkKY`PS4v2b=e4~$1EkVs~?-?VT8bUS@wI|b{#O==Gi0>pur zDWKX2*^mRboO4ejZ;D&S_Ajju$}iY$V5e7w`)tP}@#B$gA;|Y_3+FxP_-~aj-==yp|brD+YPN4mx%T?9jI{s+@aJ||8Zxt+7^(dDN+MnF{Mr~-nCdryebIBr!8@|$4Z8WS>|ELiBUcbc&pl zVA^bIqx;VXm`lc&qNS)Y@Viq-gLi%;RKP-fPel*SBE7!Kz=b9E9X|1;?sSB9JK}8M z%ta|qL3@Y=2RG2j^IFxGg}VO(-d^Xs>^vM20=vVFq+UvMvP5NUOMFOIJ$o z0q^^6RJc(}v1DRw>+kV-l?IM#;ghN^NF;yU08)v3H52v>h*?PEiFko zmHN5WC-dnZTvrMuhe&h!hhC9p&uRxSH1ms))Mwbl$*M}KHIBv3iE0%LXa?{i`Myn_ zY6$Tqbl1c_{b7R9cNOJW4X5u45?lKYOIkosWRe;AOufXVi;3U&?fQDa_$8+ ziLS{iBmGGutsoCA_Ee!osy68q?pgWVr($|{ZbWx}UI|Kag5>eHc#`d!nR0@N0ZeJX zoB;*CdV+y^AI5`MobLi$GYv=H5bqyI2te@-RMqEh(9E0UtpElAo*ba4Epu~#T!E!_ zhH{mLEI>aPqhke21O_0%yIt~@%4%y)34)3PiLR-PCZLiAs2jjpcB#x1pie2_b%$%V z^+^Oin``fn)8+|?SV#qd%ybbX1$E357=cHxNVAHjr5Q`*8=ilDU=|j{31cmog3t9a zBCTOdA$}kYH}^mc^1MlR+0N99mI-N6NqP?kCn{52 zG&+6ZCVjZes3)Voqgc@IJ6SUn+C6_dMJrX#nT6=#jbQ8SP@5&A*QF{cDIiePd_M6d z!DX5!GMgr#zq8&NZt1Cfqz49^c8fOo8Pz}%t-#U@@1QeyN=(5+wxW;u$%Jd)8Hs)X zd~VdMAI;&7Hd2I?6R0o9c+YPjEGg6D0BtfRB}F8f z>PO`v?ixH}h>WHv@t1z1_lmc^JD5;11p`X42e}RT^J5rEie@NgEur1IK}psmtpo&s zs<3Ln3N{P+XRBgeYCGs4{n>QPT(-;|-1gW&dkxICC1WXeZD=@x_eJfJjsyEW`oJ;z z^TS>iB$qmMfOj?6q^$bIxCN3P8z;;vW~DXx`{KQlQAc7A2YFS_@^V74~B2oOXVRu z2ivR##+a>XSWL1=ZXOokc`p|-vP?-N(a&Bz)rT9eDpFsE?FkrW`drnt#00fPKW^q8 zgrur~v4VCJS*4{!5}IqJebH>*Nvd2H=Wi(P$#=R-YXfgwDij^aS<$rfhGAE}BtS_G zp?2mFZQiodLVRAWM7im(=?#d$i&DHw-j7nAcwq;p*+hU5M?2BG!A2DB4@VOv1C>FI zSc;yn9$GFrikc9ja_{$X4`1`CqEX|eTVozw(w$kzpgJC5U_@-ml`f}1&B=kYB|EHx zqxOQ9%fB%s)NvCbNnjiHYC{b34qinzf;G*y{Y*aIN#K_i52Omau*9@XRP4q0)c(*? z)p&)0m7EP9^WzgX7)9ZT%*F>%?t@oljWa-Zq0m4pRneGH!uH}W;Ollotttdm<$s~v zd;FoLX8TY|nKUgxH)xa80VpY2@6Tfc{{ZfEdd#JY$)Ve@F$M8HZerl&9C7&2S`@7I z`IE^?LkDLxZ-iT)aw<|>EP|m{(Op|*eI5$ondu^weR+>DJ>%-bnvT16hoei9BusRv z+;2~xPGQ8>qz}#q5R)e#rdxPPAM3AJmgv8gXq?G#ja-IduM>6U14NrwrSl%^(pq(|0I}hEOH@K|4K&B`Wi9eo!{eic*lWcGGwFZ38V=$zLJ% z+usT(X6L<-uM3oyEloN^SC#FSa!?aS_Ky6#OLk$z<;8Y#^xDO8JB`c zV%-E%y4IZSOs?Vd5E9pN6)B3!HDWaB?}hu-6H=gnGdS0NON_Nv#P|9~cSaE_WzA6}0hB!gMuYF=3>F)fS*Z?o{o$BIsf$8H z$!Z>~BxW6A+VNUbFEe+yy8Fj*;a=XV9t@Z5C|2AaiW$Cu=LUR zi#Lta>m4~wdE2*mF?3*rNLFNrdUyLlJWYNHa>)QXgJs;G!L$aaVZ+H1LPLsIqjB|t zpVI;q8%jXDH;U%XURKq?>HBqt@pS};I-QAz0dV!0AxxDzzE1`3duc*QYLTx00EQ^o zZbfHsKy3-9k?9t#lNXuD8fn+3NR!gdf^5{KN-o=T?)XG@JW6IHr70lu)N1_nXlxdT z2AXZLj&94OB~Fk4CE2&{0TJ%JK`<-Fu`T|+`gAbNyg-r9W~uUnw}u&(uNF`hyKmI> zfYytVIhi#gf&d$8lB+^gl$@dHPQCt-TJH31GE%c<%$=WOzvs>vY}S8QLTc~l#9xt! zLSHq1)#%?(j0PQTV3JfBgFgqndvgG!lerNs<9;D-GP+1&Uv5FzjiR)>x7DO%CAF{W zetPM*x&RS)+wxIDwf&=%e{e7q6(fxz?dc`PVmXMg?f(ER$P}l%!U?9@7L>6R+mD11 zyChTlf`m}_*hh9N*$aBr*aH$?7m!U0kN_ZZVSr`X<)uZK0r^<5{{SqWfBW?P;1tV9 zn6pOY9+5ZvVE+IZn`vOx^Lr&BtC(-k-^vE6`j$Z%g+P8g_la*y4q@Wgrypn^KMbQV z0JAf`@AT^$Q(n2`c>E>74g0@dAnm%y62;w4-TwfHsU)UYDV73@SHDi9kqPo`wv{i$ z3j;qNg)q%V9z(o&dRvFG0OiC62ri~s zTe&8kBIKJ2)M|Q{tV8`sqv%b4XuW&hi78-N!#N_1QVNOY#UB|=^SAT8p+EroZ9Cl!|vKQx&SA6O;KgBNg^_CD_v#6S#2X4@2!H4Cjdd3=YuUJ-A6;lvN6sd#i8EpAdyu^52 z>idXfGjF@)sSX$csct_tglpp!WB^NJUFz{P)JvMeB%cK3bZi4*k7mu*XYqKP!y zL$*>WpzYQu-gko5!I)^(Ztua15~P4?00D>^L^E#;#DE!~HGB5M-~lD_)rS2cXCm_f zEhjZ!{YTV8OuI;~ydS((nRqhT4-wz(3c^&EavBvgfc|k6uI+LeHPz0K-U>;!t;^Ds z{NgE_!Fm?foOwZkPVd9(m|aAWnsoQU*4^|36Ctt(F zRkFziB$4$G!}9=e<~5r&0VRVRq!G57#i`fVs$NFSHE*0}$kE~aJW*&XG?t)fJ`D_b zwP;Hy7Ew=t@6>rkCEvNw?U%O$N9zG6UP+v!<}Q@dkP)WfweYm&<5^C!>8>9CrSl6JA0lsgdbHEhtEqI=1b}G(8(i=r`~B z?7lAv}xxNVE|f!BqpLDT^iZ8SW=i={KlvdnFm z?0n*a?=ohYYNA0U^{)`^z_Vt$kl>aIQ2IdoU4mqV5c8A`&c&hMw^ z)-$_)B%3uptzV?n4M^+rgGoaXUx}G8Fm*jTk=7sVmr{@uHA*CqC^qC6pAX=984|LW zAO$%!2dCpf`&H(FM*eVi*L0~Ed z}xWSn^jP!wzcW?i@Y9O8e-vkZJq2O3zRkLdhRta9TdsS_> z9M%9*RtXw~bZ(z*;I)qrfS(Db!|m1>?Dij2`LdDEPO%l$Filc|10^P^G#*b1VVC~^ z;${PzD}kZha`1ZVywi}m6wnb@{PK%-t9nvMD$r>O%e>O1Wk~TCX49sS;Rat;^@V?_ zE`Hy{Qn#UVN=&feY9By-CD*mi$T+s3eCCQrw-KK#Q)-NJ8ZuDn~s}@X&4%-es;>SV=9R>)*~7F};y< za?6&S&%G(%v=+WDWK9lB5SMqUR{sE25&GdF2|1n3K->?b!_zIw^kfQ?>sX_KvE&`T z5aV&!ktrl2Y7^680j)TlIY|!g*?54qtVE|vhRl3JX4t|9D^=hsk^p@+F-=7)6fWFX z^Q;BMGMO3O^xdMK47aI>%2WVw+r#z_cWsz6@3`2&>*7PG9Z(6JOcSFe}S8RcB_5_PA4lt+Ybw3O8?&wr#bU6z2S)NCI} z(h`BP1d1B#SX#cZkE;e)a7n6%#55Yc>?#ChUyEMQn~5%!6(p$Fa@zOeBaw~VcXFFP zk6M}^$A%d*5L1+~S54u1eX-@G8+6tzU6PUjQ9-ZQ-9vF#XB$8XMzc`Bu-pHP%XMZzW;)PnWe4c|7fl)XTp1nuP>*=(v%&nRX4e(^^X+^aIm zg1lgRCaEX4)*rrt=(-V*EHT|h{7=dHMSDH90YH2DLWRp`nxm6GyK%@JJG?mAZd4_S zbrH=xyFr5$(THTCZdH)V&{n7OXr+AOG|MCp4AGfc7w z0JuFr9y`1zgsnxHTYNK#7?zUBd5 zc;;leib9c3(kWQ(ZND-JSA{uvt#lqx8M@PmCFMcPGk&ADlnuTwFpw0QjbCvKwtK%k zl;vV`IDR(}O8mnQE%Q_XL8oH?M`pi5&QKlv!S5Gr7+y#PSxQtKt1iA!9}i&?j}z-r z(iv>l1?KVSbU%0}^gmrzjI`D1TAt_1o>5B@-fKu826_hGE!u459wgPa->h+JoE8#D zcUFR>yFjj`vnFWavr%UR6%e@Oesw=K9W(sgo1wTb=_ zl6t&3g(*ka{a|&`e<5BKjzQRF>GO`P)^yi0i|EftBVxMc)qwDdyg3yD=g0_k4LCeR z78$-Uq>$y@YzOZb?`ycxgN`i%dO=BB6x~TuODivJy7n+T3SH`!pBT(` zCx5{U>y>IMGSZyhFK7{`SJ-*OC6>i$LUPO@TT@})2n82)CW}oAzwH$-ySLY{C4iud zmMdOV9Qt$gh*fFKq3ZpSQXuFH-8Vn00fUeOo!D+--LBv307^&Ti04|0Wt^wPXnBQc z*HpqmLWrv<15wwpg$&ms!au|k2E6ov@@D|D1s;d5Pbj@Cki$~d>((Lv0FTUbH)E&1 z7(lxd7i_@(YXfh~tb~%1&!~81kx`Vwt~<1@T(%mh<$c>|cmu5XohU&|)aZVZZwL=w zR1`=j*^G`_?J83M7?!U9xjp#m(YIhsqFP(pPN(nng3KgSZOM{-T+{ymsb+q^h7VX2 zg&?d4VNRwOJtj!?h$fWK?+Tud@r(ZeZA)beG2hRV^ojd3gsf6jRF>#IunQ2{!b_zf zDxb_3UJW_(B~A%*O}fJrygY&fq#97D&>l$LwF8!lAgi|8kc5?h3WaIUo}-v4H32fb zEI|xIyZ->}H9UsmDBp-k9d0vu;CFovRF2wigO1IqD5*RyxEG!P;DrUHWP_hEsn^SxTiy|d=d&m*`qyXh z@JC@#AroZ?-lJb7P&*vK8i*vO<8@?GDpY#8-A{E|Lv* z*J{N)HH~GY0Dtu-w@7WVVI~F3hj-_o=d3B>PekHkkYy_^N{H*y3JfT|P*<^i3>LH6 zcs-0VI|EPEn3wwU-uFS zOF2C`^7_R}RNIJfgt@6M9E}d|%n8EyT`3_4cXO+8+5)E>l{HCWx8|_tgs&8+ZJ5=K zDc_h0H}xryyr4e>{NT;ki$Mh~N7wUcSj3eidD5T=;|WU&D@oD3Jih)=C}RGUb7oHZ zzTHQ71BvV^RJTvGH4mtU!DI;<>DB_;ElzTR0Btug0PHO=paQbnjrd^~ugd}^5VKWt zy?2E?VR|VcDM`vfe(khHbz*Y5D6@HY^5g3n-dH5G)U2(PvDx8w64)k7s!1u}eAq!d zp2wW4#id7BDQcbJAdfQ_?k4nFx$zp*7@7(n+CNUWwx?a935ZHd3Ud^vl#{45+A-zi z__gE5L?&N!DFvH;3=f-pfOXei2Ur7aypky4_a86b7O#8rRFWCA2T`~kW6kq^Rh>Kh zUybtmG+Qr0nf4uiF)76f$iUQSc@de5^yUBp%}3fQuK7_=55C*<9LJN(@;PhOF@8Hj z_3u7J#Y<9h=0W38!)@1CueNHJ73`2Qs*kbj7cH{@BP~O-kE~5=N@gU2koyoSJM`KH zF2n{(5-jQZb=$x?-S5v6(Uq&skomu2uo)jd*Ty}I^6 zn4&0Ii0!;m!?xh0smt$LN3-z2St|--x0lWh3GX~OW@S+JhK~ZTi{jP)0E`A|2IHhV zU6yA}4MiRoMd|9C>Rp)YtOSzdu}(^J%`V!GpMGNejB6}-31M3IiZ)C{sfQ&%>!9x* z-nbbdUbbJfKnfb9^&B1eg;bSSStmYHQgl4`>%W{udCUvcQ$jy@H)WgxLKW`o5nHZ= zDwwk`>p+`!7@U3-XxrmxkFtSPC zuMn*BWEEWK4C zZ-ttU{{TpFyDuP`<)=HifjFXEyFmycm^f2a_YkRrVT7ES0heD zXExk5I#Py0>Dy-aYX>l;u3#js9xVap2u6EKRH?Nz*pkD}0peTK%SofQoF6WcHKP1d zjS}hSf+-iQ*K%ftRS#%pNU(ZC2_7KNyL;nJ!`IR$%5>?V8;+(EC;B}|SaSeB6 z-kEKYIcelzkwxp);8IJY+6T&q@WJ6BOO}A8FdMs*&+H;=+S`#Njyu)>S?%)_)T8SH z7H_O?E<$oS&9G`7ug^%aaY_@>nAC1fPv>ZU#MF-XX@5tI8pntsa0bfdK z3KBdjD^`y|T0wj_Z$Si1ETCGVwE4Ur2$wOCkO0)mVA~|gGFF+Ol_yX3;EjF|8qIn-yhCzFA~l)w zrhHYo43Wj@!lT5$#)>B zJHChW-3!?>FGX1GX`hy3WjZ(@6Tj{IM$2fw!BSMsu}IgyV++`)0U#(DY07D(L9X0! zNGCTBtV_-hji^62f@zOSv}RC9H9qd%=#J1_<dFyz>JnYB%HaScczjCSWFs ztA8;=UCOWkIXv?fWnoOK%nx6F#t7Y)f&z^~n~feS+vY81o);ooadz>Cp3DARx;X>WOap{*XC{?>k~=Af;6&PLNXL!&39OU;xoaehgTf zbxWxLB<|lxKo02ic$5UGek|Hno={?4)+Ihb8){T^ikGG4v>;^}n@*pdBa03oIZBp- z%+J;wHG_Mt$0C*bM^mi|%~}oliWeM`ywh{I0I)pml~uiwX=$DTAe?5DVZos z8h{0PjuD9Eg2Ah|SUm)CE;P&)0+rL4;_jG`pl2ibw zSHmvwX#-#kG3x@BqToN6h6_cCQ*cEin;s>Ul$0cjmZVs+U1?A!QKOCeKS+}evRySk zA_moh*LB~upI>1^XX&?uDx>IQJY6IC7BE37EqC4vCGZGqwH4#qh zyvPJCI(v(3U@=QoztxJJwA{jOAY9u=fez27A}wCFpIWfMu%H}v>BJqvS3-eNBP(uM z{qSxArPYOI08+mR*mT?P1aR&YG8Cl~n=sJoIED#{FPP{I3SI7^qSYIAgRvBEOjR>D zqY*~tI<#F2o~M}TO9t!w#MjN0%2sGn#+7r{E+W)sB#kTXfRf#ISu!8h0hkKCK|fz8 z4Rv1A7dctSgr7g+D|-I`P@+i$vkv^kmj))zteG{gVW{uDQ^?!qtlIHiD{v5?Ghhq*9kZps)2JHWvtFxZf3`R{}VQ@Pi_p3x`t0bqin6U7>lYUjP>$pj=iv;pf~AOiM_3Q}HS%s`+TdBr5# zb1=%u`1wVt(=$~^^Y($3^{la%R@Z8C@`XUHj%W%bQHF=-9ouhYqy-aGLCbE3&LhNjKL>=>IzuY4eP4-M2u%)|2FL7n(V~sThlmL(BCcD53U^(o=E`VEtUg-D zt3q;zP##6%j*8vs63Zk8)nCj}zweC2fzy4wp*s1$Ru%v%53djMq#U}gtllY=8a{)+ zltDe8cIRq3wlQL4>C%G$l?LZQ<-8F^;FijYl!hIDH;T5b$zq`6cQ9e0Le!!jw5(dQ z$r8ogc z&>H-?l`q7S>Q=z~;Zhx$drVLTDINgCkAw0!Z>&LQyjL-RXBwS8aZd|br=S%qI#hJs zEvJ`XyfawkquM2pP0vn#aG|`iNhx=zBVG&!Md>Xwz*r!W?L!6YcqB0_5I1_0`K&DB z8{*DTSxIxEhJbDX=?olmp(ypKt!hCO^3|bw^N=Qk?2OgedG~=ga4AZ6L8vvWzKU~sll1Qy^5Suy+O4x@%|5PKN*$PedPCk7xe&|%3fKPtm!HJLG@HCiIhi1zXbs}+ z-7y7Elvj4r3C9S#YO>4@Y4d>g`{<{_q^T$2->5Lnd|QZ`0#CDEh56O`Rv^4eN|Wmn z^ekEOzO~=9S(E)>o(^zwiZZnRAnlUPD$FRywu7QiT6>_HZgd1IBaop?%;W4hcoTKq znaBzRq*wWbOPGHUp-Ldo0!tsxvHC^oCMfQZS+o&qb{LnL(lV#@5vYsyTc*sAa;SK< z@7Lu>dUy!CsS5-umD66(Xj=VR0xH{O6$7W*15E9Vu>`| zVJ=8_V(iAOIe3ceypb_(omEm!o?kfqX}M+1J|tp&JvYzP+Kk(LI2ccdxr>rF-6nN)I?@uZeat5~^>H7#zW~r3dR7~R&sK_i zNqYOVi4kL395`-yh_9LHN<2l0K7FCW1~;_Hz%%7~@eKE33MifR>(&C?GtvP{Xy%Py z&)y2y?Rk{XT?do^g^X>h6N*v^Dx=rh=@sk>n}5W3hr(St}_ysFpq&5Jt@Pc&w|j5}81N zvr*XoeBy}}=Q>)6D`fCEG5Hp0N&!bHZ4V8jz>HZYUSw{ydreW?{?IDQRDz^SIf2rS zAE?vhrsP!%2M0>luC3Wwp&o&Qt@jSNR?QrksHrUFynOLXKpL*GKs274287xm76+ z?r6YtNcfUmLQnSp09ViL0B>wqsU+&b^bhcb3r*=dT+dX++_LIJaN7~om)W;ux$e@T znQo;D_buF<*O^YKuh~T@7gO( z+Tr6W85ELMWG z=>l+d+a(2YF&#E-cY{5BMwSRCimw+c7M&pHs1F_oG6w%jgLsL zBMN|^vRs4g?fKo}d|7%ZBxPb+pzPb}^3=3h2U*k z2I*hNhBUp3?&Tj6NeOx%v_*x}s3q&J@x}9ctt!e#g{U~@E#Z{QOXdc<7x%vK%zE;h zE?9ER-4AzxcezPGQa}}@D#ip~bAfiyY9jr`D9%VrGa7cl&564H8OJ-b_Rfwc!MzIY9)ozYoEQu(W}NaKz%3l_`(uD&w>=;R^z# zD7hskPVr+8;mNs&teD_vI(3Hm`A{1u(jOi;WE`cU~+*1QgV=UvXVw%mJ9{$fd0+2_z=H`}K<$veEs32xkN3qjZC_ zEQ(6mMbblpD*phuix-uFGXP4HnJy^YLbLP(usqE202-ufDesAGH>yA>R$^1c7`m?S zRhSwDQ9u5dUeO)la#X01q%Oisw*Enu;D^z^@mAk#%$E6mAwJn;n1ux-5|?rY-b3=R z)oi;=>1k3%T4`4u{?T5IDlG#lR8CarUM{*o%zzCjMzAu?bSY9-Eq?z1zdljc4W5LL zR12$dsSs#Vn>5Z)8Fb(84AN{e(lh{o?%Kx|ySE{uRZ2fzI8b=+SGb!j!O<9e3*nWZno_ z%8(D<5^tI7LXwQ%{!hE47rPKsL04kn)cv5aEt|m#%#s3|^pDMAz0+hsQ7Hrs$35UG z?NeOHI+6}bM6@N*#1%! ztao~4T0-R$l<(j4j)2qn5W&*bY6&D}t2=dtx!3ZFnP3*#w&o_kZpHrqP??0JhZIYn z{;Hl#Amy^=O44$q1#&w5A!*XsvC2^@_D;0gC%Wx~EBiv45Pwu&v*9q1N{gwe+C;Y& z9#UNB`Us#GdRfZ7zI~8myQ>A+{h&NXy@-Y@b;`*qRaMhy^5nZ&CAWzu<=Z`3NPN#j z-){a|K+I8#RV_dSup?8UeRkA!*UBWdAw_SpVmv`+moy-(5ZlAis~1WVx~SEgGdT~( z?G^2Ja^x&1D5>Z=4zYGlRLjbm5l8<3U)m+JTL=R)DLZn|jpc&%Qo^$&fF0a#$mDi_ zcXlXI%|HMo4to3bgSUnHol`;jk1(-%S#zA}U^pAWN~XT=v;gL=7}M(&5oJuddF2-> zsc)wp#8wwFrX@fS;7}b0e|&j&;W@I{75H?^z~FS^CKIc>94j*|6w$;u%(5XwEheno zKzrK-0+gy<8`|Xbi?$1eBm+=eM?UBR{f^a{Di2hn2DzUb4E3(DXE`9Dqf2{AiBa=?(^(z|Z@IAt3vYJsLk+Z=$4Ttu}3ch<2I_ z!Dv^A07^rXxP#XfyD|Z4Y;Zj8Q`Q*noGzJq zxaxW7_jrp8Ps}rK)8p~x4PF!6bs9rXqqkX+l!3>a{h?OPV_E`~%tn>hv^B|Ilz#DA z{IKRrrUg#HEjNiM>#^b%E%sTe8-vdtaNTCJ3IpdCXUs}NFa+-kn>w=LbuDhc7S%r( zG^`wu98iI;SUjbrAggA9AM-)qZVO|sCS2?f4HedEIa0P;C=?d|aVdBtM-z4auq*mDchZN*wsWpX<}`_l0y zq;!AJj8jdhJH2!*q-VdkT;m|h?IeOX+95Ww9;Nh4Y9fWA(eC)f3$<}0p0$PE?V@hc0YK&r9Vw5 zHvVHJirDQ+Kwx{9+lXblaXOPut{aX#_k{GQQ2UQwvE8QJ64fEVsMGL5on3>M8OnCu zt{hGj#j?J&poiNn>Im0J`GUcTRFW%E?(Sn!!x+&sSPg?7{o~vGPs-czuM_fr7w$GY z6wq{UI3sIGQV+lnnd6{@yQOkOKru9+cHRcgyn~niBc+-YISL``!~(sP z5QbG0uX!B5yGYjh39m__Vwkp6@u`ndcc);`rFGtlK^il&YI;M3rdc2;Q0h+*lUF9; zxkWxCg&t0=(}?|KyaH0BB`iRp=>qWe@TrSZbpuGZYOoZk()HJ&`$9HrX17iLp=l{r zRccG+etvzch<>%yfbR5|UKxTB5OH%V<)FarAGz0J(^5>azr^P^03?PgeJ7 zNG*k}(&hl^1?pc>1;67_Fl97%71;cUFe2{4UZq5GUB-imAtk+TRF%3;qKO|^r8e0* zUx1ea80>d=&gw11RKBdQnDhBV48f$%RK+J&Nq^Y;;`RRki9K3Jgr>CM#Fj&lR2mO4 z-UVKFq`9Le;OnV`LbB}%QbLqNt4@T(mu=jX)yb}{3l^&yfKE}__KA^**Ci}nfYgV6 zfWU9q%H&ki$x#UuZ&zYWQFs;1P%KF<2Q=WugE?VEDI+j_#XA_SV7R2&<|$}G5=eJW&9?`E zy*k8vdp$vj?5kI@Dma0*Yed452qTCyClE1nzMYRSPTM6bN=&czD>pQLIm6R$Z4;92$^(y#cYR_7s1zU-5vk+6e!%uwzx}bwo`m)KaRwQ7)rJ=@^%6+XX$3Il z?gA7DAzOpLZiX1KCAB%g8V$GncnOFurUGJh-|o9ETJUr zr)D27tX0GoG)w>=e+Cc^w_}+!0WMDbbvzh`)opKO-%!E-06gQ1qXQ%;7R<%lXYa%m zpK8dh0B#4s7`jd_JAB0{DQ6nGg%UcSkcK(Z6H*c!)ANq-9T(_#V9oLC6s=d;Spflt z{Qh=?YBOvrM8^qHNMruJd-m-ItoV=`B?bA5H-)h&2@0V!>0KhyEP)~NhtdA9NEK}e zQ#-}k6P-15mi#di=7h0VklHBQPpzUAm#^L!b9q{W00=p@iNTGFM;Du&2 z`1y_?#kObwRqEbQgR6b&3TQP0;00rwrr5ydKc8)2RiSAL2QXz&C-crM+iiXqN?eL@ zNC1q&2^9yX-f%ii-iIlpg6tXtNVmBGS{LaQ6Kyh{U^$!R3fwms%hAD@ptPx}R{Wt6 zZ_)l2T&&rcrI{*v{Jyc(lN7FVgru?8Vei@x-P7`nr^4R|X$Z7g))YZeN_*`QUl@%x zbQJ*SN>rZ1=Mv&eA)c(LBmyg=7WqWq_M%8iS;!3LzeoT^62)p-gSbg@t(qLIbM*l2 zL(u(UdhElZS<9E&G=fU9x5@g#IHHU`m(1s=JNJuL`w9|s266ze5h^F8-CeshSDkxG zTd@p{PSoZBj;z>Oa~+fpg*y^F;0^tT6r}`~WR`w<52=H;JYq_cgc=$W2j;PU_OZDH zmOA%?+2W1cVoa0_txmrfuOi>;6wFv1evvhf!W6HEmq;ULvLsMYJ$nA|VYrrsW(9*$ zx(Ksny@4euZwYSC7G{t~g`ic10$P-!KnI=RBzUTHz>r5|jb1C=x2akPQ@TY*+ACXe z;tKMFx`1Zszi2Tga!Of4C?ior=g5Xci_;ZlSW+7!_<`h8%y)wpt5BW>L6(|o18Uv> z06NWQ!*Y^TD4=TE>lSW{yh~nWfCiaP<7N<{lI3D?XPQA3I{o1Ei_vp}N(NS~X#V}6 zo*==hy=t17X>(3{_Tm+N z5?*r_wJKrk`U9bd+(Tgt1te-e3=@{0#Ib3=P|v^V-^~1e5oYd4SalXIz;o6r8;KIZ zKGABxxwd(S*`OkXZPFbftLn$<)tM^HG$0+sQ?cJEn8EySQ0&pg(S?+xpID-kvrre> zD_ZQxlB%#Gg#5o_ybzWz3`j!qx#7s;Xty@;&I%G6ezg#njIZM9S`$Qy(aj>Y*L_W$ zGzm#5pmKG3Y|YN5BW|eAhwd4nNgSvS+=htS&Su=>@Rn29+%Yg#aJz7-VN;+ehNv#Xzflb){{YCO<^*UfyKfD%EQyvg007@+`@;44Ef#>o+8R;} zBP5G{VVOEMyF?5gwSBhg@mfTqDq3=-=-nJ~73^wSj@?8$db=v_2m}pv9CQ!F7PH%! z0DL8!$5$nerTxaS`uIS~cOBGtu~hSB%e6f=_UE9U*?`wk=LqK%(IE8hJxJ9kp4r1_>Fz&wtL{ zw~h?Fv^7?N>(S301XZ`<5CIawAbz3F@B)4QwD`+VQ+MgRLNg*|WFVJgub#1P`J59d z?&IOS1F_z@nQJ6CsCs;&u*MSRD&u zCeL;tOsRILr7H#H*}N~PfI{w8XDXpS$os=Js`5erMpivK!GHqrv#1f`Dh}X%Anmqc z%HoRn4v|jJDC+fn_8(|1I!aU>g8=UJr!WGIvg;EKeE$G$hAn^E(zr1s>twL7Ly@5k zyb;Qt3?pM#MdqTf9;DE7-2Ed#k%o}47R$1dUEQ6|jn(NXu zNh zB!v###j6d(pz0vMJtBp@g#&_;;DF^%pdyUjOK-FozA-n1c!|&{hK0T@rtpHjrt2#O zAdpKj(V<@Mkf}>4Q<9Z?L^)%*E%Sp?@0p3JLyxC1X;<1N02|sYPcTricweC?00&bX z-9!nq;scfH4#TGg7_66iO)}7L5MKCWI5~Vj>~`)Tx)!ec+DyrLN4B5T+8zPkBf6{r z1DV$3zR_C@;qfdKsaebB29!Kg>j$jolEdK)1TPCCGDtaG>;6r*Lk6wZM*uk)bnnMl zlh;f2YaqBuEnWWr9y7ZhD49BEfId|?)qxv#=?oa}%qFF&E=4>{IoO|m@j1Jc5)+!D zkiC6kS>k0I3qf1whBO6#MSp)koL`^h1I4%!j<@{ibvl}k=RnCb?P z9L}3808vtWUAz6F?ZIZwRHYWkA1E*Y%Zm#pYO z1daLpc$+j0TuKO*5T+_f@STW&m(Bf^c@q9A5z}}jY_$n#NL3Wub^V|miAXE;jhRf( ztp?mhPJp$o0f9^9A2!pk^AxNWg)AJjIup0P4alGC5CKmjE8X@`fKr{!dcY8&Yiz4i zo|+HNVq3n%xo&d;om+Q^tv9k#tgYfYn71agpwfukpw8~*@sCo!!}2;6b+h5M39W+`rBUI9iih8&lxiw0}gt$3%o2cA=>2 zgZ@e+fOw@&&%_(JE*nLdg)k^`NoO_Ojl82wl`q0nnt@)vQAY8$Q72LH>_j6h<14S% zp(;{Bi$4rD1NVb?4F@JuMh)A)Ffw%2KS$Gn2Cl0~_CPLp8<=;|C&Y98T0t&rwxjlh z^vqoKF7!Rr*GmG?Y{gTfU+ZLE9bi zE&M37-kevsvhjt-HY+3=#3l|yp+JM-E!Squ`Avy>*9)WV_q%P;$m6QI|u zb$rZ5QWwyUUOTee1xO%1#KPt1kuy39i-1TYu8rCt16~+=#1}0^fpv%HNIfd;CRkI| z*}lKTM}}EYCbVm#c5$!Vv}>~=Pw+7&;t6mB3L1xp!vb1{WAHKl>k}QyFn@T2uA8As@Rca3^;gfVMxeq(lsQ`mgIru}TN*L^=v$-Ht5x-cw=-T~ORVhi%9-Y3CHKPd$ zfs|Q4Xy*%CrP;}sF0N~vZr$O128g>d0QHH=6sqNK;sResF$w{jXMc9_<+}Y!nJEAb z&*u>(-(dhdyXb!K810!Qa={vnM?K*^ck%?`ETxuB4&7_d9ix+Ioh@Zj{7ELD{V5CA z?A3b2%vy4s&N=dKX$UnNC8!r3QQ~su0Za#2sdU>3W%{;3NbdZ^w#$_>3lp!rd}-5| zcwxA@^yXG1@vr<;nnsX6K&del!wAk08n_1sv*nn1<}T9n!=kyO?-Rtasv+ z{2hO8BCVw6TPn2Qj-Q)Fq}@rDGL281QeDcWDvKz}X-9ZrC9~C_IM;?}fau4`9t@d5 zI`#O{2;R0pSvs-teh6N?@RBoXYI6rQiKc9_;=GA2p4F#!j%Hruq^b3U>)Q-YDRitB z_EI`*Obxs2R)@+#`$F1H0^nS^gaxJQ?som4&Hn&*AxR8!kw8Gw7BG$8q`q*(Xky*x zh*F;kZ9yEr93FH!ML<}#Va24J%A#uK8n8X*>ZPs!0J)g>PK*wd)q9DcB`I|% z)#?E2`K%nf3R06S084nd=z0+hP|JPdysnT*b{fEY%KKVWns@K^f|g8NQ8(2P=@swx zgpWx$vDcbaSh*Z@8xaLeH(9S@bsw}sFQqMP2o$64+c)OWHsQU@gJI8G(0BW^v)vfvM@{UM}b7;4vD*)=K-r_-?W-Uv&ys4pnc*1wwZ1Z|RzP#k78?b0hQ?8$ore*6MDSfM>S}QO!JDBu z5YMQuFT7E`#aGG-fF~_!UEn19)er23eMijoiElg_nZTUNNp}_Bhhp6Aq$b^0G{H2b z%90LK*Q_4KG<7H`Isy$}c(0fvRsinM9_Lw?HB!~Mp?&*wiLp)GwaYn8cIgZ$SZ^6< zoprG9eQ?(cyeQ<+MIRf56HC=Sf0hHG0;D=Uy=OiLK44{f(WSGh!ts^w8~P3nghf%e^Vzl zYE)Qti{H}AAxKg@Byj%jJfO2r30MZjHF=hzC~9;E&K#!8MM{)(@`Y4MGD(!gOVlxU z9sdA6gWHqkX)b>lk=ooC*m~6SCYaHEL0Ns~T7EWS7qXEC12>$@NCRyi91m;Bm z09KrQpwM_cb)F{VIcH>=*eBr|;Ndj3? zNN^9r801e%k}?{Q;2oh_^(#!~%1TsQzj&7rTnj|J=p`v_35@p$ZsWPi3W*L6I(bFQ zOppk4vl?;b0dUWx6ndbAK4gLb=g;pG*l|J@;%N*jA82yR0QHh^smrBaD2!5oNGN>X z&pl}i_=6gvsg(J2ai?g{uN!2=7elx@zN2_AFVL;h?7WJRmytUA!^WbcI=XosAgW^8xQWaA($@?(saXD~txdt%L{Lyej3SZJ`>~dypz=#_zc6 z9#5aoILD{q@O*{uOY)=*Pr4PYSBueFK9O2&;9qXg4$*7{RUQ*Ud5@dt&*#e8_k4aC z#tF^0Bs=ImlN9d@-NQF-pU&_!%yZjLf*_ta(ia(yiz1cnYRnnBUIcH8d~dV#OPIG1NG4;wzc;wXD8Fg5G>#B(}P z`*T>dgob91EiydMJt5(#Ayi|`5SKoW$kGRq@8T!T<;mhF4_A$*pA#G^eqw&w@^91aMzSB~Vx#P4{ zxpb`gOnnuG?V!{vZADx|+}lGjO+f?Q7_I=mRKNxd8Be~NM!$!x&q6^BK_5%_o=MA& zK4bE{c|~trFc!-U?CKkyk$UX{T6`nFF(NJWU=ErOsfnc6&RWs-G3rN~UVmJLg%<&X zleleP=^6GjzSA*DZ2;8t(ikn*GJ>3FsDkgoh*3VUl@faa&_kC>t>L9eS`u;&r>{Kw z;OwO&g#aF#z?&732=E{<;s~ncIdcL@Vp;$VaapoWQ5%rL01w6 z<%qA8Tb+3V02*`kjN0_Q)}c(mw-kP0t{^<=48i++B5q9-oMUlQJI!6(JO^ocB3 zg$u}s8MUwGyh5$rc&S9B)!Ytat98btEKDhMumQH^`or7o&X&t$vU2l7&y*=!u!pOe znFqplYPVSL4Ft?vzMlwVzb$Nn!RRX0@`@#!4B(^ys<%xb4kx-*H6#Y5M|io1tqwv~ za^}(v5|pS9!wA`V{-R1WCa)aNRPc{nr)m=K`+TENQx|aHR1QZTP%#$tDbS;8nI+OZPpeS<{*Y?hcnpMPVnb8pG;Z!7ddiSP zmmM_h(PsFwoks!MumbWd%TmEzSOWh5EjQ=19zq{cLHYKNWy)mfLHStyV8n^a5KFo5cvhV3bto`Lon4uhHvbv|(pCBD5{f{uziSG(~ARcWrCP#XUL!scLLND6v< z!|d>Yy@uMEsc_}v&-jP%o%fD##vS!32`cTm^NUx-{Fy}|Kr*Nsm`AScw_!p>Tn0-v7f$tW=?b!%24vBkbrvW5u&3bQqP>qul>$2hAhL2n96c7qsS6{cjc z33uyQ&GEh1wT}*O6)5%UKJatVh7+2EyvAT?cRj}=;~4Fnu|v4RV%JG#pCS9jo4h7e zvCDG)_=^zP6djzCr{~fkxiGB4Gbv0DF`;P1<$VN8%>MoQ2px9MRidc{s_7b!I5mD@ z)Xb8k1`He%%n8Ewujx<_JY`iRYB~s4*m^E#rlOUNhk_^2^0X0`b7b&?&OxCkWpPY;Qm$w&AHN$60Z`8ZUivMK*|HU z+OH4`0a}4kY^>ZEc&Cyq$(9)`+WDAHyi+k#3#ft9f8rf)b)i}YKd3W#y+H?|fL5EV z>XtQyVnGpYRHdbqR0#sSonZC#jQv$mkfk*N-1FFL7Vi8e;3-?w_u?sHX-O*%ohS(W z_rZXfdE)u0AgNv@7bmCYjnXdIaaO@bg~0jOh=U*5q?u(!^D_*!W21I~o{cV5WnOfW zHgNRlVjwYE@k&&3o%hj??;Kfhh?tj4f@`~Zz?)6g;w4DXk8m*WbmEcflmc0_Bx+)) zQo1m|sC>oAtNv(Wy!*tcfRz#f-{k|2Et;~VtJoBA`B-4Wmsm2%>fpAo@`(bryLMFN z020nrK9HL`6)XiLXe#7XLtU)`o-HUuLn6kKpfc2+K5)W2hW#ZDsyG?G;w#?QGNzEE zEx?Get&HVlds;C3+91IeIjKVz1ngk;X)eo^66TVlnM6Hcjjnl6VejHCTW*y&S5Ltc zU3V*oK77Rzt=V=H;>>!%YdzR=I*B}X+B~+~Jy>)Az*HT~Qo3)YEnXw5lS&9cZe^vE zTZZWrF$y!wAdPlCbc(i&LoQOtQim?_UeAa2;|L4x;2A5oQ_Z4Gy+cvx%pl!cE4Nnox9o58Cc zkO0gB0SUHy^hpIM1xf|`jy&igZx3Vnid5AuQ64QTLC_z=?}fM;!fY9fkBnBmuE{I# z(4W+n->K`wDA_TZrpr=N6qN%-R0y8qmbWKL*LN^!E?!p*tg22y<*WYDPYvDDVTVZcnlo03(C*E#@2p=&DFvA8=j6~e z9*@CK_UaGMyk4?kT!Gz)sQ^3qz!2LkXi*9RqO~+Xyd1i3qM|6|QP0{2S#ISW9*14T z8MUG{`<0a$$tQ>nqBrjgw6gu3a+5zVsnN=OPUPL6esC*80+eX~08%<>=K*d@-C;-igs440*|{TFWs;zv2^%;(#IkI`Zd3u|p3q@v zO@`l`kj#hpMVVI8lE72oL|t9alv1fB*y$-WO8uk1TC_o7z2!_%W&~Bv{`k3PzNILT4wPtADqr)~q=f9x-=X?KrPpV*DPant z9nRspZv4Y#r6E-Z*)HFj!Q{+IONM$D(ijX#64R7{UG^Pfoubh!jI05F!{-+-X(epm zf+)?y=?5~10BYnv&JkdCB^jitC{AKS0w~0B))FwT3YwFcl9RySylGbKQ7TeW5}fZ! zQ~)^qbJ7Uhw%KzAU1CRrCh07K6rT9x`ZAORp zg4d0wEWD(LZep}WsdiAIm;t7{L?TdNG^ze!LdA&;gOx?x&=Xqm25#I}Eci->uIH}Z z;&vF#p6vpp&=&;j{6H*SJ1Zz12y@aeTIH@{fJ5coTLI6M3deVH#FCLv541IIV7H=s za$*rWb63I`4Tz;;{iD_us1FBDoRbx>Ey4l;cTpbDXC3}fUj4rjDI-Fvgp;GT{{TS> z0Sl_-NC8S}Y7HF4@A(;g2n}OGrlB=qT*q>LUuNqO{{X@ce?8Gd6lK~BwdYgm5>1?D z5V7HJd4-E*>FcHdK_T?fhsqq}U8xBUX|dWUf$v)iW;&8UQb?~@Ljy6Z@W z{=Q9|1>_FS;QKvc0eeCbC6ZDH0N2Z3dzGJt9UKv@HT>tf8q$ zKbyeG*qv)CXX7hJ7=rMbHfb`_S=yg(#)B9x?m`f!KiqOuO<%G3w@5vngeK26i2(T7 z$LSqRI@zWAv;?FI`(OJuznsT5K)|T5rAebgVaDXFB43R~OitN%J;%q&AE0HkpIE;i zvNUdf4;O8=;FV>{qFJ54INB;AYC&}Zt`aF;r>3!X=dha0CalTKbWBJu*zSe;+}_AK z6Tg1ZOBZ07)8--8GJ{srdXL@@TBJ-f5~4ss+qWHJt}ev_NjkDamiQ3?Rhz2hOrX>y zm>z#RM^kPRgPa{`!&m`e^ni(l1*=W8?*=cs=|zL)<+QIK2sAmwfTmE&vZWn`a<<2k zc!=%`m42vAm`YNrAsdi1rlaT>bQY|VWuXL@IfZ#JmY+$1a}z1gg-nsO7U7$(iG*bU zvk-r7v3C5kp$QfCfS}l&UMOEyc}N30P)NSRl>xAeXoc+bb?n-00|>9i)seoanccCZo!MDl@Ji60zhyJ@x&aw zX3s`aP(T&(CFTdllJux1jyr7xaLSg|9! zlI5+~7IR1Epo`ZPq$YI2r0jj&IEirWm@R8iqgKD0!k{w=Vf9H#GXuRz0615{!R__~ zQ9nHJ8^q)B{*d=&m`xPorH@GR@3ToOQiBx(riL5>ccqk+B!N-JumcQQrY2#};txj* zNaxFKi$gG+tke`|)}I)P>b+$Zkf1@+O21B!2Uo46D6&t9nYZcQ60Enx&s?O31bAHT z`v@<4l!=E^P~A_IS(Ag#V6`pFyA8U0b=>*Gzza6vn6;9<0rGFn;ojh|iD0vYpK7~p z0dZC*GTYU36|0@V=pcpHdMRnB4tIqq6|uG=RJDYs*&?j)p>MzDt&XkX=m%ZQYO=0$ ztwa=#ONV|yF=}ncDGX4M`+_#;A$(OS0?%>yLh8rbdcR}G5XvTupcIlCgYN~^ISO=v zpz#K7#C_v|YL>()xNZk9X=zqP;ILR01o@7U1-9-Xib>R!ZVY>ff=YluKl??yon#OR zeSkV2I4Q5rSoL6NK-ZY3W3**+Sen*Z=mTk2@`xSsx4|7 zAL1S;=Qi<3Y_;dKP`6%L{{Z;u3-(J+ty8=GI>$=BlU>_w!)x(|U5GBi6xphHjx0Dj zQWcvmb?F=%@1>I#gSA{a6WNf+u}=}J@7CO7)zSd^Q1D^ zEGfzYtF%X>DvL7I!7d+1f|g5%)tt($8_dHkjz}7S!{Z&#k`&;>8c{Z-J10&yc<25i zX(2&pP~+(ZrL?yto#;MMXZq5ebu|sd0ZRLrmH|u%tC$}xB?&48#-=Ua_E54*6Hm%V z7d_g72rkBqG^8*Sbl!z)1OvY{gR-w7`l!cGv`Ke_p{Z=k{FT@^{>DnOhpJBtwBU*3B=>;s8 zE>obd!@LBs z-QRVIfG_nOd-RIhyEGS#^&In!B^0fF>;@BUEf`Zzaj->{A zGkkpDb)wBCT9Tx-E3F*!6a?%x0HjTd;=+RcsdI^N5LJ1vd)0l$Me5qr@r$2Ar z7O=$i3CdfNnvRY>yTZ~q%(DcSr_{h~Z84FVA&N%4{%9bzwVWPzj;)qtl(Mumf{RKx zYWbZuU;a7(^`>7aH+E024+Ldd6D(y-Ic~5T(v-XI^@JB~(&iNmtOk$uF;@J-z@^lz z%6)l$V3Lr$g-JfhcIGNbzU7p>!&dhn%7|tQI`1e_3U(R}exrYMOK@VKpIR419XkD* z4%jVH)R#+^2VZIW{WPQ`T5fijNi;q$I5rYF(w1i>MZ#anL#f&rXW+>zQf37ECquv9 zA+}!%m=c0AwG!HSo?v9j)1;4Cn5`*y2S(rB5)QU&5=9UIJP7dJ$qrNl@5y-2tR9r5 z`sAd7L9V*={Mrs)7=W!rhhw(`f!YlN_N+V=M`5wjEZtI(B`%uPl-h&Iffrrsq`r6L zKBw&i*LjTPXf7Sd>%WnMK-Kqq1-bTGuMt@73MqCZ9%y^l-vjR}UW3Dbu&-Qx`64Ly{i9C?x?GB(GLfhojS;-=6rlcqL18f>QhM+i!Wko{q3Bibxe5tPoE;RJx7T(`sX;!5(gpydc%DMPr6 z)_bq|iC{K_u=>Zcy&jO7kN#V?5Xh;B?M@vYCZ!>Z2i`=ZDw4!#b*}8K4h_x>a zXPTm_B%bu=qr{SM?5Tb^Laq7shC8-3dWAKY8QWlz$t_IbPFNt}yf4_JUhAl)D4QsDR zSU?zy(f9X+Uj29Sh)VweKJnml=gXbC_c-vJVy&XxvpLc9iX|O?V;9vdp8CWy z5nT^nBPqqvDg>ingMDMuXV>SqZt-O@%Mt+Nq;{J#hNuIL`+m`^h_y);C#a$S03L(u z9F(zY5zk-R3C=(r&q~L>s8lMUyyCGs5B)aevvItBRhdo(uuU??nzppsJhUTlS-%<; zgH)FxwTKiq@}`aZ#kr^O?G-03CswSvgM#rC#e>=X@#NC+S!4k8EuiKIm3gXd2CrR% zerXa|=jur;Xj@;|_lm}FI*z$|nBi7{?ljPi$$$yWyoEp^fS_jXm)Gwftag_p{0Fo* zuf`V9Y&q4q;C@$!5OTt@Sb#LIZakpFm8f8Q)TeR7ZWFQZ8*SHZ%n+{$(b}4C-ac=` z_QDhm0UsFJaCPG4x>OD0ukk#e9$yy+=5X1k`z|B(N(8$de(=eA-bxb6(sps!!l1KM zJwVvQFZBSUD5KNMk0|#q;Y#;(>E&|t*HA$BvzTpT1W{^My&}}OipC2NpeQ* z$6w0%Lyhq*GST5B+9+Y0zCzrQnMS9Ex232Y@%i!)T1@nWsp&%8yep#4 z?%n+Ng#wMf+2Sj01v!hi4ZP1vi;&a@=@xF>q-7u%em}>h$XrZ+le9$$4tZQ(ygu-T;d0lC)+uchK?E ztQNB;Rg}9^r$Bgx*%yq|gParBa~H+pu`DoPYI}X)C0pkBQ-C}#w0^^OWRi0q7boQq zS!@YfimOVuNF`#s#&N)R|x;vc|+$-xg(AK`eHsf8ryw-Dm)xFD_sT z)=PL;s}do2-t$7#0!a@-Ano0Dfl%;9&tw55LWh(2ya2Ck#Y#gZN%20rdG?MiwsN*w zM~U?xC?k4Z$(ijYqf-P_po9h;+lWSr?wX~Fp}NJ{wskv$;U3e{yoioX?3}JD2Dy3b z3sdj)rDXV)o!C%x9I#^ilN6I-x2AxR-0%7HfOwM)CTfE##G0jCL`KG`<;4KskIf*> zj>ndYHAt&z2*UpW;sn1Eom}RxyXOnmDVdg398|El_ZS? zIDnc2s;0WPyQEi_W+Yelg5IDemC~o4(4lX?T(TaV?+naSWF#f>xdNIy!sMIOg#dg3 z+=0w7U8*WbeaF1Q?frDj&Xr^=58;4}HrW}{!*)Gmt6m|ODJe>-$%{%Xhe_F=c+Bq` zDyA#MNJ!K9iJ=9v(g|5pct`2-<_+PciIq^Up}2sFz>6x*eUnydo~LT?IESn=as&`q zw^)AZ#kuoBQsCEN&o9;qT4j?d(wxU|4&459fH;E62_@M=y*&7iCtoI7LaIYCXkl{C zcB~MhY57kmhWNb-Rsu`t<5BO3X5!$m5|0%QxORngal&dkLxP9V@yh>%I zl3CiC90JDP!cDniQ1= zA^b=hsp<2mH5Kg3FwWBKMEKNM!@1fevEl@wHAz)z7H2Zk>honHl&J)4f0*j(xlooW z@fNS~3~Hsm^j=b+p9}k=o2L3Ip{HG|27oV=00GyuO=7ze9JksPqA44klIqZVyN-OK zmEmM{WoF%urD*2f@DZC<1;4GpBfuhj8cI`$H7u z%aBrp0?ffbNBYNCD&{R@w}jE)>afx?f=j6A`!o_ILd;a4&%pm7zXXE6Sc}r zl(K2NYCNLG7`CQs?U#N?)wynwpid%VWr{sUn+O|!V+^d24Qbu?h%dZfB?`+zcdr~k zOI(3!2{Nj;INFga> z{=@U*65Fi`Nv`x9h*Y@l1twrvs{%Sa8=h9Rf>L}m5aBIPn54PcoDRRAf&^MI1lfoQ z2^2aHzhBO*$&?E?A84$*o%~1u4o2`BKg2j*(J_h48mS=Z_lHb7f)o;;Sggi{-V8{# z<;oUA?Y(2GRiugqW&HU;V8yjvWxP7`3%HFFWs#N0BCWR`{bJRMY`~&*9dwI!dt%h0 zbxSlLr(;f31uW^WNEdio1o?pp<6W9N#By`1RsdNMN*1OsRTQhWSE<%ddPTI7@VwED35iA^!jb z0l1Mf)?_6_u8p_y&l=U;d6|yd4R#S`;FT*m0U)oSsDkmH#+UG|%P}PS!oxKI*Z6{0 zjkPjYUClv*>Q9YoRRC8HCZOy(^@o7Tm=uFb{5XY6%LvSzT`E#VUAOv0 z$#Te+&T|1nU(V4k8o%b{GKo=3y?N+&e&@;q0lTm=!d_u@B(QA{^Yroz_`Qcy*KCtgt~cTUlJK4q2`o8);>j&zBZHel+xCTwXKf~kbDDw;Nx4k92~jl+ z?X&@U!GwTiJ7v?JzDI~$#kVZ^lSixbtsA#6$#AJh#7QZu`RHQo^pI0dkJIy5Fc*)b zxob*H&uQp(AHOkG9*MyvNnJ*q2zI;@a++i(l1->Ny=y(hWz=$&L+i-QW9O-gOe7lH+Sk%fdo_%=jRky9Vq&lOHoq+QpJa7 z_EU!)9@{xEFVC$w*a;TS>MyE{NcKx+zC5i8&EhV*PAGCRB zx}}g5nh{nMO*Hc#7~*uZJwVJOB1fD6t19Xx1eZ}YB<E*;g zLv&%M9u+VR+`s0ra?y6nmeo^$=ZgIz?r|Xsav15nFJa5H&L(M5A;<}O1pR-QpaF@o zahQEdXf$!j`$YJ21f>c}lvsgMHSW=T;526{6(LUiaRue9JLm?&3<5+cDoU>Si@ zfPUoj(i5Hc~EYKZ5=XedqDzr;M01{KbNY7>52%TsK zN(efYGXOqOq~5q}=SqS>8>E_3>j!N1R7x3u0G)LF5UkQK-B?Z7FIUs2equa#aHG{Q z04Qii+Wf(ZaSu{A%O=>%*RV6mBi2=+%$tOdSosakVt zPNSy)?H6qLs#+zb9;}R`DByAUVUx>b$!2y^YD2cv+(nhylBEX9wyW_FPqQUJs3&i0 zaTIPFKo6H)+u`R3E?+k!#mpI01hCrb@fG!WtQ4gr<}@v!;J?#&vWpz|_JFVB!9-!y zC6-hat!P1SyauN>>RCcbAgCSn{egvxb`oE$Ox(c>PQbk?$vpXwq!z|E`9cUo<{U>@ ze(fw5G?Sae{P}c%2;7$n=BqNiN2Y*r`0@J@Tm4G1owo*^qP69X{ZMI0Q4DIG9y8m& z5h`MjuAzF;fE_6Q{a>CDG+B3=l#oCT{v-4Giq=d_fT9@C>e_rO9b7kRQ!Pr)!(qSi z6s~*5Ux^?Esob59oK&Q%c@!1rMF{rPU&Q1)o%Uh0AGmKcDdnUPS;_fV&XFy)WRiju z7_;f~?F*JW$q8VCLRbf9KaWU6WWFXDXrZlL_Yj$4xaXA#xkv=jS~%hzEtWwrfh9za7gfu_Ur;RcyX?6s{^ij}!mP;~x!L-d>9!okXqF&x{G0XfL~ z{?Q^9DymRdpoB`d#Fb_RKod{ZQ3(TI9jMO0NcuX&wK1W&$r2GUB zVWLIm0Pu%9n5T&G1i4`=o1vvP@5gfju-&AqI*S7S&q!PJjUr^wl%*z=S8CVm4@}u~ zUQ*_TDFhz7{(YjIuE$@jQ^HpgWT0!HsoeE~H>DC*%t>J1o#6#BW@zoe0p0f61AkYu zxfSy2W7|^6O&*ng3@c7WyKS&kA0xxSSr(-w&Zke@LWYl zIT4QUO8{&H{UNLXWgr&*tyaC}T|Ctb{o| zcss}IlMo>Z%DSkU5n4w$hHB4MqEcKbOj>|Yll~*WF->;!XhM<&H0%bx zP5HU*O~&fZOPya>y?fi!DG!y7?V)&j9$d4NBqu2ZXhDVSV`F9JN{by+x0Fz{URlm$ z1_GroUvvhwW2KcQUQ(YEc!ssxtOcgrHF}wDN=dDH4*Eekm)x?nDG5{NXF8XHwh3WU z#&8@5AaBFuV-1(wBe6Xux)Z8+i}!Vf-Fygm0<04ArAQ!xG$Uw+ZVf3y zvnxREbufO}eoH}e7z&-7@d$VBE>zW!4}fj6KuUK-+dgQ@mkCLA6Q;VKv@^-L)h#E3 zRX(S$n?XD;I3)mT=idbFazUZ^Za$GGg{fGESV#oael$z}04}MH#5fyq3wO=}Dp|=e zq$s-@w=Q+;KY=Bu(Zs|fGFC}qb^3MTpt}YP+;^#%r6iEar{Rk;)h{(es5Y8@@s{9Q zj?$|}=}xP9gXIo*pAXLVkljUB}s=wYvu((GHb$H1}-^C2B>AT(Is1+`s@nDy`)H+ZFpEK`!4 zhr~I5gZ0u4;OVC!N{&_={GX&0GdsV~sZ7T+2^pNypgw{a?@Tu`Nd*Tw1sLlOvZn)~ zcprP(0AO4>Xj7mBoYQ<m(}2H=XH&g#A^IQHM;XcL3VMd;ByH9KCy0} zWSz^v6WJ{a2fzZk2Y6(-Yy^)G^5QIAw=!j*fmW-XVmVius#M`4cGN@AC2YEoQd5*y zec>uj8eEl@9u*gObFf|ke#(IWIIf)|_2GN62~cgERfjG0fWs^{z!F_GsB;u>%;uP) zT#X!taRzLvK~8Nz)b02q+brZPu-9f0Bul(6f@do&Rr+5*b|<&Zp{EaF<*X@Fy|sK# zJ?RvrU9v>Nrt!NMG=jF<=#k;Qh3mFtbO1Jw$w2@u%0YR?k z$`-F%(92#_xIqk~yZs@`P1f~?BZR)7V{l)w__ci=>}3}+~$fW0YQ ze{VQrvRP4=K%x0aOT9fEr9`bXB>0ohU*Z@vOhF+k_JOOukS4^e)7Vk=<)DqvcbRAj zQncHoU%4eEB}|YCjW;yw^63RP7p>rwQM~sN1%Ww_`tz~r9Nw02Rx1AhNan;!OBx7Z zO4VjTC10op2Zq=}y}uC5VroKMQ(`{+!TWj~WL7_S@h3Wj0cCZ@}e@JKT%)lER8ckJbnxYf#z61v!Q5HS&FCLd1S;!&j zU3>EjclFrS0;f~Q1|1Z|X}rQUs#FMnsULuMAO40>*i7fWdTF&F1Jfe5JP`)3X>cL7!go+QmR<_%U7g6CO%zn`<)h1gK ze`tpCwG64O7ED}G+&IsOD@*n;qP(7v^+bZGIvFY;#@k?H;~gKuH>`^3AGQa^}a znQJdi^@;7X92Y0;`$c&OR)v^v%zXa9VCAd#Mw+c@mRg;_Gp02sOM+e z5$dRtA7Ovby z)XQ>dx4t}QW*e92+xHD^x(zYPTTYO^@^ZTz0r+r6)gy+)cC-8 z>m&@cs|TleJ2qa?M%f@AX#++LpzGcog+eK+pXX5&Zwbm^U6|%!1SiY$;A|p|rdz{_ zt}KVkcisxv&`*RC=TiccHMQk}y6|Alj;*(7MLIcM(g4Z<{WU$KO2HSKCMyElz;w8lP{PM|`2~Zn+quVeO0R(BF(mI~M zR5X6k(IW~?v0^m@A}mv&1M~y`a>~ycVhQhD%1ur^=uJ z8Xb>Vt$4BsDbsP*4FU)NwJFvF+7zWsU>GEBKPvzZ7m*~muQBYKr#iO!m@zi$NNl^) ztB#PmxvNCSVNNxG(OTsxGXQE52Y!(AJz*#WIS{up@ytVt(yhD|m10>=udm>O5{f}r6E)$oy8pK2xyJ+SCjw^ z2C@4LTa-abNjxdpy2Yyv@Dx;q8h|Kw9Q~U}j?a07t?2&%b8deB6n2N{#Uvp_9NT-LzSDZ7Fkt@xD3xVzPgrCZb5B&snU0N6G~*Qd_8lH;z>$+w*u=w%w;Pau(mpAEAdp9Vse5 z#4p}=e4wyNPl)n8!|N1rJ*i%-BomsX5%MvPT~ciem~&_Lhz6`WgS;zE^ns8A5wQ3~ zs+*Y}Py*qfFxm2wGl0aF1hfJe>mqUxNgKdN8Ma4Dl2g15wHahr*-r44igD_NokcV) z`SgKak8uH=XC+=GRno1SUwjiwS|YIkqGgQDp#A<(AO7f@E@(-2QPA(bepHAsf(~*{ zo3@SgA`V_xc6o^^9YNpU#0E;mm)z9MJ{AOde-Pn@QmL{(xCLr29wOIxOo#?fIj z5)qIeW|X0Rqli)f+rq|xf+@Xs5FYKrfq$qJ>G}7AHoGt=FI`-5#Bp%lWh|`JJAL8M zt^WWHM71TT<&@2vr$&mHYT{hYidwF8>|vhXg=mt%{(IsPc&b$ZHQRIeS{36DqDC#S z8$8UwyY34DcxdX!YneGAL^$~NgO=+Orlnr60!bta(e^*IdxP$PfI#z4^U z%*3@kNgMIl?H6$blu1H@Kq^+;c0N^#_ckOZasa1wi^n3e(*9?m;f7Sy=c4;zy$&ZpbZb!7z&G{2tOnkFNEP zY^oZ#{$jMbZntv7h`l6NJyuq&T+{Pck8f-B62X|Rp@!#y1ucq6aswZP0mL{sPAO4V zRE@bmo5Y0jv8q&@@0FT|Z#W}l#M$T=gZ17P@5~y5FDNIDo!%(j7cr2|TnY-lyZOSC z_I{Udd?*3+jOSl>=MiGWyz5Fx0)d9d^Q;z>`1q?4c< z7^#Nu4_NC}2kC#!_=qpW`s9?43+`b~?8B4&kg5Z#*Z78X-HGjBAxTPe5*<80!WR{J zEQBNmBk=4f{{Wl8wcINNI*ETcAuu6@9Q!7X3ka=wu3}iMvQ@^h?T--4C&GVtJ9*)d zv8_H(9?R&}8G_2l%b?Nw!9`b_iBJ^8GrJGGR~CR>KnFh#v3C?I{9=DZ-Pl+aW?EKcRSgF9>j96hVy7d+?$M8y#wNM1A5;n!Fp1Rj1++kvby)0i!8 z-p*}*h+wo!LaG2(&U!;I=`+gZrzkE(PQdUxM^{lPIZ3Xs)-4Oo2=I@0Qxe)10WLTM z@7e=Vwn}msYfkZI?Xn~+umI3`h`V7*bftabApU?Py zMzu-te%(66_=fBYmO&dmAs*wn7LZ5alC zlPs6YNhEGe92bF?XI7rD5?h|}Jg->re4obIS2*d1_B&j)w z@oEA4!!^{gI$l)`4SKW%5|EUHhb_DnyKfYwBmwPw;DOF2y_04@01`>|dUuW`;;Cyw zNLO*Y@%zL!{2~29fl)N3yFjTPib`fNSBFurmw1c1X2o8>&<(xuPVl>>uB-5nHGnfD zs!Gap1y{m;QA&N~FoT#7Io7>DH-~7!X}2O&0UjU?3>dj^>eW@NO*S>skShjT8#8#0 zq-LRkNAOOX>4Gc0`v|hQu05AlR74sPORfl%&BE~_)BLKABsZnxj`fh)i z_U*d@RP5(Yf+DkAb4bh&HP=oe30RG2@Z}}JuEDp9NteRMLkse4=|sY;%!bOKcRaLG z!}h7ON{C4SY5vi6b;K52jcMD;0}_~zTS;IrtMk$-Aqq}lKnf2RZrfQv$d+Ng^n?sy ze9tQ(0G!XDG#yUHyTDXp%WR`4io6P$htV=%QK{RAy>MaGAp_PIQ#)=Sm@0Cjt4p_JK<>f@{| zfAokY<_Jk4LntHjNGETx%T&OX0Ia$VULg{t=1Ne26z{VE$@zZ}pri}__nk9WEugRC z!`=_RQi(O8Z9cIT?zvzP)zD?6`m z)=Mn`hy{VAPeBKzTvEkCU7OxF9bjGaiV~TD(obsFdi$bvSRgGlU^m{SzFlHF-p-Jq z=V7ngK@nk#)7EAoJ`h;u)<0qk5FpUBRujvU4$DfEq=r(z9y`CpxnMr}p1oj38NCuS zI;xXKKR>h&#df9mOBE!Z{l9pSr+;2(EI@i|$@)Q@DS9j=*rzs}H!Nd|j}8gCWh}&j z@rKLR<0{I8oS+Xls#pnbwoO~9B7%5%ZA1`!DrYZ3 z+hzK53W1B;3#nn0Ky4dGie8Vfj!A}O<>m}R4uBWe-AXiHx)DFsBrc%pNoM4o-YzO( zC_A=*Z}x_1t#bAvvWx9<+rjyAf-oC>fUfZ_{5n)sN+K2 zVSvjmu})HwHPnb`63_#bg;KDaWw$#HPTKkOhdC)uPz!Q-gjGd1qEwQX$nQ>&5mpSV z9<9wQ^d>)EcLIRU6u^??Z2D8+TbQ|ru0?_tRhg*Vef;488$u@KP*VYxrnC{A;hBq> zXv&2sj_m#Zk*Qmz6%3`=(>9~Aj;8SB$5Cj!8+HN&g^*2PN0=I8jqH-I|Egpc*=Gx zb~-z43zzN?K~O0LCEPZ?=m&P&(=A!aAHRRRSGRgWn7M?@PR-Vvx70%#Ws@dy3Ca## zL+jlAs{$>vC*@F9<4$7z-H2zD=2&yFe}RMcDGHc?R2j+mKv9=r3zVi}vnVGuTXXzI zu_jVdmd(8nJ@_L?RmArJ%nC-DH3U|bY?xUhsvJ4@!%?!{ft{k_67BUp zNXvJc!@!85Z}T?z_f+8O(5PCzLh+cBrx6UtXW;z zE^0h=%c4f2B)XQFM1+D8cIr8YgfV%{pl|?+L1|aI2U;(uB`W5JX8od_uEwEMmmMK# z;*Gk<%6*IUEdq`Gl|&Qa6dhU!u5m4xllAB!OA^|`L70{xQAi@As5_1$m(9;6x;$KV z;DxH(g@QvUs)D=q?Fp8f%%tTd!b~R2zL`fN%RXRBfnGX@hyGPdIkOiORcd;X@TQUD zbMjjDyj~m^#23h6`bgmG0TXW^ha|t_M>mo)GJplkA1#O82Ne(-LJ1AWZeyE&Zr(gc ztoN83G2og(LujVEJM@I)S^(Cx)anm0YR7*mEa$_gJska_eqW=!OjBK22hg+CxgTKw zZIk_$B!v<)H~8#E#2OekX;MmaA%M}wudD;SQsGphjX>0qx%{L>qD%<0USuiV)Lb3E z`j|ChyaIwr@fRRhPM>%WcuWC_cMU{`Bv|_?&rqZdO~#2`mp$ z7p)V@!+dm%g6_p&v#U)BrD6Wz#OW*?KRWxP)A0UR9$h@oFXHmy*@Ef2@}z=E;;_qi z&J4_&Yu*)AeFktM&E04x=37YgCD#p>dl^UtPN7H8bFu9gEmv_mF@3b}0fl$WG(WsrQQGk00dO1SIcTG9wJ+Ht!}R^*+m`ZN#dxSTug*HeH<%tB2hXd* zrU5t6{I3#{YHGtr;w|C4B`#l%W}>5k-VWVp8AEDgoBGM%cO<@?#DSmc65bLSz3?vC zcY4v4MxO`o#00Y0$zbdWYHi*R-`0f4lE56mcPEnYh!Ww#Xq2)_-Mzvjylpa+pgmYB z28FdX{$iEDrA(-&BlEl*vRKrW=E~G=&_DqyY}Bj;r!H;I!Vg|}RSOx7SUnH9gcH83 z2vTz?!RKmo*Jv4IwiTeI+fWtqgAX69c!F6Tt&98&558=HUedyNADf6#wP9;Wnhd8Q zDt?EkJVV8<;+ZiaOJKHR3J4#EERz=CsJH1PjX8d?a{a^xQ%XQC+Un4!l>&Jzcd!Q{mE|SP32vmZXpZQ%y+X8y28dnuLK^Te4sB)8Li{ zV?xm~Y?FeubgN$6LN#nvdzT3ecYTjYCx>hfmQZ3v2ha0|g`8J*sRS)0z^iMfuM=3Y zh?5Mlb}wA zq2eBb{l5JV>Xe2cx0f#hFFZDdk&#AN{YP>-0tg;p!v*to1uPXeL;J;R+U!!8B9BUR zi6Kj^LR_Gf=pV(un^FeelZt~rv@ykws-~6Hq24F0Dx#pW{fV0xv0x znzV|C_a2bJhA@=mIZy#Ra!J>-M_5A-%v#=Oge1C0$@;_X;b<((PYp&rVM8NhbWKWp z4(>Gk(mPbitCCVd3u<&dIf56Jif|$Fm-t5(WGK@yBzz&lQ1o#vNOUX=z&UtfyyOh3 zI;)S`1K-yo(xEv7J5;?${iF57CaucdpTn?dG|RSo&2ra}&=olcj=efYg=4dzq$w@X zh+M`ON<1r2ay4kPY_ug3!oVO6lc$_7Ko1xKnSj)iMw`PW*=|bG0)PcNJX5n?X_^9u zkcyVeSW1|NaQTD;V!Wmhg()S&8d5Wxiq|npAP)(lJA>D6bqAbYx87v9PKu+}onoB1 zYaYoUHAouyb%kIu;p?Z>=5d%E_8)li&3AgjqyoTg7H(OYP+i$#=oBER++hK^^VmI zUa+Z%=Vbr@#XiaX;fmu)LxmSAI<|vmi&uq(3Qvlx?E6J#kz)j6Y`~^ss+S#L)vD1k zG|ibR6g$9Mg5#7X__x#zSVLv^aS9X?2M1xv{h@jYu#|-y%xd}_`$cQk)TwLn8b>y{ zlO-)Hl$WC@@xgD+W1C1#rP8ocusc_t-?T6%Vz&v2EXAU=hS!y4+;R`nGpsc((Po^W z#bMk6=UrjaWvN9$N&q>i=wJbOnF>n%VNoM&v<;wx6A-zQlA+>I6y)`b*1Nqc9R}MT zv07EJXaPA`3LV&O0AIT7o(~hGfkUlh%QfOaDN~(?G3}1|3Ir0(@gGKlw>{jG;uUUT znvI1zkAdILCzE#|mm7P8aeFL~Q=!tEdB6-mV^As?$=QzD)%wAugO`QhDs2b^r+zv_ zQs*TJ2zGrT8sB@(vrJZB8dO@9BbaEoY-yY0S?yZFf;+Yugn)-MFTm>v*1PItxw&Qn zcr_r#zbZ%!1wOE|i|nZIk{zL0rBKVi0@9EL2;1u&&b#J0DI^XD);zf;B}sW{VC+Xx z7Nt%lSq(S)K_(4dvr14ys5@&Ph3=PNVRq4q$jpEa=|6tZHwYjVsJoDAIfGP}AKeRD zlBAK*puQ5hvZc?DkLOM3ZFj@aGGPyn|4Kq<)cQ56f@XEh0;O;^m6Wb|R5nICt7_ zC1Yl$`qn#KgH0<0CQI^&jHBFf9iJG-RThT($KZpsPGrZ443o@7;Bu>E8`N(UZ3Txh zc5OR0yQ8O&~?S*v+_l#94`D4+|YRiz`c-jeY~~%yOGITJab+idLBpM!@@A zh_5nHXVCM~3;LMlR#U(|;e1a)Z4#SLj)%NbwIqPm?Xc&{3eQ7O`9&K_HRDg?LK zjZ2*=&zOoUm#<-6#2cF@96(-8&yBb2EE?tzkqk&R8^z8-ZOh_TTo*>CuQ1h{m z(%0u!Anx24WNy2s2PO8`ST%A?6x=_)6)xqr+fZ@d7_16rtNh+0GqHP(#|7I;n{PL0 z(WT8lrnIQ~#wUPpG6@{}T_aq%t<04YU#~Ir--YD)aD3P0aQN~v+3f*|AO#IRzlJ!q zTSid&zK!!cK)WU8jKeu#&OXo&6k@;~C?UD&#Ckg6!F#@Vn6ix7b*JwV&bwyIP*PM+ zdeRec<%Vj>me`5k#d)Cu ziv*~6L)W118T|Vs#LiUR$#YG5_k&WxrLiPBvR&pNJu0C z{{WPYGFVBJ#Ehq3IDXBZ*l{zj;>vua)_NmrgWD zU#d|CSp&ukSFc~kfc={+m*O6T6?~7^xPjLDn9P}&mTh@2@{cXpURsJ(A!$s|Tn&}e zg8J(NELfUhoS9QR0rIH*yxP9-9v!fqUl$b2^2!ukQO6t@VpYh10*krS$5JeXDt84Y zg1SY_`HK+<;Xcpk+r*^>v2sBpS0;z;4Oc!IOtgwS>}y{=w*&12S8Yg82UAc4PkCBT z=?q)n1`ut&ayCeDx7I7ztmJ}o77zSKxN_;vR8(jmQ>R zL~8p$11DVKVw7FGZxPtA(zAP7A9#ZnqzQh`{{W30UD>la_I0MGr{lmD!z5G9{{S?A z_vNW_-9fT};)<55*=m}S2ZSGHC|+2n#7DFb={s!DwDB~oKor@F4!ejeWWG_NG<^p! zi!w*8m{8#$hwTiwO6152O=|Db5FMX;!*w(3;ON1rJ>(rmT z9KNp{nve%3CK}!Mh0!qz%SRP>2#h#Vl!-@AY0MeIcg}SHeUtI+2d!Z!TQCoyA1Gy| zn`-7ED1E*$`p&bSn}B;BAcd~^PIe{Jqj3ggN=NvPU>XlPQdyMF_3ib7R>Ywx3IH$^ zps#3-@ViqpaOwE;@`3j0B}fTNu%P=udh+YDI8im!fy76L?x`y(Dge1XYrTGv&Dsfc z5!~>2?HyR|e^Lo0>h1J~P8Wvd9L|tY!L1-&iv!9@P?j=*Q`P?fAKe${Um=`meBca> zPO!3AcH|8_;08lsOt8VnAnydO>48Wjl5)^<*}m~zGYr&%O*I2n==~zptF4l9>%T{Y z6|nu8D$HHVNpIiwfcM3?C0-gA-+#P8b6L!#DK1OYo?QGtG>ey=!WPTS4wQYk@4PXN z)p!i0Ow_3PQ;xg9`vxH^pbS4WiSIGs@P`79HEyjPSa9G0^>OZm7OZysiaDy78+GC& zu5+rX1;1{Qc@}V^mHz-bm`TKVVPLD(P?8+&0BHD@@8Gdl!HbD z>(3@MDJTu2Ke`6q7dsCHcQ7k4PU@JXN&!Zr;|mw%j$v3(a+j-V49K}k#-%D6Jz%|p z=gJ5yYUTn6vgXJXrvPerfD)3mPVlT{aYMk@-w$)FfoUoCK#LX$QdIRP=?02d#@6E@ zNFeG#q1qpAsRc+1b}A4D5c)S%;9X4GbLAH-Hd&IA5L8Z3--atd%H$=hRxwU;9JZW9 z7{UMt+!!e*#}qG0Ht z{eoCbx`0bi@zw)Pvz4jM2F5H&ygWrZ4rBDo`bo?)GknA|Swx*^Abr_=rc}f0NDSt* z9Uv{g6F4C*N%sTSq%7EO3A5MZQ33s~d0_}??p`lSikaJE#4lcWvDe`lgR;8*H@-TX zgOrfTB<>FIdhWXAq$MmJyiNDtj-&>{I#W08%u(vyirlGyB!?$cu=_z7mncF8P|6>x>A?}rj=)glC-Y+fuMBWf zqK-8i9acj;CTQFwaJ*>dJ3>$~$4P7^R*EjE>zV7FFc{e9Gi`$fGdqR4Th>R}?; zh9*dvo=Bszw|b2`MT|*2l9FBa<^KFb2N^bzMG8kY`#M*h#dFXvy);gSpM355p^70(_}KF^8KXA2XQ?WKBtX$Ef#ZGES4+usTn%p`@ZEl#f$ zM;)P=qUNwAND~P5&SdLB7B8i=vY_7o0MEvb?NbVJOGzvM03AH|ix%s-*(H?KZvB3d zG|KpM6y-S-2_n7V{i^g*hzX;B@EY*A0w!k(+ikp|Rz>ACHh@qHkV_YK1Mch_yicO( ztxQ2mOOmQ+AT5gAN3~Zv{?Tf~emTmj0jo#v>m`D$#10~*7>!mu`G(t#yTZMv3XH^q zzn|yI8Lal8&Xq9c747!fsaJ`GUs`_<5r)fWD3;2h1*`Y#17>(qr>nZF^n$ht;?XUu z@89i6_I=)!0*B{Mluj86&5X)ZL{VFB_+h%mX;P3BLlPa1us-I(Xfs%fORw6He)XG> zP*oXqO8gm{Y^OZ`N~n`f$%9rB zjE6`*E!;t#IVE=bD5F$S$x`@+SN_MVU>BCSB%2)k*xW~qvlIUk!s z3o|Xu>@yvX?F*Lc)5Zdw)O6CFM$peH$|a@Lb7d7{QQxEvn`TVV7R;~GK-;fUW5Q&q&!-dB&648?a)HB6fO52MT42v1DE4y zy<@w80Zhsz&u%(G;xU?+G1LZ8`kztO9i*kvoR0wnv)A^52e+!ECR?0|C!eW+HrdKU zYEiHN(~l?zdnHPnEz8OU%6IdN*QP5{A1Ltit9JMg${GzeNuZz}ou8ysztDhH*T=TaOS0JDkgxPPr8Fnn?Zrb8@3`?QZ-VJW5s_d3fIlP zWXXjICEqH0bJxloEcbM@EK}N`uBUhZn3IMs6qLma1}U^fO2Tdg5MB3a6(V*8F?VaDPuf5xGXi6oL~Q2ca=>^M!lK$Snj z5X5(^)X6{@fm)~u)RV_8?}dBX-Rjch67(($9(x`klJ>wy!nKzosUPF_KK}qHt!c2S zOp+XOb{zd6HJmqhNhr(%5|Oswf1F>Fb26PplR}VaSZ;R)j}_$1mn>ui1%adwyloSS z6lAquQvp)`H^nD7Or+2f=DA7W3cGGe*P6BKn;QD5B&_8m{-D9&-I~RfBq;&UA=|e| zp=iO#n^la-;sCFOy(lJfln5jP!w2aNqIyC}Xa#a$%RIHR0~HT1&LEZNc*{U2O-R|G z(|dDW#V)2EJ^72G$l99o(iLUn;CwX&J2eNNSdR6@#YhDzuAP9`{b14>n{vv0`CW}p zq5DJ^z27cjNC_GB3>mfZ_rj(M#_3eWN?KW3rOSiZ{DV9jmw7bBDJpi^zFoA3g!1^q zE1E)7prnd>zdjKSpV6vP>urx;d=j`XIfh|Vct+b7)%xv7J$zovBPwO(rrUXL@Vci7 z_a+BQvjwP>jS}(QvkRtF8(MMmbPic~s1|HLY5FRPmW~7h_ z0jfdyYZq@R3rPhB!>9o7^ni8@B%vl8cyq(NwY!1%FmH3U!^K8^cFx6Uw@ zDzF0`^f3k9Y70RrNJ%??lqchiHE5ZXO8^($*bU2SdVL|vO-g0)Ds-TyO)L8d8*9H( zMpT+Ld5Rb}1|nRb_J#>ICZd^7qy`yyT&b#oV198%U8tmfH)tn&&Hyu0k*n_jZMJt$O%F~YIb2jP z-naf!Q9@5f=gu=PNVtNj2`o)@qLMTU;o;8`(dw5Ku7Gsw7!Bz;VMe5aqDa)SCquJw z9v9?!Ex7hS8^<$N=HFz3=?<-q)zLkpi@w|fi6yDzTVeI$DI`5dXWhR2V!ExU(2(hU zL;KF$);KllLm0LBZ>z-1O+IIz&G>-UDUQM3o@NZ#ZOH(F*?@ZL0foKeMM=m3-^+k$ z_#%asAu2hEDLhoaZXk@=iJ9P7Dg8jUygWhbob$&N-X{AF?6U}{C!UYmE?Do^6?f3M zub)V$iH%yCux(xlqDn~6S5gN3Vgf00(xm_>`?s^_)+yR7ik7OoAJjBGy7L6AvZ^S= zoppALbB1pY&g}26${r2C>ok(iH9Hf>-U`{)?EFCc6_}+&olApPrp#jWr2s$<0iY*% zsS5VHCR36Kt5C%oRH6o52rm28w1Z(KsysuD;tS%$3PPCXgOpDi5&c1^s~vx6J9J;{ z!A65ZHavadX4ImZ5MSdHB5N^A7y0iQ&R31tzFcQ0*6ut?;01hicy7Y??rg~n3m z`|JBfE3*0%Qk5j=#F4A@hHIiyRPU*wKSB48q4D{6^ODDl&&PQ6V2zsb1UqX-?E`P= zW{L!mD_@jbOt1?LH|hLADJ?*zP#YN1xslwj>hm;si$dmjKxP#@0R*S5B`RZ}q%Yhv z(o}P+D`^OjE^5$ewQJ8Y%J0B@GZgR5KRlt5)QLmHd{m%{lP(DpnM?^y3D9{(8BX)P zl_hC1$VykJ1C0Rd*H~q|F@Z#+g^wAiXVa`rc;Q4XAS4D($C1H+mzA;S%S`0>QU!E= zo_|9TN&4)*X3cPrR1Hb14=7@~NFbnwBU9E2*)KfD`$!2%3`nB`_|P)+xK=z#_!xM& zCy1>=S{_jaKrv`ax^WcJz1)o%$9QV8T{+O|%m)2nW#4uQOUyLb!C+djUd}*O2%+Tl zj_-MiN^>)iLmr=anBnrJdfr13^@!JWg^a2tpYTH><^KSSM8t$75T^~m{ObkeU9&{9 zmyQ=qEO2A7Fy*Q*2 zv{{HQ`fT)gihRt(Fs|f7rB&{`;0(%L2qd|8uKkQ$x^Fz&cwbnpdEx&6T7sUNP`@!& z(#=guVlj5opnLV(;+xrOVFM8hnF77xp~`axkh5CVk{F(s{N4uL%2*}IBZCF)Hj=PVC`h4zqRBM`S1}=v5TPYE#Nt^f3=9(} zBsm#L8fwRS{9qz4^(2th9|$%Ur8ZzvHU0eI!v(vnPE_h8sK@6A?&=Euc7X}C0W`31 z4!p(dW#*K&#r^PfOBUPMkjz7G$%R|X51G>vR6#=!#oQhJ{{RR(dfEY$NEO)SnZy%If4ye zT}j+R5iOGN{^%x&Ao-XXiE;RsF(^$*-&hrUVicNxiPNl2DpaKusd+)sDlGNc_u2ze zy|JxEYHifMjRb5UI8Y~AosUTF-+`o0E>!B=B+{OH2$scgCQ(X3bd8J76;tLK-Bz(HSx!0t*Wr+==bLA8jF$JMhWssDTK&jdJfS!*r zcsZn622}&$aY7-|W#*Z63`Vr5>|ibAgv}|Mke3zEJ8&X&FAI)ZOQA!c=@viY{bz)Y zdE=plq+Y>iw{Fqa6Od8u7w@2p_L~Y+ zr{i%9$QPBQrfNW=opth!7^vk-)DgL?XL!cwR&2gn@5VXDQW|0oTvC;S_C?z@=Dhx_r_H_x^Jr+FG$n{7zdljKg@$$&8oq`WZI+dT zR|Dba3viCJrlcb|_rmo1?Xy!dPXN0?i>(sYl#JP_R?+&1yJ(pvN}DYkQXD)#Y7Dbr z#4c8R#|DVQ>(T2_kfszQZTvxeK{y6#xY{leTEY|w4oMY%q(_SF z>>F1A9*|>ze4yF$>_4ne1VJmN_X7O^ERu}t3Q<|*QfI0Ymq<|K-F#Y<)1 zIUy)Paow9udO@p#>;(9OmZ|)wx)p;%Zd<-#%s>QX{aV0#iw~(YT)3@z!zJx4a+Dds z_(jXA*7~!W!aH2v7iLqPH6S_S0ZJ-Ti&6IG9cE1ehjA6`)-jkc9pb&C?aXDjz35h= z4PK436~y@KpOQAdLIg5mnKt4t+O_1*FXfmItAoq^mJXl^p(_|fue?C!i zO^twWXvDK*hu^mE7Lb5b$IQc!ty3;_?Ee6o#~~3aWuALSnS?48!YlNSZ72Xae%!?K zX82lwhhxav1zYWkprPiq1n66eLFm$?riM>!5T-?wgJ^`RQ{8)+3!o{*XaOi#mjj!SC5^)YtRhSyEv zl;i*jZoT_LAv*-X`-a#-TQuXh;QZDWWiLYeKVHy!=$>7uNfhKp9P3U#nob6{Hly0n zqhPqhq&augaTq1TX<{nmXa_sLXxs38?i9`_7)Q1L0MGJCa=cH?;k}$M8>J;6f$WL{ zym52k*%JXdK~dChI>D(3N`_L+vwa{v%Xj*vsOF=v2aZo)-ad)p>do7Ai8M%H{O=Z~ z-3pqLngDvVS)VK(t?nn7;%(zb38?mm9Yiz|EEqvjCmhPm{>xRg-Oj#Ip)SpsRUz7~ zx85jNZOJREJR7uGyfpWNSTKnv3I70iEj3H{p~hvkEszEc@qpJn(vnhW{MF*&SB|>C zWvo+&vxiAwXh$)fUVe|~rA;ViNos$O2C=hVHpUE;ihIfXMT;EfNGcg$Qa%u2vP?0A z?I}@p6si0mznm4naIK)sLf)g=?fKRj?RT=heqlxcKJeKh)RiU9y*d2i6%4}>-V*{+ zl#*4L0szo;;B||Z8}?+PpIVZ~bGN`l(r%O$X9N?u=^WnoEW1aAPfa3-oq1wWohu|Y zA;!-?HA0*ya|k$-(XBmLRVvPZJ>SF!^mTGhl(iya%R45nz-hkwy?&EuIa{w;iBSnD zA^rWj#Ol5#N zzb@3OU{ZGWxGxP?UEq+1Q5{luiWi0DDJcXIsn!qrU{|IVVibjVh~M+<@ZN={Qgzg5 zXx)E5nXIT2PzWG`J;D)jg{etcmgPw&UOEUj^gWp;T0LS^CDB7py^qQ`xo@7^xKz; zc!w9SB2lLh6%hxX{Nh6Xde|Rx72g=ME zr1SELC0HfPSA+)}wvd1w>2?$-Fz}Y79+7rSP|ySNiz0egN6Z9f7@rWTT;da$gq;KX zpLjGiGiGG41Eh6lw1lLVa%g$-jILj#B@wCM#oLb&O<#qy)2RBz9Cdu#N*9?rDZx&m zx$oQK1LoPS1h{aGxIJ4?V?wdvq-4%WdXNQA=SU5BT2yp#urU@EyTjI1%5<$kK|naw zj2)P;kim~_A#7aps<5!_r!n2jYEV-xf#Kd98k-`QGL&kao(z9ZK@P-ow`l6eWdOdQ zlh?|TP~S-_GL%}Z9)bJC7>Ggu&H&CF1IJFI_KH`P=5p#E;$zDsr3Do0*O4CHwj8Fq zGsKd66x_)K?Y7^{5md32%>)LytYFtM18(sKD6p%-L(-Hq@8twNNqb&`SxX&Gzeu@z zS{3TaLj$)`e%izrWzLd-2_(H==>u)o$E#66OO1>Mn&Gs}Am$8T-a35WtQfT7PgFcf zJ>Wf({LajhHh8&tNefF5L$}NQm9RI;r~Y1%?T0vWclF zC5!g$33tjDAcUZu`Z?-jL7QhQatH&a%^$4yYF0>?fktQFtSdDkcuI1o$#v0MKS=iU z!UNbiC7Zx9uggNn+sp0}+EN+PffcD<3#5W&U zIcBjG*Il4}`G=)WZ0HIjPMx6t0D!$O(jq9tvpaX@Ey%pordntoD&BsNWy?a84L0s} z=AP)z?krh3Hh_=OnTK(=!ZYQ{@%9_d*iKhdc()peA2!Mg!L1Iwh#z3bX$Sk1+ekGx z5K3nRRB51Lx%g04FMmggZI|lHgeAxfdIP^v3bQaMC&XRq%GSIQ&sa5b+lfk)kj2Rk z`h5JLP2q@_nIS1GqQzA?Pb@VD-YM1!B1}h!g`Qev%hb`h$h;H0bEh!nxsO=Z+ z*kKD&O2H(6EA;8sFW(qKOC>BGj9~<_ab&V8s*M5TXdJvk7Pcv1G;QF8_l6}2bqUM` z6#oDNyi~(>MC8oD#)GF`A%T0g_5cuS8{8v{C6NS`1yNk_0&g3btN#EQar%H2Pn;{> zmf4aCNU2tu{y$L;(9y3YGJG^5j|(ccuQLr#y#8wgW>1>1F%2m}gsq*E7F z0WRl2AMkm_TUUd{GrRNC${DQI;RKm-&9st!cMR&eGfis=i`8wojO%kSYxy ztRS~$#c3)cfTWjt_VPbyo^|moQz%P~z3&w+Z%61xX^L`JRR35bQaB&o6u+4!c~$O<77w ze{dYY8_OPgvKpk4OZ^AqL(I9MAm-h}efmaOiSYNVnx>_EBW~k}T)%`9Gtw;F^r$C# zP@M#6xPE#{Ldu$sLEaN3`ZKCjN@-FFXCa!6P;0)eNNSOTihv;M8MqL*%RQT`%M~FD zNdyjGFgdu6dHPGSRWPX2N2qTGba&#~NV6|VVN&}GdG0H^ZJ!)T8fO!!oCpB8*ex}aN+QxO8h`^AFoU~ zB_srj?pt^OO_uaPB&2{3JAQE%S3InQgRcDjqOAN1sfzHB5E!T(;ik`WB{@LVw&RGK zs#LPwqFNMI&c)n<>QDUzqCBo#0LhLt|i zrAQQ^-WGu?b{8Qokm`3~w^$-CDVYSb`iGnjyDuq*Vv{?Bs(!ynF>&A&$~n}h6=aS2b53A3CJUJ~1iJvv z4G(_bjSNvtHEK$fGgVq?sObdn%hw@cK-z9#9n)Y`r3I*i+h944Zx9x|-d)FSz7WYW z?_Ay{==?`E>&2y`^90B!^$!8_9QU25ez0ih%36tLal zI&o6wPypS{DGV4&$`vm(zzJaE{GwUPEPlUhjfSMc z(vYO(32+Ih*IjD@@fGbd&Ove#s&WsUGBexeJj0+!WC!J;Qp<{_Oqi7A0*%FD#pin&MF|cG zqm32crt$2Xyk;|xwWu0bqz3E$*Jb+EEr<_OuSmTjc4Fx+%~Q_}74GZeRPx!5VhC*; zhwBQ~S%1?^a-yutpn3xO^ni`_%u(aYpyx{dcY^X4P?VOZm%aho@aS1g;#iu1;k?8Y zmpv#*%T;b5!w1HRT%`KM5d40AZM;V+{{TXe2?H{NDDM9Nf469c_mMhfR@q6XKJAZq z9=n!WC>BdqU(5pxw-ygVP*%V06H(A?@$G`|mYl%L1gN=wAcetyOZ8sZ1*zH)?>tyD zsmlOp-#7rJy6l%JX(*PE>T^nd50rkLbdxjIBrqUTVas=dS7g*pmK00Afc*MF%euy^+<60%8>X-U zJFfLxWEvz?wxsK?!M?B>&5C9PsS<;wR3!7vRkqufsv#zuiaF`bUb9%#nNA0fjn7}= z0~EGk&sdDBQ>#!OfbxEyjGu<^c#yS;q^VBha7S;?Eg_=opEM+>>(;u$wWkuPDGZTcI`nOO1COvLXr+cs5?_# zHHf9(DwgR3XYMxI0uoJ;SrnAeojb-~W40*GDOso{ok5B1o{}e_N*=700$zoZHZH_A z{q{A17)eXCT60VcOPv@f_1W8wPmmf#$$5Z4JNbFV%VfloT!7jb_TP1d5CE$;NZ}Vo zgH!RRKS&G)`AUh=m^d8u=wV{ldlZA4Q=@a&tU2Fm%0sayM%%n**uK=kTcC=K-I7)S{VDT;g3v1Fx`Eed>Sd9tMRj4J z=TDSBjI?h`1u6wEQJS9^Eod%XhSb>k#k;oe3QMFn53i7c)|KQ|TID{`KmIRRuZlNa z8CucD$Z;IZv+1}6$3Ag=5}b7b$6oQ$Kx&4X|Pt{#HyC6k^;D>jXLGT&OpsWUh#`dmFmDzB|tR|TaZ4GX32a8%#~#$ z^GN9NdAV@)T;5*{=iBJ3zVLd`wOR$t8tiJ+Jz@I6dZf`OQ%BpReHVxF zc=Mmv&-uR|@TOG)Qd+I?gzLvR&fu~4k2rX`Z$z_oZ8eK`h2E6{2>Zuw?QnwNnTeYy zAy1qWQ@GkWye#UHPPu;>zOm)Ya(cCeB}|dG^A1*b!n3fC{#sn5r8}BaT5fy5bYdm0W>-0Q z{h;0Vc1tXBuxAW)==E=pXj{T}Vv{}9`i`SOI31f_-c$@$tW=q2)u_?6Et@nw5f;9Ivt0r)tAAHp|TV+=b0)2fcnwqg=+Ph!bzaWzw|1 zejk6Zg0`f9fK^o_GqoS5-U=7xl_gZubJ9A!Z)D2_L(RsXQC{MnvXU0yhiYy0fmc=L zlR0wKtjqw)bSIEB=wl^11LI< zB8&=M%5?_2aUZ2v{b^Db)YSc;oX!PK#v-s-0!x!qsep@is~V(DNKfkadN}^?FZ9$r;3_FBo~#WfN}~@6UR=` zTGphfx}8*QH0{%v6^d?YsU8F2;2NH=YYEs6RQk96@#ob3p-} zveDhXMl`9&2+EwGlJ(<=6K}L9^#D%AtJ(sw)T>PVl$MeRVVm^#8uiy!k8HP@3RJQP za5U#})1F|RhTf$lDd^r&QCFO>qW;%i&p${hgj#Uyw5ZKjm_InTXT$QXJ1|cB52u`d zpLu2kGr!6OU-Rb)Z7k$VXa>9w%^{d&$^Dy2m!0K`JM4P=A^!3}V4+?k9JnyF`O`wP zWy`CY6Iyli)6O*ew#Klmt9Hw`v+w#t(POJ!_EZSd_Jk?-I@DD)-&Pv|O$X0@+6@x$ zu%rS-LW6Y%09=R+B9rX;(B`YYetNV|ossgjbN zRl~x=d11MIU1kzN<6vP^7$BwDYRWh14mO+HJCAT^uBl+8g@m@AQC4XeuoB9MV&=M< zkLDS1ZQ!YB&NYhnP8gRc=Rl!55>N5)8$f)2dz_^@(V=Ds{jgn;j8C zl20T?ZF338SWK};A0A^|O@I`Dpza?{`@@9g7rID&3bq?Xnb)X7T={i?zN;?HRuqYC zL@f-e?C`)f=YACf>cFY?V9pl2mL;^n$pE!rMWY0-FRVi9)ehAA@mM8sOwNp-sWfhS z^@+eQciKvUqn)}4&hdn)iJ7N_ntjOoMudwgL1I|)H|ThP7{2%j%1ue2A3r!+OV}3m z6J@Cd^QXdJ=k|pg{{RP*GLA=2&Hj*E2HJ||kd|T}h;;smDblBL(irv!g;WxjVkiOP zpOuUE^@lXF#iFJpyh>73flvbh*Xsi=Mb4OlS3$4y2K^enrovK(1dsuE_T;pB)CWNV zpb`s{%|uxL0F=mbu{Ep1J(8^Lr34r-oU5&JR1}9PH9FIz6_<)ov<&R-%?!x1g@Tje zEL(?#do9N%rEH?+yY+ssvk5$lG8P`9j0ouvuKURKe7l~JddGMnvLFf;B>y?|vMbdUYv=BPm`3h7GprB*b~?k*eYMXM08!I}0c~pu_9{=p z7w2NP3Jl;Kpryn-Ik_4gqE8>D-ekMbwK_#>J|-wlU#T%X`AqIL-)4n7@D``DsOk5N ze74E4zmJUMA$ejFK(4ia&H6@bi7^Y3UY{76_`aAnr{vp+MYdbYjYT8p{{SP;Z@0PN z@JZ>?tt6Lv9rp+A5=!6z{O?#FXOyQkVF&CM0Cget9b?a(yLoj4Y?d6oPhB7Oizdyl z4War+Vp#wZ^^eO8KPw)G9Ffav5{*6$6IrG^4auX3^a_eZ_EERzzA7TCiEeACj)DO+ z)NK~#Nul}0d2)5jsHI}_1gPdCdUlF)SZo;nG!UG0uX6*`uxQ`BPg-v+GM|bMgaw%^ z#7Wnln?dye!nM$d6FOPehPsnc`$DRU+2WP0PTEDwSm~g1*Y=8bVCp5iHl1T0OOMEx z&>j0ng+CaQY?{YXBoaj_zvnSBeIC6^Bd=9Qr)cb!>>?$a!FnlBDp0A@q*1g^V@iV- ztrI-Y5k+$TBS_7>4W5E%M>A2g)k8>&#jK!{rB_elD$N7} z)HU}(1de)t>F(_szoT1Y0+#^k_l>_6{{Z~R z<@~-I!L^J304gdPlsrItJ|I$wVVM4H7Np!FbiZnv7`bD>B3!=;yknjF$Jg=OmGZY1 zaQIr1=8!|x=}Pxz>C}GFPY2p2c#^t+Y1SaTGbU(fVqf@;SqNM1bnI(nLp zJfkxI0KZCSOH!2K*yX2Z>l!t`5#|~Zm{X|c6y+#`f@%`r8lRs30JK}ONdeT=Xh&Ry zs8Fk?BfM3&V^b_-Q7$N0Ys@=jF`MS}@fUJTO><$m73SVqgV0hc-4}uq zu%gOx!Wjxou!QLB?%a9B#4MKLJiXii)daZw;ykm>r9*WGPVg9Y`+NrpESfNHtX!9e zC6t3O1@P^>2E{mRuPF*~sRD!@xpA#&7c5tD)0Nciw%>vP_S0xoq#stAB#_ZU;E<)9 z`D?iPMchk&1f|%v;BVFhVZ36s5)&+hpL_H%CWjQ=D_WdT09uiHS)H4pTwYa|`H|IYC4_R+{^`^MdwVP?Ef) zj?i#R2?PMys?kA}VO%Uq$eiGC^e%p5O@V#j?kK{+2|!B(y*X|>!OO^`sXHEdiLWaz za)JYaSK&ja=P-hraNDIPLfem~tpwytC_^6*+4lXSrTKoQSp`{%(fa;=&@$1Ff*EW| zduiSdp_vyXl#{21l%y?TnU1A{QO3^(Y`B*nB|lo8`oXj8m1-gnAntc5*49vJTX$>nBZLl)4#A8Nv|6Y#C*waOXO zl%|I^@Ic$vSf;FW-Md9w#{6{*p@#gwT7EPhv6STmw|H~WP~~F)l>kz6Ke{a1uhcCB zq z9G>x?Uzk364s!Ww>FM`^I0o=ga-cvO=Fy@zuy~P# zy%G>|nvp@YDqQ!`RLrU*R=;SqVbXNPWhpcR@|=SJZwpZ;Dn^jqYO-bmris&-5p!YU z2~nz_+%}{H_UW8LSyXyO8_M7nDcj!s{%IDmy@5+9$XF+ZW3Q$O? z{Ms(zOk?ZZu9czd#1fP$%3|YAL|nUY;t~2&%Rxo}-`DD;shg6?8t`HpE;>`>Qe9hl z=?!>}z=h>mU{g*H@d4*yq=J>Dix9>j(^#(pNG+G4<|MqX?DZk{{O=Q6ltN0fzdZ*r zE*!m(P+Zmgp@l0Qxd={NwfE~51*a^sbw5bzMD%7M0p6-C?dP;bYqFIjfI0U?02|*L z%a+bTeQLrl-dEy8pIYoS9XiH+ioFm_m;qAQq~=K20Z{sD%vQC`B?yvtEJ4x!qpq=q zw9of0IVCxpT?x>LwIdLPoQ8${@V|!ee8Li$lx;Wz^UtIkwP93+W%v~4=VJ+l3rm8M!!NZjlprp+Xf0SD~_<)uPp->XWLtwHBd+(ld3 z-n2BpXj+D$;i~Ss<*{=6)-T#F;GhyfXYvr~VS3=jp<~1gjd<=NMcyjSm{d>>ki%uU zrKd!S>!b^uuM&U&B>prog3)-msdUyU-8Tf4r#e$tJ|H)VZ;KI9GJwZ&9;4|NEH-~u zjHwOGDitrBB8JTD+V5U|(N70pWM^8|wG^EJKFRwXS_@h%OHzeP3Xk8Ijz!|69He`< zFk*&n6VQ-q&8Jwbg&?KC_dt0TBDIHloi-3t6Dcy#k{!X@ey|Y#0IL}ib?dl@Z8Cvk zb~Wh{O1_e0g(QOeLY?7lQz!*%r${vGoMCzAIRWsER5;q4!TW}MsZvH_&#C->&LL{$ z!^>I-QK_r_eBcf7hi5TPVn*A6(YI&_<$3x;4rR(oCt^Nk6t5f1=Fc<~pVRvYZo!y3 zT%_hCsE`VY16E=khf+Jii*?B=cx5D0PMzS&3AY{YW`Y$|>^ANrm0a$+1{?J-)VqZe z!OO7HCc3Wd$#TPk27bo9u~~BXPQW_5!MPSBBo@`H2$-t;T!QNMY1i;aSZfh3a#W<9 zbR6~k+89*E7fjjH01Ofti?jEN*X9(Qgba!$PBV5rBKp%mI13&ZeoORdaI)GREyN&9 zx~^I2m*QeezWuzm^MV#^FHFiTqB(Fn3J&moa*MELI>jZ)bE$2>hk@jj9IQJNy(6SZ z4PUW6j>mr}g898sB_+!pM?O#z%ZOIAgQz?Tw$2oa$n~+fs2`+2XuXt#);Uoi@$tRzbDMGdNZA#KX(OU9H=Mck$q{|Y5 zKmkMIHXcz*&xcZ?%su+W>6bGDl(WG=7A3?fTJnQYO=2`!!b6ftX0KnAE8f@=dX}Z2 zFb0GjTYuUX(9-2%5Ghl~5EAaZ+G#9Y@5f)-4cYKhr6meF z)|!qRm@#9xWu&?_G_K97#*?xQ#20}|LdYbKk%2cZY0J!)WR5Ce%-IHVmzs%A!{-Gq z%jpsjte`tHa5;kv0?>k118OaHgsiLn1;|h zzdmgb33|$~l@h;XR35NC^2NzggtY#uW)%a!?G=4e?I>V!1+zA%mpXf(g^vVFltO`Z zk1^%5`9Wp+HK{g)(IixUd%BqJ-F>A;DnK1L>mFNVh9p1V_kp)mftV>;k)hY5I|((0 zXbUv`y1`}GL-jwDfmfvTg#|DS!9-Pum*>U_$-K~|45iBrLwq)ba5DU`DLy>Ghw16p zq%Gl#)qb=O(xO~!57HfHVWq8ZqRH=1;woN}B+3jMKE%zXHvQt{i!EIK2u2_;^aR(#ls8A`&ML{0CJgE{)%G1)7jZJs zv?&6LG;u~hSQ~fY>He!GVs&btE$aYj(k$pQ*OiKLxzJPcu$BJ+87KU{Fb++c(J46; zSQ-~6=N^B?&Ef&AI(4K5akh{a_{7KwsR`M>aakCNDp5cMM9>qrXivwNao&EX6=BXS zF)#V%Np2fTp7HIr`YA#{AgMvRfz(Djh%qgrI+B1?4PA>@t9#la!ZwNPo|LR86TNr09;2y-7jXt5QCF%I6deJ2*Q`9kf$HW+R5fbOU7A*w=pi~7=4#(xsoNBo!^s75l&*>Sx z{f7j#AcYq-B=N*LT5i%Lj~VjUm??wetRd?La9Kk^%qrY?ZfKY@4-V(2=jCCW3)oho zN|d4jEaneMv$Br_YY4(qe9A${6e&jC;`QTwuo)^D=ebU z6D*KuAED_1FUYdHJsP3+g>Oi<`FS#$k)YncNH>XArAuUcTD!B4q$XOhlUASaMG!{%H?ZTi-gpSspT27IR*@Lk)w`{FEy? zfKs+0o44G;GA<87<)|idkBC$AXnM0;WG&j87uBN0uIf%_$~ErYzi26KB8>H6`=6v5 z6mRrV+yP1rPuqxIyDr&k%#}EOD?;x>4NJK}0ZS}9>*Wj9#7aR?Acm;j`h9$%rwSLQ z2Ak`0$ybEyS{{R}8oIp}j}e-uW+6Sd?+kZ6;)Zn8_jdb7>-u7{xI6P-I9jJSJ`MF} zIIOmOrRaI{f->&~Wjzf$c8YgJ<2 z@o&@liS7&4D3%IV3f1j&9S_<9)18Xz1i1kt-AJmnB$mz49vhguhmvNXm8>@V05)!W zzwE7u?UK;{0HlowXIN8}LonUT!mZzil~Plg>JI~93wI=i%~ovWBo}8sCOUTM z8cdr>N!7y#9Cn4F&4S;RDo7v@#D4KT-lugbvl8{&^H|QWE7@}G3Mm8ccSRym*^E4|AJiP(z7R=h{+kQ6ilht&0goJVb(`uul{+tNkk zxoHDHN$Z>V>kl^fXZJ>DjV<}oQo0dJ@HGR6k2~^tb&mf4#^e6l%&!F&Sx6osR-r#` zo=@U$t3+AbB!hVnyQbJT!T`GEVV>u~N>6T?A2B_*@wD?DoWP?y@Xjrs) zB69?tK&js|=}kjLc{YlcYOyKcbn6V@%!$eXZaxLM>jS3PTgHz9b2$UrJsYheTMX7N z{u0#V${SI0C1k5J5CgXxQ*qiB_H?l(L73qx30SBEv-dnfJCgYdX>$fu3OmvK;?1h( zNg$$yCZuccfVZ`nr02>(>}q#*-U-oeoi20$rY_#_!i-;G#Z!xxZn zL%-@yK`SUhlE4Spev2=bk!6rP!LS*Q3E}RhRV&?m^S} zig};dJJ*0>{yiggR>Yc+D%CGfbP!dgOh^ny{KX_mCCK*DbR2i$F3X-+f*Yh|BSceW z1v05Y;vHap=PcyP2_WyG9RzhLc}YprPmrB9esp%7}t zYEdSqv|{*A6%Psx8%O;3#*ua6z@iAC6zLxS0E6|Ie*_jkv=O_n z{{UD#B#s9?dOs0SS4tMd)DYys%sFI}EU@lRNcFh#d6guK9K?gvd-)MUM1oy|x4s^& zGmxZ$2t71CB8{HZglydP?-!;~kY*B)ph$As!+spQd`_)}BCW3XNbyh)gj%y=X?kW3 z1Hz%sAhYJHdpZ(6P`{jmscLHz-WaDgnjN-<>(z79mS6;-z$1Wrvxq$q)+CsfsX2iP z08|Dq)|CbiNVyWZK$ML()bt;;El<3&`m$)0wrA9^h7pWqfl2^8o&^M5*J=``N=WK{ zaBA_Dl^_5~-0j$Q)%Ws&mrd&~V!?9yQ|kt=j7cV46ruUn7%C>(eQIAb4{Klt??DdU zuP_Qt8|4c&^dUz&Y7Jb$OS0Bdmkvkf-smV@v=>VXd>Fz+tS-584A0bS?uTj9ePT%V z2y*-Pg$u^jHMwuqxqyW48Gt7;>YxcA56VS*pB<)ZeOO6-410&{rfODHqd`zOfp;z9 ziHlNDoQg@yn@S3M;3FK{T2L8E0-k-KWs?%iE)+*f{QAP~FS(U5NC_mV>#=P}^U=nvZ9~3aICi(kMy822#|p4R_nH9U$!Mtf?tfmkMtY8h0a| zyy8jf@XXMXgs3Sh>e+ub?HR@`#WuS+2q`&g3X@$lG~{Y|jVlXU<^k&G5>->1qtZIR zW`-juP&<$b9Jjk@R%)R~(Z%SwwJr%}@{I=4f*8?>t!g1UJoj8deQ^NOK$X)H7O=) zGR#S8B-7#di&l?G5>yhRLZ~we*OukE(jTW>NM3B|O1XNN6=?KbWN!i(m*eBF!)Q7r zD)g6Um=i8n>Z6)v6ky#t^on<$9s*)ir5aL>#C_m>;e=#Z$Y1I^24TO_o^bbeUI?6w z$pDm!zP0*w?FT_DgrP_P0pS%bQvv3(&O<>S$-PpAsU((ak)Va^=4ndA#CVgdY8$IV z1{=Qb5=~2kS2TD(I&vl_Di4XO&+zLRRP28)(vp%C7MBGh^G@)4(XH^LDqtYcJDv`W z`$8C!Rh4Nf3ny>~)WKVV^h~L0CV}bCU^PAVfVSLADRWDyoUzr@cmEYLlnm;Ys~psyqt3a@ky9K z0BPS|vEAp2)}IhZ+&|1jcOET7_e!X(pW^UnLv`YbiDW99IQp2SdtCxz^Cd(+qi6b# zAkD7}l4y1JLoMHRqbSkE9C9{=0A10C3QmVD;t)VVpoFsGx=;eUD=c zNXDC2fr)4Kj}SWIz0f9P{Z(Vvuap>+scsUzIRVE<9|Io$07oP#zz?zC$U`?5jkE;- ztxoaPuHuz2g3cR4H-OjZ1x^VeC*KEdOLA162>HZ1UM=B#Zljqq z01ZL6zmv=s!qO8cnPmVe=|>IA!2bY9cv(Pt#4sCy^M#m{7p?4&UvH`A2qzXGBrK^T zC}7*R1YCAhc&CbbYU5;UvT_q~iKK-J5qa7r) zrOQxQ4Ciy(Z^nYtudM9BgaX8OZh!6q0*A&AW+`LDDhtY>*|dGcSH7nNp9?wGBf?gZ zHDM(+NU4JOj?REwjw!e2Fo-#6GbMPF*!-g9#beDVr0+uT!o1{&K=N4wClr13}K>74LiFRJDIhS-&kI zAh}}I{i8R(u^A&^-b-Bq@Lou7x$mPt%a8`@yFDUQ%QR~C zkDR>zRqswe7@o%>j4DhVyAS{_HK$<%EV7)2q2ri2WS3D#`bS5OIr-JOXg=umc5OZp z=sIr_OEvkPBc?|(G^39=Cn8-41-_A5SRO(xAXDN=qlnv#O+zYP{$HF#MH=)Ga$0zx z{P;)Y*}>nuYJi}gnnf9)JCBHh_K9^ZR{22tN`Tg%SjNVjXnmx`Wy%EhV)|F>6WYx{ z>G<&s$ELyc?Fuvxwa%)JuEVo^3{7{I*WVpXvO2%^--8^PWOePa+9V;gYaLl;5P5He zLK1i9@JG7o=NaE-u{}HU6&5|*aS|n4Y8%}VOjnqRzA>_lgdYeHLPBTi+fTTKx79@bo2e!yS*$`1rufew5o% zc!PGyLAvkPtS;IR9J-4dbd0%7YbY}3FzL4@C9+y7DteBa7m8EuAgHrYw+;r8X6=|q zo3Z*vHZB@&!UauVKq2P@UPaoB{^3WgA;?mI4#Bt7m)Z~EOHNe)H&fTVSC9R9N<6%G zg^#8z7m}rGCb_Ega z5Nwua$kD)Kr&AtVuEYsTIY+W;@G3u86yy+S(FNsrBo^Jh-+0Jn-_zwS zXiKv=8+Pa^zmyol_=0@nnVec)B&jPjwt3U_za&Y*r$ z3JX|r+NE1rya1fe`e{ng)!ewDjhfYXpm<%&J#{bN_>6|>#6n!athq{u8lD{f7>5z# zfF`9x*W@BMJ)9H2Z0q&8olNeY0Q*LPcHW6nQtS;JaofJH2)8aZ69|9QDZp=^Xgz7e zIl-8P(X``{&+`>Bm!loN$tGiFZU=s0YW1=T%OEK_b%FPN&oL)5l=Sev!-o8LJ9pjr zyk@6fpUeO1W3I1W{bS2T;1rfRvvq(L%Xl6WuE0eH>|b;G z)rHD0MkSnf1M}+?=38e=lu*=LdMD%#QqsPJ~nHI}`v(5)pT zyfK9orQbmYm1j4F(6lAUB|z!*ZXlI|52yh-ZL7BJ2W3k2i_CV^JqPB|debE&Wz5}9 zpl=8*Nw*}WB`x{4cmsT5b1e8$>NHW{2R_5Ib!ZWXvih%Xf*vt8)~b)eH;- zRu*-uVY6@64l8Xs6U=a{RahNElf)v@{n>hdOr??>c6WlYzvQ|)puqu5&H4#w5Z(BiGAeuR^U$2+cMSEnqQif%q5Cscrd$a+>R&@!8 zNKpaBIUK<}VSCF>oXb;_w@>yzXq^JrJ}N}oAUkgpN=j;LQ@=2m=+cx*NqyOb62!NZ z#QQXFXhWB+BQlnabv?9-_nqyOGD|3qHskY%M!T(3NdYDEA2AK`uB9av@jJg?->-Nj z&=qvv;$oB(7>x+}_2~@PJi?HnRRgC_v@T)1Hlr}C_(SQ>oHyA44j5B-aH66w7gm`@ z{J{*#Cr{o3+ob>$LxpKbLH_`_=1G`UF-jno>HNanHn6!VN>5#1=?l|wBdCE;7y<^d za!vA;%F*dZ)%Agv2`EayRSL8KeSbHCnU2XWfT;cb(L&RAy4^1ASR;7blPo%%alChC zQ?rJBHijJJNCK>TM>CAIf|ao!7z2(Hyr3Yn^QD!lo{5VLldP$dAgB2svo_ zk|0H%)tyC%41Mr76Jl_cdbFqoHqd~DviM3}AiX@E17X|fW?QU)twyfjn?T!^=FYd6 zq6Zwm=eiiAdOb_#C6snfjmPg_vDqx$_pWs@c0VXBZoE?@0hRObqcnABxze1aAPob> zd+zQNfC|)U6=lLNVv8DQv2q509r{I_F)Cb=6F{Ihi;`}3AS$UEc|hxRlzPOH1x}-< z+6ZD7wf=yh2?u&>+CN^l(8Pl41TiNn~n10rzg)4V+zmzp9<6J7K-X#_xEGtZ-o;Dp} zCg;W`QpBLAtOX#qV4=agxQ5w_Zrp5K~4yXww^<7DRf zp76hk@d`o!3QLN&?+RFx6s-~pf`c6g@2mET?*?mGyXcUjSUa8?1X?dNg#w0Jb5v;j z`Nk@bN%KkoQBsRGl$dbE?dk(HTiVRK~m+V(N8nDKX?JM@3MGMzyJjs^ZAPwt6)#GC^y&P3sUiZ zSuWXDX>DK2Z}$7t@! z=(#dlVQkFjydJPi06!m%4wNZhc-D4gqahtbu!vV;Gg4HdN`{;ctq!xLN+0SE-p zv;s*L*1WKy3+Ia+NYL^vHO z7BY^Jn%)?Ka4e=CTtMIXI%(Q?n+EaprR@4-UoR;;u}kDpG@HYSz3(IhWXyhdw1` zb{d~PV>-3^O;XfA6j9Zx4_+HX1-NIM?-8b0R#1>?9fzGF-VeTI8Cldua8A|f+7a$N zFsaHUx|Ko*s63C&VZ!P3Xe9+Gtb(fLR^10rGYVZKwoGVdtRSR~Ni9k{K8*}2y}&^v zR0@ygDcu(!M~%E(4Z!E50K9Q5rOe1fbGBZcV*Lju_+4^2>HEU9^@`@AXX*|r!2DxH zuuPJbC&a>ym5Fih*GMI3k|wMu%NlA%y-!^|&}d}V%uuC&ko_ZqI`DpP40db?X3I${ zBDsj&T{>+H7lt2}6p&H@C-jXv7`c67B*`fNX+!jgHG957WF?)OU(cLUy|DPwzgvFq!ctLjF3Ex+vA(D^>9QFH07fhtBjbHo-Z8vzQh$dw@ zMM>Lkz`_ex8hkmcU3QBz$tBWRwLfTIyzz)bAOPezPW1Xf@B6W8pcMMRTF@+Z!~j50 zc5+YUV<)`uimg_R!f8lL_AteLETuH6n!i{DB~yY_BqSC4L=r=e0oeVagF=FkgrJ(h8uG4?kA!X0l(w1*2z_@aW7-((_MrGNpmZ#jjB;eUeOu(t3-Sy*W(5-9CJTwnd15>x!3Ssul87xfoiCLo>ZrZ_h+EYWA zX{RwtWz4mx5U&Uo{{UyxsOwhgqy@w{U1&mz3!T#X{&avDY&MXr%v_|=qxG38&NB)f z2iK%2VO2~B%tlcD{-y|v&T_O3R!eB$^3cHcDa2`(z^0ucM*P15m?Ti>PY~N{u%cl? zW&ree(f9A#Bfaiqk(OFg7<)r)Yx$%iq1aaINHx`82seFU^#Pcu1cO~Pg{9eMqFcX+ z8Xf8Pj!}yiP<>}%*Qb;t8@q2Z2}slRACo~;6)0>5YW&3r{vo!{g^&PvwOw#nTs$`;c08^>zHiI`Tq^e3~mUM?L1utuZ+GRRV>D+Yf0WSNf zq=gqtI4!t4Lp)T!Y@{XhU}G4@7MkTCkas$R_Km+2+eTCW0It7y!7&8Fr62Xxw2vq9 z^Iosv!rZxuE|OWaefz$U3ezm1P61F+ZP;~#7Tc_nR0sse&`cIna%-Ik(V=t!yL z@Hv6Eh0&MTQ77T$7cTq2Fr`yQJN1otN;zGFcE(^pe!4f_1WlEdMPXhN2ZMvpSSW^| zp$gC+j4xhx22oXVyHjq$HpVe6yr~3CLDGaB#1@fh3P@5hMH>ZJ=%uOF36f#0Q zU!^|EMR(P@7#DEfp+Evye7bdmR(l#%LOaL3!^t^Lo+mCJ8PQ~wn(4BdC27hju8`q$VT2Wx ztGN++_K<_P3Ijt(s8G8)WMjSj<6*Pw*S*bP(3QCgc&3&Z{Adm>wAVjE7e?caJ! zT?d8sAC!SWmo%d;QAEW$ssoRA@A%d(97L@M(6uyz39tn%jayzo*i)G1bWW-Dh zm$4bSZU=3AqVa~jw&0d_<6-!`!+yQYBz|z9$L)QsHs3Qh-2pt0|fPg#+p};;w7|OLS>bP z32N--IWhnguC#^Z*i>ktM=TzMaoj_Ip^5Q=l(CYHuhOu3=(MF^B&pO!n}{!9xMd(I z(irOebc$DX(JEZ*&RFO=LJ3ubvr|s+X70iX8j@6c`#xWIEB!`a5oT>ncV&=4&CkEL zXj&A1@tlhH^o}N4lI4$o&7f8woV?s5>C>bYx@_o5d`{#&d4@DT@V|tj6|0RM{GoUL z=vHE&87EF(m@#}{b<8d(jY}U99R|_duSW8+F*3%965@H_(HqhuL_T>I3})7 z=S`#Xam>jiC1XfDFpq0?>QvklzIlroYOb~^b8p?%yk=Q&WKT*XpBho$=5^9k0q z(goWQ>j6T%LC&2xFmB_vpi5T4BTu|@cis|-WDxZusXbsfAJG2*Y$q;>qm8)kBE5qE z_yp22soW$G^d*X#l^a1Ty4I|V&Fu$d?d1dPIF~pw#-w(I&|5a3sb#gO3~F2CUuajj zuQjD*6PJ*vxNQgxKv|xKt)*$O*-4oqaU~^*cKtp70G?pw`(ze`IzV=zZO0vZd?88# zaTKYDQCd_K6}U7TH-F9Hp5?yMC3wYh)ael6s}em}LcB`UzQ=}df0vxs#hDoj0$nN} z9+1FQ>uX6L+Dc}Vu%i>Yw?1360A*I+*tBx{R<=PH)a)dtInd3LWCLTI>42 z6zuMF{opn$#wp5B8BQ4TAnF$^rL`n7xevyWpJeoAGZoBRhcxNO%l3t7Bf)n{Kr7kK$i#E(=#w3ld`lt>Bg~Y+h9Q1!$ImRF2wD; zUz2YD5Nhy~Rcy(0WjX=ji7rp=4-qwg;v%!ptL>ve+s@gle}w(wgo`)ju_|UQ`MfP& z_mV&&oRuBhXs>9T!QP$WCjS7vUo$^_nmIh)S;A|t#pAYwV@ygES&Jt_x148pmFVR3 z_JdH3nl0Z}^0hOts4xj@{M^UKdHlS*oUMItgT*-Uf)-_$1Q5-p{{Wjoy9=|i8wY^4 z8xUY$#YX#iLsgX0ujdoun{i%CiL5BE1`JtKSJEJqfuO0TyLO9`R34AOBsF(v^*nrD zcPi+mqtwgfb}#dZ0%PA-@6^WF&Lop8Q{xvsT{?VX0VB7RN|JJ)%0`hD_^UzIB3Y^W zL}3T5H;x)F3ChP5fp>~dVAVe^@MJR<*JsizqRXi)NU!l3a*KuAQdw?w8#cT-9&vI_ zkmV=K_kt5;kGIw1%TmKqgQQHDtp{9|Evs)HH7Th(>HNg=Pc-9`75#6We7`;L8aWbb zr>`Gaie;Dq7Npb6opn9pwW4J>tU;;F{6Bc7F=3B74c;ypync0ovqg3781h_0F{}LR z#85zGRoKuCgGKq#7*_A7q-TvKOp1POAD`X8-YS{pOdGj6MVW)7QbVr^)XG3|Xs$l= zg}diRNCdla=ktTNnjGdK{+*$I(rQb_Jg;t!K8llMitbLYp>DBu?weLD%}_M*h%KjD zfAP{kSthY@*~Z6)iBXbexw5u|v;J`hE@_!&q!M-4k@-kivdr0sFmlIf0kcr*)Tz>-Kosc$ z*M+1SA%eL-n&}f`+lFx|nJGn`ls^9eFE|vNJis*Z9a~5(12#-7q$g0~p}#bWcvBUu zsbG&}wrZUrlI*vfqc)%bL=KmFN=nK=3CviKC>{U@ds@<^nS@YkNY}6J3>aS#%UW41 z4^0nvv5W51E>2Q%p#HS8o=3VAaPAdEfb!<&eIAZF^%_!?Js<{q-pEv6eMu2Lt;z*7 z{P;zA_OcQV@23$g>oS&r+8xHw&2GzTaogzvjrtw(mwM2^yT1-vrOZ*z46|2vC!j*eIfcWpOh2~!*T(e*yws zev@S_k^v;>9=`4%c3Cm;-ksGr6+ZVufCVHyKyREuV!KLI6dZ2fn?q1CoPyj6e0-vc?TIUJUnpjU{{TRm?y{yT zqwaNqBJN5Q*_5YnItZ(1#{MQF?G&$j{Yz3kR^^Lq&}vrX?dOE_m84 z%bGxS48^EA?*MN*I;%ENcJ`CG=PxJc499NEmmw=ONvIt4`!smF(=}3{z>qj6a0%mc zv@O{ECHmx)Ei7~dd#Wi~R1b!NwYJGKD}cxXgnoPBl{wg_`m~Zwb#8p&a&_#f#gge7 zDDfTKlZZjg9+f;rYyBz`mFlQ?+{BMVztbfW$Vmz;TD3i4Uks^Pfn!I0H}}A-2c2c+ z661f^!`!6=8qj?FqKU=nhfuXSr`9~Y?g?s0KpRl*BGRlX2RfBQw|MT)H37*YB=HpM zgrZdokTleo17O87J(7TO?0+|g85n^pBnK%P9Q#=q#&PUX6Iq%l6T;l0cl9HnD zLjmqfB+EmEp9nP-*Q8mzJs6?WQM4NM$!8tP8xb)T>Bfd?QjfZ?q4@)^7ghk^0*2*cc{^zrKcArSjdnV>b9>#!FUf=@9V|V z13BIPkv0^vI-G|M@916>?U&=9WRbUD&0uZe=`1B8T)f1ZKVA=LuVosQxzK$*VHT)}c|o2;wZ+EzVTlD(m!v6QMOfKL`je^exJhyY_?!t%wRpDIjv5krM4R1L3R+nRF;+@tsGztR1we zDWDrv!V4BD#H94!f8r}iy)y4loDZ96O1vp>^dxW4b^NBH1*Hf|vnlesci0;FZwo@? z+d-Ih{klbqeT)>4?Ex??@R_JusumQ@v2V7Kc6`MolAqPKu)!kmz)4$=)b8Vd&OXu1 z&qeE6M~RXSiurlNU6mv#6U;EG)Sg3_36tVKMalswlmUG}pa9UZs~zeq4<3(jifqUO zm(9(7P{lntbTy&r64@jyx{v2rk4LP>(gq`+E^0~vDM1dw*)O~{+&GZTNGc8z#Xuf+ z<-SpV@vyj6DnkWvAwgP^PCd{B7j7HOuu1R&=gUTiId)*;nrZidm|EQVf%d^8F2y@} z{ot~#SwofqKLB}#6|p{JEktSotNf!nx-mk-rCV>g?;5n3Nm5%XO-c?@R@| zZuBM6z;I9J&I{R8l#Y3YAP%+NezIm_7!Raa^)mSX0PkYLX68E4>NpW&*2(AL3=yms zit=PqbfrFeL0cutwG8aQbG%-)kPD4ga2~J@_Qd|JId?8YSGhkS-WYH->FZ^9#$OkN5mGsVfebBn%aLDZuU>y1 zkRKP`zOrgcSDhe+A;8*@)o+z8nAV3#0b{wPBC2ZpApGgLiGkJgh)NQa%WTRGO6&L| zJGXih!y1l!svc(Hp}IzTw0^tp-Y}qOS(*PQ#z1 zJYng^OXmZ`T#X>T%Wzo;QkWGA4u@k3{*sb11ffKbMuw#Qp@VpNo+S_l-JqZKl8{-& zMGt7pFm3+;HgbJf1tljgZCrDp`9_Cm!LF9f#1G1`)&fOhyiD1S6v#-g5pvmzlCKCz zAbz8yCe6iiWd+Jwf=@fY=kg*u1|ycFgh@_!)m{G3Q#;r%12I8^AW_z-4mj%ZFJ4MCI zOtkn%2j8q!v`U&OozAX5JfMWD5DD=TPNVmPrAaqonJ_Ov)B{uh0JL1hS5jCuzc}*E zZeF=rxZlboOsSI#k(D5BY9Yb^yycLFE-Cr%g>_1nCHR3+tDV8y$}}s+%baC2>&ycf z5>pa$68l5aXR~BIL%MW3KhiafHEPW%IlZD7(uO&)VOcWLRHV@AKBg#NxT;*FI(Eo< z#8!nWlGGSefX`PDYU8|8nR#-$hNF(7yeZqPlO?I2U(?5&AH()$0696ihysSnR)rsT zF90l-l_6*o2}_-R@N($9#&sl?%UbGxKG2!z8q&3q>eK~YPx@Q#BFNW$TV=Xan^>!f zXN06>OOPt#-UoOCVZupMObR5>*KL z1gCAd9^t2)E?yX9s&JUPkJ6ooNHum_kW-y&Wc;CT5#t2RQB0|T6xASVdb~A33*zfS z7!bhLn?ad(+|hoYf6O zMpo=%Q(#q!VFmIshPtwb-tUYxN~i_DZzuz4mY_vTy*vK@00=#0m!QzU$LhY``ogPPSFG~nO?r#$uP7G+w(oh(9usMvKU zuFw+P;n-zf-GmjpZK+e2WdH$c9No7X#++hmf9W~+MR{_=VH-r@CAf%eNL-&cXM@dq$ z9jZ31I2?J!yDG-c$8LXk1c~J)hMxNV+Cdw>+z6>{>+^`AHU9v0I&-3@XP~EEVztq3 zDye4&O4Xp@wiW|3rN1e(QJG~*R0yFuZ4VKzFKeYLPI*pU%8}G-0IgO+rdn7i3a9N1 zbCgs1vW-dPeIg0c&=g=3JY17ku5ze8g0pEs5#BJ)rHW6=A;TVFE37T>{-q;2l0u%Vs+G z^3@sX$^iuV@7^s-wUoM&s*yr;9YlDU2SpY;9eXqaw^|5sN*acvbo$0#n&!0JDTw`% zn9{1<&rbUJMvI2ANh@t%<=#GWyYHNp(K;5^AMk!ADOd^dJ$zLB);(Xw{G7R7XXO4a z_a8u6uNCk6L1fJ=<&<{f5N><WGZ-L>+Es|}$dgopW$ynPoAa=w3;9H`_;Dh26X z_WO>}T`0*-U#^}}dhnJ)gK+(#z_@`93lbl+Ypj6n_BoRP2wqmHI#aw$gz$37KCxie zefcl)hDF^Bh85lxm2Q|kDF>+z;wwfu#rOy>*-;)TtC`97bca;&NZeX3?I0TfFrk%fd z9WKo^hylw`eB;YKt5m2EK!zfP?|C4Ru?JD47GXA9fE~XNcuZP>nn9ulqw5X#1jJ+{ zC^L`-@grR>?in2iwBFMs%?T<2B(iwv z3ia5BD?kYG5?p~#&SD8SvI!v2@x%z5Y$jlG^bB3yUoUVFFBeW!qLRb{d`dh*(>B{> z<`jYU+d9Yz09?Duba>-UgnU9-Z<7g{p zw)036YPuGcgPFnhn7_w==a?yPmPE4rdBeb&7jRfAH2}VmaIHBi2i!uOj8J7+%Kf1E za*pie#XF-s^ybV`o%iyIu!Yfk5Ui-EdK2-8FN^g^Vvy&L+AXHenJ6b$-UnSs6G>HQ zchjs$lc7IY3)a>rHNq!F>|0Bhz#3nv*sFW5lFfT za1M|HZX!}1juX5Vxv@Z1ol_Fofp$CB<|1!IlJ&cigk}VmsREj8AZ*-3CZHDpjTq22 z-A^z!-)~gMs{{G@SX{Etn<+^_Ku}rm`|3&AwTGibf3KQmR;Zz-ui6?f3&{paYAK6( zYTui{OMR6{(6K4j5G=OI$x_m{AfIqM!D$ZMv&fXZ-olA<2kvYOlqG4IvzOieQ6K%J zRV)B#7}I#Oh^>ZHkmZQe${aCkWtYNr;lwH;#H3DeLl$$y4#OUiJz!Evaz7dXdPuxx zFqeK4h-ms)= z`de_?`NZ?B)`<%VC?zT2>K?WD#Y#;AW!Q&OkA(Zb1XDJUq~&Uj{?I;k_KArDF-o{U zD1y&>ew2Xkso%6PGi|q|N>EZq8awrj^9kZLB5@MYl{vI0P)$guxI^vUvr{k)bUHx? zttdaAoHXmJUKLW5r4=weDmj9;B!eo8Q}AG{+vGEXA1n6|7QuQZXj9OQ2L1a&#V_8M z_E6vx$sBcv>@tMmoE-#HRiM=+G-~kCJ>7YxRVW{BkcbsF;+e%KPGO4mw3dAU58emg z7C&61sR4l8YGMn+6s0HC%}bpD+wen}X{;qPgOTje6RZXQ0I?by_J@Uwn40Yq6oQsyhb5~7QF5T50-ABmCE9Tcn53kFolfQ`U9;_K z8IoN9?rZM%M4lh5_i6%JC}XogiPo=H!9mPfmn~^2B)B2S>%?(6lxwFOhzCKY_^msK z<|4J)91`FbuXrPP$Uqbo+q^1XHi4Bz^w*?k%a%0b#$QGI=5|o3uqHFh_VxCLVqc8} z7sc13xFzYJ>%?cat6gcm2>Qp&eqWmM<&UKNUj|LD*2_>;Kq=e*0AsukA;@A~+py+4 zv|1U)!$#kjppe88ToT=*%CBNWWq=Ss0l*ra%rRL`lzw}EEef|x?aTBK?RKP{m^P8O zigxAmQA;X8)`aiC=@v)~7?LX9Q4ECXMjAzik6(o8=2uEjz9VD#@`gj~pLj1lUH*_J)Q9WEVr`8edS(-@#J65r zI1?(`ethCdsW01JoukVnqDva@8L7}ae=$~f!Yr%f@QQO)tRWTG6z3m#ixYlvTGAg) z2E2&It|)|ppzd4UUSqkIAm9%1GGw#TyY-J{m(qjd2y60oh}5v{%y%<@&lKk=%WGDr z-W69DmYVf6R>9&v5?;hLMmNnJ-q)%%=k4jXZiGc?)! zBvazg3wVL$6s0{hADZ(Gms(V*X<3(*L{(d!{r2EAL2kQzBylp93@-S!ixAKPDlH7@C2sN&!P$9wtvRo*aEsN#>->eH<^rbn;a4KJK zv^HW};R&GeINPjex7nBhNu;v-bIeT%tvHx0jHGrIf;SD+h2~O|P|fy$cQzK6Bn3Gy z`gI?)HrVg9By5)W!XWz<!#@%;p2)D>4@`Bpl3q zUU1uY-HA&mJApyShH+q6NenkX9v~(vkY&^L5F3bQw%bz9mwp5;;ycN6z;t+rh4~+N z70FKs+nr7lTne7snDZCjrd-KtA?sGvkJ=Amqb&o(3%1*s&T)<*dC8}Q7GtY#UHO49 z*?wQd0A;mm!;Yhv6DIy3jKHzma|CWI3!P$aasfzW?VG<1x6UkLJU5wHgE|{ej3_B% z5m}}HrJ&{nIAX+fJV75vbEeFeO352nSAz5GtWv-++faXaC{mOPdpq>!NLknenIdbc z83K^1In%GY6)xXK!d&eBB9dK+_If6QpMN0aaiA160PVPfmYZ^NxHM-UV+`>nfP^+u zL+c)5TPT{Gr$q{#e+(|!@tRT;CMTC5J$gY4iuv`j%)rbv9XW$eFI@LpWXjpJ{Oim{ zj}Njnsft!?S1gj1kO2SzO?p->+NEXj1%@Hm5#jIF2}UbhB#Deww%=3MI-6|Dl923a z)&(3xECNdO)*!mCiE~!KgUNk(^Mhc-b~&UtE>9-EpR_DmY*vq2rKi~>KVGo^0DD|z zBQVoZT~6=AMY}ZO!NAfLzl2klHP&oQOP2)Jm zHWTY5+6U?&GyG3bcm1Nw?`XM@w3Q_}RaG54$UN>~P0fr{l&Va|I6vc+;%&LV<0y zfcCqW)=_{uh-HfR#r>XA6qBI#b$>mGfi{aO*DQ?-Yph$b;bM|KdxUfd3B5Tb=aXkVBYiSE=UUSOIHx^7|6hYMn#SX6zMIx9}FLh!y{TAhIF2zVa&lu! z9Eu^s8V^6THCph(r%EL%W1?QXRl0ZgLfS)jrY%w^g(oWzR4eZ77qGmwsAf@dtLaX# z9^%6JWrR&HlSA`n#H53i`<^e^B)f%^$Qq83PWZaW zazn9kM`Hvo$%LaZXXEeEA7N5`h@Cy{q*=F4AOM{k-5%L5K(bSz1&I2;5$&pBNF)M# zKoqA~DuSRJSif(PEG5!_PYv~IL3;=bMr8&K?rvam?I|O`z;Uc1E?hX_ltDu&*a5JE zb8j&)Xvbp$Y!@;;Vah$C zZ7IO!I=Q5TCWl)805LVoG|U8(Kw>M#$`ZtAUD^dLTJN;WN!k6!yk}RnvTV%8QQfJx zls;Ol2wE#$i}A6Fm}?A)ZlJ&uPrNUpWot#MTKrj$1kfJh4_sc5W+k(PI_Iq4JGc=r(TL!RQ`s7nlH*8rAxC=>pBYCBgk#bpCmTn~wV@HhQqs@6h%9 zq*T7G&dNboZ7akY8YPbPNEt;#0nm1WNwBAFe*3~jno83sC=U_b?F@En`_-Y3v{UYY z(^{p3g#xE3t9@fIzI`LBFbY8k6esl_@Z)z`i6rU`Rb8Sh%IEcfr`3(?x#<83wBAWv zun_KQ@m%5giW!ti4eXDvUOuqvhi-5s)htCA!OIM) z1D>5=MC)JypUw1y989|11?qQw#?Y~8v&}+=L}p5;!(j)c+R0c>qrTlDB8@_<@B5!6z zxdho(a<#Z3pdH>T-8jBv#bp&sRO#^P8YSs+3G&pJXB03h#ezhXfRN;Bt?Lgd1X$!g zy8PhHr9mhGm~YkxPrH^TA%}z-!wvp`WtC_^pzRM#zMB?s;D#S4xg!tzCBwUbb)*f! zh*3(}&2{=gTUD`0@eoeU`O*L-Zn~17D8y8>0i60J$!ZO}%qm%ZBTO??kPcmw{ykr; zGTe89*yjPsa7Pg`%6O=&ws{37L)O0d75@Nh&E;P64kGXwnZZ0o-}yB24+y7vSyv?H zQOp>)eTN<4Ue}G*wIv_~l0ae&2FAL$-$-n}q^fark60LNS-WyKgWvXSuo9&Km;lt$ zm9Nq$o>{I0lm{86d;|R;imb_&5(7TxPjpti=b35nR-c}5xVr@MJz~K{SR}jj>`Xk< z6~wkR9I8p6qN~h#Z@N4wV^BBInmABWQk>4@hU*ovrZ7a51C*%K!Zio$Uv|4e=pnlC z%(+>Dn5v<)AIvXeTt_0%LQaIUYJL%&Uv`<+xu4icO5evy5zAGG6mdgNA)@Q_UuZ(5 zk~Q|)teuq1{{YM>b{&9tg6dp}sa&Fcpb{FMk*aq-Ilsp`+;WYW1?D%PJ#5M$!6+19{zK zq^e@FJwqKxj_|eOeM+mGl4?x|eqoZWn(I=kfN9t{V31|X^g5p%AQLFFoLGy1oGjG1qkOJx0yTX04` zg~c*utwbp~0#xNvdY|+2e%NjFf_cI%h3>|pHlYQcY*)6P_YKTT*y-VUf|1UrA?#~0VT}d zixU!L%?NippWk>PIh|@-rNtk8gkO_i*KNARJKAKGB>@EH z4CLxhA|8Vb`|zb@IZZX~0Ixhwtjq}xN0^DM=pZpA+NAFkZ4wHUP?Y;&^M8wR0QNC% zzk)z1s;J4-l6!mmJQBMnDL16>q-p3&|3iqb1BL&9s&bngg~ zRtfIRiI?a&|qw5WgbtQWCFM@OEGC6?-Es&Y%eh zVbD|G0&zY*mW-)c1it(95F-p-Q`DuTkcThWZ3A&9qVek!HDs*So$`arav@*_wSRhc zK%$hmQ3UvFrvCr~1Z=oL66O`lSyF)URrTNaq*lFf+`vD!3X5teNAuT6Wx#<*8CH)I zYqlS3){?zm zS&9NmR2--CczC)kfl|Rf6RQe8oCmRBsXnhG6(|zNVZa?AZXvz|gbd1ZC{yxo(7lWu zP3Dy;ja&4^Yu_o+sjpG{Lgo;gHDt_C@bk|e{UXXyFw9qk{U3o0;a?O0kjXw=2>I^$ zwG%OKqtKdDyl8rfmr8)(u&% zkdc_{x80#`e67hREnJNbp9(>XzWmWd`!pw4k2cqQ^8zJ#|XI=Fgs@(sM?g(bxZ6ok|& zY8Dluo}^bgdeAY3+s08v2pT?MUB<)8Dp_r*T642y=Xkz8(yM5-de3KXXdQYOlJB(^ z8IFdB?-p&hU~gE85;xTMh$Z-kZAa$uL}!s~TQv!$Qv{?aR2n$1PGKg&YsxaYHQ%n@ zP;Sj>QAu`f0o?SBB5`upbm&rd*X}s|qJ-%#2qLA!a&~{)XuD@yGE`5O=A6MXb(iEF z4-r|Yw+NSQ?n1(H_@60G!;<^H(AK*!dTC0XyrK)*;!+M^#P;_@7E9DAAp0dCk`E(~ zq)p&raPUje_(^4E`tIP!5gK7_2rRQWOrf^WEbyOOmI0 z>0~`eg}ZJ`$CIYhA=oqX)8Q8Hn}t#oR*(QX*TP246lKkEm@(!aXyPehw6OJRs6NVu z(O_9ZPa#e#p*z+Utrn7nrOgdV*W5ZowU}lA9~R^D&K_xAfo(Pxp-+U+6ZC+}PN`Sw zaFW{&I56F6s#Xr5P;vS9fb;CnuB;!VVdU|Cn(*g@+ceSZJzA?lsM-10=>zYXYIOnz zTDxk)NGE<-nLwobB$xjHC>u6Efh^`v_rjrkwC@c#fW@w2`ycMn?3z)PAM zAJ3E(Rs3a^QKvh?rWn5xl2ep}t3|8r<_AQ3{5kx%>%+6P>qa)ru!qVH@Y`atjkn*J zLb))BDoWL{9{AJNLQ_B)yyJL^9cxSNqy@aBDK$&>g4TO;n$ocy_jsf>{UMQTTOC2e zC~8aA1!9ZfA(RMxni^)vO2Zm&`R`~RoFivQCs%S`Zr@l5`r*ZEQe03o4d1DXw?-~f zrj)HD3W@_(`|S)?YdDu6sUT1}9S()QUE+n)cq1X0paI-)KYig~3cv3mDQ=Q-koDW7 z9+!&1mKMMgIMg4%=8>3sM#RZjSF1{kdqe_T-LTx6K>Qzy*0iQrAzV?^{{U~4R&}Dc z>kZ(Xfn|X@a@4Qw0WEi&yvkEkdPD+x(t+y*TW&ayMBv`TrL`K4jS>QG>9QuM<<$9k zMT@frgegi%AR4jIb%fa$zDrO6IZ~p?DtCpuoX}j+cB_%5&y1A#ne<)Y5oZNDyB_mV0C#IwFvE{PK zDt1|GIf3|h_&ijxVo4Jw6e&SZp(czv?EF*A=%0Znpoh^EF00;Z z6t7$#Wc29a*GsmhmVq^(I%tAgS9I~V-Y45JRCD|m8y-W72j^rWXTE*a@qm(lh9 zsp(VuBTieaOt1+{!V+bYWh5qHE)6u{;=QBSr^K_E148?5{{U#cZMJ3VAJ57plY0sR z%z29>vhFK7z}b3}#~+OmSgxRjl1L_YF6U*rZGM+BJ7Ow(9 zry6;kp;|?b)M`>gb#@&2#=mgb5R@%yAgq!I*G)%d(FFoX=@UtS_;vn-$r#o|I|4)G8g^A@Kd z#7c!t#Hp>P$7rq`7JW@4qu##{IQ=eqd3tTkLXpo#y7@rmN~w4HMfBSP)y#OXD#u8h z6)0562UE;;nJwqW@nLAMZDKjWo%Rp;`Ls%u)+y6&e8f{+u15a=2$0;wh6k zKficJqi9$W;77(eKG_6q?upyrG~Ocuvd}(}!I#MMi)mZXSHCd~@buBfy8vkepe<9O8%NE)kM4}q z6QTMJW9aNXXH>MlXHV%I4Zx3c@HZYO=jN_rxdnp1zY_LkJqLOy=;K3`h zNLa3)67UAsCS-*Yf(mpgZMt=jZag|0dD+z_XiAAGDjpu4K5)s2?i|1>SlOy8*YLzs zEhw53oN&i@IxRUlA-)jtF`d}1*~n14K z)ztDUMuWBcPinnP&2VoIn1j`FdvRH(bYEtT)})EVPG8UpAzO3pVVOiHZRsB|~2OM39w| z#FB#535@RFXIhq1yR+4R{i8~_?7poE3To~+@`&VI;JF}FxFh8idoXK?;z9uN<~?Z) zH>|_q66$GAPXZve-3Vc*A=r)iikB6+m*G>WRf*A{^dGND%aTLtzk%bt7?9M>xZ(rf z)`2o$3vfXPx!I!3`_L1V7d(xj`!{!@lx8F$nDo$aKYGACWn@T}b08MuQ3WSUGW<`Q zb}(AaY)sUUMxv#w`LrT_!M1>_Is>r+JhY=!{{S$xXSA6rDbWW(ykD1kfS{tp8de!O z7y1FnOAz%ja>r{6ETuX}5Wjy}P^q30n(N*S$h(BOWQx(xC$ue8F57Og>oTCaNq&5w z)+MkJEz(I-GiWKlcn4#?Jb9U%!-cx=K|pq?<`FT=C7N=U$_F9b{GqzVbIz9NmPS%4 z`T_W0wWjJ)f|3h65TVoMACq8OLGc{Hs&yhJLuUSwF4ajuIZj|)DLPl4kZTUzwu#aO zSRD@jaQS7mOPCIF4q6aEF>dR=(JYV>8$n6|*Q_s$-BT-@hb9GOJhSXO@(g?b0A_0Uhj~(E=PnR-gB)hw+gnrRcG}}H!U81?X0GQ?U1CU?s195&LApuEH zDSD0T_KKHgDnjxG4(v}ndBVJ*3;IB|l-bt9X9h9rmiC!8T3k4Mzw6va;d~?+b@6Oy z{_&+DLe_*zNC6|nd@1@i&8;{nAFTy4L0XMkgO`YI>{3@!0RI48NsnzdWT+h8$=8txNP`Sp zQne{xt8UO^`cSfTr)U8t!Vp1Dh1o;v@{3j*VM@GubIbjq7>bTSKuhmP8)n1;VJQjr zb?L+%n`Z^S2bc+GOHE+F5nk{IvaV29n@*gcoKJ{njG0EH{&s+W_p&{As}*9z>>#w; zF_@=j2UGdw3@Y6CdX-wUH5*8wYqCt1&Rt4&>E#XfBoqN!vwUJZa$R9XiyA_+LL0W` zV3M-st6k%aLuCt=q^OqCn|=DhIp;D#sMHt(K1u7Bm#@3$6`clgJJEE-4+-$phM?|Z zy_eBuWurN5ovE&eylZl;YS3w=AbsU?sMH?8;&TmZb<-|Xun+^jS~E9)q;+=PiehvF zXj!$+Qb+|w+*4QkJTYH4;)Jw-gHklxujeo&Qu(u!EktR#{Ms$yn|Mk9NX^h}VteY| zl*>pYGMJKS?-3o#DFHe6KcqIFyb4Wev{6}s5H`nZ9;}5p74zUh>s_*0)Ym``ow~xF zH@eo8=9X$r6SkVgQixG?D3GL<=Dd92uMVZfbq}u*ovztBT#U;O<+_i~Hj6kn8+z4x zvPdFhjR(i@oHtHZoM6-{k1UgEI_3}-!NwU;t~~u!e$Xt!TUm~ z7Q@!{EES{>K=A{(=fAp;SYHm7Ail9m;kAU4k>P(YC_Om<8j3cs=c9zV*SRWoF8=5% z{{V0dz!G~1v0=LqCX+%kCdbd#-qJln(8uU%YvES;az2AFM%uq^S}!FI~yk-}Z-A2@b7nQvwVME*^jADJDBns5?`O*__d|I>}o%G;z zg7dEAa>*OQiJt`olfTa3v^m8DBq~1jEZf0U+-|2CY}f z0kk|GIzj+frW5sqvC77+sp1Hy2g_uG?NE~c07&lS8I+~Fw%>RqdES!J0VRnoqz1ZH zmP#AU{bTkdx)2Z+<@xE<{Gm?u#GWRXr}=e;n>DvQw4qxMcrfMAj^ne2bbuUJYDK9N z2OIpND>hVu9gfFcG^39?(kRKl0}?|pXB_;siWnnqw;>D_LPNIk5WN6WScliYLLmzj zViFl^sn9l}E#S)n=A8ckq!$UTdY`mszeZr0V|6<{ciXo}yE@7>G>Po#R%1@w_52YP z=_#w5%ky}!^6SI3a#%!{z1J)e;c_&IZtFo|$oEB=c5^XR(@L~7eT3U*0z!jQf(FRL zWmA1(%Z-MBec+|4RP8A4fbDcfi( zc}h?WTdCF&Z%lNAs~{&fkE{OBL8CZ^S;|xt!;W9=6mDCX%-pjx!C`oM`Dt{vUwP}+ zFX5XZ2_;SgmTn*xfuh7EuPU9x6sU4`HHHgJkP>rfL{XlEu4lRn+blt1wE_ZXS5>&n zw74D8k#;4CXzi@!9iS+e2jbbfyt3|VD_0yiV!1c#t&#K01UszW}{(DFBeHatue zhi6kU9eIVj_To^?q|`J1@x{S^$`Y!eNZWNbu&KeTHR!{{k(pHM9Nv=Dp_C0?Dyb!B z)(Wto*l`smUXw|7Aj1LJe#tt_R20M#;0`|UPJQI1v(Y900QT?E{{S_D*JbLBCbPH3 z6|Y=dBi0FTRUKR4A$ksEVYx+qv9t``c7fJ=wtU5upcWhS;6tT~=>hjUesdk&v)MsF z5(cA9An3xbTqICQm`N@Pqf_&kJ^d`W9eCqp&6(=LNHue@=^p<8#`IUlE7=%qw|Y@T zup4vM1z)$y5^^Yp)w%D~YC1)`&d?d1iQnr9Hru@mT1H^C8u)4(ntp4L?U0Sl$5Xx2pZ6978$l9 zxM!_l<`NE|XvQ6`8=oYW-;J0>n=QNq6O;nq81nB=hcb&2@4(`a1b02gGObE31xOl^ z+u`Q{uWLGrvdTw<=t-;oZQ2Vf6iSp7RD52@4$&?gy#&S7K5t`yIe&of3qsY$b!8cr zmLM>F3ErQycP_!|=4MFns-$rL0EP?NWNvGgum;(GaqW`AqSGgPNp?>I z^O%zl-NIP)i=lGK;ySeAsbI0+UfaXaXSLp;5`jrIr8eu@GK-%ODtyJel7c}y(?;nG z*QOxOgX-NOm~?tS=SYtY;bh4ERnf>>A&z(F-lv`Zic zXMJDygA=W3N`lfeFGm8rH{Hxuwqc2LCZb}FT&2oV$1(5o)8z>Lpv9BQlrqsNZu?Ml zgOcX5a~20EbHpp-3)wl65IHSA0>&X@=k%-~b+3_F#0rHM(@MtO{EHkB>qr!rck z28PL?6=flSZ7A?&edxdx)AYM(x7q;!u*MiqstQ>o>y+q{I>EVjiUL7!2K_vuy|Gzk zu&F;Dd;b6tpWauG_d-%jDvC+eACq>{Cl5xkPAi$2lFZJP5dQ#!rm(AZ;{j-$>Xw>- z32KA&AC-qI^5AJCg6*XqzqDsqD+Vjqm8hJ>->Ll2Lf*mp!yyvpf)Ge%>FbwR0%hFOW@=agO-qQHs8+{`&V?5*@QfbSFlNxVHLQIHjPAmTN)F`vKfGcV^PFX% z17ZGA;(lKq`+I+f$iHev+H%}*I`a@+>LFQ0Yokyk@%J%hRA&r1)b)6?W=&`-^AYB~ zaeED@B!(Ulq54BD*(5ACT0bzLn+m_ghtO;W@J8#llqdx~X~^hbu8=b27H>HUK_NlX zU&a1D=%IUA%21jGAwiTMLGy7>mhj~zNm^^AU=PE+eF%^`y%-SVksyZKsoHbc*&sYXsckTPe+$B#b z_MT*g4*>wDPg;M-UW?dBe4#Ub0OT0i}T|rM?KaCnD2nLD(f+$FT!y3rP zNS3TkHbTRk@|B?}asbo@*nOb#ZRuJB$yEoRkDo}h{{S2TIoP3@1oCz1Lj$aL8I+;| z!lkQcdiIS1%;r!9sx&)y@`>bHL10u;p~XQxd&Kf^@eIoFk*2JAZxv=;^&zThO`Cr> zts@=VcoG4a+AwaPSi3IpI}t$jE#(S{THd2UujK?=kgpJ{I}_9olg5&!%{Bi3$th@h z0w`X-U%Upg-2r5PK;#m`${?F;*my(My73i1svy>lzeslJNrBhO=17`7U?% z#fesmq=idWN;e1dSS)ADn=DJ1Ck4qWb7LpEBHwo+B1 zf5+d%P#9<+9EH$pl(sWAL0Cb?=yerwHW>YA%&txgR zrl8kD?ui?tQ|$yOK8mRON1|K5SOFsR&hq90Cd(`|Ifjl1)OLb4dvi1BOLc{M_Ax@= za1gA;l#(dh9^V*Woo8olNMcVLMuj!9p0p#RElj&ZpApLb4*S2#IQ+gjeL6gTOFfgV zh$E{FIpPK0OZHR_RW^fue>=mK>0$$rMF&sX6YX{~6kK?l!yH_ubzYB;mb|c9LF9MT ze%x^uYtx!jeK&;Rc+Zea1b{#QdE9 z0MqCH04wo+0O&v$zdoAniug!5UAGZ#*EL3=MzED(w1p7#r#r*UmJ)~gH@ZFUJh#)t zrR<#thUGsfOhI?inSwcU#^&CX$nXvW~k|nlKtjTgqRuZn99VX3c z%!Jj6u8Dn5x*x2v45?zEvRGGB0j^7pb4i%9uHCqU(Jx-NoV6ueZac)-Lft8VI``fJ z<4d_23R2-|+-uvYg!NfwOKF7of5eS@9$|x4GP>nXU1+42aZk--n-$38)#gwfKf(i8 z@3Ax4NpMAJSZ=de%M}LD5}m=|9l`i@hETO?!0SN^mS3sb1ztE_(LB*PN_QrT?f4)fr(*D$V+o zbm_0UH3<{-P+2d*h3iD~n5wE%&~@^NGf5#qD-KT|Xkf`Y?UcNvnpKX5 zA(wHb3t=%t5cyy01#Vlh2y~S=HLkuwD&GnTn2j>!NsnjWSo*>12_sbH|wa6$P)6^deleNdroM-fyr{Ca~aX=7C>$rY~D;vFu_ zwM#-(oVXvVEF%x0KxY9<{{SvKePZZX9tC!%!m!3K-RMYay0_`p0pGWZO27%NUH)-i z{{YN|B}wps{wH4W4)(PuC=tG=cH$MKQr|baTPPLW4PHN8HqKon>DTv<*jme;VwTR- zuObZJwjiL)$DJFjEYkqItjk2vFc&m;hMQE(^88vg1Z0-HQ)x=njDeC_)lf(IY3^o* zJ9W8vP_p49c!=ad3C*w3T;+m&W>gxbAp9P*=qcYw?*idT(k88zGLXth(LiZNq3ie` zaP7N1u~DR7x@@RPQC_D;g@#GL?8?rN?fJBII|`|JQ<<8jxIDwXx_q-x#i;av_szUW zKC@JiBL0abn&e7S08u0gzL8RG+yj*MHLtsfrC`K&isNZO0v)tz}KmAwQ10f=0 z;G$9~o7pE(-)@lCdk^jVBpqAJpL9{hvIK`#V8)}TPVsvWuh*b>-S+y#<`E*<>yVQ) zprr)wx##N)SVI<>tt`Hb3H(HG9Aeb$-rBA^bIBH-Z={)|E*PtjiVir%X{(DL@Lg-2@z+K5&p z9*1yg=MA@Qf>fD6C9`fh^N1%+3#k+ub^amdf+icqld~#X#$DL&=kbfyO9@om$|LR} z!hP8#WyoXBk>W7wHA&K;x#AubMv3DsbbuDixjD15ldnA}O}A<7P1& z#nqc_L{{~n`FvxI+_7bzv{pJG`YJ05ZRvUP|fmk59+PBgyhztF~F;jVju; zW3axb=@ezn{2yMC#QR$VuR*arOm8b3U1!(d+6h^#V0UfcRD{quIga}ZZhjC>$7ech z+s2$qu6p*<_=;AE#a+45CX+3wPjeE^$^m2AHulUm(2CY7+EBIx5D*@Y-hJZPwUS9w z5NY|^E6he`3<&wefEnthrQRx;*P|!vL3OuKoFr-Yw5nJA7iYQ>V+AM&@Z@ zy?5Fx%YSF`u{^|P3`t|~iR4OV{X=et>jrH?1z8=39#K-gVGeI+1&0@e9QIe`$q=$?VgL$ zto=<%*XhzO-L_y~SNcU+gclB7$e^Vn{o1EBI{W?H#VvhSewt|=CT3cXJ;?1A?95-M zA~>{4-NA956MDBNg zw$b$t7MhThg?l=mr6cHn1OEUo1M~j?^lG>i7*@O;zle(xPi?4Z{d&iDqH?mvgbD$n z@`09xDMcD9)PXNB{Uizp*u}XQs^%vuhzdIN{PKoHUCs)n zBm!wsKzTZO1H30)_iX8QlQL*3NDNx3XDoVhOL4$};3f0uj%37@=O$*YKnVQnAF$t} zQ;_<@RG&8DA1>@o>t_12wm_WD_2>ZSn7F&{Sagc42Q6JGX$iB1_Hw`iw^5QT%7 z4BCMF{op#URSo9Q zMn)t;lj+ zfy;ZV9@=o+vZA0EkXVkeuY~T|^4Bp1Igm+GSH*M#=KA~L19kUp$P^Soe`E@`Qy8`- z#YRlZ5-Z{@Q`4^TuUIhZW+>+;%kxN2^s9hU0zFtNFIsrDsd~`)Mt)gr>0E!IcwZEH z*~ukYrGZ+PdTYfTZQ38LI9gzsm7!nTQ4W6NUWfOLw&%HKSwFg&Do|PWShv7N-E`ta z&61x9LEJu_w2AQBor|ANtrj3#Fw=3M+wd5pD$WqE3y+i$T(U;KW+J-mAwfm`lka%w zLMvT_Duj1C4zQPeT_&tbt3os#Nai#)EOY~YA{#P5Zng4&5bn$$Fo2~huHn9-9PIUE zEHxXyFu!=>&rvd@Gr#luM|h7KsZB8~%3(qB;o)q7C9w#Wu*s&>r}G1EX}^A+aomg1 zYjr45o3~N-j;z-yT1tYLb*v*@!}q>q_+EsC0PYXebq0}jHYLnbhv_53TJ`;&6K-4U z)mj9srPLg^9JD`)tgxir8%9SM-)i>=XQqt zX>y{`rp-gCJ>r$!e2E1z6dB8g-=XR@8fwp2oXe(?`@`iSBpl2iH7eY+S2iDBhS8js zhC9iMPY2%utjH4CfvNY!6TCBG0W6~G27_QD_2Xxhr4V&$zR}f!*cCB=(|@4mC|_10 zrDjPzw}xpKgrzM7oR%Y6bc7q13(ZW_jHfC|ugJso(_&bmQ4di609ZR~oDz@?Pfwgr z#!wDz3PS?Koq9kk{{RgsYC%bG2yk_NghOSj?MjAfzTdo7vEoF45}*MTet&b zMAL4`nLrifKgX;i3!Qn*0iQwF^Q;Dud>Q8NlFbdzNOu>hS2Izah1 zQV_CI8Qq4UKCRLM54x}#P^{$B@rXP5*Xq${v<7!{ibOJsh{~hk*^lSKDXPtsD=DK; zaood&5MQ{YBsbvmiuT+>mCJB8@PJ;U-ye`rL#ZH^+-uBRyKEAGDMCU{z1{;Z*m3bd zDVRGe=>}|gl`2g*)O~wE3*!YTXj*h6mfj-4Qi4yZP#^(SHn8xt-74G&)H`bzTx54| ztSut%N)}T76YTzcqSd1?2PqUA{DeAcHzkie;H7Al9-#0~O2f_LA?O+YyM74FE!dTE zLY0?YxI4kD6ONHJA>ID~J`tDBdKixzU9&{87^w2wkF+k}j6hO-TFzoi)}O~{(60;p z1q6}<=rwo?W5FpiO2$xv9D}RZJ2XS>SO6yZsF5w}j`c#`$LgttzleST2F1i5I) zmPr~n#uM!}bQzASu?*+u4(x+PEw)*cWo0SWwBY?=ZsNh|lA@sDTGlivmxGjqhG9{( zb0W)}sr2~6AUmRJ!S_+~;Vjy0=uje=hM$56 z$Vke>y9&UuEz_MfCr5yDFLj~w4G+#4zg<^q)o3QU0i&OQiLssTv?v4z2AzAs8x^QC zyA$t#)9)~~kOP5Eu_0#1d*w?jQYbm?24_hG0!15o!hOEb3c*ldognj8odq!Y*(vTXJ?QzSP8BE7s{bMx7 zUXPP0*DEnC?j0Lw)=h}7%U(Ogb8fZ-66f@Wq!^Z2hHq0f8C33;1)M+c8ZFOoWkp`U zFV3;;&xH_zR0AFQm@hhSyNF7TCD{TJXevF&>hKQRWzEHZD+XuUOA)g`=}D+MHGA}i zWz^Y(ftf{v)n0l*`Ic18PGqqyuTEl)H@ox6R#(o&fc)Q>^8iXxWhS7os5*{3{{Vhr zCiESLEX%XZR(DbeuYcYT-;$7|P&nw{{V^xSx#M@ z_lR!G(My(<7Oi@ntHfNh-)LeS^=${?ivY6lT(uy2*HL#I_KWlFBF>gT@Y0`1jzXp= zmL3u*yYvxe{JYiaPx+Q0ao^}Z5QC|gzGhGvXd#{;l$R|-U%XFk zx#i>mMd%#C0))HCB@PvpP$EyHH91F-ZTN$;@D#G22_lpr>)*5nu;5UYr9kgqX%lo0 z$+Qy0xa1h}W-SS!+6r1OkMT8OL(h0pzwC`t8mz;3ptUyinK;+e$c6F!s$%II1-X7p;l4qJ;U%s(g~QMMjA9O^akFx z36oZGgOt{vez2u|;kl_=RZs;%jk3>VNKb~l9-eXf*LEdfg$%_Z_Na$p!lntm&Q%GE zb+?3c*eCPs7_6(z=gZG{RlDvqiP?cp&%L+XdCGaN;0hS^C^P#&d=Bf&{Dm5 ztK2hEkR|4#Y3B(T=H!@DPY~1qc0FQeXNq?n_PO)I)Zqd8B%a&T>8%;A^Swby0B@8v z03(3fc5xN1%Q!@o=Svo=Yw&^hs+3dV4#mM64zS63Rv!vYR3BA2r<4wvd!|7dh$(W! znjgUN6@u8J`x8R{0F;1O(+VnLQk1ARU`W&kAd~xV0W`_BX=MnQHyMM{pM}`;fm5%k zYNA|{S+-MsVzt|cCMf|bm_SHpS07K~h&N!vKCK`ICC`ZcAg0JMz1&wcm&yjC^N7?i zJ(MO$Q@8*<4L>)9yjO+P7FJT=)B(rd4P5uyk^%tLfDKSO{_q6&miL&XcnC`e9I)l~ z;ov?HzQv(Trpzg&Pktch^kqd!DWeBGzTRCvv0CrDCE1o#2eq$WgX`x71^jD>GR(-9 z$_WZ5LC74#HW*rcUxkbDv<$tjgj$#WIYk@eo9OUI3gNX&aFb7*G=<_EOj9sR%1;|O zI>PaREo(_hCon8P(2hg~w|3i9qbgjm^>Rt6 z15iJGo*VHk_HyORqcaa?pBDH)Tq$s+Cpt+i2;iS8vqK=X_z0uDU$0mpmhMX;=9kXT zqEc&3)!&YtVB)U%qcUBCR-cSw3$!9bsQ#n)+{aht=%S#uWD(D_-0)x^d3bEiBnAK$ zDnBncVE&ub%dd$^+;PKninxCFLc;xBb<7X>ZC;VWtjkY|VL5biYUggF_U0H-nTelLh5VkW474JzPM^Q0YB)|3W8VB39QFgbP^;b%2K zA%{=ASiZ2-wJ9@00-qNS-{d)p({JSmE&voH>U%)Dy4okr$`wPZfed0xM(n zweauf_T`|@_e7;7L@9wI_ol)#OaVLp0Ita0=$@xT`SgdOvRbUEBxfoB)I9}%$Qty3 z7m-R-$pa#I59j0bWo#V?r)IhJt>kKSd0ur3VLsCw@TtKPU$`VP*sn>DW zN=HV}HszZ^7VQ{+!JS1Y{{T%%^NI8VuWQvoNmvD&$+!KWRp(?g(o|H)_@~YpH;vU1_fefzk!yJX%l&K=s#=3zv=cHE9eT>!-5{+zZ!@yh=$R78+A%p2KfU zz~S6z4#t~8<-uy2tjL(p@1!x==Sq_>IW3jkj}Dc7JmRI&#Fj+_DCh15@J7dElRex! z8uQ=yfcK^*vaLY@V7X#P$|F_zF3!^>wovZ-@#hT9U-s0L`zZpoeNXQJFYGW01RSCK zKyE&to#8&q=@BcMRH8;&k3QQ*hdTH|q=|{~Z_&4Yy&`r5(r!U1AxQu>=a0|MNZuCF z>cLMud*EH$e0u3+Ihvm5+qDD?xot~MX-e@8L+uL9H*;*rJ|V8}2V~Cy0)P?-@`x_n zIu=5dpa4G4);+!~$V!>t>G|=1^_*krKqR)#Pf&P|oG+=FR^R00bmp=2rZ!uW%tJ8# zBj;>EU@2OG0f}^vta(3~9@pUCpu2d@wIUm_WGo8PL$k!P=MhaoiKJPxGJ@OuTU8OW zYaTn=G6`8y#FZU={{Wgt>2eFC04jIec$V)#n1BJUrou8yNe=B@$L|E1=jCzL zl1NLC96fyK{UTZOi!%(OjrZyMM-rA%O+&l>arKFWgw&+a>sS5@$3$~b3(D&xW!r$v zIDiJpl}rmLHAM$VZ?xT{f>7@D2U2+-XcumiojMHSgO?orqfS4h>$w(11rphT0KZ-7 z1SO#^&co#tu1j56N7)tNK}A^tfKqzDSl&e1^;mZ}0)-^gukQ=VmL=y31SC-|G(4V= z#dX_K0ZNZ7HwTpVh;O?fn1UZL6(^U_^)IVIaWD$$ycCm`syh?2@Ob>%3{8|@XI7Qa z#VHnIfZEZC`9yPP8W2dzcKquT7QHcQNHoj`KPHGhKqbH_AnD~FmwFH#vpqV4$mTt> z%FdEfSndZsOi@(RtcHPJ{sewnGcrL8&D8Plix&`5oG&S>Y6)(7K`Hn@#1$<;JQ^Q< zwA-X;jc2lN1;}1mgEB#>75oAn7i~n@XDQc4H61!dn@$+aGN=IhkzdE?&@#b>)hMZh zBps{R!4KsWZPxQEDOy6(0~%NV0AkU~P!^z2uUAJc^&11H@doX8aRV@A6RLJS+ugEAavpsyk4D_KWvBIZT&L{uSU+3fcJnBa3{Z zmUwHGYvq>+jlS( zVT(7H+q@jKN@WlAiM-@Rv4O%|J_3x5^Jmm~!dlc8iy>&y3|Vw(FA-xv5D9euL{8ZNrE}#FXfo zF>QMHkC!mr_(5eB>92N;s{-CN0;KV?N4NN&k!{OgJ^5dcIQD3?;ZZQuP!|R|wcxaz zz8x8$q?y$T=DoYaB%3&Ik@`o_OMad$n1<`avgLr<$LW*&SzfUC)P zCK6UHRs@EnA5j-&-03I-sUz!4m?CL3I5( zcY@L;kO0sRd}kNdD4L|aw31!G8u@b;Y`&2fkS1bTKQoN4wV%CH$ zB>|4aaoQ@_7*%4^hYrZ^_F!K{v{-r2kH->lp}|nZ*l(sP*X8A0EgL|=05OI zb|jlVRO$sg^)R%VbHY+G&{0~Gv>LiBvr*z9)2>g=U^1MmhSHJYe6=L;(h1yFgOsQT zDSn0g^?o7V&2I`JJ2iS9q7?5uCZOaUOR`VW6-ip}#}iZQUBE6_hW;Ug09n&$9-ZQoaxZQ zRv?tGPy)jiIa`qvqto^2h)S21Qhj2Ru2H8w#9p$hd6_Kb2DK+(+INie(Z%3I)j47f zUw^!9xfmsGz?yRg0sAE3E~QPIrjV_RYOKleblN<>Z`{dY;;jIrUzCjU*@kYvcz6r8 zo1_GK&@!D*Q`hmdiZ?bZRP~f35TQfK9Q6mJPm3<~qyScUAR0z@bz=nCtw=*0>Z7*X z*WCsstKZj&kbtEIBm8tcQ4zI}B=_ZvZ6b0k_2fR_QmCw|SNbz`@2YU#LBB`qze z92XVj7-p97x=hN%?H2=^%KVb01cZlXQKp}GJ8)c*aukqCNN^84^f8U&tQkJfI20(5 zSn><=#A%o+V#K5C9WkEL48CWXYAHxj8)Xi|xcEU&T%<~AgytfHe?NS3i{B>2iE31y z+xCN#(&lScu_ z`@=2oH#Wv&g1D4T=!~21cCqz8;&5g<9ACy9w%xP z{7WVAeGf&^@t-!8t`H}vk9ds zQc2dNz)Ev(*-J|qnN`dq&RWv46bh16MIXv`jxP)<5j?D@loB$7vwaWRr)^H+Ouc5L5H>V0ZV}8}N!`h669Z&tNm4;!$4IGiVs)t` zZk>9?<=P63b@{{5h0H~FOf>`$c8V8W(hv)dzHrexX>yj+m>qrE5|naV@#7v#g$s4$ z)OOaqLS`bonF`#Bh(CEODa*G#BR9p@o3KxXo!>_M(mY?v^891k{9hi}NVi^!S$&S& z7^bvS-tq04&r_%_OKjUTSXyb?K5usG>3H=4ZA&1~(X{Io@)PW{jU2NWBQ-V9bdN0d zOvQ$xwECE%tM^2r#l?H?$o?V64cJ+o>J4`=BIvUuk*Yo8R=1D9__Kw{mDx&?^hY@PlC`QcD)rwbyQNDh01>`9D zY&@W(3o!(j+eqa`qvyYrPNnpCi4wfyEL+q{(~x5AksJmtY0Otnj~3*oy&0cZ;xvrv z&T|8=A>m>ilT!s|uT%K&yLnm;q|@cwkr{cfLxF1Z3`x-K`T3+R&sYi0%;bPKen{dO zFBxO7HRcnqY09ZQu<7OXk2&2v1WrLoI(WU7(f>ABD|og?V~0Qviv@c#h% z9@>S`eoM$onC)MrRkq@3NMOLe@27Z9w%SS^BzR3p;KH=zm8mHU-{-SOw=TRhz9O|1 zlqym0N*Cbs9bQ;X3skwP3H7OCm<~DX=Mdbtf)bpHQz<(hdL0jxJz?9%RMgik3o+b& zaR9+Pp7Bb+Z#{#J;bRfs%aBxRq%7#q(YrE}>DV2Y!YE-BZ^#(qFj$GU*>5jpBy}O2 zd`9s{8Qy7-Gi3oJjk${!{5dc=NzD2UKN>6BFyf|4RJoof6n(tlBIYE=C{(P{kBALA z?-2Si#Pe1Zk_#G=bm#|Imk8hzRC6JcDCBEhx)^$sXOxEnC~W}Tji856-nLVbldtFQ zB0D0Igp9?g_5AliYnv*wRoG~FKaB$M1=*Mch5%RgfQop+$u4q+QC%ECNjM09PR@N` zs5=(v+we!JxqtydM38C>TC`eLR0>_RKT;uC02T=VNsOUiG7<=L3>ahg4 zqXR+KKTEq%Ku~PjKM%|$+A*5tPbmp->`tM_!1;B8syI?*{{UK`uL(6uxH=KN7z%x& z#p`rT&O%F$L8MLVWZDT)12eHY7v=fjjUZL;X|>8EAt6aSC-ja>>OL-aa>@sOvT8`F zq2G94$Jb=Vr#cBUAHtOD@#)MwST8aqg-uBChtur?rD6$7P{;@;UeR2zfpFcj)}WtQ zGPmkF9-PyxI^M^?ippaNQ zxT*4gpYjZ%>2vKrPru=SIKEMkge@n#2%KI^RFbeVk^xEFaz|LBMS0&~5}o)F1&&;a zsm!7Q(6+=xw{6)iNp*tf^=L`tvvuAUZ#*ufDEgql=miBI$^QT=NI=nLv4B}Fpbv%r z06#j#wWDLJJT74i(bS|lDit8_)O3bpbS-r!DS8pOfFipwNL!&~cnc)|0GHT`zn3rz z64{pQK~dN^k_hS&1DEfDOz<5cqgq|F4z>#q$p5o z`gDbRP2KC!RTQ1tA-V2ZfCe<&>6mlhv^o~&Em_98yY${0mu$*{QVNLx)9o3(x<~hD zR1>;ho?n~6yPjc?v6*C`w!1#H-Xzy;%9uuS7>be8?-N+2x&)KZX)E{)k+lk(A4VzvWK zPXm^VN;_rBiHU5#2iIs>vHCd@7F3ce`d*2BL=?pM#Wr;1BxWJf$Jy$B1I`w3?m9CG z3afAO9#NINcQ3P7#8*tgFe$yCWw!4G?)*@)GALGn5%r6fj6jlG-v0o2mhQae0Mymm z2x512$`%e{%J=!e_27j$Ax;6%jem%e>BMr^F_Na_aTT!_q%5ik8WTb`i`bJDj>-@S za7Z67tRYOtGd*gMl(;8W)1(qbsQ&PV~((>nx6y)FJtC!m%mp3J z-47f`cb+$vv@#B24|nerZ~p*Asanf;5~G+g_&?OVFyKE%5~YPbRjC8!OfEk!vcM}X zqHMrG1UBR4`O*elH-yB^%2GoTOYhd2KL)X=&r<*p0SPaqPv+54Qj$yM@u<`h?r*GW z0I!Q$N*#cD!Av=Cln}&+I)l6ZQY_y1TrCCJG_P1nxNas)zWupqGIEBVYi%Ec{CL#MtVo#|x z2pU!h1+=IHa|?E{F~hQh@3&vgBb*z2s$nQq8%pYah8b0729N^1vg}$?a`>DY?vvA) z%keeuFeDEUAk??#5xvwl5gZabjHUMUD-vigCe z#8)08IxCt3$4Eh-*snm8kZINhUH8CT(1iOePHo3s7{3&X7lpj3FQ9e}zvl5$z`Uvl zLGyqQUh+{a<){h|)c)}tiO6B%4tdqO#}|d!>qt?|{QSa zg)lqu$v?L-5B-d<{_1`)YEzPclaz`U;thXDKh0k845%%kYAXp@*12{O+VIr1DJvqn z7UC#j3uu~EHAU9!0pb`hD?1FpkO*Sic8WEblcl9-89)RwSX24kwWLora6JOI15~zvMXNpFq#;XZ z4gUbt`}u?$Mc`*Ft-wD{(Oh9#(rgM%p#fS0vEn6Fh#)Y~4IwiLTa@VsV@A>sS}%#E zYRZsKz(HX;Hxi~Sc!E;f3X#Wnnr;^e8G$OUhn|s5SeGk<;aIMYE3x@N`Iw$^(xMYY zjZ?orkE~Bn57;k4vEp_Q(T69#(9bl zW&Z#p-{TsTiRCC@&(A%+a0bb7gb<@pHs!hR65hD2GSn#UG|&dx0;_i1N|b_?F;-H* z@B6}a-DXi%Y@(d?jyZ2ti6N=N`D&+QysR=J2sGe%UA@%+*NWs_z~K_yvUwB{{I zxuvNfxgnfaQwx9BCS=5R(z6R$zDMH@~j zN>@_DbobgB74es?^^GlAOZNr0j&A&II4nyw29DH!&(2sZ_PKK=g>A!A-wbw}j$4%! z`E1{K0ZQ2+K|r&U$1yyqa~48Z?CJqE5L$fUM$za1f?w36>I1b5NDnvIl0t~4ogsSN zi^SRK9;~Xh>B0UXl4X?>94vT1@-aNCl@i0GR1I|?9S1@7h869X=tj)rQO@wah}4;h z0S75+^9JoVthr+{lbf!!ij!_>c9NAOl%(oXSicn73Q>)!_*eA^LR6&yrczFwYs76i zlEK3`r8Q`+b$TzerA286KIFR&tx;Iw`o0nlQb&Za8aKKL(Y&@}#DST6haf%kqI znK{!ivIy}V`+Xc~1nhSD_;oDc4Wj+7!laU-;UjURJCvBmqz^k{7=qH+}Frp-q48bOd&Nr&)aWvx<_ zK_Y-v>!2F(x5GiD-568V%LoLuX~#P46t0^Lxi2|I<~F3c18QhLh^u&G4A0|lpO;9S z!Z2Z5g^a}oR8Vkx$Fl4*Q!&VLXj;DLhYjKaP{~J#@BUq3y2W|{l;w2_R72A*WtfSf z27yD}%t3iwL@cNhK-LJ~!Ae+BH6H%}rdQHDuvy(ncGcg8`NxX)zKm!=*Yyv8*#2t{H)WwSlFDq%1BzyE zk^JTqWm+=^72u3sYKe7s9!Dm?mA`5&;>rQ>UB_waGHdSs|+6Zh0|% zcF?A6PQ&XJr&^rkEaOAD{v)HOJG(WpCWS4@>$iU>2W+yaI+%gE-YnW>>8NAp7cAC; zyeO$q)&$;nGD4EHctiM<{?XvS5l~#MGRtoyzNyrH@i?>>2ieW~PKU2Z&urM0X?H#v zXf+%`yFNQglmST{v~D}W+CBzVS=rfxS6Wwo(fJkt`)Aa*UcF!yha06T30i$%B;`)v zaQq5u1}57OD3p**a)VDJ4^w#2W!T9LM{f^!4w+>kmc;J;W1BW42wrTZKr@eoH`u1i zv?XPO=;vSD2q$U15>aVgooy#yrWK`1NF>uy)N~ueJd_Yl zQrwT9zAf4q=2K7s;n?<$UR-t2$B+!*?pSr;!23dSntLbUcY{`?q=3VE^op02-{E>6 zpO;wT=f%~>k#_X3x>-jnc#_=o>$hkFF+`00a+m21faXqIz9I_~upIFU7W*|+lI=$W zKzWQc+rqpPso@*c{OiDrs4nfJRq0OKK$#YTC~2}g7Mf;70XJGkc~eNT3JCxfa@Pc_}+h(N6Y#AKN@4a zZDj%V>k0C$-m!IhRqG74`MJ_k4G-h?fHxhRB-ST4c=WC9$snbk?ao4#U#IgIEw~~| zhHSc3z^OfdK5$iRV(xMhD%|#l#)M%jIvfB8z_5=orV~o0C15f>B<^Cxg33y>p&(R( z)XnxWX7W;$4OsQs9Kun*<@%{W$z4*NK7RN>!}p@5uR4hasZau*e|R}}Okb_Yvgs%5 zr}GTAg^FFD#)JkmPyBobJS>eT$KD_^%^LNjJAbq8nsdfcpAv(!eEUQe3r1ydK5$?yT~?Im$yX(T*}m}o{YaFTCZKDqO=7XiNGm8$hx4Q( z-?xgUsghU^&p1>D8_jc;b19NdIf?Oh5tOi%r7pCG3TlJp1unap)H5WrH6Ych_LU_p zpa=nm=ks`|3s_S8KCGr|5|$6g4Hm!d)FpXxsHD?2-^3NLgiotwPVK3S%es(;0V1co zFiE}d3BI%x1C@XPIeu&OgEq_eK3X!80O7mC#G5)Yxk#@~4?zL1Yl>XY5Fss34!&@^ z1)Jv-5CQ;l%>DkN3t*fY2+USOnZS0{o&J$e6J3H-w25geQ;O<(m*NRwOHD>{UXY>6nSdPRI(gp?LNwm$x0Z5W+W(dx|($J(b~&#-i~M$Kij z=gmyRojivk4NSHmx9S}9jDp&NR^jXO-H#n1?H0_aOM(a*L;;(n08A>(oUftRr{h3e zeT!7#4C9`#H~MoqK+01ost@fKZMZ=x8J0?jt81s{lu%x~?&K~~OvLQxtW;hklPL;J zqLdx^AIuT5-|3i$OR!>Os%Aw19ow(x5jHHcu2{|#$xjhIy6Q^FDL~9B4)NT@8IsJkq=f*@vYZOS z3jUAr2dxUJ)t(yd7I9h%?-||@w5HGN5CL~A`a_h9@F^jxU_AW+&hSlixC7${4WyA> zwB@%0co%Dtn7IBUwNC&5`ceb!X3=X3sH+dhfS39PUEJu=1?gxYy$0~PZ^YgO6;J`U zG0WxhPBXUtKOMKCb@O}*hGshR2w0BLR7n6=Zm>%bU!q~{t3Z2vuLxtQq2u$I`ESYc z{H{Ku@%(=nA0#<`!kR@(aVaEGwF9gWRInWA+5zSBfftpNg6?%Xj-4Zc=tX&p`<^28 z+b4H^M$BTQxqbEbe$ZmiW(<&?Yt|e)MlS0s2LM$5dBY-CPsb1%?6Px5{HJ&_lyUjq zJN!|>&byH?KO}Bo#IAYX1xT~#b~ItnUa(q7*^G5@j$T!56Eu&`NqFi_l#PA-MZ+P@ zJo%1^80w_i0;KD^L{=*>4%O$c?-swJC*=erSb*9u;+=D2v5mxAoTQDZ(mBgR^@{WN zhk8m$mgMQTJNA!PdZY@~=>csynZtK@qcv(R+uaovIFDQHDI$P$8$i=H_JGsWQp`!? z>k><}I3I-lpg)RhRqhQP$Z-PaFVAlA-L6YH0qeuJSgR%UElP-rxe(8*(?>BSnCbKS zN985nC6J1NrzdENu?3~a$Id8QDj3uQM~k+J<8ORXp89-#UU4akfJcq{M@nD9BM?J% zlD+hcwrvN_B9&*Sel~(A0f=tTLlul|SD0LH$biAr|&0HGTU-ZRaql+e+7-VHVy=E|y?-I&$2{1&+w-%c;_|_d$y^ zv#IRB)E;_+6(w0%ZQ}Dkv=x_S4$0ZOlNj=?q*=2N;MShw-YZ`70MP7wpNRI-tfN*s zQ*N-mZJw^=nvI&Z5gMk0=$#%gUGr#LPrQ9Uge^fn5|OoekD7fJ0CJE@TiFdlY46@X znz?RuEg+|041GV~PxaS<`PZ{GzYd~pb2Tb9@{X=wMiz9at^7mX5nJz(E?6GQxiCiU zwka|*tHe}DOKf(3oO-f6hwI-6NLVgBZ9*wspjHvWCPd8ZQ-T?VSisx9*Emfwrjn9K zAey-7MH(6L5{d`_A7;H@%AWXr68h~4QjUZJuEV!z0eoKQmRu07gHc$e{q!KR6jDk4 zdXC*AHeK|;>Qn0+1e&Lw@coQy%fEm|W@D+2Z1=KfppY5AQQx3|QmqDYDL?=a1vugj z-}Y})DLFvd{;(1o%2TJq?QGG0>$T)fcITduvtz#jH7v(Nr@jkMyile9(85xs?{EPy zS`pzV+HG8Y3<|w%6DO=I)soH~s66-U#4%sa|LlG7)pjhpv>Q&IA#9;x)GG9mUB=xFf#UQpuT zq0Ayhs`Fi#0hp;E5YJZXe!9c{2fqaQ1zflw>_^Tj+HevkfL5Y~W!OJ#)f(v(uB&9b zC-%Qa{{Wx76b;zzBiYMNy<(y){;FtEY=lt%0I=Ke$F`fsQj|SX^))|FD4O&@LKGB1 zQ#fYdQ_jy9=#?=Yiei+MfHHxv z(m0cW7zJppn?ND0GR{(X`M}8-nLZ=~F)TVB0kdmCIKDGJS)=mR`9 zOT8R98dJPhu-K6?RW*7Igfl5&yG+!anFvd3qjK=TtHDWF4Cy+aA)Hy$F&-B7nv`bqSNN)Pl1Y0nVjLb={pmpK^-ZzBB&k0(T5|(20 z2Yw&VNI`oRTGWK3qgVEH73>Qe%d-SP_SG0n3;-Ab^zb~VhPjYLWr#+q5D@dt3{m(p>QY?bfBKETGM#I*dw?mjglg z-C9wyzwV}MBn*Y<*UZPaBUNhSXP zJ~2sAlXZHg512RO#p~EIQnCPXqj4Nev=tXG;b1tX!WS|9^*Lby3DLnK7cPuW&5Ki% zpfi&~b`U1piCsxcg8DrnUd?4P<>x6r){IMe!lkzMQJ&19T5$a!4eeI5mnj-=6>#;X zMPvXR?*cHS#gvgV{{V}{>FV`nj+3n-iIRG4vCj2`gp~kXGuOG`MIT2pW{k>GA2)=S zam_v2#@lGRRXrz4jrfRcmQ=`>mV+y}p^jVOm!Hp9FIdYhxP*G#gk=JbbSm?PoIiJ> zaAh2&jYNBE!pO8Jng_2(<{B(mc{0)fa&|jL(}`;^k$@%%q{}MGOQ^jCez3xv0!o2W zi=Cm4+bL2>QOuM#i;63$4+v`YxDtenkDKcN?ADT%Wta#puF&ab^@T2^ z`}pK_fwub?m{L>+hkubhd53}7CW+7u2i`ip)Y8jUwfy1*Uz4U4fPvuy#rK8FekD=~ z4DF`x%_43bGUb>+P!#z@7ghMQ6$OQjLFTUA!HZaH5fXu!EcMgE2hqC4``&c5lz^d_ zvvONs;wXh|l3HG4LPNI?6l_Hxm91cu>9@iSS|)_b19B_K=+Tzi68Qen{FR?K<#3jkTs~&n2yyv6IzCHevy~kJs{+I zy=vUUmDzZDmYze)PQ!2&SI23QKPYa`*nyh721hxpsJlg zqmdP`wd^vLfO8UE`Wi5XL-&P{uqr4209~J#iLS}ad_WM;mx(cEVw8fS<*Bja8kKP^ zNI*$74tWp~#JgmnH^Y0&KvPJqW9f z`gem&{W|*1><|K;uR?po*CIH#H#Gyw>-np?%QS{ z457*ALOZ~fV|q>@*ww=iCa>2=>u9Yl2P*Svdc z#Hh>?l{wwDAGBvmzdcyUbQ+g>{?T&|VYQNHW_;m*;C^fT0hHyvLuxa?d1#`$$IMbo#_Vg*_US>-LDh zp>Rh^j*!S358Kkb$|A0N9vV2aq|MIC0lL<^2)k{&Qd5-!BhaX7+xC4P2Hp5sNi3BH z3e;-ax6@j{ZVnHcqQJRoRgHS-1g=XI%>Ju0mH_4&_dLTCxuq=5D7u9T3*=1-syiB3N=csKyF>2?z zih<9m+Bv|ALUWNcNB$db_yVjx&pv%-TFhNqZDMJ zNo@fiKF~T<^c3tWAIXnAUT;1%g)CSr1?ny}IW-?+_aQ!F<@q4R?G z1|$oVrKAv`?Dh9RFlOBBZ%)LgcOA{{2^x%`eBxU0v$%8n^KhEv@TsYeEHA{p+A3M_>QEC=@(^ZBp+ip4jG>S54HYFcDikA9 zc*Jbk_Of_nkhjBHXpV#0%#PeHjq4}4s>W}8yIWpaS& zJ$~^9DzPHi0g?zvqFghB({C}?sc!UZb$Y2rS!Y163M^O#r!|0=u8T7VcN>GT<@h`C z8Qw7=b3LXRyje^8x*kLlyzgo0Swcf3@Cm8g$^#pnImfN=wN(1K_(KgA;KTt^a!Ve_ zVy5>)1w#OV`)Wq?*q zNzu8`_VbU}(-YL7D3U$T_KvW=9ZAbMNvn1Q{um+jY`rhErdmn|hz}4Vj|tZ7PNj^g zqM6*#S7niSQ~a&#by>cv;`19PH$%-qfGB_56GZaWPHkAQtwZwDxu_>)A#$qOFhMvK!U}! ze}n?X7s`Ufq>y*gpz-g71?^V$t84EE@!(X9I+>FS*P@7FxNp2gBFAZP>2a&QA)>=% z6jF^}Z6AJ(01usTda@Rl71O8h7B3rFpgZf)_>U*v3(o8mkYd`@7E6q+r(Tdi4`^Fc zZdvr)$Lq4ym=Ic;w(&~+wklX4=ud^HVjG^p;RiEjbsd=X{ow)WcbGrge-^Aa@3!$) z_!%gYGaUo-3iq|Ca^@ytRhW%Np}e5Yl6ju$32cGf@B3C5UY~QiN)%njy-0}VT>{R6 zLY{%g5k~aArlCkjg^L#zC!_HP2-Ul*p8wx%N4B7 znV(v*B=NuFb`hastUK$oAe^aork+D+8za%!lP!>3g5g4>@kpB}Td-P;rGiBczesep zPE^@c2SRsa#UM@9C={~mr9OS3iotJ4%n4+HKs5lv!i3BZW(!dY3{p$iUeMcanJ>m=h0Ng7{ApnvIcC9*a+r_au(KR3i<>|FzX|Lh6rq3_LK_f^1 z058gq$G0~WsbwS%^sDxYRvUn}S)?hvQ4u92kOUY4Z`egnO zn(4H2XR)nspgIG%<_U>~64+|YUwC*5c#d#lG$d2BeDjPftu?AmTZ11*;yW^OIoD&W zN6y&tW>tk#R?2wfb&oIeCr?Z9KlDFJMZK*j}w%A2h+q}8CG)_3<##5v>32nFU@vm}&q3li$uP-IExUyC_vB zc09r>G}kK7LC^tBHHl}3>~tX17>343Vr$-vI{hNZk^yFMsOTeDCKdWQY zykAu2148=!JmZU9)D=VBBpnP@QnH+@aJ@$1U0i5)Zt>B@k0gTDq`d(Id3nYAJn*FD zSf>L(`-r4aM!WIzj*@}{oi=FKifRi*#8O=Nxv?vpi^>(V(fWI#g2X{3 z4g-zpPW<5E88kel#K}*sm`T&Eh}pxbLIH)~P|W zAl1!2k#J+ndVOV7#e*Jv{_)Bur$qpy?hc*LXti}(B`A=u3XL;xV*R5Dl&AoqTAFNs zH;J&f0ate*I&=g(>fU^D3sck+?78-ym2JF_F{j;<5*;*98o2gepMoq;!;D^90RUE- z^bi#0$?a~rX(7|W&%<)b_@oZ0Zyi{ZtcdC2ZdqIp}5uzPQE2gK+MWf1W~*_ z`i=}|%eBpfd(Q1sx@c4#yVb_u808jFSO;zM1|;r!K{@w9NbtEzYW#nw8;(qJCWY!7 zppGtlYpahUwdH5Xu7;%kZviiBGMo`m&9{rVhr3OfDI_cZ0F5<;YtlhWowxm?iq74f zIT0<=>ESg6w9}yb!1TEV#X)Y|!P|YVp__LaIDvMVELF(>`}7}v(BraISu+4RLWX0a zdFv1a__?be&LXX`1%ag<&gqG+q>{9Nb=>jR0ZumsyvtB53Q)x$)z!Pk)rWCtn8vTa z1NMv>WuUVF0<`2o{27X}5)>K81AjQ_@p*m~#pm$+r%$G=>!X9L0Jh!)DwH7jx$hC- zd+aO1e`s%?WC~A>$75F77B9<~AufU(Rr>MYv;fH{5Cf}Sx9(y~WbhGI6!S0x58?o% zx{yl0SM32Wt9etVq&Xv?+wAaY{)-FgAu3~;ws?}uej$l2X~C!0-3yow$`n>rluHLs z)K$CtyF*>|eIW@9lfA?I1k70~P$^1Pxc0oYiPF<8@_?o*)KTM%FlFbd0k-BZUQ&}dY*+ZuxBnAZ`{GI^FxP5B#s4)~Tr(yLlcJ0IgDJ4L=>96C*Kk}tusSGvpJb6Pk zd&+VoppZ0SO`eW;5f&e}8LD-L14F3t<^$ihIf_o|JAwL#9_YO$UQ0M^z?U`DbZthp z{h*)H7r$+#(v++>$_HERs>}Vq5#MNBu-y|96*1kz*Is}`m`E(IF$A$cADD@kvNT;~ zNXlja^^_GF5Ai$p>lZ`0R&}ijb-rz% zP9Lltu;JvS61Gucuh2qli8hq2BuY63+n>)UvwHeOVvtZ@gRA~+3vkR9q)SSYayt!p zG5XeoOiL0`(|8Sh;9DnINtZ_VS> zU9TrGIt`D`C|!1}=^*y69&muXo8#6Xnlg2Y*4yDB8BkpR0F7zY^sCdfQo7`XytPp( zI`@e$95j>^fS|=ejMxA24ve4q2b=nMTBK)~~ZLCqZ+L903>(Ic} zUsPdDy7|DF)|WcGW6z&Wc<|Nx!f0Yk0LQmV#!-ne3uXuzo{hJ<9j|OaJz9khS|87Z zVt4K0ti*r-2c17D9v9|$=cx6+6T#l9k>y_y`gHxGW-R_q`#}38t=~0Iz9XA>v85h7 z9eoVqwK8z`7#BXpQe1eriBoLlpYvGuN&a9{yFH6x2CmyFdJVk(F+xn1)6dQsE(O1d zLqNl0-Ybu`T1mw)&n{G!j+sD(Bn(+Auu_?9QDJEdlY0Q50y?pw{va%Ia&^2u} ziqoy5Xcacp^rD!S4t?4J(FVj!r4aLCa%~&+tw`jHye*GfVoM_^lYf&9cPrF)0 z&d!I;CqP_9dB2;-v(jAAql-L}O=-`4psGnJ9_{0)hv6TlB!rSUtWcFOu`Sz}ic7Nk z`{F6HsCOC&^$R>icDcF-WAlj$Y52!dldnkWKNy-!maQ5W6!Kb;rnQcy+BwtWViQI& z)u8m+kE_O&ilq7NQSOEN>W*C3@u1Z31HZeNTfOZHCt{Jm1CQQ0`S#y|a`T^+B&Wjv z09aj@*~r`H1n(J+rZr;v7HAzL7bIvaUHeA|D(YLafaCxJRGRpo>)H-kz-JUYJw7}@ z$p(Uq{rvv`XrAz%PlSyCtMkV{%yaW^#a`QKa=_42yaTk^&Y(CYly`#jBbC-BS1hSk0|zW=OO<9j0zyF zoO>$$KzHM$Pi(V=RGyA^fz~_KC2aM54@k3nUeeOe#F_!r!sy&gzmOA@(<`3GrCJfq zhD`Z}YLW@$?+rJ^iEEZqm5J50?*MS*nMqMXoMknA_%9NpMblzJQs6ff(k|L8+0b(w z!XvcJNKRdpDg6AR3%)@KDN2bCzR%Zqa2M^~k5am&SzqVZq$^(dVr+#Ma)8WJUf@&C zG>LYFGXc2-#YL!+P^~$Ic)~1CzCo6eP<5`f-Z{Q;9#Dj==Rp~{ATZSVgK0lR+@nOQNE#wwHvFQ^Ad zYsT|^YH}#B;A|lO0Hc|5lP4-toWSv~c+%(4bLi6&e^8ZY4K+FgLVtdn!4+Z!GNmme zE0IuN%TV4_^MH4r7e2gAl6_L0%V?rHX;^8#?MU@W^?`{#C3W5c_7h;i@>25{mvTBq zs}-+ozFS4>UAZViAN3?Lok!(kHn(0=q)sywqvI?SvklK4P{(Dwo^C@>`oBMo1hECe znTgZH9;EErerwVe{(`)`df*ZP;J=7{2>9s)Y&hOh{5il-)&BsPLA*U4C?qOc+gd*T zxZqQ?L1gqhHed@Y%B5}};}f(SZC;Tw&1A6*%|p6o0%p*{tGF%EOV&5^XZ}GmyD*!jtWWaCm_@a@e)YP+O#$zfa1+YfbX0vj|Y| z=t&Xf^>&hi5={jgh%E0znU^2-(#j-l6xDXj006Q=sCEJe-S~smD=NujKn-EUUdSkP zC=sKcdPPpiKJ39+oT*gYZhF9PNLL~yOCGMP1UWhy=sR=QZQ7;U)PM_+;hbp_SnlyL z^ReOo04oaylWrTU)+A04DL1`n!+{z0D&heTcJP`T)V%1AVuAVFASAdlx@2E z`a~(DF6)?}G8a#Mpc-rn^{LKItY3Z@bmj{BFua!K6GIV0!)yghn7fQ@r`I5g_Tz0K zq{SfuSr1Tmc=qwcAw(q=dKT51v0l|=D?=J(sAyT8G)p9>+R%@w>le5~Q}HHH12}dE zcIzBVyqp(tLQ;9}`B-1OuPnhyRTrot7;dRyNk}?_1ndprc>tj14j!-0;uo<_9F`U9 z7yvlmw`h+MUM50AhO^O5(>SQD^%(`jyCA;v}ss>2}_pAL96(Ba{mCD2tbi&#zI-iS4|&t)cqOY zJjG0&vQtEw8u1SJp9afP%1Z_NRM>In7O?fg5`vWTSNH+-fb_eAZqg8-Pl@Obux3Qn z0y9^hTWIR>vL;fA%pazmpk3#RvX<14#6@I;F^MJxq@bD*)rBlAh0|x46_^nI%C`Nu zcqJ-QrmZaOHHH5GN;Z`s%LxP;0?$|86**cKCB=vtMKY0AXjh$W3R5DZ@{k1=SRp!v zHC*cl=dM~2nZPL;Q)pi!!E2&UM^W?M7Hx9nm67dK<=BFC2ay7&W5TK-fY6_u7`Uzy zw^$*Xr+;)t%X%{%j>{~d1_{{tKyUtz9&%=)W>h5RF7e4{(U5UUGs$k~^MEF5+7m2_st6Mcb1iPy&dkc7zqLBALJf!9975 z=NsWnsyQFaU$i}6_c2&`bZxYVWL$GHoW=X<-QXa+D`%W#P%{>OTX*`w+otKAEn#y5 z(?~alF27Wl6xN4NtHIf}%)yBBfWW6;sU?|-q*uKYElFb9YaZVhPwGhV4a5qv*aoL_ zSOG%)^jqs4NOCo%hlqK?lE0^ulz~9Qp1*kR#e9T5P~ZdQ3bxC1$%|15IW%Bv<=>G6 zm;^5yop!a+l9ZolR*&=Km~5MN+2ki(1$v*(@lL~NO`2V3RF?yEkIwOz;=Fg6Y#e|N zX4(G$K2XV_UH5#Dqcg%l8Iw)U#C_t$uN1H)CcJUjZ3-AVV42}Uydz$aUiP^?T}yJ{ z)WQoEJJnMZ98hcd#9zE;Ntg&wOSiT4XjqefApnL`tKSvzEsPW;VfHL3=KvD8WaM5^ zQMYJ0ZM_0@(8hU#ahpvdVsmUY6x+@nW?4U|N`fjzr;p7cN@^GGA(mMn@4oK`u3H<+ zBpkw^E8t(Yk(gsF9HanNr885X&hew+Tu^~#NMH(522nvqADh81?JQ%`waGlJlqjTW zPtS}wdLYEaC)Ld^5(d6i>BpQotR`+}0;5*a5mD&cXRdS?K`ux5pDlT-{juf3%e++# zII84ArUNZX4^|O!MZqz_2_OciPu?0Z&BloUnS>P|)M{94+aI)kMmm=&w;YLMoCq+MT0B7i)mBb*paM5;lGzPV>TrXECZ?hmKpAu2Zgp z8@m!INdzS5=cgy_5Lx{o0=%rvs*OGna7{`ET)An#9G>v8eqlt;SX{RRRFvpB@;zX( z;c3dlFifb^bM}s8I#fxhLLp+JPV>*^KlD6$Miy45;s15_lq}e zl^KG+R^OjEr#WOKtks1%{4q*O)V!(*BEE3Q(IW;)&+7;ZCEsS`4v}WlZb0yaY3>lS ze%lo+B$KcB>iwgOw)f1yjdc3K0L_ZrggGN!N%%AmzU&K_oYK{l7xQSE{jv{M{Ad7k z(0?&n$B0stB`fgd+fwId@2gS^h9`v+;YeC@sr4oNqx9RkmV7J@pKmB7a!*Z4Mvhtc z+LCZ0{uM;VN#A~-cp+iJNJPA;Itm?+=jPA?ee?k;Q5{pjA0yH) zU6`o~ahqy%hCxWWSL;|4(X=i5Llv6ss}V@{&1ne=JGQX0o8DkL(am}tyrCGTBaonz z>dO{x;Km>Q1kdn3^BaJ?DVN$(hEx8pyafLMu+#oZ_x|xbr|5&Q$D`rvU1=Fc+PiZa zeXe>F;m`m88UO@S!zC$Ba$J3RidXd1Pf}|@@5}S{jdCyA8`jsIK&F5*BxoDv@zu+3 zDqdAnifVU@mrckEm!RFndO;M}08q*)x!xwxh;Ms2Q3-1NyC24k=M{P?6R6-jf}ngr zozLdNG{6{;E3IAu+APLcQq`EK)B#81q%ABY;g3h@vY??PsP0w2SkvxnnFdl&0d;PE zU7!uflQd>mhn}4}v&E@+g)$xM#|;(ip58bjP$d~beGY{A!hyoy(>Y6$t-3s0m5C-y zQr4uaAS45|ck10Bwag60Dg>0D2s@|GPGNOM2i*8zv0T#0*R(9&vx!>0UWqg#QaFuL z{<^cIB{WGJerw-Y_Q{1M31J`%%*2iQm^KD|hVdE@l^L0ygdfw!QPgYJ4at^^Pzopt z1K9^t-WjcUc0y&Deys&9QqDo=p@=Rd$dH4SwS33z6(|8+fijdlMGZhcpJ?j~;`9lt zmV=|$sXV~EYctnAMQU|C{Go%<<_DIEWnn>U`tJn`_SF=tF=NSXe>s78gveS6Ta^K* z0Cw*O?r@~T#-=&~En#!6aoYe6?{a`Ys)rwE7PGSHjO8zmdFy5H5P#zM>Kcs$X z#1g+`Nht^j4!{BjvU(n3h1clSDJEiz(e&e(S_zm^(d%cBpi2_OigYczd|=(@K57)? z<_Pvvo8ZH3&sZZae~jpK#pdfH4ZSf~veD3e{cz?unKLJQ>`=c)6$EY1cw@MT zDJ39n(mIiOAfQ(Q6ICL6%F;mukOxBk{_wGkQW6B<914@b-}ZwS zeaPk1w;KXz+e8=jg#-y;kT($F1xdv#nvv?X@C>v{w;ntngJ2hEl0)CncF?*ebt1t~5G5CaYI zYe7L#DOD(U{Ot)6Y;z{5Nl$?-v41v;x2>96GMo?&P$=h!MzG$qB+g0{yrD`AIR&U9 zEjG7v;nW1BDrGIGs{DS@QFbLrQD?}YS++bjtpw*^64O>C`25lVUs&8FLo+^!{N^j@ zA+%o!Kyot{pgNDuJmB6MzEZI24N3#2;EdN5<2h>tqg~pjn|6a9jxGMaSX)o-iU7!+X58nJMU0ONVRg?%F^vYvDz+Ax)2D=9SrrYVo78Ks3m}6$7kEh89JL~ zU`f%O0ng^qoPXVFoj28?l2UTiRE~cs1LR|g!AeS*L>8mzwIJ=uaG?JHaVY_2s#oeK zzvDvPGqvl6CHkOA1x;Nvh^{;0M5N>l7(F%|k+b|@2(!#^l1)zU_|fI>gTfM}g#x8f zwu&K3P46ixDo7qKB6}p2F;G`l!;ASSh=mxcxHc#$YlQm4#l zqSPL6PVKg4B!RO7`TW33wqk88qMr!Ws7V~hc#`#0q%uP!5bQo(Vr?;#c@)h;Qi4j) zlt+pttuqUT4Me;5j_~EJ*lhk`VOJbix5UREboXZ+XB3wkpxrg2oV9U;c; zNcs2Doxnp(3UJ4zM$NzR57t`^pb!>72DCbK>ImMD10PsK$tPUEcw5=qUcX4;^Zx+1 z7jNU=k2VAU05nkUGa*B5QhuYDzhuOc=+sv9qQ20(AgC;d1i9-_?-cJ_C^GQ| z=pq@mGBu!wkhPtvz)A*SK_sx>;Sfo=3#H3dh@c@pMjCD^N-yrYl%LTMh@z1OP|N?-wM* zX?}ghXbcmV&XoJdlEQ;$40L^o>joF=R7nY->#6!jvZp_^mLpV=`2EBeh|nqMCvbi) z+eb3)lr5YT>qc<>dO=%N(4pf<1Ut~_(jir?Vck1uKQ)YMf51(al z>=c!1{?I(NVY`z^(@QSxRnxzWa(i>s3 z_2wOGqxO0GKNaRX6T`ESN^D1XA7(57a^jEj{P{(dO(l->^Nh)-U<_W_LG52?`{PZv zTbv|<@25!ly2WXEf}t%|8=mp2;A}|h$fHlvcWvG~zaPzb^a@iUH5N_KUWQz>N!mr&#)L9oez-{P?H8ZxR-kqtm0s$+I0Gm=Q8q zPzqL~MuPS^qKVd(@3d_k{G#=izz7+cwt`kELRiyyp)}M1K=q3j`PA4uf!-Ii^!;zd z8C1%z4YS2h`#a@5X!j2X^_v#PY zBD32Pg6k#D=R!X4g03pPQk5k@GD|u7LjEbmCY@>*#n(0Lz|82B|DZlQ&T1 z;hxWMnUeAWwo*oq$^D^w6sLgkNS-py1;(FWJ!oQFQG9<&`ClrkPkr0x4R~|WsFPBx z$8XzhfR=DhhQjWQ!oUqr~IAGcufpHW}|uH+eFZPNa@@VM7j?N}MaGHqyT6*8VGZd6R-Q0)Uxu)@SkgL%>{1UKWHfhYHYP5XXp)2Smx%v z<|<}D3lqN^9-eUJZZ!)_UIuhr|RU6k>&Zk-%jrzij?t%;&T-xL;@PSo#~}E<`Sn~1g9xun{)7q z?@MdutB0fsoxNBQrwzD|o$~VeSJC)*e0Z)|?OAAaG%;TDv;sqW{_q&uRGr=GJI9ml zrACF6MMmCHmO4Zw&T`BTQ@2PT5MZGQ9gRtwgH6mLe zYp%a24{}++@$Lql;N6;OqCqwI2)+}yFFK0I80o30JD<)V)V)5jNJtdcoJF}&-NTMK zc_u{2xnx5Z{AjNtOHt3dJ+zX{34S?_nH=@q;dwA;VET26wgo9p;L}+0P2T6l{6ihz zVj+Wme(|K5i)2S(y6F0dzb;FAqq8WFJ)#M!JAQe^vv6#kVg<<7KN;*_okPW2P3im( z-V0SC#J~kV1amb>4L}|#&z?N?{o<7CX)V5^_l&Jv;wLo&Xcug>w|$~XGa0vUlzJsO zByk&XriC*oA5pInQf%FaG1am`K%?|{9Ggq`It`z^RaBa{GGROG?vKc`bMG6+5)ydt z_lt`Sy3D4b@HVi<1!a*0JKH?f`oG;3Rfm2oz&pvDCG_0DeqzsbuWKL*6af z(PLTUB77J+E{D1xJ9ueh^mVbF5B*Q=?<~d{o<0LLIPV|-|^s8x?l`}q%zu& z1EdeIC_79^Gw?%#OsYKYW%oqVE6BrvBn zZ6nXM*Ty=Wvqs*I^Z;|)N^0@cxo#^~b{u|j5(_5GdQ+J4azN3;1|yRhR@0?*skC~E z#8*v=GKmgO$=GRL@dD=-CbZBPWWh4QSbf|0h~Yk5q*pFkD|_^FhX@HSz=2L%a~my^ zVzPwpK2e-u*~JJO7Sm{Dv*TodLDcc5PO?U`Wac3OjQV+3h(2 zb|lpFg*&vZYxReU2&0KHc20yA=^ZxYb71||bs3Wi)kHhckZH%?qz{{6Gi?h{V34Di zgWHDF-NZ29n{H_(L{oR`$4I4Yx|R-UKr!1v2n=0lARNq2o=_(L0K&ma3vvNFP`HJ; z_>pOwnA0PQ8WXtkht=QN+2!9S`b;Mr%!!7F9_6dcfO#)|C)Ywmo#|PLa*rrOQf#DRRr# zjt`cUg?SbklV)Z~Qd@VR9Y-+0y0G#B!79w6T#_i_3*Hty=^-J*aqm8GpNOx;%PcCR zN{@-+Il>;1fj+KdrEf=|Jb}yuM{s@@68&PPD!T)xMg;reTN7F4t1)j2mO6I#MvG}e zW)G-;{k2qGt z{*Dzbc}f1#Xqr@yzMqs4-h)-5^a@iu1jKeLVzW}CYU>597*1YR6mhG-yIvZ|gONn2 zY1hsyJiadCR0&sIhz2J`^fRFvbKjq|b9G$P8P-ejsEOrZV5H+X=L8HKXha8;wR9(HU9Oy?c8T^zri>_5D z1;|cCr`lshchm#eMeC;DFpR4~)7t9>?uC_j$Fs*UO4huhj5sk+sbcWD)KW-rb*%%% z+nV%NPZ6SMV&W|#X=3a>qBT7SeL6gId|44K3SiD0x7V(lZ44|b@Bt6b`Yask`$4qaVw^kcSFTbi(8pG6J2FJ2y0Zdb z?f4+gzQ`RXF)Z4_TWYh*C~6a|Qa~`8S2P^XQYagwJlN$TT0jNWsT+X`iM5M7vVe80 z0I=9?Q)UGrOrB5Iqy}ibFE=%%TyYajw1Aw&BfC_<+*MI%^AxfU!ON=amZI}DKc{$}*=j;67y-NM&_gQ}Q-jinSaVN*R*tSIV5>701dli> zi}58cbQ^yBK-J%}NMtAiT#>_k-)-UCg!cWECM_u;&c(Fr@s5>*(7}T?<6m@AyK!8! zxm8BT=noMUv(lPs5D!S3VVLaJK`1#>g06SqC?WhY1|QjvBFAEo7-GYLaWj z3&b`BA$eA(FHfvLkcTPPz-<2j{jszrp8Dt@A@ryvk_q_0Cp)zE#Q7Tu!@M4YkXiyFh{{W<5lB|kUrYdsJ^7%nH z!X#dVNt_j*!e~g>v@zLndQ!zCb*w33Y%w)qDNd>_`@uXV=(R~n3R94L;16*wBUHiy zYC0YM{UH6vbLN&;GJpcn1)~fiPKPp_KGot3Vk<6b3d%}Lb}FWiv5HPRyG~#$fP;`o& zdPO-nX)5ubX`Rncqzbg+1xa*}3)B%;=+RJ)vTTQTsM-MEHcZ8nNRDPI@Pa`Eit*(T zU6-zMu9|d!)^3ZTARNM@nmkKuLS=%mI}fBqKHaYI+N=RdIf!Qb0v?$Y6kn^H!3ZZ& z{{X1oxO1qS-+Xkl) z$Za`6-JY3_gt{ny?@dQCEgbRKTO4Zq#VEbg~F$1LqO; z6|MIWnBhZSVSf?f?^7s*rRhf3^N3`%-)AubfDKPDzi-4!TY`Kg!7aB)tsop3Z*&kr z03G!wuV`+#ZHY_f)#zFVScIub6{@P-zL9RrF$84|sV%tk;uuxLw~lpyJkFZH$$pPn zL3y>UHRZcSxpzs-hKqzPGb`g5vzrxaWr5OC{6|A>G zP*RstVrf@$QS5*K9}mqxXk>=@v*xR6S^94WEH*%d22B~Ozj#B%SgBIf5YM_x5mq4M9o~)1Y1f7EKpW3^_TOWaiC()as0z2~>rF={14=HYVXArJ zE1OtOV4c2kV-McGvQvXqJHJoQI2ClQ3oAmk2ETWMNn+1;C1X6sZXfZUD_!DJmPUa) zetcuOw{x7YM}9j%3(F0u3sTZuD%eq)5yNzg!7~n2hRWlgAOkOVV2y%s%+6W#-1dsrJ52#vn2%^|2j?a!TFO!50qdyam`c>Q)uo@+_?G40?-s0< zg((0noYu785r&K8t+_`Pi=|DR5`G1Kn6)oqMGz z4qWdJ84}rpmLwdfGWycI#e64oTO@)@6ca0HoS(zZ0C*=e2rT+jiA<#Mj zu=3^tFDus~Ze@a8zfk-3i0`G9kZIp|IdfS|;=x?}6-wVmwZ13r_>F6oiBY z6P1o{c7iJa<3Jq0C(?AOsmOxsW+DEN!8TH6Ax;94UWTKqMtgI5GzgpPf`ULN!hW4J zf)SSwU27SavHbT4?$Dne@1uQd1XE~R4B9;itvd1AE8ez4nJf3V71k?4?c4wkL-Eo) zy>Dbn4^R)zDB7=dAfOimT&<^^0LD11gtG#ZqyR?}T9r5iAtfM+n$#V7#0j}&Nl8#( z$pDHm9RC0vUIg9v!R4eotMZ+?!!`3|Ppb-AUohL4S_yYz*0q$NoR6sE?F~0|(5%j< zZaIS3e!>we!Uk%S&~4`wreAAPnH2$?^96w|^)V>{i#CQloRFlujKDcB@`2cw4oq1| z2VzJcp9s$HL1{r?ToPDr-FWQ>plzLwCRSA+m(?(G;gVJeb|Yuz7x4Zc3d*GiI@X?1 zadKvb1mPJ4K?LpcU?RcJcauSkjw;g!t z%s**ZvS4v$NX`LvB>w=EHm1)aT0MGFGbw=sM;b8sn9MJ`!qGb*8MSKhzSJTeZo3jj zM5vEuq?kCtM`T_~o(K%#-Tp)0@PrHV5lxVm(q;0o?QZmj137J!o7*7 z%>hF-cN#Y!!|Z~N8J#g%rHYRcJCVd{_-#35B$Tp<+*SVoHi^Z6AOI=LYJ0$|#}^?4 zAkgi{UpOR?^io}sa~Hx=9ZLEE6J9qc1&MR*SB;zS!p*-BFaH3w0#nY>O2K>0QvU$B zOE;go0A`*g$xpONCF@pw0BE6jdX)^*NFZpPe4?%CWeOuHsnF^pyA~Nr2~yM)8QAj; zE^L^bN=eF(0dfElZuZSONm4cTnEawU*2t2;0L`|af)3g2k0UBYNTCp_iTG;~rb-kS zzO7a}`{Mp1xYKBsg`sIlqMQ&x>D{|Ud0vXi{{YIcQs#`#{ObHiiokxX5hY4ZONS&> z{+)giIHhY$@WIQGPT~S%3%DjiifU8|ZT!CQ<7K!(ASfQBYXY%+pi`A31C)Rc?aXK7 z>y2x|_V~*4u&E1TkOfI8KRyr61llms9yC5d;>%hSx}F%ZvJ@vMu}c#F0ORiB2V7U{ zIVDL3m8wrcA1}}U09Ex~JG^C4mn~UBg%lcx^>*OHP0@O!1|gq~j0wE%+~+z8NJ^YD zusuf+9p60WWoxf@-ZAvERN1*mQgu3q+8b^RKnhr@yfs84EgEVCJBXDDQWlj1zl((f z_KhV+E;`q)dr};SV$~h@9Km$DDDU#G$ih{cYmi2b4EJ^56aq={4Lbh-5#8hE^z(e2 zS8p2-m;oA(f&Jh*s&c70Rjp6s!K*aD9nb#&E)Ui!-V(&ZN*ItnUs&tL5F|_~E-I6- zp#EZC>S)`IPfyO#S$3e3H>Uc7zi8&hLV+T!L&$%mJ6D1!zDiO{<^WV{*`SQO#S>9Q zWl_=f2aj{YjKEUkK@k-RMJuV@hTVLj%2;ceFn1bPXccdoQe7Y#>AQ4@(Rk*o>+J)$ z*p4DYFcHFroHu>rS#+>6`nM@*3X~Xv%yvBWA6AJjtXd1EU}Xw;wSIcPO(XVmu7{1g z_klN+$`(r&QQzYVu3>=~r6@W$p*~QLF2ZWRwEjoktEn@zmUIu%{p>ZU?md4Wl+pz$of-N@?B-SZ&U7kWO0mEJXB)(7xX4iesoO3i*fvG_8oK3rkSN7&D3fVcRPe;-&$i_30!fIS;mq!uCLoZn)Za+EcU~!&0Xl-j^X2v4CiMh9TA@|v$|0L&2?I~u{bQcS z&^p`*Q9&-|go;0Yk(c9KDi$+oF$9zm`i*t>#<6HgQcjMY3DExVw|K}36{~H}@f=+E z*>*boT;Dv~Z$$;6Z{tDrY6Ig3F-0;?K@0%Q8Jut2$9|A*5`w9~Q+Lqp2K$yZ6FZt z6;M8~#bcU~LmHX~)2wxIy5r?Cj3U%U29e#O-of&Md2Jv~uGGY_pdTN!3YBeI)Xqd! zB!1I*l0p(daOI6d{Gy%fdHRjX2c2sZ$hswkrA5OEn5~GU%b1+3YfmUC6>T@!MAXd+ zNJ$kXs5$<1hZS4okS3*+;-nh)?0yiHczQKaK`5YNb#eLh@{4|st|cQnS4Y_KO0+8t zdf$o!-vSa%S^n`u6xrrWN=8)@8M2M`{rX0Sa$(6*+<{Y98byoN_)0-ivW6NSobe2Z zlCa##va?K3Nh3q4{Q5#}7`J~(HAy})Rpf#GPu3W520bg7kP;G;KtbnU*g)Ic2F;wH zWj>+60naRY{l@VY@1s4~tSg)S%+%?>z64@B#4p0$%Z~8lhc4C2k`ST_ldm7oJztRm zXUa}uGPrutwcos5n*z2Gxk@FCdVX^h@dk0@mc0uo9bc2vT92F`vR+AIihwqH{%sM9 zx>?k)W^dn^Wb+KzO!-4H>U9I;o<{uh46W)&mJ3i+{a|(3cgp}KTZZA@67iL}DkPcN z7K$^uKb>KEBdzg%SHQ7NM(`@`yfeCv#*m9~{{V48l;?luA0^5}upE*(Z=@-70^8A? zkfjuZ@ag9eD#z;pmJX*~zc+$+gw!gn!*%NyE^Dbk=|VLS24m?H0M3;!GE`TvDcGF} z191beHY1#nWvL3x&6vJp-M}MA`UNsV8T?unIzK!(iYCO2#cToBL9bXoKWb$+9x}8E z?4+@83yqz-KK#SQ;dx9~v>WRC#cW@NjO8Sul2cH5{Cy6g;MLJ|DKf%lt1#_T&~fH@ z<_JqRYm@|~M7<$*8{o-nMqo0HTvhpo8*QL4NG#s(IHzjEWoXNrTKO1Y8s^4wrAth< zERmJT)bj_d*W9Uz02=Z4g^TwDG8-?8Vl{yH0}EuHOv2#nT{v%a5Sj#;2~l!VGVBFQ zz;8&`2d2sc0KrbIsy1T;!0#BOh$5@395m9 zY4WE{ApP%q3262`-uf00fL*e{(GPt^_x=ix>7VPqYZ>ko5?|QMr62XlG?QZ zGm5sbUh2CHvy>1}8%_T4V%t3dOwiP?gc;R9{YPmC+#sfm&mkT~ni8N4jg z<>e^^Y<}_j`MHtm-9_9#ZU1~ge!*Bg6Iij zwKVMnthSt`mtKY<0h`Ls5{+uy)w+$J;|d97X+yX$%Q-0(*o`4>@t=@A8ouaUt~KE_ z8uGOOSnb3IMY^Tb!&nu2Ul~;OW6qGjdtSsW??)U*iRJTWx3S~!=#BM#DayZwF`eQ} zRzYC>I1j1(<|e)I5m7Br)EhrPv?^X!$1Xri1}&#}@%+9^$?N!hGJAeqpq;$vP3E2|; z%XV#}yN7OWYw1YkwvW>6pq6aIa6mixI1}3;};FD%tT(T=o$8cG>HEIsUSq3 z*Hmf`5fbE$4%~AcB3srp^dF~9BvrSefwnnbWb+qFwI6~iC1fj*)cocvR~IblZ_mm{ zcGJH901r5?B4+;pK6=NKmhZFi6IuPdku12;{m?-YG#q{yhQN);ey~AO>G<#_tCUB! zc@Z!{-MdFgL-l%gijkKp^)d;gKJTPXxlHGce?BpK>$}J`&}t%$@ofMQJ7yoAQGH3< z0`>VcYfq{BMtgtS+=SE@a7LY>n)YsEGx}-Q$(Tj(?AA|PyVVoHag@_YMZ0zHXMF$04j z$HVi8==@F_~`saAWT6g zpZ$M?kdUA?8{SYiW5w_BmYfMstEkaeFEDG4HC2nhW`uAal=7wq?}sflzH zmk&*1#q(iKQl{{;9?&ZdS!9qxMS0V|lt>J=VDp^JcW^a2c8)O*qxn-Mg(Nh@dnM`T z_R<*W@2OT4ct(pV8u_+o&q>v<$3F|Oh(-8ajlGJHgAHvOPv`5`DZa@8Yf$?Uj_bc;q% zqLi$$aY8j=!EhM9fWoxes;@IOL^m`$dG8U}E-zNHs`#o$$cT!`DOtkkK_HyG_4>t& z^AcuLBoIXl@7J-~1i8HKBRLD9I)F5+Blk?yI<|+D_YG8?_Y|hFK+h`lOKhgp#Y@c1n35%iCqu*pxUWfJ$*3BS&5zm(+x;TT zDM*&Uic+k1gh9AnGf_7r)oev{XuXMVbf5q#Uv4_W<(AN+G^t8*qvRpR*K{DGF-=Hk zhIme!=`H1{3{pe6-=q?`trPuLbGWHGk=haQ78zO=RD_l!cugE{*pA&O?j11pFA73s zhj27KcK4pYIEl-=p>oEQsVdLy7>>n)!|&r ztcIFRrd*_#P#Jmr_r+_T{`IO=9U(89Z!MuF^SP%?TO_(o3Dt)0@`rn>RJmm`%Q*m3 zro%^tq@L=QMs3YV?X*KFPQ_Bx13fGHQ{hUXW}o zH%`0dp(ipx6?EzY_o;rdjNiCPUa+dpl9U4J14sPWP;Bt;Cj3;@l^4ip-C?Tflv%)J z>fHtDP&NFdU9x&TkbnRVYg51N122oC`d{uz4wmsJ zP9Iluef6{V3 z6{fGK*d9bxn|rMwI}%G8Xka*Jv)kp_kP1=(I*z6jr{40{G@O}^kWRSLj6PVI=9VoEM=f zQuxKQN)(-rtyA6%V8kkFQ<(;zsL;XNj|!kBp__PUy5}Gaqb)afq(&=TBEno{(W?mf zn!r&tE2v02J04s^wYL8NLP$%BwI5#5J|GEHv!SE=^k~r`cg4O|OvxaI4a06?YqJm| z)e;p!^@OWZQIVaEUxxca{QC^T3Z(lYs$ILr_9AtivXZ&L%Z<|b}Q8> zK_HTKuJMXp^2kUf1Q2V}ujY}b-APjAunb7~LzhKdoixpLByRnWFe3B57LZV)dpA47 zCLTVaB&fNmJU~14Sel@;joq|A5m=f37Xvhvzt7r#UJ$X$8fHXC2hm>59oVpELyZ{(oiYp^T z^980{iYO^do;pE^R^+e*KQYDae*_GmYe0I#!q$5}?^LO%mbFn;13*tx&rRW#DGpA6 z4Pk!!s)l0co&Nx6X|S$XmRL9eluo83&`7l%2D?W~3l8SLD3Zl(l#mL2ua6N8)oS(1 zQ@8-M5G`7)qtyZjh`aZQlG#FZ?aUOPF*Hg`jl1y`Opp{Ffa?grC#^vwSD|fV%ZW-f zRU1Ne^Mcm9-d=39Cu6|mz;xbd&T}XL1F?#PC4O4cgoovaSOI9ZD=Xz;pz3>mQY&Jd zO)n;7C>19}>ivHAWX|7r76lnNUQVK2-zn3!H^eDzq~M# z)rnFPLPL?Z!|wpCxRm95y&s|C80{A8Jg*4>O40|~BqeUl+K@gFf5KS0F2t@_Dh{nf z?fXSb*5ybkC;%y{V6B$WSU2hUM7MO{wGyJiKPUlET9%RnxO%*Gcv*=A=s?uPj7vQ^ z$wf~A>DQycG~P2OI(Hhq81#UQw=#mI1rY2FdX6I6Q|k~?XbAIwmMb*rC?!KR2?Jp9 zTMpkUn5?AK2T&aBAh#6_7bY4^v=q5uDPMu-$^ueR z%{5S9)ZwOL2Ehmo32f`jRR?a7#gfJWQrU|V2Y4%Co9h@QGpHca=TD>o3mR&C281D>UKDJd;kcwr76lV`y0aZ{qqc=Z} zV6EqAL6?;+nW@Wh3ikU<@TDaK!b4P0zWoeU!}m1Q6P&psh5#{lTMB7P{J#Vd{{WKe zea06rOSN9GC=e3P{Ht(j9sdB%D}fBKI{Cun&O+5!E`Qi{5b1iXr7059l(lFy4fW;# zo9%O0r6h`s`Bz30HyjDxz3w9P%{l7wwp~V%AVbWP_pGsXTPr9q#;6fPujc zmx48K-W0kiTG!~<%Ofcc2>3&7j%vzTY!Z;*bIeSPM3o0;+Pes)eyK_TqOK@D(7;u{ z90zT;{P_7q7CZF>W(uir&c(;$`9*72qlJ_O(>kg~zW%=`j^p%xNzA2C7XVSf*nZI+ znU@P66a2rm28nx!hj82o^<5H1e_l#Ta_);>;q5@h>ov3Je09X1;*cAu!&$yM6{#; z7-{DaS*FNR{A4F)>A^g7h-~O`01wS8*g!00=*nuHQj}6%*z?nluL|`JcTM-Lh$w`~ zDGJaeQ{VTB%eYoRb$EgD?Fg4m-8#&%F=sJmJJbDo_1-jVmi$VPNg>9ssO|9h!ko9+ z*sm(%E;nz9;x5~9Vr8W%0-?c6@x)Y4B~eokWKsUTpk^S$9=c|6LIqD)U}AnQ6H)`S zAI&1w**q+QDiiL73uY2hRh1j09ujN`0CrAnz zY2s#PaND1AM$74H;qcK%Ot4?<6EQ~XEG{zo5=C)55nFP9OU9l1$4R1&10 z@pGp;M0VK;2QYsi<|4bT58(tj@(Sww{33PQ0)3|(QaJ0ZQbptxmm$lt(6D zA)J?RdUPG2CAQeKt1h5`QX+f4-ZNCzjt+qIjX06R4%$GW%;Un6Pt0&(zEpxnbP$<| zAN*;jA29rgK(nF9qn&>YHsQwax4n)duiW6u94NR z4$PLk(wV?~r+!C6y?BYHT;8!Mn<-$CQURblHzF?C??t%vftYK_j@~z?1(*eBnu)DU zvm3=tU>v&|rLQtv1s0~~<;*tPY`_-)3ZFNDcZ$^2Y`VW4;;cDUW~nLxGXSYzKyVLT z>CIp)`56>avzl1ZT8izUr^*jmGp|)?H_GB#A>=oLXfgpRSO!E{wIUXLuR%mZiNyS27`|K7^!eB<|odT-XNQ9Nd$hR zoe1*Q0?V{6S^oecG@&Oi1-BY?gR77xOU#NZQZ)EMZkR=?Xk7}MZr!K}-OZh8s3EMPDJzHmZS@hvVC0;|rDHxb@BRpCuP$UQre zO7(%(OBBhYHbw_civIvPiqR+ROaAGSRg|YGDmhz1+?}9;?Glv5$Rl)}dKTIN*|0RF zg$bS&hRVlIMzuX+>yJD#hgbG)TWP4FbUc0lXBqU4meADU^^7&DFnZ zMsIrCW}=dsqK+#3fy4>3;=5QLBsdfbOR*zzB5Y5^sjm$wN%4+=gI~&t7%Z zQYqc(2`W^&0aXo&I=5Cky_I) zG75G&a+u}i8}ar?#aC)oEkQ}lorizbP9q<(Sd$`tRXUJ;lFgUy{{RTwZE}>CaOndm zJoe?fLKZK>{;>=QN|IeGBb|pa#V5wS4ji<U;bUzbLNx%5YuX`_!QbPzXsc(o_(<~|Us$VY zoJb79ro9HklL|!IVUufgmnDY(0BB>wn7L@9?Lc>o?&`h)1tgaPiVpqy#rrkmn7D92 zrzhzb6MK!C;>94XDkm^zHQpR&VqlVyQteS#`S#(y*pD;5yq}am-B_TlNpJ&v8&7<7 z@bYI)4=;v$jk104*%^oCkaEduApnz7Tt8UNY}dwO9-xnF{7gAs7SJV*0z)gWG3@v} zyW7U{_{=x8=mfIG%X^~U3b*D3EakP{7c5p|Fb3aHb?*(Bc2Z^g0hPP_W6+mee7YB# zF-&(GKv8>)!3yw`M>Wx$!lEND8^7_4M=p0bG`CZr^>)-ik69;q`@ zo^>&yrxB?G)%!s-cCTh=O~lx4T8NmSDr(dtr+9bJGNaNN%8-T7!<%KB$UJz;rADwy# z*>KFmCn6SnS$90_KX|WXx-zLsC-#6g+d8JqKCjwMYFo}D4jAveM5!}fRZD66#7M=- zSBRm8&AICoEjW5?;>$T(^=ciqQxllxNU?_cwWT|e8H&PLxBYQ+bIcH)}Zef?6Z)hsJ_(i3wQnGO1*-k z&cp2x+@)bEO4F2r;#9`URGo=-2l9du17i!?YNiCr zEC{QJ=LOy7T*XYZPys=yB$|`ZZC0+3$938LWX$g-DVCZvtH`@v$OvH0G(*zyfji$lPm(0t8O>q7b!{! zVS5Wp&S*%eJ4H|E6s3he{Oty@9pVs{Etu>+aII*)#VfBIb$%XfFDtmN>OS0t71xXI% zo;cDxzVPr*vaM<#ZjBuFI^~4hB3J_Cxg;L3J*IFJ*LOVqp^{!5Ib5a4;+|p_t=1w` zQqDl9Kb_)p8fqhGV@@@Rgwo+dO?<=;wMbS{Kzy_z>ihSPF55#N5hdswKstfu@i=D- zzSa+OyX()+8*Gy@mior57bHvoX%;0~$bl=g0Oa=R98A4H8MW#4gXJQzYTs=ng5k7V@zbdDfL4oY z89^>O{e1dG8_M)1fYJ3jzwzwJ{ZS0t zV>sWK8!mR*^^TSDfTT_9>k`?}JkI^11gB`Rrkd(_iaP3Q>SOYeO}^1nGpGSxoO#5{ z0qd@h&rTvOWF>Z^#6CSdpr@Qvv7((!5SE$_ca1o)KjFHm(-ShqQRU1 zELrp$pE%Y=RW;#x(04Hz33Ad%Tgc|M!fWgactN@-|zercUR2ZGfpy|wG<>e$k z6SCFkX)`L!`hh?I)6NAfZ{-DTLCGOO#@asK`urejzzHOh2=|V$~~IW~e8d1p`NC|;9|8jZIfc)op?_npK6 zyzK;}hc8xb$3x6SRyweuN?0t(8uRY+5%lk)yCP97Aco8Xo+IZB1z~ldzTo((&8x@O z_)8B06aLIe+sZwk{(lel*OmF)@?o~@ngL1j5ZPe44u?pmGI5%w zt8vruqv|(bJ3}#@rfjvQVn6Yb;@}Q@`N2!S(k!-0LGh984m)*%H>B{nc~5Teg=+ME zLXx>)>sot$J^ui_!ewMrf@nxOaz|bx#9*286g)+Z82*z3 zQRwQ>xrHkrv8s&$9Q`47RKtg_HK}baS;0*S`oW}3v;d?lDFis{_V_?7C2|=Py-{aX zQb+3j#6H?A;HxQo!YWjjQF+ahl@3h@?-5AFMQTgZt@}aSeTXl@NT$Ts-2f+H^aT#^ z0lUu=pfVN`2|oTHg}qsklnRkUxP)wRbD@w$auDZ!oWV=h)K?)Yma+)fnnTkJv`(DH zS#mT7o{h-ewfF>U#_^pmz=tY&F>k>do!?_x<>w{T-=6*8GB9kwu`zxiYfV$vw#B-0 z5z1)-VQVDWButv*6?mIOgTItL-nZg%=Rpcd+#SctEKWw5(+D zI6JrV(D#bPE!_YJ%V-)`6)WqX*>_S<9&gv^s4U=iO3OEXz|3(nSgL zgcNQRQAI>*?0-H^BBiA=)}rZ4b`S4_>|=M%GXi9jM$CGC+HVCg&Jv!PgFlEKOVIvx z@_>w(ZpxsdC6Sb9KbS9yuF|AtNK4aAW4RVlC3FGRs2V|wKn+mMT15pUN^}Hf@SV4K zUd2}{N-jZaSB_z($7@N^sRJ)-&=Sn)8y}yX5EL*ZiGYEW6l_bruzML{T)<@jDO$J6 z4_tQ1YJXO01$pc}%>$=ejMauE0VjHU-*}Nd6)(R>vlA~gwbi^xg}+BwQgE7mVri%> z;J4N`IhKTlWy}<=IXp#0-)T(%0jdwuAI1=7Ai7;iTWPH|9lmjP_`gtuhC2!#W4l7s zPGV|yiz4DmlbUW;VnAw`U?T0k(>F3y9-6nlGhA1NZ4zc@l5-@N9H*iD*G*$Wx-HUH zwPYbBGzlK&iES3DsS0t_5%}>uxXOA*z3sCm85z@*66Rt-JUjk-;kwau%4Z94P3r~h zH*$SjWzEOj_1n%Df9-?oGZzVZR-FVXfI`PH0)W$+JPyBX;H@65S(UNVDLUz|NTG~y zI+Qa?m_qc*57F8t^nY`Es#yxm3QcmwTNWP)OQe?2McG!O zHBn^#Rs&xM4oD0@*NCc{Fqj!f-?S03+ognNEnWCOSPOpI5`_B9z;4@-wIPE2^?1x4 z1m?<`9qA1?91???fDL!9(GArsEh$(PHS1nS=fVm908A1z_e9A8OC_b<&SEqTu+Rqi zv{k)EWE7qD>lQA#z?y5)Je(a`h94NCCZ_2m6#lP=z6he>Swfs0H6NS7dGjjZcZ2pD zKqJdR1cbn3+N~0wC|9&V1CG4I8t$7!#0PQ>S^j-Ntz$&Jtm)tiy+jbmf`HoWVPR`H zxb7LO(-TzG6GC`sKV-xUstBt9H67j$k&y~oXQoR%kh9ZAR|C!m z-YH2Uj(UAze%t95g(&0kD23lPyW{4Np&-a3fJg=9UP^32g;Cei#vY;lyRA@vD!K?Gy3O zMn}0YVN!i$!a{aRpTztQH;oSO!V-`YS=e*85Dw?J5CpZe3Io84>9riqpG^l%BILpv zwk-{ngZ6qvinS#Oaj1Qo1Wr&4tjxx}V#&NwtA`qmnjfM;Ybu&S{UcG=Z>)Y*fa#~( z=>e~dUzU>F^HCAq7|q60Q}TtSiSH{8QUEMB5OV9Wqb^o(L)UK5E?!y6tBNym1=b9t zwxfPp8kQ`#Ydbg{{!lW{IVoC!R+X-${_*9}h&^MDv~2+E9b4`pn5>@>I&ld7p_4o* zMNOgFEL$-M3II9L>7-V&*%@pU!A(xw7`uqA0#Zppaz$TZy*D%haoEiW*>kCvPD5qlOpSKWK3|P;IlE8=NDkkVc zNUdL8iT$8~y;;(MQW^FT2u!|l;FUDXdi4}Oar*MVXU_;)K?xe3TbLh;aH^`Jkfjqt zz=upfXqW1eDMaNx`$1rU7*ftAOd@3qQMYcfR~uoql33~+kB-pubYWzqdc_x4=>tyi zBN3H5gwP81=?GW2e+Sv*$tzY;yrIka7W{bqGR|g%<@Qn-eW6a|vx7Irqm&tC%MMnPsv?F26M>PlmAoz_K7ltd((qd;kwJS0-A4oTGThOo)C9zE%wv037 z_I`>NUD&y*QrzZAde^^k57!c9AuOeg%Gm7zaSeiERhmfXK%s#)EG05)X7DI*`f&dM zIIc4V?AQMQbW4&-O+gy`p+@z@H6EZSl@@OLp3vcD!U35<*hR|?+KF`u0FC~!suJCI zC=$~~UZ=U%uw2|pe9WDnV*O$}CMrSjpTiX|d_a(@c)E>$h_iKz=aitZe+^?6xvyE0 z<|v{3M~%Ai8r0kTDJ3dPzVQv^b;}5Btfgo``)L_-uxk*S292z#lDowd$ zzG8Bphm4k|=&8Z4*pcQgb9_=+LWdztm?YQdOBLVmUmx=^8D%)h{ALhEVf! zw?ZLKK}yMa(TIWSzS2oftykhEnKd9c>e3;z;q;*;XH^!8CFz!lX-mu?IDp^sc1};n z?Er03@w5!=mXam1j`$mQVZ&I}epgdT((K2diwHoW7Oc%Xy=c_?t z{RV;cclkw(FChp^AxsanIWVxD-#A8crDZC2sXX;5`c$Sz<}9zk_HYZN<{U3rq@7a7O~kTxSyuCNmm-T^5ocTxA3f|w#|#G#oqa@_}bG%Vfsf)aA5v3CT=ANMP- z)#jsAy$CyWJL?eQTc_6$Qt1F!uV1H}M`*d_B3h1(#;}9SeX}aRwxYmm&)?w@OT03= z)LrN|@_;x@6$ycQA7u27Zu~zn7L;a~@`fF=c(jdSV6OlwZU|@IX)JZH~ zFSE@x5oI@?XHzf+kEt6Tok4}WJ^uhS%vw^;Tm!S1bPQWDU7ssfc4*V%bo()@7ef@_RB1}OGuYj z)NS9q8BLG`2J0lzT6j4+bz04UKvm4<7I>X@LS zXp^hx{Uf_&v`bD>3W3w1fD-KZ6V)L(R>YbPv7k=8%&A~y&Y~H~(DrYwAU)%Gq$Cm? z3e-gz*wF_dW3SE;j#zIcqbfNs%G7EdVia17GON>38Ga$X?J^dnB3iP$ zxF3z@3(;1Yimw#Et3ql;8&Z10CE0aaq_5X#39jy*+dyn3dRk{qOv#B*%|NXwz#ll* zkw3!9t5AaaLAwEVRiQSO1|>OadcmtjkR>|QRCS7WIa1}NYtRDvRm2OQi*qr^a;UH@ zU7^6ebYc{tM65Gvc7{tO^Xo&)Ag6x5TSY}(66Q;&)Hhdw*B#KADON?7t$2XME!Q$! z=crJke$bhFT?aCgE`_`xmJjuUc8k$vLCH}Yp0Q?HGOSEc&7*K2p(VkF#JNFJm6)}9 z9s5Mref=!HRe}NBuq^{^)Gk)cUzkiOV=BllG~o2(sfkv!d&3z? z2gB`q{xF_!EbB_MEkGgj0_;Hi+8nO@8!B9soW3ztKEIqt60Z;tNbu!z(valRs?x3> zQUMDj4vu``i58HgRMd)o;wfC0f@jMt*}P5;$MZ-Fby$>3Id7LeqKJp-Cl2RAfgT!{ z>B1ja(xuYfk-4e5vUwLS?Vnbtvd}{y2{t^L$fv?EVis z=p`0VmLaR}=^u=$C@?N6cO9a=(>NTV>PgpbzEEb>brgpLC~S8pta%)#PiH}`R#2u& znZ;5^w36KLU@fFFpEY*_q%u#kI0r&LCIQ;4I+kTVuSkmw$A<4r)FZLl94>2GL8vu5 zeMDvVedMGmIaswg9e-$kxozO63W9ap_lx6eK2uINebTi50Cqx-M61}?o&Nwdh6}d; z025LKz(FMDZepeuD+|grerQK;v^mehNK*48WGfoiE04{i((v*5PM%ki=S7=kn1Jp` zGy*BvCw`SOoUncRK`Yi;r6{16O0}bb)O??;FW*wi6PXoBa9n!>mKCIQVj`vKaFi=L zJUg&74cC6qTIRJGiOreSqFJa#2tR0!>b(TO5T!ameVms3)||j2EXbNpfmLMacrDK- zjdY6XW(!II_UJV)pz7Tr8xq_q69m*d&=Ls1WR#-zP?=>kz{NhB-7R_@!uq+Vcx6xwaH2)!i)lvd!xoVKwJ9Z-GOOAz*)GC723mlwyun0?sB%N_ zLzh?W9nQq-LpXXl1aIH0P2_r_ZW(F}Q=Do-g#qKsXb*0{atpJhD2Ezp#}HdO|>Z?xO%t$ z03E3vu24uBM}+OGa~Eu+C>LkZF^4GAjRU+U1t%%3JSR z{{TyI(8h^+p(HYi0GfCE7)rh@K!TELAM>ndE2ofE)p@$ulH9d>MfBQ6MK}Y*SPJ?5 zVPeNLg(*L%XgYHiQ80>Ta4SahtX?veJ%-d?rjM|w9G?APpDaK(1FT35`bYy-L%U{6PHcA2{7BT4oo_LTi^%tq;46jBM9c z;&LRt2nIShbNIOYzAuwQ!WY>}+1(>Y=YMw)?=E>$s2zNx9=k6M#UEJFZp&kU^wK@A z#`4S4$o!87$FYRkSx##OE-N--YQx>|<~*}m5>r+$2P7dW2@EvaJsf$pE!dVNk`($l zh^-eWnxLnb@JFi z+(CM(N&?bZ0EQ%M)A#$u`PXu$Bi4cmcOYmx_UC?&AFOjdYI03Sgj0|X?YZ(B^ngIT zKZ$*QXGy0208!d1+_-*WoT8A@w9$d^2!X+QpZ90?ul{5=Cq9RlI1mRo4g85=j%kZ zse+3Z;s`^xosi2ZPz5Mp5BQF~d%&yC-7qXN+%*U7_l6tl_Zf1KUo8?l4|new)*QN~ zs(B=`e<|e-(6wN~KC*xJ75>D0z29hgy6!Ye1&5yh0H0_fWV>a{C1esnV9fno{%r|2 zzA7nM8l|^296^{mvtMGsrrtX@M;2IG~b6vOrMODv~Rh>Mk2ChchmzeFA_=MFnWo>()5B@~jfWr7Ai{ z7lq6S8jfNNv1#;-kaD5G=RkYGTsex;w^R7E?s`Jq=jik)M=G+ph%n8Od7)3W~E_CE@C(7SVzKl^ud`48HIc&Z`)z}2se6P%2H7+31yRBE2p}(5oZtK zPggl=8|VxayY6{to0)X;)6M}GuB<`ofR#7GpfhV$F5XV<ikh_9OSw17o`{ ztSMNkm9hNRe%mn*Gl zPrzX>5#EC_==~Zp=bU?KR9Rhe#Cv0Bz4o#)V|VxkhBTExjqUL2kMQGY5S-b&Pp& z{VsE)Yc1M9sVoQKigpYxm6EcpJ}rRQ2jAok zV@@r8OxEq1%6B2RJHF7%b>1whnrWAA;KIlBN>L%mfByHl_(2;9P;H3Tp5x~hzi0cB z)N?whIS}h*w1Pz{&ih7nhwX&Bv(wA@hg**D51|c4`xxKFTz+V5yThFrYti6=T`8;& zvrYjyQb`=0UOy^n=Ss(`$J5Q_Hl?0U`|+f8F4lC^XdpeN(oJ2&ew%MObznB!n2Y3* zQ-am$Z4_hCUSD_u8tlxkL!xNd|+j|*z^XQ z{{H|kIO5fKuwVsC9-Uwvy7Mej9D?q2F^qK1E0(LvD+J{!`5t@zZxI4ls~c{AidIRWoddB|Wl;*AVr`i?oIf3;oJ(l00>H9(3?$QV; zO$a*a3sY480Gs`z>~a9bP^^VPP7(SB;~oiFR-cXz?kQNi+kX(Zo)vF8zRRBbC{u z+f1Hnr#0YgJfoD!0)yYY7`EAtpa#(WAZ)Y;4of?`M=w5`@l>_Y4mjo)t)WUa11qrE zp_Y0@YhT8Ivl7Q<-XbW`=*sD7f`pyV`02ELb%XA|3QbP~i21Y8MW08h<+b8IsKP2_ zfk8k|?H^D70MDQ6ublk;TUKvdB9sH@G};bb_Yy)pBBqbK#FH)Hh9Go_Eb|Ijf?IJO z)5p~m-3d;$HTTEw`H5*1s1#FdU^V?}Qs%N~2OB_(6`YL7JC}2zt!vL69vL637lWMC z1DJ;Lnu5H}Pr|*ReTL4-)y~2xS}cmrlS9!or|k@rUzRg4C)E!cOQh&WQg<6RhAv`c zEhtRFSwWqS`<*xZ5N3Rk0#s-~(?H!}Cl@MY&k94Nz+~&fe9u}IiI31bgTdrig>%9Jwf2(M!t-%^lhpx}>; zBjQ;kOLT<-^vm_wzLoib06yEV`z)dgm8jd}Nb=iiMWH?iT1c+X!#44gVe6R_7_HPz z2|B-5E(LU>J8c>U9lTQ@iAn?{nkm0Nuv0~IqHK)E&F>4?9vAr(fwxOMsOofNFX+ zw2K!#?3{#9Y+G{`tax1oez2Dua|8~qYe8F;h9J=M+9jK4DwqRkIiy>iXhC!hM;bsC z-BVB<-0|nkG`+mqTA3oJUXd-+FFs{9)p!wfPMAuPq>^5*Q4Du9!Qx6-5w9-@;BAJ_ zE>o1cUEi1cLe@OQo~a=~IeP8q6!9J{^>c{-0A?Vaw;~H$u7uhW3UtuZZU^2X{{Ri0 zT^QV|a%L#G29E8(e$S^Z8r{ug^~6jqmWoI_9qHb+cIg?N?Sy5@cLmAqSSy1)Bjt2W z6ckE^z)`<7tVHFW#qFctH;|W=MaXs}ZSm3)@m?}o7EnA$P-^w*9a^ypEeaB)tg|^h z{Rf;Fy0EOe1$c|l^c)VcuIOjC1>_~#5+-;A)&QM6`orcSxF!*rSJGHq-vMt+9Pu$TvlA@P)UW~S-QjNZ7pLHfiLA16>~uf8 zHrVb}`mhR}LsMv4#VYb1N!9CBMnF=@suRB{SPyLVc0Xf1vwA%5BL? z6O;lr`$dIb0Z1+=e;N;rq+P?a080%9rahT@ED{3{Io1eVtCm3kZ&4L3mL$0XpE!7= zS7rYIC^=ANY0Z z6jBJGHGwwNsY?q%DWfVF0+;CUN=VGI`hI<)Ys$pADN2wEx_y3))*P*p!jJ(V6Ta~h zZAfgc4&QiFj52k{i%ivJX55Ow=~pdDb5l{XY}`i^kco2=q@^ME8W;ZnE(n3QrYD$% zur3~rxQ0$WAX$I1QZ>pz=A+>mPoj&;*CA~%DN?iL8kPq~eR}HAwSUO^;2i`8sUvtT zU`(VS9HYZh;<26Kx8!=WZM(v7gFiWa*x*{CY1aqNd^a)GQJ zc@@0ex@Zs2&sKt0mHd)&xXng$%xAY%;c1o#W*@7sMr{C!H$Cs3ct%lGdqZz3KpO$L zlAsG!wfV+jjPBWz=4L=qciezKnA;|)C_t@1fHv!7wIp~#h$N8?_DoXpylpv4A;1GM z+pwnG#VfgXsi;x_$=12L1pG})xD<_EUFr(5pEUgxYAyD(-_;I|;|@Mh0pSp~~+xq_BSIU6$`ckLSdWI~D;68brIff#b| zB5KG;2_~&d^ow||>X@}9NGHSoI+!Si>r9k_J8Q&MpKVQ2;HZkY+lW=Z?-__l%o#v! zzhB}PaOA0zCX%H(3G7Eszna1`Wuom-J{15o08kIkPO%*8sS?x-!XI(5?ba^dQ^G*X zdO`)`d@9j2%1LsbH|8r7hpSEZ>k>q;;14I!qs$FsQe3Wz4$!f6-zG`*ZB;NM>kiVD zK>m8Ugrc@8kg~sMvPnFDFBh(iREc7>Ex06}fr0K$z#7E2&5hFJoX_Oj0~9X2I3`tT zV13|p?-6%MZoz(unTB6}t?`Lv;W=g04pMdN%u9CMsY`^?A-rxWif|TmpyDXNtr+}E z@DeFOdOq$IXHEiO_^_{bFM{{WjsOP=WmZO@chzC^(7?EZcT45_nH3RAduFi`T) zvV{=N$Meb_?zJLd0W4St8iA!>$}wB+{F^J=a0o70{D;!8R|ewMW&&7NRZ}%tx2}e* z&h?4QnsT%pL3*LG2Q}i3H!)i2o(OGgLUkPZMTvQqD#}S3KCqOle@jrR zPl+{c93Qknb=YT3P#Xt5&+Qg%cF>`i2M*c3adPjyGLS?o3F5H5SyL&&+pF|2p^I#) z%)w=oLfiHI#2CD-GgUJwa4Oxmg$!YBGN|vcI{VSAf~g)CKjAqh}HNG7D38fxDNI?V_zmRX4af<|o#-@HMZcQHof#+lZX zthi2t{D%FZ+x}W#`2PU+#wK#m6M0*vGl5-)`4h~0{{Ye=WwK@^Kxj^&9vp28nA;Qj zvgmV^vWE}9mW|h>XBNysXq>WAp9mvL)00n>Rplp3jXxD*Us#qvBb96i9oj9b{gR1k zDOa)uG%votIFAour70ktz|0zj{!oXD@C@-cC@zIiG12yI$6cb*?#C%Jr)L?IkguCR ze<hX7Fg;I*#ak}`%5SK#v#Og{Q4TH3S}CwJ5y zzc>wV^hYUrctPTf{{W8+w`}wzI+(Rej_k z*vAYZa@+L^g=$SSguh2uJlQK&cgnItPJjq|u-<7>d_aXcevvhz^p=rU1&bx?-_8$^ z!29nEA!`LdXy3ou3@r(ifRvXSG2Rw$i_uF?bf^r!9tT(oRWOvLN+m|L&~fu;iiC5P zl>k6;ck}BWD#R2DPU5j+4g!!+plI2N`WRKd@3m(#-H_(G7W%X*0B_q+mz%@_MG{7) zIKnphlh#28C?3;81*uYrITM*7Aozy-@dU1A1h!VIJ5yh@Fj&M_4$Q?`_3s4m#m;4= zBiTx}CESi6-Y2jE&{(>X{`QoJcX5Ot>R+VIf^mihtH;>vXCSo8jBV+ms(yUw)BRW(r)w6*0oLtr!}bZw2og?o_#INhQUA;cUuG^re-n@cVNXCfcW3NkC8zC|TRD&Kj<3y;8zu<^(l+^ZP@ckfq6Om{37T z2DK-C`b7j@#03NGRMSp_>jtk|yTg$x$;!Arz7QH+j#Rn==W=&HpMon)u)IL85>-WV zO%HCc7U`2|0IFIPq}1mmbE9ic&{NVF&6I`!YQm-&aCFp(X-HKLy&+k!7x0|P(Jy51^x0Z{h{m?!babK77UL0l`m7e*8j)w}1Vs$*Rhdb<)ZtPt(2+K7zFO^&M0Dfr{ zE%t*j0+g%6p)dGhlF@m~Qqqt!Fwv-xKQ`71*iaSW_IMv*1&S|RHz-<3nB!sfkJIqH zsyb+r;O`f2TXB?V?Ce|Z0B_64B_&8%uEwxJqm%6kDbj+Uf)gao^>Y+mo$`(A@`9FY z;2A=xDlb8-W!JUoX!XRifuJ2A4U)|*L5zpl!OiO%$DOx!j{hOpK;jc*v^>6f*@nvjIkNO-vM>;crPLYBJWAQT9n2bUgH=K3Hu^1ya`KDy*}%l}|!7FH_|L zaRvdFhMShDVxl3E$1F@lwWUB1L2Xb`rDwJJpKT<$eGc(fdV-b}EiBb9&rXqd z724}W-$_P0v`&_Fxz@HY6rePRhp zR0lQsLM*$s&`XBO^sc?(S`y-HQWWV>E;nj*W~^f#l1IBuV4SiLM}TB;ZT!#3k)j#+zKJhe(GYBFD4GV*&8 z%nUPK*4)E7Np!HxJ<$#2WGZr7DA%u-NEva=$U-(H!EH&6Lsi4~>VXB^Y1W#RMyqn; zB3LQZgR56BXv40VfGCGxKx5bPko$7ll`IT|bKX0=T>dT}H;+%ZpiJbD2z2wSY~N_l zeOlc~0iEi1=8)rJy#&DNqKE0-1lB*#CPw+1y%7aL;y%g+x+|XiL953LCY)#(MPF? z(eW|dc*Q|kN&o-@Fz%2)#P8Y|d;ZXkboyCK84K;!GpF&AXszk*~R;3`iOKn%7`$II0V6p8a5z-0B#b`VE2(G#>2R~+vg{JCqR zg!t06uF422J5{(E4|eCYBHtEo5jr^bj?l)NSp`{iP-Q;dpk3{B5|F0Mk?j%ZL;18| z>1EctQAEN{j>TM$v4-PfNl02!0MreKFY^)X{2Ww5QV9!o8s$4TFh>Vmvk;`qn877X zuy^8{c8k2GGmtVx#8d*%3Ygb+{h|Klxr&u7oFCP}=?|Dw0-za^n5Q~QlBVNSif_iT zAN(4m02RK9=cjna^XsKdP_$j5RMaObNOxBatNBE@s^lSPURRW*48&97+V;{9-3$9-;50u8gby{-}^kc6ua@TzXki#(Fq$6RQ%7xYM z`3Q5lt#aO>!Do-9@p&gMJwA8KaUPOO3W>f%mP3O5I9H&OC=+@qX7R3V;AQ zH_8Ox7KSaTXx|+8f_cit3MQI<&_@r?QTC`G@{l^sIXa!Vf=IlQG&Ji56O2HGEEKsN z2j=mTU2;Ng6m~1C^!XUlt=8sSJwASLHp_7Zt1$yt2dqVD$7D8Q31p)vsUnBI(6M#l zbpn+wPRCEDZ`v+fuW*_@MIswMB?%)or(*`loVJhNR;~X4Q&9c>&>rWWph-HpWAb?Y zXui@$Ux zNSoxGy*1hB&}(&=+TDtLhMZN)i=*KWNcuSlG9))tPDYE`5FerIUPZ%kZ}YDbWg`AAk^Tn=^o{i8qs0GZ56K_oWaU~JoBl2{m5{{W$x z(NDqF(`&~5u?*qc+&=Ne-ERzY5Y0%!=Uy{42TeM~yDj@LxOT3cBP;&^(Z5lw{2BJr zE!X%Zj)27(H^>C#-%$w*w<(VA`K({ENhxJBxaU*Xv_$;Qe7jZrPCQS>)D>0?!`~L} zE5|8kU`!&S_flSz-+1m_`apd?@zclhzixZ@mfej$-j=8?c7YbjB}_+|ec@)yiL?aw zJ!0ja_DMSVM*jf*OupFP#pOFPTq&(f_vQ#+m$pC-{{SKT!nC{Ap|y8@kp=sF74>hA zc-DFNe%b#3ho7ulzc1oaGKVB>py>!##m=HUWw>qn9+1^0+7brp_(d!F@y?I}UYf^0 zo6o|}ZodzQl)6Q;U8E_J0SBg#=Xcy=?mp4Q!(b^XCud>u^M*C-MHR3ESo!{U^!7N< z*maWZVO@#y5e2T~3N#ep!(7Wa-_N{5XR(KOevuy=tuz{4jDXI1JW;k;$vQhx;Pmv? zo?pB~Z0s9%h_Zk*UA)vCxPjN*$mt}K;4*sobcVUsXXYx}65#gpjQL7&ok+OUl(}(D z_=T&=Q6MYz1Iq^DHOaSdP-06oBw8*}GIBrzDt*u2n95vf8ItZdIe-H(G-fn`>am{@ ztAn_WR@-(UEl%!DNZYI{U-l4a%tZm(FX!~yQl-;u%Hcp%{upq(EyFNNyVjew&#{E5 z(mYiz(Iwk^Gg&3x7xlEJ5<0Av~v97D`mfQ(0sXxZRr3tA7~AnIj)-V{Kcz`ezZ*2-uqWi zI2gUFUC+`j%vagIMk~xsV@@1(s%a7dI%%k_e`q0NLmbS_q2%=tIzc{sa3b8hTPtQe zAEbI5CPzOZX+$4tuI=~f7cEm5FbrE!@P&0=*;SQ`=r;xaO&1NVm=j&N_r}wtV(2YY zhizQ5AFLj+ps;@Cu(4*I`tE85o^XE8C{VxKr<_V?)tvyE)I{0Ya$WKaaqRN?X@b zcj7qC9f#qMH_6Lxy12}U?D8m1o#WiT=)46Pwy$`rB?Fcl^W_<8;C;My5AHA;Wae__ zyKErct&6t0c(xD<(W!32Ik{bQar7T(Q&4_)iZ*aFhi=;#n%`^6<3g$v#|`z5aJ7W4 zVrUB;O(J)09l0ClqWn6^1cF?+;6}G)zEGMM1X0HDyXf-I;7AM%X;ut6GP?pv(2XPP ze-nmqkCFVIe=c;hD-aN>=uc4%)(hn;ZxGR%B)3>4EHaZ$&GCpX>y|=JZZsT6pyGLD zTTS*!aqVn6ME3iyGO~&tdy@pDN=t&0<8j1Nye(N&3$y`Z@3W>*%0*RD{{WPVcF6$; z*4HT7Ilpg{l&r9(y?;INkgL)>)l3LtQliD2gH{x3L(tLj7CAz|2qoU2kAxD!cBIT1 ziSY*j9oj0~7;za2lo*-)#IZJ0|| zUTVkkk(ON;fnL1{MAPcaWg$&n(s~^W^G%`N-)@=f09ulTk>OH(nrwQS4!Z3Dj^CDG zT8{PdiOtxOfZ~K{u z?{qC8GjirnhpY44@e$m%f}vJ-F%`b$OOjb9SW5I~x^BRaWNXYvdDs?>-6T2l&`0bj zLZyLM2j3D~l&Oj-sM@rH?20#qf^w*e2XfnVhlwniX+SP=ithY(5DwdWCeD>nwPJK8SoMKG@kZ|bVMi8UqFlrrq_L?k zJIA-3;)_ZMmaOb51NeLO*`ZT{*k2K)N-IrURGyH#ed48})t*=d28u~{2DPT5Il-4j z3wTvfM`(4!_d*htx_oE#8lU13GkkSqM8(Tm5mH>9IUil&zT&?3BoKK&NJb@kSmn!Q6rI zh;c3{nI#SY1K@v%cZ?+)mkUU<1}8Br9jbf%OdCbuhXRZ=J$T+SJXefnt0@AX>h4e4 z3E8geL6z$@Q4|Ah{yIEF0g8`;T%q)8eky* z0D;%Hp3zd(jmjqYP{)npqz7B~770|NXa=5f%=|+sK_x&}+55hgjNchu>a`RoC^;bO zL9-FlifgnvNW-r!DN_uCXLI@6_dqir+{R*3q)|iv0KQ3Y!P+QT?249@B$i<9_3s)) zzZ|fFkC zJR*hDh{knvdXKCZPAQasPz35fG>_IiH!Nle3{*8|g#1P5-eMLeAcEB(=zN@MuarcW zOzArjfvr+$NFQOctqLncknU5^{_PZORvD{B6J5sr&*u=`cjjOSBPbfx{{T4J7rJEp zYkAE`%tErbZb>@nqy@8L>4`N;l9S83^BOAF3Cg7As|1}Q_4{I#F)XxHc{f4ugW=gy zA;&Y)f}juQU7|~;(g~a4nexz&uUOD7i@I4xRUj0$hmNPDBwiRF)lK!Xyh+^$cH#>u z!(5q%)sm#U4Rm45E~67?3P>R3q1cEaKNSg*%O!yfLpGZZJ`pAtxDvD|sX1TS`eYXYELbmuOG`BYq(^w)nV2G^km3lMyL(?GB!r}8E(?v$gdJ(F-xyt+=+rC; zfwLZ^>APqixreJV`S88ir{{Wb$WxD4em6s=H`t|rhfa7^x2vAd>5e_@;80@S(xf7;L%H_cg zP~4smJ82qCp7EeF4R?x{y{RfoCrs6CN#vdUs38J%?~Z3I1puZ51_NHcQOfUCshsyC zuHPuqBukK#)Fd4k#S3;HmR&#q)g5~c;L1TVj!^VJIzbfQsw5nxBjFXS*E-gq%m)7e zonfBPP?Y5@K-Fk|fNJkVy*26}E$MtM>IfPSyjzfx#>ePBt49i$nl@O`x z^2t(a3sRaMoWRT1={xW3Sq z0M)hIu!qoG#WPaLP)G_Iz>8iaCn_qCS-{lxf;P#%wGF&gw^)#b1s~I+>(#na5PntC zm7L9|;DU3krAf+2ZeTUpe;|bbb<>WufwQmmOjrpt1&I2>&?A>B4&)s+ikBt({l>adi`$GYD-Jq^%8wRH@2W~rw62rIQ+6u_Ar&b5br|%QW zvr(YHuWq@dt%gu3uwr_<{2*1)hGofFP!&3MJo})H-#lkfB9!ulOk;XXOwi6!C6B41lt?wMr|tVe8;jC!u2~5|0rlb+${q^a zFQurdB(OzD{rbeVE6F94>_0Y&HK34sJV(_K5k**r3;Le(QG z3z8qMj}@%gOc`L3%zP)jPj9(YQqEsSJG3KTxRQe_DJ~Dc^Oz}NyP1fn>$GQA*i^EX zBoS2rb>=h+zV}jP3OGFV>k8@Bxt8#D4m2b{8_N&Mp05}HHi9ePSCZ5`Gz7F*!}5ts z9|_PwC?a3DX;P<4GScZLr?<%apzZf&TZJSRqqd>{05yh0ry`t(f|hj!0CIuIg6R-0 z+37O^6l#_=)Y1szEM}=|0V11&w+#!}uJ4)avr0iE>6VSa2S_rnMso^%bmB%};V0r66@)8h~1_Pl#od@!_ zBM!p02}1ll6%(>ypg!)D)bdCV>56PUM#>`hq`5FJ627A;Q!YqQZdeH}4BS_BxYSV&>9*)ks&1^AxGfbL|9VKkr|hwi^La%w0gf(7|d3R*fyk{j}S8Ln>mb?ri4*I zzO?u0Uc0m%6Tqb#PlW#fY^Xo&^@_OO4^w7=D-V{oxUM`MDB_1w%0)KR`P5`$A?6zZE#FBod@*bO3DpMzpKbIzX79l(T8C zez9KFbjgy1dXxrLRzRuf{2D=_NjQfrq=D@lVSXW&lvRCU8Lcf?bGAdf{(XxO8PA@4Mr_$n_>#;9&=@U>>{P`S%~RJxSbM&3 z8y{W70F+Bhs)H`0sp#KGGm0!FJ}l)RZ?nRkj?X=F0>)wi55siYv4<)2akAh!NKB;A zI}Fbf-`AQ=5MHz*pmXku_GP6g*~qU4>|i9DTPzI%iv~3vei5$p2JRFj0_D}o_PhDT zdv+npyspQdk<^Vnl|xf<;4nE%m;->QX5Z<7&V?;_(X~2b0v@o(lv|f!7tSSz%w&yBCY3X zO2`i6YSGFpqe5SQC}6oJ+c7@PTXV4K)+CvF+7v_7Y19Z{u*;SWT#nR(Aj<&dI*vay zg2E0$Q~)*GyivdJg@y?&!0QC0&hv^FosrU5IW-)E2}_qvp>tBodQn?H-&h?wejIEE%$oh9blXSt?hRdqAwLn*+7wqC_u?Nvwv>QK1*#staF>YhAYCA6<>B)5 zJy*&;n6T(f^1vjnqkT39Xh^x|v2*%sO1b^JM%U?H=~~iDRDc0I4O`u`VWvXEmdXKO z%*xm7=Z`q~{{SxuIavBn2QQZx(XK2=LvR;;uCFgSTb+CLF2^y@}ADzO;ab>-Axg>?>opM8&1pfe)iqw{aea z4ab|y*q!YyOvw&@5FW>PvyB3E8+Gmsdn*G_LUy*$Z-tfn5RX@`2Z_&Xna` zw;;Gzo}GxOjCnTVsXBk^V#J3Uw^BHd1i@D%p1+>xidsqt3^^xU&&)$PhrS}NEljnP zh6i0^P|1ZK(}M@}GJ<`m2Y8Q)T)6uA`d3m|NuuoZFnym4f+ z%ue(*BU*FN!1Fnh0Xp-qQSgYY*Wolvw%>*>Mv%v9#D-V0#F~uTb%3*PvoS#Ca-&p| z!khN#3ipNh>Liy?ET*e@Z53wA@j6XDBcFUt6Qd=b@h(ELpAltr^4b_~YuRX03KYN^ zhoydfBQ>+z!F;ML3lK*8!Mi2?5Hl-8@HXkrvBA%k<6RtkkD#t>ScQNV7`s0|o586U zTd0I6Y2-Q%{Qct{x$zveBzUrdJ(X(k>xM5=s8B6UU+}`7S*&^ZsQs(fpt6v|VwWf3 z%pbe)f&x;RgDSKK?;or;`BMdk+4}zR-Q{;mS`-!;U!_A(cq4=Mj=6WZ=c!ptn?%r zgGz&=>(O86lKm8K3?nu{3YN7L66!{&17T49*t>~kA*iw}liB{D}qZp?z z5I6vU#+v)gS-+LyIY9-35Lt-x;P4@WW!jmb%T}cL6h{5v4iT{wE7Y2YDo*Zb2m}tq0(s&d=ULnYIB`_g zy`C$Ftf=HiwOCBILaWDKV(pUeC<)-#zfUM(y(Q)Vw}~|BN9K`Y$s;()q5UtRY(-E?9=5M=c9e?x2zqmLq2T)+%%QEKZyM0M)jcxH=BM zXm!K*gp|1Ug-_lx+s5cnsRu76Ik|5&OH%?$bWyDzry379>hS(YFCAm$@J}Rfw)|QY zfW?mI?F+Lp8Crvq0!u$mq7bHDwAah5QeEzHsJR9^`F?ll=g+}vx0WkRu|_@jfGWn% zsR=wk$}`(-u}T2Dx3lM~#R;KCucq9_Jij}i(|$jN#!lLt++vnzC9BjtODEC@0J@o~ znpBe1Z;9<0jI8R^mKFV@sdsXT1Ou;&{d&Tmo8+p$i^I|K^v5ixU|e~^^|u-=bRwG< z@ibSqU8aNrMx9JnMaNOjzFbE?KR=TFu6TG)p$k3ox1yB8uF*7`=P@Z_3w!$ai!$yI zLw?cVxIi^`cklecJiNbS;Xgu`RPvPrLNtD1*1=X_18LS1WLfubD09Qe%mJuvdvuRO z@%h_a{$3LXEf;7x7nXyK&i&(8xGq%9kOe9W9=vyi*|tJb0(Pt)!IPGRme3l59`A~O zv&`~;PYyVQaxT-0`rdGTS!U|MDTMPucB{BxasCx@Q#h-FWp-(enGESi!k(Hd74?RJ7t z2Nef+=hsFcM6%r=-I~O}8XVLw0c=+C)fH;Ph0i1@G}n$fh__QTSwY z2w?vJC}y$QKsr_m&6FL01D>&2*J#FbWw=-7)p)&Q!}akeZ!dgkH(iiBkrQ5a48%8w zqiYlJ1W)+3{WKov>2iPuhPCYswwt(yYSoF@K?`NrJy-#q_2~rTg7(i%okZ!byhYm` z(g6AQh8fmC7y;bz9GffG_=oebzAz4Tz)PAADHNw&g*rR)v^n~+kmtxnRZD%U`@wvd z?6MZ@$x=sNvCQS4KZG8%SqnQrt99O>mud~;Ew`m)b9bmXcdt7`1%^@yu7Vb2N+dme zpsj{>QM>YC$@?fOscBUJr@Aaz?5terv{GHQzWhgm@FY5o29WkE1g+DXcZw*tGq<`Z zO||h}u?V!p^5^3v%w=cX}oi6W1wKbQ|lBa z&G+vR+NY8Ag7c7KV`QNNL#cq)*&1RLsc2BVPGuK4hdguyvSmJ7=^F9o)&$I-kt|IBr*4s6ZR$d6SJQIb zn1b|3EacGBqz}83nq!w>Db^~i<915~ds_le(hqvUm7Blj&;sYQYf6}c)o(fSj&yxb z+BKJ^Hf>m+Yibq)Y1Gzs@w{H2o_C{?WnX;}>R2=|+m{ zPrf@i@u}1)n8)k;M^?*7aKfg8r+A3W6)t_zDkZg9{*l+lSkB@(Hg6OA-{}_$In_IB z@QZd!u&7ipeSX};lJ4?c>dqYM!Y-##*=2^+tE)pj+>%2jm~F3|1VxRQYEK$BQ}ly3 zX0-5~2XXV#CL@(Im5ie<<6Yl)wQ|g_KR6FCs0Zn&_`!RQUR3`8_rsd(`;H=<)Ky?H z;ws4%Ew29nw0Synki$(!JVz5J{%rmFLe!@wE6kR38khV$bdHdxXO5R>%dm6Cu&xYI znvj&atSnwOmpVJpZ3XT2pd4!2B*N;ANh}Dfj=MB*d3pUhIB{@ghi;YNMN=`0>%?4~ z7!l6#T~hl;4<@e{IQgH(j!J#;)t*ba6lm^Mn~ENH{Ng9kgxlticQkkrd(6t0A)Ak^ z8@EZVPG+xITf`H}Qc0?J8`d$iw)4?`)UvWvtp<&+x->6F7RT#`XZNYsxn zIKMK+lqhB+Z8VRwoFtg}E>~`=UpDVoFFkdr?*I+{wFPBKG-7yY(C^!&3YOGm4F^A! zgqsD7$x5XX;0Ir`lhD$b7EK3wY8yb(e zigx>ds#sVKfvDyWvUzsiWlAVoSdB^0j*(0LTf|bGkCX(&9*}~kr84Q8QhDMyMcXwb zsVWt#6BSaryYMeEGCG5uAJ6LDA$>SKN+gBl2C6~O^cxOdq8+frj{z%Up{Y+1HLk^+ zmLN99kh4P{mFWIjX67fv6zmN;9iQd!hxA~7SRAj`Z8!b2O_Y6E3(l7t_B7p~2cr8?Le(j56qg_!06ae5n?y6Lvm~J_lnz}Iz>s(c zfd;V6)-6FchbUS@6zQ&^_YUQc8kUNk_K}O}DOe#%aCCjSF+&f{vmq+T8A_oeQhLKg zw4^60gV2Z9;k*F4Fod*bPz2^K9Q?TL6+{3tRVHdyjTEL+&=;v7v8edN>aQ>wn*Oc) z{{VpkZxkpe!U0HU1&RFY1FRC2F-I{eZm^C`FxzKKc4DU*=t1iq-PZi2h^Ec2XazG6 z$wIy1ie2q#)rO^Ac7{Nl>W# z-WhC3T6L@I08e?}{;fHcuxflGi=z@IV9o){zjzxyNtmLQRUqm#ejts0`RGx0?G^2pgDW6&u{uC|W#pI0?tjaO1{egCp(S7r-MECYJ#*&2 z=|1GNAG+@%`DPypg7PFG2y`6U(?Bf0n4UruWsyf30l$6^Xi2r-lU99F z(gAh^Z|4tij1uiAqLNs|_Guwyiijc0LZ!b8Pd>?J{PTqDLx|>C&#P1BdYZgOn`2d~ zT)NOJeq*UKQe33-E7CO5G*2EUw4uA+~*;K!AjRlejhW>Gy+(36qF`nn?~5 zSL+vN;)!!rT5nH;RlM#mS1o0RV^PzXS-2%;Qc4KcpzGJOb%tiFQ+ujhtjW_t2-}|V zHW$3Taw-oG&tU^Gwe>9JL$v@j-;?;!#m$c;N|)-=283tcoqpAY^6ao~MWK#TfkJf~ zb&oHbO48X&4OlR7`$8rq^p+HYCHp{%JA!^^ryU_);>Jr-f|f}R&G$TU6MT|fX*gRo zv&*+BDFAQJ-Y2kIP=_lNJwG>u!;b;*WvHwfw^{<^f?esRog$|xQ*Dd3fEtSg;C@1s;;>%3c29_DiId&hK z#P?EEhDjwwRo0*yY1iQ%-nhjw=%5pr^e#sNAi{Tsd8%3Raj$4#Qt*G7pn18~!kt;<|Gj4VFL3>>E9}BT((gP}+dgaS?F;jadXsLxIt!i~>ch)c7 zw`;kohV2CK)cmO^2=g?9G>f;b@+D3QcLcLHJVATL#J0?bB9$9{(LMWv#Ki@#^wllT z;ezreb&4>_mT&Entwag9uaqfSO#^Nrp7J0M^-$Nm2smOwzwxN0#a@K@ogd`{ z{)cv%gD-??;xqd;6q>n&K0rw(t?wV3Mwuqal%}c-mI1y14xGUJL0}G*r?GBfWJpAu zJisPm^K6IEMSE4yw3LDX4$tyvH+ah>DJc%2LIfJTY(4;{btF)B<{6al>^gGhaY0e_ zjxe4rGMNfVA(%7Qx!87tBJ@fB0LY-~&_(Go5L>_ zfW5x)S$7C(wq09N@Turd2fkM`P~2vt58fL;JQVY>NbyUC_>3W6>Yu{hv?Gwninyu6rxm1yYlsLMLIM;CdzfFf6uI3B5pXs z;7agn1CsEWfh`3HSBJz2aq^9B^Fjg+YL;R5g=QAvE0RKLkyPEyRx&nsXWjj7vC7%Cz{H0zmt~^CG zz=l~iUl2NT73>$WZX{isDM-}qzeCau;k;|>08++Y9xGom(pgg*Dl~l?gA|i^OIaCG z5;h`$zzo-ngEa+|#8eTe=y?Ve{{ZbtpXQ&08?sEwz&U<7>lRsDd?AN6#F43U-YnQ` ziVO`&)wX#3KMi`t<_g(|@fPLT45}$yHvUf!OsRU}At_`K<4*CM-&e|}DPAW4&~X|@ zD7ysZgrOvl)PAwqz!FdyOb)L8*Y6H=MSn*ajS>QvFu8UJHGZe*%s))L6cQAnMO1Rf zrlYh2vtdaoP@2GyTt4m05xsF}S@5E%*l2dAXef!rvof70PBw~njkRhZIU9C~ZaXT2M?q)TQ0>4mu;VDRK;>; zEC81ob#3^D5(H;*r7}_~Iq4GJSJbv6Hktxy+7<2ic~e;hYL=iKs>?n90D%`U_5zw* zu8CC=uFzU|0sjCI>lUqQTs12H0F*GrabUIC%lgj>&xmMz;i}}oIS5jSAbmH9?eap@ zLP#VU2q3PeT`5X)AQDY$0+)!w6atdRO&-2bW^}bmK@R1;(4}U?2=&z&l&=e&2QSx7 zu*kuD;zTJKgs=#qew+2?J;Ii`8FOwbTa)yNu?7*DXiFq|utk33_m3_wN7AhFzzQl; zlC0a4`J_&pyZZ9Z3Q`@5<|AH$58P8fwvbpJHy?N&nF(>zVOkioZL=l7L1HyKb_YV; zB7!^X7BYfnJw43}^U|5*vZyMWvO)YXLeX|gmtCX7p2}_l3S< zP|IBs!|?wA5Ju&~(w3KCTxLDYDqE~`CrjP8>%kG;3bERiGu1vsAUc<^13^}=U}1VQ z^tmbphqBDTY$CMlP)nqw<~m1q{6dQ}nS_vN6}je|K$%y;oJxX%Qgm0-yZ~y-K@P$9 zfmiLJd4mrK6^XF*(4;Ramg1z7x98(U{7o?mVW&+6AOM$z$QFT}ncawX5gm&1OJz); z!ll8?s&3;-QKIb2?I8lLUM^VgL=qI*=;5i>3UDIFcjr?v0Mwp3M0b`JN>*|xlS+}G z;2rzHTkjPi0*otFa6c&#U6-;7N|LaA_WaTUUa_QrDMpGnl)S2EENV&Q@dPgG&oXFV zw#ETo_cX<7UGyfNU7?jhd)`vgLbI|!t7=ajAbjshg+VAmCbR=sC290-3Ue)9B9l%%$8IUk#G z+{N5ih?gXczy#@=cli0VOK?a`i_8Ug z0s2AIS(Z{lnLyFbqo5F_Y)`8#l+?4oUzAKUNF#{uP0(sx)4ynuH)eE#;-lVRYA=$L z>eWq*Q7+H7N|p&KZv1`WM!}4|YQU03T_B!&eBhP)U<#?IZ8nVd=edlj#d6ZlY6g$= zKb@Q^(d@SZLCrV-w30y_{(WHW&v>AvK_t=rsu&k8&|Nv-#3|QLaUFJe_S<4qvzfdn zUgxYJ8$TWdD4}U5tLp(|U2_zrEfWfJ)wTff_+hUT+)~tlyuKhRK-Z`4Aw@Qsi&jJe zo}Xwi9PZ2uD<~@QC{(H5zfQuP29SQurrc~HI>&q}P|GpWOSe|%?H<}~+0tE2+u`Q{ zXsr9qS&ByR685;l)s=1oc!%%!(dHDg%`-G50;HaQG=uo2epW4+_8bk#(|Qftp@OOt zZQhIQ`O-p^LH#9;UY>q@IcR3PuAwX^B6Of4tU`RvJXPClsv|e(;BP$^ZZW(VS`z)I(j-dL;<) z8t4)}apn0Y$F;=ccBe7%q*qP>?;K6LMq-*IvxRI=5n}97DI2G~VAY<_oaImqY2VH= z;lVulU{)Em6c#iafM3jhd*Ovw3V`*p{gbF4SOaOhN@hAh37~TB(A{v}iB7&G63QRr z)xL4pX79?`6%t!MGGA7R-%;xQfNBzUqR9fCf1OwhM?3dbm^(%n2z+Z z6pGeXpu6RLTc>!eX)2xPU;t)Mh-#C!Vm2c}Hy}WJEwK|5nJyFwLf(bO?YQbAi%s;q zG|Hdtt(fZHZeNHaKJFz>mL-93%u}w~{bN2&B8-}xq`Bv6@f7ASBPCCmId{}?1yyB9 z6m+pJ(Ms5q%$5SGuzV`tc7M*hLR>213#=08BgES5cn4xM^M$)yvK$u&y+P^BHP4jC zD(I1`RD<91SXR9(DK3;LMXHq$)#IoUdHQG*Em=o|u_mqoC#n75b)xW@oR9)e{aZpf zc#hJApq&PeUZnk?eA`iS6ztSvS1{}vF)q^1;mWGx^qutj#fv5Iq>u^&pJcm=?yfxH zJ$I={ET*ey?teIo7JJ`9Uq)`c_KZB9IbreTjW%5Hu;@$Gi8=<^nhzAUdS_L-8iB{Mx> zG$C9Khu`MV34YU*YF1A)&GYQc&n%>gP)AJDg}_1U%fM=viV zw=1iUisr>z_UX(6(2aN^0Gkq}c#<_5KfmQjV6@I4sVc2D&~=Y&QW%F$WN+8)8QUjq zX8IMwQxQ5*48#XKp3!>u!ib$IAbV+Y384ga)F^CXji%)}Q#Q^TYHB6BI(G->4ERFw zOz@)lCyiyDlr?Z#j^OFMa&FTE^mA>USu-n?mQW5`XAiF}L#;FiFFQIyh*cV()!(_{9R!;dXnf-arJ|jB+vmK%Ez*yze0L-iizYcE@S&uBiZ_c zxIN;H?`AYoL3GxIo-HoUwADq+Rk!|PxBT8(OhU3Mjw_T#y2}^r^AkBEV$7tF)%@NR zuPi&2PKOPs)-27vl9F;c1nPDlcqez>=~-e~L{Uvf>l1Gq(xk8|)p!Dt&YnU9$hHc) zYotqfN(dxBnA5xmwq5{rCqwq@7;?E=NH;ccDJdb_P6Q}TPz15m)wMAts`+vgTG7V- zdmivO7ppaDdHy+rmpfHB;&jtZ2A%rFgxT~b`R@=|>?G;UM$O2A!oo9Wy}h zP9IW0XF0_h7x2wyvD|rgg4QXSR_9QrBaydw^uHeZu5Tyk`-kNctb|wbnjGx+VFO03 zS`{pJgDo_u-{l%D*EQJl@H@xTcqFmodA0!FH)#W;1jLtWiUx#$Sp6eIx7Y^$@ysq? zC;_)uS6Ymf~*HK1|dlB^LWrKcW^=h2VG+4?Uy4A^zI;?oroO$U<8Y3Y7J<| zc({d{Yukvcb%@2(rp)_jVkBD~PVrn(3OnrsE-OJ%DuAyG5lHF0RFq+k*JggCY;=K^i9pRK8hxjY$VrD z#*4&_{{T8b=?UZbiG@o8Sjw8fG5Pq96-bBrru#sO9eF#mYghcz0oqVbg!%ErGpQwX zaONhRbOen<#9lgcmNTo;#O1*7r~o<UxbLGDgztC%-KwpgVFSyA7S_33@j$%W1i&1B0j_Z6B8`OUe=)wLgBb)3Wr} zP)W5hE(_>7AKpJnvX5w&FYf94#416n(C^Yaktc@h4nbDZowVpaf1JS?Rxm!5(ke-l z*Suenpija&d~(KooGM@K9Hznv8~pzOKWOf8V&BJ?J!9E6;Fmo#{NMMFM}rHi5^iJy z<&ORO9?>{5(x7sNG=QtVxdDjVn1ah_dK&O}5!8&PX?DO)lobHzdv=c{0@Xa4?E7}_ z6eL7k~xdJWLu;n#zsrh+D8#BFq(Ix9JI1cCK-Y1bHF>2D0 z=X0A~6Q?sHiIqD=h0E3W4G_sie<>0lrJ?B)6m@USBdax?#dg!IcWO;Frtz05AWX&8 z`OreO_CN&&q0VR7_7KHsolP`yqV@h^F8sEIu}vHNsZ-BLi{GZxsIhU#Ie~i6Q;h_D z4}vV2Qk{qtR`qAD;xL>FrUb)aO_kdnqYHfB*m*eo{Nac-ad>DvGUk=~((-PoG}?@JUKov36HI zKLil7B`QE#gO>3%N?YX%w>|!5`qxt_B(NH{)JHdE__;u=vXNKlM#ORPiKe-2uw_R$ zP#K9jo`ZiVHHhr#nIxebRrft1a}8ayRWy<8op*xvn{z0njW!$zWLLYe9(3j)XG*C1 zdBhmKbEPFAn{NLAv_4sHKn*DZaRu@gq&RR5PN9T5=mcR|t4yM1h6K@|(iW8@kWQZX z?-b7gC@Er&2He2p;%R9}%s@MXxaJAcamAp_NDO!P_k&Zk2^)q#SAmB0mbOq(Am}1n zty4k?ULI*z?Y&L3?e#isH>sz@hNIP#9ImHm~qHDh9x8dYF0o4=ne<^N>XzS#;?RhX|N@2 zR|9{vItti#60UetP}Q8$n?8`OX1}dPa|a4<#`(syyPY|5q$MPNd}5W7;%5Pp^(D28 zxpCFYg}b8wDS2j0EJ*~tU!XAIKMzVEqbOn+x98_rw_uiXdbMiD#rA;q+pcV{5*M4H z>&okO`uS2jyei1+Ui8Nw3wvm>GOnJzT^ooh9|! z8JHDq%`S&gsn#=}=w_v4>J`D*^n%xg@&eH1kV_HIXg4V-RZ!H^xP+Shaj43cKu87L z584&4sYp|(p@}YBYGH!z#PZC{ifq8dm#nFC0Ywx`&~4Yr;d@X98@d*SW)woIJM@Mt z!u1JBAa2&kj-KPeZkr39d50428CCT@h2kd`h;CsX&f0MU-@#f?CKRo=DyLcZKY0Ze5;P${Z?;^{-7&aROyu zvnEXb&|{$M7j1H8<^pJNDC|ib!kvmWax5lDT?&BF^xyNWCacmvubPxOOL$VP8=>9A zHd%1CMS_y)BiYwqgjh$SyE#~y?5I|nKUh`(`?l7wvXY`t!`~Czt=S4n()D)(Mv3ox zAV^UKigyuW=CY#ECDch{POT1f5LmHtrY|h9n{YJKtX{n^tf`9&n1EEl-nH+;))22e zM5{c{02;AwK9E-J$0}KLha#PfPS3EtGRkCvG!-qe>LSg@iWaqiM&3;nFInnR(o}1s zZPpvEo24jEu)ygKQpC1|m7f=~H+VqBHpx;va)=8Al?I{f-$--3EukS!)zEXpc7!X( z2n8suW5B&YH9dR7swCdHnq>8)hVc*q=STh{RKp&Nkcl8G#-)m#8TABre}pN_!?NYf zN)qA7Zbt;hzN<&6LURf;JZHm?eT!Lj>F9MKvW%|u5DL@il4&lIN=Be<);8HVf>O{N z*0t*cu1oEdtj)mdSgXQQoUCLwb{v~7Vo;>J{-dY^n9-!znK=oeh;cR}8Ndkz&byA$ zVoi#4#wi{RO1A@#loO1Dbis4j(=7ust5Z%PLm1+vW*I||nEjyXOZZf3Hr^qhhvk(9 z57H|G_8gs=8IFfh9otf+B!rqhe$Z(*c$UdX4B8C@cWbi%87X%zNahFvFy;x$48@Qh zt;bmXepp>3gX}$Bi2^6S?>T`vcN={ot(NavkfkWpf&km30JkF%%ur%{BStkIaovj$ zc(R2G@voc;O~pAUE?ll^UVs=Ua^T#PGZvusoYtK_T13s#Ly4|Mtfhu+!Djp;tTo`P zA|=c5Rbx~sO z)*fwkfh<%peSYv#$BL2@mAony{<(wYI&t~u0WV$G%3C(CT4~(HJ8mlpP$8AE13-Gg8@mXLJg^jVP}k*1 zRJL5qg6aO)b5baN@eS=`&XRyaNgMs(G@I2y84~%ELi_cH=&6}9(vT?a?~1q0 z>Qkj$SM3W{>(O%1wJk#_6tA#&h%PH&n=dkyOM>U0v=@{N_Ws1B6J0;&N8%su++Z?= zRY2<6JSt-x4kw@~1h^%eT5Z-9?ki-(fQDC4L8niwXUms;9BXr}37VBC14?xAfY&|x zq^U>_Nau*JXPsyO770U9wI{3rx7?PrPW6aO&^R1*jX3x0t537uOe;>1YRb%1Xb;K~ zZPsbiB<2ZaQO55UktuU!fRaLkW*vGB;aG7s@r#fhHDYLX4c0od-{646G1ZJznS`^; zP*$WLKG9C+VBgEyW9 zGZT~&I3rj_f^Hy`q;S>z>kJn?;ATrCmJOrA&B1|*3Pi&}LD#Q%FJ;4islr~omw&Vp zQ_#zG*6KM`QZ*HiC*0}?Aw|LG?H3Vs%+I4G+@Gh$E#5X|WUq-@L4>n%+_J3l!A(i= z9=!wxy?r4|3Q7~XZh-Ih?-nk*zdNOS3O@a#lwe6HIf!!m{%Zysp=C1&AW`UkV}d)y zJYROD2moq0t$%1SZMEb8OF2k1>(Akf_bi0v%`lC0KdZ~@46wO_tut1ftj$LupQtg_ z{;>HqIvySxFAMD{V3e@gp+ehsl}&eKmLT$Xg)Wam;^5CQ--jh3C@BZqsSm$D7zc|i z`6U#AnT0<;D+*UdhSQhz1pbrAW|KwveU&0BTHH zNnVZJyTeVzXZ3QDmjn&sfF2~UD5xxWi-1yp#x32}4^)t}CC3}}cZPvyNejEZWd1?j4cIny}%(+Q5Qyys?$XumSDtfbV3*#@c3B$Kq zB)D}FH{t$~`FDbpa*B?Ta}dh_WgF18@qSg-lps(z8*{A!@zXuoRojU)vG_6%zAKPY(pb>2#rSzrPQbHIXM_w25o_)Jys zvzba2KOf#H{{U2v@jmD}q|&Ef$PyAzw3)5q8}~J*PGNqyRId+tkB_1HdL*I-ytnhK9fX$FyIMd%b#lcw+Th7)oCK|sus#Pj6~Hj6K;o&BWl zDX;@`_U1HY%JoPCRum)TJ4EuLDBhMbrUrnJ4=uz{#b~q1mcUf|JD1(zKOJL9$SF!t zraG%~b}ZToz`G@qZ0!T9ww+>Pon05>shW=Ortz%dOVBMOhVbjmV`9j;YXN=|L2A3h z{u8(tl&CF|OStQ=c8b)D-xtcJsVGSBzlijUskzdc2P7AB*Ssp;x4gMZB?=^p6ZL>L zKT76e%4NEg)eKxV?e1t-k>f?at3O-?ci!l&lH7CfgRT5?B)50O|Y1`;!9Ym=-}%6|SAk9?JBA+xNx*ln)yYINWWBmj5<6be?` z!4mT+RBl631ztDkR#7auBA^1`Z2jE+2oLEpVvv-DcwV}>{k-4=oOLG70?20pJe426 zXe|vA!Ehu3r5AAgFyqP;Z_B(BtMLB-2qki26;2>3fbF3pYJK3Hvg(u;38zik3D^(8 z_p+4IvVxTAe(-May}e3^02*vP&_?01OGr};uEv92{bHT#e1MbvuM$m9`6dHrw%Y=y zO+lQcDq59Rr-%G?4b;|=sMv0KVUUERBnl;{2j=mZ+i^;53KX7Il9t{$vg3DmX9A(%WUOu$q2eGDq)vypbty}N#i$9~?qYmL zd3zuon<&s9-Ya5zn=s8NkaevZIKr1nQigX^4K<4itydsamr!y=Q`Be&UBQh0BsC3OeSVaQI>J11$1AN0e8YMBoBFj zzL7CbRAx!9_=8pup(y(jF4UjqNkD%+P+FggDtP$Uz7x2~NjH>luuT z&TNUE%LA?f=e;UPz!f3 zQg#_al90`tUWOPd;XGn|BB~An>B;TZ9&fv`D^7HPRml9)tOKy%M4`%0i;ZIa%vOam zfe5Rf2Ji(-B)NrQ1pD-eq^ek&Qq_7=j}}#HKC}^_EDuh-VB#*cXUqU|*GK{cSu+sz zBY&h?H@Y)rQfa&UF9L51SaK4u4v)cwlwzWVl&LxB&MN-^?F&X8t+%L3sM$1qo-59~ z&=w8i*t zqYghegv-9sGGx@Hyd=@wSN*$2rDn1erA2Mw(!X6Rv@r7V#R!(*5C9*BD%h={pv@#4 z#J1o8qwxxOvc{FCGE@iD@8%&!#eK|HS%0LQw0aIm{wmQMl}%bsFP15w+btaQjNvyt z#m-X7KuVV2KF_I!Bziw(Bg9lSBp`phBRBM=gu;@dM~I4L z+gQ>t&{`NQ79o^qYB!4){n?!gG(SkkpAVNDUmkxOuYxa|49O}WYLlVdb?+B$>&UE( zzyZA~2;jrtrVJ*TYbpiYI<c^{C%oSYSIQ-TIVjHj-YA9tP{3+Cj)D7FA({1Bv+bRQz{U3!P zOj<)$=bn7}+ePT;5D>2ZG zAGv_{z0Z|dfpq2b2Y4HU?}debPc#(Fs7Y5po`Zs!+Y9f{>=n z#-P%h6ABlguY|D$^wew{^GMJwmTD;{#FGC2#Ao<|%aph~ct-$g4_F#XQNEHiRZ5{| zWTNca9e;RezbvnmgQll?j(C8xWp2>otOlKDa6#wu&LhgiYIchgrs~5=#dB$;2B%Is z`NWf}x_JsGu7^l)xUYjkO&yqT-=ru8EZvFUq+F9Y&^QbzM!nBdykpOg%i8$dY_ct6 zkTzjXPuefZw6V(d=r-3_&8{omX&{QdJXJk}J>AxUIV1GU(Z5M4GXme%gryspdXN)+>T={&rJDn?Ire5 zq7=ZTLaj`#!0Ws!Pq3#qgyjIcZU)e86BOPc%K7yj4$)F=kvWs$@&5pj@6`P! zrn_uFGlG{M1p%*kp4)LOEi-*sKkk46%j%Lwp_^U%MAGx5WKeX1Kv3JW{UG(xeKKfV zCv6YL9O^Qv@}{P07!Y=C#>7{CM%u!>+ktj<_#IMCsY3b%Xo7JN{(PMsF!g< zOcRoXkgVPN_l@TbN6QGdBqD1vf>!l?51+a{y(|irG_L9zMZ8Cb^Ae;6BsT-$ye(KK z&P66Vz|bB)YHQ46%l%q$?PA4!%|XftQeL2kEf?+6O2%M15w~~+Z@e-Brl}`QM`+^d z#R?BVPUB|l)*@YN@p!8#3NNOSS$C*GHF5d!j&B>tt;nP3H-Pql)z|#F@{H|8mRr~S8o zlpnHLgEE=^AG}unfiC|5DnEEHV!PZ_IMj0*aN>?!lFG1UBTTIDO7gjZmL?_XsEapv z%Jc<*rwtYnc!CJn@f%;$pL-0IVoI_pfNnLeuukl~z{OJ9K)+3XfK$DHrUMSO*7peFtb0 zVN#Rg6%W3Z+sX`0mQ(>AeW5dUPGqUHG3AIRSYhYq6z;25QXzan>q_tD!(^3Qo?Jij`{OSaPVf!3wwT?;h<+6&7e z7|rD2jVthp>??IJ_-_H{%@3_W9ir{SD5U2mn?{q7Q!U{wlb2JkQ3Cx~BD>NnUN@mp zcP$)PZ4JqKj*)hzOcJx*=m}9iPXZ-cQ(wc4`ap|q!jnz@ zv5oQBb+qy_Ro$#jU#~qpqmwC|u`fUdzUXnj?tf;ZFx2h)_kmNaj134Cm6MBF(9_aj$=HCvHxLQR20N=LJUe7p^ z#=8n>AAT?uDpgU+bkIR|viAF5So41?ClWi?t2fz10ddb2j$VD5c5 zmvD71Tk}YBjx|1dFPazPE*h2BW{;nOEMcsX}ZDjHGQwGYfQp_FqCx38agQNQie zWlSbo9SSVKx6@BJyu|5(z-AzoBm{=%<~qV%rtnr}2dOUFp29BQc*!DIN{LFg>)*D6 zn7@OpAg9(W1rez`a8JSzR!!tlEtRcUon5FQ9?yy96sRc*3Ug3DXwb0@?JYr@F$IeX z?OxrZyA_cuNFEXP>k7bL!MKR11WZq2L;fG$F4}IHb5!Ld0O8t(80@zy1HOlfMSJFQ zQ7GkLl6e%0fEw3^Bp?mzO0#ug1#f%LA^;8os0q~l-)4$fddP|BAe||g7iZJozmx*R zmZ_;&m+iGeTR{rYW4P|-@u-0mCVERink9mo7S~e&Fx>gmR;1-2By+~UoU{b=oq`c8 zqI8us!LRYxef|(jr4RRw?ve_Qy3(DZYliqnrLzju)4XLi{A9IC3Q|H;kyFop{{U^? z7wlKu$?6G}`hai?3bvZ!&x! z(?;*C1)J#XOqv%oJ5*QQPmD4wUidC`p+aa;O$l$EUrv;Qm`dB0SxSNMmMSCN4|dss zicsJH-+FNX?#nV|l|53kq1(4j;aG6JKNXp48U2MRoPK+vJX4PSLqCZMJ{5BNHpiZj za{IEPamW&udhka*Aww2=CMrkv<`ob|R4mXQly=&$5p?vztY(sstq#q&+9Q$a846}P zoT}4Z8|etwJ;P{}u!*wsq=Fb#x@a`~cxuA<4qvWGRIm~bVhgrv*Qw^Mr$#P;tW$|u z4uB9+m*_yEI2jlIQ*mnzc9?Hh|DFVRfz(m zb%oE3&WxF7v`w|mKnVc}tL|SPMaG+I3Kc7kuI4dgH=u2uM<$~}^Tqxxw zq0TsA6GQ(1ZFMnv@wyU}g0LJhNq?*d#YvdCgVnN<)jAM)fcN#`J19dHf>>@tei*GY ztjVdFETmMmX-^{nu8CzNp+i?PraTM+07$vgaN9acB&v={)$~sZ z9jjif!K=ievP!glD;1Y|%9$t-pnh@ei=-tXLS}5+56ylC5#p`wWPb|F=HKZB?1`5t zAt`MKXsiDK2(~I$hyg-=P%_1Mr0YO6fKl5P5S2B`(h5t04F!4k^$@Lf;mLMuOA4Z_ z59Mj6Va*3#ewIwRsg?(YWx6=#8!e@4Ku|zc9-4vD7gR;rc5u0w!xRef1nqc&S@4sU zz2BXoMnvg|{Rb+C!mptp$brK>8@s#p#{>kPJpF3=K{cxWs2?;cpt7Dx*G;tJXc zmY4lncMuj8uRE0zQsH$P^W6T>v3B3G%Yv-MN@t39#M#r7u*Xy1p&jBJCFq)B76io% zrl-X1yXwbQrtpPmi^G!Ak6Wt>9e+Hc{ljfomyts&^Qj+BV~I9Uk&zV%r)U*;Vo;Sb zpEjM~F)LNr49{o+)luW+73SO0fJig%qZTjo(Ou?Y%(-M1-AN?+;5JVgvx12UkBK0NR~Ban=XoYyG`i<($HWLKcB6KV-`C-!a~<$B4gq*%p+Xr%nFQ znRene1*&34k%pV1YUVLhfPIk&D%mj#i2#a^bP_5A0^rslzO6__5;H48-zZnJVd<)_ za+f8#4zR$dq>`WMlt8FH{{XQYLjDfM(y{=wx`20Tx97j-E+vsM3Cf}rl0E+Txq$B5 zI>Rzbo`8EmjcLSZec)%f>(W+9o&nab50rC<{VFX*%}CRC@;XMVi#-|0m^9w%9s%1x_n?{yb~-TMpYO&&A1S= zcGwiMQj?XvraFTTA*M*ag0wYFE1~_Mh?|@i73XNrZ>zmh5C|_%C~d=-kO?UZa7Kqf z+zw**=qIzvBB!hd#P&snAflD2IwmeA+_j{$>PY4Gfa=Ans#h&QiW*b6=lAIW+A}Wi zredwB-T|9zv`i$LojCqu@-0(Y*yTDu(m0uPB~?`buW!vf;Q1zyy(Zq}U)w+=OeMK~ zf*EjD5Gk`EltPK|1#t$hOg}DSi6O>-?)@RM?Xwh;mJ9?=7=422%9ddkQFKd5%s@RD zei$U1GnX_PH`XfK0Sn4YhVx^@F!0Hgu+(t$*hjW0fkY&BA{Otf!7}ECJ|zvJ^~p8V z^{(P53f>nP0Oc%r*`l3=0U?>pPc~x0vJDS-f>OO&h*F&=-aA4!cI6U>0=ex*tpBzKnyGf%fB4SnB*u03Nz9zf6XP>9LK$55ye;Cz4~RMWAF ztpN#_Mn2HyE8f`ca?|Rwc%Gzz^I&54qT8_vK~W=Jb*}JN5a9_kQlmh!?9fJ&_ygIh0`RgjR}1|Fk;pLsWcnLm{7Ss*)V_uq}Nll6u2zj z5=xxMldMUY9f%`Gq(gRD6y+qe7;>x6!s1|3i6Q--Bb%!X`mDqnpOjm+U*cM_dqKbY zleqKw_knkIE=uO`l(<(9!QvFc9JAST2Pv+fhAUn+C4h43LEmn_oJGt_jU}ND2rsuB z!u-rkxqxK_w|Z-%a}VTom*Ok7bE=ABeZ!;$xNdtvSBVUoHe+3C-#Fav%Oa*MJ0v5W zPnL}ZZ%jRy(SRe}+B5j}uaOQ#u&cm91cnD%jsE}|E&l-9D*pg8?jLAnx^R#L_?(T* z68`{%Px%PEXN8<*4p6rOp@)B*2)Z#UnM4Lq1tnWVmpfZ!hnei3V^aN9$4;;w-*TB{ zNOl_@J8~lPwT91r2p0 zm@F+>!*_EoVMt`FbF1{}7O@@p5>kS?jS@9HFyG24-BZ?;Iw}UF=>zXeielHDpKzh5 z>C?_L&d*X>tUj~_C<1jGn6Y6ZQe3eOpwu?raSW>>kdi^FwXfrOMQfVK6r-5X4|(8o z-YW)|MU2`l8PpjmI&ubsp@%!h^9YxfJ{^GL$|JG*w33wSYJQAj)cJ`~6n>|eWDRoM zjufeYIn!!>@y*?HqR%j`62q)Am&V`^mttX(%_YWOv0C!Bqc%ZS-0XJ{u;)uRWZcMJ zW*r9Ie$cdw0QIb*;GZxe`YoABBvXKXZ~}e!mCpla*SB7IhlQpbOL~OMFXA50R_J;B z=?Q+1u%2})X;xGKqTi`UYWYxb&{GrHGf))}-ygTW7w)@?*D6}nYLet2(MfGIp$A>a z-QJ7Pw9#d{y>TL5sVqs`zdFP>))z9;N|YQL4cn47ey|G!U$%luKvGF0tboAxJdGml z?P*Y%<1R~UR*EI-sZ$iBrA`q;T0A&hR@9?9h|+)>ch{I7cH07wk^{4Vt=>5oib|M_ zzr%E`XVH+jy<48zIFGX?$ zLYtOMupI!fdb4?c@L9bA{g(War%?d~m@r@f*nGZbD&Dt(6r_YXSg0bc(OnM*$(g|^ zw`8fxsC4Sg&C}xyH)YEu6$t?R=}2%Xs`?2jbg?NE;l7>g-YH+0sSH3PGc|g}oJ%#_ zB`!i-HoXSg`?;f#rHAk$l(9Bx1d4!tkWS61ZQoN~(?Y%*!7ox7$vL!lcww>OG|M@R z!;pJv+;$tmTXnzH*D$8WjDIwQOYYpMlM+Mti*V=b6X+Ii+&?$gl}mLcU!~aPr5r|; zW5crjQd5wHHltT>r_-!lxo!!FsZP57aRu!5w1PAh=iv+i+3@u2h3XlSH|~1Jw|HEI zB&$ba+J}MH-YcA$%`KKmqi7T5z=rhL^CV}~`Lr_&zHj6#5R|%sZhXvKxMz}6I*X;F%Q0I7l&??NS8FIf~?Mxb_0*# z_l33M^0GnpQ`b=ixE1Yp=ZTW~@1gG;OvMb7s3WaEIzt@GmR#h5`AKawZm_R2(X#Up z3H5t(SN&PYNfNsQE*c)paNYO>?G?w;f?G7&Tz6a)q#KFDx5`Y zN(7vxL{TJac&?4f+A8LBBTlo}y=tgg_WF6i`_k}QRgq1UJ2&Q{8*mlWxpD!T-nC)W z!$aO8y)bE7pD+N_j*t?a&thaHVEB%S`oFpkUUmfpB&|e|s2W$cw0OO9-LjYjhsmk? z#k)nR2g3WY>FAn{D$tuSkOXTFk(dRBnGM9$IcZqNEacCFrlW|| zF55skR45g$;C4K382GXO0C405i1Hk$`~VuCC}qO;isd+%;Rd;sbRR*?dDcwVt3OTF z>Ytcu+a+HohTFbq1R;yF5_dk~tY%nd`$0pBjz)pE9pgl}rUj%a-9t~Oa~0y{cO1T6 zBDbBC9|;}I1hn0yCWYUf1T!v9+qF)xI&`g4ss`7X?&Dm%ql+b>E6SOm0yI3H2T!zj zd)XA04&UP17v=({X?pBwu;~WoUaC@9u>*h9I~eHV#)4X;CSV~!lqu!0>k9UnCQ_M? zFSk#B5b0u-oz#*P#hB_mw;w3>-*%;GC{PNkf^`RnIJNp8pZhJ*}_MoH`xgkQ7cJIU|nYwBjqyx&*nI zfB>j@E2-J~_4f<)Fd9{vAz4WwD(j(z>`!q}0^5*A{SR1T#8w~(RX{v!W6M%KVnEze zZXc~&(me4MIKXH$N6h1=G^CL{u#sGUD|{N4e zLFNiewUm+KEY(iUu=3^sWhfvIDtt^BmrYpGo7c)b`#N;!g_iOvv)3Mwi$AbR=@iL|Yq$!q0hi;rg zT$?PxyO(ps8@jE$EOh z=OdgQU-wE^NoAF>ffB6iK`2lF?pzqVYDyH6q|9yq0A}JMDGDCfi-Krhh|3#5>qN7) zD(@a5)Iq3vd6?$WHAp2jVW(KP}xO{?JlQg$n~W{{R!ebJwJ6GP31y9E&`+I+pfWY0Jgw)}Y5IW2d?VDp8hAT`#W? zenr+40>Rd;_l+YfRc^~bV)X}D{W8i@bfIQ#8@A9I@|dYpAKFOQw(SkS)+J~Y6QgK$ z>k13fB+JdE4&#XK?C^pOYaYq8fyYtIbuwd+q}O6Tk#cDR-X>(CRW74e{r8KO3os;1 z)!3dN_JhlkGKCT0J8RrPwWXW_+n__9Ji0zgc$UhLuyiZmv{Smnlgf4aLu;mDKvg*{ zSN!4^ZyU8zr#(VQ3`Jk5`$cl&_EPnR3@BP)f99V^?)F$4`!I#(b#86_gOl>`CYG;ph5LR+2`$_k^3OL0}7qujetOT}TBeI+W|d z8%MwR+}Bb>W6WpIhsnQ>mNBe(a^yVFmv4k; zHWX$cBy;83K8ePbL6z7R8|@ga$z%aVKvXD~J@k*7{NEJ$K7;XmodDQZ>Xfn7*}3K> zvL)SzTKx=Ozo#cTXCUe}2d_x0V@)>v;yfN*TzYc#tJY3Dz}gF@)DQsN@uy?gqy@82 z%jfv<`bjyuetcs7lA}673knNz3+?70g01%Y> zvwk#lIVUTawu{BUr%yg(LcMH(c{k2)hDpyKfzwXtW%~b;+;J zFDy2i{%aKGN_Vg45w{T%{{Tx)Tbf6f1FL(-JVaBi6azu0x;(n4K5j|SZ5m1}G1%2m ze5*(;Drw(Dmw~88QCibq%_7XZOK1V;eutRRh6tfs{3C_h0AOAA4IIlf9sJLKq<)mK zT2$yx(G=ZIlzzq~LI59?k0u($S=Oyb5uYIGWNq3gO;`_CuKxf?{W@_@g~wR0B~GU` zk3Y$Fu0@e1qi2rg@bh#TV zVNkrPE*hW>0pa%$R{X=6jRsy?G^>W^%Pdld#F4mxn2n7Ntkl) zWrTnM8uRb#8)grXLPLhGrZU@|^Mj!Wf7Kf;(xysvtzTmvm*Dqacjo)nqjOoq2i3NU zc%#w4v_JO>Y0W|Dx4u7NThtIjhzi;C?Gay>(OJls6=x6gkD>0oT28g$^JW5CmzWRL zt34d>+xzy7Cd+fBG7-H$Jhygwvf83WYgeEGL1Z19=+kMI9MWE66Hb90L37oi7fJ`DFvNjhkyNs@IuXQ z^y;xqfF^*xy$>Bb@W9pWau9)*Wm8g;b$`l4ZUcqpgE1i~RZRgJ zd?8yA;A864O4L{va&_s_2jSb;xCV_tUZ1oRzwtuK6)iO;ln~|9QuK3qr7}DwrBviM zKQAaLF8Ih)xqzI*Q2TM;cuByQ9NB77Qd~Rh@1!`KO)bbEGqWAO@XcQfVnr!SRJ6K5 zpyTssg7+eFnrccrMT?Xn1!Wp4w9)*czxP`E1l9R5#rI|iSSmi%15^Svhkar| zFr|udN@gs9z}$1>VeU=hS&oB!;B3nRnI$w0q2I4a_R^&ZWlT#{v{dRFn|jUt;RPZ`|x*%o37DlRJ4_5VgiUDxYP5_9HUM5-P@W` zI&gQ3*9C>;g6~R$yiorDx>C7WS&5_U`g`N`)=5apXgE5wFq+kQNC;5 zH78;Dq*Sv>51TPN@lFTU0oiZ)c|r?#w0=&IV*0WzGSZ~fm^3}Vu%aiFtYr#FZ8fNW z!ya0!2^mIERE;{vH!X@`NhH(f(1n$dB#LIQiJwDG5NnXi;<&^~ve<=}TUq!OeOysVnr8)<0 zAm{zikb=M-2-W`pXb_7!?Ft5AEH$fBX66gr436cUJ#$Qy0+u@imakVd_Zmi(aa{I^ zOF|}>1io!Y?0(S6Wx1tFP)b1nmwi?5ig?cOS{uY!EKZJkXnRI;j&`j)TPa{mA*5pM=lF0Huf7p+&Q zGP5L&BBbnAg-gn&Zcg3e>Azt6!8z6Xb2%J&?fKFIUv>qV#31-i;Pb>2ND3YSPJX>$ zw5v3vOU(61B=eiEe}o_vhp_zFN-J81U07;cujY|@^(&oFyr~+2748gTn?Y2v$pcgL zi}&q;GG&$}j=!`Lg)6e^YLesQ0Hs}v{-yJf76T8{PW!_J&w3$p&Rs=2#i3&i=8YBX zoL$%Kxoa}cv@adb!Lp{UQ%y+}0O@>>!y_5J4(> zvCu)g?)L~8QL2M>iW5Lm(=keORu4hjyjPMvWaOXHHS&N1uN8W^< z`PEr@4k{_S9qa1ot0#=EHh1@sfkOo)|x}|Hq7BbjOt1w*GaY+>Ftda16(wq#puo7xqyErK4_m^};;bvpV#;qM=VDkSJCjet z0hjT$hJ3=*%eGycVm`aU8?x*r2uk%xpoR%ow4q$Xo}D5|H@X*8kV({yeD?Q2_D|MJ z6KO{G#A~u3ttwb>KODuvrmMHs6Y+)VGKiKKnxDKqDrLl0g3Z%Z`Q5CAlK zjmFQ`Enuq&N>r(Zln(lr`hL*gcG?h9N<6`Wc2KQ_EDB4dK!OX7VaCjdNmhsL6=tLY z2sJ;A7bhgC8x7g(4+aO%npwft0N&Px45#%EXY=u(=0+NUyh5uWEunonM3_~cmVy#VtP`hntniNT)b{%4X^ovp$9M#~$#woj0vzY{Tc=X|A zC>14bmBjg-qy5vOMswLWk zr*R%nxsVtD!-v*J$oaaRg zJs7|lcxf5)8Ju`}@9*LmZ+oLOwn^XFEIi@B>gtxDik!z@f;_Rv%`G$UF4A}J2ZSBX^(O?7sLHx6^IG$gzDj-=@D3i`03QWV5yHR@D#?jyUl&}WkL zYKq5Ko*K{Xmu(fl@eyYF1PcYAG4-ynTx+Le(ljhDaj8<$Sn?i)w)eZ&v|GAxx)K2( z9J&T~>-L5@CA=d~lqo-I3Krb6GZd4tJ-R^E<4{V&5Zvg{V$&oAJF>n9tX3E{T*Ii# zs+&@LqOb8T@XUg06+@wad%>Uh)BaIHU7T6SN&#cdPoL5({{YSp@q-MpfqfbJgaw*r z+n>ruSfdW9N(_7@tH($ui1D&P5`l7-10{L@KCcnk@faW_RLfFN;~1$xeXju|Com$K z1M~8Nmrd@J%gCprg8Y8^z|2XEfk+A2yOH;b_a(+piE2@B<9&3bJs!>X4Wwl)zJdME z18*Efl(LqlZJSN**l%qnbN#d-Z^YtqDR9T8~#FejGv)uWwm8nr*xJ=?AT|3Z;~&)a|W!`b4*8 zAImHjNDP1W?tVZBuSA;NZwW}s1vPJhJz{&IZjiD%p718@l%=hLKpT_B(9dT`OC+~Q zVOsFM5`b2~k{j*sfcI_cXS;)x7AKyOOA}kGkW{{r#umjWlPsl4FPPVL5`QbSO{Thp zl&M)Xrn_{DX4c-($|(B8_)gY>W~p8I>VEJh_QWWfqLE#lsqfMWO9XFBX=X|Gfu_5= zZ`KsmjR-ZMQK8a1vEURfMQVENI&TH9yb~>Q(v*@iR2|RW5G&g8iY6sVRack+O?}nt z?}sb0?35CPA8%*bxbLr&L5J{UgogptH72z>*RIe?W!{7#O4KA!@Y=u11IJd}TDK_x zkjzP-ujZlwe_twNIARV~eJitbui7bE?f$hIw&13YI4}y&cC6JbNu>^uv^6WI3?wZp z33Q)%{$ToU)TGs%R;N$TI2(p7D-zj68Ud7S+rS)EYAL6QjY$V+u&0hOG4+WlRzQ&M zG(F5pFU8G3BxWt9kHls++ru>6iBTyh-`Ar<-P>*nNJu0tfEuxhmq^!ztlE`~s(t?e z$8R|2(kPONX`_=s`oG|RC?96At!zn9AlG1~>k;1e61BRRr8^z}05prb2$qa@Fc67q z3JGA^m(X_e+6i6PVy6;TNjvcSh?exi0TTq&AOxS%D^aWU{G>Zv^1{+Gqz{4qVL)D; zf>cm)oUP~Zh%l}QGFDVoQ>$;l=?&h z5lfbwj0jf)R{YoR4Js)Si?ZU&(HUZccjD#nN+RZC#*1@%V?%h z)v0gK%EE>-l(}mQ28yE-r&uzqK`u(j+>PkpoNo#^p8o)sXkJYEdn^rhsn8nG7Sbm4 z1h0FNY}r7C0Y)74c)5YFa-}&cDkq(y-N$9hkTVhh-|Mt9+!vq$UJ_DE8djV``ZR`e z5(zAHdPON$ie{`NZK3`Ck=^@hl4!(c)u2_H^_3|qAR3KNP9aJ56)|nMGo(<8bngW) zouyeas-yg&ZtcAjJx9V@M?3TQVY<~Ur5+klhvxA2VPdWOXG+I~A;%CR*rlWb3zpNE zj(vt?zaDo4)HN%!#rq|olj0N_n5-g&zFfuCNuyL9qcq3XA}U5|Gc&O1^Q?UhIHg4H z;kyXS@txFmsH>hDIK2Kjn(FZRFB^}SWeloY7D|aAJx4G0i_)z@b$ri44vacM40&|` zN`VJz4LO7hvhX1IXe&dhFH`b8Bf`(8&~W9mT0PTj$UsSC=-YdvSizU?gd~7T+-(>| z(|fYhn9$I^$C%VGO|&MU7AM`;v}MZKb~L$TZ?fBIQMR$guFMug7J-*d;1rPBo%VuL z*200w-)QaOdT?@>U$@!Wg6JIOJ$n3Noq~H4S7TUYwkazaRpBhdtSVntHA^69Mx94k z>*2}IV)AV%Nz6PyGg!Z4zCbK$k{%aDq%2dnp7BP_X(@6+$_WL>%d~V)N%-lS{{XP1 zNpzgfJSGtB5)7%0qIFwu&tnYsTVY?apg+}HzaPwgw%C1RgGU;_)*bC!f7F?I*pj5? zN}Y*fJ*56`+B&%{!9&$dWfydv+rM5STV0IEQSi7TtQ{ws=uYEEqkG+8ykEu!poJBB>!@V9>4 zsX;kiMESS7Xm7k`1#%x&=cf?8dPrcE2iBu=--8z#@TD6?n4H62TcD> zF#+`~`qB^jgPVmjHpCvh#vV>P?XL>cEa`Froxt*lte1h5w4I%p)wup(RvW%c1TL*a z8qjcQtT0>T>Ow&THzav;9#1YV!(Wp{VQU5hF}lvq%BR6+J!;740{mNg*N2ZTe#6hS*Mw^$p1T z#hY!)8T9b#A^!lx`a>WYj9thLT2MrSR-Fxc#ak9+8l9^IuE_;tmjREHbn6a(MMEt_ z7xDrOU3RdlGsMZVxXYFL?*9O2p(4mor(%)3X*y$WnN@Y6X$d|}*O&!iwXVxEDu!ee zM>O~OLAeM7I!hgEzi5qCa-dSL7k#^RioeDx*QMN6M8qpRwFmzI*S`mEbW^%)i%C&Q zBoXZY06RhJmSR%iXw8)9J98IpmsW4?Cq`<0qURm-G(ORHkyO@zwz1{KZwXln3<%S& z&En;rc_0+NVMgV?P%c!ot=7!9AxS*)lepvLA!U^1GNRg*I7#y7se!lMl%b0|Y6W%c z6-R`EDYs(`OSOUnilX??<{V z;R)xgQ=Mr_Qc2rk6=YhKp|40EX$5Kn$TpsFpDt^QvafvF4}o~KUsHtRhGjw!COw)C7Cv|o-G z5c>ZB5n9P8yOK;tciln3Bx&x8Gp{73lqMYhro{gM(y3nPjTSaE4-iSc6uz8u2IK}v zJI1m~%|jz}cpZ66`9#^YPsIIT?}|5t#8OW{{o_xKDaem_UBm~cXj{CHHQ(zE7yQ--LAX2ig{#FNhv!7c zPYc&=ATrncePDH=Ol;pMigG394m-zJT8aS)PNca% zGuA!3?A2~O{Gg1fBx)E9xIJU1h^vcL05u2lrU+Qn8-VrPw@RL;r0eB+GVhC+;n)Ps(o5Aac8+VvVw$Z* z%aF1I!Oamyqyc&n=h;&doknI!O2J9?UEboR^N(EuxjS(g1#F{4`<8XQcah zvK@w}SEW4RGZf;ohn6a(xJe(SxiNP1z1$kM;Pc4o8D1y96tm!B)N!ck-Ybs}wOFo^ zoRtL?sald<~!D$hn4Zf1C!$4pPxBSzy;~+$y7L+WKpnq$-Eg|Zz<|_DVOMflVUiV3!ed&vZ-9hl9@A!a_<2W1;MqB{{K>PX zxho7Hg2j|;+kp~Kv7$&Bj$^-lzj#x^*NWHTG;fcTUA*muY7P#gV$t+(3z5>$Rh0vs zdJUq@iq7;dTTVRwb%3_qP7ss^CubGQ1(z{Q$sv|CJQ%pmTKTXkY*L^AqxShi{qucm--;-wsM`$ST49$*rJ#CuJk zF(xOtijWA%5y0LFTz5>g$p8VFszCTeg61Q^NS*@1)R}{D#24P6nro~R!k8@~gykx2 zLlQ{yJA5K^*%lulEym-wNVbx)2Ay5tvq{ab0C>p-kbgxXH?+ zt7_%XVFNF_@2dx9{{R>;J(jmiP#(~$Yrx4`vl7R6b(KC^P!vc~k3Ap_;eR=Fw|J@* z@a`W{6r}2oH-@?QYEqMwSBM97TMm5Wk_ccnC+`gtXdIso2n;{*ECl;+AweL-Wl?+VbRb9z^ni77J}s0L&6`NE>TEvZXb zOR}f}csqH-w|AmuoD(#Kq!%rtJZP5u7iB^YL?>RyzwHa!fN(YIEGITbJCjmBHu^&X zFF>`83E0q<>BIxW_jXmN5HcDaV#UXaq)DEn5aeh!57r4tKhjN=a}$uIMJI!&SnmS* zFhG&x0ad1LHF}OmNN*rbatPO-!4cW#6u3=5+vg7lVV3+B5Ii6q>KpU;i+7!+b1eBv za;#Ce$~4*}lXJKq~^ta1f&{IbG!!V3>Wy~DuM`NTzcimF`QeB8`>imd~ z`z0WGru1iH{cOOg}6?G~-Rv(*(OwJHrrZHIU>JQi%n;K~;0E^rLMKn2}@DsOF{le>gdLUD9m{ z@iU}RgiylRT!LMl{3oWu6){{dcY!c~2nMV}d}7`xuw*Yn`t|7-Wm@?xq|?v52EIH=4#oBF2>90#PLw6eKq^q&I2m^&flfaR zHC>minX+17VnZ=HQm66acj(BLd_a<%sa9ImBgRY8^r+M{5xA1Mge(G-k?!jnL>ki}J8wZqrF&h$Lw6Je^no|Mwrrh_UyMg17n07O z4*d^M)dW3Xh*u3}<-63P>PcavnnlSLqbh3@_zGS4JCCS|l{z8CSsDc3i34&4-pY4XGsZao;rvzhHvRpQ{h!lNl2+;ig5%{L%)8N>H5_$?%ukF`6_qYd#0~g`r3Y^-p$QHX;@yV7 zc<|gZi!DHAPK{48Av+LyLRu1(k<`*FTo>WAIVvHjcI{7`FOjceyXi@tEI)&{z`^_0 z%mM;~j$?^Plv0wi2~Aw{9op{{Ez;nI4kECbwkW@HDUnq@TT%EPEKbD)Icz z*j7mnQZpCv4SGNeU%SlNrMu%^_RQ(5cZX80CN%wE%1?{L#Ry;Fv`OH?CAj=?w+lZxm-&!R; z*5STAAUEs35BjiGDcI^ZCwGWZhRVl?5Nc_^5j}$y6oQh#LEBC4ktMdkx1sq5Y^-ts+Q8*=~*#W(!Pr!1NwBt0rl^>%Np zUAa(bRlhpLYqerRncN?l-U}O5T`X%}U!KMS_LBFwTre%XElHZWQw~>BKmd*g4MT?ixC{l8$Hw~{y({C&Ihevrjy!ZK1qvVvPq zurlzM<4~v_Ad|4MYQ4Wgc=C$NyFy4RWj3eskxI*Qtt!m!`xu#5pakakbng@r*=$K9 z<)K&SlyPUn;R{lfGP^O@#T%Owp)(W>Myd1KIK?=itQL3Uj?D^#ZJu&Vkkkyr=L4^M z5>}EJlo76D$?lDl4?PR?1-42)#~K4l>yG7v?e^mn5pGf zk5~9t;?E4XjHxR@NfkN~^@Zz?1&X8}39eE3_lUp63gKJRGk`UAB<~DMyfUJp`9Gf+ z%j9N}HKsVI(CxE%Zw_;B^r$eX;C*?6k1wLdyB(9(sFg4sBfI9!E?8gyQPA@oVY!Sd z7!$6q6|rU4>jq$3E|sKT&;^?ymk#XhS9prac@hk!J}o=*1@0T1B@U$$Yv=Z8y@zhJ z=lGt`Xu^fha9Wb8r@{`W+9CJ;BS^DcfvQDziLY6uAmuJvpGeLx3{O0e6hI)b+P!{I zsAv|ul?+nO2xN!d08nl9fiv%AdZ1i8Rk?w-vp`(tl zPY+>X{FYd@+M0O?(p?x;#unMi0cm#Pp}IKtdBnF)EyW8F^e%=8&QTg8F=ZkWyN`aR>@WtUlWWk=6>h;6)44=}f?pz^8Z<{{RTS zPyYZ_3u%@tSaxr%G-YOWKH%uxdPBslH1u~Oy$?>Xk&1mIrd+_Fnvw&*#QUMrK%bG!WlM47=gD;D}NBhDhpBhfjkR?R}MxpCoJmXNscCuWO=sF71l1`N* z03xm1YO|?1QUN^$Uv@E_ROwFRzvY>fAkaQw#M5!lFxfP+N!yNxcnxU4Xh`**%893L zza|lS^s*U=U}=?@YX1OedLOKJ;sp@JLybgU3LYY$6r-m|L$O(=S%F!W;F_0)3^R$n zX*m!|iDw&k9|(FdTIsiYMLUxUmvEee>DTm!rO8@}X<`HeY1EfV>`tsma5ENg0a+`gQm59ZR|;B!B=s#nl6^>4kM%lNU8=LCQYR zxXo4Q$8Ngir|r3TtLq6#N<(Ts(PqPT6$VnBwd?keXInx^KoxEN5Mf$bP0FM#3Ns&4 zM-B6W_DkbBvW9L(@ox~NB3u5TABuD33pg(S0F{|ZB{`K*_J{mP;-wHmKx(%Hb?p^# zWr=B)RV_}j`hUyMVl^G0?W%LttNBQ&cuZHTDlA1y4Vox2S=UvwH>}Fl9sB%w#^{V8evJj9(VL3Jh%5VptA{?&^z=>r; zZN*_?>c8{NNFbW9;p+~Pd$$&4PC}BMU#w8I+b1vBH9H@N-mpU&U4g=qPGQG8)8P|f zJ1JV-N_7p0)AN`qDq-7P*=fkP0rL{>EAcJ$hFe60Dq50BA!FX~LjM4{0+Mz+5zlB) zy01o23(-65S`xHE>AU5j4WJaQI~YA>xR8KJ-oKnY2DRB$H6~(M4V$MhGWW(|10gQM zVO4bR^ooVh(Y-aw2ycr(OWxR}B$GfxH{kr{24UND>5D2UX>8yQcre#$u_zdUt_yZ3JaesRiGsiFeslWq_u0QhvXi zY&4GSR-l?Y7t}|Xe%vM}LMc-G?H$NMK`AAM&-CUPT)ieTURVKIifVeFvXIl$AGATNe_iSuJLORUFIOgvKR&V5lECtIox=g@8Y~WBfy*{xu&31wcNXuQJ zcFBZAl6aVAW&}_^=TM`$ZMpJoBIS^RoZtc#QTz3VNNyRZPITsV16TS&HRFsW%Cr?u z6h6skVabLJS0sv|J|bE7{P@Jv@Fbbi^Gq&sziq3%4&9)zGkkG;B6}HrL{aMitXEo; zb0(!MNZz}~mm|^Ks^w8&G$d8q#j_p&E%1r#R{|v{WdgdWvyPoXVcI6c(OaY_OG#K} z9{%xaW%d%l0327RSR-e%6(x-U(EfgVpcW*;$pA4?E#faj+qXIxucCK1D`qtYkfDe# z^e8C;icY;_+k*I7NtB_O2Vi&KSWv{aH5tSuBo!S+S|;}dU-V^fm=!T42Px3~zdli^ zTQ8}S^0);6b5QU*4%kyFQb8UjbrLm-HrFl{2Ckbh$_hAk`Ne!n-W0!yLrA?P%c*I~k)hvsp?qB-V1wlaZpj`H{6{vcV~PL{ zfI)cd$~E(+q`VVHO-QXN#bXn^t~4lx5XH-pLruu$KEuRU08k*BoqsrwoblDol&MMB zw@0tSJU_|t&NpM&{9iS*DGE)}q$H^L<%8kn&ctgC_&U(E)GIn)#FMg4fOdu3vhq-T z+U_$Shi2Tz zUmK2YP=#x30U#Zb3+vXy&Bx z`SOMP*6vz7Qpc>62?`se>_;M%)v2UMc*so&%u}G~Yp=R1F7`A8vwM$73P%zqB|*|y z?hnLAHu720&!`(7kyg_oOCQ@%LbY?FZt%Y^5tJ;VX?70d>C?SoszJ+L?2?vjtK1EH zh+enNBEHbno&3he317EUq)h~Ws*+#0Ec#L3NYCct8IoowIQ3+YSoLI`#=R;u5aq_) zW4l;H(4vAulB$EbIu6TD;b4GT2>|G^^|8B817DIXs_~G2%M{Qbu3TI1_A=1wcDE*z)lS zp{CloWESc-bM}Voj}vEMm&7!Fbs%ygosgwz1c3TC0C5-Ys{%m^3aBKeo9IE{jX8|@ zdOi}Lt~~8{%Pj2_1w%V&=ihkIa8TX0n*zU4_P*CHTBrcWZ1n4~5 z?;Q5X&*e*aX5~^1W+m%&)fQW8PYzCGaC zh_=vcUE7wSP6cYfn5ApPs|*>~)A#KY-l{KB@3-CsTGZPDcKgOww&Nb6_sy#soqmzs zpudO`3s4Q)W{OvJl`mR9J3|S(CF&PZ$IG;3?XBnrRlRl0NG(e2d5W^_%4Q_^O8_?p z8_{A-C?B7^OETn?QgaQep%a2~E7>gMx`AxJo^Wo=g%AO94vG{H+C8+`K>Vd6j*GYu;eaPcFlK;x_Go8){zv8vns2$fI(R{WVeLWv(|&oFHF136PloFu#K#Y zK1$XbSf+o3T(=y_VjVgIznJ;Jbj?sKq=VFcQZLAw!i4raK|iRVD7ogR*$Prd+kwYH z7N%l!p|b*-)EcqqH}Zy=H>hUOT>gDx&AQ-~X-iB(LWYEDPkKfCHg!wn4`Q;SdK`FE z2`M98H0|CbxbIUfUZ!$QOCXIq9*hf80#Cv-tn1Gx=Ngn~DZ#5Ao5LO5eF?x(lqf+J z2acZTIB(i&c~_bxl5(1zIz%%ph*2s8`5M8VGx#<_<_fwt)&s1seGoTYqkH8pSX zuUN$FH)cuGD>UobTQ?JZX0_z#0+mjP+JrsxAigk0;N^Z*N!e`DA6c<+uCU4*DJ; za`C$kZCDdduu~RDKh%Y!QYv4T!$JIr`5(yNmDkaDuTvH6_MEIVZQ{ypub}fVD)O`V zc{@BqVYN77;ynKVmRC)i4R-rM^-PMZuH3|UZcBv%YBxVW+A2-7dn7*uZ3bmq0HbYI z4I19=vAsCFmQbB(5!}ed311!-P}E?rYVNmXBdk#b6%p?2#@(1vekui7}WU8J1M?d}n7(=>1G zZNy7rwB>axiVdHbX6Dsn2^~+)0@<#`k_jwdcr9mC09%!Z(@@H+LCzY$Vgr!4G1pxne;mlYDbq zJ)I3tUi?C`oK%y17x4fONU?3PGY}tgdVS)Yt1B9g;PV8h+H!{>#T*VJn={))Kh%w4 zsJ9nk-?t6S2DaXc%t`lbC()RhKe2kF?umr2!{N|-2?BX76PEQ_&A1cfo%^WhWCwWYjN?Gj48kklk`8~XN& zAO8Rlw`Cs3>Dn!)34l^b)8hOzU6C-IRhjAti-y#|bksBEemeH+8gb(hYD=^UdIuaB z1&VJ{UnwB&(8F%Eg^`p{3itf$0;QqJ@YheViskw!K%HYspWF2;oZMQ~X2@C+&bJ`19?qZ#OIz-du z9Io_c09HCDky=EPbtMJ+mojOD%<1_3s=kYNbTWvHi%@W z@u0MT043XfH-Xk-LHqn-dtmU;>%SkGdB(xzrr1H|j$#u(h^H*&sqI*fb+1q;@sA;i zZFZW_S6?{xRHyMBcdQN1%av^V542b-J^JX;mJAY?XK)|g+ej^EMMuYj1FRr`0X}A} z24qMXb+6@PI*PAtTMnn*J3@uyY9yDS8-07jRqrX1LE505`$k)cFQOC>0Vn4RjNZ-! z-xr})VU*@}rj7S8TJ6KEoXTV|b|Y7Umo?l%ikA6}K-L^=mokfIKvI=fJ3{BqPLJbh zY5>eYGrwe@8MoG&ME5+^35h8!P~^M&p^;c=M7stw0it^)-9{i%kG($8&CkgooLW8I zK7pv>wfRMB;_gAA_CX4z9YNc_oC~o}EE=axTAan}U7)tUP<;MT&v@nNI!ZiAZ3?T& zjRNDlGioaA+=$N6Fcknjqh67w;d1H+kA!#r7JRFl@@2+_gsed(gLa3X=#lJ@9Mtm( zvSt7sF5g%ucHXKX&0Btv^pf=Oc}lg2E_Xo*V0Llyffz=~XhO2h_D8aH9lvN|pL~ZN z7fILc3z(YwDpFG@u@oWNu;L%RCtj*TTu~=ct93mg7X#qQc7?eEGD#%9oln!e9K0~S zrh38_u$;kx)%>~qtSjGgW?i$8l$R=MlkE-1Mt64KXh#}#?SsKaP_}9c=sJiScUW>| zmKUk1+7++-cQBNwprQ^kK>U2DJhX%qy#Et+%fORM73>Lg% zM6{)X*X--@kJ3FGr_|*uVnqno@Wyd|;k!kUreRMSlDK%$vUw68s!|%{B zVXJ{j8J4|j9L2lJ;srpGa-Ft*OiMO-QW8RU^RDg3$_rUeWCXQ#i}X$tcc7$b+nI4PE$Ty4A%#MSD6a;72NeIQ+?%_e;% zsGyTmw`jLwN^J;on({S&_Gl7|A|*@-Qj(Of%Do^eyEhA_N|H*P>MH*D>ioPi0K+qp zPsfR`SqfPRJ|u(TP^Mwmq*ujOD1((OOmDpD#ENE?qh4RBr(rm!?qu@2r) zPISlcfbJR;F59rmn52|ZS{Km%&>otx6_o&G4ck%Y3s&nSv@Ia8Dg#sQqzkqQp-##m z7YA4SpPVe?99D^|LX$0Cu?Hn+{oj6?#ORH##Ux3TRv4akZikA%>GtAOl6)`jg&VSc zsYw6^KotjgEW6u-qd434-YY=;_i70bw-A?#XA}^*ZcgK29NKS%&sq?m0(T>Sht>~Y zt3;V~-$iu&qIXT0-`DKPqbh(&>OVfQrg}fS(`K@^XD7rf?j5)r28ByD6aJ$rv`tv; z)F0<~HE6hkQV}e>4I#o^xUniGDQ1ofaNS@YG{j+YmV|pr{X<_UR=TjH@S~_vJ%vv3 zpr(geaf^VdQ?DAJZc~F&MDovBGK#DH9!PYDtB$k>+kZ1 ztHx54w1Kw2NP^LQC=!Mwkla(ePsi-FZpU@XQV3vFDf|547X89`CJdmc8oNiO6Q#@w z%*Z8_K5lg_r72j^EO*SgsiP7DKhL+E9@O%~WR_&7C=LdMG*b0Ul@m{-Tui~B_(WIg z9#WCe*LbW5ZfhzOmv`WpEh5e|&~84Fi{YP0VqDKrFqE9cB$vwj2-a*i4x{ z=dUU7g=jP_*N-?C{Y1+o##&UVY7Wfo{2mVkowSW!(_)mFkCLENHu3GfGOYm1DG&Zl z8QIx|+>1oXVMz_49FCo~j;(jn!6WCt?-M5mDq0#@X3#u-vRuk3C2a4gHR~6LE1CCD zv?D1D;-^Tej3y+8K(3As-G4ptZrOebblap`x-Vd~mIa@EL>mM3*eR6N>AWjn*E=jS znxMOC1RuRGM9ZlZ2hJ%@#FErA6oPagw=EMyG)%*C%%>?yaPPSNp=#fR6PNpEDd|sf zL2N}Iv;ehZ6^1pTAf38FTh|ha zK*@5zH8(#|vxpCHNJ`3rv{2B+BtHDbs#-{2h&GM*(8K8F{xcjCL2WpK){F9rVW2wi+7#?kgvW9mop}2+NO^Z+ zB7g_9HzF7(Vn9)u4?yE*JzyQ50nAGMT2|;?b8GPDZqQQo!b?grfa8(8F378U;>_g= z6(e842PfiGgrv*fmFIuj6s(t2+d7mcODal@74##gSB4qbI%1L*f*IYl{vmcW`EmaM zb-Ow16t5|(&Fb4qgSWmIFyyc$0u!SH6fKub%=yBB2W~n=09lt|Gg4Hq4z0t>T zX39J|g6!fszAR+T3|WOb9o`zQiwel`XhT7UM7G}xl_a^L+g)~e;_k;QNKR(~L7Wx< zZLAiy*b?O=yZi^>guH2I2+EQvs83FIePK{{m5fl6RRyqmePA8^=>!r2UZwQ-Lgmk8 z1eGKf09C2je$h0aa=4{QJck8wM7Zl+mi?^)J`+-2^V&D1etLb#4xkV$o+x6X7~){{To2 zcw!I$ZpWVRP&;(ol8~aJkWXl{Z_2t2HX1;?MeY)c8Z}AQJHob{<-$Q7EP#o8KGiu9K)f`B|eoy=8Duq8!e zgXi~!Px(~M2_Ui3zZZvlHWn*LB)CY^O<`;;M?T1@!!R^0yHXZ0PossbI8|sv9yI*< zLwZsquzw2?*!^H!j8vr(lmb(u_k{w5!)qx5MDPIt!np6&pC5gzULwfy^0;Efn3v8&;XBiq{PLf907%ttip8(3hIKJb`8BQX>X0jJ>BF5I}0DSYFmuH9kY zXk<_(gFrrUkl&YLv#8}ECvg*J#A(9y$LMyHp!5zuHIF4(GXku{DC<^p-ZQ(3N_}9@ zM&xT>kCbc(yAV_1sBaZ?ea|DdkW0SIopsGhCxW60NZU@p#oNakXHk?A3QniX|TjqKmqZ2%3_#(#!=YD!2; z5T_5Le-WW#sZ$hE5-2t3c7V1!LV;x^lpo*jh|cu)7I8i+SV#trTn@26qqQ%@wZDtm zf1jK#-M3op6EmpzP+5llUpRcQNy>taIES5++(T_iNe|Maegr7owvi)0svbR52M2?< z^9**Yqc9GCV+vRG#JP2pR9{ig73l@&XkGVem`RwW7uAWPM-A~jm=|irN(pBqzZ5=x zVWFn)!BZy&n6LpJCaFCu^n%hb9I0sriVod7{US1)Rl|3hrpg*q@{rMWhDpt!{{SjK zXsc$jqFP2)71Qkz;u}Ir09u$6M1xZreHYr@;dqT6huk6?Rq&Z|i3X$p0KSOs`+xyj zjX>f$y|B6!;8W#Qd;OwJzk@M|T9jIVkYDrN1}`hgKCvVRQKw-RWnuXe(h`(`_u1iA z?y}Ak!a+*v`~hBTP&w4`4thxbDUq5|s&h3TUf)>A@cqx~Cj}DW-?!}=hBlI^Xi|xF z203?7r3aKDS+7*gAT=C0+;l$=j6bpT)8^XqBRXhV-{fE=x@xA#Bq*93z|e-)8fb#J zIHfFeH~AiU=)^!tGA1EHQi&iC0q2ryQ3%AZOjM%CL$|Wv9KB2EVbbSVmV~7sGdXd; zyYP34#>?OVDFM1^+wsJEbF98rIh~veK_E{$Msnwu(g0fTRLYw}mFWGpgO`luB|sfF zFq3S#g{IJw2_Yc5cJ6lf!SoEa%izo-DSqXmjq8W%8eu0)snB)n)-Bzb4JlKSa*Y5b zzdim?bNUoZuH@6034ZC8WlG4e5}RrVJN1NFI2_HjW?TBSkfL6yeVg-0Y`?GakQJ~Z zFWE0q?EnEHC_hfRK=7b4dTb)Zo6=et3Q}_cx!3pS$}UR0!3Q$}+L}fu=>gRd5Y-{}k(Y+3;( za3q>?M_=9vbn^vm{*S$H_W`P^MwIKsQMTd2lz>GO!FTh9YtHj1NCJe0K5@m-VJp_4 z566m0Qx0Pig_Id*FPU-P3ty@;QdAueK%=Pq-WsIHlqgb^@LS&T#M?}w2v%A+BW{h~ zm|za@x&HvNf}a|IuN_~fNLjF8<=Pk}B>-{=Aa*qaUK*Ul_m`w4p?M|AWCGN4Pmj(W zELW1oRSn0_XjBxfK80H@Rfo*$>K?3lXwYse6`stDhr&&1xudz&$m`CL>g~lfSgD0e z;@*N;O6%M26Cs(cHqZ)`g?M!Xk;Qn7{{RuFR`e4KWM%&e6-Oa>s5U|aIbsf#K~El*^^%m;GN*N0G;h%TM`KrfR=fa z8!0YRsXqvg)sMYwzwIQFbg$--)!AlVsx4n=@%c!d-$#awJ8qb=$}BWt(hJ{9S_Wzq zwy`D0WJ(jYb?wYkzOS&c>VklwccY)ISp;E~%b2pI3fEtkSf3G3loWyjLmti3tW&x$ z!sW8_q@=qgz5QeL=X83+v$m!P4JopPq%#*3^XnPq=XIHLRE2B$NZtb5u@vcQDFm{0 zHPeV|M@)eYW%I9KVsrc)C0{IWVin%9N|Z zd_8wOM0Oj%=VDlnyK@z<3qdPTSTqmHO?2q3HP$LxY@nnpP}BjxQStakg?ha{i;t$C zaNj_Z$Hd;!xZp;QhwsePW@Zn$kDcyY#LH51{{V3vD0=4VK7Hd|!C93^rHyqQ=-XB+-FL2Gmn}f{-%gQYVdMfnQMA1|tn5r$vj%-C2i_o? zX3h(1O@8rCMXZm0(PDe%a2#s=VxeJv@{r0o(iAxS-WRQ8wJ1jV5IFu}%KAf)pfwC( zZrNlG;J(B)J9%>*UOs&$zEYLW6DI?Y6_OH z4z#YRJ-CKBSE?taQf(ioFr^=2;;B%h5Pjj{ddn?#MXF5XiIOHzYNUWP%b^O^wckKt zSl5VU(|UTcpcHbmrNt7XszKav53^oCOd{GU0V&+ktLOBKcfK7G-AQFiRZ*t9g4z+? zxN!pQPWtG^njY|!=J>TGO_`Vt$JQ5T$Vp})NHrr$?O(wctqUZA8!c(KU)m|mvpC#7 zn=^0Uq$;0k_if5jb0&>Y2zvfk${g-%p({vGSTCt9Q@V?9&}qCZUDtw;KxHXEtCJ0v zMDR*VKmfU8LVI<6eB+zTYfcbW$%GVCS%EYm=%k7TQjeh6EAWLV5v6sdST@wJ zXbp5&$pKk~MHtX>AEZ0ovO@qBP|n)No6hvu$7dp1b3I9Fki(#^o#2$Lb1Wxk(T>NE zH{;F~uM9qgC)*(EOX);HqP{qEP%-wfi*k!=>sQX6fEkT z&CDqO08S=T)hQ#b2>VA8@W>v@PanNuS&EopRp6H)$5ZlX=@Qba5b8P;PcG08{y9K5 zU3f8ON)CfjO?8axNF`{xDMbwZ>G&c!b}=jhOPy53{LEGLXL#n(XHy2R#F)<9P}G^g zg2!F?8$_9%!?S<@A2<=}50Rq|k>rVL3UGAiZjiKOGa|;qr|x{Vj=!NvFTXp*J2kmf z3?GjCm@014z=9a-$o--AhYC3kWQTugw{Bp}yWJ~GAb@vC-UHcZ+bCaZb{&RfJHQZnvVVc(Pef9U#!c(Bv2lwXX~kpveJkz66zgj=U+Y|)b#j3 z_n7wfko896ZTs;TF1cQ^Qh}nAQ}%!X%uv_i%ts|4m)lO!PSI&)fuMG1ESYHuZS^0W zBRTCz?N(BNTpb*7ShaV}DNff6W>l?#oF^gK6}P`ds%&-X8Fh6tve-@{gtPeLPP!X%_{&63|-I zPSCMnEC)P8G^&9fryBA(Igkhs7D}9sHjix8p%ERWO;Hqu36gwdba<@vHM~p-l;dxn(T!Rcn5&omT0H*%JJ9@c{x-VO zGG$b_7$N(8Xi4 zB}pLbuV{kvxdKX5L$L?WCbUjSQ-&ncCo-CQw!jImb}`-SZAdHyTCJpaVM$^~k%)zn zokw0HU!;emH;GIm@Vyi&mTmZg$h(GDEX+(%vq=*UL^4yk8^hx?S`={umLQUL5pv6T zk{c=Wi+1ZYscP`2GRUWXy(7CV$g-E*>Bnf-jAv@GNg8cax4W3HHr|}x&i_v;ib)^skY zH0kp4j&6ObF4%4EHLmA)y)yDrM>K%eJgMY9=j|7*c7%pY{&HZPy6squOi={o@B2qG z*HGy#xcNjAeIOwxC=6YyC`jw0^oUiBfiJ$_XvXTWQQO z-1ej}4%Dk{7Zqwt(9#o4(BOwKLcwt?fReDseaMaYbH0&y!)=~eKFJ5Jky6#_LTFwHFQEDJEC%1Wbo^3>^1w%_13cNi?qmr&x>G>LF(XMyS{663DRA zHB0TJOo=@zbb?Z3=>4OgpDgrFY<6s-z3ch37`trl9O=(UttQV})xFh&7kdP?AA_Kb zWzwaLacE?v!;haq8U2pyQi_NUR7F*{K^q1sx=}GHF2Oo-PVg$vbO1VhL|)nGX?o_v zhF^q?$~6i-nTkPQzW`mEN4n%c&Z+oh$c_KP34V%Bb2Wgz9wO0b4Dl z=mAUBxBS)_??fRqp*3)IKSqUl)0x@6{{X~ua+%V&tXb`bglY7P7VCfbkLCr+k7r9H zaSM+st0hHdSSDO=}uFW>E&|cc>6Tro0(Fjq|caFF(JZ++;6leVtbGJ%SsH@k?O++ELq9a z>_cg|5aBxISN2XTV)ht2m!yxsn>0M z=k#@U2`DHmunVMY-?c~rC}B)8a+ORcITT1P-8x5@TG+6nk}|O%zWqVp${K01*Kj3k z31h(cBxa>V2DjNJp{6^hVh_*l+915Au3`(bm$ z{AvR44D+#0dpIjXrA%OR4`-+c=)wdi4X$9zFc39!pnkK`Lb=bmV?- z2I0fS-DOv+1xlu)r+5*1VjYsi=&zxHK8>$M+GMDZMxnTBRKRP>#X3vOOEL@4JGPI{ z5cIk}-Imq3aKMJHzgQ8CE-7ssW z`FUU|Aty#=(YS;15LGOs&~Ma72FE2pg%%>M0td`GLF-Snl383ocB*Qq_6BH1iB_^-V(Mu43W)(d_p&y&UE`dAJ+GM(v zGZRt<^c#6VyL{=B&{rtxG%n|$>)nUK2Ussp>Q-e;aHNM$*@o%TG9p*XW{B(4vC5YhqH>55b|K>0Z#WcVE_o11@OF zP?`yW!obuL7&~a>Q?o)gi-+%&&p{IXq?U!--qUF(E*URSw zFG)uusFK6Q&wtOXdv@N^(JU}6$<_-YyIIPT+60$Q$BxDlu(ZT1%u!WAV4k0p(hbbT zQj`_~gNkd<9Ksr|Ww}svqkOv`kr1>)#hP@i>0ru9E*9IdZLUUA*N?aO_JC7CNNSxV00=pW+w+L7iE2fOCSF3sBrvAYPYT%O+5KTr)c8bCbz3s~KqP8kc#=h~ zN|fp@`#nJVLD92Yv(kFkYFbg^58>H>)ITF=(eCTO5KPgOy9FJ8J^C0=vRtz4_JcN9 z8D=SpnwF>f+3pc_gO*smIaj2z#eq*~96GX5=NCk)O z88Q_yD@jIb?^g4Ni%sIPoUc~eCyy;ry2)ZJOV_TA%t`q`!H3J+n<2)_@Mm+!4GUxbEPTWl3?folIp|mk`X9rOPUCoy7xn zugl>D@O|?))ft2U&ci~-Mtuwyqc-Acg&+jfokPJJEukrvm!&Jngj+r*QJ9jfqw`bN zDc*O&r%VVzde*fEp1(+1Skb46YEEZne?IY_OSerEO&Kpvd!GA6>m`wCnh>Kx9CYXJ z3{o!A6{FIS!lkbi`ng3*F0B}A74YrlGIC2WZCq`z^X4J8VTH|6CY53N#4_RA52-?s z)fyO6L2A=rN=oyZim}`CXcu-&a_Lt80F;Pvm5R|bIZ9h+{{Sw%8U%VjxTYi9e8AMc zon9k*%s9JzUTT<16p|DRIcknWeQV4gxGvdQMSNr0`a(aX4_cYY$PQypgdOSchO3nb zku4>8l%ual_Ycn@VPfyGvXsDz_x%c%zC`sd-gUlR>~6 z`NadR>2ZapGC+QYv0CG~eO6^C8iQUA!?bgBOIoDnK{`EkFf#GP%Rk#RR^wkdkPU3X zlV>cP;3OXnG!SO!!t(6u3M$ONYwW*BJ}-nzLPNT=$_KodUc|TZ3x1dQLnPRRWG}<) zs;oX=oI<^_$!IGJMNm(O7jWD|P9M9~FlN|L4xIV?BK@w_lo!+M252kJ$A(yCIR|m_ zk0#>W=sh{rx@uJNfd$Fe z^GKFPA4(QU0P*LyR)*OZC{(aO%1*Se8o`0q9=uX!0HwZBMuscW_R5VN>lrouaLtgQ zq*Xe*{0~@ey00wKlBGKxM^VH8d4$BVOOjkuPGB|VcdAfnXTr`$(hFEEK(d{mLHCYv zC9NcDP$=B>hGpqD~C5 zj*X}1?+qdnln}4)Fji1UUJJ)|Okhdyf}knTbv+}i%Ep=Ulbo`E{{ZTT9SGNh3ik!z zB`77c2VvW&fDc_$9&UA~^N*}AdP%!X`H50fM1l`po9pEoC-iAG(IvV?D`klT%sAX0 zo#JrWO@{KEp8^w58Jd6&dGmobyV}_)O30Q;FUcdFJT>@6!FT$!DbJG*V4?LTydbvZ zZgxE)ej^wK@rkW!Y{Y=Tvme6^xMvkjoaoJwVIxseI2=Cju#Ga=b;?svbm`g=XI#@I zPfkEGteX8hh;m?0VV1dto`YR~8Z2IzahQS)bc53tnMt6j)b;5D7kFmfhsUfit$xWW zm+ZDuE8FJ+CgU+EWk{(N`BUc(a^{72XrR$fRvM5Cs0ZKngFz0(iqvK!F`*;BXZZO> zhi|`qTV(`-953iwNL<8LD>VWLa6us_LD#G>-H86$Q>Z$1`xq_Iry|koYED%hL((P| zgh>Y|clrKr3YfhsLjM4__;`bNMc~eJR@1Zefl~00NXnoU z-`a=5l~E17G%SD+r$4o{(yj))6p0QCIQJ&`bYl0`?(Dkkcf2q9kWy0;%z(hLSmMhlig za{vhTh~M{tH-*rotH4V;3hFy_jxD$3)(A8scJ_}yZ$B|Nb@MYY8iHBAW)DGP{=&~I zGS~X3KBufGUN|yxkjYVJt7_4qUp8+IPVVL{-7+1HqL4t&?r%p6Otmd!sb8hd2Y6+| zQ<5D9ieb~pec{sgoEe#csp$)rd#wvOy^u9JL;jCRtyiE+p`7kHv9<@DePWwl!b zwg-MWg7$k-Qj;-E0cw6|V_*QZsVfPoA)jz#o7&jKq@*AAA0ZK0u?}gZ09C{90dYO> z%AjR*&_CdV0-ei=l8K5M2kj2!M1V%7GfX*!jOAuf${oXkD*ph4MwdQ9(gPYZHjn(k z7Vgp(8;$z)?r8&UD)D%Q6Z&+o&LhLq2~ioD&eS8m-3JgS(go}iqRvPHqONz-crFF| z?(jsU<|+XsJw9CwE8H0IbB;`mor&AMAO*V2sq0I=UD97(PrQiIaOJ=ffRd0KjeACW zrk-7q*@8&|r;gp?oV+Ynyvibvo=_IqYsiqN*V-?nYE;W-v4KPS zMLB>Mt|S?fZk;h+Crb}xXguN8O}RQ1I=YX6ih!}{2N`<7lmg&Xf%V&11%N^l zOQSNV+L7GyVVf1*S!Jm}2R_!34gs{MA<8?xp}NL)f3eR-nbx)$r~nVz5O4eZt2i&%)>RjTmC7`kte^)`+Kj9E*HdV{y=r!pPO1+aP z766@NE}e}?Rz+vZ3uhva&h+z*I_k5_GQ%A19Yp;P;4mnsZM4m_D3p|k)hc%m^&NDE zDHk#<=qeu70VjG7KECK#^n+quoF-(d<~jiE4=j5}D8G!!F0`mCcdP#Z>+^r!0*d#x zC7Ko+GP6AfgNBZ5*wn2GL869%R5jiDv1sECVzd+Lk{xO}M&&&0Y0pS0c3`Cm%b7JJ zAq>w`--p?%M!ZEH7Hn3f6=f%>a^s;9rdcg0QUGvNko{ki-)Iki-4aK#0t*u2tUttW zMyvkhMiaggl@za1d@!X?p^MIH<|%@h_4z>C>(Q~8GpS4l-C?{~C6W}}RtaA6ftCQ# z_lmPi05Cn!i3wl=inUSa^WO(AX`w8$?&HcSE_jxM;BT2d{!qVUzk;R!vc%8>`|AtP zNqpWOvYAK%wcWTe?i`%Us>lQ|4ZgMf+6ddOWz1rNGW`DlG>)tnI#g4eQ9|6q!vV+S z(;|b7Ks7yJ#m94IN))g?mo91>O?3tVVw0#(c9jszATx^X$A0YqG)a(x zk>O6HyJ+zY*+6?WJbrHxT$fqONmGr7J^GKVM`yfBUB-f>aS{?wyeP{IbugETaEg{c zwxSg8m>nNu43^2_W91>vo>4k&2})d$<4`(46!0~fa*>s38G)jjrU%}Zxw0o2h)bnf zy=%z$!8?=E1i6bSEtt@5(Q6jo;Q@;P058lXJF#BNn=itG=R#tY-92v8!F>k;C%bXl z6p$0)ZFcj6HXG7X(&Uc4Vv?vYv>{_CCYuU*!0cy#DN@c*KqaaTOj=dsjQLwlBCaU0 zEmFZ6lFhi&PVm73!+U_Fq_70myY%S=aXMuLQm@5HCuZI#-Ple_(c>XYavl6az4}9? z(}aYy14S!r)u-Q>&gJOiKf{-txpd0P2aP-N53=n@n1FJ)I}IYOn+nTZ)hw{wgQw@t z8tk?#fU-kuIs9mzGY-0xpb|8GIzk2|vJ$sQG;>X1!3oTj5-VN(m=$-;NGb%CtA3-r zY?QW3+rW&@=8dgl{kqNUs1|*>iG_eD6oLmFyhD6SOu1e%96^EHnJJ-AN}HfRjRa?j zHBlOBG=+R2Y*fLR9LeWx;_af@l&K2Py?Fb>&@*w~h*PB`X4CjQb%iWqxzg0Yx)tz0 zZ`uM_udh`wWp>R&-U;Jt-I5lwm;>QRrFSMLbi*zTH7;!Y(;TgtpXs4~klHZBuuBbT zUAjUo%{59Qa%hlU{Ndo@iE33tKRS2wiGUtummxH!o!}-VwWlEkJ9!_?VTSayjLZom z;pNYGSj3lmB}%SPngh&Z=?B($REmH!KG5mc;|DGsu5)fUOA{tw%0^Z0=iGZ9 zd4{B0>6J~b2l+-Da$m_>m=J}gr7ER5AJjW;{6m%9eY%*b$P|4??0(Rt&t=PpTMo8| z2A{-Ai+ZTt$4Ct-^FGss14GlW`)?h8%BG4+y`Kwx2Vw|-%i5^9s|^yjoFURP=-WI~wMU3X~yjN%NPImnyhYi3ZM${9n zc#qcPW=JUxmeguH^gl>pyeE>Cp;=TKgojgXJ{pKnvs~s`{@RNl&~zOi@r5{!sail= zM56AV?*=S*i7Fnhf3jF-)kCxV;w-OP1-bC;0xua1NILur@OcpRv|7F{sg``n{{YD; zXWBXhojLIhC~EMfZdeY(!=OKL@P@m(_bErKm_1-Gl|;~dc7^MG*iu|2<*CMCL!|Ww zXwT%S0KcU*r)~i6)8i4{lL}d9#5#=|LI+4UX|VWeXgDtY9zRO6m84}YT7nse*z*PD z1ddmEYUvA0JF^fDwf8WM0}IWusR7!601XfFAwosLG!ha5!&G;Jw-2Lrs1r2`LyA7# zV}s4gHIVK903R(0B3jY`4v<*aedz&nl<2nYyTdLQ^jw65I@~b~dEBY~rW=3l3mm2j zIg~2mqp>x9k>|@QuPkNec5-z|4B(we+;aUP#_h!uk^?besn~GQYSnQ{0l)z|jfow2 zfLE-*JUM7|ZCV`VzLRc>UO1&oDbsLvuhuE5@>4Zyw-74GhhRsR;B)!R7m|dLMH+1i z-ROEol^tSva=>qRi^j^pI1m!mZb{7K&@lT(c4DB41JHTD(k<95>C7Ef*QfCawwv8Z zQbU}-sE$7x4A}7kMG~N=s3dc@(j(%!YQ3$91T%Z95SvKcIB$Ffmuq$^1IuH)OFDk6 zY5=Ckv^tRq7oh~7cV31WtoN!)LP~j8zgGG}Or?+?Qu;+XH{|JR1O**PKQL*b)3hj5 z=U|?Yq8mcvHnBaoLNd1C*LYdGu~3?-ODQ}7LGSq*_J&Kp5)^n!N|HI_ao5TkC|v7e z(^Lm-M0aPznVp;~Uj9(`cUbK6K{DE*)QvUZ!tMF!*_I5VP<1b%?0EdFMU>|++O3M& zFtJ?@z8yRKV#21ZRUi-#z7EQ{NkIm#DpRj-&X5K~g-KW}RD;f`=8;p4jQ&O&JoPCd zWM!D0H?HlFX_la?u! zTywc1FJ0g*BeTS}b=j6`W;n~Dhsrvgr=({r%~sKVU(OorR#ya_V@?x#XL@sXAm?O( z^74LQnvgTPoP8jj#b5~;lxf>eupZlL1w@La>Cf>U9+T`I{G6g#7YCUAV!LSOy*P`L z(WglA-FqbrXxsU37+-q0>P5AK7opMx&%G2$Z9Y&C;=IcxB8e{l0OUVt5i1-cI?A*a z*YdFVc2=9OTkwQ|LQOdC(Jk9-C;$yrw!#%K{P8|#t*%k*zTEl4)T?3|iFS>6phn@d z0!f=nMN9V=5L#M&ns<)nUO=&h8pzf4=cIG;SXG|~tyMnFDosh=octk%UDTOr z%eiXr(vi*OZ&a~Ox7cuDD%E?BIR(7nF^7@zuN9_CQeuKryc`6lUAE zCHUv3Xc02zQ@PjLJ^Sw*S+LodUpPzb`jfXv=C@rkNHUbmT^0a3@*lr2!*g7cSe0u= zV(xpw<+ldSLP6Alww=s%cirmB9F(3o>h}tn?+djdR0hA5;wa6q7H~-=-^wPH zI(h&l0$^uRJZ()u5K_T=OD{$TP+tOp9_{KBGajUPa|BfOBiFej+bgRR9D_2?V8ywKot@> zixUj82nut=bZ^O?U=5PaXgQ=!d`(la*fYhY(xYe{Hq=YMltkzT&9fF~)8oWfRI>&x zGueYX)AxbP)8!XBX#%F%UBnH%F5nu1gTzLV)@;$hSY8oTM`8u9X2xk|Q) zj$2MlN&PkUe&ewd~wUnjYa8D7I-jnl^4H%kzUOK#U?HrumcZF!h>N}l$;`P&d0xAod9tUVzmOZ8| z!nZzO2<}~_kF>z;`OI%Q_L&-XAHSIEp!i0!hVcp+B}9_i>SO0C4XBa;dJ*T+G>fiz z2@Y6-mpoFjgIu08}%{e(;h;W&Z#W zaTAhKNYSW%k>4D)lnx-8iC(H|TXd*b$o2BBw5Szqn6E$+o6AUL{+z4Ds(2ydD>aH) zbpR`?eo(@}spi<$xp|YtUX9uiuDm>5V=*CBHQeeU;&wKahLq$I8{f2Av8GaG(0Gpf z0r~ZZZl}^bJ93Fqf)Sy2=DPkobw0%)-y}O z!)%n-28kH4poubYfxWtKS zQlB{vPc85H#k?15RNq*v$HJ_ly&vR#&`4~`ZR)u*73)++Qp6I~*p17F=^7Rrwn>2n35dQzgY6dA~8EIVzq6T_0E+2n+k1xx|br`MtCH;IzUd#k~e+QLO*rQ2hY3W-Wc zJFui7>GKtuRi?_JI3-3`>MYq`j*$6a#3-FH8FKH&)YX(>eAh;lk5y26W zWBd%HDJDoENvcAALvO(uapQRR4|Mu)x>hP#LqatjU_H@enu&yGD*&)0Q{@xf*Sg9Q z77A2G^e?~QhAS!xMu$gu*q&atC4_tCUF=o?= z{Zgfpq%!D1>$~zgb%z0s7Lb9v4~$Z`SP?rgQW8+1xTw;;QFT)iq`#QsznlyzHP~+z zLoC0r5~NKtWddcZ^wyvHo;56aFlzP|^ky$EuAZE~NV{Uh=4|C4 z4Ky6Z+v4I(&``Q5kBe|jR+^-|UX_&~D2aO>ABd9GbNF*hSBt*A9<>_QG8=W-Hbm7) z4=@8ogGMK|uuAI0lVvC&n=^YMfG;jMnD5X;vzNhnetBUaoB^1h3uo6Q{ zS0_WoVy)MS0DQ&zJqhSxTN_>ia;0oiYty7%pv{LciaoW5a!Ps*U=9BOh}9;01L4zM z2k!*sV-+c-p(R^sKs)ahZ=XkMnC02_Kc47hrRfhFrIkEOym&ayVJZ)S3%g8`I;7qSyU5U zjSVVKFQ+ww*k(+_l`ADlr^itZcRi9_sRCgI)ljHux$sy>a-eq#{{SxIVl*vH_l5DX z0avZTmQswQgOFw>jyeutRu{w))}T}wM{SKEs?ahPCszZ4AVjP#l&d&k9m_@GtK#db zUQF2&uf5{M)~vFe1}w}s;t1YX09r$Nr|TZiyFFR}cNz{}9tLwi2u_(XDk0KV{IhI& zjv{<|7a>SUL1k#hkNI8=c!zvHF+oHz2{i|-UB$K$H6pc6o7NQo_kI*a=|M({ATqX3 zKt6B00>iiy)LK+Zvm~=VpzYD2w&b?uNlKY5p@^{koXk?U0K4~t0F}Dym6$DLx_5T+ z^NCIRmUNfsHE6qSxl*JQ6Sk+A%9nMjLX@1voU!Tf(jDj>ZJ4`_s6$kF#cL)oQs_7M z_k>%SE1f*ce*JqvyUObl3Rs-RfPtiEv>9!7l7{_Hw;dohBuerX$pk ztGhqv&KT@I1UaGByvDx6Cy|R*rJyM%!dR6JJ^X6XpqU9$OEQ9opW%uK!rrxIW$Imq zkjQTIN%0zG4^2G%(1xMI_*kHWrfs&1ceRu#gf?b6LcQ;grp#o>M!&4+k+~zCp`yb1 z(7AM{jsDQWWu<5YCq~mqA9maWFq*Px`_yvq*Lzx!5?q5%I96SyQ&W;(KQ3T3Dbf?4 zF#dRi`~J?gg?LV;zvBDDROt(otD3v+I+*I_4z&<-0xJIipC~~t8d~JbNX+!tuP{MU z{b)Tu97JmgNGMZe=yc{ewM~~MP*76}w(kHhUDpz&ER$5!r1JY7AcemXnPDJ@efn|K zeWD94FV8?7^bo&%UnNA#AdS8J7+M8y3t|)j0LMNaN3jfFqe1wK}sh0^>PFA_lURl zAFXreqr$fo>ixPwyf__+9xbBP^?pj2fS^LDwyzZISGGh20vnd7>GvB!rZs(A)ZhZZ z?C~Y0)|3GBKnuSlxpT1`@F6zpyoAZhQkCHqW6w?@g58Lvtc0LB8d4mjlH4%`v@<#>YYay5OBGI1CFeU-F{nHJ zW4p52q6j(y(Ms~PDZpT)mkM~3M`OOxHdxN|`S9`Ny9is5a??nL@4FC`uQdf-{*W47 z@}$l6Xa$Q`r(S%akOk+D426`D&YzTm*n1Kx&;h7w2Z=FfqqP43^`5YjUw(UtF?7i&nU(3V+sY%pu?(!BI0f|(BG+#Yg(hHA znjJ_VaTD4{FPkwc89>)l%o(*^z@aTeyG141LQ)AQp+6Jn1Z=n36q*Nm6S3{vc7Wfe z->E_=Py-H!c%yV%)~b*~b!x=+TOvZUWufQi65FqIpax>)zUCM%Ul(-6sHqAy@^3D& z#ld2jljBJ>XVf1kD`K_hQkWJTY+;t|whW*tfe=vkRh%Sf2g(&~C?aXD`av7Q{332$ znx|;)b)T#-`r?Fc!T4qpzxGZt*p)Sm*i*WUr{m!k(r-h+tt#fcqcOyFfdNT4}7 zN)Upk0Pb68g6i=)fZ>lK17Ek-tVT(0RIO9XaR#t_qKRWawOVoB0!eI;qJ56W1l{&r zidvK%%{oC_%M&P3DJH)7q^t2O@MUiM6R&tiSj1MjlZXin#g7MuhFiMSWy?qe6$*YB zwu^`+U#oC8ee2dFO~iyH$tA|Hp}8Y6T}Q9&3(^vE5FaTO2l9q3Uf0?X7%7WC?+ch` z(jrR84x*Zp)NY4JR+9a}Bubx|bx3v!cMs?1^g2PC;}S?vQc&cmQO2HsNL9S&dikK} zeq)GdvR#Nsa*$P{oqVCl8BO!(c5KpDEo2(&_HheVuSa(IWMw5)=A)MIvmY6il3EM`#;R;4?B&^X`3r9=XtG<~9;ED1>Q4ZK-j-qA}BVmW@SjdIb?!`%*yCEG7a z(^NtoE_S01@n-8p?D8QbR>kEBdagcO3J zSwZEy4u`FF`$eopYqS8hYy~=f{GmGuVX2mtp>uz@oX$9>UU=59w3?O&wY;YTa?j4< zEnZ7>)H9k5YXxQ936_wA>_0ynnCwVR0sQCAD6vBa+{;Rehy*J^v|YE@0+d|=ENa~# z!tbDzhDaNB;P-)&<`okBKa@BFZ8vwtW1?+mX#pp0D#0SD}I0gV{XMVQI#YRNT4O0 zetn<~lIfDNCZ!|RCYhSFgV+>K0}4t~rf>&_oJW?-Fc6fC`B0L_W*itei$j24?-Abi z12HAM;*+7biU9~h2qDLZQ^t3pzgc*>hAYW#k41Z)JLl2XKIf6MG3CGU8u zWb~Z0MO^4QLAV62d?JZYI3y-w!w>^E=R3uzHd(6ngK@#*?-s9%$wZu*8zt_fOQ3X(3Doo3 z=SZY1Q>Hr7z;V-9vu?dgk(3QX2BmrPidZu6nc_hdE-vWrhl`1keM(f_8p~rdl!=Ll8?2raS@E>R|gr z1>I*rmgOL}g!9ZN+c1>nO-i%nl%;-U;dH4%Yt5KY57K(*@3VF31vssR zr;A2Jg_J0YgU=B0cVIQkQ8~%_e#Qdf92zs`KnYOazJNxxbb=59{jJ~Te$e19*zQET zu`AhJbm}9^b)n@c3N@(*f%GA^gO{!Nlon@i@rVtP6H?k{_(di2?UGcD$OwGe zGwsmpA3{sMWt0Mz(@03gm_;h^fj! z+(ns_rsy;RA-pdC01jl4n{xXNO)v1F(kc4i}PhDL`h`EH~>8Z`lBPBe?BJNm8hjP!5ORq&(X!D_sawB4&dgf0SArCvwK5b=t-0H*Dq!n1mVCeJtP>QB&L-K(b|s3uE?TC9 z5}$laiR_C?Gb6+X$74+mBZAxNwfOBjSZxIg1c3TechjUd3vOh-r9S}}<{QP~L?Um5 z5#dnhaAD^TUPO3Z!GCuGE_9AuOqm0PgF~t3p%E4Lb&yi9!nNRz3|U2-CBV^D8-QZ; z*?E%2v}n>sHIrh?rztZKfvfLKrd}FhRE{}~UDH%yDTl|a+woD4kmagQ}Pd>5a%eH)v0a2QgNhjn!h9a^~ z1AX~0Ly_iR=^dhLjHg0<{{U$GwLZ=opPWTtGXb?*v}Cv;VzU&L z6r~Fk%9U-;K2(e62fHl>xmie4YSq)Lw!$miHewW{thqoh!s>7j?_w&n-z- zW_Q`P5y9r?o|p(yApuJ8CMD zI6r9a!m=Oxa^H{2#|`CqbxT%mtEqDsq!kWFZNyD83oJRx2m+%+?$#%`RXim{DhMy) z2|nOArsRAg#iqcfIi{4q2Xn#SyeY%<#_ohJ^Lc@rVSW zNsiRj$9ikj?F;toYc*^$SCLn3zA(NVqUNa1pQ!)>%<&!4s-3rZ^sQ4WecMNNs~Ab3 z;6YlrwqJ`TnkJ9%(g#gJVn`qleRu5y6EuNO!4b}wr2=*juKxg=K&4q1N*JkTjqw}x zfOmxOg#v`;2SU{ydLHp=LP0NBENxuGWBxyCSSHC*Nm7imbbn>yVP1^sxk^^am`3Bbz8oalrX(_yRyL(TXcU_&R>w1`sjzNd zC7*sKN`faGuS85^m0#*eqEB+iXRJ+#v~uda5}-m9P_eP2_WMC|B?Tn5Vg+Arr}3e4 zDixJzqiTQ4?dK6&@eiqKgcB^dQ5p@a+oWF`p4n3cmhE8a_j3$5W^iU$q0^^GO~Y8d z0%Za(wHHXM@)1;gpYT*Q)d%gmZ(O=1i6K&TX*o|->c{UY8B zwRG33!_q9=)6%r?MF{KmG0o>7WdMqYh3gv3xrEdTpD1IrjL8f5^o%(2-j`RdO9^IX zr@{=~mR}V{p6D5I+Snv-&q!;!5IwD9)9__-d9BB`izCcQ+L5K)bFzSTJ3`FsFe!BE zeh_~T5>f#U)bAemhmJg7E$Gmhj@%vK#f@4(+a;Bf9B=N6a=`|bk48NDD7R8iNC7nX zgK8kusmu&4+?J=DvHD02-OKyw6q;g}Xks3Z5MuivDXT;li6*sLsgzZM!VJnVtWM&nvJN|CzEakY)NEvBF}Bu|o8e)5)VdxI4is zY}eOKy8dk+C(El|{JlY&2mt_SAk~)5x%Nx|vs%ViZ3Rx=aLZ*mrDhv^qo0quss&{5 z&Y*OdcC<~)T(oFWvdGG}aKVXwPe{>CnKM$AK7crSpD5|@%w@`{PQ4mf3~LMXrVcdT z4dNNYC<9m808BKm$9TSUqq}Xcj%iPfBi?tLW1TvylgmC8Aeg;jlO0sS}(v$B(-$r6z|*U$w#$Qw&Tthq+);6 z#lUxcx$6;@DW}f9%LWbFEE`=nbLLC&8Irvu%0P7~-GB|^CxAYD3d0T2d@X*(O%GJQ z=j968F#94zsY!LI)~ynD{Mc^*Zwy#}LR3L^p`&xhoJO1*F>a+ya{KKQNw7>$hfrJ- z7~WN<84LE)H9(xzG-Je2ve*ld6hPIs1{)D^td3>Pqdu_(MB-kzT3+j zrodDfkeX^vu@SmbJhU-h$#*V>W0E=0K{GTZKgYTON;&p;9@ zR^ROl^OA{%qf*W`5#8y9EfSOcl>=7*@5m=^kbJ4+8@F2~0IoR)SP5mn!l*+wrK)1g zn_SYtL6m<^pbn?y5L;!3av6mh4Jj5U&2dfn+96$pfd2TBN?&U0L$}@~yQY9jW&@R< zsqF%jU2_WusCTH+B(+_6j$o{(j!X-++d>tZS=r)Y%oO zp$4Cu!DY-*3|K&_qeIM2$TF`k%-a6|FiPjP6pW=INqx?c3RSU6 zX0J$|&3q_PQp-}Ju(CZ89{!1uzC-~UFdwuSeHeDjRELXKm3DCV`t0bJ=Ir>Bjl<(7c>dR@%&q!egd5u}M9#QHhy;>r-&m@OxXgP}i z0M#DHSS5{Tr5ivcW}DOVXr+0vq0{0F6Q49ty*KE8e}oI3kX@k6m1rtDCFnMI%&o!+h!Lb`gVcS=sNu3>ZNbb#vq?%2fT7t@CwjLcBfd9OqZhu z`TlDbRUm`3aD}n)Xw+}7UXZv&*A|txv!3 zaT_GxW?R;pXf}^mHln)KhNqy8Y;uSiGwt{51Fr>YUBAS`*@)v4_l(S}M2N!P?Q;rhd6p86_CL05?GkqV1oKQ-?Y-L}OA47Dw;;6+P? zjeg^r>DBu2q&(f0)P(A4Lk>v!Mn!dA`B2W=m-$168ol!~h6GX1$M=o6^Y~qlH}X7M z+OFGHX7M(Z<}}-)+88D4$1#OiuYi#IfHaLG3(wAww`C10P=2xQczNu2zD_uP{-EXX zfeCni!8BS|Ly*)5qwvsf^SxOGjakdmu$OjYfFC-TpJazUoC?x9c~&slePEd?m=>jw zuV@3K{%H}aa%Gd8zXPAnVIu8KrexBk=gKN5SdXV@yNGWh)C$ZL8G$@)_oNcxk6SHy ziPQ~$3|z9`Ni2{+gcV{b>k7#!M2*^=b=CL;wKRaz=gv8ZLCg(xcljSEL9X3%5~cWv zAal5d3&!_Msmc;S30i?V(3(4Wd?7~XGuEuGQo8s}DY5+47%cdBm82*+dZ>JB)|&N& zG|ecu^NFszKXL zjYMddo%oVaQm_?3$F8m3uuB1o{JFdeAzE@xdJmj0Boxb0NpdPc-)$mG{`MI|OsE=j z$nV4?;aozr&kp4Nq!(oa@HA*QvpZqyz~uGHpaq<4c`^FiehHq*s!qR7$6g@K;XYc% zL;wNyk~aMJ{34azgaoqg6gd0C(2``7%t$jsd9!dqgYs{rWe6!M05)y=#ZxUKQAiDb z&rG4h%rCW{D6Rk0-}LMIaBp>S2b<}MVprX zD@I+5_jsvizXB9}VepM!7!Si3r83m1BodH(FRFiNC3{Mno5CFm<7a?4!`03qQp5F4 z3wIC?4Pz@nKCLM#N=d2Lx9(v9%uRK!R#hcVTCLZZ7j?)bVLB6E6*cehXmh!W<`7nv zBz%8pW4>$%2nQ(413u@7Fu*6=CS6G^MI$@KHq-E~cvm1JF2pwYnK?0w!*j9gdr z^dSiWL?pI^kI$4pBOJ^C0QB~$%q{6yr7shkD(D$xu_xpof6nGE3_`n1)+F^;&Egr7 z6FDTQFHu&|jlqvDtGvoqX>>dH?f7Cy_N$syk{jApNhR3AelWs67ArYjgX>`$=ZY=*ntkiHa&D=;fLV-5!lVPGz4FsC|6@06oyteqQqe z00UAR_>1V63LRy?J`m>JK21JghqfZs@^a;{ns6s0FI+f(>pwl%&Fs_;rG zbdclp(_T-Lmm{nnK%ZjtktGEZ(d<2F)!(!jor~Q^B7shUIvDxt*5zxiVQHh8CFq)catXh+0LP1caHHy}DoQ%vF+c#19tXL4c zt%yPb$rKd^kp+(VMCBJ^0AUCi{>wRGD3UXWVngfY`Pvz<#vMhPQ_N7z&TGF8+I6pU z6QFVBOC-=1(CHO!%wH%aY5*L&e4&2%#S&&rLP{T0?m>RE^7%)%?ZYf1`zbk}-Z=8C zFb|7w$*T&QfLOj{Gk|GOe?9^jJrds8q~QgbQ#AI+gE+kPri)Rc3ucX;aAd8~&OQTgu|?g=YV3tB2jt85_lSP^() z6=YIZLZp`a_k^4ujLL|YH^c!ca#_dYJZhM;3;MyB7Hw0bj-2_%S#I=Hw^F6}NT}ty z{?U&)%X(DLwwM0^5>f#{0;M6o`o$Dk73(ToYxp8dwUm}ix@vmAJTy@M0FhU&Y{7uqzFp$QF_h4A@Qn8# z;w7SB%5ukCq6nbQJ_K-!~0@_x{%P&_Yenq6fjy8e7%y|PiB zp|XHzZe5okpmrNH4Z3WkD>{?BInYmbS@NeMgN9(k=fq~${sNggVv>=R3WD18?;4zp zLV)0!xqmq7N*!6K$3whLnh4ly(OH(4Qi-FHzj#KpS*FWU(=3%FsJceoYu-00_tsY) zQ3ZnQl%iA;JYSyi3cy#xevSZ2RJ~Lms612a4Oey-mm;hmT9=9c0IBs~Z>$TwCMjUE zhuFmmxoxx}YE+kM9~TGh8O9#7n=I8K{kPQ8riJ51yDo8%Jy+962YldSR2CSN)sFoj zp?2;6ow&~4QI4O###Sg=jc>L$u|ykV!5@I_*x8noYlE%a@TL z_^8MK0L6n?dfhr<3Z5K0E{c@lf4qw#*0zJHNn0Hfv&LAnrjeT@UXFmdjPC z2?-8Ur-V6U!RyQ!xMbuH&ZFt~<`J~4F+2%mWpZ@`^XC!XH)_EIZ?n-OtVwoXh?bP~ z8XjWRqW%j>DE%ST)Aox>E4JuTlsqmu>lZJ3sGW4s)<0Yrm?~PT9Vcz#rI!)<#S(Uf zq2!CDgB^J^h-Tb~{aW%ii^6tg9h32Zx8ll(65MDHA8PU;k~=lVl&?B<6%fb$TA0zv z6+Co+mb}SGEm5f230(J>n87~NK2xD+3@S>LR^{q6;w#xO!%Z_Yk`CNKJ8>aQbw4O2 zXR{dzQi^kP zzmSSX%`T*uBaeh6UeNcr$buXQOT6+5VHzgSqlFXov;O+K4K_Des7pCK^ zS-!3WNJ>frgRdeCr=-h@>oX=4H?n+3Zo)NtuEdFH0l*_jTDzwq6&@VlAKoIpZ{#4S zaP@D^cdP(uSJBL@)aj^gyyB#bfUQ}Dc?LPWt!P@3C6Ha3n$zYt*u~4O+@a2D)3gBv z?RU5dKFJK)_kPhv=d+1Kf+)-yjTWWLQfE4a4*ej#?|e&01(J4l<8H781WZZ|Nm95p zr+BGCA7WSnbcOQK zW?XxP@M0zrGHE4zYz0~hS|lb~m=6h~^y|lHicPghn~-r%A#&etoVkif06xQ*aD5r( zThI@*$3k}_=>qO#=b11i%0cj*&o9~(u+|5(PMo7Lc@tU^Y2WShjY90POOlX~E5BaU z5PAe_`cguQScQSE)!fBv4e^p$NFE{h{l7MY_?|&bz@`cWRrl%T33q+gS2aUK17EO( z?w6rUE-q0^0K`@Jt$V?%zZM*aGr8Q-og)3+hoz!{F2aM7e>96Yg6m4;DFGl8K*PjO zL$MmYG}bDSc2)K3fyv?lOh~O@o!xe1HLmBcA}HWH0;GRwD5wr|4NmS@SCYf*cGGK1 z)P$3$8bg7_?Rb@kO$Y#Tz-l!#VM9Z%c(Uxk??K|OLt;Gti?G( zhMW1t3=zI&KeV6;1ZEU8(4ViqGi*+py zf^$n;z)`br`A>8&tPzuXAI0mHGu52RLY|rd`M&x_w`jh~)Z}GIO$R+|8P*fSex}f% zPlfzD#%<8c*Q*&) zonmkBVyMKzY0CA`x9uKYm>o(PkfNRkJ!AF3g~R&I2{h}|ujdfoc-oXDgr=lu)$%+; zp+gVd3Q7~}3$~zf`}T`d?@-2CST#u3UHSR_^E>y_6zN3gqdNgn#Y`fMcQrFglBWvP zZV%K#w+1zC4pq zX$e@0^S6~8!@^Fyb`e^`j4~A=PANqQf@SPNGO0D#aTP8roK0B^J`ic=^KBw-{SY1D zi&dSTq|^TZUZym=uFwpzLz_}##bEg(#1cza#nJ`dSg=cQfK&#dJ$8pW_7&{Pnw64L zave!D1D1=@u0@pvN>)@jC#d0!0!O3)FqCNC^8ECNORiZ=wm+z9@aJLVu#Z^E40Wdd zaYpbeB%vT{qz@95RY&i{UiGsQN{U7#zRM9Yus!(Uxm_Ko$K`U@ZVnFTC z#MaB#)=D|$mVYtlv=_NAlqnzt`!t3e;TyR*RFcF!LHS4P`tC?bN<%Smx0FM8-X#eo z00uAKGmGCEOi?1DwfxvZwm^TgUf!{gQb8N^>jmW7WuOw(8*U5_!q!8OEa*}zycWCe zIcrfHok)Xp*`_4FW(8+Tyd>$kZ=w2igBNZjQ3)qrHi<9H20?VHfkl#ZuI4RWmmy*c z20HTrC|)*#r2hc1Q6%i#53EtPUG#pMZRHFz?vjzqRs>q+jp@)v9OGU!o?-paDvr`k@bA+#yoI)kHv&mT|vH}r!l+bqf`NSKa+XQ#_pIdYtV{{RtSwpm=VKp&%j zC)wkxn*LfWQdHn5H^Djm!D=@`@L|(UC#RDI}KygdGd+4$(S| z`e-*b^_dAYBjkSLcwm-jR4T#SpUt_9%M9BCgcnJ7C5tydv_4p`0-p}YqdafJlP-Kj zt@d=Pyp0V2>U&02jc}@gGZL(e{Um6i!+sdlB-(?JciXI1zHXpHC{PV}c-k?YUf9Lq zEKErS(5$=-Y4C9Il;0K-g|dN5d`CTuYdWK>=;8p2$fTmC(Cq-%>Pbf8lF4q%fB#^Q~kp9aZ zL-}#%6?t^i*^1%3{5fW%DaMTCc05C6$7n$rKmwXK#&wxI#*-Yh2VnwD^) zU7T;-w2w2%cD3u#u0^S+uHjt$k37UO*q?2PE*qXYdBs~LtJVVU=diK`2OediyST z=gKs&hAp?)Ky^!Eetb6Y62p6-mr=`7Mp>vQL|s+3=+z%dF8yC8t$6}jHlNDn?M_GonZXT6=qmq7&Qo?exUCL;ai1E zj~q*yLKKlLS(u&r9>yE*>#H%;v_Mrkv2{R`uVFu^wST*L`;i;Z99_&vfDaW&*7%PSNi@}w7j zPktdn>cop6ps29XO4K&dtmA#wHsef@GGYgXRB}irhlAue_eD9FxRjZ5D24w3^*zUD zHQnPsUN0d<3(e~T5Y7@rGGW{HRi!JCq5^|}+nL*@g$RV`V^u&O?+ zKYk*wACG6d)9LFCufUK?hSchRcqw*CQ54@tjI#{laJLUlkKBDB{@}c_2Rae;&~Sb+ z6PDd87OhgqTbAJQNU=FNeU@S!zVQX)cm-5wA_Q7NX7Y>F;b_S5kZZg5+8U(UK$6;W z+K<`*-j-G>E#W$M`$4M&%+iWUt9}SxIU!p0GK;5*L!Hk)q#YwRo>U40mIMZkCksgi zV12}Pen0-PhnN2VCd&-a0Nxoa^74S83D&zQNi6!iL)INmX-%mS^!^z6{{SzcYo7AV z2x{{M?6Se9z7}PYlH=h9Zdvs&NbQa)wP>4`o=`b9P?Z&mKjk2uq`B$LR-QHyNwqF# zhyt7r>|Q*XWF@LzD_!!>h!_GJ`e4crP(CpQw$4*iG(bEI)|sX%2_e>8}Ac8C0ocH8qUG(pA~v%qXHZ{N6N-dvz2|QmQj(IQ^kB9wp?bmNDdhPadp#-V5Ag zHtW2$eYfb}c$#&f9H&rOj|HRkvetj6pfoIB>(T+Bs3d}Sb{|Oi&n(LNUKe5a4%tG` zw5x*6)2CRyf-e>dmaQF|fwV5&SIG=?dUuQXWL~D+YP2-K?otSDVU|_q7?)~Oq;10EDzAH54sz#q2c!nSW{+jd_WWp;b)XUs zYJ0$i%w2hel$Up*P=(6wln=yL-gZMU8osVK9pDw`Z3#mYReL;x_#(Zs+ft!cc6|qU zNwME5oVIYuI{u!$+oWs5j!x6;iRni3QM5{wq2kt`sCE0sgM@EMawIyQzAAi=Z3Jhy z#$Ib{s49sJAH+tF(f$G~V%ur;Ns{?oI3wCW`yYgNd}Wd_ysYhJ-;RH)nxy9N1_?ZO ziWq|)r32LF@d^c`IR}RKJZE3>rchE+KvTQ%=lQHhab+trS5v45LV5D|`9_?)Q#Lc> zNG3 zs6}_LJ)_O%GWPA_)vTAg$4+}iyG7=u0!MBS^9oiBQVR03=~JaP9boUQ%u7-JammTN zimA4#Iw;rS)+C#FOh2nZsr=CWBGii-oRR?_PS8&5nv}<)4diGcq*?` zrG9ZGw#JnThAh~haFy|uus^};MNg+akw}TgUCP@Jb z1Rf6laZ2*DKeAc&ADYD*1=gw>9;(zwKG|CPHm=5nH;IQ$`WRZjthFl6=h*;g+10%f|v(M{1K&=vzI-AS=K;jG^jlEj;+OHI3SL@K^YfGNl@a4_ToAJ z0ET$`pmsGgPRnVmR#vF8KfknJ%Mot9}TxGRmYc!m3ce5YJ+iSSc*3 zc&V@F))yW+u3UlDV?h9V|-l-qSIQM0yX9=S+9xG$AL$Z{Ey9{ zaJf&H9cjtPpKMYH+AMNP2|}3br_YGXZrpCQoU1N&W&^Y}UDxsmWmBl$J9zn}W6On$ z^W=gUm)t#kpb9P@5eaTX=y@IbLp6{ER51raB8{rb&I*Wa$J4Z2vY-<&N=y5UQ?;yz zaj-A+5O#gLL`?Q;l|x?Vp^A2y2?=zZ#5<0gH*R6-piPd^xHUSyf-MU}0tT&9%qw3r zi-7FfwIlU{@=}OMqEo7)ll+tAjs6{IjK%6rdHtfY=5tZ8;x49Bhu7=YDO>A6SRi}J zjkw%68Ed`vY{bM!eGN}PArkUa*}y7OY<{Qh3D}zd00{*9NlDNaHPC^$H7ANfec_E=IbSH&5U(rx zV$fW5Jys~;WTCo}yRQhq$MHzU2J5{#gxn(cj0%#z!^sR+nd-z&K&QlpRH-IZLs6j*y#Yyi}^FkpAc1CcQ1nY8^U9 zCoUbjW$0RUuS$xV4m-trHKK%<6(Ic^pD16KG`Z`k`^CFGpy=-vID@s*Y6=-ieKm~+ z&*4bQ<+N{$^o)}4w2&WeVgCRKUSxnYN_9H9J49H|oY>K>`Q)Sn^!vce4e>2c zl#1@!9?&M&glFa%gTAM3@!ipcN)(`VI&t`8PibAW-)xdbQr^-E#QR_`{7C5Ms%s45`XrLO&@I zo5-eGRX7Z*q03yoYXRrpsh&cC533EJ)XP#7kcBl{T?bgcH$#h#>{?u2{)v9|1f4(i{N@Cp z%++;B`2PS9X2eySBK1$Z%b(gVUb6^BS~l>;6=z;bQi52N9ZtcvgY)b%rl6#Jw9+HF ztqDjj0Vh$b_KUY_(I}FnhE;3t@@Rg&f{ovTJwY>OEykht18u|*7~Cj^NoLbve%|OO zZogA7l(I@q8(01yO}gen6beClIC^<-c7=a|c6FXzr5R^SaktJ0f7|jx0!kB?EgXBl z1X8@O#AOLeN>5HlJz!<48mP+>l!6GTAZzX>yur``#+XWQmgvk=`bNNhbM=aH?t4_Z z36@>RN`vXQ1KqR`UHv~HAQd*%Z^5@QQrVAYOGwP=R;fyZ_(x3!v6blD+;>f+61j?? z8gkqD@dS=LK@6X3fNrN`o9;MQn4Or?Srxz`Eav4K%mg!DmLgu*;T`Ur!OCCCd z4ERR(3(Tc4PMx_BZq;|naHOOG)9(kfFG{;t>WsA=UC7n8{G=GT>`6?bl5&6#Z_m!; zWU5-hr~nUpec@jd+6gI4qC7^RRfm2!h69a}VE7Fx+{Sk{!Dydq$fBT(+JmBo#4&V{ z)8!hSzRt8E!;acOd<`^Bm~#*m$KE&Z6HLW(`ZtgmW^x1a>KjGLlG2|D45#-+3(SN6CfnW!MS1G|R~1bW3R5cL8orrLz~rVk0&Y0?DZtYtJHur%NA2sn$< zI4H=YU0ZL#^?*sI`QljxX%F(GSG)0EdLb?bql&S8;SbUNAXMX#B!DPee=`jBE0uP2 zDN`l}S#Sp%KTs*;`@(|DDAls@%tHp{>fJ?Wd6b0mzkAnVYN zzL5lr_H4>FPz^q;HuH(C*U>;B$UVKN2s0X9Y?4BJLWA&g8RU;hQxP!<0MyhS0qOOP z4np7C8k&t0SL+jy1Ul1~{{UJ!>C8=RcT!ULCrY5DPlS(tFG zd7PFyYUBO7cIgh5`NRSRNvD)eg|70KD(6G+ZeYQy7j@dCjLQH32ZVsb_JEhgmRja8 z@Vit{LCi;PE(f$VXWVnih3VI7)?E%8QeoKwTXqvBs8MFn?EsD!6ZXb8=pwbB6Q$0}dAhXk| zi`BY8y9&}x4|wv?Z%cux2VQzZ1-lL)uZo<$kY>w%%2SY1z*LF|UcW91S4a>ys1`Ed$Y63}4+>b5@c&~6;30Y8~&;dxfc32leKyBac3%0v)l|4m{ zS^(S~U$js)-ZIslB}SyTNG)l*s2^=&m74Yo0b1}|<{*lcNODP~KHWU_cnqnCtW!sc z8Uf5hbla6M00l<Aa1`7qUdC3!N-ELea#v}7OATDd=;{9)!Mw!Bq2AuAu`3wDfEHbjMm zy>l}UglX5sr4uBIkWQ><-1i??6@;+dvb4C-$Z=A3Xr<75eXVm9Eh$M0Dq^Eg4?iyY z?F>>q6wLP1ID*d4MIV0s8Xu?Ff`~al4B5cnc;fLvqEfoh0i-MiFGkYlrfR)$U>pE{ zc7{AdW%aI?1-Obgg^6X`+WdOJ+$kn!h$x!V-MldJRoSbDY6sc35n|7WP_dbHt3TJb zSoZq8y-^`d*e6Ds0+6}_^cxxyYNiB<58DJ_#Zgt{kcF|W~E^zC5SIp+xLKY zs~8y$OVAA{zS+N`pIawrBGzP)P; zxNi9-V04UtQ~ZhR_#&^Q3AG9e6xV^%yekHT-jb5Jg#xI5ChH0}#u1iEigW;q{{WWl z2UUHi^wsH4iH2K};z>qjq!-W)hduhmW~cr$Ob_VrmpNQ!biU;3{{TSLjh^R{Wv44; z%kDqCE8OH( zwdNipu^RT^?-3^X%Qq_1q3{k#*Z6~$so*lQq%=yPeB0k5$_r*yQ_VGhv|F8+r#PAqvNQtt%lV!C(Q}4c^yk$RH_#gAxq{S{CnX z{U8&VXDq^wd%_*F6H5!sR5LwC&I{PEVN<6wr~JsOPXO<<0KWYUtwhYu8K@4&k~J|W z6)`1=cDDYX*&Y>-@uP#=e{@M;^j$t$f%TvyhERHeO1|&2Mvv&b3?@vkR+8&kC2Kn# z2LY&lLwXmb>?O`ARZtbazsJ4}HT#Myq{J<+#9hjq-sX5t;Z_su5#bHw2x^Oc>*t3D<8g>;3LQC_h_(G-4aXDqu zx*ciqh9zC93jhGk@#_dDzikWlo5P?0)6P7!$|Vf?d&B+WOU~n%LuLgcq(4rdD9^egg;wDN;LS(3c#Se4KXx(Ej7W=BLe(;Wy%R9PR?`=PXe@!bs-nktww6npy|@AKoAcN z*d-#-k+WwklH|Ay--ap7 z#hFlYx!13FtLWdX5>S;h0O!sLS*#NCI=1J2(VtJer!0wp5SOP|xp`jdT9S}i!&82d zByzk`J&{+a`$E<8Vp2!;%P8!2?Gas;b)=K)3nUX>c>Wz6wLJm`>G)U zBnC+fAk*6E*J=t~j!5xn3JbhRY1c55U`aau5v5DV7NUxeo=d>seHy zRF)%S^NZ3iR46*A)YFKORxI^Gm>L(~v{odgbxWA)3Ii!L90*{rU1>=G4R!Aq>~>TD zu0T=02MIONk1y)AZt?E@*_k40JxQ=Ry>jK z9ibBVywsVh(Unr2tGMe5&GroUeC)DP5RQaDA4ny2SiMj)E8^RR+xLYtdMa52R451h z+8QQbic%6AXaeP?+La))zir`N7J`!Gzdc}`j@B5tpzTw@fObmEV!PXN( z?E&Z6T!t)8<7W9skLLdX)6?+!6qj@)ZdlR;Vk@p>v}Q>P8&nqW-?FOuvI$0z+a$G$~=o@HixiFqmz=O4Z zK*u$`8G4)XAd$;N=R2ak9-cb;q?Fs2BVFmX~iEV z7>j{Y!IY%tK_!>+ejAv(F7?g*rH2V@is@P&qoqDErd#e&O@nCECKPXMCqh8V0D5!u ziumMTzSOSkys;qYX-!9XVv}qu46g|riXSg@P{TH&0R>K5+5>;eMZu_j4*W&&ogG`T z&r+yrM(5u~`r@eIbcM5!Pe?)^CE(VSau z;*~kC`)mgd8r7;^be15HH`X)D;?0#zMHTMr^o4oi_?7LK7+-})z^5+SAD`xiD@(b+ zDGP9MKtjZ zc?LBbu5Fsqg5DKxP#E;-7)8#6K11PAG<^x=ouI_)u56zWbfrr6oszHpNZ0v{uO#x} z4>!$;GK-`!*rhU*%BwN)Ql#}VB~ZR?9ws4z zO$M*r#S?8|u?D@O^!kT!PP?C+FJ5a!02rq>&I6$L<)Rxc z;>D;Qk5}&!=H2|__{HF4nVX7KjX3WS%(9ga5PIpyZesnZOvL$d-YLz#NPMEBO`}*S zS&+&lTm}$k$gI>V$eoC%mr!68qI%{W$|04bYCH9dRy(`a0u=cJ4RwPHMDh}^3F!T| zgP+k9fE1^z@N+}vt1_18dL5nQESSVRZ)%E@(8*nDGT;!a=h;T!i{&5BrmAIo< zc&&5E^=fkJV(D|E_7xr8E?!uKRV5_2;L!9jfmkhNGZHsEwOOJo+S-|t%2XYJqJ>}` zn;WWGpmd+4L2JHcPjwX(sF!ET2YkOHO<130TYw=N*NHQi%&f~k zBAN%=_lKNocI7E68oQMHBz+8Iv(_`LC6W)b$Ulu9uYyZEae3|-thlI^`nky&$Nn|D zIU77!P4DXFde8iGCD85R=Y!X6<37JoRKS;*j})@st8O&!3^!IHO`#07^~o7jbOp73 zNYiKPO?tn_BaU-v_@;QYqFE%GJL+Ga+(8^AZ)FK(dbhi@Ww=`O^=_9W6YQF|?B8vK z7hJ?-C=uaPbbi?<7$`Y!U)N|G{i;oit zvXZh!ezf;|p~~mQ0g{xO8Y_|Zj~kZpuG!pZw_=IR3s$i`p3SXlAZ6WX8q}YpMLzrp zT`Jvu`|S?*Dtt1VRPJ~4j=#s}{>*%{{aWRga!K(WVY=p6 zM`IbylobT1P^5>AQtPk+gsYhP&j+{7`KEN`NU0-zqp5SqAh&q8KF+|lkzGUt)`#aF zgO0Bif|rhLm3XNlbJO7$B`6O#aTV00`{RXJDoFE+GN+KE-mq3h?_D2~c!HEK-*QQ2 zq(LN*#kbZ8-YW#qL=s9!ZNa29lX2yk678%Y;#&|BfCh#8j$>KIS8W2e=^1`8V35@V zSmN_>`*!$wcEm5suhq*?a>Z1Bu%B-^Qak*&jb{D3Q#M-nqk+96A;kowHsOzM+{ecL zcaP(CKAZ7*Z&iIW$;zQXNDaekVUFpw)M{(|2tm6qQ!-wxr}m-x!7vmcwLldcw#GcK zAGdFlq3l|NDJfCsP63YP&qzaqsDFOZ9rbKX*$M^SCCAbgEVr2%U-zVR+>U4?F5Hky z>GS&-M#UGnCFAYrskfs!d@e#RyfQQGH@>X<{6WW;$l@XgzI6T5- zg42-%=mYdW%wM%Es#p%>>~`Wa{Aqm|GLGh;y(!4%H{<@?v7amPnipZj>0P#^(*7d# zZJ)Fr#ute7{;|$bfB-xFqdoLxW)7)}{{SPDf0Og}j&V*SB}#DKEgi))X!K_e@#o%s zE8AygQi~e=w(S4@Xga? zgDw04$Qm_Yygpsm+LC}XP#3QKAqM5TawIH}N#o)^@Xd8u6**Z$rK?nsp27H!56|7{ z?Rck67Vf?TUbl>EUtNC%47zL3*nzvqGns|})yj}Mm= zXB&|Vg*(L4CQ*6@c(S_yG*B!m4&TjUo!xp&AO!)?im>3m(0=Z`ij$Q=_=-j7EjN02 z{PKab%r_`bmN(k(9k08jxc*fWt*BilWx1Qjy@O72e^ zw_OA&H2#&%@VQi1jU?(K+A&>>qA6MO`bySIe-?Avn`E%;qYbpe?>9sSXs za+j;o{{X7Zwn{_fKifJT#8S6Pag^6EuPq+PyHt=3Njq`OPT?dKQ|sTPF**a2hX_6% zC?37y^sCiqNeW3jb^PWECi9lA0oa0l(N=4M;Z8IUTJZ$y(zo`K>%^rx9X9FK3)^qC zEIW`|pS&(glmn|T4&LX20d4G;=ymr+@wOt!p=`F3QaVKyTNIO-1dV$bVN}$pF%^L} zi?D|y#F44u3$HpG=4IqTjaRMMAfk;&34ndfqT@mG@P6oE9SZz%0E+4_j$MAwKd zDh|(Gd-R3Bqr}rE=-R)!KNGxGOvtc_2T~XvzOc7XF;;ZVTmjE$6=;>Gyl^|gOL40t z{&0K6S+Z)*D$n1iZ@fiZR0(YZ9scn~-)d3QZ3)-o1!qmj{@_JHgmk6YW31wF)C7bRdki$XQWzMCvj)~=rFNK;b z50?Z2l?ocsxE-p9xUlt`KklnccL`V50ttT4`7pclTH6!r(#P@Wf zOY9mg+bkKFJMw=xi>bQ{BXBi3e=z<~WAL8U)O?#*W5UaI0{;N~eqMdxYA)Kn1QN5$ z2{iVFPY1MNc`F*W9hg+*-09cd(i`r(yp@GEjOU-UWq5Y}U^YDtyvCP@F(k6VMU}AC z!H&NMOWT9Z#{D)-H8U+w^8`jV2``k>XjHjxEw(?84VG&Rxq!afe(~>cvdwrr_~pti zX2j-T1XLQf;x9?Hg)y&KA8}pM(iFv-D#)|W3O=cBE8*D2oBCm3ek-)DQjFA>0;M~* zPQScUxP2mt;ee>2aiQa^T$y)HnzmYUq)>tQ+CaN50wQ;S1f-WOM)Ted%xe+e2?!t; zRShC5vPyzdK_SIDo?_}S*Y`jmts9r(30_wzO41V9PwCXZPSE=W+ij}VEap3LsUBRx z+&_%M!4p%IAJTrGcqcgkjHg!C2V1X6XgOAgV9eiMVHBt)T2Q>omZX;8k9XcF-Pe+d zAgA_)Tej(G>RJ_*1inG_uhJN=b!GqsWl+v2-hW{2&$IH{6MFiP@m~8QWP9`9giUFeek(Sm?I+eV~1v@ zf2y7e6ag*%P4}ZeSktjB+bxQlDusKuJ$8ZDwW%5XX+APs9om%Z?=gNw;r&3-_U_R# zVTM_8l6_uMJXO$Z)kmY!2I0H(l@Ordnik#of>(v%DIN)l%3YnlacEvB$~{_B(DN6i zRPTGXQj}7<6>cf`{XOuVh^`?el$A0`YM+t*VoU4N1hr32aM>6rkDt;WuMg?1lJe$m z7*KHVwo!l<9Ar>Xh1Cqiy+;H?1?7lPpb`#eq-K`P2{L5SEG?2eE|a%N&@L}U#U&)K zF+tR-yTK}kuKY_XQgWzeR>zo*PALisp>`~Er|lK-J|8mf1nZ&GY+3vQN&?#z)D=DMAuJoi`NZ|f(ZrA zqj;h${L90xbtBlKSp>?Fn|zN)vr z1=%n+%08ya-dNl znx4E4X$iQ`8)hmUXLWy4Lh`bKr8Q3dc!vp-O43p_8vb;PQZA5*ZtlU~@#9Oz zQYGLlCX}sSvWaj~I`H2(b+uZRDP9rb6@7f5ejHetnqVnlYCh0X+ilJm1}xva5=azP zd>NHy)HGMSW`wBb8&t(BC6!@HN{&~mTCLx_DqdpHncJum&Nu!b2Zh?DS_wkHIZKZ( zq+T+UC@CpO0E3{>#U2%J`+;CfRHp`oLyrD>JQlS~m{44Y%UF|U7d@qRY3ovt_SB-p zIn?|ilJ>ro9cfTg2RXHa*A2m$2RcHAgdV$&q9|Y3dRiM=(!0UfQNs436X8iBX?EN8 zhHKGgND5PgmIOYXpncK(vWj>C+8yl~CmggOjX3x5%v1o=r^zzkI}#jq=-k59mRk`s zGfVizOa4M-%~C^v3jwRbt@mQI%sEn$CG++2g-HJZdE>TDT~Hm4yG9XsW93V=g-Z%4 zG%OChotyKvnRQ{csUEFJDNr8w-_AP1K8lbhJiza<)3@Wq)d%5w#M&nXEo1>w9fSRP z2zRtiLe>a5LTcJ(ZO>R%y>KMdDrrLw0Nb&z=eQ}@tTwcTDQPOp{{Yni%W1}yFu7d% z4QlweqGAdF72V?`wBS+}O2ehePW0!_FJL7ubkY@^HEQ9{71|xGw+hy`6d}b88)$Or zlWgUE@ZY)8IFW&{6+NL!3a`ROA<)w(h1O5w%%w68BV%`u#PbWl&k{2WT`{n#JhdC>f85Zu!4gZ`){Xu*_Ck13<(Y zK|8M8;AR29tt;Lnyzf8|a*CLF2}Ia4BgS>xh=mrpa*)qar|$u8X|r2^cN&8htXNDC zb10P>m(mzjpN~?5K>3fy=@u{h#$lEwFewarzeCb1f7oasgRA~AhCz3MD4>T7L-P|Q z`!HK2>?Wm%Ax-Tz{C14b5@0#=W{j^xp)~&he>za#Mpkqq$Q0FSoP}_Jz|tk`ECQWZHZmA-wvFv7#}hFMGLm< zNl_~<9u;v(niLLJZCKJR+yt(wR!|O)tVaCMszvZWlZcPCoK3{id{ zWl1f@<|tfPwo)c#BoKX~evw9Ry%YkIvq3u@p(H+lk9mk>&y_K0P*aY7XqOPrLPk`F zJdL0Z=h?v|zR(8Id#J1-BTfFj;X?Sd%@37LT9S6@)(c^q=m6(YzcBGOo0nyE2iNNt z?;A!`y9eWvAzDr$N|eO1g?0Bt7MaVKpo--s+Gvh^QKFfu$q6i#lHUlW{21Xn`N7-K_hP6V%3u6B}oe` zOBNeN+g0_FV*>73zi2rwLP^YN*Jz;X@{$sY2W{bK-AS6P%1e!hUQAq@Y%X&vLqW)h z&LftPdELIS!qu&4LUhUi)+yY0ge?Yv!6WSyEf~s5!9tv<(w|PT&E192pr%$$0VDI{ z6QFe<{bG66^wEp;)5;)`d?h8Ag8uUeLS^TDluT0~xpP6smXI_4{{Wb>kfjhb zVk`O9HG^V*69b!CR6_mxgi$c1Y!jBOmKt^Zqr&)_8=~{f3pgT?cJ!E2E$9!#c|=OK z%9I_!Ct*=dgmN#5Yx52JMRh|w$5@7PWi4|3u$KM6<)i1%{*{g=4tofC`?Pes2bT&NHlIC2LbB#*%7Hejf;CnREonNcCVGuI*im4*J9x z%J4*xN(gd%BT^3ZhFcWSsR;$i${+Um!x&Jw(J@t^4X*v59w5V$W@k}86uTr)DD~&3 z@ehf+)S9=1*RYGy)Pev5T9<&a^TpMEs#AqaB}A|lEe<$qA58=yQi}rOhOf4iXwwmg zWQ7%!riIJz*hl5trHTY6yE}G;CKHoq&NC{3w$=qM&peeS3d)0_B7=%S+a%PUf*`#u zxl=;Ubl=J^RUtmxbSW!NVpgP=&7dcf^n%vg30-ruR0r4V2P}#TNm9eogOktJ6cajn zl%k1jkfwj1z7z&I66Q}p1e5_x!`dyk^A)a3y>hb!sIBOb%t3umlo7CAxkCVHR%#R8 z0bkeDz^5rJb#AbLg71b3aOK!=(bDe#ls;OJ;w)G$A(hoqKs;-pZh4D|x{#EBs-#u5 zFa~XAzJjI~N#q7K{vgE5{drvsL7_?M^@iK7Vg_{}0Gic_6IRNH4h;*Hwrj+mdn(TJJcH7aJ3ThosSepFAh#t!mr8R*TOTCekH+I*` z0$XNfSx#K;Dah{=L>|KSgE4AWVgR5_L2kR!Cb~VP8j>hGjXm*y4-k|Ppc13MPWv=2 zVuH0S8A>Dq>S4q=O2g#2AXOkx3V_W20DheyRq-IHlA5^q?hIDAZ{=hp(YY0YcARCD z)15i&dc|Mp8L{DXOA1q{tdAE;3J%bceQc?PU<9FBzO?W8q&--#?^rx3Z}M|d%u}}6 zgzpN45_O5etlJP@lP63-L1e0q+E-Y2!(NU;a;W=Xed1YHA_jt^h_iiSQzbT|v z1uae+Zg(An{NU8f;$N%ERLTR+2z4E%zzTJzKbk-*rr$I#Ar6vTFdIV*ndvCi#<6nA zXqPMi!n?yHSA?{&(w#pm7wi_1>cHvdAxigGjA|18{;d*P6Y9Ys$TcP4(i*f#W0*&G z&8X!`Nd@)fLZ#b`WvN11lzdc*n5ycS3xYxevmKx#J>h%+gsH-Y?e%RS3U0*BIe`R| zQK;<-cz+g;6om%{fk&PXNI8WqVp5GACyKXLg)XSUdSPRfIq6LYSek8xNI=SP&Q3BX|jG8i2sV9LqAqyvDqayuyv-?(90NtVo@0;vxm_O%jgrG>qh=-Q2BC*P zLEbIQu_y=1$zIB{jo)$KcZTbZW?H0rz{4^Kb{zE_5ut>OMTnmYfh0RC>*d51!PnyC ztc6uHVtuOW5_;2?}@EP~;bHs_;_{{VO!VZ$j=br-8QQS*aT?tS#78iD@+yJ^^O0k2C- zni59?o_yf->0=2?3b}H z00AK(%U9Yl-SU(amQ_Fu4&QiVPzG1>(jBnfw4{Os z2_Tro{TW_k)R1VT7I*r5<3Yo>yZA{Uq`M6dpLUNQ@_b+IuXDlA<;C=_47MaosRZi% zI`PCSVhh9>g<;F9K|%NPKM1RUZMo2(pnRRZ@Ea5b=6CSyk@|k|$G@f7+ef+PAcvq) zY8Zb0x8RMyP zN>#{$BBe!}#iU6x&e2hJvJ6@Nyc!r|pyOw$_(0oLh_P*p!8z8dvunQ*HLh68@q}RZ zt4?Wk_{MjMEC8irl*3*kw6m9I8)*wFv^XPBLq|83y8JS*4_c{eP$q;oXv?v^poI~z z_`c>h>;C`_fVLy^_>2!7*&2M*)G((|cK64}etiD``@W;_?|NRjZ#;mtL)3ZJG<++F zodhT~d_U|XDYDwVS<5jjg^C^0epT1X8*T~*%;8?oX!0jdQ=HS)j@0_QDfBdW7jBo8 zS&elbQTpt)fEdxvoO#8ZK_R56LagqtI{hP0amVVZ*ewA-5$!qhjK9)?QgZ^lq#6NN ztz1>1&fvU8UZdmI5xpT;Jz-LlK+J#3_=%UcwscOot!_#SskA44VKdV#qOyh*0iXPT zp0IA}oS`@k63qR6!*d1!fKj8O-f6U zbO3dZeqMXasNau#g(r&#HpE_2@$f0BJs zlWz$_EexTd6%Ez`FB~Sm5_&Uf1#K9WBvl~%;4QN9lvt@OO)0ln%gM&^`fbOQqxTo2 zS!AUvLp(W!OImXVAoI6q$%VRG_-Hh9%o@6F2P=i<9~jSvlFqDGE+*erhi*BAJO0S! zKoDI10SBedN`sQn7WcCFoVXhpeEUxxidNgr(ovuXv7{EdZ*>HKU0`VLRb5~4ql;D6 z6;>I5)X=N*;{&W#nUa(W0CPeJbr5zRUL%9K$<@_{dkv&1g1{V}2M|RUQWfD~2FIr! zT*CCcPc3W=wV`gr>Ktwkgm!~gE5l$xWBAd$tT{(N@yP^$ef#khXHPQf9k@CeGd5yP z5|>p^Qxq+VCWSORaTQ`TK3*aRW>fp(Ir0Litu^ftT5j-a238*Ef>p7D8t`ITf502Y z=_sisiSUN{#8+kF5}=iaNi`!+*uw#urHrioJMjzmrQPb(#Uzb;e$gKu_AXzlZjpB- zoGrm8-O1}6OT!=(%mtape(_XIcS-5>?HcjVv~ri} z)unYyvkiLr#CCg7cG&B|{vdtfZP?eeMJ~b=86<sC4g1S}z`Lff7;{$dMV+-0+u z{N5`n+y!-NH9?HII%4$ePFJXEyTGe$w5U*Mei0hMG}!9|EGj}%n7&|K4U{RS9H=sXs1!qBO2reS&7Gh#=@Y!m2J3qExA!a)VFCf=IR|Pz_ER zzHwL;QC?Nkli>NqAGu6w3g{XJRs>j)QY_i0hk>`vv0 z)bJ|=rrg;{53Y?2ibR9}O41&Jz9#Winb>=) z_KidT0Hj1AG*d9jmaDvbJ`XgLw~_fC3vW$LGr>~;U!4Q}ebCcj36z)1Rt`Gz`$ju) z<0fMHn^O)leI*5@+5Vk+$A2Dj`guJ3b{Hkz$1x}K?G^3#i9)$UbGQ&D>bLsWU|amO za}wXyw5D3KY?T4jwFhEZ<6rp2%$#r%O2tBT^WV2#q6XW&CIzoDPEyR@Zt$UH^mS=i z^^(c%RY6K_~U0YY@%xe*~a!TE<3*AK|s5^%Pq)BVN z!iXzJM;{046Jc3OGLY$I1dPDz?;8D}UGsPPq^(L{gqHy74N3B+&&uLH$ufYIYM7#@ zN~+IFK`c#vNt=~OB@0V2YAc~}LOWNOUAM|wvrS6UytPObeg~eAO3irx097w3vzb#+ zph0Fy*tuZfj`fN&h0TZ~*! zS-g~o7W8{)k_r^3G~Hp+M*J2(9KHbf9l+_<3J#L(;j-_z-UC=B%=L;SG6st0zseTw>_me(ODfls z1MmL;O7i8EODm$&LU`}YEx>uWEn!opGJ=~?^n_e>cuh^A3Me@Ns2UHU2bjI+u1WP~ zW_L=7Ii26J>7ePv7R7hxtWT;y8OW-c=pYIg#x)5-R9HTsYL@%_V*U}oQlygZ<-p)@ zKCzbDu#K@`p(xB0XkLJFPXl;4b^1HB*^&>eOu<6Q1(V2kFVKL|6Xoo5alUUP7ZjnX z?;Ok-5t;J$(V~V1!)u$KY|jfQu+$#B0ywU)e-K<`%ODX|Ytwh{qeh8OgHm$3R_=5i ze?Cx3@@ak|E1)nt58dgI0ZWm%G-J{%-WRGS_;}QOpbIw*@RFh^D#ks=7uc07?wu*K zz-dyDhk8KlU24rMrtr)s0%C=Qk^{;ny92kvG1hAo7<-oCaFkvEa#Z=^tsIDDl7$hKr6jj0+p1FU#ongjh`E-PFR3B z6pQ)>d{K8PC<>MdY^9&&6WrODOd~FjMsvhg!gu;+sfqmagSdwfCR%cWI&?5XCt@2Z z_2Fc@kwf|C57L54297rQKwL9wOv#5nQ~oLI5?@ksEsNzmY7g2KFG;OZ!7c+HdPj&$ z5T|^;__JiQ1tgUQqj_@xZyRzm zy=pT#+lYU&&Gl(wXw-f&Q@~y)=QA z3$U*-Q4D`c*1SZUIGc;sqMrWFw2eZ;aY~;nH|qcn-dm1-kb`2uYE7k8{@!;ED_x^d zu-(iH3IVqLVmSNlL3iY#C?zt(D6k}G{{Wv~GIp5+%Vm2_Sh;GuGi6e$Q&GhP0~f)V zN>IkEc^!L2kP;>2ukZQg2W~n3vY;{El_XNW@03A*T`EksN`NigKPRWVSclR5qy(JG z1zM6c6|FenZ3m(iP0X@NgN}E0h(eBq>(VEaiPVyy1G)E(ebLp~d%3T&XdhT$KHGGy zOaX6{U%Kw4BviYalLzefkg5RvV!YxKrY<3evM$WkdUFz5uLL0^6Gv~}17ci6Wv48# z?%%v|cim!YE2}%fP3^>_%$TJlXjmPaa~5waYO@r#PbjB!SXU&S!O#t2$dsbDRUbfg zi6E=i?^04!pLsfS9$i+YiC^3dG!GZATdDs5SBH+g#}?U%3Gq;9@URx|8>uAbO+LSy zL3@^1M^ae8E5{g1BuYU5lFr(W{{Sd+vE7X<3OhMG!7w7eF%u<#u8+hBlZcQQ5mQBS zPcTNod?z+cxr^=~HYY+6GdM}DNN0yaYxdXuwK8)C^XV8ByB1FqN>Y^uG}VBQqvjOM zKp`L+ei)-a1Is5qQJ-DE3_;4zuvD`({b+MWCJS4=8G6O3iw2?K!P^~+Dw!#uH6v(c z5}Kz$1TSSAJA$T21=pK4mD98^NU}P0B=Tad?RzONM;k|1J?opo)o&pcE`_Tt%!VRh z9KYHYv1Qt#q=^a8X{YB{c#~y+YOU~!wre+xl)k?BqNHoK;aX-TQ&QR&+py{0A1yYt zJBHIi+w^3SLN%J{Qr19GNCbj3Q6LKF!=~aa z{{Y*MsK*~}toxUotFGE&N7&!g`D07zN7 z?6#j;pIq#x&=M)~^M!o?q+u0HIl(&W)TZCOI@q(RAx>SGx67}1Ie1xu&`@|S#6^W} z?+#L2X#8{#Nr1g~%2-({TcyT^jmOe7BYI0IIYj`}XlWV7J)i2l2^2c=A)5|bWunZ7 z1gxjU(x$y!G3ZGUx9A3@{gMxf_4h{??j)9w=wzi`K-}_2c#g|+A#`SK z+vNeGuzF4zKp^Hm7X02AB&|!_pf6U{w*c(=5-QZ*GJIcm8B@}91x_ie2xvI;E?7oV z=@l=mOy%?kXJI)g6(yXrnh)FapcuQEH6cua@9z;!vdo?Uavhj7S(SrkC)!aUZ_Dir zi{|)B9802kjz8t5@dU935D8_VIC`h&?&}=1zra55U=_l%N)ed{E^lZGSEz~@p7c_- zEv*Kpj=f-o$t5Y4`<8cueg*)uMJSc%vTk{c3K^923#$XL`S}QNyrmf`D^pRjzsL=u z?ULn?g?hxRBAdcneaBcw^pT3DD5N8PYxw%Z+y@JN+v|`Nu;HJnKb*#KiLPWeK;g@s z!}WJ|_(p++?W!_dg26SW`^Har&RoTimVCyg!v~0^TAmz0vsprAyPBQFdF8$jv{Ab; z>6&ssiP$q!Z!b7sREfxx!E__PaSPsyY*{BvQOsPIcd2uyYU#5h8#OwXweM(;u(-Ms;7LX(;F{$QoH?MlGRkVvbwbQ}F5>EfN`Z5b3& zqW=Kn)2HX}?bjhw5x5|N4&$L4h?;fGlm}0=OIJYAj7pv{=U)(mZ}vy z@J|oV57sVNuJn|GRYuT!p>q~p!h00BuCP}MS_lGDI=&6hf1P-P3sxt}cS0zBT}&5U zm(_q2#DTqh#0$4h2z3U`8REr~+`B?a%ao4@B(Nix1|qTAgy#U{V^`x!L)7suOrbz% z!j&Iks3Vnk>p|Skt7x4xpoDveHhGq&BKfiGZ>8kX-%0X`t9!IBWSG8O1Dh;>Cv+v~{ zV0$@rmATQJznn1Mw$!AA&~%5!m-M^+OyePWQp9}wM>sJPCNI^@91uUr_U`ZShKohC zCRS<#tNz=@Sesils9Fx`Pm zPI<~Cn(XiS-%}mlKCHS>C^dc0PSC^_uv~~p6A4SPA+{Z1M)1Cj#pIT!sRXym7qLDu zS^<`q00!#kPkDe>M2lKVNg9#j9e+M>LbOv7;Ig@r(=Azvs2=H?`lVNG=?ii!i%WR3E$aPx?9rfq z$jU^akwY;WJv#fLM#*P07Ehc0c|;oJ>ZKGjjKo)t&?g4p$pocZyL5PKm2*le4!t!S zKuaR5>6&!cQLw8M^*?Ad@YiJtAxxf>5#;-!3GrkU6@9w*h%IQC4}r4kN`F`7AaZdM z!W5;U^$vACKJi2sf8OF)TE!lZqZmZHJuI51^=4%?M!J(w4(+@ex7=UV1t6@Xs-=#d z2g)MDo`_{gSaRbv0Xp;4o$B>%Ame)k1fy4=GAH3zM#BVwZa|i-2pk(GIf> zd?um-1jD#?YEO$}4Yu20LO>(}XrO;J-YW~;mPUq-c8+a`M8_I}9GGCYV#Ev1QdCqQ zUG=B$)+W8?O;VB)D0M$qi7y+fN=VB?x}fc%*^*Ex4^4V=09V47E>P;Ko$It1ysW8k zOeWnI+{G(1_+0!V#h(_5lQM4YSYIW~F--)I38x!%jBgq!rfa1}r$eEqlW7}V>oQQ6 z8jqZ1H~rk1lQOGfRp$Klcq&T69?wF;Jzii%2zq=tc-QV5(GwDt62*g!{m>fevrC}~ z9617z%5D%-;7AIqorDI={V8J-=}e$p7AgV%0EgxaToR{xfiY!<>HOv{UpO&^TQN1^ zyYz{17Aum8UaUPS*STsBC`3}Q+R$wQK{b5_+{U?Uw1tMs;h08e=-$YcOj3@6eRYjK zOw>y(>{;qz=@2d6kJmC_pi6jx(YixjlMIBUyFP^OKV$Zb*PW@$rBC!9c&lr)9!+6q z=+s_P3j#R&?FKB96GqpV4Pn9wC)Oy_dhgS$5WKEzsn0Czz#U172ycH2sQl=8k0f3Q zU_!upGsb<0EhcITRHY2MJGke|uJO;Jo4jWwOUzw@59er$d&Nl_c(ZtF@37hx@f7b? z0*TCDP21@X7pH|J(@02_b|q^5V#Ug$NF+0)x4^;Mw-k~_W(oMhE!lYHY`Y(i z*uw(sS%E144gstEqn3Q7U6G(&_tt7S4^RvdmpR8+%`Df6Ng0EwJ43DCdI^B(7tUfS-?=KPRID$n9r9lsw8ne z1qx+R>ifkDUFDZiuANTMUfFCDD7uu26R7jz0otUNGz1OaqA|DhsTIwf1tSmfQLLAl;7bPlafrnxkjuzVNpNH{IAl632#_gDpFE2lfUj zUYA;s`2*6LvU>NVb9Y(|RjrF`Fslt4vQ^5x^Z?-i2hOQgM2G(9`Qwd$m-1Dh&?xjYZNDTI9d~X|dNf{SZH)r! zvK327Sz9j%i8JPZS8R_E9hRl=)TN0x} ze<=X*Dv4i)fHifm5MD}*-_uOgAnDWZ7cG}C)gh_@PQK#`az^2P=enw;6uNaIaRnt< z2`mLaK2TVrAz;Jveqw7Rqer6}5&EB=y&^9?8vSUd7WS#cv zJ3%W?smtM06ztzPTdK?|qY9a-W)u&YZT`KE@eQK|u35?@=cDEaLU=I2DneK6%&62P zx0D&POdtSNUx!G!aTSbW3$ef|NMt!BTGABnOdKXFz_Cm0I(hprkDT6#>*3 zW3#CMXx))Nd81GF)9!_#IGJz;joW&nrS>}&go(6N2jF;cSt;Wf@aRNM1-O}bPRxk_MJLY47- z9CZhHjy$#}pA4sb5qFU_%Y>+F*J^y@SG#Q9t$H{N2DM86fOP(6PFLZeRZ!G1>?f5u+CN#`9dt@{&m3t#@<}A!kcM7Q|UU>bXUgfni z5~Q|`)Cgs<&&&mP)W@5B<9h~WB%L-NC>?)H&6KDUqaGlwlfpnz4Fhj-Gd+3@qfKV% z7m|QTVNH67dcpGq!Z{xfkclc?0pp6pzoPoAf;%*C;m@3i@_K2wZt}{eE_x5FX*hn% zOue%2Y$bJ zQ~v;oBGB$iOOGh#@^$A{E<_t2%K8C+`r06u?+ak){NO68MMpCcLFp(@G=2Pie@ zIzhX>*0C*028Muc+tw$I?Vm0oQZB^=sVvnxaSQg#AW$H=EICnM1Vlof-B}>gmAe^CJDDuH*&EXCREth2zsO&mYH7rqPa9AV*S89{E2jK`- zTQLiEVod{lBX5?M#}Z$5WQk%}Y{Yw9bRA$;0lA9SqJPMM6aXf^(H&xI=5n)ul(`y% zza)L*LG*ERq!&>Hk?f6!(!A>$&-~(fd)ElVtfyERM#El^(T1$ZM~D=*hn?s~?GTcP@Wwo@n&klUKn=g%#d8)EK?yWJqzD0d;vyB548XZN z4j~Tr#%5E1K`IPeejn=@)-Cj&l*^dqK}2Qnn&ux*bb8(o!}<4P&+~pv;L&lPrg0@D zUa=)k+GyL6`OIdwul+|E$S7RKDK%oijf-r4ar2euel2QJl%ibdOb(d0k7LL9UOpY? zZy%rJ`8i*GHc4KRl!cjzoTod32C)ACrxIpmGl>5HbrR9@`^V_s_;_EYbIHnmzQ?(J zJf>Q!H#yr@^M|{$)8vWAY``%b_K)ZIn0YaF?Y`G7S&&E~G3WSxK7Qk?$N8N2KcN>! zHB8mBGFitbr$X@2blXUO5z5sYkLErRxcxucC9{A?reQ<&ji=G4{YNECg}R9~Sqw*U zzY+7lng0OH=Re!W>Fs!b`aC&*uP4-3E<5#PW=L8coY0Qn2zQxn6H!LXsOPtoU~(~J zwRnQk;1bHwT>;ZD*RU|-aNkNu3LeUUQ}0%*N6m7)`1NDhoF^%;)o75RtAO+|Qb&nT z`t)~U?>`u0yY0eiMrJ#TKpXn+e8g)?56yltj(wN#QtQ7|mrVIdU_2@Upm9Ospn7h0 za|NuEEaZh{uE(csk9bMD@hsUnQ#A#0>y+!RwPvS(tTo+tgryOX0RCg&6~@}0TvA@L ziVk!s=o@8MkrB4iQifUu9o1b#8@FA`)CWlw9CA-s z6KJ}W1El5~rSyZf$~9t~iM2@?hv_sA#13K!DJ;aecK3FKE7EkyOQvLS6}}0BBd8h|;Acre*VIfESJ9E^7i!by3*)@c`|3EV%+< zDb*)>{osnO=&d=(t76b6T1ln)lNOAjNrUpNP6xm1DRT{`Oo6M1C;$N*?G%ws-W zTk)eI^(V8$R=a4X^q|lK)&beCLZ$UlG<_n{r%(p1OYz<(;=KmFi3O-e{{Uee*zZ!B zIb*2j?Aph+;lZOy#Sz+6vk(ptIvyNFzpYIiy6a zCn-&p0epZp(_y}vLz(uQze;j3P*7%4%P`6dKQ!7nT*WqJoRw;j@4yYM25BH9*$w?)_>OuL4 z4Ju#-yyzYjgGQ{E!+T03?0Ws6rHb~<9ELl#{h(!z?9G*`PTagUn;K-G`oNC>t7<{e zcM!dL3wArqgtle^wTl)T^(kVt4cK(&>j^Wj9PC8^BmhSmccc)rSVGy-<)~v#O^pWc z$7yt=Ey*-bF|Xjexzv)idqK|tedFdCR+P$Hnh{j9FdbpC;q;R<0O}7hKtBPa&L`R<+*}=1nLe)1^n{V=B0PBP^vUE6m~P4>vW`W)QGI0<`)^ zvB#X{I(+{Clf}!&duexV)skO@z-kBh#f#d}>gA?m0yICrzCSMVNI*!ZhP=O6S-dYv zlBDD=q?Iswkmpm$&%J$2w3lE}R^Pv9 z$ZQzBtt9xWrVXdhPSK!i7)Jz&GjbFM+-=aqe9H(5a*zn=Pn0ELOj?!Be9BQ2AzzQC zkj;JK#Ajrv0yf#a;bqj_Bl=y#QsEfHuZ0W7037x zO-gc*1A~}*KyT(WiWuV#S^ZKAgvv7%GiMte`yIAu(d~AufzX{BZ3I^y!VEEQGSCFnk>MePS%&0Qhb3b;bnCX%w@Ifxt;4M&tP zTJ0uUosDz@bN7hw-P0|KOTK3{pzPm1yF{3_U`(|oiT?l>a6#FPAb>{dv=gx(X!32) zkvG;IKQ@Hv7^-x+UO7_`O-jgccmRhCde@-ciw;{oWU(>Joks=@1#DMfn5p4XROAr+ zBzA_2vinzv5Gl{hM>aQ1#VCRIiuak-Y1jODA{Jq|7|@BCJnO^*#~*h3g)AFsmoCvZN|_}(6Z)U4yNY=crjV=) z_{Y)86ED_DQ;;g1-+{4=-uv_qYqWs8sX_p9>Sb4Kq)>UCq157>v(%L+lmY-}rycsi z`)&UKIRz-r$W!FauTc6Pf)}!ThAx$&$Rrf9(g<-u+;l%^0e9KvS!M-I@e*lGp#85K zdXSecb#uH7w_`-i$fegZm{HjI3J;_`z-zH$G>-~{1ywr^pmq7w^9eYw7^+%|oQZA& z6GAy7ryIkiuEwc|3Q7S+#2xqT_J!PI=+I7(qEyRAjfRAc2HF?6(N+(q10~MetDg|eH9{V zGlN!rNDud~z9MP#X|Y~GasrB&(@o!xyh(K3V0iU4uOpAotYmh4@=vQ-SB8mD(L;)8 zMxA3x!f2f~SZX8=M--_skLP? zT@xvp>F}eTf0>Kz0wGeSbBDO1c?wBiIAiIkSjr3hyOZeLgdh-G@aI0^QEsp}Om z^~^jo6YYTNC#(iNiEeN~KqNg+L%T&AhYKJN5d?5`^NH^XmWiq)4`cuzex?E1CeD`1 zZxj1FC~@|H3`_KQkg~9{0niP)c8aoQWm=IjIgLV2y^Ju)y~nG43j$Jg540xQG2(r5 z5F8dKVj^!T$Jmp7Jj2&bqx!W5Y7KPD4>tK3&QuUeO;2dED)5%s!o^0Tjz2VjSW6U1 zGiFQ7$~6wmUG(IJs|cyfOA%l9l;CpZEwS7AiSGOy3PRMZ$5J;CLi@gwla)+g*&EZm zadzH`%A%96!=Zq})niB?Bvc(>fJg%~2LRN>7Q04jq%&*Y0o(7APDFz4#QkA|or?39 z>YRr>{R9ZJ-^iTlAf~JzSf;!!H9#pUar%SR#^NKycPesb4i=WvetW{asKtxg$1TAM z1SX_?piR3NOLVgUciqN;wuSjvR(#h`Ux!BCKU^3%nS@NHS~>Z`AuLmfh?VORMFJfr zt~W3?$?0!4L?C#T;ixs~{C_M{@G@p-d^#69j*tdk8uc^5$jJhQwDao|>3V6t@0FrM zw~4CI0|46qQkJ4!TSeRV5|31{&NU6F=y?b22-gknr7SBdf&=Ctdna!$PTigy?3(@Y zJq0Z9+B1p5Y^kIF0J*8#N6k%JR}}+l#P?jq%$h_>$ej~&YjDl`C=eIWJOeu>US zMceYttp^BA=jU*P`mL;?5Sc|3l0l=D*Vzj`Q7X_JIcx!?sSjV8+ZU93W2Xk z%kZuIx$7z`rrZ(RooO0%mhSNX0JAwJG@P_(gp1iJchqkIulxNanxF00h!U#~d99e` zNE&a?#tF}{AnV~s+ivC(m28(($$*feJLv)>+%r~6CK`Twq0Lvcxo8=9cH__JV063N zJCFc6^(6BALQ5vZcwZ#ol&X(I`Mhe9rKnlLLGc9Y^@WM}33FCRo8l$vG(Dca_-4BB z>g6XY))YwghuO_xNr1nG?PV(@gPTX{1ARcrBe_PTm=ShIX|>0eI9JM zjRZIVld$-E`oQ#J%F2Bs!Z=-0CL}D9osWKdLk1$cMr5cZF5$?balI*C zOfoQ~NXnp~2m+4)?z_bWN+}-C8%1mRD>BYe;yQkAH;Pyu}<`gaXhGJc*Q?9+t zHLCeS!!Ui%5Ek~kQnfHN=jjt*1iEp2$%_ed_b||L5~Zog(TNd06uD)~R?chqVBNaQ zE!d^W{ZQZxwc?EA7NM_b5qc?VSP3PSsNeX8n?!`mN3sYTN8@aiMrHv-fAu50P*t(n zr6C?KXwZrt(cH-M7o?|%EI{~_GaaC9l#r6o$m!At zUYLS;AOurD+WCmS37|A5Sde4GXi}0?tv2i44cTRYPMx-e%c}Pw&?+dze4w&c+Qmb2 zi=@k1Sfmm(JAMeyjm!bfK$p{#)*Ww48>WhZcAKE(BCgu$PHVg$5u%rMs4{YzhIlDz zzJXx%s3YweMcar!rw@!$Mq zoBU6>z}a|ofaJO6J^uiOSNW^o6f`c`CS0Ym)L0kM!ynb#O{ojmzY-M!nE^b4Y6F&#A<#0VjC5iZWT&t&+!gcIqs_J!kc^HNEWV}R!~qwf;14XiEbR3ic$lIpbj^N z`3Yhfxp*0gE#9y#31Xl$>HEc48STT3C9YYP%u?dIsPy*}l9LNgfw!4F_)~^M%<($@kp3eiQ&m-=qV?*v(SVR*~12 z9e9Xui#b}7scAV`_@`gAPieD+N>KnPv7xP7Zm{}M7V-3iW`J`yJX4YIiLm|k>li5@ zlBNe%J5!IVLPfU)+9zjOL6=&#glv4Y>#Q+`hYzSf|ZBRBby+};Ewp_(5sp|xd+CXV$fH6-W zcnxV=9sfZ)6C+e99RT~~U{{{R~TIX_O&(`l520uN};uUlNiPYWtJ zN}10en!$Wqe5fTQCWeV^LF>!H3%9M+nYOnd-@ffVtJ{~W`S34G143`-R7@W z3X?-${{V-FjNX1I3sy-o^O9LhQ{@e^Xk3rfcP*nBX}M<1KqYGMf*Hj>^#gtOf*{#q zzCB{{j{phra{G3QSmO$bl2io7Q#h*;ycN5w!3dbN093H<&*V7rf!1s`g-SD~t1^^X zotYovMuCr+sXIf(G8{K)SQ#A5Ayqp&{ETcC8--;cg#;2d{oyjrV3#Iqf#D^~Z`w6$ zxe1*wGD&?Yr$O97CQKO2?|(*t&e6y4v2|5D} zHcPO#j1B3m8oI93p(G>#lUIZpRmEzWk_uBt0MfOi`D+ES4Yg`gGSGs+@?oycH6=u4 z6{R-k-vh6kkR<0#8$|tK;SJd&0ECjP%Oay^=@o?HXzbf@-T?+UnY8ZA>)0L;%*Qt_Rq zjcW7~<$|SEO{E*(^o6W9X)7vF9uRz?E7Co#ep-?N6@wmx?^&vpq%9O}@f2YYp_2PRk)xSBQ@~{Ub?T<|ZT6s#zx~ z&~AA@c!@eWT}{2_O_C3z&y@!&Re_-=pMPPr zBVj8t=dDu8n_bC0$HoXNT)Qn2(uPxJ)c(=cyr6Bb4Ja)+1Eg!4 zZ@ct~q!)pZsVY)PBQOugckLJPgs?-UL?{Oi@ZCC74J((scKzWV^R*&r%Ezf2kGw1B z@QeQd(v;b1VCvWg-$NRn3!5_0EIOE|c!3oMpn%vv(b5wztU7`4v1UhN-xoem(QlHe zX*mcqyE==Noy$YHwvQ z2m#N|4}F)V>&ncfhkA{jqQR^pg?@g(T(DtN2C=14Fi$OMzdkW z>zJaa0BNVr2ws;5tVvQ&jA&a^^&5S)82LO?oNeOrUKR1x{c@E50OUh(`;M>|r+%-RaGl4@x-Pox4P55GB-=hW`K+bKWVg`5O{= zZ9WiQQk<0xpjbGm-}8uyY_LcQeObow?YiE@ox{_=c#2i17X`!bw~^=fiI)!-grw1f z?A-oq3^zs&IYN-49Fvs&JHn-wQi8=zXaV>h(DNqCF$hRALXvg_I6K4R-A6cvZPzdy z*{ULi;*h7!LfVdydPKyfH6{5w`9l5fg{jQ8BZKjcd05U7FYDALoV{pMUw>#=y^yJ% zEXOXV{kVPy?FVgk89`s({FtM$52dq}~Umv&f|`bNu>5G5 z#@|gh1<`vXzENJg4x3gav|CFO8iJr|L?GTcrc#MQrlBKESfu;v57sl>LFt-Bn=lLY zs;Ka)fbKVV^gKU@%beVBd4D&D9<{2BVJs8vAwbiwa}!JSx|BX)og#*{20nZL0QrHl zF(z8d`;V}NHF{!}rv_S*?&KPtG@xkpe1H7?_a0|2&;3`}Ru4=PfugdwqDdYj$4}12 zafqz;l&Bzya~`fhavU(NK?0k$phv=YRy!$Lfhx$O&3Z$v)r>MsLbG^Is|uhW>^f39 zzyAOmB>wWAhT>d>pV z5wrgQS1xb>Ekz^;P^XKKeoRCse3O*e zNxCheGlEJ+W)7{78dFHrEtYi5N-}^QKqzhH-|ZPK?3T)OC;^lm$>5*VJG?sGSE`0W zvK+Aog>6j?FF%iF!trzO8l8^pOrk8yV=ih~ck2HDl#I6cxD2~ULP$ywx+ygtbfj$a zEIz$5mVZF02Ctz$aF30y#O6yl8-}8~1I=T}kj^nZw#|TS8DV7LIP2v`9oG5SBW4R(W8GA&T*eVP14b8X`yOjC=Xgg9oK4d zSVD}+YFYs`py>|yYQ^lUcGIWcKC{L2`Tqbl$USGX=aiwkUKntU!<0Qhr|lH3yFdyc zfl(6Nv$82eV_5b0Jf2j|lxA^A;@fv;(AFtPwLARcTN21DUM-Hiv!^H^>LZzQs^e%U zIs*ZHyA1$AMR=NSYa)fb-#?t>HK( zy0MHe8Q(J#YEW_#;DNJ#@yF)p@S9$Thlk4aTlB3rJ)&}5!7d+Tqj`N{67ZXz&ZHCU zey-a?zAQ*w%-oNMAIXJFRe&Ql=uoKZ(mqS_`24wEQS^V0{KzLChka$X{1u&PTCX#Jw1k^+_u z2{k8E9!Rq;T;(VR2C;hlyYuB()YI%+>kdwnxC49Ihk+eV)c3_n*JvQUA77(E$(LG? zp_z!^zew)OVoNVYHACv3xILpQtCWLzU1TXGT8av4AobBZ)vYT>_~m2vikG$H`bu?n zSI^xG_=5LZ6PyaAJ)CpbnCbEDiRF@MrxafdlA;Z2PtbmC7`LS?dW6gHsf#%Y)wXg! z9iWyl^r`D4<(51kc#fks{{94f@o%=7%70`R0jfOy(e(cSh4_|#w>N?LUz0!c#LIMJ zWvMDBj|JPlR+hG~y{c?J#$^wX2vVJ5-mz|Q)DT0;Z8XeMqP&|XS&hQ9hbrhL%li|%mMN;(4 zK-=#cP9`U4yMt^-#wgFVdY8-&QU!Gh;;=gToi#SF`r;2jgMFBH$Ks6>7Ye+CB2Clqw0jJ%HB$B4+ zKTGgp#Fb{z$vj2bXc`vNf6Bv&p%zOrQg(g0cwo5fS}2mHC)#RuiixrG*GMyTNk|0l zT7sjw>-UWr)%73*yO3P=ZoGFfO5Vv1q5HvUXbk6a&fia;6pHJYnvUW9-;{=uZKm;` zI26ltq)}58Y1t!o-0v4|OR`!tQJFcaS%dZCpx??1%(Ec|j-pPRbZ*@50@XQ0k(4DZ zLWANbcX6T7!x8U?p=mat7%I8E*}obpUOthGkW()zR6URq_2c(}mW$WK!5ZpGsBQKA zoD- z&8EcBp|0H{DGSU=31FTZS`ClCUShSc6bXO{a>_~YxvQQ4>#ZWCDql^KexXWGY^JpR z#C3OAEt7mDK?qLW2T#Kd)>|@#7E?_C+q*;-+vO?nW(?Y+@5qb!{{Rt$`*szy>K4OF ze7~5#bK%LO{{SMH_I(@g1(kXv3d||tMvmVyH*MRbLc7rc$R$cNBW{H7VP1ChbBv1< zYzQos5=Q-e;?0iFEC$ov(lmzIWtt60anv) z=ZHBmXi8WmxTQ=4wAmI^z_2t?>HZ_UJ=Edf1>PPze%hCL6*^ZYulAIb3i=TD&KVn8M&6GOJnBK9S}C9MG)k_bEY zjOOmN`qct;ZAZ`V8b#ZN&_Y(PXm48fk86i7l-T*+TyGncy?x>(8AejmLKzEYP#cH& z4|H{ca6FZa>!BY0pDm+HRmmx6ImTc^4)7Mige9Q(a{?*@mL5^Jwtk8Ch7q*ct%#c` zIi*ZUb3)z6J2Pn92)lf#Q>SGT@(>S*3VHeM8eNudgo<_A1<05cG_Vd&#;p|rQw-R@ zrdrB|Wf1JzdBF=tG?ok04eO*hC34D$$}=RfaoLYo9z#eOst<`3HNRLORv8#}650)&qV9%oO^ zj97|9)fCH8a<5`H>%>l4Wlu+bjV8zhl>!xB&H3;52g!JrS`tE?L{NjzShsGu)R`a! zGMH8MF_hx`H8?0ND5MfI0A1_y=SY5`omD;EX$+H8kDOV(V zKr(7R&<^KXlbK006(Symt7YJ+Q#>K+%@=LAudE61fwe=o?-eYn6W3ZORJ|a~`{@$O zP*Rs7kGbg#u`T0eQlu#aILhE1g<%&6V*xMwWHEN~*`easEo%(znymD%(iSdU0FWhnb)_IMwdO;xefBhi_r5EYB?T^)JCR=~L7#8T3V~qy zihgv7(>L7Kc9!OuoQ^=}&xqnol2qmAZVok1h!IE5@%dj9}S0#`5) zXcV2eKYlBuIoXZq)V|#yt^4TNGUTOF zm*Nbf4u?krR^&s@C77Us)p!wg_}MPtY;^7UtT_Q{;Pj?}EXyhh%cxLl(t@6DLmpw; z=*1{lPKCvHg-hqriVDiW46mN!w-CdJy&TJukueG^L8i~q`oT0QVmwJMQzsx9yEDgk zE-pg1pwMg#Rm47wCfbNOz)DW7UxvN(g;Ru;W}PlsQ-vvy5BNDSyEE;#3Cf!5R;Adr zIQqr>I1QZ!N}Q+kzZ#1EePfI75uiv?G*C$t--0;r3RpkVDitiEXeDyXRMd`#uk8=0 zSYW;^Qs**FGZsHj-Yn1baVAuSAqfd8*0m>B4t3vcs{(GTdSEvHLkDIr%hezV1>5O;Dx$XzgS$nXWAvK8EPObigD5%uA7lX zl{n@n<-6NGxA>+#k-u9+SKB>X@{gtO`Xz)+pSU0=-dn5Otxfb}Xx1ry?f|ggt%% znf&V((|n;JoP`2XpmlNc9BBx|E=yu^jfCnuZsdy4ug)dl;TfDi{Tqh}%{V{(>R_j_nhSFi0R8 z=J?hZZ)=9sl@%o?D>jVpzg{5Ss`#3Om9r#MqjryOpGiSvC6q}GO(3D3E7An%O31RH zrz|Q5?gTkqvu4dgROgoF4q}`?CTfDp26hZv-xjRXkuFs=VhGvx{1Gx91!1c~jKXw*urJ0Lr@=zzV9OY#!55V)G5(j~Ln zyoy2JqEYl<_);seP$CjCzRmhy#R1@OVG*A5;nQWA# zBpqlg%w%`BrG}jDSv1nH`-U$x&rht?BxpvTyjR%8^xU$LvoRD|6>UA<=<0pykaCg) z2fVMeqJV~NIN}g)n|#HsXW9-#7UEiUn)n5J>DxgbU%12vZ7AHR_JEjw4X$u2&6GP1 zy$2(c74Zeaq|6B>l&^iDxAbzZSaAoh%#{j!&+P>#U}b@kY2x=L3;ECu(hIm#+bw>hS$%hSbDo9g(X?oRjNKBCcLji+3dkVs-7CZ zo0wj@ag?>n1!N^hL93Iq)8+Mr)EY*f21lKSl2JQ1*3^FCnJ(kxqSsb)~{_JimWZj0qJ72;#m z@w`WPUee?&I7mqv6IbV>{2`LtbVm>T34BmgdIrjx4Hmkx$ksL z@i_0V<3}^^>1Jajg(=#EvFhD7fw%40luIT-VZ;0Mg}e(VD$4!tJ@HT;Z;M)iN^}Lk z1R0i<1cq+=!j3Y(*rb7{yWbZs>{_X*B{e@@A^}g*Y_!NBM6q6{euRjrfN;9)1J*8x z+ppWsB*!)avXM31`H0YP+Ja>v2}=L~rjQK{UBHw$9@gKyE{icr)v0az!||GwRMeB- zyimN#PLu@HbJi*bdvCp_p1NC{!MX5?ZBZnOj44VPnyL=#plV!=xu-Kfek zu-J}}tbG^y}Rx&zBi}oS>IqqLe0Igb<^? z##^0XkQpC0-O;%kLPO)5Mi7(2zmQ;nS*(5s} zw=jPBw6c65$)@m1WsJ!IEtn6~E4KdtDC)y^t$Q$idFcjrYFKjbC19vf4u zHA!615GtC6(hdIr%}oCQ7)GymVrf>iK4O&oPupgNd*V=#lQALE`fn0k7cA7w1fXRn z#uK1_&4fE*E1p!@WeTRjsNU{*)!GWO#vZ?uH3?NS9eYD%fyPo4!?MX zt;w_H8FGRc`9N#gY>cUA*SPz|>*D_amVk3i0Zq*eC0~*XvMDQ~sKeUr1QmASyj-aY zuH%lz3s};XH~=WQ>>+yDWL&Tml;;3=t5N&Kd^LTq)~hOAEna^FT&NMW+_NPsJGvC* zBm7N19r{GLc+Q%oY6j1#hAGnv12U~%a)b1XmPN}+3nhwn6bj-005^*Wf2Ef#2RS*l z&GZn1by~b@R(6)<$^AXF40aliF&=tH#!FMAC4l4e^N3Kx>n2Re3Ui%Vl3Q{E*WB9g zrjebei$0Jsc~TBl6^)b6*!7OR8(ylI!C;22Q&#BlX2)^KlANNld z!X^-)GPZ- zEvEGm`uo79bCR}5ubAi|p7xxCpk>OyZTY9l2FRSIAQYDxgF*YnXvLeTrd*&6Sa13B zg{$Jy7BWjEIgjd~9|)&oz1E4#midXOD$)3OuYccD5=X3-lP{$_`95611s6saa2-HW zwEQq*58Hi86qJ__P%GyEF#NU8bK*({{UO@zxn-ad02HghMciFrc}8MWl}4RN?E>&* z(wSn6T!%aJ4|5t|qH`Sw9n30T78#{!0Ax$mT=WBOT(*$U4K@^bL+=(XcGe7$m^Zuj zF;;K^0nVD9yubzCA?T_dp%V3i$6Vz~j1(FQHY#RvfvP3C%lpK1V^)9)^o`VKF@+WkhDs@H#^U>3GSr%Lq*fr-`b2{{S$*ZoYzL0)hnq z0Bq2?cG{I_B#`AWP?ukiDTQF;W1Sjyhd1G$dT zY?m=7DPy2e=Wz>Q?7@8*OF>Cx1FMRdUAJ15Dqr?WLPn#J`Q9wydzpSAF(#&m>(V>C z@D&uVSjp9oSSbTtc$AVH7T6I_&vZ+CV$_#LuSWWIgLrb|1XV7ODb(-S!VTw#RsBw2 zSuduf2wmZraNZV|>jcILR@_E{x#$i95=R<98wJGG3N_?c-52FrWhGfjuU*ehVx<^c z#}k&MumpfA2C?U(%b1|4MHy7XZ)N)K2>8U98E?n!xMvoXpIG=12>DQZ%d1k!T<0FUhiZ_Csn1R&Fr+Sw$oVu(%T{p2>N=vy6Ri!?f#esy; zQW7)(ZTmUt1J`RQPlY0zwP1zWirqCyB+=9Mi;1E#Z30paIubP;K+CL)MquPn_x@nb zkmdxbidCRG_U|2flt@dYHzRm-nWAuite8-x8DS?-&OzR=R{QirXDJy}N{DAFbKSP) z3EJ|_Dp*qx8(sK1Y4w4aC@yN&3h08}$@@lX0>k(YbhQ+vV<^;}#@=wnb6pb&Dp1Oi zLAfMv1g{I%)f}!EmM_0!43})b2ox?g-ZYaUK?5~B`|lFn*Pu$BNpLoTmRq18ox!X1 zFgp^;mV_vSSD^B*x)4Kn;^cxhCvT(%yse_pa-&#B*Q7R(Cf@$ z*#7_n&5)xp8Ub2q);^fJCTo~wAhw$M#XLoIrD-&JRBG|V=I~B@bM4pR{EOqi$H=!< zG?o_AkVs+TYA3&aq4wgxWGN#g+E#~D_m9}`(dw2Iq=1mrOKNtExZDc_B%q~SjVZl6 zqvv_}Zwvmej+Jjg z%IX!{M(%ioQY+hU07OK$lqE@}OO*n7=gV!kg)24-QtFkkf7S75KVz{fNb#rvx`7oRn#Pi_6AzJ*zYW*W916H9h!)(3fEDsZbP*1bwD@u0h8DFG)YJ`7oTGC#n z8j#=Pz#4*FRifv#@qrVudIHtrbttnn0sZ2FttCX278?7wcvF!%i7Fr`RUN@UGxCe} z>)|sHkSK?ui-M*B)O2UlN;g>RoMQAw$72i3L1dFcLlfV$5|trq&e4=@JF$=2=2e!0M)oKrF!BVrIM;Qn{|p;<)WpFy)}BqLyhrP zKvGqaS`Jix%<;d6#r{i(@_8qYX{z?da)OqHs1*$>&s_v!_{Y+^B`BsvOAtsj2k#k< zDaDGKx)K09>)scXsQP~g;c(&Ie9z>5Z!afNdh))PF-lQUb!%9mAEWeoQ?E}o`aehL z{Q!Q6B~K&e{ujd;W15B+KPMf=e|R9Y)U&xHA-|)Ttrd76*cNtaAB$IXZQCywcY5a9YBp zB}pePqhdM{`LtZN-QsB_M`|6CdJbbc^h=09TG26CwPVkHgJ~K~qS%6<&E?PDK4;D1 zygApu;^#T>=;?rFgd-^qG|kuV3>UL{vcrmvU`@jz36PLWF(i|zCy18tyiyZKZ`6NR zx;(yK-IzIImRTxiKPXnjwxCvWfDVU>Rt_8YD<}Ykffi~4H~VqYvb>nVa{Z&e#JK^0E%kR^Kj1@AKYU+ z{{WWHl(t$2f6vaa?{(V3Qrd&0eSe4CeD9yo{oCSGlcY2v$D)q>4}>pVU^Q#j7^T_{ zMjXel!_&#<>`L#ISNKJHEbke8quZPi<~o&QIf}G~%Dc8q@pp?iYk<)N$!uKd78PaS z!=eXXGhOSZ(O&5+m3A@Z;xgvlY(gDE|Ijc}8{VD#{SKa}J82 zFTSjO(X+1Pawi4E})kNQGStU{%haa6XfKB72${CADlr}+H4m_|x7tfll0ASNWV zDJdW@JRTyx6uc%T)KjP&A|6EP_Tn^)cg*+jY4b>@8N&q9nYoL2Qs-{yji)7eIfTK^<4p_-mtj$MNjY_Dv=qY9fl&mu@sBS}C%4o7kLMhyQeRLjxD5XQ zog?V1KWP5mWT~E;`HJZuE8$#35)hN&VNdoSeIsMRIL|8z`n|!``HzMC{{RlMZ;Rjk*_CL{^K zX-@kW>lr_!`@M2PmXL*{fk0fRm~Om~6f!PVnT>KkzIY! z(>!yW+3ksiF0=ZrH;QnnEgy_4~FqIcVNT4N&8^0e2t8KQ*9tYE0fUw{LyHFEX zFdEZ+PFj>DjNvR6rBa7(Ag!KBAEDe+p@wS~YZ?K}&ZF$Uh56vci^B0tpajJwAk~sz z;64Cu(7$Y#F?7s9;Vut&fmaDdQm|Ci3+b&-oFm`%%|cX?0;s{8p*qHiWWwrZDk?&q+|~Q+`$hC&89}nkNC%Q18QN?33tCALwjf%=0H&9x;;aFCx1Q|T40I6%31<0As&Z{jW3FtQYt zJ*6N}B}7o`T34kZz^63>{DMgRRB#W^k2tKWtR#X9o?bk?aImTM$r(dE4rcAQ9K;uV z#HBy^GXYXY-JlC!@yR-p9=?B^!JD4MiGCoYtg*_)!|wHgNRSV*N{WXKPrOZJyN?AS zCY7lXnuqf~wcw3?(PeirAcYLB+H1%$)r#y`@n--thpP?WtR9g#uzdjd^V&6$H6?;c z2mwT%KR0-~g{V|DH5)}~^8m|0G{0NI)%Y=kwp$R&2;6TE+dEe<)-qBE)Yo1<;x#L? z(vi#KUWk6edc(o=rQs}E#rbm2_IbWv#IpYYt7@Bg6_Np9VJ8zvnkF=* zkX#q{Mt_GrBB)IQVx1+JkCbVbb>f-JNE8pg?Oo%u$K~VXpX%fCczJO4Vv?nhl`F)y z4tj=$YsS=-$syTcCu-(uG2Qg(3R3YDw9Lp>0rr@kq6}Am%Tiq`uH*L+T&B75>x>a^ zP(;PhC~A}W)6OTlu_yHd;wA zG%3`-m8lO}iX&SEO}I zo`X0%vS_{(X8I%g(NrX+Advobjv_WQ~&|kY$BvG73FzM7T|;h1Q6zwde9T^(gED(*m{=LrqtX=Fp(#QtC>&`)$K@jB z&2Y|~qw5qyRiAFqV(7F;1Q~4U75w{a7Uo-Kq^W2C@;ZG#2Jqxf2e#p~Oj1hr*mUXT z658+ua{>Z&AnDt@af8DuVwJn8&ZDJvAH-O-6ZB|(}$v|W~5KhLf0o9yt{rQsLZI?1h&f1Cd?kf5h0vc7+BIFiL}T?(pF7>I7UaRL>YD=)AczY)!rRJ{3UA84E~dDxjK zLC!@tItW_0eIiSkwFH6yG$ZTMJjB=~MM?#3g%<%^er*D7Peb#i%*>UAA!4mYKJx9k zVdt{$29svILcl4g-+*FE_Y$#Y4&xjzG-SsgPqS$oGP2rWuazR zPqM1MnR>G8}gt8c#4LLD>-E2hi%O1^Adh-7O2n~GQXpt#8C2JW{I``7M4NG)} zTpNRO$w^wmlw7!@KF4;20y`zZEdgktPEZQRweN+K=&n??=ax(9Q?Gbr&bbRxfNE4d z4_HUV7}8({WU%B{Dco=8494wuVx=cGW*dl~2wp2#Q)mnix-m*^2=M~IRBjIOMrHHr zQhiw|Nl(1nC{T`Dk*JQXSb0S$NI6t!Pt@@Y zcP)uYmXs-q(io{D+Tfn7&(_%2~orFzumQ{~D>#B}`K zhqJB($|{*G65+C)I-ag0yPot+%%?E%79hi=?Ij@~q-jsyDo|0uGmuJ>;1RP`_#ap| zd|8i#k_8)IoI<-g5TLeW?xX<3_=y2WF*!(Nx5fI`K%ojeq8kA%QZC8p_q=4t8TNT6y!@6+d~f%=81x#-(N0b zrM~Bu04&2wbcK6T#Kfh6dbK<815sc}@hFg=N!y)AaTSBO=h}8#EGf^QTo8UmhJ*;p-hroqhrexTE>Gu=QAaQ%M}!D zo8<$ncpxP#4~vtp?b;QEtFv+3w5!#m07ExUl!|xU(!7Kar8~3K4zP!OU|FbHP&?x56t_;@&zyWacAl#(A;KXJ$H7qFFxDPFXvP{8OL=?d7I@={iu&FbBc zUVYj@Y1r`uCRCqj&;#^sS}W&0QpXpy)t-AZ2OeEviubY0Mnto75Zw1Vi7F&GW1Dx~ z;?3hAE{jugqZ08(aV3eWVF3vcsQ|AF}c6`L4I;OwBLmJX>RFwxU(f)nmUQK}( zd4vE?dK1qB?stg1cIky$Ejbvi%QtwI>hyu@SCIp`u8`Sk!wFgg>USG?M|d~Uq^TuS z4N0$H`}`ulDfSzQZ`DcxBsgjjpnh7gKLpzMP|Qo~r=QXuZFhPmmS92rKPZ6RGJzRD z4aWW8v$G4GZvtRsu>8}cNq=9drl+>iOA*Uur1IUOdsUypLO`H$VTV>hoH$8^>%z>m zt&8R3_JX!7XoL*Es0#In?irIOtQMo!w;w11rPp<-iDF#6bb?a|mI+dFf;iqBFB>Ur zp@m!qtR&wn0ZQFF^*h2QZ;kO$n4E~FM>P49^oIWcLsn;!R_^O+YB?v4kF8;66i7l6 zRN!WyPd)Y@IGfPcEg@475Yp-u!kOw1J&b2Po;2)9kxUL#paAMm1FTWLtsbgbGQ~ik z*SLk-=M^K?vb-q_LE!!3{QGpeFEKBxXh&_MP_1#^E1y**Kx}jm1ucLu68u$e$9NTQ z#$sA>uu4hn0WePB%AgdIJhvtQ2aPa_r==;;jY#%W5>4 zAhyqz2|8tZYX1ODA&C~Un&?i)-RUJ&2U?1D_eH}2pLLA+oD~X`h%X}(EDsV(bkq*8M#*<15J;)3oy0NPE}3~4 z0N&H@+6e&`(}`U)1a#&uPPs(XB#>0q?H+`HUm(&fS#N*?Bi!(VyROhu7|@Cl5Z*UK zq^vB3K98ubr{o$URjHLw@4nt~EbBO0Xh{Zzi$G+YLug4t)DB{SzQc3n3z%-#F>1<^ z>Pu^{i{aa(YPM`YloX)=sYb3J;|TYC%$ZiA7ILhd#V=a!d$WiOwvlq&MKZ}#=TOj} z2pkGf?_Oi8itIvErXkthF59Mt3VLN>!ER$H#Wp)af4wQd0e~MS_)?qk4@sd-nv^N# zEIOSb^r!8|9U_hCdCN*1s26;x1Rp(V=UB<_D;?oJSRo1}=#lh0AIE}t3(;MmD9yD@ z%aqX|zGXE>P?1M%eZqc9!fr9XrlQhT*~;2TosT?+f}fwB*exY{y-Q+joZn;~8PuGg4BLtnEV2+?}hmEa6NDEb9vc zGLyMKE+NwDn>hn4z%w?WdtVQOnCe`>YF&oaq&@m2tJ@Og%A!R@dUxvsF8RrxtmdE* z@ZY3XzAmp=w57^eISsMg_kv&cnq;T@MV6sftM&Nt4@_3miN=Yc`IyadQle+*HSLp_7)Q1jBfLl{oKZgrff3a>j3k=@7W(rmMs z%_SsPk0A_qeckI-m}r{5j(=~g8oh0qLsK^8_Gnb$0~lcjN32S{hbnDNH64GA;(R@X z6+0^CFEp&6iqyW%s35!k;w~V1;-Fo$VNu+{Sr>YckePkDcM#<<`=Y{>q=d5#Ps#({ zR+BZ*mQK&tpV~dNT}3G>^^M`FpsAyIS6E7!W150klm0c=f_{*Q(fn2x4W??^(d>k|b`mmH3o!%f+53d%C4Dt7{e_2sx4Yq^DB z)@_EcjO9xyS<2g!?MLhrV4E(`sYAu9pS>BO*8c#rOnkx01y9`lBb+^Oc!b2bbH1hb zF@zM|9mr+^>0;Y-|SkJCpC{r+n2PqVN z`u7nwlX1H*`Ae(U@`3?g_C(H@@029%sf3HF?j^=-s&?OgKJfiw!4n2w?oc!7QAkm7 zXh{I--~i4(f&p6Za+!>Tn(ozpy&>ZJyO0Nlqzzx^3#hjsIMDJ($n6%IUQPV8OgX_; zWa@a}QG_So_v?j(6PSWBmvD9?Vmii_n+TY?yEnLU@%rk(c6BXEXIM4hj?p$~e9v{^ z`&88_GbO3D3OXM3*UC08N0(uikdgv3P><#{skQ_p0L&Bb=@ca0Qq?dlq&j_&C_A1^ zEkf+nLPXL=PkdXOU_^kFOHC?F2(a4-a*#`E z+Prx_*E2-|AD_xahqlWarn?WM1GL$Uq8_jAgElMs)rAEHJ?LQlp2C@^3LqUR(iOoO zrR`=(1z8*llNpuiIRvPLfvdRVaUV(EG7yl#A=v4oaTy*m!&24?ib_;y;8BLr!}&fh zmmZzI4=={{$7No!NdZYHsqqcE?FXdV0+T}N1o!^{+qUom`NGVlWmCA{VfOC>(S)X@ zl`dkEt?NePw@CTVjpK5@i;bM5rb~WO$}D`fftI_i1?f|;(DsjKSSB!`EDuKbd!c51 z=`}7{nTzfOWqq~d1!UbR9>oav54=~MXGsj?2Yo91#8z9_(Tlluc#z^`0;LL>7l z)4UO|de@Zrw9Q3t-}Z}lJ|#(*KxGuai%;SxTkYs2Oi~h9r7c?R5?MsKWhA6jGP3Rd z$Cx0kF2#vcGFVEy3V&!(;(IlgTAwV?zJ*ol;GLs5oVhCn<`Mv8kX!T0D&6>ARL6Bp z3!^D2%i-TPfWD02=yr!D);1mS1`s6#B4|o#NCXmj0=ggCGh5KgkQ7X?qDDtmPk6s+ zB1@S{ECT|gMA4g5PAf_cgCbsb!br@pP+YC(18RSck<-J2J8>0)NGc1QT39;uuHCoO zPDFWlUg(;vsG?Er7T2JKTjucfj1r;}8HofqJv_H)y@qG_z$~Pi0l4ee_l}HX^Y0pc z*JMIak_8EI$mDf~`@Y#PAtS;$JCVdB*qnftqD%K1c82Q>%oIAakamoDxB4Ert$|GA zDm5xU2s=9XmW0p+>^t)b$+0a-WSR}Zpy)(GE){`SrAY@!%dwDl)qncaz)RC;4SHJv z*pSRX-YZO)cJqiWBPvRRoTu)U7panQssrqC5x{sreFb5*eGUD zmS%&QY1Vk{Wy{GU;YN?qZgNvrCE3Y3KLg@x)6TMDek+yBN9dO%bO7PV*M^7j8iFK~ zHH*WH{vmP{a+p3cq{tdh(s%lmgQtZL> z@6Tx5Fy*}-u_;!StsFLixjM(mm_qR~=7J4&eIM_{Y8Qq6p)mwz@iVsPp5i=@$^3tl z)BJxw#lA?tR%e73^<;pP^CxK0mnkKA15%H=x_w`yV%T#2K}f5tB%HgyJtjq4s4FUNaae8)R=p(vS^>UMoQ#p?~|Qfm5&eS1Q+_ju$WAHJ{}^0$zsXh}|o zPT~mMQ~v;1=7l{Mczy(#5so ztbLDzzAu>kj;WgBRUr8+k=IiSml+{kbcZRHY{_xNdYm3tKWT3D7aSNURTOT)K=49t zhqPU16(>%3zn4dfHZi_=s=2vnVSpd^&kX9!Fn~uHz8GHx5fm%9%t0)Tkd%hLF4I zBG^eF001;RcZaMUY0YSyPT{Grt28Iy^L$H94NKCo^S_b8P8LVK;pMh#E>c_(&aL^O zjIR5Yl3@m*pE3JJv3l8jOJh{jb?F(tCz=!s02R8p>G{?^YV~pLaP+Hm-%QC-%moAK zzMR2X$!%$vIBjY7+7%=>gqCdv?beXUF$z6{MP+1_RGx|AC|;A^m&!s=v;xQ471UAH z)+pQ2;3`S}=BaI!3zn)`g-#7d#2yRn8*$^Td0h5;!#I;TRJn^H zW=4Kg(S~CS<#LMBJ+~ws1An)3PmEQ>c;w5RR-X!$zv(Ap-60P0#R|?0cORPu zk5BRc02glK%k%m2V8$-SWXecb1xH0E>NYPPAXAy=XcT!Uw4XDm6RH|C$rIq zP0Rw6#C7NEA5Gx#P7&aFe3zAZE?r_PYMPN^Sz`P}3q;p3)yt^Ddq*9iF~JdHRHxd5 zQxnE6*C|iBC$gi-qtwWK9Q5KQM4~mIJI1mzwW)d{^tWibr+-sqoMlbQ?h6GS8AJ5~ z3X?@7fOfDpZ@@~rqg;|DzGNbgsy5rXWBF*B|x~A6jG9Mf~=)Nv`o18Mp|^B zHKa>AVuP^&H|aWb_{XQm&ysALJ%1dxhW(+u?J81*0z+st{Q3FCMa<#<0C=-zmK?k3 z@ri9#CQfbNPDF9?`Es|FZ7iJx+HC~tV7?nJs{a5G4Q3Bu>ESa0EJJ}^A7_p)mu>9n zvf&IUiIWh8BxO{(uwtUr({|P}+-HR5SnVo95FOG;{U@yfjpNbGz?sstQ!HjQ@W0F* zn@BtV09Y6+Dr8y$b#S8E0w{QWA}+fpk7lqdy82QSg8s>Och{#8w&2WQmE;O)ny{>V z^DQ10)O{f43ctz~uI=J1bzaL&Lx8Qg8%M`^xMj-vz8t41v7`mH6kLyF zoyXsvegoMOf@(Ca2gSrM-B`&aWl(YpB|@x5uMAgvOm-p8mDls%9Mg^tNkzE$?A)&6m>;#&rEg#|Lwd0=>i+g>}CRwdd%LeoSnexfx=dJukbzZ#m)@VBLj zYgv~y8COsnE031B|eR5m4F)@%xQgfhy2;7eQ5%Gq5 zHSK4b!7h?E2i#09*`-UEpcFtPwv= z&MaA2nlP(-pp48upuveLsY&4T?}_By3I)PxN^#aP)|QT3DDbF(+ov@6#4~Lpbb>>H z!2bYlhj9d@*)p&?8nBA?%LsBuex0JH^_GL%q-Qyne}3c22U@b0NG10J;TG+aiop~~ z8WE^JybiSxgz5oP)ap)*K5?jdGWe2#mVw1se9x2&m49a*5#b$c-nw?uJhIr52eQOh za!ET^&&n)+Mx`he~IRb(?wc;G01cxV86JK-> zH%!GO5|D=uT+*S#K-)EdB!Z)uy+T>M;OJ?QSG>Z40ASBkL(Y}#J3z_!wxGBowV{HP8?bc!Jc4szoSC zVA}cgJI1Lp>q32mq$q4dgZ41LXu8%WW>SDlITWb+7`b9`nopHEE*P-eZn4F#ROF2q z5GeHg{i8>+u1cIKN=O7Az2a5fHUerUub&epy8!<4*Q6VTjH=CSQ`Jx3PQXFiE*;KZ zp|xrVX_;`@pE4x@mVg3l)A!ygB`XRkLTGAIb{~xs@(UMbhadnthVE)OZinIL1mzUI zq;x*X>E0LYvQ(87D4oD<;H}qvCou|3Hi1=e2Bs!e8Sdrnr+qs?xi(kSp2C0*VJ1!> z3Sb3wJOR_ZFj=qVDI+ZjEC{Hk-Q!P@ST?yJci5kqFm6PJgfXFRX-+%9+XdEXoU(Nz z=j3AN{JIGsDvjYCy7NjyXI8Gd>qe_ZJ8igV4Rwk$Z#H_8;(?r}sp0y>7Aq&}QneHi zzFih4vXju4i_;Ln!!oE-!*3OAvxD+Cf)+qG=8&MStZ1k%Xhk`Vioz3k_x#cfU6YtmPR&U4zYod&I^g_{A1Ip=-*Zgl_-mjdwE7N_HMZcj3V^LEx@)0_ zd?9hAWGgP7BK6_?qg%0M%D`!;9Bd=q;oR4Y?B6VMG*`;{0cgs$b-RHUu_T)+wyUkZomW(;~CDAF&h@FkXY3;-IKj}fIa zCI0~I$1m4*J-WqSGj=6P+kZ*RnQ9Eqcq6Ijp@7(C&L)|QLbiEh{GH$F0PinFlja`+ z!cebhDx;$SN9NFe!|3&3O9`A3scoH1LRHvm0|G1vvUuT`0fud)>5YIEC01a%O4 z&34YTNm&XBH3_fN@5~Lvb_FF#C>fSZDM_Zfov3NGPTPk}HFTLM@u|tLZYci%ogfS@ zM5*>vpIPFq3siS%G&|hb?LMq$p(AbJwk)0sia-^2aQ^@ZqlP^kN+HU#OWh+-PONrg z{6u_gy(p@S$l5GhdP zeLF)kO@jVRx$4TC!>?W7mF<`R03bP5e+S+G-1shHXDrMiNl_(rS_>D8IQ(cy+%f`ZDRKaC!L%ABh3 zfvR(I2GHm9hHi`ATGFbqV&PqQh5Lr&P|iYYn3`@Jvv#CVyDX+|W;saXNV7irn4S3$=6SI!K}!}5U#Ek!}^`MhV?=N$T(`BV#%05EEP zA(*fU4W^s%4|b17RNa!QLO|q-KT{CT!SaY8CG%CZ5H{epdrk}U%rIH)AZ1YpUx0=j zSa58lF*3nP=CM7Z^OY~ckP`7r6Jv!B3PXZv^nS37YP@DG)U=R6+kVj(l!6}r0H{ln z3#px=q`a~hy8F;^9L^64=4G? zduPB0*Ap{p7WPZ;4A^q;T7?}os5%kThNs2~`lVEwHAh&Slmgxu7a+|fkVQ}5&q%$6 zrOjG~a_LX$x#;Z_Ug+4sk#WPzg0isN2lKW+1~e z7Nlhvl4wKFb>5?2d|JEh6DChvE5LoDu>LfD@jaq?q)f}1_Ypd47d{R`022$4Tt&O{ z3#MoaMHG{+?ZgAN;-6Srv>NU2gIH41RF_FQ!-9e0bkCJ1Fjs{nW_?@pQvfckXzEE; z)g+xq6^$bHwjit3%ww4}9KvnC3E68#BVET~#6^b}Bx3V9#FP~PHm8&5@I5!Q+`?MY zQj@mtznm~!_tcamCQxP?r&s*u2j3UoLR6&tTag+-C1SvGid{-kAUHaa(^wlj10YNV zKp%;29uD0zjzFMk^ZlS^CB)!3LuO9B&fU806G%qShh&0RkP>+UjRx%YL=@C8JO~+c zUI|h`R^UGapC~mpK*|bFXtEBvZ4%{`gU^Kh;#>FCl+@}!k0bVqk}Rkt$aOxk9lGcW zT~*;CpdBGo!mXM@ihxfp<8C8Jut?1>$NF_6>GOr_w&*D;VmNrbWt7TL4p&`HosQc= zkX73a`iW|E=-clZ=03!;(4w>t2JN%`x!NybyNY_$4AKG%xE~5{)a~*weO!SnM6p1i zcqHwVd`)(O`V*#ebb4Vkf{;=Qleuc^LHYBFcUPp`lL`m4qS;lqXmq@N5X%a5GD~>6 z_44?_mLc?5p)m$iDXLc0em@S;&&!WLs?u1gjj_IE1Sk`$HlbVT?|>Le^D@7@Uoa&g zoq;S5NY$`kqS8vHPDo0~$|??@tBUk!J8krJD9co}BxO(`#>ZpY6!G%C)clC{3+~Xg zsHB{_p5KB9Sg#Ti9Y-_h_4AL|3h19BJf+nj_)e}g^3ZdvKV4WxPz7ZmFH&25yT?R@ zrTY!JYdU2}_n7kaPKW$U^@ik1mXS?ONj3c7aS1oYf@+jwljozplF z6-L-|6t5d;D$0T@uh-5hS?wwk{gzMcbo=H*A)sDSem{yUh)n`nZN+@!p z@a+p2dfot0S*fT5{eK5&mfwhzDGJW&VMpAWWzxQM0ugS6&9o?}0-0$f4o_3^_Z`?2 z#_cz!uA0em6R7_HALbiVD4;mgO6u{QVH+ryYEUZigI=TM8dd)QZT{KV9U@E?>$@f9 zT-lAEVX^Xp2)~e!^6A5L`obP36Fpyqoj|7UV9pG}Dhc(I6kYV&-On(<{rP{)m;#ay zhjMo7)AopEp({fuYsTNqLwjFgAf=h8`!soSTav0cr&opvn1=>tQig2E<8b_a_J*uA zaH2{QkdO!-(Slc1&zWjcjRv0o0GtHAFCv`D1cDCxj$(S9lQhNl%(K*^;zPL`6TC9u zYwldrlq9y@JHOmT8%7y6g$)lQn9{7WWLb~`5HmGt_30S#oVWO`RK>SMxssHX0OV4d z7(ugQ2bNaO{3P2Byu_{Na@eN## zBIV!d2sTjWn#98c$g1XrC=)<*95^O}hSD!x*mBN2l(5~4)2G%binnernd_e_ib$mo z+8Aw^kxNiW1q2o$R2pj*Ef88t6(3XH${Zf-HYeC;a{p z1vllLNXP@M^e5x=fj`mA;ZWt!HFr**Gci>HsF3d7;zs94dbzN`LKB?$pIx+z*LB2{ zfJm;5$>hg&`7~lf62i5Mf`Z~JND2(p4ctQg{{Vcb00v+=8g_VLzi|791*u-6_JLPQ z(n5lOAW#piD!5q~nrE_ir(q3ub-tX9PLg1uRml#JghM7TO+-T54i;IgdcQu9BLprGpT^kS^LfinOK&}w!3s@?lVTvs7QB4SkJBo^oII_B4MvXKq2}$N3SXA$&gnz=ZILcT;U|-6<53VgSNA# zScc1K2ug`H>i`P1&s>$I1Qt`&7pLZs^>SH|iEc<4^*h3a&3O94qcAZ@rD?CyKVmz| zVM|M>YEqtkp!7mFt%6dP;L~rs1-Wqapt2h_WfI3gJ>N2W!rj+?`noOi634&ix*wG^ zAO*7mDf_`Lfehr!P?nGqk*2?Rs6kkFHkgsjS>nbHg1ksc=1Bg{Z zH!b9wK`A7F4PSCP!!6xm1iLs+ogj6d$0kw&WwYi^ zuFIgT1+7}`_YhWfjS_$WvwoA;>AVa6khWlYf%&{IUbdyp{a_6X>RVwNnWE7=5Wv*& z&qy&X36_9WMioDs#(QJ6dZr?(>S-L}o7#HiglHA7LA!HES}YyDui&uY_+6{>EzZzB z$Ask0sd5>e>E=HSS540HQXS5u4Jj5dm9?A!l{L)t9~hh2`b&FZxe`(eJTnCY>U(sG z7EFDTizKLP&tdL^v+i)EdcsNIbb+_72TF)rfHPg4N&?&-Y$0JK!1>gr%+g8oN| zz%SB*zX%n0+|!etSqhWJ-QW$&hAmUnOtKP$=oO=G584AdNWN6JLI@4*F?wuI(82jO zq{~Zz;}v~=5t`xKQL{`aT3<2Cr^}}USa)3XC>*IEw;RKql?1fob*!2e1lMpY@H)3a z2Qandweb6W3<S3ORkhU{#D{+p&m1wph8NjeWA$f z(jt>_0Fb1TRq}&4mg7!fOVDa{F-pydrJn*w3gGJ&MoX&xP(Vt9u+{_Od+EbFsOTM= z?-cCUjKaLRbk-ui@a}V)**jN$ksubuZy_ZB5i#GRL)HqArI02Mex0Bu8@Slksyd$C zVC?ivPlYa`bPc2R-=sJKao#2pR00&=PC(<%67TFmHfM<_@aPJ7-{12BE8^R#X(~|~ zmM4v@8qQklp8SHatt5=fUZ+NH>{|3V&T7ddXaQ!H{p0Ch3|$QtkI}P%8^3my_ZzGKfkPbH3D4MH6&^wW|5B5 zESj)9K%36W3Ua9XMYwv<~A&8-uyl6mKkVEf1LG+yD>%0DZvfVG4dZnfj8oZjw{a!U+EW$*N-oOGpa# zlm&G8?HW%OcF&hLc#ja3A&{iHs@jgv*wdIxv7<7xEp$48plzG3@LKb_rOO3w#L>BJ zJo>^syigXl&?K`pd-V~&4jbvs&y=3bc!FX`Qp*PN9lk~d+?Im3^0HXPbcXb^5gO2+b%r5T)I5r`({TA4swU@_YtAo zc4kYL@m9M24k-byyF{TvfVVEAx_f!SG-5P30r~hlfxtYP?y!$)clgU8Swl1ocfd?i}5vD`)(e5B-47X+~K zkEQ$zZykKs{{TWykwKx3;lpK2v(B5um@^If#e%2G4O{py^?BU+6t7lFNJtnNZBa^4m8qZEDmh0U7t7f2BGw?kLdZFYDx|{ui_7VZj;86Z?t8_2y<@bVH;xi3SjM%E^F`~TV-vVK{3#SrY4V9s zvNxn(82*uH{{W<1$u?U^QD65|lzPOdofcFEU_qhE==FZqQehMS z0NTTdE{XP8Moim0+h`;_l}lQJO63<>O25%arAvyk82C1VLu|KTX2##OcfqT&X&!YWzc$!+#+ps1xG$cvmkUJIcNbf(rs%@DJKG zJGTA{mX;&JL$!VJ<@x*;cOCv8H1%2p>`JMGhw!sy+rQJ!3*jqrrKMR&cXD><(VbqC zLTI09wA#GEOPcugL6xF~Ut!Wb{{SbC{a&XYeV-)WB}*<`ZZ{|G4>v0OJ%dIuW44mK z!-_Wl0L(X8@e>5GVs+`#Jl`*i^zZR=#-Vp!04NR4@uy+AK}CZX)y*R!!Bf3pazPyN z8y};^CePgRD1Q2^mZ#-SR+F=?oVn_fg~H9o$}bF2^K_#I~vV zM@XuQmx=8Oa0F=0+_SuXvxXjV)?OpA#2^=JL#_ngxsn)f@q*KLu8~UGzYTrx90#^Z zpnXII#K>tg3%M!qj?i9xv>HCJD-k3V06&mp9!{PNPY)*|ipghpg`0JhOq!wys+pkf zF_2^fy-uGfQ*fdb2^qH>{o}y=tDQaX$D7$={<=zLtpqt|W4~97ixa6J9;LXiSlRJB zvi`R|YB6%=opy|Z_O%5SsFZ}%a_6Lc&ys(;-SKw`sda zImD!(go5dHhE)}$e2KpzP-e>fL--wRmErlyB}-DBwg03XBg?ml1dUJUN0U#ubQ&1wl8#MdYTQISUGP-FL<}J&`n>@&gdp=X8(5+eY zik6#8vpqM9E0$~81{EIBrz?>hW{X(drTn|cB@jAH_TC9hw9($G4dgb8%!m+-8)gT7#1iOG3owSSt(6~{wBRA@=VjE8U#_Rt8QwuAzNRXXoC?x1e z024vhiRF}G=Jf9IT;to~OFBFmoVeR!e;>3(>avheG~J9An{h5#GRR^HVl>xJ&$Jh| z;m=nfOeMkggH`*-2a}h>s;(SlNV?v7q-m1&j? zz!az3jetA#;s#l8+{FT*eVQ>fNZYEsw19V2=jv9|DxCovd5SS-eu5dS7@VlOSb!*9 zk5YO@av=np_F_M_q|j(iy~*peU9ehIK_mj_!_%Z(y{$5)r!gS~na1tRBuSXcQWB!4 ztAk(KD@f^Xm;iNU1D+2NEQMwcDt-{JV|CGBv0=#f^!URSgcKwow(NI`pa%H1lIWNk zz7n0t)%$#4J|)55)Jn>*5*g7j07zF-LGz6Y^0`wv4M4VF+P~frf9^3SG>OS1X_-2t z?)387H}Un;K2?I=ckQC@okCRJ6(+2-av8&DYx|J5-KjH=twSM7_L7jp^Phxm*y`Yu zX_TS{S%?gs9Z5X%&av~2>I{X1r0&F>`EJqccypIi+t2dLKjQTJV(1G$PBwn0jZ8J* zyjh#TqH~SQfE$PSjbSdsedSVA89_w&POd*Zp{C1dl(h#=RUI2ZHzd+F@^R}imkX7o zCj6GFEZ4IQDei__j?gJYsU%SKdmxyUQZmy zr{m{qShLHnYLYb&PZW;sc4dGd!Fmd>(9al4KPKT-FN3DtCR88%=@ zJI5=s0jQ>|If5y%pDiM-s$xL^miZIJI+#$sF4UD07#(_^kdt}YsvH&`Af|Hv0OQe} z!RZ=;pbuvn6%zV_YC!zjDc-o5Xz)lt zVC7R30)l+2_uF`y**`Li00k@CSeXb*P*d`zD?v=#GS+0(O_;Lm9OVafanK5N5pvOI zm`X{abpVp&ZlwSTegrt&m`YG4W?)LH8jeFy^sd`MJ2oDa3W}APN~lhuJptp6AiSW) zUum5^Y!Zo?2eMY_1Gw92bcyVkUS$-eWo;{|I{8M2ds)Z~moGvUsckl4(8N-3O%*a} zGTnl68WLM>2K++#0^;WSu<1K8j-;NEO3CYqB`YT`$9LnX-W_fC9GPI1spvc@sPgH* zx&zvA46#7T906A3n0jdwcFa;wk10C2(DMUtYnY*uW_rxpoqLFe*?I*60*=1deVe35 zD(p~TkXTjK{wII55C+e>f^JP%!&T2MlS0p^>NO3t8M|*RMw5S<^?s7?D8htr_;( zHS9l#h$J0b%06eY&L}RLQib934qo$16IxZbG3x#|9zDQ=aPBiTB++sZ4UGX&5JGFj7F_V+<77b#*+d7IF38((w#-Z*u7 z!lxNWvaWd%t}_+2V&tf0mJ5w&%y%82U;V(Wq!iS+Kb*%G1fN+tYS`r_tlGAN?^?zC zbdOcy%bPJ^jeYF!z!l4QCq7p37hrdSHtV^1m9<@*J8e!P%={jSlM^{7A!aq#=;KEs z6R|!CoM(jzPph^T$H*vf8X>S`bo6Bmz^eS_c|=!38N}91f*UOxbf9wHl7!Xr9qxbpW*x zmJ9)-jnB)@F5UK`xr8wvFE7qxi$&Kou8dguC?0=kFrMDl;WsK$pfb_7J->)wzr7ac zmZgO<>T?|)tN{N2@QF3qsS6kFky0%luo6+3*gu+m@ZoB|Ca)?bf-{ZweqkFiyYU&5 zC)LehxocHj_veknfJeR=F6?VIVgl1JDLOY0PaU|`|v6vX&#N_O92Q| z0ZtFO;bMbqxWxduJ}=Zb@`ou`^tFU#HCEA);_pSv^}%uqszOxy9==hd;oLT)%gUhZ zOL(+nyd9M=S}ruHK}A#okE6ib#^^$lQj=D5*X;vE;<<;_F$L(~IPTqIRIk{0z?735>CqMvU*Maki zF*~o(s>+JJU`lxN+6Y_l$dU<6@}f2@50y{9yj!|&12mkafcHF8RoFdZv#Tof93SD~ zm{0r~ElM7+K1~kf>`!PhiR@BBWUmbcLX%T0gjw z?kag;^sa>P{KJrpw(B&!i1m3(?m6BAV!8Pxg=yjdj$*C}xfkkzRKZ8h&qVnlE4x0F9||dMY3Gnp^`}6D&r~P02&7^8THY3T4Wy^fQl7zcZ#>aq%T^u zS->k$2P#EQpcC21XZl3^hBX{HB@04~wsG$VXj8RXLguKUy%$GaKwd>w0Kl2L(}EbtpxA5GZM+YWy@Yr;i~+;p!3+m zSEQTQEc6gv3ZWvbdi3)R#;`(d#{k+uCBHUemOvr5*GBuh%BH3qE+_RB2kiFryOlJ(!G=kV2T#6oHnECB7NCKqnZLM0HDA&!sr zi@m1}7gd>Z|JxH%F_UQe8+>v2(8{_l*%UQczer zw5H>D z#bcz2hFYE7s|0T~9E6QPr&ITg67jq3Ua@lvlK$ba1M%ZNe7-)8O??1yEVSiVAw-tS ze>T_37_GOm6p9dYF?Y~#cxd?+{>2ke6PdvZrzCG0pQD^xF-gj_?BMs?xZ(-q+n9HW z*7dUzrVDZN90-=ddHSbGNmEzI{_)_uh)7OEe18PmkUi@4GD2h5)Rc_UzDp%ZlZIUqC6r z>HEYJu}DY?XMQ&RAR?66^VlcU9<_fl^U?`QzLb^<1O}xK#t6&CWT~2*!8=8wRKgvD z!qX$-%jp3g8m#CcUk##ii=a3JySVKdy{ih@+$$@Qv8d>OIf*3M&@^GtLiR8V4_#J@ zl{n-dq)mt}V#Q=DFb&X-(8FlNsY!2lcn@jC!ETi(6)_#VL(BynEsSL)N3f2=EAm~C^3R&1#{9)c{NN3%+wHne}uBU!{7(<;v=LOt~F z6s(wxDOp@}+s+g3Y#T8|q05Hx3WEc!cuLfO;fM{>P2u+gNwwbDL1M~^;`{YUazQ6y zQeH8eWvYH~0WX@Te5Ya4tQoamqFT@vPf#najA49+G=*CP*Upd!2YCFu>Q$XVC~A$g z9pgK_v5LabgwQO}UAFf{gKGyeiDRiIuMa@3KeYlxz(Pw0Zo_S#XMuQf{{TPb;(7>Q zzA;9B02CE|ct5mIv)l54l_aPa1&I~qtGr=t-i+gormQ5bN}&$hcWt96vttycK}Fmb zq-{0}66Tr8QvH4aW-V~LV_ivyPbteE;QM-eK(D#Q$Ex7 z(3f;&u4fEVcroSIf)EH;SCP^CMH|qWL4t~(*#}Pkbvy6U4cvFw2z~xXcwnpPD*Pyx zq&cqRPtNp%o{#LIHe|PmsPD1jkv;o&rg9YQ2Cw6uJUoWcJ9`;kB9ebBlM9{azBPYH6*Pmt>fw-zf@#VIDF3OzLW zk)#{D>;_tLs=R$f1Gik|B+Ztf;+X{j90Sh&QA%-p;#CCY4h#E)EKS7*O2AXO1ivGQ zy=c4_F?C4Lck}B=t82UwF+l|fFd%48eZBChtz4IhoJx_Sx?f(e1TB{J%T{8VHl1Lt z&w`A%QV2`b1ED-bv+i|G@F)OvEyM15ojHX9TsLU-QThh{1Tcl267DsCl`QgC`B)WoBqv7YN z`+m?i>ynwN1ycn8pdridL_Gtx8=hHSWo0j+U|WCM30`(-Wsm^*SBmYxgo_=~GdhY? zaw4t%NASTZDW0$j!w^nZeYfidjB|M4B+E{9Bo}&g+B&0e;DID4|L!qFk3P;p9IN&D(S-NX?kDmQ&Tb#P{X+ zJzCy^pntZ;n+>;$o{xx`Db%Ay5tL|0?fB4AHrd6kKq*0w=&qaVgHi8zr%`y_h zMN=;k7__EgaC8p)LX;41%gg$CfE?Klt@*4wTo=^2lKduvN>&BqE3qn;>ShDZ7I0mx zr!qoG5600%BaLqL%nDqvfRU*qP&n%Vu8U;(i3wJsi4UlaE@gu}yp9HMgbcWF$}HeI z!jvCan=+rU3l;)QkY`^_qrasbcy?}a}P0}0Zp8Y!GTyLx4NG2VQva!xbHcMQo&cWNh4v>4Bc1Q2O<(yrE&E< zMq6RIXQ@P~W?5U(yT7vLo@O@7rd*penR%!{B}(5-j=f=al7;bz=gU|H4E*TZ`NN&d zeFe)WcK3)1jA0_#G$Zt-!8)G*07z!CT+)YzUV~np2j=l+;_jK9z$9zG$^=NkNkr0f zW;IcBPzfcy{{ToUHsuIXmW3+6r(k=Xs#Xu%}xZ{(GT24O!*{5GWI`+7L^MEovDPFTx6$d}Z>|4_GWD zfWQC+HjMt=dQF==Nlva9bTOmIkup+pli~yiI}Xr*t(MJ3>7)X@<*kVTfStI4Q|*cg zr@Vb38xdle(w$G8F2oT}E~8TL?E=y+ua51)>4Dw zQ;Ki5SRr{|vfC(Dyb2%Q9-b$@ugOI@U5B~MQ@E{C(u3k2AY5_f735fud@~q>q$yf1 z(3z?ML?r3u3JNc6vI&Y45|;@kr=F00=U#Vaakh{9`<((sYcWHHO zrB(JnyjT1si_aJ-Amt!{S&z-1<fX&I6`->e9ngi!yvXISY#(F zYI!h#jqh(tL#;WI1SZV76E<>YA&?Ra^#z!4;kEn0*>-`H<}UR-KOLf)Ea`S0$%jd1 zb&!TwA-C%nZrRCNi-22atR~_cYQnODLJb9UFbc(TS~KUCqg{3fv`sxb-`JffPzm;* zD{OT5>sM`Ip?32n0Yqj|OAZ6-^y5KJ^smp@#?>}jg4CiEnue=3u={gglPxk5u(t&? z1nbBn{Gxd68o7Mhy?9bma*?a`^zEh|cp<$1|aI)>p|G1-kPNHvJ<<#LEhOM&h^c`->= za#R*vQmt0+7Vzw%O3|nTGo8Ua?0A7C+zT-YaWQ@%chtN#f7_{Ay zV(?<@v5=~(`+wv0g{sASb|dvmN=J$41OddB@>BwnTVB3UVse0(SuWaj^ME&n;ASX| z2;9SgM)bVY2u!jn2D?01wP6G;1uFqrg?scqadO3i(nezLbT1H1myuaQ)#hA&2+x$? zZFus}Pn^9adJ^N!XKnugQ^q`T-O7*1yt04^@n{;P`Hdf}5g4suE$Tog*&uu0m|U?+%9bSN z1MKe2-i1J%C>=@<=$&Ff|Wk~|^Q`T^fa)bPFdlC;Z9W=TtM zQxo|-I>w)m&pAGnO_3ywjm2rF)-21r!d#zrzHq&D%G7v^)%fYqMdM?dYwV6S&F3B+ zdx?>Ifte`PojkvO3`=F6mdsp`E6~E+`)Eq(QVSka?uwW7y+jnH*p z%?TARr(pqQ%nEj52rM{?7nT12l?hJzKf7Pe;+48@s+Rf|_dfAbCh}$8m92nFn34zu z+zv*JHLmfO*)ELoO$%kwBDuc%?G7H2XN;>;c%Abde1rtKtzuP`M5!RFtE#)V8b{Oq z9J7Z{o&38mF@Hvva*^RvY!U#iH$C4`yYz})m5_51mH2&?9T@IBp{oxSEJ!4mX9q`5 z18Vh!KTE4Qi2wk=6A_kb#c!z8^`IxXpQ3UCUPf5S|qdC^H6F{ zA5VVK47ru8S(845YV>2LLJuM;c8k-|C#Rf5iK9sUX`DX&Vi_}7ycUT%SY4Fs{KQKg zYJV#PbA@PGwTgDOsc3d#OZ!tXe(bu8%-KVb97Pij-i+?7>QbDHx;G{=jeYb?^=+@a zc;E;*iLCi&ENaHR_kp6xxr!@s0#bH{94~pPIeiZ9S7DGondY? zE1MCOIUwfb=tn~gNd;sTDZn1@E|7tC+Z5?aK_lzTIo*_^i7&SCzh>8bi2voxHh zr0W|^%PCT_DLXV}eu^&ave(XPow`$K-mv}5R*t|qjDH)$^5^nb zBfT05T1`X@31VT>;$OB%BEI;eYSZTjt?TfT&<4rl3rRKGsf@WgI5ON&q^V~xaa#S4 z=f*Qd-9;va(vp4Mc=Crk=qcu-^&q+EAznnXQoWoX&*D5E%aXmn$GHkN=?ki;P_kI? ze;zR0e=F6ffF8a>uhu?{yR13F&|C&I`n+R4kTCld1f;8q&<)@7c=_Kij?P;4{5y9g{#i3hK3SkpC;hh^KS-*%Pu%I&7%wT=hG!t?Kon|g0wzk(m!{)>k?;8K$BWJ?%d@a{ zH78j1bdp629fT6JgtAV@rjc4|190D~j`7gNv;P3oRn#*nN}`oO+eDxBOK^}SuBE9I z{{ZR#0281smcWK(8XhV6tZP1>aN(V0%ovfPpISXfAZm1uiT?ncZ}j+u=xCL!o+); zJSIOz4u|Oc1bzZL34#Z*lUQrH=o_(Zpbd`iDt6i#Wm?bzK&p!d-Wxw{)Bc`rwM?Ju z4RW|UaKS$}`@=t`%w~`4EXh$MAwfzTabCi(YyO#V;*f&5fwSlUpav>>WAsxdWubF@ zcdPIc$`ne+$1aqi>SI~P$+6RK`eP#Wn|jHaXda}7Qx%qGS3$x1!)_|W=lVdPkV=v~ zJ-1=+jE>{Gl)3p33Yl#B631Qj08!~dA7fZ>j%f)La)vpobf@nhHU9wA^3D=|_3VH1 zynio~iOFjzq+~ zvQqy5rTv~jJG^=KT9)q#6IA6SWFSy#I(_2y9J)YLD6!r2+N8z1CLK{DAqV_e`|}N( zaAQHaZWM$d%~CU$rru^MO-1F4RvVowNKc0;(DDZn?cs(O`bTd3Mf+M%mdL?}vNVZ* z?m}ol){Uu+FCBBX25CB;BgTE0YZdKijb z?=3764sP1TOV-;k==Ix<(6c>_6}Kra#gdu;8iJYzrFn{~#VALGDRL=N;Qs&+4H=6% zvn9*&I31#U71byyIg4i0>fJwhi6WERu}snkO$jB763^B-y5^dd=2_}rxa{B}O#pE!7E?^%jbsSHM%5Fjn%U`sji7NI+Ppoz0ol3bDHv8j+BIDl_+|`;AVCJa2w%A<~y_4LX?n# zKqa#&ss7yg3iGeQ|@0%!v#y9(xs_136y|90g~BSo%!j#1xvvcVv9nx znp89+O7r=oML81Ol%Y#b<&93x+C;W{yfHo`@0VbH&}k+A0FY9sqd~c^n?$LVEFb(} z@=m10c54P?gP4Pux#__XX?Im>tfOKpP2Z@9rlB%%ze~~{{Zs2hyb-tV#WG=S}Yr+knB8E1A1@R=@8@z(FBy!J0EbR zTXuy8uSv13NiL$}LUbYpS+4cVU$mtFT%L#Y^k^?4Y}B)ctJ95-$}ga(g5YZThQ4vP z6spV4AX8Xk{c5P3Y`^PfzODif<)1l&k-ccK`z^A)*}&J=cwpj3)ruf06-=Lp+F=PQgrDRzpGP< zfMAyKy(Z0Q_)gw)0xCw^cO7HsD~`~a($Y!s0a*Em2wLl}RYr|_N!%WXLi&w9FvWr`MsgGv;t3{$QQirEM71_>n>9=v zDNg#d8C0x_N|0HoTxeq67sE`f$zYo6qrj|jILcaP2g>6(){m=n*Jcm_>)R8h3{Q(k zZhqUsHPL(Lw4YcDDMv2Dr$0Djzb>&dQdKO5aH4uNQopTIEQUhVl2Wn*^*i*_tOE=f zn%E`FQ32RE{N^*;pVH}CKuT*++wZS1!He%T&Ii<^G`z0wsjr91oINQSP93-ug|R^j zSuNjI@@QS0!TdLgX8QH#PFJc9uML*VN|Xj+QgtsLVB5I?l|2PB0*G$fR*&DSM4phX zQ*wbNFO|#kI0K$*t3v{oE1pu)2}mSs-{}3vk?O!|mnB=& z5D$8BSY*W4Jjs%o*+f^TE&IS0ur#EiTBbXsDahHmfHnM4Mw6I@eUT3lw}!IC_J=*7gg3AB%cut z)3EImW?sxr&x)3!qEgN%2LAwWdD^jN)oRZvi1BcA2l$WD?5UQJOOaZQOL5!l3OM&0 zlqDr8V)~uOSS|s36~f?!kgB^K0OR?E`)8q96DJ9ZAmyk)BxNU$-k%6HbYkgq5t}%6 zsNyHP?aT=Q_&VzgINxVFE#ePG>Xu$phN&9)*PfdBLEIa6OiCR|)cc3;7jG-&d3Aa; ze#3WxXDguC?+>ZyYl&Cr6Ef%x8*u=!t%VZWYC|1-{GgS(T$I{TF+^o4asjSk^!I2W z#pa}10Z0J7a}Btp8@&?#8eVw`ax)R)+*hj&J}@ru!}8dt))7&csojX!@$P_^M45>u zSX+_u>lSTxG86>Et9}S@85u?OVX5LQUH7Uc1!Yr# zu+|X5ej>%QN*9z8D?lsN;?JX7s$oKwrw>*;aRlxgm&GuW3s)~A@3bDa;sgXR@DF#t zv@Y`ug?(aG%$e#_;$T9**Qxxk5SN4}p%#?NQv$URAKEAQ?A$}Gy)xuxngAtLByapi zUvgb`sh0HH1i$SdkZH1-r=x_Db^~2tp|#?BxdkLCE}b2>*p88#+*WClmZW5G{s;4V z>DX-=#rma8OHdz!bUHtOtOmZPCQ49C5E;*3ycdtyb#~m!Z2O%@P2=_Nh62`=Y&GQY zID@w(w>onVW-VTcI;2vS8}r!1BIL`hfMciSdqE2wm;qnU-Vm`h^Dz_BKu}3%J09cn zSbw+73PM(gD*pf-jXq)&5Kiy1N)DnbV~dt+Of29hQL|T0U=9TcN(i8)oNa@lli+*IOC*9Mj<^YOjHO%tL zTjcz~8?wX&RFFosjFS~gohXH&1%kB>XmkzpIsoyg;G5NR(u9!I@jvF#6PI~U3Eq_O zvL_U+C@0m2P)#YT_ZxE#cs^9KB>*H)3bjvuu)%uWp)%E!IRKIdr}>P(3}TX*iwP{G znxVas`@{RwX_N27ig^*l0+D=_l{$WULVd3oAWj8jYV2qaLEEe~BM|z~N<+0-sNLZC zN=5sI*1JWdpaQ^=*d5Ntq-s+xu^~A_X5uruj}T;-86+v+!|)`-o#ky(h&q$J66q<( zwXsu>$3jg{0^c47ARd^Wrf)WrXHSDpO_}7TNgbHJmjiVE_~1U;#RT_JgXj zAwiY_2WHkEE*~kBh@Oq{C;tFjq%Ud>iHA!i_=Bg%^KD>7`Gvy|Q=?RUn@Cx=rD&FF zLbf2)w}MO~4dsr~CS;Vvky1AA-{~CNFB!R1RlFnNi43pubM0zJmmK@y=6NCN`fou8 z9>GHKkvyOLegW*L4-+4leoP#@aFP^&wTh>mN$UDTl%-6{Cmsr$v7w-3septU4xr8L?iw_gib@GDC6FY<~O8+6S1CNKmyE_QFuVOSx) z__T#EKmdGv;63GS2u)nGY1Sl@Y)raqO26N{BV(&%#3gGagyq*@I{o2YhG@F6GHoX! zi-gg~=ad4(7mul4L=qaU%rE*NwrWC2b5b-A)sFB==Qc_fCG~FRE@cGy*q7EifpVHw zC&PG=N}7~t;q>N@4mdN=w4@_6?-au2Mf81#0r&%G&utfRMY%#wf{gAm?EOLcm|Usj zP`&KIC?(hkOOXdUc5?J(wN$r6%++=kCelW3)?Uw1! zEFnb?QMo%e5wKxPAWD2Bc)I>Had@e2pcyG6#qa0c3*sL&T(()so0VxfiknkG*!?3& z{{V=Y%DvH|-FP7jA!-$O3f%s6hClce_4s|^Vd|yhdS(t-a}paOLI4Na=a^BlNi!yp zqDE4C5+Jp<%P@?x&x(~%`9_u;5W6m<6`aiGgzXYusFsC;loHHYz7dz-m;I*CFezjd zzp^$SREK%js;0^XDFJNYYt%)q5-)s}6PR(ER&A+a4%UNeT)D zAUg^?8@tvrXBANzkzSAo7r;`1DXIDXa}*}x-vFjkni02mfOnsyxrsilXelJNn|)xM z`*fvAAONC2P~0ASKueZYs(iAdthLj>-V$$IH!%}3%JC&iXYW$*-GHv*q$ydb?8oFG zj>TaqcdME{ogtg`#c_m7N@xm2OH}^fv_mHHP+ZKkNgd*>>r#kNa7&Tl)P8daSEe+Z zWCc?~hl!J$^@?fMq6=gy{po6H$(e3KYCCp}qSxsJp^}22eWni0ur22dIJXg6ZTV1y z6rdkzI|@{dAK%+(D~7!kWd#8RN7_=(wdu*|0N@Da=kn!xYsV+HrRd)C6Ku&|w`SqgC|&VS3ky)~T5i zK@Msv!|wy}z3(zqvMA&+JN6NnVf;^)a$QX2lpme?AKn)$gx@UFBoYGCnx4@V_k7~D zn%IeJR#pfe%0`dVn5$|bBq=I))f<{^-Y?yGtzR<3ne=8Y(q$^6TGXf>7ZcbCvN*y7N%V?P*#1L82sZOuc=My>Tv7*kkg_f2d zVsCD?6#qXL{F@v_)?8gsIE*Xh|=sM-;Dmjx~y;{p$p| z=>F%l9V55OJjPeb=By!!S4|o#Vk`?VkfzgPLtm6xvD_1-WKzSSBe`zzGqo7-o)S3* zaOY#d>ju*{OsRrl04N3=K>2u*YS{^;KS=g_z!{hdY~?)3-V%INszBL0HvGHu6hjx? z=`L)+m^z-Dq<(D-X}J)=WI5YPd;b7E(7R{Bve2ZEvZCUI)rUND=LGM|;Gks`OX<7x zgcUIs7886ylB84+%zKZtWmwkiv|1ig0+N;hsC4_+$~7xpzaU8k%7CCXJ)@gNmT!ch z1DjIXK93Guq{MC;p;if*lnRDg?q9EdyhhoC@jSV*+$84Gf`IM`iH;8h5j7!swI5>^ zZyQ{>63n?_Aw+v3g^1Puv0SMC0HNRaZgu67fJ$5_sPUy6YVQQ3T2@e@Oxu83uqy;z zK)ZWisEvC+PmE80AWBillBFx!JGVcbAwZ;|mrzN1jo|f;@s*W`%JgHYinn!{3rB>y z_bU46V~b`8N{CX{K^g&|=pl>_yRf1q&NFnYgRBz1LX;G9_)B=dP-qi-SXU*~Um$IC zX!2~-%}XIfxZAF=2lNSYPhYJmnK4-(!=XJr@p~27k`h>waetJ@y&@0$M%g({HfC0HO4FLd%3244ZY7&Y{{R;szq^>+?;D(CbY{#21TNfo6*5^_ z^B#AuuMF1P+tr}803P_CLIYhEb<7N)0*UvCyE_ibMrw)&FS5Eoy9Mg!)+B?&Y+xQN zyrxYD`++LZhN*{Xrn_+>W=!>T+4pY!;mH_YT9j0vmFEKY|x5mgJ>ISW|Z_{{Vx|DqdD4 zsbET7OE`Kr5RGLvIjLG?gPl6&``2G~{UG(aOv!Algn%}KHwDX)voTkAvwmOA;b%z= z%rYceFQhC1Fa($I^*!N^=&=$4K>@U=(8BfcgJw-gC}fRmqkhl^=(sHel!cb$8uju& z0TXES(XV_BDq=`e78>hby?a9L9Kr~bnuI>Pd5C7hcQKNjvlQf)*YVq@Fl|Xoxnd0; ztXxSB>cc2Z;Fcr$8+rI9w5i3SPzJ#dgKz7l19%*i#TfPB3LUf;({oPm&Pe5n#03Ku7{sLoK?49 zMrhfz^M))*gXJkIT8PX82H5w7+$n)j5~V3dydAkU^865}F<~%Nf(=HDetpjHZ751K zp&_AH49X}{!a-7ApPLaEZ=6$s0u}L&DD}$790v{Gh>Pt|t&Y7P=N_>HnjItNTxWylps86_#MdZr2F^I;x<}eK zO_FFi6p|9&_({ihMGVIyxFA3A9G-6+y}NuKYsTZ@+rb0_LY+fz)Ssj%qV`y3CWL?+ zSlE3i-76r3r72NzRP`s0(U#7;3ysLBZH#&IBiY}SiEMU~rp&6JX#U+IJAA|je9I2O zzP%!ntm>#VBse@D&7;Y7Wf7E@;*95W)3Az?BG;2876Bjza>I9kwz>H#S;b#d3>JH| zsD7XUXBzvsfcT2XE`iQ%7-&aR8}Pev$>f&_^X#T^Vd8Z=I~b>ZFV!d2B{ko6Jil0Q z!#8?msY+5^fC(?7>R+a{go|;{IbkH1Q3YI$srJ@A4i|2HM+Z6A_3gyy1nB`+xbdt3dt4Gsg)wu$ck1;yx$HWK%gF&sj z>6drozR{amdw>|uLr+yntG_?A50a3fy(!WN;;DeBtE&L+8(CzrGnW>;M! z@>3nju`nu$Y zH3QK0+#X}g^Iolbo(bGL-IoDirEXcHL-c)jm1aVAH1EVqYr02-ngt{P4uiBf`Zcl% zDCE;G@XcmHj4=aFoO1JZ5uIKROXLCh$o_v z(o6*XX$%~+1hmW*f;QDSZQykIJ`!p5iK>BCx%7Zm735xHp{GWPu@vHzg8Ri=Qprd< z?-_D*@bt`mAxl2GVM+ZvYIT1tJl+s(b_JywwSR!^8pP`_tXmPWuHB#|N1fyHW76lxM>qzv=E32?-Hs^0R_IzGUj~~n9mh@7!S!e;NBaI@87zGA?{{X~3 zST4-Y8Pv?}QQ9EB@Tdp?9ID)oocE6Z03YN@amCN^?rSrjc$a4GHu8#At6(O*qRryz zQ3?i{AH05@aDQ*sy*S=IZali_=3XkdUFNAvN|X9a)}h9avktNJ9tHI9n?$o_w2$s9 z!W48MjYf>GGW3t0jHrQjYS59yZO4^~mkoZDuz#tTRFr`znh;&jULhbV2`=9-rz)0I zoq;5`z6L2V9Ity0JyK)xW)ZoM0%N4i<{?f@dVvy^CL~Ps!-c2>n7bm%-Q%C@!0XP> z73SKCj6IP((J7ahLGZJ)7<%+Sf>&snok{Sd)ki`Z;WG|l&seZ#I7@alO zWZB&XgRSUCP8;tJkM4^4UkqdEa#58E0LuZ=`odSI-%L_PlqD>w^N9col=V>}g1qX~ z)-&5xTR_6#uezV(Xo+|aaLm95;RZe8$4|Gn|a6|Q(rjz z{{a60tLFazCzq$!fAhR|hmXIqPoyiYWR#?mb*82E@B7AWWV&YsI1EiIppDv9f$FM* zU-lfw>rIgvRN?qEaM9)P^IknYKaQ~*Wy!e&DE_VE%RSVf${;B8rVHUIO6HLruxtUURP%(mDIP;#;q?0AXD{_ z;lnr(Qw>~XvQz;tu+z>lo@suHrMs}Fss&|@04p1U+ild-LBN6^_L4|^4rGE)>fHHlppR{K z=~=uarjEl;-UrRLB~(+8DjQ=J8G&Ofz-$7Nb~`?;A29k-^mv@+bdLdi%~$i_N74AD zIg)ZPAW`;=n%R7b;EA3YsPK@@oK>>yXbJGU4RsOG!L7?bU z!4+aP)4q3!?j=f?sY>xUbg8M7>D`B4AsQN`vEAL6X{{O|$M-zq0!mzEaG)v=1pOno z$Is(fa^tas`lTgBAn)X1s_90RYEbfcg{x$e72>9#fw}wh1a8TsCcAtDdc3=u;+-y6GO*ObYs|R+887{Nz;z~<66NPNXwY0KJ@N= z@#1;4>G+zy7?qSJj5yeIhI>k!I4qydM|cx-OG-sft=RU0bLEC-qgS+Y$gWpP_l2gV z^w4kk3?O0&_4m0t`9uA@mR3Ve2Ie!{*5O$rFei63j=b5><3jA~Q7$&nk)&}x@l2+2 zS1_HbEA)wHxbUWg@34W^c|i&%+9WYk1Md34IJMD9H@Tv+w<_W)-nZJ)9Iq%=nn$0} zsDi+=KXJTMw%xhHPOMwSu;312c}Q^uqYw~5A>Uz7KGA6DkIWua^rTFsc6Jqu1Q?g#KL$^Woiqq^m6P;LXg>x zZA?*@j7t=hsla^9b=zKdf&`K-DZ?&hhA!xG=Usl4iwTg!O+D}`$%+(IGlI-m4PU9^ z4Op)X?4lGl)8z_~rJnd(WdI}*;&9LQG0mp%Qb=zfJ2;4KGuu#0Zxt79N@!pI0Ei?X z-ZM2>x9r0CLR=T>@1$L_TBfLekUvrD`NR>iPX)bPpaIyAiH>JkN=-usa60`w;b?La zN?$V(NbwSg9??_8R%>F(KiWBZ=uh(zs#5b*F*N`e^6eB!(P_)8st8%{1`e5FwPO}6 z_t2{~8>gGg4*YNG<>z0rE^ zNd}-f6t1wfWmyMPufXjEq+iK)AUHl3KNzB`w)CrQ8i(d0y^eS!6S1d$B5Q5onI|cB zH5v%^=(C2enCr|k`Z8FpNlAC9*lb3S`*C7N04rX)_l(lXBntd~P_%0V%FIo>tR zaFU6e<$!uI%)tk#606 z%51*SZ=dg^CtkR5CRqnmxeBIg?0NTWG~cRAT;^Nr8B3Moa8hW0_UG-UnpOeG#G+$6 zf~o>E@7%)FyEcDTl3W4-By9ST{=Asb7A&&EGD?LX>rQ!x=z(!{zG|f=RD_(xLo(?^ zy-jFA(?V#LQc4S!8_*MwaZeQKx@E*L1P8r z5QKkmB=W?B>8a(0f}z@lqK(&v6()I9qSDk(ccb}prGEo948>l&6d!3R+eXs7Xnn>B zDtbYvevw6DOTO_!WvGzsY0tV7?G|O)^D=w^->>B$rSi1|D4{N*Utd_OZMF9C<8LVcG44z=jA?nglqooSA=)?1{i7i)ut6pXVG0OWGt!2Na%TfZs zWeOe-20FE0D)D$T3fF_u9tCOEHLQT51O9#(CaaxN(p5z;pfxn$Y43q*o`j_cSr?z`K-P^YjLfv&{UR9?u6}Z@)LHk8TV!!SgVPV)##x1N zD6-kg8^#n#u9ejL%Xx+k1r_O#46RsPY=Gs6S201xsoR*$ul!)CAeyCSf|_&t=|_i5 zF^^L?l1+7DSVZ@R7?o=F#)n=(iruElu&yOs`J*9Gb$F_Buzd!bwu9vw&Md>9jH2X-H91yOMv1FLBuA&RU2_3Qn~6p7E#0PgvF` zGZ4JQDPg^&hNqtWsSo~$=K>U<6|d@luhJc_%aAUaM#6(n%EuBcXtN}Q(K_bf#7`H- z=+N&`mTT#o-39L}u?u?W1x~}H29+?)Nmo+cc#qaBr+DdP%fSLc$T4rRYZg z0I}j4Fh$)nCU0fOiS>9oWdgA23LG80;PjbUgP?@AtlLIYhFxFF=#z$Jtu~p7QQ*|n z@#VZ(#W;yMy-`TaNZOo|7 z2hZs>q$=h9*q}Ld9Xi2GJuwOJiawxyMJQr9H~gglK@7sLw=f3!nd+Wm2v%){e-G~( zX$|6O9v=yDN;O~0Xj#5wiRs8rQOVK7Ql04xfKsHI_*tC!MavbHN=ROVRyx6MhZkln zmuF;5c6NQK$3qOF{VPexJSXwtM*Xl$P)J^`2rTvD9`389GSD5!%U=5F2Ec+{hFs}n zD_XMwNQ)2M>qDhZM#n}UeWLV)fRaFGuV@u+zf|l2^3oJHw#%tOS<+bV$q)|PetO0F ztyC%YZhH2M)|>TNX|KzYVOGz1%T1vtE0ezc`a`xAKV5e@LGc&ekH#joOqQ<(=RyTv zj-m(RJMnolrO9f)1M#4Dqnl#pddaFD$ze)wr`8sM8x@}_iWTBP)|+|nO*lNuQYIk>DuD$<^zd7(bLh7cAt{)JlHn`?4E>#fjhQ!Erzawq(U|p& z{{R;HCrW*V0=|WqZXZME#ASH?m%R*J);W1|rJQO;@AVxz!D0diVrbex>@kN5B@@7+ zM&NvpF;5U*sS?=G{Wk;Q7cN9YU54-hIjd2$c&j)prU!b)eTQ*KDrGEWG!L{Hzj3l9 z1}Xvlmm<9Y`$0KN*^OQjLGd60cP+T*hKg5gxw-smVYb1)cv-@DwPvo6-$F-O78*O=GwbN zca9xie90^~ZR#k|a0y#201|&XMSE5Fl_Ur5H!&3XB|(i3&LNX_2l3EsV5bD`1iDED zgYWW+ca|d5G29OEJge0bhRq$O*onF%FyFja&{42oo~`^p5W}$SEpW@aY#O z;q)t4eS|9CSXyAHbtUSZqHjc}W0G_K0B=X3<{dEQ)}<**nl$$w9x2@cC`$mx%UHZ` z4M!n|csTS0E%)M5poEe1f6XCh5PC`V4vp*Q+xCg<*C=qM5_lT9ieL6>CoM{t#0?Vq zettYK#O%2CWczQ7`v$G1%=%~v^Vpp>o8J&iRIh0-PcM{YxSs~1&uJ=_6J1V)x!}L& zMvNbV6=_*gmIS&oL8<5P#vFHUuKE+P;uR;^4h;tf^H3x8zWP$eU|B<-&xB}}Y%?xe z6odd$MP0Sg{JKVbFdEjf5Tb;>t*=w`?Hb-Sm~pyld!SwPti>fsbc67RCs=DkT%`_bOlY zGt)>wxF?yDd;`FqHarp1A;nk9!onrih5PjD1dxR<9DOpWZFhct&?5-g<)KO>1t~?! zj_^wg;oRv9n^yOpL5{39B23~ESr6_XoJCREwW{-Fusi+_DDxFfe1tb%(9>(UB!z+l ztCPo1tPH*|+Eibq1WlCDqQVm`Dhea1(7w@9+ll~WYDl2`+6_#)O6BD(K}!Bs5^t-N zrgX3ik{RKHHJHvI9M$*%&_t~>r^Y2&C`(Wrq6Pl|QhNK~4sQ#=OYsGy7pP(4Jz6MT zcf8aoN|=(zL8(8SK@3TDAu7reLW$+ThI=)H1V6M|w9~W_sJWZg)pF=rffPJJAt7{1 z5W_~(-3_-Y9WGj$P*MWooO>!$Fb}C_gncKoBp`=Rh>sJ;SKZ! zw&6iBl~BQ&pPWHFD~IOU)O-a&;S1KhYc&%TH3SM(i)eZuyf8a^%a)>{ zM3Lz2xyg)?RkYNU4iK|A*RAT+elxS*#;)wJj54B5Ualk3lo z)1gNo@xgb53)9ikB`jt3kBRF?HE({MqiOz)B&AbJsB8wmnt8;QnF*UuRwqdG9q7Wq^6)j-8;T*@C3As#~7F06y_OqU1}YAv%0J z7_KCS^TY~B2>$>&b{~Jv;jfG|=qgf}090HtGZg5d zsbbw>n;TXSnP-{nLCTR-j-dTvnRtS1;p*~&R6(aa_Sf@Mc-qZ1Qq-9!GYB3KHv6`% zyad2@D?&h0lFO|QqP%i=+s-C&!lS1KnKIO=i_F3D4!(5PQ?QC2h;4~BwG<;VQj?ue zrvTEwb{mLxx5-r06y+&DsGSSND~kjR8B);I6+1go`+3Hky%bx?L*OSFD<%R?pn>dguV- zh7eMAFP2tEt0W2%+Mbct8=Oj(RGJDGZFwCcTtR9=(~%64&)ojnvAtYank;t$BqWt7iQw-ZSdl2H*5$hU zpX~~`n-}ItPwH0ub&Ar&)gvsVm;FjRzW)H4Lx#6~;@L81CnzL2aGgBiuEU8WsQSUZ zSnPXi8CB(W*jkd(}xf0-5wJ3KzyTp0DgEC2q_`2|Iiqy&>}u zVeqx4r8*59_8s}yJW;(cDl;)javLzCcHBa?Sbmw+--stkQ3EIqQ14!P7-hj%n3*uC zY*rkd+;IjiUWY8<1w^Q=wIr7K*SUbWM+|y}mvZM;&~X_^W;@Uze0j&?-C7HdH#IXs8sh$()p zj;5neoHp5lPy@kWISM0ei>x#<#J zpac~tg#vl0?j9bVDch}R$e}DXJ}FsazW{kHp;CRhpmBT!tI*1R8t zSi?AukyE3L%h^4xmy005yY`W-Ilo zWciW#tWRmZrJ+tz$|O;l`kt{xQCTk(C1)`J>Ph?bg=}Yt0VOWz-oHra6O*4dQ3j}`9g8TDv?Z~drXE%S%M!h+9+q*G3P{{RTRZ=OK#mu)K)Ez?v{ z)*`B0VE&Rl9Z6DX9YcP5H_k8|P3YBVOUnsP<<6DZ^U^-I#CA0lntUS{#nL7%<>fn& z-+1!8ym9OPKa%6;8|K8l2@EtlpRpW3n|1J%49YHC0vlBQA-ewnx>Ow`7X{BwgXhN(m`^+m3%Wf&Qh7sOs*MtMT`Pn10Yo1zA8;`?TxY zBE+{iq`;iHfC?w|5kNranDOj-`cb^CG|)F1w-H{?cNGAx4QsIJ7OyERtd%5H^bB;0 z)*Et?`AB6C7eGGnPe!qLPB~a;HSGyk|N|__3?;hOOL0Dxdik2JK zcicnGn+lcLrX z)6Gqx3VBniw58}yqn6w~d&YTq*wlp-C^C|3`NTM33-L20uFo}ySF%<5Pb0M>*_mD? zwi_?mQtc?HNl^pUuXE@5q-7VS(y3}GAcp3UVpXyNPQV-fKvh72} z!%CCl1P)HeNOOr^OzJ;D``ZaE6#>%D;m8mUWRf9RC2=2wevitlSQJg=R;k%8wLgq-MCdt%`Ahh0q1`%BcI3M zyuCK^dFLN#uplQYvpQ5NBXq$RUPYR?P##^Q4v}?CvXuBqKs9Zn==>3AOvx!ySiirl zd*6-2<1)NoKR=b&y<-Z@K++0HRSTNJ&Hn&BQr49qX{hI{Fxai4U~{Pv=tl=CCt{PB zGNR3vNKFROQtO#k(V*p?&JBJsypBFqJ=~&5f6kCaYT_tKK^jHtIf_HE5lopJT9kID zF$J9k!=Kzh5Zh)jFfK&Gx^3>POMTAqQ?!1utRx2zs^B&;u#%7fch&@CW^(e}Q z1xj<%T8-nv@^Htm;^(Y471=-sB<7mfhmHgVXTx!ECAu3`o~lg4J*+ zRf$NUAa5SD=PS&-C^#|6Kst)W)mZCFkC%9erL~P2r@OCZOANq*bb(gsj-qmezQahm z68$6DlD;}YW{Ge;Hd05@IaHD$oTV{;!3JzrRIMZ{L0+C+Vs90Eir9?=+;kKrK)^ZeivgjT^dRl0iBRbOI<%zGTZx#AVE) zmU01OPh{-=RQE*->lLnOBiTtVK!0#Mjq3oHXRm+Hd@k_rI`)|%$lA0WKA*&Bevh#5 z9y6ibYuWDa}Y)_kCZhkwTNj%*4Bgn`xJqQP|L zWhJRk;x+N{)?E2vBFSu=r5#cO2HWEoBwgMoCcJMBlZj901nycZsf)5hmfAY6k2+!U zE>F9iVaJ8Gigx>_D1EjY!z!#=wvk%&lnOusrjNKEyicU-GQF+A74z;mgnV6x>Mc@3 zOh|PB?5R2wQ%GWW>7A5 zDNlM1U)>D1PA~P6rUj4g3Ia_!F!`Fo1?6x4o_l~YtoXWeVAbm}J`z2p2Q9eSqq`YO zM)ZkhLY5YRl}JyFHm8x?SG+0Rxs>4QOE$-j%@6m~uv3`Og1~O4+sj`lTCrU2vg)T# zuRKyaynMgcE1RDky${@JOXaJE3-p? z-{fN2z?GC|4$eYI)BU=L=jFxMD~qoS<^fZe*e7=8B)qJ0P<$oadyEUUUzwD_h&u57 zI>6IqsbF8-8Q5-BXh?7YRdmol5oYPW)hkJ3at^iFM<3Gx!|HlPgx!m5&NXl#3zubr zWW$+esx^Iw1GG0tyON+%$)@BDJ%SFDODbRjtT@ZDJ!1>SdOmJR zPRcH|RUjuu+(h<^saXevk+OGgeD#6yJt2gWl%>vrXX(-i&b`+#C6osvc4`RAmcuMw z>zL1$x(>o4yDtP#EhKq-J@C&y>`+NHQQ14c+6P$(BiIDh)M?`2c7-mQc{qtVfC)Yw zY2-HR5?UpLyMwXS;BA_DB+z_}URoHAc8ND>mdU4x>fcBwb)`fCv?VF&?St;q&IKxV zT7u;Md*U0*6izG<9F5pl${v-AR@wQAs;Y5Ha88lkg6CYuU;rmq6!L%)?eiB!P?J{E z>>!PrQnW}phVEGTL((6$p)&kAK_pb_2T{R+YO}h5QB!U~bMc9+)&&O4qgt@3tW=+9 zAb{JJexF_2q!ga|yqYM`_+PKy2dfY)KF7YXWdNwL_xJ1cf!52FE>3m>LG_7JZ~4+d z@iF@G7Hn2UDb!S0?xPFpOt4tY6sZlTUpTNWp{RQfN75-KIkqqM`%)mXgoh+&J#_Lg z0TzI2N~^IYljYZ#H)gh@!V}^&({H=Q=oq`zm=I~dPu>}Bi!~j*;c`{t1sRLz&|b%h z86*Hn{L(2jS#v-v_2LNF*?~0g3FdRFFeW@+H5 zPs8mRPSU4x*d@s&NdOg5Z>qYVdk%~?i0pTSwM|lU2LbZ9a2=haKE#-%a_vDGNlVbz zZMwd#sAz)gvC3TOmW34}Vn7KQm~QlOPU189b{f^SD$Hr&V9>3OaIz+Zt8up8apl{N zy=p>Gp)rT)t$LC9?u&M5iYjGzc@aV85wnR>Su|Uh;r`r3rCll@t2c?tyj^Q(g{0JPUyo^5|tlV5ERZoQ}l)@k`jO#z7{8P zK888GY(`=du|=niI>6H{N+1&5evoMuubeX?WB3@8MFPt6=zf65GW`%r0*WklcVqea zq#eF)lmh8fD}Ev=mbIZ7i3})ukGw9uoGq)-2~ATlw;<~Wu3O6>^=VO4P`;$~i?>EF zO3qLV4gUZ>P-a!%EUP*YT>C|+dVvmMP-|@Uq@`+0v(i1haVSb%A+u^a^n>#)NGi#* zd!r{8qCIkwvgksKDVm#iiM<|<+PxxxGZ&=@F=r0hq}mczq=GXVo_cUbohuh+;fZ#M zd4K>l2&cc8gVAOj^+IZ9C>*L}4Vzrw9KBiLW{8^9lv(Pa$=LA}ZfsnM3-y|&X1ycN zN|O}1StX+}6fM8)8GX%xEi+`OK2-u(6W>l?wA&TSiB&kO)q>fLTAolR(pBQAXa!YD zh)Hdnuq1K&LieMbCu_5lnQ8-mJM&FE^p3qH%2MP`3SB}=0BEm0j2D%_WKH?~q_ApG zjTjHEu#r0+OxfMshB|EUAJG0YQAS0Opa2J{8WX~`_nu=;{=PtFmX|uIzgNrM5yO|x z3b%tV0WwplF(-JxcFqY}k_)-7pVNOR0E|SG&PY(pm{X24`j{1pahhzaOv)KkJqZK_2BF!AsD3wrHY;?yM1wRX(xjRl zd#AT2XamQG&T)WXMv3iwNGC9(YCYOltPl0A z;96ALXy(70X%kNau^RILLVb@GVe*2PPBIfRpwOr>en;LI?6*pCgtG$9b*JM-TaV-_ zT*6V|V^g>1Xi$1-H^jB&IZoRhA!h{I)tO;phJou9@U`}}AOiKF;K8Z3Qi2L~Cuku% zyspI5g4ENVd5oI>0J<#_?Fmpp^;9RIda3oO&<)x)={9guRhhTY9HNQn9f0GfoEDYn z&R#-h1L742LDR347;-b)%O6Zy*(&g@LV$aj;qudAT0#^bXBy@HU=729rAnWe5K=Tk zw(R>uU9RvM6bgd@^QOHaL$*D`__-!vN~#)%XB#|qZ@oe$1r{My356UVhKjvnv*@P> z&+tPPmg4o3Ql+>Etv+3kP-3+rw(M4T4kARrqZH=_U%|Pby<}#B$|fQ zZPTY?2Bq9-m_3n{IVG#)V!gv_OtPePf9Lj#?jbO?nMrX&&)y+MEAWz{DZ5k4n6qwq znUIm0{#_s~s|uf1u5r zeS<}43v2t1L^NFJnnG0jI)^;I?F5b)l`?5k(gE0w`hIH`F%7*kWrCh^nrJzuzlUgA z2-o$(n@aMtD@Po3JCCbFmC=TiW|iS2k*S0muGcWkDxd_jgHc^!vg@)<3u%f`KrdYn z=Fp`j=~s%#%mbhu_411nF;Y@;r`jK%v{k;u)h8^r3Hr&Y^+c z91RM^F)9Z@1rJygZj^+n(@OqQI=b#@vdX+eD0BP3tFmxh?-{S=&;t~d4NrdXHraZB zN?yF}*he?*<`i-YGY4vZ2#)Z(K}{Ni&%8TAt?h||6X7|YGmF0*O;qqyg)@*d15vRQ zqtK9abHr(PU5OcdNve+H@t;^LCc=%| z*$@#_gIZF&K#yKO!~X!i{o;U)pAUM(=2DqS4r7~T{w1LJ^bA4b0prYYsQ`&X+DWFZ z)2wCp0%p%wh^Qk{4FkA3pL0I&Ew{?Q07D0;aNCm^{q=^7)fFs`fERxKeevMFPH=<; zDL@2)v%#jRA{Ym~3Ty#1h9!9{r#N>uj4YW}v4)Htt~1#wh`Tu7^qw z#)Yfq^Dary)OO}8Qgg$Xs9dt2*HRzyf-Brs#jL3+1ueeHh%k-sC?GahJDqxtj}YQq zR*6N_a;5ugx136$g3~DiVhG#Xrl+rHAB?Q)T(YTWQ=q4j9|);;--(@Be$Z~Lc8m6# zwQQ1ASEwIo0e0)TmnknX-`Zlw-wVe6GbVbH07+AVX#M!@4_JcpbdaN<*Q{k`@KnWt zEdfkwOSo;`5Nb0gp$Q4h^rprv-O`M}OZY_z+Mifb7(RN?O3GjScj(bQ$%u@bI^`@E zazmQ7@AiXC+hMb%Y5^o2tE64ESWKaqG3Yn#2-sf`C1@;3Q9q~hk#705tOp9vXi3s7 zD6tMRAON)#Z><60;_eW>6+D22P!UtVF`L^kl>1Q>QAjmA0pHFvi;Cz?l2A;yRKhjU zzty^Kb?q5T*}c8*V=Y9Ql$s7mdcuwMk4(VTak;0%i01XPTIX6SKuKfYza68DONA1m z82G{qI;UaB}+;uPUP3fd`wzZ z+bJqc#kYp1w&E}8H$_u_fkQxd=e#E39C{G4H5>>leBM�uaIK7!p9){_&qmx_wf! zO*xc7p=$Psy&0nI^n#Ma<=1*1(BWdfCCmiq&946dm5-Zo3YKOP5<+Ma8&0MfaAm${ zu;(cDiE>GO2i3Ynap$)&evi1S-s0(y+zmz&*+&GC+KrUvgq`Qjm=lBF>_M5$4 zu?;NbH78(1X?GmlvYeMS?9r-S+U}=I3R0!p@!%S)sY4o-KfCdx_34X(3qGU8^nliD z#d%7Lf2lCE3f~r#p#^7Ocn4}lYpQu#d_=LYiih3wq*j)xtJHX1=qU_#Ta5c^EC_6_ zDc8;(!Pp=Cb!Y>8Vxlg9l1q|Ho`7&6lE-I4i3ET&HL3jCEnX{;CmpN@YIS{smf|I~V@hR6uE${x5Y6Rvx`B2L;v4xz zdkuU165R zU|iJ|l$4=Lpj8#_+s+Qm!wFdd%WgF-5^GAgBOq#kHQTIDb*Un{9t>SYmRzI+5Hjr< zULw4}v>_7aK4R3`AF^o^E#V|6ed1e9w0mkje~4KaW^?P|rE^!zHl3k{&0%Dbtt#+Y zhdXkNK!TE0;Rj6G^orI?c$zYx1|O=A+w+J4d0#S=g#`lP=-g;Q`p3SFlmb+u3PF6J z^8^-~toV2&5~TwAm#i<$!~qM+?!&{=?-VgMA)H1~md#F$-WP25JmpMESk;S|R{ax5 zmuZ%-XjQnWC#(v*GD}e-#K2QVC5>D#p z-=~~ax-hwAx|ETfZ_6FJ!p0(%X;J>!p&PjK{i9UG_=ZY+E|N<(AH;sK-U%q61cA5( zha;yC6Jd}rrUA4rNefVa@>kj%Fpd&h5K^MRpC~Ge{#ce7OdR|A>^ntU;~Gl|1uD!3 z9F7L!9LPlMeIY<8CtMlQeF_mK}QZix}S)GSZ@g;82a5W6Q(3FJM7Vv}5<^ z+K9`st(1)wnL+;mp8UeI4_9yn{<~zwAww!fJ9K!`ZtIiPnp7HBZfPGh-MGeVnW&eP zu~&#QP@P_p^p)9tB}f2j-t*oU59p|Ewl+DXkXp6e@e#|umQ|HWBA#7@axYOS$*Z2; z_@4AR(VYqejR4jD-C~Q=%Oue4wyhps_JpNB`)T%oRx8~^k61FD`nO*wrGDNe-Q6Hl zyk~0XV3+PJ2ui5@@FN<(@sUvsom@WN{$okMCp`vLC7!XBVgX-foM|3+la;mT_#}+y z6573EkklpGl#IIiu>{e`1>2$e#?N|PVM#j^#(;g}HNUPQMsh2y1N|e8^2+qHV=uMY zGdXjaBVD0-*ro?u+C%-}V*xY;!D7M|t(P)MONtU*8j;vH>m6 zf4m93Wct-RGiU~lz=nHLLQ$yzXxsEK8A!;IRN05=)|(N~@*{pcyVpN1Jz^7K0U@+B z53M1`1gNQDBmV#(O$aUI@SAwrNp467v+)f$0@}+An(}}ABlBpVC;mr|HT3olRJ0)p zm{L|!2nXUIpZrl#Uy6zhfJ1~GiRlZNChJPFEpDKa`JL3~bJJipjTA~tx=yB}E>}C2y*L3@Q&_I1^>L)0Th=GDy}MFxoO@ahi=?3FYE% zKatKK82N+KP8eLd#$g@>9}0k>>D)$pXOeYJqm4&c`&ZIF78aQbMnFqu1+r`A5sGI20GT6$rw~0>r-uATfLAOB1=U(q`Lqa5 z3Y>IFKL}TcD07z(5@YldwPDGr_K>FNBAV<<8iNsK`&_XJG5RD_gA>V>3*-A5jzp-i zRUIN+T1|n$Isi1+-5O#oP%Dqtd8!Ho8m6i57VOpsa4ScPSZ?XhH7p$fjN5mKwNf_w zx@xTw6PS$52_~iYAGCgvV@M6ZN<0<2?v$V>D9oB>=eI!w&CZ3FH0`jD56#YPd!8R3 zQTq+y5j=oNKpbxx<{p(Q&ZMP5N~0A4?DVdpnvL2K@a*KuD)yR`I+03`C-=tDa?i8d zW#yJYn8DC#?ma2*G2?QdD)u;EjMUc^tR`SorFd3qbUu5y;K$IIXoa95U}hRj{Z;4l z_W91y=(=pQmCI2I1E3Jk4z ziixu1ppI-d)jJySV8T%T)O2y;=HeZK0mhNGIqlKeYH>pr zY%BL~0IVw^KNz`ZwK0W&Lf)9ET357pYn@lpI8yg8Lsqm{$vOkPQnyXZQZ$RRts`R< zZ6`1y6@pNuT60s}A{$W&qiYb^tOO~^EwGO-TUZ@hGOeIJu5wacUl>@#c$YW`K-4e; zZm_{V#uO_9rOQejiYN+39GyIDD&3fQfBmq&^)RK3E>#sWMLrD=>$NRGMiQ@8snk?! zr)cBzai1RDo;!4~ED1sjim_p|eDR5HS&Ot4DGrhB=Bo~ZHrwjdqDXp(OT6tK(}Fc^ z-ad2Bm($tsbPIN2@MVIg17_M2@9Vh|maPt?b%tVQu8)-*Jz|x<<;rq6Reh$DPSq`k*0zA@doU77?cVF5FF*yR-(Iz5q?;VwKyZhSiX)txA(&Zi!zeo zB7&eDJ3hT4ZN-w#3Q1OSN)JIo=jjs6^i-t`=q1V3Udinm&BcaMFaUj~bc3%@L=e4f zNdq zH9B;CM_5g?-m0_ABPnn36f734s6>t8#k&dBWZ!!K#!20ZW#%LUj+Tw+Hi%pZ@?dap}j)@prZo ztT3#ZfN%>}o=^EU%@wb#F1cYU)f=71+oW!mA4h6iYCxKJa zG@qR{h5SpKj80)1#5S3xj93uH8?3lV)=;)dPc(BD*Mf+2E?S8-1XQ-!dT$j|i@Sd?WOwHl4e}6}tya%vlF6)YJ34c#IUJkV~m7Nor&~ow#nXU+3cs z{5-!vmP;vB29K;f+!%2H1MNRM9)8i~hY3|A1{$k_)b-{c?i?DTkfbD(zR|<^ACo5@ zoqi9;w)XvST@uhYAeVOWKMk;rI}P7i5&`x}t8w4q7ch;UNJd$*fIRNdO4)}bC>13_ zlx;kY)cD8B`Mm!CJC*d_4-DbhjgJ$BzFIXH@!lBja8kmg>F@hOEx|M;Ue0dcSlV!% z-i47dVyPe7J2}*zqfa>U{GReVH>8(MmS8z@l1`ei@`kiwRTfgz#A+Yq(7~$|uv3^2 zNZy|Kp?cm5CWmH><11C|*DF&nVl?6uEjBq|v$B)%5OQ_ez0G2PxHAVeF2|T$rK;m` zP}q{KKRZFomTJ(!3O;ZxH-14^snF^>K`Xh=m2ZEX9zD|MhD%ADLx4Iq=j#CO+rnr$ zCM2h?59JMadZuM?8MWuiE8B|Ll_j4?)uX%Pu5AIlCoLttp{Y7{fwrq#vCQ3i!MlBk zsXr(QKH)SQRQdFbxpC}D4|*sNNcO73WpqC{%C9RguTe_`sWec1I}fyJ%LHr8C1V?t zK3THqF$!=JD4|yey&i_FMv;7aTzuu}9_CV15_JT&-;{y(E#jq-FE&LtgrAq^F{}De zuzJ~Ib28K6SO%f`ZaUY>F?(&9Nj?xd9Z3D-((rTn@x~rbKORE!re!24iB7$Lonng6 zAAl;+IxiH>0V+?bniwjyR|)~D`o5a=i4$`cCCLPUe6(R3{{ZDCEH!EfAw*PwJHIin z;d{5%GkeVw)#D$-mrAoHo9cEE^d=6wibk~Cw0XXN{W`dA9I6Y-xtTO(3Spzyd&OtP)uHDAtt#-+>_sk)os@jiFATVaa!y0@{di# ziAWBg7r*m}e7Id#9(c$vTY+@Skc1>_x{oJ~_k?@P1b`G*S!yi*0I$1h+f$@(x4nT= zMvR8{5eV3V#+0e5r6f2!ciZ0_eBHi2de7!vl9TMDgs^87BsEX%3)iyh2o-wp2Yz9e z_6u1$hp6MLLhRcyOQ%TY`*o=zit59~)9cnQCfoj8&;zd@c%n&Wts{vDat%S_dVUz7 zyK27zK@H;Aw>-s5I#jR$(_V+{VnwV}DxtM!evx4|kP;Yt3@Re+n&KPz5x-LLa_^QU zyDy4 z2-`3HGP8!v+;8U?a!@?`tf|Y9<)I%)rRy@SfGz-YroDbJ>0^}RFs@+War^#mA%69` zlxdYoCZMaP&9|Hq=nMp_aGh!O{CMWgh$Tu&kE~H3?hBruj3P<4JfY1_yqK+Rvn6er zFS#F5HY4+Rsgja;o{?oTd`?xWKysJl==-+O-K!Oq21+abO56@R#WdXVoRKXqG+|T6 zW66rvY&Z#Ik{Gy2e5pE+K93i?M`IG#HfDh%pwZ6J#QYyM{Aa{<%j~}b45IJ|0mf=- zokzP^hV#T{FM+@;4sUC_LD3R#tDpkp8g%@4uXj!ibsz>L13}UmZwuXO*C$R#eqZMl zWu&r=0c!PwL-pNwS=4En#-Pv^f|h$spydPuv2TEdC0No+mIjQGyc)Z19Il|Mg6SJ| z>_=DujzOd9PUl!7VwwOXvx7wPAOez2ef*!!nnjISi|OUwC>d92N}FQ!i)cIP0q&Lu zGKOtkxK&6k;mxzMAgQn%;8^(orqhM`~s2{Wjh-Oe2MTT0B50O|G@% zbNSdZaXNNl%0^;$YWv(b!Z^M#jIhcBDIfw5U5z(`(t=GiJvELm%aD;pYx=(MU2`PCPL-qQSl6* zazL+g+SVAbekWAIT;|N+r0QMbCpoweH-0S7B&3n+LyX3c#X8WzSyw8Qk(h^P?qL@d z;bMR$)zSeVK9u*chm0eMkupwdf(GMQ)3HOW*i^o6@vC#tMY-0@+7A%cjqi??h{8c8 zkGI+a-57;46u=PrpE#gryRv0vQB`gTJo(|l{4C><3wTWHN^Oaa*_%ZX{!yoKi7z#1melof+eiF z9f=fi_Z#aPouc89DTZGT?$qu3^8itF$xOu=IYBjKv-_d@HQP=dk!NK-Q%2UkPTe$# zEgqDRgp`iVHFFEM^~-9W!60Q61d>bdPou>vZVymW12YCuVN=e4LNHsy6-~^kg~A8t zx;equ)Tz@H^#lyvwu2Y4GRiX4kX_v9-S~yvKZVmQ6(v~~YTT!1;F@*!#QmkSNW?P2 zQk12%01uo&h%6wXUaj*MG@yFt`u0(#fFGP_Qm<7ILP)4?(Q1m4uO&89Q@iiy z4R&h)^+{kHha5unuHjfisOzarLu$p7B_k=QW*xrqGx}96ryDU+6ey_y zL!)`dgKCj21@h=>1!jBuv?ZDiZn-cZWF6GoWj?;i(HsCMgb} zmMy{J6frIqku(&5NdlDcwvF6w{{YErzD)5Yl`|@Upf#r&j^B8xg{Ed!RR+tbSPt$$cc(hF9r+MH4&o_uCMm#i;p8~h7A_mHLRs}{ zDFBe%hp%FOQAYT-6iH;DA!t@&r0xsTPcvGUpo!&jDl|K0BbFUB1aBDs0Hu6Fv*4DH za}WUEt9;|jr`9b=Svi8cxblrM&4bcTX^98?N9Qnb?iD8BTPoHPgF=uW&#XN7Wvu{* z_{Wzf7A9t7mPV8sAIe1cmDtM4S;=nES%jYUo+c$pMxS^^yDVywRhdlsjhl#gx7|fG zNpbAAJ%4zoChA1MP`V$VW3d}Vz*4i~nJAc$l&F;&(@wuiRvK-%sY;+5d1?8qC|+1a zQs$vZ@qni;H642F-daQbn#V0(Ht}@R@I~A?tj>MaF;h)ye5v$;R-7v^jIZJ@I%&s9 zGyQT=G^s=@pyTfZE%?C>aAl*%BTLHyr%Ek0rszlhaB0~}zWY8VX% zFgj(Z&sY@$mNkC60i-QAR@)4jrOiwG;0&1pRMNqNYxLklPyMh`T?+8g-{R43{J9aA zGOAdAKX^j{W@1-K@S1b4LlN9kOv#mXHk~>|w;mr#mQ=NP0QP@1cy3+cEesHm+)^CV zEMJz!pc+%JXy*#pR;6cE0QPx_Exsv%K{PtVlW#SLOE&~kE3}U)(U{PO6e0BfVvYA{ zOt~tUrLajZ3<0_=r3+C}qg1_rm<5R?OrD97(^RMtPC5So+q5hLcMqgQlo6_aQ4O|% zODZ55>8vl|%o=1_^DEj()9=Ug8ZFeBGiAEik}5PEgf7E9!`Q^6sJ%2DI+$<6_o-P? zC)yQ#;b!#1(vnq>uzCo;bl4Us8!slF=u>4nV38_P76C35_|R>3G=#WNNPo{L&+SN3 zRtktGUV)SLX*E(bG)x7JnsC(TQ&M0 zB15R@3j(69`G_79r!h{|jh2$i1%~j&XiA83{6OpS>ykjtug)wK?S7G(YDHa4ITfIw zjXJ?G3PM8JMEgTrynLfLyzV3>T9%YLlgAwlcY?3vr7Bw75_$In`OHtEH(pmPvRNq< zsLS<$SC#(&G)xw7f=fAVQu+@)c4mWkdlev)P5jUC7iC{^%*ANpj(wr$yih?VLk2$$ zcHS3prYZGFWdg@eVWNHSD@3S2=CM-$0K;jWEaqd})O8z!3i{|WoH>aWSK+Bro5ToV z(4IDpYR_>cNz9_>rqF|a+5JjfA=^W}H~go@9d1kcCQ?bKh1xOk@w3>g)_heiNjaRF zFdF{=5EA#5K6;fjDUv`fz~SL;P8^*!VVhj1Z}t55LruqjOGqeEfMURP`o_U+IGK>k z9wq^X{{X~Px82AHGZH*xb6RZ|?`w$)@qVET6BM%G4`)I7)&P>@oJq|wfEz34);zy) z5>S@~*o{6%T0(W|7L{dMm6=u7*GpUTA)PM+@T6|0LiByo#XZC zd6`La3p2jZCc|o7s2qfc8tF&_Hn1jY?FA_Wv7p#>huPRZXh)4sI2w+TV&%JpxrN!y z998=mWV|m-fB^mA!qRoY==qLyERXRVH!vg8n#ZakdOHGlBkiwEVAYQrki3N?_`Sn; z6?)zXv`#=$K|)obufLbx6rV=1=tlHRyDa6XDf4(#pxzMrcQt)YAhs05lPCJc7hs|R z{Q1GV`ci#Tku4x6D=-}?3x1C8Fr+G46GW(`MVL5-C@wt34gI2WxMJFt*1W{nKH7wU zPyl*`jV2Im0G_}UQc~G`9;g({+5taDK$+Un_fCs zU8@OIbJ4yLl^{%IW>Hq;5E_|4*`wRmLG_1%TDn5M0kcd@^(|}gdqfi8zRjp9Z#Rc4 zZSIAVr08e|)I;=3f^y}dB3mimkMr#UEY?Y@a#xi^xBjurt9qraDIxRdN#p9#B23AP z0RoRxQTWt_1z5dqQ6^DYSt}Z!w|GXw_Z6yg{bHRmwIAfJ16Rzy9Kl=i(J>1snNa>3 z>lz*%yAP=cJCZ0k{o<1SF6Mb)kyPmVdBUxlz-LZnE5ZwqK7GEe3^)3gnRQbnY6kxR z#3y0vC-mzx0*O%?ik^%i&qjN;E=-hULP1&9gE0qk{{RN-8LhVIDw~>MB@aMplz*%} zT~>8WQJ$nY6e_J-kJNDth!gKs(0nA$g`Or3AiI7d^L)0_ek1QQ`;%Ocj{!;+npX&&WZl37vT#RHbFw zu0CCQ_k=rEK1mr;px>xchu<15F~5;6S*B-6@Pa+v72ZB-ye^fQhGJ;tzyo(Q`26{Y zFq+-bb4ycBm_r=`x_&$wvf1QJsZ#{d2lvKnYQCo#K{*Lg4nPEoYo?DJ+?Q3RXS9PT z62o79krdi3?~7$hP?IjC2j!q#yM3Z*bD1gF@9v7X4jY#yaP^7=t5QqXXXzRZy7`vD zDIgO^+sds31sOMK4ATH1=&kyb7q82(WT7Q$^MAB5*?mN|Qu3)=lV9Qn-nZP5ooOPJ zrot#KVGK4UOD17;8l1+79Dd?2NS9}t`BE#!o#QdSF$CL9C8mq#8@#B)E0!2_LUhyU$ynSHGreJ6eq;h)u<2?o| zqRT0A!OFv5I3sp?JwSQc)sl(G)VF{QRIIVv179$E! zAnB`Z70Zs7rg34hC<3!y0O#|XLx-cgWZ8hFLD%|@&9LfuEnby@Qg0NcDwYLH)Ax#) z8xyGun1vQUrRW<*N%P<75!4>qs_aNYj)6o7Sif$N6`cVmH#H75guG*lCLz@QyLW>) zPV)7^E&e;2cQK^&SgmOEcxJkqyQpdp+iy5y!x(XL$BSMz5XWM(uNwS}sw4xYUtY%v+P2vRC5 z`K)Dlg6~|V6cR{tm!LZyKZw{S-eiH0RjS*0!nNs#y>^Fx5F(w=HHqcNVz(LXg6GT| z;{dT90aN&$lo%1LYZf_TNcCo<9e0T@6^3@M!(THP{{W7Cw&UcnfvW+68K?s}qmi$i zB;rgtD2%O8bRVg<2j?4|?{a2Q1wgyb*S|O zYo@vw^f+>u;qpL>p<#0rx|XPYk0+R7u_(}w)OP9e1}a(Zkt{M?sGn&3y2SP+q&t%1 zkB9@{@wY24raXA#eDrOIkW(!gj&##2>NY$+v9`&&Nbw}_{GZL^=bu9NiUO#RQYxcN z$#F#xeZ{n=`A5)*yj4PmQ->t+9!Ha|Pfw40bw=}@G$}zeO2tT{5%WEJ!lmbOs3fR9 zZ)CQl9bEqaiTFbes`pXXNB&=krY&H(Wib4wNX@SjWwPQ?OOnKGxEgjnxzwr(LxS~ ztB#N&_`d-zlKsRj6Ca);^R-_HoimJEmYuoMBC^<=7yRuGSXS$jeYBFc=8+t^{3g{- zKP!;GVY`a7?Opl^Wwl&O3Cb8|00ygchkFmB^ptwdzTaI0TM|+-47#f;@8uj{{#3r5 zbMfr%!+!hz<~Y2+lX%T{_gk>SUqIT^CCj<{<0G`z_UVYS713T~gMcao7 z=Ju7AwN~sq@8upf@?KTzaq;{?>{eXK3PK8t(wY(Ti0tZGCVIq$rD-ojkj<#5s!o*m z#^r_#nPVtY6h`H%`@@26X%kZU8BL%7zvo!fkBam3&!3;+)r9{5N8XpE&uMdxRg!(G z8c_UeuJNYXFzls}Lc@x>OGa6FdOEYrQ3ydw$0CaDqj^K71iHkrm3fkM9lA%S`16#% z8y;_)mmXd5Zg(Y+0FgpQo4?NVzA@u- zq4rXwFOdy4S-Gpc2$TRUS_lg*DYp^R#$%hE)XSOyu9_IFHp*%anzVK5j)Z9vDCl?I zHDr3f@|5V|p?=?M zCEl>-G9?Oa!SQQY3T+`yX+Z9NkoAhJ;b4(cL1PG3EGsm+iOP|n z7F7aj5=9C|zx<+G zbh(9#W(}y?3+ClLQ~v-T8}v*zAc`q2E2k!(ybHRl874ADbf^%=Zz$B{-L94_<(`cF z-$NYTcs&kQk`PnZSKxf%fB8Ix@WNG_(V`|73Mo+@$H9%T>ij_rkO>tE>%AauAF@oCzY7u9;}JS)aljWbN>EgiOL>5H?HcXX zC6WUa@H#*o6?3vniVaU94S!f@5mxv|H!kT>OFHPlkl&tgUd?ZpM+Taa%u%}T&<1ro zo|FfOiFvaY6y72r$7r6F(K@tGX0re^iZ^_=&~WftM8UqhM{f`79!hhrls0A7o5cyY zq_7A`W*dEDyU_%eCXq=OS{e7;!S+t%-fLA7paX9eC7IeOWkBdj`TZirp5av#k_gkQ zL5VjYXC|f|Bn>3&W7+fRl~fxTy1O=2WpG-$#XHq#G%k9Lj2DkdDqiZTOHvdj%3fs$ zp$$V*)1+xuySXYtsON62@`O8OlqpV<2O;>>zQ!S>taBU4nJ5slR1~HKhMXSU#ye~| zNe*?>jaoj8^sRPfmJGz4ggO=uolhQd^Tqde_{m8u!`j!Wj{gA0nJYgn>>g~z5)^cH zD&4jNtTbHH>cA7GyAFE!Kx-wEjOCn`+2HlfE5w@r01?y9>`xDE69J{Q`5zB7+A{1tE?GmhL8^9FSJ=kEhEmA{(6gtIHp|vLe=YlWPfZ&R+0O358sy0z zXiK^8(#&1@@B6{iY$P-O(beMebma1Jv|)2IGkKVXWzdaHVy&2$9B~&HY3)e#ICJ~1 zOFKbtyGR}o2JUqCz?t%pmQs}b#rt*grFcgBY|y`IkPQx;M!fmN;coQ2naBB)m!u+J zasVWf&MUs1VdDP)C_r}1)F0|$26+M0YORs3WBFL*=Z>!#Hs3XYZN(mtw|FoW2b%pL z#v%o3Z5!Nv-cX@=TPhF~S=bG0xa}OS_e-2MA+<3FtlVtP)bSEZv7Oj*I&xr)xhMb} zpa5O8&D(?dyjG`Fk!LCn5`TTfT$gvuN*%zi@K#Ogf_;#YtGgHL6mKj1KA@!dQl1sd z?-9DVfK4G!n_WbBEh4@xHs&g-T9r>^{{WEVtX;F+2}2R>HGe)a6xOV>hG3cv;f`Fe zSg<3?jS5MUr2-OivCQJ7M~^7AW4NXO`RGgaeZ*(T%`&74hI)JYK})jBElH>WL0V}2 zeE8`AO}HhhMH-yN3HOSav%P#qfulUrI?ufdeVP%p0Kf4R`J{LlgHm|u3(39afmH3O zH9S8^FLm33gRMt6+lX0$DlKy~Qe2YY^x8a^V^WDZSnm5lnRl=RmZMPd0)^_O)O$x( z3>a|_2BepAqz@4)BXDEIFV-B0Id&v&d&HJdv#W&acYd9rm|M_*l9^#epSMrBhlEZt z)Q~}`7rejKc`a=!JDr+3-ZGaShr2hc; zJsvGsQW%nv_dLOQfMv|8QlM4ao&kc;r)HXyRI58slSU#X1z)9{>aIMZTU~}{ge56R zBT=GXL)%`lQqN^jQO)8lLMW2j!vj`1eitgJ-{xELuu4uTN<&La6Z(`YM=e%<~ zx;xKgB&ft2wUE_)o{&!_o5o#M5g^jJ%QnL}ZxoOyEM*|Ss-5sz zj7_j*n1vG0ukrSaSEQBZWYq?x^&Ga$dWVG!X^2@x2`APhh zsm+ySl20R~HD8x9eO`3XiU2hSw-KD$xcG$v?H&=GzdK-Ta=F*0+fvfE5u*)Yj~n$h0JgZ z)%~ROr5mgTzHW)Opp+H6injjkI-0@-rwQ8ZDjlI(7TQT#HnxnMq%aif94p74Q4DSn#vHznvm`hY6u+{{S4j z^V@?8bP(ceJiiNuI-bHkxUoVe%@V<4fkxam{{Wjs`^y5AvVxe31)9^Sg=`t<=*hIM zVvb~1fbK`$x|nGZ^p2*=bC6$0*Pq%3U9*yc6vn&s9GD}HE^xf7NF+>2PFcsjYb(dj4$<_m%9mBq>e{3UU1F5#1Jl zSdvSzaORK8e5nN{4SHNFHk2g_Whl_R`hnP+ z0Oc~XD5Wa1S0Z2%8)4U{DZAzOsrA5-r+#Tae zwMt5qY4?T8#^6MwnF%aN0jgZ>1qNhcw244b`RNl{?*SwdbP1vT`Qjp8BMFoNPE~v1 zQxMuFPeGULg3Mo!lvD;hCvHWfGLk_FH5>Ol!Fz1df(jT9lwkNS-8#)_RI*uWIeHPZ z>_-gk8iKK2e8ov(HX43!=M$lN(|Ho0AI41{uNAD9N`jU{0(B4a`NG}ve!f*Eh4t1A z+&8J3u#-hMH17;3-P2Z;sJ3RI8~eEZqnt~JMY>o4IaGs1w>uEe24rCs`qIi^t+aE? z$5$Gr%PNs*o((CHSZV?<1t zCG(*Mfc5Vc<=dB?VKwg+vVe;n+N&(#F!-fxI66P)NNc?Bv?&0G4rxlaZK9=!l_{o% z9c%kVn{=6FKyUPb#3WnQEjfp>MF%ICR>XGVa+;NE=lerOAW%fKfT|Pjfxq*}NC2QI zS_8l5k%ggh@4Ug5GancgetCdXuRTdDAG7s}wwofeX6I;6y>BBjaF(SqK^kiY6Iz*g z%Jpf>;!*a$XsKjCVl)N*I>OOjLzOL2?3n6Z$2ml~DH|7raaMK({^b`!Usx?+!7W8H zh%W(sbm>cR;v2sa?d|D64+>I3_B#Bb9>YEDhmz=W{h9v&W8MH-u{cEVjI4x>T8Hr8o@4ans~s zbJ5-dDV*z5gz4}8BVV1DN_7njPfDq|)=>3GdT@IFa~1BH1gz&>IOUG~`L^|3gr8;TMC1NZ}vp^~iqlk+J-jfN)w`7+j?D_)? zH^ts%p7qn3v>ULXMcs87o-#-*o#2qRh!^_30O;T_{1$Y2QFP zLxvN6TO2M~0gVXfsNy=fZW1Nbup4yle|TcF-7=U=cP$XA-jKkM+YKHFL<`gqqDU+Y z3Q+sEgEk4vAX0y zSNz&2TP=Yr3onq+*G|6rdBB@&-&;8;O983Xn`YVi(|B-|mdoiWVVD!Eb%i_5 z(4{XnS`9isNT{hwAS~2t6|A_2G|?;qDO35REe$%zgb5%h0vp8$ID-u+1r!ekp|yso zw&Rs46&h6g-Y?x!vzAe0jd+Ts?U-TfOL$X7llq2_Pr(f{@BtwI0CAMBAP>*&9O4<0 zBriH!F`y?xN7M(3cQxv%ip~__jfwH9-kI=>7?+7SFkpI}C0hv9>o z`TZeN6r?(4D!EyV8oMtvnw0?l&oE4s>gC~P1Q0{)=V2M8{e7xj%!mH~9`)7s=@0h1 zYZL0ua($t<;Dnq@gB389X|-uxzXUFOeH3VTO8P>j+LaWNSU7EeX!2ean;|ZRg(xbV z^@Utf>15_93IUG4p6K$)kL8i#Q6;u56Y`46(baaS%JCl(xvQV2=8!A?!<+vA-4p)+ z)flT|^oJ`bXC!UB}e#14DI{f59O2=R@34kDfFeI`*U3`paw z6`g6wjNoQgUzpqP0`RqbNt_huONXi02+MElQjK^dVXyLWqMHch$)tz6S1QJ59ZKIAuL@uf@ln)T}OU9!%dS9 znWw}^31VAPc7?kuQA$fb`#d}0T;T;u)SWtQ6{*ob=@O3;KynzCXB~RN&FO;k0;JHB zv^HKUPErck!rhY=hA9?7~V+!J4Tdh|tFvqU17El1n7i55Ev**LbXyk*Tj0 z`^W25%{6bGh$Bbe?+-=;;k*7^#e}Va9?R1+ei(O3a*WgmP}_VXD!r~FCTbKzIn#8u z{fstP?nC%9gJQ%2`jRZl8Ffu+nX6v?#N)o=Rz`ev#apG7zn4r)XocT4lH}>ZNC!oT)_nEkurk;{O0j3DpSS*zGb=k?EmrJYMgdNpaaFO#{{TD&_wG zHl$~^dzE&&K1AlJYOA0-d57y7E*QgVlE^{KPwMI0X86Ix0pfW=TGL#~3ZOL(Ig1#d z5l&RHWxW7kH3#ZGQ15$S32Ff=E~8Ulk3$tr(urZ56QF%hPN$f5X=@w1Y}2MIH02zj zoPU>Ip9p)naDZ``GIdQgcr9bQlKG1g=g9E{S26o>#4bE=I<=-$hge7|U^E)jNME*J zCTf@gLATZzZPswKEb^Qu=DI`8ya9hQi7En@0hl)`Q8QDFh!w5 z+j0c~+rK_d8a;}t8LPArw%XC01ds^hdTkFTrJqXlUujZOW=={HtwyWrUqE;S9Xi2l zUJ8~Flm{bB=Tb)J&JE&g%PI*4l;55Bq$ymuo7bo$9K4-Aa2Uo2!l5%1127c_bry9J zU&sa(hN;Oi+%*X7$D}XFx0DtYB(Xb~WVTB=Lzg6PsObQO8}AS~$jm92>R{dQw23|t zNpA{9q_r4)Vy(|{r8B~&7fEs3;Qck;FWN00H7GDngJy0%@Q(0jC7f7IP@qeV_Aqr+i(>Ni6TPXnoN&+h9^^r8-D<;wvNq_i;#b^XULB zm&#PN5*#xCK9O?qoRkdC?mq-7SS{+9ytzVB&h^p&?%#H(xj?4R7H&)pIbJD>VsuEY z3sx8;*wPreK6EfhUfBz%_*s~2+Ie+{Lp8sy#Yj;FPQzWRp!)ej<{Y}`S|$=GlnPgU z&wi1sU-n^Y@PGnH1cABJF>UxfKQS&E!^w~eKpHeoT{}tlr=x`wK47ic>izn`oI8fs zB1^5ET2t8R`@!qiFfNt>x!q?m}m90|gqIK`fz-&!AnIRI{{UU#c7LQb%1H>VNg(M*`aA)Zi&tqVEy<-v(jtQne(CBxOnD9w7b0hNVe4 zl8;tZtvBX7wa!>k%9jGXH&^3Nlw5?GWz@(dp1x4LEyz*IJ5yM_bzkOk)h{ZNMF>0f zAL@4B;}jKeWLu<$Ccm^jCCPHaNX)h!c8Yk8z=JHz6FgPQ$6n$)#F%|W1x~@We|#xh zeH%H#)TLoR z`Zb6BNfZVCf1F3_vi|^7xs1)2F|7-IV*5xAG`h%`bTXgWFPJBj!9N!38BQm|rCEwn z$pEq6&%AFJ{Pd`$NKSmlpp6gO6mP67xqyM-5B<##ho>KB<~uw-Ux&9Zo5MNB%vPHT z1cOG3s+Q5MVjL)xDMUK|07!90(ch-P!tA^sMqe)DQ^4pW+~fH?EZXonem^;IkeP5s zMarT>q_Vi?9jw?;O@ysVDUwJ3*W~aJU(Z2JryV)vjPFN+p6pERufuQaryeAcV z@!>zA)0S4RRDePW6dOP0(C>O+DLGJ}lbisN&<=ut9-ev#2{O(l6qh;443^ODqJBV+ zlxi0x5|V07OXz!_JbWhY^doNl zI>FmQNk9G#YI%5Q!nbXqDi0}^(=*`xf-9-(l<;Oa#}3) zBuq(SNGw}M1eW=ELj})uIL@g^3LrVr$JQ@d2+R`H)xHPq9_NR_@bB&6`Mmd+M%xA% zMC5wJGG-(>?X^CCj#kfdq<|KblAZpsO2u=5R4G8S_8fH()n}361eZImhg&0UD;|$*@%FF18sPMH++IBW2c03bE4BEgA>@+0RWmrS;R+e0E!;J#Az8+ zwwp-`E#(~|(F3L0GXcnpp)`#WD=t_q@{4lKM?(NC*0SJ1#CzbP2wD*RB9*GsmrY`M zmWn`|ROkGxW~%nnHR2me=)x*aw9vFyv`_H7Rv`rC6Xg|*=8ItmEK!^(50q&t!L?Au z3B;@A5sOofBITHYt#>h!Zwk!4sH!IQ{yZh>!-RJZPUp#6o^?sP)8kgapcP{ z%mtL3swL~^`J^Y?Fx147JWPGZppAClWSU7V=ivh;-3wJ%=5_;G$1jud`10-95ImQ#DETKTG4IhZqtQPexK#vY#peM$KE-&8F7V=NS7)XEfbMN{-laGQ^AB87=mVS zlBWfSVb`yC(JgZr8aO(G0bfMO7o7oucO{TVjRhVsk^KVS?hkrRB*mvV&!P z`V$KRc>&Z2ZFgpgtrmm;PGFz_Q}Fu{uHrS9J58TLSKa|CQl`rwD3>7VO#*&!tzf*B zC3z+@)xn`X2M6gMUo)nqCS-|(6pYNJQ1%@)YG}}}d0GXmW-1|Qs*dVEV(@aZi4S*{ zC$lX;5K^LAn*Q(11Gg?%QzVd5Xm>r~cFQD$vXkN(C{&)E8<>i9=%lt}g2DdJ)+SEc zWEQqwX@6F|^e;eqY)o34bIJ)y)iW^DYIN3y5hvn_Y@snHpa8mh{XF1O?;uMgDL{b0 zy$3!1@wdb68grhs6|zXmNeS!cq-nSc?I=ie0K%k-{&$S44A{tGP)JIg4kKy1FP~(e z3XX}|Ir-da##212D$M}^631#oRoiv?utg7D;d;rPKou|?4Nq8bvlM#2YM^Nx(rP(S z$@ZCxV9bDM9iO}!vsjv^aTO)rDNS0VSn6%zpGWhJB#f%!Ws+P{D_+(w)tI>3lNY5< z2~PbUIvWRS<<5#E#CEGzU8a!C_w zgvfEOwLWo5V)7@J-+u5W#WrK8XK;O=^@{Ums2>-{cr>vL*=bQM`I|?9KoCG8nszZI z;dqqz$YL~Tmg>EcJHSJoNk2%CqdxuhWP%An)wONgh*8EDa(%gKWU8QU+;r;D^?2P$ zN{Jw;Jt1cQ0JxI0ytOlr{-vQ_IZurss?e38Qs-4Fpa!k`MjL+Nk5;LfOQ9uzJRUjk z8)hlGQ~{+@9-H!a`Nms$-dWr+51=ECyvE)hS$aNmN>+MsHvQt|+yEc|7I#oIkJh|C z7#zp0=d(e4BXb$52$Taqi9}_f_O$5n+sl-bSjM{gOBTFE@KnwH)eZa}v7sk6e> zh~{AW=nk;QW>tsH9NDZzMUqG-c#6Q5EFY{CvD!j(_{VpK z{@k4AAe&>#8*#rd4)(IBmq@Ett?q^kZ2Gy<0^4r@9BsLd+slqQa_K(vyR{{QZebG< zga^t`ecqZLA-5A^B0LFBa;-WJPwxn86BMl~H3yHpa9&Q%6ZToQS(TMam_}!#{3{A` zF4PxbN&5crr%u9ZnsioC`fKlkmK%i<{3=Rn-BlR(9a6?pyOLo!vXsy<=ckv(B(_`x zl&2{>sYgNO8a45G%9l@Tl2`%K7cG~hy-9L?kRRju@{I2)zhxnX6iIbZ&~V&RFDC@2 z+AK;%0O`AP2W+;22%v3CRioQ|v4Lh`Qd^z6!L?8ZW!~Gc{{Sw#2#pqbU_8a1sT-aj zVHQn^Q#?g%0ro`!`ovSP?6O96DYpPu_BweyI3K3sDF}K5kOokn6CPi0FwizmFi|YT zgP?79bJiv|3Iz~etmo^@6tQ8zh9GQz^?sdycy_>oUFH{DxkqY~+C5C}j3USM3S#6J z(wapZS(xl71qlBDAx0ytWpWzERUa1IzTdQ2lXaZAlU6n4bsYU7z0Y?n0uE&pqYXQV zGbJ;nhb)}6ZE4mdD9o~}^(Fi91Q4_#og@RmigK|U_p1^?@Ai%+-s(Qfb$`#4G7yt* za7gfiDomC@3^NzkL*5uqcw>o#Weydi0NOxVSe9U* zsQpD-Mda9+W`7WR^!Y_q$pyNXCB7yK7o_G|LCi{yjrpWpO_@T4-{lio*bq`cZ5loG zM|D-sy>w`D1a^BZMOnD3!5Om=EP}kmkx#LK@}=c3nw!CycG)WSyg{h{0F)5GRqu#~ zT%lDAe`-ZJcfNC!B!q#ka}l zmpqPR(EJ}S!Vy5lH7s(!?phaV471c2QREkI=r+e zL$ANQcW_>BFEU(%P~9Spk2kZOl#u8|wF+W)9_OG$d3HE;(+HGY@0SI~>U& zPHVT6G~oq_;c1xP+te#l)|9PC_iY^vD`!fJ${sD6joX;5BzDWHRP?1te8WkIBrzaR z^4j=xAVQtYaCjp34Qz$BB z{C_P5b?E-&O`c@=s~{`J5k@UnuUb-^?FNW^v)#g2Ou$=UouZBO({nt)>!ywY;h`ea zh^AU4s34a~B_!6M(D@cE)2M|UF^SYCqEzK5D5;*IDkoZMGNSA zZ3J;${t~1q38b$=lX2D0x=m_lk4C)v$Ys9=6>4w@Z#fHyurS|-cP952F2)GMoj zy$u{vHS}J|SWr-Qr*i|b779h8Sa1eH;EE7>Gk1x=18uuhwIopl*18@5`@x$%(j@>% z@%#^H6^O0{pi5qIq=pavCylf{wx;D{8rvp}g&|5%Acl4)t8E0h8x68zvL!*?#Wrs6 zCiT50%JC>RZJw+*AD-wXa86v=DJt-g0i|oiRL5i16ljt|Hr#uhc|`zA-x0`|k)Ob} z0FW8OYI^>6>k+MKLQ;e4C8+?UgSh8sh;JW9e!59Q%}8OEgmnk`fcG{GpJgC|xq^el zTv7R>^3epdhj5g_eQMK?zlW&jygyhj;FOcnu{8Vj9<9|vK=Lt4!Fpx^z5MrzhDOHt z)o7ZOqf#zu}fGvl9%1v=kkt!?WtK9vQTP%uyQhX z6t@NC^~!v%Sf6x$y%wd-WQqoEurB+!Wh!oIYEa8Y6bHOF;j21Q0+cfm)+S9P_H-{O z3yf>h1jR|2;S8k`+>f+v*PZ56QWBSApx7PYJ}AJ#c109;gSpgnhs%!45UJ>@@>I#F z6N|MUPk(6FEpzi6sSc28p`+;;W)8R(t4fKd=?UklKWKQLex}cv1warFym#ISGGU3# zupt3ijZUxfidS9%kfj-lq115;Hy$BU^D1c>cA?GR&tbGcF|l0Ci1u{Wr=2u|Poq_) z(=7xtM+eFiu{HkynL!B$F)WtV&+P}*CztADE5!JTGA9!LA{ZUm=m6%MRvxBy)9#y* zNJAPca{mCDMTrUsP%BphSkA7y-qSfbWjj&H+plkY7PERWo>UgO&KixQ{Jq1@5V330 zPoxyd0HlInO}d{brG+ti?En-K?%rKnP+>3977MgZnUTW*N@{)ELl>i)8tlL$)zu?? z3E$2#{{U~6{WR+i_odjRCo%&ORW`9&?!`HjgfBk4&RlD z*#s9hm93C~NCt}IzwZo^FoHuWVw|G7)9^yI+izMD06V#*Pe}6Dh?OwVDKzr)f>4JY zV$=gcpm1~@%qij9=~jvIz;P^^@#hVbFemj0CShcXQ(xoZ99FPDg?9aGE71<_g%$LkB>p@w=owoaP2%)qisnvSg-J%;Zi z+O0;v1NDG+HVKz0WXtwR)S8bk-WqQi2lSUv3;^G(R~dm;*J(;t0ZP)RNoaqE>*ZaM01F7XqLRGKK(y9iqVO$`v-+eUZ9s9A!7vL;W=tqDgY7_ zvQK`!;HBYx8Itm(zHM7^)chm#tYDdFN>GxOBry%I^BLb@6VhG-w0Ko7*agTM?7_DD zqyW7!e}EvQg`jJpKTmvXmu=v=()@lGs~^vFQU3t8WGK4Bm#C#c(@_)4hMNw+*iKy8 zz|UW{OAT1p%+dHAIMgkkh-ILL@g(R+AG|Z8(fpuF<%EKNP!;U@n7wsRT0ASOP!62* zgO83yS_O6CDN=zvioZ>~qCfe0e})<_3m8>;SC4d4{{VqU1Kk@Z1Mu~bPX=uYK|RZT zVD0I9$^+W)l(z(QXrY8I4^w4uNh|R&+4b{;8_7mtQA?<#l;!Qe6^U5R7{+p?Eny%5 zQ0mk^X-XN= z{2c%hQxf9UODS7;bfA9EPkdIqvGlY9DG4fDai{OVh4ozaiISA8sv@T;6|De0;U=sWIQFogVTej0Ma-@o86kra{!lOqG+l>bi zdNng7WnP(U&qK^j>=bP{kSq+N!fI)&amPMQyb8Bs#bj_4<=T{`2|EpRFzJM_3K1_V zT$4`1Ei2L5QtYyKI|4WZ=M#AJT@}3*`Zg2OHgv@1&rl61&()#2!+_*i*1Nn-nayG2QaY{X_%w2+WV0l)$M-Qg<7ift=cLM1Gc&R&3d z@x(aY0a+5Y1D&1r{o>t@+Jvd{_>^`0`a`Bkx8b{7(#n_+8jY#*f23Vb8dQ`8g6m3L zzr^{$ELncg1R9sG9(!|GU7dK&C}l6)bsz1^#X_!ZnDSzkS!Rk1Se)I1XgP=Z*o{a? zISAf?%l>Hycv^m0jzxb<_1JvlO%75^0$Kk6KWJ1yiBly{Mrpn!8rF^WA_U%dvLy`Y zP-Knw+fF<28U7;lfRwDE$jV8j1MWVJ6>#nA{aT7LvNb%u)Zo^zxAb+WTsPPCAnpif zZ;x&o6LD{&wMm$niB&yfQ_>w8W`$li+2GXfh z1jQuzAI^^lvKGE^a%DJ5Q%%`}?M^s}@b&pIVMo{{va9W*d?6;;jjZ!RRJ1Wqw2`8l zL;3K7cXlsAkm*4Im<}L--*XieDN9jOg%e&itOmWW_EWJ@*|kaEp?{=jmW+2jCrqgi zmW)q-D5G>@ne$c-QlXjIAn&@ki2nd2---Ns*2RWUW+*Izl_l$Xpj6)`P~5PIZ>r#l|doQw%E zOU|!gF=OtfA(b}CXiiiy>%0YvQf2^D<4=@j7`q!POzg=?%JqGK-ZhNEgbl0I!iFZo zssychU7RI8A=S^j;{`YkX1r}SwB}+H*H-!iu+#{zi^nmHhC)6N}mL&NxB;jbwM+f@Xc38V6vQYqf$?pd?*ML$MfT zb}D@|D+71)1mee19W4i_yAiFU;?d2Ba z+FFPKATxG?6K~ca6$aJ!jbR5(u&ES1!HV|F2$+%y(Vhrj7my*2hM&X)l_-TDR2(%2 zZo9!qa}HRHq?TnJpIYq!Z#mP7$vIgr&DUcF$}*%VsD%+;0qGTNGQz@`yL(@o`9q)> z-kGSQUXY!Muf!ooB1)QsidGu$i^573lqbaXQGYNZrLzD^w4{WuAYT>t>PJ?rXHHjG z57Jnk3NqCc*IpZ)O-B(X9ZqXe3mHMsAI{NR0D2WRNrgskY})cp-KZLrXmYg4mKF^R z#L%{_#8fIWt16rUN2BQq7@p)*)n!uH0>$b&Mah_^VO~VL4nH=5mz9xfQ%o!ljTO>T zSujc^rB0xtMuVNH8KvQg$`_CV80o8?JmXsb0F5L%24Q{vl5)DW4_LV?50b3O zES@;#7snNDxw;N_Uk5{}Zk=ErG{uMsAwYzU#-#9(zg{5Gxt5h?N`OfWLELlR7jae5 zC23`y4G-%4_r+AI%(eu}%~fUqgpFTna~bXHaoQHJu!cj|kU9B#;!FPk8Hp=o_}DOd zY5Bx9`X9tfw26}@R1=jT>XeVU@1W8%owUrFF^BNwmSnnu6y71ZB0RyC2@+>04-UW| zfrgt!j$EYC4qlxPFtKo2C7JIq4a$19wdaAqls`$+RquI|;nbZYn{>qqP7Oe)JH;Ez z5K2k)g01(PZ6F0YGd8X2o06-;)PX|{#e;dY!Zn4ZIBrC!h z>7eDJ{M)unm1Zde{fKx0i!b!cDVQb!)2CkX9*n_wSkz^dl~XN#{%{8Fy3~XO<|QYu z^A|3RZi%$is0}K^LGS$14o&d5A(GpEZ58Z_wp>J0nnD{gx7W%3eI6TZVqy>hI)DfU zl>FCN3t_lW7oEeuoDjXN?v*P#oFubD0tvZgO_sFG0;x6KK6LVhYnIXK83L(EVat3z zP+I{lX3VVVdZ~$bZJ+mryBw6RYKT!FA7pL$+7LG0_Oz7d73uSM6=s?hRM)g8-f@uvYibYo!}+!H`S0Fk*oIG;~M_}#(2~{5Zp-AL0^K9%i^(U|fWSB% zo1u&|(4E>=a~9jhtu?6lM)hoym?S4bOuk!o(m4E+w^tuQ@~zGQsR4$SiKgWsfmY|` z6Ihuqnxtv=h?8hahGF<#Gr_7eZ8<}MQK*QQY|IHz2q8U-Y-_w;SYuJs-^>QI-yo@! zkmJMBj@{lKbf^<~POJR&Fdo@7>R%|;wRmN=%Swd>Yvg{=y)x?ttg3rWq2eW^rSUz8 zV$ZYd-|H1E%Scen936pk-{%A`Td*?#qCj!eyTX8RPaF$l1T^o>j5m7avUCESX zyuWoFC#N9%;7%a4C?!RK1uRbF^c=!n(ReOeoynsyG)e8a*1u>mYP}adCuIh1qmldT zkexCfbGl&n@LKb~a>^-7B#_-3o`w~ISRpca zON0{5tNX!%78yAJn2=TeyLm!>7M8V|I)bTPOKSXdjRlHQ!0Ga&W6%A1Ys3AEmI+hl z%_>%kEI4P-jz*nhT)S`SQsj{}+%QN3PN%00MtDuI_+4Il#Q1jK>t}$s%G7bUU!-Hs z{F+XWlF}5AM&L2~#Q@ttB)_zvun=b5cA*FYl+lj7KnYggHjF1tJ*AauOseGs>~$i) zc7nGSGPTY=1h@s9P=6zGG=Vl7pVliffdS|`M#qBgrwJ0!5|+vZ9Q6ZkT*smK{wvD3 zy#7hXJiBg7MApwVf;0n|(r}grDXQ}*u&L1b>B&A(V+z~}mTGey;pXp{^w?AFA4%fz z%$6rY5a#Zq{(hS%wKm(ietPi`yTv9lWjuWOF zuDF?NeLhjtx!{gAh-S=s9iyoXX!=Ij$<%;SuAIREYYfm4bC{Pj+C7s#3>=w17tMtaE9YD@TY`fi|ls{Q1Dya&_QA zdt}xfeoz)-&*t%@W`=#Fvk!bz2%{f_RiAnXVOHX?cFcf#n7kxPk_T9ZO|xc$6D;6s z#0Q_yHxV47`0`GhMSYj%E{UN*njyR7o$1e5B5dPoL{2Kaf@j^0Q39r0RFkC#!Wiu` z&oCbLvJxm;lNj>ho|iUa4pNRPr4o_*~(2rj$ocdtuIgFIXQ6G zPab!VrU8gmNy9_cXPFmSuAo7o_h;iUC9dc1as_j~DX) z03PP?k5}>h^K!E5>kT0I<(4G)lgFGvbOoVd%P|hxF#LG0YO&0gS!z+|j_(yLc!Z&D zQYIpyLC95jBaOPWeBUW$%KAPQV^p%^1f;r#U^G9UD4xSVGW}u=7r)XH>=Q)9x@a_E z`g(sGzesAjENVb;psrJ(j69ff3}Wj7a{9oQqZZS=CP~HSSA}6j5lw|-N4sqanv#P; z#rS=Q8@9eslYU^OX2`UKQNoF1UH<@WBQ70XFXC%G&?n3Fs34?NjeX)3FMFja1zA}- zsOs&{5jEc;ZH0N#{;f=v57OJ6TS#oQN0TvZxxXD)vy(_&;y7G-5mwxoT0BM3yF6X_Ip2bnrGW$Y3duN={)zzdvZ! zSxWR1{Y3N^%nMZSn10b+ciL65f#m4tcqu+=P#n5|ui5))1LWI++@uFBMNmHN8%SD; zeV7n*FS#Bs+9tZ>s3>GWQRTMl)()c#l_xSt(?Pr$!^#p;LedmXTZ6!fypIxG3t0tO z8*VAqGz)_a5@@+i|t(bdt|wnBF4c_;174 zLk8~4iR+;2yiF+qLBW0dK^q+RNfdEf@B77Yn|pF{C_+*jXm65W;$@^;$1@8uHRms@*H_kydDUYy39c<*%m)cqrt!G zC80GTf!lu20e7sd+Kt#B&0+DsNvd}1oGm0PhXbgE8?w=ndH`LT9xoZ;Y4H0)f7&zK z!tYvECKIZ?mUrq0+pI2g2Ns7uUmsYp>t1@=+UbO%UJ#h4yaz%Hbey%W3h)-^lE479r zRmS}|j3&z4b}?&{2xgexsa~uaD4!8Kp5JKNFt4KoDyd}V)U{GLdTaKFs}>lRhID{S zuse3|ycx3H%!(YKXh+66Ew*;g$sauUQSjL_HFno<}8 z5n3%B1Vd?AEZT9zM>;})>SIrpo|)(DGSzx1+hMd1o(id7Js{ewLsoOVODaxn2hut? z?PG8v=))*WsE1L|e5oFbB$Ndb1Js&Uo55>f$^&b>Dqdq znMn;@HKycndPX&SU-Rb@LCWN@1)G+A{t>88!>UB?oe>Gtb@sS{ouN#Z{85r1u> z?2Ew(tJLb$Kg3eJuY$&)ARVjSn?uTl4SFq<$b$n1J) z0Vdx$NXT8N$F*{cN>ienMt$iQR0$=3N<}pf-1)$3 zQnd!P^XVDdrRjIcY6c>X%=|?gbmFIdbRZv`RYj# z=ux0p+@v?xq_DLe`RU<~ew0uJ6(gS>>Q;0R&c!UIcM&z7Xt`B_Ilr znv=OC#W~6?RRKpFbbv*hQ5AWvnFA0u3ZX0bsn6Y=>#GPo%Z;_K28 zD=OMSs4hi+*Kh|Q?+tiD@AZNGlAQoLkKPcCp=F6CrleK6eo#h*hHR+`B)U{|<+rR5 z8?7_tqyb0aI&>$jd1ji7!Ahq=zYrkWC4;EbR@c91=2YNIFgzYOhoy%5G~l|XgGiFo zVNzXA)D1w82bMJ z2m5f9^S)_kD#viPHk%@1<;?a)2VH+X@uOku^%IALxvex~#7~HDWSOZXBn7+ng?~oZ zC##t?1dLOd7Sph`o)cp5p2Ta2-)$qBfSXDAOA*qMzSRi;wVp-)&UAHQ8Wk8qwTojGYn zY^hTW!&A^d5xH9Mq9@D#@J!6xZX2D$)`m0OLxRkLnUaP?iUI`_$DY;JCg_K`SUjaI znb=kNg}V+6RJ%ihq6jMJPW_M0B)EMgEoCy)pVLw*H&QZ2ScQ47fv3PW*z`?9Utr0Zz#iz<-M-w(mU?vK$fDwHj3s1;485Js$!j+ zUB5T-gZHhU*QH2Dnc^wkw|cC|AxyAnK;Z4=8q}Drcg(eA%3RUjBE)v1E?Slbnt@W# zrE}bBLh~;+N2fl0Hi8$el5&HOVC~bdA{W*Kw`u~U`tH@5OG>>lFM7+!r6`Nx0 zI+oOSI^hx>dVx_Ybg=S0B;0!FLKC};1GFWs2O3G7fM)I$+ncs;%_e7nHcud8@b%7a(%_3aj{Qb_kE(TUDxh1Mq^c!`AyR!61%rkNm_40`WS7qE1l6F?yfxmd3@5Fkgsk8;N-s`F| zkT!h?F)WEeIt?`uKpOYFh*I*=Ng$-@*08LrJj+D)P*HXyZco_8gt>Cmb81a19oZ!1 zm>YvusEM75$o(Kooh@lVNe`e7b)ca9*NA2GX@C}l`q|^eYnAlsPL+r2`pB7uH10QerzFBaZO zY=O#@!G?$T5UeG8&i?=tRueDunw}W*74IBmlon8P@%TYIpA88}{{U?}dGD|0d9-;z#MsUWN4*!1rTIL7|~N+uP{0A@~rY1mYIq0YmEk^n+QXbBZR#2>Zb z>o@?Eq?1DA7KdiTV^>}0ILlxZvTH%l%iR~zAxUM;NdsZ8ZjrLx^5h{oP?Ul-Ekg>} z()KAy2?@%lsU9AXz8xn(kt|FNEGgT1G2DEjh`da-`n9JjgFB6P9#F}E?-0yL%ul<| z+7G6p`Ub0l{s=DPpUz@^e#vFbF9I#q=-f>5TQ2DRHpJaZZKzZL{J^Jk-o=HHHHO=>d$9O`_&Q8SOn zxOB^jFWEAZ$rV{=;8$%c0I>DkNeXfjQ-S<%-k>B%(7%nDKm**Dl+s0z#x+r(xp8WF*cFby7NmqqI^xTieiM+7t?X4=z z;IP$)=J7qR6C_Is)!aDOv<15FB`F>tDqXjWM-CMi6my~6eGF8)=&G!%5T!lA>3tj_?NZyGY6E(lY_C9pa^$MC7T|a~>a9ATwTxLTZpY@_WWHi7@{F z_d@eg>J(@nj?tiA7Nr`2uN)a-B}RcX$=(`ok_-mXBzGtLlGfJ9^r@Y~qal;ZH^`g%Sk=owRNtOBe+p0OTuB z-<5`yN?-}8ZHx+CkJiiyBiZQf4*CKZD%_(f))=|2#7DNJjN?-KjR5NhrOF6o%aLJeRk;c`|Iz@z}8b@5bw{aOj8;2B9Oay`*X&ml7W2mw2jqr7)) zy$rc$b!qR?B_Y-@waiLE@QN4HtW&=(bcJa3`F-LWiq^8C$x&*PwRMIo)@WKvTPlcQ z(DM|kj_b6AfCsWD-FSi5iqn{r`gGuOU=*BAnR%otirHEh>VJ~~u&J3g(7eiIBrz|m z^xv!_T2zl-q9uZ$DnQXAmxyNEYD1a}+aZ>Ed4zird zpd;EmbR+M?H2OBMCTUHjbpR2UQv8j&d6-l}eWTHtn!M{7P@?U-ZhzFBTUal2;TckA zAWBh6UazSz^=rhEf>cyMA?v?D-w0N?FAF@$g+!1OQC$yXs4#jK9I*wYr9Ky^)&`mL zC8Vq*xlMWh0OUVT&_xraDI}#tu@ zrFe&k=y&|-tT1slq^P6?05)%ti&pErO$tc>FyBK0u1quq6z49RePE6tv@Hq$09M;k z1tJ9RL+Px;Fc4qE`h#lh!n+Ndr~-xw^h|*{Qxr;z@A^i-L*2%cm&E=mfOV`IxPv$Y z->He5R1s~Ii#ZF*GXba(OaB0*FsJ<^XXXgvbf}k5@N9S;M1HYc_FSnf99Fv+((lp| zS#P4lILH;DJCh3DldkbHSSW14{o`0Ai0z7-FeM?SfZS93nS&GO-Z{Lm!c{B)rDlC~ z_i+o@55X3opdUtWG4zHT;_a6;CD0w4PsT7m4d8{NF*FbP=LPN7389*!jk~-cS;PL1 z5S0Ryk>BqP*2{q`3RRRRXVk<}ZEH;y4GmlA6W$lBjG>B;LqZ7GNGX-?Tf^0}mNnB) zdwj4u`{FIrXg2Q0(T6PmgQI>$~r@{cVxk*|;YHA7Fx7IG)EHfk! z;17?|6z5{$Ateh1VVNr&ao=s87i^Z(FqOy($*YI+4%KZb28=#p8R>E24f?uvkJn}F zl;%JHgU8Mmr&|Kj#CV8f%mu;sT-kP#r7OTgB?Omu)vK<$(ZATl+BDsHTpqb$WH8)u z3b)neHq5nUVkiLzZlkAj8eOXY0GBDsn6S~<{uoQT?Vu#?M&o@B(EXXR z;lDj>q^Ts8W$`$p{{XBkD(AF%+}U#^Dc?{N_8wa>i0i5*w=sSj0H7SpY)=`iQH3el!)k?d5VRT##JvNPQk9 zxbI15Nda5CaCe1#LuzS>nhs_@eMAA3UD=&-IGgI|ezI;P2FvBZal6Msf*Il7! zLs-r?!-xt9P|Y!8^q0yG<+T1`-_id7quJ7>1tC;4uTQKJwt6&Nyt9hMPl@*Ic&F2N z(d;>WQZh4f_WHt#-iSBU$)yA-bsO=g>QCAgFFY$IX-Usb*z4XO#E6#cO=_Q&Auc!Vw?GHS-wT+p(N(OZtt8g0 z?$59B8wA_A62K!(KRQ9Hs`yI5sHUKvA$$%}f1*q~{WYAbdwSAJi-ADQ0IARh`0o|1 zSj^^AsFc?#K-10{aV@@9RRW+%)1)ooyRKTMf_;$m*!go0`3!-7`bqV3Qc_FP!?$x9 zmJ!FExs#Q%3Z0@0*U`k8sw-eRH^w|o#w0BQSbFR>g~x{}dn;o@n`J4Mpp8h|Mrg|H z$(t=^Y6419d`TsbU)V;ge9W0HSWyC^pL5zWoAT&Bu?qFR1s7UIzHEBM@*z9UeUf9X zV=9QRp55XvMz~ZaWWt~PC5Q^tW~(vNci2bkMh)>5Bm$9?gY9v|HeEN&q2PR~1OEW3 ziNzwkFxUmsBAu$voP-32BUY#}b$HgQmXPChH_Nt>MK;HG6^5Ct57Kv{Y4cPj<|?mq z{725%%h9~qYFffhP->DJB`QJd_+$DEEy*675mhMa_0S0B<9;69xBa~qy%J**i$G_{Ioti%_Qo+hRCr}!OI+`}CY}<1b zEi>h~%+%A$Fsg!5tizCZJ-CY2+bT$?3=8nwbur>ClGW^*lFZyhlL)9a1T-)UXh1dY z-MT;iW?B_7 zSpaowO#poe?Gbs@n!^SXv--KY%R4oG1}oAhX3K)gWJ@X(D-6Ks+nBX?TZ=Irl>42J z(jijcHw~lcUM0C{wKm_y&y;d)l2_l{nDblOE5&d|yzYJsM}eP3v*iFz{!){*75a3%8< z6>LU_k0`To*oxEw&xPv7n*DT%aCLn0gF;+rh_k^ z5kISsSC1E$abnGxO!}BVWRpt#ASK%%!#tT35w{q_la$FDMC+IUts-<;SVb#!fU2PB zR*s2d8sdDWJiz%Yb#WJD7o=946oXLXP|We@xs^@A>eHxNgc8 zlbcqjc&R#1*wz|Z1HiW)b>hNyUa-~8B%((KJe({~{PYm&+N0XLam1c^oZ6H9Hpm!0);)OU+C(1Fkq+Ok3dKM#S;>}?RqYjZ~ zOyEb9P*bN$#y1wJdsu_lPLPj_RF-3*6dhwopCqamaXuLg&eb+2F zBCSEkSjev|Ka(=jTt1ui`}s%F`0og-D}h18V)y04LQ*qqLEEf+zvp;tzb-NKpNHn2 zttesZa0(?#2|*gYU$i=1*rAG0T}jd3PW=Axg1eLjWjY-Q9|&N(EQK^RNvLgHZRH<3 z&OOPPeUW-9TGCI5I|^w0oCC`#IJ* z_vo(__KVOg8EOExz;%SH`a|CjEu}nfd2rnj-D|Ty?#lVEasMg zupclw54i0KD!1lS`zn33>;!0N#$+71a)xCjiubO*T*nuV9F(vWhJ8!@JmaH}EcVLr z((TiH%>;m~t|)Z|9`Mz#J9@w!n2mE0zeojSyK32b4}<>Ep<%2xfV4QEs||X_eok{b zUl=QK*%s`NAVUX-3l-F&pBQC3FoN>r%S#Z?M(g{*nRd`kJ{w0CZPCk{i>l~aSf|V# ze4^Fryn)W*yoc=-Ex3T9j!zVF{a|Wu(xMbV>)W7>f7V7G#xCnCCF|3Ov1gcE7pC95 zQk{B|k+bLoQ@OM_m})|p6>7y(~=M@?LIji(Epqi4}t{JAqQ z%tCr|*Y|-oTqaAoe53NaLzTW!1iLX}-)ISaPnAIGDmoD3O^@#r_Ep7z`m*&TetV<4 z;#{>7KrBOb2chGLqbl;u>1WHn@ie7@Lr`@3#$??|fO0hd0AM+Q%9oW+Kt1&H zha0Z>0Oc(~L&)Laec^W(Dl7uD4X0?U!dcPIMY&ePRFc5^Kyk-M(vZz?*b;z}00mA$ ze*XYKYwv|iMckw;lKE&r82Zu+x4Z z1?Zxu1DMZ}_=7IU4)xw8mXCmVG zdEO6S*r`i!lz_&YF!F@^Y6^>}yL&X!IQiK+j*b&cccqXsp}ac1K0P9&t16Vhp(P-> zRdZKoZ4Er&rKtr#uE zh_fhWsqr!I-)_wXF7&&V8a9use4zBD>#}Mqr%3u%$pMfFIH| zKWH&#kP5P%AMv<|p(?DiC|Zv0PO&1cqL)!S`}c#1l1eh9G6sd+`8~FZ6Q|}^i1>5_ zY8z&ZxniXUw@X^+4R?RMRb7!NAgOttnMRM^FHWA%!|BtWqB@y$r!7E8B$797e~54f zqTC6~l(^6{e5l=G#Q9(y0})@%pn$bY6h?$1QpsCRm}Xe_H#wAWpn>lG-d(nBbyC7P6YTbXhp$r*{+%K^{r7q2VOmr6r^ zYXFj>Y}+6&(j7p3qW`Crc8DaPPYqv1hfUE5j@(`-ORn(!x{{7NS;P-abcm;tbu_ zauMu?da3v7d+;Eqpth;>_EAonJXb~13j*~lGW=kzwnK-@N1*zi2M-jKR2>w`dDYKY zFj_St;FOR+A;yKn6V@P_Q<#9JVP29~|YB!+5#9d-Pud$$aFp_d>hM5|vqYD_TQj=(V)dDru# zEL`IfIj$& zK?R(VO$PlVsnbnB4BDNSHfenr4fi~IqTHL6>a8|?d&Jjui~*TyD&33`HlSJS z$L|x@x(BdA$|&GBzsfZmrv6I963tGrf}6~R0324IzeqE8;sp|1A&F|&{u`b&=<8UB?Z-qO}WH4aF zvFrHJR?T&bJfx2T|NCixmdJ^3u zCG%=MRNoLW00GFsEaQ^_rL1ncW!DxR9 zhJ;t+zi5_5B0`jw0-Ay}Jvr|ciq2xNQW8n;6dZa#!iki*iYX5M7ty}^!CXolh8cj{ zO79$9>PaWW627Ni8n8OqYFa^3%ZJxT5hkAKRa6RCY0=6s>2(1ePsm}JPkGudWKn3g^j5abqSt2pDBt9g1=Qy~dD zFejGl&wu6e{KLY0qTrQk8l=Jxql^F-XqbtKJ|0CM^M3J!q9Q$`_#|k2fF5P2B z!I!vPl&GH&qMuV7UjB{clqe-2Ej4#EpSPS5ylklnWiuZ*qj+BCT%s1lvl29T%$Obf)3qb=JYi1yh4d&p)_sI z{{Wms$h}fSk~wG66mWH!7NP42Bogj4Qx+qpm5<(#tink{Q43W!uHpJ|!@{!hxJQdM z;%7S$LU%eI8Y$iw&($QOBfjnU!T{ZOnU+9e#0P-BlrbPwr6Y>E zxnxxA!*OGkD$*sf%B1_W(wbMFe$BW2ry$G;4Zj^sV}6G$D=fS!60<)=#J!^ziYc;yzjv5Nh1&*M(yonLrkzi}+Ig)wrb01djv zJ%Mid%TiS3KpKs@lhe$@h9ZVlceL06cH-%>W=tw|N>K@RaCEQ#01{c! zV&&tCA6YDR;DtVx)H?3NTec4(>n1C>g)w~1DgtdBm*jTjef!3S zEfW1sP{x%V^{gp$l36dAlcfNF5XFsrAaSL3iuZlX>eOaTWtxETO5?N{V5K@5lk|dV zw}m92lGQzoGl{QD%oGCQw-54;1kddj)4tJ~UN_N9%%$j9b?fH`rQd`kCud>@)+Yk5 z{{Tpn61<2_LYdm0aiB=MRWevF;x6^4lp@W!P<%-wmvRR^;j{i|%9fOnA8u;|JBh3p zB9ON$Cy}%nzAlkym61(C;P(9ZKq;4$$+{%cfwk)KT@&V{5~5NE$M}jvj5C9kEoPd2 zJT`w;5w03hpK{JOC!%tvRp`0x?Y>o1j+P&Efa*|kUv(;Pb6|W^x`AfQNTDr$x2mR${L;gwux~{ClV5n z@9iD|-Y;TIb1F!3sx#A=&y(p%Q&jTYq?(pA9cfQEuA)u14hADPt~skm$Z1f-QrD<-36{{YwyIUiWE#hW$iB}#B~rd{8LA2`p`cd2VLN(+@}MF85L zGu9o|b(AcUACuejSgR)*%PaL@2XYAm*#lSntWCg*Rf%gZloX^8=V8=A`$g=85ENOd z=HFO`^2O|@_0tQ?;uoWO(1ZQ^Zp^rA&6d>_afCw50^bhEgW1IxwR6< zC=FAmkn(8q?!9c2JPH7oAgJmI6d-Qe`EKyHcVE)%Ys!#R0dd#jVlC`Q)&+=56)#GY zw{DS7IwpdRhX$v&Xj>SV+B0gALEZHpQA*o)nQT(6^nJLBost|&aU#ye3OR`JFEK9q zIOk^&q%lOt1@wNW@5C`%ZuQJ1Bv9^tk>%g$sOK3}QYiGyR0hH54_eX{_HkxjGyo$x ztt-RBLM`MWQzeo?4hX0nU+LBWVsA(C(jtMepx6!KfMlzob5_Ay_@Jl#qJPOz z)t=fV?gP~G1i$Wd{{Wfyh*(UWIP=%6OIorWYpFG$>hLc5y**mcN}jbNR)hBZ87_3v zv?Y|1}WPdwLy8V%Wi##+(+@J*(;n_5(8rXbUT{{YMwn}}t~MpyA4 zZ>J3kwp=}#N-0noDN|n|ybHvrM1-bdj&c=T+<9@Q+A7>EI2=Wo>RFn!I(}9&oJnY0 zg{4W%C6#!U(_lWPDO(>PZDl-iZ|*&an4n!>Y@cTL1@$o%;DkkQy#aViKIr z6Uo{Xah@lZ2?-_JP<01*DQ1w5Qe~(blU@4`+QQa5x#byQ62@W!<|4hH;$dIlWVnrU zCz6>;Ig(tgk~=d3?a|?f(C!nQxvMj06s4Of)lI&dpX8b|m!pg}0z6qsErUxCxz3U`#tMsStT z(ynUz_S0A^g={I4F-n}Ep+c7$5bjSpfX%c%{*b$E!_%)d$t5OQ6sFFqGG49KzXc;r zyu`aG7D)h+lq4yeUu$YP<6n6n?vM@V!k-RJsyBQ1=_F4`#meIq6~-fCu)vsJt`8tLa6-T8+^-xg{I%kkUc z0C4r$E?m)>B92WSu!^U-0*ESFsHX6@=A6a*+Q^ip-`x>kb5y5LPE-)orkc_N-S%mg zgycvhX`P5jZ}-vNs0+nHT*EU_F-3zhVst+4u+VVoR)Qt4Q57WnBa(g$D&_@Uw-l*D zs&&12JjMCfkRg&8x7_{4kj{E8$-}b}unNge`z41zzcG69y)v*2QVm9=Max|Bq~!W1WDf}V?$MUwj7KtY%1Hr6yd^#MeH>Tg8YTN#T05x(o{N^9O;X(jP0c}r1%y(vylq5Jy zFm8jS4!yCmQs_(S&$;FqFD*GxNi|c7Z3~uLr^T3xZPfiD!l#-!aCq1DFjmI4MwNX& zN4y68ci9WN=mGdg>s7ERXDWOuv)!g9;}Bo^8EQiJ~Y4cpHz)bhk?02A^SsS8nYr)w9F;c%*~Yz{H;j56`*< zUzmH=)hYpc7iMA8m;i4-Ql<%Z3_+ug@Ol-07#T}Ba}18$Q+o6J!&S^>e@;??;bu-z zqYj+w?}a(`RLz!8t3G-Ty${YW`Zc#?&XssjG;v;~xIdf;m#{{*S*Lp3va@?!d*fKR zu$mH6GHEJU6mvlOxTr9CCk_Vo|?3PtcAe80rv@p&nmOLO0fFMOH zE&dRvUxg%lUz$Y|t0oRe1gOwdHjl}QSB0S{1wODa*if<9#cT5sm8gUt2p-eWk)R#D z(6NWG;-<|~)Jp;lVOs))=U^skeNbHsw#GFaFLq{1RHV5B#1#iFtD`DG0X5yL{6!1$ z+Nn-b%wB_-B)}PqaH3V>2@cw@py++kok_y;9Y$#-0;xO?&7(=1dCXDDTQWtOL&w^H*>-1UyKT}-Nw$bIFPOqGy`@&j}11JuhoPjL$my0C(;DTiO7a>p$eG3 zI>cn5DnQH^uOZ-l-Dk*<3zaN_@9+?E%WwtR(v=oDd;8!G-!s&*R+4g)kwwm%Yxaa9 z#nE^VSg9(15TopR7)!;7v{{s(1E80t-^?@1zR)KnSzMD!QO{U%zV4*XKtjVkN&0q& zdxZJEeXexu#W|F&1NcWU#ptT{n3bs$Ga9%GsRR?hUL$b0@U)9MNkT<^t^WXl6|XBC zg33S%SUUhc{{Xjrq9+yV85fbunZrFt(hc16gwz!P&AWYegu8lFRh6h}c!z76&Z%;X z4Rq=_jba|Ea9AL#M__(YnWA^Av}K%vWvI9{-*2zsf^sn`eQ`xX$?|{OPO$4}xlpDh zF3f)PJo&=p8QtrQ0HG+I%jFb(wCG)joHyGn@+Y#Ss;nJChPo5quktU_J`$BV z1OyD^Fs7YA8^UHDxMx{Zln2P70?z3lCO;39cPfrndyvathypp+;}ctNDQGofc6vh{ zST@{5w4wY&Y0ppM2U;$q_?^aN=as=HV)Yuh2T)vY->}?_s&%u|sU5yi z!(HD-#Mq1K&8XnO%WR|q9Uzi>`{B@8U&Yduuet}`7ZSfhK|NvodSxgAW(Ht@k*76UUj!$;-edVSe2=%UZQ@fECow_hMAB)Jbm_l^Q(E{bhj{Uf#9;A%mB z&j2Tqm5=}%b%wZ(*<}b(2`-nRJ$8UgoS;fUDa}I0jRxmW%~L>V2X3(ixsoa9(o;V!q7kVx+Ztt{%zl3kU;EO24DGFqQ zMvk5O!u9ES6aoblO%uX;_k&no=?X?=9H)(&Xy&oJr@S9EGf2$r?O%jwf7U1v%PgG+ z!|(K@CSf^Flz@WI?E$Bs9pT&lD2HML4NP(QJ-TP0>Gps#D^htMC@+R4oXO12YFkEy z>9fH*INVe`HDT+CN@W5carTWo65d@g^4U1FOfPo&@-n$dH9tt$rCq6)EF~aj+`^Be zo2S*wAaA(Tp0NEc#>sv`{O=!E;N#Qf{QUOhQkONG=foJXfKI=h!0R-pAgjzl+a;V) zf$tsCIP_xgu!e)yM1o*#j0WfL1ni3uav)ULqmTHpw()L4;y|kOfvn>Tzww35BFxLF zB{dLQ(9G`@*Ir@#=}r<9=i!XTyw(fYu=-Fb<<=M^*##r1_HpjoAI^{Q#XA*;E5(mi zBlVhFMAIc`L@jCYcx2L=x4r?|uAobi3`tB${SZ}8#tF*{<0(Gha0O85w=f7@1t-JI zX;W-tybo1~W^Tkq&m$}1h5H@Mr5b_W80^^my|l1z zj1y8`Aemy^)I#|S$MjXT*<9C19XS9PaJE^*EZ#N(q<*sgAF;Q}zq8m?0@LC!y ztwEkD!jvqfqDe*K%(Z*tl-a|^7lTP%CRA6pOU>awhqPV^c!p_hb>=g%agt)&;dWxv zQ1ai}0mB}6Z**h0`eF)#rH=xQddJmwwaS^uDNxJ^E)0Ch=??)eK_F%+4?(w{k7k;1 z`WX0cJkD79{{R)hrx!p-@U&R({2xEx!2+NLEo@-+s_`Y{IG?{m_Ye;q^k**&|!S+-DFgC3j2GYrXRGCV-) zlb}4mP9svhOIM|o=OICjTk~-Nl&~BQhMIoR+j(9owB^o&PX=*EBUUta-@F*Py&KC; zgsf1Hn{|hLlaI9CBUp^$wpnX+qL!DwD`>C|tfSpIV1aR+^Wiw!@bA$9E0zl9rg` zmvQduBR)4N*{90|lFvCM1m&8L;EFiy*~C}1OH`z>ImUo#+MNBMC93aQ6q%C9Cs5jH zN9o_JMSNR|!{#Ap+W=6X&BS$1O!0oq^9am6od*5PIM{BW2DSM@juy4LM=r#eJ9u79 z$qw;1qaU&X`ir)Mp73hPZVuZR0dQGLk_jyaESGtA6>U$_9Eypjm!PLkU{$`x2GxU- z?2bXxc|O5&H7)i{ovy_+N#Q|ouCEtVk^v4Tx#E&LuI1VlooETATO#a6#c#Nugg({ zYfaF#s1O1}X}N$`rXHI50F(NoQnX7-MuE>8cjK^ytI#OBu}f2@?-+BDry4_+U@O=b#EC{)EL0iB(^_=C8XQhkzNHo0nJKff%+G#(IXn^k#_v~$~zo+vL{ zx>|`KB?)0XqWak3C}=adcRdT2$^wxO9rQhyVcYr|Ir!lFe&bcLz7>>%o3IM6#?2 z2RfLZb`7OBZeSwK2#XX>fg~aMh;JX>!0~ zK&Yx;LLdd(b=#nN{{WWaBC^~fj-sm9Hye4y`PSd{4ClCs?ADR?5Xi}Qrq3c#EHiFM z&~iG!S+}|al!pePCYAbg0k4aGY5?a%fw}7xtqWRM5bG}7c72))M21OL)v1cwy9nlZ z45Ct!NXlI4+pRT#mMPO$zFJTLr@!42+3bX*g&I4*Ji(^1XS@zo1nL_pG-lVo@fPIU z)Xb$n5fWtpC6HF`~-rk^;wX1kOW9C_=nNVjs`P9HUQ96{xV2Pq@GMr%7mS79Dsj})yElAQ~W z&EiXGIaC6VnD)7D5AOmd&pAR!aQo^aIWBguGS=r;ui%GVGjO6{bvKmC+6Re4u^1-8WN^2LXw@!)Ast9yLaJ4nS?O)XHYed zE;KTTCs;FNN@b|6R7yjh(e+Y3a?)3%35pLYQ>jkbK^hTCxMt=SuudMGFaH2I1TE5` zt5&R9hp6L%DUKzZ7 za@3Jj9ZsY6gsa-=1@t+K{@!sO6~E1uMMK$8%Avz(KyN4F4a$+sYlx97iCIhL4aT}d zO`7pSC8f$vZ9x^TfJS?bCrPwSLeQ+Ma8{kkOBxZ&RkrBxM#7;zC1_I#bRdnz2j;=K zjSj=qsdAE+3?El-gbBT60G|k{FrA6V1 zR%F=FD5Q|Rk3M{Tpm~{+Y7nf%EVurrpEx6Fyp)SXxieTLdNpgcc7oF_NR>EdKv8nV zssZQVVO%I%#8`cPu>}O>`FZITZ)=j&5K^a7PKV|p()Ycn!j+>$)34!`lsrT=bbewi zHfx1_9+kdzsJUwFJ9OuGU-Xga&evojY>BIyh0|Rb_5cq2o_5zTp*dIL2gL3x?uoAp z`7BbPRGmmVd2nF7Vx_{Dp-U9v>zeshM>VKtBZ$^-o8Q)hDDCptv?<{%QV3~j2}`gW z9=$(2jasd;Ul9j?UIGh3snI%ALYyRiTP~P3RLXn9<@XzMaeoCw|L+7P!@uaQ=|8X zELDc&&Pq~CH?fwRXnQ#u#zBg3e7S4&VO|sAaCbbId`Y8vI-4X(QY3*#BX%ag7mWV^ z8ef^_WLkrvLDTj3aT=Zp!Lsb~vml(sARNY&->f5I{{Tl~b)geblbP8~-(5Cs9v%14 zrpqkkdZekHg+Us9-UDA!B~O-8q%#5m+&|NHhbcD#Wuymk0DdC3{hnVoh*f&|LbFD` zZMrcu%M#Q91u9txP|%jp?DYM%4R)#1CnYn~>CC`^(^se3HVeZ7S*E0+Xh?ky;X`rP z-yGrmHk7orHc`7!_3!)f9N*%ywY;>6hy5T+k^QBnt~A^pV@SR%Qf8nmCxQn~U|u8i zU1prIFo2&{%*C?-tFsR(j;{u1Oh8Bp&;|pfZ^l@PBWFrgB}mPpb@~X)aONGA>(twSq*?UL59;96M!0EysnO(|F@oov_fnCT^)8goq|E1JTzf*&ZWRxKO8 zTLq*s_&2^7#g0_jK)4D>Bq)~myicIdEck6{&b1$C(W3ACc|sir#i1N_FiJwg(uMlh-TE8O8|Z*81TKH`#~g( z%*yKsF)D5Tx8ol)nnpg=e7W{X^UwB?YZvt~9 zxGi7Di1?ndv3N{cf>fm;Ndz5D8(1fUy&@)B)h=`8*q^E7@bRl&cx4$v*k(N-UFGQB z&uB<1MpX)C6eqiD&0zT1*eqWbsdj~>L4Zi18h1T^D<7^)aP^rzv8P_<2T$~AK2q{Y z%u)Q63R&+fLxQm zK7Hal_YzA}1T{$=;`B%uFuG4iu4E06uWhXT1?FQOoTeT>Jom*JYF~ z=4#$<@WPRuE=oi29P(i|5aVE_Bqb$GNG-Q&d(1ytENN0ym4~4<)OL*e@57T6w@jiX zzqHjozVN7m_f7X`agipw53D*#6A5X;kEclGG8Jb@Qb1V&+kZF@Wb~~vYVvxL0)J8K zv`mE0y(-*66H;X-QQ{msHu@ zxAGfz(fpwL4FuLU6FaY6=! zY{zbNhYSwx^kSLAG}QyB$_rKsT$pOfAem?huCKY@`H5_I15?&0xTx#X&!3Dh*l7&J~u0p?7x$=^@q5v0fG2^UMb;wLX?uScP!QXcw{xjiG&SoS$%?9~ z;5Y6%MN1YLm6=6=QjJ^U@g9v&pAOB)?$I}hX7&$6#z+$;E!KZX zCn|Me$)=>#orZ#)j^zqdGpQz>xG}a{WPgx;34kWsB@-)^+N{v90^K(O0o6gc9LE=x z&;>$?EkUsB4>AH49B4+ct$W$k>nJItUE`g^gIspvwd6XAleIaG9!!LWVjO`Pc0(yj zR#OJ>g!L_XikU2YC!UZ%XP;=6-qO)gEPB4~7|F=z1c+(wmX zy`?22B)B8D#uqMIhF(Avl&N4PS?;2qnBMb{x0h8VTjtAl_I# zY4H|0z+|)chD;;q{?Hw0ITEIC*m2f23nk8kodSsr=RweY;hKHelp(w{+W0dPc663H0cVdPfsr>lE{|?fE;SkUSd?BN#tkCXF+`vQ(xm+RRxRDP5}XA9RjUpoE0z*HQk_mjBtgON(07_ zMqpdFoDPv_RL>066rk=tEMhBu96}V8+3H=LM^WFHt|1Mk>?s9G(f6tE+pKjiboHcV zNGJzVXgfnS`**0yDms+0-G@)S2*H?<0$QamglI_otXIf}?Dn9tgqBDe{az!))(KgY zkZDqP-)OaR%Sk0%3KR3{BDJb~zgpyspgHPW=@J}Ttg2HmeuPjB-@G&|fhbEr$el}b z`|Ai7*QE(^S?Y&ic((jH#L|HW zH59`!4ey2DM|U!(Q*CQYsURdUETVVlJ96-8hu}P1RInC;0j6Rp z+`Kv7ckHx+0k6}TuDh`XBPe2cW&`gOMaq>ETItr1g2Hh;l9f4P7!JK*BK^hy9ogCV z@6+~*mxazm(jDJmX$GWWqNEl`AbUiQlt*g73_64@OPf=rPQYwBMw?=`r81M@3}0PO z?+KTE&oCg$mVg~j4uZS&-V9yxmXYe$T%?|l`L@wqW_w14-gwZXG_W%6GjMq33g8W{y-J z^QRGUIGF@{EOPc=TrSP`bLv?pQgAg~H%D>sO}YumIm-u47aKuT217zeBI)&QewwPbMM^xgyBSIWsq zKrQuwwsaLLj!F3qp`u-Zn`&3TNPfr>c16&tiqyOlmvkpm#ESC-4az1OmZs*cB1PFH zpa6wadcVd2+O3&Hk(E9lfR1E@34klKMvM6JqT5SfynsL4D zo~0@&s5&)21S;RR*_@ETfCr0K?jUmQ3YtPn!d{g%f3#{AOSuvy%S#22mT=Ddx$OtB z>77}y>ZYV+O$NPp{$rcY)?|dGPLZ~{#-VJmB%}LhAvN&Oc5k+@33nP)!e9zxQfl3y zVAUI&4$PcJWl#Wosl0iQZnP%KAUp-E;%$A@I zVjoJ-a~ozDu_UD>G$dEu5ZWZm%*-2QQ%JRSFV%utpHI#rc=5vzIQXEcE22{19Vs8J zc#RX2{kBm$9$q-V*C?=94!uFEByY#(c%z3e3nZm76dd!Vb`eL0HQKx*kTmPW55stu zJi{+aI-h8>X|jc}a5{2!uL3F~3zVN)lU>Hgm{1#JNz4x#b%E1t;Uu^KwK~GZo6;ec z=_xd9$B3heF=}QcsIMVs1Ef8P%675LDg>2iHQKz6kh6Z<6bMg*ol+jFKTeT{qthJu zb4<0-Kcw{e2kWDVcEQ)ju9{Vj>EhbI&*DP;yAX}{-K&aX^mF?N|w zC`|#WF!76Q%k^PE4DD7Bzkn{}nT2x_3X)D&&aw1o%rBZ0(a z*A=eNmO@gcDcHCz_Gmt<+IOra9dsw}A3kCWBIPKdDa!O>C`;AP90=JjY(?sW_+}vQx_bFEXPA=|1$cnY z3Go7I0Q&Zh4?UIW{yea~n5Z^x0>NiZ1yjf^wwgqC1QbjRGqG{7J((SG5cpuzJs6nAc)v~j!ZM7!-JK$c?9u8+529olWGE()5BN_qLj7hR|l03LlJ zd)mkWa%oK}!>ffy(JBNa5MN)-qlx8^uN6PXTKDM~ z*3+Q-GLo+e(CbY!sDYB@q$uz9iAAhAVNL%4X!R0OH7vl9{@iwGspwZ$iwa0k*|TZ4 z9!~);8<5Ll3nYgJQa7mbi?eM^!N^(hXRhwSv}S?oOOWa;`&FM_BE9rLILq9obkaik3M-D@Zt6=h3q`M5O-!T;I`{M7N2mCn zKHhKTbD52|3`xibBvKe=9$;P4XcMh95L`(farFErPn+l6MJ`j9h8qOBcZzm9Jsj`1 z-U(QcBcY1*iqFyu$gxFRG8;%OAo)S9c=1UnfgK64%+b~>nT_WQRqO!E^`l=ij!v2o^Kw> znG#t<5Vs$CM~k)We4?_gaTL-ZO?y3G7^7-UBEr?jc!qls4~=8UyKJ#VM9ENsmXsIP z2h6mwj*W9!+w|Kx3|b{hUMG=g1U}Iut1x~c1!9NNKN(M~5>%*#C@~f^lm^vhDHJr; z7V(A2>tv|2s0w!6pUvUc(7lWWye0q-VmLcVo`X7&n- zVN5n_>S0g@ zjY|9DnX&@X#C~)!PXgZSQiwX5Q;xibhpCd~`wAIOptU$0j9%{lPsttu@6EB*U0`850@qSWTZ=)N|-P^w$;_y@9yRO-9b-OSrgE^YE^c8^3-1;#>u{EIH7%hqz?>`U>XPX@aTl!0Kpd?Nh z{#pZgS%R6jeCV9bOdgOb9|6Nh4UYj8MSm9K5c%wWKDQpK^GG%l8z^O&>1Q-Cvc9^Uo%*p?+MYW~r@NLqp$Z5q5Ny zYsU8VlFO~z#OHWWxo)ZQre_4@Ad|rdK-_hMH)YA{!jiJ-JCk0foWWbV#8P|I@ zR_NwA?|$1$inn$3{lE5jUl) zNdWy*um&Fvy{6~V71-A#P`WqmyYUxnmg#HRFZ9|QtoB)RYS~;>I=AilSOt1|G$>G9 zq8g>0&*u@*n9o&xLbCvn6G%CC-E7a|Bl5A$j_M2vB$lJ==NE*f4$&1*R_w7ToYVu4 ztQwU#CtARZzTQPPf|9I3vufWMybdi^@+zNq5VL#Pg50ZWycAs0Nqrzx`#DmzWQ|DQ zq-D#Fw3h-xY7&s=<=2kTa=~#Hpbme_Pn0uUcN!2MFIO=}_qPY9!W{AZPvl=!)Y-RV zuRRCx9tD9~9`Qa$1-tH##w4aHc+O@tzv#b zR&}hC(CPcfQ)X;7j{g9r%dYAn)d$)>-q4RBwDygxJ-N$)!m=^o=(W-hbl4nh4MDxvnZ} zs2j&WEUu0u8_w=hRhEy(&EOsFhY2jls2UgM8t)m3a!pSr2Mg4K%1JCW14q)k^8~o) zXH)LYQ|!4qZ}y7oxr#_&R1I6G-ZTqTfS^d+YBfFhfOD*h4nlx!ozL$Y%3gx(GfF`O zdqlhI_+aJLVJq35jlh8_R*DrPUa(g0yi^IR2L_)QbZN5gyRr<^2r2z2?fJYCvY{&} zIwyqcRoA2|D*E-l0`JOb0OX%9j1;h2!cJ5xHpH_Qj5$LxOq|5d0SJWT(F~vA7+vWbuc8;r*3|coj9>2Mf9N2>PH}Si&m>-w15`j%YXxp=da#4 z6zWZV{Bk3^O^qt5i48yorQ*F1Ew>XhnP~;7!9899%e<6Nj1CY$tM8f(+Ag9EG}9^6 zdBqh<3D6VL9Hym^t7Zd2`uC0zU^QV=tX&E`4!t5_Zz-Toy0)es2Xm~VQSkr@hJvls z@fB>-5LD)XYxjsIOi?E|)KKsF`$dUYKpxd8N3WNh6ohP6d1RFUNav9pOtS016ATZZ% z@k-Y?d5U-I1yoT@pe3m1{En2+L;eu9g(o+%56%$huAn!R6vK!qSuaA=*byCHiEkcq zxxXrWxOUn<;}euEAd|P02fZ!pCoIY(sn@?qzjWWe6y+5ffy@xRZXaCPsn>DLeQ&qS z-(^(b0J;yh2`yZoT74Iu^6b z%LvR=)J&EF6q8VNSo#+7=>u-H&av86ohr#U#yC+L^cu#mWdS}V78@S04;RV)r5RE{ zQb@{r9be79FjABhNKK(cqn-9=F9+JB~nJStJSE`19_WAz+Fn;H={{UJF*8Zq4 z8x<&Y+y*t$3t#tQrpi)M9DqpPu}ci!%8?`{YCV9?o;uKUc&b8DY?5qga-iyV>(S%O zUBfESkXGz!-5_=TJ#s-%3PXheMMvYo8%)(W64T(yKN=PR$u|^~NL0CGASi0V{{U|& zPr0tdCRE2KI42?9zd4H*39Bk~mI3HD@5BYi7T;8q?B<2olT(-6=gJ+-8tPr5Xij1Y zXJ^tCaJ}1}WW~%@X>R2zE?wwAHK!q)N31&F`HHlpg?Lf`4h=ldKX}e>{2M++wJAaM zlBO%$4@9`scc)+XhS?YD{gpWk&9Ljz5OC?paw!g{ z@Th6fp0MIA0SHo;x6kufC-jqEszyRd?*9OrKuZnaW=s<0nvh5ww!?$=kJlaSm8gXf zL3(sBGZI`=5i(t(&RLFCCrWHbT9+HeTfT;2vV78z%J7g{yN&$gHNEkt{{UPhAh32* zY?02@>kZbs(RP7U_=P^7#16Rq3Z*%eqDsw6lFitie4;L?OB3ScgeXgLbY`gFkL18F zM>FP3Q_KbGL(#tQe&2=y7w`|n7ERIBHEP*B^C&&o$v_1KBTX4Ds@4KxM}3YN=B3C^J5V^+{N z5nkcM2}HFuNi;k+->ea}S`m>!R0#z6aR~Tz3|0|YYEdAOqwLU7W3pqQwX%{x1OEW3 zFhL$A=5|Tg{9%4g#p=mYhi2G!i7!jllAwWBci_Q*!E3a!0Q)9@9r$R!F3v#V^yVyRiV7B?>GSQZoUdIxy+hj|XO+*Lq}0ZCl^o7FCMKeM9Uag3oP8 zcSubqyV+)O4_-F2_O`L?sfxV)WJL}h-H+r zlaMnfl6ym3>$X@Vt-twwAT95NlQkhp0VEwq9KnEI-)WcX*aXy3TayVFa#t>9bv{?8 z0rw&f+ODL^Kq@u=03)f2cIm#g8BmkK?+cUJ2mf`l; z#I_sjJho52nCiK!FGbY z&6)KhQRT-zP+rF=a@6iXB7^A#=6XU2XBDDL4gUamjrt(V1+sOV1kMF6KuH=N2fL(O zoqVZ8sj0mw_+kmzh)-5UrGPpsSLyfKE#KIx%ON2JK}#f17vi0In!%wty=BcwLuEa_ zT)Zz?tmazs=LeIfQM5JLE~HH!u_zURR1LQd=&(2nmQW5)mk^!P%MJ z=^6F^0DdZb+?IUI9o4ZgBL4uqW+etxz}0@V=e$Mdl<}nCYkbL$s^xYZQ;yn0x2#`Z zbS!!?y+O02Fa;yJ)XpyPeqUG#~Dn>;yG|FO?-HIi8r5|LJ zkzHJL`bJkj9Hld=>fE-2&*=)Zi`cstu3Cys0Spgs%JUiA>|r@73Y3zwzO+3Hd?P|u z7dG0UiX6a>A>QD^Qso58AtkjmB&%|ML7`qcOk%-#S|^1nazaDUZhE|F-i)&4Q3=%R z!5W9_1uxtdm5%_*9;_+&V)fS2<%wxX019*XV4QF*Sm&inC8(HO$9RjykqTgFL`8_N zVI(DBN|X|G-Ur+loV!BvqzuFm<5Z3x?-%Cb z@cshDoYecz%AW{%V0C<1lIaRaW4CCpe^`b`V2~;Tc^|XK>+-~`t|~xaHV>&0#m9LC zC)KS%*_iz~Fk*x7-SWAN2_+gi48U~W9FvD+v*i!Ip7d46Sm#2Oowfl(*1_OdW&}tht#=Ap&_Lwk@VTJ~Igs>dQj9U#?CDR7^$l8{P(IaY&ZDr{x5V{=7RxvuB^KSF zwc9ZZPlYLSO7GXaGAG(De3Th>GgR1{{SLLV7#g#gm6C? zhzTu*a!kbFmh7SnH)l={k@niTKr-6aZ2Xb;P* z7o#y)FQlnXk>G7xSnkZVEoz`jeleWbaV9_#Ruj7o_z>SJ^d?$VPF%xXJmPmkhB(0z zCQ8hepIDVREGkB++poK5Uc;DDa$R|}+h*(XjSj~pkmZOXoA-_`uoU3BcQlHLBTcy` zPEiD6oh08_GrhQ$=rFLcJte;fL2;bS0mu?gEtJ#LX|OkuTY<7 zq0?Qpueb%6s3|ue6e&Q^gRl8^>9kRkeTmZwlv&151z7%Z0k4ar)~CXkUVyt+C|p<) z)K&mK5*VNH>O~xENUTm9NW!-J186?!6zbMrw;z0EA9UoEgf-oDA>IqOhne2$$f~a8++jcZN64- z3KYcbXaVm5ERvL&qF!vpoy9}(5ngirU~;UlRtMZ6TJxVWQi6~aLO~@%ZhPw$q|hzb zvZc8KgI4*#DaK`_x;zOE@45W#99$Tc7JvqS3ux6RgAA*%vT~-B+5#`$*Ctd`#I3;6 zoF0)@%Zdx7B`)Qw^F(Q1()M&qyQ|qPN@%cQ-Ofx64Sb&snq7JXOXy35j8$`6D!<6*i3eUJu zr6Fib5z>V73_sEu5CieYXmG97E7dds_Jym%4^HPvcjVEGj`O+0EIC9ihCP?GhW2Z;Zh}>-#Xqiy+NLm)9WzDeZ#1^{J$jnRrer**xNp5}&&bQ22 z_J@RF01(5(pc<#;10^k-jpN%sCONXCf}ykqRh{U5&pl_?Fe6?RH0nXFpokS{^i3jD zszP$nn?O2|r^~z@7qr7@@dA{wV$2kJpQKHF-z6z24N>iI`~0Ijp47L8E=;oWhI8#V z^8)SivM<8y^&EdOpIz9Fd7MQ;KgzT^e(|B*_SGaD!#lBdubeH=t9hiu|IhC-8_DmnE(;#-XwUjx!CUvei)G$B9_Wpyb8>-nTEPnbjHQAvHv z4yL~d^11Tb_I!ML=>?Kfr5_nANdlB7gVZ^Lb{jba6o(u0|QhQ(g_mW2>VE_O)Q zsrz+>%jU?FKvV$NW7-(465B|pYP-sXM(+H;sc@RBCR5;{*~NRu3YMlJsrrv6?+%hA zGq?wb4$U6UP#XcgH;KJ8oXEmcI3bvE6lb6-s2V@ZtTW#hkgp3>+|%F=;saVPm;FH` z{(ItOR;Vt^y%d(v`#|tIKs&i}omC2Z^kNJ#`9 zcJ^DZ zSbDj|XA50w9wq>d4&+k2LuG|)1d#fQZv5AnuZL7jy%-8VP2laqfK`~(XaL=}G0Dp9 zZMhU}GW}T0Xs0KsKXI^#Zd-t#83EKwom}em>F%r>onSL2)~O6sI&_8^_fP?mM-&_$ z@wX2Zu3mmw99$Q3kds!_=sz`$j|ttvgfKLr(2gMs31OucQP6F%6t9-iuVGuYyiVX~ zKE31L{BIrO9uMU6`BO!TPQWwm#2J%kq*J-1(cr3M*5f*PmZ6j&g_2xW^+pKTk+f)$ z3p5pyuxSG#HB381`)w`=PP9ccH)w)n$o1jlSh|HrK=Bo<^4o;j>qmaxJte^0l@D%vFg-Qd$%pJ63Db&t~Q)DTWVpnV!T znJ^tRhp4bQGGA`-QqYRg`awHLZQ>RuNJmudGQbZJNSPNV-I;}At&UT;+!#r9E@+-%Bl`y^!YCksR6ALhnx+y zSV7VWS|yk36qPe*c50<(7v0ILhYzG+{+DpFm>G30=DH3e>nm;C;P#A*8R7o`YLu_< z9(UyUeq3?i_}*K`ljO-aSzEt>PVCx`v`PN}5}*!Nao1SVaV5Z+lGa5QkjZK=`oa~) zT(X=o%Uz6oALRZ$@p7^DJ`XhVMH>|5N>EsEM!#S;jWX%RD4v0wGKCr3j;0pxOCtiz zK@9sIf(BfdF>s+xsZS%)I4pHsqgL{Ba+ml206ij&ioq{2$}*9#35p0x}${N@T_`)Lm6dX5K3&t~I0 z6WVO$C5;Z0s60f-vY|v5P#P1#-JpsP7CY#un#*JwC^u30ylEzSMyU)MT$C-}Ov7lX zyQHB-B`*3ANMVy@2`mX=LDTcB5JaMNuOG}`9??toOOZf2gTKlST{k!afDg^!gqaj? zoJwcpXAjG59sVyHpPwX%vP&%E#ktx#T;#iXMLSgVkwV;!;()fcq;ALW$?Y9-FxPj1 z2~)PZarwLkpL#hVsA%Juw5#he%k4EgeW5oJ-cuzkGBV55D_Za5@b6JR(q33uW5yXk z>XWDtJyMDYP$wzWZB2HDi?b31$M2U+oeq z>&yv4+>q(z2fxxFw_GM!3L1W)7A4A6GK{;h`oj;_E6Qp>%%Pc?`DkFfu}r`+f|h0= z>*Vkn(`T14!ksJWNa9WqZ5BuxIjmf`43<0S6>|~JwvuXT`A8Nnpx|h&i@{4AfRo~7 z51EB|17*v1y-Cs-P(xOOcv-vcLHZ51f;OAkL^gw{_`GX9C1lu;r3TZk@jSFkNG#92 zHGvXT?O2RkUD!|`6a3-TF5XwrW(B^`uV~fXgkH529SG8-XkcxwdO&xl8@JRL!@*<%cGQTklW_I`lijMfZ9TPx&{yh;X#s z?#FTQ@7f33?o^tyC{%Ut8Sc7x%ph84%vDE65e1_0A%Pm|qfkGMp#8SU5_1w$T>yW7 z5FYiM;N@o;KJcY$rMt@d0m!NO_5L(~>%UMoCB<3w;x69Tbj7s?SX#aAiHUQs18+F! znTV_R!h;0~gdN7TEw2$u&wJ%8U9^gJS&JSjRB!T$q|RYcm>qZgXsLxww_L)f%qgH^ z)aqfH!zHv2)v5;&yLL|r%BFGhJi|ST`5B8BZHA|~`^FrX9xB#UNJ@wXg@sQk9rx_p z!8s@rV^N~GHx@^|k8FAEDA?kJc)I^Ki~iDO4|qDkkL*mi*yn|jnJ zDl}2lb?kl+jJ}1RFU@#~kuy+OeWGODhP;yg{bDJym>my(n#P=HsI#Qi$DZDCUVM{W zt0WNpk4jrF~ZX0fqMs0=3P#e1%`3OKx&p3h(+`-Eo-7a8OYLdWm2Uu6J$S;>E^WVx0*sMev zA9Wvx9P<;|iY{!qJ`e)|psia|%^(%ydW9=63Sd2uDz3w4-QeZhV@OjtV^&j9_3k2T z%6z08pjDhGR6o=01%wHA9OEII#)n`kkNMBGnGN591Vf`z*_~Oey|k~UrrBx zBSpKf-w0u?4^#U_v-HoMt5#e+lqJ-|L%E49HYCu315iHwW0@iAR?u@3&9R2$Zt&R! z+U;!GINz8JHhjmUn$(dJIOr9V36o@=iSFv-9z{jmEck*o3g94Trz@fynflr7TNEuEY@D zV4ZxTNmrAjDt+6S1$14HIZIMYj+<=J_1t@%K3A7kv_wu&1d~!CE15cq?rXezW}Tfm zLYY7?dVKfc{;@{Ic&bWrtP%k^RsK)0;E#6zXf=pfMd+a9d%lrM&1?0FCEBgh1723= z&QeS3PqZRftrPQ9C^_fcPv_nRNY!tERIT4rsPDucz!i%4nv{bm?U=r;xFGbS7~#Y2c-$ypa}c6hoN*Fj8>|E+a>t1wha-?U2U0m`ECO?_vT~^^U_hX4wuvma8c{7P zGYAFS?F&~utV@?NZK3K24l4UMS8d)9zwRl^K^`QeJ7%HF%TbQa3s32+*zSo-1D zI*RN=0Npv=`b8_I%v7}ns)J2|`@}eY(CGlaWPlG+DGPYM)U=-h&m?X;akrDgzLaIW z?ll>sB0w6y9)Bq36xq~}QmWHmlvcqwpv*&iD^9Ok@z=^GP4nv)RJlpe=u9tRf~NMH zB6%Sy%A=`z7xw^u(WG5>)cNe4Kn^@%(O{ zgj`oT$SYGNw(Y@>Z8(`p*G^45pdX|hcBu&|NGg2{3$WcQo|#i776F|uL%-XpZ>7>! z#dxqRprjO+`9b@-{FbC;&96Ehk#6_EQkI1oL#vX*Y7dDOFQjA`j_#c)X+jcMngh*z zAn(t=%R7E2BXPUuqFM+^1nOH+9$BVlCC=JLWiIKpB^ioV2o81kc8fSG9L$(hl`=>a z8`0c;X;*@C{gsBh_SUol6vZX!yKPT=5V|jfDpC@K>qgui-|~-LQT!G*HP0IT%t>QyN@jzSYqeus$9F*YPQ z4sueUSZ>AiI}mg_cM#czS1xRnIAtUR=ZQk&_a#Ti6%_6OhQwXILd2L?&qvV{gY9~ z*J@0%b2^%XhJY9%^9XY?jiLVlC~L9JKttxtLVR1X;s9S)Se%^c88W%1hsrJ;UcGTb zl*vL(b>M$7DY#u9-2vC~{ooE9y^$pzg4=J*5Xdy2DNjztSa>G>qj$CHDBd7og(RXPjmLfJhvQ9^IlG zQFM~t5}tZD-W;rWmQs|#LE4S1OKr9#dXP^$_KEiaa_F*nLldTidnfI^VN(%V)|sw^ zyU?g{xozV{v)bjA1crZvb!fZLt$f>vsl>E0<*`YXC>1C<4(jsKC$P*)s*(tD-+qvv zi!gNAgb8Gny%^MV5o-_nI<%pITLuQdQ_L>m>5A~QAugo=3UyOxIiy#(XZq!41Z3p> zj0d+}a}=X1Gne0wtQ1O9B`84u0PlG`fe%bZ--XK59MI|pykOQK}76Izl-(c?aI)rM@s*Xhm5K&KIJ8e7(A1A;Uh!WX05TkAX} zf`_!narBKd{$(MQN5SJsdc@Kdg5>+*IuA|-U<5jLUrAFB&#Y; zwGGo)HT_Zl01*yQ8+~2HQq`AM)EfDHV>_^1WlAY#J$imtHM}Q>0?<^VLyu>y8n}HL z%R%*uE>-OEIv9^l3Yaq9sQ`mPrvP^Sp`BL!Rw{S$gEqU0UQ*;{B8N~qHqX1l73XeD zmA8u{0;5)b2Otgf71ptSikW75KuS^^drwzpKT)WqU7!d3?CPxs$LPivuWQ~-a|cNd zk@AJrUf_mEp!mdmm4f%Q$&=Pna^)q#f0%|W8*rI|wF98sX{>6O zW!4bDYAAZZN~XpE31A23&Ip^^C@Dx{Mp8%RA#(dnAf%BsO&0oDGH@U%}CUJR8~ zk2)T)jYznsPMo5IpH{DHtZMjX?OgX022(8|gOdD*6n^w)tT9+_K!KGSlTl9z^41x$ zA5&e?P7RGW9Cq^4jDS;szGcX(X1;iM%* zp)55^YW#jYSIDr(d|2}Z2VmQ483da_O`#&CF3fZyyYsvoz44irunBT@B9zpV18vt* z?Eyt0AQ7&O+B3WC^z&+;D1!3=G2)LF$y6)|r4$(cDAn~amXbUd~OqN_Oo4%bZ^Z7#k{f?A8 z2Qp5a>GbZ#7)5(rKD3`!;+xW&#J5HhGIEdsQ7-$$7)KKv%LOW1jXd+(15RNY#pxkRLEQX%2wb^s>qDh)uKPS2ym4%>8e1t(UW0g=$8mbl^dJX3{(V{< zPAJ}Y!bqyyD05%lAh6@G07)!a(mv;ZoF!sw!d$7jCIiSP*>Sg1`Lqs*LJ4@ntlz!@WHZ*2+HIJ z1@}6iExN+B$>=sjrcth{E=VqSEx+X<_oipCUjDU`k*yTkMY~PfB!iTPQDWP4Fh>qp zq{>6255Jrbysr-vrHOD)Z@gV4dDaBWK~mHJBB|v4AMXe^?cpqfree&Ho%(&?$E2Ip zD^8#l5SDtA2zWaMTBnr(nJEtH=yU*(M}2!lTYUw5FMmlB2drXU{9RAcwEM=}GGZqn z1g4Enona>gdLx%Ea+N%VYpfV6rm(e1hpPgWa4x6;g4hc2WZ>$Qn zU&>nYr8Q2ZX$P;nz{sM*pTh$%h5V3K6q>7cG#hQ9(veBTm|og^S&NdUZenZhV#rby z8Ts3T+9SKN`o$?Cn-05y+Bv_mFjHqW6dNDj01I~ImcW8bxnSZOB;RS%DFZ=Ge!gZc zTsCABS5sfZ65cngqz0ul<^xr?1k6Yb!=I#0S2D z(^AdEAmJFvTOfh)^5!A8-m>N-<|HU+8JzuhixRHmF^W_=zdUgRZ<`7vvetY@ZC(Q{ z&&2+&UmuN|Ju^ayI#d2ISWlK;<8P!*AKR2uaYRhT> z=gK+`kUI3k@~52BH5xYG#?ZbD{QDHWADzTFT=!58wW*TY4q&jrY*-+rU-?}xp{)m4 zD}C9Klmg`-=r?b3#FiUc2`qaaksbDopsbL?XNH_omxEA{Cdf`l)Eyp>Qp+`JU`2O3 zKX?ap<8NA1Ejm0hTP1=R7VV?K3B{WG37L>H?ZM;&1n)a`RFYCy56>taVY=nBsJgit zh_`v)X+lWO6-MedW`t~h%fY5d8^y0Bn z*LgdYdreW+0U^y|J#)m<_x+~i4S%7JUwWgkZpiP?p z048CU6_|kKPfmfL6lhLW00*9eE!i(%JTF~G^9mP^HYdQ1UAvv)JCQS%p_w^AI+H>; z2ayNLeI(|oipuZ4hhO3$m1Rgd%~pFjkJD`GE)w10UR}LNoDg)-zg`SGOv`DufWu9D zp72>WpM@>G9x7Vypt0fuO;u}E;3PH-13jTeeAsC1uS*5XCP<+XLVV-Udnw0+lbxxGI z0P0^?fOf1BCMhaQqJ#i9^7#2es)E+5F}6unasW2f#eQ|^3AZK;n>j7(72qT}Icx$a9Aln;7;UfQcoHZc@fR!^xwy3_R4W(^ky8+DMePN zhUKAN*aDb4C<+t$x*puYyk&w6zZpctsFKP^E0z)tu9pBg8j-&cf&D_Wlm!w;Ivw?o zD?9D%@UuEFOO#lJdmvG@uD`T6U1$kHa=A-yt922d$-a;3PHlf?gq(b$%)Ei$1D=y&y`xf^uBB1DA@{>0?1t9W4o~f!2{iZJ|n0%SNE3Ayq{Q z_9A+oyEH7`X;amiHC1%$_l61bCIeLx^)=E5TBW6n>!xp^=@X5hI;Vg|9CNVqh0E6b zVp0ev{Izkg=+I8`luAlcKd21DLmDsG_G?137k7ZppW6U_&u7R3@r{($Yg7TB4@tUD%NZ+vH2HC7YuAxp& z-vVLkP9Fpu+6u55tIy6UU6*lkrBEJt8g`7YEo-sdsRe=(H}Mg$JHu?5DVCpCDU?X5 z->}zste2Lb3S6mx?0+5z*)DMRMis2>lMX~U1(o1Z-wyKbbRowF*H{QRtUYLZm2 zkioU;+Yay!MX5?rQ6;vA%sY1#qe|E%)_5_ z0=R4eC}C3iG(223Hx<{I_P9$rc^t0Y6O$+aIgZjRAE#29ePU}onml!56v#wdLVTiI zJeaV%D?^leN0qmTmo_+D=6)lAG2mXMLf`2ZWm$m{O%`X1)?N%M*NWxeXB7v^3Z(!y z#Ki<1SI`%N+I`(R*7#`sH9)D6PSub371F% zz&sJ$rG|+DgM6Zz5(GF9S`|^kk#UvW<=I`tYT^`LwnhY zG^_8#2@;jYkkYBtfb-=a-X)cY5|)q2EMv4;-Xxi2qnL4@CsuUFv+Tsb5dvnBL**05 zv_-N~Rf;Mu&S17&&c-TQP($&|S`bJvbJma|l)1t9iRGTJ6G978o&-%rcH5sl&tuq1`GNbvwD2YyU_ zXNs<{UBjK@CdNLF%eq*&@pK&{=f6AgKgsFtekbJodaPAY1$we_I4t4xFW2PJ^1g4!ydOd1^Ug*4-#QhTRCBjz4Q@_$ zAO!LTh2h5Ovbsta@q@Qc5SN;){Ouf4IzDm|aOIq!jN>o|QC)V85`Et#LBa)i+n+A* zO6DIg0rqrk?gVOllF}f z7fiJKBW>b^wnlA04INX#BxC+fq^WjCri5%F=lpt`o;pJfqQn?c`$vhg0ySbZZG;7bzTAT0Txv%D0JKuH z$|-*jlvc7^)8cjwpfuB6dD1#~TE~*rzUoZCMFH6F33j_8(n@t|7w4EScwgj#WrrZt z4WVvsAXZ}Fw;abu8J^hky6Qx=C&Yl~=gctJugP;BT*QZFE;itE)&tADDMvjw5n(KS zpv63j`5$yXkiTrP+0wxwfE;NRl`Sfw6i%yuuOc8k~Sh6&C!U>CBFUZN>mZpAYz**Ytc-;um3Yc^R( zQDufZAEW%Et3}kIP)<|VZjo9=nZOUG#^Aw!S1NP0qcY(BLBYf6G*@~(PU zQCI;d6VC%EPng^txs5+j8B;(v*EB(6xmH-rStCrnyF*QZrKzS2 zK-iw{VnVZ(zB|P^Sbn6EdiwBr{qts=R@ z$~9ReowgC|+q)<<53z!ln@KL(Y(DS_cbVLm(Y1-VCZhESPqw+@NF? zdh*d?)Js!CtMkkQwoPKjFu%t~7+t;Ou42h4rnTHa>uj_kIf%PSgD0RH$NHrPgh5;y7hj;NapANL1@zK+0e948SVj|9M#ZZ{uDBWt_mD1((jMEHr( z`*8v7zK-)3mI4b@{{WGV`22p@^3f{|p-=w+kn>$Uj1{orm7zvu0n`5gU??be?Fv$^ zIg-n$ldv6mgZCwr8n2cQ))y`_+PKq=-H1%(2hCnw2+`~|MgW)1{v&@aVOs5kus^N5<$FoFX$D0vaZhS=br z(hUg=V$Gmt(1+{CPudbernu8s8G0cj^yVtumI?BPJ4CS5WAuPGt<*?xDf0Z&&Md%? zrz8XC$5Zx#_IU_r$`nZUn_fgzHc$>$Zh|A1X(@2@*a)B~iJ4i*pmrJo#C}z+1hNfC z;+|b%q|16ubf9{CB6E14dmt4658uzEBVCr74QsyTprY*v{{SY?^lm!!g@xXLlHSn{ z5;W{0^r;gR08$8}=|SfabR@lJ%L*I+0JB!R4&7jIw(7u^{P)3GmPD}xR)?>ViVAU_AAF$lgl9ZJxN+9_Y zv`@A^gJoSrjMO0Qqj!%LX8>{2h`VjSyhI_=lSNaFTj3E2Njtwo5zD1Ot3;J-de*NL zESBZwsLNeO@N(FM5a8*y@Cw~()K};uK36+!$GFw7g|W|Gr{ngAyP-@#VO`tf89ouU zJ8Zyt#-C-FQ~?d3uH(FYhvE5temMDW%JKYp(G^&dr|_K5L-mRi?5fC6qDah3YJ91` z!VK8$o5VK45_5j7yO{K=h8ApBVidQ^M{a&lO4DXeVL?wS_4~lfkxTWZDRmdC_0;_% z+(meac7UBcHSTnYhGekGb@;$1XB6)hFIgx=(3Jv}D?kfo{q%}ArIL1Oa}q+6mZH91 zdsk>c#Mr`doDnz#DIUQ9u|Xw>`nL6;A|~86vwK+8lhu!8?E1ewVKo;BRQXJwWm*`vF%{($dBs~Q>RKso6bs&_@mJV9x1c!b{LI5L=ICAJNdQrKR>m)4rr4@vd zKS64qMxNAM#8(Q`gv*w*P%2GZ^LRCRUZ_%n63Ry4jpC)U)8QFG3Q3{q$8WSz23W39 zmn_<~J=z~WOjWxs0VQfEcTsfk2X0}W=m}L7sjr+xe@)0!N)xF3(?~&);%s9zHj)Cv zvy`1k*}5LoZ*{ys={jS&nVzFZA00k0o#|ffKh%|=9}+`%-^`DfSWCl8wJfa)Nhx{~ z7=y;0s~KB&BUvUk!|57Xn%SHyK>PRGv@}b<)Wa=zAnn_j!|;9#P@0uY89?&{zbrJ3 z&|SkQYV`+SD5-6mQ_DVw&M1AA+L-ZdAg21Ozl$5eg{YN4?xNOPxvg=-9cH4@Ct5T5kP`p#{!jmN}UChWk6~po-Xo5g^OV;l&5%(lhH; zDpdT5K{CQlVos_{=tq5O3pS48epBdS&clqtRIsWk_M@2g$$iV4FlHgtS^9Aj;yfss ziA=-+n1JAOzu~BO6LtDLQj({1tRD)u=9K9Z*~4w&XEL)oMom&h2!Z!bBbJv^mEuXR z!1s<+Ek3W+tp#nWj;+sV%`Hfpg)HSIEXEbMsT(c-0E?2DW^e$88`sJ++so1_tpp_n zOyg!CQ&YSoCiR-xKS>%B8fT*$i3J5pOBy!uUo9AGHdzKzOu!XNg=*tY#p2c7dL)1f z0YIa4^8ELh4R~Go)Fpz>r{aPcW>^w|r6}SLvQ?3J0^uIY3lYZ=E%p)NIbSOhNU7~l z&vYtUE-CV-8S;nrrZ7@VY0GO2WkjI44%GbG8L!!Kh*yBqbd#@R_9M397N`0?mHkk) zAz>%=A*fW^@Eq2j;SpJ`)1Ij=TD&*j2wQ0FLTKEc(4^5+vHhJhB&i7lF{mMpcYgYI zjC#!`Vr4Bef`9 znF->NH;p>Ry%FOQ{;Fv?!5}`58qK15Llrag%mKf!l(}jPmXMPAwz2J|N3KV!4iw(k zU8}WQv}wnVLNMO9N-Ywya9lRuhMxEleOL&y5K`A0ARcBbfx;Kubg~E zJ{{|$!^QsqX)2VU6XGC_kY0gW%X}!yOxY_6PEr<)_@Ll+esqlD)ooIzX9^*h(j28> zWlEItsI63kN@`nU5#U@TqAeb^2PDLtofc^4LI8b;h00K2nU3Y6Pl$Nv>UVHjFIlfa zJSSjkJN1l<6yRydbOPx*De4bBzA)eDg8i2+Ql!sO^{G4VHZR*=uM@d)oEOC&j}tK} zb&{2{qgvD9-YsCe5A+stl`t<#3WJ~z#VQ&t-k7ij0G3i;YQOQUbBiujPDr5ujr2%u zUrycnMP#AH;ddr_Nm4)}pz-&8VSewv%z#h}`FwlD>^X4FaDcOvYUgM>JJIqK>vtqE z9bg#7@0;mfu!I70)I2u&Ik{Dyx`5L)g*33eO1SQ7&o{$!HAOxvdTPa|Un;$+$&MHz8 znSP>QiA+`nA7iyX@FK~Lvbma|7F~}+pdXB3Ci$B_YLt`$Ni=SFgp5gsEt$fmC9?Y> ztXrn-s~zjKXL(a-S2ij$W~u#vO*JM3`b)!U3QXBZB}&$nAaFT{-$uAWD3l6=sX!X* z*Y@M!7%w{l0jLZE4v9~Yk7cCyOQ-D&ENn!Ikd?8*XE-GF2drC+52}mbE^zL`w8?5)r3UUR} zzA#G>+sTyK7%H#NW3lblG7FyDlG`sovZFvnD0Dr39|(Sd)<>fWlU7uL0^eLlTv7Z z%dbdWxbLHk$I%qKRjp-VR1_yem>*hXxTR`5w;aRLNqN{yg7xR=8MWhSo9hi!?#wjk{6@VpXii+tb5;KU$Bnd(Kc};Y zAtOG#__=tVQ%r=5rf?aHh8hBE--u7OTXM|v^YV?f&jpDZ2R&mm^n-DgO-#vX@V!9R zGv~*nhRi*FrAYv@gtt%5V3r}0g~}r@HG%kB51^oyAh3S_07$<+#KS35gGY;#qG5Lh z-Rh>SgtBPeYgpDK*h+#*kA=Y{>E{z(evHACRD}Slkb86AO8uiO#8|S?Dq5vwU^ zX%{_7l(wOdkz=J`PH`807Gf5aWEmPDl<7ybVLHGuZJ$z(EhOYf)KJk~{O|64V69T9oT_xqW@kBF&=Ik_r})P{ViSxQZ9nGYOcWqo`*aGz5`< zB4WG+!f38*1*0C%!{J4e2Zo{aXo}{+>T$|UuzkXgp%&%wCxmZmbr#;Uo=bXI_x%PiO3$jXI8s)ijxYs#5l0ZmRSQzbUemK zg6(rH7R>7fDa=@!068zKowat2cN0nz4nPABj4$0cC_=nUcmjti3r`dnaqMZAwhHYC|NWQ%xAqyd#g1|$#qow717R<8ktNwf-4E%7K zCqVQd)R+To#cQ0w64@jF048UzYITUDU^&we76=TYK~+86`9k(b>3AYk^k!QX8iT>> z))X!Nj+Tjy>l9^@91Ri%-g>-hSZmdZ04R*f6>T$bSfg#XB|wUUv+f~`Ub^n7IawjW z12Nv5@clVx{ENLZ!v?GSwuO7E8U(K*0e&_-yfPFy@ikn4G*9iohop-1xdh}Lh|{ZY z(iN`hE0&;7h`kHdp~Y8e4pc}4bGOhK&arKlbg6+u#F9KYcIbX^=xV4}tVKK5ui7&^ z=Lx8(YRQ~vHwCuq<@Ar(PaG-2CZ$2>2oyaGXwq*~grpWq2k9D*zj&KZ0WuzdM2S@;$GLq+G%muim z%$<=$l9g0B(}B>#h3R}EQWcz!W|W~ieh5I5d0YZ&+_@XJp6$4Pu=R16_Jy! z>LeH;aNW}7l8|#!hv)l4I_za&Rhvivc|pi?fTblgdelM{gByW0Xjln$0FcAA8>YkG z1o3S7lGJiKl}bH2_Kd?4;7ettVqgIYBrp^qJCn2V5z79KL2Ox$7a?JC{78Qg8V>w< zwH_k5FQi&dWhtuZZcfSl<4L(Ne1jnp$R%tuD7O{NcxpE%q)TDIG97#9FpoDM%SqU!kQserptH zC*1xw27tRk3vJrzEJ%NJM`WE=)Njmrc;Do&)u4AhIfaA`a^13lB)dMmeW1;z=#?;g zM5lJv0$JprSV=B8+xd#ut{_yeWCnV$qjiV99=nxx%d=$OvDvr4xngv?tW2Y4cjyLU5ZP85Khwe>bX{xt2I-)q8veHK~re_YZq_( z{GjCplxg3oh4os=@gHb>VU`4C6+-aE~7!u)&*gV zR+P&w2_%zVAO_j@vJosMjsta3=^1V1eJX6lB!&Wy&)N)P8w|;bbc*T^0uk43nIwXs z7D0M)If=Dcv3TKoSaU64=*b$iF5Fmpbm{EB?UdJAsa30rG2^spSYr|;U@2rJM?g;J zX8dTL^tj2Im7$ZDT53-36PxH1?+dDInS(V_2(E&#{{Uj2;Z1h~Jmv$Fi#FkSycii+5Ul2-8aJ8j^4G!c};RkNtNK%0&Saua1 z;gD^X;+T@bO*WNld}Jm}AwVS|%aYFouZ&KBl2U5S2C;Af z*l~oc*(MN5bse;e53b>$P28lVWReLR^x?lWg?SbW z-!>qpP~&(Ja@bLrxc+)U`)U$N2`=DQm{zyh3RGM8?GsLPF?`yA4N7)#`$lJb*q<_z z=_Z@kT?7-g%swIwcshR{cmaOj1({wFH`B;Q9$V8+9?4hEA)J$yflYHH)h(ls_8N_k zx-cdY4>#?gDOtq^;i#^?75l<9{dY@QQoWMfZbsds%Con%5>f6846K02p2`4!@ zkgB%cW17J$Rh%&+Pp@bTgqE~|g@D4n!QKu{Nepx!n#Pm2KQ5?xZDgsa$!?wAEJ?fq z&R1@n4T<2Nj8dC3C{ni6k@>FGfKso&6M>gTO7*lKt1U#L#ZdcF54{5`qY;kLk+Mhm9M}+%SNqNdY`OC zZ3|XAoTNE5C4f9d>m`f@16CSQ!i-CJOm-u;e<&ehyVR7`xjjEVZ4;-{^qUW?rhr$^ zv@qCibeg+1yq1cWA{o@o>gOKl#xKd9RVANuPVU1K~%y*5}hHI@Vb(( z3Yd?)T(a2E62KiiqrZoSxcT{TuXo)9n$Q{!v8rJ^8A3y8q$}OF5=%3Kw^-3EHWMu% z0sB09ULPJj?=O?&Cv;i3)#3i{la)FES{88nSb}!>!zq|!yNi>OIfF4~f|q@ZZ+v@q zSD#}Dxvdr;Bw%bDnF%?OQUa?xxx)`r#x3^IhEw=Xx;iCBQwxaTp`B%tD zsSp;|j8ZqRQwX=+{L=^ryaBu?{;a_LBdh#UM-}t-)~uJ>S66?eNW0t(NbeZkmlcG# z1)`Gi`qb_5tB8+#v;)Km&?U+z><`I@LE#0Xb?+TM<d4fD4o;tYk##^ZsV&Wi~ z;raK8WL}|zzO7HqA}R7xwQ5_D73`H2d!+6nc~VkqpyoMU#Vy5a?};q;Yfx#hg=7fT za=wN5>lSR+a=*)?Q&^60P;d)G5-kc8Adr743k9w%7i`zrx%xuI{d0w7%m^Xt`K&un zwo!tM!sX>;DsugVSH}zGtnPYDqedFLb=<{U4BX`O+~|76%lhpqEDx74PS13Z1#-sL zcF4yn@JQ4(C`3suoO|F(DM!U{5C)pW3xwAdyLU1PrmVoE-kp&Rl0FXf>kPOsRzUz z=zGzR#xGs=^%0fIlebUD)WJJu5z0?pdyXPpHDFA-l(;%@e$b~8q1G!P%~copH{~FO zrtX#wa08vs$)K&K!zo6N55O3$Ck#Dv4Szi0{7O}OHRqMve}|M2vCdM6I)lv!KO#Fv z5^(4m5!;w6cUjT{7jS6=;;kF8*=ezEB13P;?2>srL>4PbU7no5TUD(AI{6Jrjb!M8 zEmK!FL6tpX1>I;!(9?a%5Kn~*1wd$W}aYurbuzXF|s@5BWXl;bgen?>tXz&1QmGMum3uTPkw944O_ zqiwRNdGiwg0L>^TdT0Q5fwqfEm8mRt;vSGKqG<$xUZnBm116F+p@zjs5lYu&4N>O> zQ?L~L`xCr8+OLU}$tr|Y0yq5H6z_|=a+$_ar7C|0nr{wr#=gl` znd)^Es0OKiI1nP$Zl-DhQaLc^JJE`iRO=Pc1GfZ-te-^1kBB+uxq6OcdF0|&R(&TB zq}twY%)k;whM-f^Xc4aUY)7vKtI;(CENM>NVZuwHngpB&; zA;WR?kJr8OvIx)}IZtl!SyqzNU=yi-#}P_xlrof5U7QVp`$W(iIa5hKB!C9J^e3!A znr@lgnq?ZEpzY@tKjF!#2DjY-)dK@ z%%lX`ECORir3@bvb%PyGlo@T8zQ$xcWj} ziyBNyGJ{kHJ)(JXkVc5Rwpq%e%A*$n=>yevNvfrQ6m_S{D&2PM^3tLMAAeXUdtJZ) zWrtG+>j(4&;wza`Wsra~CHhc(V?4Ss4CzFrVMIMx9Y*zyF3oC~lfWju{;__2+7t*V z73lzG;~fdJ5iC7uTT*`T(RyGKq_}>MtaD@ZY?MtiQ?9`6+8ONEnt)^NBvfqNzMfH3 z0NnSyz>t=zd?nyFrko2hctxT?X^2ZGYVOQ=4N*!|!^Eo+7L34$Q=LA4Xr9ev%#*kj zZhHAbymlP8!K^}R*$S+{K~|(wQ~9hv$iV4b*>e&|0Xawmoz<)KsBR&mbjcE`QkMXe zpeLa*R}11aC=~(%Ni=>mZqb~QD%(zWJG0dx8Au?~wIQRMUL}<*fOXZO8g?mTm@VDM zZmq}j0xr2pnKU|ySpNX(Yxa#kMAHrO6lmmp1VwAPB`ktN?cOZNxrDG-h9Eoq#6fDG zkU#0#1JV{d!!poQm8-8`;u!F4?JZ*6cg}PeCmQa)6p{DHyt{bf~-Zp~yZbz!Qd8n;lMhMVqVq(>6rn-IL2X16xvvH0tw7VH zDqtJDDq^LI1aI@N!_FNo>XwOSU@k!+wty$TEJ;{$C=EWQ1lU4SNK22bD&KyQT3Uee zYWWWIi9H_Tg0v{9B#>FiN^MV^U0wM{ z%2;Yno<|SRqfIK3EL)la8 zvvXO{WJ;k-%4SVm9zS@|Y?ie8yoxn%!0@w+?8!vQa{%0CVezDX##V;PC6VGOK3u`- zoK#JkbhRl-1fY9>`n(^wu^Nc05z}AJe4@;&;Raa>AQBjkN#FBG#*vIBO0|hWvYwi` zgnpX+y73_{s%l94MSFt!OveLn)%1m|cZ+h!AXQ56rK?_@evcktj0rwmq$x!?=6JHZ z7TL`;Xkt^9hDvi4DKsAw5MCB^E~J57zF(bUtkW?mWitxXQ3{{)3S7{F!8~YUwh`XT zapXQ4g$HKS&yEBsV#)ItI$V;U6M#7*e=m-ap&M3Ek)Q$3cv+KdL9_$yE$DcHh$m{8 zP=tfw%R+hxgxmQ!pIzK^g173DD0TQk?jE|3l__OTMOd0c75dv{mP$cLAf3fvw813} zE?P#FVb0N3_rByL6_%jaK%Pu2T=>Nqy<%8_&f}BEXq(DG4#w_DWb8jr_=bo-?K?82 zISC48cCB_C6Ufp6+i$N}1oWDXQVy;8?`WxL#0!|Pq@{>R4#au4Jobg`Q6Kw!DSzsN z@YldYw3JqG{F%Wgu+&M^?#UDar`pAT&H6ThAM^f=KZ0MSc+JcHi=f zdJ$38wS`;51tg`xb3#e^LiM8Mv?nrB2YXeUD=j|BqwrxP65X?AEM!x) zC~4&c>{r~-jEg}dLE0~-{z_RTIUnA9;;KuwYZTE#TnwxJ4b$fq%$+?JfSiKHadx~Swno=2D{U&J#f$#nxmpc{9C7(qs03YksP z4u|tdG`VS*6Py9p?jqHRa)YHLINO8L6o4Arh#7vY(>B9OMOzjglu1<56dtKHK3`rw zba55^C`||qrRq9)h_Pn0OFFsaZ{^Y|k{oepvzaPMLRiocH{fYnYpHJ0onYBgtf$tk ziz5tdu{N&Q_~AoN>k3z!K(65J0JU&wJAo#$&v43+>52j=j2{{Y@?7oyG2 zht>i0q%ihdX67#c08cCYL;|*Ayx`^Vod`No1pffZFNo;eLsFiXprJ4-P3F0IhMN}S zm+J-XcLd4QmaK|>c<1uFLXG`lpDAWqSw?`9qwn9#efXA)>(Ua0#Sjiuijp-aYI)Wd zeIHI(o$BkEXW1iBv4@;h=;CV9nW!$T-Z0yA8wYRAOyR68>WUVo3TpJ|J`of2zm`F< zWmJ)rxBlEd(7}h+R+^eSIiT+XZ<|ml$_X#0e*XBXnKMIpida+KylBftaYAyI*bPTW z4KEQ(3D9OAj|sP(y3y+b3zVp{zJqdU4wr@=pc z#|;!Ql2#GxP@Mzoyk{7K#B7t&q$o0lck+#9>AiEw3R*x7?7c|s3id=CJBn0hW?5vg zccBND;KRkT%Ax|;^8FwM>2pge&Xn#5Z5xVxVUF$emuD$5W<0ev;-$YdgG-gjLJ9}D&3Aj6k$gL0*4{b1ZEDTi$Gku5GjNUeAL{MIXC&s8*rViGju?e2tM zN;jve%9^nQF-R;lpdB}b9660;l>`E&Vruo|lkyPdnt0T3xyB`96_1*@9u2*_2eG5))oLkG>c!H;#X0Og^w4 zei^Qy0!Ec)f)~}zE?l}Plqvwk-|yRg`;qM&nc36ei;Wvbkx@ zRMjWu{{W=%47e`dOX^ru9((Wn#LF!L#_gFbI8bA;*1wMnSB584x)KQ{glhalP4d53 zmeQ1Sq5Py{SeDYMYEzK1O%wx)L;nDT&{uv0vZkbwRy}&ao4XGtdh;Z*2`|SqJcwG6 zc~6*t3SB4P7Uy67qFVw=wi^TYiL>?&Q*YGSK?T4`@RL)}!p0`Q=FA0oh(V^c@`Y<< zmepthP8X#O01ff;1~nWDhLE{_H0C2>XqXJIhcT)E%Cd6}$ge|R!wlGR_f*uC)qx-$ zd;Si=;>GKMb+_1`f|b%zzGF~#zSTPzxvYHdtkHF~&gRs7DV1flrVnll$8dn1s*#`I12O% zk`+X#sD>PmrxE4-gv#b7U^Fh^bIF1M=@+JN2nh)k0BU(EJMaZG>LRWsN)asNPm4|* z_SzOMDf3e_%1?`_(LLb0uOeolBm%b6W*>cFldL^?+6o3T(AHk$me>-NoB$5vf8sbSFC0S z^p~rAJ9~iL=PUbcYU5q>i{e$1ST4Df=P@}zFR#nJ(PuoBiWHwqDaD+FU+D z8G{=04R>whXqb{frvi|;-_bd|@T%ubGSIaIj&$?+!COuM2$E8zXHX0XtM>h%eam~T z6Ii!VyfxnU`jV400zmyeJmS7uc&X_B014!luUN^Y0pGj`GrVd_SXPavzAsM2=$e)a z%1Ea5BlfRMyID}cl1Tn;hF0VEhdGt8V`TgC$V5FK~c`2l>!)~>)g}xa~fUwiDjh<$U!>< z=sNxwP{X(Cl`)Ab2Cv6R%OaMSar(566PW1PK_58d9b0lG)A9L5Od&kXNmDg^yLS;~ zLT`(yv_G9=ImHr~EGap`8G+Cs4P2T(0o<6_Z`-}chi!YpE$<(SR{f8>L$s0DQzzuJnAxz@sE~)-Bx!#YQ=Yi1g#- z3r?M~0vLifeneNcT4keROVRc*a@3H(3KrW=&jPLYPK1LF#(JuoC{l^b!8|+@pLe?s z#P*4-lZYB^SmkOat)|?>D_88cc5*s9d?5YNc9hkDefJ-D7j@Z53{ScoEb^HlFQA3v zs6tHf8E zmPkzvDY51|vEImL4o>aANGo9uYCNOR;UkBaD!qknjI~g6&k)ZhOVH8c8?#FP01!e- zYaN_po0S#2BxpF+7%Xz0zUUQTlU;km9gNJm4bnBHz@W zX#(x{kMkT`t&AvPM&D~BvxfM_oOu1F)tkccJ8cxjw3uDItt(0Cym=!RAOQOD8{?kQ zsaN`trf9Qn$BCdcC*R!ng!|h4c2Luwqye|v(4cdiq-bExA3F|r#o$kfDdMfc=>}x7 z#F}decU~=)nib|(1l7bvcwb3XL1WW%#8<#xcj@#k$BwhIpS!~?qZK7$giuG!R!m=! z51GCN{!u)yNm)j0!G`9bLgmAaT=Q7oEf~B4z=sef_{QJ@9f=Y1?B7XB&z&mFl~im; zZ{D#a{{TqIAxd3b7JZ`U#v_-K(;fc+e|VHdOaM+GTan19ggF?TDQ;A9ox!KOm?tY3 zN=PnP?0&FWtmpJ@@x3%TwcAg8b$4ILPlq*6T_ZcSVv{vQ0t0K?kph>9Qj_5hdHcaS zHp?>Hl&BCu zkL9SpG#z8*TQ%qwph2NJb^At{b6!%?f#OJ3!TzzIE)$bZJo#~bAz;J_CWfCVW|eLV zOK%@NVb4eiLCUoTXMSPk?(~R?5mcH6tYLh4>80`?C(AjXZa%Oc{#XI`j^$$nsA$Fp z+wDHEum!gZ zo-)+y%tLxeVB(|Y7dTz*H>fiqAy{MI9ti{lriS`x4U71PcJ&5{C$It?3Wf^{AD-YKH=IkKvtXraG& zi_2Fc>hAIjjW^~dRK%xl=YJ@t{{Sq3x#;i`*NQ+S6q;+-v`@)cV4ZIP=wh+Fl#y2H z0GElv*e6nTB0II&-LtqHjp8leL(zuCdjqKe?jV7;uB^avesBWgvZWxBo#l2kXQ?-lI!RG^kqkErVe2&SFmDWM#xKv=peZgl$_N& zec^Zh&6>AR85y64; zaB7s!v($m7e(>dM#fdJEjLlrfLj#qFmd%wcc-8oh9&?0rakQ&D2FgR9T61u8_w55M zb`-OMUz4GUC)-I{f>2${zMaP{6ouC@ZgVqq)P5MlrtrCm2yl>~?f4@&zc8UWl#^GW z*!SdZO&&FCO~R7uA)7ld&5}(LS;}ZY-}!~hwL_hXWf>Z3$aYSr5SL`7gEvBVA1Id6uoj|xO8@|0ZNqFq_(v^`Al;(WgynOVwSGJMnkr4bi7cOG z=&pN>ph{hARMep9_luVukS<|J4jO~}h}3lRh_vv>V4a$&Af9xu0w=TvH9luo=@o6s zN=QVYH1TpfH(lVo^d+2{r8Fl;Xq1-kTenlbhpYlc%Q0Z3CBMZdo?ngL8E36ZVx+Q8 zz`c3s3`JoIP7|6KtwG6VaMbI(Lq5io77e8uwcH*erK=SLkW@;F zloOPGm(jRw;`QBksam7~$u)}lH&P@yPT-J8+K^iEv7{x*PPFOJjv!3np}x9u8Y$Y7 zLh3qKtWTp){b@9IOS{s&y8dqr7agWjOR3dLj(95iz$>w7Qw1QF(DB=tH6WsljoJ9= z)EIFz<#bUP4tLdk62 zU~T!<2}xKC)C2M0cd1hn?fI;8GWkMTs(yc*Mq8BdaTcV2PQRPLTYcn>fvqBx`)+EA z2L62Fx#?H@@{0MYaYbpEA5z?%L{ONfi&KcNPsfT2oR)0WK2goi>wYNIns%%(;7mj% zr~*qLdzf8Z!CeCizMlB<&15uS#8g-355wiWIm^VnoF^_hTG7R+^`J7f8rSd`VZ5iA z^JS<@WTaQ9gj_#xMfAbvlb zW!cp-NDfGL8UoMo`anBpq{OOKo>CjuBm{(#U%Bn6Ji%MX3QSQ~shLTE)Rn8ildT6r zNjkIc)WW1&7bep*Oas^BtditSRK}rT!h@&G zw^CrmlM>4_iXAFX`&16&andMa%ScR>fQ1rUGF#dMcj-oGK)B{*T@GCA*}g&IEu2TT zkBD%>2%u!0QZ(tqZ}5b>ehXez+p;(9Nl)=K+HmYZJZ3mp!kPz z(T7@w1{%E?-Kv`)8Om3TI3?Tzu+vZGB6GWg8nuq{LcjplE={`=l(MKrdLOi8SIp^> z6vHseDxvy;(Y&=Zhb$>`&YXA~ z0QIX$%u|%m^Z3VD-1H0;scLZx7?;uFW}jGCfwwKclttsJm7RZ0GGYwGB$D0|9=-N} zR(x!%~KKI-i@SAE}@lFG^0j5yf@sZ#{SjrpGajx z)s+612cG5&-S!oz2Oy-?kL4OWxIG)omI*2+{Ax=L-|Yq_vQn&vK}g?(v)H*tE?XlG zRk4gC(}$xo>qVd;)EJcwS@(Uqc8z}z+KLbqvRw10O2@afpIzbD)3hA8=$$c4H-V>3 zLWW|2s~)^W({RP2RJA0bYsx$%0!Z#S@{QKPVwWmWNnlbad2V9-t71q6gK{;Ao;Z5M zJssZ}$(1uQW;Tli5v@aw4=`fk-eX(x>#*Hy))yE?+N%7GnPZUgjaZu=$uo%8bMEk&a8ZO_e+q zp=T`^1C$ZDqXXYs@ftw%m+Jy0p*dDaNNTxutVa%8I~=Fz$u7*P9wfQTR_hh57TJqZ zrX?AHY`{~^wf8~!vNB5<&bsdx?m0jlqkoUuIx!6P(Rxmh6FCyd1zsSent{_%wxIUj zBDc@APgKl-kgzifjnb82lRXjJy8IVT;>7a zS|5)_hhZvQv?(%@&Xz7J{{UxzHtW$+lti(wz9qWtDpRRPwKRY|xNc_ztvO5g0DkWf z;`S2Bma2iIR`Dc+=e(f1}h3C8-v4t0+-9NTo?p0lR#o z4~?9^irGz=ztO=HnKdaj9sbZ$24O|XTGVKg*+%|jZ+V9EYD~GWG}X0=X}1}!QVB>p z?%c-t2^Ju@jK#|aiQm6i&h1kSt5T9YLR~}DSCR2;K1W+cq%aCUSi*7L;Wk{=PnRsd zZxI5FC^G>?0vu>{iKKNiMW$dV1uT~@?B+if@6P&^yZZ^P6O7eVnjrAb?cOE9*x%PE zAu`mJld<-7>r|SS+ofYv#291NB3p`~j{*Mhk4Tp$7MQgqO3-+N^UOb7(^jdO)VE=k zhKwP9(lp7E%%4_u01!1DyzB4Q49L0EiD=AxO;)D0tUqKaX|$zAfG9tlBI0}~warAt zk5&`T{GQ`c`@^+@)FmZFLFw*}Zm9-n^@~5-cMqZRhlh!+(-Nt9luxqGG%PhRiH0o2 z6BMWRjSM#8yU{90N-4`|!%!d@WcsqIBz%7!9syNd{;>Fg73Ww>#H*R>(I!{wEEAzo zsWt2jafrPmsVi1R4O=e&MZZQCiIb)ossNCDCxQ2cDJ5<0bTqgQr@up(9gJbVvlQv={WUVXEr(#>`(XU?7hbuMmCLuc>W7$`ds*J2Qefq{% z==UCxB!#|Yoqj>1T)Hn5&OlHd`4HzReE{ovlvzy8LED(laW%PMxjLFY+x;VC{;?HH zX}13Wh7z$Z854mF5)PI2Vcy{a-PpM^6Oi~{=AF*%1%eMlxm+W``!f#3?J#+_@7yVqB!Cm({z)UqrEgUvnlY(1Izb=jTX4#?xoy zCSfW7RlffKIM=L~tgy%cX4$_eV)f;R5cMr3j zw-Kt{%PLSw(NxU{SI!qQlnjYvO4PL~_40@L2nv-gK-KgRymKZPB6BD>ZS{el_gX*4<@b$}WxXvkC8!}JaN|+dAvaSfOq{bymNih}k2*fy z=m&=_rgGGx`GpTg{H#go1cDHp$1yEKr&AEnLfwvK3W^4xY7YJPdY^P5U02NM^HdZv zpcf1%b>HdVR}e-;(n36bEq2#~^orPO^AhtVfYsoDu-nARiqy~^ zjr8-5Ef#bvOCqXIO<%6@OkUY@Bn0ZkzWpKP5e_lCi)IuZHE2w_Z>iH4>g9mv!seiL zJkx?Z!xfJ2oV64wOp{RjMWtMclwAZQzTwZ8ctDeia9&cAIYo7a9}mhLDhaA~5uHUZF(g0Cp6B^X!w$_5pLah2}(&w%z(_peZ*h4;;C~w1`d<2msnvns_&Fi=?wg6{{Xx!iyXA* zKp@n2g7+P`sl{7o{r+)ob{>+V6ro*TPlNz6ebwuk8l=#;qkUlA(}5*QKuod|%jw*I z5G5C|1z9RZ7)NsPN?RnrQ2H!=kf8%_BxR@ole{8bH`0=_lTf0= zkq-821MW-ieo%@;mn@|*D*c2OMWrMZ_;m4c-WM->X_w)aT!7&{VvWGHEDXVjQ=MJ^ z0BEU30bjQnl%p_$1NdK12Tg(a!CXCw6>1q1Mx&h=ZZxl$k8w@KHDIU`Q&&#v>k#@g zv85T`!cUjs?Gg5B_NyYKESGd?z&(C(LeGrMvcXx@PlYLRK=}M&*BB`VSxMA}4X}j_ z6Lm?JOH`frZU)gry=uP|I0CH6NNqz7t@*4pT{hH!04Fx1hU2^hwp)UkBqg)~{{R@l zJG$mdE0`1hJwEYNlrfd13k52dS75KtI7_*`8B0>i)#2zgS5GL`Ez*EVDgux!ENli* zR~z|4QVW*^$pL_<*J^S)$2Z5LnXQ=DINRvA(DmI-InY4MI^-oaXu?9Mi5wRO#6`i)<6->8ZZk!iWeJ|G2Z zbaAu86#KylmdT*!^LVv;*wUpskA&~nuYDRhvfZ*~Ji3q@vFvz-)CCJd*EoQamCp1K z!(_rpLuO?bsG*KAZWAd;^+k$mPa}_)x+1vLl%!@`sa;(6{h??byJR7NDGZn55q%_j zKSG!5C8r_R{d@OZ9k+~;sDFrbvQ$DybGy^Ca}5%%@`UC}+zpS?5P$B)qI#3z%e&U6MuVh}Vnt3V1PaoF zPVWKl6i@YRq+ig-=#dm)c0%plw^@@EKMu#VWKY01t|l zeGZiSL~^)r>1*_hHe|f1Y^oKb5zpqZX9apZMDSNSYN#~K)H@}cjY#u_{2}PBa*%VJ zp`WjrhFiA7Hd*yx=A!~(&9kvaY}i&*m&!l~LjEt_2Ux5Uf{D!KCBk}iI}sAh!IM_W zE8J9yh#xlq5j+0?A!h@CN9M4|@n{P|0*3W&M_#-6Lha>hM9@;UbD`1y06vgv_RNqa zy$9uCR>Okx%>WYGsFFw>2M-THs_DT}(It>sRaR}DDa^m}CDZ_JwI`F_9aSz`06?NZ z0KTuk=ix=g)~N@;J^ui-R&*EeWxWauQ32eN`wsBKV!GuiUb%rR!C&hby~}QaWgL{&Akh^5gch#Rwl&gOC_D$o{iEGZab*1XRZe;5(92Hiun4?l!by^ z`%j}DBCn%c*;4^Rze0(9nEnCh8cFs?<=dAmg*(L=_La<7B?JaFIzij6=BtwF8Uwso zw<%gBfYFYSgae&&WJjzlXiIEcW5JAr9$toVASWqJd+-}x<&VZT`{by~AuZG%M*jfB zXBS1${nE81C4-&fEa`rk_4Q%RXGjtknCjukJCXjUP$)zc^kBP484}?cnxT{fXgY%0 z#_M5BvnxR45K9LTsbRIITFWJdg|{6b_((olu_p%wsU~10NiUe{-B589-oIpVV~I@6sn^xdNUtyHHwk6mt#53vke12wtk0FV&i>t7+Hw zg10snmPTbgb{Zdt#<5E6!$L&TQcY^cwBUXpps9fsy8$z-5y=DR-YH%81j&jHq7aks zhgmb8x{YCK^2Vr=PHhSBhKB|yU#c?BRV~Kdw(Li`Ah@TLmD5ncS{m!!^*&G|65lAa zC;MvZeBg(o>v5P$Sw$&uCJ{w5I1fVIA~&?VI67uk7E>24+jfQ=DLEkwML=RmhI>Ml zl#MA7TsJ3#l?`4gd4M<7g%d-M5lu>4sr2@BL&*B@7U*{iBVjMPE$@X^@bNl=wDaUssRh>=8 zv-!+mL*+C%lH86q`dWb0tE=oINtJ4J0z;RtEwJ*Bop3elFigr) z&Yua`a~svqBm|`9dIvnk@vd%gzlm(An6Dp~Vbge4#3&&NOt%CB=fHj=K)lqHg6vD{ zz=WILc<}%|qQjy6;Z*| z&tVJz-;JQktqDl~03|b5=@gKVmJd_7+rLetgjtfJ#*Aow-1m-&C({bGWl$sXk#!b) z+6oQ$gBMN6k_{XU%u>8&BodU;x^o_n4mTVexotsrSPE%nd|`KJG^{cyy%3bQVCe)Xm;E8ffCgQY*vqqbjLjxvCA(_;f~C&dGsCr7j3u0KgKS0nzd}c0M|%gwcY{Ac5MV#zVDQ!i|RLo>)!Si zuC#t5qA}#Ri1GRmp;rpqhzl;?E^~yDQ_Fl|4*ZgWNGhPNu%#ywdZl;>cis+Mv7R*R z;LbttsleFl2-oH}A=5L$wCEe-3-{NgS>P#XP(AsC3+K}(uXN2uRgcun;86YIr|d{E zZp1F4v>zC8Q}NarFb|~nB3j&&K}wUr{kV*+3JY?T0lR|K*};MsKp}q8!;Mb_7YFy{ zpwnoVt}{}mDF~?NMm2uop79)u$wdVVASnAJ7X)=2!d^AK*=~k22+X29gO;O~56mRq z9+1`)g6tDRN>&uQF|;E75~Z;|EuTT>3OIuwxCsP@K3(HFzwxS;LQ}r2T{n&`*VtfB zikdrj==+YasGM3z#=fputDT~qj~*l?=DB?bNY5>pktHK8`V*)e5%_)ZG~S8KkQDFk z_dz)pG+Q<>&oGpXs1!*CzHnVP+CVI-pLJmpW+Im@41kp{al^uT@8yLnF=U+%_4`Bl z7saZ{#uKEK6ew47QSN}2oM%01QFRp^o`aGHUwkQ9aV}N|#0H%AFw1e?sm$j?#;|;b z3RwLjT2dP`Qk1VpjT;DJnVAx$tf-BRAD|xnV=ul)3UDZNeOd_E@d7{zdiT~8zqLM? z!g#ea$OKeSo#SuAR^%Zm0<9k(V2nr*khKuR>OLOm-LQ@|mY@Mwi0lj&W&R9(BX`b9 zlHiClbWhlC8IBme18c5<;nwfGbkoWn>?zUUR7Y!O=+RE^wE`L~DSXB)5PHWwA}P|G z`D^rv1n~5ZrmdoCpm9+V8t42Yi)7l;Df-ji60z*XyjE0uF=ilC$ja3(NtjPqg7YIO zJPJn^8%VEs=JWPX3%jv zV?7|2F57R}wRq_lyNs+-@V9?klJ1n{DXDEtUAgbjvIbQ-(_u|xz~w(rVo{5+McC9G z-+myJ@&kN6uqxGWNFV^sT5e*!?THixQcDfLJ@JyQ6PbFX(2{s22HP*S4NIgQL8$wP zPnn7QL!KHSmpw`buI0;oqe;P)ry19{p+5ujiL98#A)np_2Y6Pqr7H05pNw~EvE>f^ zTWGI}G}vvq>J4K3g3R?%cG=+y%YP6+YI6+MS!HgZphYMRe(}E^IoxGw)>6}>hxteA zVFfG{N65fivhho@t4(0ZxXDk4L+>%JYBVnIwdGYPub6}LaVjWOil=>`bo?B()GIIM zkpi&1;6KT>i0*o8(ygxZQ6)(vJzqigiVMdxXcjX8K}Q602NP%T_>r|!#0aLXC0@qre*F;FR676&OBeW8Btx2jT@)i19d zBa-!999n9UO-6@f18wq7qL1$D99eHH$s|P|`A2ZA2LAwPFKT{Gsf|OAtV=3-6mqJa zdLNt%n5I4w;KxZwQ4jCp5ezQGmhhwz)ALw4b11O|B|)hA4h%zf-NP$p3_n)hUsyF~ zy}eM;+ON!Q!;DR@Glt4#n(oFc&$BV0F(mIuYAN;wXuva`Oi)HHn#2@}ZyMXj6CI}c zS_>s0{K1K)Vu`6qC9>()yi;B*MN(47dT9H+2EC;wXNxfa?X^EE9Q?28tXZ|+(pLJF zjp2ULe1wN{*uh)A;6WZ0Bp!G3i%Y>7hlr(0938x)i=Nj<5Gx(}6#DnpJiO)x(B>P5 zb~|uEgVtN6GQ$8Pi*?`}ct=wa@$0kIJFdb24*vje-V0f5de$h(wkfm>`o+l>qW=Is z(XWp+G)$DIhu}mBkfj|DUeHSGkbufplj{eiR8b%Usp%fai^KApTzveP119L*yo^sa z!i2h}9JJJL&~=Lz%f&(1S3wH5fa=`y0xt`-Aol52=d5`iPoKK(p9RP!5n7KEF?iit1F-4`2SIN0(&tFpQwK z>f#RzDWD*e@aYln>3fA_T$8^@psSr5^JuGU!j4mz=v_c>4hp;$D5^KPp=R~J8AXz+ znh*_QFH7Tey*~~3ltKgZ$c2mM=m~tpKSp*u_J_+=;WcSK1t93)Jw4mP!MQ@5t%Gi& zk4zO@MwLbLYJq1 zK4Y$OmM1XNciR@UfPh$1r`})T7gHxHRk3QdObWQIlPH#8&Gv44!8sRt+^S;2KxSh8 z@flS|c6%OT01d(0?H8miN$@3r-Az(>28FvsmPtgo1duf&M*Xy38@KAV&uPm-J|uY%P~q~23=Tf_kh-GZF6PHHrN#p6C~2 zy3U#c)iv)87fOV`(d#PI4-qP8y_E#Euwqh(-mxu(Awl#X)HZu$Y% zA(*LW%v65-#Msk~0Jhzxr!jCT$8ONScu6g#dVXmQcDqo~&kei_U7R-TU85Tt@t_hd zCAcGYa3JKFr`puEn;7O*m;gxB>I_LDU}`;h+B5srTdfNP-XVEXvJy7^;f~d3O4pSN zWQ|78`^IC3ZGk6UH#Ci32YRqPAUcbysXDxUui*Lr0L#Kh%KmSQ;mdxO6M1@|l(A8z z2K_hqi21Y9Rur|&wkdL@ttnA79wS!WfNE%6siPSBgAfFvK}cev#DTE-c7k*731KdE zYS0n~C(OsM@tpR5Q)sVBr4$2)$} zX?MaH16SGEj2vX04{CDkWD>m81eSh2P)^BiGdy{`S{*cnMcEc+DAWU9hC8<1lYLUM zoTVc_? zv`thA^of0?DM>Gl2{h;0gyrv}$s5Apdf%oOyiG<5wL%3HBs~D|f#fHpsOh{o# zYXO{a+aG)D3*8nOZ)@zmSQoDyppDyW@RLINoyS06AeJXFDQ9vIUBT?}TE%#Tl9RDu zdO@XvwuC4UqG)#U#1A0=Z(x~+pS zPsC~>ow{m_)k_s%6~tA;)6(TCY|h%$clmk6gj`b-X!WR9gdvF7^Q+g(ZBEup*In$j z=9V6S68l6pSq56zo~^Zhv2yRf73*A~lBzpsdh!fSdCixYxyw)0Pq)Sy#jD=`0G6bo zE&u~T^^TWhD*;F>+!}etY%UXNTLmj3PGV)2pgMdj-WsfUgVciB0Co85^)WKqsJkxG zW@ZW=&W5!k^FsvgxxgieuET>1_(t~i(q<_KDI}8Zr$*=Tqp35<%f{bx3<%zK+^0u7 ze=+)1_{We#5enGW_#v3qkI4KGQpapVrmWyMUa>ng#jQ7FwIujcT}uyp!ZouC%d^cy z)TEazNUeUIVZwd6%K+`fDPC6PrCAhI#L>o}@eaED=|@W zcHl&bvM3=5lnKn5n(x!3M>^_S7#4MEN&M;iLoE%zahM7L4b69mE=)|dEQj!&hL096 z%qk42iUY)&xD;=pf6h^`E+$S@yJiU>jXRF?h_y{3RwI^|3J#+c?3UkJrxEO>_k6t!MzQfQDt4o5BZjIR|>9==@BErhiKrDdoupxvAS z&_=;#vLz;}0Psv#^^%H|h2>CDcOmrS_KUEmwn=&7wNAAlC=wJw2DIt<@r`=vvJ@%v{9uH22kmKuRAS3_?8$e5amQYr3 z04jP7j4-o#$|VexgP1XW#4caLYEYSI3;}u;AA%;lF}g{}lj0OL3=aZ5or(|{D{TBf zzu^HFa?K*C@QrnUv~hjdS7|~KEFSVnGK43LHAZ{ALQ%LoT zp(K>P!-#XBXRz21ntH;bKT+HE>D$kXb)l6`b?FP&t;052RG_!6gHm|y9$nXMrC}}M zPUQTbcIgI;HOxt1a}!q;)AOtgw&D3x)NCi(>{P*s^nE`VF338Mg9y=Zj0^OnZ?XeV%A3$SXGGZ8?{hu@>w6_l9YHsnQ;G6Lh#zFw5ycVcv za<%%l38!A3ah-ZZ2$G^xqY9 zygDWySum24OBbl%e#em-4gH5D`n;*w(8UH>iGWIk^m}7d`))olcINb}n1n1;(c4Dj zyavbD63`jQek)DPGh7&X0?+F`OE?}gsXJ@EBOgnL+dedxlp)yr$tR>vtjZ6!NWyM> zaFa1fAcB>78qkC8hs&EBsY@v&kV7T6R}ox!%2r{b)rKX_1WXyXuiiVgO-LCu00CIf zF@_+tNJH0O4&hvnE+Hysq!p2=9Zx*|X$zN@aP}t~%hPU`YfP{d3R`o*f+E}|F$Kxn zr%sWF-57;xa9o$z_(xXV;l}2@6a$cQjW&2ElYI*@quOUA1{&6!dBUB#{8B+j={|jr zLlDiqA4>iD^?>)iu}LF1@X+>+FC>oP+kgR|RSy#pQ|IRg6>9aQIBrJ*EnT+2q~-&{ zQX8=17iQmCr)5ZB)o3KcFi*CG451*=gN-?UkSgH28B3r8P(IK?b=*g_!}&zED^has zdHFOvFf01dqcI5o04)GI^dp$N{{RMmz(PgqZ(40hQeKoCIotBE+5Z4HY5xH3Bj5YP z3hv8q04YI9OvW!zD0k=cq$ypNDb|^}!pEx`fm(yB^Rsn<6YU?>veFG`;4=bi<^02r z4w5X1C}EZAclYRf#VFIADa+!_Lk~YF>eYo%ry&D7K5m90yR9;nFw(zxvwq*ctv=WZ z(Ek817<`M}5>t?=FZx5b!WQq$Mu1A?r#pC*Gz9l*v*O7eFh*t?oVzlz zBqT8h{f6ZI;aw+|4@e%g1po%bZ~4R&vM1LN#MeW_4)ky6&Prtm%vHZmK>q+<+WA97 z$w{*(EU-0t))WDFg5fgJ;ZZbmy?Knqc#3?Ww@F#+PyVJhB;xW*6y_u{X{r3u7VWkt zUS%SuKt()+5+0$$UX@g3r@(WwRB7HXTzA1yT8Jd@HaoNwxo&i&DrAm9Kjd{DTu1CN zWK6dtGm?3S+CwgkVywzY1RbAHJo%4p)5+4SCZD`ry{yvIpr#=1K-NE9ljQ}c#Y4`% zP|b4--KQ#qz&-Eof%co7IjP(T;}BmWN{J3qTTQ&6jm3N>U^+S9MihYY+=<~JIRKgt zebF7^c?8g(K6-b6H^sp)P7_iI0JA*++=ydE*e0ZAVjiSx7kY#dcg>cSm7_6zM+fZ; zH+6+GOQ=xtKRf;4O_s))N+~QyFm6)m;LyYZJ~;Gcokdd4fzpve6~6i!erT<0y6tH2 zfI|ubca2KHegw<~LCdph9xUH?f{MM6a;9Kn66B5@wKeM&C0vP;w3%t36+9RNs~n|fDj;{>Eu{_PQmXXQ zC7o(g=#;VC4FGLm9H~nL_%j5%yU=&5KW`|WfSvh!8IRT%9jn>t ziC`QnGIF!eQ3u=;&~WsPX4zo%VZo>YpI-4Lmc$X5_&^-A0k&fFexi~MGP@qble}M~ z0o{1iu79bR6xp>q{?Oxk+0v0h0Y1uKPW|CKGF3CygwsGz9CwC$eb7__&x8;dbmQR! zfl}_hib>AeZLl9mT*uy#WuZAza;tLSd?C8YWtTN1762BZ+lY+p>8S)vSy43v8h!}HMk~=0RFVS5m3kNH%f@pi>XwxiF>qLLA70u$DIHG3 z$~oCZL{Jg0x)w0*6}GNncgTa{JdL!{3N-JCuS6nQRTQH^{!Do73RoB<&SxRP)D}Mm ze>h>0gr?^iljpU6HHVuX8AP-e12bz+gfsT5F2OkXcID{XcX&uf8cJs=OWgMiAhove zoK96Jfb;`^X%2UF%z%P@qRv!*Hi0F-=p~i_4urs)#?YBdPpl-%a0_c+@#-}Y%{J{# z2w~4(x0H8#;UvtiWC8<%Nc?yY2zSlugp{UQRAnnrpvw5xyc&ojb=)$F(4c?_uEez= zg4czRqy&=e&Qq!8DOfO(l)qRM;C`J=KRn@JI9g<-63Z40)$0h?TF96Is(Bi}+6`Xj zV$xoN=lsA-KXgnEr745DQ@9;rKy|jSDqSJVQT~15G|HM)osOa3X5tN7aREq#d(#)p znJ`O0ByOQVIL*`Zm^DI}gAlD{36`3Z;xGB|fOiHVRJ%?^5JUKYIv!6gR*3DFWuO6; zhcN`|mj3`!AbrtstqUt#6`d8kamTtQgT5@qNCBL=1&>{!9}j~#sHpgXVs?n}TLK^3 zBYv@<;LI9{X$qO`DIkC}4mS}yv?951g91Sg2LAw+hTD%0p$N{yIos;cm5T2L$^{8k zHA{YJ5K6!1DFZ34<}|1n#d0Oh3Q5%?@t}933>syXD2G8)hokr9y1=`-QT2gKB!XL4 z5u;iz)f9l0Wdq|E@+?-pW=skJ3~N)@^IbNG?H7FI26k$zp6~REcWjlaVM3iDJ|}%! zPnX6G+OIHtAdpYTyhtM7wz--8T2$&_A7KG)_YI~+Nd@X&n(%fa4__%Mv?L|DFmKWg zsEJ8a6%ZZ1aDNo@4p`Ibfm4%}>(iK}WLg%r6$I06I+*U_$LU;@r6?!Lo!zw@MH>zg zQaogwrCF5bsyv^d0f7Gi8VIDr9ftRml?G?f7Sbx>D_KfOEAa8T>)I-<0V@;?Hi_>G z0GidNj3B_xuSA*3$dtNIwBn7iKTXfR3}O3`GD{Kyb?f+H($cg@MnnKk<+Ogg`9j#k zlNQP}N{v6%a}hYnbjR-OSt~X~EI;^`VFj;?wJaA#-H*6-dKBdf>=UUN%3qOpRfSe&9v)Xkf9=inl&5q@uHfp<)U$# zG;JGdZx`*C(ozW_=@*cntX9nI`t^ag-RNc2C-azHv*K4+4V5qNi7^G_fDK$x;eW+j z()F@Z<|WmyP2;P!>`3N&7(cPb@=2z>ad8hwHp1Vr!i$O0&z^>9^b+A)0K%s2RQx3iv87l(!>VMDm?> zt~VIADZmL)3mH{PB$RvaAADtr`wOK=SJJG@Yp@#!v zl}k}dlvIKM19yxaRi)l@lI)>PyN%2PnuQVz4e8$v%R6s6*H6^w{-J*6vt8VXHr=CmlG zIh!#Xef}_d%VN}kU7V9ZTZmY}7R4-NA-6B99pU!Zmni_2YM3N)^7dL?yHT;;Jw>&M z13|0xiWbX20o{Nw7~exu2usjzdd2YTv|IXUtG$#4T;A@n4Tg9Pnx*yM-3sRl;yN5iTxQ|Q6HO)iryx}VU z0KM{p#=SLuk*q}n#J94m;${t91ZP*?EE!17Lbe>hPe_=dWQI|Cf_jY!5s>1G^!}-g zt%y7C-a2PYJ)18ZY}G3^WAB9f*BB`?GMCkziyuB>c zy+ej0^O#dFvtPI36)3x(r`iMBt(ny2i*(W!tyrLF#D}2zpSJPhu_8@9meB5_)+*SY zb$M9Gaujlxqv-o~`9&mN%TAPPFf!GAWZ?z2UTvCH?e0VREhH&KT z(gIGkX6By?!HnR&me*6$UeI7-kT_c9^dFnUg3ir}#lExv zr5*u459G(Iw~dG=o}-A*Z8H>-1CF)Vv~?v*H7YzXfbqQgI*~GVVBiod+4Oz3{4u6s z+dAa}tjDEl8|lSk<{O6;%#}o}r%IlX_jh`5UX15LbOdPq$HobI!uZ{Nd4X}X!jR>g zlJU6U`{b>I){h_0j0@>V`oIFbB>P8KBx}I=N7(+1@tRaJomz_g<}&$XPmAgMo?`)6 zF1t(V2pC@6NEOsWrP*mGUnsBWt3Ibj^N8n4crXwmm8xG&VQ9=R+HCA~(kiKAn73_P zJPH$B!m5tc9xK{q9eIm|5mI{0W%h3@65N{p@nYDHjyQ^P6vwy545bhCiVTk$Nnq{2 z&u=Kot(Ns7W?)=tmv81boPS~PP&ljgj5hH=%tA$a$C>$jb=&ydzhD==s1u_Tyk5Hy z^+{vi7cWaudWI>FY!}G{pVZVFe=+l1rQ06Ny&Er?^sO6y(LhaHz}bU*qszY$B4dT| zP-D5lHT7g9wIRrxL2Y+9N~@C2*G&)12!;8Y0zEVY7PSJ;0an^8>Wq=N+uO>At6L*3E2B+M5 zC$DIECr7&2u=JIzySOzSBS5=nl&~-Jgj^eEQgsyP=KVTGlVGbpzaa-1l>!QuNbs8R z%nY4ongfMv7vhoxwc!`NHMrW-~<_ zv^-iR)sz`0UcbaI-?sv#mzClKJ3n~f=i_wo=2cA0pvzXHZ<9cI(qBrpfb4#-N^PZ6 z4~PJ?*ZJrog}ji&2mb&z`bP&ZZk{VwaeoOUJt+mGp`S2u^njOrt-L~;#MAF*0W}AH zPgqJ#Z%|7qCWk}xXyVIn4^fy9&Nk~5trt?1p8p;L9XLyCz8b8Ei&-DCHRz*A7u6G_JD&ByM+ee z{h@yAN`i-lMy$>AhY2`fsQV-n`kF3YT$6GrD%mKX8;sgf-MQ}tq~3Cv_+2fve1vy1 z1>{K}g$>=FD2Zu8NNNr%2QD{{vzAp0QqfGVha`sjz=`&ipn?>l9ffu29nHLofdn(@ z$bf2)UWzo^nDe}z`gQQnv1@iSQe8&9{+*+#7?c)MQG*V9_xM05*9^sI=ci8aYYpLv zgfh}iKn+@VjQH^7%Bz**3^ohgEYTtKrjW&UT*^`4@7g81aQaXHXJfdpZm@D}@YL`< zDaYPD&j*9!my?H|J@n~Q-a0)tN|2Rg*1DVeK77o=Q?6(!E`=*w?W z&tuiw3bYT_DqAd56xm)F?)y4YLy!{x00^FS3KNC0it7uRy29}o^TI@gZSa`(L% zM!kT5vo9o(SM9ucK5X1~@Z4EU*+>K@!uvE+v|i3x9`pI651hpBO(TR$HPfdt!ONf1 zqDMD{s0S+|74OV)z=>!H0BhHuyfln4>kF+^`9Ui_6SD>^`#A&U-J>s!_R?~Zjal!D zT*5+BMr~MW?;02?oHH>=WvB&l8jY&MBoI=P0C1+}Bebai0-)Kn4dUrdy!MIYxzBwv z8%@ZNvVs|fPd)gG_6#VLy2?Rqj;$JfvdJuy?1o}M)WVh{IlKr<1r`K-Va{Jmmr3^9 zVnAfkkF*D~)3jAY(DgbEOa4|2Ck$i?B)Hp%q%7gc%Uxe$IC$1}rHj7uDIO8_{N6oG z$%=EOYLI!*v_&d;aGeg^d*VSYv^ib#ZhVJbdP56RZ0wL-)xqDib1LCVj&~?lqpAGc zc)4e>r9L2%LH$bA_hA+#T3^JoK|ltH1Ll74u(d3Uz@#zKjQW%Lv=*_dYV}Jezs3X1 zwI?uORZvF{$%6*or3NfJQ^-VHgr$7TWU96OD%;KzZI(7JROMAIr6JDRfuPWezc8+4 zrAi@{N_0HMaS{6LQrSc-0Qf)$zaTpR1xy~X-RFYmLVqa~Jx)*p0AZqzqn`Xh2^Xse z_Mb=OYXu8vyNy&;Ky=bCSZ$>xf@*YuE55S~svwedPs*NW$}CwOOu&+80OOK&?W{>0 zY^2cUWe<#9x7$xrdD;ZsS3OKa80THhT0Y!Fb7unN+Ibpj`SOXTPCY=6R$8UJ zqp3EB^4n<6DOPmHVBOB<2U}600-QnAOB%FuXtUCQLpgA$yJlA;X{p!vXpCA%O2ZB1 zDJ=8{a5N$p4U9gWN1o9b)>MjO^bXWJMG15G1uSdFc)KoIMvgg)c3UuhJHznDuRXv2OW{oinvc-?^x$MpVE6tVUnn<~nz-aN%A zWQQnX2vBOXq&Z8o@bFga#7Fv3oyjyx`P!r5O=$$^7=P}xAgB@sUUcpv#mjiAXe2B% zyB-geVz}m2r!=)DT9kqb@Ueb<+P1KF5BfnCX<5ojKn|iqA23F-Gs$+#6^*Xsw@V9E zo@)fmNqrcaP;F3O$`x*#E?ZipW+Y`L9D%6gVl?T@M|I+xC9==!jLeH;khvAwl=!d^ zPY78O>6$~$0kZ=1Kb1SM;y0F7bVS<3w5+X6Dw5!_*n&Shh{v(`^%hyPB`elR(VzbS z8-Mt<{{Z7nw9@e+gvpHLBvgS%{v$fG`Z>!oWU{iUGYD{6j@~8HZ5(Xyypq|FajRa5 zas0WKWT8ctkjhV8i9AxDv|7C{RR(1em#GA}2T|K@n!!t((6TJk49vknm;w5Au9XL_ zj0TWK`@@M_WGpp5#77y*PStU93fa=46_gTdUf-VRFL~VRAxc9EJt9moaQeATs*PO0 zi|td8lAyLpqjCF2(Ip$I+OJ;I68sHEbJ7m_K(!?ZNhouhYSaBvPBYd=a(b_596CKW=8d8O!KtZ=*b1Mg*C?O!n_xgaGYIu0*@rHC@nWrhwuwl4| z+jWI0R#tHOuy=}9n?_YLw;aKcDOfIVRtJgJXnOX8l5BF-v#U=Q-Jx>XdL&E>)PTjb z?**=v8NjR@xnhdCk#8~qN~^9@#4X|+a1@XOI4=JHNd1WIOAE@f2vr9o`GI#gqwiUp zF$zPtdH^?mS|-sIB;s32+)9>IgYA#fL-OE*`MhQr{^wkku56M;Nm4zb)wpMRYrEDp z>@R6ulG0=?%#!5}HGR&t*i_J%V#L=%6)j3gNKv4pzW{YQJz#=Xd;b7Uw)KRlDA7vH z&#zT%^{3J_+ve~EWH}+-hd;iNn0hwD)1^!(%24d-*mhvqcsx;qFw&KGDr)^*610uC z8`txAQ0N``c&F8@tbn8XMu2SHVOtGeqEd>}M&xSn*?W2@0E0C}VAoRB;f~QpWz`}= zfFZ)PB)c8Ag?9P?SJm*jlM)z(6F@-(b?pY^T1$sh>`stl*QHAe2~J?a+hOvBJYz2+ zvu5y`wv1XGg$HHGsby)_IKcz#mVEh^NVI>CEw*sWcb81v=#g&k?Bq1gg1Cq;@-v*y+&gp4cTH>Sj68m8Ot#xTf!C zy@eH&ao#f@NM4gYN>&99!K&x;q-j@0)-oWzplh+-wT$;0U=X>gQ5mxx^m~_C(Z6b~%T-IrMRZ=E+`A0!C+XLHSs4#7tHOi5}C6 zKThztakfMNLX!)00mLns}9{N^lLuu5hp#A+&ASkCcf+9a$d zT8SVyO?~H4`O+;d23^-LI9U~H9t>ZyUWq!kQLAs z(W&r)cF{bCLdj6$Qa1;`k>VDfH``j}5*+wl!)klSQV6I@>9t`S2H?f6T4qjCiQ1-z zfI4n>CqY3LZ`(rb7~xdT$$#XHv!31|jb43W5h&(AnheU%5_ zVx|Vn7$A*%AFOM(`C$URG=SGFv}L6h zkio{L1m9PT(8QPKpD1!+>U+-GmUrJx-{}juPQa=27Ns8uEm7|RE=f{ysZ2|ck1%ru z$waUkg+=;7drHOacBWjslEVT*o0If06uIgt4)o_{gSWkk zvyT8zgsA5K02b7CBYs*joIgwXZ&gSBOj~4>fW&C6hhg(D66^FlwGb9v1;UL(`Te2S z0$@;uP0D;AjDhy!>j&)@nL*Nk^Yn_mCI0}@cRc`Eux*~sq$;jFBpt_Yp5qTzn;e;e zk(VP-=v)myh+4!}d22>&+G^W$g{9x;CRB{0lKO0X;`)R?cU)C9pfs+h_K9&`7z#y8 zxf)RZQY&3n)a44y${y$52&|cmb1?bA(LY(OKB`*)7!CIvKubOPhbsU%H0jb9FIy2@ zvYp7G+2cI5VYNvFH&tuDAG8%li)J`!<_k6r?U< zTqOj6cyD(xJBLn^ZuA0FrXlkIMt)CG1i$8o`Fx{0GOY?GjY@44{{W%1a(&_}Qhvku z2h~szlruK36)(Iv;exV&t@IGdZnrE2FmtPqr)WU6%u!P)@1Z+!3$@cSE)<}Hn5eL< zUa{PWn&xMT8aGh`u&tSDP(p}gidD!5K~13jzVawiSOA?HXWX9fz-`&+`dTIvFHQ;P zxjx|*E%&*S3LG_9J5zY0c;c{=M5{L1v-Iib2)M5rrCu3~R!5RYPrl?t+nt<(mu@J? zr4VX;k+opL)(S~El%{Y8CNmqAVMHHTb#8UvzcILBi;zn|S*;Gd54;?COEorj7i64e zq-IOe-Krv;^@@U&p8?99NTD$XF~y+-f|63L2OKv@M!T((CQJ#bNUvaiVi~l#Sb+;m zAQbIgd%rPP#K)d_{o*U8#iA1DH2?!s#7~$?nU-?0si-z?JBEf5+2;(TsI@BquIr>I zsOBJZ$5GNI#2A7|9vOg=0{)b)oe5@rGsk(7}_0RX=+Cm;GI%nZpYInrDgYKC*)C195n@6 z0xI2i)VZ@rLQ4v{(02L5l<5Gchp79&`FKGxL#M4;qxOo@Z1X0RhidF$Iqq~^PT+x)~lnsBFgI>OIVx-Ip zNOYAsew=L@&B1L-&=i^l2U~CD(y^Ok=_P1MM4-~r?8K;%yES4QGewe6{o zCSFKOxfFnx#voV+#1z!0)+orF1txx~)IX5mKw}f{ge}w+;R2mnI=OA4ZAf4=cvQ08 z^JdKOC6W4hHK{xfhPCMp>BHt&aursm*Ul6gr-=$c00&Xq^Q0&nS(a2t$x4w9=$r*e z(v=@5SH-s?r-Becel{OSDZRQeyoIMJm>snG!wr(nDq>JU@RMG!iH7|KBuq(l6*H=| z9PY$-jY?(|5|EsVprd{Gg~s2qq-;}nW?!-^?2_<0U;u~Q>;)=I_5;VNXSqH32mGLU#P5gI(k-=hoPWESZT^&r}YTNZ<|rPyxF}6lP^GSml88JXJfD05^=sYRHdZ~Cn!h& zozL6|2X{-Y?9U1eBe8KK_HeFWmMpuvIXVl)vo< z@U`A&75@N&DBLS?(u`wIeUWPE!LK;ae+U4i9iLFz_tqIKR`#9a_F665?J}jMK`I(m z^#|<%u4#f`R)nW`57_0p?+Zfe;DX1FJ<*-q@)s*G%t=a%KK}r>NMyT8iBds3pV&Z) z!u54zLS08zubJxxrkQSw?92omci=+)CB4>_q*Ey@r}{*et8kMmK8iH^llk(2*TveI z@?lq6zjqzOK zvn_iTtzA5W=LZ@qT)42@sViPkkB44-OKQttPtmfYX)b-&5a+Wg~d2ZLj-?uen*rVoh-K^taS2(tUriSm4vHJ0sZ0neWx(?oOIBBa|m(I6BjylnvO z7mB73l)VX4??b=PMwx}Itbnzk35TYgeE5gRw->O@r9nWdnllZLFy(vM%98tl{h>Bg zmRIh(o!5#h#7v)LUR)DS~rLu zya$SRO{}Rby-y!_-f`)kozZL4D***A%j_h$SSR%jU#uv|wi*gjkI(NGFzQKLun7ug z)SmIx$1v(hDZ;ohU*9!MJddB+$T;Bcd<1o zzJ22L)=Aoq@FHsJ+cX)tXF7Gz&_>hS3Sd<1p`az{Y+)De6Jb*Rwy~vY@r`GuL6^1Q z&N@71INuX8a)OsW{{Y$y;(OyLXWBkY^uy^5)S)FrEL0r<;Z}q5Yse?RzR}+>Z5n!~jOt>SSA=Z|PId&OBYLk91Qh{h|v>{NapD zExek3QY4y?L$YpS#NuN$n1<>ixU}-)me#*W>?NN=^zGIwPBjDo zMucv8ez37i>yyvtSnL|ph@_dNn~ydTV$U*;s*XoUVIfR@lP5JlNY}ht{+&Q((E_E< zwbP_?BHoY6BlX=SQwCbpvPh#eGOp-E#e%SO0DxJy*Mqk4 z-Q{3Rh4?`!V8@QGHHM8YTji|^Wg?6!H3O6971CIqoAUcKH=z2^8H4V0Z7caoMOEDj z3L%{=E7zyau&`(nPlfeRt1~Oz6mJXNOUQ;|6`L{FDb*+44fZPnKq_`n75@Nk-;DvU zTa}g+0$W!*m|h3b9`)Q^QsvqcT7);8ZmSl899AgsA(ALIMPa)<5xKDcd} zQj(GwkB1QXb4@E|q+uS7@ei$(l>+n)<@b%73|or^5cgoi%&RhlM`$O_sT0|)Wvi@D zKEmP85Jh1s@sxYOu_mtv?=-+^lK>_iOiuI>1nFWpRid0n0wbofM88wAx5^ld@hRxDcXVpKBG*eG&2=ws%2aOG~jsmqRHm9pUl z)SmiPxiRh0X#lYu;L@ZN(^7RibP&IMSxBzu+#sAqx|;sCOG_QMfXT&{M5L9ejcY?s zzjy<0v#w|;QD9s<>lg>6JUu!|0SY;46hYbJuf@aVa=HARuNkZUo$-970+|y4ahp4W z<@6f=0P=7u(Scd9g2`nZ<>>zaw-M$0Dsw5p$_r^$=?fC9r0MVCJ&qnZ#$(OAuP*EA ze?wN3Og^n=F;?v0e~)7HJsv)i!S{HVl_U~7=yq76fa@XpUK@73X5w z{{V3$QjRtA(l1HB5I|xN`t2RrZ>dX8Nr)8Jk>|uI;tQZ9S*5;G?8k`DmBmOYd*XKu zlNjIy7BC`30tM;=SJ%nEc+dT%({pm4G$ZB(01y(%eGQX5l!zT)hY*q zG>8T<64jWD!n7Z>DVmC@TQx3 z>PNH*VYF#HpBvJCI?yjG)hjL-4JoBIfR_2h5K>%j2-owN1aF$LPl(s^=>ye_iX2fx zuN^x^9Q@mRZ^y@jnE_Qm2Us;GLIDnqIznm3vgt-C-;vvqzj$S^Vvw*1(Ve#uj>eW# zh2ABRNo?GRoi?x^C=j(^#5t$|9eZm9toF3I*Y6#EK5>^Qz5Q4wy7KXMO^B+1IpR3G zY)DvsHikkp?#e)|0UsR~z( z*nw9djduim=@4F*ocD5ApzFPLbGSXAb*5b63YKV0cz$kMeLXG{5Zb0BYFWNf`ck(J z$K~27PP-MMYU)Of7A(?$ED0=i`bP!!>NHp+I2-lYMXObvDauP7z#o+Jh3RWireX&5 z+6-Ox0M1D-Pazs{n*MVfe@@|tV;_vdNC1T8+n?SRsL^1$(g%egJsb5ma~G_()Jq3IU-7!a zh?t^kvK;;gf>t7m<~fNp91+Jcrx?z~^NN?8jHK{({$Y~Mcr1az*y{`Sc~cZv3herM z9+1ysx~DKDAzcR0xuGlHmURIzj&c`64%`$|>8Y=4LEX zblG6)$5$I{&kdvqkuh72-Qv<^ldqgkxeg0$uMr=u4Fo#&#VM2uss{R>IM%Rj`VySU z1(Q#~87eJ|d;DR~3t!3ruyA!tJO1(P{s)_k=Z`D%e0P@}YPQ@%Es}H!>r&eP0121-hk}1-`froxuM_R#YFG5j zN zm6bp&aZWyv$%yboi&7OWl5>Vo00yJb^Q}X7fw#6$T_w8i@%qVoqEbC(YP%Zf{{Wi7 z)gsO+^g4-B0wqi#Xb;5(&%HTF`-=2sd@51^nxo<*1En66`TV0mGmWB!S{LpP&+&lw z_8tjE5Lp$bugLEc@sra2LNaY>Qh*!NH{Ju0hp`3wKr~{_0Q?TT|1& z$~0U^(qHP|Su=ya=n1S`w6Nz>>H;`T(TXdsUfU?6SfB@(X*n751^{pTedDK4 z%zYqZ8Dea;OYA`8>S4PJTN5-gOMypvb%dWu9)sphlxA7xyw`l3hjtqK!?zKi`Z>BU zNlIL>Knc|VgGI!SJUqV1MxNmAxf$AzG> z?7&Ny!KmZw2)L&hB5bmhY6h+4Kvm_kZ^UHb-!|ePGptZ|uQrx5~!e~SO7(E5msVQ)}7a^mZKRsI&07-7uVqrHN zAgXk*>JC9r^geO4SnL2HIwS;w;EA@_!v@Wmu`sEWDju!}O(Cw$ zX3BsL^*#RG;yHJy%t@;cD6uAQtSzU=dBda?dD-8@SmiV)P&j@f<k-;PlKxl3^`Q+jrt9T5t2~gvovyG5f`f-Lf!a^Y_Ba ztrF7dSs*DVD{2)+exH?tL9}8(NX$t+V>k4Vf8|Sn<24I>YZmTwOq`^Ixd5|{N9XY7 zBJ_=hW@O1RhHVc$d&Jq-MHeu(AWZZJp=uG#L5gt1`Kh9M5y<_adk-OU0zwd?#epEP z--y<%_=JgRT)+}e&q3M_H?GVx(Yh9yUZ!FQGTbDQv%L>;M`nWd>p&qv{6fF9ew&QY zK&T+P!HRBd}4e*HET@706-cRXNwE?lKL`G?%W=oVL$%)DkVPA12J*8el#9% zO5Htc3YMhk3lm?%81>I`Perpjvk5ZNw3ix%3MC_b1HAz>iJ~-o9X)HbRFY4LNd)Bs zZr@nctyX;q6?$rKx{aFKWAMp(MJvt4Y#8Fh3j&MRjEt!LU@lxEpsX<70 z{CFRBq)tmMobSo!U#u0hT;2d4iP%-4k452ofTsjEz(lFUsXGGu>lG$p5=xk`KFDXU zSV#V(*_N=mY9I;^sED@1Ia)6uRFu$XEF0?=?-^kUaCF~i97b7&Ga-f+=) zS-=^=aaUtQ*SrD7Saw|06{WMK-GxVE%mce^xg|1*eXCx_kDO0tZjojRV1=B-)E~`b zyVDKKDK(%4`u6Jzmku?^pq!;jsU^4Ia}E}NNNN)EDoNglVcHA?y9K7xD7uhBbOdep zhRYR<&6Z{_+N%v6x^;#8SLqZmP90E1j;#SS|=%pDF6__QR3~-h87f}v*9!?zgV+oyHXUU&}rTPRlF`#g(Wh|s&qWTA6Yh2 zDM@yvHiK6>Ppl+>kSPUiJ|`N2{&27Y;Y?NiLX;V@mac{mTI|VMNKkii))($O0#KsV z9e%J@b>xODuQ)U++}2?z8DgN+bc;!wP=CixA5W1nI-~*y^r0I2;6#ha6@U+ebsxb9 z4T-7!OdnGe{{Z0S@;~~a_m3_1B+#WnPITrfW&Z#}@q{!^`Mge7O$P0u9pf#<774`X z;;uAphen1A1|U?#Wtgml2Ltq<+PlJdzZdHaw{#s2p#Jdq)rj0ynd%{O+$%zB=j8=$ zrqHygDf6VbYJ~x%KYwKEP>POQ zfo`cq1 zYMGOCgz6h}Rxi*9Yeebb5afU|hTM&QT*bRx^rTd1C_(whH$AH`%>K!*)wzYojGaQX zzj)c!SxW$bE6_yuY|$(NkTiB9RQ2PeJ6;x0Q{rle1C9xV`-aAc@v4;@e4>fn-HwTz zku4RVe*34a6UJC|6UJ(pgGB<&+KPF*!lp91lPmj{Whg0tC@=lO>~fLps=c-848D!8 z!8TFNMWfn5qaLqTrCt=DVt$#uqYlqn7KdPxNv5Wa;`e?SdcpU)WyuoeK4ez3spF=w zBOTvUP`6C424^KZ^zPaNubdc_hY@O)mF6M*Ng{+D!hvQZLJz``FxRi_YTzLrBmN^+ z^5(wiDTb^nRJ9Y~;2Jkb6NaoZsSpZ5Uy0=>i{8Tl6dRq9n8HZtHy*f27{6G>>+a+&L&r^%0W#)J01SsaNxC~ zU)Q(^1XZ;?;YRDel$n%vm{@MzdOT3Nv9i{bl>nLs4My+3oEyTnB`IY$ zu?$IIoMq-oIfY9WEIPn@rhLi3iZG#3abBHa;a0??F)vmx&hWo$T2f9*2hpf{!iEDf z=9?tu&rs)=@`j5H&sdO2&^!dZuQdlMa2v^npct0vwR+TMO+lz5*{0q4KttxthX4_k zoR+Je(faYXB3fv6)bJv$hR$34xDdULF1hMKQd5|c$PVAkRk;9#>x{vcMz6o|3yH)? zNOH{E?bL%-g^V?P%s|O70;+;rcOkr)yrY}yz_pPsfhuyP0z5r6qv^REMqfQJyV}ww zobt+OcG33tMwx`=E?`W>F<{59PbgaSe}d%_ptd0;$P~@|Y4p&;@)9MbrO~QCe!FW9 z8f#^VTDROqORmz2%U-0`E7-9d$%_a`1CoDuw|Cu7IY5Rxlk|&1Yi=HwFfcUUrT(<@ zj_&L|E?R<;28=85iH(&gEHpd( zv+6$L3a-`}OhGOA<}~w#x%LvVn6Whg9bl%&F>)nYz)&Q+lAoZ3n>VC&%u-V+B`I;- z!MtmQW=&eq9JfM3dN`+)GESl7-Zcm>ZMtO8=LBjW%CM70dQDLTzdh#L4 z??M$spe4n0)0h};a@0Uru3A&;2qLt~v&?c!QP@ys=y!_tI|^1tV?>61 z+i%X0vvXVX%reZgLg_q?%o+BrVZv43sws#AZqNs}b{9jFoUH1QXdiEM8k%1AtS ziZ?uwQcrI1X4HpCs|NgNsWgyTFVdC(BpTM9_JO#=7BsIB@h4&JF^cNArM_(H3*&Fi z#3JMQsFPJIVnf7JJmLITE^M|@1zHsEwO^m!Dcg{#XEIzTa0D#+B$+0w_DaLC-|Rmc zH56K@~o4U%Ygp? zKG4B?ULF%o_2vUhz4C`KKvj1s3Gpl1hwQIGmB)}ZAdxt_+wJT zK8qPSg1<-;_as82WO7&D( z*G<2en)SwF%PEkeOwWxPv3JsK&6-hJNhKpNDcQSk$H?gl-j6WX^(fCdJ{0Jc`&|hY z57MA(u9ig^%bhh&dEkpAFt=}0=+aG zmSaJ=8V07sZKO}fuy4Zlps68X9}~AdLHWQ7w#6_`nJ~~AB#nTKSJ1DeYeK=2fL2nX z9rP8~ig52AL|G@9vhsp67fP9_<)s^4V!wiiOu3Bwz>?b$2C%*xOt4U*03ZGLc)fF^ z%K}go4ddNhodiiy z(kk6|OyZ=3B}9@Rpya`%cU|M6U&1KeJHW}OUzy`*y=tD z{Kt}0Qg?$ktEmAbyB~xNOqM@S%|uj%96Uro(3AFyGiH0D1_h2_35t+V$?}NZ$N2qV z6|PE4@^uG(+z}1lq4yu0Ks$Zet82-H%4n6I;v0Y~!~jbTHz%JsPrR=D>B>a`bI;(7 zF54)vaO8YpYV@(OC8^VB;Pd!*xb%EJTxHgbI?K>y)Hbiy8SWW5T_EsEcCT3K)gdWx zUX=&Dd197E^?o(tJkC?RdK)YjwlEAsf(!CHLVe*m1P4hJAW*zL{{TW12_~VUwe2M- z0I9l`&_m2AN*Ge=+y+zoJoSC~;v12jnt%;E?)~5`s}-_`s{*ttZHH|;!Rxm0RK_7K zO8$M~Xyou)3U>Q`&{pWYUFuwZoul7elzU(o=SY_5za=QB1Upgm2e&c5jyZYKeloKL zbE>~k)bxaV74CpYQ6vf%Kb4K<_PA_wk`tREz4hr>%&{k+RVb-edFd~zTro7L>+vzy z$BnLjRV2x&M7+s$BnPEWLPoSEE@11?L=^%Goy=#)4qIfXh09S7mpTa~jU9la)E*;5 z!gc|a<_bcAWdlyfs62Z&7x5%*YlWUvJsSfy2i1MO>3UO?+6%@^k7XL^oFb6 z-WZMc>lu~zY^$1w(CT%HwH20nTgE=FT8JYv7Ed&fjIaB5tx+VJl6w=clx&~%4~x!n zl&P~8Z`4IJJtGoAAM@uI$CDmWQcaPgxSev$cvDE$B~ZP1{H#~C`z@i|#qlBZ_{9M@ zIRt4=f+#A^mc&(`ogch@kt(hff7lW7ix&6D^dnYxuhJoxZ$Yb^?BO~9!$;i2>Q`+j zZGmylonj@~-i`WP8td1Hsb#$#RbUSMcY}VlImW6=nwwMQ0jXIo)excq(yj0SePO53 z_8mo`(=ZnWg;>AaUxY49y+S4iC&l5)orhivy#xDdV318ZY)k{g)+u6Qvz9an08xglbgdvY?}&YGierU`1gBOU^ZBG1Qpc)F z!b`92!Cat;9l6Z$1(xsm6P*z4r$j#J5_UX!XBq2ah6IL&}dp5d8 zfosDuy>JL5=52XBc%)jt6)X|#fCg12j2m~|;_nu6vl&)Qp-K)$Ryl*^>iZs|vE|Qn z$x@H4T{6)9zJ5^SYrFkm%PC2w%Aq~KcwC)@y-s5^_&|1+$|Sy>_40Vm#pxE^EX$qZ zOQaS-JZz%c_KQ>O;ZIg@-AMlcQ3Y=sN@jwUC7Pj5!le>PXQS&Mtpw&Kr%ie3v_m7ItNs|vS{h_nydb;38vCNf(RgH7 zCu8SG8+A`0(@wi`V$hZer;uOqiaUPVfJ2)Gf!p*RU zhFjKY(iN@J>kF5naW2gIMVTOq7=l8WIrqfAyc+8molPxOi(o~0Dc+GZn5arO#S%#K zjCU7e76cF+yli)jnh;|&#h6B4v`(6ck0iD$hDytA6V#-fjhWwwsbZZm+=_M9A3vp( zmTHci{h$@|ekCS|aob4qIr#qoZt2J(*LBTRKzI2+pouVba%s+ut$jL%A4&m+w2`5e@6s4DB63`$5!;=) zgC$fb*zRdYvee;+^Y)3S+-|@U-x|Xru+^Et4=8}lG>K7kC-f*1X#W6si!c=>B5bD_ z89eS|)n6+8NXxM~OOC#L!*BH^I@P&~w}rI~PNPziK3v4!)c^#XXq&u{<(0zR-(MUyCE9BtAfvx$^#4xsG@ELKM> zOl`x0ZN-bS%AUkS44DH^UMR@026wDpu-fvFJ`wErW_0uXmsX{%LcDJkZ%ZoX2X=kp zYr^*+Zb|(q*Y6QoX3d*Sr6WPf>mB~wyM>9ke3HdZ2fna6+jGl7s{E-97scANdlfnt zh0AsnQ7*42=JN2*QPJb&KIn9-N&|o@e=8Qu)P`^e4Ww3|gn~s@e?E{lY?hucQuNZt9-$rc4jg#+;0RWTU9ZLB#jah zDEr3OxQxUf@Do-UbFzW3KQ`6{UU&{li18_EeHO0>By2SEHTT0@tSdC6jHQWk<)fL{ zD321Db6t7?3*l+;r73tu&XoYkJb*Ow=U5eQRHUq=X{7@P*q*wGd9&Rtm1UGk=WoqE zFuiEO%2Vf3QU=`lwPHDOX~&T+^tQ`Su!OmGC8^XxZMMo(mnHt5T*J-jbV*4*8Hz1U z#Wv~ZtR~(!vdM2&5RuOixPF`HY`Y+Ke8q;lLHo8?0o>)_=CwK?Xxa+Xl_?--qID1&O|w^EH6OQFIb^+o8G)-*XcRj2h&8L0 z$Kq!>M;bVb_k{6U&}uk%6J^9ETZAU6BUfYHv}o>p#VK7$a@rV0L*`vdCW@iZbmlKv zFp4OtlS%0H^7_Pf!b6hn(!SvpR#8IgFSBj*Ft7}va)*QhcyLR3=@+isgccyTarJ?> zWuz(C9hm(gw&%GQFdU_Vbe*St(T>AYyT3eZ<90_AKo9z6cB4cTxeQSl(UXzb+tAdTUE%Cl@i zU$WW}M;!>@?Cqh4$3?o1+>oNDe-F#^cn@ZfiL(_X8W1TCehHG2u~G5r4@e1i+!FID zVnGWWX~a@$J5`|;Wg!86BTY#>e$Yu*=_oRjT<24(@AifJqYjC)l{R&9P$sNLJ$2rm z=xU#GCpvPCsM-oeK+eVmv`Vyz<-J->K-8r3qgAO|2+(YHaJ6ug&cmQ+xqR8?8A}N9 zDLyXjG=R7}8_QRPNGV_V9bb0jQXJ!nRP=*~CaOV76PzTtZ2 z+NI8d4Y;OZL8xX8&t4Bf@raM3^~_l+J{?g_4^a)bd3RAmHAy0$x1UIo(}{AnQa|<4 z`i=T@%m=stV6Hq{* z0RGTF7GT-4lnAOySdByMLErY$7_c46t1P^SU|Y}Y>$!!LU;Z+ghbaeBt8*7G8}eG^sh3>?3ioZ{0Xub~TV*W7Xf=MYwI>P7O2Xv= zl@0oD(hg0+c_qtpnEORt>-BBo&7RN_L(pjaLNz4fh8b5-A6|RM>zemW!pNz1r^mD& zn{Z2;C)I`ue8EDUYtZrg!YBL$+Zj~E4Cz<2M#Dk}2UF((9PJY75)^As=kl^`t6YRsZirv-t2dqrJ_EsC(X znlq%bhr_5aQw!gD<%E~;I!eFGubc?7->5RYT}g|Wa`2WC=@cq0@A-L{H?U?max##i zsM}Ei#pUY5B_}hp?9o>L08GUosS3*6?*VYmE?FX6)YT7^x3v@ucIz=zw>p>b?HPr$ z3(iJmg!ofXH}Z{cROcX(;UUa>YrDZo1kk$;*u>aurww2Jy&w{OVhN#kXl0Xy*Jzl6 zC;(*xM-8#qntWpAlLscwl^u;-b>zXD4XI!yl1q(uJ6D59oFOZ%GUTL7NdZr`{U7Jg zlw8CZeKv(5YAj{wJi#E-N@(z_ex#%c+AS((+q-<=6`Rsp%*7;-H#|Yq7}IadbfBD) z(j1N&v6@~t1o?U2sv*k) z7`UhN21Sx&vgj|qZl9dP4f8b$@Q?uDZ`L`m%G+&xq5N=Y9v8%`^|OK1Da;Q%Q@tq^ zu=XJJp0KS>O(bTitY&bc296x_Kw?|c=L&anNT(09WcYGS z>ouZaDH5bPz~V4mk}dEq1G})V*sUPN}cyV80KZaA)}Wx zuI3}>`aEt(m^DjRPrpb5eO!LCFwsOan!w?8g(-0!kG6yL>xCT#L4Hk{2)(zJr1Ecs^STF;fTJex_hw z{zi65*Q7pP7no4-AQu%6r)bM=>_}5T)sR60f6e;CHT!%Zr6nY#ZUufX578~m!@)(; zK+%EQm}oZCpajqWG#j??vZ;h5D4lm3`=i@zk6fgLx>5y6)WekBVtir?CRlQK_`s|? ze$LJkMHS5;{fiGKN%e_kmZ&^-cX&#~zK{u;ku3^JkwO~1`hyR!)u!2kix2@|?emJ3 zk*E~oya>4cbkvE4fuCK(cWp_S;2#mx{Gxur4t4u5+JXwjHK^NRU3Y!j9Bp_xQxI8f z71gWvfOl7-Ma!J2%TRUJx`;ZQPm*V`PLQhJ4#rEBn?=#bknHQ-4!Nwwr7Jx$=R|Rrmdl;_?^!2c3qa*r54SXMJtY{ z>deqr0L{xZfR^5)uj596XtWedRW))z)%S_r?EMz7rHxWa&QzjK<-zL(Z%f%gWlCN4 z8lGWN`ozj~dbFuP>ISb2RyC|8D^LLZdP5+D*_2!@HB;qCscx`3(PEt`L6GPzrCX5) zFy-GdYgE$gJR`I5=U*r_{XljqcG%XucMw9VHoGcjBP*1ZC(NCrESZL_A!H=x0E#}p zzg^=*y)D2f8n8Nzdk*kk-(?AJR+poY^{q%r*pHk|h6<}X5R{pMlyJ`6Gxd(|X);L# z4ki|>RYQZw{{YxUTTP);Pl(fEX#W8F4o3armKeQ?l`%O+WKcfhD2_IJhF_~WlH`re z0Nb$;re`1gQbBO$o53~W6(EpPuABD}CLg>&Q2`#+TzsI04`#s=6zj}Er8esEHIn6A zsf?wRy;H+;4$|#P2DEre^pAJVQj$_iTg97K91#T;AjV$1D`r+zQAu*-YI#bAR~O9jY(pJ=JlabjLE z2+EbH1quX>$ocNa-yGYo`BuN|=SoA=C9BK(_K2;x1WrzO8Gz8Zrs4k41dD=Pft;XA znAB0@f$;AO`VEpWRFIICsMTEYzuG@tICIp^1TDijNjg6;r(?&9_EJIr01?TH*FD)b zYKrF)kTqp7uARqdEY%-x3$-h%NOST0`a<%Rl3|wB0`bL3J2|P?{{Rrt zWV6aB4qR>AMNUP8Y)fT1inrgM=f2%UR)e0dD><)!;VgJ^jf1wF#arT14GL0H zMMxTmHF(Uft7_LUD6iFo_<#r6?se=3SbLXmRK(^5+KJ57|ad=*{(x6b6 zNi+hl%fKv8k7mnSPpb%Ed|IF6KxJ!oGMg@HWld8%5Tv*H?$eliVMDN}MwgUqX|y@3=om zzj@f@)TkxT;{kfI+-jYV~CkiluTcuR*G)8!N%r>BWX#MM3aFhRCM?48r=^t6+LJ&(cv8d| zy3j!ka#FPb4y+<;lMK(BEnYmKLWNIGgHMbrPeCyC-z^IgCA&L2`#ygt(4=9%R>Y{N z4qxHYGdorcon@GrlN6$o-p-UXDiyC{HK;m`O3R4zgPX#J0ngLx3V%mJHta@}pzlq1 zjGGhU5S*@@$#*<}@2ow^xXq$sa*&xwAfNU;Z`{P*lWg*3$tXfWBrztX%V^ac4R?b3 zz@G5N64fjOzEG6q1AqYdvzCa3d`&vXC;yoMQh3Y=@jnCq$$)KIbqLOy=L{QnmjCl$=A170?@N2 zS~eZpontYvNi*#QdmxccJB_qwgE;otHA@oFs)+zad%FtFlsqbRC{?!Iy8EH~2K&-_ z07?piTT>BVH!4B`!zspq>%oN!-vLjUjOv+EdpvfcxpKk+ivSXlv+?hQdN+rxYGbf9 z?b0t;FtSKe$zxot^@_J8nQ~=IROJs5F54Y|c5u%8QZL#qpvjo}AT)J>N4tkoywW{y}NC<4f+&4PHL9(a?e#JPzC&2^_UM^+C<@meb_(D;YAh^^;kwWUWrc0!tg6{0%8}P;bpD`3_aDR>= zXARraHA*TDl+lm*4Z6XU-l?yvMR;a-M7=mWl^TjC)@zE-1Rie(#Qx)^;yZj)u`9zPe5H@^n1d{u{d4VKrGx@tPn{GndSZXnR>O*HfJgT{7%u{sV)!+rH+H@Yv)b3ACAT^?EFi9+8HBTmwygSKrisEl3CX^a=?-pm;B`cKh zkUv**pn&MKv*>;?A({@%Hym|{)A+7Vvl=k&H4V%cve<*sL{t~t4glgP+?UQp1IFiZ z!SagV@+~n-O&pR&wBw{#$v8P>C{op$q-a56-(JwwWVI@CGRsh8oVB1E0!Flq-faBG zFiRHr^ZP}+s`~Xx&Ivre{aZqKhw>~%cm>K?O2ujm{;s`_qApxGf@)=yg=+fO=MZ9B z>`qWqF$n+@SNj+ZE@2Tn+ViHRg|X9uhH0xH6=(x!dU->og7^sV%up&P&Hn(@_13Y0 zUH5@W1`pXURZaa>+o1fUX~&a3TpvamvQAf7HDU&%x#kw}4B0_L#t78XlzQv6J~59g z6ik*_l@Yifm4fnbl&vJYFgZr*@76W9dS&p#UHN(fP-Ps%77eL?r8`mz&6s7NdeB(x zO;3K2lU!G`EIDF|hu@?z-`Usoc)DrYEZ(JqyH=gzt=T*{E!=I~^)PDsl%G@?EgxOt2!tBB=U%qCi>}>Qmb6jy_O{i7paB9J>?w@`r0Z z;7`gTy=3Mcc7^P}tOjM+pi}@LxeRFhA2?XI$}UhvI!2|7F5(Frn$k0?)@EIPG3R-> zzqngsDSPI(cpl zLm1DG4aj$*#rchFvZkxlq!N>%_DHP)x2!4R4@?R)l#wm&+K~Hj;AcTluQ0n2CC3jtxNC8ic*l~4q?kH%+i~;;f7Zsr_sF3lTzUFo(mAo zrk(5MAJHF0IHT4|LX=K&24^%UuV>yqFu|B;5bP8Jog;L=K4bWgp}iDdssU2gl7pBw zz>awbPKU}o{{YG7FKzr%$IusuAqOdPObxlQe5s;jr6?w13lMo|^){oFm(&Jrqb>B6 zh9>6|rJSWgtSVbd^B#XcE&6uxLMFprO&DB)@Rn#$>214Y_q8xFbR~?*nkhrM1f<&pE?BRiD&&>V9?L z#yqyQoLgm*a!JZm9CJeP`q^kyvI48|r!c;(O=qe*`}dKDNv9M7A%@VZO*EwNk~a!98Nn_J*mZ^oYDQQk79`eF+9aMsMmNt2d^ylsVGiR zkxrV&lL83`EqI6}T}QtVUcq+|2Zf(lQ;oe9vN@4>CqYewUa(AZ<9ak&mta9GMH`5{ zV!4C33^pwt+&oo}KO_{ptU!YQ0K^!v*yRCMemMHaH&xymzW6ID=ay@i&ON^uj@Ogq z@^{mcyE;y6uA%YjPs$@kBtcUNWbc{3EAxvgxKqOjnpzN$!~on4qpRbLenEDXXFeHj z3)H|X-s)3T!wo)AcHM~*oWUne3qs`VK&73@BBj1j9I>Yz1ih>XU`zE7uWy&IPWp&( zpI~v~ryQQ}y*kpAlIO}i?>8PVL&a%c(`G8s>8nDe_6rtKZNTOmZ+uRqyC-e6FqLb* zlz&E2bp$+o=j7SB97%0R#QGQ=bo8o%B+GhI;3 zEJOi@mswo&Oq?b71%IfHsA4~PG%{T zj}+O#Zd)UV--@|va>s~2c+HS1WT9IZU`uRERkqCF7SaWa;U~i`&V-UpN!VqqxpyHO_+xc*_|%?ZeRj#gaArjj$Dye-Z$ZO zdKoV6POZbi8$H(J!UvhsDH-5&otk&qy{dXu||MNr$PB_ui4hk@I-F-Fg6loUZP!D>bMI*))S9lv|v=SX9j{RcY)U=XwhU?ZD*@7#wKTa!1TEFZ| zMG4ndI`oGtJ&md=pReP>zA|1?9m@|9Y7QXf=^Srm6<7j@(T32)bjoI6z-_0OXkEGO ziOlLHoz>IxXeztk#OXA8Zx6?2%~z6JF|OSh#YoGU43_h5UL7vW$JVNeU_fWzyaB?J zW!fYoHlQ%-N7@eBEa53jYMwXpkGJq`<1Y01Uo7s0Udbz3f`3S>Z3A(>9ZdTokXgD&!lu;Oc-U3{{Xc~T2f{l zsX0ncr688*HKwHH9K1c+Js=5bC3Qlnt0~W3bT#kNVYpjgI_+Unye((}r zEdfkHR$|oTe7eOO=>(-J1m;t3R^|#}JD^Knjfhe3skiH}tvuknLe1}t6O$s5LskW= z{@uQ?qjcf9i*>t!T)YF;no!Fv8}=;%L+sKz+Ek|8<;nD*b)lUx~c?Gu-laDK-3R(NxBo{&61I5@J!0UfOSY7 z*B<)5`ocy7SQeRxQOv;P-J$ko9dDalFyIL%%3t0wXJ|nO_IqrJt z6L9^s8!h0V9Y?}Gf1JQG=}^?anwvn zCF&bP)=B^+h$I?+_&m2FJM^Vx^@sr}9+{WRqWq*095JStXDZ67N?${h$T& zcKXB_sbWCTy?WD#^8jDzaV?90RK?rK>E*Au#>8!&q8gf(JtFm@$^Eh(y!L^&w8a%A zs1H~xX`aZ|fLDkIv{<^~Gi>Mq(n}IX;5W`7Or;l&csxoXNEeMerg1gs_|hf`$+ul9qp5)^`6+-tLbeBfF!B4xTu5urSA zBaY~HP7RO)%}v%~$*b%h}(a6cXZA7Z?+rHwX<(_|Tn z$fSiJ>zhvX(Ee`{S~GgVEGIWDv|XSiJ$HgbMPaxl=u(#V7`-CQiEau3293|2(3^YX z0*RSJ5u^PC8Mv)#n3qsAs~@K@5ro;$JVlb)Qk|RU%w>3jRGGHKOG5|oEx%FyCuZDr zrx5dKwR*=!lp&moLf8GN>VaJfvX(oCeK(-^!9vyTc8PTd?*uLz8j)Y}t#xS6?Kquj za9v>`!kkl=*|gTL9$lW5ikuGxn=^AE2y^<_gD%BtrW)l;uJ1Z}5yd1c(3xL!Wa&~Qdc7_`*`6^_@ zq?(ZQcJqqZmg|%O05cbKnh(w(fWK_9$(o{7rpJ2y{t#aeTyj!aAtget1CG`AKx+t; z5LKK}$>|rcrYb@ZQe5UP3v*vBVx{bcFB{raf(c4kyXj6Ni8$6$fqFiG^Rqy#MTW%i zTQWgn@2S;*;vl*3YGsmEb5JlN+5D!09sq0q00$Yf6E;$aP}Z984@jemZn}Xn<(98g z{=MT~yKgCEFkzQkIVbH27{3dDQ8n{;MydY*5x0~e73j+G0SjE^D5Wpz+|Z~|$P8cM zp)b8_%hFI;$OuhnN3?XOmv5sRwR$comO@umI0IoyHs4soudD+;&a$UWBV z8=a3a8K1pi4fS&ntm&ybjr&C2jx1`Jgs~?zNmtS|yDiL&g$gWP^KwViXk4ilF1z+* zxlGK4*N@MPE!sVKD4kI)+$HK;et_%@Y8G5N7L^aucm4E%*TxoUVF6i&-d`gVnqZT0 zx3Iv~vlFQDg&b_?o16l3kin`t_KhbBV5w=$sh%=L9fNcO>+^UkXR%6}r3EB9Kmh%^ z^SnILWw>|Nkhe;dlc8z|HG^*PIIK)`YL{yKS^oeyhb7yRg{D{mBXiG2j_t)M1x?Kd z(YcBQs}G{TRX0DbNJHrU*OyMMylDQiNBJk={{ZDiH;Zk{D$EIB9f3YV68`}1b$^1t z`n7$cO~2f>(p^VD9na^vpcVCqNd}M6wI6sHh^-T)46@0q6TLSBg9}!CaGz>pjHgap zZm_LZA8t!=Dh!YbrjYWxxh+)!G%fk8V9E55pI8)=lu!Zr(lq}7>Pn@BOD~x(`}c)A z0{4xQRH2!G>jNz|)RwIX1&0O^?f2Z&uvpZyof->WHgzme4uhx1;T0g%x0WU{6jY5A z!G?$T8?k~T zJ9Vuxz)&C^Nu?r{@94EtNFr`Q`kz+lcJ9ZG+zg+GQ7^)^8Gs!@KLfb#^@a@hE&6R4 zl$y4OKuZ$i`13Q_I_dB{{X|*dqNbY zF=V(QoED>0RvEIqFD_)_CQDIB4oixj1$6KChZ)zT&kkyz*TZ-BMJzs?ry_I#tEu;W zhhYULN?S5Rj&_8UHmp!m83@dNFujQqt4at{r~OXN*YdD?3STG-RH=X@yE?fL>o&rL zrN9EZiaSEn$IkaJqWemgR-DPp{#udEG=4tj4cX?;v&{;ePE;Rc=&s{-{o`!3f{<9{ zEkHTvv?$_~rFl~@I={=0<}2h9-MHFR!U9qqM@FwCB>a4!y{^z1OxcK|>LG6j+-Q?A zODw=J=B(||@1~G;)<$BX?DX0f@DpX3vX&K}GoKI|0D5ZU-Oxd6UNREMbnC&bAZ8=B zB_1THk0)~jZtOoY)axV!rj7OUg-RH&3plkTDJ&YIx_65=9E68SH3hr&5I*g&e@y5E zknj1@AfGWtXmG(qWdrLB%$JhWFT~CTYxIGaZS^dyF&-oFF;@ObO49x$okvKLW(_K3 zr6D9cS1*B>LAR1`naSE4)F3fVMB$273kIo`! z)n7-JpYBYdb!e`im5mbqusRtkR+S{v_JP+Gnn$Yz0<25uU$5E+o8op=B+F6CcHsBc z9D~qWr&<%D*#X6MZJWQ5iBB^pOf&#e znZYg&{{WrdBNrZAm(p0IlKTyP@x~&#Lc9RwQj+h)Tf6Yis!I&VUcG;4SjBhhEX3!T znQXufpx7{ze&Jh1l_g33?q{d(vEBjT-%4aG$+Tum2Mz54b<=Grw#FH5{{Tv!v-@Dw zk^|~{etV!k9rRokX;j&osOV@L^N7pkx1z}XigAL0N2poK@1v3d-;NttXR>0OTGEv; zuEv0lwE7s(toTmOod7J)K+pR*sp}KsOHw6CERac{DFTD1PGdnJCK5{hxs3k+;+}r7 zCN8!KhyXA=y=k{-P_kn0RH7yY6sekwEAoOi`#NTWl|T~NdX53DVxd|&hc1L7USdXN z2PcS9x8kW{Z-}y8gZ`tr_!ugSn$VQ7^5f5+C{D#V26V!ZSOROex+ds0TfHGjLR14O z=*_GBq8qEyY@{H#HK5u4%>w0mAVAErvzR7;>DYDY5u?$mn3Uyk`Ne`hqig04)B$BX_pj|+FqVrQi@S2R2 zEk%6-d2g&QqIAjg6r|Rg7x{BYUbo*f)Lp7e8ftm!Ve`?Ij$kCrOF1<^l!Ed7oTHdW z41_Y)T}N@Wdx-HaT*U28@W(lll0glj{i8j^6A>_}IZB>^wRk;4!JCTk3s0;H0BzrK zag?49fOWLohlw`st>o2w_ZWEab~wRP=p7@2^->vN2dOahEiO zB!q{|Pdhi>krp!auqCH3Q?q!8)1d3OFlzL$OP++xA&R&7d3o~~-aqtSzgV2gDnO`6 z(>E&WHhyAx?sRdZ`Z2%FsIJhUUZF2S2X4C5KW2?S?z5;R$R2vMWgd)j$V(8-s(*-m zzj3Mx62x|ThT1NA?5gG>zfy({lH6s_tq#;m{Y7FTd=3C zQ8M4w9R*wPMCjI?iLsQqveV*htyiFL&hSQFFqP`Zs}7PiI=J88`J`c2zoYAFQ8I8!Ul&}(Oh{6*OVRh`=}rcoTZ<wU#BGZd7hw!~MM zv31eqmUj1kaS)`Jej^gx9X?P>=D*c5GiWyek1oAh1Fs4A#Kn-spZABmkW0!!TTVVd zcmY8efjRQ1n(BWygEo7qDoZ6fjal`tF`QyGl-d-U0HpvGtx2blF{@p-SM>6eoadX) z?a4h|$L=7~E?MxYK~`YImn}ijx$=)L^pq&(8o{g5_EOSIP;;^0%7Oq~N}95wq1^0| z$m92lgrT) zZJ<<(jhMNAasAnC+(l`U2M^F_ zVnH*ban>V6q-bb1F+{0rvZYi#;5_L8$Ro3D2bP!Mx6TLJ?8jE}iiBRbSc@>I*Kfy# z`{Kk7+d~!QAwr?sq)@i4$Fc^;m+Kkwo9(X}O1y5h0jN`M-#Dn7GZ07xxrVvYf#^gE znPQ@k9~kp|o(}dqe131)cJ!3syPey-0k%tEd@t9HHR2qm$siIcTA!Rk)#R2B?3%d! zK77X?FCC7~Jmn}RU`b;~sDG>xy6>kcO(^9m;q|WvgTx5Lwx?hcT)U{f8&k!0fOBo^ zk`R&r(OaH<(VVx9Rhri&-eeFd{zbo3TejlqpQe?gY9Sv9+ElPJB!*2C56|rf*B~(#z-m10}5 zQ)r9S@dpTq#QTT27pzes4t zmvKtS%D~W*v>{$I2rPe0M;3giZl~Le)VPW&w1+Lf!XZ-icz_sos&P)Kv}cYNHY1PG zI=o6IM{=jMSC7vIj7+)Y>m4mzMR$+S4@(3QZaG+M&(bNaPgsl?{P3+3V$_>c4!v{{ z53Y#g^TN}_{=O%ZYAMp2p1egE_cS?5!DU{=kmpLowu{yK0^z9LI*15Net6U8Q}7cC zdb@KS*=>1f4Np42w9Jo8&x9=>6|~yQNqUlXj^|!aR{h|7dJGyqF?>yO{{V-)PMM@Q z1*t~(#R*7goeJU&#MoiGT#$Ae{%`k&W9(%nm4!R1)P0?{?+xK0NC%~2d0xagdIFNA zT2M%%v2B}Ae=+@7^kdKb&l@)9$FId zX2P*oiDy}>UW7%V_|9!abY}>uF-};TMTs)Of^_;E@Mq&A?5s%G<1G~rq6rh+S4 zy%yXgI%ff^4CL>l;=e`Y7#&B5_&^E3iNGbmO+(hn4&$DW*+JQYfVYpO2$4**G)J^nTGur1p6T_ z1sg&~2UtC2!s<%19YC!=ID)>9rlEcu2Q!9=22oD z!Am*oNh<`vT~!uf@*wPfb|2r^li^cu?1yP7AeNZh+4$=Vvw;k78;)}yhl56 z3pLQHga$3|cu>Xujh#tcq~%Z!w4{4#ALFG))o9VIilP(?mUkLI6oVhs1pz@yw!r;j zaBeaDHJJ&`E@7E0zGNtz$s&a+b|8ZEB9GKW_s$)&+PpIcMYn}%IvtC2{n)b`_`c?t z7OB!1D<$Tn00huBR?gH07pxZ4O=IFh!iXqu5>K9;HjJ-MnRW-=Hc6Igf=#J!OtNQe z&Q4RZRlNz#%Z3^y)@TJ3H#@+aUEU{4^-5)hQ?}vG#1_-<0B*G|RNqxFkU{XPk+ac{ zA04ARHKb@(D>>oW{P>Skdre7jk{jOqc7hgLxl9!2M+0N$43~VsQZtI^qBe|AT-~_M zC9|g~VEy5ZHnb6$CBY8bRu!j6Lz)ipHHB>9`v_V?7OTr`R ze0S-OK3JYj-21WS4cV+^fC9gjk1p#0Jt3~bh5#7#d_EVQcTBV8w|*hAb*0PY0JTRjGV-_1W*pLEPfqV2vemZDlB5mwgxkXqfTKoZ#=o>_w!63h zLW|S$?F&=vlJ`I-nEBtz@prN6_<8=>^|sxZJJf0XMS1B^BPgo0{P{zjt8c|p z=*U@m9Em>?1qTll?u$841du`Lq&Hb@h(H7~fT5*&i0Sdm$~pODD=Ob-ODR%PUtIMg zgZWscY`l{-ULOr81sHj0`N@Y_Q*7&3{{Uly{y^{Fq*;+;k`?{A5>P)=Au0HP9lDr* z;==i}TYZ{aGJ?x{;ePPBWss%|WoYi+ajRZI4s=Nz2!#@O%BQ0c-^68nZ6`cpb1=Hp zJSaJ|1xAg}+5=ngbi|)&i3DXD9?`DiX@x4$ARPnH9`K!bpt6ane+yK`GUaJGYcu}< zwMuHW7Zq(xT(Di}_LQ;U@4M8ZNDdj#U)}{xl&wai@u8azUm&;XP@^6G@UXdFm#%BXrix30xry(KzFgpR z1crSCT$oa-(T<`6-}hV91*uex+eYdmOFCgID!;I@r7g2jHShVfS+Gq6Xa~&o=>;uI z3UHwNJPw&alA-`C2-J6ms}3Vpa+QRr141ZI53&8U6^w%j zUV>c8he>A}lgwv+PMfg5jXUAR_<@ocKtK#cYJUVr4ppA<3mysYHK0P1n z65DY2n(P1|1MYxw@c#gczR1-e@6gA!9%+94#Y%aS!2t_w`_cPxN7k@<=fo)~0W8TG zIu_f@o{%#U;Llizo~6QoeVm?;zjNPmY+-C2>ZHDG%b`=y9RmZ-fWD-jkZ8y?XqXnT z4}~-?&k){rNdZ};kY*YlcIl^RlK%jj06}6xhTDF5$K>F79;B{X))vm>y=dW%p6Iez zz3m``=Jtrxd_LZB<-ZHdnJ8x-EmB70e25PVH%*yjq^WewSRD_;UEt;;zCBnDpaADl z{KFvYebA&bi7bYrQ?TdDcrAx5B4R>CK{Of{9hfV(v}}u&<00TvN9_|jKwe10swKQoQRhT;m=nrt1$}!&vt>bv83-< zwayuWOAW$?fNFFN8U%?cnJ+OJa}Bl-AMuvl*gkaoQe1$5tjY)V3OB!`IATmUXH3G7 zfH`Vb2I5>sEX6raW2b*H3YWK}v@UeCD1cR~?bG*&yrjK}EihutGE-$&sY@v;3JM?M zJ*O1~!QtXq{}MxS#uETOZL(;OgE2F>cZUS2P%?v zeFv02S#AeUtt6!TRQ*4X)+%-k^3;UP005FTXcvzxW?*Ffp-#byGbxaBWi>U2nb+DC zAxFX$w_ZeCA~nRhg~CVxQ1pTqOo@`p!j5Dbr9}9LPTwYrHYp6}D`pk%%mK6GDSo|j zN{(U!BpTHM&JUkffT_T;XCNf8CsK9i%gPE|NKEe$bNX26ND(v?OesUDMEfI3 zZ_%0x0`EUUvYnDiBtEPIeB$;Nwysxz8mGb^-0cMI7S*~^H5DeW0B=iCRMce*O%#6c zy?Q-0-_|7hvZZ+D?!amJ=L>iqU#?WaG~^9HX#5KA4fYge9x8$D9*{2CGF-{eEkD}{ za@6wIec+%%z=m}Gk}`+mNJPYHRhDul091nLQyPFst8{O1h8xQjq?Cjuo8WY>$-eO% z`?#rZGuYM_vVOd+$v&us67^xQ9K${)y^>@QOS)gNY8Ux8NDX#fC<#$&li)l@CeobA zN}RkrQF6h2+CouU7D!Va$N-v9)~7-%O#%706||C6pjpEWyL8@~!))sUKnw#?jksvE ztJNuB^)R%xkYPJC)y^eAfQJpGUZynbJmR2I$1op_7woD|dL&k)v`ak$GL*nLZ*({{ zg5ql)YgD3;$2L`c;fovEzozvnnod(O4xv^^J}rI4v<3E!2{>X}=4NIfJvoK1OMZ@* zYeczeAvshO6hS%{JB_G%JQ!A-XWo)l5}={}y>$HYgda#21tM&<%l1|RRD_zS?8Dyw z0JLAWU8#_SAQJMxuRZ#4#bJg-q>_U%I*JlB@`K+-j>j}2P?omZoF2a|;X4}P1pp@@ zWY@%fS~mO|v=*O-t*riYK?7_$8%l{X}ig?Ex@ya}_Cd%v=|*QxV?ax>8&MS@y3G za($T+B`IN<6(#-pLIrG5hKZb&ARMJkcpR8_Hgc4`D4n5pxp2vwF!-pV;BQLCj+=&DwCD&Q zK4Ec$7LP~r)ESv7*l2siE5H)vdjL>u8KI?j*g^v&_Z?srqY#JH$%^a_T-QohElDYA z0y-X>RtZSClPR41e>8~hOW{7L)kRglkfC{EKM@(tKNvtg8b9vIL1i@HzK6G1se9fb zX(1wqbF3*?lP+S3cdv!D2dr4c7Db^Tg2!&X{;@fNE!@|NK+0=cn6Z4>lC%)c;)jmW zo5;ikDu2}MpaEv*v^vPeQphBR093RsRsmY9zN%VOgH)Cv>fT?Jh?QxbIV#Ic#i_e) z#lBUD@7z#|GD$*|0q4AG(rhx5E?Uv6JM?M}@g?k+g}ol6p!(u-l@>_wfSNHi+_+}g z9pSGI+|m-iRuV}~1DE^;EzGf{dyuVMerwDGw%+KJyt2ZIlkF*qB%WfhQ5;QpCP;1n z07xI3K#R8VGkuzD=U>AM_UuN2qN&QL-;SSnC1b~O07#%LTDtUje=IL!))0pP4;ViF z<_M<6l$CCE5TSMASDBd!C53n(>F2aMT5aKMP~@60s1WoblWq$mXV4g0#P=9kIqH|E z9%2d1xn?CwQ6OmCL{|Gy2}+52xq^*Fgsz`b5)vu-@q@UAUR0K@VcEJx3!3xHIy;yn zcpxl?A+&xV_Fxu_Tk7oL6b^Og?+SN*E-6vWvr-Fl!;h$j>s}2r6O&MvW4V1EGptvG zXGv02r3EC?pPG-x))!@3Z2U}#i4EaU8pOACt`x37QUgo^y+Hf){!p(w z=3-WfWGL3Uu&+Oq1}EfgoL#Ay%TcIu409`YW`VM?7!s0BqLlf^Yqt`IOAYJC<3+$) z$2LF^0vXm=0nY=xXCL;&&;H`Sd}ub(RXSN%aFYE2+8saSCGb7s6-W*qzkO`7R+lWq zYUFTZFZ7dgmq2W;NliBE%xoB23S>c2mEk48a0%t23+D$*w5T$<18RN7+``Rj$!kCe^cqXWj32noDPilP*-MB~kWVE+AeWxx|`ks~01^`i_ z^^HnVtAGVN?+2j$ec2^UY~T7qOU@FtGLL32xA91>GewWr?h^H+ zkE7i^Ydgk+dmsNBTJ#pol#Kvz>n*u^X9OHxXSas!SJIz-M=(>z}oP|VFS zDg^2&#)IC_D#?rIAtgCnyC~F(Y&Qp%hwHA@{h&n-Q^h;Ls|?gAslX>@(4EQc7fB7D z(h?Sw%vA{RkblThr}hy%tI|}`TzHOw_T~fP+!lqTI2mBRkl_VQw^JXb;RK~jRN%9aU*7)!NJYk1Ebmwq zD0o4k8jhWzS{g1Wx+P4OMo?7V5@-isexdr+>E4HrsfHc5I{F`K&Ol8M5Znhyi@5NFbpJQb}fgxFQ$< zyDv$TR+pkPkO>vxl1n(y!|eHU0Llx7*wk=OFAMj@$fc@U)iEe$@FZ`*Z2;>G7E8-1 z0GIi6fFr){l!+jKb8h=}===|KD&cG+EoDkrPIoQ=`Su&0V&*Ho6kq#+DLZx8_Jx() zipWg0I`_+|`@~RVy)dzpR1(Eb5byj&0I)kZ&)`Q` z)bOqRn?OxQn^()fF>+Ai`^O1N0==WT38;RMcL`gRxkW{QIz0>Y8vUZ4B)UYDnT!>{ zBbcLe-|6s@l9v=32m8aoXhsb6&+8@-8=8MGrF!AdRG_(ej!)A5-y*bj(z?S!C(O!n zvmQ)-xzv=oQiXNRw@~nbMs_AM6PYMnwF6K=3`f(hon7FBn`NS4N>e~8YR%R62Z78V zO}<)z%arQmL=vxbBvV#q*bYhV-+~?pP{eq;YBI}p49Wmy+v~H!mG_4y&df-6a3&o` z@!lQrHO85#D@vMR6g(b!(vX96V(F5m`iZ&b0(>d}v+zZF##z|WFGOC9#HE#}=2p3n zKfmV#M8sqQ6p-^Nrk?IZOLs~MPGB1_s2`Mp*1O>&RMcwQMfD5@MkSb;pe;nD>UfO| z-xAa{%v;4Nmxw`HAz-&F}@XJz4<~tgW8%Q;W?W;mbR=+OLB6c7-{3%s*e~ORWSYr=TuaqT3 zErHNK%tGET#R&j2DNfYa$`UblGnkyNmk!U6Rqe5&yM zm?%E3{{Y9<6pj#3DIpG0Xs^FWbGtC14(b4!txK_QpT-+KAl<4gpa>$M#e6M?6*^H|&=Q?GsBPy68*rE^mX$3|rZ2~BYu*B4 ztRE@!gn+GUspcn@Gu4zNRW9F++8D2EETtrs>=-t+W`_VxiuaQ;&LxwPNTY2}yenR} z`y8tAAMyS8?GgU~T7#NeK?HBGJvn%{aQZ(~-x|mjp#4lY=>!Y7dcuMnzGfv`0l@O+ zo^chn;sH6-lAx`){o%e%(3wf+{J%Gdt+%oY3uylUouT0ntrlRV0FjhXR*-(|xx#&u z;^b&z1tT-kyu@P?dXH^^Is?YXyg)Rj&RfPC;{!$2EGsY`A-q|z;vlqw#FNj%$^uK6 zbC;vk3e?4&HD1#S(Ul5r+R{5k;o$*f1{>=FE=y2K!@r-(JH!*cVQjfv(~j`;fc;W^ zeqmPPo_=o+Hd#5+6nD^Z8MTUMsF2 zu_*9aT#ydj!wPJvLQ<5`AW^?Q(VSv?Vv3xF6opi^HTh}y@u$)#?bB%WfRHuRk)#uq zV9J!U%fzWdm z30+J4-Z>LvwZvJ(YKK!N^R!o)HYH)&At{3lI%3Gx_1ZiZgUnl+KR(e`YRS|O+AbyH z?EygPO2BJPp0ud?9b#)h0;9}DMNf8meFQ3~6Kk3%JD;wf8X z<$S*lqdPUGs+*M*%)fAo)|-w)7fyE26TDBFE8As+p+!n>jA6=8wQ;nuecn=Kf`6wf z06xSI^&Q|fgB?jAt#(AD8dW|ZIvzdRL}F39SG|OFg^~PiGZmf083TN?%g9M~~6^KSMX@{U4+B0s22j==}hGkJ0)+Kp&&@evi-x z==~p~^a1)mN9g?kevi@Uk0OKf$KYf1eubg=SWK#wuk*rcI8M()Z z58gBx^AaVK`bhKb&ajP#r83`f&Vcj$!E4^wz>L*9bIX2c@U86Nbw5ugHwyLY?-zWBqRjv+OGG_#Z4-hUCDcFB8;;@oP3P=7?rh)VlU5cl3uNXRFltbb@2msJKs<(i7~rX`v`)KJUCd zSmo&9fDrh9QOo$bCd4)#_$gzPvCzaeU<+5VkJBtmEX4ghy2n=@9c+wmFRHj?pj46e zftHK8CBR-^&xA}aBGnrE{{U#UWV@JxbrAmm$8S~%&QGvA9muEDp1i{)isLlbH$Oyv&;74U$NvBTXQ^!2oC8Q3YPON70PzNG=3a@IDX8oAh3m@7 zk_~e-cpsDeuTRC;b>lp+GzW+qI(g*jQL&Dut7xd9-aPo~acR2&uND2EBJ4ytbM=GM ztjA(RL6Fz=9_&8e?R&=G!Tpy$jRnE10MJ#sw=@!w1QLls%s}No)-d6No0bUr*0YfSRxUaf8 zlZvJ-$Er$0RKLav&AH`AG>H~lZL8UkE+7>3v zD$%Gm)W>p?335w;N@*0ca;E^7a`n;|?UzEbb_~Zf>I8rkJ>8Eo}dXx zBV9FqeekSHt1b<-B)DZH*Qw~+L3^_AC0-z*(2r;hf#_SjF5JG7r%R;7niego>lz*1 zie%4A1pv09cO8o{?GtJ_XpNalKw>k>KcwoB&zw@W*gaFsN3d#AbpZ5^6?v^Bq^mTt z$Au*CwMP%96^l~u7BxB2S&rlLlNw7aH4?*t9B$5Z|-0KBXVEt8o3`J|Zlwm+am-6> z!KAUsM&ViyF{%5(dnMnML#M~QIowx>E`^ZhfbsE;&K@aT{JG;lyR0gfGOaW<3)qjL z@2n5K&>K_bt9_$DzvL=W4v@4d!;jJ-9`^}WWgv{8Wg~F^05KW)d~=VX!+bucHM*vWR6pDcjsdE_LZkUlQ)GS@Y(@4}XUMcmUB~(zL;fKyL z>us128(w0@5}s2z0sjC{uT8{scs!SfD8tRe<;J(GZKR}lO9RgEChD>*tYuSys(E<* zidC9f%dIlMNVkA4$&#e5a?~p1JGt4T>bUdVeD5wej}+ed6_p4%jSFeizMq{S751-;HBU#K?BUR{5y2 zr`9CArc3fq^BiFeWEh41qRI!6&)yFrXRnY#$N_;hrh`trLJgw^EntaBC)+NS>i z&0xFk6GgP*=_4uzQcto5>fyO(rtqK63rm-G@lZ82CxU58#l+Je{1Oz5tjDEk_Ax?#qv=U`fE24v@2kOI`H&MuG1dP7 zHtzy&+-El<1m+s3@zvu_iGF?0DKeeGEamoXyNJ7CzS5~#Lz-&}S52Ktmo$<}lm=HN zhWc};hHN!u0zja2xjp{SbwP6#dOI@`m4$(pq#ulAxQEd6Os!4C zVmJN_U6#~l5=5D+0Hvq_rfr*NIx#0`*=$qgt1F~sW^uUEzUa<=jG5^2){>Q#hV`mH z{7be_dIki;;j;-t+0w2J8|mHyVmvXMDy5WwJb(kIJjZs6zG|f@4^p2JhK;mXLu|&< zW+)&m1JT%?oq39Ky&cM!votwT4DLmCYQml&^lYX?$z+uy+5kAO=P==faRShgnW-T` zvjan24^T#gb?XF$=(~7MT)RM(FnGdUCv|XB)D2r$ZnWY>dXnxGH$R_^6)^?KX4+)V zB8kv>2s4jtB~m~@s<_#{@TB&7r|ACPQi+ossUUchv+@SfUgyQq=1iEdYRsRvdKg(+ z*JhNZhfZ&8ALR5TKQ0zl;H0OA8 zIHV+k!CQXf5q%?FGbWU-T5~AVE}HKJpP+QR{Uiyg1udmgc8P9DDw?3NprQUD9^}H4 zWTX`^C5i3CJ6!j`MFD5ra|%M!HKZjK%*-nM#U!R`*t;dD+P_#rzp;rEvaI-2z&6K| z4|rnmSahibq>l==^M||9qO#6f2z76)8n#}UlF3%QYXB_hT9%}mRJZLHEmtu?Bq$dH z_l8dIn+u~c)EK>Ewfexz50$z%XcmdZL?Ew0x6iy-x7w2^07We87%X`qYOC8aY0*-oUjHm_csb&7Y2zxc7QQ3VUuFB(gY1CH@Od ztQen)0+W#eyKnr(X}Pkfu&Ad`g{j$`?@y#U*zXjCg23%aTe`5}SuRPf zdI%%`01T-?RVqoSq&OlA?%V4fAhBm2Tla)RbWc)(7NVpmfK^^-TTbxLXt7OM23lWZ zu>u@0t|?K-RP@D%JNx zAEg_sI&&3xlFVDk1LVWq3jU2RGMVKo9vrQw%dc;f##4?}Y0lMf%a+VYR>U12=zef6 z@s^;@ToTU)uhM;b0YNg>A2`^x19W2gZL7dcVRfhkl&X(FOmtq7D!WR{AZSB*N2dU& zXlwC-mH{~#CS_0n>T3?uF>rP;BggCi01C4^8C51|kmD}Y7uZvn_gsJF9fWH3#n?+0%uYO?^D623?N=*RU^UfJ?)rAIL zQgotWN_GBbFJB3v<^o!;8$_AD4-})e>4_$vHrXy)hYk^r(eoM?|7{N^n>WdQxr^j-QPRmtUhv-ndIq@OX0< za2l*O8L3by@f*#S>mU&Cn7azG;8XM96tMm1f2j3r3C)xwio6`6O;>%@>Oi0@8TbAV z(|y6*_u{46SsH`pa!k;h85vSW?5=DHQo6TZUFnCa@3ZWlrqVd52T(He2B+VOCgM{@aFuQA=O z?p>l#Q-YvIQRnbIOeJ9X-n=eiwqgfbe(?VQhA(ua1O^Uh-0$v-mq}vnxkz$INy}Ey z^x`UB_iM^piUZP(UW7wPl$0pBb#WDMS?&m@+oxD~q9u;tRK^)jki{zQ$dN4Z2W-;) zT(9=o;a2jzkF4=I2jSSn!V|G!^r+WI)93l~iT?oXX*{dn6zAV)2|g^e*S9_3H~sF8 zpZ!W#SwKBtid@dfm!#%AfK|v+5howE-#Y=|F)#%F5 z=P7iQgo6Citjt4f1zC>qq~SZb3qDD%W*`u-Yf<{2cMM-`ItlJ|uhr)Y%t<3D+z*k8 zX}wlf8idhrx7f*hR006D4Ow&sv_*KwpJIR=B=55^cL+)JfLeV}1P z!di?A9lhU3sWCUOiKtowg#eb{pU0#X!!|^vAz-V^Xe-!W4Zl#GZ3_>BqgxoY&SA@=r} zn7W8zKw=xF)0IVlAZT`l(WUG6o=F-?xkYf8poToJ4-V#&ptQ>ksVA>rlP zTh*l}R(E#&wv9s$Vfl&!I)YL?p`m{I#Y>=%a9@)cqH0g9NY`A$O-A(5x7$c>!|GJj z8u)b4i04>8YPe+}g(ZUxUEjaH7cUG~E?QRP0$!R^X81wq2jbj4C?KS)sOQCrAp>a%5nD&IX)yiKN`5iuv@4fA^n;s3qS|)%mnbV#H;@&>a#+{{XZGwPw50 zpJ=%>(VTJKE!eI=pA!OhEF465ip+(}ARiW^q2w4_!xz-RvV|;^mJWXK8MNK18Zid7 zg{#KtR;4T}nDY**y+UZ&xQOK5N&QV-h=rPDOHowR1WT3zL+2+_-S&>~ZTN|KrD$_` z6TpWXMX&&%i9yOpjJoZ^lNT`NIY=(uN6+6AXXz~t-)lQ=@6)7N!V(5mW+1GZBt}rOhhennE@Cb*fV3%q5t)067o_m3CiVtt>z%Uf-NWDfpW(BnBgMyhmfU z%bLU;K+}HxN8Se7Y(y0Xak1q801pf;S#Ol9Rwv%i^Bl!%Rq~l+lYAZB{>>jgMo#Ms5qa{{0$PJ$Uzc_MX|UP1{KWcg~}Exh1HH?qtAoTVTY zorbz^(iVLUU5l5W);dG^9)NvfbWz*J+N5}tD#4y7v)>As$$X)SB-P7OpI9M{tlqFB zCY(Z?%Z6isl3#G`0T?WIQdV;jL;}Qqb5?>^J}wWDV5DqF)&X31yu^4^k_M0UFnaU5 zg3{oJ18>U30cqBhsU(Vx&pn`2+iC>}4a5xp0G~v$mSWq2bcI`8?1Ee?FeQs|`K&8O z8s*>8)N&(QpDyql6Wl(qXQpA!`%Vvv3ZSK2WrVZk&9Q zoS{A>cv$I3V#0UoCZ7`}T4glz206L#O`cFnn3e8LTd)+T#w4_QK0zgDQO&AIqj%@D zFeQ7~R0vXA&we1f*dQ5=L0F@Qu2mKbTam92wdoTxvKFKyKTvvoVTzLQ315pNhu4OK zH+`|Cg%Cnh(6e(Hy}^yvj|!@iSg-)yWk5@84N=-E(wdvXyprI;cxv6kLZGfR0 zH(s$`*C9DsX+1dupR^_2)`^m*j@d(o~l4xjmw!O<%W2A^FfX zVP@X7F+!L>$& zp<+Tch=K(eX%^;6JL+SZGPRAO6=qB5If!O2qf=PDFjb-j%6QThQFBhZ7>3X}^Dtcq zr^+cVR-4uW3^D;7;C-g(6=ic(s08moj0KC>L-hD`bt&UeMoj-D#67 zB@EgV`j1jN>RWe=r)%7MD#0#Va?40cbjrg|$7cIDYs&}AH6hO%H&{F+4R?>yBo|Vj zZ8q&1d}b%*b&g|Wq>?00bF}$q$&pB>Vl6g<^MKI51akls%c+Iv7;CoM@xcc;P(&QF(E^!VLy)GAPjRKBd* z$5Rv6&zOyIp%*WG-iJ}tLT#Yv2gwJ3eIxa*_s`)r0xB#K%`p{bkrE7M*6x zn1EG~5__|^a5~4ySjN({Odx`hQC*A+!V=1-2Q5QGzd;W4cZ_|XefmMe)}IW-N7OtkJlXi~OM zWgMkI3TyU-Y&plb(09N68qWY37MXK{)u_PxAk>#SY2+QCjm_vT+bDpvjG-gha!(}j zr#~pdaOb3JY?3`qqGCui511Z=DZv{t20oO)exEJjXicT2B|rr@0Zp<}QYzY#LGM-^ zer?T;o*w&XcTM7{GJqtEp@7_U5Y2~uBc)7*B$Kj_%0F0fEt=DrD*{@WFh0>IgA>d2 zR*>qJtkm{JL-gJGk1pTa(c%10X(*UZS_UCaya!eZ3<^_Gs3o1WBd+mw+j)AH@ah~?{1j8HwPh7R+SYy8lRW%p=havBm*xZyh})LA))gT!L|~X zD=Kr(zp#N*Ei02b8B6CNb{u>m=8Ms~%Al2K!_JUm?UXxOgXKvCuVZ_#ukrvrbWDpyl}(%a0$G z!@Q&q!kA|}g#d*QX(#Ee4$NstV71)7r251U2|gi5JxqCM!gI+B4wa{8EJs>7hYOPK z3kTLQ48%QOayM{ezsKS0EOPVm-7U$r6;M8p+6vh-?vtfRg11$gT$L0lG&KrmK7S9R z)($54O+o{mG}QZ}S@^oo{MZF%mZ07qyg|8ErEtUJ5lgzKEW0<#F37mnHI9!T(0jX3bt>(1EP z!oBH=(uxojyFlCf9)OQw)JyVXKE1J7nBXFW(mb!o{F%mN_Vs)|9rh`RF#%aC@Y6xS z+(NaY+?COj+eo&`sxGQm6$P9#%tqCVV&+P?MVw$C88k%MhKFX%hYexISjnQo^d;mQj zH}U26<>%5H71c3$k(BWvcQIexks4-s8X;|M*YY}{M-p)`Nm~13?rq_W=z$@1D zQcyx_Mvft-{JRvd5zy<@z?Ili%%Pih=gu(las4#n&#iZi<-Ib3dycT7Zn)AER0^{V zwmgW|t@iXK(h;tPGyBf&Sk09{RoPTw$c+4LXdGY$6H;`Ed?D*Q!B(o}*;Q;=wR zA4r7 zgX!_&AXVH!awtVSwTp7g4$-zU)JiQ~w}N&XK@6%n+i0s{%CJEWc7oPBuWdR*1tn(y>@%DFTn>jMnpTR~k! zKVw`p=~|G$fbGw2v64$sZ{4 zeV{6UH9m0@_PlIYRqQPi0Z)X{`$KX-T&#*LoUN|iqY1(|kJJ>UM3fpN_29<0V7G&% zbdRI_Uq8xacwdv@yl#SAcu_ge_=4SsKb*#C>5Bla(K!JqIUg=$jKpYCdpHD;3pbeD ztqM>M0|P?Q0_`l4L8}n$sQmiJr~GhhFZ4%)CxXA~CaI8egcIRr6$g4SAN;gv(Jx!j z$xnsCccZX`wOJ=BW?-UFHXj4@XnMM@8FK-aRkJJV9vmv-$9b89#$EJo3{tpo_$7IR zgpw1zB0JXMRIsH<8Hf%6Byja(vw%4wDPWvam=K^siDuc~-Nv0_t?Z=N>}ft)89=GP zVvu$6{G-Dcqbuz*WMwsCd?uuIJvjP6%ku>$(U=8MiO9wwt5 z7;-)$9Np4ezm%lRDV97m>0RmahC3{bqN7yQZ}yDd{le8ZF~_1tf&C zv%{2ODt;24vb7;v7vMI-xDOC|K)cs3)Xk|vPxlh+^kVzdSdzzzC#6cuPzHja9-D!~VFBR%*rhue)|&@J8Xa%CsQNCCtALyNF`6l>Y!utf?8B zUB^+u;wwuDw|#NNl6pv_z1e%RJM1FBd8*t!Npyw+t286Xc4Y&NETt7WXNO493%b<>LRZUvK zkwrI%6HKF5*mQs3`T>^76OwbwU$gC`=tm&4zn_!=oo)5yKveO;;u%HoP!*hV6gDCf zuH023T-?AN)Ig<6ikkB5#wTHp-4}Y&#YudkEn4rnXb!dHBDMJlEqC8SVjTn*8|oo` z_rbzp2U3dHUv}-N?GOGDV-VxxHDNNs{hdzdheq$|q8O z{j~Q%3oud=qp|o6znHAVl`s4{7cmOcA{jX~Zo-N`3i_uu)6`!r-GNmf-k6>@50^@jJCZE&Lb8TKCYv%>x@v--7j znIt>!8EwmpRUt}9ONTD|o?aY*zu@pC8Hpu^ZPMC`*(x5|Zrt?9rWJ+x2#m zq6tn_0!elwdi3Ho>=|~;@yv9sVS-h=ZaxrpH3kd07wW;A?K?4}2#Xe8iUcJZla-*9 z`}Ia)OY2H)9HS0}kU;@ko_c=p{)|@axk3=?ETSsWFqjg6eWcajU%?d(;FT#dl%N`q zsqa!CW;wsiq_P;Ol%xjsgNH3vJJVob(igku5aqlkvHH=80#q30G!4+j{5@>VDFlF2 z)f+;!<0&bdm@|`5+`*vWiz-$LT0t7uav@&bhtQH%gn~))5Khr-P)=O{taoCwW(3rA z96)8O!re6>7NFGe)Iw#a5-oEO0!ore@ii%{>^O~*c}`LY4WWJF&5r4kW&Z$e2?-jr zYVK?2q$>shO2sIdEK437yKH^&1%n9!yyZ?o%meAtFJ6~Sus{H$ko3^^;J^i_1<3LRBF^ zuq^qv{h?0ixK(Hjr^t~-6TfI@zAnjg_moQLT#aKxTQ_1#MQa{D^ zABHX5IAVOV2&jF<0D}m&B2sHk4yE{psdtkgD`TJ$I10A4S|zNqLuxYB<2_DgTGKEL zs-uC(H9aFwy{}W0tWllI(YpMgWx{36S!9gN4splt4!|#IwSu9X)wJh>99k_1V$9$^ zu?`@@>RL$)Ab~DQb$2OnGORnQB_dsok|Zygc33 z^cg{VgY)STASPj~2Dx&IPwFmCl>MOn&37VRUF+_Nk$aMr6q2Nh5;o};t}8lbg*y+g z?-zz0d98lD6qZ9(_b^)9WF!R+<_F)Gw7Do!m8cZ0DZEj@_~cHOLXB#`>h5)I1t|*B zh9Nwx0I&yYmW14Ad>MI=hBTo&9w6O<+cP;7ZgoGw`$Fy@v5=)MjB8!b=jC9ckSAYi zRK%c?mu$)U!-w=~{{Sz9D_L%PM8c(dwoxoN*I(KiKkQ3S`6t~R@-L=^Vz}Bu65cQl zVae~TCtg)3XVu|_;AP?aQ{#Q0gCNBTFIikIMHd$O+i1WzgXN8ZXZfQ zT9ueAB}8V-3!b`B_37mVafhTd%K=GBoR>T|+8eJgN0OG=$Rt;#J8ICKii#I3%SwDe zQ=R??>(T@N0ICY~*_e#gqt(5@ZSeDocWuA=+dv6ynx2iY#ZhP?*jTN$53W~g55@TE64SDKfd>doPNGc`E z<>RDvZoSO4<)acG_J-g4H6VJ>d}>aB?a3VbqP{)pYm3HAq5vck^zXyO=$e%~H3Jef zEw=^$UifS!B}h_=&WItypSHE)JGky!LJ-O!vcFPzZHz1L6fY{;w6DSdPEnL?-%4~H z;a>c=Ei-&u7bI>qgQ&e8gt2X62{HjWlnT^M0niR$oe_pcAWG!`Uoj0+spN%3vetzQv=4ov`}$=TKz!GNh4MjXy!&FOxan1t7uQg z7OmIds#IOM-(Vo78NHr7RqlEwRh< ztYcV)eX7g~gOrWViR7Mx;TOFh`bwWS!h|V#2_-;ya*bS{3mpKdFF_TWW|{a&R#hj} zl`l4>Rd(Ef0O-vQw#;yoDq?FbK; z>8Rt+coIywZrQU6lCbIrPJ$J$tT>}IlPr=5AnF5sqe#3aB|bEk8b1DU1iV&|8icWb zq)mz|;4950Vv#XGIiMQ2*X`u+)qhHwli*K;ZeLBILk!($n>|w)I3$FPxdFD_qe{GI z9Euw;Z_VM)K(~kSAs!W}$5K^YCTx;8`2)K%5%~HW9Ff5axE`AX- z+cCTs>ZeNylz{0|RrfFO0mi#%WIL0JQ8|iM>Q=zj$J_DX%-flB5S+${4^jGaVSse%=9$UF5MW3D+MZ& z`D>#%@5q6Yu7{}I*cv}mx7G{XQb-C1T?bBJJWFD|(6wbg0t1Aak|N~GnJdzq9mFc% zlhY+>Sg9{o(~L?Dk@zT@(Z z1mxbbmoAG0Q~|jDei3&H5$AeUmnv>qjFLZ5pb>V}=>kH978Is59cu{}mJt4;YP>GW zAOXK5{&j{sqtSv;3UY*(;yN@h-?xg)z|Ki5@2Bwr?byTB z&I2=&DBE>EFX8~-zL1tCp(Q4#ZG5}y6U&r^hx|h;)JyfOHg`3z(EXuy>crC~g=Gmz z28rZz0kM`ZD+xk{3pv)iKGcuce&ABdS127BPVUcNyc$hH;mov!6t-PhyO_OdyNX>* zispbJ7Cex8sA9R<3m?kKP$28FI7Hng0MdfWP+arMr^vMGbpDNL@Gd z#vwt5*-O9YoK-Val9d9gkXZ8tCV?*ON#I4Fht z^6~zeOi3q*F?M1E%qba2C5vn43wXxRGMTIHUwBmXUx}tqw38_ZA`Mod;p{#U8+5U; z;wwa~uF9ZtkToBg4d7lHuvwJrO=+nbZfUXD^$~XSw33CAoYXnGcHyHOxN(YPOQpl2i_d zapmuY>zfOij-;fF#gYveKBgyk(I3C#)isDO*Jg`0dq1l+9Y1)thi-!@1qE4~NV9IT zxXep7k)(*V*Q*3O#3D&C`oTOD$4cYR%ZSnL}3*d5sD^l=NLia28lDpEp}qny=MdY-y=U?9q+blwWi zvzCg=lMCaD)fE`2iLD_LoF5TyBg7X)kQH*4)04lt0N)ct$*GpqPNEn=g|NE}#j`4^ zQTuHdaTt`8e{qR40DR!NSplCx3iy^*d9soVnw3*eJtAxpqW;vhoU-1V)%w8sSGwFc zgl$M-pLY!gquk$Ei~1KNWv4twbBeUxg(s+_5=qCRTOQjjZzDK&2Vc@VJ7ej3_zjO@%hX<+7j=#=CBUeWN=18Ui+jc!|$L0%N%{3D89HQ1l+?WyAMwWn|~veBi^puozisr|%l~qI@2y zsz_=nn6*ZZ9k+nC91Z=@5=$#eJ1d48YUV!7^d0E;C_q{nL?z2pY7e|CpG@a%$I#vt zOo>v!8GIx7>)tkt6`cVu#=Rjz?7DKK1E}{!@oy>o`Nc;@bUAFbO9TcTDf56=jI@?+ zOThWo(ps_FE$<41Q)Us=4de0`*JvXubt)+xe?|{ev5CTWVo`z?d%%blE`3{FqGL7^ za6)bL9f@y@Qnjly4P4R!Tj%(nMuN9hoR(Am(O6V^kZ3_;-Xh+Qj99zv zB_ua7^q-={B4Pud5E`9dn&}@m-6(Yd*LeC*1>sqN2*^AXB}R%@DIEuIlymvLblZov zlO{y8kW@1}0NS|Z#))%c35jfikiT|eK{bTU z1J)y_VbUnx9*V;2DNXtCgSKlk#p@zgmI+tf#&%2}DnU=8b)`V5Wb_p5;v~eLj!7ug zD7KXp(DWuXfB3bK3s>V2U$!}c2^mRxX5pef9ckWVyDk-4LTO#xMfo@`V$?wMJNZMs z$014sGDvE7hC8)6UX90iu09AWM!o&^m7C3mKCgu9;Ol!tR=KwN54dwKUa;!4J zX_{`w0v$xfc!yPzcHH$Zmo?Mfi4pX?;b&pqhkU>cB zolI}TjEt?LR$Co<4fl)EtS)Q(Lj0@wVW{Rhn~A2Ko9i0e`ekJ@BI{1&k3$gKETJqx zq1qQ$dCXSYh@Qk&I`@pN0=~bEA~7pAvHHy^MvoWlw|y#L%4npZH-vrSUr_`k&p-?X zVih@Z)#(@UEms#qg5&_)#akte0t!Qo3=mD&uW4qSM>e})NFY!clTo)I9d^;6ZLuqA zP(5Nv_Vl|7yjHYZj#mC*sz58=?p)6fV36-!;V%CGx#s4|4Fwz+X0+RsYH3&BPK2JtmQ8!`MoV;8c5d5l{sF6|)juZigv zlWb7g{_*6+$0!`=@dm4HmV#Uiqk6j?{ypNfn<*~Jps#o*F3GW=dN%P|WRR1@R?^t< z6UeUcLPjKS)Ir*iyJ?!Br_DjLMT9Q3uQ5L?RpX}A-U?F!qDK9CL0NZ-MFif zm6imKHe(I;TqEIS65_GhTzq}d3fXE%B_$=^oEYcl#d4N! zR-qt}H&4zIZ=1POROnKH6)7T(`@a2SN;il`h|K$gLD8XZbcHOtWfj(+f+K`$tk!)1 z*FY%0jY%OT*~uPyfMVs-WE2%-m(x!0!*08sK(F-bbp&ua{_(;uBqc;8fdS9^JZY`n zPD=`a#L$CZI0b4-l0wi~I~0t=FbsNg`@+(}1eT;WVM}mH4jl%HPks3WbEI_mxJ}Gq zVRpM+7^n1__4|HSD&YKTsWW|C)0HRKQ}}y#>CpLWFNes1s5?zMR*fW<+TmeTd zo7(QXU6Nu6WgzO*J;&SPc7BtB=EzYgB$SQxeZX!Yto$J|)n+7-oDvh)?%T9QmccGk zrUky{TJ2dSt09)0#p)Cefc*TULABp%FDhaHP;t@u?Yts-J;Bp1<;=7!ElEksG!apn ziBQmx3v8ePt3y^zLgWIk2`fmbE>l+M$FuI_#++r&%J=A8dKmO{$b+gz9mjdNjZpZXjK0I zzt$v~U_hCjJU3`FMwBhs1Sx7{hvbixCthBTg49S(MxcGj-M&$>%U-8YciqPjKK%}b zD}en$g7Ffvk4Bbr{cx7D87U(%qpFRq8&~2qoNk6f**Z7`e150h7;WK+jJfGpa6zeU z_xMxJG%@KuTF?@-k`Cin{ozX@vB#rZ&`KpGnCKKY^OzHf25?LD3qX7rmrM) z;tbxYLXnwj3=1Sb&MHX4@+J{b?7=`gef*%ieFclJ6eeQ?64a)o^dp_3{i@WEgP2si za+pZN*i}*{OsjyWNgIw^^XMBdJH}X-oouC6o4;stbFqsUa?lH=tVIsvnnM01T-hsR z2bQ)Pvkl^gUEGBBg6QChn zj)FPE_`Ing5bWTnY}trHMZq)h|BTUv@%mFiiC zXil=+)8+V;FFG>jB|8n>^e%Vk2C?);A-N<@KuJR{WdZMn%tvzMlayC3-)?CWcpRmi zID&wMp(r!%Yect2{L>rvpQ=b(XJlq{JRfP~R( zmttAq?Uv>eq=K4|+HCs6?2}wqGV7YDIvxylX|l|g<((s~Vx|(l6pZPfa)Nvc@1;6u z`UpA@ppsTyCF{uR#?ZnU7U@$^M8t;EO1wsl3uRhsEGfo~9oei>NO8IRevx)c!hA1H zxA#HWhh3OTRJ1Ny0b(Dq+P`>HvK3h-emaO-L9G@9WeZ605ajYY^@S_${{WdSWXsXC8vYn)x#l#KrNL50RWR4fouN|G zc9$WY-NE??DZ-7#CUvT5nE6U8O?tgsjoaZ6-q_tJoS9Pft9|mDLQ`uy9DI?e~QH#>TKbZmn2w+dNeYwp-eK>Bv$|5mkMF>B(r-Z1dP?lg*! z=?~Qv45cMh<)H18(lW^z0aZXM;wO)iZWbNw)^fG_z?RfgQ3Dr**0mO3m21=USUY!L zWxQJIeByiBa`F|Sw07;UoN3T=B}+mA2a6>iK-|X{MW@6{)w|Y$Dd9`&)+OJ(O^7UH z%OyIEhVV=J0vF8E)Gm{-ir0DwP&H~o{fhel9M70*z#Son3ErY$Q#P8r_VbDY*sfYx z*1%BHi0W06QzW3~Z5odI9?-XV-724)DP$CWpQHoBcezBuhCUO%jm%B916}+jC}mRs zR4b!-#cR^>61)mN2B8J%-UZ^68HrE{YExnS@d+dqBqC$5pfzz5%GeJUwW4Y=pr|B} z3I6~uIOs2%gp2y zsJX7D7cq?4lGNx0ln5D3U$&65cH>2@hGr~4Cr{2Hmg-rVsj|k!Lk^oa>IkKcsmS<6CEEpsc$%EI$*0lgYs1*I;t=n|YmaNJ{ zAzSKSmgCMAc9RvE(n;4h!aB6s60!=a+ihLi0$&)FDJc)%pFelTEnN1Hw7Z`ckMWC` zW;s?wq!wV}o9XwCKdx6F2pes-<)PH*HtSfe{{S*M_`}cxgK$cHd6=>t8V9U8Tkpmt zEJqdiM<|ypW-iBn=a^QTeL9p_s3xF$!=72;V?jGT1XwNMc7mCVl&8dy4!^`NMq`(C$WMeM0xAjLsrqT>1ML=+jT}^#ho-Dd@H-f><$qz z1XLZ!+lUmaT1>TxiWM5{ISsr9^i6*(%u)a}C&kK50B%6`ytgW9{)09kz^Oq(^SO5+ z^{)E%^M~7_+B`47`9K@d0Fj!Z#YJ1ZH7e{vfKq*p2b4HL7>aTNoKUq!#1E5g%ni1Q z%MQ#ApMHiWzog^=UeL{yHyoZKt|q_JkR>XhtvBh~4p#zO9vMObn58+~9iz;n+8ck5 z$}`*g{{WvklPs1~0tUM1J|LZ|54d{`Oq75Ypj2vD>Brm3GnY+I5#L#p>cUw3UuJ-J zE%j(o^<^MtEtriV#?Yh!>JCBvV98vj3JeQT_Tn!ImfO7)*bO_y*ap z3qY8uC3BL!D&(i(fz^| z?5Tlmn@2m-;S-pvA%;(*>qN39$e0qPK479i6zyGVKG6k&`JQHanZ%c%%I)8`8^g4# z@?&L~mg~Com)j zI(33rhW3~0%DrIIwwl%p$^}eQEd?M+EUJJ>s657FdfV+X)|%!~EkmxmLw(a~MAW!- zb>HO-cQvv^q6kTtz1#xb2fJ9GV83IzZ4;6V)MX!_wzRD~7t#XXw_NKmqo^o{BlM4> zd;`X*Ys5@51QhJYXK!br*Wvn1ezMyUG-YB`HKxbD(CpJ=_p!8zVq#{fB#_&=8*^PF zNWqxBGi8rxtWbvBaSf6%#GsIsBr$&o&_Byaw{=`{B^od%N^c5G0dp{?tYs)O>NtKx zWwz@A?6#zZzEvL!Y5DW=jjr8@(v=a@x11#6s}QxRB3T3^xhLd1ACyNvIuqYv6A}-H zY8_vgt8?K}Qb|!wOE#a(6}|9SM6|7YQiX{-wRZb+1TM=;RDr0~!+Cl4jbKHA>|$7$ zqS=8U9bc01a?LeLB$|Vy449QmO0v{dpgqrw%5#Z`AiDxcdB{C9@nBKCkr9lc6tGJAu=F z&_Wox@T{~{t2uv{FSv#k-a=YfRBcU9CKImv(SF-FI`r!XWZOi>OVgdaq2OG*9ZJmN zwIKYXi~8+KjQ~v<_IML+PpdAHz-zypOq@wAMJZXKA^LS4;;bz}cj0mwMM-h4;iBcP z&6IdTdmp7D)XS`oWVo(c?bZQVQ8iO?4`fuSTy8!3MAI6XZwr;`l#!I`{{UW)nPIr( zqG(bH0DhYQ?)utmi4v`Nvi}1i45l z0m0N5WDRSOnTb|v_*etlF&o#?YVNa;C%~n-R$6*bZrdsd_Ccq!tF$0u{{TmF zE#Y$KB{IrOqh=uWKb?2Sl(*5ZT^E|B*;6)Ib2TK84ME&!9B)SWLPdwsKdhPS7XBmR zCuYzFA1HCUZolc}rcxAFmXFBaPcy&9t=M+Z^iXE4cYY&G+1UhH@N}dhfOAcDg4llT zLP4i)+rc|bw-lrcmpZMbc8BRG?{EjQKJiXM(xLwVuj57A!pPyj`|r&lRhB^jgUvs9 zxl)GDXKdAapD6U9fnyWS70^TzQ_?huaI+Ao#EOWQ8bYrHoEEEm#6q(j%!mlmkz|5; zxgC2%Kh=bXBAfnvV%k#rGjGpmQorpca=lEjQZ!nIxqsKG)87+7WscHqa}2`bOtlbz z-}w|ZB<=>y4aIb)!}Cb)$8x0!36?Sd0$J-#&r`g0ks^+L(4-EtKHt1nU7vS}6=-S( z@4QBZHlg9^qM85>^=dYqp>Gb|CD%7nNduq;7%y4r$Vj2scj6_m$Vw8!Rt|dc`@;&t zSvvm!FdD&PKD4heWYd@EL@>{pM{)2 zHhmk~f|i>h<@;^>K*d*5Y}plUZ>(BUp)f!khVKf6gvw1=CrXeoCQ zrwUdjT+XmQdy}h0x$#b6jdd#OLj>1eRhsi0c`}<$ST}tI=>%vRD#JkJ5LKm~mDgGL@CQ{)B9M$Mky=UEaAl zT8E?ekDUE5`W^O&6lV$>9-=grmo7hVl1gL9JAd2;Q6Pid=>Uj_Vq^4vkJ0)Ozeni( zAD|D>>&KD$0QFJievi-x==~p~^a1EG*04uA@YP)<%XaN9Z)N3t8{NlH*^m zCMsKR0F`tVf)}qMnW_?o*~-i z%DU_!dTAlv&3Yt&3DkR_eeY&a@gRaX1}Mx%og=F?;rc~EhR`Hl%1W7C+osT27no`$ zyG1+3!jtFT%6f)~Q)odRCW`Z|A*f?m&y$ONyN&A^ zXQm8xWJ@3#l#*XS2Pfn=hTF#R0P5ZM>E1qd^wp1&tjU@lTd+Un{;{31+)Ruo7hm$N z#Yzgus)jzvfzjNNY!tg4JLE0%%GK3SxTt<4zL1ND48YX z+T}W4nS+jpk2)UP#F*PPl3A@}7jr^PACqVYW-R%)f2Wi+;vYt6m=ik4Mp8@5cVoCt zr!N6j54|BaP$+aQBo{i-qoa+Lhbe-$C!}jlkwYTNkV6zKx=%(g?$e|fzi!zU^!n)| zC7`gGE}2{~aKH-d_#p!Gv8hBbePQd-UK5;F76w+(62P7hL!>LpO%YoRUF>9XxRl*HwcfAPw3)zb`#@`1t2*m}cQf zBRMW={0Kd6Adx@-({FrPyKbcrJ=BJKKcgU{nM*Vk<~aFF%hRVzH)5raYghL{`v<9a z0Mm1d@NRuA)ofA+zlN-4PCzhe`8T!+pB*{7s)(k$BTA()QP!7C2aO8lTz z`G=R5pjU2tM)SvHXY-bb;oD+z7pU5g_+ZVDAhiH6Cg!@rP#hOEgA$lED;*qtV>?G| z6NZ3M^@3veLUq~~thPe4M;&0aoH&u~c!|v4c6`y7=uot3I71Zpzu4w#OrL$R9Q)PZ3x@*@Y|6*k-n6P z)mU#rP?`V(26og%DcM8_ln$iy{o-jym@z9r2BD9|Dmqpnv!O(`oI$H4*g)WK))}L) zSXrxGUGxBS{o?J51p*ypgS!~=Jly&7y*)1<9z1=9 zOu9mts%d^7?H$R($ser!AcAgG1p$ouZ8UaB*E}q)2Y^XhV*X z6{1KRcIg~E{$F*`$3C2{ZaVv?J>urd-J)hPyx;zVR=Vk3GE1TvVd&6nSo8bi5mpc_|(f;w|j~7bRlVhTt~! zg_~XAqARz?IhME3Yw(Ks@}86N-)H%l$t3P+T6@6eDW?8OR$xszpsykYU3Mm-j=Quo zD&&-)9Qc{3M~V+$m%Wvo>|y$oDLyoh4-W{p{eoQ7oXIIx%G`G8 zzm#br&=`P7PQE>%BNk5xAxaJjqeq|l9z2@s@pAfRc9g9&cTg044}Lxn9`v<^Wuq2i zDr?iE7R5GqT9+v8;z`)@JHql*d2gxbzi9BeJ--^V<_(&WaZ{4CI%-WDcOOU{H6#iG zYgip+SWMpy2mb(qM!x-gq8%9a_Ok4)dF`|%;ybNM43J7wQh4q2ha5+1&EeFFl0Rqz zI%y6aMaI9L?>My^eGK9SO8_ldT?K^Ue0v8K>l!kmG~G}1NO zyp)jOGDeY~kIBo2EQ~zdC5LN=f#%JB>8gNACsEdNNAT$;uonKw=yfiOkHwg=$A$W7U>C{4}X^773Xx&_-1x zZa>MkZbzQ5gM@BlDs-!$ARIAr7Zy)Dzc^ zoJ3PWBK;)}!!k_?9Bg3h!7gN?R@sQEU>+NimCITiMVBX@M=(O{vWHSiNB~h^rMmTo zY_f4wt3xFJ0BQR8S{Wx}wC4aR(gPE)>hQv>8!ll{qK4bROhM@GOvz;_%q9RxX3I^w zzwf9Js5MHxP*LGuv;hD_savB>HS*>#TMg>DYeIG5xLl(vk+ zzR#>aTV!THNn(`{rq!eJZ{(t2Mpprc5v1r^>k#5GDG5pu<0HhSR0?hLtSXz8b5ou3 z6xEF#`e_VU@FiIm>;(usK`byOgdD(^(|{XO28d6)F^VOqB5FOR0F6iH@K+bz^F30R zD3X;84&40@)-PeJu2R&s5DiEh&~fgD$%;#4XG=48h4gHH0^Q*<{kP6ZQ;Oy~ig$*a z79UKq8JL$n;ye2dC<3IgQ}{sNh+Dkzq{&Ptq_LxH8>}xurOjERGi+Xh0$cC&5@nj5 ztE>*YkY>xwiNhlkmFf?@+dvO7p5oa`laXM*_X1oU9J6(D!YfM}t%lB(D5SGB2H(6` zw%rH-XJR%6y|sw0h+k!Pa>rqI`{UA!8WwfSzjKDwl7;CE#DttXQc#AOS zZD#X9D@a{DTlssTuJ@4X3P}vXhQ*^Qv)|v=SyeR)B52sr&jGa4Ua&LKmOY-c>Qu`0 zbUeGWo?pwbhc1k0H;R!ofJ-(~s~&@&oItEn!AU+K zO9D3^nnTIRGeBX~z!Q zAADZ8ZUZ6ER92Vp^anw(4cpzMT=q$miY3dKq^NsUPXmy9!8c67;bFLQQTf&e;+#1x zY0Tj(8aLJgVH>@9wJha}>Uo2E!}>H@<+5BF@c#gv47Ps#zVS~I*p!s&YBq^5 z?bYG&R1IHJ{q}=?jw;+(=_v&Ybnsu@4wgGo3JQxT3X}W71*6gWXG|$4DoOLFQSgU3 zm|+rRsR$*Sj%lakb&2on-Fm#hsVQJ9POwtyn1rG9di}n!n_)jn!KTSubR(DFt7`}F z{v^&+0CZ{1S{~>gwBNvx17;?!XgdDUPTy)sCq)el{k8KDy>{Gc3ME^T!SwGF-d7sE zw|-dcAoQI8vHCQXI%0~+twnU`IM-Nl!&ov@fKY^`lpeJ&36^`<%UDf(M_1+>?AMtE zAnK=Ro;YB*s}4?5hpQxZ(6{F>mu0`F%9vzLG**L$+w+LntX8F0FkzrSXjjBHDrY&E z*@NX!3~S44v-J-Z%6^HFTzHXkZ3+n_0%$dQ#>->A)iDkTN}0%3v5(m>Wce1ftb(aQ z+K;Io;ww(EuqxzK#RaEk){PnQ+3i#Y)rQqDD>9g?eGCu6Q&(e{5jN zK7LTUj4a4n0SfVvrR6B%|>lcc+BzL z(=ytS5Cfn#Z}KBZ#ReI@ER!>3P)pPwXDih5dUL;AIa@DHC6BlzUUIS|lAe$U72T55 zl~XA{<3kvB6ud2#mQf0pQ$qXFp9=kqYuIYwnxqpoV30f~LV6JwE|rUZh~!H^nVCeK z-WNJ_A6~INw)Y0m0!?1A4aMmBQkG_<>Ivyx;d>Qf_2(r-qJdAL?(pxVv}?-VQbtfz z{Cq@3de|1ARDeSVAUpYp$uOs+MTk;vyr@VFK;O2J?3>a_@hpH#(6EGDWr_lU$?P!&wLQL6g3?*RH@vk^Q#NXb zI#W^J8Sz!bX3A8g?^hzDw+{OBg#Q3Xco9-ki%Qf9m@{M!a;IdzftYEjbGQM@ekXOh zMH!p-f=}79+b5!Fh{_gA3V=1&${Q}LBEid*h|uyn!E5&zBnKzP!G_`^x^Y~!p~{<~ zsV8`uB&WJJc3H&~venVx)#9P*$QxH(yTXL4!7Fw?5lYf6&9pEndJ$GSgBocw8S_y- z(o!hL#9NQ78J{(B=6HRC>C|@GKV3L@Nwor$_!K>{Ry-a*`D+@LuMSI69DoQ8T8E$m zuBGA$h~sPhSu;5xF(EpT_3aB^{US=>`{Pm=Bo&utt#}7$um1qh#I6U%2ujlN7p<6} znuOGl`iScCv?)X;Uxi9FEadrqd?9NHUY@R`jOrBtZPp*G_Oy(qg=G2perWL8f?gOI zGSF1LO%EWR4+nt_I1kbP0IEuqq6nD9g*#K8vCZvdnKeR$CEug<))`S`SWA^?C^&_L zQN}k=NhwOGy0JdWxP8Imkgs~-NvTR^=K)|*KdnPXCqVlrfv7DH7vKsYlKDuZZv!zz z!!?qSbqs$tg`cqN4quCT!0x@gq(iSGN+yPKEa_mG*v>mTmvu8^I3IeQE(|+xy+QSXQc_vZ<6|fnU zex2zV52No$=|J@}Pl-AbSmpl!W`=9$5}|cNkQ+@Olgn^9i_Gkdc-q*tOCb~lf(dW{ zg4@VU* zt90CJ%^Ews<)lkwoXJsisMMaF2++kzg#C>y3YrpSD1%3CyY<$da4Qd7Gn6vTTO=O| zCZ;^Xa;L6lN~T&xOMASbw%CA#t1+k^UG`|K1*>6X0VnWQdEuN&o`B>&mrv!pdhhp%w!l&BFNCY1iqptq|c=rojV>vlOsX}#6 zZ{8%fUWu3#13s=c2WROD*AnMSv?Y{PEoGF|_wmEQNYQ#+`KAP;#h4It2O#o0Le-ZE z8B>**@KSjj`5qy*{{Xc5wdY780N>t_Wsd;^)=;|_ZUfQq|iI{ zf%nEGmXZ*X9O>WlXsVh|ndvTeaW5e%F6=#>tMJ+>Ov4Vm(~#~$oYIG$1Qj>nvrH-| zJ}+rNIS;u%Xt8dzi$GvoGgQ?4zI|da-QHM!&Sj88(3Cc$?8WKtfHq7NrR7OU2qW4$ zKVA`y! z%E~0YIMeg2SGe&wn3570Kf}KM_#Js&^(zxhuzjJhrrqMA%~tsYmjHC&!ZtRaISC6v z06%{hU0N&IuPKV~rF-i7h^>0b2}u(abZ|9tU;_7b>TL;ffK)2_R0{jzwbNqtWki61 z(@4nfuTA2~X)=^N1({V0Pdb7&EZb9Yq24~2tmFi#J|$?y!GC|}4H-`-8h3@AnIzuw z)aGe+9t5jq^WKpHag?%HC5HoU@irH@?CVFZCp^MAqCx#5N`bFd>>$3d5*DG5l&@DG zABXZIOZ-59n3V@llk?Uo$h)(s=1Z7glj#1?l1ZL24FIE`&W-X87;P(-Ke)e!sL$jB#30JRp@0AyVh`z)ygNF2TiraR60K`l)Lv zD`KvCMcW0OP6{P?i?e=qig&&rRiiS!T8c=aO)7pZ+n5D`?rD-{FEJ?;WEz@%^{eTr zdPt{?L2%3x!lf5dQ>Nd%X6d!tJ!ms1lmkNVTCnL#SBTVR<1DWJ$ZCP{K5#j3VnieeJV%wJxRz;KpkQi%^k4|)NYtkpB6$mfIK>DCC{SE@o! ztPT_yAJ23tUe{dFI7&*7t0X;WKbUj1;pa$0u?+k|fuG+ODh$tAEM?1}8g_4{9?qLJL4$Vol(Lmpn`lfEuww~m0*tXrww*e`rHhu!vS@N&D|@+wd*0Zp zu*y@pIUbV!5=lGWf2q3v$)Uc)}X_r&S5^06tXA zbuoJA{6u$^hdZSp6rXC8BT#pJAbrnw`mmrXr>pEXVA^?@S#=^92`V7WB+#~`w;#Mo zi0(wsDLIM?NvJGOn;!K9MT<1_%LKV?#B#gEBxXpU+v^wTA;Z{oB!QT#{fOEv-_imO zVD2{Q9$D`|GN={?gaN+Qiq`4IWX9RFI{xrVPi;5(DBUXm04<^`4W$I7IkPD1$v>LK zOZMvUP_xtbguEGb&y_UHSp+G<33u&Zr$}Vh?*)OYGy$|sWq+^6KU=M3O#1ZFBS9cB zuLp>(DRPU)E}|I7`06ja`?H8o0iZLo>pk)rFoT&_IcGHbdNRH&O2}yNTYGQfv_`pk=N3372 zSfCkYCuE1I^I`ZP`BAR%9?fZXr`ygs%<%$M?vGL-gykSdDly5JG}a=WJ%j`gZbFwh zBr!^Ae(-W_hl0ho(cymSbD3vV5&;K5BKoJ(ayRA$A-+_gg5*^%< zLfqNkv`b@EL7?hlWy)udSO|Z2SgmN<}X^0 z@f9b^_`>Bx4N;2LggDlbX=#WpBAwzE9VguaF%`-tQOTn;6r8R~2R;owM z9+G_(p+R9aq10&~H)2dCsY))ADZkU0{)Ju^Ks}%hD@w*uj=dhsnv$h3CCCl7(Wef7 zRXqHEr^KX3=x@b1F;dn;R1>D-m{OT7i$%HI$LReZpbyddKS$^T^nQ=g`T+eOqx5JU7xR<7U+=6X1obgd&eC_ zT$ZLF)&U`8Me8NzH}dHOs)EyPtq@GS14j~X1QD$rj0Cl+rK&bC0ee)}WB6i8D{%m< z)6E0H%O$KDA1G4lD%_N`UYBelpbj80wF4f>y>$m+0W8`tO<;Ah_-d1sH@-h6Xje_+ zAoS1a5ZUD{AcZKoN!T7DFCxuW^qc8$NK1`h*`aE-V_$}`fz9-vCf>4%iQKt%6lMTz zroE#e#a@-C&6;xnL)UuriYk)rH54MG3V$&ZisWcmhXqZLvbjXp#FncF2V(T0Dr-x% z%gg~~6GB<{*o}Okh8OgXu#l3(=mL(vn+U0ST-Ix5VxR5J143A+^Ovu_G&Iw&SVPaT zOezlHG-l9KkOyyYfOnLn&T%z4X6e9jyik<8MUir=m6Jg z!wid-P-Ycs1FxKUeo1*d_}-N6!dSGrp77aXvdt+D0)9>Rj;`AhfIp{*GL)!OFfHy8 zd^loxa@V#yI2x<>f--Hyh6kpt1D9e4dYGju?NX0~s+5iM^v6whC4|*VVZT@jXtf!W zX;i03{4S}Wo;$(uw7yaY%9KlJJkny@|+`FVakz7Wl2x*Ux<#hYFplPu-B>+Y(CGJj*%R@_eKFDcpGcK)?FjZ&K#7CmP=H$Fy0}x-cI28KuZnUy-3?l;DRg) zKPbEi(L9k~F44l}zti`EDZ7GoIzWp>qgFcY6KoPHPMi~_uK{h=hbqiia6T|b@U>(a zhiFW_?*dif4F3QgvCqqvIyi9*y{{yLl`pQsjo0$ATEL@Gm);WBy}wDR{gXu z+Lpiw95i#B2A%QEX?{h97J}!JgrqR&hCCfIXUulapIcM zXiiod^8ha!RamV}-GlKKrd(kz^B;=9W!*rRD^ok`^N%mjiBO z+(ydrc(!5ngJ`hGbK`O<-F)J;rc9H#1oYNCPIms@j|@|?-WiqPH8IVssCz=Zh>m@L zAzl(XG=7_HQ*Bt}y#D}g=O5GXN$1}ll>NHJ6KO8`#Oa>=^*h8)TD*5PaaC8BF?Ps= zsIfY`80KagdcR8R?uFiynHIMJkC)OUC`s2{BZOT*w*QA&vi!$8AWmQ9fFmH81m zlD&hDKJdjHut`w>u_)-Fx8D0?!=ItoAMlrGD}Q)QYlN!wrJh-I>3vd%+vXCt7F zuOB`)r#CJ&1nY9NQcI11frB<}7#hPD{P8Twsnz$0?Gs6N00Jl@OC>}In|8Q4m6iG8 z0o!o$Tf(>47q6J|h8gRlC_l`0?EzP0NT^`@=>7V}ewCyr59=;}xYcYyvm}9CKWGno-Sp5?W{B>~#E=V?9Q@$I z>0-EhL<+&)b;4d0tBtQfO&H@lX0xuRx$qudP2T9v3IQSc`o-KidnkAmOPvUPx&7lE?CjHp+j%8r zn1QnBHuNASy&Pu&twSWt{f~ZErllaiFVZ@@v zXm=)BjX4DD+m6+T8-~z^Af}|p>{;mAOvTEXotyNtzu3EeRz8!*^5?>QYsKfBdEb$m zej@eAN~NS6#;OK~sp1%H%kTicHiaB5W&WSmOPC&8x>)RV>__8h4c*ql6__?k7FSMR z%UJbz`t8BXH=;$G2$fpr05Z#>>P20HjyCtfxwr8t^+fwB%U+so@`fvA+x>Jgo&ARXjoO>Pj_f-wv?1Bs%j3PbNQrB8$a|ndMQbonz{b~EkGUl?F~1o zM6?!BE|LdF*dDr6!ma?3{n@HR1QJru?`U}h3*Yucy`JWoij+x>L8s< zmvh0c)aWP&O0}te5(<((Psqc5CiG)2(CU_=iHN9U?+y8+RKu2(%2q|yNgg6b!ZWb+ zPXyTAB_tH67k);-L$#h>S!+X7f*o4d^?4R(5of*Z#0i=5asj8f)-9tMNLkC6C>jDH z=0v8rZi!_s7@Y~&k-65rx9tEi_1Z>3DJ-$=9*5rtE_<~}B!zfGkT$PK7mtk460i*m zu-&?R8?06SAJDEIlz^0v)JC0u9yq)1hFa9Lxpxl$@lE6;8#;jT6z3(}4M*Rk9K)F9 zHjKkX4Y%v%6ED>)Piw>S=LI2UpFlePQU`jk>Ez5pons=Bl^<(L5_(hJ6JiWIHN@#k zR$#{Gea>!FP2JpXt8q4VANtjAikSu!#M86$6Mt_Vj zy`d^pyu_u!K{Oe~K@YgpM#(n)SWwQA<$#GXl=*6u>Pe!6J3mGdV7;d<&Xp)KvW(|t zH9h;Dd&R4LQdT&XKB_=8VhE>Up%1)uiEvD*^L#;wsBU0Y;edpeJ|Y)U(lfJ`=-5QD-UiEP zoHCD9Gsch|(5=9uHk$Q_y$#wM2|1S6|Fd}Do|Y# z&(I&dXoh>~1JSC(tu9WZ>Dayqx{;Ye7- zw+Nb&MHG;H#3?h;=ue`%a#t%Vi2l_Z^>-(RW`-1A-lB06LCCD6K7l;HKaUvB3A$$) z#G^7&lj1+*1C~Ah(WT;hZgik8YBxwNz;eCpa;6uSrhPp8>lW-6IxOr|T%Gn2og!+2 zT@_|;_6{AJa5anV1vH>Yjs3V>manSuD(oDp-11c1xj}Zix))_q)*odb=QBGj!_~d7tC#^&NgLFi>-X}9t3`%-kdhJ<^(h6Pf6tsg9R5(bOi6s(iIxJX zzF`bE6^NxGq~;H_2+I{1=U9l;q5&m(I_@;xyE>%fiA`ef`G~ zc1_PLqyh&7^WGP3tZagln^$Ak_JXqSfl|bc$L7aJiwSI3GG&!z4hEbEwKi0>ilrou zMPG{kG<9RYQfSNpuP5%>MN3qGNh#)yubd$s3?fB9NZ<`WXs3w7PW;+LQ7CKu0M!fyr+bcmZO+Pxi8g8lbD(S=UN&#=s|GY`9%vyq%ygIOlr;! z{{XyC%G1L>CBmzofT?Z>rFT}$H~i@YaJ~Rkxo!J4-alED>VQJXC7Jg!b`t+_~lS zDWMyWKCySBAG)O`gq_|7Vr%V4@uZSngICTdUiNv2mY|IWuS4Yvw`ynbSbp-yDY&yF=csqO)E#Dhom;H|GJ$-#Sg_}BIM3$T zCQeyevt-v;o{$jW&BhmojT- zpnW@jaT*nh)S~4+AT&EyL)tP+)6tS9Epw(!Dn8Q_Ry`^1htEg$LYa9|v6h}4z=-2O z-QzgR1#2J@Km%7Ncq4M%t5D9OKi9WiBlWsSQVZ8E=jR?=ceq<1shXd>YXCj-j6|iB z<{dq=L`Mgm;+CCpivu*r8x+0L!GA1G+Vw;YvfGblMHk)Y zZe=NM-3jNT@OO!~16Ia9h$YNfm~}dhL+sE3-RSaaP@oHC6gz>|H4CcMHezLhnw_`P zXf=o~keMpYQb#q1(6d=@qr6Up0);w?eWS_X4dV6refsy5fZP*Je<|7(EI2xPCK;#> zkx~r_9C!TQ30W^yiJ7tlkx|RTy%ec#e@8Z%a{ye>q?&*qLfnwVZ$kWyA)4~Q=u4=T zEVhKv_KJ5ks(P25K(RWLw;*i})31avda8gz^ta01kv$DfwJ$uekx4I5W@vXB?BEnePV82Wncx&ST)y19DAyG5a!!jRn~E8*jAtL0xC3r*)>AKof5 zfuk4GcK{LbjUx*BR-BN9tz?Balj~jl#A`UNN+%$pNCdwW{vis{=;bOdgn*H%L`~t# zk6dYK?$wVaOqKnzN{>#_79Pb8k_iBcS8*NO_X-g$DF__9c!%X-FB!UNBo}j;we#y6 zcZe}x7=tLHLVD8Vx+p6{w?S^Fk0Apl=9V2YQtPMwIg7!Hx6aZ6%KZ(x${?Vb` z9*(6j@Pb$E9b9?o6AmG}{W74OfMib1p&kDK1QM5hNtmFdc$8co-DAv6=*C7+93r%B zS_R>JJgHLv9>$rd=YzoE`ok5VSgy1o2`Wl+7b2ez&xCs>-lZ;sDCy?`u@)dg1F1v9 zM72j@11^t9l2(A{BDP7?#lof=^6mAE95^mNcmZv^LIDA|Cqn(AD`mA)Rud`7R)if7 z<3S5v4$7C9b1!kQf{`}KW1li>ps0s%)n@A#v3==1C{jvDaNz3>w+-N%Jhga3oyLG{ zVQ$rq!C6XD7Dn}9*tcKG#F>B5$E0lXvJf*l9ZuSJi#MgJT($buxLDD)A8qRh_UoN; zris##`tuL~ZQpkHd!g>dilj_Q^|Jg`X9rf_LA(IhhVRKMBQZ&F-kiZ3P92gRK(fK0 z*^BAR#us>56r~?hoP-)>aQwS}5u{n~REcR)ix9wv+z4=tc6+2LPO+!so+84~5FIpn zKr62qCT?Vcz-wM0?ULM)ARP_Q!#uMb)$B#@9Dg?Dax_W118bKjHXe`;cM(v)r? zhU&h5MG`&UW-s5CR4pShtr@uB_l22Ezk6h~AhTuxj$gmcj0nRRU0~)UWOgX68$-o< zdBZ)PSkVb!D8qQSXp~Zr;i*v?bd|YNf_4-PDGQd#>T;kQe7W-8u~6dlyC^Bf&G|@@ z&uN=6@+1VenfJmEEmw%hR7XSJF5K3nsR4r>3S#1=0VpMcm^(E=I*3KK-v(A?4++>4 zsfE9@KS{fCfRLXHyneJJD(X7N9**xNOp~2{Bl38U5KJjKwQ|4?Oj2vx?#=zB9z%fD zfcFjIogoBi(@)+UERu#_6-fhHf!YDvuHRFcKm(gV^d0`t%Tmp;04NJ{6_aNLRXRss z^Qs8}LH9ei8d55o&?kr$u3D)NiXFyn8goT!&tp#4bds zn4(5qdip;V5h7c?5}6<0mW8V9TztW&g8xrp-gk1aDCw_Scw z8s@NgR}}&8so^f<0tGt$Z5h3y^fQ#qUa1FW>#&DhOLhswc#3O7zh5W^Xu5=!N<~kb zo?a#@vpiRVkvC>gaHik$XvT3DqOy$VD^#6!*GT$uY^KcgBB#GSqdvv*jM9{cqmrSZ z7wZwC zHLGTEu=Cn9mstF4j9kb(9`V6MK3Xo|5?C{a1oYLqz=@X&)E&M(y2Z(AcMAkZ=7Ora z6;BCsv{9XBBT#(c!KgxG)Fvz<%2=Op<_KA=JA~*ee>H%@=2?jQ#oHawwHhR{=~eR~ZwCNeSduqtA$N!namsa40$$tLtG%VZgTmv&<({0z4;Pg!9p(VZ0G8VF~t& zIP)J!%WbMsR*=0%vPOynZ_Xi>Rph}d9wmNn(lXaZVW#W4{Xt<+^yT`&DOZ}G=@c%T zR$-ONBU7zUC*=ih{Im)!$uLvHwidLdLrR_D!tb_`P5zLLcBMK6005_GCo1*=p-xF* zz-XZj_UqP^6(5fQEZ2z!r(cW2axbKp1k`(sMyBJh+9Iz8WzOOIb&DRo;5DAu4Jc#T zwu7?UP)bPwLBS(qyjrsZE$RVofGJ*` z%ow&x3qYEZLd!dJ-?4??U8te``5QrOJ7_gX(ME$`aN-*)bjOFU6FmC0_=yY@eW&B7 zji=H70Hdo-pDK`?u5}uKe`v?>W!sX_4s5wdEZUCeL!)`e*xrw?*-8mY6jb5aiLYP0 z47nSyHO>GkRa6H*p6*yvVEflf|2-G<}BF(P&LK5jsPfcQpLZzey3(9=fRVJ-3aXFrixyiN17;N( z6TDuSq@Z||=XQ!{zEC}hMMq^TN9hg?9J8q>M~`h5CaoKHfPd9bRZ;*4PC<(w@iQ0g zES``Nfp+O(KGjD^gVrr&k{Av2*Xa=5R|!tf-Wf#Dl>2prM}N_mb3@V?Qc~4egu1n>!Q*w64kN2I+7dN_0<^oeM6uB5V7-dOl+~QY+4ew1 z3CuJx5SdEQ>E{N8$#!HJ~O~2>97pBgXLjrSa?9lc)6Vq7a=RZ!aC96&0G&hKV9D&3LwqjHzvmbe>l2zv`qh+Auwx0)yP*lM}m1Zqb z#85@BIdDljbUbv1g(5_>lz^UJck2P|cYr050DUQ}dHlHl0A0Lp{UDb(?jmf3MYMl} zaUsYLMmuf%#4~IQ9wA-X_URa7Rn*wPA@tfU$+D!H5dmzr(i|vLuA)0k+PI-QZq1=F zQ8o`qxd72bKF~+{VssDJXbX1R`7}INy?&5($9$wv)I~;hQhk(-DbfX6EaYlWFAd4G z%Tw082;pHM9SiTPL7F`gmvsf74OH$y+cw4@NN$kLw( zClk_j>0(&%ppqT?cZ(J*RKbm2jrqo~X3u8;Wpk#7m>X!h0*NIIT8#?yt)FR^Y67m~ zouc%cMwRgE)PFojS7nM`P?ZX3$6tRkQNq%=`V%P{g0(`}4%MD2H!qS=0-`3uol z^3;bL5xi%4T{#2o_lue)r0e@Ydu_bC00CzG`^CG?^&~!4rn-{=muM=kkD>ZP*0`2h z9+W+IiEK6ir4*Xdz4}K|B=vIJePYFeVMzyt2kIiY&85oZGhO#CL0V7;PX&RULR5>68;h>@j}&igQ)W#IDJa9(A1A){Y-f(!kxzP+x{=po9AJ6=airT z&PZmi{d}VQo6c;dlqiyd#6umP>Oc$!-^xE)Y=|x@;(&g9VyBM6`4tg~RF%}0cNEjS z7e*u#9BTAEOb@=W(v(kysZunBsrPcFC@BtUP-y=Eyk*a0UO7Z@FaQl(ZjqkfOC`&l z3^Cp}w9LLB;L*5*i_j#fl325FJmbs!i_^cuJ0{*iS%MRx5193cB;B(T#2*&?F^ku= zs3a)1U_F*P^Iw!-xvgemNYa6U);ufi?90*{rs_gNmsG_mi~Qe;Lp_4P!Gci#02kf~ z;p`@&kg@>l7p>NCkaS2Illl4Q8FHK1{DO^~Q|H7}pCza@`N0V`?7#rxx;MwpA{G%a zD1~JpuunbuMstp;Qq#Mh6~3OAtf2X2vKKeWi>tU0?dzGM~RiOG;-QQZQF*7*=9_}sPL9_ zk~FT()8z5${{Zv(bG!O^{{WdMOE`-4mWcsjK$akmAztstmU)(XtciifQMeBlEh$j5 z&6PSxbb^9Lg(F1*G}wmU+)@1*-i}ncfPe}>@P^Qx z{Gog|w92u9y(Z0>k;c9fKCr`o*ost1U`=yq(52|>2QEa#E@RXG02*~j+^C;00zjw0 z-NrNKtS`h_FILd-o_;?;aIdn#JxsD}>Jub<~I+?)Db#by*N#V+T(eE$H2F}&%M zlV=Aq1GZt}qdTYoHTF}rYpXn9yHb~HRJ@@n0Fqs}rrN zr^%wN+-4yO&BGq>d`!p+gVF|@#LP*{psDZItZabmP4}3DsCGYoBBk|rm88oq-9BLN z%o)0@p+J(xzUTvtZ*@uq=mP+*kXm6ES{Eq=4r(a+tB3si1?At+HyAGZ|i z0`8nRgdr$Ne4}r#FvmW`GB{4DYH1WiJCgM)lQn5<^2>outD&LVk(N)zMN^Jv@oH*R zPU=@24v=3P`ujS8mh82Jlxq2i0FlQ%9JM1s!`K!~v}RPXn1EFEZ~c2#GqTgrORn}o zmO_b7)+k#iAm|u#4tDGqjHITd`!A(=ZXp)cf@U=)76j3o%$N5HG!|27I6}Z>%VJ!x zBZh(#?)nlp1^&uTq5PeYV}hNWaS5uubd9_lX9kF zy>zvfN={@wJhZRnc4wRuF@lrl`NUnFgym%=Aw;&1uQd8Yuxl2}gS%=Oso(_XPPw#c*wcWn>t1@JYoKzf;pX_DL?6gE5U*UAXrS1C~q`TNECGS%56 zE{9tAm}Rif5`aiaCy}gYm(Ad0xh^uA4gUa$Z?a;bq>R7?W!q0Eo1bB3^t%$J`sAm? z12fa}cpYv9V4SYNgG%*@F6>a3DIwc$-Y?yli4tZ4bx|xd*Q_m`peA}cPxlm0>ChTA zbo;zMT0zfH;OKTAv;?)`WTs-K0#Zt|Q-WQH-ale&cATj~58l5|gcG0{T|}cIRGDQ061>^ z_l68_f{mzv`39}~?-dHoNN6>Vi~KNqx5JBK{V{ zh?G;d>O@HKj#$mZL`7sd{U~Tn&tXTQv)71Fe>2EyIGH z1$Fc0I+c5-VPX7QMIz^klaTINuD9Bjj1{I}Vtra^B4_1ugccZzo8FLa! zMMy{_^q?Hn@Bxpb#kDCQnm5h@VhhX_Bxa#57;DJWu8}rq++|iv+@*}a2`5vy?HWab z^dSRH0jI_@>|JF_W+kW!wBx)oVO!}0sR|$gKz66+#v*l6(3L4BTaq&oT^_r}SB`J< zB}XYCG^ptX?~qcUQliY@1M~ZB73>xvInuFBj=kc!?U@WI9*~tW48VdadUT6-OvwsM z6pmPmzs@Y!Fa|>Asn`Kl+6rE{bpWKKRPpuc3yi;H;|?gHPLbfPHuDhC{{VZ*{{Ze| z;|eyL+tm0-B`Tv1upj!={{V`=JfYr{)2%lOviijr2CQ{GqPVps9wy9o+MRl|1GM8c zEjbxQiDxd)qjZSoUP?j=l!C6J2ohg23eT)VjtP22Oh0N|`GpH_4x@ICaLx9)=_+E7 z2>}gIdcm6wz@Va_GN=OQbJ7ZHx0TpH0XhQoilBoUycYaXW+geZjq;P6|aha0Gc z%PJzIQ}bw(48Cz|CZX6fCs+Ew3%ePG9F5}lK}mNgRLW`kyTn)C5lA1~067j#Na#Do zgi>ZAa*ADwX%(>@#EgI;%AK5O-tUYt-S~MD()`f3F$By?nI@^s+C<dbE;q(?&ZUM|gZlN^Txh$!z0C56>}L z?!#)zLdobl^Y|c*=ZF=Ml%|7sfVO;c0$pDIIfM}5`?UyKvm_{rCZ5kE^ZUX4S$vhD zkN^NwWvLLqcVann7D`A1L(CDMegJg`Vt;6^uovvN=4xdlE4z)M0~b%2semQI4HQ9V z9C_&)^`_q}r$migVtJ^HqZy@ngvo9~OJpD8@(1#iF_$}B7k^+j2N#lry&v>a~U{XL+Y0p?F5X0DMbJFVpB1h%I}>k2rh7Rv!yNmGgt^&{k9Av?P6U8ZR( zIZ`(jDs2GRJa=rljJb({Yr@}5{Y-1@7vOr+KYR&VC zgyQg&iD=4{up*8tSOp^LLx%|?RwHqyzdfLR@98d5&Hj%f3iTRhxY}yiorDib->n04ZHe43lYDHFA)5=Xyce_n4-Q(iA0m^9TVT1cT1; zTKBW%+h9)+R?|9KhGKo48&_%;gvGM-4=t!D$9CQv2xi?O&QnLPNHHSkN)mS`SeUFb zh!x$0E?#%pU>Jrz{_yERdt~Ix6#<$OZ=h$ELNZl}=dVaBXtf2PleW*Neqc4xZ&(>p z3C*D+-Un71aT9x2qb<>fP=*RnQDH`dmXtSy45OqWCl{>~li_q|N!zbZ@oM|WS<+Z^ z3~K=`F3c4qA=ByH?&R;rkevwwOwT&<&5)G#eHOmXy&Wyd#X7 z(zV(Y5GVQPlPC7Ux?g%}Uk-fGZPNWVvOR-jQnGe2FL_AOLmi4+A2-F(l?G zGy;cLWAxw33Sir{Y6{7xCvo?PrQV*ns%L~G5DG@s-|~>}VYMYF@ae$gyi5xTT(E{% z0-Bwg5U1N^ddC2_END4qjY{mZprDl{)U5%~2(4?eOJK-I%hPVXBTP=K;hVV(6aXaj z+xLYZNtYQUdXyZ;+G+wgXnnY?335_KR%&y@M7ET^qKAH?Xe>Ecz7t86IhR042fOJT zJk`iTTvUzv{i2Pc>9YqvsMng0tRUh$~qo*}oWDq5&Ce&>jxhAd+$$u--gBZce2 z_?jmWODEZ;j|%vY2TYqWAw-0g2UF8s=v;P&OY+10z?7>oCWCTMXlt{~NjH=jMGr079J*NH zXgX?oes347)@A?^Q04xSX%-~{MAI zWa;mI@j~&Klpw6pt6l#9KOQd5pF`VNTbz?QWS?a$!020!OlcX^cU6(pW|36}AL^QX z{{T8kXd12j8qgXlRP$1IBH?86Q+a*Dc3gXR3*0F7eC^BC8+03e|Rx_&ooME z38@?nq8mjvA%l=ASnb|4L0Z#xFn%1l`bK*y>spkx8nT<;^8z&c)o$PxaNbb5F5#FE z;0k~3$uOr(`9e+eaWN*I5x>k0&hV>q*g;WAb3$FJ32L|I(Xd|^Aecgk1P=`j4(;UH z#Tx~}0nC&EmqWU?Xx4JEmEo+G*>!lsl>xbGo`dH7BBi$D2B-A=y8UBiv|;@20%!x3 zHmc*xkqbi$s;-uD(Q}e-3@M`HIZ`P{dTI`xnhD&PT|`lhSQEE3`a$I3g6yJSSNTIF z*>!rns5Mb8IIg~MUPm~TZ!98`080`o%K7%`6J57RK}yr@Xine_xMQ?w7Mqy_hX8fb zIJ97v$`W!Un$g|#dQf$YZkzLD5H_D5HGX zb0<1jldn#_pf#3xLV-;H)NS4?(5*h|z6c_;W3R>HrLz)DLYx;%vq1YS^r$gnr3wv? zC&)j(JewdZ!buc#w%?p%5Ebb}&}SZ#tbfA{8w&*yh{6#t7N(KoaLezfZhpIaOh`7L@r! zb1f-D<}43dh+DDVVOko8BD(SC86TyeNpmEjL^x2~)vLJUof;}zZV!pu(zm9WR#KT| zM=G>!M|k-^(*`-3xx|H&DQ%ahG0rx`3cM0l5)!m0Ky@QisWqwha{@5@foqVdDnH$p z*&kYb4-Fg6KesTEAG}f|6-}(!=DvX?lq;uCxTF}zH&SLx6J^k-IUD}~AGC4l zVn%OQG%*TE8HGWm0Y6xW4BkGvNtQ^=kjVp3H}ZlVWw&Fw8`O0z4R=+Ylr;)1wwy$A zuCjumM|v30Js4rrHflyrk?y2@5q06IQa}#{G;r*)1#srMaX{V8Q## zJ>D*xIY}u{Vm!f#lWFcfk!nReCs@5@nuj5}v6%qgy&jqdcH^?W93$y``i+ zW4i#(evlef?tsqq)E}&Jiv*=8k^?@(#L(nox2Z~q6sRNSK2TQg#)zUq3+`C4@{eUE zU+JjdNP%SuSF*$2{{Uzq30ZMqRWc|V>rZ*pv`m!~Q18d*?E;1L28kZ%xSM3f0g*3F zB8mwj&NWv0#rq|lAZzf2)ytmaFw}dX&5B7Pq$P!1f$ruN=+@C`0DuGb(g;hQt$^xa zU7B)IHF%X5;Mh|}gHk6sCs+4G)>|MhPS81a?8A=H1iQ#2pA(&+25T*t4m{(jw)7{d zg?X2{)-_-?ZDYG6vPV3_21yr+m#2hpAFHC3?yLo~+A`3;Xz^3jqe=iEEE-j?I}N@) z;7zX1qDr4#K-2b#EPI#IAem@lLTmN>=>$?~5J0xfaF&yKjab+sqghgq((o)8wUvy3@L+9Vbj{w!g3Adzx zAJ3lfZf)I>v=30)`=Dj6QC7yA_l#?PB`f0bCBkK^Rwbxt+dV12ND9-1Qz$SsaCF)q z-yqXXe;O69>-}NC<4EM^lkL^Rv@4mNllw&ODztmpwcDUOo0DdCs$`Mr8;EqF_PT0>Jm{9w(d0^7iz+d@*rYB}`dP^>eDaK$}#Vvi+gbx{jbn z3YMhlIZw$o9Dxu`wXM8IJ#{}b9(|G9Em)I(vGE?1A2=l{@dWBiaSHOUfL$do$#0ZP zk(r54U4NL$wUE>gBlwR(N4^&9wxu_SnrJ?-R>^BT1Ln^Wl&lp?4VZL~!4ITMCUQs= z@oqj%6A29Mr(L1rH8~Q?k>(qIVAY8a-KsVn%n6*VwFbQ+6kebm!EHG21n6d%5hVWc z%*q1PJ#;ZfMfpRRzn=Xf-Ii)rEBnT>r!YOUIW!_Yk#EXKE_dWXNmqJ7An~twgyFNQ zY7HN9V!jvYI*G#Rq1jszzhm%;?#sU+s+4%`0=;UI;EbW$zuGTNzA~^^h-mynlHfpDx3y?XZTZqUHng6mHNII<@uPN`l9k~#esmsCC|D8!Ib8SK zpo)`iO~p5e7d=V^URu=k{h~g9Bb;y={Z3a6=Gt)z)}S^O--GssNtX43K?V6WcoArI z7a#~$#?#Z=no=K9dF{MUYq9DDD?`#IyX=}BPNQfiY_XQ*_|`oi509?g9$tN)ZZ+q# zp@mWzP*TBW%$n?A9u1s*SxFjbd&3>tS;oxo);<3K43*^hEf1M?vduNEV%(`dCj`(` zerW~lDhqd~&-0`Sy)3Ght!S+d$ESGgoFtnZ_n!MtV!aAYbsBbqs+pKNLqE@WS(HM& z^@7$5Mn(X*jd<2{X3I0k$5y*hDg~%MG3pQ%QC;E{&2A$^t`+8XfH#Drx z5tS^)q>su)du7}RpaZaiV$?Wu&(rsaeOHOep&$KB7JiRQ3c^SV4tkioYrCa@a-rW} zyjY(tquB@q)j%FOiIDWQd7v>V44^bH4$X)&0+q0#ryZc}<7ssfLIbmL3Af@>6b^vu zKHSD%Z6L+nI1rZ59YL%+&&MmXgt#k~L%Kyk8y>x*E1VT7SyD)#tXXeeFdOKX#AN6Qlz_kf#p*z%dr9Ar>sdCtVi(Qf^^zo=3za?+5bQGp<-JA>{8 zx+jk)!*UcTx7R_iJ9$N9^hG>1 zeod1z)U73wths=qpMSeU^`%8xGY+tY=>pyAkA|*%+rMZzhB17Jh?ad|NhtwC{8zZ! zevvZa;>D{Jp)2)jBQ}-Pbb~SqNCX$>q$_$tl`GYH;2lXWR5$8=<}3O=#0XjomtLv> z=r;1&337}dn|voeQYcGl6>l6ol^+SA+wMO$j<1RG$L#LKFv}1GI02@Jz2eg_@-r@jgx8GyZCPi|DvhTjcm;<2Dh%dAlEugekov^*WgJU`Cdjm= z(I9F-QvebYHKSC4t83>L?ekYEc(k1fAHksf54>u4iusnX1Nf4b$}~P(aY`3~R+~hn zNK$4bIUW#26A?JbK1eM1z)uQ8X2GaxqXeus@1Lm0c| z&X%N>aNyRU=<%U_gGv{UQr6?>3erX48+umtNr2*elACqR0F+pIA`$W=9 zDfE^MH7-7zE5nOJ!K1v@Smnx-Q*#j42^2 zsTwHI*Ph!vKa?1^KG2{5maU5p8*b(T;LL2ft6Eh;lUM!YnfF5Et#bpYC}wYUdJziP z5i6f)v`#=|rGaBy+NhDq1OhrlX|zfB!3ZQx${5pabZ%ZP*>BHS>mJDKq$1fE#>$i1%|{XOA0@zJ8U{fcXZUG zO5~upVgS~s=p!`2@~0x$zYryQYvLa0*OPpbGASo8 zJX5ttz9;^h3A}Mtx?3qSltI;jBxnIpZ;U72SkBm`=9o;gLI#F}*QhMiq0*HK0CTQJ*ds{{YnGAmEQmh@6m_lNn7?PraOn9iyCM zc_1k(luC;bKovg-v2XtXrU@umP?}x6n$U6Ytx0a04NC}mHJ2?Qs0vUL0rTw(kIU?G z!ZroH*JzV6Sai)u%<9{OgwUN1YL4PA;rv4~QdF6#@q@oT1890aoeQ47aQT%mE>J2e z1RT2!S;mjXup;n8^@lR)m)atur#;>^%ZYP#<1bjVm>L>`uYTM``@<8eTEewUd4U=I z%X3Xq{{X>`y3?;i4npP&SPC>FPqZnghuet)asCUjBk1*?`%nnLM+W`laXE}=!z{D2&>4=m~6;H?3 z9E26<+VymhRilvm!3-I6u6|&AkTPKH5A8!8uyj8#PN>P~QSBFu%#BrI# z@3F~ue6=MhP|#3n#xDfRmI8+pKSFV%upoet#x0EpyPq(aRE!F{n(S5c$x z!V6vZlP5H=mKz;=KUm8x*f!TTX#nIeRF-$(bI^0up@$6M+iFf#f>H=#%;S1ggUE6_ zRwJ@#HwHZlB`OTFpx{AEUAHTfN(SN;ZMZQ<`-lY#8?$N8ehB$R+a1wpTV_y7QX8rK z^Nl(%>+=5q&Hc76KD}XI{&8R6uZ(Ik@QkpW(`v4rBj5NbKjRAaCrj6j!zw@u1daS( zns20Z78I5QZ`H~Cc#ibBLcj7%btnN%$0uP*ZSa8eZUiIQSs+(e{L&iS-Gy><<=x6i z4#%j`k9aeOvD!$k<|L%4w@mjv>C=i1VZn4v$)~>EGc9#YMSN z&So3an5${Tq?!iN!PFj+3TBM1RO=#*^74e6#{61s04+WO!N)rYa*aG#Crnz1EH{0O zUA0|_ELI<+adKOenTY_k2S}@a+mth>Vl^81LeQTOSY?Dfqg}^6#8a_hl_>#Pl7qN? zJfk?fueru>MQC+8c86?Vi5Dp#vk*T>)!+`X9m6qs0xHxX8XmB>jBaH}K@$TKokdt_ z?}0ZaGPF&agiBF!uMr}N8=m`Do{-(?D+HrdU}3^7?^B zF~%~tCTD>;P{yki^Y8J2i1c-9ktfAHHE#e1H#tFik0H~l8gA*rarKiNDEL4W=s0n? zH9F|P8V|O0jEq&8sOR^F949(kl$3+WJbCjOJ?AQFK^d56`;OfE#Au$6?0^R<&R7T3 zkImrY{Uc=CxkUc}Zh&eu1a$4*2hTvwnT2(O%bKE+k+`ouP!@f~HAEo{)H#g_@7gR2 zS;Ul##4^aN4Z5u#+-Ge{K;AgMZnY;>J5Y|lXsKjm!7E+WEi$s8GDA0z z(Efhq?<_Br6$NYhdGm_)OTRyWrI>i1O7YAa0|do5j(Jd%E?Xtbt7@Ij{eXx36NQy6 z2~yVihq3|7{Ea&68cnMKNKCxtIg~41BbzeNreT$+&_ga>Sa_={i6OSo5!N%C#>UfX zmqJUPv9wgAP& z=o_ibM!siCLzWfvVPryt(JjW$_lrcVEn??2A zfj&IszNrkt6454Sgo62)v*`>8y``k0T9yOr)bS5Pt9{;P2TeM}wk$a@h@fGt8nWI= z2PlGespBt)e~ee6B3f=xijz~f2lt8+u8C?Ss5v5l=rpgwJ-=toQqmFt1hG7SFka1a zWFoJoW3QA+rn_t_3Gj~(&!~@VHd2*22E1{x^M(Z|I#TQnIEvQW*a?ILgrrgTQRoNG z90;$Q;WEHWYsb{WboW|_dY$xWV!f|KWhAqj2iN$73-cVJL!^*St}4bBn9;KYG75@{ zg%97PHrycz1pz=ThU({JpPP2xFoa_zE^22j!UYcmACxj$Z>dWlrehw4pnLX(Do+Z! z{c@Kquqjm+^!)PP0Sp+YqJSW^bUoo-&52Bvsnl52{y_DHi=)ysqL2+$sq=$i#k+$7 zs$9`AODj6Ii3D`!4`M7(P?rzeg8~(d6O@#z#MA)0_2~-MyVUBURZ`=>5LyTBtV*@1 zlr-QMK5%mSou^Sj))cNAX;Skf6*C3_=}kJrHS}_%oTs7u-^sc=m9(VMSKx^%~{A9k>LcEG|~R_>>>|IH%!UkAtV)kq6_wK+7&jfYQ$2?3X-&t z1JL}TWmoFeO;T9q;BF6>M}%vS1=?)r3u7@U)g-YG^Bv)m&uf`EAOx9dP$M_#1ZvxS zVz$!7s}3$inS>I{F0W$J2f_b;t_0kP|H(=1)W$84_=VtheXWaEs~L4 zDtbc;7i^zevIwe1zerld_&#dZ*{bQW-MEbOE8VU6}}a0OFko?*p#+NX=BF(uD2Mec{QI zAy$85p1G407Ur%G+wjBUQlJt8Hs^?@LR7UBrJHS!Xr(gxQCF)KJ9g#(xq6|Cfk9GZ zsgjViDI|gj_Y?JjH?8VhA*1wXKVHzXt5K9eQ8`t_Dip75Au?LhQmQ_$tUFmRw1fn$ z_FxCS`0WBN$qAT23M)_69IiW!iOvIT2!a(VNWGAW!9gVy)P{fF8ZRlrc}7IL4{P^} z_=gQkm;p3xS*!V^5}7JolnjE2O+lp_n9>CszRYsuKG!FBQeCBTR;0P9W)4a68fg|L zdPS57byS^6X5yVZ;ML2BC$8`!`%#xNT(uesf=w9JpN;_H3E!5qsUs;RLybV>_vsY~xn{t2bf}P{ zm04ma4MN5Y#3trn1Kbb#_LOLLtLHt7~-%W?Gmqh2uz_LLQpHam2ShEMdpF}!C`O;)0vVvOWFv5V7b6c#mSh6Cn}$COlxeYW(A@WY8|~ER}6WjxOb8LRyD@y`mfDZ3gwPSm8Qq{{SY1YNFca zl3mYH5tM>!zs4d5_>WSp`s=}kpLvqEcM+Da z9;sA{i#QY_fOiBY=a>?+}Ya_xZ%0v~NfJ@`(WCKpVf+ zV)T@;eNQoVRiF>bK%`ABBK?-qYd~I%ew||FO`2f-lueYR5C~dG56KPkkCJgnn_;yX zB=|;zgY4_C+CHwi*PtPQJA9)p{{X673RfW(xnSp&t8S9c4>8fgv!&cQ>3zaNm@&!; zG-%Of-pE-wRtVm@$Hsrxx=75fTW9?Iq#nZ9;$*fC&!f3<`L?mqe0t7v$JHxa=s^TM z56_6JGGh_e5pW-*R45Whh!zC6ZegZP?v<#JK`lZ~oc)AyUOo2e<8}J`SRi~KpUokA z)irBaEhuI#3xV)~mx=)2{{W8yG|Y?T1E|kVLFgckAzgioH@w zvNlxEf?rL1{{VQYQOl$=?(D=i!XlM+?Lx=P-yf|P@>#-w15!5|h#HJdErHA!k{R_+ zQLIxVCDC-G79pMJD&i{HEU61w*(1V!jrp_-yK#a6WGogmbFV=N_|F-HE!5>sRpC=V zM$!m%u_9tcLQ>gVF2j@FGuzhwLMDWQ6f{>(h2ca00Hyr^(_MMnt3nPs#7{jl5?w9{ zY8T=(#yq(+%x!%7n!AaCklHi_x&0&h$&%7&5YBccEP6nfDOMCul&r)AvcL9fG29ba z#3Wjpu19UmRx`YxPT8^GT*q*7kQ5q}(Da8XIPzNjAcZOFUr#-wB`_fQRmg6(KgHn2rv|y;m>m>?Wj(`W_ zgU?rhn6DU>PEwQMa4MQqYtkIyhw_i0uesobO`u>r&mG_o{p^~g*C=Xg3Fo86Nn^)T z4~26Sq_q;`RZ`!L1|PPubYnF84&|IFo5|qq zzY?b|XYmS#%lFb4;*mt+lO&Nhk*FAHoq^tE5lmwve(cj(x6fl3lhbM zB9Z$9W9;W4If)6#QBK(65e8-P4S2wsom0 zB!*Q$9S;ZSc#Ol-WuyB`EA zjF$!90$k@;u%J?)^e?0KHLjY&HM;LrlGcT$h*%ry`iIklNsAc_K!O1g;^?^?GoorUdYROFpD`-2BC1mbg~>QX{aT5Ze= zwaW=xwujC4hY?H@t{+)FAqi~di|8Ed^$o0jr|4(Us%1$^rb|kflmc?G?mz$o+v{A% z{+az3rqB~3`+^LFH#m(nOt!?V(8LWtNwrxVJxr+q#x25eKL z5CJ4={I^&MF2^yvQtQ&K-Y!@!s?-t7{o$1sv&xd>f?KCggi37^#(_k21bhrjVY37{ z`axU1+JmVYF%1m?OSYu8RJrXO%e@vomkp#GGD?dfAZ!SWa&BESw_5K70CLu~>aL{l z@ztj4(TbLKeFxGSWZ0yQW&nGL^xNc(!G)!z%Qf3D8nbN|lXohutQ4PUeE?{#yLwVs zr~?EF@-B59N%}>(cY0EGinfeQ4}^Q-1zMbk+v5xwEz_m4LPI{Mh~`YnFs9w$9LdQ8 zPQ!SyXT51k^k_!EEd%vLsRw=2dbCVKc|}RqwhrQ9QF^>?vYE+kUuMr=VjCo^z5C-tJ6(1DB zIt}1GqQJ6AmI||PurPH}Br)+huDtC7CmEz=mPl?o#~+ewvxzR>a!&`uGajFh0`1sw z3IS6~7a#$*200`c#SaM3TnR1f*ZabJ6eBr7T`mvduw&%!gw0S)L022Fp9zV&9 z!p&h(@hA@D{UDUPI!300V9_7J6IJkg9ClOr<_ zNAUnxI1v8;4q_8*%du_Y3^biVqrt}h*veagEv_O>rLZ+ z5tl1NQFyntrk&uVi+N2_#XI!kJ-1;@=Q?UO96(z&nQ}|jKr6(aN7wBaC5YV~78!HF z2f{}EOaQjv>4*n1N|U}_KRZK3roe;!*<^x6Q?S$UdB+!iI8>zxYes2ig(p=5xH^I( zOU7Sir1jy|GlEJ6gZy-UvBaCP!=!5t6Rd!R87iauCZfA*wv?w3D$`_IJVn6J0TFyt z=zM@tWNm6X#c7IdHGV>olxi11zU!a2)!VL{T)&&Ve zFavVK?-wlgwaXm1lJC8lN<*D#&y)|bULh}3jCg?90{2YB)H5_$w5T1Jv;#!&8Q;HHu#3gZ9ruN7IJf;7<{_OV?dJw1q!1g8VkRMbmajED&eo)P0yMa%IpK?nR`O-K|)C)2jf_aLUtAUa7shn~6W69^^_|125vV zk_qu??vAZjytIbYoe$C%CtG$aVtvDw{oq2c1Qi51FQd>mCt&f%%agB<9*wBJLXKLe zl|k8dS|?Lo;acUp*o8NTXXo>nG>hR*OMntvzi+%g7xs1x-WD|w-~bXT^o9FWgpwAz zr$^9;y=%P+lF2mP{{S?L)=RA`OE2{gbZZja-)0reXQCOp<$R#%YGjEX`6;n1(J(H~<>%JgXYjw+#>J{{Xb2 z9I{nUX|><$8Qu&*D^P8Hmelg_LS)Naxr$1^@hO-Zd5w;`>+z3w@Vt4){F)ii1IoNC~%IQ#L26N91tsxWAMY!4J%gP-h zfwchXLBtcnmz3F(@}*8o9W^|3A_;P)n67*9W>l$(1xTRl)Dg4|#@KCUWUE3BR{bKO zxbF$L-shVt(J5txLzi;=4PSRJMvX$|zjGxhR*gz%J<(H^+(}mvUgdd6aJQ>bxPn(2 zrzjFsQq<1RU1|=z5;SoPHtUpSB>)mD3dqGMl9lFgcW=|wk8pzY7H=!9Gl5jW;u=xI zfvFU6zg{TOhseRpmuQ)k5a%{;h~k_+o>1>`dQbkPYL_7{0*XqWg!JXyHr->}zU!Im z$`z}*F8cnR2A*#bdtB(vhHp}-Std(-z@)uGwx?a`T1HWR1zDzva)OiMB`L1;A=;_v z>>0KV^gN6{l%*ga2Ce?x;X@PQB(8k9$|ca22j)71q24OaiPjmul(}fkj~4DV^M*-i zM8xI*1!!BRFizDeDU=ML6zTR`L-yQOGtqmfDf1MHhSI!~(kfh?hpN35B4>z_4((Cp z`Lr6T7~jNSgGbnWzH- zDi7x{S)*9Z^M6`w_Jk^AvZ;C~fb2RRKQ@hy*DB9GPGF#y53{ohc^JQA65A}m8AB~Y zx56+#O1D(o0>Y&QdbN`EESEGbv-~=157g}1_79MxC}!~rf!k<3d|gO)m#Nhwo?us_ zY`FzUEJsr*KkqCb3#(%d-u5 zQnc$+=hy89tT%dyDki-;Mt65&`I6HxZ&rPW0PWTrFcv>d*$d1<7Cazx=ezZZ-_eqB z&Kgw7ob?bI?7|95uwz;u&o4OD zp8J>TfC}JguV@Q>S`jTmU@fL+jbe`D{t`kzYiGO(!MQ@ z$!Y6@)#`#)nuDPm9y`V*j__CX)`YHF zh?c()riXVr5M6-Vu>mjGN`85HNhdW&5A=zatI)zR0h+1;OR*qBM9bll5~_F760W;v z^vfYd%8tSrjjPtAlASah^@d_{EeOq!shoLv?-D3`PoWG)$imInVJcD0s!y5X87*VN zNUDG|ij*^3b-UE8fl^%gKuZnz{l{B1TD7jw{{VL3{{UDBRSBRc0Nxwx8-$WrYN{vgWVFHHq&`9X80E^3Gxs9HrQk(VfL~_{BSaqqSJ= zLSRvtg%YRS9viN_4K@v~UABQbSZX+`PQRP95+0NAE;va^GZm>0e*XYoBisJ|mZ{+- zidmm}@O6s!ccY;$WWWgkt?N+QvpWLsK~IExeOyLd&l+7SY^oohjRn#+OSa5W%4z`D zX8IVJcY(@Mts>ptKtLK(&Lx#37puKYYauGw?d&KDhdYnj2ixv+%q~+xbs@eR#f#?= zBFsP`vs7_Uym4d3NtlN`>8Nj^g_F?ik#u2cNwusY0gk(OZ=5;fIUy368f9ibj|%4Z z$u(0GP)m5I(apMIrUwe-##tfSTDZcMH^5&?4G$o8*UBF4*D59uN=9K!&0jy-Ji^ul zl_XFRsT!Dc78zi;qw};lCt#_$(3BZ!WhFtGw>)vb#w_9NFD61-P|D!u4jqL15_;u9vq9|fpjY$tBObbw&b#Kph?081TxnLZ? zpU;d{wO(jY1bk`m<}Fw+WTfSA+WX>UnohCJg-R)zE{X!Js3UQ=Sc47Yg%AYC%oqwY z^*winBqS&T4^lcsdG|!6l!^-Nub)_U8vUmcOGtGSl=I9D{{X%u3b8JE`3PjRT@u?U z0fijz30J-gmK0mPG=>awr=@90*!w)6DEImS3pP7ILWOz<{Ae@(058+xA!#uMV@pKY z{;Yc$PmBKm#R2KFmTC$ZGjxkWQaxjU4x+Sv&>2`P8R#;UQlyrmw|+N`mQEB{mdY-5 ziIZ9)!!u&`>tH1x&o#kF=aEJ!~i=zVV4Wvl9eowje~~Jec*!bRH{Oy zOJyh}s@*929v@!1MqP#P^Ji4aGl2{!ML<)wQcWluPIiFI_pSJ4lQ7FGL+G7A*_?{` z!psf%`-s#L-fwh2106@e_a&3-5)EkfG# z9QF7fVZQ5PjLS74#^C*r!Y$%E45tZ7LnJeXpyn!FHi-a~l><%c!|+3gfwzs$qvAkd zJVfx?Rs~xzT*=Gz3rmgHvV7U=2JwzHOsQcqflyTo56P9h%kcBDN&e8N9oiM zL8hanYTQK$_!VmmgOx$qv?Oc}2=Pp2)9ZlmY&Ca<=8yW{-+)zaARy7P$g3&d~0~XMq zdvOAAh8!~1$yGq{^(R5z7pz!<)TERLN`S8Q=tKQPe#4e)RH=nZIpvzDS3i{w`|$B` zEkeb6%a*)~B#~A-`SBcDaf+0@>{2uXkJ=V5o5?fTX>l}ap+^HsRro)Is~kr;G?+q2 zB$2rlW*Sx;p#6K=&`?&TIaL|{ahP8>I0_!3V%*fE5<~qU4kw>zv@Ix<6vx^j(v*YO zet=iDqesB_RWhX)@vQqx;Qs)K=sNjs>rHnETWxuAC{tZSfy4YnXcrZ=IT=Q~1FvXb zxg<`^S%P#Yp3&W={b}vQ^?p zaNtwm01(%8Nm3;yVpds4+5Z4&RuKLr#ZuChplSx37*4a=f^%51@7DWTBW9;BY5E#@EsqYA$kZ>{)EEy)*3^X$)9i`IfnE4x`1;@ILSk_{K;{AtaqgF#0u|H9Ae5 z3UireuTkaD^7^z=#TfkyNI?K3iq@y6?-`CN#0pp-DM=cFHS_5SR|S@RwsDjcpq2s0 zv(&%YT+%uDbIXw1-W|lYaVf!Kli2+Iud_YmUpN6}|+q=-A62g6LQ>vPZ z9lr-?al?3SRgfqGNnKxO@ANGjNy@_5%x;`GxglY1n4HQ7XW|*Kl(0gST864u(e;BE zirj^*DH_%K_dIYRhVH{@QUw@t(OHD4BKl9X2qQw`kK33fVzwe}GAAG&A)tPOo^g0x z(qzjlkac&hdKeX9lPm^GgQ?sN9w^nV*C5TBQb4YoQYE+8OJ@Ca(@3*#Qj(Cyni{~r zSuhRBI&lRdYyR_jXh;|DR@twTU^@FSZBBbPOpj-mF6 z)1r4pqt>uGAXNVS;6$q!GfGOx52sG?`feeX2}WR+-$(9xb%cCpjAckwCWR?M%WbWG z8o{JvzwQZ!YD~F}{;#O_>lQBDHf5h%Fu7)8e$bbPaRO$P%tY+rvIl~VSJZ<}pVzq}2DQHkNN<)HZPjA{P;W;xV61_sdOZ*xh5{4O6GLjf@ zALkcAKheq(g&9fl080&P`+jK}ZLZK$wKoE<0IIr639xW+#G2 z5bJkg#Gy(EK=Ez#{CMY{KeoRp((PnZlZm zK71HvxYU&*j53H=#`Y00Bn1>bb0oH%xs3@ySJFauY*4R(O`iET&eK)d>;R-M6@;3aY2TssQnq4@)K)7%`!{o z6=kBI5XH6Lo5#wQNhGdW$`twyhko5mdR{y7j$Tmvbh<3zMugW!rw8(}TI|LuK_nUg z?Ee6GFN_zGN>iAU29(Mierp*u`6vLE1m`YX{&_;>4qSa1f-w=86ir+LHf~-8V|(bN zx=RMA-@j^f{>kG1`WlE9-2>d;5d4AtSkBgmif9+P;0zWwE^c6nT14qz1zoDlz%ZquVxH-{2Dw` zL&s?i5zIw;LN&8!Ctv0+-7|b*;u@LOk9N*lrBvI##W@?e*d(xp1y!0L&Aw1o0aV62R^OPzhk^0FaUu z+ADypi&V6sUJ{g?t+zwkK4kv@sH>mV+7hagTo&i|kGSylzyfF}MMvi`^N0OUVK!J( zWej{h4vh|Rv)hOAyjDle*2|zNC{U^WTy_zldOMU1rArkB*(c*zS5=gHw1VNjKbyha z6>If#2x3D~zfb#h;kv@EA>&MOmTC52|s2F~rG(AsPGcrPxIZ6jo z?tZX3-80ORYsrEgtGF_ID4i>&zzre43t%~xt4K-{m=!rwczpQz!p0WE%bhY>1A?+N zccBjKG&*^{(ftneA?TV_no?ACAS+GIulbh%DEE2DRsJcQF#Pv`)_@i?Hdu6|vcnrz8j2q6;;g5kh0h)`KX5P)Go~ zeB)@#S7zOTCop|AHGX5eHRJ^jrlX`sV#IQm8`fl33KXuJMAqv9^1}iviM_K4o2`6c5uoLHfZrTvWK*h-)NJ=Er%3JOOQ$V{{RLrBN$5{cn@HbdsA+v z7MElT@dS@8B1;>mK*N}2h8fr5OAl6S)9a_q^oUh8ZQ+uV-AE(gb5oL-?nW$1MN$iI z1T2{41ONc}d*P=7B;FH2q_(XkzxWs0hxd|&}-mni6k zle(C(JVwPM}?*W6#mo&SnpN*nna)NwBtLxSd zSuUj!;!%s~kc2qbsepkjwgM>4)ae(b*h|)p7Y+KL2w)%2&M3>Z_xr-=ms4R&)+Lo9 zuD}k0D%r}N`HRU^BY8h|imQ0Gp%JY-?G6P&XUu9ei43;+MW0_<29A?teaAfqNUS9Z zmewpEzR}d{%mD2DBHgBJu~SeWO6}RI0}pjP;#B5+sYDeL!-%Ig^r1+1JMSGPc`o6{ zJVi^+dJ;A9XaM-cR-9mT;9cr@F&eIflbMU1_=}0YWMyS6IoG5PUM`lBKu{oR#-CW{ z^pPL)p;v_(dCDEF~q015ovax%c$n5eiV@TyvG^ACnyX`AO-o z9wsTcV<{^sIvNs4iuTZgkQi5C^@Mr%#Ny-DtbU&Gosd3p2c z*T==CyG69SAt5Yl`#`JG%{pmzDdCR2`|$|(#xAq~>6!;c4Vjo}@pu${BTiuDmAh$3 z^1Q#5#`Rs^F9rHJTG2fRQh)X|4Yx>Hy)APVN>l?Hxq6WcXVT2_PIf7+2elJ_^p=^4 zs#p&qW6kn;xZh6hJ|0mt>x`FEf_UNu$+=gn2YzUO6}a}rCjC@P8!(KN*9{QM#*>)SPy0PGADvDh<~a2l+CJ<(2e zoDq};r7QVS5KNw=j}w-lA>CiUSkLTx8njEwLR6ACroU+A5`%_*2#UzYWkHo(quNmM zcKXL6_em#k&i#0b+4P*FQ!bvptEWR9EecPR4ZAO&5Dojo0JfGXA>TsP5w{$%k0>W` zU*khUJ<(?Ql`UXw^`^(HEu!aAkG1Cp?)#vFk!Lqu9Bt>zQ1ByuJXz>sq^?~71RAIL zj_(^Vn30-_8Xmkn9}8$q_c_!KdAok?WXnuVp2;54-azsMrnz!Y~g9sEi&>)5IYoN zwIy;C3!I6}AK7j{D<4te@n;z$!t(hx*U^|Z{q<`LNn$8RBXb*qt%78sIW>AH4U|5e zW8=$<7m|diRI5tuxbGW>pp0!UVtq=>5>x;r*Ouj# z7Q4k#W|S+$9J06@eIbtPyxcjfYZvjnSl?Q6l9m9C>SF69LZYl&p@8>ox#{i@NekoM z9UIaW?Kew?C(nVjQC-wsncA=Rh8YHp^N#&Vg_=DV>^4FRW+ZTSgQ!~uADw*T^u(sQ zhOzlFxbldxS`B;H0Tgl1NB|O=r2F@V`)!b(oWgDF$s`J%HZjHL$u-yF@24~E?CDD# ztMG-(=KPp|#VH{B+-qHZ(4mO0i%?kske$aoG5iq)m=Xe%PHr8?QSWH^ugUUT)7$WP z;@zs+wf=+#FZs`zi}oc-0gh5l4K(xOD%x(et&U=nG-IqmBJWB^iA<`HK-hC0UcC&1 z>Ai=t?bDCu2HWim1(M1N>jO#5NJ*_{4ZZqf6thFXuZm&_YY_-N4at}X^yLzQMFx_3Js@h72MJffqWKEc<&Lmr2Vgz|Ho zS#sxmd@m$7W+DEc)uSN_3=~fXj?u7Q7LjbROv{%tP!yGx{W>vf5KTKqVgCS96Qw0G zlz{76(=7os_O&GKqY4_GBK)h&%CUNoqJ{dgoxP=i?065MDQzR@_;L7utH9@ef9x%U zEvdB2GSr_E2aIc>qaLjKZUla}D9KeBDcEfP0DUPLU!t67t32fo63X1EjdIXc_Rs($ zW3=04+5n+RPl!3x{(cB@>pL(~=CiKQgE2rTPz0R_8|=r+&I{q|%^-}a2rrem?H$~g zxf04kK`aA`Fx~>&uFSJjFu$vDoSFo_hoxG(YZp3WO*pFM69cPaGvEh+J3+|!-K8+NZSl8eb!gk~woL28PRC@&$6LhQt-DN#d`9*6VY z0j}HyCVG@+IZ<^p)P)xybm`hH;XA1)LG_=gRa^PN3!z~-l$TXl5up*J@7OKe{*J8H zMITb(DpQpj&c_QAEC>IqDEAIWd))jFi<*0%j(`^H92)L43q$r~~X=G@152R`LWSsV4 zH6ABPE%Y%PtIxOVwsgRN$7=nfDaQDlBGwk@NZimvt{uj!SWxw4B`%gbk@XE&DSG-m zmu!#(^ooU3e}70haoN#NVAv-4Qsq*h01s}Fe-mM!T$HsB>J`&s+ZfIjDs_pGB~B6x zf-2j4qha)MetO$FRLRf!hUD?(M*ZP&_1V%j#P&6-I#udT0i!!r{{V3e*Tv`rk6Z(# zvjmEsl>GD3EaR|Dr6nmzccB`c>GXsPp7dX+nIU0Kl#odFM)c#qz9}s$3EnB2B?=&a zlAYD&8|FBsX|&3tmv2nu=ja$8jaIzOXOOJ zU&G2PcdB`We@0egDQl8c%RxC<>XW05hykhIjzD3(aNN0tLSlSsW?1Rl-&&e-V#J&* zm0G=WNTBg6lgDT$i3rKz4xsM}M9^!R=Qd-Q9OFPvz0ZF*wRqksJ|uz()%pD96l@sG z%Rk+ACqf>bA>lS@N|&83+L7KX3>yq$Ide*oq}3*-ouFO+0D8)@&H*X^0L!QyKCx#4 zTwbkHlyxg4KltnQXg~h|Y|1JtQeC~5{V%CB_YHdM3kzAUIP{HW5|!dgR;nauNdu36 z;4z)yoJ6IgG_p!bECHcY)}xLg%l9jno4Ew(E#lH1MdKb!f=a^3PU2T@;Z?pzvsRR%H zsk-Y{A?hMK`ua?{!~vNGtUpgrG!;N?^Pn!N;jZIZP}SW9IIQEqAP>kD!( z4__pqB<3ZD`i^__+B}(a&P=5zIR_~LTb`ZH{{RSf?CChleHmf9Os`u!9{^cOMN1?S z)iri!6z!lI4jsnhI)O`(O6q&YM}z$$+HA8X$()?&QprkL*-u_wCu+YUI8HTr9qu^QVK{dUC!sU zInTQ$B?a5BFC83j`m?jO`?BXskjE}mmjiCYr{8Gq`NJ}bd^81zN8idR;G0n?C?)D# za67?^b&Qb7CAf_yS)@(7a7mVPN-Ut{eYSr%Es5{PvaGOF$z*0tDk$YIM;vH+Zz639 zNMhjczvDuNBeb-{F+L;W8#G2|qe+A0PF_`qOrhdq`bQlG?X`5E4%UQ{3mvF-fS5}Y z=?r~9JtdV0S{K!YWMm)b!?sz zmkMC7aDSvLPsGa2>dAIK5-YC;48Wy`6*)GftsXRj$_m@C_{N!Kzs6SyX49!}aD}@j z4VvgtEal7Ud&6AIxTrHU2Lf>Qv z=7OXWR2xQxE-3GZElD!-D{7M8l=&{CB_spGYrn=R&A-Q~0D?nmAs*d*h8YQW(~SW;G^Sf$SZ@eR|hfTzPy+Wv71H?Yd=_aw>FNJ3dD z9x|#2PQu5av%4Jpj!wu!{aWRkPePNogtR~mSv&kxL0k2XWoo#vvV)jp-B(nKcIuK;D_H= zJVWidYL=1-bg0mu&nRk;rEJC&IfH6{bJKwVrrNY7jFs5uk z(VAiPY9o+Fow)~?bF|t#I_Mj;6GFWEjV82b{OuP%Q36s)1hd0Ew;B4hiEE;TNqT9&9lF5FC#0EDO0zjyyg{@P z6oxJ=EG3{7fkRX%Zg@M6+rw3w`<4>U!7oq0+7fQxNRp=_XRIt~mCF$O?d7abdC9X( zlvV2qKkLY+h;9ytZT5prJ*M_6URhoePqk1#1X#N+DI|r@0I4RRm#ENCv`~O7HZcXqKFc@iC#@ zwy!(t-uPt2ILR|5N<$fu+|ktjRPl$km{$!{{V<%k$y5s z2`bzF08`9Y8GgY_6XC?99IQ(*eTd#OTb{-J?OcM!nvdI<)-A*oDrxHC5o{KBnVcl( z&M3obL$I2Cj^YYH0EXOkf!E#80@09=CDpknQ4mYEPD=n7Xn0UOZsIOpHi84G%{=|h z7D7|fg@9B6*bX~Id)oT-a+VxvLB|ac*=J@;f+cYm=JPGyB++2oN^=rJ z6X)I>E%uOi`Mh&$wvw#_5?Jrs$|VUYa-CWnp&Xe-HD((fV153jB{_=ptPQ@gROwYHbnXuS z0GjziULo|7l9Fj9_9T$Osc za|)9Blc6y;q>oARq^B>k4uoq)`~$QvVXJynkfo(l7NeOd(N);*N_=5x#+sr1v6)7o zIS_@3G3wBK0sjC_W3(T=Go>RiP)ljU_2~+hTeT`%D}TUG=gJCjq^m;atNV&%k{s<* z#~oupx~x8|1hb^E1MJ#^LkI2;NAgn3SBX^xJ9lmS#Y{&ukj1ieR zQfjJY8vS4n6v9)KpqY7;mtsz-JNX}jMx7%B%V9MIS%@T+Rms$cuk!{jX+aL!4QR$I zWd-X_4oX3&6lD%o5@D74tl7)IgchhA#o4#g7NeU)>Yjg?UcWE!r%Dr*g+m`I!$`%J z-jGY2&pC-pTKp)W02-a^x#}sb zN|qIAnJ66Yqp{>|=h`b@5=_ZCra%6=5IGRRJGn~QuhZ?oxS_P2uXNKT8UDU7&C8mPr%pS=agikn0kWkvD&_fpw17r$W5eZOgoPCK8}7vHc6edJH!zYE0s>3; zTT1KN9d2uK6j>kyjaz>x_VbY~inZu9f^nYCmu|5-zN|`G z{2;Qo_$Emxs5eOri*_oC@BK+Fn7U7W*()o7SVLNq$ogP*}3 zS}^(xy8z5KK2dJZZ1o8$LoI-zKbl6Dp%pQN@W3RD&4@kSXFCAKUE?Qt=XIf{;$V-oKU76s93~;v}5GCaH%OLUOhFn7!k#|4Bu+@oSwK-*d2iX^zQBE#651!F-I7ILPQonV zyE0{~GU>8U=P=WNZd92JL)C|r92jCz9v};Tm?%>=IWs^2Q0jU7{q}{7N9c;pF&R-T zBsq6-Yg!Y-^G!B}s~wz51QFqSa$;0o1!jyBr%*P88K{;bdwzcWVfY?g#s*(v)1|-$I{{T0J6tIQZn=v4$T}**n~FpQe;wa=ExDm1)+j@F5S za%Ome1ycV2$PF0mM_qm}!Eo3XnQ7Rt{66U7_n5MhM~I%WrgVD!KEpO*b1k%{jGAl* z$CJz}+!!`+ot{&Gb?DQ;rD*XcQaB&8vNU|~xIINmmer@#^gJ^Xp~ zi(-ixwP?=oUr2^wDh0BZC#cu7MsdiQQmT!fD`E~|e*R*t$#wZ3zYrqn#ECU=(hM6* zih<&zao5f_;+pUfHTZnvu&_Fj?(>Svk_A6_tuVH(#*uiGRVxz6LxzepWuQwp8qD_TH%WuCP$SxJjml8I1y z^ol_HqaI$`#dU@;N@|#&dFt_Ud95`0^omoZ>V46NCa^B>OYQm0M`l>19kz?gO7#dcS_rC-l^29G>4uwIuWpU(V4Y*l=j{>&!5uWULZ}(A7ov&P4<0vKbydROWuq{ zy2_-u6BFY?nxLk-@wZpoQPanl#;~(rBH|hEE|nyWPv)9|ydvL7%(Mp~1c0NxHtEbc zU)E)z0$R`#Q$-FNf6tDwLkC?3b)hNMi}?oHI)0hv*VEWu!kKnSNg8AXAKo*pUt~&@ zr6n~quKlA}ywU`;rI;ZCoKiCj(q?5VdN2fO*StTA-|+BZ7`Dzrw0hPOrn@N7i-wJx z7g$*e@VU$xT*g&;Sc*Z~r(HUM_lC#vd|7r9<|kkxFqkE4kfKFL{<}BcE7~md%db)L zi+LA{ymFyPlqNYM1Y!kCj~cN%M}<8gN5#yvd!vcczj(BiG)7al(8}>tnvEj9@p^DE zObWtE<(X9xDO5!z9{7|9Vj)odTOcB{u}N5@D?#7ImKOu7XPHxUBthfNF@yJcob z4bbvGV*`F1H40_vp&E|ycFQ9+zW{!5J)Y<$nsE;JV+s}JVhI#szcCiQ9~a}^MQgI? zC9<&bF;>m_tZKMZ1E`Qd51~7BFvoTJI0Oa^`j*^u*v89-Fxbe16aW*x{ruv%aJ-)9 zhwNES51A< z)uwqQjX89KV0GPUV^Q1phKm%Wkn9M5!yEBq%7>*USk=cr zouIAPdZj^?UZyV1y3(L>umEUaB>Xz0ns=mZgtv|ql{D;?Y;+wuK>2u5ay^-(hp2FU z-8j}5C0)*t6i;}qD(+fUxdx0X-G4cX!d3`b9v}|S(l|21Wl(;bL4{ct*I4{+a41c6 z&H2O_G%iKTjX_ZV09T-b2*MMMWs+ax(z#=f`9y#52F|?FKueGu z?XP$VYrBE*Bog{{<_`(dQ$=l2xj&s^S=gx{w6wiAK6PgIL~?1wiEP1QX<~&Ae>jVu z{Sj%FU{5W*I`0H+SpH!?6f-!|0nfeXsZLFM(mAZ3Zq7SJBm-W*u{HQ+gB_@Xm#@9IeG4Xt8PEi-K!f*1zxQIDg$5U74OeT zmV}_F%SwRM0L8gxhMW5WrEF5^Iy!Ycd5F(%>?vu{BQekg78>#a`5MxZ;eJH&%JqCd z0`;#NN}lPMk5{ElI~_*59paU%2NzPM&CV!UTGyt~Y+?111nD5P0)VLG1Go*on?m*H zh9(TgO0tl15VA!#8XDEb8j<69XDNGno<3Y>P%`ksi%ADLOYxwHW>^%SR!svBf8H&~ zojK2}Cn;v=N6`28M|P`3z^c(DvXQ&-9KUX@uIyHHur5Falyp9D%XX-NtBtv6U!Qd> z(75V%_ioW8&o*SbDye#Q>^JQNxSDrN+E6p;(j}7R*~@$&O_tQ93W^;+If52jVuNKN zp0QZSM5`-1hi32l!6|c+pvO`0icXTwdp9xUf@Nhp9}2cnYfNzzyg~v{d@j&f%cnmO-G45jYI@ou-Xl3cOz)z+PcPk zc~xXuw%bCeMuHNpD=8*~>ri%vD|$R6gSWe^W>~`dGOASC5CwC0;yOHBE#zG6oLJrY zIR5}sHd!OZQ2zjwcuMq^wF&7-Cn!Q&kH_9F<2&pdN|qBx4tM>Vc&F(;+EkfSKnxNA z;GK_OBOhJjcfPcz_zNOG)$vl%oLr161G%KV2rl(m}6KM&XD_L^`do4~XH0!MyqO*=O%k=xc z&2I`6A}yQLfH#kqaOeF>N?J<5XKgA+W`@Z>^(iGFXJv!U=Kb1|(X2T?r$nG4q~ZB)qHH@%ZeEmivSS zW(saPjfZ%S$tt8MIoppogZ@!VU`<4EX|@CcrBSH;BaZg!lB`;Csmcyj4G0<$^on!r znUs?;PC(W?k!nMXtjzS-#jg?VPJn%3pA%Tp5?Nr7JS2Tz zcu2Tx^3yRc2~NYWU)~R5X#gbnnfB|m2_;O~NRB-j zuv(o?NbsNXBUjpxM;lpGsY_FV)wK_&c)jS}<(HQ@qKZHcD%-p0^!yR%elH#8#K2}yBfkjjUO4GGIu=``e2q-C>kfPa16fMB$cY)Y?&6Q%l6rHNxaMN$T zk`>{4jIX%|>mN-k=C5iuZ=<_AwouFx7%@tJ#UyFYuSi+N_js2)p#YG;x?HfW2EK37 z9PBp7NOP4=L+M=@b{{w)Hstk5Qj!5W=ONq3!in4h!&eN&0H8nvWAbmG5Ni06waQW^ z0hLK9V0LP;);PQ7g{8vEj;buwI)U4_FjB>9aLNFIr$P6GOnToba;1=^DK+qdHrP^} zYzb&Tf~TrzEHdR9x3sQ4zEJmzOr=U+gfau>BUaWE?ksA6fsqUkwMw_CaoT+KoBchbfb3~`A3)4i`5Y|YXKpGsX^4W zSZZ5Hts^vvL9-~aXKtMH9oX%vW0Ig(R({Y1(R@pou`wSE(m1qxP+(XUusS}P;jH5>T z#(jluKT^4#tSBQsZih`e2#m_T>j3Zn07$0IYMCl>YT(c?uKh;O(i^USNq)Q^S5OE` z3IQGBEFUh?ptYnGBrsOzka_c_kUsWc%AxbD^071?4 zi?ln!x4D`O#TPmU(YYNU#lGJsQWKa^mS9KMuCbNjJW(=4w5u*;%zqB;9pWqSO$7-G zNg#fHJRxGPF0mrbHdNU@DQjQ;G5Q>V;njflh|#M+A>#bWF;a}VjAqe+s0`$vHxJlu zBfJ@b&@AaviCH@ukRyy&aDXK(11XfJalzCchnRWRo}`qu+0UseCCDK~%fCNpX_yIQ zw$2YU_;xX$PQ^1POh&;K(y-Hb;#7o$zlhcT+(k%Kqv;OL6b6BLz(_i?*Yj;_8ZI6I zXbI2|-E{o8xf4AB{{Zp|f=|2O)+M;H073#L42uMyR)p-vj{5!>2zq^(OYpvh z$>{~rVsxu30HLYVya%(~>d2C!>OR$9@KOm%OH)wH2FJWJEm{YwWd#R)V<7a;if16I za#BcB1C$!Z%XnNr0Y(%q%Yy?G|4JeNl6|-q2>@yGW2SX zTb&|@W34wW&cj$2YQqwQqFE_Z6qC>I8WrDe^|^+loqXXt(ml=WAq0e%B$H6Dv5B%6 z-U_%yp39nALEMwCQ|I}t6}oS;I5tz1I8i+CAu?U}GR-6oQv?J6B zh^Q4`ZoiL6IR1*e!dF>L$%)Y<>UfWFZRlmOMuS(^-Pf;3;_Sr0turO0mvood4|{{R z97mSR-6~RwlJ#ciq*dw?)!lfeY66)xq3H{_>cN^>C`l>;gbg~XDGC8Zx;rScJaf|&B%#|rq^94+!<>|@k(cu38qKrxxCnUv;$PAEmZn}AM z1ljCa`bB$sQkt2nN`N_8n^6!=D;B;#3; zhZ0bsrrbcA9nhoU2Qm}y5m|V^lxGw=9pd&Fy&1xp&0lcwq{0@p*g%xVypP@#Ez`ji z(ZD?fGFvTf6;eim1lTTCNhFi_5+z|puP zc-kdlfiZ%T1D!ehK^tBOvm?T!<$YUEKiVrtsO>MktkDk0J+N_7<6S6E2&Rc*5W08u_s1;U&K2CnVK-x$3nnL2PG!a>Y(hZP-r zMLT7HF=1bsi#PrDgdnNFXiC8N;dYs-Kmg^{xY`Yp;4xm9&ZCtf z$WhaXis+n~X~;vX^%1Xl{cE137faC4@e_xt_gej0vYNQ>r!aPX=n6?mW)&OzwTTgQ z`oI=jH|lDB9emGG2{)>iW(i3SvT}x_j=H&MDH`s3>@Ce{L;2P?w%BE?xC~CbKBJN87T_Er@C%+LE$hpH??i{m98I)KnQPdcY^qQa!TJP1ijB4e_ z>zcJB1p=J`8+2{B@6sDCOXguDc$9T*+lYTH^qUQfu&dSQB$X?EI(a}}>d!E0&3WgR z0VgX}=zACq{S=OVFy$;b=a@*!{;f2ATj$ip@A(|X!DFEuj*wRE#qt#_B{^N$xp?6> zG_Mkeh>>2Onn7xcn3nI7prBbxATZQ{)cxUV>cQw#z!m`%4E1hDZDF$4VIfK&0K$Wy z`^GPb{V005*+5!#1nlF2Do1EA;pY4FS0yAe%Ci#BT&3vk<@n^D!@i9DQb`JRnwQb~ zjypiFM|X-R6ez4H{-pl^iRZ6K*r(od!gLg&VN=!=1dBwV7$0j#8h3+OcIg=u;VLB5 zkRReH^n-n5IJLDyP=F4xN7R@a0&xVut{SEd3}c z9Lc{zm?(l;oljU3WVz<9V&$Yz0pdD83HtSlHc6sQqb$NSX4Q`{y&el&F%g!1SV?24 z;ytimk4*@PJ9eYCcg(pySY|pOSb&C2)w%2Gef|Zmo zOoS*);v#Czuz$8CIKu<)M1)#XF7zw| zv2AGYa-2R; z2`{@Q(c@WyA1&R_rq=5VH1X8mVM0$AG8y_Zuwz3$RvR7bWeXW0DfU@7U_jA zOuEpA{h{e2#W$>(QvF&TPVc#YoB+ZX%N&iVulkNm4gRTfCJ`b^vjuxga0%Zj0YzTn z+(h^r2hKC56)VK2eSi*VJ89RfEhe8}vm}zDqtditw@4L;?*zV7RrTr81m2ewp&rMJ zaplj_1>F~hWvM@?P@WFssfDM}FA-vUT62j(!gOj9Hx77%9*l8uWf_^Xs-7z44m>;u zEPAv!Ul(wag5WD~IDKE^6z+?BiA5_Y@SoBHxo!UdcnsQ$I*hWQlbGn*zS{E;S*_qW zngAnkD*bf6bYtQ-^<_lV2!TMw4|YrdYbgo2Ho=gPF&S1F63w-$snTw#2M5X^ywE> zZwVR{4Uauz+)ZiCEQvwgyZH~CLt>acSWL~5bssoGpnO+;0heGmF4DN~pNrUx$V&);}exUYGV)Bqqh`jOH$ zOMSIuvjrArIyc@rxG+4hO4O8+s-8P`?F*M4&R&!*{9!1hKA=>c3GV@=@ zL&4llbjr+9mPpmQ^n$o{NlHM(F|&xFqghNTGaQ z{{Yj>28?Pu?-nfBx?0>(TyIz{3u>Nbp@U~9;S=2$L5Gb@@vF*6w<-0env zf%iq5-t?O6OEn62g`nSUo(Rern{6XLz3ua?iq3?*wHoCkH^!a%7%ztNOg<_x(0m>m z?Y9KB%`lp6vqSbhlciqDv?LKh{yT^N04S|#z==}RGxaAxDGXMNCPalxPF%-L+xU+K zMUAH>%#dz=X`FuAGJKcCVDBGSy1ki@-f5~9nTftb5!?WfiN+GPnVD=y-J zzsG^~g_uU0!sYdn%&?bIx^u*5OT8w^SE*Wxl9QCZSa<0fMi<0+!B|jnMrwiiq%UJ@ zlq{7b5~VRw)F1;I1??Z&6)yS$9lP=87A9MeiB91} zpN`(|v@&NFd%DnOtY&l<@NN4ayf)#C6ow^2s@rGY6z}^|)SzX87pYLDyF)Gvzf>iu zGYhYwpgiqZjyM%@FQd~i`l&=E{iF5o1OEW}8}&e(`HN~#8+3=uwyXA@k#_N$;jaGx z7`%a&-8Vvls>~R4{o%S&yPvFIu-yTRm*b~Mrc%a%Bb#TkS-cqXK{pzRgyHYaV!JQ};OzGzk zEJih|l+@6Vj8CH)#ByeRrt70T)Qpe>vN>B*G`nvh|DiLVMuaHlw2BV)&3Cw0E#E8*#W^; z+ZfL;z}dF}+(%V?7l(&hSHJH9LP4+UW546VCF5prqCno9bcgHO$OuU^(Yinj_QjN` zG@?NvBoYD8)0mWbciPu*j7KY2R)rmFK?F@Dck9K45ZenYW>2g5@>U_GLJfl*=m?={d76z;siU#5* zcc}F|AC3ox@OP}ppbG~sLxKMQw@T0&nB8zsqvU~@gy`h6ROkTP&L+c{aT3N>VM4=^ z8jc>j(~v%fp`%_r9@h>Nj0CXZk(4mry$FL+Y-}>>MuSK(W3m8PcWz_b!bnP-2i$b& z8*X}3ouH9qI`;1b1xMGIA!R@*6s%1?!qoyZyt`fG2vER?FLKMxO@}OHo^^d0;TPy;6Dxqyl z?fJxe=#$Yn&77cBn2-r$yZj@M$!&ZJJwa1#D8*jSgWK7j=d7I}snG%T%}hPpCggzA+ZB*zM_7`AFt2S*=Bwss6FW zn#75r!#^4^iuQ}OK(KPrv}Pu&#X_Q3Snkou#EB{yT?A^9H|YA0v{tcV43tpQN2C*% zYLPT}k_q4TKJSb(aEw5=szKrirqwM&#u)GWK-?OFnoe51)Wb}k^j-E2$vfoXzjT%29dECNE%*miP(meHrR2%3` z9C_&+8RM9)Ci#eZ7e$EB5*y?r)k+_4-YKrz#6xJbkU8rJ2q^$;EBW+~W-R{zl{nZy zG~0-C$DCEQTZu1G+jua?6Ih0Pw4ZCVF52cyBf?1$9DuMqM_7%;;h`Ev7xQ~&qz_9e9jG; zh4|Ji$-D`v0=);7W6I^`<$8}pkB(1fxn7ZF76~r9XiJsKRx?(@$t{20&x~)QTrV}P%``f05u`Tr1RwzEpz5< z-cUVPwA6y>R#Q*jIDEX_95{9yi^5Wg6?&Fx4$&osYF{e?<5RQ;ypRbGL$h!EN9#Po z1y4cDdA)AE8R%_RgRjF_>Ri0du^%tqII+y2bMA{sKs5yNA!dzOvr1}3*>+mfQ?QD* zb=C<wt$gA>8Ar=Rf2&f1Fk$ii;`Q8+uxiA4d!S{OZdU=i z9ir!~DRu$b`hM}h9$D?3?d9!f{{RhoP(NO=`tG)8@F+5yQSyoGQ&Th$ODJ)?61CjP znw+&v)Q3qF_wo#19v79^R^UakYCzDa4kGP}*p&g4>$FvqJ!zu0^A*?d$CGgH{{U>3 zTa@VWq?DKDEx`vvtHiez;HgT;uooqLAG`J7#ft^jnUaFRDOyV?Y}C7@UoGprss%lwco`jDX1I$;cnY&B?nw8XlF|~S4LX$01WrrD9{bS@zO^8a=q^(7X)iiFN>PNTu zd_Gmh`8>0TUM9T>s|P2=$8#5PCHXFGkt$2NQ<0f~BYvRs%fbcoc+9FzLH1Aj^y|!B zvEoH4K$21@TSh0V{%IdeJb5F+yuO02nNAHgK4-LCw%#O!%O9hC{{V=R>yS!_Ai6{L zf7^H?ePNOiRDx9O0NwZU5qFf?|{iu~ca=}^cVoWL;@ZjrVACLq2p;(xk^%pJfLK3%zkmmVcV*NoPBh|^m(`IdD&g_502x1j7Fjw0l*Nh>ZL zwD76@&-a1W>pKci>6@!l$ij;4gr5~mT+UFhO?JzE=lw(wHqbuNdc%$9%Jx>K8#y}b z81<6(Qg@-&wTFA6a+%UIKeN}oaQS~8PV1wGJ?Ws!^owX9G{tqUfNdLw4z>Ep4i+7O zUw+3{=^riFY%>bNP@03)y7!Nvy%b^6LglQG0z!hca&-wkHhA&BFNYpHc0GT_<#h94 zw=PnOrj;&L8ekL;%W=4<;Kqk_+EFne65~*JuhIcsS68b>MHfni2EYAR#wuB^S<;Cz z{g-eKjnk*g$Vbfc<+bi{^mawsD^GVE#M7mric2V;@*55W1GC?yEKBCmO;G;;Xuhk& z7E?0Y!c7OCz83U&8+hGFl!COdOS^76h%a&45U?7GKNubTE@CrKzMB_=);pwCI&gS> z;(I$y7Y*DAW2idq7V!v>&KV%2w{q!V ze8G)#7~&f^vx1Py46Myly8`+}OFWA-#HLrPPGqIY$^lPu-c_t$z1L^;UaKlxjStKC zk9)_)@tJGF@^hT7!nK0_^`RsKTDj7Y-Twf25S)qyfT`v7?G^BfrKP2rVUC382M{9? zVYQj6mW6BFZ#aU0Z#Y8fD zCzI4ro+{h5!Fi=<1Q1va{7<<%d$eudGvmu{QFyQ4w|Z45q`69lRc#BnF9{@i#LR4` z*e|ySuk8fqVm!e~HEqY`U`PBU)h*DnkXoN%8+3#>b`cUMg{5VRoDZXO&uC%C)6lsy zCAf7Cjtvfk5JA&!@o{z!V5!{lVEp-Re}eXD;TWW`GyZ_U4?P!B$nC0qyQQJONtkzf6gXm_~Gh*>(Kv z9w^}(a#b>Ciz>4fq!Z!*mu4rfm0_mve)X`YG7%^`Tx(5(o}D^Ez2}0Kn@VPcu~&s< z>P1U(MqqzZ6-qrAu%XvY<4BdBT(U}B zhatEAVHXqO+4lJg^@Aut@V?vAv8(e1hZXQ<7M5hCYhGt863*Y0_~}S7d*MJqRH{q^ zdICG@50}NGIKUX5Y^jQ~lqpL^60Jc3j&-j!+!)aB8|73wI#>-m!h($9Iddf=Du_@O z9RaHcujfc7W3>sPTncvbfvHlzr_PecoyU|eVXMM&T}Mw zmZx4sX85laB4of&NLoYD*`IoEuqL(QHM?ELXQq_QpQT55Rj_&>mYFjPx|HSGrM7>E zzersEUrXbOFeT_F01NWwpMnK?OP;wbl_NS-u%s;{^ro7prtJ$DYWA5WYL>K=0^lAy z9^7p4R_ezYt!a{@>l6A(*o`TnEK88h*wId3v15C|x9FQBdd~{Lb~^NU_C_Q^ffRiS z+4vD#C#*{k3W(L2hu8RpYnKO1{_3B1A3{3Ds5(woVd5k(&>f%zl>oPM;-C>mO`2kX z1d-0Jf0()d00^wPRG{e|5;!_nm^2wASywEHj0hYZy7SsSyzIWe`^h6JSf2Zag*D>! zN=THl&q7UHY2^U%PBQ-hjzWQ$S1xlYAO~mEQQ>TW^L@%nn92;Mt5UHo+i&m`C>GJk z*O3Ug9~GitDoLqrc7K#T-#3OyWT%REhdEDThg}y!kv$|hl6C6`ab?DpB~3~@oul=N z{7lIyC?h*L8hE$XJ+V$y#E_;g;tAQX{9kLCoidc5LxLMddR5iuze6`<3WIzQGh%et?uX?7n}lIc(>qZ6_EK)dr2 zN=f#Ey?;9E0_0(Np&$Y>oln}M-?vyx#`r$dB`!Q^H5qDtJZxUP2-5B(*@$}AJGhkQszRz5{KnsC8G~;W+7gsZ1uaU@f;a8jHI!U3{Yrv$%i&T$B$20g(!WTa z9m2+Wf8p6|6lktT=CM8s!;=EDl@y~u3H;V5*rq5FnV^zS{{U0@_J*rE!b85BK_~1O zuPahgf+h^fAh7Cb82s!9>gOS7R#Yq!^(=P<_t*noG%(kR?`e|?LIaX$+79t<_CWPv zN(U=3Zh7fgt0h19PsHAhCR!UOanx*o)~sB>DV~e%7IT?PO-7qO)%Vw~knx7`zzSnV zpgWPkjX5ZlXh14uFlKFg#AK@587>dJ5Ecx^DrV#s^7}d|*6_bh*-$Rh3~BQ7z~0<`M9AC`ek6Ss*BZT~hQtK0Z;MC!NYmQX{X_<~V0n`ia;e6QXwdW}#E!WtPEfW7 zD|GlgFZvL;l`3r6ib{f1a)%5$fxGT?+em7igJ#N0W(2d44!t5NxRsJ6iV<23_=S?) z0+^QenJq^xP(j;H5A6u|Mk>y;<15(hmK&3M=0Qs82>HS;ExDy6C30OQn4vnUN8)*f zZu(KG&1+CD;ee~}#bD+goC;<-sz@LW3}biYm=EBOBr_ZjQ zU1L4^4Eq&&22$qSm@cVcDpy~}rZNpx+NGb3vrl(?dEeiht{Ta>w03`e4K)UBDU@Qm;qjcmB zJ4Zj%9VK?HO((!xF^Dn1@gX@k^ zDGs0yggdv-=3vF~buZcnF>0CsIu1ajAfbz+xPrd|mfgQYnTH8_bL6h1`? zYrp3l!5b}>X$8hqoohqWsOO48o+7~O&ze!GWfDMOb_2B_Bc+`+1!jV^4(+vIb|JD# zv?-7RQ z6XI_Ye8YXy$@mD5;c2q!zEe70NnyfLz=2gA$v;6s*HaDG z=*rHY?pg!2a%Rd6U&L6r==Fj)Zd|)M6oe0Eu6Of}?KZT{Mrniru>-N=u3nzQk@1Ffn(ki7uc?H0mOX zbZh>wfTGTI>U$5(A!hc*3MtBzFn1?%cdsF#Qr+nhXjzn`=2o5>k`DW}jTX~*JqcwI zK;JGKuCY3Fbyx9HST%KhkL~%iE@K=#7b#0pvk)6yxF3#VtIl{%RG_-fz5elL-(Z-j zZIqLj-gtnM`Z~U(ra-fX3U3i_5!|`gr6OzI&*E!8wWjTx>OXi#!ybyQ!9ieTQqE(Y zKoqBw(2Xh{k*eKxUsRy%q6JT0L^uKLH$AH&yoK0Fz9VsH&^0Hv>mH5yzg98u4&tWvhrvy{{uTz>-Vx z)*qq}{{ZPBR)Li(@jio4-0=SZ7(a(_>T0r*6#0wNu@(ox$(1gtWfN5auTJ7D-uSID z!qT4-fHW07DH9J6V$|v4so3r!waay(bY}opqy-mz$)GA>V^$is1NexpTuiw$OuVjJ zO-OwSY9E+|pnB7S)`@{>UxYG?XgYBW!pfuKETDa!hx3?Ry>E%73o7s>BTjgPtGm+q zLP#}wG1Iu~{6gFfPX7Q}0u5M!Ui~9Hmw6GJAud7FQxRPF$XWu5vjXhO1t;8EhC5uu zC2reSygk#xdL+%8H3`b6Qv64OA4**}VkJproS~gZ^N7SO_L-AsB`FzGM^MyMbk;T- zW!}gDsl!&k0}t6J1xBi(8PZPt5F(_@of8u3>rwQIb{i^!a^@u|b6SuNgY%?Uzb|G$ zLPC;N$ZyB(3SlcQC)d|q$|sHhuhY%Y3yk*E~r`t4eDfvxeId&f2w<^LEpsx@vJB~T$qyVwv5K2`xm1pFS zpXV`VW;+Ygt{J%G!pz&sP@a`dVt_}0jXM3}W(Juu&{dSAWe4Ipj_=#9WeOI2A;>4g z`^56E=}I5lQcDVO2T$4-P4=}f)uw0#Udm4Iv|Xo*U-xoo6jDy&I~R^;X0N&iN%US; zyz5XE@iEu5L5l7bNhvbPVO{hPyCti`63mpA2`cO~5#OWidb>p2ssWM?w9|N7v*R+N zl#tFyuKxg=!%h^zz#m+dWXwn)YD6h6nWFVZMQ0kFx%)UcuN%S8G!<&O0!M~wK7x+vc_=3+8_nr7(~Y*zmO>e5n#cCwNT{26PmLh- ztJNz&asj8?PbjB)T}vrsDaq@kE9d~*F5;90Am>(u0ioTy#k?$Xg$^`rfgAi{owmTC zQfbH3#J;s@@aAy){bS3jbjhnJQ#D7sj$*={f^ZHFn!HOsOV^zqklGH5vUzy*asyLc{{U#!A?C~m{{YNIJf*0r^AcJT!{-8RlPf^N0#vqJ z5(#tG7i~ASbTqF{kbQS{Y8t$HE{SM*{{13qp&D^fB(XgAij!=L8iwW`Eq9^`Tp@7$wAqv%vxBX z>+y>Dzc>BjD$q@l<^gfiBq`_*(m6$>AHOlsS509Dxkp#tpIG%N`$V$lj*;qEX-?5W z;$%{X-ygft{&D$aZjgR);3KPh%mE{RG58=qNcAcW&lInmck1EEr2H4B4-;7@9f`{y zjGnX_$5JfX_=|sz-^^M}*EP36@rrob*pM8WwM%=NBfHiCccJD3fx*j(c72+qn}M*36Oi5=c_IEiA*$Adc9&1fhk2^L#{=&`B<^uyW(O!i{yP1n44btHr}Zq*;le00&?V9PWF= z<;R8nWgM3RqJb(Oq943=}Vc09z%YufO5e#v-u2a`sw zj&v=%w_ee=$(vk;CyANBu}$ zS*6QXrlBW}zTjeC`YZH;MD@r~EJG%{vrrz#G10Wp#}_%V^Pio<@#kM@Si^>YW(gwf z3a=YL>naisl|L`E5u6z=4SrC*o);in*2+7MB8`O({U`)aYEp#`?$8->)RGjP9;fCb zql{-vGo+M<14@w}rP>m)O-ZLc;PuISC2U9zY16z>#8`VN^@sX3mhHE14pr{fPJ$ ztO)-Aj+lT-25rDGUg5-9&R<#Trvpd!RmgHEdLFRPWxbYy(@@8d91*LIhAI(uUGiv> z@A8XMtt(AI1bqr4yKYpLkU%jmqBb;BWMgx%x$eZc!E0 z`FP|_15@54IhSJ_nCW(Lv_WXJrRaUp`8LP`-Il?dN<@pX0N}(@FCsLEf3F18`NQbf zW!=*Kpmo>0aAc>Cgg}YF7kUl<0BDtVw11cH0D1i{;E3j3={tGH%&mye-~~o~3`}P)q1OUzLpN;ktc=fF~#dnW)ay zg?q~JK{ZlXXdh7vR_mRd8H;U5%uc?4Z3G0j;I#W_Qj`YoUcTtdmB!LaKYHTyCG#aK z>A>az&c_mn{{Y2Kn?mj5bS*7YT`9MmE?OmI)qx+V>E|4NURH)yFY%cD#R1nA>PFK)gpt13$5Gwzz2?i=d>6@e_JjESq3NpLwM zatrIb2Q+g*99;Zz`gU;V`(3tPB3mV$wGXKMqtTA#0pdYZP|%+tO?txJ?|~;Ilj{it z79_cTogf;n`&vIkic@yw&oRT~<72mk<4%^l`b@&YSp)_HN`7wxRdq`w7B5eK1giOj*km=BkM{x>iZ2J&SB+->qx867xsC{bz)o_sH z7aIepiZd+0cuR}y7VqA^k8q0VtT7d?QP2L$UY(|9^nc?fD zeBhT;c;}%M&10zqZwG9b^XpR0NXWAeD%osVi={!@n>=xNPB}l@kI$SsNH1H3Dg*-EVK&`jBgh>-u+b*{ATqdT z8+U+~+u0ltrhjpJ)v#Cu5!K`uk+H|g(>ow3iO!8uA?vObZX+Z0(z3OeC}hm@<*08WHz_ zw|u&>HQF4n3sGGb34PRG_<$*}1i39;5-aBM^s?OT;PT_&K$fY6DkV9Jv{HowamRQw zV8$$xSE{H2MuM7gq(TGBP$O5M))fSw5Dq{kxz;q2Uu>^O8Q6Q)vXBTrr0jPsw|E0% zN_=TiDI$(4=Yl^3KiD%$loG{)NX$(D;Uieb04Xm)e8VtCWBdhNQ& z3=8eUe=%agl^~?JQF`sJki%fRSonj6cX}SboWf20B#G+Qywow#pyOvDc-hq_~?t*~*a`=c4(E z61+mHG#vT#*}BGGYP-ltQ*>_I!R#q}DFAQ@tLSypj@m@|xcs;uj^{4lMfyL&LSo$~ z#LmY`Yh8~K^ew|;l{(G|Ktj@@9Uy=}G}gI*_O^^0(Ut4!Y^t22;+Rbar6G%-qkUsi z^iz!t)F~=XS66_mjfZcKx;{Jec=EEom+|a7&a;$~ItGcPUcjX&CZO(gcp97Fk>gEL zt$J`9Z_UhkD$1Fe!)o*zo*Fzp61`Q4)?BJ5I4L@G^N5Ywqv0xat3k(O%pzNXLX5u{ z17i9fVan;YB%vTtX<(DEXuHKmDK~ix04h6k2d?s#FPSRqp>L>)mo(DVJ}yS*c($v> zNn%r(Kc6_AWyu%y*;H7agEbpt50_>q0$xdh=)my%led&3sD&OkP~1tm7+&X_BgwEnAxDt$q-_=;%s|KVySTQn^l^~4hG|T=c zM-aD#tc5e^=QEVP_4ps3%hCLPd*qfl{PX=N-X*(b%U*OiTEiV^{(nf%?(eahe#S@*Kc}ibUH|`I?;+`wHki4!l0LT9TW4Fb$kEne19H&@P zz@#+;o_}%9@VR-XDwQ=g%0K#|Hshg!mL)PqVse2{Hl~qc&1C{giPE7D)aw*XJJPqL zAv#(SM5i{1*#7{w;hC5oVhk6H7D8MG2Ph)HzY(KcK8&o(mod|sPNe{9$~Av7bdR4W z-PV~)o9g8%SW3wR)g;!WYSgRbVW!47Iq>H>e4FvI%y0K~{VghePUDlrH`_52$_hvT z{{XI_@IN+>o-n>UnP?_Lq$x9ZH9Vdpe;1PS zi033VVGl?iu(Fbs6!=s~Z+OxE5jG;akWOT&iPbv}y*mh8w%HPinezr&;lG$PloAMI zT|a2vp)JOQg{9n-h6jHBd_$Fn$Ll(cNHC9ZSX6TY2vSeK-NY2I+Z2MJ6kLsTf8sBV zNS&71>d&1z4$u=A+Y%W^^_KJP9^N<5mQbaZ1hT2DLFp#q6RhTBwN(zMAE~O_bcIAm zGV%o}Q1-M9(@6I3y$)bjSdBs6Gpn}$0Pu!WEhlRJd||%wyrr!Pn1TJ&3WDMK{&NvI zG{f+m4(^?J0w`X0{zl6AU9{ETX3_&-xu#-DlxeUU4vo{Uu*+<)g(oVg8}hNDOP3Ab zCpK{{AwZLxcRxtGec+@{9y(=q0*w2>3%166VzQ~iL-Z~65Ys;JIRP#lQMGss9}e9i zFDd*6gpxaT&ZYm-q0>}uP`42-*WwOrLZIt$Mf9_2s;#9 zA!8v8pM4LM0J=Q_N={XU6wE;-D|a>6zTcZe#woO=d6+WNuLysC?H2Bd6IKmC3@OKM zVzL7D<%k57s1xEyYE(bx4~_2HEu)7q>Kn<#+vH1O|OhF&9*t0M)0s(fYIUVEvO8%L_lN>DDL2x74M| zA?ORgPsW9i74F;?fR%cr<$XJje$isdESY9p)VbL0O`y$=VthG$+`|Qe>6Wlg{0*UG zHfed;GN7#r2`Ma~`VHyZ;?U!BUZ^raB&LnQCB3KjG<$mC09>V?a{(`T=$$CaOQv!` zNFtS}ab5ZtUcCj&j%IL4s}ocCtOv!{49E4-(&ajVxb4JeHx?_jSr%o^1edRFcp&x_ z_-=S!+7^uIAm*s^*uvw=UWJ6~s~@lu%1&YKf-AJnSUHmE+n|UqTRgF72Pg_U@#pl1 zI~2eW%35M6>?#E;Tb<(u>1T^qb(?;hoe-XKFYMLl4PiWcVg6Yqfwuh8^gWcJy>!Io7Z{1$rC;VkXRH6i7R1 zv~yn-^xkrq>g$(3)c~r?736?_NceuyCBlSGoT*@f!H&h*!0)b!VPRRP;*Ovks+su_}8 zyPl(eHqdTjmD`P2W~!aCjmDKfCeU@+>0!$D#0qvJFM_9%VM`3GDQi*x04hF(v~Hog z!O?k3v?Eqf_#dc(*EQ4%6azS>Z>Z)gVJh6RkvrBos#Mu`@6>kEFCzlW1T9rOY&yc# z&xWR=derProO%4<<(CyqIf9ypFGJ716cJkyrdeRXfw79Kzw)7gY@(gG0wVr}{91?7 z7x4nJOvvw=o)Jbrq;_hUUWN!CNG=)4ThaFK9m~e$N7byej|tJtOJKt2NE0&jsIOQ9 ziSWV{>qsDqjmYXEu9>Fqo0hqp*RYHB`{3maKu|9G9zF1-fn>~B$fD#{w13^Xg4g}n zxnN}lX%1L9A@y&xE{HyL@UXKmm&yw#Vt0R}GToT%GZcg*jOL0O2WH#1{VmR9o~b z;r5Cad{;F-9I7cLvjIc-ydRWG*c2r~xq;yE&&DoYEhWqJhKWX#A8mB$)uM0yl=}Q2 z&9BjAmSoRamm-Te2f|3;bMN{^-~NoG@O{yiRWs@M6j~;sd8**_r^9H~mvkiw8B&@C zQ5v5p7iV0x1gQ*>LrPby542wMGbv2zZKxa0E_A(JHbs)cQa~)tMs3K@@2p#$hvqpU zX#s@;P(s}7Sf#L(OByfpPjoO@?NZVKGZGePb8pacL>mcH4^IMWkh-7JqtojJE%=D2 zfl!w%(v1ihp87&2xH*WbK-JF>LhZCJYbZY~+V_Q~xqRb9ddYH1@|70oIIkue=h_i2 zSUJ2^72k+Ryzn5L>L6zt9S9<$-Oi8?2wG;UYNc8ZV)R(hfldI;r+<-z(QNpiz`>OM z5?g;gTagO5iswOFp)W9{%98tX+BVg!G}`d$RpMsKIc5NF`Kv)2j?5%gOmlSGVGnRJ z+$)I;rKJ{xls~dnP@;A;qwMX!5v^U;i75o6iqIsQ=GBLNX#($cSyxGk3gUxazX({p zu2SJr$tg(=9f0lp!rca2RqRl#!6dy;PueQZ#v|DwmUIW^Iv62ly$(~EAbatiUR&WQ~7lnMszUxfI*KUcYz( z3HXH|<|Tlr-{lfWyb`kRGMb*yx&Huey2!3ld%@`zG=@OXQ>pC%YH9aHl}gH%bGGO4 z;wz@^l_5$p&=RfA{T<exL%9vJypybn(^nkdV56f{<}(WPq>*LpdIM z9pL@nh*A_lPKJlPG5S5ja^%YyQWA1hGn3pOv{Jh8m{jF0nIrV_qrEuQqNV7HnBLVn zdIAuAkT*SJj6H#8tq!@t2_wKaN!`s$ak%$EENOoxR$#L2wtx;`MhWzYyH06x(AhjH zR>O}rAj0`g!^JDI;u2=9D{R2~M1oXKglhB;QAPu3?)beDwFIF_%qX+D>!SzqG|0^ z&WBU-3;A*95u6q3W@gJ#;;milPMr>r!mHgyJ{q{uw1ojuUF|YrDw;VSePe~-Nu=h? zmOPjddQM!WEU1<>Z_mRXT$rtMj!>om7uLLXgdvVb9hWSrluI*^?B}NNw`|5~_2NoF zLnp$9@hknw6mziPLtLwHD9XUBJD-#Tx|t55fL5g!QL6!<52QI{DyfMiPMa-BKmY(r zk0G}_h{R=DCkd%eMUYic9DoNWKpLUG>;fx?|&kKdmALiGOtN6MQw+5iJm zYR8yX{*Ee6z85fLk{pqz9YN+Hx-LnQEeTTmZk8eH4#fO>LF>l?%nj;PL8GWpzvW}A zzXsYRt2))|X;NrG>-q1AlKU2<#W;F&@RWiQIDJP`+e$~0{T|4&%NdfAv#}tTKZL=1 z=IorLQesj-_)}P?f-nO7bFC9f*|G%}1^PWS*XItwuMvSI6y_9B4*viuMteUFtWDKL zB~6!B>LXLV@iGvSl=gl52w9PQp=V*U{%-+x=-PymGKV>SKbymC-(gavg_f;y>S@1t z2PW=HolZy}{r5+TM*Oq`l__mmv~C>H+usZhU6;{GDIn{|#Krq<{{So`sc8i4{{RRD zhc7l#l{98ipx6M~0n)YJDq|Zjtqz151MVFmflC$arwdII?mKZF+orD2S@I17YunFw zPr|l2*@kT5R;HY7@`nR{qy|brA_x%OS0}4cn5q$_YfW9X9SujE6tG^%Adp;>TGgOj zxieL$XX2y3#s%J(P)lV6kW2O*e>sBx01H#!R;f~6dTO#;SNL>_w*LT00HG>klHfV^ zIy7;5T)_zwD7`ZkZP)k^cGF};*#*#$8$v1z3h`c%J)VT#7UHzHS5h?oW4te7T*Xns zDinXqpnV^nBPO@o?MR%-O0sSKAahNlYQs2?CQ3kHK&hoqFiF|y$inn;TPvKsJ3@Xm zm6};VNLJ1D2c95-#Y@c1y%_5J#5b5z0!0DU>K|BqyCyqgv)WL!vOFbBao1#vfb&0X<+L0_RE6vkk9$?EhRGi8OI~Hm~ zC2Q(Tf~9ys$_p0xLjD%?lmh))gC##7&aht^OLxib632vr7}f1_PC}NX0_6L|D{1k| z?YUwsaU_7sE}+4ym#U7{pzqQ$dww^aE@F~_nJHj9@HO}SpvR-{MboDssFEDH&GhXJ zSBIndc4f+3%DENZhj1f4e=0gO;jAa?r6z5lc#2#CNEPV%(_Wop*;sl+g}VmOJ$3H~ z?<-(f01^^@n+>9!;bBVUWh6KxgS+e_qE5SJ_UV*@36hX&R*y}%xf=>}e*GW?%_VXI zm77}S6d#*;#VJ>;yHdO=RJNkF2jx)=$M1VEBrI?r%dA z@5RoTi6b)RX3V0NqBqURB8)fx02XodmER&*2>=fYKo3tL`R|3s+jgA+w_bxjU(|F4 z0ZJ2P&nnDv9sYnrE#q&L6jXhoPTq0q=SxubfnfeePdM9BA8NhxYIWzBt7e`FV9&fk ze_a{D%3P19Xji#ps4v7#551zd2==4__7Md6^eyKeEyFukjiMDKnATKPRo7qVyhLV( zA-CL9-vp)IZq9V~#M7*4ECX~sVzniUUA34cC%bRVQa4Q1hi0klM=;GgauQqGR{bDF z;dw1Zk_Z90Xkf2ux(aIbKIi+u+0uOY>UV}4#>BO1raTCuE~>dFuQ8omFIpwGw2BjD z@4nD#+K>u{tRVt5{MWdFD;yW=&v6!SNv@$& zN_6gGkn0s5caix@{4rW${{RG7Sk&s#S!w9T8;+qVeSQA`Nb+R8_3847caEhPNT7E4 zY#8cG`TZbhk@NEEAoZ{pSbC8|#88uG2^BBHZ~MUH<;Sqq%Zn1_KBKgED$kfcfE{`7 z)-Ty*j-~0^1Wq9~s|u^9C$tCto5Txw?;0GeJV-C$VC}i>(8A^8VgBN1a_CYhPoEIe z&%`5!?#CKA9V*>EaiU>N6q2mZR&z=}9pYa{xPGD1S?G~g8v=Lojb7ryfE_>&RvVwR zEZ3*t@bnvV;erQELvI>38?&$ixlc_#;wHQB@IcBm_?R&&&Jrp7M!jR#;lfCfst3j{ z34{aQqAMXj{v+35POY>W(PrwNb5zn87vr`9dn!;J?(evoTP$E8c&(Df&&KeSr7Cgx#K=g+^|A)De9*GRW< zT_-!Zrk`^exAhMbix%K~A!`uNayNQ*@`E!k1SGatw35TR$bgYQ{11-~Dd6Kd07dbq99We$gfAIfks_vBag8LEs1HNQU^F6rI7* z&k=tY%4i+7*jN(&(5N) zj`E)%iF15%^h(adVf>$V@?96|oF!qDH3o(nC0eCSbSxUvKxxtlVN>R$jKQn8g0~(b z9?o_xp)F58bW@*#13b05cr+>P&rS>jysSkhEYYTm-S|IvqUou~w-S&*1P#T1KWK_- zrOX*t2qLaW))4Ni#%!UQTIgs;Z;{jO1db?Ln4dap)Y1w@X?HZVp9;MAigv4^M7%*d z(xNm39n-XUF-BIYr7IDXW(L}<69GRrijyph=y-<|FFHdg7pzoNj>0biWj58Ns4J{b z{{Sfbr0^k(NK0rSZK0n^4v?^Ff>)b!=MrQe2=DrtVx`1aHpDq&2$GDT{;zaf2}3<% zqAiI(siX9n!$+roj3Y}nVnf9hX&ewq`M?t< zS_$3G{{WjrinDM$41Se%E0=_J#lKpTU6{2vr!mG?a0?LH{9;=r(y{&|9<`2@ zcAdp}hlin->pA^W(zgs0HK#w7fT^>kGzn5)ULG9H+NPkd$|%}ybse?Ta~a+%9*vK8-cvPlKQ5YA457i~B7olHXp{agE? z`w&R70pmc+qLunWjU4oL1o0W|=Ywob;8QDNlE8Ux{kM-V@;rBstatc%%kNb$i(-_; zGaigIaS=(y6Vk$BK?B*)lgT`T#1Fl2!ANv3vbuHc@qp7Vxvt`2EZT~mqr7+?TV~4k zd{d2v`IhNx2f`ArgHFA=K=oLX-VpDpfzk}dbq3^d1T1!gqN&4g9$oj_vQN_0g609T zs=A-I$_QAjDg^7RxsNXCS&b?{f|Ev8XK@zJiP%FhJ>QSC8MEQ>G0TVD=pkB7;OBq2 zgR*9vuePtj`o(b1wmhAp;+ZYOg${JmEXvFJyeEkE$9z2$Nbet)CH1Hp9ph^_{UJ_e zj1IMMd5X4+6S-&n)(I5SDk^7MaU9&C$_r|_cSx?CqNMCJO$c`yerX32Xa&4XOR{#0 zAJwxwDAL+rvxUlcE<*q{01vD(*e{<53Jy;C7^`iwYC!Xg7AXiRCx6o47y3e$!Kr6n zHRU6H%veq0m4X$i(e#QbvC;Jc2VWOiqLS~UcictGN{-zCp+F?K2k=8iAiBiVnThbM z0pSBtxNfnZ-N9kVsRglyQWfY(CCXc^k99&nD<)|r1BqXuv&zR;tsmHFKMZ0@5%)3o|2AuWd zr !^UL_Kw{vXdI#?e*KEYh4oiWfQ2ziOW81p!QdU(goS=u}upc{f$94~3M>W6n6|!se<>RNIJvWBSj+=}rIysbgK!y%?G}-Q3Z;)$hXgSro>~dd z;+w}nuua$N5)@9`^Rs>6jn##bGHSExkaDHHqB-C8cxLobfJsV|>pVy&Ux?5OQpuYE+6d${w^tD4@Rj{rKz$YsgwqtSZ^9-<>;Euu&l}c*##oC{{YyHj|~R! zy_Q=g0kbB6ciueoi-)Gkm+MlMC^*yYNOFCSSoqh{Z=-ccQp!Ox!67O-AKo(?fd2q- z0O(W!?Yw_nWY8A&6itTiXj77ip)FD{Bs`V-O#-S)+L;)N9DLxIAdpQI9zh9!bl z8Q!C(PO;?Vk4jR_hJ58LW&o8Jtw)hC%x)C|2{dLXTi#+9{+G9_AXOvq6?RJJ| z6y$wkM3U4r<|^3MR{sE|k6kv?-@IA6EZ?PG&c*rNx<iYST=mE|6n4mmbCIrq>F`HlkR1U*~>&{6*YHG%ko*_YKR z9x#nS(z+h4uJ9(;gODW|fhr`Zry$U4R@CXI1jPQ0>|}+?Qh*6M8n8Tc{G@#ci=OeC z@j39zP8S{|Nd+a`jW*ls+8J!NcXX{qncIib08GKmQOtc z9JPAMYBpK9LNg{{_O%IbfPJ^tFIg-|D{_ERvOx^wKYxsPiArW5vPBNB7A{-FaaYqr z4v18>Tr%wTprVAJ67F__SoaS4;htFmVxW-ufU6F_n#FHO_iV|^aaARhDYqS9ozZ)t zQcxD4g$fj%nf=A+MPW($I!C+jbXrhoQ8rmADNw2i-n(u$HR2lZwdht7DCwa+M*eV- zV!!1k)~R`esFLEo{kuavn|dUuDVg=;PJ#6P3wI+8ttn7Syb2BybRD`4fp+tZ`_TR&mI9MA!hhRRdL8zwo+ECvCo(fQ zDJi9Pg)YOhA1-1GrE)DuKpxpD4YfnK)5PS2o(yT&m?1WBw6L0%1Tpq^J^Dde7*PU$ ztyv5I01lnT{#({8-gy+IgDuEv?c5KXPaX$(FX0(zHgu|Av_u%RB$N?M&Ey~k9K8^Q zXe@>kFKsmQ6iqka=6ay;)s*YRS03h->5}3r_#t6RCtCLF8cmZHph^S~ z?Y92_v}M@;01T*4m;NeuI*RGjm@Q($YLGsC0I>yuVL24ZnV{9Ua4Fr19mG4_w~<bKtR_$im~#yrjriHTqucivCeJXXC&H#KIox@34D#&~rXU?lRXp&Pw*;c<)fVz+dyD)@IA&M5cfiqc7 zHLLV5&%ifWakSrQN`R^Abo1*3y9s{Ddm%Z41vsOPA9%+-DP7*FXqzmMm5>!cNISP6 zw-oo0reBzbT8IfsK?0|G{UIX|+1F@EKmqg|2Z-f%VZ$xUEX|XhGf7B86qEA#(lT4l z-7yxFOU$Bk2LAxm?qfm1_ytyZWEqPEs)}R>m)Ec*s%Rk+b=FmD1f0y_-HHDIUhE7< zYvYZ34cpX(6tjv~r6I1=giK@8@%DfgS*i6+K%xUT>F7P$^6^$h=A;@>G!7xMLbcn!_e)Ppsc@rB{)+VeNf3O_&*msD$e@6?} zo3eI!YGP!mK`Q?MTCgXlF{@i{{{UB#qr?CkQ?H-WJxt_)%;|R{g9{#$??fh8B}F8P zY(R}O<1|IwMRx;KfK|Ee7cj0D$a9j!fWkA}9eZXVW+t1~yvBtp(xeA)NTD2diQ~&f ziSZP`PFC;MCByf+PlS`3O4CRIVVmnF>Ot3m=lIdrq~y$#>a7Sx5TTzfPX)zu1Gr-k zLqe7iP^}Z&bNj?I?TJWt2Pkj>uWvX|v){7q5=xM)s@xY9;<}C=z4e6bN+zK`u`47X zI+8YTq$^Ka8ZS>-sn(=@JhzW+mO!8afMKJ23}x6y(tM{@a?E|-cZVA{q&W)(64V`^ zU(#XU=)mkxbp<4(xnNJbLQh?UWm7LREx;z4f(&i835I6FF5I5Kv`_y4(d4y)RDk@_ zy+GZfIdR`YR$qXvGiIm<%HGm+?4!*%jgsdINFdM;iRKZFfl^kZoC+}Tvwu2thdYAZ znp>79?G?u-L^!Fb=A=9g7=21!WT_z}Rk{4EcXp#WD$%w({?JOx-~^I2&}bq1JughK zE?F)d3cpUgMfnyK7Aind)!?7}i=|tg2;9J%w(#*O=$^ZBAjL)WDKD)z8wk02+QLFg zQj?f)E6_fN=N_QUd~C0U1wAgCS6n6vlg;Wr9TSSE!?6jtL?q2zqIh15y=4cTRx zvnLP|p+xhux0rSxXbFua%b2{=G)IWHPDelk4UqFd$JcvDSxz(AjUr>$8#+mvKX@ z4%`@DBEzx1WvAOL)$@se?>T?v@{G#uxu#ly@#O}m{dZvRNWcF8(MrGjq4$rxSI8*O zx~AFY6v)kJUD?GE^F4$WHJjTPGi5GqjuyTnMqASqYKe*e5as%*?ckhGiBXoI^LGJH2X_rA$+0I&h!f z9WPrlGQWq)uJAtTk^m!P#_>5Js^dAI+i7k|{{S6Zn9uLKl|d;`Dg;!W21 za7j*#PW<+YxSGf7QYgbK05vcMV|jX2nvhV6sUQy!*M@yh=MmN0=~`szVKWj^)KZ#* zsp;B~!*29m0zt|bxd&G6HyvT44f;Bggt_qrRE|1z@AeS%6|Ub_tyKCnIHJl@7<2@E zUAwJuFuAqF+NLQ8|Jy>RX#OBNtTATwHth0zs zQ{s9CEluA@N4l~6q$w&$0S1IV{{Toid1EhHJz8`xp{;de2Oe5xs~#rV0ViTkpzq}q z+=xI@mbImY0$#1TZoI%8J7bh3u~V$-N9ouk2hhRLoW)WW z##rK3au7f%(K>?Mb?dw!&-Aa6M9l;vdbjZeaIO=Umj#xySKq1oRvM&wJCZ__Mq+hy zLELi-FVQl)-_i`bQdR0R1gF|j6>%ACoOv-*OuYGr`5FQ|xR0u2dONcKpbmGJ ze$nV+!JN!YrdV-KI`gMk&!39k^;~%|+n(y2l@%kz4~_fOlfkcOf3e@=!li-XAilL7 zK5;dc=4ItTAuiP8_u?bP_zdeQIZ{nSxmPsV&3TFA#>tTHEoyf@Bs0oN7$mT!{l7SX zIMdP>^rdLgOx&988}nEff-KV{Qz2$@^vl{QVmm~+^Fo@XlH?yZjq{|k%Y4bUwI6Mt z#P41QZ^nYy3hcH@o@L1iLRQ6ZuYCwK?dP}97F;ZYhPP$Yb`|}J|a59|(q>u|S_rr%uxXTzNejLOoyB)(qB0VK~ zqLk+fR*F+=)BgZ&PLTD6uw<#rCSk2vwRjCP0oj7ib^|uL5FVlW{UI8s{LITpDiX8p zroH;dE4Y^?sY4Z2o8BHYTP`-UN6JWC(NH?op~ zv?PTjI7r`~{f!`29L2NNQ=EeOBlQpcxcuuHE%$+DPf#*a$=vM}Fy;hAwUIR-sD7_K zzEHj(&vo2uDa@p#6QZbGdFXcL6fbMqVke|Z3M4bOpZvJ-?=HD62D$yTj5nj7X&h zEK@BK{8@YlQhks+^Btc_$O;nDGfg1n(Vu@N{MshdM`}Xm z&&Y+kS!Ic>`Y^(iL0rj!g3Tz@?O%!goUa?WH-p4Rqj)4GOO*#Y zSQ3$_c5m7q4W$8rZdsvnk5PRDD9cvmhQBzT`LSh2bR?R2#(&a0*)K4l!&Ljfe<%Sq*O-+S)tH)-(0!pF z4a}azCEZ4jY91@%tQToYf}W%}525B4%87L6drU}|;v*=kfjdDI;wdVXnF<7D{QTZB zgy36Ur6ns?M4f?m9ZVXLg(g{K5L2C~TN!7abix+Z|gsdp*%xFP3J?tfWaFvXNg-m?Fxurec=$H#PN1|NwooN9yeTxkM`}|A8vV9&) zl&s0F+`;=zxg?~3%6A{0aqQd9X2Zj|YDG>YqAoB{Myjj0qyoIr{Wu9B=}fwV7v`DM z2`F#|<5Jwmmb;-wSX!8>ptiJ$Q7YoP<}PonP;d=FI`wE_UE3`rm4{2YeE`^W^MaR9 z0EeSjr{_rhf7)cKSp`h~&r{YOVJ^zG41+5V@oE4z0Da(nzUNfc$_pt_eq4{+Y8_fB zS#D)ZmI(0;MRtmJb?4(!sxplpf*G_c-qkG$2rR;l$LGE?Y(;Bzk5)+mLXSla+l`}z zh0mE)5IyvZ_?HSaw3%gz4tn+P1-e+ctHCo8*?=33{NWz(lj`Pp3j?mt(i|{82nAV| zq6Swg=gXK@^v8Cq^dXRzC{~Imn2UNOw-wnilA*lvG!z{U;~-iwH?mT z0}T2z6H3%ntjkqW^Z@J)7`JbvX?8zE2uTZeJO1#=WWvZwPF<>^H66KvPufa&PX)@c zmX0gDZwRPIHf!4dSY^NC?ZMhA+nsf!t< z5|h@ypJ-RJCer0>A>1GJ2jeWkl8>ctZC+G;o$Y_IVM3$fYZb_rw8!G zWT|JEa}lXYAvGq1o}WJ`Dr|tU4Evs9jn{ZfNH3$)W{b8v%_>m_(7PL%%u z%v_jh758EqGO@H&Sl@`|OtAb!>Pg>UghaJh=3*4(WA-uY{3#wzR)c8qM}H^-@|U-| zBuOWr?-5I$KQ)QUIs$tBG%)bZJD8GPrklRpM5&ZCiC1I<1d!q!g|B5=bkv^IF(|f* zu!{cx(>*lVxas8*iy7ljjA;_LD)nxl4Mx6km*acPl@$=_c^m>ItSS9(9eI`%M^kE-17=k(Aoz)2bSDVekle@)f;oHByEh~?7MKLY79L2f$MNlKK z3qIO;#EO&iq2sJrvDjRxH71SMtO>xoN<3OW)*_j65L|-kAe8LKXf^);4dMW3bv%9H zjTb7D;RGlU;I&_fOXK0*%U0W+KqRD5Uk>nY>%$~~NYpd5H(Z!hl!YB0favhebYa3( zS|@NKepS8je+!l@5t%MKJHlPc_XY5bt53xP{(p z6Iu&CrKuc{!0%1txl8bmk4UfUT##tn?B95%(p9-5FmYD*#8!p)O)6+2)z@wr51Vp& z{?IW8XL`dgwaW~U5&--=!DI%~23b_qCrFuBkV*+^*0HD2{fVuJtVJSrfW#MFw>Y3| zy1&dsqF$lfcZ}M~w3U2J8@VPBd8Uv8(LvXUD=*m$?saXU9YK4_DP?QTc7^*wijK77 zuO$3D;mYy5$(G}Wa|-h8j6>He9-eW_&RuWeurtyviR?>y45g{RustF z6iF%_6=ffCJkI^$3gdmKl(Ad&-F9ZKxF=|ALw=;czjcD&iQMKAh03SFfGH}~}cfJAMbKLcPc8z1>Tu-x_v{kU$!?EmpK|2kqowbUW zm4W~O*)8rSiLH8 zfd2qNuRd^c!#N57q>z5F9>aMB6$3{dpR{>uuqi&lp<|Tq*O!Kh;}l&XWM%~_6iUXv ze8T+eWa%NMrRAL_Cse;ZC=5Kxv=t-;RPOqNyh}RB3Rr+rdHBJDOLtBtU@MtAIQ-HY ztk=xBfTCbY*b`C@*SFddZTKdn$~j5>4dGYV_Sb!)8?y7teO$m$MF}oE#+2eK4B#-( zOPBDgj-4W$$qPU^GRzz+!lvkIAGnF`+(TA;$MaR_Rv z?4eqM!^$E~9!V?}L#z?BTS*#6GL+SX73bkJ3i{6P@`|(WGzRg(d5KF0(8Ox6Ax`>q z`WQ=9v)$25L=^h# z@{7`E(?J!Ncq7k9tt#?KIdc4U^X3D=5o==|OtwD%0K5*&38T}P^=MNTEOw+CatJ2- zYBrI@yAY+g+84j7nv%o=)bAZzt>7e*fH~GCu0csSr%)P{WAlr4Tm25ih)l6tEb2=T zUy-+Xf_<)0EQR@)m3&Ruie!~|mz6|l8(%n4y{#5k3CKp^@#V*O8fPm)pr9YG#v!y? zkV7~e_3aUCX*i(0EcRsvISN~Gq#{}{MVN&OH$uwj)&3#wWtv*0nxxX4`NDnSgL4;3 zvZxI~`A0XBYo~>i{{YFE>Pogg?~GBMc9f42 z(oWz<&wfXX?;gj8p3iO(ZbHHEw**9X+XIJYJ1RZ(3>_@TQM-@4Td`Y+9H(*gj}yrw z(Bna5O(-C_sqI*ByRFGOik@P0U9x7RhNmB2D5p0J%mq14YPjTeJjOGIcNfc+joEIL zv#2{|7>46>`#^+VYC$d?wfx!(O1~3B@H+nSw;RTLXJtWXvjSiBZy$xQw#BuA zDYPY36&ul_8%5ZXJQO^`c5l3Liz-VG)4wqX^aL7wH|8RjY7gQK)V(7R z5pS|BB&jDgd?4&1gzMc#gdT%u<{N_2UFr`T@c`FhQFNLEs|tYn4r$sl=RZw&-`HH6 z*=$mx{doJqOQzUz(@`hdL1k`T>=HK~M`SM~<;Yo7T%#QUck-4PpyK^oItf7w;TF;h-6kcieD!jeLA9 z<*Bvv52W=>N{)ATqrzALjRkcaMycsuYNx2EgrbF*Y1%PM+EmFNIe-L~uT2B+W9dI1 zxsMyqf7nLLa;9RK77w8hUSdy47BtI}5S_<}uyuZPf;drVS@n|j2ic)Z5u@__?D1O~ zUFAic`3FJy%yvs>F5I5rH=_&T1s<+xWdg}3bn)+Kdy{#g3kf78BBiQG{rQZxZWvmW z=wXy?@$V0KLj{TSRMjS6aEdy4XQ#l%zDqy!&wiRcuHi(~2hmkXIwT%jzw@MZcHv33 zb}4y?CWCbS(sp|ND`31eI873k2>|8|r+&l@w2iD?$w`!x;Q;u9(z+kcW0${YA!`O< zz*XT+Rj3l?f+oTEOqugSiw$YaYG3g(&_NmjvDm{E({f5G6A%Xq=9&}FaT-mx4&022 zeioZ0WPo`Gk*}9X(6B~07PJXdC4i)s=s@}WA?DwAOJ1yK0Hh!<2zt4SRFcPm@r}FU z&*i?#-}Mh|LTu9|p(q8LLGW&4;A?d3^K#cPP<{nt?XORmetgL#NKF}z+B2B=s}9&q z%VA21Dh*Wb+XmeI;Qq9qrtyPI1gn9Tr%t_~<&J7Zz@&l(gfVQ~`RmduVOy%c6cn<6 zAn`})=d^3L*Q0l3OP~NKkzXUwN6vZYE_|=XJ--#4c+DkR6tYwsF5yE{{6XA5Xj0iB z$?3oE4mJywUabgH0jXtW@eJD3ZB6uvC;C30EQQGoUBgnm#})iuUh&sIBaf#y5>}Ol zPL-_(znE~d-Py%b;QNE`6fTS>XeBw`t(c08+rP#&n}Y`^BokjK>F|CZE?2n2%lTYq zs?2RTaY+u35C_l72HIac@&EwrcaNkl+$$}p8TX18kD|mZmIA!}+B&&^^M6ih`P1!= z-S<(UIv>w;TeIEuZJS-YMxS?jF)5)3j*SE+`aMooV*K$JKLX+3%;Q<5mPuihw@52J zIgsjLp}*P+S}=-`2nK-b$LE|#^uA>r<;#IMPK`;)Fny-HlzX^ zKP*8Jj3XP7II#&Nk_*+zcCODx&_=m61PdPMMG+#=OJCtr@m% zNIXZ>lW>X1mC92v6xq4y9XvL<`N{OPa(Y-uo$8d}sAVcGm80rCBi&5VcEE)9UtitL?iufY}S*1)sRcB?)W(OoGUBi%g01d{FM;>7{ETqXQ@PnU%{8A;fB+9hr z9?F<4+MP#E+{0S!EFIY@EKaZA=+INvGl%gK?DIWZ+y~c38+UKbV`03kf7HlV_Y;>b z4&$$P*l!uvq-&5&SWK|xRL%nt+mFAvtuFGkS(EA~W_slSF(J7F#X&}hG-Y45hD zb^1J$GFT(Rq);escP?H2BVHhV%YIC=OfoGKLR`GPYC7%Y733nfqnv7hkd@{H=nu&7 zL`ms_gS|IeN39^C|+c*Q2KO^@ZY0(k_nk9MdqB!2BG*I zL9~ol)r<47}aUYl<2i&3L?MHJ)y4mw4>jmxeWhoUdC=WH%LG&1hqmM|7LenN{NqQw!@qLc`Qa0=U zSpJ-;f|QY%AJp7^;C#FVXIm`*W=RTe7{e95PI)URHDWTBub(|4c*S(a?i_HENc~{B z9F4#EbJ#|shi{^^jKQ-S1FL-_JHa?7B+|73n38hr9*jRchLNaSuG8vB0hTHoU*ac> zyV*ZtDM=(g+YkU9U*!O=J0MJjkx(j61MFZ{Aiox5Oa;Wi7(Y7`(l6mVm20vx)tO}# z1N^uh3~BrUxCZZ(L6}G?CZ}YGsfh1lRzef(mIV7Jv<|}8T*)(3iGZaioga^*#))ph ziJ2{t;aL>pqeMtd_)PVI@|3MS?mBdiu8dNY5|TW63RVhXYl?a&G|&h^p)AF?8;0LV zG3f&Yp=%S;8A7Kk0NsZgH(sJE3|9|Zgvn}3w;svYyT*Ao;8mSV%#u>IQjX4Oe4|Ih zc9}|*?PXXD?W027zZNcH)P=Y>__W0%%aM3P~o)d2>HdC_X@&DQ4Dwb z54;e%El4uXRd|z7GzI}mz7;uUNl?fa&=MF_imB7-M|@HR-Hqhr)TXMH>5c%QkKdBi+1S~ zHQi*b+kma4vUgOFgqxhP{s-IlM0QKWx?jZZQ ziKgR8dLoUaU>Dvgw5n>5jM<4Ls!eoKiT44=YG{}q>m@HWB$6sPJNZU)mE2ZmX8R@} zGnS+U3Whrar{yEtm20z^lGtTdiXqco-)}gHR}v-Vn1{^t=cw)9q(0o!Qlv8n+!3ga zWY%ojU9m}+Qdx$FtO>mE6zR${WrhqhHm6+&)*rDQ$(>+JNECAnw;=UtN_S>3{vxv* zyU}7K$x`NjQC z`NS&(pg1z_n#Iym4%#zq@P}Vmzx9c(d(6;9qYh+ecla_^;bngyVmH9bTSYfuz(NNt;Sk6nf zqwV*J3;@4CK)<60dNZ^!Lx%>HaCqLVKY7-k@ZTW3E z61SGlme`#@F!?^;H(aD9fyk?N>hWI~EoX?rig+o7JATlMZ1fp6(4efjK~+xXzl|EtqmM=jvariU>i+<*zgU^_)94|7kta$- z#!X3}Ak=PMyu?pnzvs^7Acx#PpGeZLiwvoZl*wouCK53X*hyptAiIsaL|^tDry`b3NG)1{ua<*Pye~nd zB4TDFk;8Xr&G9YNu&?a^;XtUK1Jk$KFJWv}v`AQ*l@%l~W^zXZPsfELik7t;z@!Sj zNhSUxv@IruD-|t8GJ;sJa?~Sn#X9{VYZ6!_Nu4cfNGVGdQlaX7`cebgJuOR?vVt6` zf@@d*055*gqun@KT-0Zq;#9!k8jjHRUZS1c__{>YzC^ap1Gr(w=bQka=_NCY#K&MLuD?$4Jp0qu zC4o6cjrEDf1Vo}zK`CZ-q2s(W;R~YA>dO#vpAgy!6kfRI%|nT4%(Vt%v+nRpU!uUT z9Qo#^s7atdUH5NJ1G})iiD@a8O15>jVy3Aq z+M0?%TeAlw2biK?jXM$2GTS}&zJ@dK{`BU_m(G`phA3ks0q=yakva?%nP>Q`M#_fiz78fUY%iE zryDjI#}1R25;i<`g)DvPB`8uzCWZ38`cvNu7*^XcD#%?(A&Q2AFIX^wZ4=X-E|fZh z@7@c)MxOrw$L3_Dlm)qP3la(5x;WwBt_hxtGCh3NxlnAUXWYG9bmkrvWR{s(GKvZi z11IyC%rU+fQqmZ|__pw6#PmIG^rtWMsY0w@`Ow4&#{zQFoXTX>Q(m8(K`aO8o=Rn< zQ_GX6I)GuueZgT%1WHO;v;p6{*Jx9I)ctQz7G;pxl#@c$r#wbsfG+Z)O4Uc8ZQoAN z`-<%eT5_XMHr#gU0dDy@C4?akOX@f0-xa8NjxR)dl}Q?xsL)eDH;m^9;I$>DsU=xU z1p%?=>l#gy(bC8FCXiLTpJ(~!Q@(;2EViVC&oL?lj@oyNcDz?D1xA`sohkX=6s%X|+s1BB{Bo13h^agdo$I6!4JXnWXO}NA z2SfGxb%>>33sE`6O+oMZU*;#9g2bef6+(60;t4lo)8ZO_l6Q;kBeuJgE>lfaR1Q$# z+zLh95qA2t1g&L3G)i^XXFtSKv0>u2%%(9;_q(PcKqhHzxFQj*;=wHC%9N>#k^|Ih zST83k&=P>e>@7T7pD;6Cy{h|vPl3Dt9;_U{Gl;P1hLzzYREpr%AEFA0s z*mnCzn4(mbpY2qEM$!0&90hDbP~?E2w_U_U_M|fv>O24iHl&}INL{zwlUA(xhp{Ng=y!I3RMPl>yBiy&(><^h37qvqe2`$mUlyd;o3 zPQW?aO$+b)!XKp!H9m6QNMw&_3O`d7ZyTO;iD;;H8vg*1=eK`!GRB}~AhkM!ya1hj zWLZN|+AQ6+^eR{(Y0NcC=wUM&+SQ^+a9pTW`a!rb?RQ_|p@4d16!WAX# zevqex$(T|}bw9!xZ^<k+Ax%of-+QSN6s%M$dsfNF(fmN zo5!;4z=s9)gG{eU8;GbfW@W^H?W(UrR^@L4X?lJfIE)zC@t83I>WSKh?{3ruE;cH!)rF zEkGiVuzg3~9^qB1mm7N5@Uv5?>UixDTJ7SYUdcLs@tE0hTIEg3l+i}2Y6D+*BaI9) z*`}zeB}cH-j*YZA%Tq*gCKVG$faT@?05*h+P8M1h;h0*QP#?~fjbh7psHcIk`Nc`s zX6I3*HRsMM$w5-&vP=WU?(PrBcJB=K2}(MKX#8hoed-zFRLt^taH?RQB1tmaZtomR zN!!T0SV;4Y;~I{Aw18PPfi{Wri33i$5&ZE5=A(BXXdQ2~03Gz(?G*qOuInenr8d5B z3h`1MldB4tziyeF>S}4zyjNY^1zv-1tHkm$<)*!Ltzcy2`~)#iI)K4DdBCOJw6c%ms6QFNp;D^?<%TdXl$*APJ=O7QU7 z#T&kb#}qJn$!eg`{KwuRR@aY7Zu=t_qXVZ+p)VWjK*S#Bk2u&mgFP>n}|@2h{nyLXxauXDD`ejh7Fn)yqf#fZBaxI9~DdKmDnL_N!Gm=rjf> zO_`-5peQTvizu>gq>>Ngi0F@zs*+a39if8FWOS7xuR=F|&@Nrwn?p$Q!)jEeZbtCQ zX4!U%DK0tX{?Y7|yFCvuN@BtB4Gz&BM7t<3Iw*a9P}8W;pnNK!YAP0^bC29 zrrE&^K&JdeO0wn*s_^@EFyUyzrUf?NSoISPc;EQ@Li#5vS!Go_bn}KQzR;D1dc_vU zQ&{%cjYr-fwb%l~C}tWJexN@)$Ft@w2TsRtJ{m2_nw7Rwl|}U5ykF2N-Z(934<=zd zgq@EaN97}nCF`5}b5W6Xat@teXlj`yX*y*uU-56xd&OC|8fFg@f=;`hgTKlm!-4iY z(rmf~I4!BvZ3L`%r~HQdz>8iUv`f?bh^rCx>#^%y;;Ju(8CHzI^zjanFwa(d%?i;# zMR~IyMyJLXC0L}bib+9gin!?7ePgLfXRKGW(eLXPpVH~%8z(Q;k99YG#Y66jR6&_nkeDMyUtpWAvMHbTa(g$?TG)kOdFg9$F7POEm(`O)M z_D@aWR^M??DoZS>=}ot(Bb6}ang(N{sZK-n>m6HcvgIEFfgdk8&dFL%nAN)F znv(g|nd*_Gez0PNjZ{GtCx-jh9ql*jflxp~gVkL3`8b68!x4XRW^9RSKp;4wBhii+r8RH;QL2ri5-W2Uu0}^Hjt7Z>I=>&!AXI*6=${~Zk{RJ3lx7H)J z;W2^Ux?RWf%wJ6G} zftQiFj|7$hht!Vo^Ilm#U+VTaUb|kptyN%q_J%1F$RNA%(i9K?siy8VgI84bmY^e0 z57sc3IzCXtGRT>uMp4{+%m=jLQY07Za$skFG}i;$-ODSdi|n%RJ5%vO4Rn^6y?uR zQ}MRZZd{^H+<~`l@O-|HAh-Nr9RpFL&s1{e6>UdI9sd9-uo+bR_e58H{zBW{`aejS z$YZi|R0aUlZyhCEcwb&VIzttfz?s11q|P>gbF8MJLr;7Cqf5u_I##q<%g{ePBA@jj zKT0$+E1Qfql+ZPK z<+?!on%YwA?NA3%ubg#GUEx{Ly47aQt9+p|5lP6cGdOB&I(*(5t&Fs|cLI&8!VV(D z%OEfcRZ?1q&x6c*ACJdtkI8ZtZFUre3Wb+-4SbJS%Y80c%B86x06i1O;MyPUlBP=j z;YAeLnadtbRJ?3I)RG#3fFqsHeq+(&ZyT>WoZWoma9JkGApn#lmsi7IC;Tz=jsU`v zCZK|%zYPZu*O&!+;5reb>PW9xcJx(+rdhyK_pE~4B@!}?c7f&(!6yZ@kC1^@hF&Z*OM_!QCfebku{)D4H;AXX5TRP@iSJ{=);)nQWY9;hL-&QrnX zw@rMbZ|W~=ShE?q%7aiwnz7h--0U72@cp2Al`UW;c{3X9HhsQ+_zQ?V5w2Mi3d0Sx zao?B~cwCbvp3oe++0>oz?1;8^n?b z@BBq@@O*DY9kjod7-L6 zZDK)rgQY|fOOn<$_{X_;5m6J8O9I@Dz43ZNcrmP+nyqNM5}J6N7Ix33-v#gMv>(9)BMk;OphjlzbiD^G=d@D886dvN+kog|3AGz_ma>PLZo7U4^|NnFB1q0d@omW!P~WCLg{f%t}_1K*WQy^wfy?^U_unS`<4sd@aZ3(PGsmc$NuE zATxA*&t8#d3?X*3W&ooptMVD&qyY54k42m&MH1}f=y@aG7kz1AvkO}SmXM~+*OJ zpHPAnDVeuB4%@*iqZCY8Rh>vju0RPj6(d4+E;KCK?&2<8n1Ly*loW&0UVyj9h^dBf zDO~xMlQAhFvVlS!+&-!XfYF5y1_}BmRdEH`t#b_5N>s7}RCLh4y~9^(?HgsmZ4*=g zSP54@pMojh{*4i6bu2o=kfXEHUvq8N1X(b0FEs^AK?*=; z>B${B#XDS-nSyCTOD8Lk`!?bwzi(;jmOWX_8H!(Sbf?M$UDvvll9l_vH|rHbdjbhr z^QPLJ<-YAl%NHrZ{M-gK|CUmuea;Z#0i&vj>)9ngeCbKG5SFJeO zC||bXWvK{qvI`D-81CxC64o;X45U~1{osAR^9Zy{B!eiV)K;`-YJxb>#+wOa30!Ix zWK2?kn1`n9HYaxa2(5iyikvd#&i?3Qvq{d9P$*mvJ^FSqBFX)dP^JOcox%L#3)qD$ zK!m1PAtS;;ak1m+6J0)#yg(|0YEqj+YHadJQdSsmr@yQW#P~8_s?RE=A^Q*BGtbeC zO0%YLb`^T{jNcPkCRt_$A<7<=(zPA9j&AHhHcAw?qEyYSXjgUKiSqNQK!fdW$5PsY zHl=;eU$XC?#kOeJ0S1*uc#tPqqbS&~1>lrH**r%vJ-eIWWLlj@B5 zeiQnV`-juN6aN5D*uD*wF&?wmD>h?FZMgD+*88m{ zT9Tg$AdyYX4o&8i%mXkfCad(jYb{k^M_yvdm)#g@e6WAGb$Dt{8nhuHS+fOI z$31z2*2}XxSe7G-Ja;V2mn^3?VX)PK+6*Ze6_?Tykv?Rv)CmT0bw}M%kVu!j>7*CoWXrRFx&uxCXkIi>f-?CJD}^fW!xA zGjhpFa%7_hDL*&^Xi%1c*Iowoi&$x8V5k>kM&L!H>3Ue@DJ3LV{Eq(sj{#@dr%Omv zry@woL8%-N)C0Nlfp@*|r3$$m@fWX4`6kX%%yQPS^a;<*;X$Tm0f^VDkIr|D@6wIz zxp`KF6sUViKFWt~Xg)Ac2xC>tA@Z{@`hPG}(jCG5T$7`K2^)@7Ir>D}eu&s#6w6vd z)IhCz9)Fk*jb{YfQe~2%FaTZI$6gMh;abNq*sWm`hG{cJ4y;DHX+|gcjeiMU)>}%{ zscL^zp9%ro{{R#l#y-E2?Z=dlc>}4 zq#@(mK}5h(x{&3*qiC#%GvD&cmXR|qfPt&NjC4HG7;G|zT|J!|k%-)P!u@`Asn7#C zF2{Oo(Y^lw&r403TFy|CHT(7N509~dldOuELr^5S%}4D8VtK_1W;94Ivuxd=9|>9}N|;zEBXtmA*3)YB zib_FpTzmB95f9v0i8B%a8h{8qh^c&G@j23_E@{Z%1N*|wpASxupj4+wcj$IKc!o(QL{-Q!cgCGo^s0u~V{)=M`O+i$X%T{U>T4%12lO2TqqYrj*nb05<-3Izy3~Lc%zy z>i}_5RqK+VqLavWF*ZrrnBqVUU6`cIa8I&Yy1&{9`qyVJ zUtS`nP=Oa*mVAH{{-g1t8@5VHigMFqr;r0!WwlrXG2*9sz?9{dSa}{GJP5_NI5NtT zN@gU6P|$K4ezY!HD`6YiL@P03HSHbVce2tH<2JP5z#m8UuUuy8l3l;mw)3nk`$77_ zd!b8k&Kc`Y(Q5Ly0;decsmx*5#pO8@7bqaU$3WYXewxD`AI2p?B5-1Y&cqh~0P;;M z_JibS+g1Lh0*3)k`fbD|;|rY5NI(o-$saDq&KT}1-csf$DM_fImyF`hl zR&3KNpaV_|kO(?zK5?bs`Q=jHV9KNIB_e?D?l6ld(loS8OuWM~&YHLW+;LWiAN!ZU z0zd@2m!W-PBBhD%v?V~L>%ac6BH_ZJWlmcvn+E=^-w;8FJ3IJ2`?w>El_(hpk z+36XSGPrT&`TXq6=X0Q0^Nn3x@AiPW^7|PQq)_bIzu=@Q+_>>xye4Cu->C2Ohf76` z6Bd+^3Pzx6M^DaS%%BSjTINh+G!WxcxbusXai~ekXpmTP(8+wsPE4YWMAD<(@r;un z*(S^M;~|#BE+?ySWQc@&=1dqXP6fdEV4wkGM&i{ zw;zu1-FaTq0t!%*QQ5g3eIZ$t&9{2Tt0fCYWYVNi^VD{VS2dDyd}|>=Zv6}G(8gVJ zV9Q+jha!ZjL7mCddQkQn`=da+vq~ibXRHa(7Ww@@XhioBT0+51LF2R{U6)klmFH0i z6i5Y+oM@Mf^0bha3N$?VK|7xWjE=JEBD)9*(ykW50$S3r2_Se*qp3f=A@OsRtl5dv zU(e5s6}hg2%1Jw&1A@?&yZFnRps-35Y16kzaNtC_ND}~6YQ~lFhj~RARg|YfA3}O} zg!}H|`cOHD$zFR{`7P}6l@3Q@_dEz&E<#WK@qT(ugC7Zg3bqI>e| z69LE=kj^&y!yYEWlGT+-AKZOfuh;YG9@#Mziz*TpoUZCp)L${>j(|7YVFjI&2);cQ zPn$V25EfK|9JhsrjNz(l8ZDOkw#Z0I&_EmVI)2fmU3lhP&=io#FSeuRI~w-hJ5A_? z2KIp1kAx}5F2b~tb9zHs{h--TY{Tyjn0os4%L+zff$cleBo_p-Lm&q(KxQ3(H;YTO z3py8(ASBd))jXEhN_oX8V-jAz5|9Bksp2skU7~!YsY$9&8V*=*v^Ll$PMUM6CoevJ z=r3u)#e#`u*ls$)?gGuzK4xE9Lz7AkhUT95IdolfEe@jTKrE);x9r|gP-3(tMp9Cc zrf1mwqA6I)Y82kU6l14!?Ou?GX%kT_Eg(2=2v)zJozX|4*^|^)F<}8lfK(Q!anIT< z-dO(tI>JguU?|&%tZ5e^d0?p|7JBUtWj0H0xPPU5-Xc0`2g7)q0$-`L%_x`%NE9T| z_-}`tX%_q}Z6#URGN?Qzq;B1NX&A?(&qr#qoYoBGKoUZWgHl?jjw`d6&z!T-%xyDl z_H>|uls632>j5r>iHcT222)Za=ed}Y@L%?(BPvd+0-#gebsEN(=;nEsD1dxqy>%pW z1m+r5?R^9xLDE2>eq$=Uy&;rlKti((C`bct-68VTaZH-iW(=dIo!j||jsp`CNgz{B zdiC>-IZJ&e7I2TGDU+oca|ehMl#pBwy1{HOU|iXu<{X1x<{q$K0hcKm*eOc-bb?of z;UY}6WlCMipl0a`OFf;jN^RdNSBWI%ZwWtM@lxx&tDQqDX-|w~n5)unteC;T2iZ=i zfRm@0q-YmVGk^-JNCunJeh$U8Xkq%*W@2$tWW#Hg67}oy1Ri z-XhO0!hqv%@*Ux3>z_SjOj1Z1q!7*D=np0UlG}k6vEoutl-I9jF?P;GtfEj4Mkb0R zeL4uVl`d)VyLF@sx7f<3%S5mgM!L{<{N4gT+_rN$85AnsB@G6f=^k6Ite^y%4f}oI zwT|=>K|u_1fWt@)ZoM23+QraG#Q1?}41z}5YZupNv@Tj53;-1&oE<#kyo={N)QqVC z1@ji8YxU=bCWMu*(re8~e5lcn>ObV8v+OhjlJK-UyDk+dg%gpE`^1>7d4NJx+YK`l z0WXh8AgHAk0-&@4vfjc{^Q`7k6bFtWUQn?m<>>WlLdr_B8Xfz#&>F{qB+5ycwC7%q zO;S1OrAYe2O~2BQtni^aZjq;+jrq(c&$G>)Hl?MFbq)@r&N1aU{+BKd**z-E62!Su z+ydFQ08)md^WS1s!nui5#X6L#n$xiR@4aExz_}i&C_+_R}F zHJE!S)%0RV#<6np$9jaMl0#(!L)&eLigz`L%t#6>0P}7;d}7`AdPtC*$zVlKBlh9q zzKkyAy%vO(PCA~{dnzKOu z6*~tl%?)_2^dd6(eJd93d+8G=cvMnN6gfP@CHHhrNX!KWy*j}xJLu|6rIngqvmTWv|BUqp)bTcH%6lQCEpz`2p_M7cn*~ zNe;zIsHTmvKc8?=(GhAy(dDVz_WhuphEfwPkF~4p1bpvxnBZ&ewQ|EpaFW;mCMp7UH62kQ;-mYF-oRwk~?kZtT|oQ z;lVnS<9oDJ#qhAek&QUfS3)|&S` zKzt=}PMUpU{{Xiw-7oDH-=p=0k$c+u-2?brTXmy?wbs(*@>%AK9ExVwN!_u z?Y|M8T$a!8RXwMWc1;>(mrX(aB^Qe?0-tPz@r*Ifj2F3LZ6(j+3#mUaik8n7mH+NEk~#5CF^27%Uz z73$Q7U@ltj#H2kupnTgsX-;~>GOQ%(HQFmru^JUoz0sZGdRRr=`t|MS6zz6E1zXAv z-m7XS+SjB9on~!lb?F(^N(*S78k%#ViZf3zTG=fj$rXX~+u=ycwt@3y^o{}#c(Szr z05QUnL`{tll<^$q=06Fht|ArB6r;qOq*^o|<5A}lA#{rVwwp&&ZLgwq`NGkQDV_$p zM9H+#z0fb!Jqs5;@8Stbkbo+u;Il)Nky`Bzl@0fd-uGERQxFP^Fx9_!(=BB=3u@X% zQ+%-{Og;Pa8*#U{(SP#3;bQi)l62`^U=^avLPzPL=?<%~W)Gp;a(bTpKq(KCeL4;k*MLR2hI3k+|G~Sw+xl#Twi#?1Gnt2{# z{{ZyAK>q+pIxMeDqd+OBeaw2BC^`Zdu??vkjzQ)$oUl(C3k8rfmrl;#2)|*wE8=X2 zU~ALg7A*4U#Wc`^7bMC6?VxVocv{j&>phSK07ErHd>#v#Pv$-GR(dKvM_%u@oL{$3 z)rch{#kb+@6I7s4QC0x$1?_(0&%DrY6evXJlBufG^{7Eyfrn&3$br84Nl|ZUST&3+KMSck?i#QhK5C2 zhP`Sa<5kKCSruJt%tbz6bI#|qQ?}aKIl9zDa#Y}!?b0hwaY-qIw=Z3M;;rLp8j)8N ziqhtc<(xHo6BTb;Pl~MC>k(??8JjtP1HW(PB(p3EbaHpBFQW1}nw9uPrCSK7<482| za&@o7&0WjrBGsPKUY{C3S&67GQap?jmMPmvomLoZw#GHDZD7^kFoih%z=Zizi}i!o zO`^4G59TXZ@aTHeXn)=YPEZH0ADhLGSP!#T6zF1%{{Wpl<16j24mcxlE#@bosEvsu z!W;PM7`7iD+L z>9fZdZL=u?84F8DR-;NcF-cc$M_6|Fh`(sisWok5qc}_hEhYg}?07v-XmDAMthVAq zC}#cQz2kK$BRrk_<|p^bc7U&E6ZcV47b>2tJ+H*L|D3SB&;wY#CJWx z93OO90nNj#b0)n9)&|-n3e}I+98r~8cuxEn>eF?hL&T7JjbbhW452hVb8zuy&x%$H z6!!;13>KU`k_!?JzqAEb7*G}Wip1IaRIBz(bOjYH`m|e{Ar`dLD;ZjdNV{0?~CgiYKI8v)LKL!b_~7n3$z9!7unRbjsL>uB)*v zLGy-s5NBan|;eIXTnv`gYIg= zrRQLtg|xM-kJR-a&%4eXEf>tGPRVL(uo7?92@ z9$%Bm@~=;i4~)a{M5XPOTM?u6tVbXe8X7%A>jJEHLNwQLq!#}Gg(L@46=}!@CR+j&2QT7yH#;t9#0E+&a6eOf(I z2-o(CHfh>rchrNYMuP%tfZ?L^P#-c`)M><0wpz$6c&|t-P#{&R!oazD{69I2>BU(A z8k!jAI8_p+JN4)y->FKHK=7yv9bdcXU{dU>mYn%>CF-GG@5E>JYcuRh(<$@Rb&5)| zSH-T~V5OS&lZP%u(GSE zNGHXn(Q@vzv$~t9)bj@CRIJsa0g9H1JZRqNp3`ju{{WW#K87pU?V(;5Zh3E{JC!p+ zZBl_En`;5*-C&cbI?|t=V9lzEVEXD}BoF2{;w`}0A&oWPuYcMD+HhN`OKofTKCth0 z*f-R~w)q|xJDk0v+3<16uQSW!`eyg05L)FaBm$5e{&5icHM2-qRGoJXa@kL||A{^LQD6@wCfSz>icCm-dPML#sOu&O1C{ zb);R_K}th0ZD|XaqR*`bJ`>kq|jBgBcnwuFL~MLW>Uw99HAssbvW7woy>5FB4F@%saE|aHIX%M z(hd5bP!bcEs)U1A&;)_6ePcPht;&`iNjXSoI@9-qxUTpTgtD(_D@{AL&dytYMzBW^ z+N901DMQAhl0tObQhI)ATC_ei^#1^9QJja$bEs)hYQPSxYS7b$@aascV>Jk64Yu}p zDeql3jH}WWy++e6QjW6{SQl!Hz!uenZC4;ULIb&Mub>py^O(=$p4)40^gD$;T&&f~ z^aoN;<$J?T{eP68jK0d4w*LMijtI4sN(m=7hL5q|zct^qT)eDhY04ax16JH_cK1ha zb<>{v5xJ(znJnd_?ldaU9^+3aE}I1fT(+>Ih1KeYM(GU~b)im1)NkGuIAg=;mJMhR z&#%$x3`qfl5?g=G{{U!Ok#&>)wSqEj9;}Sj9K$NT>p>?@`g`N6GIG#q6fKjons}0G z`VslwELd&ehZQ;ye)@=HGHqcjN!AV7COGe;1Cu4gvyLMDns^#eYz$u>j*dx9Ly!*K z7&9>mDQBn;)3AVcdYbLDrsW zU8C%4>QKv=0?fyV!SPki;#m|~sQ1S=m&ZM}@$$wYe)`$V&ZkaYx(~cMVeD>&q)IN5 zky3Om))-}B^tDE1ZhmlsjWGHpkY&9pK&x`x#}C6Ux-HZ7vT7zvQVKy!_i*1M))a3` zo77AONhv`C!sOMo9XR3`ZbTW9(okN5PiWIm<_TGBAf)=rarQhB+BA`v75@Nn`oy7A z0Cofod_zOt4O|xye->vtyOHHh_ksw#(1uEaTsFTB(9LC*>27KU>HEAaH5;<&^$w8P zR$Yf5cuDl7=*c$Z6QY7hON|bWG^o^6dFW2w_l(3ZU1&A@+6hR#{3OgyppF11c)w#= zb_coTNXnI;SfnS!`)!ztaC#avXx594MWp}~I3dM0>-LPd6UbDls+fRTRd#xhf9H^n zF273ClC-3uNd|>%Kv3PmOC_iSD7)yIK7N($wcPd@X+~NwpdXqvC*K$PWKK&Hkh`|k z75YOp)n+R~RkF9)tf#!i@UKc_@&zB})p_ zbsKG1(yj|a6q1CtQtps+I&0HvpM)n^tg2aDq^Dg+`wj;@onx67O5{<+6QmmkBkdotv1bn<35=Mrt|Y1Yb%_xn;{`sCbIUe3Frs zVQI^oP-)+8#vQrr56F=wcvT&|DjNgSp7EbwGFM}meOVwZP*ji3@oMMBxhE|Ore;z@ z>^XvXj>;`5qQED8fbGOZvy|ysj_{TwT)?d83M6b9hb;?c+E+O;i{)DKtc_9*pB8=r zCunTAeID8*%2Lxg6TecZ)Zhmuo_oX?V(tNIm`KcZ9d=>28$ri@(^%)EtUW%%Xg;k< z%S8hDgVV!Trh=6(8wLu*DYRL_#Lw;uEj%7JFYen&@6vR#sd@5+lFk}|w=DJT6)+|r zmZ?E#WGQFFMy?xB-@GriTLiHsn!##EtDKMuMG5ebcnTG-are$}h7F%$wJgYWS(XBj zXv6(WR)x3vL)Gns<-4&ZUh+rp1@1}8OtwymqiRGv(v%++TMW~k2*|c#)UPG!2xkFW zW+_T5Ae{>W#EKFL1&)LcV`#h5l?=uBJVnV<&Dgw=ze@ya(O(01N6dGe&pDwi<{b?8XfpgSHO5v-S2^z&BE0iXk6v&7-( z)(4mBoGFcV<3Rni@_pj{`F^A+K`MF%14{IW?DA9qSQI<*VNUb15~XGKj-CAWi=7d- z4qnSx2{dBuplB887WP&|gqpsac7_X*#I(yEwX=>pbGvB*uWX>4;1ssH*QeGU^by%C zvkC)^Qs%l2kzEP(XT$+|lG;R9h9NT0hTMP}uIET$xvY%pm>)3xLHxbi#&}Cfo|1-D z5<|Od8Kxz?7b1MQs458H>fO5hz0spy^1%TEN-2}mZk?ko^q+xe&QX~q+%qJTp!g3s zRO3gPiqUA4$p<>9L;E~7#1}Pp=pw!txzvghUF*Ysa~QSXZM0cb48WwjXCp)J)3|8c zu6$aLR22D~XgBK<#_zS)>%#?wl6)Yj*RP(?CUwr4OG-*u0v$$yx^g<{2kv{<)-NwL zBd2&LiZHLPK@P-*Phs}=#=jYRL)nN*S!gLC*dNXzw&}c!c&pd*v|+bR$!V6qS5+bF zy+;FT_xPCB?i<7jWfMU{lSdo%dQ)g{1LG@DOvKFqm++9CN6Hhi&9zei$e$X0p5L0r zzlJPGT2x#W2Vi&iz`M^4OU<2_jsE~h?FyWH{{VJdrV>eXttE)ica1{{tjs`i%IhBE zJRX+|lssjL;a=#gf$;RyspbNgC*8Ai`Q@J;HgY;EePS7?8FGT7M=zk$@1!r?cj`TB z%urDk%bJBkjoeXz`$n5@upp$TT5dOJ`M()@CbXtvr=YS@N`|a>-jyM!cco)X(p$Z{ z=|tp(B;`@rs((K;fpKLP&$EBitY6~}(6 zszFIr3Yhqh8frdHc8B&fb$*Kh@h8B+z#mhuk%G8p;q^|UbGhEWQ7z?(%H*df&uH^>6E4CT8L^C5kmSzf74mN##}33DwvXU=2}(= zeH-1OjQ;@ok^cVxo^Z6aw2wy8a*`4X^isI$+P7G>{{Uu$fC{Lc0QyC%M3o~&K5Cca zh_7qDPK*HWU)mE+lUS@p+bBsJoyUG+^}gg2LQ}ESKEs2vz+1}{fE}N)t9>G!+ldsi z5|?A|_rsQbg)c~WYRoc;Y5w9x4MTgrn*5~nSX8yFOchFeC7Jcn_YqF&>CATDCkg+65v9heUNJ`tu{F0{*LAd)J0^M$&8!_huWqL2boTjAHwNV#pa z$Oute6*Gb~A85_-Ro5|dGgNWY%a4RR;EWQJEUIsaXvVMC%ZOkP4Pz-uQqZ!%)E(g54N7Ry?K)I$@g*zdOR^YmRSV82KP zdi`5dP2apZTdsWG*nNZR0j$<*9g#^|NGnUIht`emgL85GmC=*|4jW^`v_3!5z`LH{ zl$EG%eVT^Ux=#dq;LXutkuN#Qkg>TO?b;S)-HMwq%t0bs`-t*_Q)~dNW>7jX8~1@q z7|Q;ZukE-Sk_M-MW1A)=vr9@;pKY5c2X0Q!-WaWyY?MnSNe=L`l-Ss-^)cd!6ExrtJ=AeJqzo=^_kju4qSvXqh=j?tanm@aLua;7(cfHSH70kkx8?s%(1 zMV_fPg#}6p752Y)1Bvc};8cY&Lu%%qygA{#G3r2;KqVvp0Eita`Q#w|hUJz`T9y1T z{w3%u4q!Pl5S7dTuSYC?JVTNsg^m-`<^(Td%f&LlcRMr+wE9f&0F0?&uKrxZ<76Jv zV!TEytPnE*Dpl;i1A2Al2H?wT=l=k8Y(dtP){udXZ`Dsz6#z+KPKEvu{{Vz9)Ju|? zejfA!ew!fQUM z$fy;5Hisk%_l9Ln%A&|D>?i~r#I`ADlmbf@p$CWuZnlzC7(Xx)%`IvtGmtbK^At;V zyg(&OeD$l3wPPo>Vu_QMwA7`lTTZ8;hnz`=RWxOl;a4P3N0aahWhE&}N{J6KT4p?* zx2D|&ku>8ax7-wZ7A_8**zDU@K7hdYnhb%Jiu5Xdm{9c%SVg@sdX$osfB@t2rYm79 z3ehynKp{J*(a$y1ZAhFNWX1Q=QbN?_AwUo|CXWTLENYB^4aImJPu3|&^k%uQ>lfiQ zDWM1K+=2{JvSGIz6u)n{MU>_wDw}*^cG+l=Hz_1|i%?VoSib{jqduY? zFumR;hn|9tIS{kyRI|@WC>3Kp6d4L^RIUN zI6z=n@Hd83*`*+Zp*?>q9(v@cupphINidROyMj^>D_>~7-JmWr#@?+b)sW_a{{Sfh zu|6R6M=FU4G;nAsM{eIJ%P}Rmt=3;CX9MT_MqK&Gt}&wB*5ah*RaABTqsexALe!QA zCZs!`vp_68IciEoy+d`49AZV;)h{wYBv5kP_wt9tQG$Y*Ox`D@E2e@oYxde!N>m$W zJD;>U$;Aq^s;S5YLPp<>7H>Q|DN741?af48D8a257y?Swm8y)dPxb1P*S^tf0Aim} zJ1$e|)N8YyDp)@~JmXuoV64h;su}^rewpZMP*1Er*2VO1lk}sR=~ z#j_s+Gu7q*lle$Xm5Qc%#UQIFas!=VR{sFGR=KSxs1<&&*^+$1gLe@0qe!=5)e>4@ zNISly^9y#XuPU;Y=IsiW%YyNeQ{yudqf$=Pp$$g(n#PBLE&!>cHo?kGM}N*>_Ig>w zcyeN8=azy?KeBWjb?F0e?fE)nv<0Mv0#lH5{g1wzM*DbLkd(G;y&K{LXE-6H+Z2@~ zWm$B%3?FjZ*XPnR_{m0zUida)lou`1-q8I-ZUNZ!rj17i9I!2eEVo{#LUtS<&)oI3 zIgp^1rAul1`9j7azYv5_hhP}~c}Cwr4-{QxQvpgtIns^PeBj;LZXp2*b^~4ep8%~u zQoqmIs0Lhfrsz1Ad(cp71ja`aDsXO4QPW5RtEE ze?2NCWb*)sjjD zKy_^vLc-6Ob%D0Kv;)bDDYciaY3Cfy>izmb#VU)C)r(eDAI>5)n4NNI9TG&;$r1bd zSn5I@$l4^-g3RBK)-=XyYD?4S92*vmuh;Da0zL8C1S(;&?qYRN2C+)=up|KHyY_>Y zsri1;zj#{#FQ6KTV7F)@q$R^|^nq6S6sbBpeIWh1uEK{%3o#X`jJZRF%T<(}$PrT4 zCs>`h5u9GuahQ#`+BFH%sA>fxH@xNnHi5u8kXiX7b~N z0;W@10%+QO;@DLc&8tQEGIoJ!J}<0aw4SWc(z`OzvDLpT9L-e-8aBJdDf7h{*pG3D zX3ZreJ$5jtUp9v?t9z*5cqJxn9*@$#=wAbE{{V`?2@}{59;^~~>kb(GmTUI-#SBF( zFmOsh)a@SK_O}nC7VAjr`dG+Ga2lO^#r-4fg>YUc))BEZ=?^F$zuq%T0cn(apMOCQ zH+ADj-Pw#p6>8F_U|*5XoOG2Iq4MS;S#WFo{i3a|@d+RneqUeS8APen5FLw$)J03g zf~>{Z4fi~D5n9u2ZfmeVD2~%?QA@s*0Pp3@Cb9V%ovH4L<=U#{`v@5_cbn_eq;>#s ze)NGtbL}7E;Puo&3oWqa5BxxjI(k7lQo|ijm%;{|W{AmKhcqPZ(|92&d3rohvrC}Z z^UM~pN)?9KTJ1m25!I=5e~eX-8jajP)-6sn=@C^TTdA`G2!E7pH)pVu$kH*Jy)2+i(9s1YYBDA|I z#TDRK`1ITF+K^Z%U5@;zmo*?PAJoiyd?2{AgclA$)%H8LNU3>UXq*{d1?+#wmel^| z=Hl$OgDF81oS@Js2X6lWFF38jFv-0#vXDl)YCX`#M7gN(3bhWyq3H?Nh8kOEkf3*M zo6C3)V8t_KuPTOJh&!Hm?9gl>d&b~W6beNvQTe1@vRc%pNg|p9tV>|Og1(@|TjtJ% z*VrIXhZTixk4~)$P%LORF?Ln(pgHHX1Vy<`;yHk&b&qA+#|`HavoO3+b@06y#Z_5V zvX~tz@Fb}xar?ztvkG)`ygfkilD4aR;B@OkYneWAK{$+Qn56K|BeYxA+Zw+}D1Ji0 z}-XW1~Q`ddr z9vJ0GPQX$iv`J8U56&QJ?IGx~o35U5&64q$4OoD7EkmVCX5#a+`Y13KHF_ zKJY}|A;>7NJjY+t5?mI2Iz*@zk5Z->xY{{X)hrYS+{4*jVS+HvAi!CLU3Th5Vo>%>Ty z2?$7T2EC##DnPmZkd-W)=_v$|DonfWSnw3$4wM7`^EF3u9_})Bk z$nbLAk4weo-+VqYO zCtW=*H{~?%ciJ6Qcjs{olC7kI{kpU(+!oO>BjeJ*p-Q%{ogy-``C`0+Qjn+8zFb2E&x#Qd`{q7>`5~ec=P2Jg*DYLuc*y@E%l&@|EIA zW4O@6RGYy`QxM1V7+;d+1 z^@{U-+;xJ@IZKn0p+MjtGvB9Zpt%Z3@Sd;9<{1+;iF$*p#am643UZ1TY`Z@p<32vx zXe_IHpBADo%9EO!JPeyD`Y3AfM-Lp%-~u=LM^BDh%NcXBanb9#?<}pGO28@74t$xJ ztF0fTGT3Yi%pRGyCXlm@E}>_fCuRx+4fh^?_URu*!;VaNJh^SAwOuVKg4ktuJ0G-C z^mSp)oT*P*5NN}g>P7c1(JZ98b0vb4P!HQsV>-C)b8IdY>Xn-_4j#TkW_GN48zxsa zHT(AIDIsYN1y5)VXT7D9Rds))8p7U?CEAcvXZA^|i@WGkTI&n;oEQDUPYEWR6W4gV zK3&B65VGQVEOQiq=h|wwctyG_Qj=<#Hc0^rb!FN2ZGqkl;txbZVMr=)%;)siZ@gEN zfE8v*d5M?+u3BXSK-KyD#9{HWuVYZT@9A?A%T{2aM4f*gEL`{@5{WbhVa&~==<%Cj zd8#BSRLkt70$dNzlrvs<&?QMBehNP?{wIz)Mw{1YHR9wMlCryGuFP5#@UMZ`wys8s z95h_Tw~(7FDg!8xN|JW`p=e96CSV~5%tA}CEv~iPRv10vu$j{GgrxH0LHStCuWOBB zRK%d1!6z+PXlc+y_=f(QCT>+sOY8vWXY(F!8O|%l^JS$>teJwGlK$_50jyllvyt;i zvaNQ+rF0=>%CrC)lgOZEkEife&SrRr=^#J5=kSl2>_}3rNl;NLCEZ$5tUhdA^pCOq z1=tBjVjDe5PXLe!;FbVBp^ouIOA50_k=sR`ds@YQLOsY;Zyr`9}|cO^*~4r;UY z8i3likP`a87JXs`a_Dua`8U=&eJ~K4DL%19z)7ebPs$kXxj}(w$?$aPv(}|A!UIwL zq9by{_g8=uxYP4^h-OQM#Fe0fM*L{0ZLo}`DjIyE?i@i$tMq@$!OP}ADRvrrpg79C zVNAk-RO%ijk`@c3KS)}(US&3n)gdk$>PJ{-xb5RTTqRspkMA1brhA(9P}ZFxf>f6lgtUmqvw&Swe`cSyJCfmdj)(T_ejxoS}qm5P^2j2}us%w?i2YIFh8XprNkh z9YNu?jZ)Z`4;ja#q%^F|?W8_X;R4NkWev|wU`6#}Ge}YfMtAMl{bH=U>=F+f!wif@ zjJcQ*}cBxByILv@Sb5MWD=oo{uGXbnKTGY9clvUxH6ys3(`B#bx zL|9W7Wl=~B>N=gx7>+sehkJd~m;yk3(ht@%oOJ8vTYdLvOyZTkRI9|TL;W_7pfD~Z zOysA9CB)(pBFx`k;_gl!|iy0F4Y-D&m_hU*A@ujaDBHlxVHGIx!Fe zs*J;8b{kSD;|wb<(v$|uQe0(VP~Ei!_x^9%7vU-oM*;qDv17z)4pwNzj*ru!isgbM z7sTl^JwR8iUImQ8m3q3-y+JyLTq750YyQKT$Vw_OTCTpSq~%genmOF<+7U5GKB-_DoevKMDIVc#(pqLOa;0m&t+YMbuF!KUQey$Y$(uc9 zT(?TnuL{nDCvZ(VM!$4o1&{5`8A#KDcZJ6EbseCYQxK-ikm)L7%ycctKUkB}HMH5} z%9w`ns09*v&kPNWm%>Rt9HNvp{Q1T~k0sBvAj@h3oPaw3mNnw6LswVU9Xb7I zw>9>VLc*GZU0y6=>FZpwKyt6tn*JEUMcHYTfSH9_(NCjs`^L9|@vdn>0ggde)Sh6M z=vZ06R_UvpqNJ3m8b0813_9QUs9PyW0cj1;zK~MQZIs!PhFSK@ak%{2B9y69D5F=V z-uMd{kh0}htW8uD>TL&Zk*!?U)R~f+Xv;CPSB?8eD8p$%DoRpG)E}Huyl%9p7XTdz zA1;vaw@Y`PFSCj4k_ZKZ?GDlqnaL+8`H#aH4leXgP}AiXW+q?y(fDFD9PtHkCOk6F zt56{zf=>1F`owSTS*P3A428)fE?Q{|n0E^xrSw~nTW%P`&R!KRNG?Ik6YeBmjhvQgxwb=yp zOlMZbS}d86qJ2`09MjABFj@ODO}h%JeBW3}Lk7tH*Dh!~Y4UA`~AbwaZaV#H>qD%qZ;4 z2z@A7ob$w0#Ta2~4venO6iBEq;Y~>=a-s;@0TEo@kY$yqQ~*z##nj&t%+OM@=ik|* z6TR-K)?#KWF+;M$Xi3x>P*3X!e(*}$ zk7cYBgOsX(JBKs|m4Cbdym1V(Eo&f(ZPqh;uF#)cmAMHtKv7|t_4l+#E`Jk~TP7d7 zCa1)rR8E_d2a=^1NZ(fJ0r1`CyrWjw0{Z>og6ppy?phmft3F^*R7PzZuI@e^S{E@TopyO31DcgP*Jk7me`u?O zJ%gaHu`JQ%Yahrb3D=A6M zR~%QTO(D)$czC?6(&dcj^wgf5ye4AYUWFwg2gG{R1Ef>GEi-+E1C>-!6>rTVr2GgH zfiM@!)aZ9FqX);OCH+4A9jr23t|aY zfDf~tfQ>@Bk9<4a_9?@X zQ{WkstNlC0TUF90BQ8)u8gA$7_Ji3l8-RMh?|Q`~lA@|GBSt+(H80*PUpKt+w60mr zT9?@GSUZev5tms^jwJu2iInp zDx&l!b`MX0+hGoDrC*KCCCmm<@Pg$hPcZ)edc>C8e<%=zkQKv<4U|V(u;L9#x{zNo zo09bDzVU@#o{xmfaPegXwr|u!(fV*WjXfo{CjLapB@75xvaR3fA%FhTPag4dIJ2f{PChs#jfrgBXtu z338HDs-F@Smfp zlV%l_0g#GmLhY6{8(sJow27lA02Vs+J>vDU{*aJVmIxY<&NQj>A^f?5=7NOFY7sdJ zB_O7SL~MBN8V!c@Nv5Mf`}Khse$6J+mTIMQmo*#>3vJINGk|FgHk*|U5s)#cZ@d}$ zI2&oXlC=c|06?q2(|wo7gO~~wgZbyg4aFC6ON3^n10S4Jz-lPXm;$FS%mgWnY(Ps= zl)$qD@_Be&^kI*tzpFJuXin@l^3XxNWE5qb!#Fe>WjvnRLVu$~6d8d?@Q^be3FF*8 z5RIu{SiLGaQ|#;7DPDK@C}5vBMpuSutrg*7?_E6MoM7qcNMZ;T0G~Zh{12Xm>R~q* z-Dw3AR$Ii!wyoK@=?<0);>|SxO97DFKj-Zk-RFPIoU(4cYVmA9w^=bsVh-T{vX5>WyPFE~o#Jlk&Wa-e=%tLuBDa#OB z+}~J0;Hw%_Bne;vq0{rPlW`fwE4rnnAk}LQ+`hy4po2Jn5IR(h!!vkuK&$recJcU` z%0p5EX4l1@bj2VhVR5K-Zj}7jq#dx`R+S`zqM*bF`@w6g3@birB=Xer>l-D}b+oZW zvWF2fj*Z93_Ui=kFiS#Otw(o1Pn>BsUqygP9Ky8IF7@pi%-fb!wV8zhM6+}- z2NL2?77~;Rig7`|L9KW4f_UT`tPwWI45hgQ63hYm zaR<|Ve{7@zz#kVU^U4+O-${r|p=`N@K_g~8e*4D#L?W5!*co}I5~T(qI}SshJ}^W6 zc?e*aO#lE5#XCVe%KIxpPJ^fBkygcYOK%e^q1qXUS?!r66+5XaR7|y*QTWu3kJy8%&%g-}LA5z2L(msf?T2j<5KTzAO2D`2qB54UoLzkcqU8wOkX)()HmeDpzmSqC5 zP+F<;-JX ztV?>{(&V?R3R`N!PD}iwIj~M#`N?CJT3ysl32F|Jrrfs6I$pVy8o#CZ;Qn-lIcZ{B zmeyw_L?n(V$Ic06EX($W#- zN^t=t+uibwUacJ2ZD^X3NDM<}+&1mjDO&AmNMtA!wR*PQ2!kQ1VlPP364IrHBR~N! z-K+WD0ZL7#X(cHjA86?3_UWdZ!;TleY`Ip|Qne&ks~VR4<_1m0Qqh?uOxg-*2T~-- zg6_ZR!>K`PQ=J$Cz#7HN%4DguPz0YL8RV=?6tF_v5u@w&hD(-0=2u`GcHg`bo-EjK z)RZeQKyjy^CONg(3Gk)Dbu{@!nK!si6|75m-swt9ki=>_#o+@Rtv})m>VG$bHfubz z2g;NFBaZ!IwbO4#QM!*C4U9xmfJjoE+<-TUl*E^NnTIMzW)Vuvl_5++_b$ixg4cE5 z>hjDQ>fcYiQ@rn_l1nAcOHsRV1f(5~ERQKmNn)D!jFRogX+rWTR63nXV@|{~6lIjY zzR#b|0O8L|s{RBrXzLfy)OGKIAB`aB4kAx9IeESm}pF}f?2rBlr3{RA3 z2I!F?C``1E3DmRu;g-*SBmqHMS9m@jv84}2o{#?kqd-!QWe3Xo*Ph>iXbIo;7ip^? zJ+nBABqW*!+#$g3TBplpTtEWik3St$_pP6dP zkTj3hi~toZ%}D`H`FZUM*7eMgprbD^)5B8S#$2{v;kRpDv8$;J-$Mc~97v@&QrLV) zF03Ufsm7pEIMb2Ap9DJfMM>!)u$ zAT5U9D5T|5YFWE#{iE_yiHTBjJ5}3L3~3T&!~IP1w;>?VJ3MK)V&O_=0^x#KgQ+mT z=@tD5~ zMqv8In^mz=kl8^UHGs*uqYx+;6;Rp~Eq7g_Y{bqFEdhqLC-r$Yo#DUwLbYdNJX|pE z*NAsF5)81alG{)}Xq?cycHHDj3JY|EW@2}3`~4t37`v?VR_hK^<0&WgSK%IBc4a0( zM~grDiZO*;DTZgsnpUjLpu_6%pgCiU?PVEIkQ2G*v?o~XS&*#5QBFh>zHM_og$4qk zh`Dyn%_S!-Qfk9q@UM3hrJDvEn=C3~9YwUQM{*K;)IdpNM)3gS zT}IR-2y3+BWctMl$Rl4bGHhWkQZ%trbJx-B|9^G15|p z(wjv~y49LUn4k)axZ|`7m3}fvXDn*^1Efa9VOIFPX4%#npuS_N{vzbN%0%?$Q7Na1 z`P}UvueqoQ%%wV=hWhOa_kGWuOrhcFLDnMQ(csmt^gt~r6(yTAU%0ViKq@I>Xe+SZ z4p=VvNS47Mk{Qe{+Hi_Vp<%5fSdm#5wsTM9Z2e-&hMRYf*n14JNqRkBc<%oI@VnNK zM5{}gR(QT9ZLe5cvCl73@KRm04P1!Vg)0PQugW_U>jP}FoW9P{c_q6>`pU%NRO=r9 z093=15R>Q9IzoFxN}TXXFTT-Q*I*0-X$1_hEAoivBmwh);d0kzRRQph2JpXbnl{s{ zFi+l=u~&n$?EGu6?*ix8n_7Np9K54$A@da! zW*XOcyFN`te1t(YI_gN!L`IQaePSfZ^D$^9m5)&_9qeipf+M7(h_Hzu=wpRIH4m#X z`Dy~DJDC;Kwj)P_aZaWh5H}wPNW45mk;@mRpN$Snn0EZ@3s;q#1vaNs3ciE?0FQs( z$F^x~N7GFsyFwg;#CU-nD13eKZ?>M5mD|oeT39*KErQRbVw~hrfCqoxE*CFKwyRG( z)3jDx-CCe+*Q`dRYwqh2g=z&l#kn~k&EgIj`sw+>i&L#W=BMuzfnsUh^@$ZQY0>`x zZt&SuwyQ>r!=};dRn0f;)(2*Nw9+N@t{CvgmV@Z*UrMztq;M^zhR0#da*3{<15@Rs zRk2sX1GhVNg3>YFGj=AW+-!cv3EKCD>(VCF2VYLLPrT!Z8UPKlLl?j%t8TwLI|^QE6i1`0F31OeDMh&?+UHFr7fA{6q$0x92e$?K;N-aHhji^@-M! z^zzX%y{bnYV&|^V1$jj^T3t>kbkk865|C&^z;cP$WmG|nJhQz!aRKbgX78sWE?FkI z)wyki4Y-ZTAet6V>fQ|4%6apJ+brj;Kz0MR<}OQHXI};)jHBOyeA|XX;y@5)QHGXk--?v_LK)1(%aU=xs0qTPY!E8U3Lb55RcLQJBQm}|f79eDiz084jG;APAx zSUTnGdF>BY6>2@l>jCi{*d`<_4-nUr7x3ipxo!)s9?;xz2Onv@#aqtPl}Y8;bshBU ziUe~&+;*MMp+YO`vmxs^zwxaQgos~%HZ_oDO+!Hk8RG`xbGLP zyTRE>_ebkZfG_j&NVKD!U=tBTT~bFeQq+@`rU(B3ZqPc=g~(HCo?zYCiqN6z<|Hu` zQPdbPU{&3CsRzKLS~2{jShlSbOHE6Eu+{nViBnk!~-NdRwRm$+_=X zJ%@kr=2cPRPfcRvyJZGM-DmW z0ox?4C8h!ffoakhh21RG6BwT-?mi#Di<0w!m04Du8LB&X<{FBUt%^+u3mY8^b=&i3 zzbf%^GM4Y4iLG~VdIo(#fm801J(9)g#3CJ(lA!C9Iuupn6DD@AEfXrj6wI>3Ffm4L<1KVauV0i>nQSSmQ;`bMBa6ohO%76^ zK-tgEzbL09&qYkCYEEZ9e@1vAX2eqlgX&_({nD3ZrA^dCEG|v3Ogkt40Bs^`zWtWo z6@Wn?gQt{ExsoQ3QV7_BGU?s4_`th<9J7<`xC!`b6sFKiznpB#;!7=NIjEsaZ>9BKt3}r=pA8Fd z&qMFhu`HsYm&B@d{l4%{OZXkHi(QNit3^#1j(2?_Qq_j#YKfsB13+8xyF@cB*@G+s z29NiMM5`&Mi6ow^OiwDVJWICQ6wpXbrA3_3f)7R`^H{5M`b_l?o^GNu<;PY3q+#%pf$S&?d)CUR1Da1LGE>f@FK@mNf^+?J5XFqoGw zmw!FB)B?w(aCtu?ly&g%@#NbtJJw=Cl8Z`aB&VSG2Cq@Zg0G(6H^~eZq^T|9JEU}s z^xLLO@Tny);u^8&4#%PE#7id>jIN~TBpQ7WSm5XR68m>>{CxBocwVv;RqCcI);?Bp z5=V1Gw)(VMuv?i78~{imLsPqb;d=VHB}__*45ceJQL}6fB3w6lDJlsi!7Lw+`aF32 z?$@oxWW%M|YEG?}w@7Q1H)qnK7c8>S?gd{%2jnq2)to1fJ~(*fy$U%hd$H*kP)bN3 z<^+2@KuavtmU72K`NTBYuGdIVAoS<$7st0hD4NG=NpPXa7RmuNLfcib4}!+uPZSxi&$i+MC;>baVVfm~8tCg4*i~Gv>K)TP!wzP>@)w+NClRWJO&U8t8e7X;{(C+qDc4FT zAxKh+Nuo?;_vRB)CIoubENTI(Y)L;aIMMCb#F=bK%p6sZgrAriQVrW~nQ91{6PS@j z4FKT%w|M$)8Oh-CxJ9{sEiPy#h=M(~|F>6oRT4pmi% zqYa`v&j?!AFCtb$xm?F(gq@Q{bIE=hwBOXq&wDR=J-+4G)>5@0Db1CVML^K}E7%95 zZPpJ+atS$7l@@S#6rkgi`^V1L$Dv^*3YwIva?&#pR7ovR04J06i2WX7g&}DZhD4TO zsYyFIsU0c4(aXon%g25^r%kUJX1g6|nqB^OdtF(!!w6(|>C1CA?0 zLkrlm2hLo=sYrejH9V-e0nZfJyhC(dc6%sH$!=!o?BwR_z>D{9r6QNg#bSl_enE-q z%&VUEFZwaM!h+K@sVhT*l629!dx_XVd&y!|00f?P?E@rPl{eXu`U~iJnzj95%krH%QQ_& zCy+C5QIvFy_x_=5Nm}Ju$tpsLP$|@rO0{WMeI4P;-=mR-`Yplhoj3<21b~ut%y?}8 z8|gwekGZbtGVHc&t5YdiQk3fId+A7y{&0c-Y?;) zY!E^jIb6Q{eD#TOy_qIcuymb;dPbFp@D}W`Q!;74muT6rrJ$q-0)R8dPl2YUVgm+J zPUeO*%cXf+HBZm4lqou1ok0Xux<$n&!beYwK$IO6Dj=1b(eWPW4fD1mwuH}B7=mA} z-w0*8R6t6B1RZ?-(3k1yDYDu^^-9LOF<|G09Q_PX!q=G$%5beA{IRdcV|lx*%1HK~ ze#2-pBJft6MtyMNwX#ya-Qk=5Xa=sDh|^fudAskH03BlO6J=bP4 zRW~Z#wk*Xw{{RuCA_t?H=|a;jGC+o#AT)w3i70 zng;rHh;eotDCAIlNPAtO9luFW)P?ZAOwL`Z~1!1TD?vp;sSe(>hyN38}w=iCd3^o}-Qj$$l z)dn;CL4pF@OHoQmCpY8y50o8E@|8;oc2=Fgiou&RWe-uHBte=dOth}iW}=mvTL1~x zpMBwm=d~qi3tFg7+cY@ZZlp|3Q$*@vI?I7_zR7Yx;r_6&Cz*`|vNSyO9G<#GxtHX- zLP}P|0^!H!?H z2e0#?!*7|hKd(|qsBqQOmv6@IBW1AO*$Rq7mLbm?d^UtDj`kncE@Z^({z9#zbkH90 zpO?88!uIzKS?wuNn2Ad%6eCd125s_}>-%Web|hUhf_bESbYoO4VF2aXv>hN$EWZq; zX_-G0`O+(mnbL2wCGmKxAR|px{;A}c6>~^QU#v|?-=qt?u_A<$6ov~)2eW+PXVI~r z>enzim7gkkVXJgYZ>cctCf2kiVU170x#_$i-PUBwnq{eFXaun*O6Vb~=e$Cyk|;bw zp7EFC%h9K$KxIfe4c;r4Q$(87Ew@yuh+-dlwMN1+e07F|q3Zwu7jywo+BG+Zn~NER zkt~lGG#xfQL4){~>rDA-K@6@&$G(vk{HI6hM+9F&WT2n}BmhSHP{n*jZI*{nNJ@d# zT0Z=IBQmkwcB?eSWGl)IL;GW;3wc3{>eV`Iu&IeC3QOf`C#gJ+tWT6j9(UuE?1x*f z{{Tei%9N6z&MTK=+p*>|tVeOK&uPy^ODsqgSE>fi`_E1fhb zDH)s$pzL{gR;w{$b)(iTB2t;gP&qrp9v}2*7?lFIA%SeEtxF1aj_^JR649MNlH}&y zJb}_3tat8Fln)8ppR`{dKeDxw`b+e8JqrHCWvmAu;#+NX{N1u#Wp+)Jkwcjbd|EiH zeRFT9aB4Ih{%skzrA#sXM3s0BmCNlGsS!R;AIb@EFVQwWl(`_eNoMCwPa~%A*?3~K zRb^fuWIr7Ac*i{--LmDMR;Nj4tqAM%(gzz-*EM-u%1X#%smgU{VC)-TD97bzRaR^0 z8;1}Hs&ZJ00Cy2*7^yQQ*NZ0SlBU-{32*1L zbn&|xhRMRRZ6G1?sVv(wH9-*5a^S%zxLc}>N%+7#32>Z+N+hps8Ri{YOf>f$5yXH8U8lIcA4`LDIOVM=FgxbWb%K?ybms{wx!Eh z3sEUh)N}dP4@$n)mIXwEq2eoLA}x;QoSBAO9PE5R5Smmd@J5||@UMDcImlbhnxz%g zxuU$Z6r~zBnbLxSj$xyg*Wp^i^6wN)P%2A+$pGvIzy(tFl!A}}=A6XRErNR%@o&&_{2n!n0~U|z*qMn!i$92ajT$W*o>o+lgfXcs z3Hev29%dCUd^A!D{b4P!`3{g<2V08Lpt32qKfh?4h8>7+8LC-eQ7tqCarxR5@kE8E zB9gLQ{2-SnVb%4AyhUkXQL45~3$xwcu4K8B$SH8hY6R?jj{V|n5Hk(n*^_)z)})|{ zN(I0AqVMiu-Va`wW<<2-Ns4K+4jYg&hf7#>z0J^W;`#|gwj0sVeSyiIGZ}g2HGC#=skJ>K)T5QQaAUkY( zK>Na8VBu9spz8$giy)XY1u}Fg+%!XO!T~-st*c$*HEMKQ4WS`3KSKl4sOVsf>uy#{ zgpMD`QYaflsbRq`)#JbCF`Hl5oinF|%gk7ZCW&#ccG$tPC{NQqWm(CTk|v6!NvQ*t zj27U!t(J+%NhHfnNE9Vo1rPDm>#I1WKAo9lGZTs_aw_3Vz{{AKa{)?%Lk>W239h|3BcwH6H}OC!A<6S$^o1NzJtlHV zqK1kbL0fg=oQFQbonrkZ#iG=?o*)>SZqT=RV$mR|<*Vf^2E8KP&5qKko~?-DyL9XH zc$WLZ=$IBwY2gXiG1Q;8+9%(j4=(!_gc6y|bRqW|gTd_|u${Fs$<5+Yj*j3!j3tB} zb0vf;spRcZ@gqo<-RRbIg&FBNi@8pWIP2%Y-~a}xWR!|cn2@HZZC)&1xY}A06ip6; zgW5A2PBWP#I>Q3gBbW(v+dXvL#mF^Cs}8;Rh6FL4pQQ% zNfZPEDajo5<|e;MV1-dDr!L)KEQ~}Y5h6+oPMNh&jK+h_u>MK*#`z@+A(&~W-~t905cXfw^dkbFTd z&Odm)VZ^|)Qj(>fklk=#i8eHUbNjP3FQ-t=uJ!$eRM@3wGo_5Vi?cSH0rrLpxSHxz zr3Et*90ZN^)Im%kC`>|>q~=)Gg~t@%zL4Cx!D5U{X~$y%ZcD;kvZ1@wgResjN)>n& zp=<#z#<1OWVrKvpvC_Ie{{Wx7NKSPHP`-}~n6ok*hHYVbA=~ou%;*8Z0;6uxLgm9! z<)|%*TNZu0a$t4IZ7za$gEz({l$ohXa+NbEev`O65Pk6F=s#QWM9>)}K=2vJ;5{p$ z@3x>7iu@&BH64AD8(u?gr>67%3Zbc?uNofJ-I(2~- zj3sB3gsyTEHAJz`pgS`V{%44G9uuys@mW)u3IymtEnZ+{7cNb*P{fsj{R7ZChdo5HAp7DQ)V)K~bkbKPv<;+ib+8 zMIf^r+#a1HEV||t+ESuPN~p@HuH6VMYVXGdNv>_svpw+q_c!p^b5`&Zg385l8v?wN70iB6$Va^kY?FC(tB$61H^8KN668IfWlp@xbLJy!#B*~cz{^45+9!&t-PLKFsbGdTQP+oZ~xVDuUeo>bSQI#7lG0MeFei3F2f z4+H5)(n448pQc4LU842kdzVN_VE)g~_GnvO;<*aXC}s{pZ42uCN1PQ_ zIFV`@M71SizrA{jYu{IMkzrohWL~+PdsW+~SZ%?0eRE1xm=u9jk*8>m(Pc#Bp#)`E zreun!b_3u0MxS$C^5h|l`y#Es+A2*JmhHEQ10c{HpmOYJnBc9RoWm-u5*&&Seytg- zwid9E=2OAYLhm0{ ze@{-0QAQ(h(3Y$-BoqClYUO~b`^0kNzK&H7LsMniWoI&ygsi<8$k^ABsp2%%StUwM z5Gdh;7NrXvM&59#g=D5uh@b~bGY%rv?S4xJiggMR_Uoi;$En$AMpc&4E@;Y}vX?Q- z2h`WgZk;1d#g|A_ww6FN>s|c69K|_6tqD3l-=8?8Zk;kw6$J-V`h!E0pr?oKCCf*R zMcu<_Yor~MF&S0s8OFzc2!)$=KdT_OO?>)AKkCfVb1N-9{Te6GOFs7s%os2(@2oOl zn{2fOW>7pvLuk8-mbB(jEkGYnqxFH<8rzzBrMi%65(zXTc!_PN8(jPSGSo>>){g`( z+(MbeIdBVz#jzdmP*i4WlT*)b@%sznwar;5Lb9Y(=sONtAImBHZfk12iWCS?5BgX@ zj2mG&^6E8citV*}#JZ_XwFiUJ81S{J2z;l-ukjjg_JbAaV_*uJf`jiFCMdQ{k_ym} zu>QzBetWk1L*?~<%$wj8NiL%cSeEG~QAl7MS9AH=E|Tqv!U9CYRjnblBD;BRdUT7| zjf|N_pQM7^v*^$(1zyVbCMC*f56F9<;_Wjt9|-_Ek_ZHFl4yFfwwuK1u-Vtmpvstl zRF);F?RD>`ev#j!d#=+pIhX8*eAIG3G>7a{aQ^^pOCA^b^otk@zFV z%R%4B54;t-tdi!S1b{ZyEZ=sODMblwGWPu5G4p@Tvf5QGwNna`{YUKu&LO9aBQ@x+ z2psDR_pR`$M=pxq9jrdH)jE~pVpwq0gzH7n3edH?lSke!=$EkN{WX}rR(kd6tPr)@ zLwKIM!5d;g@h70t0^99gu!aHn?YtNi~sM7UW8x5d@SpcQ$^}dd{U{KF-p&h$T@yb83)V%kHeC<4&|?b52{jei~vTGy!`7!_+yq}Q0olxYCx zwRwu%o<1>tWW%qJ8gCLHdH0XXQ2W9(DjMze5%`Vc zqGBa0NCUzjNR4v!oSi4dl!1VLWM z{{S(}K3uQ|2TK*>LN1wNi}TIb~z1*noN6cySAsMeodBu}>Z#ShzLf z9O$VZ6D!2*I6Y$Z)jc{?5ChT2lnB4(48_>7+AUm`hM@+cgnS`e+n?;mXPzm;w_iB+ z+c~tQYt{$IU&ns2?WI7qG(7M7!)+_S>dj-dOd68L zOZ%P$=6wsFmm)9OO&dy92Jk@^odZ8z;DTmoHsASyOGu+@^^4bXiKeC|)|^Ky(iL- zJ2UDwVH;1Qv=n6|YR}QyF?kb9r;=Fq{v+rcp2zCbEQ0QkYa8(P`2PU^0El_#4lvPY zm6m06SHdmZQ;|c1%u%!2vo?l0vfzfLONNyl8kjU~Ht&mrvQ^hBm{@ zO42+#jvg-l#CdbhAt@iBnT=oV1Z=24@E>7c2u-*xYD&Fc#-ZyBj7Fj+DyiAlWK3e& zRD1_e-<_ep%`GZUWYFqhI^>0?DPl*mcO4!FTvvjntOf0;sp3ay1ZL7Vu6|GM>5~-G0U*wxAyh zfFYg6sT)DRN2_A`O2)>NCs7_r?&Gci!azO0(MVzU4=q92n9?iCpD_iNl0G1_ZwM^g zB-g|N2Urhn!st~{yocU8`{2y0!QI0|1tG}-9Dt>3!(}AqHQ0(%q<)blX%$gW+xLcB zVnT&RnnfE{9o#Fhh_!NoS}jXWKnkTm*XbXmVnC(}beextSjM%37K?b%NCmV|{k4v4QuC4lBfLQYUKh~W>ml^pfyYI?BMhwq(+l6@LZ&ns#aje zq(8clp?}zk0aD0)a-XkXBL$fnPE(Q_lOA2uy|FSvh^kkrOP$3C*G)HrH+71~IOLaU zm!7PGppr*Nq4&mLe%gvuMB6%2qwKAyeZi}+)YR-@4*vkX)Z`l)RtAd-Ihw9O4^-?6 zKO#8!dHz1#Ts&VV(YL>&pna4fU{f$4k=VcI%|i3^ZnP2V=gmkOf*mP4q&-O4-G
@wa7l@V0eh=R4=pJ*r!v zkVeW{Ty<`uxalv zDps$iRS0Lhtm_1XkQ@S<)E)pISi_ebbaA?H!q3AX*eBPf{f>}}cF#!; zpu_;}{#|>+MU7!qNvc`LF^7@^4W7cvaZq+YNIQ4hN_5-Z+7~QVr9DMCgZ67$NNRoJ zcwDSGn513_P_Dc|X*N1*sMB~#mtrb>rHHH;xUc19A#4ab$5$R&=P-Xvr29G@f7T+O zW+XnlF^|&i+k)@EKbl3A-ib|39xQ+@w|HPY+lW@REQjN-$~1}AfOKN?5Vw2W`ZYCk zx4JRq#Pq*qwJ~ODP{($u%$F$yey&GXf%k-^pobOj6It)KNlKVzq3iib%3SKS&$Y|C zVp#gKLtMJSNf&@A0a_48RGvD*z2kH#45Tw~{{R^F#eXHrSK%N~?55Or=@U-|ZP#4_ zfp+(g+pf?EEkK;k12G(aa~5q@f)W&k1~nk;AZ51lDkPTCpFq)bk3_d(nC=Be&!jTh zZqfjy4#pAeH;z^Ti6=o;9G*HnXqQ#EWvhnfJ%7Nm+RvLg85ZL_v#>3-!T@cX)2oPmr|6_d7WvX zt3w_Ah1V`etV&C^U`1%#kEXup*^nY`6EP%fQ&B=e=cmdui}TSsa}a<%r)3|Do+ClR znE1?3i3c)uP#IEsY43t}h3zRxG&zVaMv46G5qQpC&q-H44qTAPWht|C{hlbB<#QC7 zQ&7V-Q&%U0O8G{Ghiq(=D!FRK{s)2_Q1caS$xrn%!9xX5taHiy`NIA|ppxt$C>*Sp zr~_V*rHt;R34(vCWY83(Ro;iMF`{}$yHzYCN;&f@VjUngOS1#-;o_bk!fIWd5X7Gl z4^TiACA^znVyu=NwRYvogd~LQ3+^{)6?)>7351_%TM*`*cBEUeB51Rc5$uYcSoGvZ zV4GT|D5;7|)|%|?v=(=u)r@Tt)PphVny06IF8#nGjLiWjJ(zRqb*BVWY$ zrbL-@616nUs&75x`Y>-T>hn%PoxzL!_L&Q_ondWt@`49aQDDr#wZ@dC~k^whz1}B`8YtK6Kh2eIm_5 zEQMm3lHL6J#zBNJ0a8I9`njw!`a!glW7r1U9g5%QJ6h-O)yuPpe30_4%bI}x;f4e0X}0+6Hn*q*25<|26W z-iIlT20bolRB`wr*4QYcF(9qJF8`NJ8sg@QNO@fmg}wwZHftOl1cAdm%8PKCDw zHwV7j77(55QVHSvo}auwA3eE8J_ehyWDR0zce@e|c#8I9d>~ciyoROUZt>Tw_<`f> zQmIEWR5Jhza~PMT-$|;QGEmL}i4K>k;0Uqlw-l)p6q=mg!FD0Gj930ZPPNHX6oi0O zrgBtwZz`Q5kICfk9*2wZ<(pgGn*8vj7IC)X9d3*1D#(CcUw$JhwB0LO6;{#C{$I2f z^lx`56LZW`n?ajF*RIhMjCr@)YL#db)aoTiLDTO7Z=1|5N(=*r1M66|Z?~m&p*kgw zokSpC0%9hGB|xRT->+z&uz0(sr3@0}Fn8ze0x>=OWt5PTL-?3JP+;ZMkTT3E1gKCx z{kPsM+U25ZNB|`2r_}!d?eXmrVb*L#FCbg$TdVEfE!i#Tn39!M_8(Zvt!T|@GE(6n zJB=J_1wOFDbKmKfu|lL00py<0=OfRvl#D8bB})oW9?(nB#J52zb)>Kr<`;2BFifQa zrxKU2t91S0GUCPxlQfBBjajZTpro>~hi)|3#dI}@(Z z;Rz`v_5HTu58XFvf&9mQe z@pwqlCXWV%G%7SZe3r;KTcu*Q-6z)4+Xi2 z?e@T#Wd^DM*H;=I-f?Ra+~}H?3d_`Q(2s%sBdZOY!&V_60#3c*SZpSC6Dd^C5~fki zl~fVMMvQci1|qiEJzif~F$9v4z}yo~v?a%!Z)ilODIgZBwyy#4SxkTmQsF_sA=~p| z5qRRYPX^=V+mVwZrR=X*pO0>_pIELXS#2wpPlZd)1JDBGfv{rq;iFCTb1@STR)bPY zu&d z#Rxv}0DTqSGZIxPW~n8C)YRx9uKu|ZF*%kQK+~7nv2)N4v|p$bGKEl&2;1|dHcpV~ z<4=DvmMa8K%qG8t7U)OLG~0sk&XN>HVW1ns&>Dm)S#eaFcJBaZ+6qdF03_|V;f9N4 zq)I9ZEEQD0JBV1iXCO=?bym7oCYY`qm=pg1nE?k@)w+Y%tR>^yuqtkQItl*(CZqNK zAjT@P&6u&2GE$n5eXhfi&XIEo+t5x@SxFn~3eA~B>5qR!X!Ym`O#yQL*XH$o8+tlp zE0%nzB67mK74dL)ts8!T9U-FEdLa|)k*mJOp`q&#uh+@(1gR=Z0n>mZJ{%-Fbcbb{ zC)vO#)DF+d;kFQ`cH-~p)iTcPkH5~l^^G||G!CLQCuplM zq4NhJMP{QZ9PJlxyf%q}Qq4}GTf8I9y$qldJ8N2R4ftx`n<-Jzi|*fOa_>|Uu{IR` zn9G`lvbKGj=MUFy?6V~#9K%%>-FxC|#Rv@V5BXP;W^mQg_ z3IGC{hM^?u{2E44kFadZ2wcfPttzUB@nz?2M(rA{n-#gpk`Gp)^WC7mqRX8bcHe`@ zh`ePzWjG?xu_#Z)mHplbh873sUrdj5y zVi5AxQ>n`P_W4pL(GS@%0hY9cmUFJ4^oI$zl(mGKDP-4b^!yR?lCQ-}Su0VYa2?4T zH^?@x4|sO|RNxek4pZ$my&K*SQ45bQ&oKRp>`Fp&f*b(jj)D}dxUbg_R8Cd9SKvqB zhD*{~=1C>rpYjdTG0Aqam6D_42A!(WT)%|d?yJno85GLoox@Yl=kNn1<}(wK>T2I! z1b2o)r%TRITR`nyAIcA^)SEGO8JH4vryqhUdJt~cV49#9he;hAZ~4+BRuWoLRE0S@ zl3BVP;c8E%S!)zD*v0FI7Zth^a|8MB{ozV|GCW_0W+G~)OqijRmsZqvrkWUXz?bT# zOHZq107I*AH*?$R3;vsZf2$?D6`=al;Zp&99pZIJk`tgHkK{V|z2MD_{(avp zxm3!t1fMOoguCi@ssNxG7|Jf+NHZ5aq$uSI6+f)>;E2#?;#Xj_mM2!{NWCn*bWSF1yvgBEIQ@6r>n2cmCOwa%DK#S{9AFyIZFT55IL74}Ow zD(773fpeUs5<}|xhlZSAE7kymp`|wSg1!UcVB15m z+9aEdWXnSZIjBu^>0O~tGInX~mLVi40O84YtN^^Pbr4Tl4$*q+#wcPHp)@B>fOd*_ z+V_-%xBKs^kxr^Sp8lQ4MUv|L&G+aprZB#(OT9fvfBbk zaNt5MF5v5iWUxJ8WPx9xZ;Qcu&i4so3+2MRyyiel}ZC5XiJ9$we#94*s$ssDJ5PdDLNW< zA^=;sFL}!;NI~{oohiSabdE8G8}K_65#n_3+-@S(w*LVBos0NKhpUZ*H{5uVT;v5P zJESloht2@XF#bB3Dcpj>g<3ZtY<6g2lWZ2E2~o>R4LbQjJa2;$Js;YZ1L{C_KTo6q zxUTbO%Pm3Hc1?2%GkzUm28Ck6vXU~WoV2L=LS8uZbu~x(AgKv2)x6`YN2MQD$XLpt z;0l)-H$pn=3^;qz8JY?JAhW+neR=?xdg3`!7Fdm6ZUFkhE85>GNDihtf_6Oq(7Au( zfo7bOGJ#H5mZ#n(y|D$FdTPfo@TB$pq#6Y+xcMsq)D%b}x_-x`3cA;jY641*;(+d8 zESv_Ef^)iCHFbq4mfu-3)ufOatL%_;cqg#hW!;EoIZka&4LR547I5{?FfS@gA*gxi zK7LV_vaIPrnp?yIDt*9iDDkG*?}>&`TNXMWu=@Ssk*e!L(nwLL*nHp)EWS{$?G*y8 zhOoC|^nox;GQtT_8wVr1=nkCMyZ{$M(P$H9q=c6&^*;Xq%0j9<;VYpD3p16Qbfk~Z zj7fW3Hf55)3Q^4;a>ctwb$j2%N;yiL(5{PGz}oW~7hgLiv4SOt>Ei z$_q0BQ$WE?`s-M!=>k9vO$)#39iUysdC!ogq_|7F9Us3D#lw55)o5BB@_<+8qYboZ zt@;jbd;b8|tJS3y0;hmCJ^nsW$9Lc_Tu`TAJWkwe+7H=o={A4T5>BW5zle&{i<2cU z`bjL*VZ>H+cr2@}C=N;bLhZfZG9Oxpq$=K?kX1HzRFV=y^!LM^&nZPCFY45tp=ns5 zZoib7N(&w(Q6Z>!aSFF?4qDWegsZ|_gSqH@_J_M|kqJ^(vQ!hV@fR)lu{nGrEi@aB zd&9w{>(dnavH|d@YnymO#=e-4gq9@odhi5Yye?_Bxx!#cOtg{;i-M%^-&nD4^jjf8 z#J6qDL}$)&zKur)Vxei47M#z!(Y(0t2Lzdds8>H;aDIIYz&v+}vUp{j%2fy(zaKao zWy7yL)6@2uefOLGFN-`@Yr+mbDU+X}9v*nuvoHvsoQL0Oj|Gdu`g%{9q`Z zj=*!)6>b|M$E#SW2YvqlIfm>*IZH=}+B|GxjcV0m248>xa)x8a9U)TgU#n44y{-?n z-|YbGckKB}$uKC>$b$o~`^{w`KsyQ=l~$~N(6ph-`d_U`2>_pzNrkSNibF@`sR;P$$nx!GYAa>K=NOB5Sys*5fb4WTntEt+ZVh{UXSPGa>1sN2p9m(3Q zPLX15y-HYe2_~*K`@?LDLIBFyfYuCyNOwh;OGr|fm!h|>p6IuVaazQ->0Z1y&LqXR z*Q@p=jVMTPdbcBwfvAl2H?zvcUqRrdC=J7V*T)AZ`Vvkyad5G_;r`63w=Y2DD z95)fw%V?P4NkJjng1bX~?}g_2yvhy>YR=q$Fy`R42-z5^Db9RA5yeCP(FQ8Bs#Lc| zyN%&?#U^T)4-c#MOfb^*ia6Hi2?1!B zMp82%w}^L(n10Fklxn1j(hU; zt$4`#4+~wAW+*5Za0w*y@ExGly9I=m9LJ#J?jr@eZBr0X5Kd|W9I$7u!Q(@feA@v? zSBMa(TFskcPez7#8I_m?Jt#|c`@gEu(0G|nW z2d9)Bzb)XT5W)PR&NJBC=o=PEW=yeGaud%c5iGN9KD7u+R7oy%V4BqR+s-sIilxc` zooMe^sUsN)izNtU{{WW2Z4t|i<$bHs!4_p#OW&^3? zyffPn3PTE0PDbCvFcp2>PLnpFLqbo?MrA(iNtza~5eLu9rv6c*-glu6RtspuPjo|q z@a(dM%$e;M%0I;?o;HQczKPoJVU;XNV8OmnHrrrX%B-ZZe=cI(<6r`Sl!2pZ6I(CF z8Z|xfMvn5t3Dah%coBwep-Wk6ev<>_;klEFmV7A{Vs_`xh`)89OIZU$P(JXx)ZvEG znm7*>1lYA`w|GF^+{GswRy5L1nXx>Bv{%WrdoANwioAnJggs0~smI?EDrwp(A>_pM zh>9X~aB1?67xMSRhNnGXeW8BcXmY^*&~nn3^VSAWlER$(yF;ZQ1*s%^piIeQ@6Wmz zEp~8T1<$ep*v34T2WgRA9x2U48MVoy?E&w@ zZVvF@rf}yuah3?Ad31`C6{~H|(S0fJ_lmcSvNfX$_W3|}u+__dJzr=OcuS~iBvAEj z;IGyN+83)g0xmJ-0n~yI%YS@zF?@OSiDm)~c=C$#5v#>AvE;r#JIA4Qtw7WFit|#< z*X0p@0~Zwp5J56VQO z(uYl8MU>DyTJ_%#h>AT}Dv0Jx8$O%!90`&6YUAD4yh^1Kl|T;WhooOb$_{jed|UlslfU1-X6E($bQdlX8HE~tX-2mjSGHr3o_@mb>u;7EaSTx=rnGzpDOF&G}wi( z=d4+?Oy_t7WwvcbKaB_Mljj9QScLk#D&V6EYJEH9(I zfzdrdj~jA6`@-$#ASq5LLE4{&4oJLGJ+Ml8ZP&}EF-qTO3#w>N{P6u?;07>?ArqODAvOFb+`*9pv7KX_%W&qK9htNKa_wM;AQH0+CXVh(`@m|?INf{;r zM#>cc{YNns>xX6mnpt#_LN)3e=y3{C{XbxfI`IE3Jz?F zX3@vPv_H;4Lxl$ia4F}+3AbUHYE1(crw6;la^k)`u#AhsVqY=>fZRtjr=dv>*E1@G^ zj~-ia(w{W7&D?)ohevS4RR@(n=7rqG=7mF%n~!@YAW^p`KQxrj}s%RL!<2QaA6zZ?qU>{jHb!dwx^AdlQ`29d?jm6sipjOFdPT4dQR3O=pn zPE|@l@RB!uD*phD2-v1{=?V@AXUMP|DDDe!3Riw1T2>SdI`RBNCA%02h^Q($CB-_Q zlyh>r*N+VJ1$bJ@{iG*3F8=`J`*+?h+<8)<6p{fYmNswABh*Sln6u^7aC!aU)sp2> z&?=YM9iuwfZtbzBRMqQWtTk9}Q{ig9r%x`sLUr9}QfQ_PL&)p)jRNJqTmkq-(T6QX z5xT75{8f5)=@u>bSOh5=jYh^lN|fh9AM%iH?ocBtqPWQC<$DLZZ$HwlcKqHg-mc2iugW@= zd8N2e&=U*fb{uSy@{pIOJvv3ZZGlI6anrmiU3b|uRSYrR_<<=K8Z&)j`0~=QD-&F$ zNqnL75SMGZ(%>t?OMphr)bATWwo90hNEw9(Kg20wo0Bq$3`x{++82|A%^Z0VB-)k+ zQc9ajeB*^7D)5~-{o?YjrD$ngAVv9PS}H-y$gA~?D_G)ml9#K8iqqLbwCC{c7UbH( zlE>fHDovJEscue;1Z(u4wRrz>!5#}eJ35h-X5)Bx$^yLkWv5?(VT5aY{VGJQV_w+zhu)h z15GPWBMK_Ro}p@)FpT7A9OdW^`+jL++j^A%l9vQKk)Y)LBVA^iz&!BZ=DEDsQW4-;LNg5@lsY*PAd-@ef{ zE3&MCGEo`PlI9Qogq%{#X%E{rKIL2nzEaN z%xaj!3`$y8X+Q~>PqGa`b*TGw;a* zksl#qD<`X%>Oo4-SwUXUL)32{a<337&Qz6x&F?Ys7p5EdPM=kP%nK>keN*oi({L(S+K)9hLti>t{B&e%4zEP&x>_t-+ zkQfAmL*n=KjJeN`EL`;3{T14SN=k|Gl0uvHR+~n*j4;tD3@MO;S;##!aAPv`Mx-iM zP#@JRQVYKQ_YNcIi!|`Gq3RCZBeR6q=I8D6E$d||B3gjT$KS|?yeEG8q@g8R&^ge- z?@0JzGUkAETd?Wg6l_><5(y%|n#O-0jn!_)(0E$&B`FFWVYXDkm#4}z94Bqcke6~a z{$bY1dOo@zgl#WK(d!kkWl~7Y4H)hZ9b@DV`keH8>gE}Ve^#o0uzGxSC-l(A))pC| z!)Wli>2nH;M3X>IZ6R{*D~Bws0?m8+>m-ciX3Im%Z2jSn(e3c07E#MqKl=SSevz2o zH%!Yq41(YVl_cztYR|*Nr=y!_TEI|u3`jahCmUxhuIt=y7R%CFJS4pV3gzqkN6(-2 z0qI=XXG;hGg#f1~!>Ar2#f@p1zOk?3EHOq{NwpYB{J0NUmCbonN?q@kh`d<}DK@O;%zDg*m>EFBy6Wv`m;8!dZ^= z`$K*bxl>|7P=v4q6`hoM=+TEBJKc5j{E3+xl5L>~PGptr5UXARpKRxP-^jCoJ^gs>2g(u&Z(#*<^WY9pq3yyOjxyH`5`0(WUGSJbII4p z=>zSz3R6G8rUbg1^z?JL-VWkRBEP3O6v|7f&frC7?5S#1m?CCW@mgyH=Pa{=d?45F z3fMmzl0jNVYK+@^xO@UqAl<&`OH4O8^D4vy$BXA*0fLkx0tZ z6EalAFy@La14} z?--S~;CA+tFgOYXk0a3h8YcDWQN7z+E2WPk_ln~0R#zt|R~3x!2wUv{6ev1F48!H+ z8dZ*1RI-3hU_Sus4qYmWZG|N?Qz-{u!(TX2#Pg;ZO9fAtMSri~q#DC>fiq>T(4?9_ z>K~nAd&1+-DCA*U^@^|p;H#~2r720EBR2%Q7AKFaTDmOCi$Zd& z6wMlvDbt5|?+@MyQWK$ZuB{5bk!2}46)8nEa$CYj(2uE$Gd-TvNXqm}(A0al_`<#+ zo@J;iNU7Ks9c#yUp9SA%#;KHY!+gS({i0jy@|FuEc70#86qlsRRQYW%vZ!>YVZ(LT zqzIjHnPjMfz|fug{(NA))opMp&NMV;>$FwB??n(&GdgO=ei-rBhU<4LjB(l1Qi;JS*JTxaJ5`rDJ2yPLZNrH=#5?2$Lk@8;DFbQ5i_nR~=xLn-OIJ zB~)M>{(PcKY5`LIobKi*Pr+$W@hG^_zcq>f0EDwU(n=HINz9;XG!Qb;=>lBE=1m@i zYUV#L(KNLZ6rz*R*WU?qZqHFUQrIxAVN%CK=LO%jLp9}v)VEmw0N8KjKX~fzu+3Wl z=}_a3q<3`QGn>KW9f$AQJi0MxNmgN9$5Fx3u>sB@y)80;3qVo_>({Uw`5FhNrU%&Z zO4gNS1pb%fme6~l{b$xAGKOr!*&=}Kd)6wY63`g1ZxI3u1fckC%%vexrxset%P>1> zOx$A79PC%}XHF8(Hr2+w4}P%McgmTcAr4S9r?Or9 zj+?>p(%T95ZHY5dGOXvQHD){!qtjhsgk0nxxTpb`>(szm(!ype%ScF3@qPQ9{J4wa z{{UFmO*;s_B8XTo00IJ+l#M^y4%(+2u9X5^xP|OfaiY^DKCFby3JOCOEH!%W95e3& zE^r$vmsE<^L;0i|kPISvg8`w4o~vEp6i1AE(wH4dB7q_-;0dgG#rL zqq#~Tu2?EfQg=S;JU3k!T3Zv8XaGnJr#(y|;%sG=Kme@H32IZ%m~y!BgE5)lOvH_T z4mli%P&k^VUw~x>mD8yE#vzUu>TQld2`r@^yfkf?mikCZ$U?|3Po!bKkgnO2{A)sz z0Tmx!jT6rPjx`&D86co|hz;S0kVxYZo)65!2DlyE^-!xxBmbxItaos z77?8;XRAs`3IVfJ4!a($8{MxKreH{XrTkxE(g)uYP_{aeKy_$&qj7`V@S5!FO0ttc zqOMiRZ=-L_YF9U;X;USuG_q-wq$H7;fLJ&VEA3QkT0vD@hHE-Xleypc+s-N5@Tz6j zP|85|TT|1tPouX%td`d_aCRC$emg+CYULo*D^J_s54SE66BFwWV4!PFcz)VL4ef@d zk>dccuNC^m`z&GDKKxn(EweweINM!gPMKy@#DyWrAW$}4HB;%uIp|?V@xh1_NkR@v z7u#Tq}iA zftg8ciKSeHXixhB<=i--<|EqK)#GBkC8VuNSF1YLodEKqz$=dtEd@wfIi1uLXxj+h zEw-~Xr3?ZYh~)Db<}CDYDKoQ`kX6ov?Gs_@)*F_!CpvTvRCzpkYwm?SUFlYQq%A(I z=6s<40I&Hy8%>;-?;2IfW<;bVDJPQJL{h9$rp@sHt<3{BACDDhM8mL0qv_VQ8LK|q zkO(8g{=@O(YQsK@?D7y$yt4_=Y?9|r2%|LzI>Q1jGSK-_l=Mi@Z35W5KUuJrZZBt<^*C4FsTz$H!<-8K&?BDy1*PT zt6ZYQW=db$)%GvJ{N5dIlB+=~o1oMtfDzYtCt{VcK0fs+37C@0(6|1D= z{{V=VIsz-){RJWS(oP+eWR(!XK4r#{7otoD>t&gRNkBb;By2xEaasFItUY83Ijsz% z!QA{h{dF+)HqR`|DGZkc2K^)EVM`a-Ouam68aCWMvHK3%NkA(#(YS;(4)9&3$`7ki zn3ZZ2UB_K{*Ss$q@nLf2lz>ueyL9|$(Jzb1AOz)i{YD4bFxXl4K?iPO9H?%qqFu2; zQxL=oGkBVz^=9&k?K5TBr#m*EE&lOZZV9!ba#bp52x_NaDiPc9;`QZorg;9~In(U` zb@Ss-!oiq+EW?Sn%T%-kIRu3o)K_1Iv4*b=&a=(+bArZF3P`F7c4M&{{uA`&%Xmwa z2ugHF4BsR2g^SM?OIp_QRJAi9!+>-y<87f~735!;!zoU{4m`Mk*M-F_2L~WgcN+Kn z>jn-LGslG`#W?dlo{-UY`Z<;oluasCC^+a3#uS#3c{i-3iAh^8D^*&xJ@KMTza@YG zE|3Eb8)krWeHK}iK}(FRLEN5yXtiv^22xI68bGVio`NjaCF83!wJKpq^_vivcKtqZ zBH4PP*sRJ)6%3siaZjuau;F#Al2XnNQ?PB1+700wfFfW7)SV#%m6qs0LO?=D<*IxA zx#_~my(!A+fjM^0+nSH512Kz(tmXfUQr30xo?gvOq#CH_w)|4p$kT@Ov@TKgJ zc%Ju{Fi~#Q>K+sAx4QC#6qN^LkQ|rh4Gb`#hbf@c^@0M_iD^IqH6o{4{bFyk2*aL> z<`+`NQK+uk^c^Vu;pX;N^wQ8$R6+K*AH)&=0F{|BERo;?UEimEus0DbdaqWhD_&k6 zbTwk}y(FSswG{*F1GfI?NyPFd7nqFMS;GxSZemNK?37(|PeI4+1}#{T9<4|W%+C6b zf+lSY{_gaqnJY}SW?50n8$|RQQ+KKIrj>SIKqJIYi0QLz0M+?5))esm2$eNrVMs_D zwM1w(1j!QsEWlCp9b$O#Kk9mAyi81hJhe6*~s_ zRu?hc@=8*mLP?H~O#;6i}l1hdPkjx9uAwqfiJAdp4WEdj-)VQWCPP zq;7s)LDChKkCeHpN)zCAet-3axFi+7E>M-`CBQC}q-bHP$0aioRIx@B=?Zi28qnvRj#u%!Sc z1=H8--W(Po{{W3l%BElndb50?ipO=LS_viA1B(7r;Ti3h4J<5?;ZCU|U1|?Or@M%C zU7!ghxYJ+Fp+KQ}-V#?VDMg4rCnNZR6J*)akaJ5pgX~+UPdHIBWG+m^sF0#OKb-#1 zi*wzAAmO7I3{{RpLUwWn{hQ}(}4~kk++H42r@GfpOSYA_5XxhI~#09~3Jm5-8 zpaSLg{NGrkeOjhVT8ibCu2l_4-=%!u(&+Y!at>t*5I7D`ULXzicq(AYlra?pM;n+^ zv-(6rQllsZkX=bSKL@Yo@DmK<(>h|&GK$O?BoF{S-P#wK9+EldNRr-2Tb9_>W5OeE%C1UqpR5|+t0l%)*clr)W*WII>zMDJwt)Loimg-On)XI{yHcq2Mk#eqyA98J+QS4_`u6u3DOO;o{aH z#VY=rDGWsc(@wCM~h~yclX5$r4r^VEZ{s9N?F}UPu#@VJrl6D8k;!;smOgv zG=~g5g=V8N0NdL-Lxrkvlz^0te@N0OD-{GHwQ|f3@NwfHrORd8GO2p@+B>`O!IbMz zaCho3U}@0oaJhD-}12AhAwQf)JZO& z>ER)?fw)%TK%4#IXzA*qmGQekW2&a@2_C)E0OPFPsA)m0?I-VIx3aUeU zy2YEC@Cld#lIh&;U+uS0IfC|UtrI=BeSF+ zlrD-M$mTtkyybu#e-KY)S7lCkv7dP5R&2EF9y&_3)r56Mb=X@+h*fup!n*d3l4v{D zDkVNxjbq=>NRmGYEDB4P6fIJH`v@;GOh9D@uG_!?XIZ@a{9rY*%-?7|Z&PwWfKx;E zeK_-sxvm0FmhVk8ic_Tr=b_RJTjkNluEY0%Q+>yNtr3Q!GG6}x#8z17KCx=hbfi$3 zHlFy(`)M3E3EJUmSD4qm%O8^&>Z)Nj%(uG^bU8IN(aP_(X(tzla9@G{di zyyAq}tU21dc8j-+(kLqR1)zN7kB0j{5NTK(wSLAUo_TF69opTS@Sn5~Gw8;SYOVhO zh}JpzN2^o$L?uz=x3A-fl42Ze-;|9bpOP^)ood{7iG;znz&}&Df$PoP^h|XkZ9GGv zif2~I>8|^J(b5!L0nJYWAXM6c@Y{Iq&1kO`Xf-G?NCbif2Jok4Sj^j+k*Nc(54SMo zdRi(v(YS7V!ql4~OS=lYjY0Z|ongv$xn(4cX#Qi5IJ~azKCwX)8@8sE^NXa0q3h&e z55+r;cJC1)Z|4!;t)({<>DDWHwF>NYt$V<@xP=eiKPglrn68PNZhjFWX4mNxts>D^ zvs(NQcqd`Bf=YmHUq}@tK!ej>k#5g1fID&1tY>Sx$4pib^b8+Q<{9in=-UANec?vO zH91_CtpJA$9MqJDso+zzVQa1!>@EUGJ>Op_y_xxMbPT(fOz1KgZL_2 z&L0xSKAF30nWTo-X!+OCRF7F`U|a#=BkTFJeJzDjOUvXt9s5UTh57IQ0Dk`f{Mr8i z6cVr%m0FRuj|J=!NCax!KzrWIq)h}6YBiwk(j06S0-#HZRFAB6$I0k;k(dyC!TLo^ zGi(B4r7J}b2|FJBV1NusrFVgsy__d3#Jhu7s!_$R?95d!RR_xd0Gs`z_7Aj~OJhXn zK|Aa|aAMFilub^w_m7*!E80jac4FDXXinklQO3`ycv2CH_MEVD4eJn1l8N%lRw`md zl4T`&?4UOvLOZ~u+w!QMK3{mKN_SnMR(1Nhh0{h?LIq!=vF!{#wz#;FqmkbktI zryA;h4Gc=N5FAy$F+$mCPPHJ0P~)$hD?sF#$x>*?tN^@jRRf+{nCi3=KvvEG-alE$ zN3vZf>lY`?EaJbKb%pXg4YJ>9KGwQcquY?Ggd6EH1ffbW~~x`9+H@@)iOoBR49BTLtVHkBgJ`;vlwN2vtKT zcI3kanfP#nno8Vi$DZ88sSX2%S3O{is}WDK#;>l?+}kRvLD2Kw5YR*|L583|m+cXz z{{UJGs1luubshfzID?aHBXGs4(FLmM+-bZ@wQ}#i<;@zif0Phhl#uOHqe8W+?LvG* z!gpvPbK8&UIfm#u`9YyIu1ZKDfq)m55I`By4^lp&9qcnCu9`2XsXatnRgk26G(6Na z7ml2`%Tr^k0`NN#T+1S!DpV0qd^ut)8mg*Q9nM|4_B=vloJ~4ff+mctbp6huxcWvM z__yK60?TGf!5P(OSkMQ_m;fz+xs5Of8l(eNs`;wL!a@57T{h7!v2&gAK#omw8DOu$Llouf($w1_B<7f{{WN=p#&+lA9%veW$58%nCTU$_<6(% zSrJO;lvB7M?F1#-n`$0(jVGr)_Ag+xg$jY2NFQvwLy@5Q#hWyi@uWNPvFpTIM53Tn zJ;Uc3=JbNSwp!7xb_bEygA}b3N-a}Q z8@>`rOwbSbo?o7=#bFvsg50FgYu-JWrBDLFCEIuWtZO;j5%Fk~aAH*JmY`GqDs01` zAO{>##3ozrxs^*e4*UrHFBPd31dc%XpEzx@+tV-uK;inS_A#X6Ea^U(UAE2vC$^e? za}=heomdaeVb1!oBxVd4mj{lJscgFQIRpT7h3l$vh9xX%%s5@kBmyC6Qa~&Lc4t2r zYPqbRJ zQ2NG+4aJ_1B-#pA0YZ~kN3;OiKqbEjV^@8~;Esi%R}A02s&a(J&Q4U-m$u?bNNO+eVUJ@kW?A4t;7rdm8q$^;h**|+nHSYARDr74DSKo9Ej z>8up8VN{hBC@B7Aik1R^E+GUXL zwXjI21&IWC1Fo9w8a>@?B>J}&g^K$}tmfCq{aYIxD1 z+up8vX8wh(Ar`@z(ipPOK5@QY7n0LDP(>225$ZoQ=wsz+*p!KZWAvyRP>}i#vGpC6 z)+TzXsi+7^2Y|!h2bYD}OOG$7(bx`GtCkcfl>((OsWgpi0^ey+%enCf*bTZyJ8<5w zE?QDSa4WZ1bHi4Wg{G{K51aAUHQ|1d%6*!BDcz-Vf&5k66@gHiV*060E>&sMFyX z?_n+7e5FcErKk;I#sh6xH3+#_vtym5$U-ViLvLqh9=W zgZCA!X{JD+degt{5h18xtH~15aw{{}#i~f#_Ax^CN@vaWi%TeKKw|#@I2$%$m1$GT zIVL$ytQEgU-&)6}{{T__C)#4;;yc5X;PsIKMM~m?)Ug^wx2^6|D>z9Y5S0_uwFeyW z7O+CdD?>V0&W{k^*OCLvB9EZl{{S!$6{FGIxrj3}sSc9GKMHJLk;bum(R{R|sVY$< zP$;vw(48x;z#brt!F!}Uxs6>9%d}UYg9un$wE{Cbf#ZSn?GFI;v0kL+CW_HVlli0t z^pSV^%Q2ZLDJla|`Q9pH3jtCTf>fY%KJRmWJXFKi*q12TigP^!>t0WG)+W(4L;64)h$c#~B=U7z!4FN4?X5D6z;IEq-} z#uTIlXhx^oiu8 zKZU9BiVp0!aU;a;r9Wob;d30}6;262Vx7k0_Kgn9Bq@uK^dc!qu#lojf0Jw>;gYUf zxJfBPoTN~`oeUAZCICW6p{Hnr9$n;rbp(vHZHeQzJt2PX^njKB0OUahz)cGi#+2$} zLB88%mV`L*5GmjMV;c0WiakWcJu?)jo;nVHW7ZvUZ1qh^63$g<5(`&oU&l8rxt3%m zdULHIfg#9O2a&WcXAf9%@sntjl9F>B$1V9tEHR9^AR$T2Sd7QoZXfcIhx#DA<;qx+ zR?nhTS&r;az-y#!x9yHvq$|P+X9Q|nPvRqwEr($O^th2bI?|#X_*6enKt2$`g6%72 z4#@C@7|*ckW=IN21(f6_rz_Wuwex~FGaLH3zO6)pqqx`i-U&-TM|)+tNSLINN>#P$ z3{>{OlwU7ZP+1t4Cg>>HAY$`;dmB|5!<@bR; zkFJnZbAqN`y3<<0d*c3HT!;>%Pd~7LI7-brSt(QIC&G632#>WiE7I4JW>#RTr0ho> z{(9{S*Y%ACXqd$Ql`-3&+8xD>QvyoLU8o!Kupbcw21o!9Ys!ybq-n|&BV9H>Q*M^I zZmDYkE&l*UwcoWW?GJda@?5o*%L*Y(?XQ_hbMn@dw5$E4p7;5DyTiX zbcmA$tls^_Y6=rp3PZAz$4~Mnj!bFzYHXR(NkIoV(OQGi>((R1mjt=;5`=`D>Gr9% zqMCWuF)TBLt+r{)NKrC_hA#S&GMbaYr~q%VTX@w>v8qe58$8Ubb~+cU7G~)j+VJ>M zQh_Oby7LNm<{+4ZElP5swy`2{vhspmIgjcZ_V-2JqEC2F45~oP`Lh=ftVfQeB}jGU z0JyG{)!=Qzi;9@L)tiU=z-(`JOrD8?USL71JAid=AD_HE*m%&e%*j8~r5Qml4+pp7x0DoDr~P+I*XS; zNUL)E7=qC#2pV-Mr@9^AJywj~5CB=;k|VC~~#87h?2Hddo= zNI|yQ6=Y@0BmwPi3@}|dfX|i`eW67UksQ&gDDObkcmnTlM)D`hRKI0sLcoAVgr9UJ zT;7N#iG?d!XBABiJ`7qki&fxKLlIL^+8Aus5$(VA_MXj7$5I&e0EH*E61Y-P(qPI>9_i7Zo4 zT#a@do{bbSO{QoAB^k*Z9{pgxgN#Ld%#yDH94dqkIf^!!t5#R=y<2wc^okc=Fi~45 zJ5W=8pN$>cmatt;0X|31M}|gA5*z?PEbe*X`$E< z&e}xQo6c0(Y70t8C^Rff?B9kFl5GB&yh2p8g5|;D89(ni{Qi5R4#Jm2;cimWhLkh} zQ1vvUXakB9O(So0@QBRU@dc`731-~^h%H_lIkQ5jaTCJmT{6U%-#nolC6Y9d$Tpt$W=nuQJY&c^LfhZsnQ~-5u z`?>C8n=Q+k@_?2ah!6h&He{%|BCXyG!`)KFcH<>X4r;R7R_g<>z9CxHP=E<`PzOM2 zDdn#{;F2t9nx&ErM!#Os<`}`oQuDCQvWAX%+>JXxLIyE39LDA}Zf%c1cMl+U^>Sio@%&(V94*TsNr(&Y9l!g=`o}C9sUc^{# zQI@HN^N@eISP*stclxv=HZK%Q%BO0ifC+_cE$K#56l9Pmq zl8XGxAbcZVBf#QL&OYTg(8`9@oLO-PobEwfdOQNg&* zWYq~Ihi=2YVt!aK=Vrz!lv!RX*P-BataO}OnZ=U9kB5@{#Z!V3NLsy+>RW06)wTIX zZH}*rk|q_|)0$qu>JG+$(@(ar{#YBO-*(U_vu#~Y@54a5*4UTLEO>!#{i7?neIwf@ zrHV2nuu%owT#9Jh)3iRyyB1lhOKHDYS{&FtA(1#Bq^Obub^W!1xX##EfP#`LVhe{0 z1WyW424ipetQy6)GKv(ipq~1{qv*GW?)5DsgW(^iXNPP#WEnJ0y3xl!#AK7NmCBSt zRZ9ChgAAB43!NwxRFDaMLD_+$yj)18Ets``ZdT`JVc+xX8N|Da&?XcVk^yi|fKiYS?D$GE}LP80Ml#cO6UV@2<3UR~ud(3McZFbClZs_o<%H*T z26hCI!C*J-yb!kF0+p$0 z$(`IJ4+=)%+_>r?y98jVXp*V3R8&Ho1E5H)8*hH~6ah^X$93K0Awk)Lf_iNk{gV7D zv=F0|1DD_Wp#CHDpn`&#O;FuQZ_mL3u$~)4^bEkbe-Sz!AJ4Tk5ptv1{?~mX&y=j? z;Hs5v`WRlnu`+E1lT`*Mr*4KPzOIlmCeU-DnN?EFqxSl~&_e6}ib7TDkdm#)6(oT` zcKUzi|e&MCaUxH$p^CUZv`xCFnNY<@VrYM=2GJ;tj zf7%S)xLqoip*1e0ZgukFBbOVBncp8 z6sv5}Uls&Ul#wqe{{SZ6qz%LOI+B{u?bC>?!uwLk7@u~M z-(kb+=36!*M=9~24^@Zx3H&}{`f(Z&ro2jijE9VRMXr8>u z%1Tq=G}Ssca2d|#7$jdRSOrO7?l#w7bTHU$=$61Lx|7}yX3y5?P(tM8OVM3A!|mH; zWG5>EG#WVQe(mtqE^yf$Jh#Vb+ET5Hk}FY7K*xJjoh^!mm;s^E{I>^x`7T;N$DSw_wV zq(1K8za1k*vta3AZlVin+x~nbJHmL$HfesLz)e)tsU`k#)a-7hECi4ftG=BgrNXdp z8sW4}nU+Ax8m*~4{{S?FIhZEahDci^>UJGE?^x0Bf)rJqL6iDP+_&exF59gsQoskr z@P&A2giD6yv>*}%7`nBuJqP6=ecxiV3E7AwIMYh+8%kshuBHGA{{RtOO_!odNM~`k z*oc1;3cRlmR);!jGn} zx0b%>G|qO*RJlY1B_x`3PiPB?tg}i-saOgp#Qy-}xYJ*+5Wj}eHDODb>06crP;lR# z?I6{T+N6gmP%p1NV$!*CODO<;qQg(mm+x-+NkTIf0OgDE1FRUF0_0Ru2ixQ-X;B2W z{%42)WV{k)D4CNopqBsVn z%*IN;f6gG6O9JQHbqUvR&aiU|UGtc(We~bF1jKk%a*~;u$BLkRPiJ;NXg<7XpHvd> zln1L9YWv_dTup^U;+IeXIvxGuEz7;pC?yC`U_AWbeTMo<*k=HjBy2nN+s+a(?Uil} zrb%`>nskFOg)xQT>h*xX%$|ZQTvAHExb4B+_=s+dB{a(!)EJDw>R))PVzj9TDcJk^ zn9uBvUbvlNOvCR3q|b2miwT?Yj=nsZtb-oQ8drF(W^EsmV&PTrug{cqnkuDKc;!<+ zIEzZkrbTs#l}qn`Rzx z7V%b~3iG@gx7tYVejj)eP+O_g?-0^ZJ9>1l?G;6q3|b{>-s8MLsT%UagJ{n2T&f9@ zH`nDHOqE^(d*b4e&~-b+EBBM6Mk`fRS|d=43*sXv)a|@E4Oi8BzHw$q01oB8<|3GC z`}`yJXY$vqK8zC-OK?uD?~MMzL+_0~@sJdfI&HjV^UhMr8=X1b&oQ0$`#=6Smv~+# zI~qwG4w}Tv-T02~D@I@e4^4R;dv6ve*$cA@@5fl1+v+s6X|uaGzlak#Ea2cKK5!E8J5#i2#<{$aQ`Tut?;bwJ zI-4jnS5L~s2usuB%x@gLqCrlP_@2=lM~WJ8@%KYxiBm&eIo>0)Ae!|oc#l>aLgTF~ z9!Wg!uMm=o{gzoJo|^UM1?C2|G-}eYX8Mv;6VpoR<=3nPS=4SJR(3i{zA<4Fe$5q! z=OQHtf(%TRo{{CMe%?YNnEPwGqk}g=0po!)qa7pJc8+}FB`xShejVSK@=_mC{bE`{ zGy_htdP%O8r<*{#6y3Ju?ba?yUcEe{o0W8MAFu!mu*@poeqp}oo4aZu2JR|%2B)0| z?+o@i&8PDie7kq?r#mW}&se$@w@SAV8pmj*c=tug7RvN`n9%E6{{W{8AyuVb5R`x$ ze89VX<9)MC^;4bSi44lrD0_^0e~-ugJAPsR0Ne7; zUy;|+EL~?6JL*3E=wiYaq^UaokUwYzdCLY^CsuE?bAu~n>1_Ry8rAO@!qA6T+&1I`^W%V5oe<-tQTY?&>E;;-!)+yNt zE7qX?9?(YFCzus&nZz@AN!}>w;w2JyKR7sr`av!@Mr|gC95jDNLIh=`Ls`F zpOr-E~0+k~&R2Za+FyMW4jbi7-f?+-;Cs}98qhb%dK>Pmd z3Uwt8b@Pll@Rhvh`)5eKBuuC|SN=K?_4t1LPsMX2oU?#jmH0>^sNq7MN55tddsq?c z6jYy8FrBvGh@M5{CJcpPO3;!$qCUDupUbP2+a}G9q~Yr-pDMyLJqCsMG}L>eA;#X1 zr^-=Md~(SkEfonHW=^AE`WleJ8}W_Iw0M!3Dt!}BuAL1-b6BB-ufU}ySy4jBKG6mG zk;cq+dPkf29H*{M?*y~B!lqxAiA!BeBmzgifN|fXHC%YYOyq?Y3JeH3pD4YJBncDG zuar-$c37%PM!A`~H#FdYlX>A3tzNRupz0)$X_bWl8x1SoK7XILwa2(|v|SR&Qj#1J z;k}SX&GUF!yskw7lw~CNlfZqVOP<*@02Se0ivIu>?Y~cX(hMz5nuZ#R)|@tv5hg5@ zY$jO%^57jrG~ITPKrBxn>lUr|DV#IvcT!o+C>U|M)&^XX*-DnLYi7~A==wvwt4)cJ z3n>)`=eUW|l~9USq9|e2gq)@PM7IF(3=*uwC^-G2IT`Zke(Su3gt_;7ptYXcm=Trs z1nmnFtaX2sF!}7N=l!eRyuY zVz2vkN3TrI_qh~;#){sII||kZ&b$g)I-R>l+j?B+m|0=VP=-CDHpUnnpoJ&I9jULE zPu@7ZzAHP8_;cQ<5A{VXL7=W)PhX55u-ZLf6B(7q9pO?;fJxViX#0Wnf_4OyW+QrT z?azH9DO%aShYFJQsXsV3WRvjUNEc&}CbI)T9G#WB9r^A^+AmrrB>|uJXz%fLHn{ow z4ZQ7DV^C@Kfy$fGk=?R+Qn&|-`47I)9K;lgv-|%52#mQ-^>fpNtUMM(rxX?3gS-I~ zD&~;aaNE!W7Gli*09f>Y8$M1i$(=pI@|3x({S*#^^H@2Eq?9R=v8b;<&hbvuActS+ zTQC1)bF9Mf7nGv8K3sRb?+m8FymY5AmN zH~q?GT2hC~<+=gar*=OWVzXHklBpqXrV2>})h9sS{{Sc?#*~9#^^#XIN~NDxl1!yF z80eR62iyEiYQBpx1f_UX2-#zFo_dZN7%tn9D?kejrrxA=r`9sN*AL9GT77P18EQTt zMO%^6ZpIzsWzw~#-czN?w5Qd%b3*!k-VNT%n8cvuBg6`Wxa&<1cu2qRYdS(E=FFnS zDFw(KM%%-d8OJhb%kZdX4xEQt55|XaEKd{Te_u92pT#O^aNg3Wl3uz84b*WOy_#`R z1(*@4s5|%D-5545wFFzz10;IDNCQ%N>mNYKOQk1J-;B_u?-gSx^qGE}D#F97))va0 zcW;-*K2QGus0>Rg(zilJWQOw;AoA4%zgYW|8B7T&PDGNR!PxigW99EpUWb(|s&upk zDO#ikZlkuHU!*)Z`5`w}a%jMOx<1eqA@pRW4ePeUyyHN{&10q-gkd*_6rs zrZUn7;k@D2=Td^%sj=oOhrI_ou}3%p27g$ob4Y&+@1Q%x)?3rnOazifMn?<8A_N9Xb#_k zFq=!0bM#+u6%mnjEKgpM^ll5biD%W!K4)gyK6?KErhDHyls{Ta5P9Ss1br|4Dpg#* zE_XkjBKd0->`QhafiN?(w>_Xu$$lh-1tOh72`vWpmsb!|K zf_Omah(NRN$TrV%LT0Q<%*xtvtriV*%nM zO(6wg3Q40K2k#Rt_SfUnV!p2gNl^zwP_3Y?!F?cxr`5THYx;7g_&kD+?dH*I58Sy9 zr>h!+_J_xo+=#(^M|%Z@q-rRWPZ0Whpgok7oXV&HlqpRs(9>wAc_f7#uEXaHzK<*- zbfT%7k_tf8x_L!UVPfgOQp5d^YIc4g)uQ8;vL?7@qkX>~GHd=}Hq$OsUBTU|AbuJ})@n2%QJDDe@sd5r@G%ThgH zE)t>$2a*G~Lmu0%fOSYAPUepfj3Ep$d71K^NgfdHcWq;ZG zRJ{vm-SvZ#uS6Nhl`&4Td@oWw^lDHaq)@>3P!?59&6wp;Cw6xn=m-zfK=7}GEQWIZ zde>a#xh+BE*Ha6RQ0rkTDJ=P+g41XeI=8<_K)vtLC?u&ux)6SRdB^LL`76%Fj;V9u zJqJ&F!7-cLFhCZtlkBJxNz^v1dbeSOuIK7JH&YPCeBm0c()o?lCL79%nsERK~3y$u{vJ&M9VEwlJ z;??nc4_T-M{sIGfIKPQX#P>_+?vkG1)H&34iui`-6AGDZQV9oTdHkZcqz_(~w7kFE zAw-c^aNmBBX38bkD`hRG)8`*P;_D>zs3$oIP}Dz?z3^`U;}So#vg&5cXN$ZHd(Cnu0-(tvgc>>LuyN)ff212GaEbDO z1@b5l)vFb7X{e=n)X|MH?Zpz*mq>lNMU*P8jNzCj+Z?kmk zq+Oq9O{HEU&9Kyes2h&7g{#*DlqfDzwJntE)sEHDCQPQ#?`$ralJjOtSEwVNzj)8@ zJ6!NRMDHB6Q#BvYq5N$`w^kq_fmI(VA9$D2WuysVX;YBGf!zLl9t(6TSv>(*ibAC= zQrA;MKu>1tMk16Ny1a$Xvdjolf`L<4q>wd;$%!y+)A(tCZ&{$B!^?y&sa2^;=8d*DfMb0U#T=>+K&vEb*^Wt2|f}7 zKK}rn;bO~(!JMb2QK8WNp}tk2D)wp!+v5w->n)XvZBnf&L8y01fZKxfJTq?uaSfu> zk|w5FvYM6-L+;x74Inlk#Qv(%qMs0O;J1hE%xKqtq!49-6at!$uiMJ7Zh-tT>26fS z}eonQ4}D~8M^olcYLK111HiT+M z{S6>?9Q2Bru8kmBPtKP!-dN+A%3m%DD$Hqv>!_! z55Q^OGwfw*OoN}=H5AvQ#a^O)wKZ5}$VoZe5mVQA5qjCA%|ozJ6rRk=e%mni;T03Z3e`WW^Gaa}s*( z^o6_9nZ@^Hv`Cm|OU{W|i2+V?b6uU?wsB4j+)`C&P$x%nqf$=;eOfoG%LyaZB+Ma6 zDGvHnZPb0?D#L|Lyvvi6r}S~(uUJ{7scm-x{Zoo9ydGQr(U)HLb-jz!KeI`PB6gx8xD%G1XWG_`KL%42{NB;n#$q8(r=1F&YQ;s>W z!W*#d?4pq=@}OwKqo1TTB4PqrgI2qkBqCkSgiw>~33ubB#xEw}^}%#xyEg-7>GFe? z>wKwb1ajGU?aW0g{R#~#ytl}}b)8+limd5coM$CR%k%T0dAL4Y#zHiD*GOfsUG*e_ z=V#_QpLPVF4GH3q{h+;zu$m=FIRmM+8^6h;D3gZgr013fVAXbK<~JM0W>omRM9_|q zGU~ZVbr%ApQ$YqQR%>-C**a!LFDM?;fFQRWADDKvTu4N=QXRqZpO;3ay2EALW|ZuQ zeaO}Ket$HMu~p8KEkVfO(h`|~w*sE3y3I9uh1~YH%i`u}OZl+o(N^EM7RlOO{I2(T1G_QMAaJJS8%! zkgTdM$6>=Bu?ZhBciH3Nq6yvT2x& zNAb)(o}mZhOLNV1l4YsEN;&7xNIiDj5{Y3XRE|BKJ>Qxb4{EaHUQnFsCqcIzyy4d2 z!E*vhn8X_O?0!)Y%X2R!6$B-U&VbR!5Ozi2q)SpJ3Mf=-TrBEA=|><_#~v34e0nQ1~29V6Kv4*vk02&;i`8UFywF-$ib zcWz;T`hZSDrmw6MiD(`DYYIX^0nh&cd(sl*;v@xRW>7kF)4Kx?_l2Tb$VmY_9plTI z=(43$%2X;r8Hqof!`KSzz9vjGPE> ztUv)&rGGoWNM*&ouqdPS@IC@6QCBUPoT!#GA)jryT|5l+!@tt;?mC~AWL0FCjD zHx1nlEG=HrfNHxjG;O^0Xp%+FvXWF78b1F3#B{6BB{^N1pPucap(L~3`3YL86R|qJ zpBNcnDO|-Ux`MVP$nC@H(gaKkno2{E7@BKcqI(O;P*Fip+-VD-eUWzsOUisBXc=w1 zCCitUejxA)`^RN6)Dy>r_UYah09?S5qpqSI<@z}lt#^V#j#u1>p3{fs+T|%JbPWM& zzcmp&{3-gg2HXu#ZqcV<87UIjyJ`Vy8ddtnTxHX>^7btBCuu>JOvNa(Q0dm4zA)wJ z+tGy2{PSD{I1i$m>l(f+lt5%8tz^)2?-F5~WYo*`OHNQr*H+`dlxgwoXjU%2ln|V$ zAPzax$>Jp3vrvGw(Mk>~DmABGVXpnea)*R~7&-Fm87?-&^KFGFkQ4$-745?Y)K^$3 z22IAZ5LS%NN{Fd(@Z*kRdy5_kD*;5SF=ZFutI?0bEla?tk`k9In5w9jr$EC`&Znu~ zjAg1?ivqQ~2W>0lcxuGRXN&soGf|lZkVB-?H&^`PJ;9db$w5dJtCLgZ8ExHp+K_!v zb^|Muu-Kos-U%x6RJ9z$mm1WFpnAV?0YVCsQ?uz_dc|xnjx%_t5lRG)v?JZ%+U5yq zQDLiSM(^4kXJBM3rb-o*rm9ff@8t&lkWMPKtgIPq0jr${Qx3O6<;s?v%LPhLiCR?t zZ}EgrO7;nsWS~nWRqRbZx^xc*WLQ$E0H~yrz@_R3ZD`*vVEGXv9a<*(+=!S7m_SGx z*NwWyyM*uryE=VpymMHO6-JfmN*VwiqY_pgn7e9989^jeA7wmuJzKeG+wVKUK@3lg zm<<3N4K?dmuJCc~REvu2veP%$AOfOl2E=sxK-;$WB}#D0XG)LPgAKM^IC7QfPdat? zKs!Z+ETXc&JXMHPHi@>s03|6$w6*R30IseWe4xFn0;XU}B`BpjOj@-pJ2R7BjN8F0 zmd*X3P(cTV8gd{t=ZOrkYp&X9tQsCp^kyX=1kA-D!)T)2TD{w(2(@5~Ov!-0S$R%p z_Mc`udAO#K&4I1v(6CiWY0;`wL%+rhVk}MSi)?i5*X$vgcIK5bQgRcRGdb7!?E+`r zB}*?y{{ZiY(Cr57*XUoga@S3L(fWMXE`aS$@RFL(WdLQ;pAI4^gI10eXe!o&>m7X~ zNmBhJ9pYpNHT;+v8`1Fk>N@=sn(@rCl2>g@AvFIDdnw6<4izw515?_NsDQSsD*`n;6SNAPm^Elb47AzzAIxH~sj~hR zc&NEmec*)2Z4{Q5cp~Lhn3wMnnK5i4m59n<#VE~3#*tQXwBvZUJ9af9qlm05$9T-; zRM+!pRVrn^%}%`ugTrec-OkEgmc>GqG>6tRulnIP&w zeJR=(Dbv{h0Oo#2_`Kcvy%X+x@rdYl-ZZH*Lh`){9}S}zRKk+%0O|IIyg7e82`UDa z)PB*Fxcw78Q=zN=P)dzxbOTrmITf#Re>jVmovF^Q(M{RMN90$m6|Wi6wAGCT9DDkn zA!==$W@Z)8*H~w^C}k9`?eKt-;ap4o4pcisc{2 zF}$uWTtiHz*Q-PYTOTHZv*eHqwM83ftcw$7ZQKIy2T0Ue%}}qioer6bUf~3qc4~J{?RV)5MZV zqy7kiT*Xi~1ikMnqGRP-F zcaMH?$sdk+dER{QEBh2Of~24IOPc(kCJ~$c)@??RZbY^XwP8BJYACb-H#8@W;#tO% zd8@#BKwF856gT+6>uQ-S^))}7Lfy*gn@tPTyj4sLwb}BoGkyHvs>K3^he($H0I@Qv zJSx=w(N;|SsmksWOCE+5h9hR1ow`y9UMY6xm;rMyD#$LxI(XUZwz?QQ>oWquzA)hz zXH6+tPKQy{MQnf&pnNMV+$-}=tpu?Jozd$6b1bm{)TgvkloCc?(y^FyI-P0=JhVxt zw@(T=g${}z}L8%mP&nSlXvJ_RzZ%>3&ooNh}1q#%SAO+)g zl$_{%$!{^ZKKPo$ZzE3c7A+GqhxdpE0AA9RNA(gYv;pf8$Ol#$fGN4GG2B?zU7}l* zveH>;J06Y&I6nHARkPkIlQGMHO+l-J6fcXM$(ifql4Y%lPtWqPp0vYl?{Iy{3V=(=4!D5rheYI!py?D0S(J(vESFfK20>!L3 zf2L}3%&7o*@;=WUUKa*m5=(=|-TOkU`x20ICEJK=!&sOQ0jhL7yf{cdsUR}Lxo;@_ z{VN>Ol*DbZKoqYK13)3#O%5oiP8V)PBF+fQ-z*Pt-J$dQ$f|hGqfn@+k zJHQ(>^e&`*$JqCainN(^s*_Isa1oMSqBtok)R1=k;sM?F%ef~=H|ui`2@ZYF4Ay0! z4`{LG22DdN&uILc+HUtif|JnY(x5@D4v`o9sScdM&dSjH{qc=y30B#rQ3bOkjX|n) ztgMw1%-aY4 zbbuB+rzFA?qXHEF01naB?{>=}OD(IKI~{=fM;1$4rms(AkJNS@4=+gbIc0iWW<}e~ zAO|`lUgxhIL^5nfa4AZeMu{S$p!3kd%Po;BM~oV{Qd_qBj=#JmS|^(%(JgKzth}Xw z>`sAPGtt_BouY4}lv3gOdxJr(^_Gomw z>{-yK_wNd~U7RF@mlD(qa1Ya6J<#Qc=4E%#Fg-`!A08~Z(76jT$O;aZrzAr}yr;yC zcOQ8Dh%QvoK;}Un6S(MmKsi>DlHtb9vWGEQjHS^lO{j-ZV0WY+khG~HtXprs&^Y=Q=cHK^fgOJ}i&i#R zW2g-MIPDdCDbf^Q1x;2UH@j}JD8E9!Qj^yd$YCpz9TJ1>8x|^#pJ^G3sB(laHqr@@*ntSIQ-&(C1+A zwwuLEEX~#%Z>%anbrhv6Pl&P6>E)p6A!Ro70s?DIPN(;eAI&o5dK^2B(~T56lV-{HO*Ic^JX7F7FU84rHSCH*Nt4d5(6?o zZAOIdPe`6yeJVGCv}JNbow)OboJS;2@D^rbcM;9gC1oJ3IbTpqxf{isrdNuCaw|yF z+G%)TG#~(FxHQb7<@$8pppX5cnF$J(G9Cpy`b4<4@R&i!YMP{W>G|=17C%U)Y@(F| zoKUY~M%^IldjeBE9-@DWazQH5dTG5k9c$FZ6`@iT$2Y4K70?aO(y-HWUJCU?IdPVq z9u;vE<*hjq7(cXX@MqYC%w>$y6)ccQ)g%Wa_l%>{H>LS&K|l*-B#so~hqs(=SAGeW z5>~X5uBZP1!Qg2bt}DV8W!k(_(xf3S5`W3J>lCCQkD zW>s6m&v^SA24YO&TEWx;IzFSLaUTMI%PU0Dst*zLC;dO;e_1HYT*h3rI1f_a;(pPW zmSonPKTp3VUfE}y>sA4=kT8fIs+Of8u%+k#z>+CEqGo9M=DnSdoF zX=W-L1M}7VqPF1UX0ZFy8me|gF)Iqom5F5R18vveQw`WZ(G=;y=zx=_FQdk-=(Ets zO0!Hz3SjgM$4=4oJ<)K>2?gDj|9MSFi{671AY`Z=00|jgr-?7C`bzmC6q(u1n)=i z_tHMA#Fxr~f);`lOXk_O?H4EA$XY^*QhYf{ZbNr5pDsHwa{$;tC%=|4nRw_0f$K9A zGo{?O&>FMrNY?PqFOaEa&XoZBUU8e>K8fX~YF30Z)lE#qP&pcaGzU&Kf|h(SHd4~G zWKu@oL)fuBqG$T|4`pkX8^H{gLR<$f9gkP%uDv1)ve0BJGEap{DlesVZu<8pm<5J! zm90e!LnzThj{7rIG#0mAb94k`9P!dMmr+CU(UxY)pC}|O0v6kY{d1ACNCQ6a z0jS&JYpfsij?)qsC=US)!`cl|<*$~a5Irf`v{q0Sl{tDaI}Upo9c=WUIWkg&%FRaA znJjCeb4@-mjpvsaBSXVDQdH%oQjy~cWgW@hzk}*l^uLXnNlKD(J1&5*(|AktONnNp zaZnD7poIe9lI{rDfHd8~jYjjl?DmwOTTI27n7>2FF{d2(rlzpo^4Fp8jSoIsKuh}; zWts{H_Sg)fz91{M{{Wi8^@%>JU_zZ}C4)P+-(q2#5LuF<;!r@Rgi}s=I@hdJq$76D zM8WG5zdLjSE#9|!)&fk%2T}gJKr5!!>d2ZA?(GZ{W#uC=@oyS?0GDOxi6ux%Si1@{ zfxn-e7q(%kR)qfma1w*CEPVB(d3oW$uM#S+pYIj!i&DrTiC9j9pOEu}3iz!kuuD>9 z=2{jC7%?tggK@DUyX;#LxG(vcmL-GXHAv7o*tC5edR(*~v)VgQyX)V7$B%4RM1+Bn z2ttOXhP-fl#vJ&3m&W7gi|W|9gdpb3wFK4a%DlC0%LfkQTe0DVN=iUEl9Yi;7aR5Y zaR7ZMTq*UbpDYJWa);HJmVG!M4m2DbuURD|f<*~_KbSc2_|eOdeS+LdN=SD1`S*pa zL+H^+oSRZ8f*DB%UW9Gae(>9USjfA-WNjI%X6d zV(J#8kzZ(3aPeaGyB$d)tSJlZ6a|wnG}N8o+^aHjR=bTi`ge$LVxcWeGkqZz?8VDU zy;~i8MC;Y!lBJF=gd}HPV4{2lGz>W!R6f5*&@d{}n>s>hTQNW7{0eRGgkMTGw6#b| zQu%=uXQ?#&G#Z^D%MRVjO`2PpwFujvf4f-E?O#ebw!oz+DjpJCzkYvsFNbcGgry{A zVY%0-j&Nel$s=_gPMjhTO4{P zl|EWmBqa;Xl2iZ$u&6ZPkny97JhjWqFfzg6#ddmW3--J1Hex{zok7@g9v*(rYdM#N zr)q|pnwfRMzx1){!mg2fJqMf zu+y|+s(N(;n zS#HrSYM2&9eV#jai+6S7DPc*N9;Hva{?M(BaRy9^N#3KF0dilWX$i_%M7p#+qJCZA z3BsZwt1~?a)APJ&S4zz3DRlco$^hQjIUr>qsr{7`SarfOJzS)tT)f2bot?cT zy71(nmIA*o&aqBp`H~f{XZd!5w`Y!NKFDUuIpqAQ%pANdz@bh&LqgPU@uFa4yEpX- z%C7-!brs{GjJF=x?MNs>JV*qEJCH%p(xi=B;v-DMR>pr1gj3732*j4QoB~gUfhXn! zP1+FQq*~I1=3(UC{ww&l2QiFQv57ILG^4~f| zpk+lqV{_#i0eoL`q$@gT2x9sZ25|M9%axdMUi~0l=`mBJ?n%%HIdlRL5Nbfz%TFjl zn%)=)&zQBO_{nuu{QC$$a$sX9WG6W-T?yzQ_8PGiElz8%k>(9w*I-^!6wUfyU(I1* zgHO2-r24slF`+#TAT8JEdPSXC<**whXkY6M*G0m-z9nWnY&t|&g{##h<~98(_wN8M z%=AMha)Q)y_`AiKo{iBiVFA{LO%F{#<~f&rElf=q>I^yAFZ8G#32zTQ$%)8d7TK0I zEP#a~xso!F+ZS(-NUL_+1xgK0{0LgLEZQe25pZp18$^q`ABb*e>A|B2@S73OmleN zh*N-|Nch9R&ZPP)me~MpLFy03-2`ktj$}zeOq77H)UKnAk9}zlQY=M49S+f%dP&9# zvu8p`VjP{r^AqUyoojk6PpAK4tr23G$@-?pKp{V{LZyel`eOj_NtQw7p=wlU` z=?2r8N&tX=P!2~3VmupVtZ3T8%`F) z3ZE#1xI^U|0NS@aLdG1xhH^ktR6kdZCe3rpl_X1+K`pMHE#q!6nRfZP=1pYhAp=zO zf)gbAv;;jFhi{}5xR%Ow00u${El$3A4)L1ac%fdoX#fxn3%K%%g^sbU!!Bx4o)3vz zx7rl$d=)Ux1qkpVS%UWW8o~T6VpsJAOLb-*KycbpH2ZA4l2?#rBsP`(qG5(zx0)21 zs4&zL)!nP4QMXEBLh|{ch(Vj-bKwnrndCWp(oasve zRsfd#XhzH|-kS>01er%O8maszaCKwNAbjiIXSSsWDjL;^)DDrW-L`oFEiO_j#3@0^ zC7hq6EZ=^P60lSmIf1PiG@&8eRvu6V`=b#dffdtD`GWX{{z;dXS@DtrQ`G5BIq3cSVFu? z6>S4(={s04!^_$z&LECc~R$HU+vbO=x4sKU;>eZWw~jMPk`(?R87Ld^NC?Y%Pn3{Wx;Qyc zJaGtioM&oVkgie~Xakrt#YmVd2y!M7< zvB*oLp1V_n4p)XKlPq{rn*M+TzbBrLq)-0<2!N6Lh}Z86*TuymTEfGtl%92`#tgv~ zE~^enfoh>zoy|ahr%j>#cBHTwmqVdd z=>f?7TlG9bJp5>hWkF1$Hg->EtSZ~RF9f;(R%5vyz^EksqK)5$CCzERxaCnfldgYz zx0E9^TfHb1FhC(LMp37K!36F#lFL@6fI!QW3CaX5A-qgW=rq%c^@6v}^)5*XJ|GLa zYQvJ-Mdd@hONZvn0E!WzG=-Zk5VVCA1(zj`!MBIyVu@-`gpvrL>-2*6YkHLCXVjmx zPr_9*%WfLADxzVfNZaH0i|aRECgK}Zw~|s;q?QFfB(}~?LFpQm zh)g+=G?bnPADThCn(si9l3IL9CDz_Ae_B6ij$Aj=r6FO3Wk^!foomz)qwL!^SSxni zDU+Q=0OqKDtGywnuzm#~i;{t9RZKWvYo``cii3_ueO6_<)g9n=hH+qYu1o zvz2I3OS9F^y&IU>Gq=zP#OYBf1ZlQ{0?$BqC!A3-72ZhB%1JFjO<}^xF(3v? zQB4{gg&9rF=E*(z8MK1n-Jf;I=QE(&YN0(ZWRwBh^ua=*Bwfx~gI5R;2NBd%Sc zFGP@8>s`8Y1|?t1DM`qr5C?&)r9tQAy^}p790g zArjQG#cfZ`qOJ-_pDZmyDsvD6)PQ+_GcH3mVv3z8cj&`FKJ|vXuHK1B11W9EKc86W z)H}rqlqIQ2OD*>rw+F2v3kD2K=^&^wmX{n3L@ZtxiJdzrB&4yXfN{iVwl!r=S2{Ix z1M^s566M3P?8*s389S_M{CUMIg72D}LgoaPUYVQ#I=JM+6_VV7s+Y^J53@xaPmPr+ zB}rlvvDcx6Nggo6DxQD~yU^>D{3!H<%g+P}5{Xp8?@_thjnAIY&xE}tnW5GLKHUC( z2pfx~DQyaoVP@sE4kKMR1s#*RV$I6y+5JqCakkmSBf-4lj`4&rM%Bm|*>0lYeu zZ(d~YT(Ff=n*CZOwcpBGK>@RJBSJxJwuHFU4dT6; zU{H7qYnxNI$iX|R@k?ba2;6RAeT127_|Z64-x&O~gQ0qRqOzt}n6%=`W;{ytf%2!h ztX%cH#ZwNT{vi z%G11a>ger9)M_I$Rhcd;+U(hqQ@7@kX?#;%w;Xv#6AO7j*Nw}ulH$9I)vMZYYuXn7 z0IVs|=v;k|P5h%>zwVJRJ2L}V$?ft=R#Bl9uUO{h{SW^DmHBha!{f{U08q%Q!!}-; z_2@q~j?*%wsF(p^wDNjEn6jlO+iNm76ynkSL05L~8j&y;l~v?DhWjpQ*=Xr)CT-_|M2 zkxC6r9!#OD0Tfp$x2$DrS;Q(_tq&1$N)PcJS`)Y9$5Lt6tYOOQUOaJbLG$ap5SM7A z2{QoY_Gq(VPJ@5|fv;tfj>m5s&$@)cGi40Wx7xIHs zh8xCcnJ+f!IZQ68UKJ1=fMKHNn3J6(K5Bv116ibhbx1p>%ct5cC~VX7r79H47{vBV zSwh1aADj!p)|`{(%3V^e2BquHktM#(MODfbQK4;*QL~6fJgGG<3V|9z{jSNCB|H*B zj;*Uj%ZBs{0K0>!?HBPSn5tW#4K?HLAOIJA=HykB{!n7rGXPJR{P^^Qn>x#91H=mv zv1n(Xe1)Mi0imLtdn6Vw&y*=nstGw159vA$x{jW4QuRlxSXy*7SMkyh&byLyIh;K< z>S^wQHmeXIrA}ekB3o6|C!m@I4Io{KDq|&WUuE^6)4BJ=R~7D1rY4_AX|-Ibo|pYv zq>2~Y&Lu>P8Wm<%U>yXs#G3hty*^VPSdA22N!hw@7IS7L3k>ypBDGI3Y z(T^R3BGDDiH7VDKtv2NORQsOR^Amx7jn_g2}TIT?z^e zGbD{6kxE6QHBnGSL81B7c}GdMk)wk8)t;Jd9pW3Pp;^!lUI#nG);rh~vf)*UOTGfY zM8MqJ*w{UI#g3v zZKAcMMMaj`w&V_adBwY0!7r#hYVf&#T}o231(c`*l}RP^(DFG17>aOS*-M5)PiC>N@ltT(T^G348caATRs z1v647N;)ud+vcG!@T0H=p*s>>mUaICdQd3O?I1q85)R`>)bF5!*S(Q)=BbGZRRf1g zx^y6Z7^8Yvg3$7qC~P#QvFCYvmtEdIiBoQchN;|zYEs(~x=#l}(35`NstU@wkJ4Ds zZXDIP8%Bd-y?kXWqQ<{KHi5XR%9wAI01+|#Pcns$zIe`>^%N)TT_dki*ZWqvym!dg5<1a zN{>6sm~{99+}1Q3*3JDq-w*y7jG#3D{-8JmU|iMXAzY^fFzLJSdTkDvdlV^1^%EUT zJStUthuG=fE??U|e0$R+ro>4qPl{Tq2EfBk7JEWeiV3pP?WS?lsMkmVgwz-Pr#(0X zexA`{*>_B{O-#fBN>u9rworE(W(Up&7M^Z7!AUaLy#t1*<^Iu9)p9d|QTeAxp7mC6 ziKqkS~DF*2f|u}^R#m!?k|>L z)DfBfx;~E)WjRCT&LkCzF(7q|cTMOXrHx=Sjk?iZyK_sOi31-t% z`OGbYIFpbBpYvDg{{Uvt@&@#cE@jk^!DKMkaS9mE6v~!@%;_G(9~WQEBiZwClaAW+ zynL;_GAvbMRKieKn7@f?JzSUGuEG}0i87QOS)JKGsP#HUo68d}(=hs^gpI>f$mvG- zz+X{99IZ}DmUid}8f~n6XP=zBx_u9ej!wkvvr?zZ1wR|h;{>d>AUsN=eg=V;U8tpk zNKJQ#TfWGn;~-_w9lFvxzY9740M{qwTg7(>;viIWg(wXHqeZ*Z5CqPmNJ5J;hltXR z#abb=&Sbb7wK_#oqdICqV5A2h&sh3S8zwwHUdL@<L$yeJ zy5p+iWV(GQ$eZCNsYuLr@`AQ3MIg~D6%?Fu8hOQx>Ah2oCBR zerfZKPDO%R6yb{4f&a;E?H6uCpK0Zx!N@Aisd0G%uZk{ny|QYx20K~uU&WHQ3(Z`WomzD zAB%8$QiZGnRK-N5r=NzfT5ZG-zg!#HV_%C$Q?aa{R;1>2q!!adO2+=Zv-bG28Dfdk zd1|dlr(CkeC)OIlWi)ty3E(qr3f6?1gKt zM+E+&Mvw0JN5uGE^;ET?a#mdg6GrMseMiDSpkMU=05VkDK4m2!O&%nHq5NUb#yR=% z%aOMpTM8I=(n?V^D40c6?mxtRmxBExAvS*!lj_1>S^*yl{{Yn2qr+sGEpig(Ze=hn zl+fnmN;L_0V^)XJ$D|`NS|u)Lh&2hJZ?sR3pTn2M9OueDhQ;`WGp$~+AZ2QPa9Q9L z__qpDnSj%$c&dpRQiA%q*IvCoA3;|4wFOF<7Ldt3n zPMzplHk>iGUR|5O)2J+w%t{UGkRTqNib}NEK(E0+a}42sLrd%;1J1p+K}z zlu?05Ss<`9f2ZdWV+&x}Qq-ayN-C*3gVTs5jBhf8D!wg;PJU36=;r!SQq*%)?g>kd zx&!;d)io<+*oBalFUAJ^MAEKwr5cjjar?sM>mp*;oIZoOKWH&zx15ZiX|dbg4JhQ< zQ#CAUP@-BkFp)P1^TJlU2v8=n&ZVs7g$hm}?x{#Bh*gMs=t3MSnPU65xmNTkh zT8#n?SuI+<3$+{0H9O|-Sn!qsL&7)wc+76wJjBgXR!US{r!jCt>JF9SBb4t>Q-`AE zN|Y5WfZ57})rq06kZ(OS4A`#Ymz7GRg7l*U8I_Lf{`hi3R-ZUz#uv(v2FYe5@6)_g zxd>XxA(9OV6-(%^e*4#s&|=wW%u}gw{j}8gI!0+>#44DKigwvrdydh1=fzV3NKhnb z6b8b8p0KAq20H}AiK=XOk~B(ST4_2cCME?YqTUeVuwIO0Y*P?)JxlCM@@ zDgOW<(RE?~@=Yr&&LIdTB%jCW8cD@z znJp?tr|0+PCx?=9EUWl}?3p_$OD8U+*~iiX$gwNTQV-o%(o`8mmCq;b7bM%H%R<(o z1qmRQJ;9AE5s>05c$Bl4xFqXXY{FQHKCESOoeOOkm!^x=N?H_`$*YHE`gM5G{S3|i z$SMpC0M+9k{{Us)J!?U<&IJTz1;Jwhu!W$cl(}KCHEu*W-nL|9pkhEQeq+2U;kzgk z3W#>2#*(D#{ZO2fEo0gCNulyRAwFf3B8Ua6SaCKHLY-c{I=~!%btoZAlssTKeGh-Z z^3bCV2o=nWUmnkQbEi~)TdPN80hT=thbz*t{fU^zgqk$8NMRJ@+|Wf z5VkW}N=QD*=Uw{2dIyWX{YtYnLcaw$f%k>Xg%=3`?%!BN!}#V}RH<$W9@is=gSL-I z5`Zd6bq~^haX%<{p?&%>mpNt1vJehXPQ5=p@cCnqluAsblF3Ux=kxb~I7b?Z!9)zI zeGOcF1Te|7=Hso`>2+H-7NtlFybO{s`)tF} zcAri{)TE*L4 z{F3P)hH!I!X$TT!;XxvPWGRSKq$;T&Dl}|!8f?72!5}h*$A0KO{R`4C`(5lx^-%!O zo;d0wTDdQr@`DFZ45r(!$}+`Lb?}ACQc*3aYrQ&aujcT>WJJk{G-d_Qcn@exO)GrI z{9^tN#QC#Qnje44DjJ>t!iKg%GTy z^2N0BtXsFGA!Jb3P+|4#u*Wh=at{bBDEmNbg7wN&l~oU}{^&6>Sx8D%`h$p9#TG@d zGSO0M+lX`u3*JbY7`mCj8ua`yes&}t%Tq(q$L5iQUiO)md5M^;!Ox10!+kc5YVWtm zv`b2*l^}+CY4-*uT|3fymet}_7&#Q&Y)FsElnTp=jXCer&#Wln*%PEKWn|1kjT8y+ zhoNHrY}8LOb4y@7rxhFn6S@JgfD_O~9F1van9a zk^6mO!t6*$Bm>v1T!lhpPEK`91Tdp*6%~G@&2G>x^18C9`iN7GiPx;w+Tu&Cvld_z!o9Dzg5q6tGC^mB^@x29Dk#}#%UjkIsQA)a9dm6%K!rWBUt+|r4CA9vQV7vym1g|8&6BnsEr zJTPO#Pi(nVnaNr}2|A7=+p6SDqRD+}(0*wQqSOr=&v%ON3Wees11eO(%^W~{$m8J_ zZ=5=|B`ed!#JKlDpZu)OQw;FcGY^7BL6>^Pd3S8tWkp00rn~g}#qUTshx%ldCzd3& z2R)!c#&V`1DoVo$g!Ai{l}w|qoG=H@9HrR`rKqr| zH9G!n2-j`ot2&f|D11QhUrw7=0S2)x+Qbt|P-#!%6cLC0YtV$JW2%AE@x(G%Y}Six z=URZ40Cs8tu%@S1Javs4eaI4kkbn{gnLLvQe2>#A!q!a763n!OB7wzERTgf-9G8Sc z7D`jF9G<*%i+5$tO6b8l^?v^Nxh_JC(47I(f_w87$Bq}um8>)8%J2Z;^%}qn`_dZZ zlE_ljg#c2Q@g0eJ4hhrY8tjOY@R{St?4&2ES%P~@gOM5S{(j~CT%Iq189AMWr3$!6XB`4=! zq*=vxf{*|K^9C(n;tR>OFbZK`%Eep4)P$%Nl#J$sXkx;B+kM)7QT1|}$pe*a6nky8 zASx~*nZYyN)Etw)+BGXyBa<$LSwcgx_s|WF+`>iSjjZz>N=lT@M<9Mu5nhT{@}^27 z)ei`EV^h)t-57#=)v}UMod_a;bl$MRV!g7d)(A?pqvd+gpQJb8F=qsXtV~jav94Z_ zdjeQ`?g>C9q|kKe+Iyi_9phBX1p=p~L;PXd-DWBUye=A>c8p1QMtY{vrh2tF2SdY+ z2^!Xv(j7X|eIH@K-nwkpQ4SKtfInW8hWmCQlPxOYAfEn1ofgJ#SbfHZHEIw1Ys zWfIa!HBcJtdP4eDQl`uwSR0HlB})Y=eB3+jp!}p5!S>{tLC7ckMx(#y&Lv1MJWG)! zg%!@nv`=tZS1l~(x<&J}|)6OHo7`Y6oU#JEqx@=;h4O{GK zmb}GDEEv65ZT!HgR+&LWs0DBaq3cH42V$J0GA4zoUfXB~=J6&Ay3&M{fcc-sYE$Re zNLm9gd_a&?q><4hX3#hC@ZW)?OmVT16^-}@=?b{6?pn` z(Shdz%FUUX&W+b&2AG7aj>$G*6wZC7)wvDyjV5iW0!~DzWdk5;kXz%<@Rfw{jI?DY zi*^dp`5i}2+(WG8N|Ki>058!;?*$N{eBikYN@aisZ)rqS(C^gi(gR%HgBL6*rZNMR zpsCpR;F^GW>LB`YEV;7^v`8!i*Q*_&zSD>#r3_{QRYZsBzgSp$M8Fs#W2~s=N?*5E z{C8+_mvvdv7UAY7R2}*a{q4LF!qWo~03k;)@Ajj>o9gCDrao^MO&Tr}G_~AI3O=Vd zh}3J8cKbv247+CJ1!-1M?B?H?yJfqCwl3tK%E5V;+lDIt0M#SmLGgtlBcD24u*o>jx=T+b+2ZuUBhxDdcY-$qM5XI z-o3RHg=&uW+r0`2QmDP!nrRm#%}!PUzN450X<1Pq4Sqjpg6f#8$2kB1z;hKjCa1-= z*~vjN(&RNAyZk={X4bpv(vqynQ9%Hc{x7vF`KgT|SiAyhMDwL0c@mQ}7a<`|dJ)F( zuXmsYg{*>ffbXuSTDbRjfRb)WvI>$^W=eMexXKR0T`N%*Zd?4KdZd8B`@8gbb&}!p z5Z!o!K*cZH&RnUrNp&YOX;2T}UvwD3c*QI5vnbSZe>I0(QDn2NijoY(yAinhG-sF_ z3)$t`ij-ADnIN4XUwNkO7+yAAUi5sIZJMB5l%#&Hd-Djm{#he8hGtR->BMNb#?aEq zNCvxpu9SL#z=dnNWR)P50u}m_u|hWM^YV>v6zN*Wh<#v4Qi@ukLacZ@v^L!sWH0-t zQft+MBrE-Xzq8X16`O1+^&3AEh&^7JjA%%Xzq4?+eET1xj-LSkV|eI_^f94 z-H$xfNRk~ZCBQ6Yr*_nkYR&R78SyN^n38n6+De z{PlK=mRxLw%LND89)549ZD2jJ#+i<#8tn)44x-PTfBO=WTW{ z0z&hG7N>m(+*r4)M}QP9wuQ^_y&bX-c=Gc3hzX5vNsE?1EJ%MY zAeZ#B)ic=z0J3>MzmU_jXqG=mvhsyZHPnDZ_Uif;jPNncBRyz9V&_o*0B@htHk-QZ zDN0o|=2=M7M1!(^q}23b2^aMAqF_X+L30TJ1dSW@6Qwlj(FOkikEhCHFbo}M=r*T5 zQ0GHe@ooF+ii1%>oPA=}7RFNjQ3Tbpu=)3l%KreqOz#~)eYNuG#5Cc{qEgTRaO~%P z@NvDJA$nugxYP~(&@&e@m*D^%4Jbq~VSfK@L?{>2p*Dj5RU&Hs>s# zI5B*XQ$SjPwF&&`q*Ah6o+rzfK->7DHh3`LRK>r`_lhY)pR5v{C5idRD6PMzcb#KIm`<$`UKes^BxV4yKb@j)ZtukW ztKjE3eSN-il!YYFkdR3|VS>YH{L(*T8;Meuve}YVLUbwZ$kGE@Z(kJy1FP-Zp)t$q zzfb&sHy%eXdSqu5I#*D8@wuF8Nr~MU1{rBkvrmnigIeeSmBBe+?sU^#> z->VPLgm*KkCG>3%@fIy|fUCVJ+pG+py@MWxkws&RMWm9&i|?SPKeQrWQy7pmNi5qP z+8igYpius82^hAT2Jg36C1H5utGa>99-F!8_k%JN`!h3h=f}zvZkxms+l}G6?3-6T zA83nFSJHKlQ!F=E+BuZ5SK0K_%*4UBYU$IgXHGa$BbA|?uq2K4>mAKiYp=ge{Nshp z>qD$($)r(5n!lRw9j=dGv~y{;Hop!30C<98!xB}f6pU+B;BWkU;&}wUJT#$!Qm5u% z4G!m|Y2J?g9xBwiX(KGMSxVDzDM#w#j2v0!W0f|tOu*5jc9N(w=t*3-HNa&9_CFYPqd1i?$if|sS zq(e5PCyIBDWf#me1747q7wxIa34!+{;-wUUR&(VYPqu$)W~72C6|m*735iqC_)EbI z(RR-a6x9de5MBl5rDI3@f6byRj@FX7=uv9APtrY=Im3K+iq>UpR8=b0m5&NkYr*Q@ zT_DA>+I?fGh+0~dAbmlIvGtTG0cr=r%y{p^>E{dfyLrlmQO2K~MEa@`vCk6MlmHXH z!n}S~G)s>14UmUIsqc*9a0Qj^IQM@QhP*Xwc1vg+9-U&LQidhE&6;|X`V~-lYB?R6 zqj-u%yVWVbOwhy{rP_zQJ$ga9lRi*TKio&McpPpBJw~m-BQLTg!IpiY;t#3l{UQ|& z_f_O&k-B%L-#B4ioeO1xNGCz3{{SzPAz=IE$qE&yAp3+iVf%2FrORDGs!rgacWAhp zUB#9Xm4yleqi7;)w)j#~7_x@&&w1rqN(f+dI@j}PK)o#9tmQAOf_D(FM>{l5K$yzX zXFDIaSgUzRDyw@mBaXd6_(vCQq0^XcsNBR;Zxbwq0i7iHhkd-FPZfPgKFI+?QL*h4 zOX=qxUsfLopD2unVXAxYPO;t5c?Fj~&=qY}_JV;szSW{hU|p1U?-tiDH533Ts674m zZeqG@NmmuukHPVXW=dK{U51~WMQNm-ifYj<*?5CZ74CTI&20)9RKY_|u^0S)a^A{@ zn?p&GSxms%D13aN1>=VTO(=JPHkD13&gIUmT99ht#zi?NSL`zZ|s(Qg;A5vWACtFbc)akU53tqYT@vP5R--7o2@ahJ=bd|e;hPb%CI)awEOht6_5CSC8nU&n zjL+r>{i@NADBq1TUAU1mQrQBNqUEZjaG}$J9Br&A-v|Ar$2+bzB_g?JQ~O=$cQI>4k`(yA-Mq_|H0VD2O5eAjtB zpBEmLFRMXwm;;zUhhww!+86GN5K@@9EL?5TzVO#Jc5vJ1=ce!)=T2Fn3g1J>KUm|v z*JQaKT5e3EG^flwN*aRN#}m+rfE4>pQP+2dE3(m)tqoC7d4RXAiAZ_Krpg0H=i?KU ze2cbw0hX_2<<;HY2j!IP12t(-*MyZMg(P?e@OIl|%`4U^e>pv zE$ok({N6U>*G_sXY>b0dHWEswentt%JcTL#-2!6N_z-36ST~q_9`)*o3hw!{|OOH45IV#>35?NCh;UA~( z@{E5LVl+;eq#+=+31?)!kF`g7ca4(~dZ3aguPRHNsWl_M&$Cy0YZ#Uw#YiL7S)}Ba zlIETz7GR|lT{~|<75U%!N8|f1+5iEC28^0h@$}XOF3RU9ITO=U`Lq_3U?n9)u{7!L z>8uHvB?&$s5dQ!!Pi>>+JhL9(kF|+5Uv9NocoZm&LNp3 zB^h1I66eA;J-UdK(e5^!R_g!+>&9KW4yQvOLp+myFBb9pXxBaR5LAht(IdF(K-3to zjBxrEGtdy04X^NZ{H^=m=an%kKdqP%p?#lU;xmh%8CvYqeO@K3k)DVY;T3$e4|$gO_G5?X59Bvf#B?DdW?jx@C(tuyp2K|CG0 zdFvb9_h(Y&s3hs)NG(z};nTe%rTjfB0K7v-=?M5S!qUe7Ag;*NTe!Up9y?pG33l_J_(-EENz!nJGM0q-#gwG}|r~v`v;= z455K-dx5y?v?({V_IdPbgEK8(za4lw)3i6@>@*cEXiW$Oi)*_=AE0|rt5n$&J-5sX zwQVSVU~(gIoh&G)p{oe%-kE)}4@8U0Kh-TY6)H6w4|QW@$6k)5%}=e82%M1MqM3&Z z4juIAtAaB^^}7oPD@z76Z)?rAjROr^SY;)OKyr3|yTa#X495>yXN<~HN^;SZXw=h< z^ywOA7n7P$nD3eB4w-3D3wVmyLY4`txcP`q!`RAwnQBc`m++*D4~LgsVl`Q<7W>2G zs4qpGM0PIRo-~r8)e&0&;xTGc%KR!60H1X|@YyC%LdaEV`R;}=lZmbVx=NAi*+fz3 zUP%@! zLdJjtRDX;7;i|!UCn!x)N5`yYo{w=7r={ko6{kQp9#p2EXkfnY@hoynvsFXiNKo+A zdfO0YAs}Wc6x@f`-wJ+`@Z(AoQUO|20|(swHS&dwCFvOxXQ>G}l!`0A52NiXK&5F*4G2Gli_LP<&j(2{MHS=VY zsbM9vS3w-$E2xC6NLwYmKvDUAu)TO%37SAIm!(BtPzL>cqW+IVt_&k4T;4*z%B{x{kR|7?WVx>6=zZ`mRy>lB6niQ5{ozT+h#tCRB~sLt4;ZLF zLmAd0y5_EWQe2>FHf}pZ_1k{PSE%<3MQoFEJ$`W zbH9{O5wK&~Y&eA_BmvLI|2j|?~>4p+PcTzYfNcA>wfk4dlIOVP*?-glx30;On#W?XPA&Ahoz#o`y3~ArM6|3t}tHCZMIx&fukV*<)L94VGxv$B28EOeTlb{{{05*tly^c)# z8ZwcbRZ9Ip=*`gU->fF$8#2=|C|Go;uv5K0K*d}3Li4Nx)|t`{VJz2o8tKPfJ`s9! z`Ev$x2vW7-`o)W$?o5oTeP~A`ukQrrVdMf-GqE|D49B~JPR-v}B+w0Y+$d5=&>mRV zwyho9QWqj&Nl*6kIZ)Hx#0Iq5rXg$+NGc7`Z|;WM6!k0+bRvcvfi^F?Gs{%Tc~YaL zMSQr~p(_E{3zDRq!P(xA^Bq3WQe~MyW$^+_3e(HIVAX=isc8#SYQPU`x$gm_yewcP zS*qfPM(YDV?ujXsgcSnb60bc=YTBM6<|MMrnJGjJtmG*Ci0bVb6wEgT)3-0? z+i9Mpu>&%bP#D|@RO8ntO&GX(=kbO6c8MP zO@3XXwko}R3Cb!?r0CzO3)m}S>>Mm=6J(W3La4Bp%6D=!db9aNlCM#aDL|1*?s$ef z+ZG?`$|j@`2exXSKCus@iv+pWY_1#<-hR)n1x3Ya@*kU{}0$4EoI zWaJ7+4F3R6lgCyB+9uh@i~$(vg&kw%^Pu zdO@%zTTDZS4oIVY;l6sd#58Dj#zyC(4C3#WW3EYxP; z^*eJ|i4M0>X(QPJfDbM@^@PlOa{_&G22znyHLw2wi_`Fnxi9(4NFe&d@*IA~3f`6( zib(M}&?B#H;2=CXX9Z%eef2O)8&6Dtl15Uk6ru1D&H}r@m{17J9Q5m7gc0-B+`&7N>FG~1E{~;D!EfJf*CFwqDSX20|(gsMCA_=4OMl5aTk`3s_vMO#2$Jcr?e#E z36hFWjOQeUJ7z7f;L1Q647* zP#=^`i{m)~w5TI^&9A9}LpoI89k%3mg4jOL?i{!~onNd@-3R-^`$|KdO$i#)m{z-H z`sFMrx9k2jD4_%p{?O;F zDdF2x$;k>?V4b-Ke$dr*OA^5j0B3#AM*73QwBSA@TI9Ncs%p=#&++33zVS_>WY9A+ zsMNb9^a8KfQKruuUM#(nIYBPjM~kdv7=>vIbfvPF`&X=I$l7Ji=-Dfj6t$^JSn(*D zxUDp!5u-DE$X=h*S!L0)lEDBvh})p+^X5w>=#wQ11cyjt_474_;fIQq>lAa6Lnzny zjXr?2qQI%?N>G%gBs*wFLBZ!p7cT*-%tYW+S;j=RTK@o+=gJ>0+Xz7nb2tI`j&V)B zNKRDLhE`+j58e^rZLClAIj9K*$L9|VcuNv4qb6n5CAs>8NS?ury?XLydTIxR^oARr z=a*;9rhn8%wDT3lPw^Ee^8?V ztDdm6FV}^c)C9A~i*eE!Zd&JH$AQB$Jtgei*29 z{d->NNPNMC9s=7jqCyvtyv89r*XtSVyK<)_u?K*3EziyiVf-cP!CKUFosNUcjo)94 z8>OW@HE~azRJ%mSQ>cgiJP$ZCa$b{UD5X;KBQuGK)OQW0yv4NNa^$IKQ5@$QS5Vt1 zaiwXgi`Oil1sP_#l;?#q#=V=Yg(--AqOZWjVeIc6Z3@|#|$RV zFa#)-O&~2t^!E@C0AhgeTWwg2!>gSaXIzQCIo!xdzv-n69Vhuh$VfsNs3}6P4>cBp+%9OQgPi6oC&~cK@<#hpl2PTDG30&LvLQO5m^`RtH0EN<9ch; zhyiKElGkYUNl9`&reV@K#aH=24WTT+I*&p1=<%JE%@e|tEkT;6M5Gf=&VA&;%8K45 zS=1$zFl}=kU+ooc+my?9Y}$>*VPNB>lmw9P`m}*~hthGCEtDMWMzLEHM{m2jTNM>N z#VN`B_NT>&r{{X}pO`H_xniI)=hv)3oh3wh- zeI?A6m1UNt<ZVO)N>rkv#VXXc;M8@Yr%2jtc#_VPluAl{V#@-~ zSoPR@zT#)#i#}w`n%SPMLft5M)x4m?1Cb=m0l^if&(o|pU9-@X0i#up@nYPmMFA=H zbOh^0(VLDph3lH|OvRabYLi71ub0fjgHu}IjMlwohLe9kOUs26D z(9?)`z3xB~PKFXET&P+UlAjPS-?Rjp^tZ}N0@CE_{{WgsRdL_SnQIFa3OZJaIuhVj z_S!Y2NJ1s6FmsZC?qfZMn0Hoqvtb$*|NBN((NEc_l+IUiw0BR>=);E?Stl~TvNPNK{P$j%x{lrW! z{D}z9?2p48;yc+#C;*er&CBTk?m~}Rq|8ZG19|h$XpUa`F~NQ~OvO|_`@y>uxpNCO zHv)&s0^%GYF=|1ST>-p14t&Sn2-z^o1zX=( z8E3qeH$dBFIzP&gy?1=blK!4S_nf2D&4yEeS{XlNdBKR>5OKm5H#?E z)xMr^TJ5w+RKM+|mMPK`y&~b6*$UC14g=~()M^2TZ$&+d-*~}9_y%LLMPKdS0$w;? zbj1R+g%wndhezq|?F;w<+UpEmLWM`4)zY0P{iAwJq-73vg~$E3PV~raiCvvJmS_zr z`9TG+z9X4wRzjSq339h);Cb`+gP5NME^3CVOHdES@8<)5>^Z0kC@hqUrNDFFevtC% z8>QM)DH#*vJnRf2TsO*1p-7xvK}CY72x>mX+`*fl70Q-`f(cX9F@3$G&eernd4+`8 ziJvT~DlQ6Lg1Yo0n0NY6>3!ZZ<*`W#OV9(SNEja~AZ> z?_SUFj&SA{2%HJak^BSi^d9}8XxKl8ix>S-jIG|1pcx^lg{UDcBD<0L&^9)T9Q(b0U!P7>GP})!B?lMno_jA zDD^GRoM^V|uuGSohc?@YS;JU)1xi_WW0ip=%P>2)JP5pr2*!8SMo~p=uIsL+0W;%wTX3mx5+n6VWAQR0>?z5+st z)tCdhG=jg@ASo&*Z;60+rI8aRg1VtPhS&Iu>Y&MTUuyLM2}sZr&+)87h_8^Db@1=d zyh$=j5RCEfJo!Q{A;jWhN=e zc>QQWO-a~AOJ$u>hO{~j{J9?Zf@Q3zIrl|Qkx|+wSB`r2iuRjN`02M;t8AJ{=mQS% zEt5uVH~PgviRDlZOh|gfQ)af6Jjdj(n#IIekyB&v;y(mLWnl&KX{qSH-Hf1|&6;?V&N>}F5%rlBoq>8vYzfXKeHEdW^pM+Rk{Kb;(%Tf4=l_&?L zS{4|5*GrZiXnBjaitD$!2igwXM2Mkln%z#r?-k_O%8O{#Bo{bPkn zeJDn~pj5z%^A8EB2_~NMV-dgZHOiQ**_iu0H!<`~q_)BXVvIN@CZH8<7<1vTZ~p+D z{{YeD`24c^U=~Yew0xo8o}VZ!X0@;Yzaw^iyrY~!hD@T>2zt_;o+wM20I4JjfYk;$ zyN}U)US2+4JI0!Pt~N2`&8!D0J|cbu zp0L?wy$Ka_$Pk-qm;r6y#C||U=@Xku9ozG?D#9Kv>%&y+bbqW6m1z_^XxzeWp3y;9 zSK~$LR^m$&wxe^nj&5ABaLR1~{(Ojr(KecPJavGwt-v)I#eaCRi*t{hMY`HV%TeXn zK-*l(h`DF8Dq+fi@34)_(C7U-OkP_=_R3iyBvg^S6NTk+IX@@z_}Rt0u%D6?R-RgHIO25rCnaHFx~LHt6+L7TlmC22KsNPR_iidS8hr=g{Hh~{1) zE79D5@LXB^L=Gt1?*)eab^ie6BXTwC79@fu1e#W`63;n7V=p@K%ojolR&7hd0(bqC zDGQQlCZvJgx!L0;xNU_{oJHzBKYUsVZX-cS-ICjwN;u~&xr7NKi@%L^aFA&)%RW6_autuD*^P@rQ z4Y({znkra0(TE?PloJTA2b(EViFmfT8W9UcEe_LVDScR)V)Zw;=^J z2XD`rublfu+BN!UK2zMYy4%~%P{kV=NB8^tpt z-8O=SlpiA(t+sa3s5=uELcRs2VvRSgR!>Xv#b@5mX*|Pfd8=ZB}LnA{6*me;OtvgA&#CcK0jEC5M0Qr z(ke@q+pnB=i15N!<3_xJxY`1YUPpmI5GbV&Xm^OJow>X36D>@WSJDmJuRz5~6%`}q zV14a%CSy#NLvBZH{{VQeWJv&rcHftTYj>VoN>Y_FRsK}y&&R?MZOip)RH@FSB$1p7 zr?m!T>B|wXwG3DFkjqYVgO!|wzOmKCf61RKD$*UYxuS=^h@M$nabUiZu7fJ5Imfmp z4Y;7t^6&!%`bJc>1ubMD_1{)6)8($ws$(mqR%4t2XtSz{M(G1q+z=nXz~;EC(bue& zZFV9SmUT(?R0u4uhfTJRmi*5bExRr*IDM>cle*@{zTl_V$+ z5((^~*R5jR;V9$_33+9mI(Kf>iKSVJT|nkeg)IJlT7M8;LJ5`<7y#rG!P%nc78j8+ z=}45K)j_Rw>_(pGDS6#)0@1q@(C{LKro?4T0QmD%C$6WXwt^b$*-(_LSyK^15MyHiqfQ~)vAgVNaS~iSvFzo6bS)ZrLyy)3F_2Sgt&OW%5ZRs@AF58*XPSiUH{Vv+hl?M$@L5`%@K>)s?$J#th?UXg7I?Yb-vakg@ zyN2v1L)NQqT#vVJJi-BQWb^q*w3`C;01$M4 zoCmvQEh)-tUwDR#n%YzfPQ*7s#CLu_8RWTG`7g$7Ub`-E2r5ZDv^Cl6i#`;Tf&RsZ znPczL;L<$xS_>+p?d7^Yeh>jY5KQyCS$@R&i$G6AP8$=%F(f18urv+<_-0lzKEDkv0A znM4nlC62&x_Kqx)lub^R>Pa!=+fq_B8JvfYlIP27+~G0_Sp$}L-?SRT7uTztnQZyF zffow2DH`fd{b8=phUF{9r+!5ki1oh@hW8vFlgsF_>5A)^sj`}YgI!&}N_G#|h#Pxc zbLAlu5QYFUwmg737OTdYhw$gES-+sFBR zE8sgyrpifEC3_76H@*I`EF?$>TqWtG&sIW! zTnZL?=sVKAqfR{Mq*zqDuUW~ngE`m{KnquYRT5%aXGYUIuJVq;A9*u6)8&XJ(u>~>TOq=kaS>_<98@bd4tcZcbv+fqGL zz!EbM>EIolQZjYet!XNmlU*yu?gozJ1E4!Q2mB{|8PiO#A1HEPox4Llw&|RZq$N3l za?~vP*NEP7)OrHLcEv7GDlV!}X#2ltJA2$xX38m0@ns?Q(~f&a6L(@6)=Bdcs>>>% zG%3wmY{a=w8gv^?!+84HVMkp%_xr+^Zbf4y!Ix;WthuODCn=>!%;kof3J;*taV9MR z1>f1HKb%19O@Ts3tU|(64q-}AY1eTa-GEP*;$jH#Xyb2$ANiOP!!U5G5xnj&PBea8Cp{g;TGeuj{&E zEdo+Y=Uo!?_kM31mJ`Gtu2_>gTacYoMmuz`Edj3!unSsqO95}M_>P9G3FO9`bzylk zv#Dyz$t0e zV*dc6%yNmD<)~#N!pB~tka>7@0YE4=gobGDGXW4YzbSBY8NKLein?h)d8uq`^d@mo3ee zRBsN4LPwVHa`e6wmMKXll-;*5tA*D%EM^1)QuV0f7;oFvDJXimZr%E9A;TH}0Fet) zOwiy8bo}~3t3twuJpOcml8SPINMpF)zY)qWkX4is@7tJgSdRU>9SQ=c-~jl*8x?>Q z6#BE7*cylJ^YVu4I$3Ehz|y)!oA%i$QzeONBOvhup;6tqr^Xco3AS*Nm1!i0%1G1B zBg6M1m}VrJuvHCoaAQTiXUhzwCo>8-qyBRW)=A|`B<@{>Ji0+A*iyF563BWTm9vd{ zM|bS7xhhIVWi2d_H6;F02V>hBmXVgMT}kA3>G6oLeTr}gD+e^sx9oaCJYzUQ*)~D- zW#uRmJX9pPhTGvpqcK@@oksooLq+p+mD&%ilpibR)Mnki-fso1_bjZ4U;qQe59*1M z!KHsj7)1dpo)N0tmiV39c-Jq&CZqt_GP7^gpQH-HWd$Z$X_}o6M(Ge@$rCKe3qW*l zxr=}{>n2`gfJ#z!`NHl$v;|F&w3C?!#KT6|_lwwT8mdaOk(<^M3QoZ2$8N6h(KiJm zYICBCRa;@xPq$$O?9^^dUX`#u)`j(t*#7U&B&`Ynpu3$2+t4`O@;8v${8vNc4pM~8%2~!RH>yZ8t(=ycJ~0J zWli0!*cd%PXS7(rOX*4$)WG~PjPnwOY6}O{5x-*$H#()PBxVj$ z%?fv?qh)&WF$CqVZojlX!sX#&GnHD3_=x$!z7n~8U8u`hENYb=IIf)s+8RIZWXVuU zh}TWvMmDsWi&rVLubCV$U&B@{)k$6SsPwaDtYLkw#kr3Hkow7j7&m zFpR1vDx6i=1J5I*O_qX(ql{VW6zMFL9X1*Q)CIeU({I!&T3j5-PU9 zv8Y$gy!!ni>kg2#WKbkF`WRd#p3OrB;{Zb_I8_1XzuFdYedw8U$OVB_8&A$!9_L)r zhXd$(Kr8zK1t~d(VXz0EygputC;Fu+N!)j*Xnnh;Nm5yR4G4DYU4D^_;^Mm;^rVF< zLc_~H;zM{<`?NDzF;uCjKCpp7zOTpLGn})kc=Gj?l4{c-Octk0dnE4M!!4HTT95+6 zsA_)DyKrC9l`|q!>FdKzxp{sBSyU9MPIO3ObyeIWIuWnz&* zUgPnMWZs>oB?${kix*3$gZ9urFgo}2r83WFmX$5eKmlhanv=^?lmZpygBuW@COKdT zuYa^~l+c5x)-$h1xT$kxDP<+tH&^>~>kbzUrAt+6$3sX`k&4xCNJomhG58n@ci}Y5 z@hfFG>*ue(?H*$FloX-073~~h%uJMmlU^TB=iRIpn~ZaV<*5a4m1(F@)O9*jo%f@> z1+d$eq_YJno!YHU_@n++hWWfo=$#eL&-RN}Y$fWFNmv0v!nW*SkTUDu)j2B}kW18& zpy>sywlz%33QH*ax>uNXn3T&{D*DNOE1NO}5|X4LHjYO_UXp1d7mn;8qm3B6O^zWm2}$yTwQcCtkAEPzQ;L zQisC2K}pL(QJo|)?e6^I5rQ);%NtSlq!l+BiZTP5yJ+ypVpv4kfRHE~uX1(r^V%2j z#jwbjgY2O}!oN)#hlPCLE*8e3ROL#VGOa4gmktPFzawsI4OrC6pCG4N5EOJLr)WNn z3a?~ZLlEOA4o5+x5t(E}q=oG{k|46hp5a?DSvR$Rm$lr?T!NYU{8(dyDceA@o;-YUW%;)f~ACd*&{0R zW+>$~(X=oALZTZkE3{`SBq?vE&#U~Y2MJIoD}qMvm-F|E(+a@YcOqGC>Ztz!8f-f5 zdqvxA_z%&alreax$mcealw8VoSE~kSbI&62p%;SaO71*APU} zG*hO>@!{6;v81FaUhTcn@APuP1w>M$2GgVs#TMZzSy@x0kSOO~N4w(}4WHu-Hn5d0 zP$U|&x4Wcgmqqfd>m%D>oTT;JyJ|ksyx8XnvcY4OLY*8BhVYGldL&MCttE)6e{sin zo23A*EK;GOP#nBMER)iwVx)&6x}H@>KPY+@uM53p zN?H;$uTVE`esBuiU=x%aha0^|JNzQW}eZBEsS!W4;VG)QGAm#;rK4T!JbSf5nt0P3x)urYGPEX4uToWoUada3@9PQi0a zCEOWeuBuiHCs=Oamo7+`loD!Gt=~^{4wHn`CgyfW_=-PRVw-DDquJ7sxV&J5D5RY? zG!5ULkm$ji)<6=?TZ6%>3B2})9C zP4P`6k-|pX)cs+amLR+2k)1OO=m?|teMBQoxExSs4(IoV+v@EVQmInFF>#sReBx`j z(qJ-@>Ix)OopXNhwMGe7JgF=Yms5Co>*WhmZyEN9s+A}Pe5CQ*@wc2uG|re@DVDO% z?Ug58I(COVF>#45Qe9h~PM@95uzOAu?K9@dAqx&g3EQy!;EmgCmu_>fDG6ie^j_)#}&)JY1g8@C!}72Ct-Bk$8TfU;LvAwPX3246v4ZKW*Rd z7ckGH@DLDEtjRj)qIuzu<3YWQH{!cF3e12?iXw5Sq5u8qf7J$w-`Cs5y% z`@=1w$?E~k#0sVL9Qi^m`!ZorM6{kt#XZ{-(ho{2Uz4T@gCx%abq!bQ+kVh~#f()i zC{b3$x%)#N2*Dl<%BEuEu8K8dUV05WXbxh$H6%*Va+A38>*W9@T75mB6E0B9z4yxe z{RY1nA9G+sYgwH+WO#>zQ?9xZ;u_MO+5+98%7w04CI0|%UM$*zcLT56q-fU^_CS9L z6+02Yi_9t`Vz(+<{ZI)=0g`E;+ug4x&LX^$rKqL$+7W#wTe4+ofXpmtbm$?5;J%Wn zK)Wb=Me6Xg_7|}I+2VCOyE8$YL5q_t45kC-39i=Ep51m@9QG-?ZcvP2r zE^2&jlpVEheBuvJ*LEq9F>Kx<96rb81h1r|rzu+kpyeY$%k8XZ6RfgP{lcbgD_=f@ za}eAZs$|6<2}%LVr1BUtoQESuZcEohmYTdLEC9rmuyS=JzFlEA6Q*3iQ7JB_ZegOy zh>}voxzKbRccck7TBWbn^C~suz~Y&rbU1%l3R$gfRnJK@(EU8!T9a(qqQJ!qntG` z&r-7x5^5D1B5&0w0`wXh`;Q_$vP@7aAtBTpH9pZeSeDaw8s<}^R;Mr}>I`F4d&ONM1Exj-jM=zn;N#``HnE`LhG zX#}985bX3mdUg@b;foff0FXz>jlX!83)~2nmmvX|gpv(8BTzVs_ssOkm=vUvg_kS~ zBn}v8X%#o>cWr9!j>+$rc6j!CDTB6W6WuDaU7|Mrddg6Copy!m(}el&+jY0iAp~g-R^=UdbugUG+BaZ{Mo?ZB&WVMNYtz-r&AZQN#Vc6cHa!3JLTX1XI z7_f**6Fp)>g$%koZ(a`t{Gf%h+a)9=BtE%YKzT8&XR%506aB1?HN_C8-Gn{%uCAOC?t-jq0)|f zv10NKa}r&0iZZ3M0_@uLC*ult-GO-mlo==$R*XJTEr%BgjWHQjo7o5N(`VKiFMB3= zeyr6?Bg4o%@ekTP1z{;En<%opLr>lYV+*}f$}6io7V;cFFxg_dWLeP3P|N`)uKgo0 z^qqbMfI{j3V4fZdCv7Uum6?7L9Ex@P_`;mTi3`mznwS3o)brbTU&FqY6YA28-ZZ*R zbm6~fsd{3wGz6rIjJ4E1UEkjemn?^k2J`fQgo-Moc7NlTS(jv8sYxg)@Te;}*@!jd zQQD8Ahlns%5i=A?P*4Gw=uhzkCnwdqWrlLcX67ba%dls}x4hiQ3h@K_>E;0Pb6S>e zw`5=btYt`Y;O2I4c5R!^5phk}w955`O7NHIx96M!k%(6`_?!}ukOr#l^NYN{MAI>C z^yx@PjbA7faLH#1Vn?&H^?^8gTBW2Fq=FrRFHU{X+jH8IMq@@a9FDw2OTNe-0Nk@? zEn#AaK1Z~Bk1r&oWlDTn04PZ%hrH3?y}J{cN+Ba!kT{ALa#w4bnTtkQa{ZOF5~9Sp zYO^zS)Uaksw%ZVuB`HxNa_UeEitVGnJ9H4ECk8ERaB_iOrJT1<+8XghlQMV+1x&#I z0I47C!)c^4o1sMnXID+*=zG@bmoyZS zO?=1R6t6EtiJDv%2mb)Q`-sB$tLr}>{{Xq;ROow%xyGZH=XfXo0JJG0d4CF?mFPDRI@@Pd+5mJQ zQ2XO{xV;R^LPljd)k!?>SkbW8qv;8Cl#dATh8zA@h}(|}@P8-&0J-Ah{=6o>7`I@_ zqPY}7@cSf}=o?6b{>YpO{@RIQv10!KX#RuSY%&}rGSdG5sDLRQ+3=jD5XcPs0p>KU zYyK^H^Zx+3Gr0bI+3>BP`!bY6vw=q%j-+UKf&Svn8F6U*`AJO2RPzg%Aq;qOJ(xt;=sO={IG*Yif+HC#3S z07|ozfVrv+-~@*PyC;&{&{65W>vY)%g$V+rIn%%A$~6luq%CsOK$&1{+J^J%LkABB z80Pc;0QUUWXAYR{m(XRJ#FR1;RYd39=|Jv#>|3O3GUVh$v?IAbQCk(UnuHG!O?=ML zEvD5~DxSyyY#1{~RN*J5gXHt`^7qQxHDa5VN{KbAb^YTeu&L&$WQv-${CUQkdMhoR zw;|i9;xe-{Dvu4IhxEonU7p%kEt^%a;+jLH+vB!b?;bLIz@bA=`1L@XsP`B`gN@i2xVrQ|8bE6d-z` zQ@tW<1*J-|N+a5qvO9+r_fWQsAhAwui!$c`eUg6+9G1F}4zL>$$jqGY;!R)3d?Gov z&?d_terZPOP-wn z01>1Rl}ky=JGDng`^3XdaoTc_9qRSeKHZ@F*?CL;l>$BRl7x_~$3f519i-aA<+lOb zaPg!~WtYu}%bKKDDLxUvJajumcO|KmWvEkPJ`mT7uHv*m>PUAR0n8@NmzV`;M(|Zn zN1Fl$huV4`8V%Uy5|;K=p|7>t6|nWBsWtY68?P`&{!FT$sWdxwfhjE$eOY#PH5(4` zT4lLX<|b^i)p9ii9%I2Esq0>+Sg9`1Q{gSs?GuJ;#PicRDVQj&(%Qy*dsxi1f)BN) zPK5m-mh6~C0dQ(N@fI!DZ>*MCnf=G-1`QzJR$SvT40j_z)U+;Lw~FPgN>Z3Vg?{0t9__ep@g_J9W0tvx$+ZV}gZBmd{{Y&i2Jv`R z2{#?HGBPPeGo;Q0d9*1Z=mtB$Sd+{_f+i=T9$dp-Xa>&B@cvzEGbg@>P{Ytt25%a+QWqM8Fi1 z^mhBlSKR!_bd0L~DL=24eG6zP;o>=8lxxOW?4@^NG|zOCl4@8KnxRLd{e0Sj5wDr% z&oO3K_Le=gev{R-DK%m?Bseb7-tvNG6-y;9bpHSzgGQ-5n2z870M{uAP-P=UXh=I1 zZZwac{EsgG0Il}+JUl+&1)}vt)rGAAGYMh?48U~I9@Hb_Et2aBB&AtM=*s*suWP&1 znVu@F79AT;F0f+{UIf&UN>hHZ<6U~WF!L%}Rs^*^lu`U|IH5kl{UHhiG?jj>eOizI z0E+wVu8>aBl=`ru{#vy@FlJnotp-|yp=n?hvxax(C*v(=d15=3#tH(%c-`BYYu}_U z-m@lImg)qBR5e9=#1~5D+12XQ;5lMFke+zyN83&GS+*&5lmyVFL7iI?HH(>gWy;|q z{<*}-X`3vK4q$dr;-4s4yRVRzlR018m`{k)D!4y7cHR$Nc8QinuFWtK31OIcR1H$6 zZAT)9%tyEO84F1%Y~a^{!Rp-kbc2*!uh)gz7)vQ)DuoSC3e5Zl2XW^IFvaW^@~s2K zP!u1;4v*2d5HA2;f_$?gVu+tCkRSCVY4E6e9hsu_w&7A-DfOa<>IY%CP^SE84srWO zDglV_{{Zy!3wY(4q_?xs^3g4l{ZL{m`n(cVtf?Ye-FzRXarwYnoRchoy$SI2?-|~z z`1aNCjpmYqlfUPbO=y_Mq$c63U0XFj$bDgzlulFPI|2FU2ei=!3k8F8*WL4qO0^8d zH3=F%z01W@Y+4q@f!Or?q!*cI3rJAcfnStAjlPRsS=FUqj8fF zKInY7Y=8iwlG--vJtNxuFAd$U56JS&=)rSLmIqydf)mJMrzW4k5&BLQ3ORr&2VS4V z0>n3pB!U#9L;839TKt`nzyr^^0w{R`D%@>&-j~by~fhHE(4-DD`;s{{SE9!R8l{i{{8u zQIV3fMGaqq4&NvzeOi|=WtdqC45W<|I(^4jTD|WTE_!4tt4fA`LUcWYv}u>6$`vh< z`b7e|aAV)`?T;IuvQ6FS?#L7-WJ7?-&rpu39Qk|UrsBaCapFQjCb@vBh|_JUr``n2 zy2ROGjY6s%jvN!ykCYd)X(l%Q@G7QN8g$i|Xr+7`i@RYgI%d>&5#Qo#H zMK-x*uwpU$kp;?%|Z=NCXNeZlG^Yy2Ab*#m2HoV&%JX9yGJ|pRyJ8=qg&% zmTb((CDcx!@N|BkH)yHoiwB8iQqrKXl0rd0q-f!(yZQ73Rv<2lrr*3G&%=My%q0#& z)cuE-@8uI_DpkyVViOW2`z1k;Ky;+`8W42_j*wppVe=+hPIn}Gk4~HKtSR4@iqkm^ z9V`l|KzWAy%Knt8EEWss#-N@XgYbgiva?-Z*k{%Na{yeIEPTGOk7=1bAwYPDaF_N# z<%i4d4U+BRi6oHB;FI~JUQF3z*lLFT;l%nT`ZdLqrm3v}(b5iFt~7J<4e^F6`vENr zGpv&nElC8jsxxljh9L0_pZ3_9Eh?Zp^W3yUFAC05ND6d~_~Ma7&1U*bn=q?_@AU>xRVb}oorGi$x?~{DqR=`_Kz8hfCHbSUJS$Q z4=!?vbDfFyNBE9^G|)#Ib*0QfbK-+8a)MKxIhvfiY~$R}(F>+Rli7O9Xa-R?q2$0z zmhzW5YEQM4vC-RQLCeXJAQ2$N2IIjcdGT${7FqqdqbLhy0l-uu9@?fkp!B%yCe_x-1!4u z(7$fD=BF|zuflW*-@9w@KO(Pcoi5?ON(fZEs#yz2e6)7etL{EfYtg0S>y){<>hwks`{xGwdJV{ z9lAiP%MeOSIRRADU&Hi?Fx{aRt30*7RX2{cC#+_-rOZU>fDc6q9n zR4B(W*dK!)!_G8|)jqaPU`B&dIN}tsbrQ(?Of_=`%C!;(gnS`jCEpli z%qU_K0)w`?)-@Zh$B+VaU<78^rtnm$sXzxRs1(k}tU1{2YBJJa#0z(YKSw|@HO`|v z6#FGkd2S#cC%A|z0Ga|u{gWCUs>Y=$D@f?BM_%8w483g4Fd;$do4Do+3vh$zXAzYs z$(byqhX*#tV^O}a-HI?oxuB&8379Gr3pwQdqVN0>QnRIjXQ0>45$wK|Q!Z+gIJQ+# zfL*xj6Mv`eO5nqmq^(kB76go>=m!Vs`$JXphm~eVaLQxD`3@je?dc>h*j(UCIRt?2T^|O+o*+|MwT$gdB8G{|(A6KFQ!&b#ho)a*XrE~4 z8sytyOEIS~osH}%pDg8~fz(ifDj4_P6>PqerY2aGH9jQxLZ6BU?f~shDz7Qy_Ht>e z@$`6!^D_l%U8?SNJ-SD-@WHbZkYBx87H|$dQl=c?nM^CQ?bGs*_m6K z<`)igl-Ml5`yrTC#;H4wc#m;ix@bmpj|ifxP&9=rhaFccoH_9D4>8s{#VRRC1;MFm zr9^AlT=Nz3o}por4dS3qMN#TG1D`&TX2*HF!<9g#=w6@9Wq3~g6RinCydx=M_2?Uj zeNEStx=V9fQ*a@1p4{O#ovS?|LxVg%MdpPE4gUIBxU{{R8r2Hv7v#4%6`1b}#kO5T(11lr`~LuN?@ z*cRcs?EPa3m4WR!jJ2etDKuA}gZ7Pz;JsFrgr64O;lC3}GbEo@0U*>3QrvU&g+{X+ zErJRFnNp#_)Nu!=;ua%2g5zDg^yVsHe0-El$uwoy=J|Jqyklsy&Xz(3Vsuau63o#? zt+o|p^_hZ$4-hWnj)XtT1g`3qv^>WYEK{#S@P~tKHn5{As+8rrck<_?YAUiNDM(q$ zflhX=$PDqXV<-J&GXXs@G78f3^swtrPdKQm9a)Z3qSuh*q==pV!mglj>_ z>$j9={{Zr{<7DeyJ@3P8_r4HSob|12m2~i@f2WZov=vb5pCqeH1B9;W3VLlw48n=Gf+DM8p(@{YfNdB%%{u@F)S3T36Acl_Ep z^pkdY7VI}kZ3hvO;28wZN^=nPR|FEmvCVJ8mM^OxK-q6(m&^ru8$$j(y3({}ka8^` zpA89W!P&QJ9HbWok^$wb-$+`=muk?A^0i3YTIvgGKQ@k=>7UsP(Y`PBs$Z=DDI}y3 zyM0~3>+TLWb}3RaGG~ z%OEPu7?5bD^YS3~(g
6=<`qGAlArs9E-wki_i7hatYO>t?zVwB{%ohNolHh+4*& zd`eHOvmaG4#&ieDuyy96YVJigzoLY1MOdY1n7M0nQgWR^dXFvqqi(X04q!D7Uv7dj zUq*OlV4k&30VJz34rh1UD9{~FV9scw(W+t#Im{SqN@yZ@^mIf?IkUTpIOJ?K)I#1n zuxCEB5SD6@Qbxn-Ur#70WX@^7(kx;dz2y|Ra_moSqO~P#0<=ucFc(v^a7O%t!&jX| z7rXBwGbEB!6jWbIlSH1K^w~N>J==0jket9D5oK~~ztBWi_A62rl`5VZa7gF#n09@J ztvEpb}R z)D;CJs8=iP-<|x77oHw8gKw5n0+5p0D|oB_04R>W=txE(s16Gq4ut*UfB7!Z<%t@w zNM$<|hVX}^RG*6zC4bzgKJf}yMeS@+2nck6NrdabW})2qa>0(|!s(a_=Y!!o1Fv`Z z!B;BnuhMm$128103OJzI$<$AIMwq+4UCW5pN z#BHDP638ySNueU0xgRK2y>Mz;WUvCW&?(3Vu9}S~L$HeNZN(@6u{dUL@_!R- zAFOqCUlysPN}_@NMcKzqJJuMkKSQVsN>BrhNgnaj^So$DxMf+2QWA6Scs)3UB@9yg zy{%Fv8DzK(;!DsS4wUkECu*=2DLI0Ql#ovE*QVWLQpGn?R8SI>sclCUZGF)c%q22R zu`y}{gI+`I{B8JQ<`$#6rb?G3A(5B{Ds3TpMj%S&ijaU>niycaEmEfffRIVl4T<_h zYQTw?P=$eA!`kiTRhQPRS=`;B8IGEZ_|a=()W? z$^)H;)N$tqAE$Dzm6agARsqMrh-1C1#VMiv&*fr;hDlVyU70!_L|VMRE){hwC~mv2cxNGVpa*pa{`7*Cs7pyDN;FT`psw-CtTRGFkhf9& z1i%`^i+T_kCo_ujTk?>VecqvK0U(Dy&tEvPa88<0;!lYo)LNeZ0Egp4HVVPvMRTTr zR39j62jlto=>_a7+iV3W4oZ$%jfEmSHEg0mP#lNbXW|OVyb?;12sw2ck@@)1l42_y z*>;B+k`zY!eY-=wLH61&3#MGe`61|*Svp(|;JDQ$L8=?_eWj_$IwoX(&D&>zR`3BHW4>GD=kKtf5PTBnCK*lqQV z(sb0Q6(nX(^w{qiov!RcCT0MVNg(;@6JZ^%n@yr)1QtUwzy~*%POl!^x74&KW)w{h z`tSSqi`QN3iHXXUfj zs$mGxgK5kx*cB>hbg^UZJTcrtem1vSLV|4SAUi3OLhZY4w%Y3oLfmY4Ug5J!P|Ads zNvYKJCahpiF1%$4s3KyLUcGi@4G29&1X#lNS(7LenM)%w^A~f|k1ue9oI!j`6EhYd z8lDcqC~HBRfGm@IMI}iumFtuipn8!DiU!&fu~sbuz?v7;I=3f?n^eDH^gNu3U8ZPRHOP{|BDCwpMOo>-X==MwA!|g3 zRJxq1B#<^^sU7r(OfhrMoUaP-D!-Al6ZaVffI!4W5!E(}^p|cOvI3scJZ?K4OOQ_k>l>+^BXwLB`r1jZ=AQcsw z7ACLz>BI30Br~;(4tlw+08j>jzA(jqV##Swh>Xwd`B(T6m|-tSi<>ziUdbBn`@A?} zoHiB;-Sz|BR_PB*(( z87f`&Vcra+8*8vB>KHbrfs9wQ+(=BapbC@-uD}g|ZQ}Z5PMEXnRx*McD^&I6w5E>? zb0i@sVjMj`f1DC43da%xk7FnTfY1Upf7&bI%w?WoLsS4wegk%ZIQH6=%pR@4W>_4@ zevNRcB4p(_P-M#h>KwbcI?#48J?KAPIJ#Lt28tR3?xbgy+vZ{>0VHN~<8w@>h(CE? z^-NZEDCjH5!Ad zcZIpw?otv#EtH*M8`4fBU7c+#6(E+(okR1`Kv{TT&y;hiL@UG?@6_uNdHq9?uVGI~ zGUo;bAw%?&R_I@SM`*KnnM!hIZ$yrHJ)`8?^9oxe5~*QDDI%#Q$bCEhQX4RR{b(}D z$u(@YB|%1qRwQZIkQ;3T{IA;Y8HPMfZ<>kXXi-Qnlphn0wG=v#Sdqaoq+D0T%Urg| z!~p939fQ`N>;}5Kx>efX ztt*=IRNw~*YCC9MsRZvVCoBaaAOhQNe;yDn&rgp*D2E!j*N1l}qi;v7XxA1Ylu?+e zC2H%vSOL&QY%2>AC(V*_s!EoSD8ixl8aV9m&2?LsFtpT}VS@vy>k`br+xv3*X5J~p9i`fz_d#FoL1E-ksg~_-6Nx&4kRlk3<8M|&3S2FwB_iJd*ne zH(;G2z!x;rnq1U}0*X2mo&NxCgP0*d(9M=e&=EU!>iXK^xFCEbs_Glg%-0G%T@!B>5zVtu7B9yKPX{{T?l;!*+ItbH%( z63o(qQX4fN{fVp6w10$LxbU>OQbQ#mkn3gupUu)PeVAj`V&4)pex5PfW1Hg zfG@$Pm@xS78=pzFuik1vln|rg9Pjz{ikEUEzGRS8KUTnYg+ zYKc+s3FgNMO-%U`HOua1uq`s3kdFY~x&@@n4IcqCS1b zcB{hCH7b=XvWsRFNgU8oy!&q&kD~jbNR+8_d{dHKovX8L`J`9NY2G~_W@3btvWN#l zbb!`eIW2QNU?lS6@3#KvyN7W4Cd?@z)HHB%_J&*A4dekzU^+&u-lFA3RFsmOrN-aO z#f$FN7L^956t3_%Ov(ZA5w~a^Zp5h$^c^)Hcx1O?a)1I_wLM^6zIjrDQqCT`p71LS zpX-)PE2Xkh1~Tyl_V30!EQ)X0<+iv{#ssRXa9<29ZM9JZRNE z@7gM+PcKcji}Gxx-0$`IN3*4XX;z4;QB=6+FEkNg%613gx85R}T(+<9XiJq|YU;pi z9GRL&Gbb~OpD3EkWF?vFr+5v`n#!d+4(03oMUtGl>lP+j0$2vj?0R{?`L=>jcsgd7 z&LrkFk8T-_UOT;Qi@oOr&K3qxAQIwn@PQKSyD#QJ4M6nY>*_%rqW* z!;D7md!XcUYO2>@dig3g4bmtX;M?8Baij(p-fM9`4H>O6-}C{e^Wu4a@SwNZlua?Ly`qqgYNO7BG5uj7$rX~VxoD@)ol~=Oi}U?6q`wK zHFY;`Oi+<*1sT}Xnn7!!BU7yyav`Vb?lrWWwDxELjNvx1n!1$%@rL|&crYVoso?g6 zYlhBMH3 zN+q|}Iwz)FfaEL%huiFQhAY0=Mj8`Q3m1Y}eYk?xH1`I&K|P&bn`@~GCb~rsu%N_5 z*pAW>>dR`OUI#HfvR92DX+kNhkJ=d{zojKsat@<&tOCQ+�K4K&a?MI7_ev%9@ix z0q*gh;Y(r4q@BqF$ikG(s3LWKRN*((o^wh9xeIhq`Q_O z*_e$)KvJ1w6BM+H5l}ku2C!Y|05a8~p$DFV5^a~is+x(3BsaCVAke%sN+Z^Zi5?Yz zX``M$KIMZAuF6vMbdCA)iSX^9B|*gx*Kf35vrP&?2VLM8nAG=l;Kj;N)rheBfCuZV zMsGIAP_;`{2FI^%4(%Gf*=sA30S=_-PQG2?KN{V+(kAXV+#VqIQ`ut2Yckdp3uy1R zR{Yu-E#;IJDv6bT4&d<%6A<1a0V7x3LEFC4lPfQ@4xJz65~~+xA=647k65AWy==Ot z#FLh1`BOy?xTiYB%c^d&)j|uT^p2)kSw!ea@-XQrUG~hX51`cjPt@rKFS*82g2C{t z4$sf=0)rnG`ZvxDSkQ^G%$55jP_~c94G3Trs_abE=1FA-ElPA94zM2WzX1kB_aGCM zMc${A#>`qI7K3J4L8?jco}77BEZ&!7xu7W(CW;(&f6tsv0hXJHqPn-TpfySB^V)-m z6?!=FISLg?gBWu5C|9YRlg2fxHF9_#3NI%UZ}ODD42a*^n%M8^gOZO zkBkwqUkgAoC(w!^dnk9<^fc6s*$(x(mF>%PsBRxlKW?zWh4EOLGRzKBuP;$gajXi% zRf_Q;l1UAuT)Yu3a!Mvus+0PXt%y4Pphd3MhRg_11&RLvAG3AS$~&KGqErKr{g#?A z?m6FRG_Wf4uuYI%MbWaxitf||KWz&NwL9L!F46*l%%r8VosQ&kI#9eiT{oI0AxT&Y zmY~HaRGx;cNAszS(-~p8k{9bGI^_QVl7IVI;Xrvd!0yaMbM)88dt~#iYqL#0t@6K( z1u`|*V6v0UaDkX?k^*E1 z)RVd3zXmxk>DfIsTr5>N6d;s_BXh~=)3h*HuChS@yMC|EAzubtKcuv&BxjQ|r4o0j zt3MH?O0j^Tw4Vykko@Ze<2P9IE#8+&n39926@5tN1o}U|&x%t0v=R^p>PE%(R<0`h zGlz62brhXlf&Tz5k)LAKrps%WG>oVO1!~7(rw5oU&e_iWnDG_ZEppf&?;sqVK&x~q zsT#XN_8PrTpRFDh1F7Vn&H6#iMJFneK2nHJw4$9kFRd%22gJ5OytB{(R6I*54C!iv zO?30!zBeXPxu~({6fe4_8g-i&V0f9Xo4~5&cOHEmhP=i46fWEuc^2VeRQ~{AG$;M5UTdU5dRh>$ zQd>6M@#J5gBT&WoP)o<2V+!=1=+!**omuk2y= z%(-&>L_ZItF5#O>RFt}P6d#&-!wN3fBQXh2So*IF&N1NmZPjb%6E0xN91a92Uul;s z#XUpCM4*>b_V~82@qMi!ktVA<@!$8XBwkn)6$3E($%MO_w?D^7)11FU$6+e^y(-B= zmY_AID*6t9>j~2&0=&vOj)W?Je3~>n-p?*yg(sI$t#{jK&M#!DYOw$JZBZXt`&wdLw(Oi)NG2>?Ec4ox?6zMEDTaPr1#xd&mh=ub#Bc~26iAfzx` zCHXymQQ!F7eR6Sm`F#c9+m>>zYMN5z)Z~UGB)ADQ)G_kYM%o<(ERqS`*eFwepC*N3 zR+2Y;6rDZ&G=cUD=181nuQ#kI@TfkgW8S3l)Q_O!Cl`-y)N<`Us$|5dmOdmlj(Iyb z)<0dA{Kcqh@e0b;au5Yb1d6v`!4Oz*iqhpu%BrmsYnV~tf6{G| zO`cd*M_D0>4wG8)%68XZC~~-Lv(Ud1!3Ss4w?puP*uxIzNK(==v1G6$(~Y~s&V-@Z z2JuqmC33*ZU%=cKX37!dI*SrKTlmPj}uHXeiCbVN$}1i2|wB>w<#e9wAl{h?^?>-5=XM%$y9_)6;L@y z0gnya?D`0vULs1$P;#YA{#}01PYTNbHc&u)N86ZF^pEK8`x7V0B{LJIQ=kRgE1GOb z<`w=bVX=2?xu{gK{vbh6)HtUMK9PZXOvCdmYm~WVN|!COCCSXr%y&At(9?)J=tI&s ztj+5c<8l;|KxCwmQu@6*liD_W-t3h!LfnE>mPjm3LxMSohGzI5Cvw(C`wZ)4Vq$!nK15l19SX_6ppX!0;MHW!3t7AE&1?_`t`sQ(KJj5 zbg6V538gt5KGCD%TZ&}40V_~-QN>yI{CIO(09}5Nmbqk-k(-(x;_+zelf4d zwtBI0;N>7?70s%(HT-B?^pl6xEhkT&;e)uFf3Rm3Ky$t+9%0PBxh^cqVkAcA%QMcCG_ z2XBdJlBpll%Lwoc`E*bk6G|&;yT@{`WvXYaQxz2DcB^#Z>7lDee-qXje_E|qe8Lcn z==O$Sh5CB${?iNU5qSB!oAJ0M$EY4qRvkfD=wPIX3xoCW%==HSnE0 z&Vbf~-0(8)7!O*XATa zIbGd=AXFX1Sdk)9(n95h0myR(_G{Q$)R~f!pjZ^tjk-XjOaf|y_*weC(Mc9SnVDs$ zB7em?e*RI;FR&1mDp$7Jnh2sbuELqADrYGgooNDW_BEtuN`_G6f~`8hJUNKexlE&! z5Wo${*W(r}cS5o#m6NFhcw3%~5+D&^+{ z9>DBRQM4jroFG!6HdBO!1v8whgtqL^%B317mDakR?h3MhA|a z;{A^Mmo)&)PGtaDP0rq5j|(^5nKJ+_ohda0Xmo!lq8YidSTgem(@&gcw#*Ef>r#bD zB~|7%X_tCTq@@WDPM+ftVVkribwgD4?s@Wp%^Q!IF58N2n%S5VC7_(ZyS)ns^U^mv z;~i#{kcRfCr?lzcY9~Mvx{C^0D`22cRx@5xEl8I+EXiI26 z2C%V*n5|{UiF$*h{WKyQuS=MEfKo_PG3yFGjxcsrP7_q%tHRXqkweiyya{Mhu5ukd z&{l^>r@}MabsCZ)0kW?Y?+G*3LqraL7aoPoBN(9<14WeC7E)Aq!uMwj#%zEhufN7LZy=Y z4jY)EepwK*LV{}KjtSndUJy$8>eD3V3zYfLTo>bB?h7;>!q~2C)s#&oA!H5RJ$^L$ z#+zZmGLqm2%v~gE3D%$DU~Rt+NtbDsY6_B4rr3=m5AkJbc`e?TFp!Zk1x@;eYB}hB z@pkOS^2h+@=yW5Yp>g{`tHRJS6fBWSICpQfQ^J;6DF@k7o`mRkZ-?<4PMOl}=X(<{ zWU5cJ55c4vGP)JxLDFl~#d;XCwAH1e1Mp^)MR8_mzb!PH@B7@t`;Id4bQ8`|&aSqN?o2pKkxN4T{4QZEz+b{-74D_af^$FR-G3%$! z2x7arYyRSyc|q|oa8LM_(|S{0L|4K%qFG5nEOhQi=Fy!rcyAM|R%d~3`9H`VC~6Me zG&X|LVkh7TzW+S94-1tItg;XC@>=r*s z<+Ul~*Dq=(ymNKTLQ0gZ=t%^qY60b`O)EoC7k36FegFY0^z&^B?-!uI*TX~ z$gLpeAeNIL<|B=DFr{ajws58ZQI8!UvRkI~+y4N(L)02{<_%froXnsI(!Xd~vQ9~~ z0%gAZLl<~R>Zc??F0ivkjHV%NiN)^rI-WnZm^ws z-%mL*fOqzXPrI~GK4Hm$Nnpl;zj&{H*;25;I)<;OZk0ymM%F&ncGplSKiJ-kxu4ruNZ`S>D*)hTL}6j%`C9fv{N=6gr$G|yYy za&?J-YQ<;F7=X{Ag&akNQ9f!?5*;MHHBSI?>|(w7=?F;4FPmh!DNLjUl9bdlH%EngivIvWnnJuUwy_VSOHOJe<#AKnXi*nh5X(_H^eQHu zn~0uVvf<-a#I_XAlC&k2nKbHn5%YEHco}N-D)y7cp`D52P1)mE!`JGROtcWhitt8_ z#4KKZjAl-oHf1vvJwI5}#9Lo@>k7%qTzO?tx$%0_kxKSKslsr@ zGzGhG*hI4~YCI$m0TewSk=_0*Z4=Buq3EAZq8Y z<1}?^!l*=<#U!c0@am(}?e=({sm_w!*K(&E$ZZ0SY5)s;;Gg}qX#W5q3V3e)SE|uK z0@+!Migu-YIp!EY?j>{o0N)5Y4Fb__Oqw$i9+Ux^r@vTOop~-{Bm-Y_^Bk`HGf4{s zkJ7=9@eG$t;Dq>-Lrp9DcZH`b7o{&P(gPt#P#GiNH2SOEy$205`~q1lS2J8 zSDW9B%l*<57!zSnB96eUS3 zdboW%ecPl>hcUY6sCb(#QU>q!5JwSX)z4V~r4-7Q7Ir#-PKqr0!9PTvi3GB#(+m2? zYP$!h8x1_@UNODim6AiQAH``yDMTI~h4}rVjqQn)wUw|fQ2zj4(7lhaiYClRmzW2r z<+MB1{$xRW78RVOB{_0v z8)k((O^ZLIP?mf|H?S$7===U^6-FdgvS^eP)pmV3e}y^cV%+HTdk9}hvr9Q;_?7y% zeLB--=>;X;s=c8;uAj82xNNJu~wa42~L zZCTE+kD~4^^l2;AG{5|c6;PpnEj|#JD(h91Arq?q0H~MuipH93a~m*F3eW;~=eLwt zUJ62tzg_*wi7w>$Yg!H4@8;mrw2w!qwIKy*8FfqR-JQfRUH4?W5CU2f%2t7?%8s91 zV(ufv(xrtahy#uWy}ps0&%__ps3KV;3Y9$@Z_d#7N(z*^2GqIy-Wjn59#KjVl0?OA+v+~?S)?I!-3v){ zgO^t4n)KEz%$7AZFB4cTWfH;_?X_#aFtdq}XcDrLL8#xSc&x*N2Kr8L00mCX&+Z~y z(%JzefEZ{`zA~#O9h{Ykg=F-7e|TcB-XxC@K6UuREfu^iQh`Fs0zhp!?f79|8DmsU zLXeO_Nq4J171SP)?jXl?IJf5N^ z8$a}OhZW+Ow7S$wsamBw1o8Yvk9XXju}v&x8>vIy#w=Xca3++5fQ~uq2j|<;fKr+s z&|tN4+)*tatQs&S+r`}d;C1VXOti92)E|G%;eQ#tnv{BhkucJY_QL@gu6qGVaa**It-}i*;?+?vN<&}V>13>i}I0dxmez41L z#Y$A%sCo*Wn{Lq+^=ndq1;bQ%?qab+(ydvgiD*ht6{r*>bvllbTE}(Sq@hA#1xj}Z z^p2eOjQYqYlAx718Y^;Q-WAum+Z1~>6FwB6e7Mjk*qg( z6-#v`OlS$yw^$2(;Hhf^DpHV@KXbfKe`2JGV!qW29xc-tkI`rXUqeEFGMYusp_v zb>i{rk~3(K;8BZd(YnIk`v>di!jff{P}`oG>-)lG#cY|JoefDE>QWONBFLZM*DZeo;~{;+vXWsglf@WRR+z2DKf4 zhRep-vI0VUMzr~Sj4$BaY?Z;X61%6N+c7xGGrirS;3u9`zfDP9BbB zpe;!yC}+$yTWmOb2W>tIN|YFf5{Vg9mFF(t(2p=pL1GJ3Lr}+RS_k&%LzdCcdi&!Y zvSD1)0jVh@fU2-Mw@Q23HLM9S<+6hi^fb`z*Kq{ynKnh9VV+Ak6$5JSVV4ftCQHl; zR8dkAHaz*mO`gv!^JS<$XSjk=tum4cC5hII2N2{vXX77`6iQS!Vk^X2!uFL-SW4BE z2CcVlhnJ6Sw!o#hNG_`E0Ozb&!xD$CQi}%LKt~`#x6VnHStP9^QNL3U>9K^%GUb2}kjelDI#=_arPVGAiDhME zWdeYoj4Q+~8`jNdN%grvCZvb_@_|-NYi0IO%v5y@2a`oxea4y7vM2*B`Q8g#eHd6+ zil&qx=zlhduz%7|qzq)05G7RTN_2fI6fB;KJ!nFg;tDQata@t&<$5GCfmF2>f2l6q z9$4?kNGFA_d59)j(n9q*+av`fte{PKsj>(uLSGx8pOB`^D`#Q69Gn3Km`coo;LcJ(yj|WR45Tfa5g*!+B3PB zZfvQgX-bw9s-}T0S`9R$N5`?Jo68X7U=c>vGH*!OOF^t4_V4yBK41OGrx4 zP*ve@9QGe^2^e1wC3e(Jom2${B?=Bf=Yz4U)Si%Y@1x?Hk7F{d0o;D|k zjXL|aNeM2XCTs?zam8VV-g5`olFdi&`R;^^9mbinj&MV0&`FaD-6UQ3aL=2aNzqPU zfA;rn(ljf+!ih;Pd_~xFgL5SbXv&ZhHzQI%1OmO1lj9(>Wh86)pm7>bG7Cw6_92~V zGbI3kpJ*C}I}gLI@W*5Ha+CT1Ak-L!N`WCytM}d~oqMyonEd|$ zc$|Ykah423xk{*@aw(?~n&5v(W=!KLGW}Rug&CB-sd2v|HQAVj0HjO-Z|sA=en;mK z6#NtGCW*#c0+H+k`a$B5??XdzhA%(}3S#BL4z4;AL)UmAX2d93Tre6l>D!3QeKFzH z8HrI=P=_i|*P}Mt{2;fYTZGyIi6kKeI<%)dSIV{P5vBCdzorEQIj)M+%k!j9W5CkX z=?5`VbztCb{{VCQ8rYKDgrg{;L3ijkI|!kMF=kY#h30xwkH(EHgkHV91li?GRKYlu zxhg@>KH%yZo~5?oo9@fzQV=Df41gFm{dWEUyYc zfOUl|`Z~Whz=^h`l0AZw16B4vUnn7tab*-H5;e`+rxA9`Y?CPgYa=-Xfz!T&pp3g8 z<5bQKEtSaBooT%X-W{SwU5qcFsfs8EDp_c)WBO#C0fWxE>rB4XbIb??He{2 z^m-=BIm$sb(b@KYl{~f~>|TmJMtsTjj7pNWVc2k?*I$-5jrwUU`&YX0#N-cFgb>LD zsP@&HSECBF5cF4iDB324pAxHG%}sug`E}sgYLXP7#D~qeG}JXt#iFH;44HFZDmRK0%;cQTz_AZr!@n>d+j=E0zFIJaE7Q^%lkBS~ z4sw9))3kJ4k(}(&i19ikuPF9MT{(C6Ms<#HF*%AsDN<^~MDwK%@lMZrDtg^WZCvdC z0F{f^t>7i4vVuTB2?h0aXUq=gA;s1HC->GPrJBL4t{(^p_pXy%8= zd1zzH8uF+TqnMgDiSOOCg0>5^@2gZkkD%%xG}I+44^x{)r8Ok*I&%R?da+C;AeuZ| zvRE3VhCN)rXn`}B0^+)5(jzv5U!M_j68)lUick&qjs>Nv&N+qqb|WH*ZVv_rruI;C znUr?e^n@_qB$X1ancsjvnC5llpJh72Wv2a6@QQZSe%wb^TX8-9EflYbtlG)iB3#ks z^@_sQz*fA(LU|xD75T(c#OoSFffN8xJN0w)j%3PxX&2&0ReSstxH1gFc|BcCnCP+7*z z?ZEHMBa|}NKDkFof?buF0VY%}$TMf6d`?;*wRUVf5xM-q*ISd;l;Ux75WkvE}7_kdjnj|inq7{DU_G-Fs7taNH>4kf=sDmiI$gEz^H*o*TTeAtFcNAM2>(32x?l}WDq_(~Sc=|#VE~R`h8fJ{(7v4^T@&-nTDtf~{anL-4U}D7G|;N_{{ZqQqTk~T)+<=d&cl>Z+Si?hI&7EK-DVI;*_Qgd4bl&5UGiw3L|X}rJ|kR zJ2aVU*Tmg`gIB$Xcvdu12ihy>D}?w1Y9HSKE-O(P<*J26-0=nMb53<5ZMgTsMkAW3 zYFSU|UcB=VV|UHk4}{W$ziqtYTo-s|lu~F>r%0_j@y?W~>kwT238aF_R^4~}uX6!3 zi>BP*bD@rHa;ji;l7Nw}wB8sbhY5YgqM&rFX)!hJ!Fmv;dY^O<5>lX`Un-8AD|YD% z>jf(ZgHgzWgzgOuLH9-1X&7O97<_?FiK|7Dc2IJpTaO=>aa;%95^9b?FULEXk-o!nxS~SG+3P zMnx1T<`rdh`^1II&Qez6{{X2!o5f4M^;EV*&tdi1y6}11;~Yp^P`Trn>1YHHYX0aC z2d_J{HepmNaj5Is5-~NzsR!4~(STN3u+`6=wG8C#2QI65mgzph(ylvyF?wC$>d9~w zDSD@7>A`~l1%}>3DJ8>rld_yttCyyY@{3kGQjl{?1yW!C02w|hPp(tEx6po#G$E>6 zu;;2)d1XqHs#ZxiA>vDe`=8ZWhzdXX5Z)CHO*#Jn6Wkryvi_gyNy-9{ zq2vkG{{T5KkuvZoBqX+Nwj-wz|_EFm&lr zuHne|Z*uaWB%K}%tO8ywz5o_r1Voq&Yq5O2}JiQApkQ_CER>N zH=J*h*FdlzqwHdTsprt_i?~ei8mJcsfH>p%(y<;i!Sd&$Du$_H-g zLzRy6^^6KZEw3Y{!1mTOnPxI$SQ=WTOg3rd&`AKA*I*w_AnN3hrOG>Of5hldF?-UE z6DdfwN+nrKEevQu)N)zrxugn0zpIcY%T{TUsnx0BAnMd}wv=ef%xUkkwfSRIm1aQ! zs#`!h^oGf|(x#?b$?*jHLx}2Ki`L2xkQM<8>Uh?z^@W?ZQmpe5g@%(cSx~KVEB%M~ zD9|-QYBRNc4UHoQU&>RZMuXx%Xa$OHF_}vMq@8#zzj*R>tfr|fM->VKUgX0h%Urue zy;)!ibH`#nu)Zm0mPuq2LQ}Xphu^6AK|8$x3I(++KJhrQC>CIL>OS#3hUrs)L)M(P z-Y<`i=)A|QmPZa5^doP4X}D_-cv9%pX|aVHn&@_>jNH6vS5);&VqL#KDIWLY_%pj6 zSD(whK`TAV5?nC(b^-~B8N&d>{Eye^1JiwnbfY?lkUo1v{{YmjLaZw6KPui)>&~8a zs*AQJQ7K7s?EHP9e)hkDNv?J56Q`N`YXmR*y;*1~YQu54CvMup!fZKwS}2!cpy^%! zXWlaBZ_|Gt8SJHb*cPP~Ok{&l2CcC_Kwy3Gc_LT=E=cx?+?@dJ&faih`nLxmAgM>8 z*Mk)87)jkzivS#?YTN^{>mNVn;k>PnTgS_$Z*H~~I?WQ~Kjy6h5}d`fuB}rCZ;6?U zBm|{29S1@4@7^G}tbuCE2A=cO81cDqytzBL^7zeN!q!$(YV@xCAcv$|0+BB^Qdo`j z?H1Fo(YMnbpiMRn1q$zI96sZJhR`PFv3k`lhKY2jQoD}b^)PfrOjj;poJu!mCx6~F+&yAs zq$yhpj$tDg*ru6s)RdP>j$@%6diIN0d(tYYoB)yG9H@=kV-d$ECEr80t{X;kFa>Py zww3(&#P^)zG6TFZ_S@=+7|Il#R++3t2liP2t2;y^W0cv+BryfePU0uT znM=%;0#uaKsfa8%nF>gH9m&)hKX|AyQbf`wB}$k`LcuwO7#<+sq7x~wcX9F&mMcVmqV;427Y+ql80^+SKvE7| zr%-5N4%LFEs5o6eKqbj-T%XU3Pjh1_vWS$lB&aEXdXD4p#m>E_+3NAS)Y;T)v;vcg zPGrhrr!39yiKpZB63a*cQ=NE)yhkx|R+~hYP)ic}5KU7`j{BD8F7goPh;6x0pa9H} z-~i-?_q;1$yh@3wVz2H1vp`J00$d$H>Nak$R_64JW|&<`X`7_!TF`N*-ZRW^bCGHj zWgMv`)Dl8T8nB@|SNDZ#u1fo&E=Cj}F>Qsa~$CDFsJYF8gq6*l^Jjk*>>rnS^*)jrkp7?e~7A z38H`mR3C&T+_v|~9FU^!Hs$*>L|Dz16rM{0H{+v-uaL%hetJSC+J>l0h8hxikDxGq zER!@G$xx zRI6D{sfAKcIzfz6U|O6725N@a&uFP(xFt^_a8oFs(tcHo_Nj|X!a*vd2dnhc>SIV5 z4k5J6l!MAN9Uo}BgZ(ZlVD(BR!b=mO2e=j6tG_Vci!Q>XDuXZ;8W#HqRrGsxNm7|X zIfIvK6Swmm{H2__X)i|~M_8c>N|2z%+yW`DKR94A%F2?KXYvoLn!?5^z$8j4mY{>e zO&^`Kj&QV+iB2YxztlmY9h~%yA~k$WRJp#Wfs~e^+n&d!uy*mgP>lcp3imw1wkE=J z*0jzQC{9q3x=l$ZYJgivqdN7ODzkz0Kv$4=cK$?F19uY1QjToNNuy{FUzeN}zHelw zBe*4-q%C?c#rAbBY7#+KZ4C#PEbz~Z(t|BVg-EDvxcfttV3MSQm+1chzi7=ai$PVb zN_HT7Cqw+f>?P?3GG&DZDsK&y-3q+SHWHQTFS}J^1Yxac%38MpT;bybQp& z$2^vrTPb1ME@bH=mMfD(PUlKOb~w4zR+Xe2$*BUg92VXS8|8kp)umn)8a{zLAA5V^ zdu7vVPE`OD0d+CdePFkJ1#8Co&nP;4KyExkNaCGu-~M1vx{4AIR7DjOSwuczWVm6s+h8YB|-PZZxcDdZL3t@QyDjMM-d)v!3t{ z?Y$I3W~ioKIvCT@C$K1_73$>Ek0`Z?REd(CQru|^(=JK!mR6MmDL|E_>JKBG^^4a% z?Ja6$J8sasHH(^QN&-|f2FszRSV*&BaJ4KNDJ#$#5Nac5S`yDpq%bjP}!1vbNYxBmbH0ZXZ~4|{ZszYh9i5>%OU zlFhgt8fe|a7B#0x{fm7&%QKQt^dPWJ3EG@P`N{0@wbeoyQ)MWnL@1;eI=K~Kbq?cSbRk+UIi_==N-T7%HsEvR7cQjjbYFIY$XQ7U zc2M2)an_*J(~1DOj^z{r5~D3ENz4iGkaj&EO6Yn=mV5eYEi&Z<(Lj<;#-Bf=5XLw{ zY{$+)N%($N7;%BY$dI6r5`Rg54&57lOa-?sBGR;n4$AZAvFP35(sja_c65ne*M;ch zjWpnD`!pKLw#@4_?cbkuG>}S>KVTZJ36yo4)YLSf3QFHn*1L z3IjDsDI@brG&oJh<-fLFd4E=)%rO4|+cIXYQxJie3VuqA73I#4?tds`vt53sSV}x8tBtdC<}-_m zM9DUlDT;!Q+&yc-_(6fR+t5l|&A2CDC|I}Q6wRq*tcIiIJxJ>WW?~eRr~srm;PCNj zc7c~NO-B2UI>q%&zl!C|l_4bz=^-t^6r=#3d@5=aB!U*A@3}U6K7z_bjkHnGU@=JC*SrTNGgz`V$~H5#25(Jg8~V&lQ9a)333T@Uix&0OPdV(pBhbi>Uu>5 z+kl!<28Vq*G%Nlq z00eP1@R*U1F#*6o<=pZ%uaJ-4q>>833U7ow1j_G;6aW=e6H?4I2SZ=L(WOhZiiJ>Yq4N4fjbhh*>HRpF zETx)>ByKfsntR~>8J??1QZr>BQM9h-=^b8}Xj6Ryz~L2Aov7O$Pvb$4_!&RoKl+%UoBX*;I-R2Lub;v9kF;EoI8(FZp)z3- z*~JmCZQ1wQuIF>C3dMM;e6f|mN!0%Uio5lXEgp{ZPt7P41fF#Ra|b10X^NYcU`nM> zm)}A^n2u7@W_LupOyva;nIw>QXEY)8Jwc61?et@n027&7l@nBxx8KSeZMRBQL?k64 zg8HyS!&};q{Q~Kqx0)hVkPc6(>`~a9~NfVzn0ji0jdROVYMAz;jT=gv| zR#fRuIrFRiAO?HqEuF@fK}on&yD-n zm{;_Db{TX1Vwui^h!K^K&z(?&X|KSDay_rU%Na_n@HVz--2qg zx|9fF<-$PNY~Md9?(J4UCCgx!_Czk+*8-)2W(H669CKr%!ZND@@kO zCDdJ+E^Dy*!VHW|Ox811msUEYK^scv%^%$%1^)m^`a*Uvl%yZ+%gnZXB&aFtKsG($ZvMk_B>w<$ zU)&_S0kE&SE72XN1kV7M1ThDn&!hsx)7FH5gq6FE{5%%x9bLGoB|A$coI$H4`z~q7 zk_#H1(SE}ORDKFK6twT6xrp*>boEIoh zgfQXHLlYsVx~yP$+fa7Y!0XD^8$e6yHU1;p;@YGjBo-Q)(faitSU|mTAx2}KgTmu? z{HcfNoMTI6qR*xt#uy+nm&Px zu-k6D6z76!HXA%q7X_YJGiVKW1M|ucpaF4SVGk+D%6+wSy?=;#y>CRK&y`9_inIXg z`WV6SO`+CQm6j!#e%iwh2*DGl8EaC`R}Y=&0sjCVTS%FIYBSu}B`YdhW>E#W2kqJy zFS%mRXiY@JK&JgBuU*EjSZ-r&yexuRN@YHb38^&wyrTzIwNmXQO_ZRbAJ%PM1vJ-K ze7|Y2qhGk5SeC_1;oLD|KTq!pxJuBALYGoZ-rhL(7lB4R0KC)x` z03GPgU4t0keIQ~9c?b$hNDNPvV0WX-Y_TOwp{RVn515I*!;2T7nG%uh1C>4_S1qXX zfR}Hh8#>fLNJ=-=-=E?&i#?4>m*VzS@*Kch(m_H_P{%+rHOD1#zUy(a^MzlIo=iB zAS;^dKDaL_&~{_IX;SVqf(uj^rtpJ%+lmTM33Up93jjX^G2OR{l)}0J`PLGZ@vOBd ze`NTQUY#~QIfTo*(jwJ2)lNVMM*9{UIpgc7i=im-sa5InJ-#uRFwF~dc6tnN~foUO4ATAbJANbk|UBlWQ?fxk|lnnbutN|t~WLy|~8PtLGH@|?M3zKu=K z!Yi!OsqAwUpg|-Zt3eC$ElNV!TN)9e>kHSOI#j8Ic!>i*lavqkQ#a=NL997~T-WIm>A~A}C6*H8IEBmN@0&FX68s>CO?BxLUzbv4_+L3crL^eqbx0ni zIt6K!>fIu*XJZ|?Bu$i}wS~B*Q>Sp$W2?nK`<`;A2)%mxQCi4MnPjQMP_=d^h-Jff z9H5-*N=lEk`y_4n@x;tsW=R1F0BR@&Yo|YygCR4#W|bmpS2(_8hD#bNfH>jcwiCa^ zq$mbJSBQ!a!^9KCQvG67ppdmOQgdkgMn;6rnxu(k zqmmTnX(h^nNucA*Z1GnLSxB@dTEmRM0%@DC5XpL>OR8(o?;ob!D@!O4Q~-X1_UTw( zXRA2Y(Jj=9ctNS(_xZ+AVX#Y(6r|N^bNdI<7_W;g+4DwV$RG-Su1Pz=yM7-`w1jw6 z6v+ju3F05MOCn4UYk7HyWdg)%!&)8Q81F1}l7%HGeTtjOfNi;t)?79u%Jpfgh@lnO zJN%&%!HH!_n>JL{0HroiMu(>&pE%cSjQ!Jv%YOy{gU}r!rSpBMM6ndmLIwW-=@bQ~ zM7AnfV8`k-*`dnmxTaaK3b5Ju=Xig^c0nr2CKd`LkcV@W7D*gCJ8CHz4XV>Ls1zZPq8JT{ z*!JJNX!vIf%?z2O*xb`=e{tgtM_k4QMXjOEu|-ly#qY*#V$sdUiP_kuWv z@dHx8jRzu-Phx`q085m+(@e$*%Dh=Dk{@orXkNap;L1@-w4>|~=CHScZGlQ+tgNEi zoX6~AQ$N{f9m(XASN!4_?&&TA3UAl63zmVYpxyT{ZsjD9!h_uk6}=1DY`VBTIB31< zfa~&!Wls!AqXwp<${}8q)8iD!by8%&ezDYrY7BWXE?SOvi6sWtZD1wI2}?if8+6(~ zPoMg9Jt7%)fOe15CNTMP7p8`4A_Yo2QjHQWZt)W8?Y`W^r5w@*t)qkYipiMZKfWvp z9XcKwJRzIm0;N)!C5P4p&0G_<2mICs&JU)MHEOC=TjLNRCbZXYtX&ehj#W)-(k81^ z=Bv&*kU*&=_>R=th=O#d4B^h52k#SV(kj)Mmf9x(#}->MQqQUSM^fh28Y=ykc0hD0 zA*;teaUF`zRIM2PZ@g4gmo7^;#C)RsiKdOV{UYTd-|L&gky17Jz&pm(nB@ce8xe~$E zytsIAxNP332@T@p>(|RlLVe9)Dw~-}bdL}(`nyAAs@26wqeOB2mm_Wnv--)twQk8Q zld}yzKS-;KF(b^#nwsY7ckRqcXuZFsv9hSL{{XP^gxo5SUTUgMYs_?7%1!LmCTT>n z4M`5p&N%M_F1ev z^!!>HY}V9Ot0Gvfjr(gx#w^-acsMF3Ku6s9uYjy!Ar@N$Q z*F?Z35GoQ`LH9e;Q5p>EKum?!j6mz<$1oz0?yF*zF#ze9l6!FuwpI%SjbQ@@A^X(R zT(?!l1L!esNyWK6|Q*P)92D6yBSGZ3plEJh=OeJqy+({ zv0lY$%CSoG5+b$XA;miRb&f15CavO6%d8c>WK=0Hl$!KEXbX1CQfB2WIug(Kgkz#+ zW>C}$^@~bYVB)MGQWuhA9TlZ${2#Pgl|Lel7%Oc+Jv+h)lAOVg`$EnovgA!g31ss~ zJvMtcc>Q}w6OdA^c0ZfL1dF!XO*r{|V$8{e7X_eNlcJbEndjhr@VkiYrO9Ga7>;_t;b~G%RRfvW zy$_!ra6(n1Fk`l(T6d3}=j7#jXKHpRCYn)#^UhiZjrJ^cLRPbVFT=EJ#3_x1%MxVbd144Y73DyEjC#oH9-T7cKp-|ST6QdnU0kfNiGjNfHaOdyN<3> zSlw|2!0u96gYsf58HmKs0etB+CX^j15?vSGV(RuLq!4&JfP3s~PVh4j+@?~KI#~`2 z5_K=2>-1PP`CWy}NG@ceSA_%QYpz1HwLJ zd?F=2Q|vbHx>u0rQ^JpNeLnx?wBnJmbiFZjXr#VKg zp?-LWe}p?_o+bdK`(};zgV%I}`hm>hz^gzjqU$UgouT&+NGUE$xEpaEr{i$9HN)oT zBK4OFdqGr)UhBgkm;7G2Nf8|NBUebu>_C$%za*l<1&m265_ zl+Y8YsqfGjziGQ?&+%F&Wk$IL65Mmc_49#u+=Qt>ARM4Gk9VA5%WJQM!tCo(C6^>W zBV+Xj6))TLtyxk{e5udo(9LhS0C134drCW=kiB~0<^@2oZ)=G0eDjvQFCF7Zx8eOE zvp(AnVjI3*Mj-FDug7S&F600{VrpGSf7&9wE|sEEigu`dhfeY3@$ubs^5kioh!j8t z6xixL@jv{@kP@@(yO8<_Te~q>C_+H1F*^>7Vb1WdC3a;N8Zig+c=fzp$D8DsxoE}c zwImr}hUY?Q`Q9z2Zd7Lgm4Iq??bDKYg`78Nl9^#Cbf_fzT)y2QuLolkEh`BwQt4Br z!6RVdtItU4j(StOrXp&Txv3ePQ|jfu0=(@OMie0CkQjcgb$~d)%uLjz4+^wxA6D|) zw@7BeSej?6R@rqXzsxxW47;(aq)zdQZhDR&<);x!w9G04C`f)DGyecc*n={WFf*mX z!1=c@^>E#3nwe!JB$S6x;kWy0VkO&(v!$;~lf7JtQ)DUElz@O7ovPH{uSSgL0AeY? ze{>cORHVC9=yYa(bz#={y%8c}LbP_Pka^ql${&(bGFp9Hq#!7GloBeREjVz__0+{? zkWHHzNGbJf6mpOU1ny4t)AoU%_JxsXR&aAD5OVWfDM(4REi$bOmW0p{;1)HlABUh6 z8fy=CRjOK42&msS@a5asE8Vv$C6O$ZI4qN0I-SfjSuUwcO0zvTc(Z<55i~GhqC;hY z_Uo0)`g3$&NK++5rOPG$Kd_A#4Nmo8d!=5< zJ9F>&MpKAzgvn`4#1l@A0Q>#oJ0GO{peARAtOlNbaafve#Wv6#)8Qk#a6#vICvn;p zHda!nOK5d{nw$P>RGeq&GE%)#Ls6ZWv+jBj^)&ZJp@x?)A~Mu7sQ0ZohZ9*v{{V)9 zrhoxUZ^+z117rxO3{yZmkBlCjcM)qOC=k^1DGdYB&WUp5_A(W+568_NL zv;(i3-M3sOY_Kbomjjm3L~qS>*Jzsm0J>16041a>P@aD^j%HuRPpeADfM`Wo_B?~| zAVU5E<@@NCZ;4>Hg@I0>Zd_=0rAcleDlp9A&a*Qm60g(kTTVXWveiENT#(UK>|xji!`P38S66`U-vBlIi$NgBHsCZO{4`bPZ*bc2u#%n2{; zHp8HQlxf2)P3RK~VDvIpROF8k*z*PL_*4WhBfArqr$`NgFC#6)cxX=MpvQE7r zZyQ{~i$YRDDo6PaonYt2-o&`0KHD~Ikuao>388mmw>(j}g-kPZS^|=_1tlQ(QC99w z@vPkTv`>|IdEIN1F;0KBSyUu8o*(}J6~L~sR^VsH(R$NtTBOV} z)Jvs6yASpn5kXC8?lq0l<-?N_l%`^{=hTh#f4dO>05g!;?`ey*C?vP6$^lNG4M*c` z%x<@3-!@39oDc{u?bb5k-B&0bGYQL=rw7RNjx4g4sbM6AC=*wp8-DbQ*YvrIl&XM5 zN!`CG8AZPSQ1PW@(5(jTv~7Ap%JjMArAPVQ#VeUN|4fcx}< z7oH%6yz7@v`Sv^n-kb7hqs z6bq5D=>V*FFa$DAnyBgUi#QM@*~Vj2?`|QM>z*>H4&b;0evwlzVzV1Uh?p3YmVic^ zV7?AO=-Ia+17yUZLtRrjni8X5KeqG{cRMj!A7egXqwJUG9>kKwa%3Pp? zk|+ZoEeDYJMLSL*O3(?b0004K8i|lEf#%PRGml zg}iHo8#SU@veX4O`&a6A)+))Ypb~W7aRnDXZ>h>%N!Xp(bJDPGlHMJ#sdC6!0JgE( zFxpW@)M_D52HTc%rn!=;7u&zULq+9!sVFK_&{Q3VFz57wt@ib)DoRU`;Bx-}Xw58` z>eD87j5+~hyLm>Zhc5|BIg$x_0y*j;d*=j6m>ofhH9A+V4!U{9caHZd%N1ozvRhIe zVaR0)27RCFv}G9Dz;4-|wo=6T4ic$KV#zuY!3S|d9mtK6!RYovK~7C|Bldw8hobo_ zSaIx^0pH#?AVl)<>{gL3PfQ%AxM7}H5>b)jgt?AtxJ@0p=v71cI-A0u3`qgAYBPm$rI&0 z0n7&no+<-Z$_U>e&9gcb>(eXfe$ho%)*emLA-gT9mY`JO1@z_+MRVC^=15ViGgiGT z$4E7J$jFm1z#EOsbuRTuRRc3utOUolyyzfRwc-rGxrf46nx z2Mgk%oS@N?8@~|2X2nl4C?J+{A@SufgQZ@A#-+6Z(3-bMj^@1#)v0G~2+;Ep`b8O~ zsX0MXwD0-Map=xMgrb>=E(1Re5uKX-`FyD;EaY+DTEeB@e}&8`SA%8l1qw;X> z2g(*NI|8Q664nSvc5kmd`9_qUT~;hkvnA@2?GJXNzM4dykklv0@H?}nl?Ql<4hJU{%UYBeI35$b@6+oO3{rtC=T_RC zIy7YWLMKX=W-nz`=u4d#@e=w;u+2n~H8pSxYQt6{4p;Q7K4H90sb?@&WEXy~7q5Rw zh)F3b0Y!jq-|HCHqpW8sNOi0Pom|izHadew?FMmW(8C062@6Rr0xq)s(ta;46d6_ll~sN|vIWp(!+P+8m+%ACqh^lpK)+;@&ItZ1Z#gafS_rn?W?G{$;#wqJ77{iFa%a`fAOFN_Dg zZ)B!Qh}N&O{_r;Mxbn#L(-b{wv`-182h{WK742$4lu}vETc6?;hFbJ_=?gK*Fte!T zdT2~HUbw*^l#l+aSLh)s?ZarBFuF*}%tajZXnkHClBA5@%02H67NooGAiT2*iG8^K zW4uXwOF}{bO&?KT!w9#wIu>xC6u~c*I-2M|G>p>r$9Ac!1j}@mb6P+6k*iXptSeXa zY{U3>Jk@9Lq2Dl~wfIAFq$*R1YH_2!-Qy{_@7c*)Oezw|cRXm{&0|EmZ+UBAlbjk; zZvA#KFsZuBeJWaiNe!dG+s_r1I@WTMoPjSw#MhxN#O?rrIKty4l$GSjk(2}NsOy~6 zbO1MzXic#CJG9!FN?N5UKFUC$HK}^B8y$}Hi?pMeIC5;srzFBsRpL&$0r-@=c8xa< z`ZP9m8HrkyTCbvp?ZMb{3pZ8GI?6|_V^(z6U(Unb8XcnjB3SiGB<0-Ew*z>-Fi^>t zvKKHVAw{Y~8h1N(g1Da)jJa3r%TC(ASgD66B{GY)bvmBA0Z)`W~nLx0v zYU||=!qCgN(ub`XK;#XZx!gvPc3M=KU=fs&+s?nlXV;y+^l?jECR`{~j$t8N>dzZy!2sToJZ%d8i;aUZWK z&Ya0fp%3kDr5(o1DNfO+S=Px3NMs#I8b3j=R_J3neoFrU%O=5g1)*70ER#|dpf9U~ z`i7((eetN>SY~KfjF6HXQ)9^Iq)&F(LZ&Cg_4B74p|bb9(vy|ybbfx(QYQA!@rE6o z2Z3RY4QpMS=d@SDccSDFneC8!Dh^w}Xkfp}%PF6>-Ar>KX(2AkDskf2h&~{C-z_Uh z%TTK32V?c`%w*W6$2-;;B|$?}7ue~X4fbKKuMk>D+q=sIhr;yk-=tcU@KQPiDV=+Phi zSFAaJa4KGv`o(o1HeuVzb0wus`d!Yd8$S=kD`Wdv$ysT4p=yqrX&uhT24D8-<$w)M zN6I|Dad=Awr#@|I?8H^7`Zl*Hdcc#ZsBd$2hU-kQ#GgK}0?9U3T=LFSyE9j2ixznv zwKY{ntZ5IAQxY+7t}ghxd-+3*FdGY`Z!{rPKhG6@HiBXWx$Eg#MbwdJ>`-)gT{-T0JWbQ*JfY z)-tG2CEra{2n=>^kfbWlY`8einUQNM%2`St$?xB=?G2N#WT`DKP{`~HD3>A2)Ryc7 zO?F*5Nhk)I^=-@+wMa^cCtq_z5!Ig%Wl0JykQpbI=j995oKCrnnQ0{a2Qf_vaK8bv(hJu|X`CnUEN~#?*l3y<*L`5h{S7jKP6bSa2ewpGXpl ziE)uShTaETG14YX%9@ZgBjOB63EGyGp~&$Et7+%NG2x5qS~8yrQ&;yNYQQP7iiTfg zAJxQDwBVl_RF$?~H}^xqrhGw&QVWD;K|VG*9jV8k9brQe`azI$BPpXfQb_obr%^~Z zD*2TylD2c8-}iXWy&_%$Y8Dc}=xMZP%HN}C_Z{sjT%=?PFH+6FQLiE;m4AtfQbF*F zfZD63@$(&%6wZ`ezi`@>Eb^rtOJ%%y;#rtW;U+AHQ?3fgSfSX{)ZBX%#P zI1y_X-*V-%C^-E(eB&3L=~`hS5{_k_v`Eu$XJhOk~)Iunat z{{ZQ3%_t<61Urts8{ZIJHko#nm7=Sw?jK? z$nnHbys(C~FJOMD=>6mXTw z=}O6_g|r~^`Ls35!pWGIO*kC+>|;B!U+YS8p~_K49BujU)In>L8&36tSYY55V*Y(~ zf?0&07}#c6Kw4H?T)PE+{730Nko{^?nuO{QWh8x z2^tQA;YeJrdOkB+O}iqr)S8pT6PI}=KmkR;;*Hm}BR9QqHb8YMZ)ge*`$Tq&H02{Y zi7X$66z5QSMt>@=iRxZ9N|dGnNL0X@ zg5AeY#*K&3#w1M8qJ@AZjyviUs2BU*dghzTHB%cu>A%_Z7Cf*pKOQBFD zFPDzTkqcFecb+m*3RpQb52ZTt+VckPPe?N7450YM6dAuhv5Q_u*zJ6x8pn}TsZWp2tfp` zLoI(v{O6<_wt6yI0&$u%B_-OUmOP$e?L~%*W-d`yU>%0q4ZoPd@$LATwuxv2detbk zDg%tb5ug+`Fx6|t3q-Z}Sg}b~z;Zu5`a`Y)Cx;`Ag~(->A5H1VRQbVu~e%<6Cz5J zF=0U|2|5}AUuM>vL3}gl_Rg6ZR_10wokdJSm{qg@vp3P8v-BWBajcaRm8~HJ0jBuRmN*XJ;7lI|)l&OnpK(=LgQ{3?7hhxx1>*o7HQnjdtu27v+pY%KO3@>q57lyEm zpbF;`Mr4naFj;~oVPDH%;D4IR1uVz`l#^SOM z(^iG)lTw;LQ?T=bmvrD#2&SGCy?!(MAYxhSe*58hb)+PR z+U2)|Rp{|Waz4O8MW9q}_4+hcGJ!SGA^N`q-wkj&aAMnvpE#>EQF3Z^C*8kKD4{e| z4}WNmOIB36nCeBAuhW>7D+W43bzn4zi@uOrOZDPClBU)tG^u7fckL7=sHsn*YTLt1 ziz%C0Y4D5kr&Fe}Th;OB_7UQylkA2Am}Ks1pGcBgzepX-L6`Z9Rza}WuF+7Fp9}J6 zPXY(ub6DgCo3s^Opdlo+NM_u9#UXS%zNQx{a9;0eXnjw{3|v+xT1>*gc)p|K3wAjL zMAg1fPS-r8ApqA>M)3Hixy0AOnzgwlG-1nr9b>i136;Gz9bjlcNcor}aGBL8kCKGbn}5W%FIzN<4341NGD=Z63OPEh^{{M z7tq~-6$d~#`#?ML@OhaxH6y29`+m?$&a9G&)T`O2z4}0Tazf@6H3C3xe~8ypAifE* zGRBVOwjuQewFZk#7kBkREBDI+vN*5HcKcHG%9Fq21Vg8W}2J06k>cP69^N*QT`AqL5nJvo2s(jq&0FTvD3W zt_wdj+6($boXkZD;A#0m481I3d0B>PI+*s-CBhRDv`w?9W(pJsnC{8_$pC(#uV`1Y z+YG79o@8432&d^v!j#Vwk{GR(N@gGc zr#(e0UKya47+9DUDM6L(B<{q0_Sd__eVT=g<(aEKklAOp4`JN4VE+IpQM_akue6iy zJo&*dT5_gs7%7UkhDU1!;0jm+t#fVJ;KpQ>5DwnxQ@f_9q$^_jk?)I_ZQ)B*J&OA&P_iNE$pas)}U~3WE`~Uwg30`Mos((*CebHSuk{QSGx0s7}#PLO!;F0h>ql-+0 zs4?yc+xCPNF*SuVWuNj+gi!t-uL7`@^_>P+{{U`4Cn2F&91_)T2hs{ztVF0GTJz5h z-W4xvv0kt(9vR3}gQJcMH4dL0pg1FVU8gVg2`ug=pnj4Xt;WyfbWATUODrgta^!9J zAr$1Z_|feL@dxR|HC?yXbmdUnPI|u4jOVR0 z3sZ#>kw*rc5%q?9j_*o>(njF7USrJX zRrK! z0QKHE_;L91%B#!eG}~nU#K5p>c;k22>!FE#B3M$S35ahH1oR+&YaCipnu-IV5Ju&) zgZ;HRBoLFaCvM}erK6@Y-rqUnxng^i7^xjUB-p9{nTC zPfm${$A>!&sLmM{2dn{`k_2M61-QvtkbRmIDa!)Va& zYf-YzN=vB=HST%s8g3rMXam)nrBn~k5RGV3ZAmUax{&S9U(a+dNxW1ENpi=;H2m5R zQ8}XilyIX~l!B}@$gG*?}qz29OYgg8mlVtMP#E@9=kOX%#w>%=}? z)?=6*L;N_7p9c??IlR2E!E#(GH2_yr`R<2Hw-2)eL+^pNRH9j^A*#qr>gPw|KA*+H zNgf}Qo4XzxAx~VqpQi#1%f95v_EVi>r3Zhsez9G3brVl_Xt1@RI!gujI~eZxxvdYk zUNdbKSA`>PovHDP^6rG7AJlf>cl`5$DzmqUmK<;S(kV>^W`&0RM-epCXW6roRHtCT z4FKSO0zI?cpgGFJtY4XElPSp|_<>^6Hg$64m+>Mqt+Er>JGC?MrkK!|n;_x%c zLIDU4T+*Fk^A=piejLO$wQ5FNe_|9%SF4sC{iZI&P%zwASo1$F|n2CsEFEgw=IQxyBhBYi3 zi4i`?LeM}oOu$RM82;aQBYfRxoPw1HB|7l&Qvl(_*%DBs=agTCh3O#u|!rttIVYH%`&=<6zR(ald-D2yb9`p;M$3eX0kY2gKp zbp+JH4VF^w+3bMwR7#nR2Re}39^6GETNS3vg$D=@HO;$h2OIMgtoCGy698nWl5&mQ z?fjSvbY8}4OvKS7vp&6|jpu*mP^UtkpIEIT{kG*%1cX&at}Er=cxb{im6d5gY>eZq zJYDEQ(uF7i$5G5_`4N5R&lF}ID@!a*O&WcMztaSKg3qG zSQjzE92Rogv?Wi(3zD)5b7gN3)sBGk@q+sc_}dJnQ$1oR+kcl>{e|uYXGxl(0oS18 z%xYnp@vxcl(8(z!FIsu@jGE17w4!g0VzQ<3@UG{j7;h7LRPChWi@VhjWD0Lu_8m8m zZcA#)2docY5hA?+*mvn3VaxGz(C-}G#c9ly4xU`WIuVWB*Dv(5 z+F}7h&Qz;bI}^xibT#HSd^sy3NeZY82H%}EinzB3%bPDDQ3@k6NZ7zUG_|MuN^_KI zH*SAD(0!k?9J{nkQB#1l`7{s4S5(xAbCPo@1(b*JC>==c-J(R>2vID~Ls0p=Fj{10 zQdI7i4jQ2I0z$>=v`Ng824ms}+71T4ete*g14OkUOAH@#tNvHY6S2LyhEYVQgcGT9 zSTr@^+bU(GAe{%jQ2kR}w$DJ9G!g>JR$Ti;07_Dk{=_h6sRMZV?&mXQS{+DbDP@xG z6vtXP4)hwdY`C_}QlzUZo;rP@9@Tk-&&;GTEY$e%?uh2DEo$htm8Hr+LorKH_ioXR z`g6ePN>w&qbDR*s)wJX{4&z;8UBlPXXCMc43I_TC@sHT!4$M@#4`s;*Miq9;X+F==s`W>JpTZ>?MBjU>src6bvgohH zrE~Ng5v@4h7skuc&fC4|cBoJQQeF6rw-{ru=@d}3f)oiz8v)M{LkN0OT+i*71v?aw z=(|AiD6X7Fat8?cc zFM1@xNS37~K#&XTRFFe{{!y~xOK?I`#h#98P;ZLv{H&}Dg94|E~$Ue!UPcdfX zz5-5C4Rv7pY447#)7%O>0YmvljwM=JV+Z&&Wu@IN9;^ub>l$7%!#=uLDFF)#)NY;+XaQ>UQdTQ7Y61FBJhy0z#)v}380guQ zlqFh?kA;{}9!BgS&!cZj`ND#jsAwLiw^#>=y$Q^ipjM}1LRHUbsbKUEGD*)ZWGD>G z4}|nO>%=M4Ytvk|-bQmOqya(qg^RZGRJp9AC{^eVQNIj!e(~l3w%VKmkwV1u;kV$^ zTJahU{(&(pQ(s%APC z&>pb;a{4+*PFaDnhkgm%bJ8M9Y21Z*m+3^nl3m4XN_>oKcz*PkF(EY4q5lA8{NF?K zr=%tZB&U(hgkKL1~wsVnHFmtI%mph_0W^h{H0J1qm7gD0=ns ziul^hormSjl#J@38xA(|XmYn-DOwP6vDB)tMs3FFBlG~y&f}=B!ZV9hyGYF`2`ZM7 zN_q!BE+I)|z|yQ&=c`D}33`sbjD8c6zYsZ8`+SUMSZ5VYD^-?iN$|RMA@t#&@!_Wo z-iBJrX9AZDGk$FqrgWKZBzQxpQ1u^;3Uh6X3L!z9`=H6Zku7YcfCv?j(~=gj6y+yE z1NN+3AnCWtrBR(EYS9Ys<4mb=M!N&ohl;r7a^;M>I4S(zIl?!9nuW^=%0Q{uAKoAs zk^-eUcgjsU;6kOti_3%%rDZh-W7I|Kw)LASSwPLQl6CG5hsqN19wkV$x&}#~sRS@r z1a;eZ&&h1csoCaz_DLrxOYIR&kugb6=?1*GfwD0moC;PvW1WAGd^ussgCIh_I>wxA zu&X@0FyoS?I78Hj1Rh5tcxp}+ONAkCku*9I8-F^$+);Z31t5*s9zotLTsGyTGdLhQ z>9j1u3Y&PVI0__`7Z3SZV#Bzg8JSf@4vg>oA9MkiI2%X=GIwzPW*qN(s#avJs%gbG zEwy%s#4g{qq2SPkQTRQg3w?~4bO|cQ_#cBj0WVlhG>|h2rz_zJ5W(Ef^Dpsi=YB$@6(9?O7F|v}aDY?_#yc?e| z%}!Z_Wzhb6p$#E=HNPe)L^_c7|`s~f{%y-ICl`&OVNI%eYW4DqmOD5pCu+9dP%7Jct1?4Ap+|P<9$Ifw zgchh(2>SkYiZs@oE`^}IL%9S{4ZQlrS$Ar3s!GxdNMKb~aY~)LK_uR0Y@(q|p@{7Y zHe5)JJz!A;x?Z4tD*jCoauYhgf9bgltc(JbNlG*&M^W?HxDYC5p}SOtI8&s6%wNcj zs0W;G_G{%UqFbSA!j;)a;4W@2Vtj3zl!W~LQPVz%cRzl$D29<^UV}aJcSL0@_O>4(*I6ZU>pZ5X~7>xx0tNDn6SETex zLe!=#JU!0cOetJgCVQV)zYpmkzmcZB9P14ey%`}%%%j+Kg*9D54cU(uI&zIlPJo63 zpW+-Y3x?9Q8H9KZ0r?TbLA)L4oz%I6fhjehsXcl_ZQFeSoTL^M3^j&1V=Kh?26VC} zp;^QDhU2UKKGC7!E8#|7S%4&f0$YCY8vg*r`5gdMzfn)DQn_!W5CNDo3agU)bcBo_ z#8*<3p8zT<)1)ka+xDNw`$LV770PV6nX64h=>GsOIQ{^?*0!t?fkui5|}<@!Acp?U=fd5&)^zpPRvbs(K&7_=c4_ijD_fA}iAJ zN>m8(W-KDTn&wDJRIov6@7<5cMeDBPbml%lijfM=$hwM6q9{@EQ7Td7Zx2CNP zw7Y>(lJ8RM0!3(DnB@+y@;RPaxUoMP(=>Q6UN3 zKU()3L*>f^Hie@av4EWEsk3E|IXZ4SEc989sz3QWsP z6&E4fAze&pK4;iOSKX@ z(a&zNT)#ylR~SBRry-iiN>m9WR^92RYW!j1(3t@tGQjYf9X|g67+k}4i%0aJkP4KY zO<$1Ehj`rlH6_%R?y%OtlK;6m#2i zv~y#^%aJW9I=iZ^uRS0xJ-uB>l_@!iAUZ>_I=?{&DkRgD!-yrWT7=aC169L6+*Qur za9CpmB7s#S!hd+ru+O4(0s54pNuVwN0Lx+zPNXy+wR$s9Ntk8;GPYCtPe{HuqOvdE zc7n0Xnl*KX+%JYg6P;%`AnvIL%k5>E-^$7EA2qQ?y(wmVhN7sQ}fe#BKERhr9*j0M788GVD54k9USV zNq(SZ31LCu<-SMV2pFdEDN59ll$O)$)+R{>KHKcl@-~A_P-8Lw0F0oC zgfndWzex689Z&$dB-KE5~j#fYXXnQ2>w?(pag{n-otSo6P`z}t+r%J}%aRp11 znX~CMjjG4&e>8}PhkFIYY3meLq58BDCLpnt%TY*jU``*!AEip7v=66Fuu~FVY=*0W zMlW6)j$-AQ8GWw`Oq#N!t&{_Sp$|p|8gRv$Y_t9O-mr%bTAc<~1P*K7GU=X}a!yi7 zV2X4na22D0_2M*(h$?ad!c@u(m(;vx$Jx_$oyc*cGmo5eXS&Lr)tG7T`$c>qb{wlp ziAqzYT%X2)7K_zEMF~mF4u|JQ5v@!z3m2+OhApe>(Yip34f=wkP*$gH>LP^e8ptYK z-)e+?8UbCm8f8rd%e?_F$WlZ%>8!@Ro>h0C5R*Q2m)v8L}YR&-Dx6@td`@CVs zWGW$fs<$dHuPPQ)c9AiUqhDNeNqK1pG0pfPJwAy& zQo_!>wcKxwbSUHoSwQa65I1R!fx&QQ#Us5MLOa>?3+E^l~I;T?&rs&<%xq zv-OFwin3;2KtnT;OxtB0IT52<tPe!(x)``I- zL;&OwyK3jB3?p#7ENW!tn09f}Gg1mq0rCqMrHdh~Cb!mas% z(Jo^pZ!BzDhMR_T@Cb3aCa_*shLMInB9%)D2{cHdIakVqv@u=g0N2@SgUGgu@V`|AlRz|OPlY2$I1 z=B}a|eIDIe{bJO7IjA@0oxZSB5?TdLga#f^#kdn-zzCeCBnd!OT0c)XFfc$?WQw7f zgGU2K_(eP^eg+6z=6&=aePE68jOBo3xdiXP>%i*NdO(~?`HXre?rAf$U1F({l+K|H?vk;fm* zKiKW)LJY^NQ0_dn9(^G?!-8F9YgKg(Sc4K>DMXbO&C0CQB7>l3uasp(Gb(m@d4}ZF zYVqx_4$o2m6r++$6YvAf$9Fx_yt36qpnytrBrw?N1@FuFiVtLsGzm{r?i`o_NL(cd z{^<+N&0KIe`o|WF$uhJ+1p6oH(gtE1;HgPYzv9~gtMTPn=I=nAkSQ)fEv;KZc!EZe zPW!!8Guax^U~S8OZvw7Fgffh^c!^@PvjFw3kFYfl4a&62kuU`Ya>VQI>OM~wG4Wyc3!tIg=uTE4g#Xw@9b~~1Xmp$5rvQLN+uQ1JIz?M}9n4q;~3S+lw zuq~%}sdw0AOHoot33g}S@wAG(e#_+U?rcaqrW4{I`o0)Qc3|-r4Un3Rw|G)4B{L}nIxHM1xo(_5XvX7ZOmNso9s6TdOJmx zB!#FMgZqG%Zq;E@uwKZQAw3vVLDDQtv9q~~ zwqnAu+Scv35G77@xAWWgiqnS>Nob*~7@<5c*04k39cY{by?FiLQe_b2pAplb;x5es zs(0XZiYY-StW9ejqERK-0Tw5CLjdL9h?Z=SmJa0XHt!WDOx7SM+GZDX?&2f|-Mo0Y zPD!qmixO;<%=GKI;ty)qQo|+rkJei1e50AO^Bo(cPEJ(!_`^e>rusn}qQn$Rj@xkn zNnx2<=-ff8MWiBGOH_f=%)u!JUpDfkw;wH{l(_9lW+b`k%uQ#oxdGUZ5dyE#;!SqO za)%+$1|X1->{{U$rwW$YI=gt%DC5lF-kmX^T$)IDm?-#`!mTyI}M;bs| zIb^9?Qn7aV1=7?Tr;`-z<&XyFXwfi#1hOpZS0ta`ya!aLSyR5@`oU?d2#^E#mA3x? zv{1XOu9HsZtXdZ=GlEl@*{K}dY0WW3nZ+NGznoIO)=-qDfE8$UG5YJA(?<;DCyxIB zFF0Cw8HFtkYMgwJl^wdng|bKXRn+^pq-W@xmenyqn3@iqV?eQ5GfT>URbB~ClKsZF zmX1KFf*5*OQkTm+@I+U_5(t)5&c`d5zk^kpVxLDKw+5B>#*9O*_A_$SlxS+emfv4v zOR2~T0+a>xg{V%7qPX7SD@hXw4rtlMxG|Yx^xozUr&p1s=<(g(0Lyh?{pI!H%3IrOf zVXzyRdb)2AwFYFCuXtsQy;2uuo@K06C4=ZeI)eUwQK{J{36jAD$R11@s)u!6d>>UtS>;xd!!#eU=rcbG%U&tajY!DSDAk2P5qq-S(`i64u}vB}Y!j^XU~W@&t*bnk8H83>LmD zshW>zl-YqE`b3)Cxnc5>LWi=gK->=Bo4||aL0CCyG<%C`Dk}Pc6Wy1fT55bq{{Zj0 z#H)~I4Cn_kH2~E9X%2!d-+q*w!*X*tBT5j*e(=%~iKuZJ87W@Pjnl&K&hhR-|?i<8{h8lCoSVGMi4H zn@5**m`$^+wNh$0ZO23KiS9YUUL7e>^@-)gzFIGS++tvvXH!)nQr|^}ab1+)hN$aS z8O{~5s!n7OQp+SHmul_P$~(jluo^x1cM>0;P`LeR;WkRL$GX6gykSLQQSPtWS6AO&fhDvq7% z9=aNhnvUb>Y(teZNd=@&4O)Pr03(fbA2$*6?fG+?EafDB<0QBEhpPs61?b%)kIlwz zx_or8e_gqA0_sYfrAJio-Lz`ASkZ6=@Jdn^bVva5I>N$`R+S+@7xBv@LH?${4Pa%_ zc`jPU>CmKY{6{mPq)!18UDzss>F@hT>_uRI8bES3-alFI0Wl;J4^9671afZ>QNNMp zygYZ8rabw`C3IXh1(~T`;qK|UR9U>+BJV4AJ5+&rye-qwS88<4pbq|>OY@I8)}@yxdily zFAF(f>dM;JXc(m+Xk7kQG_+={B^isWNaERMBzS)WK#9biX~bSc{sRLURR&$yYdW*2 zKLGTLw~ePFNhBp2KheG)%tLx#GZHeO0(sH8Mth2G1YeOE~`k z9D3qq$vyx`QujRpe~oqx2p2`p5~V1CnN@N1rD2x+vLPfQSak2pwM131tUD7^r`X4Z z<>Ptt?dtgXPCR;bW|UIdyj=`IX|fk~IbN(N1Y5RSl9B-|@Lp|{iA9{ae%?{P9y8OQ zmn!!3vamvtrs2CZb8c2+loneves2LV<|t9m>k>i@5?fL=JvsHd@BuC~u+F zL#H1{jcv)S&Ki_7kHW!6f<~06daOk`Q;s9TxmAbD?GIN#T4uV zuACMCw`VX*e+EJ!3m%nY5c%!U4{t)VI?IM zP-?*+Ls;W7r=ov>K$gv+{zt|P-5`=_HAqQ0N`}5$4$#eTPbxuEvcPw0vG|B3CG1Hy zWRNC;z-q0!{{Rs}>a-b?0>V&IpdX(8an>)rzpzlER0?$9@_tdC`ZDyA0QF=xRh0h# zvp(9E{G?AVQdLOWZ*;0yIY`XXqRlmzEQG1^2cY5k6l!m@G~x@{O7Y51i;ckf7ukt} zc&gNrntMg+)M5373?*;Qyn*>H8jqj{dPa6)y`FBXi`U2*iS>obb5qE`+4mCiili$> z+#kOYB>D4Y5)!Hq;l)2EWVG=txT|{Ifi$72dO*h z2R%64)hQ}+mOW`+(cyfRmqC77Cn*lZy+IJRWD=o8d(16nd&P6u}S z!X%!MF#V|b&{L5r3j=(>xE}ay!x*ky`AJb)M8FwIaNy8;^`@|X_p=3}z9dWx3Uvjj zrs(0@V;QyGf@I5@LXsS+o!?jc!|s{NZKE*&smKhTTl1I=jWDu`L6<2-!_mm<<-8|$ zHG;s$nr#(-r8;LfJ*H%-jhLi^n7MAl zwIgc7c&ttgr8s6TXdW|bZQzND2$?NGNv>?90uNSV9jFPZ(l1>Wt30*Qz%5QW&hn&HZj6;1jS4~B9r0G`fIIgNPbPyW?915;UP6AQhI#r6fu3^RXqh- zDS_i%VfOK{AySkR;~;b!ev_n31e=y`fCv2gz`JH8GUfoFqUvF=ZeAELO|^zqCaERg zVYFMumkK8&6qZn`NT+=v{6bqcWq{7aIDf2Gx-B77eNvJ%AX84Yf+ozV2$rSkK;KdM zya=~jWrc~U1=_7syAha`|#XPreSIYYUh~w>j+?F*=MS3>0S`F&Ka0~qt}yPDEbob zN+zTz3T#u%PYv}?mS04lNVigDtrI~Y63W-;&0YI>GF{ls3X~GHW}pVOVa)*dckgQ$ z*nN5oqWRmxef)12t?7j4$bSiAsnPoW<&U^S%c+)TH|ws=EmD*PLuREzMqPT_l__M) z6ir#&w{Chs!<@-nYVzP z*e@?w0VXFl^rnR6bG#%g)>#ys)%BkahAHEWVJ!Nwl%>l*U);i%2<3lXATm+{fYkLm zG37T=+Vd(Q7xY6n0L0P72M)g)PpNy@=my&z?>%`r+~ zSn4@=_S=30C_b7$8#FOUKs5vw9?;?|46$_KQk=_~MV%o1>4}hK<=h5-zi5`#FcgwW ze}iocw{6=jl@*s7H$A$D60I_6Qj%251Lf0$40nBj69T{u!|VC8#Yq?_0#z+%BWbIj zjd}cQmP<}T{>jk3;uOQu%)7>Im1Qbom6uM(w^~0ML*3bWXBshQet&pc$Ce~bmRyo( zQbwU$Gycu*f>>VQn=Jr^1stJ7JA=q_1N5)X zkFdgX%AYM+W;<7XC~NL`UdGmyOi~a*6KdR_e#4DD(GD=PS`ZMFlQ0%8`Y{JF`wj+< zU~REBsmhk326P_*0g8s6Bl)K945+=J%t4ZgmCR^ObZVW0lli;tw(wF4L2`;_Y9As) zLIx|fS{5atQp#5@ptk;6@75jg#y0h`fS7brLUeEbjX^bb7D>tjm=70@8+`}dxo}iBt)~(VBdj@n)3v}fVP*u6?cIV0!apnz7 z)S+2|W=njEVVU?kW*?fgeoi6DFo!uqZCBirqiEb#B*m&y^5v-I*^ky8lEDM6JStY4 z>umnXB8T(muX%6V#Zn3~mn2ZNLvzr>1=)E9NT47APn>?W-Gy5}`11-(^ccQ7u-ay% ztk$7Hv^93}>q8A#4;vZM&=k&)%5zV-=>Gsy5BE*P6)s{GT2MBJX6YY0V*EKa%%zmL zK~~#sw%o*W{jZO04n^cwX)O6bVtRDZyx_;Ai{fO9FqjU9@S17o0lf#_A$hX`OI5`W z@vE3U>4MJoWrI+rNe;{jYHwaec-j{mu&lyX1N4avZ`PKoK>};)HvOPRmPgTtx6dst1?J*leH=i?EUMxjM87B*{MKUrf15aRE9JZ zuR+P%cGPK@LikFRm9iAlnjV|!-0Q4YALzB6*s(m>R)HpJ3o#`m?({lnMMj;g8Y)#p znz8Tk5U-7v*0fA13PZBFJwra7X$@D!;*_8et=OKOey8y0my-}QEL+(;av%mOw}gV6 ztm*cLJs{HWsX>^6H5H@p6))Q;pCv&g1v9?mfd-j(45n(30#w0TS6=<#fByhMGepUY zNf}nfY))*!{tRf^dBj&1AZ3XR#BTeIL-1o*yRlm&p=FOe4guq0?+bLH3fpul&X5%3 z0{Mode$Z;gV)ecxmufTf&+SNMv|U1aeOjnapPYQ-I(cwuMRZl3Tdq_y2 zdi)PV17;`G%T8CAU5Mf9=034%%!N!2LsNaB=ulOXRTQLWV#I;JBz>V*6JaF!!7@rkhxg&JGwcYiC=NYDWy)it$P_I%m6p@*M zZJ+rOUkP5SnJH>w={^zDgBiXRwOVGOdV+>d3 zELceaBtFMO&_N#jw6omq=V>!jL?J1Te zxJVunqDXD2ueh2T)TNjtzz^+l?f_BQgzF#jj6GqXsvW%iE?IUNXk{loq>l7Mj%@!eh$I7 zJt2BMab>*}lw?9!iUQnpi&uT_qDue{gn-rND_N!~PFTOa`p1?s#Y!}xeW~}0h_%(@ zU{u%4OKAI^k!J_`J4~Wx9}(Hk+<8Z+#0ViQtl7LY8O2K#2MG z(&QSvtmH5I70ey~04WHU?gzH5dB`b4_+NiMyhf?$@d{vOP^IXQ?@b2>SUY@Qd4T{w z>KkdX8+G0;LAc8DolG?Qs_lh^v zfUx-#>MqHkcGIhMgZM7)Ou0omkfKzhuZZc`LeN&g7qTVIT&$!3ODKk+`|%nE8J{9r z)UpUtzfl?u*nOkCJ$1?|D#{CKrBCexF>J5=i%HOUcyXv`X znJAhmDgvbb-61CLO4b1i0YrcU)Q#efCc;zFLZxc@W~lp!FG@Suu^~dj72-<2R~;gT zKD$t~9}#m`1*kUr>D)rKf_52)8g=F2eK&CRxq?Pwe4>sH z#hKKi%*3!EowtFv{ovM#Av!5UnwBdd(e~%c4AN;TnldOT0>IaS(goePeH1O>6-XTJ z@g3x)1QDZwo0j9Jc&2f=lAl&mmI2aVPC8&A9s+f) z+el%!{32y7QNu=E#96>bRD6}_rSFH`x%PcFR_ zzpH9}FXQGAWBG9C$t-(keJqBtwG&C`%i`>dcmO=1}2BFh< zo?0`7En};Vgfa4{eIMLG2?!&=k(4I8Xn#7v+ve&+iEUG;8$O*wz)9GIO8~o3gX;ac ziLUfaB#?G;qFk5y!?c7~hovM20VRkhL)D1t(4UC#yu|>^uEpK__KSC&s&nPkZ^-H) zT7D^=C@2KyQfiQX8t=3{($FD`rdW!lOkasdz;&YyM=tC-2!$S!6*%}@fk6JzJCpVg z2v~y*TP@a<6(FZEa$I;$_26w-*D$}K$#NEjty!3j_vN>(V-6RWE0MMM=WFI)bUWZ!3G@FXvbhQ56@quEn=KsDJlsH$^{>CdiQNMgxhW!v`i&I zy;(2q9XmvFw43%0*jk+b(Le5Hg^<5aOCCj~d2NVYens)h1;I z>?r3`-@F;MVi!N#Qj5?5xQu>BhwEkevRr^XB6C6ab57bvR*XoA zGaMZUKK75D?hi{#l(Q*FTJor=N(Iyb*k;&mww(ZKysZY*&V?l@aui)EIkit?sT_e7 z#;*m}iT?nuwj~K!2{q{4zdx1G>a%dnqy(i(B`-pv=dkI&uZ+r^^?_|m68s#wx--MU?#M8yRk7-ZI=Ow{Qa zjty0&dXNH$O&Gsl6P~m%?TmdCl@y|EDXxs*t^m~(cwyfNv8%giN2JSl@zGd z2Lx_5JazJgr+X9ht8y80P_Uw)vOqyD%ly(C{TtZknPqBG=vz=fOXvsMGHaI^D%Cnz zE>8lkU+wpgpl#Npi)E7DpShXnuV&$$~rqHautopSn!Bc<_ zT5-!hyTPl2(a)=x7ddHJPqF}~ZS?QNINC2ZM~P`9mteu@7^nckl%a(yefV7DNe@ct zn|!Bn+8uxw(q)&{Ax2FVEy{=$JsL6WCFvsCsmYNo51C9;)0aAYBW_IftYns?x~QcZ z_Yg|M=+?(6X;jA(s6vG+$ylcR%ojv&a4iG0Im zIeIaQb8IIjVwY1IokRY7Vhe5bsioyfbfr!Y2YzTa74CQH-HK*2ix`R zcr*T;Dh$bm!xb@V@21D=4t|=i!6s5=OD85#nX6Gse4O%PrO#!11;>7tCQZvOR)NJR z!#stu7(2oIJ$y~noG3;|Pe#**PS>$M>Gj*JeT{=|EXUPZsw78C&c$1SucqYx;iDNlqj9FlqS))=lU#WGS< zrYD`rJaZQlVWkoRMHu|zx+X%@{A@I(bSLvzHDI;6L)Ayi@uNtb5en7o04-BUIycNg z^$I{se8*~U?uAMNO_u#m@zs@*G_J?#7p;~?4_f@~&a^RfVut5?G5moEFokXq2>KQHAMCrr$sHW~=x!BV1W@{dqJbEh1b z&Xe`1e{n5c9pS2E!W0Is&F+Ouy-zXd!%n6R%e3a03uqznPazA!eq{(HoB&jd4a~E+Wtg{FtGPwJ~?ZB*-f|U-(r<6Hg zQUcIa4N<58>9@>Q94qX+i^!#)O*;;-r+mu@oT4;P%t51YM}1)Jr3zA1^(0fIR=zT- zT(v7-W&Z$w#)#y&g66$kcuOrc95>sTak1YSRF#Sm?FV+{x^eL}c+2NYGUlX%?H1GY zjkM{m@armY3|)cOcwA_)refT)Wy_l@jY#%%aayr$>!z&ZKK}rU$uJSQcB$9Q`9p>q zzQ9O9CnB_M2XXa)7=;Q#$Z$cZBjpy8714YWM|OS(?GjJ30;f9dvF><%hOnu2&tiC0 zdmpzD%V(YyPu2AOqLQsK2%MEmSn-z$9d<7Zn11&uU#n0VrKyhDgO+#cr)WEBK+l+# zCY{?)-YH^B0%jD=aFwOfPx%d>ePJphw|{PCbT&m*w@d0fd%n`xaRx=YYCljq7_VWr zXGe%L)3F?M`@~k;6EV=~-X_tAaTJGjZB-|vCEoIr;g}6{SLf#N(QC9aNI!xT?TJ1h z&K<{S;_|w@X=PqiR%(G(>Dm`sODq0&d zW)EaiyD`)s<9M3EVkwwIF*Gkm;rjkk17N#mWwuZjl@c4;^Xb#=O(PIk(n@9)0PDb4 zUq6pA)i~>#+yPQOT;rKUg(NWAKVKJkS~DWKO-Je-K>Eb^w!*Banw=QGMQnPG+Hn*t zHth?tRGg|C=IPM;;~yl;jW}Pm5oRb-7y1+!nm8kx=xMNm(j*lH2k@wC*Nz*`DJIAg z8Cnxhx0GMIEg4-Z3_nlMjzNrZwxF>eT`pyvW5$B$eZ>f4$>2O^c#6gA<*5ukY@$X} zxCXsJr6WSUl2B7MCZPC+#B=4g+QOzivXrm-sVvH@zzuVBP#QRcSe(CmrB^EaHH)%1Zc)0u};gXUE_kz-IJF}7b?Pf zmaixIhFNJO0x8pYry}i3yLEA-Fx~fK)~Bb}v}@z>URN3N=OomZRD#aM$6CgPbXi2e zkXVf$r#<0r?77qv%a(Dlhs%Om0}QX)o#W_#8^iIPyq`CdX#Lf3iDYGBJA0w3#W=Gl z5Jv4o0xm&XP;Js0thQwbs4?luk3W@1ByaPJCeabDe=%CoY**<@K;)^9a5DWwXoPmz z8JWvJ5zMQrM(rFV9ZYpH&{=_F5U7@Yi!QAH0GmgW?MWYK7Mc3FB**1Q=SY)@XI_oF zm(iXVZTNa>-9TM3LP!9pHG6Rjw|$vX zloFsAP$+M~h70=kT2hZx`IK3o;!eUjxN*p?S3@wiF_oEer%P(nr|fy@0C83gGnPtK z;32u}Iztq^Is&tZoz?3=3*0 znz>|V28tD`dU5ZI7mgvwpp}A3z25lu2ikl~WEXbL$DhIp>;lkd^^(c?<=YkiEwO<*6pb?OyHr6OhDYP0lrzOfiGh{%#iXFD2v1O>9; z+cHuYFfThf0Zfv1Ev0(H9in`xfk35`pd;t!3pbpCXa;1^Hk6H7go)D7R8qiz>iPl8 zQW~(`_K+R5G=5-h?}F1ZQBp`shVA*JUi4vM&n{vn0HvaXe|KH?f*Fc^&3C;Kzkdcxyp zC@evTZS#|7M5U|}k(Wj!b?el1>;U4+a^)#2CD4&p*YHDKy68|!YUY(2Ja;I%<)rQpi#XMz)5hhQpKmoOFn_q^o%Y?5f zbL0Y&32KKMepVEkE33xQE^2bjV8G=7YuLtldfc-?9;pF9xh!Zu)i1uf{56LA*1*if zd1=snAFL~)`#;mb_M2_({m=>4H12zpga zrI~9%%!M&Yub!V6ce;HeN-J7YkVyeadNah@cqw>U%(Z6;Bz~q2S}t2}dpe3lvQK&z z?fYv3m5I(^l?_J4$MX>07fNy&h?iD+RYouV0ae%*w4Z57(GFiI)}0@UX$w{>LQynJ zm~y#qF|~P)@a8(6PE3U%BlQhBY4M5gY%~2qRKi_J4ind!Za9TV>1nzpsXBrPaDT_Q z?+8}8B@0U}LbPXN(2Y9uXWA>_tNmbPT@(v;9G$EAz-+bH!48t_mk+szYylXH4kls> zl%tzKb@Ci?`>=}`LwH*96XwQ`8E~;i@QA(98RAoS*uCNOd-HV?29D*8}r1a^ar!m5B z#jP1;5KkMPr-&zqZHh%2hvOAHOBYntS*CiqjvYjGCs12-o}521ui(3E*{Mh=X6v^n zq1q1OYz-=MkhP#GKv6=6v&HFm7D;4FP)dOC@!6^Ii=1wa(JQX_We{jIpw<`tAz?I4 zPGqT+3+3ti#at_%T9lR4yMk*%&#O0QF*Y!^oT*Zl0(Brzxc>kyfO|d6RXC}KZeLK! zGzGsuh=bBjAPPdAPWx-vpV}I33CW)<5JG?zF6|1}=c7a}U>W7Fas%n8)FB!JyV2h7K~Ui4Tc6AtAhn(0Cyt-XGy#F9%>uUJ{dH?oNeLsf|k%s!*9 zc#{hBmv<2|T2LGe!STw zgZNILAHfa^7i*uHFQ6bp1>Jy?kS#}1s5*Bacvkdre)L0s&{_yOZunSr4aYU_)3afzyWl2B)go4Au;=TDD zpbhtL2}uNy)$r>I*h?F&N+~Q<31R-c_kd$aO@$LqW4FJwK%0#+)>HsFwfa+-1#{p2 zHYBk+@zM-mmdwCqb_L1lv{V52(pf0}*nbesO@_MrpuNF082~C3&>i}DM{}eFh9ioN z`-m5Q;r{?ug((G^y&vgVUWNu<%0W>Zxdd!u*$7ZZQZs7B{gDdz9`-Y4XIXHE4c4wy z+VDHW`qeIABQ{b+IQhg&rCClW#LAa7Ea0TEZ5g*4k0VnKzK^{lApZbvW~$JWpy~E_ z{djsfOwj8tpa^$h-&oEsOgA<{nbM{wN)kF&qz$)-vy{8^(q)XkBC6Gxb5?tXnCD-B*AvBF8$dKV1s1h468NlHn4+O~jwV_n#cu+fFE`Xm99 zMF+0&-M;Ef@)5W$r!U%@R-WiwnSUxm45j-iOQAqhF9VJnvu*$zuhJ5fNJ2|1^?+P# zABdZP-HNVOQY5eS0Q@%2&}!$of2L%H$*(N@e(-~HU-K6@dfJk5gZ}{IdzeO{Ye$8N z*Lb;~MP1sj9MnpxLsMTq{b4fCWmulgN7O%v?@0FXx0!1hO?E$ikY?(&8mUA(P>5e( zX7ssJGcZ!5|9`Q>-2&*oR!E0WcUqOXh)O_C&1v+y}^WxWr(dQkbPlfvB;yNK8NM! z4w&vHvLb2>$!9Gczz$E^2VHon3Sa{$0ZvCR{KWWLdQ~Yk8FGi{2>yD;TASp{nJ{RP zFo|b&Cqw7Bqclv)a%+3CUvl#MAd}NhqAB0k?p758eoO?qXOM)6} zohq)r?qHYbu~t>!kcBw$9r+tP8@iN&fDZb`Yv~f@U7biJd8Ly;GzVg?M!d0TBZILj zmX@1FIYNa4Y~8ngV?UO1`2C)Br)%nRrKd7agF+gn0)O5A0PXOF+z0B&L0ILk&anS#zt#MG*%E~BUC5oT1$ z_T&JS6pX+X7XT-bP9H#P8MVP`pEhcP5`}wU)rTX48_plMr6>qN11f8ypD)7`7fE=B z(Y&N3Dt{ckNv3Yy4}D^cyl_yEgpUig2E8Lgy=l;{{X~0KSjT>+%a{oU{aQnl;s&;+9dGa_xr;whYk#krDZ_e7cbYm2(e-y3Q?RM z1J=79JmU5BYbi+}*H(HH57Jj>OiBeGF2}aMaGQQ!$*U+-uzC~Jz#GcbJQARMDrW~u za5>rdgxqopS#MU{``Qh(H7o^pOBvTnYBj0Vz7WBRF+F^YN<*L&v<}2}X$=P0g^+W19Dc``meD;43MnA1K=r3>p`^#`l6K|K?F?V@)`evZ5_vk2!)##FG~ruR#U)wIK_MjS zM_1FZX=1H>BB~Mc}$ryU`Zr701{7!{{W3XW6BK@ z8!^wNluJjeK?`;uK8H&6)rBL=9r^2}fRm`JbNTtm3xA;5Kr8!-Dpg9g54}2U`aat? z;G7?4vdbX~DpJ^xO#vM?{MHlk&xa< zoUq|5GQ|pu(Y757YFK_zT)fi~%G?oC`*93+T+m8VP%;9=EWx?!3e7)EYX#gYp0a?F z2ISGWZrhk`yZsGRnUe@1^!-Corn+{G3h|tTk`RQaZwUC9y<)T!%TksfWYVBS&N2&0 zxDyR1Oern^E>9zGd}wyNNR~W1Y61M#6Yl(8e0*lEO#5li{T_7rN}B7o$FY+ z3tZYS6ErI=6iWx&zwH$6+m-w(R&oi@(c>J&xUzkjVJRhHZd5;5;(@8HVY3Z-RtZOl zgej_{PuLL|PbA!`__XER-lPQr0WMpJp<~6wObA&XCds#Vg<1IUOk!2rUwjM1;Y9&p zI>2`veIof>^inmO%HG2&GP0jHp8dh=8CCOmrd-s8D5+Vs>CW20TqiuL&g&$syEcum z<-mIH{<=Vm_W+s5DpH+CZ8DLtJH-6-y)-K(Cr($)2c1FVg9}*J=S0PSpy9u6VEI}PcXagR8CCjN0m$>;m=Q5^5~VDI z;?}=L9pgB+VnZfmw4j`;B!{C7-=sBJ@#!k6NdRby`F86Q@*f;Ui@ho$P#z+cXbDMT ze*Gbr2ww9SFFL^vGXlgFY3}U_mz>cyY`^MdB?%)kQb2apJt(cfCE>Q+daMRXOu0cL z+73Ya1Jr!sOWBvPZZMX=0*Ec3JoSbg0f$j724M;Qx)>FzJPP@t71oi0EO0P1<^-ZD&Gjh2T(5J+#2O*My$ z^6*Ad>dMaTP)mH{3cHapbJj^**=1hSvjMl@iREOaBWCn-Hb{_6*>5pUrGru2Y)2ev z`dCv4qX3HT$(vn44x7bkEtstCj z3OD}%tdgTKGZpN)2VZnETsXRFO>2EDlGVX$9;J_I2kPy*Bgr(cV-1h-pqfM!&` zvd#xyAO-b{vXFI8BV(}p!-azOt90WuDQckoC5xU(;g|?JdSU{UGJU3Ij8^%@(}J_0 z<_^T_+=JWe8crQrjI_*{nve=pzjFI-0fJqk^cOP>&Y05_u=%KwPQ>c}009Opc%gEV zW%!ksVb9m;7C*0)2@544)x=x7W=VX>Whm3DeEZTI#Dbe_`Glw@hh9hJAbr0Qp%Xny zl1$Yk5D#|q+p~y$nkO1k^{knz3Gl0Q3Ohk$0}?I-NdT<)$ON@m zk*D3Yj&0MyXQ_G!SHzdPy|jW}tYI$M=?O?t1qyWmL03Euyzv$D!SU9UdP-7~a)*6J z{{XQ3-aN5gB21vAtHw!n3bXCxV?43?MOI;%B{gC{#BtZW7gj3u?vxRkG;yb&C-;Np z593PMprk2F3eHe-F%|P4NOr?Gh^|mj@TH&c-VlG_LYAVnIn?z(l!u!YyeR=GDN2$u z*G|o+c*EUQgEos*i9RWT3S7ZgI}fZSBNo|ZPgkp|0H6Ya{EyNS{UF^k^Mfxkj*B9_ zh#Lpdnwtnaa(XK$mMs$$qUmsv$5G5Lv&F1Yjx%KmQ9C6gQlq2t)jUNjiv~WHqEK~aTf7)r23E>+9lKtQ@|s35;mZ1zED zT>k)6oWLND8q?7*u zmp0^$6qoRdC4n9v3r*<4Vq}1cX#!zME_VT|rma?ex7Hr|AIp<4#2 zC`y!};v@vqZ_k`_SAyQQ@ zDGYOpZa+S8md(T=KsXt_k^rmne;mZxe@DCxa!R!3RN=XyuBT5ZgVIF1EUP+!LQoT- zXU)KENbLnK{4+XTozpMISh;rmXwPq~GitO>NG>=_Q7!WZn!?_Wm^}gDG)c{Fv?L;j z)k`9wCql-Ly>uHFV{Z{-H7;tD<%ys_56!x~Tg8)RB1E}tRHQLbOZbVV+%EJZXy(pZtNiQKnuWkrG&} zKhvP)N>1l3C^w+ntz$XIm+EJySF13q0lDgU+AO}yn9mofPIJ(0xg9&u$9O8{w9k}h zft?wdASsGjoRO(+cA<=y8D0rylya22*1mA-=ws6vl7v}mmm$`m*|QpS$l4LFJ0;}J z8}#1r#not#f{CVvsUVLN)}vxK*t_!;FAD-eDpHDj=ki(GeHWRFGo~%Xv+U@#Gq8PtBezYA@%DD~ z(xzI{kfY5jz}R=8(ldWZRu5Sv(_P5fx)?Q#EvQV)tV-8JfafUsK7{IMb`4J#&H~Pa zNh3K)MqyBjalL;vjX7AE8MXnOq{?1okhdk@!jYip`X6*7<7x9|EF~(;LC~LTf@5^_ zV}@l(kfhI6X@x|L+w#?74-HP6u3xqb6q(+&Zc2;gPQ&a>Wg*h85W=}ZE7htr9b-ki zWT+=9SOqWxbpg*2Ztc6#YYvhnpc*i8q4~U1ye11YG zeUN_}v}qV_@(X6D0lWVI5tmvmfx;3PQO2Nyue?UHgsk$?00+5h6Ts!Pr&u$xqbfx! zq(X}j2Q_Lv!Y?XYlGPf)6DgCY^U^OF7VR>0cdb~!`L=Mx0p|xT5>B5UkxJ5yiKfj8 z!vj>EK_j2qD|-Gp;x5`dX`zY}5#_`0(lS~V)YEfV{b-*<(}?A3ZvOx%p*nRB&Jvav zI-|3meB+gMeuHSNlljSs5jqVzkSZ%KU*^Uw0M++IQw#gxp$aAWKA)UKa}}#SH|8u( zp4+!jVuamUy#DbN@e1a-Vtk@R%F%;;BiS+{)PT=NJAUwu6r_Ohdc`iCd5Wt~oLxf2 zIp3sIsH-=0p_r+?k*6`#=2>^}kJI_2Lnx6!NBG2-f^rO@oYmu5=!2~mim7CZ&~r*T z@AT^tO`dYo`HJ_7^hn#|9)!CMB27J+Y>*nSU*Yp5=gUu!ptl zg3MUC@fw4}!K*sJR#Iy~PcPO4-7)~JLsXt()!w%x@>o9Y4K@hcuVR%H09~7~KUg7$ z72*l40rUOgT_-x+mL#$0+rusuS$T!Mkwe>mIIcAoD_xUb&_;pCha2qs2><{!gnS<` z8Ol2AugBdDHmk&)8%WkBfm*GOqy8g70j(q;sOIrdj-F9|YVw0h)+t_d5$cND#i8U5 zoW$}}4!tcI)08m;gV($^-Lt>6!lfa^XZ9OQld#Zz%rjjR3lUu@)-&R(4)}J^4!+XI zyhnIeV3##VVq50`Zkur#3D%(Y=>#tOP|wH;r$_n6M67H#EF`6L(7W#E^GFMJTWX+n zG$W_+6Q*esCIg{j2i7Rb3{K^>;BghHkS5^*U7?Z=RUL%`o{(18Z8B|XQ@TwQ+m1ev z7EI<^S?H~PpLjWoY#EX!57Hd|-Ju(~(}cT9R-a~P!6)a`bb7=R=6ah!Nj?QRZu%1x ztX8zml!XeEE9<{%>&#uovU3EiYLFarr680b#P$-Eq=$2%6sLX|zn5rb{{XnskePsL zGR#L&OvH1~I-Q_p>Y+MXRtpq?uEYxdb?FrB>LnpT&p*FNUm;+>2m<~kR2m(KP%+|B~7bz{Al9EYBFX8ppf)EM^W&D zPZVsn)dEiL#ri`8+s8UtnZtI0_@>R`6Oscj+XFSWW)*sd z))W+iPXj_Z8$-Rgx@%SxXj@f}#NbfUIed}P!hl*VS!N1Tnz0>Vh3|I)fS}CPVZP8# z(`WFJt8M$m`>wgRhv5P* z3lK!qWegw0MuE5Uq(9xrO476gs$6qQ{o!!q^e-lBcHZVir87Xva}SQR+;lt$+pVM4 zOD#}*NgX=BxDL^VUN&6HQ<|ku?%FiG35gXlNEu6^_l-Eq6Uyn64II+cl`@N*pzb{B zT^M(T*)|}Y^4nEr0OJ0u6>berek0WI_%kbypPObbSwRF1L+#h;4_9oI z9hmO|F1x*$7-F&AsRzGU^`yw)<#lRJ+RQ`bT(lMfF~Z0m2Cnr}GdJNprnK1(}|i zi*O=j%_-g9f-|*Clcj;D=UA^c+QF)8v~gx4pjExXAYA4<6UNaRaWY)=;BORf3n*tM zy<@9ounv#L(4}s?)iFRdA6_DPa*eog(;b#tTS!^I?=KU3-WqJu&Rn4AH2vTW^<)Jk z5mqns@{F&e{wPYaOHzDCcECXQ6+u5W#m{ z$eSny9F7^9z2FV!d&^J?Q3@c3JRiqN3LtkJ;*z2Nou(@4^%Sxm%%UNa=n9{nM9`@<6n$Q0$6lUMVL!f|uU zOzB8m&P?po4@t0u>9N?u(cgUtGBzSl&!Q^SYafz*#i!99Q zFDRcLU4i{RWvf__amTn_{8H2oRRYjP#dw9wD0;In-0ty94<=;UL2|($m)MXvJ-)Cy zS{`bOPlz8DQLp0>NM<#3%t9Vgv}bY8?a~!5Ye)Ao6%SVQ{{Y+b^0A;MLM9<3C5Y5D zVF?#0T*YOsRd2sfC|sa2U3Wna2uTIK$8X{>?@YL9Qj~p4mX(4OlAVKx&8v=$!P+;A zonQbN)%t>1v@u@TeG}49rUHZkLjM4pXdqO-MN=i9WFWOhfH~w1`J`u+dnxM< z-yui=X&N*AOlKFp{;M6V6gibLhOWxh$3yTf4HrF`6XmHVG`Xmvl%LW@{XwqVzc4Ot z4VN&FSfwbW7J33tP20$PBJ8-6Wz%`0a!5*)l0%YouBJ1q;{(j~g=$b#zDys&7XwTv z1;f-5-a;;8`!vw9CHnyybvpihwk+$hFM3VGK9A%kXAiC=@;#mf&%h*lm!}&cymuPq%T-+0INw@O9d7ona0ogM~3Ux(hvzCBq%jE1LS^j zUeeF5Oiq=R%CuCM1P5gF9JBBC0c#Xb^#lt!$_cK)wT;u~DpHN$WDur%J&ZzvX+y>_uQn%1C7fEcxa z4fr|{_jSOjqajvRJx@RUzYHK_JCbFZUQ*i89i(6##P(ky;Lq zwP*vk!XIwy{UISiiwc2O{(8nAV6uAs2u&D)t9=Ywx$Y_QW>IP~@}2e5T5b1-qL}ed zq13Hvw4sBNpxV}~-gO-Igy|O_t0roaMpXnU4XS_0Z>wodc#R_K#n~mY=7lqa=lW^ebt#YNCqPc{hjw9UMsP}2 zKz|Z?jY0S7IfMA43d)uOn51eCCKTNd*UgzpD_Kj8Uvm6>#?UI}$E#YsT1LP*)~`>6 zTAV{9nMs?MGRreC;tAUDl!PZTQtI}S-=d!v>srGijjsbulnT%ss-%Nay&~<;K4KYj z0a9Io8-MN7v_>(^$I7vlB8n9!zi*^DVcF;-#Ge5!2Oe->(q1L>*ku(Za@Hh}z~u0Q z{!S_@K>EJ$k#gT;ttBN{R!h5%#kM>b&n zZyRq_a>)|iIJE@&spYgF^U?ZzVXAf3l9d_&H98EZNmU3q!#Vac+h0r-8 zf2Y0z;CyPS#7H{3rAJbp0i$gg-dS;Tk4@t3#3o`~Y#8-D1XTY3pUgr^N=y6UMOVVC z%1VM*KacO!b%s>p8CHf;0CB5qV{egSjw?*T<3aHaw?DXrYxdBkNO_s49Z#aVpRj1r zX4p=oKVClZ<*LsuN%d<;%BK&*!?WcR>49M^b3V_Q$_iRt!b9o)E!%Bijs5AdD`22y zKA~O~BlAt8Pq2DFOu9-)1p8DK>gP|*AU-nmBPw!Alyb}=fg18h!ZG9Hyk;)l2*6m` za|)Ce=-H0^9wSM*QYq^L6$+Q2j3WbKwOK6!NI%<|LaqpX4<>~6ji&Xp%n3Ad&Imd- z<}``qmi+$OT^t^d^74#=SEL15?I2Am^-~q8{Rh1r_0%yC=W^l$Xiim~$ReXdq+7&T z5=6uqb5ax(DZ4(5b#bjXgqUQp-ZEw-MJvo%*qRZ)Vm-zp^=Mda_8XB3evI&H?CzY| z*!W*`{{XS)LD%J?T)1yCl%;rke4?jn-DWt_?Odsem?)Ho(u1eo3Sq2twE_|<+8>zc zVebCAK}yoFl~Iw?mhZd5mLJ2Y&qfbJ(jE<1!`Lh)MA_M#oXTck3E&R(>lv;ezb6^l zR^TYLH*O<-x@DqVwaO$ExpxjLtLsS2uSnMO1bCY-8a!0!)n=tC061pbtOd4V&seWk z;eh>GkaqKk@b$4JMTyEZeW3mQWGY5vnvZ3Uy&=*e+Ac}AeBf2%lQy}Fl%%~LwByUH zIZL=bXcGdmlTp8uaBIP=SH4oE$r9%3;MOc%3tgU3P*1E#s6&@w)))%DE|65Ds1(y( zzmD;iSuBf@IZAxth~c`9tp_h3O7ratSd$>DU>pp*l6W1QmZu7Lq{~o3!sRH2F0fm= zQW@NC?DUK|`sm|BxUW>K1*gSURWvqj=Nq zTS}aO<2HfYSkK4h`l{u}?C)g1p3r56BCJN8ytIQC`0x~wm{Gt#Bgl-o7lD&K<}g># zvDfcd(IsMOYe6N00&7Zq{n63Ko}~@Zh0>x-k>VpmO#^hU$KAAKHv4+hZ}mhiBB^ij zI~t#4v11JQN75RNp-ED*q!LheA@m3F{GnIUb|8CFXCwd+8Aqni)4t$FcJuYV z0sLIK@@IXaQyXAYXkwLRQfivBk+Jfp;D8u&9n4aMwkD2{C<)k}b%$#ms%iF;00UkO zT)PwMvwN!x%#|^eSeFdVUWbpv1nQL_!iKU%D)VwU|h zJU-B+dtlVeNJ{1uBo{5I{i2e{?(AFYrxU6aTyD;5UoXdv`sB5ta>BzDkO|(jcY3(| z)-ilvfTbXhRr(B_Ey@y~X!SaF1X7jq zha69BOshC5pe>~c{&Jriuev=ue*Tr(;1vQmSK>uD9Y75{_wpz)QqQZ4LEo$ z&>p-hRO`$O)gWuy2iR}%Eo0WDL5T`*e;ar|bx2xeh3b*1dcWIfmi8G}Eox;2hEhnV z2i$&d4@33oc%=ynO;FAN)VxV?Uvkus?i4Ct_^z+r#R%I-O~;mzE_|GX32N|}dj}M6 zi*V*Ay)e4M3XqKCvjA!|+d}#nn@ssO<&l&LKqNb!80qC7Jo;P0R*5s0F^QC=45~-z zJx2$a(C!P~Y`K9eV39=Sol`I#z~Ir3W8T7dd^8Po2FR;yLprDJ1&D zCERaKYX$JuEmBvN+`fguZGi`PHR$&UiBqQfoii3d>q@?wHo~R}V(b$vS`#o37*r2s z`cvb-x-qkF%CACkWuj%Qr6>vnF)ARljXE>5Iim?A$wL}}<9az7`5wXuV0o!2DGY1* z+kpk|i<~N592ar+Fy|fr0B^Ma02oiC`!vNP)S_CJst}P-kQs}(*I@PR@VWm0Xxcyf zfd2sMjBM7?H2^3|dh1i0k0HawkNKIu{mnk%_JwBqInN&A>yA`{REdBoEOM&3j~zUz ztSs7b+`}nL%0*cNXWzKqCB+v2UUlbE!8wRik`Dp&?WYh28{Y@|WXhJ2n7f_Q8(MBQ zYW!lY#YnyA;>hb<>7WysWX)G6r{hEQ`(T?fCn|zjm}#!AYqeR2esL@lc+UkWQWUeO zQh4D>qZ$r}rh`bktoEs{NeS2_>*og=jzs)phvyl92T~H%2XfB;02sM<*(FK@0GgWe z{dkFQYpQgrl@bAU7ohLb31Qo~T6{`EKpcDzP*3KtW}ft(=fRnpVv16dXputQcVh6j zh^Nc5%+CH7DGcrJ>B)zC*3g70GLlr_RPZ@JD6cwHwS)1>w z74dt=>|vJ?+>#S1M1uP{rfuK15k$|Im?~NVE30T=HaNYeOh!bMles(h?+$u0T$|EF zqE?W7U?qvDFG5s!0fv06nMVw!?n$q1tW)ldTK;baaAnKt zmZDVYYEq!?@fJ9}(3Iv3c_x5y6(&N~O?P2Lg@RM#16|X(en)6*y0BEqX%n2Wc4Je~ zwm&GVbYc;iDqCxyI`kgn4>s&xl_Agw0<_>m4bm52P3M8fYBo2>Vp+MqkvZx7A2CjAL(7|T3 zO`9zXQ!hFnw_hknx7&(lAOI9X@*VYdByqdL(~xq{jb^BLWtUN+g#`|;`0;w@#EX=o zClv&$rRrbLLA*R&k}}ImN>f^zX#4#{P{&vl&nZl{aK%OSN%oILbTlxmH26OHlQv?A z05_Q@_vAs_=p+)L2~|4z585hR_!SmL2@XgMwHG>jhi#&j^?9zK02-aoFY$|>lD#tZ zDIl-`s8zp4gfB=Ki7F{nut619QaEiPn$7DKEUIX59h=%w{{UT$9M|m$HVY_JG18IAjY6soEzD>|Ji*J#U?leJFT6suab8UXBh*baY~H*i`eEC*6RQP6AFGuu7z zrRA0uLq-3{077%a=0AY6l4ebNRn`=HT>(h2}}j zauY+(9i!Qn^bFt+6Fmdhk<21p7NaiEGa#um4!SpetMG~;3}<}@GYWD9c#cu+Fs7Q* zSnkj15?PcMYDlL~+6mt>kg1H8Y`SWP{e>WP@r5L&U$P%kt_Mhqzep59Du5l=So4Vt<-BQfJGIctYh)-v%HjU{1NLi zn&lKHLOXWb_J|aK|&b3g%%{{R)=#FrpsIwZ4(*QZ)*7gIY8#8Q(vf^=dtarwjxx#t-t zDrTuAA=`BURu2w1BMHh_D=Sja?x|yUuDeH9r=vMyXRb3-VQjHp_R`%O}p`HrHG8eON*N-Y2ttc0Oj=%P;Jq&Qtz zK1H1-SOBnR*WKm$K^l5b$}vwxc3HAjl47$dULbc%d^gbajqcBP%$k&`ZXSX7K5WOM5LdLJ;aCkY+O_3_K|V^--&%lfxMKOLbWKeHWSxpqY7G zYOZ^jt3KN>5EH(&`a)Ntyem7@y2%@Oxz?XyrveII$(rE_J}ldB7Mx$iH;DC13Muwj zf@tughV5!hw0ge~bN>LZRzEmruwdDFRI5NLQ6<4TaNmXr3uT^4LQ;@&?ZAg3l3Oe( znt&8ox4Hw`{Tqd)lCTnY>)*TtzI`DwiZYt2oVOoHH+SB}Bm(6m1C$**_V~s1=^=KH zMWqZ7u*cdbaodx;7n^R#lqF?=01>uP^3s6TAhu%^%uxXQA&YeS!Y`yuRD&gGDx#9k zHSN%yBRkN*yYCySeBW0gNC^%d$uvIEH5zCs#_=txeWFPd5};T%YO`|O#xa0#7z>${ zx{G-s+uvU|=^FkP#0F~pT*ZW;zgGPRUb_zB6aco5O{Ao$ML>dTphKPVg3;a6>4_k|N3V@J zW_CSu`b0LOl!TuZDXM&-{>g_WNy@p7q5;a4YjqWODd-OG)3rvh8tAjK%&hgw;J<~AjDJ3G{J%z4VvrJ$AKC}m^ZWOS z4j8h_8NFU+3`6MK4IEY;eV53EF>=ryO9=qcd%suM{h|K=2x5fJm6azxM@@OxPTF^j z3({SJWXZuYQm_di2k-!Y%a+hTt7zk6fa`b1tq!h7D zK->0+Ex`&)5=lR&M(4A@`{Mm7BqohQbb#OTs?d0qvDzAbBgwjxBngNaKswVi?oUmt z2Ge>51izlJmpHFe;w_*w^M(6PD_K@RH7&g<^opFY{w8dDe1cGdrV2VIbEtmRtZ{6- zCCW>!KqOR`)4swpOXkrqPC-wI^{9QeI-MKu4fan(R;xl3wUnbVsx{4~<%a%G2eMtY zV|f8Y%u-Yc8AA^yJw;!?28CnUQimWF1LYiIoFthHl8~ZCpX1NV zNGpIa30j_5e+#Q%2cGXwgiqROuwEK7CF8Bs4(RH^9A?4EkPB9Zpaube<+q{^7G2`Wh-(_LTP zNXPM<)ykTgsF)R;F-1n(CzJ84IC@;RO6ij?w3!j0Y~!Fif8?lFkyb z?2ZKuL(ze7OivYB$gi8R3IRn5NhYO;etI--7-P}Bnsu5)*>cIs7^`r1rnz3N<}{6G z(yj)wE=;5Vkdyen8v;wsF zQ_tY$C*!KN1Nt7hWZA6B6C2j76{*N7B+xn7HiK>Tk1+lxM4a-aIQD>jpWxkN=HE)TlP1wIX_!-;fCEPww+%}E(9+TGY+iz;C@2L7 zODdiooO#AAh%r>;%vw;kPqfM0eGDyMSgC4BS@9_>b>Bxk`G{A;*6Gt!x=}={{fR#) ze;xKdO?Gdjb>taTNMIdXQl^?7@TquXqM||ZJ174DV0h!6ARNnra-1RDdqL^%8u>w7 zJ%Wm+B&;wCMLA3Oz2U?u#zkxDKS8(&a%B41go7}6Ws^V#l`KP5hf+?k9~WW&0AFa# z>=Escksaap5#LM6EFzu|;8D^59$#1mWUwhpajQ8cz&#(3@p_apX3Qxe!9Wgk7GO3H z30KYP5@`C2%G)o|p!O#-62Xg_(D;1MUa+rs*-)~5WXfqu)apJz2)Rk1Trxpo;DW`; z&{4lS#*uMbKqJMz+IdDnE=r_;0ezT!{KG@;4!=+`f*<`&J~4WZO@hfe*y{V}(0#)V zO(UD$afpR!Hl&#v_=p`u@f( zIEh_7@#(YmuD)DHvfJOZOD4|bfv^x{Q^ZUCint8|TRO+zv zk7Xg4e0eaf5)4@fga`7DWGU2J^oKvRK`;b|C8Qo+Pc9hW4k)ebsm6u!xV|- z64jehD9{E*kJsTAZ4=F3O^4DdbX8*sTQcTSo$`>L=W_qmq*FIVsR?uF|e1w7se znf?)8Y9mfH79+i_Kn-H8{I;{CHoBeSt?sIUT8N7j+y4N!E|qGwf+njJaMXuMKR7dH znge^FRv09qM?tXq#kC5Km5Boud&Ak_KDxsdhI<<6s2jW?PMZCJABGrLc$Y%oKq=BR zl{Oz1R8&<@WJMV^f~14Khp>sRyI4>yxTC3+cZNf4 z_0j@^9IVyx4U7GuPVur3Nq1_9D2w4n)i+;y1Qr`VstN;xMsFv867vNu1Tp<5k+F-mdtuB$G}!a|>|=}0K?Eyqc>BY>rNoJu zfG1SYJqi z+AM4su>`l2Sea$Y7#bg!5iRR2=rtkAxQ@`LmDM`^;%^h(Ama-Qq^6*P=jI`b=2`Vg zpQctx`8S_fj}_U$LR6heuK9-%E)9@ZE_9F`IbA(ZA4tkfs@{vZmg^GdfDeUWC?55% zR@g*1O5f@yl(`65p)OhW`TQd7;c7Ev0HErWqE8_p=uXwInSob?voK~zWd_jb2M3<< zbsE%BJXH_=$@AEE)+9{w2qdvhe`5NEdVbKmcUyg8CCyL&0Ba#DeRy-zuXwkAAd*ha zM&23d{pWXyvWZ5g#Gjs8`~j>0yFa}tQkPt(UBMJ@Ciq0S4)n@>Qpp*dp<1!)PcNZp z@@0?J&r*xjvYSKH?e6K6GYRU;gZ315Ci-pZx4s|&!0Cbx%XqW zMSbu>#dUXWjZl z^0OL9Wu1tU91O&r^mv}dd2hGI5QX%ma0BV~J9dHgtNwCH$dnPvltCRpV*RP#o_o$l zvyQaOUL!yzjvLMZ3u>0JkO2CV2xiqjWlDlT<9_gC4qH@~Vic#L>l|GC*KyUy$Jb4^ z$7NDb0*+${IM&eB6l1QA`$Mgc&{HfaZJJ;yQU=oU(Sli@!9m zrf@|E&EO2{mQ=)6e^2U_VZ;-Y(uZjJar0QamkHYmklGakK3G;Z8qh zUbqyrJ1n+m>F(RC5WMe2p>pODN=lfsuX zbr&R_l=ApRPT^Khj;$omMEMI+O8~687TEG4YtqFse5EC7B&;}hVn*Evt3##7aLbxX zN`og^V`!`>SfT_0R zzMU&lNpnK|G-0#@u}&x?rjAKhoEw*N`m*GAf@(h zdl(gX->X#Pl>mld;;*}I)ZjoHn(+&?OaW{HSs;5MwF777D&f0&%+&<~KqZtY$$EE* z(==No=SWg~Ge18oAF%E`0YMWIK@=meJx6U|y_E@YSc9W;74dzNSOq3uii9gd4$ayO z0r;NYEVF%JAK986L{loL9EZ?`4ajk+i!*H^epO3L1nbrGVeyFXX{nuLN)`!FY{ydk zf&lpqG#gyOb}$gYyHnk{i^EdA&#Rd!LZL)EZPJ~h*Q88KFV*IjhF(@7^=>+|n7Mx8 zbrl5_mkGk*-%xYB6da&BMlafzL;?Q8K9nHD7by317FGrKmArO#+6W zpID(f;hkfeCdnD)C=AI#8aRFja8J??-`L(#l9FYCT@=nbnh)9>xOGu>B2TQN>&Ks; z-Y#AQ%uZ4X8dF_1g&XVAN0b+_64N$XvrPR!?soyc6s#@!KEI~SAuJP= zxkz{Zeeity!^NCAE`6S7tC$KNhR{|e5)C@E(^6xm+F$G zAtA!ZVO>;Qc3>M=cf~W*5CKwDbm`Qcyo^U_zEYVp%#PTv_!-JJ6-G?Wi zE_sLhn$ay_An4gtPUr2~D%_Jo(^`>Ff7Sw9($f_!C4)N+Lv7~@0h{O1?1_m8OF#Lf z=s4~9*dP70Z0rI~SE`@g`SXhRCH7=3M!p~gbV(YRdp5Mslv#8jmMu!N>RIVS1R{Ph zxR$wLY4K#K8@EnkucCVzR;7}*QdluN9atW(UXW_zw5dw-4{@ljbwBS)t&Q|S&Kwo9F!VnE8}x2!T* zr=X01Da}@;TfZEE8Fm(sY-w6j3W1=^Ur*=whm1LD^`0Or@pxX!lI{0?NvkhMa2}~A z{{Y21aqa@`+a_T`l#(^qb$0Cru{F+uwB{6I?CyC4z?7J~(fc%ypRP|lI5*Mrh3$wsK(a}c>Cs6J%7ZX-9rx29KOO_dE!4`cxFn{ax}H_G=2NOSbq}HyORFQl$96j$9QJEWFb;Qm_I#sFoWpw=q{;B z&{UVyd*H?(wJJdbf}|Z8vVqnwdOTD{A<0D@4G%w?LkIQ3WTN{L%I~k|NM23Kg*?yl z&~@N%PLN**A zj9ZXlixyyodgRTQ`b}GL!*q*xl(&{l!J3*hFG5mI9=i~=E@&S zAbuLLCR>2{R9y5tN4S(R1SyReYJjN zNn!02^P;!%;1A>$1hgtd#mWx4n!}KeBcLx((h z#2%0)Eeb-VrS#KpD0`-sW$IR7+R( z@?6sONz=4Bbc03IzxLOKQ|$!8bLfOjZb1jl^lUb=csk zMy%tK@zvjJ%2n@u#Ap6Fx_ZlREEPR->6nB5RVi2Rtv*oUb9y(*lj{~qFPkxQU#A>& zhpah&%Tkn7!0c7OJ)l-4p6k_+OZasFaSm{h$T-UZNRcF|E*C~SnEi#Wl+BcstS~K^ zOyRja?s$&zCE$>S`sA%ipd69++4K?5qwCi*rRagZ4&MEppz0Hw_YSJcrw!`MWtpRJ zJm8)Y#|WGiEFTyw=Tb(s-U#BG)?CRdmb0$M+`#ttKns@x`nFWR)M^Dh-?!yq{q&Rd zfkbapsp$okXHHj1bMTDX^u-}0%OIsvt6pbq!E9-Y1!93Ir$-^7ru`-IDwYa^OBwsPp6qEbKAdM3L+AfI_w9_;C%mX7DT$ zpG@hyv#xQ>0Y1vQHy=|99+EvBuFE`HWU1t-odi@J93BRzS_2Mj?RwUM z0hR#|@%z76M#MHGreIXGgytpk@_BDR!eh&3K3Ay$X(3JFP#X0olkThmlYN!U33d$S zKd7FDA1+9ewHvW(GP0Ja+x2-s+n&M*QWgS0I+I$$<;#C8Ob7(AH79P+<7v3FR38x) z8+U~aV(hpOkTu9^0jLL-+;PLj+jZ2Lp3o1VZT|poq(yX1@TCgW3Ksdn9H3T?`u6xk z=oN3`<^Ul8&8&=b&?+KTdE=mgu zfOhK@(c9*R@iAQSI>i!sU+t07*brU|quk z{{UFMBE^*>)c9Q0BS+uL3)lw2x1-IPyqQ5+1P$2zb^LQ*(&gB(k#fq0gn{~Bo?w-V z$>h zV`M3nl%#}$uN6pHcU4Q!5B=LS7d1 zu{O?-ge0#qa8AOz{DIaZ<+WJSF%7iY=M1EoVO}tIZ=uok`NiC#a&r}AOXhUy2VR{a zUgMWK)~{Gn6)!M4fA~YCXebP5wtGCV-~f$?<@Z0IC~+2GJlszz&rrsi(xXQ{{rW(= z+WhtYFVc`3l6I%&&?g^Z^dmBgfMCTMg#)7j{6`ojWVN9vKv7e%a99d?aKJ)TH{pCk zI%7$e24>7xzZE(iX%?@^)1|8-$Rsn6dE|Ym0kA~X%bhTQ&p>r9If(JNRKo9-V7U+N z4xROlEy!8flEr)^f|9Qh4CCb)XQUg>WXY(IftaXeV?YbOZmqA{JGt*ki8=CsT#$Ax zqxBz~MSCr%u6M4=Lboc`yCiUReN0cwtT`~lae6ljZ0(sQiW~aK}+nzP%JnTGGl1AUPBvZ@J~TisN|CW^u!K_0T1zV3<+>&#frH_55KEf6^8X zNF-FGkjJECzK?JkWR(K2L*@hqtUum3sZ`1Ws>Gf;K|r1&yo9-KrI!hCUCO)tbb+`s z;+Z&!vlacLR{sDldl9DEm<4&>2vAq8SA{_9p#0LD!8|kR4p*y0w_udeJ2#p5I~bij zG~#>OQV>!PK-!LgIoEf9mo^xapVp+Q3IU%`N$2)3gN`qR1uSM_py^rKgHOKnh0HJM zkV{EI-NDP^I`-s|SJoKDr8470`K+QmCo+f}1E!75elG@ZON}5p32gytlfX{B<1D&; zFw31YB(P;9)7BBIYW#x__Dkbj>Ir6Jq3V3;4n$!>P4P5O%P}fa3cNY$%GB3ZdbY-p za`wRHdXlBhBx(`>XYU5&5W0l|ABQc{9F6rY2}?@_gACeNo_Y5|ym#5?ZXLR1*`>M= z3W%z-BzLR`#2AFiBg5g;odtO99L~iGNKqn=*-6lHKW!mG{Itzj0YNHBJ{?`4wsrRA zCh<~JnIVDkF${g&#c;drJf>33{{U&5Avscv<>}CF=i?IGx2LU2lBY=qjQjJ_3*VE1 zfJsvY07={)J97i9*McM=N@SF=1n=x8_Z`J{a9 zZ1kjNT2U-GK~p8k_D5*guIb>dIuWbA14LLXe!8y|`tqd!;W`mj9gS({4Y!UaRKPZj z;~L^wez9r>i2wqf%uu@Vq_j&?jKJ;elIj3-+36E5AID>1!>U3Qsfww~q0`HV2Z^zc zw90n+Lam<@tjkWhTQEtdyvAjW{UIwlQkn-f?NUFOo_vmRHQKL5s$@zDG#I7x(=-bFeT0XN{aHhNvfKJcHDEsXExgvqGhWj z)cUC{qFClTn!7fX16b52<4JZ&B+F7#0LtQye>FdNTw&4tXXyjf{{UzJkdaP&xcNeD z-|1W=nW{-w`yBxvgcToQ{{S3t(e1X_sf?r&f@lJ^UZgZ0`BT}k{2ZKgCzLBTfEC>h-NiV916m6O_ z>|uIaCVyhgq@yuqOw@tHX{RJblqy-JS}iuj$Vn+dFF8q|K0{MeUL#S&UWO17pcR?X z;Rirlc%kUS0a`5T&b1{>TR$(UQ0HoO=mwc87G-)gRJ9^;US=#a7g^|1cBwp2bc6SvBN8OcN=OU| z3MKOL{UK-4b}3w$R3Iv>qo-Ga7zYR@*CkUe3RXZ}f|$~|TT$n%YxD*1z9UrhIvG_V z^kcu50ta8Vb)hO$*@;L|ERoY!=eKBAy>7o&qcYDma`GtXSQDWN8-ww= z%CqQ@bffM*@t1X^H(+a$OzFuFoTZdrj(36z zlv&83?d2b@tFBzX54A8b1zY@g_r+zAp6$h?W3&>K7j>&B58@`ed`ne;g4mfEWiWC} z56iBaYnbtW7%!_&(58 zJvqEt9G9k$-HUOsbn28ItRJi=;p+iX)FsSmjQR%&)uE9%Hd=r)SD4hYx9zi?Da<*z zws(m!#&tBLDMi@j1c%w0jmg?B;cMJULgr2$G$~3*B=FgL2l+!h{{TofSwGsBEi%YD z5d9tco?$x@*pq9SEg-R4{7hNXxgA;CuV{?>8oy`8vnC~^%TlHq?!X;t)Gf>v^kaAW z$@3LxO9T>_b+L`>`#ob&CBVdbE?A0HnH7SXG^eaZokx;y!c7 zR+~kxX`WpONo1ggexPe!u};&5?UO^KnUeDOOO60w;MBClyjroOCNiULHYSbi!K$ALxhE9PlzjD zexQhY!&Ve}pmoYTN>Hk@>Z(w76as>gl3qTMkeQQEH3Xy{nz-lT4kqKQPi2uT0G3J7 zA%!^sz5T^rH!nw5S_Ph5z?C{tOu>upeEQIIq-DO0FhXrpQD|C$mX&x=NhQXoL9KLn z*Ku|-Ae2dRa^*@=H4W2E9+7h4dnS5Co}X5wIQ4+OR-*$&DDqqYJmC;yMJ`wXv7@MJ z4&%3dDa2C5w!1;hCresVprK7vO#n-3dYEnWGw7ru%B9*9SHde8K8Z52JGzZ_CPL z;FOOD8kFjvzhkeI8_{641HqPgs8W>ER-FRbkV)||>&BE3a(&2&c7$X~Q7j68*}C)( z?||5M4NjL;EwddoEz1f)Oha_6R4t1zAlISm+8ia{Np^4SOqhj&P?ta&vHdMyjC`kR zzZSJBQW2VBfDC|hH(r{DrCL6xxo#Oi12t-xE0}fXkF;}vFwLC{oVilclbhO7Mq)ZW zLv)IVxWYXdTBca$70g1V0ypPJB+woPy7i4#>h!CeOvp2-BC6Gg`5v8OFZzNKf2STS zrDdoAIf1Xkk|4+ZKV8;wW-I|@kgxMo>hAjOv?~Q;_phX>mKpixDPmN_l0t#;DZ%iQ zLK#5Rvw1>(F}=m5N}5Zg{0Y;gdPdFZU(x>n{F0^0l!1^sK_HJ*oz9xovh?CIjBDto zW!8{@^QDnhHBwHGw)?h}dc)3(Sqd)Y4+8utI(656k+u3Nz$jV|g-9ZWL^uHG!(m50 zQI^@POSCKmf!%zSM?mE!>r?`q#*S;+mL}^Sz{s0LcSj#KX)mSph4UN~o5g z>&HkLClRADPGFRR!99NQJ*HQLtb*!t5Oo7$creYRZM7*cmDurdc)XhGeKO^q5yD^TBA>V0l=5sq}tRHmQW-Y zESBIO%Eczep=-FnIf)HN`X2H6z@&#Ft)Sn$FXOx6IZ^_G6~pV&y&x6SdZ>>9$_+}0 zsck^$OKf8AEKHp@JCgDw4vgI);=y^H$72|V4#W>ds8rGD&9`5SX_tNeos{X^4P#C` zkzv_0pGd1~m0yo|pqN%UD zhi2oSym~}HnRTTc_>Ulbj7^|Y!(+@ve{mLPtO|YzkJl8A3He9qGWGYyyh${M1UPZ^ zk8dkk%a=g)9K_Nm3UD^&DPA)(d72I)s$!B9D0J454E6iRxW$>MV18d%uPRM?Yx(kw zmWJ_|LTE`*`9~6L;BedWOhY{dN?>cS*m7TuqG@s)O&d-Q@C4>qCEC36AEr#*sibng zky_hp^XUM72&?W3{?Xl>x~f=f=UDDiY4nJcS`nq6H#Ig9)S1DQ<6neUl8y-xA|*p5 zlv;Q+5hUACU>ds};;L5?`oUM%kd@oyL92}6IcEsrTVgKu&0!DZyq3ckJAMPy6Lx^PKBH>mPtsX?H%4JAdY%y z(KZy6`JT0>NUeCO)UJk|j9m0zXs1pNcQk^Mtv&|=q5;b~KVsZLiAtgCq)in4g>60n zUuHe}MT^p4%4lkJ5VeLTvU_XxgBPWt(4o=er;X`_ouQhSkVkfcST1|Z2U40I!YkQQ z^3uYDd!k$wFeJ@M)RUBQDHK&k{z1;*Hua9KImEl}^m>@Nco!|soP)#+li*fjE2Hra zkhRFKR(%=^p$lkTHMES3KNQ}2D^?c$=VI!b^lLa3ov4#J%@Fea(q z)>5f-)DJd1c|;aVPpp!uD$rCC9Hh6%?(kMh*@!L(+vW6%M($_IJS%o%q1<%yfaM0m z6Mb6pDEL)RKiqs`^{UVR0Fml6NNSEpZTzE)eVUnrI!k-EG3Bmd_KDPKw_kiC&}2#3 z+#MbZ+2=YErgA80T2PNKjUZv$L0x$K=>{y0>MCIDNbCEIE#`k z!l@#hYRBu}$_LJ~mIrWL^dD&JGbku-E7R`*VjE<YEGYm04_>?1q-T?DC1oq@=brt0v_9N6tjQ@= z8maSwQ^NJ(AcTbx?2vuX(Py=K#U(+8WQQDvp^Ep6gp?>93%m%!_MEvva>a)|1Rkg# zwo4gVI-u&>^Azl9DJ457)bRU3=}HRB8m#Zf=8zc6%;Q2eJ>lNd6tAnX{QRUa-1m-oc~7hm)3Q)93W1OV6U604S0t!7Vrx8I`A_=7% z-`WXCOR;9>_la$)+=>AX$xYqPwrAcQE|iWQ6mG?a>kT(uumIm3yGFb^Pbg-wNt;H7Uq|2pdY1T%(~e zR?&!7LpFz2fwufaztyK4G!GcfCZuR6e{JBD5 z-uSaHAujs=01$_5Qq<)|f#mDu?}+8k;=VjYZ%g7zL$i~kLXo#Dng9Vmh9@%6Dplh6 zMQOIKJezpt<Q7kJeHz(FP*Gxk zHjZBxK3w_Dba^;V99pI4Gr$QAMsDAIVHVqH(1IN#v+WGHp3R&kv&x#cSa&t#zN~&wKOA8clbX)8WI$z0{{S9mh$rirEQeU<>+%Dir3jM{zbNx zW7#tjoT~P>A0gf-S}@g;(D~4jm~I}lr`A4pzpm-_dFzsl!2pti?lO<@CX`hgv}0Vx zCzZTrs!e?tZ?UK{^8k`)U*QHsIRDt31JzwG7_KO}XDn?*4 zB#Hs3JGV$wwOQ=*5M|mDl9B<;)k*2NYUuIR&32|jNRydpDqsqU$~rrm(mE$h>g~v| znUfXlr9?C8{{Uxz{*>^dr%ItEL&W1}>*oh-wsaNf#OfX_+HEUIB8P{9oau~Ud`&*Y zM7vIOpMvmW!uK9MUCREf6>I`3F zu?3uH4LF2Jcs6yIOU@BCT8>nZU1qz3QQogsjIRAFWoef`rNqogCRxneyApUUUq9kh z+l=oP`W^>C%td!tQ zdUQL((k}7@Iy3hC$4 z584iNk`fh|FmUWYI*7&X;Xy=ZB~D1#d-`>YSSKFNGcqaDEI1Fj-M0Hd^2?MDTkl_2 zFv}_fFr(-|Y7L*`6eME5RH2mRFTFt<{3{JN<;g9=iZeHeKFf{Cm(mD8kJXylm z?6sr?9I6#Bqd;rZFIFO31td^E$IcZooze&dCET&?`L2xzF*Uo@x{v~sLOCz5=U%bm zE%}fXLl$6$Y@l!ZYXDWVdOnvnSV)!-rskgi0FJRO#ezLrg1`eSm*ur>k4J`FGix(E zDIxZMlw4hnK`TnZ1UpuR<3O)Cp+t~#272r6(c?6;$XuIFWRRTX>84)2bdGJfg?3r2 zK`DLeE37u!CrGtR1tcWpBo@l9sq3UgKcfZjhZQj?GS+i7LQNaL;i8%31swUD zzMfI4U`y*XvX@q52CnV6=zndX52QOchcZ$`!BX0uo^d!yrCL(7gsFm&QQT;H^V|r` z@9RNK`lzU_*c}I6E9CxBpkaJAsj`H{f|9>wC4qh$r!o3<$tV&Pm1+Ts^$9zrC#4*n z;n{G>n0p@!I`XWm$524jgQrH;8SzJ~Qjutul18c^^UuwpR~y(;l_5w2KF?82{n4ml zTY42BR;_mTbX}jPJ}1v0=5#%oWS{UXWVVV3}u0n<8Kp@gR)B zM`GPP#b5>7>4^>#Fo)4aATS{Bt9E#IC$!~Pu*+DO$Wts4O_jl8yKxpVJ|k45%tFwj zR+e@oKhVQ1-RWM%DQ0JZQwXC6$~n;aQUfO*A#*cOp+u0S2Nia4^KPAB>ph>MH>25h zlz(jrCow87P>}Sg(AP-Y?i*tUo8V9bT6`gG7r=0&C7=9jQNs%Rqwv1XpkkgsHW!T5O-Wwgd7q&cr)3wV<2ogn6xrWIjdCvL_DW}hNbRFFv& zDh^x7R-2I;9uK}fYJa&^5xAlJ_xs?0vxV_$)}$GyH8pBKC#KNzc-lgd;$V|Th0Ljw*NHu=o8 z%2^>nikx$|dO0<(4-j7nAiTe2*+5XKy8I#w#_c4^n^e>}8nq~{ln_IPTXr5p1rxrS zd(2d|N(rKz1EJfGd=#_KN`TCKj{U!QirHl=Nd-O=qIdk>5%fUDS8}BTl}9N(*ubeb zf|DszCd*k!IYNMEBo=P8hr7q-$yy^+~^@_J_lP@w?;UQHa*!2hH1~2Pet5me2xx#XlZB55r z9JD_}PEswxay?=WgHNxVC|@flGFZD&;-{ngWa$brR+3UZm7WgJdmW?MT(vWMKz?uZ zg8CwD(zftuPdjooxq8DJjfSNnkd9Pta~*rcIfZoq$oQh-#C+SB1q{td_Y&3Q$biF{{ZegFdsO-{{S}Q#+^6Z!gYfZ6163CAlHxDFIz8X z-(5QPf*95JhmmMNE)sQdsPFHNf8ocf^jGwCrCH{*YySYQO5K9R2OR|~)SACATppg>SWaLmQp=pR0oZi%>kKmQ45T4$0ibTWhWrp> zWv$RM(ON$}KX}hC>57)T#cx`Tf#_lnT9yI2YcxcQp4Vny=5j4m2d?-zj*f& zW0ZlE67Q9VCvM$#f?XImnLa82$9}PHU9eTf2K~MfHVL*Na)?*7ooMx?du;^oLKQ5i zr63J}uMg*}QT-FKmGLYi`+|xGDGjLUN^Ryf(4gULGc|J6K2xVql${RlM%)Jh`mhk; z=?Br^v`8unAxRmM+5xYKIBSaiP14%Dp(`kh|0zq5q9?RJrs zR)mp}OwM%YsNYX?X%|nVM2Ta@JOp@uD+F<_9utFtNdq^K9-{A&!vc-oc7>=$!e6iaAsV>22C3-1KrZ#ab4UCM0^n`heJf5Yb`8a%UmIXAD91f#7cm z-i|H4tu9?a>N!c!_HH7sEU>0b;JH;w>cAa&C(n$Ay^900#n$=$qJ$%ev zK9ZzNN@Xbe$Ds-uK8*;TnI%tMnPnSPknRBElNgp7#sy_Qv0)`8hRS|fzMR6h<2BLa z@y=296^6!@%F4-QIzxd&v}2R5DU#-`Do{$2s#S>(4cHF+o9f9aD$$fjv^ss`yUOWJ zqIPAZfVN5h03zCinz8t^#M$!gpZ;zZXHS@d7HASiWjoW$xGx&D!+U2+R+j_k6|LAt zQc_ZYS+t`#6>X0X3HW}|K2rTupz_Or4MIlh1nILic%(Tnt=5liz7kCo%qt$Q{89ru zfm@9Km0-~7Tla-~j|qCj zs7-PTk3z?8kyFvF;<>X_oaC|JPu-(OpI|;FWY(OM4sw^cctyDIs-?|3s0svDfM|Qe z{f^wMiqst(^x6>@jK!LH6LTp3peQ~2LlnGcDr$*xLWl_z4dfs9=?_LAIOSfjAwbo~ zN^!T!8%@%Qp(;rsPe>hkT(V|MDnd?lk85H^@mmdB)>M!Wgnk$_f^ps)D+Mk?D0sJU zToKu+47ghFTBZ8A#3-Z&JCRS1YJ7m~cP?WUCcF-#a|AsZPb-wCIhCO%nNRH!s3~Q) zD4eMPAuIsVnk{lf8A)~;}wP%f8i-|CHP#-)F|+G zZ@ptVw@8|mOG#1jtaCu{{cXGi!{Q@Pe;;Ae5^sA_^LSL`77y|fJgnY|G+a@IWEp8f z78Ip6W5MU&QQ87rw<;xO%TuGBOKwkHX{VeaUN*^|xhQgltJ+X6l`XGE_tqJ2i$IZP zQ9|=54{22-^UnLhISUIOk}R_&rAIz#t`#qUU&08`r&ss5AP}X8y(XqqrJ3nD!n{mP zSPF-$9XrwazjONAWXze4WQQsuj9Qh0Gd%zzWWrXqBQ9n;a5z0^dWg<(w(0DQJ00U? zTNcbjl$TF6*o_Xm!@r|U6emg<#T|iGH4qL*>A4v_FlPwN76zO~PH3GEf2%5&&S@es5UHado16m8oQam3tt*XZ^?0E!}wb zXRC7|Ww$=bJdS*x0Nxkcr;??iWB_u43l`KlAG|wJo%R!SOg72Ml%**t0I5fJ1Tsd| z=8WE9^3Qk~MQN5Yf(2TxKQ;O8vxo57#Plj(gs47EyAB$={Gq=RU5b{)wbiyKZm$em z-Y(oW(4tAyj~5Ti=pV{2-ZLeV^D>eLf%Nk|J7a5O*xNoDp0l<^Ti69K` zRUH^^euHw*dhW2wT;P&ig#tm-qK_a{hIS*6BB4{A=ZXSQ7zW)fw&Yfw9x>ckj@K?> zTY9->fy=-9slDkBqdj9v#qz;PKthSxOu&lN@!8D`VYchKVJb-lW7%Qi4*L_u9ij5S zMZ+&?FKlGsDJmo{Rc}su^oTAjLZwaisuQEsoroO7wm(NQ%N@7#{G=U~ASk52g%k%@?-dj1-ejPuikv1p z0sw5IcK%IT6mN^|YkN8YIZNgapLUMh`NP!z0LGJXu3E`u0+8Uh*li5g76l8;R7-xH zgK=0w^iPM>OEEzGN+E&zSMAJexR%Y9RTZTpPCd=6*$K35Jr<5sjNtCzYt`l_r@+ z<6wV!{K$(H;JNvfr$}ZX=}p1+L-*)SEnU)O%9<7utk<@`?WJ`o$WO(zaqX+pCyNe)Yj1JAxL;v8lIU0GhN9>0a4JgdP44xGwUHc`3j z^MuPz9<)sf23}=mJ{`hqQhHJ}y-bPwR=m9=Ez~mjNu@phP?de+yG^7Sa;2<|JRprV z@iaAG{*I>%sb7T(H6uaLk*~n%NN};+Q7%WSKuZJ=3$Z-E*q`4#r~d#MHWIp2CM8Qs zGrmv>1n}Wi5xCf;%anx5K+RHCrtzHGx#9j%^Zl;(D1TIxx|{;1WS8kz2akj~VGK(* zDa=@-jZa>npLA3d_loW*VGi1j8WynD7M60&Cq@%(>U`Oc(uTOMkR@^Br zYf60UVMnX{-0~W`#oJ~$wA&UDC@CQ{U^E<5d(2IPu!Q+G&}SuvR|?c>H`m{-PSK5< zPIO?fV3bKpLPAoO%21yUQ_fmFUC67u^`7dvWvxX9r6dyd(zP4(hMY}fMP`z~CZ*d> zopgA|Y!`&ZPyWQ2s|zf-sS5RJZOWS~)s1ze78I|c<>Q%h5Xs6CcKrOTBib*tt!i6l z1H>~|-NY@N3uv4(DELxK7pwNt4_UCPlPN)JXBkR}VtE28?LL{uq+d!&o=k>FUfDb> z2NctD)OUt2N0u*9WlYJ6Nh);$H5~_DdFc!G-$rt!%rg_>J1CkCesF6OFD!;jWk9HX zxe+=0R=u-WWKEp8^8%Js6ObQeAZio6buJ8kn}~#^gdm)&H4mpo+5}mxYRxS|fUs`= z0D2#HF;YekT>CtUgyG6m+FW>N>a|lhB=>@YrU;9(n3VEvjXF$r3Fp$LkPBvh@e;{K8_eQr9slQpdGW!IVCPay5vrtVfX1Whepq6Sy6q zaK|>LMAXT2Ca&yA9CA-sn_;!fUKmPIktVDF;GX{gNM1$G5Ws<)nvtv|U;dV6DH)0N zYB~YW3i%wQLhQ_QKOvZ8M@Iz+`tuZ!@Lq$sF7w{q1Z zU824lvo2(zm1iMv75+Wo4kN`1lP!KSs(l|?53mBV$Ixig)76;`Vfi*Az(Qq zdoDB~yr~#X?}_bqg#Q5kw@lR~M?m0*qtFLJsM(o9twhD&T_ayq*{srSHnhqhdZKfb zrI|vkItLo+S~O#MN|XJxWdSb3PmeHoq2o)??hX9Ue#mAL`x zmJPO@c_p}q1>!`dAu_;78UQ{m))Km&ng0Nz??ZBI>i(vBy=3L6ke_QP;-r`C)YveG zo9^|QH6f>;)d1_2LQL*aBh_5}El>h6ba?MyUby>$C#CC;F+YD_J=hp(9nl=|3t# zJsBGj+U;V_rB5uSxt5WsNNr!)eMbKHvFK?s6E8f_>N%fRB$CQwxHRM61M!|LMW$k9 zsF9G52sH)D%)W}6f zQp6|{%GNgND3>ByXoMvxYBfj$Ztu47pV=_S^chzr0(A9~pIEk_IrU zuF|3y;+!M%mhq#njcG>++u4k%7X-QUM{>WSF@6)Vm7{eGX5<(X! zm++}c0Ys&R0NL4z{o;HXa;D2Fhr%nNi)^9*7T+}Ppcu4W*s*<|s+NAHJ9Ww&q$evx2us5XXvJ$Cs-7Y9}BX0}F z!|00V!S738mX#OP(o*!{ z-=EFlbYoc07A*)o|_*mt`qgDM=!!*sGWL?dJw|c8*^&k{FtV>DPhrg&TGF`I((M1M-VF%NEE= z3oISTO-uIVMo()S3V2vU**5+0$PZQJVz*tgeO%H<^`ZYuuHUR|{s2$I)tHu3AFEFrzF za}9ExGQBx)Ur4)h+D)7U8HvuO1eP9t=ZCdu{T=!+m1ICl<)kTP)Uq7&?}tm{5K2HQ zDFuZXGq*6ke_Q5E+@yo;eSc_5zOP`}R;Sg;(1>Z)muJ6>0)W)lY5~Un?qf8^xQw8!D9!5$%1Vc_l_ltchCL36GF54qbInw;8S;QP2?zByu14I5t!lWe;HW3SO;~PA zus@!0SFXg;W;K|ZiA$2E-%>`yp>1OI!+9?vP{eGV>Gb(T*MFm#>rfeUAUP@}sj_}` z>DC-Dw53TZO3;Ll&`;^)!k9&M1?B*i3jQ#SX9bpKQ=JLkobY2h#z{_cx}zusM^v5^ z+joNaThamm67qtwA2a(;$5Be}0KK;>s`J`}J3jEoCf1ss1tS=--^)uAp`!}9;h~=F zy;NECCV@IAeF}b08*#du!w>T7JBh;6P6EA(lF#NSW z8L1Q}Np-t@-U$hLKqvT$vPDVI?E$=4ZaVdfikSU&^4cuTQw+NmG*Ab$*dr-kl%zi&ld`8NN`)AeB4c@QH$%&g~T};D!&Wt5z*5rn^EUcU1%O zX&qQr#YL+0Xt|MxKSLGla*I4^B3@0CUG&$8?r8A-Ry|Ruj;2|hR*$iViL2N`O-(2( z!0upGfb#;BpBMRcfTeN$BcyW|uIVhpU5PtKvgNS(bdJ)) zSLoZrElDEOP^Je>VS;4mN}u&7+#yzb&AyB(;*X zl{H07L3PP|&#`gV0$7%c2lE`otEnQO)Dl7R)6Of)*I0=XRGEZ3X7P9IK6}F|y=JmI zq|&tf+;0QdYbjYnxcB(K2b2<$s_;c#DBrRI53CxN^MJiMl_rE8$G#~408C0-aST^k z3js}+P_60ARaM>+SbTVaMVWjWWjbpYy;g>&>lN=C8!g3O-xe%Zstp)We(;EGW5f0O zML?Qb0`^0KRUziOEoyM_J)|8MztDO%&m5%KaOP4)>iZkYQ)*^uGH3=D=FZdz$ z?4IQ>p<(3-;Q&;MY&yd|*uMzm4S4D03Lcp)mUarII_n6w>&qcf+*X>t(BWp9RFGeh z2>6oD0*1;{f=-cCL-o;n=Lk^th_C0qC7URP3Kk`dAbLK&m6>wYs#ZX4()1(W8f~Bj z1_WkJMSi@(m!X&rxgu2a{wqlGJP50LN(w3kst7co;wQds4p5?MJ@MtT(vVW3%xFhH zxckGR0%27=xssJo<(|Ip;0Rp1{7D&5O5*nSA|*CR4P%T$W>;v=yjGZ$xe+@4AMM39~S z>hXXJ(e!`L(OT}33kGICh6~vxC5jcHu5aEfs_3C2nlhj_3d8E6lCF)+TCmMRyeea; zcrS5gK?#^2uF>u1gA%7)vdbmL!1U;1RI(i(?u>vM0Lq*_hp0dn->keMRXQfd1{wwuc^0rc0C6)J3KAMMLx1H$`TLO;d{sseD zmP5IAj69sIX&3D`f~!zIMgv=IdONB-lW9oTeYJR@ZoCCpYrpu%CoWa57~;`-(u0@# zLIAfwNWbN}^iiNm01aNT#j@UWHfHMDz=@LpkY4Lp zK>+Ie)IWF^Vv+(uQq)V5!*RE0HDE{TVUxR;jvLo*$ro(0-Fk%=qdN}gfuwx{=+6#h zmKMEsADc!?g=}e>w3=mb>@4@*EHe%0{bSku4mmb!pL1Ra}i<|VgU zS7)@Db4P`L_|)zk>IvA6AXTbvdD8+{Sz#(Ipa((lgbBEZ(RAdJ;R{BtM!!K7Fn#hQ zuhlIlQKbiJ2-dDU^eH4Qj?dds2zcFSKvKdtr%Lni^NHuf?kaNqv`bamnW!w3p+r#X zIt^+cjbU2}PMa*QQqo`a)zTFD4JdWfq*1{b{Sy$0N;yhRPQcTB;OC@VJ2fE_#w1b+8 z0rKY4`QkIXMWs@w6;(bhv;gnhsQbdAMwk6rmd7b4kR7|7qP3pflB%C*)N>GA*W!aD zGLbV{>A~&tr&tSZvxHhixsHUWf|4{R;NM-eFz^_ymQPzNd0{&5i6ZP}McW@U8{ zZvOzYpd-R)0R7BEhipNLv>Wt*5-}any+9cT?CL+qNQ2SM#uTL~M3o`6(If6^N$n4p z^`v^gGRLPq;YRDfPHeK6SH((~+@1cAv%OZdJIcI-= z03uu~N7=hYoBI+KC1}-SLN+5~Lg4g>%%vbY6h}>~06kKeoW3P1oneGHbwYHts$v0W z3wo-ZDe#HT4o*U}h5$IPvOhVFF4+cLz~RE4pQZTg1TPh>2r5YM)x$*YnNr7lu2~8v zD;jYHEjQ+Qfok?xIMxvF%tjWVmM%xLxAW2qU6$_&3h>jyH+YH558{8mF%m?wzyJZt zUZN7P#p-PZiA#d)Y47U`vv0NfseqK45L`GNSXPuQ;uU=x-*XW)L9?X3Q@AwaP<{>8 zCiB{V9-8&>g3Q-00Z1W<`F?!hwhglc%k_E`=y&Sz#u>MXfXi4p$?firt(Qur_@$kV zBUvZ3j9!;fhA-yOwEbWzto?jd|+-Y1kFl^gs8iX&wc#`LW;^_Dy|`NFtGmYp}-QOcGM?mULXbcWeCguJOi{^0|}`Zo}{ za$W@b)T&-nqE-4!0`=)e)!f#QM&t|iMM^+=*O3l%4A!eGoU{yss5Q!Z9b3MUliyaQ z$h2gZr*q-1`qQUqWwc@@Ng>;CYfb4HW+RxnlM^ypPk@q=$9=hHVnN&pT&=2+s3#rF z$^^tK{{Uv!?GoO%q8KdhH#&b1E=QySyE{#iNk|D&z;FoYY9lefF{mq2LR3O_*q)E@ zh_vS&ZrE!PNhmHeY)0?X=M}GO-AM|UvV{v#wGY7??ZfSddNTBpEBb>iWPtwH9FF5k z#`}CqmSyG+PM{6PU)z|zBJsinqZ7@OGciz7QZo?SZTE=}r@2ZQjKP?SH5rC!vK~o6ss{jPn3e%|JC{(v9u_#CHV4#g`W*c2%U%)Q*2E9NX_h zFU0MuJSg3l!Yq>tX9ku_0s$%qgRhYg*)rQ^v>#QNcz`w34ZA;Bd;1nHPsEKJD51zfQ1QiD)*PI%Xu* z$lQH;c|witCS;!)5T&FSIYmd57_i;*1zhEAM(}>gHKlY>3nSL!GUMRcrEd&yzsfcbneBmUCj{O^|&QhdJ3I#xb zlEovVZw~e;(@`idvw>3lpPVlGM7S*z3Ku0_$aW5Y_>sq0n(D{ul$?_gpmLF+Znf|E zu{mZK4b^BCn?mYSm0lod{d*W}ylmgv@Ux}btU(_!7&bAzrVD5FHgKSodvfZ)(TJx{ ziPux5VEg`L@_{$QMo?`&6?nssD|RZwH=~SbxtWr^Q%Y~!mWDiGWS2340IHR5pI8ZH z!r#-)RM~zk!l>Yl$8oe+wq7MlOZY_yA9&Jw#Eo3od?6Wt463MnDk7!2$1F_>ASRl} z60u?yq7X=C3Lj{i{J|c%C&s|kbJ{O-@Y`Uxr70mrK<}*x`|TNTrE84~0H-ocvh7@^ zwA!U6q1<`2Fkl;oWT%v+nSeV|pmF8)@^G7EOvD*wBSYL4)8!IHj5B z9vo5O>CwyL@1B{6T(C(_jiKm%j~rq=)51c~+=2D&4wqH$ogk%;L%E}lj9rIllKi;y zC)NPOYM5CJfpdB~mZGO124JUZ?e2~dawR?mF;G4wmU7y6rtmgTqzPhhl`+!fhkXeB zfz}vrtB2Nyik7tn)haF&^z91qG#-wuDwSseYE;GOtj3``0aLEEJGRgp z9bFz3EEzvsFOW(Wy`?KY`_64vQS zETdNGNMf0Q)QO^J{y+^kalm*rd0SaIk^lm~e{>PK?+ncKEGjpG0&YLXl8OQhvg|`P zp6Fe{m#RQ;7(F|~rRi`WtwmlUv#Wf*vDmmJ}w1yxE3A!Q4L-^Jsg~N49HJvJ)*OAxREE z)wbVAH)43;?z18c>8qkBtR?(*0FSQ^7QrU)5cLcV8!8;tH<@J$>2?|LX z5kfm`V>h#UCzI<$)k^DKK-GsxX_A!!8C7vZ-mMQd`9YmP4JaYWqFX&8yX49;#ITYZ z*(}Y_@*^y}Z`1u!dgSX9^Sqjit!h4{{R|vf|vEY zfTEQE+YWj9dB&Tu8HK+`{*TvZo~5Z^B~C(ku7i=Tzh-#7tm^>eE_H9uq%7UoiBt-H zNochu^_W+c9w)1wKW;UN$tOxDSuoP=lU3^gOA-}U(}-rY`ZJL&2h}A;Z3<3e&(%5_ z0zH%76K=d`>g~%~g2GltU!j3lJ`z=&l>-u8<0IMnhr7BKQyAk(?JC6&6_@*gD0O9C6k-Ka=Ma(I5DN30#XaOlBBehP4U7KDh z7H`}2l4WIQahWv@7eA<=^Cd`-qGX0|XuE|Se44D?I1$IA{8#-#*1(jYoaE3IJyJV0 zb{lG76!}GJ^-|mrd`6%*E_HY<{{S!jJcP-Rkok^ceXPcXWxc0kU7ii>OcKY~{W8*J zp(8P%;xN27WtBGAGp&H}sRvx$Kh)}bLp|qn%swTnGK#z)S6`%O_Ha{abTW=_S4w~f zv|gaG)2$;uT(-24^ab;10#g72O#@b)zcq~i02JcH%a#y4NBu^uc44w(W>QAm1E?Q9ut`%osC^M)p*1QD%SBzPUuWgD=09S4;d2ya zr6s|7@344CR=pzEoA54}4I$=Y=U*gYR8Q;sp9k zv@KGL%=Kw%j$1^ZfG|sg+B{Y1&QcvDr9nWwTp)*V4(TAfu&au~h1rYHqUo8HB)V(t zo!g<=`HYUsfhXD&Kn#VF7QP=)f@x9ugN;K}Mx|xI5+utB%a~;e4tq#)f zE@7N#r${=hW4V8bj|M%n*%Si2S&4OSTaNqj3RrsMwIXVgGZ|`N`X;=MnjSIFqj>_( zvY^u?pt8okA);8+9=-O50)^rK08kcX1tA%fe^4K%ha!M+&yj#QD-X}LO*0Ujvcam2 zDD@vGQS?V-vP(kBz&VeNC)#j*qxtiXp#~(8XOIF|1%^UVRTUn1>!SxS0>AY- zHryD$tV}*&3pBJKt#w+o9XJ~fq-sPYWBg+<+7N;4=E@qR1J_1@_!|3|wR*KF+PQ^k z!0pTl$Ei@Bl%?n$!K>}t&uEXVGhQ{qauF;wR-y?bVZC{;!Wgb=vRt`nNMiLRTaAxH z-|HD2?}_GRM502JeWC`0=m){!-otNPp(ztwsbYle-;|4jn)#U_NB6z&fq3)wD- z7E}zXAKZN5MALddJ^FC~Z1%tyw&J}wiSZUBlQe>SIa1k3(YFUe4J#KJ;+5%XmpN%k zpal4tfE=snHF#yRdONZx9L`;vGaCN@m*$XwnIkwd)tNLob$>m+(WTigF9K@HXEl1B zzU?Us{+%gLxuwfmr2vwGJ)`6;jtRN-CJu1(_)vQ>)Ut#Pzr*trhfXXi6n4O#{{w?3c`UaCZ8` zP0elr$t+0K{m<3DP!`#VC8;GU2@O{a;PmYj*JoKnq`FS3=d@R%bLlquB_SZFCG&V{ zDa+_9rty^BxTMaQp_HajWR0_{{GX=H=Ne4QrfkEMB!rJ^cPHih!oB;4d|65W^?J6Y z_~tX^s^Uw$a8iI;!jGzTRDYKL0GmadzUrKWrD+98pv}D*huoGL#;q>Nnm|esm}Sb5 zr;AO#9Cd*zzm;Z`giJsSOQ|mGqCZG1&JM4xpa@v49Jw%lS$WidxUo=3WF+h#LTdW_ zU_JeJ*z9O364RYyE@akec7GACxxP^a-RX%l60au?*ZixvF){B}YL20Ho~y02oBUIFfOc z1*BvfW}yJ=A7A#>siU-L7fs^oNudBxc7QW~OH+|s5zn{9M8SNg7GNCgNa?cE`+K#Csw)BTO zCWSWNDG4f=QiQq66y7fV{{S8{&r2SWBxGP*h3nHzLqPk7 z(h{dDD#0@ra)B&n8iuB=<)DT9YjaAIIAlJuT7ptQOEIIde-#>|^*=|~Jp^HEEUBur zBo&ur=B`?3)aP*Hn3*-Dy&JC!9K<30K`e(P?N85yVYqkF9im;Ka}_OVLX;958h~o0 zYqzqRZC-wu#Q5cqprTMWI@5qR@{Df|Vj*l=!Vt+qs=x+LkEZ$_?GK+`lkBODF}3`kg@$jmKLQgK`A5}4N2hZ1aTGUOQK3rrzIh%Ts;&1 z)c8dED#tHNihPSYO!a0VUL^{OpVBC4*bdOkKMWbt(y3&y12F-KKkfTN<}kuVGEkrV zlL|p<06XkkZoe6B@=<1YN_-{B?DHTBc-K zO_?rIm6FU_jn2FA$YQsxy3q`_M^>H| zVZm~0SZ@fb#w@@k5(_Ufoq!?2M*jeY60m*vi!OO7KwY9>D|UKl4(#=(M~(LKlbN#a zD(zZmdh^;5ZvOy9^5ssLsuM9KweV)u&d2o9ga;eOkfmkV57EE%ww$vc)dE*DQ@iko2t!YMoAKqfHY))qu1+40w`hI0xZ(9C6c4z4ddiq6D(4_jrk_xhfmH|9;P!!g>?qcty3|H$) zq-P9}L2XA3$5_VZ-JY!gf=*}6N{%bL^BMBHRqA2Z;Pj(9N^%lrr4B~swGLPUN0*ss z)v!)7l`)ktt2q=7)Zw;s#b_fk!nkX|l%}O%DCnY>(vhO0(PDy8Fwo^;wMV+Jq*OLv z-jHQw@DNUnOM%FQE4R^P>sr+~FVxCXy`_VlfDS<*FeR8X&~z{^SEK2Rv^tb>FwBrB zNYR@^$)}#q*o)F+>pZ-wLj=%Ju>*dv?Sit*Q|Lb|!ll}m>Q<&ww3tX>4PJ-+Scc12 z5b1%XOS?T`Cp)Bg-^NDWT<`AYGii95eZG21oTRJ3Du4s{kC3PbQqlB1j|)f=@|1;w z9F(ffAWXs?d5l!;^Xnz{1kW=KjM(f(9B=*MyKZ6QMxW3x2+te|ELsg)|GhoRHI z$>RLL=uIVnls)FvVsry2>=3j z@ahumDC0=c)#xHxmXBRAN^(eT05!-5>FVT@(iv{=M97zDO65ulN)SMCM>H(`JmO5N zgS{qNCfRZ+Av1x>lFS!M(Sr~;4C8GeWxEbcQu8Pfr4gCm*&RB@iF4iZq}mQ(!~!Zb zC5cGu1AQQ0$SHYh3R+YL572gr#WXB6h0>V-3MITLQLkF;+(NDSi43)rBxzDc!>`&6 z;fu*@l7eV5zGJA{NXmU7S`>X@lvzyW&0BK)MvzpOamGKGrKF_lMphsd5vgv#)6Zzv zJs&Jim!4)-1b|6240zy=jC_Y|y%jQcjza>iC|gam<5>Eu(e&WEI%Oofo5kVOY#XML zrJw3kvnC^z>k_brBP|a>$6ccbwcUV}sZx$fYHWlSAXVRb)No^Sylp~SLS_`D2g6qb zw|0NRAx9Kq>2qazxhPVCd?`{x0^A1Izs56%0B>JQC`_kAXGx`5APv8LO=%gW>FGY# zZSf=&gg7Z4%k@9RD$YStjItS7v<~ITXKhH|=^N*vKSUuQtyM`3Q=(M+`9qzCb#YlT zoYS2u)~?m#oy&3rYrcnW1lz>vlMp>jlabXzRjFaH0hL(MSLn9RKm-$)K&JOU9pmz) z$g;?pDFh`a+UVhf3X#;8G~wc}8!m}ub%kL1Y=%>;$rjus%KC2=UP%^L}26cO$ znv(FzeOxk%(weGjj$~?~nEwElzCo!1uOCM9kvTK$11`FBOp?N&qC1LG8Ib(?I|&>z6Lb0-GoW z$?K+8G$Y}sFzmu(UYfBTqIIP*WCtXKpav>gR~%*3>>23LW^bb_T$w5LvjHubB(O>g zf0G9QjoiMJG$rV=>9hX;QYWD$MF~4ofx|i zzv$An7g$56y(zG5xaJga77$godVo<%B{G&qrQawAqd9lf2B?c3ha@h1g{2Gdxdaop zo3L#F`9l^Oy=2|frb%0;*D`|Y#I;i4z->T2T@Bb@@du?z*K8P|%=MlXB_SXl8jj=hSgT{T`kA@tKolDer2CmUbh;x_W@sCWuIzPK_q*<9DXbnfYB3fzQD+a3COZ~o{Q4vgBRGtk5 zU+>gJMqMB9!Gl#NBAxzG%BAl0+9aIgK>Z#+Av?7NVr){Ctpu>x^A{%Bj$KZa{iDZv z?-qSn%e$Sv&1__Rta)p)450h}06!ip6QRgP@o29|_FREo$FIxDNiXh_-P)bc*=PkM95CDvp4Hp z=gQ^UE!|3G1IT0hMGHWu2WE?xWRg+{)&1~5w<&dRbXv7bauoYCSCm+eU7(VroToz3 zXi=Fli0iLtxjxG1EmEx?jyu4)z~xZf2rYLZ{m^RNR#t=-@_`qW zfRzP}^@5fwPly9hu}2jjhge;hW$j`FIH?dWOoA1_KOZP-{*Z#Co%B8b06s7}^}A@| zq*eKe>^rfjJ$#~Nr)D2`ttMC?Y;`B-BKnXB1%*Q$h&w|tsq&wrX$$w9{dwjZ?NZ6} z(Yiu~@U91bh9i)VZu@>=;%5}{+xdoEI2lb+6#h`1WIh+%7<0H1NkWNd*P8JQh#14u z-_{`MQl5>xC*m2z@L5_OuwvP1^;VX00S!(1mm%%!AzNpBY<^BE1T3|wlH`#iS}+6CLOGC>Ie)^+GPKS(b;RN`f~;{eA%4v+GHlW{?zW+zfMh1+Gkc@Kn9 z^_m?+ns59^CqE@`$HrwB!Bt!np?{x9=?hUB2lFtbY)U24y>{XZ-E-!lj&S=&KQATw zZ8#00#t(=g&kCUO`as1?%4(2b^WGv`b|Ic9QWpNpXingsdP3~$;c6^H7cbH|yqArR zjuMW^vLKAa5(D^MzkvpBORF-2GC}bWD#wnn4&k{yVW3fZJFx2;ehI?qmXJam^Uv`M z!Qj45U%}?`&J(X@tOteyQ=1@i9Jprp!CX%{)2@M=v|E*FR#rO-H`Wy|2PBf@){*pl zc+L|e#^uWLyGoX+WGaNQIz?M>DGvm1c|%<`fmXyQp^`(2hdT4NyNKuHxG#q9Qn8d4 z=CS(QVpOS_r5wby3o+h=3LX!BVP4|I64I=*2m#ouM)k1q$iO;P!s4sOQk__=Vc0rea2AfRcw|pr2&Bdx(Ce+y~j#0h(H- zSJtFv1KC#}{DTnt*H}=+_zWh|CSnwsYEsBa8_=Akh~kH#iJ|51EBbla6+{&{b3>a= z_S%s5WV|h=g#R`(6BGMNuv98Ur zewysS`;D^a(9KVey%{9{u0aXN>LbXo{C|{5a^60&%)pSc2x^zufd2po0iGIdSywFO zUSLHP)-PbIu?j+g04Ok~{Iphnguk*Uql*|pCm>|LbQaXor{X)rwiPSas3m@`Th#}z z5M37Z+3kfZK{AwEI26#cjz>r1c)N+N2}oD1mO*c8b6SGkex0EaipMY|DNMz9N59_- zc#hbK#EC&CFNCO#L>jXqT**$Lbf-uYa#_%v$w;M3R;Rx)SY>P!iRNnMrlcQa>Cv7d z^p`$yEVQUC28v02bT9OW*$Oh+U`Pts53E*QR|NS z8c=hxnY=B(=P-Ln-RXHs$fA`631R3Mj(}75F+$OdP^n4EbEQnj^#i_d-$saUI|g}5 zQZl7M1x#t1q383MO!Q`vGu9Fqr9k?<$9L2{13u;J6-@js>oW4?%nsl&19;2vC!?Wh zEWc|zp?Wa<*I3r%UO+lZ0OW67`h&M9!ZXSTQeqgn# zbhP+MYEw;Ne(AXkxr5df1cCZ$PupjB;?s78P0ZvqJh=IH`Bc~zuUT^@ASPJ@a-;f3 zNV9}*X@XG`d_+23sHP^Qf0Jv>cPS%4ND)xkS1gtcJs^}Zd}CoU?Q5FsodD%R5ax3X~kl#yU?uZQhjxp=b8yoOR!Q#paY=}8|kcT z_KJmNE?I!+H1mqs7SdLgC3I3r2AU?V-?-PxE^&g^J91;xfR#>GS&DS!6g2+;CuY;( z)Dxp&`_L^3QddIl)N>0sv(coflN7KLOX=sRgLq!sktvc859u8YSF3~pj4-VAtJWcc zU9!D<`RX6*1aJ+Gco`OI2?0d@lg$Q@*Lh4*QbN+s`gGzErQ_h7sUU(k=sD&l?@;|4r{~!!uXL&PqY)U8^aavh-Q>15#mZ% z4tT6%7e(x4PF89YQjII;`BI5kl=%Mfuwpz%B+DqxMQh)7*0GUVErLwU;n|(o&~+^nVz`B3&qT82TV>CbQzOEBQ1lHIQ;k07Vxeskv&S5u*WDazPs0LDYJ-dv)>|Lfhz!M z-=OA@_|bNT*ib>(C>Lm9vfoH50eorxKePzFFy3z(R-~yzO|;vuNJ7Kdt*04N+$bEN zwNDSzPmEouJ9=UCdYepysS5~FRhTFZS%{z^`u_kC^S#$Ca%U_lRZ}{*%r)fkO@I|F zW9j={r3qjb7Lu9=c00J*6l}hYtm;{sw7RtnXb(}uPd+~{O5<~?Tf!KxB8m=XEL@V^ z`~J}1iLB_Hf~^*sf|d+=^!aPFSyjU&Uc+YrtEXYEonxu8(164^(7!OG{ie|GN4KoS zCaQd-hC2>?{qWO&&&rUY?%=>&5qG5~WkD-6*d#^E=>@XAIE^Qw7P#h#sdNzSTIy&o9H?1r;ApS*;rW7AnV=WU3-Cl{o{*sPn-b z9-;+dOU-IZP@KwAI@FHmSXbI{s|jVnLPNPZw2RTQSf(DNROvM3pe`vqKt{llQa`V?%H{Gh_0-13PR{;#C7B21}(N^&&oZJq`Mtbexfg7s$aN@ zTGDbBQbU4w0MNI>JMu0R|#F*VPq?F4fO{*m)xtOy-uw^&i_)5(vp;Sra{Ql5C(gnFGvlTc| z1;TeDnmOwk+VH)#Qjs!r!a)@dyPJ=_qa%$A&`AXGa5D#EGmTWzTs zwb>yO?F#iPE0QXPrcmacxZ7cv3TG!SH11RU>#0+hl>u2@y<;DrzKZ%2kzvQ6dyq{PlhrJ_P2qjV!pqe;$ z9k-!ARfwGP>35E{%c93A3R1E%^c^`LSQF_6<5LC8KF^4ai}M-P+l=i6MC4fAlr`xZ z72S&zv;@sTOPbPyfn7vb45 zYr0~jvC}$;0C0Yr!!*0hl(Rcj#*z~>y)co^RFxcxIfx^3zeqo1w`2?eEndI84!rL& zsnwu*f%0g0vSEp8NM#;d>E#oe3bQdXb0mzxPgm2RhU*3Fl`uYi4@g(P@OqUsDpH6_ zHQm3zp~Nhh6)|1hscJJtY2r@(;amRl94a*%uGb|=@fR&n zYESL71pfeyk^cbPVAWy_Lt#aqAw20*5jOhwAOEOc(=J7u%4#Q;I;W}mj0OOB$Fsm~V%FbM{_>;hlw-(=X zM9_&qkW@}$?Oi;zhfFzz{baDYge^?xr*E-|-59xV#A!+i(5dUG;C$l0qpO)}N~aQ7 zf{^tzCFp)}Et?Da$(dB)2o47-*pAVqSZ7PhPzq8)K+(MRcjQG#oGe~AAJHOvJ-eS1S){{VOeOiZCd?cvnEr1XZnHN=Sylq3Sd&ZUmS;Qs&! zGf&Ze+jq}GQZo2JqMul0!VH;eoPY8f9g7dV5xT7*WCgHD&~kq^>k?m56Oe$wljcQy zz0q^2sn%`jC(?dI4N{!UPhE$=yTX;phW%{$c8TRd31R^x0xEr<^5clqu6!3}Azr;c zu}9n{C3;EpRWmhLoEIg_j_vUPYFZyKJ=2!X!ns)`EJls& z?U%1HGU@c;cA2@tWspq6`lu7bbmoU@7}Bu56Ec&YVb3*5sCp-qq|%31EKkBS$@X%Y z=v?B`(YFPt=YrwP6U4rkB}$a)I=d$@a5?6?27L`7^jWC=Dq@*(iWZfCqv0qNA9or% zwQJKhzb`9QwMalpl8Iy51&Z8m2eg*h(?hfkxo;zQPD=6&iBYW?LxD|O#QHl2Q3?Z7 zMWr@$t$`ql2Jt7BBT>6@^2lO=`BTaZ;!+OmG6>cfE%URWMYp-NI^r6OHPX3f#!{uY*l;p}pv zjG|dl<(v_-@Il+Oaf|PHium}UkF1t8~9J{k>kZP0GexXe3ss9*Qhoie~q zS4iD8UOq|RgT*HWdf$qoX(#vOJzwRs@O+r!|R?@px7O^$znX>|r`BUtY zH37UJY$$6(2=-r1;?+4wl9hXTR8O+vp8fstp{DLmR-ruowui7_wSxMTwB<++K=7R( z^G;wMB)D8=)Fco?fNR5%7j8T>nQ2tQtl5F7W=IX$h|qrUGbx&)fTG0HbKGn;HHRr< ztRAUS<@&TK)ExM=4t_pbL*0iGDFK@@i)7$;;Pf$>US5o5%2%vR;z<(3c}l3X`E^fl%*Z$_7zLQuutnMh~q-C`$qPRxOr!_n%Juw{iTEP_+d zW5Cy}9=ffo2=#g&@FmN0-jLB^zS1VBs-Xdg0H2&HTP?{G6)*shT#}l%+xLsH28H4z z%a@dD!!v5eG2Cs4Sz(qERPS1W*Q^q?-?Kk=m; zF)H?Qp*0Cs!_Kud4EsYBlFU$`y-xIT<_&|)A@z$Xl3am`ias& ztw1`QqkoQ{#5qj4Qz_D!jzFMlw|G&o+JKpzG)Za=i2P_bbXq-eSp~{YpR2g(@YX6) zUb<#UNzA4SOSX;)~Q`@EnDYNj{9`ESZw$ z6e$6e9Qekst3HE@n2XSc4MUYrNB1Ave8hyG3zF;zBrt7Ys*|l)!&iFB%GOG{@`Qg&I=ceY>Y0``|RVG>c{mdFg9R33-}UR|pU_;$}S$t?byz%IP* zJ?!IXx#&j@%2L#+nUp~)3L|bGN28OxGx|lhOHjX&AACu5;7ygl#TMx z0Q??LnT1bJ*lbLaSRlUuV` z=@v#kn>Jsr$kg^j&}emMA&6qtj2F=Fqp5ReiI$ZVp#>_)3qDrx?#Vh9so2NW*Uax& zkP?8DDZp(-0P__5csOk;#jy?IZ8K3SN>oa!Nbr{BM3&cJ{{RCA@h#IT&t-C))0l($ zipkIew|zBwJX*C~GUd$7g7XK2F>fxh`w`1o{{Zc3TD@C11hqRFji}})8Z!I08BCCU zSpX=c5>jYVcCLhO05on)X`YX-l*~z5Qp*nKP=hW+@{vGyyt5yd`?fwxl8a zDJH6*1AsSfV>tA!eoaEvECo4l5O9+HH*E>p8Ncb*F$>OFLq{$LF!Q1I)GkahXOcmg z{lz%&nxVlATD9UFCEjUMr76fBi5fp9m2CjqUEx-GKqW*SLx2f2Gy%191+Rj~Ju8m2(XrR7=Ff0yn$YX{{Ca;)Zh$@Pk2M*!A^ z{{Rep`Hy8L(LAUrMPsSTpk1o;P@}K_fOv1P(I}G^@dB<`O1dP z;b$s(k*>dJt?0J}powB>3N4w4+m55X8nK{W*h)Z2T9N`%JP8{f+m1hYxjxTdDPlW% zS2-(6a;3wyO1i6|<9I22$x5ZNL%EkBnSLH{3lQ07T2nwg1cfM{4pFOy z)*UTaep(TprkR|bPVE4t;wgCuKsD9ilRcikam6dONmS2P7y{Yycw10(`ECR^;cQ1f zWVQ+=YzK+Loa#X9v}v~g07&*hDM%qDdTE%Kr*AmPuRL ze<^nKi92ex3<$4VEYAu9DDVZG%O_VoYo|!N>0=JrktsHLK@#WAW1u7>^%7XHR)Feg z)FuVr*7@`88Inp$Mo_grRP0~B!>-0I>=KzH*V-l-lPK#X5HjcoXF7F^=e1Tfc=|0` z2})T&hYBH?S}+^8OcF=BO z#EelbVYBN@qx8P#jUxU@#Q3Kf%a!1AYQ=-sm+Q1cX7tvOfR<2SvIfKaN$&vh0FahZ z@eo)9c&n?OUqcDk3MEap%Ur;6X9{2ls$HEYZfJW#)#AnDZ?`Jd>(?x)4#YE4k)yXI z-+dx{R+N$gg;ZUR!;%F-;BOl><9!7NBf=cGpkevUVwkOFXRTcT&;hEr?e=;Yc4ukR z#mkK48A%z4$xN=mkw-kX&r0&qoq9pV30`o9pv~()%l&%Sn4^Hb5>B=!I;MJ{Rg@$b zDs4%vH~{z5miN;qqnWajrG-4S1cE>S0w_;c(|AFc;443@nsa+9P*6#&U8C$QJ8zXH zN;2il11Pf>`ZRp4f^NbRW&oh4pbq46I6nBje_wMD$w8V_pv5GYC0sQ^hQ~&DK3_*T zwLE?4G_9p2BQv2^eK_7d=ZX`c{;edgrpK_p&CYi=*q+-T1>U9EDvOnsO`@rbNkA!l%F1dE=g)!K3w9J=!WWKp1ulvyI)mff0Ds618jnsssK9r`$(BTfjHwhH zo{G^Gs-i24uF{piv}m5hZBN`(TdV^0@e%aKbI;l#|( zm}FHzSoW){bUGMCxpBP93X>@b3sUIE+9gGSQK4B$81`CUVw9YvH6-@qn8hSt zrflR)I+Z2LOOn+c1H!cAeO-nMf)Z9nasgE|G;lgajBkC)N43x*A;*fyi*7^UTp z0?@SQ00MFh)jf1-!!4|TRUtM^#4Mi~1Ok+b(zQ((w(SX6gV3b3Oa9W zd1|qy{{Yiri;i-mU16uCF@dN zpm+MlQ|R*hv>{*HQOL!@stMRO&9Bo)vyJchs!~xiDobVx1%Z8DBJs#ka?9xgOv^fD zl;v1XM5J!q_3H?@zWGvuWrVO#vOv-Q04WPL`9Q5|3e0HjK$hT-oIl} z;-y~w+fxYlP~hx#q@`>|?6!^5q*Uk*UBF8~N?lCiqiunVbJ9ig>gKjuuSU=wr)YM$agIsL zlCo3@al(6@!|}UDN$H;z1+7K0=)e>Tn=AS zPam{eMfMa~>L`@`PtbegKR1F(id3z`5u{#|J*qW|`J>`=N!k1T&kqsIm>#E~FuZYc z00VMbyZ7xE?6U(t!mS6$V#TUkclbA6AYAm+od?(Vi*qe+>;UmV4!_m*F)X_nW^F2A zRX|df^7nr60h6yzx_0IY85?W)v`{j^W46!JT7BYGI#kL(cfH1+4OSfmT|c8*v7uKD8hSz9{9=DYD3@0P+l0v`Y{6+6k&(v%|S>lvT@D z9b-y`B_sjV`=TV8Hl6-(O>$kff6Bxwl}hcmFo0dAQ||p^m8G`n{KU&i?-C|glq(Na z1c!?ftnLYVGkN`@RZ6cTXU>ZEkk%&Nhtuf-Q%lmkWg-swuJKqQz6tjZ*)e9V62AFH8qNelofVX z2|Brmrl4qhJQkQpATn{`#Kpt;GCpC-}Z`#MRK;A^9QW9aR9YS z*)PETX&x#=r8Gb!+ zw{E02KIo-nP)e0kUAg1k0j9ky&XNJBtU)n}{QOLrD z4l5UA*-1n0)d!v8+}kS?O=;)Mc_LGIU+)qDEf$Rrk${+<&I&}tni?o|<__L+Pw5Y_ z>DPz{C0-Jfv)8;wBY`#?q!+Kx%cod5gl(Q8@8K*TaRThtVhE*v9&v8ZX3H?KVM5=$ zOferx1ZI}8P%3$ad)a5gLx8WGAHEbzJp@u+moiFvQ=#NRP6ApiZW}|n9Q|RR3_ehv z51NUJb8e!-o**B9ruYKf)8Pbe89FRDR)8Ki4YW@lICkp6vy`r$)9cS@BWqQ20(LJJ zt@Z~Q(jS)Bv_)n>RI;ShR2_&sx4W}-i}aPkjOhewD*QxN;u*^kq5RrEVGGP0(vGHs zzTWuu_^|~cNl9f_XRg$7zPv$cs3jnV)#>huES8L+lkEdT2(xdMA!5EHhCBhd9%2a3 z#KGH4!`kb!h|A=!jc5Ye4u+?1oF?CQxk*s#K?243r-{L#Bc0-%<83P7v1jQO@`pIP zoqj1otVhH^dqufK=;NL{#7dZ7q1GiGD;)f*X~h)DfBi}KzgX=mU?Y;R!xe4HSY|!` z(E|l+x57nSMWo+p)qy*Qgr(Y3qNw`QPdFDk@nsg!QTZQ@3+0QPH0gL=^2l`1?ly$m z*4o`YaI1cuWMFoIZ*&O559o&47PkQqM)w|xqdf^@a2FP zD)A?d+D4m(?zEKqA-Ijae~)>w=jP8q_a)gW28i&eig0>+o-`Yw4OY`m+(ijjD`*Fl z6|l-`Ij*tnaN#&ijt+djPN&*b+;AXBvmM;=-V5521y7s?n`(04FpES2yk!th=j9Y8 zU14m_@M89nqMyr{=Iyiu)cg33ZeH3#CG+UvNSG%jMNC~tR+acewax0vQ!Ob4j)tB` zn5}%?R;ypZs`hCzz|r2na-50cWszfF}*FI-WPj-f}FC(gL>-QfyH=*9Cct$ zP}!)=`s=q4V(P`}QkU!8WfUyo`Fd>&cFb6e`IqBICwGTz0=7Izg_NLx2mzJ3Abifg zQTr3z;&ahCl$Ok)r667HW(!DCQXRZ4uT3J{i``==Qg#kSYx%4j^gR-jKvu0xDzaQ{Jn7t)Tv#l!$J1`z2)x<90k7A3_PGjBo;tS>?=KihNhzpPXf|)gjMLJ^m`=!~EQOLmM#O9&IEMH1nyKI0 zl$9Zim61cWJflInFxyH6vl0O>N^=P|JP(pcQkCR3KeTB$R{0*KA!370zn=&Nd2O;L zT(G98pa4|D9xh}jPxey>VYF&9kdvtyNbW=^VoQ~r8X;Bh`J`7V(K6er-8D(|vZ@lQ z4Ykwr;Tm=p#0s?_g)&NL7=y$9SGk3YJ<|PR!1Sy|$)3hD*WrtBJLIaYe49Zra z&d<^_ilTR-S1wZ2JY*!YcRz2=v7F%>-Cne)kd+tBlu@eP&(-%atj(A_S)8XrM*X2q z!-GMZW=k1T%~Maq1u09H#x*{%4zfad(DZ$pl>0`Zb7M(slaWB?G^X*7`fItuWdoPR zm}XLakzK~)v(^Y;iR0AfRRTq8UZ0hQc+su0l2U0+I*&LNKO4@JfED6OY1M|E;xu2! zDoqrVxUcN>h;5dH%w*B^a$(w&MaO#j(VP&++6PhIB(>O>EkkXaXwR@tH4^O;Wo68g zYQUVnL-XGcm!>8R46<^o!gD2`kRS8o4qlGV!EVcWnp&*&VNu_t7bpO+A)T9u0b)@^ z+{q&&R0E*;{UA;Ai;}6yLS2Dk12Yb=9vEj%LQ2x%LW~IB7jLP8T9BjcriPk1?e986 z5cOc|_kpJ(Jq1q}}zMpc15EM!-xm{O6* zE}e9Kd+V<;qAu{2JcJC3FPgh``21j1Np#{FQv!-li0unFqT4YF3X%yTr2c$is>g-p z%28llRV}CS3s|P`N=lLysQ16x6(MT|B%3x^Gm}yoskZd^Zy4S=mFs8vsYzaRq>^?? zuG*iYbceh(h#FeL*2zQGv>d>E7kL?$iHabCtqB^AMK|}xK2AEh(K_hDGi>Nc%yTJO zik`h)_2>^s-SA!T3IHVKO%zqR=g*FjR~Xr387ebUQh+_AK43th2T;be2kZ+0UP&^_ za}wdfG*X7esjj3j>@)`s9}&vyK(*dLHFG4E^5@C-jEmE8QB;#DAdtONLZMn8pOik& znM#%ouMtY~x>YqPpk#o`+@HK|nNZhvDxPZvRQqwTZ%Iaohh75G`?FJrzf7w|Otj?tn@BTfyaTRV0zFNEs zQ73oXrDH&vg&{y1r%{=_G^px2a_vJ4UXpI2lnL@hQ{qqoo||`y_CXf!Ljhn+MB;_H zs2UCu?kY8KM*~L8adsEBNSK*xSz2AtuV#)2H2aS&wu}XfeQczuLtkn2_jHLpAkCLD zTcr4s4xBeXI4tQ?lZ*|C*D_y;lv2UiP>!|p?eC|Ku%c$4T`jXDGMilo=SUIgw$hY| zqd-VGS)Bend3oXm8HE!3JvoDC$Flnk!q)T!5=nQ;0nj$4AFcA(0+mpTx7IVIVX3G| zQj%Fk-TJ}oFCk;XK_H43c8TM#QobX_GbPLg3kA-AY&kG`el!Y53j;A44bMo1_qt?E zQAsS?wy)E^@IK)5QmKh2GZf~?3zp;a;390Q=-F}GLV+k&&F922-j`vSDuI*+uUOB$ z7A11jv`zy$3GodSKgqe~HCv|876=Ba@S3xYo9h~J_1Z7AI3m&t3Q5YX8}HD;n>vSx zJB*|r3?f_Z^DL4U*-d)%i*^LeSj>eAYB`Do4@kIYHhhj21Ed}}j=cfis|%P3Vv|v^ z5qlC$T*-wg@Ts*gUW3Xrdkv~>nsGS_RFyGz0FBy=X&jbW%Ub)7p}inm-cV4bd`EgU z2HtPec=E$zc|eA!&DW#x6eik?`2ZB<%$&(k{V&MUu@$0Xq}kL$ss%c7{S0(#JPf=f z%qt$P$tRWpw&QDp%8> zH1NM8&$JyG{@-oNgk@!B3>dp~?+f>poktT|p5rUYNJvqx?aO_Jo#UTJ7|Yiz6iQkM)xjEU90%Juo4^ujBdEagxv z;Em4!ZC^MSa?CQweHI)zH6fk7`$Mgm=%9RtgTL<;$GL?0+U&PXvf2V?%g~UG2x4?K zcF>U2FxiW*Ydq8^`&kHnSiXbE)PB(8j6EMFdc9~{DK)J%=cFm$xDIEjS#Y9&ND0<5 z_}Ot@)h??ntcffYU1_h}ZyE*Ev@TXg@qk$DdOylAj0=m@#S;;s;fA_4qp6LS#dWP& zRVcHi%64|p6ULfz3x(`hQkJ=CpOs8c=gJLVDOD9L0s}i5_l$!P*k?$$6F4v>(y)9a zol^ZZW2vt&{{VN)SW-wn5&;#}_}TvecqQ#tb)groI!KsPJS!mmOh{%P>eF~5WL=)p zg=O%OMDnitkK>qS#rH(Hl8DLzfOh~ATyNKC!HvFko?<~sNOo~o4qO^inw^8g5^Hgl z=(rRlreWrWpUgH`(z$HYBhFoq2TlIh%S4U zV&?kB&yjA%solQ&h^7Ak62DlWfv9m^kJcKl4ANzs#;;z!d%*}&*?$bBDod#9;Ir`i zj_^9kXqT8LC=bA;b}%CL#K~DCsVvL~QT2%Kvz;y~e>dhI%5E9f!DoN_>%U@ zu%L2+ngGJR;C0PlDPK92FMLdxA1epe4qGiO z9HbGr8p8PRWf|IU{D}x>DXa9Oj_})YT0)SbPzn~7WeSeH3@%PuRWPU^x!4E)0P3Nx zU9^BeWPm-*t8)YaH%-K&oFsuVxk1$G)qTdoA^!lj?Z4uW{{Xmu{D@hdiP~$XW0z;r zocVD`Xa4}{CTIC4{{X%F#99F)V1$sO9cy#q`hEJrL4e97g%AlN*&iSyt0nZSJCcXY z92D31^X3iMZ^JYN6H~V1r8$bovaP1#&66qyVy4q^$kvUg+8t~-K%pRz0MLQC>l7`w z*-C+7L$3tu`S*hME9BZ0;i^-q`T4;i7H^3vLYO9iRP_Af5G~irvt&<%4IfmGJ&w`3 zUiO(O00nru{Ar|O*n-rFvz7u$8ap?b=@V`g8N;`DAKglGEC+qTG_I^G2UBsV12s!x zK{;N7^Q;cQ_dlybf>d&(7b+()-JkCiZ|qs&DFKNE+-TGXj?EQ1GF~Obib{Y4jZ1@C zLEED9TF?sAT|gA@-ApKd+k$dL#hjw7=f%|Y2d_wYuwV8;Eg-AFnhN-oMx|f2-tv?_ ztE{OgQ}$@i@9FD8%Mw+Yz}Gpe2I={KjFSxE z59tsV8Aw)Y4MT6zKVr;Gktu6JT%{fttDVDd?~OfJM5F{}aHrcr*J1UHr_xpuRFoDC zDMgq*V*2S(!;Ky@ym03&F#iD4r!lpyV>8fRG*B)b{Tf z{{W**A#O(u=sTP5Jns}rdj2&w%Xlizlnh%6kJ{i8X( zaf%GOB!!h11WoPy?{)B5!9s5%As|6DJIz zgZ}_PF#||whb9HBy~US(W$tkE7|a}l0k5t6lu2Ew+|jo#tRBG zG%eDf;I>Cy+{d<`U_YnYE%M~ML^eHlW7eF!^7e4)ao9Ktg5`kOKt zCA?+Hnx}HNe&vAx2G*|Od0mT;2$?ZuKstc-QaDfQ1PZ!{1sQ z>%h>^k;G{C_1P+U1xf`90H4xSHFM=pE#pb(tzeke_flj4iL(_cYIQ2K=-ShNd`*P0 zB*Y*tTD&v{zufDWzO~um*A`-HDN3axT2+<80392y-bYBt@DkM2&!^83EZT$ z1$pvd3~4#^JwA`RuXPff=P{y#Y&Hk?h!BK@6=ejiWRug6hOjFS;TuGi8EzDo%|TZG z01%_09d(H?mM2WhLZr<>N9nG_Z|6$stW84IysLWX4%n5fm5xN*B|H;Px*E|(^u zK_v)$tj3;Rd~L)WzvUzvDYEPS-Me&%uD?f8tqneTP)b3_of2zOs_CN+wb~{h&~6aE zCtEVj$^E145lp~olxftH#+9QMGQXusNl$|<9h@jDgWt4NwPT5PG^r?HmZ0DbSTi(Y znBNet(JpVQ)nhUD>iaP2D$!j+jV9pqg&|-c3IbF>N!*S{Uz~eqvZ~gliit$~BT8^K z@{DT(+$hMO5m|6rg;}|#zi8OK5?{$zt&&2L5KoO-zWoN!rPDZHm@dsOQUmyu9Yksy zK>cGe^ox{BLS=^u@fJF^kK5x8UXbresg?o|r2r0ztCnNbb?44AObzJj*=jQvIb|}B zvT6xPcSr@8pYq|@!sWK&XH6r~I;KyO6)_{#g%C?>Hhsfs4%e;GB?+!lmM6q??a!Q3 zROuFLI%InxDE%}izsvACWb8rxO3@}#6_rE<6#}0oP<^!`t|F)Ur`oNOW_f`!-_?aV zQd3eZ;Ts3s@cKKACc$7tpj41S0rdIw_ct8gooBPzf&xHfkeUDvX0MjM=v&3Ox>^Ft zi2x?Q<>WUSX#|*X2N+vMMXAP83%_08kCYF?fBkJKB}6G?0xL@C-Gm_Cc+)e0-mINZ zv|fxyS8DUxD_A`tr6mbaPHAnC1hQDa!G$)X4I*t{QZ@eo`F2oQ1gV@;n3mm%f~Bl4 zDqK{Oz=5&r1MIfJFr{TwXJndJW4$zJO!T9OM;&?EffITmv5*kthl$Q*kuOF}mi|tQG*} z(Mj*Xail4h9rkd;QV}6SMVtf$B=;;g>cOZ%YC=b)Td7k5h+buTIZ||Obl0i-LdE5K zO_?xdO5B27F2MBV_=ijfB`R7ya*kjflo|RrR(KBHEq@ulB3 z$(fK4lI4?40BCPSl&i#*04nS}E#>rzQ!NOiW^i4`{#$m9WW;G^<-;>3S|yb!f)o^@ z+YWi_^ogA*Z@t;b7*1TIL zY}95YSQ?S6EOxtx6!=z_^Qa&t;bf(b0O?$jX_(`7w24(et+Z-u6<014R$aF!rH zXY2BW&qsclkc%*vCR);@Ag3w)Oe$WXAnad9aCC)_{*+bgk?YnHmv$t#M5OXQKIqnR z$%)R!FN`&6v#3l$ipqdWRiSV+Bd+Zqu4{bsy61%=X`maC$UJcj7_RhO!zq*#D==S# zyvEtK0O&~v>H^;w)GBwYP#LANnI@`9)PMOyrm-;IBrb9GNdWsy{$1ls!Po-NEhcKo zQ6PI;6SH#d0p(uK#3eGbp9Hk~L;+PRht;|{se#y*(Q1;PSv7>GaF9rSfg!c4abD48 z{pk-EOHAMC&=3rkm9HMmKtTTbn*)$$)!LRZ)}vM}t~FJ3I-w>^7@Z z!X$#EyG$X#?EL8u(siv}o}1;MkU?H$xem@aeY?TzYw2ARQIKUoDRz1%U?1vDY1T4K zLFl=1rb|i?a}eY)Vt9UIP{RI*U$ zUdeiz*OF+*fbAMJ<#Qz`D?fLS3$5^@>rDhEkaL2}_YeSmoZ8Kjc~zreeh@Sr$pvlsVbK z=AxQK+ZFg_Nm5(~B)`!9b%OH#9vp8AMUF`D%1tPi0qfi5-Qyp(-9lvWv@j%sprPUg z>6fQd4fYEH43RJ^GRRhD0011(t57tI#^SynY0`^19M!@2vjb1OBa<7o)rIAxdc`3* zz^MQ`(TaxM;0__b*D#rA1gvUmDfNV_+tM81q@@ZfSx^<^(aGIC1ZhdNdX(o`Ppv5c zk~!ilQb)R``l+DJEI=&&(0|f89iX-Gj!`faD3AbThH_uTfT1G zd)PBIX`$Xy)2H80AlU$BXlMQK=p7Jwys%!XTpq|-2JguaJO9pf6tHw?8+ zNeV6$Jzyl&%X!kCW;Fa=cFB?d0M|-T^?*8CLU;gtV+Y3=%?g?)jM<2)K=6aLAz$FN z_1+P?WJt2hmn#&_vE(jk#K$At})rQcl?clmk_dz;rBIsa_;0&GVl{{W+N>e96& z8kg!0@XLQ)sgh1i$|?kAW&jV<^TS~C;j z6sfMAS&zGKP|5(K0ib>! zE<)9N(;5WY&@z&+l1iS8bO3VBb{!!XAKnR_F(OzhT9g5Ll1Zfp=CQNh9*U(~5A_LI zloC8mSL}V?7($VQ#EU?kozjH@6PBg9I(wlG+a?~At38@rvp|%G8-jk3`ol3wHFtdr zffOZQ{=H6_jzGe6^F1454Jfs{1iKA> z$Cym9ES`bu$vqJMm@uydYhTUbLd|?6=vum+9xnd? z+^9%{ z#+uRi?Gak6+5ywd^99#t@atA)8azHan^dJ)d>oK>i7ZmyjK%bV(yWXCK5e9NVICvX zN=4X&b~$9IIAf%FXO-etFBj#=bpm#JM{+F1$zfeTc)7%ZS1Fc})-GFYEvAQVBEgg5 zN#N26T4eZ-I>lhpRHTwY+5RxkW|H072LAv=0{5w?YC}cTk2ehq1)#I!1})53kuHu| zqV(%1bw3aLM{;bmG<_Hd5*KBb$~AP5&_+zA1-}GVMUmFe#F&1%@zMw@5zF8FH!z_yXvx3yGk%oGX z^sJqUkYlqS3L+E&e3}ju3C5YMk#YxsBAZJKs+8)ti z4ifGS0p^^*+kKFxg^CRiPQ-m7g`5p)LV}!m9d)(hHg!gRdIq|SNc-|?pJ z9N%{EWsJ(rv;KTx96B^4C%LC#-ZSOW%is>uFc)REYs>T)h02izdu9Ku8=xyRu4v3`SkyZb9C? zj1sU;RakqYr;Nr&8wB$7H9JA8Jpp}Sei*a9y6zz5qRm#?G^~`wQ@m1unuZ@(FDA;u zurA#_fdmGKR4Y!jyLf#0@``6x(k8dw04jsRef^RoQb<@K$Wwd#pW`1sVkFsF$QJ>%v0@dfXP(>RBs zhKk?nJ>%~c^q;XIi&Ez`Pt0*1SZ|=BTzE^4z`zR~$uS{W(us-$gyklv?sQXEQ(fZi zp66i4LR^jeK?M>1hGe2dq8BYgP11HBoji=(RwT+K%?=a?v$Br=er6V&C91wX2 zk+ad^j|pPb1e6ovq1LCrUn-Z3{!``gJTO`gSwlDsA2;0b9N2B>Pz+r>a}@C%-l@{g zQ(A9y4Yo8ToNM~vVCxUl9;pnhd*ECE)Mo(ss^YV+>O+gZuEp)GdfvDs2sohOW z9H}y7CS^*Bk{K?{OC13&BEA0rf27$=*+fwwy0@m))SY`m7&&N^`BDgH({mNCo4sU# zDNRl&PXt010mnYKD49i?IMSb;A^zQK$f`X<)8`HgF_!vWv(K9-B}9Ua0#ifOo{iU7 zN%T~&S20qpdGe?-O-f7g!QQ)pA3~~Lc2Y)X9yE~PKzsWJN?R2GmSSK5wyX^*OthI( zR6zvgeF6OWz?rfLl27VQLEMPau8X=_<*Hih6QLS_e@{{G@`QX{b14Y^!h-cmlFUHk za!BSDQewAHr7uxvGm=Y+EhJQ$(yS|`cC39KF?E`Km)0XHvnGK1K}}M0ZRxg@jJo9X zUoC&!nJt#|9l7fbR_q@xRi0s%8DJ6uSOTs4^)ZK!k3Kg1y*9RAPH>SVD>t%96{+fa zc|sh-tu}?FMLw*n`(^xHK@sK<#j|BdDx8wa3IObqAHw_m;BFDOCepO2Ln)TBPH%=@ zhv;Kl&U!f;eTxqzGQldUhvuBA!wpJuA9Rii&q&_c|swtbG!fC82jmv9RuwkK@ec-}V& zxXM^dsdAz@P1R8;wfnSXt#YVhfVM2Mb(+&3P^ntbua#uKspQedzYs3RdH;mbg0W~C4 zjXFlHBJBSF>vRwtvlG|KJ(-6Rx{$-ADfigNH(lntIm$+4lcu4zFV9#c0P4(^B&#d4 zePA7~<4ns)QWfg*fb3|#5*Y*TXD4r8+e$%n`oZ=2F$5M28; z8-6@Z=-(Cz=PvF^8}{uJNWA4uaIgp5-2`?aJtek-xr!aN|Lm=8moh~IDR4@MmL&Pk`kfSn-tI$*>==$l)!L(UIQJE?MCqR9#K9OGy zC1A~zwj_!ZsO_^I^)%OFm1q;CsdB-86*v$1PC7!j0fks(EkHh$>@qYTU z%bhKjkmq&|@mmtglC>d3bqfCg5<7L~FUekKp>fF9?(r4}7bT@Wq{;+%SQGk>Z*^LR zDdLG~5|qS{+8>C8saMKVH07uYV?y11(BFI649OD;NC^pYPY`_@IP`gW`o*jzKF0b0 z4*vkmY0?5_B+FQT_8QhPZ$`t_PFV!ym|2d(y7&7-^!v>znMM68#7`c*iv(@h6(RBy zmrmT1ug(D7m%PanM1tx{g%!)}Mx$tCvttZ|g>j+dctEvc`D?Wxq_A_E}ZeY*d!Fn;siV z1LoAbIHyRbX0ib_MPA4NhY#iF)+tyoB+Ni5QPQM+crk8WoUC}Cq37)yb%`07cT1X- zsr*6mCvM#%pZT9upAt{l#(0T#l-hhMWH_e4FbtY|^>}i{cJq(|NdtZfiQmzO-WHY2 z8G?uf=?Czd8443B4ITD8z>5-9>gZmTKb%MF1?I)I2ihIF!_q-&^kFB*l_N8_Ji_IJ z1lz*cDEhb6>f8sf+8<=!6bb`&0s`9oEX)MTN&zfbod-F3=|bJ%UNDQklkNh!c@zqk zoe1{5@UMsPbnu7F=}kaY2=a&XXj0ght$%OAVA2>0ZZ_1!Dqo_d(us`<)>S0FuycU8K9f>Y0?uoerL0!K%C|9ti z29=8UotVo`XTOo;c{x3Rk0i$_h%tPqczIRb9uNUb0~+ppZkIb7=4I_d&v6v2a>Szq#US z?jU95WtgK<2zPeWb?YCkGD=8Fm=UK>yc4rb0VJsANfm9PzR1sUfBcjL((b+x<-#=wDD;AIIz$Z)|@p zDommaofWa~0C9#c^2?a8e zT|@kv8NgtBwyhcM?dWD=%}E)#`f&@F%5@51htb|W3qq8^)Jlq77)2x{!zItZRKpV`tD zC%C`0ooOPj$qZYMyFh>WIUoJR`~LuV+Od`!nKoO>0cp#oie}m|5BouX{mowS8(9Qw zHXDjz3V+fxI-cKXD}?VUK_x3GNeZPk=wS4_###YM4MX_<04PPYU=pI?SwT6FHLkVq z3kn)B4V@|(WQ3_gs_G9M5wYGCF8gY%!A@9{nTC%I7(&QVE@G8MKBt80Jhtx?{{Zb# zHF@R|C97Keht3_-ELrX9v@DTSw~78W5LVlDNJmOgb?Scb-G=UoGBYMv46bY3n9XrT zulvfDfK&nSq<*L8rF#fd`YKDm7>QYsqeW3gv>XHW`p1?#fLh$3E7gNVY)=o<+zW^e zi*S0vl9EAmiVnSg6pcl9vMll?OG<)BNI6rzD*T;aSabSSQfH#XnPWK!4M$;{wL|$l zW-`4LOPM`VWlhSICDuoXCpOQqJ>ZTc$J4DVB_Up^0l)R;y?RC8M|gn}#Kf8{M=^JG z4FT#{Y4?L+tXe%DOOYoim}ng;8*==oVj~2`Gqa{)mgrbIiqskw{{R(k+fl)dzaHK* zCZvgZfY6;7AIic+tAbcV5#rN0)brjal;1)#tBU@#Op;Qmd6k)}H68xc`tGM-( zgynhyTW$&D#${~913Hx1stXN(&^%WnjSgM6B$OqBTxrLgBU^DAQJLx7?xplcyfDI}4w2DqNza zC=yQRZM@)Qj8G*U&!Ga9W7;3?tPWO?xr-(0P|TL#67}WD2Vf!_?(DNmWF#flS+@z@ zRn&@5J3i2)Js{dKx~3A4HQ#FTe?Ab&a^TNjE!54k(4JeQ9J)On+2w+<;w(tyfly+F z?S0Gz0$2$^WcBfH!@rbP;%!mA@Q!!zZqnImq-4$35L+n!;_`aWwuK(#7k zWqSMh@`pLsxGFBM4+DSVD_)oS5}GQ2xqdl|$>}>-?cs+_l;$W(ii0TXTc0kSIgY&$ zSd%Jb`IA!0Qk@O}IS=YrU4RG7Xm#7R(=K{Sk(Fdn8XE8nFJnv?eXvp$p=0yy5l`jy zSFb!-EM+NHz7Pmte{tj*1yA&KEl1atkubXypM&st)7=WvZWUTVmnan~U$omk;PFbH zNQS$P#-Sw3St4pw*-N?q0N3s`4_H20FqtypA!He=IclPzM*jdD-%;CmV#J=1Qkf~1 zlE48?8?R%w@Y!LwN@XlAu5)EAL%Ax7IJ*himXw8n6l$Eh7XJV)+XJtZOwXaL0%jxi z_Jm1ytE##py7x3{Kaq!P(+x_UB5EZcR#il)6wRPgAN_-aQAenYn6uHXlFcnsrGh7| zhGeP1ZOgbkQ$bAth1;TZ#Q>xO>YRhHee%+!_%w$$dr?B~!-}!amSw22i2#?PhN)vh zl^-|cX|CYw094Odws&HHX-!LWQas|tqUQ@jeQ2N*OIM=Qbti_3_XW-+S||#E(=m5H znnV8pfZ6F2(ge9uJy;B;IX5Hot9e9NOA+RjfT95j9xw7Irp*5U#`Q6d5C&LLFEFTr zPrx^Ae4z^p+myAPoXYE%+h)uA`&HuFR#)3Yc?COXcRgj+<9ji))uan`@8F-!JF*!SFi6& zi74*{~TMIMPJsdHvp*yJpPm-fHOhOMrQ?b0ZE zM!*S@q|7S|%%hbhASou4Z~@D>Onn7no)8L^UkNH#VD->_NsJQTYcuDnV(K%x5*>g9 zwx@z0&xp>!?5$w2cE7naa2$ zZjY>Ksll>Mr3;uDC~|WCs%Uy>e4&E~V9Pau0$#He0;VizRMpE@iZM{vR*C#4+r7Cq0tgey> zZ42(A{Il&gsT8zO$V;>V2s<{<$)!EL`-RpLGndzA+L&Dk6L!|2dV^P#X-qnpx z(KO{KMN_$EE#(w%Sz=fOmSnvS{C_cG=eIu~C_9~f-$+38tBj1GlqDqRBpy#*-K!eg z(lfIT4n)FNXqu)%Lm-wVL!hRd{lqHc+-!;J3C)}%+_SZR)Ya*s)&pLc)S^mdl{g7< z5^5h~_Kb`E_z7IVq|grm1-jNSw$)|};`G_(O$Ks{B^mz1BP#6ff_WuaiIUQ`-|)W7b7d24aBTu;^3MsNa@@?BI?IyQcyWmsvS;D5;W>%WgYw z4R^1inG=uq!|AU?zzh1GGEkvJfzsW#*Dcy}l35ASP>0K!BrEE!O70h*D zbR)Dqnc8t3{{V#~*_=pC3Rne~CzAU-W%!=~TI~r>t3peX5lUtoKKeajw#9!-oi!Ph zR1}~Tl?nm4Jr166wBl?)5tR~K2wh%R7MEbbbCt4q~i9I^Q8? zOtY1Mmg;u{RT?vzOw zJHysG#M#!xDO|!x0VcVXs!tke2Cg6aZJ9D(ub8h?r6iJq$1NxU8o93R6F-92&-X?U zpK7%Fq)Sju87^3Xx#_=X`tQ-bi~1WdLc)DvQ?MGomFUqoqbq<|E&{$)Ds0J<5&-s4m1tS~TIzO&3{8l0 zq%DaI`GpDS+c!}ku%;0!K$|#|ogm5^Bv8|iuUN5)q)1G)Axg@!mPqHe$IYQBgWfjf zteNXpP?ablDJ{UAS}OxR5roC)&Y7a!)Yl>^8WyFC)!mWj6&06vYog4tZ8q1Z9mCr+bg4P7CB(K?Lw;m7kO&6u&7RVqkwNac?l1E$TOf3x4yrdh<~ z%TZQmAi321;DGcK2OQ@|=4dAGtDZfhE(OqC!2-#{S0B>L5#R#s@oN_0MYMwfSg)4iP~ za~7=ACJLQE*M2G=q&vrZOCt0U=(=L<2~u(t1M4$0loP0ayFU^1_4#1|kWYs#Hm?Wq z;06-1O1rG{CCjRowG|YTn}P7+now31uOI4`oWTlFB#<<5vGVT~=t-jY_9#u91g?o@ z3~C>5gVr*uPBTHZ$|@ykN{dpZBv2OF+gP`cZ3;4T7YwFS+0vyAQVxZ>Xj(D5uJ$5e zQjHS+#;X1Kf-BQ=#y8liP@JJd#NNTyt<72YjV}#NGVB=v0np%&X|-h2Q$fsR7#hbi z+K**`QB4cew%&f>8uh0K%}juYPEay{J*H-)B9ET&MlznHtum$R<-jDfkV=h3bPcN( z(8oT3{R+&r&0VI@;z=G5Low>_!Png%MPbVonG(d5%W^%SYU=LM`u)F=W|X9*gX)n$ zkfs|F%{C1l%TGen4NPz-QXSN=_wMONl{vrLYMDi)esVr|RYE`v3 zdh5gzwxu$q z#DHdoP$kBojf;Dm?HOY6klAgr)jKLc@sLxS*bP&)NZ3P-`-bIZGXZy3j8Fqj0DVS< zhR)_P+*^0eO45`7NI9j1mr|dmwCx0>Ueg4XnbOpjNhFiL)T0-rTUc@vf5H~=GEz|~ z#I(?LP@=jPG#+tF8eyqul%lYFHFxwwp-V~={kbK|)D2%m zr-!9o^rc}+!FN16 zJ>9o@(#EX72B>eii=M`}88*P6!~X!4e>96JnXhPC!mFokV3oG@N=;l1iQMlGlAzN* zQu=N8i*gaYKCriS-sw_Qcsg!;p!M4`Fw7aa-jN=LuS%B_B{9sYk64@4uzlWfs*KJzROmpgb14?5u&yy*G-)+M_DW-frKV#Ny9G$ct8aEV6{qo>5B6aj@+c<=8{JR3FabCPcO` zp@mJ&uEI)P+4Sq)BD<`tKQ)5?0MneL@*=g^23m?U6U;KuIY~aVZDEGlVjwwgf+$>) zyl+BtP#qg@cCcp9fLyT+LUt{sUN`q7f{(bRo&vr9vbb|?2 zRhj5NXYT?hSx8Yy+ivjVXR?jP@Ud->%TRw7qjw!(!74khSOlHOZy^>`nkl%BF2p&4 zGUO2DwD`j-OZQR<%$F6fSK=;Aux3jTX{XjYxaGRk!H3s~C1qY;Sd*#H>d>(D72Pd} zFRFdoK|5`c!2?E)Eb{0NQU~V{Ld;!IB)xFWAw?WlLs7?AD{irXcO!4xq<*$oa?H*R z4Iq{3hss9(04OT8QcRa-j&TLqKt)VkvCC?Y<`@%pf-723b%W^}+cy?!S9p@;v1MLU zqM4xj?ySlw8&}RPPPvMukiafk%o|_dv`#cv#5iuLATZVS@_6MoAVows+@wsD0diYT zymR)2J4L@F-%`30?C^R&BW^?S53^7hg^i`IX@-dZ*lA zFt#Fc7!Y$Lf;j!ePO1<+A7Xs!5+;+Ypq=~m?fg2SLp>IKs|Z-LX5IfL$hq(GZ=EYTFJ2QHxOkiN`_#q4;^7< z(`h-G-;>j{c4va`Lls`2Zg=S!^5niV9V&1Jm4AnvcDe866eY~n+JwcKGd}T@Qfyh5d^8g({UF>rxe#{sZ(FQR`KAo#ko?Wq)CVDoLTISPUWlHqjH(?pT><*OtOtzm~F$?S3121FuR6Q3DD5d^^Hp7v8a&X45EkS8u8-K zl^VM)Mh-@iJ(A6w)KD0jZMBj`NoXU7Y%GGMYuDu(X0k0`z=Fe1%0MejzX_w!;lA*@ zGbzrWl!c4^ELl2J!ecuZ8I}Ddm77jD5TR(k!j?rCYt|b*E7;T}cv9s@@brwb=DFqr znT~xcSMJ{k;PYf+I^%j7jEK2Tv2Pyi$aq=#Z1BjH%jks@xnNJs_GC#%DEqI_UU z^(#hVT&GP2uKxfn;&}4?s{pL{Zd|42l%f){>AC42gw>lOku?sIpJ_qB9Xs&xUlP*x9zm9bDGGF}L!-lm zi3nJFj!vx@52MUeJu{VO%bG|nEU4<2XHN!&wq_4jPti6jvm~;ju${={@%wEP#Q8HT z>l3a`p@1qz>Z^Oc&_@{G{{Y+0gqna#*wc~Ep3wDSvdWn5kfPK&k3Wo2v)O{UJ7sV<}dqEo94b9C6g;vBH0g?BO<&LH8La%)IqOm>EpF*0 z$16RL1A0a4zRxDpnO0X!z+FHZ50y6nzObgN8a5`w@{F;R=T%7pjrsYcXSjal25TuE z$#6r8@cW3ThbP)3&6p?WD9Q>{c@LY0CBe~%9V1G^6HuXJ(K?JVcHjybv zLYV4St-H{Y1L!J5U$i1v8A5YD`jB99ZJ7XI;FdeQMw&SaDwXP2<2#-@`?USzExRzR z!7^=~WQ#kJm2eGm`4?fZVH;K8QhmmcGrCTm{vumF+=ZmeDFiFp z4X+Uv4G;8dju9{>USJk!UE5cOY*~hqthpb2z^TD~>&Fg7dqM^!^mc>#fHA76m;ik%X@vkUr}d4$8GKx>Ze3!0RuxPK6K_`^ioXq}#} z0bn?9&7f_f>Pl1=7yvddN#w=!LfE3r3j8ekQ%0uz!VVz1<}$JudRIU<5PJ__Ii{2y zs+Oo%e}0h1dt75FQ?_l6ue)@EHV4gD<>56F6=o8GlCpCT@&5o}?sy||T&P8m5E)>* zwQ6f#y8EMBk#Nhaq$%iPt-lDMhDU`z2H~R{!fv$rb&T@(obr{CUdtNNjmX{+?KWxF zhugybuyo``*KfF`AOr*kYS-H*cvrIFMIkGg4y3Yp9DRoH%S%^9j?$nIph9WmCs9oX z-+pNo)T)u6`A4sQtSyZX0 zmXw^6DVTd*M@Qz340fv^RK*ga+Bp2$GyecxI$fzbin2RqGUQyjkrDnucKP;<~W;^nll50*Zm49`b)Z(Rune z7*7cRHPqN7}eUP#{FV`I;|r5KEmpkDIv1&l#M@# z;`xxY&k0PjqRt59!+JgWw!VwMQ6ZB zrFAepS0u%}!YQaDQr$j2QJ&uyijy>j8fM={=^7pl#wZ|5%t#xZYZ3C7s;pX7`soR- zalbtP+pJAsvM7*E3EXTyHGtUS+=)dKGXYjK)E)YFf>(9Cs3l1`fDV@V9`SK2c<(8e zp8{00)hgUJosVCGnid2GuCaFRz7kQG8WC3d{_u&5twLI}h69++-?0wT zZgkDeJ(4_J1qZEkeLKM+AWBY5z=QfvUV3@JEG2v3Wy=7l0-$Q5J{@99EuvzJr7bM87O3nv z<9M7aO$fpA$}*`h;j8X`k)2HRI)%=8WT2!~I)xpd_HM>Bi!Hf8HrsA#7B0{fxRJ_$m9wePSj5;8t@nI-V zP^M8!H8S~b{#*2f+a->8s}`$1-^@B+_T0)&WcJnGEeWiU`jJP2G=lEH=}U&CUtTBAp>g6MzF(I{BR%76vU;x#dV!WK33oyB^<2&(V%!bY+%S2@IeLneypgqn%@)z8usMaecv%#q;=sjKxTx&|3~$(uqMp5(o~a(EibxVw`Megv&~XyHK}Yw9+&z4T*hJvXy|ekj2M39)xol z&T`y}_}MjT-HavZpaJCR-256mmw(AufmuoH?hg@{dQZHPSRlDln<&zc;!)MM@V>Ec z2i_$lW|U1BEITD$dV^hBD%wf$dG%92w4kYBi@RmrKpHz}!Rqyf+zUEV)$0_T&eSzD z-Us4auuhiDId;&Fc?07MS86860YPlQvOsj#ef#b3iIq*#^R@zzsbmA78b`Nf>oAfQ zYQdo+2VRL-1xgCgsml^~3Q$g+!qCLX6$snYtF(W{A z?cZ22dt-F904=MBBcSK3QN}nnRJo(oWkA&_9?f=0*}VQyR?}mWwnJr@)grIk>kF|> zS7oqHNF%~V&dvKlTe?nS&dMIobMTD9$t`l$=~sXjP&&6xoJN9#mJOpjjZb*eQX}GQ zKy3D$#Ih6Z@aKLZhRcdX;QI={K3;G?(p}Om2uMOwl_sTwB~))0CtrV8IgQ$h-ZaW5 zDhn*^4+FNG4>-!z%&n?bxhXXPKxbr09S=CQ1@#O5kmloKsVNJ&r!DE|N@ZNHzCVAJK==gcNx%1VU+${Feg zwPDk^jgIrelV{}hYRVXsRwVM<$ChtJ(*-6MR-l8oUJPgC<9QsoBXQV@P#GcGj9iB5 z{{T&XH>@~*Y}1&nf_EowG^e@-*>JL@lFD!eKtHQ*tV?m3fT$@%9o{c8CX3o`;-Z#Q zC>L!&>hV_inMXd*rFV+crYS4%?kML|zwsPf?~vXw6sBsD4R||q

5{INatEhGe>! zxubAC(Chsaukb$M8D-Ch=1iQT9OW5+ z)8+(Ry)8%*iAxY3q*QV5`9)hykgy4+Qdn}K^o;A$E+JY1rMnYW9e8MV;Vj*Ft#c7E z{3=FZmii)l5>Qf}&Ue&r_=(p3u8_+!lqp6+j1s@BYqDzz;1Xqtpgo8U;QK{~rIjQ17#MntqNDI~6eO|x!ac=|IH z-LlNGCOM~sCt}?;+CG1``W2E&rc6=HqTwL01Lk`ChLMLpJieN7rk_KWA6kc5Dt1y8 zv47GxbpE1sBviC%){HeMtSLv>VV7^`^LRkP6TLtZ!8sB*_I%;8Rh&*CD49`H)%lIM z^qO{@i#vE3fB=#PZms$6gxkh_o>GdCGgp6eSAWhT%5Zw6g(*`4i+DiS$}?fonQKe4DjmFzRJM$SzvQEof!hr1GSS@tqwK9;VYLb2~!1U2ehu0Q+b&6SQUN(pP&yCt=ct6dYki{5kdPEz^!+@ZTZa0;IX;*r$db-xtw$;V z8bA4H-s8+%y%C!DunB$-SX7s6=TQ1Pd3J>>_UWB3GNwLFhM^`_7Jj5?As71%IC@$aRw_zP@;1s zyj3I2KywRhH!g`%Wj`YlT?zTR8XA>2B*wd%7LL@9AinAsi?EcOZb_| z@ep)m=m#X1qcv&tRp02K8$6*r)F33J0FjrIqZZ?=FMfn)xOFSFDdsFHU;hAe1=-rF zt!_VV5{8ULMQlVQA4nyo;Fp;zexV+z*%a-Uj{RV_+cT^rdQeD)fb=@Q&nf7c;Oo+!YKt_VFx zXVk~H1>Nda;S>eaN{%SR9=fy|Sko~gl28oJ0+f-q`_vfC?!0XzE?`npmM)a;pjoL( z?^YiOAL(DxI+6fOXDKG7g*H9<{{T1*n%iiZGuEs1D21hn4YpUPYINzt%_$#OVOu&a za|tR5mVocALuho|lILx9Dqfl}47uW3C8Y^dxR_Xjqm@3VqlVZB0fBugOLSQfN?AYL zPzI;t%Tk)O55}0V%LSaKTEpr=1nT^D(lhw>tnE_O=w?iS7o4~*Mr~BvRKHC?;uIv# znJMj4)Cxf8ss1BiC8dW;r^5od_RR)(Kgy z0W;;YTPS4^0HZg=P?7b5S2i(7mYH(E2P+TqG^-7|yacxvSX#+;DFA8Ltvd4#^mDY> z&i=~fL>g!*kZd^p-;p0T<3*sXsVh>7sWnH$Qd`1CpuUvRqiDS_!L>3F6i^kIg5xu4 z=Z>F&KKk@^F;;}x$mSaSrC-ndTsQ&=is-&}TX4;9RNo4;3 zZ7x)L4FDZ?CLQ8FNU=}nAS|*^B_;#zf*r;scqk-N9dNK5U zI@y>BUtd(bjMRAY&W1C zPiQpr1n}phl+Qk~OJA!D!~EZ#GV4Zm6^)MRxU9Bh5`dMgfE`zYKw_m88j5`f9U*KiKH}^3DwQ;+QYzn} zT}J8K&N93)gk{=Fa{vMlw?gh}k+;d1bbTF2oGYN@0p$sEuL-l(02wwJO%(hcAF-rY$_zQ;zeT7LQ!;9Tj!;xqU2IsA zIOkzT0B9z|7Rx-b{WO_?scB|VsRwbRk*=|w;_H0nf}=2yl%+X&Y7%6Vm1R#1s#mijdE?mWcKm{R+ zNZ7FjiP6$rf;ccg(hfM9>Iia!FEZ7aHw1@o4;_!c9=fgbLi77Y9wfOXfz$)I=@EH- zLwyH;eHtW8E14_>dqG6=sZZ~uYOAuSOG;hP9;E7dJx0*2gl}~lES1e+GgY1e(Ijxq z`$3FBiGQ}R2xfL2e$VlZW=KAmucUkMlaOXjT}EV9W;%jWDx+Yb8c z582Az4eKV#k5wcj(YlV!uROy2+lb^b83Cyzsf~95{Np*fECex_R7#ZKRJUW-tQ)^T zLfh5SgzKkxt3-zhc!5iDl>Y#1FaQPsfHc#z1IDIGlbUjKFf`JK_h^2&u3uMW05)ZK z{Epj`7)PX=_~*%)D-{f#P_2V+5jzk|(ch&25Ky470@RsQW*a+=_4DZjuir@dJStXA z`T}=&$gRq@lG0?Actt~NxmMtItF&div=5iZ*&aQ!IospziwlBr5a2}*&gvX3gp!|1y0Nt-h>GDd9L zxIL*4*u~6YamYd@O%zcH(ST6^2Q5N&`k2IRb~P;K2ntarE>|tw{+~KKbdCEMUFn=M z5&gQ7+A!a^jMm|wF3O((e;STr80C5f=SPXX3m30E3271p!$ky!OZbI4{5FYh96vkM zW||bafEEhe9Rc8vbTHwcNeHwr#->VY`>TYu-)Lg7UUMe}Dqd8f9I?}3Ry~fj(hQmH zI>)5ST(u@*)8Rs$S(vwX)jJ-o8?D1F6D1XZ0B55;f5)FKBOdgw5R@isseu`#4OUGE z9S2$m?HUciZc1$O(~}}Hf&kSaS`Vl34oN7a{9lFrWb}Zns+i3(o)o(<+$e3{G)z}} zrp+uRC-m-XrC+;7O^$H_q^T?lluNyQAR0ejA#WGrnUl=4kXhKjw4ur2o)xEt`=b>4 z`H2KjC@IyU4_f^x8V&D_B+FPvV1$&qLzYq8RmN_cYqTt3FGZP>$U>4B6;_4!JCEKy z$Nr2Q33BEq)+gCf_CPvNVOP7QU}ikt#waFwV5*Vi=?l z`{?fV<}uGn7>ZayRZ5gJIvsYYhWufFD9Q>YhFpOnwMcKIV7RzU2+p9d4MXV1R_Zm0 zzr_}0348vG+i z!uQO}H}(JrfH>v1ik3_(bWa;%qJX63@ikSgJ4eq~?lMAV6}EtYKm2IXJs`@OtkV+V zSx7aZ2d5E-;M=FyT2n4#p^Fl#Bv-H2Cf&MTj`ua|XiF#&;~o;GBn4^j_(XRlwrb~k zg(XDiVzjw%YG~E+q--g{R(myB%LW;Ofi0^OLAcwY4++=jq=eb#Au`aFJu@T>=uxXX zK0-BSDI_z3Sk)uGFt@6nn@6^kq$e-xByX&9kFoT%%gHiOVhIFlqLJZCHlXU}oM{c$ z9tfRl{_Mb{AvM%if}@7gzYWV=9*3-}SFAag>Yao59FgKs{aiMVUuZY5LG(Xj7P)Fp zWg=l`Ad!(fKX3@6KD$G1BJ^w}0-0)23Jg*_M4kaJN)lY{4EC$eMVUY$D3>f2AOHzg z{rh!-;~gP%vxI_0Nn_jsXyz9#>2_Pej4b5@Wl|`rF(9)OO~pIB4918=urfFV08`$s zJ2TP>SnR9KHAI%zhdPnhib75|v&~$|U;>1fV&U0Z>-f;IN8BN7K(k8$MMa5U8qwcV zx4s49TiRNVNoh#%ungWk)_R>hy2n>_$}G}C<|vj705m)}*}Cfrmks)vlhvQVKS}HP z^M{G5mJB~JSw?aSR7vexc7k?^sjsY10W>K)b@PLFo#>fqB{fjc4z=@)PZ>@#rx~S1 z3CpIzLFv`>g{7?m?44$vGb;dqSwMcF{;$7XBT2ViNlc_6CBl7^Ow4yvZqzaJMh3d4 z&LLsZEh=ooa{3NNwGp}8!f-659E0_42G8<~mkPwUULy5N31XpK%ss#pO8NGVFT3!} z8G#J+OYx{YHr{@6Vl?>Wr7cqGrp;1M$Z|ww_{RG(r+@molG?c6gXI-fZbqeHw*s)G zJAe;BHh9o3ThSyRp2M+>g9A!j$$6LT`$I4w+eVXek(dEg4MZ2dggx12I0xgg z;tW|V;h$Imb}7pPL84CmyF(qBA(@!#7ZF`$*lE^0GW^U)qvz5re@w&T{6?~CHE}2K z=@Lt``?&i=%0x{rR8)lh>U_A4jFR77;^CCd+Bpi-sfHX`chTTw&2}>xc)IX~MhJ}m;J$z=B)=rQWtS4i^L zFTh>1HoG@|VbU()`EI3Ccr*z#;RkcYrf-7|KqYHva&$2E1`Hl0u6yp?*1xImWXMQ*GfQtyAXxW0QPp1xVMY5Tkfs za@Opo00RF2x11&7OhOVvE#Fb6zm9@A?;P!?P2TRjvmw%4XnTl9#ekKEF57ONAG~*g z@5OqQl$`^Ct$%o-YnW8E7pjRT^QM9-)X0kN4mICSA%ax~x`r?cOt!2Tv#<^33Hrp! zyB6%;)ESdA-2hQT+OGvH$3k@*#mb8YC8&G99y(e4<|xWjMChFt6M_=v?%%X}CdD+) zZR4`7BDI=%bAAzJQz_S&9uZgmBFwc7-Jgi5Q&v(P_HT%b*Ikero?G~e)@!-zv+w(D z4tG7s%}RC9{{Ruc8LYWc>@8*h3Oj4m_lKLMOW}sCyKVeMD~84rngH7V@WEt5w$alg zp8I_kU)U1>-x!0P8-ky7iv616KS zcP1mmRvD=xU>+9H*_-Jc9IxA^30khD8D~QJ@bQ*gFa+T}GbJgDXtp1P` zk^<0MbcjFwT2F`udd7auZgj;eSeBpxO-#?!O+P)+PZHm$nPizQBgB-D3D7I8T!XJd z(R#pL6&n0teerOBj|*x`Zei1m0}oyaOw_8ml0a6>99Q2TNZD=ZnJhYiqu1&_@rdJ0 zJj+bULn(JsbPD^CT4`R;cIi@(QndRj)NW62v}L%v+0Ml#WPzGc&zPESkaPfW0|dUq zyjZ&Ll}%9#pihx=%kdr9WlYMYCBi@ip1(Rk+df68xvRP7xgC1Onw6W@(%LC7n4>_|d8JiI$DlIg{9c3=#l1CX$$@NK5C{d_2PnP4z{kA)jVi!;uljM1UxKd&a<%F=9 z9U%4B+-X=TD%mfIr3p;UO&>}RKYSCrWT8NWmm~79xsBARYyRO0Q7j)o@ox^J831GjKuYm)J4WR!&!C!drn`XJv%c(|;sD-J@mG*PasG?pDkJuz?+uKGR~x_K!S7!f_~7)jxkD#5E4=p z2HTFmKPb0~tfb1!lTg8k`F4u877s~jiaE#?8dUWAMzUcC+&6(QozGAh7$yBk4l?RD ziq@M4EYtKuv)JbnCd)aNDVJc}at@SzJ?x3} zl%g`OSxUnK+i9mm47eW3kdIbngsM}Hrn;ZO0P*GrTJtJN2~ibRt-U?aW_m3evD}1# zG_gX!V0Qj>&_GK*7tJ#&gN)8Pe$YNfEnKNdLV-{W80h<}?evII=@|%^05w$|#`?pD zA+FVAnJIn|nLi-}E~zC-%u>m1c0a^gyKOnr3V8R9e4uJ(3wGaett04cHFvwIX1ee{1Y>@cv62kZ3Ctz0DCzEu zyp~C;;~GW{niPbjf06Z)m{8ep# zDH3BD6J{hNP(O=S16L7$`s1+|swr{U(=tFu=_r1nwLpCs!X6ALk!n&Dtiet*GY4{5 z^=RQY+}U0b$^d&n>C^Uw{4sl`(P@~H!!1kE&m)*zuE-iS`G!@WE0UEO2H3>5{1Wn% zQZlfsSErO+v|_Ljl#`n%_i4Y<7w=Cj6^OsX@w-F|5iU-ha(UMG_Z4(NafF=6( z>L8+RiAW$Qg4NlZgA+L&hAda;y)(<^DIGL{m|FuX%`r&}3r?ObTY(O^F8oU5B&k3i z^*u=Z5WSDDFH%C$;z=H0?asV_e$|uOdsp;@YLPNZkfsYw7>{%c^kZsL5bGx|=^LKs zB4 z5X@AfGN>q)u7}|T?kVC@%4Ru9_Fwa8V3%u3oY0LMj-oUm%mrY}C{e>yn$*Qid4ojB zDpE)a4#0{Q*zn>RZ1czjA*-kZ+WhGiu_De;kWP+v*I#ryIt&90Vujh)m1rmp;cC_E z*RWtCaIsm;$vNCRJDo`873`P=Gp3}>E>rIJMvZq}VJOL!(#$@ZP{GHDB3|>7KuVaM z0CqlIcY`-{;FJWuX4v)mh!u~na1??mM=j3r#o2evBvdAp2Sew~Ne)W4oa_U=2TwR= zxo$F_5{oN<%zO2UH&xOSGgO^9X5K2=F_;U;-p-)!)*qlXiSDC00R;g;M87V@vY&bK zg@j=RNy|zG)YtR!kjr-CVVJUrLskC2D8GH$!9ii0O*Vbu^kCM@!66U6fOFr7&hK0x zwa!e?0YOu!cKSiNR)u=fjX@jj*YlVwVwO`u&xgEMu)k!UmTf@zLBHzK62mM0Q|lQe zn;4mMrUfaSnkzzdq!yKZt$q}ZcN;?a3k+AdGYBs2?v9sjN)Q%5PNS%ZuIsg7l1Lp% zr(Gj5zi~QIHf*Jm#E^ODX-}V&6iC*^<0^X7FPchm z{{Z%}QcnQ+Ya4yReGr6&P?|ShKQ@9>#8x~ojKYk1_4Dlk4WUT18D*S%`T_aVcyzob zvQ$XhU-9c0)$?zdndn(Llh5V3TbM)Bp))JN=eL$^PkMO{!7x}b?WFEmRU5eP8qK2X6Md={8G$Sa^MdvZ z1fracmoA0dx7ITM02H@Z^6MWkUUziiIHN9dO%CWkXwz&~Yecz8^@-For=A;e%XEfy zdOt>DwVQPY86j9tSxc8W7IDe08{ zX&POQ^Fjeak(jjJ)qy0qUP6<`&Ci?^UKT{N>m0UkVfN_- z?y1>}7If{>0N?h-Aw&@2PDeorNHJaTCS^)P0CeMz-YD5|8la~g)FX5EFyu%*g6Q>u3RPaU)IP~Eby#*v6c(@ov;gScK5^`+ z`9L6wFbVyJ@Slq@S@nfY;7VA&$Cv8`xikvik`XdsN=Qm|eLpL)f_97BAgO(Z?->dcl~5B`&oBod7!bjHfAmD+RF};JJB#S5ODXq#@pSkV*nwluIxa zSAV|ot)~&$jIx9%b^D*RVi@XreR@KCNfiyr+{T=;LC4yaqZAoLIm$ODNBMj7f){Qo zQsyDl(tsLjqr0E9D&m<+DalOA6i*&-sdnD0vg8#|4m5t`c8(5Q?;G1}*VNK67-CRB z*fzdhVs+l7Kpf{c8}~7YV82Nc)tEnxUdSP|hrBIqoivpmSa3()I(T{KE~7qPJ3BRt z+bPP*Q5ujR_GpswSzzv8Xt{RCLXJ{MSlgKL)MiR$D=MXv+>YV2jq#dU1Oc6C&6cF^ z*mi+fsdB9eLeK_qO*w9Zain@Js{H^EqCgvdaSGq|^5v~_65y#>xq7+xX-HNBmB6r^ zrBp9cbOXQM8vg+1=ZM z_N2K$B?Xc;=r(vCgYhCIIu+roxcb3+!u^yGR94N>wcLJmiIOVN+s?$56oivbH0}Gs zmLbAQm|a;-JS<-*>R?^xk33+Yl!AZyrujb+1@Dhaic>8NW6`{i zS1>H4B}gTo*;8rm){tV;jukrA25;@VtZq+Ac@B>mQJCr6nO56YP))YPQgN@3#_sWIIqDf$#aOTfMGyBoviu z89NgD_l#Q|UVf=WDM|@QXLql0`@k1HJ5EHoO&> zRG^|kYC4*xwQVU#NV4B^la^2fDN4$kIW0n^5zmxp))|I!jLE7ZjF4)>=>ezMl_f@U zJW3S=hY5(X9IBVvRuaUQ9{5mH>7_ohXl%5m;F?3iv#oiS9IcBA3h^9cOB(%IN>IQD zQ&6Z4oX{PfC}f9 zs#S>O4XLCUH6{zfmP-z@(xO8JwO*bl+qD6Kc#F~sWt9S<;?O>$k=`jz#M$fZpgnXf zc3|}y^`szTY!xzK&y_%vM%0b9_D>^-H|W3XgC&8Y{L=aB*K>%>^C73)Mh8d1Nd8aq3S!vkLhyAoWUv72T<6){Tq(3gXolhdm=z(tksBd zx_TFipQ6IXHo_{HqEHo5M}#o<=?XS$+S4gwNLfHnu)wu7ueyhL`vTF0G9gF8T(BCH z_Ke>V;n_(9gaWnrR!tZh6X(*gHVND3Thka$nnKEzlqbnKUK42?a)Cr&@ z>Npw_+n(H*$GsWh#H7huMM$M;Nnx2oZZgNwH>r!S*%0ns1&b3h?Ec86+ zA>KtPYVVw>5=sk&sMMX$=fVJ9n3+=%>XAu=E5te64UU^d>`jakpi`r%ij63DPf#8% z+*pQENK1t<@X&3!J3T%wHMxT@$2yVM=@~6yHz*0oBv3FLD!5a`@jqQ0P_(EHj745@p2GFIcVc1&? z&QikU$qOt+088};Vl`v0x&eA=x~;NM6DnJU9~nL-rCUepPK_Hh`}SfKnNrfgvt$~R z{zPp1{fuP(mOUjZQdcH$QYHnma~d}#TphLFNYYssqz^||C@56PfGI$-bAE=`a5pt? zd&Bk_v&ttjrKL*G;RcVvI(%3~FGRR1eX%Q0Qc;+=qYuJ7>lQCOF*?ex@>*2oA^ng; zxzIo9c6Q(xcBdMm?u8@SAta^BQpE-O>_;M+>jZE`$hpMKTl%z`=MSI!LO~9|zl-MZ zfp7G%tgK|MD=G=9Y5;F!Xk2Mp?_ABb$;EPnv>^-e5OQkQ7FNnYiPvAyX0CR!V?5LD97*gA8i4qGAvdz!2^YH2J{kwp4|TyY5UVi^Aj!=*RZm+aqmp`VNiAGe6%OZxYo9cT&o3qk_fa0uXsWz1=%&y2s0E?q>Q6C z2bbroLCcy+L!~;3f%7l7EGbCBuKVtM!UA1N%~4R~X|+s!L+IzxJmV+&n@apkVw5&l z8-*J7)67EnomNkyN%pBLn5Ie!Nka;#?xJ|0_rxBEeH*1&%BsbZmepfY{!z7CtwAyX z!$3U06D=nw11kyv+n&66!loO$$t79BC8b8Abq!2AF)nZa07Yt3iFpFlQdgPioxo=Y zY8KPl8?4~JMxfhNwFLU6$^&@3BAy)pQnly?uNn>g>2}8^QkUy@kMO`W?& zQE>WCE1XIad`bn+2lS6B(iZWQ+EyV$J4>LZl;}(>+HJ`PEdd{;_uY<$nnMOTzJ$g? z0ZAzY*G?ab?-?c}!jtAJ#;^iIk_{EWclL(oczo>MhA!Kz=F>MMuw71)qH=)RlS8xV z_kdT=p*cjQDw;_SuK*hCn)y`e*0I&ai6%-a^=T>~H9WW5_l|EbNa&R;u5xm&p^0)h ztpsH~9mYwBu*ITW#W-}NqT;h3adGw&@kSt)P#Ip=@4d^ zgruaWQV+A&s4%w=8t0??OUMAE657y|$2g|NGJE6&AOIY6)W$35zZuV;X_sb_ti_Lyr;j)-lWC z&SlR`$-so?_LE&XAW`V=psZ=<3Y`A228$>E0AhD1hCiCZ1|h%}sqQZE>Qq!p*u~}jOH28|c^fjo;^jl?=uU90o z%U3Rw)SVnbk4D#_vx`KfF{g!p<=d?sO1Gd7XJVxbJh&sWk{AULX+(22ukx2<0@?l9xTe;g#Z+# zDHZQ)+S6r1l7gRBkXMyEsE^N#G2@?0?2Mp+p?9bnFdKsbu$`$Ew?c~z%hZ|{8n`3n ztQJqCv20C@XWA7lN;E+VAU>V6J^Dtqa(Y0PWhkXZNDLMgr$#$>jTZ95HblxPGQbT& z!^6v-yhces(aL7bQev(vYANLeHk&T1In+y(Sff6}pxx67@V+?Fbl`(uCRJYC#7+ zs7MX~`fs`I7}fQQCrg?FN}PcCUFvj#anx=$3~`HBG%MCEz$B+)gSSFHZ3^}o6Kyht zyw5cTgw!btKFHh@km2c73Lj`y!*b1-8e)r*;2l`#{fullC()eiA(v>GDIqzIWs_Bk zH-}Kn2AToPKaBvk5BguVdcRx?D5o$%e9CQuumtt`#<}QA1*SxjxvXX^xCB)r{A-{F zzFRy$UO2T=C557?NXneMIBmXW6s?!6^vhOY5|ZGZNIf|RrtwyuJpO=Bo$BSPs8G$& z9-KDtPaAqZMARxsWdxX1ZSk^J^-hvZ0%#@OcW0{@(p~V|UHEtstwA+8FnDY?w!6{HrwEbPTrl(j|NHz7A z4!l&mB&>v_Dp;%QO-}+dTxT|Qm=cMOGcZ6poyq5;(i`wi=GIh80F0?&S~neAzcHTT zdoZEat&FW_MXxFqK>WrZjuSCT3bVYzg5DEadzcV5_G92sRE5g>R`3M z4|>TiqRLY!fHv2{dcxi{^nYuVyz_`!6iIYfDC#Sqr8gopY!NrsNR|=_0*WfswvW$F zA_Nb?x17Yymu6B2t4VyrWa=Nj?;B<5WlYItRJ9}(Gmt7ec8tE&hgO9s=4GqIl+dVy z&rN_4tKmB`WlMH-sRLioch}A@j5fjW-U0sr+$CycJ3U-b{hOFJOR8yDWm{!){ze&VnYU<7 zu-@pEFFeJDY5}XnICAn_uCDV#i?qWvjdiIWvKA2Yt zOjwehBZ+crShr@A45CX)dudqWT(%Bq{{H~lIv}XhE8iBJsR;~D@2n*%%~oTVtF&3L z$aOyYd$foy)ROOBIzfvH2a8r_{lqw$m?M%p_k(6rfxReTBRK%+%rRLc3UrHSRuV@1 zH9oMrYqJkn%i!!8=^nv&F5Y1Dx3Q(|8Q|_vE z>jhISfZc|?#R3ni*`GlLSmmaz0HO(*;M<7p6v{R4tV1qY%G|YkZxCCpZ80gR3@f>U zAjv4w2CXC3g3bu693_&PYXa0fL%dxn3)fonT2=@i9Xl8`F3fWipgVB_Wym6WmNo!) zgQzdOGo|Z#f4FMUM)tCmS;ZfYhC0MnI;Do9EaBqv)CfDb1^5x2?7(oHsf#$S-)Lt< zijk*ST(Vel%nD{>?}miSV)gMsAy;x#!|~!DRLkk8g0_1bf%S@)ot>D);$GSn@`4Ij zC?7apy)D@?xTi5CzW4@Hiskp1i&uj(t>6MPdFmb&Z`5W4(=vDCT|amScVb-1aqOM= zKeS7HUs;{1MLWdXYUEnDugvIFvVEOL2atF$lZtI;IXVy;n~14C{{Zz%D$o$ba(RF_ zp8a`w#WpI{<12q{WXBS57E)>(-A=HFjBhquCW$pXldJTFoI{JeO_}LJI&BGe)-_te z*t2B@zrlgokcQB?>0jem*?k^d=~Bwb za1tK6_V^fEPGu6k?<|Ecq2FJ@$$*!@D?_C z<;z-5AXiM)kW`W34&;iK`9dx`zm@9}l?Md40-pZ>q-^#(N>rZ+WU~-DYDnt{ShEX% zS3N$hE(i~jjFj%xtBrMu=vdHw8eR!DcN8aqR{BKqXJ%H7P4$Y{Zsz`$&Y>|xuq>u* z$EbQJJ8)Q$s|DOQei_s0prPar-cc55%ZGa?f8UtCnPHo5I{iO*i5gP9BE+;)=@8Po zOt!1g!HW#W9d`$a8i{AzG>cN!cCW%JRIZ7YiBl0v*J9vA?$Ky=wEUu3WwwuH*1E@O zvzF426%kf!)u}qu_JWo>1D%|Eo0uPFmsSDBoOap`%d@cuKsFo4WR8AR$8mvBJ9H4iE?ZZD0WKntK2UC2!619gYRp#Z z0X`$9v1uwRQ|v1MuM5l-dbCxy8g+x$8nUq8uMmKhmd58XcITvK-kNV0K}gX>k66`h zR-u-GyGB9jGRNxy&KL@_`=I6M;|#m-+}UolshGQS+u;O%?=q>0mbWDQq1w-P00Gnh z{!o=~vk8-(395Cb-A~dy+pfJ3y{_bdNC2qpbz`G_;FcJ(dc-pa0hPD8_ZZQrk#W`&%8n;7Q!>n!M}QLB7v#`_4I8g$iv!t7mZbPq zG0Wx-Qsw+7qiGI^y^=r#g%@n2^WXbN=@&*+sH6aDs&DzXF)|YUj`B(nWvn`yg_+M- z&MkIj$(x*}gt+U|=?%7pE@o8?99MtA9^wRvp&=5Vc6@-niqs~`1t%jHBS)r? zp=G=>TM`yP1T*T-*NR2lSOkP3ViZUt#57{UgSX>FtPEvZZ1WbgmSKNZS@N^7Jh^9W zpUu-b-WJ5msncP(?cNqG>a)ywigc6$NC!fB=gN??KJTAs0R)tkok4eI0jNFuhM>|c zTJZe2c6AAgWmE!9Nw0(r`o9pbAd?E&4WO!GD=i8r;mF)_IXXNtCfVxUBx_1){U9%) z-(1d;;kbcf=HB&T~At5x0Eg2>N4jQG0L|j z)YaaGrkhky!zJx#0U!_ytDbj*3c93(Gqow*hVeO|9@k`*Y0K+fN|xDPfxf_OSi~4+ep4_gJFq*qXbho$Vfm_GVIuBzkkWS2!caQWH;Cs6Xs=akv9`FJc4XTw9hw6O9z) z4GG}v$9N}(@1r}!pVC>+AAs=!F+Lkd{ClY_H7N=~C5WqLBVNx+h^y$f`AR}U*)L4r z;@d>S;C(y*j$nU+FLOH*(<_ktGKcxkt@KOds$iAqrRMPtW&-x_6JoMT~zf20$qpR+C-`?+G|M=aV^EicVzf zv^L+kT79NkfLNC+ldJ9lr44DXQ3@7o&-x{VEhS=s)B2Oi>Ys@0!f(A)Y}a+9Bp@Z9 zMtXtQ_l|K@qbN$UfI;`dM7!`UY4uKBowOaku*HaGl_IKQD3_&q{01+2Bh-|v$_qnv zO*G}B5Wn#Jsk3G!Ne-gv2Xn~gu<*O$WQ5BqP*!?4dMkIOe4#e`aY zaDC=eE?Ntz0W}1;Pej!8iSb{Ju=#fi*1Hh?r6?cx)L$#;ck(3pSCJQOo{P|xDsmJ6 zsme7CR(-?wg#Q3atC*F_RFmRT$Wv^J{aAkyYyRQ2qEd*IRx-A%2P|5ru&h=m>3;`Z ztC|RyS&1#f=mF#5+8*rqZ`2em2?|TsLfwCOSM+~<1xrhh?h?dr*p0e~(=gS#Su0A( z6ks?$dw$V-v_LEIL`;`xN(eer^*{`5it{M|q{}1xwEW^UYh;k1AM}?E%wfKhuN9_f z3L!%_)g{`6_}^$;srqU*TWSov$@ZImexry@!#6~dwdR&H6)`$9^!fJd7H+%SET#$y zR)9XeI2>`T5V@>H1gT+)s=}=mGW#W~eaeD`As{96U>`7q98Kuf&}HW*GC>cNGxR6; zhwD_*rzv1XYx%5mcH%Y7L6%foL$Dvb7mT76F#Z}Ukfe_U=J2T{z|&oOMA%l&RthJ0 zl!8G7Rko(U_J%vL9-(=*EEL;;&sbHxFY_wWsfkb-oVlyN!h$3J05h}pWyH4|N@UT4 zgzVo)4}>jV5ttBuJt4N`#HpB;Q3SOfuKxg^#3Ej+GN#g@N8*9i1#k(Ec$ifpm<7@thw_(=j92$i!5_jD4D7OL4s4RZ?UG057tY*fPzB7 ztX~_YUfuQuB}KI&g|vv}<0C8-toXF1gN7YwQJ$H^gq;8dgSPzkj3Vy0 z+Dj6%mDuIfdHf-}2i_Cr=9iZ{R4YIYz<(jU>zh?iusYL-HaPD|JP zz|gnNz0uYQ#52;hOHv7E%36odVIA3UQOWCubWN193E8Lt4XEdik*i^wN*OuA2_wY7 zW+lEnzwY_LSMc4nQxF2d1P(qQyhVE8DJoWSkouCXNr}JavgXRn1ChWVm4x{om?ceT z8A+mEk$WOWf9$y^n3V*wy6g_(F8V@{l*)NT=L8T(>GIqi^xC1ERlj{DNJ>K&m>HVB zU7!`8(jsjoNDQLPsy0{I;IG3lQ#?SH1nPF%;|Tcc1_UIn z0hDzc7yO`um{Rc;ijc)MZBIsqTl5c9qf(+7lr(MN<;UeRiEL*$8pk$Y_Y#x-G~c+| zH3`_f33T?fJ^MnI4ZkucD>)}qyfIl&g@qOYLZv(ntLLOokBsBTA?}A-?=M)znO<$@ z25(!7`)-$Z9sIcSit}uPDKhw@jSt!?9B(x#C?U%q6Lb7VlHnz~Ehk1L!yW+}{(K;$ z*@!6s(L+Y7jh*yvls_?-MZG?)$!fWN4)9j`2}H28kU<%N8k5IDBH;o%DNm(5x&5FX zBDX4EidmsP$)SDg!Gm~u+=Z#tKy`o8Xp8m?RyErAi+(v&drRPmP3AGo-%m6U8?jql-<6Bq>tT z5~X`X^o|RDY9f9zD_=ih$*Yv2g(j@)=f0cq43|C4DtzBq2Zb%rle>0+_^M3FHo;E< z*et&Lx$CzPuH4sbgn+P?bl0pXEe*b~1gWxCOJ+4mU{nbC9+{jJLXTB1#HBbi z1rGiy{6MW?vj|{|MVN_&d6ESZYTW+N;cKug=p4ShcJC0`FRxT`O%COSb?Dz-ku$@_ zU5okK?T_OeT{Skeu2CqMkVSM*+z|f&QRks|!QPN2Od&HR<|o=}r{(d3QvDs-?G}SM zKqR-b{zK{H#Q8y+is(e8kO)d&!Z;11?;0etc+Ht6wFo4T1vKlPsUNU0O8CUAJ$9( z)GO4)_`1a{5>yfxC~-hWpN>1hoI@~rw5Vp^C>jB~wv8F8FQaHGlC^-H$2>P)kotj7 z(dD9i)sSkGr^Bh!Q2X?tf5n2y30q=c6t zsi3S?>;_)pNY{Y)+Y2M3G_RMrY1s+z)1$!#Ga7QkaH;t1b9*ol%Nf+o$1yy3_W1}qF`L%low(F%qvHBq0qy$XWDgQ8LPEs z1OyT6)v3AJ;kNC(RW;=#byB$MNuwPA+_WFFTyl~!fl!xvY2W4aj%3;;p!h{d@;|&8 z_I8@?`=}r!GHA|s0jSV37h2F$kbt88Bc_`_$I1s;FIkHr4jWhL#4yXd!oLR=V zmPw*m8qvo5lfyMT!+gurAUaeB9U)fmn2E4Mg)tHk zl7*iU-*)B)VjN(JL73+njnod&e#3@SF&?o=%QG%yk)s_S?aV3c@FNi9n6k}LM;iC< z$1NV*I2jTOS45QuQQRH6SELBKY(`C~0(mMy1c0rN`72NUBeZB(mfn(&5=v{~eUCcS z5wu=?jX^&UmIPI`rm(Y!tZA9zpfxSY;2oP^D1u0vH!zYEavu_f6Wlxk#EYFRB+PaL zR`GXIT?GZicx-mL@KR|y9|TC8=c+6mqFSe}G} zNl8=n^Xa#o8@qi3`pLy*VF+O1BXOZ|%>n)4N%m>+Me#2xfpQ$U&^<*yee1Mj5-=*} zOjN`rzzijUQCg@gXZ!SxI~G`xB}7j-r8r5;?FP}e%BEsPL2lvIH?^4(&}9IWur&8q zwx5n_@zK2ydS2Sizv!Ty~(SnA-ccrS2FmoyZQ z5H&CUUz$fY+hn;3VwC1*4n4*$Ms&S&-uViQ(ADsd^??46Js}LCC?JY>bPPF#jC+Xf zBgZCIbf?=JsDG*2nscNoqVtnI0%YkbBpj_&(CXCG16mPAatny*c;^pKMERu5Q3(pl zhXjD4bOZGdcoCspc1Z;WT6|2Rm6X(zzEy4je`M25V?V~%X%di$0*6G82_WcIT}GSh zNN2$J8tmvoi@JqVsg}LMU9%+W>>I1WaH(?Fdj9}RF;dbJi3=`;0_t$?jIQ8-9<=cG zjc*OwWeI+?t23v?n?$Q(ub}0jZu<0mnV^-Rjr%KC@4Y?|lj7V>I>|59XUyc462mYR z8M?CyZSD)O+%UD|iKSB!nVg2xL#X+Iux%qU^yP%nXqzc&e^#2Tl)hpr0cLTr=?&Oo z@l3lssgn=4EGI5l+r2x5fLLUc$tR70*RU`L{+(}>t3Rwz3rRZ+q;iv>+v6KN zyZ%~ol`TFe>c?-v8gisl#-51RI!RLJrc~gPdgcV;@XL;|Ze=Ah)>fjg3LcEb)W7{mqCjF**vITAZpyD2VyZbbemZ;Hzet)j znOd*}^EFnGvzP!93xbgPH$3k8wIf}*Z$m1~q<{jwrMI-T9Zy!<&M4!n{gBCXL&7rl-m|?(0XF`UKP>W@kt`Y)4VR+nCbuf1`}3MEar9a-`Cnw#Vb| ziav_)9%=a$P$fzLgz8ROivIwRXJhbL8L%kH=PkSbx#V=Z{#j zQ9^RJh>e?%IA6hA#tFX@K2k)V2tn~E=v!`(3(`HlY@!wZX(aFxG;y&%7z>0an=(I8 z@Un^#eZZ{*V!JE)y)BPY%0RmvinS_8qu2G~2 z#r90#Wg=)P_D-Pc{{YNs7w#7pOR0Dq4rMTl7_DoMlX80F*Lvr*bzDrQr)K#3ZU}4GAa(P6%`EFk7k2E8X6R ztl?-xlrs2I9)my*$MzKWm=3FK$%?HLqN>0o^nf^s zsnQTLBsc_<;X4-G9yJj@kKeTOFEB|S(*`BjIs0?F!0X!fGUbrr2x1SL{7*1G`n;7T z8JCqV9b2jC@H<9Ri7{-;MrmnAWPm9w5=kuCnfb3rJ44e={{R6gWlJk9t0zL;cOtzY z-WtMFCo*KEd#J6NqeEI(qz1e0(KtRl2|1@dPQ5_`d_LbD>7Te9)xl?YD1PUyAe4=tP&cj1(@J_HF@4xM zXjSx!=<-FWLpe$kRC6~+pyTjW<3_ODrc{(mPk;mmdey!S0PaskinS{=$({h}aYwF{ z(EMX-*BnFNL%4F!WJ&cvCn=(U_S88r=We|O)sUbaLHYp+cTD+G*EurFp$;6M08)LV zr*hltQg?Vt$5^dSQ6*&N;Ijj;em?O(F0fS z5&Cs4tMj}qUv|0Khpbpx9cnsL=Njjr$u@aF%}4%4g6@1N8zn5%8j@;DY$B+4W5Xit z$h1COz^Qws$Z@Rz`@!Ex_^`~D45^7xBn}RPPFr1mkjrhj{{X6#P`wGvNZ!9rAxix8 zGcf{+N*_Lk1bP_@gz(_9O z>sMpjNY5{vA#F0s5}Ac6Id%BcN7I%tp^9*Ys>YI3$xcuJcUe(prlZSkbr4}%`X>@& zWX>#BLNfaUjoAClV;F);ZIi@{Dsu$UfO6ZOfA%q-UYLPpETt`&I)V01jqh=*{Enml z07-Ymu`<-@0%=M_wLj?^q%${H1>ANOl(sdyhX|WIgiDyWQdj_;hR@3%d^uYMn#Cv; zq!o}kns#ANLW<116y&6k* zru2#atJy2uQ6=^Soph@Q+7xltB3#d9MFBMfe}4y<&+iorK~jP7Ho~Ckr*`;5h1=+w z^T-V8SrAi2DM`$fkwUb&V0359 ztC|J@hVJh~%XFNnQYEKDnvdXfr#inz(iG$Nt8uhre@Ub)%tC=nI#QzEE$ON43KyM* z*=w_{SyZAF6+#FoKc}$dzj{F5M%W=&jim{g;S$)W4PJ*+qq9F(8VLGd5&Ekt1gT*% z<)je(#)ax@zwZvuw9BubeHC1&kuGXxAtq^4mlbVjcy1`|0as&_{Xv>hn=M0t%npZ* zAa|r&`Q~^6vjq{EC9^;29F3~u+#%}-dIVhQDW5uTs|%`7l4u61RRfW*0FJeZvR=aH zp}Tyg+iH-lRO(0|X_PkY&dnO9r2FWsEg)t>LlljApP#}rTor{srM9MTw1AS7o>f2z z8$DldbZ!!`bh1@3YEUZHS<%n<@(;Qk>KhHXeIgk&QBq}Q2`nGN^l`UXzld?*p5ju$ zNN@#M_v$sRBG08rB4Einzb*&!C%MnmtbF;>cid21Ht2sale4}7LP(1PP+9uDl47E#L zeM1DHPIdtUWbIK1n5y-hwPae3LjJ6h`A1RC%psof#LCKvQpbdUjQB4qlZII%lO70W8j|Xp(e# zZL#YBu@%?j2RWG904jr_0F88R?*z^Q3?@%mDOz08tkh3K*NBR^x#-ryyJg@Df`k_t zv`Pg-H3eAHR*#}_b?T&=HjD%L4=o`x(0$t~OqFEuFEJ@$qIU&c8U{OpLsl>2VK9=k zpm;?IEFZT{VNH+|tyjFo%^-x7xC?i2&2;S+F1$ohgx$PrZx0sXhNl`Su;`#s10+C6hYNIWhJ!UhEvv|Ht+R@W3tj%x|_ld?+Z5? zWTIk{l?4#`aSQ77yC{_jH0!MtMMrdqwpu+H{J)qrw(0NC1;psTx!18U5FIBrVd+J)qUEKN#x}Un@D(qRB27 z%0_{>@74=?Gs0Q&OkPw=%;YMeU~c~7UcAP3bWI61q9r6%h^M+2EZBtSARLTxldGPe zULm{E1??pXB_Z-8dp^oXZNYtd!UhezC7HgmXe5$CQqGWD+ECt<4HpKRC9?Ak1S48oSdUXjbk*q=cZ{SCm>3h$m5=e?HWDFY#~4Ay%t5=*oIdENnAJWA%S z+(CQBU`~VgKWH0fvpFi%ouMdV#90*kJYJP8wW;Hn@?4Mr1Nez2%ruLLsH_7r-KhFQ zE!jQR!23NRdP=f+174;t;hD!G*W^bXM=uQ{vu9>mNFIH8h-6*B%>z<6iLPl!E_Hc4 zT*K1!R=r@pkhOYGC=}j}18owS184V$v3soM6w}=lZFZ_NRFD7>FfU4z;MK|eXr(QK zyD_I|yEfDsny~2Hz$t3tgKW>nVdfHzq z^vpxIAG{S(3M3q@u8_jC&<)sop>=Bolb|Gd1Np2tOtKu|w8}m0_WZ0euVp3%TMzd| zU!SxSl65TurdeHY)}jbT^`PZLe11?MEazYP!w{C>S3o?WNfZA7yECcRn54ylDz4gy zu&Hc-d%xN|kX=1vvpLcpl{AA+rL;@UE&5U^;oDOd+Aqs4hVp>6WEpb+0qa5agj&6N z*xAT}S79X~_Kzpa@S3@Z?pshg>NV{I0@9Zd-&H{)ZMlw${9XQ0UiX*+O=`~-Z$k@s zqGzm-$@Y`te$|DGn*0V@vl_KLoF2p%1Q`8xU!UAsO#ubFMrmoi{Z!eA%yOue1GP~)?X-i_FF=JhxvD#H)3J`Pj7Soc%}8)4r0xfn`-hCi*Ly0d%~$ZAkUcon^U81> z66E_$t#lR8IC#qW7a;C8ztq|DFf2gag4*`{cuD^N={XZKNGbx1RA>(k@+}KEmlKtx zRq-GYk_`e5wCCSg`TG9=#3d@!vUjV$PI>7V-dfb%j4$&lYJpQRqdD?zj~v1c?To)t z3s$ab4(HE^_V>i8Rz(&nJCON~j(Uh+w^^O(t$IJ@B6coxKRWm-N{LhM6}uh3IDm6) ztwOD70&iJnSYSp~ak1cbtb27xDwml+f=dV3hSQ#5{Uv(~ODmqhIVGF6vGi?@&zC7n zfKnYL>RVrYVjhBQVOF&j0#XuccUIsX`RNaY!2h7>kE!k=dv~| zH*G1BRHEup4bYw2gBvayvP+RG)>Ao6R8N}@M`-zf2x9!omVr+g%9ei<)3^q;3^)8Q!vY^b%s0+A@T2yi+gU?Ii{&PjXQUOvYYSH zDNeGGd_t;gv0tQV6HwR_yO1;^W7qRoV7s#oE7Pa#6ztMQjqa<1%W({sWzxiu zS+w29(l+B5@~*75G6*&CblbEavaF??4uI?D5?K&~qk`M>(hthILX%p7uQAoeMis@< zicmAdJ(k4a0(@FPtFe+rIsx@Ro5K}?a8V2zzUbO9qBm8{+MO%q7bjW3(|GoJ_TQvS zW{~83nkfnHOR*um{7M1D)cuu9W&ki58GNPv^`y1!pfv&AlgGfk`A16a&0J zr9_Ho(7%6O*^p}Hw1s^e3A5e`NHr{V>G{M>gl{CRN&p81n?*6u{Q5;pc4<=-H3Xf$ z5TS|hK`LSvl4TM@@JrG9ZRZ|uE0?!i?WW?Zu`(qrg23w9gSmLmy&hu8Yf{n*vki#U zbLaV_XjYq|bomKZbQGx$3%@*WPLCftSwzb%xkxkw=tkd7_2;Z%<>h8s>8Bnt`)oGs zPwL#L9HfCwK{`Qe&T(9lqTmGTIQkxZp=$cICS;O81c3F_9!KRO&J)Gua(!CaN=P&w zbvP=QvF*`_2%lF~T>ana9{NAO5*26%DpZ%I zjt+!!{PP0vwY3Iuat%pg3S1u^jM(O2nJ%en)m=M8SR(J1NC;PhWa#SO>LAVSYf6$p z8Ml3pNLa!4T(eXOWGRXonN?ie3iw-nV@uH;Ov5T^V96uGtw1}*N9k7(Ek#NMdbEZI z{kQJtsPc_(5Lwzvi`TxemubO?nIN$RO53)sc0T_AE$5%`LZNU1!-wg{MH$n`}fl<6l$478ni`NO@9=^a8?+Tw4ipRR?mr*q z2H*?XGc3khi3>p~2d2bq#BuP38+EhQN<#BHalnnFpJ^jvtGQ_@2nDlyMyxvbgBX_d zN2!*b78rxSmy{T|?SgV)G=?IMej;&>CE}&(mqmr!; zeMXSOI`=_Rl1M-6$5;(%0RR+=4G7YMr$1;NXSn7qMPW=2J0GuTA+1~Oi7RImG>--u zD|w2pTBkOh&(o_w+mjE8WqI9eB>0Y_w*#h~1WSr1t^Tf1K}QBdPZ4&-K}gAWT|Qn zN}jp^?!!lO(c@*f?|>zQFcfUxNL)Dg*;*54u%=Z&IbXtFf%bkN^{V|UMp9YFl_K=n zGSw|XNA%DNLS?$gmQvN2=3)_}By;;lyrz0gBw+k3mD*>|EAXX60Z%{T8t%#INmCj= zn}>y5DSY~*%t&V|%v9BW+I&3u9sd9#q^OsvStRcI`9^T=wN*^WLV$Ct7$a^Hr%P2C zMJL1sUB3FfFWtA8n=BvI`i`&M?0Q6&8K=Y_C}Qqd{{RtmfN<=IlI5sm@d8{Y{CWK5 zFH5}DHe1W0QsADWjgM2(JGgA6E;A`fFINp-yN0DZZwKyMzFf5Wvfiz9AW#5!Z5vV6 zCK5^a+81U*5NLr-L-p?N@t0#+vgV|ydvf({&cn_bv9;bLsVI`H$WzmfYB_fl8Xk}y z?Z6Whpc0&^SaNsQPCWkbayf7>(OvXH{AtUO=y%)^$oNt)c97PGpbueNTU+7P{{MuM09y>H5N! zE4oymiOEr29f+Vih%bWgR1~_13U($O0GO#tkux#?XUsS0)h5C zh+{Ugw7#kVpI|z`+s58ffHJ*&N*epPiuM`B{cub~)XYk=B>0L2GJwo@4m|1JHA|xY zmo*jeDS)j{evvJzM72pKnX>!3LOs=cNg=;lRh3P@PrNTdHMa0lXJkp#`$nNdkpkpm z?^d!62vtoOv5gs5JhdPwcvj3v*lgd8A3o!&s&uKv(xo7;!o|qokRF8ZT6BE4d3jzl zXKUj%tzQ_UI7mpUhSUY)F7$zLEnpm~@Rmv3KEvkSA^QPa3XqhnKdUd)1E76b+<fQg}qXgo338 z=plO&T!={qtZ1N3Pv=O#kNT$4g|^_Gl#JdNbmgf&d~DsJPTMYEm`bIqIyXCw_G8*U zg}bcDDNaB(1OoK@)+%Ewy#iSWQ^Orzulc+y$Lysh;j0wXAuC`~Lykk#IQ-fhu6z70 zi!4do>l82@sUgy}0!Omqo_zU1tN#EFAx$z{AcLY<1Fc#rOoEp&4cqF~n358zr0{rg ztHNdDDMom7sF09rqK#R(r^Yl{)<6=M@dB+4YxHP8WWr7owtCZ`{r8E^^l2d2&QiJt zON^nEX`>!Z55K?cGj*cXE5w?URFPDk{A$O3kYgKK7#x&P>7#2Fy&GGC!N>(Fp~2_# zm{W-Ms=OC12vRZv-pOyA0K?XyDM}d_?%#ORZL3lVA&4N8_Kc#_ekyFzGLcpxnTIs| ztUHs@#jJdVFD`pdCieG@;$0I_JO>l$8Rd4YkURF#)JuCyb|kHP$Mg;D4h}M)IU9GXh|~Sf`HR!ADh4lIOTH*l%z7jY8@L*TV5*^oz!#eg7)z2)K^>o0v;fva;cdK`u7X zQYy$=a>KJvs&-;OJl-hcOL|m;>t8EqH65Uxl6f+7CW-^Zof)?B_?WGB%=O+S06^KP z+u;_H52KsOBG6InrlloLDH_bn5>kb!W{gkg+{SNy-HV$u!jPXCk85XB^yJaExo_`k|BDcL0WgZ@xK6>0+g*O+k!a*c6RAlO6jLcyMpDA z07=vpP=oNHf%a8RN=i!rUEhvGUb!s`E*Z!g6Q_6uBK!-Sq^;ACwRhmR5ol+4yA#Wk zHz9Jja>9+*zUCS3JLx{HDw!m!%FZ-Taz*Eoau zD9Ui}Mzilq{*5KtSp5hV^khCc)QF0fl{{Y$D--@sR zQ*Ap7*a#}j3P^B4fjE-TCOSxEOLNC#%^}&I*DqLqxp38&)tsqiFrc6ht8h9uXsWBJ z5)xJjXV-S(GCQZ!BGMF`-Z-iw9r1=(K?iD30ACF{pg0jNNs-3vv3S)c6 z)k}1cgpEs8T|YU53^RRZ&Eh2Hf7pDZP5qNYnRR+T9tlqDvf{<{7- zv50TKSg!#9Xh=2c2VayZ-4@Be-AYhY3W*5-vl4Xjg18$B%v98cprs^|Tk z@ePO~c4DHe#)DH%Obs2X=@lEfCIfuQ53STNK@-b!jpNvUmXv0=9e)}Q-V<2r18O;dS8ehZQ~@pv0ro#=E*N$Q5tPW6MKCoN|Q)6v`p|Aexd!hxie! z+#ZZ11P4xYn2=3%)O~%?QrYN{3s_5JmK{O0&BKVPrRxjK)Ji9J^*Uq|ZAZ4Q%t!g1PM*-e6oN{)HSuNjWwRn{@QA%XJ zGW9&h*M)5&T$H;L{#(3$v&%ya;4Az=8Xvq0on=vcitwb>EzX`$vku)5zibm0QAS56 zlN^IBBqXRfp!&jwDaLk`E=+(BLWuxoIfo~G1NpQDypu8W5JJ-7x&5?*6O9u0v!R^! zKSqSB(-%uYDVBw28UQ!i1y8;wB_Ju4uVLp4xOUtZYY5If`AdAEcXn&+0^!@{(%9GxVtkPd@Pgwm?b0 zv*7GDeOeZ`CBX@!4IB@{2OndVP_|(S^Ol*)N?07pNui+K^=*cc?kBe(%ketegbhLb zq-huJsfbVdxEyc2o$Af5o#ReX5N8M4!etd8C4~Z-iW_Dhj?Ow z$2x5?s0VPMXwSH9Af6JuA1t*Hkb{&Z-P8U@YV8_g>`5Sk87#n!>9;1Y6DGsA7(NfM zPYNnTwn85AvZnW(Wc6>&ua_W*2?zI3^QaE7o)r$TpLZpz&K_N73;GYTM+lo8s z6ee0uLKCSZ9NYaF=?+iPC|I!MyGzVaAtcc&748P09k`2EucM$)1d_m#lJ#!Gg97B@ z&sMyv3=>5wVGK6UNODp=T$7j-^2N@y5BbC^$nuN&G{L^BGn~X~e>jP;rQX3slBEQ` zquD!o{2(?L#A--%9I7IvMZrD3u~PkzsilI52iqe~!>4GdO!F9G<*lV6fDq{kIaHb& zD`(N5`t34>l`{~BSF)s0L{`5|I>jt;V?>k`Bg6t(O4XIQrw>hQ2pB&7NJ8c3QBfo+ zq!lFY^kQ@bRluNyqXq=byhBiR*x0P7WnUD~gZyw%LYqmB=rqslU$NdAsx8#KwP3Y#>NYec0X z@}&vae-e#JB(g&Q8yVwEMU7yk(6zdhlT@~jq3|0R6NRx|vfnUCNEJ{eWHJzq*ip$F zc{mk}w?HM&=_Ddot66Dj*aue{akl}WC6-^TRMMI#fD(gJq#egy*mRGo{{a49?)hjY zV9ce8tew0T!;R^CDJUc) z0z67Qho?2Lm8xQ>Mljy(5XaR)7crK#f5iUy<>RFAm=M z=b6h%VBsOEqD4tREM^aO>4;_ zwWM#JiSV!jWZ9v}4w6Qojp0Agoy%sV*@;T$EM*Blq-p{=bDFH!5IiNJu2jVXJMVKYa3zsmc zsesJDflYo}{nv5Loii8UB`SXk#;N}RFSBa^Y!@=nQfI8p1KB{RB<`cTQz+_VD$+D; zHIiJM=>#1}12IuQlzKw8DZ`eFRK}K-WfdzsYU86dX|*?kH#R0^B3o}p9uy;Tt=w?V zUK{U>WTKB(CWs)r3asf<(t}_<@l&~l_Q92d)TxCCT)B!t8N#&z{{TY7<1x5b=PZc1r(lFH6(K2R9PK?e;9>Po2Rohk@Q%Dbp zu^Oi4U#(w=`OMj<19>zz`Zg%_MN?&ED`{w01iDA*0jTX$tvC?xAKG{5`{;V*lPOC= z7MZX5+kMN1-$DEbY(-^E#GK)>?nO!ZzfB=u0bIVWVvbORD?l_$ZPoR7JC1Kq5MAG9 zIsw7buuGE__Rl9=63eJ0x%Qr*bf@FNtFq*mHe0cw%Aui9+4yaujm14iY_$+_lI^uW z%bz+|v};#2^B}s|BnR-YsT%czG}+~vTC7V?ssxFY0P<*GL0u|ChwBXZ(p>cfsYou&-cX-*+U-+;nI$?XfLVgLu7_H* zKj}yt{{T=nRG>RCxCvU7n6M{ zDaer0!8uJ!5wSc)tV?0axn`91fjfVb?G0Bg%99|2p{dfZqkUofHYtBwEmM-SEh-@n zGp32AtZAm5!$I%*fBv3Kr&7{q%~5p_bFiTW#Q@`1@{K~@ds(DeRDi&Tbnjg|>+f+N zFk$Ot+fAg2NhxAdk~S|>(DLxJDQ>=iv|@wno!tP@nU}R+<*i}9#fs&bYd}&{Fo#}R zfGQb>W8ScxVe~MgEUj}2N_HAKXD6<-rlu-k>>7(QRuZySqV8%*KdD`G01W^e0RSxVW~&NruSDIY{$cM_#$T8LQ+a9lV$yKl!3 zl)M%FWuwNtpd`M>-=p$kV64vI!_yTkdfILl?*9Plex?rHxPex4l7I#@+o>Ca4Y%i` zlA91 z3=%#>d|kT3%5RlS0Il<=u-w;AEp&hwSJ3yVKtWfmDFel$9Zs7PPLzGC1!c)LWhrYp z+yDhU2^@Yo_yn=JR&^yLr~n3>1I%Gwmv0Qy6YGjd0m64!8@8avxoE`xw3P~stP`id ztY!Gu49l8EaHOozC>NvY^rdS1Krk;3{{YjYWj^{ z67GwQcU`YC0&^7QR)hw9j<3#|X}{MCyyeKT%LxN2C4{h`O9pSR;EWEzhSh4dgdrke zm~#~^OeKM?W3%W6rTQ3rr>v-uCh_!{JfsByl#`JJ_(9eCo&8@7e|d@BuhbxN0K32;tVm`M+P%|HVP`J)?Ni=R1Z z4ykEjqZ*wBYBbw;M$>SvI#kIhNB~ip>P#85;hD42uUMu9B_TWp)b;qnhoFn0Dw;yY zB^q?|(l#7Vdm$vCJ1T;eeoPsj$@1PE^lv&$;G!8B)Sn6QDL>`W`qqPy8gdaDqyf4qfk!XaGiMHGl_I4gb)&{?YZ;T4(hiLo{h0`6Ec8>p}&;@5(1P*j+sWMtYP={re&pSLJnDF&TYx-!$P{Qo@1X$ zC3(`29Q!Wy2d_xT@ah-qQno)8k*Sz!-A37`X- z(`JP&qtUS!+{9&4QmnNOLzDI$;-#w+AdeCCXN_|8J>zD!;b55nDJ)WwX{b|vucwrJ zqiwtav@)~`WgVQI0n^V%hbMS;nr}QFkuc4aOu$7{%#^G1=MI=Q>QW>wVrOKS%w;SD zkTy~YH3UB1bc1Q1E@hn(khG?txS-$_GlRJEh3oSS%$lr;SW*BZIn_t}QU97giE&dvTTxTsJAVX#0IeFBbSkjT3`XKamX|vAE znQnlvb1e81mabAxoB-!GU4zHa6GDkE!}Wi!f1F1C#*1NmCnn1vtR)~Q0xM89rkn8b zpL$8hlFXujmsLPNq@F`+-3)t;F>;lbP$Y!YFE6+4tSsJG8f4%SnQBNKVCBntf=u=m zhCM1IOZ7|e1eOXl%uc1XZ+sK~0O>MX&Ow}!TXttniz6tCK=k(kufy$+!| z2VejIMyZ7HXY~H8B@C4YRdrVH=NT>%#Pe--l%p#InwO^lo`ZPOaX+IKttE2jW&>G! z4x`V!Ysy%Jc&68DoRx`kLdjhfP4?_J+n8IzsI}QG2~624Dk)%qLlm01Z5#Z3(WQDd zwIa(XddZoWUue^^da!_L#+mIan8zvhN&O&f{Y)Tpwq1*wxpKmoDx{xfIyf&*cZ0XJ z-7Z{(B3{~)tCw>8LZ#D;Q#xQmNGbq08xOoV-k5P^E}{~J0>h^!G?7o8E_?`?^JaS0 z6w516A>I1)C*bhxaa4;eqbUf^lz0YexjKM%Y8VxaaVV6siD&^|sI?T^lUF1@%?oL= zs?@(!7$^16g(dX?sK%Ao;tm=uMgIUaCaKCwL2wJvEzZOrn?-B7`^e;K3w76S@XLwt ze55jEjHt>31L7oVr5}I+o6JH@vPwZI0YCui%rzbP?H4;kK*9L4)-1~a<@TJjsEt79 z=Ng^cex#9IMF{;p2;*biN6mIi!_+S_ogk;e)eLkL(DL!7VN6O$1;g>Ky*Z2Z+3R?^ zuQEtT1O{W@r+>zV`=-)Lf<-{~kJ2*CIeTXTAP`$`ylJ)zQe_}zB&+pvSm^Qc-)#9q z9HmwW+2uGS(Y4|RTyhk$7*}!Azav;Ld`tv{puSKEr5}$ic&#)sY~VfQbYWQiVID1n zb7&8|dX%*{Fc|HYYvxx29b(O5?6m=`%%p_b^Jj!N%ygX=VP)JVU0lzti5y&>xGcSWP{Ggr3JZPHp z2urr9Qx?9YBy0paU8yOQRz*z{v-N{?u{EaA;w`qj$ChP)pj$!jJitlQy_5w!$8*^2 z2W?4Av=ysi=M{-XK4>L@cBz1#(%V{&j6XDsmnxkKS)-bE+ALi6b#~R?e>hrMWCQb$-x~8()97*C@ zhEiXroF|WH(^I@PTT%iaP2oy&nYqOSRvAHi4>9PI5nT(+?X*Z&r^W-KcOoiYDc;f< zL0o){adKN~M|dG`vu97o-2zqRb%BC~w+0H_Q=Brq-T_~#$uJSVyq|`RzIv3D1G=1R*8eWts-(LJe_PGlfw%z^j0oJ}>V;OcM$LLhWp-0Cr zRE=A&8$$){YARFaV$~)-PsW$*$yV8lD#{klMO=n{Xh0Fo&s`j2Q@pWgB&aJ|roRUI zLLK{!6oonQ0%|`}UH04^DWosnII$TCAT-DErlwkhH8}I6B`R{AM61tN;QoB0DRFWi zrs7jECSqs4_&nCf;&*pB*n!9~lQl2(IIbM8(a-*4AxKGbDo-!B z4GEa7W@coD%%^R#o*n^P?K9*|8PY?$JwtWx17>2-twvJpdJd5sXWF@P-kx9^$JN>r zCNfl&KP}XA%x~8|DNMy?%y$6u$vyWG^PS;f%&gMOoUh>yPfxr%dMz_DtgFB%kSgO! z*KXQH^OKY=7Z14Z(1oNiVl+t9b?kc7QWEf#&sAu0^dZiX#wQ^eh$Tv6nf34Xg&Ut1 z1x!k6ONQ#&IfciMT`Jz+Ufg%WRs~Dy$5!jo3X}rIqPjOR^Y!298f3YlL}m#ZCXRO< zwvE#ZV$@m?l9I%=2bY9)-1m-td~deAXtPA}WqrJ&#JMf6;p3}vBZQ;h6FO39a>q~2 zqV$V4oN9VSIVsce;I*DxXm#6&)+UPGc3=Qt&A&)zx^9AM2p#wB3b%CD1)RRTLlxV9 z6u0<}ev#F~)0>nWyY9~uDck&;SY)u=Ndq=>+v@fNw2$l4}5K2k?!(Ptf9yZBR#WA7I`G4 z8Ky0XZJGJ`M-P{VI(SxN=<0oJDIE10 zLZ$79%GaSv)O!c(_Kg<|UTR#D2?0Q9$G@26;onuRm2b=vr4nV50s(Qz+C9OydQgnn zKv7Z5HzaFMrqIW9V+7|imZonB;=O;E%5fF*GEKaA!IJ(K8xz04mfgwP3nuBwr$0zI zZd}i`k~3fpIg z@%tu!i>9Vkqd07eci1bZmeG!kcx2kLg%ky-@=c&iV%FTT;2E;Dtn3l8`v8;Sa6eA!5EkDo}?@4J^OQI?OX;EtSg810t- z0G5f$l7xwVsX-u$IHpt9ja?o3fu$oE1*a>5pgd80IZB>UX2EOqu7z#ZgpZ(!?N@L@ zNqn>j6eELN^dx?E%mt3h;R5t$r*nz8TA^hedMv-#P{?=l| zev)32cM+aNSsz_=!r*W|#o5Z%;x`k+=FG2N(3iSPP+-6!& z=^GuJ^I;3Owl7U(tpudg#X!e!HKx7Wq&`WQN>T`JYZ>l8xczM8lsH~m{{X9KNZU4* z)Dm`roIPL*l|&MRvP%{k9(k#MI0=Xll}{xOfZ0^TLJ0(y=T9fz8!#=YLP$tfQ$XW# zHE5RIAthxhNGerxAM)m(n#P&Y0e{RDw4v=VZlHZ&?S{}qqCZk}`$F}L4X#wxDQa>0 ze`q?38K76{`FTQst$$eN&qir$$f2m^wHl9{b%C%$lQwb85(`&T&fS@)&~Dpf^)=bp z51{V^@X{2iZm__T!-2#gn#nsfk~09#&! zPpevHgW=p3VF#lmVY|`qJmm!{DN~V9m)P_z@Qr@kWlMr7yMAv9S5TB@t!YR}Eu6Jf z+IbD3w%cV<0Ho+0pyDWP;cPD2am-e<*w(pA%K9_x4<-fTxrBk4!|$Xv;2ZK;lu#5L z9$YtG-x#lHeBpmuEjCqua#;xf04<-RcYOpm`aZqo%_>TeOEFO=SLw&vH9Tc9K~i(1 zDJQ^RM%}w>*N77@(fq8*^%zOEn(O zjv|!HK#?;kR+W7p^GLOcuXRk9nE}gtxQ!B}B7C%*r@}cpbP+B;z2zp(pH^K@R@4|% zmnv+)610+#TrHS`_4+{kLbS zq%Ywc3bL%sV4^hD;FcS^S19IF6sR!dbZDCl!(_CnZj$+Q2ZQ_b6|HwV(cnHHy$iWd zlR>0gz#3GB(ko%x0_Cjw$$?4zC;VOg@ly##-jO0gl3b~a4VBZO5RGtHCQX*9zy#I3 zS$C$V-=k^(F`{0#64bK1!AT0yv>z(RsIY_zXm*8Rvn)}5%tWFJN|Z)W5*(|J-A@7$ zu+{Rkl}lb^ELDrt9y#CKBj}rw>_@E4MFJ`ac0B}EwqPj>Svh^L)Xd+sMdPZMpnpTY zktCOpwN(D1J`eMUEL9?2MHH#X+zLijc={%msiiX1Q8gvPhK=+3K`ZXfI?EyED=fRlgJ$Hs{rD`Oh z_1X4-xX$1xS+z-3Yn%7%!;!2E!x(^*>y%s&1C3wzjQ2V`Uc^fE6Feo-KrYqHbpUWa z@n0B~PM0i!RJC7Y*LQ#@$1w5f}1K_pj^N<-D`fV8ExA&5I2+oAl@2Usus>6c0m3ytXS`OFxbIUomMMLPG5 zILL}lpKuff5vqOAPDP;P3NGL|Z7B>k*~lqoe!IZ?HIxLD7h(@{(hJ4_nKzrqjr}CVbiOAhzJCrSJ z1U~16-XOvkT(rJKl&E<)+poSaO1_UC*O`kqbg+Y6Ra4t&)@2ASHn7SH_PK?d%ErLV z0s7O=^RySl=qsFzg~NE8PUbF8xmgt~B0ZcXS+P=7JR-ix%d7T=tG-hu$YYno-@Ip+ z)x|PQ(J=ri1cC_tJh*QE0EQl{mgNA;ONMvl;lWeg_u5LTu|mqL7x~f`aUHE5xib;s ze+f|4`S?~8aTS|9@}LxuOK3$n9FDNIzhWN zfe9gCx~Npc;?b~_k??7USk!I&v3r-)QPXwm|{CY++Yfq6o!PtTu} zPlqpc$v{H6?m_Rt)NupxrPnfC!8HlYl({_{T4_SqsFg22|jJMK8!NY0x` zxa{nwIxAkU6|ZS2mUIkHm*9$43`o+(Qs$cdIf^%(u~v{qRsxSv=NI%!_`egN6p*3< zH4j2g=eeb(T0;UxsVphXOuhCVT()&g zmZ2`EeY?OLEw9x~0dB)aeRzwOi&~{jB2g@_as9+cdsoa1a4J#$o~Of08yr$+ucjXF^xeJe=r^0=_^cGdk3ofLWjOh`(tC{{ZNkT7jAr=}>Z!s|~xJpBMoq)~Q6KB!Qq& z{U?smqR5--8e8lD9rPXG1@~q%rUbJm^&U?jNXqb&(fot1yhSw&2s>&{h3n=UMu*!z zEtKP8GzaO+#8#Xz8Ndpryi@54)_VcX>Yu}_kyFw7Mag)LMSI@sRiNb=WhjDrbEwet ztTSI$-%^mY1t~rkKjQo8pwt7S^o;k?CL&dvDn(0XC7gtfKm(d`V%8SCCfbnTDGA*w z{X?aGZ}f?t&0`$iK*@DXa&)Z~(YfXqeGuZ4F+?dS3PaQe1+-vEbJfjb_Ac~!IV<&n zmn~@_Lrk>y0$Qz7Tgw?$vejdlRuH0xH39PZ0OT5NxrNTO;U#^WX}9K1XDKR3O*N+H z?jjqq+@%7A4wd*qf23vF^0)~o3~RqZq-x-Ssd8(#&NQ8~vnY+#WK6Q*Bi-+d zlPv{rC)kc6kg`j@X)+sYW_ z;Nvo1_a+cd!(cY%0?Wnny=at!kR)r$x7XwhRlPA%pDIh1(zPGFItlm8rO2M7A!MQ0 zJ$$;>uwvo4tqM|raN>lXHW0ab-OE4TOQ>dW4uFreGGXj;Ndl=**UmGSDzM@G0_01~ z2~y2fT6T_ZOjS=7yMebzwR&600D=f3ZI3aQx#S@k`t#m5l;0D-M`g@t<51k6$> zk*Y$8qn*g6-x{O69anivno0onc&Rk!;|rI7^=e=`gTv@gU8&4_f-bd6oI=e@mec_H zKf9+8;eKJn&q>Oxr0Axg=sAkbh^lF|u4JHu5)uw#-p*=0ck?g~O^$1jl=Ld$_x>Q& zkxG(;%LFQnv7qn1wB8R{?FmXrCo7G#cydq|V6>`T6bm2&nDyc*O~zm-@<;$3JHO5( zyzMHQSgn#M2QaOFSdf~mxY%v)hi!uuu@&~~U|f|4Z3%}9vgMY6n51SQpIVx{XO=05 zEE2^)(Cysy5dCE96w??9JDQ1@nVU}l&CqXTAp!QH+v`F{%pm39wWZ4&`bQBrms zd^LsqM~{)~C`AX8Rg7v@yAf2U$``vSfIaozphgLN;hB>st2jiwh1h7MpVOz4?%iS) z9^;%!iIPZ{FeHWvFRG988TX^?Oo=v>g*bCnRkLqjB3MK1<$xtDr9libu^^JM}_Hml;`mJt^Oaa^h?r#Mr~tq?dIE4t||I@ki0t zE|ocJT=&SD1b|5fo+WO_KsFU5?OyW1Dw`~4bfC2wp|tWnV%7q{-lqQS5&H{{sWQMXutgXXM1PYwm4d5s83IU-NvJ@oHt=yZD+M+^&>ix z!7}tdefq|6j6};pSP2MHO98TiPdkFtB7{_H1icAe=33O!vMj0dchKw2-ry02q|&0i^-=zb^d1Y#r$NX;D#Pr28f5U&axoUN?l=pUqsDV)o+erl0@AXhRO&NoUyr04o{mr1Hp_Hc zmz7Eas$!B^f&F#(0U8>;4cQE{F+}>{fP4gi!$1IF2&pH2V7?}_%90ehl*-Nx06h+z zv}V`8r(}exO`1ts)(A5R@RXOJ9O6)ZTIh3tRh@dT@K7Xn-%aVMX6p`xT^O>}JbIp+ZA>(<_gh zAtBbk?l%R+N0OiQKpP^s|_NEwUNM##KDEh$L~PJ)C~ z9{&J%*3**=_N(Sss0f$g4vUy{{RIYLmh*&lUixz3zs*iIXM|^hkXf;db44O}CUwPlY+jB~?=m0(RGZcB8n{&rq$NW( zV_)BzePieaUdb<%y#WVmjr&F`>2CriOqocP>lHam{{YAfl+vRp{X39eqKwZ6aKioNK9Mm4)}WAyWF#%OL+7GQB*nSc8b7z@r%a!HJGzOkM zUAG+#BW1jysml%O&8K+N0^(tAc(= z9|!~Q^@_WRrK_q|WtxnmUyu+J70Oh?scIl0DR80fIIdmwZ^woqW;S&YNb&DN-J4U) z0>%;-C&Wl4Oli7$@e#cU6>?y?#!#BC?Sc+exO}@39OXOf?$Q?TG_F?VZ1g9cbb^+z zNu^TCPlW&$nEG_!v=O-#DRM%=1uW%6yQpvbK~__-T2U|%`Ez(!kJNe{ez5qw4<=NU zr6)4m_3HYPc;&SCLLMr)=8H|8QbJZ{DK03s^dZD z3qSDx0Mjf9WGI>wu3v*OhRX%WWy{E=1t=0p932P76Yo3uGFGK3sr^CxL=D@Ht;7Wu z<>6V1l`?ey01t?ShxWX-4f$B5hw%awg(EmgNZO_L1E!UQ>}%;-Y~=d1W$~~KXq29K zBS+t!L0$K1ke~v9RzOxuHc`!dk3Mi@R;Xi((LpK`6bkBSbO%Cykh|!=(oCB!b*5QV z!^Zww6RcCbXDZWbn3NOZO-KZ!H4=CP>C|>G_2^H~2}IOSnn9KcIS72q*+;Rc2Ak|5 zd{d`vA&#v!scXm-f>pRD&Y_rei7mKJY>;M5o#G&~X$%>K%CbFQBDJ3{{eqwB2Cv}LM*4x(t>bbW_- z_Z`{hOPZyS2~!cc1aD3C4cZR+6SXORzG_lRi3w3=NN@2wk-I%lNWC*P^>@o`fcStR z&-nHI;|H1O@?`5lmnm673#nw#0_+pWb|wCiwBk#del-^*bUK3F2;X4P0|niA3ebfa zi&ol{4hp|F>k&e?qC1S)mpL<+nQ!4KI;ZN|&_K^fw)wfrrLDqhRCXMYz!$V$S`w(0sD3(f!lo`f=MZ1pTOrlpVTLsaL z3P9j&55Gr+{AG*REkq?M1tU-#5Oy7U>>dIy3{R+LGWsf3KcGC&{|b>HLmho;r=?i5s& zEan9&_J49UMDZbvRplsMma!cmbc z9OY1{D(c?<04RD8;EXn*J!>i{mXyA`oygUO-zc8fgVMR_E_`6AOWF3J(DbKhp@!{~ zCoMpq2xzxh38nQQn=A1pO9Gd@{=)1Q4Gl{9v-Rc+PL4eQS@Jel`_tiDQH0>#QPor;l0pD4q^G?bjedD9DstB zAfDo2~{6NoriG+?5AClu=S}awWHRhN(%6$^eQY=d+FKZd_~-uV@eu$W+5@CI=C!L0a`^{_EC;s z*GkD!rVw*hn{?=T<`b`sT$E=@YLz5by8RF4@xNa7>0}U)9Mq_!y?18QXv(oI$tb=_ zWg#WhNC8SyzlW5buuo!?a1H+eK2p-ON-AcpK`A@;42nprOt zNesM+GXh8(htL?+FkGYr6#@!~{{Y!1&I{6G74(aBEdgsj04Nl9AiKZ4xrIMQc!e_N ztgMwONh-_!eF50l@uO?>yJi#Yvyz!$7NSnd6$&1Db#AeZ;ftjxmoF+(XN7o!ISD@} zH7~)5o{tUIJH*;jpc2Ju(1$Y9z~{f(D&M|`*2Si0O&>i8eFxq)Tsv{5Ot7&m1u2S- z@44s<1jTmeNy=UIgGk_R5p!nbLw)?E65UWR5yRZN=#QDN2;0Px$Oxk=7tx z?h+WSi4`0E)oo&ey(N?kgwmtL%>Mx5IgRe7v^*1T2vExF48WRu`iJ5)3#w6Ch$?0} zaw7-Ac(k$#y|t+6?4>XC-^|C*_)2n8k61u0T;$WwylKaz@`u|r;VCDmry@9zniT`$ zR=>0>T=%Nytd#}?xEu&!pKb}S!{HjsvskOF)Wo)PyXnkOT-Fb(ymKzl`Z0q*gqhiu zn7axG9DU+HUztoP(l}D++Wh0YCx^vC-0FIFh6iq-!;((hcY}Am>6HN^Mz7u|+*V%* zS)kMn`!rR**6q1g+(kxe7;;W!yPB5r-ZY!>A&{3jLS7TF#hb>Shsq0LyTyS@OXeQ# z(O4*U4>_h8ggFF+m?MqtYGE&$)&pRfk1!-vBBb?#H`SmnbCW?rI4~A;BVa>I%eJv@ z!#SP3+{HURtOO{LL!=C|%_TDn=>8-6N9_!m?fZFp%SzNh2?c{|PI^b{THJZOFCu9w zI-JDR(d((<;GN+!C`t!F@z1TXp<&78Qpwaac7oS^pot{D?C>uMC8Rem713@2Qi(Mx zEH-iVjU`QnYarBgf80e&j%%!>Ij*Pa7Vx?O4r@&#tCH>h@F^!KQE?Zn>4y;884NjS zq9pu>nU68`pdcjZ=A)!fVV)N)Cw`mp1r^2;wfNLDeWLZPKG&b%fHy^}C83V`Lv8Ms zQ0gEbMSH5+%X6!=ILu#zPtLH1IAv98%JPR9R)%d zix-NIh>CCbfp?PgNm0`+dq5-!w$5M=z7VmEtOD-uvEnXXc!&V+(7)4z8NMaGLfkz; z^M%T_<1`Z#TUeaC2WI)l%RZAW$z0N2x+on*HSMq>K7zjSCS2`S44_zp?~k2v{{V`1 zb^uo?70fsxg-5u@Ew$B|2{+88OGqGHPP`HqWxcYHuWFNE#Zk<@P@q)+FC8CRk_W%?i@z3hvcHqX9-D4s2r!m=BNEb+3MY4+awZOLnU3x zvkd4eS!|?i0jJimtBdYHL0AVc0l?$)QyRjOg&-<{F6>Q3HEy*aLapa5Ip}iB*+gs0 z_u?{_J8AJ{b8JT`q46_D$%ilXOOq@Umnv8RsnUx0n*Bs`Z^B4qsZ!{4P(C30w!rN0 zIY`V(Pzw*#+P252hs&SHPCpTAP3kQuUS@Qbs{`evFG#b?PGOKJ?4>05dIP7FOLWRw zNh(0f^&ItwOZyQ^RHY!LDI^SmndzzEipGAH&#oJ!p+$~_mmD2m?FXzD^o0~^H44(F zp3zd`o}~hi!~(?ZdY`ltu;3|*J{Cv>sU_%tW5idogzrf^`IG3h#n_7aL3eq{Rw%Bh*pPv}FEU@}Os}<~$!`UrC)(S~3MB%eL)9hErxPOMX}34d3xWHQE0FPNZ`P_f5DR zwAZ{fUATw>#k+CRI{4NU$zi*|1ce?)F=12kv2sT-X3ISb6g6OJ@;o$HMU#&pbd4h_ zv17afgOc1o&I#G?B-1ETv;{_hcIGPCY{+An*M^Id5*x#(U1E|a>c-w8eczr@ZdI7G zFn!M*qP^G^&;WGiFU*@7KJONKfh&&G^A-OX#lvMZAHO05b>8PibBSLB|ZG>s!Zu4NCxpBm(}>=?J&B z36nWVSFXyTK-(YRh-SU7(J^XDlpixBKD<+QfR|^Z)ytT<+KqD5_dPoZn>WykcYWlm zG|+{WAMpo5IpVRQ-S>c`ajzh))g>K2J6B9XVQI`2hq1LH16!H=E4kefZ3Pa}QtI{&tmkbb8NNmKo zI+FhY0~61V-j&9Q`adOd(uF=`j|em*9lFD9iozR!{^I~|3_4LHOh{2$HKvJir)Vp2 zU+7$w5--wKB6e!XIy zw+_onePIAC2iw$uH_*ccq6BHHFH}G>1Qy` zg?l85k?|};QUOi40u(?6DbN8-r|k;LX4`f2nUqK@G**rG5!AbKl0j8NQY&5MAqlIn z)N{Bo?XL4cIhCLk4;OtB-Qzt|86iFpUE5!jU&EG_t1?u~DcQcf#}^IeEd_^wAW(Cq zOk20Kq$yO;(3W@SctlymSEzSjS-~W*q$%FGnG?a3f}FsN)prLFl=MV)es_bCjqI$VmjKZrg9Jk#m&vSTl&QVVII8uP7iW57pS8 z*g(uVgA*utbOxOHoyT~2#kZJQ3k^^Tl4`?opsCl+07}LvLc^!RE77)icL_rrSy&-V zoXG&EFra-}yTuh^0+N*jps4x7RpEC^wxvo_h65@^2ff%rcm2M!sWi+1V$9(>RoFO% zVG{Aul|1^yX7z{JRX`wYcCXqPE~`Yu%R_>ZOv&lIJYDw`vaK^AH6^s}KCwpAY)Dsx zItgGpLXa+8*UA=!W;94SKmq>%c*k+wh1L{;9=f|XJ;&`$MuB(T{xWm`zFh$k@1)DN zQmm5-2lpD3*RdRYV(inM5U@@lGZq-H)u82PAthQGJzBcBuIw9MwcbP}+>|HvZP;=K zl+rQ(07TYQs!0lZD6>@RU*j6I>(v5Mr6~A_WTu|}{UUd>+*3vaKMDZVDh;-tO@pF_fIM$Wth)Ks*xr>yb zq?PnY)2nMp)fH<=OH2<>KYT0N?MO<%6i?{~Tr2|LE*nNjgsLCnJu%^hu45U6@|z2clN93 zw%COLT{{U#FVuGe9 z)ME5SHc}NbQBq3tki<|vlyjh9<8XA0uN|uB@QbtrI|EI5Jw#_% z+V2Dk2PS|sH(s41M#U@jDFwhuEv}@#gYlt0Ma*Y~IbxITZg^ldS`YYedCN_#}}+62q68#2}cLb8`FS5Gt=j*&k~ z-Dp>3;FTPTsWb)(Vxkc*YHz)HkDb5o6&pdAg-i$v@F9&=xa5JY4(Eu|EnbiXqFTb! z{lJkmN- zn?Y-0gxNr(u{!zd?~K0N=*ebdsY=MIk;poM!TZAHzef#rY+5H0kP=@+@FK*E_~yvB zrhw}S_iTxFd5uKXfZPrrigk@fMaL#$60kf??QnScL*gsNS1>Vyn%~DUWe<=lT`^HqnGNpx;4OyC+e4w~A@OBUqP@IYjO2drR$ahQozZd}MKo`FRA4z_VCe2>KDis1InEl^+ zG@h;9rROZ;7}d5^NW^SXe8#;YS4DsX-Lq5`u*aho3c`rb2xAd?Hb`B zzb%a{vnXXRU78Va{t{ZHDA549p`|NMho@a3(*C*HROF@Ao>GEN!N$GDqN1(X_vrf% zDKe7#q_97wReFAEG>Oj5mD{bJtsVu8#GMO(MxclC^M~9$j-{yp9H~-3rjO8me&Ovt zjU+12wF)S`0j7G@oKV-zs$v`B=dxKP6|4ZXK1|MYEQ3JXYFkQlc%I-6zC9$%MXpr| zbCmx8u8mK%UAc`W+j&Tsl&K`7wuX-TY(W*FkBKgu;?lc#DU_upYoRVcBTTL+2BY-# z(muJlu%zOT?w~q@rA|#-^#BI@2l9#G%G=rBOP6jTl!XK>KurBEY1o);uuYOsO2{tk z+CJhwe^wV?uUD=+`5!(#?HcXHDq5w4gtCw-9rWw+=^A{gDcW#KCQbw}tGEnXiX9Kr zNOn<7ppdnLnD|3!P59CjCu6BeE<7X#ZWZ5gPnZB<2EZM9bc)>~{om;wa+F3R>XAuW`Hp!g2a9sOeqPGl$p zMjDlKNTXs(rPbZR9Y@1{V)78}y3my*%24o<&&d^|zZ-kTuz~4vWWQ0BDFJ{=IprRo zb7w&gMJoIDiLl+}Hd!*+)6SewN49Ir!JL!gsNnSI(9d_?2wHRw1p{yQjk@;F3!aef z;WA4*2YMa)_K%(KE9_Z)WV10KD3S>jQ5vx?QPYDOyxXnqD^jMb`f^LlCYiVH28=m^ zH_hdDS~8(hBoxXl9SL9yI02c90_3?n@jSZ`^TpqdW~3D)l?5z3wj`-KJ9EB-9**IY z{@|JZD))c-ai`xls}@is+0qJhDFGk{8VUykt5>ag_10hTSN{M~KJh-6rkgd(GHQ^d z(Hiva@qZ?Ui+$FT1hov!QuHz3qnu8IC?ms|P`^$h{qKIE$ae!))#Gas8I~o$rCF4O z_hq@!iNZppGrq@=!^rCq@t2CrqnuxylpbAf?Cv4Z4rC zD`Ia)^Rnl&fDb%_!)Qn2L$~!=+33a3UEQGci^nFkN}(LJ^Ud#!t+D`2#1k%Cw7?51 zzfg4|o6|r_>bezc$f=Uml|T@samXK28m1|6Q{{Z4Pf|wf( z%_U1-U_$y<{a)2gdM89xO-*}qEDN3He0>PZ=*UAg3 z=m;S!A6MV=h<%n2uZwFe0YV4y_J!k!RD~3fqV3@#f%L9|G&|<+OS+hyLcX2EB4XRF zblHJ2Un^!R0f9Uo+a2o>Wf5TBB|sgvN;1SOda}!- zA2IfeGd95Y>rNf7>Gps8GTcl{W-1judhMgcc#`>*X{c6QzpAcju??@nGO3^1nwhFn z$VnqMy!%Iv<)Pk(wwr17g>MfOqhhF!b++?)W5ss z8aM{0?FH*DevMxdS#twLP#nrnWunN>9)sWLjvyz-ioz-Nw)>5@JN7EcKR2No8n~cL#9Pp>4WC z_3vX?R$`Q^I;1gWsN!XD=`ZC?w?x z8jY*x4Ss-eLIl-%#!Sg|WgijEp%17v(l@)u0a*o^N=&I?VFVSF3V~V^qLWIFBjjvB zkj(zqfRIR4bq)v}{m-OUVN0)~ai$?e@=-8nl&wO3`WEx7FW@{GB3V%anY=1Gu-UW> z{pq!1C&Aa%prk2k%0OV10zeu9cdq-!>FBc$&6on_GC-qj{{ZAV5u?^BUd0o?bFF#v z5R`^WPR5L;-TK8_iv|VEQsykFED50r3fTzk8#1|Z%xmB9Qc)lk49a6(PTv?rlYJ^u z6`df5BoVY->)IvN>vhDGAxrSA9asRZgPyy4&f*k*?Q1#|6sdl?YRG3KfSwuIExAry z+ts43BFE{R0wp`BWnobDuPsV8?ZgL_g>ACJW*Jif(^|I5R|NSQ#CuWZ*M;P!sFy4) zoKmBZPTW>7yk#z8W)uP9m`Gp>fPMN3(xZ6VZsR#gFD!*52PD+Kt@VL6Y!szhJz!BP zNbsj-KjqGmCd)4$LzbywD=ITq&y;A9w_{iC`qDHXMwqyO5jQq@eiN8$xNkbYmeIFZ zu4E-AKeVp2akOFHl)@# z#Qy-WjUx!(2v|~50hkm)NmhY7gP|R(3zYo`9gc7EQ#DCH+|@L5)yB}N=<4Q4v>_^R zk~0ypQDS>nLBqo)JiJnom}blzxGtnlZmG7>P7rHSIp{Wz6toSkwlm^bk0(B#+Ya4H*FGiA&^!}wp zO;F0Gs$Z2bU`sPoUEo)sOF%LvC?_C7@>gOt3FHmP+_Y$y#qgBNbmb}~nDebSqdho< zc>RNSI32r8yL2y%L@eD&J-Wg&WH7wG{g06#!~83IqH6UE@jmO??-I zFDY}UB&uhL510ICYnUCjq+0ZYcrMTsiGIKjF?!`lIt_BUcPB<|>GK{N^o&rW>oYo& zM5ckoXm)*fC#ZPeFmI(v6D+HijEI<|jLE5DkyhJA0H1|nSW>Z!Re4NG7LU>i0X1gl zqxEk+oP8W#t3{Y8XlX~;p<>l9uwuk>v{$lXDM!{7B&-(z5Ll>lNcR?FT-F830Vpf* z7&x0J>U0GMo&_l$|)JkFbXuvoroF}QAql8(Do8GOAo726DG_iVNlb> zT!8-ot$B6~%pScXjkbeZa1v5gHDL-z>0#mnar4kd#+%79q)RCbjI_{gMjY;YMoEcN zFrbtwfSkm*Ex_s_W_9y6coL;-KIS*cjIX!RAN2QRkc2I26-lX3aJ+Kz2|Y`9=+JpKiUBCM|0Sn34f?p9xn{ zz~VAIRW(!RE7hc=<^@3`!Z@zOesCEKPJNR0mHI zpRUdMtT}%|knSuNW>1uv$|hf|1cB|Szp|0RI-P@<`i@Oewec#41|mtX=zXG!k)=q&ZayNJ1?@eQE zSE6Yac_=fI6*QzV8YGdbtL*3#M>?7_{PpQ;4tkX`Rhu@TA7`NNy=(G`F6Aw`tjiK( z1^UITl8`@2S)ITI>i+;J)qM(jeN>5SmUA!GC}l2u8y=t@jNd#e_Oj+vDe`GRe>sn# z{Q`Orl9_6>O-k0P32ri>w^#dWG>y8E9nm}D{{Ww9UxHc4wPYmFgZ@vWc8&Jyykyy> zN|Fjv0AkvcsXcqf5s$AwQbGYKNUH+P(dgr+Y6!cAZwZr76txACd;qWsNE91syhpB< z)oEF~$V%`-EPx%7%4WuhORq456YwldMddovlI2*SI%<6NG>@x2 z9@xyZu40F)^^A~6+oWSVR+&?D%K#-M^6o=G+eM;OgPSgV`W=B9f_80ni0#(orh#7D zzXQ*#0=?`bD=o?hc1fq6`P)J&SEi9I9D%yNKRL;727HE0%b`hWXrOwSV%k?hlR zxY~}b{8SkXK^VUm9atrvhH0X68jp5(W&Keb%r8-$5AT>WJ2YS=d zlHKU+O_GI9U=pMKuxsXc^VOk#&2^$)fxrxq2D}daVaps}IR~ps-$Gbu{{XR!R~lkl zOogY_pv=vnO&lJlL)+T-!GlZQoA2crsQ@#i20L{JLDQIe^mm4nHpWV_g?^((TWOj9 z09RkBB&}O;b*9rVG}m6G9u`s*N3)}lmZ?)#tP8o1LvvKMdWEDJp2-A|5XFkLV&c4$ zQxub*qT88MX3UgSa!W;7@{l^{4QX0{S=t<~GzBQjmY^l2PB`Ck{_Qww!$upz^6awA zv=U0+GPTXmxKMY5JFfObrB0J9I0`C#2_~#JZXmEld}(^7TB@o8%rf8`OuVYfpaJny zpSHE>7`8OFDr$fl%sES)3(@zc>yR4G4vXr0$v($$may+!?BR&`XmC9to zr==@IwMr@_&<~6QQ(Xtv75yGu`DCp{Cm<>*3Dgx-3hEiW;%r-HO{ps>@H*U$i0S-8 zvh5@KT&N)dC;$;hAZmF%T)}SL5_I{W(heYE*F+yjHy|Q|HP_3OPzD zr0V;mHm)dNN`b5i#}}y2F;AGgc#Q*VT^Ri1SoB|nry@kNFaQ>FfHlj(2S?+qZQgWK zwku(})hchRP$^n+k}KUU{!TX(e#|!f1#~FRLeyDCta#lm&o8VFx7m|A*py34D3(nt zN1!_q))_Ia)9MxLCQS)a6r9OMr-nP4REk7xv}0GqQ$wVqDk#~CMGI<GYlJepnYW zYW<|30`mY^DrV%mSCWkXP8t+cVHXlLwjb>1hlh`DZ3+q=`E`K#_Qu@KqF-uy)Q2qw_ zQ20Y>&t_=-YD`@^2|AGi9ME zd4AIhzQ7-MYR0dK)U_W74$L~gJ)7;@5-N@nZV@a+-J zyn=`uKfV*L+(sGHs%_Wyh%H!<7YM1?zK~mm@H)-CN|wn!7H)%}=e$K=yg^w=)E0fA z7SDdNYHL@2rv@2t4c?-XqDr%qUD7s+h_WAS^4#+s%CiZR5SE}WdYGQYEr&Znd#1!C zf~M;o3~gSTwq%V2Q?%}{&n~fM!kosnc%y0s^6TQ$_koz5)BU++W~XP?0p9nOb#g^{ z9#Ce}H^N^)HjMgA?9&vj`RAb83s)iM01%R;a0!X*=Qd@wr1==Fb<1f~_Kh{E=>$}d zVp|t_jvtr`tXl0YC=J{5?G^3n670$*fm$93*z}I=#pYxU;RC!=$M&!#guAm94Yc^h zUqu-osIIM2K#Ax3Kn^wPc#qa(6%oBpx-8vRXPnA*r*?fj{!z-=r{Sc3Y$fOsUXZym zXjg<#IW5dHNSqRt5lS6rklU zXhGl~*u?HM;{oj$l$1=*LXtvv4h;{V#uTqiVEIb~k~~9E<@i1>Rq@^anl{vsX~93_PW%C-dPaATTA9nW`{wWkD+h)MAD4jeW=T1eki$dJbJXb%j2xO3g5q4k`a(b_ zGJ~^er{}&0+HV7tCW9`Z(EkAJuI)#oHxT1@UnpV{0zm;KDsb#JZAkdWZHuhoR)dnM zSOfi7YTLM{;fbB9^*UU)Vkhtn!S~hsc8_eff}#?#rLlVM2HFplTesnr45~>K0D^Ta zH9Q^zLan;qK>^NZB)I(dLz8_L<8ilNsZ_9>r6hso2w)p#+4YLjZ}dt}vR$&8Ytu>{ z`o>fL0Cg^42yzG%QTB=Y(?~gBy~vVDP*U{fgQwM^Z;gK;98wmdl}S?|u}~*R-}Z_Z zwd|EJQ2|WNx$65nJ$Qh~zns+yBXBf@tU-STD1iQ9i2gQ>IPl()%ac>Ww+UEut0B!_ z_D>H7Ctr(6%b5605&lUZogqij#w%J7nMy2{aHH)cAEDs$)JGTH=o2umssf!-`}OS@ z*_Rqi&`+dmDO}%J%z^`?pJdPw2m`%q6!3L`g`^WrKx%~_rtrmn+7PsW8lWDp$coox zx?Hr?A!{P4>NNLqBWZuv8Cl-7Pe-=0shKE9aQ^_Nn)WfKS>-={3}jw~Em?|}tC9%o z&Yn@OqF{D%8K0zKnCju^QphL=ADZtLK|6gS3o74l&SK=HZxP9&Pb%zpc)w+}wxrkR z&qsrE+h;Blkn0yc(LSRvN1j?Hiih%TOA%3DAAv{%SOLcpZ5crocQ$DYF_!&6X?ic4V1zi?OD}b#J^3 zwBmJICM75Yu&Vz6ZQIHl@lC>s)`EqlfhEss(~;Ty;YRVg(PvOLa8$(ZOLFGE46YV0?DN!9vAj7?`!5T!e%L&y#X zXt29vyadNV0M(6s{{X{>RyqCd*78O|iQKcOfx##t*-Ey9>+G-d()`@#GVe2MB+LX?w0K9IDqYHhdGGLxdU z2BG(OsfcdLlLmB*sb&Lb=?3q4KuaWs0O|R>a+}Oel)$=F86*}1V(p@a-C6?lkI|xx zwo>TjkA8ZHDd`r(sgjnU22RxEY8N9EOC6tqylV0CgsR@PN z_o|Xpke8@ZOVfts`HyX)dXNG_i6*CH!~M^6N}9JyeX*A@4PGn9F#iA}4kakbkt6`! zUzk!_tIHoV-gtUoNh&3S)NW&2^g^&Kc@zd^5LZq>a$63*u7c=y}i~E2sceAHx3t7-Y0w=tGpT zbg(`5gzH7hg(w#;UB<>8CpaSzH>~xfBq=IL8|gyb;U#y0e4>LfcLXqfeB(eD6tuqV z9nPTeAcWhBQIw;U6>8^KEx!hl8BB;RiPPty{n`mEh00I|Fk;87BVq&;Edd#bB$9$C zU8|$e^=)axU4shG^?A|)Q>$`%pOFyZ;)kMS32K-o0GClIQLA}%g1E-ak6$ll4x`^f z1X7)HOi0X9Us45I&MsPPa;8hqFr3Lv3l@Gkr&yanz9zZVI#Nuq2+{cvI>Cn~$w?~| z;q?606)tRNH`XRn0n10%+5Z3`44A6-m==VED=wrR8|mfDJqd8-%CyW=sHrP2(gONW z!*f9k3uFyLuw&O_$MFs~b)YkYri5<&U}vOjv`({>F<3PNO8pqYe_}ntcu5|tD3?1C zM=Uizo9hg+W+0YelAeQ4q$l9JewQ3jdw z8kHd`T4m=^3;?ZmcIE}(OlX@_oQ37hLxU{8BseXjkK0y)(|(sq6sLNmcmDt`q8scO za!5#2v6W%-9nYP7yrItNL^3Xff(reulr}wKmg%*Clj7;$$`G-_%(+fns3;R%o}S?h z_-1Hbl*|>(*;lwU=zlkdZ+LJj@V!--<_vh*w(lOGjHKoc^l<+G#6gR0mCTk{__}IF z{I?!)Qw?Fs=t0f{Fes;scYT4@hp%zdw(&Qka)ir6Yr3~rmtVJ7=gjhJPou6a zv3lfy5?KN0d|aJq{{VPivtjg1T2z`E2hxLYycoadI=~808C-$5JmlMZK?y;&P>_@{?6H5`QS-y7h?>q+&V7eU%xLPyr>Fe#f8Q z5N^xmXjWNgxi$Ajk%ljHOp+z67d{@}>`UpyQoDT|%S^>B4&l;DkA%Arz|^p-){5;5 zmm7T?uyYDaGZ5|_CZ~Vm7I6*Cy!n!HjMW;2av{?SS;UONpT3U}TF5z+r0Pon_U1Lb zddi>p2Zyd1YM4?$bcX~1L+-EV5TEHLPxR{~09-jy+?_$+jdhJD4y++%S}?C@OZ2gK zqHa=}l3cd!&t4-tE-q6iqwC~OvVhD;Akm>C7~t=%npk+h}~iH#5mjKwm56 z^OemX@^-Sweolh6>m{8i{1NaK^iI z1{CkBooZT8*+OWQYw_EpW1P4{wpOurT`4I6C4)Hp-X^_g1Z4yQA5*#f+xLa6F?%Xl zN9xN?UJT-^#4QvKeX0!)0y_BJowNI9UXpMW>9Y*$Fm+QhRk-GxfzrAiqTixh#?)42 zPjuyElyn*?v|{F?tJh5u=2w6#N2nb}$Bx>-B-($xCZ>hTPa8kGPdJ>;&qVR&8t~>y zs`MR(rU3r{#+6G-!;&>m*HcYycjKgC&7>nS*iK%g3f?G7rl@cMCCgjcIbG6SK3hRE@SVgZqc1yS7vF_ z(U{QqihY(FACqhDi}&q`64UDeER$E!zQb6P&1%;iu(TyE;BVio6|-5JGC&Fpz`b90 zJjMZV;;GWs5``$sT8DI#t8_mI*YN%LB^FzxDxq4B+pJWg%mu%!O*e(@*T2>v#&~ef zl2I`Y;S6^Ne<3)4--HWZ0#QAjFC@SWK3M^0nsOAn;!(v>n_swK`;sUcJcOw=JD@=v}# zinuQ{+9ZinK|+S3?0+A9AbpzyS>?=9QVNo-Uas0}^og)a`NIDIpK3EDnbJxn0YC?d zPx_QWA-G7UIy*3&#jWYt< zXCh8g7<~Eu3=6+4GR>f7KzyV*XMUU?v}IL)3~?XyEHe`UQ5mnE*tkEh4IF4*m2Va31i(GwoE!5iEYM@+N|sxZH>``-dwW z{{W|NO45RtW;vzID$eWepf27~w_>{*rYAT7XJ+G=LRbAeCQGVO1!Y-^n9*E+vPW0Z zqS(2wIb{;k48*a@K-Dc)0=^wL(@MkJ_AXkdY`yZXUQ)zRjlk{JAIGF-mX#;KMyfhf zN_C7zZR(?F2$+=uTq#VhPD5z}>P9d%rQS8?hE) zD)5qQ>JCcZM))*){{V9&rAkn$MuS1tC}P|9F+iysbJ{t&u!Q9Rr^**X2KuXO?U!kzi#}P;w1ebRWM;2y?hCActB=UX_GY zmw(Mt5M3oMOPw5V`@oz%YeI?0>JH95kfE!-<4RT@Jt)}{B^Ly!k7O5q&H3(yA4a!V zs+Izh&T|pKJ$>Eba^oa8((ujM>k#Wu8GlZc=CM{@6_~3*DVkF#0CJvtj(Yu=t%mJO z0+MU-=+WJzFfk)omU%ykm4KVic)*0`7J4=wNNde>yIoJz> zu2KOai6pa)2Y9P|p=w@1O^F(w-&kV9*8I|?l!~ZS4onc8VhK=L0F;8(9f1YDg z=fmyBoI||C=1PGK28|gUoNY04Q|j|0EfucXgSY1Kvs_kR?YfSk!|BgX(R@mj?DvU6 z%QZhM3)q(4q|6HSv;o3NrF#7#&e3q@&crjgJ$H=P8sPQk1zyftf*r>_Izpym&+BD{ z6$0X|(korpumqzq9k=bo2*VcjH>)56PzK}yPd19Si_HisCDPhHrWK%W_LH2HIC6hH z$09DK$tprqm}cjp<})iD@TA&3X;E513}5NfNYgC%rq5_i7@yP#J`y@YfpSgBE@&yr z=_Sk5KFK^zl9p0XN|O11#PsFP`tl|+hP^#Qk;nZcwfXvP~I2$G+Mna2f`TVBCXF~ zbAK@Z0EzKhWq=fFsyHq*9v-AON&4=>YNZw7rqZ|#R;d@C_?rG+>N zWt9WPLV2#@IGtsgHj-3QxAuqWV8O=})A<_>;pp;VbqR@miPWoL)S%x;r*)=Pm?X~2 z>t+@?cTnD^LDxuEils+#SS{fR6ADzKhSI0({fEh-w%@3hSzr~So+^jqt8yX2b@&pH zK@_WlQcvS_jE@`1Rj`ywB>~!EfEsSak52Jb5+KGGa;++r`lY2oL;wv#7U7(O8W^@G z)TA*>4K!c|zIA@k4+dd*c1dgTsab#rIeLd>8k*GUxz|WQzcFQ^eA$x1JP6F64%-4% zp?V*K)(=XZkgt30RQpWC(ODO@0ZGw|y*?yp8XWx!dObwDT*>ZR^o18H#f zKJU|^=ys2v?`!DFosecymcJP_cmDtp_J-Tr9Fp|SP&(ItbPbV)N~e1ATx9@k$5-nG zpQ4it)=-IQ%`+<2!iP{cijwcimWiTNw6H;{g;SJ|)#tXS$iRF-XHsP;dN^$AKOW@=GV>Y$X|-tmzD1+sd;aQT5$zWwD??Is zBXRMMs{JG4)0I++*eZprUl2QOIOv7T_{P(V+Fb)8bXOw+glEq5R$<&Xai5ER8aFRk= zs_DPFHj^P$d+QLce93Z9LQ;|(^!ZmvmmghVNXP@JL^El#l6ybM>ly9Kij;}!N)T2; zm@JJDKRTTu`c;*4%9l{WsoA-1dPaMv=!1allH}V8%0q+TLK2dq z;WEerKx$5v`O>gU`w^&mGrB~(JhZR}E0+PuZC`&V7mx8u0ZIwi!UnmC*ap&-=nO-A zTW8s%Wlcf@t!GvnWg2xqyX6-yYhwLsREx{6qXEFINkLzqvNb%tf2v_JVRwAm=5EU8D+leLefdir-Tn+ z9;fvXEvF?9h00sT{o_ zyZ)WZ1(Ygf6ckD`2P`R>Tt362kdsKek1ymTnUe?rIY|NEr)aDTSFH3CokKA~Ne@=0 z_0#PcUAEq5twjMU3Q0<|WH#fL=y!{^J}Xq(2Fk_M6}R~B@sHSl3HZ{l2ntt)DGXn) z`9W^00sR$PW?6HEAekyE9-Nl5F;eBrE>2XWQ!<(8O$&QQt?q(& z+RZvtgoOZ9lz>UAt7bd5N>i+9HtVGpW1TATWM?7rzO}Bp&{uL=K6>H5QPNaz+ZQ}MCyeFj@R+R~Kf+0&MgL7KBn zyAM688m}8}4wwBrl={@C*Bw)?MC>1S6gobz_|mVQ(Pf*HGNlxfC|adW?D5N!0ZStpi3k&fB=KpwCW$MEZw*KyFoswX+#Hol{G}ok5MHl@db?iAf56t~VVGVYWspl7xeq2^m<2b!kvL@?i(k zE(xBL`qZo}BpkpBr-Rr=3U6gBf|H)7T4v}*#1W?u=j?0i`S#S!N){BzVi+0@^nQnajt zMQEz*J82I0qH@YsRj_BHc#jXy?+!~l1w4Oy%t}I>4P82d2EU!*HxBwlDOyQJW0{*_ z-}8v_`_Di7a^2h@D3%Sl95r0lAI-;NvdB_Wkg0(+S$e6e)vt1E6K&IkZ%MwCN}Q8N zE*_xl$KK7ic=^u~VbkK3z8eS6x%iy#1%Dxui7 zc-C>=>nnbmJ_fl2>FAUdl&xMT@jH>u{Uhs(G=pdLat?0|1uDa4+pl=}Hw9hGlQKf( zr#lp@sbUMc(WpTugCAzyn6U{+nzbTg*@^bNNA0J0S*IAkrF=a#b5wm-_SwnRxTf#U z(VE;>MXqXunQJL<%>Ke&fPahZTyGyj<2+`fg`!y*$ncWhE}eK`+g6Ich4AWAiVTcP`Bj_%8BDvxh4$% zF0p#+yK@Fwo$3z)HMe14FQFes^6b`6T(ki&lbge!&?P#M+mcwr74M2c-C3^HFD^Lq!p{`fc-ZXE#V=GO9 zc*4|_B)a@cHKV$A9SNcGgzP(ViIdXCiXJD~z7>ZXehQyBpHiP$C;$qTLzwE6Ff2!3 zD4Pk&M5jdLkufVN%FJoGR*l$~=^A{pbej`eEP(_hG3K7lHTXu&=yvqWD9cJ}72;T@ zn1n0u2BRokqm=7P=IDAek90bEDZ~T-oS`{f8djX0hkC@%Wn*8LhNn-cm<1~1LHXRm zUHfN~C`^`;>MrEhGLE6U`~Zu$&!z=SmY_jM2{lgr&m3ww{{S*&pIDYiL%M1~*gsw)7shzma}z9uDqo1zB!YN;n>X4f zL$@DM-Z=3jr~>?in!b!av7cSpr`je7K|~6iwR5Z&K4L zSy59Fn16t6M=zu@UKsZ*!6+nVA;>jzzl&yfjP6abQzxu3CCd<8X4~^hfo8UWW|$$C7B_DLVRmgGZHlJBR=$5c21FcO!dhwv=SAsgpg=<(!HVc z(p>i>_*4=%>dyVPiq49@Qpa}zma(A(<_PHY?&0Hax-rVvCRjizB3eSamIKH~&zSCF z%+)%S!CnyVz-ZkgWy08kRJjtvfJ#_V$yn#7?HXR9V0D8Us9WVB83At*XH)KWXt(Ku z7=nWSDU?E378R*e)%a!==@hP;0TzjtqboW{37|D0i=|p^w^0=_BGWLsn<~y`(1z!? zIz)Y%-=RN9^L=ltTHh^68wxNTd58P{*tMC3B<7eYlf>GwI)LrJSjIgIEhg5arlCh6 zAWY>XB!R2*z}KZ=dOhj#&Fvz5r2{c6vYJ$oTXhPAlfw<8 zXY^T$<_U7rLlIR!>Pg$mE@K}@#$gIj&6!T7Ea&vF_!v8beHf$sE)b^jgh)9LrH|YobS9BP{fn=@b>CFNg&U*|b%4N$JR@uuIad6SqHKW0o|Ke zFNZLxRHV%gRILW29=t}CX3P5(B@)s~n7bqaKtAxZW5ihjn4(s`EOBW(xo7H!i+ zw6Hq|fOZ>0sPUny;lK~s2A2fi2Z*<`6lQT2;^UGV(J^E_SauKt(mLK|QNeyY zLnXsJr#k7<5-~NSG}`{Ct8lo^%hz3>DG$#707&lXyTWEDl6+NdX%^Osjz23N%14Y1 z{*lhm%qRFO#+@Nn%`_RIw0$~3o8o3xuapS8WIWW;uNA33U8`c;{xmn)EY$?)ShMaS zM(0o~JsZocI;C89c-AwhF}gD{Y0N8ODfw2~09u>$gV&tbP;l-cUTvVunvtb+>-)py z*l1XRPL5zz&1uR+O1pVnvj8ks*Cw?FB`SEqUNSU@*%p`~C4SV*EOD*)$*%~G7Z&6Bv?CwoG`a(`3v>c+N zGE0IrAnE|)?bZs|ZxXDavwVLziW9JiQq4$~?m#{y_T&@pjHg$zdn?`&!B2;C?&LSl zEMe=+%Q+}epnBJq~(% z(m3z8O!Q5*;-aM-ps@Wr({aPW93N@Uf~NLVT%ADF5$|YaP8*Xfm9TyVb8Y-XQ2cUq9#$eHotWk~k(fOXyk+3v}e%vzKW&tHWp8a^(>=$w<3ctFd+aq|W<>$%Awmmj9O zoyV5Zw+>esa+6zkpqZYn3nWz0BWK*krDmISd)QvnZE6 z^!G+Qy}NkH@rQX1HKW#?K^brc<({GtqoEZYHiN-?es+wPQVK-K?#FJC2#IAFNm-LG zL+w7?#rqZ6nC#~O8A0a0o+7d*1{E#0L%cCvMJyfbP@(mWIK*ox3!FdzZCnV9hjmmT!8 z;m{w(f|7_n*DB2Vaa7^=DB{qNEDaElN>*tk6QwIbY%hHP!n>XetHrxIc{^&$XzqVxEWd@#4!6 zPEo7Z=>hEtXL|L5(`FJ$I{YAgqISLzSVF3dhtdt0=FFFUI>2lxZbC~bH71~%{%;Jp z=6Ojynnt+Gyi*)+MpNUZ>e@{n1M7 zlBw2Zc*~UYQTeO`^nW>GVU)F&pkt$R-ZIr=Te536V&bH6X0ocQUEC-I;fqG*he=10Jbmbu-I&=L39uSVpKUhc|xWr zztpLWJ(1zf-*{lU(n3l`{$TZZPsI3YWVID%9;#tt)lxdQN7gr}!7M3-(ut3`1BW~2Abmydb z{Yq@aI|P>TcjWB|7Ck*(E14iBT56F-tp@)9ynOqDv7+p=(ycRiR0+_vDcfD@BkZfg zDMN-JiuDJ7kIFte^qYs#BHR|F70OWx01XwJ#OF%575@MjT=?6TD~nsinB>lrnJTHN zO}EvvJ{{JtRf zc>98ouKP%8SLJ-giXV*=9-(ky2ff!kN1HYagy# z&()QtV9ZDXAfF0OsY8oikXDygX(Hoym~Y4(iH(Q!>*k1)%r8@B%Va=9?QoheRb z5?R7xWxA?0FA>a8at2dQ(8po9CCrqkAX2XbZ1w<9=oBG??-}~9x#*r{l`u*F0P2$k zOoR6&&Ji_`Lop6T3>w51BrPmcn{GS6q}i*O6PHomBEIh>WF%2q0yOOb4&63n`mCu- z1kgUPyCU{7=jE7uEa58Cv@~J)O7%dhsv^B%8x!4$nK>kC2nGA?+8wHgOWxd!xtLUK z2^fbAAf(UA>eLP!N<;cEus|TIH68UIn?l{^eWW3XYLS$W2_5>wx|U~Wzs%Oq7i`tn zU?Wb!x2n=YW)(4T+taT6h#IUHDs+Ohrzil>QlpQXz`Q+eQVIgxk7PeQo}w3}bS>#3 zddf~`DIkNhj=V&^i|a$KmSA)>(6-UPxQ$u#uZNd9&+7t`oS>Bo8u>IgEL5-de5e5?;7kWVxYF znpvYbBzgSed-Co;9u(ASb|23%79YITGHk?}fXBJqc|m*1#t5Yb=WoFqVjW=_=}Iz$ z>soWXF8WisQbH7ykctM>@(c;HL}9zpWxfz@-oTjFMT{bJI$~6ws?) zbd1%_-THoX>lAI)R3VDMZAV|?IAElLg+EcRVZ>0quKC`rK~>i;PM!WR{{W$G$9GFm z&VxrTo;&pYqxIt~B|9f@en5Ua3A%0MN=(4{Y9=IWN*Z+HCbr+gaP>&shI$s~cv6J+ zX$45CwPQ+lZ>fVS!Wn!kKG1yI7aI5N3YNR3(xkEjDGH}i*S}gr4b^+CO)hmN0K{x~ zBd1;Wh7eoqESE_uNTL4#AV=oWPVbagCpv0e(exgBjv$TYh9@do$^l>vM_r+E&4|?{ zDVH@mxGkYPclp*LkvjIp%MPU|l_kPkPyyd!{{RTDgZ(TSb2CgVO*`;E8Vp!0@~u-8 z5ReLY{{Sc1wj-=wzI_i%N^^vP;u+jIep{jANY5?wsA{(2xi*BPC;&n5x3mfCxYwA8 z3S7jLf#OX8+=in-o6`%K67wXA0aI7^d?1DmztNlp<_bC~yeIb`Zn3QWRG_lS04Oav zR`fqVq)^5fR%E$mZ6?ZRRI#gWdei3`UApT`%AP1kJi_hsDN;~LC181$J2&1BiS9mZ z!xzlo>KPe?uyYK~Kop@QQ1pHJN7C0lnKqeWAwr|teGcKwQN!4N&pJxTN?$cl8Nlnf z1MLd;eT>MonJ6j#F30dhrDIS(A+`}$Lyi9WZe+h#oSAcSJIUcRhUZ1I}fJtW8zl!>li*;ds3 zBdFuup@&5!Qv((b>@}}m(Te(3z+S9pN{WbHX@hp?Ip{WnmoJRmCaH8@vLxj!I>Fd0*8sCINl0Rl4~wX6y73yds_6@rlvDr!2U=)eGvRMJ zr%d)MNgz2sApZcJAXWbWY5^e`L2A3`IDmL-6HE#+rv~+6ivIv1->1*YJ-x5w21*D~ zE=b&tJh|x_+tC>?*dC;j$@1$9SG2iCa!E*6`*F*dx9IZ~gPK`zDMbxj^ATeE01Hx) zP<0wNXeHUCXR_i1f8$D$z)*er#B#4}rIk)Nuih2x*hN`Vxn;=qfv&s$X&3I~ie^yE z3pTay#9o1GMfMa+0u`2wDBpOmhi?U@U{Ez;#D`#Y*GGdFN`jnFkzJ}fa?k?Nex%LF z2y}z1SMyJFB2>kA3S8yp2@XMar&oWJVwm2{w9Xb;nH4Nm1uo-P6*MD$X&*+~F9ZMy zdCw>F z1QYEY8N2NkhoOmx6<8`zHQ7HBPiKnu%W~|BmYIMmo6*lB=hh}m#&&kOnRjL^Xb!Zi z^!U7J7Ae^ffILJ7C0ukcohKV1UNoVAp-CEc=egz^t}Ep$qXr{LxtGy)miomAl#?{2 z*__gYNV9CdtoD=zAb~(Lr|rmrH~rc&sVW{8BnEuYi*dke$r(rkfJINi#ABE<7?7okxhKnp97eHgxF(C_Xe!B;FWVGKg0fJihg<;*{Nqt+E}{3N+S1Tg}ozOZ-J zn5h}kt`5a(mPDi|5E=7q`mx?La)l`*hXtGWj7sUWgie<^MI||jQ}uCAeI7Tfy8TSr zA+`XG4}GC2lH#kG&{Z?Sq|k0#m;i2Bi^>v7qY`+Hruf4N2`W%>=cwxYc|^E==t9$= z8Be|AJH}OR6)+YILR1t~RInbur*E`1-*+O^oTx0-b4Td|Z(K5=Gdc@5ADSPuRJYz! z)Pj^G5_v5_!TjTRxsn#BTsBpLbj`-ctMdi#G?bvb6;OxMtH9hYrJ?iG>~;^Yx+caq zwp93hKx%mXzcz~MKnrV}i3-e=0QDeLISzccgOhREy;^dRQbvtNZ-YWs3b88DFsfby*>wJGhP9(DIdM~Cq_muM5RfQ2cFbY#?KKMHBVF*s)gSVX0|)0IN3MM&Bk zEZ4FU0+My91})6JB~Ad0s!-`x;}W<H7)ZNLW})XKfm~!p1MV5#!8XFlGhV?_LMGDPqhzC6P8# zl!KV&%RsIP`FX{AuIrg-bDf(`zb|wsU$&50$DoFG0aPJTFU#y)94mwsfLX z=oAu=?rB0d^QQ2p=-T47Jj7*EQjwUNrPKzeX91f>uB{ris|-t$G-U+l3I+QC3v0!s zq@2VPs0M+#?fIlD*L342#@D3u%~}*(2KANkF{ue~cHOF67TMbX-w9lh=P5y8O%$LG zs@N0Wv@9KiCIY}HU#y)vP+26X%~f6W^Aw?{6lm)dTr#sE2q<@Q2EO6PSZOd=u@|mT zM6lriI}JYn07#^aI<=K0OES`>F#wFjYW*KbKZWkEQzBy|htXs;d8f;0N>%4JT9&0H zQwFGRc{}tPYZ`raQkZTJN8t-4D-E3oW^d?)(B(;RsSdKvGwrR>jYqIewMr3Se2% z=6dClxnI>01pRdk8u6ysVDk;r9g@-y${+0PsO5C z^h!z;oZ;3^y&L}kSlTRBIWlCWYB`mcF;beO@eXlk%9XH1jgvWZL#-+y1$7F2(s&$4 z>GK!`Q zh*r->8{M+}O2Jx)GSrnMzv^+Tel#NCYvMqcF)0a3P@)P!)Qy`;Ywmz|wjZ?Fq%6!< zWS1#V_!0T0&lq&eLc(*Ig(XErKpk7pw|LK&DLPbY-jVMKK}c9wAy1VlsRZg2+IEU2 z!k<_D!cJ<0gRgDhT_X-%{WQ!ZHiaOpr9jKd$p`$Nzi8Mj7izs&Or}UuK_`d&sfnw2g}mVUSh|lE_Y!s62<} zpBT+Q>GngU%~&NVqEe=3rB3bxw{Z?wx6>e&6qGX5`9j8tR^j*6jNSEQyw30jm$P=0`c`hodE76DC~U8Zd5$w`>7$;??m zI4%M9T#Z8(4D~L}X2j-om_LUw1x#q=y^+(H%Do_DLV-xkNIo-CHhq2(5*uH;CWR=j zWW9NIkw`n4f`u%A{afXvPMcvEWh=wd%Z zm%X4*otrnS2f_^>Y@l?ddH5?2I%qSl#Yl zCrXk8X*b>SvOo$b*-AVef#iN`2)KjL#I>tD!d2@PnIXNh$G64e?EN8@Vte^h!3k27 z{{W=!M-Q>m3;HC&rp^MURclscAUkhLYN58r-4~U02@f<&3rvN0k-t=q{L}~)gMA_A zoQbRg5iqDqSBZcw2ptO$Muk00FZxfXy>XU<>t0wXszKI*gM;O~BHg&kT>P@eX=N|2 z!~MIo3%tD}qR^6{wG}_L`bB6sa%uBwL^pO7n%VLISMoX+WA2S55*@KNG?5}f2qQ4| zh!qB(2lJ1f?<{|sZ;523OalhjQueEL*sYhTuoy`Dh#PZcg)27yhS)~LmIh2+fF@MrHqq*~d*OoI%KudyBT!fzp z=DHKKWtJP>YAljamRz-@oWPP$K&pJH82&iNGZI1&=s{Que`!Q+gY`9x=VHFQUHd9} z7LYRq4;MLFzk;#y&!mfqGAF4r)0H$+KAaJ`2cBb0^ie5BL7qtx!8`bs&zEnG*}giz zjOof=LyhL9w@}AmX+m6WGBMj(vRvp2jFkaT)h(rxV;tIEc3*)Oi6YM ze+VfDfa5S45taAZwtME}T4iOJQV9e)4Fmf-mmn}I(2)rD&OH`+-nO$->hq;kNiIA| zP(I3rgmz+KYV-8+EuI-*p2CxU9?BOm7g1=K%oIOGP;O+{-i?q&_ zoV29ON|Zsbgn|>7aB2(c?Yw<4c}q@U5P*b}lmvhaf3VPK0|+hpPBPpV=zG-(i&BFS z($%h1kJLth>L^HNsEbOsOZFuo(1Z{-KjcB@UyL#OO2&SwU#gQ?ieNGVQk0ejYBd=_ zYG_Ym7kwXLQ7Twe&lJL3miC`U9B%NkdV+KtZ1i|Z3Yf&BDv&zy5tXP(U^i!}roG`e3Ro0vK?!#%4nXUn+L}J`Gbpd9 z@OB!Pkuzo&LI<l%SnX%m+2E z5o(II>`0QOrNJy%KCiBBIz||6DzndZr7tj)m4fV(*ipOI88N!oE^6pADI+y%N6?OY z#T*;x_I2XuNiyZ5^^ot1YGEo`hCoVnp$P}A zbous=sIFWYB1E)FmYl=@lBEigH|XuR)+t?hdQAEGrXk2AB_*=DdTH*BCmb!0a7Cb* zGQ^Y&q%w+wI2(`#r(fbRzeyKd@9O3+CMdre9DlPPDe?o9~NlHv9F|*O$!AH z30T#uO)0NBGf zw)yEpp-05$qip{GNYuRzT$yJo*EwZRB%)eKbfl>Gluuxg8~wV$_GO#aWYS7gDM~;G z)+mZ~0BX>IHs=$}yq*sqvehB<2A`hz-0{4*>y5dZ|Ex zm!&l1>lzgAM{;JVIn-U4oe%z?9ggRaBUDYxDq0dHqyU6~DX+Wd1kq%V26tE<*I*r@rA=}mnO7x+N)QqKX z>er|o?MTb+Yp!LgY{{UMN=imj^e09Fl|2Zf)(2z!N@oJfDgkeoT6WvFA{elB@C3AE zM})Fj%~jiNYYt4}i*=~so19DmB3RfE1Bw9Td`UfflcImbD$J6kkN_STY)yXgom@A} z$tq8)qLx`sA1`7fN4H;77cE9(BqTjf&GUtOT=Yz{UK6J!Zi?n$r0PdQ`NV#+;>6g} zNlswl)P10OePc@Wb$1U`mF4icH5!AsF`0U9x?B}YA<2Baj!5Pfe#V(CK9uE3NSM5( zN=v0ghEE`#Ivq>^zP%;`E!8X+@d2i0sBfHLIIhOXa!+UZHiUcPX?Mbwk({w$2PGnc z9Fy3WRq+k9&X}pe4VhU&dm2);`ZRqRg*^=+66H;_ttm>9%B2a8$+1k^stg z6gpQ|-|-$EvQ0u}OqDGKG<1L){{T`sG>n7NPAr!yWT|p8sf(#VzEC!Hp>`df9pj2^ z*tY#jC6qV;05E?JfC0xo_{e1970Oan5(;K5gF;f(kh7yio3;3MSj-j^M`o(Uh*V9;n+>|9U#LpYKC5SIp1X0F|<2B?xaicC6bkRL(u!9e+)I5FPMF1#4Ie;vW7Yy;`3SXJkQA+Qgr`uV9FYBZ;rNBy()-R!GKhK| z3XX*HLrrSbF|7Xp)1RZaoSE}dJR~U(u4btxZU;|>-ji$U>@{|jN(tz}gL}E&2+CM; zG>X$NGHBavvRZnDuOLtusUr0ONe&#ERurwbj#K`+mpecNVl;Zi zOnk{eBt1N<^MZ25k{WR?E=s2vZe1+xw`0~H5qPK7Bxpzu2IsF{vGX1lzRc<6Oz$zv znu_zd5%dbvp{9)&?74Kbft_Ftj<81lV4xCRhnO)|;j^6HZ`wG$En_l?VA_$qG#Kvd zSrYQl=GFI)(k&vOROrKKU$WjHAgt-5@dWUkw^m|#?9i5H_4yD7`9gjCPGD&Vm23(* zcM8*v+`wDU>J z3s=nF?w!HYp@uuPV=K0RIfn>(;i4%QM9c2 zELvygP&`1qL#U9;sV@v(E(jPFuy+VKGWAfXB}YCBEO})UILQss}g>_KWNG^h4f}Lpuo&Y2=B2G z`_divopVJL6H>;c^gQU%j^f;E>X3bsg#uLn0H=em+A`(JM$!vi__1k2666&ooQfCj zN0e5?o{x@H{8I|X#aSQX|8-z@9YoT>VA)I&LxWdc|^*cv|m zeIQNiY8jFU8TLWh>frACL~z-9K37VA_NvuH8US39-TwdtPK(}Tpp$lyE+4lg1f^6oIe>ONKF_&=ah#^XZJh{SS<(uK zE+|q1rkj}N%ZTQv~H@73t7$M_606fP7rnsqY%` z;V)^t?CJLA477zwl&uLsAa`dZ{DmR1K^5demHlQT_EaYzJsv7au~FU9+HU^jMAAjkc29?&fX?3b`0 z4SJXYj7)+YrOxqLH?VyeL8N(;d}K8aBI56~mvL6`oqhZ?CD~H75XGCCk9-?SGU^<~ zN)~3MC~*O;_ibpcx84j1fuJp+&W0|ir;6-A%Oi1CHTTA5tKBGYpumj|k+Rz?1d8f* z=d67H0O?}y3R^hN6IhVI9)6jQsmdaSmyr#({Dm#hmfdF4``cGgg4PVIctchb^${yT_MR%PdT1%8gIuHH#UK#DzLM9}MX+c_pI29mm+|n|;49v5N6+)AgzJUJPLCWB27(VfqgqdnA zp`-8T6I;@i5|CW0P;2hmC|mH@nvkSXTAjfI<=d<#Uih=s6rj;sxTORd40w9>RJF{K zxoQ~*%700IBAzI*WtfTb&y0IrM+1T>UG&}vVN6DqD>BGYYCf$OWLssaN)#tvf)8L? z&umoGq5YFm`nzxY^8oQZ))6vUO$yFMHx;kb&J9?VPxuDnpUbH3;BJ<(};S(80ghAT}%hFQb_!- z%(-WeNHzmGBPC9bM*J}N#(#C;LWPPHEkjZrB#xB>wx+y7v3sz`BI!1gR-=@Fa_n35 zzs4CbP0f;uE>5HLp0)Z#8EAQkR&Npm01Xejv$sA_M&7q(1TFXcc&LL7?0^{z3P|^K zgkMP43&}FjQd~bddK2dkvSk+W(6tHE$|{^B6ckFFn)HXuj?6YEf~?E4D20~ zDCB(U9b4@JQVLQIW3QK8p?cSU5>ldAk87yszTR<2(F+~Qf}@cj5v>`{ucuPY1TMTa zDn@fenU7Jco~A6}`^74jR0UA)(}-2K--cwy*nT*Qy&kF9EEy)L!6`45@L=HjL8$0JZwr z>6j9H3h^D!M&i7~MT+r46PT%qEI3xtaz;eCVC20;Af2mm8mEvQJ`w&pzw;OEmueQt z8-R4s(@(q)wOT;%fK*Lcw2mZR1RUBkKI|d&5-)1LJwh8Wet&4p{{Zeh(+Y{B=B}i^ zf}Va*{{U*SqGG`{`5!1%#aIg}lB5R;CWBPJG|>Dh5zBs+8lAytbY>;ep#2E^;xi0r zg(`2WO+t&FgQPrR8?I!jK`J3axmf5A&7iESu_B=$s=gyy@lTX(CdBC_NttGq;xsg4 zLdCZ2@1#wI?%8vJAnT)@6}$uVory+lst3dvpmI3r^gSS67sSF)WelO}4;y^--Z8hn z)rm2$qba0JTLp(8jz{MaiC}+7b1XBaN&f)td6h*_q>^7=vGq-Z8E5dYW1v4s`9J=p znpL$EGNd^15vq?W_yPX_uUID@HtcD}-&OQJ2gVCn6{9{6a}F zQe9bqU@G1IF@)fpVq_}Lm4c~LDD^o>0=>RoakOIV{zU0&LY9!j!e4#5#PPjYo>FMv zqdVKziL+D^pbI1@c${KsrA!4ea+Q(!%AH$s{2g1QWgd?GCQgt&JvnNtv;2_Uk75B~tm;ym7s7!BiwrpuO9FGQ`2e~CIBY2S## z%f_F!wJXw)L05^wwLAg018t(c<&M)dq__$OgnYU8lM6Ea7Mb#nWiC>b#3?ON=Hi`4 zx)N{iMsuVRP_?YR4!{liXK!B@Af^^Qd!zwhOwUmNs2vrH3mOp!RKrzl#gPK3YK zHcMpl;tars=qNrA4%cSPu!3|nElTP6w!24iZ{;CIT;M92C~3daDoh|7(%PhniT0A( zYveyE0q{J*HATi&pr)Mrpo%ZVDN7IR>DCY3R@p%zfC?t0Y6*$K*m|)NrI45QOS$7{ zyFU6v!t*TiJ#3;tZyDH* zzUYe2h~--*B^e4-J(UVM9d_gmVY=qU$(Vpv#mB(>j?le$;nYi*4V;81mkDYe>%Y66 zkgB~j3oX`AfW^cmqQY}KHC_2H5X$tmkSQ|(%~7LQT^(SMu?HLE8%hqIxj)3V=6sn4O1O0d(r%f5F zl}ePGnO1Dd&fzD-HUsjpq~R=7f|e>tD;^Sl1P*nCOP=ygpkyVMswg(cLOJ zXCZQwN>Usp+`mpb4H}W3e@6^B!3j@`GlYlk)no24lU`nt5jtuWC6csMBo}d4V@+F5 zk)>RCfhJngxkQo(IfY5)yZoa#!59fL?Nbzlf`UrIcS$;d({MR{Ln~Fr#;xe{7KyLn zN>(-_T5k-ujoMU@q=!=%AGBwNVyx4G@^}SV z&nm*PEjikt1{HC$^@+1p^s9&SO_(zh#=YT^>%{4hwIqrfGio{(g{w8VImlS1j__K| zWz3|4pyW6wcGet;9Jb=r6#^1+j%e_O=^o=;^PX6s4gskKCB83nDP;r=X~lZMtFbCB zYR#zI_JcNH^v5hV^(6pK45ujvN8`>MF!Gp&IcftwyDgbH*=iQ_Z z!Pk*26b@w8qOr>_$DhTwRyIFcNe@uq2jlG%S}yrvc~+3xq>YK$;+6}&6EclZ;P-=; znJMM6)Q)`Pb|Ckyu4JW96(QXqY8*tu`AotyN+giP5fa`PmxYpRuV`Gpv1;X~I7_S9 z1&Jg*bcX~q&$CKlm}%03k912W?+T!(*#3N>PYz!{)XQ2+=4VN2f7VjkS90#bw=u>Qx?K}|PmquRua}m+V%MYWc_;glrUxM9G+=myUezYz z`HCbG#QRTAchg9>Fc8Xf*M`~RJZE+0e^v*B#7cNOMO+DBn6j+lMI%tB4lC|}m+bed z0Rc|Ofk+~$lGYi3XAEiqI(Hp3fcSz!0r2WH8UT17a`k|B4fIOLQb;LsQZ=u$msbZ@ zeRdGE%~wttO_3^@n5b*B^QPLJp?=?u%)n)YvQ%hD{C_BINB05D27veP))#S35jKpe zm*7$Zr9zCZyp5V35Y?W|DqN;c<1q(XwO^^IfflSZyGtc2DV7Jc`|96+q)2Y*lBJ(n z{l*Mi^Y(=+!x$|&eONh8qe2MOQjo2~hug~FrchjjfWYj{`~Fupy)eR%RaL3=A>D@0 z(`a?Nrp%(&f-`9Qo;vD1@XIz?Z&;~pGO|PNI6Wf&0I6lS{v(oY8j&6P zGP-0=a#ZALS`_c+0Wr;%eEIniXDSC$+;6i#8o@k2f-MqX)qsYna99JYbMc7I)%4SD zn*^yTDhG1MbJCP(QpNt000k*a5k();Kh$s3#7UPpr72NxD*JhH`O-PJVPsC!RBk?f z;;j8ANY<&+NY9vsF?_F>1IKvx(S87xIddmXDkuu8{#o`y`fgWy02NNRQDx!<%&h^Ik>@TE3oq%#lo-HlJ!tXV?(H`KUU-1 zVzt+HA69qIRgD84B5Ux3%a~N|$14X9y?)S#fUgTpq=XTb1$jc>P!6N_h`#V=TDvpR ze3_G7GRltQVb_BaVtf>tSpq;>2=ON`vUtn$jjdK`c4RO$BVEZ6pH06}GGTueSpLzZ z$TgPQFxnGQECsiOwPDu*+UA*S28F{NS-O1Tj@~5!nM^W*2VRf{<;3!flu=H}PbcjT z@=TV9-?xfoq$+iFAwO0;{bHUUC294cEcIbV8$jGqH~N4AgAfP>x9#~zr*_}7B`Fdc zC@KR^dFXmXRY)J{M#D8oNls>Zr>5qf_7H(`;u(_`GpE3cCWJb)b#lW%bb7gH`eIG4 zSO+i;+M4^gfEbN3RGisBF2K&)3UNa{mBB_IF;GG1<8L$C%WK zX$e3Gpa6mFj*&YR#OXf}AxcD)kff*=BlNJ`4S4<`PZZ7w%#`X=piOJJJZ%e@6A`5| z3#ECRQZ?qkNNK#UlogdLDJ?XQqwRQr9L+UGM`51G!zsj zyBws|{IF$G5P*cF6(KZEdZ|p>wKkv{3P8)kYRG+tmC$zE_<>hFj%rX>Fn~$$faf6O z(?iF~E_#WMN~_u5x#`4KA)H=Vf?B44umM7t)5LxHq{GeccnRrBK^b37k{jv3{y${>Ayx zhsF>3Dwq8!nkOML<~yY%fJ#7i9rY0|Bgc|iN)=E^aGkR1#B1g7gd6V}DrCf~!LmrWFGVKluh(H92=my*qv}br*1q)#b%tBD0RFWA>93<`3>^Ll8 zhZ5d_Mpjhi1c%psfB1@!9vto~IFhFY)sQK+BbOT)minOVP6Y@t@$vw$;u+Z;`tjI!NJ+%Ory)}Q9uo!TBfDI#?DQWNb4AkqH-)Ex(S z&9J4NQf&xK@zB!c-t(MRnVTi;4KT|SOId6v1-W+5N~02P>M0szod_>`i-iKJ;) zucD=_r(ba!YCOa?;kntRGII>B0+m8SnD`55Us2RWTv}%Ovz26Mcmxen z`sqQuGi3K&>*|tZ%p@fxvhmS92HG}^7zh`LFwd<*mWiYw0?9SZ+JO%kUcqOWk6AO? zQOZlXNqR8g=wZkI0HdoqlB5-;SZZ*2uF)Zc+_>l^C`XM<$yRn@vnQa3Nmx4FY6W>h zW#uAXat2_Uzik^wqnCtXUaUu8+GBKO3Lg1^QdYI8N(QJ(J)n3lQkK@e;LvKk@e8EXY(b`A`UBH%C<*AwS)FMr zBl~i}1*lBJ_;oG5!Uy6D!3dbCX(KVNR&Nf+u8^^YJuXX-CS)$9=BW$=QQw{hr-&`l zjYrZ2vRYZoB`O7Ejk=f69rR~`7uGCfrz*1*cx9J-i33rvf3#xv&!sO~lbK`?lHozK zDE|QXrMGC#pcEr%G*~v znrRLGigCBCl&Nk+$9fMBmtz`nz2bh>asL3N?4(Lv8&z%QL?GU{`dry6mZ0fTIY7}z zp8Xyf@kR+u@Tc~(J!+b3_Yjz$Lra-7Aq7Z4A;|+%s*g&r9rcOjw81X#NOL5QSL#WZ zRHZ2fir9mp2X|(GH;mG`=nF{7N=uO75^9ZTUtV<)^u`_Z7KAvMx5@^(cO7?$tp18D z_F(QNl^0{rHPDTq%LlY~Ro^aTl}SQM62ZWy4hPP<#aVua6tDnFRF!V6Kpc*c;b92^ zfB-ZjSKz}^Zvcr*ox_u$54BshIfgAG+_tn>Ot~`I0GB5(g-3V#bb1I?^oeVpl_$aq zS1`L8fs~xXhahVHPafl2aGT);iVw8)^63=sJWRQW$OuxUrNBCop{p8!QQ8A!7xaYB zDk_+yfJiK8mO7rJh)BNfmpN?Nl`+CWNF_@Lcs?3xXurEa)kekuxB70I4ON%excMzdA*3drm%A^nHLW%J9#WwAU_WB>01}s((^k zZC@rINMWBt_E~5`7Lv9eH8!d{H*T;>@W<#t&ZQE{@i?k& zV+!}!#ang|lOb;{AS@186zxZ69UcQ>KU}&cK`A3aQ{DE2++%oJR-mW;%eYW?si7oo zST%Ux{{YjaDq}K&f`!{x`^IJ&am|}DVjUR*3p#=Ebbcu2HOn3METoX26q+#7nzs>x z-=37`5TJ~x1bZM?&#zGqSU&YDkQCqDZxaFm@;k%haInjWFYuHrB93)EHywL^(Tn1H z*!OM>21Q)(h zX|<@!kPoRr%B?cH3MBskuAz%L?jh3vVT9P_uhyU$vlW@uT&d%u>c@96JF!emVL9`y zDpIAD1u%27(t@5AtLYn!hU6A0B2>CK9I{SjL22`e)bXF`vJD^i_{Yzyp3+_hq6?jKTVYG0(8vuz5OF@|DtJs1Zy zZC$j~mg@)a90sY#MB)Naf=ZHop!@K~vEAF~7I&{o^Py7Ew5e(oD#~l7ybp|R_qEQ2 zOCZq!Ymwq<#gHkUt=s}vGr8xFT*!1#@Z_)+9{Z*_0H>(fJJykp`d+U z5aC=Mn}Ys)L730kTmGiKAxb%t`OLrqQV4L{ww(@-7;Xf^6K6~zC{P)EDq<4hijov* zxaXZ71x>Lk(K&0FrOYnwOR#;o>$yHryx^?1b)=|&Y$Ynozn@*(cj7Ab=uYXw(Ek9U zRZCc&rKQ@E#+!JSPKEuDH>uP{x@3S!H6ojJ(RZ{8-9-haMz{N zDTK_y3ZV({8ujB%1J)+?wu_4IgrZuBIb0HoRmS9TA2Z@#O-fpkER|&nd4Luare_pp zG!GgEEyt;zNJ{06ij=ImK-rzTQ&*3jF#tl=Q!N08s^8iq)wyU;w;xJfwuM?`QFqBD0|S zu_2!^!}zdEvZ7EAksu?L_w5aM3dRD2)rJb&sq4}!<=Sti z!7hGK5&?ggoGRjL&nwqKLUaZVNw_}pHw_Vf~65w;C&h^TXAA#0JV};R|#iMtkn()Vf;t$LSBy7d0Nc* zpZJiom=VBm2E_ANd~v0}7MuS7Pd<;;>V)~u>t!Hl81vS#y-Y4gO*&E`M3kW-S|}1W z)6b92!U?v#q3BM->l$V-yuMU^>sT3y{{S6+ zeX^g8xdtNg)8h=H@FWBVbrIyy&Tj!NAt%C1F@J|h%Pz~&N}38sb^eSw`ie)u_${4?An&&cUO-`{VhHQ9+23lAGJjYl$a44w> zB+!bt>M*T;-kGeE<#D7ksP^7sh zdPZrFZ!;>_GGYxTCommY1MmaQ;%lcBiS~7YUkbA^8MLfNE=_Y7^}iDtvz6in!C(ys zQaAb*gxp_b@uf`67}WUrQlCneU;_XRTtKVt*dQ?v2XEMAxdp)M2&qk*9YuJJ`y)XkqPv7i~bro&))dd8D^ z$OctBB>aH)yccFKk7YZqQD7XLqJ(^pZJ$_TnRRBCKmaf$_b0DEAptHsZ~&zws5|NJ zuMwjrT2zoh4if8sWhv$U)r_rNVpl#CT*>|-P#n2D3ie~Mhf8i34dd|>>{m`7=^V(t z@=a1e3rW#nR1e~jE#-WrvpFqJZc{s`mwJNNU8z!K z5m25_vix!R)*!lU#&qQAl_N5UppLyFk5wfSOOi-dL$KM~R~*9@6hyTqS`sp-ilcWr z*Nxk1#x~^EoM0EF+t6f60~D!)H?mrw9x3mIE2x_Nl0lZB=QEOZ4WLam4XsJq4jkt$ISZd0x(jQ+Ck(}4ghDH=D4Bz~>^(4?iPsk0JE@R98o)O6xBgZM3^q`4Ut1rLk#G!0CZ;7H{%#{<-ID|?4=~-9CQW_+2)le z{9cX6z9+iuwIGKFL&RCLShWJDegt%Jj4gh{>M1(8PsDxUxUDMzMIg5O!mZh2J}rpm z81A_a7{#WzyDYw~SqKFyaun>xua^*DU3m*?k}39x(<40&qfaQgWKyz#rhU5ztV_GT zNe8qMwAn(cMLCF3{KdNr;0qcEWFIEvOL%mSh1e?oP;nMe^pD@szU}#>N#I?cK_1G8 z2V!YRDcjxKz2({3EM*nSwt6DHaOte}Q-Q~UJP#=wXhn*&MNSGHGOa#bSVwyMV>|qPjJ?NC$WWTi4Muhf_2Hk@cncvhPkY7$u z-ZSq_{*5QvQj20Gs7#Ym28$GWc>+kKA$Nx6m;Y+ik3&MOA&cZm^Gck+bctgT-O;&dp4lT{GJ=}klu$99k=3cG;Z zb_erFLG*2Q61l+-nLhipl3tPIsr{QznYF|4~0LoYR)$p=al*G}RLF50A}DoROh zPQ&x8E!wPQ!BJ3h0-SFeb<1D?WlxFH9JL^Tvueb-{0a<3Qm^uTLG98bpD{%*sM0Ls ziyA^f10YZ8I$6#@?oEsd>s$r2uo$j^M`YY?hg_)uD0WuuGXjg|U7rM~g$b-{BjDuGWOI9F&C69pA6o7aXTx zx1=SN$(J!DA%NHQ9mNm3qjL&3b~H+5ku(N0>_;BxByGujO>`J#42HayRPT;`8nhU!)v2ECRV}WtLMbnm7k;fWX^qwM~>|=21~jX4DqbvWG#V z)){d(tDR<0W>m9YU+Tr7PthdgAdtC^LWyE(k^VaKuYIE)R_f=VE3WKX)h#P475ERQ z6pf8HTO}m2hKwphX-+Ax-ZD$#`zp1~^-M&v2_r+BQNdxvX_pQyL6@0I13PL8 z_}EuhEmML}O9x^NAXW^**|SY5B9#i&U0b&RdBM8`v`;3WFrel4F~P7ZNTDPWz#Y0p zPSP!K$_tn&pn8UO=Y!HHV_VQAUlH&q zx@V;+V%*nQwJz{W_%+@#sd&{X4xm;v2pac>%pq&c39pOUeSz8u$XJf?!y^4@g7v_X)PqBszHBt|`a!#n(x9@Q2@dhrFR?ANAhG>J_k-gpK6$fSEgrihx+Ns) z?lS5@6>B(VaclKor(@AqY@l zlB~;1hxTbe!O2J+O9LND;{cH<%2MTxHEo~e6ulhEB$WU%ovHa)i^nb%X_MhzrdcctZXSZ0 z0?>ta-QKcys#(gg*}<(gBle^&Tmw#i$Q_2g;&}4IFc zbun2%Nu1%rUY}^5=D93`09r%s7<~N!D3YEbcwAs$X8Qo%%Dq45_I} zC&jVfkE|WM<(ZR!mZGN)w2x#CymaTvkYevgAS3#VGKidtfTF=oQX5aMl`!pA{WL4{ z4z6PJB!sXImv=B91I+byg~?R_b|!)MuRI6~=*QB(tj>j`iHyq3d|8IwhQvho(jC+Z zdXieMVIG15(-+I(5=NT=%)1{kCF|?qSC5vC)_~ z4oo@O7Vpa~pn#;7CY5oRecRs|I&YbhXDJ!Ivs4pD9X^rtHS0Ai2^9nnYo6VsGPmIH zt43lR0`7gz{^(rzoH^W>vRb8OnNJRlxN7;w>#p3D)irX-2Tr}g@!fD|rC>zC05Ptl&p?)N>S53#t1mD+wWIag<+)Yn3}8=53VaS~Dj=sLc20GltNKh$^6ZDYieG!@cQXP&BGRrxoY(hzEo%$XY^Fpi+?4sS5mY z4yam42=L}-ch`t>_!;Hxa<4nHlTs)SUz8-@I7)1#dg(-fpB({HavP15IP#5Z^s_I< zs%XKDe*_}iturzuCT@h*nji84kK0}ZE>aSX6~_s+uhoQ%!lWLX^yWWf1e-j>WFn@Z zQ(k*VcW0x4EBo?`OjfGsbsf7xXQXr}Dq6E+#qU~U zSibE6B4|)51&0Q($tGDc2AWiB?%|^;!FZ%v7MU{(xGqHwU5Oi0k8q7n^;fEv5Q-;q zb!O51+r>(n$*tFlWKIAVD>Mh@c!tHvo?TMeL{*-ddP4f}yt$JM#hpzEGyrej8Kqmy zpc5%hnhLQ$$J5R-ftBL?K`|4VVL&NB2M))V(YAQkJs;aF$}~w+sN_FH--#3kC7}E2Bdj&<-e3i8#lI>k4-|(w^Bg>zxi?25iv#r zSe&AT1gDL_{{UW*e$kA{o`9AinpqV*)xKMMpw*(sFqF(MT}k-HxQ|XSRh0+?1`6Mo zg13agq_HfjxaYBmELL>3WQ|-OybgN!mHP-pv2xknIh<6GM$NaJ7)->aB_$&&wr$4` z%u|#=LnVL?UAOB3q}wwj1ue3v`s=JeK@II|OobKX2@jwf9lv;`Cm9*4X3Lex1E%mR z(ly|=89YqYI`u!aW%jIm5TKgoc5$n3*YiUY%FaI5#%pZ4v2@cg6%tYlio1Dz;iC}S z(4_d8K!V}jpX6f`^l^?t<|{eM0br6fPU`cfkM`AXE6PbhN)o{Su6+21$CRa*RJ*Kl z(D_zLI}@kd&J6zmK!43X@c=IzBA^7sDA!RHzocI(hk>PFtLX|$1m#fGKvUxq|;;0X}2)r{RgUMm!gZjHRkk zG+S$>dd7imx}~HLlq3}&YkF1V9+PPR`oIXFVn@8Tu>tvNE5J{jSr}jHMRh@~1yvm^|q5C&T_XA=?go$e)D0oA4h5Pp526B>| z%t0VGJo6L`czXQx=~-1q%rzXq%N5d$;N@Tx`fFFL9Kn|vl`TO{QK0_-8hoHVrr+x3 zl#<}HcG;oy4cCRXSn*Lpf|P0v2j-DR^~J!TfF7ECdPPfIv?v0tH4Ur6w8Rp!kWP;6 zM&bE_#0lM4tjkC#NX|>S4@1tM0|hT^R3

2cpMMv+2jrE5Gk~vVl-ZDJLx|p`)Ij zaL?#+?+a4qD5$GI{?1*)d!MX4`&H9@)o4nK5&#--{{WiDb0nma!K+q_m#nm<%2Evr z(SSQfM|FBiRJoG`)MZFhI&0_8!+k_86{Rlq2rQ(KIqS*k7A&`Hr8zZIxvqn!P5hvB z-;8YYKp=of(A0z1@}D|(DL^SfCaU>;peK@UbfVOyfZ?ch%KP;Y*Cx&s3o&nKpQE$^ zv|43Zq!lYOmm}s9o(9jgSWr6t6qjkW`o%s(l$@b18&@x=+Pk*U;RpIpy%#cMt0a(> zD3Vmn$sI?Z=CH$H!O62pY88f4jXL(}`0F@YPxSNVOq*2@5>{Ej8X67x)W>+2(gGGl zq$|WvXAwNCo&B7f(Q6g@K@-VDw{)qC>^B5;h~!(PfCE)E3emX-?b;6EYo1b6R#2Z2 z@dn>we((<)T9YnfvY=&9&}ca@<@+z84`G zg^p0+$^QT&?rmFr#4TeRRibL8*w7R#^8i}r3S|I{+0P_+LPt6X*gX>ANitFtg_R_0 zv2DPE+NVa_(!z%h5(-_Zueve3e~7am?4#B#3a3SBuLGT4@{hybX8Mh&W%2l$>V50of(!zB8&dc=V+pcM^9W)6Pbh)Kt#GbW`WSyIFh zH$Q{Q8z(764k_WI(8fVFT8*Jda!m*opgnuSx9F#}`LoeyNje|WHGZ%%^1YR4B7^`L z^*^*4k%qluz?fVlfJfN#4x;aoEM!7JBx;c4_kwZJYK9KGl!PRx7HTP9USgH-2%905gTvRDQYa7Ya4cbhz zf}!Gf-kbd+nfRO`VM-w7qLOG;=dl{p7lC+-6Q~6QIaGAiIO+02ylJJsub@ z-$7HRq%HC*FNG?mT-=R+Hr5$%oSAkBD3Fz;W${lG1xi1yMDBJUg-`0g;LV%Sy_QfY z^=Tl6DrZx5K4yncI9kW{YYc=WdbBt+Vd5U|dqVG|Z%=8GmHMK`N7N90L~$7%pA|0f zo+Z^GC?2qlE5EuO%8C_;um1oatIz#_zU3iDecPTRbX}PyS`-RM$`B@K7_cAwPMrvf zR&V-fvMyWZSWt2on38F$R1hl8NZ<`1o(=RLGIJqIS}f9)mReOsEYrqF(~y&+)RUnp zQ|1b}rC6nvWJj!+gu0X*cx&NKfyp~@z>d?5rmA9skf4mYf=1_OJaFcZmQlTXoQWA45>Q4~ zX;%<(u=TT60G&&vO3lI7inOVtStWwpPVTohgU!^n@dNxUm zl(oqUQOv&qAh;_u4CUB2HF)}V=a!2tnJE=fOQ}VwdH3xRJ5fsm8Gtm`@X;WKOAa}T zUX*RiQhicVwk)Rtg^xVf-35Q{071>+YJ&7Ve~8WR-%9>31kA)A2|mHtvE+7z^ka8U z7?&ssiWNVh+s~mLdc^mxA`42Ah73dI)TjJY^CzT3VY)))`qfQ!5t*D5+gfypE`w!O zb1?YQ#Xd%$o_;?V0Ydb=B(Oqcoak0?qgLRv^UOG0c#um=&Z~f3^yf|bL92rZ*{94= zl8`1nT%4`3FF<=z68$4!Dax27NgzuPn557j@;vYxSA#5@6YSwV2%RnKm7Fas77}#) zXw0qlDYiM@vQbjd4~uFY3Hg(}Q^WYSbcL!!*Y#jgNe;50DwhBTI)PFv9$W1ei&{*( zIyI}ir~{~e4)4S%%YCa6;~z*ud*@h|x(w+R%lRE!bT{riAi00qDWP_l1AzKx4My8-=~((+$$+KVL6s=vNg0;I+I~*| z0D?LeIdbSy;X%WtwdYNEc$*GL$UPlh$n~bqKwA)^+AJSxpuS|a0SxiDD(I4gvQU&E z0;(Vae}A|UfLdmz$!h-q?ryR(pt%V(tLeoa8gVD3Idg(!%X4252BeMN2~@M`9{aP} zB$VdJgdJ2exlY4+@AM=?zo9HCBF|(@z;l_-Ni66|(J8Cx?H4XdY6{_Mxt&u?wW?uCYOJ+#5(y5ilH?Kx z__5qV&Bcjj&9x;G!h(_tloaeh>!Xcg=c8{%=v1J&-Y^^1AeyN_(3=M2s@*pFi~bE0Q|drKLI5P_K|Ouv?*#t@OE>A)_ za}QYJ*Ev>or6non{EBsCorxQQ8<7+w;bAIjyl#Fiz}xQ?an-*xl`@D)1X7;PuKE$Y z6QB!#@P~xXTPee#M7ioU_lDcwTK@E1FeP)4TQyafkTQO)0Xk>^uA9QIqrXX#(3Hwd z?8pU0LsgT&&<8s7+BF-y(wLYGv?Rq=%n6+d;%H^rQp29wp{{WPdhDsHg{5_B7x*@$TnFtCdS^|Itm==BCcZFt_vfo8s zj?kbcO-WLMlc}edG3GJEOP6W&a)YU5f&gMR*G4N~tIL_(5>R{TuonmW7p~ zW4d1{p#Ga74&n8H812C;c&{RmKjZO)#TEUBh8d_}=GR{~ff`AQ_gQ)4# zkayJPH+Ckotfc~4M~IT9HQ*R?!FHr2Wk!WHZrcu6L|f2omaEUyp&)QGnyWNG5E>1dx=1Ku|6XeV)Ly7OQjF ziyGqe&R8=OqKApdYV2^$`e&*)~&Xj;=XXedgB3Y-!(dVue@?*+H*QX6mk z45=a4Q?62VA4Eez98Y z^tCF@A*L;o?vM|(cL4MBikMX9n~T+x<2go$ajNU=9xSm?cY_DNd~FDnU^p+0>0ZIKzQ_us!p(cTWa?cut{emXW9S5C3?O{Wlo5<>F;kV$u7+CJl;gm57qj4bjj>NAO4 z*D8OLa{N?l3%GY3%aVa14zN^I${r;spJZt5v`vk1dghsO<$|ySq$k=hM*9P#CEmD3 ze8q&OSk0Jb&F!b4G-U$BGj|Xfn)b4rLbHH!Bx=RMreHyB8mu^iS5?2&1`LtLf%!f4 z@{JP1aVA`>icwU;kQAjeyJ}g3oy%%Yk%VH;>Jc_%w+l%wgt&GBxlWHlM>=m)AT`|g zxS2G%5;Bm=>sK%GhKtQA0ZNoi*@`|l&@c>3?wtS-hv;H=th9e~DNa^P&=qb7Vd4#^ zPLaIgJL@VH{j}u?EW=%E`B;900Q6~y6E!ML48)R3a+FTZ8CkCbDc#Y)&VXVF2%n-5Z8|9AuC0cDQcKV127@M*flG&aSm2Hl4!GuK#)LY zBW@}n`w~7*!FL&!6)|VTr(}^-fw|?zk+fmEs#?NELZ<^>e>CkGracRhXk4W*AiXp$ z%#*BbeuHeGQdF`53=)6|EWgxW^Smoh12Lu(0$ED@C@C)WG|>5$(lL8N@}cFN$7&PQ>@?$ca5AdLaIlQr3nTfejQkE(Em zxWdH(j38;thFEM(6872~5XP-P>J*e930wu6}BjW1fYH z(tJx321jpf5THj?kPUc!qhz$*N=2PBCY;k*=ed6o*DXu8eSj2bxks|~{bb8%NJwP6 zv$zkx4G%b8@+u)9=1|n=ke#FFymg6`uK*+xd?XsTQ?cm}SQi~32?zkGU;?%}5H&pi z05HF&@oqQPCq%Tjyp7LD!11mi^@}Q9QYw^+5Z_*4&A$FNf`Om}omr13p^U>7&r-^Q zMO3B=2S(KI-M5S7%b_A0j^kar(j`8n&R1Zc@dsvb3F=sa#y;c1Sb9~4&WTcx6XC4| zO)L4{j~M>|{W)M1S&{43*_NLQjeF%AR;T7;LBFvu4wB}q4%Oe7*M!NeIbFCvI@y&j z*_5+hq7*Mn>DH#B3Rh3wE8qCABm(rykqyq{r+{G@R`QViWsFop*eW5zne!5Vc>QF2X$??bJjE1 z-bSHw;t-tE0;mCV^c`SD%ZdS*Rtq_0yb#yCo%Al2qh_u>B?)ZJ2{8n6j_^TSnO@2n^LP#Aj*7%0;qThxugdS=%sBr@Y4Ddf-X2^OZ#oKG%Vz8x}q^U>-g6r~CPsJRXqFH!;R%q?G7mQoaDB$SN<)F}L73)W2I zILVuvI*SUD>MmS2PBepv^hap`O;S>nr9L9EGXb)jcXy>nz9VPa=~C>&t1mT5X<~u3 zCXY=>i&pEEMFf#e1JU{jX|~uxWwMD%s2eLd{{SJib)`9orCgSY$_Y%hlsZ5Ghq>5A zuSU0dmb|M~RLTec0L4#Gb?4t2-ZM8-Em_1DYNSme(%h1ip9rOU za6ICdrTftXD~!yYKT+k*jy7)4pK;A46{;vAi5w-+pd0m$T#qADI4?RJ@F zR$pq2LFD}-Hnn247fKRq>;g1Ao<|R)60yrDNLtkD)PQI^L3n+pa$Le!dSy%{N5jU$ z^G`Twn2gfNHPkTB4YY*ZDQflWDQ4-&eNR}}u;svz3${V28iw1u#(eI3X~)wORn!84 zi?OGlSNcFpMcQ)`f&m5lcIz6qq?;_Tq@@)>OOQ4_VS4J9EppVAGd&LOHh9;^&!&8# zT&$r$go5l%Yt+8bI}~2Nu};8jIA}eH>;VUNDbreY;t}S`dZoavH|rfNPQEUzS*hN!^lk%2K*pq>oN@mE z`&Ul?0I03iAxTgz-=sa8ILb?Ymp*Y$MbecJAHsFo3P_Yd6>une4ZYFR!a42GyRvmd z9pQwau~0RCgfC9J$~5*xTyNiqIdEGBWP|#>u92byC0O0GW5g4)*?{hT5IrdaLgDEK zY^!#FRFz2zZFPbOm=wx7N49A$z{SaTdr%4;qe(QANxQ)8esL%KR^DPQSQ5?%?EJy2 zs_H5q>@*O?2C_*k#wU?uNjg{Ypxny=6d{SES+HHXdXosYh9XliJ%mVXnS&PB^03To zVCXv-hSPHGxD-5?2Vg6@$kW}sMMN#%r6G#ONGwOcq(N@5nv{)o zj^yvB$n^U{HXXys1=KtxRpvaeC(3gEI{4-ry&hkwn={p^N)F^6M(#NL+8?dA3P1Z= zj%`lq9Cz}Jj{3nXmpKz`rHAVUWK*RG`FDm{cG<`&Qd|_&=IglT34db$01h*+#Y&b_ zmDEn!{{SDfUAt}W1zU1DpR6cd7xJd8reiY&W*Ysy(B5t`k()|Cc&J^WwA#vvLVcZ0 zD*HF)(QeCZBpGY3%nAU(ySatiCE#VOsXLzVWZKC&j;*gE4GjAm;KZf#1msbAYx%rj zH?9*BZI3NyDuoGhLbYzG<+?}KHr}PTBC5s>kl*0PEz}8ccrxxU{e`lR0N=Zoo)C0!P+-e4!Tw;y+nyPEw{J*t-DiN$;>dc#oxR zI4(`5T*S;qfkCz``~0=?kCJWxY_`=P7fNOn1n?-%c>`zM#vdH2lV4QJv?^N4P^Dxn zLRGP0qeG3=eNblhx3003-Z+OMQ#67=)j$(Y!-ynryu}Jjo$6qpA`6{d1J(Dla)m!CpU~ZEIHPo^YD#F4Pz8q60FK}`zcjG1ZqZ( z)CLsoI96I_pnjQ#pwtK>=>p_P61`Gbpk+uyBxPb)fv9ub5?fOjG|VWyl#`HZuN&B%44Yu{mREdZc3PExo!%C7z+1w1lpmzIe7{%OW zCoQHxQbtvtIMlbCO^2blQC5JkxrzSTzfjb7c+gaUp^e}gLW{eA^z0#z z5#CmH$;~OVJ2-cy&B1|KO4w8ihlQ!j^$|R$W9a&vLc_+-qaU<<{g3TwMc|349v2BY zMN&?h2g-NVoEmC23(oLCN<*Yfb~`!e-4e*bXap6ZB}!#E)baOzkY3IfZVyWGlB|=G z&7!!Vp*$WAjZJH!%f%sb$U+4}IRk&6oMnEMFkG;yN<*NNt2-*J;lrfpdKhc4T@w>2 zB`OXRT{?c;!sBnM0BqQ5YGx@d;VweDollm)5fU6MwXZDYC20+nc|)ijif999cHr#{ zcRk=2;Zn5Mr|t59xY({*Jz`YAKbZXD3&v)M4Qs*{bg#gGQkDd8bbii!gfm_@7+jMj zLtobBiQCQe?FlwKV<}}If|;e*4HidUdUEX!cWwTusbZ2Cc#l0hkGw84?x|VuY}-7s zl5$EP!h%6sXmlEZO~pH95jaf6rA<=I0)3)e=L0V*a#JuAW+eMS=ppY7TM|N4kQ{3N z00-(K;I)V0YYnbVq4KFA$X0*U4*WRMjoE@@XE~ISr!?jYU&zi$BCk_Qz(rcsDZvZ~ zarTFOmAd)k(#9b+TS%IOW$t7a3tx=14V9%=9s|=^!@S z>45?1r`5a1w{`H9vR=CbM(JJR?EE$qqm|i5&A5oKj14RR9h7L6*u8L$)kC<)N^`_Y} zg&-9Gpbv>Jq3gRom2HL``Z?R`$zdy)JyQqQgV*z4Aq*1_t4crsv3J};C!>qMEU8YS zqm|#j&+__1{JXrWp;X=Wi{soZFW>jN!?5ukxr4ZJ>X@vvQ&Iz|yH*x$b{w-p3bO!R zB>a!s7;N~lR%!t9)Wm_(8A$UN-iTTh2(DVjHHEE)T->B)N}M_S#_2j#t3pbW9II}T zh~9QdlC2>*T?#A#4Bfdp#M;w~X1GYoo_QKUE7rymlC=t!2EP#6Y-<_XZ}nN&OnizS z62_WCxAn`LDbk=rW;~w2#mbukk#j0x0VbT7?oGfYm1a4J6ymzYYpWBgSqWgrkj>Qo zG&W7MiRg5n5a5RT(y?7qD$BtVX3J8^8HE7R`wytnJ;0WfNIt4!d`?OfMGqnQ96w%Q zMXt)JbC{ChS`UkI@bhc9kuU{SE}A#bzizNj$yVO578HeMbK)C*d!d&0y5(AAnR61v zj|#Uz*uRxyB)3~vCT3T9(v|Pn`FvwU!*=qp#h<3#BJ&Cor{U8e6r}i&=Q4Cxenx|e zZAZ0m;vCDU@eO-(+pIEQS93XU3D@fgcFTOQq=dLz( z8eNjmxrlO_8q~M=(}>XhA7klrd>+9~5~D%*KJh$yRqf>aDrJ9YyPeL_HMKt>)0}c-@{Pga%6&A0Q!r31S?Xh(o2$v?>00hf4*k)+NG7ubdN%`YIV`x~F9? zwt(v0Aa|-ivQn~_Iy-LN`#>M~!^*$^7h-whBffDll`OhSO#poy^V$-wD^$hI{^O)5 z(YNd8435@JNTwxPk>m_kk%vcB`TJD9Xa11I^yox!HuzDN$HYY`O*R`v zObNf{(vg(tJ(6|qd%&9(Fhb^(Q%yrKZGLp-6|Wm+b+JN}3DU0I7;U)y70X%mgc)Ll zG5Axipu&ggV&8^}i>0zCJM`WcZhTrSt02@l$_AuHk0yF$=L=9N31)wDMr(+00#?&P z$S;^DcjK|&_=ZxLZC;QB-vU87hr7Q{kRry2h0Hy7E>en? z04hrj!)@ERbIV1{L5WtWB?N>dmRgBs8xTR?0EBu?8Hh!5{jcJe6@bG_`fi6^uCZ$Ei+}RtWtML==!Ag+!#d8&}|lzEelCT zbyN}#RMxuG76O&5X*P>$Ea*(MK4U|dVfKZ)oMf1}sZm*1=`{%&FdtrGd+P8h%izwU zrvw6NsByOkZqPvp7n%&qLV~m;Fysv!Z3QjZVnG>{0GN>P(}&t5w%J-{d4n#hemX#` zL3qm}F_@f#+EcSO#xl7T2-kKmb{dbK{0nQ_WW6DP?Sm|Wq$sff*FY%00FYb|3sN3Z z*A|>VFsUe1#}Bi3n@1WyZ>WPZ?iq5WtNonUp0Q5RXel&y*DaKv#qp59X$7EE>DSNEd23D zjSlj>#IyvBs83CR9|w$f`@*xVvn8oYPl;f7XaGA#r#ieSu+ke%D<)uTDN?h$BAvI#0ZA~y%*KI(Gv*y%Sa!o$Zd8dTT2L6F)t;sK=##e;jE@_l zU$Dsp5?p?!=WdjSt!cNmI#ksprC`>D=toh=r+7xcu&S*yT44fHoXV|Eq`2c@6g?Yy z2$?hsRQb~-$_@RoMJPEnB=}HA0qfE_O}9gmij3RQX3V!j(UX{{X}q4Gy{*Jz+}`6!C|pz*MOq<<7+? z+9ZmWs}BDFI9tHjkWI8^8GuM6sfY?X8lCn&aKmwWKeNl8iHl{-DIo|a!Vs5rFOT&V zCsNG^u?6vGl_^saQJTISpw+u*3FBCH>Z!*EU5Zi^r$T~>VMj-CxNWwlF(vbEM6~$a z<cHOwJ$rGkB+p+lc!rRhynOI5ioQqhQ}Nv>`%zl_ycA`jNpeUk0cXU=bw0;Xot`pD zH(J!c3bU!)AO=cQ`*PiB@QmT%qghK6#mWi2y#%_tw zIXZ7axr*0cqRHlRC7?ED8QF_&YoUU8azbZjnx$o06_qs9^*Z(k=^EY}za|od%mG>e zpus?WVNQ<+@Ry^R79{0iGGxSnr7Ojh3eadgwSpGe;ck?GISC94X-;{91xYGR3%ehq zz+39{{^m(2%(UuKD3WO8`N5!tetJeWV?muRXp-4gyZP;`W_X9veEU!#1IJn`*>0M6 zw{k{?4*F!mQ}QU8c}lo<5{($G1Nt(1N2v8YPswkvx0jPg_5c|UA z-$i-@^i$|=e8u|omIwrhMO`J)T$x>2WkQv*{MrirB5aWA9`JzT;Ea(!X>DHPK@a_1IX8c8dOpv9`GoE6S z=_I-V{{UYo&F@c1^DP;rg%BIY4up}YZfavvw|X)jp#o`9{YpobOZ3~kAY#lKiyXm} zgP1@5soBn-#76$jm0h=V^s79yxl58j)OPsSi2EbZ->Z>i6G{P{F*VOp=UyrB91Q|S z4Zf_hWD}Jclyd;ROX>;uv{1V-^5@R=Qqt&Rpp*v7vja%03N*Y$i(1by)0F051#=yT zP#>`AtSb6CO{!okC)GNrqG^-pt$Ox$1TODJGvDZinMf1@VuQ>nsHmWRobRtN_ehs?Vs^EuN@of*A)I~p z9ih72ZB?N~2=L})g$ldt-2A#i-Z;V1gtaY8X@s1tYJ0KKhVe_#)*&W$tC&ZDKidzv z1QJ{pQ)%C{5HzK#M1W9|P(ZG42vPq4BdF<0JYW}QI4HJdo#Hu(L8wS~XX*uO(j5IS zU!eyoW+_AhHY6VUQ*P!kDbpq^`;}2i)~HHU7NwVY3VOPCZwn@~ol-`9w!jBhk4 zGNqKI3CJcKwF#pHy*yeIR)09R=+DvNnuSf6oQRs)f~oBOp~MTvR~VLsdZp$-n3p;& zVe|^tgO7%w&#~KmxGb{gWm?ih4-W^ZJWxN@ImCXB5j6U&$_ShZQi6kr*gLkGb=p0_ zcJVe$l}liRBnHq>07uH7V)rkrT7tq6uRAwG(l4Wo_Z|8!vdfc}SN78=GL%%x9I4*F zF8ZH+8(^dfYVir`SF(4@9C}1T%3H_c@Pd@)0b-!6e}bDS;lYQ$M(bvUWUp2-snJl?W98)CV6qp#Z}e2Iyn61Bcu4TpG7!f z7Tak=Wcg9*0q2*3_?OZQv`m&~$x6th z0aU)@rjGCvE5r6l^3pw8N>a6ZL{a!pS7++c9rCq1{B6sXOrcjp++>(2eB~lkk(jAKsay@q=oo35p9pfqAN2HuBq+{#iYB7IJ`XJP_yG>|FJZS1Bv6>2 zR00*05=Qz|@OLq>+VMKQN?Bn_RSH8gsZ-OmAz<%DHp#NxAqh$WK`Nq@f6Fgdew2Xs zb-_N#Kh(@B0E3ZgVwW`_D?oqO%x?hPGE0`FO-M9i2mm|uedAD>GSHc6T4jU;>Qz9l z0Me`|Av4j%;tb@423kQNvxPUxA2D_1X`3h|@&~AD9s)towF%&uCP8a4!?&Td-V&8F z$Lifw6eJc7f7F*9K#!uY%gZWUs-Oi|Q`G!kk&^m8z^aoqbCyzAGC<(-$=Lhi?l->{ zo!*ScRE`83uVO|!>AK?e)|pchD>0~j!1=lOMyKf7#Wv38Y^xcIbR?Q~aOxt25W?L?2j6Dh+&0H`dnvHtH z{{W?#Ql+9?v?VA)d?7-GfZwGk!{=4YUBNO`_+u9T0K0{q64DEh zM}@R<&iop7kEAfv!|LVBB>2$hD^crTgg*3{XQm5qn>hgh0E!0Oa(*;DBSM>rP>Bdp zAt49=ww*^q)cxTH(slPHQj`#sry>iemr|8iCbT_2a{;h+8lOH-teBxLNqng%#H7)b z-=|k?S)GYtq~(T-(jTPU%1pGjQCjYuUHRfN%w6dKsGtR9Sg7hYDg&oF!~N^%h!n3h z{{Uswk~rXfW9N(h;xeWJmr*LsT}W=dA@Sq4vi>(I7agi(voR|nB@V#RT%LeJ#oL9{ zvP9BWq-Zw;zlyu@)O3xH0piI&(7H#mj}TQhs0rZf@Yulr07aN)Y{|;CE<)2O@}(;T zJ246XfkF>fJH&i$;%`TfMfe=aMtP$(1ynWa+68}+g&#~Bxp%z1GhZFw2CSB1)Jp? zal-jD`-2pbHOM80i*eK43^>0YE@YgnqLhb7FH_IX6|fwDwFH-`Wdzio05$jR2Jscj zxiXG(nI%L57^o!fSPIg;hcP^)J4yI*N~Rb80BXNR_(r32-75sF&;+uJ_(#9x18)1T z)h1XdZ3~~&4ur#%=ao{_gs}u_3x}mc8nLA#Eja6)QWkW}m=^~H)%R#c)(P&WSn zaj1psERie}sfu64mahK*o>4-^p)O`pX|W?jo_THt@p5cdpD$}^bq8mvTR{l-(pDBu znkmQAtP!+cp~}2PBS+NrJ^0#@-LC3f$snXC)zVmkA8j=66M8U<#@@M^Qc0%!{{S)i z%zzT1rD;zRy2O@yj%reKr29;oP@cVeQYSYw#JN~t2gml>6shbk^02si>qEp=!x&|1 zw5D0p+DeyPuc;$(-S(;2<&tqt72^Q7aqSb+q-wVg79P2Ao{s&DgC3$wWH8Bl!y^9r_nYG zv@0@^o?0_z4w3@D#rUZn)}kF}Tw+>g8Koj&Bmk1>1Z(!vBGblkh;gi$Hjy<+W>!GJ z9caa!i)pdg~kQlUhO7udGnNY%X>-0Af{)To+*2n3PC2hfcb z5qV*_$M}U3WXzaIBuivCu46|(n@7plUB;~HpOl~|kPfV)QeS5;M&dRvO7`iCm}QWX zok9lUjI&L60BzP3?+cNBpwVCe?9Bc4eSnQP+)bK8yl+rKk^xZ^E^@NJ$Pw`R!5le& zCRK|! zkE)oG1G^=)385#>CiIJGLZy>Zq1n1aol$)f(6;s1b@QrA;60m^m;oI70tA5d!A1BROixwFkuQAFJ`?WyYuvYA} ztwDKQjmOPjoW_?k0X&qcEK;P39a4BFj-1B`!c!0efATxoW1Lk8J=8a@y_vOtv zw&6ojp&xMyckPi#DG3AtQrZ*DeOGm15it&=0kKY`4qt-{*t^jxa-4twqVKphpy?OK z$~ka+(`wC4Pldrh7@}^6cBh0MBkFuN=&DMPloWy!LSMuQ-0t6x3BH&;7|4{Vex*PV zLP`xY5_JP_Dn{St&Y52y?WuYxyA%CAoc^GI2<@kM-tdjwqDz{%I&B#i8L%lb{Ar~d$MchTFE6XO2>YufqFjCVEONg(&~h8b5uAeI|` zG+Vl^{MnVGfD_ONWx4Lh4YPZ?$EEb)6}y8|cpGQAa+)9K^Jrzd?!u-D45C?ipm@Y_Jf1Z@f0j~NCPSN!;ON@GNYhwq8{L&{{Zl;NIeLH)@ut?Y8l!*w4u#u z+wT|TE`v(K_LRzy76BoQNiOVnz}*G=HnvR2+dSLYsemXz-+hkuNb~PfZTML*J)cysASaI)z`BjPAvDs$`_GV0PX6 zM<14dv!jYzwqlo|^U<-v8f*8~94ywi8f^e@WtAwELJdhB0VSX1 z(c!Y^oiEj?$BoI&Paxl2VxR%PQ^3Ei%?7XdF}KN9NGCfbmXg0V-dKDQ4%d${g^Wv`Yk#OTjYIvjEjCR#f_u z>XNVgWkHDLFTmOh+;`#;ETt*PNIi^O#RWErOx=sr9)6GpM6{0qA=m@%*YmGftIHr$`IzmUGWHP1_pfal}P&a+fx@aCYpZK(>C@2EXE3o_hVy#*JMz!bnhp$X{ zf^5qQk{dEp;4H*`Y4(f~;l$=rWt6!z09P?Png@M;F^89zajyx}>B}{=Q*@7LeO^3G z+=+=%335*Kq#$A3YwJq0B%pvbqrcQ|%wAQX6sg(3 zKRQ?O^n*0z%E_#^(nNsg!;zTvr@k#fe=82%f_o(27xL7R zFzS@}h@d2K4_=G02%RjIFJq(}?-M6ynK}mFm{%1#Mqs_H9R3dh{`{dNQzs zEU*E{s6Q?NEg13Vys>xIwLC(pa}o(i4WgTkhY?ckM3mX4xhYXfpR0BjoNXGCAV6aoo!3i9EP=gu2yx6=!q}o=%`Rd*DLxgKayTII&ai&jC|VhS0WI*{b%)Ea9d+Pj zgrZ?jh}Amyc5f$xc8i&FQe^_=j#0OtA`RGWAWQXYDM=2X2^qT|n?(zn-k@D9;I%X& z6q0la)+`3OQp~jwX4Hb0$^p<-w9~5t0`MK=w5-UOGUZdP!OTn0m-4aD*@J) zbd7&_!Lhx%eBy03Vg1CAl_aK$0M+!+)xobdr1F9sy)@j(5>seKXG`YGqXu$)+tb|( zHy@>W%0f`YtTI!ZQTfDbI2RuU$jdTaag!q24(C8DJPK`PYjIc~fE05Gi++na;YpqiAgI7v|p zLqCC-fTwNf!lt~##ocLLmCVoYB-1Y8T#>p?uI~K36>t@yVp0;dRFGe<=eim(Q6T|Z z*Ti0+fkq8bdF7!&MWzqBe?u2U*-NLeTa+4Ub-J%O6rU#moycOg`#&A5(m^}LV>3=$a}<^rj2WV^)u67~0JS^z3EQ5iY&f)^#?sfBifoiP8XD48MC(uqB33sU$Nt-QeLqF!^$o za~t6`1g3acQ4FGyx!2*eFwMCP`3WVRLHde)cm1OEloEi0RuMId(8w??!2L7YBz2{g-lappDuDH8YOh|8hhdD>a~f9C?thtWd~wML(_Pf zK9mZp&P?ExOl+ujI zO2hsb#`0}x2_q_~3$p?@1nhJkLKvm2Lxz2DIaZ_+1w{=wh$dm1O`cj+Dssw_C%MSHWfU}we*xpPsH-x82|mb;KJdmeJyY$)q*reWy_EyFEvSSnZ;4YTcdJ8`<)u7Mct2Q|2j8;MDqM-c zg{LwQwqgM!q!I?fo!+CQb7;YW(Kj-bOHdKH*#0ydzQ{`j;~>mx!IYXiAI{L%ZkS~y z<*}A(75anKl$O)6ZXqu1^kk_sGbuq%080wCwddUgm3qxdC{SkyQMcnoE7?04TGc&1 z6qLHM)Ks0@p^h-8qZMXM#VLS3B()Dg!)|`@tKn;gSWaa!_Z{HHx=LDtudw$)@hv3c zPe=Z;TIC{OWz+>#yt;5rdO#aTpwli>NuI399vw(0UUbkfFHM*jeYh-VJsi2K?b;i~ zlmM>Y9tS1jZwNboJaM(Q)h5uSOj40FE5*3V)W~;9V^h26K@s#X{X62(Hd?cQthCMr zK_4)!_$d%4(@p{Yu79mb2vAN}A@l4yd~B`K%wfN^+?ofmq#vro(utBI3`Qq*8-G=YJ?1gqd>?R1F9PTlst-(E{xkSNB5H zrbk8K$nNp@LIeZ!g znuFhu&nM6L)C9R?^##p$=p#>L6N+xhey=RG1ey@ro&Ny#KM$(nvGRdRC6JHOR!AYn zyYCZUm_1X}GOIFB`AT*?pNR8>Yva*!&d+7=^VpqO!py$psJ3WCCmns+{#hNlj0gz^ItOxbdjamrM6Un=DDc-iGY}w5-QAqq-{c$a!(=Pg_j6T62quw z)t;d2KO3-wTvwcC3#Lk!HS6?(*g@kGPPZ&2X)Kde)O+dT{v$-i7KGWX$(T~>O%jqe z`h4Iwqbu)pAS`m!;+?v~UHNtiz=ePE2k8oSrYng(Bdthza>|#h2Vu!4aHRyOt1(iY zxaq&(5Y2ttrUZ{yPx9-6Dhgh~GZ9Wq+Nl%i6ePQ8RW+HYBCQ48>qp(Hu}c8b;uN++n1>?3oz z-@F<{*|&1$DMu+R18@fq0GXSD%&>ndl zaRRZLdK$N@DN>86Ig%cg(75w7*!K|kf7@lIL0r%Zv`8M)eFs7CimI`p2RyI}v^*Z9 z52QhO+@839cShLOn~?~qLk{BEY0aF3oXnIxN`COiBNs{_vXThXbqCOPg#258Qi(=v zuyejp33{K@YUDPIHxINUVcaJ-G0cUbO!LHl2oM=Uz@g_p|a=1h)PoI{P6pA5VL)s z{1&`&+47|c%5whz@f6f;5L_3Mil0{3{kr#p_M3dUiFFLX1`Ss|J6E+}J`+QgCqg*f zZRZ@q2hJ{D*Q!va&CrT#3V7B>s!n9rGZK5n2TGKw zlnYi6IR^opL5u9YTK*@+|)z;eS@>S2EjUdmcL0a=j2 zO6N*>ed9YM}LVC>EwJD%TKR$OFZhAx){p%*glB5KnZVtU)r|k%Lr>0RX%t0hf zPlW0PI*oe@#$|dc*KJR%Bq1Q2zO}$u(101qs6Hlc?BuSJs9OD*N+fo%TiRyW79_*RsHbefxTs(a#ZS> zGPzXLNIN%ZiB*RTPw2L3mS(MCQxX(K8I!VgFYi84*P`h;B;`t+hfy!1{RB8-n`Ft7 zjSCdj_0zWc9)=fv2;kKuPMtQ1D$0a%cTwp^1HDUz2J}_*tB2;#Ppg)n3+7zHS@}pi zbD{XgTX14&whKZfmzh$dUjj$z4ZCa=`k1vN=xl$Cl5^RFyr}}S06B`b0BP~tNXo8E z3o>HDl__Ku0*uK%9kU%Da>q(S`z`3nYsNEX{{VF!G!R8eNe6O9<6bMy*|ni-oU|fZ zGX%^9Rn?7B6Ti~iBLrNh))~G7DIqKy**~Yl!Tm(< z8qUDZFu&%e&J!Y9m;eZKr#tEN>lm%&jF22IW=W1%DZwOb-?V*ZrRFq9W^&?=-yV&$ zU_P3C8s}J=lp($B4x z`{^Ld8Rjep@T6u3`5$;wvU*vTkuWT=P;Y9Dr8w!M!@RFRmNk!AX_%s>@XJZ|dbc$p z#Q@tta$icGge6#I`soT(!lgb%dnriJ0`;dqARzSzMZ5iWyG-z@D$0BdnBl#&-SGbO4E z?BV?V^k`r768#)ub7QreMA@mVvW3(25|#k}0IO@Jv7*nsOz@%0&2Kj<>i>sFc~QdQ$z%~TGlM^>VVZ#|fAk57qRGbjaA6%b2oOFa|- zA?nAei@0+eOqvcwlq9tttL38X;U)*JV`qq@20?0;}ks{+{lxe zXqFvevuqnz2l3h&(|V?Kzv;pP7IaSP-QRr+H(Ed|($JeJV4|X?NlxYU00`6TP&0hk z)UiSbFQZbww0VW?vSp~sl0sBNsE^irRMU7)w_ELV60s#Dhis}~19jJie_`gZptHeHvuL*h7fi22vkklZ%liY%O#P@bT zv(A)(Uj~c9+fXp`fs843gQ`g%)nBR#3d=`{9jUbecbT|D8q^IhEx=%Dp*i` z#`^wJGK=kQ4q!7AokW_|s5(%50NxB@i76`uE>$r5EbLB?(gNbFFKNw{GQDDyDBjDr z(_bhzN_FVBY`rDffOP~C=RjQX0_FNhQkH`*q!5z8u?IkrvE-eeBDy^f+9yv+EdfGU zIhMw)zFr(sonz?yF@x;VLQ;tmkd4$39FPZyma2;ip1p;ZmGJ$dc(Z4k0v$y`H7g0& ztNcmf%^OFJ3gNv(i4TyKsmWHS&$H}e1FRrn8{_(Ui6xy+QpzfJp*n*~IdCaPjfWLtd9$VZxiZx6Ld1&d{abEhJ;7K4 zT-#D5twC~;{prj=B!lc8gwVFsp&*ImN9zQ;Ringxf*dJS01Y3dD0h#Zy)fefnf|Ru zKdPdGF-o@o0NR=nKwL-F_^Z-9v?WPM@n!I!QGfsrjiB=GW8w^6rO%r-YSIkF5=Kpk zqY71;r+r6Dz4lwtj^vU`f4WM&V0443c%*9HiIFuEDu58)8Hlflev`w9Lc&-!Z>dbx zq<~l|VJ+?-2+{o*+X_^)DM!_)h6h~3KnC6V!66>+jAxZaCSxhH1ge05)HG+{QR>l$ z`cTK_Z35Habf^#3bp&-zgo4c)wl(y6yHHZ45h-lUs1;WXbCO%0g4^ zD{^;mYxbm8Y1-1g5n!uAWhDz(%8=zJ*-O@kcjmQ+Oa9K8IaUT@3m$>E}&Mi4TL|5@3l;pvo2WnO#svVy7M1D-?Asl3Q=0vr)q)K zj-6UITmJyk9JwecXI@rep?%4WX7^WWjz2I0ZP-^uaqA2H-@GKE_r;Y&iYB@8X9gKEQup4 zx|QvUQ1JXj%xKGfC1Rx%OeGbdN|RcEap)!;;STV4&68TjN1cXjI&ob9|Fm6 z+6{o}IW=xHgL@{2k8s+5r)g%n8!_F0aZi!y3Vwv~ifp;ityZDo9Q7K|b`Euhi)JPv z1t(^q1F+Y4$1l6RYMhfK{{VQbI7rk!?V*M1vaOF3TQgNDWT=w08Yv_5PjoKX&{oU} zt49P9IWHPLmjNr)gD}*j0-a0#eCZ2VhUb`tB@zxRq!GRD2U1l2014Km_AqyW^X>FR`%K`q zcoC`wy>jvkRiRS(xUA|&jU)#tOI1&^o+>G)x-}c;(IoF!r6EWKM4ah=3UwKuep(mN zfUO2{B#f_R&<7~1wheE=gyI<XG_f>(Z2icaAzlv6KKdK#Wfq zW2G)~ztn)C+m3oP7K82(vPhIuJSwG<$3RA}1~0r&bCr6~5&#HA2v<;fuW0$+_Qbh? z67wMk#7$o{9FeBmMZ-JR%ka%|%uq{hs6V8F$KT8tHMUB}EDI0;A<3x^!1+a6w)I86 zdL+3@Qh&Iu7PO6r0J9P{aYu21s?Rc7(pIM&f=Wv@4_ypu-i{?CS_P$3U&E9kG^dc) zVr#4xb)`9dHe6pSQjlc;C8Z&NW}wlVQTg2`2-_1RuQ_lXikK&{KLH&2OU1-X^^U_t zu>_&H=e%K8{{W;36gCukx7=BfF(-t1f-p4O$*YrPYh$|%RvZ~PE@%Lv(u^5k9-%Rm52I4xyP=Q zqI3GmiCU4c1p7qqtF$}%RK2oFN+leu0S!P$+mbc%gl|YzsgtKC)uf4Os+xtnYS6VZ z(KgdDGJ=YUPE?bkQ>iNVH#LV0cIm{6w5nWy=~Tx~Z)qttEK7z3zA%C2!W|n|6l=y>ilU}YXwRy@tCEhAZP$h>_Npru8 zZr!wozeN|hk!MuZWh+zZRa1xGww`cHPX+NPj+82r9~zxlwJ^K;>O1J^+oT;6iPKJ3Mo^Zc0s2Sj zdek)`b|l6jZMqaFuu@nsW?@PJ(^5vK+z4Gb3SbFRd|8zBhx_Jv3qYKo{A`qx#N~QF zN>S?%ca^G4!z~gr<_uTBrD4umS%s_H0-{ue5tS1aRjknmlliPE-ni8vX+jtw3>00# zJA{YRe*LMsUKj-yxk#3?l3w{wii2ae@Trge4p}VLReH3#k~0TBHJ>-A>GBb$7*~@I zys@&T&Qz&jhy9{HL*o5n^kBJ?f{`pGIWpF%3f%SVAu|;EHcW%zB|wKN;aj`&wyfel+qv$E zXtRW=ASnrFc`O>?vZ&EG2@JJ+}Q% zqaK_=dFf6p&gj9OxlEdBH}w*gm07|ai3~yp#-sz-myJ&i z+@*7-W*Jgc!6R1K{op1$wB(=arKMi4C<`ZYUv7)EK~|)*ht>B3pV}U#6E9m40Vzrctt!o#oCJ-yuV~ir zY64|uDRaNnc7#hbkfK2i;nuF>V+8O9Ek3ZwQlC;(Xc7eidi`1>meok>7taKxWiL_* zKcoYvl>|+OFieTF{b?R4VblQ8#WvsP3mDS-&pXv5YP6&#rPTWYwx+sjbd8%2S^og1 zkW^VDu?|5|pm!`cC4-g&sENG_lGSKbq<|KXopkN2WVo8}E1ao$yhp_>f=*(2?^lm~ zBjezz1%XSyUpj|+!61uRn+whfnjI_5mdJrXK%hu) z)zp*k(5-qHvI#k(+bH13Bp%1|hrzwT}T&$}@!5YS(Q$!q=lbEGA5w zHApFx6zoFSw^S?4-G0$xYii2tZKV`v2vtVLQ|B{l2kPyR+ZH1J@F(D zanDNalV=uCK*)rsI#l#=r8kDF`ovU>fhA~D8ffjKbnOfO0R0{+%(*I-vP$M9DgvP+ zGk96aO>4%xMyonNl%=OKLRdcRH!xm~5SNDJAyQ?Wf!L7ZzvLg7cC`AbNl}(F06Y}Y z_Ut;wb$QB6+d)+_jR>QpRr(%b-wn){HDfs-BzRK(*3aB((7PsS=`RXRnc0F=Z-^uWrM3jOQ=4UN})k8!0l&5=mi{Y0!1#?;7>ThE7uM#j_`N=ciaV zg>b-F9u&Fu4#4l{50bEolH}3S!Kyp=`^P_*mFMV5j5i%!%a<)mOJvaUM$H+0iduxk ztOr;ik+W-3W9eK=fsDbCz%<)&x$g-xeG`CJn=#yxO*rY=FT=~@J4NlOdOflF`C(LM z4hY^G1)U`YDhVMD&q5!Mx9_I?0%7Z8GmY0NB}4^4*ZA_d|dv%&IZfXAl8vz45HW1)_cl! zd6_dQL{lvsY&a2=+wZxv?Pv;jN~)E6Ps8_O{Uhj0MZjbsY0%fW>i+kq;0T$>&jUxW?>HQgzx9U(6T%sF!!l^S*)Q1x`J>NV0mK2APM6JY2215zMWqx-6*8N9?I6c(b<)Y;{oCqophGXYT?k91hES+dZV z=lFyMELP0SU5@ZxO`z|r0+lQ_n$$rHzIiFDeEg!N7&a%mNaILfmnTtC)(%cjgdGn~ zoIpj|*chN2cuoYD_ry}?24{ZpO8d03w4#MuM~Eyow4F;4w@92yYjd4AtOuBqG!%v; zNPic*qv4G_rg1d>3hW@0{Y5I3XSy>k#iT0lT>cOd8vy?xM0 zR$_&=ukQE!qawjr>ST$l6%xs-(wv{SSkzT}sD!D(LaGj>j@_bXDSa;S#MX-|)!g)n zCCC#-M28!s(fR$Igmq#G_S}rduk;Z;(;yjzNni+KM;!4F5X~=dM-wHfOO~UMD6(`T zr9QCBbK2)fkQTI+q_dP%fO-1E?Y4L))u(@H#aojU(Paa`{u8#(_J=tBm!*rN8p)o& zR+N;Hs4fWU^?{a*5`A*oVM~e+@po$O3qg!YhEpnNpD7>~94ir%=DCmu_2wDcW70?{)>|#Y0u(W(2yAJ>~!fGZQ!7Zp_wC4If!Oh^Qfp0 z;-DSka$DHj2w1l4Oovdeu6HMT{&bG;MXxX{NJ_Ti8YSH#dQ_Frngg@IiB?&5U+wNr zfYkN?#y~m0{h|HpbxL*%&p$HMdI7K;n!mrw8*R53G;+xv8gUUOK>!!8)1-K-+F(oN zaaM7t`^88Dth0i1RFHovIDoc$WVvQ*0A`O7JCVVHlSI{kq#y=0 zVhM6UsNf!tuMH5WGk1ye0%jEDLWwNI9@ULT#!_U0uW6Y))2B#FxGzb80W&%BW5h5{ zn4FGPc zcpQ1cZUMjM$@OVewUivGBv+>ge}kQ&`y0w4<7JBU8w^+GxIjt`V%u14^ttkpYARTig=>4?vc$)CCO7_r}P^CVf zn?M_i##F4?^09Vy2mb(WdsJ2pUJ5#sLAc}T8hax4D4G)}keaq&DDLXVn55Fdi!Vqa5^s zJc~rRd7C?s$41+VQV-9+=Se^)VrU5G@M#gN_@D2~O4guwKL{yf^=UvQo~1#y8+CpB zqdLOZ`I@ykELxSR?XzhQmg_E56>I~LPN#w1E@EuOJ1ps0iopOWz)SPF?Gj&@5>(Nc z1m zt`fG)lb%r^fyE0AE6+j3)Br8}b_CB%`kfv1@*YrH>cvT#95!cS!nExM?>ne12S@zS z#*)iAMV1R)cJwSIY~ZjIpd7^blI#-(LsXV6%W>8hu2jqj2}?S4ej&o>w;u_bngQIF zhXGR(*<=KvK!mI)P*4W^`Nx*&&YI}kZvOy}7QH24gxY{roU*`lf_K!XT7$;CF=7@j ziIYnrU>gD*!wx7sg9fgYg3Sf|G_WTSg;bVj@awNrwIffrUBv+*L)s4fm=Ak;Igvd> z)e|ma7@(v82^9}YG5q8ur_z$qH~M=($fS^$Bf_qsM^8PDw27PO{iMcs8dog%0V$|` zPcc?TCRC|un7{zZ$S6v5tqphLG^sOXu*}qMv^A$M3HZ|GmZvE8j-Y6G_)?m|W+es< zw5EK;kVr_-5XASaHCrvYH_S+4PaGbRnq9VAU7VYV z`iN7P((EZ?Ah~mrvZW$S*9iM#n=U4}PTURPzQ>%{p#+7C$ zoS>C4Px}B^f+#r9Xwb!M!ZOssGTmW_Ex+dwe0Jyu!t%;MtCAmJ%G{QVcFX0~miCiJ z@6ULtZ?g$Y2$}u04zwk{eIhHK(=AJ9snF_Na~Cco=VY82+M`l-<`=JP7GhL_cmPG) zTIOh!_&_dxW+S<07aY5euxN@Ha`Grx1RZKLSLaCY8r%N>x|JtgTj*)|SfgzvHnA|& zFa^0!PqytAZ!20?JQBg!r-RR*FpoyAtA1elSel31x7r~V%!Ei-^gBm+jHcjh#UW#K7cf^w{C zPNT8XIl1l9&{^uHWo!6hr&+cp#41GLDq_6q!SwDr^oGe7q7adhS+*~^>C>zudSAW_ z`$(4}QB=7@#IQZ3ZeFeu#5QeAQ^MGQf>60-B+(?hW&7>r)+4#;rgYLj?=Yeg3*})= zyZ!fzxX%Zw)hw+dtib9=zO4EkqP4+vNlT=lc)%l^J{x9$g(Hz5v?ij1dzNUnx1;hA2t zS(LCsfIr+6G|;y1r@9s}P4cCXqDyep9K1OH0Ln{4Dp@4vX59HklE4pkT;wHUY8)t* zEl>vT+ws##mdz|lQc{m+Q2M##ouRJPcqcAWA96RZ)-oIN_)?UqX-e4|n!El`!?2qa z$sV~WSRgG0`WD!H#?e;)0I&rIATu{t{G}jwqxGoD0cv;AwdxO125feZ?s&r;1L)s) zsRD(?brhsGvN_wKfmo9lqFTi~L&7S+le=!(!yWF0N>C%&_LaxlGapPhYvi;5z@KDj z57EyMa`n+hqlH$Lr!#=9NIKV^`oR1_i%gu(!2lh9KRn@23tkJGD?X*Fp`mTOw0+>R zFx0zH37DdCili2%z{E?i*_5nZE^5k2dbm4&(BF1mX@6EhYBN?AF-8TKB50W;<;Y5l z=%Jw>AA3ccmifOi25V4wuR1;M(N_q~v4XF>Wk?^UsyqS5oHbY^grQHN)E;~F ziYU%KCE+y8AJj@YZ3xn>o1x@FPyDsz#J_wr-}s#-aY9W%(9k8f>jM7(=Fj^>CfVq? z5oMxEl%qqfcqc>H$2f-Vn3|9r*If?Zh74d-i8267v8f!NsqF)?eBx0tNuW`nQK)us zm;QQ~SfGoa4Jm8&g+S#XC^p?b@ugbr$drVHnzL|Q;{xvRCD~F(wU(sm6)g8oa)PG- zewWqZW{FTLYLtsG}sXp zS7h-868T4jKd^cY3-hcaE#CG8mYBK{T|wW=N|Da~QDX<+Dl-hQk>UV?DH=?_H2p&%&N-hAuyinDHDPGu>H4Af#i5Hk{C znZCUW2m56~{91M#Lp}F%1f z1SW*AYPP^0kePx#B3Z%~oX&M~t3W%(`2L|lpq9)+2`IBc zevl^U!v@eqvZW;s?hdV7pzIFjw0LJ1F+f=-I*LfI>OY!A{{Thya5E?M2P7W51JVoZ zeGFbtDoOD$N?8Vg2BkRplg%J50KC)I-$seE36Gm4giq=M-#Sj}_MF8sn% zXWKn$f%O4Eu%nOXSB*~JcFRn#>=c@XYyy3hWi)fS)W!UHZ4#srEeXz_5E>R6b$&K? z;xRicn|-obP)aDaxe{1yYhfR;HaH-wt5p zlp$&)H4pnX=kN{-MqFZ76Q_D|$ zT)eKIS0xh7Mo{TLrA=RSB+t2uK+K}0RM2}Ve+&27^@uszmHmhcB&|zg=_f1IDcGs> z&B5szMahm-W`#;pz+mA{CDT#DsUNX^B2uQAVCI%QD>}RA>EAA%a32WWEieTFBo&5j zI@fN2;jX@^xqToZQo@!p%WX^4(tLlg^N8F$G zJfE~bWP84C$(Ep0tf@LE)Kg+~?E1!M=}R3ZYEvRn6Be&(o(_N?@*FsA;I2Q!!eUh{ z1r?O$Qh@NFZ0;Jr7*oRdWeJ%nGcyHFAY?50%E9 z`bM*ja7daZ%v!>ff>|W61n$Glfv37Mo8t^3MWG%P3&D%(0)bMP+Wxt79eRu`k&;``;H~cmpRG;LDVyhplT`ahg+WbvwE;pnPee3 zv#F92mUhhJ>Uu&p8*amPg=bf+DH?>03GeRjSeoqgV?J(0EGbAOm^l0#ouh5S*pkm_ zw6I1|m!?+zE6UVWJTFsM8bRDidL~ke(x3uB1b{t}!hb4Z$=0V|Gh-h@%d$BoCYgp> z_;e0W8Z$FD0u=6CRX$4m13E|nj>Db%`?b)x`bqSg{Z!RUkl+FUT7lnJdKC2eM!)Ez z{+W!V3AUA`MODjJ2`pVt`l{?G&COhzcHwIQV!J{nn?&y#N>U{xumm}J>XV_U)vLkW zHFHh3TGcr~#yxzTOQiybn)eS~hQ%&5{tN`?f=~ikd`ne$IBn3G-bR9<=M!kn{ zm#YCvR#Y`5?1Q;J{{RTmy`wd^S*+-{Drf;kDPg)*$>TQPh7n2|c3Q1-6`e_#iD80H z%IB+j2s38JHnk|rl`q2nH7Kxd5;*G;T{Gv;T8y>jlo+KtjcOaDILpEUSB_-h60Kf_ zyLp(XEGk}i!S!lNlj@3UNiIo0;{q_oIsTtACNn6w1D_-c6B}QD$bV;i} zUB>#t?SjKBOOg~8Ovy!g39KDg#9Ie|%n%X_aS6 zrb!a>p_4GL+FR6=ox{|#QYU|5qfGQgP<=_6J2F<>{u0Wn(8UD2kQ>FD&}05x>)Fi4f2{-=d09> zhaBR>NDh2+3S1@K{oBSJD)qFis&Wxf>;U#l@%M_|ohHWHdSY`dEUVcb5=Nx+-+i>x zNW?K5{Pu)q4=*?=QL2vQu&p(2krm&6%*vp(5=m^zF8i<=15zpO4k6dkRnsfQHAF6I zOMjL?bmv-op#zQa=@bNdxnzZ91U{rNsq4UnUq(3NGSq~OYf;b%sio?Uuq>Rk{p&%0257z$>C z09bS4{cW&3`@T@8iZ4mXc}N~0Nh$=p4ZFfrj8!^%keQ0evbIZ#5Ig8~rluuOLmgg7 zSeA)tSSy$cs9DWhnpClEIF0_#K3u5?G)M^vJd$YVUhkj)!kVtsNtKiVo@G`@e6*oY zAG~DPv(hh%DoUs_xzR_r5TKU@vA!dhXL*wp2`ccZ!xXvO@`J1p^lgm9wM?3|CnUxw z6ay$swFEq2K=SDV#^XIaz2 znvkM@O0=a*(jV{_{W?sVx3rL%X*rngHGj?8K7zS0U7F0oN?AR#XtX;(3jVeCY?vcXYUVN$9S*lo=W51n`{PfF#lGPFFA z)2o5*gEEbeq9iCU!n6V^%FGDQuDf*o;HEyjP!Z}=EGZrm zMJj*DvpE`$1ZI|*$smNJEtCdQTBebewo}N|t+$b#EE3GBHk9Z0go{P_>X5Qj7*GRI ztsAcNin!C#0%c1|K>pVmHybndIzj9~=<3J38JQIwGCfwbOL}gb;E2I!t8TO zkX=A!Z_-Bq1HRtNtX+xar5Pow z+hCb#8t?|Cx74tM=-|{556uHl+oOg$wA_j|XrErWM*O$(FRJtOhCq zofNL4PoRRnlrSxpP&p2Hs!0q5N$vNAUqy;cq!~d6Jk=0iM0Hm5*b2WDBEE(tzi~;F zUnwadq^Rf)`t!!oKcbK)PYIU6(zPh4YR&qzei*Yncj;=vR)Zp16r{39Ab5(7r%D&E z15>$#95;AcWUV%5+NlAH9USTpHDc$aPQdya<+MwbvndBMlwD2Y8MQuqk;E$E8|7-W zAu{zU%2|sV)wcnQwvd%^TNh`vObc34=piH@XprWws17L=eH~+wWwvIWm1bxm1Q*F# zfl5`J>ZcDt04HTm*y{k#^>Y+fa{&2;A9C6j{{YmE;w<_!!wQ&@Xqe$D4J|t%oDyrH z>H&h6#jepXl_e@t7>t`2W^<_Hx0F}H*TUr_qG1V1cLVg*+wRc*gS)Ejv03N)3H5}Q znJ~MP(C9c2UlHONK?PZcWH3&w0N7HHhikA2_OuW@D1r;GA5RsrKexs()SJ3V8DRUQ?mQw;>-`nd2ao3{}CeBr7 zF1*Z8vNDi$B${c=W0(^CGSx6TNd~1gV^9*4xD3Txkw*|pPo%L&q@!gaC55M#k=A<0oq65h*h1AIY@l5N*&wH88DumL2qr9ID>KSrHCvDHPCPMjJwh7#2Jbzm_psZ^$+eHOllsGaS9~L zRInJSCs09Susc6bjA1^Gt_jm84^)wvN_7Bg&qh3QcdIkT(~nerzKz7!JfukqC}QnG z?pxYc8HjSE~64gFZy+5;RR%<}Bne zB(yH~0JQr;<)|+%QWV6!Na#1EYtl39O=p=h&{Uwb&v|?23n5w zVc+(oT!N8r3|5pVrDTF#xgTf=h$pMn6%{xE(xO=B;rNJsD&6RoUR%Gt$alQ-XM@VAJWIf3F)hRAcj-0Vo9i)vpLeGQDsH*SNwMJp`;nbUX#@(N|PwIVYsJu`?jz$ z@V?|PIavl{4-u#x56jLLv2B@C*%F8o3U<*$U>{ELSXvWx*k;-kG6$KdW4``g`1)4^ zVbNx@BnI`1B%HeD(^$_v3}BU6B`D2hDRp$3j)Ch<$b#5I5vf+$X;@H6SpgdmI`0a= z&@7mBV413+M~MLKO21m|2spFSY`LBpo)8HN%c(!&=Tx7A*ND<_z4WA|Qssc9C@273 zjSl@I<%{~*qnp+SQeDzVSX^e)qxTLlQC!C;&6SWxvy^);wr|r$2cyFmqs!8KrA?Tj z{{WNG- zT{b2F$-5UNfMAzm8%q9?z>qc5evuUAGhtjWF^YU2*0H5rR$uL*e57f|5cuaChve=D+R~7+N@}VIDRtqXwB{@uN^AT< z3r-Nu5}@y>i6+f5LS?9R73Wye<0-G#9mbSUHA$;92EAv5S{Si$+OXkZA*yv04ZH%i zTu7ZU)vlENAaULeGKZwu3tm!znu!Yc(V^<#!{kasp^FFZM-Vt%iA33H%t}gtOYB~Q zs4(}5Zv#Mr0TeBx0L}1<{*7dwnQqbjIMT0GXDVf!tPsBT{`Z1M9%Jt*8K(E37uq@UlJ)% zUkw|f28Yf!+&4AQuvGOAzN7O<`CtB-US{(ca%nVCjHLlz=Lc;y;^rhwF++I+mAZEJ;76f5j$7x^H3&G|wdVt?i4LF8z0)UZ~)ft@I$ccfpa3ALj2==x3!gqgs8WyGtCt;*4 zNSyN$uhN>oCMoz zRFkmQGLJ|YsdB9)28lH!?)-Hfe$aE#rZM$}Qne{AlehLoI!Js2zRJ79|wl3Jk|*#Os)5Y zj9n^ct4zsnMEHi!$=~^kn0Ffz0#uTffW`Rf-Z_3))N3DD)Mcef1ualdO@JD^);Yk~ z#7#&Fmz2Izl?w3Z=y>fHFHBUWCo;!@0*68PIg9sA&nZZjq@NOwWi>tUeS$Bf-$u$$ zjR|Cz%rysw`Rf+$ge3?jEu!Qf$epAvtK;c)nkhhpWE}ghOP!s zM=;ES?7c;N%4@%_E}wa%fxS&T=|4BP$)GU{te>z(RwF(LA^+rg$0*agrstG4doMD zxPeIl1lLOZeE$G=4~Q)YO{^wrHg{@tAj2Q4mXwziA;aqZA#Y_}-jgN-W|!hGM32p2 z5^U3#GFqmiMTdWbp0DNS4H$M<^<<^o8u|6<2mN4Nl?;v@%WC=qqtlqYw2VC?{|%VI4BGYUaaqn%4{-}885yzO9s8L3v| zylpU?Vhcr^)sUccu3dY^XMnE6rfkKJWU7JR!Xf_8aHW0{JSuRivC4Qoparg2lQ0=< z5}E{xFw(t9*R5iCd(a}gW@4Z?BD@_u<1D^J=_&~*EM1q(X;(jtof}@=I`IUpmJu{E zwE~?RVFW17u>GZZ!X_jsCbjMShU)+?OW4Vsl2}V-(Ce?~XwvXr9wOAs0E~)f&_5AE z{lUaf&yX-a(GCdu7+kjc5{x3wwMon3btgpVm+Khiq{pbqfXiq0 zzTL!TUXyNlQx)q1#$>*lk<+X$Q={YT<%jM0&0b)DWOj1v@d!)v;|6L za=;t;=l8UA?A_)?MzB2vKEkO?d4UF(v4MB%|8RuKxgy3zv#mbCy0` zz_*&j^r31}XjFgLmZrmR%D(wC76eO6vQ?lY(2b~f71QAu<^KS4nRbs@{sEOB=o|3E zHZ1YWYCAhS{&`0?kNq|@y|vqx_!)Bz!;`V{j_jC)$4dDR-V!|;-=T7bV&x+$LFv*a z##h<1nR!4~buntN=9@=c<N#9OUaeU*S|k#i7h(${?Cc65|ip@0)-(Y z9o%RtNos2F)9B+E%b1L+P$~qqShk=5Urinz{VQOUO_F95__QoF0<{tIJ+kGSEofA* zL#x6xW_^CfGP3cjoxY(sxDW!GzRyt=aTVkhl_(V5KySE&+z)q|i7T3OWom36S3E|i zYrE2fI3CadQQ5dXV@dweHIB}_W=NVh1d#5|H6V2WdB&H7vB(}EN}j1FP}?!{r@Agp z!m=$WGS&;M9EI40fb=}La5drdfS5ZDqFR;~uUNTi0Vz-b1}{{w1ea-BdXwBuJ}v?pRLB`rBrgtEyh zDg$kSXi3v${XKrDsRh9lAH`ui2ja5IM8HCltibQ*^bku9-^obIrw2wl9h|e%x+OaJm)Kr9rQQw#Px6&G}t0^FdroBEen2QqnI+&ED zrg%VQF?T)oZjd_Xv?N+mg#wZ(nCK53i*(u?FU)-})+SixnW+53&)Gn%DJaQFN|OHo z;#!40e{EuUwlpqs6tIxTL&rhWSZcD~Ac_D8c5jc?6md1)LXxKdEx@N5rS>9})*YBM z*?QRIrPb{?q2q&3gelswAPNX_N9irT@6`Pw<=H4?0m(WS(YiwCqzk_+p^#K47xUG% zq!-XS87W#ru}k@Oig=*OQdKC+%#xg@l?2fx#*A8{NK3;w_b-BIAb*glCz3wg!!?%P z7M#gdAK%_1Mg!r0Ml&q(-#%n9Cp}3WdG6e63K+lDG?}qWz}tNSYQKAui3t2E6d9EGZ^W zhEXMItrNKer{y66f24V{CIEoxYP~xK_?KueT_3jFZMB())=OlNHmyWgO~kb&Rb{HK zYg4q*vi=Wc4lZG)!lB}~e zN{A%;E}cL>7pKA;@qPG-h!bT{fE*r29Kr{r`?RbjX;12PY)yJ}_xwX#`=t|X$r5QZ zD0I{fHsekH8>j#*IK^{ioYY8g4=M+Kf(_jB&8AezN=Q<25CQE{;-Sq(^c`S5(T0JP zqN3in=dK|ET+(hs8-<9x10dEG1?^B z2ri(f01kWc@Qp^-iqSL)MHxy#0f79kO(7c-;dv52yd{+qSg>)^`GsfLiE$;Ytt5nl zP!oVDHchd;b8DR^N>iktHcoRFFc(sZi;`6zQ)>?&rqJ0EG|% zsCs;3D`u;=IKu=l)i4zV64kEs*nW3Ahl1H6aAs_dbO3zerw?A@Y5-p1zerfdNC421 z5?!7vKEj8jOYtg9xj^`e+Lcl01$Aa`cF~~vIzkaCB49GZRWk-v0CZCwj=kI#j2Ow5 zx&Hvvt@DLZy_A5}XJ@9R&uReU=@%LS>gJ(kN(00Lw|CILO~HjOZKl^%Hb4tXPGBmb zy>usm*GOKsS-$id-Obx`g8ETq|s7_UbQu^&rd>xr! zNy|ixwWUk8ye%n%f#{Je#~-CAueBsuC>tl#Y{na%`DAb zmF$7fcnM-bQl0Ab;CJ}bXbpc_W@b=TLsX3i5bXn2j7}0#%&M_!fz(6qi$uIFzqVUpEwvK=MK4%;RtL7L^n$JG;<4CbNt;sn}f6)DN>0c;5wKmqk) zH3zH&#+S_bC~}uB;e&(2?FFR|w?cwlOF2-r z`Yc)TB^x2+oic0#Ao>PPFN)e)M%GDo8+OiiGMP zj>G2s!@cBlqQ25nNi<-0?+!uf^ZmteO*BYiMx2ePVeIMw3>I!zd*uZu}qK z7BAH!*U3!64Ovb_eD-Z%jqhlhm9j-$ffXgSJv3-T$9QRTCLn@R0nAG{&BN>N(hpM= z57^rRdh~j<7ORz)qBdeVpoJ^O?lL8i5~V32k`fMro+F@oFb;jt*@y9b#RQ-vD6mOm zqiUjc?8EkBwpzeSl&qxdr3oCihn`{kh4#X3bk17ASR#a}ocMo8Zfm44-xzjqVw9CQ z4v<=(^VNgz;=C{C^9`ZOrsS3;CZ^Rt%; zeN(vTu7VI}V~n=3W+aT^!FmC(XuHc1ot!c4>V-^6a8OHYq1(^S7jZnIyE@Y+{{SkV zDKufRem5}|FS-h)sfs})GoC8rgGUjR-`p$Ue|K0 z(?BZDE9(?@R^#6P0E9yYj@>LtTZJGBl#p0GK?IHU5l;-@#m_#vdXx}U>C`(H-%io8 zOGLHH%4H`Zp`~=x^%Q8O)^~!vCL&bPCSU;tIe|1PS3-IW$Cix(elb7=Xi!iT1V6TV z(dt{z$}&GlzKkYKQawN`Tjfl!Dnb2E?s8}ac7k@FLU)9e4C@&Xm-TXpP%3H#D768l zNC208BD10czr8B|0QKCtlO4mOC^SK%m!pHO(BXAriE|VmC<-Eg`$woc7)8GQ2~S(h z2D;2owNNw)(YE`-wb6#AB}xM}V6nRf91+JNF`FsA%AImc2}(*G1tGu=R7m|tc6J;C z2^gArl`U(REFx$*5T>qPhh`L^96ey1jAuPE6YGF8NC65#bb`W%b4_Y1zbe><`&E*$2rb#OTE#9j1fWlBH_K?-djKsJ9Uci0-f zuz@bQihQAqu~ANr{{Uu$>3)vp+6qx5+c+6a~Wemy$0OQ6sW*kDj zLyaTR1`CrpYM(Mxu$eO)02~#jp+~W+7h=ayBUryNf^+1~0+bF=G*>mz>I)WryCC`! zx#ycXO3-DcO7@g$u4q0mC(`}^RMthFaF(2`qM+cd+yKNE4DJYLb}S<0$XGLZdPbG& z6D=#LqW=Kbf@`7KpnUsULe{y73ne)~)|(OCp<@bqJszy3YAT$X6{Knf12ALXcjgV* zy&PHqAKWSmSB%WnxE!$MnkH(Qg|pJ?q^*9jYnXtdCCW);f_dEK(i1a%oR|geV+dSoI}QUTFj3~ zp0Oxdb#0le+f8;X(Iy|o1uG#+2?be$j}vS;iweA?3o;apg~@OjfAS}h$c#f6Vt*P` zoaKJN^E6^PEnP>PRsJhqM&ACEJz`WG1`Ls#+HOr4^sHrgVKZk;S(K(wQ>!N!9f?;(wxrga@(@&0&NvhV5 zb>mrb5Pf8_gDf~Aflt?B^scToFA6hp`t9o|mI_kg$y1il?|l%MyJ^R&KbRGFr1qQnM+5NiG4`GO8KPIU%b^ml?^mda$*jf|FGW zq#eL&^T7Bp`4%(nGbO^ZsJnUYo&nReZ&*rFr%FVblFCfRNJ^99%G4w^DdOd;8g3&s ziuy91RV;uM6ls@N(?JdwHUXPym{Ta`s~ww^_vA*SbpHU;=#e&L#LPLs_EV!BOZ*#t zu;u7O(Ls=@wuzGpfF~jY07-Yv)jDaZG^%o|ysn?471f3%*=$IX0#c-*oB$nKp2{(p z+_>>_#K00W7X@Of1^u3*L(s;7=`!>o2~wJ;-QV5JWmp>6OxcQ3LPL0WavjL(X{ zRmfzNm8gQDT69lC5uNBfs|v};l`Whol%NpBdlRu>^fdEmuju0ot#c2lDhX1Q88sQJ zn3a5iplHXf82V`-Ed>rhP$ZB6~wU$U1Fr{ zsQvAEszN+#4$OHcZz^jT)&1#EiHZqMo*jHVzn9iDymKS^fRv{xQykywHYU361zd>v zhtg(w2i2tkC?Sl+66;XcFHrR$wPAAq0M-dU+in`fB49`;NKkTBu75aF$GCBMg3eUs zInk86bUot_!k(1ZWEoIO%g|JScpW|P-D1Ypi$MzYfNrT^IDUnl#dmFK4)Hln7ssZh z0Ls}R2d>QDGsDA12=pQU03j_Ft4Um`O7=o1R1>*O zMpLbGPpclOGQk;&Xhy&%{I+-UF}UG-A_|s-GbKc+xjX#e&F5{GDyk_70oA61^%$)C zPDVNCFVWJHxrTDo$aLlu1-S?7*I3c-E9zQ3hRPiz{D2z@c}7}2Ef7|awD^{44N6?) zeVw_AH*P&l*@DcJ_}?_inu3~^8$TzcO{$hg-C~+b5>)km#C7c)F8!7UT*1kq=lF}) zG=e06s(48N?ly6=i245j(gm_&Rwg96bGs+}v`R;FL($^zDzF<#_d?0X_T}be^%u$(~aNn7B3G+fTOB`uWpS|NX;=Jn4(lB6sn=YY{1gL zXv>cad3IZ#o(pQHObJ4Ym-U#@Kwa zla!T`$HLmA=z2!A{{T)H4qc|ut3uJ5T$TWm!81eY{z-3f=nQ9*Y-Ex&ZF4)Gfc54+ zo%BIymny=UY08q9D*pf_6&ED(^c@?l8>y4C_4RbiQx&K>Xc8C!+mFMmZ$5Dd$f(&vA|?S(+S@kf(I$+;xsEevv{Y{{U1&Z{7Z@@ z$^a=FCh_kR5zD-xx3B3cj<;HXtq_P#pw>DE4t^f!lqm+J^}s=j~?z0vc=2gCBM z7Szg8NR|#|hU0JjPW(sKH{JV^T9YLyKxP02NCS2p(g~kxgr7>brIPZH#3h}mrt8dn z*?igUD_@0q9Qc7G0C_bO^B!8q)%F|OT-i&Owqgxy;U`|bgk!ja1*v6dK}(U91*);a zy2S2YhsAdbVL5UUn$)o|YzRucK_ZkD-ln>p%>bNY(>7sBGJuc(W(pyT67&VB8GPIk zYeKzJpFlGOW&l2qu^SKGH2fLpkSbTUw7QtDbvEGq_=lQPS^of~d^(v~R0uN_P{Nhv zx90$%XLe`Xk=U_GmKsnwRuir%S3Q?Ut6tzE5>Q7?)Q@kVNTku&5 z6b@x%$Oi}?B9X?t2v&U@m}teel&WS^;srJCIpP>FHG)|F;(*NgQ1uE8u;!78B68*w z8Cm8mmq-pteor4^%xv}*`k8Ws)5ECsr4VQ{ZashokI8tc z#@^FwcDMQ!v8rI0^v&V~)%g*X-@b_vXSJ$oQoOF|)R%e?)d!Du@Xdy;R@tL0#50kZ z&YQS3%}CcS>ylaqbrPwCEE25)=%P7ir8(LTT)##a{w)9Vg5 z{fGN15^7egplvN6`$ejB4BUv!F%oSEND0bR3l$yvcIo>EihUtw#L1Wtk>gs8PTogv zHW0my=OGJB#DC_f(t#U*M()l`S^og1I~2*%%9K<7CH`GBHR~E3^@F7u$x#6zm}RRT zy?Ko3F|1XFRWTxY0hk1jpJH{aWfrR__2OZorH=^Py1Ax+Qa+sYg(x5p+sL*Y_X%+7D zZ=UXqTad1DltKcm=-%s-XOWpXU1f9cBpj*zAX8DPR;07&B2P%R1W8dLJ{2}{GzX}Hm^~_Fu3v>4 zC;Ymo?b0f8&Wu+R-s(YFQkNhiXm<7S8aUvB{m&r(4E zXy$`$;Oya?k^#pM@eX=rv3=f-_1)$%^qau%HazmHR^OBEjT;zl#8B^>sQ4e=5hvnli4y|C ziY7C=_z(J#LX*a#Cfp43(w(I&5dDl$UJie1mbQFR?!;a{Y?d6oN{U;;)pxpMpMf z$M~Sio>G=IIf4HG@Q-#r=yb%`+G0?Na?WXs3_?qkl~JFu*G^;GC!qwcQYI+8(^-T+ zfNPXJNDg(}lSq1-+eP$YdkOLooU|#>8kgP}2V0CAtBl}TTQSz;00{T};@$xC zk0{v^pnvhYSPv79M_8?OVnb=3hSN8Q8juGc2aN92`a9zsIV{-BxrqdNst_8WYVXe# zj8oB$4)tkT)l-}v7(Sgr-S~~;(p{lN0SRK@P`w7t83orVQVDl8E|LpX>lCkNOjH#< zOB|yuMJSQew^+gPt=PG5lqp3)oRVLt=yr`3_{SfBZs5uQ#L;idsxn8ZBiHZ)asiFuZBp=RogMNf=1sFfP}txsi^J`zw5Mamq(+?O0%s~0VOU&QOEk8L4_qX zTnll`MUq%a14mBE6w&Ej<3hO-T`6V&egO%ytx83mAXEWDcd{3|A`$O6DS9OSl1mG$Rq*)I(;E?0b2^~KoZob?6bUX5Ppf;(76LXL#KmXT79}()1L5z7o2u(5A#MoVH4mI+)=Q~U zZF5pxIvQ2e$USr~8eP$eM8p&<0$7Gk7-%|%>%1HOA-+7EMlq1p`A>jM&??4TJW zzTckhBEg(b2%&A)NbhklTz zVaUS04c*f$w&Z3NSTq_j-25Z!DI>-@mhZvxkDM{xfFgaKbh1MfhIZ6~YBdd{eItYB z=WZ%(EwhuRQWL;CnC|20%YBBgz$vNbk&?;27^slI7Js+i8nKP!p<~PqN5Am= zqZh+B$XXOh(qRXL)G!@1sd4`Ru7O$`jhJ{6Y6M)7IIPcH3r$Eu zj#IleemZLhY}WDpB2){M%_p&N)$Gg1CU92^x6kq zx8tf=Py`WD59JR?BX+VTtha?jFm87dr_l`CNtP{dWW+8`0JVmQjqco~8 zJVhHY2UY}+h=_){eNw)CqA_?LDXYM{O|+@gT2RMwt%)gT(veXq?|GgOw9$)>qi|~h ztyh~XI5Z)YHursE%54Qn%fqxT+Gc71hqRb?{YF_-CL&^L2Bc{4rRdiX6i!O%s06;C zojd6oucTWJahFh}klOg0@Oj1w=(RSW?M6! zHEQ*Z4*I^HgF+qo{vlrYxq{LaqLsLzjJ&sExb*hrzJgSwt%@G1)gig)H{vyuIf$qE3Brj=^*r<@;_fRvRG)T>5K=_b?&3r=LL z7oe$5-@izA(YAaydN^X)nd|a|ymg4yiJ3<4mb4w9wg{ zB-8|`k{*S|QP_uf4(!mkqla8Aj?$S(lDe&(MCeU7&~(xG8bnuJtW2AgC5fozy2eq6 z??n2qSdzsmPGB_-Sb1`E5Yaa@k5w=dbIS?`a{G=A4Jk^*PFgVZyWKKp6c=Wywth8$ zHoL_tnnHbpM$6%Vr!Xu46a~N>SBLpS9xe2En?#aAf4DakDQ0Fr<+$q$9*%Em%Tnd$ z3PNbEUZT4*xYJmhsw!WJpK6*Cl&GmRB_swL8tdiKG#f4rnk6KyK(?>`Basb~*C7cx zQ`OAG{s6($)haFx;4s?`kZLxsa*wPyUvO!;~T{@ zC;G<;Ds1h?Q}B&G?wW%s1tpWEN65xIW5AY-!#F@mCn%!Gnbh@B zrBrq7PxBFB>ssfsv^wg2=e##uw)9VyoYhGI`u)T$UpR_gnQBT>z=i;C{Bad#b|Ct} zOB%l8VF9sD9QCO19H&#gb#AFTQ%;fA7{)1_>Gq3nMtz`#`F|o&N}K_q*n8l-rJ6Gt zRuaU^K~e}(PzeP_pqHozf%f5sk7t}zLY!qFdppFIWy_e7pb((dBWKzIOt*_V!Yk^| zgHk_enMF9*=7g&-+nwU^oSA^6SCPZOtG0GwqDWAo`a+H)#EOumF(Jmg06Ov3E?Ey1~!Z-Z1st7x)3t~$*Yb> zST%`mu`)-h067l)b%kW3Y^)aqV&cTR6wrgGe$elB`bI>>db0Zms|Vq^jPDiQAJdAY zlU6Aj_h=vJ#`VqXGlnTH8(67W zfip^euCO}UZuN4^z@}#o^;aN5{lj)D&`i~=fa5PjjfY-gZW+4GgJn&Yq^?*{I{w^N zu!W5M9n6xT%w>_>fOd^F7niEgJAOIxin6ccJ29M*lomj%pZ5KtuNle>#vOw%Kqk!t zMEEJu+@32yHr^+^F8f5;nWcYlC-l93Keo`@df=jM25h9IA!KG7meA-0T=Lt)J zN^3%*NiR}(>sE}X99PMdPQ!C$_?DAG>@^2gJ$Pr@Hf$p(&X5*`09lyOf;M8?_BzM6 zq7X`7!sK|kZeZn#?UVo_oP_D$Uz}eUSC)fI#cN5*v?WE`R~%L=D(g^Qd1`J(!S?MH zam3Ln3R*}bRFBmCM;?4dED4B&#O7sJSN$h&Iz!TiTMepY#1yRlq5$dByd-)>!mTY? z6PZd6Ld1XSLpN|i>LJqCYN!(F%l=XVTd(340@wlOKMYOmO3ytQ;9*lbpE>P)1C8XpL6Ca0gu2F>&~nYomelxjmU4nbf+ z299dXelYmTt5$9-Su55VR4WXmm!KMgJ==Zb_3dc>;-+OUuo|dtADzfCkK64llQE}C zKDJ#FwDROthZ=)Qjv?Oa$4i@#6oe^9&+x+eeG#6=i}UybOC88!dUPX>y&##MJR!@y zcms~?@S}TKRV?R9fDY}~aPWB+tm$w;eOp+q(o)8^Hb$E%d6M-MaC-95e(JWSax$#H zM)$wDnm=7wbu&{n3t2(Y4Apj7D@>9 zYauI3j^p$2!5b98vG9=Ho)NDc8!c0YVrWRCy*k6)iszPu6p@y4 zM}^HPw^G&X5z0{)@a8&{B_N#HfMq>SVW{ep^)O2Kwu!0CkanjXYwjK352O2^))gXh zTPUwm+7FyHU3e$kDVSSQlcz@FDsB~B!}cJg5_S#`1Z-lSBDKg#DSXSI0P?LHk??{y zI*Le^x+P8tA2Y!C!jx#Ox~^I2 zSE~-1I#dI>+rt}O?|Pv~1QAd>g3yJ3;$V=H2+oolu+%(dOqpZ6tumBM!r+DpJn{#> z>kfD#{{S;WePV`ZIYYK)dUPy45Q~lP#ah>zQ-uVvZ3}I{>k(lavTU{ITcl+qIdT>5 z(VeRY8$Oj|Yrf`6DIsL|g8TYDh9xh-Qo8RTdgu>k6ND*8Ed<4HHQUX z1uF?6p8T<25n6=oxfQqSY8~6An#8N*{deC1Y6(~sqaV%TsVGW82mltUx)0*9m0yzz zGP1)B)Vbvi(E zrlJC4j2n>|(neG>r$go18g2rTlA>z*b^X5@E#rHUQ*7%>5>!fS&tM^BCRMKt&67BN(u=O`2^0Fg=^&uE*_?dXJA%%zN(RY!2Ht||H6B)_I0ufs4oE<@@$ z`gy~hK~-<>M6yvKK?LikHR3EmjXwB|PxJDA2GkncO+cqaAqLL&Fvlsby0b zho=q4lnlJQPZS5#tp2;0eU-1R-(1#EWoJh`iip=zhSKa(=gs2vaM_?&NC7n zL*xpJ(xco=d5dtYsj{;mt26jgoygh08(K4r%JGwHmnlq~nMnX@rF*q~22yFO9cFQy zXHZ+GOhJMyV$ht6Sx6^4DCBy0LDH23C&SRe%O%GlPGy%R-Ly#Aw>@4kWMZ{T%9({j zIRhyN!^t`jHXGJ7EIW#TBO-`ucRwQVxbp86XG2!GW|U?2`n+kSOUvv3k>Y_lT}su%vExjG2;>h4@u0?llK( zx9=an`aoa*0CP{g#Q1LUm{O!oK*|6B8oxg6j8Fdn4J-U2=V@i0h_9p}CQ8B1qnIU5 z#2&pLNZ0LF6cpvi90whE^XUn894M79JhY7IOKVRrIDWF&7KwEZqBrRRuVwol9zsc& z66yefT0J)Dv|pKQ830vPQhRV?tE$!%l;mwqWq)CYxt z&EnMZJl-el$QJB4nR5^lG}Mzp+s~NMP0sR)buIJV;TII%1kM=)7k1QT+vd%~!~Kr) zSV&tl4Lg2P9QFa^Va&eK6cr=kPGY^~ajtiSY&Q-VMO$VinyH~hB_TzN>N>IIx#E!b zaNARr%K&xen!nl}N9R1$piF_(PhkGUgbp|=Jkt^tzsyWB+N{}3Va}B6$|gd6$}^=1#S55*5YA8Qi6OS z7hp7S-#7TdyUPtID28A>K<(Bq*{)>fO3GT5ByHQRB6}KDlW3o73Nyx3H41*CgSWpCMFHXY zfwuc;Dsprz%@AH!I?{y_r&-^Ecl^>2tyi?+;Xc`+9eIb#mKE&HZoQ=ysR2Mt4MC`V z`bD9J%*2*Z2nESL+2jqY))(&YMRQgC;-Z!H<9dTpz$aeN6*%5{CoaqeVvs_K8C()r zfl%AK>IiNYfy>hhNtC2yQh^6BA={{J$4w$@MrBYB2{jr!?%P7mqV!a>=20pSzQc0- zLzIhfSW1vw6o>NN{m|g5*EQkl)LxIP=}o#q{w&92sIqinPh@v??;4H4hSCtFOaWm) zxIWQ+#{@=Wj_|0MzwI2MENIQpZ&9HI`RZ!Uguk%773nQOQ!L}doaW4G6gU3>)YnZ8 zvF1IotpqDEC_0`M#4BJ7B(LiiGGen!mgPJJ{{XPmfmQ_S)HEUMA1uw3P>*d)!(iX2 zovPFTn)ETAY%A?U(Uq`zwWzR|Nd?6~dH{GV3GD)XCST@6zgXbS1&g23{WLHy2Ve_o zQm^j?ni9dhReJTH6dG>z0gZhf+9#+bS)5ZYmDH(Exu6YSq|0O@wbPGf%(KfG3sLrf0KYA{ZUeO;io=PgvQ(62%35NF>TjQMNYbr$CRHX} zluTM>0!+zGo%iHEoqVCJ;gv8Msh2w% zmOoz5yS|Umq?}f)hFSm#6d*gX-n{F!(U#+@(MTdwWkUQ}l;uy*Y%=w zWCkjxQa37nG}s&P9e59{YqG6MOJx8gBm$6j8d0=rbMcG*6pxj!Od~xCP$$EtM`XB;@b9BLN~cMh zP$o+X1SKcSh9q!zkESj^MzU2s6Q{D!qDqlM0n|7=Xia+vdAx5aGS&T*Bm|a9K;Ng% z7oml0O^1YuK|vuUNd;uKY|JU!QM7#bh^+H16AFD%Qbkf3!6uYCJF#bt+Zmbj$z?J| zuisBND=ji)NX?+j<(r}J1-IysdJ(`Vve~oD13b?Xh}WQPn@UnEW9(TjNee6iBs1y9 zZ#eyj?;Ay>SrRhI-A7aYy*d723)2P?P|V7s5~n^9)O?-Jr%0XsszF;eDMZ#KLm~lH zOXcL6^`pi;ie~=+Q81!ZrzKCBy`k>WzL4qY$I(KRmR!OTy;wHRQj@uD<7dLR1er-v zQ!Ol(NKp=|Zcj}iONV_kpGUrjC9Yhh+9fiO9$It?V(vqcO_{|xXwa~Ikr|gYveifg z)VL++YC5*Gk5;9L($D}XQKd@(tG>hGq!YgVT&GH0W~nqFE5CM)Cul5Vj8%~&O9~b7 zDT@F2a=3v1gQ-ivfAViAA(Kti3xhjC&AYXpuc^l%aqHB+x(jePcnp zZTSntSUx3W;H-VsbHysk`QQ5`yCyj zBK5v=6%ZX%Av%&z4N`al7=P*W(5SV`T*>MPk(?kTRZ1a=%3Hz)gt4QFMv-9jQDm{t zNtP6{2nkZvoPa;ncwMMi3i9F!M5KH>=q}S}DKmezl7~oD7RJ6IvYSD#NP4+F9}6my z5$u!w!b!}-LI*Dn*ZtyF22kv#3|O>VwcRA7m1>dVBS^b6zQCm0&>Ya5+5uMCN33BV z^&5swqR}l`f>D$qId~OPK+z=bcO;VD7}PCb$_rWXDEk2>sUJu8#zAbb&YZJ3V4=ZI zO+qTp9hvA=r!HeX?C(Je^k*+G{{UN{5Zms|_2vHn3~FA9FgQXzVU&ywa<&`MRSx1BwOGt50-~+zZ@2qDalP79^j&P*OB5dWU%Gd;+2CPP)^bzI%0EHE3 zmoj9@f?6BHO1B+g^~G;eyeR~wF3B`@&;n>5pS*s)uf|CeGKCEQE)x1vcKG|^y1_lZ zY`r}U&ILsYCEqH~gn_YAe>U1A^h<+gi%?OZK>^N_9G3%+r&!#t3&jNhW~!*RKc{v) zbseBK6uBlYq?AiRDhWvd8n971=|Bminp8x5Rq=-`X^17ISrV@nT2X}sP!B&nqYU(s zcn?*T!UMf1Lbk6Xr&xXThca3c9H^R9REN-m%x1T~2R7-_rJ&AEVnGT?NT7dMr`n7T zh2pKzj7VQ#DM?zKhh=hl^BmbRFj*;DLxyJkMCe=R8|>fuYfCK(@hLBrVvKn^9rYru z7=|bGYN->vB={&ww{8CbXzAn2jbmks6Ko5Za^%-xr+1H}eG*|Zn=npLuUT6DgXTBa z$}?;~a7<1^En&+N;+;u7HXpQX*DdijS^`vsdaxKRA)mik&&$rpvN|0SCe2Sny>_*3=eI;^X2}LQIw4{}c-pGE%<2%H-adRyoCQvfg zpdIqC-$7Oy4tUlg787nPI4u)^P;|3!GV0*A!@k=*GhzH4>OF8XR6@f`CX5EdQ2IFy zpz_f#tEN?&Qbd#y>f1V$9Yj-o`U-L1=if=*lf=p3$|U-sm;V6Os8QH&&mQ3waQauo z_=smRyh#Cq!jH5@gdUwWfzvOhphjgVWlpZHT<=YXPc^JXjT1By5;N!xT%Nxm(WUwW z^l|-3MA@rQOr_8ox`lFsp-(@wM35Qq7yUn{)fv{3K_C=>eA_Or2DA-L+8u3vjx4D{ zmnFyc*pez&qnEB-wjNQcUiP_a6k(Ax08`JG`$ji>+t#(A0YN!dPx$ytfFE%C9mhyH z2ovbv(Wk1MW(AK~?2Z6dr@q@znAtBYf>@SHmy`sMm4CBQ{-3;M^KoRkGsLo{b~H&Q zVH*M|USB~BSjPG@5t&{9!C76HQ(i#)Fm;$^J7w}L^1WRQ!b`sY0PK2fIffh&gJ#c` zW|Xp@!WBw##5n2CXN>C!&P}56LOo(tEiA4}fugzt^6MW)VmrekOg_0&w1ARoMv4PcdX2|gL+Hhl)0f1RBr!{Vk+flW&ifNBX#{4e6f2{R2F`m$@7i{>Px^V7vuRK266KPY1)MPP z5CF|r0*=w8dR)7v%t&WKlzpc5Q@-1`@eLl1?rBzQG`a$!ftg>aWxt<~Fp23O9+iR+ zLuMhAU4YlO9%dge+NSAW4F3Sr`V<8DlXJ|P`A_LeQgl0xwW;7xCVE)(Xl%(dWYIu? zPN7=pHq%h!okVXKM)ou0AS61njM;Pn*k(F=weo~NNq2O@7Wsf;z=ssvd<8ezcJ$tBt0O+Bi>H+BoFHcU$QCkAwIuuJ1_0##%k(b;)h*fD(Q*qQl>9vGyec(yTj5y^*+}$-THJrAzt5rt)3Z(OvFl2s7sn` ztf$<};57!@PopdiB1DAx*=bb8oXRA-D`k1{wKRW2TxE`~2Xx8o`LQsVEE*M~O#N4f2k@O%|`rVe8ZC)D#Ins8X6!rref0 z7%k{O1llGoQ-h{b0Y-DVemL0qaSL^3JG$phjU@<_uqY5yP_tT|zWA?b#i1_MTYC=W z_w5c>y@_U_O_86d+zyeRVteL7XaP!=NCYN@wQ}AQ+=mYng&Ec<^rC>WqL)|dPMUS) zFvaNV&Y8*ev$B+hW=JE%r>H6#KFoXZ8OA-i$(Uz2SW^O)Y@kqR2j;L_(FS>oGD#sS zR@-*y(XYl?u(!5}jqS3RETJ@*RN!TBK-6j+bfdA{0A}=O>46q-Wlf>X$y4|eHvqM2 zqY8~B-qtxyo;Uee8^6rr7fR^cb_ue+EziLKU&($Dn@x_eASDz*~~wAcEq%IM{GudpFWIMc#=(l+-ycb&SIw<6$i`3(=HCek17& zcI->)tl^d8AUb|#F}y`~scTZyprnzMCxCZ}ypxZgZ(KybUa6>4W-d)wj-!~{y#@MZ znzCd}Qe8*FqF5uVABR{`#@Jd~W#mp*2QoHKw-ALu)gbOgW!L?3Zm@orG#PEuj+RfD@G|K+Q%Z4NLrM z7(K;|rK>7RpT$q{%fs>weet~5FZn?rsYxuFF=zh(Qwz|&lP?@nwJN9kZs<acNIuSLGRV@J_2BCRy(?oWa^iH$ghNFD%a6glh6UY1}~^!k~E<)W2P7!Mcfr{Sj%vy7LJEJ~?y zl#kP!SL7dsA)C?_@PXn;s0>Ety2f96-s@RH7=p8)*Q58^A!KYrKRTIecGrMU9iu?> zL4G1bfkJfTk+?sb$5JpHusvFv)=e&wcIUW{Y<`N@XIhpBUQysf9cxj`ZN{8K&@+4b zKu@hxsg=2QuV2lhGsGB)GnC+xL%L6fwb1Sl!YX1J0F@e*tSW+}I(TO~unX{ABr^eys++-vDD zN>)@M*@Hb2PNn$l@m9%zrrT6jNXes-?+x`G;2`fu_*DyrXItlU9Bqsbsaf>jB9wgAyR+_zmEx0EQM3aax&^RBfK~qDSi4#=-$u%{oH>yz4U}Yze+7Lh#BUlAG1XbzoK5(OY z-G)ryq#qKLTY@)FUfz2{eG->q3qRrM5x+nUcp(XvP=*1#FHoJBKh?aq`TG}o0<_DT zM70H>V5kSt$#mu6$qoqGhCYTEi!NY&lEAfcor`YzIOm6q=Mm%d37)D^%u`aMw?KE< z+M2fU7Y;GYPyIPslOUClqFqwcsZRj@1{^`pMwo$UCRE@Mw5KTtRKDBzR6~tNx;7a; zlqIPF$;{Oh?WBD9i?4K>!cj_+Ql$*s>p}GXBBG=0Z%6jVOtxYWgXZMa{&B9SL9toM zLP<>vpS)tYde~A@6Gs6o{I;C1`$pezUTN_mJ|LD3XkCMr_;il$9JV>ROr<<$XL~iG zSO>&|l<~`Oc>Uw%&qmkV`oyWqiKx+|P@TULMp zA#2US%Ay!{q4&i3CS@EuZ+JTSQz;pkb>0hDFV{(ybW)gAyPw)Kd$RVR7U2p7-yt>1r>&&oF zE(TI{tz&LHnbv_|zf+WwTSgt)2TsI(tfZ@DWhxp}(i3k9`IHN4H!Q$Z7SI~(L@r+V z%o#J1UBLtm2_c9e(z;dR{z%rx{{S+Qv++;Y>k@=B9bOQyz4jDFYKfA-D&Vl!x6jHQ z?sTa>1re(x@;XI8ym=c%bXY;FI51Dt4|G>V{{U9%XMMUtNgEj40sFfi419%Uzdc>( zu%gOBvWk0In34|l&8Fc|_U0%;NX!ige%yn_BjE4)oI)hp<;<5wEl4UIj%H7jfOK;l zzI$gKj*l0-ePX-RDp68MZ~^#j@P+l>rFp6}<`D30$bzug?Sjk za@YOD<_J@ObW3P@wF^V}TF&v0psrc|$E;$In$w-Oh;M>|6oSbF(z*}c0b#sL>*V^v z;RV>~;@o+Ape6NXW(8)Y!Fat%=4GeVp&UVmr9~#<6-A=fug5>u$}!yW}+v4y&9>j+{KW=&L6EIZ~p2he}0+s}y8 zrd!iGQ)SG9xf(ZE%CXJE>cZBbseouQy*$0q`_Yf2g)UNoNu>ZGiw>UQ-QzwtIbfhZ zk+4Wq!7T=p9Yrlh9PM3!jUwy049hAdEj5;ugq<>hu@rawIs?_F&+E!ouK*eWPkGiG z?UqLg$O5wf9BDxsP9TSQV8xklC3y;cs%8q~!r+b^5c-#Ds@@`Rfil?4C&ZJf_p^^N z8zq(H>YT5qSP6OE;l$*C;OW!9crOtEt+;$iN>wpzqB99%pcDDkqV5j7vu0`$;V-{v zFOKlU%UqjL zC~(c<17K;VokyH5U&4l)6sf^WD@%nMb6uOH8nfM@EwD8terpvMf3Zm`NebQAza64G z*Aoz|iK%DJsO%x?Y*EFy&`HV?GZ*m_u-W6=y7UV1D2%4P9<3SHC!aEAVx*c9b99KX zM5&V&#E()FS2YF0FkxRfTCC}(UYAOJR&31VkjB1I-Wj=yQtz!&`uW8SM}^d>MRJr* zK<&95qP7Xd3dxmOfpQp%YoIXGU1F=%NpNekYVWxEMGPH>=Kxfs6s1Ju)!UcYoq?zw zULI{yQW8{B3Elc}5nouPB0|(uLO^l@=IoKzorhM6)Um7f#!aP1GqVbE4yCx#3gUb1 zUa!@aJw*X`{woc*ddVqrR=lRA)0i=1rh1yQ0zo6Lv6tZsSetoFLe!L^T0seV5={eE zfsIWY$}{_DeZyF(U?x+R385N@BaSd?r^zz`InXm^2BZ0bcwm7!X;>9eJ{^J3iu`_1 z`99l}00XCY+;xli?@7HrcDZpHhY4@s3yv!;X0jyZKae7J!$)klQZZ(dX#m}^} zgKx5cf>W6)_g6y~y(Qs=tpLkVI_67iHP>huY%0#6kW!q^0n_uWF-gAs0$X^8wZYSP zxyR_AKFGwjizLMvWGY%*DH{R6Cqg>YZX_z4E|sY3*I(KJVk{vol%yaK zwh9dOG;`CKp9x&*v&u4w%qx_Q0N8J!YQHf&IN4Ro%LFfMGMVmk0Zg^nbnDhWfAoQZ z=GZ4VQCx|H6sT;f=1C#L=tG`sp*zLiwKrF0*SmL#=3RznV4#&Gk7R-2BT5iKKR&TM z_&n)tXGz%vMqxDXyoq2?f6_Grd(3;J9Y1?0ZCb zQv3BFB4Pgk*bR?8ID?7B>HtYqR1Tz6ancIgmmxBqVnKS42AyBy1{hV75_-yj#mF2G zH-mR%v`lv_Mx6F&=MKn{kV;5nP$*njP zC^LE8%91^@LpiU&4WK3)#$G0TrldG5X}vg(EmrxHrhtQ(s-NnRHE(#=kqgmLYX%<+ zL+2|h{{Sktco&84BWIYoYgj2Hl#UAeCIG(YEGQ5XhtcXm{CHNy_)bP+ zG%G35Olg~ccQE6H7$pe=F#)@B`@B}juVsu`hiCr)SuCj_%C2>4R0yGcI=x~%L2x3> zsdj)AsUbitZjg0RZM4vC@uc4qRD|+0=l6lwZuS!pt2D%=NL%Ixl<2O0aIqwOS8qu1 zAQekG1Ir4YTStyC)by?DLs5kv_Ypn+0O;;)p8^hff1vIL!9z+8Hyz?Dy9^m9A0B%3XYqw>im9mi10kA zc|1GUnw?09x9w4-qVxyEDsykQSZ9z@O9Bg2wx0dlPCfCR3s6A=*~~oKlLai+D9z5Y9+btdyOiFwwQ(ufTNwS8^ zMj_Z}#639%HR4M*b-t%Ev{Q3Pted4FWntKtW4CA02W*5M zcCOx0rq8mjEq4;+O*6fzYZ-`tXX#%e{ove--3FjgwFlNHUl+>42vG_Q?9^?cKIz2i zD5?pot;U@6F`IKEnfN%#KJy`ea4VcAbA;y3@ zzi1V3Ujra3JLoG<&#X=T0(ukbl5!vgBqoWho&$5+f7&WpZDDqxCTIh=+lGrs)-$rD2r5#54dQdr z;8&xhdeke${=jbCd%-+ogViu4C?!E=pzJn?@Rkf+mT5YmjYm6!)O6Mte=RY)gASz= z6ujV)bU&p1o(bYxs#Mu4kvfW2V$V_tqaHYDT$_62o~31UDYFgBexi0ebG2TDF%9J| zY^5;>P)RcX0M$(C1aM0`ca1v4vs@qOaZ-UQIZ;zDOw>QCYSXTquyT`R38I@ZqyF)K z(e18e*$N6EsRWwp0XlU9;CsUrqYlb4{9Yo@!$eLn?b3as;>rxkWYAS3e&4itguNsM zkcBB(svB^0tT5OYlmci2u-RP?F^Bq2y=?O5kcaiFt4ntZ*&qh1@dSq(ZTE%JwKyOG z$IqHZHI6TIS#3x&h)5}9kmQczV0!6DX!Lc6W~e19a-+7Se*D24Yk*~1ihW`njX%rI zDo7pOev>5nf&$4a8wYArPc16dt3u_?dfFxz%E2_u4z7Lxem>2ZchJml53gvHEt#96dTnn3~S#^bM8V5c(*$(t}4s7i^WX-=P>_&C2t5)h|DwHS5U z3dp)r5txyjev|Wlk=2&oNXly7&zw37Si1>In2gF+MJ4Oce!XEb?!jdND+?j2A5P|* z^@f~&9gyYRQ5up?{{UDdEH5k7J1B~hA6j{~w1seswp-T4oHv z&*qS|hVE5+S%FC&;{~l(LP~O|gp&2|7g|PjbzMHT+Mw(K&A=z@H+n<8^>e9vhXXBY z02`6^=?k*$sgX2gazlcC@lO%@O>__g0Lwr$zbHLV?XNxIX-Hf~A6itm8_@62_B?j$ z5l_XEv)rS6X@S2SKXe0!&9^h&4BjX4v#HdW=N)%W5ZJUbfOaZidQ3Pc`%u8rA;)6$p z3r-iGHEy|t6{rxyN6;PU{Ep%h+LYVPOUxz9atGavp zWxG5GLK>&qI-HlQCM}uuN8G*ib%@yNd5aFM{Ea zw_XN|O;~SIKW-r1^*&mx!CuOVegWk2=ZbtPwPc#4AgF)~Ge*B#lN8J+U%tskT;U05M#mV&KCNZg;N zn@~d*9lX6-N>*FM^x7_7yCU`bdDTfEfSR$?o}D2o&tOdX$sj8-j-kW0$Lkse?I|{y zxoebEkwS0-+B4x0l9<6QybsC4_Gps>|=4bVx9@zGc z2pbP4F`{167-lsm+TeBGBeq-8QpSwLbEnEH*=YjyxTTpvE2d!2xa6P8#1{?HB><3f zBQ*)*U^+uRuE-Qhlm=Fy`M@dGgp!0HYF;zG@k6)e;!=%Vjkq6Z&n?&BL#c}mLTX7p z1NUvUhb!eOG-0D2khgBQvV?-2XyE)zJp?Q@TN1BWQlzUQ zK^aX)FVeAM=JY!(B}GP{6;`Cbeslw@Qn~Ofprt7ZV^ER~ud9Km92XRWEQGOzFYMCR znN>Nc;-u=`g<34z6i#KRjKpX|5C_%}5q^J1ZA`SN<(c7P04P%zB7%xz*G{nYea{tB zxMBx>`^0Hj!hI^;Au3GZD3yg1zEvEhM`o>GzR)`wUduq1nQf6kW=T5c11L_+UZk36 z)q?(!ujZCzkl=zGYBnM2+QxfwO+@1@6M~*yN(fL18X-W6DI`=EH60;qNct}ZU^_IF zp&9wT-p)PYqTxpJ!pd6! zNHwE)o2J4nO2SJ_#AP)lEx{vVH0WQx(8YgS)Bq_gL8_?j0_?ZqP^`)dE*K6Kvb#g* zyD0ifoU1JK6)ht&E zWrfTs2?_vL$C#QB)u$j)o&wmd6J|>)0J3-g03b%5f2*gQ1-Wc;?N)>Zp-Mmw#2Rq> zHliM}ej`nvDne2dqOz6EoCZ7y-+M@ zNd)fvb%3a|s@Xkgkvk$>f=KqbuFdg>Tffo#l$0fIvU0iCGJ&b5JGh{MR`g=OF#}4@ zn&?msD0Ht*I>t|o@gJ>2E!w6Jz$rMyJ!18LrjA#2h82SN~M zPYF`i91Uqg!S@U_4MVHLg&4*hyXLBBQ3MrbcTsYXT+^>u-!J@1oTv!#ECwS?qMxg~ zQUKmoR85$h1te%j#i-+W&T(!cTg#G#e|=At092Z{?dJum%|niFxzj-iKEjzq zkROl+o_!$iql*YkzYs#mQ;*f*)rlYwL3(JwLandS1+{rpwdEjYPK&jXf;$y$qc@eBuYHg(tM;ADk zC25(IDcNmSY6j@rhj{N2-?HSR`#>p7YV}u?WEjsK%uMOB&San*p(2wN+~~^aO)7Yb zHjF=Lnz=zI)l5+Vih_Vi{VB?&0^nCE^Uy=g_H8=}VkwJQlt@(5<6cz;N*TgQ&~VzC z@MBT9uB1r@X-Ha>la!kJzQDi4Y9Lk3f+Sfar5RESI+ePXTQO3Ph@Gl*0iwd~ti=qW zpnV&sFvKm~xROYmu{Bwhpmt|{7%+Z}HjDVj5XnrHl95EyFk+Yg02J@ehBF*08(%{Pxyu#BlMKWcmDQkMuK%Pc~k|;D{yQOP9b2YjKUDetrTY?tk>OrRttfP|1+R?w56G;lWg*ShU#LNgPX zl5>BL-1RhnD6NPrgDK1bdZ_LP`5p9y>s$ZEewjW5wn<2N=!q2c1CzcurReJkm#-MCg-Ql%@}@hxl^0Q6#MzrDGPD;(j( z&zf05>U=<)$=DDyK3{P6=^GWyT(!ysqc0xOP|};H@Wvl@+U;qYiHj6kmEk@mC=Ni- z>ZaAZm^7OQqifgtL?%+^r6a{vdo`;9{{XZ`tMyan=ay=cNFcL{yH=pGyc!4hDowD@ZwBoSGXuD9GLQzB%hDs7DM<=;xn-8ingjSWU3Rpe%ZO>nG=@mUF zHPi+=LXD390QK_> z$%iNs{9qPxXaL}vJLn8w#n-@_B&B1(Di&yH?il<&x<(&`FWjr0J1{7A^>3?aqCY;& zHG9(z%$gCBP%NbQL2m%y?azyiqh`J={;>!ZNJ>CGcFWPB8_?yYbLFmUcmjez8y3)Z z)*A7h?$XmKJ`km5Q6;I#*mSH`CXYU#TiyC?=nzSlnQbfs&R>j<;He%F$M>VV= zU>`=dkLx9_VpN$)Ad|XVk*gX%0Ks(I>iKDGAPVDM_gS9~BEe%@;7;sbmR?04R7u zw{Le4KK`7AOaOpFm{1lQJAHUC^LN?NDKsvWhi-p1jX3ezn@Cu)`C1V%1S=^8K!>aC zrkmE3kC`zIu;K_dlc-5{1M3(J$%0`ip;l%{;18eD4kb>$ ziRVhrlqeFV7Xay(Z=`NFr2z%9P^(4&Xx~`*%MX8Lrl<6*f>d_Uw;*)s8(J+2T$P_$ z;VA{p3vfHa=5Xi#05S>yaqPcfHiW!aiU>o81pffzAZU3osex}rE@IsHG9L=RQi)&z zMNeqW=K;Y*f=OWaX4g zNX*8nQ6P}-vWso8<`%HbpItlHN<{(^0cU!szXL(k$I>^pDNK~Jf{=h6n=u_b!@iRv zKfk}}?#VK2xmIvW$BAnF66icM8dcd&Ni=3LrhmoCvd9u8fC5EGrFSDuU?-w%b?XhH zfy$gxxmBZf4G`i*DrDrK(^jh}kH695I?^D#ZAw&ysTqRMYQfxb!FOUfC!|a0^5aFS zO05=@0lj!Dcr4uFssbrdF z{av>MMt~FWxFHfIBPF2BVogXPvh*O(zR>X`JRgJBn@LrX6BK2v6&7sCCCCai2a)Bx zeFKc|MTCH)s3$6O9SGnK<)5`7#}8amtP--NAgx|0sugv&;2Q_`A^JhYXqYNWGN=_K zxN>v^pQeH|khD6}=&6EcDCV5mnIf!o54{_T>=*#6I}|EG(TnM!)rWJtzR=ltdT*C1 zU-wB0Y@;PqrW9e*SEoG2D}Li6Gc@He(<}Q;*MmnpMD#VkUe|i(OU`|u5>9XNEg5&D zD>~(@l%SLZfD0A`?y5C5jc?H{!92=L%Szuc1ta|rvkn*C=^-O3k_jXL7!Xf1eFMY1 zdQ|M2hSfDzc~ZeSmXVaH$*VgaH(>1(;*UZ}RJ3QEm0*Pyu5Ih}cr|igvc%Hl0-B(4 z{-dGZ6Fnf}HP4)}EU7Zm08*WXZQGWhaY$c9_R;X%$rfoMQWQ$tVeKgLMObyxJG=-I z%1CmsMq(V+q;&k^Gb{kPids^l`478-PT>7SXn4}|63|MN5R%me@}J*NIFly&JGx~_ zn=w-f58|ky*ba@qFvn<^iPF`W7IIP>gYx5~B!9~P08=~*InS7c5;RL|(e(JkZYaVw znMfX~X$%=bm1pq+%Gw zGo;Lvt3e8K8A6pBd!eT2#Orlta1AM;9QWjiGY~h6BuSkxWJXp{G}fJX`NO^##h#|j zP)1NmWNAb z+hCbJK_DfGVxv~ANb1@~MU644hXpL@DK$uj4ya>z1^5Oz=c*RH-$x#^c1Oi?LGNle65{{WYM zgX;l37UI@Gl`I03smWCt*g5H44x1f={{a1>e&0b~V9j)aqk`3@qz!iO87;LY&uK!) z{W(yg{tyou0OqZ$C(CBSw$Uvr1Ou6!PvPXT?Mgxir5oB&1w=SWC+r6>dld0;-fLWw zLgz*DK3$=D`ncCMCn8kfQ6w{-?XI=^#e5;@Vp))ZMAI%usBH`oyge^VGMAJUC^~4_ zvk#|H4-l!Hp-!nlf5(T+4TR>}P!^?vr2>)LropLG)-bGjhzMV-3nZ0h zT6U@SPb?#L^j+y036ho|sIw8E4X2io5=m3Pr#Sb}Pk<;K(Gfq<6r{6;b~}5wg+KcND9o&-Nz1C79;c;Y`n?Q%(=!R$ zydyCiIe?Y)Mt|7 znq^VohCPeL{Hz$q?3Yx@GJ=)}D?S$XzhHH&GswhK(o&*b2~Z>*#T;-?4@lmxA4if> zT%k$?w~XfVA%!~!6oRvG6`3eYqOM4N0qYZPs!V4BL73A85WO=OBcpBaeK&Yqx$ugY zG!&Af>oT}^sb-}`SQD_UKi?KF0@*YVL?n_sHB0n>{)BER!qTM@tce<$IX_XSzAH@G zczOhrH6Yp)rLiR}qUk-{6Y&~CJ@4p}(gBbiAG(=h?-C~$9+iavcr76hisC)V&RjIFvXr<=>}q$ zy0iw2e71`dEmHkzmf_NBM(66?C}2hDZcN0I*;E{i)F-QOei2qEx#>F*fVoMQuMlTe z?A2!7_YWEd2hLEHvWkfPTYa8BbF$)JTWn0Ff$J&}UuM5O>mO6#>sgU4DN)R}9gpu1 zF+UozgNFYAZPWQ!nr(Xcwv#1AOcj+xaMj8?jXKB2_Pn#_x||b55wmgM za~l_=9A7eUM6|e;d_j##G-n^AYgg76Fkhn#%&CNBBv+v6)jGwXO_&vu=&EpqViObv>{pZ6O?o( zc46mH3T~gK*&<)9R-+B(4LYJcJ0=xxiAT}OvGjhEkKlt47ad%joKUiB;N^^LWv-g zlqmOv^8 zZ9wZ6fky1a^7E)Iz)_(b{l1XZcvw=D0)h%nUx(+<=?k`BN6Af?RAtA4n;;3^6cdD%P}C?l$cdC*jo0SyoUrCz`?@1N4HW_(;o?IC?*D zbl+Wk;jYntpU_;MHvOS&3OCA?DM>;BB$wR3*!PE-Hm8=A8WJivBT)dX5(xm8c5_Mt z)1)5~!Dj&IdUrhxUl0K{;aORl;eiB>kv=ZP$U-wHgn%Bu06tJc@xK$8r6Iut5DS2J zW5;+@yl|@Khf@^ll=kEIfGb&2W`MFc1SPrNz2TD8YRVXgOHujWkV6JtNy_UCP&DVi zXkEru_m}|G=o3&!R?x(h2fr?$w2~=8TywLuV0gObnkNETDJgXZVh+kZ6x0QcH+cH5 z4_r@A)M_h1(g0$t8iH1pWl*6|q4@XX?-6*MxcTboxeUpmmSDl&qp8}lonss*xmM9R zL;ERETj~$`(@L?Aqz(fqIpw#BzytHk&NDwtG6=J&3`49`3b;PVriVgy4;6~jpQFq{ z>y<8HB{_UetMHWV=1-HfZP*U`&+7`PqPl5YDoCdT-5<}-Ov_Y@a9T-CNL46Ps+{N; zs+tylBkP+MA}P+GLj`JTGVfiyB}9-ir%m0WB+3LOyr1a|_0d{vbv?P3zQZK1f-NHS)Zu{0Ut))w;>ERJNfAuxBXM#Z1-`R8RaOYfBtG?C1bEY zE|EnS{Sw;~HqR`D1yZDF?X+nZLdxj%NuiIQ{{ZOr^Ajw{LcAv}2PHcWoH^6HeE^#p z4$=B-%*kzciSG+BP^Q0F4K{lRs8VRI{UE3gwOfeHK@7xl z+Zsp3KlLwy=2~YZNeqM+&r;PIfu@2!zP>L81c&i!_c4{;mpNChQ5ljGLAQ9z%|F$r ziew(I=w&c$k%; zN*Se{4&!>!ln&htc=BEC>fEuX-8WmLDMqR^*`R(u!6^t-!e2)f_q1MB?U4awl?0tM zBvVJHUnpgpZIx)1lAx)|OL&swew>Q!*!NFQKHk|4-+ii7po9|DEKY>(Yw(BLlELd_ zg(*a@Vx2t07Cz`hz3_oT&ZHV?N^kk_hU_PO`lR}>`AB!`(iFLSGmXV9c>pfMP+-~t zMHAwB>k3lw8p=&WA8H0zak(~(lnD)2{CK~VgfD+c&gEf=KH<-3j^wzPEF^*9dLCbY zuSmaoTFRA~Z9z&i4=qP{t7yN<5a~I}K~__s*1J1#3;J3&XuOggD`f&06VL4n@-V6p z6r`mgUeG6BchVLtnDI0Hki`YaI`;#JFJ;BaIe=DWq*R?4?ENVd@|K<{{{Y?WmFL;V zpGar)YmJb!t1)Jv?llAUfwnJ4E|R0|Dx@6Iv- z=kkHG=VeF-N6>Qs?3dv7a}uCRPuO$R!)UldrRD%oY5DPorR^H8f|Qe(0H1k`_C>Qf zQ&5K_>|bv1$v*cM*@= zIGCq7F8SO6p&EQ6a=mUOO_&1G;Ak}m$|&Es7R++8as;@bsWfta6w-p5lLn~a&qz`{ zE^4L)Dg@BOkh{_}2?6P&m*7T4czQAa0Pb^&RF#D#O{n0pewzKEvcqqjot}-EL$;pi zB^2Ly*|VoFJCDP!Xrp`jK3v&lD9cm1t8e*Oip_rz25wu=h_`6P!dHpeg;@LtF{H$m zuFE>?=~TI@3@8mv4H(jZbHriTy8v2bPF1>EgXeUD*;I|iLn-J((WB{WzWbFmDkK8@ z@xHpn+(U;Y&z6aKK$ZuJl!bhMFGo3J6!d*5YXWlh%<3TO{`YM^1Z_5ZT1X&ODh&Je zXivN_ppb;64v?CL6mGF%=(hsYWe;^>N%6glbjNSQXj%vfWdPwr>(((_mjQ{^;FT6o zE|Z|6=6keB=DKP|is5v{6^oy2zQdgB~)FcpidhG!5t|Dnm2_eX*A&#K!`PMF3J0aQkr->i{ zL4D}mW55)$QWC{FEA7%TOe={dndlP~T!Je3GV zu;@C&-tZ(AQUkX1ePE@kYI20-aziPoM^K@oes2~p2{bhn_&__R@DF1vWgvFG!f_c5t+pC@HDiDbc*N zg^USq@Or}G2Cuz#j(%6QNYPPl^>V_L2}_FdM$w*QoLGsn$YK;0;19~ihjd;^n<;5c zS;0xs&i??oj9(R83zD!(R#KHehO7an{{R#3h0feLjgtW0Nt~b}9g{8|*`Oqz=Qlgk{dfDW+tHEKF!t1tmy!1teF46~^pEnOU6dQkB|jLXM|n z57$u>1!|o-#u@270TT?#U?Ar3q&{kHM_PfkV5StuOHu`0wPUH{${(elaXsDYrX$s< zNeV1dJ&@gW`9=BHO4OHPvCggj$B3nBo1GvrCsy0v4Y+d<6w3%uPL0>j4M26*b148B zYAG6?{k5-1xq9D@LT4bmgtLB@qK`wk-U8pk;GAbd;`@txX zp+3kGsVhh&0*rYq??TMZ@tFEVmZbqdAyz;@*ZXH;NBDxyPLVvQle2H5tX_u7?hcRo z9PV`$qeDJ1wSz4IJFz91`*bn$z6Y_cWu-|<%LIiixXR~a)rQ>0ql?iwGPTT{t`ZJ| zc0UoNUMGhwo|npH$P0~StmR5`dbOm5CA2)hUVe`Z-ixg2l`kyMYxJeuW!NTwf;R=n z5UqppU@3Wu%&-2|lc^jZ-}!ByWc7(btg;`(4Or~_X%7o}#)Er+l!X-n2=PDZJ3{r> zhXltdQAirG-%#BQ0Fh%{lmjr57E9(XNE&t!4(Gp&xr)eCQcL6|;^i!Ck|va}S#W52 z4ZZQ6`b4z)ul!3S666!7A{#FC%$qGLBQ9rTzs3{qoC7v$R$i=6h_G=L$WMKS;fvCS ztQ9~8-OkWX{G5BbGhOm@9h=viC(8LOUY6J zU>QZlL47rCBRsL+G7_`|oQZs(Xvh3VX!-){!6-6PlH0N8qiq=HrF=0aQVWjRMq(AW zgjDlQJ3{3;C~&k~(k7?Ydcv|2KvD}7mSEuOm*h5`Au?_JxkDb-GrM7;Y2wJ!< zYe%chkigYIojTC4=UP8lo>i{W5~R&YP%3nkzRufMT`D6iv07=jVu`CqhbuORT__vw z(H6MS;Y?H}jHN6?0`;%jEaGb{wWnmM3e<+n3)g+dsWa3R;VV88 zcOzl;)*7+3(d!UM6%Ck=&ei+H@${AJuGp2z6bk{XW=0KjJhM+9+W;$xNb> zYX0E|q}|0p)HdF5%m&|YOv!2jq@?8=d6>+u1Wj@hg&kaMEBa2IVZ!sfW+_Wb2~Juz z+Sp#K1EFPI8B+?MiS!={j0=EUokGYLvz?LMC#Vr9#wH*b`r(W|0d z>-QaCjix~|fo3A4jzzZNJ^A?RO~rFxq}ajXtUldM>`X=8?sE6uV@1OSU)}CMBNHg{{V1! znYV7y<hP4@o`j-ye z2(f=&DJWP{GX*4vI*L&FYt|KTWv0zO%w_nKI#y%?b*6`?B>Z|p^dcWdcKpghK^ffU zsbb&dUASQnxSrgmSO};Lk~BY?MnCAn%(Pl3fl`$*P^v)sIej?Rk-REztU^#h019sX zsiapCSt-PeT7;aceF-iA=nnm0lD!E@oJ7^1?gA8()iwNhw~uU|qGYw2Aw*Yxr0ouP zdhnLF0YEUPPv#dNeTr9^Wc5s2#^c4i`@QhxXj#Y=OviDzSg&|k92a6vhlct<#o~lZ z8CD1f!jfv|gu}8xWw~c*nyNa!z-UJX7ctzKjtsB-fccT$F4^%I%2|r^Pfxr_F7-4d z0<)>-?GkLV@VsZDVN}p_Go-8IU9`~a)-*ed73P){&EeJR{kr@-;?^Ndyr3;1S-u7l zaWa)>m6$h(vN-MKtSK<`PDT4MGYBElO-a-P3=23?HImrquT4V|j}{`^BCh1ZP4%SKfK=}u9yLvz%aVg8f-zA=hm z`@kw`T8T=OBm_8bm7A>B|*ZqBWnG)hC9CpqbsPoh}1<& zk`<2zCo+{SAU#bq{N6paNeNITS{FlO-z9mfF7_c7

GhLTRDh6l1779% zq$ztc-KQ0*U{FxZKTSQBqjiB+iyY#dz*ATHG-`LHfh2fP7;0L*;7scugoOgzG$XZF z2}@c-l+b`lZQzBz(!>EmL+a7RhW1kgkO={j-&je%Oz&J&pjZGBO+Er1lR>_3)JTz( zC=z|5cHbz|%(Yl)R|kUZ9=$%dVn`(Xgl4$DdWy0wV7Pr)Y2Gb*5%io;W=LBE)FpbS zQ?Fimcjy%5`#*`}7E4l6q{{%5*Ti<@jmHCXybtt4cbP_H*`N6qXlX%K{N(lnjAx4_ z%a)~`QVDm|Y$GVbUY3oZ6(F3Tkyo#8+A7}5A4n$t%%YdAT%8DrQDOwvjx-;Yr^+)7 z5sVj`#-9?0vUMF#czcz4DPAI3!%~bm2kR9nJ+j(8Qj}6bNpLz5)86%qmOHshQl^y# z)g+pbHP@{gx(dd5=`QdxnQ2%;TSuyuP5$s}4&s2h2uh7wq*GXl&%C0}mam*n0;ue* zxIb5k?7_lG)Yq^)#CF@EGZ0eDe@W50ldU#w;=R{knV1C2+m3d-!%CbiAWM%5<5iHTAd;nu9?v>=qN>egw01Z*scZ#@l8$p;zDMCx7wC^6`>p)zls0uktS6%zT`-;k$ zQe~kd!j!Q)t8(!)lrPKdp%175k5~zW@3a-?N|+5Rq2amaAjKAmK&a*_%|xWo6T6Lw z0EUH}KX5E(UQ(HKpy#LGq&Y*6`hvO>F#>u>&W1F6i!ue4FhaCajY=jmb96Y z%0*R5zl8ORXAh@5xoS?NlBDU+!$@-CSG*G^8$3ZfH%925^j+9UXcHqW3 zxzj%vU-fp>%PLCJ>Gg!4Y#@dN4c?|cki72%$q7Ozq=qau;q>hvGloAl`;-_5i46AkweIOX$l9 ztJW@Tz-UNy2GpFO9miPH?mtGzOR8ujsVt$P2mFB*rnIaDGs(2el#)sUnC#3oQ1bZ2 zPIgRGr(3X@De&b40_B6(VcS?hyKesg>Sw4;QkE1dg8oJRLLBeQVv5l!S^*^cMcIa@ z<*wC_7P)pwYf}70McoXd6m|vlC&K$YPyJ4+UAQjIW-7`V>UmS?+7&KbcAx4MElPD} zV0Ik`ZOkb8LiCR@M=A={GHJ?$C9?${uR*EQF{FFw&jQVxX%lS&#GMLDx`U4p0gG2L z(MGj`;hOQykyB?SC|PZf>3!d%6u33uuS`p{^36oY#(PeRw6sZBCslG*~J z;RW{(sCwzNYgVj&3ra&dJ|dIi52C)J7yT-F3bUX+n5ipm9+N04MMH+yU7jHS0H({O z0({iYp>`8BK_gUyr3+VjwvfpND)e_XY7?dsnr0cQrT+klR^Xj{OnCv~KSlGJ+bGRB zgtAnSPqJ8#FvR)C(O1oyML=S%6;OH)q!e85*XUJJf2GcmnOv5m>Pgl0@PSU7-@WfU6p|(-B&pd`38b{u$Q?;%6=vAS&KO?Z zHd!GHQAsBO%%RI>eYC_5hQ7cF+6;obZ7x%_lfU(g*Or-;sVE{EsNa*wju{|M@_Qta1 zsYuM~NYob!2V?#uKE%Hvnh|NTT$K9oyu{2Sny0C*@FUWW3RYROq$PR75~eJ@9f_lL z-VuEoUqsrKIeCf{4q{K0dhJeQ=v&XyDt%5*Ru+&OC?VOkeH>~T$1u5cbG8?Ua2&;u zw0Pze1CgqdHTpZo@#uTe^6bj~rg}YCZNrx)wGQc4zEL;*KVU?9xwfxZRh>!_feca- zNKjLf^#v`h73XKt_oaX7rJTTkd?7}u8v;NN(6BT*YXrUGYD?D$rqOK^GX%>@K~PV$ zO?7|LcI_82C5}|JAfX9K8mNIpjeLlOZ$vlb^-1-UkWjg*2B3kHW(PvW>&fH*x#>>! zT8z{oV3z?QC&W6P`a`B{o9WtEB2|h#xq0&56!Dp~u5zX=DhU)yMwA}cM-}NvWvw?6W7$(cDwcg{8A6d% zt(vBqfkWH5KHQf`GbKzYDoVB0kOt(n4^4O2#ScR>6Ec$rgchZ99ny7Y-P%5cwM$2- zQV@i;U;SA04PFPF7THxUl&_^SM6{Q#Vs>MqQhE)~))pmSC`z&dr7Luu68!gu)MYA8 zWiv2KRG)U*zY(9~+&Cqb%ulsiy;L^r+iqh&rM$-WlzO!SLxh$Yv_DbEjQ7zeq6yZt z%}{hpE<)4_LX+p$PF?`cnKEGsIf{!o1d>My+@6v3t{Ah;mtvJIRG6XRPK-78{Gy{i zKz@eqJ5}0+%E~56SS8EQ^WVHJ`cT9nnrhU9lE4jKwCsKj);@reJyf)bj^Qpq)PvuC zv6SNLw##Vsik&E{!axFrFS1C}LE_h6Cqx1Cb?ET=wayD!iz=nj zE(sKBvEi!eP;hr*VJ8t^%aqE05{*;20p6S)Jc-;xO@jMW)TUx+4yK@v01y)!VIsL+ zxk_cCqmnr76?>f~dr-6Af_jna((6)&l}cKKE2wR^_-lBM&YLOS9Uc|0yhAuR1Qe__ z1xaoC@X*b7V7a!b>B@XSvX!XIx#=2Ry9U@~AwxJ+&;?bgBCeCB?&NLM!k&de=qu5Z zQzO^S@hL&V4x_)$E_z_~3Y1fu`>6~7)jb=lx5sF1!5f`BvZT*X7+GXY*GKThf zBY%xPP&)uzhHTR@zqSJtrAC6Z?+YG_a6P2iCMjt3B4Nyc{vw(&J-FC3X!vs9>ZN+1 zTrUzBGb^&NX4 zNk|Nti%|ejDS2v7kp5vC4PujHGbF7FwB~ig(6YKoFYL;nD=*oV_zkrK~Ta-XNrSD&Pkt0a>p zY!rqpD$G2=29)o_WS6I;^{#ZPsgSIy<7%JE!}b;Q9=UQ-W={&2b$Hx#Ym>wo1S4xR^%sAcgW5>p`Qs@Bq*|!0*XqAIuwlw2Tp@n zTg3N=uCStPl{RD`g#y%INIL4;HxM_`RE5o$GlA;TjX^od=;Ltjr2!S$-{He;>uGi} zfC&V;!zG92(GE7kGp#c6ILZh=>_;SgVGq(KC^l=tRHVPCQA?#XFSr|Uf0%y8Soy+ zYM7ME1x5TNBb{nB1|6_o9F-x=@DxD@oTWMdDj%q<8Q83E(rz!CK5|f`!C z;ce<&x6_p91Nuz#Y@Cj~rf0O4EbJ-)4k+VA zCsDbBg_^7B`r^7KO`H(n0FViC&ACte4Mc0>(bTCR0WnSnnw51~sdLjv&2B3+)uj^> zml<+`N3x(9{{RlZ5r-K~mZcf0$dra9B$cSUP&az)(WflFlR6#7SRE5kQ7mOCa#UD5 z)%x&1cpvDN<5-#{1!gEYj{!WW=m!AnUJNvPG?Xt1i%HDEAikNC+isxp;<2%>1zGHp zW_py6RLW6RR81Y#@NEF3XAPd+7t(DPoVh^cLQjoHe4)z|Mxs)9_(z9toFBsPW?FZ^&O46Z7D`wr3i`o0+DN$?O|_p4M!cZaQrwA%ea zApr%6*^b>`NI!wRVJYcMhbT!TYIBE?lW) zfC7SqH9S2yC#(Uu)@RBn@dgC38H&oZ;8&>t2j~l>99=k+Oq-YjDMF#ISfz~6rA$Z! zvsYpF_tGoMxh7fGm8cabDa@bo>!AD_JXo-yGc(NukO#DP1MLPF{u{GNOtk0}#3_S6 zLGzC9JVcZPl&mEVLU+?wgc;b8ASeJzbP5HS@*<84yHz@9lu61<__r@t@6r*qb>l!n zN(mr}<*W7k!ce+qrD~rv2~ujT=T$3E006(30CS`47F;hbN)iOTl&R^@NC%DW0LdvN zWgF_zb{4Z+?-DteoHCXvcTh zbP=fGPeu|EWdI;9V>H9h=8&OXub43XsqLv!$tizm9~1sl&OV{DV`=J^rOT5vrdmKN zP@;+0AB&1TArA8NS!0(uAt_pvNG;X$ev!YX!VzW?>ybXvcRY@~bgVvhbX;b8eARp| zbmjWVpZ!C!fcZf?y#(b54l{VjJ9XEwF!_r8LdqRE1#+GCaC@^fGI}(?(oluW0m__n zUTZ>{(X@=$>780rDp4+{C9(rhGuJ9Fz6wUZ=;dw(>Z6xNhL1Bpd*%sTpJ(+ zDwRnFlpq>;iu>9P{iKb4D4>-AM4A@x!>G1}N@XP~%#azheg3h2_Ob=6AOP&-HlIqt zd$z!U&X8MTE97*DyuU`p?z|GI^NRq9Ni|puR2iG0);F(4*a}UUiITHt%D|e?>hGsL zVHf^bNwoT)7+MrhOu?uRYJfGV+B9hr=155)L6pu7NF5-NH8ra4DpHA1%ua{h8Pe@W z&1ouHN|Gu_`*enxw~x+z3b@pDwCM0Ub9diSb3&3hy7ZSo`5c(8hB2RycM{v zq9!N+;EEH$;t(($u_`1ki%H7Ians!zb*Ay~oTn=W4X?T?LP>A3t4;2cYa0E@WJ=^9q>RntNw2u_BCoE4GP!Ql zI-Gz{A-vDh3E3{CjO8aV0=s_)=NIut6d8%p+Jjf>e=7}FP12uNkQXW&?B6)gifgFLb9X-;U5_J+I8ZoGZmN@RS9ATaCwaa==6kAkex*xM_+VL9$n%3 zY7;F?;k}{Q4yH4~AxX3fxF)>xJTd7G7E4NIqcBs3fb(pCO%oJZ2|-{6s_J5?Xq3sy zM~E7VfzRjWkS_hbsHJ6Mq||@5{o=ITeKQabSwpc4;b zwwReqPTKEXJ2S=naf2mV5tWT9Oe4aZihU7|5ua;7osV+6~7Bpee;yNV|J&$G$kw@RlZ2$#aru6PlX3N67oQ-ZMW+s!gg?u#$hY zR0SxlnVH5~=ve06gj2$I@}*kx1%R2L=W=RJjq))prTFF`yCp|vspH}074(S{dM>u* zlv0)|L1DJK(l;CteF`M%OPIrMpow!_t5Kk(PU`!^)*if+08rTMU*Fyi%J%w2Hp-+5 zqzA89X2UbxE8rxmGf6l1feLLv(CYsHjR&r~*C;9u4qt?J%N(_!S#6FGM(KCwtV@5` z(P*#Fk;tigY$P}`A0{XwKHX?+YT_sXw5dO$1c+2c_aNvW(;v|0*~N=;L-;sIXQ!6?jM zt5Zn1(iJf+yd)6p2!GlV6Np|~iYuGKQ}+>T7hY*xyuyJ!YD^BnSUc7OI4mVUJslxNcSIfI$d6ftf@#^bt(Iff->rRX{Zy26XQy}Nq+%xUi=Vw+7vDe`6#q1S#SYh zm#O4~#2L9Qb0&hK7!PysdWg+$`+@CwoQaI!zqAh{arv}G{s`Ic3q+}za<+_lA_5D# zR&bW`Zlq!aNa=SzK{}r2SPu(fpEhKqPzPhYCPBNM>Lg-OpBvH?9ss)TMw6rI=E!59L$VhhSVo{Y=87 z4`jI{Z5wTt^P{r{t43jju65a6UKS^#b$*~yG(}pJQWYprih*Cpi{bq$Fssoa4iqb> z>C9yJ)!F|5*QuI?xN(`9jlZ6qK3A_h;Xo0WCcQt16NGH#^8j5$=0BRjdn!HYO8)?9 zl2j?-J|R^ND0QLNqYYs?;KPfVG?|Jj3S|!42xZ0+31A$7Rb>uafvrzt0DT`@lop@^ zxA_)+mHebl_NdhC(!E@gkT#(P7A&}wEnykGli~n)linJwcl57TT!7)2?0fW&ov%DV zEcWcgt18PAqyFuni{;W}*5Q1qQr4M>s41yCc7Rxh{{T*369P`A4A?I@Q>6f-m?Tj^ zxg&$y?FtyO^EMpBW?*p|9rATK7ejNivF3Gb_WfajO~^?X$&M(Paq1czrWLcmCKaaP=a!Xl%on znJP&Nph+#-1Yuj<5+^N=ROkm*V(#zPq*IY}tx8&u%%xE}xF=qnI(!Z{Jr)klxBA4X z(CII)1LYZw&3ULTa>xN7nvHr_X8LIjm(}!T5Q>M_>j>t`nSQV%GP5}7d#p z$;o^%peFKCrG`7v`Q-B#?RQ#crzFbKxoRJ*BHl?_B_U-@+i-hzhTH**P^nI$Gv;F6 z%7D?kMN7REf%BA5=}LSfLHVo>lV=kqAS8HGLi@hoZz#~OTewV6GzD9YJmGft!E2NX zlCWI4BT?Ee#FxD*VC2imH3%sv4N8(I?lf)d^ozcavG7o51d%{ay(BAjd(KK-o{L^CTEE(6vfy8 z%*Up++`GHBCS@f`8IY4f&%b`YMm~zQ;TaRxnPV{v+)y!nH1}~C_x(V697n75 z@_|Q)I7y;;HKR78f_05KaH*V(o{6upseUC4>^QED-UbaHXM~Ya#y;8I(1OrmeMo)MP!*}v}GBxK4gl}aDK#}D2c}LSF?@( z0CC8lIUuFh9A+bD6(X+iJJRo>grdx5Sy0O!&>AU2LTVh2jpaiDaJC{QbE$}ZNBErw zzkMTjM1e6Glme0{&rXlad}CQR*a7xFss}s9Jz8JJP1d{0$2aWsnhL;Mr%AA!T_TadT<$jB1 zEKQVFa%asgU#X~B&WCO34p+paiJ?e2lDd+eL3)mr)!@b9Y{)@TEPdvJkl+TuHtCjh z`h}9PlSdjShdg{~4fox?UQ$X@9)g0rzj#QpUZ*?IF{|i!?*}ieljW!Zly2I%-TUbT zI304`HhD`5N>YHL>Hs+DL8W!qcp-gZl_;o!=vWB=3Jv-<MzAXt<7PRfp9+8(6wVD?r1hcGZK6&qBJ~pvNrbX!KGACOyAqY6 zVh}tdg7s%5+!tX;5pmt>RM4dW0|IMP!ES4@_w4@wciU3n5EKLWw>=2t4SB2^2)lFR z(wX2;{*saUU#8wr`!?}Gs3h#&cORTa3yUt(CfXRbW0Ogi+Xmbf+ zG8C0~N{eY;c0E5jj&U9m6J|(S17r&Isydg-$=9NREyq(6&t75}mU@w_K{DL5W)&$r zo#E4n*I<@_w4pRTDBnimxM+rD!7hVJIQK*swW*Q-UQ%@Z-X}>?vWgK(?m6;_AnBG_ zR8r-Ilm`K|BY)mIzV77OP!ntKCMexHJSnszuGFD;5$L9F za-lM;;Uh&p@ADlFu~>Lz!d7WA<}D(Lm|TK2)~APy_r7^*bWuA!SagI7{zUm!@Q~&~ zN>uq+x&0*cVWk|FqeH!-a+aK`Q!szn!<3n?r)%fdNldnNg#zTVSQpIvjeyn_utqOY zSZu{0vWsp9w6EQon!H%_oh3mplpLV3QPlFTK-6s-ucDj>E?t^btboj%J!;gU;!!^# z^o%mv*Qpk)*Wp;9A;o(Aj3wgh&oa`LQ!0j1D?|5<3i`53lDwoPDRAZJL2rnP_@mLl zm zB%xUWH9ZJBgUkl>w|`7RVtqwU>FQ=ALb8U_n7w;liJHh#K}i%R zO+FEp+&4VM4{h_Y3E`thxQdcel3Z^4Lzh#?jgNgDs!&YSWhq4p2eK2hYTWhE?E-Gg zd77XSnuhG$ksD3(WeZ6MLJztS_lm3%<+-J+sj7-Cy|%M`^+QWO@W z;#Fy12m+&_?G^t3@8y5@Nx%I;`$q4G6Dr$l9l2!Dq%2q^UqCBs&q;q*%T2l(h_@B}Gg|T~EHB7^83WMzzcfP)QCw ztva}Y*TvcDGZc7|f;Q8fucy4m@sX+^+dS!H5M6iO3M-}9sp9x&~g327yZ>NtQniFv01EM*0QeOfPJ zgapY2ZUGMFq>i0n9NTkFBod&`lG}0K73kV5>r}Zi@~2Rc`zW4Ic+c(kx2#zn$s&W1 z-}87z#klbJz|3mz+it=*!?%RMlC~u34xx{J?G^IaO-s?`o?V#}3czxweZqQlf`VY2 zqgOy6f!}D(({Wm@2@RMe0$)R2yL5;!t*&*EQxdUSvDaVC-VwCx{pHIA31In2`NF0w z#r~}+M733)_Woe-Fdvu2ipYTP=J1?x8 zOy$B|%WQZZqP6vi#EFEgYe04fXNczGRAnBidr-X}f3ya=?^N2<%S)vsg?IesAK0R| zUMN(_f}<&`Y+#-sy+S}4s&?W!wA_-?GlYP{!rZouIdKE67);J-mWAaYI|>A+y*_3F zs`yEDR%a^Lmg~?*n8No?MFW&9R1#bhx0EE}i_pqjN?(Ql0Q#ixcdaQ3*6c>P!~`Wu zNK-7eA94xQiU-r(87MJxW>1=+24VWBNC$krP{)Qa!cZG7P)%Q2@60h^OQ9(%ViJNW zM>)4A^FzHL?b(Ea=Y_3DD5^lvk*QZhpkujxn!Y+;BK+S+3ZLL9d1|Am(2WUKmcv-L z=v&c5xfZFC$Qc=>qc5|``wfPrTWFWwB4833A^!kKpl{7$Og(BqQJ4;idTQr>TS&PJ zNFGy7Blx9ichEe#m5?)8dF)TSoA!0F6Qh3o}H z6p!t(8IFYR3_A&jUmlMw6WMc#$yFpi>_UETT{tksf$(x<%SxuqDo`XPFF<)#j@oI~ zja{1Xv7|U)LsO(9OtB=pFd@rq+{Saqmrp^hxVR>2Wdy!`#)E=;?9lIh&r&25%L6%J zNe&X7Nge+H7(8K^@?7Mg%}e^ks3{CRq`sXf`xwxD3S%|ej@Bjm6A<5!^ZYJ`#6O~Cx1^uJ4Px$oj4wn0-&gxoHGZ9q= z@)~IsRbb5E0A7QJ>DnJ655zah47qHSvPDa|CAJ$LUMSu8%?b>okvUaT7$}B(uf0dU z1KwClYC%y!T%?~72BXN4LCA{pFtD_tDM=toIfE88X9WAH2-010Q!>{ogDG`oHEzCt zSZc&~>Qa&j31V0$ejkWS#8+~q%uLyC=nO&GhMjbU`^z7C&~lFvIaJ}9wS{?MX0$o@ z$p{HbwNi6byAz-hLS*@qh)U=Sfd2q}{Pcx<6=D-+12rIo7i#|i@%MdU{`|KIa@8=A zN+h@psB-L0=%sU^Nt^1)p|4OyAEY&37h=$mUoaJ+bsypZVB9}7YgMLVfFL*xLOF(8 zfj~OuE5b>ku7~T=4k6@(0D!eH4(TLS&fmA;O2+txU|Lj?qD2By4~h9LPo}#=q}xiZ z3d)4Ew3j6G`F1snmf3l9mX##aGgqh-)+m`b^%EAPg(oVV-WQ+S87Ody*ko03&mL_ zjI2}!Qgl)BA2>H~*$k;=Dcd|bAv%gT_vrNRILfb+e4w>=?pq3`_2nQK(QT_~Vou%q|iyGPLe zg72*2dgxFX0z(j4_uG;w8AqazL+YLDCCpN#s$Y-RwFoAF)KhIp=^HK=^meIcV9Y{R z7=TzXXKwVQ5)gho$EiZRY0MP)0!eym0qgs33zucXI(m|%p-GlTXH@_jh9Sbacsq;l z>omN9Xc-cwOI1LPeCZdgzL1eJS@mAa9YF#3W}=4h^-+HEyp@nkQoK1p0qFcjF^X=* znV|$JIg2D}JiErlb6lReIi`Cdm<>Ju0B8q{FL^0>NK4IZqHgHYiB_*otM7^SQJLDk z4y|lV)&SKdHE*Hm8wL?y^ww;taV;Xb_dD0|pk5oamAD=yB_I;2mgld<;lmQBe@~Ut z4ICN*H*ODj2C=_NGv{RWf`wEAH5mSu?G&(v9aPk1NXeZn=WgTBu)4Vx5FSqYR_bR<|<A<6#$P&qokPO#5~?gh)5qcUMriaQT=1$Og_xW-~s z7wbzWLN%t|denU4x3kC32KJh4*_480m1K2>Vh9@OkWCz)F;YI8!FPnIG9>~fr71uR z0L#{+UH4~yHSsdet2nczDfLwFwwx2sLGhr4dkw`sDj_QZ%v~vzvf(KO!)izRw#p%f zf!htFVt-2VBq!OHq@BYIpzc0l^^cOhBjY7oEhPz+mRinVSekik*@v{Qv}h&i2H~3| z&6%AhQ@&6Sv~}v^+-nrQ9Nl7K(zOCL3_X$yWpLCW@1;)=zFnr(dDlASOh8MpNMMk| zY6HIozQnZNs&pKo%9$xm3W*~}*baWiHrzSr%`*^{Ph*!urct+c<~_Tt_EcI7jLA}* z9Ko{@z}S8b;%H&`bN-&^&Ka1?o0w*pJ)V?(Munf_5lR05r>ji)#$6?cIp(WeiPtFD zou8Qd6aHNQ6d(kE7!j#Fo?%Y+yjB9HOBt2}F$9CppAn^rWR}nRY$!kpm;ysF(IvM# zzg~3EN9;rBdUUBToXuLaQxWRN95LkULq>;-vl-2pkXV(MbP-gw2|IahNOoPPHIYR` z=2BX}l!ejy^jW~u4T{2vN_|wPELg2si0e{JXV}9SrqwklT%_ceQ@K)wQakSYhNVb= zzLWhU88Xu@Si-)_76#B}yky+k>Ppjk8bF>brNOY|>VjN)*H- z3X(`~Blzzbh8?q^R)m5aWLA2Uon)PQjYnwC?YN%MR+Xk&fJp$TyQTL7N>|=rSg|_z znJH;N1?sg-54$+%u6E)a<7s@KM98$tmb6qjVB4|V`K(g(iHNMJl&L95GiDI2J|y`O z{5Z?7w5ek>$eDLEXUd$4n=)ZmT%$5UGz7D-`MIEAHYrzlS`rToPnAHAneiRQY|6}LlEEO%31R@< zO-F57lm<6^H;9umOurDzm)iYZ&ksni=zvz+ok&}t5`>=$%{*0fj@@A&8s7m4Q9d;( zDkO2)z8Xfeif?2YMp$Q3N!7DA>3x+-b00d)y$tfHNg0_=tiI3yu}D=$fTjDyEvkAK z^nWH*nHKv<1k5?4pgVv|4TuF=oft-oBNU}`lBFjpL39njZ9cG@Z^UxuSmgS$6OaH9 zosxhB8MMmP;PB*!qkEjKE1fmM10^F>Eb>PKa}^VYtLGS})&(CM*18T{^!GvzF1?Te z8DBDuN3_Pfd>}qQ#0;YCe^@@5|uYQ|iDWO9U(Z28EiSaCOob zF?KS@W;taK3JWkP8Y_D2YY7-{(lXOD1dvLDxuO36ZzI+#mHLUCe%o)O+qTbQlQFX9 zP|RATWKoIRO$p|-jMLL5HA2v{F#>=PAKCoVe)NX?Ep)EZ6*SBVL2w#@OiP}mZUF1V zeADTo_?VfBlnQbZ(%Pk45~Jk6Yym&26o=>w5Mvif2mlPHHo$|U9!JJH^eO0L`su{X zC)I@JEdI>}R6U(&LHfm89scB@tTIqMr< zawjy)eEL4StcViMRH=f1KrT+ypem(HJvA>G{l65T*l}VJNF(j=-r!YP&glc-! zfSwzX8keJd4=rg`rg#$o{{X^*U6M2;8YZ>muy%N}hA>o#vmA;f0>g9rLp|wwOO!G* z07_}Ea}z8CtMeNb&t)ViBMBEUAO;#!>NW+hsh3THfRyhfi#6OkoBy=2t*NKH+227$YS-&oagucUOcLQ*o1 z5o1^AIzb;p>-D47kO`Qz1_rd;@ZDmkcLz-G0az_IBoUD%N@J8%htxIsz|SmRAhpDDNe1lZy1`(AQYsqP#zh80;=p-bGFos;`zH0r4%S7O3WE( zXIB*(jXp4QtuL;>H+lScm%6Dnb+r6qiiR!1qv%DH-kv zLB^|_Z7G_x32T;oBrDnMMMygNZxPt8%U!7e%a<~85J*zhP_=FWIgFHH1>Eey(Xx~wEnHoXN}5%J%o6ixMCsF%wGb-3OBz$Y$5`sm=;JHeCn2c72OmoF1~6sAE>fLKB!(*npm5y>#vbom z+&r|85)|bG)D!xXt3I9`dP0(WD#`I(^)V}ynJ$pPm1*RY$Y)dT+Y<*Q+NN5PrX&;L zD`w2wk-t~3QeF>>xi*EA`m&QoBR~f4v%_tw>oO59)ub>a6RGnsvuWuI3i=cT1+8Eg z{UMK6i}S3;MqrRtkQO6G@2?s|y~%A;D>6V)C4hGGfC|1xtXL^DE=JvlP9nLStS1)X zt7PNrCLqd6!BRmQ0jcHmENdFi{W;v`M1{{8lvY^|87D67xd&=$I~E*uY?i4gQ7K?R zb5a7RK?7mC!=324axAEpmQiX1wKoAfbtGzDCUr1jPZwDX#H5uhva>lknC=eQd1`6I zXBV~$v)U9@Fc%J?mBwWnF&uY|U|yksIYNjoPqU>nbLG5eR_j<3LQ>h4Ruv&HQg{bp z_K1o*Ve6hykc6otDpJZ$gS`z%*u6}A;ptlo8P=qtT%@5X1Sc+xS)ZK;yLkEnef%YV zXcjG)k@Aer@UZ92Fp{quxT2CCgS2a`&i?@P<%JU_M8a52%o0?701haA5m(X%FevrX zih@c(HQo36{(E<}E zG}cm<0ALs+l(#&?P6D2ZC@4rJ8K}X6TlDoG7+k4gU(!9KNtrDO51g_dfG3Xs0BBvi zG5C}g6qRO4Vg`-K<~00OV3#xdvl8Rkp<;*Qp=L3LV;iKKY^hSoDOvHT4+=)e8=RwZ zNhTu|1#xaCd1T8`QdId_J~R?H_-gfiBO~-&RBic`R0Osv%c_9Zx&nFI-5*C=u(Yc* zmE=#XP)##6R6+K-Gsn-D6{9T0C?rcOCCJlX#)a86*;38pXe_j}vdGRGDC^g5H{8aT zg=}fFg6c_{<=UwLZ2WH-zn}@p%V<#~C)QATVt$xAZipJ=nB8aD6OkF;KC zwGT-cl?y_^T5>EDt1D(n;XAR>#*a$0WB5-Uqbj5T%;_8{FYxR8msG=dy5|xW25JGX zk!{~jx^E2_E6|mpQ_{JKU{vbN3j~dZo^Pqxh5_U)I9>jTZ3{q{nPeckhx-9vcV67Z z-$s{dMXdpPG1iQDR}C8d{{W1AT&$@{NR|Q;q1#|I=W)sB1jE?t{{XLMpq%8ClBU|9 z9UZlavPyCERv^4VNpgC14f2dX(grU=5V>e|ET!CNo`><{O2t+Qvx0qAUuE4?1Qw+? z92Shv7y3R>RJAMvmZYaebUYAttUcNzD!Xyi#fb(D|> zjp8CRQ|G@+SNzqiAt@9d9J(kS$mAWmh}iuMT9-0ZwJj=^u#l34Xn)zM#T#SVFWN9f zsf$X&24(<0(1(8F#aZVRBs$V^B!_TL&C(aj3mOI_x5)uYDj8ABqc~lQi`hjKFkLnjT*hrWeSv+J|LQaHHRh@pz5$DU@3MaI!PPTU$k+Bu;j@L zd4b*a)sCKDFDNNQ%|=oG0JH4S?SEK-lvJ_@h2KU8VHNS-(J3WXM5Rk9)k9y;q*p?K zL29tn^Y!8{-4-OwmPtBnbvziF=D9-7Qp7)qje0ahi(+T{(D0b2ieJ6S|mW6uRWax9Zh`G@2&G;hEqigi2Dq734W!K}g^AB>CYR{|^=A$rw z5DIR)#-D7vNhv>|4L4(?XE*)dG))VaFEVMEKZm~OH($Im-F}ej5VW$BpyHpJb=DlP z6)%ejvQ0BXn(x=`STS^BWi4RkcCSv&1#gTht3noiYC?)hNg=@F-T2V4fYfD766TOq zqq7bv$k2H~U@rPY#8aeA^^(#IwH8?2HP?V4s^!H_kQGz%eH-o}hV{c~Dn76UB%Or^ zcmsM|87hIUfCr>3za=kTw-V-~GHLZaKPd-r1>Z7A2`+ONR|BV%8N$-t3DnR%KPv~n zrAP+4jrKhv(yx8kf|5eL{{XxQxv$153Ij4Ik;-}M@$I7cW=V7MJ@{x&#Zr|nY86lk z9Vxd+R+;j0QhY%*J9Yfl2*|Pmf0?h5ZTIqy7ipjXwHWY3SS{lW z11e;)y;+FMyneyB23pYhTru$-j}Xv@2_-yK9X-*13f=%ENoI4P+xdlok;uBH$eESO zQ<;TdQ^w7+#*aEsG$Monr?pR?G41z*{bQ&poV)4=@e*3>#S)T9e6;=`7+StA$w^PK zP6pjaSc=VT1Scri2hsZd;JuDlty>-oh_yQiOGKlT7d>h}_2It&cvwMGFwBcXX8;uJ zKUWcY^s{=FN@y5Uf#2Z>mt4Y`t(irL4*GEXk?)2(-uqBel`&2dkR0lJx7aX@<%+Wj z_}>Q`SP2C{p-u?cZv89rjLXta2bnCQUR=ptQmXCG2aU~Re8M->wdOh~h74Q-2d_*# zlAO!Rs%UHH(k@LdHSsmB>j+pX8JUwn?B7p}9ON zLs4E@dFvmB6lNedJr4d*Vy7tiZ_;s?jFS=z1L74FHh>*H+C#j%enGMD>V8qbkCuC5%ZpdKu?Z67g2@N2 z-9$OsR02{#tq9mLj7Zy)l1VL7`AF6*m$+Ibf<+Ni*J$gPV;p?->0Eldd8sP)i)efM z<4(YMf$Z;3?o}eL8in@g-5+?!y*SJw(1p}^N?-Gl1aN)yLS%rTKp%j|A1h}qbY{lK zblzXw4^)wqhi}H$e#b&KeBilrq`qxPQ`If`{J>ikvo|gd+6b|BQfUX-Acb~2#1w?rsq8G0G8ih{^Dm9~U&~C+i z1qY!a(&ODj11|gJUbKLcz*L>0iF*>^2}W9h)S45&Q`Q$ROO9lVIaH~R5*sV(PW+a7 z_40%GqW374X|DW26}K5oT%e7dfzbE-_`jyf)ny^cN{1NML{U=y>yl{E1r972$u6Ex?UBUD+uT{aP}mC5oDv zwDk z0bqkd1BDNTcMxuo4%uUyCDw%!ozYfpk3u=#3}Fiqo&CcwfJG8RGPmkQDDmZ%%QPin zyfX{0n@yi4lkCR&~MCY{84aoZ5J ztY!tnfCj#M5!NkC!s;PJiVBWTNAn(DQCg4;MQRflm8egI^UK426}rYk00V;B0kkEm z$Wt|oJ9`f7`gRcQgYh8Cm0&tS1FLk0$FowkB`8vlHHG{=hI1}t)sh_eLUtRu+4XNd zVmwnJYAVPS5~_o^JV7iye}tnUAS5M3 z5HoH={xoYBh4~~*67veHFnt0^)$69f>kL=j)SQ}y%TV&+sk=6u=@HI+j$B|k68l0> zq$*)T!iWb@HuFh_&qr9$A6Sf}q^PGdkF{TE^we!eg7+_>iz>v>C}s}`{Ucg1(Y9}( zgiDJGs?52vRHn+Kktb43KzeHQjPk{GT5cd|lO?4~As~%3QQEviEr!)9RTu%e6@HHx zC5sd)Z1hQ1-OinQY1hg&J3Y{qqy;)unz$@De~8vJ<9^d-EMC{}&EO|0pTn@~czqy3 z{U2H;trH2$EiOV?)T6O4rwkxP>t$7)V3MWKon9Yst~XMU1Jn&SZoMG?0M+axyzp|B zErSv&;5mx;KK4w%2~h+VW4l9SyF%ru{{TXTS^VBJyiaxkF>6nST85wx$ow&~?819T+DM(-nk_Qw7 z=zaS4iQPL3*y7MvEeR9~J}T?SW`&E6&oWZ75~U|lreHo%Vr{=P@QR$J`WJF3`LsS; zZOD|CEmV-?J0ATb9PL|!xK{D?iD6xb57rG|ch9Sqvf0!USPIk)I6mFGm(zRu*)PwB-t8Dw%jdnCW9%CiU0YK45eL&oF zJtAi=@bjY`$z_^n{{T-mX<n94qYqAQk<3>9wJOZar)_GsDP&o z;;sJx=|OunxG8AN0m@vCY4YF72uw+t<3eiteB0?4f%DzJ(e(Lq2?1GkOAj*+7$?#i z!Bn}4QbJk5(MOT_ylQr9dV=yVP26aH-Jxd}T=L3Ffe5I9V@>n~^ogP#aP*0D7`xCG-TIAL$HYS& zp2d{~DceD-KVBc_(h{sF7IkNq$|?*&>Caxrcw(^QnMEY6&_x@sPJHx-Cgc^5rT}P3TB`HXqMtQn1xG7&K!d3$R3=SUb$}>vsR?)5VKP3YfszcBS5#! zApuE1D#}3usVqM`)(JH%X3=LBt6G!;WdVugIQ@yzHM}`u2u*6kNX&4g+>`SuKoz+G zMyMp|w})U4v$ZIl66U-dtt%NCfSt(K$_R9^=_2_BNM#BNjT{{Zaq)|ILP2I$ZxIB( zmE*J}rg)odF2yN29SIxxM#UmPDFHlog~z&ec&##pNPV{r%zABQS^!)yuf`XD4!)z zlboH-{Qe)TEZ(ye##)Az3ER6uv|*;;#mOlFvpPsn{WYaJ#T#v%NtUT;8kY$aso%SA z1Fp<2pc15->rFk|9$=KaSqfuSJD$+=V$!W)5)u_c$1xt)oFiE6#WPf-sel{oJ3-6x z)#9P293RR?TVusavs%1zo>5ncRX!3Ai?U9<2v?WwIN0nsn9KsC9=ne-^n?t5XtXMF z5hxsrBRcj;;E&Y(IEOo)@{mjB3US~go*q5Dh$YgN17Ex?JX^Xj`V^K@LW)2Iw|}9G z&lBN;WSnM8K+3AH+4T{mT-UHmwMnfu9bmP-%$dl_K=A?{t6k!{u$jHnc>3u;%OIsr z9GazDgU4eZKl)6xO_Mm#GF4S>6V!crMx!?cPqSK7i3&MXYClQ;0AL$mKPX-Fo9KpO z%GMM~DFIryT5}omn;P-B@6gUF6DI^Lk5;hm`;W(uq%62`L}mm8>MN)nT%9SxG0$QC_a!-95aD1acmw1F7x*Z(; zXwaeh6u+;(Sdx_tzov)tzmx~C+#sl}O35)GWl*EH`7=2^n40iN3}1+H1d~k4*RNh6 z)!S=yKN^^NnmK;nsYy!aR3HLQog%FCqGEwU!2~-EpPulkitR3ph0bCC-QQ^ahAx#^ zl2qz0XoH{|*HhX8bLlSudgO&6L@9^~@Z=-)6%q=x3<5|lUBf|3zWpkc5`xoEmI(%- zhdQ+>@``ufCd#x55O(3;rjUo}2Jl3gf_#D#oD``6L;`5$x^(AAmC2{9HFwOlg?iNx z+9;Q%!W(VZT-kEKN{LEC>-2>`LHNlNWQl7aOe-g=Js7v8xmX#n79sB??TSo(4r>pZ3&(iq&I{H4o<;--bGKC$;%hr(dGSUJ{kV=9mY8|xK zc*A`aT7rbdW~mMa=aL_K)uFoOn!i{jl2Q~Y^e6X;<4>IJp~<}hhHS@%Kbpn4vx3se zB%KNUx!+ zs0I`$?KvP91pAo1Uk@rOm-NCAR;3D|2$7k1q$lb=$BmjvtB zeIxa&8YCcOAE}7kf?y3Q!FvQHEX>1E@G+lbCR)^_wM|=Je$Y<$R%v;qnlN$0!c>JE z>`AWUcYnr%0jmMu;aQ{*Ndq(P+E>ienDf$I!i7mGPE-@SP&WPIC1F7<=SuRfhLkEB z2#5YDR;i^cnU$HFPX7Qtka{*tbzuuZB`K-^aHlT&kO-seug)HD71+61m<0e!sJoJN z2WZhRY$%B`nG2{MB1ov+zL8qunuN+^7Xqa2VB%UOX1i7;rex+xQ14OJ7F8B8B&ws18?$IRetb~hp?(7At+L_GKg|&YH0h4?@-aRU^^_Ztm*-h zJSjWAjS6+y*AnhBG)`VAL&vzO$#oScBw7{ke^0 zL7?1{rlf*u&zM!Xe>g|8O7$}WRId}9ycg%BQnmU|l`Sfk3oA3IgRcPb`OGEaj88Ih z!AK#ha_ZY3I9|^V_~!X1A^~?$O&!DQxsTa58`jMy}tD=hiU$CCzJ@ zP)OZ8lhzpQ*lBZ=nNwAjU~N}Bxr)jMuN;1qIVIFbg@dr{AwqqgdZr18eo6ss=|3%W zG};bg3=9!K9Z5*a+K#7@(hJxnG?b*D8!%f}v`2Q31@A1XTFSL;-iZ{-E7rVr6{G0h z*CJG-DI}%cYI;CVuP$?<(fhrkX9#0?4GTCrMp=Az~xTCdchL#mzto51O^(Vf(_FRh9x>lBNl1 zT(OyM*+#$5T_|8aBE<6;OPeoJ0+OJ7E_HCv%{oSzgRH)wDJmqX=;PUaf!q#amOZ;s zH7W4bBp260`JdzPi^RWU%k0Us%S5snNFFYL2OST16>GHSmOWdCPP&I~TbQSQOiaXy zYOkzhc@_>B(Y1JgxiF-=EtpGL&Qg-RqEx8swyGKWrrKFIcTXJYyUkMua5XF08B`4ZOU=$0DN4wn%7Jo&n zT;E#B30XN(DoGUabs%{>Wpzyh(cUkaGC@qz#1`**fand_904q&2_mHauh0ks9HcGqZ8P(tYmw#_*ZR8m<(YJ9-1n~2qA z+!Cz7WCd#}@0Iu*ML$K>Jd#$XNHWuvC4zFK00x?~0jcX!Vk;E&OeSeG1dV9JQ}z(G zRO4Z_x@al zRuwJREvm;c3v)Cn#*_+r{Xp*-;^C^pij1j5PeQy3Iawx&qXSAF@DhF1CeT$fSqLPB z6ey5;^oL9H6c18-12WO#1XaxlG^yMsvpyZ^^Ad$TYe`o!iX!|$G;LZm0US(NwCTE6l3YpN* zke{p-RnO|bwgn4iNiO63iK7h|ZOj^|&2erO%_vJs$tqrHidLN)snPd_3@dV3tce+& zDpL~U;nE-MSP?82F;0^1fOi@{o{^t=O}nNQB&At%2GA4X_FQaxMBAloL+LZpLl0Jx ztcjLQDDR;7#$$!CfKuhm_LhT|t`*;@ZM@-%)#!<8mY-QYS=XRYqIap+h8c^@esbP={KJCj0bh+_5CQ?}}J+80QZt+5W zibS_0CovC~SNn8?3@I>3w5*_$DP%HT@~eT+9yF*FA(Z5Ktp@qOks(W(yrI+3795T~ zbd1;12d60}%GPCPn7qjd0K3;-7?0G@Ll|AjnKeaYGp2#bXWaMLbc`Z)6hxfsKls9w zRMae@XmsBhF> zkHbFhMv=APJI2T)ry!M>qygat+eaG^KKwYWdxSr!lbTLZGFtNkm;wNIB`4cX)CAN! zGm7QpxrvkP;+s93OC>oC5c_u{#~Qhl9A6 z4avJ@AQgCvk5-<8SM%01Nk&o$31HOBlTh7bEXLT0GbROO&+5)xs;iI9_xPE;8#}dP zDVCX@u2M>oF_KD(fJr;J9$<~f4+Veib0sEP5PfD+7E=JnKsdkpiSu_mk=7V6z9AmC zA!rB&z7*_s(do1_;hSb@iy#FJ5lZEK{{Y$^WYVmDNA+@3<43D%$_A;cIt41)v1c*6 zVc{`WBnC3`B)Qy^Qfr}owxkp?r748wPzNw^qi8yw&^s1l1 z4PJ}wGSYygtuq2c1W>w0=SulNEGc6AMy0JvText{;eQH4{mYBxBF2XWBqpIhBe3pZ zUGaJX^LsWKbfz zlcu$cmWn%W!_owzWq_2AW&9~8{6|s0lwb5oge6Rv7NA1g*#d{F^y~DD=F4moQWY_I zQi4MEF$u0k=lc#2p?{kN4NCW)l}1mr@FBxq6;MHNFs6!u|Sm)9$-3CV$M$5XiEj( zO_!48xFFwHQc6|=rh;Yc z#8j~*f{k^lXcdR>?D@&bEG0=wNq$y!_x1b6U5R~iXL_}R;65+$LEL#oV>?e%eJCjl zDw?NK$prgKE$|1g&LX%jY4@DLE<(Hs%vPluBy0%PPILmDqcgwkg(p62`KlXV+Bc8- zV7yc(5V=_j<$2l@O7rx8{Wq(YCOv#aJ6B>hW6WrGf1_JE<)kiQQuhZ& z6{C4WW+<{t0FPJgs;bt%Nd1DZNpgavlqE$qK_|qbS<}~A0mMb+Ye)rd^lL0iP?VgB zSaRX%yKwMhhsc^zR71Kv{8Z1rg@?i8%G zR=e`;r&w5Q>k;}jo|TP3C&US$>`tS!YTk#iqYSyqG9MFaNvUo@W~3a&la(}pC6W?# zeB&1%UosTsgZR7DbM#at7hF<%_IF{|R4)_G`Aa1_idR~my-#xkEq7v!~D z2`M33Au9G#KghoPK#XB~XIhF1l)TKPds&H~DK!dyhj9@4JOs{|N^%q>v#1=ymeRcj z@mIdn>AGSpTk5)`0JCBq(rQK!N)o8D5U+7T?0 zP*loi1FoCw;y#YTcBwXLK`9|2Oh4E*j;-d zEDBnr(t@H0b|0sn zHt5)GT)feT(Ep)l1NOmu3@j%u$Ow`DYMg%0F)gR)vm+p@g-@p_ryp@OwdBqLrl{s zO*eg0O(@S6F1!BDC=`_iF;aC5YVWh{+B5t3DqOM=N&sAKxo?p2I>PQ7wXR&HWeLnl zQj0l#slzbkf$0@0TkoQag+|bwB$`ypd9z$Mr-IE^H{Pe zY}u4aD&16e-1+U=2wu10nK=kS8I*iV0rc4;;#lnl_G1?7(LuA&Yyi~7NjIuZKq){h zX}*;l9(IR&eS%m^>ZTPVv$P@OyU{Y_6-)7`xG6~duUM-vPTgPD#H+$iSzrvx*#6oN zjAT~-07)5CM3f|yFJ4=(8=Asps~JtmM8%Z{Af#*9cG9}_sE+U^67}VCROw0Z%S*8* za!Kd&q#DjA^o>4oC@NyAkeXLquegm$@APDewgjAkE0~%vE|q*fTgE?)u%NRo3qqYh zg)9@n)2Z0U(fBJJqSGk=Ym`uGhoI9(WA2BsHJi(^qQz%agsc0D1gYK0=yYz;6w5S> zs51gjh5S^jY7X%E=~~4o%Tm;w%9kwUVO+1uVH5m%?0hpAM zoYZ9p*DlHoHqql|^i6ptWrzh5LP<)As>!2)!#>mlNLRBnSnbHPgDj;=BzV+GNJ>j; zN4RQ9Zmox6-$oXTJjKpKrdn5+ED@NbAJx>CBZ0*uSvQosI)YHV!A@D~2OoEe_ro25C;(H>LA@yEBw)qGj^(aWGMWT}qnXK8`Kscs7=XdKa;1&^B|D;pLZ|~r;reqK z#M}`%Gs-3S5*ff#f=p_*A4Hku6wE)}NO83_)M$7BvG+xN4F$XLxDrZCvzsdi-9@VW z4Sb<`@bq4Z(ibq27AjPt=>z;zqiXdo@Mgz$u@d%mC0UP%bpww&MT^4F$^MW!P@))$ zlKQ^=+ejh%D|#Eb%&EmFEEF|RbQIB_zJ+~U_FRa#7r$mIYKPcCP z{idqn+npqMi=(c`q#w4+GTA88j=Oy0Hp4iK+0@Do$r^j%`c3SWB$p~% zzwyWCo!@A&4h^?vn59mpQbk374&5MzGR0v@^+7pnsXKmDMrkJ(sTSF&P$dfhr+}eC zIuS(;UC4Sca1rlq4myH%byI`P_i9aNG%$=hmf6T`tv0g(ZVc7sY`JB|rsG z`?`q9?bj;3b0LsQoDsW5&vVL`t9!WX+i%_x@yV2llI9TEW&)Bam#?1??+rOl*ImL> zE!K9Z=kcP9%npT|;0Jx7yd&1iBsp}ubmW%a1l;(c0RaU$LTKBQ%xfeiTSb(iDg`XV z!~VyPkcnozWd$X37%Mdbhq7OWtUk@P73MWHbf0uD<18mFQq1O3rU1bs+3N8;p+PGZ z_=(3UP%2{jFdG+k`9h8-w9K=tczg$54*-1OX9h}CxuBXUHD@It><{?{=beoq`w~kw zq_PWcQh!0|{=9A-pisrZh}u}n*-3L(Ble5d+w^732At?&0>faREQBpB!4(7#lkp7F z>_tf+rP6g^`FgiXLhPPhw)Cp6sjmRTO|rm=vht_~8Yw#a%w@Ojf@HkGHQOkuS6BIY z@dK_*b7_#^%Tj>QDa&+o^mvb#cxLNiO^~Ko&aCP+;1=D!uw__jM1qwZp^0Yq7kzq0 zb#2Gua)Q<>k)Ye3F&cgf#1htk0d*aE4WGXd_p`(|-MFD7vC^MG0Prp>DXal9NhA$>#gI+mdnqEWz-H_2`a-Sqjg>SMBv8~h)*Wvd zNHwW*R^x_+HQ}aNS`$OW0Yd{{E}|HMmvddCL;nDk3Ii+FnnI0|!RplP!0S!;gO_Fe z6G9z}0+Gxfj}@^N2$d}7qDc-&H7An^H}OgKOOhCm=UCG5E!-zFk^sM zE1Xu(m@_>-%qdu9=}!nw^@&jor+RSP{?StSSwM0bw5Gk|g zK~+xeqy|@&cv&W96BLkCG%c>$=*F?~CL#1UGSNDG*<<@Yu|!keTZ-3yc|T-Za0IoX zMQCpcsHJuyGZiGskf}LNXEo4}O-|bWZeo5X7>}Wg#$}#os+vGR&Jz3+O6bApKY_YV zygh)D`GF0HckF{$SFUx=RR%Il6X;XmO0BPq6SXM%% zDS48nQwQNgjam2S^uo;+%;!=s2#XEZJ{&NFWCl51>6c z2XCYu2wT1EQ!M1Hut7CD2OtjG#P%Fm6mkOFnrr#i7_aGa=gReKdYYsbX5jVwXiK(W z)k-RxEO=5GfhG9VlKh=JxP)iBbb&TktLCGh+9kT~Bq1KG1i$MfRGz2p84ZWhMAR$9 zSfq~#6<7NA_eRNvuVkzeQpG{YJ3r0<5qQ}0GLoMb>gBoV1?;v2PDo0KD>}CvbdS^I zA6S`cJ{6h~R)4etT!qB(GGDIb4Yb^}Sb6C$1SF@|NhB^_P!cpq0gG(ZtsIgZ z&_dmt9ju|(loa?uZk%(=#;JGS*@F~^F7HwK#;~_;!IG7kIdZwoqsXtjTZi_TS$Nc&`AeQc9&H6oOg3uD`@)-`CCr6}ThW zdKz=5oO1a&-WSsN@%cW9u-eK(T$1~3=40E|{!mLFWckA9qs&|VLIPL%d?S|{{@lfk zShAf+$Oup(rK;gVp6yI;!<6MU7mb$~jx5DCi#4SBqO>5X+-RiGkWRq9!W=CAob74> zfOAb;9$TRJ(k$Hmj}>g6GIE!eO%j=UsO^~3!$trCTXurpki8M2LR0F`s!~HGDX0o+ z3T%2Bxeq}P3<*}*#EI*oj-+wkEm^U-6A(+W*YHLE07ush#RKbELn#XcP^i#0tlGG0 zgUA7Q(%uc3A(dwtQbj-{l#^1<^c8L>BQ9KdZ$Y|UxU4hKf;2i)evJwE%NR=w3Jm6o z1LjZTMrDI>Qt}5YES#hr&pvTl*=F^{V5`-rF*T^;?qgee?65}iB4puK0;6(4+4QEO zH0d)|nQSVM9VsQgaYq8+X(*DC#bl65l~b96vE!s$ysrc6vZ*AXGau5!Kzh;%$2}&| z8>Zbc0ET6d6nX=p16KLMx20r&nR7_~;;K&WbSiIy`RZZ&7UGFnWX(WgMo0eu9&5Pi z3U~WXS`ZTBMJsymz!2}EB>D)G{{Yt$jP#^A@RL(c6ztp6=1gfA)?h#-CESfDdVBYQ z((sxkEGAyT{JU!nSDns~gs6Z>)QX1cKN=qy(B*cKvGnumku|~T=)RrMb z!YTpKk=7A$9f5P^9E!^3rJcOGcM*AbxTt!!%T|7Tpy)^d1haFwc-F~7CB1zMB~wC_ zvRa8JPP82H57vAkC|NQiDpnoH(T4Sl(l0EkqZGf0C{?#=ACwEkx9xJJn1?@am&PX` z(hY|L%o9xDT|cL(MaOUl_Z8ycSs!YH8l`!@$`K* z(miQfR@&@qsQeJ&==adYodl|DuQF(oT&G6>iZRvAXakxwn?bQ&64x$=I8sZFhfoXZ zHrU1^hVXKvTP9>tRFx@8N;M#pS0j(CX~zW_M4<{$LG~Pb1AsIGr)~rfw_GZ*OiaS( zF!tTWd4F|VSTj@962)^SD$O$@N{&*RP>OA&CE$-p>M{sZrfOXZ%pI7pYG_&9ZyG$@ zLoEn!TxD`zx>Rs{=@<;_&@OV+fF+=-M)#=oJ?K6WM{-o!>FY?!pAE0>(4RAtn+O~L%yCb8nHLCERUxl+!F-&)X6Gu9mE z(R^EV<2g2oX;O>Ogzyj3R`)^${{Vqz%$B6fs=qXSJ`mZ5FBGgW4&%h9WQN@JYIiNX zM{B;!nW-hruheuE{Mt0V#Ck8`SvHAC^;3dVmqIu0ccXFV2PV!)4rmVNp7DO_#4=|E zJu;RLqK8i0!3)OfM8stw(xJCbA;>5VnFvvLuAL(F)q485ju<$~Qu>{gdiLf3T{D1~ zq){mp0PEk*2;Vm%m@NbXO?7Z0kx`E?9P$%(XpTLcjg#;)1a?O+y!4DwmaVls#ID7GR-D z7UPl$KKFt+PXB0S@S++@< zq#2T(L<5?h797TPcltS-Xj)w5Qj3h+KGpoJRf^(f!uP^*q=Mr`G2ixwTZ;X61w;hY zcH{Hm3U*&dDv*3WA)=1ihaY%W#Oj|VX(|fKogk2}(n!>BB5k~3bZYdEhvm(e>kyFg zooOi!RJ}``SkN$FE2gm>(Tf7mpIYfqNCcnM7*IF_HGd6Uu&tjmK@F9-aTIaaqtr}D zn=Xn^w4G8%-P_|Ay9tzB7l@Z?nzjWqJT3(X55Wx2)-_Ryl7s@PHu|{j3z%mDl^0mb zUZY{eQuLLEeMl+HK~Vw5pdB@EAE^37PL8xYj~F3kl3X)^v+#RB>(33L6GX%&s&^^< zC%4WAdMv{zKnbZ)@erfpS3jB!2GH$ey(Nj05X_)ii1@krjw0rgrKa>UC8BDbY0Sip zTTjhdC4n42Efu{RCS9dPY~HMzJ$$*1ClgF$`l6zg zskPR-KGkn1Tx{hvSEhS$-y_x_DTgV22cOqiaK9{46v|Yz)G#eZJw9*J5$|jXF)cA9 z9}^IDKl%}=8vHkdNRXw<8t_5Y#WWvCNsgxB2}L8+_)EC@(dibi3p~_HEIeC-xakWv zJH<#_F$E-YULUP94Achph;{|*#3Li&sYg4Kd^J;00riIyiBeK>CZ9h1MtgWIQi*e2 zNaOAx&KI;zAKX$iAnFFg{D9rJ97Rf4U$o<*nT2H~#RKd=IfqN5980vLAqjS66Y#G+ zpmp&w#JTEP4BPiz~V;vcO!lWG&cqZ>zy!hu)YC2Sd4Wv3>Vu=?E8&2b*SD zQf2r*oD)!>pU%%GhC z*MksSrvo!6IY=+vJz%Ad(wym9%|kbBsTVsYJu>;pIC{?v$8b41{6uSaCF3g7Ey@{S zc#>$%`nY4?>lsct!=w81F{ESZp%hR(L8owjv7%nqaE3}$M)mr` zDh(pXmT*}ED;%S7+-U``D^ILaMG8i(ub&ZK^p=$*7iA=EsgAC3E?P>|Kn&`AfY-6_ ztHXo^i15IeT_-BDP@M+=^o*m@AENoHqQ+7KzqFmtg#CWere2!JOtNYEb{%};FG!dePnM+R%0|0* zPwEHltY5nCgdi(053y+G^1O?9R7f-dTZ6OyZxvxn*bWZ#P?<7P#3+X#{-l=Mqj3tC z6}4a0O$u32cBr5lYp0xO*SzC8SE^2FWtm;}BaN%_j8@-;XV~Wg>seE|sRgPibZsbG zy(1o1JuY_oDnb&Z0jfaI!oA~XD^s9@l7^r+R^Ls&u)iwuv=jp=^seRi_d^~NmQ;eJ zdqRW|$G^Tb-A)F~wdH>kJvzn9mlq_HEas!LH@wDmdn#(JWd&>;fYh$eAIr`f?q5gl zobJm@l{sP?QPdq+^n*>H*lk-1ozDmJc)OhPJ`tVSuUWEOs-rDP4^4^Vu7W530KZfI zNs7edD!%MHUzciYU3U5a%$6j8Lx3HI$A2z2gd8_uRK%>%6)2GU zwt$`wPn2G^-E#!Iu0kENAJxkqdT{WUZmZ%8j7&*hViWpM4L_I%f-rHKr4UO1#ajhX zfOsrkypCX<;bsIPT(yt|Ng5Nt;g06X;h zZ3y>Iqp-PQd5^3lsg8hbAPwhf4UA_`?K? zZRWW$mn`ZvJv#B{3KnbJf|a=h5OVU}_Ua+R_Pgdxo$7%eC(Qbv+(Fw`0F)3CkW@u8 z9nSFcQ=}|Ki^nYh5m_n2ZA*;6mjACz zJkYeQB;^D-(@lH9gWE~JZZNbcW@66!0yTtt1>jM$3i@c{2h_ii1$?t42k9 zVpZAZlr02>mj`aXd;b6sg@e*;forJnljj#D`ZJV}sfl#0PN7=)kE9O4H?f^OOCTjI zNdEvOFnptG^IkU*r5PzueHyCh-Sq6kNHn`+SM~~?yo*X%DNxM%ZBW|NR^Axq-XSCk zx{?4I07k7E49jRK2?P|syg>WQ56YSVBnH!N%?exedK-lo>zyTD$){1)4PtwdB1tJ3 zYfimCJ@Jy^TxsfUGo>ZTN~&ArVZRaMA6SBcOv7G3XnV7C@srzdqG!!2_6S%lqqo5G z^@r=K;K`Jq5ej6Ms7Y#9Zk-1ZsdQbIfi{OS0MP3EB=wCN!9O?#taoN($8igfWk&3G zqC+PralViHkBoR`q#VHyU0$XJdV-%G!RYnx);qcHoWPc#CEs4{7qik=FFZuA@JMjS zpXcWR?NbzTqz`Df9uuiOwDS?%+dxvq2?YCH;pRoknQ99q{5}+&+h3$m)b=bci6B=* zznR(-@v%T6Xh?Q-9jT}9L#vayri1ye?Bm;FQbL2{+Lu5 zDj8BX*}L_Nw|*)!lAw^5E)+LoxQo|sqiHi{fKd7sKF!B{zOci2V99b=B_$;4c;Lik zrpfUIht;VdDEPn~x~Tki(|B{0gCxq7T^Y)mPHSCU9l2;_xB4-Zv?c1YStPns7 zfQA4X>&%v%Hqy!xMFRp(n>gki;rk*Dvk6($kufL&V5uZ9VfXjL&L8!Dt&91pfew z=-+r@v)e&P1H_<^2^0ag2Yy|lM-!8ju<;VZuV}dln`pQvFZ+ljC@I@v(0*+WvoT;? zk_mMH%ck^x@M6VwrE+~(ASp=!O8JKdnl%`+=~z(2S0F(W&>8)v&;Z|hJ!|igrR)!e z*Eq}p(<#Yv)vp^vJ%;Z@r58e5M?3y&6Z$f}Q!Ca;SPrK$)&5=hRdn8vnduhyRIsFG zASjns={*k33($i6%te&<_>GQ`ZkcKbp0>b<|w44Dk%cK{{WmYO-Pw3j^T(pAK&wM z7kJA|rc;0o0UFcg980t_EEfWyB94E^^TccE12<|!yDzGejH#=YYn}(ST<@FC1mUasR;yV;NC-=ux*8hSfwA5+99wKqmb{B( zfX?B|3XaK0h_5T3ZhXTEzZHp30ny{yE^kY`~1NcND;+yF<*HS{4loYYhtAJ_Y;D|ryW6;9L z{-H|*DV>9 zk&6-oXr|XqD@X&0ZNYNLb{VQ(y6FAkqC%yn_?J3hLX=5K)M%#BJ;i&&#je-=9KTwz z;h}0hcLFiH!g-gSZWI12&rXr2UGs$NFjU|cjDbqephyl$*fT<3u!D>L0H~iSDG8gH zkeu3A^pUyyMu&v(l(`5rO-UpW?DeMrZLry+=bN6`qi+bZ%k`;A2gCYMPr2wo4&=7a zA3$Q8%3=`6DI|_T=u=JKQ@mDvk!u&KL05q<*OT;w>_vMkB|k_|RT&{deXGR5KqVj&o(R>eq3usNRkGsZCl_@k{3HP3Cu7nRm4Izi zEi(XG&h$M&;sh*)QdyaaAh%EU+&HU7 zXOA&pMo^M-A7txM&bqhp3<$ys^-3#BRtfOs1=yWP)yGXCCfkC<`%kD!)Plf}d`~Yz zLcdSHLTU>`gQ2^(5vgdFx$Ddvm4@)pQGl&9*O;|rz6^6 z$P<-g!v4_ZEy9MraD!vT>v7@AtoFrv%;oavmK7P8_=cOt-x6ckZyeq$nxrOJv?(Bvw7P)~!N>q~ zE`CtKY4lZWv}ZHQWfcc)Ql4rYbZFi1jEO-75~YLy=?oZU8w06fqn#QETCCxc4N^5l z2_t9g8RuGT9}D^mOqC@<(6Sijqb97><>|Ci#rWA)U;ejBT&W}l)Tj^M7_rBsJhp{d z?CqF@fK{LVR{?4)V#r!kMT(%_z0U)F{N;aF3^Ngnj z`Zbkj^~+SXD=ib4drw@%0pir@^k}OwG)vKbFj}ms69#3Z<#9k$$8ouc@s2qOR#zbi z4y2IvJ4M?y#*(q>-3wVBAwi`a2OTsg=(*_w(R|e*YE;kya}_7`EAO*Jnmc!->pbKq zB9iA??kL*(--uk1eWg(O1#+_@qx#C7h`sR8!B2{h%$CPE?c-mKEDS zW6w{#Rl_JU=Z{#Ya>$kkCWP(H9F6u7rO5;6wXZU0?Yee9%w`zs{Zg~Ymn;B1hSV#8 zO;33GChogrqDo5MhU52_8u~~Q)}%IYgYCPLO&jSSKVxakwPwqiWnLq;;6Ecs zu0Q%5mar}pv|Cn`NtU&-%(Co&kSHs=vj%tUV|DZ!dkZ(LkueHH(J+!4r8<5P;*h8R z08My+N|3pW1=L6_sA6hUs~@q4Ojmk(%(LaEDF&zY9zi@%FzE*?bVx0aXDZT#B@+r6 zRY~?rc~|Z6gq%HV7C%^$1j(}&JWL4*U;@B}iBT zSx_ZLrMd5>uGFPtL;nD?gMwA#${p(GZ+|h5;>=s>rWLBbtdNoZCv)4b&LXVDdujLm z;b*d>NtG-sDqNZd6a`8;IV>8a(^{DMzaHWFITo;?>r}k_(w-gb)a~9XVsA+bw9ibW z_)u77F0AU*l`DRL02^Z;K;UmjXhIChk2K5xt;G^F6sV)K@5rDME-)WNH~<2v(|{?M ztf`cwIDhh}EOrN}jmr_;2$dv&fE19)4NwpGkrppdP{LHOl%;MvXz^be-Wjrj;aNpS z`a+^%e#2y&GE$Q6O#=1@MsA*PmwI|TpDd+CXTY$xJLRjN{{R*>d$#sUPypL;xje#_ zI=9VJ1UX48TUXd6`|IVrPtfQW6Jrd?)rkSmvineTO41OeUdxp=Z^4q=CEmW9ev5*7l|a+JPMIq2g~ z@V6pF$!g0pGIE_scl_QT$hEV26bYR%MwujsJr?XW)K^v&Y6#Zvi^5c}qM#i>Pyti1 z(di#K`Wn8HiK~%U0DApmr71d5#9opmStrPtOBs_K z%S#0_Wz8^()7eNb%LlHDczRNkISN`-GLEbX9b@IsNjIu36SL$w$Apr6G@xeVm}A42 zdJvyiFoG12`J93}GgNGPMA4!u^onI#jPjxC$<+LlTDLL1%*INcDJ*;{NFeDL52N2l zD70EqCKr@|R+lUk5<@47?h2~i<6*s&5)_0aWdMdvGNkBf#)G^WBtpI9?}*j{I>T3KoREa6>M+z0Dezi{OWCTc>x zYM2wMQ_xTjwE4rBnq2f>aawH?Q!pWFPHj{fDGygIw%fcs`b(OrEA>i$7F7-i?XF?D z;xv1<`%Huc0jK!U-#|uyfxKoOlyN3tU6Q9~HSnF2$1l<&+Py&wrtnno;02{V7A^oS z!)XgXlWnsk8E6a=q6tVWL3%OS;O-a35+tE06Kks-Not4t!q27K-`6B%O+av7zGrxH z4ShLqt)xpifj+Ewi67!TFS~MJP7%M6>lRcJm6AXwRdgNpXvh5(`bkRc;#%BHM}#4X z&DicfTk8s#+VY&TtffOLzf1U7*GjlLbsgc+?erg{iOHR3n1HPlnuekG?H@5-c3_?X zPNeS-*M0E0vJ_Scn52}cPgH@wSB%pbpdkn(5ms}mhK@$vqWFvH#vHwrg?h)RR+VOY zM&)4ii|ZwmsSFO_X+SkR{{S(QVM~lp2tZi@*LpG<&VXHi5Hd`n4D+-k% z%d(UlFdM#v508|68F3)l(3S~GQjt=8T2ztrjN+J{DZ31@H`WZZa)6YmI1TvyVJiz- z#IUsG3RB-*Arv&&ntBSzM}c86a>_%c-F%(N{asIZnaWa`9kSgGHl zd4(~mXIQ;dvQVTI1yij^_ZpUoJqKd+D$_9wBQgQ?W&N?Z@9!i$AH?cYOVe})ulr%zV3zZ02g_r~pGGA&Z&_!5r_L1#bZ-+DrSq8~v^Gd*9pRfJ~J-PfC(yg&gUvv5DR-p zR-`|m)G_WS3wdcShCV&phU=sh^izT4Nt5gHf=`IJpd1i;`{2$S^nEH*sY)|uQ7U#R z4Y=#APSJM!ybytrs%VfXp6YG`)6NTijV#GB=O;iCM}#(=I!0$J0j^BdCeN8EQ7Q>h zEa%$)0P=(K&q&cO1*K|cqASpzoqiD4drL~Cl@bE~096|(8h-GOzG}pNjV*ceBod;; zA=%EvY&`yvuHfHBXp)pFV#%69R73kJI)F`Ezf+_u;txs5LXwq|pB_-5sT_u@Q(^aq z>^pjjk^ut z)sFT`5Tc1rz`1W1RxMAio0!2d20mKnDJL>zr289}`F$(Ng~xdwEw1id)#nn_RFj;Y zn9`in-5;z*N-eU?!lJbg0&7}OK7p&Qu>Sz)!v6ph5V>Uqz@b$WPfl39;!hbs6D4F%>Y|2(AGm^6n^t7z6t8-73zt2ps&QdOC;`uNw`ggXq1-*_ z_EP04TE=G8MwIelPR{Tz6J4gxa!PXP4yAFWdeh_9G#lc^Q7t7p6*7m`67fB~3z(T| zE~Qe3jXv<@%h-hrAEPOg26et->IEi^ux;tAHF_(%X3Lnb(u9%-HBmZvelAX$Zw>c8 z8C0odVMVnsU%~lUlhM`nElZi00w@PVx{2WEI0IVJhOJ}l%al-9lgHm^&ThNVAZ0G5 z+g51VF-{CCma{E+SUKPkuS9?3SX-sGZMkhgpGPXez3Vq^r+FW8s*GG_<;%; z!+V2mwy?kH9>m8n9uTK)Ks<3yu}0^eGEp^BNLE#((a6+;xH^t^tbWIstf?R@I3T4e zW(g-}_iMadzp`t1TGE9{N|MZ^fl4$WV<{yoAs`iz^Za-#a@eNIvL`Q%EF6REpT>kd zZGV-jTAh@ar}+vvJ!uCnSTN^yT}DiROQ~c~am$~Of%faoK?G=2{i~!gVaw?=Wh5Ok z>Urbo0I@X23Sct7ikfyX!W=tgmoXtE4B&W(_*N?1_JEs6m6Wo}X3>by9^vA((|Z(Z zmPy_jZ1-X&9Mug_M=%+#{{Xukm{NiF1Bgw&6F$zpl$DSeY?W!&l+-~4W2}n-M63eD z@x!;qf+=ED&79LEkQj`l)!SAZ^dD#lPyPs!lcwkFAfoQ15JHlbxZG9xKp*>{0-VlB zqPytrv`Ks34)tc7GFKnv{0XvD9K1W__f^!|??U}y;bNUUsDTi7a4n4sB{@#nNp8Ggm9 zVqjuhUxY{~AKd{ii`Xq$b!xcL%rRTm=^LnM3}_)c5l;kwC{0v0anD}R({S4m5P+lt zMPH|XbYZ@l@nWPdTO^UGBU&DG?D6Id$7-|@l};LiO*I}|AGAg1HwAqIZk~#fP224Y zHrz!mK!6zY&v)J@wA&A>Wd>2-qe8`^;4IGWBC$9zcU~a1HKP;q>k{5p#mHWEQj$l& zY#}1ShLtfy1t{ECaIteL)67PE#N&`XkM;* zY&&)NM3|P-XIkW;3Ca}Yfu%h4tQNndBp?LP00)&d_(b*#H-+&vNFU-$F`=jJ9$Z*K z6I4vVO9x5%7`1MaRsvGOqJo7-QrQNxOy*&K1i1_!? zzF7GhO}1>cB@0PQDaqhwf zpC+r*uuMWE5R#Q-Pl-cSeNTAf4cl`{R$;2BO=PGXZ?3#axmsNlQNOPMJd zR7&W>*#LDtSPoto?ARVmsYlhM35ubAXIk|%aNNP1@vFSG zQuw$Q6_pApXAQ62o2Ic9#d1!UEnc(69FXR}AKDMuET&pgR!V}2AfIWUf6W>!Uo-Q{ zQA>a|`Zv}u8As3FlCHugX9T3E=4O9%X`YC!;%t&ih%$pQ)c)THtBGs^U{8Q3v8mJ+ z(wdL7d4TL@N)#3tlHscpdQpb>w5`&&Pzk8hUEVnV0K6s6UxbAy02D=B^!=Ym9f_~< zWhp2^m8houyK*BZ!uFK~6w6nQ3h{$Xr0ii^`VuwciPR=0T2jh)a{mA=`$msqs!nZ4 zuReX_44sMQ%b0~N2?Vlp3jY8c#=~@9X_+m;oR4Vr`%)hpbl^4Neo8KaLP}pVeGFvx z-UC&!L)5b+%2a+M^LWuQCL3wOW1&H0IzErIAGzmCkXTD{eV_49@uNXz%%$tLH-Yd3 z%RKUeswhwqK(K0G^GGF(Wlr^mSsBWkE>T4tgK6FA%xbd}>t<$d{QMz%7hNPwMnLKY zjjv(eB6#GP4%>Z-VLS|(62p*YHf4m=1s#WK2j6WXjs2Ell7$zm_HJU`#WHc2LbX4q zbIYEQ-Q{6Q=CfrxwujGi8cZQeHO`EnAdNvSybiSb|Pqd;}L8W`&DH z<1Tq17f_*A$Eo1#HKY{AHq6#Sq^M^a^(T%XBK_HNsbD27kSc(k-&XhhA*Nm2W#(B; zLufXHY(I;p8D){P62+Z6zcBA}UyCxq0m0M|@Z}T^{<`OS>2u|&)1e1aPNAW~?6euE zQc9C8!yLp8(bbT+Z~$lDcpYl6ryN#$Z zk0wmXD#)?ns}Z66-VaC8&G>y&5}_LHI$F_V>mCIa#GFs2HmO753o*oU`Y*KA9 zNm)v=njqIsx(4^ge}VlPB2A%l9*a6VhZ_zXPr(ZmX0l!D2+!=HRO8K}O9!l$3Z<1$ z5;-5tJ>M5Hy;;cK$Si!ky0soXxTGYYjZR)a8?-d&MjE`kmX|mo65SE>coSG-SO;ncgC`dMTDjDF6}bxIl#2+f5(&`d zal@Uyu~=VaYqCnFsY#Z}V#2>T(5zT;e3XKqr3QC@mrn7O%ftz@O$k$hoaQ>WVZn`I zK9G@-g2ADoA)CBs$Cn+ws_~`yNmA6gh(LGC=hyar@Wm$Uv?^9qkQUt0`VG%b+7x7C znR48Prz(wdmM_*BuH0~wC?4#gx$h5;IeiNN?D!sXND5!9m@4}b!))4lLrsdnB_lHR zC*}0oIm7s%D4B``ZKVm`t*6#2Vw9P()RdZ3fHpC|(iU$UdM5&uBgH}#Hf^8<{{UgN z31w2jR$pm9PM?}ZtA{dWe~iILeS1NB7A^H4iJOWOsp@%!x(X?|ePEQezI2D7)1m3j zKXP}i$X3cO#Vo4V_~I6(;{>T{3DM|5)b9=Vb^e8p$7t*0SU$XDt} zeF!^^MQ8{kri^#J2-s$0WF%z@4pJ0@tAfr8=tl&0kI1}}F@{vF%PC(mU!@~E!yb=k zrf^EL9ZRc0r9AliMzw_SX_GTD*rmLOBjpvg^+HSH=?Mu^2|ypEI(xY1m?L$dufUZs zHB(jFjv;r_f20)4X-NTQj8j0Ao=a4=(Q^Uj2R6*dgZMtJ3vS@1n?UtokOS}e`R5tV zDnh3$l0X1C9JY}8e6KoI9Q!56*GLV7B?U{&rc!}4XJNaab9u%4DqFkfr`AhZqLV|H z>lQsC-snz6g=OUKuAjUodP0!2%?42jQ8iB}u8q7Z-;-xeGV>u>Qmy(w=P{n)Lp6%q z>j_NRYfw|N*w7#L5$gRGAxKojDU=4~=sqSGZY)D6N@7wJk?fx@loh$JhLTuFF-{BZ3eBec8ym1#J;eM>aVZ}s89sgfLxl5Lu(S^ zZ$@(M2};sLqLAT9ZK5Xuz<@5B+pSJbW42-2G?e{^Lyvg@?X{@?_uKci@d_7=~8@|p8dYvKsiJamay#i^R@GHk%*33XJR1Mgn3E#K)PT*pEJNmC%U z{#%i`+9qTiyDeF5;d4Ah=l=jA>}#hF%o@b_hE%CxMM2hbfF6dwXwh!mFDRe|Bq)s! z9Xk0!E<3>J_2>vjeaRXi_TCr9&q-s~<{_FCR;MXWjkF-YwIJRbnw2GDV%c?SJA(fJv}-FX z0MN<*@ZV??gz=K5OIlV!3Me{o{{UDJi_J=$k+E>#&~??d`bAp{ zD^0lXHZGtG>)tD0k`kr453u5}w`RQ)E?`W>)k!%+(M_}S^N6p@`#-D7<1U~bM%~+Z zDVr{dYL>4E89=Wje$jbWl}l5g0^@$VzflUSyjLv=QSlOTgZ?kiP9du8QdklVKT+S4 zu=fb4RF`?-QWUBASn4x#%Y9&quO%v4ivY9jH3NQY4Oo?7NTKmHH>Y@C!d6fbnL{&^ z;a2_PMwamZ0IVxkU`Q!o`Zp2B{BnQAKJg7d^9V^P${ZFoH0}6epY>9>_`}hncna!I zswYwl7oZ&nJ3-sZ?^2Lb65*&gQyRja7`?!mFs0NV#*%%KGzl7Yc8fNt#&VSN2xjoR z2G|boSfgbjbJVrVl*L5V^hkY4+owMGa=ZN(8FIh4=3>sOqizivowTFDtRr$gp>uys zvEm=*qRbn18HqYn4WmJ|6wL{GY@g$ggch3%_0v6JMq+ZDq`vw;Ug8^UwgM=nF(RsZ z_8)kCys)H$RDhBLJ9v+Mdb4TnfOecMRQQb?xcGL76q`2(go2flQsGW@34I=#`F9bh z%$5X@C8?4UN>n!hZZ>Tge>vVZn7OJ%qyj)7DMR&f*Xa)yY&|kef=aV>owsURp26m~Rm-0H@(=^9i+k}1EqjSt2&Dauk1gr!7f8t^vJ{u{=g(U@voff8kaGX|k5X6@hdk&9!y znN!y=kV1Za2iJ&nwcg|-#HA8dzW)G6*Q_15t}!tg-zrG)15kYVgD{^w$+FM0Dpc8N zDk)eRmkH5^!_R@zHhWd>xu_wEbB_=jlf&x{7p0=inL#K@RHTu%yvH|nu32&t1MGDj zpqB+?x3#)#lp``vw8W?-DGaY^syjo@8^AIpAeFn7I=gN8Sk7_fXt@ejtXPpT2ts@(+fkzi z`tb(wPBUf630tM8Ij6w16vTKQO4I$Ya|*tPux&<~?-|{;;#yWEO-aa+;86bnBL4tF z(XHsZ8J>YXL1+xlEAfJNe3wX;{vlJz2d2h3!xjL9kDk78%X4A*X;P;ZjLPc|0_>?K zP#IENEmg? zm+tT0f}C`K81I|mGSX4FX5-)XfHqtFX3DKd)VnuGTE{oObs+!%!I+wcDAh_C3XSiWgZqC(NB@Th*357SYh9PbPlbkev%*i<*%Yo&RkM8RgIzi#9#l_UVk3{qK?J6GKb7p2Ozr~A_Na9rv(FV|>s zz?PFW1$jzR^nH7g*Xt4EJKdUEd_=KeDpY6^JN2Lr>>S1PiE^{CbjwtvB}oY>Gz5D? zVDRrQ^(mB=DIu60skc^z98HI(Fe*rO_(Dg8DJQ0u0K%g)I|wP*G2X`SxF%(%&Jfm*QZS)Th3A~DNxR$k}9Mh5pQTy-TXitPkts` zg-DW;HApE*B}yiwfC*7Log2y;eHB^LENOy5yky~qz5P=1XC}xc_)B+MHx0EO-^!>5(cZG?#-kW17BjfX?Ddp91*mQ*r{{W{8`AGhwF$kQc0hCc$MN^lAu{Ck26s&2tg{aP%new0q z8A~Zgclio16|8)rcVY>sv`nr=se-D-&Y*PXhK<7r-pT*~rvP}CYfcAHTf9uV&U8Y^XZ}@&a9Dw$H2pw*;ZjZs&o{uLq##tTs#3pFiQcpT2B0ug3)+2R9ETymS)y8` zsQj2!+74mcK+H&BL!Y@L@YV{@&vRUfl`Kn0XGtaXB)QCb)ac!y1^0+kEd=La`CaS7 zatpu=Vd)}lla*sOU~(xxq;O$-3tclUhcv}yNT_Os9;1*R7ImqUzQ=6W>VfeRpi42- zj{8J6pQN-)N`sV;2x=N1x6%XS@NCG}HjDrlgPpo`uO8DDDM7Zjnn6Vg#u^tgN~4vpXJ# z{7*>7F)yZRiSaG+hh%$3tn9I>Ne%|x97m(l2d$P&md!$(;)!-~*QaKKXVF95&3#Lk zJJp2%L1k8higo4*U-r?M^pBl!t>ZLW5D;EskeueZi6>Py)bfT4-x|!x zkj%<*I7_inNYN)(EO&pZo0w{Tj<2+)-!*d+n1^DZ^e0nF5mB`O(?RrJ6~-Z8sYK)@ zk`GQJ<$pznb*9)oQwJa3Qpp1)9D5|@NYRZ>$5Hhi<9%5y@`SWyQD&{uDk(?{NG$Ffx0Gb~j~t{ws>)Osl}b+OSA;(*sBnHKO2W74Tw#vGiWY~QP@se0N&O{X>NPAiY7O`*c<<7JSxIu` zfePD_{{SK7P4&!Aeo8`9oTVsWl%N0^ze+$1A5z0YddJB4-5#>qwGcv9r^=sX1_=Q> zIbumQuKN-dqj-Amm1tcMl1hPfQP}Dm^>_N1+wo=-Ov@^$P_!YFT%b~_eaX|QZXypv zo{eRqS(rjfltE7UdYzsdy&}m#vdl}At0`q{4<)q`G`_L%jO&d;YEE3hsX21jI~HPj zay!?E+9zGgM73u?RNxpTCDJKDP92<4`$DcCxSD!F3khJL6p{vFdWvg6YSr2`>wKAM z0$~{v0L&3p6*E7Z#q#7M=cQSvk{J$Es*^&J?C0hD#>aqv>HciQ6;3BI%>s>ERvbRi zPth&S{YAA?RELy=y12|who)w!9Y-QIYuf(+N*#y+6{fw+L^ct9dM=kBDQltxo)8@&MQs4|;Y^o5Nke@I=DvXY`S{j&;pjJwfo%DJ-#1lz=r-cJG`l^S zVIjzt9IB@=0n708;Aki#3c(o2$`hsK2QhYkYySXVy`xFRSdmNq+jtEW_3X!Zz;S(? z=2B%OmP@$WyTsesmwhMVz?GSaNEx(1)DYvuITeK4s#@&@MZIUN$_8x`%;a!-{ooEG znKg4VvCK|Z=czvU*>HXq2$1Rj0LVb~Z=y)mMuo`Ze<;`g05O-kVDw{gCRLy&Y0ILD zb|JM^-cj@y{7jjMDP$Cq;EDo#xcEoQw|&_>%pTb(Qgf?S7d*Cy+yyDN^M!89VwPDb zC=3YLKK)4Ayt#<>v71H+u>wwC8AI1W+ph8Z0^F8MAzINbB}@Hgr9FOhfH=zKnVE=U z3!y=DS0LAI!F{7FzAss_=OLD&hb3tSgO73Yg*}JVx7H&{QJAd(Dh-=Vqmv&Z;yc9K zty7Yf5|p|UupK@Ubs8~Khu!)`UrC;jCz)$VT^+-3(}F|Qix`j4J@T1USq`d|9ZQ{G zq1aNiXxF4le`$CM{ zB36>50Bc28#mkP6nTlmBl@y^~tpp&F)N$=Fu1BCPNXt&2Z%k&Dr24Xz0(Ba*^V4WU zy|0i&)X=qFPC8#ugywj`3i6F>AQfB%cG&C~9@v;Z9&CJiU=-oQaBL%L)L67Jaqk)w@I0uGpDKP)QCdLRpK{ z_CIL(hyJ7S0%odOkWNWq)SX>Mj(^x_-D0HFwp>|{RIoxi{(Bc`biXKkDTyg?FMY4;!?9R5Gq&D@PGE8 z4ow7oB&$WJAt_kPmDHpH$x@ZEEb0S6wMlBmcOzZii(Z9&8Hp1Lrll(>aD{8GqwA*7 z&FOOKIWo&iKv>G9Csg(NL>`XuNKErBK}cBy6ew@81*_152Jtp6K%&7J9-w%fY2;x* z#4w%&l{Rnm%YOoMsF6~2soC|f)-+6Wg{3A*2u5I(0Gy-5+dp$iLAPViQ$N-qWn9f% zXgODw(Qf|qssel@sDi}k2`^F5K?<^qqZwKxOjsu%Kp{yw0Q>Jwk@Ux+tHmp``p_IH zi>SHkdvGJLrj;lU5vbijy${cL)%_A)i$V;r=lo^rkTlny-YV2jZL<2osGhIV znmg`y9VxUV+OR665j2pYsLlFFKH9dZG=evk@o03VPK>Rs7 z?_ZQlKs-%|P@Kf5c*CR(h#vMmBQCPoZ5HcPxl)kpeB=WD5v>k^s_G++#2&>rXRQe+ ze^^Ng4D1e|^l!~$RP+IcKc-EpVMsGZQJo|@ff{lM-Gg=3A4mzso`e%7Ms`Y+pd9X= zYqRKKV!`OTeW0bmOtho}G?sM!kQ1p5sUG;#Jt1B*W~B}P0F2Q<9Y6LRG;z!s!d7OM z6YC06>;pJG0X=Ej7B3lUeGkl#MA0#ivV^1@{lM*B&S8q;xzMTSw^TjaZ-n~7m9}PV!^FX~;Arm@FE*BdLc9PR$~yMwVqj&rb(hvoT0zPQIh*wK zZZz)!F-M~Crco-I#mHG6)6pPk!-MvMwj0Syv;YzSn4l7%4Nlp+ePdF+eHE+;XE%hG zDSDL+N%}?Z02`YH2{MwQEC9f$v(}CQg#1B#Otj2Im&k|9lnNI#C$7}yH%oNvk^)pH zQb0!}#us3*`ipdu4}>c*at=~mpQE&AO}t@@E-Z-AyeSGv4cIqdePb{5uX@kQ;X^$_ za+<4BDEfh~L8W6>#dqFmS%aLw7jI~ew6A!pf&CRqn$zt`bxctxPxv8)4^l&s6`!Q* z=Wj;130B3CHD@c;!}z!N$JJL38kJ^}lpu_W8<71?8LMCBDc|Bvlr*_$mJ_buhB7>B z>26bui}3{)18$vp@`=LsZuF&$CE3t(c$P=@&dziy0=?l63;JGU1n8zEYCg;K>GFjP zMR}^$1j6Z3Toi1u^cqv&zLbG7uF$H63=U~vf_%9K3aHUE%bz>&Y31cOteZ#3sY^NJNf=4fRF)Fl~ShAarB1^n-Cjna>{h6ym_|%c7h(UEBebaZLY3Tf&vmXAnLB%0mVs; zr_oK-H#tUZ>_PD#WO4bVRKL9y87cM2US$E|YBysAeF9q&4CgMihp%6NIyT4M6?%w` zs&%CjwzXYP)RPmRx*uW z!_;d|BU!oqFwK^fNLb8}!9apYrlY@Jv8ZBPD=lFu(=qV39LHC`q8mDpNGH~1*QgMz zx6#g1>|Y97rOcERlF2mc3Dx0#{lqfmO%lMVEaOmm@C+tgct+5bEwG0i4``YaWlfeshlew`Z`jau6xJ9m9*s{7O4%@3CqOM=%At~PLH6XU5)?bozj^m~SaRJEkAa{W)| z=8!iG0Sq{{Um&Il{JzXCM`+Oss=X zbXE|C8M+rO85UESB>1@=a7x>3a1f9QCr0=E;HvL*%uZZ^_EzBN@CMy2QrF?CnuYf0 zHtQ5sV*9z1>iu3?o+#aZ(5wFdBRb9!6rTo;e>H=5<$~2SBAX&W{XWs|8NM*HdfZA} zrPP%sqcgczA9B=y++Wvcg=#~L%=B_WXdNpWPLYyHK`CzmcRpjtpEu?;OC7FS?9%)p zE6Bw=l>p2OS4tRLx-NjF05_~0;L%5^V>ZdPZ^;JfsShJyK)5RyiX?6ZUW?eBng zOYlreg3?k4lXK-7h1w{{ST)4&Q<~^q+W?N~KPK0Y}?ktWmXM&=wW|Np?_XuIlXtFH2YTDG5qk9Zy}1 zDjCJcby}7}f&z^y`gHx{P`WVMi+aE*sM-GjZn0GtM9CrF!jV?qJ-ab(dIPBZtOZ04 z90`~W4?mkl3tnZ-RHTyPpnW?>>&o&}v94pOej#4LeatqLs#E6BfmcrN<=O&}%Xmpt zqL8Ksj=dq;&2=Qp0EeTHc|1anGO`(#i!8+GnwJI2m=F{QW}$cBQ*h5`yi}?IO$pn} z&MF;&_rg&vlo&M{7p_~fQnRe2W;&XCqV?f+%$qYJL3iI~@9y)38`j*JGcweY^c;<8 z2O*^#Rd{4ll7J{$nszY3a@$Cd-K6bcCbz8jd1l z0BFCGwgGR;ZQdohv5*Tn04g7-{Kt4g#1~ieg$k(zOW>T`uO36;F z3m%WtNY2rQ>*Es4DI};nIDR|DOO{DzTPUib_5()i8Rjm%R9aF^XjNYl5)C|zHP|o0 z5|CJiXXB}foc5o^df$9znUyIlHBzV_r_{yk9q<$Y(2ZN-Vw~xTO-(@Jr2T|0NW=%% z20%&(VCJXFD)P!PqDuvNP)o6<)G=z)X-ZH~OE4t#8v)(|$e3tBqq9Q&me8fnn4fA| z72;N*{{X~uvyn}qbx_y156qWO0XXIYN+?BvFpvKQ1FUwp=pPIY`TtE81-v z@`Ug5FRqNQapF0mbF6}lzz}~(+`MborR6P1Qk(#hwE!LdXG)$S3jYA~cbJ7sQ6P|V zhH7&hD-Wp>riEr@0t!QydN38`^wJ}a!D+YA#O5k1Q4UU8zG3v^$>W>S^ajwtjKe@H zLHSN#f1`_}s##0rSPaKRgQm{ip?2}G&yg}z#WByDGD#VO8Y+WLS=iS>7fV`%%RW|C zmeV)9z-&cxph+`S=O`orp(B4P#P{v@ErNm5UOT)C#F()L&ZKJN=eg&~ z7^^r}7oudOsRj0J2>yNi?F6wM*Xssw1Egks>9^+*jCw1yCS2f(&5>C4O zKxXR?m|G5ID_*8ziSj(Z5YdUOQpA-71kgC6usg$(q9)!~%4AAUgbmt+5%uO5t}J$h z=TeDES;5#ogF#fQ~O$;;1(mN5slqx zJ8Y)>MpUf}aH@m)OLp8>U!)bX%NE3C2PR)^jaYoa-0IQZ9rY6BqDV+62+9CRchsKF zSZ^H6w@H+xWhDyB?C6o_`^MYSDQ^zmYLRGErKkojor074U$u8U@eKI>*cB-5T8Icn>j4*j&XqI??2=0Y9M$N-w2gY|NU2QRiX_pq8Un5dBd^Xh zt3BX}iAZK@p1yx5H18EluL}ByD|JgzU>blO-|?Xu`n;1WV&yuAi!fmIEY%L_ZN&s^ zLlh;dG@%DVHm69;eIm;aClQvkVW{$goH=2vRWf=Km8U5JoDe7v?emXk%v_MA07_c4 z)N#jXTEbY`QOfGA083T5?F_h*^l|F*ftzA>*`YyV>Bb`<$dVMHL!);ac|f}om-YLPHWP;_TjMG(w~ z+jHBUgNP5?O}Ba=6Npmgs+G()9Vx6O+W!FQk1~~MOx9X`o=Z6Q{-+sg(A|aoB+MWL zq^Sm(_Hn50H{zVbotpX2n^8w?w$>hL`h53_uPa54Y>(=unX+aq1gMh8SlM6zmv9JC z52>c7WwKt#T0xe)z=5*{?ep$UT*5b`Odf3s26BK(W&%+4eTmmu z@n{W5JNbM2!2xR(dMXo?W+hox6{T2;&{c-DaQa7A&!PFbP_Z+@6P99Ljk9$PsHI`$ zGM1@skl9O@-}7j@VZX${JUSYuM;$)@0Kv!nd~bhhoU0_meu@>JJB3Poto0pRm#3U< zw;mBfB@jc>iQ}OAzf%cDGzktm6uHHZyTR>cK#9xoc$B%HiaQ1s%kCltU*);$Nl6shw5Kq?rR}CkwIY6HF&Y-A2lIgu z-gf^0S2|mt2?4t4?(^0Z?n~`z%aDwvs%huc4IxJ!;%SPtrchRFtQ>!rN>mP=VzWCr z#q>Ha32JhZ0|!e}yLImnOvHgi57Vc+bJjCUawds&1qvWCha;nIDf~ko6;NJKpiAc@@gYJS0=O=wW}-9n&!dDwOI&9M!1&_s1TK??rfux6lyG zM_tF(B7f^o8V$B`$As4~%31-*wyMuCqy|cwfYkOMGYoe{yE4TAqt{5Ui0-sZT1yaE zjs2C69erw`q%Fj zr{5`5mq`vu?jWKwE9=prv?=AR$|*UI2Y{}X+Pm!#VauLvnM#*2)>c_9?B(UQBlA{H zqjAbZ0HagwG5oAt#5N#-mS7kp$Es3`q!K=$AApC)hED1G2UUS2kQfle z=szAiv*B4~CX6arZ}x?JC1_JAOD?H~ulid=q;!W1y4a>?J&Yc}fBamugOMRB8-cHW ze4r(cY{^S@1QSp`aANZW1G7633wKT82~Z`^$K42(y)0eoo04it%7Enn)%hnvI26?C zS_4kEiShzT+rp8l>By`-$dHw!pwK8W2jSWj?#w6wQqp~rz#S-I{a}3eI~$uU%!(x? z3n2u%vDUl3!>35wFrD=}*)7Z7QSSNqKW4~xtCyh8^yIjeLaY_Ol)PC_!@SieJRKTEA`_z~G z<}(}_>4eJ7A!u6zMT&QMcY46^Uh6D-|$ErV3{*8N7?Q&X^{oW+H?>-?tFSGW(q&lu}rJl4?iD^m;rmMsu`T z5VerBgsgifVh0>P;KlpyUTI26s|s&WH0kmXn`OivxP_FdB9vm_9S`ltoHWarNXT^5 z@_X?bOR2Az{XBXwOzS>!QWq!{hW1LsuqSZDfu^MJMt$gta-}6RQb<`05W1$0;5{Ad z*LS3Sjf!wIsnSXnl_(+Gcl`VjiCO&-f&HY+VN!{NI}-a-P3j@uI=(mdv3TRm@`#uK zQ641?+hMSQ7F$ffgECtwDGpNp>R0f_fot>wnphsRDOp33J*VK&s{0R%mAi-0Jn2@C z^iaxC@Mh5W)J9efg#Q5hfOyxKxn~t+6Gj`+_6-u@09I9zN+mU7OK;BKXw&8T7L-=y z!ot0m@PO0+Hq|vGlU;;<#g`zHGFC)*S(d|nnTz|wl6qEt7It%yYJIcUpaqW_Xj`U) zMOl{r09E1&B|wUiUMmf_KI;NvmO?<)j~zrhVr&a4)Q<>dGlGy3;0pIJ!5-U=lC(=; zNHr?kFx_4FgH}9NrJ;pb_3t zlpy9T}I`LAhXp=4TdcYJ#2UDlQEn=xt zCa4uF!kRGD{h_+ecO??gOC*nEHFTjp_8P+}*d><^Ari-|B$4{JegJ(n*LKnrZ_D}D zkqJ=CN>r$MX|y=wJ8(?51>EVlK3hesD{v$vOv(b*kfl2k>^I!@g?cbdH+3#rLexnr zQ@;ai+<3VH;YVcV{57 za~ftKP=5657vy>~N}6JoQ0H2Y^&EppQn~M$rAbzxfGPR+hU-=0PK$5#C7bhDJ(HVi zvoJMnACc3fB-_@xE>%}2D;=SN!#gUxQ&LC79{&JX0f?<)(p4%|RFcX(c8RbYa9qT# zDO$f)$7p9VN3)bGho`Amirq(W75UQ+=93JO>&OY8%~z5O;=W}-9) zuTP9AUbuxaRArSoPlbV_jrkE??!CQxmA|VL07H=Ue&)SpC>4-Qz;dTdpbgJ4Zr5zg zl9ZZj`SEDRG2Hb@Aj(k*a#`!pp5>wI30o#A&Vo`>qL5Y;2+SzT56gVU#vfFZ-gicE z;Vd`Up4>)jec;LBVO+U@DK1i<(pJHOt zVj=eA^n96$7NwU;nPOhxjmaFaAR5MtHrmWahJ+o*1A`OCj{6+Blkk=vohHpPSy;|U zGV?x!hjs7E)}`gyk=L${s3aPPK=#g>(upUZXt5NrSX~ByU~r& zFVwASQkJEh%FSON`2)3Fjx>kM6_!>|R%)vAL7}FE>j-vvVqKLWk~4r-P#MSggVZo4 znxAG1-T0P-Go`#V{UB-FQTIBzhb%j_J*LBDO4Oo+rDRn~)Q(TlwU3>zA4%$!I&7pV zeyAxy4n3!T5#a6HU1L@<{{W~fNF>&$LXdboeBeFd=usXQB4Nzr=yLSmOHp|b^#H&1#nMIV(T?ivihBFyb z)@2Ywr^W3bWY)06G5SBkt6Z$*Y0Edn6;fWhr)3I*K=jrmn=jOxgWY8so4kJpGf z=wAoT^;xEp0!oTQ)lZ?+54O6rT*c@!6rz;-2_TlLk5kUo`oa7ViHDYn`KAJ_!C6$2 zXpi-7H}^+(_9tAmDF#{fU;vlU^?oBXx8e!bTTiaaLLJtSJSw07H~DPwrs2EO`n3AQ zpo-NdsRLF&o5Ha{zK!mL+U*3+NGUERZ$zx+Ic4Ti0UMrwh+6cgc&co&m(7)9PiPmQZJ(W>-iz&o&A1Y&q?Gux z5>QKm59-V`<~6&X;aX)ThJnE}3r@-M_tFb`IP@(#WY1b=B`Bt6O-CWO<7(G%`n~IR z%9Ab0GZKnaIc~$`9jgi^LWTpxS-}N{LdioGJesvfT0|GkvTc=Xn4F}{Wq8YgHet!& z?HtU%B}*)y*Id9=AncLTcZHlnxzmai`O_|9RFqH>0S+9{@*KBONUEqQdMeR9Dk(uE z>fw@Ii2&%`8~69oE%3C8PU;8;v7bu_{{Rq{~psLvRv64i8Y| z5vV=u?carEB<5B|*d>GV{{T2QIy>m8iLOP=Ni&Ek9w*zkm)0x)c8c`96$tsy7$qo6M5ufJA{kf3%p#idJ1?8Q!& z3Sz>ByVO%|(0=3e`6_eEn3?7rDko#{{4jSAVFZyR zdn!@^B`@Zhbl1;FtDj}7SmPY#mZ2(PEtx8BXeU5Hs3Ba3C78l)8pqayB~sR z->b!{N#lXFM&>l!CI0|UKh*^&T0LB}kdmCFwKSms1#Emw+8Q`p-_a_pjDmkwWhl`m zv;&$odXU?k?n&sb(!I@o6@e+1qDE1&P>0p`AZP}p*Lc`)O|D$Lh;*4@^HJ2V_HXhW za|%~Ql3GH766!rQJPwViJ3_6tMA=gbE%SkNzSuOpjLs| zM5va_xoC6IkZ(*fnJFliqM$V-Gd~>;q7T_HoWy#ip+RJ%DsEi@g+Ox72OtV_4w$;& zNkMRO%MOvH4>~^dtLqw07{ds&*#RCPv^gb)P(z&GFF0AHYdW>w$eI~x&Rjcj)30dD zab_AGzGCEssQ_n6$T>kC&?UC`#=&ykvVW+^l&BKReG)-Czgjm~(Q%CFex#w0%Na;O zsZ~Q$jZbcoQ;D(M0qJ&F2u#U|V33lXE3rQo<{qs$s$9m@mKJ0mqov+VD z%g(TWwgCkpokdRd=}G}jA>+}PqnW4$N?Mt8e9oYuzV!Du5btFV7?Syvsb*S;EOZo5 z+yKGy*SuyIW#=~0Gx})>8B`QhN}WtK2qb}Cq&qW*ai&{+8c9%6ilzoni9q<)e^$T; z>^12Mo{K_dTF63Z2}lGnAME>rDNQRGD%Q<$-LmXfbfF@YQpxs~rVdtE9Mlxh1_7Eg zd;1y`E@FWQ@RA3#@5nnH;o5bPQ>KC^Er&w?$fv(8GCQWi-{RNX6G2ifC%uw7PVgo1%W*;~L; zJ(n97Cr{*&^g(8}A!(vOE;I?vxp7wyKsxk`4Cea8fQ-bFr0k8yC!efwYR37%Vx+BP zC0qbBN=IGPr#(YdWc_3AO29tI8jRW>c&suj(QK0>fUL6?q>#D>NMqvIa6x?@n!<8paZ_?ry4`S zA)4#Mxzt!?M&N1CldqI%7d4eKrLt6CS3j$v;k6L6=(h3o($_E{XqI|%MC->S9T-YLF z9cfd5kVBe*N++(rC_it&iISXKM^5}e(}UM7ZnF830ByH^hA3W`VM=WI zvb*MXcKm3}HW}ECRGT7Z6u4(4J8(}tQZi-Z1Sp1AkalZ0+GBEn6#kY<@AI;+yX>g$O%1 z<9;i!F>3_i#YwY(w@R|P1XV=g0P2I* znsfX|(zpiglq5?`w4p01@sa>N6zpD&mB;`R>|@VK_(i2AV$=yh0V7fqs|MKb))lTi zVJ=aZsUn0{gzM$jD`1hS;%qRI8OoG&QK=ud!YbP^yrdu{btQ_61H&{&YsP6)Dw#;r zwxE3BM)>rVOvwcy$nlLvjN2cH-)NqXwsDSU`lYRM)DWbp)6{;@Ptg7}B{MZAGc8WR zWb8SGY<{Io@r3IBCOUB4GB7_ocX%GK(?$^r1D6=r67d*e;THl#=iOtb)UfHI0Cuy#M=!`85$hmx6U ze6F>v-@efCKo^zDWJ@YgSFTl3PJ^ePSV#1Qe-BU;#V05e1z3@xZh0f5X#SV)hMDbV z2v3PSx!8Q3GWnQscB?wTBRkXmMxi5pHTS`CB_E*NSd%w0lcf+9pggO|+q``hd|zNP zhz(4&aplBe9*%t)%(B*C&6v1Q&~lN_a@~fI@pvj>d0-?UF$Xt`-K0;@4aWGcV%3!? z@dM#eE(dRuv_t5>(U>z8K6-+ROZ!eU8nGJF;R0scP?EK{%%2DcP-+~GIQQ)ew;h~e>l=J*`Ahvv`%su zP;S2cBR0dh&2uI$VNgf_ko9nNuTCRQ?ATb+eKX@sz#$1LP^n#Vl67uK=R+8^qGdvs zhA&kR%s%6+Xx3XW?7Ua4Mx_6hrBWR3&nDkEF~gbr6ym9ey0?7>!WlB zn9!`&*^AXDq2wLj0k4_o;Sj0*FrNXT)F{5(4*JLJX@UxXAwB>dRLj_Q>(jhzH--x` zCrq4ulz>Wdxn*d3KJi-7e9BjZ=%JxL)95y8=?~>$W|Vy&;y{ok7FYw?FW@6!ejZW! z`jF*HAFJAZO@9l;`z8TWmIR;@l3cc~D#5jWUJGJ;7id~Ql8s35DE9;cH27{gi1*ow zVVqeiT!umlm@>|!ua*J$i#R_C$(*##oh{gs60HH%+i*3n9J46;KJ;O1O!p;7N`0f4 z6sYczv2Ivu)s2GhvC9k`f`eWUen$-t+JaXnJjA5|Ntc+N#W)9!G;IS42IbkM`m)8; zHX@<7J^bDjJtkk}GD?tgwuL&@jtJrRg^Ue-T30P0NKs-zSNZVd>$Q8t^1a|EdSjdG zW)mzUG_g`>#OY7e2JH@>f#;RUB}htC7Q`gERRv#hqbO_`u>=d4uLXM4D>4#{u0nx1 zgO3nV-6oW%3^ah=f$p@U*QBe)m3TsG0($l0m9G%zux9k3Z7GnUrF;NY^>>V$(UrQ> z>(GQ0AT3o<4j7t~rh`EnPoz?$ASoa$kZ4+*_KeF1VdM$Pn6jjWmq`vE{YKBwaTmBx zqNQOua){1E#VI~2FaYc;#eDijOI6h=2=$0ZjoBnH_w*3EigEH~Oh9F*6aZLIQiPsq zw=lhlJs>So##LoOtEXPtZ}f~f&Vo!wch8=;nU^a7key3wU5qi|JV`E4GNuBW(P!B| z>)-5QM*#Xp6XqsCLY%1h*sw_FMt$#*gg{TaP_ChpXGsQgbMvs3@9{X-<#wigzvL%5&+ylBfry}0h?70c!_S0Nb<@`RDzO}xblMbTr?Ek6gIl|EQjXRcSOTS7G2 zkGK#@&o4Ku3_SLW3C1avFV)P-czr|^qdLDmA`~MtC=*`k4mv}&E4E0Ov=p^Nz1fKr1XhCLPgz+6RzW-4U0p-e;6 z>R&+n#>Gz8VM1nrwE@DN#ePR-f_IRV;aRJorWr6ds>Z_+cZ`1v;bFY^f^owvSWNGuzJZ%Ai63?F1!ZS*(>PuqQA8y$3r3-WJoy z>h`lvl#sGmF10#v`$y?G+tr~3+^E&L=qs%un*O_l>pD_hDoeO`eW~yx%8`^>Fv^m! z%LZCsFh18pI*u9|YfG@-^Cvo$;Y|P=w*LTw-eSc0YO5Yald${6 zi6Uh}yd@@}RO)Nhz@!GItGES_wyv&qhr6PDq#$HruC%O!XRIzwLTV$7AAO=rk{L=Z*UQUc^otjD%BiI01t3zI zpV|gW!b%g1kaFqQ>|v#=r9o*G4$l1!&_3t1`hrS}jh{}Gh3gIcCC&kK4Bwp~mNK6$ za`K6Z19sHBRHiFs#L4xJ8l~U&gzMH+p>0g%9drjpH$%h*xaDXPssh5U@mJCniE`B@ zYxtAmW5IC+Bkj8KN(-?_Slds01+-soUHy^oeqnOmj2!@w>_Yf|eV zsI%4o08ak^vvd&+>0nBYD%~~x;(2k>ml#dDz@*wrMq)Df*5S(v6?th5H&JwjJsg1A z`NNEhojH_Ln&lucp(k_N1Y2+DtCS)?ulBN40 zKx#U>IUNqXZ;@U&;c_P=Oay@bB~vKengAV`0atBfbh~b;(+E;fa**j)2^;h$gVHEp zzKNyV72->&A=oev$>;84PmQV6_*(jzF%A-ZKqx7jZMSalLhhY30+kG|N~kDblgW-( zW?h{rNj?!k+7ZW-RjCYXw@aFYF{ph$y?Bjb23an21!ivJycM}+piJa#%kDoofcKrG zg#@I9IOp6u#F8$V$;&ZH%3a9$4==`w`y&P-ycUB%Nl;*vjUYB1u}zaR*A&%7&SSRS znh5^@-XIfD>D24)k8N0(Dqdn~u-wCx4C35Cl~pZJ>?rEryd_Dk{%KpoKXnMmb(4FOVsSP$$9Iu#$@qNdPu7W1n$Y1rf7&>0I(Qpb*a^@_yku`UP<{V5q$>3vN$uTz^k z7;1EVKsr*a@vPf#87Zr?&<#EDmR~ktW|a)21qzNqsQG*0+D#(sx#dfc`js6{fN(!| zjK3OsIaQ|66qS0pY1Lb;s=$hZ;0L2@+J`Il@hOv-I024dAqzJbq!g`? z+34h{EYj5_38_@j>{^Yp^=cDAyHvz;WvXK3g{F!wdspy7b&f=-rSoN3ECaX)e<(`E zHW{+#B{|5_t{4qz(8N%8u%#&kAuih;`gDq7&*RRmd${aA^wKA~tfT@;ox_fYuSgcF z6vesD;1=)IqKIPfw3T}xbRD((!j0i;GY6}f2eeqVK;#|ahQno05173`CWo-6&MT(Q z6mq>&P+Gdx$oN5loMInG=}J{MPgcdwrnG4NBM{7(l(wT%2?Y6etMrYo(PR^46p#*@ zfJdM28P+_*((HL{3m~AJpdy7X3Db6M1T1MNh7i3JrKBki0AQtVcrkO*McAT`0&@+^ zXirWDlp@|9ktHBYS|$ZcR@;INOX@P6V_mwjl$r94kjA8LK^chD02}EUcv%8kn3F8IPz8tw zRv@^c*z_A119X4W{gCFIL#X(XQbIq}CD=7wkmb(Qh?5m6&C%%q83|bmZ~!R%K(KOl z*N4+yRdJQtZNQ~YmiAj$=9}VCz28Q3P-2tit=0-U5PVfW?X+Y#Z(GxBFksSZ%B!|EH~pn-mj?+J5}oT#pB%7Cf_ zr2haX^Fz3rP*QTFv3+XMatc_%mU$AhCn-7R8n%s0#ONN3Dq*nUyxFp;JsA6*GTXs+ zsQ}DEb0nW-oPoLL$OnlozfN{glKG10l_f6jHD{=UaAv*5*Bsd@2%4asQ_4IP;pT#+qlS zNhdv0y}0^T3D3g$RGHF+GO$Rlq1~Vb?_)NEr70{GLz_x!-FT1Jejr_(iGDIbde)yn z`*9ldlvmZ(z?97OOUg;jR~!!JAi>z3Q@}#VWQ?t@WA^-{d5$DZm;%a4SsJHsc8re4 zeJaeLKvU*9kO9nkHr;8&Wo}hAJJ#z`OVN_$AZ~j3v>{!$!lo#wjEe+?2XdWj*y{fH zEq8iQ^{LJ3)&fOBwmco{))MbU&6P1$fhej;AyWcN5Du-s!K)Q%My+#SM5iuQD5qYd zycn|#$u;nux2Ija;!F=}LQqH`B&22sT&fyxt!fF}(gWg2sW)zF|3|%GBm0r*e^m26sd2b9Bi*JOK zjRWP|@WaVTMn&S39}x@#kZLIk-jJ~{oho7_fiWrrF#@NcCw-qyS}a_*blK`y==v^uaIgF)AQVS4SFvqN(96gO&IUNJ01g4FyqF`(|ScJ%P%N0)kk(4 z7vHPs{{R+@zy71G9<4HFB_yb;`4d+Mq4pXFI*+hf*b}k`qwiX#Ah2Si$`y zUEaEMw34weVwTFLAP`M*s(=u7R`FctT_ywFnEb5>PC^vGfImujEvtN6Xmj*ma+&s# zHe<36g)LGxQQ`IjXLcoldo7C1Ws0>peMb~?JXCM#YTXq75jbV{5!qx9+^m;7Lq z1j(d?0uthtG;`mS?oiO-b#LvH@|tF&B8O_?n-BxWl1MM1Bhp3#Eaud+&!EVC%E z<}@ivDFCFB2y@&0y68BCBw@6o&?W#m2|5*STj5S(sD_*~Wc8BLqDUZB`5bc>=h_ry zDIr9vy69r{rrc7Il^`V6gFoR8l1wUC~64W6@4D!8G+J4 zDH;&u>ru>amKzuWS&$lTw0`+`FaqYgq)VEw2n!Ub0m7;e40NXvpDsIfTyI#rhjB{Q zfTV(ul@$1c9K*J>A_rc0g4Ji3wUL@qm??vlgR24vW6sfT^TdetsFN*}rRq^ok~QhL z2dl<|{{RA|N)nU-QTDnGocpP)X(pwIUAKbOG$|71dazsygr`~^AIo;6Xtpdvl>n*p z9Rd6A(j>a(sS5Q)gtU`T04nNvr|=-3{9LJk_;>K0yul_62EA|5F#wMVNhI(`UOR6Y z)tcp*{Zc0(Y=EaJZF}_T8r|h&NJ^5xQKBoB*C-lM7*j55vz3^^9op{YZ(lrrAKqm+67GY(-wg-DoD)0JN|L!3Yp@4o>bW@QiW6r zKn<@>2Qh|N@wl_+PpeXiQA?yy5wIOMjgHrFwoxf=S&DWPsQuw)ehWffOBJe!*un7- zr*UH`g<(@kT2#R)(7D^nu-9w4%*Bl9T(BGhE3W?lPdHM+YCyIWXMbArXx4^GzBANG1%$mIftAxYiUR#fKsB3!0F5?W19rY$@MbT z;sg@fb>;r?YV5WyT%^lc0Yh{7yaaB&ZuHMdLXyK&{{Zc=?HDE?wHY>qqG1GpQ%yE@ zJB>R=?}y!6)7hzJ<)a+*?S{Qn`DH#dzI@we;rhbmr^N4o(vXr#8IFTbbU}_U>8Vgk zP*y+5wB!@=9_`^<2;LvtO4J1oWYVCHLD)u*aN>D$QITNh1l5BmQoRV#x(;D|9a6z} zg8UiKKmve`UqVbeDq&4`Cr*$m=)|&sn3Xdi6!DC^NFIyEV!c_N#`CLzX>{YY3Zm;l1A1X{p%qE{wj zfC?ech%$ls`9r+FLme*Mu`QT5O9P{k2p3)^P?#1;@S211f|s5B>l9_zFe8>@qaFOA zcJ{kwAzAh+31O>sgl5b^ip0W&B82-&6mkG+er*>)1t}_g+UVez%dOYQM9_omq=zD< z&)|oPb|p`R0F$PgKkXS#bM04)qlXEYR^gTUbRAFa7NrTJ{{R}OHRs5DBCNY|YJy*X z&arOqypmMO@f}G6LDci{_{DL`RJ~}zzPfgKic(soBlUMMUh=pTDFn-ERH}|a`$Gh| z!23g55(RoUUSUtty}(l|)=JDyQ|l6yFyYb(739#6?(8D0&db;>)9C}+PQ^?PuGFVk zXS*-WQd+u`#3W%%3+tq!W93k&NT3}DKH;u|NS17c+21_}>CK_&oxvSqCF@m3v1Q69 zN)r%&yDYjCDhS;w9ce>N_7Jh^=kqWB0IMH(p>bnHk602asw8f9J)(#G$NvE8k^cbq zQ}>23vzt0V%7lP4JH(h;YLKj_O+GLx^O8dm;VU|I=cFI9VZ{&uSBp|lT^cJ0j|mCoxdaZ$c>DjA6G{5t_9b>2{p5NhQyQfDyF=^HIz@ z8$85IN>(3NCEukY{)U(^T%}E#a)y?Q67I_49Y*@m!_fG3$qUQ#NmkC(fc zwU2D;n4I9{05)CA?*8ams9cq5mzC&Mp+B6!&qx@bA`(Djy=u`@2iXc`0I^e7E=!)g zblao@^pQ0v3Cx_p=wHGP<{k85_WVY<=t^3dwxJ0dllJ?=C6^pfB#^)W6gC2t{4g^P zSrVCfk_igYwC@4&b`M(RE7by*a>>*K#6;B^F56;fOfGXEZVrczpv0Hu%^;+f)M|E& z+YVx6*wTcMU4S{NUy}@I#@@XrDk)GJp+|FAMSvJC`j{sfPUL$Vj?nXL!t0oz2vIAc zAhUkkLXF2ZT&bDD2vIZ~AKoFXRIL%bCBH_^8)aN+$2t#mkB1N zx9We7kb>yGn79t2%tQmW*e0!JX$`CO185{A{7SibNJ_Gm9h>9dq*l2wj$!L2kP?TQ9k*kx)oT4mW>?z)}JpHdKjaYS2&*tSMgpk<%ht z%Yw;p$Jyhvo?@k&(kMbixrA1&uk+jO0j??1Z4*|3FTn3nPSuI|#bHjtYME(Dr%gdX zT8Ih*DwG3zLs0r`rfoG7UO2GXloA2RQUXUDQ;yyGL#6m7qrl7?YJhof;xa5#G^*Du zzG)~Zbv0ZEU@5o&v+ol@>TV5kh0P^IvcNiW18@037cE|qN394_eOenTA8fylVdm_= zWllg)%0Lu-M`+DGAY6uWCV(pLl_XRSls^c&$0o$$%=~375A2Qea(>XiXv9T9L;#}2 zi%^5`iG2@xJ@J!i3Q|il7f{1OMu7IK8j~81B)TL7sX+{|JS{|yod=XDE(%4%n3YNh zNlO9k5dI%1d%Nti)>wF*+w*RGp>GY|a*7M(N{WkuI_mKk{p1ASRc8(h=THw%CjtEQ zF>|!xN7FB(D@4{(7M2tM)QZ#*xFfdO!j${QRgOX>tdH(Y2$;q4r9=Y2xdWP=e9o79 z-zzIisg|Qe)P~dYv5k5`!3&u)+01i0lSC{0pKv$;)uJy-jW+i5o{4hRl!GlSl!8No zN3=&8X-95EBVfzv3KN3nC0Xm5nT1@9dH?|1+?qF^pt*=jPp&g2EL3pdF;LOFKa>-^ zzv=v@NG5JoumLClRO(5oJTquxJMyQ|a~k?lmo3pCq?RFE4ZZywK9q)B8|ao&qzUtm zX^Ul)9g;ZPsob7`2+nWs`fi*+oF;;-<1%(RO#lLM1<4e1r~^hH zw$)$5hyMVsvVc;AdroK%Ex0>x%xgC5(Ln^H05pBiQwxrLrq*t$-lM|f)-I{plfms5 z1?mz~7OxVtAVQVoaPVpM7)|rkm%3C2P z#aztij?7~{v0H{|VqsAkyeu3I&TW{7fEa5ROt#HTnTQD*xIQAE@O^3>%?Rl6tXS{_ z$%{)%$t^x4hYSE3soI3lBstT`14Z45y=oK^l7ymxMu9?=OF~8Oixd{RwL4}5cITLQ zumnn$Qndu-Ndeq|Pno56e}rT>&doM?O2%BM1Q41M9+^ATn7AY^Vk^>Y^<~HgVvv%~ zLQNf7Q2b+dP99B;$Ni*)ketLQRZ}vDQm7xZ00jWm^B+g|VuZ*~x7H2E86HjgYx(D)e_d*DXrORJn5$W-6ot`lOv3 zaC8hb%I~;>?vgW;P^MFz)HNrlEkO=UISOHxu& zPIHtW@NReqUUY?hp0x`l=2EjIB(PFQQ<3W_QgjXgV$Y{YdA%n96_I3xCaOQBT?ZNm zg(}7BvJMxzQ9V!nRrc? zWRSm8EoyAa1<7MUrp{Msw*p$!L<3GFpyBDCTWIYI&Xn zXLi$S9*?dx$g_|rRvl#3h^NYtn0i&Y5>lMLH3O3=Kjh3nI*!f;@Ym?`8hYC@K`x|> zssZYGAn1C=dFdf)Ax5l<0ZMRrVE*&kE0*AlzFoM>nyD&3+(F4kWda7BMMWq=L5CY= z6_GnBQkh9eEDaz1`tGqG;x1`Tml@pR#it{ApHPtV{_%J(0#dCT; zkeLHG3Q+|hIApi#>%W|2IR609+A||8(rV=@9^!g&MvZK;1uLr%NJAn*5`g5D1v|TY zPVcQ8y#z8{cGM*L;<}=tDJ+?t$)yj;qxYlFLOK5cwy9*LP7KgPB%LVWwJJlgAkYI2 z-jKZnN&cLPB&5nq^BOuIUBf|n$4#fStxz3Im!uj|;UB?a;j$_~s84Mj<) zgXJ*3I?3%mlp5TnC^}N6LPxR^nk2m(mITs=a=^xke|lX+#N?8en!u}sj$ho(T8<21 z{*W-CkaJ58G*3aWeIKizlq^`MPnj}Yq$PQkMwaBM!SLn*`@2!=NU0_rZ5OUIRL~04 z7PO_3kivs<2lK2Mz!>S)BuaToP=6kUKvaTg`+>Vcb-{o#+7g+FJ`}kwLR^g>eZlMA z8gD!!HEBw$^79m`nN0&dRCR6useXng;Ar>0DMYDxN}gk#MHF{YuD=LS!jpn$=1^Dn z7>)rv9=t-_+hwc}i%p!Qt3m_i8$V8_wSoAK{hKI%ZeUJA?#@B?7aLQwMryV79IFs1 z1&T-qzvW{$#t5_}fGQxkEw4<&;pYSF9+ek5LRL;y00~eaISrXaAJS?V4SR?`GW`n) zm=shsU?}|c;kFR*os4@9W7|ZDrd;%|Dv3xeQUbOBki{$wLHfthcRbXhLRN}}2XX8r z_2WnP`NnPOX7QCW$^^mzPmLfJ0ktY3t^rU3k|NFq^rD%T0Ia}zq~uariEj>Kkn9el zhpk>7UuuZ474#-NzZAgkOF1WDECJok01vLP(dh38s7qYQh@!OHj}v?d-_9!fB%JG1 z<;zG({{Y0}->$|OZ8)uR(q3TIN1$_7b5J&aCWDXk=|Oh_XU{UgWF`WFnT z5~V)M8Xak&ZH!d6-KhaVESFE|&<7ED`uRsFPyp!cPYUdIZ3lQGeO}`(;1FH8 z6mHz{3Al>MG~~#V3pF|0q3;#T(Gf2jEX6DWlXI}h42 zxp-|BYJe7fVOdiD08x4=bkkr32CO$`#CDYhkQ{A!(e!uR z4t%$XHj`$)6FyL8X3C(<&MNKRjklapz#fk5vX)e3c#@K@8FZvL@seoffDLO9dNjFC zQjnlQEH^4w0CW{RL#5?~3J`r{!ON#+{V(u_7jFyUEI?C&8k-7xwQhb9mf}0?fV7ZU zB=lqlW273wmsIJ+N>Y-UVxm|Krgn91eDrwEJw4gXv?zryWRj5Vo=DeHH2FLi*F`2W z+rIqu)5;~$y_G77XR1Npqw0G`or1j=q)Zc3oWfdym{p0;^{i#yimnvSnvD69Dxh>w z%c0-`0Db}HK8CyPYLn{#DJdZ*s9{ZLUuNbNC~>=Q^q?qZ@ROry*bg`Q!l;~6Jg{)0 z3%x))Ma#m{q@^oPst#!3An#6LcJZ82khG9gvfY1gHjB2a4EUQ7OH+k-vL)1$Os`Kk z#BY1{T&dw^sZ)4(91dS{2=5J;g4~25S(1Hfy`=!)?NjFp_n)Jgwxca_#!!Kjoq;+Q z+(vpE1)}YhGFh0G$fN?DJSt$|H@i*Y0{yc}N)kb-Va{6W-2EWj%ojG#B{JoePG9O` zz&!&~M|bj|+(sk97L36_u*l0wQ<|eu)4uRiXI6}4O!XkB8Eg{mN^a4+`X9OFrb(IX zD>I$*f3W?u5%U%6bg3#KS*5OHf}PYKZVPJPSkN%nr75zdrdf3ahDm18gLzV>u}N=O zuKY<*Dm3#;kN z+hH0vr3^-ic4CsrBxMKb%jhEo^j|JyyF-L3Xn$l?t3^K@Vbb28M&Aj@fRzv&czQqI zjblHzf~C-BQKbzJ55;+gZ%9^SGD*w`Qb4BU@($f2Dzn}bB&CQiGfLO?CJtA!jjm zLT8C=0^K8q+MBf@WW`!1f8YxeCFCecP}Yr@7V&$l!4ZH@^gTH<=6_6uE=VNgEDLLu zBA!O3tm@VuF&-tFiE|t%fIKVJk~JGMRfd%vKq2VA7ZpiT$x@1HRB1u6>NM#NQZC_p z#ZqQ}Pc;Tw+b~9gqn4logz4@vThbl)2tZnan8hHLG~jmT3Hn98mpL;g%1bC9q#ei_ zq$`ui?N?)nVcW80rqVLiNoPT$BlQ6E2j)PnXvw1bCz_d4)2S{Uv;jth^B+%5y}$(2 zFwhDbei$8qeIMEE=t)XKp01`U%y%b_IQKzJL3yDmQE=ol0k5CB5fpI-FV8H6r7e{~ zAeyn*njEEpAn6}FT-VZ&u`PnUW5P56^mDM#dFc`2sjF3@VM>%x<>IR@DqnQ>kO4RfB6BTD>PpVwA8`Uve&U=8i+GeBv;cPZ{32Th6`Tl|w%1Oa2jialLE4k! zTqtJADo$Liz0{&3ZF;gOLEQnL~$ zuKf0b_@e-s)?kVdkXwR8JXV9@8{rnhT`FNk1qOE;br44q;bfA4*%2+2!&2Hm#6pju z>rj+bnS!Y-u8e5iBX7Iy@)qhWS&euc#$2{haFb`S%UVpys4g@OwIDsW4xo=$DFeg_ zsP=dcd+F1pY1hQ#H`qu6P&w*bU!*EwJ4iDMRjZJYH!q<(G)(BUmFV*TPnR`Brz&<( z(fHCnhq*3tP#&Cj-Yv|zyd9$JlJA%`Ur5fqDOk}qQj(LKLK>M! zE*Z83q5lBG!8=T%l__XgDOjtTjy>^=<19%seAG!m%220Ss|3F1ci2IE8;Mk13R9?i zS+)X|`a=cJ=)}z?aF_r;q|wXhl0LME-p?^9!wOOo5E7+z`TMx*7VvOTo$BTm${qIY z+vVpC)+-0A%a)Br6Uh0*({Q$BXAG5-?gx&CSgFMZJ7w)Gq#&0BftPT3AGA=#*J5SM zmb4tjDjowulh0AP;so7F2(*AmQ1(OU6}@4G__BqAQvU!3jT9e-ZR(m;QV3!}(28l- zU&fCwX{$ooSj-fsQ7=w_LgmAWQ)irIo%AsMGH{~YR6B~aNtUq<+v`$Lx;S9_b^6va z+$VCaHkC;W1oSjL^s7d#e<4e+o9G99HPN9O?ZVR&Y7>&Q}$Le6&we)?+1Ed%b;(t~^$Py_)H2nL*J)J%x4LZZc^>U>vNhc^O1GiXR z#TOr|Qq&96L7^Om-?SJ`@ct57!BKJpv(_7~8FJS7st_B@Lgo&|={9wFrn-VY@de3< z45TR}I3(AhQ$Xwq*ur9P-c_yA>Rk!#!0W%19I#?-LVEEnG|3hBTYT7 z{CUECg7aM2i*&LE08>dwMZhv;Ahw)6*42yiJW&{`f{H$j>=YXR#Rr_+ww9_=conB>)nn zAN5oG;1%i&#S*d$fIkl+CqGB5kJ4T2CZ#NZRFbDzts03>3I&Pp4PK5hTBS>tfJt$g zX+Nj;f)>0hEnuXIIPoXKRD1Kzu$?m2i!9bTlqi)J6am|c4agos6xP1uP`+<6q3aSn zO;gKh9O3Iq@{ILb`g=SjzVN?e#|bnDp#4>2x0^#0i8BxP5RjC!b#2c<`OH@S*>pS67)KjD(TBoQ>kFw%tG~E&@75YF`RQ6tT~feUs^lvs)`2-baQc?o4 z>J-Dp`;EguJLdLXjX(;fYKn6J2@2Mua9XU#;}lj1VnxeANSsm$piw*Y{tRLGe)e3c z)`VxyCQV5IjT(;USJE_GZD&NpInKG7qySmZ4fq6CvfNUCr%LA_iGUQUg(dU{p3PW} zTy0YBAtrQ_E?UNLQcu;*Lv0E-2cu5SgYimbDQI>9MCLU# z(5Ri8O=CmCxN35Vw1tHvk7s0`@_nCS6Yha)x6$ZG0Vb&hh$YfRYgSSeD0n(T#wfuv zrOXp1tJWoeaQ+^N*oLW~sN89O=Er~EQWT;BOXeG-8iT=i2bgxfZ@E(tu>KN~#ArSG zaASLzf^FX@I7${&2%{ah`$hY{T9Q?m8kzy1PT!lt_8yv-7RTaT#!q(MvxI#36!#|#YtA5S3fAvu3T3|lDxoF^yu8ir-E@Tsq(dK znvMIhhq`KVq|AQ}Tu>b$V-#I;7PKL2%I=m>%mdKu<4*fVk7}EizodhewH@|j--uAc z7b*3nQ-R2$qL6CDl0t`_Jm3UuP3X;Xr4%U3T9m*Lnggpl`4hPWz>6)~yF9R>l9fJC zl!`Xx%Y3}!e!cF%qLk_nG%xUl4@h<|2dYX$#i=ZuwN-YYqw}$@#wX&xlAoiTVueav zrFhl1CHnM++p`hNN=&2e8kW#;Ux!#q^lODZOwaBRl@KY{j`U)5r&xWwt^}*Z2Z)v+ z{NmzjrQ2#{oTpk6>;x(LO1UM>8DEbo)FX zRy-L3f`C~BYAQ#_k0H_z`fwWb^iG)>jI}99C)p*~clt$~2Vn%M^aX=xd-aAjU#4WB z7vatT&Nb>!L%$R|LbcI;sS^}}KuUK=_Pg+ZH;nJbRd-s9>ldpC$~*wLR^j5Uy3U!3 zNeoCE8lJIs!F>gw66HISqwoAc!DR?ql#()#!=ACdvpPV{n$(oDIRij-f6v0uy@~A7 zCy-3ACJL44RN4~FQChp5`kT8il!OqWRw2f{k3#_NoU2luE=G)Y+5S+d)%!G*BrukT zSG1x(ZFw#Afq25mS1oLm)CBlgW&1lC!JJDqD3+3gRyA*j?+Z6A*r}ka*(}O;sM?Up zJ=Jtfmmw}ZL~o%RF@o4@5T&v#B$KKODxG>3gV$O@rDRZWl(lv{LT!T#`niQfvjRHS ztnjqyV-wsWT-ExtvP-NGz#tQ#JvRISuLfb|r3#rfWab_a4G8RXJo6CWcN(n}NIn|& zKT-9I*JbQwG>PmK%#*cw>$l?y{+6Y%-iaZ#2|u5-6GkROgpwTS4FTiKajY$3*=bc} zkdg=KIYyP!+Iso4AYGU7n!i-NQb`A6$Ghtjx$NX?_XX~POAvK-@9~3*zCg;CclJ;C z@&MK{+bypvFlM1h(Ee)%Eq8%HO4Cv*NvIt@kWRtk*rX`3i&BSY`o=%$R|$HlW_m$6 z)YPjhV&7r7jRamMXbU4|a1Oi2PK6+)V5ksSYR6+=q#3;rPnT`?ob|0LAdrR!U`BsVtcgasSWxBae5>9GSUnfXl$0uA&Y&t^Qa?W) zGrT!l(@AI9YYt;MlT;+A7TPqMlKotgWYAC$^(uWU%nH-ZYavqUCdZUxZIaK%to=DJsw@=t8*QJJ+CsxQ^(VHqK?{@hA~Zl+=MT ztyzsyO3-vaH{YZ?T@sX1^#s&D{{U!m6BhJsX;qfgq*?Nq*Q$W*Mjsr+lMR_97`S9Ia~!P-5Ed1%RmHp0P%D%R_DaZTEYb~jdre)Fhdul%kEsc zVL>FR@_+?N=jRCb7CM^15E7itP;*yqI=|i7A%%IO3Z~M6S2^P`Md_X zI?R=%0;k+4eth+Xi`xrM1eAD!wK@^y_lU3C$+h&f9NlLBmb#&Q&;fX_n0 ztTlcQNOmt91(Oj$QrmIS_K7PB*A0&?u42xHfbIo!jbiAwp=dtShp5|vU-X?h4;hV;?^=n>kQ7OF zuDWb0G^9LSvK1{Q%`&kssD%X&xv>gF)*L+|U8mKmrC}p5KYx&TsRjpNj7*uR%Bn0eVYv6{t3ez^hY>sb zYR#3w9F8j)SE5VhmP))KPCC2jKRJ!Q?7e+@3PDIx4Ni}+cROhc$SlIttN@hfIn7cs zr)q23GweludbQln6drlI!kM=;4h4oy){t#yDHe~X@!hC8p(_)5tHvG!_Q0nWPoeepW4 z*GL1}%)qlXSkuZJ;VI|^yV2CyJ~1_r05xKs&9{?j1aO`3!e&y`E_r{?ggjdA@is+L zN`Ng>sOOl#EK+SUr%d&OEV5}(MRslYG~<|y{---XTuCdKTBQ9r`@>cuyQT?c&~pTm zIVHC51nz5)qDp5aAQqyI&OW_(g7|v<6I0`2z}5Uf7}j2k?eloKRFuw|QcCqEq>?BT zt2V^^V&(_ER#wwc62ZXC<&K2#_2)qwekHiv0DuB=wFAFX)W$oF?)0GmO8)@Lhe+n7 z$UQg$kpS)o>X56n|EmK^nG%ctf ze(>Xb;xX$KKvPkgfOhwPs6R%93%e7P zp&@^(TGS1^p@zd}_1?uwMuM*$GnTT&d@Xn63P{o14cP7R&~XQ?*jP|mSGT9u1dT%n z2S*#kS2{$gN(yFm7jc;IkSO^>0k8r)x$lsq7fS?|>fFNR{{Vj@Iz#wh!?`5$(8IQ3 zLoHbHVwIc${yJ2I=o^t&Fq0(JT#E3L z5_UZzeqCYbXM72Y(xeGXWO}ebdOt|fuCxFhRcfBwYacRS*FCHsSdgK=2z(mlw9%=N$kUtXQGg4Rr;S`4%Rf*IRiv{Se&rrR?v zl9TNfZbr?=SK^VVS?p+(5QK!~MF?k4Pno%hvnrz<|{$jkWEUBx^q^So| zUca-!X;NK4fD4#CdR{&dKgUovJa&h+0<4MRM8pH4l*E$l!;ZQ`jO%eMI#RT5k(%R$ zf|t_1Aa(;nB78fD&PNLNLpiDG-TFe_@WnB-}+3O z!SRhU@wBLySO^MBLL6E$j>vR0u$L#4I@kIyX{ z^|EG8P+8sEeugtECAdpslsv@lew@d*mEmYm(Lk=h>fKCN(k*0ul&ywR%7XI*lToOv zFy+e#X7qYy1cl5w2^oN>p&P?>(Sw52eQI2_3p*ZuobLjCDqQmpNpcd(bcHB>l(^SN zr3ZfT%RGJR_vp+n&sdUnP&Fm%%qPpkKuca_c!q4GXv0C?G>elCDH2i%qDP5D=zg!$ zNXzkk>?J8dWQ4IU0}5&%tI%&7+0sX_=~8U$N>YDG8n+~A2Cn<$`bxx0l(K{?G8S7_ zDIl<*txJ1^Xg+|i){v#CV>*;Vi4Islgm7r&m-38@(iQ-ind!79VJSf?QPCyn#BwzA zeV~t{ENGIMszQOvqd-HGy8}o2Ml-KXy~e+9#i=tCRJ4wpf#0v@utLFfDq=Gel`5>U z$m;rZj51Z`XWCsa;!<-x0UHiI+sD!KWfaRvKn0Qm64mHBMvS>kF5xRu#iJ_d5+5-- z_l67Jf3KQ^qhjRf2;IJ&pfvmwHGke(f=Dbfjd=%(4vfU1(k)SbX@$1uTv-nMmy zQWG|*Ia!ZF?Lsw=n{YkPX;jorFIj?F8kIXXny@Z-5%kROMbl6<0b18_#49i}{0nv= zSCOKVETurGRD(hr>O~`N#2Dw*%2FM&j|z^!bI7D;m^R2!HFFo?33QzXQ>L4~-cb%T zwWeSt8J935jHU9cfZ7wu(iWBq;fu^pMteaemEi4x?w`-%U@H23fP> zzfqgkAe5@E`<}dha}nLXl%+|Ug`iX#r&2<-uH8J~o#$}KohfNkl#$~f%^4)C2dT5JT8Yf+ zW}qqAM}l>y(llR1o{5@3Qk0=A6P1lfJD1wJ4xUEwPorr?lbgcD`L56Q(kjbll(Jke z;p_hZC7M{6w#<-N)rA_nIIVUfGmlE%lGK$d%Pgd+U>74n#BNs(8nODiCon;9<;G#u z>y+pfLF5||^xtK(NG4>gi*_Z0s#)rIdH}+_xP=8H*)W)xg(SUM(fXX#$3t2e**zV4 z5t4~1oj4UNl29KhO9o~JwAKF6m0){rRp(GyQrS|%s8j&yKo-ACQH@%Z4a94g52Rx~ zS#lKR)~p_$=&pouh`kreN>wsZ^<`y<)VbE1rl(j1gS{N3b4pYkB}XYDxpyRJ2LL-# z9WVRoVGf+7+robF-=n*En>i%-R@qo+LF8`Gtx)CbWR)!s>e6zjE`h>y`0p8A`DO{3 zDQK3Fm0@JIRv+utz45r;cF73!iBL^35)4eOl9*DoFr!{{SwKm4~efmnDjUtE(wsPaKvX7#DB!rhr)r z6d8GU+rKe4R2y{M=E*flNep*?AP4XuKcpngSstwqKmmUVJBH{Sm)r;`WuKm4%pR^k z_B}X*n1>rmmnpzTa7q*a_6q>uZh7J+%l42E(9uk#UuM+API`5VpG(04j6;mSk~+}oQXja(Mf3zfUdj^s_Y+4 zIxZ>9HA}NUvcWnIoF6^oF~qhaskK`&ynHAQzW~t9YrfT>pm!s14wd3FKS(bur7m+R zML>$M*0HZEp|WA@O)gxVs0LV72I>dwNbcTn8y5OUN>UP4pE$~*`T^I!9LLPq?&n#Vno`Je%;cB;ebMyZ5WS^YEb`HlFM%o`mjtt^ME?M>uR0T? zD>^Ay?mfjb6t7T(EljeLEkb~Qlk7Oum!~6N^euN;WIWN7OiBPDUL^+=2^#|2dAmkk zh<#BxyFo|I1Rsj;_p~^X}|H*tj-b_ zDOFOPjG?DW(e>M`5xKn}*=3+hl(Gl~MPAF3xg>kG?F}-$5mj3bE1Wl%2 zteCH4s1da^Blm_GK8?+(1$lx|t!P!)Y)8;g=wS3|hOH8pI#>rH7XGnXC?D}oug;@) z;ai@Ss~`OtXF$lGSCAiQ(P`tp@j~pp6cdz!ku0)!jb`Up_R3UE32n$dzE2U_?&)d; z3P>SAii1DwdqnAL=WJVxLeKQ+0ZW>okwT-H`a5;#@LLSv#Ypg#0;T&yO?Ga4wT+t1 z=-$gHB4T8NH80{dQGLd(PvAwHfJqaHnuM-t_EO%$Myh=a(NOTaESy!_AgckO>R+<64FSBC{N>B>Pc2P=Rq%~i+5un^RY|$(&N$@NM zB~4S_8n0jadk93NlbUH;sb+u&sz9r-<(%=TZNxTZBqB;sJz7(gsr*GknTQnOfFAnA zP|BoSbEoEX6ib$Brtp{1y2h>Orq3!;RzONrQW8(w0YafW zlTV(H1@3$(7d1rqWiutY=g&_#MMW@J0CaO@7B?Cq|=!D3V|k4b3^5>|z1 zN}PgDpnXn}nqvFcFRWa$RHe6x0)*~6)t^ZEuG8qQ$&eX{N~QysG0^q;Kv`ak?1@6k z(M+esMoFs_jWZ5Q>!FG6p0Ynhc0`$ElbJ$?cY5V7$4EVFx>Qi1EM>~3W^AOI9Uof3 zzeJY-25P(_TeP5PKz&uK!H=-wvelM-XI*_DkPos*uP$pZe*1Sh?b0@&xu-;q--CZ9t`3{ zOOr0FKrdb2o}4@onN7DCx-%&mc>e${>N}6Ph}C4DG&V%~wE>X53E00o_lh!Y((M+I zrT+kKT1g25*e9(%yTf&=@GhB2NXnimL!krZ4lf0L3fwc0xq(E0g87upN!2Okw<3qi zFM3VIlK}`w@Ppz9LV16bT){YmOO&vsB#@^`RTy=QgVL|01D(N6VqA?zU;h9r_kzZF zJ%_PTm!4*IW~*>{9mmEM@x|(^T1rw%2ehN9P&&VDTclUJuVA!=Dw%-FhSmPN#XIKo z^+9Jskw6B$I`xeESvJ!!%bP6-n8iRNI2!qU3~4ej&7~4blzalJ2UNC)^KN4vyKzud z&s&nIP@=R9K|WNV=9|XbabwB0gea}TM9jccX9Q3vGo4Shr@kGDjavv?Qf%Oax|E+~ zPFsKtfA+6kS<2Po5Ry`+CsNu2-;ty+;9C(?wGrV<(KI#k+5}^qI1}T~lq+D~*5yyJ z(Z2DoFH;P;eb|!0M^YRl)E*<-j`6{;^PR|NW6}ZqUi7(SOz%>(oU=l`q5#)% z@7^6f4PYcx&j?mQo7NrQW3fE6VHf5v^_fBxRQ1gIZC%0Im8@$Xjxic?B?_69O{YB@ zN^=vM8r|z}mJmZEC5s9G2h*d*H;ery{{Th-mYnlRa*vbrW+Rv>iZL{>NkaW#Q1xI` zkiRFV=Fy#AwuJbKfX=|NtN#G<@^B!WaBGF)J7u%`vxoo|N&u&GrDIq0S9l^qRGgXS z%xB7cKylOjw$csd_YOP`lePo9YnSJD2FxZ|sNDhW!z@qnT=Z{j|D#$>A2g{WpL zA@flw0h>+wa?w1!oH|^1HhrLyp9Hk12X}1SUvGQge}@A?v!j#%t+@=$R}ga+zs*ol1XZctGB7D>|&=WY!4)IBmw6 zt6!92R=-LTlWCkKBneBSq=ccyiYcXe>kHTIhS_OP_JrS5Yn9nF{Y&YxQ(Z+gjQaM& zOG3Z6f`@7`@i!Xj&)zCzC(((@7+>@vrcIgwE zVVDch?29~%^8i%Ec$d-iPV^4XzN{+|SuMVyY7){2CCW~Nk8@DLdqyZE7A&0`?-O9` zE9>*jQOw6E8dr8Zj@!eKfbJ{lN}p3z4b1`Hx12uSQq;tP>>0j)ogrrQ!HJbLEh!|V z>Ittq>93naH_g6k!3d^TA&#W%e>X6w_8V%w<}P7N5>cQU7x}`+q>B{lOj;Y+a9w~J z5H>M35t(U~FcqOkGMttw$_YOYlt1H3YE@>K;m%q=AD;LmT_|9WNm4T9n6OG&&XhU< z&zBLa{{YA;Y7^?fC{P6_pwv@C-Y}mX9BDWEsZ6veDae|152m}jjqBwN9*%Id!lzo49EKIjI(2-UWk{gjq)pnunY;v&55Kugc;s0tBHzA$Hc zJqwEfZAEqHI(6PNoPH9@DJ10QLVJx`0bDlAdZv`9e{b4Df*cx;aHid%&Rv%>NFa(; z>t39`&}NjR2^Q;8ffDnO27`(`3&OsTrpugBI#S2@oTZr4#0Wq9fg8Sn#@~bIry*cF zwQ00fyfFHgI4l5Orj-q#8pO^S_Pt`*hVLqv42fQ?3aZ?efAw-{s|^5QyPX39T>+St z0xMHbɰLG;!#=sqZzV4gBOS0sbEENwBCBy!C#e7RpNf~NR^&eR7^pfQ#IY=7i z-=s{rIiG_8u~n!cs=-V^S?-AoqvgGN?E{7dL8}nndti% zDrDJ`)!|T6Cc2JK$M8c<>4&PPP$}nP{BqEtmGK5LRL3a{hRO#98!!crEuAGm0^|@+ z-msBtvP+jWAS@Ri&n6l#*%23J+sRpl4 z!{q^S6_YT^&f$UFo;$$2J#3jMfT?64Q<9!MyI11@8FAd1t4bM?QeK*$&nT&eRqIfr zFaV^{L!Jri`P}`5MteESGnb)me4sjH2|2>rq?#Q^=XhoxYP)2}N{FCQcG#c1SX}8- zEcpm8vrv%=n7Z0nKIVzmn;126Sk#mxlbC%ti3-+P=*{Yl3U)j2&#OU1*#bOC&}up6 z7I6iQezm}0eS^nO<|MmPsc2SZlezx@9*x_WWF?Ai37CdvYQD#cK#VVDNjZV`XcEXuy5FMO|&fddNU8Jgq#0aV22w%NasbNY^gjMw% zH`WbESF%8C+Huw5wdXS`NFno4_PDMQeQTRD>iD z$9@DHlV=MEYMwUk{{RN-6Z|5Q@Um8q0U>|o$Cttd{{Y+UuqKjd$w&4}@#S-Y2<6Gwf4_5{15Oi7os_hMNSme@>S0s0{B=TYC9IhA>>Y z_DP`!`?AykaB9p?!Or51ybDe-_4ZItg;G2&Nd&bk!+vQLG4xgHMo$A|A*n#kPjqKC zY*+ovnh@!Wcux?SmUn#A@e%HCglCuZ@#{j69dB0Gpzl~HX;&rKr7u zb)u!KQK209!wv|Xa`=IA0U+uRUeFuT-P`Ld^9-mP*T7uN@xSIELyZ1jSh?{t2p6IOEOs~T5=^WGJ~h{ z6S+>$(#9gZQzC9egOnNp`TRvJMSmQFE55y;o#A&Pe88l*AcD~0df>z?A!IWKP#>uE z5M{fFWmt0(qG2HF2AyGnt98!l4r+c7gNX3zjKqb4sY6!$-ZWcf=}Lz!NJ_TfMQchk z5Tbp9uS!CpYDN!|Ql#a|2%z{^^N2^gJs3&Mr68Q?G~$Pt(lHf)%K^#E&-WWbpQGfc zS{iEE3vd#5>iqUGH;lC0+}Dz1sYz3*^lgkW+?TMKI0j$`hQFx7*QBeKT!N*c&SF#> zLO6K2gf9eSMAAG&Xf+U}vz83$sLi{H6|4!FA;}$c5OQW9E+Fnvb=?dJs~T#212 zGUg8wbUXh5B9N_oT+^)iiI~YekzW2>LMwGn)rXfgWGRYL3j%%uB((Y-2?<#QOFE=h zt-k*N%oDohuhr%?G}4slJAPIRPQ?W>*bJZ@O$pFH)87GUOAX*<%OP^ssbSovt(2Vz zdIvk{(lj}jGNvR2BrhqbI(G++-%hb5*KbPYmAE2_DjE_#uqNA#vY%9kb)2aKR^O{{ zLmpw!j4jR>0c-;8nS&3$ee{KiXGXw_ z=0cK`xB#murF3n5+{OO@>w-i6t%l#X=SW_?q|KW-DPOXp<*Jur)ZDcz6U))c#O}OH zHPVro{+HO1usSQNZVwTm*)GM;l%HAQ%m_OCH+|kT`xVqiJ3AftN{CwJKS0xKY-; z9mbzX(@pL;xfGP8NG?GYe~I};ORn=$TQSZRq1<%*tWw0+%;c#kVx*M-vMb?s%s)Ag zF@@NqB{Lvz-si%d8%eXG%?0l3jxrJ-QJAh|Wo=Q7ZVe{&_$E$izy{q^Tn-f)&5JU?ONbCkGXHl-@5DL}z}IFji8dDq2dLGmq3r z4B~;u;o3CoCHPFb8aKnFaVp8CV?qs2U7_Zj>6&0$hHt7uW+*6~0Na%LJsaF8Af>kf zOG4F^N+nEG4&4Mve5!4cK;+FRD3rBGDkPGB)CwlF4a5t+y(uR+WYy{)#Gd@WNLe$p z?0!YUgariVbqxxM0PJ$RLd@Gd>0w9?t_jq3>Czam-Q}H@ssbs=;u+_Zxb=)EJU|s3 zyLdyF<*LzHq{!uCse~DG630S7@eVsjUW~7W39|uEp=Nrqe}xabq&QfvsVlUVk{MnX z4N^JVxHZ;=;C?;yDngB-#zeIyr7pp5szI*9v-Kh-N_z&c`_Tj?9@cWsottjmVVdla z5|Ahq%um#ggWvCrR>5qVR*7x_Bm=c~WAHVNWf_o4S;GM2nsVQ~IoWg^Q658Cxg>y zj~!v5YD#5{#4ut9vaWl+p8cZ!h(8cZMno!7v*rvz*J`-$qPvOhBV%4X#`X22M)(=T2mnkF_5>zuE@f~+zztSUT+P~rV6XEoL zRGJMGOk27xMJ7_hn594v>~zqEa65_z>j~JO8_Qh3ZCMCpkzB;=8|w`iKGeTgtr!R3 zernW$Qo)O^@@7e+X}EZ&eO~BD%sr>7cJKQ@>&{ZpR7bL)z;*i=r)I;d%#yVOn6Xa- zVfn8DE9eW{_`ND4U^gd5Q{<7vGcHh!c#k#Hl#~9D2<+AfIW^5qf2? zrqAkJJ0w8fG4}1WR?)C^+T%$IO_8MqI=s zhFLXdDpPeEZco}Y>@knkJqB3-0pWeY95o2*Sc%KLRx}IQPvT1r%W?ZhxN`ScaOI72 z8j;*};8Z|sG{BixltQUE{ahNEhZg^wziUzBF;+(*g_=9v2PGs!Ltp?Am zF59m)iG^Cf`5JW{#7|eO4M$<@>)_K!bYIgzdFYj3u;v`5^C)H zj-onpV+doElE5;B6oav5EPqftaTPGT zWd4&dG`VusPgb$)s+mjjIOpjEy%X5~0I>58NrCc_P)Fy_p?x3HZXWg0R*Z#3f`d`F zXXW(j(VJaX!7f0`&XO1a=9+~As((ouw*`n+WmLT^V;Sm}pI93zPl##Z-H*q8qOF?~ znTQmj9Q$9ui`b(3LhR}WidtDAiSdz2P?UU1NlX;&}|g~~kBZeOU{8u?YbOrz_QnO*^0yFTRCsbK^yYDiFG6rD-j zaNk$~ec6>UIh~Z3)8gZU3-=x(m{XORE zq2=Q_^s_xGoh%@VfbITWpx>k{NDQ9=%B{AqPGb_gZ$q6cTaxtg6XJiAXU@pJJYP#; z``%%eB`ScVP>q1s&N55O5=@mkU_lvOfFCM+qhFaVB2pFzDj)(yL$;5*ed9W`;6<#= zm@4GB0sqJ~Oh~Se5Ab1eK{yMMLTbUfV@nDTqy; zX(<4L!A^BL+dcP82_`9V|mNlrNhNSG`7ykh5b#(Vei7{W6w54yZYNVY{NL0m_a%{`ZsHDNo3Mo?h)~pz@f;3bJezgQnJtiz6Sw&jz=o_7yuBf`fJ#Y9(Uncv zi9A9>AQ={v(DOY1x4b|U_<;_Q`3Qzj~0Ej#qy$-wf5Gu~K z{{V4mCphq>Ai7;Tw@-`qF`e6REuk}1sV0CN+&wCtioC|uJ8PbeYzR!bX;?nFjZUm; zpm;TZD2&iVndusQqSJ|Kgrqp4H)rCTzR_mk#%KD8Lk*MEe{1_{Vufk{6h<9_pNM^k8M3u|P;J6H(S)(27%NND!l_5xW zDiq|m(ktLEN5G*=n3naFVM9(Ssf+hs81=I=njruJPQSsZjRMax2pK?d1Eiga`M0_* zPqNm1hi_C_mSnRN`fEYYeqqjKt6k3GsRjPSB10u~QV3Qv6q<+zFx@dvB$ z%`6hcsCCeNBHO?Drz(W?Z!RNv_^~Vtakt zK3WzSDJ7YU7wHQ_yDjh&Gb@CFM|wq!OX)hxDK1tCNuU~^zaDUdYPjdjLV{Q*bH`nN z&=z;1Pi1SGa}qopo?oZAiHz;1hC6loEfpTlwbhQ4`Ng}A&}FA0QU{3Z*LUmi`LbNt zbu#5Di3Fy)Q>Z-l?Yu79mH`1S9)LEdlfdXI(1cySuzckZw5v9D@bG`gsp(Jv02+Kc zy71)LDayR1MCL6}I32?_f!oM9%)D43DGs6l%0Ef(!K*vRw%eqpSX{+;n34d~f!;QP zgJH=YGU*K3tKwm&5MDCngrHUQ8usRcY+Ekw1k01{YR`XS!WhWlyfYWrl53) zw@HuU93ZPY(CQvCHKBdmtu*^a$AvFR*)n>wlmT7H^WTbyOZ1m*WQ=YB&BV0(XQGk`INyUsJ&1o9hEF>;7_Ow9rBsOMTJ? zy~phiw)?hRy+TPIHyrT-Z~M?HTY?>lY8L2vY(z~<8on=oT`VQaQSB@JhQL;x{_uzB zv(Xgg&6rjFxf2%oQ$-%%czw253e=S*iQFVmfNB8Y^n%u$Lb+)0CWPu}Qa_l($9}7N z+%7Lh7AYt|N;4=V5L5@WIju}{d|H@_3TWB`+B?B_u$g8-m}QG{LPH45@wCMzQrDb>4He0bzV0>QWj|T-7PTW>;>#pN~BY17NAf zahRll;-sGyYo^>5iMQxey^`d!B%x`PkhiTFn?~9Bb~K7!lJS;Rr6F`}Mxc$4c#{)a z3J|i8Gk{nfA4fettr_I}I3_1N!le=%kp9&);h)GvcOzmrJB~Th5^b1EA_)MiGM$>O^C#n8u=`^4k1EY3T0mf}%?g#c zZCo`+5a(5OSJF-O z6llk+UX>*x_Dt0!b0w)KC_nwJM2fbA2Ou4ZuCVv%lhP_COD*iJEv-Xu{Bn5^@9c}W zCMC10Ka7RcHpPoM?Z)uuh9;o^%a-IU=30rOw=~uuv2VLI`Cx>TOu< znxGLH4hqJWS!tGu^OBjVWI0*G+ zs69GCTP?VdOt2K=!p53=MgIUajI+}G)h0uQB4Mg#2W2D^sz&3IC<_hY-dZw3?YGjL z$zX)|gFaF<{{UmgzZl9b7?y1Lr9_t90o&saH$S7hRi;o-3QAORpz2hS`jt;)?Z*4Z z67U4sA!1?+rCAtjT@_7VP(%}`n|0NKNu0?FQdXAAN%1k+9eM0J#?9!u<@F?qiZj-= zYDbCNeoxI+tJEG5^iwd)^^{7HK%=UNsRNOwVmGGou3?-x>VhW!0OVN*Fh0*ryMmLu z*1W~eIz0np95FP@QAlB&5&rn$b+lf7wMrm5l#<6> z!}ECg^8Wz8=1H9~2~kl=3Q)>&*I*9fps0CiA6H?#GcL~|AE`_oM`A$G@Wr@((U$sI zxMh{0X##|m>0X8iqVJ=dC-p%_a9pg)ph^G+4D59PXia`*Gkj%x zE@Z+ImMRX-uO<49D;mZ#xBAnZOBC>=Jr6E^krmhI)d`ShEko8T#p?+rDM^9>_ zS!kqu9e0y092v)`TtQKIMs>{B@ zVPP#Wc zlc$-A*jLh}npBVcq)h^C>dii zkUf-+IuKpkSLh?lztB&rNJp$tPqgVCBpP^AO*@~kc(vfa>1?xCXH%>v)-0M805mK- zMTz#gi@br}^1h|YLCTPG2i3g#b&T4}aZ8^(T4oY-2}ur@2Y$w{qzt~SvsGu5sfQp) z@wsABL(_Wn<}Y2ihEgoaa!?baY0ws>d)6bQ$&Fsr73#@K0|4ntbUi8hex?Ckm#V{+ zry)_$7h%OaJzzc^$5Oo}8Gj zuSJV?t5Ve?)*)$7Pz5boQNwB*dPa9|#Ph7PMA@N1DrByXLUzhE4h#;$xZp{W5CY~@ zupx`=8{_2wF1CVG<3-6ncHv8%LM-znE z$E#9M5|0o|0o2e6ok`U1A3I{4J33T_u3`#Gk_iV@8V5ak?*#D9KlNw`AT1>VT2ht@ z%xPVBAZUE_f@!ooYmQc=vSuSG4u8lqF&q1!rVYdioh=Tm$~v9gZvA>`8D;B-C!r{q zxj|V?5(&)AeWzy|Xvc6M=cDWLSV;XKl@r7CQ@L_A^J)&A;inc}l4a&W2n|ql$f2nkY2TP!#F%+DbhuL~sIl!;=nLzsv?NPX z*WzEZ{%25s$d0;usaRCAPnYMUX<#KK2B~*Z>FsRKs0V8GIi5fC*(FlUloCk{$u&<> zcK-lgc8XWE*rjJqaH79y)C-;JIUH$NLbUoKR$#TQDV9hjDLyJYJN#=AXv_)2xbo1P z;#|dMQ6b8Yv7uwJXw)v8Jux!9X;O;RpjrGqHQ#b~u8$ct*MyAAU#YXCl!45c#oki78!PF z6hI6eNA(iaC#&%ojk-(aOudd^pus^v>({XDylPjZ!ffeO#RX+RQ7WP6mfYz4Rt-F7 zS2i&9HlJNR)WDQBnT-Hg=nK>uwK!h%k?A#4Rg@}6!;jaP6Gk2$7qnw?!0WdXaOv&q~^`3S5A6HvFPNP$TOGW4eaiEboxdm zj4=A8W(y-KNyx#9yuUfxG%N+_5F*TksX+vIN?T^vn$SEloR>W_W8}z^5`bD_vZ#+_ zGk8Y-0Q()wMmuQ5Nt%*UYR z39C(1G)de!*YD>V zID=k_u4LKKGERDhXc+mC+itPdw&Ec~RDz;Pn@;}#Xyv!I-%JMW!s#JdNCPvIyNy}l z>UFhpWTd2m7Dz&qqFdSra7P@r&k$KK;{9UffKP~&p)BfmuS3#2^-6zIL44Y1$CKab z6wexGqWpG346<0|1yc%*&XX76PPo z{o_%?_%%zEnacKvU=IAAt-MsH8XgS?)H!0#Kz)wS@`TJse3^4|C?_BWpt17j_Jh|} zD3dN(luC01xewP;c8s4K<7q1-Xhy%{0o-&krzG>TTD@8&W}}pn81;>3(dVH% zEW0R5lbK6KWi3U@iPR1oN_ib)FuD_)DRxRdk{W}d>-LRCMp)Q_>9Bu7w~1zY59lWvdNb^oNVv1==qwT4t1b zxkyOLrD#ahbk|yF)p!Yt?&B_E(xrkBLw~8=HLqwbDFSR5T&YS4TNC32S}22{%c;0fIKX9v?7fHB0+vr|k@xMhM5svrRdYR+NTF zIwYMB<3^!q^xmdRP^WZirEp)uMRYArND!ZoFu<0%K`f%ONdsLsBg`@SLS*~PG}KF! zfB+zs5ORjpw#0SUv%#kNpAOnmsRClu6)`~OYO&YNw0-(kGCX^AkvJ&3W_H`3j?m+U zFPB1PvS=A9OR?q7t~75w%v8lTGcXaVk|+-Ye*8kig;_X}KD9Fvl7Lh*0CaA8a~g%~ ze#)CAXi}1_zyg=49Y1Kou{856B&EyyMX1|@$DhU-eHmGiIp#O_5LqcDrJ!{G04CO; zx!#NdXgCJQ6);K;0)~VT;W|Gadc!6+^j&AlRsR6n6I!tcpyDXub(wPt!hsCRCaih> zG^7B;m%_xtUwRbEZ$%j{{U4*FboBDr4rcDR5Gus*YYYsq+zb zbWlR#!8VD9*5yhQm?RBUrhP_(kyTSrngYx)eAO>5U;#eY`wfTS<9H!=U2|mF(Und@ zT<@6E`TSsa3){-WER4!DZ9$2}1souxW(y>#NrxOCc_k7Aw@L^(SQb)`Jn8g{7Rzk3 zAMVzSOM9!dBjMW$trnnCoT*80Nvnd|b%7^LO^f|lBOnTD5GA?n?MCCyG%K4#ziyZxg$O_S9HB4V-xsGw#$IcD$t!m`fjhWj2YpW2Uk_(D8Xv42DH;h+to?^U8yn!S$sel~w^??>FQ#g`|if>my zD_7sG8a27HB~ax_2U6OPrqGj$u(Xu2(g;vK5>L!%M}8k@chNkvUg$spPNgW(ws>8? zu?)l!U7&Rel?{QLImRXUritGC^2p6nYRp zHi_>!q!wY6(ZwHw+;7Yd!MDO^$qUR0QfTx502{LpgFwr+_%mjdtJ+8)0j9c`x#-q# zyeEJx1uwPrG0F$VIh{Ehjl-Y=O*}C!e&;tQr~JVuEGl>J^4thQ{^O?6^Mz`+dPcVfg9Wm6=I z0`&8X*T9o9Qj(xl;If9qXhZGS&JgXMj+K}#29D~^=l=kf`caynN4v7)N>WORE|AZl z=m#H_ih+aMv5AvAC<>~mb)eVq2XkGcMzQ)p^|HVqC@gqXMvQ6*p-P-GfdS!+;Q1<6 zWuYaVi$@oQ$u6E0f+`pQ2_c*1 z>1NiD852s)d?CU>pj5^L09u66fsInp==2$m76a8z9aP+(+8yrf7>tP}ic}aE1d*Y4 z6syy$DLY=q0dJfAxpNeAD=;N{v2Gd1F}K_o?76b#slxyYfZzZlJjULH=FL$|li=I} z*<2rFZ`ja2`WY~Hqlva}0^cnFtxJE9+sWd)gO!)jpAD%(Y~v)b%<2Pv4|?n61TQ5{ zT2x78GY8Y%@Gu77WmKt&nJdG|PUnIHznnS9Lgq@$uWX7i)b;BF7Z_gJa`==It%ktp zz;OprWXdy9&g1JDt(_~DLQk~rH;pFAZA#Nt4hK&-rNvwFc1dK97ExrL;OxIHEu}s@LYJfq#4j@f2`m5yZY23YKLJ*(Z;W&IZf@a3d<;R z?vX-kK^a1&Qs!YY7{8M?a~z^h53o3 zmPjGNHF_R{m|VVQDMSPUL1dKd+?UhJD`D&;rU{%Jg27t>M)g;v_ z{XlC&uj88I`>R@3JTkziclXD*dcdhcNmBq6NL5&lPs#^dFVxGJ>J(Q8-S}Y8v54-8 zYe5Cr50}apFwQ?IQz)dRCFPJASx@O8)|z!apxxz&0)YttxFEGbeIK+UNWt?7%)?sp z2G8g2gc{6?)7BKJye#akyuN}YUEYb6@*`je5EkdP6wAs%D$}oX`LtA)dBJ!)u>YhRz*4j27Jd;b6-nbMyZ20Xj$dC)*CpmqHCLUo?-Sf~ModqV}r zg|di$7mK4nL05#?l8dYyuSFWTe}ovDXbcD-KL=jjV%_r~PC!8{PyYZ@7_q%3S*vtcgo_{pHva%&XfZ>E2FQJ!3JtE$zT2nJHszbNwrv6_j%Pg1HS+dkla0^r5 z1%5k37OT(Jp-BYfR@=AIF8V*f1gSZlGNqHPRA2Mu6TdG?^w9Aoxf7(RB@_TTCr*y_ z;sN2yfMrQYW2+t@#qEVul&jTMCqPX>8<-b{u9@irF!r2gCYgu3+#>V#gN1_RNJ!n! z$FI^OwAcdGlS9WX%q!w-W~ma?s<0p^4fJ~SsSVmHdNai{r_EZO!o83{)5-YQpC~?E z;YrrC%ckI9Q~=D}Y9brLcquh(r)^(x+6vv4f>H)*f?SS1+g1Qx*8JzyBPj8B%?@BV zI(!e*S0ERt16sTDXj%G=->#}eMkuaP(Fu# zTzrAjGv7!TQi$+|0J-QkJ)$W?je`BN}LPFGAC}Z*vT+K>s=3oH$a}_g`^4qr5jGGcJa_p%f6%qlZ zAAde64R{h{#aZS0!lDX5Sg0T$(tbzIHk`GZTeie40Iex1EaghyhTrp~doIuFZ0pJa z2`YYHTJ(;ttXD2n()`{0Ec_kvt)6x}>Pl^$({;(g`{xOT9}Z ztss)%lG`2Ys6R+OWyEB%SdjD^<~%)4o>0eh%$5+48`>-zof7X}r9c3c5Fb(n0eE_`TFS~oli@BL3Io%q{MIvxf%k>0Di)bQ9|>cltEPZP zOCfWml&);DgPF;CGtiUsjWY63K`9SPw)Ncc=K^gQgiHk!5Ii+0CvJtS3W4l3k7Z4C zl?S8#+>eBFZNu`XsHH5GxpVrIlgI4iv?9s$e=vV~Nk|!-4HyRQ_9U(k#ioQly7VmZrM%01@dB(>iOvea~%J zL0{_SC_99Mur6TLF5Z{KqbQ|EF&cxzY7XFgy~aLK#CUykXPJ^xx)RF{0>E%sZ=*hx z6{S9+&0?@98bB1vY(<~-nQZkkq zfdsd@o71lmpk4T}*czQR*Pt-}0RI31DU>Fm3vl3&?bZJPHHEpjPE5g+0LGcLDd2|C z?g%a!;Z8JOU&77dDrB`OOryK(I`!5Vu+}u2I0v^N{@^v+@6tBXk6K3 zfKcEk^*HIPb%M9QrF2M;xuFGRBSBRcEl~PbUfjk@f$KVDrfLd(VI?%m$vqw4M|e43 z(a3(p6Riav5THc}2`VZYfEo4ev@2Y8h0X;t6E!JG%CRsJn@WINv}(9&{Bc@7=SCap z3to}0!dXblWrs|{-q#9$@&<#s4G5845+us-%SbwxIzLWY8gR|4AIz?_6H>6vNZKBbbBxFy8$@YaD=yckJ$c5iW zcn(;cq^PNNC0UQOIM@m>pc-|D`-af9K4ZHFcJm!Ohk;_&iB_d5pgT|+mnMR=G##Tm z+M(9fgCq$rmZ@@<&;g)snoVxgFTY8^aOYs?=Qi6tOxqRuKDY7bbA3I<%j z9W*&Yeq*d&ri|GXJ(-Mi21wL9iUayop1&u6Hrpblt;x*wrxkBMwt^FGOWt7_Rh$&= z>i&hWs&m1qB5Xd`!et0Hi=$zX8EN0y@H_=py{I6(|DzHGkWz6u2)1X9}2HBz3_~o>?9_q?9@tC5ZqZc>LA_%e~9hiQ|*UczaN(D(;f|5qW>ijm5Jg%xtKj3?)%tmFkMGs%JMUU{pl9Q0RSbqs(+kkd0 z2XOU*WVST*Wh@5CZn0wim+MlJE0j@=r>r^Xt?ZSBF27U|;idM_uy=lRI@Szb*SZrq zNhC8cuJGG&*}~FNq=p*}jA7XO4$ZUL0)}GhDja1Wr}Cwud3D*&+V$gzy<@Pa}e$Llz{JKe)%v<}8#H4EPzSRCQjA3P3ZFwZHmoSG>eQWVF_Zo=Q{{Wy& z`AJw};lhEhpGZi=evhZ6rv+yc)D`N-v`6Z0X`ua^S!66UT{j|Sqy+%ABx+f!$39=m zFQu!ZSd;4z;$bYqbHL;27v_3HmpB70^A8C@1Q#A#d$ob8!gH-ssHruj*8?94%U&ck`rF{tY&x3CR;ZY7hZX0e|e;D4uw4*&zKP zSwbdwMq;#R2EJP!eemaSTT?JFO*Cy!c=pwI0Wc`Dhi9l`NKlwYJ50r;0bUXXHUN!@ z=Wy{B7sF_r5*&$&dX4!10OWP+8lE}2g5{~gT_BN7dUqRqgT{4%Zh5B8t4y^F^46@W zG@?ydv9G!!@cp#jnhnV~$x3Assf8toJn~`M&tyqM1C*;)+qXzUxG?~np)!E61@x{N-%`C@STCPJ=#?bq|BU8_{NSrI{qYZhG zB|3dpP{24U&^G;BVZ2m@y_asxIwcWI%Krc^oI?%cXA@Ea!vH>7e=&B~F*1@#1gAn- z>$Z@wi0`{Z#AUO~aJnXD%~~EiYo^Z&FlkF2;?zk(lj|8{M7CghB)7FtYeom8B;8lc z(h^FG8hER%SZ+_iJ3`I#ge_{CB~F&Gq^hLu^$G=;r0hqyR1Pos6D6fcQjdne`uFL{ z+Bt7KzMV6S#_e?8hFr9)I0r(0G=rb_B0tVPd%JOj@=}GQqy+m;PHh+_j3{4SqR0H0 z{{Zfa{{ZTQZO6+opDqufuG~F3Vw{EpccZ;TK7YlA4hMv4DE|PwP`__%i6Ct5+`y}{ z+-4!OSAK>%F`kN9x|3P%_UsX)Nq_+_Vr2$mF_}RYZjI$PoqWF#5Dh3f8Lc*JnHk zvr@VeqLNOB*;RDlzWnW^6a*hdiVs?hCUyTgbLYY1q0izlY5(77Q zWj8uaoXX1ClINk;hgeU*STz!DGS;O6qDV?c!{qu`ec@fyG;3v^VIDU@T0w2Y=|R7k z&}i_7j&OO(3RJZe)K$WpVkrC2^RZ(aU6RU|C1WrjsOtX!l!a^3Kr;eC6)c~$Yv_S+ zm!wpgB3g&5AOX6G=6CZ6X>SSj}-Hn{{Ton$Uk~+b$1Xi z6JTcR|k%33{^`lpeTR_rH_6(h-ICJ<9SvEr zDis8D*uzd2wW@MdwUVbaAL9$6kJtSIfC{6`BE2%8qbM|d z+tX+Xg(kS7SQm8)Gi_hWKn~b$>h)*^Me`~9HkFUqj`T_;sYkFKvlnS~izW+8r7i%rT_A3guF*Ow}R<41yA|0_#CQ27D=67vQy@W);Kz%D(6j4Ss zW*WCAkl#oT=&sC=Wn2~N^+TsCByhc1G?8ONl{RvHdkjm`H#Fugk{gPv78wRI=8m1(m8L3 znTE?oACd@kwRIfv{s2Epv@Uvs7;iTw2_zwTTl*=nn^tu#f zhRmf5q>+@GQin&`*qS(~ik2@%R+~b^(sMCz+JN*){rHU1T1w`nh|4Wt=l=jEI(~5< zPkJ4_l%p^Z0##7mH|g3G?v-_8xV=h}vIb$O>e|0fkarJBT9jreme97f>k?nqutCfl zC~%bOq09=GZV5>w&I)h`vhI2w)$(}G{UF-rS!K#DGN^dM ze@d7TO$8543mpMx%g*{hL#X8d>Q2(!ZO)sQ?5uS#s>u_3nPh}N)Fl_E&9DZB=r zWSuk`m*m2qqzj!ZoRldv)V81=c-W4Whq>H2?VWl#^gU`q<<7K#sdF?xs15;Y(yv3^ z;olWu>2lPjRI)Oll(=wLFdiuCY>HUd6c6F@L0KNNHfG%`A+v%YaQPuDXZUZ6OM8qa{pP%{2wQ zT6l*E@6^B6EL_-e4yo!=i&VQ;{7Bppw#P`+eE?s!Yf6_bXv$Ko&Y|KhMmrrG5k_IC zFkPOL>`Ljg+N6{O5Ttsr5~aI^jc9x=zmV1y?bw-Cn`D&C37C*ToLD7;v0_lyt zuMe(jRurU!se(#CbO1#_Zq)*jiF!r!eJ;wBOia};#5expiPY+7otgOJB~8l`S>=YxY2fLwu9~|;&I-i9r4-JP zs)IvbPar%m<3B_)&PAb0l(}Wf(_FyQAsRIt#zB2zYeb2P$u^mY2{cFv(4L%g7dMSO z*42!$Eu9NdV=ZIa)C|0hxD@HQjAs>I>z6sDkuqG|iU506AlHH#jX+wh2V`4UY)(~& zUQwK+YWt2ktXjo5de0_UO44YOlAtO<6$I_vZ3}MpS<$Y3KbEOUNLVTf3;_o!ws7N9 zzj({>ZZGx8nIr^|qCH~48&IHdcBy@%GPSp^$!97l3LTvP0JeuOF51EDGjOlh$+ME) zvT#(&)j{2ShatryOo?coim-(FY0u%8D>)%G&6KdrPS3XVa>T}oi)~5Drdx&ptp1QV zdO6Y?t+sH4iAVr26>SAQu3QH5cudDPY9z2%kh|84fogAmW@g_8oKc*=`%{eBaGzzUiS1nKrX&I%{a?F}pZ!J10 zN*ay1eX2UaIy+6+3mUFa2v`0vpaBk2`miU5sg2_1#VMM_DasDKC$ZceVGj#>J(cSJ z0H<18HFG9`Ni|6$^qyFsEh9?1uRKYE1mXz+7exr~#XA$%^Hn2)u z#K}ajR>hnK%=*`Ab*Ol5vfk-rAq-I2Rh7a=`hs<5)H|0O7=JFXv$x1|?t?819YszQ zO+Y+>&jK}%L>H+NfJn@w5=T?8J+=NLPQ7sbo^byF#sakPfD~Iopfxnro(kO_jMFVC zr>hJ>R^{r=(vE)ct<#ei@O`;!e_G0#p_mOD_W8kSR$>yTatI)}pnZDzKwF;AmUdLE zD1^3W8$(3f=!s-7CtC0JF!^pKu$+B;iIWi^mhprtwFuOWLpY#kHR&3?m(lf_bhM=? z36zw8q@UCV{r4wRyT&hyZuMI&h)tW-`qHlvJ9Q&+05SA6j_sK$N>F@CKme$9-0}(c zQV(Rvy&+*4a#-2H8C^*Rtg)hq(DV?8aNd@~Ek#wD=lh35@DtB^wvnP^d#+-p1d>Fu zT$I(%9V-mjHw^(POP+!1fFOpi0bMH4rz}uCzZ>rvqmm5{>?`aO7Zk`XF67(Qcvj&5}krxx@t)zo+=`C9b>l*wG+K& zQ|i={KnQ(m@3b}DH)_JdMu*0w4M*AZj+5wGN@kp^Q@C{vSQ;eteSfK#i`h3pfCCE4cyP!-|?6R|pLNcQ3MX>6Xi zN^%)%@hYGm)bR%5j}Lg?37K+=l7F}pT2aRSeIe*NUYB}i464;ZfgPwEajVDASm)95 z?9VW$(L@4+MOL9*L(&>>6}sDLSwz18KpBZ8()@HIKy-s%m2lL=N(xfJN(N=VirLHV zA?3Y|iug~_S(#^*J!Q&HeJ%&kGxdH7SK|qEQZTO>F(-FYYzG#D@Ext-oH|m!I|q8X>)N|U zdkv3W7KyUR6D5=-Wstly+{?eC2T`q|dN5iU!N&gX53 z6mUn@4BeO#dJ>?u=1BHI6i7Wbc%NV={+N`6$edIh=5&^N8Z-Uj>l0!EQnN;*24sZj z-$MMxZDLun%nFi{l_|u;xyYqHq%ahy2Ph;O?B#I{u*^s*a7c3A%kkDLAi_2c#gX z;nCwGn1#$#sS^A|6PUGBX;Nxv0{{+yn9_PHT5qB3LH_{PKi*JKAh=af6e~*THf_gv z+VQ47^+dU!ycX0YKs1%G&%ZDb-R#Bb7%8^n@JAm46 zPd45-<@Q&j#u>-PO{FttE#<1S67FmEji$qo1jLz=mQ(?7C_wHb3Sa#`THDqTeOUIC zO$Q;he}odbZe`g9S5QiesWlJph0aXrTy2dC?!0o(3v%jmPUPxCof}|$qASk(MA?d+ zy8s4`&I@(>MN3u9KG7@`f{;grTX4t9E!%wx%~}~M$WVvlJL<#V)VyUqEiMnX%QF zA+zYiw>!ndBx0-(W~;z*h9zVY9BuozF_+K6rE60tkc5{|PKn$Rr^krfuM24s*_e#p zE}R3%6s#p+`|wLt#Dym$)*vgyqu+OPSe)zzU{$FJDN0u`P$eKeOL&gLn-*yL9|_=@ zKC3drth0^})&^lK5+q9Sfa~!U>hH5`+(pTl=*mNo9rXKtQYcepvfP;x!c7MwW985g z#y(H<&y2ln^XkyWMx@hC)z*TYdPbLw{VS6#NS2pXbLP|@k%C@!Lo#M`B&#_OQhZzf zX$nO8GGOdYJe;#wBo7IG&K!IEqe{7Nh0S3^@=xmFy9Xw(=0qgn8F?3xa{XXXU=0FQ zPk7kt8x70o{c}P|0$;0Q>Ck_u(wjVAX7^%07&&@q^OSqfqcYJlSijKM&mOUp$QVf0O+m>9B{A7!kYao`kBF0U~-3GM=Bud zI{pPaAxtlY5hX=?wHz{k_9@t%DFLrJL;|&FNnkbq0Mrk>A6`F~J!%N?niH2o$9Z@Nhu}Vs10)sAEQ4c=pV-pQ}z|Z0J>B(J)D@28(_2~XHcev zj)3-ocNe9}D*{}+#&7CyK(65L8^JRYRD`8NDjgJe;m*fT zd=~U;k0q_;ti03=#3<8-9KoDJd5LLOQQ{(`>Fp*_I|qNX*346%`$G6#N>2 zwhvNtA6Ci6$w(xmg(W$dXx)19C}ZYqMRm=!+SO{4;YwBPy+P2IZ55+*eNZi6H97XkGM)awc@Y?Tm{$bo}`| zHgMZ@<5bK9g*6VjR2_}BT0A0wB(eG)pB*7*5?S-9D%U57sk9vrx-!e>7b$Bh&Y}qp zkbGcS#J06A zN_|@w0pCyt{%{F*5i>u~kW_wvd`Ud-74hokNlHwz4&-X4+JNcSH2MmdZuC#}NtRfI zrPs(OM;sdbAfKqKnx!V7cZ}A`XBn!PkZ6CnLD94= zxZ0e-X-Tcy5L>cJRzu@c3h~Qz`$Bcohb@rr)OuIuVS6;PFExzGE&%Z)u{8ViiDy~_#IoL^jw>ADOTlVc3mHb7 z)As2HZz(AXN{Dgs-{B5Hp!a;1NJ$kg0XkETtqC5G(iJU9A(D`%Bxnxr)*kNr#7;R6 zg&B``=-Pf#Dq~xuCP^SYa*|lo`z$peGn4m)X3m86Mf4K6inBAPDipDoT7?!JSTpq< zq07JrRXVn=mPxUhTVcvFz~WdP_dJGbJUKG~}oJ zcqfO4#&mbyov&NmBszg0oVtEAWp_>V_Tms&kxol!2Umux*Ab~yT2_>h9DsGv{w(`f ztYN6MO&6iaqm?KM$OUySK^hXmfSn16y&Rg`@BCXaGRh`?qFKX})1lq9qzS;u^@{)k z?Wxpvj3fWd?ztN`2zAW0{gYT7Xdvs6Tz9 z%ffq>1F++)M}69}u+WO>3X*XWgwUFWfaA8CY7gd-P)c{Ts3jmZPOr2G{(!Dv3_=0; z?0X-Cb9-JzYCx?(3LUz(@WV3RgrpG3VdoO07K^De)E$Xls@Qbt0IwTDkXU;l(Z4r= zcdg>9Le!M2D<#3)oq*e&S}R=k8G$F(_<`R?9kwvjPZvb$5(QM+>L3@SyQ4Z#w5+70 zvx3^{{OP!h*B#^H3H=~z5aWwlO%bDNYR8g0zz7$7!W7wxn9=I~QKwwt<5U%~*($R}WE<3nA|4uEP{isc>_Ih^U&>e{pqv*0OfWvNFoCooVR5k_Vm{qaR! z;l)guAgL)TNFFBFN}g%a^@Mw6gCyMO0V>s-1` zPZJiM4L~&e5eOJ%;FQfmW=u;cfLI!4AV0pld!b(Wv42dWlUZP9u7jcNeyELwhO(^6BC03jT|1 zMoA!&G7~^(-($gsKS&mYsHJG5(qKDj@H=k=^mq$l#Q6iM$a*mO!zIs%ME5P>N$l}8 zj|)j$w2Y>^yApRuqgP;fgzKG3v#D}apVgTM{D)ql$9IND`L~&?Q|feCzIoyH)T51rX{S!lkOnu{0dYGS0$`dF}Ut(9mz2QUVC}pNceRw~h>$yyfUX z$_}HioHN(}P$?zq{{V&#;rXB~l*J{*c;XkcX4qEm^=c_4$kpN2Mdq(zAwDBgMSnkN zhY;9hOH~`hrX2j@Nf&VoNGCBhCtx-M@Aic{B?}#=C8*0ZBv3y80K83(F5-kLVpaf9 z@s7U;wTZClT&DwDWM&{J z1`V&?1B3*euEd8QpC}hD>{4cUm6(v=k+InI<{cU}XP?bTEU$j;J06U^m0Pz4w8A)by2W*mnO*GOo zi~jKb@CZ?0t+%a5!Jn)XwBzF{YErN=76n47Nji?hN3DAporEiBn$rko>jE*Y&mw%h z>Ps18+D!=RPW-oMX}4OW&IASuYHgddXn3i9k%;0s6V*9M3Q`sP8@&+TvnD8n4B<&)(1q70-f`XHH22C}yR0tF&^?HdeQmpt&%VfKVUS7prV_X4#J2q486aCSwFg0w~6ZS1eycP9s^vRs^jcwM3fJw+$UUKa8s`#~8k3rOQ|)DN#^7 z4k-Rq=Sb?|$11cmmZ!9(3M37UcXkiEvj}j+xK>@D_{9Ns8;G%B!;;+qBmpck8(vCZ zgF<_Diou~bz6MgzQlUdu4Bw|W(*h~sc(bD zyAAx2EDcV>zgXt)oaCmtsD1wc#2_nS!6{6qe8IIPln*~>$+6wmB`7GBF)R|zo09yI z@QwP^oRUhEKybjm{X}KB^m_SH<)O2sPIG%9_kDEZowW+Xm0IY>ND@S(2PAtZL=FKw z8he?54)ua@9J4GWmLzYYmB&rtKL%i#K}sv}t1Bcq8Bgj}2!6%D;Kln^3z(D>C{Zr0 zHst<(&TJIZePEenXG;G7x@gqOM)ldYjN10WMM?307B znJUng1uHNNM#Ss!kEy?<2f|VdhI3L6#sN8Aui#XE5HdsfjSn+5RqF+kx`gbse=$7kEnRD`oDX9vgyVp>5 zsp?~OQAMIcMAU*5#64NG=SYup1%#WpO)``villgm9?;lyl=nmpZc&kVzSI zVayYvXMURf6e%+WqRvaHjLK92zeaQRjVsaB!#NU@I8Pvyg(wlCM{z<~%`}MaEMk=$ zvj`~#$!7sB&UK*Qk0@lm)1F!N3m_~o49R1vn^vxj=c7e$OVSkVIXKQ#;4=8A9kT#g z-%9NbSAH!T0uoZrjrZ|4TGzY^k#;UZ5`v8qj|=86(DZ+lTe4UsS`t)u9?t!a@t5OlN(yDmn4F|65Kro3^Wq8Jc#SAp zaw{XK0!z``;npX6JZjc^0hKLTNYpdvl#M?+K&$Rr{ZiDB3fQP8O`ZJcM=)N;C`?ii zwT5>tXrv8x)CVaWm{7&m6vI z(0k!S5Y3%sT)d^irT|e=;L(5&T{UjvhBnFAO3P_StQ49OGN}cRMj+9jZ#c>Ez80M@ zs$1q-7&+Bn`j8tlR+^9?QO?7NXXQaaDna&g_<&H@kl=a$05&n+Dl(9Xfd+xrb#8pN z=^1yTJba*|A#(x(Ndz+oO$+}3wLU#z&ho_NWk8P$cw8_e&v;+(SP6UjMVUBDsg~7X zXh9Sl`{PZ*wzR1p1p+{2j;&2~BcvouN}xiHKT|C4x>PQWz{2HFL{TTIuhG3_W6# zDEJeZYpS2b4`Ouuq-Zxq*DhvNQ#t|5PHIvH!h=m)q(q&sG3`AJzwsc@8$P!E+gjUvH<6KRxDHAF6o3Q5s)p>RPo|cH4&hkGcJw*rlz10HvQuju+N`kws?|6w1&)(?A@Kxp{E

-NU0Jm#qYx_{aCZJxSxhU__MT?t4a)K$E@h!N=? z*CuSqMKe-Qv_HwX_xVNZJ?cifYCA>ddn#=<1SoiDr+p}S54qGrN2N27!9=L0dd&oyYxIVwt!897h1`i(26Z-hJRqJVdPCsL** zgMb@19(?rIyf-G$RuUYsJ8F9!pXBkFVM}TZsiLS*SF&{{a{4ykhBbU8H6SxZ-}Ky@8B4Xg197uEQyI3jDL5bv^p)r)E) zJM3ar%`2Y4Avp$#ql!2&p)$5vUgW(1)sP#SMdNsX>$=j$6{qVLy# ze0glTkhGdIn=8@Zr+BY^hT>00n1MEnI7>4jtGUp>2d1zJ(`ho6q$Dy<kWNx6gU-enQf8{At~J;;!?Ys@^kphyL2yt4oWJV(K^yM#LA0bZ5(ACf zpExTn&@vG~KrP8TQZjsFia;q?B(74KO{fansQDIx7q-QD_yAByW8opF0UG@EgzxyF z>(P`l5l})%9kgysZ3V7;Y^k!4GI&~#s5{qjq%hfUBAIzqDo$XQ)8Y8=>F$VBXSiWFt|fJl|MYQEM7Z3R)%r`L%7k#FDV+ z%5!*{yo!x}a3;z^lu`?woVYM*<+rIM1qK=(-@GARi|{2OBiUvhAea1VW}%WmSrk8- z7*@nLa*(Ad6_!hi^ZG#6oW&^^jY({~7o~nb2sDOpt@32gRJGSAVnE+v`@=fYh4}vf zP&jCNNyu7xhzwVa)FSNNkFPY zldI8{*UmMYW@4Po+psmH0K}8jnM+i(q^-AMO=$b`N}V9(L@U{D-|5j@l`1R=IbU<< zpz>izj|$!eWae9p^d_Kmr`PEjel5lZi7I)EON6<0g?>Kl2l%mj3+&~ z(>i@2a|Ei4#h4y?!ZtI%%%x=ng5(pkKkbvk+^&4PC`WS_xxJGG_!$&+LcE z*YoQd>MPk(ilyg$fjb}CIhT!61yqwz5&`+{eozj@e4M6Qg$Q8ZC#u*SEFb~^{RR9Zc6x!+ zqj3$Mu3!280Qa#Mq2K9YH`-{{U0dnDx*4d&F^bla0qzyB|Q>uTY|`S==58 z`M}iP>IGRv6TXgjiwcrOQk_Epdhgh31O>dUzO5?oyA4KV^?<2s z8Qz+r6Is@VZldv#GZYx~kQiQA3pbuEK6enO#+5$tf zj$&seVTQ|RQp?n~qpUaJyfXQguu{d64*qbtax2wK1gRzKuZt$Y@$vGH*n`qK{a8v! zb#1`!0UhnPIwmYHH2`MdjmLUFXo~Z@{4VcJ;Rfo(D@3|`TfXOJ)V3YThTEvz|AX3vKTfk<{L)!2714-i`wWf@0|l~rWtGpUvQ$&qx6h!W7jGmo@L_2{*PPnJ}dZK=q1Nqx?_# zKl2XaJ5Pu)LPAWST~rPavix%uFy-8Y&rI3VGY|@8rSgJE_K4h$JobuMmkya3R=r6N zxz}j5X~Qd6^@WVK3|WdpZOHk2ifsVRATo*8ydU;`G~Y<4Y@EkB4xI1Xzdy7ApNgfS zIaH&WA&OX@>LUbd`^H@Gf7ggsrzPVIWy-7VQxUQv(j=?8GOBFb_oFa^jufyj+E2qS%9lR0^kS^cB92YAu$yA-K1 zLM0$&mYsJea(N`bzuu8$#p&@dB%KTB2BfpQ@ykFP)6xQvm4y-*ooTL}8%-i?-%Fh- zVhhnzEg4<2mte;z%=#hq#ulhwX?yHwtQy4xhAhiZ7hN1dv=X{{UFYF8j?$DL^GTzymJN zukY`N3nm?zC>0V`!mM3}zlI*3EMUv2MqyIauLH6{bdkx1`%U%`wqTTy9;{Dc89kfQ z69p+LQc6#Ve~8+fr1XHeo6-u46xNOvusnWg3+05+aV9Q80Upp%uTQ*V*Zr)Lm86h! zdm~c*QQeB{ooJesm9j_~!?>ri!`|)EHJh&o$w&)QGcAY@pggwG8>{roZse{+!7({O z$}p*boztD~ zl&L{EMK%O)U0y5MReQ?EE>JW|OII^hyT)~OEhS4*5agCoYV>aKL#H{QOWwU z>lQH16qO=e)TXZL%}3}AN_PY>eWa<722dO~QNNr~oqd(5VJSWmL!BR(Qo|P6ldTDp zEncl9M4gC0dY7vbGJ+g{V_LqZ%aJT0Ab+tttD*b-Vxn#ZCPryBs6g^Brl~i9MqI--*hKl8xOZ^caL->eeP#v{kSaG1?g55do zcENQNlBKE3GY`r_wWkbwWk=d4C?<~dC(EeT8ZPi=Au}rK4$(c|VoHmzMAY@|3kz_M zbYNtzazx-1iFEigAqmQWl0)UEgqqSFzv=$!m?l~R!AfPCm1t;Pz5urE z%u>29RU*<5ph!(Weyu@G9yMFN1thX6t@<80{h{%lijMZXQn#2u@T9kH4bs!;Pa~wgjeG&>ghblg{yldUd%|Hc?!%LX(z(Sy-J&O&!2~o^f2J zr;3Iuzx{ShfT;=usi@8RTaDf+*l!`M=Y+P?&a4|n2 z9b=4Gxk=n+3`iN7_8(p$GUvHdX(4N0{x@>106RJI(l#5X1tg$}>MG2lS+os6KK}qM z0Gv;N?BNpS%UM7QB){q$6VFJPdbfcsR&)aLXdlR}$Cirb|ku6snTKL805Rb}!#( z&b=mFbAmGZu!SkoLQ9J4;^a61y6*vj`UbwHnet0zND4_}hqCY$)gYPuHOhJD+aD? zl2ELxNF*Rt)xCEkr@|{>#)*GlQxt%6vel_(VYaZXV6?K7RHL1!;rkxu7;X#+He{qG z(6u2xuPakK{{WF!BlLjO+hAJ{;Y7$8SN+0E35KMk)aIoK`%pVZSK9V7JKE>lW1Yp0Y~^rMLpFEUhwB|rw5lxI94+NmrH5*&dGcRoB^lqAe5 zm^et=qiB0}-W&~D>cWOlGiE3dkm1V&rj#Rb#3o~mL>V(Bhe%O(CtuQAQk~yH2w2n7 z^xI7abjqSxnM4Mnm@pn@7w1!g<=H}kIg>0=Bvq0F5bR%44^ENap=@BO ziL?TE1Z+(X?&U56jzh8b*6)wc2K-Nhv@Xb#iJoCV}?SzZg{GGr9dfWwaztN2ud+VcnuNh)SzzazKHU7Dj)#5^yuM!(V zC@6XX_+hToWkCf-il`6u{CK(PD;QqKEow6+WdQ&(OINR#=CC&uTEfJ{N-hqG(0TQQ z@o>#5S(7nmqvl9EhttUO(kNb5n?#=x%EVL$IlJ(CMtVLY_+JfWE#V=wZTs^MmYK*( za;PQ1bn~-^9|*@Revl_gb(B?9N)jBBdE>5>hP6&o(vVv+n4Gl%^#gFlg+1{S z^HS|iEhRG40nAG}w+F8R8SR%ew5%y&q=!1wr&waJT*wF#^3_TOOJ_P$`PK;DUXFcW zZ&*?ox!eKxAkVYViC&Uy$RP+*D@ux~zfT>{NCSS`J!z|i>;co=uBL~iGhyFHQUa2q zl$E5onMXW>5ftA(=qa;nzw-m5&M>>QurQ(StClYQ0-;JtC#~=<-~`lcGgg+0-kTjrjog*hAxN zEsvi)9a$ z72#}6S)JLrCup&D;ow|l4m2ZH`+cBouMDbL&OMTO4j|MQuN$gb)tP7+g(zrR2(J%G zATk_*O7qeazwh0lX56XCIarrq7_}8mcJH)B){%?)ZRDaZ*P&$J1A%|{y9($%U(Uq>hDv?OCJ2pLM23oG@uiP=31ZX-g$0UoU& zxM4xDA9(K;sU}%VoTU3BS8bxDjQ6+9LhZFqnq|qBwaYqe6f`9FYU*jFVbjr00GlFt z_42aJH6N)7PQfazM^<)r0LIOPW}z~Wq@+5Dbrzt0IHXC8@8B7L1(+T>^$@~aQj&x$ zr~;5G3pT_N*XO43mg0h$^CW|iq^g01JC^fpVS^FgMN)u4^@`CzP!q`=Ax7@Qi&Cmc z$Y{cyecd6;D%!XF2t=TUNFVF@NDY2osgg4(+edwd!`&aRyi|l)*f~;YTVCzQCuqPu zE#jL(&>di;9|+J9_Z*L`Oq0;PI z0A>^H7aqu48*W(v> zqFp{?%LJs$GLVtuOE!Zx_2c%8LPidkCU}^Z)Abq#70h0}2Jy9G>^U}c)TJ{NPy^-z zFNaLK*Q>^5=@$)pf+gqiILbv`^dEPO)-{1~QJ9&DQDO@>4ecL zZ>?J-kTq~J^w>VpqFJ#@Wl14TmnL9bP#wtB#(n975u$Pgq>^$e%W2W}%6A>OjQ0r3 zoir&q>6rM5C5Hg(O`ZME6QK-l9QYhO&{pr7#U=^?Q41Y zLldcTRb4>Zo>kj&(s3O5B!5#ZFnWMpW0z_!pdMJBVQr!22=ru1ftaN@(4vHNrmxn5 z4PRG@vlPonB}!Wd1f3r`wQV-~!yltd+ty1`(h59#uv2+Z2pNwG<4ksCI#jufbrM`EfOhApf_{&1iYD3}Y^;I7NcKlwLHNas>c#y;kV1eVlo)tR zjX(A3Izg}ce7z-v&6HQ;LY3k!=B2P*F?=4Sx4Xn!_? za_o|VP?{X0DrwVxwX8nb@R*p8vRjwbk;hmNo1rr10JJ`H!#4!|<2*l*wiTMX*{a!&&8FIt?Nzio_f=a{FJV};W^lb^^7BAbje4i45P;hyu=gtD1wY#RwWy(M_ zP!3y?1w5beqZR)Esyj@PAt_S8n5rcpW>Vi~4tf&M{dRgl^@#`pUbURQxwjk<*v32Q z8w<`Bp*~}kBm$i>r8{=zrL+M3%f_eZ?)6N`V7si*Z_oO}H2Jw%-(An=NY6XPvJ6d!OuD3aKpLfw z=jT}W(Ox~tKh(`B%xf(`vQ#z7UqyE$s-$k)6{1wR$stT#t53@F7$2p7M_^7;C|=17=n@<6t|wDFCVkxcdGgh^SlT~VnTOuw?IEMfdJb;B)_%^W@9Lv%r)J%{MtTx z^kIJ676gSX%$Hn~3)QwKbF2Ht@wnixSwu2Is!4VoHP#&EspZEU*evE;;v4&FK50BY z;QnmdMW)0;Ku(PBueuZQMVBge)zn^ttWR)X>nKt}!h%CM)OPPm{o?0W3L=?fD_u=~ zA81IwCMH^xnRIukeNL~?@uX@00P!vy(2?cPlNnX>YxNV-kcBHgV4~gxfJJ$F)0)KI z`Wb-IF+i4c7Y#~}EjNF(Xt-=hZkf$t4(YYV$dVE~M^_$X4&``O-Xdr?@!xA2XqJo{%tu>9q`X-w# zQ%+#xDAW($2l`p`YcAQCOQLe>zyMC6w>+BE^op|%3tbqk6OxrBAz8zaDtirkJxn4i z3;MfBo0J7ib{idCK3dhC^o#zAFr?cuM6yZsXDUb)Zavg`MvZH^ePqDlsQY{Sh*ylI zxcPe=$XK4DgW^NFMxp-zG^JV_y%Bm!9w~GDQxbeCJEZb9BeNZ8pn99=u34J7hN@DD zDki1Qr>6}F$@FV3O|45h?xCRvLHSrcFM4c}Eht$G)eZ+gzXP;p_syXzwMoiY1t=?L z417Oc;KkeH4X#R&F$z+pk(o)+g)}WgT0IX)QN=iwB#EFFLW7Y*S~=={m)O+mV(rAp z*zZe$NJyBPhIT*WPtUfnr+i+yNd<0|c(R{qCvXiM9;`w5FGWS@luc-K&e$zbH|gn+dyu~a5i8_Vi@oV(4OB4YYqrp^iLpK4DzB-MFa2e zfOqBaB`ru1;s(p>8SYXH-Q!$1t%oMm1Zjd00S1=M%~%;b68xr z=u^Ghet&5*5|u3+G24#Z?+RGMG~zv2@d}2btEesl8inU) z4YTd{c%dS|oT@jSIVY<^`PG1WJ2V>-6BhfX!T!A`D zh)<2slc^=#@J7OeNNc>WWa^Ru8y}lPhbbEn+6t8{>c*w`kJg*UViptu*Wm;%yQW&^ zf~R0fZ}KOekXrn^M}#{7?Ml~f&=6#=NNG}rWT-g;pz3K#MeKKQg~~aqk{P%1FcQ~v zspYaWc!QlN^?t%1FSb%ZS#*K0pr9V_bODe0AHr!wz@==nm#FK{lsfuFyo9XEV${%n zX}m#-L36pO&#imjLBnMDDb?XRwIAFB}NGeEW5u2{mF&)1bB`6@N zj*a`p3j)%GDoF6D8$EX(d-=jorRyq4%pC;@%`<{D2fco9t;wcfxi8e2sh0W4a+AmH z4Z(SpLqICxv4r9KNtc#ssZZ+CgP)W;T%M8~sYZb4`Vw`gPO+aKB=t|?Y{plTWrV5d z1z2g{m|RVkRiHj^31eC?{o#8Y-m^+nphGBS0O{Y$yjH?C$3|5)P)1|G>(IlzyDS^G ziI!(nwD@)-c%JsgwxmlLr4)jf&H7uCXnPGIs_wPRnivGBKctH3u!0urt2Df;0Hjm` zU(3obsk(j-0$!ZUg*MV13Tt==*`op`oVi`l`02i5wBR9 z&3%bzNKpZc1sVvf2yXkmm6b>Us8qE8=e$u|pn`H10JEsnm*=VXX}mPsB$XsJRk`SQ z>|-v)_t23&DOm;cq+ z;Uv3?j{HGvKxRr#0(BQ1!e%iB<1nxVFD#1}MG-FZA@(ey-SA7z_RKqV+@e3!j1H7&0DJdf`(w{%H zE?oYRN>mb3Gpkn6RkI%FNH&Y%4$4Cms-uuvjqrr)N2AcIP?(w_YRm(c4P3vUU>Iog z@7$g;=W<4#{hATIBAIrHiI(n~DM}CSFmoK)NVA_*NLVR;8jk(LffTMhI)z9IAz78L zxNa&nItoE_KU-#`B`H7@EGf5mW4q)eB_)EEk(iM}+YYq&!adn|B3g{OiU?7nK{alj zdwpW=D?*T$N{i7y{a4L}eb7o+XqjmB=ureD0L3R$+s(9uTNVvDl%*)SG;ILw2kds7 zh)5?fEHe&yAVE7MlayD)RCc37xk#&qlakPsa_M*1mf|06IE8Y&1QMF01GwSi0mYX4 zM7u=AN+7OEnJECVdb_ySN31g3{*@Gq2^{gnE$pgdzvjiin!kJ_5QEK;GC?TK;PdVvBlP+ zkXVo^TYiEQAAPOXh8R+e(;2pZcyuOPXl-rZl%XBaaO91cW{P%^7Gk+~1Ny|Z- zJGcS(%lBIr1l=X$K)GOw`nXfW;|W4Sh#;4%f_M6U(bc~IOIqd3Sy-3?nJF3t z?OLd4K&5L^0V(!N7?Evctjw0A0uEqRLVdOj3DUpg=5#4ooGh0GG-Q|2y2Ca{={o_a zp*74>NeUs)ZAVHMtSI1FX3;oHT5^z*prfEE*;+BConz?x#$2@^)zzsVSBxgva?C}s zOF~HsNeUmOn^NDXQIEj9MV*M)t{EtFrA5dA*tn*{^PM8zAiD(ADFLV)0v?=y5t7{( zrbUqI8fL8ytykNTvDb}$;g#zW2qliaxCeN0l_K3ZadI?SM6xOYVry1!Vd^LaJ@DIi znRBQZ5xF~2iR{hPx1DcDHUy<3+71mt{HN^;7#QS1@dc8necB6PF5<65B2}>3l%thl ziW8w#D*brt(lmRo0!p7{QdV?emL(-UwmyGITlANXf>SLSN{(hNp&Gg1hGEOWtAgCM z0HH)0HqJF-b@JW`45|MB9Wu(ilTKi&A$e%Y(3YdNhMAkB8MDs>_(dpBUQ~W?&3doa zB_W-h5y&4X%(2b#Z0a5rB?=8qAA0KF%19(w`2M-9O>eW1_j z<4(nwDkbKehs>JfW(pj6d|_5cq{IRn+SCW*SBR$iQP=<_ifV!qIAWq0uZGn1!xHXXgWC#elXQ!k(ek= zW?}()llyDL1h~>uEe;r<5U~6GdHy2pmg4n_U}$w+Gi5a?Ps5m8LZzS4?4&frvbUjc zGuNjO({M;Er6oa=sBq(rbqC=P-!?SMNfO6|0Kl4_U#tef_EHuWT%frr*fx(9J(0iq zw3AQ?(B>L_;BBr#NK#S)vc6CQBz+7@EUHl?bC?0J{MtCS+|vUTiXC=~!i*yNxos0? z%LS#Blj2XaUAm52tZJ8i#=leoj&hR9$P0jUEn0PY67b80@W45yDqE;f4ZE}zn=Nvd z2+GU$l0YPM;k5X{CaS7jpdlU;;!cM`IevP_>ut4DP^ohRpJ^%@kIs=m+td`YnjjjJ z&0V%5CJsY_Ys+lVY8Yhe0*vX2s3xp5VaczTC$wodE$D?yltBS$pc@wH&oFM+ zfzdX1tqRDMCo1xaw=M92*55}VA*E|kES*U`H|i<9V7AqZuJrK&sspbcP+IG}-C;zB z&<;oE5rX4O{?TWh>ZXUtl(9_{l;}lERocm2+Zva(D_P|@C?9mn1mZtDTag1vR5G1+8hLW`XV@{MKRXkZwp(VV+4tTKIy zDtbi6%VJ8j_#jDXv!A# zCaG#>8^d&)o7IGnkoq{=`Q8pZY!>T2yX4H1YGq3~R)VbVTQMQhM?6-nV@HsZcyd1j zM6&=@3lYxX{h?zL;?&4eK@|>CM)co1P zE!$Q<4PaH4_bOMd3k>yQDtCB)`ee{Bgp~xTP6B|+=U*=IJ)-hc9IAB*YF71FKdCk;psj8WgxOuwA!^P(H8*4^Taxoky99XtJWJl*s^{ zH7A(M>|T{tQdN)y=;K8V%sgRB(JPc2pL@l0mHYhv0Bog0Fi?N}Ok&rS!8&U$QcEU@ zNug3f)m`;Z4I54GcmN3?5RpKBzeo#*uR+00A1Mvz=d>3OahKRE)8tG+P$AUyG#rNg zLx$!yN%x9XEGTQ)W zG7SLKg(rUg_|R~b_@a`P083>(_HVoa!1t-jq$^60{O;x~++mho{i53W4$&~^rGnr{ zBQusX9G>w?{aG`mgzR-2HqlEM-zq{_9e?}YOYy`B!WYq0_RN)d90gI!eE$GwdL(Ky zrT(YXRrQJ%i%?I9)ByFQ1Cx*CDbqBzLhqmhuRzs0Lf@s#SR~5Kf)=w68&Qt z<=Vf4ZpRo=7L*Lgbpzp0a8a#jL+&c$-5J;a07oONHR1eOFqEJv`8t;2_OCGK{XyVG z@{;z?emxp)t1420rGOhkM&Fc**sAJ8)E`z7GgD@E`ELfT>I5($LxZ<|kS@t&66of- z1F`=AUYv0o(r5B8&#Fm9GYz#4bv;CWy6h>lp-3k-Vx@IaB$T*wL7=ZNYZl1Kq48z$ z6S(~R5E|gRRXsu6gFvNgl7~=YI1l;CZuin&}I!LU6)ZOv)`E`gcA z1e5;&C|lYjaC6lgO*}6Iv%z8M(uCB&;e4E z5HkF}@tO-7Et8V6`DLFA@O3eX%3hU)Z4=2TB!WCHOOAl>b+1;92Ls@>grhhhpqCHg zajAYdAHa6IZ1PaZLYOB;75DK460nd|6;$(~jb|C`sZ$c&X_%pzC51pgGv9*-W>1!c zq!vmveYDZO(ROt2Sd*2KN1OiuKL}sG@S&J9IRtyX+xLS$;b|t(WHaUyE?7}=3k^ob z8!VVq@xf|XDJ752A?LM$NQVC1B1MeE_ zi@;1%Crt^^H`Wjhgb|$}g%5z>bL9rG_2gYCVtG7wg*~c{$imVAIfI9&=f6m&h%hXc z$`Ft!p-ms=HijA3Z8If_p(VqCv2G9A7FCFpxr9+c6g-dGG)Wf6cbQXE0AQcfup2kt z4_+71^8>71zi`nxX3GwtQa3$0^3pkwl#mLOmX-eiANT$$LmlgK zD5_Mj3Y@WT((wXRRWy)KhQ3@w4Vup|sU?&*&BqT6hOY~zT(mVa?sj3ugW=}_u=UCm zqrh{OS}9vocKA^71@Eg+DFT^+1^$EM11*YQw2`eGP=gkhYkFR&lWhws3CeOaunx~( z@p|=ckk^0Ts8(bXm=Fn4Y5;)Pvj-w#PGIv$qT50%wy=?h?#oJZr2r`@E>dVia2rEb ztvus8eKf2oU`j%i5*Uo2niKDZ+-YYEmZYSVsb#~&TFe#Ab4W7Qp^r0%R2~h|oObOB4=#X505vk*RRAeDuusO@9t3ILkAG8{|FZ|XqDpFFEB><$LF-rgf zSW&hkQ>+8TGK}jqxrsUAR77jK5JuXtQC{{W~WfE5hD>Ong6+CIC&m{L`iLP8P=Pzo=unx5g9 zY9g;GCPrL%?bb0f393R?v`okl9ZoeI5Axg25N`VltxGcrU}yjoS3kQ(ndxuR7Ik`{ zklHB@)bF$LtS?z4s3dx{kg5QWWB_#jeeoF8dg8ccB4R=lm?@H6doM%YzFhGeW!>nh zHh&Tb%%;o&i+5w819lJAj2j8usg$Wka0;3jEvgRS0x3>+Xn(fa6s*Jm!^H2a)7~RV z*;T~dg}f>~Nz^wGp?M`U7EqFsq=&BRc0I`AAFUUHQ7a~=E^OPm*!SaT!f^toOPmyf z;Y63vpl%=FIfXr@240w%Yn;eSp$8%EHD}=YRiS$HGm$gar85Bv1itCvA+_jXl5Mqf zrUNY_B2*GU@RYW%$lu=#*84)&KvR_aNj}#ODPCZ`FI4VdOoYl#{Vf0#= z)?qs`vmr_WN)4ES{;YlQM73)+46`}OEeH=%)m0dhTUG<@tL6TYZ@IE2gv&qLaNvr7 z;+?l+{ArdO`7BPL)3;tB8y?;XnJ#OkyetW$v}tET3e3hbOrw=xm7^#~8}+CR3S6t$ey*l;!<51bmiaJ8Py3Yl6{H;51N{i7MM;zgxF zE&_`HrIL}kAQRAh;>@g7ZJfVXEG0w*I$SXWT(3e%_DMRxVc6pkq|BI8l|f3PMKdR* z3lJ;i74WUiBP{_6VzNzCR7DUp40k6+G_4}C;WZ~TpY4RH)tu`rk{tlBG|{vU)C9v0 z2)YuLr3}F;B?MPF>(F)6&Mtaq_77mVt#g%@RHs81ZZ`mKVE3bo@m3Y76J?Nd~1X1@1!vJ9l=441ehUWagMF`jyE8>N;x?tB~n(-C}fv%w0;|s0vb_ z(%m}q2w3vvRHT(=3Gk>Tw;xD9g0b2?PpMf6T&GS>2G#AqQwsQnYP2n6I;D`rDv1N9 zI>eh8v|cl3gp%PP5Lh;2%d?Tyhn!HuHX|lv$%z#sC_MB30LVjsq#FT|X3ZgB1ki(0 z4^OeDT_As;tRHH&PD<7Qv&$fmrvXYjsEWT~q-n-15d%yIug>4?lDo(jZ4EG5mdQ|Q7H;{OC4cgWjKe@ zAdu)3O2MiqdX=A)XjpR3Ds`Cz5TleiHFL>?-%2=AP_s=XBf{k^sOijRo`Ug=Q@dZlIwDhY5YP-f+QTT8Qz~xjBG# z;6KCd7G+`MXd@vBnbv?Oa@_sl-pWxd8E9O=olFH;w14pfrmxR)4Hm1+gqC#@2+Gus zFy;tUfJ&5-2^m_xKzqxdJ)-_0wB?qz0G9ad-h4rwYHcpvGul~j%5(TS^Aj1)l`BRB zl69x$BR;yZBK={RF!)k}2oBl5W^Xrw_AG5CY6?_FM#`Y|FStE95uD{I;aPa)GZmTD zl`7XjTVKwRJ+l|gT)?S8B?gaD-s(d3Hjye>NR*7JSF)1c&m?U86Tx87tl+!0QY4@y zDJ4J^(vEfn)U+wKp2)L;uevA^?K6+|8rB>WFjpuHLpji%BR2m4kjp&e06EGA#Qst= z3mwk2CEN}xr*X7&!Y)~{I+Zj@03|gUM?ZkWVq_^J#KH8h)3hPtLoUip#g=l}{{Y0k zhoLY|>b8338OaRg{jVd|jnXGZ3f*_IWvsgw6j#`93z*{lLCirRAUll#-Qb<$ak$W^ z=m6B8&Eq}3E%aJXgrKkwLN{~1`b1Kbwd;!XGXet02rld@N6^8`E!dS30<oj%%$@HQfxf|O1QQs3I41OEVHO6UzW8VW{pm1$#WyzDvJ zp^%ZTt~c)({o#ZH=PlByl@3pYKSRe}Lq?xqvnpsLFDMmL@6Zii0AAA7F068jlchOf zzj&*-iPcAN;NVJCGzBCNmXK=EaY+tTkfk=-4kNpc{X*raq-M=TrM>Dt=5Dca&0;%) z;tbo4-QjvG?6)q+JSD?9>Cul${GnqI-eEy>SA-oZqqB5L>< zpPpc=IaN9~(28gK0stykBfhT_f88^QQ<4}k2mD5wFcF_# zn20W8mE~YdYE(z*52mHh4mXBnZ%KI8SW-l^QmHD@{`~u+AHVHOwq-(D9mOtpOy|cGI9^1hF+o{@u+zGG$f0vMBy> z^{=DbaI>IGm;x1$0FYjsoq_Ke_oKWLi#*g!TPYzUHeV46+&=9aCFOIX)0rp%B&T20 zq4(3XLiugOlNGOzNOC2llq_e^BvnP}R@3F>810EOt#f7)g%4KjrBE8|`uS5vhs(Fo zFRPl2kC{!cvd)$yQ>PQ)s5= zg$mbF^>z>zb{1GN*OdCwU6NfL3WqeSLhLasviY0qCLq+10nJSfI~MI4Rm!}mAt=f~ zF5$Bg!S4dC_#R}b>$K0JRC5wHR?pM4FyagG0#mEPN=k#!5ZiZ!gZ{BhPkWV3MrGt$ zl+C->USDR9q5T?Ogh>*>DqiXiKpQ-Ky@&4<+U-GeKvIInP}?NZj?YSv&q_Rf#e(e8 zB*_a#t4LCb*pXHdw<+o(U1Ye%@V0+Z<4Hucj|z8FXj_BUv2MrdGFPbxnjE{Ws^Rpc zH{vVu&oMP*@&38sRFo}w4WMy0v%oS`5kX~;6<8?gCPT2R-dXBbn^*_CQ0K_x0BvpZ!v`MrJc z^N#PCfh97?Bnl*H)RN-72Od-+&H~4w081%ZQ6KpmO*N$h_5-9>C{yPfM3jn{ks_6##JaRzF@qbNN)kDOS)Fsf36kTQ<(&KZ;?sX68_15$rfEbQnuC&QC0;1sB- z3Q=LW4f?trnh|DNW}!_!SA?XfD^N?eR^gjovGh&8>I*5&;!dpNeft;{if+ke3{n_S zL1E9^C-hKKfiVX!_ZOTchlTb|;14geP9wP2n>4U=pc@`fNH2u_AInPpVMrtj2Q~L- zM$!89#7dNM(59`iW4C@`ae~r!{rXU(%ASz=IQ?Im^=LEb{%SpXmS_q{2;c|TzvhsM z={oN9=p+n^W(rG+iiLM}6pKENeGuB%&Yv-3FaZe;Gg7KnhpTpd1R3^P(j?niwHs!op;-R$X9wTYghmAA@}ts$O}UX3SVI)});a!ww?E@`4IwkM3y0 zNTCTA8WNewNh5tVKWK{AgC=KG!8Eg#c$Hpq*PnLKqj=nQgv|>HAyq0>NDtRUbx$go5=jgh_yNE#ps0Rgxbn6O6mNUMM5T=s zc7qe{{{USr01}cN^8g0S-Fnls2(V#QN|+_7MPSsH_DRycG=H;}ppu0Iq`0GkH|Yc- z74?lKNGU|om<2L+*XI#b0aU~#xefvNKbuDJXR`@* zR?7KNpw~^JFKeA8u+2#shNp3*B1F=lmk&pw{H!8e7`y~2(80@ej_$ly>t+N3!>{LP zyo~9WGm=$L&*#3I!u{Wd%-Q8?q_6=>H$6`sz3l7`-U~`YXy1kf+}DXSLQt(q&D3%7 zip>zsi0+h4L6%D-wOWO>9X~op&-kL^nJ3nvX?bK7OIISghAc%j)NWcg`_lJFIdunC z*uu^!NnEmoFj3J)v^wcs;q&7xR~wI-y%TyTbx&~AcvHn+^y@TCHmN5x#taf_2=RDGA(RbXwI@h9Dn!N1ky1cF2Qei< zf2a~krp>c64e;Z$s=ilRs&S!G6rBoN$b0@UIAfQe>az!6RIUb|P`@_nS|+ig337EE zyt>Dhj0S-?+9jz(<@QT3JkwFrPLZXkQODP^Y|8bjSS4B`l<5666yVkc;fsP@uh%VT z83+juSclvXj@vyT<);Fs(I^X2ivma@s@FhVHkuj^A-d0okc6Q!>XHYSc+cUzoUEeo z{{W|ZIb}*J3IU4q6Y%8dX;vHq3HLSKYqL)!Amx`uWpW655}nUcA5Go1Pgar(Q1%Dk z5#8*imqJAxwugs!uY`*EP`nT6AJ)-sm9q!bo}=vn@y(%W3eW6;;!8WZ)!RphDR@dj znd?Bxy~!+=?WdmbI~d45rD{md;Lx0`!NCEl{YY&$i%DbAel8Yus#3)jRJ{NPQ2cHn zo+!OQpX)_Z!iPkTOhY3JCe>z@G@n&931A3f<5ADoNCP(bDLE#glqs%f>PrU(qyw`< zzJYfi-nmp2DSFhAspy@7{N6P`M$-(*NG#x`!;N`=kC^WN06yOHd}|1G0O29LBakVe zp*?#?(ckpvX_TurOu;1?si_6)?=DA1<~ewBx0h(GBSz83V$sujLodfN7H1iSY?P&?u%Jz7 zM_t=k(0v}-NU^#{imLp5xPdk)24dMvk)aL6G=?PIizhkLPD6Nq>P|fG10i*q|j@$d2!kaNkKIxyq`aZXw-v| zU?y@4u&F(^`ki2gBEt(@bcaU6(|4_;0;OZ3wVK3Y@ss+d|!%z+YepSS z3E1p(ZjkXxvy`R`NG|;#s_g)zKBk|Y;6(dCQi-pJ<@bvVv=3L?f6d^e8;C6>DN`pl zT?WDT?F*icKeuf4lN0LwY_bg~R6Ux}nxp>!lhvV;%v7~_b!Q`{@6(v}TGF*-AOa|k zJ0<@Bn22xKn*@V5`lP7(&?o^JNHs4Tz^SMwXXJDQLCenk znJs2oT=F_VOXlF4Y-wl$v}IGx`a`~msVxaqwIsGukbvBP8HYyHZZ(0pQw2 zpfiFtKp=bS0nzCieT&e!LV|OpSy|qdVC~FOmx3jU=_T_aMTjJK2a%;Zbd0~otxbwO z9wuQ%Qpg&l#XCL+m+I7jqLM>+Lw^3~&?n7oq!8ZE?GfH~W*Ng%M2-3LjlMA~!wBFD zM78*4s3UL9ytRgV#`c_rjNp2=2?T0;!%f|L1+xma`yM;Qb8etqs;5>vc7kz`248bL z1d5W)9o!gPDype0#OOKt#d}5GvZS_z)%Aw(GJwS(52mofz2k)Pkd&xp15?*g0dH&& zg&_Efj_m0o?uXm62g#BY;3?`e2LRJ!LFEt_ z&JezBGNh>@s!c%9D|!>CYWIP5oLFbAva*;d1V{{W2%_`7H;)gEK^pDreX~NCD3$HN@g1 zu2y+x);$AzL(jh*VV#Ue(^dXZM8yI9vgeb~pQSd1S-zAOu#AdRD=ud)1AmCqax*iL zu7VxCHrd6Z%`q!vEC51<4*~WgZec&s7o%ArGR(<@C?wU{J|_&-1Q19x(494mzSqas zZNJg>Dw8@%@dK1KH7n%&nhDCk77Gzik&1XX(Y2M7fax!rGE~`(8$+`;^rv_R7@a0* z%)ID6!5TLNYneJ8Xk%F!S`ChG;8KJvHeyxb6;T>F`jZKXy-byod?`?JH9dbfhg@?h ze!fs36d@zTb|1|lzU#xXC!pt+9e{DW#B-Le26`~XVIwFx(61Jp^xLd=jxS8af|nYk zrNPa^d*bEQffFHMOF2OYE9}~c^6M)zvXT~%_JbcRtk)s`bO)CORXe$iV00JNoYmza={4q^*afO_cSyj7u$W;hz} zmZU0eb0um>RasT5y=e|tbk+o$Ri*HJUC`Z&;ds0&%7Lyb*Tx@oU4Qn znQiN*ej;SWQM_S(31(jeH8@t?9u_ga3lk-#WTg0!K~E5NKH}d2%mTfw%T(0RvJQHN zZja@pX}1=|lYvIN9?0k(Pr$l4SzZNoBRgw>HPN-8BoZCSzBk{O-)Hg{#1W-NB$ zeihLEtv2>yT;f$rmZXOd`hjyzL2;qdjR#GIQW+DK>j5O^A>3?u9#rU&Kz8pId8H{# zq^z0}I&-vHGw(*Wvo>P=VhR`vyXH>Cs6h?Jg*+J3uZ#}485iq9f`f!N>D44?M>Xrn zi^AfR7U)7!KxHTzsPNmij&#}}yeBB6=5;j!M#E1%Hiz_Oi8#DS&K5JQ>HZ*9$tPZb z4f;iYM^l$+GYSDwa%=t|)I$FNq`NVhC}jmS%2dtYtVQU3D>8@^2&Jsry(1^KdM%Y>mVn}7ii(yh!=sv>Ah6+%&4(u2RAz~uu0SKzjILB^ z;!rh6Ixqx*S0$je+-J#7RkI|PsA1G{=Dl2<;?4=aftH{MN>%!FKZB$ZzOKPFAO(9m z@<->&6#f-Khp|AItgr08W2Ja_kJ1=Qq`J~b6;4p)#a~Z@u(&KT@R?F$$>_99}X zxhP8(4D59S=nX4Q2Ae4qAdsYh{{Z_xO0tCk?GK?yIF{m*>e7-W`oJlbpCu}y0Ag8~ znvw4#^i_MIMU_I{5_CWN zb>bC=dx|-q{ArG5F`a(}7^*=bPgmI&! zr9eAXv{xODkq4$MAT0`MYauHDuoVhw_Z#$6@*_FJR!c;W?X3lY0m=4hL*51yKU`|f*28INZvYC-_e7fT0GqgPSVy>>C9dM?4G zGXDU*?T`x>?gRArn4wLUJVa8WL0~FL>#R9gFMBl5GZ1qnpRes1t|G(h@MTtC7m2Fr z{{SAH;gZXBr2rZ@6#Jg1PbfBrIJ)UsAu^Pb0|bCJ9QNOxVP?~JPYO*!fHlj&93Q12 zrb3jWe@k(z#Me~upDe%<8oROU%k+nzX(B5X8A>!Pr7_-}yrG)r#h|Hs8Zt;?+|)Ev z9;^C=6{RH!ubcCwID>O=)U!L*r29Y|g|eoUDWm(zcu^>C=`yEMY7$%k0)RR(+-zzZ z1KpSz1wes8xTAL;evnf6T(qiQV#>|oTk1=Kmg}#Oq%&D=T%lq8q2fFPxa}2+h1@Dc z(nfD!l(#-w(Y4dx1+STAQco;tun~+(x6QFzz)Q?ZiSYx=vkpZEo3v<{gAp!b21g~? zPe3^Y{RLm7Paa2OyP&DkNvA?71}{6YW?~kC=^>UsPk#RZyk@p}t4S(QB8M<~Q**E^ zKJedk`azUsYI6gWr--dAT1EP0D=i8}uk?Ypo+b${uVv~VUfdB3vZN+*JWX8)XY=XI zD5nP}))Y*t2-WEOd%pqFB}#W*AqsM$Qb9G?rRf8&YZB&of^*cc;B#JhhHE9;E=!>) z&CAvL_x$M-*>7~A(!-}A>jo8|_zMbpgq3?GYJ9NyZ?h><%27uf6RZQUUI0i z)~Ifr9z}Gd9I$#uMH5e>>RfyTBzj-5rg4&~Whq{2o|LDVZ*)(-&$gj_-szoZQc2Wi zOKVNK6Vq71?>lm2&0-dipdVIO`wp?B+3ZRPa!OLbDMR#@p>0{%IMMicRkcj@fEl0= zm&#jbqxEKfUM_ZtFlOt-hH%P+g5$zYr$9dSkIK4drg9R66!=|3k}Id4+joMv3dg9=P z6>4z*0FMmVD-9IONO0g(c8Kvk_EMA=bpudzW5-=SFjER&NhcxjsOWy5wy`jbc6+%5 z0%~@C2F4RTBZ3NY_*C^Hegz<{uMjfTDYV~w(G-gptZell_Z`n|qf6NUU6_7QEJ4f$ zVqbFvuXLp;D=DJ@8(yC1rHJljN+hX7gW}9JZof!Svtn|!iE1h-HF9=(2KmHhDjRMa z8j8R*2Yx&JpoS))O8`SNx6|tuEVBS$7&rr`V+1GK60~>|RO)pDW*?kHjAa(m4WTI@ zB}I;1$mO;iMvr1ZNF|-x5wBb-~?EkXK67E4o& zzc}miikAD!!=WQ`bskVt4OoJbLseRI{o=Hi6o3Fq$;@lqb?X&zg^4Cf1bACsJobuq z$%RYG)Jdu8Hv7d4Wq6r#6rxU1?F#58us>*dvhP;Xs*g%nKC}#yA(N5sMPsWFvlM*1LOI1RL{{Ru+%ik0%WPP?POSM_Vxr#E$6e%@N1IuBf0l<&g*$H$RX#*;TVjIMHC#Ks&eZgo# zh#;{@0F9rM(DZ|ke$Ku_vw8}d{X&vbP?=>+wHNh;%NBD*Y$(775bZAMoP?{^5Tihp zq%uoThxh*b?f9lvLsVwWNTqe^D&Lzx3v|?lAuE;uQw*V)0s4ng?{Xs^Tr%`0FuW^u z%$9(GB7mL_kJ=b)_SAroYn8j7&x{DO+-O|IOx5&# z&eYkW^nz`ZGo)rE!1tZW>Dmiim+z{Q$ZC_CwWkofi=-%|fTBOhjhkWhFuiqJ*8Z(p zFeCh*k2)PTh+9jvV;tb1fs%#({h(#%f|WBW#LTG&*%i$CkKc&q*>b58(xL;Jvut^T zsl1XBk(simZho-SQdr~w6rKmmujbsvd#?ULnwdyab1PTdr%%|z&ARpVtICxrATU;6 z)zRwR;tOTj{WRpxL2*iId!D;};;&tkO~0`Lku%i|RG02I1~UsL44$d^fHJ`@X{auI z{{U}sSyz(nHiXRyBq8%1gL3TtTeLA-vHt+6bCmc+Npi_;xr23DLG-PK=BNarPQ(*d zeVE4=Mj!Q3OP?J#Vk3#Zm1V4jWu;GwhMf+Y?%kns_QY$Ppd|y;?)^+nfX{W_lffzg zts_BAwf%ZI6B;G}~mH$1wJH&>z|m@eTeg>Pm=oDx`q_04<@<&}i6T zlq8iUE~@y0fJI-)pZSIV07+BOC8lPJ8n&czAT6`fcdkfGgeVk@!T$hPDI8N{6>W9} z%$7>?R2Jwbr6zNO7cSt`2A4lPwEh$pU%2?3#K2h^lCYU4% zWru}8sB1u9ZTd$0hjBa0NNSV<`cXoS)O)%`*(Y@AFVj8dw5TFqgcczw)Pb+QCiHK8 zC=}$DO$anJ>a7@qpn~S%DkQ7M667D%+4_C~3>YM!Aw?{b^#EuGF+S+}LYzQUbtx{& z1besX@i3K$Z-BXiSW_uQmizEw%JZEp9O`coBzb;u2^T$?Hj7axPlYf2!=d0OmaDZP z)cQ4>w1A!xDn}h+TNRK6B)-2WU|iuYSavE^8>d*BU4MwmhOm@5p55Iv$; z1dUIA1R_`@da0|*rz&8l(!Z$kKB5~fYM8KnNnyH9hOE!b2D9Piref_V=ae8N64;G@Xji|k)qs+M;X01}eh`fX0bq6ghp*TlY( zrZ^Kqica7fCu2`4#QdkCux|=lN+yt?0#xqR55eSV@rMiY&Yx7VDENqGO#ls0I#r)& z$*fnooRCnY@tNoY)Sb_6Vai48>W~r(>Z-iR#<7u)BX>D+*d%g`_ztb`JF5^(R<=^h0ra>3*?aqfFk> zoT*Yul2poSfnD3` zIEFk$YO;lYeVrpXIwily{{UgQI>8@D*n(1&W*{U|owj}tNL8fti5EgFzOX2Q=P}Kz z?_cIIKS=lFl9`1gGMZ{Do4@&gk_nwZ0c~Lz`YYnSM5hU!!`3MAtgDEwNA=@2Q2YR(WHe)l7yB}QOu-l z4*=ajBEN0-ia3(-mM1N0B_JdejWV70buS{-_xh%%EFzfNGQ0HsoK6RhcGe zWdwmv0|Hg@aYsEwDoU6Qtsoy-COKfiYC4pTNdbV>;mF_=T3K0^f`j1-1tcK;l9Se? zbJ`a!QhO3GJY8lBoOExOJTyopijm%x8jo~Z!+09aD%hDx zK~XQ5lH)d^jeEl;GsXZYp(Ft%y<$fi0uOpP>((@%?K&^Fc!tyvgOeyE45aFR{Vl5n zZc9-zrKl>5Tn$vM51z4<+=-hz*G$Ut(y$0tg(^Rxw{AT3jXum1Dp^uoAq>enx9Sb} z)$0eN8I_u123D!_^Y=nVBDk|=O3qZNUI*PnkDEv9b~8|$o=T2vgTS4Vc-g>==4LaV zXChp{N>sCxHlRIN4f%Lh=V7$r3?L;+@G`TKN{Dg^)b!{gJI4l1NeW8GCr9u5L$%#& zPpJV4{{YC43s5?GXb93MUnd|Ass#9}SLe6h5^X9?LX>ip5~@{=KiKNScq?MVeyt_d znaQF3U3zTLZwz9oVIbwG=TZ;Md?Ky)dxMzJBUjVk`SOPgbUtLYGbcbO+IBFrjjY8; z0IMkjL!o_OHax_oE@dnd!P1jYcTSL}FVYB75{ZD4l4`EMPLY2lALU{hVKU{Uq|ux8 z7S^3UFjCKHGZvO!P=--@I2#kRV%NOn%9xeQPzq2B0FYD(=ClNRBZC%f_@dIZ6@!#0 zv8S|Np6HWm{*Z4>$;b!_AkimR(f6ecVKA>v@cqYNJ$&Xprmy<*VfhIM)$PN>?ojY{w|d>RB&U9-9sTB8q-Q~%X1o)-#Tzg5TH?% zW@6+&G~TDfw$SAjmwI(eO;Sc+0o6Xr$!`(a$CJjD{{T+&Cd!kML?|tEKd5o<*UANA zYn3z8F?ueEPU%tJn-uJN^o>wtS;(wua&F0PN`t71lEwc3 z)N%RDB;!m&F)Im{G5|tC03t+`!O+o559eMArhbz7DDlAi`q=f*Y=>Sr`Y~4Zm0UB;4yjZ3548w0W_;unk zuS?c(H3dLa3jYAG+t1+7PG_AyC(C9X&1N$Sl5?fN)}(GrRCN*az6ik!m19=gy)ULb ztKU<}{NJPjw@foUE(3xACV=w~mQ+H1B(us&M6?vC{{T*;Gdh*hv>tGad0|OvQf1kj zKkH{;qp9fr=)Z|&B@0msa!X7p*TcUxhMz_@NglAMX9#Mj(B?h$Zn4cI)|ynr-ia9~ zd8a)eF?5CkfNTE%vFJ7eGzQHhNg_%!*M2 z=rneUg9#Xi3aZeOjJ<1DBXQSy#$c=MRy#&q$|_Se2?-pLzJvy;J)`R>8D$Dmg~|NV zF;Q_!TIMZmRIJ%3$65#NUwlt5T5^J2{*nyoWQTO9f~=)9>JFSz6fs#O6oSej-+A1t=7uS#qcX5;fuZXrp|3Dwsmo>l~C-EagXF5AGu?Emp`~!dGcbfKrgDt0btk z65EJ^$961C@yyCW%y)k+qgcZj33gcsGXPY@q!k4IkbRIxAa;FNXcI9e89uRUa_iHu zgOtcN3fwr=0J5lG!bXfa+4y~6h2w212RyZ9P}gueji2EZa8@0YHAqPygq+Gdf;JJL z-Z)GscuJ0MW{yj32N`NDz&tf$N~ z#3o*s?WHbCNeUHE{T&BAVU!)kcHt-)#gtRluh*yCMp1L)k6u(2nJNmX1KAIw{Nj63 z*J+vRor&SdJ^I63ze0ft23*3DL2*r6QgtI}B+95wzi{lOAgW+2l1fA2_i;&OR*qY4znjLVf&{P(%*iX!jR+q@M~b&C(u{>5F(bmQ$3xKWIf^%RgiArr z!^B-cXYfEL_HZ3ik6Xgo^&pgrj-WciAgfD{==;y35 zTm2|XN>eQ@ksc5RfDHgWH#_yzkHxsDQ&cR-_LjPYfO3(cB!+VA!Oe8kg-h$v#P9vXSf$00Gr7ore`HU4RZ=kh=kXmOUuT%#m!{SQ$x} z5~6fx0f#?!kFD@_6qRL`CCYbZQByhX@zxI|-p2`y8uGa&$xdY|m8qcvuSn3n1E|bf zWn}79ey`5Z`He2wMGjIFpcrr;j{BIcf}|8LHi;Bd4MR{rNR3@y^oM7bg#{s5LwHfB zFYzvvk}alSX&5Io$YZ zey7%@bP06kCZKEfjy)aNjMZjS4-s+=0olc0_=c;Z{*yLJK~MuPvO8(#^@Q9zh^1L( zWDby`N?xzg{KIn^?Bj{beZ*KaC}s*NUhK?!jyp6|xiEr|#nNBeZGVV@efctJbfkm< zuU;b3uLR3OsdYM}dng@Mqx6d1FXAjgg@nWuxk{hImIq3}Q-Vr7ML(!LPg3=UJQsbL z>ncyOoe%i|#}LDKVi1xGF+S1bfz{x_iZ@-U-O7C2wSdzxnY{19NtxKVJ7*w%(qDt z70gbc@-{soQtkAsGE<<8$w=@dlHhVlG(17;ru<#HTF3^J19Q~<0q?viRaUU|@Bw8g zf=vZj0jKQ;@4KxEWoB^NKegqtfHw{kD^sX@I&yzF5Y>6%z~PuObOtJfcV+V}f?Fzw z-d9w?Fg)U+m=O98!AQ@j zJ57Z>9W4b@Cd|z#2m47S%}dms_|=DcYgUV2tw75{64dGSjz!v&C?nbhoQ)s$iuPrq zSjt=t0Br!&n7Eb8lJ_|ZO1vV6H7mSiR%@Up)tKk@=vmN3YOWh+=~&V&Ha7&MoTua8 zw0SEH77J0|LAd<#g@(U)O+r?Z2v&5y#i-179%D#T$5$$5q$IIR27l7}`F)_R`QRXc zKvtk=crDLpp=rG3HdE$!{i3On?4FIKpvzDXkkep&+V(rNY2Wf|mKo^5#*O9qSoZ8x znSe1q3imvYBiu`8Di8Xo$G1PcEa)UbbiVq7-edam3F(@Zf--nPW^>PNd%+v0 z0trP*3M*5%J^OJAxGNK>B5b07m1cL`ou8KJ)(>EuP^pSsyxG>1P?M)ZBBg-ED(O_p zsak6Kmf|?NZ24xTtF3tQi)p>UEUoozgl1lmF%qovB}_`lbpR4LdiTwxbc@oBUl3Yl z%T8q$D%(IuF-q*V38Vl!9n2@&ZFL;r(XTrUv?K&&J2+x?p*_Z(xr~&$@-6oj_tnO`9hS0ZC3oM0)^xf#ewEJjn$SZ12rEX~bRtE6)kZj3|fmz7zR#fWZn0uEVj!V(EPJ8ucM z{ioGUN{R`nQE&AxuUZIKO{5f}Vn8YYmm<0z3}=|H8L`N7D1sA}A;4p*mByUW^k{a! z=h^KNMA<_jQ)bIbu-lRQLj9WxIVv=A0Og13J6C2Wt3Z;Ryi`IIg(XQ__*}aK{w2t+ zu)~IIDJ-d|azh;2o(b#P810yL&RHrU$#6Ms-VWNXq^$rUsX%*g596at^RRrCGo>N4 z3>014a6*xX^!B_ zz|2z7Ij9{f)5K2jH_|pJHgGdlhNE}W`GE4T<1q&)%A~2^e!fvd9ofBl0I48%iQb9L ziqK{sS`yT$8XgJZxuf-lTekj7C=%r(+2_s#dO5sOnHd+bA-4~_Ctk#%YD!e;)F>Tb zho|dB?2TXmP%lpj|3(PdY#kMM=#dBoN6NO?7Cui*C7+kXDB&W_?9@ z?FRLxyKI~jD5=6rIX$2~#e8P{PC9AY1zmTKu1-=NS^@fd{YSniSg>T-69dft)WxJaqF>?~Izhyacl0R4D`NdiG)Sn8ADe3-0gYbrBSq@NwT&0-m z4L0{{3izJPggJLoMI3YaLl;P1?XjS!O((_y1=yOi`{++-DR){BnYl-WN@C>k#?|^p zS99OzI7xD|S|4>k4v=ocHe|_(TEQ7XZW~JP(`|Y|>@<5~hpZ$kV8!VJF$9o->j{3k zS7=_r7vY;SW?(XOkx^Ji)t){{TeA`mkAx2hg^p{W*mIE$NTcnP)Ofnu;2C{k4F& zZxv3SwS?u&Lj;n^ZTmjklNv59xzRRB2}m{9k|0N;oG%=PI~tEL|Jqe?kpoZ zU$h(*9o>Wf01!QQYfM^8gpCO2c-WVDq`L+hFy<4nZQMtN2?sq&fvS7*BFIT5*4&E@-; zRur!=&M`_*lFB-zz+g`8&tEQJmA3Qs$_Xw|NTc|NZt-&Y!*bM-Mk7qL0CXQS=czCX z?Mi)mWhQ_fPPO3a59txbuEjD`#!AYO*HO{;)O(`c#fq1mS%Jy}HokFl7h6*%i%>us zty*?{pR6ohxVZvgLV^fa>q&CQ{J1?S%S5jY_id<8UO`?`KC#v|yO2sHW~%~2zPfgc z7Zs{hwJ6DAb#uwvx939|?$EV~t01TvfEt@I>G;t=r-;1@%gPE>mT1_TR<)>c#6fi3 z>X0&^q%iV+(WKv!(xQ@c65bLt1O1v3@tw;whnJLY0>e)4Vuy@J;-A0e%GmI>$T$WW!5PNV8P5`R~)@E6yE=f{W6Hc@g`W~$XEYj!t zu(^mNfw1B%VB0ZNlx1IqAfy4aYC4cZ7&CHS3d~cRFwj56;=hSuK9DhV*^5JNtfehl ze!>b|SgK@&fUL=tOvOFDow zGz=@Q{Llzne4{wJZ%^s1YL_uVS(GzvL8Ue$PNKASk8niU z)>+deh5rC-oXJ7`FR%x08%-f|(k>lRtpR8YQvU!_^Bp^AE3Yj`j>N|8cu4h$D?@mL z0n#$uYh)=h!OR|v90eVL>jSQwX*xo3tzm(neLKS~vfgJT5Ulik+XMS)6{5MaVblOY zOQ?i;7m?Z%LV<^~=oYJ>XgAR;8TbAJ8T>tBTy?~7?7SH zVWcT^W2?sL%CB4O>=OF&Pk8Ah6ou0;KFex8{o_BzSiqwy9h{Qq=zd;tLkweO1u&HHP0sPy;m}AtXkg-vif;DPT@(o9r-VyJ7OzJN{Hqie75X*&e zpR6KW!V;8^2>$>l>&zm~kX#s*4r!B{mKJc{hXnH_OSCA=|?4aB12+)H1jUXSSo7G_w zo?Dfvsl`vgRyf1=Mtfw*t4YhBFyQnNuwHgaGi7@Y)oNy?SU+g1$K?ui!EVeyJ!w?L zg(WHWR0TT`zY%KY#>tBQ|dS3KyZF0es z$y#blajS|y9~uxMc<{w)?h?fk7KE?YB#~Ud3*$q@)acb2m+*31vhX_ zA4t!=A7Ip?(2}=SQUbzD3T@C=kKbv=S4wR%nB_o084!fiKo3)+x&CV3(LQjo;|2P_ zq>{k68=i(WyDm4Ft3Rw(<%k-A$47-b{{YeYB^OCi8oAXkw^0n33h9+LLdsQ~xptr= zI3OO49Q-)*<8Ia4FQYxpYDJ+6mQ&#&h+gNR+!y!LW{mFjz?0;a02Gt~{k(@)>h#-i zb*{m`4_lM#JxO5NIr{DA50{Z8}p+1ZS9691^Bh&Df56 zYglB(c7zorX;O+%mn?iLeQCK7R^%f+=W>ZsrIHe}G#_M9IdpTng$G{7ndyxZ2_%4a*zkOz!pCcuI#LF83WX(@QiX?c#AUbk8A`1xP+E{uLjqU?@=w4BR(_5s zV~O^e*#OJnSW-cEbeA2?D$%TAoN85OQs*4AeU|6XuS&OgQvU#pEkz$$*NvR%4Hmot zW=I4US*Z!sk;M!y;8DVtyrs{~q@|lE&BrWsu8rrc8@EVKe5nK^s2XlgkIV2hgh9I|yAFp48G1_i9-l(oxooHnQ9Y`90c0O7>IY9ODiDgDvN<*cI!(&R)N`NW@+T`sSUN*Sx7JpVx zvze4rRE{aZ8;vPQ(J;OBkqQUdAUNifZ@+k3q>lcZmn$&k_kuVk_VGH{jj5~&w<28S z08hJ63^fb62tf8pLTOf~H2kD89hrM0F$@4YetaM;KmgsEB`DOL@;Lv`bT(wWH$1#H7E!;=pd ziz=ln!gbS*S2gFE9wO=?i)c9g;{JUpN3!vIm6+Is&0F*j+-*=={QGK9v}EOOD# zgnX$3WZOdkP(ThrX7X>plpeB~c}h|!`fz*irqNQ}X+V~wk`nJ-#|PgOL_6VTY`|Z_ zh9oC)cUZ36Fz-n779^!8T1i7F9NU)T?E`Q{qgl;*0@S~3~{{X0;;mEMH3MrW>13(y8sU*L6+;Cmqfg}$LDL;U4 ze$g4*Kr71>iJ*{@63(ZlRvlYkpym{=>%al2V0Ejr#*I4WLS`fa=`0KD+7-PgVA?#g zSXQ1I0aw`5;}sL47j*vsUI8A>E4k=>(C2pAf*rJA9+6mVHJfdJH=Req>@#WDDW0@+o$cUbLjf^ z1<-x5rfNTbp78C3ty1l7qEe*mm#=O{vCby2Nt6PDawwdn_38CGML;=p*#gJ~i2?rr zZt#WaGRc@X!4*0)&a;Sr&A7+jJaqC28eK5dT-ZgFrXFZZVF3K7camNorx?b)#gf> z=)>k>Pf0UCPGlT_R;Gucgv%xPxxfKLW@4=cHSgsP^%aL)DTZ>SmeHMD_m5|k&a@&z zoHMA0Zwgwuwg!L=OVdLRxOo|5rNGeTCXPOFlv*u{MXS~%_`=$s3Ti5fKEwiIh1O$A1e(j#*Yqiu}z(5bfji3 z0o$l2rqC}7;@NVPw5iia3ThwRZOlrK7g7RJ6EKGZyeH%POZy3R8U<+aO7g{d!?|@) zJ5!c{*L=Ct{3ve%>Z4C}Aof}nbm4h~vXrd4miPm_TD)$to?$Ju@z*7M;6EngK<XM&E^Q zq~%CpQk4Gy^-Z81L@wSoXGUNFY5~dG7cMMaHc85&Nm0{aI2{B}%l4+@K59g_U^dc& zuTmi%(zbrWX+fy15e-m62S1ogb%>fxw zb>u&1cKA@m{1tksGSCtVa-@RWlH2|I`G>|X7Tsf9!e^=*U|yeudl z1UYa|QS_`|^(K2&xTo1jWQwq%;h{?uUaL|7FPZ!`(Cm@<^oC0X_a`C|ojH;!`q!Uy z3cRnIC|L2ON(vVxfQ5LU!SC|r3 zGLK{p9DR8)lwzDtmC%&7sxLvq))l`WV;U9H=}uhPqC>irJ>Q;QaANVZFDX@7E`RnT zNXGpiT;8_SnUa8cM2y4PUdj&DYKDDBA~yTVX(J)f{2${;nc4bhx5enC6tx`GXh`eQ zBeq$=AkiWB=Th-z@w*lkonV5OVasSi{Z1QA9v3exS1m~OY7DaF&3;-zxG?>7-ga53 z_NCB!cI5)-D@z##V%^dc_elASIJu61Q=*WH(&EspV`E zl166InzQrBjXv`9Bv1jBX;oYls-Qm!a_k%eTY3sYo-XunXpo?ykuq3F4xRZFr2BC^W;udV2_m#R6!Ky=M17Eb16+l6gFS4ZmmV`v&c!2c`n)&#Ys7OU%L|aI zEcnRwk~CmF*^lxvyc3R7XDXDmfM%TFsO4HxtqO+Es00Wli190}Ve@4`C~Bs^sb9XZ za_;EW??hPXAyXGHt#e$b#3|6fEW!6}OF-;(X)adFo=cb+B z85f3Dq^J-joUP&juse;I>KZt}^OGXRm9xxJYLTmG8>2@SoIx}w1u;y-uqX8L0O=QR zWCMmUkExt<nMxsw zKn2IPI`rZ!`X5l4DrDg0)uE^@Pd=^I9%3&{^BG@1(}o0~s4|tRW$-}j3X8@MEzH9? zGQf9JCH5)-ow$u#($#`ePKnux0Jtsw+Cq@` z4pzKC9H`|gQbjjO=ZfvWFsXk@^{68=ZVvRW-zq>U7v5<@A_-E-%=)IR06aq_!*Tkg zDN{{oa%#_~k%V5#cU~7%xv5E6m?o5$F5yp8$qmkpA7otqjiiZkv(ZTzwf2slA)qHu zF0qc`Ogf=9RQ#z>mO`@iKc)8sYf5XhZg(oDPEt{n7x5@Q{3T3u+4$107bFYw?1)N& zrMfw7C@2TkGQUU|W7kfhU=UPjEEW z2v%jLv|#K;sXE3thVH3ZLe!&|GcXJo9ZGgPb*w4rM#70-UK~!b(eJKn2Kc z$oE4ZqhV*WO?iq^RJ4;Yk6^Qql-2(L_I5kL&-;Q}vWa0KDrU$uAT>lTO!Q)@)})1& zm8jg69@{~oq0F~>@$1mR4dGGbQiHJgb%lFXp-NatA&Eu$_-B;3-lVkwq0Irn(OL z=?8H(B{ozS9yx#!n^xd({{TT5WwRH{B4U|IV)dyC;6BH01st7EXvT+dTvk*_Eb}HV zxk#c;qek-8UT{I5nGfRWhqEHADl`(1{B_W1hNi?S)ssTz*ruM%y>@mQD{OUe=`MM8+*pQI*Q?1pId zDk))ADAO`d+WX7H5@m%la{vf&QSOdy*M3061u$|&bG?q(b6ZY*vJy6_G(NS!8b~*_M+smR^f;r$L5jr4h*$kx9M*jdEP381fP3GVfu}+}!cy5t$?6R(DEQ%l3vU#EUd*bcubXm}9 z2q$sumfycaty$Q^wVLuzs7XsRHx4?*d}3K8>4RjUMQUX^s5P%6h#6wTtC+V6C_qpw zI2`nb>+01ksOeoBM;gSp4CK^>0a}yNIqaHx4gUaXD9mE71BTeEq3Cz_ZyGF&2O(?- z*H@>%lir#_?dt1NLJfVa&L{@w1W}-SiN@YOtbt2_rFoFkrnqFHa=0hTki0bgsA$z4p4tKjCT`Z^-GzRvkz!>ejYJt%CeLKkSgW%h70=m@cT|xxYNoNCK-or z3ATBPAm(z_*aCFr!4KLsEHjK{hR(8+w|+Wl6cu)bsDMd3p7EGty9%W*z({>R#s2^{ z`$FS(;rr>f+p#2?sY*#ubIZm}igChboTyKL)Yh%L0mKHu780OlsFFx2DJNFk@zcB$ zPor^_{6Tq~HsI{Wgf$54c8vK>&!{PcuE{B2mL)^lI)nRd2Bui%g2a-VvFG>Z5oBR$ zsG3TY%tL@^cgn{!Izq&Wz<5&6ux?KtL(Vpz(VEz;w{lc`PQtJA zK72wQ=OflkDW*pnokvjtub)pzQB1i=GZv~Sr$9LyZxn1d^x5ik$x}X6ECW-gm>ZGT ztQ6!w+OT}7fgveMKtH4gEz8m@;qOP%WK2;60->lmje7AJ{xHVMvJij@k{BqBAB6mz zP-zQty(&*k#jFH5$l!CT2f!FoIQ!Pu?S#&0yDeyhvH_?xzh0iKZ zQb5&4nU%QgJ;C9J7ECh%%6RbRsN{d^<-`{K5pM$8>H>okGxV2Afa+SQ^YY#Q02$*X zr3)bboqxoRI8+2};wLW|>@sY!0vXZSljnkxq^K!D2QzAu-;NpM3&Iv+xrr;?Kohc<`$nh4G^Gq_ z$I#?t`Z*Q_;RKSLI&Dw?pos#9)5r?Z;1H--ES$rutsP%|$uYL|S^s2oK}HW_IOLPG)u zT?jqTNL{Gk%0DU^gH=33p< zrD*-@O@kB15N`Lml25XeT*S3pR1kU=FQ|*WK1K4y>!MioWgf^PuR@p9zh8`F9+WPX zS*0m?)s;l$1nX9=;I@OUc8!sErdqNEGE@%#0Ij*$pPsF(V}6|NnZ``PiE!IKd7hVJ^dK1KnHgw8bvXppS{;&4py0+d>%X{Ma z7MZA#Ec(EOGRQ8P3afW*8ntdIQk_%8_I0fRGSd6M$a~vPA$!o*qpM2i&0V2H3Wg?) z!bNr5ic&S372cI-JR{@R<@-msB;_S}X^`kZsP182>SMf5fsly{T1f>UmuGO>{#G%& zvhSF(lqDtBAJ#n^XW-M%$i~-;F&Iplh|N+eI&iW=8$ z{{1?~7@yLLkfa2rVu_;xzh1Bt4PkjHD3+%HR2|&?N8TT%*wB>tKqP2RwCfe93dDHY z*qJZticyuy%|b_AzA%M$-l~|iB}>So;sIJ8m%5R+S*?L+P*?{tN>=(;rxAjBLb(LB zBoa{SAu1Ks*aNWU3o>Yp!pncHGN?sECBAfuR#hoMlt?bs9{2@;ZvrGrNGYIWm{*72 zU8@=@>^YD>Ndr-%`RrhTv3z0`At59ZodFsS{Tdoqd7#Qk3ftKmMoWEOlNPdykoid( z2I=spFjjrMAsI@tl!^_{YEl83YM*-N@RlR=ozvgE1f6o`CFpVW7H)fbrO(KFxcQpk2A&KqpExiYAbqQoc>QaSIVMpv-U@TMu2 zxxOz6JE_G0`Hy)cNG_t86ThgIK}x_$1ND7DA0gTjF^8h-LRBtgqCi^0rX*<2=cpuV zbk>5g`_dwol%`T$CnzCFb_@qf`>WST=jG3rA91A0*XU50>By7;yRS*0De1Z z9Xxi%e{CNWT?on&lKB~zxn|+2SX6xAb<2CpnP^P8i3ur4D18)0=RkGSmZ_^WTkN5F zH8pMi@s?vUqd7BjgoG9w8dGPhK9%^zUX1CC?Mst2ULa+hrS<@}!;J~(3zvd-b(}6* zz#+1`^87|`eoLGdg*&@4b3VN{1QuiE8g1KjgdjCDfUX;(YzH0UxYTl($1ydC*@&ns zQi(_d%sd6d_`POtimTMV{f5o)jYkk%XqdE#kG)f?e({$2OZ0h{`_f9N^w6-Uwac9% zYfct=t+wa9%+M>8Ct>sRgEra3pym|Wzcq|I(5@iLN+u}0!g8tK#5GCs1-jBS>)P`n zE`szUr%@HX7cPe`TiGP#Ix`Y>>NxKnVoRYbLV`_BgzM$|##eM=S!g*`F_u)-EYG)C z(k}bqHOzAc%Sy547X2g&>X4)Y6!}45Sb(me=zO7~$#@cKC5%f?N#-^s~B(K_Nn*Zv2D6gzR@~m?f9?(nq>4+!(b)_?a^w!cBfYbP-P* z%2*3g0bU(wU!eTn6}l&}ED=33Bq3=jPQqgU$lJJgmK*K1mX!P zmbDO2qeSK|;1_D}Kx)!8i~j%+E@%O2QZoUST8Gv5rk?lO6_|XH*zZ#6P^DRc_PGtj zSHrdwHAPNTGY|mMnvSic0H1U%3h|XO(LgXgxgVUyhv@B+kOf$hHXWb6I>U*BpZ0@};q{E}{Pa?Z z!`3a*r7)Pri{gy*6(#qHgsSxGu=%jwfY zR^Bo9nRQRiER`Z@VuqrCZsZ*+r@ThbaQZ@6mY@Jma0$)gX4{j)27e}roTs5l9**sa zMAabsS%`B+tqI_fpm@@zrIJph8h+h)j0+v!OBRFb**TS&P3{NDgF}s)`=9+Tc`44M zrnRY7k{{%OaYV*ZWh zBGG9RCnU;HqLTF|-o-D$JI1StY*P}DW&3%#qjZXc(LUkAX+@<n;)^y?Z{AG_9+6wLns7NuFaiXmIR z+NIM#tvDJ|1kSdZGeffg>Kj6pn;FbPl#-S}UQ%=#(2n0&FLTexeUWu2A@!{q1m75bZ14h-QU-*b`R~#d z8k)y`%~Y3}QbikK$DaLpq%~oyc$q9GMjCE9c|aT`l_bhgB&So*X$@(Rk7!br{P#fs zCMX330$ZHTnDqSCE*sPaO*CRo{0jWwefN5Lr11n1JrF^!8 zNUy6B5|ZVDb?d|~U6`RMa^kMv$35U~A+=1H->D@`K-50{xsS&J5veAQ4)4cZpwVHA z3u19Ntt0?)v;P2>R{H?}WZBl6dQx;C9dzQHpM+MywnZXwap4CliO_TnzwmX98y4X? zS&?X$GbF%};O<(EG%uwKv+yBVqYHkQZiP(&N=u;lNDsFE06i-2%wkjU8JeUnN{T`# zL8G(kHY0fYg28>unt&D(t9lPUyF($l7wojoAOqnH3G1MO_JW1V zC?FLVA-+(VciW`eC8}ywrl(5oAA$8EFJMb-qc|l?WiiMUSQ2z6rmQ-=E1tr>9l4b$ z(CR1zpZ!TLelHbm*p_Xca8i)+^MRd6mKAg4#xZ zfUj?AQo+oX5-Q?iPsAv3p{9)wc00W}^6RK)i&uyV; zeS^-zztqoDmI*p0lp9x9(k)&1@L3P4v?QeF$c6=qe@juGtZH}SJHWS(tX53SQl?QG zo)lr{7~C?D#c2y6jYEJ=gg?$EDwXi|Dx8&g5>$zk4r==x6phBjmezw)*eZUuI)a4T8@^l6Ee>lKs2f=M9Ik~VL*NY^YEuvTR#GEeC`_dk?_W$Fe= zecdXw6ifBRO{se2-;a0UXtVk?^)ipDP)h=;_=zk_0!K7swGOZ%#EP!7=D00Ho@}L zz$YkBV0h`?qMF7}K6>QM$VgIBq=)|iSF84oTM}EQP4)-@Am-{o1K$}xrB=a7RM3^DE{)N{J9VrRzVAgy zR(z$1Bfm8|7|gKxW}#|H&n$yPhsd%Y;s+YPNN=BLRiPqYa>R{wNqsv(FG8WgcaTir zqQf$ehgy@b&q`7?i%hUmT$g%~+HuF)5heN_4hfh>T96OEux?e=>g5m=qLA#B8vJT{ zYZW#SUF(68g^99A00&zF>N}}jcF=sF+UBLDg;1!1X+k&mj?q&M-=jp(=t0xp1ZSr? z0*>_U(iwr`%RHHebiAqoNg*uxfFhs~P!5j!#xWwzXtU)=UPO-wl$50|G;+g%M(eE` z=sO~iA2n5=r3*qwq}!7?&XNL{1f?Rc_#$jJY%en{VMHgZzrgeFje7{=ft4se%82n0 z>^SKA(6D_W9}?ghtFo0O49EbUtj}JRgxiA?Do$+aU<s~;UQG&cGG8!zJ2{N(1grRVvOV`#YPlk$mn`;4)|*< zm8Drma6B$3Tzol-`C~jiTCUXD-EK)&iQ2W>Q&2VfKx{{FuG228jlm)7u|EF*j2pf$ zJn05m%&*p$b}gvb>$AXX8J<)#9HA~kL1E{~i~0=q;lPb(N+&FqayA6LJUlb&8scmM zN{4|V1**Y^dTLMB23gXj&j%nX$^cQ;kZ%09k5t6xSL#N<*1QwIgHK4%PkTK!-lGZ3#9QtVj%paYOcNIbb~nAtNFrQNhhJE(K@Xle9! za3V@)J0(h%qnWBpP?OZN^!TFH%YzHZR$@|@31+6FQaOmPd>Vxx3CaL=)%pR+>$GJ4 zk8wQVIYxBC0!oE^DQDH$h&y|z#x`33yg)<06#VkakjE%;=U3zCH-!L2n+!==LIb4B zsAIK1YJ8)NcY+Y9CTzM)NdY9EYs-=N+xvIlSrWAbx|H=JM)^Xe`H57ZkP8y3ovElF zv%~Zv{tvqpsbNbsbM0#2{5wN}Z;X>Af#ONn&?NORsf91XbA^Xi#Ax4f^@DO9L}l?2 zr~;xZbWr&_?~jHhRWJ+-@ihca@lIfyQLc0U-;Z)t%mQU?Cd zUhwsIVz8=`G^p3)ea{%aFU06wrQ9SX>h-RGX!X?9yy4r?$kA?$7ce8%1th2kA^Cup z-Xc;{l!7KXZV2laFg7_rbSU_nb3@yoyiMs73kzhluFi7ILehLYfvdvZg_!RF;&J-F z_2>_1KQ8S@tj-bQKd5Wx(hx!yAP-o;>6i+W@`kKEeU*R|KwFYB)4~M`x|&kHP$+i$ zzl$U=1wW^8*Q|GQTGKJm^!A@}c3<+3$-_9bk;5$UMCUQ%u>n}pw^z#tn z5qd?pszO*L!kb^x`WNrF5yls~=7gqdhlOB*G_J~Ks6F_kbBnK2K3e51EJ1Lt-F|;q zVYx4KnKIJuQkFeGcnx0=+-jL6SyfOD;5qy47z~;7Y|}_sQku1|wW#VN=|ttq6;d9c zXxzZ;X@t=>SWrt5xD`AO@W0@l5iq7NRP7R7B8i{{zTI^(4gES{69Sz%!9A6?;fehk zStZJtP}K$8>IGqw(mmV?LeO_*LC15mx%BzR2VPdZ>yU&M1QM`o;?1vKyhB`{N>k(& zl?F`(Plz1|?0+|ns^Ro_grO<~W>Bf;f!Yy0FM2c+WiD%FP*W{i9J_|0;GQ*TGQ#^= z!q?ffOV0Y18hA%m_%^WQC;F6lm7-3xEv+AFd6@ZPh*_x${EZ zk_~B52PWMnQb&k}0U$oTM_A(=VwKrv0>2csHAO?7NbcOlDL9Mzg=EkQq<7*Y4kS0C zff<$I)RXzF9lY@hW=mQgfe+kl=V-fiTu3SLhi-K-aNH7>l>jokgH3o46CA;oS&5tL zC_}PSr4EOzY-UDOW+sQ);2wOTa?gT9wsk1wR-Mj+mWNrlVp5XIQAr$p8Y3Go5~xFb@2VjeEsI3*!6=BN^Vl>to5!AGTi<}vFA zCsdi)RKx?}JXBM^ePeR}0JtpnxoOCum?Z%VDTsa02xW4G^&pD zewBr}xOGMRLnT~pdNfk7VnUTECBX@D`V_eVy6H$GDQ}foiOuYhzeCn3E-uTQNlT@Y z333La6#XS%3bic~(p2dVK=%Vr!wuK0vJj$Zbz{5^^iz~O`ceP4FPJ^92$I2@gZlS}|(;%GM zHx(r4-?S^=cFCF6pp^$1fHVh(A9!e=c%dW`SdEVTU+ErN?^Ml}th&89eZhx)C6t^w zHhY<>BrDlS&>o|K2JM(FD3|Jx;G{lsC{?WmJAN==x+aNa=J2UOle->UtV4X>;13b@ zbw6l`C;~0km6WF_B8dPNX4mOj6RFk@-Zwf@Gi3p6&(yDOEDbvidO6O)RfB(U8wB`*JU9o zStI~_L$44{!VDpT5CY1Fge$_G&X6C{#oUileNqFVhy!ve-Mc}r`;^s#GrsiZ0@_k$ zrAc;DoB^wkyeu7p;fpe6%R{DStD~s8}MOb?7Ai)B@E>uz~SMN z=h&;-qkrwz53oLfJV8|lo}ZrhuXtW^(3VL7=;vTG{4qv!^WrKVCm^<-{$WQJUBo30 zOQ`r$-Pzya%vq1xv49DD!L;k-I`oCR=HU}ksfh|S@Qoc?YoQ#xb97*N%T%nyjHfXh zC~#>*MrdnQI8LXWz;d1xycxCx8Uv&dr;TDt;be!uj-JE^3K(VYaR|?0JKB z5*Cx8NYJ03NT+z;3qvFIDC#tC_T!Fs*u%&)7U-8QNGJ($SK^xp?)ALn1P@>--H5Ad z8?;@$Y>7vSKs5q}@AisQaOAmwD<~joT^<$!s_jXfzgaLi4v>-e z^w?7h-hWfByTj4FLXrp|P?CP|4qT#V6GBM8D6h#kf9Hq=Mv=T|7m=sXs5?1z#A7WV=Mf1eCE2t7X`SqY+r< z*NG7@I*Njtp<5jR4NAs!Q2T=}WQ#wBs(0`FK})e29dz^5esS6(xh-jzWkJlu9}phV zco%x&5GtP%h@(-uHvPGapTyPc=6-NOhlQObweQ*zFs3cesj||7(u);rPUFgy?G{yw zmo$K&22tkSdd0iCT54sdGL&6_Y{#!&{6kH3WC{vWk_R;W))n!^zG;%Y!9#{~;yO@h zepZ|h}EgS zTAjh;jY?)DL3E_HUu$O#xMn2p@{F`zzO74^RLjjq(T;+e@eyAESx*J@Adp9BHFSyT zPd;TCO5H+QL41kS(yX3_GS5X8i$d*^!VXnu{^Fj6E_CQy@Wz{bNSYESmUbbucF;5H zP5#CleGB?Cmo7=Q%$Ja?sYnSqfEwn^`jh%a0Btk~srL4H?pC=kz>*G|Jon}Wuzhdmq0K=q69P?V=c zr1C)AIrqSvXM__mKGDj7R;#}3ck2vymF1FH%vb@L_XkW=>}hsg19x1e;#U^hIi) zDN90JIXQ{jl0HoicMqYpqFl2wVMzhPe@~x&3~G2DVvMKu2suhh5?PH$8-5ec|Q<;dusaqFj`!s7TBngnzG2q8j}uVP%C&QZk8c;{nMG-Y!X|gI9%b zM>t5yot;W*5DD4pJfZT{c_~W?SBP`5>DmMOX45?)N-52dl^+UoHf9ud+d^C48a>3I zsYz0UIzdlEzrGQ%Rtl22iT>VI<{r+0_UiutIBcD3Oo<{~(neRyHz^>K`c&FBm7$7) zm3<^kQj_Y_ndSoQKQ-xCU-U_i1etRr6Ei!gq!C1i(a%$%sE42VbSVj{N`i^-*ZA$$ zGu&lA+6W*iYN_Ztfu_`jXV{Qe8DbE&saLElO*|*4>A~+920y|pGu4o?R6<X3P zxO9yt4`HD;XiU{81?bv^C#d};sNfjUWnn}avebrj3ZUqt$%iEjOAY!apCF}4td$X+ zYoV_Bbf%jQoQ}lTnpHJ)NJ2a*0J@Y$rM>2qkD$FF<`S05b{US0{dsKw>lx>v??y@ZkI1OKmkevrD;U; z`+J0o9H|lt5Ko0CGl0XbHtq0?`erF5a;1W-gwSCBXwk@(S;U3h5|3WC(2Ny?Qd0(Gml z#L#hGuND0W2hAddE4OD`3ByJnHc+YLPdPSO4#R*|$Mu3tDN#3Eeq*2DL zo!q?@vebQj)sK%=(WKyE&r@_KoY%ZZS%1Mp{lxizzBu9yMyB zH>s!}rP%EOt+-mzY#QZyt8f9-KHyfg+mjD|jeQr%lANVEh%V-#`5PA3uasQu!7prh zp)`_}0qnm$Yq9g%17eHD&uLOt5K%Y{P~m|6N+Hr+_o=T^bR1oW{b5#63WFp*gbhOu zo3u@YeIKS;R7*3Hl+{7?0RI4q@9u*Ju*>SvK5WFI%n6w+0yioLSJ}JM-5PzzZ<#7s zOzCP1%j3*k6VUMWdVEZ2m_p*0D>||vD^{hdNA2;5Zy5-h4q^WQso&4-1%pU4ZqHsA zkOt#d=}>9Rd44GpZ245bVyI8}*FZFG{TPVq(lRT;TPmnN{{UzaHxK^+R0fZC1FU8L09PZtIf-V8 z;LK8-Br->`PWig*)YdhuIgQgYVM>`Kk7Ved{Z9nx(W5uJFz}a%dIs7ujPE8{o#d5)Rrs_3ktc}zObMY zxU2|LNd?CGd`v9kyE>4c2yp%p)AM+eWtmoBv`a2u!~v)8+w3PENA_K4)E z4R;NlY*y`?SL3H>1?e8ino&w>PqMDRNKnFFno@^M zmHX`pca-VVNz4=is4DHq4M*lK2mo(MgcSQJe;70+w9B&|j~S*r^lqzJ1q>z?4D4%_ z=~1KZX&TM0=uu5eWTsLoq1@^ZF@Mp0#6l*Oqy?2x>PY<{bQ{B4Im4ch4V^5Y48)&k zRg=T-!-(DeA6!Wi5~R0@=vtk`BTSIA%_U%^B7v#{oli}GJjT0)tbsC=q5}ZH?oUDU zq&SXMm-O1V72TfWN40fY9@ z{IrbzSxa9H$h<8UIrCDS#+gzy1nfs)NVRm^Ei;yhYFxx;EOm1Fx#B*d$KH#Ro7NO3 zF$^;3TCUDVM;gMu7{aLvQp!LBm`ry0px14Spl9e$8+=)$pm{{U(BB_QN9RK;`C zpLf<2kD~=lDa>jra_C>{%xoB@^GK9ffKG!?KD67c3Bp#~$x}Z-%u95Mw>=+t&#~8| znR2Yt3ujnC$^r2^cdwje-i|#Kf`L9}eB;EBC^L0UV|%yHGYb%E~GQZvFi$^0Fs(08t~tJBTBqxW@Zis{{WoEZ|J(_n>8kB zPlZL?5M4C^+47M}Ip&UG!uq+_EhM0+MX4`xcCQ96?1g69XwD0d{-!cJ-qMuXC@Kgg zw>v*C_KjZdxlUTqL;|GjJQnvU3(!0g$b=0Y0%}(HMAu|hGR6U0%QxKif zdL9oyf!^C7kPc$|r)b$KE0rfjASo)*!;pIE=LnatqG@Vcm-;|-CEs1Ew?j_w;XIn8 z0^o)$z{RUYqa#pGGAr5$rb3JAQdfVA=Lm>KV8QIZ;;ED=S7}sGI&z# z4)xfc4+nw7eJ3u=k5}VjlTk-5br1&6g)GH>vnYK?{VlKqM;ycWp1r#4$0NR45(uY} z=lF_uP9S1Z0a1Dq8M|`*qV4sF5}Fj28;t<#2=j4TM9`qb9Y%~c^NCg`$5>)=$(xk2 zsQdf0g5HXd6D4RgAx;6I4?^66!o0jundv~SUZ5b9hGKOj=zDpGf|fi#FcDDuoq#)^ zvlv<4m816C*2gHMP6=9#LI`k2Zg_!K>)AGk648|;njJuW18Li6PQ=(vXtf!?`4f~9 z4x_4i9d@qfjPrnJm7uMgVWWUL4gUZhE7=NR+yyR9X@w%G%bRdMy<)xci79l7fC+F0 zu)mA(b*ganQW6k^7R^$nk>tPwzj|*2EHY;yy?c0$fRae--(j$cilJAniKF zW!jWhy5t~b&;!kNene<0u%#$;gq^+H`Nga?c%-;$lkI2^@fC*&bM6I7No2Zc2ps<0 z!%iB+nWZLDi&dNT4nys~lXC{|HGq=p0BK#%Pn|kORf#SuK$?}=K$|UJ`4l~*5urPm zrs=rX!0i$i-pD50;Rf$WSlU7gz{eAqyt>c9!&6X5NNdrw3qqFnp z8R4>8r!=snuPU;gv^6iIjVTju2(xSS7n~_(Y4C~!k^9%@2y;CjPm;8p$|%%kq0O+M zsNc(dw)-uaaV5ePX$p6(`8LCqDrJ%f zfnL(M_-<%M?C@OSHu_Jx{czsagr!o{lFSN6L!~x6n5`=Ao9jZ9kWjiz70q4JdU<)k zizYi-)Ll7NqDd7gW7VIB=UCHh8I>g^LD*5W9ggA`9&?n~c40!O_!tDM*`ciKn*s5^?CNQf~; z7?nCnOOQ#SN%)?;Ks&b;_V7kcBCW0$uew5e?Ty zDhhv8a|iZ+%gc~Bcse@y#XgPaDsxRjyhk`Dk5<%ZM#JqJ{lkVrQj~(^0k7t~!sac+ z$_iA(kTQp28!L3DpWuR+Q_^gOOG=FvTR7Bt8c^y90P5fvnPjB1i}1m0&Qd_k05okN zEzf`CLC&R@SG$Oo^T#sG;v5oaki8FXU_LIkgvna6l6|bH*|jCM=?~>J9%bVoWvDnK zMjQU{wR&AjTjWV6Rwb(ga7F(BCUO#dFTPs&o}=#%9;hfXpUAWD%>=p`b}X|`N+qgE zAwc^Y74iW(7JX>WHxR>U#tX=wScL^70>pcqY443845kW5@UV3=zQBCXx&eAavdT=A zDMk?tp@uL-l%*k3+{$F9HBWxu z3ipNl1$QBNa!`Wj{{UXGp<28OpgDgufY4%Vy(JC;b0^sZ0y{R1?|}G1=?U;G1t`=J zM4%l~p4vHX+C`gG$|!{v8YI-$@{!gbQyl8oZqUH}vh4(box>7zZWt>`Rs$oS4Iw@Z#2VZnOdX-FP z0l*F(l=y8FF8ipV*fG?fw|M<@UinsY1psMYM(qcpj_=P$h_!oQ5QKm->KlGw9rGj9 zOUhA141k{A(fl6>c(|`1>QZz&kBoDP?$a~`h6q(xr{RLhOpS)HLT5@!mI2k8y7FS& zoFV->6p10TKVnaPAl=$Ora2wufainPqj^DF%F>CbV89*0{G?3dAwF-#)+<-7Ppg)r zFe$U8J{oEtL;nD)zJ{8^)!FH6$(HtnQ3-ZF(~W|62BrFY^;@3gM6~8fDsxbDE%;fw zJSO@{^l>WCcv^uy06PZMQ?tU$4^{A1C6{Vx$#9jq>^SKC;hue^1zxPx{g%*i80F1! zPqCHDS?~raZa8jW{lkqxP|ZWJ`giFRM=LeJB&^Kjv+jC!g7#a$KD0WHus-#~sP#)z zzlFk1wED(HcjEbqS;?7|so-=ldLw2lnmu@yQZh^;n}ZBj?Ucw!V&Esu;ZqOR(=5z# z0SX4X=;yUWKH}SfbJmcTRItTOLg!+2VM5U|=*3@0_wbk<>eU=KFlzR-rz?^Lbl;^v z8(2iXFbw-KRLd&!g$7)+OxuiyP(yjbsm7#`iK$XoFy$kD^!e-}v|zoj7nIsc)&LEa zg-W0G5-IrSSkP|kPJFCg^c%vZ-G_k;w539fcU3ow2JTFwEaz2J*+HOp*M2BF?F0#N zW%Djs2_@82*#%pdf>JL9gc5{}C^s+g+oshKcH4pFD24k<0G!8`*zfg<*h=(Drh2nN z9rqvzH+>ACxT5V$tg{OMurr4CRinQeRe{r1g?v|ae{VWTRXi1@qx0Pl-jgm#ld_3n z)5qq~mrJ|t2^mxwDN*o)MlK((XfN?lXVJ9vP0UmnCWS(xoYIw~HCu0#D2Z?46>qoB z3;I995~W$nQs>qj%6$RjuygN)t9PUMf@XIbvRjTJ?IF7y^s@$0BA|!!?-plR(zK{7 zJt@%BV||ne}tDHD6e9L={UTGXkLg78{brt-k!iAS(sVgt1GLS{^?f z#I}seMFGkQ{{ZFFp&I+TK&e=zGL{oCjK^HHZaX`C;ht*B(c#>?2n8?M@V~7|T3gmp zvlan58h}{u$=vhZj_H{#K(?PQYvj;k;I?K3oh(@CQa6isJ5r_<1rKH0b_0IrXn0yJ zYrm}1JQGe;B`zF*RZ3EyI8((FP-K)#P*9meTDJcHhu;H@i4zKffMq*At~5RANKU`5 z(Px`3USe}px!dogP088&X!s`Rl`cS*5*f;fZB%t6{XQI|Vw@K+S_JuO%7i&JU_}^y zY3_;c9Be|e09#7KRi?QW;Dfvu*hB7W=~L1g#(*K{O}7#vLtW7#$*A;;BTHB!^0f(1tA9J!_Tt z+Bc-x60o%uk@|BDk5Tl1*k13Dl#4>81U&0CFtt00fJ{nRcD=L({iaD8!kalP6V|v2( zrdc7qro2dEwH*9zwu&Bto0`|0?fyuA(31@ z)Xa0^NI5|?ezd1rK<`Jsj0SX-5DR$f;GIYhUXCJWpHHA}J6>?a(6Iz>6)zPzDLm=G z<|er8Qoza%Qr_m!2wTKhj7ppmeXYr>r)JtZFQh?vH)OeEVCILcN`#s)B=R;9p5K?i zT)L#gB8vg*U zUB@rLJ3}q?XjHU^VBH=60EqVsTaUJ*sURH~Zx84etUip9DpHV;Ql$8j29Lj=dPZ-3 z-{dVa!7fM&%qlk5Z;X9CYMy~CtW=jBN>2X(p9sNmUI7aAi%xG4sV`0%CzlZn_eHD# z5x5mPlli1EEp7vVTA=jn7)Arc>JwCwXqHF^RW`5qV{o(03l5q+0NKXSxSfvfJMboL z7&hvl{i4&KDzCGk^Z2}GII9v%mp3fHq^B?hsCZO-wsz?nEW50Fr6?;YDFrMu z2cZL2Adi98D+>xZV)YVc8AnAa&n$NO)<0q!(SE#3moVgDR0SzoAAXu~7Opu6RNUnu zB(Nzur9)DZO;SZ%)Km}}r7-3gSFf6-0Hmm}ueuG?vpivkl_+}FbP`Q89$NQh?b zwIZ%J=it(?%DG68$NjU-3yU~jssye^^R1>^J_}|_-^9=U&q|26(?K!C5zi3TW@h)nRHB|`Q z0@{c>I>=9ku6XCCx-^K!Yv~&32v@BJr9dB%1Lk0z!62eoAi7OhB%Go5xm^M?(1weu*r|I*AViGN>K<6=FJM7<@LSLkOKB7Y9kQ~;I#Po(6 z{?5r!1hHbCKnLrjXH%~mWc=uszym@-)w$=ZY+=GdYr^)sFcT7_uQ+sr%_v5Mbn=XX z)9BvVwVBmEGNuHYzp@|nf==!<*hkZ64b90dGo}fPNCbq2N=eZorPxrOVaD5ard+g3 zAtA#Onmg+Kc6gh&+V>wT;R__`%LrIbWS3Anx_;5R;Q8L5h^?W^CoXZnJLg)$#~Nah32xB$^MZ-TJdl$H9xLX@XV>f93!b~%MCr0NT6K@J+N>t#}ciK8aHKb_%T;lBx` z5~S5Yamk0AOJ0jU<-k%2Z&uIPVvI4^`Uuk_@BQi2hV;Y4@fzJ zXahJT4Jlgl4R?kxMAQI~M&`OUy^k=ziLV)RVQQ zhT<$pwaZ!zwKn7KI~RKK2{#y2w1twy8V-(chB_GQzdmOB|&>v^!u2`n~A*|qH=R3SyTZjEkgY9z>KR9U}>c#N=Ztk45huL z0iuB$9!GP$Nz40g=twCvaHrIGTYteAO|t{~i%OP-G8Sl^8=opTA4X=MMIMrgNVCpS z1tY>$Ku1CvqgsIRa~0YG)u1VM1vMqN?**hYV!9JHNkqn5R31M#h1yTM zS8jp~VYxY6)sK2~gQECC)1wN4PRt>|Ub%63QkZa)6pjJdjegKlc_w5Slz^wxfv}0?#itvL4o9XYSX$CSeHTaM8nre7;kN7a)`XO) zyejc!8jrL^Z}d8u%S)gT4~aU3cm1HXzy6$)l&VR}MMyO#l(z?FW?>xia$fPKOYhR% zoooY=v_3*TklK^y2v-h2GG_{sg`Wv#4Y>P15pvP!yr4^1N}V8r9qHG$#+^he+Ayrl z{vbdPmGmF%d+`;@^TMANpLpX0lS7!DHmA{{g6GAn^Dl_gDYs%}Eg4hdW+YTLy7@s9VhdnP{4|1GGF~jSOp6AKcD097k$WJS;*@4_?L)F@%zg;3$Lv znJWX4`hnkO4$TqDRYUr5@F6Nls(>mdP_6*u^0hFrYr2;G2&nr3(jT%IRftLw<$z5IQpH{LNUzKe)rwc?SV$=^n9vOY z8u^GIj6p7rpbDswv2C6g=VBBIl&)h+QTHBAtXT$5z9wZd)CRAZ>Uu$J8)!Me1>0}i zI-Ht7(c1vf_?F2X82y2fIy|GKtuVl3c$1Y1BozRyjjJ zX`}PcNQQL7lQMFs@_78-08Lt!Nl7680EwXd;xzP0F*T}KDIj=;tTjJaU%qc}r6B{t zR4O=v*L=jSD=Mk|BdFRl`SNBWaVh~ohRh4F<3Xfj_tEQ3yDo4fschw_cc%V)L^fPR z5{G6`KFQo})S-Y^UMcWoMO$(RbM=X3-E$P2$`m>@T$CAa3u^5Ma56TH^F4m>xoxp3 zVuZ93`<8a=7jW(?loOR_)sR`YJ!0qm>mo~(DJolOxY~!iLi8}bYPu0EUU zuG{m$l&jedwIevaufZ|YeX?DL&H0J&<<~TY7j*AeCH~vQ+N%KZg^pU5oV3iM3!3@# z)uCkJbT8R_;Y<#ofya1d#tF$VC4#s6{&$L&NvZ+T6nCb88dSA7c#tV}-5$1LQWfm5 zR|##Y74Ze$uUf)c$_PF9W4|@x16`K6=(OgNg&gDppVE*uS=ERR+>_=s3st^pa8e3L zVoeWKbo{JTrBE*k%gIClR4RJw_yiKUtO=Ju9JONIg2u9(q~@cfoi^2}9oug)B?6ux z3C+1ZIz^(FZ#%~^Qcr{m=6ytGw~jWmr`9B`)|biw--33CeIjCYl#~HQQA%PMADi+t zkDjfztdo{h87ETbF&Y9%r*82ZtB_|CY(=vHbFlyAJvyl!+tOB_%=BmjEagHelmXNSe3JQ?J`q zsbK(2$*PC4LVIjJE#5xH!PbDQ1fakXECQ75MFlqVfwsIaXH1{~N)CX~o}isuh^2E~ z^HQ*xYdKV1LxHe7gU-=+mc-tR*X`XmIL?fzZFMF0BTpmrg&U6*qE)dH)!-nubNZBY zOKu3%y*T4=#**?&QE{0d5_J{O0(g&)eJ0yiE_At`+S0twu4=neM$@y#a(9O=&3!$N z?e2nE=**ow{=Qtt$^Mlj`niFex?PQGbOY}imFMZ&T-iv<$zD$yY2htYo`bAsxO)Xp zx6TXA{h3A7p}2aaJt%3oi<3R3w9i8KT2mk^Nvj#uX++VIdY(EzG1fc6>Hh%BE&Xv` zX_E<}c1t-fz%h2zP(!4QEhf%{ISNQQ$Z8N@&b=X83)e*S zC)Oo3AOh^vR)qYVLbf=Vu%vpll{HRK?EL-XLiCe!=gO&Iqbr2^wg)c+4N?R7v}Tvy zBD6`Qxn^JpbgTveRdlmgo~93=8DjL1iBs5u7O(=;Ljc+hG&`CfjA}M($t#?hh#|@n zGP{(pa>HaHGIxg!IYwfOprmV=u|oX08;fG zWgsUr9OOHbv+d7FQ@(G1>KFb9%PEaO`~0xpq>h)hfbM^q3y`~!Mj4N(q)i| zAx9y0s+6OzxcnnLxiMf)SxG5KNCJU?dTZ|w660IJU!bz63DHM?2;P+^h-Hdt#u9x= zRMtv?A%@Mc2VTEORk^VQ*|R1tQXW$2ElUIdp!tDt=brV^p+5frl{HID#fC^wXDn27 zCx?wE0%67ETK#HS$VvkcRnHWlan=n|o$)4GB`H%Bg)LyA-{8d4hcTbY^lR%CEg#dV zN-Fjn!<7E2Xb+o~i?@Z_F;hpcaFH?8Ll9W8qvW;!cU0MlRuYMzZ|tgR_ZQj(XT1SKihyBd*DH6{2kYVf^A zP+T0vheCHe4!(Ovhj7>tXR~HjT*~nrpgno~`NZ4yThMHo<1x%mVEImoJiiV&jIYv+ zl}s6uLS`4r)JOwhHg>56$%d=z8Kk&NIif(<-3kk`8HyQ{3ll(Soon-q?a?7m{@V2j z^~yr0tyxo@PUsqzZHZ?otpP618ZP;gS1dRIMP4Dn*uK3U9c&UBTM!5dJ)4(=EEcJu3wGopP#Hi0+>$rk!U8wC<){|+o}}n{ z_Y~3yU;&W-0A^9CCS=u;PGhNN0gj+GI%pd(#lbFYux21V8=yTtFvlk1${8di3eamB zapU%zQQ2;CkR}y5FGHaG);pJI6fFA#)*-gyAW{*a)2r`aq!7F1B`9?laq!|92hNs+ ziHcJKN4)<4A4pxY;{h#`LV)ab1o!D2Vo4=Pm>8)w8Inyqb4nhum|d2v$q60_Xj*{H zRjpsCN+)wlYycX@cGbvkn~0G;WUVwwVU<4mv?^Py5`U-$SS9oaSFC6^4lI@uY~v|X zm^*vCq0;cca%Le1B2u*YvkDq*O`n)~qtG55!AeqU5(5WOukc~gU4b&v0b<+0nUhwG zprwYTK+yR`+xFapEHMft&Qa5^$^rw$c;OP&>caAt)HwnPVQcu#lrpL22h7FAJcr6M zi{lffTYC9KpsBNEqH9MyXd=)SgicJ`85vdvWF&Y%Z{Qki^>|+{!2Tk+X8O$QEms6k zE5C27G+AtDC`n|vI_~>LdoA5MasSV&MLyX=3+`2pn2~zC35X#eu^!f}dVS$z1>AtF=c{eQXnVmQMblL> z&z5Ln6hIrW(D|?|e`w;(b^3+OI;5P`-SvJ5)9c0JDaO@w%gF7TggN>`1*D`B0%$oO zAG|sYMv#YCDNpHO?fJYf&$k6AWk@Ak!l?zfTb_ftxU> zs|M9ypGaW6>;Qd6{!umDum}O2KxisDLL!zhxe|$a^9;jr^YVmCo6-T0uO4Zs8|(1= zXx6cn)(Qr2JSCfY{o^>d;dCqzh5?^1)R>ckrt+C+L!=Utci`+gh+4iZYLzNt4rgq_ zn;kvd#qUP8)uBt0LH^m!=Ta0)Khh-hi+M~>_Y#7qq15FE`G#OvGZm7SQivYOAZ|76 zG^}a2eZ-uAl2lDYRl)eiU4brNTxJq7>7%hDN^E0a!*@{#p;b25FE!#9IrM!JFBt}0 z)06?2hG;oxx|R}DP~eIucju%YP7^>-TA#vmG2S}8EvQg&R-+HiA|y6>I^mkEsUoLG zI(9!Uu;+B)A5$!uh1RV}KFHZ1ZPb@@5Z)8SysJ^ssSCK{9!#7-k(DHon>BRVH5EF! zc4lhP%!9LGxl=_3psA$?)#EM3cXE|6I^_x=<Vceu z_)uMAkou0lo5cNwiG(o1Bw5m=`?{WxGZJ3OM6#+=a%UvKMUrn+YWn(504O zb|d_SMSDKb!-20sXz(nkgF~3qAIfxqSOd`kK~X9TNOBb4_}!f+S5HD{d(oE3h5(wB zq~xe}Ed6}+aihk!175i9bV@W(VknJDK&HC_Y5}bcOTp5bIG{A^73J8aqy|u+VtTOm zwv_utn;ntEmppMAM8$9E@}F2}8Gto&<<<}}7o?;nYGtV;fLk_+3N5K>xP8T1G^=ER zL=O_p1!y^V&pju4JN2kJ2ooGKSdg`CrCuhAZ~p+f5iubFKm?4<$Dhb=9Nf*6kyq#E z`$x?^B+5tusPD_cF8ezQc!uYhHDxIb znmcdFf21i~_*5!)s|yEy;8mkW#FwfhAwfzZ(oG8!(e`~gV;FVGiArrLp05ETDv&Cj zXnLusm^0DDXUnQ4*xj$JI+Ue30#XBbzgOo-7ih*}K_X&Z>6x`{;;ONDQo*4Gx1sJf zKeQK}a-~R8+cJpozQF7@9#N;iLqB0wj8KWJkf4VYaqSNL^nzDkfs&O}jkK>=4{7v& zD4-=_S)J%j0qwLGlXM{pN&(BGBs1mZ+~q$wKu}*2N#<&cj;FTqbSIiUg;I^(_Z@sTEXjGoBse9Sx&yK$pG`x74~sz>%;cR zfGT>FbpZsrfE6?V06rx70BY>MQzO}0g281aNh7fjsNw|5^y0Fafl^9VC<})2t$WfY z!xt?1%S_8gP#ZE37>iA=cQL$^@u{fxkxQq<+Qru!R?7jjH~BQ0$g=30OA4 zC{Fci0ZIeJTf^JGF{TA4C#wJifu|j#FO_Lh78T(IOi5=scBap-^AFc$R3oR@d zZCJ@MKco9nEn;n*MQIB5PK0PjzM#X*7}71cI$fpJF@QkKNiUVS?+NzXWVFmO5+D3j z+P!`)@QOFKKU|4n6VL*T#-VUU8oD^qoap<*HOny$77!Grv#9m!%uZ<$@%6>)0u~TT zQB^1Wh|nDzbTDrT+=!fqOwU$UDNPtqR0eH2RvmE+;FOS11t{fR)ete;a(fy`j zIh8m}Ah>-8dV8XJGWVokM?o^elpG;>$qp8Q$Rj~PPLbWqd&~7;poN8slfQT8tUUTd zoBgE#T}v)UJoEF?GQlM>fJ#zBXaMlnq$?x?_AD7HQ4=K~AeyO-6~#2%zTXIPxvu1y zY9x?J@V3Ws`2J9_a@z{i{kp9_(soPk+;xWxF?k%ND@zxq;PYLdh$IQ*SOpaH8osU} zC(dA4Tr3vz;q6}fn@B58Zl>xh!8l-5z?sbVXqAUd}6b+|%&aVtn zG)`QyfC5P=aBE#Yy6qZms`Qos%%DPpr>`%?Y4P3wUKn{3NSMXLihh3aK`qUU5K@v~ zIUW(eT6|*l&XF@ZkBIF1bb$68EVL-CEL<@h4cmyKjAWZK)|CfI0D?6I>)aZ9pwMTX zY|7u|qaKht^Uk#B05lwf_Bz%n-jiDSx-$-}zy-3Kim#d_^a_s$#CCj}g&PYgnh(06BRk*Jq-U^y>v-&{; zz(Gi_xf5(=}}TGrS)}87#?}Ep-KfV%2@A$MdviSbEhlB_yN4nUu#(f$9(WY71=f z^c1`#2q2&U2ejV~(3@zv(uEY7r0h044v@=CS2d9{P!yB|%$27K9DE0QaSHgm5n61^ zD|G~}xxYy6HfU?OZ+}+cBvzTY9C>_VEN+F)l%!A+8UECv?OmZ4+V$0n7cnUyrPcs( zsRUF8sD0Y40Wq!9Bi5mF5(0**U>F_wF2VecuNi%U{Ipq0gtVzkPJjd1hNI6)*LdPx z;cB%2sooWmQj`Mz9{N{d&1mft@?JNI3zW7pz$})1e~4Dc*FY%?NN^27Em&Q-ZcB8O zk5(N3I<|4wf<8SU)Vpz*lj{zLPrO!;Esq+`TO}Z=K(BRJ9M^NW+zOBJZ_@6%SRL#ES1n z1f531fO|yVjCUSjQzcTAmzb%_AcT$f0n7M6VB`i3#5dubB|1p{?8gfIDXvOr`;98Y z;#h^d6}Y#;HWESmtQQCKWBC~XPc5x2W|t8K&5tx0MHBB@!bfvpEG*WM`};adXjQgbZj3QHAkNNqNF z5iao-Rr<9O5bO^;zg~gim!@ZT-kD~GcM2&!8k)9ZD$ngU+s4Utt!W8j<9@J#Gt?^5 zR*o+Hml^JYk!AyUA}mF6m@p_p{k{{ZzpWAvFK(c&zm>`y1`bc(;Cinn~#DGrwi zKrZ}^T7E7pRb^wqHe4mIZca+M^hN89KG2ETMH-J`*FoaB0;E|m{pO8LY zTn>zimc1$6GeqP}N)oAUl}k$%1s#E_rA!BS&&=7US3tO1xH?+!uab>JpPIJPVZEdAT1#(8jwkFd+E3XhUPSN-Cx?& z_{X2^0<0wpSPCO5Kz?bjHRwcF#kZ1D5@nJ#AXmlQY(qnxbkBCC!nj^i6{8N-ethCQ zUuu~qXRVQyQq&npDIeQXdjJ#_yVMtnu53y|Kq1bqJ+9Hk@>Z#8SF>F?;wTqy?@5x> z14$Cpq6tzoe&)YwLbfWyLenfwPl%UwYALhq-8T?h5aBH2BeIm22VhRTd!8LGOe7@P zC0UBxxmhg2x&y1Q<=B%Gnx-Fy?+M88mki}fDsYzN=*L0j8l~xeg<12<9wj7KmK(s# zL4h)6Vo;OfaaDEz&;ogSKQKQ9UDFld59+`^En2kgU4W!US#bUKUdFzVPpguGN@ivb zQdp7mu9UCFG)y&*y=qeF2`L#=pYdV(c^q%HuqPY(B|?xBl_fw0B$Ya|YUF|leVC=8 zZrNsBiRcQ@q-Wo4AL~!F+slddTSdox`oyUt!0t1eKT7(6kZ?B_I?X$tQOK zi;V>;?^rE>)Pj<=P#v3I8}9=zRsR4_Fs@l*qT~iHI6TJEqYi69$U!VXqy7F+rE=R! z7Eqy3U6oCD8h7ai>^O(kAQftT&BRo{F7Y)v(phNG=z0g-L%oIjO2GZ z^`^Ol>qewa<5VAm?*Nq$NhFpDcXr+%moN;cLPa=?rsTU<{X-zUut``IRb88_jmv98 zwvBidlq6*(vK#Jn^r)QuvkW^2R^A{{W`6 z`oyJlQ6vx5*w8V4&ID}uR`F88av;zKIs$cW;o6jd{+%U-*;0`#37OJF#MFjo2AU{% zYFIffLScu|t^Acrmn^3tNVR8HWZl+%ga>Mo1w=@}368&&$j~<7xhq z%#oGSlS93DfMVr}QO`GpQ>g9G>H9oVw^-)Ls(eUFNl?(gJ$nWe-ONXKU*$+rrI6tG zg0%yrS(%88#1t-o(7vq(kbj~@dd1A0QpA8y(`M_fA&b%-<&z;E)`0i-M;ArJWJ)Gl zS;#p~tpYtH+gC9Fr9LDxjYBctQC2jHln7WZ6wUyxL_W+22eE~`QF5YO&j-3s0+B%JI<}*Vei%7#vlSAR)cns#K(`5ro}?@P00n8_E1!({kYnQ3|#s`cr;gxABmc$bJc#=lF$7ss$A8Orw z9eCJ1WTdSul_Upl3v=)D?)2=|Ib}3HB3p(rQvzcw$x3FTfg{JqamLZkFt*DpNtReY zlFteKqSHjL;V{X{3xTgRfOth`C1^?fAG|nQkPMv6TP~^49<22dl;Mn3>hsE5y3|Tk zd-R~qsc;Xt#TK2dmui&6iW9F<*GGW1`(9E}G%GmKTXv@q>4%+TDK!=U09X9_$5-{8 z1OzBLf%g9Z$Gd7GK}O&~E)s_-2Qh8A?*pe{gC$BJGF0Ah>xC_;l{BERA*#-jIP8Bk zi1D1$l|%r+%0S!phXHcKVN}GB4{X%(j}c%g73@{V@dU7zWy&W;uLdh$Gmb&ADxut- zypCbf4YzHzNJ29u=-IYC!u&Shm zDP{d&Vm1o@0A3qot2|(ym2Ooca+e`lRk>#@D_tqKV?s3%Ws04?i?B>ek{H!PGf}|U z9y>yQJhXa|LI!Sred!4Pj6F2Vn4FE4Y6~sPf_WT`-(4IEh%4z@@l44=aW0vD({29E zp>2g?v!OWlW5L(TRV@d^rDkDG_b~itDqvCf4e7~`n63@s*ElQT4%$k69QwL%m zx@)B)bGmWL1hlA<$`x^|=wc^1PnQgLWt5aHtXpc)w2`3zWa?d+90)-N`t>WKX?!S0C50-Xeq9w z9zFj6Nc@Bq^joCU{oPM@U8!h61w^!~k7H?q6Rjbceb3l5gZhBqlgE?@yCk?tXUr&g z<^Ivy?DP<4VT9*@i; zS-ls4m90dQ1F)uy!JBW+18y6el?Y8h1+w!00A5T-4mMR>q)dBF*;Xgq)eJAqThRq#CF)FDp07wo&I#Z96^o>9I356)k<1liatE-=sY3P-2tJo4)xaWiRfmao2AhGi z!o{-w%Pnr;jX0+9)*Zy8EQ02li0Q|EkY5oZ@H`^4Kq zf^nS5>IoT?5|EuVBTUCb2gWg6kQ`^FN7fs#?aY%eC{9`erq}aFfVb_y=8OqH{HgiG zR$&I;__+!~Nd-#(01!YadV{OB#eruK62)s>u?m(+4C6)~@+>kbp{bd}~v464k2 zPL=uX5)g$vvgsf@fkJo&0&#L(sUyX(3>EpeNMQc}jSiEQ-XgKshE$WN6$gkrc3yyj z7;UJ~xR=}AyY12F`Vr~{v*KVMg{Sw12gVf5k8r)W)eGuwRFxzAXXT)B->WP*(#+=?&K$gEC4;WYNEvU^@xi zxu&Qph)#eH$A?u-8n6jSpa;Z2)klZeYyf(gUbf&eW*3d6`-XfEgx3b-2&})Y^rRo z4~fpi>K~*Kvsy-7k6+Fpn2U4^65Xj%^OAGr@SVT;bnh80@##ing)J2YFPOMupRp0Q z+pJEN5FN(9nnpu-`YR@BpEV%MBr7Q-Whp+(=t8yVS|1xXvx44@F-4_g*UZf=Gbt{F zx_Q$>#=GugL&O&KGC)xWFO9nC3U_`r&5~TSl9bYw%1*+X56wh4&%#p_f>cL3LTTWYgI#rNq5+LDzS zi6T)Xq=J%3(B=I@ji~y82zPDan%6B;1Au%Dp;bYCNPQZQ-V}{zrmg66(O|Q@>4^ZB zC>pcv+jwNZ@mN-1l(7^qMgxy@AN9&MWPmE7T&9%b6LB@%l%+)=`sNM^ZrzM45j&tm z9E{-wEl>$qEMGzgF`;0~-7PRORI+KyZ2dUx8KP_}QOz|eQ7xPe18L{mc;e#4229ng zAmw5O3ue)k^AP$~hRj`Vn4&_GLVDA&1FT|L+TSW$$r8|3LzOGx<~B42G)q=8ojAD; z;h9fC&;h90GMnvaT-lxyRFc&c=wEPt5i{9(jMBk{CC!|dE$bEmu9fi<--EkH*9y3$ z*`%givFxQF0BTdI^CY{|Uw_Wm9gPT7wPnhr%mk^4NiRXBn|~4XoU3|P30hrQLosq6 zew~j<)0Pw#v&)w-0;Vp_N`lmXh%l+?Zx4ehDcvR53U?=g(h4TXmq-KEx4f%zd-*{O zSRDkPZ!Wt4+YR9vd(gHI7GzDdOek9XArx|yismmzB!sXB*?q(`Vmx5krU{2BPlzgv z&T|5J>S)oNT>h01pX`(sta~7MUx3;E|$F0RI4~r&H$(O9p)% z<8x@6F-bu6b!8fqAz3X`AG>vRqX;8_4)P?i-GM4vka3|P)He)8#8EUBdQ_!#1E#Qyo(u5@lR$Qw{3rEhL5X1@vX_%k@1gS^-PwMH>xoD?}F|v^10Hybs7?3nzc?4@+ zAck-BuWv-jE0$#iB_Y%5=;{DHc4idbv5{aaQdEhENOe7R1RkeBN^87ocui(?l!c8! zQ6rP5W-KXE@tEN3KD#`{0>x7eQXPqN@AyD4cG-v2hFJAzN*I+LUWB9_2sGlNF4{dK zr9c%*2_-okI{Ff57#%1)%Ta?4-5=DgttF6x$d~#GxjH#c!?vs;^2g}L?~;%+=L?~x zgzL$sk4-5^m^6omaQwSef@aGiQb}aLh>*_DQP1FoYgQ#qm0qS&D3+3>OGrox*N1RE)f!eU-j@+N`VYU@j2ccj%-+fDMXYdL{zmsSTxk@%R_C!cguIm*@v~VyYPMykznh^DoFwS zMV#xdrW-FDW+X{mwK**Ln?caS<;6)c)+JoA>QJnblKG!i?gCF8nwv%JJ0;};kN{FM zB}3Zi8=Ye*!&Z@Ro#G`@)mAQ+W(O(c(zWU%=x;@rSyF-&01}7x$qZDToO8=i>cSpp zMMALt3$)A`6+Udd)j@sDYrQ%Yw=tmHxN2OYl>Y$bnn2FAIVwF)y`24lTgJ{o3^^q1 z0pc%Rb}XQk9iE$Xec{Q8wcOh)9N9n`58OdJH1m~<2hj2S!X@c`C@(gk?a1xSDq_rY zJtc zD}5$s*_P=_CxMk&)TIypFR41z>NVqd&~5l`T%>xivoXVxb}gXkySWvG8?M5eG@uZV z6Y49Z7ZOT<@ntR?bc^*nNpe-XVo6GBkokjczhlKAI>B(IWnp_Lln-Zp`@YWpVl^x3 z*D6^#h|HwWZb|K>K5>}iTcT)^xw6*k6+!^jwFJ1P&k(J^J7tkJOG;-sm9eLlD9WMr2hbHl9fN{;N`DKsbIWjOD8bO z6I{cSPZz*(SSfg425LY^*HTXZ07$O&1zceuT3T2cWrD=JIp=}O!!k(DR5BW=&(m6KN2^CZhHaAP8LL80S3WfY>H?lY^bhrg_Dvq^n1GUr zg@Woc3Vv?To9Pu+U=om0Tpl$X4WHg1_9mC>6O;o_&3Zzu>F9_`LS{@k)$Ip9$U6bM z?oCZJ&{rxa^s9IJUCWkI<+~P^YgX2xjiV2ZBK7ErYjw>~1cJzSPf^$H1*Bc}Y1t8w z1&SSrKfGAKeHJB23=dY|ar;&?jW#o{MfhONn=~OpS{qHk;CI#b0uExoN9sZfil3sl z9G|2*`ZBuEfMtY)tt%{bD&sfWtj?|3OBSbSYq~A-5|32C03vD&&f4o3|NnAg$Os*@!!%0iTv zY8_dDbEOPL*_cO*l0tov%afoUaKfoFP(dXkoBT{->Bc1vjEbPC0I=#yFt3ybv))rD zOi0YExvK9#c!hb$d99*!nNvd0mLO_bng`w2LQ&L%Qee&*urde@!94eY_xZ?K$CjRd zD7z3PDQPZAEu?d6NJ?B(v!2^Udkvj=T|t95;6$_58Oft~xC845$#?alXR9SSfi?2p zA;P!Yq?Ro7Q2zj4eBrWXvRddg8XgA?7Gz16m6DLv4Wq&Q6`118MKWyEODQD|`N6B` z-)LvKZj_}VLbcy>*QkXYacxDOVoHTGQNF#P_x;iU83q)_ujFe*?j}vR%N2l zCZ&Y3;XvyD0OkJxsjmD%dv&NymPi4Pt?twD;2rDh$O>Lj>k06RzaH<#gBLB{Wy=W( zV5K?#0NTF}n?v>`Q^HqTr6ouSp)OSHdI9x@J3b^-pi)M?566MlC|Yfb6%`|2^>3s~ zkuhM<5=9(Sw@!i!pwV~QlQ;+5F>1hkM{=PkSE{VctQ_b@l+e5kxR)|hnVuIfL$}fi zPrN~OCZGdeV8b9_i@wonv}KwJLQ-=PL5pD!D~=iKjswQ1KJdkRB~<)P)$&xpgpc4rT2zqi7FFLVndXlmtA{9m4_FA zkeQ20k_S0xbj;d*X$e>TxCJP&SV{1;Ty6HG9E2d?>{aR)GFk>u2uMpa1EX|1H&|%0 zV1%uC)GA0ct$KHWSN!0$AwplPB`ix+ou6uZ;`M_Q&a$Nft13~-KqLf!?xktK0o=VK zKl*snZrmAVmO_dFS1aAca|dI{Nuz;BXt-{PMe?8qa!4HRPq+Z^iD|v2+6HIvr&Od= zKK^jchm$qsfca?P?%aslUF!&9WyG?Alz<+jxD+s#h%ltdWy81ulqyN-^^G24nbK$v z6*btNK2SPsT9gSO zu&-W!h!=F>L6HSY1b`fX$D_9Gub-cm%dn+H%RVXq!o6SN4xjaw`c3qIp3&>llB}c! zjltTRk09P+4cr#Vr6mY*8`&h&uk0g5!?G2TW?>HeMSE4$5($<<9Qd465A{Ev7>q4s zxU12Prf3S8IFzTwkRKIaQ}hk>gLY3x($s;O31U1&*;{kYBXT5^>YJm zf?l9%`$lhVxTemSfD{r#R8Ste)1`Lp8b!YirdklS_?C?dw5vH`uGIb^ahNLI>x;^i zkP^uufiFhmpE$R6-g(OehXtR0{g0ehyRW28RzR0iZrTsjc<42LYGTyOoj}rrha-`< zW5$$?0=2Uc6ip#$3_~Sf>^AEC{{VaUed4LfAZC^VsOFt^6fhRwcFP6k5=N>8{5%>| zHm?V)m$a0mBrh|7=jC6n@K5LfwfZblmFrnAnftd`cfr!unPigeX!|zZAbpzu04hmB zNMov>PThM&JS&besd9=*sR>@nJw;g8n!(f&1}c!VFuH(Bn7-h_iB`0s12Y`dQDEvl zd-L~&o9@p(bj=cpQrSekRIl0Ik(Fb-eK9kPuhKG-uyhaN1E?GB{UUEHIMxV2RI-(7&(!fvqdK@Q)d{sp8LOD@&~?%p zr`n1ZoT_)#Ct!5>Mb6?@ZmA4|;RC*=4B^`stOck+(9uJK)KZ*93(OLS1co0TkS7S^ zbQLWp+ed_*`}H5ZHA5BObR{bx#&V*dM#dHWB3ueevywF@S2`xDsZqbNZx zkX)Tlx(i%3%+kWhX91XP^o7huobw7Llj06(q20P^3^}_{g%Fv6B|g`SN7((NoK=M^ z)6yuEtRD$Y6#Tf}0orU6P~eTIt^9{bFY5v&pv??ghjY}zy^w9iaspN+%%WHVrUHOc zjQwJj?Q_hKv`m(qz?uLbDBts4Aa*9ls0%q0oCXXi{hoyPhkLHuFrrejk5;1fH5}&o zMC87WdUhk9>htA3Aw?_@L+eAQJv4$CPW_iLB3KVGA(g>9m*heF*rsv=5;myt&{TAV zTSd&9GF3Gol2|AwUFw<&9nVP6YAa?Gk!V{fE~J+PhZO0|1jTP9K&7%!QjEh^*KN0h zw>~aHSxPKPaC>Y=JizHUSM^iO^#=eS3xSnirAi;EBtL{`T9AX8bCo#&k>E6c)EjfR zx)}|S8A(VXkX)T<+9I>rQiPBL=F|<%G#_YLwO_z5)rB&jxceU8XresXu9Ph*BnnU+ z8>}l$v#iX>l@pZI13(8(v1blqge}>LV+H_i3PfE&xdx9 z`bfh9WU)6mN|RSra)I*)@wJKl7hma02w_TrwRh}w1FybGHva(X5>f(6YWs#1FZPLU zybhU7GNmQJKjM0g!PBK8Wz%T4T$D^fE7i*r!O|CPR}hr2m4ZTvAd2>`k=@IDlz127 z2SEg}9kD`tR0VUBroO#u{f%TO!qV&st7c~>!BeCdh+ zOdzqYl|Ox{6I~#!K`A1Gf4@5Wj54XMH&9v1uVZb>e?8ElKMbi;R1@JS3>CY6@b^$c zbt8TI^o}n(B2WaxtQ^6J(@vjIbb#4a{c_DmiApRzmxi1Xi%<{}R2&c%U&Z;%Sia|# zOHo*J`bQ0;YY2Et(G1zDTEensE)OSR!}j{Z=rucjB||i@OTUSjKc2o&nSS8~PYGLq z5^6VY+lchtv*ofEFeoIsU_tHohMS(w&{;SLM@`xc3@HR`)E z@+~fw1u9OB!+!8D{`Z$6Xw6Lf06+(E#5UWp6`s{E)t}ZFEk4p*Yvs}$H48>HROCwl z0FWzM`M|?s1S>#DEW#G9tB~1q%UYDMsevS2_Y){XTquI1{{WX)-J>pBog6kwyi|?Jqmm5)?Z5E^?ks!+z!IQC zc)1U|9V5$C*WyxAK|+$vx=(n|#ldKkXi|XAhN}&aJx4pmlU=-VB9sd!vzzO+qVP5d`j-pfoRizrW^4bD5-gfi_I!8j<7Sf+sp>Ds3V4*@o zKJbNiUW(0{W1!T!jXREl8L!;M63%d=o5i?ponmzG;dO)&pk)S80;C;7?e>0QCQZt; zS`@I8>d?hIxZE(SjrP&Ef>Li|C;?J{YIm;?#VYUwD4jm6i=e#tl(nPX7loADNnZbjiP{Fvr*PN3G6!5QLdXI!Xn?VU`P;02~+CFB! zeIg=Vq?Ch^TWH6&+ryeYBrnwyDCR~|3+vXgKRFliXty3b$fcDetR+Pty9e#KA2x+Q zNH=nALGsnf8vsZl$lqNIUi3d=^|GFBRfWD{HZMwSMFEHFP0=Wjz%qOw4an5_MNjrk z>GSQ;=-yzKCCpJk1<J92sLwF(`Bei&L$=Ouhhex2SCC$3-1j|T((glmuAp+ z;xl|BfaQxwC2Wambsb#nNdEv3S@?!pX}qv>t4xYGS=C#PHT zZ`;Z~i=Sl4;Q{xc+v)S^0%l4=^GhP8pz-s5Htz-rS%;%sP;7}x6tZPjidV8n1nfqD zouVvliiFvMjvQrr7U~X!2+$Mg=33CCgq*v9M)TQ@^^D$L1)P)Zl$Cgt9;q~X zP(4A{n2uYWDo{(+3KMgrkbuP}uiI|1s9~&fnaBvu<8K%H9*xCoxqV)Q5rpK-ljA@c z`smu22Zk_`Bu`RO00ypHvHt*4=7xvzlgEuabVC~A#Q2YrV~%%%E4oiiwwlBK&6MNirt?%QgUS-P-r`g7hca+lFq z{G?=3Q9$+TN#m?KO1c%4sp*%*<(Tu<2U%>PNHaonrdg{G5?@McN9`3SUJA-Woryj! zN9`923fPum6EhDD7_ijy=d4+?Brhgqhe@hyzV+DFqLCIUSP2OP=6?zLLh`X1WvR!A zkjfi@zvu4}@{v+&PPwrBr}c^4KSTC{x5^T^UJ}X%gKBdEu=VGfT0%ymkMe)P1MzLF zrdi5Mf+z(`>*e{hR`i1HuKfrIn4}dv%%-~oQtyi!U?Ie}(KAz&k$X&XDUfZ$XFWb)E;1!mcjk6S^+6XwBIKB zz~!t>Nl7FEY06L5ES=&zT%dww9P0zw+|Ya5qJ7DAiElQlk|mq-dYlsElj{N@$-58lk>gJtHByl&Sfr0g)+DN>q~J#;ol^VBDNmnFJ|r=fJX^$4uq_UEeP)MkL z#k<9ANh=4=^)`v}<|NlDkO*c4>idGjZC<*=)Z9#zOC%(zWDr0V17?bsm7zApdcw$3 zfCaYXq|;I#_=s%SLS(gpo7N-zj=6S;%piHV$pkWx5L8*z!9}%V_40<>tjd^%38s#% zU$;m|$F~WVxo)JW5>y;jFBk3$@ed}6Qib)8}M%ydS4cyprR%MYb0ZR{{FVee@BkzPDJ`1@;qF1e& zN|H-yP8^L{>AX?IS5&!0<(6j&-9!HXZiI>frm)9@u|g%PWVHZOnB^J)$bLSg);vVn zLVD&U0EG$-LVoboJriVN`I%IbNF&;C#kxPhfgIeoQf4M$LevV5bs*?=pyz$}gIM8G zS16Flo%(60G2RurL6noKfMs${)!G6lVZ07gXb1`+Dmm5*7d;14SS9IRT*7@!u%eeu z6R2_>xQ=bujLV#qOa&P#7olGO(|viSk*D2=3Q|-^R%C)kx{sU~8H(jD&W94bG|YEM zrB7|%2j16%%$Jk`<bc?Xm!x&cN#_|=_?6;Pd;44 z7Rqvj14U-#oyLcK3$f8&y$I3ped+5;f=MAdsYaxpKYo#N`McSGU=2wpQ@g;czQO%G zluQ-Q9$;pv`UtUZwUw}7TnxXPK?X9cV`=p^ngqE4Lv+)pDwTn&ze-bc3YPnNlQHutHDsq|)tjd61vbHnu= zdb?DExZ|rs5anyRvdarlb!7*V-63wxaSKRLJ{^10NAqaEgfRe{B?y>us0M9V^)bcq zYBI|phv}*54tp$CktZy_5Cnm+_>Q!RE}6+Dh3WC*qzb(Ka!{oK;VC`=s4<<{F|6NN zk%CD9!Jz}5x>J^gd0>ZZM{g^g>Xg;nwx0Oz@xu862qc8@w=gQ=&adt{3vk(n!0YGM zv7p)Pt6COWk{E{E^!#WwDpDphQ!!yfqCwp82kcYwJqc>%(09_VA4cyBR~@?|$|h=d z=f2R{dl8qz$GmY4fP2>SPG?0HSWp@jQ04t8gfdHP<2T^;%P%)IAgo#c*r52 zSK2+qH%?@}W;=1;&qyp(xFv_~S!er!#^iI+zi6%LF3l+^M8WziN)UgTZNk@h^-0Y| zH41b+;65kAshXX1EJr%fLA`VUaCf9KMo?IqHlahP=WPrvWBZ{fUUc|s!pQH0QDPFVm(zF^>=s_C*eDsOq{S-sd_2?Fm>TeI=J)qU| zVpD|%ZTkN3mw_AS=u?wIlcRJ#_|Gwo*0fD2V^HZ*eqxj`xhge_Gc7(40UC`e(G<1iQd~7_3iw+0 zn>ADpK*~r5+T@;^#21D2XcK)}fMHOuJ_m#OxqzBt)$2dD7zY|}=d=vPUXLX%QAtP& za_4jB(`v$vj}lCfR#jcj?0FxX!7ERsVKE|xtPAVq6)dAMja)v0#JTg7Q{W}isDs3ET*Um2bNc2dlYjh@rZLJ@~)ULk> z=HkHfl`Is6I!Hb+*_r8>{JU44eq3|Yr{~7b+6Do?RI*UtxaX%xY{XX?AT1%(Hr$Qj z3kr$Slzm_cNi`p<$ny;8#_Xk`B({!qXxGJaj#o9E^x{q2CsL>*eqowb)#|`Hof-Zx zr)9oW2q1MooWo?>)_|x|k4+z*BW={Doqw|^f*ajVc!8LT^fsl-*pS7Bzq}Q@M76kb zL153Xe%!!Y&Q3|mRJIG1f%q|721DGE7~T`A}H zf(X4b%OtA05I6nAMY_>z6WHXWq=8Z#QNTQr+MaMeRD`Om0U8Qx^&CLC69SH96(kCQ zx%)>pd$n`s1f@hE5TZzKz;xu8Aya+Fb)_i_P#KamdStv;@RBQ`|(#1LfL$wDj=GV%5wm} zv58fMWxM@KtD@n?#AKT?lL{PM0 zbh@&T3bx_4A9zQKOP-<NXu<*u?3~7PUL1Fn#*)d%zLjH+c#)dJ-Gu+6G9) zLP|mw{xvfIN%!a=^07p`q#g9F1NDS!?$F^vjrva=;%&fepJ-Vg6wsO%*yuX6Lu|4c zMy?6hx%_xn!FbsdRqE8}^<)GMl-jJT$$%7RCuq{GR_SUAb}GtP5%^n(bF(92JW7c& z)D*_Sl_-s4g%0sk6((ebq{>K8Q1OkrQL1)-u!@n8h3-@c2?aw>4J)&8-ZQLgZ?q{z6BZFG zOs%P-H&LM@n7=>M5<>kzV>GZR0KQ|UT5ZmQU5q=}a38ElT;=}&a)cy+LPrCr^QfsZO+HaA+gOFK}!^~ zj=g;NjUZ)s_YJInbb{nKeNRrEyF!(h2D)=73bQ2CIp51zee{ceDPt~)Nze}wKW5Nu z(FO)Vm_P||g?OJ({{VQ;)jy&{-$bfDDS@1LLa9xT+U>jn^nd93daXuaAKRDVP$AfK zeIB0Z`acrf{;@Sa5vqG}!$7nI$VOBK%pCRW{MH?b+KTvCOoEw9Wr~c{1Ca2!aC$$R zXg;!eC>gzyMN_c`wB5;qRy!Z8Q)=EK^zw!a`uFu{Kv@794!^r=(az9FB`)IYj!daa z$>Av#Q~NEstzY9A#g_FdK+YXGp1ZlDifcl~qgX9}Uy{`@p~*?Ai7uSn4U230v@Fh$ zwIxA{4RW1nvXnk8*z*(gwacFpNlf+$4N!nQK+N8~HU^#AIlX-t0Ftz*ij^nU^@QH1{P;Cj4 zphi-XuuC}EK>2OjD+Z>({*5Ji;W=sXu*{QI+uV6*dB!2kxk(H%>7rj=&+hF5Z+qo3 zr%N*Gl9y2%hS0ynL|2w93rfgCri=lqPTpN%{SzU@_O!7Hl%AyW{L4|48! zPaR2UM-uu)wy(maWhrJVNoE_jJ^D0f^KG(H*o|vkH0?nvxBml0Qlbu3~@ksHTK7U%PnbA zlhCzE+zq2Zzi(MnY+v**(I>0GY=1ZcM zOtQd`TQE=QXJC1+cifYrY&Xsj2u@&?O)DX30;+98hYX$A!j2)jCr<@afefz-j(`oH zcGA4VzoR?NR)AEQu9OfN#-HN-KN=b_t<+|qp(F(W=o=Le%EQAVVO!xy21x}fOB95c z&iZ!i#0>PKf38HtG7<`sl_fxfl-DwP9qUsCFlE&-N+n1NQV+BZKn9~q*KW~A6kI>l zdeW6QRZxOB9BocwbbSM0Z%J#+rA=BuOCd6q?I}j3VCzAqly`a&xk<1rp(-K44mLf_ zH|Rcb^6mq;%B>*{nqpP$7xqC8U+8*A)^|;%Nl2HKODy3=wdvP^6|o>zs{+9jOtg%u z1HV!>_`gWKd*Tf>Ax9{dpJ=OqH{A39$2f&^<_v)(0to=?)laeF7jFBFN?K-2S#*%W z+M}lZPP)YD`#DXXEb_{dfuCBIV08rYH4#EW5L4?`pysc$pVH6w@`@gjuTNQKm5 z{{Vmt=AE9gm)$sK*Eu0+%n+342Q#=Eab0=R6&Ts>OWBsmDN6QH(Y*fv3}=3kuDQ4Ty&U3I+NPO)sl8n@JCz>#2C1(Q`HL=ZRV~g|RZ4|ITl}{7 zLzLM@6~mI!WvGTzn(IGWCojIz|P?p4Oms7i*M zydA^WYNtvg7Osj`bC7alG_=bA?o?B1~e%$CF&r0O=I zAEdK~Zo&mzmk~_GwqTVJy$ACScD+-y;iYDl5kZ_1TiQ<@I?(+_yI`_OmY)bnqp{Q- z>UQDc<`B81f~BgY0M67SX5tg^-O}@tprPVkWhFFWR*Rf*7TPAO=15x#B}~asp+7_P ziZ|W*q|5*i5(gUaKRARBNf*Jhs!24=rVG?3zskFj6~-`B=Foszn*RVNUE@An@l%Ya zyIw8{mV8cX&ABk0WyP};w^YYS)F)6l=wO_@Fq4pYoVf#^Kgt6EZ%;=yv^3d8B_NVe zuMTcDG#vrscrMjUBICS8YC^=xGS;-rT~wk~mDB}Xmet!}c8zNWS?0`0Oz+l;^y;3Q z#e6uUI5gyhq<(~ZC3+P;rM48;O(E|GOGud2B>>StF26nyb)nnN9N1K)ZS;LAN`kyf zS)xj`1GbI7UnteC3xrBSKvtrnjQYPr0r3*XtidTgbo)VkJ!k&X3z7&v(eXdq&W#RK zyuEHr=vdV2r4R84v!+@lzDa3XQK>3odIYw?_}Zc2uKT}NDb$xcQ}akov*I%`YGaaN z(=`$gUWOf{7m4l4nJmqpI42@lN&$-=e6=U$V2`5ARF$JFw1nk8$P5VR2BUX9VS3l- zdSbB z{w8p)<-T!rNYb#)-z77a01lQ8S=Gz(I2*NI8|RFPTGpaL_CPcp0Ne9{A2JKl*cK)x zSq-AAP<7U{;kFeqr(qk#bETzIR9u?Yl-drWtXZ>PsZ8*u2||rnv3`2_MuBO+WfbN~ z3P0yU?cZ+M7tEzvG|Ioxetzc%R;VCzaseL{m2?f$W(gb#Y%Qq+dX9rhJGKQK=1 z^mQg!O2`399?9E=n6@x1UZ{8{+O&*$ZcVSPTn- zYCt-9c8s>sV+`q1oRTu^IPx(T{)lT5;vqF^^-e-dKj{bRIcNuKv9HyY73C#V4@Dk7 z^)Tar?xp4NB>?X2UX8!!NOm|bRLNn`0CGtb%G(XS(5BTgJC6;6F-3CAkQfu;4fp$0 z!Sg0sKTR2(wCViAb)ybTLY%CDu-NcB!HIS$c~6DhaiQnV9O7(VP7q4cwj>ze_hQbHC|w`Vjg+YP^g+|$0Xh*b1R z2QP)fM+4yua;4@YEqUn|ILca=4`GQ(Qk1|A2ph%pNdT4r2VuEUI{-HWR?;h8GSYxm zn9yi9JOia5Wt~OBf~ejf^?ihC=wj{pV<~V0zVH|NM=Wd0!zJU2(1}@&+o(I8>F|np zVLq^x6cCr(H&-1aI%O-{(Uiq8Lh_`SP~dX{F$AG!%233HF1|-2kIf@!ye6hvNn%^h zGJi3}4fxp$p0s4MLm150?(@U7(faW|%Ui3UaEcOdq#yA`BmG zmWw>Jp-cipje%`EwEPg!WV~fbmoa6t9ZC8>F*cbh(QTcSp()g{Q~Z9B)voeVGAd;g zKu6WS+q6Uf0DQ@o6jWH90n^K@542q-(uNB)F6tB`U^pU>h8r&l5~dWb^PPauzdb~I ziLW4;IY1Ai4Smp=bOA15mPrei0S99L00^&)rcDf|qZJS}tO{Mg_bDnlz!aw-b@~lp zrYn|^g1VfQW2HAd9`Ga4t>{*QrMdAiC7-ky#0g4)Nd!BB2K+)MeT6YeGs=Q85mzk4 ze4Iw3W4;oim(SHLzRw5Wn40AS7^lf0B-D_Ha0G|mWy7i0J5P_I1l66TnVqxCM zr+0cjn>7krW~l`~q01B21Kqfab(MJ+nMA974+TG1)G)>S>gHr#h3U^9I9>FQZ9)*0 zDV(n;YM&#>*RV02+9u-ZZTF3;=LRwmrtN#G0*`HGnVpM__A9L^)63-t@I}cx*39*YWDgK3XKnj)=Fu;q*&d(}u$3<{&cD>vp{dhGb3inQ z^~e(yRc`5S2F9>)?u)kyH+3Ia0#AT|18M-JUvPQSGQ4Ajgo{FE zp=#BZ0i$XQYD0htpa7VwbK@yyZb3W501oDfJ16T5SB1V?6*!o}jvqHi)AO`W%N3Yj z^n;AOT4g8%6sbu{+N|s!^Jn5CzHEq0`9&y7rOg92>~qoR$y}G z2`Q){iK>X!mF*QU<>Ng9&KEE#a>z`^sH*~^&K>n{hJ%-vKJj?^er4<62@dSXu!wG3 z;#evx6?O-6--sJ4*=KbIQb^aYksEe}yjM6%1!NL+I_vvKXVWugBex++Neb}s&qswE zNqgi_ahWO&lvhnCck2SveYgrC+-aa4p_>C(1)#BQS-5S_?GfD=$Z;LdnL$b-T(G35 z?MKj^D)IChYzdntT2Me4LpN>UEg7 zL(smBpm(bdV3Xo)GyeKrol2IZs06hILGSrkw5#59;xd9kAhAX=haVZVAk< zGI=093r3e?#qtz#O8}iqFg=HFIK3FoW?YQ5m5(RXkIkUf+kBKD02q?`)b#QYdi=Yk z&qL+Nq56Sh-Frq;jMFwu#N{lF0?lf5C%i7W_Fnot%)cfRn=p2wxZ5Copm|Y$3kwT(!_;D^K}o4=1z|=~`an3|Uaf;Y^O zuSysuoJK8AHeFPJ2|85q-;KT{&g{d98hM48KQ z&*4xW$f6h!Q+?QMXUbBEmE^;q_{|J2iV3de&h8`m6}R* zWaiX>KgVwTG;aQku3YwHO_}0WP+954dclUw?y)ja8Kw-X)to7ZT>hyTR{A*qmfgbca*vT6OopyZXiqobsP3Nq45yQ+%mL9pHDP%b-n?5|tFJsJZ_D zD(rSW=+QFvFvo7is1r5tl`+-pu=)8#yhemfNXkg2qfXuQjH4CKnId~l1yaJYg``pY z=ynb?hbdQ+p*fu(k>)rM%|`IXDM2YNR?L*_cBx_k+zr^qgM(&-$w4fjYDWiJS8ZMt zu^tkZsYQMiok1Fs!Lx7D2jB~8rh972nRLpU0x7pI)(UN0*`=u}re!JW+6sL4jPDd( zQ)CZWE7)R42Ce#sejm2*)hR?Pfwf?D@pnyHNKpWQNC49*zQi7}w zyf=C{#egH#S1?&2#Zy5?`8hD5)1Rd~H1AZk$N^*}PMQKzLr|In!?-$bDr)3Eh-A8bu4U2+ElyD<}a<4%)FT<-dP~X~&<$O4OuZ zNS!83#Iasb80=VY@rdtRZbW7vleA{oa?>(SWD)`eQ^%KBJ$+jz&5{JPko?e;?^dJx z`&J|l*)4+5g$$%PAf}p*+dzw=`Vx>5q!6b$Xh3e;GjGf&VVruqB+@1Y6dgknQbzmG z>D`&$lj2`V7J0+Ka?Dr$G_&VBgGwpdgb2@fp@t>jsSdQ%lIm}e>Dn(`_v+@UvH*Yx zaj8@%-B=3JzY_-{j$18jMvWg2U1CZSg(>EJe~7Em5b?aA5?ELD6TAWRPkBo-mFq}w zC>g*>a0wl254i5)6J@C>_LW*zqNC#(Rusc#RiG;>&?}!Y_K$b3L9jb%3eeW^J_xhV zmK9K^IaD?qxUC3!Gw9U<1Yt}#5+(_b5QCLG(Cew8snzt+;igTg8AV(gw(u6kcmz*c zR0%}hj*v#=ZQKtyb`@B+-IB@*P(vDp5nsUrF0q+PXYjCp^7luV>IyStP;vf9 z!Rs8qRzR5G5#lFzXsLJ2%7CN*N>cCsRQEi7pMDAGNKpZeIVbk%24O5>j3F*`vY?cd zq%-a1r9@{oZ$%1lB(i}uQR-{_L-p%5Qly3_ATFfq1u)I;l?6*-nTQ*<(9Df){{W}C zI;aJxmm3Ehm<@@rff7u#AO$$0STF{uayMpuV`(LM>0==Gl5Hi?!pRHUC&vg&P)k3n5F`4bw>6~>lni3X`qqJjCILFqvZSl;21v=lOO zWd(p>6}WxFQ@mm}i?|_WNl;333}^=KcYd(_PKE8Ys`isTlPyD9kI)6xy6voT?~w0qqu`>(oM}^L8&OSZejq{h;K#5J)K} zz#5=x{{T_-k8g`UWCSFDO#sjl$^D=p+#zx)NLs8Q8lLiah}V|C=|Q!#JMk&05v)l1HE`L<-7*W zuM_*?d*1d!Nh+yb7#1g(Qm`Uw=BiLya*t=0HEsdWQ;5?f^grsoo605%*Bae^{pIi0Njp*ee~<5<4ROhF}0@^(cT#>cM@|F zkO%>~54ecs$5lCDdkJ2Q0m?#BmtuFLo|W06?j)YPp-4e5uPN*|c%g`};g)mDG!-HI zC0o;^RJCH#q-9fpd^CFO{{Uz=={NSV=*I9f0*u5Z0ZLLx0q7|G`uB^MrHIQXE37`B z;y-&*rrWpIv4WMh~J*zL2LxEFclgJVyV=&(arrk zRU!3!qJ;DxNOz-tMaTrCnNIW_Tr-omN<#u~FII%+O-(xYFh2(0$ek@k)0Grc23R$4 zq0``dh+fB-)Oxk(GWe3B7^g~g)30#=G}@DxElNrW%i((bBN)9f%-IN3(x2_QAOh|+ z{AyEe0}c|#%e6}(DSsAHp|Ki<+;SsAO~!pmLcq!fxSVwb9h zp_-mfDXbp4Js=>gF>moFM>`nL=5xUT>bfiSv~pAgX3arv|r zw%KK<0t=_ypm~d&XR<1KNxR2}Vm05O?YA&b(d~g{2r5xZ32yyJ;tOBbAu`0n;xusD zq-nPr(c=CYyz{3(8iA?q8dF0K4f-N_Q^QJHvonf-&g6~BeL!FvgUn|(Z%R`vgl9_q zSRpD=1mxNKcB`=7K8wWja-(O|@PB&$01%&T!l<5wGbb`j(^nOV%6fwYao=S

k@CC5>N{|8S;%A@}d>wq&WeI3U}X@-lKQ{gfRg^bvmB`*p5DeIaR)5W`+Kh zy*CG+q&a1SPnM}?hX6SSq8D#`9VU1RRJ5d!K;#dj>fNB-y4I!3B^sq8Fw`9?dc_Nx z_VtJXsvXZf0r+9l3H1q5B@!((FZc zBbdK3{RPrU;6B=W-~=!G#c2Q)kU(IbJBYc3@5!rC%v~a{^X~+)UI3Rj`-yP0rmAop z_JwRWW1S_+oUk-{0TY%}JYE-oNN^l#X{1GIv@U8+TBMH^Skr;?j}dr9FAY} zc(ZVn1?F(ZpPlIy5{B(r1Oj|pg=*iP_+S$TRns$uuA`ReNCACbNtU45PGTLsqG?Yi z+AqqqEYx^kLHWEm053~{Iaa)-C92h=Qo`#%1i5lRtqW{AMu%yf0uqqLN7~FbgvpmS zS-Ha$lT@`Ik;6mKyDsQj$x#_V(%T$Q zy&_w$5+Z8cu`B`Lk-0h(+2H-HQrMJ~zbwt#G~G&_?wLg(tOrRfPO2OePlQ%Y@`bt* zhf7mo(VK`_y{{RQ6cOPrd?#VuzA$c0%w)@`cRGrta-jfK)?e*wgU)qb;`JBuh-il3bE}j)UnL^5OEj zxp582Yf_4TQLTS&L=wZd#(9fE)kkjq_#o4V@_|?q%o8eN!kJE6r$8VTm1;B2QJCtX z_2_wu#MZBWSW0DuOCS`Q@ZL}&>9u;*g^gb?Qg?nw5#^0jN3>pA(^0V@o2Vm49b>CK zv`A!umCKcIH}`%TMw9vu=KV~hXAxl!{Mln2mby);J|PS4-lsWjRBOjhj}e7ACsgP;)~BH9 z7iP;!lFIPx=?~cZ;e55Dl}u9IBih%$XmhhpOr#(=%mrL(@CxO0k(D4FGjHY7cqeJI z1qWKmQJ@rRMw8KM#h&mJNp%*`mY{`fNow_D#0d;YdN){-$#?`lQ{e^bDEs@gfw$29 zp@~<8CD?p~Dh&RQ=Pqh9lE5Da-nzdKM)ZZwL%K*x9Rm+{h zinjbgGI0Qw0)S~wu|AIyVf&-|gob369$jI^*LpUADS8k$>&!1*vjRecr#KWzrfzG@ zb!nUw3Ycm6UV1=PddlHW6#D`9>jka$vd%KIGZR;g;=z5)6IfL=?qQ5 z#rh!2T)InhIYD70}fMv|1TID}TP_*1imJ54HqmAG4yhALT+=)O;U`QE2)RFu^ ztyvP%9Gyncw|U^nQ^g)pev3Ie=Y#t;a}MdPlQi#K~AL0M#wU zHSMH1+=tdVXHcL$B0E*8NF{6(<3cp&<+Lr~E9FAcvIl`c0Fr4!YMz80qJ0jREq5Ao zkZ1)-?a1aB>=(ci^aL?T*!ONA1|&y`N~%(=iTOtelDw&6(A#9 zxr{I5B?OOY1n*T28*XVs9pbBMidi%?X8fdOc8j@XUNWF_dpfx^eppcZ;M3zYUkTyl zuF{FaE@B+G8IX8>y>yMb*C#RtY|dO3p&WbTD#Lb9>6Qx1m5?9wkECb^5R&IOJ-6=^ zbf0U&b90p`XDM$B>f3kO+P>feT=>;OVU(njl#dN61L$e)ej%dzwfex}M_q&pn_*C_ zv?WW*XziRa+|k8Y5*+u4vgu4O;yhTHi^>8?$>9JT=aQz=NImHG`Ano`T?)@{B6j*k zoCAlGB44hYz^K%z&3GV+Hjhp#1}(Q-soWqcu92^9Ad--E_lxBRb+%$tm$wH<$$$D! zDO!?UNJ@@U#fH@+RQ$Z-T>k**+RmhsORHLupy|wIn3m*}l`RPmn6VGx0=_2L?M`63 zq6=W`Z!*vqGFSjrH4UL>9P!=&dPK$(CHPh1PUM1Eo(D)?!d{T&*+l6@L_~+p+VxzPqwaKK)?ak z9%a~6GOmQ05UK{?eEgz@60@dQE}#O7r2|Lh`e|P9!fyankg)DpAMw?XP+@TOhO2Bq zPz15a=P7183UBB3h%oLnN(Nd0rBN@w#6RGIcis>xOJ)NykBjvrYf;x|&hd5&64{hg za+8~YA3!(c#btuDOLea~C&U=KfgtJh-jNmy!pXJG6SBG`sOEnUI`Sz%BNDOtQZmLs zRG{o0r_Jk5BYgB@iv3-U)|Xm~(?ePh&aqjY)akzVnlj~0U&Fy|fQ(ld-CnMCax>5| zXHpw}yhhHcjta0E$&HNMl9-ZL zl`6`_ok(sshg&8U2z8Y{ag=~5PmzTiw;jkxMAl+bGMuEj(xIF;>nBQ*)Pk$WQ>`l! zq$B}M?ioG7X61|3<23+dtUQ@u%uZ%{W;M;zkqDOi!gZZP)-poTnK?_6I`Dc%`D(yM zYC=|^0$7(U z+#fLccGN9sOs-Ti4@LldG%*ota> z(PtFfa-u@A=1z(L)KKLFIHtv%hZNQ_TuFS*&O!(TpBe!v$^I>%=%NqK7uY=Cn8r<- zQiQt9%t6X4oVKTNU(F&brt6qx35zLGmX}d#q#diqugzEoguE|?X4)2|O;4*b{gk_c zMFP5lDi7U`uOKNlb16&-8tSU?@I40*7qXO#6`I45XGJO1Fqcw^*|{a3C;=jX4F;EX zV_6DMtd}qZkl7M<8y>NM`a{6eXQY(OaGHebLuy95hv?Bu08L6I1caIvXLYRpqM}#~ z#IOLiR_O-kL+!KQev#cT`m_zOg-j`NuG2KFODW280{VC92PRl#qF#B77CjY$d)m8Vkmch|}YT)`;? z64FnF$k0}ToE|>WV*0w&nPEsS)IA8*xox#`7OpF4n4by>qh|rCH#nHaJm4kci2Y2$nbSfP*`KDGk9A-aj8rFo zZd#UWRVdJQ=cFV1WZ0%e+bVzoa}8N!5iKKz{{UZ%I(j?2LZqmvSxd1W=A*d>;NMu( zZu>Nuz7?|6q7av7VXN?aMeI?7tf&Z30H}K)FsKbyVfTlj0z_(6Q9+-^4yJuT0M6 zy;ChpN~N5kL6*e!dTF&O8WtD4gyKj`B>G?QD3m7 z>;Qi)z9Il#Sfj$fTAZM9R{FcND{$o2n`6JdWVI;@-Id-UvEBLR2XajbI(Pbc!q1~5 z%vuyu3Q*%L#rQ$yg^dQMM{bbkWS%9yVjir$06RA^a*HrK8(osh72(WM4qU;;VY%CC zZQe3m8--LRC1_;0E|Wl&0thTaP`>P3 z}O6BHKiSY{M6akXMK~qwDLz2R_9&9)PDJ3Z0 zwfn-xBDdRCfjjd?sqD|JBw-22OUef> zazJfrO#s@P3Js~NE&l*uT%?eMm9~JL&tC5l#Okglwk~qK2vJHy13&=fzi6>^V8oP# zl=zyYoqLF0y|FyuB49|$MHWvdWRVOwUe=*!N>o`)?rKYoA?Z<(aG?lMETx3dJrltk zHneKA4Z-)JWujmpf@)8+385Wz6sKrd{{Xp_ERwX6osD+eq)T^R>YDQw0yjVhQOVN1 zIzgmwpFAY9kaT@1^$}M05|UF;r74L{wEPZ4b!3<8hl-^8C!U|hVIvey7Im4WAge%? zYTY>Jt5zPKG)r}fCXJ}@f!AiGBOS!H8TNI9DPGYDN(n6ez3##tY#x>5FmQ8$zsdk# zSh8B?C3GaH0{aKsZluDhlNB){CYfYULbT!EqJEJ}1I(O%wwWHHTLw`sSKT{r+L5bY zc2v#*IlLqS2>KW`aaa@T$Q78Pr)`i@YCKO)oWM+Zh^EZ5daSSF9yJmQS+p7*E9KS~D~2JBF9oJdxsvLf zqv;6PCkrZM$%~%4sgo=<0MwN|cnwZok)z#Ldr6ii4CDZK8V!fkZ=iq|l%pVKpegYa ztu1_(`w}HH!c?znhpz+T@LKk~6cCb-R2rab z(W5TDFx=U*eP(>6LsOz#^rxuY{{RWko$IAY*lbowYf7Du9Xy~tveS})00GsiVN=oU z!zpJniuvo+^oHD3l&3akCb_zB(NmW3?5Llu3zSJL1#7v5JKE@3253`d9u(~V0PHwE zT_8%aoPa>}v=t##1pak~o4)P!xk*=rRbYA2D|I-}Y?tiWju(`z$WRnWPQgD@x#EB~ z-M3-_3#H1m2VW!c@{cdei3uR3ETC9&Uzj0&+zOP5U^4DU+rUNdOY=cl$<*cin^9 zBpxgISQBAN@Uo>d(J@G<_9h1gt_UM>Ub{m?j9e0E-e>rQ-$@smNtThj0N(x7$$I1%9yxuqX=eUyRC_}QM?bQZ9kZJzV8&tmK3H+QascK-zr8oeO`;Q z6$wK!1t=WRhMn2rZt=IGhBY*%n|Z+7 zvk^?3<1c|jQ>RUL+L2D^^i`ad6o*R}G;`bQq&8moAf`}IIa-u0uKrOxeplMAI=ig% z5QOAl`i9fDc&Uu8bZ;8A6V#2HX?J z+8HqA#DrOrR7n9e2Ul;;f4kY3evC-*7h$VwsDQmOoHV)8ZBrz#G6fmxlEKQ7cp%Vf zPnZI#L=v72OFEGX#pd zfi)`!QhMo4HPR8`7WlYkDRUK4rglhhdKe#eOjCwOv+bw@{l4$FCvSXx4P;ETCqJ-A zJr8JHpLt95Yiyy#XvL2#G&(m}n~Kt|5Wlh#m1QKBsrht1TSJYK$11ZFkm1~l>$7en z1H9(TO|(l?!X1c1>Q03%=6Iv+8g+`|SV{_3rdFe0A~_v3ct7Z=@$AWY6ah+9;H62_ zeB(64IBsm@22zSZ%moQi?Xh$6=^E{?0I6Zz2Oe;}g)9q@rHP~{IU|M|4?PP5=Ml?? z$V-Hr4Ufc$E0;UKpr#;~0CV%zqi(tHD!P%N?PM8B`5W#;!oq?G-nVLv_2(!zdY+HC0qYRJN_pT~6-85wT?H zmT>abm?-&$cIV{})*IJ6u&|d-S^>X)u~Q2nGbSl&O%ezIhe#%x9mPOBV#$D5y(Zcd zYY3hcPG17Zp#{7>^d+@nr37eS{T&-{OvRvhbWx!Xup7Hqt3z$;gQU!~qdG%{5|g;i zsOH}`M&<};GtXRnj*FGMSsIYlcVzkrcMo)06W7qegL3H550 z#88kPypD%&<~BQY)U8FswFfV|#HqTa%m>1RngtLlTl9`PpS)kg^fivzZiT2VNudmyeeP*k7rKM5R@Nl zO#HiikJ>r;aH^Ekgs;R+_6Tw8^S8nnuY5LV0+k8@uhub1wq@Cr7Jyv%Pfs_~-b8h1 z^zmy*td*?gDJcL1wvJTYnYD98F^xF#&uKrL24+0DNp>FD+nRoSV8x37n-T#=b1_v? zvwow;0lrWJ(9fksEhQ6WJkjfBpx+$g!oA!{g6 z46*u@le_9EPYXMpH5o^xTY^QI63nS(MI$L75&$gf(B<9DDcR%c`{w6Cn34~LL&eA= z<{%~Wa>=8B#N`QAr?<@P1H!y?>)hu=$p_>O?;@4~|SSvyim!khR>Tu#qF7h0{^G#!jXQGVo$Iqg;^o?=r~9GOfJ#8z>`ZD{%H>EYmKk0r z%r&RbXguQm&tn9H%t)x9>9?NoSB~_Var15iz9-65*=Pl6^_4@uQcZk=x$e=nSa3AO zDpbQPEUCc=IY6eB)NFi<2y3@`Bansq=}7`&fXpA-^3lgS!CSu)AS9u^njMcCbFpq< z!~BZ=HeAGJ-;3pX&GSVg%Ng(Q>{-jW9?p#pxAwJLO;7^(B0rhG^hH87p{`&nwyY#7A zz4Lb_dJv?gCAw9$Z+}A-(R>x8_JcroByml10&M<}QvZdK3DM?;hXWot*kxinW z7sku8OkJI84i}XwGzuKII~Lx%!=3qiB`Zw9FUKqqn1(q|v=Xm32c8<3Z=|aTMC46L zD@vvXvbAl}ld&Gq1=!G0fX}WqUf)RK5$mOZ0#-oIMyUYw=j+-oSyF{b0Dv-z^ZP(6 zw)vJMN-0125{OT7(0 zo_2y5KNTj{rG>Cc0CA&!%}09kNGB%|*(H?(Fd+G!UKKTYSZE~+bDJ?Gw@EvWo5J1` zx#Y;s_3=CN-@iy~n}`uP6F;Y_@|358N{)x1jH>Ux)gYO6gs2sr%Ypv@soS+6D$wtV zGE{|t=BB2o50Qb|^{A+o43@YT+hW3h|V?<6Hz zLC^-+54hq#W2p+CBQ%9NwSGp=S{;v0bzfUyt=FhXC4iv-?HJAd=>sL8Ad*zD#f=lzC&U=B zZmC7iT671WE|Hqgx+b8K2%MtqvKe5KJafTg0r%Sj@%qZrni& z9k3`VKrqxO@$@jiWjTVX#63^e7VaEMfVImjE>uEO%DQqlrqJ(XeZMZjGFiyM##i6G zAj$M(nT2SWpeB!Df8q$#@7xWE*F$FR#j|Qaa21ufIymMTuNx}zden~)U|GCG>F(_l z00sw~ySRFZvjoIv@VlwEq0oa??bd{`t}BsgLYFKOmLoXRFw||M)KJty{l4y>ITKK& zBQOq>@6gsSdJDs-GAG$*04E1hP|Q3|#AxI=C!NO7%umt2GD_3xf(R@Jh#ffwmFRjz z`1c7dDon{PW=iq;vRNt&`w?D_9y4pIeWuSoe6)alQiBpkWhB(G49!+?=4jf+9k&U{ z&UZ_(+>J*=NKmTY3BQGnp(PY=3>DG`=oy89^ZAKF>qHdd8J;vCN5@CH#E;X$g3eSj|les??-a3O6O-fiz|e zrl2|zqxbhjn4b!gePorXD@iJJP^f>28WGUa9j;5ZTEGfQ9U+qXhtvbchAzyzfMA*( z9M!@3K_In<;yYx?nM%~BOHdm0N_w8--$>l9TN0&92v`|{K`Gj`*M9#1I8C>DHkPF= zl~AC%nr2DNAD|!>hWkzQCKQ$dKmkLe4Y?W!Al2)_?9LLc2I*~k@eB8N_w4~2C4d?c z#52gg7!aTaQ1v>Wq$|t35iZgvH?(|79kme5XC5Ib3{*TkY5AwZ74C}nDrFdSCMjDg3{B2=>KvlZzma~ya zaP8OM8MY<7lVzR=Bm+QLnvJQr`|%oN>ko^@vH+@^al`#|g=^aDl{RW}Wthn%xS%KW zj{Dbcu*MQ^FG+>6lIkXvRwHR5T;bKpc=mI5e=MUE8vx)T5Fq7bsQ3U?YY_;FwN?@X$f*E_$vr= zY++W=ijb98q1YbK>5pvFB{!>LfGT$c#TQ07_Clf$v=z4pm?8fFZAzo08n`rZ+-Tk7 zI>R`@XhHD>0&=8qt=RLdHrcKI2dF3K1fs$Fn)LN(SzohITj|twfp})nxvNsbK?x)z zC{&G=#|63$(7lZDe7RDR11eg@UlK2TQdzl@~h2W=jq>TAQ3=M`xozp&i3 zkfIKByOUQZemM+25Wj3fr3D2krK~at_=bjy!t~6}pgMGbevxd2R(#2C4M%rA2gm;>YQ)+|_NDsuCLsG!j#(U_2F*NCrx@X7H^o>I2}gny3*ue?>GPrI)fIcb+D z)0%Bfc;84{1twm;i_>VzN|bYO~;}3I5qpQrLDb2Wo9bh^=_F0d-Xy z!`hBM&@C9P9>{r(*l`Xa#DLq6drFsST+7*Ss{)d{u;H@|y=jKBh) z(#{Cdu*Y}eL=l-L?Sh_lf7r zCczse;$?&+g#vnN<5Lk^?B-;X{{Y^eJN5X+4Q0hsma>E_B}oBHTsEvuq$S4@yWvai zN{|q?%|}vn&AzPT$|r}Ca~5Gg3F29nYe|n1sSFTLVuBHICfOFmtNV{Fs0ZRrisr{o;B4MQ&64gCE&3$5Yay_HheMBsJO25UX zSSXj2G3Nd)CdKF}||ppIeg_`d|Ow9KUnf!Gb5_KG+j;SywtvWucwP+Yg7 zYp)<4o?}QCkF7?~!3hqQDo89;gVScNq=V7{XeEmBMWlraq$!e9r9HZJA zHz%IEMO-~FEkuQq5^KPJq+YyivnI#$ zb@%G3uVm9&5_Eo_m4*BXe5G^N3RtA(MN2xI5tLD$tmeCJNlCibJtQb*KqQl}+u-p= z!Eq*3<1^Wy%ep}n(|FtI2fRmzQ$A9&D5Ys)Hg@QKkcU3_^$BXJ+yTkrf-d80)^JE$ z6@UxOO)`&orh$hdkg<2+rKu>L>m4eoO&EP&=kJK$qg=VIrAjI}WvFO%eJM^Kc%I#N zOj5i>o$5XwaGi5sDMh7HgVwb!EB++#cHqXTVzh!lUQ>?^(MsvL)K!=9*ST7rgv15v^3b?2R;DfZTw1B9l5&haKDy;GSCphCPY*YHJp zC+shNnPq7q^CX2njA^${BCVdz#Dp*j^6~?3lrG%YulJWNoV$mpE%t(v2$rQ1O0$3s zeUc8t&ZZKPNV0nA;m3$q`8|I$hKsh@>hl8iqYci@+v^u@doTnVCFoVtzuGEaHaTft zXC>}**u6pAe*`$Sjb^Dyl{pEaO+aQRcj_tK;9)}7AT3GCNn#nDv~P3)!C0}v zWhjuKTh*8SEDDQ(TC;qkdAop{mC~P9l!WEV8{#~?Ey>mtRp^0bvZ6$c;V!dAH5G1$ z=?s=Doum?>Rgg+`4cPms1n;Y{AxKI^2B3|42#+3KKBWm$K7%May9OTm#mItACc>$d zgE1rfV7W?lLx2FA)SNN5l}jgck_&z%XzYpl)6Ly zuYP0SN<`Xmrd_kunD4m!_(b=u@0y?xNy@`wHLOc<-TtvTkf7WD0I})F)O3sTZuKc5 zTG=aeK;FqTuKxgN${qFf_g=3=I1CbUcTYQIf}S$YErc%xFEh>yaB$JZ*V0QISE-A4cmGt#jrkQ|<&I;&PhgRL;?GimRHBe-`Y`JcST#muk5~?3tpm|5y?Kng{-LZB45SnQ z5vq>vKS=Mrbb>yOZL?+B(nV55Q}yk{XSvH4ooTw+eHmq0i4PyHEBq|FOOVc<{{To` z#JB2Zg7jDo(OtW50&pd?rfzLjrd^wp4)X5?Oluc~tuoi83ua5|HzEH3R~}K9`b8lV z(#6oA2qa~4qoZ^nzmd?!fr-da1h6TmdVK!TkYbBrpFT=;N=-=A4!Z{}(UKec2una>ZAa}ZUc^+ePT>OhDy++l>(J$IP&SV zI82WU-|oEIJrdP!KbYFA*o_lqX9qBBgdLla-&j+@R}`B*bQF@c3aLV%a{5<+6>L^w zg(yFTM7QTLSOtybGch0m&(aUrY!ap?`;`iD-7u4SVdA9%3yu%x4;RrUY88-pWw55; znthx20I(79M6_MgRL-d+um#CW?c0sumJqTeuh$A^-)cP=#JKYA3Y4tXP&FsuOa5~O zJsjOY*}{}a-7TT-6AWhem;ekwOHiHTHuRN$nK=O&sO4aW0PKFzq2fC`48%AZcZ8ML z1*bH*hy^4a%@0ms9TDztOGuEkf~HBPv@i4?=+ka&Yyy%&1uCdkp}zkBoJY+blf4a2 zvxUq>P!Fe$i6GrVMJ#SnPLhevn>96Gf%ct>|`P%jzQ$qS!Y6MEP0sS98gN zQx}!>Cs#TF`LrwCxM>!3lotU-fa5^vZH}+ac7mA5Op__fiqKmC%0M;0D#v{fUVn2H zKShF=YVdVt%u5Xo18@i7hClgqe~-p9OOn(Ul0ot5Pn;G10D+tSW(%c4=G~c3hJfl0 z-p(%(j)&pp=MDCYwJHPv0S{K!sNKbB36?BGWjmC+l!w>f2!?N4oMc!5%WKDI z&FoXkD$Y_X&u`u|`B%tNXhV-_>j~JN;ceKcI|{h#!^7p==tAV%aazLkVO?kj!|Mjq zcdX0Il9DybMMyBcC4L|PtAM0dgP)XWb~&Lb9vsR(7T6EGE+iAUY=qClDA3CnAD8{ z6|WKPixEvg3FNRZ&pq@!MHHx^MF3Er8v;sn8#{653>SsUN(&DV58L;M0&^v0LP;)n z)93kK;w4>)3uiS>+m6t+h^~eDq#&#UKrZzV9`8)#f|n|*8J|dSR);D?w4Ce8$*2Xk zjQ;z*(Kc$Fcpcp7+wzf4{=S5?y3|UYn`ZsL9x32#G^xuATZvCZjTQdH{I>T}e(;T{ zxRaFnw6JGxH*k1p13vF1B}k&SEakg!TS|8tjTZD;BuZd801f$b`Lt$t1|S7Q6tgaY z_I*qjCBwvbjI~i(Wn!k^?0$V=+QDrKKxH{@(`TVGf=NCg&NQbycZn@mlM>z# zD*d&1RucXuv4$EFqRjdpdOUL`*eNaiLZy$vyrV7jgN!Ev7bOK=APM2<;4!C2^5nke zNp+|N%vysQl!3dRMJUHtc1>5Qt7zA?%yPPYqIDy}2TrhuiR`5$DELZ$R?6E?I{8M6 zhc7Q!kfL3-Is$bA>j`-FRK+NvNF_uPoV81B{Kav^EnRn7X30){wEqBZ@Eun^+`O{GJNT{h4 zVj{)yh!dB*f|r&Ki$Q^&q3&RImZ z1Uf+=4mf=xweccgnw3o|3DJlY>+XNS9%6Zk$mk@u0;=MXHk&e^ea|G7Od~lpW8?rF za}!TV2{SV0EtG?yBSksT!Ku<2NCYu`4(V3ELLtUo(<9aTws1jk)aYY1Za#Ip@G!JZ zQ-YFCX@rMK{{T{ZZ%3qPQZQn`_OmBXR{Lq;XJQ6`?+%jgM9B=DH+|vD2VvBvP@18u zl#T~jbB5lE^JJDkMk^yRBxMGwp>7%5hb>bSF?@-#<)oz{#+7vz9Blgk05PiL393>V z9?+}s9Ozw)Sy3ydVNl~xI6HgbvnZUjKEvrobB|a~e`bQ62Y<9S-L~&u znTBHMk)Q$Vu=>V(gDwL(X$3A6wo_1#KD>zf3SXk>NK2NK>17nvPoM*m+rhf0%(#OF zBu`3`r%6yV5<_Hd->dG;q2R$8x3tydJJ zN*~*GDYX>`T5t~V>xQgS#F9Wj95Z-^j7aPW9b+Z7dQnQuv_4eolA}bw`6%ho7;~46 zkupdLDaeNlQct#_!w-F8MG3~ZgDEA+QZ*II$9|x65nk`X%C#U)Qq-4lkbRcq3Kxv_ z*?Y{HYXIiR7=^DoF_{(GDDw$k$FHTe}7(&Y-0a?lpW>RXxGm$TwJRz&9wCl@fC- zI#pVwwE+8^#CMgHc$T*Ti6raTbcqESIH*oZGiU~7B|C<2=fCd?m)-FzC{a^qEbZcL zwA+YdzHPFAm}P+3KvCVPPQ~Lf^p9gyuTwHeB3V!?Cb>EdXm>3^#-g~y+S+i%gqcEc zQjn0y4l1VI_=g)hGj{@{@3Vg}yL96jYO~1oip!aqEki)Z&9?q|IMz!{@gMDPyu`XoUUY>QdG18q@bxKRep`i zb?V|ikHywhPe@AAl9UqpsseZNEwk&=9k-3d&fZ|WW9y_LKxU&TD@Pn~&~N_aDF-NK z+ehxvlHi-}T(zwsAqXlZB_xC>S5%*6L8@GW8oLb{R+KPaWR!}AF6TlI1URHls@ntP6(Xpe6Gh=)Hm}RZQY6zrFcI`0Y_F5mSS8bGE$r<5Sww@%1G)SQHcvHomk3`g;SfYXcqKB7@7;en9Oqc6b zKuJI)_2lX0v}-6_w7ZZ)25{}nJk@C?=DP=~63`A@xkJ;6*L~m>>w;FKl+Kt`l#d7$ zW44ueY`-sXTqSJf!)$z^W^JZw78HCyk*TLrX}8uGNq1p&87d1wNB{t(8j;ZL=KI86 ziI$~JARMyg(TVYJPi_akuwu_+pJ__c7NpB|@*9t!XdQIn<;j}CB#P#k?94YEesLdR zsoLZq9!D(`3$zgQrh|ABbl+(xVgPO4zUZVeepHZwsUgi&!{qeq)-=!{t4dgqkWE1( zZ>PEgO}|kpiw^F<)7?sRj&R-}3qp#hGmsxw`qxK__`>T%#Iq9OoWCNGJgv@-0pWy5 zRP!{0m=_0aJR!Lp#+@eGm5Q=WNqr9$kD4x9=4GC0rKuA=ST3oD$%1IynjfogRy0d8 z<;*H2CZe3^J^G$vIQs2eg0Uo!l&RarP?ppRIXXRjBZrLsPBTor!eAu>*=N&%$1r!& z_3T$IWgZj(lpTi7ey2fKkDM^bw%V3uN>Q3payeieYNZya8v)BTC~j3wJ0DG0uGyB^ zXVjEs%1uia{xyLYT-41%WsspUE|rd{EvWW^U_lJ~iWs$nFdWM?q$X_DE@HLH=@r{j z^mlWw6pcFWy5vhsr6W5rQ+uiP5qY(hBH^3kDIsM{3m`Xy0mu7(Z48&?#VXe*X8@|X zRCR5$bq7ivqRjgOPm6aZx_3XcPi#O+TozFqY0?&Aqc*y|9H9#F_=xGRf2>P<`aYDi zod6`|0k+p+sO#knmfJzx)tI)i-NA?@kWxs@?An%vVQo;eUCNUzGvpQI_6PIj8ZFU$ zA!tdb+=lr=z979)C6uIs!$?-R@0L&ss&@j8Pt;SqBldL0Xe%y+?L`l-NapI5kZ07e zbdH}$yKIu#8ARq9{D(sxOhr5(W;&Dj(OJ+;47HG^0P=R}))4X4xk>TMLQQF!i5*Bg ze9J*=^7#^yTvX}6XXb7TG#4`cE zNJG3ZJo&T1LOdX|6Q=ORabM^uD_YWm3pY++)(^%>RK=ty7GYX>cP#Ne4@mF(8l@y= zBe;c21%S*2+|_{6kMoD?)^M1z11Xufe(_-4s4SKUB-bvF)Wf4$wX*~*04Wa6?E3U3 z0N&O`&mOFk;Z~#B1Z~ttt%+?32{OTAD^2;VEn)k5Nht&u)N$4qM+%aE>C#lhIV#Mc zXiEb7yV5)KNrkO436#HODo{yTbCt^yYoK5^q-=Lo-ve$556|!+8g?s4wR(aIp1G4& zHKF6@476hXSQ%7E08xnFpFKn>-+qu3sfj^R@M@Cm00Oz0o3rl^cb&+ErP#O|=>lX( zluAKDAN7I(ao?mN0dPgp>(r^UykXb|qDIL>`4V^EU=Lf8wIR1b*psfe(h$e9W*>)0Rl>l22`?w>|>#VlrYr9@^a**k|F9-)kDHk=(U zM6e2!0S-oEKtIR)ciyzwpoQm*jI{VrR11Jo)ZyQ)DEjFc-Xp{onaL8=0s@U_W}6a_6xosX1e9*AeA&uCs?6jedU^5-oG6 zv0ITb00kV)QZ!HIkjb3eu8E$sEU<0$2cvc79WE=PNg0$$B<4J%@WevJ<7mjWq>`kf zr0Cyq0WjsJb)ss~B+&uZs<(;qjT!l@E2nrSd04jcaqb&5d>1{HldaFCl zn3C#hr6Z1Cr+)Bi?(}zPSg_J;Lp!{u+$%z16-N7qr?Pa_)Dw+cy` zLd>)%rlrGa^XV8(#Wi**|5@I}i3$U>LlU=rHt_l(ZdePo+ip2;Kwx#R5xXWCabU?iz2V548n zVQDR6Y$5$pma<4{C0lgO$c*0YwAySd2_?{g>`6IAXr2?eeI2O6HZS?V0hgFDp{0HN z!d>@=1j16K7E=J)k>Bm0(ya=O1-yMKEnzDuB_-U4WcNFFH1~)fViPCKO9Piu3*~)5 z>PD>_wUZ8^GSew2Nn`}oAh-dm)8PvDjI^O?LQ)gR6b;XD(`Z&JaG!)d5Lwk|TlH}dZjI5iY^YUM&+Q^ADo5fQixK`2JAmK>jW>WnNy{dCD{U?6H<5l z`$E2nTL|KbVoDPANbx;8_JA0R7W%1~rKy685Y$ksG1!lYctgb4Mtzv7Yn-o8kwV)y zIy*lcLyel^mu<7lSW}Y4O-AT+V@50=Q4zMOHYvO&r4r|*d$?LjE_5J=uC;nSLogw? z3*+UgQ972X*dMRvu(^6(2$3(3Wl!>H%2x#q>)hMa3d`AtAAO>LWE_^Sf@hAMjLY5bcrlD z#%HP?tOYR2=Br`1ani6(R$h-fXcqg#iGfChX}gZvLydykCQH$^cB`GcLY5AiiRb|M zm{jf+!e5B)@Ul#^l`RLtc71<%qEW{8UxIl#o+h06XniW4mOD(iBiq6l;*5)HPwS-Xs#>McON(kD3%ClZ3EBPgH;egjpX-Q^77`gMq9Bqj4zBSIhZ@!$>na%KT4u3*pi?HytK zOEp$>EC(P53IrXU>Bhn=-M7E>6G>C0DNSX8K!3^idI6(3ciGO!k7>SVS%yGqqE%Dz z+#b+x(e1dEoW;Sfnbr*AiKxh=WfTvZ5^!baf=)sThYsFjaTE3p*Y+k|olBeR00D_f z1cnp<4o@((XY}$^5|W&m+&=^8`q7MaitYK*Q86x%31BsS0PEf|8%5HoGmy1DLVbmP zlosbd4vZ(jCi*Ov#ecNC1+6bV#y3naZbhL8GztMBO|$RUxaku;;Q`}& zysa%L3VAx;6Dh%%385qWOK-mo);DZvWim-pRYz`wbL9rE>0xq{ zqP#Bs`0EAXEz^~jBE*Gclw30ejT`sln0=I~;RPy5$^ilE=Ink30a!8%PzH+u!|12^ z9{uA*^_vsnG<}CH2N+jbh5+=46Ew-1;ASBp)GIEP*wdqkGwCN1rg9f83=2>Sc($v1 z>quYpnS@H#h1t>^Du8ZAu6sOpX~Xk!qc%~=9@G9)_=X7BHrX=Dg$0sHa-}Pty)^8@ zS~#16dWzH*Uoj*XCEr@`HXd3C*R2?2OhE*ut(YD_H-iv_Whew1fpf}?Z1uDt8Uy}X`(2nf6o#Kgo|96rxnu;A0dVfFTx+ZT6Aj*u@T8?q zv>4{YeaqSvk7(+cK+onRDKQPe)ChIoR( zbAq5qV^SM~9A8sq&z_{D_)yO7{zsZ=vvr0mw(MY&oB-@OBeyYWOE(HgND5FHLGjZ^ z-Rs^xzNgu2=$O38$`at{O*p5%9F=26QU!Sjeu6RFRfmMttSz#$q-q>&2SU)TGOVm} zg#xq}8z)bEC@2+8GjkVy-tHmN;`DHoy42|!Gf*A$)K;C(K@PWHqDf{*Wen;rRP+OC zY)|7xb5*ddgKwmz<&f?{BNV%6;Ar^uD@u&Z(l_gsWUUmSSU#)MXILT z%TGAha1d3ZP$iJC8A*OOetJfndW4>SA3Hbs7V{=@ z86ctjNi<>pv_BCYS+7MT8qwQ|4=VfO-Wsq8^9}*{RrOnK`$iINXy|r;ttgF-XgW*R?Wi?bu@^ti`~M|rd+Z=RXjtEv~M`h zCf+DhtJa*YM1;E+W-R0mNfh0olTf?yEV<|fibni~=jUD^Md5UNODfErL-Eo*^mS%Q zlA^%pQ|8{EF5A%2;@#+lComwX0VRMNw%m;i^87R(Vcr_Olmn%S8WC0>n!zjE8VrRj z>Z9y?x5_h|ABa>^7&**JigkU#decKe*hhD@y+uw^&P#m+w(Z1L;&8!osX-x16r&!r{h?3NRkc!HVM!<>Z)hI9{t-W;A4yW?C)F(Y zkSn==_WaSK%z1swnuVY!C<5dIS04b;Kl+^oE0+HNN~I*wIMb|oKJ!qRfj|hQbUkAw z!q@Q3q*uW)x8Fm??HZM%2F_9nwBA|N)-&VEZbkCrf>(;Bs1+7vcvw-u=_)6NcD=P*D}1xQOOz7frP=*Q(1Z+o2!Rze0%NZCM*$2%C+4DQEx`svn* z=>Gu5l?0*nQiik|fZc1nYL+rpEh|z;1tE^!=t;5IWu|CC08F> z2d4*c=Y2o`!?lOfB*i5u3CMy!Sn*Yv-lJcuRm-LbxsmFYkU$2xixNt>2Ugta1g;DT zB|%6aDV&uW_>Sl4!$Bt{a^%V`MJmurriS%Xh-Re3P@!O!%0Vpq6vKukv>Hv8JVAr) zmXxmE{d&c_ehLzTk_mPsKBV$~kwVLIOjDX_u$3bQPF<(zULW6e((<4Zc50KfX7MzSoiA| zhGBAIOp{R|MaeYdu#kD4*0Q;CmtH?ET@A{k+P^3I{3nmVP?%3@XD( zm9)`cjnILqP#aoqhPb3F}dlJBj; z^AKn_9G>w#*@#gwOGC88j}TVxqjLQ?ik^&BElDa;LX(x0kwQru7X%Tp1bkyYRiRc} zOvJ4@(o|HH62~bnkacne3mu0su7-(cvz*L83Eci`1+11?D#{PENpaJL`i&uS!+)k~ zTpih;ex0|A)?<|BCoX46R^Wc^tW>xOxcLjP_@xCIQwh$Oe7%SGjz`E+t^%Fw*XvNP z3fVb&4!!=c$LUf~^=ML5#o35_!?u;Levy&cahZ`xX(^UfPzK{xXquYerD7Rqw0gE4 z6b5?ukLp&hmu&|xMpnOZ2t}nR$VecPv!ST)ighPw&M@`rsk4ODDNG9`^c#4&)+5Ci zissr;Cpl3^iHFJd1X8+=)Qii!RO4%LRrHdQ;3Sg4UglxQ-}i|pSP({FkX93};{9pX*p_W{u#HV6(Q7@*bj%+4h%At0ts+M z4*vlBfz!$tEmD&(f{;+4K?(*qw%s;|bk53}mjlFj)}Cy8MM?p^Az9ZZSwoX8K!v?^ zY6xAqZ-R+UxD3Z+?L+g67saN~RuZK?a=@tUH9Lpn`6a4W5|Fgl+98&q=D-cPDk0Bd z5$u@{{2|O|RYx;|odEkmt9B;KDQ2ZXyB?hj!_C!&6D{S})hMx8HBY}|qmE!r?dZ~4 zGUZx~vbP~xCc6+SH*)^~Z2ljmX+lN8YqUu-f>z*Zr8#e(moXjFc-jinC1@eo7q5tE zR?)O=D;hoV=_zs)iAX_Iuo#q33Ntp~)yuej^$d7c^p%^}O-LRb$qXug#16ad@-A`1 z);D>sWQ#!0nJ(e`{WyYl>`J1^NCYGTToB;H#je6FQw+&~WzFGBPz{ngeo`%8I8IuU z6YOvkyJ-AIkWd^2k8>cRZ}~C{H8>&~ubcK-C6yz`L#EuF>O8)Yo!wYYViu>+QoVN^ zj?idX22zUVP$9>%INU<11H#z7S*xL06xXJ2&GwBx!+Fd|%D|?&=wF&`81?6e4V5Wp zB#?6`Id`cnJ;UbFs$si+WHw^VJCnJ8lR?MWq}*?WrMf2~Sk71CAT>u(NNd8fhy=c5 zmSB157q3fhR57WmK9LRIISEY}BT_gfrHRx(=QUD(HX;d|BQi?R zr2vtuDACVn@{JnVdJ#g|S?kyGk&k*uQCXIx8c9}cpjFOx)Kh;9ae{5~+V z_AgA9;lWmBQ$$%8fjss}b54mpW(#RhOXp!o|ys=vO}e-n0Ng@2wb?O zP7>9b(hyIG65+O1jy`P%%96dh*OJhpJVnob`igyEm4g(PAd=v-vs3f%Lap6~y}7xR zq6saq?Z3VX$*^u*1y;I;+;{j!ed@Yix89@@P|D9j`$v~`ielII5!>MxuFIG@ zQWfGRhmM_y)*tZY-jq0ZDxu&GKG9req#D7UV4$Rs&81(bNX~4s=E$^^oY_gyzESio z#cY<6pqEmZ`}lra_4!7XXjsYTT76=SyUJTA02l{;59X0q3FY5=B3U$V z4!Z?5-5@FSj9F!~5x$HDg|v7~zcJ!`Neb~2z-)fUdcZqbQc_9K>@}}wlapGdg7o#r z))uP*bOpX=ouGudE?Dk=h{o{!@>7)sM<#6_PTyDS8ja0+=bD59Y5KN32j=K_nDSO0y8)IY=!{he!Lx&_&0Wfm%<6 zIRL3n-9MO@3R*&J=>@}R+rH5)o^T~e$`TC-6=Bos7VbPYuvIJ^$kaZ-?*t{)TGF|F z+&1H^FWD}VoTVkp>7nTdEms<)?2_kE$6g|Pq@{BRtAHMq=*Q;Jp@v@e4_;JMkJFV& z@)~{PDZ^JU^u}^SfU-_f^lzrzN72%3C~`t-su)JZxK3h;S`rkeZJo6KVOVw%m1<1I zBPx7bwuw9*{b9!DS(7v&K!lJh*Su!a@Wj~@jLgL$B_}A{yF>%4sp+^{DscK0wQ&L~AQPKAmF+)M_ zyLyrml$@&3Cvr~h#7}(NZ2@Uf4x|yOWUDU#KfWyB%apNH(d@WFb+6B$gEN#SC}wpL zrp^3yg4E#MixR15&6R?KsPL`8`j&;;!sE`8uhtxn8;)KmVs*?(K$ci)t%D7`;Km*% zbA^JJs43t;YFHw8N>+u6lJ05fbJqub>%(RsH8s-zr?b^=_U20CTIZ%_yj5OBAsLXnLNp^X<)l ztd&j!D13=lriP<%m)DrotQdzl1d>f5LiASr z5l_JihUiMNm4V?ogJ@f0TS5_-vRs-S0N8#!1T}ov%GN+;2@LwHl@p-Zg*4tI zv`9iFDC@a86?TPNp8ZtGqF7KRU;Rh}Ugfrj8{WW3@YDdnaQ^^$LX_Ffg8-TNrc4Bf z&5=fhFGi-V4mMlDT!xpFfWeOgVbJ^{_0F)CLd|v^e$XElVUVMkt%DOn0dcT?VFdn= z?;q?OgcUG4)wlRYF?ZX_W-ww@kndgh9PI^fNy<{Pll{Gm)&Bs;%X1Vgm~jq5Lsf}- zjMOFGy*T$qcI`IRaoWL_2ur1d9f6~;83Uye~&l?WxJ45S|}-0=U`((w<$|{5}*hV8RjvuE>c`pVyK}| z0O)owj1gUUixDIxMytE#s0i!)|qn3C@FQ=PaFH_^1jr#cow7OxNlfL1`OJxOi; z@N)XQ(x%ADR-?Zi`G=X&Q+=}1jDouzs@q0MiR=={Ql+hyd@es#dDxC2j?s6`2~h^2 zF3(5b-L}w|Y@DxDrDguuBQpwu>{MG|PO#wnMTM?K_`P9p?v*zEK;kqkJ#tkcE2$M$ zgRm8>AmK~JK}tbU%0OhQs@;!bDhxm28LDzp{u*X&Off{Uh1P{gS{M}?sGUP^-*@ti zPF=jDfTHRT-JXPvk2*fFvEwX2kuSmlT|s?o^KK&=yKvHzFwId|A<9^H@a;n7^%dwM zIr|Y#^tDV|kb)AHA#GgLqY&JPw{c(U3rDN~BQSMq*Gf_KeK>>ik?RrwBU*%>c;JeH z_4mc0fGSC4Wgvj`JwEWHrLlVxOhW=%q*JEHU&=&saac}dB$XVV6z%2OE8nzYna+S z7G2V$sJcqX4j+DNv3BndxPtv8JyH&oB%XkMVGR;jEkRHJ0FVFx4V3ZQ_l-_fy(vI+ zhX@V1ea}O@UmlB-oD*WpnsUZcMGsD*0pq*bK>q-4pn~MlpN+_Z_eJWZ6@~A=17OgZ zjYq2sQj}M~+n}UPy&_K7r=;7aV$qpkC^H8wQ0AUm6RSpNhwx0cWZD$<&Q>=Bz$Y?T4=tCbZDBkSX^)HjAWd zysW5{6eRHjJMJzBb_7!;KprW^n8@e3rH%NlfsZ{r8N>9f##w$*g1#$lMT+25@$|Is96Iq@{b3j`~|Yoqbl>mOOqxjkYIWe}Q@!nsJ$A9H!> z8QqW3YJl~M2mla5Kx0N{=kr+DE=j=13*-<%rkyzA4qUY!n3gHSER*W<4hRq7$8ZD$Jk$=Gz33#;kQB8m<17XCXplqFQ2nS?Y>DoE?Er zCLqP0kJU12Ot7+(;s94o$=K^d5@1`HOtd0G(nu8qdn1?IS~ljRLdH?5axbZ~fhq(7 zqM%ZxDCXUc$$d529&n$e38`e25L?<+X|ObZDAm<+NtG<6GSW-AWav3)PrGgjbFBob zUxfHe3Inmyk$ct;lCrHKKunmd>LrplJThLK)KQ*{@u=CZQ~fe!yOoDm%m6^pZ2f$~ z$@EhtD>DJEl`d(#6P=5t$fC(9(v>Hy9Dk^w@+{>(M=f;g2X34yJZ56EhI9=Gg-g@Y z1cgi)G&_+_=dUo~bmC-Y2?|M5RJ|*wPkd41BEPX2m1t5*ifYMCa+AZhy3ki%3>L$< z5LUn{C|j``oXMwW0DF+T+|Awbu9 z=yZ&>^tcx?(I6=Q0BbufBid6JH81Bw4+B%emy%T~T*b>|sOryNNaL=M?_ssdauCc< z>h_11#6Z(!WHh!33De|wb3y#nJ==Gv&2@M|_K5vd(VK0^F#RRYDfD)U$2Oo6auUM2 zs+;}cs=;&*R1lCDC79^K1zuN%LzFns=0BQ1>wUIhl(L0TRBTJ?$D|e;EA*W-t1?W% zDF`_j8f7#mfvh)rCBhQq%gH4p!~rWl(ROnEb&Pk?EW21UgVBG8fg*K<=XS6!mBQMf|NmE2FKo)?X3Z*iB}gPG6%&lfQem}gzSJflOa+oZNg}+r&II1K$Sx(hDHYlJ!uAWlCQDDMn<(X> z3Tk%qZHymOvokXeKmcjetX};mq*q0uCaNht+5Z4Ji0$(ftib}JfQm&Q`yq0&tn6Rk z)1(=?EyFWvNziOy_thnfs$|5=A!ffQOueoNlO`xjIY|^!syg{}hpXCBfF$i!8h&&z zyE69eAHp{&vJA5-r7JR@bI)jRm5R`G z;q}r2Tkks8_o&t)YQRb2#l&qjnp_czX}4 z`jpHigS^411n9?jZnWHs8Ho%989D~~Z3FH*VD*ekQ%&J!8Sd44lSHC~Gaf&EVNz}% zUZqU#`!M1Q*{!421cE^Vo^W+G9NDu9Hm>#kzOZ{BE4L6!KuTH4K&$cjtW;I-R;L1l z=x9e@<`S_*)+DX{VW~M;&ynxMShON>N>o7ygwTZcU+1g`vo2XAgH4?8^okR0 z!D(rVIh=+q;^MtJKx@M9Br}m+Sh?Us1NXB01f|M`yk+OSE@2f+Ss*@8PHms;L}-^3 zhL(h%5}A}w=ahFc#))1K0S2nspRc+n7E8p|7M7-#No_~9)%)q^9DmdOnRuZ-gKW$0*oy-T+y> zCd&nS5ae_pogo_4V_m5-{6$DoK_h)C8-&&;P7@Nq3<%?4#UbF+dhEZ{r9x!KPQymv z58fAM;q{?O%bBPh=m*`n9_TBCYym3Hvg&##^sxT`ExSR9my4XL01`@o2T#r*9W#GR zIA|2+F24>?Gy|`e%y=#$JSm6fN|2RI3qUSGQFSq>?E1FAflULxD7L8y1dPdd*f%hG z%X!LL6PZb<0FI}p)I$CnH@mRnC*~%VdWyK>9cI{)xnUtb5x#}S{daAmjrn2;QOlxu zf_G);f|R9Yiyt^46|7if`odD+73k)wmOenEMOVic4u(nh3p@2>(Gt+vOY z_CRdC4zI{DUcrUs2U2MCr#rLo@BukkhFXgyOhr|fPS4X%d?(}E%^tE|MF6#XL{t&i zf9(>e#k4v(`eS*N)!kx zDQ!{%lG_gbj4t9E!1}eR@(?KW_j2IvqZnRiH< zuuXI|eVlcTdhxrLDF7mk?Ql;d{2C4t%5@K6ZIpdxCLLa6Z%Q8klLIwHp9;R@<}>$NrEczp9eiUv0vWLs3bRZ0<|!ZwXc7S~ z^#qonedA%duo6)zIY!K?yk&Ss>i(W&*{K9)NOE)l)si)1x$PR33dQ1OQgbKSBo|2| zXX&BWc+bbbXUWBZV#=jCY{r~7=I~(Oshv#O!KF5Mql>Vr=c0rU5hSNjI(`08LgB%N zNFF0k{`;ZoIgS310eaq3EX!v;t=azlJAL5f+nFg$*J3#*cNGl7Lp_M^x z;a40#eLUfJ2;(`ZmdZ;5K!3=Mf!aC#e;!z@YSJ&XrC^XVvpLgmJ+?8`<%XX$)cZ@- zB97XVPB!?!JC?`mf=tIsjZ#<~t*3ZxmuONbqD=$!Jh=EYbjzs(yKwsC%?e6gBmzc+ zKfm+c2k(3`nWI9r5PVuC3FFS1)RyuFF#_eydgUd_JA`!jpKuKFzMc$)H5q$n)~NHhd>(fVodg-=M>Enp#X z2n8SguVoJ{#>c%OrwQK5pD6-i3d!M7p>movDC0=2`Y0WBVuY_ zOu?lbYnx}%oQiD=eu^&f>*uKjB>)FuKuuV4-|q#jI4v_l&?xwv)C0+9rpy6=K82ks zwAt1`niir)U|lZM=}G`}tsF$qbHwRE%SRy9sr>w-A;0dq`PVXHb0C%seU$!|2UqTE z-Zk5Fw{|YhABKTei@(AgcjL?H6U&Z?ah2UStl0|i2CL;RFG+F2_J0lXx=Pk#RBA%`x>L@g;#jls;v_~2?`d~c;&8J&vCwIj#kPzN_oo?OHj zGTAahjKn&^P@rAH5?nE7*g9G2>EVv6cwlnHOdqD5Vwy0KGM6n9@|Vn`-YetUNbB^H ziPF?me%8*wFUbeeHQT3nOK{OgD=xftq%reTj z@Rml;q5lA1Cjzaf0;MLmVzZTikecn=l6Hn~ zSjhn=FhFP7_XBc15tI5e$HrvE1yxDaItJK|jP=vBYgW5TQ&6E%LBoz39OyIa^AZJ3 zAx;v8p&Gvs%V)lrrMeLbc&_MDLaha2i6bc6k2vE2Vu@2E_>{{9vi(d<_IP!?v8h2X zaAkw(3a)R)(FT&KSAEQ#2O= z)VC$`4T!A)>7-U*B;LyPv%N}G$jg|Wf#CIm77I9%gS9IE0ITrDi59tehzMe*Ie^gq zbM=Kw`7>8FAOfU{){NgctO3>wjIzN%d4)yZrmh_K(jmKN%vlLivXq*>p|pm3{%@)X zT86Y4eUf_d2$!wmy#BN#oURnxjXmzwF(I^A{bJLZAgYy9Q-_3XSzwzgdPm5sII38R5DgrHBon?6fngZIfJz!PS zdXX#?mZefQV$a)FhkQMFCnia$(K$!#f0#+N|{c8Pm)fB0Z{-7Na1w6?gw>JC_>(o?Alaz%3^mLa2xIb7k zh-54wIZM*CY^*de0?f-}&h-hFRsc~dY5+F#*`MJ@94BKk@9moc3_u|q;ygLXS~ zewxO6X}2cJYBJSHa|p_vN=YCP?W5@Do@o|hINCKuW)~Ibi$= zDq0e?pIJ1LqEsk41HUmcevvBywqR+=oD8sXEY(z}55#>Xhpb9Oq)T4OVqNRIbbo|a z#W+n&6)aIy@a+b!$qg+a)u{WEyhk4#ms(y{fM1z}vylNg0aBFoP}-d8+`m{=w#->c z$>Nw&NIDbtc+fEwi9V)b4ogsM+rK;kyTC6;Q_{IgP-S?6K{X%^GW6us(W6Y#A>eE! zGEpm<2vW@x`a#!y`Q|L*d`nX=I}#Z^35|Z!WK6)I!!t5__vsnkzXr?BRJP88so%H0 z4~|SNSi^S;41f=`E1#`8esCkKM{q85q8Ly(Cr2MK6z+Rz6BH5-L0ay2hO2G#l*>-! z{+;W@I82t}#6Qx_OqH{)sAp3W`I1X%xP9HB@MBprP)JEq>+HD!&Z_C|gOzR8-@1Jm1&k2?E*pZcKr9iYwr(BTFTNGu^{~q zPkzytClkz?%2CLGp|K7&9Q*6{zgR{`3{v_JhkXTL?VV{_NF~PyZ+?V872^UHB%+E3L;8agPG~lT zfXyoVM2SSrRRBICqxI8Nn85Gm(Pe{j*o?R%wCfGR*K8+%mLLf#m^Wfsb?w3?Hk2A&q9G1d2q zy#o*QUKf~iJp+mX11-2xROBfM0VgSCZu^RD^N-k%6Qn2wDIp}J0u3C|ni}rAN2(c; z0VGp!A%=f*VB;#xq?7|R1ruLuaC_+(&D(k8w53^9n>JFGIfI|h(ey30-bBKu*KI^n zUK5g{nWczw23?8Oht1-CJ?9oYUq5w2RMNlH_c zFhvqtr0!46v>s52=|=ZPX=-$XK&5c|o;t&`A`IAO!<8v2FZJqSy%Yt&uRL^x%qMtC zT)*xI*Z^72Ao09&Znu!XS5_hO9iqOJSM-fz3r1vBNHohrE2Jyk)``eTnC0}yDq*(M zVRJ=3?l*~~S+b0()cyn3B9@h~x1}_#OG2E0E1H>V#rQi{kq^>uWR#kM0B{cUp!0>x z_XMNWg)q!bDO3LdvufK7p0FZi#WGq+3M|FJ(f0dxCKQxhq1LP2bCk&eF5`wB4=)6* z)(Px09N7S7r8aio;9(yEVxqOoD#}V$sbL`}!UYL^^^F=$^OwS{56kZi>6+rR9EmG* zrJV9Q^z)0hz@&#KH4741#>2cUPQA*<crR=~jT(#p^HMA4X0iw;@`;2df|$h2fG#R>)g0QN553PJ1U zXcGj?!Ds|#4ieqI@kvp{R>3_!5PT+}(!53M9f*3Q%vnu6l%0P&z>G^`LY940!jQHs zJVQ4Jkqa1($2}5O=}`^{ST0g}@{-JWaibVlk)E%dr4BjQ^XUq9tSoY@q~=nGmu(DF z!uX&oC|O_wHqYnR^OuQp(uDNex%xwwNtEGBp(&X)1ZBvOq~+b+^Hz=Vi#A+Ukzphj z1iOBx)3j)7!_t&hF$oDX016=PHtqL>>+{j}W;GhKYC6KO^x75YPG^-|VA$N*+4YW0ep%o~7M3i2rMKCP5< z%luiRK}^YWl?DNbQfSA|=^2hMv70>UN|#wnVN<6)w0LH_Zz5euE*hZg_T8d) z1$A{{Jb(bEa%fr2cRXEG=O7E4f-IkOUybt0snx5^bWwdsVV z%w(ugY+*jhgVQN$de!;u4fF5PO9eaAH}3*%w(yd5EGy;KA4xA?HoUJ_VCTAgItX%xTU zm1tN{Y{aqdK77HSMeVIx?Q*6}O4LHhPl+zhz<_AnzmR~~f_f9;LV$mNZoMESo6(fu z&o+lvqLO;+PTFa_cRK+oC`y+%H;KULHFx~&p}zjXs|Q#Tw5n=_PMtvBEGG~I&UBv$ z72utRmhc{KCqN05fXmXKv498es}cRdb}(P5T@EfVGc000u=y-0~sDvC*WVmG7k)qc>6dCgiB5&&aF zxvx@m^41@uj^A_Tp@KmyY4?QeL5|2!mYHP-S5tsM`JR*!DwI%NWVWT5FvRj~g6Ui$fO6fuOsDdx-vDr)Cb+wz)k3)b&T(p&zz9%3sG0-HNAJ8d%@QbP5DJS7 z)DPd~7B3YcvLsY$T7!cB062^`Z(+LJA~*#Hbc_rOc8;FOtz zG{ru;P@a(6cU=Wctl2c(S0)gw{{RbHa?H$zOE#r}>U#8zAmfyNsfm6!gexWhm`YrL4L|nf z_>CIHfh44RE^>k5(x0ih)($*vD@!*WtO9i0eBJM4FDA}1cq#cN3L4Nnb5YBVbe-`rCY&%ZEU`M&Zd zrh`t82?Ef$vr+<2iA>sg^^GYA;tL9aB_+uW{6aOV&beTC$<*cB%*M?&=}5{AIqK1x z`a!%zr(}YaA3nkhGgR*Uz;GgbXL_y5l7fJTHP*d&f_HE}3O%idIz;Xm}uV8g#2?_R{|Vr674|D-sJ>%G|We zDoG*SE1>E0g|9|fr88wLDM00P_`gv6q<-|1eoXd58EOo#qDS5X`ZvN#Pqc!Rs;7q5 z99LLtwp{>}1dO36WTcdhZgu6%o z09YkzQ_LwOww2k(8dqTPcce|Kx0>ayaV|@!5PIz&u|6nEqzbvnKnz`v+5DpzwPG3a z)-tGND%AU3N0c;OxAe0@=5Y_@)a-gjKjiPV;foJS5|mUziCL#sG^f`{a=LK{T9^mw zDhDID(v*ztIE-chx|CP~4x2N43~C6mqDlh*DC{_H_q%N*HWu%*yS6p|bf(CYd%JBXhb-{8wq%Y@~qI&>sPQD(ghfC+6}b>+1X zx!%VfCB)ue(n%83%gW(g7ubi;bNjfzMHqDmw9T}XB}z0y`vLy|Qk!2bz=ylX4ofo1 zrlcv!)aZCU3`vFx6ObVZVM2{4bUj5QDY32zUsFk13%83+hb8*MrOR}#W91|QLR9;3 z-48HY!-u8KLPk;Dwf)3RVxA=hBq@ewALRUg@wcXWsd(9aLXyKVAc8ve?HPZhEA?p^ zgA{v3t6n^z^7jUAaFSdQ*-MA-zm#FPn$bMYC<$3g2?V9;O$*V9t5ZtEDniB6hfT1} z3I71dvT_rkeM#sz8phM;-pr{o)n`)3$dJTPKe+2sdhY|h72xmb(z(h3)>>Hq01>$U zVW#nx5DJug=>Gt~(kn~~*@~2fuQgMmM$gOr>F|mP#*0>LstBfHRLq^6Xykc(VBM16 zE?{4TXCZ^vijAQqevhWlD+&|}_D18E>hM}H<%zL`fi76i5P}A0KG9(7*_`c8)r)fR z;!LJZOXcvn%#*t@E_i6mF?XW>09ln26lIhL$|`soXnV$==!*;@LPx9xYC07c9S?X! zwSjJllFZ*&GUhIXtJ(nbM*xa|T#j}G@0sZeavbPJ{C@EcG*)q$6B$S&LfM;Q+YR}o zWw`$U(z@jZC6c8xq^DE-L)_>{7mcw2Ow}Vj5OV~ohbjFh<{q$#C(_KMtb&r3SaLZ! zFgo=xQxDurw$4P^=P4u>0Dw@Fs<{6ER)795M;m%4MB7N5C8#-Juu&9ChBZ5p=J7CC zX!Kcss?{~ng2`~?)aod7XQxPO#KwM5gbbvt0$Vaj-`pOeouZZBGF^yE1r41b5DieE zG)n;KCCi$P;iB-x2`L3NQF(KS+yF9go5**YL>2UfdXQ?Hg ztW6kQ?GxMSJVl6sNCiM2@f&yT8I0dZsI%t)q}9OOEBuHr?x)>4ZYi3%sz#+vKn_&# z;@EP~PWJRMXj+o$LdwV>AUcAM-A5&y2kRI~BU@S(g8u+3vx0m|P<+I&Ahy(PdsApR zhOg3dOHw>Y0-C2Pv@Sg9)1)Tf_)60vT(p%1ETkl*J2MY(ZXvhPnhl*9MpH3WB!@{S z>-CHKDzAtvsxtx+K&oj({{S(bUY1#sW`Gos5={q$5m(Fa-ZTs9@|cvm9L#b?Vb-tL zT7Ba(wptZ6MNBJ*qsq(^el@zJ8*oyBQ-Iz^s z(UtTJ;PbFMp70U9IGGaCb0s7*Bo29QkTy;UOz??{E>cRVKs9&rjKJYp^5=!AYBGU* znyEnXw_1@-Xbyqv<|GA5Q>8=1KgXB)Z}4RRRyo8oWjZCW8xzDNT-cV-W}L*6M?llK zhYU@C*12j@=80=QB%Rp&pNPmXRwxp!b0th$`-C)_@3a z5!4Q&?E~)|WinbQ0+8Mv_25K!{{RT4(gev$J2L;SZ?Z=mF06WT}?9a z3%AY@nkFh_l@XbVNcx?}O`}2de`S~@=9%s2PueU8$+D?a47DdJMR`6)_lh2p?@?p* zIf-e6u_B3VzS+F8govap?m)0oV6_(K}bFo4M^F?&%8@>VfnIbsNF0wpj3d=9ll$~wp*!d zB5e_|0)P$&K6;wM6@JBK0$B=WJCF@n@B2V21 z(m__oTKRcK4UF+x?5hev@V!;nh;N;Z0^9{?OO6i!^nll`jWbeGKqS@3c7@LGqmC^; zk!H=7oRuVaf&E^4Gx@^($6}nND=HmD!337qQA4LK47Llnp$wpq+EIY-4ftl?kv=2@ zD{?C1m*aXwXY6SnO~W+_TcJi{*Z%-s2k!{iUMW?cV#MssPlPG{9XiL+Q>_`5;Vi-P zAB<+6k?@i&WT6T|6p-MM;GZDuYANuFODW+N_+S%#!_ zKPvm6rOkuoOG8adC;*Vv6#oDn0QYIeg0!oV2~x5J1n%{z{{R?_r@VfRH(kn1lD!xT z@6>*OBrs*D0$)+=>|du?w}fw`31u`P-NzzSSEyX`S*=JlJ@<) z)s;z0I;ijOc+c?Dn?n%l_DMZHK=p>4M{*e`B`PEx&*|yj7VymUrg2eKQ~(<}FoCA@ zy4G_j8iBUZ!);20q>@SSjK@cy;sxK6!ay~tVn&))u~Oj0p;?hIhT5zTQaOMK-4}h9D*7d?u$e5&A*Zx@{RL$5YihVtj0UhH?i&HvFt?_8c`W%*A_3EH?yg(xM^1 zE|eltjJaSE<1uHh!>mn|;}gR7^5xC(sX0`4)hCDCQ>1EFjiqBMr6({Vt@+jvE)PZO znse4*%t#HP2U6XBN0AH{HZ+@NS(Ky|GJq)nk~rFff8sLX$CmbdsQ&=`aR~L39+gw* z4@hgd@r;>>N_;dLk@FCH^ zIe;!r16F~DSM8wMJrvrLYMc_Lq8OymX|d#M)Y1(XiPB}_=?O#nwYcQ<_k1Bz-GS1q z!AQ=PR25g@u^Pt2i))Or4f$sX%2HQM*^XC91Da5dNw1VraRvst zeM$f>2uq+1LVEse@nT)5OgR!2nEtI}n-%U79QFY6c8iw>fV23GOK6a42|IM=0!MxY zOHUki*u`st(3dVslnG%e2s>7jtv@eH+0 zNn!|Ue*8k++i<%XsmdLb;?(r5dEzvSHPbFx@jgOoKb^ZmXQYeTN&v{oAoxS*TCMgU zNGamQhQO5OAw`C+UpJP~`t!5PLIQ_~sa_Y@oue+YUUTLW5TG1&HH92sd|Od4N-W{j z7?$t(%uKp5yv<6Tli~n)v@TA;wTY8^Q(rCr0Bt@I^Add{TM$+K-)F>Av+q`N+gDi8 zy&HN@MWuCHOhW~v(OJ1|!P<~YFwc#z;uMm=s20j;1?;|!Bw9jLvZq=?j-Ug>(1!Uz z99w`ts6tkP1j57?aND?X*wlUfy6+{)%PwM*mFUC7D8xSD*!OsRr_gmj0wz!*MP?M` z0a|c7{2nrVYv^8Vz$KZ4Oi^%CMza=4Al(u0;)WTLR^r0;z%$9Ry z1&)Qp5?sJQvi|_n?Cgpjy-HGCRM6~m?09NaQz$H6FkTNz5+qGX%m!Le9t(Y-)(Xb5 z=2?JpX6JdKnbd2TbS3C0E7h*cyd~x{3Cya1lyC4gg?OHq?o1=Z)ASP#>HrT=S;|DOm{_vju41>UnN-hl{rLOu?9=P|kKEh^QHsJFuHQoofX8#dwGx z;GDqUWNz8u5+booQ9 z`^5~Pcw!E<IlmdxfM+2PJCff#vw|Qt`dBq=c%8 zBp2JM?Wgk=u>-!qQHDtbo#=O6h>#J{bSo*&mc=mOO&TjHK!hM{w_&jBQOrs zR{mWebIhO$$10UiXJ~q`%?ik!bBcqg{MstnuEJ(A zb7cXNKT97d1AEDtXHZr}EtOoSLFdMh{RNx)OU_6%mPS|q0BxdMw+~7rjTpH*l75h- zeA`!PT5`HsK%Wx;Ii|i_!P~V93gkO$ujajA(xwmlaU(Lb6(k1$=sxk6Sh1J%cCezN zWvHFsB417dc-5bzKI8jz#QLP5oT?d=M@@;?*LX&qgUtGb(ECIUI`!H!=Xre`XxFwS zkhB?@vpPu)K->H}c|w<=3*K6jK3WMLsZ<)cH3S}-SBkw!%kkzMn`ZFKm{j43CY{=# zP{FVIe_4RHTq2Ed5sG7pOqwl{uVT9_3Id&*MO}*)PGYcc}P*F>~?Xn zENTlhK4J`1vV{}?+zOETk~MBPfOkKoF=m!hL#|<9RiV|q#?Y;l9FuIETrDHSJZv>T zjaCtQ&vLSSdM9nchUAL2hZ+9}}NP?Z95j0-jUMT+nCqI?))-T-lFaaaRCKuO#r&!CaGuFgqQULae)%OGL zAS8@mKF>5~BuiRd41J_#Qgo{tR-p9QIYUIn>orzF8i*u4exsHmo5D?!{{S4!}r#QW{ov6LW9+uct_9e6>$aF zm8BytW;zzr^H%K@nrw34ijuUc45Aj{Ac`GazevjM_A5+<%k@Ttt1!yWKgrlsaqtYo z=!-SNRIdcI1f;S+ZwhHqMq{NM#kTWU{zU7 zf$XRUB7^g2SGD>j&X#o~DVuNx${cbb&}X}G47KBX0%WyInodF~*!)pSo{yFo}Qssd`yRwT85It;T6-Cxz)1jK?wm1Z6qc&Oc5 z+#gLNc)jh(D4|YZTUxl|r&!N=(gwTlK!8et;Y{DeL5OcuEhPX{kX#3TgtoQ(c&N1c z)n!0nDx=Hl@WVR_pH-X`0vjz~rADBRu|&(UPouR@B5GMGNGy^W$KEqrn+;k~H`f%Y z0rHNc^0D;t?9VAdUeZGq4gS$X3i`E-lLv`9aCm5sf$KWEuZ7A<@R9{pncVJJ{Gg5z zzh$W+YD!j>l4@$5LlLWvwbOTvBJ#sB){+1KfxKiE>#SI9N$>@tZ-|8ZE>8R_M<%Kr zgkE4if6AnxL)l7!Nm!?cLOMQ_t3_)a!RpY`%cD1hJq2ExhOH`Kt)l7^<lP;6^5-&$AfrMD)-BDq zr`YvjWtgdkn>TKd%#&-rf-YQ80$p-2vZ2Kt@hFCJJBiE5Y+vRJQYWl)w$V#j^q+&Hy*+J;hvH9>KskI#H&*lyIta;2qdN>nyy z4q1nn#u~9jxBJOPid6>Wj!#H8hU{S}t7mgiDnQ~82DaP$B_x!v+K0Qsvgayc0d59o z%uP>z@cW9a0Ecjr)a&QZc*;{FB8f82Pj z8cLLensd)@!3&te=A5Z=)RooPq-qBM4u1TIuYyOeoDnRLB_#U7RP{7qGWco^=X!AD z-)1|6aB`(hm~#S!R6e;}?ax}8b&I#n$(3$54Xd9nuujP*Dx94Y=11G{p;r*&9I6a* zsq;%TI&uq+jTLefi}I{P!bu^hL|e4jf|J0jHl`6J;_n-U0<}3Ha&;;i4R)kmyD^wj z@~V_!)bSY}B{r4IUQklsMp8NA`~pR;{sYqq1pq|FI^#cI_ZV;l69iP14aORx$_a^x(7 zm;}^U!sn0=Smyn|6olrNF)Bd>lm^goQd|e_@TFw5e^8_>j|xt3+dV4}4o0tc`aWF5 z%2AjSk~0*jKOJdLj2gJ`s=asj3(EnL+NkUR`MH8O1@e{43}}?p4v-RFHv=+@hCUY7 zn~08yYWcgS$y+SAR+MHN0y=b|JV9I^VwR;9u2{?tRIGqW8@A(UlFC1GImZG4Y zQT|7`)6Oi|r4mqtf`$&E*Zg|<4GdR$D9@xT)XSElkO?W}nfK~C#x;bo*+SA4O1TVa zU0+Dk@vaPB%&({?a-r^d`~w_Ujk2_Zp5ha;xY zBH3j`(xQL?8WPXc585${*9KZF=}0pc1JD9|58G4`pgK~5j9%iEYO^RWF`9rM#lh%w zBja6Y%5_DJ3h}X~Sb526Q9_`;$F83}qaK$rU)7T(V=TksK+}N1ss6`!+>w8#(IhiJ z>Uy`A8%BJ*9+^}9bdWO*Hc03PeszjTe;nbvN@gTX1(M1`4Njnw$Dhg>&ca2KVGuBE$TAfXzn7~WjK$c1YAZWnmJvzd?Z_%?mRwg4VN3^QB(!Jo4@w=3y zIv6qNf6J^M#8)aONp#BznZq#v8WYx#9_p1X2nJzFNjj`joBa$tp+OjgX4I%tmIsjv zevvFw9WxQ*PGEA9YsfS`<4(mEDP<`2Qi7GJt0cbtp<35qo-*bDBzTA;W2o=Ou_?D2 z1_`?4T4c*1MpV#}2{lL{{+2b{-5LJ?q-;jJEYwO{rnxiJg%ejv;D#ez_>Bh*T?xpH zprCtI_KVe<^JrD{sdFhvQi?*t5>!Dfp~2`|N{ylN^l(!OT62_ymkm&1!B#Y>FVukg z_I+a{z;}ey-B7L%#aY0|Z)SUBB-l*%E5??eJnvh1QfRqO|7 zj~A^A3&=93Os7Cb{{UY&Qp1x9r_7q9cv4-JLR)tD`?!XzN{MQgPHd}C+KdjMH+}1` zA{`R288%fSe8o@&ut-j%hjLn-bc2#H7F@w&GMD|Z{E)zn!5Y5J1TLHsgiaGsRH~(OE!1CP!~@fCdg%&x==8nlp496pQjSnd%r)_DA9m2S12L$L zR`!sU8nFaD7}tnXzA#**$xA}Qq!lT`gDazN^$>RSv?64s%T*l&Gdt3NAFO5=0}-NH zl_5o0fp$=8Y|p6e+h|3H+s@>awFQ+BpuxxZjS_lqU!*O1L{LPM0CeTsU)b*l@2R0F z@TeC%Yy3uYi0^633zV5^m~xr{^)w#$XX^(22(5rIPHA8&p(TQ~Q11_ROYLPPAw+@* zDJ;Yt>O9^te@B-@=_**5z$&32zEij->raemf7Avg{7I_~{^B#26+q3H%Tk8Au|KDX zmcxpQl2EnjM7GE3@H*+V3ss>>Awe6Ebw6Oxj7V^mH|agKAdSZ&5&a%t3bIaIsmVEk_K2dLosQkAV^qG>EfSho za?UvJV_1tBZI1p*mEv&pZF>%o+hDs2LRM>-u;LQ!_aw=4l9_-E+9=Qyy?)WCERiZu zNCm|}`H#E;mvKeFW`H&h-qV!U7^IgAU{!v@|28%7+M8KbDCag3aOfg;-P*6r!EM2uP%r97P{{U!cqQkl4 zw>&|+J@!Zdqy`mG>G|gpRf^tn#G64Tfj;&>UhvC#;vqI#Jz4OA`f7PSVmso|DK?DC z4pzxf)z2sBMLp0a!DC8oK`1XNTPI}~a5^8qNPkLocu1QuAY>&Zlbf$k+ArKzIp`yf zIXfPldB%l%NC`+OEtf&ZLC;w3%8*hE14{D&YPKB3K&eQWa-9e~@*t{LR!v9V0$Q#~ za}+ucXlf$aosa|rr3dpDI)=Z96X63ypJ;8=KMv8mrw{?R!|Zq0p#3Ma%zk?RURkuT7kh#t|@XaME9z-D~VoFeu3HC|&5_uh=l3l!nWgzJ9_Ke#F+!>h7Bi1KD%jx{a!)&sJp)Nv7Lv6Ov ztSf|UXJAD6WPYVLtU7o`lx;cO^A)`m&Jqcd2Zh})`bp#cczr#=C9jL11m{f%aH`bC zU1!9qlWA2LFi&k!c>xFl?PD;^OoaptSJ8g^fA$1_|KH(s+eN8Sb~iSCF(YAv2}Mz13dsI z%(vIHUYlmwC5y3Yu;C|9I4^kJ-mwV)u^Kk*&r$J*7G04&Dxvo^`#!mvF{hB-oB)Qrwn!N8e&g4_Ux5DNtH3kRRd6n#3x``a+j43Qh>yozkWc6 zc^;87cnNc^oaqu@a!Unnbq%B;={?b42t@->06FY9KWK52B@)o;a!3TEvw3dtwS`4% zT%pN4a5{*yeO~DyOLkj$KgYViH8Dw`xU>oG0Lt1VY(IEhvE8%tSEqPz{)m2pV-HiuMCo&aU4`%gAMwFmji6Qds$gB#tUKg}6;}(RP`ICH<8bVW9lp z4#-rwNvI9_x`@xPZX=-a@3)D@-haFvy=*fSPFjOj`k$ml9jH2u#HUlToA+ zu-T>m08uTemWB5_{terhsf4cd5>`pf240oaz?^MvD4i&zvR}pDVqxDyL~k3=u4=)e zQ{hYMdY(EDd?@34tqPUma6vU14y_(tcD(b{LV;({(fKh;(sk&Jf?B<$I)X;PQOWDD zF`VRV_H^JR35ahBv*tZH?8Y>FGk>PgfMzF9#3(g6W_s%h9*eN=u2PXO_y8)&UG!o! z=g7lO8+6TDTAs@hRWYIOPscHEsi@$oL1~!7D5oH4TItd$Tf$JLC&K&c-M<jzZs$*!DOVXkbV*n<~Ow~KE6bEC>5WTMe5(NT50E+3LKb*oG+x&^bTX;u_ z{{Ttmx;Ww)?+jCBLVvirsCZavc>K~2ki0~%3mmUhpaNEURh}wcv&w*$IMt{douPi} zu&H52S;~`8L3SHIJP2#MtO`mPD_Rq|I@9m8Xp+u2y;cyQCrBi0M!3#|bLVSIv$ z4DG?`)-XI>eUM6Jj~-mCl0i*2ZzH5l{{UL4{?O})FPXERN)YTE=z9V;9mtAS4@ah2 zP(sRAl)6rZ-1ZgWyA2}78k}tMWhp>sP#M)ydJ@_lsmw6l_x5rD2VM0Ydl*qlRxd~D zQWKoLN{CRQI)?4i2YQj~GNB_jfVSJQ{MsIE*ZFL;eGXk4h)!J9=b+GrB7(hPr?!`K z&Ikz=bft*XhVy}c_WpGhDMaScJPz^2y7v<0m8{mD`g|c)Mm;IarD*H`XD3ns)UbzY zF=GD!y?>@siUk72sq!_`s*R7J2tmRr1XgE4|`@BhhTtPua+yvFmqwm@m zaZSTD1J=r_i3wz=0H60KQrrMsovPy`T~?)niL(p;0QXL(UkDsS4lJ0ORH=+s*=P@a zn|&(|Gx5TZgeq7Jput*JGlk$uUa^#-Nnyhc{LE-~wc9BuKuPvbh1!4*ug(G6KE@cz zVOs;4b<9lw=ubRz8lDceddn&%010i68%AM!;i+>3lrDTOWio0w}?*)>J(`LbV$JM1~V09d+&Y_?If)WRMmVc1b?AX3q z&{r?TmX#ayabEG9dI0oVnexS=a@Q~rKeVj|z>eF-tB7rKhDm7wDNBOPz(nEhlrd$( zwR*XP__hbc1ML3*EsQYP?8%)fSag*j_|BE!kD-bHl@o-M6gf^Dn1g`@bXN3D`ikc zojMmtD$vyY;X?Ge2d)zXf~0`oMDXq6?cOiAR0_+6#g$LtnVCKmnk6dzM7E%8IcU}} zZSN@wO2}fg6T@!B>NsW$!-zn=W&*GpnOMI)J97^>2Mx+7Ng%C7z^{ZSufRfw$Q@~1 z<(a8sg6>YOqYs2B-DUwtD!k{yy$U1D)14?lkJ(tnKauTtfN&(WskE_z7n8WaG zfTG-)iFEwZS)L`pHgtqckc6UQODVKG zo`mVwcx1!3blHICK|s(G{ydJ+%*zT&)C#CnPGs@dv^B}Rz)K`%*b}#3ICojZA!!mNm3S^${Laj0C+qI zUcT=MOPwu5f|EhB=}!Luo5fCeaJ_N*AkQy6!naCY+fqPwA4nmCCW%T+w<=P!2T(Th zjcm^FfHZGsf%T`HAYS-;)Xn~)VRaP@p|XG}h z&1?wvflK~x0I@CX6sDj}JV!`0q#|lkr7JoZ5P9Gp-wmNt6JfzUUaC%}i%a->^ldu3 z?G+7>;;Y3TwPd+V(=LziuRMGp#l>(md^~5?<7rHlGzkLP!x%7+d3sF-j4mq)81lj(q^|NCz~>9mu+5ECseyW zz>PYvBUr32S}(%@8=U_ zv|3-feHzS?oWXt&K^1=_jfX7_He19i#7OXrr9WZygU(dw;*YTF+A*ABwMd$AXZy;?GQx(#7ogh^w*LQ$1LSw{zbpR{p!-h?5|QqIDTd-RObeeFF{(`QPFT8MJP z!jn+rhWNB;ccp+O85F+~2AeCOI}mHbKM^wTrC_DgijcGbvc`@1{KDU)o7>h%C@Bld zr%JWcLfbSgCh*E@(VG-Ta1j(sFiK*L8#KZY-Lckm^HFNCKrOR8a6PXKlNZ}xW zTZ7h=)2u8PCP70b+`iBGzcHZ<1`?vQE7h~r4W0({f>IdV(9um6>*2@Y3D)9!WQ2ziPK@|iVJ8cd(o*5!& z^-t>7L+30~Myx;%{aKl}fdkfy)hU)i1h6`D_JwROW=z_EL2~)1!(C6lA1!xCQdy`N z1$FBJRbxm&Nnx!;E70#3LXIU!LPIG9e4Q)#SU-ZU#3=zwNGk_whA=f)ATCKOR*zlb zIaq>ikwH0{N|}zUH7@%fA*VZ~Mu&`UqzP+M2aBZx{vBXO1hJ3`l&YP-#u?FlrC_Ks z-8${1A7|Ik;(=yL z9y1dFr9op#9)p-6bxlK-W;^aXLc%Xjx~&S50Z1xfmLaQ71Y-E^#cGi_GBY(m4l=f& zohzvAA4uLlkY!652qi$!jUTK4z3mBFl(x*^QJw>0_+u0+)&nw1!2>ZMcw4X0<3v7? zC9OGg*F=R=U4#C4v^Y;xl%yo(NHlPfQ^W7PAYw}mm`xKBfkGVr0FyyW(5?GuoQXMQ zGLi>`5F9I~N}cy@ge%^-GTylfRK=zDmQ5JwdMIl39@inAE=$;E_CXrfy6p_tz2YV$ ziZ~9!l;gZE;39f2yXILP6IK)z;&AR9RXi3wVc9mzD(43SI2E7;T^pDNnc0tr*>5-t zF$qlcOd5}S!6~&H`p^<`p&k{py)uFM=Lz`F3?gD`18zUt_xr;vr7376l1Un!yFeLM zW>^a+DCVHW+$MEy!BS3WwNJ8J#nRMThPD+tX@qftur5mH)KRpD6zhKyPEts_6fc(*FO zTF!k^R5m+Ofwm`|qe!}K!3lE7YL?W9WRCc|5R?;DtJ)=1Dki73PMZhfJHxjaP$f>1 zc+;cya|A56k`@%I8aFNOf;KxtAygobafcO!i_YRmIZa4!J`aDaUz=)LQ<+L{(vi?~ z+A7`mngqb5WmRikNZVaU5jG*bWzDKwhha^6d2bCR`(@)XXTtrsigw&SiKrRU<=xLe zp9pWdu4Uv?unM3wanN>yHhZNeQ3|O=PhJd4qZG1OlPP)V8jSoqQ=iJbS6#%J(+tG| zRCIMP1E8QCUCz(2XufWFYE!e2PQ9rwDXUk?*LSW2QrD%Nu z(y><_Ca->hP5n0)|l4n4}kRN7bBp3O%a=qt*ol6s4OYMotpzfPc8IZuyheHY%_37$V%t#d^ZN(3`z$^{v0V+W8c+_=& zgK7va4x~U2O1IR)StNxihlEm_(w)pL-%8H#`DOHvEouJ%77TMxzK$a0(n67#5PG<% zJ4erVb+EL|?@+`)8n<{Wg?%UqOpupOnL#vfnd%{5O1yEQTLjs26j1d#evn7j0^6}{ z?BFHNXV1%S#P7sSY{c{DA7r5m0ZBbaPJ6(6lLVD1a|Fe#sF!m_#o5=LPg(@HS5o`85$~gWlu4G9 zD7Z@msOw65{{VUjow{ub^|=yM7=chumFNzE`PMB>x|T>-A%JBL4LQ_o{{RS%=Cdha zx>y58)kB`{-MK zzAZ~cpp%q=Ov&7x&je@&krl&kCBajvAW^jtL7`V=#(^$sr2<*#{2iRu1znOR`oOH_ zjOkTr8ZZ1f$>B>9Xq^Kc{{SfnmyMXFa#H21r`8Jy)p}kC15!@l?07I| zdTy_4ZJi($+7ggSp&&gUo+{pZKwLMCWh&4>KiegrVy&|DI>P1S=t=V`Xe&@jB|3tx zOSMLu1|5J`n}sGx%2Ezb@;U-E9!F0oj$FP!MKCS6V!!PO zP)Di-MCI~2n%0AWW4V|-%$!8UcnJqjVM9Zw#)pX26>|Roch;>1*aU-04an=Rj~re% z7p+SrkV2m|YAZrF*RGI!MwW3RM52jgg#sKcHA@YP)F^O9{b23ZN~Hjjl63&_vxpIh zu;~bA8Gt*{$KUG{+>+9eoaCUCij70+4|u#F^rl>?fJ~YK&xnMY4gs!*gR4W99lTOh z??VU}pV7)xuw^Y{GnLWZTX>waQJMD*p^LW`1hpXnAywF&T<8F5!60eZ>QJyUr}ur# z2*mg}O!ZRcBr7Uh6uSXa?KX}{qzt=nRiyf*JLMUlR_X39#9u}!2nuPT(iOstetCb3q=lSu5EGQD8n1;%7k<(%z1^b~7AyQYFBpMQV8}^1Q7lb8xk`$t% zl4?0RKJa4jx)7#j9rqnfC=1n6b7o1(PN{sOsqF|m7U|N7n%R*oveEu&-MY4%nmBh1 zcz*sxs3^-MCZM<=G1OOar@x^zPlX{wjH)z!-=sKLY>AaGK#-v9(Dt9Ah1`@#o0U@o zzl7}n0OC51Pgpm4*`?J%PDo+*g{$`ClQD9ZwGcDxTDv!0^gWDmjV_t;fhkj^AgWrD zDzG&KXcy4X{++-IpXXx+0AkL`k`9d`3QzAqOp zN%KRZX)K}7<3@uhAeW&304i(yz^g^t6rw|9C7d*4<6gioUTGaQJ5-Q^qt1Lc8M^x`RWpe)C!GB z9Y(~&?`G4dT#G_TO+a9tMcR z=$`ho0*RT}PB#xLobO421R%|xzZ5U?C%NHu2v03oRxlkC++ z{{RzV38^VsCO8i0IvxNZQ{&n)Z%R1A)QKqxvxN-l6F*T(L8(J(G%v4eh$@;^22xSt zDs`6dzTYq7-t%zJ6K52-VA}Frifgq+{(%T@{F=`#$4i9L}FY6K(PGVFPz`so!q%ztSF-c+KDfWjQ;2g{{vV|?^ z4u*vG?FTES35Knr&pe?c!nF1y&*Rns-uSa5^&upm5N*kQx*ch@(R%rxE@bd(3P4YW zu16}ns_5Kid2KI zlmoC}wR*>1Ruv7a^Ag_EgtZWnn358quuN{$O|YzFe1N2#6i8;`ptj<>!KwD<85iO|CI%?l1cO|}}8F2ln zB#^_yMt~T@3#DaCCr7G1pon0$BWW&f{+*}hoh17{G>7?-*GofeMpw+{;Q^>m8d#Cg03`uVq{k)x@Ai;{{T*G ztVb`%G5Up=S;$%zargS;;29 z>NN8k`9d}}!^l*?$d{OklG=?Mf;I0CbEQg)(O_6ZOcV+uUlSerg3S*f_WBt3Yg+5B zfb@kcj=*FGQk}I|0uNo7n0S^+P)P7Luf#89O}I5u?CPl2plp)-alk)#KX^%#G3Juw zjb5bo)yGj8#j^WQ8GtXnDxK>C?wod{%}NSN-Q1cAzmz!y6U4L9lsZyL{Yul_3BUIu z(x6zW%MOE|D094Q0e&TB9R~bTGn?{aip;vp%c0o5@AQoM>=CBf@xW3FRC6}q*Ux|; zOzXm0770*eur+g`XwU4}ZhXms5|x!}YP$svr(>))+wdo-NSQE&5U&z|b~GCO`oose zykY9qZ%o9B070g0e~nBVzixSJvnYZRax*uyri}K-d*x6I6fLjA-w#qRun2JBwA!(M zNsK4a-Y^nK+}5L!4U4_P$jDtMS37eQeI#MDOq-fm$o~NO7N?-$BTAF- z9LF|9WC=!0*++$A^>@=qR}9Z+#Aua}YV;vGq<-)@SMfsBv?69y)CO{2R{fzueXrI{ zsmjCxlSV&LxY)+OaoEzFrNAHxs;MJzKN$H!meVP((yXNiNKpz5Ngns?eo(7_*?nrz zqQ44(34H+ESDk#LSHxHq1SwL0bqa=~8l1d&#&e7A0+|g^5mdIX*Y<~WK|DCH7z0GG z0rnfli)xyN@RX~XX-|xN?}z74%5uKC6VBZSc+)Us{OS_aSzGk`#PQ|P*w8H3q_qH| zSc9)`ms&vFVIo(nCF-ISR50CO1%!afGzX5|556P1F(RZXK}FE5LD+ISQUhOD-cr&DDH#nEPK~Z% z^g0kCD^iOhXrrv&66=|(a9kr zsi|n=1zzR7UPG11%|-)(`R<3y?58S9gReo`tX%ZY^i#E8B&4!{JRMJH#qs|DtTVHM zqT?+*CC0-?9(=~qyDBpk1c%#!)&}0!M70r_Aw+Gk>N>;RIH82?wfzWbvg{4dei&4&+b?*gdP9-_gGY6;v&%3-9N;UJ1#cW)M zR#haOUD+U>t?fSp%7Qj*6^cD!2?{O8=gU}3^qdyCh?kQnQ5lASokFScI!2#?u!?0M z5&<6PfwIM0N?Ec#Wm6*2XbGF>SKVFUt0G30jEDd3A*)08OqhlZ4XeeJ|svRKw< z%~2{T00h6X`+zs)`nJ$b^vcdEd5w^#=|(`AC;~g?cIeyF;~ikjQkN_xMe_Ju>(Tl_ zOXA8WC6?thay5a;xD_ob$W3=T^xLq5x!7I2ZvYR8ffVRK(4Y(AMs+a(y zsM4^L(3f^vkdk+L4rvZ|Oq8rR(t-4M`iU=E>-`TZGHYArg4_0##uLGgrjXdC` zg31yJA)2gr5rN>0PnKv-l@)#IQU!mQ*Dw5VluHz4kkvHOq;epfv|ctZqSlhLm4_p7 z(kHgwl95FREbM-U5H5UVg|3_LvE)OpD7aH-mJ~lrE5LUHN_=9a(dqeiIdeyZom;;_ z1J{Do9ZnBHzfOiI+%}@dtW)qYYQu_;QkSoIU6Mt5K1YR00F6|aAa^}R+ZeHFz;=0n z32Mp`p{B!k9dyt|n`SCXP^GItG}X;E5UYkS)aNTogRY;mLz0#mFzuN#r!6U}Q@7Mt z;{vf|@+K`gc67P_0Psh}-U{CrYLbGvW5mRe`w;Gao#9gpT`HR_&km%8YRAHL0=#eM z3+%-)U6n~nNDZg6upGsEzY#5qc#fx_=@#bRnTAklTA!cNAfJS102G}Lr|T6=&vM@0 zxMd(|{0}O|Tj^r~DN9tzWm%Fc0Hf@o+jjUv<<%`xNl6Z%GXv25V659|TT!Ub&o2{r z?7+xyQJk4z&p{<2t5Qe#Q%Bd`rh&H#+l)Io~Zj?$v zm>O6Bq_Luj-1+=q<1htUFWluJ@~21TwRkNf4;ElWY7{;2FAm{@mok-^>)3vA43dK7 zg3OW9z8$+BVZiRiWFP^$btLL~bc?m);v%f8c5v>`M7J^TuKxgafAuCT;c8s5@9Fi6 zlkJIZ2mmvHUH5VZ^!)TVQ&{*lP!dz zRJ9=>I8hp%o1UjZMu_J$PL+KT;^K+qOkjeNQV2VIj^G_*b&-q`py@muq_IDoLQWd= zY=LJK{^1QV%lL-5PNBA-r2r1mFZ>EX3^b^HOLvVYMMdp)^kynuNvJxsFyV{LsVX3N zL16pBCFEHJ+4m_m_j9y4dM~`fke~=rKcMd4UE6kw*|<)xE2T=#%u=Mk`+K_ zWi?TeMtZL@W|cBnowH|na?MUm^&72{K|)gkHmN8m*-Ms|cM)~R_?KnkhQ9SH6;Zew1&W~C@8 zrt}d+LcVYHB{_$()gV9P?*J`^ZK)~BqmY_2>N)AFLA%=cKm`ZcZM5o74Fv2rni75uS(WNRAd~G8;caWpJ(lJPrh1b# za#Ay7ELQaZ`3gK)^lf~U*^-rvi%Zks2jS4civ+ZSsfuM2T510PuU6~(4I?`4P0=h2 z$~6LqV1BWNV&Z*##$la9ZwhHb0AfuY&a~z=%YCSzDEm+PUrwE)7{xX~h5FK>04~nq zFRosnXs&l4jgtsEB&Rc|HA=O8%Y2!<+6LL@pv_qu(xSe6MLaise^Ds}7EXq>Aalep zCh1B-f<;YS{3{E3)KaE6ygVMSF-~wn;Qs&+g=e}YBsl=9^(}^HW_WAHN;#61rSpQ^ zB_V-x%dl;JFu!HHH*BdM$>a?|qy| ziU1ZXI+q&<)8pC-PP3|9#3p8iLAP*uKhKjymIR4&LM8sA<97f*8+q+cVY1(c1jQv& zYmkBf{k0H6(&jt3<}E=e43&Fkgj3n~^o2}G=*D6tC0X(;mninX`5vcQX&Xwc#N{9i zjwtP?+5&n)#0ioDigPe-t;3jikJ(N|tSyC>iAi!RQssirAbvNTT(w<}O&uT?>Fdslr021889`=ej4EDw!y6MC`8P zdT4foxLXwjr`3>M*+Wv5Z(at?v=v2MX@k;fF^g)!y~Jx7Ew9mev`q?>GdaqXZaS0q z(msg1CFW5Nndsw>&x{enH&RdvfCRxrdxZd}fy{ASGdd1-x8C(~+9vJLYV# z7>uAYfh^$YdUu5h_rj(GN|c{g6t{Bc#N7V?i`1I-joA7xM8K@{1Olh2eu4p`0HR8X z3Sb6|8{gIyH&{O%&z6)*n2%>vtkG)aC#yckN>UzVT30e+R!&gBv$*ZjIj~p|xkEIx znhG8IxZgq`waIrRg|HL=2Ra^4Sgj??{>+t($0|}o9$@YTv4lw~2g1dVZ975*^JSP$ zM3SQWP(Ruj?_5H;R&=DL2A(XZN7uYjR5pu9nxUUF=Iv3}tXW8PUGnNMD#_eo{glJQf4cK09@-_s@0B#&W<45`-rH7 zqG3t`MpT`B=C#$1k=@Z@m`8&s4&!mI@WX6NsVBmfCvWmQztRyZ+&3YXew$V7gE%OiF2nm*=DAg)7+w;mL$2QS6Spz8v@ekTD{{Tn#HMG%0rc=-# z6Ak+gk+E1kA0b7(VN-`AZp{UR%x=71lQ1Ba1p`Gn%16uhf*98h+pRK*M6d0prA16u zk)cfpecZO4Vea(wAtd zEE$jOHhIaDHCd&aR*DC^vEG8T-ZyL$FsWrp@jH^EPs7qMbYYb#V9xeQsTu>{>LciD zhWeBwr7})ziEhK8-=Dz_3UHE_K0Sp`A^_tXOA#(yupKl|6&ymP>u#Qe=1D8yJzH}9 zwu-nr(qJnno(fjq+dC1*L&$}nX~Be9ClqB~yOQj9?e%~dg4yc8PGjPu4ST;|D0;c< z6DN|V@N5p>c!LpoE>zI0vjP-Yq>%b+@9sN@pJc$U{{TzNl{JEZhwwblvU9)&E@lj|lY*G^&-u|N+Xetk{6Cv-`WRIgSR zUWo&D>#xb-ag}tVhpt((Z9-(kGEGD5DYsrDU%U{>WR?{jf!Y91yZ}*9NebZa(01t; z?(5AV0Z7tQI@e4odF>!NiVM__Ujg~JmNen@Pz5!3)-xu!5{`Y4LiWQMTJC{ zA)mwdKWMM&aMqg!a#V^Wqytudv76$%06D^tT`mxJJ&zFSa#`j9;sorGs3YYTud7-} z(IrWxexs(8in)P^;A_wNOGBA{*R+@LhiwdR*6Tu6oX8ne&N|YcpD4^Pyf7xMB_L`y zq39!1u-VjvCBSn)+zL08EH_31L+0?jS!tuED}_eIVx|@gec!vlgl8Q6GOZH7^nuY)*&caR!0R# z#1FFiKO!2fcjUFDl~oFY>_O?%$`>#V-VCymTsyJeF5kC%6p)q!aZ}j-(KSPou`1F4 zKsk4P;CZyEPNt!!Z_g;NWyJCT%P~L=2ztM0xp!h&DF@Z9DjEdP>&UO+gF+d%yu{^5 zVwI_nJ%1V{^oMduRDz`gofSz*Zs6?4&IR7Gg-KONelqaU)$cS-vt%x?HyV@HAD}zv z((pp$fB;T~jY%AX#^Md)WhBeWLP#WPbT2|j<5Dmz9qBCD6_R2@BrrWRuV(%uQU3tB zku(AT@i8EOFu$tx0`6oi&Qb@oiogE=Ybm9AC}~!A=?==fRV_M?@?ofdyer)n&{mX! z0VIM(y*|*(dRg;;0WK&>(D4FG*Zq*GrU3P?F>1;S0{c-ULqb%{to znuOH~eJWGGYCtS0-es|_SP6|c$QqXr7CvSi=N$w979w`f7!B=*pd6i3_obfkW?6wm;tU;)d zR6tHr%m+Pb^M%`0)`Kif&5-JPox40zRwhsyR8i~h(ksvtx%0`+>2!if?ZBiIvSLN4 zS`?&@KPa(w;~64Q1)ZIg#O7cMK^r_Q;+$a_kBQ^rzGF&gGL7N?J;k%LO6ZZYj3HoWg!Gwz{R6NC7I<{{T~L-M(F57-PhK zk#a2|2rE*DfFu$L?Y}4Av{|*^_PL2{nL!RyzS^Dq`G6QY_e8}xOBB)i^!Y=)%fw~M ztxkug&_fNnE){r6$UFAvVvXZs0%M>TI`-`ZFRWKC%#f8SiAgE0`=7KgSg{D2>I67# zb$}VH*mRVGnTgOv6j%;sSF~I)I*yw=Z3OIh@>GN|qD@IP{P{FTdaWd-%bi0Vdj9}0 z!mYC59uS2P2DER(1ugeFRV^dhqboNZBBi=xf(h{v;cWwR#96v;KoTCLY77CBW9%*J z&{UaWN+ZH}96!fRqa>B+%FuGo2}#aN)Cny(OfARQUs(pjY$X2-pt5 zq^zXQNtUIb0)Tv^mZeyyki@Y8oW^{(Y0He$2;e0tX-%P7kOGKz2`4}cZXL%YN0-;5 z@kzU|=PZhFhO&wxH6DxZATr_5JAbWW**~m;zp!hSO?} z$LAURB_Arw@a@8xq^%mHhAhRqeEPI#b__0wiy7D?3YD6kpPWSjfF{}1o?S=``>|(k zDhAO?*@%{*l}S)LjUTbo-5Ss0ZSO-bPeq|q6hQ)BfI9*YSd0Gvqsu*?#B!@MCA1DU z?m2=;#Dpipg%Sl5&rdxeR@rWuXi!d4;M4~JD%!m_I`O1V7PKp#=}N#gbe{`XO_~cP z#uBOwrByr=xOh;xaJ9KA^@&krfXFS*%mogw?+#-@l{`*B3uMd`CES&82h>Hwj%`*p zmQqMd)E!D+k+|vhj7u5bE0&^^kbl@v1Iuye#BR2mDzduj2B1c9jWD^M2+8Wn2O%^A zsijL)JXbl!xaHZuT`-X16 zoWYyF6r{dq3Pluyp*jXU9Y=GeV>xaFH=Ws(sl$hH##8xNHHL2xuVFz+MHw{%r_!HD zt}aRQQl)4LOK(n5GUqEeNz5xLlQ>)N%=%7mZ`xiN!FlmU7`9TwYv~72|55u zT>CzI^n@#A=94fhnvxENBDG=LQChqik(QMpgU1#8c*}1))@-@S6BCiDM#q8Gqdt7` zQXR4Mg%A!xuyi~hnQoC*!++0^l>#WB6vn!BIvP=+)sp%3ssO9m0G89Y(joMnX#!Gm zGNvY(K^h)gQT2r+x8!OveKN{gNJBpAC7DBAcL#2eZ_)RqRZS%tsV1u5xjGc9ZX*S~ zJsm1g3rHy|u29E0CCk(08t0;H6abR z>1qU&g={t)dHFz*dzlJyKei19rTcE|?-y)%)l;0HFa)#f){$FCm3v_S0O--3Dp5?o z(p{7e+O;<9d9Uw9n5j04P%3W%4L1j2@IHNGMG^$Wtj(z`$!a)er*`chJ>yd{&206l zNk~_+KxC3XNp4GPxakN-(bt`=OH+<2HK$moD%x0*!Gnj;fwT$0cgUMBJLOV`h!ekh zIN}Xn7F4V?7y|u#;)s=b&vH)N9=$uj<1v-1(bQkzzjGE$%c>93iFnOSlxBOeaCgBQk_ zMlq6=GQlB0RYOoX>JMK1MtOPqIQ5AB(OQ{;Qz(be{l9f0I+{eNhWbO&K;0G3jfh9My+@}+*pG#gCj05t}^OjEXAa>*1F zsUSr6b@MJ@@c2M2U1Fd|dssq4uRDEs5wLy?7sa@KWcg}Lvg#}V zc5b7}p|^~u7)f1~Qc|@P<~a#El{UGDZb5!)3Z6D8Rx#?BsAfFWgU9XK7o{sVfo0R7 z4O7?nia27_wIRXGkY6z_Nz-4(iEn&RiE|L6MG)F=2eNs7T?&vhC;O;C%z$-I`i+~7 z54=UYlNYLXKtTmb(^3afv4bnOqGY3{?w%>EBVcRG)hNAAVi0*xUZLS$jN6N_!X`;% zx)u&nNZIz(7u!Nfpi>;+;HxVAQ6Wi5BahF@Mn{D0_LD4SBrqXL4jk=DetV;2 zUF9&mrGiR`uE2764ex?BTbT$;6sM&qOdX!EX}*(f2q~2?D{xlYl=4Fgv8ZjR9fp;J zZBt5fewByHbO8L0kPFgvz=VXUDfWxFON5sdP!-Bc4#qW01&A&}GUXl+0$!>hanHu5 zkqn3zt>_WApvuI;2!58XLI7?L$qTp@s*|?3q%Y6hSv2sIKccA^^CDWukGUbVxRpKe2 zECB3UEnm2KMFiQ^l*{pEBXL$8AzKnnOqCUq04gdV7x5^P-JH{i(6EjF04{X20Nfs@ zlNORb9rT?rFC_8m)S}MKnD@}Wtq+#F;ZsmS(X|`?-@I4FxKdoul&K))E(qJJjmF=! zQMvBrGG#H!pAKT~dY->%RvR|PR`DfNXDsA1gU{YKTqS?YnJo<30I#|E#&?c=6(LC^ z7hZtyH}m+%9)<2DNqKqm2R;|59Gy6z+sY3?swTj59JO*oogsev!wXK?lw6kS7q2VS z%O@PVu7VOP<{ z8#0y=InUH$?TOE3LBOM$ldmMaNJ3?rFm3kX;e7aR1p`g7xEL7=#_7# zRSjrhh8dhDNJ^Tz5%>n0X#u?^;aPKJluIQm)jh`Hwep4+?wm{n(B2@E& zd)6yoxQI$gQ7i%TtR>;RN}`02w|#Q#+{BpLah)xZ?SS3R#KN4kXxy9ZP9U&IEad7F zN|EueNU@e$W&o4oAE*Knr_tZ(8CBDH%(JK_Y1n5yOINgMRvSVl21(4!K^l(nQjwNT z?v?)lZeReZ!z)7Cv?gBjq)VKTl8^zdcj*nbo3lK$g%E2(MMpj37xd4B(20_dtSP8c zf=}rhlED27JQt&Gw#gw#%!U+jLDrl6VK#m0xrZrnMscs0>!+K3rz(%E$~+*^X@3)H%1sNAQ2NAf4{e6Wa?46nn1V+vYxz&K zEn?YYGo_0Ff(M_AzgSzku?bp>1(0Z^G0Gccng{;?EqtQIvhye*0WQ^dt8hN9esNTe z7y?soa$T>(`c(>t)x(Q(%P_I&jEN2Q!f;Q{gE@NCCn@5Id1SkQ~ z#_lvDVk-R}7A#gDQiCPWhJfn8P*=CVq&u(;O}~>d*-TGL7TNy*G>Q|kQ)W(Tkjit- z2kjhT{4?SUB$V;DcIm7wUl(CS)sUqUPk=CET~$NbsjIysK6c5`$ti~jdNz`!Ds0D8 z!l$8N%*;mZsCTVelrMYwD6)X1C8dCprxYbsF0Hc{sn@>T+;%C6NKqv(Q%xUX+pJKx z;^LKhvI>DMp>q7i%h45Z{J}2N5}+A_6YxJ+*D(a}wB?ooU=D37)8iRVA;FWTOiI#+ z0D@StZVyj%RI=J_3Y(Cuk{IN00stJ1elWkLa=vZ;sTq@9wG`_ag^LsV*~$w5EYvLi zraBG|r(L0s3na~(G%QePHz#-G_R=N9UWwAAXOyCefVy1!EL`_}Af1m!1y2*@DGSu4 zgL_7l?bOD5==RFF7MY39ogpAGE*;ANIoC3@BnT5H5>J;n$s@!Asd^F)y=y@YxL)^{ z;+QI3gNEL(`Ln|q*RDG_niPVaL#WU<5td>rl*+YwzgQSD@|_Zs*RHVRD-x~3B@vxL zvkd^<&&jHLISV-M<_VsO%U6hmxzLg{r_7yspn#)8GF+hry^*C0k)$Nz%qW$px{5+{ z-_7`jo2?3%fUgKA+fn}j0^c6pAT}(zmP$%g%owG$PQ?ChVVBrO6t$*W*eok82VQrF z3&!?D#FS+KJLUz$_4nx*jk5~cGnt)OwJG~*e{l+T_2+Gtawcbm>fqJr9Xr=jI>bx+ zU5}!rOqQ~guu&CBZO1*ff)?4i68Q>=eKzWQ@$TL}Uc&y8XQpBhvy^A40K0ILuzkoh zdU5m>$&AxD1Oop6<@x#Zhp?JgQvDX;XmYcvyyQ8l#u24ZQ9}OUi(< zw3L9CW0Vi}4C7}tDo_*zuw#?K$`8z4+VW1 z**$6yGlIE^bdnjLK-*9U2X~Cmwuxt!g(QWCbkJ_y_Jo{ng;~(xq`sTw2X1KuSA8l< z@+(p9EvSW`NOy_#N}5OyQaB%KRK}N=NqKW#B@Clbp`aR?eo_u!*V%;)12wsX#LKkX`9+17uIRq&wAh-nc z(ktI~;+(8qCyLjD2r{uimg=o4Hg2crI>qar_A^V7?Ie@Y^k`o{mr+-!RP?oKT+=Vq zfE0oO?Z;=UMM-z;)PbKmNdc;L`Zlqo*)FuWD*%Ex-)i@5VjN|Ly=;P{`)R09XAQG% zJH`C7q-f>KdKs2<)j7x@<}{$xw?6*>j3``|V2Q-lDte7af17^M52G}bFDj^~BBxFc zx^4rQIecBk3iXU1MXVh_-10>MXqt3a7G3C_FE-sqiCQYn|kIJBVIKFXp;TI2v7iu@A=FV z!}3urE=!Z=-X>hcsG8B~-Xt;$Z=ymcrfjiC1hdt)BTB`;OcK&%p=mTv8o1Rxqgs<@ zAQBF=BkKtGiv@)#l~j@x!}F>0@`K~jr!Lsd*=kT?%n7AF6^&B>U)dQ7J`zbhw_3xM ztI_nOAS9#$1r$f+c7;XE96{9<8drCvC&YcPIDry8 zM2}=`_Jli4^0{-!QjSo;BxqlA#5l^l{bC&?W=%`)&+QeEmhl?Fmzf?C4QXD!aEp51 zE1H~{3w3rRZUr3q!zICQDp3m{^gn1PCfhA4$gnl=o_aSU^GKpATsWMBWl#vna?$=j zgX2rq+xBoj+W~23P&%F9u({=xF-rnTJgdLuBK*6dGScRzpmyR6)fTQyV3jE(rHD19 z50p6n0N)b-0Mp)|yeZ7W%F1R0gr>XI_)pZ0AP4*^xcJ0q5Vh#Vi)q#@SZ}PX2qYc& z@`@96Ph%DagSGDQ*;N%^C{Z<%I&_QyWCB_7C4asu^zj~(E3quWpa04VnF_I#BEAxsH%6EMs;BTp}JMy@8yBAZ8_l0A2SF`OGz8%sDYL62A&kYMiF8$?7y{1#tfW_I%I% z2gy+LhxM2L0Ln3*&34~0WDt#iJo>eEULX1VkIFXGoozUg zDM2pm{u*jEZm=FkCQQaDqEyaajyK!I3AmToPh%ADSN{NGqrd+EjSH7b`fPS=IF)$I z8awC!2m+Eec8yR6?#ltBc78LOAQG}e&$=yvEf$%b_0l}ks2OQ=eeH&Ebxp;s6Ful?gs^cn20 z{{Vlq5cwH##m_2azf?c~C=!s6&Dt}o_X^q0SMVhPKrmxnoO7rZ(lndr{{TF$%l`oI zlNs(b(O>>^>j%1tdjRxzj3=iwti+)jDP#1#8iPREKG0MCaLu3U@|6%>PM?ig!RYN2 zZvOygS7Y-qPY(Y8{X_o%+^6djqvgKPq)Q&C1idoq8+PjmSCr!|MMW&ngVgB3t zeBpl>>F$MkiPhXYXh}g>XLjs(@`e0Ui)y6-YQ_<{@?!qvc5tW@prV3FO(_E ztzI$z07=&MBrbHn6z^G368;{7rkXzR*XX+3RVg#4qGoWQ=wdZyVc$^z?7rH+_WH)7 zVfInoAN~?zXMB#NX^BdFc*Mu}$s0K+T)0L>@lxC@GZ z`xi%$&>q{hN4^}rB7flj0OUSm z1K{ssXXf#exS6gDY9?kvs6`SF9k%biV)f~Ff{>OOwH-X;IamH=f9gJBHCuL)zw{A8 z!$umhrBc8ttpmFfH}mq+FJF0OoT#lC*_2(pz0f-d{{ZAiWqlx?EdKz{FaH2h^APM4 z(zUANo>>y+5`{4dUoH8}1HJHql1Wh+nxkXL2c&5CZ?!MWQ`U>Q38D|`y>AV&9CJZE}o*n_|?!Q%BLs&c@S#b zdrg)@oW$rGXw3Z*dosJL{{X^NYdEX_04%@#L^~6zDzwgG3}NyUB`G90pl{XuKa>T$zwpe9H!rg* z&*UL0Q9IVpm$04iu4 zw}kEd^8jZ~3u3hQBXjqTt(wLAzyAOdd#V{=b(Zb*U??$i?ZD@}6_tx}vQ^?pG^eur zpUP_$28IG&9?akUVs{DOq$|_f9di>xX~v7+t)z z{{Y~AaW34f6hMXV&0Fgb+ z5_Wo)@W3jaEM`$N6GX779CZ|e*B_(#sF3Rb01040Bcitt#5ml3(qNUNMft@W=KI^x zAN32EQV86gvmMpX3?Ujtn$uxfl(Z^rwEHsxs1D+x)B<$jMV+2LsJVTK-~4`JGjB@2 z_>cah=3;qF8p^MXePpw#D@4|qr8<(Mrj;e>)2C?Iux>m=>26diC?8%MzcKv&^wIwS z*~9bnN75dPfALEH0P|z%7t7JNOI_Bv>jWO10MmVYMJbo@l%jz7k-o%j+M*k- zUtoECVH*^G=RN+Bow*VPISD>dFSL+$gms$PeP4s=D zdx(C}b;5Uyuz-x&NcWStBZxg>o{6S~B~=-BryV0Ky#E0EDP51!3t)f#%}4&9Xp3-~ zt`)fd0JupRQUyEj(iid7i2nd_HB7RS0>4v{MGf61qqmXJteOw~p=%y~uF+;+!k5BV zXO}5QGSUKOICmp(ejZ&lKPd=U zD?Siw_wUj&$(LmLiUna_s5uYDzE7(XIB3x?&uv~%X88XA>~;1ZNMB>oK{km3R#91= z&_FGjsycQDh=o@C$Ud+sCA4R+el!&83zi@L$sSRoU%&X%{{X4^h;&t46CebvHBEbV zf_J^{6X8#ZWDou%==?-jZ-4!MkqUjOzx$8>00crB7e5Rxa0{A3igp3n{*g{@6HrO@ zWV!ILeMX1yh|q2i*Z%;o)J1EX+E;V)gA5k!x>aXDGgX~x50_!n^Y#q4I@~z`IM;yz z@wfg#2v@wpY7l28tGiqrRY}4h;Et@F?=ym9Q@VAY1^83K-CHg=15gXa# zP_7e9CH#hzyf9gI^a^e2~$NvD;{KQCI{{X)fw@PK@1X063 zarP#$lH>dxGSXGyY{i^Zr?2rEdbRQpKzlH+8OnAyA3a%p8(P3&FodV|62$qpx)^ZY z1D2H;la#r$17%4pl!3a&h0T9aC5;+23ECJ>m+h;{GMqj>j`GzD$!JJY<|WIViPZid ze=ynT_S}`xNNPH0!>jiDouOj+_NDhfNN>1(q<{Ip{{SjBz&~ob&;cL?YePZrg-hDY zF-TJ7G8P2@-M(G^@W!uW^Q2b7fBAp-tK=cyV2yC!Hpze8o)~LgYepl6=bZ!$^n{y5 zu2Q9>Wuxb30BcUa{9 z(ve>k-KNk2rX&?C_z|ca5;=A?@3WECU;f$O>kfCWlK%kw+5Z6W3_C`E;OYLY9;CKl zYh8Q((8)gJlQe>~rH7q)jPl3-0NDzM`5wss0N?2f-hvx$5+IVE4pGSMzrHei&gh#d zYEp`h6pLavkZn;Oo=Y zg#Q4kVCKEL!(Hh-2F>iAD#kKw530Myk9hw8;8*6xGZVIJh%YtFo)Ab9!n`CJo{gst z@Y{FTrXZS;n1bg~?>ceyg;D;vM3AE&l+G5oByl&{DSwB?YKU`ToKV8_)sbZ-oa) zuW$B8m&n3CFV%niK1M6(&z3u46tGHjCt!9zQf16k#Eh;^U?}fb{vy58{{Y(m z0QDbOy?f}M#wK=JmiD_P&Ph&oqZ8Bi_{L#;*#(`wQ6%n2aZS%ogS8#u-tYE&{_wGV z`wH%Uu&6xYe@K>j^3cqeDMFD_$~2%gX9cOJN|TrM>Xaa*Ab4s(`uTMdTxKMAN88`-FlPEo%m5+sjdWuP-i!YL`#gX7rGNNHhwIP(04z;7TNg?ty#Om! zTS9*E#rt*%s8A03 zC-dJGy$DNu-m^mf7pd~wm^JC6*&UPeg?~mL{gE%Yih-fuwpr*?zxMdp4*Szy@tgWj z$?A%TDjA?5Ef$E)HwDFCf)0Wj&WrB@Ci@4tioz@5EFhU>c>znPlKo4$=zY+`dR!t> z(>b!F5D6NRe;>44xxKR=y(s?x_AmbcH2mUl;N9zIbcF(y1qVE&a(MmYHN_TCl~LJD z#RR%wX<0@OVq zm)q?L3HFu$0K8AqVcyq%fh-jlU`L*UkgtcY^h{PlgPUdUEAff%AN*54HiaBL zuabUoJg;hzs7RiXnbgIbr@j6Wm0cHRYih}uLMr7grCVJK(_J1M)1=<;zlZ+-Uvc$? zzeGDC=RhE_8U-jCsB_-BfFG=1pFJrBMMo+@XVqOB=H7Ac$?X8K28r|eh|q{uOQY7> zOv!^N{UdS?=ca?>*~0k30$KHl@Jj#%rJQxG7#-hEU^UJE0NE$Y>l&2*0Q@TKVS808 zT%;s|D@Q##eYuHoJ<~F4s8=&FHD*4_xCNkP&+Pe+lxTQ={{RC20QXPM5_GUG$+Ggl zgcf12{k8acm6vm7Q6rHd8%&Chck`+qVegqbm=;+I7rO096qZIF5ULmr6p7En6 z{{Ro?1~rVx))WOh7EXx-Xx;vBa(&d9pap>c0Hw_-^8R9ywDXG>R=@m{^N93JgVJ^c z267Ozt1&tP&NxpXiqnX4x-!`UOtpAeWeTe>)2tr!k^cbM5`X;E-;j*&5dQ%7ul?2X zFugDMJBl%KX84uiDIENIc8vc36=HSzysL6DmIGE+p8fhfPrASNPyYafm=lk+^H=`> ziy85|MJM1ZOw_N`f|8X2Tx%`KEDxUGH@FS=1KZUoq#qFY z8~xS#dqwj1rOT*qwO`C!fRV%~dPBSdvdlx#E?Z{jXzv+&9%3Z9{{ZnXx7sV0Q&7pU z_oS)CQxZT5O?*Jr2SOiS_1-q0M;OUDKwIY3N0;rtlQ(F=@9+N0{{Z)2Sbe}+`@WGp zZnWp=u-k9cD3GN1TiQApN3>g|`t+p*j=4`=GW0QO@b(q|0LnA@zxnL_$IL-)c8MFJ zuVFDcRV~jd8}uDDfXceiK?SMp7OH{#>>#a!LEa#ns=xIgGaCCU1$f}}4602*4omU0 zUAS+Yz^PxRjCIO7d!W^m*z$x4KHT5^lMmt#*kb-es1N{A%n2SL`$HA)CFPKsrAaz! zUuM=bD<}R$`F&$Zvwoi6Q41Fth84FbEW{_E06ZMCQm7UJ?exc%5jR|dfZeY!kNl459aX>U@~!r60GU)fJ^>!q$@AdI65btybmldzO?wj{kycAnw*LTF`G*aE_H54T`bX0@cmDul%{ zY;Q0j8IVA759eNca}D>l-QiCjXgi;jULV+9pB*fbP?YZV%Lc4>=`>5I67TkmZtT)$ z{_6h#@S{}1p2WVwBCnL`q+J)*X9{3I_lQ!nW3-veN)NJk(YicID_NbR8@j*qEB^px z{b9y(KA^H*na~)5|<28 zeV-%pF`oS=UpL^}y;7!xu2~6kK|iFw)cd1dRp^wn_~}v&J2U{qKlu-F741IBg{z&r zyfGxHiYibE${2M6>lyu%(h*F;faDWE#=Va*CGn{51912LPdExzt#R5Gpa}pdwq9GW zShbFCu_q$3l?~fb%8XBNeMDHjy}u(4O*{ZN(qSO7n1Deb{Jq7shC7Q8E_hN_SOD}5 s<=zX(+pzgS`-54Z`$HIOmXNtgKn9u~U|0R7zxIZkAF!VARuRbm*-;KQxc~qF literal 0 HcmV?d00001 diff --git a/08-Hacking-Deep-Learning/imagenet_samples/imagenet_classes.json "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/imagenet_classes.json" similarity index 100% rename from 08-Hacking-Deep-Learning/imagenet_samples/imagenet_classes.json rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/imagenet_classes.json" diff --git a/08-Hacking-Deep-Learning/imagenet_samples/stoplight.jpg "b/08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/stoplight.jpg" similarity index 100% rename from 08-Hacking-Deep-Learning/imagenet_samples/stoplight.jpg rename to "08-\353\224\245\353\237\254\353\213\235 \355\225\264\355\202\271\355\225\230\352\270\260/imagenet_samples/stoplight.jpg" diff --git a/09-Generative-Adversarial-Networks/01-gan-explanation.ipynb "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.ipynb" similarity index 100% rename from 09-Generative-Adversarial-Networks/01-gan-explanation.ipynb rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.ipynb" diff --git a/09-Generative-Adversarial-Networks/01-gan-explanation.py "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.py" similarity index 100% rename from 09-Generative-Adversarial-Networks/01-gan-explanation.py rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan-explanation.py" diff --git a/09-Generative-Adversarial-Networks/01-gan.ipynb "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.ipynb" similarity index 100% rename from 09-Generative-Adversarial-Networks/01-gan.ipynb rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.ipynb" diff --git a/09-Generative-Adversarial-Networks/01-gan.py "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.py" similarity index 100% rename from 09-Generative-Adversarial-Networks/01-gan.py rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/01-gan.py" diff --git a/09-Generative-Adversarial-Networks/02-conditional-gan.ipynb "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.ipynb" similarity index 100% rename from 09-Generative-Adversarial-Networks/02-conditional-gan.ipynb rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.ipynb" diff --git a/09-Generative-Adversarial-Networks/02-conditional-gan.py "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.py" similarity index 100% rename from 09-Generative-Adversarial-Networks/02-conditional-gan.py rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/02-conditional-gan.py" diff --git a/09-Generative-Adversarial-Networks/README.md "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/README.md" similarity index 100% rename from 09-Generative-Adversarial-Networks/README.md rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/README.md" diff --git a/09-Generative-Adversarial-Networks/assets/generated_image0.png "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image0.png" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/generated_image0.png rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image0.png" diff --git a/09-Generative-Adversarial-Networks/assets/generated_image1.png "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image1.png" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/generated_image1.png rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image1.png" diff --git a/09-Generative-Adversarial-Networks/assets/generated_image2.png "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image2.png" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/generated_image2.png rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image2.png" diff --git a/09-Generative-Adversarial-Networks/assets/generated_image3.png "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image3.png" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/generated_image3.png rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image3.png" diff --git a/09-Generative-Adversarial-Networks/assets/generated_image4.png "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image4.png" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/generated_image4.png rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/generated_image4.png" diff --git a/09-Generative-Adversarial-Networks/assets/img.txt "b/09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/img.txt" similarity index 100% rename from 09-Generative-Adversarial-Networks/assets/img.txt rename to "09-\352\262\275\354\237\201\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 GAN/assets/img.txt" diff --git a/10-DQN-Learns-From-Environment/01-cartpole-dqn.ipynb "b/10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.ipynb" similarity index 100% rename from 10-DQN-Learns-From-Environment/01-cartpole-dqn.ipynb rename to "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.ipynb" diff --git a/10-DQN-Learns-From-Environment/01-cartpole-dqn.py "b/10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.py" similarity index 100% rename from 10-DQN-Learns-From-Environment/01-cartpole-dqn.py rename to "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/01-cartpole-dqn.py" diff --git a/10-DQN-Learns-From-Environment/README.md "b/10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/README.md" similarity index 100% rename from 10-DQN-Learns-From-Environment/README.md rename to "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/README.md" diff --git a/10-DQN-Learns-From-Environment/assets/dqn_net.png "b/10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/dqn_net.png" similarity index 100% rename from 10-DQN-Learns-From-Environment/assets/dqn_net.png rename to "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/dqn_net.png" diff --git a/10-DQN-Learns-From-Environment/assets/rl.png "b/10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/rl.png" similarity index 100% rename from 10-DQN-Learns-From-Environment/assets/rl.png rename to "10-\354\243\274\354\226\264\354\247\204 \355\231\230\352\262\275\352\263\274 \354\203\201\355\230\270\354\236\221\354\232\251\354\235\204 \355\206\265\355\225\264 \355\225\231\354\212\265\355\225\230\353\212\224 DQN/assets/rl.png" diff --git a/11-Self-Driving-Car/README.md b/11-Self-Driving-Car/README.md deleted file mode 100644 index a222bd7..0000000 --- a/11-Self-Driving-Car/README.md +++ /dev/null @@ -1,10 +0,0 @@ -# 간단한 자율주행차 만들기 - -앞서 배운 CNN, RNN, 그리고 DQN을 활용하여 간단한 자율주행차를 만들어봅니다. - - - * [개념] 자율주행차란? - * [팁] 자율주행 시뮬레이터 소개 - * [팁] 설치와 환경설정 - * [프로젝트 1] 딥러닝으로 자동차 조종하기 - * 더 보기 diff --git "a/11-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \353\247\214\353\223\240 \353\252\250\353\215\270\354\235\204 \354\213\244\354\240\234 \354\204\234\353\271\204\354\212\244\354\227\220 \354\240\201\354\232\251\355\225\230\352\270\260/Untitled.ipynb" "b/11-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \353\247\214\353\223\240 \353\252\250\353\215\270\354\235\204 \354\213\244\354\240\234 \354\204\234\353\271\204\354\212\244\354\227\220 \354\240\201\354\232\251\355\225\230\352\270\260/Untitled.ipynb" new file mode 100644 index 0000000..72ee46d --- /dev/null +++ "b/11-\355\214\214\354\235\264\355\206\240\354\271\230\353\241\234 \353\247\214\353\223\240 \353\252\250\353\215\270\354\235\204 \354\213\244\354\240\234 \354\204\234\353\271\204\354\212\244\354\227\220 \354\240\201\354\232\251\355\225\230\352\270\260/Untitled.ipynb" @@ -0,0 +1,105 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import torchvision.models as models\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "alexnet = models.alexnet()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AlexNet(\n", + " (features): Sequential(\n", + " (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))\n", + " (1): ReLU(inplace)\n", + " (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))\n", + " (4): ReLU(inplace)\n", + " (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (7): ReLU(inplace)\n", + " (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (9): ReLU(inplace)\n", + " (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (11): ReLU(inplace)\n", + " (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n", + " )\n", + " (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))\n", + " (classifier): Sequential(\n", + " (0): Dropout(p=0.5)\n", + " (1): Linear(in_features=9216, out_features=4096, bias=True)\n", + " (2): ReLU(inplace)\n", + " (3): Dropout(p=0.5)\n", + " (4): Linear(in_features=4096, out_features=4096, bias=True)\n", + " (5): ReLU(inplace)\n", + " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", + " )\n", + ")" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "alexnet" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import onnx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/CMakeLists.txt" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/CMakeLists.txt" new file mode 100644 index 0000000..bb20b76 --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/CMakeLists.txt" @@ -0,0 +1,8 @@ +cmake_minimum_required(VERSION 3.0 FATAL_ERROR) +project(eye) + +find_package(Torch REQUIRED) + +add_executable(eye eye.cpp) +target_link_libraries(eye "${TORCH_LIBRARIES}") +set_property(TARGET eye PROPERTY CXX_STANDARD 11) diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/build.sh" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/build.sh" new file mode 100755 index 0000000..178caee --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/build.sh" @@ -0,0 +1,5 @@ +mkdir build +cd build +cmake -DCMAKE_PREFIX_PATH=$LIBPYTORCH_PATH .. +cd .. +make \ No newline at end of file diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/eye.cpp" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/eye.cpp" new file mode 100644 index 0000000..74d68c7 --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/eye/eye.cpp" @@ -0,0 +1,8 @@ +#include +#include + +int main() { + torch::Tensor tensor = torch::eye(3); + std::cout << tensor << std::endl; +} + diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/CMakeLists.txt" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/CMakeLists.txt" new file mode 100644 index 0000000..ca3cc3c --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/CMakeLists.txt" @@ -0,0 +1,8 @@ +cmake_minimum_required(VERSION 3.0 FATAL_ERROR) +project(linear) + +find_package(Torch REQUIRED) + +add_executable(linear linear.cpp) +target_link_libraries(linear "${TORCH_LIBRARIES}") +set_property(TARGET linear PROPERTY CXX_STANDARD 11) diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.cpp" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.cpp" new file mode 100644 index 0000000..a272190 --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.cpp" @@ -0,0 +1,41 @@ +#include +#include + + +int batch_size = 1; +float learning_rate = 0.001; + +int main() { + std::vector v = { + 2.1, 3.3, 3.6, 4.4, 5.5, 6.3, 6.5, 7.0, 7.5, 9.7, // x + 1.0, 1.2, 1.9, 2.0, 2.5, 2.5, 2.2, 2.7, 3.0, 3.6 // y + }; + + torch::Tensor data_tensor = torch::from_blob(v.data(), {2, 10}, torch::kFloat32); + auto dataset = torch::data::datasets::TensorDataset(data_tensor.transpose(0, 1)); + auto data_loader = torch::data::make_data_loader(dataset, batch_size); + + + torch::nn::Linear model(1, 1); + torch::optim::SGD optimizer(model->parameters(), learning_rate); + + for (size_t epoch = 0; epoch < 50; ++epoch) { + float epoch_loss = 0; + for (auto&& batch : *data_loader) { + auto x = torch::tensor(batch[0].data[0].item()); // x + auto y = torch::tensor(batch[0].data[1].item()); // y + + auto output = model->forward(x); + auto loss = torch::mse_loss(output, y); + + optimizer.zero_grad(); + loss.backward(); + optimizer.step(); + epoch_loss += loss.item(); + } + + epoch_loss /= 10; + std::cout << "loss: " << epoch_loss << std::endl; + } +} + diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.py" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.py" new file mode 100644 index 0000000..e7687ad --- /dev/null +++ "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/linear.py" @@ -0,0 +1,48 @@ +import torch +from torch.utils.data import TensorDataset, DataLoader +import matplotlib.pyplot as plt + +# 하이퍼파라미터 +input_size = 1 +output_size = 1 +num_epochs = 60 +learning_rate = 0.001 + +# 미니 데이터셋 +x_train = torch.Tensor([ + [2.1], [3.3], [3.6], [4.4], [5.5], + [6.3], [6.5], [7.0], [7.5], [9.7], +]) +y_train = torch.Tensor([ + [1.0], [1.2], [1.9], [2.0], [2.5], + [2.5], [2.2], [2.7], [3.0], [3.6], +]) +dataset = TensorDataset(x_train, y_train) +data_loader = DataLoader(dataset) + + +# 선형회귀 모델 +model = torch.nn.Linear(input_size, output_size) + +# 오차 함수와 최적화 함수 +criterion = torch.nn.MSELoss() +optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) + +# 학습 시작 +for epoch in range(num_epochs): + for example, label in data_loader: + prediction = model.forward(example) + loss = criterion(prediction, label) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + +# 학습 결과 그래프 그리기 +predicted = model(x_train).detach() +plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data') +plt.plot(x_train.numpy(), predicted.numpy(), label='Fitted line') +plt.legend() +plt.show() + + diff --git "a/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/result.png" "b/12-C++\353\241\234 \355\214\214\354\235\264\355\206\240\354\271\230 \354\235\264\354\232\251\355\225\230\352\270\260/linear/result.png" new file mode 100644 index 0000000000000000000000000000000000000000..d81c14f873b2aeccf5ebd1520e8861bac2008d9c GIT binary patch literal 22154 zcmeEuWmuM5x9$rHD2-BzfTDmjNH;1-gLFuDw{(iMfPi#LN_VGpcXxMpbLPX^d!O&y z*FNXx`E|I~QsJ5JGi%H-?s1QM;`doX5Dob`G7JVo6Bgo^hQZ+7VKBJ)M~L7j%mdTQ z;ID_)AB1HefiLGrI=wDh!$)GrNeY%DnF=>B&DT5~IXx_FfA6d3F!Oql<@tbN?} zjDw2Y*TvR@K3#=}Dp=Uq(|iJ$-Jiszr@A|ticn(;T?j0Mjh|;n<5IyB@hZiv9Yl=iYFeS zqo?cj#OSqQagHUue{i}tC#k9V8?r=Mj`)Yt9dRePj8?i#9MmKva>6@c;P+-M;x$?C z#)})^_3PI!D|1HOPHdyGJX1$>_n$v8TLTFcek*~7+kwbQwZ+Ps7gkXWDd*NWDiUPO z%;AE>E+xy$;pyVB@9g(AB;wdCCrmv(J%uGD$w^3(r?0l=>UlZsc55Qq(=&e@Qi2to zkcI6`Ojlw)f#-JQ`|#ml?dQ+Mm2jQC*;*C5nXlWEr2)?v^$MKM%*Z4Yx(CxlH>N8Y z$t4r0t*5?ygI7^ief;QALr?DY8s5kssRwRucmBR~BqZp~^r*$J*{E^&oS5xskGGI~ z(8JXdBIIjoLPa#Rv`C1Eh@8)6>}u+NsXud42tOx`Xai4D&_Z28o$MLv4udu-08BtJA1Dhij z&k+t5>H7NGe%=GAy|H29KFxS6Z#Yji*70Q1a!l2(P`@vM>QW87MFdPUQz`}V z_wV0gu`D~^zPA2&_OaS_XaDq+jEya-{`Mq)d3hOD;Cx|4$z$ho+q?6G5>))|*tvEds6iejM_0x(WW z2Od_|$lo7*ip*v>B4}0p0|HRarmZnpVsoeG_L?ww#f*$7d9U{$0CQisIh(6bO0BG@ zpx11CSY|TOsGsQ4TBO@`J~elX$QMbgiqC5HqOPtEoQ|-BgkI}DZX`ZU%~!8K{m@uy z4eUgkq0-Q^PIrswpDB?Z@%l{56?;8)nrK$aX{(DhA- zCZCbff#XcI!nm2;&ZL(neu>%4WpZD+*-VT~hJ@wzcws2TRIFK*pJtPHcuuj~-L3SL z^ZA0$cQ3DlUd}xjCN6I4YEP`gQ4cF!bc z@Wq2isHoJ;9OcGiw2MnihNC&pz&d~b{vBqqKmXTiWwy+ez|73dX1)Knj*`9oIRd#2 zwNladSo6AQ;0BhKmYURW5Ap5~`P5aedVRudt!Z0-I4e)FELpZr6PJ4* zXDe3Syd^TD{jpB)*Xc3CxnpH4Vb7~f*knpWgTHEioN|eQM~jx`RGBHBi!1nZI8(+4 z5$*Xe>Z8-synfWRit5N)B=bT=5%Im#-I>@ha>>Izx4YO<+quU}srcF`%-yK?Wg~i5-_9bv1oSf)RmKa`NZsm8!vgS7)`T4TJ$M($M ztWX->;yetz+U@^h`@NyW+N z7l*r>Gj^v_lgzbu@7_hRm_7$KSfA|nQ&Uqj=Sz9saFM#(%}I<^0-NPGu%J|QB?d&Sbd(CR*L zsv+4_KZw<@PcC$~rk5<2{Kv92!pOu)czF{OxSfiuRz##_WG+sp%qzik45up&bc1I& z=VT=5VH10$1hm7O=3N zVPQ?+tgyRYv+4K7{T2=*v$wbZWpZ{hrp~CW83KH+#HRIQ<(c0uO6f`v5-Z=K|c+SZ7b|IegdC$;dcW!R(e99Eyrx^8nb#5+C zK!n=|ENGmB4=fk}T#h_XF-n1*IAzfH{CW2#JpN%g;B@Tsu5G94|K~1~J3l z!9n##B4>25*kx!aAowC6F!xtTeb(`6tob{KLmjZeJwaNml-p|p{LMjxJ-tg4N)*>6 z)#ts^XRQwzlFh#uIm+(*nM<3kkN0X-+KJCL_EOtyL4{lpu*_7j+tK2bJALc0j<+y%Y^gKS;NOOujpeD<9JCU|aXEy7xJqv_ zPVbFDY-UT1g_Q{}AN%(_tvag01kW2T_xb2z?RR`-mgCCnR%t_7SlVD9A!kIPc3TYL zN6^c7NDdcbkC5I@-Qra{Z$Cqnf@67_x8MoSuMVtxm@VY>rSJ&?Bjd~EK+Y zhh)nelpgdh5;~Vy(ZP0}UolX;ib+4ATvI!cX1E9a%UP)jTulwnI#N?{=LBySXkVe$ zzkVUfDtbCj^$uVYhNE%fyY??V90aYmDybVy4y1L za##ZVaf6FA&!*WmaVRn~4obqq;C5N3@8ZPFq+)54t{0L*K zZk}3|+$0U#238162-J8LH>XnTlLY(4#~`Liy>mQoB`}BmjErpS|NRj{?6b48 zHk-qK;ZzC{lV@(XN5tPeJu{Vx$w0WJ%aDk#O5R?Rgi9m{R4FmQT3A>Z&XNn@+^z5g z$MV(a|ZFoAvk*yV}d$0mS=aq)~hWTGiOWcbTd~@xe$cZK8H%ndgVB zcC_EW^92+A{Q3Es{Y|QUr7V6RO#W39J=+(9+{2qu3%eGrLfP{z*PD|u;4SDa=J_Cu zMvaRCJf$XpVl@}5u_hBm2r%Nr#Vc-}qi#mXZ_?GBe`{#qTkVei2!hf?kuFM4472vh z<_Oota##&m?_&_(yio8CH?#8>S8Yvs(?J>WZEYF8XScP*ow*@(dpClD zOPwU2JC{E`3!pM^V=jLkfi1MOv>*@@CrS_H0ob5O9U(3zHikqxks(d3c)i8QY4NKS^jngbIZJa56 zLWY?OknVZoAyP{hH7@?UhnL3#HWmn<;eMfjE%C(QIZs-)6o~tL0AM*t#SCX_95Pof zE-skNRGiJ*O{dDRh>6uVFM8uS)ve)Zo_1U}B!BZL%Ey+3+H{ZxL^Hr1I;g_Xc&&KMxRlmqDFso{7zk2)U{CjW! zA(BBMHZL*3m#@(;qG%ty9@A;|#e#B7kR*r4O=A%dbS(w*O4PgF7yy5lA{dM~Uw?N) z2dw60AI}vvKzD!|;?4n3cYaAdJ20HUiic5|eZl>QJPaz5V|xg$z&y)=Zf)iz=` zF_6ry1M~qh3sNSglEE`D%rZs<0WMaj*G+on%V4CmJzIqq7Gqg7Zl9gC+RhJJ)DzuS z{H=rA0*4;I#A(*T$IG6$=Nr zHjJb#(hy1|`F_4Phl8k=0 z^37?+Xc$mkaqlHuvHE&N7QE5%o8K{6!b1FKqz!e^1EjY8M z&7;Njo}Kj9uVQX%>84O;@cM||0J4ur$7_In4*wz%7l0johcbU*mxT$aI$3W`defcv zYU%~y-$)4H>eR%$Z+`T$0T3SRfS7P_aDbwY!_n#h z_(?z>0mv1}6P-Wk=)8%Jj;^`dt+v@1^rHDvhKY?WyUKHTbkxz;N9Pb19{zPgg`-2c z^CK@giS#oT!p=8_t%&GxY@V?JUiC9XtxKx0hMfv8*51(rp6CUa{ZHVFKnQ69Cf4nb zL)A&`;U=r7C?LcZk6+wM;L)z{bWQcy*PM@M&n z9K&!Rxdov-?_5>vamk8E}HWG z8V75h>-{FHT(>!wvxU`FfPfi0Ro1j#yZ`n4AduB8%2XzL<(6P^wvZ1S>ByY_Gma-p|hDrR|e~vq_?uKbkNplh)ml z273Z_VKE5A@MXt@gams>#|X}*$}q7YB5vhf(`I(S8T`5SYiAY}<`y43Mti~W71vGy zrOByuHH6^9akT*LJSKw0`ToN3=12g5qd(*0dyY4TK*V7Wz@tOdXmE#PGMkPHc`XPJ zMW_4RtHj{%#!!aCTD%>b#XKyS_txHPwFq!=h=_}Odw@IB^r|ak!^ObBP*HiY8%K?m zNdguwk@$?kXu#Ir1o7`zV|of6??3aCdV)_mS1=Lw!Qn^6r*}U-wgIG&?~flk2a7G! zj$64fu!#l3v0Irk8TN~QIAdt5xy?ic6m-80*M zNZ1Ce;LO4@Zz)ZQ$e0~W1E~PSfQskLIDLE17{(qN9t@JQ{MnfZBo0L5PKCUvdxkr{ zcoKE?PLowTa=TfN?+9_W=1c>10j}5KI!1-_9-4!I&Y7sMpSHiWy98@)VbbGId{o1{ zLN&(6%ME(4H9FZ{LQM#7EZlZBs;EA6Oe~wWQ!SV%Y=*ms{^QTGdo->GRmD`wP@3H3 z(Toq&KA_SNTt*R!zxaMX1VS*jw)yCeoC&8V?zdwIM*t>gF8n4y7HYX?-wU5o*%3jx zP+U7rQo0Y7`OHvI-9TVZ5GlG4MCCT?fZRd5Zm#1BOdSLPmQS>k ztr@&KNG~bdgTXdG9LqH{qqkJP-{$aj2)Or*H<trAcNn z2{LK1dpaC`hciJGoJte+ID`h7nV5rVQ_YHMqfUiwpZg_1xNuz3^me--s6>$8babM> zynXBV{UVl7bQ%7Bgkx_3bTytc(QTzef~(+3r3KLS@&3^}_UQJOdvaaHb4JiwD5lP1 z=h=iJ_0QoH1W$7_Kd?qELH|5Yt0X`_IK1wOqbQKBk3iDCDkm?~eE`--B?1~jI}V4; z=VmH(Q_a)Mk1!iE`QQVLlD0VonL26i`$bmqh!-ppjw|y}6|}Y}Y?zPz5@I8RqM}L- z&Nc-rw9g?{^r)T_Tj&RU`K)0I1}PrFZ zldNAT-WFlaZ?$|sH^{@tHMV66F;0he!zy9B=7V?NO!K$7LAZ6SQTKtf@{GK4pN>|M7kdzwJBE>UoLhd+tnA8jMmbcb<#+2B&`< z;sEo=w1DQZc>Jyp_Yl~_xveN7th~gmz4}Z*x;h;!H^cpM%lwaCxIhuiBS;joh`3Nq z{Oh$gm+P&m9c*Q^Z(E}p($1(-e@lCU$fP%*gt>Vmjz^}!x|p>{XG#j@DDaSeb5`iu zs3JB_EY;|KOJtPX=HEQXAh%{?#K2I%Q>)8ncH0=1m8n~ly?+4(v7jZt8t)v=4o@XKx}SijQtcI+C!j5;If?1)@YMF6{&gYz2G-~h ziB=Ek&!hhdUk#9!M{_%|fQ%OKJp*~FoVc_qiUNiL{HbE{RMhI|jC$B^Wy)RknLQfY zXPgfEyvFPi@sgr<%FbcK;aB-X2d*S**1qug*x1c~q*4I!$PHk^QhKaevScC;NKjXj zxAN6$W6sa*iJZ0>K=QFMRZa(r8M=TylZ#W~=NIXYM|t(CKLzQ{8*Df9#}sO=&jgDP z&yU)SpViv{Hs?$ouX#*Z)o`LeV^BLlRuH!dR9`;IdRKkjIs}aQ{b}a|?M+8d zkM7@Z2&7#cUpM)$PIscY9IPtOLc+tn5)+95KsvwNOwt0x3d?=XX04tyo}e<85ovLe zwrZm@zRliN9+}(<<; z_pY0!d|KK_3FO%q7i)>xB+0(M*C8Xwo=ED7xASM95TZg)sGO$r?zfLVovyR=FPTg2YjjcCYbuv!*UbJ{6IcH+ju zf*TylH>f2pBi3EVqln{>5u%Y~1>{%Tj8q^cLz3^3WfX-5fG2=YfA51%h|g~IMoLQR z2Qlw$@)qL5hZf82A<|tzFW5iu@ima1fqcaR)RaVd08>asUGM8Vgp5i(X5@wT0Kd|L z03w%V^pOpx+9MGjRD&f^LGYn)Un`z4NlQ1r`(wS$W9rJ` z?n(?StjbS?g_zjKSC5I;iWP-W0#fg6G45lX4+rZ?mwpwd^jtNvr#~CIPZT^6k24!c z7Lx%7tfQ~b=yGWjL8sok*b)GTPp<(BBw*D8gNC6JaYdQUR53Un8|>B`N$B;)byWQb zCi?cDT7a)x=j$oK-PbI@(S+SI-_E!NEz*}dm;qjUUsU?6&+5ch{|=qoS00?!h8!Cy z)Jc8Bs$}zd>n<2fqzj-RC@(FotqB684#45+=ofQ@`T4(|6&2S!;}dD3ct`Nh^hvkxxbT}G)mok>veNWTPuSS_yFFYcOT zbJ#||`(|eYYu6l*wm$#7pq;7&iapT>UGHHW-ou(7oS8gap-8`Y4msV_&K>rMkBcQ} zCVlOI9%$aB!M73>od!Nln)Lp;NRKEF6alT%8$`IxFJ#41wIX&oN_~euxbP*>B4Kr_I zwL~m5-CX0&kFlak@%&34eS)uPI_QHF5a=W%3O)3w>3Qr81Sn-v8l?m6eF1)t8Eg!c z+qMlztR6#w*h&rx#AkGF+5@YoFf+rMpLTlzskY)EM2+9$>q;#G8Obmv?FX6UeT%zB z3tm%A4mrkeaRbtw1+pGMu!VvZWZTObH$Rk10zYKG{~Z5ZOvLxMi-jpjhud)=ay!I| z-6h?9P4BKX)Km~wQELjj+r;xzN3#R?uss}tm?2%tZu8ildT+vPFR4MgQDdWTjA&y9 znU&G~hIE2RdF?c!Hmg+QNfP^h$dMTemA1&tBK4&P`N;m} z3Zv3|=8Ox<07?Cs$p_fvwO@*aphRW9Aa zhgcMQ2{>kM6^9h_hn7+v`?e2+M6Yh5>UoP4U%q{$rJc=F;4AwU+Ej9Bol*v~4%*o- zbp%cB`!HfM(&qlgdiew7rM8dtt}VKI!KC}sguJbR4;03-K!m~((T5B0W%K*d&GqEA zHbR&eJF@;eFSDlWB3gYU@7ucOt~mDo3d@Z^&u=!5@v)GSv7lb|n}SkMue4s1TciA0 z*=YS@xdW2Kffj|J08btl|GrakNjjcYIu`lYZY1dZ(5iUgD4W(?&45&=5YN3V&^h`S z=0^jUJyG-Z%`DMcUp9JZ@JQjnihwZ{-!@RdfEjfL*p;+)slIj~>6L(90!K69_+7J@ zHPoRDlbDWmwvIJaZO7&U7mEUNQHy-Y{w6gyJGMNxmc%fr_pV|;f`1Fw#*mRe#d3nu zmBp9Rk_oQ>c>_+ygZ*{1-`BMYY(!>N^PaxH?q2|_n~Cc^vUYvVng6K%`EHGqIyN9C z41fI4V4o`wj880V62N1!KSAI`rJCG7AHD@_G)SjbO8^_aIr?MG z45evCPNt5;%JBYq|F=2xqccE=g{kw$$L#*7tmo!#yaCx1$q1CQ3NeQ&80a>C%N6_L zgz3KZaq}Hd9rr&@mSn{5zCq!dBD&uYO9A(5f&hdk)#V!PG&Gh&zw&)mUV#?xI8gkldhS9R0$C{yEK4Tz1O27;kk=bPe!#=SbAEL-RBo-p`~9tAb^a@myGYgX2?(5Z{d%g}@bwL{DK1`kRRY7zzA z`|1PW#cR1}a_uW?BO9o?>$ikhTxPFAl(wV`6`|Q(Tp#c*>}B)H3oK76qBhZYqe~3{ zzSz6Io|j5KXC4%XYSuYGby~Ci=PRJYxy(8X`xhj6sdlpEE5xpt+wxj>Ei%KJ8utS5FHOco7b`l4JY^K(E0zM{}JzPOPk~ z3?@q`Kz%+c3V+sdi)OOS^vmicC>boTtwnP6c6Me(HIP_2WXp%ECcsc1NXrC_ZOztp zYK4DcKU%vj2z86gX_`hegf*At^o`%{WU6-+`+xKIWwh|6nCAuT7@)7e6PQ&%BExrM zC@3gPKyS2=onNUR#ExZTxQlU71k)Y{(+I~XmMk2lN!VLL5T0cQ^AX(u0d?^@6%EFzh8yi1>5}3HN zGZ)a%RIGF05x}9MquXx2(g~p~c6K;;{50~Y3FDL<-rnyTk)AP&Jb(83&BboQ!*fT5 zS3EIWAL+OQUXdsW$~2&}AjJLp)eH%LDy>#+5bf)~co*-hjFVufBSF(Y~cP4-GY=}3eYL-Zk6bFlZ z9+1u6nm@tYYaEUg%S@hu@{hvxa{%%|2^|X`U-9u{f#sOWsz!(~|3aOX$a!Wz&345F z_mDQmt=Nsxk(VjKeA1?AL{Hb=0xOZrxwbPAh~5C+^Yim_zP(rzOXML0>OLUf0NmUB z_Czu17DUtmRy2|eD(PM9R_~2h+tEQ~wLZ67MkMqXPKdEyLFP~(qNb8 zH~+}CmgunTnp@ubfeHqhl)aa`bSV?+MIyyR^Gb9KB9oVork_`%f;&LsxA=y}X zNG_MMQ=A?;r<*!o99QyUc9zB6?IfT%-@6*H3(e6`QY{;bh9t>g;rPxl zqi=Cxvk}x!_4wA(V-9h!hVGx!1DVZS_UR!gmSaz##*Ain01ePTw4?7M2ntC5mRQBz zpWY6no^r)@|5qH~djsK-%$N1Myd4c29XdKI3k$1_RJBt-EnJ=goZveH5g3)9SYrPo zQJvDSUd1b#BKB-LF;cwpW(kZtI($N+bq8UyyuSx=&I$41jajN~a24cL4Ccpy4O24p zY68u!8?3*4+vP4D`W_?piLDyg@~G|7*0|a|JX6I>1<N zEADU*Gzx8{4-`oc?;=dN8?CKbtS-e~@g$gCXRE)lD?wr6i~#rvhq zYC>Xh$aW2hbM3VKS>0PRV*(8ji$g>*zz`(J>)Siqy{4jz9C={_;zo=NJTXZewj3+Q zrHxr~KNHYBJTM7R@;E5Ko+p6N$rk>A+)6kmq5EE=P*wP>?*z4JW<(;xd9By$ujfMl z@3}|>gumwp04J)^Vr7nkooF_sKHs5tyR&-AejzZNxzW3Rl~O@b^LwJO^B-=)TguS^ z__ITHYgu>@EfrChuIH$w)&5nflRsg}pNi_>CI5+fytAYf32q%<+UN1Xz{ATCdiDuY z#azrM(vHh}!PF6pAq_59OoY@{UdOk&0A*QPI0di#WaExD-B41b-XGiTaX5{Tub9~S zwZ{&HncF0LS^9rSg>32wUp7Qw8J3DiVMF$ovt+&4ikWLWe?g?FER+LmXSn2jHJIcO z2^jIBMK7+R!^sv+w{j#hUxwaS5c-(VTx!K6Y!TqQ9FRf}^T_|B-mm(u<7ldE#Uop5B7Rn`x^Jj5$@;>^+pL(sAFS@cT z%v*RQgbsph^yzq_{pqOuNdEQv13$v0Has^|cDlRDwx!mMhnQHElwerWJ1eVr495Z3 z35iDp`Y5?Jrc#Mso?07&$#oM0dE)mK$mguIwOnt7BHghx8hGK5zBFvWe+zXFmI zOcTm8XSzD6bj~AV&*#z?tJS6lCll>11*F=hnxG>%0)hYW(mC{aGDF9ANRkPEds-Uj zoV<<{$39c9sS`*73A;ErrQ3i^6;rBBEXOrV={LfZ%|HZ9g8{M16vz`vMj*2vkMCym z;^NhRJ!i@d&(~Lm=1{GU?aDk2&1MlFvhln(#9RV{$2#D=w=|7-MedsPfa4AdF(lF+ z&~sWqrrupx65n0gatg3`rk@zS1GO#N_fQ6hWyuEiO{+?#5&;zmP<5w*;VtxaUcO$M zT-ZtjF7uvSke*S@MgOWk{`E@o9jIk&L_645RPOgxPwvkr#u#)e@TWehj3P`T`SF51 z6aYIQLG=XK4q_hLf(RpL%ucr_zWewr0WkrnqAONdXyT;eR3ciheGqzdybkyHaZBRI z5B`w~jKKF_b=eKwr7)-JuMXtYu^!zyK5*MjUAh6hK56dx3x zk9Vdb>s+piKmnIhjMfTawb#q_X1@RTVAs$f=qcriJr{YRPsVlU)Z8v8psi2UVX0$m zi^P6{2w*Hri`88nko0;B3?K zNP0P5-nX0KIkwIH7bw+U^z^oM&3KLN18C@}IzZ|VL!@A)Zu3fj9dHK*LhBL81s zAWx&v5~R0wu$_bLI_U!M?n?O0zE%?G4B4jhUt)zA{atXqA|oRM3#{h~M54%UI{=)_1d@`HT-@ALZ?fBQ`~qosTIoQpQFZ3L z76kVrF!$0#_ifQ+RDliNQ@8OzO+Lks#IsKH-nh4=-QcJ$9=}+`=WC)D5)pw|U+OPq zKl=OoyUc)UMjr^;m5nCO=G-I!(M&~^-acae)$3p>pq}T>z7o=H6vsa03({E$**{Pw zqo$&DI~YSck{d(=h@8Z>@f9+30U^=tmVGEgvaPMn=f@9J07BV-n7D)E0V1jfC|HvQ zBViDA1LbHJC?8J%`EP#RB_$y3UsF(Y0O-Gb_}`VUtIHgHhlGL~%&s`~+nj#oK2%G@ z27T=nLN(JnDRJOhlBWt{dJf|w-v30LRd#z4Ky(hWCkh8waL#J354*PK>Jx!}_7Dhh ztlJ3femT{11geN>X4t_~6iwpa+(_^!)*-pGc+>$@lCJb1@Y2uMW#FpZ6PvGi9qG^W z;-M#Us)Rf)5$_p8mF(uRVW2Ye3pkZrDPF8XQO7&mf-pY*PLTQGb5$IFJ^A*{Ke(_s z%y4*9XQS*j;ch`mB&q$fG+lwOh_00;&t6|ltnblaUV{=bMxZH?gVHNUH zx-W8NUF-~ZN2u%QE;sG~$4l&f`nNP1pIF>tCT11!DOLy-;1POLp3h12m>@|khca^MtZZ~VJviA9qLXTfU$l9)Z8ljl*l1`I*WC`7{s8jV5JqOS^7&z!GyCRw=* zER*VkH_LHQLW6O>=Euo%E40bkF~|BC1~Ff;Tsh@}6sw4(|2!4L}?JhAJ_=dEJkVcW%u|3qAU<|C4_B=wg&D){@qG^}0Nn^NgJ}@w zPqx+9%}9jwBni*NKz+RXQwG>;pbiJQgRD%36^gyt>8A)YUgU=O9r$Ms=A6#8fXF8y zi3H{?jg~v*7V5zmD%{uI)YRkUHa+6adza}4fuH*XC<`mLN8_-Q`^T*rxqR$<0~d2L zQvRW`kVL49)aPItnPd{n%Z$eXfjQ$2sP5IE{3@@)2?YI#g}{iP)mriFaFXIy4@Ttg{WVXGA|>vu-s#>LcUzrqu5SK&Z|D5@KIAOkfb4mT#znAtzV8_XdVxgSr|% z3*;pWM$lGRGJ&nI)oAI}Mg^&+-!yy;;BKk%2wf&wSwN2D%LXCRr#MQcKW<&giK*uv z@NMy_&x!(n>ZuITl~{scp|wJrGWy;be0sNq9tS_)7ay~K82^vF1ROnD=mj86{{CCt zWcfJygEQ9*KG>&Se-og>2LpHl1|avR-)Jemh4b8CMGZE|e5x(|fk}MJ0o2h!bqvsn zLO8kdEWZ-4bmDiP zCh|bZwA=9q0?C1pHb;Xr_Pl#y^!Wq@W3#WS+UOZ}Wz?@Dt1wi3D&z{rG%?;deRDJB%Jh2T_D^M*!L0&VQ2^4Le!$c+ zf!Z5VgMv#~g08MSkkTJ${PlMxOPiaURcs)126TX;MEbhAa&jt#GQiKPUFo6xyQ-HC z3U9u@dJIuC6czD-4vjPzNC_LkO&&-e4b-Kz>nuR$zFaz{mYwCRwf1j{T@P+$`t{X_ z3d3P&P;s-FxAQ>nrhm3OqsznlFD2k?`uOoMx-sJ9vu5H6%QvxrKaRd!PsDfp5(UUJ zklRRb!rL=YP*4ClT*O69Mg}=h<;g_}ZTCcfBe}g8!ClSaeaIKNdV+t(=XC9I?>I($ zny?$<;^L%J>_EZ)H7ThVPz4NvOJd++hy=KBd3Uqt1_#~n1NpNy>!6PN%M*-iN z-z-|dFTZVc_hn*2EBeaHVx<@Nbn>CHK*{@O$_)rOI#QEFab;+aQ0M&_XsLrra=hGg zzG1$6$Y1nPC~NjQ#DgW!Hbr)Y?4&Nydh`3Vquhy8hWq76b-tMt%;Tuc{U5*wbW-b+XId3-d@}y#}0?d%j+ker)8hF6-K*F~A5%XfZ4VwW{ z1O!Bb%bED&u7m@z3wW3bm{I-OfueHN#h-)@_P6D2(u?B1mDyMX;+`+i5g9j$Og2gQBqJ&+c3dkn-4(;ot2@;;z}EX zt4(u4q23v-Mx*_-$hw_)F!yYGx$kr5+wH8K&P{37q&Uci^TTfFJ2@fT%F#gxFuwSY zaQwAvr;0Im1Ddtx2bxL|Hr6`YG|ywRPD3>BSBP8+CY6tatuDRluX?#PU`{HW;#e~H zly@uV=gW)*9T;p_6`ODPODuZ)&@!tEhq|p&;J3J#o1?tv5l@UcaAB~oUR(_YG{x#du_ee(-_w=p z$pi|;KV-4`2G!MZR?Y6fU_?hV%swS=Z#nHy)%p;aiM#m%vEzT&RE z9IDHZxY>!T-?L)N%9oVPPa6h149*n((dh1wqfHM{xV&tplEKf_nXsHXLS?n;-$P2Z z!(F~uBf5Llr2PwjZZ8^9a*!Uu8on-meEH{VB;`y@nO-oFVx4Fjj@)JBXwUKNgN-@$ z+dO=p8pq7Y@$r}?OG|1va8!buvG|6wUh9i8Q#fUy$5Dhdy%OJ?l8C;Ur0RDd+!OG| zi1bF!y)7|!bvYNfDU19E-$Cg`Y{1b|l*P>W`lB@X{6Ki!m06QpVS#_VR}KRC(4N{9x7 zO{KsZw>l}aj<3EtmD-L`2unL&#U5Y(*#)C2fX)hEGOV%dbPbPc=_H=xQam~i4qg0W zEcS%Byi^VbnfmZEY(9H0U8T-h#}ABix6+Z>T>i-BfAHGU*GETtAddob15t!P-YQdi zXmopkQ+-)9^wQSgx5Jr@LUI4grVbda;p{hT(R-U)F7?NDJcnzYiU%Azx3fNy`1X)D zg*vc7dgPa`Pr8bZ*J#>KmaDJ6PV7jTgkjR)hb4b`5)%^yepSmY@WZYp$pPUpRhKBW z^?N_wWV*EpadQ^M#xQ9?e&uqWqt3n5b-ctd3{XGGpyVK)PszVjJvz3ytkLQ zoy5Q!_|9QB6cxQAB_}rq70I#E8*tHw3B>4=ohb#{NKwE5#jsf>gNmzj+;O5}@h77h z<;^LD=bUAi`dgzTONdGlX$maFBkhqqLmeo1BUwtm@^f>dPcPqeF3dagg84u7(N&7r zz?@yRU@HOl!ofwRZKU#Oj;~qJuQS-0sXp5r2S7niQSlF;Z|IgHaV8$!}DQB z-~`Qnjj7jfy{c!2Ki4*$C=vh{!Sfkdz-2)2O^eve@-Lm;HD%YrZUkMOStlFwgl%-| zc^9!K3%BqH><^fX4fJVA~!+G+=s>c)z zQC3RI^5krBQELxjvPOx+;m{|)oSK3z-?18;gxRHASa93mV2|L5SnvBv?g(X8^HeWw znGsT!#TgPjQT-9JGT+b+1GcrYs)(CZ0O}$ZdA_lf{R@EdFYFj3EsWr z0`C_m;M5Y2+aj}3Qi=fl#N3LEjEqf0bXzNU_r?(1q6fpNa_s2pI#NqoH`p^fduqyk zn!Br9phSS4AY-B7zKXh+g^*G$a|>oRWmsECMka7{D6Rng2WZ*XwXb)N-X7(qry zKNU|pwxOVv0E*D7z6UnHJbt5p||ZSF17?t=!J*rkYDO z;9Qt<9vCcH!?u_*hB8EJ<7nzqyK!hu*&WqFZ6t%)dajl5ydFBZIX(kTxv}|TCv4W^ z$m$mcFN(U1u$PC!z@{f=G()%nW`u>%PnI=J#C^B$ie`2{oLW@GA9<*;Fw}=Q>$_7f5r51@Pa-UtNEPt9Gi^~4r$Mkkc@iw^MG+_ zL!g1)7k)j1a)yXI*7`G@IR~Zi<`aTEFKy|O%kPXikSu89*&oIGfaQ7&Fgvb!Sv|B$1N*6Q!2MG z*6VN2qTW!j(|$l{OV5%k{sct>_bPArb)>^Onz7XF_(_){p->3Kiq|pPrNDQl{^HkRC;9Ot;%)E%_uwNGBvi?6jBcNuZuNZ$5)GAJ ziZ%Efh26poK{MF3Hg<#K`j&a;uaH`qD+xT&(A%3b7Do#{BxZ|u0Lj8`*^xE4|26Cy zrXV`*ChTs;4i7@G=X3C9*p?p@_MNXpY33Y1gdWr7#v0y6?fM5jVu(Wp(_{r*%x7Dt zb=tf9M?}?~o|RC#nWFj$MS}gO;0+a})e@V9rA~6L6S=X^kv1-*X2NIdyfzfUDiWo@ zMx|CFvyabXuS$&CgoUM*V^?E%tE!c~S()y8u)}WPSpWRq@15FQW|O|?iiHq}*IVUw zC6SB`nh?0#e*jt-EVK#QoSS4Se@8IBUEkdtIVBqk0lP^28#emB*xOd>vxa;6Y;-EF z=HK)s@Y}z5Kf>jBl027lOCtcS=n8@!fxmh_!{9&^_J#-FXfR^)fp)RKVPK`lQ4uh~ zhUmR@2R~x@2=@>mooC1||F0hrOWJ^)MC&SrrUF;lBn&=&QgvA6vhsC0=&d_zQfexH zD7d3Xb^jz-PFfm>!XN#wTFx}A$t#QF6~@{!iXAIcPzX8%MPon|2&RHngvb(PlSLMn zum(keKrtXXw%S2uOM@&9QtKqj5<`$>Kp~?R0t65Y0Y#(_4JcueCZMcJ|CyPu^I_(B z=3_p*dEa~Pz2}~L&iVgjmRC>vC*BoPniZ-MXv9FR`2O+Wtn-X#P*52J)mtnq4x;}) z#NEH9T=+riz94OwxA<~G_;N;Gu`P$oHQThwY1y)OyVqx!oTqHqu;D9YBtmM1Kz)dp zXi3W#M#bZm;_=d@3fYIgGe;&+_SH%53Bj1w-}>h;uTG_HzLE5Z^~wEsYGEBj;ClKa zOFPy7dZOarZ|qxdtOYZb8}QHnM{9MS-xdFA1l`Lx zh{XfJ9*t9aI#T9N+%Zzd-@`zBx;!q)coLt$aOk5}sdfLKD-mGUQZb9XeO%TYqC zJiCziGFD==j>@_NEqVmC;2;7}w}6nk1I05=H?A_00&RdBs*GsP@0tl& z0#_j#Y6!NHmpcu40?EqCM|*{CH_tVfxhu-(*u%fyi+FOFQ-%)sf()3k~?~sxvKeTC4+j&61oasOb9ts z!k}L6T}9aatYG`Ged!_?HxK}&o!sWHTcuL+ZCO-3Kp)mk-rn8<2_d=7W9!dZp@QK1 z??xvHnGzstDsG&4m0!xZc=4hyBETvzsXqThy5f_gMjk#sL}%ny@&}0xuM_WA9dFdh z$;sJ5CbzQ;i&~nSJFx)e;&bO@o++ch4nDq|mgWgzC$yKgg|@MeSj3{FF+olDE!ygI z)bAjU^}zxAVOFxIAmb3p{76HYcyZVQ-+TcJMQIz-3k1PgKxoh%l|_s~5^ElYw2st7 z$Pa`iB`z^Ffr$IcED3AY{8B@k6xt?^=OL`}RxAx+r@tM4?j2Zt!ZNST@Y+u{Z3-2Z zzH5E*jBl=au$x2$q0KupGMSEFUNBA-f=JLDT3FkPfVR2_1+9|uTE3WtyxS;{Uxy&E z;1(4Lp*z`XXBP~}jb_^^lR^@vM?A>^75fn_bb;Pff@P%q^9q88heuXZrtvB2jf2>T z?yzJXf+9Lil}00+*$#KjT#bvVAVDuClU#d)*=i&C$t; zIj0`(s|dS-AUpzpRk$nOiL=(gAb_!Z#}4&qLZZVmt8FGG4)~n63tt~W8(Efg*vr#1 z8?|nMN+F5Hz*7CRrqpU~etvO(e}D8q*uwQm!bW9};5z%=c=5O2{to$BF96bt9)=FQ zRwZfXru~LpAcxE0{0L)>@^VAe3tF?c_q=!h=Hpdf*u+XRdl3Sx`VaGCtsNb{sEiKB z)pB!kc(_1_Q(}%JPgv9Qw(k{*L~+zYTq5LomJF21b!A;1(mXAjNTdYWP~A=gu44u= z9~KTGPA}B`S&$t^V*Xs*-Fp`2rsxuN9oRG@XxP(SMUEc*K}%b^Dpuh{_AmbmpoX~n zFZm|(ZXg}809+bF({!R(YswnbBwZJB(|IX8=UcM0RB#}~O?5nvW{T1f&SlcuMq$7du311?Y*@q|zt zbhk8@V8;f(C^oJ(2v*U2cT`ky!~7@-KJa?RF9|SpLwGUY;X7S8(1#vB_K8kB-%)kq zxz{%r}E@6)JrfpD*`0IOrJ}34Z^Dxfvi~c+lFY zJ~HYb8!NJ3T8tOl8^1R`rt|DP%FkgD5o7I?pCKTBCZAf3r0Uu=YmVC%&Y;thu9@DH zlm}Rt+`>WuHWvODRuQ66_5Q1%j?PXG>r(^$lO3uQu;Z*ln?Exp5;Z3%8`b?`7S%eu zO<&gaAVxjZqH+E}hX|72)Y1ZLV&uR-Rk4&_aNtb}RU|+t>-MBR(9(WC!#j?KUN*2z zdd9{=fH(lp3uXh8V+B5(#@%CJ*TRZ1Hfr3^UkL1xji#oiN{V84Fg_(iy&F6g&b@@<-@C0P>(p3a0I;~b9T!Yyz6 zLze>w$}yc~e`FqNeK6F zox*BL1D@wGQ^rr%1Ax-e(J{clz`z&0Mx}p<3i~2uGJ0%Qr65a7LUh702;b1qzv&qo zo&Y!K$>dV%l8LTVEgSAYZ18Kn?TY_8Zu%cWt^fBUb9)A_81Sd`gJuvaedO%uzW?sN HqZfVyoKf(a literal 0 HcmV?d00001 diff --git a/README.md b/README.md index 273b2fc..2f9c726 100644 --- a/README.md +++ b/README.md @@ -59,12 +59,7 @@ * [팁] OpenAI Gym * [프로젝트 1] [카트폴 게임 마스터하기](10-DQN-Learns-From-Environment/01-cartpole-dqn.ipynb) * 더 보기 -11. [간단한 자율주행 해보기](11-Self-Driving-Car) - 앞서 배운 개념들을 활용하여 간단한 자율주행을 해봅니다. - * [개념] 자율주행차란? - * [팁] 자율주행 시뮬레이터 소개 - * [팁] 설치와 환경설정 - * [프로젝트 1] 딥러닝으로 자동차 조종하기 - * 더 보기 + ## 참여하기