-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
189 lines (117 loc) · 4.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from data_loader import get_loader, set_transform
from models.model import Encoder
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import torchvision
import pickle
save_path = "./save/"
batch_size = 8
learning_rate = 0.001
momentum = 0.9
epoch = 200
train_csv = "./train_corpus.csv"
valid_csv = "./valid_corpus.csv"
#load_path = "./save/best_model.th"
if not os.path.exists(save_path):
os.makedirs(save_path)
def train(epoch=5,freeze=True):
tb = SummaryWriter()
#Defining Model
model = Encoder()
print(model)
#model.load_state_dict(torch.load(load_path))
if freeze:
for param in model._resnet_extractor.parameters():
param.require_grad = False
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
transform = set_transform()
train_loader = get_loader(train_csv,batch_size,transform=transform)
valid_loader = get_loader(valid_csv,batch_size,transform=transform)
img,cls = next(iter(train_loader))
#print(img.shape)
grid = torchvision.utils.make_grid(img)
tb.add_image('images', grid, 0)
# tb.add_graph(model,img[0])
if torch.cuda.is_available():
model = model.cuda()
img = img.cuda()
total_train_loss = []
total_val_loss = []
best_train = 100000000
best_valid = 100000000
not_improve = 0
#train_avg_list = []
#valid_avg_list = []
tb.add_graph(model,img)
for e in range(1,epoch):
loss_train = []
loss_val = 0
acc_train = 0
acc_val = 0
model.train()
num_iter = 1
for i, (images,classes) in enumerate(train_loader):
optimizer.zero_grad()
if torch.cuda.is_available():
images = images.cuda()
classes=classes.cuda()
feature_image = model(images)
_, preds = torch.max(feature_image.data, 1)
loss = criterion(feature_image, classes)
loss.backward()
optimizer.step()
loss_train.append(loss.cpu().detach().numpy())
acc_train += torch.sum(preds == classes)
del feature_image, classes, preds
torch.cuda.empty_cache()
#print(f"Loss i: {i}")
num_iter = i+1
if i %10 == 0:
print(f"Epoch ({e}/{epoch}) Iter: {i+1} Loss: {loss}")
avg_loss = sum(loss_train)/num_iter
print(f"\t\tTotal iter: {num_iter} AVG loss: {avg_loss}")
tb.add_scalar("Train_Loss", avg_loss, e)
tb.add_scalar("Train_Accuracy", 100-avg_loss, e)
total_train_loss.append(avg_loss)
model.eval()
num_iter_val = 1
for i, (images,classes) in enumerate(valid_loader):
optimizer.zero_grad()
feature_image = model(images)
if torch.cuda.is_available():
feature_image = feature_image.cuda()
classes=classes.cuda()
_, preds = torch.max(feature_image.data, 1)
loss = criterion(feature_image, classes)
loss_val += loss.cpu().detach().numpy()
acc_val += torch.sum(preds == classes)
num_iter_val = i+1
del feature_image, classes, preds
torch.cuda.empty_cache()
avg_val = loss_val/num_iter_val
print(f"\t\tValid Loss: {avg_val}")
tb.add_scalar("Validation_Loss", avg_val, e)
tb.add_scalar("Validation_Accuracy", 100-avg_val, e)
if avg_val<best_valid:
total_val_loss.append(avg_val)
model_save = save_path+"/best_model.th"
torch.save(model.state_dict(), model_save)
best_valid = avg_val
print(f"Model saved to path save/")
not_improve = 0
else:
not_improve +=1
print(f"Not Improved {not_improve} times ")
if not_improve==6:
break
save_loss = {"train":total_train_loss, "valid":total_val_loss}
with open(save_path+"/losses.pickle","wb") as files:
pickle.dump(save_loss,files)
tb.close()
train(epoch)